regular backup

This commit is contained in:
Jianshun Gao 2023-07-05 12:15:03 +02:00
parent ae7fc0779f
commit 43e192a20b
3 changed files with 268 additions and 17 deletions

View File

@ -568,11 +568,11 @@ class FitAnalyser():
:type input_core_dims: list or array like, optional
:param dask: over write of the same argument in xarray.apply_ufunc,, defaults to 'parallelized'
:type dask: str, optional
:param vectorize: over write of the same argument in xarray.apply_ufunc,, defaults to True
:param vectorize: over write of the same argument in xarray.apply_ufunc, defaults to True
:type vectorize: bool, optional
:param keep_attrs: over write of the same argument in xarray.apply_ufunc,, defaults to True
:param keep_attrs: over write of the same argument in xarray.apply_ufunc, defaults to True
:type keep_attrs: bool, optional
:param daskKwargs: over write of the same argument in xarray.apply_ufunc,, defaults to None
:param daskKwargs: over write of the same argument in xarray.apply_ufunc, defaults to None
:type daskKwargs: dict, optional
:return: The guessed initial parameters for the fit
:rtype: xarray DataArray
@ -891,7 +891,7 @@ class FitAnalyser():
return res.reshape(shape, order='F')
def eval(self, fitResultArray, x=None, y=None, output_core_dims=None, prefix="", dask='parallelized', vectorize=True, daskKwargs=None, **kwargs):
"""_summary_
"""Call the eval function of the fit model to calculate the curve.
:param fitResultArray: The result of fit
:type fitResultArray: xarray DataArray

View File

@ -11,7 +11,17 @@ from datetime import datetime
def _read_globals_attrs(variable_attrs, context=None):
"""Combine attributes from different variables according to combine_attrs"""
"""Find global parameters of shots, including scan axes.
:param variable_attrs: The attrs of current shot.
:type variable_attrs: dict
:param context: _description_, defaults to None
:type context: _type_, optional
:return: The globals attrs of the whole shot.
:rtype: dict
"""
# Combine attributes from different variables according to combine_attrs
if not variable_attrs:
# no attributes to merge
return None
@ -86,12 +96,31 @@ def _read_globals_attrs(variable_attrs, context=None):
def _read_shot_number_from_hdf5(x):
"""Add the current shot number to the data read from HDF5 file.
:param x: The data of current shot
:type x: xarray DataArray
:return: The data with current shot number
:rtype: xarray DataArray
"""
filePath = x.encoding["source"]
shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0]
return x.assign(shotNum=shotNum)
def _assign_scan_axis_partial(x, datesetOfGlobal, fullFilePath):
"""Find and add the scan axes to the data read from HDF5 file.
:param x: The data of current shot
:type x: xarray DataArray
:param datesetOfGlobal: The xarray DataSet stored the information of global parameters
:type datesetOfGlobal: xarray DataSet
:param fullFilePath: The full and absolute file path of current shot
:type fullFilePath: str
:return: The data of current shot with scan axes
:rtype: xarray DataArray
"""
scanAxis = datesetOfGlobal.scanAxis
filePath = x.encoding["source"].replace("\\", "/")
shotNum = np.where(fullFilePath==filePath)
@ -109,14 +138,41 @@ def _assign_scan_axis_partial(x, datesetOfGlobal, fullFilePath):
def _update_globals_attrs(variable_attrs, context=None):
# for live plot panel
pass
def update_hdf5_file():
# for live plot panel
pass
def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", excludeAxis=[], maxFileNum=None, **kwargs):
"""Read the data from HDF5 files in given path.
:param filePath: The path of HDF5 files, which python glob.glob() can read. It has to end with '.h5'.
:type filePath: str
:param group: The path of the group in HDF5 file where data is, defaults to None. Please use '/', instead of '\\'
:type group: str, optional
:param datesetOfGlobal: A xarry dataSet stored the global parameters of the data, defaults to None
:type datesetOfGlobal: xarry DataSet, optional
:param preprocess: The function you want to run for each file after read before combination, defaults to None
:type preprocess: a handle to function, optional
:param join: over write of the same argument in xarray.open_mfdataset, defaults to "outer"
:type join: str, optional
:param parallel: over write of the same argument in xarray.open_mfdataset, defaults to True
:type parallel: bool, optional
:param engine: The engine to read HDF5 file, defaults to "h5netcdf"
:type engine: str, optional
:param phony_dims: Please read the introduction of h5netcdf package, defaults to "access"
:type phony_dims: str, optional
:param excludeAxis: The name of axes, whose value changes together with scan axes, defaults to []
:type excludeAxis: list, optional
:param maxFileNum: The maximal number of files to read, defaults to None
:type maxFileNum: int, optional
:return: A xarray dataSet contain the data read from specified HDF5 file, including scan axes and shot number.
:rtype: xarray DataSet
"""
filePath = np.sort(np.atleast_1d(filePath))
@ -192,6 +248,18 @@ def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None,
def _assign_scan_axis_partial_and_remove_everything(x, datesetOfGlobal, fullFilePath):
"""Find ONLY and add ONLY the scan axes to the data read from HDF5 file.
:param x: The data of current shot
:type x: xarray DataArray
:param datesetOfGlobal: The xarray DataSet stored the information of global parameters
:type datesetOfGlobal: xarray DataSet
:param fullFilePath: The full and absolute file path of current shot
:type fullFilePath: str
:return: The data of current shot with scan axes
:rtype: xarray DataArray
"""
scanAxis = datesetOfGlobal.scanAxis
filePath = x.encoding["source"].replace("\\", "/")
shotNum = np.where(fullFilePath==filePath)
@ -209,11 +277,43 @@ def _assign_scan_axis_partial_and_remove_everything(x, datesetOfGlobal, fullFile
def _read_run_time_from_hdf5(x):
"""Find the run time of give data read from HDF5 file.
:param x: The data of current shot
:type x: xarray DataArray
:return: The data of current shot with last modification time
:rtype: xarray DataArray
"""
runTime = datetime.strptime(x.attrs['run time'], '%Y%m%dT%H%M%S')
return runTime
def read_hdf5_run_time(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", excludeAxis=[], maxFileNum=None, **kwargs):
"""Read the run time from HDF5 files in given path.
:param filePath: The path of HDF5 files, which python glob.glob() can read. It has to end with '.h5'.
:type filePath: str
:param group: The path of the group in HDF5 file where run time is, defaults to None. Please use '/', instead of '\\'
:type group: str, optional
:param datesetOfGlobal: A xarry dataSet stored the global parameters of the data, defaults to None
:type datesetOfGlobal: xarry DataSet, optional
:param preprocess: The function you want to run for each file after read before combination, defaults to None
:type preprocess: a handle to function, optional
:param join: over write of the same argument in xarray.open_mfdataset, defaults to "outer"
:type join: str, optional
:param parallel: over write of the same argument in xarray.open_mfdataset, defaults to True
:type parallel: bool, optional
:param engine: The engine to read HDF5 file, defaults to "h5netcdf"
:type engine: str, optional
:param phony_dims: Please read the introduction of h5netcdf package, defaults to "access"
:type phony_dims: str, optional
:param excludeAxis: The name of axes, whose value changes together with scan axes, defaults to []
:type excludeAxis: list, optional
:param maxFileNum: The maximal number of files to read, defaults to None
:type maxFileNum: int, optional
:return: A xarray dataSet contain the data read from specified HDF5 file.
:rtype: xarray DataSet
"""
filePath = np.sort(np.atleast_1d(filePath))
@ -289,6 +389,29 @@ def read_hdf5_run_time(filePath, group=None, datesetOfGlobal=None, preprocess=No
def read_hdf5_global(filePath, preprocess=None, join="outer", combine="nested", parallel=True, engine="h5netcdf", phony_dims="access", excludeAxis=[], maxFileNum=None, **kwargs):
"""Read the global parameters and find scan axes, from HDF5 files in given path.
:param filePath: The path of HDF5 files, which python glob.glob() can read. It has to end with '.h5'.
:type filePath: str
:param preprocess: The function you want to run for each file after read before combination, defaults to None
:type preprocess: a handle to function, optional
:param join: over write of the same argument in xarray.open_mfdataset, defaults to "outer"
:type join: str, optional
:param combine: over write of the same argument in xarray.open_mfdataset, defaults to "nested"
:type combine: str, optional
:param parallel: over write of the same argument in xarray.open_mfdataset, defaults to True
:type parallel: bool, optional
:param engine: The engine to read HDF5 file, defaults to "h5netcdf"
:type engine: str, optional
:param phony_dims: Please read the introduction of h5netcdf package, defaults to "access"
:type phony_dims: str, optional
:param excludeAxis: The name of axes, whose value changes together with scan axes, defaults to []
:type excludeAxis: list, optional
:param maxFileNum: The maximal number of files to read, defaults to None
:type maxFileNum: int, optional
:return: A xarray dataSet contain the data read from specified HDF5 file.
:rtype: xarray DataSet
"""
filePath = np.sort(np.atleast_1d(filePath))
@ -330,6 +453,13 @@ def read_hdf5_global(filePath, preprocess=None, join="outer", combine="nested",
def _read_csv_file_pandas(filePath, **kwargs):
"""Read csv file using pandas package function read_csv()
:param filePath:The path of csv files.
:type filePath: str
:return: A xarray DataSet stored the data
:rtype: xarray DataSet
"""
res = pd.read_csv(filePath, **kwargs)
@ -338,6 +468,13 @@ def _read_csv_file_pandas(filePath, **kwargs):
def _read_csv_file_dask(filePath, **kwargs):
"""Read csv file using dask package function read_csv()
:param filePath:The path of csv files.
:type filePath: str
:return: A xarray DataSet stored the data
:rtype: xarray DataSet
"""
res = df.read_csv(filePath, **kwargs)
@ -346,6 +483,26 @@ def _read_csv_file_dask(filePath, **kwargs):
def read_csv_file(filePath, maxFileNum=None, dask='parallelized', vectorize=True, csvEngine='pandas', daskKwargs={}, csvKwargs={}, **kwargs):
"""Read the data from csv files in given path.
:param filePath: The path of csv files, which python glob.glob() can read. It has to end with '.csv'.
:type filePath: str
:param maxFileNum: The maximal number of files to read, defaults to None
:type maxFileNum: int, optional
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
:type dask: str, optional
:param vectorize: over write of the same argument in xarray.apply_ufunc, defaults to True
:type vectorize: bool, optional
:param csvEngine: The engine to read csv file, defaults to 'pandas'
:type csvEngine: str, optional
:param daskKwargs: over write of the same argument in xarray.apply_ufunc, defaults to {}
:type daskKwargs: dict, optional
:param csvKwargs: The kwargs send to csvEngine, defaults to {}
:type csvKwargs: dict, optional
:return: A xarray DataSet stored the data
:rtype: xarray DataSet
"""
filePath = np.sort(np.atleast_1d(filePath))
filePathAbs = []

View File

@ -9,7 +9,7 @@ import xarray as xr
def get_mask(dataArray):
"""generate a bool mask array for given dataArray
"""Generate a bool mask array for given dataArray
:param dataArray: The given dataArray
:type dataArray: xarray DataArray
@ -20,7 +20,10 @@ def get_mask(dataArray):
def remove_bad_shots(dataArray, **kwargs):
"""copy and remove bad shots from the dataArray
"""Copy and remove bad shots from the dataArray by setting the value to np.nan.
If you want fully delete those nan data, please use the function xarray.DataArray.dropna() (see this link https://docs.xarray.dev/en/stable/generated/xarray.DataArray.dropna.html).
Here is an example for indexing the bad shots: remove_bad_shots(dataArray, axis_1 = the value (not index) of axis_1, axis_2 = the value of axis_2, ...)
For more detials please read 'Positional indexing' section in this link https://docs.xarray.dev/en/stable/user-guide/indexing.html#positional-indexing.
:param dataArray: The given dataArray
:type dataArray: xarray DataArray
@ -33,7 +36,7 @@ def remove_bad_shots(dataArray, **kwargs):
def auto_rechunk(dataSet):
"""rechunk the dataSet or dataArray using auto rechunk function
"""Rechunk the dataSet or dataArray using auto rechunk function
:param dataSet: The given dataArray or dataSet
:type dataSet: xarray DataArray or xarray DataSet
@ -48,7 +51,7 @@ def auto_rechunk(dataSet):
def copy_chunk(dataSet, dataChunk):
"""copy the chunk and apply to another dataArray or dataSet
"""Copy the chunk and apply to another dataArray or dataSet
:param dataSet: The dataArray or dataSet will be chunked
:type dataSet: xarray DataArray or xarray DataSet
@ -66,16 +69,16 @@ def copy_chunk(dataSet, dataChunk):
def get_h5_file_path(folderpath, maxFileNum=None, filename='*.h5',):
"""_summary_
"""Get all the path of HDF5 files in specific folder
:param folderpath: _description_
:type folderpath: _type_
:param maxFileNum: _description_, defaults to None
:type maxFileNum: _type_, optional
:param filename: _description_, defaults to '*.h5'
:param folderpath: the path of the folder
:type folderpath: str
:param maxFileNum: the maximal number of returned files, defaults to None
:type maxFileNum: int, optional
:param filename: a string to specify the type of the file to read, defaults to '*.h5'
:type filename: str, optional
:return: _description_
:rtype: _type_
:return: the found file path
:rtype: 1D numpy array
"""
filepath = np.sort(glob.glob(folderpath + filename))
if maxFileNum is None:
@ -85,15 +88,42 @@ def get_h5_file_path(folderpath, maxFileNum=None, filename='*.h5',):
def get_date():
"""Return the date of today in a format compatible with file path
:return: the date of today in a format compatible with file path
:rtype: str
"""
today = date.today()
return today.strftime("%Y/%m/%d")
def _combine_uncertainty(value, std):
"""Give a list of value and standard deviation, combine them to a number with unceuncertainty (ufloat), and return them in another list.
See this link https://pythonhosted.org/uncertainties/
:param value: The value
:type value: float, or array like
:param std: The standard deviation
:type std: float, or array like
:return: The combined value and standard deviation
:rtype: ufloat, or uncertainties uarray
"""
return unp.uarray(value, std)
def combine_uncertainty(value, std, dask='parallelized', **kwargs):
"""Give a xarray DataArray of value and standard deviation, combine them to a number with unceuncertainty (ufloat), and return them in another xarray DataArray .
See this link https://pythonhosted.org/uncertainties/
:param value: The value
:type value: xarray DataArray
:param std: The standard deviation
:type std: xarray DataArray
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
:type dask: str, optional
:return: The combined value and standard deviation
:rtype: xarray DataArray
"""
kwargs.update(
{
@ -105,15 +135,38 @@ def combine_uncertainty(value, std, dask='parallelized', **kwargs):
def _seperate_uncertainty_single(data):
"""From a number with unceuncertainty, read out the value and standard deviation
:param data: The number with unceuncertainty
:type data: ufloat
:return: a tuple of (value, standard deviations)
:rtype: tuple of two floats
"""
return data.n, data.s
def _seperate_uncertainty(data):
"""From a list of numbers with unceuncertainty, read out the values and standard deviations
:param data: The list of numbers with unceuncertainty
:type data: ufloat, or uncertainties uarray
:return: a tuple of (a numpy array of value, a numpy array of standard deviations)
:rtype: tuple of two numpy arrays
"""
func = np.vectorize(_seperate_uncertainty_single)
return func(data)
def seperate_uncertainty(data, dask='parallelized', **kwargs):
"""From a xarray DataArray of numbers with unceuncertainty, read out the values and standard deviations
:param data: The xarray DataArray of numbers with unceuncertainty
:type data: xarray DataArray
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
:type dask: str, optional
:return: a tuple of (a xarray DataArray of value, a xarray DataArray of standard deviations)
:rtype: tuple of two xarray DataArray
"""
kwargs.update(
{
@ -126,6 +179,14 @@ def seperate_uncertainty(data, dask='parallelized', **kwargs):
def get_scanAxis(dataSet):
"""Give a numpy array of names of scan axes.
:param dataSet: The xarray DataSet stored the data.
:type dataSet: xarray DataSet
:return: The names of scan axes
:rtype: a numpy array
"""
res = dataSet.scanAxis
if len(res) == 0:
@ -139,6 +200,11 @@ def get_scanAxis(dataSet):
def print_scanAxis(dataSet):
"""Print the names and the values of scan axes.
:param dataSet: The xarray DataSet stored the data.
:type dataSet: xarray DataSet
"""
scanAxis = dataSet.scanAxis
scan = {}
@ -155,7 +221,19 @@ def print_scanAxis(dataSet):
print(scan)
def print_scanAxis_original(dataSet):
# print the original (unsorted) scan axes.
pass
def calculate_mean(dataSet):
"""Calculte the mean along repetition axis 'runs'
:param dataSet: The xarray DataSet or DataArray stored the data.
:type dataSet: xarray DataSet or DataArray
:return: The mean value
:rtype: xarray DataSet or DataArray
"""
if 'runs' in dataSet.dims:
return dataSet.mean(dim='runs')
else:
@ -163,6 +241,13 @@ def calculate_mean(dataSet):
def calculate_std(dataSet):
"""Calculte the standard deviation along repetition axis 'runs'
:param dataSet: The xarray DataSet or DataArray stored the data.
:type dataSet: xarray DataSet or DataArray
:return: The standard deviation
:rtype: xarray DataSet or DataArray
"""
if 'runs' in dataSet.dims:
return dataSet.std(dim='runs')
else:
@ -170,13 +255,22 @@ def calculate_std(dataSet):
def extract_temperature_from_fit():
# by giving the shot number, read data, fit the center of could and fit with ToF, give the temperature of the clound
pass
def extract_condensate_fraction_from_fit():
# by giving the shot number, read data, fit the of could, give the condenstate fraction of the clound
pass
def swap_xy(dataSet):
"""Swap the x ans y axis.
:param dataSet: The xarray DataSet or DataArray stored the data.
:type dataSet: xarray DataSet or DataArray
:return: The xarray DataSet or DataArray with swapped x and y axis.
:rtype: xarray DataSet or DataArray
"""
dataSet = dataSet.rename_dims(dict(x='__x'))
dataSet = dataSet.rename_dims(dict(y='x'))
dataSet = dataSet.rename_dims(dict(__x='y'))