5682 lines
2.8 MiB
Plaintext
5682 lines
2.8 MiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Import supporting package"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import xarray as xr\n",
|
||
|
"import numpy as np\n",
|
||
|
"import copy\n",
|
||
|
"\n",
|
||
|
"from uncertainties import ufloat\n",
|
||
|
"from uncertainties import unumpy as unp\n",
|
||
|
"from uncertainties import umath\n",
|
||
|
"import random\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"plt.rcParams['font.size'] = 12\n",
|
||
|
"\n",
|
||
|
"from DataContainer.ReadData import read_hdf5_file\n",
|
||
|
"from Analyser.ImagingAnalyser import ImageAnalyser\n",
|
||
|
"from Analyser.FitAnalyser import FitAnalyser\n",
|
||
|
"from Analyser.FitAnalyser import NewFitModel, DensityProfileBEC2dModel\n",
|
||
|
"from ToolFunction.ToolFunction import *\n",
|
||
|
"\n",
|
||
|
"from scipy.optimize import curve_fit\n",
|
||
|
"\n",
|
||
|
"from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n",
|
||
|
"xr.plot.dataarray_plot.errorbar = errorbar\n",
|
||
|
"xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n",
|
||
|
"\n",
|
||
|
"imageAnalyser = ImageAnalyser()\n",
|
||
|
"\n",
|
||
|
"# %matplotlib notebook"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Start a client for parallel computing"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
|
||
|
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-a5e5cea6-2fbd-11ee-8430-80e82ce2fa8e</p>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
"\n",
|
||
|
" <tr>\n",
|
||
|
" \n",
|
||
|
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
|
||
|
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
|
||
|
" \n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
" <details>\n",
|
||
|
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
|
||
|
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
|
||
|
" </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
|
||
|
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">49266936</p>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Workers:</strong> 8\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads:</strong> 128\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total memory:</strong> 149.01 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" \n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
|
||
|
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
|
||
|
"</tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
" </table>\n",
|
||
|
"\n",
|
||
|
" <details>\n",
|
||
|
" <summary style=\"margin-bottom: 20px;\">\n",
|
||
|
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
|
||
|
" </summary>\n",
|
||
|
"\n",
|
||
|
" <div style=\"\">\n",
|
||
|
" <div>\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
|
||
|
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-6db1fb2d-d8be-4f76-9fcf-6a7cc9ed86ee</p>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm:</strong> tcp://127.0.0.1:63903\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Workers:</strong> 8\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads:</strong> 128\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Started:</strong> Just now\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total memory:</strong> 149.01 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" </table>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
"\n",
|
||
|
" <details style=\"margin-left: 48px;\">\n",
|
||
|
" <summary style=\"margin-bottom: 20px;\">\n",
|
||
|
" <h3 style=\"display: inline;\">Workers</h3>\n",
|
||
|
" </summary>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63943\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63946/status\" target=\"_blank\">http://127.0.0.1:63946/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63906\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-sctehcfb\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63957\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63959/status\" target=\"_blank\">http://127.0.0.1:63959/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63907\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-b1kdawd2\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63948\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63951/status\" target=\"_blank\">http://127.0.0.1:63951/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63908\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-845evwbp\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63942\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63944/status\" target=\"_blank\">http://127.0.0.1:63944/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63909\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-xneexydx\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 4</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63949\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63953/status\" target=\"_blank\">http://127.0.0.1:63953/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63910\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-zb64b79v\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 5</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63950\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63954/status\" target=\"_blank\">http://127.0.0.1:63954/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63911\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-q6lyanmx\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 6</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63925\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63934/status\" target=\"_blank\">http://127.0.0.1:63934/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63912\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-1cvfk3q5\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
" <div style=\"margin-bottom: 20px;\">\n",
|
||
|
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
|
||
|
" <div style=\"margin-left: 48px;\">\n",
|
||
|
" <details>\n",
|
||
|
" <summary>\n",
|
||
|
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 7</h4>\n",
|
||
|
" </summary>\n",
|
||
|
" <table style=\"width: 100%; text-align: left;\">\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Comm: </strong> tcp://127.0.0.1:63958\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Total threads: </strong> 16\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:63961/status\" target=\"_blank\">http://127.0.0.1:63961/status</a>\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Memory: </strong> 18.63 GiB\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td style=\"text-align: left;\">\n",
|
||
|
" <strong>Nanny: </strong> tcp://127.0.0.1:63913\n",
|
||
|
" </td>\n",
|
||
|
" <td style=\"text-align: left;\"></td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <td colspan=\"2\" style=\"text-align: left;\">\n",
|
||
|
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-0agsu53e\n",
|
||
|
" </td>\n",
|
||
|
" </tr>\n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </table>\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
" </div>\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </details>\n",
|
||
|
"</div>\n",
|
||
|
"\n",
|
||
|
" </details>\n",
|
||
|
" </div>\n",
|
||
|
"</div>\n",
|
||
|
" </details>\n",
|
||
|
" \n",
|
||
|
"\n",
|
||
|
" </div>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<Client: 'tcp://127.0.0.1:63903' processes=8 threads=128, memory=149.01 GiB>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from dask.distributed import Client\n",
|
||
|
"client = Client(n_workers=8, threads_per_worker=16, processes=True, memory_limit='20GB')\n",
|
||
|
"client"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Start a client for Mongo DB"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pymongo\n",
|
||
|
"import xarray_mongodb\n",
|
||
|
"\n",
|
||
|
"from DataContainer.MongoDB import MongoDB\n",
|
||
|
"\n",
|
||
|
"mongoClient = pymongo.MongoClient('mongodb://control:DyLab2021@127.0.0.1:27017/?authMechanism=DEFAULT')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Set global path for experiment"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"groupList = [\n",
|
||
|
" \"images/MOT_3D_Camera/in_situ_absorption\",\n",
|
||
|
" \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n",
|
||
|
" \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n",
|
||
|
"]\n",
|
||
|
"\n",
|
||
|
"dskey = {\n",
|
||
|
" \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_0\",\n",
|
||
|
" \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_1\",\n",
|
||
|
" \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_2\",\n",
|
||
|
"}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"img_dir = 'C:/Users/control/DyLab/Experiments/DyBEC/'\n",
|
||
|
"SequenceName = \"Repetition_scan\"\n",
|
||
|
"folderPath = img_dir + SequenceName + \"/\" + get_date()\n",
|
||
|
"\n",
|
||
|
"mongoDB = mongoClient[SequenceName]\n",
|
||
|
"\n",
|
||
|
"DB = MongoDB(mongoClient, mongoDB, date=get_date())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Repetition Scans"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## scan MOT freq"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'initial_horz_freq': array([102.75, 102.8 , 102.85, 102.9 , 102.95, 103. , 103.05]), 'initial_vert_freq': array([101.8 , 101.85, 101.9 , 101.95, 102. , 102.05, 102.1 , 102.15,\n",
|
||
|
" 102.2 , 102.25])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0014\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
|
||
|
" for i in [0,1]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_1\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (310, 815)\n",
|
||
|
"imageAnalyser.span = (550, 1275)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.pcolormesh(ax=ax, vmin=0, cmap='jet', cbar_kwargs = dict(label='NCount'))\n",
|
||
|
"plt.xlabel('Vert AOM Frequency')\n",
|
||
|
"plt.ylabel('Horz AOM Frequency')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"# DB.create_global(shotNum, dataSet)\n",
|
||
|
"# DB.add_data(shotNum, dataSet_cropOD, engine='xarray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
|
||
|
"<defs>\n",
|
||
|
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
|
||
|
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
|
||
|
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"</defs>\n",
|
||
|
"</svg>\n",
|
||
|
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
|
||
|
" *\n",
|
||
|
" */\n",
|
||
|
"\n",
|
||
|
":root {\n",
|
||
|
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
|
||
|
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
|
||
|
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
|
||
|
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
|
||
|
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
|
||
|
" --xr-background-color: var(--jp-layout-color0, white);\n",
|
||
|
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
|
||
|
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"html[theme=dark],\n",
|
||
|
"body[data-theme=dark],\n",
|
||
|
"body.vscode-dark {\n",
|
||
|
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
|
||
|
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
|
||
|
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
|
||
|
" --xr-border-color: #1F1F1F;\n",
|
||
|
" --xr-disabled-color: #515151;\n",
|
||
|
" --xr-background-color: #111111;\n",
|
||
|
" --xr-background-color-row-even: #111111;\n",
|
||
|
" --xr-background-color-row-odd: #313131;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-wrap {\n",
|
||
|
" display: block !important;\n",
|
||
|
" min-width: 300px;\n",
|
||
|
" max-width: 700px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-text-repr-fallback {\n",
|
||
|
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header {\n",
|
||
|
" padding-top: 6px;\n",
|
||
|
" padding-bottom: 6px;\n",
|
||
|
" margin-bottom: 4px;\n",
|
||
|
" border-bottom: solid 1px var(--xr-border-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header > div,\n",
|
||
|
".xr-header > ul {\n",
|
||
|
" display: inline;\n",
|
||
|
" margin-top: 0;\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type,\n",
|
||
|
".xr-array-name {\n",
|
||
|
" margin-left: 2px;\n",
|
||
|
" margin-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-sections {\n",
|
||
|
" padding-left: 0 !important;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input + label {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label {\n",
|
||
|
" cursor: pointer;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label:hover {\n",
|
||
|
" color: var(--xr-font-color0);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
" font-weight: 500;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary > span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding-left: 0.5em;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in + label:before {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" content: 'â–º';\n",
|
||
|
" font-size: 11px;\n",
|
||
|
" width: 15px;\n",
|
||
|
" text-align: center;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label:before {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label:before {\n",
|
||
|
" content: 'â–¼';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label > span {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary,\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" padding-top: 4px;\n",
|
||
|
" padding-bottom: 4px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" grid-column: 2 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-details {\n",
|
||
|
" display: none;\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" margin-bottom: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked ~ .xr-section-details {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 20px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap > label {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" vertical-align: top;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-preview {\n",
|
||
|
" color: var(--xr-font-color3);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-preview,\n",
|
||
|
".xr-array-data {\n",
|
||
|
" padding: 0 5px !important;\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-data,\n",
|
||
|
".xr-array-in:checked ~ .xr-array-preview {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-in:checked ~ .xr-array-data,\n",
|
||
|
".xr-array-preview {\n",
|
||
|
" display: inline-block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list {\n",
|
||
|
" display: inline-block !important;\n",
|
||
|
" list-style: none;\n",
|
||
|
" padding: 0 !important;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:before {\n",
|
||
|
" content: '(';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:after {\n",
|
||
|
" content: ')';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li:not(:last-child):after {\n",
|
||
|
" content: ',';\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-has-index {\n",
|
||
|
" font-weight: bold;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list,\n",
|
||
|
".xr-var-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > div,\n",
|
||
|
".xr-var-item label,\n",
|
||
|
".xr-var-item > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-even);\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > .xr-var-name:hover span {\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list > li:nth-child(odd) > div,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > label,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-odd);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dims {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dtype {\n",
|
||
|
" grid-column: 3;\n",
|
||
|
" text-align: right;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-preview {\n",
|
||
|
" grid-column: 4;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-index-preview {\n",
|
||
|
" grid-column: 2 / 5;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name,\n",
|
||
|
".xr-var-dims,\n",
|
||
|
".xr-var-dtype,\n",
|
||
|
".xr-preview,\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" white-space: nowrap;\n",
|
||
|
" overflow: hidden;\n",
|
||
|
" text-overflow: ellipsis;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name:hover,\n",
|
||
|
".xr-var-dims:hover,\n",
|
||
|
".xr-var-dtype:hover,\n",
|
||
|
".xr-attrs dt:hover {\n",
|
||
|
" overflow: visible;\n",
|
||
|
" width: auto;\n",
|
||
|
" z-index: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" display: none;\n",
|
||
|
" background-color: var(--xr-background-color) !important;\n",
|
||
|
" padding-bottom: 5px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
|
||
|
".xr-var-data-in:checked ~ .xr-var-data,\n",
|
||
|
".xr-index-data-in:checked ~ .xr-index-data {\n",
|
||
|
" display: block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-data > table {\n",
|
||
|
" float: right;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name span,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-name div,\n",
|
||
|
".xr-index-data,\n",
|
||
|
".xr-attrs {\n",
|
||
|
" padding-left: 25px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs,\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dl.xr-attrs {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 125px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt,\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" float: left;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
" width: auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" font-weight: normal;\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt:hover span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" background: var(--xr-background-color);\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
" white-space: pre-wrap;\n",
|
||
|
" word-break: break-all;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-icon-database,\n",
|
||
|
".xr-icon-file-text2,\n",
|
||
|
".xr-no-icon {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" width: 1em;\n",
|
||
|
" height: 1.5em !important;\n",
|
||
|
" stroke-width: 0;\n",
|
||
|
" stroke: currentColor;\n",
|
||
|
" fill: currentColor;\n",
|
||
|
"}\n",
|
||
|
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'OD' (initial_horz_freq: 1, initial_vert_freq: 1)>\n",
|
||
|
"array([[65351.30239154]])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * initial_horz_freq (initial_horz_freq) float64 103.0\n",
|
||
|
" * initial_vert_freq (initial_vert_freq) float64 101.8</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>initial_horz_freq</span>: 1</li><li><span class='xr-has-index'>initial_vert_freq</span>: 1</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-1a84307d-0552-4450-aa56-34b422ac9c57' class='xr-array-in' type='checkbox' checked><label for='section-1a84307d-0552-4450-aa56-34b422ac9c57' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>6.535e+04</span></div><div class='xr-array-data'><pre>array([[65351.30239154]])</pre></div></div></li><li class='xr-section-item'><input id='section-fc5fcc47-c424-4595-8493-b6fb33ab058a' class='xr-section-summary-in' type='checkbox' checked><label for='section-fc5fcc47-c424-4595-8493-b6fb33ab058a' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>initial_horz_freq</span></div><div class='xr-var-dims'>(initial_horz_freq)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>103.0</div><input id='attrs-2cb7430e-3fbe-4518-a5b0-c4ffa0684653' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2cb7430e-3fbe-4518-a5b0-c4ffa0684653' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-601e3bd6-edb0-4887-b832-a015a068cfbd' class='xr-var-data-in' type='checkbox'><label for='data-601e3bd6-edb0-4887-b832-a015a068cfbd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([103.05])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>initial_vert_freq</span></div><div class='xr-var-dims'>(initial_vert_freq)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>101.8</div><input id='attrs-ceb926a9-c49d-45f6-b305-c3026f758a01' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ceb926a9-c49d-45f6-b305-c3026f758a01' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cdbc3fd8-77d8-4bda-8dc6-706f8c67e989' class='xr-var-data-in' type='checkbox'><label for='data-cdbc3fd8-77d8-4bda-8dc6-706f8c67e989' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([101.85])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-510b5835-0192-48da-a654-eee9ac81726a' class='xr-section-summary-in' type='checkbox' ><label for='section-510b5835-0192-48da-a654-eee9ac81726a' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>initial_horz_freq</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7f10b146-9ec5-442b-9b19-2080607460c7' class='xr-index-data-in' type='checkbox'/><label for='index-7f10b146-9ec5-442b-9b19-2080607460c7' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([103.05], dtype='float64', name='initial_horz_freq'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>initial_vert_freq</div></div><div class='xr
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<xarray.DataArray 'OD' (initial_horz_freq: 1, initial_vert_freq: 1)>\n",
|
||
|
"array([[65351.30239154]])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * initial_horz_freq (initial_horz_freq) float64 103.0\n",
|
||
|
" * initial_vert_freq (initial_vert_freq) float64 101.8"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 14,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Ncount_mean.where(Ncount_mean==Ncount_mean.max(), drop=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## scan MOT amp"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'initial_horz_amp': array([0.45, 0.49, 0.53, 0.57, 0.61, 0.65, 0.69, 0.73, 0.77, 0.81]), 'initial_vert_amp': array([0.35, 0.39, 0.43, 0.47, 0.51, 0.55, 0.59, 0.63, 0.67, 0.71])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0015\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
|
||
|
" for i in [0,1]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_1\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (310, 815)\n",
|
||
|
"imageAnalyser.span = (550, 1275)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.pcolormesh(ax=ax, vmin=0, cmap='jet', cbar_kwargs = dict(label='NCount'))\n",
|
||
|
"plt.xlabel('Vert AOM Frequency')\n",
|
||
|
"plt.ylabel('Horz AOM Frequency')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"# DB.create_global(shotNum, dataSet)\n",
|
||
|
"# DB.add_data(shotNum, dataSet_cropOD, engine='xarray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
|
||
|
"<defs>\n",
|
||
|
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
|
||
|
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
|
||
|
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"</defs>\n",
|
||
|
"</svg>\n",
|
||
|
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
|
||
|
" *\n",
|
||
|
" */\n",
|
||
|
"\n",
|
||
|
":root {\n",
|
||
|
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
|
||
|
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
|
||
|
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
|
||
|
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
|
||
|
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
|
||
|
" --xr-background-color: var(--jp-layout-color0, white);\n",
|
||
|
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
|
||
|
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"html[theme=dark],\n",
|
||
|
"body[data-theme=dark],\n",
|
||
|
"body.vscode-dark {\n",
|
||
|
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
|
||
|
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
|
||
|
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
|
||
|
" --xr-border-color: #1F1F1F;\n",
|
||
|
" --xr-disabled-color: #515151;\n",
|
||
|
" --xr-background-color: #111111;\n",
|
||
|
" --xr-background-color-row-even: #111111;\n",
|
||
|
" --xr-background-color-row-odd: #313131;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-wrap {\n",
|
||
|
" display: block !important;\n",
|
||
|
" min-width: 300px;\n",
|
||
|
" max-width: 700px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-text-repr-fallback {\n",
|
||
|
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header {\n",
|
||
|
" padding-top: 6px;\n",
|
||
|
" padding-bottom: 6px;\n",
|
||
|
" margin-bottom: 4px;\n",
|
||
|
" border-bottom: solid 1px var(--xr-border-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header > div,\n",
|
||
|
".xr-header > ul {\n",
|
||
|
" display: inline;\n",
|
||
|
" margin-top: 0;\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type,\n",
|
||
|
".xr-array-name {\n",
|
||
|
" margin-left: 2px;\n",
|
||
|
" margin-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-sections {\n",
|
||
|
" padding-left: 0 !important;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input + label {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label {\n",
|
||
|
" cursor: pointer;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label:hover {\n",
|
||
|
" color: var(--xr-font-color0);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
" font-weight: 500;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary > span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding-left: 0.5em;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in + label:before {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" content: 'â–º';\n",
|
||
|
" font-size: 11px;\n",
|
||
|
" width: 15px;\n",
|
||
|
" text-align: center;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label:before {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label:before {\n",
|
||
|
" content: 'â–¼';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label > span {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary,\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" padding-top: 4px;\n",
|
||
|
" padding-bottom: 4px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" grid-column: 2 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-details {\n",
|
||
|
" display: none;\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" margin-bottom: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked ~ .xr-section-details {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 20px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap > label {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" vertical-align: top;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-preview {\n",
|
||
|
" color: var(--xr-font-color3);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-preview,\n",
|
||
|
".xr-array-data {\n",
|
||
|
" padding: 0 5px !important;\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-data,\n",
|
||
|
".xr-array-in:checked ~ .xr-array-preview {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-in:checked ~ .xr-array-data,\n",
|
||
|
".xr-array-preview {\n",
|
||
|
" display: inline-block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list {\n",
|
||
|
" display: inline-block !important;\n",
|
||
|
" list-style: none;\n",
|
||
|
" padding: 0 !important;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:before {\n",
|
||
|
" content: '(';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:after {\n",
|
||
|
" content: ')';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li:not(:last-child):after {\n",
|
||
|
" content: ',';\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-has-index {\n",
|
||
|
" font-weight: bold;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list,\n",
|
||
|
".xr-var-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > div,\n",
|
||
|
".xr-var-item label,\n",
|
||
|
".xr-var-item > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-even);\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > .xr-var-name:hover span {\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list > li:nth-child(odd) > div,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > label,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-odd);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dims {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dtype {\n",
|
||
|
" grid-column: 3;\n",
|
||
|
" text-align: right;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-preview {\n",
|
||
|
" grid-column: 4;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-index-preview {\n",
|
||
|
" grid-column: 2 / 5;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name,\n",
|
||
|
".xr-var-dims,\n",
|
||
|
".xr-var-dtype,\n",
|
||
|
".xr-preview,\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" white-space: nowrap;\n",
|
||
|
" overflow: hidden;\n",
|
||
|
" text-overflow: ellipsis;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name:hover,\n",
|
||
|
".xr-var-dims:hover,\n",
|
||
|
".xr-var-dtype:hover,\n",
|
||
|
".xr-attrs dt:hover {\n",
|
||
|
" overflow: visible;\n",
|
||
|
" width: auto;\n",
|
||
|
" z-index: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" display: none;\n",
|
||
|
" background-color: var(--xr-background-color) !important;\n",
|
||
|
" padding-bottom: 5px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
|
||
|
".xr-var-data-in:checked ~ .xr-var-data,\n",
|
||
|
".xr-index-data-in:checked ~ .xr-index-data {\n",
|
||
|
" display: block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-data > table {\n",
|
||
|
" float: right;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name span,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-name div,\n",
|
||
|
".xr-index-data,\n",
|
||
|
".xr-attrs {\n",
|
||
|
" padding-left: 25px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs,\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dl.xr-attrs {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 125px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt,\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" float: left;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
" width: auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" font-weight: normal;\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt:hover span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" background: var(--xr-background-color);\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
" white-space: pre-wrap;\n",
|
||
|
" word-break: break-all;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-icon-database,\n",
|
||
|
".xr-icon-file-text2,\n",
|
||
|
".xr-no-icon {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" width: 1em;\n",
|
||
|
" height: 1.5em !important;\n",
|
||
|
" stroke-width: 0;\n",
|
||
|
" stroke: currentColor;\n",
|
||
|
" fill: currentColor;\n",
|
||
|
"}\n",
|
||
|
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'OD' (initial_horz_amp: 1, initial_vert_amp: 1)>\n",
|
||
|
"array([[70751.40524034]])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * initial_horz_amp (initial_horz_amp) float64 0.81\n",
|
||
|
" * initial_vert_amp (initial_vert_amp) float64 0.59</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>initial_horz_amp</span>: 1</li><li><span class='xr-has-index'>initial_vert_amp</span>: 1</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-177509d9-805b-470b-a14d-b81705fd4a60' class='xr-array-in' type='checkbox' checked><label for='section-177509d9-805b-470b-a14d-b81705fd4a60' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>7.075e+04</span></div><div class='xr-array-data'><pre>array([[70751.40524034]])</pre></div></div></li><li class='xr-section-item'><input id='section-76e14a22-fe3b-447b-b2dd-2bb3ba9aabbf' class='xr-section-summary-in' type='checkbox' checked><label for='section-76e14a22-fe3b-447b-b2dd-2bb3ba9aabbf' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>initial_horz_amp</span></div><div class='xr-var-dims'>(initial_horz_amp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.81</div><input id='attrs-94907e0a-18ce-4351-bfaf-d564533bd62f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-94907e0a-18ce-4351-bfaf-d564533bd62f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e22171f2-c0a0-45f8-84b3-b4e8ef1bb135' class='xr-var-data-in' type='checkbox'><label for='data-e22171f2-c0a0-45f8-84b3-b4e8ef1bb135' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.81])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>initial_vert_amp</span></div><div class='xr-var-dims'>(initial_vert_amp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.59</div><input id='attrs-8ec82677-4202-4a42-869f-e24cda492fcb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8ec82677-4202-4a42-869f-e24cda492fcb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d4611850-9260-41d7-b5c7-4bf79a2b8bba' class='xr-var-data-in' type='checkbox'><label for='data-d4611850-9260-41d7-b5c7-4bf79a2b8bba' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.59])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4f941a64-d6be-490e-8286-4af1fee95797' class='xr-section-summary-in' type='checkbox' ><label for='section-4f941a64-d6be-490e-8286-4af1fee95797' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>initial_horz_amp</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7335d05f-250d-4928-af8b-4bf9e657a1f1' class='xr-index-data-in' type='checkbox'/><label for='index-7335d05f-250d-4928-af8b-4bf9e657a1f1' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.81], dtype='float64', name='initial_horz_amp'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>initial_vert_amp</div></div><div class='xr-index-preview'>Pand
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<xarray.DataArray 'OD' (initial_horz_amp: 1, initial_vert_amp: 1)>\n",
|
||
|
"array([[70751.40524034]])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * initial_horz_amp (initial_horz_amp) float64 0.81\n",
|
||
|
" * initial_vert_amp (initial_vert_amp) float64 0.59"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Ncount_mean.where(Ncount_mean==Ncount_mean.max(), drop=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Scan final Z Comp Current"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 25,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'compZ_final_current': array([0.233, 0.234, 0.235, 0.236, 0.237, 0.238, 0.239, 0.24 , 0.241,\n",
|
||
|
" 0.242]), 'runs': array([0., 1., 2.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0018\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
|
||
|
" for i in [0, 1]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_1\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (325, 875)\n",
|
||
|
"imageAnalyser.span = (500, 500)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
|
||
|
"#plt.xlabel('')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"# DB.create_global(shotNum, dataSet)\n",
|
||
|
"# DB.add_data(shotNum, dataSet_cropOD, engine='xarray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 26,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
|
||
|
"<defs>\n",
|
||
|
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
|
||
|
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
|
||
|
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"</defs>\n",
|
||
|
"</svg>\n",
|
||
|
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
|
||
|
" *\n",
|
||
|
" */\n",
|
||
|
"\n",
|
||
|
":root {\n",
|
||
|
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
|
||
|
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
|
||
|
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
|
||
|
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
|
||
|
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
|
||
|
" --xr-background-color: var(--jp-layout-color0, white);\n",
|
||
|
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
|
||
|
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"html[theme=dark],\n",
|
||
|
"body[data-theme=dark],\n",
|
||
|
"body.vscode-dark {\n",
|
||
|
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
|
||
|
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
|
||
|
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
|
||
|
" --xr-border-color: #1F1F1F;\n",
|
||
|
" --xr-disabled-color: #515151;\n",
|
||
|
" --xr-background-color: #111111;\n",
|
||
|
" --xr-background-color-row-even: #111111;\n",
|
||
|
" --xr-background-color-row-odd: #313131;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-wrap {\n",
|
||
|
" display: block !important;\n",
|
||
|
" min-width: 300px;\n",
|
||
|
" max-width: 700px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-text-repr-fallback {\n",
|
||
|
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header {\n",
|
||
|
" padding-top: 6px;\n",
|
||
|
" padding-bottom: 6px;\n",
|
||
|
" margin-bottom: 4px;\n",
|
||
|
" border-bottom: solid 1px var(--xr-border-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header > div,\n",
|
||
|
".xr-header > ul {\n",
|
||
|
" display: inline;\n",
|
||
|
" margin-top: 0;\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type,\n",
|
||
|
".xr-array-name {\n",
|
||
|
" margin-left: 2px;\n",
|
||
|
" margin-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-sections {\n",
|
||
|
" padding-left: 0 !important;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input + label {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label {\n",
|
||
|
" cursor: pointer;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label:hover {\n",
|
||
|
" color: var(--xr-font-color0);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
" font-weight: 500;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary > span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding-left: 0.5em;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in + label:before {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" content: 'â–º';\n",
|
||
|
" font-size: 11px;\n",
|
||
|
" width: 15px;\n",
|
||
|
" text-align: center;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label:before {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label:before {\n",
|
||
|
" content: 'â–¼';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label > span {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary,\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" padding-top: 4px;\n",
|
||
|
" padding-bottom: 4px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" grid-column: 2 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-details {\n",
|
||
|
" display: none;\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" margin-bottom: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked ~ .xr-section-details {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 20px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap > label {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" vertical-align: top;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-preview {\n",
|
||
|
" color: var(--xr-font-color3);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-preview,\n",
|
||
|
".xr-array-data {\n",
|
||
|
" padding: 0 5px !important;\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-data,\n",
|
||
|
".xr-array-in:checked ~ .xr-array-preview {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-in:checked ~ .xr-array-data,\n",
|
||
|
".xr-array-preview {\n",
|
||
|
" display: inline-block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list {\n",
|
||
|
" display: inline-block !important;\n",
|
||
|
" list-style: none;\n",
|
||
|
" padding: 0 !important;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:before {\n",
|
||
|
" content: '(';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:after {\n",
|
||
|
" content: ')';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li:not(:last-child):after {\n",
|
||
|
" content: ',';\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-has-index {\n",
|
||
|
" font-weight: bold;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list,\n",
|
||
|
".xr-var-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > div,\n",
|
||
|
".xr-var-item label,\n",
|
||
|
".xr-var-item > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-even);\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > .xr-var-name:hover span {\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list > li:nth-child(odd) > div,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > label,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-odd);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dims {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dtype {\n",
|
||
|
" grid-column: 3;\n",
|
||
|
" text-align: right;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-preview {\n",
|
||
|
" grid-column: 4;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-index-preview {\n",
|
||
|
" grid-column: 2 / 5;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name,\n",
|
||
|
".xr-var-dims,\n",
|
||
|
".xr-var-dtype,\n",
|
||
|
".xr-preview,\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" white-space: nowrap;\n",
|
||
|
" overflow: hidden;\n",
|
||
|
" text-overflow: ellipsis;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name:hover,\n",
|
||
|
".xr-var-dims:hover,\n",
|
||
|
".xr-var-dtype:hover,\n",
|
||
|
".xr-attrs dt:hover {\n",
|
||
|
" overflow: visible;\n",
|
||
|
" width: auto;\n",
|
||
|
" z-index: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" display: none;\n",
|
||
|
" background-color: var(--xr-background-color) !important;\n",
|
||
|
" padding-bottom: 5px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
|
||
|
".xr-var-data-in:checked ~ .xr-var-data,\n",
|
||
|
".xr-index-data-in:checked ~ .xr-index-data {\n",
|
||
|
" display: block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-data > table {\n",
|
||
|
" float: right;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name span,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-name div,\n",
|
||
|
".xr-index-data,\n",
|
||
|
".xr-attrs {\n",
|
||
|
" padding-left: 25px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs,\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dl.xr-attrs {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 125px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt,\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" float: left;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
" width: auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" font-weight: normal;\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt:hover span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" background: var(--xr-background-color);\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
" white-space: pre-wrap;\n",
|
||
|
" word-break: break-all;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-icon-database,\n",
|
||
|
".xr-icon-file-text2,\n",
|
||
|
".xr-no-icon {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" width: 1em;\n",
|
||
|
" height: 1.5em !important;\n",
|
||
|
" stroke-width: 0;\n",
|
||
|
" stroke: currentColor;\n",
|
||
|
" fill: currentColor;\n",
|
||
|
"}\n",
|
||
|
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'OD' (compZ_final_current: 1)>\n",
|
||
|
"array([26642.0066982])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * compZ_final_current (compZ_final_current) float64 0.238</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>compZ_final_current</span>: 1</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-c81e0e81-6867-48a8-817b-0270bf8320f5' class='xr-array-in' type='checkbox' checked><label for='section-c81e0e81-6867-48a8-817b-0270bf8320f5' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2.664e+04</span></div><div class='xr-array-data'><pre>array([26642.0066982])</pre></div></div></li><li class='xr-section-item'><input id='section-213a9602-e7c9-4a8d-872a-0a9a224c9c77' class='xr-section-summary-in' type='checkbox' checked><label for='section-213a9602-e7c9-4a8d-872a-0a9a224c9c77' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>compZ_final_current</span></div><div class='xr-var-dims'>(compZ_final_current)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.238</div><input id='attrs-97b5d183-12a2-43d2-bc55-2ce7784bfe38' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-97b5d183-12a2-43d2-bc55-2ce7784bfe38' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ac436865-f3d0-4ffc-8f65-960c2f4ccf32' class='xr-var-data-in' type='checkbox'><label for='data-ac436865-f3d0-4ffc-8f65-960c2f4ccf32' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.238])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-084aa2db-fadf-4f9c-9080-822a3683ad63' class='xr-section-summary-in' type='checkbox' ><label for='section-084aa2db-fadf-4f9c-9080-822a3683ad63' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>compZ_final_current</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8f148761-2dbb-435d-b8e1-c7a944c677c6' class='xr-index-data-in' type='checkbox'/><label for='index-8f148761-2dbb-435d-b8e1-c7a944c677c6' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.238], dtype='float64', name='compZ_final_current'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e55ccffc-8a2c-4845-bb7e-8ecd0686637c' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-e55ccffc-8a2c-4845-bb7e-8ecd0686637c' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<xarray.DataArray 'OD' (compZ_final_current: 1)>\n",
|
||
|
"array([26642.0066982])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * compZ_final_current (compZ_final_current) float64 0.238"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 26,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Ncount_mean.where(Ncount_mean==Ncount_mean.max(), drop=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Scan final horz amp"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 27,
|
||
|
"metadata": {
|
||
|
"scrolled": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'final_horz_amp': array([5.0e-05, 7.0e-05, 9.0e-05, 1.1e-04, 1.3e-04, 1.5e-04, 1.7e-04,\n",
|
||
|
" 1.9e-04, 2.1e-04, 2.3e-04, 2.5e-04]), 'runs': array([0., 1., 2.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0019\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
|
||
|
" for i in [0, 1]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_1\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (325, 875)\n",
|
||
|
"imageAnalyser.span = (500, 500)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
|
||
|
"#plt.xlabel('')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"# DB.create_global(shotNum, dataSet)\n",
|
||
|
"# DB.add_data(shotNum, dataSet_cropOD, engine='xarray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"Ncount_mean.where(Ncount_mean==Ncount_mean.max(), drop=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Scan final horz freq"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 28,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'final_horz_freq': array([104.05 , 104.055, 104.06 , 104.065, 104.07 , 104.075, 104.08 ,\n",
|
||
|
" 104.085, 104.09 , 104.095, 104.1 ]), 'runs': array([0., 1., 2.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0020\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
|
||
|
" for i in [0, 1]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_1\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (325, 875)\n",
|
||
|
"imageAnalyser.span = (500, 500)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
|
||
|
"#plt.xlabel('')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"# DB.create_global(shotNum, dataSet)\n",
|
||
|
"# DB.add_data(shotNum, dataSet_cropOD, engine='xarray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 29,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
|
||
|
"<defs>\n",
|
||
|
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
|
||
|
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
|
||
|
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"</defs>\n",
|
||
|
"</svg>\n",
|
||
|
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
|
||
|
" *\n",
|
||
|
" */\n",
|
||
|
"\n",
|
||
|
":root {\n",
|
||
|
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
|
||
|
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
|
||
|
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
|
||
|
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
|
||
|
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
|
||
|
" --xr-background-color: var(--jp-layout-color0, white);\n",
|
||
|
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
|
||
|
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"html[theme=dark],\n",
|
||
|
"body[data-theme=dark],\n",
|
||
|
"body.vscode-dark {\n",
|
||
|
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
|
||
|
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
|
||
|
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
|
||
|
" --xr-border-color: #1F1F1F;\n",
|
||
|
" --xr-disabled-color: #515151;\n",
|
||
|
" --xr-background-color: #111111;\n",
|
||
|
" --xr-background-color-row-even: #111111;\n",
|
||
|
" --xr-background-color-row-odd: #313131;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-wrap {\n",
|
||
|
" display: block !important;\n",
|
||
|
" min-width: 300px;\n",
|
||
|
" max-width: 700px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-text-repr-fallback {\n",
|
||
|
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header {\n",
|
||
|
" padding-top: 6px;\n",
|
||
|
" padding-bottom: 6px;\n",
|
||
|
" margin-bottom: 4px;\n",
|
||
|
" border-bottom: solid 1px var(--xr-border-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header > div,\n",
|
||
|
".xr-header > ul {\n",
|
||
|
" display: inline;\n",
|
||
|
" margin-top: 0;\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type,\n",
|
||
|
".xr-array-name {\n",
|
||
|
" margin-left: 2px;\n",
|
||
|
" margin-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-sections {\n",
|
||
|
" padding-left: 0 !important;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input + label {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label {\n",
|
||
|
" cursor: pointer;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label:hover {\n",
|
||
|
" color: var(--xr-font-color0);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
" font-weight: 500;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary > span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding-left: 0.5em;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in + label:before {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" content: 'â–º';\n",
|
||
|
" font-size: 11px;\n",
|
||
|
" width: 15px;\n",
|
||
|
" text-align: center;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label:before {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label:before {\n",
|
||
|
" content: 'â–¼';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label > span {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary,\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" padding-top: 4px;\n",
|
||
|
" padding-bottom: 4px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" grid-column: 2 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-details {\n",
|
||
|
" display: none;\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" margin-bottom: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked ~ .xr-section-details {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 20px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap > label {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" vertical-align: top;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-preview {\n",
|
||
|
" color: var(--xr-font-color3);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-preview,\n",
|
||
|
".xr-array-data {\n",
|
||
|
" padding: 0 5px !important;\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-data,\n",
|
||
|
".xr-array-in:checked ~ .xr-array-preview {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-in:checked ~ .xr-array-data,\n",
|
||
|
".xr-array-preview {\n",
|
||
|
" display: inline-block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list {\n",
|
||
|
" display: inline-block !important;\n",
|
||
|
" list-style: none;\n",
|
||
|
" padding: 0 !important;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:before {\n",
|
||
|
" content: '(';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:after {\n",
|
||
|
" content: ')';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li:not(:last-child):after {\n",
|
||
|
" content: ',';\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-has-index {\n",
|
||
|
" font-weight: bold;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list,\n",
|
||
|
".xr-var-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > div,\n",
|
||
|
".xr-var-item label,\n",
|
||
|
".xr-var-item > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-even);\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > .xr-var-name:hover span {\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list > li:nth-child(odd) > div,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > label,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-odd);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dims {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dtype {\n",
|
||
|
" grid-column: 3;\n",
|
||
|
" text-align: right;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-preview {\n",
|
||
|
" grid-column: 4;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-index-preview {\n",
|
||
|
" grid-column: 2 / 5;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name,\n",
|
||
|
".xr-var-dims,\n",
|
||
|
".xr-var-dtype,\n",
|
||
|
".xr-preview,\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" white-space: nowrap;\n",
|
||
|
" overflow: hidden;\n",
|
||
|
" text-overflow: ellipsis;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name:hover,\n",
|
||
|
".xr-var-dims:hover,\n",
|
||
|
".xr-var-dtype:hover,\n",
|
||
|
".xr-attrs dt:hover {\n",
|
||
|
" overflow: visible;\n",
|
||
|
" width: auto;\n",
|
||
|
" z-index: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" display: none;\n",
|
||
|
" background-color: var(--xr-background-color) !important;\n",
|
||
|
" padding-bottom: 5px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
|
||
|
".xr-var-data-in:checked ~ .xr-var-data,\n",
|
||
|
".xr-index-data-in:checked ~ .xr-index-data {\n",
|
||
|
" display: block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-data > table {\n",
|
||
|
" float: right;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name span,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-name div,\n",
|
||
|
".xr-index-data,\n",
|
||
|
".xr-attrs {\n",
|
||
|
" padding-left: 25px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs,\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dl.xr-attrs {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 125px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt,\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" float: left;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
" width: auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" font-weight: normal;\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt:hover span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" background: var(--xr-background-color);\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
" white-space: pre-wrap;\n",
|
||
|
" word-break: break-all;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-icon-database,\n",
|
||
|
".xr-icon-file-text2,\n",
|
||
|
".xr-no-icon {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" width: 1em;\n",
|
||
|
" height: 1.5em !important;\n",
|
||
|
" stroke-width: 0;\n",
|
||
|
" stroke: currentColor;\n",
|
||
|
" fill: currentColor;\n",
|
||
|
"}\n",
|
||
|
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'OD' (final_horz_freq: 1)>\n",
|
||
|
"array([28952.76637914])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * final_horz_freq (final_horz_freq) float64 104.1</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>final_horz_freq</span>: 1</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-ed0434fd-e803-4855-844d-70b0c3e842c8' class='xr-array-in' type='checkbox' checked><label for='section-ed0434fd-e803-4855-844d-70b0c3e842c8' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2.895e+04</span></div><div class='xr-array-data'><pre>array([28952.76637914])</pre></div></div></li><li class='xr-section-item'><input id='section-d2a4729c-d36d-44fa-a8c1-4885a8e7593b' class='xr-section-summary-in' type='checkbox' checked><label for='section-d2a4729c-d36d-44fa-a8c1-4885a8e7593b' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>final_horz_freq</span></div><div class='xr-var-dims'>(final_horz_freq)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>104.1</div><input id='attrs-6f10bdef-1163-4796-8266-ab9332d89ea4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6f10bdef-1163-4796-8266-ab9332d89ea4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-343afb05-ab34-4141-92a8-e56c8c309e66' class='xr-var-data-in' type='checkbox'><label for='data-343afb05-ab34-4141-92a8-e56c8c309e66' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([104.06])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-d4d0971f-b5b7-4977-91e5-3ef6807a4b2f' class='xr-section-summary-in' type='checkbox' ><label for='section-d4d0971f-b5b7-4977-91e5-3ef6807a4b2f' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>final_horz_freq</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-81425834-189f-4154-bdb4-8c5e8e7207d1' class='xr-index-data-in' type='checkbox'/><label for='index-81425834-189f-4154-bdb4-8c5e8e7207d1' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([104.06], dtype='float64', name='final_horz_freq'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-813756c4-49be-4230-a482-541103019f9c' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-813756c4-49be-4230-a482-541103019f9c' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<xarray.DataArray 'OD' (final_horz_freq: 1)>\n",
|
||
|
"array([28952.76637914])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * final_horz_freq (final_horz_freq) float64 104.1"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 29,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Ncount_mean.where(Ncount_mean==Ncount_mean.max(), drop=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Scan final vert amp"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 30,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'final_vert_amp': array([0.035, 0.037, 0.039, 0.041, 0.043, 0.045, 0.047, 0.049, 0.051,\n",
|
||
|
" 0.053, 0.055, 0.057, 0.059, 0.061, 0.063]), 'runs': array([0., 1., 2.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0021\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
|
||
|
" for i in [0, 1]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_1\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (325, 875)\n",
|
||
|
"imageAnalyser.span = (500, 500)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
|
||
|
"#plt.xlabel('')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"# DB.create_global(shotNum, dataSet)\n",
|
||
|
"# DB.add_data(shotNum, dataSet_cropOD, engine='xarray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 31,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
|
||
|
"<defs>\n",
|
||
|
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
|
||
|
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
|
||
|
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
|
||
|
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
|
||
|
"</symbol>\n",
|
||
|
"</defs>\n",
|
||
|
"</svg>\n",
|
||
|
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
|
||
|
" *\n",
|
||
|
" */\n",
|
||
|
"\n",
|
||
|
":root {\n",
|
||
|
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
|
||
|
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
|
||
|
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
|
||
|
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
|
||
|
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
|
||
|
" --xr-background-color: var(--jp-layout-color0, white);\n",
|
||
|
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
|
||
|
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"html[theme=dark],\n",
|
||
|
"body[data-theme=dark],\n",
|
||
|
"body.vscode-dark {\n",
|
||
|
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
|
||
|
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
|
||
|
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
|
||
|
" --xr-border-color: #1F1F1F;\n",
|
||
|
" --xr-disabled-color: #515151;\n",
|
||
|
" --xr-background-color: #111111;\n",
|
||
|
" --xr-background-color-row-even: #111111;\n",
|
||
|
" --xr-background-color-row-odd: #313131;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-wrap {\n",
|
||
|
" display: block !important;\n",
|
||
|
" min-width: 300px;\n",
|
||
|
" max-width: 700px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-text-repr-fallback {\n",
|
||
|
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header {\n",
|
||
|
" padding-top: 6px;\n",
|
||
|
" padding-bottom: 6px;\n",
|
||
|
" margin-bottom: 4px;\n",
|
||
|
" border-bottom: solid 1px var(--xr-border-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-header > div,\n",
|
||
|
".xr-header > ul {\n",
|
||
|
" display: inline;\n",
|
||
|
" margin-top: 0;\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type,\n",
|
||
|
".xr-array-name {\n",
|
||
|
" margin-left: 2px;\n",
|
||
|
" margin-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-obj-type {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-sections {\n",
|
||
|
" padding-left: 0 !important;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input + label {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label {\n",
|
||
|
" cursor: pointer;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-item input:enabled + label:hover {\n",
|
||
|
" color: var(--xr-font-color0);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
" font-weight: 500;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary > span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding-left: 0.5em;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label {\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in + label:before {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" content: 'â–º';\n",
|
||
|
" font-size: 11px;\n",
|
||
|
" width: 15px;\n",
|
||
|
" text-align: center;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:disabled + label:before {\n",
|
||
|
" color: var(--xr-disabled-color);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label:before {\n",
|
||
|
" content: 'â–¼';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked + label > span {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary,\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" padding-top: 4px;\n",
|
||
|
" padding-bottom: 4px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-inline-details {\n",
|
||
|
" grid-column: 2 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-details {\n",
|
||
|
" display: none;\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" margin-bottom: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-section-summary-in:checked ~ .xr-section-details {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 20px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-wrap > label {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
" vertical-align: top;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-preview {\n",
|
||
|
" color: var(--xr-font-color3);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-preview,\n",
|
||
|
".xr-array-data {\n",
|
||
|
" padding: 0 5px !important;\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-data,\n",
|
||
|
".xr-array-in:checked ~ .xr-array-preview {\n",
|
||
|
" display: none;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-array-in:checked ~ .xr-array-data,\n",
|
||
|
".xr-array-preview {\n",
|
||
|
" display: inline-block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list {\n",
|
||
|
" display: inline-block !important;\n",
|
||
|
" list-style: none;\n",
|
||
|
" padding: 0 !important;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:before {\n",
|
||
|
" content: '(';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list:after {\n",
|
||
|
" content: ')';\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-dim-list li:not(:last-child):after {\n",
|
||
|
" content: ',';\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-has-index {\n",
|
||
|
" font-weight: bold;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list,\n",
|
||
|
".xr-var-item {\n",
|
||
|
" display: contents;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > div,\n",
|
||
|
".xr-var-item label,\n",
|
||
|
".xr-var-item > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-even);\n",
|
||
|
" margin-bottom: 0;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-item > .xr-var-name:hover span {\n",
|
||
|
" padding-right: 5px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-list > li:nth-child(odd) > div,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > label,\n",
|
||
|
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
|
||
|
" background-color: var(--xr-background-color-row-odd);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name {\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dims {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-dtype {\n",
|
||
|
" grid-column: 3;\n",
|
||
|
" text-align: right;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-preview {\n",
|
||
|
" grid-column: 4;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-index-preview {\n",
|
||
|
" grid-column: 2 / 5;\n",
|
||
|
" color: var(--xr-font-color2);\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name,\n",
|
||
|
".xr-var-dims,\n",
|
||
|
".xr-var-dtype,\n",
|
||
|
".xr-preview,\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" white-space: nowrap;\n",
|
||
|
" overflow: hidden;\n",
|
||
|
" text-overflow: ellipsis;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name:hover,\n",
|
||
|
".xr-var-dims:hover,\n",
|
||
|
".xr-var-dtype:hover,\n",
|
||
|
".xr-attrs dt:hover {\n",
|
||
|
" overflow: visible;\n",
|
||
|
" width: auto;\n",
|
||
|
" z-index: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" display: none;\n",
|
||
|
" background-color: var(--xr-background-color) !important;\n",
|
||
|
" padding-bottom: 5px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
|
||
|
".xr-var-data-in:checked ~ .xr-var-data,\n",
|
||
|
".xr-index-data-in:checked ~ .xr-index-data {\n",
|
||
|
" display: block;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-data > table {\n",
|
||
|
" float: right;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-var-name span,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-name div,\n",
|
||
|
".xr-index-data,\n",
|
||
|
".xr-attrs {\n",
|
||
|
" padding-left: 25px !important;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs,\n",
|
||
|
".xr-var-attrs,\n",
|
||
|
".xr-var-data,\n",
|
||
|
".xr-index-data {\n",
|
||
|
" grid-column: 1 / -1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dl.xr-attrs {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" display: grid;\n",
|
||
|
" grid-template-columns: 125px auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt,\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" padding: 0;\n",
|
||
|
" margin: 0;\n",
|
||
|
" float: left;\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
" width: auto;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt {\n",
|
||
|
" font-weight: normal;\n",
|
||
|
" grid-column: 1;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dt:hover span {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" background: var(--xr-background-color);\n",
|
||
|
" padding-right: 10px;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-attrs dd {\n",
|
||
|
" grid-column: 2;\n",
|
||
|
" white-space: pre-wrap;\n",
|
||
|
" word-break: break-all;\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
".xr-icon-database,\n",
|
||
|
".xr-icon-file-text2,\n",
|
||
|
".xr-no-icon {\n",
|
||
|
" display: inline-block;\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" width: 1em;\n",
|
||
|
" height: 1.5em !important;\n",
|
||
|
" stroke-width: 0;\n",
|
||
|
" stroke: currentColor;\n",
|
||
|
" fill: currentColor;\n",
|
||
|
"}\n",
|
||
|
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'OD' (final_vert_amp: 1)>\n",
|
||
|
"array([29676.45060443])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * final_vert_amp (final_vert_amp) float64 0.045</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>final_vert_amp</span>: 1</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-afcf31cf-2ab4-4ec0-bbe4-f6342cf64b8b' class='xr-array-in' type='checkbox' checked><label for='section-afcf31cf-2ab4-4ec0-bbe4-f6342cf64b8b' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2.968e+04</span></div><div class='xr-array-data'><pre>array([29676.45060443])</pre></div></div></li><li class='xr-section-item'><input id='section-3064ec8b-148e-48c2-a58b-98b70a9fbf8e' class='xr-section-summary-in' type='checkbox' checked><label for='section-3064ec8b-148e-48c2-a58b-98b70a9fbf8e' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>final_vert_amp</span></div><div class='xr-var-dims'>(final_vert_amp)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.045</div><input id='attrs-6fa74f1c-255e-4f85-9eda-30c219bff7d4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6fa74f1c-255e-4f85-9eda-30c219bff7d4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a737f7e3-553a-4474-9fc0-5c8fa128a3ec' class='xr-var-data-in' type='checkbox'><label for='data-a737f7e3-553a-4474-9fc0-5c8fa128a3ec' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.045])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4343ca55-551c-45a4-a744-a92bbc669a71' class='xr-section-summary-in' type='checkbox' ><label for='section-4343ca55-551c-45a4-a744-a92bbc669a71' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>final_vert_amp</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-e63c7b75-53c2-4eec-8e4c-e6725f45889a' class='xr-index-data-in' type='checkbox'/><label for='index-e63c7b75-53c2-4eec-8e4c-e6725f45889a' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.045], dtype='float64', name='final_vert_amp'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e98f96d0-b3a2-4063-9b37-a341ae427357' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-e98f96d0-b3a2-4063-9b37-a341ae427357' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<xarray.DataArray 'OD' (final_vert_amp: 1)>\n",
|
||
|
"array([29676.45060443])\n",
|
||
|
"Coordinates:\n",
|
||
|
" * final_vert_amp (final_vert_amp) float64 0.045"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 31,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Ncount_mean.where(Ncount_mean==Ncount_mean.max(), drop=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Evaporative Cooling"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 32,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"img_dir = 'C:/Users/control/DyLab/Experiments/DyBEC/'\n",
|
||
|
"# img_dir = '//DyLabNAS/Data/'\n",
|
||
|
"SequenceName = \"Evaporative_Cooling\"\n",
|
||
|
"folderPath = img_dir + SequenceName + \"/\" + get_date()\n",
|
||
|
"\n",
|
||
|
"mongoDB = mongoClient[SequenceName]\n",
|
||
|
"\n",
|
||
|
"DB = MongoDB(mongoClient, mongoDB, date=get_date())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Measure trap frequency at various points of evap 2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Horz TF due to arm 1: blink on modulation = 0, blink_off_modulation = 0.35 in 700 µs, hold of 1 s"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.5"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 56,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005, 0.006, 0.007, 0.008, 0.009, 0.01 , 0.011, 0.012, 0.013,\n",
|
||
|
" 0.014, 0.015, 0.016, 0.017, 0.018, 0.019]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0004\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 57,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 58,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 61,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 303.5930 ± 6.9704 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"#yvals = val_mean.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"#yvals_std = std_mean.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"#xvals = dataSet_cropOD[scanAxis[0]].sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = val_mean.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = std_mean.to_numpy()\n",
|
||
|
"scan_para = dataSet_cropOD[scanAxis[0]].to_numpy()\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 1, 148, 1e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 20e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.55"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 62,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005, 0.006, 0.007, 0.008, 0.009, 0.01 , 0.011, 0.012, 0.013,\n",
|
||
|
" 0.014, 0.015, 0.016, 0.017, 0.018, 0.019]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0005\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 63,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 64,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 67,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 286.0152 ± 2.5433 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 145, 1e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005,19e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.6"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 69,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005 , 0.0057, 0.0064, 0.0071, 0.0078, 0.0085, 0.0092, 0.0099,\n",
|
||
|
" 0.0106, 0.0113, 0.012 , 0.0127, 0.0134, 0.0141, 0.0148, 0.0155,\n",
|
||
|
" 0.0162, 0.0169, 0.0176, 0.0183, 0.019 , 0.0197]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0008\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 70,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 71,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 73,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 272.6675 ± 0.6739 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 145, 1e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 20e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.65"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 74,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005 , 0.0057, 0.0064, 0.0071, 0.0078, 0.0085, 0.0092, 0.0099,\n",
|
||
|
" 0.0106, 0.0113, 0.012 , 0.0127, 0.0134, 0.0141, 0.0148, 0.0155,\n",
|
||
|
" 0.0162, 0.0169, 0.0176, 0.0183, 0.019 , 0.0197]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0009\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 75,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 76,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 79,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 253.6669 ± 0.5183 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 145, 1e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 20e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.7"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 83,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005 , 0.0057, 0.0064, 0.0071, 0.0078, 0.0085, 0.0092, 0.0099,\n",
|
||
|
" 0.0106, 0.0113, 0.012 , 0.0127, 0.0134, 0.0141, 0.0148, 0.0155,\n",
|
||
|
" 0.0162, 0.0169, 0.0176, 0.0183, 0.019 , 0.0197]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0010\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 84,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 85,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 87,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 238.8665 ± 0.3901 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 3e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 20e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.725"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 93,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005 , 0.0057, 0.0064, 0.0071, 0.0078, 0.0085, 0.0092, 0.0099,\n",
|
||
|
" 0.0106, 0.0113, 0.012 , 0.0127, 0.0134, 0.0141, 0.0148, 0.0155,\n",
|
||
|
" 0.0162, 0.0169, 0.0176, 0.0183, 0.019 , 0.0197]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0011\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 94,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 95,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 98,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 232.4375 ± 0.3994 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 3e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 20e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.75"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 99,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The detected scaning axes and values are: \n",
|
||
|
"\n",
|
||
|
"{'mod_blink_on_time': array([0.005 , 0.0057, 0.0064, 0.0071, 0.0078, 0.0085, 0.0092, 0.0099,\n",
|
||
|
" 0.0106, 0.0113, 0.012 , 0.0127, 0.0134, 0.0141, 0.0148, 0.0155,\n",
|
||
|
" 0.0162, 0.0169, 0.0176, 0.0183, 0.019 , 0.0197]), 'runs': array([0., 1., 2., 3.])}\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0012\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 100,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 101,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 103,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 224.9906 ± 0.4995 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 3e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 20e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.775"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 128,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"ename": "OSError",
|
||
|
"evalue": "[Errno group not found: images] 'images'",
|
||
|
"output_type": "error",
|
||
|
"traceback": [
|
||
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||
|
"\u001b[1;31mOSError\u001b[0m Traceback (most recent call last)",
|
||
|
"Input \u001b[1;32mIn [128]\u001b[0m, in \u001b[0;36m<cell line: 5>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 2\u001b[0m shotNum \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m0013\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 3\u001b[0m filePath \u001b[38;5;241m=\u001b[39m folderPath \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m shotNum \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/*.h5\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m----> 5\u001b[0m dataSetDict \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 6\u001b[0m dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msweep_start_freq\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msweep_stop_freq\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 8\u001b[0m }\n\u001b[0;32m 10\u001b[0m dataSet \u001b[38;5;241m=\u001b[39m dataSetDict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcamera_0\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 12\u001b[0m print_scanAxis(dataSet)\n",
|
||
|
"Input \u001b[1;32mIn [128]\u001b[0m, in \u001b[0;36m<dictcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 2\u001b[0m shotNum \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m0013\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 3\u001b[0m filePath \u001b[38;5;241m=\u001b[39m folderPath \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m shotNum \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/*.h5\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 5\u001b[0m dataSetDict \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m----> 6\u001b[0m dskey[groupList[i]]: \u001b[43mread_hdf5_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilePath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroupList\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexcludeAxis\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msweep_start_freq\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msweep_stop_freq\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 8\u001b[0m }\n\u001b[0;32m 10\u001b[0m dataSet \u001b[38;5;241m=\u001b[39m dataSetDict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcamera_0\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 12\u001b[0m print_scanAxis(dataSet)\n",
|
||
|
"File \u001b[1;32mZ:\\Dy_Lab\\Data\\Analysis\\2023\\07\\31\\DataContainer\\ReadData.py:170\u001b[0m, in \u001b[0;36mread_hdf5_file\u001b[1;34m(filePath, group, datesetOfGlobal, preprocess, join, parallel, engine, phony_dims, excludeAxis, maxFileNum, **kwargs)\u001b[0m\n\u001b[0;32m 167\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 168\u001b[0m kwargs\u001b[38;5;241m.\u001b[39mupdate({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpreprocess\u001b[39m\u001b[38;5;124m'\u001b[39m:preprocess})\n\u001b[1;32m--> 170\u001b[0m ds \u001b[38;5;241m=\u001b[39m xr\u001b[38;5;241m.\u001b[39mopen_mfdataset(fullFilePath, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 172\u001b[0m newDimKey \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mappend([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mx\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124my\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mz\u001b[39m\u001b[38;5;124m'\u001b[39m], [ \u001b[38;5;28mchr\u001b[39m(i) \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m97\u001b[39m, \u001b[38;5;241m97\u001b[39m\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m23\u001b[39m)])\n\u001b[0;32m 174\u001b[0m oldDimKey \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39msort(\n\u001b[0;32m 175\u001b[0m [\n\u001b[0;32m 176\u001b[0m key \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 179\u001b[0m ]\n\u001b[0;32m 180\u001b[0m )\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\api.py:990\u001b[0m, in \u001b[0;36mopen_mfdataset\u001b[1;34m(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs)\u001b[0m\n\u001b[0;32m 985\u001b[0m datasets \u001b[38;5;241m=\u001b[39m [preprocess(ds) \u001b[38;5;28;01mfor\u001b[39;00m ds \u001b[38;5;129;01min\u001b[39;00m datasets]\n\u001b[0;32m 987\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m parallel:\n\u001b[0;32m 988\u001b[0m \u001b[38;5;66;03m# calling compute here will return the datasets/file_objs lists,\u001b[39;00m\n\u001b[0;32m 989\u001b[0m \u001b[38;5;66;03m# the underlying datasets will still be stored as dask arrays\u001b[39;00m\n\u001b[1;32m--> 990\u001b[0m datasets, closers \u001b[38;5;241m=\u001b[39m \u001b[43mdask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdatasets\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclosers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 992\u001b[0m \u001b[38;5;66;03m# Combine all datasets, closing them in case of a ValueError\u001b[39;00m\n\u001b[0;32m 993\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\dask\\base.py:599\u001b[0m, in \u001b[0;36mcompute\u001b[1;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)\u001b[0m\n\u001b[0;32m 596\u001b[0m keys\u001b[38;5;241m.\u001b[39mappend(x\u001b[38;5;241m.\u001b[39m__dask_keys__())\n\u001b[0;32m 597\u001b[0m postcomputes\u001b[38;5;241m.\u001b[39mappend(x\u001b[38;5;241m.\u001b[39m__dask_postcompute__())\n\u001b[1;32m--> 599\u001b[0m results \u001b[38;5;241m=\u001b[39m schedule(dsk, keys, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 600\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m repack([f(r, \u001b[38;5;241m*\u001b[39ma) \u001b[38;5;28;01mfor\u001b[39;00m r, (f, a) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(results, postcomputes)])\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\distributed\\client.py:3224\u001b[0m, in \u001b[0;36mClient.get\u001b[1;34m(self, dsk, keys, workers, allow_other_workers, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)\u001b[0m\n\u001b[0;32m 3222\u001b[0m should_rejoin \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 3223\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3224\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgather\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpacked\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43masynchronous\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43masynchronous\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdirect\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3225\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 3226\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m f \u001b[38;5;129;01min\u001b[39;00m futures\u001b[38;5;241m.\u001b[39mvalues():\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\distributed\\client.py:2359\u001b[0m, in \u001b[0;36mClient.gather\u001b[1;34m(self, futures, errors, direct, asynchronous)\u001b[0m\n\u001b[0;32m 2357\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 2358\u001b[0m local_worker \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m-> 2359\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msync\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2360\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_gather\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2361\u001b[0m \u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2362\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2363\u001b[0m \u001b[43m \u001b[49m\u001b[43mdirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdirect\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2364\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_worker\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlocal_worker\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2365\u001b[0m \u001b[43m \u001b[49m\u001b[43masynchronous\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43masynchronous\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2366\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\distributed\\utils.py:351\u001b[0m, in \u001b[0;36mSyncMethodMixin.sync\u001b[1;34m(self, func, asynchronous, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[0;32m 349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m future\n\u001b[0;32m 350\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 351\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m sync(\n\u001b[0;32m 352\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloop, func, \u001b[38;5;241m*\u001b[39margs, callback_timeout\u001b[38;5;241m=\u001b[39mcallback_timeout, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[0;32m 353\u001b[0m )\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\distributed\\utils.py:418\u001b[0m, in \u001b[0;36msync\u001b[1;34m(loop, func, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[0;32m 416\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m error:\n\u001b[0;32m 417\u001b[0m typ, exc, tb \u001b[38;5;241m=\u001b[39m error\n\u001b[1;32m--> 418\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\u001b[38;5;241m.\u001b[39mwith_traceback(tb)\n\u001b[0;32m 419\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 420\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\distributed\\utils.py:391\u001b[0m, in \u001b[0;36msync.<locals>.f\u001b[1;34m()\u001b[0m\n\u001b[0;32m 389\u001b[0m future \u001b[38;5;241m=\u001b[39m wait_for(future, callback_timeout)\n\u001b[0;32m 390\u001b[0m future \u001b[38;5;241m=\u001b[39m asyncio\u001b[38;5;241m.\u001b[39mensure_future(future)\n\u001b[1;32m--> 391\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01myield\u001b[39;00m future\n\u001b[0;32m 392\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[0;32m 393\u001b[0m error \u001b[38;5;241m=\u001b[39m sys\u001b[38;5;241m.\u001b[39mexc_info()\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\tornado\\gen.py:762\u001b[0m, in \u001b[0;36mRunner.run\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 759\u001b[0m exc_info \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 761\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 762\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 763\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[0;32m 764\u001b[0m exc_info \u001b[38;5;241m=\u001b[39m sys\u001b[38;5;241m.\u001b[39mexc_info()\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\distributed\\client.py:2222\u001b[0m, in \u001b[0;36mClient._gather\u001b[1;34m(self, futures, errors, direct, local_worker)\u001b[0m\n\u001b[0;32m 2220\u001b[0m exc \u001b[38;5;241m=\u001b[39m CancelledError(key)\n\u001b[0;32m 2221\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 2222\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exception\u001b[38;5;241m.\u001b[39mwith_traceback(traceback)\n\u001b[0;32m 2223\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[0;32m 2224\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskip\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\dask\\utils.py:73\u001b[0m, in \u001b[0;36mapply\u001b[1;34m()\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[38;5;124;03m\"\"\"Apply a function given its positional and keyword arguments.\u001b[39;00m\n\u001b[0;32m 43\u001b[0m \n\u001b[0;32m 44\u001b[0m \u001b[38;5;124;03mEquivalent to ``func(*args, **kwargs)``\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 70\u001b[0m \u001b[38;5;124;03m>>> dsk = {'task-name': task} # adds the task to a low level Dask task graph\u001b[39;00m\n\u001b[0;32m 71\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 72\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs:\n\u001b[1;32m---> 73\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 75\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs)\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\api.py:525\u001b[0m, in \u001b[0;36mopen_dataset\u001b[1;34m()\u001b[0m\n\u001b[0;32m 513\u001b[0m decoders \u001b[38;5;241m=\u001b[39m _resolve_decoders_kwargs(\n\u001b[0;32m 514\u001b[0m decode_cf,\n\u001b[0;32m 515\u001b[0m open_backend_dataset_parameters\u001b[38;5;241m=\u001b[39mbackend\u001b[38;5;241m.\u001b[39mopen_dataset_parameters,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 521\u001b[0m decode_coords\u001b[38;5;241m=\u001b[39mdecode_coords,\n\u001b[0;32m 522\u001b[0m )\n\u001b[0;32m 524\u001b[0m overwrite_encoded_chunks \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moverwrite_encoded_chunks\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m--> 525\u001b[0m backend_ds \u001b[38;5;241m=\u001b[39m backend\u001b[38;5;241m.\u001b[39mopen_dataset(\n\u001b[0;32m 526\u001b[0m filename_or_obj,\n\u001b[0;32m 527\u001b[0m drop_variables\u001b[38;5;241m=\u001b[39mdrop_variables,\n\u001b[0;32m 528\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mdecoders,\n\u001b[0;32m 529\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 530\u001b[0m )\n\u001b[0;32m 531\u001b[0m ds \u001b[38;5;241m=\u001b[39m _dataset_from_backend_dataset(\n\u001b[0;32m 532\u001b[0m backend_ds,\n\u001b[0;32m 533\u001b[0m filename_or_obj,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 541\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 542\u001b[0m )\n\u001b[0;32m 543\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ds\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\h5netcdf_.py:413\u001b[0m, in \u001b[0;36mopen_dataset\u001b[1;34m()\u001b[0m\n\u001b[0;32m 394\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mopen_dataset\u001b[39m( \u001b[38;5;66;03m# type: ignore[override] # allow LSP violation, not supporting **kwargs\u001b[39;00m\n\u001b[0;32m 395\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 396\u001b[0m filename_or_obj: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m|\u001b[39m os\u001b[38;5;241m.\u001b[39mPathLike[Any] \u001b[38;5;241m|\u001b[39m BufferedIOBase \u001b[38;5;241m|\u001b[39m AbstractDataStore,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 410\u001b[0m decode_vlen_strings\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[0;32m 411\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dataset:\n\u001b[0;32m 412\u001b[0m filename_or_obj \u001b[38;5;241m=\u001b[39m _normalize_path(filename_or_obj)\n\u001b[1;32m--> 413\u001b[0m store \u001b[38;5;241m=\u001b[39m H5NetCDFStore\u001b[38;5;241m.\u001b[39mopen(\n\u001b[0;32m 414\u001b[0m filename_or_obj,\n\u001b[0;32m 415\u001b[0m \u001b[38;5;28mformat\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mformat\u001b[39m,\n\u001b[0;32m 416\u001b[0m group\u001b[38;5;241m=\u001b[39mgroup,\n\u001b[0;32m 417\u001b[0m lock\u001b[38;5;241m=\u001b[39mlock,\n\u001b[0;32m 418\u001b[0m invalid_netcdf\u001b[38;5;241m=\u001b[39minvalid_netcdf,\n\u001b[0;32m 419\u001b[0m phony_dims\u001b[38;5;241m=\u001b[39mphony_dims,\n\u001b[0;32m 420\u001b[0m decode_vlen_strings\u001b[38;5;241m=\u001b[39mdecode_vlen_strings,\n\u001b[0;32m 421\u001b[0m )\n\u001b[0;32m 423\u001b[0m store_entrypoint \u001b[38;5;241m=\u001b[39m StoreBackendEntrypoint()\n\u001b[0;32m 425\u001b[0m ds \u001b[38;5;241m=\u001b[39m store_entrypoint\u001b[38;5;241m.\u001b[39mopen_dataset(\n\u001b[0;32m 426\u001b[0m store,\n\u001b[0;32m 427\u001b[0m mask_and_scale\u001b[38;5;241m=\u001b[39mmask_and_scale,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 433\u001b[0m decode_timedelta\u001b[38;5;241m=\u001b[39mdecode_timedelta,\n\u001b[0;32m 434\u001b[0m )\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\h5netcdf_.py:176\u001b[0m, in \u001b[0;36mopen\u001b[1;34m()\u001b[0m\n\u001b[0;32m 173\u001b[0m lock \u001b[38;5;241m=\u001b[39m combine_locks([HDF5_LOCK, get_write_lock(filename)])\n\u001b[0;32m 175\u001b[0m manager \u001b[38;5;241m=\u001b[39m CachingFileManager(h5netcdf\u001b[38;5;241m.\u001b[39mFile, filename, mode\u001b[38;5;241m=\u001b[39mmode, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[1;32m--> 176\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(manager, group\u001b[38;5;241m=\u001b[39mgroup, mode\u001b[38;5;241m=\u001b[39mmode, lock\u001b[38;5;241m=\u001b[39mlock, autoclose\u001b[38;5;241m=\u001b[39mautoclose)\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\h5netcdf_.py:127\u001b[0m, in \u001b[0;36m__init__\u001b[1;34m()\u001b[0m\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mformat \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 125\u001b[0m \u001b[38;5;66;03m# todo: utilizing find_root_and_group seems a bit clunky\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[38;5;66;03m# making filename available on h5netcdf.Group seems better\u001b[39;00m\n\u001b[1;32m--> 127\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_filename \u001b[38;5;241m=\u001b[39m find_root_and_group(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mds)[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mfilename\n\u001b[0;32m 128\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_remote \u001b[38;5;241m=\u001b[39m is_remote_uri(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_filename)\n\u001b[0;32m 129\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlock \u001b[38;5;241m=\u001b[39m ensure_lock(lock)\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\h5netcdf_.py:187\u001b[0m, in \u001b[0;36mds\u001b[1;34m()\u001b[0m\n\u001b[0;32m 185\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[0;32m 186\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mds\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m--> 187\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_acquire()\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\h5netcdf_.py:180\u001b[0m, in \u001b[0;36m_acquire\u001b[1;34m()\u001b[0m\n\u001b[0;32m 178\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_acquire\u001b[39m(\u001b[38;5;28mself\u001b[39m, needs_lock\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[0;32m 179\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_manager\u001b[38;5;241m.\u001b[39macquire_context(needs_lock) \u001b[38;5;28;01mas\u001b[39;00m root:\n\u001b[1;32m--> 180\u001b[0m ds \u001b[38;5;241m=\u001b[39m _nc4_require_group(\n\u001b[0;32m 181\u001b[0m root, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode, create_group\u001b[38;5;241m=\u001b[39m_h5netcdf_create_group\n\u001b[0;32m 182\u001b[0m )\n\u001b[0;32m 183\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ds\n",
|
||
|
"File \u001b[1;32m~\\anaconda3\\envs\\py39\\lib\\site-packages\\xarray\\backends\\netCDF4_.py:191\u001b[0m, in \u001b[0;36m_nc4_require_group\u001b[1;34m()\u001b[0m\n\u001b[0;32m 188\u001b[0m ds \u001b[38;5;241m=\u001b[39m create_group(ds, key)\n\u001b[0;32m 189\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 190\u001b[0m \u001b[38;5;66;03m# wrap error to provide slightly more helpful message\u001b[39;00m\n\u001b[1;32m--> 191\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgroup not found: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, e)\n\u001b[0;32m 192\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ds\n",
|
||
|
"\u001b[1;31mOSError\u001b[0m: [Errno group not found: images] 'images'"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0013\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 129,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.Javascript object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<img src=\"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"f = 224.9906 ± 0.4995 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 3e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 19e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.8"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0036\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 2e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 19e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.85"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0038\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 2e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 19e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Truncation: 0.9"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"shotNum = \"0040\"\n",
|
||
|
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
|
||
|
"\n",
|
||
|
"dataSetDict = {\n",
|
||
|
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n",
|
||
|
" for i in [0]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"dataSet = dataSetDict[\"camera_0\"]\n",
|
||
|
"\n",
|
||
|
"print_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"scanAxis = get_scanAxis(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = auto_rechunk(dataSet)\n",
|
||
|
"\n",
|
||
|
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
|
||
|
"\n",
|
||
|
"imageAnalyser.center = (800, 900)\n",
|
||
|
"imageAnalyser.span = (300, 300)\n",
|
||
|
"imageAnalyser.fraction = (0.1, 0.1)\n",
|
||
|
"\n",
|
||
|
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
|
||
|
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
|
||
|
"\n",
|
||
|
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
|
||
|
"Ncount_mean = calculate_mean(Ncount)\n",
|
||
|
"Ncount_std = calculate_std(Ncount)\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"Ncount_mean.plot.errorbar(ax=ax, yerr = None, fmt='ob')\n",
|
||
|
"plt.ylabel('NCount')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dataSet_cropOD_chunk = dataSet_cropOD.chunk((1, 1, 300, 300))\n",
|
||
|
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
|
||
|
"params = fitAnalyser.guess(dataSet_cropOD_chunk, dask=\"parallelized\")\n",
|
||
|
"fitResult = fitAnalyser.fit(dataSet_cropOD_chunk, params, dask=\"parallelized\").load()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"val = fitAnalyser.get_fit_value(fitResult)\n",
|
||
|
"std = fitAnalyser.get_fit_std(fitResult)\n",
|
||
|
"\n",
|
||
|
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(300), y=np.arange(300), dask=\"parallelized\").load()\n",
|
||
|
"\n",
|
||
|
"# dataKey = 'sigmax'\n",
|
||
|
"# dataKey = 'centerx'\n",
|
||
|
"# dataKey = 'sigmay'\n",
|
||
|
"dataKey = 'centery'\n",
|
||
|
"\n",
|
||
|
"# val_mean = val[dataKey].mean(dim='runs')\n",
|
||
|
"# std_mean = val[dataKey].std(dim='runs')\n",
|
||
|
"\n",
|
||
|
"val_mean = calculate_mean(val[dataKey])\n",
|
||
|
"std_mean = calculate_std(val[dataKey])\n",
|
||
|
"\n",
|
||
|
"fig = plt.figure()\n",
|
||
|
"ax = fig.gca()\n",
|
||
|
"\n",
|
||
|
"val_mean.plot.errorbar(yerr=std_mean, fmt='--ob')\n",
|
||
|
"\n",
|
||
|
"plt.grid()\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def damp_osci(t, t0, A, B, nu, gamma):\n",
|
||
|
" return A * np.exp(-gamma*t)*np.sin(2*np.pi*nu*(t-t0)) + B\n",
|
||
|
"\n",
|
||
|
"yvals = val_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"yvals_std = std_mean#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"xvals = dataSet_cropOD[scanAxis[0]]#.sel(blink_on_time=slice(0.005, 0.025))\n",
|
||
|
"\n",
|
||
|
"fitted_qtys_1 = yvals.to_numpy()\n",
|
||
|
"scan_para = xvals.to_numpy()\n",
|
||
|
"fitted_qtys_err_1 = yvals_std.to_numpy()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"popt_x, pcov_x = curve_fit(damp_osci, scan_para, fitted_qtys_1, np.array([0, 3, 147, 2e2, 0.1]))\n",
|
||
|
"freqdata = np.linspace(0.005, 19e-3, 500)\n",
|
||
|
"plt.plot(freqdata, damp_osci(freqdata, *popt_x), 'g--',label='fit: t0=%5.3f, A=%5.3f, B=%5.3f, nu=%5.3f, Gamma=%5.3f' % tuple(popt_x))\n",
|
||
|
"plt.errorbar(scan_para, fitted_qtys_1, yerr=fitted_qtys_err_1, fmt='or')\n",
|
||
|
"plt.xlabel('hold time after switch on the trap (s)')\n",
|
||
|
"plt.ylabel('Center along gravity direction (pixels)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"#plt.ylim([0,750])\n",
|
||
|
"#plt.xlim([0.004, 0.025])\n",
|
||
|
"#plt.legend(prop={'size': 14})\n",
|
||
|
"plt.show()\n",
|
||
|
"\n",
|
||
|
"f_x = popt_x[3]\n",
|
||
|
"df_x = pcov_x[3][3]**0.5\n",
|
||
|
"\n",
|
||
|
"print('f = %.4f \\u00B1 %.4f Hz'% tuple([np.abs(f_x),df_x]))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMqElEQVR4nO3de1yUdd7/8fcl4OCJFNBEQDFrM1J3W8ulLZJMCNHSyLrbtoPnNnXBrL3zAAoesDbr1szb1krRtNMqWpaimLrZwdafdd+r22E76KaopXigVHDE6/fH3EyOAzowAzMXvJ6PB4+c7/Wd73yvj5f29jp8xzBN0xQAAAAsoYm/JwAAAADPEd4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABYS7O8JBLKzZ89q//79atWqlQzD8Pd0AABAA2aapn788Ud16NBBTZpUf36N8HYB+/fvV2xsrL+nAQAAGpG9e/cqJiam2u2Etwto1aqVJEcRw8LCaj2O3W7Xhg0blJKSopCQEF9Nr9Ghjt6jht6jht6jhr5BHb0XaDUsLS1VbGysM39Uh/B2AZWXSsPCwrwOb82bN1dYWFhAHBxWRR29Rw29Rw29Rw19gzp6L1BreLFbtXhgAQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAXMCJE5JhOH5OnPD3bAhvAAAAlkJ4AwAAsBDCGwAAgIUQ3gAAACzE7+Htf/7nf9S/f3917NhRzZo1U3h4uK6//notW7bMre8nn3yivn37qmXLlmrdurXS09P17bffVjnuvHnz1LVrV9lsNnXu3Fm5ubmy2+11vTsAAAB1yu/h7dixY4qNjVVeXp7Wrl2rpUuXKi4uTvfff79mzJjh7PfFF18oKSlJp0+f1htvvKFFixbpX//6lxITE3Xo0CGXMWfOnKnMzEylp6dr/fr1Gj16tPLy8jRmzJj63j0AAACfCvb3BJKSkpSUlOTSNmDAAO3evVsLFy5UVlaWJGnKlCmy2Wx6++23FRYWJknq2bOnrrjiCs2ePVtPPvmkJKmkpEQzZszQyJEjlZeX5/wMu92urKwsjRs3TvHx8fW3gwAAwNIqKn7+9XvvSSkpUlCQ/+bj9zNv1YmMjFRwsCNbnjlzRm+//bbuvPNOZ3CTpE6dOunmm2/WqlWrnG2FhYUqKyvT0KFDXcYbOnSoTNPU6tWr62X+AADA+goKpHPP+aSlSXFxjnZ/8fuZt0pnz57V2bNndfToUf31r3/V+vXr9dxzz0mSvvnmG506dUo9evRwe1+PHj1UVFSksrIyhYaGateuXZKk7t27u/SLiopSZGSkc3tVysvLVV5e7nxdWloqSbLb7V7dL1f5Xu658w519B419B419B419A3q6L2L1XDVKkP33BMk05Qkw9leXGxq8GDptdcqdMcdps/nczEBE95Gjx6tv/zlL5Kkpk2b6tlnn9VDDz0kyXEpVJLCw8Pd3hceHi7TNHX06FFFRUWppKRENptNLVq0qLJv5VhVmTVrlnJzc93aN2zYoObNm9dqv85VVFTk9Rigjr5ADb1HDb1HDX2DOnqvqhpWVEijR6fININ0bnCTJNM0JJkaM+a0goOLfHYJ9eTJkx71C5jwNmnSJI0YMUI//PCD1qxZo7Fjx+rEiRN67LHHnH0Mw6j2/edu87Tf+SZOnKjx48c7X5eWlio2NlYpKSkul2trym63q6ioSMnJyQoJCan1OI0ddfQeNfQeNfQeNfQN6ui9C9Xwb38zVFJyoZhk6PDh5goL66/evX1z9q3yit/FBEx469ixozp27ChJSktLk+QIUw8++KAiIiIkqcqzZkeOHJFhGGrdurUkKSIiQmVlZTp58qTb2bIjR46oZ8+e1c7BZrPJZrO5tYeEhPjkD4avxmnsqKP3qKH3qKH3qKFvUEfvVVXD8xayqNahQ8HyVfk9/X0M2AcWevXqpTNnzujbb79Vly5d1KxZM+3cudOt386dO3X55ZcrNDRU0s/3up3f9+DBgzp8+LC6detW95MHAACWFhXl236+FLDhbfPmzWrSpIkuu+wyBQcH67bbblNBQYF+/PFHZ5/vvvtOmzdvVnp6urMtNTVVoaGhys/PdxkvPz9fhmFo0KBB9bQHAADAqhITpZgYqbq7rQxDio119Ktvfr9sOmrUKIWFhalXr1669NJLdfjwYf31r3/V66+/rj/96U9q27atJCk3N1fXXXedBgwYoAkTJqisrExTpkxRZGSkHn30Ued44eHhysrKUnZ2tsLDw5WSkqLt27crJydHI0aMYI03AABwUUFB0ty50uDBjqBmnnNbW2WgmzPHP+u9+T28XX/99Vq8eLGWLFmiY8eOqWXLlvrlL3+pl19+Wffdd5+zX9euXbVlyxY9/vjjGjx4sIKDg9WnTx/Nnj3bGfAqTZ48Wa1atdL8+fM1e/ZstW/fXhMmTNDkyZPre/cAAIBFpadLK1ZIGRlScfHP7TExjuB2zoW/euX38DZ06FC3BXWr07NnT23cuNGjvhkZGcrIyPBmagAAoJFLT5f69pUuucTxeu1avmEBAAAgoJ0b1G66yb/BTSK8AQAAWArhDQAAwEIIbwAAABZCeAMAALAQvz9tCgAAEMhatHBd583fOPMGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAizhxQjIMx8+JE/6eDfyF8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwDAIioqfv71++8bLq/ReBDeAACwgIICKT7+59e33RasUaNStGqV4b9JwS+C/T0BAABwYQUF0uDBkmm6tpeUhOqee6TgYCk93T9zQ/3jzBsAAAGsokLKzHQPbg6Os27jxolLqI0I4Q0AgAC2dau0b1/1203T0N69jn5oHAhvAAAEsAMHfNsP1kd4AwAggEVF+bYfrI/wBgBAAEtMlGJiHF9GXxXDMBUb6+iHxoHwBgBAAAsKkubOdfzaPcA5nmKYM8fRD40D4Q0AgACXni6tWCF16ODaHhl5Sq+9VsEyIY0M67wBAGAB6elS377SJZc4Xq9Zc0anTxfpttvS/Dsx1DvOvAEAYBHnXhq98UaTS6WNFOENAADAQghvAAAAFkJ4AwAAsBAeWAAAwCJatPj5O07tdv/OBf7DmTcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhfg9vmzZt0rBhw9S1a1e1aNFC0dHRGjhwoHbs2OHSzzRNvfDCC+rZs6fCwsIUERGh3r1765133qly3Hnz5qlr166y2Wzq3LmzcnNzZWdFQwAAYHF+D28LFizQnj17lJmZqbVr12ru3Ln64YcflJCQoE2bNjn7TZ06VaNGjVKvXr20cuVK5efny2azacCAASooKHAZc+bMmcrMzFR6errWr1+v0aNHKy8vT2PGjKnv3QMAAPApv3891vz589WuXTuXttTUVF1++eXKy8tTnz59JEmLFi3SjTfeqAULFjj7JScnq3379lqyZInS09MlSSUlJZoxY4ZGjhypvLw8SVJSUpLsdruysrI0btw4xcfH19PeAQAA+Jbfz7ydH9wkqWXLloqPj9fevXudbSEhIbrkkktc+oWGhjp/KhUWFqqsrExDhw516Tt06FCZpqnVq1f7dgcAAADqkd/PvFXl+PHj+uSTT5xn3SQpMzNTjz32mF566SWlp6errKxMTz31lI4fP66MjAxnv127dkmSunfv7jJmVFSUIiMjndurUl5ervLycufr0tJSSZLdbvfqfrnK93LPnXeoo/eoofeoofeooW9QR+8FWg09nYdhmqZZx3Opsfvuu0+vv/66tm3bpp49ezrb//KXvygzM9MZsMLDw/X666+rb9++zj6jRo3S0qVLVVZW5jb
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAaUlEQVR4nO3deXQUZfr28auyNSEQsjWQQIJKHJEILiiGo0hAUEbwVWMcHVzAdVxZXEZEQMK4oCMI7voTQQUdJcRxYFQIShBHMzICipnRMYqCgNAgTTBAJyTP+weT1pCFTqeTTqW/n3NyTuqppyp336c8XlR1VVnGGCMAAADYQliwCwAAAIDvCG8AAAA2QngDAACwEcIbAACAjRDeAAAAbITwBgAAYCOENwAAABuJCHYBwVBVVaWtW7eqY8eOsiwr2OUAAIAQYIzR3r17lZKSorAw/8+fhWR427p1q1JTU4NdBgAACEGbN29W9+7d/d4+JMNbx44dJR1qXmxsbJCraX0qKiq0fPlynXPOOYqMjAx2ObZAz/xD3/xD3/xD3xqPnvmnvr6VlpYqNTXVm0P8FZLhrfpSaWxsLOGtDhUVFWrfvr1iY2P5j9VH9Mw/9M0/9M0/9K3x6Jl/jtS3pn5lixsWAAAAbITwBgAAYCOENwAAABshvAEAANgI4Q0AAMBGCG8AAAA2QngDAACwEcIbAACAjRDeAAAAbITwBgAAYCOENwAAABshvAEAANgI4Q0AAMBGCG8AAAA2QngDAACwEcIbAAAIeZWVZSostFRYaKmysizY5TSI8AYAAGAjhDcAAAAbIbwBAADYCOENAADARghvAAAANkJ4AwAAsJGgh7fCwkJZllXnT1FRUY25a9eu1dChQ9WhQwfFxcUpOztb3377bZAqBwAAaHkRwS6g2oMPPqjBgwfXGDvhhBO8v3/55ZfKysrSSSedpDfeeEMHDhzQ1KlTNXDgQK1fv15Op7OlSwYAAGhxrSa8HXvsscrMzKx3/dSpU+VwOLR06VLFxsZKkvr166djjz1Wjz76qB5++OGWKhUAACBogn7Z1BcHDx7U0qVLdfHFF3uDmyT16NFDgwcP1ptvvhnE6gAAAFpOqznzdsstt+iyyy5T+/btNWDAAE2ZMkVnnnmmJOmbb77R/v371bdv31rb9e3bVwUFBTpw4IDatWtX5749Ho88Ho93ubS0VJJUUVGhioqKZvg09lbdE3rjO3rmH/rmH/rmH/rWeKHUs8rKXz5jRUWFqqr8/8z19S1QfQx6eOvUqZPGjRunrKwsJSYmqqSkRH/+85+VlZWlv//97zr33HO1a9cuSVJCQkKt7RMSEmSM0e7du5WcnFzn33jooYeUm5tba3z58uVq3759YD9QG1JQUBDsEmyHnvmHvvmHvvmHvjVeaPTsgDp1OvTbsmXLJNV9QqgxDu/bvn37mrxPSbKMMSYgewogt9utPn36KCEhQZ999pk++ugjnXHGGfrLX/6iSy+9tMbchx56SJMmTdK2bdvUtWvXOvdX15m31NRU7dy5s8ZlWBxSUVGhgoICDRs2TJGRkcEuxxbomX/om3/om3/oW+OFUs8qK8tUVBQvScrM3K3w8Bi/91Vf30pLS5WUlKQ9e/Y0KX8E/cxbXeLi4jRy5Eg9++yz2r9/vxITEyXJewbu13766SdZlqW4uLh69+dwOORwOGqNR0ZGtvmDsSnoT+PRM//QN//QN//Qt8YLhZ6Fhf3y+SIjIxUe3vTPe3jfAtXDVnvDQvUJQcuy1LNnT0VHR2vDhg215m3YsEHp6en1ft8NAADgSIyp9P7udn9QY7m1aZXhbffu3Vq6dKlOOukktWvXThERETr//POVn5+vvXv3eudt2rRJK1euVHZ2dhCrBQAAduZy5euTT3p7lzdsOE9FRUfJ5coPYlX1C/pl01GjRiktLU2nnnqqkpKS9PXXX2vmzJnavn275s+f752Xm5ur0047TSNHjtTEiRO9D+lNSkrSHXfcEbwPAAAAbMvlyldxcY6kmrcAeDxbVFyco4yMPDmdreskUdDPvPXt21fLli3Tddddp6FDh+ree+9V79699dFHH2no0KHeeb169VJhYaEiIyOVk5OjMWPGKD09XR988AFvVwAAAI1mTKVKSsbp8OD2v7WSpJKS8a3uEmrQz7xNnDhREydO9Gluv379tGLFimauCAAAhAK3e7U8nh8amGHk8WyW271a8fFZLVTVkQX9zBsAAEAwlJdvC+i8lkJ4AwAAISkqqu6H+/s7r6UQ3gAAQEiKixsoh6O7JKueGZYcjlTFxQ1sybKOiPAGAABCkmWFKz19TvXS4WslSenps2VZ4S1a15EQ3gAAQMhyOrOVkZGnqKiUGuMOR/dW+ZgQqRXcbQoAABBMTme24uOH6sMPD72Zvk+ft5WQcE6rO+NWjTNvAAAg5P06qMXFndVqg5tEeAMAALAVwhsAAICNEN4AAABshPAGAABgI4Q3AAAAGyG8AQAA2AjhDQAAwEYIbwAAADZCeAMAALARwhsAAICNEN4AAGhDKivLVFhoqbDQUmVlWbDLQTMgvAEAANhIRLALAAAAgWNMpfd3t/sDJSSc06pfst5ahIfHKCvLBLsMn3DmDQCANsLlytcnn/T2Lm/YcJ6Kio6Sy5UfxKoQaIQ3AADaAJcrX8XFOSov31Jj3OPZouLiHAJcG0J4AwDA5oypVEnJOEl1XfY7NFZSMr7GJVXYF+ENAACbc7tXy+P5oYEZRh7PZrndq1usJjQfwhsAADZXXr4toPPQuhHeAACwuaio5IDOQ+tGeAMAwObi4gbK4eguyapnhiWHI1VxcQNbsiw0E8IbAAA2Z1nhSk+fU710+FpJUnr6bJ731kYQ3gAAaAOczmxlZOQpKiqlxrjD0V0ZGXlyOrODVBkCjTcsAADQRjid2YqPH6oPP+wkSerT523esNAGceYNAIA25NdBLS7uLIJbG8SZNwAA2hA7vaMT/uHMGwAAgI0Q3gAAAGyE8AYAAGAjhDcAAAAbIbwBAADYCOENAADARghvAAAANkJ4AwAAsBHCGwAAgI0Q3gAAAGyE8AYAAGAjhDcAAAAbIbwBAADYCOENAADARghvAAAANkJ4AwAAsBHCGwAAgI0Q3gAAAGyk1YW3F154QZZlqUOHDjXGx4wZI8uyav306tUrSJUCAAC0vIhgF/BrW7Zs0Z133qmUlBTt2bOn1vro6Gi9//77tcYAAABCRasKbzfeeKPOOussJSQkKC8vr9b6sLAwZWZmBqEyAACA1qHVXDZdsGCBVq1apaeffjrYpQAAALRareLM244dOzR+/HjNmDFD3bt3r3fe/v371bVrV7lcLiUnJ+vCCy/U9OnTlZCQ0OD+PR6PPB6Pd7m0tFSSVFFRoYqKisB8iDakuif0xnf0zD/0zT/0zT/0rfHomX/q61ug+mgZY0xA9tQEOTk52rZtmz788ENZlqUxY8YoLy9PP//8s3fOY489Jkk64YQTJEmrVq3SY489prS0NK1Zs6bWDQ6/Nm3aNOXm5tYaf/XVV9W+ffsAfxoAAIDa9u3bp1GjRmnPnj2KjY31ez9BD2+LFy/WqFGjtG7dOvXu3VuS6gxv9W2bk5OjWbNmacKECfXOq+vMW2pqqnbu3Nmk5rVVFRUVKigo0LBhwxQZGRnscmyBnvmHvvmHvvmHvjUePfNPfX0rLS1VUlJSk8NbUC+b/vzzz7rlllt02223KSUlRW63W5JUXl4uSXK73YqMjFRMTEyd21900UWKiYlRUVFRg3/H4XDI4XDUGo+MjORgbAD9aTx65h/65h/65h/61nj0zD+H9y1QPQzqDQs7d+7U9u3bNXPmTMXHx3t/XnvtNZWVlSk+Pl6XX355g/swxigsrNXcdwEAANCsgnrmrWvXrlq5cmWt8RkzZmjVqlV65513lJSUVO/2eXl52rdvH48PAQAAISOo4a1du3bKysqqNT5//nyFh4d7133//fcaNWqULrvsMqWnp8uyLK1atUqzZ89WRkaGrrvuupYtHAAAIEhaxaNCjiQ2NlZdunTRrFmztH37dlVWVqpHjx4aO3a
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLg0lEQVR4nO3de3RU9dn28WtyYAIhERNEQhIMakuSArZFaVCiEQlEwAZHtK3FIgg8FniSiLQcEiApEKtFXyil+FCFgGAVIaAoBoLAa6SmD0v6trBEawXkIFQIh6SEhCHZ7x+sjAyTwJCZzMwO389arOX89m/vuffNpuvqPo3FMAxDAAAAMIUgfxcAAAAA9xHeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmEuLvAgJZfX29vv76a0VERMhisfi7HAAA0IoZhqGqqip16dJFQUFNn18jvF3B119/rfj4eH+XAQAAriOHDh1SXFxck8sJb1cQEREh6WITIyMjm70du92uzZs3a+DAgQoNDfVWedcd+ug5eug5eug5eugd9NFzgdbDyspKxcfHO/JHUwhvV9BwqTQyMtLj8NauXTtFRkYGxMFhVvTRc/TQc/TQc/TQO+ij5wK1h1e7VYsHFgAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAwBWcPX9WlgKLLAUWnT1/1t/lEN4AAADMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAAFdQV1/n+O8Pv/rQ6bM/EN4AAACaULy3WMl/THZ8Hvz6YCUsSFDx3mK/1UR4AwAAaETx3mINXz1cR6qOOI0fqTyi4auH+y3AEd4AAAAuU1dfp+ySbBkyXJY1jOWU5PjlEirhDQAA4DJlB8t0uPJwk8sNGTpUeUhlB8t8WNVFhDcAAIDLHK066tV53kR4AwAAuExMRIxX53kT4Q0AAOAyqV1TFRcZJ4ssjS63yKL4yHildk31cWWENwAAABfBQcFakLFAklwCXMPn+RnzFRwU7PPaCG8AAACNsCXZtOaxNeoS0cVpPC4yTmseWyNbks0vdfk9vP2///f/NGTIEHXt2lVt27ZVVFSU+vbtq5UrV7rM3bVrlwYMGKD27durQ4cOstls2rdvX6PbXbhwoRITE2W1WtWtWzcVFBTIbre39O4AAIBWxJZk06fjP3V83vj4Ru3P3u+34CYFQHg7ffq04uPjVVhYqI0bN2rFihVKSEjQE088oTlz5jjmffbZZ0pLS9P58+e1evVqLV26VP/85z+Vmpqq48ePO21z7ty5ys7Ols1m06ZNmzR+/HgVFhZqwoQJvt49AABgcpdeGr33lnv9cqn0UiF+/XZJaWlpSktLcxobOnSo9u/fryVLligvL0+SNHPmTFmtVr377ruKjIyUJPXu3Vvf+c53NG/ePD3//POSpIqKCs2ZM0djx45VYWGh4zvsdrvy8vKUk5Oj5ORkAQAAmJHfz7w1pWPHjgoJuZgtL1y4oHfffVePPPKII7hJ0i233KL7779f69atc4yVlJSopqZGo0aNctreqFGjZBiG1q9f75P6AQAAWoLfz7w1qK+vV319vU6dOqW33npLmzZt0h/+8AdJ0pdffqlz586pV69eLuv16tVLpaWlqqmpUVhYmPbs2SNJ6tmzp9O8mJgYdezY0bG8MbW1taqtrXV8rqyslCTZ7XaP7pdrWJd77jxDHz1HDz1HDz1HD72DPnrO3R5eutxut8tuaZmeu/t3GTDhbfz48fqf//kfSVKbNm30+9//Xv/1X/8l6eKlUEmKiopyWS8qKkqGYejUqVOKiYlRRUWFrFarwsPDG53bsK3GPPfccyooKHAZ37x5s9q1a9es/bpUaWmpx9sAffQGeug5eug5eugd9NFzV+thTV2N4783bdqksOCwFqmjurrarXkBE96mT5+uMWPG6JtvvtGGDRs0ceJEnT17VpMnT3bMsVgaf1He5cvcnXe5adOmadKkSY7PlZWVio+P18CBA50u114ru92u0tJSpaenKzQ0tNnbud7RR8/RQ8/RQ8/RQ++gj55zt4dnz5+Vdl/870GDBim8jesJIm9ouOJ3NQET3rp27aquXbtKkgYPHizpYpgaOXKkoqOjJanRs2YnT56UxWJRhw4dJEnR0dGqqalRdXW1y9mykydPqnfv3k3WYLVaZbVaXcZDQ0O98g/DW9u53tFHz9FDz9FDz9FD76CPnrtaD0ONULfnelqHOwL2gYU+ffrowoUL2rdvn2677Ta1bdtWu3fvdpm3e/du3X777QoLu3gKs+Fet8vnHjt2TCdOnFCPHj1avngAAIAWErDhbdu2bQoKCtKtt96qkJAQPfTQQyouLlZVVZVjzsGDB7Vt2zbZbN++KC8jI0NhYWEqKipy2l5RUZEsFouGDRvmoz0AAADwPr9fNh03bpwiIyPVp08f3XzzzTpx4oTeeustvfnmm/rVr36lm266SZJUUFCgu+66S0OHDtXUqVNVU1OjmTNnqmPHjnr22Wcd24uKilJeXp5mzJihqKgoDRw4UDt37lR+fr7GjBnDO94AAICp+T289e3bV8uWLdPy5ct1+vRptW/fXnfccYdee+01jRgxwjEvMTFR27dv15QpUzR8+HCFhISof//+mjdvniPgNcjNzVVERIQWLVqkefPmqXPnzpo6dapyc3N9vXsAAABe5ffwNmrUKJcX6jald+/e2rJli1tzs7KylJWV5UlpAAAAASdg73kDAACAK8IbAACAifj9sikAAEAgC28TLmOW4e8yHDjzBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAMAkzp4/K0uBRZYCi86eP+vvcuAnhDcAAAATIbwBAGASdfV1jv/+6OBHqjPqrjAbrRXhDQAAEyjeW6zkPyY7Pj+0+iGN+3Sc1n22zo9VwR9C/F0AAAC4suK9xRq+ergMGU7jFfYK/bT4pwoJCZEtyean6uBrnHkDACCA1dXXKbsk2yW4XSqnJMfpkipaN8IbAAABrOxgmQ5XHm5yuSFDhyoPqexgmQ+rgj8R3gAACGBHq456dR7Mj/AGAEAAi4mI8eo8mB/hDQCAAJbaNVVxkXGyyNLocossio+MV2rXVB9XBn8hvAEAEMCCg4K1IGOBJDUZ4OZnzFdwULAvy4IfEd4AAAhwtiSb1jy2Rl0iujiNdwztqDdsb/CakOsM73kDAMAEbEk2Deg2QDc8f4MkacNjG3T+8/N6KPEhP1cGX+PMGwAAJnHppdF+Xfsp2MKl0usRZ94AADCJ8DbhMmZdfFmv3W73czXwF868AQAAmAjhDQAAwEQIbwAAACZCeAMAADARv4e3rVu3avTo0UpMTFR4eLhiY2OVmZmpTz75xGmeYRj605/+pN69eysyMlLR0dG677779N577zW63YULFyoxMVFWq1XdunVTQUEBN3cCAADT83t4W7x4sQ4cOKDs7Gxt3LhRCxYs0DfffKOUlBRt3brVMW/WrFkaN26c+vTpo7Vr16qoqEhWq1VDhw5VcXGx0zbnzp2r7Oxs2Ww2bdq0SePHj1dhYaEmTJjg690DAADwKr+/KmTRokXq1KmT01hGRoZuv/12FRYWqn///pKkpUuXql+/flq8eLFjXnp6ujp37qzly5fLZrv4dumKigrNmTNHY8eOVWFhoSQpLS1NdrtdeXl5ysnJUXJyso/2DgAAwLv8fubt8uAmSe3bt1dycrIOHTrkGAsNDdUNN9zgNC8sLMzxp0FJSYl
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"tf_z = [299.3777, 288.1736, 272.4744, 259.5129, 241.8841, 233.8030, 229.2665, 219.5115, 211.4388, 199.3276, 184.9726]\n",
|
||
|
"dtf_z = [3.7588, 3.5503,1.2193, 0.7946, 1.7848, 1.4811, 0.7289, 1.0038, 0.7646, 1.0321, 1.0431]\n",
|
||
|
"trunc = [0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.75, 0.775, 0.8, 0.85, 0.9]\n",
|
||
|
"p_1 = [0.507, 0.449, 0.398, 0.354, 0.315, 0.298, 0.282, 0.266, 0.252, 0.226, 0.204]\n",
|
||
|
"p_2 = [3.88, 3.38, 2.911, 2.474, 2.066, 1.873, 1.687, 1.507, 1.33, 1.003, 0.696]\n",
|
||
|
" \n",
|
||
|
"plt.figure()\n",
|
||
|
"plt.errorbar(p_1, tf_z, yerr = dtf_z, fmt = 'ob')\n",
|
||
|
"plt.xlabel('Power of Arm 1')\n",
|
||
|
"plt.ylabel('Vertical TF (Hz)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"\n",
|
||
|
"tf_y = [49.3970, 47.4535, 43.9127, 40.8258, 36.6638, 35.6111, 34.3650, 32.0196, 29.9294, 26.5413, 22.4257]\n",
|
||
|
"dtf_y = [1.5574, 0.5536, 0.3721, 0.4734, 0.9428, 0.7725, 0.3264, 0.2862, 0.1988, 0.2477, 0.3690]\n",
|
||
|
"trunc = [0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.75, 0.775, 0.8, 0.85, 0.9]\n",
|
||
|
" \n",
|
||
|
"plt.figure()\n",
|
||
|
"plt.errorbar(p_2, tf_y, yerr = dtf_y, fmt = 'oy')\n",
|
||
|
"plt.xlabel('Power of Arm 2')\n",
|
||
|
"plt.ylabel('Axial TF (Hz)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"\n",
|
||
|
"tf_x = [303.5930, 286.0152, 272.6675, 253.6669, 238.8665, 232.4375, 224.9906, 218.7975, 210.9468, 196.7401, 180.0950]\n",
|
||
|
"dtf_x = [6.9704, 2.5433, 0.6739, 0.5183, 0.3901, 0.3994, 0.4995, 0.3777, 0.3864, 0.3636, 0.4790]\n",
|
||
|
"trunc = [0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.75, 0.775, 0.8, 0.85, 0.9]\n",
|
||
|
" \n",
|
||
|
"plt.figure()\n",
|
||
|
"plt.errorbar(p_1, tf_x, yerr = dtf_x, fmt = 'og')\n",
|
||
|
"plt.xlabel('Power of Arm 1')\n",
|
||
|
"plt.ylabel('Horz TF (Hz)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"v_x = 27451.697 Hz\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import numpy as np\n",
|
||
|
"from astropy import units as u, constants as ac\n",
|
||
|
"\n",
|
||
|
"DY_POLARIZABILITY = 184.4 # in a.u, most precise measured value of Dy polarizability\n",
|
||
|
"DY_MASS = 164*u.u\n",
|
||
|
"\n",
|
||
|
"def horz_tf(x, w_x, w_z):\n",
|
||
|
" w_x = w_x*u.um\n",
|
||
|
" w_z = w_z*u.um\n",
|
||
|
" x = x * u.W\n",
|
||
|
" alpha = DY_POLARIZABILITY\n",
|
||
|
" m = DY_MASS\n",
|
||
|
" TrapDepth = 2*x/(np.pi*w_x*w_z) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)\n",
|
||
|
" ret = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()\n",
|
||
|
" return ret.value\n",
|
||
|
" \n",
|
||
|
"def vert_tf(x, w_x, w_z):\n",
|
||
|
" w_x = w_x*u.um\n",
|
||
|
" w_z = w_z*u.um\n",
|
||
|
" x = x * u.W\n",
|
||
|
" alpha = DY_POLARIZABILITY\n",
|
||
|
" m = DY_MASS\n",
|
||
|
" TrapDepth = 2*x/(np.pi*w_x*w_z) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)\n",
|
||
|
" ret = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_z**2))).decompose()\n",
|
||
|
" return ret.value\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"v = horz_tf(30, 30, 0.2)\n",
|
||
|
"print('v_x = %.3f Hz' %(v))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 42,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<h2> Model</h2> Model(horz_tf) <h2>Fit Statistics</h2><table><tr><td>fitting method</td><td>leastsq</td><td></td></tr><tr><td># function evals</td><td>26</td><td></td></tr><tr><td># data points</td><td>9</td><td></td></tr><tr><td># variables</td><td>2</td><td></td></tr><tr><td>chi-square</td><td> 79.9011718</td><td></td></tr><tr><td>reduced chi-square</td><td> 11.4144531</td><td></td></tr><tr><td>Akaike info crit.</td><td> 23.6520935</td><td></td></tr><tr><td>Bayesian info crit.</td><td> 24.0465426</td><td></td></tr></table><h2>Variables</h2><table><tr><th> name </th><th> value </th><th> standard error </th><th> relative error </th><th> initial value </th><th> min </th><th> max </th><th> vary </th></tr><tr><td> w_x </td><td> 24.1519450 </td><td> 292150.064 </td><td> (1209633.69%) </td><td> 25 </td><td> 0.00000000 </td><td> 100.000000 </td><td> True </td></tr><tr><td> w_z </td><td> 52.4613985 </td><td> 1903772.36 </td><td> (3628901.28%) </td><td> 35 </td><td> 0.00000000 </td><td> 100.000000 </td><td> True </td></tr></table><h2>Correlations (unreported correlations are < 0.100)</h2><table><tr><td>w_x</td><td>w_z</td><td>-1.0000</td></tr></table>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<lmfit.model.ModelResult at 0x1b68d072d60>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 42,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABjnklEQVR4nO3dfXzO9f///9uxmWNONmzIbISUbU56i0RRzs1J0ZLSmSakyJbIyYZNM50gcxIpjUrFm1GkOfdpnay3Nyl+VAphJszJFjbHttfvD1/H29GGbce2Y8d2v14uu1w6nq/n63k8Xg+v6eH5er2eL5NhGAYiIiIi4hRcHB2AiIiIiOSfijcRERERJ6LiTURERMSJqHgTERERcSIq3kRERESciIo3ERERESei4k1ERETEiVRwdAClWU5ODsePH8fDwwOTyeTocERERKQMMwyD9PR06tati4vL9efXVLzdwPHjx6lXr56jwxAREZFy5OjRo/j5+V13u4q3G/Dw8ACuJNHT07PQ41gsFjZu3Ej37t1xc3MrqvDKHeXRfsqh/ZRD+ymHRUN5tF9py2FaWhr16tWz1h/Xo+LtBq5eKvX09LS7eKtcuTKenp6l4uRwVsqj/ZRD+ymH9lMOi4byaL/SmsOb3aqlBxZEREREnIiKNxEREREnouJNRERExImoeBMRERFxIireRERERJyIijcRERERJ6LiTURERMSJqHgTERERcSIq3kRERESciIo3ERERESei4k1ERETEiah4ExEREXEiKt5EREREnIiKNxEREREnouJNRERExImoeBMRERG5gQuXL2CKMmGKMnHh8gVHh6PiTURERMSZqHgTERERcSIq3kRERESciIo3ERERESei4k1ERETEiah4ExEREXEiKt5EREREnIiKNxEREREnouJNRERExImoeBMRERFxIireRERERJyIijcRERERJ6LiTURERMSJqHgTERERuYGs7Cz4FciCr//8muycbIfGo+JNRERE5DoiP4ikVpNa8CmwC3p90osGsQ2I3x/vsJhUvImIiIj8w3/+8x9atGtB1HNRWI5awA3IurItOS2Z/iv6O6yAU/EmIiIi8v/s27eP4OBg7rnnHvYk7QFX4B4gFLj3Sh8DA4CwhDCHXEJV8SYiIiLy/4wdO5bVq1fj4uIC/wJeAnoCVW37GRgcTTtK4pHEEo+xQol/o4iIiEgpce7cOU6fPo2Pjw8A0dHRmM1m2j3Tjld/evWm+6ekpxR3iLlo5k1ERETKnfPnzzNlyhSGDx9OdHS0tb1ly5bEx8dz97/uztc4Ph4+xRXidWnmTURERMqNS5cuMW/ePF5//XXOnDkDwO7du8nOzsbV1dXar0P9Dvh5+pGclmy9x+1aJkz4efrRoX6HEov9Ks28iYiISJlnsVh49913ady4Ma+++ipnzpzB39+fcePGsW3bNpvCDcDVxZXYoFjgSqF2raufZwfNxtXFdr+SoOJNREREyryYmBiGDx/O8ePHqV+/PkuWLOHHH3+kXbt2mEymPPcJDghm5YCV1PWoa9Pu5+nHygErCQ4ILonQc3F48bZ792569+5N/fr1qVSpEl5eXrRr146PP/44V99du3bRtWtXqlatSvXq1QkODubgwYN5jjt37lz8/f0xm800bNiQqKgoLBZLcR+OiIiIlAKGYZCWlmb9/MILL9CoUSNiY2P57bffGDRoUK7ZtrwEBwSz78V91s/rn1jPodBDDivcoBTc83bu3Dnq1avHwIED8fX15cKFCyxbtoynn36aw4cPExERAcAvv/xCx44d+de//sWKFSvIyMhg8uTJdOjQgd27d1OrVi3rmNOmTWPSpEmMHz+e7t27s2PHDiIiIkhOTmbRokWOOlQREREpAYmJiUycOBF3d3c2bdoEQO3atTlw4MCVJUAK6NpLo/ffer9DLpVey+HFW8eOHenYsaNNW58+fTh06BCLFi2yFm+TJ0/GbDazbt06PD09AWjVqhW33347M2bM4I033gAgNTWV6Ohohg4dSkxMjPU7LBYLERERhIWFERgYWHIHKCIiIiVi9+7dTJw4ka+++goAd3d3Dh48SKNGjQAKVbiVRqX2KGrWrEmFCldqy6ysLNatW8cjjzxiLdwAbr31Vjp16sTq1autbQkJCWRkZBASEmIzXkhICIZhsGbNmhKJX0RERErGgQMHePzxx2nZsiVfffUVrq6uPP/88/z+++/Wwq0scfjM21U5OTnk5ORw9uxZ/v3vf7NhwwbmzZsHwB9//MGlS5do0aJFrv1atGjBpk2byMjIwN3dnb179wLQvHlzm34+Pj7UrFnTuj0vmZmZZGZmWj9fvVZusVjsul/u6r66584+yqP9lEP7KYf2Uw6LhvJ4xddff02PHj3Izr7ymqoBAwYwZcoUbr/9duDG+clvDq/dbrFYsJiKJ+f5/bMsNcXbiy++yLvvvgtAxYoVmTNnDs8//zxw5VIogJeXV679vLy8MAyDs2fP4uPjQ2pqKmazmSpVquTZ9+pYeZk+fTpRUVG52jdu3EjlypULdVzXunrdXeyjPNpPObSfcmg/5bBolMc8GoZhfULUYrFQs2ZN/Pz8ePLJJ2nUqBEHDhzgwIED+R7vZjnMyM6w/veGDRtwd3UvXOA3cfHixXz1KzXF28SJExkyZAgnT55k7dq1jBw5kgsXLjBmzBhrn+s9yvvPbfnt908TJkxg9OjR1s9paWnUq1eP7t2721yuLSiLxcKmTZvo1q0bbm5uhR6nvFMe7acc2k85tJ9yWDTKYx7//vtv5syZw+eff05iYiIVK1YE4P7776dGjRoFHi+/Obxw+QLsufLfPXr0oErF3BNEReHap2NvpNQUb/Xr16d+/foA9OrVC7hSTA0aNAhvb2+APGfNzpw5g8lkonr16gB4e3uTkZHBxYsXc82WnTlzhlatWl03BrPZjNlsztXu5uZWJL8YRTVOeac82k85tJ9yaD/lsGiUhzxmZmby7rvvMm3aNE6ePAnAmjVrePLJJ4ErT5La42Y5dDPc8t3X3jjyo9Q+sNCmTRuysrI4ePAgt912G5UqVWLPnj25+u3Zs4fGjRvj7n5lCvPqvW7/7HvixAlOnz5Ns2bNij94ERERsVt2djZLly6lSZMmhIaGcvLkSW677TY+/fRTBg4c6OjwHKbUFm/btm3DxcWFRo0aUaFCBR588EHi4+NJT0+39jly5Ajbtm0jOPh/C+UFBQXh7u7OkiVLbMZbsmQJJpOJfv36ldARiIiISGGdPXuWFi1a8Oyzz/Lnn39St25dFi5cyP79+3n88cfLzLIfheHwy6bDhg3D09OTNm3acMstt3D69Gn+/e9/s3z5csaOHWtdfDcqKoq7776bPn36MH78eOsivTVr1uSVV16xjufl5UVERASTJk3Cy8vLukhvZGQkQ4YM0RpvIiIiTqBGjRr4+vqSkpLChAkTGDlyJJUqVXJ0WKWCw4u3du3aERcXx9KlSzl37hxVq1blzjvv5KOPPuKpp56y9vP392f79u2MGzeO/v37U6FCBTp37syMGTNs3q4AEB4ejoeHB/Pnz2fGjBnUqVOH8ePHEx4eXtKHJyIiIvnwn//8h+joaN5//33rPWzvvfce1apVs97XLlc4vHgLCQnJtaDu9bRq1YrNmzfnq++oUaMYNWqUPaGJiIhIMdu3bx8RERHWBfenT5/O22+/DVxZjF9yc3jxJiIiIuXP4cOHiYyM5KOPPiInJwcXFxeefvppQkNDHR1aqafiTURERErU2LFjiY2Ntb5R4OGHHyY6Olr3peeTijcREREpUZmZmVgsFrp06UJMTAxt2rRxdEg3VKViFYwphqPDsCq/z9mKiIhIsbt06RJvvfUWP/74o7UtPDycTZs2sXnz5lJfuJVGmnkTERGRImexWIiLi2Pq1KkkJycTFBTEV199BcAtt9zCLbfc4uAInZeKNxERESkyOTk5rFixgkmTJvH7778DV16B+dhjj9m8UF4KT8WbiIiIFIktW7YwZswYdu/eDUCtWrWIiIjg+eefz/Pd4VI4Kt5ERESkSPzyyy/s3r0bT09
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from lmfit import Model\n",
|
||
|
"\n",
|
||
|
"fitModel = Model(horz_tf, independent_vars=['x'], param_names=['w_x', 'w_z'], nan_policy='raise')\n",
|
||
|
"params = fitModel.make_params()\n",
|
||
|
"params['w_x'].set(value=25, min=0, max=100)\n",
|
||
|
"params['w_z'].set(value=35, min=0, max=100)\n",
|
||
|
"fitResult = fitModel.fit(data=np.array(tf_z[:-2]), params=params, x=np.array(p_1[:-2]))\n",
|
||
|
"\n",
|
||
|
"plt.figure()\n",
|
||
|
"plt.errorbar(p_1, tf_x, yerr = dtf_x, fmt = 'og')\n",
|
||
|
"plt.errorbar(p_1[:-2], fitResult.best_fit, fmt = 'k--')\n",
|
||
|
"plt.xlabel('Power of Arm 1')\n",
|
||
|
"plt.ylabel('Horz TF (Hz)')\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.grid(visible=1)\n",
|
||
|
"\n",
|
||
|
"fitResult"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 68,
|
||
|
"metadata": {
|
||
|
"scrolled": true
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"[0.005, 0.0057, 0.0064, 0.0071, 0.0078, 0.0085, 0.0092, 0.0099, 0.0106, 0.0113, 0.012, 0.0127, 0.0134, 0.0141, 0.0148, 0.0155, 0.0162, 0.0169, 0.0176, 0.0183, 0.019, 0.0197]\n",
|
||
|
"22\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"0.01235"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 68,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"l = list(np.arange(0.005, 0.02, 7e-4))\n",
|
||
|
"# l = np.logspace(np.log10(250e-6), np.log10(500e-3), num=15)\n",
|
||
|
"\n",
|
||
|
"l = [round(item, 7) for item in l]\n",
|
||
|
"#random.shuffle(l)\n",
|
||
|
"\n",
|
||
|
"print(l)\n",
|
||
|
"print(len(l))\n",
|
||
|
"np.mean(l)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"pixel = 5.86e-6\n",
|
||
|
"M = 0.6827\n",
|
||
|
"F = (1/(0.3725*8.4743e-14)) * (pixel / M)**2\n",
|
||
|
"NCount = 85000\n",
|
||
|
"AtomNumber = NCount * F / 1e8\n",
|
||
|
"print(AtomNumber)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"muB = 9.274e-24\n",
|
||
|
"hbar = 6.626e-34 / (2 * np.pi)\n",
|
||
|
"gJ = 1.24\n",
|
||
|
"\n",
|
||
|
"f = ufloat(10108.46982, 0.26282) \n",
|
||
|
"Delta = 2 * np.pi * f * 1e3\n",
|
||
|
"\n",
|
||
|
"Bz = (Delta*hbar) / (muB*gJ)\n",
|
||
|
"print(Bz * 1e4)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"muB = 9.274e-24\n",
|
||
|
"hbar = 6.626e-34 / (2 * np.pi)\n",
|
||
|
"gJ = 1.24\n",
|
||
|
"Bz = 5.8854 * 1e-4\n",
|
||
|
"(Bz*muB*gJ/hbar) / (2 * np.pi * 1e6)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## ODT 1 Calibration"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"v_high = 2.7\n",
|
||
|
"\"\"\"High Power\"\"\"\n",
|
||
|
"P_arm1_high = 5.776 * v_high - 0.683\n",
|
||
|
"\n",
|
||
|
"v_mid = 0.2076\n",
|
||
|
"\"\"\"Intermediate Power\"\"\"\n",
|
||
|
"P_arm1_mid = 5.815 * v_mid - 0.03651\n",
|
||
|
"\n",
|
||
|
"v_low = 0.062\n",
|
||
|
"\"\"\"Low Power\"\"\"\n",
|
||
|
"P_arm1_low = 5271 * v_low - 27.5\n",
|
||
|
"\n",
|
||
|
"print(round(P_arm1_high, 3))\n",
|
||
|
"print(round(P_arm1_mid, 3))\n",
|
||
|
"print(round(P_arm1_low, 3))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## ODT 2 Power Calibration"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"v = 0.842\n",
|
||
|
"P_arm2 = 2.302 * v - 0.06452\n",
|
||
|
"print(round(P_arm2, 3))"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.12"
|
||
|
},
|
||
|
"vscode": {
|
||
|
"interpreter": {
|
||
|
"hash": "c05913ad4f24fdc6b2418069394dc5835b1981849b107c9ba6df693aafd66650"
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|