analyseScript/DataContainer/MongoDB.py

668 lines
21 KiB
Python
Raw Normal View History

2023-06-14 09:57:06 +02:00
from collections import OrderedDict
import numpy as np
2023-06-09 18:59:56 +02:00
import pymongo
2023-10-30 17:53:03 +01:00
from pymongo import MongoClient
2023-06-09 18:59:56 +02:00
import xarray_mongodb
import bson
import builtins
2023-06-12 12:52:07 +02:00
import xarray as xr
2023-10-30 17:53:03 +01:00
# import sys
# #sys.path.insert(0, 'C:/Users/Fabrizio Klassen/PycharmProjects/DyLabDataViewer/src/bin/Analyser/AnalyserScript')
# import sys
# sys.path.append('../')
2023-06-09 18:59:56 +02:00
from ToolFunction.ToolFunction import get_date
npTypeDict = {v: getattr(builtins, k) for k, v in np.sctypeDict.items() if k in vars(builtins)}
npArrayType = type(np.array([0]))
class MongoDB:
2023-07-05 15:16:56 +02:00
"""A class for communicate with our MongoDB.
"""
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
def __init__(self, mongoClient, mongoDB, date=None) -> None:
2023-07-05 15:16:56 +02:00
"""Initialize the class with given handle to our MongoDB client and database.
:param mongoClient: The handle to MongoDB client
:type mongoClient: pymongo MongoDB client or other MongoDB client
:param mongoDB: The handle to MongoDB database
:type mongoDB: pymongo MongoDB database or other MongoDB database
:param date: The date of data ('YYYY/MM/DD'), can be setted later, defaults to None
:type date: str, optional
"""
2023-06-09 18:59:56 +02:00
self.mongoClient = mongoClient
self.mongoDB = mongoDB
self.xdb = xarray_mongodb.XarrayMongoDB(mongoDB)
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
if date is None:
date= get_date()
self.set_date(date)
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
def _convert_numpy_type(self, data):
2023-07-05 15:16:56 +02:00
"""Convert from numpy type to normal python type.
:param data: The data need to be converted
:type data: numpy data type
:return: The converted data
:rtype: normal python data type
"""
2023-06-09 18:59:56 +02:00
for key in data:
typeKey = type(data[key])
if typeKey in npTypeDict:
data[key] = data[key].item()
elif typeKey == npArrayType:
data[key] = data[key].tolist()
else:
try:
data[key] = data[key].item()
except:
pass
return data
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def _break_dataSet(self, dataSet, scanAxis=None):
2023-07-05 15:16:56 +02:00
"""Stack the scan axes of data
:param dataSet: The xarray DataSet or DataArray stored the data
:type dataSet: xarray DataSet or DataArray
:param scanAxis: a list of the name of scan axes, defaults to None
:type scanAxis: list or array like, optional
:return: The stacked xarray DataSet or DataArray stored the data
:rtype: xarray DataSet or DataArray
"""
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if scanAxis is None:
2023-10-30 17:53:03 +01:00
scanAxis = dataSet.attrs['scanAxis']
2023-06-13 18:16:24 +02:00
dataArray = dataSet.shotNum
2023-10-30 17:53:03 +01:00
stackedDataArray = dataArray.stack(_scanAxis=tuple(scanAxis))
2023-06-13 18:16:24 +02:00
return stackedDataArray
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
def set_date(self, date):
2023-07-05 15:16:56 +02:00
"""Set the date of data
:param date: The date of data ('YYYY/MM/DD')
:type date: str
"""
2023-06-09 18:59:56 +02:00
date = date.split("/")
self.year = int(date[0])
self.month = int(date[1])
self.day = int(date[2])
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
def create_global(self, shotNum, dataSet=None, date=None):
2023-07-05 15:16:56 +02:00
"""Creat a the global document in MongoDB
:param shotNum: The shot number
:type shotNum: str
:param dataSet: The xarray DataSet stored the global parameters, defaults to None
:type dataSet: xarray DataSet, optional
:param date: the date of the data, defaults to None
:type date: str, optional
"""
2023-06-09 18:59:56 +02:00
if not date is None:
self.set_date(date)
2023-10-30 17:53:03 +01:00
2023-06-14 14:54:57 +02:00
data = {
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
}
self.mongoDB['global'].delete_many(data)
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
data = {
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
2023-06-13 18:16:24 +02:00
'runNum': 0,
2023-06-09 18:59:56 +02:00
'global_parameters' : {},
}
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
global_parameters = self._convert_numpy_type(dataSet.attrs)
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
if not dataSet is None:
data['global_parameters'].update(global_parameters)
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
data = self._convert_numpy_type(data)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if 'scanAxis' in dataSet.attrs:
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
del data['global_parameters']['scanAxis']
del data['global_parameters']['scanAxisLength']
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
scanAxis = dataSet.attrs['scanAxis']
data['global_parameters'].update(
{
key:0
for key in scanAxis
}
)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataArray = self._break_dataSet(dataSet)
2023-06-14 14:54:57 +02:00
try:
stackedDataArray.load()
except:
pass
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataArray = stackedDataArray.groupby('_scanAxis')
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
for i in stackedDataArray:
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataArray_single = i[1]
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
data.update(
{
'runNum': int(stackedDataArray_single.item())
}
)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
data['global_parameters'].update(
{
key: stackedDataArray_single[key].item()
for key in scanAxis
}
)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if '_id' in data:
del data['_id']
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
self.mongoDB['global'].insert_one(data)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
else:
self.mongoDB['global'].insert_one(data)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def _add_data_normal(self, shotNum, runNum, data):
2023-07-05 15:16:56 +02:00
"""Write the data directly to the global document
:param shotNum: The shot number
:type shotNum: str
:param runNum: The run number
:type runNum: int
:param data: The data to be written
:type data: normal python data type
"""
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if runNum is None:
runNum = 0
2023-10-30 17:53:03 +01:00
filter = {
2023-06-09 18:59:56 +02:00
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
2023-06-13 18:16:24 +02:00
'runNum': runNum,
2023-06-09 18:59:56 +02:00
}
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
self.mongoDB['global'].update_one(filter, {"$set": data}, upsert=False)
2023-10-30 17:53:03 +01:00
2023-06-14 14:54:57 +02:00
def _add_data_xarray_dataArray(self, shotNum, dataArray, name=None, scanAxis=None):
2023-07-05 15:16:56 +02:00
"""Write the data in a type of xarray DataArray to the MongoDb.
:param shotNum: The shot number
:type shotNum: str
:param dataArray: The xarray DataArray to be written
:type dataArray: xarray DataArray
:param name: The name of the DataArray, defaults to None
:type name: str, optional
:param scanAxis: The scan axes of the data, defaults to None
:type scanAxis: array like, optional
"""
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if scanAxis is None:
scanAxis = list(dataArray.coords)
2023-10-30 17:53:03 +01:00
2023-06-09 18:59:56 +02:00
dataArray.attrs = self._convert_numpy_type(dataArray.attrs)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataArray = dataArray.stack(_scanAxis=tuple(scanAxis))
stackedDataArray = stackedDataArray.groupby('_scanAxis')
2023-10-30 17:53:03 +01:00
filter = {
2023-06-13 18:16:24 +02:00
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
}
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
for i in stackedDataArray:
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataArray_single = i[1].drop('_scanAxis')
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
global_parameters = {
'global_parameters.' + key: stackedDataArray_single[key].item()
for key in scanAxis
}
filter.update(global_parameters)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
mongoID, _ = self.xdb.put(stackedDataArray_single)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
data_label = {
2023-10-30 17:53:03 +01:00
dataArray.name:
2023-06-13 18:16:24 +02:00
{
'name': dataArray.name,
'mongoID': mongoID,
'engine': 'xarray',
'dtype': 'dataArray',
}
}
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
self.mongoDB['global'].update_one(filter, {"$set": data_label}, upsert=False)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def _add_data_xarray_dataSet(self, shotNum, dataSet, name, scanAxis=None):
2023-07-05 15:16:56 +02:00
"""Write the data in a type of xarray DataSet to the MongoDb.
:param shotNum: The shot number
:type shotNum: str
:param dataSet: The xarray DataSet to be written
:type dataSet: xarray DataSet
:param name: The name of the DataArray, defaults to None
:type name: str, optional
:param scanAxis: The scan axes of the data, defaults to None
:type scanAxis: array like, optional
"""
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if scanAxis is None:
scanAxis = list(dataSet.coords)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
dataSet.attrs = self._convert_numpy_type(dataSet.attrs)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
for key in list(dataSet.data_vars):
dataSet[key].attrs = self._convert_numpy_type(dataSet[key].attrs)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataSet = dataSet.stack(_scanAxis=tuple(scanAxis))
stackedDataSet = stackedDataSet.groupby('_scanAxis')
2023-10-30 17:53:03 +01:00
filter = {
2023-06-09 18:59:56 +02:00
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
}
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
for i in stackedDataSet:
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
stackedDataSet_single = i[1].drop('_scanAxis')
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
global_parameters = {
'global_parameters.' + key: stackedDataSet_single[key].item()
for key in scanAxis
}
filter.update(global_parameters)
2023-10-30 17:53:03 +01:00
mongoID, _ = self.xdb.put(stackedDataSet_single)
2023-06-13 18:16:24 +02:00
data_label = {
2023-10-30 17:53:03 +01:00
name:
2023-06-13 18:16:24 +02:00
{
'name': name,
'mongoID': mongoID,
'engine': 'xarray',
'dtype': 'dataSet',
}
}
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
self.mongoDB['global'].update_one(filter, {"$set": data_label}, upsert=False)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def _add_data_additional(self, shotNum, runNum, data, name):
2023-07-05 15:16:56 +02:00
"""Write the data in an additional document
:param shotNum: The shot number
:type shotNum: str
:param runNum: The run number
:type runNum: int
:param data: The data to be written
:type data: normal python data type
:param name: The name of the data
:type name: str
"""
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
if runNum is None:
runNum = 0
2023-10-30 17:53:03 +01:00
filter = {
2023-06-12 12:52:07 +02:00
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
2023-06-13 18:16:24 +02:00
'runNum': runNum,
2023-06-12 12:52:07 +02:00
}
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
mongoID = self.mongoDB.additional.insert_one(data).inserted_id
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
data_label = {
2023-10-30 17:53:03 +01:00
name:
2023-06-12 12:52:07 +02:00
{
'name': name,
'mongoID': mongoID,
'engine': 'additional',
'dtype': 'dict',
}
}
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
self.mongoDB['global'].update_one(filter, {"$set": data_label}, upsert=False)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def add_data(self, shotNum, data, runNum=None, date=None, name=None, engine='normal'):
2023-07-05 15:16:56 +02:00
"""Write a new data to MongoDB
:param shotNum: The shot number
:type shotNum: str
:param data: The data needs to be written
:type data: standard python data type, numpy type, xarray DataArray or xarray DataSet
:param runNum: The run number, defaults to None
:type runNum: int, optional
:param date: The date of the data ('YYYY/MM/DD'), defaults to None
:type date: str, optional
:param name: The name of the data, defaults to None
:type name: str, optional
:param engine: The engine for different types of the data, defaults to 'normal'
:type engine: str, optional
"""
2023-06-09 19:34:37 +02:00
if not date is None:
self.set_date(date)
2023-10-30 17:53:03 +01:00
2023-06-09 19:34:37 +02:00
if engine == 'normal':
2023-06-13 18:16:24 +02:00
self._add_data_normal(shotNum=shotNum, runNum=runNum, data=data)
2023-06-09 19:34:37 +02:00
elif engine == 'xarray':
2023-06-12 12:52:07 +02:00
if isinstance(data, type(xr.Dataset())):
2023-06-14 14:54:57 +02:00
self._add_data_xarray_dataSet(shotNum=shotNum, dataSet=data, name=name)
2023-06-09 19:34:37 +02:00
else:
2023-06-14 14:54:57 +02:00
self._add_data_xarray_dataArray(shotNum=shotNum, dataArray=data, name=name)
2023-06-12 12:52:07 +02:00
elif engine == 'additional':
2023-06-13 18:16:24 +02:00
self._add_data_additional(shotNum=shotNum, runNum=runNum, data=data, name=name)
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def read_global_single(self, shotNum, runNum, date=None):
2023-07-05 15:16:56 +02:00
"""Read the global document of specified shot and run from MongoDB.
:param shotNum: The shot number
:type shotNum: str
:param runNum: The run number
:type runNum: int
:param date: The date of the data ('YYYY/MM/DD'), defaults to None
:type date: str, optional
:return: The global document
:rtype: dict
"""
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
if not date is None:
self.set_date(date)
2023-10-30 17:53:03 +01:00
filter = {
2023-06-12 12:52:07 +02:00
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
2023-06-13 18:16:24 +02:00
'runNum': runNum,
2023-06-12 12:52:07 +02:00
}
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
return self.mongoDB['global'].find_one(filter)
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
def read_global_all(self, shotNum, date=None):
2023-07-05 15:16:56 +02:00
"""Read the global document of all runs in the specified shot from MongoDB, and extract the scan axes.
:param shotNum: The shot number
:type shotNum: str
:param date: The date of the data ('YYYY/MM/DD'), defaults to None
:type date: str, optional
:return: The global document
:rtype: dict
"""
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
from xarray.core.utils import equivalent
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
if not date is None:
self.set_date(date)
2023-10-30 17:53:03 +01:00
filter = {
2023-06-14 09:57:06 +02:00
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
}
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
result = {}
dropped_attrs = OrderedDict()
2023-10-30 17:53:03 +01:00
2023-06-14 14:54:57 +02:00
docs = self.mongoDB['global'].find(filter).sort('runNum')
docs = [doc['global_parameters'] for doc in docs]
2023-06-14 09:57:06 +02:00
for doc in docs:
2023-10-30 17:53:03 +01:00
2023-06-14 14:54:57 +02:00
global_parameters = doc
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
result.update(
{
key: value
for key, value in global_parameters.items()
if key not in result and key not in dropped_attrs.keys()
}
)
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
result = {
key: value
for key, value in result.items()
if key not in global_parameters or equivalent(global_parameters[key], value)
}
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
dropped_attrs.update(
{
key: []
2023-10-30 17:53:03 +01:00
for key in global_parameters if key not in result
2023-06-14 09:57:06 +02:00
}
)
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
for doc in docs:
2023-10-30 17:53:03 +01:00
2023-06-14 14:54:57 +02:00
global_parameters = doc
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
dropped_attrs.update(
{
key: np.append(dropped_attrs[key], global_parameters[key])
for key in dropped_attrs.keys()
}
2023-10-30 17:53:03 +01:00
)
2023-06-14 09:57:06 +02:00
scan_attrs = OrderedDict()
scan_length = []
2023-10-30 17:53:03 +01:00
2023-06-14 09:57:06 +02:00
for attrs_key in dropped_attrs.keys():
flag = True
for key in scan_attrs.keys():
if equivalent(scan_attrs[key], dropped_attrs[attrs_key]):
flag = False
result.update({attrs_key: key})
break
2023-06-14 14:54:57 +02:00
if flag:
scan_attrs.update({
attrs_key: dropped_attrs[attrs_key]
})
scan_length = np.append(scan_length, len(dropped_attrs[attrs_key]))
2023-06-14 09:57:06 +02:00
result.update(
{
key: value
for key, value in scan_attrs.items()
}
)
result.update(
{
"scanAxis": list(scan_attrs.keys()),
"scanAxisLength": scan_length,
}
)
return result
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
def _load_data_single(self, mongoID, engine):
2023-07-05 15:16:56 +02:00
"""load the document according to given _ID
:param mongoID: the ID of document in MongoDB
:type mongoID: MongoDB ID object
:param engine: _description_
:type engine: _type_
:return: The engine for different types of the data
:rtype: str
"""
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
if engine == 'xarray':
return self.xdb.get(mongoID)
if engine == 'additional':
return self.mongoDB.additional.find_one({'_id': mongoID})
2023-10-30 17:53:03 +01:00
2023-06-13 18:16:24 +02:00
def load_data_single(self, shotNum=None, runNum=None, globalDict=None, date=None, field=None):
2023-07-05 15:16:56 +02:00
"""go through the given global document and find all the MongoDB object, then replace them with the document they linked to.
:param shotNum: The shot number, defaults to None
:type shotNum: str, optional
:param runNum: The run number, defaults to None
:type runNum: int, optional
:param globalDict: The given global document, defaults to None
:type globalDict: dict, optional
:param date: The date of the data ('YYYY/MM/DD'), defaults to None
:type date: str, optional
:param field: If not None, the function will only go through these keys, defaults to None
:type field: array like, optional
:return: The document with loaded data
:rtype: dict
"""
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
if not date is None:
self.set_date(date)
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
if globalDict is None:
2023-06-13 18:16:24 +02:00
globalDict = self.read_global_single(shotNum=shotNum, runNum=runNum)
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
if field is None:
field = globalDict
2023-10-30 17:53:03 +01:00
2023-06-14 14:54:57 +02:00
res = {}
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
for key in field:
if isinstance(globalDict[key], dict) and ('mongoID' in globalDict[key]):
mongoID = globalDict[key]['mongoID']
engine = globalDict[key]['engine']
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
res.update(
{
key: self._load_data_single(mongoID=mongoID, engine=engine)
}
)
2023-10-30 17:53:03 +01:00
2023-06-12 12:52:07 +02:00
return res
2023-10-30 17:53:03 +01:00
def load_data(self, shotNum, data_key=None, globalDict=None, date=None):
"""load observables of given shot"""
"""the documents of a given shot can carry a variety of data types, i.e. optical density,
N_count, centerx etc. In order to not load all the data and take too much RAM, the user
is presented with a drop down featuring all possible observables. Only after selection the
actual data is being loaded
:param shotNum: The shot number, defaults to None
:type shotNum: str, optional
:param date: The date of the data ('YYYY/MM/DD'), defaults to None
:type date: str, optional
:return: All data types in the given shot
:rtype: list
"""
# set date
if not date is None:
self.set_date(date)
# collect global parameters and scan axes
if globalDict is None:
globalDict = self.read_global_all(shotNum=shotNum, date=date)
# initialize output dictionary
res = {'year': self.year, 'month': self.month, 'day': self.day, 'global_parameters': {}}
# add all global parameters except scan axes
res['global_parameters'].update(
{
key: value
for key, value in globalDict.items()
if key not in ['scanAxis', 'scanAxisLength']
}
)
# find data
filter = {
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
}
docs = self.mongoDB['global'].find(filter).sort('runNum')
if data_key is None:
data_key = [key for key in docs[0] if not key in ['year', 'month', 'day', 'shotNum', 'runNum', 'global_parameters', '_id']]
for key in data_key:
res[key] = self._load_data(shotNum=shotNum, data_key=key, globalDict=globalDict)
res['global_parameters'].update(
{
'scanAxis': globalDict['scanAxis'],
'scanAxisLength': globalDict['scanAxisLength'],
}
)
return res
def _load_data(self, shotNum, data_key, globalDict):
"""load all the data of specified shot"""
"""go through the given global document and find all the MongoDB object, then replace them with the document they linked to.
:param shotNum: The shot number, defaults to None
:type shotNum: str, optional
:param globalDict: All global parameters plus scan axes and scan axes length, defaults to None
:type globalDict: dict, optional
:param date: The date of the data ('YYYY/MM/DD'), defaults to None
:type date: str, optional
:return: Data from all runs of given shot including global parameters and date
:rtype: dict
"""
# collect data from all docs of given shot
filter = {
'year': self.year,
'month': self.month,
'day': self.day,
'shotNum': shotNum,
}
# find matching docs
docs = self.mongoDB['global'].find(filter).sort('runNum')
data = []
for doc in docs:
key=data_key
if isinstance(doc[key], dict) and ('mongoID' in doc[key]):
mongoID = doc[key]['mongoID']
engine = doc[key]['engine']
single_data = self._load_data_single(mongoID=mongoID, engine=engine)
print(single_data)
for axis in globalDict['scanAxis']:
if not axis in single_data.dims:
single_data = single_data.expand_dims(axis)
else:
engine = None
single_data = doc[key]
data.append(single_data)
# combine data along coordinate axes
try:
if engine =='xarray':
data = xr.combine_by_coords(data)
except:
pass
return data