analyseScript/Analyser/FringeRemoval.py

216 lines
7.3 KiB
Python
Raw Normal View History

2023-09-27 15:56:39 +02:00
import numpy as np
from scipy.linalg import lu
import xarray as xr
def fringeremoval(absimages, refimages, bgmask=None):
# Process inputs
nimgs = absimages.shape[2]
nimgsR = refimages.shape[2]
xdim = absimages.shape[1]
ydim = absimages.shape[0]
A = (absimages.reshape(xdim * ydim, nimgs).astype(np.float32))
R = (refimages.reshape(xdim * ydim, nimgsR).astype(np.float32))
optrefimages = np.zeros_like(absimages, dtype=np.float32)
if bgmask is None:
bgmask = np.ones((ydim, xdim), dtype=np.uint8)
k = np.where(bgmask.flatten() == 1)[0] # Index k specifying the background region
# Ensure there are no duplicate reference images
# R = np.unique(R, axis=1) # Comment this line if memory issues arise
# Decompose B = R * R' using LU decomposition
P, L, U = lu(R[k, :].T @ R[k, :], permute_l = False, p_indices = True)
for j in range(nimgs):
b = R[k, :].T @ A[k, j]
# Obtain coefficients c which minimize least-square residuals
c = np.linalg.solve(U, np.linalg.solve(L[P], b))
# Compute optimized reference image
optrefimages[:, :, j] = (R @ c).reshape((ydim, xdim))
return optrefimages
class InvalidDimException(Exception):
"Raised when the program can not identify (index of images, x, y) axes."
def __init__(self, dims):
if len(dims)>3:
self.message = 'The input data must have two or three axes: (index of images(alternative), x, y)'
else:
self.message = 'Can not identify (index of images(alternative), x, y) from ' + str(dims)
super().__init__(self.message)
class DataSizeException(Exception):
"Raised when the shape of the data is not correct."
def __init__(self):
self.message = 'The input data size does not match.'
super().__init__(self.message)
class FringeRemoval():
def __init__(self) -> None:
self.nimgsR = 0
self.xdim = 0
self.ydim = 0
self._mask = None
self.reshape=True
self.P = None
self.L = None
self.U = None
def reshape_data(self, data):
if data is None:
return data
if isinstance(data, type(xr.DataArray())):
dims = data.dims
if len(dims)>3:
raise InvalidDimException(dims)
xAxis = None
yAxis = None
if len(dims) == 2:
imageAxis = ''
else:
imageAxis = None
for dim in dims:
if (dim == 'x') or ('_x' in dim):
xAxis = dim
elif (dim == 'y') or ('_y' in dim):
yAxis = dim
else:
imageAxis = dim
if (xAxis is None) or (yAxis is None) or (imageAxis is None):
raise InvalidDimException(dims)
if len(dims) == 2:
data = data.transpose(yAxis, xAxis)
else:
data = data.transpose(yAxis, xAxis, imageAxis)
data = data.to_numpy()
else:
data = np.array(data)
if len(data.shape) == 3:
data = np.swapaxes(data, 0, 2)
# data = np.swapaxes(data, 0, 1)
elif len(data.shape) == 2:
data = np.swapaxes(data, 0, 1)
return data
@property
def referenceImages(self):
res = self._referenceImages.reshape(self.ydim, self.xdim, self.nimgsR)
res = np.swapaxes(res, 0, 2)
return res
@referenceImages.setter
def referenceImages(self, value):
if self.reshape:
value = self.reshape_data(value)
elif isinstance(value, type(xr.DataArray())):
value = value.to_numpy()
self.nimgsR = value.shape[2]
self.xdim = value.shape[1]
self.ydim = value.shape[0]
self._referenceImages = (value.reshape(self.xdim * self.ydim, self.nimgsR).astype(np.float32))
def add_reference_images(self, data):
if self.reshape:
data = self.reshape_data(data)
elif isinstance(data, type(xr.DataArray())):
data = data.to_numpy()
if not ((data.shape[0]==self.ydim) and (data.shape[1]==self.xdim)):
raise DataSizeException
data = data.reshape(self.xdim * self.ydim)
self._referenceImages = np.append(self._referenceImages, data, axis=1)
def _remove_first_reference_images(self):
self._referenceImages = np.delete(self._referenceImages, 0, axis=1)
def update_reference_images(self, data):
self._remove_first_reference_images()
self.add_reference_images(data)
if self._mask is None:
self.mask = np.ones((self.ydim, self.xdim), dtype=np.uint8)
self.decompose_referenceImages()
@property
def mask(self):
return self._mask
@mask.setter
def mask(self, value):
if self.reshape:
value = self.reshape_data(value)
elif isinstance(value, type(xr.DataArray())):
value = value.to_numpy()
if not ((value.shape[0]==self.ydim) and (value.shape[1]==self.xdim)):
raise DataSizeException
self._mask = value
self.k = np.where(self._mask.flatten() == 1)[0]
def decompose_referenceImages(self):
self.P, self.L, self.U = lu(self._referenceImages[self.k, :].T @ self._referenceImages[self.k, :], permute_l = False, p_indices = True)
def _fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None):
if not reshape is None:
self.reshape = reshape
if not referenceImages is None:
self.referenceImages = referenceImages
if not mask is None:
self.mask = mask
if self.P is None:
self.decompose_referenceImages()
absorptionImages = np.atleast_3d(absorptionImages)
if self.reshape:
absorptionImages = self.reshape_data(absorptionImages)
self.nimgs = absorptionImages.shape[2]
absorptionImages = (absorptionImages.reshape(self.xdim * self.ydim, self.nimgs).astype(np.float32))
optrefimages = np.zeros_like(absorptionImages, dtype=np.float32)
for j in range(self.nimgs):
b = self._referenceImages[self.k, :].T @ absorptionImages[self.k, j]
# Obtain coefficients c which minimize least-square residuals
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
# Compute optimized reference image
optrefimages[:, j] = (self._referenceImages @ c)
return optrefimages
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None):
res = self._fringe_removal(absorptionImages, referenceImages, mask, reshape)
res = res.reshape(self.ydim, self.xdim, self.nimgs)
return np.swapaxes(res, 0, 2)