2023-07-20 10:19:32 +02:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"source": [
|
|
|
|
"# Import supporting package"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 1,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
2023-07-20 20:34:19 +02:00
|
|
|
"import lmfit\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"import xarray as xr\n",
|
|
|
|
"import pandas as pd\n",
|
|
|
|
"import numpy as np\n",
|
|
|
|
"import copy\n",
|
|
|
|
"\n",
|
|
|
|
"import glob\n",
|
|
|
|
"\n",
|
|
|
|
"import xrft\n",
|
|
|
|
"import finufft\n",
|
|
|
|
"\n",
|
|
|
|
"from uncertainties import ufloat\n",
|
|
|
|
"from uncertainties import unumpy as unp\n",
|
|
|
|
"from uncertainties import umath\n",
|
|
|
|
"\n",
|
|
|
|
"from datetime import datetime\n",
|
|
|
|
"\n",
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"#test\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"plt.rcParams['font.size'] = 18\n",
|
|
|
|
"\n",
|
|
|
|
"from scipy.ndimage import gaussian_filter\n",
|
|
|
|
"import matplotlib as mpl\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"from scipy.interpolate import CubicSpline\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"from scipy.optimize import curve_fit\n",
|
|
|
|
"mpl.rc('xtick', labelsize=8)\n",
|
|
|
|
"mpl.rc('ytick', labelsize=8)\n",
|
|
|
|
"\n",
|
|
|
|
"from DataContainer.ReadData import read_hdf5_file, read_hdf5_global, read_hdf5_run_time, read_csv_file\n",
|
|
|
|
"from Analyser.ImagingAnalyser import ImageAnalyser\n",
|
|
|
|
"from Analyser.FitAnalyser import FitAnalyser\n",
|
|
|
|
"from Analyser.FitAnalyser import ThomasFermi2dModel, DensityProfileBEC2dModel, Polylog22dModel\n",
|
|
|
|
"from Analyser.FFTAnalyser import fft, ifft, fft_nutou\n",
|
|
|
|
"from ToolFunction.ToolFunction import *\n",
|
|
|
|
"\n",
|
|
|
|
"import time\n",
|
|
|
|
"\n",
|
|
|
|
"from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n",
|
|
|
|
"xr.plot.dataarray_plot.errorbar = errorbar\n",
|
|
|
|
"xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n",
|
|
|
|
"\n",
|
|
|
|
"imageAnalyser = ImageAnalyser()\n",
|
|
|
|
"\n"
|
|
|
|
],
|
|
|
|
"metadata": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"collapsed": false
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 14,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# get center of thresholded image\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"def calc_thresh(data):\n",
|
|
|
|
" shape = np.shape(data)\n",
|
|
|
|
" thresh = np.zeros(shape)\n",
|
|
|
|
" sigma = 0.4\n",
|
|
|
|
"\n",
|
|
|
|
" if len(shape) == 4:\n",
|
|
|
|
" blurred = gaussian_filter(data, sigma=sigma)\n",
|
|
|
|
" for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.3,0,1)\n",
|
|
|
|
"\n",
|
|
|
|
" elif len(shape) == 3:\n",
|
|
|
|
" blurred = gaussian_filter(data, sigma=sigma)\n",
|
|
|
|
" for i in range(0,shape[0]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" thresh[i] = np.where(blurred[i] < np.max(blurred[i])*0.3,0,1)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
" else:\n",
|
|
|
|
" print(\"Shape of data is wrong, output is empty\")\n",
|
|
|
|
"\n",
|
|
|
|
" return thresh\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
|
|
|
"def calc_cen(thresh1):\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" returns array: [Y_center,X_center]\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" cen = np.zeros(2)\n",
|
|
|
|
" (Y,X) = np.shape(thresh1)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" thresh1 = thresh1 /np.sum(thresh1)\n",
|
|
|
|
"\n",
|
|
|
|
" # marginal distributions\n",
|
|
|
|
" dx = np.sum(thresh1, 0)\n",
|
|
|
|
" dy = np.sum(thresh1, 1)\n",
|
|
|
|
"\n",
|
|
|
|
" # expected values\n",
|
|
|
|
" cen[0] = np.sum(dx * np.arange(X))\n",
|
|
|
|
" cen[1] = np.sum(dy * np.arange(Y))\n",
|
|
|
|
" return cen\n",
|
|
|
|
"\n",
|
|
|
|
"def calc_cen_bulk(thresh):\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" returns array in shape of input, containing array with [Y_center,X_center] for each image\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" shape = np.shape(thresh)\n",
|
|
|
|
" cen = np.zeros((shape[0], shape[1], 2))\n",
|
|
|
|
" for i in range(0, shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" cen[i,j] = calc_cen(thresh[i,j])\n",
|
|
|
|
" return cen\n",
|
|
|
|
"\n",
|
|
|
|
"def guess_BEC_width(thresh, center):\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" returns width of thresholded area along both axis through the center with shape of thresh and [X_width, Y_width] for each image\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" shape = np.shape(thresh)\n",
|
|
|
|
" BEC_width_guess = np.zeros((shape[0], shape[1], 2))\n",
|
|
|
|
"\n",
|
|
|
|
" for i in range(0, shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" BEC_width_guess[i, j, 0] = np.sum(thresh[i, j, round(center[i,j,1]), :])\n",
|
|
|
|
" BEC_width_guess[i, j, 1] = np.sum(thresh[i, j, :, round(center[i,j,0])])\n",
|
|
|
|
"\n",
|
|
|
|
" return BEC_width_guess\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def gaussian(x, x0, sigma, A):\n",
|
|
|
|
" return A * np.exp(-0.5 * (x-x0)**2 / sigma**2)\n",
|
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"# def polylog(power, numerator, order = 15):\n",
|
|
|
|
"#\n",
|
|
|
|
"# dataShape = numerator.shape\n",
|
|
|
|
"# numerator = np.tile(numerator, (order, 1))\n",
|
|
|
|
"# numerator = np.power(numerator.T, np.arange(1, order+1)).T\n",
|
|
|
|
"#\n",
|
|
|
|
"# denominator = np.arange(1, order+1)\n",
|
|
|
|
"# denominator = np.tile(denominator, (dataShape[0], 1))\n",
|
|
|
|
"# denominator = denominator.T\n",
|
|
|
|
"#\n",
|
|
|
|
"# data = numerator/ np.power(denominator, power)\n",
|
|
|
|
"#\n",
|
|
|
|
"# return np.sum(data, axis=0)\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"def polylog_tab(pow, x):\n",
|
|
|
|
" order = 100\n",
|
|
|
|
" sum = 0\n",
|
|
|
|
" for k in range(1,order):\n",
|
|
|
|
" sum += x ** k /k **pow\n",
|
|
|
|
" return sum\n",
|
|
|
|
"\n",
|
|
|
|
"x_int = np.linspace(0, 1.00001, 100000)\n",
|
|
|
|
"\n",
|
|
|
|
"poly_tab = polylog_tab(2,x_int)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"polylog_int = CubicSpline(x_int, poly_tab)\n",
|
|
|
|
"\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"def thermal(x, x0, amp, sigma):\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
" res = np.exp(-0.5 * (x-x0)**2 / sigma**2)\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" return amp/1.643 * polylog_int(res)\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
|
|
|
"def Thomas_Fermi_1d(x, x0, amp, sigma):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" res = (1- ((x-x0)/sigma)**2)\n",
|
|
|
|
" res = np.where(res > 0, res, 0)\n",
|
|
|
|
" res = res**(3/2)\n",
|
|
|
|
" return amp * res\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"def density_1d(x, x0_bec, x0_th, amp_bec, amp_th, sigma_bec, sigma_th):\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" return thermal(x, x0_th, amp_th, sigma_th) + Thomas_Fermi_1d(x, x0_bec, amp_bec, sigma_bec)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def polylog(pow, x):\n",
|
|
|
|
" order = 15\n",
|
|
|
|
" sum = 0\n",
|
|
|
|
" for k in range(1,order):\n",
|
|
|
|
" sum += x ** k /k **pow\n",
|
|
|
|
" return sum\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"\n",
|
|
|
|
" res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)\n",
|
|
|
|
" res = np.where(res > 0, res, 0)\n",
|
|
|
|
" res = res**(3/2)\n",
|
|
|
|
" return amplitude * res\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" # return amplitude * 5 / 2 / np.pi / max(tiny, sigmax * sigmay) * np.where(res > 0, res, 0)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" # return amplitude / 2 / np.pi / 1.20206 / max(tiny, sigmax * sigmay) * polylog(2, np.exp( -((x-centerx)**2/(2 * (sigmax)**2))-((y-centery)**2/( 2 * (sigmay)**2)) ))\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"# Set up table for polylog\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):\n",
|
|
|
|
" ## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud\n",
|
|
|
|
" return amplitude/1.643 * polylog_int(np.exp( -((x-centerx)**2/(2 * sigmax**2))-((y-centery)**2/( 2 * sigmay**2)) ))\n",
|
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def density_profile_BEC_2d(x, y=0.0, amp_bec=1.0, amp_th=1.0, x0_bec=0.0, y0_bec=0.0, x0_th=0.0, y0_th=0.0,\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" sigmax_bec=1.0, sigmay_bec=1.0, sigma_th=1.0):\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" return ThomasFermi_2d(x=x, y=y, centerx=x0_bec, centery=y0_bec,\n",
|
|
|
|
" amplitude=amp_bec, sigmax=sigmax_bec, sigmay=sigmay_bec\n",
|
|
|
|
" ) + polylog2_2d(x=x, y=y, centerx=x0_th, centery=y0_th,\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" amplitude=amp_th, sigmax=sigma_th,sigmay=sigma_th)\n",
|
|
|
|
"\n",
|
|
|
|
"def cond_frac(results):\n",
|
|
|
|
" bval = results.best_values\n",
|
|
|
|
" tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])\n",
|
|
|
|
" N_bec = np.sum(tf_fit)\n",
|
|
|
|
" fit = fit = density_profile_BEC_2d(X,Y, **bval)\n",
|
|
|
|
" N_ges = np.sum(fit)\n",
|
|
|
|
" return N_bec/N_ges\n",
|
|
|
|
"\n",
|
|
|
|
"def print_bval(res_s):\n",
|
|
|
|
" keys = res_s.best_values.keys()\n",
|
|
|
|
" bval = res_s.best_values\n",
|
|
|
|
" init = res_s.init_params\n",
|
|
|
|
"\n",
|
|
|
|
" for item in keys:\n",
|
|
|
|
" print(f'{item}: {bval[item]:.3f}, (init = {init[item].value:.3f}), bounds = [{init[item].min:.2f} : {init[item].max :.2f}] ')\n",
|
|
|
|
" print('')\n",
|
|
|
|
"\n",
|
|
|
|
"def print_bval_bulk(res_):\n",
|
|
|
|
" shape = np.shape(res_)\n",
|
|
|
|
" if len(shape) == 2:\n",
|
|
|
|
" for i in range(shape[0]):\n",
|
|
|
|
" for j in range(shape[1]):\n",
|
|
|
|
" print(f'image: {i}, {j}')\n",
|
|
|
|
" print_bval(res_[i][j])\n",
|
|
|
|
"\n",
|
|
|
|
" if len(shape) == 1:\n",
|
|
|
|
" for i in range(shape[0]):\n",
|
|
|
|
" print(f'image: {i}')\n",
|
|
|
|
" print_bval(res_[i])\n"
|
2023-07-20 10:19:32 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:20:49.853382Z",
|
|
|
|
"start_time": "2023-08-01T15:20:49.405949500Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 3,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"# load Brittas data\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"data = np.zeros((2,11, 1200, 1920))\n",
|
|
|
|
"data[0] = np.load('Data_Britta/OD_ft_flatfield.npy')\n",
|
|
|
|
"data[1] = np.load('Data_Britta/OD_ft_manual.npy')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"shape = np.shape(data)"
|
2023-07-26 09:41:51 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:15:37.267480300Z",
|
|
|
|
"start_time": "2023-08-01T15:15:36.671379300Z"
|
2023-07-26 09:41:51 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 4,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"def guess_BEC_width(thresh, center):\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" returns width of thresholded area along both axis through the center with shape of thresh and [X_width, Y_width] for each image\n",
|
|
|
|
" \"\"\"\n",
|
|
|
|
" shape = np.shape(thresh)\n",
|
|
|
|
" BEC_width_guess = np.zeros((shape[0], shape[1], 2))\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" for i in range(0, shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" BEC_width_guess[i, j, 0] = np.sum(thresh[i, j, round(center[i,j,1])-4:round(center[i,j,1])+5, :])/9\n",
|
|
|
|
" BEC_width_guess[i, j, 1] = np.sum(thresh[i, j, :, round(center[i,j,0])-4:round(center[i,j,0])+5])/9\n",
|
|
|
|
"\n",
|
|
|
|
" return BEC_width_guess"
|
2023-07-26 09:41:51 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:15:37.268477600Z",
|
|
|
|
"start_time": "2023-08-01T15:15:37.267480300Z"
|
2023-07-26 09:41:51 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 53,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"(9, 250)\n"
|
2023-07-26 09:41:51 +02:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"print(np.shape(thresh[i, j, round(center[i,j,1])-4:round(center[i,j,1])+5, :]))"
|
2023-07-26 09:41:51 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T10:07:45.908882100Z",
|
|
|
|
"start_time": "2023-08-01T10:07:45.795191900Z"
|
2023-07-26 09:41:51 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 8,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [],
|
2023-07-27 17:16:08 +02:00
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"cut_width = 250\n",
|
|
|
|
"thresh = calc_thresh(data)\n",
|
|
|
|
"center = calc_cen_bulk(thresh)\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"shape = np.shape(data)\n",
|
|
|
|
"cropOD = np.zeros((shape[0], shape[1], cut_width, cut_width))\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" cropOD[i,j] = data[i,j, round(center[i,j,1]-cut_width/2):round(center[i,j,1]+cut_width/2), round(center[i,j,0]-cut_width/2):round(center[i,j,0]+cut_width/2)]\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"thresh = calc_thresh(cropOD)\n",
|
|
|
|
"center = calc_cen_bulk(thresh)\n",
|
|
|
|
"# print(center)\n",
|
|
|
|
"BEC_width_guess = guess_BEC_width(thresh, center)\n"
|
2023-07-20 10:19:32 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:16:07.587125100Z",
|
|
|
|
"start_time": "2023-08-01T15:16:03.874883800Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 6,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
2023-08-03 10:55:33 +02:00
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"[1081. 481.]\n",
|
|
|
|
"0.32106129452561555\n",
|
|
|
|
"-0.03579800587577903\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"ename": "type",
|
|
|
|
"evalue": "could not broadcast input array from shape (244,250) into shape (250,250)",
|
|
|
|
"output_type": "error",
|
|
|
|
"traceback": [
|
|
|
|
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
|
|
|
|
"\u001B[1;31mValueError\u001B[0m Traceback (most recent call last)",
|
|
|
|
"Cell \u001B[1;32mIn[6], line 17\u001B[0m\n\u001B[0;32m 15\u001B[0m \u001B[38;5;28mprint\u001B[39m(np\u001B[38;5;241m.\u001B[39mmax(data[i,j]))\n\u001B[0;32m 16\u001B[0m \u001B[38;5;28mprint\u001B[39m(data[i,j, \u001B[38;5;28mround\u001B[39m(center[i,j,\u001B[38;5;241m0\u001B[39m]), \u001B[38;5;28mround\u001B[39m(center[i,j,\u001B[38;5;241m1\u001B[39m]) ])\n\u001B[1;32m---> 17\u001B[0m \u001B[43mcropOD\u001B[49m\u001B[43m[\u001B[49m\u001B[43mi\u001B[49m\u001B[43m,\u001B[49m\u001B[43mj\u001B[49m\u001B[43m]\u001B[49m \u001B[38;5;241m=\u001B[39m data[i,j, \u001B[38;5;28mround\u001B[39m(center[i,j,\u001B[38;5;241m0\u001B[39m]\u001B[38;5;241m-\u001B[39mcut_width\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m2\u001B[39m):\u001B[38;5;28mround\u001B[39m(center[i,j,\u001B[38;5;241m0\u001B[39m]\u001B[38;5;241m+\u001B[39mcut_width\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m2\u001B[39m), \u001B[38;5;28mround\u001B[39m(center[i,j,\u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m-\u001B[39mcut_width\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m2\u001B[39m):\u001B[38;5;28mround\u001B[39m(center[i,j,\u001B[38;5;241m1\u001B[39m]\u001B[38;5;241m+\u001B[39mcut_width\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m2\u001B[39m)]\n\u001B[0;32m 19\u001B[0m thresh \u001B[38;5;241m=\u001B[39m calc_thresh(cropOD)\n\u001B[0;32m 20\u001B[0m center \u001B[38;5;241m=\u001B[39m calc_cen_bulk(thresh)\n",
|
|
|
|
"\u001B[1;31mValueError\u001B[0m: could not broadcast input array from shape (244,250) into shape (250,250)"
|
|
|
|
]
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"cut_width = 250\n",
|
|
|
|
"thresh = calc_thresh(data)\n",
|
|
|
|
"center = calc_cen_bulk(thresh)\n",
|
|
|
|
"\n",
|
|
|
|
"shape = np.shape(data)\n",
|
|
|
|
"cropOD = np.zeros((shape[0], shape[1], cut_width, cut_width))\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"blurred = gaussian_filter(data, sigma=0.4)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" amax = np.argmax(blurred[i,j])\n",
|
|
|
|
"\n",
|
|
|
|
" center[i,j] = np.unravel_index(amax, (shape[2], shape[3]))\n",
|
|
|
|
" print(center[i,j])\n",
|
|
|
|
" print(np.max(data[i,j]))\n",
|
|
|
|
" print(data[i,j, round(center[i,j,0]), round(center[i,j,1]) ])\n",
|
|
|
|
" cropOD[i,j] = data[i,j, round(center[i,j,0]-cut_width/2):round(center[i,j,0]+cut_width/2), round(center[i,j,1]-cut_width/2):round(center[i,j,1]+cut_width/2)]\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"thresh = calc_thresh(cropOD)\n",
|
|
|
|
"center = calc_cen_bulk(thresh)\n",
|
|
|
|
"# print(center)\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"BEC_width_guess = guess_BEC_width(thresh, center)"
|
2023-07-27 17:16:08 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:15:49.603304400Z",
|
|
|
|
"start_time": "2023-08-01T15:15:45.139480Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 66,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"[24. 22.]\n"
|
2023-07-20 10:19:32 +02:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"print(BEC_width_guess[1,7])\n"
|
2023-07-20 10:19:32 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T10:12:50.194861600Z",
|
|
|
|
"start_time": "2023-08-01T10:12:50.080033Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 9,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
2023-07-27 17:16:08 +02:00
|
|
|
"text/plain": "<Figure size 2000x500 with 22 Axes>",
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAGsCAYAAACFLWvQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9fVzWVbb/jz9FFElAFBRUUExUVHQwNfE2LCrvMiscrbSxssnKzBwbraysrGxy1MrM0sxKUydLJ620KBlvMVEZRUHFREEFQwUEEUX5/fFaF7v5fOZxzpzO6Od7zu9ajwcP4Lre773XXvd77b3XrlFVVVWFF7zgBS94wQte8IIXvOAFL3jBC17wghe84AUveMELXvDC/yLw+X+NgBe84AUveMELXvCCF7zgBS94wQte8IIXvOAFL3jBC17wwr8bvAsgXvCCF7zgBS94wQte8IIXvOAFL3jBC17wghe84AUveOF/HXgXQLzgBS94wQte8IIXvOAFL3jBC17wghe84AUveMELXvDC/zrwLoB4wQte8IIXvOAFL3jBC17wghe84AUveMELXvCCF7zghf914F0A8YIXvOAFL3jBC17wghe84AUveMELXvCCF7zgBS94wQv/68C7AOIFL3jBC17wghe84AUveMELXvCCF7zgBS94wQte8IIX/teBdwHEC17wghe84AUveMELXvCCF7zgBS94wQte8IIXvOAFL/yvA+8CiBe84AUveMELXvCCF7zgBS94wQte8IIXvOAFL3jBC174XwfeBRAveMELXvCCF7zgBS94wQte8IIXvOAFL3jBC17wghe88L8O/ksLIOfPn2fIkCG0bt2a3/zmN9x8881kZ2cDkJCQQIsWLYiLiyMuLo5Zs2ZVv3fy5En69etHq1atiI2NZcOGDf/eUXjh//PglR0v/Frwyo4Xfi14ZccLvxa8suOFXwte2fHCrwWv7Hjh14JXdrzwa8ErO17474BXfrzwa8ErO174fwJV/wUoLy+v+uqrr6ouX75cVVVVVfX2229X3XDDDVVVVVVVN9xwQ9XKlSv/6Xv3339/1QsvvFBVVVVV9eOPP1Y1bdq06sKFC/+Vrr3wPxy8suOFXwte2fHCrwWv7Hjh14JXdrzwa8ErO174teCVHS/8WvDKjhd+LXhlxwv/HfDKjxd+LXhlxwv/L8D3v7JYUqdOHQYMGFD9f3x8PDNmzPhP3/vLX/5SvZrXtWtXmjRpwt/+9jcSExP/r2crKiqoqKio/v/y5cucPn2akJAQatSo8V9B1wv/H4NevXpx9uxZAGJjY/nTn/5EXl7ef/iOV3a8AF7Z8cKvB6/seOHXgld2vPBrwSs7Xvi14JUdL/xa+D9l54033qC4uJiKigouX778T9/xyo4XwCs7XvjvgddveeHXgld2vPDvgqqqKs6ePUuTJk3w8fkPCl39d1ZPRowYUTVu3Liqqiqt0rVp06YqNja26re//W3VoUOHqqqqqqoKCwurateu/Q/vDR06tOqDDz74p22+8MILVYD35/+PfuLj472y4/3xyo73xys73p//ET9e2fH+eGXH++OVHe/P/6Sfli1bemXH++OVHe/PVf3x+i3vj1d2vD9X+yc3N/efyoIH/ksnQH4Jr776KtnZ2Xz//fcAfPLJJ0RGRlJVVcU777zDoEGD2Ldv33+53aeffpoJEyZU/19cXEyzZs2Iy13Bw0FL+IGbqKA2AHtpTwxZRHCMFvxEFjE8wEJO0oi19Oej0/fRuUEa61LvgAbwx9YvcZoGVFKTduzlQT7k2uzjPBI9k07sogGn+ZmG7KcNd/IFJ2nEzYWbKKlfizE155Fyri/3XfMRP9KN1RUDed5vGgu+HUu/W1bSn294Ysr7TJ/2BJMz3mR07BxWM4gO7ObzzSNJ7RnHBWrxCs/wLK9y2+HvWN3iZoqox8i/fQ6+gC+8320kF/CjHmdozlH6zNvOI2Nm0oqDTFj6Lj/cHc9jvMMCHqL96UN0b/AD57mGME6QXtKJcUFvs5qBfMZv+Z6beJVn+JAHaEoel6hJj5It/C7oY77lFg6fuJZXGj/Ds5v/zCs9/8Czua/D276M+tO7LMp6hD/GvMRbJY9zjCiWBg2lNxuYxxhu4nuScv/KyMiFvHrpGSLXFfLSgD/SjCOMyl3C+Mg3eDFnOiuj+vEOj1GTSobwV/JoSmMK2DxjO9vWFjNrSTD3tU5nwYIFtG/f/orJDk/kQmwQhAEFEDSkAICShj9Dv1hqvF1G1ZK6BD1WQMnnYdAKmnQ5xPG/tYRrKyHT1KRVFXVCijj/UH04D7SD+Nd+IHXejQC0GJPJ4dvbQhLQGtgIvArcAfd88AFLTw6nKq0uVAJNoG67U3S6Ziebht0ME4BbLkJiLRgCJFbAGD9G/fVdFvV+BP5SARv94BKwC+pMOcP5sfXhKPAoDPztCr6angSJwFcQ/8IPpP7xRsb/6TUWM4LCsEiYDZTCnIdGM/bLBXAcWA8MAkJQW0XAsCpCW+QRwTHSv42nfuJxzjRuQpOCQxzv3ZImGw9xfH5LOAIMB+ZC/NwfSL3rRngF8KvinhYL+fSVB0l89kuS0wYT1iWHgtwIIiN/IvcvrSET6j93nDMbm8BW6Dp5A9vT+tChy3aOXGhGSUoYNeLKiGh0jNzbW8ODQF0I2DWF0kWpcHYJFLW+8rKz6SicrgdvIR7VA14DZlRAsR88CwyB0JG5XLpckzPLm0AT9Hxz4FqgLaJ1ryr4uAY8UKlO/uorOWoGfA48BVQAP0Hdu07R6pqDpP8xHu4CtgPHrM0VEPR1AXfW/oJFf3sENgFLgNuBcRWwxg/6AncjflxrfG4AtAReRvRM0TtBXQsoKQip5k3dQacoezlEbZ3ygzuBadD6t3/n8OkWXDwZpHcTTGa2ArFQ/47jXKqsSckfwuA6qHV7CRfvC6LJmkNcoiYF86NgN9R/8zhnkpvAUOhcvJkdf+up8e0GwoFbgWSgGOgIde87RdmmEJrccojj2S1hkvptvf3vHJjzGyiFWr8v4eL6IIiAlt0yODQoFuKgzh/PcH5PfdH7zhn4tF/D5XbL4ZOrIDs790P/cLgX6AfcDzxtNLsG6A+hMbkUfh8JqcanVjb2AGC/8bueZIK7gCnAdOAQcALJz8sl8EkQHIeuYzaw/cs+sA/oDfwI3AYsR3anwNp+pAqm1SDsgxwK5kRBB/uuGEisgu01hNM9wHFoPfjv/Hy5IWe2NhEurYE84ALQCCgzXGqaXF1C9vZaZMv+6ge3V8AbfhAPrAFuBjoBc4GmQCm0eC2Tw6+0lU4chbBnc6hHMQfu+w2EGj6rjC6X7P3PodefvuMgrSh4MUqf1UW6lGJ/X2t/9wI6QFDHAkoGhMEfDe8lRpeuQEPjUW+kxzcDs2bAubVw2xJ4/yrITkvzWZ2A+cAwYCfwDLAaqAW8b+Nvh+ThQSQz55DMHDV+9AVWAHuQDEwGvgceAGbZ+8VAY6R/rwEzkM04YHz8Btn6jkbPkcfg6abS/QnAYOPhIODJCjjgJ3oXAv5AOfAY8AZONmsjv9Me8LO+lljfNwGP2vfLgeeQjOXr3VrXlnBxSpCT2T1IrlKAhxG/J9l7Hj4+YG2dNzwD7Pn1hue9iNfjRb9aX5Rw8e0gvXM7UGq4vm602G74gfAos7872VhmGy1rzICMtXDvEph+FWTn/lxoGCTe1ATaGK0vIPtyCfHwR6RTBUhWfkK2vg3Sg/PARJwNKkDy42vPNkKxyiokIyusvXuBIPu7EvHGD9hldP/RaFWM7OJaqv07KShu6gu8dwyeaypb4WvPbgQygXeBa81OLTcC9EJ6cR7p/gpkLycCQ5F/KUO2pRnwKfI1zYEFwOmL8Eot+MjGg425teHeBehv4/W1Z4qNNjvtOc//R1EsVg/42MZ2HNnMm40PbZAON0J6NRPJ7RxgLPAi8MwMOL8WWiyBH6+S7GQESbZ7o5hho+FcjHj1itH2Opx9qAkEI97uKoc/+ov3u+1dP6QLvYGLyM4cw+niHqSDzaydmsj/HEU8G2h/bwLOIv2rQDHo9ovQupbirNuBNKTb7yO
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": "<Figure size 2000x500 with 22 Axes>",
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAGsCAYAAACFLWvQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHnUlEQVR4nO39f4wf5X33+7/WXTAl8i6tkcHgNVtizFGChUPqiKKqlO8pR5w0EqiE5pwekjhJv3ZOlUPT9JZY/sLnH9i2fEGcpDpEauuj1jrcpCKpWkGkUiJBuVMl0NRFNz0FO3fRLnyNTc3tNXcEDg5z/nB2+XiYH9f1nmtmrmvm+bBW3v3MzDXXzLw+85nP9d757FSWZZkAAAAAAAAAAAAGZF3fHQAAAAAAAAAAAAiNAggAAAAAAAAAABgcCiAAAAAAAAAAAGBwKIAAAAAAAAAAAIDBoQACAAAAAAAAAAAGhwIIAAAAAAAAAAAYHAogAAAAAAAAAABgcCiAAAAAAAAAAACAwaEAAgAAAAAAAAAABserAPL222/rlltu0fbt23X11Vfrxhtv1OHDhyVJv/qrv6pf+IVf0M6dO7Vz50498MADa8sdO3ZMN910k6644gpdddVVevrpp8NuBaJHdmBFdmBFdmBFdmBFdmBFdmBFdmBFdtAE+YEV2UEvMg9vvfVW9thjj2XvvvtulmVZ9tWvfjW7/vrrsyzLsuuvvz771re+Vbjc5z73uezuu+/OsizLvv/972eXXnpp9uMf/9hn1Ugc2YEV2YEV2YEV2YEV2YEV2YEV2YEV2UET5AdWZAd9mPYplpx33nn6+Mc/vvbztddeq/vuu692uW984xtr1bxdu3bpkksu0VNPPaVf+7Vfe9+8p06d0qlTp9Z+fvfdd/XGG29o48aNmpqa8ukuIvPLv/zLevPNNyVJV111lf7wD/9Qr7zySuUyZAcS2YEd2YEV2YEV2YEV2YFVPjt/9Ed/pJWVFZ06dUrvvvtu4TJkBxLZQTO8bsGK7CCULMv05ptv6pJLLtG6dRUfdNWkenL77bdnd9xxR5ZlZ6p0V155ZXbVVVdlv/mbv5n98Ic/zLIsy/793/89O/fcc89a7rbbbsv+9E//tLDNu+++O5PE14i+rr32WrLDF9nhi+zwlcQX2eGL7PBFdvhK6euDH/wg2eGL7PDV6RevW3yRHb66/lpeXi7MwiqvO0Am3XPPPTp8+LCefPJJSdJf/MVfaG5uTlmW6Y//+I/1iU98Qv/yL//i3e5dd92lr3zlK2s/r6ysaOvWrZJ+T9J6U18XtChJWtRCp8tOttFk+a7b9VlP2bTqvn1X0mFJvyHpa/qTP/kTffjDH44yO4gN2YEV2YEV2YEV2YEV2YHVanb+Z0nvSnpA//iP/6iZmRmygxpkB03wugUrsoOmTkl6QBs2bKicy1QAue+++/TNb35Tf/d3f6fzzz9fkjQ3NydJmpqa0pe+9CX9h//wH3T8+HFt3LhR09PTeu2113TxxRdLkl5++eWfBu/91q9fr/Xri8K4XtJ5tX3b99N/kxZzP/twXTa/3smfm6y/SlG7Rdvfxnrq1pVf5r15/5OkQ5I+I+nMbWexZAexIzuwIjuwIjuwIjuwIjuwmszOz0p6W9KZ3JAdVCM7aILXLViRHYRT99FmFR+OVez+++/Xww8/rCeeeEIXXHCBJOn06dM6evTo2jyPPvqoLrroIm3cuFGSdNttt+mhhx6SJD377LN69dVXdf3113utd/VOjDo+g/8hCwX5tkIXIVz74FoAce1vVVv++/q7kv6z3ruwOuPYsWNr37eRHQwB2YEV2YEV2YEV2YEV2YFVUXbO/vsNZAfFyA6a4HULVmQH3fK6A+SVV17R7//+7+vyyy/XDTfcIOlMVe073/mOfv3Xf12nTp3SunXrdOGFF+qv//qv15b7gz/4A33605/WFVdcoXPPPVcHDhzQOeecE3ZLChQVA+oKBE3voLCsM7SqYkZRkaSqf2Xb4r9NK5L+VtLP6SL9gY7qIq3W32677TadPn06quwgJu9lR/q/fvoY2YELsgMrsgMrsgMrsgOrouxMS/qUJOmXfumXND09TXZQgOygCV63YEV20L2pLMuyvjtR5eTJk5qdnZW0oNC3KdkH85utr6352+xLO96WtKiVlRXNzMwEb73N7KBvZAdWZAdWZAdWZAdWZAdNtJcfsjN0ZAdWvG7BiuzAyi073h+BlQrfj4HqqgDS5vw+7fRf/AAAAAAAAAAAoD2jLoCszme5MyPEukMv21ebq99TVGkH+xUAAAAAAAAA/A2iANJkAL6NZeruuAj9N0j6uLOk6G+I+Lbr+oftxy6OjysDAAAAAAAAgLSMqgDSx50KRev0LaC4zN/3XSeWNha10Hi9Y0EBBAAAAAAAAAD8DKIAsiq2Akio39x3KZ40+QivtvcHg/cAAAAAAAAAgK6NqgDS9fra+Fsh1uKFdd902UcAAAAAAAAAAEIZVAGkSIi7MMr+pkfTO0qK+mb9ex5tFFusy+W3i79hAQAAAAAAAADo2igKIFU/W9rIP9ZkHaHulqjrY9O2mrTRx99eQTs4hgAAAAAAAABSkXQBxGUwto+7EZoUQKoeb6vf1nX5bmd+/gUtOi+POFAAAQAAAAAAAJCKURRAXJfz/XsabQ4G133slmsbbe6jptu/qIVGywMAAAAAAAAAUCbZAkgbH+9k/fsbTeZxLcZYiy6hPvKrSXsAAAAAAAAAAHSNAkgLbYS4S2LfxL+m7eTbDI2iCAAAAAAAAAAgNskWQCTbgH7Ij3CyrLOL5YrayBdUQqw/3zYAAAAAAAAAALFIpgAy+QeziwbeXQsbPgWQqoH9umk+P1v7UNRe2R0jrn11nZbvGwUQAAAAAAAAAEBMkimATP7B7KLBduudHVWFAksBxGXdPgWNuvnz/cgXJHzu4rCg8AEAAAAAAAAAiFEyBZDQfO6UCPmxUS7L+9z14VtMaTqfD4ojAAAAAAAAAIC+JFkACTGwHuoukdBcCzAhCi2hFe0niiAAAAAAAAAAgD6MtgDSZF1trX9f7l+o9flsg++6Qt2BAgAAAAAAAABASEkWQFyF+LsWvn/To2lBINRdE9Zt8L3bJeS2AwAAAAAAAAAQyigKICHuaqga6LcWAfL9s/a3rk/WNqraqWrfZZmxF0PGvv0AAAAAAAAA0LZkCyBlg/VVBQaftkLOX9dOiI+8CvExWb5FjSaFjrEXAMa+/QAAAAAAAADQtqQKIHUD69ZCgu/HXLnyuSvD964Ta59cuBSR6gomRW3lLWjRv3MAAAAAAAAAADhItgDSxXJN12P9WKqiokObBZCqfjZZR92yi1owtw0AAAAAAAAAQJVkCiBN7hZw/SgslzZ853EpglgLJU2XzS8TqvARsg0AAAAAAAAAACySKYCEuFvA5WObfIolluKG67qqHqsqVDQp9jQtgFDwAAAAAAAAAADEIpkCyKqmd3NYCyC+d26UrcenyNCkuOFSePGd5rLOEHfbID4cTwAAAAAAAACp8SqAvP3227rlllu0fft2XX311brxxht1+PBhSdKxY8d000036YorrtBVV12lp59+em25qmm+JgfYXe7o8G3Xd1rT9qoKJfltDcVlnXXz1rX9/uXekfSwfl77JP2fkv5c0n+VJL3++uudZAd2/RZAzmRH+j9EduCH7MCK7MCK7MCK7MCqKDvH16b+xm/8BtlBCbKDJnjdghXZQfe87wDZs2ePXnzxRf3zP/+zbr75Zv32b/+2JGlhYUHXXnutDh06pP379+u3fuu39M4779ROa8rnY63Kfi57zGV533X7Lr86T9M7M6zzhRz4/i29qDd0t6T/VdKVkh4/s459+3rJDlLyUUn/m8gO/JEdWJEdWJEdWJEdWOWz89drU3bt2kV2UIHsoAlet2BFdtAtrwLIeeedp49//OOampqSJF177bV6+eWXJUnf+MY39MUvflHSmRfKSy65RE899VTttLxTp07p5MmTZ32Vcf24paZ3NVS157PuUAUG610ZTdXt7+rp5+j/1j5JUz/9eYukFUnSt771rc6zg5S
|
2023-07-20 10:19:32 +02:00
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-07-27 17:16:08 +02:00
|
|
|
"fig, ax = plt.subplots(shape[0],shape[1], figsize=(20,5))\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0,shape[1]):\n",
|
|
|
|
" ax[i,j].pcolormesh(cropOD[i,j], cmap='jet')\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" #ax[i,j].plot(center[i,j,0], center[i,j,1], markersize=15,marker='x')\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"plt.show()\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"fig, ax = plt.subplots(shape[0],shape[1], figsize=(20,5))\n",
|
|
|
|
"\n",
|
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0,shape[1]):\n",
|
|
|
|
" ax[i,j].pcolormesh(thresh[i,j], cmap='jet')\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"plt.show()\n"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:16:18.076087600Z",
|
|
|
|
"start_time": "2023-08-01T15:16:11.378249600Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 6,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"[[[58. 44.]\n",
|
|
|
|
" [36. 29.]\n",
|
|
|
|
" [35. 31.]\n",
|
|
|
|
" [34. 30.]\n",
|
|
|
|
" [32. 29.]\n",
|
|
|
|
" [35. 31.]\n",
|
|
|
|
" [35. 30.]\n",
|
|
|
|
" [35. 31.]\n",
|
|
|
|
" [35. 31.]\n",
|
|
|
|
" [35. 28.]\n",
|
|
|
|
" [39. 33.]]\n",
|
|
|
|
"\n",
|
|
|
|
" [[27. 27.]\n",
|
|
|
|
" [29. 29.]\n",
|
|
|
|
" [34. 17.]\n",
|
|
|
|
" [24. 25.]\n",
|
|
|
|
" [32. 31.]\n",
|
|
|
|
" [34. 24.]\n",
|
|
|
|
" [32. 27.]\n",
|
|
|
|
" [23. 23.]\n",
|
|
|
|
" [30. 22.]\n",
|
|
|
|
" [31. 26.]\n",
|
|
|
|
" [31. 27.]]]\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"print(BEC_width_guess)"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T13:47:24.382090900Z",
|
|
|
|
"start_time": "2023-08-01T13:47:24.263490300Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 36,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 0\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 3567\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.02337656\n",
|
|
|
|
" reduced chi-square = 9.5806e-05\n",
|
|
|
|
" Akaike info crit = -2307.37055\n",
|
|
|
|
" Bayesian info crit = -2286.24179\n",
|
|
|
|
" R-squared = 0.90568814\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 153.441480 (init = 124.0604)\n",
|
|
|
|
" x0_th: 124.776093 (init = 124.0604)\n",
|
|
|
|
" amp_bec: 0.00432072 (init = 0.07733014)\n",
|
|
|
|
" amp_th: 0.09064429 (init = 0.03314149)\n",
|
|
|
|
" deltax: 33.1535731 (init = 174)\n",
|
|
|
|
" sigma_bec: 33.4779285 (init = 47.54098)\n",
|
|
|
|
" sigma_th: 38.3316017 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 1\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 5187\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.03635169\n",
|
|
|
|
" reduced chi-square = 1.4898e-04\n",
|
|
|
|
" Akaike info crit = -2196.99384\n",
|
|
|
|
" Bayesian info crit = -2175.86508\n",
|
|
|
|
" R-squared = 0.97313579\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.297500 (init = 123.2258)\n",
|
|
|
|
" x0_th: 124.762485 (init = 123.2258)\n",
|
|
|
|
" amp_bec: 0.11703212 (init = 0.2043726)\n",
|
|
|
|
" amp_th: 0.16304627 (init = 0.08758826)\n",
|
|
|
|
" deltax: 34.4497537 (init = 108)\n",
|
|
|
|
" sigma_bec: 15.6081798 (init = 29.5082)\n",
|
|
|
|
" sigma_th: 27.7093420 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 2\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 5761\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.03801295\n",
|
|
|
|
" reduced chi-square = 1.5579e-04\n",
|
|
|
|
" Akaike info crit = -2185.82230\n",
|
|
|
|
" Bayesian info crit = -2164.69353\n",
|
|
|
|
" R-squared = 0.98428608\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.044918 (init = 124.1987)\n",
|
|
|
|
" x0_th: 125.036027 (init = 124.1987)\n",
|
|
|
|
" amp_bec: 0.21041411 (init = 0.2749891)\n",
|
|
|
|
" amp_th: 0.16877035 (init = 0.1178525)\n",
|
|
|
|
" deltax: 29.3582083 (init = 105)\n",
|
|
|
|
" sigma_bec: 18.1900164 (init = 28.68852)\n",
|
|
|
|
" sigma_th: 26.7036423 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 3\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 7264\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.03910902\n",
|
|
|
|
" reduced chi-square = 1.6028e-04\n",
|
|
|
|
" Akaike info crit = -2178.71578\n",
|
|
|
|
" Bayesian info crit = -2157.58701\n",
|
|
|
|
" R-squared = 0.98976751\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 124.937119 (init = 124.2885)\n",
|
|
|
|
" x0_th: 125.005157 (init = 124.2885)\n",
|
|
|
|
" amp_bec: 0.26835003 (init = 0.348317)\n",
|
|
|
|
" amp_th: 0.20693134 (init = 0.1492787)\n",
|
|
|
|
" deltax: 17.5801548 (init = 102)\n",
|
|
|
|
" sigma_bec: 19.5988377 (init = 27.86885)\n",
|
|
|
|
" sigma_th: 21.4929856 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 4\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 7777\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.06306629\n",
|
|
|
|
" reduced chi-square = 2.5847e-04\n",
|
|
|
|
" Akaike info crit = -2059.25745\n",
|
|
|
|
" Bayesian info crit = -2038.12868\n",
|
|
|
|
" R-squared = 0.98860374\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 115.616389 (init = 124.8436)\n",
|
|
|
|
" x0_th: 126.137165 (init = 124.8436)\n",
|
|
|
|
" amp_bec: 0.07905547 (init = 0.4125246)\n",
|
|
|
|
" amp_th: 0.58134074 (init = 0.1767962)\n",
|
|
|
|
" deltax: 14.0284362 (init = 96)\n",
|
|
|
|
" sigma_bec: 9.68587168 (init = 26.22951)\n",
|
|
|
|
" sigma_th: 13.3882008 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 5\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 5811\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.03483722\n",
|
|
|
|
" reduced chi-square = 1.4278e-04\n",
|
|
|
|
" Akaike info crit = -2207.63249\n",
|
|
|
|
" Bayesian info crit = -2186.50372\n",
|
|
|
|
" R-squared = 0.99458794\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.026522 (init = 124.4716)\n",
|
|
|
|
" x0_th: 125.174821 (init = 124.4716)\n",
|
|
|
|
" amp_bec: 0.36935323 (init = 0.4431705)\n",
|
|
|
|
" amp_th: 0.24363800 (init = 0.1899302)\n",
|
|
|
|
" deltax: 6.66148730 (init = 105)\n",
|
|
|
|
" sigma_bec: 21.7020486 (init = 28.68852)\n",
|
|
|
|
" sigma_th: 17.1663451 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 6\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 7956\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.04184668\n",
|
|
|
|
" reduced chi-square = 1.7150e-04\n",
|
|
|
|
" Akaike info crit = -2161.80093\n",
|
|
|
|
" Bayesian info crit = -2140.67217\n",
|
|
|
|
" R-squared = 0.99485713\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 124.897553 (init = 124.226)\n",
|
|
|
|
" x0_th: 125.376350 (init = 124.226)\n",
|
|
|
|
" amp_bec: 0.46053971 (init = 0.4840948)\n",
|
|
|
|
" amp_th: 0.22040635 (init = 0.2074692)\n",
|
|
|
|
" deltax: 3.11293969 (init = 105)\n",
|
|
|
|
" sigma_bec: 22.9411327 (init = 28.68852)\n",
|
|
|
|
" sigma_th: 16.1112986 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 7\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 7452\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.02845081\n",
|
|
|
|
" reduced chi-square = 1.1660e-04\n",
|
|
|
|
" Akaike info crit = -2258.25987\n",
|
|
|
|
" Bayesian info crit = -2237.13111\n",
|
|
|
|
" R-squared = 0.99692969\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.032801 (init = 124.3744)\n",
|
|
|
|
" x0_th: 124.841135 (init = 124.3744)\n",
|
|
|
|
" amp_bec: 0.56271619 (init = 0.5310693)\n",
|
|
|
|
" amp_th: 0.16185082 (init = 0.2276011)\n",
|
|
|
|
" deltax: 0.00000000 (init = 105)\n",
|
|
|
|
" sigma_bec: 23.2491118 (init = 28.68852)\n",
|
|
|
|
" sigma_th: 14.6934387 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 8\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 3499\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.04803040\n",
|
|
|
|
" reduced chi-square = 1.9685e-04\n",
|
|
|
|
" Akaike info crit = -2127.34550\n",
|
|
|
|
" Bayesian info crit = -2106.21673\n",
|
|
|
|
" R-squared = 0.99523669\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.187040 (init = 124.4929)\n",
|
|
|
|
" x0_th: 103.882350 (init = 124.4929)\n",
|
|
|
|
" amp_bec: 0.73222993 (init = 0.5422824)\n",
|
|
|
|
" amp_th: 0.01624567 (init = 0.2324067)\n",
|
|
|
|
" deltax: 0.12250819 (init = 105)\n",
|
|
|
|
" sigma_bec: 23.6013336 (init = 28.68852)\n",
|
|
|
|
" sigma_th: 14.9795021 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 9\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 7693\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.05382463\n",
|
|
|
|
" reduced chi-square = 2.2059e-04\n",
|
|
|
|
" Akaike info crit = -2098.87128\n",
|
|
|
|
" Bayesian info crit = -2077.74251\n",
|
|
|
|
" R-squared = 0.99533610\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.117746 (init = 124.4059)\n",
|
|
|
|
" x0_th: 124.544314 (init = 124.4059)\n",
|
|
|
|
" amp_bec: 0.57923202 (init = 0.581434)\n",
|
|
|
|
" amp_th: 0.23327823 (init = 0.249186)\n",
|
|
|
|
" deltax: 0.00000000 (init = 105)\n",
|
|
|
|
" sigma_bec: 23.1733612 (init = 28.68852)\n",
|
|
|
|
" sigma_th: 14.6455643 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 0, 10\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 10166\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.05277411\n",
|
|
|
|
" reduced chi-square = 2.1629e-04\n",
|
|
|
|
" Akaike info crit = -2103.79887\n",
|
|
|
|
" Bayesian info crit = -2082.67011\n",
|
|
|
|
" R-squared = 0.99394216\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 133.724792 (init = 124.6719)\n",
|
|
|
|
" x0_th: 118.917613 (init = 124.6719)\n",
|
|
|
|
" amp_bec: 0.42527821 (init = 0.4817168)\n",
|
|
|
|
" amp_th: 0.61356960 (init = 0.2064501)\n",
|
|
|
|
" deltax: 0.00000000 (init = 117)\n",
|
|
|
|
" sigma_bec: 15.5658200 (init = 31.96721)\n",
|
|
|
|
" sigma_th: 9.83759826 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 0\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 2238\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.33913708\n",
|
|
|
|
" reduced chi-square = 0.00138991\n",
|
|
|
|
" Akaike info crit = -1638.70295\n",
|
|
|
|
" Bayesian info crit = -1617.57418\n",
|
|
|
|
" R-squared = 0.35479840\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 109.225323 (init = 122.4314)\n",
|
|
|
|
" x0_th: 127.195567 (init = 122.4314)\n",
|
|
|
|
" amp_bec: 0.01684626 (init = 0.115638)\n",
|
|
|
|
" amp_th: 0.07190229 (init = 0.04955914)\n",
|
|
|
|
" deltax: 44.3174542 (init = 81)\n",
|
|
|
|
" sigma_bec: 38.9759514 (init = 22.13115)\n",
|
|
|
|
" sigma_th: 47.5892426 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 1\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 4578\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.27270940\n",
|
|
|
|
" reduced chi-square = 0.00111766\n",
|
|
|
|
" Akaike info crit = -1693.20236\n",
|
|
|
|
" Bayesian info crit = -1672.07360\n",
|
|
|
|
" R-squared = 0.83115399\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 125.650627 (init = 123.7637)\n",
|
|
|
|
" x0_th: 125.603005 (init = 123.7637)\n",
|
|
|
|
" amp_bec: 0.14297581 (init = 0.2335334)\n",
|
|
|
|
" amp_th: 0.14659021 (init = 0.1000857)\n",
|
|
|
|
" deltax: 43.7665291 (init = 87)\n",
|
|
|
|
" sigma_bec: 14.7954170 (init = 23.77049)\n",
|
|
|
|
" sigma_th: 32.0217656 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 2\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 6309\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.47729229\n",
|
|
|
|
" reduced chi-square = 0.00195612\n",
|
|
|
|
" Akaike info crit = -1553.27178\n",
|
|
|
|
" Bayesian info crit = -1532.14301\n",
|
|
|
|
" R-squared = 0.87474842\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 89.8231472 (init = 123.6648)\n",
|
|
|
|
" x0_th: 125.374090 (init = 123.6648)\n",
|
|
|
|
" amp_bec: 0.09613615 (init = 0.3626067)\n",
|
|
|
|
" amp_th: 0.48481876 (init = 0.1554029)\n",
|
|
|
|
" deltax: 20.4998269 (init = 102)\n",
|
|
|
|
" sigma_bec: 4.89952002 (init = 27.86885)\n",
|
|
|
|
" sigma_th: 13.7154070 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 3\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 5464\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.34785756\n",
|
|
|
|
" reduced chi-square = 0.00142565\n",
|
|
|
|
" Akaike info crit = -1632.35577\n",
|
|
|
|
" Bayesian info crit = -1611.22701\n",
|
|
|
|
" R-squared = 0.92340765\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 124.278073 (init = 123.0047)\n",
|
|
|
|
" x0_th: 126.131819 (init = 123.0047)\n",
|
|
|
|
" amp_bec: 0.29775761 (init = 0.3912519)\n",
|
|
|
|
" amp_th: 0.20374123 (init = 0.1676794)\n",
|
|
|
|
" deltax: 18.7921671 (init = 72)\n",
|
|
|
|
" sigma_bec: 20.1430739 (init = 19.67213)\n",
|
|
|
|
" sigma_th: 22.4647652 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 4\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 4523\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.30733891\n",
|
|
|
|
" reduced chi-square = 0.00125959\n",
|
|
|
|
" Akaike info crit = -1663.31628\n",
|
|
|
|
" Bayesian info crit = -1642.18751\n",
|
|
|
|
" R-squared = 0.94464764\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 124.969451 (init = 121.5974)\n",
|
|
|
|
" x0_th: 126.703300 (init = 121.5974)\n",
|
|
|
|
" amp_bec: 0.44330500 (init = 0.3992703)\n",
|
|
|
|
" amp_th: 0.10684316 (init = 0.1711158)\n",
|
|
|
|
" deltax: 26.0476983 (init = 96)\n",
|
|
|
|
" sigma_bec: 21.9421230 (init = 26.22951)\n",
|
|
|
|
" sigma_th: 27.3601294 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 5\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 6343\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.36323407\n",
|
|
|
|
" reduced chi-square = 0.00148866\n",
|
|
|
|
" Akaike info crit = -1621.54219\n",
|
|
|
|
" Bayesian info crit = -1600.41342\n",
|
|
|
|
" R-squared = 0.95552477\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 123.945322 (init = 125.6102)\n",
|
|
|
|
" x0_th: 127.165697 (init = 125.6102)\n",
|
|
|
|
" amp_bec: 0.38581784 (init = 0.4918795)\n",
|
|
|
|
" amp_th: 0.28603710 (init = 0.2108055)\n",
|
|
|
|
" deltax: 4.89169118 (init = 102)\n",
|
|
|
|
" sigma_bec: 22.4910822 (init = 27.86885)\n",
|
|
|
|
" sigma_th: 16.7482600 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 6\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 5942\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.32298403\n",
|
|
|
|
" reduced chi-square = 0.00132371\n",
|
|
|
|
" Akaike info crit = -1650.90333\n",
|
|
|
|
" Bayesian info crit = -1629.77456\n",
|
|
|
|
" R-squared = 0.96675892\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 123.954692 (init = 123)\n",
|
|
|
|
" x0_th: 127.162708 (init = 123)\n",
|
|
|
|
" amp_bec: 0.46356390 (init = 0.5517363)\n",
|
|
|
|
" amp_th: 0.28052674 (init = 0.2364584)\n",
|
|
|
|
" deltax: 0.00000000 (init = 96)\n",
|
|
|
|
" sigma_bec: 23.3349116 (init = 26.22951)\n",
|
|
|
|
" sigma_th: 14.7476641 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 7\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 4170\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.36801150\n",
|
|
|
|
" reduced chi-square = 0.00150824\n",
|
|
|
|
" Akaike info crit = -1618.27550\n",
|
|
|
|
" Bayesian info crit = -1597.14673\n",
|
|
|
|
" R-squared = 0.97141166\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 124.437977 (init = 124.8898)\n",
|
|
|
|
" x0_th: 129.277304 (init = 124.8898)\n",
|
|
|
|
" amp_bec: 0.67483443 (init = 0.618981)\n",
|
|
|
|
" amp_th: 0.17462262 (init = 0.2652776)\n",
|
|
|
|
" deltax: 0.00000000 (init = 69)\n",
|
|
|
|
" sigma_bec: 23.2066942 (init = 18.85246)\n",
|
|
|
|
" sigma_th: 14.6666308 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 8\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 6185\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.53609694\n",
|
|
|
|
" reduced chi-square = 0.00219712\n",
|
|
|
|
" Akaike info crit = -1524.22530\n",
|
|
|
|
" Bayesian info crit = -1503.09653\n",
|
|
|
|
" R-squared = 0.96187022\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 135.571193 (init = 124.2619)\n",
|
|
|
|
" x0_th: 124.773959 (init = 124.2619)\n",
|
|
|
|
" amp_bec: 0.21252338 (init = 0.648623)\n",
|
|
|
|
" amp_th: 0.95601004 (init = 0.2779813)\n",
|
|
|
|
" deltax: 22.4402001 (init = 90)\n",
|
|
|
|
" sigma_bec: 1.61326322 (init = 24.59016)\n",
|
|
|
|
" sigma_th: 12.6436060 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 9\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 2897\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.36752607\n",
|
|
|
|
" reduced chi-square = 0.00150625\n",
|
|
|
|
" Akaike info crit = -1618.60549\n",
|
|
|
|
" Bayesian info crit = -1597.47672\n",
|
|
|
|
" R-squared = 0.97165517\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 124.670819 (init = 124.2739)\n",
|
|
|
|
" x0_th: 152.268084 (init = 124.2739)\n",
|
|
|
|
" amp_bec: 0.81785867 (init = 0.6808652)\n",
|
|
|
|
" amp_th: 0.02689453 (init = 0.2917994)\n",
|
|
|
|
" deltax: 14.9118820 (init = 93)\n",
|
|
|
|
" sigma_bec: 23.4840073 (init = 25.40984)\n",
|
|
|
|
" sigma_th: 22.5662475 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1, 10\n",
|
|
|
|
"[[Fit Statistics]]\n",
|
|
|
|
" # fitting method = differential_evolution\n",
|
|
|
|
" # function evals = 9555\n",
|
|
|
|
" # data points = 250\n",
|
|
|
|
" # variables = 6\n",
|
|
|
|
" chi-square = 0.43920688\n",
|
|
|
|
" reduced chi-square = 0.00180003\n",
|
|
|
|
" Akaike info crit = -1574.06141\n",
|
|
|
|
" Bayesian info crit = -1552.93264\n",
|
|
|
|
" R-squared = 0.96007591\n",
|
|
|
|
"## Warning: uncertainties could not be estimated:\n",
|
|
|
|
" this fitting method does not natively calculate uncertainties\n",
|
|
|
|
" and numdifftools is not installed for lmfit to do this. Use\n",
|
|
|
|
" `pip install numdifftools` for lmfit to estimate uncertainties\n",
|
|
|
|
" with this fitting method.\n",
|
|
|
|
"[[Variables]]\n",
|
|
|
|
" x0_bec: 116.033383 (init = 125.2517)\n",
|
|
|
|
" x0_th: 131.505534 (init = 125.2517)\n",
|
|
|
|
" amp_bec: 0.47031236 (init = 0.5626007)\n",
|
|
|
|
" amp_th: 0.66708963 (init = 0.2411146)\n",
|
|
|
|
" deltax: 2.7715e-05 (init = 93)\n",
|
|
|
|
" sigma_bec: 16.0906185 (init = 25.40984)\n",
|
|
|
|
" sigma_th: 10.1692852 == '0.632*sigma_bec + 0.518*deltax'\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"total time: 39506.48522377014 ms\n"
|
2023-07-20 10:19:32 +02:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-07-20 20:34:19 +02:00
|
|
|
"# from opencv import moments\n",
|
|
|
|
"start = time.time()\n",
|
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"shape = np.shape(cropOD)\n",
|
|
|
|
"thresh = calc_thresh(cropOD)\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"center = calc_cen_bulk(thresh)\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"# print(center)\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
|
|
|
|
"\n",
|
|
|
|
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
|
|
|
|
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
|
|
|
|
"\n",
|
|
|
|
"for i in range(0, shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
|
|
|
|
"\n",
|
|
|
|
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
|
|
|
|
"\n",
|
|
|
|
"#[nr images x, nr images y, X / Y, center / sigma]\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"x = np.linspace(0,shape[3],shape[3])\n",
|
|
|
|
"y = np.linspace(0,shape[2], shape[2])\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"max_val = np.zeros((shape[0], shape[1]))\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
|
|
|
"for i in range(0, shape[0]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" max_val[i] = np.ndarray.max(X_guess_og[i], axis=1)\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
|
|
|
"# Fitting x without math constr\n",
|
|
|
|
"fitmodel = lmfit.Model(density_1d,independent_vars=['x'])\n",
|
|
|
|
"\n",
|
|
|
|
"result_x = []\n",
|
|
|
|
"\n",
|
|
|
|
"for i in range(0, shape[0]):\n",
|
|
|
|
" temp_res = []\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" print(f'image {i}, {j}')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" t1 = time.time()\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
" params = lmfit.Parameters()\n",
|
|
|
|
" params.add_many(\n",
|
|
|
|
" ('x0_bec', center[i,j,0], True,0, 200),\n",
|
|
|
|
" ('x0_th',center[i,j,0], True,0, 200),\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" ('amp_bec', 0.7 * max_val[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
|
|
|
|
" ('amp_th', 0.3 * max_val[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
|
|
|
|
" ('deltax', 3*BEC_width_guess[i,j,0], True, 0,cut_width),\n",
|
|
|
|
" # ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50)\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" )\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" params.add('sigma_th', 3*BEC_width_guess[i,j,0], min=0, expr=f'0.632*sigma_bec + 0.518*deltax')\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" # params.pretty_print()\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" # params.add('sigma_th', 3*BEC_width_guess[i,j,0], True, min=0,max=150)\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" t2 = time.time()\n",
|
|
|
|
" res = fitmodel.fit(X_guess_og[i,j], x=x, params=params)\n",
|
|
|
|
" t3 = time.time()\n",
|
|
|
|
" temp_res.append(res)\n",
|
|
|
|
" t4 = time.time()\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" # print(t2 - t1)\n",
|
|
|
|
" # print(t3 - t2)\n",
|
|
|
|
" # print(t4 - t3)\n",
|
|
|
|
" # print(\"\")\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"\n",
|
|
|
|
" lmfit.report_fit(res)\n",
|
|
|
|
" print()\n",
|
|
|
|
"\n",
|
|
|
|
" print()\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" result_x.append(temp_res)\n",
|
|
|
|
"stop = time.time()\n",
|
|
|
|
"\n",
|
|
|
|
"print(f'total time: {(stop-start)*1e3} ms')"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-02T16:09:49.075495200Z",
|
|
|
|
"start_time": "2023-08-02T16:09:09.547382400Z"
|
2023-07-26 09:41:51 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 26,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"0.11047163542693593\n"
|
2023-07-26 09:41:51 +02:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"print(np.max(X_guess_og[0][0]))"
|
2023-07-20 10:19:32 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-02T15:35:15.416425700Z",
|
|
|
|
"start_time": "2023-08-02T15:35:15.372503500Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 8,
|
2023-07-20 10:19:32 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
2023-08-03 10:55:33 +02:00
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"image: 0, 0\n",
|
|
|
|
"x0_bec: 142.004, (init = 124.060), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 124.284, (init = 124.060), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.007, (init = 0.077), bounds = [0.00 : 0.14] \n",
|
|
|
|
"amp_th: 0.088, (init = 0.033), bounds = [0.00 : 0.14] \n",
|
|
|
|
"sigma_bec: 46.836, (init = 47.541), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 38.731, (init = 120.178), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 1\n",
|
|
|
|
"x0_bec: 125.256, (init = 123.226), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 124.785, (init = 123.226), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.122, (init = 0.204), bounds = [0.00 : 0.38] \n",
|
|
|
|
"amp_th: 0.164, (init = 0.088), bounds = [0.00 : 0.38] \n",
|
|
|
|
"sigma_bec: 15.416, (init = 29.508), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 27.656, (init = 74.593), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 2\n",
|
|
|
|
"x0_bec: 125.039, (init = 124.199), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 125.046, (init = 124.199), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.214, (init = 0.275), bounds = [0.00 : 0.51] \n",
|
|
|
|
"amp_th: 0.170, (init = 0.118), bounds = [0.00 : 0.51] \n",
|
|
|
|
"sigma_bec: 18.047, (init = 28.689), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 26.639, (init = 72.521), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 3\n",
|
|
|
|
"x0_bec: 124.926, (init = 124.288), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 125.027, (init = 124.288), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.273, (init = 0.348), bounds = [0.00 : 0.65] \n",
|
|
|
|
"amp_th: 0.207, (init = 0.149), bounds = [0.00 : 0.65] \n",
|
|
|
|
"sigma_bec: 19.490, (init = 27.869), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 21.472, (init = 70.449), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 4\n",
|
|
|
|
"x0_bec: 125.124, (init = 124.844), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 125.193, (init = 124.844), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.371, (init = 0.413), bounds = [0.00 : 0.77] \n",
|
|
|
|
"amp_th: 0.199, (init = 0.177), bounds = [0.00 : 0.77] \n",
|
|
|
|
"sigma_bec: 20.901, (init = 26.230), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 20.335, (init = 66.305), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 5\n",
|
|
|
|
"x0_bec: 125.059, (init = 124.472), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 125.087, (init = 124.472), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.362, (init = 0.443), bounds = [0.00 : 0.82] \n",
|
|
|
|
"amp_th: 0.257, (init = 0.190), bounds = [0.00 : 0.82] \n",
|
|
|
|
"sigma_bec: 21.613, (init = 28.689), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 16.823, (init = 72.521), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 6\n",
|
|
|
|
"x0_bec: 124.891, (init = 124.226), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 125.353, (init = 124.226), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.446, (init = 0.484), bounds = [0.00 : 0.90] \n",
|
|
|
|
"amp_th: 0.241, (init = 0.207), bounds = [0.00 : 0.90] \n",
|
|
|
|
"sigma_bec: 22.882, (init = 28.689), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 15.696, (init = 72.521), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 7\n",
|
|
|
|
"x0_bec: 125.045, (init = 124.374), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 124.786, (init = 124.374), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.561, (init = 0.531), bounds = [0.00 : 0.99] \n",
|
|
|
|
"amp_th: 0.167, (init = 0.228), bounds = [0.00 : 0.99] \n",
|
|
|
|
"sigma_bec: 23.194, (init = 28.689), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 14.658, (init = 72.521), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 8\n",
|
|
|
|
"x0_bec: 125.082, (init = 124.493), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 124.756, (init = 124.493), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.593, (init = 0.542), bounds = [0.00 : 1.01] \n",
|
|
|
|
"amp_th: 0.162, (init = 0.232), bounds = [0.00 : 1.01] \n",
|
|
|
|
"sigma_bec: 23.255, (init = 28.689), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 14.697, (init = 72.521), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 9\n",
|
|
|
|
"x0_bec: 125.148, (init = 124.406), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 124.448, (init = 124.406), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.578, (init = 0.581), bounds = [0.00 : 1.08] \n",
|
|
|
|
"amp_th: 0.239, (init = 0.249), bounds = [0.00 : 1.08] \n",
|
|
|
|
"sigma_bec: 23.096, (init = 28.689), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 14.596, (init = 72.521), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 10\n",
|
|
|
|
"x0_bec: 125.177, (init = 124.672), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 33.642, (init = 124.672), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.667, (init = 0.482), bounds = [0.00 : 0.89] \n",
|
|
|
|
"amp_th: 0.001, (init = 0.206), bounds = [0.00 : 0.89] \n",
|
|
|
|
"sigma_bec: 25.278, (init = 31.967), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 49.148, (init = 80.809), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 0\n",
|
|
|
|
"x0_bec: 115.300, (init = 122.431), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 124.861, (init = 122.431), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.017, (init = 0.116), bounds = [0.00 : 0.21] \n",
|
|
|
|
"amp_th: 0.079, (init = 0.050), bounds = [0.00 : 0.21] \n",
|
|
|
|
"sigma_bec: 15.995, (init = 22.131), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 46.606, (init = 55.945), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 1\n",
|
|
|
|
"x0_bec: 125.641, (init = 123.764), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 125.645, (init = 123.764), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.147, (init = 0.234), bounds = [0.00 : 0.43] \n",
|
|
|
|
"amp_th: 0.147, (init = 0.100), bounds = [0.00 : 0.43] \n",
|
|
|
|
"sigma_bec: 14.760, (init = 23.770), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 31.996, (init = 60.089), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 2\n",
|
|
|
|
"x0_bec: 125.476, (init = 123.665), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 121.336, (init = 123.665), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.349, (init = 0.363), bounds = [0.00 : 0.67] \n",
|
|
|
|
"amp_th: 0.115, (init = 0.155), bounds = [0.00 : 0.67] \n",
|
|
|
|
"sigma_bec: 19.502, (init = 27.869), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 31.308, (init = 70.449), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 3\n",
|
|
|
|
"x0_bec: 124.301, (init = 123.005), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 126.112, (init = 123.005), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.301, (init = 0.391), bounds = [0.00 : 0.73] \n",
|
|
|
|
"amp_th: 0.205, (init = 0.168), bounds = [0.00 : 0.73] \n",
|
|
|
|
"sigma_bec: 20.053, (init = 19.672), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 22.374, (init = 49.729), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 4\n",
|
|
|
|
"x0_bec: 124.986, (init = 121.597), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 126.549, (init = 121.597), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.443, (init = 0.399), bounds = [0.00 : 0.74] \n",
|
|
|
|
"amp_th: 0.109, (init = 0.171), bounds = [0.00 : 0.74] \n",
|
|
|
|
"sigma_bec: 21.878, (init = 26.230), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 27.009, (init = 66.305), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 5\n",
|
|
|
|
"x0_bec: 123.630, (init = 125.610), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 127.392, (init = 125.610), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.368, (init = 0.492), bounds = [0.00 : 0.91] \n",
|
|
|
|
"amp_th: 0.313, (init = 0.211), bounds = [0.00 : 0.91] \n",
|
|
|
|
"sigma_bec: 22.582, (init = 27.869), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 16.015, (init = 70.449), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 6\n",
|
|
|
|
"x0_bec: 123.995, (init = 123.000), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 126.963, (init = 123.000), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.454, (init = 0.552), bounds = [0.00 : 1.02] \n",
|
|
|
|
"amp_th: 0.295, (init = 0.236), bounds = [0.00 : 1.02] \n",
|
|
|
|
"sigma_bec: 23.228, (init = 26.230), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 14.680, (init = 66.305), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 7\n",
|
|
|
|
"x0_bec: 124.486, (init = 124.890), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 129.053, (init = 124.890), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.675, (init = 0.619), bounds = [0.00 : 1.15] \n",
|
|
|
|
"amp_th: 0.176, (init = 0.265), bounds = [0.00 : 1.15] \n",
|
|
|
|
"sigma_bec: 23.196, (init = 18.852), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 14.660, (init = 47.657), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 8\n",
|
|
|
|
"x0_bec: 125.882, (init = 124.262), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 122.209, (init = 124.262), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.660, (init = 0.649), bounds = [0.00 : 1.20] \n",
|
|
|
|
"amp_th: 0.231, (init = 0.278), bounds = [0.00 : 1.20] \n",
|
|
|
|
"sigma_bec: 22.940, (init = 24.590), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 14.498, (init = 62.161), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 9\n",
|
|
|
|
"x0_bec: 124.657, (init = 124.274), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 151.041, (init = 124.274), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.817, (init = 0.681), bounds = [0.00 : 1.26] \n",
|
|
|
|
"amp_th: 0.028, (init = 0.292), bounds = [0.00 : 1.26] \n",
|
|
|
|
"sigma_bec: 23.461, (init = 25.410), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 22.517, (init = 64.233), bounds = [0.00 : inf] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 10\n",
|
|
|
|
"x0_bec: 124.870, (init = 125.252), bounds = [0.00 : 200.00] \n",
|
|
|
|
"x0_th: 167.237, (init = 125.252), bounds = [0.00 : 200.00] \n",
|
|
|
|
"amp_bec: 0.729, (init = 0.563), bounds = [0.00 : 1.04] \n",
|
|
|
|
"amp_th: 0.007, (init = 0.241), bounds = [0.00 : 1.04] \n",
|
|
|
|
"sigma_bec: 26.148, (init = 25.410), bounds = [0.00 : 50.00] \n",
|
|
|
|
"sigma_th: 16.526, (init = 64.233), bounds = [0.00 : inf] \n",
|
|
|
|
"\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"print_bval_bulk(result_x)"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T13:47:36.165187200Z",
|
|
|
|
"start_time": "2023-08-01T13:47:36.030016100Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 37,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": "<Figure size 1000x500 with 22 Axes>",
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAGpCAYAAAC6fmaSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5gcZZk2fr917O45TybJTI6TBBISCDlogIW4ArprVAz7wae4KmtQA/iJ64o/D4h8K8oK+7mIrO4uQRB0ERADIouKCBFIOCUBEsiBJJNkkpnJnDPn7q7z74+33urq00x3z/T0oeq+rrky01VdXV156633fp77uR9iWZYFHz58+PDhw4cPHz58+PCRFlyhT8CHDx8+fPjw4cOHDx8+ih0+cfLhw4cPHz58+PDhw4ePCeATJx8+fPjw4cOHDx8+fPiYAD5x8uHDhw8fPnz48OHDh48J4BMnHz58+PDhw4cPHz58+JgAPnHy4cOHDx8+fPjw4cOHjwngEycfPnz48OHDhw8fPnz4mAA+cfLhw4cPHz58+PDhw4ePCSAU+gTyAdM0cerUKVRVVYEQUujTySssy8LIyAjmzJkDjpuYB3vp2gD+9RkP/rUZH/71SQ//2owP//qMj2yuj39txod/fcaHl66Pf23GR7bXZ7wDlR3a2tosAJ76aWtr86+Nf338a+NfH//aFNGPf30mf338a+NfH//6+NemENcnHcoy41RVVQUAaGtrQ3V1dYHPJjscPXoU119/Pfr7+1FdXY3/+q//wvLly+P22blzJ2688UYAgKIoOHz4MCRJyuj4pXxtcsHw8DDmz5/vfO+J4KXr41+b8eFfn/Twr8348K/P+Mjm+pTytbnsssvw93//9/j0pz+NJ598Ej/+8Y/xwgsvxO3z9NNP40c/+hH+9Kc/QRRFfP/738e//du/+WMnDfx7Kz38azM+sr0+6VCWxImlHKurq0tuMHzta1/DF7/4RWzatAlbt27FDTfcgF27dsXtc+GFF+KNN96AKIoYHBxEXV0d7r//ftx0000THr+Ur82RI0fw2c9+Fn19faipqcGDDz6Is88+O+W+lmXhAx/4AN58800AyDgNXcrXJ1d44dpkOnbeeecdfPnLX0Z3dzdM0wTgjeuTK/xrMz786zM+Mrk+pXptenp6sGfPHmzbtg2CIODqq6/GN77xDfT09OCMM85w9quoqICu65AkCZWVlVBVFUD6a6MoChRFcf4eGRkBUHrXZ7Lw76308K/N+JisLNE3hygi9PT0YPfu3fjMZz4DALjyyivR1taGlpaWuP1CoRBEUQSAjCbZ4eHhuJ9SxXXXXYdrr70Whw8fxje/+U1s2rQp7b533XUXlixZMn0n56OokcnYCYfDuPzyy3Hbbbfh4MGDeO2116b/RH348FEWaGtrQ1NTEwSBxqcJIViwYAFOnjwZt9/HPvYxXHzxxWhsbERTUxNefPHFcY97++23o6amxvmZP39+3r6DDx8+kuETpyJCphMtALS2tmLVqlVYvHgxAOALX/hCymOWyySbKakEgP379+PJJ5/Et771rek+zYLiyJEjuPDCC7F06VKsW7cO+/fvT9rnhRdeQDAYxOrVq7F+/XoAQCQSme5TnVZkOnYefvhhXHDBBc514Xl+3OOWU1DChw8fhcHu3buxb98+dHR04NSpU3j/+98/7v433XQThoaGnJ+2trZpOlMfPnwAPnEqWTQ3N2Pv3r04fPgwAOCpp55KuV+5TLKZkkpN07B582Zs2bJlwoUvUF6L30wzcsuWLcOePXuwY8cOAEAwGJzGs5x+ZDp2Dhw4AFmWcdlll2H16tW47rrrxj1uuQQlfPjwMfWYP38+Ojs7oes6ACofP3nyJBYsWBC33y9/+UtceumlqK2tBcdx+NSnPjXucWVZdqRVXpNY+fBRDPCJUxEh04nWjcrKSgDAb37zm5TbvTbJ3nrrrbjiiiuSDDXSoVwWv9lk5Hykhq7reO6557Blyxa89dZbaGpqGnf/cglK+PDhY+oxa9YsrF27Fg899BAA4PHHH8e8efPi6psAYPHixdi2bZsju3/mmWem/Vx9+PCROXziNAX42UvH8LXH9sI0rUkdJ9OJtqWlBZqmAYjVOKUzSSgW/PPv9uFHzx7K+f2ZksoXX3wRP/nJT9Dc3Iz169c7GaS+vr6Uxy2Wxe/2I7343IO70DmUm2wuG5nn0aNHsXbtWlx88cXjHrMYsnGqbuJLD7+JX71+IudjZDp2FixYgEsuuQRz584FIQRXXXXVuMcthqBEa98YrnlgJ3a3np72zy4FPH+wG59/cBd6R5SJd/YgfvL8EXz9N3thWZN7dpUjXjvWj2se2ImT/eGcj7FlyxZs2bIFS5cuxR133IEHHngAAJXWM5XIl770JSxatAirVq3CueeeO2GNU7Fg+5FeXPPATrQP5H59yhUDYyo+/+Au/PGdzkKfStHhRP8YNj2wE68f6y/0qeQMnzhNAf7lDwfx+JvteHUKBkImE+22bduwZs0arFq1Cu973/sAAN/4xjcm/dn5QmvfGH7x6gn8+7aWnB/QmZLK7du348SJE2htbcWOHTucxWxDQ0PK4xbD4hcArr5/J7a924Pv/HZfXj9n7dq1aG9vx5tvvolf/epXAIAnnngi5b7FkI3b+kY7fv92J26exHXJdOx84hOfwK5duxyC+Oyzz+Z+4tOEL/7qTfzlUC/+9z2vFvpUihKf/8VuPP9uD37wh4OFPpWiw3BUw51/PozfvNGO431jhT6dosMn730NfznUixsf25PzMZYtW4ZXX30Vhw8fxu7du7Fy5UoAwH333YeNGzcCoM+gn/3sZzh48CDefvttPPnkk1Nw9vnH1ffvxF8O9eJHzx4u9KkUHe5+/gief7cHX/zVm4U+laLD1x7bixcO9eKqe0vXfKks7cgLhYhqTPoYbKJNxH333ef8fu211+Laa68FQH3pa2pqEAgEJv3Z+cKbJwec30cUHdUBMafjbNmyBZs2bcIPfvADVFdXx5HKjRs3Og+iUkOra9HSPRLN6RjurIogCGmzKm5iOHfuXADAq6++mrIe6qabbnL6hQGxHgjTiZ4cr0ciMhk7CxYswLe//W1ceOGF4DgOs2fPnpLPzidO9vsL3kxwarC8DVByQfvpCAJQoEKEn29Kj67hqZmDygljiu787o+dZOSqHPECOspgLvaJ0xSC8/N3KXHjY3ud3zf+ZAde+PolOR0nE1LpRnNzM06ePImampqcPm+68EOXhJHPsb+AO6uyadOmtFmVzs5OzJ49GxzHOf0/zj333JTHlGUZsizndD5ThahmTslxMh07V199Na6++moAsaBEMcOydLyv6V9BLA7ARwt9Oj5KCaePYrf8Rew1l8AwLy702RQtRN5/sCeixyV9PXN2ZQHPpDhBLBM1GMUQ/GuTCIGPrXGO9Y5i8czSu0b+jDCFIJhcUy0voHUSevFyhWHEYnY8l/sYykTm+fjjj2PlypVYtWoVPvjBDwKAYyhRjFD0yWdxyxmLhZewp3YQb9WdxomOA4U+naKFHxVPRs2R36KSRHERvx9GeGDiN3gUwiTm5HLFcERzfteN3O+uTFpomKaJG2+8EStWrMC5556Lyy67LOfPmy58vON2vCFfj/dxb0+JEqmcEBRjbsd/3NdVwDPJHT5xmkJMshmxDw/i7fZBPLO/E2eQdshQJ0WcMtHT33DDDdi/fz/27t2L119/HcDku2jnE4bLcCWs6uPs6U3MEk85v3f25W6+Uq44jxzEjcJjkA1fbpUIEokZinDDHQU8k+KG4GeckjAcdROn3FUBmbTQeOqpp/Dyyy9j7969ePvttyfsc1VoqJqBDyjbIBATXxZ+i75R35jGjffUa7hF+G+sIUcwq6qwipZc4c8IUwiuiBeghcZC0oULOBoRV/WpkV+VAzb+9GV8ln8Wz8nfwB3izyZFnMoR7nvqe//jZ1QSUcnHMgVDI7k7QmYS+QWAd955BxdffDHWrVsHIH3/uGKAZVl4TP4+/lF4EhdHit/oY7rBj7Q7v5NwatdRH4DI+3NyIvpHVed3LUc
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGZCAYAAABBr9GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1RklEQVR4nOydd5wcdf3/nzPb9/rl7lLv0hOSUELHhK4oKkWNBRQFlQD29rOgol9s8C3q1/JFgiBFBKWJiKh0CJ1QQwqpl7u0y/WyfXfm98fsZ3Zmd68ll9xd8n4+HvfI3e3s7Oxl5zOveb2bZpqmiSAIgiAIwjhBH+0DEARBEARBGA4iXgRBEARBGFeIeBEEQRAEYVwh4kUQBEEQhHGFiBdBEARBEMYVIl4EQRAEQRhXiHgRBEEQBGFcIeJFEARBEIRxhXe0D2B/YBgGO3fupKysDE3TRvtwBEEQBEEYAqZp0tvby5QpU9D1/v2Vg1K87Ny5k/r6+tE+DEEQBEEQ9oLm5mamTZvW7+MHpXgpKysDrDdfXl4+ykcjCIIgCMJQ6Onpob6+3r6O98dBKV5UqKi8vFzEiyAIgiCMMwZL+ZCEXUEQBEEQxhUiXgRBEARBGFeIeBEEQRAEYVwh4kUQBEEQhHGFiBdBEARBEMYVIl4EQRAEQRhXiHgRBEEQBGFcIeJFEARBEIRxhYgXQRAEQRDGFSJeBEEQBEEYV4h4EQRBEARhXCHiRRAEQRCEcYWIF0EQRpWnNrRy36vbR/swBEEYRxyUU6UFQRg/fOmOV+mJpzltXi0TSgOjfTiCIIwDxHkRBGHUSGcMeuJpAPoS6VE+GkEQxgsiXgRBGDWiqYz9fdowR/FIBEEYT4h4EQRh1IgmHOIlI+JFEIShIeJFEIRRI5rMhYrShjGKRyIIwnhCxIsgCKNGNCnOiyAIw0fEiyAIo4ZLvIjzIgjCEBHxIgjCqBFxho3EeREEYYiIeBEEYdSIJaXaSBCE4SPiRRCEUSOScCbsingRBGFoiHgRBGHUiDn7vGQk50UQhKEh4kUQhFHDmbCbkpwXQRCGiIgXQRBGjagjbJSRsJEgCENExIsgCKOGlEoLgrA3iHgRBGHUiEiTOkEQ9gIRL4IgjBqxAzQeYENLLz/421u09MT322sIgnDgEPEiCMKoETlACbs3P7uV257fxv2v7dhvryEIwoFDxIsgCKOGs0nd/kzY7YlbDk+fI0FYEITxi4gXQRBGDedU6dR+7POSyPaTcYolQRDGLyJeBEEYNaIHyHmJpyxhFE+LeBGEgwERL4IgjBrRAzTbKG47L1KOLQgHAyJeBEEYNQ5U2Eg5LvGUOC+CcDAg4kUQhFHjgIeNRLwIwkGBiBdBEEYFwzD3eraRaQ5P6NhhIxEvgnBQsF/Ey8aNG1myZAnz5s3j+OOPZ82aNQXbNDY2cvrpp1NRUcHixYsLHr/pppuYO3cus2fPZvny5aRSqf1xqIIgjBL5ybOZITapa+mJ845rHufnD7899NcS50UQDir2i3i5/PLLueyyy9iwYQPf/va3ueSSSwq2KS8v5yc/+Ql33HFHwWNbt27lqquuYuXKlWzatImWlhZuuOGG/XGogiCMEpGEW0gM1Xl5o7mL3T1xHlq9a8ivZZdKpyRhVxAOBkZcvOzZs4dVq1Zx0UUXAbBs2TKam5vZtGmTa7vq6mpOPvlkSkpKCvZxzz33cN555zFp0iQ0TeOKK67gzjvvHOlDFQRhFMnvueIcD/D0hlZO/NmjPPH2noLnxdPWdq29iSG/liTsCsLBxYiLl+bmZiZPnozX6wVA0zQaGhpoamoa8j6ampqYPn26/fOMGTMGfH4ikaCnp8f1JQjC2Caacne7dSbsPvl2Ky09CZ5YX0S8ZAVITzxNYgh9WzKGabs6Il4E4eDgoEjYveaaa6ioqLC/6uvrR/uQBEEYhIHCRpFsG/++eGE7/4RDgLT1JQd9Hadg2deE3Yxh8lpTJ8m0hJ8EYTQZcfFSX1/Prl27SKetRcc0TZqammhoaBjyPhoaGti2bZv9c2Nj44DPv/LKK+nu7ra/mpub9/4NCIJwQMgPGzmdl0i2/0tPEfESd+SttA0hdJRwCI19HQ/wl5eb+eB1z/H7lVv2aT+CIOwbIy5e6urqOOaYY7j99tsBuPfee5k2bRpz5swZ8j6WLVvGAw88wO7duzFNk+uvv54LLrig3+0DgQDl5eWuL0EQxjaRpFuYOJvU2c5LorDK0BkqGkrei9N5SaQNjH3oJ7O9M5r9N7bX+xAEYd/ZL2GjFStWsGLFCubNm8e1117LzTffDMCll17KAw88AEA0GmXatGl85CMfYe3atUybNo0rr7wSgFmzZnH11VezdOlS5syZQ21tLZdffvn+OFRBEEaJgoRdZ9go+1ixKdAu56VveOIF3E7McFECa392AxYEYXC8+2On8+fP5/nnny/4/Y033mh/Hw6H2b59e7/7WL58OcuXL98fhycIwhgg33lxzjYaKOfFKUaG5ry4hUYslSHk9wzrWBUqL0dyXgRhdDkoEnYFQRh/DFQqrTrv9hYTL2lnwu4QxEteRdK+VByJ8yIIYwMRL4IgjAqq2iicdUGcCbsqXNQ7SNiodS/CRvtScZQW50UQxgQiXgRBGBVUn5fyoA9wuxnRrGhJpo2CXi7OnJW23sFLpRN5YaORcF6S4rwIwqgi4kUQhFFBhY3KQ1bqnXI1DMO0E3ahMO/FlfOyF87LvogXJVrEeRGE0UXEiyAIo4IKGynnRSXs5od18iuOnOJjKH1e8nNeYsm9Fx5KYEnOiyCMLiJeBEEYFWIqbBRS4sUSBJE8sZKftOsMA/Um0oM6KfnVRhI2EoTxj4gXQRBGhZzz4g4bRfKqkPLFS76TMli59Egm7Kay7lAqvfeN7gRB2HdEvAiCMCrkcl7cYaN85yU/bJSfgDtY3kuxPi97SyotpdKCMBYQ8SIIwqiwpzcOwMTyIADpTPGwUf6IAOW8aJr182B5LwUddkcgbLQvXXoFQdh3RLwIgnDAyRimPR9oVk0J4HBe8jrv9ldtNCkrepTzsrUtwtMbWgteqyBhdyTCRuK8CMKoIuJFEIQDzq7uGGnDxO/RmVoVAhw5Lwm3uMifLK3CQPVVYSDX6+XyP67iU394iXW7elzbF/Z52YfZRmlJ2BWEsYCIF0EQDjhNHdZ05mlVIfxeaxkaas6Lcl6mZUXP7p4Yrb0JNrT0AbB2Z0/R7RX71GE3WxGVkrCRIIwqIl4EQTjgNGfFS311GK9uJa/YpdJ51UbOsJFpmna+yeKGSgBe2dbJa02d9jaN7RHX85V4USIpf6bScLAHM4rzIgijiogXQRAOOMp5aagO49WzzkumuPPSG88l7DoTZU+fVwfAhpY+Hl7bYv9+a1u+eLGeUxX2ZfcxEoMZTUxTyqUFYbQQ8SIIwgGnqcNK1m2oDuP15DsvlngpDVj9X5xhI2f+yqSKIAsnlwNw/2s77N8XOC9ZsVIV9gP76rzkXl/cF0EYPUS8CIJwwGlyhY2KOy8TywOA1aTuPx5Yw4eue5aerAuja+DzaCydM8F6rmMidWNb1OWKqLBRRbafzD5VG2XMot8LgnBgEfEiCMIBp9kZNrKdFysUE81WG02qsEqhO6NJbn9hG682dfHG9i4Agj4PmqaxZHaNvc+ygBdNs5yatr7ctOlc2Mjv+nlvcDkvkrQrCKOGiBdBEA4ovfEUHRFLXNRXh+yEXbD6v/TZzoslXjbt6bOdFTUKoMqTgFSM42dW288/enoVUyqsCiRn6Eg5L5XhkXBejKLfC4JwYPGO9gEIgnBo0ZzNd6ku8VMW9LlyWtKGSTTpbkKnIkKLtK0c99rtPBN4iWlmG/wUSv2l3FF2OLf3HsfsqZ/AMEx2dMXY2hbh+BnVQC7JtzLrvOxLh920I1QkzosgjB4iXgRBOKA4810Al/OSLuK81NLFz3w3cbL3Vdb1+tkW1ujM+JmdShFO9nECL3CC/wXSGx7hj5VX8AwTaWwbeefFMExXbo0k7ArC6CHiRRCEA4oz3wXyxEvGIJrMiZdT9De5tPR6/lzl45uhaWS
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-07-27 17:16:08 +02:00
|
|
|
"fsize= (10,5)\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"fig, ax = plt.subplots(shape[0],shape[1],figsize=fsize)\n",
|
|
|
|
"for i in range(0, shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" #lab = f\"A$_{{BEC}}$ = {popt[i,j,0]:.1f} \\n A$_{{th}}$ = {popt[i,j,1]:.1f} \"\n",
|
|
|
|
" bval = result_x[i][j].best_values\n",
|
|
|
|
" ax[i,j].plot(x, X_guess_og[i,j])\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax[i,j].plot(x, density_1d(x, **result_x[i][j].best_values))\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
" ax[i,j].plot(x, thermal(x, bval['x0_th'], bval['amp_th'], bval['sigma_th']))\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"plt.show()\n",
|
|
|
|
"\n",
|
|
|
|
"bval = result_x[0][0].best_values\n",
|
|
|
|
"plt.plot(x, X_guess_og[0,0])\n",
|
|
|
|
"plt.plot(x, density_1d(x, **result_x[0][0].best_values))\n",
|
|
|
|
"plt.plot(x, thermal(x, bval['x0_th'], bval['amp_th'], bval['sigma_th']))\n",
|
|
|
|
"plt.show()\n"
|
2023-07-20 10:19:32 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-02T16:09:57.213069400Z",
|
|
|
|
"start_time": "2023-08-02T16:09:54.252121900Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
2023-07-27 17:16:08 +02:00
|
|
|
"cell_type": "markdown",
|
2023-07-20 10:19:32 +02:00
|
|
|
"source": [
|
2023-07-27 17:16:08 +02:00
|
|
|
"## 2D Fit without mathematical constraint"
|
2023-07-20 20:34:19 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
2023-07-27 17:16:08 +02:00
|
|
|
"collapsed": false
|
2023-07-20 20:34:19 +02:00
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 166,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": "0.4358651483519299"
|
|
|
|
},
|
|
|
|
"execution_count": 166,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"np.max(gaussian_filter(cropOD[1][1], sigma=1))\n",
|
|
|
|
"S = np.max(gaussian_filter(data, sigma=1))/(bval_1d['amp_bec'] + bval_1d['amp_th'])\n",
|
|
|
|
"print(S)"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T13:14:57.791180400Z",
|
|
|
|
"start_time": "2023-08-01T13:14:57.674401100Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 19,
|
2023-07-20 20:34:19 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 0,0\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 142.00445054598697, 'x0_th': 124.28433053144651, 'amp_bec': 0.007373864322594913, 'amp_th': 0.0875248828973439, 'sigma_bec': 46.835962030049785, 'sigma_th': 38.73088055278765}\n",
|
|
|
|
"Image seems to be purely thermal (guessed from 1d fit amplitude)\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0 0 0.402 None False None None\n",
|
|
|
|
"amp_th 0.1352 0 0.402 None True None None\n",
|
|
|
|
"sigma_th 38.73 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 1 -inf inf None False None None\n",
|
|
|
|
"sigmay_bec 1 -inf inf None False None None\n",
|
|
|
|
"x0_bec 1 -inf inf None False None None\n",
|
|
|
|
"x0_th 124.1 114.1 134.1 None True None None\n",
|
|
|
|
"y0_bec 1 -inf inf None False None None\n",
|
|
|
|
"y0_th 124.3 114.3 134.3 None True None None\n",
|
|
|
|
"time 1st fit: 0.242 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 0,1\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.25577180118816, 'x0_th': 124.78468527561685, 'amp_bec': 0.12152950655479954, 'amp_th': 0.1637417913764779, 'sigma_bec': 15.415704344918188, 'sigma_th': 27.655652447556896}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.1698 0 0.7187 None True None None\n",
|
|
|
|
"amp_th 0.2287 0 0.7187 None True None None\n",
|
|
|
|
"sigma_th 27.66 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 15.42 0 59.02 None True None None\n",
|
|
|
|
"sigmay_bec 23.77 0 47.54 None True None None\n",
|
|
|
|
"x0_bec 123.2 113.2 133.2 None True None None\n",
|
|
|
|
"x0_th 123.2 113.2 133.2 None True None None\n",
|
|
|
|
"y0_bec 126.1 116.1 136.1 None True None None\n",
|
|
|
|
"y0_th 126.1 116.1 136.1 None True None None\n",
|
|
|
|
"time 1st fit: 0.493 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 0,2\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.03930894042861, 'x0_th': 125.04635162070355, 'amp_bec': 0.2144277721612532, 'amp_th': 0.1696419781395752, 'sigma_bec': 18.04728438783922, 'sigma_th': 26.6394342289486}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.3083 0 0.8679 None True None None\n",
|
|
|
|
"amp_th 0.2439 0 0.8679 None True None None\n",
|
|
|
|
"sigma_th 26.64 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 18.05 0 57.38 None True None None\n",
|
|
|
|
"sigmay_bec 25.41 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 124.2 114.2 134.2 None True None None\n",
|
|
|
|
"x0_th 124.2 114.2 134.2 None True None None\n",
|
|
|
|
"y0_bec 125.1 115.1 135.1 None True None None\n",
|
|
|
|
"y0_th 125.1 115.1 135.1 None True None None\n",
|
|
|
|
"time 1st fit: 0.371 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 0,3\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 124.92625233577346, 'x0_th': 125.02682757068777, 'amp_bec': 0.27265942749051736, 'amp_th': 0.20738200828334746, 'sigma_bec': 19.489535904921766, 'sigma_th': 21.471525793182366}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.3762 0 1.067 None True None None\n",
|
|
|
|
"amp_th 0.2861 0 1.067 None True None None\n",
|
|
|
|
"sigma_th 21.47 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 19.49 0 55.74 None True None None\n",
|
|
|
|
"sigmay_bec 24.59 0 49.18 None True None None\n",
|
|
|
|
"x0_bec 124.3 114.3 134.3 None True None None\n",
|
|
|
|
"x0_th 124.3 114.3 134.3 None True None None\n",
|
|
|
|
"y0_bec 125.4 115.4 135.4 None True None None\n",
|
|
|
|
"y0_th 125.4 115.4 135.4 None True None None\n",
|
|
|
|
"time 1st fit: 0.313 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 0,4\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.12441109737169, 'x0_th': 125.19345014170287, 'amp_bec': 0.3714727519389241, 'amp_th': 0.19908084523127406, 'sigma_bec': 20.901397005132623, 'sigma_th': 20.33510418067732}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.4801 0 1.238 None True None None\n",
|
|
|
|
"amp_th 0.2573 0 1.238 None True None None\n",
|
|
|
|
"sigma_th 20.34 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 20.9 0 52.46 None True None None\n",
|
|
|
|
"sigmay_bec 23.77 0 47.54 None True None None\n",
|
|
|
|
"x0_bec 124.8 114.8 134.8 None True None None\n",
|
|
|
|
"x0_th 124.8 114.8 134.8 None True None None\n",
|
|
|
|
"y0_bec 125.6 115.6 135.6 None True None None\n",
|
|
|
|
"y0_th 125.6 115.6 135.6 None True None None\n",
|
|
|
|
"time 1st fit: 0.292 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 0,5\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.05880935383358, 'x0_th': 125.08710237316461, 'amp_bec': 0.3619755295023772, 'amp_th': 0.25678414606161054, 'sigma_bec': 21.61282768969963, 'sigma_th': 16.823200155520258}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.5038 0 1.258 None True None None\n",
|
|
|
|
"amp_th 0.3574 0 1.258 None True None None\n",
|
|
|
|
"sigma_th 16.82 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 21.61 0 57.38 None True None None\n",
|
|
|
|
"sigmay_bec 25.41 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 124.5 114.5 134.5 None True None None\n",
|
|
|
|
"x0_th 124.5 114.5 134.5 None True None None\n",
|
|
|
|
"y0_bec 125.6 115.6 135.6 None True None None\n",
|
|
|
|
"y0_th 125.6 115.6 135.6 None True None None\n",
|
|
|
|
"time 1st fit: 0.335 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 0,6\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 124.8909916649399, 'x0_th': 125.35264471205264, 'amp_bec': 0.44592093863560234, 'amp_th': 0.24131310850250906, 'sigma_bec': 22.881675505502773, 'sigma_th': 15.696093137012516}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.5892 0 1.431 None True None None\n",
|
|
|
|
"amp_th 0.3189 0 1.431 None True None None\n",
|
|
|
|
"sigma_th 15.7 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 22.88 0 57.38 None True None None\n",
|
|
|
|
"sigmay_bec 24.59 0 49.18 None True None None\n",
|
|
|
|
"x0_bec 124.2 114.2 134.2 None True None None\n",
|
|
|
|
"x0_th 124.2 114.2 134.2 None True None None\n",
|
|
|
|
"y0_bec 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"y0_th 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"time 1st fit: 0.294 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 0,7\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.04469492751748, 'x0_th': 124.7857884621788, 'amp_bec': 0.5608043784706194, 'amp_th': 0.16682391910241443, 'sigma_bec': 23.193603880722023, 'sigma_th': 14.658357655151772}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.7446 0 1.465 None True None None\n",
|
|
|
|
"amp_th 0.2215 0 1.465 None True None None\n",
|
|
|
|
"sigma_th 14.66 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 23.19 0 57.38 None True None None\n",
|
|
|
|
"sigmay_bec 25.41 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 124.4 114.4 134.4 None True None None\n",
|
|
|
|
"x0_th 124.4 114.4 134.4 None True None None\n",
|
|
|
|
"y0_bec 125.4 115.4 135.4 None True None None\n",
|
|
|
|
"y0_th 125.4 115.4 135.4 None True None None\n",
|
|
|
|
"time 1st fit: 0.246 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"No thermal part detected, performing fit without thermal function\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"time pure bec fit: 0.116 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 0,8\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.08153671213292, 'x0_th': 124.7558768216271, 'amp_bec': 0.5927708914537864, 'amp_th': 0.16249800996749553, 'sigma_bec': 23.254998019081764, 'sigma_th': 14.697158756687998}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.84 0 1.622 None True None None\n",
|
|
|
|
"amp_th 0.2303 0 1.622 None True None None\n",
|
|
|
|
"sigma_th 14.7 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 23.25 0 57.38 None True None None\n",
|
|
|
|
"sigmay_bec 25.41 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 124.5 114.5 134.5 None True None None\n",
|
|
|
|
"x0_th 124.5 114.5 134.5 None True None None\n",
|
|
|
|
"y0_bec 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"y0_th 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"time 1st fit: 0.273 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"No thermal part detected, performing fit without thermal function\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"time pure bec fit: 0.132 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 0,9\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.14832036671892, 'x0_th': 124.44756415270118, 'amp_bec': 0.5775981297541561, 'amp_th': 0.23938122478229795, 'sigma_bec': 23.095694571065323, 'sigma_th': 14.596478970725943}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.7835 0 1.651 None True None None\n",
|
|
|
|
"amp_th 0.3247 0 1.651 None True None None\n",
|
|
|
|
"sigma_th 14.6 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 23.1 0 57.38 None True None None\n",
|
|
|
|
"sigmay_bec 22.95 0 45.9 None True None None\n",
|
|
|
|
"x0_bec 124.4 114.4 134.4 None True None None\n",
|
|
|
|
"x0_th 124.4 114.4 134.4 None True None None\n",
|
|
|
|
"y0_bec 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"y0_th 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"time 1st fit: 0.349 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"No thermal part detected, performing fit without thermal function\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"time pure bec fit: 0.127 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 0,10\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.17723569835653, 'x0_th': 33.64171959660166, 'amp_bec': 0.6670196979301563, 'amp_th': 0.001172093233604589, 'sigma_bec': 25.278067756513355, 'sigma_th': 49.148384211550834}\n",
|
|
|
|
"Image seems to be pure BEC (guessed from 1d fit amplitude)\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.896 0 1.4 None True None None\n",
|
|
|
|
"amp_th 0 -inf inf None False None None\n",
|
|
|
|
"sigma_th 49.15 0 50 None False None None\n",
|
|
|
|
"sigmax_bec 25.28 0 63.93 None True None None\n",
|
|
|
|
"sigmay_bec 27.05 0 63.93 None True None None\n",
|
|
|
|
"x0_bec 124.7 114.7 134.7 None True None None\n",
|
|
|
|
"x0_th 1 -inf inf None False None None\n",
|
|
|
|
"y0_bec 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"y0_th 1 -inf inf None False None None\n",
|
|
|
|
"time 1st fit: 0.171 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 1,0\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 115.2999768678062, 'x0_th': 124.8610881345612, 'amp_bec': 0.017319670376729462, 'amp_th': 0.07888591648540823, 'sigma_bec': 15.994939453828422, 'sigma_th': 46.60622154086924}\n",
|
|
|
|
"Image seems to be purely thermal (guessed from 1d fit amplitude)\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0 0 1.225 None False None None\n",
|
|
|
|
"amp_th 0.209 0 1.225 None True None None\n",
|
|
|
|
"sigma_th 46.61 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 1 -inf inf None False None None\n",
|
|
|
|
"sigmay_bec 1 -inf inf None False None None\n",
|
|
|
|
"x0_bec 1 -inf inf None False None None\n",
|
|
|
|
"x0_th 122.4 112.4 132.4 None True None None\n",
|
|
|
|
"y0_bec 1 -inf inf None False None None\n",
|
|
|
|
"y0_th 127.4 117.4 137.4 None True None None\n",
|
|
|
|
"time 1st fit: 0.207 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 1,1\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.64091007896643, 'x0_th': 125.64514313918502, 'amp_bec': 0.14742375240111238, 'amp_th': 0.14686523357432518, 'sigma_bec': 14.7603215515683, 'sigma_th': 31.99614649538574}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.2183 0 1.255 None True None None\n",
|
|
|
|
"amp_th 0.2175 0 1.255 None True None None\n",
|
|
|
|
"sigma_th 32 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 14.76 0 47.54 None True None None\n",
|
|
|
|
"sigmay_bec 23.77 0 47.54 None True None None\n",
|
|
|
|
"x0_bec 123.8 113.8 133.8 None True None None\n",
|
|
|
|
"x0_th 123.8 113.8 133.8 None True None None\n",
|
|
|
|
"y0_bec 126.1 116.1 136.1 None True None None\n",
|
|
|
|
"y0_th 126.1 116.1 136.1 None True None None\n",
|
|
|
|
"time 1st fit: 0.752 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 1,2\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.47573499952959, 'x0_th': 121.3360031869806, 'amp_bec': 0.3488782243097099, 'amp_th': 0.11461950154784539, 'sigma_bec': 19.50209844607982, 'sigma_th': 31.308229448246607}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.4859 0 1.481 None True None None\n",
|
|
|
|
"amp_th 0.1596 0 1.481 None True None None\n",
|
|
|
|
"sigma_th 31.31 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 19.5 0 55.74 None True None None\n",
|
|
|
|
"sigmay_bec 13.93 0 27.87 None True None None\n",
|
|
|
|
"x0_bec 123.7 113.7 133.7 None True None None\n",
|
|
|
|
"x0_th 123.7 113.7 133.7 None True None None\n",
|
|
|
|
"y0_bec 129 119 139 None True None None\n",
|
|
|
|
"y0_th 129 119 139 None True None None\n",
|
|
|
|
"time 1st fit: 0.463 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 1,3\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 124.30117026347911, 'x0_th': 126.11199574611234, 'amp_bec': 0.30069680977837876, 'amp_th': 0.20541314543839723, 'sigma_bec': 20.05319776888755, 'sigma_th': 22.374354426220144}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.4567 0 1.973 None True None None\n",
|
|
|
|
"amp_th 0.312 0 1.973 None True None None\n",
|
|
|
|
"sigma_th 22.37 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 20.05 0 39.34 None True None None\n",
|
|
|
|
"sigmay_bec 20.49 0 40.98 None True None None\n",
|
|
|
|
"x0_bec 123 113 133 None True None None\n",
|
|
|
|
"x0_th 123 113 133 None True None None\n",
|
|
|
|
"y0_bec 127.8 117.8 137.8 None True None None\n",
|
|
|
|
"y0_th 127.8 117.8 137.8 None True None None\n",
|
|
|
|
"time 1st fit: 0.499 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"image 1,4\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 124.9862517955858, 'x0_th': 126.54880752038085, 'amp_bec': 0.44349528057747933, 'amp_th': 0.10946111445269097, 'sigma_bec': 21.87846319656666, 'sigma_th': 27.00891763857539}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.6429 0 1.761 None True None None\n",
|
|
|
|
"amp_th 0.1587 0 1.761 None True None None\n",
|
|
|
|
"sigma_th 27.01 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 21.88 0 52.46 None True None None\n",
|
|
|
|
"sigmay_bec 25.41 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 121.6 111.6 131.6 None True None None\n",
|
|
|
|
"x0_th 121.6 111.6 131.6 None True None None\n",
|
|
|
|
"y0_bec 125.8 115.8 135.8 None True None None\n",
|
|
|
|
"y0_th 125.8 115.8 135.8 None True None None\n",
|
|
|
|
"time 1st fit: 0.514 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 1,5\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 123.62961045437524, 'x0_th': 127.39212821302428, 'amp_bec': 0.36843957335640354, 'amp_th': 0.3129914230267123, 'sigma_bec': 22.581842629500287, 'sigma_th': 16.01451287267635}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.4673 0 1.731 None True None None\n",
|
|
|
|
"amp_th 0.3969 0 1.731 None True None None\n",
|
|
|
|
"sigma_th 16.01 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 22.58 0 55.74 None True None None\n",
|
|
|
|
"sigmay_bec 19.67 0 39.34 None True None None\n",
|
|
|
|
"x0_bec 125.6 115.6 135.6 None True None None\n",
|
|
|
|
"x0_th 125.6 115.6 135.6 None True None None\n",
|
|
|
|
"y0_bec 129.1 119.1 139.1 None True None None\n",
|
|
|
|
"y0_th 129.1 119.1 139.1 None True None None\n",
|
|
|
|
"time 1st fit: 0.429 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 1,6\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 123.99541994176477, 'x0_th': 126.96289225537845, 'amp_bec': 0.45407626835677517, 'amp_th': 0.2954323696551742, 'sigma_bec': 23.228122284311485, 'sigma_th': 14.680173311781266}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.5913 0 2.092 None True None None\n",
|
|
|
|
"amp_th 0.3847 0 2.092 None True None None\n",
|
|
|
|
"sigma_th 14.68 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 23.23 0 52.46 None True None None\n",
|
|
|
|
"sigmay_bec 22.13 0 44.26 None True None None\n",
|
|
|
|
"x0_bec 123 113 133 None True None None\n",
|
|
|
|
"x0_th 123 113 133 None True None None\n",
|
|
|
|
"y0_bec 124.9 114.9 134.9 None True None None\n",
|
|
|
|
"y0_th 124.9 114.9 134.9 None True None None\n",
|
|
|
|
"time 1st fit: 0.444 s\n",
|
|
|
|
"\n",
|
|
|
|
"image 1,7\n",
|
|
|
|
"{'x0_bec': 124.48568621006982, 'x0_th': 129.05342476497512, 'amp_bec': 0.675384310916434, 'amp_th': 0.1756796886879987, 'sigma_bec': 23.19598463923248, 'sigma_th': 14.659862294155865}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.9392 0 2.832 None True None None\n",
|
|
|
|
"amp_th 0.2443 0 2.832 None True None None\n",
|
|
|
|
"sigma_th 14.66 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 23.2 0 37.7 None True None None\n",
|
|
|
|
"sigmay_bec 18.85 0 37.7 None True None None\n",
|
|
|
|
"x0_bec 124.9 114.9 134.9 None True None None\n",
|
|
|
|
"x0_th 124.9 114.9 134.9 None True None None\n",
|
|
|
|
"y0_bec 125.4 115.4 135.4 None True None None\n",
|
|
|
|
"y0_th 125.4 115.4 135.4 None True None None\n",
|
|
|
|
"time 1st fit: 0.643 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"No thermal part detected, performing fit without thermal function\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"time pure bec fit: 0.341 s\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 1,8\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 125.88235659033784, 'x0_th': 122.20851997777476, 'amp_bec': 0.6599688637476858, 'amp_th': 0.23095084283480255, 'sigma_bec': 22.94039969781213, 'sigma_th': 14.498332644737234}\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 0.8676 0 2.488 None True None None\n",
|
|
|
|
"amp_th 0.3036 0 2.488 None True None None\n",
|
|
|
|
"sigma_th 14.5 0 250 None True None None\n",
|
|
|
|
"sigmax_bec 22.94 0 49.18 None True None None\n",
|
|
|
|
"sigmay_bec 18.03 0 36.07 None True None None\n",
|
|
|
|
"x0_bec 124.3 114.3 134.3 None True None None\n",
|
|
|
|
"x0_th 124.3 114.3 134.3 None True None None\n",
|
|
|
|
"y0_bec 125.8 115.8 135.8 None True None None\n",
|
|
|
|
"y0_th 125.8 115.8 135.8 None True None None\n",
|
|
|
|
"time 1st fit: 0.408 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"No thermal part detected, performing fit without thermal function\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"time pure bec fit: 0.301 s\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"image 1,9\n",
|
|
|
|
"{'x0_bec': 124.65703878309688, 'x0_th': 151.0411000719266, 'amp_bec': 0.8167723325112359, 'amp_th': 0.028188745783018408, 'sigma_bec': 23.461295260810388, 'sigma_th': 22.516913844745105}\n",
|
|
|
|
"Image seems to be pure BEC (guessed from 1d fit amplitude)\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 1.175 0 2.53 None True None None\n",
|
|
|
|
"amp_th 0 -inf inf None False None None\n",
|
|
|
|
"sigma_th 22.52 0 50 None False None None\n",
|
|
|
|
"sigmax_bec 23.46 0 50.82 None True None None\n",
|
|
|
|
"sigmay_bec 21.31 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 124.3 114.3 134.3 None True None None\n",
|
|
|
|
"x0_th 1 -inf inf None False None None\n",
|
|
|
|
"y0_bec 125.5 115.5 135.5 None True None None\n",
|
|
|
|
"y0_th 1 -inf inf None False None None\n",
|
|
|
|
"time 1st fit: 0.147 s\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"image 1,10\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"{'x0_bec': 124.86950626446966, 'x0_th': 167.2366912201061, 'amp_bec': 0.7288161256417663, 'amp_th': 0.007497160034535551, 'sigma_bec': 26.14829032722183, 'sigma_th': 16.525719532048736}\n",
|
|
|
|
"Image seems to be pure BEC (guessed from 1d fit amplitude)\n",
|
|
|
|
"Name Value Min Max Stderr Vary Expr Brute_Step\n",
|
|
|
|
"amp_bec 1.087 0 2.192 None True None None\n",
|
|
|
|
"amp_th 0 -inf inf None False None None\n",
|
|
|
|
"sigma_th 16.53 0 50 None False None None\n",
|
|
|
|
"sigmax_bec 26.15 0 50.82 None True None None\n",
|
|
|
|
"sigmay_bec 22.13 0 50.82 None True None None\n",
|
|
|
|
"x0_bec 125.3 115.3 135.3 None True None None\n",
|
|
|
|
"x0_th 1 -inf inf None False None None\n",
|
|
|
|
"y0_bec 126.4 116.4 136.4 None True None None\n",
|
|
|
|
"y0_th 1 -inf inf None False None None\n",
|
|
|
|
"time 1st fit: 0.116 s\n",
|
|
|
|
"fitting time = 0.413 +- 0.207\n",
|
|
|
|
"max fitting time = 0.988s\n",
|
|
|
|
"[0.24640846 0.49725819 0.37406635 0.31478739 0.29485202 0.33671474\n",
|
|
|
|
" 0.29728603 0.36642241 0.40815687 0.48236537 0.17365742 0.20959353\n",
|
|
|
|
" 0.75546026 0.46600842 0.50232697 0.51688814 0.4309833 0.44705105\n",
|
|
|
|
" 0.98757935 0.71261954 0.14972115 0.11826086]\n"
|
2023-07-26 09:41:51 +02:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"result = []\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"result_1 = []\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"times = []\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"x = np.linspace(0,shape[3],cut_width)\n",
|
|
|
|
"y = np.linspace(0,shape[2], cut_width)\n",
|
2023-07-20 10:19:32 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"X,Y = np.meshgrid(x, y)\n",
|
|
|
|
"X_1d = X.flatten()\n",
|
|
|
|
"Y_1d = Y.flatten()\n",
|
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" temp_res_arr = []\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" temp_res_arr_1 = []\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" for j in range(0,shape[1]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" print()\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" print(f'image {i},{j}')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" data = cropOD[i,j]\n",
|
|
|
|
" fitModel = lmfit.Model(density_profile_BEC_2d, independent_vars=['x','y'])\n",
|
|
|
|
" #fitModel.set_param_hint('deltax', value=5)\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" bval_1d = result_x[i][j].best_values\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" print(bval_1d)\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" S = np.max(gaussian_filter(data, sigma=1))/(bval_1d['amp_bec'] + bval_1d['amp_th'])\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" params = lmfit.Parameters()\n",
|
|
|
|
" #print(bval['sigma_th'])\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" do_fit_2 = True\n",
|
|
|
|
" if bval_1d['amp_th']/bval_1d['amp_bec'] > 4:\n",
|
|
|
|
" print('Image seems to be purely thermal (guessed from 1d fit amplitude)')\n",
|
|
|
|
" do_fit_2 = False\n",
|
|
|
|
" params.add_many(\n",
|
|
|
|
" ('amp_bec', 0, False, 0, 1.3 * np.max(data)),\n",
|
|
|
|
" ('amp_th',S * bval_1d['amp_th'], True, 0, 1.3 * np.max(data)),\n",
|
|
|
|
" ('x0_bec',1, False),\n",
|
|
|
|
" ('y0_bec',1, False),\n",
|
|
|
|
" ('x0_th',center[i,j,0], True, center[i,j,0] -10, center[i,j,0] + 10),\n",
|
|
|
|
" ('y0_th',center[i,j,1], True, center[i,j,1] -10, center[i,j,1] + 10),\n",
|
|
|
|
" ('sigmax_bec', 1, False),\n",
|
|
|
|
" ('sigmay_bec', 1, False),\n",
|
|
|
|
" ('sigma_th',bval_1d['sigma_th'], True, 0, cut_width)\n",
|
|
|
|
" )\n",
|
|
|
|
"\n",
|
|
|
|
" elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10:\n",
|
|
|
|
" print('Image seems to be pure BEC (guessed from 1d fit amplitude)')\n",
|
|
|
|
" do_fit_2 = False\n",
|
|
|
|
" params.add_many(\n",
|
|
|
|
" ('amp_bec', S * bval_1d['amp_bec'], True, 0, 1.3 * np.max(data)),\n",
|
|
|
|
" ('amp_th',0, False),\n",
|
|
|
|
" ('x0_bec',center[i,j,0], True, center[i,j,0] -10, center[i,j,0] + 10),\n",
|
|
|
|
" ('y0_bec',center[i,j,1], True, center[i,j,1] - 10, center[i,j,1] + 10),\n",
|
|
|
|
" ('x0_th', 1, False),\n",
|
|
|
|
" ('y0_th', 1, False),\n",
|
|
|
|
" ('sigmax_bec',bval_1d['sigma_bec'], True, 0, 2/1.22 * BEC_width_guess[i,j,0]),\n",
|
|
|
|
" ('sigmay_bec',BEC_width_guess[i,j,1]/1.22, True, 0, 2/1.22 * BEC_width_guess[i,j,0]),\n",
|
|
|
|
" ('sigma_th',bval_1d['sigma_th'], False, 0, 50)\n",
|
|
|
|
" )\n",
|
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"\n",
|
|
|
|
" else:\n",
|
|
|
|
" params.add_many(\n",
|
|
|
|
" ('amp_bec', S * bval_1d['amp_bec'], True, 0, 1.3 * np.max(data)),\n",
|
|
|
|
" ('amp_th',S * bval_1d['amp_th'], True, 0, 1.3 * np.max(data)),\n",
|
|
|
|
" ('x0_bec',center[i,j,0], True, center[i,j,0] -10, center[i,j,0] + 10),\n",
|
|
|
|
" ('y0_bec',center[i,j,1], True, center[i,j,1] -10, center[i,j,1] + 10),\n",
|
|
|
|
" ('x0_th',center[i,j,0], True, center[i,j,0] -10, center[i,j,0] + 10),\n",
|
|
|
|
" ('y0_th',center[i,j,1], True, center[i,j,1] -10, center[i,j,1] + 10),\n",
|
|
|
|
" ('sigmax_bec',bval_1d['sigma_bec'], True, 0, 2/1.22 * BEC_width_guess[i,j,0]),\n",
|
|
|
|
" ('sigmay_bec',BEC_width_guess[i,j,1]/1.22, True, 0, 2/1.22 * BEC_width_guess[i,j,1]),\n",
|
|
|
|
" ('sigma_th',bval_1d['sigma_th'], True, 0, cut_width)\n",
|
|
|
|
" )\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" params.pretty_print()\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
|
|
|
" data1d = data.flatten()\n",
|
|
|
|
" start = time.time()\n",
|
|
|
|
" res = fitModel.fit(data1d, x=X_1d, y=Y_1d, params=params)\n",
|
|
|
|
" stop = time.time()\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" temp_res_arr_1.append(res)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" # Check if there is an thermal part\n",
|
|
|
|
" bval = res.best_values\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" sigma_cut = max(bval['sigmay_bec'], bval['sigmax_bec'])\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" tf_fit_2 = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5*sigma_cut)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" mask = np.where(tf_fit > 0, np.nan, data)\n",
|
|
|
|
" #mask[i,j] = gaussian_filter(mask[i,j], sigma = 0.4)\n",
|
|
|
|
" mask = np.where(tf_fit_2 > 0, mask, np.nan)\n",
|
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" check_value = np.nansum(mask)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" print(f'time 1st fit: {stop-start :.3f} s')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" # if (check_value < 45) or ((check_value > 10000) and (bval['sigma_th'] < min(bval['sigmax_bec'], bval['sigmay_bec']))):\n",
|
|
|
|
" #check_value = 200\n",
|
|
|
|
" if check_value < 45 and do_fit_2:\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" print('No thermal part detected, performing fit without thermal function')\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" # if check_value > 200:\n",
|
|
|
|
" # print('Sigma Thermal smaller than BEC, but still strong part around masked region --> BEC guessed wrong')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" params = lmfit.Parameters()\n",
|
|
|
|
" #print(bval['sigma_th'])\n",
|
|
|
|
" params.add_many(\n",
|
|
|
|
" ('amp_bec', S * bval_1d['amp_bec'], True, 0, 1.3 * np.max(data)),\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" ('amp_th',0, False),\n",
|
|
|
|
" ('x0_bec',center[i,j,0], True, center[i,j,0] -10, center[i,j,0] + 10),\n",
|
|
|
|
" ('y0_bec',center[i,j,1], True, center[i,j,1] - 10, center[i,j,1] + 10),\n",
|
|
|
|
" ('x0_th', 1, False),\n",
|
|
|
|
" ('y0_th', 1, False),\n",
|
|
|
|
" ('sigmax_bec',bval_1d['sigma_bec'], True, 0, 2/1.22 * BEC_width_guess[i,j,0]),\n",
|
|
|
|
" ('sigmay_bec',BEC_width_guess[i,j,1]/1.22, True, 0, 2/1.22 * BEC_width_guess[i,j,0]),\n",
|
|
|
|
" ('sigma_th',bval_1d['sigma_th'], False, 0, 50)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" )\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" start2 = time.time()\n",
|
|
|
|
" res = fitModel.fit(data1d, x=X_1d, y=Y_1d, params=params)\n",
|
|
|
|
" stop2 = time.time()\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" print(f'time pure bec fit: {stop2-start2 :.3f} s')\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" print('')\n",
|
|
|
|
" stop2 = time.time()\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" times.append(stop2-start)\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" temp_res_arr.append(res)\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" result_1.append(temp_res_arr_1)\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" result.append(temp_res_arr)\n",
|
|
|
|
"times = np.array(times)\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"print(f\"fitting time = {np.mean(times):.3f} +- {np.std(times, ddof=1):.3f}\")\n",
|
|
|
|
"print(f\"max fitting time = {np.max(times) :.3f}s\")\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"print(times)\n",
|
|
|
|
"\n"
|
2023-07-20 20:34:19 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-02T14:56:03.655488900Z",
|
|
|
|
"start_time": "2023-08-02T14:55:54.444880200Z"
|
2023-07-20 20:34:19 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"source": [
|
2023-07-27 17:16:08 +02:00
|
|
|
"## Plotting"
|
2023-07-20 20:34:19 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 15,
|
2023-07-20 20:34:19 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
2023-07-26 09:41:51 +02:00
|
|
|
"data": {
|
2023-07-27 17:16:08 +02:00
|
|
|
"text/plain": "<Figure size 1400x8800 with 110 Axes>",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AABsCCAYAAADim9lVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUxfvA8c/QEmqoofcmvaogKFV6kd5EgiAIgoLwVYNl90CqCqgoiiJNqiAISlG6IKJUEfhB6J1QQy+B+f0xe5sLJCGEhCLP2xcvL3ezs7N7t7e3z848o7TWGiGEEEIIIYQQQgghRLxK9KAbIIQQQgghhBBCCCHEf5EE3oQQQgghhBBCCCGESAASeBNCCCGEEEIIIYQQIgFI4E0IIYQQQgghhBBCiAQggTchhBBCCCGEEEIIIRKABN6EEEIIIYQQQgghhEgAEngTQgghhBBCCCGEECIBSOBNCCGEEEIIIYQQQogEIIE3IYQQQgghhBBCCCESgATehBBCiDhSSqGUomrVqg+6KUKIR5Rt2+53yfLlyx90c4S4jZzrhHhw5Pj7b0jyoBsgxKNKKRXl88mSJSNNmjQEBASQO3duypYty9NPP039+vVJnjz5fW3j+PHj2bdvH2B+2AshbhfdsRydN954g5EjR8aq7Jw5c9i0aRMAvXr1Im3atHfXOCGiIOefh49t23g8nrta5syZM7H6Tjh79qz7nVO6dGleeOGFu2+geKg9bseLEA8TOf7E/SCBNyHi2bVr1zh58iQnT55k9+7dLF26FIC0adPSoUMHPB4PAQEB96Ut48ePZ8WKFYCcSIR4EObMmcOECRMACAoKksCbSFBy/vlvOnv2rBvU69ChgwTe/oPkeBHiwZHjT9wPEngTIh7Mnj3bfay1JiwsjDNnzrBp0yZWrlzJvn37OHv2LJ9++imzZs1i6tSpVK5c+QG2WAgRFd9jOTr58+d3H2utE7I5QtyRnH8ePq1ataJ169Z3LJcyZUrAXOjJxZ4QQgjx3yWBNyHiQUx3n7XWLFiwgF69ehESEsKhQ4do0KABq1evplixYvevkUKIO5KeJOJRI+efh88TTzwh3yVCCCGEcMnkCkIkMKUU9erVY926dW4vg7CwMFq0aMHNmzcfcOuEEEL8V8n5RwghhBDiwZPAmxD3SZo0aZgxY4ab42n79u1Mnz49yrKXL19m9uzZvPbaazz99NNkyJCBpEmTEhAQQLFixejWrRubN2+Odl1Vq1ZFKeXmK4CIGXF8/906tCU8PJxFixbRp08fKleuTGBgIMmSJSN16tQUKlSIoKAgVq5cec/7Qoj/iuhmmgoKCkIp5eZ3A8ibN+9tx2BQUND9bbB4LMn55+EW3aym+/btQylF3rx53ecmTJgQ5f70JgYXd+/SpUt8+eWXNGjQgJw5c5I8eXKSJ09Ovnz5aNq0KWPGjOHcuXO3LXc3Mw1GVzaux0tsHThwgFGjRtGiRQsKFy5MqlSpSJYsGYGBgVStWpWhQ4cSFhYWp7qjorVmxowZNG/enFy5cuHv70/atGkpWbIkb775JiEhITEuv3z58tu2+cCBA/Tp04cnnniClClTkjZtWp555hm+/PJLwsPDY9Wu2bNnU79+fTJnzoy/vz958uThxRdfZO3atYDJ8eVd7/jx4+O07Z07d3br6NmzZ4xlP/74Y7dsrVq1Huu0FXL8yfF3r8ffwoUL3eVff/31WC3z+uuvu8ssWLDgrtcZJ1oIESeA++9uvPXWW+5yNWvWjLJMnjx5ItUf3b/g4OAol69SpUqslrcsK9JyVatWjdVyHTp00FevXr2r7RbiYRXXY9l32SpVqkR6vkOHDrE+loS4W3L+efjOP5ZlRbttd7PssmXL3Of37t0bq30C6L1798br9jwuFixYoDNnznzH/RsUFHTbstF9/0clurJxPV5iY9myZVopdce6M2XKpH///fc4td/XsWPHdMWKFWNcV9KkSfXgwYNjbLPvNi9YsECnTZs22vqef/55feXKlWjru3btmm7RokW0yydOnFh//PHHety4ce5z48aNu9OujdKFCxd0oUKF3Hp+/vnnKMtt2LBBJ0uWTAM6Y8aM+siRI3Fa33+BHH9y/MXH8Xfjxg2dN29eDeh06dLpy5cvx1j+8uXLOl26dBrQuXLl0jdu3LjrdcaF5HgT4j5r27Ytw4YNA+CPP/7g+vXrJE2aNFKZy5cvkz59ep5//nnKlClD9uzZSZo0KYcPH2bDhg3MmDGD69evM3jwYAIDA+nVq1ek5T/88ENOnjzJe++9x9atW4Gok8Y/8cQTt603VapU1KhRg3LlypEnTx78/f05evQoW7duZfLkyVy8eJEJEyaQNm1aRo4cGX87Roj/kNdff50XXniBzz77jGXLlgHw9ddfExgYGKlcrly5HkTzxGNKzj+PlsDAQGbPnk1oaChdu3YFoFq1alHe0b/1u0Xc2YwZM2jbti03btwAoGTJkjRr1owCBQqglOLgwYP88ccfLFq0KMF6JMX1eImNK1euoLWmWLFiVKtWjSJFipAhQwauXLnCwYMHmTNnDuvXr+fEiRM0aNCATZs2kSdPnjhtx/nz53nuuefYuXMnAFmzZuXll1+mWLFiXLp0id9++40ffviB69evExwczM2bN+nXr1+MdW7atImPPvoIrTVdu3alYsWK+Pn5sW7dOr766isuXrzIb7/9xsCBA+nfv3+UdXTp0oUffvgBAH9/f4KCgqhYsSKJEydm3bp1jB07lr59+9K8efM4bbevlClTMmXKFCpWrMj169d5+eWX+eeff8icObNb5tKlS7Rp04Zr164BMG7cOLJmzXrP634UyfEnx198HX+JEiXilVdeoV+/fpw5c4ZZs2bRrl27aMvPnDmTM2fOANCpUycSJbpPg0DvS3hPiP8gfCL2dyM8PFynTJnSXXbTpk23lVmwYIG+fv16tHXs27dPP/HEExrQqVOn1ufOnYuynO+dnNhYvHixvnTpUrSvnzx5UleuXFkDOlGiRHrPnj2xqleIh1lcj2XfZaO7C+nb8016pIj4Iuefh+/8kxA93rx8e75JL9n4sXv3bvdYSJQokR45cqS+efNmlGVPnz4d5ftyp+//uyl7t8dLbOzbt0//888/MZaZMmWKTpQoUbS9irzu1P5XX33VLVO5cmV99uzZ28osWrRI+/v7a0AnSZIkyu8f3x43OL1Rdu7ceVu5tWvX6iRJkrg9XKLqdbN48WK3nowZM+otW7bcVmbv3r06d+7ckdYZ1x5vXsOGDXPrql27dqTP1SuvvOK+9tprr93Teh5lcvwZcvzF3/F37NgxnTRp0lh9Jp577jm3x93BgwfjtL64kMCbEHF0LxfrhQsXdpf97bff4rT+pUuXunVMmjQpyjIJcSLZvXu3W+eAAQPirV4hHhTfY/lO/2696JXAm3gQ5Pzz8J1/fINnsfnn+30ggbf7zzcAEt2w6Tt52C/8Y+ull17SgE6ePLm+du1alGVian9oaKj28/PTgE6TJo0+evRotOv66KOP3LratWt32+u3XvivXLky2rratWsXY7n69eu7r0+bNi3aem5d570G3m7evKlr1qzp1jd8+HCttdazZs1ynytevPgdh8P9l8nxF0GOv/g7/nyHtUYVMNRa6x07drhl6tevH+d1xYVMriDEA5AuXTr38alTp+JUxzPPPOM+9ianvB/y5ctHlixZ7vt6hRBC3Ds5/4jH3Y0bN9zJRVKnTk1wcPADbtGD5T2eL1++zD///HPXy//yyy9cvXoVgA4dOrjHaFS6d+9O6tSpAZg7d647zDAqZcqU4dlnn4329erVq7uPt23bFum1K1eu8OuvvwKQLVs2WrRoEW09VatWpWTJktG+freUUkycOJGMGTMCEBwczC+//MIrr7wCmCF3U6dOxd/fP97W+SiR4y8yOf7i7/h79dVX3cfffvttlGV8n+/SpUu8rDe2JMebEA/AzZs33cdKqSjLhIaGMnHiRH799Ve2bdvGmTNnuHTpUpRlDx06FG9tO3fuHJMnT2b+/Pls2bKFkydPcvHixQRfrxAPg6hye/i
|
2023-07-26 09:41:51 +02:00
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
2023-07-20 20:34:19 +02:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"fig, axs = plt.subplots(shape[0] * shape[1], 5, figsize=(14, 4 * shape[0] * shape[1]),dpi = 100)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"ii = 0\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"for i in range(0,shape[0]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" for j in range(0,shape[1]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" axs[ii,0].set_title(f'image {i}, {j}, cond. frac = {cond_frac(result[i][j]) :.2f}')\n",
|
|
|
|
" lmfit.fit_report(result[i][j])\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" bval = result[i][j].best_values\n",
|
|
|
|
" fit = density_profile_BEC_2d(X,Y, **bval)\n",
|
|
|
|
" vmax = np.max(fit)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
" ax = axs[ii,0]\n",
|
|
|
|
" ax.pcolormesh(X, Y, cropOD[i,j], vmin=0, vmax=vmax, cmap='jet', shading='auto')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" #plt.colorbar(art, ax=ax, label='z')\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
|
|
|
" # Plot gaussian 2d Fit + legend including Width parameters\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax = axs[ii,1]\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax.pcolormesh(X, Y, fit, vmin=0, vmax=vmax, cmap='jet', shading='auto')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" #plt.colorbar(art, ax=ax, label='z')\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax = axs[ii,2]\n",
|
|
|
|
"\n",
|
|
|
|
" ax.pcolormesh(X, Y, fit-cropOD[i,j], vmin=0, vmax=0.2, cmap='jet', shading='auto')\n",
|
2023-07-20 20:34:19 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax = axs[ii,3]\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax.plot(x, cropOD[i,j, round(center[i,j,1]), :])\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" ax.plot(x, fit[round(center[i,j,1]), :])\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" ax.plot(x, thermal(x, bval['x0_th'], bval['amp_th'], bval['sigma_th']))\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax = axs[ii,4]\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ax.plot(y, cropOD[i,j, :, round(center[i,j,0])])\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" ax.plot(y, fit[:, round(center[i,j,0])])\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" ax.plot(x, thermal(y, bval['y0_th'], bval['amp_th'], bval['sigma_th']))\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" ii += 1\n",
|
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"axs[0,0].set_title(f'Data \\n \\n image {i}, {j}, cond. frac = {cond_frac(result[0][0]) :.2f}')\n",
|
|
|
|
"axs[0,1].set_title('Fit \\n \\n')\n",
|
|
|
|
"axs[0,2].set_title('Data - Fit \\n \\n')\n",
|
|
|
|
"axs[0,3].set_title('cut along x \\n \\n')\n",
|
|
|
|
"axs[0,4].set_title('cut along y \\n \\n')\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"plt.show()"
|
2023-07-20 20:34:19 +02:00
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T15:21:11.108359900Z",
|
|
|
|
"start_time": "2023-08-01T15:20:54.022000300Z"
|
2023-07-20 20:34:19 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 327,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 0\n",
|
|
|
|
"FWHM_x BEC: 32.75, FWHM_x thermal: 74.38\n",
|
|
|
|
"FWHM_y BEC: 25.59\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 2.91\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 1\n",
|
|
|
|
"FWHM_x BEC: 20.62, FWHM_x thermal: 54.05\n",
|
|
|
|
"FWHM_y BEC: 18.09\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 2.99\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 2\n",
|
|
|
|
"FWHM_x BEC: 23.84, FWHM_x thermal: 49.32\n",
|
|
|
|
"FWHM_y BEC: 20.18\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 2.44\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 3\n",
|
|
|
|
"FWHM_x BEC: 25.95, FWHM_x thermal: 41.75\n",
|
|
|
|
"FWHM_y BEC: 22.19\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.88\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 4\n",
|
|
|
|
"FWHM_x BEC: 27.86, FWHM_x thermal: 37.63\n",
|
|
|
|
"FWHM_y BEC: 23.50\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.60\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 5\n",
|
|
|
|
"FWHM_x BEC: 28.81, FWHM_x thermal: 34.44\n",
|
|
|
|
"FWHM_y BEC: 24.27\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.42\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 6\n",
|
|
|
|
"FWHM_x BEC: 30.15, FWHM_x thermal: 29.43\n",
|
|
|
|
"FWHM_y BEC: 25.28\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.16\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 7\n",
|
|
|
|
"FWHM_x BEC: 30.70, FWHM_x thermal: 25.68\n",
|
|
|
|
"FWHM_y BEC: 26.31\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.98\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 8\n",
|
|
|
|
"FWHM_x BEC: 32.13, FWHM_x thermal: 19.48\n",
|
|
|
|
"FWHM_y BEC: 27.06\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.72\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 9\n",
|
|
|
|
"FWHM_x BEC: 32.91, FWHM_x thermal: 17.25\n",
|
|
|
|
"FWHM_y BEC: 27.48\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.63\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 10\n",
|
|
|
|
"FWHM_x BEC: 33.10, FWHM_x thermal: 1.21\n",
|
|
|
|
"FWHM_y BEC: 28.28\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.04\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 0\n",
|
|
|
|
"FWHM_x BEC: 29.53, FWHM_x thermal: 79.98\n",
|
|
|
|
"FWHM_y BEC: 3.75\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 21.31\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 1\n",
|
|
|
|
"FWHM_x BEC: 19.91, FWHM_x thermal: 56.26\n",
|
|
|
|
"FWHM_y BEC: 18.48\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 3.04\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 2\n",
|
|
|
|
"FWHM_x BEC: 23.70, FWHM_x thermal: 48.49\n",
|
|
|
|
"FWHM_y BEC: 19.98\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 2.43\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 3\n",
|
|
|
|
"FWHM_x BEC: 26.07, FWHM_x thermal: 42.63\n",
|
|
|
|
"FWHM_y BEC: 21.63\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.97\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 4\n",
|
|
|
|
"FWHM_x BEC: 27.87, FWHM_x thermal: 36.96\n",
|
|
|
|
"FWHM_y BEC: 23.97\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.54\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 5\n",
|
|
|
|
"FWHM_x BEC: 29.86, FWHM_x thermal: 33.99\n",
|
|
|
|
"FWHM_y BEC: 24.15\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.41\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 6\n",
|
|
|
|
"FWHM_x BEC: 30.65, FWHM_x thermal: 35.69\n",
|
|
|
|
"FWHM_y BEC: 25.63\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.39\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 7\n",
|
|
|
|
"FWHM_x BEC: 16.17, FWHM_x thermal: 20.71\n",
|
|
|
|
"FWHM_y BEC: 25.97\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 1.28\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 8\n",
|
|
|
|
"FWHM_x BEC: 31.36, FWHM_x thermal: 18.54\n",
|
|
|
|
"FWHM_y BEC: 28.22\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.66\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 9\n",
|
|
|
|
"FWHM_x BEC: 31.84, FWHM_x thermal: 16.81\n",
|
|
|
|
"FWHM_y BEC: 27.11\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.62\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 1, 10\n",
|
|
|
|
"FWHM_x BEC: 33.73, FWHM_x thermal: 0.04\n",
|
|
|
|
"FWHM_y BEC: 27.85\n",
|
|
|
|
"Ratio fwhm_th/fwhm_bec: 0.00\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0,shape[1]):\n",
|
|
|
|
" sx = result[i][j].best_values['sigmax_bec']\n",
|
|
|
|
" sy = result[i][j].best_values['sigmay_bec']\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" s_th = result[i][j].best_values['sigma_th']\n",
|
|
|
|
"\n",
|
|
|
|
" print(f'image {i}, {j}')\n",
|
|
|
|
" print(f'FWHM_x BEC: { sx*1.22:.2f}, FWHM_x thermal: { s_th*1.93:.2f}')\n",
|
|
|
|
" print(f'FWHM_y BEC: { sy*1.22:.2f}')\n",
|
|
|
|
" print(f'Ratio fwhm_th/fwhm_bec: { 1/min(sx,sy)/1.22 * s_th *1.93 :.2f}')\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
" print('')"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-07-31T14:30:32.405769500Z",
|
|
|
|
"start_time": "2023-07-31T14:30:32.206822Z"
|
2023-07-26 09:41:51 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
2023-07-20 20:34:19 +02:00
|
|
|
"source": [],
|
2023-07-26 09:41:51 +02:00
|
|
|
"metadata": {
|
|
|
|
"collapsed": false
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 188,
|
2023-07-26 09:41:51 +02:00
|
|
|
"outputs": [
|
2023-07-27 17:16:08 +02:00
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"image 0, 0\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"ename": "type",
|
|
|
|
"evalue": "'numpy.ndarray' object is not callable",
|
|
|
|
"output_type": "error",
|
|
|
|
"traceback": [
|
|
|
|
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
|
|
|
|
"\u001B[1;31mTypeError\u001B[0m Traceback (most recent call last)",
|
|
|
|
"Cell \u001B[1;32mIn[188], line 12\u001B[0m\n\u001B[0;32m 10\u001B[0m arr \u001B[38;5;241m=\u001B[39m []\n\u001B[0;32m 11\u001B[0m bval \u001B[38;5;241m=\u001B[39m result[i][j]\u001B[38;5;241m.\u001B[39mbest_values\n\u001B[1;32m---> 12\u001B[0m sigma_cut \u001B[38;5;241m=\u001B[39m \u001B[43mmax_val\u001B[49m\u001B[43m(\u001B[49m\u001B[43mbval\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[38;5;124;43msigmay_bec\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbval\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[38;5;124;43msigmax_bec\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m)\u001B[49m\n\u001B[0;32m 13\u001B[0m tf_fit \u001B[38;5;241m=\u001B[39m ThomasFermi_2d(X,Y,centerx\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mx0_bec\u001B[39m\u001B[38;5;124m'\u001B[39m], centery\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124my0_bec\u001B[39m\u001B[38;5;124m'\u001B[39m], amplitude\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mamp_bec\u001B[39m\u001B[38;5;124m'\u001B[39m], sigmax\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124msigmax_bec\u001B[39m\u001B[38;5;124m'\u001B[39m]\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m1.22\u001B[39m, sigmay\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124msigmay_bec\u001B[39m\u001B[38;5;124m'\u001B[39m]\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m1.22\u001B[39m)\n\u001B[0;32m 14\u001B[0m tf_fit_2 \u001B[38;5;241m=\u001B[39m ThomasFermi_2d(X,Y,centerx\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mx0_bec\u001B[39m\u001B[38;5;124m'\u001B[39m], centery\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124my0_bec\u001B[39m\u001B[38;5;124m'\u001B[39m], amplitude\u001B[38;5;241m=\u001B[39mbval[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mamp_bec\u001B[39m\u001B[38;5;124m'\u001B[39m], sigmax\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m1.5\u001B[39m \u001B[38;5;241m*\u001B[39m sigma_cut\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m1.22\u001B[39m, sigmay\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m1.5\u001B[39m\u001B[38;5;241m*\u001B[39m sigma_cut\u001B[38;5;241m/\u001B[39m\u001B[38;5;241m1.22\u001B[39m)\n",
|
|
|
|
"\u001B[1;31mTypeError\u001B[0m: 'numpy.ndarray' object is not callable"
|
2023-07-27 17:16:08 +02:00
|
|
|
]
|
|
|
|
},
|
2023-07-26 09:41:51 +02:00
|
|
|
{
|
|
|
|
"data": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"text/plain": "<Figure size 1000x1000 with 22 Axes>",
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAMtCAYAAAC8Vb+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA900lEQVR4nO3cfWydZf0/8E9hyRIjK4lxW9l6NlnXOHCge8BloFjAOCOIuvhE8HHMaQQNENAZzHwgYIJGTYxBDSwh868xZcQQYwRDINHE6ci0ZFqrpEcZm2TuFI0bW3r9/vj+1jja+9rOWR9Or75eyf1H22tXr/vdz1benPbuSCmlAAAAKMQ5030AAACAiaTkAAAARVFyAACAoig5AABAUZQcAACgKEoOAABQFCUHAAAoipIDAAAURckBAACK0lTJ+dznPhdLly6Njo6OeOaZZyrXPfDAA7F8+fJYtmxZbN68OY4fP36255wR5FNNNnnyqSabPPnkyaeabPLkU002efJpE6kJTz75ZKrX62nJkiVp7969467561//mrq6utKBAwfSyMhIuu6669L3vve9Zj7NjCWfarLJk0812eTJJ08+1WSTJ59qssmTT3uY00wheutb33raNQ8//HC8+93vjoULF0ZExKc//em455574rOf/ey4648dOxbHjh0bfXtkZCQOHz4cr3nNa6Kjo6OZ4027N77xjRERkVKKf//73zE8PDxmzY4dO2LDhg3xqle9Kl566aX4yEc+Evfdd1985jOfiXPOGfvCWin5tJLNRz/60fjWt74V119/fVxwwQXyMTtmZxxmJ08+1WSTJ59qssmTz8RKKcVLL71U+f089weblmumN998c7rnnntG3+7v70/d3d2Ve23bti1FxKy/6vW6fOQjG/nIpo0u+chGPrKRT/tcVdlU6UgppWjS0qVL45FHHhltqv/rlltuiQsuuCC2bt0aERHPPvtsbNiwIYaGhsbd65XNtNFoRK1Wi3q9HvPmzWv2aG1h5cqV8eMf/zguueSSMR+74447YuHChXH77bdHRMSePXvi6quvjiNHjkRnZ+eY9aXl00w2+/fvj/e+973x/PPPyyfMjtnJMzt58qkmmzz5VJNNnnwmxvDwcHR3d1dmU6WpH1c7E7VaLQYHB0fffu6556JWq1Wunzt3bsydO3fM++fNmzdjv2gdHR3x6le/etzz9/T0xODg4OjHDh8+PPpnxlNaPs1k8+KLL0atVovnn39ePmF2zE6e2cmTTzXZ5Mmnmmzy5DOxmv2xvAl/hPTGjRvj0UcfjRdeeCFSSnH//ffHhz70oYn+NDPWK/N58MEHp/tIbWO82dm4ceN0H6ttmJ1qZifP7OTJp5ps8uRTTTZ58pl8TZWcLVu2xOLFi+Pvf/97vOMd74ienp6IiLjpppvi0UcfjYiICy+8ML761a/G5ZdfHj09PfHa1742tmzZMvEnb0Ot5POa17xmOo88ZVqdnU984hPTeewpY3aqmZ08s5Mnn2qyyZNPNdnkyac9tPQ7OZNpeHg4Ojs7o9FozIqX35q9X/lM7PqZTDZ58qkmmzz5VJNNnnyqySZPPtVavdcJ/3E1AACA6aTkAAAARVFyAACAoig5AABAUZQcAACgKEoOAABQFCUHAAAoipIDAAAURckBAACKouQAAABFUXIAAICiKDkAAEBRlBwAAKAoSg4AAFAUJQcAACiKkgMAABRFyQEAAIqi5AAAAEVRcgAAgKIoOQAAQFGUHAAAoChKDgAAUBQlBwAAKIqSAwAAFEXJAQAAiqLkAAAARVFyAACAoig5AABAUZQcAACgKEoOAABQFCUHAAAoipIDAAAURckBAACKouQAAABFUXIAAICiKDkAAEBRlBwAAKAoSg4AAFAUJQcAACiKkgMAABRFyQEAAIqi5AAAAEVRcgAAgKIoOQAAQFGUHAAAoChKDgAAUBQlBwAAKIqSAwAAFEXJAQAAiqLkAAAARVFyAACAoig5AABAUZQcAACgKEoOAABQFCUHAAAoipIDAAAURckBAACKouQAAABFUXIAAICiKDkAAEBRlBwAAKAoTZecgYGBWL9+ffT29sbatWujv79/zJqRkZG47bbb4qKLLopLLrkk+vr64i9/+cuEHLidtZLNtddeOw0nnR7yqSabPPlUk02efPKazWf9+vURETE4ODjVR51yZifP7FQzO20iNamvry9t3749pZTSzp0705o1a8as+elPf5ouu+yy9PLLL6eUUvr617+e3v/+95/R/o1GI0VEajQazR5t2rWSzV133dXU/conb6bmI5s8+VSTTZ588prN5+S9vuc97zmj/WdTNimZnVcyO2ZnIrR6r029knPo0KHYs2dP3HjjjRERsXHjxqjX62Nepeno6Ihjx47F0aNHI6UUw8PDsXjx4nH3PHbsWAwPD59yzURnk02OfMrPRzZ58qkmmzz55LWaT0TEokWLxt1ztmdjdsyO2WkfTZWcer0eXV1dMWfOnIj4vy9QrVaLoaGhU9Zdd9118ba3vS0WLlwYXV1d8fjjj8fXvva1cfe89957o7Ozc/Tq7u5u8VamV6vZPPnkk9l95VN+PrLJk0812eTJJ6+VfHp7eyMi4ktf+tK4e87mbMyO2YkwO+1kUh48sGfPnvjjH/8Y//jHP+L555+Pq6++Oj796U+Pu3br1q3RaDRGr3q9PhlHahuvzObKK6/MrpePfE6STZ58qskmTz55/5vPn/70p4iIuPXWW8ddO5uzMTtjmZ1qZmfyNVVyuru748CBA3HixImIiEgpxdDQUNRqtVPWPfTQQ3HVVVfF+eefH+ecc0587GMfi1/96lfj7jl37tyYN2/eKddM1Go2N9xwQ3Zf+ZSfj2zy5FNNNnnyyWs1n4iIp556atw9Z3s2ZsfsmJ320VTJmT9/fqxatSp27NgRERG7du2KxYsXR09PzynrLrzwwnjiiSfi5ZdfjoiIn/3sZ/GGN7xhgo7cnlrN5uc///mUn3U6yKeabPLkU002efLJazWfiIgVK1ZM6VmnmtnJMzvVzE4bafYJB/v370/r1q1Ly5cvT6tXr0779u1LKaW0adOmtHv37pRSSkePHk033XRTev3rX59WrlyZ3v72t6fBwcEz2n8mPy2ilWz6+vpmzdM05FNNNnnyqSabPPnkNZvPxRdfnCIiPfPMM2e0/2zKxuyYnZPMzsRq9V47Uvr/j7toE8PDw9HZ2RmNRmNWvBTX7P3KZ2LXz2SyyZNPNdnkyaeabPLkU002efKp1uq9TsqDBwAAAKaLkgMAABRFyQEAAIqi5AAAAEVRcgAAgKIoOQAAQFGUHAAAoChKDgAAUBQlBwAAKIqSAwAAFEXJAQAAiqLkAAAARVFyAACAoig5AABAUZQcAACgKEoOAABQFCUHAAAoipIDAAAURckBAACKouQAAABFUXIAAICiKDkAAEBRlBwAAKAoSg4AAFAUJQcAACiKkgMAABRFyQEAAIqi5AAAAEVRcgAAgKIoOQAAQFGUHAAAoChKDgAAUBQlBwAAKIqSAwAAFEXJAQAAiqLkAAAARVFyAACAoig5AABAUZQcAACgKEoOAABQFCUHAAAoipIDAAAURckBAACKouQAAABFUXIAAICiKDkAAEBRlBwAAKAoSg4AAFAUJQcAACiKkgMAABRFyQEAAIqi5AAAAEVRcgAAgKIoOQAAQFGUHAAAoChKDgAAUBQlBwAAKIqSAwAAFEXJAQAAiqLkAAAARVFyAACAojRdcgYGBmL9+vXR29sba9eujf7+/nHX/eEPf4i3ve1tsWLFilixYkX85Cc/OevDtrtWslm7du0Un3L6yKeabPLkk9dsPiezefTRR6fymNPC7OSZnWpmJ8/sVDM7bSI1qa+vL23fvj2llNLOnTvTmjVrxqz5z3/+k173utelp556KqWU0okTJ9KhQ4fOaP9Go5EiIjUajWaPNu1ayebw4cNN3a988mZqPrLJk09es/mcvNfBwcEz2n82ZZOS2Xkls2N2xmN2qpmdidXqvTZVcg4ePJjOO++8dPz48ZRSSiMjI2nBggVpYGDglHU/+tG
|
2023-07-26 09:41:51 +02:00
|
|
|
},
|
|
|
|
"metadata": {},
|
2023-07-27 17:16:08 +02:00
|
|
|
"output_type": "display_data"
|
2023-07-26 09:41:51 +02:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-07-27 17:16:08 +02:00
|
|
|
"mask = np.zeros(shape)\n",
|
|
|
|
"mask2 = np.zeros(shape)\n",
|
|
|
|
"mask3 = []\n",
|
|
|
|
"fig, ax = plt.subplots(shape[0],shape[1], figsize=(10,10))\n",
|
|
|
|
"\n",
|
2023-07-26 09:41:51 +02:00
|
|
|
"for i in range(0, shape[0]):\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" temp_arr = []\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" print(f'image {i}, {j}')\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" arr = []\n",
|
|
|
|
" bval = result[i][j].best_values\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" sigma_cut = max_val(bval['sigmay_bec'], bval['sigmax_bec'])\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" tf_fit_2 = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5* sigma_cut)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" mask[i,j] = np.where(tf_fit > 0, np.nan, cropOD[i,j])\n",
|
|
|
|
" #mask[i,j] = gaussian_filter(mask[i,j], sigma = 0.4)\n",
|
|
|
|
" #mask[i,j] = np.where(tf_fit_2 > 0, mask[i,j], np.nan)\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" mask2[i,j] = np.where(tf_fit_2 > 0, mask[i,j], np.nan)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
" # print(f'max = {np.nanmax(mask[i,j])}, {np.nanmax(mask[i,j]) / np.nanmin(mask[i,j])}')\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" check_value = np.nanmean(mask2[i,j]) / (bval[\"amp_bec\"] + bval[\"amp_th\"])\n",
|
|
|
|
"\n",
|
|
|
|
" print(f'check val, {np.nansum(mask2[i,j])}')\n",
|
|
|
|
"\n",
|
|
|
|
" ax[i,j].pcolormesh(mask2[i,j], cmap='jet',vmin=0,vmax=0.5)\n",
|
|
|
|
"\n",
|
|
|
|
"plt.show()"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T13:28:57.973001500Z",
|
|
|
|
"start_time": "2023-08-01T13:28:54.940256400Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 14,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"image: 0, 0\n",
|
|
|
|
"amp_bec: 0.000, (init = 0.000), bounds = [0.00 : 0.40] \n",
|
|
|
|
"amp_th: 0.103, (init = 0.135), bounds = [0.00 : 0.40] \n",
|
|
|
|
"x0_bec: 114.060, (init = 114.060), bounds = [114.06 : 134.06] \n",
|
|
|
|
"y0_bec: 114.291, (init = 114.291), bounds = [114.29 : 134.29] \n",
|
|
|
|
"x0_th: 125.454, (init = 124.060), bounds = [114.06 : 134.06] \n",
|
|
|
|
"y0_th: 125.676, (init = 124.291), bounds = [114.29 : 134.29] \n",
|
|
|
|
"sigmax_bec: 1.000, (init = 1.000), bounds = [0.00 : 95.08] \n",
|
|
|
|
"sigmay_bec: 1.000, (init = 1.000), bounds = [0.00 : 72.13] \n",
|
|
|
|
"sigma_th: 37.876, (init = 38.731), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 1\n",
|
|
|
|
"amp_bec: 0.217, (init = 0.170), bounds = [0.00 : 0.72] \n",
|
|
|
|
"amp_th: 0.169, (init = 0.229), bounds = [0.00 : 0.72] \n",
|
|
|
|
"x0_bec: 125.205, (init = 123.226), bounds = [113.23 : 133.23] \n",
|
|
|
|
"y0_bec: 126.138, (init = 126.090), bounds = [116.09 : 136.09] \n",
|
|
|
|
"x0_th: 124.613, (init = 123.226), bounds = [113.23 : 133.23] \n",
|
|
|
|
"y0_th: 126.036, (init = 126.090), bounds = [116.09 : 136.09] \n",
|
|
|
|
"sigmax_bec: 16.903, (init = 15.416), bounds = [0.00 : 59.02] \n",
|
|
|
|
"sigmay_bec: 14.835, (init = 23.770), bounds = [0.00 : 47.54] \n",
|
|
|
|
"sigma_th: 28.007, (init = 27.656), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 2\n",
|
|
|
|
"amp_bec: 0.351, (init = 0.308), bounds = [0.00 : 0.87] \n",
|
|
|
|
"amp_th: 0.186, (init = 0.244), bounds = [0.00 : 0.87] \n",
|
|
|
|
"x0_bec: 124.756, (init = 124.199), bounds = [114.20 : 134.20] \n",
|
|
|
|
"y0_bec: 125.997, (init = 125.119), bounds = [115.12 : 135.12] \n",
|
|
|
|
"x0_th: 125.359, (init = 124.199), bounds = [114.20 : 134.20] \n",
|
|
|
|
"y0_th: 125.902, (init = 125.119), bounds = [115.12 : 135.12] \n",
|
|
|
|
"sigmax_bec: 19.537, (init = 18.047), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 16.545, (init = 25.410), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigma_th: 25.553, (init = 26.639), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 3\n",
|
|
|
|
"amp_bec: 0.417, (init = 0.376), bounds = [0.00 : 1.07] \n",
|
|
|
|
"amp_th: 0.221, (init = 0.286), bounds = [0.00 : 1.07] \n",
|
|
|
|
"x0_bec: 124.875, (init = 124.288), bounds = [114.29 : 134.29] \n",
|
|
|
|
"y0_bec: 126.008, (init = 125.419), bounds = [115.42 : 135.42] \n",
|
|
|
|
"x0_th: 125.107, (init = 124.288), bounds = [114.29 : 134.29] \n",
|
|
|
|
"y0_th: 125.814, (init = 125.419), bounds = [115.42 : 135.42] \n",
|
|
|
|
"sigmax_bec: 21.269, (init = 19.490), bounds = [0.00 : 55.74] \n",
|
|
|
|
"sigmay_bec: 18.190, (init = 24.590), bounds = [0.00 : 49.18] \n",
|
|
|
|
"sigma_th: 21.630, (init = 21.472), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 4\n",
|
|
|
|
"amp_bec: 0.506, (init = 0.480), bounds = [0.00 : 1.24] \n",
|
|
|
|
"amp_th: 0.228, (init = 0.257), bounds = [0.00 : 1.24] \n",
|
|
|
|
"x0_bec: 125.172, (init = 124.844), bounds = [114.84 : 134.84] \n",
|
|
|
|
"y0_bec: 125.980, (init = 125.632), bounds = [115.63 : 135.63] \n",
|
|
|
|
"x0_th: 125.047, (init = 124.844), bounds = [114.84 : 134.84] \n",
|
|
|
|
"y0_th: 125.947, (init = 125.632), bounds = [115.63 : 135.63] \n",
|
|
|
|
"sigmax_bec: 22.839, (init = 20.901), bounds = [0.00 : 52.46] \n",
|
|
|
|
"sigmay_bec: 19.261, (init = 23.770), bounds = [0.00 : 47.54] \n",
|
|
|
|
"sigma_th: 19.498, (init = 20.335), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 5\n",
|
|
|
|
"amp_bec: 0.578, (init = 0.504), bounds = [0.00 : 1.26] \n",
|
|
|
|
"amp_th: 0.238, (init = 0.357), bounds = [0.00 : 1.26] \n",
|
|
|
|
"x0_bec: 124.950, (init = 124.472), bounds = [114.47 : 134.47] \n",
|
|
|
|
"y0_bec: 125.948, (init = 125.613), bounds = [115.61 : 135.61] \n",
|
|
|
|
"x0_th: 125.548, (init = 124.472), bounds = [114.47 : 134.47] \n",
|
|
|
|
"y0_th: 126.312, (init = 125.613), bounds = [115.61 : 135.61] \n",
|
|
|
|
"sigmax_bec: 23.612, (init = 21.613), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 19.890, (init = 25.410), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigma_th: 17.846, (init = 16.823), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 6\n",
|
|
|
|
"amp_bec: 0.624, (init = 0.589), bounds = [0.00 : 1.43] \n",
|
|
|
|
"amp_th: 0.273, (init = 0.319), bounds = [0.00 : 1.43] \n",
|
|
|
|
"x0_bec: 124.841, (init = 124.226), bounds = [114.23 : 134.23] \n",
|
|
|
|
"y0_bec: 126.087, (init = 125.493), bounds = [115.49 : 135.49] \n",
|
|
|
|
"x0_th: 125.518, (init = 124.226), bounds = [114.23 : 134.23] \n",
|
|
|
|
"y0_th: 125.328, (init = 125.493), bounds = [115.49 : 135.49] \n",
|
|
|
|
"sigmax_bec: 24.716, (init = 22.882), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 20.723, (init = 24.590), bounds = [0.00 : 49.18] \n",
|
|
|
|
"sigma_th: 15.245, (init = 15.696), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 7\n",
|
|
|
|
"amp_bec: 0.921, (init = 0.745), bounds = [0.00 : 1.47] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 1.47] \n",
|
|
|
|
"x0_bec: 124.991, (init = 124.374), bounds = [114.37 : 134.37] \n",
|
|
|
|
"y0_bec: 126.028, (init = 125.431), bounds = [115.43 : 135.43] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 25.377, (init = 23.194), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 22.347, (init = 25.410), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigma_th: 14.658, (init = 14.658), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 8\n",
|
|
|
|
"amp_bec: 0.961, (init = 0.840), bounds = [0.00 : 1.62] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 1.62] \n",
|
|
|
|
"x0_bec: 125.003, (init = 124.493), bounds = [114.49 : 134.49] \n",
|
|
|
|
"y0_bec: 125.923, (init = 125.501), bounds = [115.50 : 135.50] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 25.550, (init = 23.255), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 22.058, (init = 25.410), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigma_th: 14.697, (init = 14.697), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 9\n",
|
|
|
|
"amp_bec: 0.979, (init = 0.783), bounds = [0.00 : 1.65] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 1.65] \n",
|
|
|
|
"x0_bec: 124.977, (init = 124.406), bounds = [114.41 : 134.41] \n",
|
|
|
|
"y0_bec: 126.070, (init = 125.502), bounds = [115.50 : 135.50] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 25.456, (init = 23.096), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 21.924, (init = 22.951), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigma_th: 14.596, (init = 14.596), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 10\n",
|
|
|
|
"amp_bec: 0.876, (init = 0.896), bounds = [0.00 : 1.40] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 1.40] \n",
|
|
|
|
"x0_bec: 125.124, (init = 124.672), bounds = [114.67 : 134.67] \n",
|
|
|
|
"y0_bec: 125.952, (init = 125.545), bounds = [115.54 : 135.54] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 27.134, (init = 25.278), bounds = [0.00 : 63.93] \n",
|
|
|
|
"sigmay_bec: 23.177, (init = 27.049), bounds = [0.00 : 63.93] \n",
|
|
|
|
"sigma_th: 49.148, (init = 49.148), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 0\n",
|
|
|
|
"amp_bec: 0.000, (init = 0.000), bounds = [0.00 : 1.22] \n",
|
|
|
|
"amp_th: 0.094, (init = 0.209), bounds = [0.00 : 1.22] \n",
|
|
|
|
"x0_bec: 112.431, (init = 112.431), bounds = [112.43 : 132.43] \n",
|
|
|
|
"y0_bec: 117.409, (init = 117.409), bounds = [117.41 : 137.41] \n",
|
|
|
|
"x0_th: 123.481, (init = 122.431), bounds = [112.43 : 132.43] \n",
|
|
|
|
"y0_th: 125.563, (init = 127.409), bounds = [117.41 : 137.41] \n",
|
|
|
|
"sigmax_bec: 1.000, (init = 1.000), bounds = [0.00 : 44.26] \n",
|
|
|
|
"sigmay_bec: 1.000, (init = 1.000), bounds = [0.00 : 44.26] \n",
|
|
|
|
"sigma_th: 41.492, (init = 46.606), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 1\n",
|
|
|
|
"amp_bec: 0.222, (init = 0.218), bounds = [0.00 : 1.25] \n",
|
|
|
|
"amp_th: 0.167, (init = 0.218), bounds = [0.00 : 1.25] \n",
|
|
|
|
"x0_bec: 125.679, (init = 123.764), bounds = [113.76 : 133.76] \n",
|
|
|
|
"y0_bec: 126.265, (init = 126.074), bounds = [116.07 : 136.07] \n",
|
|
|
|
"x0_th: 125.736, (init = 123.764), bounds = [113.76 : 133.76] \n",
|
|
|
|
"y0_th: 126.341, (init = 126.074), bounds = [116.07 : 136.07] \n",
|
|
|
|
"sigmax_bec: 16.318, (init = 14.760), bounds = [0.00 : 47.54] \n",
|
|
|
|
"sigmay_bec: 15.153, (init = 23.770), bounds = [0.00 : 47.54] \n",
|
|
|
|
"sigma_th: 29.155, (init = 31.996), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 2\n",
|
|
|
|
"amp_bec: 0.350, (init = 0.486), bounds = [0.00 : 1.48] \n",
|
|
|
|
"amp_th: 0.186, (init = 0.160), bounds = [0.00 : 1.48] \n",
|
|
|
|
"x0_bec: 125.699, (init = 123.665), bounds = [113.66 : 133.66] \n",
|
|
|
|
"y0_bec: 125.724, (init = 129.025), bounds = [119.02 : 139.02] \n",
|
|
|
|
"x0_th: 123.987, (init = 123.665), bounds = [113.66 : 133.66] \n",
|
|
|
|
"y0_th: 125.451, (init = 129.025), bounds = [119.02 : 139.02] \n",
|
|
|
|
"sigmax_bec: 19.430, (init = 19.502), bounds = [0.00 : 55.74] \n",
|
|
|
|
"sigmay_bec: 16.378, (init = 13.934), bounds = [0.00 : 27.87] \n",
|
|
|
|
"sigma_th: 25.125, (init = 31.308), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 3\n",
|
|
|
|
"amp_bec: 0.406, (init = 0.457), bounds = [0.00 : 1.97] \n",
|
|
|
|
"amp_th: 0.221, (init = 0.312), bounds = [0.00 : 1.97] \n",
|
|
|
|
"x0_bec: 124.571, (init = 123.005), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_bec: 125.526, (init = 127.835), bounds = [117.83 : 137.83] \n",
|
|
|
|
"x0_th: 125.097, (init = 123.005), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_th: 125.680, (init = 127.835), bounds = [117.83 : 137.83] \n",
|
|
|
|
"sigmax_bec: 21.363, (init = 20.053), bounds = [0.00 : 39.34] \n",
|
|
|
|
"sigmay_bec: 17.720, (init = 20.492), bounds = [0.00 : 40.98] \n",
|
|
|
|
"sigma_th: 22.086, (init = 22.374), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 4\n",
|
|
|
|
"amp_bec: 0.530, (init = 0.643), bounds = [0.00 : 1.76] \n",
|
|
|
|
"amp_th: 0.222, (init = 0.159), bounds = [0.00 : 1.76] \n",
|
|
|
|
"x0_bec: 124.518, (init = 121.597), bounds = [111.60 : 131.60] \n",
|
|
|
|
"y0_bec: 126.389, (init = 125.829), bounds = [115.83 : 135.83] \n",
|
|
|
|
"x0_th: 127.371, (init = 121.597), bounds = [111.60 : 131.60] \n",
|
|
|
|
"y0_th: 126.405, (init = 125.829), bounds = [115.83 : 135.83] \n",
|
|
|
|
"sigmax_bec: 22.847, (init = 21.878), bounds = [0.00 : 52.46] \n",
|
|
|
|
"sigmay_bec: 19.646, (init = 25.410), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigma_th: 19.150, (init = 27.009), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 5\n",
|
|
|
|
"amp_bec: 0.584, (init = 0.467), bounds = [0.00 : 1.73] \n",
|
|
|
|
"amp_th: 0.230, (init = 0.397), bounds = [0.00 : 1.73] \n",
|
|
|
|
"x0_bec: 124.242, (init = 125.610), bounds = [115.61 : 135.61] \n",
|
|
|
|
"y0_bec: 126.095, (init = 129.130), bounds = [119.13 : 139.13] \n",
|
|
|
|
"x0_th: 127.539, (init = 125.610), bounds = [115.61 : 135.61] \n",
|
|
|
|
"y0_th: 126.423, (init = 129.130), bounds = [119.13 : 139.13] \n",
|
|
|
|
"sigmax_bec: 24.476, (init = 22.582), bounds = [0.00 : 55.74] \n",
|
|
|
|
"sigmay_bec: 19.799, (init = 19.672), bounds = [0.00 : 39.34] \n",
|
|
|
|
"sigma_th: 17.612, (init = 16.015), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 6\n",
|
|
|
|
"amp_bec: 0.749, (init = 0.591), bounds = [0.00 : 2.09] \n",
|
|
|
|
"amp_th: 0.137, (init = 0.385), bounds = [0.00 : 2.09] \n",
|
|
|
|
"x0_bec: 125.001, (init = 123.000), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_bec: 126.174, (init = 124.917), bounds = [114.92 : 134.92] \n",
|
|
|
|
"x0_th: 125.603, (init = 123.000), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_th: 123.634, (init = 124.917), bounds = [114.92 : 134.92] \n",
|
|
|
|
"sigmax_bec: 25.120, (init = 23.228), bounds = [0.00 : 52.46] \n",
|
|
|
|
"sigmay_bec: 21.012, (init = 22.131), bounds = [0.00 : 44.26] \n",
|
|
|
|
"sigma_th: 18.497, (init = 14.680), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 7\n",
|
|
|
|
"amp_bec: 0.942, (init = 0.939), bounds = [0.00 : 2.83] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 2.83] \n",
|
|
|
|
"x0_bec: 125.129, (init = 124.890), bounds = [114.89 : 134.89] \n",
|
|
|
|
"y0_bec: 126.026, (init = 125.362), bounds = [115.36 : 135.36] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 25.268, (init = 23.196), bounds = [0.00 : 37.70] \n",
|
|
|
|
"sigmay_bec: 22.227, (init = 18.852), bounds = [0.00 : 37.70] \n",
|
|
|
|
"sigma_th: 14.660, (init = 14.660), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 8\n",
|
|
|
|
"amp_bec: 0.962, (init = 0.868), bounds = [0.00 : 2.49] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 2.49] \n",
|
|
|
|
"x0_bec: 124.986, (init = 124.262), bounds = [114.26 : 134.26] \n",
|
|
|
|
"y0_bec: 126.237, (init = 125.803), bounds = [115.80 : 135.80] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 24.950, (init = 22.940), bounds = [0.00 : 49.18] \n",
|
|
|
|
"sigmay_bec: 22.706, (init = 18.033), bounds = [0.00 : 49.18] \n",
|
|
|
|
"sigma_th: 14.498, (init = 14.498), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 9\n",
|
|
|
|
"amp_bec: 1.004, (init = 1.175), bounds = [0.00 : 2.53] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 2.53] \n",
|
|
|
|
"x0_bec: 124.837, (init = 124.274), bounds = [114.27 : 134.27] \n",
|
|
|
|
"y0_bec: 126.150, (init = 125.475), bounds = [115.48 : 135.48] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 25.198, (init = 23.461), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigmay_bec: 21.781, (init = 21.311), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigma_th: 22.517, (init = 22.517), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 10\n",
|
|
|
|
"amp_bec: 0.877, (init = 1.087), bounds = [0.00 : 2.19] \n",
|
|
|
|
"amp_th: 0.000, (init = 0.000), bounds = [0.00 : 2.19] \n",
|
|
|
|
"x0_bec: 124.955, (init = 125.252), bounds = [115.25 : 135.25] \n",
|
|
|
|
"y0_bec: 126.100, (init = 126.356), bounds = [116.36 : 136.36] \n",
|
|
|
|
"x0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"y0_th: 1.000, (init = 1.000), bounds = [0.00 : 150.00] \n",
|
|
|
|
"sigmax_bec: 27.646, (init = 26.148), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigmay_bec: 22.830, (init = 22.131), bounds = [0.00 : 50.82] \n",
|
|
|
|
"sigma_th: 16.526, (init = 16.526), bounds = [0.00 : 50.00] \n",
|
|
|
|
"\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"print_bval_bulk(result)\n"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T13:54:57.594806500Z",
|
|
|
|
"start_time": "2023-08-01T13:54:57.466504700Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 148,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"0.40202012547790794\n",
|
|
|
|
"amp_bec: 0.01, (init = 0.01), bounds = [0.00 : 0.40] \n",
|
|
|
|
"amp_th: 0.10, (init = 0.24), bounds = [0.00 : 0.40] \n",
|
|
|
|
"x0_bec: 124.50, (init = 124.06), bounds = [114.06 : 134.06] \n",
|
|
|
|
"y0_bec: 115.07, (init = 124.29), bounds = [114.29 : 134.29] \n",
|
|
|
|
"x0_th: 125.46, (init = 124.06), bounds = [114.06 : 134.06] \n",
|
|
|
|
"y0_th: 125.96, (init = 124.29), bounds = [114.29 : 134.29] \n",
|
|
|
|
"sigmax_bec: 79.34, (init = 47.78), bounds = [0.00 : 95.99] \n",
|
|
|
|
"sigmay_bec: 3.97, (init = 48.09), bounds = [0.00 : 96.17] \n",
|
|
|
|
"sigma_th: 38.05, (init = 38.77), bounds = [0.00 : 250.00] \n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"res = result[0][0]\n",
|
|
|
|
"print(res.init_params['amp_bec'].max)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"def print_bval(result):\n",
|
|
|
|
" keys = result.best_values.keys()\n",
|
|
|
|
" bval = result.best_values\n",
|
|
|
|
" init = result.init_params\n",
|
|
|
|
"\n",
|
|
|
|
" for item in keys:\n",
|
|
|
|
" print(f'{item}: {bval[item]:.2f}, (init = {init[item].value:.2f}), bounds = [{init[item].min:.2f} : {init[item].max :.2f}] ')\n",
|
|
|
|
"\n",
|
|
|
|
"print_bval(res)"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T11:52:39.509257700Z",
|
|
|
|
"start_time": "2023-08-01T11:52:39.395834200Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 82,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"image 0, 0\n",
|
|
|
|
"sigmax = 26.809654363723393, sigmay = 20.984865705907357 \n",
|
|
|
|
"49.68707529159811\n",
|
|
|
|
"[47.99635701 48.08743169]\n",
|
|
|
|
"image 0, 1\n",
|
|
|
|
"sigmax = 16.902431605565432, sigmay = 14.827716571560885 \n",
|
|
|
|
"15.654987743234889\n",
|
|
|
|
"[28.50637523 25.50091075]\n",
|
|
|
|
"image 0, 2\n",
|
|
|
|
"sigmax = 19.537062472446536, sigmay = 16.54490141361424 \n",
|
|
|
|
"18.026074303206485\n",
|
|
|
|
"[27.32240437 23.67941712]\n",
|
|
|
|
"image 0, 3\n",
|
|
|
|
"sigmax = 21.26943188775151, sigmay = 18.18988358733591 \n",
|
|
|
|
"19.556767700963444\n",
|
|
|
|
"[27.23132969 23.86156648]\n",
|
|
|
|
"image 0, 4\n",
|
|
|
|
"sigmax = 22.839337165618247, sigmay = 19.260967695867635 \n",
|
|
|
|
"20.90144486963491\n",
|
|
|
|
"[27.77777778 23.86156648]\n",
|
|
|
|
"image 0, 5\n",
|
|
|
|
"sigmax = 23.611867762365737, sigmay = 19.890208925283233 \n",
|
|
|
|
"21.630994243513612\n",
|
|
|
|
"[28.77959927 24.49908925]\n",
|
|
|
|
"image 0, 6\n",
|
|
|
|
"sigmax = 24.715898892965207, sigmay = 20.72301092040907 \n",
|
|
|
|
"22.830805825494014\n",
|
|
|
|
"[28.50637523 24.7723133 ]\n",
|
|
|
|
"image 0, 7\n",
|
|
|
|
"sigmax = 25.37740108909912, sigmay = 22.34732657140245 \n",
|
|
|
|
"23.78148211266294\n",
|
|
|
|
"[28.68852459 25.31876138]\n",
|
|
|
|
"image 0, 8\n",
|
|
|
|
"sigmax = 25.54988097917328, sigmay = 22.05819714419466 \n",
|
|
|
|
"24.633548951333726\n",
|
|
|
|
"[28.1420765 24.68123862]\n",
|
|
|
|
"image 0, 9\n",
|
|
|
|
"sigmax = 25.455752389974258, sigmay = 21.92384918530349 \n",
|
|
|
|
"25.16924937651061\n",
|
|
|
|
"[28.23315118 24.04371585]\n",
|
|
|
|
"image 0, 10\n",
|
|
|
|
"sigmax = 27.13351753291331, sigmay = 23.17650478721828 \n",
|
|
|
|
"25.428970385518063\n",
|
|
|
|
"[29.96357013 26.04735883]\n",
|
|
|
|
"image 1, 0\n",
|
|
|
|
"sigmax = 32.130698329287455, sigmay = 21.301370060449216 \n",
|
|
|
|
"38.991763920546184\n",
|
|
|
|
"[25.68306011 21.03825137]\n",
|
|
|
|
"image 1, 1\n",
|
|
|
|
"sigmax = 16.311826068846873, sigmay = 15.161785017907176 \n",
|
|
|
|
"15.035048897926897\n",
|
|
|
|
"[25.50091075 24.40801457]\n",
|
|
|
|
"image 1, 2\n",
|
|
|
|
"sigmax = 19.429204152163635, sigmay = 16.38000535679499 \n",
|
|
|
|
"18.382290279191036\n",
|
|
|
|
"[21.58469945 20.21857923]\n",
|
|
|
|
"image 1, 3\n",
|
|
|
|
"sigmax = 21.366923260200572, sigmay = 17.727126413466063 \n",
|
|
|
|
"19.81456970617587\n",
|
|
|
|
"[18.9435337 17.03096539]\n",
|
|
|
|
"image 1, 4\n",
|
|
|
|
"sigmax = 22.846174800426063, sigmay = 19.64564917108202 \n",
|
|
|
|
"22.056975277842138\n",
|
|
|
|
"[26.6848816 21.76684882]\n",
|
|
|
|
"image 1, 5\n",
|
|
|
|
"sigmax = 24.47493848239252, sigmay = 19.79849230949584 \n",
|
|
|
|
"21.90523925207991\n",
|
|
|
|
"[26.04735883 22.04007286]\n",
|
|
|
|
"image 1, 6\n",
|
|
|
|
"sigmax = 25.120085496179822, sigmay = 21.01142726725265 \n",
|
|
|
|
"24.103158393287867\n",
|
|
|
|
"[24.49908925 22.22222222]\n",
|
|
|
|
"image 1, 7\n",
|
|
|
|
"sigmax = 25.268375215655595, sigmay = 22.22675806585392 \n",
|
|
|
|
"23.646253048054273\n",
|
|
|
|
"[19.67213115 18.03278689]\n",
|
|
|
|
"image 1, 8\n",
|
|
|
|
"sigmax = 24.949462122653742, sigmay = 22.706400518903973 \n",
|
|
|
|
"23.217749345311454\n",
|
|
|
|
"[23.49726776 20.94717668]\n",
|
|
|
|
"image 1, 9\n",
|
|
|
|
"sigmax = 25.19797063692771, sigmay = 21.781054343748057 \n",
|
|
|
|
"24.053321531664213\n",
|
|
|
|
"[23.3151184 20.30965392]\n",
|
|
|
|
"image 1, 10\n",
|
|
|
|
"sigmax = 27.644788514841196, sigmay = 22.830162756976627 \n",
|
|
|
|
"26.373230050836366\n",
|
|
|
|
"[25.13661202 20.856102 ]\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"for i in range(0,shape[0]):\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" print(f'image {i}, {j}')\n",
|
|
|
|
" bval = result[i][j].best_values\n",
|
|
|
|
"\n",
|
|
|
|
" print(f\"sigmax = {bval['sigmax_bec']}, sigmay = {bval['sigmay_bec']} \")\n",
|
|
|
|
" print(result_x[i][j].best_values['sigma_bec'])\n",
|
|
|
|
" print(BEC_width_guess[i,j] /1.22)"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T10:25:48.757434900Z",
|
|
|
|
"start_time": "2023-08-01T10:25:48.698502800Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 173,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"image: 0, 0\n",
|
|
|
|
"amp_bec: 0.000, (init = 0.000), bounds = [0.00 : 0.40] \n",
|
|
|
|
"amp_th: 0.103, (init = 0.138), bounds = [0.00 : 0.40] \n",
|
|
|
|
"x0_bec: 114.060, (init = 114.060), bounds = [114.06 : 134.06] \n",
|
|
|
|
"y0_bec: 114.291, (init = 114.291), bounds = [114.29 : 134.29] \n",
|
|
|
|
"x0_th: 125.454, (init = 124.060), bounds = [114.06 : 134.06] \n",
|
|
|
|
"y0_th: 125.676, (init = 124.291), bounds = [114.29 : 134.29] \n",
|
|
|
|
"sigmax_bec: 1.000, (init = 1.000), bounds = [0.00 : 95.99] \n",
|
|
|
|
"sigmay_bec: 1.000, (init = 1.000), bounds = [0.00 : 96.17] \n",
|
|
|
|
"sigma_th: 37.876, (init = 38.769), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 1\n",
|
|
|
|
"amp_bec: 0.217, (init = 0.168), bounds = [0.00 : 0.72] \n",
|
|
|
|
"amp_th: 0.169, (init = 0.230), bounds = [0.00 : 0.72] \n",
|
|
|
|
"x0_bec: 125.205, (init = 123.226), bounds = [113.23 : 133.23] \n",
|
|
|
|
"y0_bec: 126.138, (init = 126.090), bounds = [116.09 : 136.09] \n",
|
|
|
|
"x0_th: 124.613, (init = 123.226), bounds = [113.23 : 133.23] \n",
|
|
|
|
"y0_th: 126.037, (init = 126.090), bounds = [116.09 : 136.09] \n",
|
|
|
|
"sigmax_bec: 16.902, (init = 15.655), bounds = [0.00 : 57.01] \n",
|
|
|
|
"sigmay_bec: 14.834, (init = 25.501), bounds = [0.00 : 51.00] \n",
|
|
|
|
"sigma_th: 28.006, (init = 28.067), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 2\n",
|
|
|
|
"amp_bec: 0.351, (init = 0.314), bounds = [0.00 : 0.87] \n",
|
|
|
|
"amp_th: 0.186, (init = 0.238), bounds = [0.00 : 0.87] \n",
|
|
|
|
"x0_bec: 124.756, (init = 124.199), bounds = [114.20 : 134.20] \n",
|
|
|
|
"y0_bec: 125.997, (init = 125.119), bounds = [115.12 : 135.12] \n",
|
|
|
|
"x0_th: 125.359, (init = 124.199), bounds = [114.20 : 134.20] \n",
|
|
|
|
"y0_th: 125.902, (init = 125.119), bounds = [115.12 : 135.12] \n",
|
|
|
|
"sigmax_bec: 19.537, (init = 18.026), bounds = [0.00 : 54.64] \n",
|
|
|
|
"sigmay_bec: 16.545, (init = 23.679), bounds = [0.00 : 47.36] \n",
|
|
|
|
"sigma_th: 25.553, (init = 26.395), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 3\n",
|
|
|
|
"amp_bec: 0.417, (init = 0.378), bounds = [0.00 : 1.07] \n",
|
|
|
|
"amp_th: 0.221, (init = 0.284), bounds = [0.00 : 1.07] \n",
|
|
|
|
"x0_bec: 124.875, (init = 124.288), bounds = [114.29 : 134.29] \n",
|
|
|
|
"y0_bec: 126.008, (init = 125.419), bounds = [115.42 : 135.42] \n",
|
|
|
|
"x0_th: 125.107, (init = 124.288), bounds = [114.29 : 134.29] \n",
|
|
|
|
"y0_th: 125.814, (init = 125.419), bounds = [115.42 : 135.42] \n",
|
|
|
|
"sigmax_bec: 21.269, (init = 19.557), bounds = [0.00 : 54.46] \n",
|
|
|
|
"sigmay_bec: 18.190, (init = 23.862), bounds = [0.00 : 47.72] \n",
|
|
|
|
"sigma_th: 21.630, (init = 21.469), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 4\n",
|
|
|
|
"amp_bec: 0.506, (init = 0.480), bounds = [0.00 : 1.24] \n",
|
|
|
|
"amp_th: 0.228, (init = 0.257), bounds = [0.00 : 1.24] \n",
|
|
|
|
"x0_bec: 125.172, (init = 124.844), bounds = [114.84 : 134.84] \n",
|
|
|
|
"y0_bec: 125.980, (init = 125.632), bounds = [115.63 : 135.63] \n",
|
|
|
|
"x0_th: 125.047, (init = 124.844), bounds = [114.84 : 134.84] \n",
|
|
|
|
"y0_th: 125.947, (init = 125.632), bounds = [115.63 : 135.63] \n",
|
|
|
|
"sigmax_bec: 22.839, (init = 20.901), bounds = [0.00 : 55.56] \n",
|
|
|
|
"sigmay_bec: 19.261, (init = 23.862), bounds = [0.00 : 47.72] \n",
|
|
|
|
"sigma_th: 19.498, (init = 20.335), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 5\n",
|
|
|
|
"amp_bec: 0.578, (init = 0.501), bounds = [0.00 : 1.26] \n",
|
|
|
|
"amp_th: 0.238, (init = 0.360), bounds = [0.00 : 1.26] \n",
|
|
|
|
"x0_bec: 124.950, (init = 124.472), bounds = [114.47 : 134.47] \n",
|
|
|
|
"y0_bec: 125.948, (init = 125.613), bounds = [115.61 : 135.61] \n",
|
|
|
|
"x0_th: 125.549, (init = 124.472), bounds = [114.47 : 134.47] \n",
|
|
|
|
"y0_th: 126.311, (init = 125.613), bounds = [115.61 : 135.61] \n",
|
|
|
|
"sigmax_bec: 23.612, (init = 21.631), bounds = [0.00 : 57.56] \n",
|
|
|
|
"sigmay_bec: 19.890, (init = 24.499), bounds = [0.00 : 49.00] \n",
|
|
|
|
"sigma_th: 17.844, (init = 16.789), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 6\n",
|
|
|
|
"amp_bec: 0.624, (init = 0.582), bounds = [0.00 : 1.43] \n",
|
|
|
|
"amp_th: 0.273, (init = 0.326), bounds = [0.00 : 1.43] \n",
|
|
|
|
"x0_bec: 124.841, (init = 124.226), bounds = [114.23 : 134.23] \n",
|
|
|
|
"y0_bec: 126.087, (init = 125.493), bounds = [115.49 : 135.49] \n",
|
|
|
|
"x0_th: 125.518, (init = 124.226), bounds = [114.23 : 134.23] \n",
|
|
|
|
"y0_th: 125.329, (init = 125.493), bounds = [115.49 : 135.49] \n",
|
|
|
|
"sigmax_bec: 24.716, (init = 22.831), bounds = [0.00 : 57.01] \n",
|
|
|
|
"sigmay_bec: 20.723, (init = 24.772), bounds = [0.00 : 49.54] \n",
|
|
|
|
"sigma_th: 15.245, (init = 15.560), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 7\n",
|
|
|
|
"amp_bec: 0.726, (init = 0.745), bounds = [0.00 : 1.47] \n",
|
|
|
|
"amp_th: 0.246, (init = 0.221), bounds = [0.00 : 1.47] \n",
|
|
|
|
"x0_bec: 124.976, (init = 124.374), bounds = [114.37 : 134.37] \n",
|
|
|
|
"y0_bec: 126.191, (init = 125.431), bounds = [115.43 : 135.43] \n",
|
|
|
|
"x0_th: 125.065, (init = 124.374), bounds = [114.37 : 134.37] \n",
|
|
|
|
"y0_th: 125.186, (init = 125.431), bounds = [115.43 : 135.43] \n",
|
|
|
|
"sigmax_bec: 25.165, (init = 23.194), bounds = [0.00 : 57.38] \n",
|
|
|
|
"sigmay_bec: 21.561, (init = 25.319), bounds = [0.00 : 50.64] \n",
|
|
|
|
"sigma_th: 13.309, (init = 14.658), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 8\n",
|
|
|
|
"amp_bec: 0.761, (init = 0.840), bounds = [0.00 : 1.62] \n",
|
|
|
|
"amp_th: 0.285, (init = 0.230), bounds = [0.00 : 1.62] \n",
|
|
|
|
"x0_bec: 124.933, (init = 124.493), bounds = [114.49 : 134.49] \n",
|
|
|
|
"y0_bec: 125.930, (init = 125.501), bounds = [115.50 : 135.50] \n",
|
|
|
|
"x0_th: 125.286, (init = 124.493), bounds = [114.49 : 134.49] \n",
|
|
|
|
"y0_th: 125.894, (init = 125.501), bounds = [115.50 : 135.50] \n",
|
|
|
|
"sigmax_bec: 26.333, (init = 23.255), bounds = [0.00 : 56.28] \n",
|
|
|
|
"sigmay_bec: 22.180, (init = 24.681), bounds = [0.00 : 49.36] \n",
|
|
|
|
"sigma_th: 10.090, (init = 14.697), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 9\n",
|
|
|
|
"amp_bec: 0.720, (init = 0.779), bounds = [0.00 : 1.65] \n",
|
|
|
|
"amp_th: 0.404, (init = 0.330), bounds = [0.00 : 1.65] \n",
|
|
|
|
"x0_bec: 125.067, (init = 124.406), bounds = [114.41 : 134.41] \n",
|
|
|
|
"y0_bec: 126.004, (init = 125.502), bounds = [115.50 : 135.50] \n",
|
|
|
|
"x0_th: 124.710, (init = 124.406), bounds = [114.41 : 134.41] \n",
|
|
|
|
"y0_th: 126.249, (init = 125.502), bounds = [115.50 : 135.50] \n",
|
|
|
|
"sigmax_bec: 26.971, (init = 23.021), bounds = [0.00 : 56.47] \n",
|
|
|
|
"sigmay_bec: 22.523, (init = 24.044), bounds = [0.00 : 48.09] \n",
|
|
|
|
"sigma_th: 8.937, (init = 14.549), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 0, 10\n",
|
|
|
|
"amp_bec: 0.876, (init = 0.893), bounds = [0.00 : 1.40] \n",
|
|
|
|
"amp_th: 0.296, (init = 0.004), bounds = [0.00 : 1.40] \n",
|
|
|
|
"x0_bec: 125.119, (init = 124.672), bounds = [114.67 : 134.67] \n",
|
|
|
|
"y0_bec: 125.956, (init = 125.545), bounds = [115.54 : 135.54] \n",
|
|
|
|
"x0_th: 134.433, (init = 124.672), bounds = [114.67 : 134.67] \n",
|
|
|
|
"y0_th: 116.927, (init = 125.545), bounds = [115.54 : 135.54] \n",
|
|
|
|
"sigmax_bec: 27.134, (init = 25.429), bounds = [0.00 : 59.93] \n",
|
|
|
|
"sigmay_bec: 23.176, (init = 26.047), bounds = [0.00 : 52.09] \n",
|
|
|
|
"sigma_th: 0.445, (init = 16.071), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 0\n",
|
|
|
|
"amp_bec: 0.000, (init = 0.000), bounds = [0.00 : 1.22] \n",
|
|
|
|
"amp_th: 0.094, (init = 0.215), bounds = [0.00 : 1.22] \n",
|
|
|
|
"x0_bec: 112.431, (init = 112.431), bounds = [112.43 : 132.43] \n",
|
|
|
|
"y0_bec: 117.409, (init = 117.409), bounds = [117.41 : 137.41] \n",
|
|
|
|
"x0_th: 123.480, (init = 122.431), bounds = [112.43 : 132.43] \n",
|
|
|
|
"y0_th: 125.563, (init = 127.409), bounds = [117.41 : 137.41] \n",
|
|
|
|
"sigmax_bec: 1.000, (init = 1.000), bounds = [0.00 : 51.37] \n",
|
|
|
|
"sigmay_bec: 1.000, (init = 1.000), bounds = [0.00 : 42.08] \n",
|
|
|
|
"sigma_th: 41.492, (init = 46.919), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 1\n",
|
|
|
|
"amp_bec: 0.222, (init = 0.221), bounds = [0.00 : 1.25] \n",
|
|
|
|
"amp_th: 0.167, (init = 0.215), bounds = [0.00 : 1.25] \n",
|
|
|
|
"x0_bec: 125.676, (init = 123.764), bounds = [113.76 : 133.76] \n",
|
|
|
|
"y0_bec: 126.273, (init = 126.074), bounds = [116.07 : 136.07] \n",
|
|
|
|
"x0_th: 125.738, (init = 123.764), bounds = [113.76 : 133.76] \n",
|
|
|
|
"y0_th: 126.340, (init = 126.074), bounds = [116.07 : 136.07] \n",
|
|
|
|
"sigmax_bec: 16.309, (init = 15.038), bounds = [0.00 : 51.00] \n",
|
|
|
|
"sigmay_bec: 15.156, (init = 24.408), bounds = [0.00 : 48.82] \n",
|
|
|
|
"sigma_th: 29.161, (init = 32.054), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 2\n",
|
|
|
|
"amp_bec: 0.350, (init = 0.383), bounds = [0.00 : 1.48] \n",
|
|
|
|
"amp_th: 0.186, (init = 0.262), bounds = [0.00 : 1.48] \n",
|
|
|
|
"x0_bec: 125.700, (init = 123.665), bounds = [113.66 : 133.66] \n",
|
|
|
|
"y0_bec: 125.723, (init = 129.025), bounds = [119.02 : 139.02] \n",
|
|
|
|
"x0_th: 123.986, (init = 123.665), bounds = [113.66 : 133.66] \n",
|
|
|
|
"y0_th: 125.452, (init = 129.025), bounds = [119.02 : 139.02] \n",
|
|
|
|
"sigmax_bec: 19.432, (init = 18.382), bounds = [0.00 : 43.17] \n",
|
|
|
|
"sigmay_bec: 16.380, (init = 20.219), bounds = [0.00 : 40.44] \n",
|
|
|
|
"sigma_th: 25.127, (init = 23.158), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 3\n",
|
|
|
|
"amp_bec: 0.406, (init = 0.458), bounds = [0.00 : 1.97] \n",
|
|
|
|
"amp_th: 0.221, (init = 0.311), bounds = [0.00 : 1.97] \n",
|
|
|
|
"x0_bec: 124.575, (init = 123.005), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_bec: 125.522, (init = 127.835), bounds = [117.83 : 137.83] \n",
|
|
|
|
"x0_th: 125.093, (init = 123.005), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_th: 125.685, (init = 127.835), bounds = [117.83 : 137.83] \n",
|
|
|
|
"sigmax_bec: 21.369, (init = 19.815), bounds = [0.00 : 37.89] \n",
|
|
|
|
"sigmay_bec: 17.727, (init = 17.031), bounds = [0.00 : 34.06] \n",
|
|
|
|
"sigma_th: 22.086, (init = 23.094), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 4\n",
|
|
|
|
"amp_bec: 0.530, (init = 0.664), bounds = [0.00 : 1.76] \n",
|
|
|
|
"amp_th: 0.222, (init = 0.138), bounds = [0.00 : 1.76] \n",
|
|
|
|
"x0_bec: 124.518, (init = 121.597), bounds = [111.60 : 131.60] \n",
|
|
|
|
"y0_bec: 126.389, (init = 125.829), bounds = [115.83 : 135.83] \n",
|
|
|
|
"x0_th: 127.372, (init = 121.597), bounds = [111.60 : 131.60] \n",
|
|
|
|
"y0_th: 126.405, (init = 125.829), bounds = [115.83 : 135.83] \n",
|
|
|
|
"sigmax_bec: 22.846, (init = 22.057), bounds = [0.00 : 53.37] \n",
|
|
|
|
"sigmay_bec: 19.648, (init = 21.767), bounds = [0.00 : 43.53] \n",
|
|
|
|
"sigma_th: 19.152, (init = 28.619), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 5\n",
|
|
|
|
"amp_bec: 0.584, (init = 0.517), bounds = [0.00 : 1.73] \n",
|
|
|
|
"amp_th: 0.230, (init = 0.347), bounds = [0.00 : 1.73] \n",
|
|
|
|
"x0_bec: 124.245, (init = 125.610), bounds = [115.61 : 135.61] \n",
|
|
|
|
"y0_bec: 126.094, (init = 129.130), bounds = [119.13 : 139.13] \n",
|
|
|
|
"x0_th: 127.537, (init = 125.610), bounds = [115.61 : 135.61] \n",
|
|
|
|
"y0_th: 126.430, (init = 129.130), bounds = [119.13 : 139.13] \n",
|
|
|
|
"sigmax_bec: 24.480, (init = 21.905), bounds = [0.00 : 52.09] \n",
|
|
|
|
"sigmay_bec: 19.802, (init = 22.040), bounds = [0.00 : 44.08] \n",
|
|
|
|
"sigma_th: 17.618, (init = 17.856), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 6\n",
|
|
|
|
"amp_bec: 0.749, (init = 0.591), bounds = [0.00 : 2.09] \n",
|
|
|
|
"amp_th: 0.137, (init = 0.385), bounds = [0.00 : 2.09] \n",
|
|
|
|
"x0_bec: 125.001, (init = 123.000), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_bec: 126.174, (init = 124.917), bounds = [114.92 : 134.92] \n",
|
|
|
|
"x0_th: 125.603, (init = 123.000), bounds = [113.00 : 133.00] \n",
|
|
|
|
"y0_th: 123.634, (init = 124.917), bounds = [114.92 : 134.92] \n",
|
|
|
|
"sigmax_bec: 25.120, (init = 23.228), bounds = [0.00 : 49.00] \n",
|
|
|
|
"sigmay_bec: 21.012, (init = 22.222), bounds = [0.00 : 44.44] \n",
|
|
|
|
"sigma_th: 18.497, (init = 14.680), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 7\n",
|
|
|
|
"amp_bec: 0.756, (init = 0.936), bounds = [0.00 : 2.83] \n",
|
|
|
|
"amp_th: 0.270, (init = 0.247), bounds = [0.00 : 2.83] \n",
|
|
|
|
"x0_bec: 124.566, (init = 124.890), bounds = [114.89 : 134.89] \n",
|
|
|
|
"y0_bec: 126.524, (init = 125.362), bounds = [115.36 : 135.36] \n",
|
|
|
|
"x0_th: 127.625, (init = 124.890), bounds = [114.89 : 134.89] \n",
|
|
|
|
"y0_th: 123.574, (init = 125.362), bounds = [115.36 : 135.36] \n",
|
|
|
|
"sigmax_bec: 25.560, (init = 23.201), bounds = [0.00 : 39.34] \n",
|
|
|
|
"sigmay_bec: 21.976, (init = 18.033), bounds = [0.00 : 36.07] \n",
|
|
|
|
"sigma_th: 10.918, (init = 14.663), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 8\n",
|
|
|
|
"amp_bec: 0.752, (init = 0.836), bounds = [0.00 : 2.49] \n",
|
|
|
|
"amp_th: 0.313, (init = 0.336), bounds = [0.00 : 2.49] \n",
|
|
|
|
"x0_bec: 124.766, (init = 124.262), bounds = [114.26 : 134.26] \n",
|
|
|
|
"y0_bec: 126.339, (init = 125.803), bounds = [115.80 : 135.80] \n",
|
|
|
|
"x0_th: 125.826, (init = 124.262), bounds = [114.26 : 134.26] \n",
|
|
|
|
"y0_th: 125.887, (init = 125.803), bounds = [115.80 : 135.80] \n",
|
|
|
|
"sigmax_bec: 25.700, (init = 22.730), bounds = [0.00 : 46.99] \n",
|
|
|
|
"sigmay_bec: 23.133, (init = 20.947), bounds = [0.00 : 41.89] \n",
|
|
|
|
"sigma_th: 9.610, (init = 14.365), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 9\n",
|
|
|
|
"amp_bec: 0.822, (init = 0.886), bounds = [0.00 : 2.53] \n",
|
|
|
|
"amp_th: 0.291, (init = 0.330), bounds = [0.00 : 2.53] \n",
|
|
|
|
"x0_bec: 124.518, (init = 124.274), bounds = [114.27 : 134.27] \n",
|
|
|
|
"y0_bec: 126.183, (init = 125.475), bounds = [115.48 : 135.48] \n",
|
|
|
|
"x0_th: 126.405, (init = 124.274), bounds = [114.27 : 134.27] \n",
|
|
|
|
"y0_th: 125.945, (init = 125.475), bounds = [115.48 : 135.48] \n",
|
|
|
|
"sigmax_bec: 26.098, (init = 22.764), bounds = [0.00 : 46.63] \n",
|
|
|
|
"sigmay_bec: 22.223, (init = 20.310), bounds = [0.00 : 40.62] \n",
|
|
|
|
"sigma_th: 8.711, (init = 14.387), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n",
|
|
|
|
"image: 1, 10\n",
|
|
|
|
"amp_bec: 0.875, (init = 1.085), bounds = [0.00 : 2.19] \n",
|
|
|
|
"amp_th: 2.190, (init = 0.013), bounds = [0.00 : 2.19] \n",
|
|
|
|
"x0_bec: 124.948, (init = 125.252), bounds = [115.25 : 135.25] \n",
|
|
|
|
"y0_bec: 126.115, (init = 126.356), bounds = [116.36 : 136.36] \n",
|
|
|
|
"x0_th: 128.909, (init = 125.252), bounds = [115.25 : 135.25] \n",
|
|
|
|
"y0_th: 118.954, (init = 126.356), bounds = [116.36 : 136.36] \n",
|
|
|
|
"sigmax_bec: 27.665, (init = 26.371), bounds = [0.00 : 50.27] \n",
|
|
|
|
"sigmay_bec: 22.836, (init = 20.856), bounds = [0.00 : 41.71] \n",
|
|
|
|
"sigma_th: 0.365, (init = 16.667), bounds = [0.00 : 250.00] \n",
|
|
|
|
"\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"print_bval_bulk(result_1)"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T13:23:38.538388800Z",
|
|
|
|
"start_time": "2023-08-01T13:23:38.428939500Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 37,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": "111.52339962118164"
|
|
|
|
},
|
|
|
|
"execution_count": 37,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"result_x[1][0].best_values['sigma_th']"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
|
|
|
"end_time": "2023-08-01T09:35:39.865148600Z",
|
|
|
|
"start_time": "2023-08-01T09:35:39.777868400Z"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 189,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"image 0, 0\n",
|
|
|
|
"check val, 0.0\n",
|
|
|
|
"image 0, 1\n",
|
|
|
|
"check val, 202.81899317348075\n",
|
|
|
|
"image 0, 2\n",
|
|
|
|
"check val, 171.66227694315586\n",
|
|
|
|
"image 0, 3\n",
|
|
|
|
"check val, 137.86010387483958\n",
|
|
|
|
"image 0, 4\n",
|
|
|
|
"check val, 112.63334115900692\n",
|
|
|
|
"image 0, 5\n",
|
|
|
|
"check val, 80.32146811618618\n",
|
|
|
|
"image 0, 6\n",
|
|
|
|
"check val, 47.14137119721544\n",
|
|
|
|
"image 0, 7\n",
|
|
|
|
"check val, 20.13939399629303\n",
|
|
|
|
"image 0, 8\n",
|
|
|
|
"check val, 7.729201970644159\n",
|
|
|
|
"image 0, 9\n",
|
|
|
|
"check val, -0.24707647603264393\n",
|
|
|
|
"image 0, 10\n",
|
|
|
|
"check val, -10.485648818860035\n",
|
|
|
|
"image 1, 0\n",
|
|
|
|
"check val, 0.0\n",
|
|
|
|
"image 1, 1\n",
|
|
|
|
"check val, 155.40174729200504\n",
|
|
|
|
"image 1, 2\n",
|
|
|
|
"check val, 267.84199180102325\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "stderr",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\ipykernel_36888\\2144014449.py:109: RuntimeWarning: invalid value encountered in power\n",
|
|
|
|
" res = np.where(res > 0, res**(3/2), 0)\n",
|
|
|
|
"C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\ipykernel_36888\\737382478.py:25: RuntimeWarning: Mean of empty slice\n",
|
|
|
|
" check_value = np.nanmean(mask2[i,j]) / (bval[\"amp_bec\"] + bval[\"amp_th\"])\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"image 1, 3\n",
|
|
|
|
"check val, 134.5222938744657\n",
|
|
|
|
"image 1, 4\n",
|
|
|
|
"check val, 90.07549048132266\n",
|
|
|
|
"image 1, 5\n",
|
|
|
|
"check val, 109.52459360079988\n",
|
|
|
|
"image 1, 6\n",
|
|
|
|
"check val, 63.76264252044428\n",
|
|
|
|
"image 1, 7\n",
|
|
|
|
"check val, 75.0924950611463\n",
|
|
|
|
"image 1, 8\n",
|
|
|
|
"check val, 29.827565402107858\n",
|
|
|
|
"image 1, 9\n",
|
|
|
|
"check val, -0.20590658874586376\n",
|
|
|
|
"image 1, 10\n",
|
|
|
|
"check val, 3.7193052125950476\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": "<Figure size 1000x1000 with 22 Axes>",
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAMtCAYAAAC/4rG8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADdtElEQVR4nOzde3xU1b3//9e2URoUKEhBLuEiAaSHawBvaIHT2EJ7UkUtVKkFK6fK19IW9UdFTs9mtwUsohybWvAUjlKLVspFTS22RsULpSIGC7VQiQUNFEEMJNSGS8r6/bH2TBLITDKTSeay388+0kxm9mzWfFyzZz57r/VZjjHGICIiIiIiEkBnJbsBIiIiIiIiyaKESEREREREAksJkYiIiIiIBJYSIhERERERCSwlRCIiIiIiElhKiEREREREJLCUEImIiIiISGApIRIRERERkcBSQiQiIiIiIoEVU0J07NgxrrnmGvr168eQIUO46qqrKC0tBWDMmDH07t2boUOHMnToUBYvXhx+3sGDBxk3bhx9+/Zl4MCBvPLKK4l9FSlAsYlO8YlMsYlO8YlO8YlMsYlO8YlMsYlO8YlMsUlTJgZVVVXm2WefNadOnTLGGFNYWGhGjx5tjDFm9OjRZt26dfU+7+abbzau6xpjjNm8ebPp1q2bOXHiRCz/dMpTbKJTfCJTbKJTfKJTfCJTbKJTfCJTbKJTfCJTbNJTVizJ0yc/+Um++MUvhv++9NJLWbRoUYPPW7VqVTg7HjlyJF27duXll18mPz//jG2PHz/O8ePHw3+fOnWK8vJyzj//fBzHiaW5Le6KK67g6NGjAAwcOJD77ruPyspK/vWvf/HPf/6TysrKM56zatUqtm7dSmVlJf369aNjx4689NJLfP7znz9j23SODSg+0TQ1Nv3796dz586sXr2aSZMmcdZZdS/+pnNsQH2nIYpPZIpNdIpPZIpNdIpPZIpN8zLGcPToUbp27XrG952m7DRuX/va18y3v/1tY4zNevv3728GDhxoJk6caN59911jjDGHDh0y55xzTp3nfeUrXzHLly+vd5+u6xog0D/33XefYqP4xP1TVlam2ET4Ud9RfBQbxUexSa0fxUexifenvu878XKMMYY4zJ8/n6KiIl544QVat25NWVkZOTk5GGN46KGH+NnPfsZf/vIXPvroI7p27Vonk504cSLjxo3jG9/4xhn7PT3rraiooEePHpSVldG2bdt4mtriFi1axHPPPcczzzxD69at2bt3L927d8cYw89//nOWLVvG5s2bKS8vp3///nz44YcAVFZWkpOTQ2FhId/61rfO2G8mxAYUn2jijQ3A5MmT+c1vfsORI0do165dnf1mQmxAfachik9kik10ik9kik10ik9kik3zCMWnvu87cYsni7rvvvvM8OHDzeHDhyNu06pVK3Po0CFjjDGtW7c2+/fvDz82cuRI8/zzzzfq36qoqDCAqaioiKepLa4psQm91qeeeqpR/1a6xcYYxSeapr6v8vLyGv160y02xqjvNETxiUyxiU7xiUyxiU7xiUyxaT7N8XpjHnj3wAMP8MQTT/D888/zqU99CoDq6moOHDgQ3mbNmjV07tyZ888/H4CvfOUrLF26FIA33niDffv2MXr06Fj/6ZTX1Ni8+eabgB17mokUn8gS8b7av39/i7e7pajvRKf4RKbYRKf4RKbYRKf4RKbYpJ+Yhszt3buXnJwcLrzwQtq0aQNAq1atePHFFxk9ejTHjx/nrLPOomPHjjzwwAMMGTIEgAMHDnDTTTexe/duzjnnHH76058yduzYRv2blZWVtGvXjoqKipS+DJiI2GRlZbFz585Gv9Z0iQ0oPtEk6n314x//mIKCgka93nSJDajvNETxiUyxiU7xiUyxiU7xiUyxaX7N8XrjnkPUUoL0HznW1xqk2IDi05BYXq9ik9jt053iE5liE53iE5liE53iE5liE11zvN4E1aoTERERERFJP0qIREREREQksJQQiYiIiIhIYCkhEhERERGRwFJCJCIiIiIigaWESEREREREAksJkYiIiIiIBJYSIhERERERCSwlRCIiIiIiElhKiEREREREJLCUEImIiIiISGApIRIRERERkcBSQiQiIiIiIoGlhEhERERERAJLCZGIiIiIiASWEiIREREREQksJUQiIiIiIhJYSohERERERCSwlBCJiIiIiEhgKSESEREREZHAUkIkIiIiIiKBpYRIREREREQCSwmRiIiIiIgElhIiEREREREJLCVEIiIiIiISWEqIREREREQksJQQiYiIiIhIYCkhEhERERGRwFJCJCIiIiIigaWESEREREREAksJkYiIiIiIBJYSIhERERERCSwlRCIiIiIiElhKiEREREREJLCUEImIiIiISGApIRIRERERkcBSQiQiIiIiIoGlhEhERERERAJLCZGIiIiIiASWEiIREREREQksJUQiIiIiIhJYSohERERERCSwlBCJiIiIiEhgKSESEREREZHAUkIkIiIiIiKBpYRIREREREQCSwmRiIiIiIgElhIiEREREREJLCVEIiIiIiISWEqIREREREQksJQQiYiIiIhIYCkhEhERERGRwFJCJCIiIiIigaWESEREREREAksJkYiIiIiIBJYSIhERERERCSwlRCIiIiIiElhKiEREREREJLCUEImIiIiISGApIRIRERERkcBSQiQiIiIiIoEVU0J07NgxrrnmGvr168eQIUO46qqrKC0tBeDgwYOMGzeOvn37MnDgQF555ZXw86I9likSEZtLL700Wc1vdopPZIl6X23cuDFZL6FZqe9Ep/hEpthEp/hEpthEp/hEptikKRODqqoq8+yzz5pTp04ZY4wpLCw0o0ePNsYYc/PNNxvXdY0xxmzevNl069bNnDhxosHHGlJRUWEAU1FREUtTW1wiYvPiiy8awBw6dKhR/2a6xMYYxSeaRL2vunbt2ujXmy6xMUZ9pyGKT2SKTXSKT2SKTXSKT2SKTfNrjtcbU0J0ujfeeMP07NnTGGPMueeea/bv3x9+bOTIkeb5559v8LHTHTt2zFRUVIR/ysrK0vI/cjyxCf0Hfuqpp+rdZ6bExhjFJ5p431d5eXkRX2+mxMYY9Z2GKD6RKTbRKT6RKTbRKT6RKTaJ1xwJUZPmED344INcffXVfPTRR5w8eZILLrgg/FivXr14//33oz5WnwULFtCuXbvwT05OTlOamDTxxgZg79699e4zU2IDik808camR48eEfeZKbEB9Z2GKD6RKTbRKT6RKTbRKT6RKTbpIe6EaP78+ZSWlrJgwYJEtofZs2dTUVER/ikrK0vo/luCYhOd4hOZYhOd4hOd4hOZYhOd4hOZYhOd4hOZYpM+suJ50qJFi1i7di3FxcW0bt2a1q1bk5WVxQcffBDObvfs2UOPHj04//zzIz5Wn1atWtGqVas4X07yNTU2AN27d6933+keG1B8omlqbCJddYX0jw2o7zRE8YlMsYlO8YlMsYlO8YlMsUkzsY6xu//++01eXp4pLy+vc/+UKVPOmOAdmigW7bGGpNNEsabGJtMn0Sk+kSXifdWlS5eMLKpgjPpOQxSfyBSb6BSfyBSb6BSfyBSb5pX0ogqhSVsXXnihGTJkiBkyZIi5+OKLjTHGfPDBB+aqq64yubm55jOf+Yx58cUXw8+L9lhD0uU/ciJic9FFF8X0WtMlNsYoPtEk6n1VVFSUkQmR+k50ik9kik10ik9kik10ik9kik3za47X6xhjTAIvOCVcZWUl7dq1o6KigrZt2ya7Oc0q1tcapNiA4tOQWF6vYpPY7dOd4hOZYhOd4hOZYhOd4hOZYhNdc7zeJlWZExERERERSWdKiEREREREJLCUEImIiIiISGApIRIRERERkcBSQiQiIiIiIoGlhEhERERERAJLCZGIiIiIiASWEiIREREREQksJUQiIiIiIhJYSohERERERCSwlBCJiIiIiEhgKSESEREREZHAUkIkIiIiIiKBpYRIREREREQCSwmRiIiIiIgElhIiEREREREJLCVEIiIiIiISWEqIREREREQ
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"mask = np.zeros(shape)\n",
|
|
|
|
"mask2 = np.zeros(shape)\n",
|
|
|
|
"mask3 = []\n",
|
|
|
|
"fig, ax = plt.subplots(shape[0],shape[1], figsize=(10,10))\n",
|
|
|
|
"\n",
|
|
|
|
"for i in range(0, shape[0]):\n",
|
|
|
|
" temp_arr = []\n",
|
|
|
|
" for j in range(0, shape[1]):\n",
|
|
|
|
" print(f'image {i}, {j}')\n",
|
|
|
|
" arr = []\n",
|
|
|
|
" bval = result[i][j].best_values\n",
|
|
|
|
" sigma_cut = max(BEC_width_guess[i,j,0], BEC_width_guess[i,j,1])\n",
|
|
|
|
" tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=BEC_width_guess[i,j,0]/1.22, sigmay=BEC_width_guess[i,j,1]/1.22)\n",
|
|
|
|
" tf_fit_2 = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut/1.22, sigmay=1.5* sigma_cut/1.22)\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" mask[i,j] = np.where(tf_fit > 0, np.nan, cropOD[i,j])\n",
|
|
|
|
" #mask[i,j] = gaussian_filter(mask[i,j], sigma = 0.4)\n",
|
|
|
|
" #mask[i,j] = np.where(tf_fit_2 > 0, mask[i,j], np.nan)\n",
|
|
|
|
" mask2[i,j] = np.where(tf_fit_2 > 0, mask[i,j], np.nan)\n",
|
|
|
|
" # print(f'max = {np.nanmax(mask[i,j])}, {np.nanmax(mask[i,j]) / np.nanmin(mask[i,j])}')\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
" check_value = np.nanmean(mask2[i,j]) / (bval[\"amp_bec\"] + bval[\"amp_th\"])\n",
|
|
|
|
"\n",
|
|
|
|
" print(f'check val, {np.nansum(mask2[i,j])}')\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
2023-08-03 10:55:33 +02:00
|
|
|
" ax[i,j].pcolormesh(mask2[i,j], cmap='jet',vmin=0,vmax=0.5)\n",
|
2023-07-27 17:16:08 +02:00
|
|
|
"\n",
|
|
|
|
"plt.show()"
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-01T13:29:36.744796500Z",
|
|
|
|
"start_time": "2023-08-01T13:29:33.948301900Z"
|
2023-07-27 17:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 18,
|
2023-07-27 17:16:08 +02:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"text/plain": "array([[ 0.07268155, -0.09124867, 0.11122564, ..., 0.09485779,\n 0.04357125, 0.02711324],\n [ 0.09737416, 0.01287571, 0.04367506, ..., 0.04072961,\n -0.04108686, -0.02136833],\n [ 0.17652024, 0.05190786, 0.02469261, ..., 0.06313304,\n -0.01336323, -0.02586351],\n ...,\n [-0.11633899, -0.0156079 , -0.01670185, ..., 0.03050345,\n 0.01282069, 0.06573208],\n [ 0.07503519, -0.00413224, -0.00858374, ..., -0.02333086,\n 0.06368782, 0.03050345],\n [-0.08058049, 0.01200014, 0.02309571, ..., 0.05032508,\n -0.10199917, -0.00209424]])"
|
2023-07-27 17:16:08 +02:00
|
|
|
},
|
2023-08-03 10:55:33 +02:00
|
|
|
"execution_count": 18,
|
2023-07-27 17:16:08 +02:00
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2023-08-03 10:55:33 +02:00
|
|
|
"cropOD[0][0]"
|
2023-07-26 09:41:51 +02:00
|
|
|
],
|
2023-07-20 20:34:19 +02:00
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"ExecuteTime": {
|
2023-08-03 10:55:33 +02:00
|
|
|
"end_time": "2023-08-02T14:46:21.508554600Z",
|
|
|
|
"start_time": "2023-08-02T14:46:21.329176100Z"
|
2023-07-20 10:19:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"outputs": [],
|
|
|
|
"source": [],
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 2
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython2",
|
|
|
|
"version": "2.7.6"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 0
|
|
|
|
}
|