analyseScript/Joschka/Not_used_Fitting.ipynb

386 lines
14 KiB
Plaintext
Raw Permalink Normal View History

2023-07-27 17:16:08 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Fitting with constraint\n",
"result = []\n",
"times = []\n",
"x = np.linspace(0,shape[3],150)\n",
"y = np.linspace(0,shape[2], 150)\n",
"\n",
"for i in range(0,shape[0]):\n",
" temp_res_arr = []\n",
" for j in range(0,shape[1]):\n",
" data = cropOD[i,j]\n",
" fitModel = lmfit.Model(density_profile_BEC_2d, independent_vars=['x','y'])\n",
" #fitModel.set_param_hint('deltax', value=5)\n",
"\n",
" bval = result_x[i][j].best_values\n",
" S = np.max(blurred[i,j])/(bval['amp_bec'] + bval['amp_th'])\n",
"\n",
" params = lmfit.Parameters()\n",
" #print(bval['sigma_th'])\n",
"\n",
" params.add_many(\n",
" ('amp_bec', S * bval['amp_bec'], True, 0, 1.3 * np.max(data)),\n",
" ('amp_th',S * bval['amp_th'], True, 0, 1.3 * np.max(data)),\n",
" ('x0_bec',center[i,j,0], True, 0, 150),\n",
" ('y0_bec',center[i,j,1], True, 0, 150),\n",
" ('x0_th',center[i,j,0], True, 0, 150),\n",
" ('y0_th',center[i,j,1], True, 0, 150),\n",
" ('sigmax_bec',bval['sigma_bec'], True, 0, 50),\n",
" ('sigmay_bec',BEC_width_guess[i,j,1], True, 0, 50),\n",
" ('D_sigX', 1.93*bval['sigma_th'] - 1.22*bval['sigma_bec'], True, 0.1, 50),\n",
" ('D_sig_th', 0, True, -10, 10)\n",
" )\n",
"\n",
" params.add('sigmax_th',bval['sigma_th'], min=0, expr=f'0.632*sigmax_bec + 0.518*D_sigX')\n",
" params.add('sigmay_th',bval['sigma_th'], min=0, expr=f'sigmax_th + D_sig_th')\n",
"\n",
" X,Y = np.meshgrid(x, y)\n",
" X_1d = X.flatten()\n",
" Y_1d = Y.flatten()\n",
"\n",
" data1d = data.flatten()\n",
" start = time.time()\n",
" res = fitModel.fit(data1d, x=X_1d, y=Y_1d, params=params)\n",
" stop = time.time()\n",
" print(stop-start)\n",
" times.append(stop-start)\n",
" temp_res_arr.append(res)\n",
" result.append(temp_res_arr)\n",
"times = np.array(times)\n",
"print(f\"fitting time = {np.mean(times)} +- {np.std(times, ddof=1)}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# from opencv import moments\n",
"shape = np.shape(cropOD)\n",
"sigma = 0.4\n",
"blurred = gaussian_filter(cropOD, sigma=sigma)\n",
"\n",
"thresh = np.zeros(shape)\n",
"for i in range(0,shape[0]):\n",
" for j in range(0, shape[1]):\n",
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
"\n",
"center = calc_cen_bulk(thresh)\n",
"\n",
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
"\n",
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
"\n",
"for i in range(0, shape[0]):\n",
" for j in range(0, shape[1]):\n",
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
"\n",
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
"\n",
"#[nr images x, nr images y, X / Y, center / sigma]\n",
"x = np.linspace(0,149,150)\n",
"y = np.linspace(0,149, 200)\n",
"\n",
"popt = np.zeros((shape[0], shape[1], 6))\n",
"\n",
"p0 = np.ones((shape[0], shape[1], 6))\n",
"\n",
"max = np.zeros((shape[0], shape[1]))\n",
"\n",
"for i in range(0, shape[0]):\n",
" max[i] = np.ndarray.max(X_guess_og[i],axis=1)\n",
"\n",
"\n",
"p0[:, :, 0] = center[:, :, 0] # center BEC\n",
"p0[:, :, 1] = center[:, :, 0] # center th\n",
"p0[:, :, 2] = 0.7 * max # amp BEC\n",
"p0[:, :, 3] = 0.3 * max # amp th\n",
"p0[:, :, 4] = BEC_width_guess[:, :, 0] # sigma BEC\n",
"p0[:, :, 5] = BEC_width_guess[:, :, 0] * 3 # sigma th\n",
"\n",
"start = time.time()\n",
"for i in range(0, shape[0]):\n",
" for j in range(0, shape[1]):\n",
" popt[i,j], pcov = curve_fit(density_1d, x, X_guess_og[i,j] , p0[i, j], nan_policy='omit')\n",
"stop = time.time()\n",
"\n",
"print(f'fitting time: {(stop-start)*1e3} ms')\n",
"\n",
"fsize=(15,10)\n",
"vmax = 1.5\n",
"fig, ax = plt.subplots(shape[0],shape[1],figsize=fsize)\n",
"for i in range(0, shape[0]):\n",
" for j in range(0, shape[1]):\n",
" lab = f\"A$_{{BEC}}$ = {popt[i,j,0]:.1f} \\n A$_{{th}}$ = {popt[i,j,1]:.1f} \"\n",
" ax[i,j].plot(x, X_guess_og[i,j])\n",
" ax[i,j].plot(x, density_1d(x, *popt[i,j]), label = lab, zorder=3)\n",
" ax[i,j].plot(x, thermal(x, popt[i,j,1], popt[i,j, 3], popt[i,j, 5]))\n",
"\n",
"\n",
" #ax[i,j].legend(fontsize=10)\n",
" ax[i,j].set_facecolor('#FFFFFF')\n",
"plt.show()\n"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# from opencv import moments\n",
"start = time.time()\n",
"shape = np.shape(cropOD)\n",
"sigma = 0.4\n",
"blurred = gaussian_filter(cropOD, sigma=sigma)\n",
"\n",
"thresh = np.zeros(shape)\n",
"for i in range(0,shape[0]):\n",
" for j in range(0, shape[1]):\n",
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
"\n",
"center = calc_cen_bulk(thresh)\n",
"\n",
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
"\n",
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
"\n",
"for i in range(0, shape[0]):\n",
" for j in range(0, shape[1]):\n",
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
"\n",
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
"\n",
"#[nr images x, nr images y, X / Y, center / sigma]\n",
"x = np.linspace(0,shape[3],150)\n",
"y = np.linspace(0,shape[2], 150)\n",
"\n",
"popt = np.zeros((shape[0], shape[1], 6))\n",
"\n",
"p0 = np.ones((shape[0], shape[1], 6))\n",
"\n",
"max = np.zeros((shape[0], shape[1]))\n",
"\n",
"for i in range(0, shape[0]):\n",
" max[i] = np.ndarray.max(X_guess_og[i],axis=1)\n",
"\n",
"# Fitting x without math constr\n",
"fitmodel = lmfit.Model(density_1d,independent_vars=['x'])\n",
"\n",
"result_x = []\n",
"\n",
"for i in range(0, shape[0]):\n",
" temp_res = []\n",
" for j in range(0, shape[1]):\n",
" t1 = time.time()\n",
" params = lmfit.Parameters()\n",
" params.add_many(\n",
" ('x0_bec', center[i,j,0], True,0, 200),\n",
" ('x0_th',center[i,j,0], True,0, 200),\n",
" ('amp_bec', 0.7 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
" ('amp_th', 0.3 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
" ('deltax', 0, True, 0,50),\n",
" ('sigma_bec',BEC_width_guess[i,j,0], True, 0, 50)\n",
" )\n",
" params.add('sigma_th', popt[i,j,5], min=0, expr=f'sigma_bec + deltax')\n",
"\n",
" t2 = time.time()\n",
" res = fitmodel.fit(X_guess_og[i,j], x=x, params=params)\n",
" t3 = time.time()\n",
" temp_res.append(res)\n",
" t4 = time.time()\n",
" print(t2 - t1)\n",
" print(t3 - t2)\n",
" print(t4 - t3)\n",
" print(\"\")\n",
" result_x.append(temp_res)\n",
"stop = time.time()\n",
"\n",
"print(f'total time: {(stop-start)*1e3} ms')3"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# from opencv import moments\n",
"start = time.time()\n",
"shape = np.shape(cropOD)\n",
"sigma = 0.4\n",
"blurred = gaussian_filter(cropOD, sigma=sigma)\n",
"\n",
"thresh = np.zeros(shape)\n",
"for i in range(0,shape[0]):\n",
" for j in range(0, shape[1]):\n",
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
"\n",
"center = calc_cen_bulk(thresh)\n",
"\n",
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
"\n",
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
"\n",
"for i in range(0, shape[0]):\n",
" for j in range(0, shape[1]):\n",
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
"\n",
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
"\n",
"#[nr images x, nr images y, X / Y, center / sigma]\n",
"x = np.linspace(0,shape[3],150)\n",
"y = np.linspace(0,shape[2], 150)\n",
"\n",
"popt = np.zeros((shape[0], shape[1], 6))\n",
"\n",
"p0 = np.ones((shape[0], shape[1], 6))\n",
"\n",
"max = np.zeros((shape[0], shape[1]))\n",
"\n",
"for i in range(0, shape[0]):\n",
" max[i] = np.ndarray.max(X_guess_og[i],axis=1)\n",
"\n",
"# Fitting x without math constr\n",
"fitmodel = lmfit.Model(density_1d,independent_vars=['x'])\n",
"\n",
"result_x = []\n",
"\n",
"for i in range(0, shape[0]):\n",
" temp_res = []\n",
" for j in range(0, shape[1]):\n",
" t1 = time.time()\n",
" params = lmfit.Parameters()\n",
" params.add_many(\n",
" ('x0_bec', center[i,j,0], True,0, 200),\n",
" ('x0_th',center[i,j,0], True,0, 200),\n",
" ('amp_bec', 0.7 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
" ('amp_th', 0.3 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
" ('sigma_bec',BEC_width_guess[i,j,0] / 1.22 , True, 0, 50),\n",
" ('sigma_th', 3 * BEC_width_guess[i,j,0], True, 0, 50)\n",
" )\n",
"\n",
" t2 = time.time()\n",
" res = fitmodel.fit(X_guess_og[i,j], x=x, params=params)\n",
" t3 = time.time()\n",
" temp_res.append(res)\n",
" t4 = time.time()\n",
" # print(t2 - t1)\n",
" # print(t3 - t2)\n",
" # print(t4 - t3)\n",
" # print(\"\")\n",
" result_x.append(temp_res)\n",
"stop = time.time()\n",
"\n",
"print(f'total time: {(stop-start)*1e3} ms')"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# get center of thresholded image\n",
"\n",
"def calc_thresh(data):\n",
" shape = np.shape(data)\n",
" thresh = np.zeros(shape)\n",
" sigma = 0.4\n",
"\n",
" if len(shape) == 4:\n",
" blurred = gaussian_filter(data, sigma=sigma)\n",
" for i in range(0,shape[0]):\n",
" for j in range(0, shape[1]):\n",
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
"\n",
" elif len(shape) == 3:\n",
" blurred = gaussian_filter(data, sigma=sigma)\n",
" for i in range(0,shape[0]):\n",
" thresh[i] = np.where(blurred[i] < np.max(blurred[i])*0.5,0,1)\n",
"\n",
" else:\n",
" print(\"Shape of data is wrong, output is empty\")\n",
"\n",
" return thresh\n",
"\n",
"def calc_cen(thresh1):\n",
" \"\"\"\n",
" returns array: [Y_center,X_center]\n",
" \"\"\"\n",
" cen = np.zeros(2)\n",
" (Y,X) = np.shape(thresh1)\n",
"\n",
"\n",
" thresh1 = thresh1 /np.sum(thresh1)\n",
"\n",
" # marginal distributions\n",
" dx = np.sum(thresh1, 0)\n",
" dy = np.sum(thresh1, 1)\n",
"\n",
" # expected values\n",
" cen[0] = np.sum(dx * np.arange(X))\n",
" cen[1] = np.sum(dy * np.arange(Y))\n",
" return cen\n",
"\n",
"def calc_cen_bulk(thresh):\n",
" \"\"\"\n",
" returns array in shape of input, containing array with [Y_center,X_center] for each image\n",
" \"\"\"\n",
" shape = np.shape(thresh)\n",
" cen = np.zeros((shape[0], shape[1], 2))\n",
" for i in range(0, shape[0]):\n",
" for j in range(0, shape[1]):\n",
" cen[i,j] = calc_cen(thresh[i,j])\n",
" return cen\n",
"\n",
"\n",
"def gaussian(x, x0, sigma, A):\n",
" return A * np.exp(-0.5 * (x-x0)**2 / sigma**2)"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}