Initial commit

This commit is contained in:
= 2024-08-14 12:54:42 +02:00
commit 1a3d99c60e
10 changed files with 1282 additions and 0 deletions

View File

@ -0,0 +1,69 @@
import time
import asyncio
import json
from lib.topic_message import TopicMessage, TMQueue
from lib.TMP117 import TMP117
async def measure_sensors(
sensors: list[TMP117],
interval_s: float | int,
microcontroller_id: int,
message_queue: TMQueue,
temperature_topic: str):
"""
Readout configuration of all sensors, then timestamp, temperature of all sensors. Adds data to message_queue. Performs every interval_s, correcting for execution time.
"""
next_time = time.ticks_us()
while True:
# Initialise
temperatures = []
timestamps = []
configs = []
# Readout configuration of sensors pre-temperature measurement
for sensor in sensors:
try:
configs.append(sensor.read_configuration_integer())
except OSError as E:
print(f"ERROR: Sensor {sensor.name}, {E}")
configs.append(None)
# Read time and temperature
for sensor in sensors:
try:
temperatures.append(sensor.read_temperature())
except OSError as E:
print(f"ERROR: Sensor {sensor.name}, {E}")
temperatures.append(None)
timestamps.append(time.time_ns())
# Package into message
for i in range(len(sensors)):
message = json.dumps({
"micro": microcontroller_id,
"sensor": sensors[i].name,
"temperature": temperatures[i],
"time": timestamps[i],
"config": configs[i]
})
x = TopicMessage(temperature_topic, message)
message_queue.add(x)
# Calculate time to sleep
next_time = time.ticks_add(next_time, interval_s*1000000)
sleep_time = time.ticks_diff(next_time, time.ticks_us())/1e6
await asyncio.sleep(sleep_time)
async def switch_inbound_message_queue(inbound_queue: TMQueue, interval_s):
"""Checks inbound queue and decides what to do with the messages"""
while True:
# Iterate through all inbound messages and execute relevant task.
while not inbound_queue.is_empty():
tmsg = inbound_queue.get()
topic = tmsg.topic
message = tmsg.message
pass
await asyncio.sleep(interval_s)

View File

@ -0,0 +1,46 @@
import select
import sys
import machine
import time
import asyncio
from lib.topic_message import TopicMessage, TMQueue, string_to_topicmessage
async def usb_sync_clock(
interval_s: float | int):
"""Synchronise clock by posting a request and readin in the output immediately"""
while True:
poll_obj = select.poll()
poll_obj.register(sys.stdin, select.POLLIN)
sys.stdout.write("REQUEST_TIME \n")
poll_results = poll_obj.poll(10)
if poll_results:
timestamp_ms = float(sys.stdin.readline())
t = time.gmtime(int(timestamp_ms/1000))
machine.RTC().datetime((t[0], t[1], t[2], t[6], t[3], t[4], t[5], 0))
else:
await asyncio.sleep(interval_s)
async def usb_in_message_parser(
inbound_queue: TMQueue,
interval_s: float | int):
"""Parse regular TopicMessage messages sent in through USB"""
poll_obj = select.poll()
poll_obj.register(sys.stdin, select.POLLIN)
while True:
poll_results = poll_obj.poll(10)
if poll_results:
line = sys.stdin.readline()
inbound_queue.add(string_to_topicmessage(line))
else:
await asyncio.sleep(interval_s)
async def usb_send_data(
outbound_queue: TMQueue,
interval_s: float | int):
"""Send all messages in outbound queue via USB"""
while True:
while not outbound_queue.is_empty():
item: TopicMessage = outbound_queue.get()
sys.stdout.write(f"{item.topic}: {item.message}\n")
await asyncio.sleep(interval_s)

View File

@ -0,0 +1,59 @@
import ntptime
import asyncio
from lib.mqtt_as import MQTTClient
from lib.topic_message import TopicMessage, TMQueue
async def mqtt_up(
mqtt_client: MQTTClient,
inbound_topic,
todo):
"""
Perform asynchronous "todo" when MQTT client is connected.
"""
while True:
await mqtt_client.up.wait() # type: ignore
mqtt_client.up.clear()
await mqtt_client.subscribe(inbound_topic)
await todo()
async def mqtt_down(
mqtt_client: MQTTClient,
todo):
"""
Perform asynchronous "todo" when MQTT client is disconnected.
"""
while True:
await mqtt_client.down.wait() # type: ignore
mqtt_client.down.clear()
await todo()
async def wireless_sync_clock(
mqtt_client: MQTTClient,
interval_s):
"""Sync clock via NTP server"""
while True:
ntptime.settime()
await asyncio.sleep(interval_s)
async def mqtt_publish_tmsgs(
mqtt_client: MQTTClient,
outbound_queue: TMQueue,
post_interval: float | int):
"""Publishes all TopicMessage items in queue over MQTT"""
while True:
while not outbound_queue.is_empty():
item = outbound_queue.get()
await mqtt_client.publish(item.topic, item.message, qos=1)
await asyncio.sleep(post_interval)
async def mqtt_message_parser(
mqtt_client: MQTTClient,
inbound_queue: TMQueue):
"""Parse messages recieved by MQTT client and add them to the inbound queue"""
async for topic, message, retained in mqtt_client.queue: # type: ignore
topic = topic.decode()
message = message.decode()
inbound_queue.add(TopicMessage(topic, message))

22
event_loops.py Normal file
View File

@ -0,0 +1,22 @@
import asyncio
from lib.topic_message import TMQueue
from async_tasks.general_tasks import measure_sensors
async def main_wifi(uuid, sensors, mqtt_client, temperature_topic, inbound_topic):
from async_tasks.wireless_tasks import mqtt_publish_tmsgs
outbound_queue = TMQueue()
asyncio.create_task(measure_sensors(sensors, 1, uuid, outbound_queue, temperature_topic))
asyncio.create_task(mqtt_publish_tmsgs(mqtt_client, outbound_queue, 0.5))
while True:
await asyncio.sleep(5)
async def main_wired(uuid, sensors, temperature_topic, inbound_topic):
from async_tasks.wired_tasks import usb_send_data
outbound_queue = TMQueue()
asyncio.create_task(measure_sensors(sensors, 1, uuid, outbound_queue, temperature_topic))
asyncio.create_task(usb_send_data(outbound_queue, 0.5))
while True:
await asyncio.sleep(5)

View File

@ -0,0 +1,37 @@
[
{
"micro_id": 1000000000000000,
"wifi_or_usb": "usb",
"temperature_topic": "TEMPERATURE TOPIC",
"inbound_topic": "INBOUND TOPIC",
"network_settings":{
"ssid": "SSID",
"wifi_pw": "PASSWORD",
"mqtt_server": "IP ADDRESS",
"mqtt_port": 1883,
"mqtt_queue_length": 4
},
"i2c_buses":[
{
"name": "EG I2C",
"scl": 1,
"sda": 0,
"freq": 400000,
"hard_i2c": true,
"hard_i2c_bus": 0
}
],
"sensors":[
{
"name": "EG SENSOR",
"i2c_name": "EG I2C",
"i2c_addr": 72,
"config": 544
}
]
}
]

84
lib/TMP117.py Normal file
View File

@ -0,0 +1,84 @@
import machine
class TMP117:
RESOLUTION = 0.0078125
TEMP_ADDR = 0x00
CONFIG_ADDR = 0x01
NIST_ADDR = 0x05
TEMP_SIZE = 16
CONFIG_REGISTER_MAP = {
"HIGH_Alert": 15,
"LOW_Alert": 14,
"Data_Ready": 13,
"EEPROM_Busy": 12,
"MOD1": 11,
"MOD0": 10,
"CONV2": 9,
"CONV1": 8,
"CONV0": 7,
"AVG1": 6,
"AVG0": 5,
"T/nA": 4,
"POL": 3,
"DR/Alert": 2,
"Soft_Reset": 1,
"--": 0
}
DEFAULT_CONFIG_INT = 554
def __init__(self, name: str, i2c: machine.I2C|machine.SoftI2C, i2c_addr, config_int):
self.name = name
self.i2c_addr = i2c_addr
self.i2c = i2c
self.NIST_ID = int.from_bytes(self.i2c.readfrom_mem(self.i2c_addr, self.NIST_ADDR, 2), "big")
# Set configuration
self.write_configuration_integer(config_int)
def bytes_to_temperature(self, binary:bytes):
"""Converts a 2's complement 16 bit value to the appropriate temperature value."""
val = int.from_bytes(binary, "big")
if (val & (1 << (self.TEMP_SIZE - 1))) != 0:
val = val - (1 << self.TEMP_SIZE)
return val * TMP117.RESOLUTION
def int_to_config_dict(self, integer:int):
"""Converts a configuration """
assert integer < 2**(16)
bits = list(f"{integer:016b}")
bits.reverse()
result = {}
for key in self.CONFIG_REGISTER_MAP.keys():
result[key] = bits[self.CONFIG_REGISTER_MAP[key]]
return result
def config_dict_to_int(self, config_dict):
array = [None for _ in range(16)]
for option in config_dict.keys():
array[self.CONFIG_REGISTER_MAP[option]] = config_dict[option]
array.reverse()
bit_string = ""
for bit in array:
bit_string += str(bit)
write_byte = int(bit_string, 2)
def write_configuration_integer(self, config_int:int):
write_byte = config_int.to_bytes(2, "big")
self.i2c.writeto_mem(self.i2c_addr, self.CONFIG_ADDR, write_byte)
def read_configuration_integer(self):
binary = self.i2c.readfrom_mem(self.i2c_addr, self.CONFIG_ADDR, 2)
integer = int.from_bytes(binary, "big")
return integer
def read_temperature(self):
binary = self.i2c.readfrom_mem(self.i2c_addr, self.TEMP_ADDR, 2)
return self.bytes_to_temperature(binary)

803
lib/mqtt_as.py Normal file
View File

@ -0,0 +1,803 @@
# mqtt_as.py Asynchronous version of umqtt.robust
# (C) Copyright Peter Hinch 2017-2023.
# Released under the MIT licence.
# Pyboard D support added also RP2/default
# Various improvements contributed by Kevin Köck.
import gc
import usocket as socket
import ustruct as struct
gc.collect()
from ubinascii import hexlify
import uasyncio as asyncio
gc.collect()
from utime import ticks_ms, ticks_diff
from uerrno import EINPROGRESS, ETIMEDOUT
gc.collect()
from micropython import const
from machine import unique_id
import network
gc.collect()
from sys import platform
VERSION = (0, 7, 2)
# Default short delay for good SynCom throughput (avoid sleep(0) with SynCom).
_DEFAULT_MS = const(20)
_SOCKET_POLL_DELAY = const(5) # 100ms added greatly to publish latency
# Legitimate errors while waiting on a socket. See uasyncio __init__.py open_connection().
ESP32 = platform == "esp32"
RP2 = platform == "rp2"
if ESP32:
# https://forum.micropython.org/viewtopic.php?f=16&t=3608&p=20942#p20942
BUSY_ERRORS = [EINPROGRESS, ETIMEDOUT, 118, 119] # Add in weird ESP32 errors
elif RP2:
BUSY_ERRORS = [EINPROGRESS, ETIMEDOUT, -110]
else:
BUSY_ERRORS = [EINPROGRESS, ETIMEDOUT]
ESP8266 = platform == "esp8266"
PYBOARD = platform == "pyboard"
# Default "do little" coro for optional user replacement
async def eliza(*_): # e.g. via set_wifi_handler(coro): see test program
await asyncio.sleep_ms(_DEFAULT_MS)
class MsgQueue:
def __init__(self, size):
self._q = [0 for _ in range(max(size, 4))]
self._size = size
self._wi = 0
self._ri = 0
self._evt = asyncio.Event()
self.discards = 0
def put(self, *v):
self._q[self._wi] = v
self._evt.set()
self._wi = (self._wi + 1) % self._size
if self._wi == self._ri: # Would indicate empty
self._ri = (self._ri + 1) % self._size # Discard a message
self.discards += 1
def __aiter__(self):
return self
async def __anext__(self):
if self._ri == self._wi: # Empty
self._evt.clear()
await self._evt.wait()
r = self._q[self._ri]
self._ri = (self._ri + 1) % self._size
return r
config = {
"client_id": hexlify(unique_id()),
"server": None,
"port": 0,
"user": "",
"password": "",
"keepalive": 60,
"ping_interval": 0,
"ssl": False,
"ssl_params": {},
"response_time": 10,
"clean_init": True,
"clean": True,
"max_repubs": 4,
"will": None,
"subs_cb": lambda *_: None,
"wifi_coro": eliza,
"connect_coro": eliza,
"ssid": None,
"wifi_pw": None,
"queue_len": 0,
"gateway": False,
}
class MQTTException(Exception):
pass
def pid_gen():
pid = 0
while True:
pid = pid + 1 if pid < 65535 else 1
yield pid
def qos_check(qos):
if not (qos == 0 or qos == 1):
raise ValueError("Only qos 0 and 1 are supported.")
# MQTT_base class. Handles MQTT protocol on the basis of a good connection.
# Exceptions from connectivity failures are handled by MQTTClient subclass.
class MQTT_base:
REPUB_COUNT = 0 # TEST
DEBUG = False
def __init__(self, config):
self._events = config["queue_len"] > 0
# MQTT config
self._client_id = config["client_id"]
self._user = config["user"]
self._pswd = config["password"]
self._keepalive = config["keepalive"]
if self._keepalive >= 65536:
raise ValueError("invalid keepalive time")
self._response_time = config["response_time"] * 1000 # Repub if no PUBACK received (ms).
self._max_repubs = config["max_repubs"]
self._clean_init = config["clean_init"] # clean_session state on first connection
self._clean = config["clean"] # clean_session state on reconnect
will = config["will"]
if will is None:
self._lw_topic = False
else:
self._set_last_will(*will)
# WiFi config
self._ssid = config["ssid"] # Required for ESP32 / Pyboard D. Optional ESP8266
self._wifi_pw = config["wifi_pw"]
self._ssl = config["ssl"]
self._ssl_params = config["ssl_params"]
# Callbacks and coros
if self._events:
self.up = asyncio.Event()
self.down = asyncio.Event()
self.queue = MsgQueue(config["queue_len"])
else: # Callbacks
self._cb = config["subs_cb"]
self._wifi_handler = config["wifi_coro"]
self._connect_handler = config["connect_coro"]
# Network
self.port = config["port"]
if self.port == 0:
self.port = 8883 if self._ssl else 1883
self.server = config["server"]
if self.server is None:
raise ValueError("no server specified.")
self._sock = None
self._sta_if = network.WLAN(network.STA_IF)
self._sta_if.active(True)
if config["gateway"]: # Called from gateway (hence ESP32).
import aioespnow # Set up ESPNOW
while not (sta := self._sta_if).active():
time.sleep(0.1)
sta.config(pm=sta.PM_NONE) # No power management
sta.active(True)
self._espnow = aioespnow.AIOESPNow() # Returns AIOESPNow enhanced with async support
self._espnow.active(True)
self.newpid = pid_gen()
self.rcv_pids = set() # PUBACK and SUBACK pids awaiting ACK response
self.last_rx = ticks_ms() # Time of last communication from broker
self.lock = asyncio.Lock()
def _set_last_will(self, topic, msg, retain=False, qos=0):
qos_check(qos)
if not topic:
raise ValueError("Empty topic.")
self._lw_topic = topic
self._lw_msg = msg
self._lw_qos = qos
self._lw_retain = retain
def dprint(self, msg, *args):
if self.DEBUG:
print(msg % args)
def _timeout(self, t):
return ticks_diff(ticks_ms(), t) > self._response_time
async def _as_read(self, n, sock=None): # OSError caught by superclass
if sock is None:
sock = self._sock
# Declare a byte array of size n. That space is needed anyway, better
# to just 'allocate' it in one go instead of appending to an
# existing object, this prevents reallocation and fragmentation.
data = bytearray(n)
buffer = memoryview(data)
size = 0
t = ticks_ms()
while size < n:
if self._timeout(t) or not self.isconnected():
raise OSError(-1, "Timeout on socket read")
try:
msg_size = sock.readinto(buffer[size:], n - size)
except OSError as e: # ESP32 issues weird 119 errors here
msg_size = None
if e.args[0] not in BUSY_ERRORS:
raise
if msg_size == 0: # Connection closed by host
raise OSError(-1, "Connection closed by host")
if msg_size is not None: # data received
size += msg_size
t = ticks_ms()
self.last_rx = ticks_ms()
await asyncio.sleep_ms(_SOCKET_POLL_DELAY)
return data
async def _as_write(self, bytes_wr, length=0, sock=None):
if sock is None:
sock = self._sock
# Wrap bytes in memoryview to avoid copying during slicing
bytes_wr = memoryview(bytes_wr)
if length:
bytes_wr = bytes_wr[:length]
t = ticks_ms()
while bytes_wr:
if self._timeout(t) or not self.isconnected():
raise OSError(-1, "Timeout on socket write")
try:
n = sock.write(bytes_wr)
except OSError as e: # ESP32 issues weird 119 errors here
n = 0
if e.args[0] not in BUSY_ERRORS:
raise
if n:
t = ticks_ms()
bytes_wr = bytes_wr[n:]
await asyncio.sleep_ms(_SOCKET_POLL_DELAY)
async def _send_str(self, s):
await self._as_write(struct.pack("!H", len(s)))
await self._as_write(s)
async def _recv_len(self):
n = 0
sh = 0
while 1:
res = await self._as_read(1)
b = res[0]
n |= (b & 0x7F) << sh
if not b & 0x80:
return n
sh += 7
async def _connect(self, clean):
self._sock = socket.socket()
self._sock.setblocking(False)
try:
self._sock.connect(self._addr)
except OSError as e:
if e.args[0] not in BUSY_ERRORS:
raise
await asyncio.sleep_ms(_DEFAULT_MS)
self.dprint("Connecting to broker.")
if self._ssl:
try:
import ssl
except ImportError:
import ussl as ssl
self._sock = ssl.wrap_socket(self._sock, **self._ssl_params)
premsg = bytearray(b"\x10\0\0\0\0\0")
msg = bytearray(b"\x04MQTT\x04\0\0\0") # Protocol 3.1.1
sz = 10 + 2 + len(self._client_id)
msg[6] = clean << 1
if self._user:
sz += 2 + len(self._user) + 2 + len(self._pswd)
msg[6] |= 0xC0
if self._keepalive:
msg[7] |= self._keepalive >> 8
msg[8] |= self._keepalive & 0x00FF
if self._lw_topic:
sz += 2 + len(self._lw_topic) + 2 + len(self._lw_msg)
msg[6] |= 0x4 | (self._lw_qos & 0x1) << 3 | (self._lw_qos & 0x2) << 3
msg[6] |= self._lw_retain << 5
i = 1
while sz > 0x7F:
premsg[i] = (sz & 0x7F) | 0x80
sz >>= 7
i += 1
premsg[i] = sz
await self._as_write(premsg, i + 2)
await self._as_write(msg)
await self._send_str(self._client_id)
if self._lw_topic:
await self._send_str(self._lw_topic)
await self._send_str(self._lw_msg)
if self._user:
await self._send_str(self._user)
await self._send_str(self._pswd)
# Await CONNACK
# read causes ECONNABORTED if broker is out; triggers a reconnect.
resp = await self._as_read(4)
self.dprint("Connected to broker.") # Got CONNACK
if resp[3] != 0 or resp[0] != 0x20 or resp[1] != 0x02:
# Bad CONNACK e.g. authentication fail.
raise OSError(
-1, f"Connect fail: 0x{(resp[0] << 8) + resp[1]:04x} {resp[3]} (README 7)"
)
async def _ping(self):
async with self.lock:
await self._as_write(b"\xc0\0")
# Check internet connectivity by sending DNS lookup to Google's 8.8.8.8
async def wan_ok(
self,
packet=b"$\x1a\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x03www\x06google\x03com\x00\x00\x01\x00\x01",
):
if not self.isconnected(): # WiFi is down
return False
length = 32 # DNS query and response packet size
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.setblocking(False)
s.connect(("8.8.8.8", 53))
await asyncio.sleep(1)
try:
await self._as_write(packet, sock=s)
await asyncio.sleep(2)
res = await self._as_read(length, s)
if len(res) == length:
return True # DNS response size OK
except OSError: # Timeout on read: no connectivity.
return False
finally:
s.close()
return False
async def broker_up(self): # Test broker connectivity
if not self.isconnected():
return False
tlast = self.last_rx
if ticks_diff(ticks_ms(), tlast) < 1000:
return True
try:
await self._ping()
except OSError:
return False
t = ticks_ms()
while not self._timeout(t):
await asyncio.sleep_ms(100)
if ticks_diff(self.last_rx, tlast) > 0: # Response received
return True
return False
async def disconnect(self):
if self._sock is not None:
await self._kill_tasks(False) # Keep socket open
try:
async with self.lock:
self._sock.write(b"\xe0\0") # Close broker connection
await asyncio.sleep_ms(100)
except OSError:
pass
self._close()
self._has_connected = False
def _close(self):
if self._sock is not None:
self._sock.close()
def close(self): # API. See https://github.com/peterhinch/micropython-mqtt/issues/60
self._close()
try:
self._sta_if.disconnect() # Disconnect Wi-Fi to avoid errors
except OSError:
self.dprint("Wi-Fi not started, unable to disconnect interface")
self._sta_if.active(False)
async def _await_pid(self, pid):
t = ticks_ms()
while pid in self.rcv_pids: # local copy
if self._timeout(t) or not self.isconnected():
break # Must repub or bail out
await asyncio.sleep_ms(100)
else:
return True # PID received. All done.
return False
# qos == 1: coro blocks until wait_msg gets correct PID.
# If WiFi fails completely subclass re-publishes with new PID.
async def publish(self, topic, msg, retain, qos):
pid = next(self.newpid)
if qos:
self.rcv_pids.add(pid)
async with self.lock:
await self._publish(topic, msg, retain, qos, 0, pid)
if qos == 0:
return
count = 0
while 1: # Await PUBACK, republish on timeout
if await self._await_pid(pid):
return
# No match
if count >= self._max_repubs or not self.isconnected():
raise OSError(-1) # Subclass to re-publish with new PID
async with self.lock:
await self._publish(topic, msg, retain, qos, dup=1, pid=pid) # Add pid
count += 1
self.REPUB_COUNT += 1
async def _publish(self, topic, msg, retain, qos, dup, pid):
pkt = bytearray(b"\x30\0\0\0")
pkt[0] |= qos << 1 | retain | dup << 3
sz = 2 + len(topic) + len(msg)
if qos > 0:
sz += 2
if sz >= 2097152:
raise MQTTException("Strings too long.")
i = 1
while sz > 0x7F:
pkt[i] = (sz & 0x7F) | 0x80
sz >>= 7
i += 1
pkt[i] = sz
await self._as_write(pkt, i + 1)
await self._send_str(topic)
if qos > 0:
struct.pack_into("!H", pkt, 0, pid)
await self._as_write(pkt, 2)
await self._as_write(msg)
# Can raise OSError if WiFi fails. Subclass traps.
async def subscribe(self, topic, qos):
pkt = bytearray(b"\x82\0\0\0")
pid = next(self.newpid)
self.rcv_pids.add(pid)
struct.pack_into("!BH", pkt, 1, 2 + 2 + len(topic) + 1, pid)
async with self.lock:
await self._as_write(pkt)
await self._send_str(topic)
await self._as_write(qos.to_bytes(1, "little"))
if not await self._await_pid(pid):
raise OSError(-1)
# Can raise OSError if WiFi fails. Subclass traps.
async def unsubscribe(self, topic):
pkt = bytearray(b"\xa2\0\0\0")
pid = next(self.newpid)
self.rcv_pids.add(pid)
struct.pack_into("!BH", pkt, 1, 2 + 2 + len(topic), pid)
async with self.lock:
await self._as_write(pkt)
await self._send_str(topic)
if not await self._await_pid(pid):
raise OSError(-1)
# Wait for a single incoming MQTT message and process it.
# Subscribed messages are delivered to a callback previously
# set by .setup() method. Other (internal) MQTT
# messages processed internally.
# Immediate return if no data available. Called from ._handle_msg().
async def wait_msg(self):
try:
res = self._sock.read(1) # Throws OSError on WiFi fail
except OSError as e:
if e.args[0] in BUSY_ERRORS: # Needed by RP2
await asyncio.sleep_ms(0)
return
raise
if res is None:
return
if res == b"":
raise OSError(-1, "Empty response")
if res == b"\xd0": # PINGRESP
await self._as_read(1) # Update .last_rx time
return
op = res[0]
if op == 0x40: # PUBACK: save pid
sz = await self._as_read(1)
if sz != b"\x02":
raise OSError(-1, "Invalid PUBACK packet")
rcv_pid = await self._as_read(2)
pid = rcv_pid[0] << 8 | rcv_pid[1]
if pid in self.rcv_pids:
self.rcv_pids.discard(pid)
else:
raise OSError(-1, "Invalid pid in PUBACK packet")
if op == 0x90: # SUBACK
resp = await self._as_read(4)
if resp[3] == 0x80:
raise OSError(-1, "Invalid SUBACK packet")
pid = resp[2] | (resp[1] << 8)
if pid in self.rcv_pids:
self.rcv_pids.discard(pid)
else:
raise OSError(-1, "Invalid pid in SUBACK packet")
if op == 0xB0: # UNSUBACK
resp = await self._as_read(3)
pid = resp[2] | (resp[1] << 8)
if pid in self.rcv_pids:
self.rcv_pids.discard(pid)
else:
raise OSError(-1)
if op & 0xF0 != 0x30:
return
sz = await self._recv_len()
topic_len = await self._as_read(2)
topic_len = (topic_len[0] << 8) | topic_len[1]
topic = await self._as_read(topic_len)
sz -= topic_len + 2
if op & 6:
pid = await self._as_read(2)
pid = pid[0] << 8 | pid[1]
sz -= 2
msg = await self._as_read(sz)
retained = op & 0x01
if self._events:
self.queue.put(topic, msg, bool(retained))
else:
self._cb(topic, msg, bool(retained))
if op & 6 == 2: # qos 1
pkt = bytearray(b"\x40\x02\0\0") # Send PUBACK
struct.pack_into("!H", pkt, 2, pid)
await self._as_write(pkt)
elif op & 6 == 4: # qos 2 not supported
raise OSError(-1, "QoS 2 not supported")
# MQTTClient class. Handles issues relating to connectivity.
class MQTTClient(MQTT_base):
def __init__(self, config):
super().__init__(config)
self._isconnected = False # Current connection state
keepalive = 1000 * self._keepalive # ms
self._ping_interval = keepalive // 4 if keepalive else 20000
p_i = config["ping_interval"] * 1000 # Can specify shorter e.g. for subscribe-only
if p_i and p_i < self._ping_interval:
self._ping_interval = p_i
self._in_connect = False
self._has_connected = False # Define 'Clean Session' value to use.
self._tasks = []
if ESP8266:
import esp
esp.sleep_type(0) # Improve connection integrity at cost of power consumption.
async def wifi_connect(self, quick=False):
s = self._sta_if
if ESP8266:
if s.isconnected(): # 1st attempt, already connected.
return
s.active(True)
s.connect() # ESP8266 remembers connection.
for _ in range(60):
if (
s.status() != network.STAT_CONNECTING
): # Break out on fail or success. Check once per sec.
break
await asyncio.sleep(1)
if (
s.status() == network.STAT_CONNECTING
): # might hang forever awaiting dhcp lease renewal or something else
s.disconnect()
await asyncio.sleep(1)
if not s.isconnected() and self._ssid is not None and self._wifi_pw is not None:
s.connect(self._ssid, self._wifi_pw)
while (
s.status() == network.STAT_CONNECTING
): # Break out on fail or success. Check once per sec.
await asyncio.sleep(1)
else:
s.active(True)
if RP2: # Disable auto-sleep.
# https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf
# para 3.6.3
s.config(pm=0xA11140)
s.connect(self._ssid, self._wifi_pw)
for _ in range(60): # Break out on fail or success. Check once per sec.
await asyncio.sleep(1)
# Loop while connecting or no IP
if s.isconnected():
break
if ESP32:
# Status values >= STAT_IDLE can occur during connect:
# STAT_IDLE 1000, STAT_CONNECTING 1001, STAT_GOT_IP 1010
if s.status() < network.STAT_IDLE: # Error statuses
break # are in range 200..204
elif PYBOARD: # No symbolic constants in network
if not 1 <= s.status() <= 2:
break
elif RP2: # 1 is STAT_CONNECTING. 2 reported by user (No IP?)
if not 1 <= s.status() <= 2:
break
else: # Timeout: still in connecting state
s.disconnect()
await asyncio.sleep(1)
if not s.isconnected(): # Timed out
raise OSError("Wi-Fi connect timed out")
if not quick: # Skip on first connection only if power saving
# Ensure connection stays up for a few secs.
self.dprint("Checking WiFi integrity.")
for _ in range(5):
if not s.isconnected():
raise OSError("Connection Unstable") # in 1st 5 secs
await asyncio.sleep(1)
self.dprint("Got reliable connection")
async def connect(self, *, quick=False): # Quick initial connect option for battery apps
if not self._has_connected:
await self.wifi_connect(quick) # On 1st call, caller handles error
# Note this blocks if DNS lookup occurs. Do it once to prevent
# blocking during later internet outage:
self._addr = socket.getaddrinfo(self.server, self.port)[0][-1]
self._in_connect = True # Disable low level ._isconnected check
try:
if not self._has_connected and self._clean_init and not self._clean:
# Power up. Clear previous session data but subsequently save it.
# Issue #40
await self._connect(True) # Connect with clean session
try:
async with self.lock:
self._sock.write(b"\xe0\0") # Force disconnect but keep socket open
except OSError:
pass
self.dprint("Waiting for disconnect")
await asyncio.sleep(2) # Wait for broker to disconnect
self.dprint("About to reconnect with unclean session.")
await self._connect(self._clean)
except Exception:
self._close()
self._in_connect = False # Caller may run .isconnected()
raise
self.rcv_pids.clear()
# If we get here without error broker/LAN must be up.
self._isconnected = True
self._in_connect = False # Low level code can now check connectivity.
if not self._events:
asyncio.create_task(self._wifi_handler(True)) # User handler.
if not self._has_connected:
self._has_connected = True # Use normal clean flag on reconnect.
asyncio.create_task(self._keep_connected())
# Runs forever unless user issues .disconnect()
asyncio.create_task(self._handle_msg()) # Task quits on connection fail.
self._tasks.append(asyncio.create_task(self._keep_alive()))
if self.DEBUG:
self._tasks.append(asyncio.create_task(self._memory()))
if self._events:
self.up.set() # Connectivity is up
else:
asyncio.create_task(self._connect_handler(self)) # User handler.
# Launched by .connect(). Runs until connectivity fails. Checks for and
# handles incoming messages.
async def _handle_msg(self):
try:
while self.isconnected():
async with self.lock:
await self.wait_msg() # Immediate return if no message
await asyncio.sleep_ms(_DEFAULT_MS) # Let other tasks get lock
except OSError:
pass
self._reconnect() # Broker or WiFi fail.
# Keep broker alive MQTT spec 3.1.2.10 Keep Alive.
# Runs until ping failure or no response in keepalive period.
async def _keep_alive(self):
while self.isconnected():
pings_due = ticks_diff(ticks_ms(), self.last_rx) // self._ping_interval
if pings_due >= 4:
self.dprint("Reconnect: broker fail.")
break
await asyncio.sleep_ms(self._ping_interval)
try:
await self._ping()
except OSError:
break
self._reconnect() # Broker or WiFi fail.
async def _kill_tasks(self, kill_skt): # Cancel running tasks
for task in self._tasks:
task.cancel()
self._tasks.clear()
await asyncio.sleep_ms(0) # Ensure cancellation complete
if kill_skt: # Close socket
self._close()
# DEBUG: show RAM messages.
async def _memory(self):
while True:
await asyncio.sleep(20)
gc.collect()
self.dprint("RAM free %d alloc %d", gc.mem_free(), gc.mem_alloc())
def isconnected(self):
if self._in_connect: # Disable low-level check during .connect()
return True
if self._isconnected and not self._sta_if.isconnected(): # It's going down.
self._reconnect()
return self._isconnected
def _reconnect(self): # Schedule a reconnection if not underway.
if self._isconnected:
self._isconnected = False
asyncio.create_task(self._kill_tasks(True)) # Shut down tasks and socket
if self._events: # Signal an outage
self.down.set()
else:
asyncio.create_task(self._wifi_handler(False)) # User handler.
# Await broker connection.
async def _connection(self):
while not self._isconnected:
await asyncio.sleep(1)
# Scheduled on 1st successful connection. Runs forever maintaining wifi and
# broker connection. Must handle conditions at edge of WiFi range.
async def _keep_connected(self):
while self._has_connected:
if self.isconnected(): # Pause for 1 second
await asyncio.sleep(1)
gc.collect()
else: # Link is down, socket is closed, tasks are killed
try:
self._sta_if.disconnect()
except OSError:
self.dprint("Wi-Fi not started, unable to disconnect interface")
await asyncio.sleep(1)
try:
await self.wifi_connect()
except OSError:
continue
if not self._has_connected: # User has issued the terminal .disconnect()
self.dprint("Disconnected, exiting _keep_connected")
break
try:
await self.connect()
# Now has set ._isconnected and scheduled _connect_handler().
self.dprint("Reconnect OK!")
except OSError as e:
self.dprint("Error in reconnect. %s", e)
# Can get ECONNABORTED or -1. The latter signifies no or bad CONNACK received.
self._close() # Disconnect and try again.
self._in_connect = False
self._isconnected = False
self.dprint("Disconnected, exited _keep_connected")
async def subscribe(self, topic, qos=0):
qos_check(qos)
while 1:
await self._connection()
try:
return await super().subscribe(topic, qos)
except OSError:
pass
self._reconnect() # Broker or WiFi fail.
async def unsubscribe(self, topic):
while 1:
await self._connection()
try:
return await super().unsubscribe(topic)
except OSError:
pass
self._reconnect() # Broker or WiFi fail.
async def publish(self, topic, msg, retain=False, qos=0):
qos_check(qos)
while 1:
await self._connection()
try:
return await super().publish(topic, msg, retain, qos)
except OSError:
pass
self._reconnect() # Broker or WiFi fail.

34
lib/topic_message.py Normal file
View File

@ -0,0 +1,34 @@
class TopicMessage():
"Object containing both a topic and message string attribute. Can convert itself to a string representation"
def __init__(self, topic:str = "", message:str = ""):
self.topic = topic
self.message = message
def to_string(self) -> str:
return f"{self.topic}: {self.message}"
class TMQueue():
"""Simple queue (FIFO) of TopicMessage objects"""
def __init__(self):
self.data: list[TopicMessage] = list()
def get(self):
if not self.is_empty():
item = self.data.pop(0)
return item
else:
raise IndexError
def add(self, item):
self.data.append(item)
def is_empty(self):
if len(self.data) == 0:
return True
else:
return False
def string_to_topicmessage(s: str):
"""Convert string to a TopicMessage object"""
topic, message = str.split(":", maxsplit = 1)
return TopicMessage(topic, message)

125
main.py Normal file
View File

@ -0,0 +1,125 @@
import json
import machine
import asyncio
import ntptime
import select
import time
import sys
import lib.TMP117
import lib.mqtt_as
import event_loops
LED = machine.Pin("LED", machine.Pin.OUT)
LED.on()
def search_dict_list(dictionary, attribute, value):
"""Returns first instance where attribute = value in list of dictionaries"""
return [item for item in dictionary if item[attribute] == value][0]
# First, load correct config
with open("global_config.json") as f:
jdata = json.load(f)
uuid = int.from_bytes(machine.unique_id(), "big")
config = search_dict_list(jdata, "micro_id", uuid)
# Setup i2c buses
i2c_buses = []
for bus_config in config["i2c_buses"]:
bus = {
"name": bus_config["name"]
}
if bus_config["hard_i2c"]:
bus["obj"] = machine.I2C(
bus_config["hard_i2c_bus"],
scl = machine.Pin(bus_config["scl"]),
sda = machine.Pin(bus_config["sda"]),
freq = bus_config["freq"])
else:
bus["obj"] = machine.SoftI2C(
scl = machine.Pin(bus_config["scl"]),
sda = machine.Pin(bus_config["sda"]),
freq = bus_config["freq"])
i2c_buses.append(bus)
# Setup sensors
sensors = []
for sensor_config in config["sensors"]:
i2c_conn = search_dict_list(i2c_buses, "name", sensor_config["i2c_name"])["obj"]
sensor = lib.TMP117.TMP117(
name = sensor_config["name"],
i2c = i2c_conn,
i2c_addr = sensor_config["i2c_addr"],
config_int = sensor_config["config"]
)
sensors.append(sensor)
print(uuid)
print(i2c_buses)
print(sensors)
temperature_topic = config["temperature_topic"]
inbound_topic = config["inbound_topic"]
# Setup communication
if config["wifi_or_usb"] == "wifi":
# Setup MQTT Client
mqtt_config = lib.mqtt_as.config
mqtt_config["ssid"] = config["network_settings"]["ssid"]
mqtt_config["wifi_pw"] = config["network_settings"]["wifi_pw"]
mqtt_config["server"] = config["network_settings"]["mqtt_server"]
mqtt_config["port"] = config["network_settings"]["mqtt_port"]
mqtt_config["queue_len"] = config["network_settings"]["mqtt_queue_length"]
mqtt_client = lib.mqtt_as.MQTTClient(mqtt_config)
# Connect to MQTT broker and sync clock via NTP server
while not mqtt_client.isconnected():
try:
asyncio.run(mqtt_client.connect())
ntptime.settime()
except OSError as E:
print(f"Connection failed. ERROR: {E}. Retrying.")
LED.off()
try:
asyncio.run(event_loops.main_wifi(uuid, sensors, mqtt_client, temperature_topic, inbound_topic))
finally:
mqtt_client.close()
LED.on()
asyncio.new_event_loop()
elif config["wifi_or_usb"] == "usb":
while True:
poll_obj = select.poll()
poll_obj.register(sys.stdin, select.POLLIN)
t1 = time.ticks_ms()
sys.stdout.write("REQUEST_TIME\n")
poll_results = poll_obj.poll(100)
if poll_results:
timestamp_ms = int(sys.stdin.readline())
print(f"Recieved {timestamp_ms}")
t2 = time.ticks_ms()
t = time.gmtime(timestamp_ms//1000)
machine.RTC().datetime((t[0], t[1], t[2], t[6], t[3], t[4], t[5], 0))
print(f"Time: {time.time(), time.gmtime()}, took {time.ticks_diff(t2, t1)} ms latency")
break
else:
time.sleep(5)
LED.off()
try:
asyncio.run(event_loops.main_wired(uuid, sensors, temperature_topic, inbound_topic))
finally:
LED.on()
asyncio.new_event_loop()

3
readme.md Normal file
View File

@ -0,0 +1,3 @@
# Code for TMP117 + Pico W Temperature Measurement System
A "global_config.json" file is required for the code to run. Here, all the settings are defined. An example is given in "example_global_config.json".