tracking-parametrisation-tuner/parameterisations/notebooks/magnet_kink_position.ipynb
2023-12-19 13:00:59 +01:00

934 lines
413 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import uproot\n",
"import awkward as ak\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import numpy as np\n",
"import mplhep\n",
"mplhep.style.use([\"LHCbTex2\"])\n",
"input_tree = uproot.open({\"/work/guenther/reco_tuner/data/param_data_selected.root\": \"Selected\"})\n",
"array = input_tree.arrays()\n",
"array[\"dSlope_fringe\"] = array[\"tx_ref\"] - array[\"tx\"]\n",
"array[\"z_mag_x_fringe\"] = (array[\"x\"] - array[\"x_ref\"] - array[\"tx\"] * array[\"z\"] + array[\"tx_ref\"] * array[\"z_ref\"] ) / array[\"dSlope_fringe\"]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n",
" expsuffix: Custom Text(0.05, 0.955, 'Simulation'))"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmaElEQVR4nOz9z28bV77n/79KncUAg5ZK8sUFBAnoqBjP4pvFWJTc+7HIdG8nJuWs0xFpzypQt0Urf4Bt0h19s5qYlJP1tSg7274m5exvpLKzyKrDkgJIIDADU2U2BphNVJ+FhmxRPymyxCpazwdAtCidOudNUQ7AV7/PKcPzPE8AAAAAAADAO24g6AIAAAAAAACAXiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAl8J7QRcA/Of//J/1f//v/9VvfvMb/eu//mvQ5QAAAAAAgAv0v/7X/9Kvv/6q//Sf/pP+z//5Pz1d2/A8z+vpisAhv/nNb7S3txd0GQAAAAAAoIcGBgb066+/9nRNOsIQuEYQNjAwoNHR0XNdW61WO762W6zd+7WDXp+1WZu1WftdXJ+1WZu13921g16ftVmbtVn7rOt/85vfXEB1p+u7IGxra0u2batWq8l1Xb1580aSdOXKFZmmKcuyND09rcHBwYArRbv+9V//VTs7OxodHdX29va5rh0fH+/42m6xdu/XDnp91mZt1mbtd3F91mZt1n531w56fdZmbdZm7bOuD+J4pL4Iwp4/f65SqaSVlRW5rtvWNZZlKRaLKZlM6saNGxdbIAAAAAAAAEIv1EHYkydPlM1m5TiOJOngcWaGYRx7TWNMpVKR4zgqFAqyLEv37t3Tn/70p4svGgAAAAAAAKE0EHQBx3n58qWuXr2qdDp9bAjWeH7c47gxjuMolUrpv/yX/6Iff/yxZ68DAAAAAAAA4RG6jrDFxUXlcrkjoVYsFlM0GtWVK1dkWZZM05QkjYyMSJJqtZokyXVdOY6jN2/eyHEclcvl5nbKn3/+WdFoVJlMRvfv3+/ZawIAAAAAAEDwQhOE1et1zczMaGNjQ9J+8BWPxxWLxTQ5OdnV3G/fvtXTp09VKBRk27ay2azK5bLK5TKH6gMAAAAAAFwSodga+fr1a01MTGhjY0OpVEqVSkUvXrzQ3bt3uw7BJGloaEipVErr6+v6+eefdePGDa2vr2t6elr/+Mc/fHgFAAAAAAAACLvAg7BXr14pGo1qYmJClUpFjx8/1sTExIWtZ1mWSqWSXrx4of/9v/+3pqamVK/XL2w9AAAAAAAAhEOgWyM3Nzc1MzOjRCKhlZWVnq4di8W0ubmpqakpzc7O6m9/+1tP14c/5ufnVa/XL90W1yBfd9C/88v82oNyWX/nl3XtIF3m3/llfu1Buay/88u6dpCCft2X9T0P+vcelMv6O7+sawepn1+34R0+lb6HPvjgA8ViMT1+/DioEuS6rqanp3Xnzh39+c9/DqyOy2x8fFw7OzsaGxvT9vZ20OW0rV/rRn/i7w29wt8aeom/N/QKf2voJf7e0Cv9/LcWZO2BdYTdu3dPlmUFGoJJkmmaWl9fl2VZmpmZ0bVr1wKtBwAAAAAAABcjsDPCrly5omKxGNTyLUzT1NramhzHCboUAAAAAAAAXJDAOsLu3r0b1NLHmpyc9OUOlQAAAAAAAAinwO8a2St37twJugQAAAAAAAAE6NIEYYVCQVtbW0GXAQAAAAAAgIBciiBsbW1Nnufp2bNnQZcCAAAAAACAgARyRtjt27e1ubl54evUajW5rts8BP/x48f685//fOHrojPValXj4+Onjpmfn9f8/HyPKgIAAAAAAOextLSkpaWlU8dUq9UeVXNUIEGYaZoqlUoyDONC1/E8r+W54zh6/fq1rl27dqHrojN7e3va2dk5dUy9Xu9RNWebn59XvV7X4OBg0KXgEuDvDb3C3xp6ib839Ap/a+gl/t7QK2H9W6vX62d+tg+S4R1Oi3rg1atXmpqaajsI8zyv69CsMUcmk9H9+/e7mgv+Gh8f187OjgYGBjQ6OnrqWDrCAAAAAAAIr3Y7wvb29jQ2Nqbt7e0eVbYvkCBMkj744ANtbm4e6do6jmEYbY1r5/pIJKK///3vHc8F/zWCsCD+AQAAAAAAgN4KMgcI7LD8mZkZSVK5XNbe3t6Jj2w2K8/zFI1GVSqVtLu7e+r4w4/19XVNTEwonU5rb2+PEAwAAAAAAOCSCuSMMEmanZ2Vbdu6cePGiWM2Nzd17949pdNpff311x2tE41G9eLFC33wwQcyDEP/83/+z05LBgAAAAAAQB8LtCNseHj41DHZbFaWZXUcgjVYlqW5uTnl83l9//33Xc0FAAAAAACA/hRYECZJL168OPXn6+vrSqfTvqw1PT0tz/OUz+d9mQ8AAAAAAAD9JdAg7Cy2bSsajfoy18jIiCSpVCr5Mh8AAAAAAAD6S6iDMNM0tbm56ctcjQDMdV1f5gMAAAAAAEB/CXUQNj09rcePH3c9z9u3b1UoFCTth2sAAAAAAAC4fEIdhKVSKW1sbOjLL7/seI56va5YLCZJMgxDlmX5VR4AAAAAAAD6SKiDsEQioYmJCS0sLOiTTz7R1tbWua5//vy5JiYmZNt283u3bt3yuUoAAAAAAAD0A8PzPC/oIk7jOI4++OADGYYhSYpGo0qn07IsS5Zl6f3335ckbW1tyXVdOY6jUqmklZUVua4rz/NkGIY8z9Pw8LDevHkT4KvBccbHx7Wzs6OxsTFtb28HXQ4AAAAAALhAQeYA7/V0tQ5YlqX19XVNT09L2r+TZDqdPvO6Rr7XCNAMw1CxWLy4QgEAAAAAABBqod4a2RCNRvXzzz9rcnJSnue19TAMo9kJ5nmeVlZWdOPGjaBfCgAAAAAAAALSF0GYtN8ZtrGxoZWVFUWj0SM/bwRfDY0ALJFIaHd3Vzdv3uxluQAAAAAAAAiZ0G+NPCyRSCiRSGhzc1PlclkbGxtyHEe1Wk2SNDIyIsuyFI/HFYvFNDQ0FHDFAAAAAAAACIPQH5aPdx+H5SNIruvKNM2gywD6wofffuXbXD99+rlvcwEAAKC/BJkD9M3WSADwi23bymQyGh4e1tzcXNDlAAAAAAB6pO+2RrZjcXFRt2/f1u9+97ugSwFwTrZt6+nTp7Jtu7ntudG1ZVmWRkZGFI1Gm9ufD0smk3IcRxsbG83vua6rcrmsp0+fqlwuy3XdHr4iAAAAAEBY9F1H2PPnz3Xnzh1dv35dz58/P3bM1NSUJicn9cknn+iXX37pcYW47AqFQvPmDed5TE1N+bJ+J2sPDw+fOF8ymexoznK53HbNrusqk8k0fw+5XE7lclmO4zRDK9d1Zdu2yuWycrmc4vF4c3wmk1GhUFAymdTq6uqR+efm5vTgwQOtrq4SggEAAADAJdY3Qdhf//pXXblyRclkUoVCQbZtNw/IPyyRSMhxHP3973+XZVn67rvvelwtLrNUKqXd3V1tbGwokUicOjYWi6lUKjXH+8HzPFUqFeXz+VPPvrIsS/l8XpVKRbu7uyeOKxaL2t3dValUOrYD66CFhQVtbGxod3f3zLENjS2KuVyu5fuJRELFYrE5X+N1lUolpVKp5muzbVu5XE7pdLoZgh0OuxrzeJ4ny7LaqgsAAAAA8O4JfRD29u1bXb16VZlMpvlhuJ3z/U3T1MbGhq5du6ZEIqFvvvmmB9UC+0zTVDQaVbFYVCqVOnZMIpFohkt+H9ZuWZZSqdSp4drGxoZSqVRbwZBpms3QLhqNHjsmn88rm80qGo229Xocx1EkEjkSgKVSKXmep2KxqEQi0TKfZVmKxWLK5/Pa3d1VNps9c53D2g3oAAAAAADvntAHYclkUpVKRdI/t3ydx9ramjzPUyqV0vfff38RJQKnSqfT5/q+nyzLOja4SiQSHYdvJ9V9UuB3nHK5rEgkIsdxmt9rhNf5fL7teRYWFlSpVI68lpO6RRvrAAAAAAAup1AHYWtrayqXyzIMo9kJNjQ0dK6ODtM0dffuXXme15PgATjspI6rXm3RO26dbtY+7trzhEu2bSsejx+5fm1t7cRus7Pq2dzcbKmBc8AAAAAAAMcJdRDW6AxpdHRVKhXVajW9ePGire2RDZ988okkqVKpsEUSPXdSSDQyMtLbQkLAcRzNzMwc+X6xWOwoBGtodJO9a1ZXV1u65tDqPDdkAAAAAAAp5EFYoxusUCjo8ePHmpiY6Giegx0sL1688Ks8+KxarWp8fPzUx9LSUtBl9p3jArcrV674Ol+7oV4ymTzSrZVKpXw5t8uyLC0sLHQ9Ty/Ytq10Oq1IJNK8a2ckEtHU1FTzzperq6uam5s7M+wpl8vN69/1YMhxHBUKheYdQw93FgbtMr0XAAAAwEmWlpbO/GxfrVYDq++9wFZug+u6ikQi+uyzz7qa5+B5QbZtd1sWLsje3p52dnZOHVOv13tUDfxWLpeP/ffXyYH3J1lcXGwevu+6bujOA3NdV3Nzc827W1qW1byzqOM4sm1btm03f9645jSNcNF1XaXT6eaZiu8Sx3GUTCblOE6ot71ehvcCAAAAOEu9Xj/zs32QQh2ENe68163Gh2/P89hmFGIDAwMaHR09dczg4GCPqoHfjjujr5tD+49jmqZSqZQKhYJvc/opmUw2O4Xy+fyRGww4jqN0Ot3STXRWmDIyMhLqcMgPlmU1t75mMpkjdxoNi8vwXgAAAABnGRwc1NjY2KljqtWq9vb2elRRq1BvjbQsy5cPFQ8ePGh+HbYOEfzT6Oiotre3T33Mz88HXSY6UC6Xjw2hFxcXfV8rmUxKOv3Okacpl8tKJpMt2xbj8XjX4Voul2sGXAsLC8feZdOyLJVKpZYuubPC+3w+L8uyZFmWisViVzX2g7Bthzzosr0XAAAAwHHm5+fP/Gx/VhPMRQp1EDYzM6P19fWu5nj06JFs25ZhGJJ6d6c+AP90UijgR8fnYbFYTNls9tw3I3BdV1NTU4rH4y2H1Luuq3K53DzTq9Pt1QcD+bPuYLuwsNA87+ysQC8Wi6lSqahSqVzI7zNsgrrJRDt3Hb5s7wUAAADQj0IdhC0uLmp3d1dffvllx9ffu3dPhmHI8zwZhqFbt275XCWAsxx3cLgfB+SfZGFh4Vzdn47jaGJi4syQy3EcTU1Nnfsg9E7Otspms4pGo2znDoFCoRDa7bYAAAAAzifUQZhpmrp7964WFhb0xRdftHVQer1e15MnT3T16lXlcjl5ntfy8+O2IwG4OI7jHBvmhKVjxnXd5iHniURC+XxeGxsbKpVKJ96FMh6PnyugOhyCtRukLS4ucuZUwBrntgEAAAB4N4T6sHxpvyvCtm09fPhQ2WxW8Xi82UmysbGhkZER1Wo1VSqVlrvSNQKwxpZISXr8+DGHrQM9dlJgFIlEelzJ8RqhVKlUOtKlFovFlE6njw2+kslk8wD3sxzekp3JZDQ7O3tm11rjjpJhvAPmZeC6bqjPJAMAAABwfqEPwqT9D6jpdFrLy8sqlUoqlUoyDOPY7SqHA7DG83w+r7m5ud4WDuDEICyos56Oc1wI1tA4wP5wcGfbtsrlcltbPE3TlGmaze6uxnlkpVLpzHMLD3e1ojdc19XMzAxbUwEAAIB3TKi3Rh6Uz+e1vr6uGzduyPO8I4+GgwGY53nNw4sJwYB/ymQyMgyjo8fU1NS51jppa19YOpxM0zwzzLIsq+VOjg3Hfe8kh8c6jqNIJOLL2VO2bTcP8z+N67oqFAqamppqWbex/W94eFiGYSgSiSiXyx253nEcZTKZ5h01I5GI0un0se9xY53Dfz+HxePx5nwHH35uCS0UCi3rDA8Pa2pq6tjXKO3/Po87M+5gfSf9rtt9Lxpc11Uul1M8Hm/+/hv1ZTKZtoI4x3GUy+WO3Mzh4HsQiUSaW4ABAACAy6xvgjBp/0yhUqmkSqWifD6vRCKhaDQqy7I0NDSkiYkJTU5ONs/52d3d1YsXLzQxMRF06cClValUgi7hVNPT022NO+4A/vMcmp9KpY4N3NLptKamps59N8pG4NIITQqFwrF3mGwELVNTUxoeHlY6nW5ZqxFsFQqFZkjSCLwOno3VGJfL5ZrhjOM4zbDlcMCSSqW0sbFx5rmMjf+mnydUbNfq6qoMw2i+lkqlIs/ztLa2Jtd1m6/pcO2WZWltbe1ITRsbG83HwTuhtvteHFYoFDQ8PKxMJqN4PK61tTVVKhUtLy9LUjPcSiaTR649WH8kEmkJzRodhwffa8dxtLq6qomJCbrcAAAAcKn1VRDWMDExobm5Oa2srGh9fV0///yzarWafv75Z62vr2tlZUVzc3MaGhoKulQglBohRSePfD5/rrVO6vwKS2fKeTrTjguyzhNglUql5rlfh+eYmppqu2PHcRw9ffq07a6jaDR65MD3jY2NZgBXLBZVqVS0u7vbcoOAQqEg27YVj8dVLpdVKpW0u7ur3d1dlUql5u/OcRw9ePDg2LWPC3GOc9zvpRvlcrm59uLiYsv80Wi0GWQ5jnOkY9g0TUWj0SM3dGh87+DPzvteNDTCOdM0ValUtLCw0Pw/dhKJhDY2Npo1r66uHgnsarVay5mZDevr65qYmGhu6W38H0eN98p1XQ7/BwAAwKXWF2eEAfBXJBLp2V0br1y5cuz32+mYCZtbt25pdXW15Xvr6+vn+l0Wi0XlcjllMpkjP1tdXdXq6qry+fypnVSHt2oeN1fDwa2f+Xy+GdwVCoVjz0Zr3KCk0e02NTWlVCqlUqnUMi4Wi2l5ebkZNhUKha66uvw+M+6swPbge3b4PT2P87wXDYVCobktM5vNnnhOXLFYVCQSad55NZlMNt8Hy7JkWZZisVjLNtdMJqNisdjyvqZSKY2MjDTfq3K5zA0YAAAAcGn1ZUfYWba2tvT8+XO9fPlS9Xo96HKASy3sHWHncVxg0cnrWFhY0O7u7oldUI07VbYz91mH7R90MGw6aaumpCN3SjwpVDpYv+u6oX1PT/obPPh9P7YLtvteNMIy0zTP3Dp6MFgrl8vHbsc9+DqWl5ePfV8P/62tr6+3VSsAAADwrnmngrCtrS1dv369eaZK4/Dh3//+9/rll18udO3Dhx03ajjPGUL9trbjOEc+MAOHnRQOhP3ssOMcF6i8efOm47mKxaI2NjaO7Sgrl8uamZnxNVxqtwPo4Ht2nq6hMJ09tby8rGw2q2KxeGbYJPUumD14Fls7wVkqlWp5D7rpuju4XpjeKwAAAKCXQh+EffTRR7p+/bquXr2qq1ev6sqVK7p169aRca9evWqed3P4jpLr6+uKRCL6/vvvfa+vXC43DzuW1Dxrp7G9KB6Pt93ZEZa1Xddt6+6BkUjkXN0ouJxO6jrqRUjst+P+3k/a+tmuaDR64tlrtm0HcsfbTrfMhWm7q2maWlhYOPFMtvPenMAvB7eYtvvfz4P/hvrx3w0AAAAQJqEPwkzT1MbGht68eaNUKqX19XU9ffq0Zczbt281MzOj3d1dSfu3uG9cG4vFZFmW9vb22j60uV3lcrkZNDXO0Gmsl0gkVKlUFI1GVS6Xj72rWljXPnjezFnaOQ8HOK7jyXGc0G6lOw+/wuBUKqVKpXIkhFpdXQ11+NEv50w17nBZLpePPQi/l3Wc1+G/sXfh3w0AAAAQlNAHYbZtK5PJqFar6e7du5qYmDgyZm5urtnF1OgCy2azqtVqevHihX7++We9ePFCe3t7+uKLL3ypy3XdZrBmWdaJZ+gcvDOZX0HcRa990t3fDmsEb8BZjuvilPqzu+Vw8OPnvwHLsrSxsXFkjfPeqRP/1OiObdyA4KQOxV45GGK1G4odviNlmDrvAAAAgH4T6iDs0aNHikajpwYzz5490+rqajMEMwxD2WxWd+/ebRkXi8X08OFDbWxs+FJbMplsfqA5rSuq0aEl7X/oP0+3VRBrN86vWVhYUKlUOvXRCNoQLNu2fe929NtJZzT1Y8BzuBvnrM6iRldmuyzL0vLycsv3gtrG1+/S6bSmpqaO3NkxSJ0c0H/4jpr8HxAAAABA50IdhBUKhTM7uObm5ppbIQ3DUDQaPRKCNdy6dcuXO2U5jtPSyTI7O3vq+IPdMN1uJbzotbPZbPNDYywWO/XRL1ui3nWNjsgwM03z2LOayuVyX4U8h3/P7XQXWZYl27bP1f12+HfFwebnl06nm+F/WEIwqTXEavdOmwc7wAjBAAAAgO6EOgirVCq6du3aiT+/c+dO80OE53mSdKST4qChoaHmuG4c/FDVTiB08EOt67paXV0N5dqrq6tyHIdzv/pII0g67e6dfm+j6nS+k8KIi/h7u6hg8HCQnk6nz7ymEVy0M/YkQZ1n1Ut+/p3att0MwSzLClVof3ibcDudugfvsHpcoAwAAACgfaEOwizL0tbW1rE/e/XqlfL5fMuWyFQqdWpw9urVK01PT3dd18EPLu1+QD34/+IfPuw/LGs/ePBApmme2WWGcDh4Vtx5Pxy/efPG11raCTFO2p5WLpeVy+V8q8VxHE1NTXUVPJ3k8B3/2v29W5Z1rpD5cAfYSWes9YPD2/pOCin97Ho72H132rxBdFImEomWYK6d7cEHX8/i4uJFlAUAAABcGqEPwo77f8vfvn3bciaSYRiyLEtff/31qfOtra113X1yeBvX9evX27ruYGjVaUfYRa5t27Zs25bruhoeHlYkElE6ne6qew37LuLDtuu6mpmZkeu6Mk3z3Nul/K6p3fkWFhaO3U6YyWR8OTi/XC43Dxa/iO1wB/89nOd8s8b7k8vl2uoAOji3ZVlaWFg4R5Una/d9OjjurGvO+vnhwP64139cSOhnh9hx/x1rZ73D/64Oh2qd/js62Ll8eLv7YY3/Nkv7f9Nh6m4DAAAA+lGog7BUKqWHDx/qiy++UL1eV71e1/PnzzU9PS3HcZrdYJLOPLj91atXevDggWZmZrqq6fAHlnYDiMPjOjkX6SLXPvyh0HEcFQoFJZNJGYahZDLZV2c5hclJHSmdftBvHL7eeD/O6uA7bv1uQoZuO3dKpdKxnVTxeLzjzjDXdZVOpxWPx0+88+Jp17ajUCg0X/t57z548N9gOp1WOp0+cd1CodDyezjYhXacg+9l0GfFnbT+wd9VJpNROp1WuVzW6uqq0um0IpHIkZCn3X83x615OHxLJpPK5XLN7sNIJCLHcVrel3w+r3K5rEwm05zz8H87G++b4zgtZ5AdV9tp70UikWgJag/eAOXwa5ubm5O0/zd3UiDa7vt+8Hca9N8KAAAAEJRQB2GJREIzMzPKZrMaHh7W8PCwksmkKpVKSwj2+PHjU7dEPnny5FwfWk/zww8/tDxv98P2lStXWp53cmj/Ra19VkeCtN9RcVHbzd51J3UOpdPptkIl13WbH9AjkYji8XjLdaedD+Y4zrEB5urqascfhE96Pee5I2qxWDz2Q30mk9HU1FTb3WGu6yqXy2liYkKFQkGxWOxcIZjU3r/FRvAh7Yc6573b5eG7RhYKheZ/zzKZjAqFQjMQOrhOpVI5M/A+XMtJXZyNv6OG01734S3UJ723h9+nk0K7YrHY8p4UCgXF43Elk0mtrKyoVCod+W90JpOR4zhH/k4Pv96VlZUj68VisSNhayaTUTwebwZxxWKxZc3V1dXmv62DtR78Oy2Xy82O2cM/O6620zpqFxYWmr8X13Wbf8OO4zT/j4hG4J3NZk/8m2v3PWh3HAAAAPDO80LOdV0vkUh4hmEceQwPD3urq6vHXvfq1Svv3r173gcffOANDAx4hmF4AwMD3vPnz7uqJxqNepKaj3YVi8WW6xYWFkK1dj6f97LZrJdKpTzLslrGH35Eo9Fz136asbExT5I3Njbm67xB29jY8BKJxKm/Sz8eu7u7R9be3d318vm8Z5rmiddZluXl8/ljrz/p9cRisVNrWVhY8CqVStu/o1KpdOTvuvEwTdNLJBJePp/3SqWSt7Gx4ZVKpebf6sHrTNP0isViW2tWKpVjfxelUunY8cVisfl7TCQSbb+2w6+zUWOxWPRSqZQXi8W8aDTa8h41XvNJtTQ0/rZOen+j0aiXzWbPHGtZlpdIJJp/A6f9+4/FYs05S6XSiX8LlmV5qVTqSM27u7st80ej0SP/LWp87/Df0O7u7pmv97g1s9lscz3LsryFhYWWv/fd3d3m6zj4OztsYWGhpe6Df2vneS9Oks/nvVgs1pzDNM3mdSf9+zzt3+PB96BSqZw67qzaDvv/ffP/9+0BAACAyyvIHMDwPB9uo9gDa2trKpVKsm1bpmnq+vXrSqVSGhoaOjJ2eXn5xK2SU1NTevDgQcd1DA8Pt3QotPvrW11dbTnXLJVKnburpJdru66rQqGgBw8eHNs5FIvFfOsoGB8f187OjsbGxrS9ve3LnEFqdPf0QjQa1cbGRsv3DMM49zymaWp3d/fYnyWTyY7Oijuuy+ckq6urevDgwbm331qWpXQ6rVQqda4usMaZVIdfl2mamp6ebnbprK+vN89hO9xBBFxGH377lW9z/fTp577NBQAAgP4SZA7QN0FYWBwOGdr99ZXL5ZYtbIlE4sxzzcKy9urqqubm5o4EYtls1pdDvBv/AAYGBjQ6Otr1fPPz85qfn+96HvReY/ve06dPm9viGttALctq3hjg+vXrSiQS575JwFnrNdZsrDM9Pa1kMkkABvw/BGEAAACX29LSkpaWlrqep1qtam9vL5Ag7L2eroamIA8qPu/aiURCsVhMMzMzLR07Dx488O1udpK0t7ennZ2druep1+s+VIMgmKapRCJx7GH678J6AAAAANDP6vW6L5/bg3SpgrCtrS29//77Xc3R2DLVrfNs4wrL2hsbGy13K2x00/jVLeNXR9jg4KAP1QAAAAAAgIMGBwc1NjbW9TyNjrAgXKogLJlMHrnz4nmNjIz4EkaNjIz01doNy8vLLXfAO885UGcZHR19J84IAwAAAADgXeTXUUSNI5KCMBDIqgFpnDXUjU66qaSj2xE77coKau2GaDTaEnz58TsFAAAAAADohUsRhNXrdd2+fduXbqrp6emW5+3OWavVWp5HIpG+WvuggwfvAwAAAAAA9IvAtkZubm5qdnZWjuMonU7r/v37R8ZMT09rc3Ozq3UaYZHneUfuutiJg9sCpf2OqGg0euZ1lUql5Xkn2wmDXPugg3fq62abJQAAAAAAQC8FFoQlk8nmoevZbFbT09P6+OOPW8YcPJg9LA53ZbUbRh3s3jJNsyVM6oe1Dzp4fTfbLAEAAAAAAHopsK2Rtm23dGgdd9bU7du3JUmGYbQ82tXJNWeJRqMt4U+7h++vr683vz4caPXD2ifNxzZJAAAAAADQLwLrCJubm9Py8nLzeSKRODJmcnJSpmnq7du38jxPpmlqZGSk7S4k13VVq9V8ORvsoNnZWRUKBUlqu2Pt4LhMJtOXazcc3Grp1x0jAQAAAAAALlpgQVg+n1c8Htf6+rrS6bTef//9Y8fNzc3pr3/9q2zb1rVr1zpeL5PJ6K9//WvH1x+UTqebYVS5XD5z/MExlmV1FR4FuXbD6uqqJGlhYaHruQAAAAAAAHol0LtGJhIJPXz4UBMTEyeO+eSTT2RZVlchmLR/DtnQ0FBXczREo9GWQKkRDJ2kWCw2vz6rI6tQKCiTyRy7VfSi127H6uqqHMeRaZpaXFzsej4AAAAAAIBeCTQIa8fk5KRvAVa3h8QflM/nm18/ePDgxHGu6zY7uGKxmFKp1Ilj4/G40um0crmcIpHIiVs6/Vy7XC5reHhYhmEoHo+fut3ScRzNzc1JktbW1jgoHwAAAAAA9JXQB2HSfujih4NnknXLsqxmt5Vt28rlcseOm5mZkbR/d8WD3VnHObzVcWVl5cLXLhaLzcCtXC5rampK6XT62NqmpqY0MjKiSqXS1t0qAQAAAAAAwqQvgjC/OsL8vHuktL+1s1QqyTRNZTIZJZNJ2bYt13WbwZFt24pGo9rc3Dyzg+rwz0/rYPNr7WQyeeR7hUJBw8PDSiaTSqfTmpqaUjweVyqV0sbGhq+ddQAAAAAAAL3SF0GYXxrb+vwUi8W0u7urbDYrx3E0MzPTDJFGRkZULBa1sbHR1jbCYrEoy7JkmqYWFhbOPNjej7VjsZgqlYpSqVRz7QbbtlWr1bS4uNhch+2QAAAAAACgXxme53lBF9ErV65c0Zs3b4IuA4eMj49rZ2dHY2Nj2t7eDrocAMAJPvz2K9/m+unTz32bCwAAAP0lyBzgne8Iq9fr2tra0uzs7ImHzwMAAAAAAODd914Qi759+1YjIyM9XdPzPN/PCAMAAAAAAED/CKQjbGhoSNeuXZPneT17AAAAAAAA4HILbGvkJ598Imn/To4X3alFJxgAAAAAAAAC2RopqXlHRM/zZFnWkTsW+sV1XTmOI8dxfJ8bAAAAAAAA/SOwIGxyclKmaSoej+vp06cXvl6hUNCdO3cufB0AAAAAAACEU6B3jYzFYorH4z1ZK5VKaWhoqCdrAQAAAAAAIHwCDcJ6FYI1TE9P93Q9AAAAAAAAhEdgWyMlaW5uTm/fvu3Zei9evOjZWgAAAAAAAAiXQDvCJPVku+Lbt2+1uLh44esAAAAAAAAgvAIPwnphaGhIpVJJv//974MuBQAAAAAAAAEJdGtkL01PT2t5eVlffPGF7t+/H3Q5OEa1WtX4+PipY+bn5zU/P9+jigAAAAAAwHksLS1paWnp1DHVarVH1RzVd0HY1taWXNdVrVZr+xrbtlUsFuV5nvL5PEFYSO3t7WlnZ+fUMfV6vUfVAAAAAACA86rX62d+tg9SXwRhz58/Vz6fV7lc7nou13W7LwgXYmBgQKOjo6eOGRwc7FE1AAAAAADgvAYHBzU2NnbqmGq1qr29vR5V1Cr0QdijR4907949SZLneR3PYxiGDMNQNBr1qzT4bHR0VNvb20GXAQAAAAAAOtTOkUbj4+OBdY2F+rD8V69eKZPJSDo+BDMMo615DMOQ53mamJjQ8vKyrzUCAAAAAACgP4S6Iyyfz0vav+tjKpVSJBKRZVmSpN3dXc3Ozmp4eFgrKyvHXu+6rl68eKEnT57Itm1du3atV6UDAAAAAAAgZEIdhJXLZUUiEf39738/9udzc3N68uSJIpGI3n///WPH3Lx5U5J07949/e1vf7uoUgEAAAAAABByod4a6ThOsyvsOPfu3ZPnecrlcqfOk8lk9OLFC3355Zd+lwgAAAAAAIA+EeogTJKmp6dP/NnExIRmZmaUz+dVr9dPHGdZliYnJ7WwsHDqOAAAAAAAALy7Qh2ERaNR1Wq1U8dkMhl5nte8s+RJrl+/Ls/z9PDhQz9LBAAAAAAAQJ8IdRBmWZYKhcKpY2KxmCYnJ5XP5/Xjjz+eOG59fV2SVCwWfa0RAAAAAAAA/SHUQdjs7Kyy2ay+/PJLbW1t6eXLl3r58uWRcYuLi/I8T9FoVN99992Rnz969Ei2bUvaP3cMAAAAAAAAl4/heZ4XdBGnGR4ePnKu19TUlP7jP/6j5XvxeFxra2syDEPRaLR5tli5XJbjOGq8zNPuQolgjI+Pa2dnR2NjY9re3g66HADACT789ivf5vrp0899mwsAAAD9Jcgc4L2ertaB5eVlzc7OyjCMZpi1sbGh169f69q1a81x+XxeH3zwgSTJtu1mB9jBnK8RkgEAcJn4GWABAAAA/SzUWyMlKZFIaGVlpSXQMk2zJQST9s8Te/HihQ43uBmGIcMwmtctLy9feM0AAAAAAAAIn9AHYdJ+GLa7u6t8Pq9sNnviOV+xWEw///yzbty4Ic/zWh7RaFTr6+saHBzscfUAAAAAAAAIg9BvjWwYGhrS3NzcmeMsy1KpVNLbt2+bd4q0LEsTExMXXSIAAAAAAABCrG+CsPMaGhrSzMxMy/e2trb0/vvvB1MQAAAAAAAAAtUXWyP9kk6ngy4BAAAAAAAAAblUQVhjqyQAAAAAAAAun77cGrm1tSXXddse7ziO8vn8ua4BAAAAAADAu6UvgrCtrS1ls1mVy+UT7xh5Fs/zZBiGz5UBAAAAAACgX4Q+CFtcXFQul5O0H2YBAAAAAAAAnQj1GWHPnj1TNpttBmB0dAEAAAAAAKBToe4Ie/DggaT9AMzzPFmWpWg0KsuyJElXrlw5c443b97IdV2trKzo7du3F1ovAAAAAAAAwivUQZht280usFKppJmZmY7nWlhY0NWrV/0qDQAAAAAAAH0m1FsjTdOUtB9idROCSZJlWZqYmPChKgAAAAAAAPSjUHeEWZalV69e6fr1677Ml8/nfZkHF6NarWp8fPzUMfPz85qfn+9RRQAAAAAA4DyWlpa0tLR06phqtdqjao4KdRA2MzOjV69eqVar+TYfwmtvb087OzunjqnX6z2qBgAAAAAAnFe9Xj/zs32QQh2EffHFF3r06JFs2/ZlvidPnuizzz7zZS74b2BgQKOjo6eOGRwc7FE1AAAAAADgvAYHBzU2NnbqmGq1qr29vR5V1MrwPM8LZOU25XI5ZbNZbW1t6be//W1Xc12/fl0//PCDT5XBL+Pj49rZ2dHY2Ji2t7eDLgcA3jkffvtV0CUc8dOnnwddAgAAAAISZA4Q6sPypf2D8qPRqJLJZFfzbG5u+tZZBgAAAAAAgP4T6q2RDaVSSdPT07p69aoymYxGRkbauq5Wq8l1XVUqFa2srFxwlQAAAAAAAAizvgjCXr58KUmqVCpKp9MdzeF5ngzD8LMsAAAAAAAA9JHQB2F37txRoVCQJBmGoU6ONCMAAwAAAAAAQKjPCFteXlY+n2+GX52e6x/y+wEAAAAAAACgB0LdEZbP5yX9sxMsFospHo/LNM1znxP2+PFjbW1tXWC1AAAAAAAACLNQB2G2bcswDJmmqfX1dU1MTHQ819zcnK5cueJjdQAAAAAAAOgnod4aaZqmJGlxcbGrEKwx1+TkpA9VAQAAAAAAoB+FOgibmpqSJFmW5ct8y8vLvswDAAAAAACA/hPqICydTsvzPDmO48t8dIQBAAAAAABcXqEOwhKJhCYnJ/X06VNf5nv+/Lkv8wAAAAAAAKD/hDoIk6RisaiNjQ199913Xc/14MEDHyoCAAAAAABAPwp9EGZZlh4/fqzPPvusq3nevn0r27Z9qgoAAAAAAAD95r2gCzhNYyvjv/zLv2h4eFhXr15VIpE49zyu62plZcXv8gAAAAAAANBHQh2E3b9/X69evWo+9zxPuVyuo7k8z5NhGH6VBgAAAAAAgD4T6q2Rs7Oz8jxPnudJEkEWAAAAAAAAOhbqICydTkvaD8AagVinDwAAAAAAAFxuod4aOTQ0pGg0qlevXimbzSoajWpkZOTc8ziOo/v37+v169f+FwkAAAAAAIC+EOogTJJu3bqlSCSiu3fvdjzH5OSkbt682VGIBgAAAAAAgHdDqLdGSlIsFvNta+P09LQv8wAAAAAAAKD/hD4Im5ycVDab9WUuv+YBAAAAAABA/wl1EFav13Xnzh3dvn1bX375ZdfzTU5O+lAVAAAAAAAA+lGozwhLJBJaW1uT53kql8uamJjQxx9/HHRZAAAAAAAA6EOh7ggrl8stz03TDKYQAAAAAAAA9L1Qd4RZlqXNzU0ZhqFEIqEbN24EXRIuULVa1fj4+Klj5ufnNT8/36OKAAAAAADAeSwtLWlpaenUMdVqtUfVHBXqICyVSunevXsyDENPnz7ter47d+7o66+/9qEyXIS9vT3t7OycOqZer/eoGgAAAAAAcF71ev3Mz/ZBCnUQtrCwoFKppJcvX+qXX37R7373u67mO7zVEuEyMDCg0dHRU8cMDg72qBoAAAAAAHBeg4ODGhsbO3VMtVrV3t5ejypqZXie5wWy8jkkk0ltbW3p5cuX+u1vf9vRHJubm/rggw/066+/+lwdujU+Pq6dnR2NjY1pe3s76HIA4J3z4bdfBV3CET99+nnQJQAAACAgQeYAoT4sv+Gbb75RKpVSNBrVN9980/b2uHq9rnq9rpcvXyqZTF5wlQAAAAAAAAizUG+N/OCDD7S5udl87nmeUqmUUqnUuefyPE+GYfhZHgAAAAAAAPpIqDvCUqmUPM9rPgzDaHl+ngcAAAAAAAAut1AHYel0WpJkGEYzBOsEnWAAAAAAAAAI9dbIoaEh3bx5U8+ePZMkxWIxmaZ57nkcx5Ft2z5XBwAAAAAAgH4S6iBM2u8Ke/78uTY2NnTt2rWO5ykUCrpz545/hQEAAAAAAKCvhHprpLTfBTY0NNRVCCb987wxAAAAAAAAXE6hD8IkaXFxUfV6vet5OrnbJAAAAAAAAN4Nod8aKUl37971ZZ7Hjx/7Mg8AAAAAAAD6T18EYYfV63WVy2WVSiXVajU5jqORkRFZlqVIJKJEIqH3338/6DIBAAAAAAAQIn0VhG1tbSmTyWh1dbXl+57nyTCM5vNMJiPLsnTv3j396U9/6nWZAAAAAAAACKG+OCNMkpaXlxWJRLS6uirP85oPSS0hmLQfjFUqFaVSKf3+97/XL7/8EkTJAAAAAAAACJG+CMIePXqk27dvtwRfjfDrYCh2MBxr/Gx9fV2RSEQ//vhjILUDAAAAAAAgHEK/NfLZs2fKZDLN8KsRdEWjUU1PTysSicg0TVmWpZGRETmOo1qtpkqlotXVVTmOo729Pc3MzGh9fZ2zwwAAAAAAAC6p0AdhjRDM8zyZpqlsNqvZ2VkNDQ0dO35ycrL59cOHD/Xq1Svdv39fz5490+3bt/W3v/2tV6UDAAAAAAAgREK9NfLZs2dyHEee5ymdTqtWq2lubu7EEOw4k5OTKhaLevjwoUqlkr7//vsLrBgAAAAAAABhFeog7OnTpzIMQ7lcTl9//XVXcy0sLGhmZkYrKys+VQcAAAAAAIB+EuogzLZtRaNR/eUvf/FlvnQ6rXK57MtcAAAAAAAA6C+hPiPMcRwVCgXf5jNNU47j+DYfAAAAAAAA+keoO8IkybIs3+YiBAMAAAAAALi8Qh2EWZbla3iVz+d9DdYAAAAAAADQP0IdhEWjURWLRV/munfvXvPMMQAAAAAAAFw+oQ7CZmdnVSqV9MUXX3Q8R71e161bt5TL5WQYhtLptI8VAgAAAAAAoF+E+rD8RCKhiYkJZbNZua6rhYUFvf/++21d+/LlS+Xzea2urkqSDMNQNBrVjRs3LrBidKNarWp8fPzUMfPz85qfn+9RRQAAAAAA4DyWlpa0tLR06phqtdqjao4KdRAm7Z/r9dFHHymfzyufzysWiykajSoSiTTP+3JdV7VaTRsbG1pfX5dt283rPc+TtB+ELS8vB/Ia0J69vT3t7OycOqZer/eoGgAAAAAAcF71ev3Mz/ZBCn0QFovF9PjxY92+fVuGYahcLqtcLp84vhF8Sfvhl2EY8jxPKysrunbtWg8qRqcGBgY0Ojp66pjBwcEeVQMAAAAAAM5rcHBQY2Njp46pVqva29vrUUWtQh+ESVIqldLIyIhSqZRc15VhGJJaQ6+Gxs8aPzdNU2tra5qcnOxZvejM6Oiotre3gy4DAAAAAAB0qJ0jjcbHxwPrGgv1YfkHJRIJbW5u6u7du/I879gQTFLzZ0NDQ8pms6rVaoRgAAAAAAAA6I+OsIZGuJXNZrW2tibbtlWpVFSr1SRJIyMjikQiisVihF8AAAAAAABo0VdB2EEzMzOamZkJugwAAAAAAAD0ib7ZGumH58+fB10CAAAAAAAAAnKpgrBMJhN0CQAAAAAAAAjIpQnCnj17Jsdxgi4DAAAAAAAAAembM8Jev36tcrmsSqVyrkCrVqvJdV1CMAAAAAAAgEsu9EHY1taW0um0yuVyR9d7ntf82jAMv8oCAAAAAABAnwl9EBaLxbS5uSnP8zoKshrXHAzEAAAAAAAAcPmEOgi7ffu2HMeRYRgyDIMwCwAAAAAAAB0L9WH56+vrza8nJiZULBa1u7urvb29cz02NjZ08+bNC601l8spHo9reHhYhmEoEokomUx2vKUzrGtHIhEZhqHV1VXf5wYAAAAAALhIoQ7CbNuWYRgyTVO2bevmzZsaGho69zyTk5MqFosdXXuWcrms4eFhZTIZSVKxWFSlUlE2m5Vt24rH44rH43Jdt+/XzmQy3HQAAAAAAAD0rVBvjTRNU2/fvtXs7KwGBwe7ni+VSvlQ1T+Vy2XF4/Hm3Pl8vvkzy7KUSCQ0NTWlcrmsqakpbWxsyDTNvly7XC4rl8t1WzYAAAAAAEBgQt0RlkwmJe1vx/PDw4cPfZlHklzXbdZnWVZLEHVQsViUJDmO0xzfb2sfXA8AAAAAAKBfhToIu3fvnjzPazkrrBv1et2XeaT9kK6x5bCxNfE4je4sab+rqlAo9N3ac3NzGhkZ8a2bDQAAAAAAIAihDsImJib0+PFjFYtF/fjjj13PNzMz40NV+x1WBw+in52dPXX8rVu3ml+fFlyFce1CoaDV1dVmdxkAAAAAAEC/CnUQJu2ff/XZZ58pkUjoH//4R1dz2bbtS03ZbLb5dSwWO7NTqtGVJe1vM+zmjou9XNtxHKXTaS0sLCgajZ67VgAAAAAAgDAJ9WH5ja2M9+7d08bGhm7cuKFsNquRkZG256jVanJd98RztDpxcIthuwGRZVnNOy4+ffq0JaAK69rJZFLRaLQlfAMAAAAAAOhXoQ7C3n//fb19+7ble407JZ6X53kyDKPrmg53lV2/fr2t66LRaDOM6rQjrJdrZzIZ2batSqVyviIBAAAAAABCKtRbI+fm5uR5XvMhqeX5eR5+OXg+l7TfbdWOw+M62abZq7Vt21Yul1M+n297DQAAAAAAgLALdRD2ySefSFKzk8vPQKtTP/zwQ8vzdu+keOXKlZbnndwJs1drz8zMKJFIKJVKnas+AAAAAACAMAv11sjJyUlZlqXNzU3FYjFFo9Ejoc5Z3rx5I9d1W87W6kZji2FDp11ZnWw57MXayWRSkrS8vHzO6gAAAAAAAMIt1EGYtH/Xw1evXunf//3fu5pnYWFBV69e7bqew2FUp1zXDd3aq6urWl1dValUarvbDAAAAAAAoF+EPgi7deuWLwGQZVmanJzsep5OAizp6DbGWq0WqrVd11UymVQqlVIsFutonW5Vq1WNj493Pc/8/Lzm5+d9qAgAAAAAADQsLS1paWmp63mq1aoP1XQm9EHY5OSkFhcXfZmrWCz6Mo8fOg21LmrtmZkZWZalfD7f+4L+n729Pe3s7HQ9T71e96EaAAAAAABwUL1e9+Vze5BCH4RJ8qWTS5ImJia6nsM0TV9CrE62Hl7U2rlcTrZta2Njo+u5uzEwMKDR0dGu5xkcHPShGgAAAAAAcNDg4KDGxsa6nqdarWpvb8+His4vsCDs9evXunbtWlDLH1Gv11Wr1fT++++fOm5kZMSXMGpkZKSja/xe27ZtZTIZZbNZRaPRrufuxujoqLa3twOtAQAAAAAAHM+vo4jGx8cD6ywbCGRVSffv39cXX3wR1PJHJJNJra6unjmu00PkDwdYnXaE+b12MplUNBrVwsJCR3MDAAAAAAD0i8A6wgqFgizLUiQS0Z/+9KegypAk3blzR7VaTX/5y1/OHDs9PS3btpvPXddtK6A6fEB9JBI5d51+r53L5eQ4jmKxmJLJ5JnzHAzUHjx4oKdPnzaf37p1S4lE4sw5AAAAAAAAghJYEGaaplZWVvTRRx9JUmBh2J07d7SystL2+VhTU1Mtzx3HaWtLYaVSaXneyZ0Z/V77zZs3kqRyuXzuWmzbbgnlLMsiCAMAAAAAAKEW2NZIaT+Qefjwoebm5nq+TbJer+vWrVsqFApaW1s782ywhunp6ZbnjuO0dd3BbirTNGVZVrulhmJtAAAAAACAfhdoECZJCwsLevjwoR4+fKjf//73+v777y98zSdPnmhiYkKrq6taX18/16H90Wi0ZTviDz/80NZ16+vrza8PB1pBrZ3NZuV5XtuPgwFasVhs+Vk2m+3oNQEAAAAAAPRK4EGYtB+GPX78WOvr64rFYvr973+v7777ztc1Xr58qcXFRV25ckXpdFrDw8P6+eefNTk5ee65Zmdnm18f3B54moPjMpnMudcMw9oAAAAAAAD9LLAzwg5LpVIaGRnR3Nyc1tfXm+dNRaNRxWIxXb9+XZZlybIsDQ4OnjhPvV5XrVaT4zgqlUoql8stQZDneUokElpZWem41nQ6rUKhIKm987UOjrEsq6PzwcKwNgAAAAAAQD8LTRAmSYlEQvF4XIlEQmtra5KOHsp+mGmaLWdgHcfzvObXhUJBn332WVd1NsK5Rsi0urp66kHxxWKx+fVZHVmFQkGVSkXpdPrYs7wucm0AAAAAAIB3WSi2Rh40NDSkUqmklZUVRaPR5hlUko49t2p3d/fMs62k/e2Xu7u7XYdgDfl8vvn1gwcPThznum6zgysWiymVSp04Nh6PK51OK5fLKRKJnBjwXcTaAAAAAAAA77rQBWENiURC6+vrKpVKunnzZktXV4NhGC2PwyzLagZgDx8+1NDQkG/1WZbV7LaybVu5XO7YcTMzM5L2O9cOdmcd5/BWx5O2b17E2gAAAAAAAO+6UG2NPM7MzEwz0Hn16pXK5bJ++OEHua6rWq3W7JoyTVOWZWlkZETxeFyxWMzX4Os4iURCpVJJyWRSmUxGP/zwgxYXF2VZltbX15XJZGTbtqLRqNbW1lru+Hicw9s8j9saeVFrAwAAAAAAvOtCH4QdNDk52dFdHi9SLBbT7u6ucrmcnj59qpmZGbmuK9M0NT09rWKxeOoZXgcVi0Wl02nVajWlUqkzD7b3c+12VCoV3+YCAAAAAADoNcM7bs8h0EPj4+Pa2dnR2NiYtre3gy4HAN45H377VdAlHPHTp58HXQIAAAACEmQOENozwgAAAAAAAAA/EYQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKXwXtAFAA3ValXj4+Onjpmfn9f8/HyPKgIAAAAAAOextLSkpaWlU8dUq9UeVXPUOxmEbW1tybZtmaap6elpDQ4OBl0S2rC3t6ednZ1Tx9Tr9R5VAwAAAAAAzqter5/52T5I71QQtrW1pWQyKdu2W74/NTWlYrGo3/3udwFVhnYMDAxodHT01DGEmgAAAAAAhNfg4KDGxsZOHVOtVrW3t9ejiloZnud5gazcpo8++ki7u7tyXVeSVKvVFIvF9PTp05Zxr169UiwWk+u6Ou4lDQwMqFQq6b/9t//Wi7JxDuPj49rZ2dHY2Ji2t7eDLgcA3jkffvtV0CUc8dOnnwddAgAAAAISZA4Q+sPyTdPUxsaG3rx5o1QqpfX19SMh2Nu3bzUzM6Pd3V1JkmEYzWtjsZgsy9Le3p6SyWTP6wcAAAAAAEA4hD4Is21bmUxGtVpNd+/e1cTExJExc3Nzcl1XhmHI8zx5nqdsNqtaraYXL17o559/1osXL7S3t6cvvvgigFcBAAAAAACAoIU6CHv06JGi0agePHhw4phnz55pdXW1GYIZhqFsNqu7d++2jIvFYnr48KE2NjYuumwAAAAAAACEUKiDsEKhcGYH19zcXHMrpGEYikajR0Kwhlu3bml9fd33OgEAAAAAABB+oQ7CKpWKrl27duLP79y50zxEv3FA/vLy8onjh4aGjj1IHwAAAAAAAO++UAdhlmVpa2vr2J+9evVK+Xy+ZUtkKpU6NTh79eqVpqenL6ZYAAAAAAAAhFrog7BCoXDk+2/fvm25A6RhGLIsS19//fWp862trSmTyfheJwAAAAAAAMLvvaALOE0qldLs7Kwk6d69e5KkcrmsTCYjx3FausGKxeKpc7169UoPHjzQmzdvLrxuAAAAAAAAhE+oO8ISiYRmZmaUzWY1PDys4eFhJZNJVSqVZggmSY8fPz51S+STJ08Ui8V6VDUAAAAAAADCKNRBmCStrq7q448/lud5zYe0fzi+aZoqFouam5s7ct3r16+1uLioq1evKp1Oa3d3V67r6rvvvuv1SwAAAAAAAEAIhHprpLR/p8disai1tTWVSiXZti3TNHX9+nWlUikNDQ0duWZ5ebm5VXJiYkITExPNn/3Hf/yH/vt//+89qx8AAAAAAADhEPogrGFmZkYzMzNtjZ2bmzu2SwwAAAAAAACXV+i3Rvrp9evXQZcAAAAAAACAgIQ+CNva2vJtLrrEAAAAAAAALq/QB2HpdNqXeTY3N2Xbti9zAQAAAAAAoP+EPghzHMeXeTKZjC/zAAAAAAAAoD/1RRD2j3/8o6s5/vrXv2p1ddWnigAAAAAAANCPQh+EeZ7XVTfX4uIi3WAAAAAAAAAIfxAmSfl8Xt9///25r7t165ZyuZw8z7uAqgAAAAAAANBP+iII8zxPyWSy7S2SW1tbunr1qlZXV+V5ngzDuOAKAQAAAAAAEHZ9EYQlEgnVajXNzMycOfbZs2eKRCLNQ/YNw5DneUokEhddJgAAAAAAAEIs9EFYLBbTysqK1tfXtb6+rk8++eTEsYuLi5qdnW1uhfQ8T0NDQ7JtWysrK7p582avygYAAAAAAEDIvBd0AWeJRqPN/11fX9f09LQsy9L9+/ebY+r1umZmZmTbdnMrpOd5isViKhaLGhoakrQflAEAAAAAAOByCn0Q9vDhw+bX0WhUKysrmp2dVSQS0Z/+9Ce9evVKsVhMruu2hGDZbFZ3795tmWtycrLX5eMcqtWqxsfHTx0zPz+v+fn5HlUEAAAAAADOY2lpSUtLS6eOqVarParmqNAHYYclEgk9fvxYqVRK6+vrKhQKLQfiDw0NaW1t7djQ669//av+8pe/9LpktGlvb087OzunjqnX6z2qBgAAAAAAnFe9Xj/zs32Q+i4Ik6RUKqVKpaJHjx5J0olbIQ8rlUoEYSE2MDCg0dHRU8cMDg72qBoAAAAAAHBeg4ODGhsbO3VMtVrV3t5ejypqZXiNk+X7UDKZ1LNnzyRJuVzuzJDrypUrevPmTS9KwzmMj49rZ2dHY2Nj2t7eDrocAHjnfPjtV0GXcMRPn34edAkAAAAISJA5QCAdYW/fvtXa2lrX83zyySdaW1tTOp2WZVl6/vz5seNqtZry+bxc1+16TQAAAAAAAPSnwLZGJhKJ5rle3crlcmeOOXiOGAAAAAAAAC6fgSAWHRoaUjQaled5XT8ktTUGAAAAAAAAl1sgQZgkxWIxSeq6S6udoIswDAAAAAAAAIFtjbx161ZzS+PCwoIikYhGRkZ8X6dWq8l1XT1+/FhbW1u+zw8AAAAAAID+EFgQNjk5KdM0lcvl9Nlnn134ejdv3tTVq1cvfB0AAAAAAACEU2BbI6X97ZGWZfVkLcuyNDEx0ZO1AAAAAAAAED6BBmG3bt26kO2QJ0kkEj1bCwAAAAAAAOES2NZIaX+7Yi89fPiwp+sBAAAAAAAgPALtCAMAAAAAAAB6pW+CsJcvX2pxcVFPnjw5c+yzZ8909epVfffddz2oDAAAAAAAAP0g0K2R7bp165ZWV1ebz9++fas///nPJ46/efOmJiYmFIvF9ODBAxWLRf3ud7/rRakAAAAAAAAIqdB3hN25c0fFYlGe58nzPEnSixcvzrwuGo3KcRz9/e9/19TUlH788ceLLhUAAAAAAAAhFuog7O3bt8rn8zIMQ4ZhSJI8z1MymWzretM0tbGxoVqtRhgGAAAAAABwyYU6CHvw4IGk/fBraGhIqVRKlUpFn332WdtzWJalubk57e3ttR2gAQAAAAAA4N0T6iCsXC5reHhYpVJJtVpNjx8/1sTExLnn+eijjyRJlUpF33zzjd9lAgAAAAAAoA+EOghzHEeLi4uamZnpah7Lsppfr6ysdFsWAAAAAAAA+lCogzDXdVtCrE7VajVJ+1ss19fXu54PAAAAAAAA/SfUQZhlWc0QqxulUqn5teu6Xc8HAAAAAACA/hPqICwajapYLHY9T6FQaN510jTNrucDAAAAAABA/wl1EJZKpVQul/X99993PMetW7eaXWCGYWh6etqn6gAAAAAAANBPQh2ExWIxXbt2TbFY7NxhWL1e161bt1QsFmUYhjzPkyQlk8mLKBUAAAAAAAAhF+ogTJKWl5fleZ5isZj++Mc/nhmI1et13blzR8PDw1pdXW1+3zAMWZalzz777KJLBgAAAAAAQAi9F3QBZ4lGo1pZWdHs7KxKpZJKpZJM05RlWc2HJDmOI9u25TiOJDU7wBrdYIZh+HLeGAAAAAAAAPpT6IMwSUokElpfX9fMzIzevn0r13Vl27Zs224Z1wi/JDUPx/c8T6Zpam1tTdeuXetl2TinarWq8fHxU8fMz89rfn6+RxUBAAAAAIDzWFpa0tLS0qljqtVqj6o5qi+CMGm/M2xra0v379/Xo0ePjvzcMIyW8KsRiqVSKWWzWQ0NDfW0Xpzf3t6ednZ2Th1Tr9d7VA0AAAAAADiver1+5mf7IPVNECZJQ0NDymazymazWltbU6lUkm3bqtVqchxHIyMjMk1T09PTisfjisViBGB9ZGBgQKOjo6eOGRwc7FE1AAAAAADgvAYHBzU2NnbqmGq1qr29vR5V1MrwDu4nBAIwPj6unZ0djY2NaXt7O+hyAOCd8+G3XwVdwhE/ffp50CUAAAAgIEHmAKG/a6Qf3r59q8XFxaDLAAAAAAAAQIAuRRA2NDSkUqmk3//+90GXAgAAAAAAgIBciiBMkqanp7WxsaEvvvgi6FIAAAAAAAAQgL46LF+Stra25LquarVa29fYtq1isSjP85TP53X//v0LrBAAAAAAAABh1BdB2PPnz5XP51Uul7uey3Xd7gsCAAAAAABA3wl9EPbo0SPdu3dPktTNDS4Nw5BhGIpGo36VBgAAAAAAgD4S6jPCXr16pUwmI+n4EMwwjLbmMQxDnudpYmJCy8vLvtYIAAAAAACA/hDqjrB8Pi9p/66PqVRKkUhElmVJknZ3dzU7O6vh4WGtrKwce73runrx4oWePHki27Z17dq1XpUOAAAAAACAkAl1EFYulxWJRPT3v//92J/Pzc3pyZMnikQiev/9948dc/PmTUnSvXv39Le//e2iSgUAAAAAAEDIhXprpOM4za6w49y7d0+e5ymXy506TyaT0YsXL/Tll1/6XSIAAAAAAAD6RKiDMEmanp4+8WcTExOamZlRPp9XvV4/cZxlWZqcnNTCwsKp4wAAAAAAAPDuCnUQFo1GVavVTh2TyWTkeV7zzpInuX79ujzP08OHD/0sEQAAAAAAAH0i1EGYZVkqFAqnjonFYpqcnFQ+n9ePP/544rj19XVJUrFY9LVGAAAAAAAA9IdQB2Gzs7PKZrP68ssvtbW1pZcvX+rly5dHxi0uLsrzPEWjUX333XdHfv7o0SPZti1p/9wxAAAAAAAAXD6G53le0EWcZnh4+Mi5XlNTU/qP//iPlu/F43Gtra3JMAxFo9Hm2WLlclmO46jxMk+7CyWCMT4+rp2dHY2NjWl7ezvocgDgnfPht18FXcIRP336edAlAAAAICBB5gDv9XS1DiwvL2t2dlaGYTTDrI2NDb1+/VrXrl1rjsvn8/rggw8kSbZtNzvADuZ8jZAMAAAAAAAAl0/og7BEIqGVlRXNzs42v2eaZksIJu2fJ/bixQt99NFHMgyj+f3G157nyTRNLS8v96RuAABwMj+71OguAwAAQLtCfUZYQyKR0O7urvL5vLLZ7InnfMViMf3888+6ceOGPM9reUSjUa2vr2twcLDH1QMAAAAAACAMQt8R1jA0NKS5ubkzx1mWpVKppLdv3zbvFGlZliYmJi66RAAAAAAAAIRY3wRh5zU0NKSZmZmgywAAAAAAAEBIhHprZL1e1507d/SHP/xBX375ZdDlAAAAAAAAoI+FuiMskUhobW1NnuepXC5rYmJCH3/8cdBlAQAAAAAAoA+FuiOsXC63PDdNM5hCAAAAAAAA0PdC3RFmWZY2NzdlGIYSiYRu3LgRdEm4QNVqVePj46eOmZ+f1/z8fI8qAgAAAAAA57G0tKSlpaVTx1Sr1R5Vc1Sog7BUKqV79+7JMAw9ffq06/nu3Lmjr7/+2ofKcBH29va0s7Nz6ph6vd6jagAAAAAAwHnV6/UzP9sHKdRB2MLCgkqlkl6+fKlffvlFv/vd77qa7/BWS4TLwMCARkdHTx0zODjYo2oAAAAAAMB5DQ4Oamxs7NQx1WpVe3t7PaqoleF5nhfIyueQTCa1tbWlly9f6re//W1Hc2xubuqDDz7Qr7/+6nN16Nb4+Lh2dnY0Njam7e3toMsBgHfOh99+FXQJF+qnTz8PugQAAACcQ5A5QKgPy2/45ptvlEqlFI1G9c0337S9Pa5er6ter+vly5dKJpMXXCUAAAAAAADCLNRbIz/44ANtbm42n3uep1QqpVQqde65PM+TYRh+lgcAAAAAAIA+EuqOsFQqJc/zmg/DMFqen+cBAAAAAACAyy3UQVg6nZYkGYbRDME6QScYAAAAAAAAQr01cmhoSDdv3tSzZ88kSbFYTKZpnnsex3Fk27bP1QEAAAAAAKCfhDoIk/a7wp4/f66NjQ1du3at43kKhYLu3LnjX2EAAAAAAADoK6HZGtm4w+PW1pa2traad4aMxWIaGhrqKgST/nneGAAAAAAAAC6nQIOw3/zmN83H8PCwhoeHFYlEFIlEtLKy0hy3uLjYDMa60cndJgEAAAAAAPBuCHRr5OEOrVgspnQ63ewCa7h7964v6z1+/NiXeQAAAAAAANB/Aj8jrHFHx1KppBs3bgRcDQAAAAAAAN5VoTgjLJvN9n0IlsvlFI/HNTw8LMMwFIlElEwmVS6X+25tx3GUTqcViURkGIaGh4c1NTWldDotx3F8rh4AAAAAAKA3QhGEJRKJoEvoWLlc1vDwsDKZjCSpWCyqUqkom83Ktm3F43HF43G5rtsXa+dyOUUiERUKhWbo5bqubNtWoVBQJBJRLpfz/bUAAAAAAABcNMML8FaKAwMDMgxDv/76a1AldKVcLisej0vaP4g/n88fGTM1NSXbtmVZljY2NmSaZmjXjsfjKpfLMk1TsVhMlmXJcRzZtn2kE6xYLPoWYI6Pj2tnZ0djY2Pa3t72ZU4AwD99+O1XQZdwoX769POgSwAAAMA5BJkDBN4R5lcw1I6rV6/6Npfrukomk5Iky7KODaKk/cBI2t9u2BgfxrUzmYzK5bKy2ax2d3dVLBaVzWZbuswO8uu1AAAAAAAA9ErgQdjIyEjP1qpUKr7NlUwmm1sOG1sTj2NZVrNzqlwuq1AohG5tx3GUy+VUKpW0sLBw7JiFhQWlUqmW79m23UH1AAAAAAAAwQg8COuVV69eNe9Q2S3HcVoOop+dnT11/K1bt5pfnxZcBbV2JpNRNptVLBY7da7DXWG9uBEAAAAAAACAXy5FEFav17sOoA46GAjFYrEzt3cePEvLdV2trq6Gam3XdU/sBDvINE1ZltXyHAAAAAAAoF+8F3QBjuPoD3/4w4XMXavV5LquHMeR53m+dYQd3GIYjUbbuqZx8LwkPX36tOOD5i9i7VKp1Pb6tVqt+fX09HTb1wEAAAAAAAQt8CBMurgtdhdxQ8zD52Jdv369reui0WgzjOq0IyzItaX9zrHG2WSxWKztIA4AAAAAACAM3umtkYZhNB9+ORzaHdwqeJrD4zo5aD7ItSVpZWWlOV/jjpQAAAAAAAD9IhRBmOd5F/bw2w8//NDyvN1zsq5cudLyfH19va/Wdl1X6XRa0WhUpVKJ88EAAAAAAEDfCcXWyIvcYtc4I8wvh+fqtCurUqn0zdqO4ygej8s0Ta2trRGCAQAAAACAvhR4EGZZVkcdSufhOI6SyaRev37ty1x+aJy1Ffa1V1dXlUwmm8+Hh4eVzWbbusskAAAAAABAmIRia+RFsyxLy8vLvszVSYAlHd3GePDui2Fb23Vd5XI5RSKRlhCsIZPJHPt9AAAAAACAMAu8I6xXwnaHw05DrV6sXS6XValUFIvF5DjOsXf1XF1dVS6X87UzrFqtanx8vOt55ufnNT8/70NFAAAAAACgYWlpSUtLS13PU61WfaimM4EHYZ10RnVqcnKy6zlM0/QlxOrknK1erZ1IJJRIJFq+VygUlMlkWtbPZDJKpVK+nRm2t7ennZ2druep1+s+VAMAAAAAAA6q1+u+fG4PUuBBWC87o/w4i2xkZMSXmkdGRvpq7VQqpVgspqmpqZYaCoWCb11hAwMDGh0d7XqewcFBH6oBAAAAAAAHDQ4OamxsrOt5qtWq9vb2fKjo/AIPwiTp9evXunbtWtBltKXT7qfDAVanHWFBrS3tn7W2tramqamp5vd++OGHjuY6zujoqLa3t32bDwAAAAAA+Mevo4jGx8cD6ywLxWH5hUIh6BLaNj093fK83Q6tw1tAI5FIX63dEI1GW7ZN+nUnSwAAAAAAgIsWiiAsn8/ru+++C7qMthzshpLaD4IqlUrL81gs1ldrH3Tr1q3m10Ee+g8AAAAAAHAeoQjCpP0D2v/4xz/qu+++C/Vh54e7stoNow4GRqZpyrKsvlr7oIN34PTroHwAAAAAAICLFngQ5nle8/HixQvdvHlTw8PDevLkSdClHSsajbaEP+2ekXXwoP7DgVY/rH0Sv+cDAAAAAAC4KIEGYXt7e9rb29Pu7q52d3dVqVRUqVS0vr6uZDIZZGmnmp2dbX5t23Zb1xwcl8lk+nLthoOdaPF4vOv5AAAAAAAAeiHwjjBJGhoa0tDQkCYmJjQxMaHJyUkNDQ0FXdaJ0ul08+tyuXzm+INjLMvq6oyuINduaARrpmm2HJwPAAAAAAAQZqEIwvpNNBptCZRWV1dPHV8sFptfn9WRVSgUlMlkTjz/6yLXbteDBw8kScvLy77MBwAAAAAA0AsEYR3K5/PNrxvB0HFc11WhUJC0f7fGVCp14th4PK50Oq1cLqdIJHLiHRn9XjuXy2lqakqZTObMu0A2xiwsLNANBgAAAAAA+gpBWIcsy2p2W9m2rVwud+y4mZkZSfvbCA92Zx3n8FbHlZWVC1/bdV1lMpnmPMPDwyd2jiWTSeVyOWWzWWWz2VNfCwAAAAAAQNgQhHUhkUioVCrJNE1lMhklk0nZti3XdVUulzU1NSXbthWNRrW5udlyx8fjHP65ZVkXvrZpmkfWaQRiyWRSmUxG8Xhcw8PDkqRKpaKFhYUzfzcAAAAAAABhQxDWpVgspt3dXWWzWTmOo5mZmWaINDIyomKxqI2NjTNDMGn/PC/LsmSaphYWFs482N6vtTc2NrSwsKBoNNoy1rZtOY6jZDKpzc3NZn0AAAAAAAD9yPA8zwu6CFxu4+Pj2tnZ0djYmLa3t4MuBwDeOR9++1XQJVyonz79POgSAAAAcA5B5gB0hAEAAAAAAOBSIAgDAAAAAADApRBoEPbkyRNdvXpVn3zySZBlAAAAAAAA4BIILAh79eqVUqmUKpWKisWinj9/HlQpAAAAAAAAuAQCC8IePHggSTIMQ5LauqsiAAAAAAAA0KnAgjDbtiVJnucpn8/rxo0bx467deuWXr582cvSAAAAAAAA8A4KLAhzHEfDw8Pa2NjQZ599duK4YrEox3F8WfP169e+zAMAAAAAAID+E1gQZpqmFhcXNTk52bM1M5lMz9YCAAAAAABAuAQWhFmWJcuyerqmX51lAAAAAAAA6D+BBWG3bt3S06dPe7beq1evCMIAAAAAAAAusfeCWjiVSimTyWhzc1OpVEqWZWlkZOTYsRsbGx13j7muK8dxdP/+/W7KBQAAAAAAQJ8zPM/zglp8dXVVs7OzMgzjxDGe553683Y15vn111+7ngv+Gh8f187OjgYGBjQ6Onrq2Pn5ec3Pz/eoMgB4N3z47VdBl3Chfvr086BLAAAAwP+ztLSkpaWlU8dUq1Xt7e1pbGxM29vbPapsX2AdYZKUSCS0srKi2dnZU8cFmNWhh/b29rSzs3PqmHq93qNqAAAAAADAedXr9TM/2wcp0CBM2g/Ddnd3tbCwoGKxKNd1gy4JAWmnI2xwcLBH1QAAAAAAgPMaHBzU2NjYqWMaHWFBCHRr5HE2Nzdl27ZqtZo8z9Pt27eVTCY1PT3d0Xxv3ryR4zhaXV1la2RINbZGBtESCQCXAVsjAQAAECZB5gCBd4QdNjExoYmJiebz27dvKx6P67PPPutq3nK5rD/84Q/dlgcAAAAAAIA+NRB0Ab0Si8VaAjYAAAAAAABcLpcmCJMky7KCLgEAAAAAAAABCd3WyMN2d3c1NDTky1zFYtGXeQAAAAAAANB/Qt8R5lcI5vdcAAAAAAAA6C+h7wg7Tr1eV7lcVqlUUq1Wk+M4GhkZkWVZikQiSiQSev/994MuEwAAAAAAACHSV0HY1taWMpmMVldXW77veZ4Mw2g+z2QysixL9+7d05/+9KdelwkAAAAAAIAQCv3WyIbl5WVFIhGtrq7K87zmQ1JLCCbtB2OVSkWpVEq///3v9csvvwRRMgAAAAAAAEKkL4KwR48e6fbt2y3BVyP8OhiKHQzHGj9bX19XJBLRjz/+GEjtAAAAAAAACIfQb4189uyZMplMM/xqBF3RaFTT09OKRCIyTVOWZWlkZESO46hWq6lSqWh1dVWO42hvb08zMzNaX1/n7DAAAAAAAIBLKvRBWCME8zxPpmkqm81qdnb2xDtATk5ONr9++PChXr16pfv37+vZs2e6ffu2/va3v/WqdAAAAAAAAIRIqLdGPnv2TI7jyPM8pdNp1Wo1zc3NnRiCHWdyclLFYlEPHz5UqVTS999/f4EVAwAAAAAAIKxCHYQ9ffpUhmEol8vp66+/7mquhYUFzczMaGVlxafqAAAAAAAA0E9CHYTZtq1oNKq//OUvvsyXTqdVLpd9mQsAAAAAAAD9JdRnhDmOo0Kh4Nt8pmnKcRzf5gMAAAAAAED/CHVHmCRZluXbXIRgAAAAAAAAl1eogzDLsnwNr/L5vK/BGgAAAAAAAPpHqIOwaDSqYrHoy1z37t1rnjkGAAAAAACAyyfUQdjs7KxKpZK++OKLjueo1+u6deuWcrmcDMNQOp32sUIAAAAAAAD0i1AHYYlEQhMTE8pms/of/+N/aGtrq+1rX758qVu3bml4eFirq6syDEPRaFQ3bty4uIIBAAAAAAAQWqG+a6S0f67XRx99pHw+r3w+r1gspmg0qkgk0jzvy3Vd1Wo1bWxsaH19XbZtN6/3PE+SZBiGlpeXA3kNAAAAAAAACF7og7BYLKbHjx/r9u3bMgxD5XJZ5XL5xPGN4EvaD78Mw5DneVpZWdG1a9d6UDEAAAAAAADCKNRbIxtSqZRWVlY0NDTUEnR5nnfk0Qi/GgHY0NCQNjY2dPPmzQBfAQAAAAAAAILWF0GYtH9e2Obmpu7evdsMvY7T+NnQ0JCy2axqtZomJyd7XC06Ua1WNT4+fupjaWkp6DIBAAAAAMAJlpaWzvxsX61WA6sv9FsjD2qEW9lsVmtra7JtW5VKRbVaTZI0MjKiSCSiWCxG+NWH9vb2tLOzc+qYer3eo2oAAAAAAMB51ev1Mz/bB6mvgrCDZmZmNDMzE3QZ8NHAwIBGR0dPHTM4ONijagAAAAAAwHkNDg5qbGzs1DHValV7e3s9qqhV3wZhePeMjo5qe3s76DIAAAAAAECH5ufnNT8/f+qY8fHxwLrG+uaMMAAAAAAAAKAbBGEAAAAAAAC4FAjCAAAAAAAAcCkQhAEAAAAAAOBSIAgDAAAAAADApUAQBgAAAAAAgEuBIAwAAAAAAACXAkEYAAAAAAAALgWCMAAAAAAAAFwKBGEAAAAAAAC4FEIdhNXrdd25c0d/+MMf9OWXXwZdDgAAAAAAAPrYe0EXcJpEIqG1tTV5nqdyuayJiQl9/PHHQZcFAAAAAACAPhTqjrByudzy3DTNYAoBAAAAAABA3wt1EGZZliTJMAwlEgnduHEj4IoAAAAAAADQr0IdhKVSKXmeJ0l6+vRp1/PduXOn6zkAAAAAAADQn0IdhC0sLGhmZkaS9Msvv3Q93+GtlgAAAAAAALg8Qh2ESVKpVNLHH3+sRCKhf/zjHx3Ps7m5KcdxfKwMAAAAAAAA/ST0QZgkffPNN0qlUopGo/rmm29Ur9fbuq5er6ter+vly5dKJpMXXCUAAAAAAADC7L2gCzjNBx98oM3NzeZzz/OUSqWUSqXOPZfneTIMw8/yAAAAAAAA0EdC3RHWOCy/8TAMo+X5eR4AAAAAAAC43EIdhKXTaUmSYRjNEKwTdIIBAAAAAAAg1Fsjh4aGdPPmTT179kySFIvFZJrmuedxHEe2bftcHQAAAAAAAPpJqIMwab8r7Pnz59rY2NC1a9c6nqdQKOjOnTv+FQYAAAAAAIC+EuqtkdJ+F9jQ0FBXIZj0z/PGAAAAAAAAcDmFviNMkhYXF1Wv1zU4ONjVPJ3cbRK9U61WNT4+fuqY+fl5zc/P96giAAAAAABwHktLS1paWjp1TLVa7VE1R/VFEHb37l1f5nn8+LEv8+Bi7O3taWdn59Qx9Xq9R9UAAAAAAIDzqtfrZ362D1JfBGHntbi4qNu3b+t3v/td0KXgHAYGBjQ6OnrqmG67AgEAAAAAwMUZHBzU2NjYqWOq1ar29vZ6VFGrvgvCnj9/rlKppPX1dS0uLurjjz8+MmZqakqTk5P66KOPlM1mCcT6xOjoqLa3t4MuAwAAAAAAdKidI43Gx8cD6xoL/WH5DX/961915coVJZNJFQoF2batWq127NhEIiHHcfT3v/9dlmXpu+++63G1AAAAAAAACJvQB2Fv377V1atXlclktLu7K8/z2rr7o2ma2tjY0LVr15RIJPTNN9/0oFoAAAAAAACEVeiDsGQyqUqlIkkyDEOGYZzr+rW1NXmep1Qqpe+///4iSgQAAAAAAEAfCHUQtra2pnK5LMMwmp1gQ0NDisVibc9hmqbu3r0rz/OUTqcvsFoAAAAAAACEWagPy8/n85LU7OjKZDKamJiQtH+HwXZ98sknevTokSqVir755hv96U9/upB6AQBA73347Ve+zPPTp5/7Mg8AAADCK9QdYY1usEKhoMePHzdDsPOyLKv59YsXL/wqDwAAAAAAAH0k1EGY67qyLEufffZZV/McvLukbdvdlgUAAAAAAIA+FOogzDRNRaPRrudphF+e58lxnK7nAwAAAAAAQP8JdRBmWZZc1+16ngcPHjS/Nk2z6/kAAAAAAADQf0IdhM3MzGh9fb2rOR49eiTbtmUYhqTW88IAAAAAAABweYQ6CFtcXNTu7q6+/PLLjq+/d++eDMOQ53kyDEO3bt3yuUoAAAAAAAD0g1AHYaZp6u7du1pYWNAXX3yher1+5jX1el1PnjzR1atXlcvl5Hley89TqdRFlQsAAAAAAIAQey/oAs6SzWZl27YePnyobDareDyuWCwmSdrY2NDIyIhqtZoqlYrK5XLLwfiSmlsiJenx48caHBzs/YsAAAAAAABA4AzvcMtUSKXTaS0vL7cEW8c5HIA1nufzec3NzV1skejI+Pi4dnZ2NDY2pu3t7aDLAYB3zofffhV0CX3hp08/D7oEAACASyHIHCDUWyMPyufzWl9f140bN+R53pFHw8EAzPM8xWIxVSoVQjAAAAAAAIBLLvRbIw+KRqMqlUra3NxUuVxWqVSS4zhyXVe1Wk0jIyMyTVOWZSkej2t2dlZDQ0NBlw0AAAAAAIAQ6KsgrGFiYkJzc3N0eQEAAAAAAKBtfbM1EgAAAAAAAOhGX3aEbW1tqVwua2NjQ7VaTZI0MjKiSCSiWCyma9euBVsgAAAAAAAAQqevgrAnT54om83KcZwzx6bTaS0sLOj999+/+MIAAAAAAAAQen2xNXJra0tXr15VOp1WpVI59m6RDY3v5/N5RSIRffnllwFUDAAAAAAAgLAJfRD26tUrTU1NNQMwwzCaD0ktodjBYKzxfGFhQX/84x+DKh8AAAAAAAAhEfqtkclkUru7uy3BlyRZlqVYLKZIJCLTNGVZlkZGRuQ4jhzHUaVS0crKilzXValU0h//+Ef97W9/C/KlAAAAAAAAIEChDsKWl5flOE5LCBaLxZTNZjU5OXnsNQe///jxY62ururBgwcqlUr68ssv9ec//7knteP8qtWqxsfHTx0zPz+v+fn5HlUEAAAAAADOY2lpSUtLS6eOqVarParmqFAHYfl8XpKaWyLz+bzm5ubONUcikVAikVA8HtfCwoLm5uY0ODh4EeWiS3t7e9rZ2Tl1TL1e71E1AAAAAADgvOr1+pmf7YMU6iDsYDdYI8TqVLFY1MjIiIrFov70pz/5VSJ8NDAwoNHR0VPHEGICAAAAABBeg4ODGhsbO3VMtVrV3t5ejypqZXjH3XoxJAYG9s/yNwxDu7u7XYcgt2/f1ubmpv793//dj/Lgk/Hxce3s7GhsbEzb29tBlwMA75wPv/0q6BL6wk+ffh50CQAAAJdCkDlAqO8aGY1GJe0fjO9HJ1AkEpHjOF3PAwAAAAAAgP4T6iBsZmZGklSr1XybkyAMAAAAAADgcgp1EPbFF19IklzX1dbWVtfzVSoVmabZ9TwAAAAAAADoP6EOwoaGhrSysiLP83Tv3r2u51tZWdHIyIgPlQEAAAAAAKDfhDoIk6REIqF8Pq8XL17of/yP/9HxPPfu3ZPrus1zxwAAAAAAAHC5vBfEordv39bGxsa5rhkZGVE+n1c+nz93mOW6rhzHkWEYisfj57oWAAAAAAAA74ZAgjDTNLWxsSHDMOR53pnjDcOQpObY84ZoB+eZnZ3t6FoAAAAAAAD0t0C2RqbT6ebXhmGc+TjP2NMeqVRKg4ODQbxkAAAAAAAABCyQIGxiYkKWZUna7/LqxWNyclLZbDaIlwsAAAAAAIAQCOyw/JmZGUlSuVzW3t7ehT/W19fpBgMAAAAAALjEAgvCZmdnFY1GdePGjaBK8FUul1M8Htfw8LAMw1AkElEymVS5XO67tW3bVjqdViQSaW4rjUQiymQycl3X3+IBAAAAAAB6JNCOsImJiZ6uubW15fuc5XJZw8PDymQykqRisahKpaJsNivbthWPxxWPxy8kQPJ7bdd1lUwmNTU1pUKhIMdxmj9zHEe5XE7Dw8MqFAq+vxYAAAAAAICLZnjt3LbxHfGHP/xB//7v/+7bfOVyWfF4XJKUSqWUz+ePjJmampJt27IsSxsbGzJNM5Rru66rqamplvDrNCet2Ynx8XHt7OxobGxM29vbvswJAPinD7/9KugS+sJPn34edAkAAACXQpA5QGAdYUFYX1/3ba5G95QkWZZ1YihULBYl7XdUNcaHce1kMinHcRSNRpudZZVKRcViUQsLC0fGFwoFra6udvlKAAAAAAAAeue9oAvoxNbW1rm2GjqOo3w+7+v2xGQy2ZyvsTXxOJZlKZFIaHV1VeVyWYVCQalUKlRrFwoFlctlLSwsHLmzZmOOdDqtZDIp27abP5ubm1MikejqtQAAAAAAAPRKX2yN3NraUjabVblcbnvr3mGe58kwDP36669d1+M4jiKRSPP57u7uqdsOV1dXmx1Zpmlqd3c3VGtHIhFZlqVSqXSutSWpVCopFoud4xUcxdZIALhYbI1sD1sjAQAAeoOtkadYXFxUJBJRoVBQpVKR53kdPfx0sGsqFoudee7Xwa4p13W72lLo99q2bctxnOY2ytNYlnWkY+xghxgAAAAAAECYhToIe/bsmbLZbDPIMgwj4Ir2HbxrYjQabesay7KaXz99+jQ0az99+lSpVKrtQ/wPd3+9efOmresAAAAAAACCFuozwh48eCBpPwDzPE+WZSkajTaDnStXrpw5x5s3b+S6rlZWVvT27duuazrcAXX9+vW2rotGo81tnZ12hF3E2rdu3WoJytqZ66DDWyUBAAAAAADCKtRBmG3bzS6wUqmkmZmZjudaWFjQ1atXu66pXC63PG83RDo8zrbttju6LnLt89Zw+IYD5wnRAAAAAAAAghTqrZGN7XoLCwtdhWDSfmAzMTHRdU0//PBDy/N2txQe7l5bX1/vq7UbDt+soNuD8gEAAAAAAHol1EFYo9uo3S2AZ8nn813PcTgI6rQrq1Kp9NXaDQdDtFQq1fE8AAAAAAAAvRbqIKzRBVar1XydrxuHw6hOHd5iGPa1Gw6GiZlMxodqAAAAAAAAeiPUQdgXX3whz/OOHBLfqSdPnnQ9R6ch0uFtjJ2Ee0GuLe0HcY33IpvNcj4YAAAAAADoK6E+LH9oaEgPHz5UNptVNpvVb3/7267my+fz+uyzz3yqrjvddGUFtXY2m5W0v9VyYWHBx4r2VatVjY+Pdz3P/Py85ufnfagIAAAAAAA0LC0taWlpqet5qtWqD9V0JtRBmLR/UH6pVFIymdTf/va3jufZ3Nz0pbPMNE1fQqx2D7oPy9q2batQKMg0TZVKpa5rOM7e3p52dna6nqder/tQDQAAAAAAOKher/vyuT1IoQ/CJKlUKml6elpXr15VJpPRyMhIW9fVajW5rqtKpaKVlRVfahkZGfEljGr3NYRl7bm5OUnS2trahW2JHBgY0OjoaNfzDA4O+lANAAAAAAA4aHBwUGNjY13PU61Wtbe350NF59cXQdjLly8l7d/tMJ1OdzSH53kyDKPrWjrpppKObkfstCMsiLXT6bRs21axWFQ0Gu2ohnaMjo5qe3v7wuYHAAAAAACd8+soovHx8cA6y0J9WL4k3blzR/F4XK9evZJhGPI879wPP01PT7c8b7dD6/AB9ZFIpC/WLhQKKhQKyufzSiQSbV8HAAAAAAAQNqEOwpaXl5XP55thVqehlp9h2NTUVMtzx3Hauq5SqbQ8j8VioV+7XC4rnU4rn88rlUq1VyQAAAAAAEBIhXprZD6fl6RmJ1gsFlM8Hpdpmuc+J+zx48fa2trquqbDXVmO47S1XfBg95Zpmh2ds9XLtW3bVjweVzabJQQDAAAAAADvhFAHYbZtyzAMmaap9fV1TUxMdDzX3Nycrly50nVN0Wi05e6NP/zwQ1tbBtfX15tfHw60wra24ziamZnRwsKCFhYWOqoVAAAAAAAgbEK9NbJxqPvi4mJXIVhjrsnJSR+qkmZnZ5tf27bd1jUHx2UymdCu7TiOpqamlEqllM1m25rfcRzlcrm2xgIAAAAAAAQl1EFY40ysTrYRHmd5edmXeQ7eubJcLp85/uAYy7I6Oh+sF2u7rqt4PK7Z2dm2QzBJSiaTXb0mAAAAAACAXgh1EJZOp+V5XtuHwp/Fr46waDTaEvysrq6eOr5YLDa/Pqsjq1AoKJPJnPiaL2pt13U1NTUly7Ka65/1KJfLzbCynbPKAAAAAAAAgmR4ft5S8QJMTU1pYGBAP/zwQ9dzPX/+XB9//LEPVe1vB4xEIpL2Q6CNjY1jx7muq+HhYUn7d2sslUonzhmPx1s6uHZ3d5vbQy967ampqba3Wh7W7V0lx8fHtbOzo7GxMW1vb3c8DwDgeB9++1XQJfSFnz79POgSAAAALoUgc4BQd4RJ+x1NGxsb+u6777qe68GDBz5UtM+yrGa3lW3bJ56RNTMzI2n/jLKD3VnHObzVcWVlpSdrdxOCSeKukgAAAAAAoC+EPgizLEuPHz/WZ5991tU8b9++7SrsOU4ikVCpVJJpmspkMkomk7JtW67rNrcN2rataDSqzc3NY7u7Djr889PORvNr7cZ1nSIEAwAAAAAA/eK9oAs4zfPnzyVJ//Iv/6Lh4WFdvXpViUTi3PO4rntid1W3YrGYdnd3lcvl9PTpU83MzMh1XZmmqenpaRWLxbZrLhaLSqfTqtVqSqVSZx5A78faZ3WpAQAAAAAAvCtCfUbY9PS0Xr161XzueZ4Mw+horsa1v/76q1/lwSecEQYAF4szwtrDGWEAAAC9wRlhJ5idnZXneWpkdZ2GYAAAAAAAAECog7B0Oi1pPwBrBGKdPgAAAAAAAHC5hfqMsKGhIUWjUb169UrZbFbRaFQjIyPnnsdxHN2/f1+vX7/2v0gAAAAAAAD0hVAHYZJ069YtRSIR3b17t+M5JicndfPmzY5CNAAAAAAAALwbQr01Utq/M6JfWxunp6d9mQcAAAAAAAD9J/RB2OTkpLLZrC9z+TUPAAAAAAAA+k/ogzBJmpiY6HqOra0tTU5O+lANAAAAAAAA+lFfBGHdevbsmSKRiH788cegSwEAAAAAAEBAQn9Yvh9++OEHeZ6nf/u3f9N//a//NehyAABACH347Ve+zfXTp5/7NhcAAAD8E/og7MmTJx1f67quKpWKCoWCDMNQuVzWgwcPfKwOAAAAAAAA/SL0QVgqlZJhGF3N0bjrpG3b2tra0vvvv+9DZQAAAAAAAOgnoQ/CGjzPO3cg1gjADl5XKBR0//59X2uDP6rVqsbHx08dMz8/r/n5+R5VBAAAAAAAzmNpaUlLS0unjqlWqz2q5qi+CcKkfwZb52EYRst1xWKRICyk9vb2tLOzc+qYer3eo2oAAAAAAMB51ev1Mz/bB6kvgrCJiQllMhlZlnWu6yqVinK5nKamprS8vKzBwcELqhB+GBgY0Ojo6KljeA8BAAAAAAivwcFBjY2NnTqmWq1qb2+vRxW1MrxO2qx6aGBgQI7jdHWu1wcffKDp6Wn927/9m3+FwTfj4+Pa2dnR2NiYtre3gy4HAN45ft4NEe3hrpEAAAAnCzIHGOjpah0wTbPrw+0fP36slZUVffnll/4UBQAAAAAAgL4T+iAsm812PUcsFpNlWVpYWNDW1lb3RQEAAAAAAKDvhD4Im5ub82WeaDQqz/OUy+V8mQ8AAAAAAAD9JfRBmN9++OGHoEsAAAAAAABAAC5FEPb27VuVy2VJkm3bAVcDAAAAAACAILzzQdjr1681PT2tt2/fSpIsywq4IgAAAAAAAAThvaALOMvVq1c7vtZxHEmS53mSJMMwFIvFfKkLAAAAAAAA/SX0QVilUpFhGM0wqxMHr/fjLpQAAAAAAADoP32zNdIwjI4e0n5HmGmaevHihQYHBwN+JQAAAAAAAAhC6DvCpH9ubTRNUyMjI21fZ5qmLMvS9evXdffu3YsqDwAAAAAAAH2gL4KwXC6nv/zlL0GXAQAAAAAAgD4W+q2RlmURggEAAAAAAKBroQ/CMplM0CUAAAAAAADgHRBoEPb69eszx8zNzV18IQAAAAAAAHjnBRqETU1NBbk8AAAAAAAALpFAgzDP8/TLL78EWQIAAAAAAAAuicDPCMtms0GXAAAAAAAAgEsg8CAsn8/rj3/8o54/f66trS3V63XV6/WgywIAAAAAAMA75r2gC5CkUqmkUqnUs/V+/fXXnq0FAAAAAACAcAhFEOZ5XvNr0zQlSSMjIx3NVavV5LrusT+zLKungRsAAAAAAADCIxRBWDabVSKR0MTERFfzrK2tKZlMyjCMlu97nqdkMqmnT592NT8AAAAAAAD6VyjOCLt7927XIdhf//pXffTRR3r79m2zw8zzPHmep2w2SwgGAAAAAABwyQXaEWYYhmZnZ7ue56OPPtLa2lozADMMQ57nyTRNra2taXJysus1AAAAAAAA0N8CDcKGhoY0ODjY8fVbW1uKx+NyHEee5zW3RHqep2g0qrW1NQ0NDflVLi5YtVrV+Pj4qWPm5+c1Pz/fo4oAAAAAAMB5LC0taWlp6dQx1Wq1R9UcFWgQtrm52fG1z549a3aTHQ7B0um0vv76a19qRO/s7e1pZ2fn1DH1er1H1QAAAAAAgPOq1+tnfrYPUuAdYZ1YXFxULpdrBmCNrZDS/pljc3NzfpaJHhkYGNDo6OipY7rpIAQAAAAAABdrcHBQY2Njp46pVqva29vrUUWtQnHXyHbV63Ulk0mVy+UjXWCcB9b/RkdHtb29HXQZAAAAAACgQ+0caTQ+Ph5Y11jgd41s1+vXrzUxMXFsCBaLxbS5uUkIBgAAAAAAgBP1RRC2vLysqakp7e7uHgnBMpmMXrx4waH4AAAAAAAAOFXot0beuXNHhULhSAAmScViUTdv3gyyPAAAAAAAAPSJ0AZh9XpdMzMzsm37SAhmWZZKpZImJiYCrhIAAAAAAAD9IpRbIxvngR0XgiWTSf3888+EYAAAAAAAADiX0AVhx50H5nmePM9TNpvV06dPgy4RAAAAAAAAfShUWyNv3bql1dXVI11gpmmqWCxqZmYm4AoBAAAAAADQr0LREba1taWrV68eG4JFo1Ftbm76EoJdvXq16zkAAAAAAADQnwIPwl6+fKmpqSlVKpUjIVg6ndb6+rqGhoZ8WatSqfgyDwAAAAAAAPpPoEHYo0ePFI/Htbu7K8MwWs4Dy+fz+vrrr31ba3l5uRmyAQAAAAAA4PIJ9IywTCbTDMCk/S6w4eFhra2t6dq1a76t8+TJE6XTaYIwAAAAAACASyxUh+UbhqGRkRHNzc35Mp/runIcx5e5AAAAAAAA0N9CE4R5nieJc7wAAED/+/Dbr3yb66dPP/dtLgAAgMsuFEHYxMSEisWiTNP0ZT7XdZtfr6+vK5/Py7ZtX+YGAAAAAABAfwo8CLMsy9c7Qx42OTmpubk5JZNJPX/+/ELWAAAAAAAAQPgFetdISSoWixcWgh2UzWYvfA0AAAAAAACEV6BBmGmavt4d8jSWZfUkcAMAAAAAAEA4BRqE9bpLi64wAAAAAACAyyvQIGxubu6dXg8AAAAAAADhEfgZYQAAAAAAAEAvEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAl8J7QRcANFSrVY2Pj586Zn5+XvPz8z2qCAAAAAAAnMfS0pKWlpZOHVOtVntUzVEEYQiNvb097ezsnDqmXq/3qBoAAAAAAHBe9Xr9zM/2QSIIQ2gMDAxodHT01DGDg4M9qgYAAAAAAJzX4OCgxsbGTh1TrVa1t7fXo4paEYQhNEZHR7W9vR10GQAAAAAAoEPtHGk0Pj4eWNcYh+UDAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAwP/X3h3DJpbl+eL/ubZ31cGuH3ZHpaoIh5PhmvxJBXrZRlCdj9Q4HTmwNdn/H5UgsCY1LU3uwsmGK9PS5FUm6xBGeqqS9YK2Ge/uf1e7O+Yf1IMBG2OwgXvx/Xwk1OC6nHPurVOnj7+ceyATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZukGwAAwP1+9YffL6Scn3/z24WUAwCwzqwIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAywbdGkhoXFxfx+vXrqcfs7+/H/v7+iloEAAAAzOPo6CiOjo6mHnNxcbGi1twlCCM1bm5u4suXL1OPub6+XlFrAAAAgHldX18/+Lt9kgRhpMaLFy/i5cuXU4/Z3NxcUWsAAACAeW1ubsarV6+mHnNxcRE3NzcratE4QRip8fLly/j8+XPSzQAAAAAeaZYtjV6/fp3YqjGb5QMAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRC2IPV6PUqlUmxtbcXGxkbs7OxEpVKJVqu19nV3u90olUpxenq6kPIAAAAAkiAIe6JWqxVbW1txeHgYERHNZjM6nU7UarVot9tRKpWiVCpFr9dbu7p7vV5UKpXY2dmJVqsVl5eXC2w9AAAAwGp9k3QD1lmr1YpSqRQREdVqNY6Pj4d/ls/no1wux+7ubrRardjd3Y3z8/PI5XKpr7vX68X79++jXq8vpK0AAAAAaWBF2CMNVktFfA2eRoOoUc1mMyK+3l44OD7Nddfr9djd3Y12u72QtgIAAACkhRVhj1SpVIa3HA5uTZxksDrr9PQ0Wq1WNBqNqFarqay73W5HsViMg4ODiIhoNBqxt7f3pLYCAOnwqz/8fmFl/fyb3y6sLACAVbIi7BG63e7YRvTv3r2bevz3338/fD4tuEq67kKhEIVCYfj6zZs3j2wlAAAAQPoIwh6hVqsNnxeLxQf33iqXy8PnvV7vSd++uMq6F7WfGQAAAEAaCMIeodFoDJ+PrqCaJp/PD5+fnJysZd0AAAAA60wQNqfbm8j/+te/nul9o6HVY1eEJVk3AAAAwLoThM1pdH+uiPHVVtPcPu4x38qYZN0AAAAA604QNqePHz+OvZ51H63vvvtu7PWnT5/Wqm4AAACAdScIm1O32x17/dhVWZ1OZ63qBgAAAFh3grA53Q6jHqvX661V3QAAAADrThA2p8eGSLdvY7y8vFyrugEAAADW3TdJNyCrklyVldYVYRcXF/H69esnl7O/vx/7+/sLaBEAAAAwcHR0FEdHR08u5+LiYgGteRxB2JxyudxCgqRZN7pPS92rcHNzE1++fHlyOdfX1wtoDQAAADDq+vp6Ib+3J0kQNqft7e2FhFHb29trVfcqvHjxIl6+fPnkcjY3NxfQGgAAAGDU5uZmvHr16snlXFxcxM3NzQJaND9B2Jweu5rqdoD12BVhSdW9Ci9fvozPnz8n3QwAAABggkVtRfT69evEVpbZLH9Ob968GXs96wqt2xvU7+zsrFXdAAAAAOtOEDan3d3dsdfdbnem93U6nbHXxWJxreoGAAAAWHeCsDndXpU1axg1unorl8tFPp9fq7oBAAAA1p0gbE6FQmFsj62PHz/O9L5Pnz4Nn98OtNahbgAAAIB1Jwh7hHfv3g2ft9vtmd4zetzh4eFa1g0AAACwzgRhj7C3tzd83mq1Hjx+9Jh8Pv+kPbqSrBsAAABgnX2TdAPWUaFQiGKxOAyZTk9Po1wu33t8s9kcPn9oRVaj0YhOpxN7e3sT9/JaZt23zfqtlABAtvzqD79fWFk//+a3CysLAOAhVoQ90vHx8fD5+/fv7z2u1+tFo9GIiK/f1litVu89tlQqxd7eXtTr9djZ2bk3iFpG3ZPc3oxfMAYAAACsM0HYI+Xz+eFqq3a7HfV6feJxb9++jYiv39Y4ujprktu3On748GFldd/W6/XurCA7OTmZqwwAAACANBGEPUG5XI6zs7PI5XJxeHgYlUol2u129Hq9aLVasbu7G+12OwqFQvzpT38a+8bHSW7/+aRbI5dVd8TX8KtSqUSpVIqtra07K8La7XZsbGxEqVQa1gcAAACwLuwR9kTFYjGurq6iXq/HyclJvH37Nnq9XuRyuXjz5k00m82pe3iNajabsbe3F5eXl1GtVh/c2H6RdUc8buUYAAAAwLrY6Pf7/aQbQba9fv06vnz5Eq9evYrPnz8n3RyAZ2eRG5vDotksHwCyJ8kcwK2RAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkwjdJNwAAgOz61R9+v5Byfv7NbxdSDgDwvFkRBgAAAEAmWBFGalxcXMTr16+nHrO/vx/7+/srahEAAAAwj6Ojozg6Opp6zMXFxYpac5cgjNS4ubmJL1++TD3m+vp6Ra0BAAAA5nV9ff3g7/ZJEoSRGi9evIiXL19OPWZzc3NFrQEAAADmtbm5Ga9evZp6zMXFRdzc3KyoReMEYaTGy5cv4/Pnz0k3AwAAAHikWbY0ev36dWKrxmyWDwAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgm+NBABg7f3qD79fWFk//+a3CysLAEgXK8IAAAAAyARBGAAAAACZIAgDAAAAIBPsEQYAKbTI/Y4AAICvrAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJnyTdAMAACBNfvWH3y+srJ9/89uFlQUAPJ0VYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiEb5JuAAxcXFzE69evpx6zv78f+/v7K2oRAAAAMI+jo6M4OjqaeszFxcWKWnOXIIzUuLm5iS9fvkw95vr6ekWtAQB4ul/94fcLKefn3/x2IeUAwLJdX18/+Lt9kgRhpMaLFy/i5cuXU4/Z3NxcUWsAAACAeW1ubsarV6+mHnNxcRE3NzcratE4QRip8fLly/j8+XPSzQAAAAAeaZYtjV6/fp3YqjGb5QMAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEm+UDAEDK/eoPv19YWT//5rcLKwsA1o0VYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiEb5JuAAAAsDq/+sPvF1bWz7/57cLKAoBVsCIMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJtgsHwAAeJRFbbxv030AVsWKMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJlgs3wAACBRi9p0P8LG+wBMZ0UYAAAAAJkgCAMAAAAgE9waSWpcXFzE69evpx6zv78f+/v7K2oRAAAAMI+jo6M4OjqaeszFxcWKWnOXIIzUuLm5iS9fvkw95vr6ekWtAQAAAOZ1fX394O/2SRKEkRovXryIly9fTj1mc3NzRa0BAGAd2XgfIFmbm5vx6tWrqcdcXFzEzc3Nilo0ThBGarx8+TI+f/6cdDMAAACAR5plS6PXr18ntmrMZvkAAAAAZIIgDAAAAIBMcGskAADABIvab8xeYwDpYUUYAAAAAJkgCAMAAAAgE9waCQAAsESLusUywm2WAE8lCAOABVnkLzoAAMDiCcIAAADWhNVlAE9jjzAAAAAAMkEQBgAAAEAmCMIAAAAAyAR7hAEAAGTQovYbs9cYsE6sCAMAAAAgEwRhAAAAAGSCWyMBAAB4tEXdYhnhNktg+awIAwAAACATrAgDAAAgFawuA5bNijAAAAAAMsGKMAAAAJ6dRa0us7IMnhcrwgAAAADIBCvCAAAA4B72LYPnRRAGQOYtcoILAACklyAMAAAAVsDqMkieIIzUuLi4iNevX089Zn9/P/b391fUIgAAAGAeR0dHcXR0NPWYi4uLFbXmLkEYqXFzcxNfvnyZesz19fWKWgMAAJBevhWTtLq+vn7wd/skCcJIjRcvXsTLly+nHrO5ubmi1gAAAADz2tzcjFevXk095uLiIm5ublbUonEb/X6/n0jN8H+9fv06vnz5Eq9evYrPnz8n3Rwgg2yWDwDwdFaXMaskcwArwgAAAIAn82UArANBGABrySouAIDnyx5oLIsgDAAAAHiWrFLjthdJNwAAAAAAVsGKMAAAAIAHpHFrDqvU5mdFGAAAAACZYEUYPNLR0VFcX1/H5uZm7O/vJ90cnrnn0t/S+Cka43755z/GX/7jP+Jvvv02vvtf/zPp5vDM6W+sir7GKulvrMov//zH+H/+d2/tf0dYNUEYPNLR0VF8+fIlXr16ZdBh6fQ3VuWXsz/Gf1/9Ob7Z+h8m7yyd/saq6Guskv7Gqvxy9sf4fz/8k98R5uTWSAAAAAAywYowAB7klkYAAOA5sCJsQer1epRKpdja2oqNjY3Y2dmJSqUSrVZrLetO8nwAAAAAlkEQ9kStViu2trbi8PAwIiKazWZ0Op2o1WrRbrejVCpFqVSKXq+3FnUneT4AAAAAy+TWyCdotVpRKpUiIqJarcbx8fHwz/L5fJTL5djd3Y1WqxW7u7txfn4euVwutXUneT7A4rmdEQAAYJwVYY/U6/WiUqlExNeQaDQ0GtVsNiMiotvtDo9PY91Jng8AAADAKlgR9kiVSmV4e+DgNsJJBiupTk9Po9VqRaPRiGq1mrq6kzwfYNyklVz/5//71+F/rfQCAAB4HEHYI3S73bFN49+9ezf1+O+//z5OT08j4mvI9JTgaBl1J3k+T3V0dBTX19exubkZ+/v7ibVj1ZI876SveVrP/TmHU7/88x/jL//xH/E3334b3/2v/6nuZ153krJ8zbN87knJ6jXPat1JSvq8s/p3nvR1T0pWr3lW605S0r8XPoUg7BFqtdrwebFYfHCfrHK5PHze6/Xi9PR07GdJ153k+TzV0dFRfPnyJV69erV2//ieIsnzTvqaZ/nck/LL2R/jv6/+HN9s/Y/VTyzUnakJVZaveZbPPSlZveZZrTtJSZ93Vv/Ok77uScnqNc9q3Ula59+NBGGP0Gg0hs8LhcJM78nn89HtdiMi4uTk5NHB0TLqTvJ8IEnzruJyeyIAAMB6E4TNqd1uj73+9a9/PdP7CoXCMDga3FaYhrqTPB94CmEUAAAA8xKEzWl0L62IryujZnH7uHa7PfPqq2XWneT5kH5p3LR9UD8AAADMSxA2p48fP469fmg/rYHvvvtu7PWnT5/mDo6WUXeS58O4eUKlpMMoAAAAWEeCsDkNbgcceOwKqk6nk4q6kzyf50IYBQAAAOvhRdINWDe3g6PH6vV6qag7yfMBAAAAWCVB2JweG/jcvuXw8vIyFXUneT4AAAAAq7TR7/f7STdinWxsbIy9nvXytVqtKJVKw9fFYjHOzs4SrzvJ8xn4u7/7u/iv//qviIh48WK+bPbm5mb4fPDef/iHf4i///u/f1Rb5nFxcfG1/o2N+Ca3ufT6Rv137zqi389c3UnXr251q1vdz7F+datb3c+37qTrV7e61b2aul+8eBEvX75cSZ3/+q//Gv/yL/8y8XfxeQze/7d/+7fxn//5nwtr3yzsETanXC63kNsAZ92Uftl1J3k+A3/5y1+Gz0f/Mc1r8N4///nP8ec///nR5cyt34//vlphfepOvn51q1vd6n6O9atb3ep+vnUnXb+61a3upbq5uYkvX74kUveg/scazQNWRRA2p+3t7YUER9vb26moO8nzGfj222/j3//936P/f5Psp1rVijAAAADIksGKsKe6ubmJjY2N+PbbbxfQqvkIwub02JVPt8Omx64IW3TdSZ7PwL/92789+r0AAAAAs7JZ/pzevHkz9nrW1VS3N5Pf2dlJRd1Jng8AAADAKgnC5rS7uzv2utvtzvS+Tqcz9rpYLKai7iTPBwAAAGCVBGFzur2CatbgaHSlVS6Xi3w+n4q6kzwfAAAAgFUShM2pUCiM7Yf18ePHmd736dOn4fPb4VOSdSd5PgAAAACrJAh7hHfv3g2ft9vtmd4zetzh4WGq6k7yfAAAAABWZaPf7/eTbsS6abfbY3trPXQJW61WlEqliIjI5/N39tdKuu4kzwcAAABgVawIe4RCoTC2Ofzp6enU45vN5vD5Q6unGo1GHB4e3rtX1zLqXub5AAAAAKSFFWGP1O12Y2dnJyK+Bknn5+cTj+v1erG1tRURX79Z8ezs7N4yS6VStFqt4eurq6ux/buWWfcyygQAAABIEyvCHimfzw9XRrXb7ajX6xOPe/v2bUR8/WbF0ZVUk4yGYBERHz58WFndyygTAAAAIE0EYU9QLpfj7OwscrlcHB4eRqVSiXa7Hb1eL1qtVuzu7ka73Y5CoRB/+tOfJq7uGnX7z/P5/MrqXlaZAAAAAGkhCHuiYrEYV1dXUavVotvtxtu3b2NraysqlUpsb29Hs9mM8/PzmUKjZrMZ+Xw+crlcHBwcjO3btey6l1lmErrd7nBD/8e+96G90hZh3nbW6/UolUqxtbUVGxsbsbOzE5VK5c5qQlZnXfraMjzl3Hmcea55u92Ovb292NnZiY2NjeGYcXh4GL1e79FtWMY4ZGxLn6T72rL67yyMbauXdH9bRjsjjG1ptC59bRmMbas3zzXvdrtj/W1rayt2d3djb2/v3v3DZ2Hedo8+rJGrq6t+RMz0qFarc5ddLpeH7z8+Pk5NO8/Ozvq5XK4fEf1isdg/OzvrdzqdfrPZ7Ofz+eHPr66uHt1mxqW5rw36wmMes7R1mefOZIu85rf7132PefvdMsYhY9vqpb2vLav/LvrcmU3a+9sy2tnvG9uSkOa+Zt72/Cz6mtdqtQfLqdVqc7XRvG06QRhrZZZBYvDodDozlXl1ddU/ODhYyERqGe08Ozt7cCAtFAr9iOjn8/m1GHjWQVr7WrPZfPRkKiL6zWYzkXNnukVd86urq+FEZJET4mWMQ8a2ZKS5ry2r/y763JldmvvbMtrZ7xvbkpLWvmbe9jwt8poXi8V+RPRzuVy/XC73Dw4O+uVyeWI/nKU/9PvmbbMQhLFWZv1EpVgszlRerVbr5/P54QA0+nhKELaodl5dXQ3Lyufz9x7X6XTmPnemS2tfm/T+eR5JnDsPW9Q1H/SPQqHQbzab/U6nM/ykblIIO8ukahnjkLEtOWnua8socxnnzuzS3N+W0U5jW3LS2tfM256nRV3zQZ+6b7XXpMDtIeZts9no9/v9gDXQaDRib28vDg4OHrzX+s2bNw/uY9ZutyMiolAojJU/cHx8HNVqNdF2lkql4b3WD7WnUqkM95p6bNv5Kq19rdvtxs7OTuTz+Tg8PIxisRjb29sPvm93dze63W4Ui8U4Ozubeuyiz52HLeqaj5ZTq9UmHtPtdodfhDKQy+Xi6urq3jqXMQ4Z25KR5r62rP47qXxj22qkub8to50RxrakpLWvmbc9T4u65oP+cXZ2NnVv8L29vWg0GsPX5+fnw98pJjFvm1HSSRzMKp/PT02gn+r8/HwsbX/sirBFtXM0UY+IB5eXji69zuVyT64/y9La1w4ODuZeajzaj2apZ9nnzl2LuuaDFYcPuT22RET/7OxspmMXMQ4Z25KT5r62jDJvl29sW60097dltNPYlpy09jXztudpUde8XC7PtO/X7f3Ipr3HvG12gjDWwuAf1FNuV3zI7X/kj6lrke2sVqtzLy0dbf88twTwV2nua7lcrn9+fj5XXaNLqmf9H9cyz51xi7rmg3B11sn27aX2902qljEOGduSkea+tqz+O2BsW70097dltLPfN7YlJc19zbzt+VnkNZ/n1sHR/cKm1W3eNrsXAWvg/fv3kcvl4t27d0k3ZapFtnN0Cey05a+j8vn88PnJycmT25BFae5rzWZz5r4wMOgHxWLxweXwaT7352pR1/zk5CSq1erMtzzcXoL/yy+/TDxuGeOQsS0Zae5ry+q/A8a21Utzfxtl3rb+0tzXzNuen0Ve84duex11eXk5fP7mzZt7jzNvm0PSSRw85PZtZPl8vl+tVheeLj91Rdgi23m7rFnLuP1Vz8xnXfrarEaXUj9Ux6rOnb9a9Jgx77fzPNQHlzEOGduSsQ59bdFljpZtbFuttPe3ZbXT2LZ669LXZmXelm5JXfPRfjFtRZZ523zS2SoY8dC3rZTL5bmXHU/y1HBike28vdx61vfd/jabRVyXLFmXvjareZbXr+rc+askr/nt/SYm7W2yjHHI2JaMtPe1ZZZpbFu9delv5m3rb1362qzM29ItqWt+fHzcj4gH95szb5uPIIxUm7QZ5X2ParW60LrmCScW3c7bKXqn05mpHbcHK3sGzG5d+to8CoVCP+LrV4DP055lnjtfJX3Nb3/CN8kyxiFj2+qtQ19bVplJn3sWJX3Nk+obxrbVW5e+Ng/ztvRK6poPAtdCofDguGLeNp9vAlIsn8/H8fFx9Hq96HQ60Wq1otvtTjy20WjEp0+f4vz8fMWtXHw7b7939D7rh9oxqtPpzPQ+1qevzarX6w2/2vv777+feuxzO/d1kPQ1//Tp0/D5fV9rvYxxyNi2euvQ15ZVZtLnnkVJX/Ok+oaxbfXWpa/Nyrwt3ZK45t1uN0qlUuRyufjpp58e3DPOvG1OSSdxMK+rq6t+rVbr53K5iSn8PN/AMWrRq3Se0s7b75nV6NfVhk+Bnmxd+tokg2XUMcenN6OWde7cb5XXfPCp87T+sYxxyNiWDmnra6ss09i2euvS38zb1t+69LVJzNvWzzKv+e2xIeLhb8E1b5uPIIy11mw2Jw4+Dw0UkywznJi3nbePm9XZ2dnY+8rl8qJOIfPWpa8NzLq8fhaLPHdms8xrPtr/ppW3jHHI2JY+aehrSZVpbFu9delv5m3rb1362oB523pbxDUfBGv5fH5isPbQGGHeNh9BGGvv6upq7FOZiOjncrm5y1l2ODFPOxc16Pj0Z7HWqa8tetKzqHNndsu65tVqtR/xddPVaZYxDhnb0inpvpZkmca21VuX/mbetv7Wqa+Zt62/p17zZrPZr1ar/Wq1OnVj/mUH8lmZt70IWHO5XC7Oz8+jUCgMf9br9aLVaiXYqrvmaedD94DPUyeLsy597cOHD8Pn5XJ5IWWuy7k/J8u45u12OxqNRuRyuTg7O3uw/kUYLcfYlk5J97UkyzS2rd669DfztvW3Ln3NvO15eOo1L5fLcXx8HMfHx3F2dhb9fj+Oj4/vjAuHh4fR6/Um1r8IWZm3CcJ4Nn788cex14v6n9OizdLO7e3thdS1qHIYl/a+dnx8HBFfN6qcdVPLWaX93J+jRV7zH374ISIifvrppwf7xjLGIWNbuiXV15Isc8DYtnpp728D5m3rL+19zbzteVnkNa9Wq3F+fn4nSGo0GneONW+bjyCMZ6NQKESxWBy+vu+bPJI2Szsfm5rf/nQgjen7c5Dmvjb6rUOL+lRxVJrP/bla1DXf29uLdrsdzWZz7NPK+yxjHDK2pVtSfS2pMkcZ21Yvzf1tlHnb+ktzXzNve34Wfc3z+Xz89NNPYz/7+PHjnePM2+YjCONZKZVKSTdhJg+1882bN2OvJy1/neTy8nLs9c7OzlztYnZp7Wujy+sf+vrtx0rruT9nT73mjUYjGo1GHB8fzzzRXsY4ZGxLvyT6WhJlTmJsW7009rdJzNvWX1r7mnnb87Toa14oFMb63aRwzbxtPoIwnpXR5cRpXII58FA7d3d3x17P+klCp9MZez36aQSLlda+1mw2I+LrJy/L+GQ8Ir3n/pw95Zq3Wq3Y29uL4+PjqFarM79vGeOQsS39kuhrqy7zPsa21Utbf7uPedv6S2tfM297npZxzUeD0kmBlHnbfARhPCujg04al2AOPNTO2+n7rIPO6KCYy+UWvs8Af5XGvja6IecyfylI47k/d4+95u12O0qlUtRqtbn7xDLGIWNb+iXR11ZZ5jTGttVLU3+bxrxt/aWxr5m3PV/LuOajQemqxqHnPLYJwnhWPn36NHye5mXAD7WzUCiMDXCT7gN/qNzbAxeLlca+torl9RHpPPfn7jHXvNvtxtu3b+Pg4CAODg7mrnMZ45CxLf2S6GurKvMhxrbVS0t/e4h52/pLY18zb3u+ln3NJ40X5m3zEYTxrIwuw0zjEsyBWdr57t274fPBJpoPGT3u8PDwka1jFmnsa6tYXh+RznN/7ua95t1uN3Z3d6NarUatVpupjm63G/V6fexnyxiHjG3pllRfW3aZszC2rV4a+tsszNvWXxr7mnnb87WMaz66Guu+cM28bQ59eEby+Xw/IvoHBwdzv7fT6fQjYvg4Pj5eQgu/mqWd5+fnY+15yNnZ2fDYfD6/yOYyQdr62tXV1bC8arX65PKmecq58zjzXPOrq6t+Pp+fux8UCoX++fn52M+WMQ4Z29Itqb62zDJnZWxbvaT726zM29Zf2vqaedvztoxrXqvV+hHRz+Vy9x5j3jY7QRjPRrPZHA4OV1dXc7//9j/yZQVh87SzWCwO29NsNqceW61WVxLikc6+dnx8PCzv7OzsyeXd56nnzvzmueaDyXuxWOx3Op2ZHmdnZ/1CodAvFAoTy1zGOGRsS6ek+9oyylzGubMYSfe3ZbTT2JZOaexr5m3P17KueS6Xm2lsMW+bjSCM1Do7Oxv+gy8Wi1M/Yel0OsNjH/up32DQGjxqtVri7RxdOTTtf66jnyoVi8WZ2s1frUtfm2bwP6hpnxJNsupzZ7nXvFAojPWteR73TVaWMQ4Z21Zj3fraIss0tq3euvQ387b1ty59bRrztvWxrGteq9X6hUKhf3Bw8GBgdnBw0I+YbYWZedtsBGGk1miaPHhMWjo8GJzy+Xy/0+k8qq7Bpz+jdc36qc6y2zkamtwXmAz+p+3TnsdZl742rcxBWeVyea73rvLc+WpZ1/wpk/eI6dOBZYxDxrblW6e+tugyjW2rty79zbxt/a1LX7uPedt6WcY1H+0Dg8d9IVe5XJ46nkxi3vYwQRipNXp/8egjl8v1y+Vyv1qtDv+xzZKk33Z1ddUvl8tjSz0nPYrFYr9cLt+b6i+7nYM6Bp8uDNpydXU1XIod8TVMSfuAk1br0tfu85Tl9avov4xbxjUfTJIe+5hlf5JljEPGtuVal762jDKNbau3Lv3NvG39rUtfu49523pZ1jW//cH4aJkHBwf9YrE4fP2YMNO8bTpBGKnW6XT61Wq1n8/nh//oBkl7uVzuN5vNVPxDW1U7B0toR+soFosP3qvNw9alr00yGrA9xjqf+7pa52u+jHHI2LY869zXnirL556Udbnm5m3rb1362iTmbetnGdf86uqqf3BwcGeMGJR5fHyc2nHoOYxtG/1+vx8AAAAA8My9SLoBAAAAALAKgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAABA5vR6vdjY2Hjw0W63k25qatXr9Qev387OTtLNHLPR7/f7STcCAAAAYJV6vV5sbW0NXxcKhfjxxx8jn8+PHZfL5VbcsvXS6/WGzy8vL6PVasXe3t7wZ/l8PjqdTgItm0wQBgAAAGTO7SCs2WxGuVxOsEXPR6VSidPT04hIXxDm1kgAAAAg86z8Wpzbq+rSRBAGAAAAZN729nbSTWAFBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAIA59Xq9qNfrsbu7O/yGxIHT09MolUqxtbUVGxsbsbu7G41G495yDg8PY3d3d+z422WmvR3r4pukGwAAAABEHB4eRr1ef9R7C4VCnJ+fL7hF3NZut6PVasXJyUm02+07f97tdqNSqdz5s3a7HXt7e3F+fh7Hx8fDn9fr9Tg8PJxYT6VSiYODg6jVaqltxzoShAEAAEAK9Hq9iIjI5/Oxt7cX+Xx+4nEfP368E5g9l5Aizbrdbrx//z4iYmL41Gg0Ym9vLwqFQtRqtcjn88P3DP5uG41GVCqVKBaLUSqV4tOnT1GtVmN3dze2t7fv/N3W6/U7fSEt7VhXG/1+v590IwAAACDr9vb24sOHD3F1dTX1uN3d3bEApFqtjq3uYTa9Xi+2traGr8/Pz6NQKMz03tsrqPL5fFxeXsaPP/4Y5XJ57Nhutxs7OzvD14M6tre3o9lsRi6XGzu+1WpFqVQavp7295uWdtw2uroxn89Hp9OZ6X2rYI8wAAAASInf/e53U/+8Xq+PhWC5XE4IloBJgdnV1dWd8CniaxBULBaHr9vtdvR6vTg7O7sTPkVEFIvFsZVXrVYr9e1YJ4IwAAAASIHLy8upK5K63e6dfZyazeaym8UE29vbY68nBU+jRldWRcTE/bhGjfaDbreb+nasE0EYAAAApECtVhtbsXNbpVIZe12tVqceT3rcXnF1O8C67fZeXIsKodLSjiQJwgAAACAFpm1E3mg07twSOc8G+fV6PUqlUmxsbAwfu7u7c7WvXq+PvX9rayv29vbmKiOrHgqcHjLY5P65tCNJgjAAAABIsW63eydwmrS5+TQHBwdxdnY2duvcPKt72u322G10uVwu/vSnP9mfbEm+++67pJsQEelpxyIJwgAAACDFbodg5XL50bdEjoZf86zuuX1b5rt37+YK4iAtBGEAAACQUo1GY+zb+nK5XPz444+PKqvX60W73R4LsGZZFXZ4eBiXl5djt27eDsZgXQjCAAAAIIV6vd6db/X78ccfH70SaxCovXv3bvizh4Kwdrsd9Xo9fvzxx7FjbdLPuhKEAQAAQApVKpWx2xfL5fLYHl/zOjk5iXK5HDs7O8OfPXR7ZKVSiWq1OvYzIRjrTBAGAAAAKXN6erqwWyIHWq1WlEqlsVscp60IG+xNdnx8HCcnJ8Ofl0qlmeobbPJfKpWiUqkMg71SqRRbW1tj53dfW3d3d4ePacfDrARhAAAAkCK9Xi9++OGHsZ895ZbIiK+3OPZ6vSgWi2NBWKfTmXh8q9WKRqMRzWZz+HpgllVp9Xo9dnZ2YmdnJ87OzqLZbEatVotKpRKtVmvYlkkG4VmpVIrz8/M4Pz+PfD4fpVIp6vX68FzgMQRhAAAAkCI//PDD3LdE1uv1aDQa9/75yclJ5PP54WNg0oqwXq8XlUolDg4OolAoRLfbHbYnl8uNvX+SSqUSh4eH0Ww24+DgYPjzfD4fl5eXEXH/7ZWVSiUajUZUq9Wx937//fcR8XXj/t3d3Tt7p8GsBGEAAACQEq1WK05PT4evZ70l8uzsLLa3t6eWOwifHvrWyB9++CG2t7ejVqtFRIy1Z3Sj/Un29vbi9PQ0qtXqxPBuEKhNur2y0WgM6xrUPVAoFIbPO51OHB8fT21H2g0CwaSlpR2rJAgDAACAlKhUKmOvZ7klstfrRavVunelVq/Xi3a7PVb2oMzbQcjp6Wmcnp4Ob4mM+BqyDUzbH+z09DQajUbkcrl7g6pB8DZpRdigznK5fOecRwO7h77pMo1uX+eHbu385ZdfnnU7kiQIAwAAgBTY29sbCyaKxeJM+3EN9hO7Lwgb7O81Gj4Njh2tb3BLZK1WG1uBNev+YIN2/O53v5vajlwuN1b+7T//9a9/fefPRsO4N2/e3NuGVbkdxj0UKN3+8/v2Zrvv+PvCv7S0Y50IwgAAACBhg83pRw02lr/9GKy8Ojw8jJ2dneHthPetHDs5ObkTPE3aJ6xSqUShUBjbm2s0BJsUXg3U6/VhaFKtViceM1jxdV+QdV/7e71e1Ov1iIg4ODh40pcGLMr79+/HXn/48OHeEKrX691ZIffhw4ep4daHDx/GfnbfCru0tGOt9AEAAIBEFQqFfkQ8+pHL5e4tO5fL9Wu12tjPDg4Ohu89Ozvr12q1fkT0O53O2HHVanV43O0ybtcREf1yuTzxz6+urh4sp9ls9iOiXygUxt6Xz+f7EdE/ODi4t/7HGG1TRPTPz8+nHn9+ft4vFovDc530KBQK/WazOTz+ob/XQqHQPz4+7vf7/f7Z2dnwXO/7Oy4Wi/1/+qd/SkU7bveVUaP9K5/PL+Kva2G+eVqMBgAAADzV+fn5Usptt9vR6/Xu7Mm1s7MzfH52dhb1ej1qtdqd2ytHV4Td902Pgzoi7t9DbHTl0n3llMvlOD8/j7dv38bu7m5sb2/H5eVlFAqFODs7e/DbKpdt0I55jp/n77VYLD54q+LAP/7jP6aiHetIEAYAAADP1MnJycQ9uUa/YbJer9+5JTLi6610g9vm7tvXK2J836hJtz12u92Zb7F8//59vHnzZq7ACeZhjzAAAAB4pk5PTyeuwLq9umr0WyIHRveHum8VV8TDG6gfHh7G999/P1ZOr9cb7m02UKlU4vT0dGpQBk8lCAMAAIBnqN1uR7fbnfgtjKNB2PHx8cTbDkfDsftuebxd1snJyfB5r9eLUqkUtVotPn78GBFfV4P1er344Ycf7oRrg1Vj9Xo9dnd373x5wLJdXl6utD6SIQgDAACAZ+jw8PDePxt882KxWJz4LY+Db6icRbFYHJZXr9djb28vKpVK7O7uDkO2waqx09PTePv2bdRqtTvf/lir1YbP2+127O3txcbGRuzt7c3Ujqd6aGUbs7vvmyvTQBAGAAAAz0ir1Yrd3d1hkHV4eBiVSuVOsFUoFO7cEtloNKJUKt1ZATYItyat0srlcvHTTz8Nb2n88OFDbG9vx/n5+XC12ODWyHw+H81m884KtNPT02g2m9HpdKLZbI6tFms0GmOb+y/L4eFhtFqt6PV6Yw+mu329Wq3WylfzzWOj3+/3k24EAAAAkE31ej1OTk7ufLNht9uNw8PD4V5i1Wo1jo+PF1Zvr9eLra2tB487Pz+3b9k96vX61JWHEV/DzzR9C6UgDAAAAEjE6elpVCqVqWHT4eFh1Ov11AUqrCdBGAAAAJCIUqkUrVYrHoomNjY2olAo3Fk1BvOyRxgAAACQiMGG+dP24hr82e1vmYTHEIQBAAAAiRhsov/+/ft7jzk8PIx8Ph+/+93vVtUsnjFBGAAAAJCIcrkctVot6vV67O3tRbvdjogYfvtgqVSKy8vLOD8/H64eg6ewRxgAAACQqF6vF41GIzqdTlxeXkY+n4+dnZ0oFouRz+eTbh7PiCAMAAAAgExwayQAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAn/PwyR3Jm6yAhkAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x900 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"plt.hist(array[\"z_mag_x_fringe\"], bins=50,\n",
" range=[5150,5300], color='#2A9D8F', density=True)\n",
"plt.xlabel(r\"z$_{Mag}$ [mm]\")\n",
"plt.ylabel(\"Number of Tracks (normalised)\")\n",
"mplhep.lhcb.text(\"Simulation\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n",
" expsuffix: Custom Text(0.05, 0.955, 'Simulation'))"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC20UlEQVR4nOz9b2xbd57ne34oO4Fzk5JJpdGAVgKqTE4a6bsPuk3K86Duoy6RUwvcZJPpkPYg6STYizKZZGv+QDMh4wQX6MHCUcjuFjDbs2mTrr7AOB1gZLKqEyQD1ER09aM7wI6l4+pnwVTpOA1Iy8VgIx2rk403iXn2gZoskpLIQ/KQh3/eL4CIZH3545f645gf/X7f47Nt2xYAAAAAAAAw4Wa8bgAAAAAAAAAYBoIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMhdNeNwD04tFHH9X9+/d16tQp/fZv/7bX7QAAAAAAAIf++3//73rw4IHOnDmjL7/8cqiP7bNt2x7qIwIuOHXqlKrVqtdtAAAAAACAHs3MzOjBgwdDfUx2hGEsNQZhMzPtT/h+5zvf0WOPPTaMtjqqVCqqVquamZnR/Py81+0MzDQ8z2l4jhLPc5JMw3OUpuN5TsNzlKbjeU7Dc5Sm43lOw3OUpuN5TsNzlKbjeU7Dc5RG83l+8cUX+vu///u2NbXX86dOnRpGS00IwjCWfvu3f1u7u7uS1HFn2L/6V/9Kf/zHfzyErjpbXFzU7u6u5ufntbOz43U7AzMNz3ManqPE85wk0/Acpel4ntPwHKXpeJ7T8Byl6Xie0/Acpel4ntPwHKXpeJ7T8Byl0Xyef/zHf6x/+2//raNaL0YdEYRhrDlJvWdnZ4fUDQAAAAAA0212dlYLCwtta2o72bzgaRD2xBNPePnwTXw+n/7bf/tvXreBLo1S6g0AAAAAwLRbWVnRyspK25raTjYveBqEbW9vy+fzyct5/bXH9/l8nvUAAAAAAACAwWs/ZXwKcNFMAAAAAACA6eD5jDDbthWPxxUMBj15fMuyVCgUPHlsAAAAAAAADI/nQVihUNCPfvQjT3uIx+P64Q9/6GkPAAAAAAAAGCzPj0ZGo1GvW9CFCxe8bgEAAAAAAAAD5vmOsLm5Oa9bAOCylZUVHRwcaHZ21utWBmYanqM0Pc9zGkzL13Ianuc0PMdpMS1fy2l4ntPwHKfFtHwtp+F5TsNzRG98tofT4k+dOqX9/X3PvzHv3bunubk5PXjwwNM+4FztUqsLCwva2dnxuh3HxrVvYNLxswmMHn4ugdHDzyUwesb159LLvj09GjlKV2wcpV4AAAAAAADgPk+DsGw26/luMEk6e/asstms120AAAAAAABggDwNwl5//fWhPt5nn3124seG3QsAAAAAAACGy/OrRg5TKpXyugUAAAAAAAB4ZKqCsM3NTa9bAAAAAAAAgEdOe91ALz777DNZluW43jRN5fP5ru4DAAAAAACAyTIWQdhnn32mbDarcrks0zR7WsO2bfl8Ppc7AwAAAAAAwLgY+SDsypUryuVykg7DLGCcrays6ODgYCSulgrgN/jZBEYPP5fA6OHnEhg9/Fx2z2ePcLr005/+VIlEQpLqu7n6adfn8+nBgweu9AZvLS4uand3VwsLC9rZ2fG6HQAAAAAA4JCXr+lHekfY6uqqpMMAy7ZtBYNBhcNhBYNBSdLjjz/ecY3PP/9clmXp5s2bunfv3kD7BQAAAAAAwOga6SDMMIz6TrCNjQ0tLy/3vFY6ndYTTzzhVmsAAAAAAAAYMzNeN9CO3++XdBhi9ROCSVIwGNS5c+dc6AoAAAAAAADjaKSDsNoRyAsXLriyXj6fd2UdAAAAAAAAjJ+RDsJqu8D29vZcXQ8AAAAAAADTZ6SDsDfffFO2bcswDFfW+8lPfuLKOhgdlUpFi4uLbW9ra2tetwkAAAAAwFRYW1vr+Dq9Uql41t9ID8s/e/as3nnnHWWzWWWzWX3nO9/pa718Pq8f/ehHLnWHUVCtVrW7u9u25uDgYEjdAAAAAAAw3Q4ODjq+TvfSSAdh0uGg/I2NDSUSCf385z/veZ27d++6trMMo2NmZkbz8/Nta2ZnZ4fUDQAAAAAA0212dlYLCwttayqViqrV6pA6auazbdv25JG7tLS0pHv37imTyWhubs7Rffb29mRZlra3t3Xz5k1ZlqUHDx4MuFMMw+LionZ3d7WwsKCdnR2v2wEAAAAAAA55+Zp+5HeESdIvfvELSdL29rZSqVRPa9i2LZ/P52ZbAABgCGxbqnb4td2MT+r0v3m31gEAAMD4Gvkg7NVXX1WhUJAk+Xw+9bKBjQAMAIDxVbWl02+1r/n2qnSqw//u3VoHAAAA42ukrxp5/fp15fP5evjV6ynOMTn9CQAAAAAAgAEa6R1h+Xxe0m92gkWjUcViMfn9/q7nhF27dk2fffbZALsFAABeef+O9FJkdNYBcDyOKAMAvDbSQZhhGPL5fPL7/drc3NS5c+d6Xuvy5ct6/PHHXewOAAAMw/t3Ote8XJJOzUgvnB/8OsC0cTO84ogyAMBrIx2E+f1+3bt3T1euXOkrBKutdf48/6oFAGCc3Lsvvfahs9pXPpCe/l1p9szg1gGmEeEVAGCSjPSMsEjk8GxCMBh0Zb3r16+7sg6A6WZZltctAFPjPUP68htntV98Ld0wBrsOAAAAxttIB2GpVEq2bcs0TVfWG5UdYaZpKhaLOao1DEOpVEqhUEg+n08+n0+hUEiZTGYgL8Zrj1Mqlbq+by6XUywWUyAQqPeZSCRULpdd7xMYNsMwlMlkFAgEdPnyZa/bAabGR592V//xCfVurQPgeE6OHnuxFgAArUY6CIvH4zp//rzW19ddWe9nP/uZK+ucxLKseljV7hYKhTrucrMsS4lEQpFIRIVCoSkMNE1TuVxOgUBAhULBtf4zmUxPoWO5XFYgEFAmk5EkFYtFbW9vK5vNyjAMxWIxxWIxdtFgYGohVSwWUygUqoexgUBAkUhEsVhMmUzmxFC29rPWyLIslUolJRKJ+jq5XI7vY2DI9r9yp96tdYBp5HS+npM6N9cCAKAXIx2ESYehytbWlv76r/+677VWV1dd6Ohk3YRStdDoOJZlKRKJONqVlUqllEqlHD/uScrlsnK5XE/3q4VcyWRSGxsbikajCgaDisfj2t7eVjgcVrlcViQSIUQ4QaFQcBSitt5aw5te9fLYgUDgxPUSiURPa3aze9CyLGUymfrnIZfLqVwuyzTN+veZZVkyDKP+/R2Lxer1mUxGhUJBiUTi2J+1y5cva3V1VaVSie9bwEOBR9ypd2sdYNp0O1/v4P5w1gIAoFcjH4QFg0Fdu3ZNP/rRj/pa5969ezKMwQ78cBq01YKikyQSCZmmqXA4XN9dtb29rWKxqHQ6faS+UCj0dJSxprb7rJ/7BYNB5fP5Y+uKxaKkw51svTzONEgmk9rf39fW1pbi8Xjb2mg0qo2NjXq9G2zb1vb2tvL5vPx+/4l1ta/z9va29vf3T6wrFova39+vB6PtpNNpbW1taX9/v2NtTe2IYmt4G4/H6+H5/v5+/XltbGwomUzWn5thGMrlckqlUvWfndawq7aObduuzSkEpoltSw+q7W92h6vQSdLTT3b3uE+dUO/WOjVuPT9g1Lk5X49ZfQCAUeCz7dH9Z1rjUcZ0Oi2fz9cxJDiOZVm6efOmLMvSgwcP3GyxrlAoKJVKKZ1Od5z/tbS0dGLY0LhONps9tqYWKDUGe36/v20w0U5trb29vXoYUCwWO36uY7FYfQdPPp9XMpls+xi1wKFTrROLi4va3d3VwsKCdnZ2+lprFKVSqWN3GNaCnkEyTVOhUOjYj+3v77cNyk4SiUSODaK7/V6ozddrPcKbTCZPDGJb5XK5Y3dkBoNBbW9vH3uf1q/HML4OwLh7UHV4lbkOv5K7d19aeNvZi+fHHpZ2r5x81Ug31qlx6/kBo+6H/5v0ya+6qH9C+vn/Mvi1AADjzcvX9KeH+mhdevvtt3Xnzm8GBNi23dPxvdp9fb7BXdM5m80qGAyeGF51s040Gm27TjAYVLFYbAorLMtSuVx2vKOmprabbGtrS8vLy47vZ5pm0zG2ixcvtq2/dOlSPQjLZDJ9B2GT7qQgzI1jsJ0Eg0GFw+EjwVU8Hu8pBJNOPsLbzfdB7RhuI7/fr1u3bikcDjteJ51OKx6PHzmqu7e3d+J9en3eAPp39oz07jOHM4M6ufbsyeGVW+sA08bN+XrM6gMAjIKR/j3lxYsXZdu2apvWBhlk9aNUKsk0zbZzv5wwDEOmaTraaXJc6Nbt0U/TNOu7z7oJEiQ1PXY0Gu0YFDTuLqsNIcfJTjqKN6wjesc9Tj+Pfdx9uwmXahddaL1/tyFYYz93795t6oE5YMDoesHBRZ9vxDvXubWOUwz7xiRwc76e27P6OKIMAOjFSAdhtR0kPp+vHoj1ehuk1dVV+f3+jruiOllfX2+aY9RJ6+6vzz//vKvHSyQSCofDPe1ia9yt5DSIaAxD3LoS6KQ66Xtgbm5uuI2MANM0j92tWCwWewrBavx+v2sz1kZJLZjH8bq5IAMGz82g6HmXwiun63DlO0wLN+fruT2rr2ofHlFud6sShAEAWoz00cizZ88qHA7rzp07ymazCofDPQUBpmnq7bff1i9/+UvXezQMo74TKxAIKBgMKhqNKhaLdT3P7NKlS13tumkNAU6a63ScTCYjwzBOnInUTuvOswsXLji6Xzgcrr9AZ0fYaDvu5+zxxx93dT2nP8uJROLIbq1kMtn1MeDjBINBpdPpno9cD5NhGMrn8/UrY/r9fs3Nzcnv9ysYDOrSpUuSDq92mc1m2x47LZfLSiQSmpubUz6fd+VzOapqx7iLxWI9BBul0ZiT/LVwGhSdmum8A2vGdzhvq1NNJ26t0+2V757+XY5aYvhsu3MINOOTOh24eDEsvfFz5/P1XmrzOyo31wIAoFcjHYRJh+FQKBTS66+/3vMa58+f13PPPTeQ3TStxyFN01ShUKjvmIrH47py5YqjnSvd7m5pDQechmi1K+bl8/mejru17qhwukZrnWEYfe3oweQrl8vHHvntdxZfoytXrtSDMMuyRm4emGVZunz5cj08DgaD9ZDdNM16GN8YLnc65lkLFy3LUiqV6ikQH3W1i4qYpjnSx14n9WvhdlDk80mnXJiO4NY6vVz57sff7/9xgW7Udku18+3Vzj8Tbs7XY1YfAGAUjPTRSOnw+J9bv71fWlpyZZ2a1oHxxymVSopEIgMZct56/MnpToLl5WXF4/GeB9bfvn276X2nwUHrjqLNzc2eHh/T47ifm36G9h/H7/eP9MUbWq+4ur29rWKxqGKxqK2tLW1vbx/52e8UpkzDEdtgMKitrS3t7+8rnU573c6JJvVr0UtQNE4++rS7+o+7rAeGxenRXTfn6zGrDwDgtZEPws6fP+/a7o9/8S/+hSvr1ASDQeXz+foxpHY7owqFgiKRiKuP3xgkOX0hn0gkJEnXr1/v+XFbA7hed4RNys4HDEbtCGCrK1euuP5YtZ+LdleObKd2vC0UCsnn8ykQCCgWix175c9u5HK5etieTqeP/TkPBoPa2Nho+nuy04yw2m7Q2hVoJ13rhRZGyaR+LSY9KOLKdxgHw55j59acvm7WYlYfAKAXI380UpLOnTvnyjp//ud/rqeeesqVtWpaX5halqVCoaDV1dUjx3FqV77b2Nhw5bHz+Xz9bSdXrCyVSiqVStrY2OhrR41bg7hH+bgSvHdSKDCI47TRaFTZbLbr3TmWZWl5efnI8U3LslQul1Uul5XNZnse7L+6ulp/u9Ou0nQ6rc8//1y5XK5joBeNRqcqiPZq11UqlWr6e/o4k/q1mPSgyO0r3wFuc/t4slvz9dxci1l9AIBejfyOMDcN4yie3+9XOp3W/v6+isXikcCpXC67Mpi7NhtIOpyX1GlXlmVZSiQSrgwZ7zXAav1c9Lr7BtPhuGPHgxwknk6nuwqITdPUuXPnjp1h1loXiUS6vlphL7OtahcV4aqR3mucFTmNJj0ocvvKd4Db3D6e7PMdXtii3a3T0H2315r0I9gAgMEZix1hrT777LOuXiCapql8Pj/0HUjxeFzRaPTIjpHV1dW+Z9bUjkHVrnrXyfLycv0o56hw4+tRqVS0uLjY9zorKytaWVnpex24wzTNY8OcUbm4Qi1YtixL8XhcsVhMS0tL2tvb08bGxrFhdywW0/b2tuOjxK0/H+Vy2dER6CtXrtSPesIbpmkOZC7kOHn6SemTXzmvH7egiCvfYdT1cjx53C7oMA3PEQBG0dramtbW1vpep1KpuNBNb8YiCPvss8+UzWZPnBnkhG3b8jn9VZWL/H6/tra2FIlE6mFY7dhUr7tbDMNQoVCQ3+93dMwyl8vJMAxtbW319Hit/H6/KyGWGwPPq9Wqdnd3+17n4OCg7zXgnpN+zkOh0JA7OV5td9fGxsaRn+NoNKpUKqVYLHbkeSQSCcc/h62BWSaT0cWLFzv+3NSuKDmKV8CcBpZljfRMsmGZ9KCIK99h1E368WRpOp4jAIyig4MDV16De2nkg7ArV67Ud1e4dfVIL1y/fr1pWP5xL6Cdunz5siTp1q1bHXeXGIahTCZTPzLlhrm5OVeCMDfm9szMzGh+fr7vdWZnZ/teA+45KQgbpSvstfsZrg2wbw3uDMNwHIL7/f6m0NmyLEUiEW1sbHT8uR/nvyvHWW1m3DgfTbVtqdrh22fG1/nY0jQERS+c7/z83LzyHdCNST+eLE3HcwSAUTQ7O6uFhYW+16lUKqpWqy501L2RnhH205/+VNlstv6izosdXW4Jh8NNL357faGUSqVkGIbj4duJRELhcLjvo5iNet1l0hqeubFbZX5+Xjs7O33fOBbZWSaTkc/n6+nW7RVTTwpaR2WHk9/v7xhmBYPBY694281VcFtrTdNUKBRyZfaUYRhKpVIdd9nVLgASiUSaHrd2/C8QCMjn8ykUCh17JNQ0TWUymfoVNUOhkFKp1LFf49rjtH7/tIrFYvX1Gm9uHn8vFApNjxMIBBSJRE6c8WgYxrEz4xr7O+lz7fRrUWNZlnK5nGKxWP3zX+svk8k4+v+LaZrK5XIKhUJNPefzBZ3+P0R0+pRPpx8P6fT/mNDpf23p9Fuq3zoFZTVOAqBxDopqA78//1+lf/eU9E/+kXRh4fC//+4pae9/lf5ozHa6YXJMwxy7aXiOADCKVlZWXHkN7saGll6N9I6w2hXTfD6fbNtWMBhUOByu74Z4/PHHO67x+eefy7Is3bx5U/fu3Rtov53EYrGuB2Y3qg1fzufz9eNP7eRyOZmmqWg06mhmUOOLyNXVVa2vr9ffv3TpUv0xl5aWml44OT2C1Tocf1SOuWH0jPpV9JaWlhzVpdPpI1eQ7ebvgGQyqWKxeOQ+tasRXr9+vaudnoZhKJ/P6+bNm/WejvvZrYVf6+vrx14MIJPJHAmEaoHX9vZ2fRbhSXWFQkHlcllbW1tNj59MJpVMJpVKpdqGfbUj4blcztEVc7tRKpWUSCTk9/t1/fr1+t97hmEokUgok8kon88f6T0YDOrWrVsql8tNPZ10FNbp16JVoVCozx/LZrPKZrPy+/0yDEOrq6vK5XLK5XKKx+NHrrxqWZZWV1dVKpWOhGXHXgHVMg9vn5Wl/8uW5Hc2364bz49pCCb9w8BvnzT3P0j/4n86vAGjYtKPJ0vT8RwBAIMx0kGYYRj13QAbGxtaXl7uea10Oq0nnnjCrdZ60nicqdsjXuVyuf7i18nAbOkwBKzdt1uGYTS9IAoGg/UXhK27e0zTdPRivDXcGOQVAOG+WkDRi83Nza7ue1IgMOwLXpykm51p0WhUpVLz+SnDMBwHWBsbG0okEseuEYlEFI/Hdf369Y49maap9fV1xwF0OByW3+9v+rrV5h3Ozc3Vd6XOzc3VAxjpN0FNJpOpXzygFhxubm7WLzJgmqZWV1eP3SGXSCQc7XqLx+OuBmHlcrn+S4MrV640/cIhHA6rWCwqEonINE1dvny5KWjy+/0Kh8NHAv/jvs7dfi1qasFibfZk4/9Tan9H175XSqWSQqFQU2C3t7enWCxWDzprNjc3tby8rGg0qrdXs/o//XXwMPz6m4z0/7MObz9PSf+s80xKAKNhGo4nT8NzBAAMxkgHYX6/X/fu3VM6ne4rBJMOXyScO3fOpc5676GmmxfShmEoFospm806DsEGqXU3jNMgrDHE8Pv9jq+eh9EQCoWGdtXGk3Z7toYM4+DSpUtHQqzNzc2uPpfFYvHE3U+10KNTSN56VLNdgNR49DOfz9dD8UKhcOxstGw2W59/Jh2G5clk8sjFPKLRqK5fv14PmwqFQldHRVu5PTOu01V1G79mrV/TbnTztagpFAr1sDGbzZ7492exWFQoFKpfeTWRSNS/DsFgUMFgUNFotCkIy2QyKhaLikajelCV9DeSfj8pnZmTPviH3cSflaX7lnTGr/fvSC85OO1cOzrYqQbAYEzDHDu3nqNb8xEBAONhpGeE1f6hf+HCBVfW6/QiZ9A2Nzfrbzu9qphpmlpeXlY6ne56zldtvprTW+MLq2Kx2PSxxhdttZ0iNbdv33bUT+Pzd3q0DNNp1HeEdeO4wKKX55FOp7W/v3/isejalSqdrN1NCN0YNiWTyRN3crb+nXbS37eN/VuWNbJf05O+Bxv/3I2h+E6/FrWwzO/3d/yFSGOwVi6Xj90V3Pg8rl+/Xv+6vn+noejJlu+1//fh3+Evl1rqTuDzSadm2t94UQl4a5yPJzvl5DlWbTXNQjzu5nQ+IgBg9I10EFbbBebWLpB+d5X1q/FooJNjgaZp1ndWON01URuAPGgXL16sv33cDKHjNNa5PdcHk+WkcGDUZ4cd57hApXZsuZe1isWitra2jt1RVi6Xtby87Gq45HT3aq87XkfpCovXr19XNptVsVh0tPt2WCFeoVCoP5aT4CyZTDZ9DZz+/+Pefem1D1v+sHEumPWbr9UrH0gH9x0tC8AjtV2Z7W7sygQATKORDsLefPNN2bbtOGjp5Cc/+Ykr6/SqdpTGyc4uy7IUi8V08eLFro4OJRKJoczeapwb5GQGWWNN7WgOcJKTvj/6udiEV44LLpxc6KOdcDisra2tY3ddGYahy5cv97V+L3q9oucoHXf1+/1Kp9PH7rprnZs4TI1HTJ3uIGv8GXL6c/Oe4WzotCR98bV0w5tPx0SybelBVdr7/0r/7n+X/slfShf+/eF//+//++Gf2+xGQZemYVcmYR8AoBcjHYSdPXtW77zzjtbX1/X3f//3fa/n5dHI2lW6/H6/rly50rbWsixFIhEFg0FlMpn6rJd2t3K5XB9iP4w5TuFwuOmFVqd5OY1DpdkNBidOGjI+qkfpuuHWfLxkMqnt7e0jIVSpVBrp0LDX0GzYGq9wGQ6HhzYj77g+utX6Pebk5+ajT7t7jI+7rMfJaseyHv+/Sf/qY2nj19Lm7uF//+XHh3/+HsEjcMQwwz4nR8IBAONhpIMw6XD3VDgcrg9X7tXdu3dd/W1+uVxWIBCQz+dTLBZru3btCmOSdOvWrY4vApeXl+vhVigUcnSr9dDrVf160Rgsrq6unljXeIWyaDQ6EgP/MfouXbp07J+PcsBzktafeTcvFBEMBpuuDFjj9UzEcVa7QEntAgRe72BtDLGchmKtV6R0svNu/6uu2uq6Hidz8gLb6Ww2jLfa7sB2N3YHuo+fQQCYLiN91ciajY0NLS0t6YknnlAmk3F8pbC9vT1ZlqXt7W3dvHnT1Z6KxWL9xUltN1YymTzy4rNcLiuRSGhubu7I5e6PE4lE+grshhkyBYNBFYtFJRIJGYahXC537LHP2my22nwjeM8wDK2uro701yOZTB67ezCfz584MH5Ute7G6bSzqFwuK5PJaGtry9H6wWCw6WqMkvPZfWiWSqVUKBS6ms04aL0M6G/9/6ST8DXwSFdtdV2P4x07m+0Er3wgPf270uyZgbYED9V2B7bz7VXpFMf9XMPPIABMn7EIwn7xi19IOhyU3euOJ9u25XNxEEIikWi6/Lx0OND45s2bikajmpub0+bmpgzDUDqd1pUrVzruBKsFSr3yYqdVPB7XxsaGEomEMpmMbt++rStXrigYDGpzc1OZTEaGYSgcDjvaDYfhuHz5suNA2St+v1/xePzIsdtyuVz/nhoHrSGYk91FwWBQhmGoXC473o3UGg6O0hD6cVELwSTnA+aHofb9IP3mSpud/i5t3AHmdAfi009Kn/zKeV9PPem8FifrZTbbj78/2J4w2t6/I70U8bqLycHPIABMn5E/Gvnqq68qFovpzp078vl8sm2769sgRKNRbW9vK5lMKhgMNr0oMQxDe3t7unLlivb395XNZh0FQMVisafnV7v1exRqe3u7vlY3O26i0Wj9eZqmqeXlZQUCgfpOuNpV7gjBRkMtSIrFYifWuD3AvNf1TgojBjFnblCzxzY3N5vedxLm14KLfo46j0tQ2A83v08Nw6iHYK1/p3ut9Zhw6y9hjtN4hVWnf5+/GJYefchZT489LL00+d9iQ8FsNjTiiN7w8TMIANNnpIOw69evK5/P18OsXkOtQYVhwWBQ+Xxe29vb2t/fl23b2t/f1/b2torFouLx+Ei9mBq0dDqtra2tps/FxsbG2B1jm2SWZdWPz3X7dfn8889d7cVJiBEMBo8Nw8rlsnK5nGu9mKapSCQykBl7rVf8c/p5DwaDMk3TcejXugPspBlr46B1t+JJIaWbu94aZ8+1W9eLizW0/r/EyS89Gp9Ppwu01Jw9I737jLOerj3L0SC3MJsNNd0e0Tu4P9B2pgY/gwAwfUb6aGTtH/u1nWDRaFSxWEx+v7/rOWHXrl3TZ599NsBuAfcM4sW2ZVlaXl6uH6vqdmC72z05XS+dTmtjY+PIkPxMJnPk6qW9KJfLisViJ4Zu/Wo82tnNrs1aEJbL5RQKhToefW5cOxgMHjuvrxdOv06NdZ3u0+njrbvZCoXCkedzXEi4t7fn2i8fSqXSkdDyuMdr1fpzZZpm0585OdZ4nMYZcLWLqZz0vW8YRv0opdMdyTUvnD/cbdLOjfhhHdzBbDbUcETPG/wMAsD0GekgzDAM+Xw++f1+bW5u6ty5cz2vdfnyZT3++OMudgcMzkk7Unp9oV8ul5VKperrXrx4sevH7+cYWr87d2pz6FrnhcViMWWz2Z5CH8uylMlkVCgUTrzyYrv7OlEoFOrPvdurDzaGJ6lUSltbWyeGGoVCoWmHXOMutOM0fi292OHU6KTHj0aj9fAzk8loe3tbiURClmVpY2NDhUKh/n1RW6M1dKpp/d49LoxqDd8SiYSy2azC4bAMw1A+n1c4HK4HlNJvwseNjY36HMjWx0+lUioWi9rb21M2m1UoFGr6fnX6tYjH48pms/UwLpFI6O7du0eeh2VZ9asUJ5PJE382HH/drYaf3fuH93meEMxVzGZDTS9H9AjC+sfPIABMn5E+Gln7B/6VK1f6CsFqa50/z7/eMR5O2jnUGGa1Y1lW/cqDoVBIsVis6X7t5oOZpnnsRRtKpVLPoclJz8fJrKOaYrF47Iv6TCajSCRyZMfYSSzLUi6X07lz51QoFBSNRrueYdc69+s4pmnWj1pGo9GuZ/hFIs2TkAuFQn32Xi3AS6VSCoVCTY+zvb3dcbdfay+tAWNN7fuopt3zXl9fP9LvcVq/TieFdsViselrUigUFIvFlEgkdPPmTW1sbBwJFjOZjEzTPPJ92vp8j7uKcDQaPXYHWCwWUyaTqQdajY9ZKpXqP1uNvTZ+n5bLZQUCAYVCoSMfO663k74WtfvWPi+WZdW/h03TlGmaKhQK9SsPZ7PZE7/nnH4N9FnLz9Rn7QNW9IbZbKjhiJ43+BkEgClkj7BoNGrPzMzYP/3pT11ZzzAMV9aB9xYWFmxJ9sLCgtetuGpra8uOx+O2pIHe9vf3jzz2/v6+nc/nbb/ff+L9gsGgnc/nj73/Sc8nGo227SWdTtvb29uOP0cbGxt2OBw+di2/32/H43E7n8/bGxsb9tbWlr2xsWHn83k7m8023c/v99vFYtHRY25vbx/7udjY2Di2vlgs1j+P8Xjc8XNrfZ61HovFop1MJu1oNGqHw+Gmr1HtOZ/US03te+ukr284HLaz2WzH2mAwaMfj8fr3QDKZtIPB4LFrRqPR+pobGxsnfi8Eg0E7mUwe6Xl/f79p/XA4bKfT6aaa2p+1fg/t7+93fL7HPWY2m60/XjAYtNPpdNP3+/7+fv15NH7OWqXT6aa+G7/XuvlanCSfz9vRaLS+ht/vt8PhsL36Ttb+/3y+b3/7wG66Vavtfx5rX4Nq1bb/26+27eXlk+veead9b+jef9i0bb3R+fZX/DNmov2Tv3T2fVC7/fAvve54cvAzCADD5+Vrep9tD2iSvAtKpZIuXryoXC6nf/Nv/o3X7WCELC4uand3VwsLC9rZ2fG6nb7VdvcMQzgc1tbWVtOf+Xy+rtfx+/3a398/9mPHHWN04rhdPicplUpaXV09dvdaO8FgUKlUSslksqtdYLWZVK3Py+/3a2lpqb5LZ3Nzs370rnUHETAID6rS6bfa13x7VTo10nvAp5uTr+GNuPRipH0Nxtu//y/SP//Ief2fP83RSLfwMwgAw+fla/qRDsKkw+NBMzMzun37dt9r/exnP9Mf/uEfutAVvDZpQRh6Vzu+t76+Xj8WVzsGGgwG63ObLly4oHg83vVFAjo9Xu0xa4+ztLSkRCJBAIahIQgbf7YtVe3Dqwb+1R3pP316eOwt8Ij0Pz8pvXhe8j8i9fA7C4yRe/elhbedDcx/7GFp9wpXb3ULf48CwPARhLVhmqb+0T/6R/rpT3+qf/pP/2lfa124cMGVQA3eIwgDgEO8gAMmx42tzldulaS/usjVW93E36MAMHxevqYf+b/Og8Ggrl27ph/96Ed9rXPv3r2uj1ABAAAAw+Ik3LoRJwQDAKAfp71uoJ2f/exnkqTf+q3fUiAQ0BNPPHHkql5OWJZ17FXCAACYBu/fkV5itg0w8mZ8hzuPOh2Thbtqn/dONQCAyTDSRyOXlpZ0586d+vu2bfc01Lvxvg8ePHCrPXioto1yZmZG8/PzbWtXVla0srIypM4AYLg4SgUAAIBRsra2prW1tbY1lUpF1WrVk6ORI70j7OLFi/XjjD6fr+cQDJOrWq1qd3e3bc3BwcGQugGA4bp3X3rtQ2e1r3wgPf27DNcGgEGqXfyinRkfF78AMNkODg46vk730kgHYalUSm+88YZ8Pp9GeOMaPORkR9js7OyQugGA4XrPcHaFOUn64mvphiH9+PuD7QkAplnVdjh4nyAMwASbnZ3VwsJC25rajjAvjHQQdvbsWYXDYd25c0fZbFbhcFhzc3Ndr2Oapt5++2398pe/dL9JeGp+fp6rRgKYWh992l39x58ShAEAAGCwnIwnqo078sJIB2GSdOnSJYVCIb3++us9r3H+/Hk999xzPYVoAACMqv2vBlsPAAAATJoZrxvoJBqNunYscmlpyZV1AAAYBYEurx7XbT0AAAAwaUY+CDt//ryy2awra7m1DgAAo+DpJ7urf6rLegAAAGDSjHwQJknnzp1zZZ3z57luPABgcrwYlh59yFntYw9LL4UH2w8AoLP373jdAQBMN0+DsFEaXj9KvQAA4MTZM9K7zzirvfasNHtmoO0AwNRzEnK9XCIMAwAveRqERSIRHRwceNmCJOnevXuKRCJetwEAQNdecLDZ+UbcWR0AoHf37kuvfeis9pUPpIP7A20HAHACT4Mwt4bgu2GUegEAwE3PE4IBwMC9Z0hffuOs9ouvpRvGYPsBABzP0yDM5/N5+fBNRqkXAAAAAOPlo0+7q/+4y3oAgDvYEQYAAAAAfdr/arD1AAB3nPa6gbt37+r3fu/3PO1hc3PT08cHAKBXMz7p26udazAdbFuq2oezit67I/2nTw9fbAcekZ56Uvqj84dvsxEecF/gkcHWAwDc4XkQdvnyZb3xxhvy+/2am5sb6mPv7e3JNE2l0+mhPi4AAG7x+aRThBr4B1VbOv3W8R/b+LX0Lz+W/kNceolrBAGue/pJ6ZNfOa9/6snB9QIAOJnnQdjW1pYSiYSnPdi2zYwwAMDQ1HbttDPjY9cOuvf+nc41L5ekUzNcSdRN7MSDJL0Ylt74ubOB+Y89LL0UHnxPAICjPA/CaryaF0YABgAYtna7dmq+vcpOL3Tn3n3ptQ+d1b7ygfT070qzZwba0tRgJx4k6ewZ6d1nDsPmTq49y88fAHjF02H50mEA5uXQfAb2AwCASfCe4WwniiR98bV0wxhsP9PE6U48J3UYb052Wt6IsyMTALzk6Y6w/f19Lx8eAABgYnz0aXf1H38q/fj7g+llmrATD916nhAMADzlaRB29uxZLx8eAABgYux/Ndh6HK+XnXgEkAAAeGdkZoQBAACgd4FHBluP47ETD41mfIczHjvVAAC84/mMMAAAcBSzhNCtp5/srv6pLutxPHbioZHPd3hV1nY3rtUFAN4iCAMAYMgYrI1BeDEsPfqQs9rHHpZeCg+2n2nBTjwAAMYLQRgAAEPU7WDtg/sDbQcT5OwZ6d1nnNVee5aB7W5hJx4AAOOFIAwAgCHqZbA24NQLDq5GdyPurA7OsBMPg2Lb0oNq+5tte90lAIwfhuVjrFUqFS0uLratWVlZ0crKypA6AoD2GKyNQaoN6r53X/qrO9J/+vRwJlXgEel/flJ68bzk52ieq2o78V4uda5lJx66UbWl02+1r/n2qnSKmWMARsza2prW1tba1lQqlSF1cxRBGMZatVrV7u5u25qDg4MhdQMAnTFYG4Pk8x2+KJ77H6R/8T8d3jB4L5zvHISxEw8AMC0ODg46vk73EkEYxtrMzIzm5+fb1szOzg6pGwDojMHawORhJx4AAL8xOzurhYWFtjWVSkXVanVIHTXz2TYnyzF+FhcXtbu7q4WFBe3s7HjdDgA49u//i/TPP3Je/+dPczQSAKbRg6rDo5FMfQYwhrx8Tc9fmwAADBGDtQEAAADvEIQBADBEtcHaTjBYGwDQzvt3vO4AAMYPQRgAAEPmZGA2g7UBYLo5CbleLhGGAUC3CMIAABhBzxOCAcDUundfeu1DZ7WvfCAd3B9oOwAwUQjCAAAAAGCEvGdIX37jrPaLr6UbxmD7AYBJMpFB2L179/Tqq6963QYAAAAAdO2jT7ur/7jLegCYZqe9bmAQTNNUoVDQG2+8oe3tbS0tLWl2dtbrtgAAkCTN+A4ved+pBgAwnfa/Gmw9AEyzidwRVi6XZdu2gsGgYrGYAoGA3nzzTa/bAgBAkuTzSadm2t98BGEAMLUCjwy2HgCm2cQFYbdu3VImk5Ek2bZdv2Wz2bZh2KuvvqonnnhCFy5c0JtvvqmDg4NhtQwAAAAAdU8/2V39U13WA8A089m2bXvdhJuWlpYUDAZ16dIlhcNhmaapTz75RH/yJ38in88n0zT13e9+t+k+TzzxhEzTVOOnIhQKaWtriyOVI2pxcVG7u7taWFjQzs6O1+0AAAAArrl3X1p429nA/McelnavSLNnBt8XALjFy9f0E7cjTJJu3ryp5557TufOndPy8rKy2az29vb0ve99r75brObVV1/V9va2JCmTyaharWpvb08/+MEPdPnyZS/aBwAAADDFzp6R3n3GWe21ZwnBAKAbExeE+U4YquL3+7W1tVUPvWry+bx8Pp/i8bhWV1frtfl8Xvv7+/rss88G3TIAAAAANHnhfOeaG3FndQCA35i4ICwQCOjP/uzPjv2Y3+9XIBCov3/9+vX629ls9kh9JpNRuVx2v0kAAAAA6NPzhGAA0LWJC8LS6bRef/11vfbaa8cOvN/f36+/XdsNFo1G9b3vfe9I7dLS0pEdZAAAAAAAABhPp71uwG3RaFSXL1/WtWvXlM/nFY/HdeHCBUnS+vq6tre39cMf/lDhcFiGYcjn8ymVSh271tmzZ2Wa5jDbBwCMMNuWqh0uMTPjk044pQ8AAADAYxMXhEmHO7329vb005/+VKVSSaVSqf6xzc1Nvf32201HIcPh8LHr3LlzR3NzcwPvFwAwHqq2dPqt9jXfXpVOEYQBAAAAI2kigzBJKhaLKhQKKpVKKpfL8vv9un79us6fP69isahEIqFbt24pm80qlUrpP//n/3xkjUKhoFAo5EH3AAAAAKbZjO/wlyudagAA3ZnYIEySksmkksnksR8rFov1twOBgC5cuKCf/OQn+r3f+z0dHBzo7bffVqFQaJopBgAAAADD4POxwxgABmGigzCn4vG4TNPU+fPn5WsY7PLOO+9odnbWw84AAAAAAADgFoKwf5BOpxUMBlUoFOT3+3Xp0iU999xzXrcFAAAAAAAAl8x43YDbfvGLXziq+9nPfqaDg4OmP4vH4/rkk0908+ZNQjAAQE/ev+N1BwAANLNt6UG1/c3ucFVkAJgUE7cjLB6P6969e4pGo4rFYopGo/r93//9I3XLy8v60Y9+pFwup+9973tD7xPuqFQqWlxcbFuzsrKilZWVIXUEYJI5CbleLkmnZqQXzg++HwC9s+3DK8Heuy+9d0f6T59K+19JgUekp56U/uj84ds+ZjRhAnDVYwDDtLa2prW1tbY1lUplSN0cNXFBWCQS0a1bt1Qul1UulyVJfr9fS0tLTcHY2bNndf36dUWjUZVKJX33u9/1uHP0olqtand3t21N684/AOjFvfvSax86q33lA+np35Vmzwy0JWCgJj0oahcMbPxa+pcfS/8hLr0UGW5fAACMu4ODg46v0700cUFYqVRSIpHQ3t6eLMuSaZra39/XxsZGPRiTpFgspvPnz2t/f1+pVEo///nPPewavZqZmdH8/HzbGi54AMAN7xnSl984q/3ia+mGIf34+4PtCRikSQ+K2OEJAMBgzM7OamFhoW1NpVJRtVodUkfNfLY9WafBL126pGw223Tc8datW7p586auX7/eVOvz+WTbtnw+nx48eDDkTtGPxcVF7e7uamFhQTs7O163A2AK/PB/kz75VRf1T0g//18G1w8waDe2DoOgTv7q4vgFRffuSwtvOwu3H3tY2r3CDk+MtwdVh0cjJ26CNIBR5eVr+on7q8627SMzv5aXl5XP57W/v6/XX39d4XBY2WxWzz33nMLhsN555x1vmgUAjI39rwZbD4ySbo8CH9wfaDuu62WHJwAAmAwTdzTy3r17J37s7Nmzymazunv3rjKZDIPyAQCOBR4ZbD0wSib9KPBHn3ZX//Gn4/X8AADAySZuR9i5c+f0Z3/2Zx1rbt68qWQyqb/7u78bUmcAgHH29JPd1T/VZT0wSnoJisYJOzyBo5zMzQOASTBxQVg6ndbrr7+uv/7rv+5Ye/PmTUWjUa4qCADo6MWw9OhDzmofe1h6KTzYfoBBmvSgiB2emDZOLw5BGAZgGkxcEBYMBvXOO+8oHo/rtddea1vr9/t1/vx5vfHGG0PqDgAwrs6ekd59xlnttWcZrI3xNulBETs8MU0mfeYfAHRr4oIw6XBX2B/+4R/q2rVr+q3f+i392Z/92Ym7vubm5rS+vj7kDgEA48jJlfFuxMfvCnpAq0kPitjhiWnCxSEAoNlEBmGSVCwWdfnyZe3t7SmdTisQCOjSpUv6yU9+ol/+8pf65S9/qStXrqhQKMiyLK/bBQBMiOcJwTABJj0oYocnpsmkz/wDgG5N3FUjG+XzecViMV2+fFn37t1TqVRSqVQ6UhcOj9m/3gAAAAaoFhS9fPSfTUeMa1D0YljySXr1w+N3yzz60OFzY4cnxt2kz/wDgG5N7I6wmng8rv39fb3zzjs6e/asbNtuuvn9fl2/fn2oPZmmqVgs5qjWMAylUimFQiH5fD75fD6FQiFlMpmed7INYk1JyuVyisViCgQC9TUTiYTK5XLPawIAAG+8GD486nvSzrBHH5LeS4xvUOTzSS9GpN03pT9/WvrhE9I/Xjz8758/Lf2/3pT+iN+VYgJM+sw/AOiWz7Zt2+smhunOnTsyTVOmaSoYDCoajers2bOurG1ZlgKBgKPaZDKpfD7fdq3Lly8fu4OtUT6fVzKZdNyf22tKUrlcViKRkGVZikajymQyCgaDMgxDmUxGpmkqGo2qWCzK7/c7XredxcVF7e7uamFhQTs7O66sCQCdPKhKp99qX/PtVenUxP+aCdPk3v3DGUMff3q4UyTwyOFMsJfC47kTDJg2//6/SP/8I+f1f/609OPvD64fAJC8fU0/tkHYq6++qr/4i7/wuo0muVxOmUzGUe329raCweCxH7MsS5FIRKZpOlqrU6g2qDWlwxCstrvtpPtEIhEZhqFgMKitrS1XwjCCMABesG2p2uH/mjO+w50mAACMgnv3pYW3nQ3Mf+xhafcKITeAwfPyNf3Y/s765s2b+vu//3uv22iyurrqqC4ajZ4YgklSIpGQaZoKh8MqFova3t7W9va2isWi0un0kfpCodBxl9cg1rQsS4lEQpIUDAZPDM6KxaKkwyOhtXoAGEc+3+Fur3Y3QjAAwCjh4hAA0Gxsd4TNzMwoEAjo4sWLSiQS+sEPfuBpP4VCQalUSul0uuP8r6WlpRN3RTWuk81mj62pBUqG8ZtrG/v9fu3v7w9tTUmKxWL1+V+djlMmEol6sNbt0cvjsCMMAAAAcMbJ0f4b8cO5eQAwDByN7MHMzIx8Lb92j0ajisViisfj+t73vjfUfkKhkKTDI4/9rhMMBrWxsdG2zjTN+mPWbGxsKBqNDmXN1tr9/f22Rx5LpVJ9N1ingM0JgjAAAADAGWZcAhg1HI3sQ+MVIMvlsjKZjEKhkB5//HG9+uqr+tnPftZxjZ/85Cd99VAqlWSapuP5YCcxDEOmadaPErYTDAaP7O5q3M01yDUlNdVFo9GOc7/i8Xj9bcuyOh67BAAAAAAAcNvYBmHvvPOObNuWz+er70xqDMX29/dVKBSUSCR06tQpXbhwQX/6p3+qX/7yl0fW6rRTqpPV1VX5/X5dvHixr3XW19eVTCYdD5Nv3an1+eefD2VN6fC4ZU047Oza4o1z0dbX1x3dBwAAAAAAwC2nvW6gV+l0WtFoVIlEQnt7eyqVSrJtW//xP/5H3bp1S5ZlqfHUp2EY9d1Nfr+/foxSUl+7kxrXDQQCCgaDTUc0u3Hp0qW2Q/RbtQZQrccaB7Vm6y6xCxcuOF67dtVKdoQBAAAAAIBhG9sgTDoMVra3t5XJZJRIJJRKpepHAO/evatSqaSNjQ2Vy+WmUGx/f1+lUsmVMKb1OKRpmioUCvUdU/F4XFeuXHG0a8rpzqoay7Ka3j8u8BrEmrUB+e1qjtNaZxhG1/0BAAAA6M6M73AGWKcaAJgGY3s0slE2m9Xt27f1ySef6Hd+53f0t3/7tzp37pxef/11ffLJJ6pWq9rY2FAymayHMY3HKHtlmuaRUKhVqVRSJBJRKpXq+XHaPX6j44baD2LN27dvN73v9Njl448/3vT+5uZmd80BAAAA6JrPdzgIv93NRxAGYEpMRBAmHe58+vWvf60/+IM/UDgc1ptvvtn08eXlZV27dk2//vWvtb+/r3w+33dwFAwGlc/nlc1mm0K24xQKBUUi7l6PuDFISiaTQ1uzNSzrdUdYv1fYBAAnbPvwalntbuN5/WQAAAAA3fLZ/WyJGlHlclkXL17Ub/3Wb6lYLOr3fu/32tb+8Ic/1IMHD1x5bMuyVCgUtLq6euSYoXS4w6rf4fw1kUikPq9re3u7q1lg/awZCASanpvTb6FSqaREIlF/P5lMKp/P99Snl5daBTBeuGQ8AAAAMFq8fE0/1jPCThKNRmWapi5fvqxwOKxcLqd//a//9Ym1y8vLrj223+9XOp1WOp1WqVTS5cuXm0KjcrmsXC6ndDrd1+OYplkPrLLZrCshmNM1jwv4nGg9Qrm3t9fTOo0qlYoWFxf7XmdlZUUrKyt9rwMAAAAAwKRaW1vT2tpa3+tUKhUXuunNRAZh0mHoUiwWVSqVdPHiRa2vr6tYLOq73/3ukdrGXUpuisfj9aCt8UqLq6urfQdh2WxW0uFxw37XGuSa7fQaqDWqVqva3d3te52Dg4O+1wAAAAAAYJIdHBy48hrcSxMbhNXE43Ht7e0pkUgoGAweuzvs8uXLA3t8v9+vra2tpiOHlmWpXC73PKPMMAwVCgX5/X7Xjll2s6bf73clxHI6ZL+dmZkZzc/P973O7Oxs32sAAAAAADDJZmdntbCw0Pc6lUpF1WrVhY66N/FBmKR6uJPL5fT666+33R02KNevX28alr+xsdFzEFYL7m7duuXKkchu15ybm3MlCJubm+t7jfn5eWaEAQAAAAAwBG6NFarNCPPC1IwG/uyzz7S0tKR0Oq3NzU0Fg0H95V/+5dAePxwONwVfrVdedCqVSskwDBWLRYXDYVd663bNXndytYZnbuwIAwAAAAAAcGoidoR99tlnMk1TlmXJNE1tb2/LNE2Zpqm9vb0jAYzP55Nt20omkyoWiyoWi/rOd74z8D5jsZjK5XLP9y8UCioUCsrn84rH46701MuaS0tLTTPPLMtyFGq1DscPhUJd9QoAg/L+HemlSOc6AN2zbalqS/fuS+/dkf7Tp9L+V1LgEempJ6U/On/4ts833LUAAMB0Gtsg7MKFC/Xwqx3bttt+7JNPPtEPfvAD3b592+UOj2o8ctjtscByuaxUKqV8Pq9kMulKP72u2XjEUzrc3eZkJ9n29nbT+70eDQWAbrx/p3PNyyXp1Iz0wvnB9wNMm6otnX7r+I9t/Fr6lx9L/yHuLIx2cy0AvakF0u3M+AikAYyusQ3Ctra26ju72vH7/QoGg/VbKBTS3Nxc/f2zZ88OqePmIKybY4GGYSgWiymbzboWgvWz5tLSUtP7ToOwxtCy9nUBgEG6d1967UNnta98ID39u9LsmYG2BEwdN8Nogm3Ae+0C6Zpvr0qnCMIAjKixDcIaBQIBXbx4sSnwGnbI5cTm5mb97Vgs5ug+pmlqeXlZ6XRa6XTalT76XTMcDjddOfL27duOjlU2Pv/WMA0ABuE9Q/ryG2e1X3wt3TCkH39/sD0B08TNMJpgGwAAuGGsh+U/99xzCofD2t/fV6FQ0Obmpvb39xUIBEYuBJOajwY6ORZomqYikYiSyaSy2ayjxzBNU7lcbuBrXrx4sf5247ywdhrrMpmMo/sAQD8++rS7+o+7rAfQXi9h9DDWAgAA02tsg7BoNKqbN2/Ww6/19XXZtq10Oq1QKKQnnnhCr776qv7mb/6m41q/+MUvhtCxVCqVJMnRLizLshSLxXTx4kXHgZUkJRKJE0M2N9dMpVL1t51cAKCxJhgMMh8MwFDsfzXYegDtuRlGE2wDAAA3jO3RyMajhWfPnlU8Hq8fzzMMQ+vr67p165by+bx8Pp/C4bD+2T/7Z1peXtbv//7vN62Vz+f1gx/8YKD9lkolmaYpv9+vK1eutK21LEuRSETBYFCZTEamaXZc3zTN+i6r4+Z1ub1mOBxWNBqtB1ylUqnt8chisVh/m91gAIYl8Mhg6wG052YYTbANAADcMLZB2Ouvv37ix8LhcD24uXfvnjY2NnTz5k1dvXpV6XRafr9f0WhUFy5ckPSbnVrdKJfLSiQSsixL0WhU2Wz2xIHxpmnq8uXLkqRbt251HJS/vLws0zRlmqZCoVBXfeXz+aGtmc/n62utrq6eGIRZlqVCoSDpcCefWwP/AaCTp5+UPvmV8/qnnhxcL8A0cjOMJtgGAABuGNujkU7VdovdvHlTe3t7un37tn70ox9pa2tL6XS6591JxWKxPiy+XC4rEok0HResqX1sbm5O29vbHa+uGIlEHM/cOs5xIdMg1pQOjzjWdnoZhnHibLLl5WVJh1eKbNwZBgCD9mJYevQhZ7WPPSy91PkCuAC68HSX4XK7MNrNtQAAwPSa+CCsVTgcVjab1a9//Wttbm72fCQykUgc+bNCoaBAIKBEIqFUKqVIJKJYLKZkMqmtrS0Fg8GOa7odWA1izUbxeFwbGxvy+/3KZDL1x7Msqx4CGoahcDisu3fvdtwNBwBuOntGevcZZ7XXnuUKc4Db3AyjCbaB8fH+Ha87AICT+Wzbtr1uwmtLS0va3Nzs+n6maSqbzapcLmtvb0+WZcnv92tubk7hcFiXLl1SNBqdmvAnl8tpfX1dpmnWPxdLS0tKpVJt54f1YnFxUbu7u1pYWNDOzo6rawOYLA+q0um32tfciEsvRobTDzBtbmxJLzuYQvFXF6UXzg9vLQC94ecQgBu8fE1PEKbDuV2143sYDwRhAJxyEoR9e1U6NXV7pIHhsG3prwzp1Q+lL785+vFHHzrckflHDnZwubkWgO7duy8tvH38z1+rxx6Wdq+w2xrA8bx8TT+2w/LdRAgGAAAwGD7f4Y7L//P/UXrPkD7+9PCKjoFHDud4vRR2/kLZzbUAdO89w1kIJklffC3dMKQff3+wPQFAt8YiCPvTP/1ThcPhnud5AQAAwFtnzxy+IHbjRbGbawFw7qNPu6v/+FN+TgGMnrE4CPJf/+t/VSwW01/+5V/2tc7169d16tQp/c7v/I7+9m//1qXuAAAAAGDy7X812HoAGIaxCMIkybZtJZNJvfnmmz2vkclkZNu2fv3rXyscDuuzzz5zr0EAAAAAmGCBRwZbDwDDMDZBWM0nn3yiS5cu9XTfc+fOKRgMKplM6vLly8pkMi53BwAAAACT6eknu6t/qst6ABiGsZgR1mhzc1OJREIXLlzQL37xC33nO99xfN+tra2m95944gm32wMAjJgZ3+FVITvVAACA9l4MS2/83PlVI1/iCq4ARtDY7QiTpGKxqEQioXA4rL/7u7/raY27d+9qb2/P5c4AAKPG55NOzbS/+QjCAADo6OwZ6d1nnNVee5aruAIYTWMZhElSOp3WX/zFXygcDutv/uZvurrvvXv3FIvFtLS0NKDuAAAAAGDyvHC+c82NuLM6APDC2AZhkhSNRnX79m1dvnzZ8RUlf/GLXygYDOru3btKJBID7hAAAAAApsvzhGAARtjYzQhrFQwGtbm5qYsXL2p7e1tvv/32ibV/8id/ojfeeEO2bSsQCOhHP/rREDvFIFQqFS0uLratWVlZ0crKypA6AgAAAABgeq2trWltba1tTaVSGVI3R419ECZJfr9fn3zyiV555RVdunRJ6+vrR2quXLmiXC4n27bl8/mUzWY96BRuq1ar2t3dbVtzcHAwpG4AAAAAAJhuBwcHHV+ne2kigrCaa9euqVAoHLmi5K1bt5TNZuXz+eTz+RQOh9kNNiFmZmY0Pz/ftmZ2dnZI3QAAAAAAMN1mZ2e1sLDQtqZSqaharQ6po2ZjF4T9zd/8jf7gD/7gxI8nk0ktLS3pBz/4gUqlkr773e/Wd3+xG2zyzM/Pa2dnx+s2AAAAAACAnI0nWlxc9GzX2FgEYefOnZN0GGQlk0mVy2V997vfPbE+HA5rfX1dzz33nN58802Vy2X5fD7Ztq1wOKwf/OAHw2odAAAAACbGjE/69mrnGgAYVWNx1chsNqv9/X0Vi0UtLy8rGo3qJz/5Sdv71IboX7t2rf5nPp9Ply5dGnS7AAAAADCRfD7p1Ez7m48gDMAIG4sdYZJ09uxZPffcc3ruuee6ut8nn3yiTCajP/mTP6nPBwMAAAAAAMD0GYsdYf3KZrO6efOmbNvW3bt3vW4HAAAAAAAAHpiKIEyS4vG4Njc3tb6+7nUrAAAAAAAA8MDUBGHS4RD9Tz75xOs2AAAAAAAA4IGpCsIAAAAAAAAwvcZmWD4AYHrYtlS129fM+LgqFQAAAIDuEIQBAEZO1ZZOv9W+5tur0imCMAAAxhK/9ALgFYIwAAAAAMBQ8UsvAF5hRhgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGABgLL1/x+sOAAAAAIwbgjAAwMhxEnK9XCIMAwBgkvH/eQCDQBAGABgp9+5Lr33orPaVD6SD+wNtBwAADAC/9ALgFYIwAMBIec+QvvzGWe0XX0s3jMH2AwAA3MUvvQB4iSAMADBSPvq0u/qPu6wHAADe4pdeALxEEAYAcIVtSw+q7W+23Xmd/a+6e9xu6wEAgLf4pRcAL532ugGgH5VKRYuLi21rVlZWtLKyMqSOgOlVtaXTb7Wv+faqdMrXvibwSHeP2209AADwFr/0Aibb2tqa1tbW2tZUKpUhdXMUQRjGWrVa1e7ubtuag4ODIXUDwA1PPyl98ivn9U89ObheAACA+/ilFzDZDg4OOr5O9xJBGMbazMyM5ufn29bMzs4OqRsAbngxLL3xc2ezQx57WHopPPieAACAe/ilFzDZZmdntbCw0LamUqmoWq0OqaNmPtt2MrEFGC2Li4va3d3VwsKCdnZ2vG4HgA5ngDk6GulgOuWNrcNLpnfyVxelF8476w8AAIyGe/elhbed/9Jr94o0e2bwfQEYHi9f0zMsHwAwcpyEWzfihGAAAIyjs2ekd59xVnvtWUIwAO4iCAMAjKXnCcEAABhb/NILgFcIwgAAAAAAI4dfegEYBIIwAAAAAAAATAWCMAAAAAAAAEwFgjAAwNC8f8frDgAAAABMM4IwAIArnIRcL5cIwwAAAAB457TXDQAAxt+9+9JrHzqrfeUD6enfbX8p9Bmf9O3V9uvM+By3BwAAAACSCMIAAC54z5C+/MZZ7RdfSzcM6cffP7nG55NOEXQBADCx+KUXAK9wNBIA0LePPu2u/uMu6wEAwGTx+aRTM+1vPoIwAANAEAYA6Nv+V4OtBwAAAAA3EIQBAPoWeGSw9QAAAADgBoIwAEDfnn6yu/qnuqwHAAAAADcQhAEA+vZiWHr0IWe1jz0svRQebD8AAGB62Lb0oNr+ZttedwlgVHDVSABA386ekd59Rnq51Ln22rPS7JmBtwQAAKZE1ZZOv9W+5turXJEawCF2hAEAXPHC+c41N+LO6gAAAABgEAjCAABD8zwhGAAAAAAPEYQBAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAqEIQBAAAAAABgKpz2ugGgH5VKRYuLi21rVlZWtLKyMqSOAAAAAACYXmtra1pbW2tbU6lUhtTNUQRhGGvValW7u7ttaw4ODobUDQAAAIBR9P4d6aWI110A0+Hg4KDj63QvEYRhrM3MzGh+fr5tzezs7JC6AabbjE/69mrnGgAAADe9f6dzzcsl6dSM9ML5wfcDTLvZ2VktLCy0ralUKqpWq0PqqJnPtm3bk0cG+rC4uKjd3V0tLCxoZ2fH63YAAAAAeODefWnhbenLbzrXPvawtHtFmj0z+L4AtOfla3qG5QMAAAAAxtJ7hrMQTJK++Fq6YQy2HwCjjyAMAAAAADCWPvq0u/qPu6wHMHkIwgAAAAAAY2n/q8HWA5g8BGEAAAAAgLEUeGSw9QAmD0EYAAAAAGAsPf1kd/VPdVkPYPIQhAEAAAAAxtKLYenRh5zVPvaw9FJ4sP0AGH0EYQAAAACAsXT2jPTuM85qrz0rzZ4ZaDsAxgBBmAdM01QsFnNUaxiGUqmUQqGQfD6ffD6fQqGQMpmMLMvquYdcLqdYLKZAIFBfM5FIqFwuj9SaAAAAANDOC+c719yIO6sDMPkIwlxkWVY9rGp3C4VCCgaDHddKJBKKRCIqFAoyTbP+MdM0lcvlFAgEVCgUuuqxXC4rEAgok8lIkorFora3t5XNZmUYhmKxmGKxWFch2yDWBAAAAAC3PE8IBuAfnPa6gUnSTShVC42OY1mWIpFIU/h1klQqpa2tLeXz+Y615XK5vhMtmUw23ScYDCoejysSiahcLisSiWhra0t+v3/oawIAAAAAAAwCO8JctLq66qguGo223RGWSCRkmqbC4XB9d9X29raKxaLS6fSR+kKhoFKp1PYxazvMpMOA6qTgrFgsSjrcdVarH+aaAAAAAAAAg8KOMJcUCgVZlqV0Ot1x/tfS0lLbdcrlstLptLLZbNPHajusUqmUEomEDMOof+zy5cuKx+MnrptIJOpHE9vtRqs9RqlUUrlcVqFQUDKZHNqaAAAAAAAAg+Kzbdv2uolJEAqFJEnb29t9rxMMBrWxsdG2zjTN+mPWbGxsKBqNdqzd399vezyxVCrVd275/X7t7+8PZc1uLC4uand3VwsLC9rZ2elrLQAAAADj60FVOv1W+5pvr0qnOA8FjAwvX9PzV4ELSqWSTNNsuyvKCcMwZJpm/ShhO8Fg8MiOscYdYo0a66LRaMcZXY07yyzLOvbY5SDWBAAAAAAAGCSCMBesrq7K7/fr4sWLfa2zvr6uZDLpeJh86+6vzz///Ni6xiH+4XDY0dqNM8zW19eHsiYAAAAAAMAgMSOsT4Zh1HdiBQIBBYNBRaNRxWKxtjO7jnPp0qW2Q/RbtQZQrUcla/01unDhguO1a1etbN29NYg1AQAAAKAXM77Do4+dagBAYkdY31qPQ5qmqUKhoEQiIZ/Pd2SofTvhcNjxbjBJ9UH1NceFaOVyuWPNcVrrGp/DINYEAAAAgF74fIfzv9rdfARhAP4BQVgfTNM8Egq1KpVKikQiSqVSA3n8RscNyr99+3bT+06Dtscff7zp/c3NzYGuCQAAAAAAMGgcjexDMBhUPp+XZVna3t5WuVw+Ek7VFAoFbW5uamtry7XHbwySksnksTWt/fS6e6vxapiDWBMAAAAAAGDQCML61BpAWZalQqGg1dXVI0cXDcNQLBbTxsaGK4+dz+frb590xcqTgrluNT6XQawJAAAAAAAwaByNdJnf71c6ndb+/r6KxeKRY4Plclm5XK7vxzFNsz5jK5vNnrgrq9ewqbXvvb29ga4JAAAAAAAwaOwIG6B4PK5oNKrl5eWmwfCrq6tKp9N9rZ3NZiUdHjfsdy0nBrF7y401K5WKFhcX+15nZWVFKysrfa8DAAAAAMCkWltb09raWt/rVCoVF7rpDUHYgPn9fm1tbSkSidTDMMuyVC6Xjx1u74RhGCoUCvL7/R2PWfr9flcCp8bdXINYs1fValW7u7t9r3NwcND3GsC4sm2parevmfFxtSUAAABg2h0cHLjyGtxLBGFDcv36dUUikfr7GxsbPQdhly9fliTdunWr46D6ubk5V0Krubm5ga7Zq5mZGc3Pz/e9zuzsbN9rAOOqakun32pf8+1V6RRBGAAAADDVZmdntbCw0Pc6lUpF1WrVhY66RxA2JOFwWNFoVOVyWVLvA+dTqZQMw1CxWFQ4HO5Y3+uuq9agq3VHmNtr9mp+fl47Ozt9rwMAAAAAANpza6zQ4uKiZzvLGJY/RLFYrK/7FwoFFQoF5fN5xeNxR/dZWlpqet/pTq7WQfahUGigawIAAAAAAAwaQdgQNR5j7PZYYLlcViqVUj6fVzKZdHy/xuOYkvOdaNvb203vNx7jHMSaAAAAAOA125YeVNvf7A6zVQGMNo5GDlFjENbNsUDDMBSLxZTNZrsKwaSju7dM03R0pLJxl5ff72/qfRBrAgAAAIDXmJ0KTD52hA3R5uZm/W2nxyRN09Ty8rLS6bTS6XTXjxkOh5tCt9u3bzu6X2OvrcHXINYEAAAAAAAYNIKwIWo8GujkWKBpmopEIkomk8pms44ewzRN5XK5pj+7ePFi/W3DMByt01iXyWSOfHwQawIAAAAAAAwSQdgQlUolSXK0s8uyLMViMV28eNFxCCZJiUTiSMiWSqXqb9euWtlOY00wGDw2tBvEmgAAAAAAAINEEDYkpVJJpmnK7/frypUrbWsty1IkElEwGFQmk5Fpmh1v5XK5PsS+dV5XOBxuCp5qgdxJisVi/e2Tdm4NYk0Ao+v9O153AAAAAAD989k217zoRblcViKRkGVZikajymazJw6Mrx1xtCxLW1tbHQfLRyIRx8cNW510VUnTNBUKhSQdhlhbW1vH3t+yLAUCAUmHxzc3NjZOfKxBrOnU4uKidnd3tbCwoJ2dnb7XA6bZjS3p5fZZtiTpry5KL5wffD8AAABeeVB1OCyfLSVAX7x8Tc+Pb4+KxWL9Koi13ViNxwVrah+bm5vT9vb2QEMwSSdeVTIYDNZ3ZRmGcWSOWM3y8rKkw6s6Nu7iGtaaAIbr3n3ptQ+d1b7ygXRwf6DtAAAAAMBAEYT1KJFIHPmzQqGgQCCgRCKhVCqlSCSiWCymZDKpra0tBYPBjmsOIgSricfj2tjYkN/vVyaTqT+eZVn1wM4wDIXDYd29e7fpypDDXBPA8LxnSF9+46z2i6+lG73/FQUAAAAAniMI61E0GtX29raSyaSCwWBTwGMYhvb29nTlyhXt7+8rm806CoCKxaJs2+75ls/nHfVd68k0TS0vL9fDu7m5ORWLRW1tbXUVWA1iTQDD8dGn3dV/3GU9AADApGF2KjDemBGGscSMMMAd//j/Id3u4kfoHy9K/8//6+D6AQAA8BKzU4HhYEYYAMATgUcGWw8AADAumJ0KTAeCMACYYk8/2V39U13WAwAAjAtmpwLTgSAMAMaQbR9e3rvdzcnB9xfD0qMPOXvMxx6WXmp/4VsAAICxxexUYDqc9roBAED3qrZ0+q32Nd9elU752tecPSO9+4yzWRjXnpVmzzhuEQAAYKzsfzXYegCjgR1hADDlnAx6vRFnICwAAJhszE4FpgNBGACgo+cJwQAAwIRjdiowHQjCAAAAAABTj9mpwHQgCAMAAAAATL3a7FQnmJ0KjC+CMAAAAAAAxOxUYBpw1UiMtUqlosXFxbY1KysrWllZGVJHAAAAACYZs1OB9tbW1rS2tta2plKpDKmbowjCMNaq1ap2d3fb1hwcHAypGwAAAAAAptvBwUHH1+leIgjDWJuZmdH8/HzbmtnZ2SF1AwAAAADAdJudndXCwkLbmkqlomq1OqSOmhGEYazNz89rZ2fH6zaAkfT+HemliNddAAAAAJgmTsYTLS4uerZrjCAMAMbQ+3c617xckk7NdB7mOuOTvr3auQYAAAAAxh1XjQSAMXPvvvTah85qX/lAOrjfvsbnOwzM2t18BGEAAAAAJgBBGACMmfcM6ctvnNV+8bV0wxhsPwAAAAAwLjgaCQBj5qNPu6v/+FPpx98fTC8AAACThJERwOQjCAOAMbP/1WDrAQAAppXPJ50i6AImGkEYAIyZwCODrQcAAED/bFuq2u1rZnzMYgWGjSAMAMbM009Kn/zKef1TTw6uFwAAAByvakun32pf8+1VdqABw8awfAAYMy+GpUcfclb72MPSS+HB9gMAAAAA44IgDADGzNkz0rvPOKu99qw0e2ag7QAAAADA2CAIA4Ax9ML5zjU34s7qAAAAAGBaEIQBwIR6nhAMAAAAAJoQhAEAAAAAAGAqEIQBAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAqEIQBAAAAAABgKhCEAQAAAADggffveN0BMH0IwgAAAAAAcJmTkOvlEmEYMGwEYQAAAAAAuOjefem1D53VvvKBdHB/oO0AaHDa6wYAAN2b8UnfXu1cAwAAgOF7z5C+/MZZ7RdfSzcM6cffH2xPAA6xIwwAxpDPJ52aaX/zEYQBAAB44qNPu6v/uMt6AL1jRxjGWqVS0eLiYtualZUVraysDKkjAAAAANNu/6vB1gOjbG1tTWtra21rKpXKkLo5iiAMY61arWp3d7dtzcHBwZC6AQAAAAAp8Mhg64FRdnBw0PF1upcIwjDWZmZmND8/37ZmdnZ2SN0AAAAAgPT0k9Inv3Je/9STg+sFGLbZ2VktLCy0ralUKqpWq0PqqJnPtm3bk0cG+rC4uKjd3V0tLCxoZ2fH63YAAAAAoO7efWnhbWcD8x97WNq9Is2eGXxfwKjw8jU9w/IBAAAAAHDR2TPSu884q732LCEYMEwEYQAAAAAAuOyF851rbsSd1QFwD0EYAAAAAAAeeJ4QDBg6gjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEyF0143AAAAAAAAjmfbUtVuXzPjk3y+4fQDjDuCMAAYEv4RAwAAgG5Vben0W+1rvr0qneLfkIAjBGEAMCT8IwYAAAAAvMWMMAAAAAAAAEwFdoQBAAAAAOCyGd/hbv9ONQCGiyAMAAAAAACX+XyMvABGEUcjAQAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAGGPv3/G6A2B8EIQBAAAAADCinIRcL5cIwwCnCMIAYITwDxgAAADU3Lsvvfahs9pXPpAO7g+0HWAiEIQBwJDw2zwAAAB04z1D+vIbZ7VffC3dMAbbDzAJCMIAYAj4bR4AAAC69dGn3dV/3GU9MI1Oe90A0I9KpaLFxcW2NSsrK1pZWRlSR8Dxevlt3o+/P9ieAAAAMNr2vxpsPTAIa2trWltba1tTqVSG1M1RBGEYa9VqVbu7u21rDg4OhtQNcLJefptHEAYAADDdAo8Mth4YhIODg46v071EEIaxNjMzo/n5+bY1s7OzQ+oGOBm/zQMAAEC3nn5S+uRXzuufenJwvQBOzc7OamFhoW1NpVJRtVodUkfNCMIw1ubn57Wzs+N1G0BH/DYPAAAA3XoxLL3xc2cjNh57WHopPPiegE6cjCdaXFz0bNcYw/IBYAie7vK3c/w2DwAAAGfPSO8+46z22rPS7JmBtgNMBIIwABiCF8PSow85q+W3eQAAAKh54XznmhtxZ3UACMIAYCj4bR4AAAAG5XlCMMAxgjAAGBJ+mwcAAAAA3iIIA4ARwm/zAAAAAGBwCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMI8YJqmYrFYX/ctlUo9P75lWcpkMorFYgqFQvL5fAqFQkokEioUCj2vm8vlFIvFFAgEmtYsl8s9rwkAAAAAAOAWgjAXWZYln8/X8RYKhRQMBrteO5FIKBQKqVwua29vr6cec7mcAoGACoWCYrGY8vm8tra2lMlkZJqmUqlU/TGcKpfLCgQCymQykqRisajt7W1ls1kZhqFYLKZYLCbLsnrqGQAAAAAAwA2nvW5gknSzm6oWGnViWZZWV1eVy+V6basukUioVCopHA5ra2ur6WPhcFjJZFKpVKoekm1tbSkcDrdds1wu13e3JZNJ5fP5+seCwaDi8bgikYjK5bIikYi2trbk9/v7fi4AAAAAAADdIghz0erqqqO6aDTqaEdYLpdTPp/vevfYSWvVjlPeunXrxLp8Pq9yuSzTNLW8vKz9/f0Ta2u71KTD0KsxBGtULBYVCoVkmqYSiYQ2Njb6eCYAAAAAMD1mfNK3VzvXAHCGIMwlhUJBlmUpnU53nP+1tLTUcT3DMBSNRpVOp+vrp1Kpnvur7UALh8Mdd2TF43HlcjlZlqVSqaR4PH5sXSKRqB93bLfDrbYzrFQqqVwuq1AoKJlM9vQ8AAAAAGCa+HzSKYIuwDUEYS7JZrMKBoPKZrOurNd6JNFJeHaSxnlfTnaXXbhwof727du3jw3CTNNsWvfixYtt17x06VJ9R1omkyEIAwAAAAAAQ0cQ5oJSqSTTNE88GuiGfuZqmaZZf9swjK7u+/jjjx/7542BXzQadbTLrKbTTjNglNi2VLXb18z4Dn9T1wnb2gEAAADAWwRhLlhdXZXf7++4K8orc3Nz9bdN05Rpmm13ht2+fbv+9kl1jRcG6DRQv3GtWii3vr5OEIaxULWl02+1r/n2qrPt6mxrBwAAAABvzXjdwLgzDEOGYciyLAUCAYVCIaVSqfoxwFHQGmZ1mjVW693v9x8bVrXuKms8StlOY2A2Sp8fAAAAAAAwHQjC+tQ6JN40TRUKBSUSCfl8PiUSia6PI7otHA43hVDlcrl+tcdWhUKhvmvrpHlnjbPBJGdzx46r8/rzAgAAAAAApgtBWB9aB8Yfp1QqKRKJ9HXFRzdcv3696f1SqXQkDCuXy/U+8/n8iQPtG49OSs7nl7XOG9vc3HR0PwAAAAAAADcQhPUhGAwqn88rm80qmUy23RlVKBQUiUSG2F2zcDisYrHY9GelUkmhUEiGYSiXyykWiykYDGpjY6PtVR0bh+9Lve8I297edtg9AAAAAABA/xiW36fWwMiyLBUKBa2ursqyrKaPGYahWCymjY2NIXb4G/F4XPl8vml3mmma9YAunU6feByyUWsQ1qvWzw8AAAAAAMAgEYS5zO/3K51OK51Oq1Qq6fLly02BT7lcVi6XUzqd9qS/WnB33FHNcrksy7I6HnXsNcBqXXdvb6+ndRpVKhUtLi72vc7KyopWVlb6XgcAAAAAgEm1tramtbW1vtepVCoudNMbgrABisfjikajWl5ebhoMv7q66lkQJh2GYVtbWyoUCk1/bhiGzp07p1u3bjUN1x8UN3aEVatV7e7u9r3OwcFB32sAAAAAADDJDg4OXHkN7iWCsAHz+/3a2tpSJBKph2GWZalcLisajXrSUyqVUqFQUDKZVLlcbjrqaFmWIpGINjY2TuzP7/e7EmI5HbLfzszMjObn5/teZ3Z2tu81AAAAAACYZLOzs1pYWOh7nUqlomq16kJH3SMIG5Lr1683DctvFzQNUiwWU7lcbpoHVgvGWutO6nFubs6VIGxubq7vNebn57Wzs9P3OgAAAAAAoD23xgotLi56trOMq0YOSTgcbgqV3Bo4341IJFLfidY4FD+fzx+5oqQkJRKJYwOvXndyta7lxo4wYBS8f8frDgAAAAAAThCEDVEsFvPssROJRP1oZj6fP/LxeDyura2tpnDKsixlMpkjtUtLS03vO90d1jocPxQKObof4CUnIdfLJcIwAAAAABgHBGFDFAwG62+7cSzQKdM0VSqVJB3uTGvso1E4HNbW1lbTnxUKhSNBV+MRz9r6Tmxvbze979WMNMCpe/el1z50VvvKB9LB/YG2AwAAAADoE0HYEDUGUMM8Fti4A6x1N1erYDB4ZMfY5uZm0/utazgNwhoDNb/ff2IgB4yK9wzpy2+c1X7xtXTD6FwHAAAAAPAOQdgQNQZKwzwm2RhAOTmOmEwmm95vDbrC4XBTkHf79m1HfTQ+/06BHDAKPvq0u/qPu6wHAAAAAAwXQdgQNR4NHOaxwMbZXK3HE08SDofbfvzixYv1t2uzxzpprDtu9hgwava/Gmw9AAAAAGC4CMKGqDanK51OD/VxG48g9nK1yuOOMKZSqfrb5XK54xqNNcFgkPlgGAuBRwZbDwAAAAAYLoKwISmVSjJNU36/X1euXOn6/k6vzHicS5cu1d/e3Nx0tFZjYHZcaBUOh5v+vBbynaRYLNbfZjcYxsXTT3ZX/1SX9QAAAACA4SII61G5XFYgEJDP51MsFmt7PNA0TV2+fFmSdOvWrZ4G5bfu5OomGGsMrSzL0urqatv6crlcXz+bzZ5Y1zhUv92almWpUChIOgzVWmeQAaPqxbD06EPOah97WHqp/YliAAAAAIDHCMJ6VCwW62FRuVxWJBJpOi5YU/vY3Nyctre3O87eOo5lWUd2Ua2vr3fdby2Ay+Vy9WCqlWmaSiQSkg5Dq3bHOIPBYH2nl2EYyuVyx9YtLy9LOrxSZOPOMGDUnT0jvfuMs9prz0qzZwbaDgAAAACgTwRhPaqFRY0KhYICgYASiYRSqZQikYhisZiSyaS2traOnbV1EsuylEgkFIvFFAgEjuwIMwyjvhstkUh0HFjv9/t19+7d+m6sVCqlWCymQqEgwzBULpeVyWQUCoVkWZay2aw2NjY69hmPx7WxsSG/369MJlPvxbKseghoGIbC4bDu3r3b0244wEsvnO9ccyPurA4AAAAA4C2fbdu2102MK9M0lc1mVS6Xtbe3J8uy5Pf7NTc3p3A4rEuXLikajY5c+GMYhvL5vMrlcj1gCwaDCofDCgaDunLlSk8953I5ra+vyzTN+udiaWlJqVRK8Xjc1eewuLio3d1dLSwsaGdnx9W1gUYPqtLpt9rXfHtVOsWvFQAAADDibFuqdkgAZnySzzecfjC9vHxNTxCGsUQQhmEhCAMAAMCk4N+2GBVevqbn2xsAAAAAAABTgSAMAAAAAAAAU4EgDAAAAAAAAFOBIAwAAAAAAABTgSAMAAAAAAAAU4EgDAAAAAAAAFOBIAwAAAAAAABT4bTXDQDAKJvxSd9e7VwDAAAAABh9BGEYa5VKRYuLi21rVlZWtLKyMqSOMApsW6ra7WtmfJLPQYDl80mnCLoAAAAAwJG1tTWtra21ralUKkPq5iiCMIy1arWq3d3dtjUHBwdD6gajompLp99qX/PtVQIuAAAAoNX7d6SXIl53gXF2cHDQ8XW6lwjCMNZmZmY0Pz/ftmZ2dnZI3QAAAADA6Hr/Tueal0vSqRnphfOD7weTaXZ2VgsLC21rKpWKqtXqkDpq5rNtu8MBImD0LC4uand3VwsLC9rZ2fG6HYyYB1WHO8K4XAgAAACmxL370sLb0pffdK597GFp94o0e+bkGjfHkWD6ePmanh1hAAAAAABMuPcMZyGYJH3xtXTDkH78/ZNrGEeCccV+CAAAAAAAJtxHn3ZX/3GX9cC4IAgDAAAAAGDC7X812HpgXBCEAQAAAAAw4QKPDLYeGBcEYQAAAAAATLinn+yu/qku64FxQRAGAAAAAMCEezEsPfqQs9rHHpZeCg+2H8ArBGEAAAAAAEy4s2ekd59xVnvtWWn2zEDbATxDEAYAAAAAwBR44XznmhtxZ3XAuCIIAzCV3r/jdQcAAADA6HmeEAwTjiAMwMRxEnK9XCIMAwAAAIBpQxAGYKLcuy+99qGz2lc+kA7uD7QdAAAAAMAIIQgDMFHeM6Qvv3FW+8XX0g1jsP0AAAAAAEYHQRiAifLRp93Vf9xlPQAAAABgfBGEAZgo+18Nth4AAACAM8zkxSgiCAMwUQKPDLYeAAAAABeowvgiCAMwUZ5+srv6p7qsBwAAAKYdF6jCODvtdQMA4KYXw9IbP3c2MP+xh6WXwoPvCQAAABgFMz7p26udazrp5QJVP/6+s3pg0NgRBmCinD0jvfuMs9prz0qzZwbaDgAAADAyfD7p1Ez7m89BEMYFqjDOCMIATJwXzneuuRF3VgcAAACgGReowjgjCAMwlZ4nBAMAAAB6wgWqMM4IwgAAAAAAgGNcoArjjCAMAAAAAAA49mJYevQhZ7VcoAqjhqtGYqxVKhUtLi62rVlZWdHKysqQOgIAAACAyVa7QNXLpc61XKBq+qytrWltba1tTaVSGVI3RxGEYaxVq1Xt7u62rTk4OBhSNwAAAAAwHV443zkI4wJV0+ng4KDj63QvEYRhrM3MzGh+fr5tzezs7JC6AQAAAADUcIGq6TQ7O6uFhYW2NZVKRdVqdUgdNSMIw1ibn5/Xzs6O120AAAAAAAA5G0+0uLjo2a4xhuUDAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAqMCMMwMSZ8UnfXu1cAwAAAACYLgRhACaOzyedIugCAAAAALTgaCQAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAsPyAQAAAABAV7hSO8YVQRgAAAAAAOgKV2rHuOJoJAAAAAAAAKYCO8IAjAzblqp2+5oZ3+FvnwAAAAAA6BZBGICRUbWl02+1r/n2KluwAQAAAAC94WgkAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApsJprxsA+lGpVLS4uNi2ZmVlRSsrK0PqCAAAAACA6bW2tqa1tbW2NZVKZUjdHEUQhrFWrVa1u7vbtubg4GBI3QAAAAAAMN0ODg46vk73EkEYxtrMzIzm5+fb1szOzg6pGwAAAAAAptvs7KwWFhba1lQqFVWr1SF11Mxn27btySMDfVhcXNTu7q4WFha0s7PjdTtwyYOqdPqt9jXfXpVOMd0QAAAAAMaWl6/p2REGAAAAAAA8Y9tStcMWnRmf5PMNpx9MNoIwAAAAAADgmart8GQIQRhcwAEjAGPl/TtedwAAAAAAGFcEYQBGhpOQ6+USYRgAAAAAoDcEYQBGwr370msfOqt95QPp4P5A2wEAAAAATCCCMAAj4T1D+vIbZ7VffC3dMAbbDwAAAABg8hCEARgJH33aXf3HXdYDAAAAAEAQ5gHTNBWLxfq6b6lUcrmrZoZhqFQqKZfLqVwuO7pPLpdTLBZTIBCQz+dTKBRSIpFwfH9Mt/2vBlsPAAAAAABBmIssy5LP5+t4C4VCCgaDXa+dSCQUCoVULpe1t7fneu+5XE6RSEQ+n0/Ly8u6ffu2wuGwlpaW2t63XC4rEAgok8lIkorFora3t5XNZmUYhmKxmGKxmCzLcrVnTJbAI4OtBwAAAADgtNcNTJJCoeC4thYadWJZllZXV5XL5Xptq+P6mUym3ns4HNbGxoai0aij+5fL5frutmQyqXw+X/9YMBhUPB5XJBJRuVxWJBLR1taW/H6/688D4+/pJ6VPfuW8/qknB9cLAAAAAGAysSPMRaurq47qotGoox1htR1ahjGYqeCFQkHnzp2rh2D5fF5bW1uOQ7DaLjXpMPRqDMEaFYtFSYfHOmv1QKsXw9KjDzmrfexh6aXwYPsBAAAAAEwedoS5pFAoyLIspdPpjvO/Oh01lA5ndEWjUaXT6fr6qVTKlV6lwx1ptV1mwWBQGxsbXR/XTCQS9eOO7Xa41XaGlUollctlFQoFJZPJnnvHZDp7Rnr3GellB+Pvrj0rzZ4ZeEsAAAAAgAnjs23b9rqJSRAKhSRJ29vbA1nfMAxFIpH6+/l8vucwKZFI1Ift+/1+3b17t+vjiqZp1p+zJO3v77ddo1Qq1XeD+f1+7e/vd913o8XFRe3u7mphYUE7Ozt9rYXR8aAqnX6rfc2NuPRipH0NAAAAgPHh5HXAt1elU5xpmxhevqbn28gFpVJJpmk6nvvVC7fmarVecbLXmV3ZbLb+djQa7bhGPB6vv21Z1sCveonJ9fx5rzsAAAAAAIwrgjAXrK6uyu/36+LFi1630lahUFC5XK6/n8/nuz4O2bhWTTjsbFhT42Otr6/39LgAAAAAAAC9Igjrk2EYMgxDlmUpEAgoFAoplUqN3I4n0zSbZoyFw+Gej1a2Du+/cOGCo/s1Bmaj9vkBAAAAAIyu9+943QEmBUFYn1qPQ5qmqUKhoEQiIZ/Pp0QiMbCrPnaj9WqNV65c6Xmtxl1lkhzvKmutG4XPCwAAAADAW05CrpdLhGFwB0FYH0zTPBIKtSqVSopEIq5e8bFbpmk2hU5+v79pZle3bt++3fS+0xljjz/+eNP7m5ubPfcAAAAAABh/9+5Lr33orPaVD6SD+wNtB1OAIKwPwWBQ+Xxe2WxWyWSy7c6oQqHQdNXHYcrn803vR6NRSb+5kmMoFJLP51MgEFAkElEul5NlWSeuZ5pm0/u97ggb1BU2AQAAAADj4T1D+vIbZ7VffC3d4GAR+nTa6wbGXeucLcuyVCgUtLq6eiRMMgxDsVhMGxsbQ+ywebC9JM3NzSkSiRw5mmhZVn3mWSaTUbFYPHbnWGsQ1qt2YRsAAAAAYPJ99Gl39R9/Kv34+4PpBdOBHWEu8/v9SqfT2t/fV7FYPHJssFwuK5fLDa0f0zSPBE43b95UKpXS/v6+bNuWbdva3t4+EuolEoljh9r3GmC1fi729vZ6WgcAAAAAMBn2vxpsPdCKHWEDFI/HFY1Gtby83LT7anV1Vel0eig9tO7e8vv9unv37pFQqnbMs3We2eXLlxWNRh3PAeuGGzvCKpWKFhcX+15nZWVFKysrfa8DAAAAAHAu8Mhg6+GutbU1ra2t9b1OpVJxoZveEIQNmN/v19bWVtNRRMuyVC6X67O6Bqk1CEsmk21DrWQyqa2trfpxSsuytLq6qmw2W6/x+/2uhFhuhGvValW7u7t9r3NwcND3GgAAAACA7jz9pPTJr5zXP/Xk4HpBZwcHB668BvcSQdiQXL9+vWlY/sbGxlCCsNaB9BcuXOh4n0wm0zRXLJfLNQVhc3NzrgRhc3Nzfa8xMzOj+fn5vteZnZ3tew0AAAAAQHdeDEtv/NzZwPzHHpZeCg++J5xsdnZWCwsLfa9TqVRUrVZd6Kh7BGFDEg6HFY1GVS6XJbk3cL6T1sDKyS6sYDCocDjcdJzTMAyFw2HHa7jVSyfz8/Pa2dnpex0AAAAAwPCdPSO9+4z08tHx1Edce1aaPTPwltCGW2OFFhcXPdtZRhA2RLFYrB6EDUsoFOrpfktLS01BmGma9SCs9WOWZTkKtVqH4/faGybXjE/69mrnGgAAAACT44XznYOwG/HDOqBfXDVyiILBYP1tN44FOtEaUDk90tgaUjWGWI1HPCXnu9taj2kO42goxovPJ52aaX/zEYQBAAAAU+d5QjC4hCBsiBqDsEFchfE4S0tLTe87Da1a+2sM7npdszGE8/v9TZ8PAAAAAACAQSMIG6LNzc3627FYbCiPWTvOWNO6K8upxtAqHA43BWW3b992tEbj828N0wAAAAAAAAaNIGyIGkOoYR4LbHwspzPKWo9QtgZqFy9erL/dOC+snca6TCbj6D4AAAAAAABuIQgbolLpcPpfOp0e6uM2hk6maTqaE9YptEulUvW3nYRrjTXBYJD5YAAAAAAAYOgIwoakVCrJNE35/X5duXKl6/s7HXJ/nGg02nS0cXV1teN9GoOrbDZ75OPhcLgpzKqFfCcpFov1t9kNBgAAAAAAvEAQ1qNyuaxAICCfz6dYLNb2eKBpmrp8+bIk6datWz0Nym8dSN9tMNYYROVyubYD7svlcv3jyWTyyLHImnw+X3+7XbhmWZYKhYKkw1AumUx21TsAAAAAAIAbCMJ6VCwW62FUuVxWJBJpOi5YU/vY3Nyctre3TwyV2rEs68guqvX19a7WCIfDTcFVLBY7NkyzLKv+PFrv0yoYDNYDNsMwlMvljq1bXl6WdHilyMZADgAAAAAAYJgIwnqUSCSO/FmhUFAgEFAikVAqlVIkElEsFlMymdTW1lbT8cROLMtSIpFQLBZTIBA4soPLMIz6brREIuFoYH0ymdTGxob8fr9M09S5c+eUy+VkGEY9yDp37pxM06z33Ek8Hq+vmclk6r1YllUPAQ3DUDgc1t27d3vaDYfRZtvSg2r7m2173SUAAAAAAJLPtnmJ2ivTNJXNZlUul7W3tyfLsuT3+zU3N6dwOKxLly4pGo2OZPhTKBRULBa1ublZ77s2xD6VSnUV2tXkcjmtr6/XB/L7/X4tLS0plUopHo+72v/i4qJ2d3e1sLCgnZ0dV9dGdx5UpdNvta/59qp0itgdAAAAwDF4TTF9vHxNTxCGsUQQNjr4nxYAAACAfti2VO2QTMz4JJ9vOP1g8Lx8TX96qI8GAAAAAADQwOeTThFyYUjYowEAAAAAAICpQBAGAAAAAACAqUAQBgAAAAAAgKlAEAYAAAAAAICpQBAGAAAAAACAqUAQBgAAAAAAgKlAEAYAAAAAAICpQBAGAAAAAACAqXDa6waAflQqFS0uLratWVlZ0crKypA6AgAAAABgeq2trWltba1tTaVSGVI3RxGEYaxVq1Xt7u62rTk4OBhSNwAAAAAATLeDg4OOr9O9RBCGsTYzM6P5+fm2NbOzs0PqBgAAAACA6TY7O6uFhYW2NZVKRdVqdUgdNfPZtm178shAHxYXF7W7u6uFhQXt7Ox43c5Ue1CVTr/Vvubbq9IpJhICAAAAAOTta3pemgIAAAAAAGAqEIQBGLj373jdAQAAAAAABGEA+uQk5Hq5RBgGAAAAAPAeQRiAnt27L732obPaVz6QDu4PtB0AAAAAANoiCAPQs/cM6ctvnNV+8bV0wxhsPwAAAAAAtEMQBqBnH33aXf3HXdYDAAAAAOAmgjAAPdv/arD1AAAAAAC4iSAMQM8Cjwy2HgAAAAAANxGEAejZ0092V/9Ul/UAAAAAALiJIAxAz14MS48+5Kz2sYell8KD7QcAAAAAgHYIwgD07OwZ6d1nnNVee1aaPTPQdgAAAABMOduWHlTb32zb6y7hpdNeNwBgvL1wXnq51L7mRvywDgAAAAAGqWpLp99qX/PtVemUbzj9YPSwIwzAwD1PCAYAAAAAGAEEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCqe9bgDoR6VS0eLiYtualZUVraysDKkjAAAAAACm19ramtbW1trWVCqVIXVzFEEYxlq1WtXu7m7bmoODgyF1AwAAAADAdDs4OOj4Ot1LBGEYazMzM5qfn29bMzs7O6RuAAAAAACYbrOzs1pYWGhbU6lUVK1Wh9RRM4IwjLX5+Xnt7Ox43QYAAAAAAJCz8USLi4ue7RpjWD4AAAAAAACmAjvCAPRlxid9e7VzDQAAAAAAXiMIA9AXn086RdAFAAAAABgDHI0EAAAAAABT4/07XncALxGEAQAAAACAieAk5Hq5RBg2zQjCAAAAAADA2Lt3X3rtQ2e1r3wgHdwfaDsYUQRhwBSybelBtf3Ntr3uEgAAAACce8+QvvzGWe0XX0s3jMH2g9HEsHxgClVt6fRb7Wu+vcoQfAAAAADj46NPu6v/+FPpx98fTC8YXewIAwAAAAAAY2//q8HWYzIQhAEAAAAAgLEXeGSw9ZgMBGEAAAAAAGDsPf1kd/VPdVmPyUAQBgAAAAAAxt6LYenRh5zVPvaw9FJ4sP1gNBGEAQAAAACAsXf2jPTuM85qrz0rzZ4ZaDsYUQRhAAAAAABgIrxwvnPNjbizOkwmgjAAAAAAADA1nicEm2oEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAqnvW4A6EelUtHi4mLbmpWVFa2srAypIwAAAAAAptfa2prW1tba1lQqlSF1cxRBGMZatVrV7u5u25qDg4MhdQMAAAAAwHQ7ODjo+DrdSwRhGGszMzOan59vWzM7OzukbgAAAAAAmG6zs7NaWFhoW1OpVFStVofUUTOCMIy1+fl57ezseN0GAAAAAACQs/FEi4uLnu0aY1g+AAAAAAAApgJBGAAAAAAAAKYCQRiAY71/x+sOAAAAAMAbti09qLa/2bbXXaIXzAgDppCTkOvlknRqRnrh/OD7AQAAAIBRUrWl02+1r/n2qnTKN5x+4B52hAFT5t596bUPndW+8oF0cH+g7QAAAAAAMDQEYcCUec+QvvzGWe0XX0s3jMH2AwAAAADAsHA0EpgyH33aXf3Hn0o//v5gegEAAAAAN834Do8sdqrB9CIIA6bM/leDrQcAAAAAr/h8zO1CexyN9IBpmorFYn3dt1QqudzVoVAoJJ/P19P6uVxOsVhMgUBAPp9PoVBIiURC5XJ5AJ2iV4FHBlsPAAAAAMCoIghzkWVZ8vl8HW+hUEjBYLDrtROJhEKhkMrlsvb29lzvP5PJyDTNru9XLpcVCASUyWQkScViUdvb28pmszIMQ7FYTLFYTJZludwxevH0k93VP9VlPQAAAAAAo4ogzEWFQsFxbS006sSyLGUyGQUCgYHtApMOw6xcLtfT/WohVzKZ1MbGhqLRqILBoOLxuLa3txUOh1UulxWJRAjDRsCLYenRh5zVPvaw9FJ4sP0AAAAAADAsBGEuWl1ddVRXC4o6yeVyikQiMozBXravttusn/sFg0Hl8/lj64rFoqTDY529PA7cdfaM9O4zzmqvPSvNnhloOwAAAAAADA3D8l1SKBRkWZbS6XTH+V9LS0sd1zMMQ9FoVOl0ur5+KpVypddWly9f1tzcnCR1tWMrkUjU69vtcKvtDiuVSiqXyyoUCkomk/20jD69cF56ucMGwxvxwzoAAAAAACYFQZhLstmsgsGgstmsK+uFw83n0ZyEZ70oFAoqlUra2trS8vKy4/uZptk0BP/ixYtt6y9dulQ/2pnJZAjCxsDzhGAAAAAAgAnD0UgXlEolmabpeO5XL/x+v+trmqapVCqldDp9JHjrpDHwi0ajHfuLx+P1ty3LGui8MwAAAAAAgOMQhLlgdXVVfr+/466oUZNIJBQOh3vaxdZ4YQCnIVrjXLT19fWuHxMAAAAAAKAfBGF9MgxDhmHIsiwFAgGFQiGlUqmR3/GUyWRkGEZ9kH03Wof3X7hwwdH9GgOzUf/8AAAAAACAyUMQ1qfW45CmaapQKCiRSMjn8ymRSAz8qo/dMgxDuVxO+Xze0dUrWzXOBpPkeI3WulH7vIw625YeVNvfbNvrLgEAAAAAGF0My+9D68D445RKJZVKJSWTSeXz+SF11t7y8rLi8XjPA+tv377d9L7T+WWPP/540/ubm5tdzyabZlVbOv1W+5pvr0qnfMPpBwAAAACAcUMQ1odgMKh8Pi/LsrS9va1yuSzTNI+tLRQK2tzc1NbW1pC7bJZIJCRJ169f73mN1ufY646w7e3tnnsAAAAAAADoFkFYn1p3VVmWpUKhoNXVVVmW1fQxwzAUi8W0sbExxA5/o7Y7bWNjo6+rUJ4U9nWr9fMDAAAAAMC4eP+O9FLE6y7QLYIwl/n9fqXTaaXTaZVKJV2+fLkp8CmXy8rlckqn00Pty7IsJRIJJZNJRaPRvtfqRWv4tre311cfklSpVLS4uNj3OisrK1pZWel7HQAAAADA+Hv/Tueal0vSqRnphfOD72dUrK2taW1tre91KpWKC930hiBsgOLxuKLRqJaXl5sGw6+urg49CFteXq4f5RwVbuwIq1ar2t3d7Xudg4ODvtcAAAAAAIy/e/el1z50VvvKB9LTvyvNnhloSyPj4ODAldfgXiIIGzC/36+trS1FIpF6GGZZlsrlct87s5zK5XIyDMO1+WR+v9+VEKuf45k1MzMzmp+f73ud2dnZvtcAAAAAAIy/9wzpy2+c1X7xtXTDkH78/cH2NCpmZ2e1sLDQ9zqVSkXVatWFjrpHEDYk169fVyTym8PDGxsbQwnCDMNQJpNRNpt17QqNc3NzrgRhc3Nzfa8xPz+vnZ2dvtcBAAAAAECSPvq0u/qPP52eIMytsUKLi4ue7Syb8eRRp1A4HG4KvtwaON9JIpFQOBx29Shmrzu5WsMzN3aEAQAAAADgpv2vBlsPb7EjbIhisZjK5fLQHi+Xy8k0TUWjUSUSiY71jUHV6uqq1tfX6+9funRJ8XhckrS0tNQ088yyLEehVutw/FAo1PE+AAAAAAAMU+CRwdbDWwRhQxQMButvu3EssJPPP/9cknoK3wzDaAq7gsFgPQhrPOIpHe5uc3Lscnt7u+n9Yc1IAwAAAADAqaeflD75lfP6p54cXC9wH0cjh6gxCBvnY4FLS0tN7zs95tm448zv9zd9PgAAAAAAGAUvhqVHH3JW+9jD0kvujOPGkBCEDdHm5mb97VgsNvDHy2azsm3b8a0xmCoWi00fy2az9Y+Fw+GmIO/27duO+ml8/q1hGgAAAAAAo+DsGendZ5zVXntWmj0z0HbgMoKwIWo8GjjuxwIvXrxYf7vxCGU7jXWZTMb1ngAAAAAAcMML5zvX3Ig7q8NoIQgbolKpJEmuXsHRK6lUqv62kxlkjTXBYHDsg0AAAAAAwHR7nhBsLDEsf0hKpZJM05Tf79eVK1e6vn/jfK1REA6HFY1G6wFXqVSqD9M/TrFYrL/NbjDvzfikb692rgEAAAAAYJKwI6xH5XJZgUBAPp9PsVis7fFA0zR1+fJlSdKtW7d6GpTfOpB+FIKxfD5ff3t1dfXEOsuyVCgUJB0eCU0mkwPvDe35fNKpmfY3H0EYAAAAAGDCEIT1qFgs1sOocrmsSCTSdFywpvaxubk5bW9vKxzu/nISlmUd2UW1vr7eU99uCgaD9Z1ehmEol8sdW7e8vCzp8EqRjTvDAAAAAAAAhokgrEeJROLInxUKBQUCASUSCaVSKUUiEcViMSWTSW1tbTVdlbETy7KUSCQUi8UUCASO7AgzDKO+Gy2RSDgeWO+2eDyujY0N+f1+ZTKZei+WZdVDQMMwFA6Hdffu3Z52wwEAAAAAALiBGWE9ikaj2t7eVjabVblc1t7eXn2HWC34uXLliqLRaE/hjxe7pxqvatmNaDSq/f195XI5ra+va3l5WZZlye/3a2lpScVise38MLjn/TvSSxGvuwAAAAAAYDT5bNu2vW4C6Nbi4qJ2d3e1sLCgnZ0dr9sZihtb0sulznV/dZFL+AIAAABAPx5UpdNvta/59urhfGV0z8vX9HzJgDFw77702ofOal/5QDq4P9B2AAAAAAAYSwRhwBh4z5C+/MZZ7RdfSze8GRkHAAAAAMBIIwgDxsBHn3ZX/3GX9QAAAAAATAOCMGAM7H812HoAAAAAAKYBQRgwBgKPDLYeAAAAAIBpQBAGjIGnn+yu/qku6wEAAAAAmAYEYcAYeDEsPfqQs9rHHpZeCg+2HwAAAAAAxhFBGDAGzp6R3n3GWe21Z6XZMwNtBwAAAACAsXTa6waAflQqFS0uLratWVlZ0crKypA6GpwXzksvl9rX3Igf1gEAAAAA4IW1tf9/e/fv21aW3gH/kXcSTJBAoTxAAENqlmrShvQ2b2uqS5AUpA0kSFKZDIK3ckFhkHphiIXKIORU7wYpPGSRIOlE/wVjMW0acRobAhYY6UbIIotkV3wLh1yJoiT+JqX7+QACRPvw3HNEXV3xq+ecexiHh4d3tjk9PV3SaG4ShPGgXV5exqdPn+5sc3FxsaTRrN6fC8EAAADWSq8Xcdm7u82TjYiNjeWMZ9EuLi7ufZ++SoIwHrQnT57Es2fP7myzubm5pNEAAADAdZe9iC/+7u42v/ppxI8eSRC2ubkZ29vbd7Y5PT2Ny8vLJY3oOkEYD9qzZ8/i48ePqx4GAAAAj8iTjc/h1H1tuGmc7Yl2dnZWVjUmCAMAAAC4YmPj8VRocZ27RgIAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFb5Y9QCA8TzZiPjVT+9vAwAAAIwmCIMHYmMj4keCLgAAAJiapZEAAAAApIIgDAAAAGCF/unfVz2C9BCEAQAAACzIOCHXX7eEYcsiCAMAAABYgP/8ZcTf/st4bf/mnyMufrnQ4RA2y+eBOz09jZ2dnTvbvHnzJt68ebOkEQEAAMBn/9iJ+MX/jtf2v/4n4mediP/3/1nsmBbt8PAwDg8P72xzenq6pNHcJAjjQbu8vIxPnz7d2ebi4mJJowEAAIDf+Nf/mKz9v/3Hww/CLi4u7n2fvkqCMB60J0+exLNnz+5ss7m5uaTRAAAAwG+c//di26+jzc3N2N7evrPN6elpXF5eLmlE1wnCeNCePXsWHz9+XPUwAAAA4Iat31ls+3U0zvZEOzs7K6sas1k+AAAAwAL8yR9O1v6PJ2zP5ARhAAAAAAvwl7mI3/2t8dr+3m9H/FVuseNBEAYAAACwEL//ZcTf/+l4bf/hzyI2v1zocAhBGAAAAMDC/MUf3d/mZ8Xx2jE7QRgAAADACv25EGxpBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkwherHgDM4vT0NHZ2du5s8+bNm3jz5s2SRgQAAADpdXh4GIeHh3e2OT09XdJobhKE8aBdXl7Gp0+f7mxzcXGxpNEAAABAul1cXNz7Pn2VBGE8aE+ePIlnz57d2WZzc3NJowEAAIDrnmxE/Oqn97d5LDY3N2N7e/vONqenp3F5ebmkEV230ev1eis5MsxgZ2cnPn36FNvb2/Hx48dVDwcAAAAY0yrf09ssHwAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhK9DtdmNvb2+m57ZaramP3+l0olKpxO7ubmxsbMTGxkbs7u7G/v5+JEkydb+1Wi329vZia2tr0GepVIp2uz11nwAAAADzIgiboyRJBsHSXR+7u7uRzWYn7rtUKsXu7m602+04OzubanylUiny+Xw0Go3odruD/+t2u1Gr1WJraysajcZE/bbb7dja2or9/f2IiGg2m3FychIHBwfR6XRib28v9vb2ZgrZAAAAAGb1xaoH8JhMEiD1Q6P7JEkSb9++jVqtNu2wBv3k8/lr4ddtKpVKHB8fR71ev7dtu90eVLeVy+Vrz8lms1EsFiOfz0e73Y58Ph/Hx8eRyWSmngcAAADAtFSEzdHbt2/HalcoFMaqCKvVapHP56PT6cw6tCiVStHtdiOXyw0qtk5OTqLZbEa1Wr3RvtFo3Lv8sl9hFvE59LotOGs2mxHxueqs3x4AAABg2VSEzUmj0YgkSaJard67/9fz58/v7a/T6UShUBiEVI1GIyqVytRja7fbUa1W4+Dg4Nr/9au2KpVKlEqla6Hb69evo1gs3tpvqVQaLHe8q8Ktf4xWqxXtdjsajUaUy+Wp5gIAAAAwrY1er9db9SAeg93d3YiIODk5WUj/nU4n8vn84HG9Xh87TOrvSXZ0dHRnu263O5hH39HRURQKhXvbnp+f37nksdVqDarBMplMnJ+fjzX22+zs7MSnT59ie3s7Pn78OFNfAAAAwPKs8j29pZFz0Gq1otvtjr3v1zSm3Ver0+lEt9sdLE+8SzabvVExdtuyzKvtCoXCveO7WlmWJMlMd70EAAAAmIYgbA7evn0bmUwmXr58ueqh3PDu3bsol8tjB2nD1V8//PDDyHZXbwyQy+XG6vvqvmjv3r0b6zkAAAAA82KPsBl1Op1B1dTW1lZks9koFAqxt7d35/5ay/Lq1auxNubvGw61hpdKRtysEvvJT34ydt/9u1aqCAMAAACWTUXYjIaXQ3a73Wg0GlEqlWJjY+PGBvTLlsvlJlpW2d/8vm9UiNZut+9tM8pwu1V+XQAAAID0EYTNoNvt3giFhrVarcjn81Pf8XHZ+hVbfaM2yv/uu++uPR43aPvqq6+uPf7w4cNkgwMAAACYgaWRM8hms1Gv1yNJkjg5OYl2u30jSOprNBrx4cOHOD4+XvIoJ3M1nLrtrpTDc5y2ImxRd9gEAAAAGEUQNqPhsChJkmg0GvH27dsbyww7nU7s7e3F0dHREkc4mXq9Pvj8trtg3hb2TWr46wMAAACwSJZGzlkmk4lqtRrn5+fRbDZvLBtst9tRq9VWM7h7dLvdwb5dBwcHt1Z6TRtgDX8tzs7OpuoHAAAAYBoqwhaoWCxGoVCIFy9eXNsY/u3bt1GtVlc4stEODg4i4vMSxmWMbx4VYaenp7GzszNzP2/evIk3b97M3A8AAAA8VoeHh3F4eDhzP6enp3MYzXQEYQuWyWTi+Pg48vn8IAxLkiTa7fbIjehXpdPpRKPRiEwmc+/SzUwmM5cQa5K7Wd7m8vIyPn36NHM/FxcXM/cBAAAAj9nFxcVc3oOvkiBsSb755pvI5/ODx0dHR2sVhL1+/ToiIt6/f3/v5vdPnz6dSxD29OnTmft48uRJPHv2bOZ+Njc3Z+4DAAAAHrPNzc3Y3t6euZ/T09O4vLycw4gmJwhbklwuF4VCIdrtdkTMb8P5eahUKtHpdKLZbEYul7u3/bSVXMPh2Twqwp49exYfP36cuR8AAADgbvPaVmhnZ2dllWU2y1+ivb29VQ/hhkajEY1GI+r1ehSLxbGe8/z582uPx60OG94cf3d3d6znAQAAAMyDIGyJri45nMeywFm12+2oVCpRr9ejXC6P/byrSzwjxq9uOzk5ufZ4nZaGAgAAAI+fIGyJrgZh81gWOItOpxN7e3txcHAwUQgWcbMibNwg7GrlWCaTuXcvMgAAAIB5EoQt0YcPHwafr3KZZLfbjRcvXkS1Wo1qtTrx83O53LUg77vvvhvreVfnPxymAQAAACyaIGyJri4NXNWywG63G/l8PsrlchwcHIz9nFqtdu3fXr58Ofi80+mM1c/Vdvv7+2M9BwAAAGBeBGFL1Gq1IiKmqsKahyRJYm9vL16+fDl2CBYRUSqVbgR3lUpl8Hn/Tph3udomm83aHwwAAABYui9WPYC0aLVa0e12I5PJxNdffz3x88e9M+Ndz8/n85HNZmN/f3+sfb263e6gciuXy137v1wuF4VCYRBwtVqtO+862Ww2B5+rBgMAAABWQRA2pXa7HaVSKZIkiUKhEAcHBzfCor5utxuvX7+OiIj3799PtVH+cHA1aTD24sWL6Ha70e12Y3d3d6Ln1uv1W/+939fbt29vDcKSJIlGoxERn5eETro5PwAAAMA8WBo5pWazOQij2u125PP5a8sF+/r/9/Tp0zg5Obk1LLtLkiQ3qqjevXs39vPz+fzY+3iNcltwlc1mB5VenU7nxj5ifS9evIiIz3eKvFoZBgAAALBMgrAplUqlG//WaDRia2srSqVSVCqVyOfzsbe3F+VyOY6PjyObzY7df5IkUSqVYm9vL7a2tm5UhHU6ndjY2Ii9vb0olUq3Bl13/d847qveKhaLcXR0FJlMJvb39wfHS5JkEAJ2Op3I5XLx/fffT1UNBwAAADAPG71er7fqQTxU3W43Dg4Oot1ux9nZWSRJEplMJp4+fRq5XC5evXoVhUIhNeFPrVaLd+/eRbfbHXwtnj9/HpVK5c79w6axs7MTnz59iu3t7fj48eNc+wYAAAAWZ5Xv6QVhPEiCMAAAAHiYVvme3mb5sEC9XsTlPVHzk42IjY3ljAcAAADSTBAGC3TZi/ji7+5u86ufRvxIEAYAAAALZ7N8AAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBU+GLVA4BZnJ6exs7Ozp1t3rx5E2/evFnSiAAAACC9Dg8P4/Dw8M42p6enSxrNTYIwHrTLy8v49OnTnW0uLi6WNBoAAABIt4uLi3vfp6+SIIwH7cmTJ/Hs2bM722xubi5pNAAAAJBum5ubsb29fWeb09PTuLy8XNKIrtvo9Xq9lRwZZrCzsxOfPn2K7e3t+Pjx46qHc6tfX0Z88Xd3t/n/ihF/lV/OeAAAAGDVVvme3mb5sED/9O/3t/nr1njtAAAAgNkIwmBB/vOXEX/7L+O1/Zt/jrj45UKHAwAAAKknCIMF+cdOxC/+d7y2//U/ET/rLHY8AAAAkHaCMFiQf/2Pydr/24TtAQAAgMkIwmBBzv97se0BAACAyQjCYEG2fmex7QEAAIDJCMJgQf7kDydr/8cTtgcAAAAmIwiDBfnLXMTv/tZ4bX/vtyP+KrfY8QAAAEDaCcJgQX7/y4i//9Px2v7Dn0VsfrnQ4QAAAEDqCcJggf7ij+5v87PieO0AAACA2QjCYMX+XAgGAAAASyEIAwAAACAVBGEAAAAApMIXqx4AAAAAAPfr9SIue3e3ebIRsbGxnPE8RIIwAAAAgAfgshfxxd/d3eZXP434kSDsVpZGAgAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBW+WPUAYBanp6exs7NzZ5s3b97EmzdvljSi655sfL517X1tAAAA4DE4PDyMw8PDO9ucnp4uaTQ3CcJ40C4vL+PTp093trm4uFjSaG7a2Ij4kaALAACAlLi4uLj3ffoqCcJ40J48eRLPnj27s83m5uaSRgMAAADptrm5Gdvb23e2OT09jcvLyyWN6LqNXq/XW8mRYQY7Ozvx6dOn2N7ejo8fP656OAAAALBwv76M+OLv7m7zq59G/GjNd4Rf5Xv6Nf/SAAAAAMB8CMIAAAAASAVBGAAAAMAj8U//vuoRrDdBGAAAAMADME7I9dctYdhdBGEAAAAAa+4/fxnxt/8yXtu/+eeIi18udDgPliAMAAAAYM39YyfiF/87Xtv/+p+In3UWO56HShAGAAAAsOb+9T8ma/9vE7ZPC0EYAAAAwJo7/+/Ftk8LQRgAAADAmtv6ncW2TwtBGAAAAMCa+5M/nKz9H0/YPi0EYQAAAABr7i9zEb/7W+O1/b3fjvir3GLH81AJwgAAAADW3O9/GfH3fzpe23/4s4jNLxc6nAdLEAYAAADwAPzFH93f5mfF8dqllSAMAAAA4JH4cyHYnQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACp8MWqBwCzOD09jZ2dnTvbvHnzJt68ebOkEQEAAEB6HR4exuHh4Z1tTk9PlzSamwRhPGiXl5fx6dOnO9tcXFwsaTQAAACQbhcXF/e+T18lQRgP2pMnT+LZs2d3ttnc3FzSaAAAAGBxnmxE/Oqn97dZpc3Nzdje3r6zzenpaVxeXi5pRNdt9Hq93kqODDPY2dmJT58+xfb2dnz8+HHVwwEAAADGtMr39DbLBwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCFuBbrcbe3t7Mz231WrNNIZarRZ7e3uxtbUVGxsbsbu7G6VSKdrt9lr1CQAAADAvgrA5SpIkNjY27v3Y3d2NbDY7cd+lUil2d3ej3W7H2dnZVGNst9uxtbUV+/v7ERHRbDbj5OQkDg4OotPpxN7eXuzt7UWSJCvtEwAAAGDevlj1AB6TRqMxdtt+aHSfJEni7du3UavVph3WQLvdHlSilcvlqNfrg//LZrNRLBYjn89Hu92OfD4fx8fHkclklt7nY3Z4eBgXFxexubkZb968WfVwgP/j3IT147yE9eO8hPXjvJzcRq/X6616EI/F1tbWWFVPhUIhjo6O7m1Xq9WiXq9HNpu9sbywXq9HuVwee2xJksSPf/zjSJIkstlsnJycjGzX7XZjd3d3rHEuos9x7ezsxKdPn2J7ezs+fvw4c3/L8lDHDY+dcxPWj/MS1o/zEtbPQz0vVzluFWFz0mg0IkmSqFar9+7/9fz583v763Q6USgUolqtDvqvVCpTj69UKg1Curuq0fpVXK1WK9rtdjQajVsDt0X0CQAAALAogrA5OTg4iGw2GwcHB3PpL5fLXXs8Tnh2m263e62i7OXLl3e2f/Xq1WAz/v39/ZGh1SL6BAAAAFgkm+XPQavVim63O/a+X9OYZV+tq+FcoVC4t69isTj4PEmSkXeoXESfAAAAAIskCJuDt2/fRiaTubcqalWubuI/XGl2m6t3tXz37t1S+gQAAABYJEHYjDqdTnQ6nUiSJLa2tmJ3dzcqlcraVDx1Op1rj3/yk5+M9byr4dbwXBbRJwAAAMCiCcJmNLwcstvtRqPRiFKpFBsbG1EqlW4ER8s0fLfJq1VZdxlud3UOi+gTAAAAYNEEYTMY3jB+lFarFfl8fqY7Ps7iu+++u/Z43L3Gvvrqq2uPP3z4sNA+AQAAABbNXSNnkM1mo16vR5IkcXJyEu12O7rd7si2jUYjPnz4EMfHx0sd4/B4pq3eOjk5WWifPC6Hh4dxcXERm5ub8ebNm1UPZyHSMMeI9MwzDdLyWqZhnmmYY1qk5bVMwzzTMMe0SMtrmYZ5pmGOTKnHXJ2fn/cODg56mUymFxE3PgqFwlT9npycXOunXq+P9bzhcYyr2Wxee165XF5on5Pa3t7uRURve3t76j5W4aGOe1JpmGca5tjrmedjkoY59nrpmGca5tjrpWOeaZhjr5eOeaZhjr1eOuaZhjn2eumYZxrm2Os93HmuctwqwuYsk8lEtVqNarUarVYrXr9+HUmSDP6/3W5HrVaLarW6lPFcPfYkhpc7np2dLbTPaZ2ensbOzs7M/bx588ZfCQAAAOAOh4eHcXh4OHM/p6encxjNdARhC1QsFqNQKMSLFy+ubQz/9u3bpQVh8zJt+LXoPi8vL+PTp08z93NxcTFzHwAAAPCYXVxczOU9+CoJwhYsk8nE8fFx5PP5QRiWJEm02+0oFApLOf48Aqer1VyL6HNaT548iWfPns3cz+bm5sx9AAAAwGO2ubkZ29vbM/dzenoal5eXcxjR5ARhS/LNN99EPp8fPD46OlpKEPb06dO5hFZPnz5daJ/TevbsWXz8+HHmfgAAAIC7zWtboZ2dnZVVlj1ZyVFTKJfLXQu+bru75LxNW3U1HHQNV4TNu08AAACARROELdHe3t7Sj/n8+fNrj8et5BreyH53d3ehfQIAAAAsmiBsibLZ7ODzeSwLHMfV5ZgR41einZycXHt8tZptEX0CAAAALJo9wpboahC2rGWBw9Vb3W43crncvc+7WuWVyWSujX0RfU7q5z//eUR83mBvZ2dn6n6WrX+L2Ic27kmlYZ5pmGOEeT4maZhjRDrmmYY5RqRjnmmYY0Q65pmGOUakY55pmGNEOuaZhjlGPNx59sfdf2+/TIKwJfrw4cPg82Utk8zlctfu8vjdd99FsVi893lXxzocfC2iz0n9+te/joiIy8vLB3nr1oc67kmlYZ5pmGOEeT4maZhjRDrmmYY5RqRjnmmYY0Q65pmGOUakY55pmGNEOuaZhjlGPNx59t/bL5MgbImuLg1c5rLAly9fRqPRiIiITqcz1nOuttvf319Kn5P48ssv45e//GX86Ec/ij/4gz+YqS8AAABgeX7+85/Hr3/96/jyyy+XfmxB2BK1Wq2IiKhWq0s9bqVSGYRW7Xb73vZX22Sz2ZGh3SL6nMQvfvGLmZ4PAAAApI/N8pek1WpFt9uNTCYTX3/99cTPH/fOjKPkcrlrwVM/kLtNs9kcfH5b5dYi+gQAAABYJEHYlNrtdmxtbcXGxkbs7e3duTyw2+3G69evIyLi/fv3U22UP3xnxkmDsXq9Pvj87du3t7ZLkmRQ6VUoFKJcLi+1TwAAAIBFEYRNqdlsDsKodrsd+Xw+KpXKjXb9/3v69GmcnJyMdXfFYUmS3Kiievfu3UR9ZLPZQVVWp9OJWq02st2LFy8i4vNdHa9WcS2rTwAAAIBF2ej1er1VD+IharfbI+/8mMlkolAoxNOnT+PDhw/R6XSiWq3G119/PVElWJIk8fr160iS5M49uAqFwmC55TghW7vdjlKpFEmSRLFYjK+//jqy2Wx8+PAh9vf3o9PpRC6Xm6hybRF9AgAAAMybIGwG3W43Dg4Oot1ux9nZWSRJEplMJp4+fRq5XC5evXo1CKrWTa1Wi3fv3kW32x2M+/nz51GpVKJYLK5NnwAAAADzIggDAAAAIBXsEQYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDOasVqvF3t5ebG1txcbGRuzu7kapVIp2u72yMe3u7sbGxka0Wq2VjQFWaVXnZafTiUqlMjgH+8fe39+PJEkWemxYlVVeB9fxGgzrwHUQ1s86XrNS876xB8zF0dFRL5PJ9CKiVygUekdHR72Tk5Nes9nsZbPZwb+fn58vdVzVarUXEb2I6DWbzaUeG1ZtVefl+fl5r1gsDs692z7q9fpcjwurtMrr4Lpeg2HVXAdh/azrNStN7xsFYTAHR0dHgx8a5XJ5ZJtcLteLiF42m13aD7Wr40rDDzS4alXn5fn5+eCXmHE+bhsbPCSrvA6u6zUYVs11ENbPul6z0va+URAGMzo/Px8k+tls9tZ2Jycngx8shUJhqeNKyw806FvleVkoFHoR0cvlcr1ms9k7OTkZ/JXv6l/anJs8Fqs839b1Ggyr5joI62ddr1lpfN8oCIMZ9S/245R3Xy0RX3QpeLFY7GWz2Ws/1B77DzToW9V5Wa/XexHRq1art7Y5OTkZ/KWv/5HJZGY6LqzSKq+D63oNhlVzHYT1s67XrDS+bxSEwQyupvURcW/parPZXMoFv/9LyPHxcap+oEGvt9rzMpvNjvWXu+ExRkTv6OhopmPDKqzyfFvXazCsmusgrJ91vWal9X2ju0bCDA4ODgafFwqFyGQyd7YvFouDz5MkWcjdOLrdblQqlahWq5HL5ebeP6y7VZ2XnU4nut1uNJvNe9tms9lr4+w/Hx6aVV4H1/EaDOvAdRDWzzpes9L8vlEQBjNoNBqDz8f94ZHNZgefv3v3bu5jKpVKkcvlbvxyAWmxqvPy3bt3US6X7/3Fpq9QKFx7/MMPP0x1XFilVV4H1/EaDOvAdRDWzzpes9L8vvGLVQ8AHqrhv1r95Cc/Get5uVwuut1uRMTck/39/f3odDpxcnIy137hoVjlefnq1atrv7CMc8yrdnd3pzourMoqz7d1vAbDOnAdhPWzjtestL9vVBEGU2q329cej3vhH243rzLwTqcTtVot6vX6RL+EwGOyyvMyl8uN/VfwiM9l7neNAdbdKs+3dbsGw7pwHYT1s27XLO8bBWEwte++++7a43Ev/F999dW1xx8+fJjLeF68eBHFYjHK5fJc+oOHaN3Oy7v0/8LXN7xEBNbdKs+3h3SuwzI9pHPDdZC0WLfz0vtGQRhMbfjiPW2yP49y1FKpFBER33zzzcx9wUO2Tuflfa7+MpPmX0R4uFZ5vj2kcx2W6SGdG66DpMU6nZfeN35mjzCY0vAPtGkNl4VPqtVqRavViqOjo4nK0eExWpfzchz1en3w+f7+/sKPB/O2yvPtIZ3rsEwP6dxwHSQt1uW89L7xN1SEwZSm/UE0/EPn7OxspjGUSqUol8vKySHW47wcR7fbHezzcHBwkNr9GXjYVnm+PZRzHZbtoZwbroOkyTqcl943XicIgxWbJdl/8eJFZLPZa39RA2a36L+E929Tnc1mo1qtLvRYsO5WWZWlIgxGcx2E9eN94/wIwmBK8yonnbafWq0WnU4nms3mXMYBj8Gqz8txdDqdaDQakclk4ujoaGHHgUVb5fn2EM51WIWHcG64DpI2qz4vvW+8SRDGo9RoNGJjY2OuH/l8/toxnj59OpexTtNPp9OJ/f39ODg4iFwuN5dxwKI99vNyXK9fv46IiPfv31sKwoO2yvPtIZzrsAoP4dxwHSRtvG9cP4IwmNK0ifxwSes0/ZRKpcjlckrJYcgqz8txVCqVwV/k/DLCQ7fK823dz3VYlXU/N1wHSSPvG9ePu0byKBUKhbmXfg7/4Hn+/Plgk8+Izz+oxvnhNLzJ4e7u7kTjqNVq0e12o1AoDG5/e5erP0Dfvn0b7969Gzx+9epVFIvFiY4P03rM5+U4Go1GNBqNqNfrzjsehVWeb+t8rsMqrfO54TpIWnnfuH4EYTxK2Wx24aXWw0uyut3uWH/ZOjk5ufZ40rt2/PDDDxER0W63J3pexOfS2Ks/hLPZ7KP6gcZ6e8zn5X3a7XZUKpWo1+tRLpfn2jesyirPt3U912HV1vXccB0kzbxvXD+WRsKUnj9/fu1xt9sd63lXk/ZMJmNvBJijdTwvO51O7O3txcHBgV/+eVRWeb6t47kO62Adzw3XQdJuHc/LtBOEwZRyudy1ktbvvvturOd9+PBh8PnwD8VxHBwcRK/XG/vj6g/MZrN57f/6t66Gx2JV5+Vtut1uvHjxIqrVqr0ZeHRWeb6t27kO62Ldzg3XQfC+cR0JwmAGL1++HHx+tXT0Llfb7e/vz31MkHbrcl52u93I5/NRLpfH/uWh2+1GrVaby/FhGVZ5vq3LuQ7rZl3ODddB+I11OS/5TBAGM6hUKoPPx1l7fbVNNpu1NwkswDqcl0mSxN7eXrx8+XKiv6CVSiU/F3hQVnm+rcO5DutoHc4N10G4bh3OS35DEAYzyOVy134otVqtO9tfvWPefal+o9GI/f39sdeQA5+t+rxMkiTy+Xxks9lB2/s+2u32YCNVt5PnIVnl+bbIY8ND5joI62fV5yVDesBMTk5OehHRi4heLpe7td35+fmgXaFQuLPPQqEwaBsRvfPz86nHl81mB/00m82p+4GHZJXnZS6Xu9Zuko96vT7LtGElVnm+LeLY8Bi4DsL68b5xfagIgxlls9lBYt/pdG7d1+DFixcR8fmOH1cT/lGGy2W//fbbOYwU0mNV52U+nx9734dR3E2Lh2iV18FFHBseA9dBWD/eN64PQRjMQbFYjKOjo8hkMrG/vx+lUik6nU4kSTIo9e50OpHL5eL777+/dteQUYb/361yYXLLPi/7/U/LL/88ZKu8Ds772PBYuA7C+vG+cU2suiQNHpuDg4NeLpfrZTKZXkT0MplMr1AoTFReenR01Mtms71MJtOrVqsLHC2kg/MSlmeV59s8jg2PkesgrB/n5eps9Hq93iqDOAAAAABYBksjAQAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFb5Y9QAAAABgUTqdTrx79y6SJIl6vb7q4czdY58fzJuKMAAAAB6VdrsdlUoldnd3I5/PR61Wi263u+phXbO1tRUbGxvRbrcnfu66zy9JkiiVStHpdFY9FP5P/3smn8/H7u5ubGxsxMbGRuzu7sbe3l7s7+9P9XrVarXY399fwIgXRxAGAADAo9F/U99oNNYqHLqq3W5HkiQREVEoFCZ67rrPr91ux49//OPIZrORy+UG/9YPXu772Nraikajce9xOp3OIEy87SOfz0dERKPRGPv403xcNemxtra25v8iXFGr1WJrayv29vai0WhEp9OJTCYTxWIxisViZDKZaLfbUavVIp/Px9bWVtRqtbH7L5fL0el0Ynd3dy2/H0fZ6PV6vVUPAgAAAOap3W7H3t7e4HGhUIijo6MVjug3KpVKNBqNKBaL0Ww2p+pjHefXrw6q1+tRLpdv/H+r1YrXr18PQsCryuXyVEs7kyQZBIN9hUIhms1mZDKZa207nU7s7++PrMLLZrORzWZvPKd/jIiIs7Oz6Ha7N8Y/Kla571j1en3iEHQSw1/rTCYTBwcHI1+XJEmi0WjE27dvB+0nHWOlUolvv/023r9/PwhA15UgDAAAgEfparXOOgRFfVtbW5EkSTSbzSgWi1P3s07zuy8E6xsO8PqOj4+nDlCSJBlUVmUymfj+++9HBlp9/a//VZNEI91u99rSz/Pz81uPN+pYs8x1HMPLFcf93ugvab0a3t33el5VKpWi1WotfH6zsjQSAAAAlqTT6Uy9LHJdNRqN2N/fj2q1em9oUigURoZ/Hz58mPr4Z2dng88PDg7uDMEiIp4/f37t8X3th2Wz2Xj//v1Yzxs+VkQsNCTa39+fKgSL+Px1ODo6imw2O/i3SqUy9lLJZrMZuVwuXrx4MbLqb10IwgAAAGBJ+sv/CoXCxAHMOmq1WlGpVCKXy8XBwcFYzxnVbpY7XvYrszKZzFjVS/P4uveXGk56rEW+5v29vq4ea5qlt0dHR9fGedsSz1GazWYkSRIvXryY+LjLIggDAACAJfn2228j4vMysocuSZJ4/fp1RIwOt26TzWZvVIV1Op2p7zLZD9HGXcL39OnTqY4zbJyKvnkd6z79ZY1XjVMdN0o2m73xtSyVSmNVefWf298jbR0JwgAAAGAJri6LfPny5WoHMwf9cCSXy028zHNUcPb27duJx5AkyaBaqVKpTPz8WWSz2ZGb8q/C/v7+jaBq3GBwlK+//vra4yRJxn59+gFYrVYbu5JsmQRhAAAAsATv3r2LiM97RK1DeDKLVqs1CDmGQ5NxZLPZG+FZq9WaeG+p/t0ic7nctb2tlmWWmx3MS/+uj1fNEoJFfF5WOTy3cfcKu/raLjucHIcgDAAAgAep1WrF3t5ebG1txcbGRuTz+ahUKtHtdlc9tJFarVZERLx69Wrs9us6v6vVQdOGQaOWzk1aFdZfFjlNGDetJEnWajP44RAsYj5Lb0fd3XPUse56brfbHfs5yyIIAwAA4EHpdruxu7sbpVIpzs7O4uDgII6OjuLVq1fRbrdjd3d3rOqVUqk0CJlGfeTz+UHoVKlURrbd3d0dKxTpdruDvu4LjuY1v4jPYdNt87vvI5/Pj+yz3W4P9vOa5Q6IhULhRhXXJKFJu90e+2s6T8N3Zly1fqXhVaPuVjmpUctdx918/+pzJ9k/bhm+WPUAAAAAYFydTmcQ0BwcHES1Wh38X6FQiGq1GpVKZaygov+mvlKp3Ahghvuu1+tRqVQGx87lcvH+/fuxlzj2q8Gy2eydS/jmOb+IGIR02Ww2KpXKrcf+7rvvboRrtwUYV+/wOOneYMP29/evLZ/rL/MbZ2nfpJvkz8uHDx/mEjTNy/BNBjKZzFyW3maz2chkMteC3nH3/LoakHa73Wi1WmuxjDRCRRgAAAAPRLfbHYRExWLxWkh0Vb1en6hSqV6v3wh0Tk5ObrT78OFDRHwOf46PjycKG/pVO3eFAYuaXyaTiZOTk6hWq1EsFkd+DAcc5XL51pCrH+pFRPzkJz8ZexyjlMvlG1/HcSqIkiQZjGOZ+1DNcnfLRRg1lnmGdKPuejnu0tyr3z9HR0dzG9OsBGEAAAA8CFf3PbovLJl0Odbwkq9Go3GtEiZJktjf349MJjP28rCrz+0HFnftD7ao+d23f1atVrsWqGQymWtVX1cNBy/z2KB+uKKr2+3eW3l0dZP8WZZnjqu/19WLFy8WfqxJjAql5nkjhlF9jRuEXX1dvv3223kNaWaCMAAAANZeq9W6ti/VfQHMpFUxo8Kf169fX/s8SZJoNpsTBw39ECCTydwa2ixqfmdnZ3cGRd1u98Yyy7uCvuGAah5B2Kig7r6gr/9azaMaLEmSe/dL293djUqlslab5Ed8fn2Hjarimtao13fcr8FXX3117TnrcJOHCHuEAQAA8ABcvZvgOOHHNFUx5XI5ms3mIOxptVqDDdlbrdadywXv0g+WXr58eWubRc3v4ODgzrBq+O6C983xu+++m2ocd8lkMlEul6/t09b/uo8ae6fTGYQq89of7L5A7+zsbO1CsIjRodQ8K8JGGRW+jTL8Ne10OnMJTmclCAMAAGCtdbvda0vyFvlmul6vx+7u7uBxPyjKZrO3Lhe8Tz9YGw6d+hY5v7v6ajQaN5ZE3leJtagwaH9/f+QNC0Z9zfuh4bw2X+/voXafTqcTr1+/Xqs9wkaFXvN8jUb1NW7F2fDYxg3QFs3SSAAAANbaIpbj3SabzV4Lg5IkGSyJnEZ/Q/dMJnNrpdUy59fX7XZvVJ6Ns+xzUWFGNpu98fUZ3qct4vom+fftfTZvuVxu6u+DRRkVSs3zNRrV17QVZ+tSUScIAwAAYK0dHx9fe7zooKharc5tA/b+3SLvWm647PlF3Fx+WSwWx1r2eTXMmPcSvOG9yiLiRpVYf7+1bDa7lE3yh40K7FZplj28xjFqX69xvz+HQ7offvhhLmOalSAMAACAtbaKTbaHK39uW9Z4n3710l13i1z2/BqNxrUqtEwmE998883E/cy7wqdQKNwIWa7unRbxm03057FJ/rRyudzC9+Ea16gwcJ7fT6Ne43XY52sWgjAAAADW2vDyrGUER8N7U426u+J9roZNd+1ntcz5JUlyYx7ffPPN2MHOogOg4bElSTKoClvEJvnTODg4uHcvtWUaDsO63e5cQspRe6FNUg03/H199S6SqyQIAwAA4EFZ9F5DnU4narXajfCqVqtNtFF6v6ps0k3dFzm/Uql0rf9isTjR+BZdDVQul2+Ebf3Q6eom+etSkbUORoVTw/vOTWNUH3t7e1P3ty6vmSAMAACAtTa819CiK8JKpdJgueBwZdgkSyT7+1ndtSwyYnnza7VaMy+JHB7rIkK74WqvbrcbrVZrsMx0lcsib9NqtZa2Gfz+/v61QHbUTQOOjo5mPs6oPiapxBv+eqzLkkpBGAAAAGtt+A30PN7k36ZSqUS32x0sFyyXy9eWnnW73ajVavf20263B0HAfcvJljG/JEni9evX1/5tkiWRfcMVQYu4i+SoYKcfQK7bZvURn1/rUqm0sDtqXtWvVrz6PZPJZG5U9Q3fZGAawxVh1Wp1ou+X4UD3+fPnM49pHgRhAAAArLXh8KVfaTVv7XY7Go1GFAqFa8HC8Mb5+/v791Zt9Z9TKBTuDQ+WMb/Xr19PvCSyVqvdCFSGQ6hFVK/1A8hR1rEarFKpRCaTWUrF0+vXryObzd66fPSqWcKw4bA3k8mMDCjvcvUukaPGvCqCMAAAANbacPiSJMlgmdy4xqnW6VcdDQdf2Wz2RtBw3xLJfpg1zlLKRc+v3W5f62/cJZFHR0c3lkIOBz6Lqs677cYE89gkf56VW/1Q9LYqtXkfq9PpjAwws9nsjWW8+/v7Uy3XTJLkxt06m83mxEHW1ZB0nar4BGEAAACstVFLv4YrnIYNb2p/XyDQ30S+Xq+PfMNfrVavBUD9JWq3Hbt/vJcvX9553IjFz284jBtnSWSSJNFut0dWOV0d6zw2ZR9l1BLIcarrxjGvvbxqtdrge+C2feDmdaz9/f3BsW7bsL5cLl8LCpMkmWhPu74XL15cG/fBwcFUQdbV741pxrEwPQAAAFhz5+fnvYi49pHL5Xrn5+c32p6cnPSy2eyN9kdHRyP7bjabvYjoZbPZO8dwfHx8o8/j4+Mb7arV6mB8q55fuVy+1qZQKIw1nmKx2IuIkccfHuuiHB0djfX6TSqTydz42o2a522azWYvl8uN9fxRxxr1PTPKyclJr16v33it79P//ut/FIvFseZ3fn7eKxQK155br9fHGuuovvp93HdeLdtGr9frzTNYAwAAgEVotVojK0vK5XLs7e3F2dlZHB8fR6PRiHK5fOseSeVyebCMrN1uDypsqtXqyL2W+pIkia2trWv/lslk4v3799c21N/d3Y1utxsHBwdRrVZXNr+rc+ur1+sjq7ySJImzs7M4OTmJVqs1WNZ2W2RwtULp6OhoYUvf+l/LTCYT5+fnM/XV7XajUqncWsWWy+Xi6dOnI6vOkiSJbrc7ck+0XC4Xx8fHEx2rv2fW8NLTs7OzwWsxqpqsUCiMtRy11WrdqCqs1+u3Li1tNBrXllJmMploNptTv66NRmOwn9tdx12JFQdxAAAAMLajo6ORVTZXP8rlcq/X6137t2w22zs4OOidnJz0er3P1TbDVT3xfxVTo6pnDg4ORlZh9T9yuVzv5OSkd3JyMvi3/rFWMb9erzdyfpN8ZDKZW8d5teKnWq1OPM9x1ev1mY/R72NRH1fHtuhjHRwcTDT3arV64/upUCj0yuVyr1gs3qgAy2QyEx9jlP733rpVg/V6KsIAAAB4gGq1Wrx79y663W4kSRKZTCYKhUJUKpVBFcvu7m4Ui8V49erVtYqtRY9rf38/stlsnJyczNTPOs7vqn7Vzzyqte6ytbUVx8fHS7kr42PVbrej2WzGhw8fBtVt/Yq0bDYbuVxubt9H3W43dnd3IyLi+Ph4Jd+bdxGEAQAAwJzk8/nodDr3LrN8LEqlUrRarfVb/sbK7O3tRbvdXttzQBAGAAAAc3B1D7F1rIRZlN3d3Tg7O4vvv/9+Lnd15OHq70s3at+0dfFk1QMAAACAx+Dbb7+NiM8bjaclBIv4vFl+kiTx+vXrVQ+FFUqSJEqlUmSz2Xj//v2qh3MrQRgAAADMQbPZjIiIly9frngky5XNZuP4+DhardbgToGkS5Ikkc/n4+nTp3F8fLzWlYGCMAAAAJhRkiTRbrcj4vO+WWnTXwr37bffCsNSph+C9QPRdQ7BIgRhAAAAMLN+CNa/u2Ma9cOwDx8+xN7eXiRJsuohsWCdTid+/OMfR6VSiaOjo7UPwSJslg8AAAAzuxr6PIQwYNFqtVoUi8XIZrOrHgoL1Gq1IpvNPqg98QRhAAAAAKSCpZEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKnw/wO6HpSyM/T8igAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x900 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bins = np.linspace( -0.4, 0.4, 50 )\n",
"sns.regplot(x=ak.to_numpy(array[\"tx\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)\n",
"plt.xlabel(\"dx/dz(VELO)\")\n",
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
"mplhep.lhcb.text(\"Simulation\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n",
" expsuffix: Custom Text(0.05, 0.955, 'Simulation'))"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACi9UlEQVR4nOz9X4xbd57n/X1IyR4Z9lCscmN2C1XBtFnjWXUuMiNSmjxpIEi2i5zZABbsaZPSwI6lBOsibaOxCGrHpDW+yoVcZvV03SziEakeIJEfIVsiu9uGDaSjojwPEAR4nlUV5clNvNvDIzdSBebZrKuO2DastSWeXFSTXX/Jwz+Hh+R5vwDC9efL3/nWH5XJD39/fJZlWQIAAAAAAADGnN/tBgAAAAAAAIBBIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJx91uAOjGk08+qQcPHujYsWP6gz/4A7fbAQAAAAAANv3n//yf9ejRI504cUJfffXVQK/tsyzLGugVgT44duyY6vW6220AAAAAAIAu+f1+PXr0aKDXZEYYRlIjCPP7/ZqamnL8etVqdaDXs4OeRq8fiZ7soid7hq2nYetHoie76MmeYetp2PqR6Mkuehq9fiR6soue7Bm2ngbdT+N6x44dc/xa+xGEYST9wR/8gTY3NzU1NaWNjQ3HrzczMzPQ69lBT6PXj0RPdtGTPcPW07D1I9GTXfRkz7D1NGz9SPRkFz2NXj8SPdlFT/YMW0+D7qdxPTe2OmKzfAAAAAAAAHiCqzPCnn32WTcvv4fP59N/+k//ye02AAAAAAAA4BBXg7BKpSKfzyc39+tvXN/n87nWAwAAAAAAAJzn+aWRHJoJAAAAAADgDa5vlm9ZluLxuEKhkCvXN01T+XzelWsDAAAAAABgcFwPwvL5vF599VVXe4jH4/qLv/gLV3sAAAAAAACAs1xfGhmNRt1uQWfPnnW7BQAAAAAAADjM9Rlhk5OTbrcAtLWwsKBaraZAIOB2K030NJqG8XtET/YMY0/DZhi/R/RkzzD2NIyG7fs0bP1I9DTKhu37NGz9SPQ0yobx+zRsPQ1bP07yWS7uFn/s2DFtb2+7/o2+f/++Jicn9ejRI1f7gH0zMzPa3NzU9PS0NjY23G4HQ4rfE4w7fscxzvj9xjjj9xvjjN9v2OHm74mrSyOH6cTGYeoFAAAAAAAA/edqEJbNZl2fDSZJJ0+eVDabdbsNAAAAAAAAOMjVIOzNN98c6PU+//zzIz836F4AAAAAAAAwWK6fGjlIqVTK7RYAAAAAAADgEtdPjRyktbU1t1tAn1WrVc3MzLSsWVhY0MLCwoA6AgAAAADAu5aXl7W8vNyyplqtDqibg0YyCPv8889lmqbtesMwlMvlOroPRkO9Xtfm5mbLmlqtNqBuAAAAAADwtlqt1vZ5uptGIgj7/PPPlc1mVSqVZBhGV2NYliWfz9fnzuA2v9+vqampljXDcCADAAAAAABeEAgEND093bKmWq2qXq8PqKO9hj4Iu3z5spaWliTthFnAblNTU9rY2HC7DQyphYUF1Wo1wlCMLX7HMc74/cY44/cb44zfb9jZnmhmZsa1WWM+a4jTpZ/97GdKJBKS1JzN1Uu7Pp9Pjx496ktvcFfjH8309DRBGAAAAAAAI8TN5/RDPSNscXFR0k6AZVmWQqGQwuGwQqGQJOnpp59uO8YXX3wh0zR18+ZN3b9/39F+AQAAAAAAMLyGOggrl8vNmWCrq6uam5vreqx0Oq1nn322X60BAAAAAABgxPjdbqCVYDAoaSfE6iUEk6RQKKRnnnmmD10BAAAAAABgFA11ENZYAnn27Nm+jJfL5foyDgAAAAAAAEbPUAdhjVlgW1tbfR0PAAAAAAAA3jPUQdjf/M3fyLIslcvlvoz305/+tC/jAAAAAAAAYPQMdRB28uRJvfvuu1pZWdFvfvObnsdjaSQAAAAAAIB3DXUQJu1slB8Oh5VIJHoa5969e32bWQYAAAAAAIDRc9ztBuxYXV3VmTNn9OyzzyqTyWhyctLW/ba2tmSapiqVim7evOlwlwAAAAAAABhmIxGEffLJJ5KkSqWiVCrV1RiWZcnn8/WzLQDALpYl1a3WNX6fxJ9iAAAAAG4Z+iDs9ddfVz6flyT5fD5ZVptnWYcgAAMA59Ut6fjbrWseXpGO8ScZAAAAgEuGeo+wa9euKZfLNcOvbkKwXu4HAAAAAACA8THUM8Iapzw2ZoJFo1HFYjEFg8GO9wm7evWqPv/8cwe7BQAAAAAAwDAb6iCsXC7L5/MpGAxqbW1NzzzzTNdjzc/P6+mnn+5jdwAAAAAAABglQ700MhgMSpIuX77cUwjWGOv06dN96AoAAAAAAACjaKiDsEgkIkkKhUJ9Ge/atWt9GQeAt5mm6XYLfWVZ0qN66xtbLQIAAAAYB0O9NDKVSun27dsyDKMv4zEjDEC3yuWyVlZWlM/nFY1GVSgU3G6pbzjtEQAAAIBXDHUQFo/Hdfr0aa2srOiv//qvex7v5z//uX74wx/2oTMAw6QRUpXLZRmG0TwkIxgMKhQKaXJyUuFwWLFYTNFo9MD9E4mEDMPQ+vp682OmaapUKmllZUWlUmnsZoEBAAAAgBcNdRAmSYVCQX/0R3+kX/ziF/rLv/zLnsZaXFwkCMNQyufzSqVSHd8vHA7vCW+65fN1PtUnGAxqe3v70M8lEgkVi8WOx1xdXT00qDqMaZpaXFzU0tJSy5pyuSxJKpVKzdpwOKxoNKrZ2Vmtrq6qWCwqHA7vue/8/LwMw2jeH4NlWTsz1Vrx+6QufnUBAAAAeNhQ7xEm7ewPdvXqVb366qs9jXP//n2e0GJoJZNJbW9va319XfF4vGVtNBrV6upqs74fLMtSpVJRLpdrHlJxmFAopFwup0qlcmQIJu0E2Nvb27aCrXQ6rfX1dW1vb9sOwTKZjCYmJg6EYPF4XIVCoTle4+taXV1VMplsfm3lcllLS0tKpVLNwG7/jK/GOJZl9W2fQtjXWK7Z6tYuKAMAAACA/YZ6RtjPf/5zSdJ3vvMdTUxM6Nlnn20bEhzGNE3dvHmz3+0BfRUMBhUOh1UoFJRKpZTP5w/UNIIeJ4RCISWTyeZMqcOsr6+3DMp2CwaDikajikajikQihwbRuVxOyWTSdo+GYSgWix3YNzCZTCqXyx16n1AopFAopGg0qlwup6WlJWUyGdvXlHbCx8N+HgAAAACA0TLUQdg777yju3fvNt+3LKvlMqhWLMvqavkX4IajgrBulk92KhQKKRwOHwiu4vG47RBsv1QqdWjvnYRgpVJJsVhsz8eCwaBu3759YFljK+l0WvF4XJFIZM8ssK2trSPv0+3XDQAAAAAYLkO9NPL8+fOyLEuWtbP+hSALXnHUUrxBLdE77Dq9XPuw+3YSLpXL5b6EYLv7uXfv3p4e2AwfAAAAAMbfUAdhjRkkPp+vGYh1ewNGyVEh0eTk5GAbGQKGYWhubu7AxwuFQlchWEMwGOzbHmvDpFgsHlg6it8plUputwAAAADARUO9NPLkyZMKh8O6e/eustmswuFwV0GAYRh655139Omnn/a/SWAMHfbv7Omnn+7reHb/LScSiQOztRp7mfUqFAopnU53veR6kMrlsnK5nEqlkgzDUDAY1OTkpILBoEKhkC5cuCBp57TLbDbbctlpqVRSIpHQ5OSkcrmc/uUPev9eDivDMFQqlVQoFJoh2DC9OLL/Z9GP32sAAAAARxvqIEySLly4oNnZWb355ptdj3H69Gm9+OKLnpxNA4yyUql06Cb72Wy2b9e4fPlyMwgzTXPo9gMzTVPz8/PN0y1DoVDz0BDDMFQul1Uul5ufb9ynlUa4aJqmUqmU/tOvKo717xbDMJRIJGQYxlAve93/s6hUxu9nAQAAAAyToV4aKe2c1tavV+/PnDnTl3EADMZhG+z3smn/YYLBYEeb9g9aIpFohly5XE6VSkWFQkGFQkHr6+uqVCoHZhG1C1O88KJAKBTS+vq6tre3lU6n3W7nSF74WQAAAADDZOiDsNOnT/dt9se/+Tf/pi/jYHhUq1XNzMy0vC0vL7vdJrrQWAK43+XLl/t+rUQiIan1yZGtNJa3zc7OyufzaWJiQrFY7NCTPzuxtLTUXM6XTqcPDexCoZBWV1f3/J1st0dYLpdTKBRSKBRSoVDoqcdRsP+ghWHitZ8FAAAAxt/y8nLb5+nVatW1/oZ+aaQkPfPMM30Z59/9u3+n5557ri9jYTjU63Vtbm62rKnVagPqBv10VCjQywb5R4lGo8pmsx3PzjFNU3NzcweWb5qmqVKppFKppGw22/XG/ouLi823D5sdt1s6ndYXX3yhpaWltoFeNBrdM2vsUb3j1kaKW7OuUqmUcrlcy5r9PwsAAABg1NVqtbbP0900EkFYv6ytrbndAvrM7/dramqqZU0gEBhQN+inw073c3Ij8U6XzxmGoUgk0nb/qUbd6upqR/13s7dVNps9cibdsLhxV7oYcbsL5+XzeeXz+bZBGAAAADBuAoGApqenW9ZUq1XV6+68Ij+SQdjnn3/e0RNEwzCUy+WGesNkdGdqakobGxtut4E+Mwzj0DDHidlg3TBNs7nJeTweVywW05kzZ7S1taXV1dVDT6GMxWKqVCoKhUK2r7FbqVSytZfZ5cuXm0s9B+3G3fY1l4rSMb/08mnn+3GLYRhtZ/ABAAAA42phYUELCwsta2ZmZlybNTYSQdjnn3/e80wHy7Lk8/n63BkAJxz173x2dnbAnRyuMVvtsFle0WhUqVRKsVjswNeRSCS0vr5u6xr7A7NMJqPz5883DwqwLKl+yDkif/nDnRMlv9gyNTkR1KD+7N1/IL3xob3a1z6Qzn1PCpxwtCVXmKY51HuSAQAAAF439JvlX758WbOzs8rn86pUKrIsq6sbgNFxVBA2TCfstVrq2NjAfr9yuXzoks/DBIPBPadjmqapSCTS/N7ULen424ff9Jal7/w4eGhQ5pT3y9JX39qr/fIb6Xq5fd2oaewZN8xLUwEAAACvG+og7Gc/+5my2WwzyGJGF+CeTCYjn8/X1S0S6WxTqKOWMe8OhtwUDAbb7vcVCoUOPfG2k1Nw99cahtF8YaBX5XJZqVSq/Sy7B6b0aV5/djay57qN5X8TExPy+XxKvzAr/fcHl4TKNKR/yEhXZ6V3fTv//WVKvyibB0rz+bwikYh8Pp+OH/Pt1L97yN/9fx+Trs7q+LG9v2f9XP6ez+cVi8X2nAQaiUQOXfYq7Xw/n3nmmQMHJ+zu76jvte2fxW+ZpqmlpSXFYrHm97/RXyaTsRXEGYahpaUlzc7O7ul5989gdna2uQQYAAAAGBdDvTSycWKaz+eTZVkKhUIKh8PNJUNPP/102zG++OILmaapmzdv6v79+472C6A/hv0UvTNnztiqS6fTWlxc3BMk2J0RJknJZFKFQuHAfZqnEf7Prkn/3P6+aeVyWblcTjdv3mz2dGi4+NvwS//vFel/3AlJdsc7mUzmQCD09f/PkP67jGRWpH/12w3i/yEj/Q/7giPTkD7N6//5fyzJ/N+u77l+MplUMplUKpVqHfb91c5su8Xgki6/lWn/hXegWCwqkUgoGAzq2rVrisd3lpqWy2UlEgllMhnlcjmtr+/tPRQK6fbt2yqVSspkftfTUUthbf8s9snn8839x7LZrLLZrILBoMrlshYXF7W0tKSlpSXF4/EDJ6+apqnFxUUVi8UDYdlhJ6A29uorlUpaX1+3vb8dAAAAMMyGOggrl8vNWWCrq6uam5vreqx0Oq1nn322X60BntMIKLqxtrbW0X2PCgSGZWZKJzPTotGoisXino+Vy2XbG/+vrq4qkUgcOobKEelfxKX/zTXpROueDMPQysqK/X3W/nl4Z8xf/u7ntr6+rkgkosnJSRUKBYXDYU1OTjYDGEk7AdqfpnZCsa+3dkKrf/7b4PD/uyb9IiH9V1P/9b8YWlxcPHSGXCKRsDXr7cUX430NwkqlUvOggcuXLzdDMGnnoIZCodBcnjo/P78naAoGgwqHw9ra2toz5mE/545/Fr/VCCCDweCBYCoUCikejzd/V4rFomZnZ/cEdltbW4rFYjJNc8/3d21tTXNzc4pGo8pmswqFQs1AzzRNmaapVCp16HJfAAAAYNQMdRAWDAZ1//59pdPpnkIwaedJwjPPPNOnzgDvmZ2dHdipjUfN9twfMoyCCxcuHAix1tbWOvpeFgoFLS0t7Zlp1PQfizu3f5WT/vToUyX3L9U8dKyGE0Hpu79d+nk315wVls/nD90bLZvN6sNPyvqPa7+dufZ/juz08lf7gpPvRndCuw8SzfE6WSq6X7/3jMvlci0/v/tntv9n2omOfha/lc/nm2FjI6w6TKFQ0OzsbHM2VyKRaAZYoVBIoVBI0Wh0TxCWyWRUKBT2/FyTyaQmJyebwWCpVJJpmkOzPBkAAADo1lDvEdZ4oH/27Nm+jNfuSQ6A4TDsM8I6cVhg0c3XkU6ntb29vWeW0h6/TO3snfWg/dgdLXF74ndhUzKZPHJvtJde2HdS4r864u/tqd/135ht1K2b/6+u79rWUb+Duz/ej03x7f4sGmFZMBhUMnl04Lm7VtoJsA5bjrv767h27dqhP9f9v2tra2u2egUAYNAsS3pUb33j/DQADUMdhDVmgfVrFkivs8oADMZR4cCw7x12mMMClS+++KLrsQqFgtbX1w+fUfZ5Sfq/ztkKw3a7cbfFJ38v2HzzV//l6LL/6b/Y9TPbdZ92egmT3viw67se6tq1a8pmsyoUCm3DJmlwwWw+n29ey05wlkwm9/ze9TLrbvf1OA0TADCsWp2m3bgN8jRtAMNtqIOwv/mbv5FlWQdO4erWT3/6076MA8BZR8066mSj+WFxWHBh56CPVsLhsP7DnfXDZ139j2Xp/zZveyxL9gOl/8fnUu3B4Z+zu2Tu+r4JbYe90PHVN/b66bdgMKh0On3orLtyudy3/xd1avfeXHZnkO3+NzSK/24AABgHzFQDhtNQB2EnT57Uu+++q5WVFf3mN7/peTyWRgKj46hNxkdxeeR+fTt970+T0muVgzOw/mNxZ3aYDd88kr761t7lHtal6z1mQS+dbh+arf6qt2v0i2EYyufzKpVKCofDA9sj77A+OrX/d2wc/t0AADBqmKkGDKehDsKknX1xwuFwc8Pebt27d8+1V/MBdO7ChQuHfnwUZ7fsD376FoRJUjAk/e/XD4Zhd+0F/98+6uxyH3/WWX03/vv/j/PXaKVcLisWiymXy7XcF21QdodYdkOx/SdSjuJBEwAAAIAThvrUyIbV1VWdOXNGzz77rDKZjO2Twra2tmSapiqVim7evOlwl8DoKJfLWlxcVKFQcLuVIyWTyUNP08vlckdvGD+k9s/GaTezqFQqKZPJaH193d4FgqE9pzFKap702E6n0/G3v+6svhu/+a/OX+MoqVRK+XxeyWSyp721+qmbDfr3/3+yr+ErAAAAMMJGIgj75JNPJO1slJ1Kpboaw7Is+Xy+frYFjKz5+XnbgbJbgsGg4vG4isXino+XSiWVy2XXlql1an8IZmd2USgUUrlcVqlUsj8b6dS+cNC0F5h0+mdx4onO6rvx+7/n/DUO0wjBpN42mO+3xu+D9LuTNtstL909A4wQDAAAAPidoV8a+frrrysWi+nu3bvy+XyyLKvjG4DfaQRJsVjsyJp+L6PqdryjwojDZor1yqk9lNbW1va8byfMbwQX3Qb/kqR/Zi8ofOxYZ8M+d6qLXjr03/xPbBY+6N/vablcboZgoVDI9ub/g7B/mXCjz1Z2n7A6ajMoAQAAACcNdRB27do15XK5ZpjVbag1bGGYYRgtQ4jdyuWyUqmUZmdn5fP55PP5NDs7q0wm4/jmx530KUlLS0uKxWKamJho9plIJEZyT6dxZZpmc7+9Tp8cf/HFF33txU44FgqFDg3DSqWSlpaW+taLYRiKRCK9BU9H2H/i31/+MG7r5KBQKCTDMOyHfvtngH3v8D3W9nv8mPTkY/YucdwvXRzARLzEn+2brfjAPLzQ5qw3O3b/nWq1/NCNTefj8fieYM7OwS+7v57Lly870RYAAAAwkoZ6aWTjwX5jJlg0GlUsFlMwGOx4n7CrV6/q888/d7DbnSdIExMTtmqTyWTbsebn5w8sC5N2nqQtLS1paWmpuZmzW31KO0+4EomETNNUNBpVoVBoLuXJZDKKxWLNjw/TLIth5sSTbdM0NTc311xW1elyqX73ZHe8dDqt1dXVA4FqJpNROBzueSPzUqmkWCx2ZOjWq93/ht/7u5yOv926/uEV6Zjvd0HY0tKSZmdn2/9b3L05fjAk/TdpW/35JL33vHTp4J+aHf/VbL75v/yuFDhxeNmen+eu+7StPcT/6n+xL237NH/w6zEN6R/2hoRbW1t9+xtTLBYPhMX7Q8nDwtz9/64Mw9jzMTvLGg9z7dq1ZohtGEbLZbPlcrm5lDKbzfJ3FwAAANhlqIOwcrksn8+nYDCotbU1PfPMM12PNT8/r6effrqP3R1kZ7lKQ6tZHqZpKhKJ2NoUOZVKaX193dYMgYZ+9Sn9LkSQdkKz3X2EQiHF43FFIhGVSiVFIhGtr6/zpMyGo3723T7RL5VKSqVSzXHPnz/f8fV7WS5pd4Pvo6yuriqRSBwIhmOxmLLZrNJpe6HPbqZpKpPJKJ/PKxQKdfS7aTfEy+fzza+9efrgP9jrb3d40vh3fmSo8Wle+h92zZD7q9WDNbvs/lmapqmXT7cIwnZ59jvtazp11Pdybi6q27d/G37+dxnJrEinEjuzwz5flT7NK/1/WlX+7URzjP2hU8P+393Dwqj9e84lEglls1mFw2GVy2XlcjmFw+FmQCn97sWa1dVVXb58+dCAOZVKqVAoaGtrS9lsVrOzs3t+X/f/LI4Sj8eVzWabf5MTiYTu3bt34OtovIgi7fzOHfVvw+7v8O5/u27MhgMAAAD6zhpiExMTlt/vt3784x/3ZbxIJNKXcY4SDAYtSW1v0Wi05TjRaNSSZIXDYatQKFiVSsWqVCpWoVCw0un0oWMWCoWB97m9vd0cKxQKHVlXqVRsj2nX9PS0Jcmanp7uy3jDJplMHvkzqVQqbe+/vb1tra6uWul02gqFQh39vuz+ee2/bW9vd/X1hMPhQ8fL5XIdjXPU7384HLZWV1dtjbG9vW1ls9nm7240Gm37de2/bjAYbHudw37vHz6yLL3V+vbw0c79c7ncoV9rPB630um09Xd/l7P0p0lLwV0/3+9GLb1WOTDWfvt/HisrhcP7+T9sH/g+HyUej+/t9V/lDh3zl//31T11yWTy0PH+yxfbln7viL9Vvxe09Fer1sNHe/+ehcNhq1KpHPh57u/tqN+7A1/Drls2m7Us6/B/m/F4fM84R/2eHva17v9ZtPtbXigUml9zMBi0crlc8/8RuVyu+e+90e9hVlft/Qz21/Xr7zcAAP3WyWMs+gKGg5vP6Yc6CItGo5bf77d+9rOf9WW8crncl3EO03jSmk6nrdXV1Za3Vk+6d49zlEqlcuDJk50n5v3s07J+F9jZCTR2P8HsNPw4zLgGYevr6y2fjPfrdtjPdnt728rlci2D0lAoZOVyOduB2Pr6+p7fk8Nu6XTaVrjXsLq6emSwFgwGrXg8buVyOWt1ddVaX1+3VldXrVwuZ2Wz2T33CwaDtgPkw8LBUCh0ZPi2O6zYHZJ08mBodXW12WOhULCSyaQVjUatcDi892f0e0FL/yJu6a9WWz6wavxuHfnz/WdhS//r7M59/3frO2MeEkSFQiErHo83fweSyeShYWszmGuM+VerO+8f8Xu1P4x5+Oi3QdzusO+fhS39z9N7vr5wOHzo79D29nbLrzccDh8aAGWz2ebXEwqFrHQ6vef3fXt7e8+LFUcFTrtD6MaLGnZ/Fq3GbcjlclY0Gt0TijXud9S/z1b/Hnf/DCqVSsu6dr0BAGBHvb7z//JWt3rd3ljDGjgNa1/AMHDzOb3PsoZsJ/ldisWizp8/r6WlJf31X/+12+20NDs7K2nvSV3djhMKhfZssH0YwzCa12xYXV1tu19Sv/rcf/3t7e2Wy8qKxWJzf5tgMKjt7e2erj8zM6PNzU1NT09rY2Ojp7GGQT6fd2Sj9sOEw2Gtr6/v+ZjP5+t4nFY/x8OWMdph53e4oVgsanFxsbkXkl2hUEipVErJZLKjZaaNjev3f13BYFBnzpxRMBiUaZpaW1trLr0rFAp7vp5HddnbI8zGMSbDONYw9gQAAIaTFx43DGtfwDBw8zn9UP+Ti8fjOn36tFZWVvoy3s9//vO+jLNfsVjs7HS3I5TLZRmGoUKh0Lb2sI292wUC/epT0p5rR6PRtoHC7k2nTdPsKiQZZ8lkUtbODE3Hb/tDMEldjdMqzCwUCl2N2cnG9/F4XOvr69re3lahUFA8Hm/u4dQQCoUUDoeb+ytVKhVVKhWl0+mO91oLhUIqFAoHrift7MFWKpW0tbWl8+fPa3V1Vdvb2z1v5A8AAAAA6K+h3ixf2nlC/Ud/9Ef6xS9+ob/8y7/saazFxUX98Ic/7FNne8cNBoNtNyBvZ2VlpaNZKvufZH/xxRct6/vVp7R3w/39m0wfZfcm0ysrKwdOZAO6EQwGFY/HB/b7NOjrAQAAAAD6Z6hnhEk74cnVq1f16quv9jTO/fv3O15CZUfjmHrTNDUxMaHZ2VmlUqmuZjxduHDhwCyvVvYHUPuXSjrV5/7v49mzZzvulxlhAAbFsnaWJrS6De8mAQAAYJB43ACMv6GeEdZYyvid73xHExMTevbZZ7uahWGapm7evNnv9iTpwDJDwzCUz+ebM6bi8bguX75sa9aU3ZlVDfuPst+9JMzJPkulku3rtqorl8sdf80A0Km6ZXN/js63ygMAAGOGxw3A+BvqIOydd97R3bt3m+9blqWlpaWuxrIsq6sNwVsxDONAKLRfsVhUsVhUMplULpfr+/V3O2o/on73eefOnT3v213K+fTTT+95f21tjSAMcNCNu9LFiNtdAAAAAMDwGOog7Pz5881leD6fr+9BVq9CoZByuZxM01SlUlGpVDoQTjXk83mtra0dulF5t9bW1ppvJ5PJgfW5/77dzgjr9eRKwMtu3G1fc6m4cwrRy6ed7wcAAAAARsFQ7xGWSqUk7YRgvZ6U55RkMql0Oq1cLqdKpaLt7W1ls9lDZ0mVy2XFYrG+XXv3zK12J0H2s8+jQrRO7V/aCcCe+w+kNz60V/vaB1LtgaPteAr7hgAAMJrsvIgIwBuGekbYyZMnFQ6HdffuXWWzWYXDYU1OTnY8jmEYeuedd/Tpp5/2v8l9gsGg0um00um0isWi5ufn9wQ+pVJJS0tLSqfTPV3HMIzmbLlsNmt7VlY/+uw2wNofum1tbXU1DuB175elr761V/vlN9L1svSj7zvbkyT5fTt7ZrSrGWXsGwIAwPBhpjyATgx1ECbtnKQ4OzurN998s+sxTp8+rRdffLGrEK0X8Xhc0WhUc3Nze05aXFxc7DkIa5wuGQqFeh7LyT5b6ceMsGq1qpmZmZ7HWVhY0MLCQs/jAIPw0Wed1X/82WCCMJ+PAAgAAAxWpzPlz31PCpxwtCVgrC0vL2t5ebnncarVah+66c7QB2HRaPTA5uzdOnPmTF/G6UQwGNT6+roikUgzZDJNU6VS6cjN7dspl8vK5/MKBoNaXV0deJ/BYLAvIZbdTfZbqdfr2tzc7HmcWq3W8xjAoGx/7Ww9AADAqBjWmfJ2cbgRRk2tVuvLc3A3DX0Qdvr06ebsp171a5xuXLt2TZHI7/7Cra6udh2Ezc/PS5Ju377d8ZLIduz0OTk52ZcgrB8z9Px+v6ampnoeJxAI9DwGMCgTTzhbDwAAMCqGdaa8xJJNjKdAIKDp6emex6lWq6rX633oqHNDH4RJ0jPPPNOXcU6fdu+vSzgcVjQaValUktT9hvOpVErlclmFQkHhcLifLUqy12e3M7n2h2f9mBE2NTWljY2NnscBRsm5U9KtX9mvf+6Uc70AAAC4aVhnyrNkE+OqX9sKzczMuDazzNVTIwexeb1dg+il1xMj8/m88vm8crmc4vF4n7o6qF2f+5eY2p0dtn9z/NnZ2Y76ArDjlbD05GP2ap96XLrY/8wcAAB41LCdoDysM+W7WbIJYDBcnREWiUS0vb3t+rK0+/fvKxKJ6NGjR45eZ/cyxk6XBZZKJaVSKeVyOSWTyX63tke7PncvnZR2Zo3ZmZ1WqVT2vN/t0lDA606ekN57fmcqfTtXXxjNVxe9cAIlAACjaNhOUB7WmfLDvGQT8DpXZ4RZg3ypoI1B9LI7YOpkWWC5XFYsFlM2m3U8BJPa97l/RpjdZZ67Z44Fg8G+728GeImdfSSux0d3vwmfb2e/jFY3H0EYAACeN6wz5Yd1ySYAl4Mw3xA9ixlEL2tra8237S6TNAxDc3NzSqfTSqfTTrW2R7s+w+HwnoDM7qmeu8d14wRPoBvDNv2/Ey+NaAgGAABgV2OmvB2DnCk/rEs2Abi8NHKYZoQNwu6lgXaWBRqGoUgkomQyafvES8MwVCwWewrN7PR5/vx55fN5STsz1uzYXZfJZLruDxikYZv+7wSWIQIAgGF04650MdK+7uXT7beMGPRM+WFdsgnA5RlhknTv3j23W9gzU8lJxeLOX2c7IZVpmorFYjp//rztEEySEolEz3tv2ekzlUo1326cMNnK7ppQKMT+YMAR7Byz3W8sQwQAAINm5zHPpWL/HhsNeqb8sC7ZBODyjDBJmp+f11tvvaVgMNjxBvK92trakmEYA1lyWCwWZRiGgsGgLl++3LLWNE1FIhGFQiFlMhlbe3AZhtGcZWVn4/pe+wyHw4pGo82Aq1gstjzJslAoNN9mNhi8yu4DvmP+0d3ba1TZfcUZAAD07v4D6Y0P7dW+9oF07nujd/iPFw43AkaV60HY+vq6EomEqz1YltXxHmGlUkmJREKmaSoajSqbzR4ZQBmGofn5eUnS7du3226UPzc3J8MwZBiGZmdnO+orl8sNrM9cLtfsb3Fx8cggzDTN5jLKaDQ6kA3/gWHjhQd8w4oAEgCA4fJ+WfrqW3u1X34jXS+P5omKw7hkE8AQLI1ssCzLlVu3CoVC8xTEUqmkSCSyZ7lgQ+Nzk5OTqlQqbWdrRSIR23tuHWZ/yORUn9LOEsfGTK9yuaylpaVD6+bm5iTtnBS5e2YY4CXdPOBD7zoNIGsPHG0HAABI+uizzuo/7rB+lHC4ETB4rgdhvQZS/bh+Nw6bxZbP5zUxMaFEIqFUKqVIJKJYLKZkMqn19XWFQqG2Y/YzBHOqz93i8bhWV1cVDAaVyWSaX4Npms1wrVwuKxwO6969e21nmQHjigd87iCABABg+Gx/7Ww9ALTi6tLI7e1tNy/fk2g0qkqlomw2q1KppK2trebMq0bwc/nyZUWjUdvhjxOzpZzo87BrbG9va2lpSSsrK5qbm5NpmgoGgzpz5owKhULL/cMAL+ABnzu6CSB7XXrBfmMAALQ28YSz9QDQiqtB2MmTJ928fM9CodCBPbmG0aD6TKfTAzl4ABhFPOBzR78DSPYbAwCgd+dOSbd+Zb/+uVPO9dINXvQCRpvrSyMBwAvOdfgAbtge8I2qfgaQ/dxvzLKkR/XWNxd3DQAAwFGvhKUnH7NX+9Tj0sX22xf3jd0XvezUARhOBGEAMADD/IBvnPUzgOznfmN1Szr+dutbnSAMADCmTp6Q3nveXu3VFwZ3kjaH7ADeQBAGAAMwrA/4xl0/A0gOPAAAoH/sbCFwPT7YrQY4ZAfwBoIwABiQYXzAN+76GUBy4AEAAIP10oAfE/GiF+ANBGEAMEQG/YDPC/oVQHLgAQAA440XvQBvIAgDAHienQCSAw8AALBnVDeS50UvwBsIwgAAsIEDDwAAGO9TFXnRC/AGgjAAAGzgwAMAgNeN+6mKvOgFeANBGAAANnHgAQDAy8b9VEVe9AK8gSAMAIA+4sADAMC48sKpirzoBYy/4243AAAAAAAYfsN6qqLfJz280r6mX3jRCxhtBGEAAAAAgLaG9VRFn0861segC8B4IwgDgBE06Fc+AQAAzp2Sbv3Kfj2nKgIYRuwRBgAjyOeTjvlb33wEYQAAQJJlSY/qrW+W1X4cTlUEMA7GckbY/fv39dZbb+nv/u7v3G4FAAAAAFxVt6Tjb7eueXil/fLCxqmKl4rtr8mpigCG1VjOCDMMQ/l8Xr/+9a/1ySefqFarud0SHFKtVjUzM9Pytry87HabANCxG3fd7gAAgIM4VRFAO8vLy22fp1erVdf6G8sZYaVSSZZlKRQKNT+WyWT0zjvvuNgVnFCv17W5udmyhiDUeyxr55XPVvw+lg7CPXZCrkvFnSWuPJEAAIwaTlXcwZ6u8Kpardb2ebqbxi4Iu337tjKZjCTJ2rXQPZvNStKRYdjrr7+uUqmkYDCoWCymt956S4FAwPmG0RO/36+pqamWNfwcvadf0/8BJ9x/IL3xob3a1z6Qzn2PpSUAAIwiTrOEVwUCAU1PT7esqVarqtfrA+por7ELwjKZjOLxuC5cuKBwOCzDMHTr1i39+Mc/VjabVSqV0h/+4R/uuc+zzz4rwzCawdn6+roKhYLW19cJUYbc1NSUNjY23G4DHnfjrnQx4nYXGBXvl6WvvrVX++U30vWy9KPvO9sTAAAA0C8LCwtaWFhoWTMzM+ParLGx3CPs5s2bevHFF/XMM89obm5O2WxWW1tb+u53v9ucLdbw+uuvq1KpSNoJ0er1ura2tvSDH/xA8/PzbrQPYIjYXcLGfk6w66PPOqv/uMN6AAAAAEcbuxlhviM2/QkGg1pfX1csFtvz8VwuJ5/Pp3g8rsXFxWZtLpfTn//5n+vzzz/Xd7/7XafbBjCEWMIGJ2x/7Ww9AACjgP2zALhl7IKwiYkJ/eQnP9G//bf/9sDngsGgJiYmmu9fu3at+XZjD7HdMpmMSqWSXn31VWeaBTDUWMI2HobtgfbEE87WAwAwCtg/C4Bbxm5pZDqd1ptvvqk33njj0NMCt7e3m283ZoNFo9FDZ32dOXOmuWwSgPewhG08+Hw7py+2ug3yBNFzpzqrf67DegAAAABHG7sZYdFoVPPz87p69apyuZzi8bjOnj0rSVpZWVGlUtFf/MVfKBwOq1wuy+fzKZVKHTrWyZMnZRjGINsHMERYwob9+jG77JWw9NYv7c02fOpx6WLYfn8AAAAAWhu7IEzamem1tbWln/3sZyoWiyoWi83Pra2t6Z133tmzFDIcPvxZxt27dzU5Oel4vwCGE0vYsF8/lnGcPCG99/zOIQvtXH2BfecAAACAfhq7pZENhUJBV69e1dzcnCzL0smTJ3Xz5k2dPn1ahUJBL774ooLBoK5evXrkjLB8Pq/Z2dkBdw5gWPR7CVtjNlGrG5vCesPLp9vXXI/bqwMAAABg31jOCGtIJpNKJpOHfq5QKDTfnpiY0NmzZ/XTn/5Uf/Inf6JaraZ33nlH+Xx+z55iALyl30vY2BQWnXiJEAwAAADou7EOwuyKx+MyDEOnT5+Wb9eOye+++64CgYCLnQFwE0vYAAAAAGC8EIT9VjqdVigUUj6fVzAY1IULF/Tiiy+63RYAl718un0QxhI2AAAw6m7clS5G3O4CAJw3dkHYJ598oh/84Adt637+858rGo3umfEVj8cVj8edbA/AGGIJGwAAGGY37ravuVSUjvl5cW8YWZZUt1rX+H0723AAaG/sgrB4PK779+8rGo0qFospGo3qT//0Tw/Uzc3N6dVXX9XS0pK++93vDrxPAAAAAHDa/QfSGx/aq33tA+nc91pv99A4/KcVDv/pr7olHX+7dc3DK+xFC9g1dkFYJBLR7du3VSqVVCqVJEnBYFBnzpzZE4ydPHlS165dUzQaVbFY1B/+4R+63DkAAAAA9Nf7ZXsH/0jSl99I18vSj75/dM24H/5D0AeMv7ELworFohKJhLa2tmSapgzD0Pb2tlZXV5vBmCTFYjGdPn1a29vbSqVS+uUvf+li1wAAAADQfx991ln9x5+1DsLG3bgHfQDGMAhLJpPK5/N7ljvevn1bN2/e1LVr15ofu3XrllZXV2VZlu7du+dCpwAAAABwuH7tC7X9dWfX7bQeAEbN2AVhlmUd2PNrbm5Oc3NzWlpa0jvvvKPbt2/rwoULunPnjgzD0IULF9xpFgAAAAAO0a99oSae6Oy6ndYDwKgZuyDs/v37R37u5MmTymazunfvnjKZDBvlAwAAABhr505Jt35lv/65U871AgDDwO92A/32zDPP6Cc/+Unbmps3byqZTOrXv/71gDoDAAAAgMF6JSw9+Zi92qcely6Gne0HANw2dkFYOp3Wm2++qV/84hdta2/evKloNKparTaAzgAAAABgsE6ekN573l7t1RekwAlH2wEA141dEBYKhfTuu+8qHo/rjTfeaFkbDAZ1+vRpvfXWWwPqDgAAAAAG6+XT7Wuux+3VAcCoG7s9wqSdWWF37tzR1atXdfPmTV2+fFnz8/MKBAIHaicnJ7WysqL33nvPhU4BAF7k9+1scNyuBgCAQXmJEAyAR4zdjLCGQqGg+fl5bW1tKZ1Oa2JiQhcuXNBPf/pTffrpp/r00091+fJl5fN5mabpdrsAAA/x+aRj/tY3H0EYAAAA0HdjOSOsIZfLKRaLaX5+Xvfv31exWFSxWDxQFw6zIyQAAAAAAMC4G9sZYQ3xeFzb29t69913dfLkSVmWtecWDAZ17do1t9sEAAAAAACAw8Z6Rthu6XRa6XRad+/elWEYMgxDoVBI0WhUJ0+edLs9AAN24650MeJ2F0DvLEuqW61r/D6WWgIAAADSCAdhr7/+uv7u7/6u4/udPn1ap0+zEyQwzm7cbV9zqbizDxOnI2HU1S3p+Nutax5ekY4RhAEAAACjuzTy5s2b+s1vfuN2GwCGzP0H0hsf2qt97QOp9sDRdgAAAAAAQ2Rkg7Dt7W1997vf1euvv65PPvnE7XYADIn3y9JX39qr/fIb6XrZ2X4AAACcYmcWPABgr5FdGilJpmkqn88rn89LkqLRqGKxmOLxuL773e+62xwGolqtamZmpmXNwsKCFhYWBtQR3PbRZ53Vf/yZ9KPvO9MLAABAt9jqAcCoWl5e1vLycsuaarU6oG4OGukgTJIs63c7BJdKJZVKJWUyGQWDQZ0/f16xWEw//OEPW47x05/+VK+++qrTrcIB9Xpdm5ubLWtqtdqAusEw2P7a2XoAAACndbrVw7nvSYETjrYEALbVarW2z9PdNLJLI999911ZliWfz6fZ2VlJO6FY47a9va18Pq9EIqFjx47p7Nmz+tu//Vt9+umnB8ZaXV0dcPfoF7/fr+np6Za3QCDgdpsYoIknnK0HAABwGls9ABhlgUCg7fN0v9+9OGpkZ4Sl02lFo1ElEgltbW2pWCzKsiz9+3//73X79m2Zprlntli5XFa5vPN/iGAw2FxGKUnFYtGVrwG9m5qa0sbGhtttYIicOyXd+pX9+udOOdcLAABAN9jqAcAos7M90czMjGuzxkZ2RpgkhcNhVSoVvfrqq0okErp9+7YKhYK2trZUqVSUzWYVjUYlHZwtViwWlUqllEqlXP4qAPTTK2Hpycfs1T71uHQx7Gw/AAAAnWKrBwBwzkgHYQ3ZbFZ37tzRrVu39Md//Mf6x3/8Rz3zzDN68803devWLdXrda2uriqZTCoUCknaG4wBGB8nT0jvPW+v9uoL7KcBAACGD1s9AIBzRnZp5H7hcFj/9E//pFQqpXA4rEwmo3feeaf5+bm5Oc3NzUmS7t+/r5s3b6pQKKhUKrnVMgCHvHx65xSlVq7H7Z2w5PdJD6+0rwEAAOgXtnoAAOf4rDGcElUqlXT+/Hl95zvfUaFQ0J/8yZ+0rP2Lv/gLPXr0aIAdoleN9cTT09PsEYYDHtWl42+3rnl4Zee4cWDU8fsOAOPn/gNp+h17G+Y/9bi0ebn1LHfLkuptnvX5fZKPF/eGkp3/1/9f4tLFyGD6AfrBzef0Y/mwOBqNyjAM/cmf/InC4bB+8pOftKxtzBQDAGAc3bjrdgcAgE70e6sHn2/nBZFWN0Kw4WXn/+OXivz/HrBrLIMwaedkyEKhoJWVFb355pv6sz/7M/36178+tDaRSAy4OwAA+oMHxwAwnuxs4WB3qweMrvsPpDc+tFf72gdS7YGj7QBjYWyDsIZ4PK6trS2dPHlSoVDo0Nlh8/PzLnQGAEBveHAMAN72EiHY2Hu/bG+JrCR9+Y10vexsP8A4GPsgTNqZHba6uqrFxcW2s8MAABgVPDgGAGC8ffRZZ/Ufd1gPeJEngjBJ+vzzz3XmzBml02mtra0pFArp7//+791uCwCArvHgGACA8bb9tbP1gBcdd7uBfvj8889lGIZM05RhGKpUKjIMQ4ZhaGtrS6Zp7qn3+XyyLEvJZFKFQkGFQkG///u/707zAAB0iQfHAACMt4knnK0HvGhkg7CzZ882w69WLOvoc4Ity9KtW7f0gx/8QHfu3OlzhwAAOIsHxwAAjLdzp6Rbv7Jf/9wp53oBxsXIBmHr6+vNmV2tBINBhUKh5m12dlaTk5PN90+ePDmgjgEA6C8eHAMAMN5eCUtv/dLenqBPPS5dDDvfEzDqRjYI221iYkLnz5/fE3gRcgEAxh0PjgEAGG8nT0jvPS9dKravvfqCFDjheEvAyBvpzfJffPFFhcNhbW9vK5/Pa21tTdvb25qYmCAEAwCMvcaDYzt4cAwAwGh6+XT7mutxe3UARjgIi0ajunnzZjP8WllZkWVZSqfTmp2d1bPPPqvXX39d//AP/9B2rE8++WQAHQMA0H88OAYAAC/x/3nAtpENwmKxWPPtkydPKh6P6+bNm9ra2tKdO3f0wx/+UHfu3NHc3JyOHTums2fP6ic/+Yk+/fTTA2PlcrkBdg4AwGDx4BgAAADYMbJ7hL355ptHfi4cDisc3tkI5f79+1pdXdXNmzd15coVpdNpBYNBRaNRnT17VpJULNpYcA0AAAAALViWVG99lpf8PsnnG0w/AICDRjYIs6sxWywej0uSyuWyVlZW9LOf/UyFQkE+/i8EAAAAoA/qlnT87dY1D69Ix3gKAgCuGdmlkd0Kh8PKZrP6p3/6J62trekHP/iB2y0BAAAAAABgAMZ+Rlgr4XBYq6urOnPmjNutAAAAAECT37cze6xdDQCgM54Owhqy2azbLQAAAABAk8/HEkoAcILnlkYeZm5uzu0WAAAAAAAA4LCRCML+9m//Vp988onbbQAAAAAAAGCEjUQQ9h/+w39QLBbT3//93/c0zrVr13Ts2DH98R//sf7xH/+xT90BAAAAAABgFIxEECZJlmUpmUzqb/7mb7oeI5PJyLIs/dM//ZPC4bA+//zz/jUIAAAAAACAoTZym+XfunVLlUpFKysrHd/3mWee0f379xWNRiXtBGPdjAMAAAAAAIDRM3JB2NramhKJhM6ePatPPvlEv//7v2/7vuvr63vef/bZZ/vdHgAAAAAAQ8mypLrVusbv2zm1FBhXIxeESVKhUNDS0pLC4bBKpZL+8A//sOMx7t27p62tLQe6A+A2v096eKV9DTAO+H0HAAB21S3p+Nutax5ekY7x2AFjbCSDMElKp9MKh8MKh8MqFov6l//yX9q+7/379xWLxXTmzBkHO8QgVKtVzczMtKxZWFjQwsLCgDrCMPD5+J83vIPfdwAAAAyT5eVlLS8vt6ypVqsD6uagkQ3CJCkajerOnTv68z//c12+fFn/+l//67b3+eSTT5RIJGSapt56660BdAkn1et1bW5utqyp1WoD6gYAAAAAAG+r1Wptn6e7aaSDMEkKhUJaW1vT+fPnValU9M477xxZ++Mf/1hvvfWWLMvSxMSEXn311QF2Cif4/X5NTU21rAkEAgPqBgAAAGjtxl3pYsTtLgDAOYFAQNPT0y1rqtWq6vX6gDraa+SDMEkKBoO6deuWXnvtNV24cOHQkyAvX76spaUlWZYln8+nbDbrQqfot6mpKW1sbLjdBgAAAKAbd9vXXCpKx/zSy6ed7wcA3GBne6KZmRnXZo35XbmqQ65evaq5uTmdPXtWv/nNb5ofv337djP48vl8CofDzAYDAAAA0Df3H0hvfGiv9rUPpNoDR9sBABxh5IKwf/iHf2j5+WQyqVwupx/84Af69a9/LUnNEMyyrD3vAwAAAEA/vF+WvvrWXu2X30jXy872AwA43EgEYc8884yknSArmUw2A66jhMNhrays6MUXX9TPf/5zlUol+Xy+5ud+8IMfON4zAAAAAO/46LPO6j/usB4A0B8jEYRls1ltb2+rUChobm5O0WhUP/3pT1vep7GJ/tWrV5sf8/l8unDhgtPtAgAAAPCY7a+drQcA9MfIbJZ/8uRJvfjii3rxxRc7ut+tW7eUyWT04x//uLk/GAAAAAD008QTztbDu/w+6eGV9jUA7BmJGWG9ymazunnzpizL0r1799xuBwAAAMCYOXeqs/rnOqyHd/l8OyeNtrr5CMIA2zwRhElSPB7X2tqaVlZW3G4FwBEsS3pUb3377ZkXAAAAQ+WVsPTkY/Zqn3pcushCFQBwxcgsjeyHcDisW7duud0GgCPULen4261rHl6RjvGKFwAAGDInT0jvPS9dKravvfqCFDjheEsAgEN4ZkYYAAAAADjp5dPta67H7dUBAJzhqRlhAADgaJa1MzOzFb+PfUgAoBcvEYIBgKsIwgAAgCSWJwMAAGD8sTQSAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5w3O0GAAAAAGAc+H3Swyvta4BhduOudDHidheAc5gRBgAAbLtx1+0OAGB4+XzSMX/rm48gDC6y8//xS0X+f4/xRhAGAAAk8eAYAIBxdv+B9MaH9mpf+0CqPXC0HcA1BGEAAIAHxwAAjLn3y9JX39qr/fIb6XrZ2X4AtxCEAQAAHhwD8CzLkh7VW98sy+0ugd599Fln9R93WA+MCjbLBwAAXT04/tH3nekFAAapbknH325d8/CKdIy9vTDitr92th4YFQRhAACAB8cAAIy5iSf6W29ZO0FyK34fB0Rg+BCEYaRVq1XNzMy0rFlYWNDCwsKAOgKA0dTvB8cAAGC4nDsl3fqV/frnTrX+PLMpcZTl5WUtLy+3rKlWqwPq5iCCMIy0er2uzc3NljW1Wm1A3QDA6Or3g2MAADBcXglLb/3S3p6gTz0uXQw73xPGU61Wa/s83U0EYRhpfr9fU1NTLWsCgcCAugGA0cWDYwAAxtvJE9J7z0uXiu1rr74gBU443hLGVCAQ0PT0dMuaarWqer0+oI72IgjDSJuamtLGxobbbQDAyOPBMQAA4+/l0+3/X389vlMHdMvO9kQzMzOuzRrzu3JVAAAwdOw86OXBMQAA4+0l/j+PMUcQBgAAbOPBMQAAAEYZQRiAkXLjrtsdAAAAAABGFUEYgKFhJ+S6VCQMAwAAAAB0hyAMwFC4/0B640N7ta99INUeONoOAAAAAGAMEYQBGArvl6WvvrVX++U30vWys/0AAAA0MBsdAMYHQRiAofDRZ53Vf9xhPQAAwGHYmgEAvIUgDMBQ2P7a2XoAAID92JoBALyHIAzAUJh4wtl6AACA/diaAQC8hyAMwFA4d6qz+uc6rAcAANiPrRkAwHuOu90AAEjSK2HprV/ae1X2qceli2HnewK8xu+THl5pXwMA44KtGQDAe5gRBmAonDwhvfe8vdqrL0iBE462A3iSzycd87e++QjCAIwRtmYAAO8hCAMwNF4+3b7metxeHQAAQDtszQAA3kMQBmCkvEQIBgAA+uSVsPTkY/Zq2ZoBAMYDQZgLDMNQLBazVVsul5VKpTQ7Oyufzyefz6fZ2VllMhmZptn33hrXKRaLHd93aWlJsVhMExMTzT4TiYRKpVLf+wQAAAB6xdYMAOA9BGF9ZJpmM6xqdZudnVUoFGo7ViKRUCQSUT6fl2EYzc8ZhqGlpSVNTEwon8/3rf9MJrPnOnaVSiVNTEwok8lIkgqFgiqVirLZrMrlsmKxmGKxmCPBHQAAANALtmYAAG/h1Mg+6iSUaoRGhzFNU5FIxFYolUqltL6+rlwuZ/vahymVSlpaWurqfo3Zbclkck8foVBI8XhckUhEpVJJkUhE6+vrCgaDPfUKAAAADBJbMwDA+GBGWB8tLi7aqotGoy1nhCUSCRmGoXA43JxdValUVCgUlE6nD9Tn8/muljI2NGaf9XK/UCh0ZBhXKBQk7cxk6+Y6AAAAAAAA/cCMsD7J5/MyTVPpdLrt/l9nzpxpOU6pVFI6nVY2m93zucYMq1QqpUQioXK53Pzc/Py84vF4V73Pz89rcnJSkjpavphIJJr1rWa4NfouFosqlUrK5/NKJpNd9QoAAAAAANAtgrA+yWazCoVCB8KrbsaJRqMtxwmFQioUCpqdnW1+zDRNlUolRaPRjq7XmE22vr6uubk52/czDGPPJvjnz59vWX/hwoXmrLVMJkMQBgAAAAAABo6lkX1QLBZlGEbLWVF2lMtlGYbRXErYymGh2+4ZYnYYhqFUKqV0Oq1wuLOzoHdfOxqNtt33a/dsNdM0e1rKCQAAAAAA0A2CsD5YXFxUMBhsOyuqnZWVFSWTSdubye+f/fXFF190dL1EIqFwONzVLLbdBwPYDdF274u2srLS8TUBAAAAAAB6wdLIHpXL5eZMrImJCYVCIUWjUcVisY737Lpw4ULLTfT32x9A7V4q2U4mk1G5XFalUrF9n4b9M8/Onj1r637hcLh5EiYzwgAAAABgvN24K12MuN0FsBczwnq0fzmkYRjK5/NKJBLy+XwHNrVvJRwO254NJh3c2N5uiFYul7W0tKRcLtdR8Nawe2+wTq67v67TpZwAAAAAgOFw4277mktFe3XAIDEjrAf7N4w/TLFYVLFYVDKZVC6X6/v1d7O7Uf7c3Jzi8XjXG9bfuXNnz/t2w7unn356z/tra2sd700GAAAAAOiO3yc9vNK+pp37D6Q3PrR3zdc+kM59TwqcsFcPOI0grAehUEi5XE6maapSqahUKh0Ipxry+bzW1ta0vr7et+uvra0137YbaiUSCUnStWvXur7u/q+x2xlh3SzLBAAAAAB0x+eTjtkIutp5vyx99a292i+/ka6XpR99v/frAv1AENaj/QGUaZrK5/NaXFw8sHSxXC4rFotpdXW1L9fePcPMzomVjdlpq6urHS3B3O+osK9T+78/AAAAwKD1a4YM4CUffdZZ/cefEYRheLBHWJ8Fg0Gl02ltb2+rUCgcCJxKpZKWlpZ6vo5hGM09trLZbNtZWaZpKpFIKJlM2l5C2Wqsbuz/XmxtbfXUBwAAANArn0865m998xGEAXtsf+1sPeAkZoQ5KB6PKxqNam5ubs/G8IuLi0qn0z2Nnc1mJe0sN7Qz1tzcXHMp57Dox4ywarWqmZmZnsdZWFjQwsJCz+MAAAAAwLibeMLZegyv5eVlLS8v9zxOtVrtQzfdIQhzWDAY1Pr6uiKRSDMMM01TpVKp65lZ5XJZ+XxewWDQ1jLLpaUllcvlvu1PFgwG+xJi9bI8s6Fer2tzc7PncWq1Ws9jAAAAAIAXnDsl3fqV/frnTjnXCwarVqv15Tm4mwjCBuTatWuKRCLN91dXV7sOwubn5yVJt2/fbrskslwuK5PJKJvN9u2ExsnJyb4EYZOTkz2P4ff7NTU11fM4gUCg5zEAAAAAwAteCUtv/dLehvlPPS5d7M9TUQyBQCCg6enpnsepVquq1+t96KhzBGEDEg6HFY1GVSqVJHW/4XwqlVK5XFahULAVbCUSCYXD4Z6XYu7W7Uyu/eFZP2aETU1NaWNjo+dxAAAAAAD2nDwhvfe8dKnYvvbqC1LghOMtYUD6ta3QzMyMazPLCMIGKBaLNYOwbuTzeeXzeeVyOcXj8bb1S0tLMgxD0WhUiUSibf3uoGpxcVErKyvN9y9cuNC85pkzZ/bseWaapq1Qa//m+LOzs23vAwAYTZYl1a3WNX4fG1ADADCqXj7dPgi7Ht+pA4YJQdgA7V7G2OmywFKppFQqpVwup2Qyaes+X3zxRfO+nSqXy3vCrlAo1AzCdi/xlHZmt9mZnVapVPa83+vplQCA4VW3pONvt655eEU6RhAGAMDYeslmCMYLaBgkgrAB2h2EdbIssFwuKxaLKZvN2g7BnHTmzJk979sNwnbPOAsGg233NwMAAACOwhNnYHzwAhoGiSBsgNbW1ppvx2IxW/cxDENzc3NKp9Md7/OVzWaVzWZt18/Ozjb3LisUCkcuvwyHw3tOjrxz546tpZq7v/79YRoAAADQCZ44AwC64Xe7AS/ZvTTQzrJAwzAUiUSUTCZtB1qGYWhpaanrHu06f/588+3dSyhb2V2XyWT63hMAAAAAAEArBGEDVCzu7CRoZ2aXaZqKxWI6f/58R7O6EonEQPbeSqVSzbft7EG2uyYUCrE/GAAAAAAAGDiWRg5IsViUYRgKBoO6fPlyy1rTNBWJRBQKhZTJZJrLFVsxDKM5y8rOfl29CofDikajzYCrWCy2XB5ZKBSabzMbDEfx+3aWMLSrAQAAAACgGwRhXSqVSkokEjJNU9FoVNls9sgAyjAMzc/PS5Ju377ddqP8ubk5GYYhwzA0OzvbUV+5XK6j+l7kcrlmf4uLi0cGYaZpKp/PS9pZEjoMG/5jOPl87OMBAAAAAHAOSyO7VCgUmpvFl0olRSKRPcsFGxqfm5ycVKVSaTtbKxKJ2N5z6zCDDJlCoVBzple5XD5yb7K5uTlJOydF7p4ZBgAAAAAAMEgEYV1KJBIHPpbP5zUxMaFEIqFUKqVIJKJYLKZkMqn19XWFQqG2Y45KCNYQj8e1urqqYDCoTCbT/BpM02yGgOVyWeFwWPfu3Ws7Gw4AAAAAAMApLI3sUjQaVaVSUTabValU0tbWVnOGWCP4uXz5sqLRqO3wx+3ZUrtPtexENBrV9va2lpaWtLKyorm5OZmmqWAwqDNnzqhQKLTcPwwA4E037koXI253AQAAAC8hCOtBKBQa6J5cwy6dTts6ERPjxbKkutW6xu/b2f8LgHfcuNu+5lJROuaXXj7tfD8AAACARBAGoEd1Szr+duuah1fYBB/wkvsPpDc+tFf72gfSue9JgROOtgTAo5h5CgDYjz3CAABAX71flr761l7tl99I17vfHhOAh9mdeWqnDgDgHQRhAACgrz76rLP6jzusB4BOZ57WHjjaDgBghBCEAQCAvtr+2tl6AGDmKQCgWwRhAACgryaecLYeAJh5CgDoFkEYAADoq3OnOqt/rsN6AGDmKQCgWwRhAACgr14JS08+Zq/2qceli2Fn+wEwfph5CgDoFkEYAADoq5MnpPeet1d79QUpcMLRdgCMIWaeAgC6RRAGAAD67uXT7Wuux+3VAcB+zDwFAHSLIAwAALjiJUIwAF1i5ikAoFsEYQAAAABGDjNPAQDdIAgDAAAAMJaYeQoA2I8gDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBOOu90A0ItqtaqZmZmWNQsLC1pYWBhQRwAAAAAw/vw+6eGV9jX9cuOudDHSv/HgnOXlZS0vL7esqVarA+rmIIIwjLR6va7Nzc2WNbVabUDdAAAAAIA3+HzSsT4FXTfutq+5VJSO+aWXOQ126NVqtbbP091EEIaR5vf7NTU11bImEAgMqBsAQMOgXyUG4D38nQHGw/0H0hsf2qt97QPp3PekwAlHW0KPAoGApqenW9ZUq1XV6/UBdbQXQRhG2tTUlDY2NtxuAwCwTz9fJQaAw/B3BhgP75elr761V/vlN9L1svSj7zvbE3pjZ3uimZkZ12aNsVk+AAAAAABwxUefdVb/cYf1wH4EYQAAAAAAwBXbXztbD+xHEAYAAAAAAFwx8YSz9cB+BGEAAAAAAMAV5051Vv9ch/XAfgRhAAAAAADAFa+EpScfs1f71OPSxbCz/WD8EYQBAAAAAABXnDwhvfe8vdqrL0iBE462Aw8gCAMAAAAAAK55+XT7mutxe3VAOwRhAAAAAABgqL1ECIY+IQgDAAAAAACAJxCEAXDcjbtudwAAAAAAAEEYgB7ZCbkuFQnDAAAAAADuIwgD0LX7D6Q3PrRX+9oHUu2Bo+0AAAAAANASQRiArr1flr761l7tl99I18vO9gMAAAAAQCsEYQC69tFnndV/3GE9AAAAAAD9RBAGoGvbXztbDwAAAABAPx13uwEAo2viCWfrAUCSLEuqW61r/D7J5xtMPwAAABhdBGEAunbulHTrV/brnzvlXC8Axlfdko6/3brm4RXpGEEYAAAA2mBpJICuvRKWnnzMXu1Tj0sXw872AwAAAABAKwRhALp28oT03vP2aq++IAVOONoOAAAAAAAtEYQB6MnLp9vXXI/bqwMAAAAAwEkEYQAc9xIhGAAAAABgCBCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAw8m7cdbsDAAAAjAKCMAAAMNTshFyXioRhAAAAaI8gDAAADK37D6Q3PrRX+9oHUu2Bo+0AAABgxB13uwGgF9VqVTMzMy1rFhYWtLCwMKCOAAD99H5Z+upbe7VffiNdL0s/+r6zPQEAAOBoy8vLWl5ebllTrVYH1M1BBGEYafV6XZubmy1rarXagLoBAPTbR591Vv/xZwRhAAAAbqrVam2fp7uJIAwjze/3a2pqqmVNIBAYUDcAgH7b/trZegAAAPRXIBDQ9PR0y5pqtap6vT6gjvYiCMNIm5qa0sbGhtttAAAcMvGEs/UAAADoLzvbE83MzLg2a4zN8gEAwNA6d6qz+uc6rAcAAIC3MCMMAAAMrVfC0lu/tLdh/lOPSxfDzvcEoHuWJdWt1jV+n+TzDaYfAMPB75MeXmlfA/QDQRgAABhaJ09I7z0vXSq2r736ghQ44XhLAHpQt6Tjb7eueXhFOsYTXsBTfD7+3WNwWBoJAACG2sun29dcj9urAwAAgLcRhAEAgJH3EiEYAAAAbCAIAwAAAAAAgCewRxgAAAAAABgLHMqBdgjCAAAAAADAWOBQDrTD0kgAAAAAAAB4AkEYAAAAgKFx467bHQAAxhlBGAAAAICBsBNyXSoShgEAnMMeYQAAYKj5fTt7ebSrATDc7j+Q3vjQXu1rH0jnvicFTjjaEgDAg5gRBgAAhprPJx3zt75x8hMw/N4vS199a6/2y2+k62Vn+wEAeBNBGAAAAADHffRZZ/Ufd1gPAIAdBGEAAAAAHLf9tbP1AADYQRAGAAAAwHETTzhbDwCAHQRhAAAAABx37lRn9c91WA8AgB0EYQAAAAAc90pYevIxe7VPPS5dDDvbDwDAm4673QCA0eb3SQ+vtK8BAADedvKE9N7z0qVi+9qrL0iBE463BADwIGaEAeiJzycd87e++QjCAACApJdPt6+5HrdXBwBAN5gRBniQZUl1q3WN30eABQAABu8lQjAAgIMIwgAPqlvS8bdb1zy8Ih0jCAMAAAAAjBGWRgIAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gVMjAQAAAAyE37dzMnW7GgAAnEIQhpFWrVY1MzPTsmZhYUELCwsD6ggAAABH8fmkYwRdADDWlpeXtby83LKmWq0OqJuDCMIw0ur1ujY3N1vW1Gq1AXUDAAAAAIC31Wq1ts/T3UQQhpHm9/s1NTXVsiYQCAyoGwAAAAAAvC0QCGh6erplTbVaVb1eH1BHexGEYaRNTU1pY2PD7TYAAAAAAIDsbU80MzPj2qwxTo0EAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAA8Iwbd93uAG4iCAMAAAAAAGPBTsh1qUgY5mUEYQAAAAAAYOTdfyC98aG92tc+kGoPHG0HQ4ogDAAAAAAAjLz3y9JX39qr/fIb6XrZ2X4wnAjCAAAAAADAyPvos87qP+6wHuOBIAwAAAAAAIy87a+drcd4IAgDAAAAAAAjb+IJZ+sxHgjCAACAJ1iW9Kje+mZZbncJAAC6de5UZ/XPdViP8XDc7QYAAAAGoW5Jx99uXfPwinTMN5h+AABAf70Slt76pb0N8596XLoYdr4nDB9mhAEAAAAAgJF38oT03vP2aq++IAVOONoOhhRBGAAAAAAAGAsvn25fcz1urw7jiSAMAAAAAAB4xkuEYJ5GEAYAAAAAAABPIAgDAAAAAACAJxCEAQAA/NaNu253AAAAACcRhAEAAE+wE3JdKhKGAQAAjDOCMACH4okggHFy/4H0xof2al/7QKo9cLQdAAAAuIQgDPAgZkUA8Jr3y9JX39qr/fIb6XrZ2X4AAADgDoIwwGOYFQHAiz76rLP6jzusBwAAwGggCAM8hlkRALxo+2tn6wEAADAaCMIAj2FWBAAvmnjC2XoAAACMBoIwwGOYFQHAi86d6qz+uQ7rAQAAMBoIwgCPYVYEAC96JSw9+Zi92qcely6Gne0HAAAA7jjudgNAL6rVqmZmZlrWLCwsaGFhYUAdDb9zp6Rbv7Jfz6wIAOPg5Anpved3TsRt5+oLUuCE4y0BAACMpeXlZS0vL7esqVarA+rmIIIwjLR6va7Nzc2WNbVabUDdjIZXwtJbv7S3YT6zIgCMk5dPtw/Crsd36gAAANCdWq3W9nm6mwjCMNL8fr+mpqZa1gQCgQF1MxqYFQEAR3uJEAwAAKAngUBA09PTLWuq1arq9fqAOtqLIAwjbWpqShsbG263MXKYFQEAAAAAcIKd7YlmZmZcmzXGZvkADsWsCAAAAADAuCEIAwAAAAAAgCcQhAEAAAAAAMAT2CMMAAAAwJEsS6pbrWv8PsnnG0w/AAD0giAMAAB4gt8nPbzSvgbAXnVLOv5265qHV6Rj/PsBAIwAgjAAAOAJPh9P1AEAALyOPcIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAQE9u3HW7AwAA7CEIAwAAAHAkOyHXpSJhGABgNBx3uwEAAAAAw+n+A+mND+3VvvaBdO57UuCEoy0BQEt+n/TwSvsaeBczwgAAAAAc6v2y9NW39mq//Ea6Xna2HwBox+eTjvlb33wEYZ5GEOYCwzAUi8Vs1ZbLZaVSKc3Ozsrn88nn82l2dlaZTEamaXZ9/d1jTkxMKBKJKJVKyTCMrsaUpKWlJcViMU1MTDT7TCQSKpVKXY8JAAAA93z0WWf1H3dYDwDAoBGE9ZFpms2wqtVtdnZWoVCo7ViJREKRSET5fH5PQGUYhpaWljQxMaF8Pt9Rj0tLS5qdnd0zpmmaKpfLyufzmp2d1dLSUkdjlkolTUxMKJPJSJIKhYIqlYqy2azK5bJisZhisVjXwR0AAADcsf21s/UAAAwae4T1USehVCM0OoxpmopEIrZmZ6VSKa2vryuXy7WtjcViKpVKCgaDikajCoVCMgxD5XJ5z7UymYxCoZDi8XjbMUulUnN2WzKZ3NNHY4xIJKJSqaRIJKL19XUFg8G24wIAAMB9E084Ww8AwKAxI6yPFhcXbdU1QqijJBIJGYahcDjcnF1VqVRUKBSUTqcP1OfzeRWLxZbXzGQyKpVKymaz2t7eVqFQUDab3TN7a38P7TRmrUk7oddRYVyhUJC0M5PNzrgAAAAYDudOdVb/XIf1AAAMms+yLMvtJsZBPp9XKpVSOp1uu//XmTNnjpwVtXuc/eFUQyNQKpd/txtpMBjU9vb2kfWzs7NaXV1VNBo9sq9UKrVnVtv6+rrC4fCR9Y0ZZpKUy+WUTCaPrE0kEs2wrl2tHTMzM9rc3NT09LQ2NjZ6GsuLHtWl42+3rnl4ZWcjSQAA4F33H0jT79jbMP+px6XNy5waCQBoz83n9ARhfTI7OytJqlQqPY8TCoW0urrasq4Rbu12VNCVSCR09uzZQ2eT7WaapiYmJprvZ7PZI++z//rb29stlzwWi8XmbLBWoZ1dBGG9IQgDAAB2XV+XLrVefCBJ+m/PSy+fdr4fAMDoc/M5PU9z+6BYLMowjJb7ftnR2KursZSwlVAodGDG2O4ZYruZptk2BJN2AqrdSzZbBVu7rx2NRtvu+7V7vzHTNNsu5QQAAMBwsBNuXY8TggEARgNBWB8sLi4qGAzq/PnzPY2zsrKiZDJpezP5/bO/vvjii0Pr2s0u221ra6v59pkzZ46s272EstXyyd12h2wrKyu2ewIAAMBwe4kQDAAwIjg1skflcrk5E2tiYkKhUEjRaFSxWMzWqYu7XbhwoeUm+vvtD6D2L5XslGmaMk1T0k7IdlTAtX/m2dmzZ22NHw6Hm6dTMiMMAAAAAAAMGjPCerR/OaRhGMrn80okEvL5fAc2tW8lHA7bng0mqRlaNXQSoh3m5s2bzXFaLc9sbJDf6XX319n9vgAAAAAAAPQDQVgPDMM4EArtVywWFYlElEqlHLn+bq1OhGzHNE2lUimFw2Gtrq62DOTu3Lmz53274d3TTz+95/21tbVO2wQAAAAAAOgaSyN7EAqFlMvlZJqmKpWKSqXSgXCqIZ/Pa21tTevr6327/u4gKZlMdj2OYRiKxWIKBoO6fft222Br/9fY7YywXk/YBAAAAAAA6ARBWI/2B1CmaSqfz2txcfHA0sVyuaxYLNbR5vWt5HK55tvdnlhZLBaVSCSa709MTCibzbY8ZfKosK9T+78/AAAAGD5+n/TwSvsaAABGAUFYnwWDQaXTaaXTaRWLRc3Pz+8JfEqlkpaWlloGTXYYhtHcYyubzXa0P1gjrMvlcoeGWplMRnfu3Dlyn7BuA6z9M812n1DZrWq1qpmZmZ7HWVhY0MLCQs/jAAAAjBufTzpG0AUAkLS8vKzl5eWex6lWq33opjsEYQ6Kx+OKRqOam5vbszH84uJiz0FYNpuVtLPcsNOxSqWSKpWKotHokfucFYvFvgR2rfRjRli9Xtfm5mbP49RqtZ7HcJplSXWrdY3ft/NgFQAAAACAfqvVan15Du4mgjCHBYNBra+vKxKJNMMw0zRVKpW63ty+XC4rn88rGAx2tcwyHo8rHo/v+Vg+n1cmk9kTTmUyGSWTyQMzuYLBYF9CrE5OyDyK3+/X1NRUz+MEAoGex3Ba3ZKOv9265uEVXrEFAAAAADgjEAhoenq653Gq1arq9XofOuocQdiAXLt2TZFIpPn+6upq10HY/Py8JOn27dsdLYlsJZlMKhqNKhKJ7Am58vn8gVlhk5OTfQnCJicnex5jampKGxsbPY/jNez1AQAAAADoVL+2FZqZmXFtZpnflat6UDgc3hN8dbvhfCqVUrlcVqFQUDgc7ld7knaWWd6+fXvPx+7cuXOgrtuZXPvDs37MCEN3fD7pmL/1jSWWAAAAAIBxQxA2QLFYrKf75/P55ib3+5c29ks4HN4z9mGB3ZkzZ/a8b3d22P7N8WdnZztvEAAAAAAAoEsEYQO0exljp8sCS6WSUqmUcrmckslkv1vb48KFC823Dwu5di/xlOzPbqtUKnve73ZpKAAAAAAAQDcIwgZodxDWybLAcrmsWCymbDbreAgmac+Sy8P63D8jzG4QtjtUCwaDfdvfDAAAAAAAwA6CsAFaW1trvm13maRhGJqbm1M6nT6waf0g7A+9pJ2gbHdAdtg+YofZ/fUfNi4AAAAAAICTCMIGaPfSQDvLAg3DUCQSUTKZVDabtXUNwzC0tLTUdY+NMRqOCuzOnz/ffLtcLtsad3ddJpPpsjsAAAAAAIDuEIQNULFYlCRbM7tM01QsFtP58+dth2CSlEgket57qxFYBYPBIzflT6VSzbdLpVLbMXfXhEIh9gcDAAAAAAADd9ztBryiWCzKMAwFg0Fdvny5Za1pmopEIgqFQspkMrb24DIMoznLavceX91YXFyUJF27du3ImnA4rGg02gy4isViy5MsC4VC821mgwEAAAAAADcQhHWpVCopkUjINE1Fo1Fls9kjAyjDMDQ/Py9Jun37dtuN8ufm5mQYhgzD0OzsbEd95XK5Ax9bWlrSysqKotGoLl++3PL6mUxGpmkqnU63DLYa12r0t7i4eGS9aZrK5/OSdpaEDmLDfwAAAAAAgP1YGtmlQqHQPAWxVCopEonsWS7Y0Pjc5OSkKpVK29lakUjE9p5bh9kfMpmmqUwmo3K5rKWlJU1MTBw5IyuRSGhpaUnZbNbWcsxQKNSc6dUY/zBzc3OSdpZa7p4ZBgAAAAAAMEgEYV1KJBIHPpbP5zUxMaFEIqFUKqVIJKJYLKZkMqn19XWFQqG2Y/YzBJN2wqf9120EYolEQplMRrFYTBMTE5J2NvTv5HTKeDyu1dVVBYNBZTKZ5tdgmmYzBCyXywqHw7p3717b2XAAAAAAAABO8VmWZbndxKgyDEPZbFalUklbW1syTVPBYFCTk5MKh8O6cOGCotGo6+GPaZpaXFxUqVSSYRgH+mxsyt9rn40lmLuvcebMGaVSqbbLLDs1MzOjzc1NTU9Pa2Njo69jD6tHden4261rHl6RjhFvAwAAAACGmJvP6QnCMJIIwg5HEAYAAAAAGHZuPqfnKTMAAAAAAAA8gVMjAQAAOmRZUr3NnHq/T/L5BtMPAAAA7CEIAwAA6FDdsrlcnSAMAABgqLA0EgAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAOuHHX7Q4AAACwH0EYAABAh+yEXJeKhGEAAADDhiAMAACgA/cfSG98aK/2tQ+k2gNH2wEAAA6wLOlRvfXNstzuEt047nYDAAAAo+T9svTVt/Zqv/xGul6WfvR9Z3sCAAD9Vbek42+3rnl4RTrmG0w/6B9mhAEAAHTgo886q/+4w3oAAAA4hyAMAACgA9tfO1sPAAAA5xCEAQAAdGDiCWfrAQAA4Bz2CMNIq1armpmZaVmzsLCghYWFAXUEABh3505Jt35lv/65U871AgAAMGyWl5e1vLzcsqZarQ6om4MIwjDS6vW6Njc3W9bUarUBdQMA8IJXwtJbv7S3Yf5Tj0sXw873BOxnWTsbPbfi90k+NnkGAPRZrVZr+zzdTQRhGGl+v19TU1MtawKBwIC6AQB4wckT0nvPS5eK7WuvviAFTjjeEnAAp50BANwSCAQ0PT3dsqZaraperw+oo70IwjDSpqamtLGx4XYbAACPefl0+yDsenynDgAAwEvsbE80MzPj2qwxNssHAABwwEuEYAAAAEOHIAwAAAAAAACeQBAGjJEbd93uAAAAAACA4UUQBowIOyHXpSJhGAAAsIfHDAAALyIIA0bA/QfSGx/aq33tA6n2wNF2AADAkOMFNAAADsepkcAIeL8sffWtvdovv5Gul6Uffd/ZngDAy/w+6eGV9jWAGzp9Ae3c96TACUdbAgBgaDAjDBgBH33WWf3HHdYDADrj80nH/K1vPoIwuKSbF9AAAPAKgjBgBGx/7Ww9AAAYH7yABgDA0QjCgBEw8YSz9QAAYHzwAhoAAEcjCANGwLlTndU/12E9AAAYH7yABgDA0QjCgBHwSlh68jF7tU89Ll0MO9sPAAAYXryABgDA0QjCgBFw8oT03vP2aq++wMlPAAB4GS+gAQBwNIIwYES8fLp9zfW4vToAADC+eAENAICjEYQBY+QlQjAAACBeQAMA4CgEYQAAAIAH8QIaAMCLCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA84bjbDQAAAADoL79PenilfQ0AAF5DEAYAAACMGZ9POkbQBQDAASyNBAAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAAA6dOOu2x2gGwRhAAAAAAAAu9gJuS4VCcNGEUEYAAAAAADAb91/IL3xob3a1z6Qag8cbQd9RhAGAAAAAADwW++Xpa++tVf75TfS9bKz/aC/jrvdANCLarWqmZmZljULCwtaWFgYUEcAAAAAgFH20Wed1X/8mfSj7zvTyyhaXl7W8vJyy5pqtTqgbg4iCMNIq9fr2tzcbFlTq9UG1A0AAAAAYNRtf+1s/bir1Wptn6e7iSAMI83v92tqaqplTSAQGFA3AAAAAIBRN/GEs/XjLhAIaHp6umVNtVpVvV4fUEd7EYRhpE1NTWljY8PtNgAAAAAAY+LcKenWr+zXP3fKuV5GkZ3tiWZmZlybNcZm+QAAAAAAAL/1Slh68jF7tU89Ll0MO9sP+osgDAAAAAAA4LdOnpDee95e7dUXpMAJR9tBnxGEAQAAAAAA7PLy6fY11+P26jBcCMIAAAAAAAA69BIh2EgiCAMAAAAAAIAnEIQBAAAAAADAE4673QAAAAAAAMC4siypbrWu8fskn28w/XgdQRgAAAAAAIBD6pZ0/O3WNQ+vSMcIwgaCpZEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCccd7sBAPb4fTtH6rarAQAAAAAAhyMIA0aEzycdI+gCAAAAAKBrLI0EAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ITjbjcA9KJarWpmZqZlzcLCghYWFgbUEQAAAAAA3rW8vKzl5eWWNdVqdUDdHEQQhpFWr9e1ubnZsqZWqw2oGwAAAAAAvK1Wq7V9nu4mgjCMNL/fr6mpqZY1gUBgQN0AAAAAAOBtgUBA09PTLWuq1arq9fqAOtqLIAwjbWpqShsbG263AQBA1yxLqluta/w+yecbTD8AAAC9sLM90czMjGuzxgjCAAAAXFS3pONvt655eEU6RhAGAMDA+H07//9tV4PRQxAGAAAAAACwi8/Hi1Djyu92AwAAAAAAAMAgEIQBAAAAAADAEwjCAAAAhtyNu253AAAAMB4IwgAAAFxkJ+S6VCQMAwAA6AeCMAAAAJfcfyC98aG92tc+kGoPHG0HAABg7BGEAQAAuOT9svTVt/Zqv/xGul52th8AAIBxRxAGAADgko8+66z+4w7rAQAAsBdBGAAAgEu2v3a2HgAAAHsRhAEAALhk4gln6wEAALAXQRgAAIBLzp3qrP65DusBAACwF0EYAACAS14JS08+Zq/2qceli2Fn+wEAAO64cdftDryDIAwAAMAlJ09I7z1vr/bqC1LghKPtAAAAB9gJuS4VCcMGhSAMAADARS+fbl9zPW6vDqPNsqRH9dY3y3K7SwBAJ+4/kN740F7tax9ItQeOtgNJx91uAAAAAK29RAjmCXVLOv5265qHV6RjvsH0AwDo3ftl6atv7dV++Y10vSz96PvO9uR1zAgDAAAAAABwwEefdVb/cYf16BxBGAAAAAAAgAO2v3a2Hp1jaSQAAICL/L6d5W7tagAAwOiZeMLZenSOGWEAAAAu8vmkY/7WNx9BGH6LE8UAYLScO9VZ/XMd1qNzBGEAAADAELATcl0qEoYBwCh5JSw9+Zi92qcely6Gne0HBGEAAACA6+4/kN740F7tax9ItQeOtgMA6JOTJ6T3nrdXe/UFKXDC0XYggjAAAADAde+Xpa++tVf75TfS9bKz/QAA+ufl0+1rrsft1aF3BGEAAACAyz76rLP6jzusBwAMt5cIwQaGIAwAAABw2fbXztYDAIAdBGEAAACAyyaecLYeAADsIAgDAAAAXHbuVGf1z3VYDwAAdhCEAQAAAC57JSw9+Zi92qcely6Gne0HAIBxddztBoBeVKtVzczMtKxZWFjQwsLCgDoCAADo3MkT0nvPS5eK7WuvviAFTjjeEgAAXVleXtby8nLLmmq1OqBuDiIIw0ir1+va3NxsWVOr1QbUDQAAQPdePt0+CLse36kDAGBY1Wq1ts/T3UQQhpHm9/s1NTXVsiYQCAyoGwAAAGe9RAgGABhygUBA09PTLWuq1arq9fqAOtqLIAwjbWpqShsbG263AQAAAAAAZG97opmZGddmjbFZPgAAAAAAADyBGWEAAADAEPD7pIdX2tcAAIDuEYQBAAAAQ8Dnk44RdAEA4CiWRgIAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAXGIahWCxmq7ZcLiuVSml2dlY+n08+n0+zs7PKZDIyTbOr6zsxpiQtLS0pFotpYmKiOWYikVCpVOp6TAAAAAAAgH4hCOsj0zSbwVKr2+zsrEKhUNuxEomEIpGI8vm8DMNofs4wDC0tLWliYkL5fL6j/vo9piSVSiVNTEwok8lIkgqFgiqVirLZrMrlsmKxmGKxWE8hGwAAAAAAQK+Ou93AOOkkQGqERocxTVORSGRPUHWUVCql9fV15XK5lnVOjCnthGCN2W3JZHLPfUKhkOLxuCKRiEqlkiKRiNbX1xUMBtuOCwAAAAAA0G/MCOujxcVFW3XRaLTljLBEIiHDMBQOh5uzqyqVigqFgtLp9IH6fD6vYrHY8ppOjNmYYSbthF5HBWeFQkHSzqyzRj0AAAAAAMCg+SzLstxuYhzk83mlUiml0+m2+3+dOXPmyFlRu8fJZrOH1jQCpXK53PxYMBjU9vb2wMaUpFgs1tz/K5fLKZlMHlmbSCSawVq7WjtmZma0ubmp6elpbWxs9DQWAAAAAABOeVSXjr/duubhFemYh6YqufmcniCsT2ZnZyVJlUql53FCoZBWV1db1hmG0bxmw+rqqqLR6EDG3F+7vb3dcsljsVhszgZrF7DZQRAGAAAAABgFBGEHufmc3kPfZucUi0UZhtFy3y87yuWyDMNoLiVsJRQKHZjdtXs2l5NjStpTF41G2+77FY/Hm2+bptl22SUAAAAAAEC/EYT1weLiooLBoM6fP9/TOCsrK0omk7Y3k98/U+uLL74YyJjS3oMBwuGwrbF374u2srJi6z4AAAAAAAD9wqmRPSqXy81ZUxMTEwqFQopGo4rFYntmQdlx4cKFlpvo77c/gNq/rNGpMffPEjt79qztsRunVjIjDAAAAAAADBozwnq0fzmkYRjK5/NKJBLy+XwHNqBvJRwO2565Je0sMdztsMDLiTEbG+S3qjnM/jq73xcAAAAAAIB+IAjrgWEYB0Kh/YrFoiKRiFKplCPX3+2wTe2dGPPOnTt73rcbtD399NN73l9bW+usOQAAAAAAgB6wNLIHoVBIuVxOpmmqUqmoVCodCJIa8vm81tbWtL6+3rfr7w6SksnkwMbc/zV2OyOs1xM2AQAAAAAAOkEQ1qP9YZFpmsrn81pcXDywzLBcLisWi2l1dbUv187lcs23ez2xspMxjwr7OrX/+wMAAAAAAOAkgrA+CwaDSqfTSqfTKhaLmp+f3xP4lEolLS0tKZ1O93QdwzCae2xls9mONsTvdcxuA6z9Syi3tra6Gme3arWqmZmZnsdZWFjQwsJCz+MAAAAAADCulpeXtby83PM41Wq1D910hyDMQfF4XNFoVHNzc3s2hl9cXOw5CMtms5J2lhv2OpaTY7bSjxlh9Xpdm5ubPY9Tq9V6HgMAAAAAgHFWq9X68hzcTQRhDgsGg1pfX1ckEmmGYaZpqlQqdb25fblcVj6fVzAY7Nsyy07GDAaDfQmxOjnN8ih+v19TU1M9jxMIBHoeAwAAAACAcRYIBDQ9Pd3zONVqVfV6vQ8ddY4gbECuXbumSCTSfH91dbXrIGx+fl6SdPv27b4siex0zMnJyb4EYZOTkz2PMTU1pY2NjZ7HAQAAAAAArfVrW6GZmRnXZpYRhA1IOBxWNBpVqVSS1P2G86lUSuVyWYVCQeFwuC+9dTpmtzO59odn/ZgRBgAAAADAMPP7pIdX2tdgMPxuN+AlsVisp/vn83nl83nlcjnF4/G+9NTNmGfOnNnzvt3ZYfs3x5+dnbV1PwAAAAAARpXPJx3zt775CMIGhiBsgHYvOex0WWCpVFIqlVIul1MymexLP92OuXuJp2R/dlulUtnzfrdLQwEAAAAAALpBEDZAu4OwTpYFlstlxWIxZbPZvoVgvYy5f0aY3SBs98yxYDDYt/3NAAAAAAAA7CAIG6C1tbXm23aXSRqGobm5OaXTaaXT6b700euY4XB4T5B3584dW/fb/fXvD9MAAAAAAACcRhA2QLuXBtpZFmgYhiKRiJLJpLLZrK1rGIahpaUlx8c8f/588+1yuWxrnN11mUzG1n0AAAAAAAD6hSBsgIrFoiTZmoVlmqZisZjOnz9vO7CSpEQicWTI1s8xU6lU8+3GSZit7K4JhULsDwYAAAAAAAbuuNsNeEWxWJRhGAoGg7p8+XLLWtM0FYlEFAqFlMlkbO3BZRhGc5ZVOBx2fMxwOKxoNNoMuIrFYstTJwuFQvNtZoMBAAAAAAA3+CzLstxuYhSVSiUlEgmZpqloNKpsNntoACX9bjmiaZpaX18/sq4hEonYXm6431EnQDoxpmEYmp2dlbQTjK2vrx96f9M0NTExIWlnSejq6mpXfew2MzOjzc1NTU9Pa2Njo+fxAAAAAADAYLj5nJ6lkV0qFArNUxBLpZIikcie5YINjc9NTk6qUqk4GoJJ6nsIdtSY0s4Sx8ZMr3K5fOTeZHNzc5J2TorcPTPMCyxLelRvfSOKBgAAAABgMAjCupRIJA58LJ/Pa2JiQolEQqlUSpFIRLFYTMlkUuvr6wqFQm3H7Hdg5cSYu8Xjca2urioYDCqTyTSvZ5pmMwQsl8sKh8O6d+/entMmvaBuScffbn2rE4QBAAAAADAQLI3sgWEYymazKpVK2trakmmaCgaDmpycVDgc1oULFxSNRj0T/iwtLWllZUWGYTS/F2fOnFEqlWq5f1g3RmVp5KP6TtjVysMr0jEiaQAAAACAR7j5nJ4gDCOJIAwAAAAAgNHk5nN6To0EAAAYE5bVfsm93yf5fIPpBwAAYNgQhAEAAIyJxt6UrTy8Ih0jCAMAAB7FgiwAAAAAAAB4AkEYAAAAAAAAPIEgDAAAwENu3HW7AwAAAPewRxgAAMCYsBNyXSrunFb88mnn+/EKDikAAGB0EIQBAACMgfsPpDc+tFf72gfSue9JgROOtuQZHFIAAMDoYGkkAADAGHi/LH31rb3aL7+Rrped7QcAAGAYEYQBAACMgY8+66z+4w7rAQAAxgFBGAAAwBjY/trZevSGQwoAABgOBGEAAABjYOIJZ+txNLuHFBCGAQDgPoIwAACAMXDuVGf1z3VYj8N1ekhB7YGj7QAAgDYIwgAAAMbAK2Hpycfs1T71uHQx7Gw/XsEhBQAAjBaCMAAAgDFw8oT03vP2aq++IAVOONqOZ3BIAQAAo4UgDAAAYEy8fLp9zfW4vTrYwyEFAACMluNuNwD0olqtamZmpmXNwsKCFhYWBtQRAADD7SVCsL7ikAIAAPZaXl7W8vJyy5pqtTqgbg4iCMNIq9fr2tzcbFlTq9UG1A0AAO7y+6SHV9rXoH/OnZJu/cp+PYcUAADGXa1Wa/s83U0EYRhpfr9fU1NTLWsCgcCAugEAwF0+n3SMoGugXglLb/3S3ob5HFIAAPCCQCCg6enpljXValX1en1AHe3lsyzLcuXKQA9mZma0ubmp6elpbWxsuN3OkR7VpeNvt655eEU6xm59AACMrOvr0qVi+7r/9jz7swEAILn7nJ6n3wAAAEAPOKQAAIDRQRAGAAAAOIxDCgAAGA4EYQAAAAAAAPAENssHAAAAesBpnQAAjA6CMAAAAKAHnNYJAMDoYGkkAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAxw2Y27bncAAAAAAIA3EIQBDrITcl0qEoYBAAAAADAIBGGAQ+4/kN740F7tax9ItQeOtgMAAAAAgOcRhAEOeb8sffWtvdovv5Gul53tBwAAAAAAryMIAxzy0Wed1X/cYT0AAAAAAOjMcbcbAMbV9tfO1gMA4DWWJdWt1jV+n+TzDaYfAAAwegjCAIdMPOFsPQAAo6Cf4VXdko6/3brm4RXpGEEYAAA4AkEY4JBzp6Rbv7Jf/9wp53oBAMAthFcAAGCYsEcY4JBXwtKTj9mrfepx6WLY2X4AAPCCG3fd7gAAAAwzgjDAISdPSO89b6/26gtS4ISj7QAAMPLshFyXioRhAADgaARhgINePt2+5nrcXh0AAOPKTnB1/4H0xof2xnvtA6n2oKeWAADAmCIIA1z2EiEYAGCM9WsW1/tl6atv7V3zy2+k62V7tQAAwFsIwgAAAOCIfs7i+uizzq79cYf1AADAGwjCAAAA4Ih+zuLa/rqza3daDwAAvOG42w0AvahWq5qZmWlZs7CwoIWFhQF1BAAAGrqZxfWj7x/+uYknOhur03oAANAfy8vLWl5ebllTrVYH1M1BBGEYafV6XZubmy1rarXagLoBAAC79XMW17lT0q1f2R/ruVOdXRsAAPRHrVZr+zzdTQRhGGl+v19TU1MtawKBwIC6AQAAu/VzFtcrYemtX9pbavnU49LFcGfXBgAA/REIBDQ9Pd2yplqtql6vD6ijvQjCMNKmpqa0sbHhdhsAAOAQ/ZzFdfKE9N7zOydMtnP1BSlwwv51AQBA/9jZnmhmZsa1WWNslg8AAABHvBKWnnzMXq2dWVwvn24/zvW4vToAAOBNBGEAAABwRGMWlx39msX1EiEYAABogSAMAAAAB1iW9Kje+mZZ7cdhFhcAABgm7BEGAACAA+qWdPzt1jUPr0jHfL1fy+4sLr9v55rtagAAAI5CEAYAAADH9DO88vn6E7xJO7PZ6m1mtPl9O9cEAADjgyAMAAAAXblxV7oYaV3Tz/CqnwY54w0AAAwP9ggDAADAATfutq+5VLRXBwAAMCwIwgAAALDH/QfSGx/aq33tA6n2wNF2XEPIBwDA+CEIAwAAwB7vl6WvvrVX++U30vWys/04gRlvAAB4E0EYAAAA9vjos87qP+6w3m3MeAMAwLsIwgAAALDH9tfO1rvNCzPeAADA4QjCAAAAsMfEE87Wu23cZ7wBAICjEYQBAABgj3OnOqt/rsN6t437jDcAAHA0gjAAAADs8UpYevIxe7VPPS5dDDvbT7+N+4w3AABwNIIwAAAA7HHyhPTe8/Zqr74gBU442k7fjfuMNwAAcDSCMAAAABzw8un2Ndfj9uqGzbjPeAMAAEcjCAMAAEBXXhrBEEwa/xlvAADgaMfdbgAAAADDx++THl5pXzOqXj4tXSq2rhnVGW8AAOBoBGEAAAA4wOeTjo1w0NUPozrjDQAAHI2lkQAAAAAAAPAEZoQBAADAc8Z96ScAADgcQRgAAAA8h6WfAAB4E0sjAQAAAAAA4AnMCAMcxLILAAAAAACGB0EY4CCWXQAAAAAAMDxYGgkAAAAAAABPIAgDAAAAAACAJ7A0EiOtWq1qZmamZc3CwoIWFhYG1BEAAAAAAN61vLys5eXlljXVanVA3RxEEIaRVq/Xtbm52bKmVqsNqBsAAAAAAJxjWVLdal3j9+3sV+2WWq3W9nm6mwjCMNL8fr+mpqZa1gQCgQF1AwAAAACAc+qWdPzt1jUPr7h7aFsgEND09HTLmmq1qnq9PqCO9vJZltUmSwSGz8zMjDY3NzU9Pa2NjQ232wEAAAAAwHGP6jaDsCHfEd7N5/RD/q0BAAAAAAAA+oMgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxx3uwGgF9VqVTMzMy1rFhYWtLCwMKCOAAAAAADwruXlZS0vL7esqVarA+rmIIIwjLR6va7Nzc2WNbVabUDdAAAAAADgbbVare3zdDcRhGGk+f3+/397d+zbOJr/d/yr2bnDBgkcygscMPA0RzVpQ3n/AlNdgqSQPECCJJXFIOUWEhZXHwypmDKIuN0vSOEhiwRJJ85fMBbTphG3mcEAB6zFDBLkcHdrppiQkShKIiVSpMT3CxBg2RSfh9Iji/74+zyUV69ebd3m4uLiSL0BAAAAAKDeLi4u5Orqaus2nz9/lufn5yP1aFUjCIKglJaBA7x+/Vo+ffokV1dX8vHjx7K7AwAAAABA4X59Fnn5h+3b/O2PIt9UfEX4Mv+mr/hTAwAAAAAAAOSDIAwAAAAAAAC1QBAGAAAAAABwJv7Tfy+7B9VGEAYAAAAAAHAC0oRc/8YmDNuGIAwAAAAAAKDi/uefRf7df0m37b/9zyJf/lxod04WQRgAAAAAAEDF/UdX5H//Nd22/+svIn/nFtufU0UQBgAAAAAAUHH/9X9k2/6/Zdy+LgjCAAAAAAAAKm7xf4rdvi4IwgAAAAAAACqu+feK3b4uCMIAAAAAAAAq7p/+o2zb/5OM29cFQRgAAAAAAEDF/StN5O//Jt22/+C3Iv9aK7Y/p4ogDAAAAAAAoOL+4bci//6fpdv2P/xzkYtvC+3OySIIAwAAAAAAOAH/8h/v3ubvuum2qyuCMAAAAAAAgDPxLwjBtiIIK4HnedLpdFJt67quGIYhrVZLGo2GNBoNabVaMhwOxff9XPtj2/ZB+xmPx9LpdKTZbEb97PV64jhOLv0EAAAAAAA4BEFYjnzfj8KqbbdWqyWqqu7cV6/Xk3a7LaZpiud50c88z5PxeCzNZlNM0zyov71eT1qtljiOI09PT3vtx3EcaTabMhwORUTEsiyZz+cyGo3EdV3pdDrS6XRyC+4AAAAAAAD28bLsDpyTLKFUGBol8X1f2u32Svi1iWEYMpvNZDKZpG7b9325v7+X8Xic+jGbOI4TVbf1+/2VfqiqKt1uV9rttjiOI+12W2azmSiKcnC7AAAAAAAAWVERlqP7+/tU2+m6vrUirNfried5omlaVF01n8/FsiwZDAZr25ummXpa43g8lna7La7rptp+m7CiTORr6LUpjLMsS0S+VrKF2wMAAAAAABwbFWE5MU1TfN+XwWCwc/2v6+vrrftxHEcGg4GMRqOVn4UVVoZhSK/XWwmz7u7upNvtbm3XdV3RdT0K00zTFMMwdh3aRr1eL5ruuK3CLey3bdviOI6Ypin9fn/vdgEAAAAAAPbRCIIgKLsT56DVaomIyHw+P3g/qqrKdDrdup3neVGboel0Krqup27LdV1pt9vR/clkkjqgire/WCy2Tnm0bTuqBlMURRaLRep+Jnn9+rV8+vRJrq6u5OPHjwftCwAAAACAU/Drs8jLP2zf5m9/FPmm4vP/yvybvuJPzWmwbVs8z9taFZWG67rieV40lXAbVVXXKsayTnc8ZK2u5bZ1Xd+5r+VqNd/3D75CJQAAAAAAQFYEYTm4v78XRVHk9vb2oP08PDxIv99PHVDFq79++eWXg9rPYvnCAJqmpXrM8rpoDw8PufcJAAAAAABgG9YIO5DrulElVrPZFFVVRdd16XQ6O9fsinvz5s3WRfTj4gFUfKpkUeKVZ99//32qx2maFl0Jk4owAAAAAABwbFSEHSg+HdLzPDFNU3q9njQajbVF7bfRNC3TdMVwofpQlhDtEI7j7NVufLs8rlwJAAAAAACQFkHYATzPWwuF4mzblna7fdDVGbe1vyzLQvmH+PDhw8r9tOHdd999t3L/8fExry4BAAAAAADsxNTIA6iqKpPJRHzfl/l8Lo7jrIVTIdM05fHxUWazWW7tLwdJaa/2mIf4Me5bEXboFTYBAAAAAACyIAg7UDyA8n1fTNOU+/v7tamLrutKp9OR6XSaS9uTyST6+tArVmaxKezLKv78AAAAAAAAFImpkTlTFEUGg4EsFguxLGtt2qDjODIejw9ux/O8aI2t0Wh0tPXBRPYPsOLPxdPT0+GdAQAAAAAASImKsAJ1u13RdV1ubm5WFoa/v7+XwWBw0L5Ho5GIfJ1ueOi+ypJHRdjnz5/l9evXB+/nhx9+kB9++OHg/QAAAAAAcK7evn0rb9++PXg/nz9/zqE3+yEIK5iiKDKbzaTdbkdhmO/74jjO3ovbu64rpmmKoii5TbPMQlGUXEKsLFfI3OT5+Vk+ffp08H6+fPly8D4AAAAAADhnX758yeVv8DIRhB3JTz/9JO12O7o/nU73DsLu7u5EROT9+/dHnRIZury8zCUIu7y8PHgfL168kFevXh28n4uLi4P3AQAAAADAObu4uJCrq6uD9/P582d5fn7OoUfZEYQdiaZpouu6OI4jIvsvOG8YhriuK5ZliaZpeXYxtX0rueLhWR4VYa9evZKPHz8evB8AAAAAALBdXssKvX79urTKMhbLP6JOp3PQ403TFNM0ZTKZSLfbzalX2V1fX6/cT1sdFl8cv9Vq5dUlAAAAAACAnQjCjmh5GmPWaYGO44hhGDKZTKTf7+fdtUyWp3iKpK9um8/nK/f3nRoKAAAAAACwD4KwI1oOwrJMC3RdVzqdjoxGo9JDMJH1irC0Qdhy5ZiiKKWsbwYAAAAAAOqLIOyIHh8fo6/TTpP0PE9ubm5kMBjIYDAoqmuZaJq2EuR9+PAh1eOWjz8epgEAAAAAABSNIOyIlqcGppkW6HmetNtt6ff7MhqNUrXheZ6Mx+O9+5jW7e1t9LXruqkes7zdcDjMvU8AAAAAAADbEIQdkW3bIiKpKrt835dOpyO3t7epQzARkV6vd5S1twzDiL4Or4S5zfI2qqqyPhgAAAAAADi6l2V3oC5s2xbP80RRFPnxxx+3buv7vrTbbVFVVYbDYao1uDzPi6qsNE1L1ae0V3tMomma6LoeBVy2bW+9kqVlWdHXVIMBAAAAAIAyEITtyXEc6fV64vu+6Louo9FoYwDleZ7c3d2JiMj79+93LpR/c3MjnueJ53nSarUy9WsymaTeNh6wZQ3GJpNJ1L/7+/uNQZjv+2Kapoh8nRJahQX/AQAAAABA/TA1ck+WZUXBkeM40m63V6YLhsKfXV5eynw+31mt1W63U6+5lSRtyOT7/lpl1sPDQ6a2VFWNKr1c1924NtnNzY2IfL1S5HJlGAAAAAAAwDERhO2p1+utfc80TWk2m9Lr9cQwDGm329LpdKTf78tsNhNVVXfus8gQzPd96fV60ul0pNlsrlWEua4rjUZDOp1O6r50u12ZTqeiKIoMh8Pocb7vRyGg67qiaZr8/PPPO6vhAAAAAAAAitIIgiAouxOnyvM8GY1G4jiOPD09ie/7oiiKXF5eiqZp8ubNG9F1vTbhz3g8loeHB/E8L3ourq+vxTCMreuH7eP169fy6dMnubq6ko8fP+a6bwAAAAAAqujXZ5GXf9i+zd/+KPJNxcueyvybniAMJ4kgDAAAAABQNwRhh6v4UwMAAAAAAADkgyAMAAAAAAAAtfCy7A4AAAAAAABgtxeNr1Mfd22DzQjCAAAAAAAATkCjIfINQddBmBoJAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAAAAAAABQCwRhAAAAAAAAqAWCMAAAAAAAANQCQRgAAAAAAABqgSAMAAAAAAAAtUAQBgAAAAAAgFogCAMAAAAAAEAtvCy7AwBQlLdv38qXL1/k4uJCfvjhh7K7A+SOMY5zxvjGOWN845wxvlF1jSAIgrI7AWT1+vVr+fTpk7x48UJevXq1ddsffviBX8A1FY6Tq6sr+fjxY9ndAXLHGMc5Y3zjnDG+cc4Y33j79q28fft26zafP3+W5+fnUsYJFWE4ac/Pz/Lp06et23z58uVIvQEAAAAAoN6+fPmy8+/0MhGE4aSlqQi7uLg4Um8AAAAAAKi3i4sLubq62rpNWBFWBoIwnLRXr15RbgsAAAAAQEWkWZ4onEJbBq4aCQAAAAAAgFogCAMAAAAAAEAtEIQBAAAAAACgFgjCAAAAAAAAUAsslg+k8PbtW/ny5YtcXFzsXPTvWOjTaaric0Sf0qlin6qmis8RfUqnin2qoqo9T1Xrjwh9OmVVe56q1h8R+nTKqvg8Va1PVetPoQLgBF1dXQUiElxdXZ1le2nQp92q1p8goE9p0ad0qtanqvUnCOhTWvQpnar1qWr9CQL6lBZ92q1q/QkC+pQWfUqnan2q09/YTI0EAAAAAABALRCEAQAAAAAAoBYIwgAAAAAAAFALBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC10AiCICi7E0BWv/3tb+Wvf/2rvHjxQl69elV4e58/f5bn5+ejtZcGfTq9/ojQp7ToUzpV61PV+iNCn9KiT+lUrU9V648IfUqLPp1ef0ToU1r0KZ2q9enY/Qnb+81vfiN/+ctfCm9vGUEYTtI333wjz8/PZXcDAAAAAADs6cWLF/Lrr78etc2XR20NyMm3334rf/7zn+Wbb76R3/3ud2V3BwAAAAAApPSnP/1Jfv31V/n222+P3jYVYQAAAAAAAKgFFssHAAAAAABALRCEAQAAAAAAoBYIwgAAAAAAAFALBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC1QBAGAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAnLTxeCydTkeazaY0Gg1ptVrS6/XEcZxC23VdVwzDkFarJY1GI2p7OByK7/uFto36KGt8x3meJ51OR2zbPmq7OE1ljtuqvGdwvqoyxvi9jCJwXo3aCADgBE2n00BRlEBEAl3Xg+l0Gszn88CyrEBV1ej7i8Ui13YXi0XQ7XYDEdl6m0wmubaLeilrfMfFxzvjGtuUOW6r8p7B+arKGOP3MorAeTXqhiAMwMmZTqfRB2O/30/cRtO0QEQCVVVz+9BeLBbRyUCa26a+AduUNb6XLRaLYDAYcCKK1Moct1V4z+C8VWGM8XsZReG8GnVEEAbgpCwWi+g/VqqqbtxuPp9HH5y6rufStq7rgYgEmqYFlmUF8/k8+m9Z0smpiASWZeXSNuqhzPEdGo1Ggaqq0XjnDy7sUua4rcJ7BuetCmOM38soCufVqCuCMAAnZfkkcNfJX55TByaTSSAiwWAw2LjNfD6P/mMW3hRFOahd1EtZ4zs0m82C2WwW3Q/HPX9wYZsyx23Z7xmcv7LHGL+XUSTOq1FXjSAIAgGAE+B5nrRarej+YrEQRVE2bm/btvR6PRERURRFFovF3m23Wi1RVVWm02mmPoqITKdT0XV977ZRD2WO701c15V2ux3dn0wm0u/3c28Hp6vMcVvF9wzOSxXHGL+XkRfOq1FnXDUSwMkYjUbR17qub/2wFhHpdrvR177v731lJdd1xfM8sSxr57aqqq70M3w8sEtZ43ubXX0Ayhy3VXzP4LxUcYzxexl54bwadUYQBuBkmKYZfa1pWqrHqKoaff3w8LBXuw8PD9Lv91OffMb/S/XLL7/s1S7qpazxDRyizHHLewZFY4zhnHFejTojCANwEuL//fn+++9TPW75g33f/1y9efNm7b9RadsUkbWSbiCuzPEN7KvMcct7BkVjjOGccV6NuiMIA3ASHMdZub/8H6lt4tvtU06taVqmqQi+72/tAxBX5vgG9lXmuOU9g6IxxnDOOK9G3RGEATgJHz58WLmf9gP0u+++W7n/+PiYV5c28jxv5T4LemKXUxrfQKjMcct7BkVjjOGcndL45rwaRSAIA3AS4h+C+/7naj6f59anTZZPCriSE9I4pfENhMoct7xnUDTGGM7ZKY1vzqtRBIIwACch/oG9r3h5dREmk0n09XA4LLw9nL5TGt9AqMxxy3sGRWOM4Zyd0vjmvBpFIAgDcBL2/aCNl3o/PT0d3pktPM+L1ksYjUasY4BUTmV8A8vKHLe8Z1A0xhjO2amMb86rURSCMAC1UvR/rsKr4KiqKoPBoNC2gDgqD3CKyhy3vGdQNMYYzhnn1ThVBGEATkKWq8scYz9JXNcV0zRFURSZTqeFtYPzcwrjG4grc9zynkHRGGM4Z6cwvjmvRpEIwgAczDRNaTQaud7a7fZKG5eXl7n0Na/9JLm7uxMRkffv31O6fUYY30CyMsct7xkUjTGGc3YK45vzahSJIAzASdj3P07xku2i/nNlGIa4riuWZYmmaYW0gfNV9fENJClz3PKeQdEYYzhnVR/fnFejaC/L7gCA06fruliWles+4x+s19fX0WKZIl8/iNN8+MYX8Wy1Wnl0b4VpmmKapkwmE+l2u7nvH+Wq+/gGNilz3PKeQdEYYzhnVR7fnFfjGAjCABxMVdXCS5bjU8k8z0v1H6L5fL5yX9f1XPvlOI4YhiGTyUT6/X6u+0Y11Hl8A9uUOW55z6BojDGcs6qOb86rcSxMjQRwEq6vr1fue56X6nHLJdyKouQaaLiuK51OR0ajER/WOEgVxzewS5njlvcMisYYwzmr4vjmvBrHRBAG4CRomrZSsv3hw4dUj3t8fIy+jn/oH8LzPLm5uZHBYMDlnHGwqo1vII0yxy3vGRSNMYZzVrXxzXk1jo0gDMDJuL29jb5eXtdgm+XthsNhLv3wPE/a7bb0+30ZjUapHzMej3NpH+epKuMbyKLMcct7BkVjjOGcVWV8c16NMhCEATgZhmFEXzuOs3P75W1UVc1lHQPf96XT6cjt7W3qD2sRkV6vxzoh2KoK4xvIqsxxy3sGRWOM4ZxVYXxzXo2yEIQBOBmapq186Nm2vXX75Sv97fqvlWmaMhwOt66R4Pu+tNttUVU12nbXzXGcaEFSLv+Mbcoe30nil0kH4soct0W2DYjwexnnrezxzXk1ShUAwAmZz+eBiAQiEmiatnG7xWIRbafr+tZ96roebSsiwWKxSNxO07SV7bLcJpPJIYeNmihzfCexLGvlsaPRKPVjUR9ljtsi2gaW8XsZ54zzatQVQRiAk7N8ErjpBDD8cFUUZecJZpoP10M+rPmfA7IoY3wnWSwWgaqqK4/ddpKMeitz3ObdNhDH72WcM86rUUeMIgAnaTqdBoqiBCISdLvdYDabBYvFIphOp9GHq6Zpqf7gCfcT3qbT6crPu93uQR/W/X6/oGcB5+qY43vZYrEIut3u2n9z4zdd16N+AaGyxm3ebQNJ+L2Mc8Z5NeqGIAzASRuNRoGmadGHrqIoga7rgWVZqfcxnU4DVVUDRVGCwWBQYG+BbBjfOEVljts82ga24fcyzhnjG3XRCIIgEAAAAAAAAODMcdVIAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC1QBAGAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAAAAAAABQCwRhAAAAAAAAqAWCMAAAAAAAANQCQRgAAAAAAABqgSAMAAAAAAAAtUAQBgAAAAAAgFp4WXYHAAAAAAAoiuu68vDwIL7vy2QyKbs7uTv34wPyRkUYAAAAAOCsOI4jhmFIq9WSdrst4/FYPM8ru1srms2mNBoNcRwn82Orfny+70uv1xPXdcvuCv6fcMy0221ptVrSaDSk0WhIq9WSTqcjw+Fwr9drPB7LcDgsoMfFIQgDAAAAAJyN8I960zQrFQ4tcxxHfN8XERFd1zM9turH5ziO/P73vxdVVUXTtOh7YfCy69ZsNsU0zZ3tuK4bhYmbbu12W0RETNNM3f4+t2VZ22o2m/m/CEvG47E0m03pdDpimqa4riuKoki325VutyuKoojjODIej6Xdbkuz2ZTxeJx6//1+X1zXlVarVcnxmKQRBEFQdicAAAAAAMiT4zjS6XSi+7quy3Q6LbFH/59hGGKapnS7XbEsa699VPH4wuqgyWQi/X5/7ee2bcvd3V0UAi7r9/t7Te30fT8KBkO6rotlWaIoysq2ruvKcDhMrMJTVVVUVV17TNiGiMjT05N4nrfW/6RYZVdbk8kkcwiaRfy5VhRFRqNR4uvi+76Ypin39/fR9ln7aBiGvHv3Tt6/fx8FoFVFEAYAAAAAOEvL1TpVCIpCzWZTfN8Xy7Kk2+3uvZ8qHd+uECwUD/BCs9ls7wDF9/2oskpRFPn5558TA61Q+PwvyxKNeJ63MvVzsVhsbC+prUOONY34dMW0YyOc0roc3u16PZf1ej2xbbvw4zsUUyMBAAAAADgS13X3nhZZVaZpynA4lMFgsDM00XU9Mfx7fHzcu/2np6fo69FotDUEExG5vr5eub9r+zhVVeX9+/epHhdvS0QKDYmGw+FeIZjI1+dhOp2KqqrR9wzDSD1V0rIs0TRNbm5uEqv+qoIgDAAAAACAIwmn/+m6njmAqSLbtsUwDNE0TUajUarHJG13yBUvw8osRVFSVS/l8byHUw2ztlXkax6u9bXc1j5Tb6fT6Uo/N03xTGJZlvi+Lzc3N5nbPRaCMAAAAAAAjuTdu3ci8nUa2anzfV/u7u5EJDnc2kRV1bWqMNd1977KZBiipZ3Cd3l5uVc7cWkq+vJqa5dwWuOyNNVxSVRVXXsue71eqiqv8LHhGmlVRBAGAAAAAMARLE+LvL29LbczOQjDEU3TMk/zTArO7u/vM/fB9/2oWskwjMyPP4SqqomL8pdhOByuBVVpg8EkP/7448p93/dTvz5hADYej1NXkh0TQRgAAAAAAEfw8PAgIl/XiKpCeHII27ajkCMemqShqupaeGbbdua1pcKrRWqatrK21bEccrGDvIRXfVx2SAgm8nVaZfzY0q4VtvzaHjucTIMgDAAAAABwkmzblk6nI81mUxqNhrTbbTEMQzzPK7triWzbFhGRN2/epN6+qse3XB20bxiUNHUua1VYOC1ynzBuX77vV2ox+HgIJpLP1Nukq3smtbXtsZ7npX7MsRCEAQAAAABOiud50mq1pNfrydPTk4xGI5lOp/LmzRtxHEdardbO6hXHcaKAKenWarU2rnG0HE4tb7+rz2GAtSs4yuP4QsPhcOMx7rq12+3EfTqOE63ndcgVEHVdX6viyhKaOI6T+jnNU/zKjGULKw2XJV2tMquk6a5pF99ffmyW9eOO4WXZHQAAAAAAIC3XdaOAZjQayWAwiH6m67oMBgMxDGNnUKHruiwWCzEMYy18sSxra7AynU5FRKTZbIrv+zIYDHb+sR9Wg6mqunUKX17HFworl1RVFcMwNrb94cOHtXBt0zEtX+Ex69pgccPhcGX6XDjNL83UvqyL5Ofl8fExl6ApL/GLDCiKksvUW1VVRVGUleq3tGt+LQeknueJbduVmEYqQkUYAAAAAOBEeJ4XhUTdbnclJFo2mUxSVypNJpO9QwPf90VRlFQVL2HVzrYwoIjjE/kajMzncxkMBtLtdhNv8YCj3+9vDLnCUE9E5Pvvv0/djyT9fn/t+U/zfPq+H/XjmOtQHXJ1yyIk9SXPkC7pqpdpp+Yuj58wPK4CgjAAAAAAwElYXvdoV1iSZTpWfH2pNH+0hyFMmmok3/ejwGLb+mDHOr648Xi8EqgoirJS9bUsHrzksUB9/Dn0PG9n5dHyIvmHTM9MK1zr6ubmpvC2skgKpfK8EEPSvtIGYcuvy7t37/Lq0sEIwgAAAAAAlWfb9sq6VLsCmCxVMfHKK9M0dy6GHgZFaaqRwhBAUZSNoU1Rx/f09LQ1KPI8b22a5bZ1oOIBVR5BWFJQtyvoy/L87+L7/s710lqtlhiGUalF8kW+vr5xSVVc+0p6fdM+B999993KY6pwkQcRgjAAAAAAwAlYvppgmvAja1VMUhi2ie/74jjOzvW+QmGwdHt7u3Gboo5vNBptXccrfnXBbVMiRb6uJbZPP7ZRFGWtKmx5Ifw413Wjn+W1Plj4Wm665VlllaekUKroviaFb0ni742qTCklCAMAAAAAVJrneSt/ROdRhRQXr0paDqbiwgqvtAvWh1VU8dApVOTxbduXaZprUyJ3VWIVVRGV9Fxu6kv42uS1+Hq4htq222KxkNlsdpRpmFkkhV55vkZJ+0pbcRbvW9oArWgEYQAAAACASitiOl5cvCppeTH2uDQVXqFwH4qibKy0OsbxxXmet1Z5ZlnWzmqiosIMVVXXnp+kKarLr8uutc/ypmna1mmjZUgKpfJ8jZL2dcjFJaqAIAwAAAAAUGmz2WzlflFBUbwqKalKKZwW2e12UwUC4dUit003PNbxLYuHYN1ud2sfQ8thRt5T8JKe7/gU1bAaT1XVUqqzkgK7Mh2yhlcaSdNT047PeEj3yy+/5NKnQxGEAQAAAAAq7ViLbMdDjqSrF4bBTNpF2sPqpW1Xizz2IuKmaa4cl6Io8tNPP2XeT94VPrqur4Us8Smq4XTJPBbJ35emaZVZMywpDMxzPCW9xscIaotEEAYAAAAAqLT49Kwig6P4ulTx+w8PD1unOS5bDpu2rWd1zOPzfX+t8uqnn35KHewUHQDF++b7fhQ+FrFI/j5Go9HOtdSOKR6GeZ6XS0iZtLh9lmq4+LhevopkmQjCAAAAAAAnpci1hjRNWwkWlq9eGC5qnzaECdeTyrqoe5HH1+v1Vvbf7XYz9a/oaqB+v78WtoWh0/Ii+VWpyKqCpHAqXsm4j6R9dDqdvfdXldeMIAwAAAAAUGnxtYaKnkoYX4Q9rFIKpzmmnZYXrme1bVqkyPGOz7btg6dExvtaRGgXDxo9zxPbtjM//8dk2/bRFoMfDocr1VpJFw2YTqcHt5O0jyyVePHnoypTKgnCAAAAAACVFv8DOo8/8rfpdrsrbYYhx2QyEVVVU/1B7zhOFATsmk52jOPzfV/u7u5WvpdlSmQoXhFUxFUkk4KdXq8nItVbrF7k62vd6/UKu6LmMtd1ZTwer4wZRVHWqvriFxnYR7wibDAYZBov8UD3+vr64D7lgSAMAAAAAFBp8fAlrLQqUnytql6vJ57nJV7ZMEk4LVLX9Z3hwTGO7+7uLvOUyPF4vBaoxEOoIqrXFEXZWHlUxWowwzBEUZSjVDzd3d2Jqqobp48uOyQMG4/HK/cVRUkMKLdZvkpkUp/LQhAGAAAAAKi0ePji+340TS6trNU6/X5/JdgIq2Nub29TPT4Ms8JKpm2KPj7HcVb2l3ZK5HQ6XZsKGQ98iqrO2xQ45rFIfp6VW8PhUDzP21illndbrusmBpiqqspkMlnbfp/pmr7vr12t07KszEHWckhapSo+gjAAAAAAQKUlTf2KVzjFxa94t08gEK+ySbtIu+u6UXtpgrOijy8exqWZEun7vjiOk1jltNzXPBZlT5I0BTJNdV0aea3lNR6Po8qpTevA5dXWcDiM2tq0YH2/318JCn3fTxXExt3c3Kz0ezQa7RVkLY+NffpRmAAAAAAAgIpbLBaBiKzcNE0LFovF2rbz+TxQVXVt++l0mrnd5f2kffxgMIj6l1ZRx9fv91e20XU9VX+63W4gIontx/talOl0evDrl0RRlLXnLuk4N7EsK9A0LdXjk9qazWap2pnP58FkMll7rXcJx19463a7qY5vsVgEuq6vPHYymaTqa9K+wn2oqrrXPorSCIIgyDlbAwAAAAAgd7ZtJ1aW9Pt96XQ68vT0JLPZTEzTlH6/v3GNpH6/vzaNbJOwEkdRFFksFqke02q1xPM8GY1GMhgMUj1GJP/jcxxnrXooXPA/zvd9eXp6kvl8LrZtR9PaNkUGyxVK0+m0sKlv4XOZ5fnfxPM8MQxjYxWbpmlyeXmZWHXm+754npe4JpqmaTKbzTK1Fa6ZFZ96+vT0FL0WSdVkuq6nmo5q2/ZaVeFkMtk4tdQ0zZWplIqiiGVZe7+upmlG67lta7cUJQdxAAAAAACkNp1OE6tslm/9fj8IgmDle6qqBqPRKJjP55nam0wmgYgEg8Eg1fbz+TxqM2tbeR9fvGop601RlI39XK74Sfvc7CPr879tH0XdlvtWdFuj0SjTsQ8Gg7XxpOt60O/3g263u1YBpihK5jaShGOvatVgQUBFGAAAAADgBI3HY3l4eBDP88T3fVEURXRdF8MwoiqWVqsl3W5X3rx5I5qm7dVOr9cT27ZlNpul2sd4PJbhcCiqqsp8Pt+rzXA/xzi+Q4RVP3lUa23TbDZlNpsd5aqM58pxHLEsSx4fH6PqtrAiTVVV0TQtt3HkeZ60Wi0RkdTvm2MiCAMAAAAAYINGo5E49W2TdrstruvKYDBYW2z/HIVBYeWmv6E0nU5HHMep7HuAIAwAAAAAgARhxVPakMf3fWk2myJSzUqYorRaLXl6epKff/45l6s64nSF69JlCY+PjSAMAAAAAIAEYcCTdtrfsaYKVk04Fa7b7YplWWV3ByXxfV9+//vfy+Xlpcxms8qGoi/K7gAAAAAAAFUzHo/F87xM0/3CEOj29raoblWSqqoym83Etu3oSoGoF9/3pd1uVz4EE6EiDAAAAABQY4ZhiOd5ommadDodub6+lnfv3kWVXWmn+y1Pi5xOp9GC9nXiuq7c3NzI7e2tTCaTsruDIwlDMFVVxbKsSodgIgRhAAAAAICaGg6HMh6PN/48ywLwtm1Lr9er3bTIOM/zpNfryeXl5UmEIjhMGH7++OOPMhgMyu5OKi/L7gAAAAAAAGXwfX/jz7rdbqZpkbqu1zoAC4XTJMfjsTw9PRGEnTnP8+T9+/cndWEIKsIAAAAAALXkuq602+2177PoO3C+CMIAAAAAALXleZ5MJhPxPE8uLy+l1+vVcn0voC4IwgAAAAAAAFALL8ruAAAAAAAAAHAMBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC1QBAGAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAAAAAAABQCwRhAAAAAAAAqAWCMAAAAAAAANQCQRgAAAAAAABqgSAMAAAAAAAAtUAQBgAAAAAAgFogCAMAAAAAAEAtEIQBAAAAAACgFgjCAAAAAAAAUAsEYQAAAAAAAKgFgjAAAAAAAADUAkEYAAAAAAAAaoEgDAAAAAAAALVAEAYAAAAAAIBaIAgDAAAAAABALRCEAQAAAAAAoBYIwgAAAAAAAFALBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC18H8B3hxE74JZk98AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x900 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bins = np.linspace( -0.25, 0.25, 50 )\n",
"sns.regplot(x=ak.to_numpy(array[\"ty\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)\n",
"plt.xlabel(\"dy/dz(VELO)\")\n",
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
"mplhep.lhcb.text(\"Simulation\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#bins = np.linspace( -300, 300, 50 )\n",
"#sns.regplot(x=ak.to_numpy(array[\"x\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#bins = np.linspace( -300, 300, 50 )\n",
"#sns.regplot(x=ak.to_numpy(array[\"y\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#bins = np.linspace( -1.0, 1.0, 50 )\n",
"#sns.regplot(x=ak.to_numpy(array[\"dSlope_out\"]), y=ak.to_numpy(array[\"z_mag_x\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n",
" expsuffix: Custom Text(0.05, 0.955, 'Simulation'))"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/work/guenther/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/IPython/core/pylabtools.py:151: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n",
" fig.canvas.print_figure(bytes_io, **kw)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrjklEQVR4nOz9XWxbZ5rme1+UncDZSdGk0hhAIIEuU51GCvug26Q9B7WPpkR2HUyyk66QNlCZJEB3iUqya3oA9YSMK8eJiuwuAe/b86YtumaAcTrA2GTVJEgayIR0+mgPsMcSnT4LporLKUAEgQFKWmYnO0Y+uN4DNVmkPsjFj8XFj/8PEFq0bj7rlimlmpfv51key7IsAQAAAAAAADNuwe0GAAAAAAAAgHEgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFw47XYDwCAefvhh3b9/X6dOndK/+Bf/wu12AAAAAACATf/rf/0vffPNNzpz5ow+//zzsV7bY1mWNdYrAiOwsLAgfnQBAAAAAJheCwsL+uabb8Z6TSbCMJXaQ7BAIOBiJ/2p1WpqNBpaWFjQ0tKS2+3YRt/jN6290/d40fd40fd40fd40fd40fd40fd40fd4TXvfp06dGvu1CcIwlRYWFlq/7Lu7u263Y1swGFS1WtXS0hJ9j8G09i1Nb+/0PV70PV70PV70PV70PV70PV70PV70PV7T3rcbRx1xWD4AAAAAAADmgqsTYY899pibl+/g8Xj0P//n/3S7DQAAAAAAADjE1SCsUqnI4/G4euh58/oej8e1HgAAAAAAAOC8ud8ayZ0HAQAAAAAA5oPrh+VblqV4PK5QKOTK9U3TVC6Xc+XaAAAAAAAAGB/Xg7BcLqcf/ehHrvYQj8f1/e9/39UeAAAAAAAA4CzXt0ZGo1G3W9DFixfdbgEAAAAAAAAOc30ibHFx0e0WMIW+9a1v6d69e/rWt77lditzYX19XfV6XV6v1+1W+jKtfUvT2/u09j2tpvXvm77Ha1r7nlbT+vdN3+M1rX1Pq2n9+6bv8ZrWvtE/j+XiafGnTp3S/v6+6z9o9+7d0+Lior755htX+4B9wWBQ1WpVgUBAu7u7brdj27T2Dcw6fjeBycPvJTB5+L0EJs+0/l662berWyMn6Y6Nk9QLAAAAAAAARs/VICyTybg+DSZJZ8+eVSaTcbsNAAAAAAAAOMjVIOyVV14Z6/U+/fTTE7827l4AAAAAAAAwXq4flj9Oa2tr+m//7b+53QZGqFarKRgMdq1ZX1/X+vr6mDoCAAAAAGB+bW5uanNzs2tNrVYbUzdHzVUQtr297XYLGLFGo6Fqtdq1pl6vj6kbAAAAAADmW71e7/k+3U1TGYR9+umnMk3Tdr1hGNra2urrOZgOCwsLWlpa6lozCefQAQAAAAAwD7xerwKBQNeaWq2mRqMxpo46TUUQ9umnnyqTyahUKskwjIHWsCxLHo9nxJ3BbUtLS1N1i1gAAAAAAGaZneOJgsGga1NjEx+EXblyRdlsVtJBmAVMs/X1ddXrdabUgAnD7yYwefi9BCYPv5fA5OH3sn8ea4LTpV/84hdKJBKS1JrmGqZdj8ejb775ZiS9wV3N9DgQCDARBgAAAADAFHHzPf1ET4RtbGxIOgiwLMtSKBRSOBxWKBSSJD366KM91/jtb38r0zR18+ZN3bt3z9F+AQAAAAAAMLkmOggrl8utSbBisaiVlZWB10qlUnrsscdG1RoAAAAAAACmzILbDXTj8/kkHYRYw4RgkhQKhXTu3LkRdAUAAAAAAIBpNNFBWHML5MWLF0ey3tbW1kjWGZZhGIrFYq6umc1mFYvF5Pf75fF4tLy8rEQioVKpNHAPTqwJAAAAAAAwKhMdhDWnwPb29ka6nlNM05TH4+n5sby83Ar5xr1mqVSS3+9XOp2WJOXzeVUqFWUyGZXLZcViMcViMZmmafv7dmJNAAAAAACAUZvoIOwnP/mJLMtSuVweyXo///nPR7LOSXK5nO3aZmg0zjVLpVIrkEomkyoWi4pGowqFQorH46pUKgqHwyqVSopEIraCKyfWBAAAAAAAcILHsizL7Sa6yWazymQy+vTTT/Wtb31rqLUuXryo27dvj6izo/x+v62gJxqNqlgsjnVN0zR17tw5maapUCikSqVybJ1hGFpeXnZtTbvcvNUqAAAAAAAYnJvv6Sf6rpHSwUH5xWJRiURCH3zwwcDr3L17d2STZcfJ5XIyTVOpVKrnWV0XLlwY+5qJRKIVqHWbHGtOchUKBZVKJeVyOSWTybGtCQAAAAAA4JSJnwhrunDhgu7du6d0Oq3FxUVbz9nb25NpmqpUKrp586ZM09Q333zjSH/NiaeTpqLcXLN9IkuS9vf3W3fkPE6hUFAikZB0cOfO/f39sazZDybCAAAAAACYTkyE9fDRRx9JOgiE1tbWBlrDsix5PJ5RttVSKBRkGMZI70o5yjUzmUzr82g02jWwkqR4PN763DRNFQqFjj9zak0AAAAAAHAyy5IaPcaZFjySQ/HHTJj4IOyll15qHRjv8Xg0yACbUwFY08bGhnw+ny5dujSRa7YfuB8Oh209JxQKyTAMSdKNGzeOhFZOrAkAAAAAAE7WsKTTr3Wv+fp16RRB2Ikm+q6R165d09bWViv8GnQXp5O7P8vlssrlskzTlN/v1/LystbW1lQoFCZizcPnol28eNHW89rDrcPXdWJNAAAAAAAAp030RFhzW2BzEiwajSoWi8nn8/V9TtjVq1f16aefjrzHw4fEG4ahXC7XmpiKx+O6cuWK7ampUa9ZKpU6HodCIVs9HK4rl8ut6zmxJgAAAAAAgNMmOggrl8vyeDzy+Xza3t7WuXPnBl5rdXVVjz766Ai7OwioDodChxUKBRUKBSWTSVvnfY16zdu3b3c87nWWV9Phv6vt7e1WaOXEmgAAAAAAAE6b6CDM5/Pp3r17unLlylAhWHOt8+fPj6izA6FQSFtbW607U5ZKpdYZWIflcjltb29rZ2dnrGsefu6g01vtd650Yk0AAAAAAACnTXQQFolE9NFHH9kOWnq5du3aSNZpl0wmOx6bpqlcLqeNjQ2ZptnxtXK5rFgspmKxOLY1TwrR+tV+XSfWBKaJaZq2JyEBAAAAAJNjog/LX1tbk2VZIwteRj0Rdhyfz6dUKqX9/X3l8/kjb5ZLpZKy2ezY1hw0bDp8jb29PUfXBCZduVxWOp2W3+/X6uqq2+0AAAAAAAbgsZy8peIIRCIRLSwsHDmXahC//OUv9YMf/GAEXdlnmqZWVlY67rTo8/m0v78/ljU9ns57ptp9uUulkmKxWOtxNBptTZ05sWa/gsGgqtWqFhYWtLS0NNAa7dbX17W+vj70OnBHuVzWjRs3VC6XZRhG6yYZPp9PoVBIi4uLCofDisViikajR56fSCRkGEbHNmPTNFUqlXTjxg2VSqWOADgejyufz4/jWwMAAACAlm8a0unXutd8/bp0yqGxp83NTW1ubg69Tq1WU6PRUCAQ0O7u7gg6s2+it0ZKUj6f1x/8wR/ov/7X/6o//dM/HWqtjY2NsQdhPp9POzs7ikQireCq+Qb7uDfko17T5/ONZAti+zSXE2sOqtFoqFqtDr1OvV4feo1h5HI5ra2t9f28cDjc89w5Ow6Hm3Z0C3QTiYQKhULfaxaLRdu/F6ZpamNjo+uEpWmard+R9snJcDisaDSq5eVlFYtFFQqFIzduWF1dlWEYHYEzAAAAAMyzer0+kvfgbpr4ICwUCunq1av60Y9+NFQQdu/ePVff0F67dk2RSKT1uJ83/MOsubi4OJLQanFx0dE1BzWqiTCv1zv0GsNIJpO6dOmSDMPQxsZG1xApGo0qnU7rwoULIzunqrkFuVQqKZ1On/j6hkIhpdNpRaPRrmf35fN5maap7e1tZTKZrndCTaVSunz5skKhkO3vJ51OHxuAxePx1lrN9QzDkGEYyufzunnzZiscO/zfg8Pfc/vE1/Ly8si2aAMAAADAtPJ6vQoEAkOv05wIc8NEB2G//OUvJUm/93u/J7/fr8cee0zxeLzvdUzT1M2bN0fdXl+aEyjNQGAUb6rtrDloUHI4FDg8ETbqNQe1tLQ09jFKp/h8PoXDYeXzea2trSmXyx2pcXJLXigUUjKZbE1KHWdnZ8f26+bz+RSNRhWNRjumF9ttbW0duTlEN4ZhKBaLHflZTyaT2traOvY5zVAsGo1qa2tL2WxW6XTa9jWlg/DxuNcDAAAAAObJqI4Vah535IaJDsLeeOMN3blzp/XYsqy+D5pvf+4g279GKRaLdZ2McWLNCxcudAQQdu92d/gg+/ZgxIk10emkIGyQ7ZP9CoVCCofDR4KreDw+cHi5trZ2bO/9hGCHz5iTDsK2W7duHdnW2E0qlVI8HlckEukIZ7vdvIE7RAIAAADAbJjou0ZeunRJlmW1DmN3O8gaVvtWslFsC7SzZvvWScn+JFqlUul43L7l0ok10emkbYfdtiM6ff1hrn3cc/sJl8rl8khCsPZ+7t6929HDKLb7AgAAAAAm20QHYc0JEo/H0wrEBv2YBO1hwKgmTHqteeHChY7HdkOr9lCgeec9J9dEp5N+PkYVoE4TwzC0srJy5M/z+fxAIVhT86YTs6ZQKHCeWRejnsoFAAAAMF0mOgg7e/Zs641uJpNRsVjUzs5O3x/5fF7nz593+buRtre3W58fnm5xas1wONwRqty+fbvvdQ8HX06siclyXOD26KOPjnQ9u6FeIpE4Mq3VPMtsWKFQSKlUauh1xqFcLmttbU3Ly8vyeDzy+/1aXl5WJBJp3aWzUChodXW1Z9hTKpVaz5/1YMgwDOVyOcViMXk8npH9t3dU5um1AAAAACbBRJ8RJkmXL1/W8vKyXnnllYHXOH/+vJ555hnXp2natwaOalugnTUvXbrUOm/K7p0z2+uOO1jciTWBw0ql0rE/X5lMZmTXuHLlSuvsQbvn3Y2TaZpaXV1t3Uk0FAq1bhpiGEbrDpjtdxrttc2zGS6apqm1tbUj25ZngWEYSiQSMgxjore9zsNrAQAAAEySiZ4Ikw7CnVFtbXR7Cqn5RnWUEyh21mw/pNzOxEF7TfNue+NYEzjsuAP2hzm0/zg+n6+vQ/vHrTntJR3cZbNSqSifzyufz2tnZ0eVSuXI71OvMMXtfxQYh1AopJ2dHe3v70/01N88vBYAAADAJJn4IOz8+fMjm/74i7/4i5GsM4jmuT0+n09XrlwZ65rhcLjjjXL75Mhx8vl86/OTJrecWBNoVyqVjj3ralS/P+0SiYSk7neO7KZUKimRSHRsW4zFYsfe+bMf2Wy2FSKnUqljA7tQKKRisdjx38leZ4RtbW0pFAopFAp1/G7OqknbDtlu3l4LAAAAwG0TH4RJ0rlz50ayzt/8zd+MZB3pd+e6NM+c6bY90DAMra6uSpJu3bp14jSLE2s2bW1ttT7f2Ng4sc40zdab92g02nVSxok1Z41lSd80un9MyL0cJs5JocAwB+SfJBqNKpPJ9D2dY5qmIpGIYrFYxyH1pmmqVCq1zvSyu334sPbfq+Om49qlUqnW5FOvQC8ajapSqahSqTjy9zlp3Jq66vWaSfP3WgAAAMB5b99xu4PJNhVB2Ki0H9Y+rHw+3zp3plQqKRKJHPump/m1xcXFnm90nFizqX3aoFwut85EOqx5dz6fz9dzOsGJNWdNw5JOv9b9o0EQdqzjttw6uaU2lUr1teXSMAydO3euZ8hlGIYikUjfB6EPcrZVJpNROBzmrpETIJfLDT0RCAAAABxmJ+R6oUAY1s1UBmGffvqpPv74Y9sfv/zlL/X9739/pAcmN7dStcvlcvL7/UokElpbW2tNiiSTSe3s7CgUCo19zXbxeFzFYlE+n0/pdFqJRELlcrk1vRKJRFQulxUOh3X37l1boYATawKGYRwb5kzKxIxpmq1DzuPxuLa2trSzs6NisXjieVSxWKyvgOrwf6/sBmlXrlyZ6MPh54FhGLamwQAAAIB+3LsvvfyuvdoX35Hq9x1tZ2pN/F0jpYPgK5PJnHhmkB2WZcnj8Yysp+Z2lmZfe3t7rTefzeDnypUrikajtsMfJ9Y87hr7+/vKZrO6ceOGVlZWWnfKu3DhgvL5fOuOdG6uifl20u/58vLymDs5XjOUKhaLR6bUotGo1tbWjg2+EomEdnZ2bF3jcMidTqd16dKlnr/7zd+1SbwD5jwwTXOizyQDAADA9HqrLH3+lb3az76UrpelH3/X2Z6m0cQHYVeuXGltuRvV3SNHJRQKdZyTNalrHqf9PKFJXhPz6aQgbJLusHdcCNbUPMD+cHBXLpdVKpVsbfH0+Xzy+XytMLx5HlmxWOw5CTpp/62cF6ZpamVlha2pAAAAcMR7n/RX//4nBGHHmeitkb/4xS+UyWRab+pGOdEFoD/pdFoej2egj0gk0te1TtraNykTTj6fr2eYFQqFjr3jbT93wT1caxiGlpeXR3L2VLlcbh3m303zZheRSKTjus3tf80bfCwvLx97TqBhGEqn0607ai4vL2ttbe3Y17h5ncM/P4fFYrHWeu0fo9wSmsvlOq7j9/sViUROPAuxXC4fe2Zce38n/V3bfS2aTNNUNptVLBZr/f03+0un07aCOMMwlM1mj9zMof01WF5ebm0BBgAAgPv2v3C2fl5M9ERY845pHo9HlmUpFAopHA63piEeffTRnmv89re/lWmaunnzpu7du+dovwBGo1KpuN1CVxcuXLBVl0qltLGx0REk9HNofjKZVD6fP/KctbU1bW1t6dq1a32dm1Yul7W1taWbN2+2ejouXGyGXzdu3Dj2ZgDpdPpIINQMvCqVSmuq9aS6XC6nUqmknZ2djusnk0klk0mtra11DfuKxaIkKZvNKp1O2/nWbSsUCkokEvL5fLp27Vprq2m5XFYikVA6nW6dCdfeeygU0q1bt1QqlTp6OmkrrN3X4rBcLtc6fyyTySiTycjn86lcLmtjY0PZbFbZbFbxePzIzUlM09TGxkbHHU7bv7aystLxejfP6mu+Vv2cSQkAAIDR8z/kbP28mOggrFwut6YBisVi6+6Dg0ilUnrsscdG1Rowd5oBxSC2t7f7eu5JgcCkTKb0M5kWjUZVKBQ6/qx55p8dxWJRiUTi2DUikYji8biuXbvWsyfDMHTjxg3bU0fhcFg+n6/jddvZ2WndsTafzyscDmtxcbEVwEi/C2rS6bT29vZULBZbweH29nZrwsgwDG1sbBw7IZdIJGxNvcXj8ZEGYaVSqXXTkitXrnScbRgOh5XP5xWJRGQYhlZXVzuCJp/Pp3A4rL29vY41j3ud+30tmprBos/nOxJMhUIhxePx1s9KoVDQ8vJyR2C3t7enWCzWCjqbtre3tbKyomg0qkwmo1Ao1Ar0TNOUaZpaW1trBZAAAABwx5OPSx/+yn79E48718s0m+ggzOfz6d69e0qlUkOFYNLBm4Rz586NqDNg/iwvL4/tro0nTXseDhmmweXLl4+EWNvb2339Xebz+ROnn5qhx9bWlpLJ5IlrHN6q2S1Aat/6ubW11ZoSyuVyx56NlslkWuefSVIkElEymTwSnESjUV27dq0VNuVyub62ih426jPjep3P2P6aHX5N+9HPa9GUy+VaYWMzrDpOPp/X8vJya5orkUi0XodQKKRQKKRoNNoRhKXTaeXz+Y7XNZlManFxsfValUolbsAAAADgsufC0qsf2Dsw/5EHpefH8/Zt6kz0GWHN/0f/4sWLI1lvHIfQAxjepE+E9eO4wGKQ7yOVSml/f//EO7A271RpZ+1+tri1h03JZPLEs9EO3ynxpP/etvffnDaaRCf9DLb/+SgOxbf7WjTDMp/P1zXwbK+VDgKs47bjtn8f165dO/Z1Pfyztr29batXAAAAOOPsGenNp+zVXn1a8p5xtJ2pNdFBWHMKbFRTIMNOlQEYj5PCgUk/O+w4xwUqv/3tbwdeK5/Pa2dn59iJslKppJWVlZGGS3YngNpfs36mhibpDovXrl1TJpNRPp/vGTZJ4wtmc7lc61p2grNkMtnxGgwzddd+vUl6rQAAAObVs+d711yP26ubVxMdhP3kJz+RZVnHHtY8iJ///OcjWQeAs06aOurnoPlJcVxwYedGH92Ew2Ht7OwcO3VVLpe1uro61PqDGHTL3CRtd/X5fEqlUsdO3ZXL5ZH9b1G/2reY2p0ga/8dmsbfGwAAAAzuh4RgXU10EHb27Fn99Kc/1Y0bN/RP//RPQ6/H1sjZU6vVFAwGu35sbm663SYGcNIh45O6la4fo7r7XjKZVKVSORJCFQqFiQ4/puWcqfY7XIbD4bGdkXdcH/06/DM2C783AAAAmA6bm5s936fXajXX+pvow/Klg3NxmndN++CDDwZe5+7du679az6c02g0VK1Wu9bU6/UxdYNRunz58rG/s6VS6cRzsiaVz+frCCJGFYQ112rezbH9GltbWydO1qG7crmsdDqtcDg81LbCUWl/Xe2GYofvSLm3tzc1ASQAAACmW71e7/k+3U0TH4RJB9tCLly4oMcee0zpdNr2ncL29vZkmqYqlYpu3rzpcJdww8LCgpaWlrrWeL3eMXUzPcrlsjY2NpTP591u5UTJZPLYu+ltbW1NXRB2eBqn12RRqVRSOp3Wzs6OrfVDoVDH3RglEfwPaG1tTblcTslkciJCMGmwA/oP/+/kKMNXAAAAoBuv16tAINC1plarqdFojKmjTlMRhH300UeSDg7KXltbG2gNy7Lk8XhG2RYmwNLSknZ3d91uY+qsrq7aDpTd4vP5FI/HVSgUOv68VCqpXC67tk2tX4dDMDtTWqFQSOVyWaVSyfZU1+FwkIPN+9cMwaThDpgftebPg/S7O232mu5qP3uNEAwAAADjtL6+rvX19a41wWDQtamxiT4jTJJeeuklxWIx3blzRx6PR5Zl9f0B4HeaQVIsFjuxZtQHmA+63klhxHGTYsNy6gyl7e3tjsd2wvxmcDFo8C/1njqbBaP8OS2Xy60QLBQKTdQ2wsuXL3c8bvbZTfsdVqdtghIAAABw0kQHYdeuXdPW1lYrzBo01CIMAw6YptnaPtfvm+Pf/va3I+3FTogRCoWODcNKpZKy2ezIejEMQ5FIZKjg6SSH7/hn9+89FArJMAzbod/hCbDD4ck0OTyteFJIOcqpt/abC3Rb141D5+PxeEcwZ+fGL+3fz5UrV5xoCwAAAJhKE701svn/7DcnwaLRqGKxmHw+X9/nhF29elWffvqpg90Co+PEm23TNLWystLaVtXvdqlR92R3veYNMw7fBbF5mPmwB8KXSiXFYrETQ7dhtW/t7OfOtc0gLJvNanl5Wclksmt9+9qhUEipVKr/Zo9h93Vqr+v1nF5fPzzNlsvljnw/x4WEozwQvlAoHAktj7veYYd/rwzD6PgzO9saj9N+BpxhGF23zZbL5dZWykwmM1HTbQAAAIDbJjoIK5fL8ng88vl82t7e1rlz5wZea3V1VY8++ugIuwOcc9JEyqBv9EulktbW1lrrXrp0qe/rD7MNbdjJneadYw+fFxaLxZTJZAYKfUzTVDqdVi6Xa9150e7frd1wKJfLtb73ZDLZV2jXHp6sra1pZ2fnxFAjl8t1TMi1T6Edp/21dGPCqd1J149Go63wM51Oq1KpKJFIyDRNFYtF5XK51s9Fc43DoVPT4Z/d48Kow+FbIpFQJpNROBxWuVzW1taWwuFwK6CUfhc+FotFXbly5diAeW1tTfl8Xnt7e8pkMlpeXu74ebX7WsTjcWUymVYYl0gkdPfu3SPfh2maWl1dlXTwM3fS74bd1739d9ftnxUAAABgJKwJ5vf7rYWFBeuv/uqvRrJeJBIZyTpwXyAQsCRZgUDA7Va6+voby9Kr3T++/ubo85LJpCXpyEc0GrUqlUrP6+7v71vFYtFKpVJWKBQ6sk4+nz/xuZVK5dhrS7L29/cH+nsIh8PHrre1tdXXOqlU6th1wuGwVSwWba2xv79vZTIZy+fztf5Oe31fh6/r8/l6Xqf97zEajdrqrd3W1tax32s8HrdSqZS1tbVlJZPJjtfX7s/H4dfjpJ+H/f39I3/PJ4nH47Ze22Kx2FGXTCZPvHbzNTr84fP5Wq93e004HLYqlcqR19Nub4fr2j8ymYxlWcf/bsbj8Y51Tvo5Pe57tftaNOXz+db37PP5rK2tLatSqViVSsXa2tpq/Tw0+z2O3dfgcN0gP8cAAAAYrUHfY04aN9/TT3QQFo1GrYWFBesXv/jFSNYrl8sjWQfum6Ug7D9v/65+Z2en65vxUX0cF/zs7+9bW1tbJ4YPkqxQKGRtbW3ZDsR2dnasaDTatZdUKmUrvGkqFosnBms+n8+Kx+PW1taWVSwWrZ2dHatYLFpbW1tWJpPpeJ7P5+sZOjQdFw6GQqETw7f2sOJwSNLP99nsMZ/PW8lk0opGo1Y4HO54jZrfc68gsPmzddLrGw6HW+FJt9pQKGTF4/HWz8DhMO5wcNJcs1gsnvizEAqFjg1j9vf3O9YPh8NWKpXqqGn+2eGfof39/Z7f73HXzGQyreuFQiErlUp1/Lzv7++3vo/2v7PD2kPocDjc8bPWz2txkq2tLSsajXaEYs3nnfT72e33sf01qFQqXet69QYAAADnEIQNz2NZk3uSfKFQ0KVLl5TNZvXv//2/d7sdTJDmrVYDgYB2d3fdbudE13ekFwq96/7sVE7/6fXRH9R+nHA4rJ2dnY4/83g8fa/j8/m0v79/7NeO28ZoR7FYtL19sFAoaGNjo3UWkl2hUEhra2tKJpN9bTNtnkl1+Pvy+Xy6cOGCfD6fTNPU9vZ2a+tdPp8f+gwzAAAAAGj6piGdfq17zdevS6cm+taI7r6nn+ggTJIikYgWFhZ0+/btodf65S9/qR/84Acj6Apum4Yg7N59KfCG9PlXvWsfeVCqXpG8Z5zva9aYpqlSqaQbN27IMAyZptk61ygUCrXObbp48aLi8XjfNwnodb3mNZvXuXDhghKJBAEYAAAAgJEjCBvexAdhhmHoD/7gD/SLX/xCf/qnfzrUWhcvXhxJoAb3TUMQ9h/+u/Rv37Nf/zdPSj/+rnP9AAAAAACmG0HY8Cb8r+ZgouPq1av60Y9+NNQ69+7d63sLFTCM9z7pr/79PusBAAAAAEB/TrvdQDe//OUvJUm/93u/J7/fr8cee0zxeLzvdUzT1M2bN0fdHtDV/hfO1gMAAAAA5suC52Diq1cNTjbRQdgbb7yhO3futB5blqVsNjvQWpZlDXQgODAo/0PO1gMAAAAA5ovHI50i2hjKRG+NvHTpkizLUvMYM4IsTJMnH++v/ok+6wEAAAAAQH8mOghbW1uTdBCANQOxQT+AcXsuLD38gL3aRx6Ung872w8AAAAAAPNuordGnj17VuFwWHfu3FEmk1E4HNbi4mLf6xiGoTfeeEMff/zx6JsETnD2jPTmU9ILhd61V5+WvGccbwkAAAAAgLk20UGYJF2+fFnLy8t65ZVXBl7j/PnzeuaZZwYK0YBhPHu+dxB2PX5QBwAAAAAAnDXRWyMlKRqNjmxr44ULF0ayDjBKPyQEAwAAAABgLCY+CDt//rwymcxI1hrVOgAAAAAAAJg+Ex+ESdK5c+dGss7584zeAAAAAAAAzCtXzwj7+OOP9cd//MduttAySb3AvlqtpmAw2LVmfX1d6+vrY+oIAAAAAID5tbm5qc3Nza41tVptTN0c5WoQFolEtL+/L6/X62YbunfvniKRiL755htX+0D/Go2GqtVq15p6vT6mbgAAAAAAmG/1er3n+3Q3uRqEjeoQ/FGYpF5g38LCgpaWlrrWuB20AgAAAAAwL7xerwKBQNeaWq2mRqMxpo46uRqEeTweNy/fYZJ6gX1LS0va3d11uw0AAAAAACB7xxMFg0HXpsZcPSyfKSwAAAAAAACMi+t3jbx7967bLWh7e9vtFgAAAAAAAOAwV7dGStLq6qpeffVV+Xw+LS4ujvXae3t7MgxDqVRqrNcFAAAAAADA+LkehO3s7CiRSLjag2VZnBEGAAAAAAAw41wPwprcOi+MAAwAAAAAAGA+uB6EuX1gvtvXBwAAAAAAwHi4GoTt7++7eXkAAAAAAADMEVeDsLNnz7p5eQAAAAAAAMyRBbcbAAAAAAAAAMaBIAwAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHPB1cPyAQAAAAAAZpllSQ2re82CR/J4xtPPvCMIAxy04JG+fr13DQAAAABgNjUs6fRr3Wu+fl06xXvDsSAIAxzk8fAfMwAAAAAAJgVnhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAucFg+plqtVlMwGOxas76+rvX19TF1BAAAAADA/Nrc3NTm5mbXmlqtNqZujiIIw1RrNBqqVqtda+r1+pi6AQAAAABgvtXr9Z7v091EEIaptrCwoKWlpa41Xq93TN0AAAAAADDfvF6vAoFA15paraZGozGmjjp5LMuyXLmyg+7du6dXX31Vf/u3f+t2K3BIMBhUtVpVIBDQ7u6u2+0AAAAAAHCsbxrS6de613z9unRqjk5xd/M9/Uz+NRuGoVwup9/85jf66KOP2BoHAAAAAACA2QzCSqWSLMtSKBRSLBaT3+/XT37yE7fbAgAAAAAAgItmLgi7deuW0um0JMmyrNZHJpPpGoa99NJLeuyxx3Tx4kX95Cc/YYoMAAAAAABgxszcGWEXLlxQKBTS5cuXFQ6HZRiGPvzwQ/3VX/2VPB6PDMPQ7//+73c857HHHpNhGGr/q1heXtbOzg4HrU8ozggDAAAAAEwDzgg7ijPCRuzmzZt65plndO7cOa2srCiTyWhvb0/f/va3W9NiTS+99JIqlYokKZ1Oq9FoaG9vT9/73ve0urrqRvvAsSzr4D+g3T5mK9YGAAAAAGC0TrvdwKh5PJ5j/9zn82lnZ0exWKzjz7e2tuTxeBSPx7WxsdGq3dra0p/8yZ/o008/1be//W2n2wZ6alg2/xXh+F8BAAAAAADm3sxNhPn9fv3sZz879ms+n09+v7/1+Nq1a63PM5nMkfp0Oq1SqTT6JgEAAAAAADB2MxeEpVIpvfLKK3r55ZePPfB+f3+/9XlzGiwajR479XXhwoXWtkkAAAAAAAAnvH3H7Q7mx8xtjYxGo1pdXdXVq1e1tbWleDyuixcvSpJu3LihSqWi73//+wqHwyqXy/J4PFpbWzt2rbNnz8owjHG2DwAAAAAAZoidkOuFwsFh+c+ed76feTdzQZh0MOm1t7enX/ziFyoUCioUCq2vbW9v64033ujYChkOh49d586dO1pcXHS8XwAAAAAAMHvu3Zdeftde7YvvSE9+R/KecbSluTdzWyOb8vm8rl69qpWVFVmWpbNnz+rmzZs6f/688vm8nnnmGfl8Pl29evXEibBcLqfl5eUxdw4AAAAAAGbBW2Xp86/s1X72pXS97Gw/mNGJsKZkMqlkMnns1/L5fOtzv9+vixcv6uc//7n+6I/+SPV6XW+88YZyuVzHmWIAAAAAAAB2vfdJf/XvfyL9+LvO9IIDMx2E2RWPx2UYhs6fPy+Px9P685/+9Kfyer0udgYAAAAAAKbV/hfO1qN/BGH/LJVKKRQKKZfLyefz6fLly3rmmWfcbgsAAAAAAEwp/0PO1qN/M3dG2EcffWSr7pe//KXq9XrHn8XjcX344Ye6efMmIRgAAAAAABjKk4/3V/9En/Xo38wFYfF4XKdOndL3v/99/fVf/7U+/vjjY+tWVlb0ox/9SJ9++ulY+wMAAAAAAPPhubD08AP2ah95UHo+7Gw/mMEgLBKJyLIslUolpdNpRSIRPfroo0eCsbNnz+ratWtKJBL6zW9+427TAAAAAABg5pw9I735lL3aq09L3jOOtgPN4BlhhUJBiURCe3t7Mk1ThmFof39fxWJRpVKpVReLxXT+/Hnt7+9rbW1NH3zwgYtdAwAAAACAWfTseemFQvea6/GDOjhv5oKwZDKpXC6nb3/7260/u3Xrlm7evKlr1661/uzDDz9UsViUZVm6e/euC50CAAAAAABIPyQEG5uZC8Isy+oIwaSD88BWVlaUzWb1xhtv6NatW7p8+bJu374twzB0+fJld5rF0Gq1moLBYNea9fV1ra+vj6kjAAAAAADm1+bmpjY3N7vW1Gq1MXVz1MwFYffu3Tvxa2fPnlUmk9Hdu3eVTqeVzWaPhGaYLo1GQ9VqtWvN4buDAgAAAAAAZ9Tr9Z7v0900c0HYuXPn9LOf/Ux/+Zd/2bXm5s2b+pM/+RNdu3ZNv//7vz/GDjFKCwsLWlpa6lrj9XrH1I373r4jPR9xuwsAAAAAwLzyer0KBAJda2q1mhqNxpg66uSxLMty5coOMQxDf/AHf6Bf/OIX+tM//dOutaZp6uLFi9rZ2ZmrsGQWBINBVatVBQIB7e7uut3OWFzf6X3AoiT93SUOWQQAAACASfFNQzr9Wvear1+XTi2Mp59J4OZ7+pn7aw6FQvrpT3+qeDyul19+uWutz+fT+fPn9eqrr46pO2Aw9+5LL79rr/bFd6T6fUfbAQAAAABgKs1cECZJqVRKP/jBD3T16lX93u/9nn72s5+deE7U4uKibty4MeYOgf68VZY+/8pe7WdfStfLzvYDAAAAAMA0mskgTJLy+bxWV1e1t7enVColv9+vy5cv6+c//7k+/vhjffzxx7py5YpyuZxM03S7XaCr9z7pr/79PusBAAAAAJgHM3dYfrutrS3FYjGtrq7q3r17KhQKKhSOHrIUDodd6A6wb/8LZ+sBAAAAAJgHMzsR1hSPx7W/v6+f/vSnOnv2rCzL6vjw+Xy6du2a220CXfkfcrYeAAAAAIB5MPNBWFMqldLe3p52dnaUz+eVyWSUz+d19+5d/fEf//FYezEMQ7FYbOh1lpeX5fF4jp1yG4V++8xms4rFYvL7/fJ4PFpeXlYikVCpVHKkv3ny5OP91T/RZz0AAAAAAPNgaoOwl156aaDnnT9/Xs8884xeeeUVPfPMMzp79uzIejJNUx6Pp+fH8vKyQqHQUNdKp9MyDGMi+iyVSvL7/Uqn05IOzmerVCrKZDIql8uKxWKKxWKcxTaE58LSww/Yq33kQel5dvsCAAAAAHDE1AZhN2/e1D/90z+53UaHXC5nu7YZGg2iVCopm80O/PxR9lkqlVohVzKZVLFYVDQaVSgUUjweV6VSUTgcVqlUUiQSIQwb0Nkz0ptP2au9+rTkPeNoOwAAAAAATKWpDcL29/f17W9/Wy+99JI++ugjt9uRJG1sbNiqawZFgzBNU4lEYqDnNo2qz/ZeQqGQtra2jq3L5/OSDrZaDtv7PHv2fO+a63F7dQAAAAAAzKOpvmukaZrK5XKtCadoNKpYLKZ4PK5vf/vbY+0ll8vJNE2lUqme52pduHBh4Ousrq5qcXFRkgaarhpln4lEotVDt8mx5nRYoVBQqVRSLpdTMpnsu3f09kNCMAAAAAAATuSxLMtyu4lBLCwsyOPxqL19j8fT+tzn8+nSpUuKxWL6wQ9+0HWtn//85/rRj340VD/Ly8uSpEqlMtQ63eRyOa2trWlnZ0crKyutECqfzysej9taY1R9GobRWks6mNDz+Xwn1hcKhdY0mM/n0/7+/lDXDwaDqlarCgQC2t3dHWqtafFNQzr9Wvear1+XTk3tnCcAAAAAzB7Lkho9kpcFj9QWacw8N9/TT+1b5p/+9KeyLKt1qLskWZbV+tjf31cul1MikdCpU6d08eJF/fVf/7U+/vjjI2sVi8WheikUCjIMY6hzv3oxDENra2tKpVIKhwc7CX2UfWYymdbn0Wi0awgmqSOoM03TsTtdAgAAAAAwSTyeg4GFbh/zFIK5bWq3RqZSKUWjUSUSCe3t7alQKMiyLP2X//JfdOvWLZmm2TEtVi6XVS6XJR1MJDW3UUoaOpTZ2NhoTaA5JZFIKBwOdwRQ/Rpln+0H7tsN5kKhUOtOlzdu3LA9xQYAAAAAADAKUxuESQcBTKVSUTqdViKR0NraWutg9rt376pQKKhYLKpUKnWEYvv7+yoUCiOZSmoP2Px+v0KhUMdZZaOQTqdVLpeH2s44yj6b6zRdvHjR1vPC4XArCGMiDAAAAAAAjNvUbo1sl8lkdPv2bX344Yf6wz/8Q/3jP/6jzp07p1deeUUffvihGo2GisWikslk6y6I7dsoh3F4m6FhGK0tmR6PR4lE4khw1I9yuaxsNqutra2B7zQ56j5LpVLHY7t9Ha4b5u8FAAAAAACgXzMRhEkH00a//vWv9a/+1b9SOBzWT37yk46vr6ys6OrVq/r1r3+t/f19bW1tKRqNDnVNwzCOhEKHFQoFRSIRra2tDXSNlZUVxePxoe6yOOo+b9++3fG41/lgTY8++mjH4+3tbVvPw+hZ1sHh+90+pvM2GgAAAAAAnGyqt0YeZ2trS4lEQpcuXVKhUFA+n9cf/dEfddScPXtWq6urWl1dValU0ve///2BrhUKhbS1tSXTNFWpVFQqlVpb/w7L5XLa3t7Wzs6O7fWbd1m8du3aQP051efh5w46EebkHTbRXcOyeQdKDmwEAAAAAMyQmQvCpIO7GBqGodXVVYXDYWWzWf3lX/7libUrKysDX+vwpJZpmsrlctrY2JBpmh1fK5fLisVitu5S2TzDrFgs2p64GlefJ4Vo/Tp8XQAAAAAAACfNzNbIw3w+n/L5vG7cuKFXXnlF//Jf/kv95je/Oba2OXk1quumUint7+8rn88fCbFKpZKy2WzXNUzTVCKRUDKZHHr7phN9DhpgHb7G3t7eQOsAAAAAAAAMwmMNe1r8FGgGSx999FHX6TCnrr2ystJxMLzP59P+/v6Jz4lEIq1tjCfx+/2tQCqfzw99h8p++vR4OvfL2f0RKpVKisVircfRaNTWdNxxgsGgqtWqFhYWtLS0NNAa7dbX17W+vj70Ok76pmFzO6ONeHuUawEAAAAA5sPm5qY2NzeHXqdWq6nRaCgQCGh3d3cEndk3k1sjD/P5fCoWi8pms3rllVd048YN5fN5/f7v//5Yrr2zs6NIJNIKmUzTVKlUOnbaK5vNqlwu93WW2Lj79Pl8I9nWOIotn41GQ9Vqdeh16vX60GsAAAAAADDL6vX6SN6Du2kugjBJ+vTTT3XhwgWlUills1mFQiHlcjn9+Z//+Viuf+3aNUUikdbjYrF4JGAql8tKp9PKZDIKh8Nj6eswO30uLi6OJAhbXFwceo1RTYR5vd6h1wAAAAAAYJZ5vV4FAoGh12lOhLlhJoKwTz/9VIZhyDRNGYahSqUiwzBkGIb29vaOhDYej0eWZSmZTCqfzyufz+tb3/qWoz2Gw2FFo1GVSiVJxx84n0gkFA6HlUqlHO2lGzt9DjrJdfh1GMVE2NLS0tjHKAEAAAAAmEejOlaoedyRG6Y2CLt48WIr/Oqm2/lVlmXpww8/1Pe+9z3dvn17xB0eFYvFWgHTYdlsVoZhKBqN2jq8v/373tjY0I0bN1qPL1++PNSZYd36lKQLFy50nCVmmqatUOvw4fjLy8sD9wgAAAAAANCvqQ3CdnZ2WpNd3fh8PoVCodbH8vKyFhcXW4/Pnj07po6lUCjU+vzwtsDf/va3ktQ1gDpJuVzuCKZCodBQQVi3PiV1bJ2UDqbG7GzlPHz4v1N3xJxVC56DA+x71QAAAAAAgONNbRDWzu/369KlSx2B17hDLjvaA6ZRbAt0Sq8+L1y40PHYbhDWPsXWDChhn8cjnSLoAgAAAABgYAtuNzCMZ555RuFwWPv7+8rlctre3tb+/r78fv/EhWCStL293fo8Fot1fC2TyciyLNsf7SFSPp/v+Fomk3GsT+ngHLH2gMzuttL2dQ+HaQAAAAAAAE6b2iAsGo3q5s2brfDrxo0bsixLqVRKy8vLeuyxx/TSSy/pH/7hH3qu9dFHH42h486tgZO8LdBOn5cuXWp93r4ts5v2unQ6PWB3AAAAAAAAg5naIKx9Uuns2bOKx+O6efOm9vb2dPv2bf3gBz/Q7du3tbKyolOnTunixYv62c9+po8//vjIWltbW2PpuVAoSJKrd4W0w06fa2trrc/tnGvWXhMKhSY6CMSBt++43QEAAAAAAKM1tWeEvfLKKyd+LRwOt86sunfvnorFom7evKnXX39dqVRKPp9P0WhUFy9elPS74MdJhUJBhmHI5/PpypUrjl9vUHb7DIfDikajrYCrUCh0PaA/n8+3PmcazH12Qq4XCtKpBenZ8873AwAAAADAOEztRJhdx02L/ehHP9LOzo5SqdTAoUypVJLf75fH41EsFuu6PdAwDK2urkqSbt26NdaD8p3ss32SbmNj48Q60zSVy+UkHWy1TCaTfXwHGLV796WX37VX++I7Uv2+o+0AAAAAADA2Mx+EHRYOh5XJZPTrX/9a29vb+t73vjfQOvl8vnUXxFKppEgk0rFdsKn5tcXFRVUqFVt3VxwlJ/sMhUKtSa9yuaxsNnts3crKiqSDO0W2T4bBHW+Vpc+/slf72ZfSdXtHwAEAAAAAMPHmLghrFw6HVSwWdf58/3u/EonEkT/L5XLy+/1KJBJaW1tTJBJRLBZTMpnUzs5Ox50ex8XpPuPxuIrFonw+n9LptBKJhMrlskzTbIVr5XJZ4XBYd+/eHes0HI733if91b/fZz0AAAAAAJNqroOwpkwm0/dzotGoKpWKksmkQqFQR8BTLpe1t7enK1euaH9/X5lMZuQBUKVSkWVZsiyr69lc4+gzGo22nm8YhlZWVlpB2+LiovL5vHZ2dgjBJsT+F87WAwAAAAAwqTyWZVluNwH0KxgMqlqtKhAIaHd31+12psr3/5P04a/6qH9M+uDPnOsHAAAAACaNZUmNHmnJgkfyeMbTz6xx8z39VNw18q//+q8VDocHPs8LwO88+Xh/QdgTjzvXCwAAAABMooYlnX6te83Xr0unCMKmzlRsjfwf/+N/KBaL6T/+x/841DrXrl3TqVOn9Id/+If6x3/8xxF1B0yX58LSww/Yq33kQen58d7fAQAAAAAAx0xFECZJlmUpmUzqJz/5ycBrpNNpWZalX//61wqHw/r0009H1yAwJc6ekd58yl7t1acl7xlH2wEAAAAAYGymJghr+vDDD3X58uWBnnvu3DmFQiElk0mtrq4qnU6PuDtgOjxr40ap1+P26gAAAAAAmBZTcUZYu+3tbSUSCV28eFEfffSRvvWtb9l+7s7OTsfjxx57bNTtATPjh4RgAAAAAIAZM3UTYZKUz+eVSCQUDof1m9/8ZqA17t69q729vRF3BgAAAAAAgEk1lUGYJKVSKf3t3/6twuGw/uEf/qGv5967d0+xWEwXLlxwqDsAAAAAAABMmqnbGtkuGo3q9u3b+pM/+RNduXJFf/7nf97zOR999JESiYRM09Srr746hi7hpFqtpmAw2LVmfX1d6+vrY+oIAAAAAID5tbm5qc3Nza41tVptTN0cNdVBmCSFQiFtb2/r0qVLqlQqeuONN06s/au/+iu9+uqrsixLfr9fP/rRj8bYKZzQaDRUrVa71tTr9TF1AwAAAADAfKvX6z3fp7tp6oMwSfL5fPrwww/14osv6vLly7px48aRmitXriibzcqyLHk8HmUyGRc6xagtLCxoaWmpa43X6x1TNwAAAAAAzDev16tAINC1plarqdFojKmjTjMRhDVdvXpVuVzuyB0lb926pUwmI4/HI4/Ho3A4zDTYjFhaWtLu7q7bbQAAAAAAANk7nigYDLo2NTZ1h+X3Ohg/mUxqa2tL3/ve91p3lGxOf1mW1fEYAAAAAAAA82MqgrBz585JOgiykslkK+A6STgc1o0bN/TMM8/ol7/8pUqlkjweT+tr3/ve9xzvGQAAAAAAzK6377jdAQYxFUFYJpPR/v6+8vm8VlZWFI1G9fOf/7zrc5qH6F+9erX1Zx6PR5cvX3a6XQAAAAAAMMXshFwvFAjDptFUBGGSdPbsWT3zzDO6evWqfvWrX9k+4+vDDz/UK6+80toWGQ6HnWwTAAAAAABMsXv3pZfftVf74jtS/b6j7WDEZuqw/JNkMhldvHhRly5d0t27d91uB3Ddgkf6+vXeNQAAAAAwb94qS59/Za/2sy+l62Xpx991tieMztRMhA0rHo9re3tbN27ccLsVwHUej3RqofuHhyAMAAAAwBx675P+6t/vsx7umpsgTDrYFvnhhx+63QYAAAAAAJhQ+184Ww93zVUQBgAAAAAA0I3/IWfr4S6CMAAAAAAAgH/25OP91T/RZz3cRRAGAAAAAADwz54LSw8/YK/2kQel58PO9oPRIggDAAAAAAD4Z2fPSG8+Za/26tOS94yj7WDECMIAAAAAAADaPHu+d831uL06TBaCMAAAAAAAgD79kBBsKhGEAQAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLpx2uwFgGLVaTcFgsGvN+vq61tfXx9QRAAAAAADza3NzU5ubm11rarXamLo5iiAMU63RaKharXatqdfrY+oGAAAAAID5Vq/Xe75PdxNBGKbawsKClpaWutZ4vd4xdTOfLEtqWN1rFjySxzOefgAAAAAA7vF6vQoEAl1rarWaGo3GmDrq5LEsq8dbWGDyBINBVatVBQIB7e7uut3OXPumIZ1+rXvN169LpziREAAAAMCU4H2Os9x8T89EGAAAAAAAQJsFz0HQ1asG04cgDAAAAAAAoI3HI50i6JpJDPEBAAAAAABgLhCEAQAAAAAAYC6wNRIAAAAAAMwE7mqPXgjCAAAAAADATGhYNu/2SBA2t9gaCQAAAAAAgLlAEAYAAAAAAIC5QBAGwHFv33G7AwAAAAAACMIADMlOyPVCgTAMAAAAAOA+gjAAA7t3X3r5XXu1L74j1e872g4AAAAAAF0RhAEY2Ftl6fOv7NV+9qV0vexsPwAAAAAAdEMQBmBg733SX/37fdYDAAAAADBKBGEABrb/hbP1AAAAAACMEkEYgIH5H3K2HgAAAACAUSIIAzCwJx/vr/6JPusBAAAAYNS4o/18IwgDMLDnwtLDD9irfeRB6fmws/0AAAAAmG92Qq4XCoRh84wgDMDAzp6R3nzKXu3VpyXvGUfbAQAAADDH7t2XXn7XXu2L70j1+462gwlFEAZgKM+e711zPW6vDgAAAAAG9VZZ+vwre7WffSldLzvbDybTabcbAIZRq9UUDAa71qyvr2t9fX1MHeE4PyQEAwAAAOCw9z7pr/79T6Qff9eZXubZ5uamNjc3u9bUarUxdXMUQRimWqPRULVa7VpTr9fH1A0AAAAAwC37XzhbD3vq9XrP9+luIgjDVFtYWNDS0lLXGq/XO6ZuAAAAAABu8T/kbD3s8Xq9CgQCXWtqtZoajcaYOupEEIaptrS0pN3dXbfbAAAAAAC47MnHpQ9/Zb/+iced62We2TmeKBgMujY1xmH5AAAAAABg6j0Xlh5+wF7tIw9Kz4ed7QeTiSAMAAAAAABMvbNnpDefsld79WnJe8bRdjChCMIAAAAAAMBMeNbGHeuvx+3VYTYRhAEAAAAAgLnxQ0KwuUYQBgAAAAAAgLnAXSMBDGXBI339eu8aAAAAAADcRhAGYCgej3SKoAsAAAAAMAXYGgkAAAAAAIC5QBAGAAAAAACAuUAQBgAAAAAAgLlAEAYAAAAAAIC5QBAGAAAAAACAuUAQBgAAAAAAgLlw2u0GAAAAAAAARmHBI339eu8azC+CMAAAAAAAMBM8HukUQRe6YGskAAAAAAAA5gJBGAAAAAAAAOYCQRgAAAAAAADmAkEYAAAAAAAA5gKH5WOq1Wo1BYPBrjXr6+taX18fU0cAAAAAAMyvzc1NbW5udq2p1Wpj6uYogjBMtUajoWq12rWmXq+PqRsAAAAAAOZbvV7v+T7dTQRhmGoLCwtaWlrqWuP1esfUDYZlWVLD6l6z4Dm4JTIAAAAAYPJ4vV4FAoGuNbVaTY1GY0wddfJYltXjbScweYLBoKrVqgKBgHZ3d91uByPyTUM6/Vr3mq9fl05xuiEAAAAATC0339PzdhIAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABzgSAMAAAAAAAAc4EgzAWGYSgWiw29zvLysjwejwqFQt/PzWazisVi8vv98ng8Wl5eViKRUKlUGrgfJ9YEAAAAAAAYFYKwETJNUx6Pp+fH8vKyQqHQUNdKp9MyDKPv55VKJfn9fqXTaUlSPp9XpVJRJpNRuVxWLBZTLBaTaZqurgkAAAAAmA+WJX3T6P5hWW53iVlx2u0GZkkul7Nd2wyNBlEqlZTNZgd6XnMSLZlMamtrq/W1UCikeDyuSCSiUqmkSCSinZ0d+Xy+sa8JdPP2Hen5iNtdAAAAABiVhiWdfq17zdevS6c84+kHs42JsBHa2NiwVReNRgeeCDNNU4lEYqjnhUKhjsCqXT6fl3SwfbPXdZxYE/Pt7Tu9a14o2KsDAAAAAOAwJsJGJJfLyTRNpVKpnud/XbhwYeDrrK6uanFxUZL62mqYSCRa9d2m0ZpTXIVCQaVSSblcTslkcmxrYn7duy+9/K692hffkZ78juQ942hLAAAAAIAZ47EsdtqOwvLysiSpUqk4do1cLqe1tTXt7OxoZWWlFULl83nF4/ETn2cYRqs/Sdrf3++6PbFQKLQmt3w+n/b398eyZj+CwaCq1aoCgYB2d3eHWguT4T/8d+nfvme//m+elH78Xef6AQAAADAe3zRsbo1kT9vMcPM9PT9GI1AoFGQYxlDnfvViGIbW1taUSqUUDof7em4mk2l9Ho1Ge57R1R6qmaZ57F0pnVgT8+29T/qrf7/PegAAAAAACMJGYGNjQz6fT5cuXXLsGolEQuFwuCOAsqv9EH+7IVr7GWY3btwYy5qYb/tfOFsPAAAAAABB2JDK5bLK5bJM05Tf79fy8rLW1tZGOvGUTqdVLpdbh87321+7ixcv2npee7h1+HtxYk3A/5Cz9QAAAAAAEIQN6fB2SMMwlMvllEgk5PF4lEgkjgRH/SiXy8pms9ra2hroTpOlUqnjsd01Dte1fw9OrAk8+Xh/9U/0WQ8AAAAAAEHYEAzDOBIKHVYoFBSJRLS2tjbQNVZWVhSPxwe+y+Lt27c7Hvc6y6vp0Ucf7Xi8vb3t6JrAc2Hp4Qfs1T7yoPR8f0flAQAAAABAEDaMUCikra0tZTIZJZPJrpNRuVxOkUikr/Wbd1m8du3awD0ahtHxeNDprfa7YTqxJnD2jPTmU/Zqrz4tec842g4AAACACfL2Hbc7wKw47XYD0+7wpJZpmsrlctrY2JBpmh1fK5fLisViKhaLPdctFAoqFAoqFou2J66Oczi0GlT79+LEmoAkPXteeqHH8XHX4wd1AAAAAGaDnZDrhYJ0aoH3AhgeQdiI+Xw+pVIppVIpFQoFra6udgQ+pVJJ2WxWqVTqxDVM01QikVAymVQ0Gh2qn0HDpsPh297enqNrDqpWqykYDA69zvr6utbX14deB877If/DBwAAAMyMe/ell9+1V/viO9KT32F3iJs2Nze1ubk59Dq1Wm0E3QyGIMxB8Xhc0WhUKysrHQfDb2xsdA3CVlZWWtsuJ4UT01ujWLPRaKharQ69Tr1eH3oNAAAAAEB/3ipLn39lr/azL6XrZenH33W2J5ysXq+P5D24mwjCHObz+bSzs6NIJNIKw0zTVKlUOnbaK5vNqlwua2dnZ2TXH0Xg1D7N5cSag1pYWNDS0tLQ63i93qHXAAAAAAD0571P+qt//xOCMDd5vV4FAoGh16nVamo0GiPoqH8EYWNy7dq1jsPyi8XikSCsXC4rnU4rk8koHB7NLfEWFxdHElotLi46uuaglpaWtLu7O/Q6AAAAAIDx2//C2XqM1qiOFQoGg65NlnHXyDEJh8MdwddxB84nEgmFw+Gu2yb7NejU1eGg6/BE2KjXBAAAAADMH/9DztYDhzERNkaxWEylUunYr2WzWRmGoWg0qkQi0XOt9lBpY2NDN27caD2+fPmy4vG4JOnChQsd55OZpmkrgDp8kP3y8nLrcyfWBAAAAADMnycflz78lf36Jx53rhfMB4KwMQqFQq3PD28L/O1vfytJJwZl3ZTL5Y5gKhQKtYKw9u2Y0sEkmp1tl5VKpeNx+zSbE2sCAAAAAObPc2Hp1Q/sHZj/yIPS86M5RQhzjCBsjNqDsHFtC7xw4ULHY7uhVfvEmc/n6+jdiTUBSVrwSF+/3rsGAAAAwGw4e0Z68ynphULv2qtPS94zjreEGccZYWO0vb3d+jwWi3V8LZPJyLIs2x/tIVI+n+/4WiaTaX0tHA53hG63b9/uu9fDwZcTawKS5PFIpxa6f3gIwgAAAICZ8uz53jXX4/bqgF4IwsaofWvgOLcFXrp0qfV5+xbKbtrr0un0WNYEAAAAAOA4PyQEw4gQhI1RoXAw6znKu0Lasba21vrczhlk7TWhUOjY0M6JNQEAAAAAAJxEEDYmhUJBhmHI5/PpypUrY712OBzuCJ6agdxJ8vl86/OTJrecWBMAAAAAAMBJBGEDKpVK8vv98ng8isViXbcHGoah1dVVSdKtW7fGdlB+u62trdbnGxsbJ9aZpqlcLifpYPtmMpkc65oAAAAAAABOIQgbUD6fb90FsVQqKRKJdGwXbGp+bXFxUZVKxdbdFZ0QCoVaU1nlclnZbPbYupWVFUkHd3Vsn+Ia15oAAAAAAABOIQgbUCKROPJnuVxOfr9fiURCa2trikQiisViSiaT2tnZ6bjToxvi8biKxaJ8Pp/S6bQSiYTK5bJM02wFduVyWeFwWHfv3rU1uebEmgAAAAAAAE7wWJZlud3EtDIMQ5lMRqVSSXt7ezJNUz6fT4uLiwqHw7p8+bKi0ehEhj/ZbFY3btyQYRitvi9cuKC1tTXF4/GJWfMkwWBQ1WpVgUBAu7u7I10bAAAAADA+3zSk0691r/n6dekUozwzw8339ARhmEoEYQAAAAAwGyxLavRIJhY8kscznn7gPDff058e69UAAAAAAADaeDzSKUIujAmDhQAAAAAAAJgLBGEAAAAAAACYCwRhAAAAAAAAmAsEYQAAAAAAAJgLBGEAAAAAAACYC9w1ElOtVqspGAx2rVlfX9f6+vqYOsIk4PbLAAAAAOCOzc1NbW5udq2p1Wpj6uYogjBMtUajoWq12rWmXq+PqRtMioYlnX6te83Xr3OLZgAAAAAYtXq93vN9upsIwjDVFhYWtLS01LXG6/WOqRsAAAAAAOab1+tVIBDoWlOr1dRoNMbUUSePZVk9NhABkycYDKparSoQCGh3d9ftdjBhvmnYnAjjlEQAAAAAGDs339PzNhAAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABzgSAMwFx6+47bHQAAAAAAxu202w0AwKjZCbleKBzcNfLZ8873AwAAAMway5IaVveaBY/k8YynH8AugjAAM+Xefenld+3VvviO9OR3JO8ZR1sCAAAAZk7Dkk6/1r3m69elUwRhmDBsjQQwU94qS59/Za/2sy+l62Vn+wEAAAAATA6CMAAz5b1P+qt/v896AAAAAMD0IggDMFP2v3C2HgAAAAAwvQjCAMwU/0PO1gMAAAAAphdBGICZ8uTj/dU/0Wc9AAAAAGB6EYQBmCnPhaWHH7BX+8iD0vNhZ/sBAAAAAEwOgjAAM+XsGenNp+zVXn1a8p5xtB0AAAAAwAQhCAMwc54937vmetxeHQAAAIDBvH3H7Q6AowjCAMylHxKCAQAAAAOzE3K9UCAMw+QhCAMAAAAAALbduy+9/K692hffker3HW0H6AtBGAAAAAAAsO2tsvT5V/ZqP/tSul52th+gHwRhAAAAAADAtvc+6a/+/T7rASeddrsBYBi1Wk3BYLBrzfr6utbX18fUEQAAAADMtv0vnK3HdNvc3NTm5mbXmlqtNqZujiIIw1RrNBqqVqtda+r1+pi6AQAAAIDZ53/I2XpMt3q93vN9upsIwjDVFhYWtLS01LXG6/WOqRtMigWP9PXrvWsAAAAA9O/Jx6UPf2W//onHnesFk8fr9SoQCHStqdVqajQaY+qok8eyLMuVKwNDCAaDqlarCgQC2t3ddbsdAAAAAJgb9+5LgTfsHZj/yINS9YrkPeN8X5gebr6n57B8AAAAAABg29kz0ptP2au9+jQhGCYLQRgAAAAAAOjLs+d711yP26sDxokgDAAAAAAAjNwPCcEwgQjCAAAAAAAAMBcIwgAAAAAAADAXTrvdAABMMsuSGj3urbvgkTye8fQDAAAAABgcQRgAdNGwpNOvda/5+nXpFEEYAAAAAEw8tkYCAAAAAABgLhCEAQAAAAAAYC6wNRIAAAAAAPRlwXNwREivGmDSEIQBAAAAAIC+eDyck4vpxNZIAAAAAAAAzAWCMAAY0tt33O4AAAAAAGAHWyMBoAs7IdcLBenUgvTseef7AQAAAAZlWVLD6l6z4DnY9gjMKoIwADjBvfvSy+/aq33xHenJ70jeM462BAAAAAysYUmnX+te8/XrnP2F2cbWSAA4wVtl6fOv7NV+9qV0vexsPwAAAACA4RCEAcAJ3vukv/r3+6wHAAAAAIwXQRgAnGD/C2frAQAAAADjRRAGACfwP+RsPQAAAABgvDgsH1OtVqspGAx2rVlfX9f6+vqYOsIsefJx6cNf2a9/4nHnegEAAACAabC5uanNzc2uNbVabUzdHEUQhqnWaDRUrVa71tTr9TF1g1nzXFh69QN7B+Y/8qD0fNj5ngAAAAAnvX1Hej7idheYZvV6vef7dDcRhGGqLSwsaGlpqWuN1+sdUzeYNWfPSG8+Jb1Q6F179WnJe8bxlgAAAICBvX2nd80LBenUgvTseef7wWzyer0KBAJda2q1mhqNxpg66uSxLMty5crAEILBoKrVqgKBgHZ3d91uBzPsm4Z0+rXuNdfj0nP8qxkAAAAm2L37UuAN+7sdqlf4h144x8339ByWDwBD+iH/WgYAAIAJ91bZXggmSZ99KV0vO9sP4BaCMAAAAAAAZtx7n/RX/36f9cC0IAgDAAAAAGDG7X/hbD0wLQjCAAAAAACYcf6HnK0HpgVBGAAAAAAAM+7Jx/urf6LPemBanHa7AQCYZAse6evXe9cAAAAAk+y5sPTqB/bvGvl82PmeADcwEQYAXXg80qmF7h8egjAAAABMuLNnpDefsld79WnJe8bRdgDXEIQBAAAAADAHnj3fu+Z63F4dMK0IwgAAAAAAgCTph4RgmHEEYQAAAAAAAJgLBGEAAAAAAACYCwRhAAAAAAAAmAun3W4AAOaFZUkNq3vNgoe7UAIAAACAUwjCAGBMGpZ0+rXuNV+/Lp0iCAMAAIADFjwH//9mrxpglhGEAQAAAAAwBzwe/tEV4IwwAAAAAAAAzAUmwgAAAAAAmFCcMwuMFkEYAEyQt+9Iz0fc7gIAAACTgnNmgdFiayQAjMnbd3rXvFCwVwcAAAAA6B8TYZhqtVpNwWCwa836+rrW19fH1BFwvHv3pZfftVf74jvSk9+RvGccbQkAAAAARm5zc1Obm5tda2q12pi6OYogDFOt0WioWq12ranX62PqBjjZW2Xp86/s1X72pXS9LP34u872BAAAAACjVq/Xe75PdxNBGKbawsKClpaWutZ4vd4xdQOc7L1P+qt//xOCMAAAAADTx+v1KhAIdK2p1WpqNBpj6qgTQRim2tLSknZ3d91uA+hp/wtn6wEAADC/uOESJomd44mCwaBrU2Mclg8AY+B/yNl6AAAAzCZuuASMFkEYAIzBk4/3V/9En/UAAACYPf3ecKl+39F2gJlAEAYAY/BcWHr4AXu1jzwoPR92th8AAABMvkFuuASgO4IwABiDs2ekN5+yV3v1acl7xtF2AAAAMAUGueESgO4IwgBgTJ4937vmetxeHQAAAGYfN1wCRo8gDAAmyA8JwQAAAPDPuOESMHoEYS4wDEOxWMx27drampaXl+XxeOT3+xWJRLS2tibDMCamT0nKZrOKxWLy+/3yeDxaXl5WIpFQqVRysEsAAAAAmE3ccAkYPYKwETJNUx6Pp+fH8vKyQqFQz/Wy2ayWl5eVy+VaoZdpmiqXy8rlclpeXlY2m3W9z1KpJL/fr3Q6LUnK5/OqVCrKZDIql8uKxWKKxWIyTbPvXgEAAABgXnHDJWD0TrvdwCzJ5XK2a5uh0UlisZhKpZJ8Pp+i0ahCoZAMw1C5XO6YBEun0wqFQorH4670WSqVWlNjyWRSW1tbra81+4pEIiqVSopEItrZ2ZHP57N9fQAAAACYV80bLr1Q6F3LDZcAezyWZVluNzEr/H6/ramnaDSqYrF44tfT6bSy2awymYxSqdSRr2ez2SMBVT8v46j6NE1T586dk2maCoVCqlQqx9YZhqHl5WVba9oVDAZVrVYVCAS0u7s79HrAOFiW1Ojxq7rgkTye8fQDAACAyfdNQzr9Wvea63Hpuch4+gFGwc339EyEjUgul5NpmkqlUj3P1bpw4cKJXzMMQ9lsVsViUdFo9NiaVCqlSqXSMdlVLpcVDveegx1Vn5KUSCRagVq3ybHmZFihUFCpVFIul1MymezZKzBrPB7pFCEXAAAARowbLgH2MRE2Is2Jp5OmouxKJBK6ePHisZNg7UzTlN/vbz0+aXrMqT7bp7wkaX9/v+uWx0KhoEQiIUny+Xza398f6vpMhAEAAACYB3Ymwr5+XTrFCeCYIm6+p+dXZQQKhYIMw+h5npYdzWmtXnw+X8dB9nbO3Rpln5lMpvV5NBrtef32M8xM01ShYGOTOwAAAAAAwAgRhI3AxsaGfD6fLl26NPRa/Zyftbe31/q81zZGabR9tm/LtLMlU1JHcHfjxo2hewAAAAAAAOgHZ4QNqVwuq1wuSzo4hD4UCikajSoWi/V1J8d+mabZOp8rGo32DKNG2WdznaaLFy/ael44HG7d8ZKJMAAAAADobcFzsPWxVw0Ae5gIG9LhbYaGYSiXyymRSMjj8SiRSBwJjkbh5s2bkg6mrPL5/Fj7LJVKHY/bJ726OVznxN8LAAAAAMwSj+fg/K9uH9x1HLCPIGwIhmEcCYUOKxQKikQiWltbG9l1TdPU2tqawuGwisViz/O5Rt3n7du3Ox7bOZ9Mkh599NGOx9vb27aeBwAAAAAAMApsjRxCKBTS1taWTNNUpVJRqVRqbf07LJfLaXt7Wzs7O0Nd0zAMxWIx+Xw+3bp1y1YINeo+Dz930ImwYe9cCQAAAAAA0A+CsCElk8mOx6ZpKpfLaWNjo3WGV1O5XFYsFuvrQPx2hUJBiUSi9djv9yuTydi6y+Qo+zwpROvX4esCAAAAAAA4yWNZluV2E7OqUChodXX1SOBjN7ySfhdYbW1tnRhAxeNxW+eEjapPz6EN6HZ/hEqlkmKxWOvxMH0Hg0FVq1UtLCxoaWlpoDXara+va319feh1AAAAAACYVZubm9rc3Bx6nVqtpkajoUAgoN3d3RF0Zh8TYQ6Kx+OKRqNaWVnpOBh+Y2PDdhBWKpVUqVQUjUZPPOurUCgom83aXtOJPgcxiomwRqOharU69Dr1en3oNQAAAAAAmGX1en0k78HdRBDmMJ/Pp52dHUUikVbIZJqmSqWSotFoz+fH43HF4/GOP8vlckqn0x1BUjqdVjKZtH1w/TB9+ny+kYRYg/bablQTYV6vd+g1AAAAAACYZV6vV4FAYOh1mhNhbiAIG5Nr164pEom0HheLRVtB2HGSyaSi0agikUhHIJXL5Yae4LLT5+Li4kiCsMXFxaHXWFpaGvsYJTAJLEtq9NiVvODhVtoAAAAARmdUxwo1jztyA0HYmITDYUWj0dbWxmEPnA+FQrp161ZHaHX79u2h1pTs9TnoJNfh8GwUE2HAvGpY0unXutd8/bp0iiAMAAAAAFoW3G5gnrQfFD8K4XC4Y9vkqO7m2KvPCxcudDy2Ox22t7fX8Xh5ebmvvgAAAAAAAIZBEDZGoVCo9fkotgVK0uXLl1ufj2K7otS7z/YpNMl+AFepVDoeD7o1FAAAAAAmnWVJ3zS6f1g9jroAMHpsjRyj9oBpVNsCw+HwyNfs1efhiTDDMDr6OEl7UOfz+TquAwAAAACzhKMsgMnERNgYbW9vtz4f9TZJ6WhANahefYbD4Y6AzO7ZZO3rjqpXACd7+47bHQAAAADAZCEIG6P2rYGj2hbYvi1xVOGanT4vXbrU+rxcLttat70unU4P2B0AyV7I9UKBMAwAAAAA2hGEjVGhUJAkpVKpka3ZDJd8Pl/HwfnDsNPn2tpa6/PmHSa7aa8JhUKcDwYM4d596eV37dW++I5Uv+9oOwAAABgQ/2gJjB9B2JgUCgUZhiGfz6crV66MbN2NjQ1J0rVr10aynt0+w+FwR5jVDM9Oks/nW58zDQYM562y9PlX9mo/+1K6bm9oEwAAACPEBD8wmQjCBlQqleT3++XxeBSLxbpuDzQMQ6urq5KkW7dudT3UPpvNKhKJKJ1O97wLZLMmlUqdOA3mVJ+StLW11fq8GcgdxzRN5XI5SQdbLZPJZNd1AXT33if91b/fZz0AAACGwwQ/MLkIwgaUz+dbQVWpVFIkEunYLtjU/Nri4qIqlUrXuyuapql0Oq1yuaxsNiu/33/i9FQikVA2m1Umk1Emkxlrn02hUKg16dXs+TgrKyuSDrZvtk+GARjM/hfO1gMAAGA4TPADk4sgbECJROLIn+VyOfn9fiUSCa2trSkSiSgWiymZTGpnZ0ehUKjrmj6f70hNMxBLJBJKp9OKxWLy+/2SDg6173XemBN9tovH4yoWi/L5fEqn00okEiqXyzJNsxWulctlhcNh3b17t+eUGYDe/A85Ww8AAIDhMMEPTC6CsAFFo1FVKhUlk0mFQqGOgKdcLmtvb09XrlzR/v6+MpmM7QBoZ2dHqVRK4XD4yJqGYSiRSOju3bvK5/O2Aiun+jx8jebzDcPQyspKK2hbXFxUPp/Xzs4OIRgwIk8+3l/9E33WAwAAYDhM8AOTy2NZluV2E0C/gsGgqtWqAoGAdnd33W4HGKt796XAG/bG7R95UKpekbxnnO8LAAAAB77/n6QPf9VH/WPSB3/mXD/ApHHzPT0TYQAwZc6ekd58yl7t1acJwQAAAMaNCX5gchGEAcAUevZ875rrcXt1AAAAGK3nwtLDD9irfeRB6fne9yoDMCIEYQAwo35ICAYAAOAKJviByUUQBgAAAADAiDHBD0ym0243AADo34JH+vr13jUAAACYXEzwA+NHEAYAU8jjkU4RdAEAAABAXwjCMNVqtZqCwWDXmvX1da2vr4+pIwAAAAAA5tfm5qY2Nze71tRqtTF1cxRBGKZao9FQtVrtWlOv18fUDQAAAAAc4CgLzKt6vd7zfbqbCMIw1RYWFrS0tNS1xuv1jqkbAAAAADjAURaYV16vV4FAoGtNrVZTo9EYU0edPJZlWa5cGRhCMBhUtVpVIBDQ7u6u2+0AAAAAAACb3HxPvzDWqwEAAAAAAAAuIQgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXDjtdgMAAHdZltTocf/gBc/BLcABAAAAYJoRhAHAnGtY0unXutd8/bp0iiAMAAAAwJRjayQAAAAAAADmAhNhAAAAAACIIyOAeUAQBgDo6e070vMRt7sAAABwFkdGALOPrZEAMOfevtO75oWCvToAAAAAmGQEYQAwx+7dl15+117ti+9I9fuOtgMAAAAAjiIIA4A59lZZ+vwre7WffSldLzvbDwAAwKRjSh6YbgRhADDH3vukv/r3+6wHAACYJhwZAcw+gjAAmGP7XzhbDwAAMC04MgKYDwRhADDH/A85Ww8AADAtODICmA8EYQAwx558vL/6J/qsBwAAmBYcGQHMB4IwAJhjz4Wlhx+wV/vIg9LzYWf7AQAAcAtHRgDzgSAMAObY2TPSm0/Zq736tOQ942g7AAAAruHICGA+nHa7AWAYtVpNwWCwa836+rrW19fH1BEwfZ49f3D3o26uxw/qAAAAZtWTj0sf/sp+PUdGAMfb3NzU5uZm15parTambo4iCMNUazQaqlarXWvq9fqYugFm1w8JwQAAwIx7Liy9+oG9A/M5MgI4Wb1e7/k+3U0EYZhqCwsLWlpa6lrj9XrH1A0AAACAadU8MqLXpLzEkRFAN16vV4FAoGtNrVZTo9EYU0edPJZlWa5cGRhCMBhUtVpVIBDQ7u6u2+0AU82ypEaP/yVY8Egez3j6AQAAcMs3Den0a91rrsel5yLj6QeYVW6+p2ciDADmnMcjnSLkAgAAsIUjI4Dpxl0jAQAAAAAAMBeYCAMAAAAAQAfHQXz9eu8aANOLIAwAAAAAAHFkBDAP2BoJAAAAAACAuUAQBgAAAAAAgLlAEAYAAAAAAIC5QBAGAAAAAACAuUAQBgAAAAAAgLlAEAYAAAAAAIC5QBAGAAAAAACAuXDa7QYAAAAAABiUZUkNq3vNgkfyeMbTD4DJRhAGAAAAAJhaDUs6/Vr3mq9fl04RhAEQWyMBAAAAAAAwJ5gIAwCMBNsSAAAAAEw6gjAAwEiwLQEAAEyqt+9Iz0fc7gLAJGBrJAAAAABgar19p3fNCwV7dQBmH0EYAGBs+H9AAQDAKN27L738rr3aF9+R6vcdbQfAFCAIAwCMBP8aCwAAxu2tsvT5V/ZqP/tSul52th8Ak48zwjDVarWagsFg15r19XWtr6+PqSNgPvX7r7FPfkfynnG0JQAAMAfe+6S/+vc/kX78XWd6AXBgc3NTm5ubXWtqtdqYujmKIAxTrdFoqFqtdq2p1+tj6gaYX4P8ayz/TygAABjW/hfO1gPoX71e7/k+3U0EYZhqCwsLWlpa6lrj9XrH1A0wv/jXWAAA4Ab/Q87WA+if1+tVIBDoWlOr1dRoNMbUUSeCMEy1paUl7e7uut0GMPf411gAAOCGJx+XPvyV/fonHneuFwAH7BxPFAwGXZsa47B8AMDQ+NdYAADghufC0sMP2Kt95EHp+bCz/QCYfARhAIChPdnnv67yr7EAAGAUzp6R3nzKXu3Vp7lZDwCCMADACPCvsQAAwC3Pnu9dcz1urw7A7CMIAwAMjX+NBQAAk+yHhGAA/hmH5QMARuLZ89ILhe41/GssAAAYtQWP9PXrvWsAQCIIAwCMEf8aCwAARs3jkU4RdAGwia2RAAAAAAAAmAtMhAEARoJtCQAAAAAmHUEYAGAk2JYAAAAAYNKxNRIAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABz4bTbDQAAcJhlSQ2re82CR/J4xtMPAAAAgNlAEAYAmDgNSzr9Wvear1+XThGEAQAAAOgDWyMBAAAAAAAwF5gIw1Sr1WoKBoNda9bX17W+vj6mjgCMy9t3pOcjbncBAAAAoN3m5qY2Nze71tRqtTF1cxRBGKZao9FQtVrtWlOv18fUDYBReftO75oXCtKpBenZ8873AwAAAMCeer3e8326mwjCMNUWFha0tLTUtcbr9Y6pGwCjcO++9PK79mpffEd68juS94yjLQEAAACwyev1KhAIdK2p1WpqNBpj6qiTx7KsHvflAiZPMBhUtVpVIBDQ7u6u2+0AGKH/8N+lf/ue/fq/eVL68Xed6wcAAIwed4gG5pub7+mZCAMATJT3Pumv/v1PCMIAAJg23CEagFu4ayQAYKLsf+FsPQAAAID5RRAGAJgo/oecrQcAANPBzs1zAKBfBGEAgIny5OP91T/RZz0AAHCf3TtEE4YBGDWCMADARHkuLD38gL3aRx6Ung872w8AABitfu8QXb/vaDsA5gxBGABgopw9I735lL3aq09L3jOOtgMAAEbsrbL0+Vf2aj/7UrpedrYfAPOFIMwFhmEoFovZrl1bW9Py8rI8Ho/8fr8ikYjW1tZkGMbAPWSzWcViMfn9fnk8Hi0vLyuRSKhUKk3UmgDm07Pne9dcj9urAwAAk2WQO0QDwKgQhI2QaZryeDw9P5aXlxUKhXqul81mtby8rFwu1wq9TNNUuVxWLpfT8vKystlsXz2WSiX5/X6l02lJUj6fV6VSUSaTUblcViwWUywWk2marq4JAL38kBAMAICpxB2iAbjptNsNzJJcLme7thkanSQWi6lUKsnn8ykajSoUCskwDJXL5Y5JsHQ6rVAopHg83vOapVKpNYmWTCa1tbXV+lpzjUgkolKppEgkop2dHfl8vrGvCQAAAGB2cYdoAG7yWJZlud3ErPD7/bamnqLRqIrF4olfT6fTymazymQySqVSR76ezWaPBGm9XkbTNHXu3DmZpqlQKKRKpXJsnWEYWl5ettWnE2vaFQwGVa1WFQgEtLu7O/R6ACaLZUmNHv/rtOCRPJ7x9AMAAEbnP/x36d++Z7/+b56Ufvxd5/oBMH5uvqdnImxEcrmcTNNUKpXqef7XhQsXTvyaYRjKZrMqFouKRqPH1qRSKVUqlY4JtHK5rHD45FunJRKJVkjXbRqtOcVVKBRUKpWUy+WUTCbHtiYASAcB1ylCLgAAZtJzYenVD+wdmM8dogGMGhNhI9KceDppKsquRCKhixcvHjsJ1s40Tfn9/tbjk6bHpM6JLEna39/vuj2xUCgokUhIknw+n/b398eyZj+YCAMAAACm1/Ud6YVC77q/u8TNcYBZ5OZ7eg7LH4FCoSDDMHqe+2VHc6qsF5/P13HgfrcQKpPJtD6PRqM9z+hqP2/MNE0VCkf/F8qJNQEAAADMB+4QDcAtBGEjsLGxIZ/Pp0uXLg29Vj/nZ+3t7bU+77bdsn0LZbftk+3aQ7YbN26MZU0AAAAAaOIO0QCcwBlhQyqXyyqXy5IODssPhUKKRqOKxWK27uQ4KNM0W+dzRaPRE8OoZm9NFy9etLV+OBxu3Z3y8PSWE2sCAAAAmB8LHunr13vXAMCoMRE2pMPbIQ3DUC6XUyKRkMfjUSKROBIcjcLNmzclHUxZ5fP5E+tKpVLH4/aprG4O17V/D06sCQAAAGB+eDzSqYXuH9wdGoATCMKGYBjGkVDosEKhoEgkorW1tZFd1zRNra2tKRwOq1gsdj2f6/bt2x2Pe53l1fToo492PN7e3nZ0TQAAAAAAAKexNXIIoVBIW1tbMk1TlUpFpVKptfXvsFwup+3tbe3s7Ax1TcMwFIvF5PP5dOvWrZ4h1OF+Bp3ear8bphNrAgAAAAAAOI2JsCElk0mlUiltbW2pUqlof39fmUzm2ICqXC4rFosNfK1CoaDl5WUZhiHTNOX3+5XNZrs+56Rgrl/N88icWhMAAAAAAMBpTISNmM/nUyqVUiqVUqFQ0OrqakfgUyqVlM1mlUqlbK1nmqZyuZy2traODaDS6bRu37594jlhg4ZNh4O89jtUOrHmoGq1moLB4NDrrK+va319feh1AAAAAACYVZubm9rc3Bx6nVqtNoJuBkMQ5qB4PK5oNKqVlZWOg+E3NjZsB2GlUkmVSkXRaPTEM8kKhUJf4dognJjeGsWajUZD1Wp16HXq9frQawAAAAAAMMvq9fpI3oO7iSDMYT6fTzs7O4pEIq0wzDRNlUolRaPRns+Px+OKx+Mdf5bL5ZROpzuCpHQ6rWQyeWTqyufzjSRwal/XiTUHtbCwoKWlpaHX8Xq9Q68BYDJZltSwutcseLgzFQAAANCL1+tVIBAYep1araZGozGCjvpHEDYm165dUyQSaT0uFou2grDjJJNJRaNRRSKRjkAql8sdmQpbXFwcSWi1uLjo6JqDWlpa0u7u7tDrAJhdDUs6/Vr3mq9fl04RhAEAAABdjepYoWAw6NpkGYflj0k4HO4IvoY9cD4UCunWrVsdf3b79u0jdYNOXR0Oug5PhI16TQBw09t33O4AAAAAwDgQhI3RMHeMPE44HO7YNnlcuHbhwoWOx3YnuQ4fZL+8vOzomgDgFDsh1wsFwjAAAOywLOmbRvcPq8eRBADgJrZGjlEoFGp9PoptgZJ0+fJlFQoFSccHUu3bMaWDsCwcDvdct1KpdDxun2ZzYk0AcMK9+9LL79qrffEd6cnvSN4zjrYEAMBU48gBANOOibAxag/CRrUtsD2AOm7Nw9NbdrdktodqPp+vo3cn1gQAJ7xVlj7/yl7tZ19K18u96wAAQHdMWQOYZARhY7S9vd36fNTbJKWjAZV0EJS1B2THnSN2nPZeD6/rxJoA4IT3Pumv/v0+6wEAmDccOQBg2hGEjVH71sBRbQtsn8Y6KVy7dOlS6/Ny2d64Q3tdOp0ey5oAMGr7XzhbDwDAPOn3yIH6fUfbAYCBEISNUfMsr1QqNbI1m+GSz+frODi/3draWuvzUqnUc832mlAodGxo58SaADBq/oecrQcAYJ5w5ACAWUAQNiaFQkGGYcjn8+nKlSsjW3djY0OSdO3atRNrwuFwR/DUDOROks/nW5+fNLnlxJoAMGpPPt5f/RN91gMAME84cgDALCAIG1CpVJLf75fH41EsFuu6PdAwDK2urkqSbt261fWg/Gw2q0gkonQ6fexdINs1a1Kp1InTYE1bW1utz5vh2XFM01Qul5N0sH0zmUyOdU0AGKXnwtLDD9irfeRB6fneN8AFAGBuceQAgFlAEDagfD7fCqpKpZIikUjHdsGm5tcWFxdVqVQ67vJ4mGmaSqfTKpfLymaz8vv9J05PJRIJZbNZZTIZZTKZnv2GQqHWVFZz/eOsrKxIOthq2T7FNa41AWCUzp6R3nzKXu3VpyXvGUfbAQBgqnHkAIBZQBA2oEQiceTPcrmc/H6/EomE1tbWFIlEFIvFlEwmtbOzo1Ao1HVNn893pKYZiCUSCaXTacViMfn9fkkHh+/3c95YPB5XsViUz+dTOp1WIpFQuVyWaZqtwK5cLiscDuvu3btdJ9ecXBMARunZ871rrsft1QEAMM84cgDALCAIG1A0GlWlUlEymVQoFOoIeMrlsvb29nTlyhXt7+8rk8nYDoB2dnaUSqUUDoePrGkYhhKJhO7evat8Pt8zWDup72ZPhmFoZWWlFbQtLi4qn89rZ2enr8DKiTUBYJx+SAgGAEBPHDkAYBZ4LMuy3G4C6FcwGFS1WlUgENDu7q7b7QCYYJYlNXr8L92CR/J4xtMPAADT7PqO9EL3+2RJkv7uEtPWAE7m5nt6JsIAADPN45FOLXT/IAQDAMAejhwAMO0IwgAAAAAAI8ORAwAm2Wm3GwAAAAAATIcFj/T1671rAGBSEYQBAAAAAGzxeKRTBF0AphhbIwEAAAAAADAXCMIAAAAAAAAwF9gaialWq9UUDAa71qyvr2t9fX1MHQEAAAAAML82Nze1ubnZtaZWq42pm6MIwjDVGo2GqtVq15p6vT6mbgAAAAAAmG/1er3n+3Q3EYRhqi0sLGhpaalrjdfrHVM3AAAAAADMN6/Xq0Ag0LWmVqup0WiMqaNOHsuyLFeuDAwhGAyqWq0qEAhod3fX7XYAAAAAAIBNbr6n57B8AAAAAAAAzAWCMAAAAAAAAMwFgjAAAAAAAADMBYIwAAAAAAAAzAXuGgkAgE2WJTV63GJmwSN5POPpBwAAAEB/CMIAALCpYUmnX+te8/Xr0imCMAAAAGAisTUSAIARevuO2x0AAAAAOAkTYQAA2GQn5HqhIJ1akJ4973w/AADYwdZ+APgdgjAAAGy4d196+V17tS++Iz35Hcl7xtGWAACwha39APA7bI0EAMCGt8rS51/Zq/3sS+l62dl+AAAYJbb2A5gXBGEAANjw3if91b/fZz0AAE6xu7WfMAzAPCAIAwDAhv0vnK0HAMAJ/W7tr993tB0AcB1BGAAANvgfcrYeAAAnsLUfADoRhAEAYMOTj/dX/0Sf9QAAOIGt/QDQiSAMAAAbngtLDz9gr/aRB6Xnw872AwCAHWztB4BOBGEAANhw9oz05lP2aq8+LXnPONoOAAC2sLUfADoRhAEAYNOz53vXXI/bqwMAYBzY2g8AnU673QAAANNiwSN9/frBHbj+7o70958cbCHxPyT968el585LPv4lHQAwQZ4LS69+YO/AfLb2A5gHBGEAANjk8UinPNLi/yb9xf9x8AEAwCRrbu1/odC7lq39AOYBQRimWq1WUzAY7Fqzvr6u9fX1MXUEAAAATJbnwpJH0kvvHj8Z9vADByEYW/sBjMLm5qY2Nze71tRqtTF1cxRBGKZao9FQtVrtWlOv18fUDQAAADB5PB7puYj0f/7v0ltl6f22rf1PPH6wHZJJMACjUq/Xe75PdxNBGKbawsKClpaWutZ4vd4xdQMAAABMrrNnpB9/9+ADAJzi9XoVCAS61tRqNTUajTF11MljWZblypWBIQSDQVWrVQUCAe3u7rrdDgAAAAAAsMnN9/QLY70aAAAAAAAA4BKCMAAAAAAAAMwFgjAAAAAAAADMBYIwAAAAAAAAzAWCMAAAAAAAAMwFgjAAAAAAAADMhdNuNwAAwLyxLKlhSffuS2/dkf7+E2n/C8n/kPTE49K/OX/wucfjdqcAAADAbCEIAwBgzBqWdPq1479W/LX0796X/nNcej4y3r4AAACAWcfWSAAAxuztO71rXijYqwMAAABgHxNhAACM0b370svv2qt98R3pye9I3jOOtgQAmEBsowcAZxCEAQAwRm+Vpc+/slf72ZfS9bL04+862xMAYPKwjR4AnMHWSAAAxui9T/qrf7/PegDAbGAbPQA4gyAMAIAx2v/C2XoAwPTrdxt9/b6j7QDATCEIAwBgjPwPOVsPAJh+g2yjBwDYQxAGAMAYPfl4f/VP9FkPAJh+bKMHAOcQhAEAMEbPhaWHH7BX+8iD0vNhZ/sBAEwettEDgHMIwgAAGKOzZ6Q3n7JXe/VpyXvG0XYAABOIbfQA4ByCMAAAxuzZ871rrsft1QEAZg/b6AHAOafdbgAAgHmz4JG+fv3grmB/d0f6+08OtrX4H5L+9ePSc+clH/+6DwBz67mw9OoH9g7MZxs9APTHY1mW5XYTQL+CwaCq1aoWFha0tLTUtXZ9fV3r6+tj6gwAAAAY3vUd6YVC77q/u8QEMYDJsrm5qc3Nza41tVpNjUZDgUBAu7u7Y+rsABNhmGqNRkPVarVrTb1eH1M3AAAAwGg8e753EMY2egCTqF6v93yf7iaCMEw1OxNhXq93TN0AAAAAo8E2egDTyuv1KhAIdK1pToS5ga2RmErNrZFujFECAAAAAIDBufmenrtGAgAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAunHa7AQAAMDjLkhqWdO++9NYd6e8/kfa/kPwPSU88Lv2b8wefezxudwoAAAC4jyAMAIAp1rCk068d/7Xir6V/9770n+PS85Hx9gUAAABMIoIwAACm2Nt3ete8UJBOLUjPnne+HwCYZ0zpAsDkIwgDAGBK3bsvvfyuvdoX35Ge/I7kPeNoSwAw15jSBYDJx2H5AABMqbfK0udf2av97EvpetnZfgBg3tmd0rVTBwBwBkEYAABT6r1P+qt/v896AIB9/U7p1u872g4A4AQEYQAATKn9L5ytBwDYx5QuAEwHgjAAAKaU/yFn6wEA9jGlCwDTgSAMAIAp9eTj/dU/0Wc9AMA+pnQBYDoQhAEAMKWeC0sPP2Cv9pEHpefDzvYDAPOMKV0AmA4EYQAATKmzZ6Q3n7JXe/VpyXvG0XYAYK4xpQsA08FjWZbldhNAv4LBoKrVqhYWFrS0tNS1dn19Xevr62PqDADG65uGdPq17jXX49JzkfH0AwDz6t59KfCGvQPzH3lQql7hHygAzKbNzU1tbm52ranVamo0GgoEAtrd3R1TZwdOj/VqwIg1Gg1Vq9WuNfV6fUzdAMD4LXikr18/eAP2d3ekv//k4NwZ/0PSv35ceu685GP7DQA4rjml+0Khdy1TugBmWb1e7/k+3U0EYZhqdibCvF7vmLoBgPHzeKRTHmnxf5P+4v84+AAAuOO5sOSR9NK7x0+GPfzAQQj27PlxdwYA4+P1ehUIBLrWNCfC3MDWSEyl5tZIN8YoAQAAgG7u3ZfeKkvvt03pPvH4wU1LmAQDAHff0zMRBgAAAAAjdPaM9OPvHnwAACYLd40EAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCHOBYRiKxWK2asvlstbW1rS8vCyPxyOPx6Pl5WWl02mZpjkxfUpSNptVLBaT3+9v9ZlIJFQqlRzsEgAAAAAAwB6CsBEyTbMVVnX7WF5eVigU6rlWIpFQJBJRLpeTYRitrxmGoWw2K7/fr1wu52qfklQqleT3+5VOpyVJ+XxelUpFmUxG5XJZsVhMsVjM8eAOAAAAAACgm9NuNzBL+gmlmqHRcUzTVCQS6Qi/TrK2tqadnR1tbW3Zvvao+pQOQrDm1FgymezoIxQKKR6PKxKJqFQqKRKJaGdnRz6fz/b1AQAAAAAARoWJsBHa2NiwVReNRrtOWiUSCRmGoXA43JquqlQqyufzSqVSR+pzuZwKhcLY+2xOrUkHoddJYVw+n5d0MMnWrAcAAAAAABg3JsJGJJfLyTRNpVKpnudqXbhwoes6pVJJqVRKmUym42vNCau1tTUlEgmVy+XW11ZXVxWPx8fWp3QQ2DW3O3abHGv2XSgUVCqVlMvllEwme/YKABgvy5IalnTvvvTWHenvP5H2v5D8D0lPPC79m/MHn3s8bncKAAAADMZjWZbldhOzYHl5WZJUqVSGXicUCqlYLHatMwyjdc2mYrGoaDQ6lj4PX39/f7/rlsdCodCaBvP5fNrf3x/q+sFgUNVqVYFAQLu7u0OtBQA48E1DOv1a95r/HJeej4ynHwAAAMwmN9/TszVyBAqFggzD6HmeVi/lclmGYbS2EnYTCoWOTIy1T4g52aekjmtHo9Ge5361T6uZptnXVk4AwHi8fad3zQsFe3UAAADAJCIIG4GNjQ35fD5dunRpqHVu3LihZDJp+zD5w9Nfv/3tb7vWj6pPqfPA/XA4bOs57eeN3bhxY+geAACjc+++9PK79mpffEeq33e0HQAYG8s6mIjd+3+l/8//Lf3Jf5Qu/oeD//v//b8P/pw9NAAwOzgjbEjlcrk1ieX3+xUKhRSNRhWLxWyd2dXu8uXLXQ+nP+xwAHV4q6RTfR6ePLt48aLtfpt3wmQiDAAmy1tl6fOv7NV+9qV0vSz9+LvO9gQA49CwTt4WXvy19O/eZ1s4AMwSJsKGdHiboWEYyuVySiQS8ng8Rw617yYcDtueBpPUOqi+qVuINso+S6WS7et2q7N7PQCA8977pL/69/usB4BJxbZwAJgvBGFDMAzjSCh0WKFQUCQS0dramiPXb3fSQfmj7vP27dsdj+2Gd48++mjH4+3tbVvPAwA4b/8LZ+sBYBKxLRwA5g9bI4cQCoW0tbUl0zRVqVRUKpWOhFNNuVxO29vb2tnZGdn124OkZDI5tj4PP3fQibBh71wJABgd/0PO1gPAJGJbOADMH4KwIR0OoEzTVC6X08bGxpGti+VyWbFYTMVicSTX3traan3e606Qo+zzpBCtX4evCwBwz5OPSx/+yn79E4871wsAjMsg28IJwgBgunksi3ugOKVQKGh1dfVI4JPJZJRKpYZa2zCM1uH4w67Xb58ej6fjsd0foVKppFgs1nocj8eVz+f7b1hSMBhUtVrVwsKClpaWBlqj3fr6utbX14deBwCm1b37UuANe5MRjzwoVa9I3jPO9wUATvqX/z/p9m4f9UHp//m/nOsHACbd5uamNjc3h16nVqup0WgoEAhod7eP/xCPABNhDorH44pGo1pZWek4GH5jY2PoICyTyUg62G447FpO9tnNKCbCGo2GqtXq0OvU6/Wh1wCAaXb2jPTmUwcHQvdy9WlCMACzgW3hANCfer0+kvfgbiIIc5jP59POzo4ikUgrZDJNU6VS6cTD7Xspl8vK5XLy+Xwj22bZT58+n28kIVY/d8g8yagmwrxe79BrAMC0ey4seSS99O7xk2EPP3AQgj17ftydAYAz2BYOAP3xer0KBAJDr9OcCHMDQdiYXLt2TZFIpPW4WCwOHIStrq5Kkm7dumX7oHq77PS5uLg4kiBscXFx6DWWlpbGPkYJALPK45Gei0j/5/9+cID0+58c3B3S/9DBm7/nw0yCAZgtz4WlVz+wvy38+bDzPQHAJBvVsULN447csODKVedQOBzuCJQGPXB+bW1N5XJZ+Xxe4fDo/5fYTp+DTnIdDs9GMREGABi9s2cODoP+4M8OzsL54M8OHhOCAZg1zW3hdrAtHABmA0HYGLUfFD+IXC6nXC6nra0txePxEXV1VK8+L1y40PHY7nTY3t5ex+PmYf8AAACAW54LS9fjB9u/j/PwA9JbCbaFA8CsYGvkGLVvY+x3W2CpVNLa2pq2traUTCZH3VqHXn22b52UDqbG7EynVSqVjseDbg0FAAAARoVt4QAwXwjCxqg9YOpnW2C5XFYsFlMmk3E8BJN693l4IsxuENY+Oebz+UZ+vhkAAAAwqOa28B9/1+1OAABOYmvkGG1vb7c+t7tN0jAMraysKJVKKZVKOdVah159hsPhjoDs9u3bfa97OEwDAAAAAABwGkHYGLVvDbSzLdAwDEUiESWTSWUyGVvXMAxD2f9/e/fz2+h15gv+UcU2yoihoipAA9XSisIAFfSqqMpdZGtq7sbu9kKUF3Y5K0tJEOACtZC60H9AQVoImOk7nYjGDNCxsyiLCwfxBToRs7x34xK9NZArZlOCgAa69JbgXBccWJwFhxz9pEiJP16Snw8gWD+Ozvuw7EMWv37OedfXr1xjRHt1Li4uNj+vVCptzXt83Orq6hWrAwAAALgaQVgflUqliIi2OruSJIn5+flYXFxsOwSLiCgUCtc+e6udOpeXl5ufl8vlS+c8PiabzTofDAAAAOg7Z4T1SalUimq1GplMJh49etRybJIkMTc3F9lsNlZXV6NarV46f7VabXZZtXNe13XrzOVykc/nmwFXqVRqeSfLra2t5ue6wQAAAIBBmKjVarVBFzGMyuVyFAqFSJIk8vl8rK2tXRhANbY4JkkSOzs7lwZVc3NzbW83PO30XSV7WWe1Wo3Z2dmIqAdjOzs7545LkiSmpqYior7Vcnt7+yoP7YSZmZnY29uL6enpePbs2bXnAwAAAPpjkO/pbY28oq2treZdEMvlcszNzZ3YLtjQ+Nnt27djd3e3pyFYRJy5q2Sv6oyob3FsdHpVKpULzyZ78803I6J+p8jjnWEAAAAA/SQIu6JCoXDme8ViMaampqJQKMTy8nLMzc3F/Px8LC0txc7OTmSz2Uvn7GYI1qs6j1tYWIjt7e3IZDKxurrafAxJkjTDtUqlErlcLv785z+fuNskAKOrVov47iji+f+K+D/+e8T//n9H/Oi/1v/5f/73+vf1pAMA0G+2Rl5DtVqNtbW1KJfL8fz580iSJDKZTNy+fTtyuVy8++67kc/nBx7+9KvO9fX1ePLkSVSr1eY17t+/H8vLyy3PD7sKWyMB0u27o4hX/qn1mH9diPhgrj/1AKPrxcuIX1ciPv8q4uCbiKnXI96+G/EgF3Hr5qCrA+A8g3xPLwhjKAnCANLt1zsRPyldPu6TxYj37vW+HmD01GoRH1cifv7biL/89ezPv/9qxC/fqQdiAKSLM8IAgJHx4mX9jWk7fvpZxOHLnpYDjKiPK/XA/bwQLKL+/Q+2In7zZX/rAiDdBGEAQFd9XLn4jelpX39b39IE0AmBOwBXJQgDALrqd191Nv7zDscDCNwBuCpBGADQVQff9HY8gMAdgKsShAEAXTX1em/HAwjcAbgqQRgA0FVv3+1s/FsdjgcQuANwVa8MugC4jv39/ZiZmWk55uHDh/Hw4cM+VQTAg1zEP/5be+f3vPFaxAe53tcEjJa370b84U/tjxe4A/TPxsZGbGxstByzv7/fp2rOEoQx1I6OjmJvb6/lmMPDwz5VA0BExK2bEf/yDxE/KV0+9lfvREze7HlJwIgRuAOk1+Hh4aXv0wdJEMZQu3HjRty5c6flmMnJyT5VA0DDg1zERET87Lfnv1H9/qv1EOy9e/2uDBgFAneA9JqcnIzp6emWY/b39+Po6KhPFZ00UavVagO5MlzDzMxM7O3txfT0dDx79mzQ5QBwgRcvIz6u1O/YdvBN/Zyet+7WuzO8MQWuo1aL+KRyeeD+vm4wgNQZ5Ht6HWEAQM/cuhnxix/XPwC6aWIi4sFcxN//ncAdgPYJwgAAgKElcAegEzcGXQAAAAAA9IMgDAAAAICxIAgDAAAAYCwIwgAAAAAYC4IwAAAAAMaCu0YCAKlWq0Uc1SJevIz4+MuI//ZVxME3EVOvR7x1N+L9e/XPJyYGXSkAAGknCAMAUu2oFvHKP53/s+3/GfFfPo/414WID+b6WxcAAMNHEAYApNpvvrx8zE9KEd+7EfHevd7XA1ydDk8ABk0QBgCk1ouXET//bXtjf/pZxNs/jJi82dOSgGvQ4QnAoDksHwBIrY8rEX/5a3tjv/424teV3tYDXE+7HZ7tjAOAqxCEAQCp9buvOhv/eYfjgf7ptMPz8GVPywFgTAnCAIDUOvimt+OB/tHhCUAaCMIAgNSaer2344H+0eEJQBoIwgCA1Hr7bmfj3+pwPNA/OjwBSANBGACQWg9yEd9/tb2xb7wW8UGut/UAV6fDE4A0EIQBAKl162bEL99pb+yv3omYvNnLaoDr0OEJQBoIwgCAVHuQi/hksd7xdZ43Xqv//L17/a0L6IwOTwDS4JVBFwDXsb+/HzMzMy3HPHz4MB4+fNinigDohffuRbz1w/pd5z7/qn520NTr9Y6RD3I6wWAY3LoZ8S//EPGT0uVjdXgCDK+NjY3Y2NhoOWZ/f79P1ZwlCGOoHR0dxd7eXssxh4eHfaoGgF66dTPiFz+ufwDD6UEuYiIifvbbiL/89ezPv/9qPQTT4QkwvA4PDy99nz5IgjCG2o0bN+LOnTstx0xOTvapGgAAWpmYiHgwF/H3f6fDE2BUTU5OxvT0dMsx+/v7cXR01KeKTpqo1Wq1gVwZrmFmZib29vZieno6nj17NuhyAAAAgDYN8j29w/IBAAAAGAuCMAAAAADGgiAMAAAAgLHgsHwAYCzUahFHtYgXLyM+/jLiv506pPv9e/XPJyYGXSkAAL0iCAMAxsJRLeKVfzr/Z9v/M+K/fB7xrwsRH8z1ty4AAPpHEAYAjIXffHn5mJ+UIr53I+K9e72vB4aFbkoARokgDAAYeS9eRvz8t+2N/elnEW//MGLyZk9LgqGhmxKAUeKwfABg5H1cifjLX9sb+/W3Eb+u9LYeGCbtdlO2Mw4ABk0QBgCMvN991dn4zzscD6Oq027Kw5c9LQcArk0QBgCMvINvejseRpVuSgBGjSAMABh5U6/3djyMKt2UAIwaQRgAMPLevtvZ+Lc6HA+jSjclAKNGEAYAjLwHuYjvv9re2Ddei/gg19t6YFjopgRg1AjCAICRd+tmxC/faW/sr96JmLzZy2pgeOimBGDUCMIAgLHwIBfxyWK94+s8b7xW//l79/pbF6SZbkoARs0rgy4AAKBf3rsX8dYP63fC+/yr+nlGU6/Xu1g+yOkEg9Ma3ZQfbF0+VjclAMNAEAYAjJVbNyN+8eP6B3C5B7mIGxMRP/0s4utvz/78jdfqIZhuSgCGgSAMAABoSTclAKNCEAYAAFxKNyUAo0AQxlDb39+PmZmZlmMePnwYDx8+7FNFAAAAML42NjZiY2Oj5Zj9/f0+VXOWIIyhdnR0FHt7ey3HHB4e9qkaAMbNi5cRvz61Veztu/UzlW7ZKgYAjKHDw8NL36cPkiCMoXbjxo24c+dOyzGTk5N9qgaAcfLJlxE/++zs4eF/+FPEo9/X77T3vsPDGTBhLQD9Njk5GdPT0y3H7O/vx9HRUZ8qOmmiVqvVBnJluIaZmZnY29uL6enpePbs2aDLAWDMfPJlxINP2xi36E56DEatVj/Y/ue/jfjLX8/+/Puv1sPaB7m+lwYAA31Pf6OvVwMAGHIvXtY7wdrx088iDl/2sho438eViJ+Uzg/BIurf/2Ar4jdf9rcuABg0QRgAQAc+rpzdDnmRr7+tb0uDfnrxst4J1g5hLQDjRhAGANCB333V2fjPOxwP1/Vx5eJOsNOEtQCMG0EYAEAHDr7p7Xi4LmEtAFxMEAYA0IGp13s7Hq5LWAsAFxOEAQB04O27nY1/q8PxcF3CWgC4mCAMAKADD3IRb7zW3tg3Xov4INfbeuA0YS0AXEwQBgDQgVs3I375Tntjf/VOxOTNXlYDZz3IRXz/1fbGCmsBGDeCMACADr1/L+KTxYs7w954rf7z9+71ty6IqIe1//IP7Y0V1gIwbl4ZdAEAAMPovXsRb/0w4uNK/a57B9/Uz1p66269w0a4wCA9yEVMRMTPfhvxl7+e/fn3X62HYMJaAMaNIAwA4Ipu3Yz4xY/rH5AmExMRD+Yi/v7vhLUAcJwgDAAgBV68jPj1qcDi7bv1zp5bAguuSFgLACcJwgAABuyTLyN+9lnE19+e/P4f/hTx6Pf1w/nft4VtbAhFAaB3BGEAAAP0yZcRDz69+Odff1v/+UQ4z2nU1Wr1bYw/P+dcrz/8KeIf/60eij5wl0cAuDJ3jQQAGJAXL+udYO346WcRhy97WQ2D9nEl4iel8w+3j6h//4OtiN982d+6AGCUCMIAAAbk48rZ7ZAX+frb+nY5RtOLl/VOsHYIRQHg6gRhAAAD8ruvOhv/eYfjGR4fVy7uBDtNKAoAVycIAwAYkINvejue4SEUBYD+EIQBAAzI1Ou9Hc/wEIoCQH+4ayRDbX9/P2ZmZlqOefjwYTx8+LBPFQFA+96+W78bYLveutu7WhgsoSgAo2JjYyM2NjZajtnf3+9TNWcJwhhqR0dHsbe313LM4eFhn6oBgM48yEU8+n17B+a/8VrEB7ne18RgCEUBGBWHh4eXvk8fJEEYQ+3GjRtx586dlmMmJyf7VA0AdObWzYhfvhPx4NPLx/7qnYjJm72uiEF5kIv4x39r78B8oSgAaTY5ORnT09Mtx+zv78fR0VGfKjppolar1QZyZbiGmZmZ2Nvbi+np6Xj27NmgywGAa/nNlxE//ez8zrA3XquHYO/d63dV9NuvdyJ+Urp83CeL/nsAYLgN8j29jjAAgAF7717EWz+M+LhSvxvgwTf1M6Deulvv/Om0E+zFy4hfn5rr7bv1rqNbuspS60EuYiIifvbb8zvDvv+qUBQArktHGENJRxgAnO+TLyN+9tnF3WW/fCfifUFKT3QrgHzxsnuhKACkkY4wAACu7ZMvW5839vW39Z9PhK6ibrsogPzDn+o3ROgkgLx1M+IXP65/AADddWPQBQAAcH0vXtaDmHb89LOIw5e9rGa8NALIi+7+2Qggf/Nlf+sCAM4ShAEAjICPKxcHMad9/W19Cx/XJ4AEgOEiCBuAarUa8/PzbY2tVCqxvLwcs7OzMTExERMTEzE7Oxurq6uRJMmVa1hfX4/5+fmYmppqzlkoFKJcLqdqTgCgPb/7qrPxn3c4nvMJIAFguAjCuihJkmZY1epjdnY2stnspXMVCoWYm5uLYrEY1Wq1+bNqtRrr6+sxNTUVxWKxoxrL5XJMTU3F6upqRERsbW3F7u5urK2tRaVSifn5+Zifn+8oZOvFnABAZw6+6e14zieABIDh4rD8LuoklGqERudJkiTm5uZOhF8XWV5ejp2dndjc3Lx0bLlcbnaiLS0tnfidbDYbCwsLMTc3F+VyOebm5mJnZycymUzf5wQAOjf1em/Hcz4BJAAMFx1hXfT48eO2xuXz+ZYdYYVCIarVauRyuWZ31e7ubmxtbcXKysqZ8cViMUqlUstrNjrMIuoB1UXB2dbWVkTUu84a4/s5JwBwNW/f7Wz8W22Of/Ey4p//R8R//n8i/tP/Vf/nf/0f9e8jgASAYaMjrEuKxWIkSRIrKyuXnv91//79lvOUy+VYWVmJtbW1Ez9rdFgtLy9HoVCISuX/P2Tiww8/jIWFhQvnLRQKza2JrbrRGtcolUpRLpejWCzG0tJS3+YEAK7mQS7i0e/bO6/qjdciPshdPu6TL+sHwZ+e8w9/ql/rl+9EvH/vKtWmx4uX9XO7Pv+q3q019Xo9VHyQi7h18/Lff/tu/c+jXe0GkABAb0zUarXaoIsYBbOzsxERsbu7e+15stlsbG9vtxxXrVab12zY3t6OfD5/6diDg4OW2xNLpVKzcyuTycTBwUFf5uzEzMxM7O3txfT0dDx79uxacwHAqPjky4gHn7YxbjHivUsCrG7OlVYXBX0R9bCwnaDvxcuImcftB5B7jyIm2wjYAGCUDfI9va2RXVAqlaJarbbsimpHpVKJarXa3ErYSjabPdMxdrxD7Ljj4/L5/KVndB3vLEuS5Nxtl72YEwC4nvfv1YOpN147/+dvvNZecPXiZT0gasdPP4s4HMJtko2g76IA6+tv6z//zZet57l1sx6YteNX7wjBAGDQBGFd8Pjx48hkMrG4uHiteZ48eRJLS0ttHyZ/uvvrP/7jP84dd/wQ/1yujX0QESfOMHvy5Elf5gQAru+9exHPHkX889sR//l/i/hPM/V//vPb9W6kdrq3Pq601+EUUR/36/P/X1xqdTvo61YACQD0njPCrqlSqTQ7saampiKbzUY+n4/5+fmWZ3ad59133215iP5ppwOo01slG/Ud96Mf/ajtuRt3rTzdvdWLOQGA7rl1M+IXP65/XMXvvups/OdfXX6t657F1c25rhL0Xfb43rsX8dYP63Mfr+utu/Xz2HSCAUA6CMKu6fR2yGq1GsVisdkxtbCwEI8ePWqra6rdzqqGxkH1DeeFaOVy+dIx5zk9rlKpNOvrxZwAQHocfNPd8d08dL8bc/Ui6Iu4fgAJAPSerZHXUK1Wz4RCp5VKpZibm4vl5eWeXP+48w7K/+KLL0583e62yx/84Acnvn769GlP5wQA0mPq9e6N79ZZXN2cq9tBHwAwPARh15DNZmNzczPW1tZiaWmpZWdUsViMubm5rl7/eJC0tLR07pjTYdlVu7eO3w2zF3MCAOnx9t3Oxr91wfhunsXVzbm6GfQBAMNFEHZNS0tLsbKyEpubm7G7uxsHBwextrZ2bpdUpVKJ+fn5rl17c3Oz+flFd6w8HVpd1fFtmL2YEwBIjwe5iw9+P+2N1+pnYJ2nm4fud3OubgV9AMDwEYR1WSaTiZWVlTg4OIitra0zgVi5XI719fVrX6darTYPrV9bW7uwK+uqYdPpup8/f97TOQGA9Lh1s37WVjt+9c7FB8Ff5Syui3Rzrm4FfQDA8HFYfg8tLCxEPp+PN99888SdFh8/fhwrKyvXmnttbS0i6tsNrztXO3rRvdWNOff392NmZuba8zx8+DAePnx47XkAYFS8fy9iIurbDM/rxHrjtXoI9l6Lg+m7eRZXN+dqBH0PPr18nlZBHwCMm42NjdjY2Lj2PPv7+12o5moEYT2WyWRiZ2cn5ubmmmFYkiRRLpfPPdy+HZVKJYrFYmQymdje3r70+t0InI53c/Vizqs6OjqKvb29a89zeHh47TkAYNS8dy/irR/WtyV+/lU9XJp6vb5V8IPc5QFRN8/i6va5Xt0I+gBg3BweHnblPfggCcL65KOPPjpxWP729vaVg7APP/wwIiL++Mc/XnpQ/e3bt7sSWt2+fbunc17VjRs34s6dO9eeZ3Jy8tpzAMAounUz4hc/rn906u27EX/4U/vjW53F1c25Gq4b9AHAuJmcnIzp6elrz7O/vx9HR0ddqKhzgrA+yeVykc/no1wuR8TVD5xfXl6OSqUSW1tbkctdfmDFVbuuTgddpzvCuj3nVd25cyeePXt27XkAgO57kIt49Pv2Drm/7Cyubs513HWCPgAYN906VmhmZmZgnWUOy++j694xslgsRrFYjM3NzVhYWGjrd+7fv3/i63Y7uU4fZD87O9vTOQGA0dOtQ/e7PRcAML4EYX10fBtjp9sCy+VyLC8vx+bmZiwtLbX9e8e3Y0a034m2u7t74uvj2zh7MScAMJrevxfxyeLFd2l847X6z9s5i6ubcwEA48nWyD46HoR1si2wUqnE/Px8rK2tdRSCRZzt3qpWq21tqTze5ZXJZE7U3os5AYDR1c2zuJzrBQBchyCsj54+fdr8vN1tktVqNd58881YWVmJlZWVjq+Zy+VO3OXxiy++aGtb5fFaTwdfvZgTABht3TyLy7leAMBV2RrZR8e3BrazLbBarcbc3FwsLS3F2tpaW9eoVquxvr5+4nuLi4vNzyuVSlvzHB+3urp65ue9mBMAAACglwRhfVQqlSIi2ursSpIk5ufnY3Fxse0QLCKiUCicCdmWl5ebnzfuWtnK8THZbPbc0K4XcwIAAAD0kiCsT0qlUlSr1chkMvHo0aOWY5Mkibm5uchms7G6uhrVavXSj3K53DzE/vR5Xblc7kTw1AjkLrK1tdX8/KLOrV7MCQAAANBLE7VarTboIoZRuVyOQqEQSZJEPp+PtbW1Cw+Mb2xxTJIkdnZ2Lj1Yfm5uru3thqdddFfJarUas7OzEVEPsXZ2ds79/SRJYmpqKiLq2ze3t7cvvFYv5mzXzMxM7O3txfT0dDx79uza8wEAAAD9Mcj39DrCrmhra6t5WHyjG+v4dsGGxs9u374du7u7PQ3BIuLCu0pms9lmV1alUjlzjljDm2++GRH1uzoe7+Lq15wAAAAAvSIIu6JCoXDme8ViMaampqJQKMTy8nLMzc3F/Px8LC0txc7OTmSz2Uvn7EUI1rCwsBDb29uRyWRidXW1eb0kSZqBXaVSiVwuF3/+858jk8lces1ezAkAAADQC7ZGXkO1Wo21tbUol8vx/PnzSJIkMplM3L59O3K5XLz77ruRz+dTGf6sr6/HkydPolqtNuu+f/9+LC8vx8LCQmrmvIitkQAAADCcBvmeXhDGUBKEAQAAwHAa5Hv6V/p6NRhzGxsbcXh4GJOTk/Hw4cNBlwP8f6xNSB/rEtLHuoT0sS47pyOMoTSsHWHDWjeMOmsT0se6hPSxLiF9hnVdumskAAAAAPSYIAwAAACAsSAIAwAAAGAsCMIAAAAAGAuCMAAAAADGwiuDLgCuY39/P2ZmZlqOefjwodvIAgAAQB9sbGzExsZGyzH7+/t9quYsQRhD7ejoKPb29lqOOTw87FM1AAAAMN4ODw8vfZ8+SIIwhtLXX38dERETExPxt3/7ty3HTk5O9qOkkbaxsRGHh4cxOTk5VN11w1p3xPDWPqx1D6th/fNWd38Na93Dalj/vNXdX8Na97Aa1j9vdffXsNadRpOTkzE9Pd1yzP7+fhwdHfWpopMmarVabSBXhmv43ve+F0dHR3Hjxo347rvvBl1O22ZmZmJvby+mp6fj2bNngy6nberuv2GtXd39pe7+Und/qbu/1N1f6u4vdfeXuvtL3Z1zWD4AAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWJmq1Wm3QRUCnJiYmmp9PT08PsJLO7O/vx9HRUdy4cSPu3Lkz6HLapu7+G9ba1d1f6u4vdfeXuvtL3f2l7v5Sd3+pu7+Gve5XX301vv32275eWxDGULpx40b4TxcAAACG140bN+K7777r6zVf6evVoEtef/31ePnyZXzve9+Lv/mbvxl0OQAAAECb/v3f/z2+++67uHnzZt+vrSMMAAAAgLHgsHwAAAAAxoIgDAAAAICxIAgDAAAAYCwIwgAAAAAYC4IwAAAAAMaCIAwAAACAsSAIAwAAAGAsCMIAAAAAGAuCMAAAAADGgiAMAAAAgLEgCAMAAABgLAjCoIeq1WrMz89HqVTqy/XW19djfn4+pqamYmJiImZnZ6NQKES5XO7L9SGt0r42Gs8VMAoGud7SvtZhUNK+NrwOMm68TxwsQRj0QJIkUSgUYnZ2Nsrlcjx//ryn1yuXyzE1NRWrq6sREbG1tRW7u7uxtrYWlUol5ufnY35+PpIk6WkdkDaDXhtJksTExMSlH7Ozs5HNZntSA/TLINfboNc6pNWg14bXQTjJ+8SUqAFdc3BwUFtZWalFxImPzc3Nnl1ze3u7eZ2lpaVzx+RyuVpE1LLZbO3g4KBntUCapGFtrK2tnXk+uOhjd3e369eHfhnkekvDWoc0SsPa8DoIdd4nposgDLpkbW2tls1ma/l8vm9PcAcHB7VMJtN88rrI7u5us5Z8Pt+TWiBN0rI2GjVc9mFdMswGud7SstYhbdKyNrwOgveJaWRrJHRBpVKJfD4fu7u7sb29HZubm325bqFQaLaxNtpdz5PNZmNhYSEi6u2xxWKxH+XBwKRhbRSLxUiSJFZWVmJ7e7vlx9bWVteuC/02yPWWhrUOaZSGteF1ELxPTKuJWq1WG3QRMGoqlUrMzc01v97c3IylpaWuXqNarcbs7Gzz64ODg8hkMheOL5VKUSgUIiIik8nEwcFBV+uBtEjL2mjUsLu725X5II0Gud7SstYhbdKyNrwOwlneJ6aDjjDogVZPNN2ytrbW/Dyfz196zUbSH1E/pLFfdyiBfkvD2iiVSlGtVlv+HzgYBYNcb2lY65BGaVgbXgfhfN4npoMgDIbU8bbVXC7X1u8cvxvPkydPul4TpEEa1sbjx48jk8nE4uLiteeCNBvkekvDWoc0SsPa8DoIg5OG54C0E4TBEKpUKie+/tGPftTW7x1/IhyHpJ/xk4a1UalUolKpRJIkMTU1FbOzs7G8vGzNMXIGud7SsNYhjdKwNrwOwuCk4TlgGAjCYAiVy+UTXx9P8Fs5Pe70EyUMuzSsjdPbQKrVahSLxSgUCjExMRGFQsHaYyQMcr2lYa1DGqVhbXgdhMFJw3PAMBCEwRD64osvTnzd7l7zH/zgBye+fvr0abdKglQY9NqoVqtn/gJyWqlUirm5uVheXr7SNSAtBrneBr3WIa0GvTa8DsJgDfo5YFi8MugCgM5Vq9UTX1816XcXH0bNoNdGNpuNzc3NSJIkdnd3o1wun6mpoVgsxtOnT2NnZ+dK14JBG+R6G/Rah7Qa9NrwOgiDNejngGEhCIMhdNFfKDqVJElX5oG0SMPaOH0L7CRJolgsxuPHj8/MW6lUYn5+Pra3t698PRiUQa63NKx1SKM0rA2vgzA4aXgOGAa2RsIQuuoT0+nW2OfPn1+/GEiRNK6NTCYTKysrcXBwEFtbW2euVS6XY319vWvXg34Z5HpL41qHNEjj2vA6CP2TxueANBKEwRgb9aQfrqpXa2NhYSH+/Oc/n7mV9ePHj3tyPRgGg3wt8joI5/M6CONt1F8fBWEwhNo99LBf80BaDMPayGQysbOzc+JNQJIklx4uDGkzyPU2DGsdBmEY1obXQeidYXgOSANBGCOpWCzGxMREVz/m5uYG/bCabt++nap5oB39WJfDtDY++uijE187H4VhM8j1NkxrHfppmNaG10HovmF6DhgkQRgMoasm9KdbXEc96Wf8DNPayOVykc/nm19363BT6JdBrrdhWuvQT8O0NrwOQvcN03PAILlrJCMpn8/H1tZWV+dM05PB/fv3o1KpNL9OkqSt+k4fejg7O9vt0uBC/ViXw7Y25ufnbQVhaA1yvQ3bWod+Gba14XUQumvYngMGRRDGSMpms5HNZgddRs+c3g5WrVbPHDp6nt3d3RNfH/+/cNBr/ViXw7Y2jv95jHoLOqNnkOtt2NY69MuwrQ2vg9Bdw/YcMCi2RsIQun///omv220lP97ymslkRjosZDwN29o4fp00dZ1COwa53oZtrUO/DNva8DoI3TVszwGDIgiDIZTL5U78ZeGLL75o6/eePn3a/Pz0kySMgmFbG8evOz8/37frQjcMcr0N21qHfhm2teF1ELpr2J4DBkUQBkNqcXGx+fnxfeCtHB+3urra9ZogDYZpbRxvQx/1FnRG0yDX2zCtdeinYVobXgeh+4bpOWBQBGEwpJaXl5uft3PI6PEx2WzWXzYYWcO0NkqlUkRErKys9O2a0E2DXG/DtNahn4ZpbXgdhO4bpueAQRGEQQ+cvv3sVRSLxVhdXb1wX/fpW043/iJxkeN36xuHlJ/x1cu1cdm67ESpVIpqtRqZTCYePXp07flgEAa53rwOwvm8DkJ6eZ+YEjWg67a2tmoR0fxYW1vr6Pfz+fyJ3z84ODh33O7ubnNMLpe7cL6Dg4PmuHw+31EtMIx6sTYuW5fb29u1TCbTnGtnZ6dlfY2xrcbBMBjEeuvltWEUeB2EdPI+MR0EYdBlBwcHtWw2e+IJqtWTz3mO/25E1DY3Ny8ce/zJ9KIn0lwuV4uIWiaTufDJEkZNt9fGZetyaWnpzJilpaUz8zTeKGSz2dru7u6VHx+kSb/XWy+vDaPC6yCki/eJ6SEIgy44ODioLSwsnEnoT3/k8/nawsLCpf/nq/F/yBof29vbLccf/z9wjfkPDg5q29vbzSe3XC43Vk9uUKt1d21cti63t7fPXfeZTKa2sLBQW1paal5zZWXFemTk9HO99fLaMEq8DsJgeZ+YToIwSKHt7e1aNputZTKZ2srKStu/t7a2Vsvlcs0nu0wmU8vn87Wtra0eVgvp14210c663N3drS0tLTXHNa6VzWZrCwsLta2trbH7iwbjp1/rrVfXhlHkdRBGg9fH7pio1Wq1AAAAAIAR566RAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWBGEAAAAAjAVBGAAAAABjQRAGAAAAwFh4ZdAFAAAAAKRdpVKJJ0+eRJIksbm5Oehyum7UH1+DIAwAAAAYGlNTU7GzsxPZbLbn1yqXy7G1tRXlcjmq1WpEROTz+Z5ftxNTU1ORJElsb293XNswPL5uE4QBAAAAQ2F9fb3ZsbS2ttbTa83Pz8fz58+jUqn09DrXUS6XI0mSiOg8wBqGx9cLzggDAAAAhkJjy16xWOz5tba3t2NnZye2t7d7fq2r2traioiIhYWFjn93GB5fLwjCAAAAgNQrlUrN7XtJkkSpVOrLddO8VfDTTz+NiIh33333ynOk+fH1giAMAAAASL3Hjx+3/HrcVCqVK2+LHGeCMAAAACDVKpXKmbOszvveOGlsE83n85HJZAZbzBARhAEAAACpdlH3VyMMGkeNbZGFQmHAlQwXQRgAAACQWsfPA2scDt/Qj0Pz0+j4tsjFxcXBFjNkBGEAAABAajW6wZaWlmJhYSGy2eyJn49jGPbkyZOIiMjlcrZFdkgQBgAAAKRWI+haXV098c+GtbW1a1+jVCrF/Px8TE1NxcTERMzNzcXy8nLzLpVp0+iQa/dukcP2+HpJEAYAAACkUrFYjCRJIp/PNzvBlpaWToypVqtRLpevNH+1Wo3Z2dkoFArx/PnzWFtbi+3t7Xj33XejXC7H7OxsrK+vXzpPoVBohkznfczNzTVDp+Xl5XPHzs7ONrc7XlZzY66FhYW+PL6IegB50eO77GNubq6ta/TDRK1Wqw26CAAAAIDTZmdno1qtxvb2duTz+eb3l5eXT2yJXFhYOHN+2GUqlUozoFlbW4uVlZUzY05fJ6J+l8bt7e1z5zxv/HlzH792LpeLP/7xj21vcVxfX4/V1dXIZrOxu7t74bhuP77G2Gw2G8vLy2e2qDZ88cUXZ8K10//+BumVQRcAAAAAcFq5XI5qtRrZbPZMiHI6wCmVSpEkSdthUrVabYZECwsL54ZEEfW7Uj59+jQqlUpb825ubp7pUDsvrHr69GlEtA7VLtI4H6xVN1ivHl8mk2kZvkWcvcPn0tJSakKwCFsjAQAAgBRqnP11+kywiHoXVS6XO/G9Tg7NLxQKZ65zWR3tOu/Olse3PCZJEqurq5HJZDruYkuSpBlatTofrFeP79GjRy1/vr6+fiJUy2Qysbm52fb8/SAIAwAAAFKl0VWVyWTOnAnWsLy8fOLr051IFymVSs2wJpfLXbjFr+H+/fttzdtwXvjz4Ycfnvg8SZLY2trq+I6Pn376afMap4PAhl49vufPn194zYj6v7PToWWnQV8/CMIAAACAVGl0KV0UgjV+djxISpKkeTfFVo4HZqfDtPN0GlY1aju+HbBUKkW5XI5isRilUunK2wUbwdLi4uKFY3r1+NbW1lrWfLwLLSJ9WyIbBGEAAABAaiRJ0tzmeNlWvNOB0GXb8KrV6omte5d1S13H6VoKhULzkPurbhdsnD12OnRq6OXjazVXsVg8syWy0y2l/SIIAwAAAFKjEYItLCxc2q10eite44D9ixw/xD6it0FYNps9EQYlSdLcEnkVjW63TCZzYadVPx9fQ7VaPdN5dpVtn/0iCAMAAABSo7G177JusIh60HP63KpWnUg7Oztnfr+XVlZWWp6r1YnG3SJbbTfs9+OLOLv9cmFhIZVbIhsEYQAAAEAqlEqlSJLk3LtCXuR0YNbq7pGtusV65XQH2EXbGi/T6AhrdbfIfj++YrF4ogstk8nERx991NcaOiUIAwAAAFKhk26whvO2UF4Uhj1//vzE1/0Ijk6fB3be3RUvczxsWlhYuHBcPx9fkiRnHsdHH32U2i2RDYIwAAAAYOAqlUpUKpXIZDItw57znL67ZLuH0SdJ0tF1OlWpVGJ9ff3M41lfXz9xuPxlGl1lnf659PLxFQqFE/MvLCx0XN8gCMIAAACAgbtKN1jD6XOqGqHaabdv3z7xda87wgqFQnO74Hl3kWzXp59+GhGtt0VG9O/xlUqlodsS2SAIAwAAAAYqSZLmGVinu7vakc1mzxzQ3gjWTo87bnt7u+NrtWt5eTmq1Wpzu+DS0tKJc8+q1Wqsr69fOk+5XG52Xl12CH0/Hl+SJPHhhx+e+N4wbIlsEIQBAAAAA9UIrZaWlq4cqJzuCmscvH/c/Pz8ia8bnVbdVi6Xo1gsRj6fP7Fd8PTB+aurq5d2bTV+J5/PX/pn04/H9+GHH3a8JXJ9fb3lTQz6SRAGAAAADFQjJOn0EPnj2jk0/3RH1fFOtHadPpD+PI1tj6eDr2w2G2tra+eOvUgjzGpnK2WvH1+5XD4xX7tbIre3t89s2xwUQRgAAAAwMMViMZIkiXw+f2ZrX6cuOzT/vIP4T3c4nXb6rLHLDqBvHCK/ubl5bgfXysrKicfZOFD/oms3rre4uNjyuhG9f3ynw7h2tkQmSRLlcvna/267RRAGAAAADEyjQ+o63WANpw/ar1arJw51j4gzHUxJksSbb755bgBUrVbPhD/nzdlQKpWiVCpFNpttedbZeVskzzvc/8mTJxERkcvl2t4y2qvHt7y8fGKO09s+L9I4TywtQdhErVarDboIAAAAYPyUy+XmuVbdCkpOn7mVz+fPHBpfKpXO3Wq4tLQU8/Pz8fz589jZ2YlisRhLS0sXnm+1tLTU7Do7/lhWVlbObIE8LkmSmJqaOvG9TCYTf/zjH08cqD87OxvVajXW1tZiZWWlxaM+qduP7/hja9jc3Dz331mSJPH8+fPY3d2NUqnU/PeRlvhJEAYAAAAMxPz8/IXdVd20u7t7JrQpl8vNbYwXaQRBExMTze9ls9lYXl6OhYWFyGazza6q0x1d+Xw+tra2znRyra+vx+bm5oWH5OdyuWbH2Ozs7IX1X6Zbjy8iYm5u7tyOtXZlMpk4ODi48u93kyAMAAAAGFvr6+vx5MmTqFarkSRJZDKZyOfzsby83Dx8fnZ2NhYWFuLdd9890bHV67pWV1cjm83G7u7uteZJ4+MbFEEYAAAAQMo0urAu22ZJZwRhAAAAACly/AyxnZ2dke/S6id3jQQAAABIkU8//TQi6mdrCcG6SxAGAAAAkCKNw/IXFxcHXMnoEYQBAAAApESSJM07aRYKhQFXM3oEYQAAAAAp0QjBGnd3pLsclg8AAACQEkmSND/PZDIDq2NUCcIAAAAAGAu2RgIAAAAwFgRhAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWBGEAAAAAjAVBGAAAAABjQRAGAAAAwFgQhAEAAAAwFgRhAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWBGEAAAAAjAVBGAAAAABjQRAGAAAAwFgQhAEAAAAwFgRhAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGPh/wWSI5X7Hno1agAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x900 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bins = np.linspace( -1, 1, 50 )\n",
"sns.regplot(x=ak.to_numpy(array[\"dSlope_fringe\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)\n",
"plt.xlabel(\"$\\Delta$dx/dz\")\n",
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
"mplhep.lhcb.text(\"Simulation\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n",
" expsuffix: Custom Text(0.05, 0.955, 'Simulation'))"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/work/guenther/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/IPython/core/pylabtools.py:151: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n",
" fig.canvas.print_figure(bytes_io, **kw)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwAElEQVR4nOz9bWxb953nf38o2WnSpDKlDIK6UqY1NRn0j6LNmJSv5Or1qBW5vUFypTMh7SZGkuI/EZkExQ5GuyXjFthnjUq21WCwQGLSnQdx1k1tst3JlaDNWnTm2R+Ztcg0LbIIdsrjzEaKimAiHatJk8Y2z/VAQ5akJPLw5vBGfL8Aorr58ne+unFcfvz7fY/LsixLAAAAAAAAwB430usGAAAAAAAAgG4gCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFDY1+sGgFbceOON+uCDDzQ6Oqpbbrml1+0AAAAAAACb3n77bV27dk3XX3+93nvvva5e22VZltXVKwIdMDo6qmKx2Os2AAAAAABAi0ZGRnTt2rWuXpMdYRhIpSBsZGREBw8e3Pb5tbW1up/vlX7tS+rf3uiref3aG301p1/7kvq3N/pqXr/2Rl/N69fe6Kt5/dobfTWnX/uS+rc3+mpev/Zmp69SzejoaJe7IwjDgLrlllu0urqqgwcPamVlZdvnp6am6n6+V/q1L6l/e6Ov5vVrb/TVnH7tS+rf3uiref3aG301r197o6/m9Wtv9NWcfu1L6t/e6Kt5/dqbnb5KNb0YdcSwfAAAAAAAAAyFnu4Iu+2223p5+Soul0v/+3//7163gSatra1pampqx4+X/ndxcVHz8/Pdbg0AAAAAgKHzu9/9TtLur9dLn+uVngZhhUJBLpdLvZzXX7q+y+XqWQ9oXbFY1Orqat3Pb25udrEjAAAAAACGVynjafR6vVeGfkYYN80cbHaG5Y+NjfWgMwAAAAAAhk9po5GdYfm90PMgzLIsBYNBeTyenlzfNE2lUqmeXBvtszMsn2ORAAAAAAB0x8c+9jFtbm7aGpbfCz0PwlKplB5++OGe9hAMBvWlL32ppz0AAAAAAADAWT2/a6Tf7+91Czpy5EivWwAAAAAAAIDDer4jbGJiotctYA+an5/X5uZm380H69e+pP7urR/18/erX3ujr72jX79n9NW8fu6tH/Xz96tfe6OvvaNfv2f01bx+7q0f9fP3q19769e+SlxWD6fFj46OamNjo+ffnMuXL2tiYkLXrl3raR+wr3SeeHJyctczx9gb+FljWPG7j2HG7z+GGb//GFb87g+XXv68e3o0sp/u2NhPvQAAAAAAAKDzehqExePxnu8Gk6QDBw4oHo/3ug0AAAAAAAA4qKdB2Le+9a2uXu+NN97Y9XPd7gUAAAAAAADd1fO7RnZTJBLpdQsAAAAAAADokaEKwpaXl3vdAgAAAAAAAHpkX68baMUbb7wh0zRt1xuGoWQy2dRzAAAAAAAAsLcMRBD2xhtvKB6PK5vNyjCMltawLEsul6vDnQEAAAAAAGBQ9H0QduLECSUSCUlbYRaA4TI/P6/Nzc2+uMMs0E387mOY8fuPYcbvP4YVv/voFpfVx+nST3/6U4VCIUkq7+Zqp12Xy6Vr1651pLd2GIahSCSipaUlW7WVu+Hcbrc8Ho9mZmYUi8Xk8Xiavn4+n1cymazaYefxeBQMBnXixAm53e6m15SkRCKhpaUlLS8vyzRNeTweeb1eRSIR+f3+ltbczdTUlFZXVzU5OamVlZWOrg0AAAAAAJzTy9f0fR2EzczMKJ/Py+VyybKscrBSCn9uvvnmhmu88847Mk1T586d0+XLlx0NwkzT1Pj4uK3acDisZDJZtyaRSCgWi9Wticfjikajtvubm5tTJpOpW5dMJhUOh22tKUnZbFahUEimacrv95cDunw+r1gsJsMw5Pf7lU6nWw7ZahGEAQAAAAAwmAjCdjEyMlLeCXb+/HnNzs62vJZhGLrtttscDcLsBFclhUKh7m6uQCCgbDYrt9stv98vj8cjwzCUz+e3zUlLp9MKBoN1r2eapnw+n+0Za3aCOmkrBAsEAnWf4/P5lM/n5fF4lMvlOhKGEYQBAAAAADCYevmafqSrV2tSKTCJRqNthWDS1tG/Q4cOdaCr3S0sLNiqKwVbu4nFYspms4rH49rY2FA6nVY8Hlc6nVahUFA8Hq+qLx0frScUCskwDHm93vI6hUJB6XR6xx1lqVSq4c4x0zTL1/Z4PLsGZ+l0WtJWGGmnVwAAAAAAACf09bB8j8ejV155RUeOHOnIenZ2OLUqlUrJNE1Fo9HyDqndzMzM7Po5wzDKs7Z2m6sVjUZVKBSUSqXKH8vn8/J6vbv2ls1mFY1Gt4VopdlgkUhEoVBI+Xy+/Lm5ubm6O81KxyEl1d0JV7pGJpNRNptVKpVq6uglAAAAAABAJ/T10chYLKYf/OAHSiaTevjhh3vdTl3T09OSto48tiMUCunIkSMN537VziOrNytsenpaHo+n4XB+wzDKX0fJboFcbe3GxkbdI4+ZTKa8G8ztdmtjY6NuL41wNBIAAAAAgMHE0chdfPvb35ZlWVW7lNrxox/9qCPr1MpkMjIMw/Z8sHpKu8oaKd09svL9nZRmipWOJ9bj8Xi27Rjb7XtfWef3+xvO/arcWWaaZsNjlwAAAAAAAJ3W10HYgQMH9L3vfU9nz57V7373u7bXc+po5MLCgtxut44ePdr2Wo12bVVaX18vv73bccuzZ88qHA7bHlBfu/vrnXfe2bGu8ljmbkcya1UGd2fPnrX1HAAAAAAAgE7p6yBM2pqH5fV62x6yfunSpY7tLKuUz+eVz+fLRxWnp6cViUQc3/FkmmZ5Ppff7981jDp27Ni2XV711K5Te1RS2r5LzO4Mt8q12REGAAAAAAC6ra+H5ZcsLS1pZmZGt912m2KxmCYmJmw9b319XaZpqlAo6Ny5c470Vnsc0jAMpVKp8o6pYDCoEydO2N41ZVfp6/F4PHWPPTZ73VK4VrLT3S2z2WzDmp3U1tUb8A8AAAAAANBpAxGEvfTSS5K2BtFHIpGW1rAsSy6Xq5NtyTCMbaFQrUwmo0wmo3A43LGjmaZpKhKJyOv1Kp1O2z72aIdhGFXv7zQo/+LFi1Xv273+zTffXPX+8vLyng/CLMtSsUHNiNTx300AAAAAALBd3wdhjz76aHl3lcvlUis3uXQqZPB4PEomk+VdZ9lsdluQVJJKpbS8vKxcLtfWNQ3DUCAQkNvt1oULFzoagklb4VRJOBzetYdKre4Ia/cOm4OgKGnsuRfr1mze82WNdqcdAAAAAACGWl/PCDt16pSSyWQ5/GolBGvneXaEw2FFo1Elk0kVCgVtbGwoHo/vGFDl83kFAoGWr5XJZDQ9PS3DMMozyRKJRBvdb1e5a223u2DuFvY1q/YYJgAAAAAAgJP6ekdYKZQp7QTz+/3l3VDNzgk7efKk3njjDQe73eJ2uxWNRhWNRpXJZDQ3N1cV+GSzWSUSCUWjUVvrmaapVCqlZDK5YwAVi8V08eLFunPC7DIMozwIPx6P77rTq9UAqzYcrLzrZavW1tY0NTXV9jrz8/Oan59vex0AAAAAAPaqxcVFLS4utr3O2tpaB7ppTV8HYfl8Xi6XS263W8vLyzp06FDLa83NzW2bUeW0YDAov9+v2dnZqjstLiws2A7CstmsCoWC/H7/rjPJMplMU+Habkp3l/R4PG2vZUcndoQVi0Wtrq62vc7m5mbba7TqJ2+u6vifth/mAQAAAADgpM3NzY68Bu+lvg7C3G63Ll++rBMnTrQVgpXWOnz4cIc6a+66uVxOPp+vHIaZpqlsNrvjIPpawWBQwWCw6mOpVEqxWKwqSIrFYgqHwy3PDMvn80qlUnK73VpaWqpb63a7OxJidWK+2cjIiA4ePNj2OmNjY22vsZOfvNn4PxDh/K816nLp67dOOtIDAAAAAACdMDY2psnJ9l+7rq2tqVhsdGs5Z/R1EObz+fTSSy/ZHsbeyKlTpzqyTqvX9vl85feXlpZsBWE7CYfD8vv98vl8VYFUKpVqeSfX3NycJOnChQsNv98TExMdCcLsHm+t5+DBg1pZWWl7HSdcvnJFf/vqa7Zq/+bV1/TVj9+isf37He4KnWCaZsdvVAEAAAAA/a5TY4WmpqZ6trOsr4flRyIRWZbVseHsvdgRVuL1equCr3a/Jo/HowsXLlR97OLFiy2tFYlElM/nlU6n5fV6G9a3GgDUhmd7PUh49s239N41ewn3u1ev6cdvvuVwR2hHPp9XLBbT+Ph4OTgGAAAAAAyWvg7CgsGgDh8+rLNnz3ZkvZ/97GcdWadV7dwxcider7fq2GQr4VoqlSoP4689grmbmZmZqvft7g6rHY4/PT1t63mD6ue/fbup+l80WY8/KoVUgUBA09PTGh8fl8vl0vj4uHw+nwKBgGKx2I4z9iQpFApV7diUtn6vM5mMQqFQeZ1EIsHdTgEAAABggPV1ECZJ6XRauVxO//2///e211pYWOhAR62rPHLYiWOBknTs2LHy282+QM9ms4pEIkomkwqHw7afVxsY2A3gCoVC1futHg0dFOaHV2zXXj3/C/3//j//L7lcrqYetT+LVjV73VLItJtQKNTSmrsFVTsxTVOxWKz8fUgkEspmszIMo/xnwTRN5fP58t1aA4FAuT4WiymVSikUCimTyWxbf25uTgsLC8pkMoRfAAAAALBH9H0Q5vF4dPLkST388MNtrXP58uWqOzf2QmUQ1qljgZVHGZtZM5/PKxAIKB6PNxWCSdt3hNkNwirDBLfb3bHZb/3KfZ39eV/7/sNX9JUXLyiXyzXcmef3+7W0tKSNjQ3lcrl225QkWZalQqGgZDJZ9/fI4/EomUyqUChoY2Nj17p0Oq2NjQ1bs/Ci0ahyuZw2NjZsh6OlI4qJRKLq48FgsByeb2xslL+upaWlqptJ5PN5JRIJRSKRcghWG3aV1rEsa8//rgIAAADAsOjrYfmlo4x/8id/ovHxcd122222j+9VMk1T586d63R7TVteXi6/3eljktL2gGo3hmFodnZW0Wi0peH6Xq+36s6RFy9etPVzqfz67fY6yL768Vt04e1/s13//71tWl7PJ5VOpxWJRJRKpbbVlIIeJ3g8nvKNGHY7tprL5WwHrm63W36/v3xjh52C6GZ3IxqGoUAgsC18DYfDSiaTOz7H4/HI4/HI7/crmUwqkUgoFovZvqa0FT7u9PMAAAAAAAyWvg7CnnjiCb3yyivl9y3L2rYDxC7LsuRyuTrVWksqjwZ26lhgZSBgJ1wzDEM+n0/hcFjxeNz2NTKZTFVodvTo0XIwYHenXWVds0HEILrv1k/ov7z2uq2B+TftG9X9t36i/P5uQVgkEulojzvxeDzyer3bfq7BYLDlnYyRSGTH3psJwbLZ7LbfcbfbrQsXLti6yUNJNBpVMBjcdtfV2hl2tdcBAAAAAAy+vj4aefToUVmWJcuyJKnnQVa7SkewWtmFtZtSWOF2uxvuyjJNU4FAQEePHrUdgklb855qg7vKUMPOXKfKmtLunL3uwP79+rvbP2Or9u9v/4zG9v/xKOVuR/G6dURvp+u0c+2dntvKUd7a5zcbglX2c+nSpaoemAMGAAAAAHtfXwdhpbDF5XKVA7FWH72WyWRkGIbcbrdOnDjRsXVLNwA4depU3TrTNOXz+eTxeBSLxWQYRsNHNpstD2OvDRu8Xm9VmLXTsPFKlcf5hmE3WMnXb51sWHPK+9ltdbuFRJ26ycIgKR3lrZVOp1sKwUrcbnfHZqz1k9J/a7CzZm7IAAAAAGDv6eujkQcOHJDX69Urr7yieDwur9fbUhBgGIaeeOIJ/fKXv+xYb9lsVqFQSKZpyu/3l/vb7fpzc3OSpAsXLtTdCZNIJHT27Fn5/X6dOHGibm0sFpNpmuWjXvXMzs6WA67d5j/tZrfZS8lksrzWwsLCrj2Yplk+5uf3+5sezr/XHbMRlnXbTn/Obr755o6uZ/fPcunPWaXSLLN2eTweRaPRlo9cd1M+n1cymSzfGdPtdmtiYqJ844nSHWTn5uYa3gSj9N+viYkJJZPJPb1DsxTqp9PpcgjWD/84UjJMPwsAAACgH/R1ECZJx44d0/T0tL71rW+1vMbhw4d17733dnQ3TTqdLr84L+2c2mlgd+WLnFwuV/d4mWma5d1SpbvaRaPRHY8xhkIhZTIZxePxhkctdxtUbtduL6g9Ho/S6bRCoVBVv7VKu3ncbrdjg96xN2Wz2R1/d5s52tvIiRMnykGYaZp9Nw/MNE3Nzc2Vd116PJ5y6GwYhvL5vPL5fNWuzEbHPEvhommaikQiVfML9wrDMBQKhWQYRl8fex2GnwUAAADQT/r6aKS0tYOoU/9638k7FYZCoW0fS6VSGh8fVygUUiQSkc/nUyAQUDgcbhiCSSrv7KiUSCTKa8ZiMQUCAY2Pj0vaGr7fKAQrhVStarR7KxgMamlpSW63W7FYrHw90zTLAWE+n5fX6902kwloZKcB++0M7d+J2+3u612KpdBb2tqFWSgUlE6nlU6nlcvlVCgUtu0iahSmDMMRW4/Ho1wup42NjY7OZey0YfhZAAAAAP2k74Oww4cPd2z3x3/8j/+xI+tIWwFdoVBQOByWx+OpemGez+e1vr6uEydOaGNjQ/F43PYL91wup2g0Kq/Xu23N0g6HS5cuKZ1O2xpenk6n25qtttuxyNrvRenrLM1zKoV3ExMT5RfswxiCjUjavOfLdR99/4ewR0pHAGt1csZeSSnYrnfnyHpKOz+np6flcrk0Pj6uQCCw450/m5FIJMrH+aLR6I6Bncfj0dLSUtV/JxvNCEsmk/J4POVdnXudnTvq9sqw/SwAAACAXuv7o5GSdOjQoY6s81//63/VXXfd1ZG1pK0XoHaComa43e6OHvvqpmg02tc7L3rB5XJptNdNDKjdQoF2BuTvpjTnr9ndOaZpanZ2dtuuy9KOyGw2q3g83vJg/9LNMKSdd8dVikajeuedd5RIJBoGeqUgf1j0atdVJBJp+HfEsP0sAAAAgF4bqs0oy8vLvW4BgE073d3PyUHi0Wi0qV2LhmHo0KFDDY8eG4Yhn8/X9N0KW5ltVbppB3eN7L1UKtX2jkAAAAAAnTcQO8JqvfHGG029QDQMQ8lksq8HJgP4o9IdTms5sRusFaZploecB4NBBQIBzczMaH19XUtLSzvehTIQCKhQKNg60ly6RqVsNmtrltmJEyd2nGGI7jEMo+EOPgAAAKAVlmWp2KBmRFunk7CzgQjC3njjDcXj8V1nBtlhWRa/CMCA2O3P+fT0dJc72Vlpd9fS0tK2XWp+v1+RSESBQGDb1xEKhZTL5WxdozYwi8ViOnr0aMNda6U7SvbjHTCHgWmafT2TDAAAAIOtKGnsuRfr1mze82VG9NTR90cjT5w4oenpaaVSKRUKhZaHvgMYHLsFYf10h72dQrCS0gD7Wvl83vYRSbfbXRVkmaYpn89n6x8DLMsiBOuB0sw4jqYCAAAA/auvg7Cf/vSnisfj5SCLHV1A78RiMblcrpYePp+vqWvtdoy5X8Idt9vdcF6Zx+PZ8cYXzdwMo7bWMIzyPwy0K5/PKxKJNNxlZ5qmUqmUfD5f1XVLx//Gx8flcrk0PT2945FQwzAUi8XKd9Scnp5WJBLZ8Wdcuk7t70+tQCBQXq/y0cnj76lUquo64+Pj8vl8O36N0tb3c6eZcZX97fa9tvuzKDFNU4lEQoFAoPz9L/UXi8VsBXGGYSiRSGh6erqq58qfwfT0dPkIMAAAALBX9PXRyNId01wulyzLksfjkdfrLR8Zuvnmmxuu8c4778g0TZ07d06XL192tF8AndHvd9GbmZmxVReNRrWwsFAVJDQzND8cDiudTm97TuluhKdOnWpqblo+n1cymdS5c+fKPe0ULpbCr7Nnz+54M4BYLLYtECoFXoVCoXynxN3qUqmUstmscrlc1fXD4bDC4bAikUjdsK+02y6RSCgWi9n50m3LZDIKhUJyu906depU+ahpPp9XKBRSLBZTMpnc1rvH49GFCxeUzWaretrtKKzdn0WtVCpVnj8Wj8cVj8fldruVz+e1sLCgRCKhRCKhYDC47c6rpmlqYWFBmUxmW1i20x1QS7P6Sj8ru/PtAAAAgH7W10FYPp8v7wZYWlrS7Oxsy2tFo1HddtttnWoNGDqlgKIVy8vLTT13t0CgX3amNLMzze/3K5PJVH0sn8/bDrCWlpYUCoV2XMPn8ykYDOrUqVMNezIMQ2fPnrW968jr9crtdlf93HK5nHw+nyYmJpROp+X1ejUxMVEOYKQ/BjWxWKx884BScLi8vFzeYWQYhhYWFnbcIRcKhWztegsGgx0NwrLZbPlGAydOnCiHYNLW9yOdTpePp87NzVUFTW63W16vV+vr61Vr7vRzbvZnUVIKFt1u97ZgyuPxKBgMln9XMpmMpqenqwK79fV1BQKBctBZsry8rNnZWfn9fsXjcXk8nnKgZ5qmTNNUJBLZ8bgvAAAA+s9P3lzV8T+d6nUb/cvqY+Pj49bIyIj1+OOPd2S96enpjqyD3pucnLQkWZOTk71uxTGStj02Nja6cu1wOLzt2vF4vOX1crnctvU8Hs+u9fF4fMevP5lMttxDO6LRaFUfwWDQ9nPT6XRHvo7dvietrFm5ltvtrlvr9XqrrrO0tLRjnd/vr6oLh8M71lV+P3a79tLSUtVau9nY2LD156P29283wWCw4e97o3Xs9l5i92eRTCZt/6w9Hk+51u/3N/w63G73jj/X2t/dbv33BwAAALv7b//6pvXR//7zho9n/89Kr1utq5ev6ft6RljpX7uPHDnSkfVKx3UA9Ld+3xHWjJ2Ok7XydUSjUW1sbFTtUqpUulOlnbWbOeJWeYOCcDi862y02jsl7vbf28r+S7uN+tFuv4OVH+/EUHy7P4vSzje3261wOGyrVtra5bbTcdzKr+PUqVM7/lxrf9eWl5dt9QoAAABnXL5yRX/76mu2av/m1de0eeWKwx0Npr4OwkpHIWuPmrS7HoD+tls40O+zw3ayU6DyzjvvtLxWOp1WLpfb8chdNpvV7OxsR8Mlu8dAK39mzRwd7ac7LJ46dUrxeFzpdLph2CR1L5hNpVLla9kJzsLhcNXPoJkbNNSqvF4//awAAACG0bNvvqX3rhVt1b579Zp+/OZbDnc0mPo6CPv2t78ty7J2HNbcih/96EcdWQeAs3bbddTMoPl+sVNwYedGH/V4vV7lcrkdd13l83nNzc21tX4rWr2jZ6f+oaMT3G63otHojrvu8vl8x/4ualblbC67O8gq/wwN4p8bAAAAbPfz377dVP0vmqwfFn0dhB04cEDf+973dPbsWf3ud79rez2ORgKDY7ch4/16lK4Znbr7XjgcVqFQ2BZCZTKZvg4/Wg3Nuq3yDpder7epO3R2uo9m1f6O7YU/NwAAAMPO/LC5o44mRyN31NdBmLQ1F8fr9Zbv5NWqS5cu9exf8wE079ixYzt+vJ8Dnt3UBj+dCsJKa1XeGbCE4L91+XxegUBAyWSy7ly0bqkMseyGYrV3pOynnXcAAABojfu6/c3V72+ufljs63UDdiwtLWlmZka33XabYrFY1fDmetbX12WapgqFgs6dO+dwl+iFtbU1TU3Vvy3s/Py85ufnu9TRYMjn81pYWFA6ne51K7sKh8NVQ79LksnkrgPj+1XtbpxGO4uy2axisZhyuZyt9T0ej06dOlX1DwYE/62JRCJKpVIKh8NtzdbqpFYG9Nf+PdnJ8BUAAAC98dWP36ILb/+b7fqvfPwWB7vZ3eLiohYXF+vWrK2tdamb7QYiCHvppZckbQ3KjkQiLa1hWZZcLlcn20IfKBaLWl1drVuzubnZpW4Gx9zcnO1AuVfcbreCwaAymUzVx7PZrPL5fM+OqTWrNgSzs7vI4/Eon88rm83a3o1UGw4y2Lx5pRBMam/AfKeVfh+kP95ps9Hx0sodYIRgAAAAe8N9t35C/+W1120NzL9p36juv/UTXehqu83NzYav03up749GPvroowoEAnrllVfkcrlkWVbTD+xdIyMjmpycrPsYGxvrdZt9pRQkBQKBXWs6fYyq1fV2CyN22inWLqdmKC0vL1e9byfMLwUXrQb/UuNdZ3tBJ39P8/l8OQTzeDx9Nces9phwqc96Ku+wOmg7KAEAALCzA/v36+9u/4yt2r+//TMa69HRyLGxsYav00dGehdH9XUQdurUKSWTyXKY1WqoRRi2dx08eFArKyt1HxyL/CPTNMvH55p9cfzOO+90tBc7IYbH49kxDMtms0okEh3rxTAM+Xy+toKn3dTe8c/u993j8cgwDNuhX+0OsN1mrA2C2t2Ku4WUndz1Vjl7rt66vRg6HwwGq4I5O/PfKr+eEydOONEWAAAAeuDrt042rDnl/aytOqfMz883fJ1+8ODBnvXX10cjS/9nv7QTzO/3KxAIyO12Nz0n7OTJk3rjjTcc7BboHCdebJumqdnZ2fKxqmaPS3W6J7vrRaNRLS0tbRuSH4vF5PV62x5kns1mFQgEdg3d2lV5tLOZAfalICyRSGh6elrhcLhufeXaHo9H0Wi0+WZ3YPfnVFnX6DmNPl+7my2VSm37enYKCdfX1zu2kyuTyWwLLXe6Xq3aP1eGYVR9zM6xxp1UzoAzDKPusdl8Pl8+ShmPx/tqdxsAAACcd6yHIdgg6OsgLJ/Py+Vyye12a3l5WYcOHWp5rbm5Od18880d7A5wzm47Ulp9oZ/NZhWJRMrrHj16tOnrt3MMrd2dO0tLSwqFQtvmhQUCAcXj8ZZCH9M0FYvFlEqldr3zYr3n2pFKpcpfe7N3H6wMTyKRiHK53K6hRiqVqtohV7kLbSeVP8te7HCqtNv1/X5/OfyMxWIqFAoKhUIyTVNLS0tKpVLl34vSGrWhU0nt7+5OYVRt+BYKhRSPx+X1epXP55VMJuX1essBpfTH8HFpaUknTpzYMWCORCJKp9NaX19XPB7X9PR01e+r3Z9FMBhUPB4vh3GhUEiXLl3a9nWYpqm5uTlJW79zu/3ZsPtzr/yz2+vfFQAAAKAjrD42Pj5ujYyMWN///vc7sp7P5+vIOui9yclJS5I1OTnZ61YcEQ6HLUnbHn6/3yoUCg2fv7GxYS0tLVnRaNTyeDzb1kmn07s+t1Ao7HhtSdbGxkZLX4/X691xvWQy2dQ60Wh0x3W8Xq+1tLRka42NjQ0rHo9bbre7/D1t9HXVXtftdje8TuX30e/32+qtUjKZ3PFrDQaDVjQatZLJpBUOh6t+vnZ/P2p/Hrv9PmxsbGz7Pu8mGAza+tkuLS1V1YXD4V2vXfoZ1T7cbnf5511Z4/V6rUKhsO3nabe32rrKRzwetyxr5z+bwWCwap3dfk93+lrt/ixK0ul0+Wt2u91WMpm0CoWCVSgUrGQyWf59KPW7E7s/g9q6Vn6PAQAA0FlXi0Xro//953UfV4vFXrfZUC9f0/d1EOb3+62RkRHrpz/9aUfWy+fzHVkHvbdXg7BcLlf3xXinHjsFPxsbG1Yymdw1fJBkeTweK5lM2g7Ecrmc5ff76/YSjUZthTclS0tLuwZrbrfbCgaDVjKZtJaWlqxcLmctLS1ZyWTSisfjVc9zu90NQ4eSncJBj8eza/hWGVbUhiTNfJ2lHtPptBUOhy2/3295vd6qn1Hpa24UBJZ+t3b7+Xq93nJ4Uq/W4/FYwWCw/DtQG8bVBielNZeWlnb9XfB4PDuGMRsbG1Xre71eKxqNVtWUPlb7O7SxsdHw693pmvF4vHw9j8djRaPRqt/3jY2N8tdR+T2rVRlCe73eqt+1Zn4Wu0kmk5bf768KxUrP2+3PZ70/j5U/g0KhULeuUW8AAABwTrFYtK42eBQJwupyWVb/TpLPZDI6evSoEomE/vN//s+9bgd9ZGpqSqurq5qcnNTKykqv22lbKpVyZFD7Trxer3K5XNXHXC5X0+u43W5tbGzs+LmdjjHasbS0ZPv4YCaT0cLCQnkWkl0ej0eRSEThcLipY6almVS1X5fb7dbMzIzcbrdM09Ty8nL56F06nW57hhkAAAAA7DW9fE3f10GYJPl8Po2MjOjixYttr/Wzn/1Mf/VXf9WBrtBrey0IQ+tM01Q2m9XZs2dlGIZM0yzPNfJ4POW5TUeOHFEwGGz6JgGNrle6Zuk6MzMzCoVCBGAAAAAAsAuCsDoMw9Cf/dmf6ac//an+8i//sq21jhw50pFADb1HEAYAAAAAwGDq5Wv6ka5erQUej0cnT57Uww8/3NY6ly9fbvoIFQAAAAAAAPaOfb1uoJ6f/exnkqQ/+ZM/0fj4uG677TYFg8Gm1zFNU+fOnet0ewAAAAAAABggfR2EPfHEE3rllVfK71uWpUQi0dJalmW1NBAcAAAAAAAAe0NfH408evSoLMtSaYwZQRYAAAAAAABa1ddBWCQSkbQVgJUCsVYfAAAAAAAAGG59fTTywIED8nq9euWVVxSPx+X1ejUxMdH0OoZh6IknntAvf/nLzjcJAAAAAACAgdDXQZgkHTt2TNPT0/rWt77V8hqHDx/Wvffe21KIBgAAAAAAgL2hr49GSpLf7+/Y0caZmZmOrAMAAAAAAIDB0/dB2OHDhxWPxzuyVqfWAQAAAAAAwODp+yBMkg4dOtSRdQ4fPtyRdQAAAAAAADB4ehqE9dPw+n7qBQAAAAAAAJ3X0yDM5/Npc3Ozly1Iki5fviyfz9frNgAAAAAAAOCgngZhnRqC3wn91AsAAAAAAAA6r6dBmMvl6uXlq/RTLwAAAAAAAOg8doQBAAAAAABgKPT8rpGXLl3qdQtaXl7udQsAAAAAAABw2L5eNzA3N6fHH39cbrdbExMTXb32+vq6DMNQNBrt6nUBAAAAAADQfT0PwnK5nEKhUE97sCyLGWEAAAAAAAB7XM+DsJJezQsjABtsa2trmpqaqlszPz+v+fn5LnUEAAAAAMDwWlxc1OLiYt2atbW1LnWzXc+DsF4PzO/19dGeYrGo1dXVujWbm5td6gYAAAAAgOG2ubnZ8HV6L/U0CNvY2Ojl5bEHjIyM6ODBg3VrxsbGutQNAAAAAADDbWxsTJOTk3Vr1tbWVCwWu9RRNZfFligMoKmpKa2urmpyclIrKyu9bgcAAAAAANjUy9f0I129GgAAAAAAANAjBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgK+3rdAIA9zrIkq1i/xjUiuVzd6QcAAAAAMLT2ZBB2+fJlPf7443rqqad63QoAqyg92uA/NU9dlVyj3ekHAAAAADC09uTRSMMwlEql9K//+q966aWXtLm52euWAAAAAAAA0GN7MgjLZrOyLEsej0eBQEDj4+P69re/3eu2AAAAAAAA0EN7Lgi7cOGCYrGYJMmyrPIjHo/XDcMeffRR3XbbbTpy5Ii+/e1vs4sMAAAAAABgj3FZlmX1uolOmpmZkcfj0bFjx+T1emUYhs6fP6/vf//7crlcMgxDn/zkJ6uec9ttt8kwDFV+K6anp5XL5TQ2NtbtLwE2TE1NaXV1VZOTk1pZWel1O6ineK3xjLCHnpY+/2B3+gEAAAAA9FQvX9PvuR1hknTu3Dnde++9OnTokGZnZxWPx7W+vq5PfepT5d1iJY8++qgKhYIkKRaLqVgsan19XV/84hc1NzfXi/aBveXlM41rnn5I+mcbdQAAAAAAtGHPBWEul2vHj7vdbuVyuXLoVZJMJuVyuRQMBrWwsFCuTSaT2tjY0BtvvOF0y8De9f5l6dnH7NWeeUR6nyPJAAAAAADn7LkgbHx8XD/84Q93/Jzb7db4+Hj5/VOnTpXfjsfj2+pjsZiy2WznmwSGxcvPSB++Z6/2D+9KL592th8AAAAAwFDbc0FYNBrVt771LT322GM7Drzf2Ngov13aDeb3+/WpT31qW+3MzMy2HWQAmvCr55usf8GZPgAAAAAAkNRggvXg8fv9mpub08mTJ5VMJhUMBnXkyBFJ0tmzZ1UoFPSlL31JXq9X+XxeLpdLkUhkx7UOHDggwzC62T6wt/x+o3FNO/UAAAAAADRhzwVh0tZOr/X1df30pz9VJpNRJpMpf255eVlPPPFE1VFIr9e74zqvvPKKJiYmHO8X2LM+Ot64pp16AAAAAACasOeORpak02mdPHlSs7OzsixLBw4c0Llz53T48GGl02nde++9crvdOnny5K47wlKplKanp7vcObCHfO7uJuvvcqYPAAAAAAAkuSzLsnrdRK9lMhnF43H96Ec/0u23367NzU098cQT+v73v6+NjQ2NjY31ukXUmJqa0urqqkZGRnTw4MG6tfPz85qfn+9SZ6jy/mUpOmlvYP5HbpLiq9IN/HkDAAAAgEG1uLioxcXFujVra2sqFouanJzUyspKlzrbsiePRjYrGAzKMAwdPnxYLper/PHvfe97hGB9rlgsanV1tW7NTjdNQJfccEC670np6Yca1x4/SQgGAAAAAANuc3Oz4ev0XiII+3fRaFQej0epVEput1vHjh3Tvffe2+u20ICdHWGEmT125/HGQdg3Tkt3HO9OPwAAAAAAx4yNjWlycrJuTWlHWC/suaORL730kr74xS82rPvZz34mv99PSDKgSkcje7GNEk0qXpMebZC5P3VVGhntTj8AAAAAgJ7q5Wv6PTcsPxgManR0VF/60pf0gx/8QL/85S93rJudndXDDz+sN954o6v9AQAAAACAFljW1j+013vsrb0+cMCeOxrp8/l04cIFZbNZZbNZSZLb7dbMzIwCgYD8fr/+4i/+QgcOHNCpU6fk9/uVyWT0yU9+ssedAwAAAACAXVlFe6dNXJw2we72XBCWyWQUCoW0vr4u0zRlGIY2Nja0tLRUDsYkKRAI6PDhw9rY2FAkEtGLL77Yw66BPcw1svWXUaMaAAAAAAActueCsHA4rFQqpU996lPlj124cEHnzp3TqVOnyh87f/68lpaWZFmWLl261INOgSHhcvEvMgAAAACAvrDngjDLsqpCMGlrHtjs7KwSiYSeeOIJXbhwQceOHdPFixdlGIaOHTvWm2YBAAAAAADQNXsuCLt8+fKunztw4IDi8bguXbqkWCymRCKxLTQDAAAAAADA3rTnBvMcOnRIP/zhDxvWnDt3TuFwWP/6r//apc4AAAAAAICjXj7T6w7Q5/bcjrBoNKo/+7M/k8fj0V/+5V/WrT137pyOHDmiXC6nsbGxLnUIAAAAAACaZifkevohaXRUuuO48/1gIO25HWEej0ff+973FAwG9dhjj9WtdbvdOnz4sB5//PEudQcAAAAAAJr2/mXp2fqv8cvOPCK9v+lsPxhYey4Ik7Z2hf3VX/2VTp48qT/5kz/RD3/4Q21u7vyHYGJiQmfPnu1yhwAAAAAAwLaXn5E+fM9e7R/elV4+7Ww/GFh7MgiTpHQ6rbm5Oa2vrysajWp8fFzHjh3Tj370I/3yl7/UL3/5S504cUKpVEqmafa6XQAAAAAAsJtfPd9k/QvO9IGBt+dmhFVKJpMKBAKam5vT5cuXlclklMlkttV5vd4edAcAAAAAAGz5/Yaz9Rgae3ZHWEkwGNTGxoa+973v6cCBA7Isq+rhdrt16tSprvZkGIYCgYDt2kgkounpablcLo2Pj8vn8ykSicgwjJZ7SCQSCgQCGh8fl8vl0vT0tEKhkLLZbF+tCQAAAACAPjrubD2Gxp4Pwkqi0ajW19eVy+WUTqcVj8eVTqd16dIl/cVf/EVHrmGaplwuV8PH9PS0PB5Pw/USiYSmp6eVSqXKoZdpmsrn80qlUpqenlYikWiqx2w2q/HxccViMUlbR0gLhYLi8bjy+bwCgYACgUBTx0WdWBMAAAAAgLLP3d1k/V3O9IGB57Isy+p1E6149NFH9dRTT/W6jSqJRKIcBjVSKBTqhmGBQEDZbFZut1t+v18ej0eGYSifz2/bCZZOpxUMBhteM5vNlneihcNhJZPJbTU+n0/5fF4ej0e5XE5ut7vra9oxNTWl1dVVTU5OamVlpe31AAAAAAB97P3LUnTS3sD8j9wkxVelG8ac7wst6eVr+oENwm6++Wa98cYb+tjHPtbrVsrGx8dt7Xry+/1aWlra9fOxWEyJRELxeFzRaHTb53cK3Br9GE3T1KFDh2SapjwejwqFwo51hmFoenraVp9OrGkXQRgAAAAADJn/57T09EON6/7v/ybdcdz5ftCyXr6mH9ijkRsbG/rUpz6lRx99VC+99FKv2ynffTIajWppaanuI51O77qOYRhKJBJaWlraMQSTto55hsPhqo/l8/m6/YVCoXJIV2/XmsfjKe8uy2azSqVSXV0TAAAAAIAd3Wkj3PrGaUIw1DWwO8JGRkbkcrmqPub3+xUIBBQMBvWpT32qq/2UdjzttivKrlAopCNHjuwagpWYpqnx8T8O/9tt95hUvSNL2goR6x1PzGQyCoVCkiS3262Nje1323BizWawIwwAAAAAhkzxmvTovvo1T12VRka70w9axo6wNlTeATKbzSoWi2l6elo333yzHn30Uf3sZz9ruMaPfvSjtnrIZDIyDMP2fLB6SrvKGnG73VUzxuqFUPF4vPy23+9vOKOrct6YaZrKZDJdWRMAAAAAAMBJAxuEfe9735NlWeW7MErVodjGxoZSqZRCoZBGR0d15MgR/eAHP9Avf/nLbWu1O7NqYWFBbrdbR48ebWudZntZX18vvz0zM7NrXeVRRK/Xa2vtypDt7NmzXVkTAAAAAADASQ32FPavaDQqv9+vUCik9fV1ZTIZWZaln/zkJ7pw4YJM06waIJ/P58tztEp3Yizd7bCd3UmV646Pj8vj8VQd0XSKaZrl+Vx+v3/XMKp2dtiRI0dsre/1est3p6z9/jixJgAAAAAAdblGto4+NqoB6hjo3xCv16tCoaCHH35YoVBIFy5cUDqd1vr6ugqFguLxuPx+v6Ttu8UymYwikYgikUhbPdQehzQMo7wTzeVyKRQKNRxk34pz585J2tplVW/4fjabrXq/cldWPbV1lV+DE2sCAAAAAFCXy7U1/6veo2aWOFBroIOwkng8rosXL+r8+fP68z//c7366qs6dOiQvvWtb+n8+fMqFotaWlpSOBwuhzGVwVirDMPYFgrVymQy8vl8bQdulUzTVCQSkdfr1dLSUt35XBcvXqx6v9Esr5Kbb7656v3l5WVH1wQAAAAAAHDangjCpK3dYb/5zW/0hS98QV6vV9/+9rerPj87O6uTJ0/qN7/5jTY2NpRMJsu7xVrl8XiUTCYVj8erQradpFIp+Xy+tq4nbYVvPp9PbrdbFy5caLgbq3QUsbJnO2rrKu+G6cSaAAAAAAAATtszQVhJMpnU//gf/0MnT54s7w6rdeDAAc3Nzen8+fM6f/58W9cLh8OKRqNKJpMqFAra2NhQPB7fcZdUPp8vzyVrRSaT0fT0tAzDkGmaGh8fVyKRqPuc2tCqVaV5ZE6tCQAAAAAA4LQ9F4RJW8PjDcPQ7bffLq/Xqx/+8Id1a2dnZzt2bbfbrWg0qo2NDaXT6W2BWDabbRheVTJNU4lEQtPT0wqFQts+H4vFdvx45fNbUdt35R0qnVgTAAAAAADAaQN718hG3G630um0MpmMjh49qrNnzyqdTuuTn/zkttp6QVI7gsFgOWirHAy/sLCgaDRqa41sNqtCoVAO93aaSZbJZJRIJGyv2Qondm91Ys21tTVNTU21vc78/Lzm5+fbXgcAAAAAgL1qcXFRi4uLba+ztrbWgW5as2eDsJJgMKj19XWFQiF5PB4lEgn9p//0n6pq5ubmHLu+2+1WLpeTz+crh2GmaSqbzdqaURYMBhUMBqs+lkqlFIvFqoKkWCymcDi8bdeV2+3uSOBUua4Ta7aqWCxqdXW17XU2NzfbXgMAAAAAgL1sc3OzI6/Be2nPB2HSVuCytLSkRCKhb33rW3V3hznl1KlTVcPyl5aWWh7WHw6H5ff75fP5qgKpVCq1bVfYxMRER0KriYkJR9ds1cjIiA4ePNj2OmNjY22vAQAAAADAXjY2NqbJycm211lbW1OxWOxAR80biiBMkt544w3NzMwoGo0qkUjI4/EolUrpr//6r7tyfa/XK7/fXz7a2O7AeY/HowsXLlSFaxcvXtxW1+quq9qgq3ZHWKfXbNXBgwe1srLS9joAAAAAAKC+To0Vmpqa6tnOsj0RhL3xxhvlOykahqFCoSDDMGQYhtbX17cFMC6XS5ZlKRwOK51OK51O62Mf+5jjfQYCgR1nfLXK6/UqGAwqk8lI2jlcm5mZqZpPZpqmrQCqdpD99PS0o2sCAAAAAAA4bWCDsCNHjpTDr3osy6r7ufPnz+uLX/zijrupOs3j8ZTf7sSxQEk6duxYOQjb6XtRuWNM2grLvF5vw3ULhULV+5XHOJ1YEwAAAAAAwGkDG4Tlcrnyzq563G63PB5P+TE9Pa2JiYny+wcOHOhSx9VBWCeOBUqqCqB2WnNmZqbqfbuhVWWoVvoeOrkmAAAAAACA0wY2CKs0Pj6uo0ePVgVe3Q657FheXi6/HQgEOr5+bUAlbQVllXd5vHjx4ra7UO6kstfadZ1YEwAAAAAAwGkjvW6gHffee6+8Xq82NjaUSqW0vLysjY0NjY+P910IJlUfDezUscDKuWC7hWtHjx4tv10526ueyrpYLNaVNQEAAAAAAJw0sEGY3+/XuXPnyuHX2bNnZVmWotGopqenddttt+nRRx/VP/3TPzVc66WXXupCxyrP8opGox1bsxQuud3uXXdlRSKR8tt2hvVX1ng8nh1DOyfWBAAAAAAAcNLABmGVu58OHDigYDCoc+fOaX19XRcvXtRf/dVf6eLFi5qdndXo6KiOHDmiH/7wh/rlL3+5ba1kMul4v5lMRoZhyO1268SJEx1bd2FhQZJ06tSpXWu8Xm9V8FQK5HaTTqfLb++2c8uJNQEAAAAAAJzkshpNmx9wly9f1tLSks6dO6dsNqvLly/L7XbL7/fryJEjkraCmWvXrjW1bjabVSgUkmma8vv9isfjuw6MNwxDPp9Ppmkql8vVHSyfSCR09uxZ+f1+nThxou5Q/VgspkQioWg0qng8XrdfwzA0PT0taSvEyuVyO9aZpqnx8XFJW7vulpaWurqmXVNTU1pdXdXk5KRWVlbaXg8AAAAAAHRHL1/TD+yOMLt22i328MMPK5fLKRqNtrw7KZ1Ol4fFZ7NZ+Xy+quOCJaXPTUxMqFAo1A3BTNNULBZTPp9XIpHQ+Pj4rv2FQiElEgnF4/GGIZi0dRyxtCurtP5OZmdnJW0dtazcxdWtNQEAAAAAAJyy54OwWl6vV/F4XL/5zW+0vLysL37xiy2tEwqFtn0slUppfHxcoVBIkUhEPp9PgUBA4XBYuVxOHo+n7pput3tbTSkQC4VCisViCgQC5d1VhUKhqXljwWBQS0tLcrvdisViCoVCyufzMk2zHNjl83l5vV5dunSp7m40J9cEAAAAAABwwp4/GmnHzMyMlpeXm36eYRiKx+PKZrNaX1+XaZpyu92amJiQ1+vVsWPH5Pf7mwp/TNPUwsKCstmsDMPYtmYgENDRo0fbDpRKRzArrzEzM6NIJLLr0P1erLkbjkYCAAAAADCYevmaniBM0oULF8rH9zAYCMIAAAAAABhMzAjrMUIwAAAAAACAvW8ggrAf/OAHeumll3rdBgAAAAAAAAbYQARh//N//k8FAgH9wz/8Q1vrnDp1SqOjo/rzP/9zvfrqqx3qDgAAAAAAAINgIIIwSbIsS+FwWN/+9rdbXiMWi8myLP3mN7+R1+vVG2+80bkGAQAAAAAA0Nf29bqBZp0/f16FQkFnz55t+rmHDh3S5cuX5ff7JW0FY62sAwAAAAAAgMEzcEHY8vKyQqGQjhw5opdeekkf+9jHbD83l8tVvX/bbbd1uj0AAAAAAAD0qYE5GlkpnU4rFArJ6/XqX//1X1ta49KlS1pfX+9wZwAAAAAAAOhXAxmESVI0GtVTTz0lr9erf/qnf2rquZcvX1YgENDMzIxD3QEAAAAAAKDfDGwQJkl+v18XL17U3Nyc7TtKvvTSS/J4PLp06ZJCoZDDHQIAAAAAAKBfDHQQJkkej0fLy8s6e/ZswztKfv/731cgENDGxobcbrcefvjhLnUJAAAAAACAXhv4IEyS3G63zp8/r/X1dR07dmzHmhMnTujxxx+XZVlyuVyKx+Nd7hIAAAAAAAC9tCeCsJKTJ09qdnZWR44c0e9+97vyxy9cuFAOvlwul7xeL7vBAAAAAAAAhszABWGNBuOHw2Elk0l98YtfLN9RshSCWZZV9T4AAAAAAACGx75eN2DHoUOHJG0FWeFwWNlsVp/85Cd3rfd6vTp79qzuvfdeffvb31Y2m5XL5ZJlWfJ6vfriF7/YrdbhsLW1NU1NTdWtmZ+f1/z8fJc6AgAAAABgeC0uLmpxcbFuzdraWpe62W4ggrB4PF4OtJaWluT3+xWLxeoebywN0f8P/+E/lD/mcrl2nSGGwVQsFrW6ulq3ZnNzs0vdAAAAAAAw3DY3Nxu+Tu+lgQjCJOnAgQO69957de+99zb1vPPnzysWi+n73/9+eT4Y9o6RkREdPHiwbs3Y2FiXugEAAAAAYLiNjY1pcnKybs3a2pqKxWKXOqrmskqDs/a4TCajo0eP6tSpU/rrv/7rXreDNk1NTWl1dVWTk5NaWVnpdTsAAAAAAMCmXr6mH7hh+a0KBoNaXl7W2bNne90KAAAAAAAAemBogjBpa4j++fPne90GAAAAAAAAemCogjAAAAAAAAAML4IwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAyFfb1uAGjH2tqapqam6tbMz89rfn6+Sx0BAAAAADC8FhcXtbi4WLdmbW2tS91sRxCGgVYsFrW6ulq3ZnNzs0vdAAAAAAAw3DY3Nxu+Tu8lgjAMtJGRER08eLBuzdjYWJe6AQAAAABguI2NjWlycrJuzdramorFYpc6quayLMvqyZWBNkxNTWl1dVWTk5NaWVnpdTsAAAAAAMCmXr6mZ1g+AAAAAAAAhgJBGAAAAAAAAIYCQRgAAAAAAACGAkEYAAAAAAAAhgJBGAAAAAAAAIbCvl43AAB7jWVJxQb34x1xSS5Xd/oBAAAAAGwhCAOADita0r7v1K+5+l1plCAMAAAAALqKo5EAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEA0ANnXul1BwAAAAAwfAjCAKDD7IRcD2UIwwAAAACg2wjCAKCDLn8gPfacvdpH/lHa/MDRdgAAAAAAFQjCAKCDnslL712xV/vuh9LpvLP9AAAAAAD+iCAMADro+debq3+hyXoAAAAAQOsIwgCggzbed7YeAAAAANC6fb1uAMDwsixLxQY1I5JcLlc32umI8RucrQcAAAAAtI4gDEDPFCWNPfdi3ZrNe76s0e600xF3f1o6/y/26+/6tHO9AAAAAACqcTQSADroAa904357tTddJz3odbYfAAAAAMAfEYQBQAcduF568h57tSe/Jo1d72g7AAAAAIAKBGEA+tpP3lztdQtNO364cc3poL06AAAAYCeWJV0r1n9YVq+7BPoPM8IA9IydkCuc/7VGXS59/dbJLnTUPfcTggEAAKANRUva9536NVe/K40Ozn2ngK5gRxiAnrh85Yr+9tXXbNX+zauvafPKFYc7AgAAAADsdQRhAHri2Tff0nvXirZq3716TT9+8y2HOwIAAAAA7HUEYQB64ue/fbup+l80WQ8AAAAAQC1mhGGgra2taWpqqm7N/Py85ufnu9QR7DI/bO6oozlARyNHXFvzGBrVAAAAAMBes7i4qMXFxbo1a2trXepmO4IwDLRisajV1foD1zc3N7vUDZrhvm5/c/X7m6vvJZeLoaQAAADovTOvSA/6et0Fhs3m5mbD1+m9RBCGgTYyMqKDBw/WrRkbG+tSN2jGVz9+iy68/W+267/y8Vsc7AYAAAAYLGdeaVzzUEYaHZGOc8dydNHY2JgmJyfr1qytralYtDczutNclmVZPbky0IapqSmtrq5qcnJSKysrvW4HLbh85Ypue/ElWwPzb9o3qn/50hc0NkC7wgAAAACnXP5AmnxCes/G9JCbrpNWT0hj1zvfF2BXL1/TMywfQE8c2L9ff3f7Z2zV/v3tnxnMEMyypOK1+g/+LQIAAABNeiZvLwSTpHc/lE7nne0HGCQcjQTQM1+/dVLh/K/r1pzyflZfv7X+ttq+ZRWlRxv8Z/apq5JrtDv9AAAAYE94/vXm6l94Xfrm553ppZMsy1Kj8yIjklwuBvKidQRhAPrasUENwQAAAACHbLzvbH2vFCWNPfdi3ZrNe74s/hkZ7eBoJAAAAAAAA2T8Bmfrgb2MIAwAAAAAgAFy96ebq7+ryXpgL+NoJICeGdHW1uZGNXvay2ekzz/Y6y4AAAAwQB7wSo+/aP+ukQ96ne8JGBR7/jUmgP7lcrk02uAx0IMwXz7TuObph6R/tlEHAAAA/LsD10tP3mOv9uTXpLHrHW2nq37y5mqvW8CAIwgDACe8f1l69jF7tWcekd7fdLYfAAAA7CnHDzeuOR20V9cv7IRc4fyvCcPQFoIwAHDCy89IH75nr/YP70ovn3a2HwAAAAyd+wcoBLt85Yr+9tXXbNX+zauvafOKjXOhwA4IwgDACb96vsn6F5zpAwAAABgAz775lt67VrRV++7Va/rxm2853BH2KoIwAHDC7zecrQcAAAD2kJ//9u2m6n/RZD1QQhAGAE746Liz9QAAAMAeYn7Y3FFHk6ORaNG+XjcAAHvS5+6W/tf5Jurvcq4XAAAA7DkjLunqdxvXDAr3dfubq9/fXD1Qwo6wHjAMQ4FAwFZtPp9XJBLR9PS0XC6XXC6XpqenFYvFZJpmS9c3TVOxWEyBQKC87vT0tEKhkFKpVEtrSlIikVAgEND4+HjVmtlstuU1gYF15wPSdTfaq/3ITdKdDzrbDwAAAPYUl0saHan/cA1QEPbVj9/SVP1XmqwHSgjCOsg0zXJYVe8xPT0tj8fTcK1QKCSfz6dUKiXDMMqfMwxDiURC4+PjTQdXlc8LBAJKJpPK5XKKxWIyDKMcujUTXmWzWY2PjysWi0mS0um0CoWC4vG48vm8AoGAAoFAy8EdMJBuOCDd96S92uMnpRvGnO0HAAAA6GP33foJ3ThqL6K4ad+o7r/1Ew53hL3KZVmW1esm9opEIlEOgxopFAq7hmGmacrn81WFX/WEw2Elk8mGdaFQSJlMRl6vV7lcbseaSCRSDtdyuZy8Xm/dNbPZbHl32259+Hw+5fN5eTwe5XI5ud3uhr02MjU1pdXVVU1OTmplZaXt9QBHFK9JjzY4gf6N09L/+4Hu9AMAAAD0sTP/Z0Xh/K8b1v2D73P6+q2TXegITunla3p2hHXQwsKCrTq/3193R1goFJJhGPJ6veXdVYVCQel0WtFodFt9KpVSJpOpe81EIlGuuXDhwq51yWSy3Nvs7GzdNUu71iTJ4/HsGsal02lJWzvZSvUA/t0d9/e6AwAAAKAv2Am3Tnk/SwiGtjAsv0NSqZRM01Q0Gm04/2tmZqbuOtlsVtFoVPF4vOpzHo9HwWBQkUhEoVBI+Xy+/Lm5uTkFg8Fd1y3tVPN6vQ13ZAWDQSUSCZmmqUwms+u6oVCofNyx3k64Ut+ZTEbZbFapVErhcLhuDwAAAACAHViWZBXr17gGbEBYE44RgqFNBGEdEo/H5fF4toVXrazj9/vrruPxeJROpzU9PV3+mGmaymaz8vv92+or5301mk0mSUeOHCm/ffHixR2DMMMwqtY9evRo3TWPHTtW3pEWi8UIwgAAAACgFVax8fiNp65KrtHu9AMMGIKwDshkMjIMw9acrnry+bwMw9h1flelUuhWuRMrn8/vGIRVzhqr3EVmx80337zjxyuDOr/fb2uXWUmjnWbAnuEa2fo/IY1qAAAAAGhE0uY9X25YA7SD36EOWFhYkNvtbrgrqpGzZ88qHA7bHiZfG3q98847O9ZNTEyU3zYMo+EQ/osXL5bf3m0HWeXdKhsN1N9prbNnz9p6DjDQXC5pZLT+Y49uWQcAAACa5XK5NNrg4eL/P6NNBGFtyufzyufzMk1T4+Pjmp6eViQSaTi8fifHjh1r6mhlbQBVeVSyUm2YFYlE6q5b6t3tdu+4a6t2V1nlUcp6Kvtt5fsDoLcsS7pWrP/gPsQAAAAA+hlBWJtqh8QbhqFUKqVQKCSXy7VtqH09dgbZVyoNqi/ZbfeW1+utCqGy2eyud29MpVLlHWO7hXKVs8HqXbdWbV2zxzQB9FbRkvZ9p/6jSBAGAADQey+f6XUHQN8iCGtD7cD4nWQyGfl8voa7sFq9fqWd5oOVnDp1altftWFYNpst95lMJncdaF95dFKS7fCudt7Y8vKyrecBAAAAAP6dnZDr6YekfyYMA3ZCENYGj8ejZDKpeDyucDhcd2dUKpWSz+fr6PUrg6RGd2H0er1Kp9NVH8tkMpqenlY+n1cikVAgEJDH49HS0lLd9WoDuFZ3hBUKBVvPAwAAAABIev+y9Oxj9mrPPCK9v+lsP8AA4q6RbaoNjEzTVCqV0sLCwraji/l8XoFAQEtLSx25duVdKmuPaO4kGAwqmUxW7U4zDKMc0EWjUVszyhoN27er9vsDAAAAAKjj5WekD9+zV/uHd6WXT0tf+KazPQEDhiCsw9xut6LRqKLRqDKZjObm5qoCn2w2q0QioWg02tZ1DMMoz9iKx+O2d2WVgrudjmpms1mZptnwqGOrAVbtuuvr6y2tU2ltbU1TU1NtrzM/P6/5+fm21wGG3ZlXpAc7u/kVAAAAJb96vsn6FwjC0FGLi4taXFxse521tbUOdNMagjAHBYNB+f1+zc7OVg2GX1hYaDsIK+3c8ng8Ta8VDoeVy+WUSqWqPp7P53Xo0CFduHBh2x0pndCJHWHFYlGrq6ttr7O5yZZhoJEzrzSueSgjjY5Ixw873w8AAMDQ+f2Gs/VAA5ubmx15Dd5LBGEOc7vdyuVy8vl85TDMNE1ls9m6w+3ryefzSqVScrvdLR2zjEQiSqVSCofDymazVUcdTdOUz+fT0tLSrv253e6OhFjN3CFzNyMjIzp48GDb64yNjbW9BrCXXf5Aeuw5e7WP/KN09/8ljV3vaEsAAADD56PjztYDDYyNjWlycrLtddbW1lQsFjvQUfMIwrrk1KlTVcPy6wVNjczNzUmSLly4YPtIZEkgEFA2m62aB1YKxmrrdutxYmKiI0HYxMRE22scPHhQKysrba8DoL5n8tJ7V+zVvvuhdDovffPzzvYEAAAwdD53t/S/zjdRf5dzvWAodWqs0NTUVM92lnHXyC7xer1VoVKrA+cjkYjy+bzS6XTTxxd9Pl95J1rlUPxkMrntjpKSFAqFdgy8Wt3JVbtWJ3aEAeiO519vrv6FJusBAABgw50PSNfdaK/2IzdJdz7obD/AACII66JAINDW81OplFKplJLJpILBYFPPDYVC5aOZlXebLAkGg8rlclXhlGmaO96NcmZmpup9u7vDaofjT09P23oegN7beN/ZegAAANhwwwHpvift1R4/Kd3ACBigFkFYF1UeY2z2WGA2m1UkElEymSzf+dEuwzCUyWQkbe1M2+04pdfrVS6Xq/pYKpXaFnRVHvEsrW9HoVCoer/Vo6EAum/8BmfrAQAAYNOdxxvXfOO0dIeNOmAIEYR1UWUA1cyxwHw+r0AgoHg83nQIJlXvAKvdzbVTj7U7xpaXl6ver13DbhBWGai53e6m55sB6J27P91c/V1N1gMAAKCD7ri/1x0AfYsgrIsqAyW7xyQNw9Ds7Kyi0aii0WhL160MoOwcR6wN22qDLq/XWxXkXbx40VYflV9/o0AOQH95wCvduN9e7U3XSQ82N8IQAAAAALqCIKyLKo8G2jkWaBiGfD6fwuFw1XD7Rs9JJBJVH6uczVV7PHE3jQbxHz16tPx2afZYI5V1O80eA9C/DlwvPXmPvdqTX5PGrne0HQAAAABoyb5eNzBMSnO67OzsMk1TgUBAR48etR2CSVtD8U+dOlX1scojiK3crXKnI4yRSESpVErS1vyyRiprPB4P88GAAXT8sPRQpn7N6eBWHQAAABziGpGeutq4BsCO+NPRJZlMRoZhyO1268SJE3VrTdOUz+eTx+NRLBaTYRgNH9lstjzEvnY317Fjx8pvLy8v27rLY2VgtlNo5fV6qz5eCvl2k06ny2+zGwzYu+4nBAMAAH3EsqRrxfoPy+p1l01yuaSR0foPl6vXXQJ9ix1hLcpmswqFQjJNU36/X/F4fNfjhIZhaG5uTpJ04cKFhoPyZ2dnywGXnZlelWoH3Ut/DK2y2axM09TCwkLdXWalOkl165LJZLm/hYUFBYPBHetM0yzvHvP7/S0N/AcAAACAZhUtad936tdc/a40Sm4EDA12hLUonU6Xw6LSbqxIJLKtrvS5iYkJFQqFhrO3fD6f7ZlbO9ktZEqn0+UALpFIlIOpWoZhKBQKSdoKreod4/R4POWdXvl8fttsspLZ2VlJW3eKrNwZBgAAAAAA0E0EYS0qhUWVUqmUxsfHFQqFFIlE5PP5FAgEFA6Hlcvldpy1VbumEyGYtBVCXbp0qVwTiUQUCASUSqWUz+eVzWYVi8U0PT0t0zQVj8e1tLTU8JrBYFBLS0tyu92KxWLlr8E0zXIImM/n5fV6denSpYa74QAAAAAAAJzisqyBOxHdNwzDUDweVzab1fr6ukzTlNvt1sTEhLxer44dOya/39934U8+n1cymVQ2my3PAvN4PPJ6vfJ4PDpx4kRLPScSCZ09e1aGYZS/FzMzM4pEIrsem2zV1NSUVldXNTk5qZWVlY6uDWBnlrV1vKCeERcjKQAAQP+4VrR5NJItIkBX9fI1PUEYBhJBGAAAAIBG7ARhTwelB33d6QfAll6+pif3BgAAAADsSWdeaVzzUMZeHYC9gSAMAAAAALDnXP5Aeuw5e7WP/KO0+YGj7QDoEwRhAAAAAIA955m89N4Ve7Xvfiidbv2+ZQAGCEEYAAAAAGDPef715upfaLIewGAiCAMAAAAA7Dkb7ztbD2AwEYQBAAAAAPac8RucrQcwmAjCAAAAAAB7zt2fbq7+ribrAQwmgjAAAAAAwJ7zgFe6cb+92puukx70OtsPgP5AEAYAAAAA2HMOXC89eY+92pNfk8aud7QdAH2CIAwAAAAAsCcdP9y45nTQXh2AvYEgDAAAAAAwtO4nBAOGCkEYAAAAAAAAhgJBGAAAAAAAAIbCvl43ALRjbW1NU1NTdWvm5+c1Pz/fpY4AAAAA9IsRl3T1u41rAHTO4uKiFhcX69asra11qZvtCMIw0IrFolZXV+vWbG5udqkbAAAAAP3E5ZJGCbqArtrc3Gz4Or2XCMIw0EZGRnTw4MG6NWNjY13qBgAAAACA4TY2NqbJycm6NWtrayoWi13qqJrLsiyrJ1cG2jA1NaXV1VVNTk5qZWWl1+0AAAAAAACbevmanmH5AAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAr7et0AAOwVlmWp2KBmRJLL5epGOwAAAACAGgRhANAhRUljz71Yt2bzni9rtDvtAAAAAABqcDQSAAAAAAAAQ4EdYRhoa2trmpqaqlszPz+v+fn5LnUEAAAAAMDwWlxc1OLiYt2atbW1LnWzHUEYBlqxWNTq6mrdms3NzS51AzT2kzdXdfxP64e3AAAAADCoNjc3G75O7yWCMAy0kZERHTx4sG7N2NhYl7rBsPvJm43/Yx/O/1qjLpe+futkFzoCAAAAgO4aGxvT5GT91ztra2sqFhvdaswZLsuyrJ5cGWjD1NSUVldXNTk5qZWVlV63A+jylSu67cWX9N61xv8xv2nfqP7lS1/Q2P79XegMAAAAAPpLL1/TMywfADrg2TffshWCSdK7V6/px2++5XBHAAAAAIBaBGEA0AE//+3bTdX/osl6AAAAAED7CMIAoAPMD680V3+luXoAAAAAQPsYlg8AHeC+rrl5X+5+nA9mWZLV4Hina0RyubrTDwAAAOqyLEuNhnOMSHLx/9+AMoIwAOiAr378Fl14+99s13/l47c42E2LrKL0aIO/Fp66KrlGu9MPAAAA6ipKGnvuxbo1m/d8Wfy/N+CPOBoJAB1w362f0I2j9v6TetO+Ud1/6ycc7ggAAAAAUIsgDAA64MD+/fq72z9jq/bvb/+MxvrxaCQAAAD2nJ+8udrrFoC+QhAGAB3y9VsnG9ac8n7WVl3fevlMrzsAAADAv7MTcoXzvyYMAyoQhAFAFx3r5xDMTsj19EPSPxOGAQAA9NrlK1f0t6++Zqv2b159TZvctRyQxLB8AOiYEW0NI21U05fevyw9+5i92jOPSJ+7W7phzNmeAAAAsKtn33xL711rdM/ILe9evaYfv/mWHvF80uGugP7Xt6/JAGDQuFwujTZ49O2tq19+RvrwPXu1f3hXevm0s/00wbKka8X6D8vqdZcAAACd9fPfvt1U/S+arAf2KnaEAQCkXz3fZP0L0he+6UwvTSpa0r7v1K+5+l1ptE8zSAAA0COWJVkNdlS5RqQ+/YdM88PmjjqaHI0EJBGEAQAk6fcbztYDAAD0G6soPdrgJfFTVyXXaHf6aZL7uubuQu7mruWAJI5GAgAk6aPjztYDAACgo7768Vuaqv9Kk/XAXkUQBgDYGn7fVP1dzvThkDOv9LoDAACAzrrv1k/oxlF7L+lv2jeq+2/9hMMdAYOBIAwAIN35gHTdjfZqP3KTdOeDzvbTBDsh10MZwjAAANCCl8/0uoNdHdi/X393+2ds1f797Z/RGEcjAUkEYQAASbrhgHTfk/Zqj5+Ubhhzth+bLn8gPfacvdpH/lHa/MDRdgAAwCCxE3I9/ZD0z/0bhn391smGNae8n7VVBwwLgjAAwJY7jzeu+cZp6Q4bdV3yTF56z+YNkN79UDqdd7YfAAAwIN6/LD37mL3aM49I728624+DjhGCAVUIwgAA9t1xf687qPL8683Vv9BkPQAAsMeypGvF+g/L6nWXFV5+RvrwPXu1f3hXevm0s/0A6JoG94oFAKB/bbzvbD0AALCnaEn7vlO/5up3pVFXd/pp6FfPN1n/gvSFbzrTSxtGJG3e8+WGNQD+iCAMALDFNSI9dbVxTR8Zv8HZegAAsEf9fsPZ+i5xuVwa7XUTwIDpr1c0AIDecbmkkdH6D1e//DPulrs/3Vz9XU3WAwCAPeqj487WA+hbBGEAgIH1gFe60eadwG+6TnrQ62w/AABgQHzu7ibr73KmDwBdRxAGABhYB66XnrzHXu3Jr0lj1zvaDgAAqOPMK73uoMKdD0jX3Wiv9iM3SXc+6Gw/ALqGIAwAMNCOH25cczporw4AALTGTsj1UKaPwrAbDkj3PWmv9vhJ6YYxZ/sB0DUEYQCAPe9+QjAAABxz+QPpsefs1T7yj9LmB462Y9+dxxvXfOO0dIeNOgADg7tGYqCtra1pamqqbs38/Lzm5+e71BEAAAAwXJ7JS+9dsVf77ofS6bz0zc8721PH3HF/rzsABs7i4qIWFxfr1qytrXWpm+0IwjDQisWiVldX69Zsbm52qRsAAABg+Dz/enP1L7w+QEEYgKZtbm42fJ3eSwRhGGgjIyM6ePBg3ZqxMc7zA3vZiEu6+t3GNQAAwBkb7ztb7xjXiPTU1cY1AJoyNjamycnJujVra2sqFotd6qgaQRgG2sGDB7WystLrNgD0kMsljRJ0AQDQM+M3OFvvGJdLco32ugtgz7Eznmhqaqpnu8aItwEAAAAALbv7083V39VkPQB0EkEYAAAAAKBlD3ilG/fbq73pOulBr7P9AEA9BGEAAAAAgJYduF568h57tSe/Jo1d72g7AFAXQRgAAAAAoC3HDzeuOR20VwcATiIIAwAAAAA47n5CMAB9gCAMAAAAAAAAQ2FfrxsAAAAAAAy2EZd09buNawCg1wjCAAAAAABtcbmkUYIuAAOAo5EAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhPWAYhgKBgK3afD6vSCSi6elpuVwuuVwuTU9PKxaLyTRNx3rM5/PKZDJKJBLKZrO2npNIJBQIBDQ+Pl7uMxQK2X4+AAAAAACAkwjCOsg0zXJYVe8xPT0tj8fTcK1QKCSfz6dUKiXDMMqfMwxDiURC4+PjSqVSHes9kUjI5/PJ5XJpdnZWFy9elNfr1czMTN3nZrNZjY+PKxaLSZLS6bQKhYLi8bjy+bwCgYACgYCjwR0AAAAAAEAj+3rdwF7STChVCo12YpqmfD5fVfi1m0gkolwup2QyafvatdeKxWLl3r1er5aWluT3+209P5vNlne3hcPhqj48Ho+CwaB8Pp+y2ax8Pp9yuZzcbndLvQIAAAAAALSDHWEdtLCwYKvO7/fX3REWCoVkGIa8Xm95d1WhUFA6nVY0Gt1Wn0qllMlkmu43lUrp0KFD5RAsmUwql8vZDsFKu9akrdBrtzAunU5L2trJVqoHAAAAAADoNnaEdUgqlZJpmopGow3nf9U7aphKpZTNZhWNRhWPx6s+V9phFYlEFAqFlM/ny5+bm5tTMBi03W8sFlMikSivu7S01PC4Zq1QKFQ+7lhvh1up70wmo2w2q1QqpXA43NS1AAAAAAAA2uWyLMvqdRN7wfT0tCSpUCi0vU4pmKrHMIzyNUvsHmkMhULlHWRut1uXLl1q+rhi7fU3NjbqrpHJZMq7wdxutzY2Npq6Xq2pqSmtrq5qcnJSKysrba0FAAAAAAC6p5ev6Tka2QGZTEaGYdTdFWVHPp+XYRjlo4T1eDyebTvGKneI7SYQCFQdo2x1Zlfltf1+f8M1KnermabZ0lFOAAAAAACAdhCEdcDCwoLcbreOHj3a1jpnz55VOBy2HUzV7v5655136taXjl2WJJPJpo9DVq5V4vV6bT2n8lpnz55t6boAAAAAAACtYkZYm/L5fHkn1vj4uDwej/x+vwKBQFMzuyTp2LFjTQVTtQFU7VHJSoZhKBKJVD231TldtTvPjhw5Yut5Xq+3fCdMdoQBAAAAAIBuY0dYm2qPQxqGoVQqpVAoJJfLtW2ofT1er7epY4qlQfUlje5EWenEiRO2r1OrcldZo+vWq7P7fQEAAAAAAOgEgrA2GIaxLRSqlclk5PP5qnZjdfL6lXYblG8YRlXo5Ha7m96tVunixYtV79sN726++eaq95eXl1vuAQAAAAAAoFkEYW3weDxKJpOKx+MKh8N1d0alUin5fL6OXr8ySKp3zDGZTFa9XwrMSndynJ6elsvl0vj4uHw+nxKJxLbdZpVqA7hWd4S1e4dNAAAAAACAZjAjrE21AZRpmkqlUlpYWNgWJuXzeQUCAS0tLXXk2pUBV707VlYOtpekiYkJ+Xy+bUcTTdMszzyLxWJKp9M77hyrDcJaVS9sAwAAAAAA6DSXZVlWr5vYqzKZjObm5rYFPvF4XNFotK21DcMoD8evt15lXYnb7VY8HtfRo0fLxxoNw1A8Ht8Wmu0Uhrlcrqr37f4KZbNZBQKB8vvBYFDpdNrWc2tNTU1pdXVVIyMjOnjwYEtrVJqfn9f8/Hzb6wAAAAAAsFctLi5qcXGx7XXW1tZULBY1OTmplZWVDnRmHzvCHBQMBuX3+zU7O1u1+2phYaHtICwej0vaOm5Yb63a3Vtut1uXLl3aNterdMyzdp7Z3Nyc/H5/U0P87erEjrBisajV1dW219nc3Gx7DQAAAAAA9rLNzc2OvAbvJYIwh7ndbuVyuaqjiKZpKpvN7jrcvpF8Pq9UKiW3293wmGVtEBYOh+uGWuFwWLlcrrwzzDRNLSwslIO30tfUiRCrE+Fap3aEjY2Ntb0GAAAAAAB72djYmCYnJ9tep7QjrBcIwrrk1KlTVcPyl5aWWg7C5ubmJEkXLlxoOKi+diD9kSNHGq4fi8WqjkgmEomqIGxiYqIjQdjExETbaxw8eLDr2ygBAAAAABhGnRorVBp31AvcNbJLvF5vVfDV6sD5SCSifD6vdDotr9fbsL42sLKzC8vj8Wxbu/JoZ6s7uVrpBQAAAAAAoFMIwrqoclB8K1KplFKplJLJ5I53c9xJ7aB8u2ZmZqrerwzuaj9nd3fY+vp6R3oDAAAAAABoBUFYF1UeY2z2WGA2m1UkElEymVQ4HLb9vNpdV3ZDq9qQqjLEqjziKdnf3VZ7TLPVo6EAAAAAAACtIAjrosogrJljgfl8XoFAQPF4vKkQTKq/s6ue2v4qg7tW16wM4dxud8P5ZgAAAAAAAJ1EENZFy8vL5bftHpM0DEOzs7OKRqOKRqNNX7N21lftriy7KkMrr9dbFZRdvHjR1hqVX39tmAYAAAAAAOA0grAuqgyh7BwLNAxDPp9P4XC46q6NjZ6TSCSqPlZ5rWw2a2ud2iOUtYHa0aNHy29XDtKvp7IuFovZeg4AAAAAAECnEIR1USaTkSRbO7tM01QgENDRo0dth2CSFAqFtoVslaGTYRi25oQ1Cu0ikUj5bTvhWmWNx+NhPhjQA5Zl6VqDh2VZvW4TAAAAAByzr9cNDItMJiPDMOR2u3XixIm6taZpyufzyePxKBaL2ZrBZRhGOfCq3b3l9/vl8XjK6ywsLDQM1yqDq51qvV6v/H5/uS6TydS9k2U6nS6/zW4woDeKksaee7FuzeY9X9Zod9qpz7Ikq1i/xjUiuVzd6WcHliUVG+SGI66etggAAACghsvin/9bks1mFQqFZJqm/H6/4vH4tgCqpHTE0TRN5XK5XetKfD6f7eOGtXa7q2Q+n6+622OhUNh1WH02my3PMAuHw0omkzvWGYZRvruk1+tVLpfbsc40TY2Pj0vaCuWWlpbsf0G7mJqa0urqqiYnJ7WystL2esAwuGZZ9oKwfkhuitekRxv8W81TV6WR3sV214rSvu/Ur7n6XWmUvdcAAABAlV6+puf/nrconU6Xjxhms1n5fL6q44Ilpc9NTEyoUCg4GoJJ2vWukl6vtyrQCgQCOx6RNE2z/HXUPqeWx+Mp7/TK5/PbZpOVzM7OStq6U2TlzjAAAAAAAIBuIghrUSgU2vaxVCql8fFxhUIhRSIR+Xw+BQIBhcNh5XK5XXdgVa7pRAhW+fmlpSW53W4ZhqFDhw4pkUgon8+Xg6xDhw7JMIxyz40Eg8HymrFYrPw1mKZZDgHz+by8Xq8uXbpUdbdJAP3nJ2+u9roFAAAAAHAMRyPbYBiG4vG4stms1tfXZZqm3G63JiYm5PV6dezYMfn9/r4Mf1KplNLptJaXl8t9l4bYRyKRhqHdThKJhM6ePVseyO92uzUzM6NIJFJ3flgrOBoJNO/M/1lROP/rhnX/4Pucvn7rZBc6qsPO0ciHnpY+/2B3+tmBnaORTwelB331awAAAIBh08vX9ARhGEgEYUBzLl+5ottefEnvXWswgF7STftG9S9f+oLG9u/vQme7+H9OS08/1Lju//5v0h3Hne9nB6dz0kOZxnX/7ah0/LDz/QAAAACDghlhAABHPfvmW7ZCMEl69+o1/fjNtxzuqI73L0vPPmav9swj0vubzvazg8sfSI89Z6/2kX+UNj9wtB0AAAAANhGEAcAQ+Plv326q/hdN1nfUy89IH75nr/YP70ovn3a2nx08k5feu2Kv9t0PpdOtj38EAAA9YlmWrjV4cMAKGDwNBrAAAPYC80ObqU2p/kpz9R31q+ebrH9B+sI3nellF8+/3lz9C69L3/y8M70AAABnFCWNPfdi3ZrNe76s0e60A6BD2BEGAEPAfV1z877cvZwP9vsNZ+s7YON9Z+sBAAAAOIMgDACGwFc/fktT9V9psr6jPjrubH0HjN/gbD0AAK2yrK07G9d7cJoPwDDjaCQADIH7bv2E/strr9u+a+T9t36iC13t4nN3S//rfBP1dznXyy7u/rR0/l/s19/1aed6AQCgUtGS9n2nfs3V70qjru70s9f95M1VHf/TqV63AaAJ7AgDgCFwYP9+/d3tn7FV+/e3f0ZjvTwaeecD0nU32qv9yE3SnQ86288OHvBKN9r8Ft10nfSg19l+AABA5/3kzdWGNeH8r23VAegfBGEAMCS+futkw5pT3s/aqnPUDQek+560V3v8pHTDmLP97ODA9dKT99irPfk1aex6R9sBAGBwWJZUvFb/0QdnNy9fuaK/ffU1W7V/8+pr2uzljYYANIUgDABQdqzXIVjJnccb13zjtHSHjTqHHD/cuOZ00F4dAADddOaVHl7cKkqP7qv/sBqPcnDas2++ZWukhCS9e/WafvzmWw53BKBTmBEGAENiRFu3+G5UMzDuuL/XHTR0PyEYAKDL7IRcD2Wk0RH+saaen//27abqf/Hbt/WI55MOdQOgkwbqNQ8AoHUul0ujDR4uF5NzAQAYVJc/kB57zl7tI/8obX7gaDute/lMrzuQ+WFzRx1NjkYCA4MdYQCA/uMakZ662rimh0ZcW3fdalQDAEC3PJOX3rOZx7z7oXQ6L33z8872tI2dkOvph6TR0Z6OQHBf19yNg9y9vNEQgKawIwwA0H9cLmlktP6jx7vXXK6tYyX1HmywAwB00/OvN1f/QpP1bXv/svTsY/Zqzzwivb/pbD91fPXjtzRV/5Um6wH0DjvCMNDW1tY0NTVVt2Z+fl7z8/Nd6ggAAADojY33na1v28vPSB++Z6/2D+9KL5+WvvBNZ3vaxX23fkL/5bXXbQ3Mv2nfqO6/9RNd6AoYDIuLi1pcXKxbs7a21qVutiMIw0ArFotaXV2tW7O52bt/SQIAAAC6ZfwGZ+vb9qvnm6x/oWdB2IH9+/V3t39G4fyvG9b+/e2f0RhHI4Gyzc3Nhq/Te4kgDANtZGREBw8erFszNjbWpW4AAACA3rn709L5f7Fff9ennetlR7/fcLa+w75+62TDIOyU97P6+q2TXeoIGAxjY2OanKz/52JtbU3FYuMdl04gCMNAO3jwoFZWVnrdBgAAANBzD3ilx1+0NzD/puukB73O91Tlo+PO1vfAMUIwYBs744mmpqZ6tmuMIAwAAAAA9oAD10tP3iM9lGlce/Jr0tj1jrdU7XN3S//rfBP1dznXiw0jkjbv+XLDGgCDhT+3AAAAALBHHD/cuOZ00F5dx935gHTdjfZqP3KTdOeDzvbTgMvl0miDh4tbRAMDhyAMAAAAAIbI/b0IwSTphgPSfU/aqz1+UrqBWb8AOo8gDAAAAADQHXceb1zzjdPSHTbqAKAFzAgDAAAAgD1ixCVd/W7jmr52x/297gDAHkYQBgAAAAB7hMsljfZ70AUAPUQQBgAAAADoDteI9NTVxjUA4BCCMAAAAABAd7hckmu0110AGGJE7QAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAr7et0A0I61tTVNTU3VrZmfn9f8/HyXOgIAAAAAYHgtLi5qcXGxbs3a2lqXutmOIAwDrVgsanV1tW7N5uZml7oBAAAAAGC4bW5uNnyd3ksEYRhoIyMjOnjwYN2asbGxLnUDAAAAAMBwGxsb0+TkZN2atbU1FYvFLnVUzWVZltWTKwNtmJqa0urqqiYnJ7WystLrdgAAAAAAgE29fE3PjjAAAPqUZUnFBv9cNeKSXK7u9AMAAAAMOoIwAAD6VNGS9n2nfs3V70qjBGEAAACALQRhAABIW9uvrAZzClwjbL8CAAAABhhBGAAA0lYI9miDvxafuiq5RrvTDwAAAICOG+l1AwAAoHVnXul1BwAAAMDgIAgDAMCul8909XJ2Qq6HMoRhAAAAgF0EYQAASPZCrqcfkv65O2HY5Q+kx56zV/vIP0qbHzjaDgAAALAnEIQBAPD+ZenZx+zVnnlEen/T2X4kPZOX3rtir/bdD6XTeWf7AQAAAPYCgjAAQFdZlqVrDR6WZXW3qZefkT58z17tH96VXj7tbD+Snn+9ufoXmqwHAAAAhhF3jQQAdFVR0thzL9at2bzny+rqvRl/9XyT9S9IX/imM738u433na0HAHSfZUnFBv/WM+KSXK7u9AMAw4ggDADQd37y5qqO/+lU9y74+w1n61swfoOz9QCA7ita0r7v1K+5+l1ptFtBmGVJVrF+jWuEZA7AnkIQBgDoqp+8udqwJpz/tUZdLn391skudCTpo+PO1rfg7k9L5//Ffv1dn3auFwDAHmUVpUcbvCR86qrk6uo+bQBwFDPCAABdc/nKFf3tq6/Zqv2bV1/T5hWb0+Lb9bm7m6y/y5k+KjzglW7cb6/2puukB73O9gMA6I4zr/S6AwDY2wjCAABd8+ybb+m9aw2OYPy7d69e04/ffMvhjv7dnQ9I191or/YjN0l3PuhsP5IOXC89eY+92pNfk8aud7QdAEAH2Am5Hsr0WRj28pledwAAHUUQBgDomp//9u2m6n/RZH3Lbjgg3fekvdrjJ6Ubxpztp3Spw41rTgft1QEAeuvyB9Jjz9mrfeQfpc0PHG1ni52Q6+mHpH8mDAOwdxCEAQC6xvywuaOOZreORkrSnccb13zjtHSHjbouup8QDAAGwjN56T2bf629+6F0Ou9sP3r/svTsY/Zqzzwivb/pbD81LMvStQYPy2pwC04A2AHD8gEAXeO+zubQq1L9/ubqHXfH/V293Ihr6+5hjWoAAP3v+debq3/hdembn3emF0nSy89IH75nr/YP70ovn5a+8E0HG6pWlDT23It1azbv+bIY4w+gWQRhAICu+erHb9GFt//Ndv1XPn6Lg93UcI1s3RmrUU0XuVzSKEEXAOwJG+87W9+0Xz3fZP0LXQ3CAMApHI0EAHTNfbd+QjeO2vur56Z9o7r/1k843FEFl0saGa3/cJFKAQBaM36Ds/VN+/2Gs/Vd8JM3V3vdAoABRBAGAOiaA/v36+9u/4yt2r+//TMa67ejkQAAtOjuTzdXf1eT9U376Liz9W2yE3KF878mDAPQNIIwAEBXff3WyYY1p7yftVUHAMCgeMAr3Wjz33duuk560OtsP/rc3U3W3+VMHzu4fOWK/vbV12zV/s2rr2mzmzfXATDwCMIAAH3nGCEYAGCPOXC99OQ99mpPfk0au97RdqQ7H5Cuu9Fe7Uduku580Nl+Kjz75lt671rRVu27V6/px2++5XBHAPYShuUDALpqRFt3eWpUAwDAXnP8sPRQpn7N6eBWneNuOCDd96T09EONa4+flG4Yc76nf/fz377dVP0vfvu2HvF80qFuAOw1vNYAAHSVy+XSaIOHi6H0AIAhdX83QrCSO483rvnGaekOG3UdZH7Y3FFHk6ORAJpAEAYAAAAA2Nkd93f9ku7rmrtZjpub6wBoAkcjMdDW1tY0NTVVt2Z+fl7z8/Nd6ggAAADY2YhLuvrdxjVd4xqRnrrauKbLvvrxW3Th7X+zXf+Vj9/iYDcAmrW4uKjFxcW6NWtra13qZjuCMAy0YrGo1dX6t0ze3NzsUjcAAADA7lwuabSfTv+7XJJrtNddbHPfrZ/Qf3ntdVsD82/aN6r7b/1EF7oCYNfm5mbD1+m9RBCGgTYyMqKDBw/WrRkb695gTwAAAADtObB/v/7u9s8onP91w9q/v/0zGuNoJNBXxsbGNDlZ/y7wa2trKhbt3R2201yWZVk9uTLQhqmpKa2urmpyclIrKyu9bgcAAABAB12zLI0992LdmlPez+r+P60/JgVAf+rla3qG5QMAAAAABs6xW+vvOAGAnXA0EgAAAADQV0Ykbd7z5YY1ANAsgjAAAAAAQF9xuVzqvzH+APYCQnQAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgrAeMAxDgUDAVm0+n1ckEtH09LRcLpdcLpemp6cVi8VkmmbHeytdJ5PJNP3cRCKhQCCg8fHxcp+hUEjZbLbjfQIAmmdZ0rVi/Ydl9bpLAAAAwDkEYR1kmmY5rKr3mJ6elsfjabhWKBSSz+dTKpWSYRjlzxmGoUQiofHxcaVSqY71H4vFqq5jVzab1fj4uGKxmCQpnU6rUCgoHo8rn88rEAgoEAg4EtwBAOwrWtK+79R/FAnCAAAAsIft63UDe0kzoVQpNNqJaZry+Xy2QqlIJKJcLqdkMmn72jvJZrNKJBItPa+0uy0cDlf14fF4FAwG5fP5lM1m5fP5lMvl5Ha72+oVAAAAAACgFewI66CFhQVbdX6/v+6OsFAoJMMw5PV6y7urCoWC0um0otHotvpUKtXSUcaS0u6zdp7n8Xh2DePS6bSkrZ1srVwHANA9Z17pdQcAAACAc9gR1iGpVEqmaSoajTac/zUzM1N3nWw2q2g0qng8XvW50g6rSCSiUCikfD5f/tzc3JyCwWBLvc/NzWliYkKSmjq+GAqFyvX1driV+s5kMspms0qlUgqHwy31CgBonZ2Q66GMNDoiHT/sfD8AAABAt7ksi7G4nTA9PS1JKhQKba/j8Xi0tLRUt84wjPI1S5aWluT3+5u6XiqVKh+vnJ2dLQdb6XS6brBWe/2NjY26Rx4zmUx5N5jb7dbGxkZTfdaamprS6uqqJicntbKy0tZaADAMLn8gTT4hvXelce1N10mrJ6Sx653vCwAAAMOnl6/pORrZAZlMRoZh1N0VZUc+n5dhGOWjhPV4PJ5tO8Yqd4jZYRiGIpGIotGovF5vU8+tvLbf728496syVDNNs62jnAAwsCxLKl6r/3Do36eeydsLwSTp3Q+l0839lQIAAAAMBI5GdsDCwoLcbreOHj3a1jpnz55VOBy2PUy+dvfXO++809T1QqGQvF7vtkDNjsobA9gN0TweT/kGAGfPnm35KCcADCyrKD3a4K/ep65KrtGOX/r515urf+F16Zuf73gbAAAAQE8RhLUpn8+Xd2KNj4/L4/HI7/crEAg0HfQcO3as7hD9WrUBVO1RyXpisZjy+XxLRzlrd54dOXLE1vO8Xm85CGNHGADs4uUz0ucf7PiyG+87Ww8AAAAMAo5Gtqn2OKRhGEqlUgqFQnK5XNuG2tfj9Xpt7waTtg+2txui5fN5JRIJJZPJpoK3kmw229J1a+uaPcoJAAPv5TONa55+SPpnG3VNGr/B2XoA2GssS7pWrP9g2jIADB52hLXBMIxtoVCtTCajTCajcDisZDLZ8etXsjsof3Z2VsFgsOU7N168eLHqfbvh3c0331z1/vLyctOzyQCgWZZlqdigZkSSy+VytpH3L0vPPmav9swj0ufulm4Y69jl7/60dP5f7Nff9emOXRoABlLRkvZ9p37N1e9Kow7/9QEA6CyCsDZ4PB4lk0mZpqlCoaBsNrstnCpJpVJaXl5WLpfr2PWXl5fLb9sNtUp3bjx16lTL1639GlvdEdbuHTYBwI6ipLHnXqxbs3nPl9X5qVw1Xn5G+vA9e7V/eFd6+bT0hW927PIPeKXHX7R/18gH+XcKAAAA7EEcjWxTOBxWNBpVMplUoVDQxsaG4vH4jruk8vm8AoFAx65ducPMzh0rS7vT0ul0U0cwa+0W9jWr9mgnAOxpv3q+yfoXOnr5A9dLT95jr/bk16Sx6zt6eQDYk8680usOAADNIgjrMLfbrWg0qo2NjR0Dp2w2q0Qi0fZ1DMMoz9iKx+MNd2WZpqlQKKRwOGz7CGW9tVpR+71YX19vqw8A6JSfvLnq/EV+v+FsvQ3HDzeuOR20VwcAe52dkOuhjMNhmGVJxWv1HwwqA4CmcDTSQcFgUH6/X7Ozs1WD4RcWFhSNRttaOx6PS9o6bmhnrdnZ2fJRzn7RiR1ha2trmpqaanud+fl5zc/Pt70OgP5jJ+QK53+tUZdLX7910rlGPjrubH2H3E8IBgC6/IH02HP2ah/5R+nu/8uhnbRWUXq0wUu2p65KLscP+AOAJGlxcVGLi4ttr7O2ttaBblpDEOYwt9utXC4nn89XDsNM01Q2m215Z1Y+n1cqlZLb7dbS0lLD+kQioXw+37H5ZG63uyMhVjvHM0uKxaJWV9vfybG5udn2GgD6z+UrV/S3r75mq/ZvXn1NX/34LRrbv9+ZZj53t/S/zjdRf1fHWxhxbQ12blQDAMPumby9mYqS9O6H0um89M3PO9sTAPSDzc3NjrwG7yWCsC45deqUfD5f+f2lpaWWg7C5uTlJ0oULFxoeiczn84rFYorH4x27Q+PExERHgrCJiYm21xgZGdHBgwfbXmdsrHN3ZgPQP5598y29d63RPSO3vHv1mn785lt6xPNJZ5q58wHpZ4/bG5j/kZukOx/seAsuF3c3AwA7nn+9ufoXXu9hEPbyGenznf87o1Lf3IEZQM+NjY1pcrL9UxRra2sqFu39//ROIwjrEq/XK7/fr2w2K6n1gfORSET5fF7pdNpWsBUKheT1ets+ilmp1Z1cteFZJ3aEHTx4UCsrK22vA2Bv+vlv326q/he/fdu5IOyGA9J9T0pPP9S49vhJ6QYCegDolY33na237eUzjWuefkgaHZXuOO5QE310B2YAPdepsUJTU1M921lGENZFgUCgHIS1IpVKKZVKKZlMKhgMNqxPJBIyDEN+v1+hUKhhfWVQtbCwoLNnz5bfP3bsWPmaMzMzVTPPTNO0FWrVDsefnp5u+BwAaIf5oc1zLaX6K83VN+3O442DsG+cdvTFDACgsfEbnK235f3L0rOP2as988jWEfwe/iPKT95c1fE/bX92LwA4jSCsiyqPMTZ7LDCbzSoSiSiZTCocDtt6zjvvvFN+brPy+XxV2OXxeMpBWOURT2lrd5ud3WmFQqHq/XbvXgkAjbiva27el9up+WDNuOP+XncAAEPv7k9L5//Ffv1dn3agiZefsXecXpL+8K708mnpC990oJE+uvEMAHQAQVgXVQZhzRwLzOfzCgQCisfjtkMwJ83MzFS9bzcIq9xx5na7G843A4B2ffXjt+jC2/9mu/4rH7/FwW4kuUa27u7VqAYA0FMPeKXHX7Q3MP+m66QHOzOKt9qvnm+y/gVHgrC+uvEMAHQA/2+7i5aXl8tvBwIBW88xDEOzs7OKRqNNz/mKx+OyLMv2ozKYSqfTVZ+Lx+Plz3m93qog7+LFi7b6qfz6a8M0AHDCfbd+QjeO2vur7qZ9o7r/1k8425DLJY2M1n8waBgAeu7A9dKT99irPfk1aex6B5r4/Yaz9Ta1cuMZAOhnBGFdVHk00M6xQMMw5PP5FA6Hq4KoRs9JJBIt92jX0aNHy29XHqGsp7IuFot1vCcAqHVg/3793e2fsVX797d/hn/BBgCUHT/cuOZ00F5dSz467my9Ta3ceAYA+hlBWBdlMhlJsrWzyzRNBQIBHT161HYIJm3dJbIbs7cikUj5bTszyCprPB4P88EAdI2dWSWnvJ9lpgkAoGn3OxWCSVvD75uqv8uRNvruxjMA0CZmhHVJJpORYRhyu906ceJE3VrTNOXz+eTxeBSLxWQYRsP1DcMo77KyM6+rXV6vV36/vxxwZTKZuneyTKfT5bfZDQagm0a0dUv3y1eu6CdvvqUXf/u2zCtX5N6/X1/++C2679ZP9MeQfAAAKt35gPSzx+0NzP/ITdKdDzrSxkDeeAYA6iAIa1E2m1UoFJJpmvL7/YrH47sGUIZhaG5uTpJ04cKFhoPyZ2dnZRiGDMPQ9PR0U30lk8mm6tuRTCbL/S0sLOwahJmmqVQqJWnrSGg/DPwHMDxcLpdGJU1cd50em/6UHpv+VK9bAgAMgBGXdPW7jWscc8MB6b4npacfalx7/KR0w5gjbfTdjWcAoE0cjWxROp0u3wUxm83K5/NVHRcsKX1uYmJChUKh4W4tn89ne+bWTroZMnk8nvJOr3w+v+tsstnZWUlbd4qs3BkGAAAA9CuXSxodqf9w/P4mdx5vXPON09IdNupa1Hc3ngGANhGEtSgUCm37WCqV0vj4uEKhkCKRiHw+nwKBgMLhsHK5XNVdGXdbc1BCsJJgMKilpSW53W7FYrHy12CaZjkEzOfz8nq9unTpUsPdcAAAAACacMf9ji7PjWcA7DUuy7KsXjcxqAzDUDweVzab1fr6ukzTlNvt1sTEhLxer44dOya/3z804U8ikdDZs2dlGEb5ezEzM6NIJFJ3flgrpqamtLq6qsnJSa2srHR0bQAAAKAvWJZkFevXuJzfmnbNsjT23It1a055P6v7/3TK0T4A7B29fE1PEIaBRBAGAAAAdIedIGzzni9r1PGzogD2il6+pmdYPgAAAABgV6U7MDeqAYBBQBAGAAAAANhV6Q7MALAXENwDAAAAAABgKLAjDAAANMWypGKDCaMjLsdnNwMAAABNIwgDAABNKVrSvu/Ur7n6XWmUIAwAAAB9hqORAAAAAAAAGAoEYQAAoOPOvNLrDgAAAIDtCMIAAEBT7IRcD2UIwwAAANB/CMIAAIBtlz+QHnvOXu0j/yhtfuBoOwAAAEBTCMIAAIBtz+Sl967Yq333Q+l03tl+AAAAgGYQhAEAANuef725+hearAcAAACcRBAGAABs23jf2XoAAADASft63QAAABgc4zc4Ww8AnWBZUtGqXzPiklyu7vQDAOgfBGEYaGtra5qamqpbMz8/r/n5+S51BAB7292fls7/i/36uz7tXC8AsJuiJe37Tv2aq9+VRgnCAKDjFhcXtbi4WLdmbW2tS91sRxCGgVYsFrW6ulq3ZnNzs0vdAEAPWJZkFevXuEY6tu3hAa/0+Iv2BubfdJ30oLcjlwWAjjvzivSgr9ddAMDes7m52fB1ei8RhGGgjYyM6ODBg3VrxsbGutQNAPSAVZQebfDX+VNXJddoRy534HrpyXukhzKNa09+TRq7viOXBYCmnHmlcc1DGWl0RDp+2Pl+AGCYjI2NaXJysm7N2tqaisUG/5jrEJdlWQ1OzwP9Z2pqSqurq5qcnNTKykqv2wGA3ileaxyEPfS09PkHO3bJa8XGR45OB6UH2GkBoAcufyBNPmF/5+rqCUJ7AOi2Xr6m566RAAAMspfPNK55+iHpn23UddD97LAA0CPP5O2FYJL07ofS6byz/QAA+gtHIwEAaJNlWWq0sXtEkqvTtyd7/7L07GP2as88In3ubumG9o+Lj7i2hkw3qgGAXnj+9ebqX3hd+ubnO3DhLs9sBAC0hiAMAIA2FSWNPfdi3ZrNe76szkzpqvDyM9KH79mr/cO70sunpS98s+3LulzcaQ1A/9p439n6XXV5ZiMAoDUcjQQAYFD96vkm619wpg8A6CPjNzhbDwAYbARhAAB0wU/edOAW0r/fcLYeAAbQ3Z9urv6uJuvbYmeuIwDAUQRhAAC0yU7IFc7/uvNh2EfHna0HgAH0gFe6cb+92puukx70dujCfXrzEgBANYIwAADacPnKFf3tq6/Zqv2bV1/T5hWbtzKz43N3N1l/V+euDQB96sD10pP32Ks9+TVp7PoOXLTZm5e8v9mBi/6RZVm61uBhWVZHrwkAg4ph+QAAtOHZN9/Se9ca3TNyy7tXr+nHb76lRzyf7MzF73xA+tnj9gbmf+Qm6c4HO3NdAOhzxw9LD2Xq15wObtV1RI9uXlLSs5u2AMAAYkcYAABt+Plv326q/hdN1td1wwHpvift1R4/Kd0w1rlrA8CAu79TIZg0EDcvcWRWJYD/f3t/H952feb7vh/ZccjT2JJhMklsQyuvrqFkSAYptCnsNV00cstDUnrWsQJJCOk8WAoMAzRnVW6mZzqda3aHy967aTOdAaxMZy0SQkil3V1KKBmstNN9Vtu0xGIBTWEWtZg2CaHQ2HIIBOLEOn8IKZKth99Pz7Ler+vSZUu69f19nfwkS7e/9/1FHWJFGAAARYieM1fqGC1laaQkrd4U7zmTy2d3Sx/dVNrjAkANa7JI57+SP6Zkqrx5idFelc0Wi27v6ijpsQGg3rAiDACAIljnGuzInIhvMRdfEh/dWPljAkAVWSxSc1Pui6WUibAqbl5S1V6VAFCHWBEGAEARbl6yWIfe+K3h+JuWLC7tBCxN0kPn88cAAMpnxTrpF8+YiC/d5iVV7VUJAHWId8YAABRhQ9cyLWw29ut00ZxmbexaVtoJWCxSU3PuS0mXPQAAZli9WZq70FhsiTcvqWqvSgCoQyTCAAAoQltLi762crmh2J0rl6u1GqWRAIDyquLmJVXvVQkAdYZEGAAARTLSeHiX42oaFAPAbLbawKYkZdi8pC56VQJADaFHGAAARWqSdPrWGzUxOanHj72mg6+/oejkpKwtLbpxyWJt6FrGBw8AmO0SPRvPTkiHH5VefCq+O+QCm3T1LfHyyQXWkh+26r0qAaDOWGKxWKzakwDM6uzs1IkTJ9TR0aHjx49XezoAAABAVUxMTupDB79vqGH+ojnNeuVTN1CmD6DqqvmZntJIAAAAAKhT9KoEAHNIhAEAAABAHaNXJQAYR48wAABQMbGYNJWnKUOTRbJYKjMfAGgUt5EEAwBJJMIAAEAFTcWkOV/MHXP+K1IziTAAMCyxaUu+GAAAr4cAAKDG7H2u2jMAgPpisVjUnOdiYaktAEhiRRgAAKggI0muLUGpuUnadE355wOgNlFGDQAoFxJhAACgIibele5+wljs1u9I6z4stc4r65QA1CjKqAEA5UJpJAAAqIg9YentSWOxZ85Ju8PlnQ8AAAAaD4kwAABQEU++bC7+gMl4AI2FfoIAgEJQGom6dvLkSXV2duaM2bZtm7Zt21ahGQEAshk/W954ALMH/QQBoH7t2LFDO3bsyBlz8uTJCs1mJhJhqGtTU1M6ceJEzpjTp09XaDYAUMdiMSk2lTvG0lRUZ2rb/PLGA5gd6CcIAPXt9OnTeT+nVxOJMNS1pqYmLV26NGdMa2trhWYDAHUsNiXdledtwUPnJUtzwYdYd6X0zCvG49deWfChANSxQvoJ3nNdeecEADCutbVVHR0dOWNOnjypqak8f4QtE0ssFsuzMTFQezo7O3XixAl1dHTo+PHj1Z4OANS/qQv5E2FbHpGuu7PgQ0y8K3X8nbEPuIvmSie2s8oDaESf+mdzSfNPfUg6+Cflmw8AoPSq+ZmeZvkAAEA6vDd/zCNbpJ8aiMuibZ704K3GYh/+DEkwoFHRTxAAUE4kwgAAqEGxWEwX8lxKtqj77IS0725jsXu3SmcL771opKn17l6aXwONjH6CAIByokcYAAA1aEpS6xMHc8acvvVGFd6xK8XhPdK5t43FvndGOrxbuuGegg7VZJHOfyVeJvnoc9JTL8dXc9jmS7dcKW2+RrLyoRZoaPQTBACUE4kwAADq1OPHTmjT5Z3FD/TCkybjDxScCLNYpGaL1L5Auvf6+AUAUm12SF84aLyf4J2O8s8JADB7UBoJAEANevxY/i2nPeEXDcXl9c54eeMBwISK9hOMxeKbheS6sLcYAMwqrAgDAKDGTExO6nPPHzUUe9/zR3XzksVqbWkp/IALbOWNBwCTNl0jbQnmjilJP8HYVP4dcx86L1lKUogOAKgBJMIAAKgx+469prcvTBmKPXP+gh479pq22q8o/IAr1km/eMZE/NrCjwUABtRUP8HDe6Xr7qzQwQAA5UYiDACAGvO9198wFf/0628UlwhbvVn69heMNcy/ZJG0mg+EAMqrYv0ED+/NH/PIFqm5WfropqIPF4vFlO/PHE2SLBZL0ccCAGRGIgwAgBoTPWegQ3Rq/KS5+Bnmt0kbHox/2Mtn08PS/NbijgcAteDshLTvbmOxe7fGV88W+fpX0R2BAQAZ0SwfAIAaY51rrt+XtZj+YAmrDax0+OzukqyIAICacHiPsZWwkvTeGenw7vLO530l2QQFAJAVK8IAAKgxNy9ZrENv/NZw/E1LFhd/UEtTvCH02Qnp8KPSi0/Fd4dcYJOuviVePrnAWvxxChSLSVN5Nm5rssTLqQDAkBeeNBl/QLrhnqIOaXRH4GaLRbd3dRR1LABAZiTCAACoMRu6lulLR1821DB/0ZxmbexaVvxBLZb4rmgL26U198YvNWQqJs35Yu6Y81+J9xQCAEPeGS9v/DQV3xEYAJARpZEAANSYtpYWfW3lckOxO1cu54PS+/Y+V+0ZAKgrC2zljZ+mkB2BAQClRyIMAIAaZKQkZpfj6oYpnTGS5NoSJBkGwIQV60zGry3qcIXsCAwAKD1KIwEAqEFNiu8cNjE5qcePvaaDr7+h6OSkrC0tunHJYm3oWlaaJvl1YOJd6e4njMVu/Y607sNS67yyTgnAbLB6s/TtLxhrmH/JImn1nUUdruI7AgMAMiIRBgBADbJYLGqW1D53ru7u/oDu7v5AtadUNXvC0tsGPw+eOSftDkv3XFfeOQGYBea3SRselB7Zkj9208PS/NaiDleVHYEBADNQGgkAAGraky+biz9gMh5AA1u9KX/MZ3dLHzUQl8fNJnf4LcmOwACAGUiEAUARIpGILBZLyS89PT2m5uD1etXf358zLhqNqru7O++xbTabnE6n/H7/jDHC4bCcTmfF547GNn62vPEAkNNHN5ZkmA1dy7Sw2djHr5LtCAwAmIHSSAAoMYfDIbvdnrwejUYVCoWS161Wq1wuV9r9kUhEkUgkedvY2Fje40QiEfX39ysYDEqSfD5fznir1arR0VFFo1H19/dnTHTZ7XaNjo7m/NlGRkYkSU6nU+FwODn2rl271Nvbm3fehcwdjc02v7zxABqYpUl66Hz+mBJI7AjsCb+YN5YdgQGgfEiEAUARotFo8nufz6ft27fLarWmxUQiEXV3dyev2+12BQKBGWOFw2H19fUlk0vZTE8imWW1WjU0NKTu7u4ZK7FSE3j5tLe3S4onxw4dOjTj586k2LmjMa27UnrmFePxa68s31wAmBeLSVOx3DFNFsliqcx80lgskqW5Yoe7vasjbyKskXYEBoBqIBEGACXgcrk0MDBQ1BgOh0OBQEDd3d1pCbZUfr9fo6Oj8nq9uu222+R2uws+ns/n07PPPpuWlAqFQopEInkTYqFQSKFQSFar1XASrJRzR2PZ7JC+cNBYw/xFc6U7HeWfEwDjpmLSnC/mjjn/Fam5GomwCmNHYACoPhJhAFCERAnj0NBQScaz2+3y+XxZV0x5PJ4Z8akllWYlEm+pY/T392dcsZYQjUaTSayRkRFDSTCp9HNH42ibJz14q7TFwELChz8jtc4r+5QAoCDsCAwA1UezfAAokt1uN1VSmE9PT4+hHmGSDCehchkeHk67HgwG03qaTed2uxWNRhUIBIr6uUsxd9SQWEyaupD7EstTG5XDpmvyx+zuNRYHoPbsfa7aMwAANApWhAFAEdrb2+X1eks6psvl0vr160s6Zi52u10DAwNp/cLcbrdeffXVGckqr9erUCgkn89nuDE+GkRsSrorz9uKh86XtRfPRpJgQE0ykuTaEpSam0hmAwDKj0QYABTB4XDI4Sh9Q6JSlVoa5fP5tH///mSj/mg0qr6+vrQSyWAwKL/fX5J+aGhQh/dK191Z0EObLPEeQvliANSWiXelu58wFrv1O9K6D1PeDAAoLxJhqGsnT55UZ2dnzpht27Zp27ZtFZoRUL8S/cISgsGggsGgent7FQ6H5Xa7ZbVac/YPQwM7vDd/zCNbpOZm6aObTA9vsTRGI21gttkTNrbRhSSdOSftDkv3XFfeOQEAymvHjh3asWNHzpiTJ09WaDYzkQhDXZuamtKJEydyxpw+fbpCs5m9Jt6NvzE98LI0flayzZfWXRnfya2Nv9rOGna7XUNDQ2mlnn19fbLb7VqzZo0kGd4hEg3m7IS0725jsXu3SivWSfNbyzsnADXhyZfNxR942WQiLBaLl2afnZB+skf6+VPSO+PSApt09Vpp9R3x7y1k0gGgUk6fPp33c3o1kQhDXWtqatLSpUtzxrS28mGrGI8+J931nfhfaVM984q0/V+khz4j3UE/j1nD4/EoEAgkm+VHo1E5nU5J8XLNcpSBYhY4vEc697ax2PfOSId3SzfcU945AagJ42fLG5+zP+FLw9K37pO2PFJwWTYAwLzW1lZ1dHTkjDl58qSmpqYqNKN0JMJQ15YuXarjx49Xexqz1qPPSZu/lf3+M+fi91tEc9vZZGhoKK1EUoo38Pd4PFWaEWreC0+ajD9AIgxoELb55Y0vd1k2AMA8I+2JOjs7q7ZqrKkqRwVQ8ybeja8EM2Lrd6TT75ZzNqikRIlkqlAopEgkUqUZoVixWEwX8lxisVjhB3hnvLzxAOrWuivNxa81E2+2LPss7TIAAKwIA5DFnvDMcshsaG47+6xatWrGbW63WyMjI1WYDYo1Jan1iYM5Y07feqOaCz3AAlt54wsQi0lTeXJ7TRbaBgHlttkhfeGgsYb5i+ZKd5qpwKcsGwBQAFaEAciokOa2mB2i0WiyOX6qcDis/v7+KswIlfD4sSKWpq9YZzJ+beHHMmgqJs35Yu5LvkQZgOK1zZMevNVY7MOfkVrNbMJTSFk2AKDhkQgDkFHZm9uiZq1Zs0bRaFQDAwMzSiQHBwcVDoerNDMUykiSyxN+sfBk2OrN0tyFxmIvWSStpmk10EiM9BHd3VtAv1HKsgEABaA0EkBGZW9ui5rk9XoVDofV29srn88nSWm7SErxEsnR0dFqTREmTUxO6nPPHzUUe9/zR3XzksVqbWkxd5D5bdKGB+MNqfPZ9LA0vzZ28937nHSns9qzAGa/Jot0/ivx/qOPPic99XL8D2i2+dItV0qbr5GshbyPqGBZdiwWU769zZokWai3BoCaRyIMQEbrrpSeecV4vKnmtqhJfr9ffr9fdrtdgUAgeXsgEJDNdvHDQyQSkdfrnbFaDLVp37HX9PYFY1tTnzl/QY8de01b7VeYP9DHNscbbj12V+aePXMXxpNgFdq1be9z+WO2BKXmJna9BcrNYpGaLVL7Aune6+OXklixTvrFMybiCy/LLnuvRQBAxVAaCSCjzY5401ojTDe3Rc0Jh8Pyer2yWq0aHh5Ou89qtc5Ievn9/rRVYqhd33v9DVPxT5uMT7JY4smwwRPS7d+QrvqU9IGPxL/e/g1p8DVp9R2FjW3SxLvS3U8Yi2XXW6CO1VhZdlG9FgEAFUMiDEBGbfOkhz5jLNZ0c1vUlNTm+IFAQHa7fUaMx+ORy+VKu83tdisajVZiiihC9JyBrdpS4yfNxc8wvy2+K9t9B6XtP41/veGeipZD7gkb26FOurjrLQDjYjHpwlTuS6wSm1EkyrKNKLIsu+y9FgEAFUMiDEBWd1wjPbo++8qwRXPj91NWVN9Sm+NPT3alSi2XlOIJtL6+vnJPD0WyzjXX78tqtj9YDWLXW6C8ampX1tUGyq0/u7uosmyzvRZPF/sHBQBAWZEIA5DTpmuk49ulb6yTPvUh6SOd8a/fWCed2E4SrN4lmuO7XK5kc/xsrFarBgYG0m4LBoMKBoPlnCKKdPOSxabibzIZX4vY9RaoPiN9+krC0iQ9dF7acUpav1P68CelK66Nf12/U9oxVnRZdiG9FgEAtYtm+QDyapsn3XNd/ALzppcP1ko54eDgoPx+v6SZq72y8fl8GhoaUiQSSd7W19cnl8slq9VajmmiSBu6lulLR1829CFu0ZxmbexaVoFZlRe73gLlVVObUVgskqVZWtgurbk3fimxQnotFrTpCACgIlgRBgBlduTIkbTrY2NjJRs7NSFlJsEWDAbV398vKZ7cMpPESjwu9biJHmNmFDp3mNPW0qKvrVxuKHbnyuVqnQWlketM7mLLrreAcY24GUXFey0CAMqKRBgAlFEkEplRThiNRmckkwoRDAbTEkhGd3H0+/1yu93J6+GwuU7ho6OjM24Lh8NyOp1pya1cCp07CrOxq0O7HFdrYXPmX/sLm5v0T46rdXtXR4VnVh6bHdJCg/k8dr0FzGnEzSgasdciAMxmJMKqIBKJqKenx1BsOByW1+tVd3e3LBaLLBaLuru71d/fX/AKinKMKcXLrHp6emSz2ZJjut1uPuCiIbndbtlsNnV3d2dMDg0ODiafJ2Z6bIVCIXm9XjmdzrRklhR/bbHZbOrp6ZHX651x3MHBQdlsNnm93hljJuaS7fmaSHTZbDYNDg5mjenu7s76MxczdxTHYrFo4+WdeuXGT+irK66Sa/FlWmVrk2vxZfrqiqv0yxs/oQ2Xd1Z7miXTNk968FZjsex6C5jTiJtRNGKvRQCYzSyxWEU2N24I0WhUNpvNUKzH49HQ0FDOsfr6+vJ+QB4aGpLH4zE8v1KPKcU/3LrdbkWjUblcLvX398tutyscDqu/v1+RSEQul0uBQKBkPYQ6Ozt14sQJdXR06Pjx4yUZEwBQJbGYFMvTw8zSFO8FZNCFqfjOdbns7pU2Ow0PCUDSR/5RetbEW6+PdEo//fPyzacSJiYn9aGD3zfca/GVT90wK8rMAaCcqvmZnmb5JZRoOm1ErrKoaDRquMTI6/VqZGQkZ1KtXGNK8SRYYnXb9OSe3W5Xb2+vnE6nQqGQnE6nRkZGaKgNAEgXm5LuyvOW5KHz8YbYBjVZpPNfifczevQ56amX47tD2uZLt1wpbb5GstIkHzCtETejSPRa9IRfzBs7W3otAsBsRmlkCT3wwAOG4lwul+x2e9b73W63IpGIHA6HAoGARkdHNTo6qkAgIJ/PNyPe7/fnXeVVjjGj0WiyvMlut2dNnCV2o4tEIjPKoQAAMOTwXlPhFkt8x7r2BdK910v/8qfSz+6Jf733esm2wNQCMwDva9TNKIz0UNw1i3otAsBsRmlkifj9fnm9Xvl8vrz9v1atWpV1VVTqONMbbCckEkqpDa6tVqvGx8crNqYk9fT0JPsJ5SundLvdycSa2dLLTCiNBIBZ5Me7pUe25I/7k0elj24q/3wAZDXxrtTxd8Ya5i+aK53YbrAPXxlKpEspFotpSvEyycePvaaDr7+h6OSkrC0tunHJYm3oWiZrS4ssZNgBwJBqfqYnEVYi3d3dkjLvpmZ2HLvdruHh4ZxxkUgkecyE4eFhuVyuiow5PXZ8fDxnyWMwGEyuBsuXYDOCRBgAzBJnJyRfh3Tu7fyxlyySBk5I81vLPy8AWe0ekbYY2Ofl0fXSpmsMDjp1wViJdJPxEmkAQO2q5md6SiNLIBgMKhKJ5Oz7ZUQ4HFYkEkmWEuZit9tnrO5KXc1VzjElpcW5XK68fb96e3uT30ejUVO75AEAZrHDe4wlwSTpvTPS4d3lnQ+AvIwkt3b3mkiCGWWyRBoAgExIhJXAAw88IKvVqvXr1xc1zv79++XxeAw3k5++UuvUqVMVGVNK3xjA4XAYGju1L9r+/fsNPQYAMMu98KTJ+APlmQcAwxKbUZz6K2nnWumT/0G6tiP+dedaaeyvpDuMvT28yEiS65Et0k9JhgEAisOukUUKh8PJVVM2m012u10ul0s9PT1pq6CMuO2223I20Z9uegJqelljucacvkrs2muvNTx2YtdKVoQBQH1J9MfJpUky3x/nHZOl8mbjAZScxSI1Wy5uRnHv9UUOeHZC2ne3sdi9W6UV6yiRBgAUjERYkaaXQ0YiEfn9/uSKqd7eXm3fvt3QqimjK6sSotFo2vVMCa9yjJlokJ8rJpPpceFw2PT8AADVMSWp9YmDOWNO33qjTHfvWWArb7wBsZg0FYs3Ad/znPTUy9L4Wck2P77j3R3XxL+nBzZQJoWUSN9wT3nnBACYtSiNLEIkEpmRFJouGAzK6XTK6/WW5fipMjW1L8eYzz77bNp1o2WXl156adr1I0eOmJscAKCmPX7shPkHrVhnMn6t+WPkMRWT5nxRuvRvpfsPSMO/lI6ciH+970D89j2ZW2YCKAVKpAEAFUQirAh2u11DQ0MaGBiQx+PJuTLK7/fL6XSW9PipiSSPx1OxMacnywpdEVbsDpsAgMoxkuTyhF80nwxbvVmau9BY7CWLpNV3mhvfgL3P5Y/ZEjQWB9SrWEy6MJX7Ura95imRBgBUEKWRRZqeLIpGo/L7/XrggQdmlBmGw2H19PRoeHi4JMceGhpKfl/sjpVmxpyeCCvU9H8fAEBtmpic1OeeP2oo9r7nj+rmJYvV2tJibPD5bdKGB+NNsPPZ9HDJ+wJNvCvd/YSx2K3fkdZ9WGqdV9IpADUhsTIyl/NfifcGK7kaKJEGADQOEmElZrVa5fP55PP5FAwG1dfXl5bwCYVCGhwclM/nK+o4kUgk2bR+YGDAVEP8YscsNIE1vYRybGysoHFSnTx5Up2dnUWPs23bNm3btq3ocQBgNtp37DW9fSFfq/y4M+cv6LFjr2mr/QrjB1i9KX8i7LO7pY9uMj6mQXvC0tuTxmLPnJN2h6V7riv5NIC6sPc56c7SFjjErVgn/eIZE/GlL5EGABizY8cO7dixo+hxTp48WYLZFIZEWBn19vbK5XJpzZo1aTstPvDAA0UnwgYGBiTFyw2LHaucY+ZSihVhU1NTOnGigJ4005w+fbroMQBgtvre62+Yin/69TfMJcIsTdJD5+M7xx1+VHrxqXjp0wKbdPUt8fLJBVZzkzboyZfNxR94mUQYZiejJcLNTdKma0p88NWbpW9/wVjD/AJKpBO73k5MTmrfr0/o4G/eVPTcpKxzW3TTksW6vWuZbC0t5ne9BYAGdPr06ZJ8Bq8mEmFlZrVaNTIyIqfTmUyGRaNRhUKhgpvbh8Nh+f1+Wa3WkpVZmhnTarWWJIlltMl+Lk1NTVq6dGnR47S2sgU3AGQTPWdwyVQiftJcvCwWydIsLWyX1twbv1TI+NnyxgP1oOolwmUukc616+333zylz7/4kvyOq7Xp8uKrDABgtmttbVVHR0fR45w8eVJTU8YqDkqNRFiF7Nq1K61Z/vDwcMGJsL6+PknSoUOHSlISaXbM9vb2kiTC2tvbix5j6dKlOn78eNHjAACys8412O8rEW+0P1gNsM0vbzxQD2qiRLiMJdJGN/totlh0e1fxH+4AYDYrVVuhzs7Oqq0sY9fICnE4HGmJr0Ibznu9XoXDYQUCATkcjpLMzeyYha7kmp48K8WKMABA+d28ZLGp+JtMxlfTuivNxa81GQ/Ug0JKhEsuUSK945S0fqf04U9KV1wb/7p+p7RjTFp9h+lhzW72cdrsilYAQN0hEVZBPT09RT3e7/fL7/draGhIvb29JZlTIWOuWrUq7brR1WHTm+N3d3cbehxQyyKRiCwWS8kvuV4votGoBgcH5XQ6ZbPZZLFY1N3dLbfbndaPMNPjuru78x7bZrPJ6XTK7/fPGCMcDsvpdBY890z/fl6vt2Q736I8NnQt08JmY28ZFs1p1sauZWWeUelsdkgLDS5gWzRXurM0f4MCakpNlAhbLFJTSon0/f8i/eXP4l/X3CsttMVjTCpksw8AwOxGaWQFpZYcmi0LDIVC8nq9GhoaksfjKcl8Ch0ztcRTin+QNbKSbHR0NO16oaWhQK1zOBxpz/dEX8AEq9Wadv5Ho1FFIpG0laLZdlXNtButpOTjg8GgfD5fcvOLVFarVaOjo4pGo+rv78+Y6LLb7TOeq9N/tpGREUlK631otVq1a9cuwwn1SCSi/v5+BYNBSarIBh0oXFtLi762crk84Rfzxu5cuVytdVQa2TZPevDWeBPwfB7+TIn7IgE1YjaXCJd9sw8AQN0hEVZBqR+MzZQFhsNh9fT0aGBgoGRJsGLGnL4izGgiLPWDu9VqLVl/M6CaUs9rn8+n7du3z3h+RyKRtBWQdrtdgUBgxljhcFh9fX1ZV3UFg0G53e7k9WwbVwwODiocDmfd+MJqtWpoaEjd3d0zVmKZeV4mEvoOh0OHDh0y9Lo2PQGG+rGxq0MWSfc/fzTj6oqFzU3auXJ55frrxGJSbCq+0+RP9kg/T91pcm28hGqBsRUkm67Jnwjb3VuGnfKAGrHuSumZV4zH11OJcNk3+wAA1B1KIyvoyJEjye+Nlg5FIhGtWbNGPp+vZCsmih3T4XCkfeB99tlnDT0u9eefnkwD6p3L5dLAwEBRve8cDkcyQZZpxZfb7U4m0WKxmMbHxxWLxTQyMjJjhWUoFMq44iuVz+ebsYIrFAoZ6mEYCoUUCoVktVoNJ8ESZdherzdjIhC1zWKxaOPlnXrlxk/oqyuukmvxZVpla5Nr8WX66oqr9MsbP6ENldxxLTYl3TVH2napFLhfemlY+tWR+Ndv3Re//Sd7DA3VZJHOf0U69VfSzrXSJ/+DdG1H/OvOtdLYX0l3UBKJWWw2lwjP5s0+AACFIRFWQanlRkbKAiORiJxOpzweT8Yyp2yPGRwcLPuY69evT36fqydRqtQ4+gFhtkiUMA4NDZVkPLvdnjFB7fV6ZbVaNTIyMiN55XA4NDw8PGMORp5ngUBgxiqwfI+LRqPJlWkjIyOGk3+J1x2Xy6Xe3l5WhdaptpYWbbVfoSeuu1Y//Ph1euK6a7XVfkXlyyEP780f88gW6af54ywWqblJal8g3Xu99C9/Kv3snvjXe6+XbAsKak0E1I1EibARhkqEYzFp6kLuSyxW7LQNmc2bfQAACkMirILM9MKJRqPq6enR+vXrDSesJMntdmdNspVyTK/Xm/w+tfdRNqkxdrud/mCYVex2e0mTOj09PWk9wiKRiEKhUN6VVx6PZ0bvMSOJ6ukllMFgMOfz2u12KxqNZkyimcHOsSjY2Qlp393GYvdulc6eLu98gFnASOmv4RLhxIrNXJeYsQb2xZrNm30AAApDj7AKCQaDikQislqt2r59e87YaDQqp9Mpu92u/v5+Q2VKib47kjL26yr1mA6HQy6XK/lhORgM5mySnVoGxWowzCbt7e1pieFScLlcaasuE88vI734BgYG0ja0MNLDz263a2BgIO256Xa79eqrr85IVnm9XoVCoYxllUDFHN4jnXvbWOx7Z6TDu6Ub7invnIA6lygRnnhXevQ56amX47tD2uZLt1wpbb5GspaySf7hvdJ1d5ZwwMxm82YfAIDCkAgrUCgUSq6KSPQGyvZhMxKJqK+vT5IM9dJZs2ZNcge41AbbRmQrzyrHmIlm25L0wAMPZP1QHI1Gk72KXC5XyRr+A7XA4XAYSlCZlfq8O3XqlOFVnIWu0PL5fNq/f39yBVk0GlVfX19aEjsYDMrv9ydf84CqeeFJk/EHSpIIi8WkqTzVXE0WyihRnywWqdlysUT43uuLGMxo6XJzs/TRTUUcyJjbuzryJsJ2Oa6u3GYfAICqIhFWoEAgkGxmHQqFkn23pieNEgmz9vZ2jYyM5P2Q6nQ6DffcyiRTkqkcY0oXd75zu90Kh8MaHBzMWPa5Zs0aSfEyKBpkA+aZSTpNT7SbSdIFAoG0RHkwGEyuRguHw3K73TyPUZBYLKYpSROTk9r36xM6+Js3FT03KevcFt20ZLFu71omW0uLLEYzSO+Mm5uA2fgspmLSnC/mjjn/lXgyAWhYZkuXV6yT5reWdUpNkk7feqMmJif1+LHXdPD1NxSdnJS1pUU3LlmsDV3LaJIPAA2EHmEFSjSKTuX3+2Wz2eR2u+X1euV0OtXT0yOPx2MoCZZIKBUqU8KqHGOm6u3t1fDwsKxWq/r7+5PHi0ajyQRhOByWw+HIWGYFoLRSd5u0Wq2mVojZ7fYZyfy+vj6Fw+FkQtvoDpFAqilJrU8cVNf3Dsn385f1/TdPKTxxWt9/85Q+/+JL6vreIT127ITxARfYzE3AbHwR9j5XsUMBhsRi0oWp3JeS9q0vpHS5zCwWi5otFrXPnau7uz+g717/Ef0///l6fff6j+ju7g/INneu8UQ8AKDusSKsQC6XS6OjoxoYGFAoFNLY2FjyA2gi8bN9+3a5XC7DHxrLscqiEis3XC6XxsfHNTg4qP3792vNmjWKRqOyWq1atWqVAoEAvYTq3dkJ6Se7pRcPxFdWLLDF/4K7erM0v63as0OKI0eOJL8vpAzZ4/EoEAgk+/8l+gtK8XLNcpSBYvZ73ECSyxN+Uc0Wi7HSpBXrpF88Y3wCK9Yaj83BSJJrSzC+A6WhhuJABVR8JWOVSpcBADCKRFgRMq2eaGQ+n8/QjpioM4cflR67K/5X21S/eEb6v7dLGx+SVt9RnblhhtTkd6FN/FP7/yXQ3w+Fmpic1OeeP2oo9r7nj+rmJYvzN6tevVn69heMrTq5ZJG0uviG3BPvSnc/YSx263ekdR+WWucVfVigIvY+J93pzB9nSBlKlxPl1bk0SazqAgAYQiIMQHaHH5X+2+bs9793Jn6/xVKRZrfIL7ExxcDAQMGN8xNJ/tREWigUUiQSKXhMNK59x17T2xfyfYSNO3P+gh479pq22q/IHTi/TdrwYLzZdj6bHi5J/6E9YentSWOxZ85Ju8PSPdcVfVigaBVfyViG0uVEeXUup2+9Uc3mjgwAaFD0CAOQ2dmJ+EowI/Zulc6eLu98kNfg4KCkeIP8Yldnrlq1asZtmXojAvl87/U3TMU/bTR+tYHk+2d3lyxJ/+TL5uIPmIwHysHsSsbT75bgoCvWmYwvTemykRJsAAAkEmEAsjm8Z2Y5ZDYVanaL7KLRqPr7+2W1WnXo0KGix0o0x08VDofV399f1NhoPNFzBpdRJeInDcZbmqSHzks7Tknrd0of/qR0xbXxr+t3SjvGLpZtx2LS1AXp7TEptFP6+ielv7s2/vXQ38dvz9MtfPysqR/DdDxQDoWsZCza6s3S3IXGYg2WLhvtM0gyDABgBKWRADKj2W1dSazWKsWujokNLwYGBmS1WtNKJAcHB3XbbbfRNB+GWefm6fc1PT5ff7AEi0WyNEsL26U198Yv2cSmpLuyvOV5aVj61n3Slkek67J/ILfNNzatQuOBcihkJWPRJb0lLl0uS59BAEBDY0UYgMzK0OwW5TE4OKhQKKTh4eGiE1Rer1fhcFi9vb3y+XzyeDxyuVxpMZRIwoyblyw2FX+TyXhDDu/NH/PIFumn2ePWXWnukGtNxgPlULWVjCUsXS6kzyAAALmQCAOQWRma3aL0gsGg+vv7FQgEZiSszPL7/fL7/bLb7Wm7T6Z+L0mRSKTgHSnReDZ0LdPCZmNvNxbNadbGrmWlncDZCWnf3cZic/Q73OyQFhpcZLJornQniyZRA6q2ktFM6XIeZeszCABoWCTCAGRWpWa3MC4cDsvtdisQCKi3t7fosbxer6xWq4aHh9Pus1qtGhoaSrvN7/crFAoVdUw0hraWFn1t5XJDsTtXLi99SdPhPdK5t43F5uh32DZPevBWY8M8/BmpdZ6xWKCcSraS0WyfPYtFakopXb7/X6S//Fn865p7pYW2eIwBZeszCABoWCTCAGS2enO8ia0RBpvdonQikYjWrFmjoaGhopNgqc3xA4GA7Hb7jJhsJZLRaLSoY6Mx3N7VkTdml+NqQ3GmFdLvMIvNDml3b/aVYQtb4vffvlK6MJX9kqcvP1AyJVvJmOizt+1SKXB/vLfer45c7LG37VLpJ3tKNe00ZeszCABoWDTLB5DZ/DZp40PSf9ucP9ZAs1uUTiQSkdPp1MDAgDwej6H49vb2rE30U5vj5yqvDAQCstkulsBGo1H19fXNKJ0EpmuSdPrWGzUxOanHj72mg6+/oejkpKwtLbpxyWJt6FpWvg+vJex3aLFIm53Sp5fHd+M78HK8p5JtfnwlzZ0OaeFcac4Xcx/i/FekZmOLYYCiJFYybgnmj825ktFon73mZkN9v8y4ecliHXrjt4bjy9JnEAAwq7AiDEB2q++Q/uTR7CvDLlkUv7/Eb3qRXTQaldPp1Pbt2w0lwaTcze0TzfFdLpd8Pl/OcaxWqwYGBtJuCwaDCgYNfMJCQ7NYLGq2WNQ+d67u7v6Avnv9R/T//Ofr9d3rP6K7uz8g29y5shgskzKtDP0O2+bFd9Y7+CfST/88/vWe64yXQ+59ztyUgGJsuiZ/zO7eHHEl6rNXqKr3GQQAzDokwgDk9tFN0sBx6fZvSFd9SvrAR+Jfb/+GNHCCJJgB08sHCy0nTE2C5UtaJeJ7enpkt9szrgYbHByU3++XNLMhfjY+n29G6WRfXx8lkqhdFe53aCTJtSVIMgylEYvlLsO9MCVZFF+FeOqvpJ1rpU/+B+najvjXnWulsb+S7si1uUOJ+uwVqup9BgEAsw6lkQDym98m3XBP/ALTjhw5knZ9bGzM9BiJJFgkElF/f78eeOCBvPEJ05vfSxd3m5Tiya1sZZOZ9Pf3p+0amegxNjIyYngMKV6ymWm+QEIsFtOUpInJSe379Qkd/M2bip6blHVui25asli3dy2TraUl92qy1Zulb3/B2Af5IvsdTrwr3f2Esdit35HWfZim+ijOVMxgKW6T1L5Auvf6+MWUQvrslfj9wsauDlkk3f/8Ub19YWrG/Qubm7Rz5fLy9BkEAMw6JMIAoIwikciMcsJoNKr+/v4Zt+eyZs2aghJHdrt9Rt8vv9+flsgKh8OG5yFJo6OjM24Lh8NyOp1Zm+1PFwwG034GdqBEJlOSWp84mPG+7795Sp9/8SX5HVdr0+Wd2QeZ3yZteDDevyifIvsd7glLbxvcsO7MOWl3OF5SCZTT3uekO51FDFDCPnuFslgs2nh5p25Z+nvad+w1PZ3SZ/CmJYu1sWsZK8EAAIZRGom6dvLkSXV2dua87Nixo9rTRANyu92y2Wzq7u5OS2AlDA4OymKxqLu7O2+PrZ6eHtPJqoTUhNfg4KBsNlvabVI8CZWYS7aEVCLRZbPZNDg4mDWmu7s7688cCoXk9XrldDpn9C2LRCKy2Wzq6emR1+vN+Hg0nsePncgb4wm/mD/uY5ulz+6W5i7MfP/chdIf7ym61PvJl83FHzAZD0xXkVLcMvTZK1RbS4u22q/QE9ddqx9+/Do9cd212mq/giQYANSYHTt25P2cfvLkyarNzxKLsYk36k9nZ6dOnMj/AUmS/vqv/1pf/vKXyzshAEBJTUxO6kMHv5+xDGq6RXOa9cqnbsj/YfjsRLzf0QsH4qtWFtjiPcFW31mSnW8/8o/Ss8dNxHfGm+0DhZh4V+r4O2OrEBfNlU5sL7AU9wf/ID3+F8bjb/8GrRQAoMF9+ctf1t/8zd8Yiu3o6NDx4ybeQJUApZGoa01NTVq6dGnOmNbW4j/cAAAqa9+x1wwlwSTpzPkLeuzYa9pqvyJ3YJn7HdrmlzceSFWxUtwS99krSe8/AEBNa21tVUdH7r6NJ0+e1NSUsfd6pUYiDHVt6dKlFc8eAwDK73uvv2Eq/unX38ifCCuzdVdKz7xiPH7tleWbC2a/QkpxC0qElbjPXkl6/wEAatq2bdu0bdu2nDFmqrxKjR5hAACg5kTPGVzqkoifNBefVSwmTV2Q3h6TQjulr39S+rtr418P/X389ixdJTY7pIUGWxUtmivd6SjNlNGYxs+WNz7NagP98z6721CfvZL1/gMAoECsCAMAADXHOtdc82trqZplx6aku7K8PXppWPrWfdKWR6TrZpZ/tc2THrw13pw8n4c/U2C/JuB9FS3FtTRJD51/v8/eo9KLT13ss3f1LfHyyQXWvMNMTE7qc88fNXTI+54/qpuXLKYRPgCg5EiEAQCAmnPzksU69MZvDcfftGRxaQ58eG/+mEe2SM3NGVe/bHZIFkl3PZG5f9OCOdJDn5Fu+n1p54+kp16Or9SxzY+XSt5xTfx72iMhn4qW4loskqVZWtgurbk3filAWXr/AQBgErtGoi4l6omrscMEAKD8yrJrZD5nJyRfh/Gm4AMnsvZDmng33sz8wLRE16Y/lNr/NvfQj/RKdzrNTx+NpWK7RpbQp3/8rKkEt2vxZXriumvLOCMAQLVU8zM9K8IAAEDNaWtp0ddWLpcn/GLe2J0rl5emfOrwHmNJMEl674x0eHfWHSjb5sUbk09vTr57JP/QW4JSc5O06RpjU0FjKroUNxaLlwKfnZB+skf6eWq541pp9R3x70u4PLFqvf8AAEhBIgwAANSkjV0dski6//mjGVeGLWxu0s6Vy3V7V+7tuQ174UmT8QeyJsIymXhXuvsJY7FbvyOt+3D1V/CgtuUrxV3YEk+CZUyqFtEPr1BV6/0HAEAKEmEAAKAmWSwWbby8U7cs/T3tO/aann79DUUnJ2VtadFNSxZrY9ey0jbSfme8rPF7wsbK2CTpzDlpd3jmijIglcUibXZKn16euRT3TkeOZGqR/fAKUbXefwAApCARBgAAalpbS4u22q/I2zQ7FotpSvH+Yvt+fUIHf/OmoucmZZ0bT5zd3rVMtpYWWbKVei2wmZuYyfgnXzY3/IGXSYQ1ulhMmoq933PuueybK2Qrxc3q7IS0725jsXu3SivWZe2HZ8aGrmX60tGXDff+29i1rOhjAgAwHYkwAAAwK0xJan3iYMb7vv/mKX3+xZfkd1ytTZd3Zh5gxTrpF88YP+CKtabmN37WVLjpeMw+UzFpzhcz3zf8S+m+AwVurlDCfnhmVKX3HwAA0zRVewIAAACl8PixE3ljPOEXs8et3izNXWjsYJcsklab651km28q3HQ8Zp+9z+WP2RI0FpemkH54JbKxq0O7HFdrYXPmjyELm5v0T46rS9f7DwCAaUiEAQCAujcxOanPPX/UUOx9zx/V6Uy70c1vkzY8aOyAmx42XSq27kpT4VprMh6zi9nNFU6/a2LwMvfDyyXR+++VGz+hr664Sq7Fl2mVrU2uxZfpqyuu0i9v/IQ2ZFu1CQBACVAaCQAA6t6+Y68Z6jskSWfOX9Bjx17L3HPsY5vjHcgfuytz6djchdLGh6Rrb5feHpN+skf6+VPxRMECm3T1Wmn1HfHvp/Ui2+yQvnDQWMP8libp20elR8Iz+0Fla3GG2aWsmyuUqB9eMX35jPb+AwCg1EiEAQCAuve9198wFf/0629k/gBuscSTYX/46XgfpRcOXExyrVgbL4e8ZKF0V5a3UC8NS9+6T9ryiHRdeulk2zzpwVvjpWz5TE5JP4hcvF5UPyjUpbJurlCifnhF9+UDAKAKSIQBAIC6Fz1ncOlMIj5TaWSq+W3x5uCZGoT/eHf+AzyyRWpulj66Ke3mTdcYS4RlsyUoNTfFx8HsVtbNFVZvlr79BWMN83P0wzPal6/ZYqHnFwCgZpAIAwAAdc8619zuctZCd6M7OyHtu9tY7N6t8ZU3Kb3EmizS+a/E+z89+pz01MvxBMaiudL/+HdpMpZ/2K3fkdZ9WGqdV9BPgBoSi8V3hszEavL/N7m5Qiwmxabi52qu0t0ND8YTtvlk6Ydnti/fzUsWswskAKAm0CwfAIoQiURksVhKfunp6cl5XL/fL7fbre7ublksFnV3d8vtdiscDmd9TDQaTcbnuthsNjmdTvn9/hljhMNhOZ3OouY+/d/P6/Wqv7/f8GOATG5esthU/E0m45MO7zG2ikaS3jsjHU5fPWaxxFd0tS+Q7r1e+pc/lX52j/Rf/sBYEky62A8K9W8qJs35YubL8C/NjZXcXCE2FS/d3XapFLg/Xq77qyMXy3a3XRpPkK3elGu4uM/unrGqMaGQvnwAANQCVoQBQIk5HA7Z7fbk9Wg0qlAolLxutVrlcrnS7o9EIopELjYEGhsbyzh2OBxWX1/fjIRX4vHBYFAej0dDQ0MzHmu1WjU6OqpoNKr+/v6MiS673a7R0dGcP9vIyIgkyel0JudhtVq1a9cu9fb2Zn3s9Pn29/crGIzXiPl8PkOPA7LZ0LVMXzr6sqEP5ovmNGtj17LCDvTCkybjD2Qur5ymrP2gMOstmivd6Xj/yuG9+R/wyBapqUl66Hx85djhR6UXU1eO3RIvn1xgzTpEyfryAQBQYSTCAKAI0Wg0+b3P59P27dtltVrTYiKRiLq7u5PX7Xa7AoHAjLGyJblS73c6nbJarfJ4PHI64x2zR0ZG0pJafr9f3d3dWZNLVqtVQ0ND6u7unrESKzWBl097e7ukeHLs0KFDM37uTKYnwIBSaWtp0ddWLpcn/GLe2J0rlxdeovXOeFniy9oPCjVr73OlGefhz7xfKmumdPexu6SVn5YWtktr7o1fTCh5Xz4AACqE0kgAKAGXy6WBgQFDyaBsHA5HMkGWmmBLXF+zZo16e3s1Pj6uoaEheTye5Oqv8fFxORyOZLyRUkOfzzdjBVcoFEpbmZZNKBRSKBSS1Wo1nATz+/0aGhqS1+vNmAgEirWxq0O7HFdrYXPmtzcLm5v0T46rk027Y7GYLsRiGjt3Tv/4y1e17kc/03/6wY+07kc/04Oj/66xc+cUi02rV1xgMzcpg/HJ/k4GmY1H7Zl4V7r7ieLGWNgi7XGnbJ5QZOmuGRXrywcAQImxIgwAipAoYcxUilgIu90un883Y8VUf3+/1q9fn/U4VqtVgUAgbeVZOBxOS45lknhMavKrv78/Z6IqGo3K7XZLiq9GM5r883g8adftdruhpBtglMVi0cbLO3XL0t/TvmOv6enX31B0clLWlhbdtGSxNnYtS1sJNiWp9YmDGcf6/pun9PkXX5LfcbU2Xd558Y4V66RfPGN8UivWGgpbd6X0zCvGh73596XpVaBNlngPMtSHPWHpbROLpHr/QHrrvfhqQNv8eE+wOx3TNk0oU+luJjcvWaxDb/zWcHzBffkAACgxEmEAUCS73W6qpDCfnp6eGf27jhw5kuzNlW8eieRSJBLJmwiTpOHh4bQEWjAYVCgUSutjlsrtdisajSoQCBT1cxezeg7Ipa2lRVvtV+TtR/T4sRN5x/KEX1SzxZJcRabVm6Vvf8HYqptLFkmr7zQyZW12SF84aDwxct+B+CXV+a9IzSTC6obZvnBvvScd/JM8QWUq3c2kYn35AAAoMUojAaAI7e3t8nq9JR3T5XJp/fr1abcdOnTI0GNTE1NGk1R2u10DAwNptyWSXdN5vV6FQqGMZZVAPZmYnNTnnj9qKPa+54/qdKK/0fw2acODxg6y4UFp6rwU2il9/ZPS310b/3ro76W3x6SUssu2edKDt5r9KdKVqt8UKqMsfeGKLN01Uy6c6MtnRFF9+QAAKDFWhAFAERwOh6FVV2ZNL4E0unrqyJEjkszPy+fzaf/+/clG/dFoVH19fWklksFgUH6/P9kPDahn+469ZmgliySdOX9Bjx177eIKs49tjtcgPnZX5pVhcxfGk2D/PctqsJeGpW/dJ215RLruYsyma6QtRewjsSUoNTel9ItCzYjFpKlYvC/Ynuekp16WXja36aKxvnBFlu6aLRfe2NUhi6T7nz+a8fm0sLlJO1cuv7iiEgCAGkAiDABmiXA4rGg0muwXZtb0HmPBYFDBYFC9vb0Kh8Nyu90Fjw3Umu+9bi4L8fTrb1xMhFks8WTYH3463pz8hQPxErMFtnhiYfWd0nPfyT/oI1uk5mbpo5skxXt8nf9KPFny6PvJkvGz0qK50v/4d2kylns4Sdr6HWndh6f1jULVTcWkOV8sboy1VxoIKrJ012y5sNm+fAAA1AISYQDympic1GO/PqGnf/OmoucmZZ3bopuXLNaGrmVq4w1uzXC73cmdJwvp3WW325O7Oib09fXJbrdrzZo1kmR4h0ig1kXPmehSLik6mSF+flu80fj0ZuNnJ6R9dxsbeO/W+Cqe+a2yWOI9vtoXSPdeH79I0j/8WPrBq8aGO3NO2h2W7rnOWDwqo9iy1UVz443x80qU7j6yJX/spoel+a3Jq2bLhW9esjiZ5DLalw8AgFpAIgx17eTJk+rs7MwZs23bNm3btq1CM5p99h07ofufP6oz5y+k3X7ojd/qr3/xb/r6yuXaQMlDVUUiEbndbkUiEQ0PDxfVwN7j8SgQCCgUCkmKl0g6nU5J8XLNcpSBAtVgnWsuiW81k/Q/vMfYihxJeu+MdHh3zp37zDZVP/AyibBaMvGudPcTxY3x8GdSVvnFYlJsKp5w/cke6edPXVyRePVa6SMb8g/42d3JlYgJRZULAwCQYseOHdqxY0fOmJMnT1ZoNjORCENdm5qa0okTuZfxnz59ukKzmX32HTuhPxt5Iev9Z85f0J+NvCCLRP+PKhkcHFR/f3/yek9Pj1wulwKBQMErt4aGhtJKJKV4A3+Px1PMVIGacvOSxTr0xm8Nx9+0ZLHxwV940txkXjiQMxFWlqbqqJg9YeO7gU63sCWeBEvr+xabku7K8hY+0X9u83+Trvm0dPhR6cXURNkt8fLJBdYZDy2qXBgAgBSnT5/O+zm9mkiEoa41NTVp6dKlOWNaW1tz3o/MJiYndX+BJRIoP7fbrWAwc1ftUCikD37wg3r11VcLSoZlKpEMhUKKRCJFrTYDasmGrmX60tGXDa2AWTSnWRu7lhkf/J1xc5PJE2+oSXqKl96QPvnNeE+pO66JP95iMTcGSsfsir62S6TVl8f//+50ZOj3dnhv/kH2/LHU8qi05t74xYCSlAsDAKD4Z/COjtwLJU6ePKmpKWMrkUuNRBjq2tKlS3X8+PFqT2NW2nfstRnlkNlQIlF5u3bt0q5duzQ2NqZwOKyhoaFkOaOUeddHM1atWjXjNrfbrZGRkYLnDNSStpYWfW3lcnnCL+aN/fqKq7RwzhyNnTunfb8+oYMp/RJvWrJYt3ctk62lRZZEtmmBzdxk8sSvu1J65hXjw711Thr+Zfxy3wHpkV7pTqe5KaF0zK7Q+/3flQ7+SZY7C+w/Z0RZy4UBAA3FSHuizs7Oqq0aa6rKUQHUvEJKJFA5VqtVVqtVdrtdvb29Gh4e1vDwcFpMMBhUOBw2PXY0Gk02x08VDofTyjCBerexq0O7HFdrYXPmt0MLm5v0T46rtb6rQ61PHFTX9w7J9/OX9f03Tyk8cVrff/OUPv/iS+r63iE9lrrb3op15iZyySLp65+U/u7a+NdDfy+9PRbvBSVpsyNeIleoLcHim7Ujv1hMujAljb0j7fxRfFXetf8gjZ4yN07OFYCF9J8z6GYz5b8yWS4MAEANIREGICNKJOqPy+WakQw7cuSI6XHWrFmjaDSqgYEBDQ0Npd03ODhYUHINqEUWi0UbL+/UKzd+Ql9dcZVciy/TKlubXIsv01dXXKVf3vgJbbi8U48fy//XSk/4xYtxqzdLcxcan8hz/1e8t9Ovjlzs8bTt0ngjdElt86QHby3kJ7xo63ek0+8WNwZym4pJc74oXfq30v0H4ivyjpyQxkyuCFt7ZY47C+k/JykWi+lCLKaxc+f0j798Vet+9DP9px/8SOt+9DM9OPrvGjt3Trd3Ls2aFJ7OdLkwAAA1hNJIABlRIlGfXC6XXC5XskzSbCmj1+tVOBxWb2+vfD6fJKXtIinFSyRHR0dLN2mgytpaWrTVfkXG8u6JyUl9zmy/xPlt0oYHpUe2FDexR7ZIzc3SRzdps0OySLrricIar585J+0Os5tkOZVi1d2iufG+YFkV2H9uSlLrEwczhiRWNvodVxsuF965cjl9QQEAdYsVYQAyokSifqU2uR8bGzP8OL/fL7/fL7vdntZbbHqfsUgkknYMYDbbd+w1Qw31pYv9EiVJH9ssfXa3uZVhmezdKp09LYtF2uyUTvyl9I110qc+JLVeYm6oAyabtsO4iXelu58ofpyHPyO1XhKTpi7Ey2NDO9PLZs+a3An7/f5zRlc1NkmGyoXZKRoAUM9IhAHIaEPXMi2a02wolhKJ2uJwXFxO0N7ebugx4XBYXq9XVqt1Rnml1WqdUSLp9/vTVokBs1XB/RItlngybPCEdPs3pKs+JX3gI/Gvjl7jA07r89Q2L76q6+CfxJuqm/HjX0l//6N4D6v324+hRPaEC1upl7CwRdrjljZdIyk2Jd01J14eG7g/vWz2N/9mbuAVa02tarz/hV9o7dLfy1suDABAPaM0EkBGbS0t+vrK5fqzkRfyxlIiUbt6enryxqQ2xw8EArLb7TNiPB5PxhLJV199VVartWTzBWpN0f0S57dJN9wTvyTs/JS5SbxwIP3x78vZVD2Dt87Fd5FkJ8nSe9LkartLF0jd7fH/w7VXxsshW+e9f+fhvaWZ1CWLpNV3FrSqMVEqzG7QAIDZiEQYgKw2dHXIonjfmzPnL8y4f9GcZu1cuZwSiRqT2sze5XLljU9tjp8rPhAIyGazJa9Ho1H19fXNKJ0EZhOz/RIXNjXpH3/5qg7+5k1Fz03KOrdFNy1ZrNu7lsnW0iKLxVJwn6fp1l0pPfOKuaEStgSl5qb3VyAVKBaLN4ifeFfa85z01MvS+NmLyZ07rol/b7EUfoxaNf1n/8mvzD2+u1366Z9nuOPshLTv7pLMUZselua36nuvm1tF9vTrb5AAAwDMaiTCAOR0e1eHblqyWPuOvaanX39D0clJWVviH+w2di1jJVgN2r9/vyRpYGAg72qtRHN8l8uVbI6fjdVq1cDAgPr7+5O3BYNBBYNB9faaKPUC6sjNSxbr0Bu/NRz/w1Pj+uGp9MRVajPyTZd3Jvs2GXZ2It4f6p3x+GOvXiutvkObr7HpCwctBZfkbf2OtO7DKSuRTErskpjJ8C9n98qzXD+7EVlX8x3eI517u/CBpXhfuk0PSx/dJIldoAEAmI5EGIC8cu2ohvyi0WjO60aEQiFFIhGtX78+Z3IrHA4rGAzK4XDkTWwNDg7K7/dLmtkQPxufz6ehoSFFIpHkbX19fXK5XJRIYlba0LVMXzr6suHSslw84RfVbLHo9hXrpF88Y/yBv/m39N5QLw1L37pPbVse0YO33qktwcLmU+xOkkZ2SSzFyjOjKrlCragdImMxrfuPU9LbE9JP9kg/f+piknPs1+bGWnKl1H7FxcevWCutvlOa35oMYRdoAADSkQgDgDI7cuRI2nUzOzlK8eRWoteX1+uVx+PJuNorFArJ7XbL5XLNaHg/XTAYTK7s8vl8ppJY/f39abtGJnqMjYyMGB5DUloyrZDkIFAJbS0t+trK5fKEXyzJePc9f1Q3f3yDWr/9heJX/jyyRZv+eI62aGPBQ/zlv0jffcl8osjMLol/HJS+eUR6672LSalNfxhv/H/6vZlJq1t+X9r4h1KTRXr0fxq/7+bflz73VOY5lHKFWrE7RLbOndKf75kj7SluHpKkea2K3fu0piRNTE5q369P6GD45bSy3I9f1m5qVSO7QAMAZjtLLMa+Qag/nZ2dOnHihDo6OnT8+PFqTwfIKhKJqKenJy3pI8WTTwMDA4bGiEajab25Enp7e3Xttdfq1KlTCofDikQiGhgYyFum6Pf70xJZRhJnqfr7+zU4ODjjdofDkbXZ/nTBYFButzt53W63a3R01PAcgEqKxWLad+yE7n/+aMaVYS0WadLEu6mvrrhKW1//ofTIluLndskiTT1wQhOWVj36nPT/fSbeFL9QRhNF//Bj6S+eLPw41fTo+uJWqBX7s/+Plbt1/Q+K/7+XJF31KV2492m1PnEwZ1iLJCMFj4vmNOuVT91A2wMAQNlV8zN9U0WPBgANwu12y2azqbu7e0YSTIqXJVosFnV3dysYzF3XZLVaNTo6qt7e3rQkUygUSvYD6+/vT8ZkMzg4KJvNlpYES4yTmEvqrpCpwuGwnE6nbDZbxiRYIqa7uzvrzxwKheT1euV0OtOSYFI8YWiz2dTT0yOv15vx8UC1WCwWbby8U6/c+Al9dcVVci2+TKtsbXItvkxfXXGVrru03dR4T7/+hvSxzdJnd8f7ORUzt/fOqPlnu9W+QLr3euljRVawbwkaK/szu0tiLfnjoPSJXdK1/yB98pvS3/9IGnsnXlqZSSwmXZiKx+z8kfTXmV8m81rYIj3+6Qld/6MSNcOXpBVr9fixE3nDjHb9YhdoAEAjYEUY6hIrwgAAteKP/vXHGolOGI5fZWvTDz/+fmOusxPxBukvHEjpE/Ur6XUTmaZLfkeyr5auXqtdljvkecZWVCOsRXOlE9svNtHP1HvrR/8uvXO+4EPUpGyr4S5MFdcYv+0S6X//pHSnQ2r9yT9Ij/9F4YOlumSRJv73X+lDP3zWUA+7uRZpjqVJ70zNjF3Y3KSdK5drw+WdpZkbAAB5VPMzPT3CAAAAilBUM/L5bdIN98QvCQ98xNwE3nsr3kD/pWH16T4dbt2tf56z2dwYKaY30S92h8R6ka2xf1GN8SWtvjxlQ4IXSlhPuulh7fvtW4Y3cjgXk7501Yc0v7mZXaABAA2NRBgAAEARbl6y2FQz8j+6rF3/+MtXdfA3b6Y1Nb+9a5lsLS2yLJjZE9AM/+kt+uf2whNhUrz8byoWb6D/5EtFDVVXtn5HWvfhi6vhim2ML8U3B0h6Z7y4waR4Oe2mh6WPbtL3fvysqYf+65un9MR117ILNACgoZEIAwAAKMKGrmX60tGXDa/M+dIv/teM277/5il9/sWX5HdcrU0r1km/eKbg+TQpprNvtemD1mN6/UJrQWOMnY3vsnjfAWluA3WUPXNO+u8j8QTgnuekhw5LbxttsDVdLKbWuVO68/cnpNAe6edPSSdNNldbcqXUfsXFstkVa6XVd0rz4/+v0XPmJhedLPSHAQBg9iARBgAAUIS2lhZ9beVyecIvFj2WJ/yimq++UbfPXSide7ugMSyS5k2eVuSPduubi+7RgZeln/xaOv1eYXM6Zyy/N2skEoDFatKUJn4zR/rLwseIffzPNXXDn2ticlL7fn0ivorw8IvJVYQLm81lKa2UPwIAQCIMAACgWBu7OmSRdP/zRzOuDFvQZNHkVMzQ7n33vRTRzbc9pNY9dxY1p/kvHdA9992je66T/uHH0l+UsD0VclvYIh388F7pX4sY5JJFmlq9Wa1PHMx49/ffPGV6yJuWLC5iQgAAzA4NtNgdAACgPCwWizZe3qlXbvyEvrriKrkWX6ZVtja5Fl+mr664Sl/88H80lASTpDPnL+ixpf9J+uzueD+oQo3+WPq7a6Wvf1J/+tbfq6NpLL4FZKFiMTXFLmS83H32G7JeGNPCOTF9wt5Y5ZSpLl0gfWOd9NrnJvS//fju4gbb9LAe/+1bpZmYpEVzmrWxa1nJxgMAoF5ZYrFi3hEB1VHNrVYBADDr0z9+1lRD/Q8tXKCuBfMVffddWd95Uze9+VPd/vM9sr39uixFzKPZdl5TluaCHtsUu6AL47mLCf4P+yP6fP+d2j0S34WxYLGYmpS7JnNKTZIl/7/G70xNaNO5R/XwvD8vYkL5j7Hl3G593npAl88dl959S3rdZD+whPeb4U84b9OHDn7fcO+5fL7pXKHbuzpKMhYAAMWq5md6SiMBAADKzGxT81fefkevvP3O+9cW6PvtN+jzf3SDdv3P/0MbT/6g4HmcG2/Rn7U9qv/evLHgMXL5fGSL9NNmbbp2U95EWN+10mP/M3Mz+kssU3p3LPfb1E0Lduuxeem7Yy5skXbcHO9rduClmFa/tke+E3frktg78l+ydcYYRpNpWb2fsPt1tEtWvSW9k/8hGc1rk+yr05rh74v8ylQSbK7FonMZ/r69sLlJO1cuJwkGAMD7SIQBAACUmXVuaZqUe1ZuKyoR1qyY/vldr1b/l7X64v+vVacKTdzk8qhXTfbrdf4T39XkC9/T2JvjOn7Bpn9dcIt+umSj/vPyNt3x4dOy/s89+kfrU/H7z9v0g4VrdXjpHfrPf2DTn57fKz2W+zB737lTK5dIz8y7Rf/vM3t0y+RT6pgzrubDNunqtbrHPkf62cVVYJlWszXbzmtKha2Qk+IN8fOtkjNiYtkKPbb2YT39mzcV/enPZZ3bomPvnDU1xnWX2rRu2RI9/fobik5OytoSb6i/sWuZWmmSDwBAEqWRqEuURgIA6snDkV/p//PCL4oexxK7oDMH1xU/IVuXfj3vSg1E1+nheXcbWhllpDSyJDY8JP1f/7XgXTPNKKZU9HemJi6uBCtQTNJjyz6hz119r95umlvwOJK0ytamH378uqLGAACgUqr5mb5BW5kCAABUzoauZVrYXPzbrpia9Ds3PqmhD/6X4gYaP6bLTw7rH8/eqwvjc/L246qofXdVJAlm2vubBbRdGNNfnN2p5858tKgkmCTtW3qDPCv/a9FJMEmysuoLAABDKI0EAAAos7aWFn195XL1hV8sbiCLRVNq1t/+gVePXnWHrG//RjdNHNXt/ytYdCN95FaqMshU25bP7FtWqJuWLC7ZWAAAzGasCAMAAKiAjZd36pvOFVo0p/CeVAnj5y8oPDVP359/hT6/5GZ1/dE/a9/SGwoe79x4i94ba9H3Jj6pptiFrJfZJtfP2hS7IJW5g8iZOQtKMs6iOc3a2LWsJGMBADDb0SMMdSlRT9zU1KSlS5fmjN22bZu2bdtWoZkBAJDbxOSk9h17La2p+a/fOav/daa4csBS9A+7IBXROn722bBgjx6fd0dJ+oFNNM/Xvo41Ovi71yraskivLliq385tK27Xyvd907mCXSEBADVjx44d2rFjR86YkydPampqqio9wiiNRF2bmprSiRMncsacPn26QrMBACC/tpYWbbVfoa32K5K3laqZfrFIgqV79J3N2v7ugBY3TxScBEs2xP+De/R287ySzm/RnGbtXLmcJBgAoKacPn067+f0aiIRhrpmZEVYa2trhWYDAEBhNnQt05eOvqy3LxTetD6mJi268Un9xzPH9Dvnz8o6eUY3vvGsbjvxfdmm3pl1/cMmmuapberdsh6jWdKKqZ+rmL0EEg3xi/X7ixaqa8H85CrCm5Ys1sauZWqlST4AoMa0traqoyP3H2kSK8KqgdJI1KVqbrUKAEA5PPbr48U308/i9NNr1WwymxOTNJWhnWyv46/0yTdHdNtrP5DtQrycc0pNmrikVY8v/t/kPfa9GY9p0pTpRFy24yd0rdmrE4c21HyCb4lrv95q+Z2ix/nqiqvSVhECAFDPqvmZnhVhAAAANWDj5Z1qslh03/NHdeZ89RvTT6lJrTcdyHjfM7/3Uf3XP7hb/hPf1u3nj6v1inuT933+D+6eEX/66bVq0lTOxJaUkjCbu1D71j2kvncuyzvHXOPaPvVtLbjwnr529CHdfvJf4wm75vl6vOMTGr7MoWD4bzMf36RE0m6iaZ4e71yjf/ndVYq2LNJbLQv11pxFBYyYjmb4AACUDokwAACAGnF7V4duWrI4rZl+5O13NHZustpTy8jT8V90+IpO6Ve5/5LbduMT+pNfPaVvfuDTOeMssQv6p+f/T930KY/u/+2lMlKTmCthJ0lvNc3Vn/2hT7HOFeq77Ma0+6Y/rpCVc0bmUKydK5dTAgkAQImQCAMAAKgh05vpl6KR/oUcK7EKXQWV8M95kmCSFLM065tX5N/RMmZp1n3X+PT6ZVfq7d/8W974thufMDRHSfrz370xvnSrjixsbqIZPgAAJUYiDAAAoIaVopG+7abvZr1v/OlPZ1wFlSt5VhCLsXTbmZhFjxhIrknxxJlR5wwkwWLK/nMnyh8zJQ5L9W916dwWfXDhAprhAwBQRiTCAAAAalhbS4u+vnJ52Rrp50qSVcvr775XleNOqamq/x5/eeWHaIgPAECZlfhPfQAAACi1jZd36pvOFVo0x/gKKJhnu/H/rtqxaYgPAEBlsCIMAACgDmRqpP/W5Hn925m3qz21kls67xKdPnO+8gc2UWpZajTEBwCgMlgRBgAAUCcSjfSfuO5a/fDj1+kHH/+YFjbPvrdzm6/onJU/VyYLm5v0T46raYgPAECFsCIMAACgTpW7f1g1LJrTrD/9QJcWXzJXHgM/11yLRedi9bMd5O8vWqjfaZlDQ3wAAKqERBgAAEAd23h5p5osFt33/FGdOX+h4sf/0ys69U0Duzz+yRWd+mcDcYkSwY1dHbJIuv/5oxl3zFzY3KSdK5drSqqbhNmiOc36149/jMQXAABVRCIMAACgzmXqH7aouVk/PjVetuTPojnN2rlyuW7v6tB1l7VnTcQl4m7rXKaPXWrLm9hKlAhaLBZtvLxTtyz9vbSfa/pKqlgsZihhFpOqvnKOPmAAAFSfJRaro7XkwPs6Ozt14sQJdXR06Pjx/H9dBgCgEe399XFDq6Xy+X8tW6K3zp/PmIhKmJiczJmwMhtnlpFxHz92ImvCbmFzkyanYmVJHKYmDQEAQHU/05MIq4JIJCKv16vh4eG8seFwWENDQwqFQopEIpIku92u3t5ebd++XVartaA5DA4Oanh4WEeOHFE0GpXdbpfD4ZDX65XL5aqZMbMhEQYAQH6xWEz7jp3IulrKiEVzmvXKp26YNSuZciXMnjz5m6ITh3ObLLru0nadOX+ePmAAAGRBImyWiEajstlshmI9Ho+GhoZyjtXX16dgMJhznKGhIXk8HsNzDIVCcrvdikajcrlc6u/vl91uVzgcVn9/vyKRiFwulwKBgOEkWznGzIdEGAAAxmVK/vzu3BbtO34y72O/6VzRMCuZSpE4bKR/LwAACkUibJYYHBxUf3+/odjR0VHZ7faM90WjUTmdzuQKsHzyJdUSQqGQenp6cj7G6XQqHA7LbrdrZGQkb+KqHGMaQSIMAIDi5SoVbORyvmyrxi5psugLP3+Zfy8AAIpEImyWsNlsikajeeNcLlfOssienh6FQiE5HA5t375dDodDUrxM8tlnn9Xg4OCMxwQCAfX29mYdMxqN6oMf/GCyZHF0dDRjXCQSUXd3t6F5lmNMo0iEAQBQGuXq2TVb8e8FAEDxSITNAn6/X16vVz6fL7lCKptVq1ZlXRWVOs7AwEDGmEgkIrfbrXA4nLzNarVqfHw86zETyTUpfzml2+1OlmTmii3HmEaRCAMAAAAAoD6RCJsFEiuesq2KMjOO3W7Pu2oqdZVVwvDwcMam9NNjx8fHc5YnBoNBud1uSdkTbOUY0wwSYQAAAAAA1KdqfqZvqujRZqlgMKhIJGK4P1g24XBYkUhEgUAgb6zdbp+xYix1hViq1DiXy5W3R1dqiWU0Gs3YsL8cYwIAAAAAAJQTibASeOCBB2S1WrV+/fqixtm/f788Ho/hZvLTV3+dOnUqY5zf709+n+g3lk9qI//9+/dXZEwAAAAAAIByIhFWpHA4rHA4rGg0KpvNpu7ubnm93oJWPN12221Z+4JlMj0BNb1UMjG/VNdee63psaf/LOUYEwAAAAAAoNxIhBVpejlkJBKR3++X2+2WxWKZ0dQ+F4fDYXg1mKQZO1SmrrhKSDSzzxWTyfS41J+hHGMCAAAAAACUG4mwIkQikRlJoemCwaCcTqe8Xm9Zjp8qU6P8Z599Nu260UTbpZdemnb9yJEjZR0TAAAAAACg3OZUewL1zG63a2hoSNFoVKOjowqFQjOSUwl+v19HjhzRyMhIyY6fmkjyeDwZY6bPp9DVW6m7YZZjTAAAAAAAgHIjEVak6QmoaDQqv9+vBx54YEbpYjgcVk9Pj4aHh0ty7KGhoeT32XaszJaYMyv1ZynHmAAAAAAAAOVGIqzErFarfD6ffD6fgsGg+vr60hI+oVBIg4OD8vl8RR0nEokke2wNDAxkXZVVaLJpernj2NhYWccs1MmTJ9XZ2Vn0ONu2bdO2bduKHgelt2PHDp0+fVqtra38H6GhcO6jkXH+o5Fx/qNRce7Xhx07dmjHjh1Fj3Py5MkSzKYwllgsFqva0RtANBrVmjVr0hrDW61WjY+PFzWu1+uV3++X3W7PWWJosVjSrhv97w6FQurp6Uled7lcyZVs5RjTrM7OTp04caKgx2by13/91/ryl79csvFQOon/646ODh0/frza0wEqhnMfjYzzH42M8x+NinO/Pnz5y1/W3/zN35RsvGr8f7MirMysVqtGRkbkdDqTybBoNKpQKJSxub0R4XBYfr9fVqs1byLJarWWpAQxdTVXOcYsVFNTk5YuXVr0OK2trUWPAQAAAADAbNba2qqOjo6ixzl58qSmpqZKMCPzSIRVyK5du+R0OpPXh4eHC06E9fX1SZIOHTqUt1F9e3t7SZJW7e3tZR2zUEuXLuWvBQAAAAAAVECp2gqVusrLjKaqHLUBORyOtMRXoQ3nvV6vwuGwAoGAHA5H3vhCV11NT3RNXxFW6jEBAAAAAADKjURYBaX2xyqE3++X3+/X0NCQent7DT1m1apVadeNruSa3si+u7u7rGMCAAAAAACUG4mwCkotYzRbFhgKheT1ejU0NCSPx2P4canlmJLxlWjTG/CnrmYrx5gAAAAAAADlRiKsglITYWbKAsPhsHp6ejQwMGAqCSbNXL1lNGmVusrLarWmzb0cYwIAAAAAAJQbibAKOnLkSPJ7o2WSkUhEa9askc/nk8/nM31Mh8ORlnR79tlnDT0uda7TE1/lGBMAAAAAAKDc2DWyglJLA42UBUYiETmdTnk8Hg0MDBg6RiQSUTAYTEuarV+/Xn6/X1J8dZkRqXH9/f0z7i/HmKW0Y8cOnT59Wq2trSXZ0aJUanVeUm3PrRbV8r9Xrc6Nec0etfpvxrzMq+W51aJa/veq1bkxr9mjVv/NmJd5tTy3WlTL/161OrdanVdSDBVjt9tjkmI+ny9v7Pj4eMxut8c8Ho+pYzgcjtjIyEjabSMjIzFJyUs+w8PDyVi73Z4xphxjmtHR0RGTFOvo6Cjo/mqp1XnFYrU7N+ZlXq3OjXmZU6vzisVqd27My7xanRvzMq9W58a8zKvVuTEvc2p1XrFY7c6NeZlXq3MzMq9qzp3SyAoJBoOKRCKyWq3avn17zthoNCqn0ym73a7+/n5FIpG8l1AolGxi73A40sZzOBxpK9CCwWDO4wcCgeT32VZulWNMAAAAAACAcqI0skChUEhut1vRaFQul0sDAwMzElAJkUhEfX19kqRDhw7lbZS/Zs2aZIKru7vb1LyGhoay3p4Y64EHHlBvb2/GuGg0mix5dLlcOZvzl2NMAAAAAACAcmFFWIECgUByF8TEaiyv1zsjLnFfe3u7RkdHsybLEpxOp+GeW5lkSzLZ7fbkqqxwOKzBwcGMcWvWrJEU39UxdRVXpcYEAAAAAAAoFxJhBXK73TNu8/v9stlscrvd8nq9cjqd6unpkcfj0cjIiOx2e94xy5EES+jt7dXw8LCsVqv6+/uTx4tGo8mEXTgclsPh0Kuvvpp35Vq5xgQAAAAAACgHSiML5HK5NDo6qoGBAYVCIY2NjSVXiCUSP9u3b5fL5TKc/KnEaimXy6Xx8XENDg5q//79WrNmjaLRqKxWq1atWqVAIJC1xLGSYwIAAAAAAJQaibAi2O32rD25ap3P55PP56v5MQEAAAAAAEqF0kgAAAAAAAA0BEssFotVexKAWXPnztXk5KSampq0dOnSGfefPHlSU1NTWe+vllqdl1S7c2Ne5tXq3JiXObU6L6l258a8zKvVuTEv82p1bszLvFqdG/Myp1bnJdXu3JiXebU6NyPzSsS0tLTo3LlzFZ0fiTDUpebmZk1NTVV7GgAAAAAAoEBNTU26cOFCRY9JjzDUpXnz5undd99Vc3OzFi9eXO3pAAAAAAAAg9544w1duHBB8+bNq/ixWREGAAAAAACAhkCzfAAAAAAAADQEEmEAAAAAAABoCCTCAAAAAAAA0BBIhAEAAAAAAKAhkAgDAAAAAABAQyARBgAAAAAAgIZAIgwAAAAAAAANgUQYAAAAAAAAGgKJMAAAAAAAADQEEmEAAAAAAABoCCTCAAAAAAAA0BBIhAEoSjgcltfrVXd3tywWiywWi7q7u9Xf369oNFrwuIODg+rp6ZHNZkuO6Xa7FQqFZv2YqF+RSEQ9PT0KBoNFjVMv5yrnP0qNcwrVwus3z7VGxXt5ngsNKQYABRgfH4/19vbGJOW8DA0NmRp3eHg4ZrVaY5JiLpcrNjw8HBsdHY0FAoGY3W5P3j4+Pj7rxkT9mv58MHveJ9TLucr5j1LjnEK18PrNc61R8V6e50IjIxEGwLTx8fHkLwgjF4/HY2jc4eHhvI9xOBwxSTG73W7oF1O9jIn6ND4+HvP5fEW/aYzF6udc5fxHqXFOoRp4/ea51sh4L89zodGRCANgmsvlikmKORyOWCAQiI2Ojib/gpLpTaWkWCAQyDnm+Ph48q8ydrs9a9zo6GhyTJfLNSvGRH0aGBiI2e325POhmA9S9XKucv6j1DinUA28fvNca3S8l+e50OhIhAEwZWhoKCYp5vP5ssaMjo4m/4qSuFit1pzjpr4Zzfcm1GgJQ72MifozMjISGxkZSV5PPC8K/f+ul3OV8x+lxjmFSuP1m+dao+O9PM8FkAgDYFLiL6j5pP4VJXEZHh42FJtv+XEgEMj7S7lexsTsMDIyUvAHqXo5Vzn/UWqcU6gFvH4XNibqF+/leS6ARBgAExJvFo3WyQ8MDKT9shkYGMgY5/F4kjFGlx6njptpqXa9jInZYfobKzMfpOrlXOX8R6lxTqEW8Ppd2JioT7yX57mAuCYBgEH79++Xx+OR1Wo1FO9yudKunzp1KmOc3+9Pfu9wOAyNbbfb0+ZVr2MC9XKucv6j1DinUO/q5bWW5xoSeC/PcwFxJMIAGHbbbbdpYGDAcPz0XzDd3d0zYsLhcNr1a6+91vTYwWCwLscE6uVc5fxHqXFOod7Vy2stzzWk4r18acdE/SIRBsAwh8Nh+C9IkhSNRtOup/5FJSEUCuWNyWR6XOovt3oZE6iXc5XzH6XGOYV6Vy+vtTzXkIr38qUdE/WLRBiAsolEImnXpy+vlqRnn3027brRX86XXnpp2vUjR47U3ZhAvZyrnP8oNc4p1Lt6ea3luYZi8F6e58JsRSIMQNmk/qLweDwZY6b/gi30rzOjo6N1NyZQL+cq5z9KjXMK9a5eXmt5rqEYvJfnuTBbkQgDUDZDQ0PJ7/v7+zPGTP+lVKjUpdv1MiZQL+cq5z9KjXMK9a5eXmt5rqEYvJfPPSbqF4kwAGURiUSSNfQDAwNZ/+pS6C+T6cuZx8bG6m5MoF7OVc5/lBrnFOpdvbzW8lxDoXgvn39M1C8SYQDKIrEjjd1ul8/nK/vxyvHXmXoZE6iXc5XzH6XGOYV6Vy+vtTzXGg/v5Ss3JiqPRBiAkguHw/L7/bJarRoeHs4Za2bnGqPj1MuYQL2cq5z/KDXOKdS7enmt5bmGQvBe3tiYqF8kwoBZwu/3y2KxlPTidDoLmktfX58k6dChQ3kbUba3txd0jFzj1MuYKJ1aOv/NqJdzlfMfpcY5hXpXL6+1PNdQCN7LGxsT9YtEGICS8nq9CofDCgQCcjgceeML/avK9GXJpfiLT6XHBOrlXOX8R6lxTqHe1ctrLc81mMV7eeNjon7NqfYEAJSGy+VSIBAo6ZhmX+j9fr/8fr+GhobU29tr6DGrVq1KNuKU4r9sjBx3eqPK7u7uuhsTpVML538h6uVc5fxHqXFOod7Vy2stzzWYwXt5c2OifpEIA2YJu92ed+lyOYVCIXm9Xg0NDcnj8Rh+3PTys0gkYuivT6Ojo2nXXS5X3Y2J0qn2+V+oejlXOf9RapxTqHf18lrLcw1G8V7e/JioX5RGAihaOBxWT0+PBgYGTP3ilOJ/nUkViUQMPS51mbLVak1LgtTLmEC9nKuc/yg1zinUu3p5reW5BiN4L1/YmKhfJMIAFCUSiWjNmjXy+XwFba3scDjSliU/++yzhh535MiR5PfTf7HVy5hAvZyrnP8oNc4p1Lt6ea3luYZ8eC9f+JioXyTCABQsEonI6XTK4/FoYGDA8GMGBwfTblu/fn3y+9Ta/VxS4/r7+2fcXy9jAvVyrnL+o9Q4p1Dv6uW1lucasuG9fPFjok7FAKAA4+PjMbvdHvN4PKYe53A4YiMjI2m3jYyMxCQlL/kMDw8nY+12e8aYehkTs8Po6GjauTE0NGT4sfVyrnL+o9Q4p1ALeP0ubEzUP97L81xoZKwIA2BaNBqV0+mU3W5Xf3+/IpFI3ksoFEo2qZzemNLhcKQ1ngwGgzmPn7o7YLa/zNTLmJgdpm+tbUa9nKuc/yg1zinUAl6/CxsT9Y338qUbE3Wq2pk4APXH4XCk/TXFzCXbX1pT/yLrcDiyHnt8fDwZ53K5cs6zXsZE/QsEAmnn+cDAgKnH18u5yvmPUuOcQrXx+l34mKhfvJfnudDoSIQBMKWYX5z5cu+pb0azvRFNHN9qtcbGx8fzzrdexkT9SpQWpJ7nud5YZVMv5yrnP0qNcwrVwut38WOi/vBenucCSIQBMKG3t7eoX5xGehAMDw/HrFZrTFKst7c3NjIyEhsfH48NDw8nfyE5HA5Tv5DqZUzUj/Hx8Vhvb2/M5XLlPOddLlfy/DCiXs5Vzn+UGucUKoXXb55rjYz38uUdE/WDRBiAmjQwMBBzOBzJX1BWqzXmcrligUBg1o8J1Mu5yvmPUuOcQr2rl9danmsot3o5b3kuNCZLLBaLCQAAAAAAAJjl2DUSAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAICGE41GZbFY8l7C4XC1p1qzBgcH8/77dXd3V3uaaSyxWCxW7UkAAAAAAABUUjQalc1mS153OBzatWuX7HZ7WpzVaq3wzOpLNBpNfj82NqZQKCSv15u8zW63a3R0tAozy4xEGAAAAAAAaDjTE2GBQEC9vb1VnNHs4Xa7FQwGJdVeIozSSAAAAAAA0PBY+VU601fV1RISYQAAAAAAoOG1t7dXewqoABJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAMCkajWpwcFBOpzO5Q2JCMBhUT0+PbDabLBaLnE6n/H5/1nH6+/vldDrT4qePWevzqBdzqj0BAAAAAADQGNxut0KhkKLRaMb7HQ6HAoGA7Ha7vF6vvvWtb82ItdvtGhkZqcouj+FwWKFQSPv371c4HJ5xfyQSkdvtnnFfOByW1+vVyMiIhoaGkrcPDg6qv78/43Hcbrd8Pp8GBgZqdh71yBKLxWLVngQAAAAAAGgcXq93xsqkgYEB+Xy+tNvC4bCcTqekeJLs0KFDJUuARaNR2Wy25PWRkRE5HI6s8ZFIJJksmr5KKhAIaGxsTF6vVw6HQ7fddpvsdrsikYgeeOCBtGTe8PCwXC6Xenp6dOTIEa1fv15Op1Pt7e169tlnNTg4mDb26Oio7HZ7zc0jl/7+/uTj7Xa7RkdHDT2uEkiEAQAAAACAiuvp6VEoFEpe93g8aauUJMnv98vr9crlcml4eLikxzebCEs1fQWV3W7X2NiYdu3apd7e3rTYSCSi7u7u5PXEMdrb2xUIBGYk9kKhkHp6epLXM/271No8pqvlRBg9wgAAAAAAQMUFAoG0636/P23FUqJnldVqnRFbbZkSZuPj4zOST1I8EeRyuZLXw+GwotGohoeHM65uc7lcaSuvUpOFtTqPekIiDAAAAAAAVJzVap2xwqivry/t+2g0mnG1UrW1t7enXc+UeEqVurJKUsZ+XKlSE1yRSKTm51FPSIQBAAAAAICq8Hg8aauUgsGgQqGQ/H6/gsHgjPvr1fRE3vQE1nTTe3GVKglVK/OoJnaNBAAAAAAAVTM0NJTWu8rtdkuKJ2GM9qSqdfkSTvlk22WzXudRTawIAwAAAAAAVWO32zUwMJC8Ho1GkyWRjerSSy+t9hQk1c48SolEGAAAAAAAqCqfz2d4x0agGCTCAAAAAABA1U1fAZYokQRKiUQYAAAAAACouun9wCKRSN5dDQGzSIQBAAAAAICqCofDGhwcVG9vb9rtg4ODCofDVZoVZiMSYQAAAAAAoKrcbresVqt27do1Y2UYJZIoJRJhAAAAAACgarxeryKRiHbt2iWr1SqPx5PWOD8SiWhwcLCKM8RsQiIMAAAAAABURSgUkt/vl8vlSiuLnN44v7+/X5FIpNLTwyxEIgwAAAAAAFRFouxxeuLLbrdrYGAgY+xsMDY2Vu0pSKqdeVQSiTAAAAAAAFBxbrdb0WhUQ0NDslqtM+73+Xyy2+3J64mG+vVoesIpGo3mjD916tSsnkc1kQgDAAAAAAAVFQwGFQwGZbfb5fF4ssZlKpGshV0kp5dp5ksoTb9/dHTUVHy2stBamUc9IREGAAAAAAAqJhQKJcscU/uCZZK6IixhzZo1VU+GPfDAA2nXv/Wtb2VNQiVWvU2Pz5Xc+ta3vpV22/TH19o86gmJMAAAAAAAUHaRSEROp1M9PT3J2wYHB9XT05MxeTM4OCin0znj9mg0KqfTKafTWdEVSuFwWD09PbLZbDMScdFoVDabTU6nU8FgMBnvdDpls9kyrtzq7u6W0+mU3++XFE8Qdnd3q7u7e8a/RygUks1mU09Pj7773e/WxDzqdXWYJRaLxao9CQAAAAAAgEpKJI0SRkZG5HA4qjij2aO/vz/Zz81ut+ctwawkVoQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAABre2NhYtaeACiARBgAAAAAAGl69Nn+vRdl2rqwFc6o9AQAAAAAAgGrr7++X3W7XqlWr0m63Wq3VmVCdmJ70OnLkSHIHylpEIgwAAAAAADS8aDSqnp6eGbezm2R2g4OD6u/vr/Y0TLHEYrFYtScBAAAAAAAAlBs9wgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAj/f8x/U6T/7xF7AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x900 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#import matplotlib.pyplot as plt\n",
"bins = np.linspace( -2000, 2000, 50 )\n",
"sns.regplot(x=ak.to_numpy(array[\"x_l0\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=50, fit_reg=None, x_estimator=np.mean, label=\"T1X1\")\n",
"sns.regplot(x=ak.to_numpy(array[\"x_l4\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=50, fit_reg=None, x_estimator=np.mean, label=\"T2X1\")\n",
"sns.regplot(x=ak.to_numpy(array[\"x_l8\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=50, fit_reg=None, x_estimator=np.mean, label=\"T3X1\")\n",
"plt.legend()\n",
"plt.xlabel(\"x [mm]\")\n",
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
"mplhep.lhcb.text(\"Simulation\")"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['tx^2' 'tx dSlope_fringe' 'ty^2' 'dSlope_fringe^2']\n",
"intercept= 5205.144186525624\n",
"coef= {'tx^2': -320.7206595710594, 'tx dSlope_fringe': 702.1384894815535, 'ty^2': -316.36350963107543, 'dSlope_fringe^2': 441.59909857558097}\n",
"r2 score= 0.9604900589467942\n",
"RMSE = 8.772908410819978\n"
]
}
],
"source": [
"from sklearn.preprocessing import PolynomialFeatures\n",
"from sklearn.linear_model import LinearRegression, Lasso, Ridge\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.metrics import mean_squared_error\n",
"import numpy as np\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"dSlope_fringe\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"poly_features = poly.get_feature_names_out(input_features=features)\n",
"keep = [\n",
" #\"tx\",\n",
" #\"ty\",\n",
" #\"dSlope_fringe\",\n",
" \"tx^2\",\n",
" \"tx dSlope_fringe\",\n",
" \"ty^2\",\n",
" \"dSlope_fringe^2\"\n",
"]\n",
"remove = [i for i, f in enumerate(poly_features) if f not in keep]\n",
"X_train_model = np.delete( X_train_model, remove, axis=1)\n",
"X_test_model = np.delete( X_test_model, remove, axis=1)\n",
"poly_features = np.delete(poly_features, remove )\n",
"print(poly_features)\n",
"\n",
"\n",
"lin_reg = LinearRegression()#Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly_features,lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(exptext: Custom Text(0.0, 1, 'LHCb'),\n",
" expsuffix: Custom Text(0.0, 1.005, 'Simulation'))"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADXPElEQVR4nOz9T2xb+X3v/7+ONLdIcVvpSL47G4h1OL7odxWLlO+iu4zImS5apBmT8iBF20Ut0g76uwulJqXJOrZJz2hzf0hMyrP4pWhQi7LToF1MTcrZfRexeOzsgjvhkQKMd9fSkdqiQRvr/Ba6ZEiJoij+PRKfD4CoKH34OW+KtBq+5v35fAzP8zwBAAAAAAAA59zIoAsAAAAAAAAA+oEgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMOINc1x10CQAAAAAAnDkEYcAZYdu2UqmUJiYmND8/P+hyAAAAAAA4c94ZdAHAeWDbth4/fizbtuU4jra3t+W6rkzTlGVZmpycVDAYVCQSUTgcPvL4WCwmx3FUKpWq33NdV8ViUY8fP1axWKQLDAAAAACADhme53mDLgKDl8vllEgkTv24YDBYF960yzCMUz/GNE3t7Ow0/FksFtPa2tqp5ywUCg2DqkZc19W9e/eUyWROfZ1gMKhwOKxAIKBCoaC1tbUjv8tKOGbb9pHHR6NR5fP5U18XAAAAAIBhxtJISJLi8bh2dnZUKpUUjUabjg2HwyoUCtXx3eB5nsrlsrLZrEzTPHacZVnKZrMql8vHhmCSlM/ntbOz01KwlUwmVSqVtLOz03IIVlmieDgEqwRUlfkqz6tQKCgej1efm23bymQySiQS1cDucMdXZR7P82RZVkt1AQAAAACA49ERhoYSiYRyudyR7/ejE8lxHAUCgYY/29nZaRqUHScUCjXsrMpms4rH46eqLRKJyHGcuu/H43Fls9mW5shkMkqlUke+b1mWyuVyw8ccfj3oCAMAAAAA4PToCENDxy2TbGf55GlZlqVgMHjk+9FotK0QTDq+7tOEYMViUYFAoC4EM01TpVKp5RBMOuhAK5fLR57L9vb2sY9p93kDAAAAAIDfIghDQ8ctxevXEr1G1+nk2o0ee5pwybZtRSKRI49fX19vGNq1Us/m5mZdDWyGDwAAAABAbxGEoaHjQqLJycn+FuIDjuNodnb2yPfz+XxbIVhFpZvsPFpbWzuyfBS/VSwWB10CAAAAAAwlgjD4UqPA7cKFC12dr9VQLxaLHenWisfjLW+s34xlWUomkx3P0y+2bSuRSCgQCMgwDE1MTCgQCCgUClVP6lxbW9P8/PyJYU+xWKw+/rwHQ47jKJfLKRKJyDCMI92FgzZMrwUAAACA4fbOoAsA/KxYLDbcZD+dTnftGktLS9XTJ13X9eV+YK7ran5+vnrCpWVZ1dNFHceRbduybbv688pjmqkEjK7rKpFIHHtQwFnmOI5isZgcx/H10tdheC0AAAAAQKIjDGiq0Sb7nWza34hpmqfatH8QKt1e0sFJm+VyWfl8Xvl8XqVSSeVy+UiH3ElhyjAss7UsS6VSSTs7O77u/BuG1wIAAAAAJIIw4FjFYrHhPldLS0tdv1YsFpPU/OTIZorFomKxWN2SxUgkolwu13FtmUymulwumUw2DO0sy1KhUKjrlDtpj7BsNivLsmRZlvL5fMd1+p3flkPWGrbXAgAAAMDwYmkkcIzjAoFONsg/TjgcVjqdPnVnjuu6mp2dPbJ803VdFYtFFYtFpdPpjjb2v3fvXvXrRh1ytZLJpN68eaNMJnNiqBcOh4dqCd6guq4SiYSy2WzTMcP2WgAAAAAYXnSEAcdotGl4NzbIP04ymTzVkkvHcTQ1NdVwD7PD40KhUFuboLezt1U6nVYwGOTUSB/I5XJd6QoEAAAAgPOCIAxowHGchkFOL7rB2uG6bnWD82g0qmw2q1KppEKhcOxeVJFI5NTh1OEQrNUwbWlpydebww8Dx3FO7OADAAAAgGHD0kiggeMCo0Ag0OdKGqsEUoVC4UiXWjgcViKRaBh8xWIxlUqllq9jWVbd/VQqpbm5uRM71yonSvr1FMzzznVdX+9JBgAAAACDQkcY0MBxQZifTtdrFIJVVDavP8y27VMtkTRNsy7Icl1XoVCopc4yz/MIwQagsm8cS1MBAAAA4CiCMJwZqVRKhmG0dQuFQqe61nHL+vwS7JimeeJ+ZZZl1Z3iWNHoe80cHu84jgKBQFf2nrJtW4lE4sROO9d1lcvlFAqF6q5bWf43MTEhwzAUCASUyWSOPN5xHKVSqeqpmoFAQIlEouHrXLnO4ffQYZFIpDpf7a2bS0JzuVzddSYmJhQKhRo+R+ng99lo37ja+o77Xbf6WlS4rqtMJqNIJFL9/VfqS6VSLQVxjuMok8koEAjU1Vz7GgQCgeoyYAAAAADomAccQ9KR287OTl+uHY/HG16/mzfLsk59/UKh0Jfnf1gymayrIxwOt/xY0zSPPI/TCofDDX8fwWDQK5VKp5qrVCp58Xi8ri7TNI+M29nZ8dLptBcMBuuumc1mPc87+jupvcXj8eo8zcZZlnXse/rwe+A46XS6pX8jpVKp5dcgn89Xfy/5fL5uDsuyjq19Z2fHK5VKR2oqlUp1t9r5WnktDstms9Xx6XTaK5VKXrlc9vL5fN3rFY1Gjzx2Z2fHSyaT1edRW+POzs6R17u2rnK5fGJtAAAAANAMHWE4M+LxuEqlUlu3bDZ7qmsd1/nll66U03SmNeocO+mkycMKhUJ136/D84RCoZY7dhzH0ePHj1vuOgoGg0c2fC+VSgqFQrJtW/l8XuVyWTs7O3WHBORyOdm2rUgkomKxqEKhoJ2dHe3s7KhQKFR/f47j6N69ew2vHYvFWqqx0e+lE8VisXrtpaWluvmDwaDy+bykg9rn5+frHmuapoLB4JFDHSrfq/3ZaV+LilQqpUQiIdM0VS6XlUwmFQwGZVmWotGoSqVStea1tTUFAoG698b29rYikciR9+XGxoampqaqy3rL5bKy2Wz1tXJdl83/AQAAAHRu0Ekc/Es+6whLp9Ntz3e4G0cndIQd7qip3CrdSP12uKupUafNcSrdRd14Hsf9XtqZt3auk7qQDncJHdeZd7hzrbYzrFbt7+S4axcKhZY6uHZ2drraERaNRk98z580T6u1V7T6WtR2gp30Wtd2fB3XwVhbo2maDV/Xw+/ffv0NAgAAAHA+0REGNOD3jrDTOHzyo9T+80gmk9rZ2Tm2C6pyWmUr8zeq6zi1hxTE4/Fj90c7fFLicZ2AtfW7ruvb1/W492Ht97uxKX6rr0UqlapePx6PtzRWOuhya3RIQ+3zWFlZafi6Hn6vbWxstFQrAAAAADRCEAY0cFwwUC6X+1xJ5xqFKW/evOlovnw+r1KpdGQJnnQQeszOznY1XGp1KWjt63aa5aN+OmFxZWVF6XRa+Xz+xLBJ6l84m8vlqtdqJTiLx+N1r8FpD2moVXs9P71WAAAAAM4egjCggeM6jhp1tfhdo9DiwoULHc8bDAaP3X/Ntu0j+1f1Q7unem5vb3e3kA6YpqlkMnnsnmyn3d+tWwqFQvXrVjvIav8dncV/OwAAAADOH4Iw4BiNup0cx/HtMrrTOM2yxJPE43GVy+UjIdTa2pqvw492Q7N+cxxHuVxOxWKx4Ub4/azjtA6/z87Dvx0AAAAAZxtBGHCMGzduNPy+n8Od4xwOfboZhFXmK5VKR65z2tM68VuVUy+z2WzTfdH6pTbEajUUO3wipZ867wAAAAAMJ4IwDIRt24rFYoMuo6nj9mc6i+HO4U6cVrqKisWiQqFQy9ewLEsrKyt13xvUMr6zLpFIKBQKybKsjvbW6qZ2NuivPeRA6n4ACwAAAACnRRCGgZifn/f9MinTNBvu01QsFs9UwHP499xqZ5FlWbJt+1QdcId/X2xsfnqJREK5XE5SZxvMd1ttiNXqSZu1HWCEYAAAAAD8gCAMfVcJkiKRyLFjur2Eqt35jgsiUqlUJ+U01KtgcGNjo+5+IpFo6XGV4KLV8Y0Maj+rfurme9W27WoIZlmWr/YxO7xUuFJnM7WnrDYKlQEAAACg3wjC0Feu61aXRJ72g/GbN2+6WksrAcZxS9OKxaIymUzXanEcR6FQqKPQ6TiHT/s7ze/dsiw5jtNy8He4A+y4fdbOgsPL+o4LKrvZ9Vbbfdds3kF0U0aj0bpgrpUlwrXPZ2lpqRdlAQAAAMCpEIShoV580HZdV7Ozs3JdV6ZpnnqpVLdranW+ZDLZcDlhKpXqysb5xWKxuql4L5bCra2tVb8+7f5mldcok8m01AFUO79lWUomk6e63nFafa1qx530mJN+fribrdHzbxQSdrNDrPa1q2jleof/bR0O1dr9t1S7B5zjOE3f/7ZtV5cQp9NpX3W3AQAAABheBGFo6LhulHY/5Fc2Xq98MJ6bmzv19TsJGDrt2ikUCg07qSKRSNudYa7rKpFIKBKJHHvqYrPHtiKXy1WfezsnD9YGKolEQolE4thr53K5ut9FbSdaI7Wv56D3izvu+rW/r1QqpUQioWKxqLW1NSUSCQUCgSMhT6v/dhpd83D4FovFlMlkqh2IgUBAjuPUvS7ZbFbFYlGpVKo65+EgrPK6OY5TtwdZo9qavRbRaLQurI3FYg3Hu66r+fl5SQfvu+MC0VZf99rf6aDfKwAAAADOOA9oIB6Pe5KO3MLhsFcul098/M7OjlcoFLxkMulZlnVknnw+f+xjy+Vyw2tL8nZ2dtp6PsFgsOF82Wz2VPMkk8mG8wSDQa9QKLQ0x87OjpdOpz3TNKu/05Oe1+HrmqZ54nVqf4/hcLil2g7LZrMNn280GvWSyaSXzWa9eDxe9xq3+h45/Joc957Y2dk58rs+TjQaben1LRQKdePi8fix1668TodvpmlWX/PaMcFg0CuXy0de01ZrOzyu9pZOpz3Pa/zvMxqN1s1z3Hu10XNt9bWoyOfz1edsmqaXzWa9crnslctlL5vNVt8PlXobafU1ODyu3fcyAAAAAHie5xGEoU6pVGr6Qbxbt0bBz87OjpfNZo8NHiR5lmV52Wy25UCsVCp54XC4aS3JZLKl4KaiUCgcG6yZpulFo1Evm816hULBK5VKXqFQ8LLZrJdOp+seZ5rmiYFDRaNw0LKsY8O32qDicEByGoVCoVpnPp/34vG4Fw6HvWAwWPc6VZ73SWFg5f113GscDAar4UmzsZZledFotPo+OBzGHQ5OKnMWCoVj3w+WZTUMY3Z2durmDwaDXjKZrBtT+d7h99HOzs6Jz7fRNdPpdPV6lmV5yWSy7j2/s7NTfR61v7PDaoPoYDBY9347zWtxnGw264XD4bpQrPK44/6NNvs3WfsalMvlpuNOqg0AAAAAGjE8z/OEoZfL5XqyUXsjwWBQpVKp7nuGYZx6HtM0tbOz0/BnsVis4f5KJykUCi0vH1xbW9O9e/eqyz1bZVmWEomE4vH4qfZNquxHdfh5maapmZkZmaYp13W1sbFR3Yctn8+fejkkAAAAAADnFUEY0CHXdVUsFvX48WM5jlPdi0k6CL0qBwNcu3ZN0Wj01IcEnHS9yjUr15mZmVEsFiMAAwAAAADgEIIwAAAAAAAADAVOjQQAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUHhn0AVg8AzDqH49MkI2CgAAAADn0f7+fvVrz/MGWAkwOARhqFP7hxEAAAAAAOA8IQjDEb3uCqsN23p5rX5d57xe6zw+p35e6zw+p35e6zw+p/N6rfP4nPp5rfP4nPp5rfP4nPp5rfP4nPp5rfP4nPp5rfP4nPp5rXavQ+MDumVra0u2bcs0Tc3MzGhsbGzQJbXOw9AbGRnxJHmSvIsXL/b8ehcvXuzLtfp1nfN6rfP4nPp5rfP4nPp5rfP4nM7rtc7jc+rntc7jc+rntc7jc+rntc7jc+rntc7jc+rntc7jc+rntdq9TuWz38jISI8qw3m3ubnpzczMeCMjI3W3a9eueVtbW4MuryVsCAUAAAAAADCk3n//fV27dk1XrlzRlStXdOHCBd24cePIuJcvXyoUCsm2bXmeV3fb2NhQIBDQT3/60wE8g9NhaSQAAAAAAGfc8vKylpeXm45haSQaMU1TxWJRpmlqaWlJ0WhUU1NTdWN2d3c1Ozsr13VlGIYMw5DnedWlkY7jyHEcxWIx/Z//838G9ExaM9Ag7MqVK4O8fB3DMPS///f/HnQZAAAAAACc2t7enl6/fj3oMnAG2batVCqle/fuHTtmfn6+GoJ5//fE0XQ6rTt37lTHFItFzc3N6eOPP9bdu3d7Xne7BhqElcvlul/iIFSubxjGwGoAAAAAAKATY2NjunjxYtMxBGU47MGDBwoGg01DsCdPnmhtba0uP7l//35dCCZJ4XBY9+/f15MnT3pddkeGfmnkIEM4AAAAAAC6YWFhQQsLC03HjI6OsjwSdXK5nPL5fNMx8/Pz1eYhwzAUDAaPhGAVN27c0NLSUtfr7KaBB2Ge5ykajcqyrIFc33Vd5XK5gVwbAAAAAABgUMrlsq5evXrsz2/fvl23JNIwDK2srBw7fnx83PcNRwMPwnK5nG7evDnQGqLRqD744IOB1gAAAAAAANBPlmVpa2tLly9fPvKzly9fKpvN1oVg8Xi8aXD28uVLzczM9K7gLhh4EBYOhwddgq5duzboEnzBMIwTW2m7YWFhQXt7exobG+v5tfqln8+pX9c6j8+pn87r7+88vv/6idfq7FyrX87r7+88vv/66Tz+/s7rtfrlPP7+zuNz6qfz+JwwGJZlKZfLHdncfnd3V7FYrHrfMAxZlqUf/OAHTedbX19XKpXqSa3dYngD7FkbGRmR67oD/8e7u7uryclJvX37dqB1DEplnfjIyMi5+h1cunRJr1+/1sWLF/Xll18Ouhz4BO8LHMZ7Ao3wvsBhvCdwGO8JNOL398V5/eyH9q2trWlubk6Li4taXFyUdHD6YyqVqjvg0DAMlUqlE7vBwuGw3rx506fq2zPQjjBOavSX/f19Xbp0qemYVjZgBAAAAAAA/heNRjU7O6t0Oq10Ol39fiX8qvROPXz4sGkI9ujRI993glUMNAjz0wZqfqplkE46Tndvb69PlQAAAAAAgF5bW1vTzZs39eTJk7rve54n0zS1srKi69evH3ncq1ev9PjxY62trclxnGp49uMf/1jf/OY3+1X+qQ00CEun0wNfFikdnGpQm3wOs4sXLzb9uR9eLwAAAAAA0B3j4+PK5/NaX19XoVCQbdsyTVPXrl1TPB7X+Pj4kcesrKwon89LkqampjQ1NVX92c9+9jOCsOPcuXOnr9c77iSEQdTiRyMjI75cxw4AAAAAAHprdnZWs7OzLY2dn5/X/Px8jyvqjZFBF9BPiURi0CUAAAAAAACcS69evRp0CScaqiBsY2Nj0CUAAAAAAAD4xtbWVtfmOgtdYgNdGtmura0tua7b8njHcZTNZk/1GAAAAAAAgPMukUjon//5nzueZ3NzU7Ztd6Gi3joTQdjW1pbS6bSKxaIcx2lrjsrpBRgeCwsL2tvbY4N/1OF9gcN4T6AR3hc4jPcEDuM9gUZ4X+AsajdnOSyVSnVlnl4zPM/zBl1EM0tLS8pkMpIOwqxOGIaht2/fdqOsc2V0dFT7+/saGRnh9wMAAAAA5xSf/dDI6OioXNfV7//+77c9xyeffKJkMnkmchdf7xH25MkTpdPpagBGRxcAAAAAAED3eJ7XUTfX0tLSmekGk3zeETYzMyPbtmUYhjzPk2VZCgaDsixLknThwoUT53jz5o1c19Xq6qp2d3d9n0wOAv9VAAAAAADOPz77oZGRkREZhqFisaivf/3rp3rsjRs3tLa2VtfA5Pf3lq+DsMqLIUnPnj3T7Oxs23M5jqMrV674/gUZBP4YAgAAAMD5x2c/NDIycrBYcHJyUpubmy0tkdza2lIkEpHjONU92Sv/1+/vLV8vjTRNU5KUTCY7CsEkybIsTU1NdaEqAAAAAACA8yMajWp7e7ul7OXJkycKBALVTfYrIVg0Gu11mV3h6yCssgTy2rVrXZkvm812ZR4AAAAAAIDzIBwOa3V1VRsbG9rY2NBHH3107NilpSXNzc1Vl0J6nqfx8XHZtq3V1VVdv369X2W37Z1BF9DM7OysXr58qe3t7a7NBwAAAADAebO8vKzl5eWmY/b39/tUDc6SYDBY/b8bGxuamZmRZVm6e/dudcze3p5mZ2dl23bdUshwOKx8Pq/x8XFJB0GZ3/m6I+zjjz+W53mybbsr8z169Kgr88CfPE96u9/85t8d8QAAAACgfXt7e3r9+nXTG9DI/fv3q18Hg0Gtrq7q/v37+uyzzyRJL1++1NTU1JEQLJ1O69mzZ9UQTJKmp6f7Xv9p+XqzfEnKZDJKp9Pa2tpqacO2Zq5du6YXL150qbLz47xsmPh2X3rnu83H/OZ70qiv418AAAAAOL1WOsIqYdhZ/+yH3svlcrp9+7bi8bhyuVxdAGaaptbX1xuGXp988on+5m/+ZgAVt873QZgkRSIRjY6O6vPPP297js3NTb377rv8Y2+AIAwAAAAAzr/z8tkP/ZFKpfTgwQNJOnYp5GEffPCB/vmf/7mfZZ7amQjCJGlmZka7u7tKpVKanJxs6THb29tyXVflclmrq6tyXZd/7A2clz+GBGEAAAAAcLzz8tkP/ROLxfTkyRNJByv2Tur2unDhgt68edOP0trm683yK54/fy5JKpfLSiQSbc1RaeMDAAAAAAA4z3Z3d7W+vt7xPB999JHW19eVSCRkWZaePn3acNz29ray2axc1+34mr3m+46w27dvK5fLVe+3U26lhc8wDFLvBs7LfxWgIwwAAAAAjndePvvhZLu7u5qYmOhrQ9BZyV18HQmsrKwom81Ww692MzufZ30AAAAAAABdMz4+rmAwKM/zOr5JamnMWeHrpZHZbFZS/aZskUhEpmmeep+whw8famtrq4fVAgD8YO4nP+rbtVa/8a2+XQsAAAA4jXA4LNu2q5lKu1p57FkKw3wdhFVeMNM0tbGxoampqbbnmp+f14ULF7pYHQAAAAAAaMa2bTmOI8dxFAwGFQ6HT3xMJpNRoVDQxsaGXNeVZVkKBoNKJBItPZ45D9y4cUOZTEaSlEwmFQgEWm4qOo2z1oDk6yDMNE3t7u5qaWmpoxCsMtf09HSXKjuf9vf3denSpaZjFhYWtLCw0KeKAAAAAABnieu6yuVyevz4sWzblmmaisfjikQimpmZafrYYrGoWCwm13UVDoeVz+dlWZZs21YqlVIkEql+3zTNluoZ5jmnp6dlmqYymYxu3rzZ0mM6cf36dV25cqXn1+mUr4OwUCik58+fy7Ksrsy3srLSlXnOs9evXzf9+d7eXp8qAQAAAACcFa7rKpVKVQ+7CwaDKhQKLXcxFYtFRSIRSVI8Hq9ulSRJlmUpGo0qFAqpWCwqFAqpVCqdGAgN85wV4XC4a5nKSSzL6riJqR98vVl+IpGQ53lyHKcr89ERdrKLFy82vY2NjQ26RAAAAACAj+RyOU1NTVVDsGw2q1Kp1HII5rquYrGYpIMwpTYIqpXP5yVJjuNUxzNnczdu3OjJcsjjRKPRvl2rXb4OwqLRqKanp/X48eOuzPf06dOuzHNejYyM6Msvv2x6Y1kkAAAAAKAilUopkUhU97Mql8uKx+OnmqOyJLAy33Eq3VHSQRdVJXhjzuNdv35dV69ebWlsN9y/f79v12qX4fl8a3/HcfTuu+/qyZMn+uY3v9nRXNeuXdOLFy+6VNn5MTo6qv39fY2MjOjt27eDLqdtb/eld77bfMxvvieN+jr+BdApTo0EAABorNuf/WKxmNbW1iQd7Mu9ubnZ8pK9CsdxFAgEqvd3dnaazrG2tlbtiDJNUzs7O8yJU/F9JGBZlh4+fNjxxm67u7uybbtLVQEAAAAAMLwikUg1BJN0qn2raqXT6erX4XD4xDlql965rltXA3N25vnz51paWtKjR49OHPvkyRNduXJFP/7xj7taQz/4erP8ylLG//bf/psmJiZ05cqVttabuq6r1dXVbpcHAAAAAMDQyeVyKhaL1fvZbLbtDdlrl/gFg8GWHmNZVnUv8cePHx/JCYZ5znbduHGjLljb3d3Vd77znWPHX79+XVNTUwqHw7p3757y+by++tWvdqWWXvN1EHb37l29fPmyet/zPGUymbbm8jxPhmF0qzQAAAAAAIaO4zhKJBLV+8Fg8NR7glUcXrV17dq1lh4XDAarYdDhrqhhnrNdt2/frm7GL0mGYejZs2dNg7DaWqamphQKhbS+vq6vfe1rXampl3y9NHJubk6e56myjRlBFgAAAAAAg3P4xMKlpaW256rtKpPUclfZ4XG1odIwz9mO3d1dZbNZGYZRzVw8z2v5ZErTNFUqlbS9va1QKKSf//znHdXTD74Owiops2EY1UCs3RsAAAAAAGif4zh1wYtpmh0tzTt8mF2re4xduHCh7v7GxgZztunevXuSDsKv8fFxxeNxlcvlU+3TblmW5ufntb+/33KANki+Xho5Pj6uYDColy9fKp1OKxgManJy8tTzOI6ju3fv6tWrV90vEgAAAACAIZDNZuvuh8NhSQdL9B4/fizbtuU4jkzTlGVZunHjhuLx+LEhT2WJX0W7XVHlcpk521QsFjUxMaHV1VXNzs62Pc/777+vlZUVlctlffbZZ/qrv/qrjurqJV8HYdLBhm2BQEB37txpe47p6Wldv369rRCtFZU10olEomsb1TVS+aPiOI6CwWD1jw4AAAAAAL1Wu7m7JE1OTioUCh1Znue6rmzblm3bSqVSyufzDT8rHw6D2uW6LnO2yXEcffzxxx2FYFJ9QLe6uurrIMzXSyOlg4S5W0sbZ2ZmujJPheu6isViCgQCKhaL2t7e7vr8mUxGoVBIhmFodnZWL168UDAY7PpzAQAAAAD40/Lysi5dutTxbX9/v+0aHMc5Erqsrq4qkUhoZ2enui1RuVw+snl+LBZruLF7uyHO4Q6z2s/iwzxnO1zXbfvEz0Z1eJ7X8XLNXvN9R9j09LTS6XRX5vqf//N/dmUe13V17969tk+wbGX+VCpVTduDwaAKhQIdYAAAAAAwhPb29vT69euB1nC4g8k0TW1ubh4JZizLUjabVSgUqjtdcn5+XuFwuOW9sE6j066oYZ7TsqyuNPUUCoXq1714nt3k+44wSZqamurKPP/rf/2vjueodGh1ejLDcXK5nKampqohWDabValUIgQDAAAAgCE1NjamixcvdnzrxOEgrNneX5Wf13aGVRpKanUrFKudZ5jnbEcwGFQ+n++4jlwuVz11shdhZzediSCsWzptz7NtW+FwWOVyWYVC4chGgZ1KpVJKJBLV1sRGLaUAAAAAgOGysLCgL7/8suPbyEj7EcDhTdmvXbt24mNSqVTd/cOrqrq1j3ftPMM8Zzvi8biKxaJ++tOftj3HjRs3ql1ghmH4fisn3y+NbGRra+tUrXaO4yibzXbcnhcMBuvud/PFrV0zbZqmSqWS71NUAAAAAMBwOPx5upXPq5ZlKRgM1q2osm27+tm63c+8zWoZ5jnbEQ6HdfXqVYXDYRWLRX39619v+bF7e3uan59XPp+XYRjyPE+GYSgWi3VUU6+diSBsa2tL6XRaxWKx7ZMVKi9IN3UrqIpEIioWi9X7hGAAAAAAAD8JBAJtPW5mZqYuCHMcpxqEHf6Z67otfRY+vKdVbW3DPGe7VlZWNDMzo3A4rEgkolQq1TQQ29vbq9vXvMIwDFmWpZs3b3ZcUy/5PghbWlqqtk926/RIP8nlcnUhWDab7cqJDQAAAAAAdMvhkKbVFVeHg5raICcUCtX9rDYka+bwMs3aPbWHec52BYNBra6uam5uToVCQYVCQaZpyrKs6q1So23b1QalSkZT2w3Wjf3Ges3XQdiTJ0+qJ0YahlH95Z4XjuPUnaIRDAbZEwwAAAAA4DuHtwZqdbXW4QCtdk+rRnO2EgbVhnCVwIY5OxONRrWxsaHZ2Vnt7u7KdV3Ztn3koMDaTKay6s7zPJmmqfX1dV29erUr9fSSr4OwyokSlQCssr648kJfuHDhxDnevHkj13W1urqq3d3dntZ7WofXzS4tLQ2oEgAAAAAAjnc4pDncmdSq2uAmGAzKNM1quPPixQtFo9ET56g9CO9woDTMc3YqGAxqa2tLd+/e1YMHD478vNKgJB2EX5VQLB6PK51Oa3x8vKv19IqvgzDbtqu/5EKhoNnZ2bbnSiaTunLlSrdK61ilpbDCNM2W3vQAAAAAAAxCZUN1SXVb/DRzeAnl4UBtbm6uutfU4e6j49SOO3wy5bDP2anx8XGl02ml02mtr6+rUCjItm1tb2/LcRxNTk7KNE3NzMwoEokoHA6fmQCsov2zU/ug0kKZTCY7CsGkg9R5amqqC1V1RzabrbtfWde7tramWCymQCAgwzA0MTGhUCikTCbT8amXAAAAAAC0qzZ4cRynpc+otZ1jjfazqt0uqJVwrXaMZVnM2UOzs7O6f/++nj17po2NDW1vb+uXv/ylNjY29PDhQ12/fv3MhWCSz4OwSsvktWvXujLf4fBpkA6frjA5OalQKKRYLKa1tbXqeuvKutxUKqWJiQmtra0NolwAAAAAwJALh8N1Sxsr2xk1UxveVPYArxUMBusCnZM+89Zuxn5cR9Qwzzkou7u7Z2a7J8Pz8e7zqVRKn3zyibLZrC+P33Qcp+4EjGw229Jm94cfJx10v6XTac3NzVU74RzHUTqdPhKa5fP5ri6jHB0d1f7+viTp4sWLHc+3sLCghYWFjuc5rbf70jvfbT7mN9+TRn0d/wLo1NxPftS3a61+41t9uxYAAECnKp/9RkZG9Pbt27bmsG277sTDcrl87IbtxWJRkUhE0sE+Usc1p9R+Rg4GgyqVSg3Hua6riYkJSQehXKFQOLbOYZ5zUGZmZjQyMqKf/exngy6lKV9HAh9//LE8z2t5rexJHj161JV5OnX4dA3TNLW5ual4PF53ooZlWcpms0f+WMzPz/dsmeTr1687vu3t7fWkNgAAAADAYAWDwbrPqJFIpOHnU9d1q0v/Dj/mMMuyqt1Otm0rk8k0HFfZMsk0zbruKOb0h5mZGZVKJX388ceDLqUpXwdh4+Pjun//vh4/fqx/+Zd/6Xg+vyyNPByEHQ7ADovH43WdZq7rttSC2o6LFy92fBsbG+tJbQAAAACAwYvH4yoUCjJNU47jaGpqSplMRrZtV8OcqakpOY6jeDx+bJdTrWg0Wp0zlUopFovJtm25rqtisahQKCTbthUMBrW5udn0MzRzdmZra0uvXr3S8+fPW7598sknyufz8jzPN9nLcXy9NLIiEolodHRUn3/+edtzbG5u6t133227/bORdpdGplKpupS3laWOjZZTduul60Z7rB+wNBKAxNJIAACA4/Tis18ul1M+n9fGxoZc15VpmtWN3BOJxLHLJpvJZDJ6/PhxdUP+yimFiUSi7W2ChnnOVjx9+lTZbLbl00CP43meDMPwdbZwJoIw6aDFbnd3V6lUSpOTky09Znt7W67rqlwua3V1Va7r+iIISyQSdft+FQqFlk57qKTAFaVS6cjRs+0gCANwnhCEAQAANHZePvuhux48eKDFxUVJnTXcGIYh6WAp7IsXL7pSWy+8M+gCWvH8+XNJB5vw1R4vehqVVNIPDnd2tWpmZqYuCHMcpytB2DD5u5fSX4ROHgcAAAAAwHn38uVLpVIpGYbRMAQ77vvHjbMsSysrK70otWt8H4Tdvn272j3V6gtwmF8CsIrD63lb3fj+cIC2vb3dpYrOh797efKYv1w76Aj7s+ne1wMAAAAAgJ9V9vMaHx9XPB5XIBCoLmfd2dnR3NycJiYmtLq62vDxruvq2bNnevTokWzb1tWrV/tVett8HYStrKxUX5R2QzCpe3tpdcvMzEzd/cOb5x/ncIDW6hLRYbD7a+nbP2lt7K1/kP7k/5HGvtLTkgAAAAAA8LVisahAIKAvvvii4c/n5+f16NEjBQIBXb58ueGY69evS5IWFxc72tu9X3wdhB0OwcLhsCKRiEzTPPU+YQ8fPtTW1lYPq23d4eWM5XK5rXna2XTwvPpbW/q3/2xt7L/+h/RDW/rrP+xtTQAAAAAA+JnjOE03yF9cXNTKyooymYy+//3vHzsulUrp3Xff1aeffqrvfOc7vSi1a3wdhNm2LcMwZJqmNjY2NDU11fZc8/PzunDhQher60w4HK6+2Vo9leHwEkr2B/utf/zF6cb/0y8IwgAAAAAAOLxqrdbU1JRmZ2eVzWZ1//59jY2NNRxnWZamp6eVTCY1Pz9/7Dg/8PX5eZWlgEtLSx2FYJW5pqf9szFUKpWqfl05FvUktZ1jrZwyOUx2/r234wEAAADAz5aXl3Xp0qWmt/39/UGXCZ8JBoMn7j+eSqXkeV71ZMnjXLt2TZ7n6f79+90sset8HYSFQgfH+3VrCWC3Ty5odZP7RsLhcN3zunfv3omPqe0cS6fTbV/7PJr43d6OBwAAAAA/29vb0+vXr5vegMMsy6oeUHiccDis6elpZbNZ/fznPz923MbGhiQpn893tcZu83UQlkgk5Hley5vJn6TbHWGH6zptMFb75shkMk2fZ7FYrP48Ho+zLPKQP/mD043/41OOBwAAAAA/Gxsb08WLF5vegMPm5uaUTqf16aefamtrS8+fP9fz58+PjFtaWpLneQoGg/rxj3985OcPHjyQbduSWj8QcFAMz29HKh4SCoU0MjKiFy9edDzX06dP9eGHH3ahqoPQKxQK1b3AwWBQpVLpVPPkcjklEglJB0lsqVQ6cjpk7bXaucZJRkdHtb+/r5GREb19+7arc/fL7q+li3db2zD/935Her3EqZHAeTX3kx/17Vqr3/hW364FAADQqfPw2Q/dNzExob29vbrvhUIh/exnP6v7XiQS0fr6ugzDUDAYrO4tVmncqcRLzU6h9ANfd4RJB11TpVKpYeJ4Wq0sP2zGdV3FYjFFIhFNTEwcSTkrm/tHIhHFYrFqGtpMPB5XoVCQaZpyHEdTU1PKZDKybVu2bSuTyWhqakqO4ygej3c9BDsvxr8iff8brY19+KeEYAAAAAAASAfbSFVCLM/z5HmeSqWSXr16VTcum81Wv7ZtW7lcTrlcTuVyufr4SkjmZ77vCJMOuqaWlpb05s2btufY3d3V5OSkr1PvXC6nfD6vjY0Nua4r0zRlWZbC4bASiUTX9ko77Lz8V4G3+9I7320+5odR6c9D/akHwGDQEQYAANDYefnsh+5bW1vT3Nxc9f7ExETDDKZYLOr999+XYRhHfuZ5niYmJrS5uenrUyN9HYQ9ffq0+nUymZRhGIpGo6eex3Vdra6uynVd/rE3cF7+GLYShP3me9Ko7/sgAXSCIAwAAKCx8/LZD72xu7tbzU7i8bjGx8cbjnMcR4lEQuvr63XfDwaDyufzmpqa6ke5bfN1EDYzM6OXL19W73ue1zB1bEXlsfxjP+q8/DEkCAMgEYQBAAAc57x89oM/7O7uVk+KtCzL9wFYxTuDLqCZubm56j5bhmG0HYIBAAAAAACge8bHxzU7OzvoMk7N170xldMUDcOobtjW7g0AAAAAAAC/tbe3p9u3b+uDDz7Qp59+Ouhy+sLXHWHj4+MKBoN6+fKl0um0gsGgJicnTz2P4zi6e/fukRMPAAAAAAAAhlU0GtX6+ro8z1OxWNTU1JQ+/PDDQZfVU74OwiTpxo0bCgQCunPnTttzTE9P6/r1622FaAAAAAAAAOdRsVis24bKNM3BFdMnvl4aKUnhcLhrSxtnZma6Mg8AAAAAAMBZZ1mWpIMtqaLRqN57770BV9R7vg/CpqenlU6nuzJXt+YBAAAAAAA46+LxeLX56PHjxx3Pd/v27Y7n6DXfB2GSunYE5/T0dFfmAQAAAAAAOOuSyWT15Mdf/epXHc9XLBY7nqPXBhqE+Wnzej/VMij7+/u6dOlS09vy8vKgywQAAAAAAF1SKBT04YcfKhqN6l/+5V/anmdzc1OO43Sxst4Y6Gb5oVBIOzs7GhsbG2QZ2t3dVSgU0tu3bwdahx+8fv266c/39vb6VAkAAAAAAOiHzz77TI8fP1YwGNTi4qJisVhLWU0lI9jY2FAymex1mV0x0CCsW5vgd4OfahmkixcvNv35oENLAAAAAADQHe+++642Nzer9z3PUzweVzweP/VcnufVnUDpVwMNwvz0C/JTLYMyMjKiL7/8ctBlAAAAAACAPojH41pcXKzeNwzj3DcKDXSPsPP+ywUAAAAAAPCrRCIh6SAA6yQEO0vNRQPtCJMONlP72te+NtAaNjY2Bnp9AAAAAACAfhsfH9f169f15MkTSVI4HJZpmqeex3Ec2bbd5ep6Y+BB2Pz8vBYXF2WapiYnJ/t67e3tbTmOc2Y2dAMAAAAAAOimRCKhp0+fqlQq6erVq23Pk8vldPv27e4V1iOGN8D1iSMjI75on6ts6Dasp0aOjo5qf39fIyMjZ/p38HZfeue7zcf85nvS6EAXBAPotbmf/Khv11r9xrf6di0AAIBOnZfPfmhP5YTH7e1tSdLk5GT1QLzJycnq9zsxMjKi/f39jufppYF3hFUMKo/zQxAHAAAAAEAnlpeXtby83HSM3wMKdN/o6OixP8tms7p586YkaWlpSXt7e9VgrF3tnDbZbwMPwga9Yf6grw8AAAAAQKf29vb0+vXrQZcBnzmceYTDYSUSCYXDYY2Pj1e/f+fOna5c7+HDh12Zp5cGGoTt7OwM8vIAAAAAAJwLY2NjunjxYtMxBGXDqbISrlAo6L333htwNYM30CCsNn0EAAAAAADtWVhY0MLCQtMxlT3CMHzS6TQh2P/FtuEAAAAAAADnWDQaHXQJvkEQBgAAAAAAcI5dvnx50CX4BkEYAAAAAADAOWWaZt+udeXKlb5dq10EYQAAAAAAAOfU5ORk365VLpf7dq12EYQBAAAAAACgIy9fvqyeUOlnBGEAAAAAAABo297enlKp1KDLaMk7gy4AAAAAAAAAveE4jj744IOezL29vS3XdeU4jjzPOxMdYQRhAAAAAAAA51ixWOzJvJ7n9WTeXiIIAwAAAAAAwKnVdoCdlVCMIAwAAAAAAOAc62VIdRaWQ9YiCMO5MWJIv/neyWMAAAAAABgmwWCwZ3NX9gg7KwjCcG4YhjRK0AUAAAAAQJVlWdrY2OjpNRzHUSwW06tXr3p6nW4gCEPV/v6+Ll261HTMwsKCFhYW+lQRAAAAAADwO8uytLKyomvXrg26lBMRhKHO69evm/58b2+vT5UAAAAAAICzopfLL7tpqIKwp0+f6sMPPxx0Gb528eLFpj8fGxvrUyUAAAAAAKBT29vbfbvW9PR0367VLsM7K+dbdsGVK1f0xRdfDLoM3xkdHdX+/r5GRkb09u3bQZcDAB2Z+8mP+nat1W98q2/XAgAA6BSf/YbPyMiIDMPg9a4xMugC+uXJkydn6hQDAAAAAACAbjgLm9j3y5lZGvnq1SsVi0WVy+VTBVrb29tn7ihPAAAAAACAbsnlcvr+978/6DJ8wfdB2NbWlhKJhIrFYluPr135aRhGt8oCAAAAAMA3lpeXtby83HTM/v5+n6qB32SzWUUiEX3zm98cdCkD5/sgLBwOa3NzU57ntRVkVR4zRFuhAQAAAACGzN7enl6/fj3oMuBj0WhUkUhEiURCs7OzQ3sYnq+DsFu3bslxHBmGIcMwCLMAAAAAAGhgbGxMFy9ebDqGoGw41WYpz54907Nnz2QYhrLZrG7evDnAygbD10HYxsZG9eupqSml02mFw2GNj4+fap6XL1/q7t27evr0abdLBAAAAABg4BYWFrSwsNB0TOXUSAyPyuu9u7sr6WAfdUlyXVeWZQ2srkEyPB+3WVWO+TRNU5ubmx237U1OTlZfdPwWR+gCOE/mfvKjvl1r9Rvf6tu1AAAAOsVnP0AaGXQBzZimKUmam5vrytrVeDze8RwAAAAAAAA4m3wdhMViMUlSIBDoynz379/vyjwAAAAAAAA4e3wdhC0uLsrzvLq9wjqxt7fXlXkAAAAAAABw9vg6CJuamtLDhw+Vz+f185//vOP5Zmdnu1AVAAAAAAAAziJfB2HSwb5eN2/eVDQa1b/8y790NJdt212qCgAAAAAAAGfNO4MuoJnKUsbFxUWVSiW99957SqfTmpycbHmO7e1tua6rbDbbqzIBAAAAAABwBvg6CLt8+bJ2d3frvheJRNqay/M8GYbRjbIAAAAAAABwBvl6aeT8/Lw8z6veJNXdP80NAAAAAAAAw83XQdhHH30kSdVOLgItAAAAAACA1jx69EhXrlyp5ivw+dLI6elpWZalzc1NhcNhBYNBXbhw4VRzvHnzRq7rKpfL9ahKAAAAAAAAf3n58qXi8bgkyXEczc3N6cMPPxxwVYPn6yBMkqLRqF6+fKl//ud/7mieZDKpK1eudKkqAAAAAAAA/7p3756k366yM01zgNX4h6+XRkrSjRs3ND4+3vE8lmVpenq6CxUBAAAAAAD4m23bkg62mcpms3rvvfcajrtx44aeP3/ez9IGyvdB2PT0tJaWlroyVz6f78o8AAAAAAAAfuY4jiYmJlQqlXTz5s1jx+XzeTmO05Vrvnr1qivz9JLvgzBJXevkmpqa6so8AAAAAAAAfmaappaWlvq6Oi6VSvXtWu3y/R5hjezt7alYLKpQKGh7e1uO42hyclKWZSkQCCgajery5cuDLvPM2d/f16VLl5qOWVhY0MLCQp8qAgAAAAAA7bAsS5Zl9fWa3eos66UzFYRtbW0plUppbW2t7vue51U3f5MOEkjLsrS4uKi/+qu/6neZZ9rr16+b/nxvb69PlQAAAAAAgHbduHFDjx8/7ttJkS9fviQI66aVlRXdunVL0kHwVWEYRl0IVvl5uVxWPB5XNptVPp/XV7/61b7We1ZdvHix6c/Hxsb6VAkAAAAAAGhXPB5XKpXS5uam4vG4LMvS5ORkw7GlUqnt7jHXdeU4ju7evdtJuX1jeLWpkk89ePBAi4uLRzq/Wi19ZGREpVJJX/va13pV4pk2Ojqq/f19jYyM6O3bt4MuBwA6MveTH/XtWqvf+FbfrgUAANDM8vKylpeXm46prADis9/wWFtb09zc3JEGolqHs5Z2Vebx+3vL9x1hT548USqVqnZ+VcKvYDComZkZBQIBmaZZTTYdx9H29rbK5bLW1tbkOI729/c1OzurjY0N9g4DAAAAAJw7e3t7J251g+ETjUa1urqqubm5puPOQI9U1/g+CKuEYJ7nyTRNpdNpzc3NaXx8vOH42tMQ7t+/r5cvX+ru3bt68uSJbt26pc8//7xfpQMAAAAA0BdjY2MnbnVDUDacotGodnZ2lEwmlc/n5bruoEsaKF8vjXzy5IlisZgkKZFI6Ac/+EHbc2UyGS0tLalYLOrrX/96t0o8F1gaCeA8YWkkAABAY3z2gyRtbm7Ktm1tb2/L8zzdunVLsVhMMzMzbc335s0bOY6jtbU1lkZ26vHjxzIMQ+l0Wn/zN3/T0VzJZFLFYlGrq6sEYQAAAAAAYChNTU1pamqqev/WrVuKRCK6efNmR/MWi0V98MEHnZbXcyODLqAZ27YVDAY7DsEqEomEisViV+YCAAAAAADAgXA4XBew+ZWvO8Icx1Eul+vafKZpynGcrs0HAAAAAACAA5ZlDbqEE/k6CJO6+0skBAMAAAAAAPitnZ2dYw8kPK18Pt+VeXrJ10sjLcvqaniVzWZ7kk46jqNIJKK1tbWuzy1JgUBAhmH0bH4AAAAAADCcuhWCdXuuXvF1EBYMBruWJi4uLlb3HOsW13UVi8UUCARULBa1vb3dtbkrUqkUnWwAAAAAgDOr0jzSqkwmo0gkoomJCRmGoUAgoFgs1tGe38M8Zzv29vb09OlT3b59Wzdu3NC1a9f0wQcf6Pbt2/rkk0+0tbXV13q6yddB2NzcnAqFgj7++OO259jb29ONGzeUyWRkGIYSiUTHdbmuq1QqpYmJiZ52aRWLRWUymZ7NDwAAAABAu1zXlWEYJ94CgUBLq7OKxaImJiaUSqUkHSyzK5fLSqfTsm1bkUhEkUhEruu2XOMwz9mOra0t3bhxQxMTE4rFYsrlclpbW1OpVFKxWFQul1MqlVIgENCVK1f02Wef9bSeXjA8z/MGXUQzgUBAW1tbSiQSSiaTunz5ckuPe/78ubLZbF1QFQwG9eLFi47qyWQy1SWWhxPZbDareDze0fwVrutqamqq7k2ez+cVjUa7Mn+t0dFR7e/va2RkRG/fvu36/ADQT3M/+VHfrrX6jW/17VoAAACd6vZnv0wmUw1uTlIul5uGYcVisdo1Fo/Hlc1mj4wJhUKybVuWZalUKsk0zabXHOY527GysqJbt25JkmqjIsMwjoyt/NwwDIVCIeXzeX31q1/tek294PsgrFgs6v3336/+4sPhsILBYF2i7Lqutre3VSqVtLGxIdu2q4+vfXFKpZKuXr3adi2VeSvLK3O5XF2HWTeDsFgsJtu2tb29XQ3DCMIA4GQEYQAAAI11+7PfxMRESx1K4XBYhULh2J/XNoJYlqVyudxwnOM4CgQCzHnCnO148OCBFhcX5XleXfDVamQ0MjKiUqmkr33ta12tqxd8f2pkOBzWw4cPdevWLRmGoWKx2HRt7OHU0jAMeZ6n1dXVjkIwSUf2F5uZmelovuPUth7Ozs725BoAAAAAALQrl8vJdV0lk8kT9/866bNzLBarBmrNOswsy1I0GtXa2lp1md5xzSjDPOdpPXnyRKlUqi5DkQ4ykJmZGQUCAZmmKcuyNDk5KcdxtL29rXK5rLW1NTmOo/39fc3OzmpjY6PllXyD4vuOsIq1tTXF4/HqGmSpcTJ5OLk0TVPr6+uanp7uek21iazUnY6wypzJZFLpdLouYacjDABORkcYAABAY9387Ff5LHxcB1OrDn+u3tnZabrsb21tTbFYTJJkmqZ2dnaYs0PvvvuuNjc3qxlKOp3W3NxcyydAvnz5Unfv3tWTJ0/0/vvv6/PPP+9KXb3i683ya0WjUW1uburOnTvyPO/Y9rzKz8bHx5VOp7W9vd2TEKxXYrGYgsGg0un0oEsBAAAAAOCIShdQq/uDNVP72TccDp+491Vtc4jrug0PsBvmOU/ryZMnchxHnucpkUhoe3tb8/PzLYdgkjQ9Pa18Pq/79++rUCjopz/9acd19dKZCcIkVcOt/f19FQoFpdNpxeNxRaNRRaNRxeNxpdNplUolbW9v686dO4Mu+VRSqZRs21Y+nx90KQAAAAAANHTv3j2Zpqm5ubmO58rlctWvD29HdJzaTfcfP37MnB14/PixDMNQJpPRD37wg47mSiaTmp2d1erqasd19ZLv9wg7zuzs7LnaP8u27boTKQEAAAAA8BvbtqsHyU1MTMiyLIXDYUUikVNv5VN70J0kXbt2raXHBYNBOY4jSUe6ooZ5znbYtq1gMKi/+Zu/6XguSUokElpcXOzKXL1ypjrCOrW1tTXoEo41Oztb7WoDAAAAAMCPDi+HdBxHuVxOsVhMhmEoFosdCXmOc/ggvFabQg6Pq73eMM/ZDsdxlEgkOpqjlmma1aDOr4YqCKtsKuc3lbpWVlYGXAkAAAAAAI05jnMkwDlsbW1NoVCopXDlxYsXdfdP2iOr4sKFC3X3NzY2mLMD3VyV5vcQTBqyIMyPL8ja2prW1taUz+dbfuMDAAAAANBvlmUpm81W9+tuFqDkcjmFQqGm8x3+jN5uV1TtyZXDPGc7LMvqalZyFrZ7OrN7hJ3G3t6eksmkXNcddCl1XNdVLBZTPB5XOBwedDna39/XpUuXOp5nYWFBCwsLXagIAAAAAOAnh7fzcV1XuVxO9+7dO/KZ27ZtRSIRFQqFhnN1K4Cpve4wz9mOYDCofD6vmzdvdlzL4uKibNv27Wq8ioEFYZubm5qbm6uuR7179+6RMTMzM9rc3OzoOpU3hed5Mgyjo7m6bXZ2tpqo+8Xr1687nmNvb68LlQAAAAAAJGl5eVnLy8sdz7O/v9+FauqZpqlkMqlkMqm1tTXNz8/XhTPFYlGZTEbJZPLIY9sNcQ6vptre3mbONs3NzWlubk4ff/xxw1ymFXt7e5qfn1c+n5dhGF3dc6wXBhaE1W6gl06nNTMzow8//LBuTCgU6njjN7/KZDKybVulUmnQpdS5ePFix3OMjY11oRIAAAAAgHQQNHSjaaHXotGowuGwZmdn6z7L37t3r2EQ1i29WP01LHNGo1FNTU0pnU7LdV0lk0ldvny5pcc+f/5c2Wy2enqlYRgKBoN67733Oqqp1wYWhNm2LcMw5HmepMZtgbdu3dLKysqRTq7KY05S+7hWH9MPtm0rlUopnU4rGAwOupyqkZERffnll4MuAwAAAABQY2xsrCtNC/0I00zTVKlUqmtscV1XxWLxyJZApml2JRyq7ZIa5jnblc1m9f777yubzSqbzSocDisYDCoQCFT3+3JdV9vb2yqVStrY2KgLOit5i2EYZ+IQwIEFYfPz83W/oGg0emTM9PS0TNPU7u6uPM+TaZqanJxs+YWuvFB+2xssFospGAz2NBEHAAAAAJwP3dqHeXR0tCfLIxtZWVmp2yy/UCgcCcImJye78nl9cnKSOTsQDof18OFD3bp1S4ZhqFgsNj0dtLbRyDCMapPT6uqqrl692nE9vTawICybzSoSiWhjY0OJROLY1rv5+Xl98sknsm27o19oKpXSJ5980vbjuyWTychxHIXD4ZY2kKv9h3Hv3j09fvy4ev/GjRsNA0QAAAAAAAYpGAwqHA5XA5VGq8Da7WY6HCAd7rQa1jk7EY/HNTk5qXg8Ltd1qyvsGq2uO7z6zjRNra+va3p6uiu19NpAT42MRqMnBjkfffSRnj592nGqmE6nfdGi9+bNG0lqmq4ex7btuvZDy7IIwgAAAAAAvhSJRJp+9p2Zman7jOu6bkvBzuEN4gOBAHN2QTQaVSQS0d27d/XgwYNjx1XCMdM0tbS0pDt37nSthn4YaBDWiunpaY2Pj3dlrsraVgAAAAAA0Fu1n8EbLeGrXTopHXSNtbKPdrlcrrtfu+RymOfshvHxcaXTaaXTaa2vr8u2bZXL5WoANzk5qUAgoHA4fGY6wA7zfRAmSevr6x09fm9vT2NjY77oCKu8oVoVCASqLaT5fJ4OMAAAAADAmVAbhDXqdpqZmam732oYVLs80DTNuusM85zdNjs7q9nZ2Z7NPygjgy7gJM+fPz9yauRpJZNJffTRR2c2rQQAAAAA4KzZ2Niofh2JRI78PBgM1gVkL168OPW8hwOlYZ4TrfF9EBaJRLS6utrRHA8fPtQvf/lL/dEf/VGXqgIAAAAAAM3ULuM7bgnf3Nxc9evaPbOaqR2XSqWYE6fi+yCs0QkF7YjH4yoUCvrss8+6Mp909LQGAAAAAABwYG1tTdLBKq3jJBKJ6tetHCpXO8ayrIYB2zDPiZP5PgjrFsMw5Hmestls1+Y8fPwrwRgAAAAAAAchmOM41ZMFjxMMBusCnUp4dpx8Pl/9+riOqGGeEyc7E0FYp3uEPX/+vPomKZVK3ShJruseeeM9fvy4K3MDAAAAAOAnxWJRExMTMgxDkUik6VI+x3E0Pz8v6eDwu0Yb5deqbVi5d+/eseNc11Uul5N0sNQyHo8zJ07NN0HYkydPdO3atSM36aCNstHPTrpduXJFo6OjikQi1W6tk/4BNuO6rmKxmCKRiCYmJo50hNm2Xf2jEIvFWl7jCwAAAACAn+Xz+ern6mKxqFAoVLe0r6Lys8nJSZXL5ZZOQrQsq9rtZNu2MplMw3GVEwxN06zrjmJOnIbhdWsTri5YW1vT3NxctQOsm6VV5oxGo3RuHTI6Oqr9/X2NjIzo7du3gy4HADoy95Mf9e1aq9/4Vt+uBQAA0KlOPvsVi8WGJz+apqlwOKzJyUltbGzItm0lk0ktLS2duhGlWCwqFovJdV1Fo1EtLS3JsixtbGwolUrJtm0Fg8GWusyYE8fxVRAmHbRQRiIRbW5uVvf16nRpZOUpWpYl27Y1NjbWjVLPDYIwAOcJQRgAAEBjnX72cxxH6XRaxWJR29vbcl1XpmlqcnJSwWBQN27cUDgc7jioyWQyevz4sRzHqV5jZmZGiURC0WiUOdER3wVhFZFIROvr69UwrN1/SJZlybIs3bhxQ9evX+9ukecEQRiA84QgDAAAoDE++wHSO4Mu4DiFQkGxWExPnz5VLpfTzZs3B10SAAAAAAAAzjDfbJbfSD6f19TU1KDLAAAAAAAAwDng246wilKppO3t7UGXAQAAAAAAcK7s7e0plUrJcRy9//77+s53vjPoknrO90HY+Pi4xsfHO5pjd3dX9+/f171797pUFQAAAAAAwNkWjUa1vr4uz/NULBY1NTWlDz/8cNBl9ZSvl0Z2y/j4uAqFgv7H//gfgy4FAAAAAADAF4rFYt39Tk/8PAuGIgiTpJmZGZVKJX388ceDLgUAAAAAgK5aXl7WpUuXmt729/cHXSZ8xrIsSZJhGIpGo3rvvfcGXFHv+X5p5GFbW1tyXfdU+4bZtq18Pi/P85TNZnX37t0eVggAAAAAQH/t7e3p9evXgy4DZ0w8Htfi4qIMw9Djx487nu/27dv6wQ9+0IXKeudMBGFPnz5VNps90rLXDtd1Oy/onNrf39elS5eajllYWNDCwkKfKgIAAAAAtGJsbEwXL15sOoagDIclk0kVCgU9f/5cv/rVr/TVr361o/m6kdv0mu+DsAcPHmhxcVGS5Hle2/MYhiHDMBQMBrtV2rl00h/Gvb29PlUCAAAAAGhVK00Lo6OjLI/EEYVCQbFYTNFoVM+fP9fv//7vtzXP5uamHMfpcnXd5+sg7OXLl0qlUjIMo2EIdtz3jxtnWZZWVlZ6Ueq5cdJ/QRgbG+tTJQAAAAAAoB8+++wzPX78WMFgUIuLi4rFYi19/q80y2xsbCiZTPa6zK7wdRCWzWYlHZz6GI/HFQgEqhu57ezsaG5uThMTE1pdXW34eNd19ezZMz169Ei2bevq1av9Kv1MGhkZ0ZdffjnoMgAAAAAAQB+8++672tzcrN73PE/xeFzxePzUc3meJ8MwulleT/g6CCsWiwoEAvriiy8a/nx+fl6PHj1SIBDQ5cuXG465fv26JGlxcVGff/55r0oFAAAAAAA4Uyqb5Ve0uvLuLBsZdAHNOI5T7QprZHFxUZ7nKZPJNJ0nlUrp2bNn+vTTT7tdIgAAAAAAwJmUSCQk/XZf9XZDsLPQCVZheD6O+kZGRuS6btN1qZFIRM+fP9fOzk7TcaFQSK9evTpx3DCqbJg4MjKit2/fDrocAOjI3E9+1LdrrX7jW327FgAAQKf47IdGYrGYnjx5IkkKh8MyTfPUcziOI9u2ZRiG799bvl4aGQwGtb293TS4SqVSWl9f1+Lior7//e8fO+7atWt6+fKl7t+/r7t37/aiXAAAAAAAgDMlkUjo6dOnKpVKHe2tnsvldPv27e4V1iO+XhppWZZyuVzTMeFwWNPT08pms/r5z39+7LiNjQ1JUj6f72qNAAAAAAAAZ1U4HNb4+HjHBwzG4/Ezsb+Yr4Owubk5pdNpffrpp9ra2tLz58/1/PnzI+OWlpbkeZ6CwaB+/OMfH/n5gwcPZNu2pIN2PQAAAAAAABxYWlrS3t5ex/O0c9pkv/l6jzBJmpiYOPJihEIh/exnP6v7XiQS0fr6ugzDUDAY1MzMjKSDkycdx6mmks1OoRxWrBMHcJ6wRxgAAEBjfPYDfN4RJkkrKyvVEMvzPHmep1KppFevXtWNqz1d0rZt5XI55XI5lcvl6uMrIRkAAAAAAADas7S0pF/96leDLqMtvg/CotGoVldX69aZmqZ5ZO2qZVl69uzZkfWolSNAK49bWVnpec0AAAAAAABn0dOnT3X79m1du3ZNT58+bTgmFAppenpaH3300ZkLxHwfhEkHYdjOzo6y2azS6fSx+3yFw2H98pe/1HvvvVftHqvcgsGgNjY2mp5ACQAAAAAAMIw++eQTXbhwQbFYTLlcTrZta3t7u+HYaDQqx3H0xRdfyLKshvu1+9U7gy6gVePj45qfnz9xnGVZKhQK2t3drZ4UaVmWpqamel0iAAAAAADAmbK7u6uZmZm6/dUlVVfXHcc0TZVKJYVCIUWjUeVyOf3VX/1Vr8vt2JkJwk5rfHxcs7Ozgy4DAAAAAADAt2KxmMrlct3WUqc5V3F9fV2Tk5OKx+OyLEtf//rXe1VqV5yJpZHdsrW1NegSAAAAAAAAfGF9fV3FYlGGYVS3lhofH1c4HG55DtM0defOHXmep0Qi0cNqu2OogrBYLDboEgAAAAAAAHwhm81KOugAi8fjKpfL2t7ebngYYTMfffSRJKlcLuuzzz7rSa3dMlRB2HGb7AMAAAAAAAybSjdYLpfTw4cP295f3bKs6tfPnj3rVnk9MRRB2N7enm7duiXXdQddCgAAAAAAgC+4rivLsnTz5s2O5qk9XdK27U7L6qmBbZa/ubmpubk5OY6jRCKhu3fvHhkzMzOjzc3Njq5TCb88zzvxxAMAAAAAAM6i5eVlLS8vNx2zv7/fp2pwVpimqWAw2PE8lfDL8zzfr8YbWBAWi8Wqv6h0Oq2ZmRl9+OGHdWNCoZDvk0QAAAAAAAZtb29Pr1+/HnQZOGMsy+rK6rl79+5VvzZNs+P5emlgQZht29VTCaTG+3fdunVLKysrRzq5Wt2wrfZxp9nkDQAAAACAs2RsbEwXL15sOoagDIfNzs7q0aNHHc3x4MGDuoyndr8wPxpYEDY/P6+VlZXq/Wg0emTM9PS0TNPU7u6uPM+TaZqanJxsOV10XVfb29vsDQYAAAAAONcWFha0sLDQdMzo6CjLI1FnaWlJDx480KeffqrvfOc7bT0+k8lUQzDDMHTjxo0eVNo9AwvCstmsIpGINjY2lEgkdPny5Ybj5ufn9cknn8i2bV29erXt66VSKX3yySdtP34Y7O/v69KlS03HtPLHFQAAAAAA+J9pmrpz546SyaTevHmjxcVFjY2NNX3M3t6eVldXlU6n5TjOkT3Z4/F4r8vuyMCCMOmgC6xRJ1itjz76SE+fPu0oBJMO9iGr7UBDYye1yu7t7fWpEgAAAAAA0GvpdFq2bev+/ftKp9OKRCIKh8OSpFKppMnJSW1vb6tcLqtYLNZtjC/Vb0v18OHDE4O0QRtoENaK6elpjY+Pd2Uuv69T9YOT1pT7/Q0NAAAAAABOp1AoKJFIaGVlRYVCQYVCQYZhKJfLKZfL1Y09HIBV7mezWc3Pz/e38DYY3hnYRX53d7crYdjLly81PT3dhYrOl8o68ZGREb19+3bQ5QBAR+Z+8qO+XWv1G9/q27UAAAA6xWc/nMS2baVSKa2vrx/52XEHEobDYWWzWU1NTfWlxk75viNsb2+vax1hhGAAAAAAAACNBYNBFQoFbW5uqlgsqlAoyHGc6mGElQMMLctSJBLR3Nxc1zKbfvF9R9iVK1f0xRdfDLqMc43/KgDgPKEjDAAAoDE++wHSyKALOEm5XNa3v/3tQZcBAAAAAACAM873SyOlgw3XHj9+rEQi0dJRngAAAAAAAGjP1taWisWiSqWStre3JUmTk5MKBAIKh8O6evXqYAvsgO+XRo6M1DetGYahSCSiRCKhb37zmwOq6nyhPRbAecLSSAAAgMb47IeTPHr0SOl0Wo7jnDg2kUgomUzq8uXLvS+si3y/NFI6OLVgf39fz54904cffqhnz54pGo3qwoUL+vjjj7W1tTXoEgEAAAAAAM6kra0tXblyRYlEQuVyWZ7nVW+HVb6fzWYVCAT06aefDqDi9vk+CAsGg9WWu3A4rHw+r/39ff3gBz9QMBjU/fv3FQgEdO3aNX322WeDLRYAAAAAAOAMefnypUKhUDUAMwyjepNUF4rVBmOV+8lkUn/0R380qPJPzfdLI0+yubmpfD6vXC4nx3FkGIYSiYQSiYS+9rWvDbq8M4H2WADnCUsjAQAAGuOzHxp59913q3mKpGrYZVmWwuGwAoGATNOUZVmanJyU4zhyHEflclmrq6tyXbe6jdXnn38+yKfSkjMfhNWybVvZbFYrKysyDEOWZenWrVuan59ng/0m+GMI4DwhCAMAAGiMz344bGVlRYlEoi4EC4fDSqfTmp6ebmmOtbU13bt3T69evVImk9F3vvOdXpbcsXMVhNV68OCBUqlU9cWMxWJKJBL6+te/PuDK/Ic/hgDOE4IwAACAxvjsh8NmZmZk27akg8MJHz58qPn5+bbmikQiev78uXZ2dnzdjOT7PcJO6+nTp/rggw+0uLgowzCqa1bz+bzC4bA++OCDQZcIAAAAAAAwcJUlkYZhKJlMth2CSVI+n6/mL352LoKwra0tLS0t6cKFC4rFYioWi9U1rbXtffPz83r48OEgSwUAAAAAAPAF13Wr+cnS0lJHc5mmqXg8rtXV1W6U1jO+D8KePn3a9GfXrl1TIBBQJpPRzs7OkRMMpqenlc1mtb+/r4cPH2pqaqofZQMAAAAAAPhaMBiUdLAxfjeWMwYCATmO0/E8veT7ICyVStXdf/XqlW7fvq3R0VHFYjGVSqWG3V/RaFSlUkkbGxsdtfYBAAAAAACcR7Ozs5Kk7e3trs3p9yDsnUEXcJJyuaxvf/vb8jxPxWKx+gutDb8q+4BZlqVEIqF4PK7x8fFBlg0AAAAAQN8sLy9reXm56Zj9/f0+VYOz4uOPP9aDBw/kuq62trZ0+fLljuYrl8syTbMrtfWK74MwScpms5Lqw6/aACwajSqRSFSTTAAAAAAAhsne3p5ev3496DJwxoyPj2t1dVVzc3NaXFzU3//933c03+rqqi5cuNCl6nrjTARh0kEIVrv00TRNLS0t0f0FAAAAABh6Y2NjunjxYtMxBGVoJBqNKpvNKpVK6dvf/ra+//3vtzXP4uKiXNdVJBLpcoXdZXi1u8v70MjISLX7SzrYyG1paUnXr18fcGXnx+joqPb39zUyMqK3b98OuhwA6MjcT37Ut2utfuNbfbsWAABAp/jsNzxu3bqlUql0qsfs7Oxoc3NT0m830W+V67rVrayy2axu3rx5qsf305noCPM8T+FwWOl0WtPT04MuBwAAAAAAwLdM01SpVKprLGqmdgWepFOHaLXzzM3NtfXYfvH9qZGSlMvl9OzZM0IwAAAAAACAEyQSierXlX3Wm91OM7bZLR6Pa2xsbBBPuWW+7wgLBoO+bqk7T/b393Xp0qWmYxYWFrSwsNCnigAAAAAAwGlNTU3Jsixtbm621BHWDcFgUOl0ui/X6oTvg7D19fVTP2ZpaUm3bt3SV7/61R5UdL6dtHni3t5enyoBAAAAAADtmp2d1aNHj1QsFvXee+8Nuhzf8H0QdvhEyKdPn6pQKGhjY0NLS0v68MMPjzwmFAppenpa77//vtLpNIHYKZx0yojfWxwBAAAAAIA0Nzcn27YJwQ7xfRBW8cknn+jevXtyXbf6ve3t7YZjo9GowuGwZmdnZVmW1tbW9M1vfrNPlZ5dIyMj+vLLLwddBgAAAAAA6NDs7Kympqb6es2trS1dvny5r9c8Ld9vlr+7u6srV64olUppZ2dHnue1tL61ckLC1atXFY1G9dlnn/WhWgAAAAAAAH9YXV3t6/VqN+n3K98HYbFYTOVyWZKOnGbQivX1dXmep3g8rp/+9Ke9KBEAAAAAAGDobWxsDLqEE/l6aeT6+rqKxaIMw6h2gZmmqZmZmZY30TdNU3fu3NGDBw+USCT0v//3/+5lyQAAAAAAAGfa1tZW3dZUJ3EcR9ls9lSPGRRfB2HZbFaSqh1dqVSqur51ZKT1ZraPPvpIDx48ULlc1meffaa/+qu/6km9AAAAAAAAZ83W1pbS6bSKxaIcx2lrDs/zTr2KbxB8HYRVusGy2axu3rzZ9jyWZVW/fvbsGUEYAAAAAACApKWlJWUyGUlqaU/2s87Xe4S5rivLsjoKwaT60yVt2+60LAAAAAAAgDPvyZMnSqfT1QDsLHR0dcrXHWGmaSoYDHY8TyX88jyv7RY/AAAAAACA8+TevXuSVN2b3bIsBYPB6sq6CxcunDjHmzdv5LquVldXtbu729N6u8HXQZhlWV3ZaK3ywkoH4RoAAAAAAMCws2272gVWKBQ0Ozvb9lzJZFJXrlzpVmk94+ulkbOzsx0fvfngwYO6F7Z2v7BucRxHkUhEa2trbc9h27YSiYQCgYAMw5BhGAoEAkqlUmfi1AUAAAAAAHC2VJqFkslkRyGYdJC3VA449DNfB2FLS0va2dnRp59+2vbjFxcXqy1+hmHoxo0bXavPdV3FYjEFAgEVi8W6vchOO0coFFIul6tbuuk4jjKZjCYmJpTL5bpWNwAAAAAAQKVZ6Nq1a12ZL5vNdmWeXvJ1EGaapu7cuaNkMqmPP/5Ye3t7Jz5mb29Pjx490pUrV5TJZI6ceBCPxzuuy3VdpVIpTUxMdNQF5rquQqFQS3MkEgklEom2rwUAAAAAAFCr0gXWTmNPs/n8zNdBmCSl02m99957un//viYmJvRHf/RH+uSTTyRJpVJJT58+1aNHj7S0tKRr165pYmJCiURC5XK52gVW8fDhQ42NjXVUTyaTUSgU6srpk7FYTI7jKBgMKp/Pq1wuq1wuK5/PK5lMHhmfy+U6Ct4AAAAAAAAqPv74Y3me15WMQ5IePXrUlXl6yfAOt0z5VCKR0MrKyolHeR4+8rNyP5vNan5+vqMaKm+MykmWuVyurksrm8223HFWeWwymVQ6nW44xnEcxWKxujekaZra2dlp9yk0NDo6qv39fY2MjOjt27ddnRsA+m3uJz/q27VWv/Gtvl0LAACgU3z2QyOZTEbpdFpbW1v6/d///Y7munbtml68eNGlynrjzARh0kEQlUqltL6+fuRntQFZ7VMKh8PKZrM92bDNtm2FQqHq/dMEYYFAQJZlqVAoNB3nOI4CgUDd9wqFgsLh8OkLPgZ/DAGcJwRhAABgGC0vL2t5ebnpmNevX0sSn/1wRCQS0ejoqD7//PO259jc3NS7777r+/fWO4Mu4DSCwaAKhYI2NzdVLBZVKBTkOI5c19X29rYmJydlmqYsy1IkEtHc3JzGx8d7Vk/ldIXTsm1bjuOoVCqdONayLKXTaaVSqbrHdzMIAwAAAACcnudJ+ye0lowY0gkLm7pib2+vGnQBp1UoFDQzM6MrV64olUppcnKypcdtb2/LdV2Vy2Wtrq72uMruOFNBWMXU1JTm5+c7Xuo4KI8fP1Y8Hm85SDscer1586YHVQEAAAAATmPfk975bvMxv/meNNqHIGxsbEwXL15sOoagDMd5/vy5JKlcLrd9UN/hfdr96kwGYWfdjRs3qkeUtqKyJ1nF4aWSAAAAAIDhtrCwoIWFhaZjKtviALVu376tXC4n6WDbqXZ20DoLAVjFmQrCtra2qssgLcvS5ORkx6dADsLhYOskruvW3T9NiAYAAAAAANDIysqKstmspPZDMEltP24QfB2EbW1taW1tTY8fP256lGc0Gq3uCXYWg7GTOI5Td5/9wQAAAAAAQKcOh2DhcFiRSESmaZ56n7CHDx9qa2urh9V2hy+DsL29PaVSqWpr3knJ4tramtbW1pRIJJTJZPSd73ynH2X2zcbGRvXrVk+lBAAAAAAAaMa2bRmGIdM0tbGxoampqbbnmp+f14ULF7pYXW+MDLqAw54/f66pqSnlcjl5nlcNwQzDOPZWGed5npLJpP7bf/tv+vnPfz7gZ9I9lYRWUt3pkQAAAAAAAO2qHOK3tLTUUQhWmWt6eroLVfWWr4KwJ0+eKBKJaGdnp3raQOUmqS7wqr0dDsW2t7cVDAb14x//eMDPqHOO41SXhabT6Z7uD7a/v69Lly51fFteXu5ZjQAAAACAsyEQCMgwDK2trZ36sZlMRpFIRBMTEzIMQ4FAQLFYTMVise16hnnO44RCIUnd24t8ZWWlK/P0km+WRr58+VKxWExS/WkDlY4wy7JkmqYsy5JlWXJdV47jaHt7W47jVDeUrw3NotGoisWivv71r/f3yXRROp2WdPD8k8lkz6/XjeN09/b2ulAJAAAAAOCsSqVSR/a7bkWxWFQsFpPrugqHw8rn87IsS7ZtK5VKKRKJVL9f6WZizvYlEgmtr6+39Vo1chY6wgzPB1v77+7uKhQKyXGcuiDLsiwlEglFo9ETW/TW19e1urpaTR8r3WGTk5NyHKcnm+g7jqNAIFC9n81mu7qHl23bCoVCMk1TpVKpZ91gtUfoXrx4seP5Wjm2FwB6Ze4nP+rbtVa/8a2+XQsAAPjP233pne82H/Ob70mjPlmLVfnsNzIyordv3/bsOsViUZFIpHo/n88rGo2e6nHxeLxum6CKUCgk27ZlWZZKpdKJgdAwz9mqUCikkZERvXjxouO5nj59qg8//LALVfWOL4KwW7duKZfL1R3VmU6ndefOnVPP5bquYrGY1tfXq6FaLBbT3//933e1Zqn3QVjlTV4qlRQMBrs272H9+mMIAP1AEAYAAPqllSDs/xeV/iLUn3pO0o/Pfq7rampqqrpqS2otCKt9nGVZKpfLDcfVfg4Ph8MqFArM2SHHcfTuu+/qyZMn+uY3v9nRXNeuXetKoNZLA8+ld3d3qyGYpOqL3k4IJh1szlYoFPTw4cPqHmL5fP7MLddLJBKybVv5fL6nIRgAAAAAoD1/9/LkMX+51tq482J+fl6Tk5On7laqLAmUmh8SZ1lWNVQrFovK5XLM2SHLsvTw4UPdvHmzo3l2d3ere5z72cA7wh48eKBUKlU9rnNzc7NryxhTqZQePHggwzCUSqV09+7drsxb0auOsFwup0Qi0fUOs+PQEQbgPKEjDAAA9MPur6WLd6V/+8+Tx/7e70ivl6Sxr/S+rmZ6/dmv8lm2VCppdna2Gu6c1BF2+LP1zs5O0yBtbW2tuse4aZra2dlhzjY9ffq0+nUymZRhGC0tYz3MdV2trq7KdV3f5woD3yy/dt1rqVTq6l5e6XRatm1rfX1d2Wy260FYLxSLxb6GYAAAAACA0/tbu7UQTJL+9T+kH9rSX/9hb2saJMdxlEgklEwmT72qqXJInHSw5O+kbrLaoMZ1Xa2trR0Jb4Z5ztO4e/euXr78bcui53nKZDJtzeV5Xt3hh3410KWRu7u71Q3y79+/r8uXL3f9GpWgzXVdbW1tdX3+brJtW5FIROl0mhAMAAAAAHzsH39xuvH/dMrxZ00sFlMwGKwLdlpVu8Sv1RCt9jC5x48fM2eb5ubmqttKSToTQVanBhqEFYtFSQftfO3uCXYSy7I0Oztbdz0/chxHs7OzSiaTSiaTgy4HAAAAANDEzr/3dvxZkkqlqntcn9bhPaWuXbvW0uNqQ6O1tTXmbFMikZCk6uGFndzOioEujSwUCjIMo+fdT4lEQuvr6yoUCh1v/tYLjuMoFAopHo+3nJ47jqO1tTVCMwAAAAAYgInf7e34s8K2bWUyGWWz2bpOpVYdblhpdY7D42zbrgZEwzznaY2PjysYDOrly5dKp9MKBoOanJw89TyO4+ju3bt69epVW3X000CDMMdxJEk3btzo6XUikUjd9fzEdV1FIhHNzc2dqoU0FotpZWWlh5UBAAAAAI7zJ38gPfui9fF//Ae9q2WQZmdnFY1G225wefHiRd39Vk+bvHDhQt39jY2Nahg0zHO248aNGwoEAh2t1Juentb169fbCtH6baBB2Pb2tiTp6tWrPb3O+Pi4TNOsnljRLZ3O57quQqGQLMtSKpVqKahzHKd6nGonb3QAAAAAQPv+PCgtft76qZF/cQ4/vlVOL+ykSePw5+B2u6LK5TJztikcDh8J5do1MzPTlXl6aaBBmOu6bbVOtsOyLG1ubnZ1zsNv2tMGY7Ozs3Ic58hxqa2oPW0TAAAAANBf41+Rvv8N6S9b2KLp4Z9KY1/peUl9tba2prW1NRUKhZY7mRrp1sqt2s/jwzxnO6anp9s65KCRbs3TSwPdLH97e7tvQdjk5GRXO8Jc1612ZlWc5rSGUCh0ZGO80+BUSQAAAAAYrD+bPnnMD6OtjTtLXNdVLBZTPB5XOBzueK52HA7fKivOhn3Odk1NTXU8x9bWlqan/f9mH3hHWL90klBXuK6r+fl5ua7b8ARK27ZlGIbC4bBM09TS0lLD5YuxWIwQDAAAAACGwLe6kAssLy9reXm543n29/c7L0YHq5ssy/LVSqVe5AvDPOdpPXnyRHNzc7JtW1/72tcGXU5TAw3CpO4EVP1immZbx8Ee1o05AAAAAADDYW9vT69fvx50GZKkTCYj27ZVKpW6Ml+39vOuzRaGec5BefHihTzP09///d8ThJ2kX8mlHxJSAAAAAABOa2xsTBcvXux4nk7DNNu2lUqllE6nu3Z4W7e2Mao9rXCY52zHo0eP2n6s67oql8vK5XIyDEPFYlH37t3rqJ5eG3gQViwW9dOf/lShUKhn19jY2FCxWJRhGD27BgAAAAAAvbCwsKCFhYWO5xkdHe1oeWQsFlMwGFQymey4lop2u5kOB0iHO62Gdc52xOPxjvMSz/MkHYSlW1tbunz5ckfz9dLAgzBJHW+uBwAAAAAAeieTychxHIXDYcVisRPH14Y19+7dqztc7saNG4pGo5KkmZmZuj20XddtKdg5vEF8IBCofj3Mc3bC87xTB2KVAKz2cblcTnfv3u1KTb3giyCs8osDAAAAAAD+8+bNG0lqeHDcSWzbrgt8LMuqBmGHV4c5jtPSsstyuVx3v7bBZpjn7FQ7+YxhGHWPy+fzBGEn6ceSRcI2AAAAAAD8ZWZmpu5+q2FQbceZaZqyLIs5OzA1NaVUKnXqucrlsjKZjEKhkFZWVjQ2NtZxLb3miyCMkAoAAAAAAP9Kp9NKp9Mtjw8EAnIcR9JBh1ClA+ywYDBYd3riixcvjh1ba2Njo/r14UBpmOdsV7FYbGtfr9nZWcXjcb377ruKx+P6+7//+67U00u+CMLC4bAikUhPjvx0XVeFQqGt9k0AAAAAAI4zYki/+d7JY9Dc3NyccrmcJNUtoWymdlwqlWLODpim2fHm9g8fPtT777+va9eu6Tvf+U7HNfWS4Q2wHWtkZESpVKovR2umUil98sknevv2bc+vddZUTg4ZGRnh9wPgzJv7yY/6dq3Vb3yrb9cCAAAn8zxp/4RPuCOG1IfdeXypn5/9Wu0Ikw6Cndr9sk6KKYrFoiKRiKSD/cYO75k17HOe1srKiubn5zue591339Xm5qbK5bKvT40cGeTFDcPQ0tJSX67Vr+ucZfv7+7p06VLT2/Ly8qDLBAAAAICG9j3pne82v50UlKH/gsFg3Ybva2trTcfn8/nq18d1RA3znKfVjRBMOngunucpk8l0Zb5eGWgQNj4+3reN1EzT1Pj4eF+udZa9fv266W1vb2/QJQIAAAAAzplsNlv9utmqMdd1q0sJw+Gw4vE4c/rMixcvBl1CUwMNwmqTzPN4vbPo4sWLTW9n4QQIAAAAAMDZYllW9TO7bdvHdhXNzs5KOmh2Oekz/jDP2W+7u7vVvdlb3etsUAYahFVexPN6vbNmZGREX375ZdPbwsLCoMsEAAAAAJxD0WhUhUJBpmkqlUopFovJtm25rqtisahQKCTbthUMBrW5udnSgXvDPGe/vHr1SjMzM9rd3ZV0EOz52UA3y4c/sFk+gPOEzfIBABheb/cP9gFr5jffk0YH2hIyOGfps18mk9Hjx4/lOI5c15VpmpqZmVEikWi68T5znt6VK1fafmzlQIRKtGQYhuLxuH7wgx90pbZeIAjDmfpjCAAnIQgDAGB4EYQ1x2c/NDIyMiLDME48sbKZyuMNw9DOzo6vt1Ua0n/+AAAAAAAAqDAMo62bdNARZpqmnj175usQTJLeGXQBAAAAAAAAGJxKN5hpmpqcnGz5caZpyrIsXbt2TXfu3OlVeV1FEAYAAAAAADDEMpmM/uZv/mbQZfQFSyMBAAAAAACGlGVZQxOCSXSEAQAAAAB6xPOk/RP23x4xpP+7zRCAAUilUoMuoa8IwgAAAAAAPbHvtXiKI0EY0BOvXr3S1atXm46Zn5/vTzE+QRAGAAAAAMAZt7y8rOXl5aZj9vf3+1QN/CIUCunt27eDLsNXCMIAAAAAADjj9vb29Pr160GXAZ/xPE+/+tWv9NWvfnXQpfjGUG2W//Tp00GXAAAAAABA142NjenixYtNbxhO6XR60CX4iuF53glbF54fV65c0RdffDHoMnxndHRU+/v7GhkZoWUSwJk395Mf9e1aq9/4Vt+uBQDAWfR2v8U9wrrUotHv6501fPYbPiMjIzIMQ5FIRPF4XMFgUJOTk5IOwtNhNDRLI588eSLHcQZdBgAAAAAAQF8VCgUVCoW+Xc/PQeuZCcJevXqlYrGocrl8qkBre3tbrusSggEAAAAAgKFUuxjQNE1JqnaGnVYlZ2nEsqy+Bm7t8H0QtrW1pUQioWKx2Nbja19sw+BMXgAAAAAAMFzS6bSi0aimpqY6mmd9fV2xWOxIvuJ5nmKxmB4/ftzR/P3g+yAsHA5rc3NTnue1FWRVHjNEW6EBAAAAAABIkrLZrG7evNnxPJ988olSqZQkVTOaStaSTqd1586djq/RD74Owm7duiXHcWQYRt0vGAAAAAAAAM0ZhqG5ubmO53n//fe1vr5ezWUqGY1pmlpfX9f09HTH1+gXX5+VsbGxUf16ampK+XxeOzs72t/fP9WtVCrp+vXrA3wmAAAAAAAA/TU+Pt7R6ZBbW1u6cuVKNQSrbVQKBoPa3Nw8UyGY5PMgzLZtGYYh0zRl27auX7+u8fHxU88zPT2tfD7f1mMBAAAA4DzxPOntfvPbeV6M83cvB10B0D+bm5ttP/bJkycKBAJyHKduuyrP85RIJLSxsXEmcxZfL400TVO7u7uam5vrKMGsiMfjXagKAAAAAM6ufU9657vNx/zme9LoGTxrrJWQ6y/XpNER6c/OVhML0JZ2g6qlpSVlMpkjXWDSwZ5j8/Pz3Syzr3zdERaLxSRJgUCgK/Pdv3+/K/MAEv8lDQAAAPCT3V9L3/5Ja2Nv/YO09+uelgOcSXt7e/rggw/qQjBJ1f3ASqXSmQ7BJJ93hC0uLmplZaVur7BO7O3tdaWz7Lza39/XpUuXmo5ZWFjQwsJCnyryt/P8X9IAAACAs+Zvbenf/rO1sf/6H9IPbemv/7C3NQFnyatXrzQ7OyvXdY+EYOFw+NxsOeXrjrCpqSk9fPhQ+XxeP//5zzueb3Z2tgtVnW+vX79uetvb2xt0iQAAAABwxD/+4nTj/+mU44HzbGVlRaFQSDs7O0dCsFQqpWfPnp2LEEzyeUeYdLCvV6lUUjQalW3b+v3f//2257Jtu4uVnU8XL15s+nM66gAAAAD40c6/93Y8cF7dvn1buVzuSAAmSfl8XtevXx9keV3n6yCs0n20uLioUqmk9957T+l0WpOTky3Psb29Ldd1lc1me1XmuTEyMqIvv/xy0GUAAAAAwKlN/G5vxwPnzd7enmZnZ2Xb9pEQzLIsFQoFTU1NDbjK7vN1EHb58mXt7u7WfS8SibQ1V+2LCgAAAADwh797Kf1FqPN5/uQPpGdftD7+j/+g82sCZ1Wz/cBisZgeP3484Ap7x9d7hM3Pz8vzvOpNUt3909wAAAAAAP31dy9PHvOXa62NO8mfB6X/+l9aG/t7vyP9RbDzawJnUaP9wCrZSTqdPtchmOTzIOyjjz6SpCNrVAEAAAAA/rb7a+nbP2lt7K1/kPZ+3dn1xr8iff8brY19+KfS2Fc6ux5wFt24cUO3bt2qBmCVEMw0TRUKBd25c2fQJfacr5dGTk9Py7IsbW5uKhwOKxgM6sKFC6ea482bN3JdV7lcrkdVAgAAAAAO+1tb+rf/bG3sv/6H9ENb+us/7OyafzZ90GHWzA+jB+OAYbK1taVIJCLHcY4shQwGg1pfX+/KqZBXrlzRF1+cYo3yAPg6CJOkaDSqly9f6p//+Z87mieZTOrKlStdqgoAAAAA0Mw//uJ04//pF50HYa34FiEYhszz588Vi8W0s7MjqX7VXSKR0A9+8IOuXatcLndtrl7xfRB248YNOY7T8TyWZWl6mr94AAAAANAPO//e2/Got7y8rOXl5aZj9vf3+1QN/OLBgwdaXFw80gUmSdlsVvPz81271srKypk4pND3Qdj09LSWlpa6Mlc+n+/KPAAAAACA5iZ+t7fjUW9vb0+vX78edBnwmVQqVd0LTDoIwSYmJrS+vq6rV6927TqPHj1SIpEgCOuWTju5dnd3df/+fd27d69LFQEAAAAAmvmTP5CenWKroD/+g97VMgzGxsZ08eLFpmMIymAYhiYnJ7vWCea6bldW8fXTmQjCOjU+Pq5CoaD19XX97Gc/G3Q5AAAAAHDu/XlQWvy8tQ3zf+93pL8I9r6m82xhYUELCwtNx4yOjrI8cohVlkSehX28emkogjBJmpmZ0crKij7++GPdvXt30OUAAAAAwLk2/hXp+984+RRHSXr4p9LYV3peEjC0pqamlM/nZZpmV+ZzXbf69cbGhrLZrGzb7srcvXbmgrCtrS25rqvt7e2WH2PbtvL5vDzPUzabJQgDAAAAgCb+7qX0F6HO5/mz6ZODsB9GD8YB6A3LsrSxsaHx8fGezD89Pa35+XnFYjE9ffq0J9fopjMRhD19+lTZbFbFYrHjuWpTSwAAAAAYNn/38uQxf7kmjY70J6D6FiEY0FP5fL5nIVitdDpNENYNlaM+pd+uZ21H5ZSEYJCF5wAAAACG0+6vpW//pLWxt/5B+pP/hyWLwFlmmmZXT4dsxrKsvgRunRoZdAHNvHz5UqlUSlLjEKzVYzkNw5DneZqamtLKykpXawQAAACAs+Jv7dY2r5ekf/0P6YdnY8sfAMdIp9Pn+nrt8HVHWDablXRw6mM8HlcgEJBlWZKknZ0dzc3NaWJiQqurqw0f77qunj17pkePHsm27b6loAAAAADgR//4i9ON/6dfSH/9h72pBUDvzc/Pn+vrtcPXQVixWFQgENAXX3zR8Ofz8/N69OiRAoGALl++3HDM9evXJUmLi4v6/PPPe1UqAAAAAPjezr/3djwA+J2vl0Y6jlPtCmtkcXFRnucpk8k0nSeVSunZs2f69NNPu10iAAAAAJwZE7/b2/EA4He+DsIkaWZm5tifTU1NaXZ2VtlsVnt7e8eOsyxL09PTSiaTTccBAAAAwHn2J39wuvF/fMrxAOB3vg7CgsGgtre3m45JpVLyPK96suRxrl27Js/zdP/+/W6WCAAAAABnxp8Hpf/6X1ob+3u/I/1FsLf1AEC/+ToIsyxLuVyu6ZhwOKzp6Wlls1n9/Oc/P3bcxsaGJCmfz3e1RgAAAAA4K8a/In3/G62Nffin0thXeloOAPSdr4Owubk5pdNpffrpp9ra2tLz58/1/PnzI+OWlpbkeZ6CwaB+/OMfH/n5gwcPZNsH5/46jtPzus+q/f19Xbp0qelteXl50GUCAAAA6MCfTZ885ofR1sYBwFnj61Mjo9GoxsbGlEwmlUwmq98PhUL62c9+VjdudnZW6+vrikajCgaD1b3FisViXfhlWVb/nsAZ9Pr166Y/Z4+1wfE8ad9rPmbEkAyjP/UAAADg/PoWIRiAc8rXQZgkraysaG5uToZhyPMOUoBSqaRXr17p6tWr1XHZbFbvvvuuJMm27WoHWOUxkmQYhoJBFrk3c/HixaY/Hxsb61MlOGzfk975bvMxv/meNEoQBgAAcKbwHzwBoH98H4RFo1Gtrq5qbm6u+j3TNOtCMOmg0+vZs2d6//33ZdT8f4jK157nyTRNrays9KXus2hkZERffvnloMsAAAAAhgr/wbN7RoyD39VJYwAML1/vEVYRjUa1s7OjbDardDp97D5f4XBYv/zlL/Xee+/J87y6WzAY1MbGBh1NAAAAAE7kedLb/eY374QuLvSfYUijI81vdNYBw833HWEV4+Pjmp+fP3GcZVkqFAra3d2tnhRpWZampqZ6XSIAAACAc4IuLQA4n85MEHZa4+Pjmp2dHXQZAAAAAAAA8IlzG4QBAAAAADAslpeXtby83HTM/v5+n6oB/OtcBmFLS0u6deuWvvrVrw66FAAAAAAYWmxe3z97e3t6/fr1oMsAfO9MbJZf6+nTp7p9+7auXbump0+fNhwTCoU0PT2tjz76SL/61a/6XCEAAAAAQGLz+n4aGxvTxYsXm94AnKGOsE8++UT37t2T67rV721vbzccG41GFQ6HNTs7K8uytLa2pm9+85t9qhQAAAAAgP5aWFjQwsJC0zGjo6Msj8TQ831H2O7urq5cuaJUKqWdnR15nievhXOKTdNUqVTS1atXFY1G9dlnn/WsRsdxFIlEtLa21tE8mUxGkUhEExMTMgxDgUBAsVhMxWKxS5UCAAAAAAAML98HYbFYTOVyWZJkGIaMU/bNrq+vy/M8xeNx/fSnP+1qba7rKhaLKRAIqFgsHtuhdpJisaiJiQmlUilJUj6fV7lcVjqdlm3bikQiikQidd1wAAAAAAAAOB1fB2Hr6+sqFosyDKPaCTY+Pq5wONzyHKZp6s6dO/I8T4lEoit1ua6rVCqliYmJjrvAisViNeSKx+MqFAoKh8OyLEvRaFTlclnBYFDFYlGhUIgwDAAAAAAAoE2+DsKy2awkVTu6yuWytre39ezZs5aWR1Z89NFHkqRyudzxEslMJqNQKCTbtjuaR/ptR5kkWZZVfb6H5fN5SQdLMCvjAQAAAAAAcDq+DsIq3WC5XE4PHz7U1NRUW/NYllX9+tmzZ23XY9u2wuGwyuWyCoXCscFVq2KxWLXDq7IsspFKd5h08DvJ5XIdXRcAAAAAAGAY+ToIc11XlmXp5s2bHc1Tu3dXJ51cwWBQwWCwen9mZqbtuRzHqdsEf25urun4GzduVL9uFpoBAAAAOH/+7uWgKwCA8+GdQRfQjGmadcFTuyrhl+d5chyn4/kqTNNs+7HpdLr6dTgcPnGuSkeYdBAQrq2t1X0PAAAAwNnUSsj1l2vS6Ij0Z9OdX2/EkH7zvZPHAMB55OuOMMuyurI5/L1796pfdxJedVPt8sZWw77aJZ6PHz/uek0AAAAAWteNLq3dX0vf/klrY2/9g7T3686vaRgHoVqzm0EQBuCc8nUQNjs7q42NjY7mePDggWzblvF//5LXhkmDcnh55rVr11p6XG1g1ulplQAAAACO12qXVqdh2N/a0r/9Z2tj//U/pB92fmYXAAw1XwdhS0tL2tnZ0aefftr24xcXF2UYhjzPk2EYdXttDUrt3mBS6+Hc4XHdOLkSAAAAQL1+dmn94y9ON/6fTjkeAFDP10GYaZq6c+eOksmkPv74Y+3t7Z34mL29PT169EhXrlxRJpOR53l1P4/H470qt2UvXryou9/qcs0LFy7U3e+0Ww7wC8+T3u43vx36pwwAANAz/ezS2vn33o4HANTz9Wb50sGm8rZt6/79+0qn04pEIgqHw5KkUqmkyclJbW9vq1wuq1gs1m2ML6m6JFKSHj58qLGxsf4/iUMOb9jfbkdYuVzuWk3AIO170jvfbT7mN9+TRtmrAgAA9EE7XVp//YftXWvid3s7HgBQz/dBmCQVCgUlEgmtrKyoUCioUCjIMAzlcrm6TeelowFY5X42m9X8/Hx/Cz9Gt06u7MZBAgAAAADq9bNL60/+QHr2Revj//gP2r8WAMDnSyNrZbNZbWxs6L333pPneUduFbUBmOd5CofDKpfLvgnBpPYDrMNLKLe3tzsvBgAAAECdfnZp/XlQ+q//pbWxv/c70l+0duA8AOAYZ6IjrCIYDKpQKGhzc1PFYlGFQkGO48h1XW1vb2tyclKmacqyLEUiEc3NzWl8fHzQZfdMtzvC9vf3denSpY7nWVhY0MLCQhcqOvv+7qX0F6FBVwEAAIDT6GeX1vhXpO9/4+AEypM8/FNp7CvtXwsAcMaCsIqpqSnNz8/7qsvrNEzT7EqI1eom+6fx+vXrjudo5VCD86DVI7VHR6Q/m+59PQAAAOiOPw9Ki5+3tmF+N7q0/mz65CDsh1H+NyUAdMNAg7CtrS1dvnz53F7vOJOTk10JwiYnJzsv5pCLFy92PIcfDiTotdMeqf0n/w//9Q4AAOCs8GOX1rcIwQCgKwYahAUCAb19+7Zv1wuFQnrz5k3frnecdju5Dodn3e4IGxkZ0ZdfftnVOc+rdo7UbvckoUHwvIOTHJsZMSSDUxwBAMA5RZcWAJxPAw3CPM/T3t5eXzqIdnd3tbOz0/PrtGJmZka2bVfvu67bUqh1eHP8QCDQ7dLQon4eqT0I+570znebj/nN96RRgjAAADDE6NKCnywvL2t5ebnpmP39/T5VA/jXwPcIW1lZ0Xe+852eXyeXy1VPlBy0UKh+93THcRQMnryxQLlcrrsfDoe7Whda188jtQEAAADgJHt7e13Z8xk47wYehCWTSf3sZz9TJBKpnvrYLZXTJAuFgvL5vG+CsJmZmbr7rQZhtUsjK6djYjD6eaQ2AAAA2LoBOMnY2NiJez4TlAE+CMIkaW1tTWtrLexEeU4Eg8G6kyNfvHihaDR64uM2NjaqXx8O09Bf/TxSGwAAAGzdAJxkYWFBCwsLTceMjo6yPBJDb2TQBUgHe4X1+uY3c3Nz1a9r9wtrpnZcKpXqek1o3Z8Hpf/6X1ob240jtVv1dy/7cx0AAAAAAM4iXwRhhmH0/OY3iUSi+nWxWDxxfO0Yy7LYH2zAKkdqt6JbR2q3EnL95RphGAAAAAAAx/FFECb1viusF2r37DqtYDBYF2adtDQ0n89Xv6YbzB9aOSq7W0dq7/5a+vZPWht76x+kvV93fk0AAAAAAM6bge4RNjU1pc3NTUkHXWHhcFipVEpTU1Mdz10Jqba3t7W6uqqVlZWO5zzMcZyG12xVNptVIBCQJN27d+/YfcJc11Uul5N0cFJkPB4/fbEYiG4dqf23tvRv/9na2H/9D+mHtvTXf9idawMAAAAAcF4MNAgrl8sqFotKp9NaX19XsVhUsVhULBbT0tKSvva1r3XlOrOzswqFQrp9+3ZX5pMOwqnDnVmPHz9WMplseQ7LspTP5xWLxWTbtjKZTMPHz87OSjo4KbK2MwzD4x9/cbrx//QLgjAAAAAAAA4b+NLIcDisQqGgX/7yl/rwww/leZ5WV1cVDAb1R3/0R/rpT3/alet0o4vKdV3FYjFFIhFNTEwc6QizbVuGYSgSiVTDrZNEo1EVCgWZpqlUKlV9nOu6KhaLCoVCsm1bwWBQm5ubMk2z4+eBs2fn33s7HgAAAABOy3EcJRIJBQIBGYahiYkJhUIhJRKJI5+XTyOTyVQ/dxuGoUAgoFgs1tL+2syJkww8CKuodEft7Ozozp07Gh8f17NnzxQOh/Xf//t/12effdbxNcbHxzt6fKUjq1AoNN2PrFAoKJ/PKxhs7ajAcDisnZ0dpdNpOY6j2dlZTUxMKBaLaXJyUvl8XqVSiRBsiE38bm/HAwAAAMBpZDIZBQIB5XK5aujluq5s21Yul1MgEFAmkznVnMViURMTE9XVV/l8XuVyWel0WrZtKxKJKBKJnGpbomGeE40ZXq92ku+CXC6ndDqtzc3Narq8tLSk+fl5jY2NnXq+zc3Nruw/dt6Mjo5qf39fIyMjevv27aDLOTPe7kvvfLf5mN98TxrtQtz8//1/pf/PP7Y+/n/9SWdLI/v53AZxPZxvcz/5Ud+utfqNb/XtWgAw7M7z/z7xPGn/hE9lI4ZkGJ1fC8OtW5/9IpGIisWiTNNUOByWZVlyHEe2bR/pBMvn88fuh12rWCwqEolIOljRlc1mj4yprJiyLKulZpFhnhPH83UQVlG7j5jxf//6JxIJJZNJXb58ebDFnQMEYe3p5/842v21dPFuaxvm/97vSK+XpLGvtH+98/w/NHH+EYQBwPnE/z4BOteNz36pVEqZTEbpdLrhHteZTObIftonxQ6u62pqakqu68qyLJXL5YbjHMepHjhX2WaJOXFaZ+LPduVFLpfLunnzpjzP08OHDxUIBPTRRx/p5z//+aBLBHpq/CvS97/R2tiHf9pZCAYAAICDDqzffK/5bYQOLQwZx3GUyWRUKBSOPSgumUwe2aP7pP2zY7FYdcnf4RCtlmVZ1e6yYrGoXC7HnDi1MxGEVUxNTSmbzWpnZ0f379/X2NhYdWP9//E//od+/OMfD7pEoGf+bPrkMT+MtjYOAAAAzRnGQbdXsxtLFTFsUqmU0um0wuFw03HpdLrufrON3h3Hqfv53Nxc07lv3LhRVw9z4rTOVBBWMT4+rmQyqZ2dHa2ururq1ava2NhQNBrt2sb6wFn0LUIwAAAAAD3iuu6xnWC1TNOUZVl1949TG5qFw+ET976q3W/MdV2tra0xJ07lTAZhtaLRqEqlkjY2NvTee+/pl7/8peLxuC5cuKCPP/5Ye3t7gy4RAAAAQB/83ctBVwCcb6fZl2p7e7v69czMzLHjapf4BYPBluauDdkeP37MnDiVMx+EVQSDQRUKBaXTaXmep52dHaXTaU1MTOjb3/62tra2Bl0iAAAAgDa1EnL95RphGOAHrutW970Kh8PHhjyH9w67du1aS/PXzne4K2qY50Rrzk0Q9ujRI125ckWLi4syDEOGYcjzPHmep2w2q0AgoA8++GDQZQIAAAA4pd1fS9/+SWtjb/2DtPfrnpYD4ASrq6uSDrqX8vn8seMO7x1W2+3UzOFxtaHSMM+J1pz5IOyTTz7RhQsXlEgkVC6Xq+GXpLpAbGpq6sjJFQAAAAD8729t6d/+s7Wx//of0g/5XAgMjOu6SiQS1VVbzfa9evHiRd39k/bIqrhw4ULd/Y2NDeZEy94ZdAHt2Nvb071795TJZCSpLviqqHwvGAwqnU5rdna2/4WeMfv7+7p06VLTMQsLC1pYWOhTRQAAAID0j7843fh/+oX013/Ym1oAHM9xHEUiEZmmqfX19RPDHcdx6u632xVVLpeZEy07U0HY1taW0ul0dUO5ZgFYNBrV0tKSpqc5Ru80Xr9+3fTnHD4AAACAftv5996OB9C5tbU1xWKx6v2JiQml0+mmp0weDoPaVdmPbNjnRGvORBD26tUr3bt3r7oRXLMALB6PK5VKaWpqqv+FngMXL15s+vOxsbE+VQIAAAAcmPjd3o4H/G55eVnLy8sdz7O/v9+Fan7LdV3lcjlls9mGwU4qldKLFy+O3Ses3RDncKdZ7QmVwzwnWuPrIOz58+dKpVLVzd+OC8BM01Q8HtfS0pLGx8cHUut5MDIyoi+//HLQZQAAAAB1/uQPpGdftD7+j/+gd7UAg7C3t3fi6p1BKBaLKpfLCofDchznyAbw0kGnWCaTadoZ1qledEUN85znnS+DsKdPnyqVSlUT5WYB2NLSku7cuTOQOgEAAID/f3v3E+PIeeZ5/kdSFkp/QEVmAd2HLMCoSPRCc5mFgqU9+Fok5mKNDDSZAqS1BAymSI/Xc8lDcgo+qwskGnnpWUNkNRZYeSRsFomBBfvQMFnXwS6qGMLMyZgGWfBOJXY9gDJDCVvWWkrGHrJJk0wmGUwy/pDx/QBEkZkP33gY9TIy+PB934D/fmhJ/+4fvC2Y/+qL0vuW/zkBQUqn03Nn73ix6mJaPp9XPp8f+1m9Xle5XB4r0JTLZRWLxUujmQzDWEkhZ7TdOLcJbyJVCPvbv/1bPXjwQI7jDItf0p8LYIOfmaapSqWiv/7rvw4lTwDB++Rz6f1M2FkA4/Y++zSQ7Tx6+91AtgMAi3Bdqe/OjkkmpJHvsq/ttRvSz96WPmjOj/3oB1L6xvLbBKJkVRctS6VSK58eOalYLCqbzSqTyYwVeur1+qVRYdvb2yspBm1vb9MmPAu9EDa4AmS9Xh8rgE1b/yubzapcLl/7CpB/9Vd/pX/8xwXGVAMIxCefz4/5oCmlktJ7XP8CAIBI6LvSCz+dHfPth1JqBYUw6eIcYF4h7OM85wpAFJimqcePHyuT+fM32U+ePLkUd93RTJMFpMmRVnFtE94kw9z4v/k3/0ZbW1uqVqs6PT2V67pKJBJjI8Bc11U+n1en09Gvf/3raxfBJC4rCkTRl19LP/7MW+yPfiGdfe1rOgAAYI29SxEMiAzLssamTU5bTP/OnTtjj72OkJpcIH53d5c24VmohbBarTYsdg0KYIPHruuqWCyq2+3q0aNHeuON5f6qPXz4cGyUGYBo+Lntbb0PSfr9n6SPbX/zAQAAALAa77zzzvD+tELP6IgxaXqxbJrJQS7ZbJY24VmohTBJl0aAbW1tDRfW++ijj3T79u2lt/H3f//3KpVKS7cDYPV++ZvF4n+1YDwAAACAcFjWn69cMW0K3+SoKK/FoNGimmEYMk2TNuFZ6GuEjUokEjJNU+12e+plVxflOI7nzgQgHKd/9DceAAAAQPgmCz/SRaFs9OqJT548uXQVymmePn16ZbtxbhPeRKIQNnqFyE6nE2ImAIK29ZK/8QAAAADCMTowJZfLTY3Z29tTvV6XJNm2t3VQRuPK5TJtYiGRKIQdHBwol8tpe3t7JVc8GFRUT05O1Ov1VKvVPHcqAMF663Xp1wtczPX7r/uXCwAAAIDVGXwONwzjytFOpVJpWAzyMjNsNMY0zalrZMW5TcwXeiGsVqvpX//rf+1b+3fv3tW9e/dUKBT0H//jf/RtOwCu54eW9O/+wduC+a++KL1vzY8DAAAAEL4HDx5Iurh43VUsy1I2mx0WeZrN5swpgo1GY3j/qhFRcW4T84W6WH4ikdDe3l4g26pUKoFsB8BiXrsh/extb7Ef/UBK3/A1HQAAAABXqFarymQywwvczTKIOTg4mLv2Va1WG94fFM+mcRxnOIIqm82qWCzSJhYWaiHstddeUzqdDmRbpmnqtddeC2RbABbz3hvzYz7Oe4sDAAAAsHqO46hcLsu2bVWrVW1tbV05KqlQKKharapSqXgalGKa5nC006D9ae7evSvpYqrl6Ogo2sQiQi2EzRoe6QdGhQHr612KYAAArJ1PPg87AwCrYhiGTNMc+9mgIFYoFFQul5XL5bS1tSVJ6na7Ojg48Nx+Pp9Xq9WSYRgql8sqFAqybVuO46jdbiuTyci2bVmWpWfPnnlaXzzObeJqoRbC/vqv/zrQ7d27dy/Q7QGbjBNbAADizcu5wAdNzhmATdLpdHRwcCDLssaKMbZtq9frqVAo6NmzZ2o0GpeKZl5ks1mdnp6qUqmo1+vp7t27w0Lb9va2Go2GOp3OQoWgOLeJ6RKu67phJ4FwpVIp9ft9JZNJnZ+fh53O2jjvSy/8dHbMtx9KqRWVm4Pc3sedixPXef7D3mqmKwb52lxX6s856iUTUiKx/LYQjr3PPg07hZV79Pa7YacAAGO+/Fra+RvvF7s5vr/8Op/8DQeWx2c/IAJXjQQQLV9+Lf34M2+xP/qF9NY/W68F7Puux6IbJ9EAAFzp57a3Ipgk/f5P0se29JPvLbfNRIK/zwCA5YU6NRJA9FznxBYAAMTLL3+zWPyvFowHAMAvFMIAjOHEFgAAzHP6R3/jAQDwC4UwAGM4sQUAAPNsveRvPAAAfqEQBmAMJ7YAAGCet15fLP77C8YDAOAXCmEY6vf7unXr1szb4eFh2GnCZ5zYAgCwvlz34mrMs26ruGb8Dy3ple94i331Rel9a/ltAgCwClw1EmOOj49n/v7s7CygTBCWH1rSv/sH75dD58QWAIDoCOrqyK/dkH72tvRBc37sRz9YrytMA+vq8PBw7sCFfr8fUDZAdFEIw5idnZ2Zv0+n0wFlEn3JxMWJ5LyYdcOJLQAA8OK9N+afL3ycv4gD4L+zs7O5AxsAUAjDiGQyqefPn4edxtpIJJb/NjWqOLEFAACr8C7nCkBg0un03IENFMoACmHA2ojaCDRObAEAAIDo2N/f1/7+/syYVCrF9EjEHoUwYE1s8gg0AAAAAACCwFUjAQAAAAAAEAsUwgAAAAAAABALFMIAAAAAAAAQCxTCAAAAAAAAEAsUwgAAAAAAABALFMIAAACAGPnk87AzAAAgPC+EnQAAAACA1fBS5PqgKaWS0ntvLLetZEL69sP5MQAARAkjwgAAAIAN8OXX0o8/8xb7o19IZ18vt71E4qKgNuuWoBAGAIgYCmEAAADABvi5Lf3hG2+xv/+T9LHtbz4AAEQRhTAAAABgA/zyN4vF/2rBeAAANgGFMAAAAGADnP7R33gAADYBi+UDCB2L7QIAsLytl/yNBwBgEzAiDEDoWGwXAIDlvfX6YvHfXzAeAIBNQCEMAAAA2AA/tKRXvuMt9tUXpfctf/MBACCKKIQBAAAAG+C1G9LP3vYW+9EPpPQNX9MBACCSKIQBAAAAG+K9N+bHfJz3FgcAwCaiEAYAAADEyLsUwQAAMcZVIwEAAAAAWHOHh4c6PDycGdPv9wPKBoguCmEAMOGTz6X3M2FnAQAAAHh3dnam4+PjsNMAIo9CGIb6/b5u3bo1M2Z/f1/7+/sBZQSs3iefz4/5oCmlkqyfAgAAgPWRTqe1s7MzM4ZCGUAhDBPmHRjPzs4CygRYvS+/ln78mbfYH/1CeuufcUUtAAAArAcvgxZSqRTTIxF7FMIwZt43COl0OqBMgNX7uS394Rtvsb//k/SxLf3ke/7mBAAAAAAIDoUwDCWTST1//jzsNADf/PI3i8X/6jcUwgAAAABgk1AIAxAbp3/0Nx4AgEmuK/Xd2THJhJRIBJMPAABxRyEMQGxsveRvPAAAk/qu9MJPZ8d8+6GUohAGAEAgKIQBiI23Xpd+/Y/e47//un+5AADgh2TiorA2LwYAgLhKhp0AAATlh5b0yne8xb76ovS+5W8+AACsWiIhpZKzb0zDBADEGYUwALHx2g3pZ297i/3oB1L6hq/pAAAAAAACRiEMQKy898b8mI/z3uIAAAAAAOuFQhgATHiXIhgAAAAAbCQWy48Yx3H04MED2batXq+nXq8n0zRlWZZyuZyKxWLYKSIGWGgXAAAAALCJGBEWIdVqVVtbW6rX68rlcqrVaup0OiqXy+r1eiqVStrd3VW73Q47VWw4FtoFAAAAAGwiRoRFRKFQULPZlGVZ6nQ6Y7+zLEvFYlGlUmlYJOt0OrIsLmkHAAAAAADgFSPCIqBararZbEqSHj9+fGVcrVaTaZqSpLt37waSGwAAAPz1yedhZwAAQHxQCIuAcrks6WLkl2EYM2Pz+byki7XEBsUzAAAARJOXItcHTYphAAAEhUJYyEbX+xqM9prlzTffHN5/8uSJLzkBAABgeV9+Lf34M2+xP/qFdPa1r+kAAABRCAtdr9cb3rdte6Hn3rx5c9XpAAAAYEV+bkt/+MZb7O//JH282KkgAAC4BgphIdve3h7e7/V6Y4WxaUZHgXkZQQYAAIBw/PI3i8X/asF4AACwOAphIZssZpVKpZnxg3XBDMMYrhcGAACA6Dn9o7/xAABgcRTCQmZZlizLGj5ut9sqFApTY+v1+nDEWKVSCSQ/AAAAXM/WS/7GA8Cow8ND3bp1a+at3++HnSYQuhfCTgDSw4cPlclkho+bzaYKhYIajcbwZ+12ezharFarqVgsBp4nAAAAvHvrdenX/+g9/vuv+5cLgM13dnam4+PjsNMAIo8RYRFgWdZY0Uu6KIbt7u7Ktm1Vq1XlcjmZpqlWq0URDAAAYA380JJe+Y632FdflN635scBwFXS6bR2dnZm3gBICdd13bCTwIV6vX7lGmEHBwe+TYdMpVLq9/tKJpM6Pz/3ZRtAVJz3pRd+Ojvm2w+lFF8TrK29zz4NO4WVe/T2u2GnAOCaPu5IHzTnx/2HPem9N/zPB0C88dkPYGpkpAxGek0rhrXbbTmOI8MwfNt+v9/XrVu3lm5nf39f+/v7K8gIAABgvb33xvxC2Md5imAAAASFQljEFItFdTod1ev1sZ/btq3bt2/r8ePHY4vrr9oq5pSfnZ2tIBMAAIB4eJciGAAAgaEQFjGlUkn1el3FYlHtdnt4lUhJchxHmUxGrVZL2WzWl+2vYt54Op1eQSYAAAAAAACrRSEsQnK5nNrt9th6YIPC2GScH8WwZDKp58+fr7RNAAAAAACAqGA56IjIZDJqt9vKZrNji+LXarVLV5SUpEKhIMdxAswQAAAAAABgvVEIi4BCoSDbtiVdFL4m5fN5dTqdsYXyHcdRuVwOKkUAAAAAAIC1RyEsZL1eT83mxaWELMuSaZpT4yzLUqfTGftZvV5nVBgAAMCCXFc678++uW7YWQIAAD+wRljIRkeA3blzZ2asaZqq1WoqlUrDnz19+tS3hfMBLM91pf6cD1PJhJRIBJMPAODiuPzCT2fHfPuhlOLYDADAxqEQFrLREV27u7tz44vF4lghbPSqkgCihw9bABBvycTFcX5eDAAACAZTI0N2cnIyvN/tdj09x7Isv9IBAADACiUSUio5+8aoYAAAgkMhLGSja4JdZ3TXVWuKAQAAAAAAYByFsJC98847w/tPnz71tPj9aMGM9cEAAAAAAAC8oRAWMsuyhsUsx3H04MGDmfHtdntYLKtUKn6nBwAAAAAAsDFYLD8CGo2Gbt++LcdxVK1Wtbu7q2KxeCmu1+upUChIuhgJdnBwEHSqwNpj0WIAAAAAiC9GhEWAYRh69uzZsPhVKpWUy+VUr9dl27ba7bbK5bJ2d3flOI4qlYparVbIWQPriUWLAQAAACC+GBEWEYZhqFarqVQqqVarqd1uq1QqSbpYEN+yLB0cHOj+/fsyDCPcZAEAAAAAANYQhbCIsSxLtVot7DQAAABi7ZPPpfczYWcBAABWjamRAAAAiJVPPp8f80HTWxwAAFgvjAgDAABAbHz5tfTjz7zF/ugX0lv/TErf8DUlAFiJw8NDHR4ezozp9/sBZQNEF4UwAAAAxMbPbekP33iL/f2fpI9t6Sff8zcnAFiFs7MzHR8fh50GEHkUwgAAABAbv/zNYvG/+g2FMADrIZ1Oa2dnZ2YMhTKAQhgAAABi5PSP/sYDQFj29/e1v78/MyaVSjE9ErHHYvkAEDIWYwaA4Gy95G88AACINgphAOAjrkwGANHy1uuLxX9/wXgAABBtFMIAwCeLXpns7Gtf0wEASPqhJb3yHW+xr74ovW/5mw8AAAgWhTAM9ft93bp1a+Zt3uV4AfzZda5MBgDw12s3pJ+97S32ox9I6Ru+pgMAAALGYvkYM+8qImdnZwFlAqw/rkwGANH03hsX09Jn+Th/EQcAADYLI8IwZmdnZ+YtnU6HnSKwNrgyGQCsr3cpggHAXLZtq1QqaXd3V4lEQolEQru7uyqXy3Ic59rtVqtV5XI5bW1tDdssFApqt9u0iaVRCMNQMpnU8+fPZ97mXY4XwJ9xZTIAAABsIsdxVCgUlMlkVK/X1ev1hr/r9XqqVqva2tpSvV5fqN12u62trS2Vy2VJUqPRULfbVaVSkW3byuVyyuVyCxXZ4twmpku4ruuGnQTClUql1O/3lUwmdX5+HnY6wMb49/9J+re/9B7/d28xNXIV9j77NOwUVu7R2++GnQKwUc770gs/nR3z7YdSiq+MAWyYVXz2cxxHmUxmrPg1S7FYVK1WmxvXbreVy+VmPieTyci2bZmmqU6nI8MwaBMLoxAGCmGAT778Wtr5G28L5r/6onR8n0WZV4FCGIB5KIQBiKtVfPbL5XJqt9uyLEv379+XZV1cXte2bT158kTVavXScxqNhvL5/JVtOo6j27dvy3Ecmaapbrc7Na7X62l3d1eSlM1m1Wq1aBML4887APiEK5MBAABgk9TrdbXbbR0cHKjT6Sifz8s0TZmmqXw+r0qlom63OyyODdy7d29mu4VCYTjlbzA1cJrBdqSLUVSzpl7GuU3MxogwMCIM8JGXUQcf56UfZoLJJw4YEQZgHkaEAYirZT/77e7uyjTNuaORRkcvDbRaLWWz2bmxp6enM6f9NZtNFQoFSZJhGDo9PaVNLIQ/7wAQMq5MBgDBSiYuCl2zbslE2FkCQLTYtq1er6dGozE31jRNVSqVS8+fZjQum83OXftqdIql4zhqNpu0iYVQCAMAAECsJBIXo71m3RIUwgBgzNHRkYrFoudF2idHf33xxRdT40an+E1OqbyKaZpjedEmFkEhDAA2iOteTPmZdWNCPAAAABb1zjvvXBrlNctkYWdyqqR0eZTYm2++uXDbk6Oi4twmvHkh7AQAAKvTdz2ue8NIBwAAACzA64ilgcEC8AOjI5kG2u323JhpJuNs2x7mF+c24Q0jwgAAAAAAwEr1er2xx9MWyn/y5MnYY6/TLm/evDn2+OnTp7QJzyiEAQAAAACAlRot0BSLxakxk8Wy646K6na7tAnPKIQBAAAAAICVqtVqw/vlcnlqzGQx6LpGp2HGuU14wxphAAAAAABE2OHhoQ4PD5dup9/vryCb+Xq93nAx+EqlcuVop+sWcSanEZ6cnNAmPKMQBgAAAABAhJ2dnen4+DjsNDwbXF3SNE0dHBz4vj0/RkXFuc1NRyEMAAAAAIAIS6fT2tnZWbqdIIpptm2rXq/LMAy1Wq2ZsYZhrKSQMzpKKs5twhsKYQAAAAAARNj+/r729/eXbieVSvk+PfLevXuSpMePH89dAH57e3slxaDt7W3ahGcslg8AAAAAAJZWKpVk27YajYYsy5obf93RTJMFpMmRVnFtE95QCAMAAECoXFc678++uW7YWQIAZqnX66rX66rVasrn856ec+fOnbHHXkdITS4Qv7u7S5vwjKmRAOCjZEL69sP5MZtu77NPw04BQIT1XemFn86O+fZDKRWD4yUArKN2u61SqaRaraZisej5eZlMZuxxr9fzNJKs2+2OPc5ms7QJzyiEAYCPEgk+uGF5QRYSH739bmDbAgAA68+2beVyOVUqlYWKYNLlUVFei0Gjo6cMwxhbiyzObcIbpkYCAAAAAICF9Xo93b17VwcHBzo4OFj4+ZZlja1x9eTJE0/Pe/r06fD+ZEEpzm3CGwphGOr3+7p169bM2+HhYdhpAgAAAABC1uv1lMlkVCwWValUPD+nWq2O/Wxvb29437ZtT+2MxpXL5Uu/j3ObmI9CGMYcHx/PvJ2dnYWdIoAlffJ52BkAAABgnTmOo1wup729Pc9FMEkqFAqX1rQqlUrD++12e24bozGmaU5dIyvObWI+CmEYs7OzM/OWTqfDThHADF6KXB80KYYBAADgehzHUSaTkWmaKpfL6vV6c2/tdnu4OPzkOliWZY0VdJrN5sztNxqN4f2rRkTFuU3Ml3BdLkYdd6lUSv1+X8lkUufn52GnA+Cavvxa2vkb6Q/fzI999UXp+L6UvuF/XhJXjVwnLJaPMJz3PV41kq9wAWApq/jsl8lkPE/jm3TVVSV7vZ52d3clXRSHOp3O1Oc7jqOtrS1JF1dLbLVaV24rzm1iNk4nAGBD/Nz2VgSTpN//Sfr4eucvABAKRrICQPiWKYJJuvKqkqZpDkc72bZ9aR2xgbt370q6uFri6Ogo2sQiKIQBwIb45W8Wi//VgvEA4BemdQNA9BUKBV+KYAP5fF6tVkuGYahcLg+35zjOcGqlbduyLEvPnj0bu+IibWIRTI0EUyOBDfE//a/Sk+cLxN+S/q//xb98RjE1cn0wNRJBi/K0bgDYNOvy2a9arero6Ei9Xk+O48gwDN25c0elUkn5fJ42sRQKYVibgyGA2f7F/yb9+h8XiP8r6R/+lX/5jKIQtj4ohCFo//4/Sf/2l97j/+4t6Sff8y8fANhkfPYDmBoJABvjrdcXi//+gvEA4AemdQMAgCBRCAOADfFDS3rlO95iX31Ret+aHwcAfjv9o7/xAAAAoyiEAcCGeO2G9LO3vcV+9APW2AEQDVsv+RsPAAAwikIYAGyQ996YH/Nx3lscAASBad0AACBIFMIAIGbepQgGIEKY1g0AAIL0QtgJAAAAIL4G07o/aM6PZVo3AFzt8PBQh4eHM2P6/X5A2QDRRSEMAAAAoXrvjfmFMKZ1A8BsZ2dnOj4+DjsNIPIohAEAACDymNYNALOl02nt7OzMjKFQBlAIAwAAAABg7e3v72t/f39mTCqVYnokYo/F8gEAAAAAABALFMIAAAAAAAAQCxTCAAAAAAAAEAusEQYAuBbXlfru7JhkQkokgskHwPpKJqRvP5wfAwAAsCwKYQCAa+m70gs/nR3z7YdSig+vAOZIJDhWAACAYDA1EgAAAAAAALHAiDAA2CBMLwIAAACAq1EIA4ANwvQiAAAAALgahTAM9ft93bp1a2bM/v6+9vf3A8oIAAAAAABgdSiEYczx8fHM35+dnQWUCQAAAAAAwGpRCMOYnZ2dmb9Pp9MBZQIAAAAAALBaFMIwlEwm9fz587DTAAAAAAAA8AWFMAAAAFziulLfnR2TTFxcpAMAAGBdUAgDAADAJX1XeuGns2O+/ZAr1QIAgPWSDDsBAAAAAAAAIAgUwgAAAAAAABALFMIAAAAAAAAQCxTCAAAAAAAAEAsslg8A8M0nn0vvZ8LOAoBfeI8DQHQcHh7q8PBwZky/3w8oGyC6KIStKdu21ev11Ov1ZFmWstls2CkBiJlPPp8f80FTSjH2GFhLi7zH33vD/3wAALOdnZ3p+Pg47DSAyOPjyZpwHEfValWZTEaJREJ3797VkydPZFmW7ty5E3Z6AGLmy6+lH3/mLfZHv5DOXV/TAbBii77Hz772NR0AgAfpdFo7OzszbwAYERZ5juOoXC6rXq9LkizLUqvVYgQYgFD93Jb+8I232N//SfriK+kvXvE3JwCrs+h7/GNb+sn3/M0JADDb/v6+9vf3Z8akUimmRyL2GBEWYfV6Xbdv3x4WwWq1mjqdDkUwAKH75W8Wi3cYLQKslUXf479aMB4AACAsjAiLqHK5rGq1KkkyTVOtVkumaYacFQBcOP3jYvHnfPEIrJVF3+OLxgMAAISFQlgEFQoFNZtNSZJhGOp0OjIMI9ykAGDE1kuLxbNgPrBeFn2PLxoPAAAQFj6aREwulxsWwSRRBAMQSW+9vli8ccOfPAD4Y9H3+PcXjAcAAAgLhbAIqdfrarfbw8e1Wo3pkAAi6YeW9Mp3vMW++qJ082V/8wGwWou+x9+3/M0HAABgVSiERUSv11OpVBo+tixLxWIxxIwA4Gqv3ZB+9ra32I9+IKUSvqYDYMUWfY+nGfUJAADWBIWwiCgUCmOP79+/H1ImAODNe2/Mj/k47y0OQPTwHgcAAJuIQlgE9Ho92bY9fGwYhvL5fIgZAcBqvMsHZGCj8R4HAADrhkJYBNRqtbHH2WxWktRsNlUoFLS7u6tEIqGtrS1lMhlVq1U5jhNCpgAAAAAAAOvrhbATwMUi+aO2t7eVyWTGRolJkuM4sm1btm2rXC6r0WgwcgwAAAAAAMAjCmEh6/V6l0Z3PXr0SJVKRXt7ezIMYxhXqVTGimaFQmGlxbB+v69bt24t3c7+/r729/dXkBEAAAAAAMDqUAgLWa/XG3tsGIaePXs2LIANmKapWq2mTCYzdnXJe/fuKZvNXoq/ruPj46XbODs7W0EmAAAgTMmE9O2H82MAAADWCYWwkE0WworF4syiVrFYVKfTGY4McxxHDx48UKVSWUk+Ozs7S7eRTqdXkAkAAAhTIiGlKHQBAIANQyEsZN1ud+zxm2++Ofc55XJ5bIpktVpdSSEsmUzq+fPnS7cDAAAAAAAQRVw1MmST64N5meJomqYsyxr72eTC+gAAAAAAABhHISxku7u713renTt3xh5PTrEEAAAAAADAOKZGhmxyBNjkCLGrTBbQTk5OVpQRACDO9j77NLBtPXr73cC2BQAAAEgUwkJ33ZFdkwW07e3tVaUEAJ5wRTkAAAAA64ZCWMgm1/qaXDzfK9M0V5EOAHjGFeUAAAAArBsKYRGQzWbVbrclafjvPJNTKCcLagAAAACA+Dg8PNTh4eHMmH6/H1A2QHRRCIuAcrk8LID1ej05jjP36pGjI8ey2ayf6QEAAAAAIu7s7EzHx8dhpwFEHoWwCMhmszJNc7g+2IMHD1SpVGY+Z3Tk2LxYAAAAAMBmS6fT2tnZmRlDoQyQEq7rumEnAcm2bWUymeHjbrd75bpf7XZbuVxOklQsFlWr1ZbadiqVUr/fVzKZ1Pn5+VJtAcA0QV6JEOuDq0YCABAsPvsBUjLsBHDBsqyxglYul7u0Dph0sTZYqVSa+hwAAAAAAABcjUJYhBSLRbVaLRmGoV6vp9u3b6tarcq2bdm2rWq1qtu3b6vX66lYLKrT6YSdMgAACIjrSuf92TfG+QMAAMzG1MiIqtfrajQaevr06XDxfNM0lc1mVSqVrpw2eR0MjwXgN6ZGYhqmRi7mvC+98NPZMd9+KKX4mhMAcAU++wEslh9ZxWJRxWIx7DQAAAAAAAA2Bt8ZAgAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQDWguvxBsTZJ5+HnQEAAEC0sVg+AGBtdI5n/z6zE0weQBi8FLk+aF5cNfK9N/zPBwAAYB0xIgwAACDivvxa+vFn3mJ/9Avp7Gtf0wEAAFhbFMIAAAAi7ue29IdvvMX+/k/Sx7a/+QAAAKwrpkZiqN/v69atWzNj9vf3tb+/H1BGALCYk6+kmy+HnQWwer/8zWLxv/qN9JPv+ZMLAADAOqMQhjHHx7MX4Dk7OwsoEwAYd/LV/Jhnpxf/UgzDpjn9o7/xAAAAcUEhDGN2dmavNJ1OpwPKBAD+7NyVfut4i/2tIxkvSamEnxkBwdp6yd94AACAuKAQhqFkMqnnz5+HnQYAXPLFV1Lf9Rbbdy/i/+IVf3MCgvTW69Kv/9F7/Pdf9y8XAACAdcZi+QCAyHMWvALeovFA1P3Qkl75jrfYV1+U3rf8zQcAAGBdUQgDAETeed/feCDqXrsh/extb7Ef/UBK3/A1HQAAgLVFIQwAEHmpBf9aLRoPrIP33pgf83HeWxwAAEBcsUYYACDyjBvS2QLTHQ1GwyCm3qUIBgCxdXh4qMPDw5kx/T7D5gEKYQCAyLv5svT8S28L5icTF/EAAABxcnZ2puPj47DTACKPQhgAIPJSCem7hvTsdH7sd42LeAAAgDhJp9Pa2dmZGUOhDKAQBgBYE9svzy+E3d5iNBgAAIin/f197e/vz4xJpVJMj0TsUQgDAGyMbYpg2GDJhPTth/NjAAAAcDUKYQCAtZGZPdof2GiJBNN+AQAAlkUhDACwFvj8DwAAAGBZybATAAAAAAAAAIJAIQwAAAAAAFxLr9dTLpdTs9lcqp1qtapcLqetrS0lEgnt7u6qUCio3W7TJlaKQhgAAAAAAFiI4zgqFAra3d1Vu93WycnJtdppt9va2tpSuVyWJDUaDXW7XVUqFdm2rVwup1wuJ8dxaBMrkXBd1w07CYRrcAndZDKp8/PzsNMBsIH2Pvs07BQQQY/efjfsFAAAiJVVfPZzHEcPHjxQtVod+3mtVlOxWFyorXa7rVwuJ0kqFouq1WqXYjKZjGzblmma6nQ6MgyDNrEUCmGgEAbAdxTCECYKbgAAXFj2s1+1WlWtVpNpmpem7S1aCHMcR7dv35bjODJNU91ud2pcr9fT7u6uJCmbzarVatEmlsLUSAAAAAAAMJNt28pms+p2u2q1WlNHMC2iUCgMp/wNpgZOY5qm8vm8pItRVPV6nTaxFEaEgRFhAHzHiDCEiRFhAABcWOVnP9u2lclkho8XGRE2OtJJkk5PT2dO+2s2myoUCpIkwzB0enpKm7g2RoQBAAAAAICFLLNeVaVSGd7PZrNz2xqMipIuphVOu0JlnNvEYiiEAQAAAACAwIxO8bMsy9NzTNMc3j86OqJNXBuFMAAAAAAAEAjbtscev/nmm56eN1o0mhwVFec2sTgKYQAAAAAAIBCTV5scHe00y2TcaFEpzm1icRTCMNTv93Xr1q2Zt8PDw7DTBAAAAACsqSdPnow99rrW2M2bN8ceP336lDZxLS+EnQCi5fj4eObvz87OAsoEAAAAALBper3e2OPrjorqdru0iWuhEIYxOzs7M3+fTqcDygQAAAAAsGkmi0HX5TgObeJaKIRhKJlM6vnz52GnAQAAAADYUNct4kxOIzw5OaFNXAuFMAAAAAAAIuzw8HAl6zX3+/0VZBMNfoyKinObcUIhDAAAAACACDs7O5u7nvO6MAxjJYWc0VFScW4Ti6MQBgAAAABAhKXT6bnrOXsRhWLa9vb2SopB29vbtIlroRAGAAAAAECE7e/va39/f+l2UqlU6NMjrzuaabKANDnSKq5tYnHJsBMAAAAAAADxcOfOnbHHXkdITS4Qv7u7S5u4FgphAAAA1+C60nl/9s11w84SAIBoyWQyY497vZ6n53W73bHH2WyWNnEtTI0EAAC4hr4rvfDT2THffiilEsHkAwDAOpgcFdXr9WRZ1tznjY6eMgxDpmnSJq6FEWEAAAAAACAQlmWNrXH15MkTT897+vTp8P5kQSnObWJxFMIAAAAAAEBg9vb2hvdt2/b0nNG4crlMm7g2CmEAAAAAACAwpVJpeL/dbs+NH40xTXPqGllxbhOLoRAGAAAAAAAW4vWKh9NYljVW0Gk2mzPjG43G8P5VI6Li3CYWk3BdrmcUd6lUSv1+X8lkUufn52GnA2AD7X32adgpIMYevf2uL+2e9+cvlv+/56X3M7NjAAAIyio/+zWbTRUKheHjSqWig4MDz8/v9Xra3d2VdFEc6nQ6U+Mcx9HW1paki6sltlot2sRSGBEGAABwDZ98Pj/mg6a3OAAA1onjOJdGJx0dHS3Uhmmaw9FOtm2rWq1Ojbt7966ki6sljo6Ook1cFyPCwIgwAL5btxFhgz+M533pi6+kL7++uJ9KSq/dkG6+fHE/EWqWCNO5K/3n/0fqT5xFPftvl0efvfqidHxfSt8IKDkAAK6wzGc/x3F07949OY4zc22rbDYrwzB0//59WZY1t912u61CoSDHcZTP53X//n2ZpqmnT5+qXC7Ltm1ZlqXHjx+PXXGRNnFdFMJAIQyA79axENY5nh1ze+uiIIZ4+u9/kP5v5/LPpxXCJOnv3pJ+8j1/cwIAYJ4of/arVqs6OjpSr9eT4zgyDEN37txRqVRSPp+nTawMhTBE+mAIYDOsWyHsi6+kZ6fz4yiGxdd//UI6+/ryz68qhP2Lv5L+4V/5nBQAAHPw2Q9gjTAAAMacu9JvHW+xv3Uu4hE/5/3F4k//6E8eAAAAWAyFMAAARnzx1eV1n67Sdy/iET+pBc+gtl7yJw8AAAAshkIYAAAjnCnT3VYZj81gLLjw/fdf9ycPAAAALIZCGAAAIxad8rZoPDbDzZelpMfLhr76ovT+/ItmAQAAIAAvhJ0AoqPf7+vWrVszY/b397W/vx9QRgAQvEWnvC0aj82QSkjfNbxdVOGjH0jpBUeQAQAAwB8UwjDm+Ph45u/Pzs4CygQAwmHcmH41wFnxiKftl+cXwj7OS++9EUw+AAAAmI9CGMbs7OzM/H06nQ4oEwAIx82XpedfelswP5m4iAeu8i5FMABAQA4PD3V4eDgzpt9nTQeAQhiGksmknj9/HnYaABCqRaa8fde4iAcAAAjb2dnZ3Bk+ACiEAQBwyWCU12+d6SPDkv9ULGM0GAAAiIp0Oj13hg+FMkBKuK7rYfIHNlkqlVK/31cymdT5+XnY6QDYQHuffRp2Ctdy7kpffCU5X19cHTKVvFgT7ObLjASDNO0E6v94692xx8mElKCvAAAigs9+ACPCAAC4Uioh/cUrFzdg0rT6FlcRBQAAiDYKYQAAACsS5OjHR2+/Oz8IAAAAY/jeEgAAAAAAALFAIQwAAAAAAACxQCEMAAAAAAAAsUAhDAAAAAAAALFAIWwN7e7uKpFIqNlshp0KAAAAAADA2qAQtmbK5bJ6vV7YaQAAAAAAAKwdCmFrpN1uq1qthp0GAAAAAADAWqIQtiYcx1GhUAg7DQAAAAAAgLVFIWxN3Lt3T9vb2zIMI+xUAAAAAAAA1hKFsDVQr9fVbDbVaDTCTgUAAAAAAGBtUQiLuF6vp1KppIODA1mWFXY6AAAAAAAAa+uFsBPAbIVCQZZlqVKphJ0KAACR53qMS/iaRTD2Pvs0kO08evvdQLYDAAAQBAphEVYul2XbtrrdbtipAACwNjrHs3+f2QkmDwAAAEQPUyMjyrZtVatV1Wo1maYZdjoAAAAAAABrj0JYRN29e1f5fF7FYjHsVAAAAAAAADYChbAIKhQKkqSHDx+GnAkAAAAAAMDmYI2wiGk2m2o2m2q1WjIMI+x0AAAAAABr4PDwUIeHhzNj+v1+QNkA0UUhLEIcx1GhUFCxWFQ2mw18+/1+X7du3Vq6nf39fe3v768gIwAAAACAF2dnZzo+nnPFGAAUwqLk7t27Mk1TtVottBxWceA8OztbQSYAAPjj5Cvp5sthZwEAwGql02nt7My+NDKFMoBCWGRUq1XZtq1OpxNqHvMOnF6k0+kVZAIAwOJOvpof8+z04l+KYQCATeJlZk4qlWJ6JGKPQlgE2LatcrmsSqUiy7JCyyOZTOr58+ehbR8AgGWcu9JvHW+xv3Uk4yUplfAzIwAAAEQNhbAIKBQKsixLBwcHYacCAMDa+uIrqe96i+27F/F/8Yq/OW2Cvc8+DWxbj95+N7BtAQCAeKIQFrJqtaper6dsNqtCoTA33nGc4f0HDx7o6Oho+Pidd95RPp/3I00AACLP+XrxeAphAAAA8UIhLGRffPGFJKndbi/8XNu2Zdv28LFpmhTCAACxdb7gkieLxgMAAGD9JcNOAAAAYBVSC57VLBoPAACA9ccpYMgqlYpc1/V8M01z+NxGozH2u0qlEuIrAQAgXMYNf+MBAACw/iiEAQCAjXDzZSnp8SqQycRFPAAAAOKFQhgAANgIqYT0XcNb7HeNi3gAAADEC4UwAACwMbY9jPK6vcVoMAAAgLiiEAYAAGLFS7EMAAAAm+mFsBMAAAAAJGnvs08D29ajt98NbFsAACA6GBEGAAAAAACAWGBE2JrpdrthpwAAQKRldsLOAAAAAFFFIQwAAPjG9Ri3qgs4ciFIAAAAzEIhDAAA+KpzPPv3jOACAABAUFgjDAAAAAAAALFAIQwAAAAAAACxwNRIAAAQqpOvpJsvh50F4mbvs08D2c6jt98NZDsAAMAbCmEAAMA3J1/Nj3l2evEvxTAAAK7v8PBQh4eHM2P6/X5A2QDRRSEMAAD44tyVfut4i/2tIxkvSSku+wgAwLWcnZ3p+HjOFWoAUAgDAAD++OIrqe96i+27F/F/8Yq/OQEAsKnS6bR2dmZfiplCGSAlXNf1eIqKTZVKpYZDZOcdOPf397W/vx9EWgA2SFBr8cAbr3/4lx2c9V+/kM6+9h6fviH9DzeX3CgQMawRBiBKBp/9ksmkzs/Pw04HCAUjwjBm3jcEZ2dnAWUCAPBTZ84XwpnZ34t4cr7gMiSLxgPrIMgvAii6AQAwH4UwjJk3IiydTgeUCQDEx2CE1nn/Ynrgl19f3E8lpdduXCwin0ouP0IraKmkv/EAAADAoiiEYSiZTOr58+dhpwEAsXTVCK2z/0/6b19Kt7eCvariyVfLb8+4sdjUSOPGctsDAAAA5uG7VwAAQnby1fyYZ6cXo8XWaXs3X5aSHoexJRPBFvoAAAAQT4wIAwAgROeu9FvHW+xvHcl4SUotMUcyyO2lEtJ3jYui2jzfNZZ7XQBYjwwAAC8ohAFATHElx2j44iup7/Eyjn33Iv4vXlmf7W2/PL8QFvS0TwAAAMQXUyMBAAiRs8AaWteJD3t7XmxTBAMAAEBAGBEGAECIzvv+xoe9PUnKzL4gMYA1FNSoYqZgAgBWjUIYAAAhSi04NnvR+LC3x7JfAAAAiBKmRgIAECLjhr/xYW8PAAAAiBJGhAEAEKKbL0vPv/S2gH0ysfyi8kFvDwCWwZUwAQCrxogwAABClEpI3zW8xX7XuIhfp+0BAAAAUUIhDACAkHm5auLtrdWNzgp6ewAAAEBUMDUSAIAIyOxcXKHxi6+kL7++uJ9KSq/duChILbtofdjbAwAAAKIg4bquh1VCsMlSqZT6/b6SyaTOz8/DTgdAQIJcdwUAAPwZ65EhLHz2A5gaCQAAAAAAgJigEAYAAAAAAIBYYI0wAAAAAAhQUMsTMAUTAC6jEAYAAAAAwJo7PDzU4eHhzJh+vx9QNkB0UQgDgIhhEXsAAAAs6uzsTMfHx2GnAUQehTAAAAAA2EBBfrnGNMzwpdNp7ezszIyhUAZICdd13bCTQLi4hC4QLYwIAwAAuBpFt+vjsx/AiDAAAAAAwBrhYgMAlkEhDBvr8PBQZ2dnSqfT2t/fDzsdRAT9ApN+97vf6fz8XKlUSn/5l38ZdjqICPoFJtEnMIk+gWk41wSij6mRGA6PlTR3Tvn+/v7aHNBv3bql4+Nj7ezs6Pnz52Gng4hYh37B1Mhg/ef/8l/0zTff6Dvf+Y7+x3/+z8NOBxFBv8Ak+gQm0Sc233VGhEX9XJOpkQAjwjBh3uKJZ2dnAWUCAAAAAACwWhTCMGbeiLB0Oh1QJgAAAAAAAKtFIQxDyWQyksN3gShguiIAAAAwXbVaVavV0tOnT+U4jkzTlGVZKpVKymazYacHjEmGnQAAAAAAAFg/7XZbW1tbKpfLkqRGo6Fut6tKpSLbtpXL5ZTL5eQ4TriJAiMYEQYAAAAAABbSbreVy+UkScViUbVabfg70zSVz+eVyWTUbreVyWTU6XRkGEZI2QJ/xogwAAAAAADgmeM4KhQKki6KXqNFsFGNRkOS1Ov1hvFA2BgRBmBtXWfdrldK/7Nu/9Olzln3CwAAAFhcoVAYTnccTIucZjAyrNlsqt1uq16vq1gsBpQlMB2FMAy5rqvDw0Pt7+/7up3Dw0OdnZ0pnU77vq2gBPmagtrWJr6mIP3ud7/T+fm5UqmU/vIv/5JtRXQ7QeP/an22FZRN3X+b2P+CtIn7b1O3FZRN3H+b+JqCFOb5c6/XU7vdHj7e29ubGf/OO++o2WxKuiiaUQhD2CiEYSjIQtjx8bF2dnY2pugR5GsKalvLbGfRkVb/+Q//Xd/0v9F3/vC1/s8NGaX1//7ud/rmn0ae+X3CtYnbCvI1BYn/q/XZVlA2df9tYv8L0ibuv03dVlA2cf9t4msKUpifqSqVyvB+Npudu+5XPp8f3nccR81mc+xnQNBYIwwAAAAAAHhSr9eH9y3L8vQc0zSH94+OjlaeE7AIRoQBMbHoKC3W0gIAAAAwyrbtscdvvvmmp+dZlqVerydJw2mSQFgohAEhYrF3AAAAAOtidG0waXyk1yyTcbZtex5NBqwahTBgCkZPAQAAAMC4J0+ejD2etz7YwM2bN8ceP336lEIYQkMhDGuD4hQAAAAAhGcwvXHguiPCut3uynICFsVi+QAAAAAAYK7JQth1OY6zknaA66AQBgAAAAAA5rpuAWtyCuXJycnyyQDXlHBd1w07CYQrkUiMPU4m/a2P9vv9a20r+erLC21ntGdPvMSV28RtbeJrCnJbm/iagtzWJr6mTd3WJr6mILe1ia8pyG1t4msKclub+JqC3NYmvqYgt7UOr6n/+68W3tZ1P+vM47quVv3R/TrtTX529NpGu91WLpcbPs5ms2q1WgtvH1gF1gjDJaMH7yhtq3/2ex8zAQAAAIDVCfJzVVAMw1jJtEavi+wDfqAQhjF+jwYDAAAAACzGjxFh17G9vb2SQtj29vbyyQDXRCEMkTigAgAAAACi7bojuSaLZ4wIQ5gY/gMAAAAAAOa6c+fO2GOvo8MmF8ff3d1dVUrAwiiEAQAAAACAuTKZzNjjXq/n6XndbnfscTabXVlOwKIohAEAAAAAgLkmR4R5LYSNjhwzDEOmaa4yLWAhFMIAAAAAAMBclmWNre/15MkTT897+vTp8P5kMQ0IGoUwAAAAAADgyd7e3vC+bduenjMaVy6XV54TsIiEyyUDAQAAAACAB7Ztj60VNq+k0G63lcvlJEmmaV5aLwwIGiPCAAAAAACAJ5ZljS1232w2Z8Y3Go3hfUaDIQoYEQYAAAAAADzr9Xra3d2VdFEY63Q6U+Mcx9HW1pakiytFtlqtwHIErsKIMAAAAAAA4JlpmsORXrZtq1qtTo27e/eupIsrRY6ODAPCRCEMAAAAAAAsJJ/Pq9VqyTAMlctlFQoF2bYtx3HUbreVyWRk27Ysy9KzZ8/GrjYJhIlCGELR6/WGCyZe97nz5qKvwqJ5VqtV5XI5bW1tKZFIaHd3V4VCQe1228csN8O69Ak/LPPaN90i+8a2bZVKJe3u7iqRSAzfg+VyWY7jXDsHP97XHCuuL+w+4Vc/84JjxXRh9wk/8pQ4TixrXfqFHzhWTLfIfun1emN9YmtrS5lMRqVSSb1e79o5bOI5RTab1enpqSqVinq9nu7evautrS0VCgVtb2+r0Wio0+lQBEO0uMAKnZ6eupI83YrF4sJt5/P54fNrtVpk8my1Wq5hGK4kN5vNuq1Wy+12u26j0XBN0xz+/PT09No5r6so94nB/9l1bl5y9fO1r7tV7pvJfnDVbdH+4cf7mmPF1aLeJ/zqZ6t+7Zsk6n3Cjzxdl+PEPFHuF5xXhGPV+6VSqcxtp1KpLJQj5xRAtFAIw0p5+cMxuHW7XU9tnp6eugcHBys5WfUjz1arNfePq2VZriTXNM3Y/TGKap9oNBrXPlmV5DYajVBe+6ZY1b45PT0dnuyt8oOBH+9rjhWzRblP+NXPVv3aN02U+4QfebouxwkvotovOK8Izyr3SzabdSW5hmG4+XzePTg4cPP5/NS+4uX/zHU5pwCiiEIYVsrrN2HZbNZTe5VKxTVNc/hHafS2TCFsVXmenp4O2zJN88q4bre78GvfFFHtE9Oev8gtjNe+SVa1bwb/j5ZluY1Gw+12u8NvQ6cVS72cuPrxvuZYMV+U+4Qfbfrx2jdNlPuEH3lynPAmqv2C84rwrGq/DP7frxrtNa3gNg/nFEA0JVzXdQWsQL1eV6lU0sHBwdz593fu3Jk7T9y2bUkXl+MdbX+gVqupWCyGmmculxvOv5+XT6FQGK5hdd3c101U+8Tgcs+maapcLiubzWp7e3vu8zKZjHq9nqdLP6/6tW+SVe2b0XYqlcrUmF6vN1y4dcAwDJ2enl65TT/e1xwrZotyn/Crn01rn2PFn0W5T/iRp8Rxwouo9gvOK8Kzqv0y+D9stVrKZrNXtlEqlVSv14ePO53O8Lx0Gs4pgIgKuxKHzWGa5sxvJZbV6XTGvoG57oiwVeU5+i2LpLlDjkeHzBuGsfT210FU+8TBwcHCw8RH/7+9bMfv177OVrVvBiMD55l8r0pyW62Wp9hVvK85VswX5T7hR5uT7XOsuCzKfcKPPDlOeBPVfsF5RXhWtV/y+byndb8m1yOb9RzOKYDoohCGlRgcZJeZrjjP5IH/OttaZZ7FYnHh4caj+S8y7WIdRblPGIbhdjqdhbY1Ohze60mHn699Xa1q3wyKoF4/dExOZ7jqxNWP9zXHitmi3Cf86mcDHCumi3Kf8CNP1+U44UWU+wXnFeFY5X5ZZOrg6Hphs7bNOQUQXUkBK/DgwQMZhqG9vb2wU5lplXmODoueNSR6lGmaw/tHR0dL5xBlUe4TjUbD8//ZwOD/K5vNzp1uEOXXHrZV7ZujoyMVi0XPUz8mpzl88cUXU+P8eF9zrJgtyn3Cr342wLFiuij3iVGcUwQryv2C84pwrHK/zJuaOurk5GR4/86dO1fGcU4BRFjYlTisv8npaaZpusViceXfOCw7ImyVeU625bWNyUt0b6p16RNejQ6Dn7eNoF77Olr1e3DRKyDN6yt+vK85Vsy2Dn1i1W2Ots2x4rKo9wm/8uQ4Mdu69AuvOK9YXlj7ZfT/btaILM4pgGjjnYClzbtKTj6fX3i4+DTLFj1WmefkMHmvz5u8CtEq9ksUrUuf8GqR6QtBvfZ1FOa+mVzTY9oaL368rzlWzBb1PuFnmxwrpluXPsE5RbDWpV94xXnF8sLaL7VazZU0d004zimAaKMQhqVMW0T0qluxWFzpthYpeqw6z8lvVrrdrqc8Jv+AbeJaD+vSJxZhWZYrXVxifZF8/Hzt6ybsfTP5Leo0fryvOVZcbR36hF9thv3aoyrs/RLW/x/HidnWpV8sgvOK5YS1XwZFUcuy5r5POacAou0FAUswTVO1Wk2O46jb7ardbqvX602Nrdfrevr0qTqdTsBZrj7PyeeOzr2fl8eobrfr6XnrZF36hFeO4wwvnf7OO+/MjN20175KYe+bp0+fDu9fdelwP97XHCuutg59wq82w37tURX2fgnr/4/jxGzr0i+84rxieWHsl16vp1wuJ8Mw9Pjx47nrunFOAURc2JU4bJ7T01O3Uqm4hmFM/WZmkauyjFr16J9l8px8jlejlzBWjL69W5c+Mc1gCLwW+OZtlF+vfRMEuW8G377P+n/0433NsWIxUesTQbbJsWK6dekTnFMEa136xTScV/jDz/0y+V6T5l9VlnMKINoohMFXjUZj6h+keX88pvGz6LFonpNxXrVarbHn5fP5Vb2EtbEufWLA6/QFL1b52jeNn/tmtJ/Mas+P9zXHiuuLQp8Iq02OFdOtS5/gnCJY69IvBjiv8N8q9sugsGaa5tTC2rz3HOcUQLRRCIPvTk9Px75Nk+QahrFwO34XPRbJc1V/iOL8rd269IlVn1Su6rVvIr/2TbFYdKWLhW1n8eN9zbFiOWH3iTDb5Fgx3br0Cc4pgrVO/YLzimAsu18ajYZbLBbdYrE4c2F+vwvcnFMA/kgK8JlhGOp0OrIsa/gzx3HUbrdDzOqyRfKcty7AItuMo3XpE48ePRrez+fzK2lzXV57GPzYN7Ztq16vyzAMtVqtudtfhdF2OFYsJ+w+EWabHCumW5c+wTlFsNalX3BeEZxl90s+n1etVlOtVlOr1ZLruqrVapfeZ+VyWY7jTN3+KnBOAfiDQhgC8/Dhw7HHqzqpWDUveW5vb69kW6tqZ11FvU/UajVJF4uMel2Q1Kuov/YwrXLf3Lt3T5L0+PHjuf+HfryvOVasRlh9Isw2BzhWTBf1PjHAOUWwot4vOK8I3ir3S7FYVKfTuVRIqtfrl2I5pwCijUIYAmNZlrLZ7PDxVVd3CZuXPK/7TcrkN0Zx/0Ymyn1i9KpOq/rWdlSUX3vYVrVvSqWSbNtWo9EY+0b4Kn68rzlWrEZYfSKsNkdxrJguyn1iFOcUwYpyv+C8Ihyr3i+maerx48djP3vy5MmlOM4pgGijEIZA5XK5sFPwZF6ed+7cGXs8bUj0NCcnJ2OPd3d3F8prE0W1T4xOX5h3efPriuprj4Jl9029Xle9XletVvP8gcOP9zXHitUJo0+E0eY0HCumi2KfmIZzimBFtV9wXhGeVe8Xy7LG+sa04hrnFEC0UQhDoEaHgUd5WO68PDOZzNhjr98udbvdscej31DFVVT7RKPRkHTxrZkfowSk6L72KFhm37TbbZVKJdVqNRWLRc/P8+N9zbFidcLoE0G3eRWOFdNFrU9chXOKYEW1X3BeER4/9stoMXNaQYpzCiDaKIQhUKN/iKI8LHdenpPfyHj9QzT6h9IwjJWvD7GOotgnRhdT9fMDUhRfe1Rcd9/Ytq1cLqdKpbLw/50f72uOFasTRp8Iss1ZOFZMF6U+MQvnFMGKYr/gvCJcfuyX0WJmUO9rjhXA6lAIQ6CePn06vB/l4dvz8rQsa+yP3rS1Aea1O/nHLK6i2CeCmL4gRfO1R8V19k2v19Pdu3d1cHCgg4ODhbfpx/uaY8XqhNEngmpzHo4V00WlT8zDOUWwotgvOK8Il9/7Zdr7j3MKINoohCFQo0Nzozws10uee3t7w/uDxU/nGY0rl8vXzG6zRLFPBDF9QYrma4+KRfdNr9dTJpNRsVhUpVLxtI1er6dqtTr2Mz/e1xwrViOsPuF3m15wrJguCn3CC84pghXFfsF5Rbj82C+jo7GuKq5xTgFEmAsEyDRNV5J7cHCw8HO73a4raXir1Wo+ZHjBS56dTmcsn3lardYw1jTNVaa71qLWJ05PT4ftFYvFpdubZZnXvukW2Tenp6euaZoL/39ZluV2Op2xn/nxvuZYsRph9Qk/2/SKY8V0YfcJrzinCFbU+gXnFeHzY79UKhVXkmsYxpUxnFMA0UUhDIFpNBrDPxinp6cLP3/ywO9XIWyRPLPZ7DCfRqMxM7ZYLAZSxFsnUewTtVpt2F6r1Vq6vass+9o32SL7ZvAhJpvNut1u19Ot1Wq5lmW5lmVNbdOP9zXHiuWE3Sf8aNOP1x4nYfcJP/LkOLG8KPYLzivC5dd+MQzD03uVcwogmiiE4dpardbwj0A2m535zVi32x3GXveb1cEfssGtUqmEnufoiKRZJ0Wj3wZms1lPea+jdekTswxOLmZ9wzdN0K99nfi5byzLGusDi9yuOiH0433NsWLcuvWJVbbJsWK6dekTnFMEa136xSycV6yWX/ulUqm4lmW5BwcHcwtmBwcHruRthBnnFEA0UQjDtY1+wzC4TRvyPfiDZZqm2+12r7Wtwbd2o9vy+m2c33mOFmOuKsQMTrY2/Vu6dekTs9octJXP5xd6bpCvfd34tW+W+RAjzf7z58f7mmPFn61Tn1h1mxwrpluXPsE5RbDWpV9chfOK1fNjv4z+Pw1uVxW58vn8zPfnNJxTANFDIQzXNjrnfPRmGIabz+fdYrE4PAB7+XZl0unpqZvP58eG/067ZbNZN5/PX/lNj995DrYx+MZpkMvp6elwCL10UaTZ9D9C69InrrLM9IUg+tm68mPfDE5Er3vzsk6LH+9rjhUX1qVP+NEmx4rp1qVPcE4RrHXpF1fhvGL1/Novk1+ujrZ5cHDgZrPZ4ePrFBw5pwCihUIYltLtdt1iseiapjk8EA++fcnn826j0YjEwTeoPAfDqke3kc1m587f3yTr0iemGS2wXcc6v3a/rfO+8eN9zbFivfvEsuL82mdZl/3COUWw1qVfTMN5hT/82C+np6fuwcHBpffcoM1arRbZ9zXHCmBxCdd1XQEAAAAAAAAbLhl2AgAAAAAAAEAQKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAC4ziOEonE3Jtt22GnGlnVanXu/tvd3Q07TSCSEq7rumEnAQAAAACIB8dxtLW1NXxsWZYePnwo0zTH4gzDCDiz9eI4zvD+ycmJ2u22SqXS8Gemaarb7YaQGRBtFMIAAAAAAIGZLIQ1Gg3l8/kQM9ochUJBzWZTEoUw4CpMjQQAAAAAhIaRX6szOaoOwGUUwgAAAAAAodne3g47BQAxQiEMAAAAAAAAsUAhDAAAAAAAALFAIQwAAAAAAACxQCEMAAAAALA2HMdRtVpVJpMZXiFxoNlsKpfLaWtrS4lEQplMRvV6/cp2yuWyMpnMWPxkm1HPA8BiXgg7AQAAAAAIU7lcVrVavdZzLctSp9NZcUaYZNu22u22jo6OZNv2pd/3ej0VCoVLv7NtW6VSSZ1OR7VabfjzarWqcrk8dTuFQkEHBweqVCqRzQPA9VEIAwAAABBrjuNIkkzTVKlUkmmaU+OePHlyqWBGkcJ/vV5PDx48kKSpxad6va5SqSTLslSpVGSa5vA5g//ber2uQqGgbDarXC6np0+fqlgsKpPJaHt7+9L/bbVavdQXopIHgOUkXNd1w04CAAAAAMJSKpX06NEjnZ6ezozLZDJjBZBisTg2ugfeOI6jra2t4eNOpyPLsjw9d3IElWmaOjk50cOHD5XP58die72ednd3h48H29je3laj0ZBhGGPx7XZbuVxu+HjW/29U8pg0OrrRNE11u11PzwPihDXCAAAAAMTe/fv3Z/6+Wq2OFcEMw6AIFoJpBbPT09NLxSfpohCUzWaHj23bluM4arVal4pPkpTNZsdGXrXb7cjnAWBxFMIAAAAAxNrJycnMEUm9Xu/SOk6NRsPvtDDF9vb22ONphadRoyOrJE1dj2vUaD/o9XqRzwPA4iiEAQAAAIi1SqUyNmJnUqFQGHtcLBZnxiM6JkdcTRawJk2uxbWqIlRU8gBAIQwAAABAzM1aiLxer1+aErnIAvnValW5XE6JRGJ4y2QyC+VXrVbHnr+1taVSqbRQG3E1r+A0z2CR+03JAwCFMAAAAACYqtfrXSo4TVvcfJaDgwO1Wq2xqXOLjO6xbXtsGp1hGHr27Bnrk/nk5s2bYacgKTp5AJuIQhgAAAAATDFZBMvn89eeEjla/FpkdM/ktMy9vb2FCnEAgHEUwgAAAABgQr1eH7tan2EYevjw4bXachxHtm2PFbC8jAorl8s6OTkZm7o5WRgDACyGQhgAAAAAjHAc59JV/R4+fHjtkViDgtre3t7wZ/MKYbZtq1qt6uHDh2OxLNIPAMuhEAYAAAAAIwqFwtj0xXw+P7bG16KOjo6Uz+e1u7s7/Nm86ZGFQkHFYnHsZxTBAGB5FMIAAAAA4J80m82VTYkcaLfbyuVyY1McZ40IG6xNVqvVdHR0NPx5LpfztL3BIv+5XE6FQmFY2Mvlctra2hp7fVflmslkhrdZ8QCwbiiEAQAAAIAuRmndu3dv7GfLTImULqY4Oo6jbDY7VgjrdrtT49vttur1uhqNxvDxgJdRadVqVbu7u9rd3VWr1VKj0VClUlGhUFC73R7mMs2geJbL5dTpdNTpdGSapnK5nKrV6vC1AMA6oxAGAAAAAJLu3bu38JTIarWqer1+5e+Pjo5kmubwNjBtRJjjOCoUCjo4OJBlWer1esN8DMMYe/40hUJB5XJZjUZDBwcHw5+bpqmTkxNJV0+vLBQKqtfrKhaLY8995513JF0s3J/JZC6tnQYA64ZCGAAAAIDYa7fbajabw8dep0S2Wi1tb2/PbHdQfJp31ch79+5pe3tblUpFksbyGV1of5pSqaRms6lisTi1eDcoqE2bXlmv14fbGmx7wLKs4f1ut6tarTYzj6gbFATDFpU8gDiiEAYAAAAg9gqFwthjL1MiHcdRu92+cqSW4ziybXus7UGbk4WQZrOpZrM5nBIpXRTZBmatD9ZsNlWv12UYxpWFqkHhbdqIsME28/n8pdc8WrCbd6XLKJrcz/Omdn7xxRcbnQcACmEAAAAAYq5UKo0VJrLZrKf1uAbriV1VCBus7zVafBrEjm5vMCWyUqmMjcDyuj7YII/79+/PzMMwjLH2J3//5ptvXvrdaDHuzp07V+YQlMli3LyC0uTvr1qb7ar4q4p/UckDwOIohAEAAACIrcHi9KMGC8tP3gYjr8rlsnZ3d4fTCa8aOXZ0dHSp8DRtnbBCoSDLssbW5hotgk0rXg1Uq9Vh0aRYLE6NGYz4uqqQdVX+juOoWq1Kkg4ODpa6aMCqPHjwYOzxo0ePrixCOY5zaYTco0ePZha3Hj16NPazq0bYRSUPANfgAgAAAEBMWZblSrr2zTCMK9s2DMOtVCpjPzs4OBg+t9VquZVKxZXkdrvdsbhisTiMm2xjchuS3Hw+P/X3p6enc9tpNBquJNeyrLHnmabpSnIPDg6u3P51jOYkye10OjPjO52Om81mh6912s2yLLfRaAzj5/2/Wpbl1mo113Vdt9VqDV/rVf/H2WzW/eyzzyKRx2RfGTXav0zTXMV/F7BxXliujAYAAAAA66vT6fjSrm3bchzn0ppcu7u7w/utVkvValWVSuXS9MrREWFXXelxsA3p6jXERkcuXdVOPp9Xp9PR3bt3lclktL29rZOTE1mWpVarNfdqlX4b5LFI/CL/r9lsdu5UxYF/+S//ZSTyAHB9FMIAAAAAYMWOjo6mrsk1eoXJarV6aUqkdDGVbjBt7qp1vaTxdaOmTXvs9Xqep1g+ePBAd+7cWajgBADriDXCAAAAAGDFms3m1BFYk6OrRq8SOTC6PtRVo7ik+Quol8tlvfPOO2PtOI4zXNtsoFAoqNlsziyUAcCmoBAGAAAAACtk27Z6vd7UqzCOFsJqtdrUaYejxbGrpjxOtnV0dDS87ziOcrmcKpWKnjx5IuliNJjjOLp3796l4tpg1Fi1WlUmk7l08QC/nZycBLo9APFGIQwAAAAAVqhcLl/5u8GVF7PZ7NSrPA6uUOlFNpsdtletVlUqlVQoFJTJZIZFtsGosWazqbt376pSqVy6+mOlUhnet21bpVJJiURCpVLJUx7LmjeyDd5ddeVKAH9GIQwAAAAAVqDdbiuTyQwLWeVyWYVC4VJhy7KsS1Mi6/W6crncpRFgg+LWtFFahmHo8ePHwymNjx490vb2tjqdznC02GBqpGmaajQal0agNZtNNRoNdbtdNRqNsdFi9Xp9bHF/v5TLZbXbbTmOM3bDbJP7q91uBz6aD1hHCdd13bCTAAAAAAAEq1qt6ujo6NKVDXu9nsrl8nAtsWKxqFqttrLtOo6jra2tuXGdTod1y65QrVZnjjyULoqfXIUSuIxCGAAAAADETLPZVKFQmFlsKpfLqlarFFQAbBQKYQAAAAAQM7lcTu12W/M+DiYSCVmWdWnUGACsK9YIAwAAAICYGSyYP2strsHvJq8yCQDrjEIYAAAAAMTMYBH9Bw8eXBlTLpdlmqbu378fVFoA4DsKYQAAAAAQM/l8XpVKRdVqVaVSSbZtS9Lw6oO5XE4nJyfqdDrD0WMAsAlYIwwAAAAAYspxHNXrdXW7XZ2cnMg0Te3u7iqbzco0zbDTA4CVoxAGAAAAAACAWGBqJAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABi4f8Hg92xM9tqm1EAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x900 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bins = np.linspace( 5150,5300, 30 )\n",
"ax = sns.regplot(x=y_test, y=abs(y_test-y_pred_test), x_bins=bins, fit_reg=None, x_estimator=np.mean, label=\"bla\")\n",
"ax2 = ax.twinx()\n",
"ax2.hist(y_test, bins=30,\n",
" range=[5150,5300], color='#2A9D8F', alpha=0.8, align='left')\n",
"ax.set_xlabel(r\"z$_{Mag}$ [mm]\")\n",
"ax.set_ylabel(\"Mean Deviation [mm]\")\n",
"ax2.set_ylabel(\"Number of Tracks\")\n",
"mplhep.lhcb.text(\"Simulation\", loc=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"median_z_mag_x = np.median(array[\"z_mag_x_fringe\"])\n",
"print(median_z_mag_x)\n",
"params_per_layer = [[] for _ in range(12)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def format_array(name, intercept, coef):\n",
" coef = [str(c)+\"f\" for c in coef if c != 0.0]\n",
" intercept = str(intercept) + \"f\"\n",
" code = f\"constexpr std::array {name}\"\n",
" code += \"{\" + \", \".join([intercept]+list(coef)) +\"};\"\n",
" return code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"array[\"x_diff_straight_l0\"] = array[\"x_l0\"] - array[\"x\"] - array[\"tx\"] * ( array[\"z_l0\"] - array[\"z\"])\n",
"array[\"x_l0_rel\"] = array[\"x_l0\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" #\"x_l0_rel\",\n",
" \"x_diff_straight_l0\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"poly_features = poly.get_feature_names_out(input_features=features)\n",
"keep = [\n",
" #\"tx\",\n",
" #\"ty\",\n",
" #\"x_l0_rel\",\n",
" \"tx^2\",\n",
" #\"tx x_l0_rel\",\n",
" \"tx x_diff_straight_l0\",\n",
" \"ty^2\",\n",
" #\"x_l0_rel^2\"\n",
" \"x_diff_straight_l0^2\"\n",
"]\n",
"remove = [i for i, f in enumerate(poly_features) if f not in keep]\n",
"X_train_model = np.delete( X_train_model, remove, axis=1)\n",
"X_test_model = np.delete( X_test_model, remove, axis=1)\n",
"poly_features = np.delete(poly_features, remove )\n",
"print(poly_features)\n",
"\n",
"lin_reg = LinearRegression()#Lasso(alpha=0.004)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l0\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[0] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l1_rel\"] = array[\"x_l1\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l1_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l1\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[1] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l2_rel\"] = array[\"x_l2\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l2_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l2\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[2] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l3_rel\"] = array[\"x_l3\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l3_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l3\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[3] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l4_rel\"] = array[\"x_l4\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l4_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l4\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[4] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l5_rel\"] = array[\"x_l5\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l5_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l5\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[5] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l6_rel\"] = array[\"x_l6\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l6_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l6\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[6] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l7_rel\"] = array[\"x_l7\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l7_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l7\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[7] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l8_rel\"] = array[\"x_l8\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l8_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l8\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[8] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l9_rel\"] = array[\"x_l9\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l9_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l9\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[9] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l10_rel\"] = array[\"x_l10\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l10_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l10\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[10] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"array[\"x_l11_rel\"] = array[\"x_l11\"] / 3000\n",
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"x_l11_rel\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"lin_reg = Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_l11\", lin_reg.intercept_, lin_reg.coef_))\n",
"params_per_layer[11] = [lin_reg.intercept_] + list(lin_reg.coef_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"features = [\n",
" \"tx\", \n",
" \"ty\", \n",
" \"dSlope_fringe\",\n",
"]\n",
"target_feat = \"z_mag_x_fringe\"\n",
"\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n",
"\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform( X_train ) \n",
"X_test_model = poly.fit_transform( X_test ) \n",
"\n",
"poly_features = poly.get_feature_names_out(input_features=features)\n",
"keep = [\n",
" #\"tx\",\n",
" #\"ty\",\n",
" #\"dSlope_fringe\",\n",
" \"tx^2\",\n",
" \"tx dSlope_fringe\",\n",
" \"ty^2\",\n",
" \"dSlope_fringe^2\"\n",
"]\n",
"remove = [i for i, f in enumerate(poly_features) if f not in keep]\n",
"X_train_model = np.delete( X_train_model, remove, axis=1)\n",
"X_test_model = np.delete( X_test_model, remove, axis=1)\n",
"poly_features = np.delete(poly_features, remove )\n",
"print(poly_features)\n",
"\n",
"\n",
"lin_reg = LinearRegression()#Lasso(alpha=0.01)\n",
"lin_reg.fit( X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict( X_test_model )\n",
"print(\"intercept=\", lin_reg.intercept_)\n",
"print(\"coef=\", dict(zip(poly_features,lin_reg.coef_)))\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
"print(format_array(\"zMagnetParams_dSlope\", lin_reg.intercept_, lin_reg.coef_))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import scipy.optimize\n",
"def parabola(x, a,b,c):\n",
" return a*x**2 + b * x + c\n",
"params_1 = np.array([p[1] / params_per_layer[0][1] for p in params_per_layer])\n",
"x = [array[f\"z_l{n}\"][0] - array[\"z_ref\"][0] for n in range(12)]\n",
"print(params_1)\n",
"print(x)\n",
"plt.plot(x, params_1, 'o')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params_3 = np.array([params_per_layer[0][3] / p[3] for p in params_per_layer])\n",
"x = [array[f\"z_l{n}\"][0] - array[\"z_ref\"][0] for n in range(12)]\n",
"print(params_3**2)\n",
"print(x)\n",
"plt.plot(x, params_3, 'o')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.preprocessing import PolynomialFeatures\n",
"from sklearn.linear_model import LinearRegression, Lasso\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import mean_squared_error\n",
"feautures = [\"tx\", \"ty\", \"dSlope\"]\n",
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
"target = ak.to_numpy(array[target_feat])\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" data,\n",
" target,\n",
" test_size=0.2,\n",
" random_state=42,\n",
")\n",
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
"X_train_model = poly.fit_transform(X_train)\n",
"X_test_model = poly.fit_transform(X_test)\n",
"lin_reg = LinearRegression() # or Lasso if regularisation is needed\n",
"lin_reg.fit(X_train_model, y_train)\n",
"y_pred_test = lin_reg.predict(X_test_model)\n",
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.6",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "a2eff8b4da8b8eebf5ee2e5f811f31a557e0a202b4d2f04f849b065340a6eda6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}