1031 lines
327 KiB
Plaintext
1031 lines
327 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\n",
|
|
"import awkward as ak\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import seaborn as sns\n",
|
|
"import numpy as np\n",
|
|
"import mplhep\n",
|
|
"\n",
|
|
"mplhep.style.use([\"LHCbTex2\"])\n",
|
|
"input_tree = uproot.open({\n",
|
|
" \"/work/cetin/LHCb/reco_tuner/data/tracking_losses_ntuple_B_def_selected.root\":\n",
|
|
" \"Selected\"\n",
|
|
"})\n",
|
|
"array = input_tree.arrays()\n",
|
|
"\n",
|
|
"array[\"dSlope_xEndT\"] = array[\"ideal_state_9410_tx\"] - array[\n",
|
|
" \"ideal_state_770_tx\"]\n",
|
|
"array[\"dSlope_xEndT_abs\"] = abs(array[\"dSlope_xEndT\"])\n",
|
|
"array[\"x_EndT_abs\"] = abs(array[\"ideal_state_9410_x\"])\n",
|
|
"\n",
|
|
"array[\"z_mag_xEndT\"] = (\n",
|
|
" array[\"ideal_state_770_x\"] - array[\"ideal_state_9410_x\"] -\n",
|
|
" array[\"ideal_state_770_tx\"] * array[\"ideal_state_770_z\"] +\n",
|
|
" array[\"ideal_state_9410_tx\"] *\n",
|
|
" array[\"ideal_state_9410_z\"]) / array[\"dSlope_xEndT\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACloklEQVR4nOz9XWxbaZ7nef6OM7rR0zUtUXJWARoJyOChXYPtuFiLkhOYq0ZZZGQutm8qTMpxNQNkhki7rnKVadGKBeZittc25QhNXFWIlCMwO1cjUXZcbAOTZVIO9M0uUEEeOy6ygOkIHim2LQjd1aZoxmRlYxqhsxcCmaJeKIpv51D8fgCiROk5/+d/LGVW8VfP8xzDcRxHAAAAAAAAwAV3ye0GAAAAAAAAgF4gCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEB4y+0GgE77kz/5E/2n//Sf9KMf/Uh/9md/5nY7AAAAAADgkP/wH/6DfvjhB/2Tf/JP9Pvf/76ncxuO4zg9nRHosh/96Efa3993uw0AAAAAANDApUuX9MMPP/R0TlaE4cKpBmGXLl3S2NjYua/f3d1t6/pWDdq8bs7NPXPPF3Vu7pl7vqhzc8/c80Wde9DmdXNu7pl7vqhz9+s9V6/90Y9+1KXuTtd3Qdj29rYsy1KpVFK5XNbr168lSZcvX5bP55NpmpqentbQ0JDLncItf/Znf6adnR2NjY3p1atX575+YmKiretbNWjzujk398w9X9S5uWfu+aLOzT1zzxd17kGb1825uWfu+aLO3a/3XL3WjeOM+iIIe/r0qbLZrNbX11Uul5u6xjRNhUIhRaNR3bhxo7sNAgAAAAAAwPM8HYQ9fvxYyWRStm1Lkg4fZ2YYxonXVMcUi0XZtq10Oi3TNHXv3j398pe/7H7TAAAAAAAA8KRLbjdwkufPn+vq1auKx+MnhmDV9ye9Thpj27ZisZj+/M//XF9//XXP7gMAAAAAAADe4bkVYYuLi1paWjoWaoVCIQWDQV2+fFmmacrn80mSRkdHJUmlUkmSVC6XZdu2Xr9+Ldu2lcvlatspv/32WwWDQSUSCd2/f79n9wQAAAAAAAD3eSYIq1QqmpmZUaFQkHQQfIXDYYVCIU1OTrZV+82bN1pbW1M6nZZlWUomk8rlcsrlchyqDwAAAAAAMCA8sTXy5cuX8vv9KhQKisViKhaLevbsme7evdt2CCZJw8PDisViyufz+vbbb3Xjxg3l83lNT0/r+++/78AdAAAAAAAAwOtcD8JevHihYDAov9+vYrGolZUV+f3+rs1nmqay2ayePXumv//7v9fU1JQqlUrX5gMAAAAAAIA3uLo1cmtrSzMzM4pEIlpfX+/p3KFQSFtbW5qamtLs7Kx++9vf9nR+eNf8/LwqlcrAbJt1837dmnsQ79lN/J4v/rxu4vfcW/yNXfx53Zybv6+LP6+bc/P3NRhzD+I9u6lf79lwjp5K30NXrlxRKBTSysqKWy2oXC5renpad+7c0a9//WvX+kDnTExMaGdnR+Pj43r16pXb7TStX/tGf+DvC93G3xi6ib8vdBt/Y+gm/r7QTf369+Vm366tCLt3755M03Q1BJMkn8+nfD4v0zQ1MzOja9euudoPAAAAAAAAusO1M8IuX76sTCbj1vR1fD6fNjc3Zdu2260AAAAAAACgS1xbEXb37l23pj7R5ORkR55QCQAAAAAAAG9y/amRvXLnzh23WwAAAAAAAICLBiYIS6fT2t7edrsNAAAAAAAAuMS1rZG9tLm5Kcdx9OTJE54MOUB2d3c1MTHRcMz8/Lzm5+d71BEAAAAAABfb8vKylpeXG47Z3d3tUTfHuRKE3b59W1tbW12fp1QqqVwu1w7BX1lZIQgbIPv7+9rZ2Wk4plKp9KgbAAAAAAAuvkqlcuZncTe5EoT5fD5ls1kZhtHVeRzHqXtv27Zevnypa9eudXVeeMOlS5c0NjbWcMzQ0FCPujnb/Py8KpWKp3rCxcHfF7qNvzF0E39f6Db+xtBN/H2hm7z49zU0NKTx8fGGY3Z3d7W/v9+jjuoZztG0qAdevHihqamppoMwx3HaDs2qNRKJhO7fv99WLXjbxMSEdnZ2ND4+rlevXrndDgAAAAAAOMTNz+2uHJY/OTkp0zQlHQRUZ70Mw2hq3GmvKsdxlMlk3LhlAAAAAAAAuMy1p0bOzMxIknK5nPb39099JZNJOY6jYDCobDarvb29huOPvvL5vPx+v+LxuPb39/XNN9+4dcsAAAAAAABwkWtPjZydnZVlWbpx48apY7a2tnTv3j3F43F9+umnLc0TDAb17NkzXblyRYZh6K//+q9bbRkAAAAAAAB9zNUVYSMjIw3HJJNJmabZcghWZZqm5ubmlEql9OWXX7ZVCwAAAAAAAP3JtSBMkp49e9bw5/l8XvF4vCNzTU9Py3EcpVKpjtQDAAAAAABAf3E1CDuLZVkKBoMdqTU6OipJymazHakHAAAAAACA/uLpIMzn82lra6sjtaoBWLlc7kg9AAAAAAAA9BdPB2HT09NaWVlpu86bN2+UTqclHYRrAAAAAAAAGDyeDsJisZgKhYI+/vjjlmtUKhWFQiFJkmEYMk2zU+0BAAAAAACgj3g6CItEIvL7/VpYWND777+v7e3tc13/9OlT+f1+WZZV+96tW7c63CUAAAAAAAD6geE4juN2E43Ytq0rV67IMAxJUjAYVDwel2maMk1Tb7/9tiRpe3tb5XJZtm0rm81qfX1d5XJZjuPIMAw5jqORkRG9fv3axbtBL0xMTGhnZ0fj4+N69eqV2+0AAAAAAIBD3Pzc/lZPZ2uBaZrK5/Oanp6WdPAkyXg8fuZ11XyvGqAZhqFMJtO9RgEAAAAAAOBpnt4aWRUMBvXtt99qcnJSjuM09TIMo7YSzHEcra+v68aNG27fCgAAAAAAAFzSF0GYdLAyrFAoaH19XcFg8NjPq8FXVTUAi0Qi2tvb082bN3vZLgAAAAAAADzG81sjj4pEIopEItra2lIul1OhUJBt2yqVSpKk0dFRmaapcDisUCik4eFhlzsGAAAAAACAF3j+sHzgvDgsH24ql8vy+XxutwF0xDuff3LmmN/94ldd7wMAAAAXi5uf2/tmayQAeJVlWUokEhoZGdHc3Jzb7QAAAAAATtF3WyObsbi4qNu3b+snP/mJ260AcJllWVpbW5NlWbVt1NVVW6ZpanR0VMFgsLad+qhoNCrbtlUoFGrfK5fLyuVyWltbUy6XU7lc7uEdAQAAAABa1XdB2NOnT5XNZpXP57W4uKj33nvv2JipqSlNTk7q3XffVTKZJBBDX0un04rH4+e+LhgM1oU3rTr8EIpm+Xw+7e3tnfizaDSqjY2Nc9fMZrMnBlUnKZfLevDggZaWlhqOsSxLkpTL5Wpjg8GgQqGQAoGAstmsNjY2jj2gY25uTrZt164HBhnbJwEAANBP+mZr5EcffaTLly8rGo0qnU7LsqzaAflHRSIR2batb775RqZp6osvvuhxt0DnxGIx7e3tqVAoKBKJNBwbCoWUzWZr4zvBcRwVi0WlUqmGZ1+ZpqlUKqVisXhqCCZJmUxGe3t7TQVbCwsLKhQK2tvbazoEq25RPBqCRSIRZTKZWr3qfWWzWcVisdq9WZalpaUlxePxWmB3dMVXtY7jODJNs6m+AAAAAADu83wQ9ubNG129elWJRKL24bWZ8/19Pp8KhYKuXbumSCSizz77rAfdAt3h8/kUDAaVyWQUi8VOHBOJRGrhUqcPazdNU7FYrGG4VigUFIvFmgqGfD5fLbQ7utqqKpVKKZlMKhgMNnU/tm0rEAgcC8BisZgcx1Emk1EkEqmrZ5qmQqGQUqmU9vb2lEwmz5znqGYDOgAAAACA+zwfhEWjURWLRUkHW7TOu01rc3NTjuMoFovpyy+/7EaLQE+dtk2yle2T52Wa5onBVSQSaTl8O63v0wK/k+RyOQUCAdm2XfteNQxPpVJN11lYWFCxWDx2L6etPq3OAwAAAADoD54OwjY3N5XL5WQYRm0l2PDw8LlWYPh8Pt29e1eO4/QkKAC67bQVV73aonfSPO3MfdK15wmXLMtSOBw+dv3m5uapq83O6mdra6uuBw7DBwAAAICLwdNBWHUlR3VFV7FYVKlU0rNnz5raHln1/vvvS5KKxSJbJNH3TguJRkdHe9uIB9i2rZmZmWPfz2QyLYVgVdXVZBfNxsZG3ao51Mvlcm63AAAAAKDLPB2EVVeDpdNpraysyO/3t1Tn8IqTZ8+edao9YCCdFLhdvny5o/WaDfWi0eix1VqxWKwj53aZpqmFhYW26/SCZVmKx+MKBAIyDEMjIyMKBAKampqqPaVzY2NDc3NzZ4Y9uVyudv1FD4Zs21Y6nVY4HJZhGMdWFrptkH4XAAAAQK+85XYDjZTLZQUCAX3wwQdt1Tl8vo9lWe22BcADcrncif95buXA+9MsLi7WDt8vl8ueOw+sXC5rbm6u9nRL0zRrTxa1bVuWZcmyrNrPq9c0Ug0Xy+Wy4vF47YzGi8S2bUWjUdm27eltrxfpd/HO55+cOeZ3v/hV1/sAAAAAPB2EVZ+U167qh2XHcdgWBFwQJ535186h/Sfx+XyKxWJKp9Mdq9lJ0Wi0tlIolUode8CAbduKx+N1q4nOClNGR0c9HQ51gmmata2viUTi2JNGvaKbv4tmgikAAADgIvL01kjTNDvyIeDBgwe1r722ogPA+eVyuRND7cXFxY7PFY1GJTV+cmQjuVxO0Wi0bttiOBxuO1xbWlqqBVwLCwsnPmXTNE1ls9m6VXJn/T8DUqmUTNOUaZrKZDJt9dgPvLYd8rBB+10AAAAAveDpIGxmZkb5fL6tGo8ePZJlWTIMQ1LvnqwHoHtOCwU6sYL0qFAopGQyee6HEZTLZU1NTSkcDtcdUl8ul5XL5WpnerW6XftwwH/WE3EXFhZq552dFeiFQiEVi0UVi8Wu/Ht6jVsPmWjmKcaD9rsAAAAAesHTQdji4qL29vb08ccft3z9vXv3ZBiGHMeRYRi6detWh7sE0GsnHRzeiQPyT7OwsHCu1aS2bcvv958Zctm2rampqXMfhN7K2VbJZFLBYJDt4R6QTqc9u90WAAAAuOg8HYT5fD7dvXtXCwsL+vDDD1WpVM68plKp6PHjx7p69aqWlpbkOE7dz0/aPgSgf9i2fWKY45UVM+VyuXbIeSQSUSqVUqFQUDabPfUplOFw+FwB1dEQrNkgbXFx8cKf/+V11XPbAAAAALjD04flSwerGCzL0sOHD5VMJhUOh2srPwqFgkZHR1UqlVQsFuueIlcNwKpbIiVpZWVFQ0NDvb8JAB1zWmAUCAR63MnJqqFUNps9tkotFAopHo+fGHxFo9HaAe5nObrFO5FIaHZ29sxVa9UnSnrxCZiDoFwue/pMMgAAAGAQeD4Ikw4+UMbjca2uriqbzSqbzcowjBO3lxwNwKrvU6mU5ubmets4gI47LQhz66ynk5wUglVVD7A/GtxZlqVcLtfUFk+fzyefz1db3VU9jyybzZ55DuLRVbLojXK5rJmZGbamAgAAAC7z9NbIw1KplPL5vG7cuCHHcY69qg4HYI7j1A4bJgQDuieRSMgwjJZeU1NT55rrtK19Xlnh5PP5zgyzTNOse5Jj1UnfO83RsbZtKxAIdOTsKcuyaof5N1Iul5VOpzU1NVU3b3X738jIiAzDUCAQ0NLS0rHrbdtWIpGoPVEzEAgoHo+f+DuuznP07+eocDhcq3f41cktoel0um6ekZERTU1NnXiP0sG/50lnxh3u77R/62Z/F1XlcllLS0sKh8O1f/9qf4lEoqkg7v/4+/+o//i/buqbe/9Kf/ju39W+v/dv/j+y/4eP9Xe//L/pm3v/Sv/ur/8n/fAPf2iqLwAAAMAr+iYIkw7OAMpmsyoWi0qlUopEIgoGgzJNU8PDw/L7/ZqcnKydy7O3t6dnz57J7/e73TqADikWi2630ND09HRT4046gP88h+bHYrETA7d4PK6pqalzP42yGrhUQ5N0On3iEyarQcvU1JRGRkYUj8fr5qoGW+l0uhY+VQOvw2djVcctLS3VwhnbtmuB19HgKhaLqVAonHnOY/V/R5wnVGzWxsaGDMOo3UuxWJTjONrc3FS5XK7d09HeTdPU5ubmsZ4KhULtdfhJqM3+Lo5Kp9MaGRlRIpFQOBzW5uamisWiVldXJUlLS0sKBAKKRqPHrv3hH/6gf5/5f+ube/9K3977f+o/bPxr/ee/f137mf0/fKzd/zmj//TdK0nSf/771/q+8LW+Sfw/9H/8/X88178jAAAA4Ka+2Bp5lN/v19zcHKu80NDu7q4mJiYajpmfn9f8/HyPOrq4YrFYyweA5/P5c1172sovrxwCf56VaaFQSBsbG3Xfsyyr6YP/s9msotHoiTWmpqYUiUS0urp6Zk+2bWttba3pVUfBYFA+n6/u91YoFDQ1NaXR0VFlMhkFg0GNjo7qwYMHtZVS6XRa8XhciURCpVJJ2Wy2Fhzm8/naQwZs29aDBw9ODLOi0WhTq94ikYgSiURT99OMXC5XC5AWFxdr561JB/8emUxGU1NTsm1bc3NzdcGWz+dTMBg8Fmad9Hs+7++iKpFIaGlpST6fT4VCoW6LrGmaikQitb+VjY0N/aN/86XM//7X+tE//S8kST/8/vf6k3f+XD/84Q8q/5v/b+3a/7T97/TdR5/qT/5Pf64/i/xL/eM/vazf/92/1b/f+Nfa/4c/aP8f/qDd/zmjn/z6zrn6BQAAwMW1vLys5eXlhmN2d3d71M1xfRmEAc3Y39/Xzs5OwzHNPIkUZwsEAj17auPly5dP/H4zK2a85tatW8dCrHw+f65/y0wmo6WlpRNDn2rokUqlGq6kOrpVs1GAdHjrZyqVqq0GS6fTJ56NVn3gSXW129TUlGKxmLLZbN24UCik1dXVWtiUTqfbWtXV6TPjUqlUw58f/p0d/Z2ex3l+F1XpdLoWNiaTyVPPictkMgoEArJtW//571/r1af/Uy3A+sd/+mP94z/9sf7Lf/5f1wVh/37jX2vizn+n//Kf/9e17/3jf/Fj/ehP/qleffr/kiT9/u/+rX74hz/UQjUAAAAMtkqlcuZncTf11dbIZm1vb+vp06d6/vw5QccAu3TpksbHxxu+eIpo//H6irDzOCmwaOU+FhYWtLe3V7dK6bDqkyqbqX3WYfuHHQ6bTtuqKenYkxJPC5UO918ulz37Oz3tb/Dw9ztxKH6zv4tqWObz+c7cOno4WPv93/1b/e9/978dG3PpUKD1X/13s3UhWNXQ9LW693/Y/v811SsAAAAuvqGhoTM/i1+65F4cdaFWhG1vbysajR47G2dqakqZTEY/+clPXOoMbhgbG9OrV6/cbgMddlo44PWzw05yUqDy+vXrlmtlMhlZlqW5ublj/z2Yy+U0MzOjzc3Njj1YoNk6h39n55nbtu2erTQ8y+rqqq5fv17bZniWXoV4h89iayY4i8ViSiQStWte/6/PTwy6mvGP/vRy7Ryx6v8EAAAAmjmCaGJiwrVVY55fEfbuu+/q+vXrunr1qq5evarLly/r1q1bx8a9ePGidkD00SdK5vN5BQIBffnlly7cAYBOOm3V0XkOmveKk4KL07Z+NisYDKpQKJy46qoakvVaq8Gbl7a7+nw+LSwsnBiCWZZ17ocTdMrhLabNriA7/J+h3//dv+14TwAAAICXeT4Iqx78+/r1a8ViMeXzea2trdWNefPmjWZmZrS3tyfp4JH01WtDoZBM09T+/v6JT8oC0H9OO2Tcq1vpzuM8WxMbicViKhaLx0KojY0NT4eGnVqt1m3VJ1zmcjkFg0HXVq61sgXz6N/YD//wh061AwAAAHie54Mwy7JqTxi7e/eu/H7/sTFzc3Mql8syDKO2CiyZTKpUKunZs2f69ttv9ezZM+3v7+vDDz904S4AdNJJq0Kl/lwVdjT46VQQVq1VKBSOzXHWwe84nWVZCofDtQcQnLZCsVcOh7/NhmJHn0j5w+9/38mWAAAAAE/zdBD26NEjBYNBPXjw4NQxT5480cbGRi0EMwxDyWRSd+/erRsXCoX08OFDFQqFbrcN9DXLsjy/evK0A8H7MeA5uortrJVFuVxOU1NTTdc3TVOrq6t133NrG1+/i8fjmpqaOvZkRze1ckD/0Sdq/uM//XEnWwIAAAA8zdNBWDqdPnMF19zcXG0rpGEYCgaDx0Kwqlu3bimfz3e8T+Aiqa6w9DKfz3fiWU25XK6vQp6j/87NrC4yTVOWZZ1r9dvRf6tOPNFw0MTjcaXTaUnyTAgm1a8gbPZJm4fPXvtHf9remXQAAABAv/F0EFYsFnXt2rVTf37nzp3a/9HvOI4kHVv5cNjw8HBtHIDjqkFSOBw+dUynDzBvtd5pYUQikWinnRN1Kxg8GszH4/Ezr6kGH82MPY1XnsTYTZ38O7UsqxaCmabpqXPMjm4TrvbZyOEnrA5N/Z873hMAAADgZZ4OwkzT1Pb29ok/e/HihVKpVN2WyFgs1jA4e/Hihaanp7vTLNDnyuVybUvkSautGnn9+nVHe2kmxDhte1oul9PS0lLHerFtW1NTU20FT6c5+sS/Zv/dTdOUbdtNh35HV4CddsZaPzi6re+0kLKTq94Or75rVNeNlZSRSKQumGtme/Dh+/nx/9XdM84AAACAXvN8EHbS/3f7zZs3dWcYGYYh0zT16aefNqy3ubnZldUiQC9148N2uVzWzMyMyuWyfD7fuQ9s73RPzdZbWFg4cTthIpHoyMH5uVyudrB4N7bDbWxs1L4+z/lm1d/P0tJSUyuADtc2TVMLCwvn6PJ0zf6eDo8765qzfn50NdtJ939SSNjJFWKHf29Vzcx39D9XR0O1Vv9zdHgltG3bDf/2LcuqbR/+s8i/1I/+6X/R0pwAAABAv/J0EBaLxfTw4UN9+OGHqlQqqlQqevr0qaanp2Xbdm01mCRlMpmGtV68eKEHDx5oZmamF60DXXPaipRWP+hXD1+vfjienZ099/zthAztrtzJZrMnrqQKh8Mtrwwrl8uKx+MKh8OnPnmx0bXNSKfTtXs/79MHDwcq8Xhc8Xj81HnT6XTdv8PhVWgnOfy7dPusuNPmP/xvlUgkFI/HlcvltLGxoXg8rkAgoGQy2dRB8kf/dk+a82j4Fo1GtbS0VFt9GAgEZNt23e8llUopl8spkUjUah4Nwqq/N9u2684gO6m3Rr+LSCRSF9RGo9ETx5fLZc3NzUmSfP/iv9GP/y8n/+/D/X/4w6lzHfaf//6PK0F/aPIaAAAAwG2eDsIikYhmZmaUTCY1MjKikZERRaNRFYvFuhBsZWWl4ZbIx48fu/6Ie6BTTls5FI/HmwqVyuVy7QN6IBBQOByuu67R+WC2bZ94GP3GxkbLoclp99PMSqeqTCZz4iqnRCKhqamppleHlctlLS0tye/3K51OKxQKnSsEk46f+3WSavAhHYQ6533a5dGnRqbT6dp/PyYSCaXT6VogdHieYrF45mq/o72ctPpJ+uPfUVWj+15bWzvW70mO/p5OC+0ymUzd7ySdTiscDisajWp9fV3ZbPbYf+cnEgnZtn3s7/To/a6vrx+bLxQKHQtbE4mEwuFwLYjLZDJ1c25sbNT+s3W418N/p7lcTiMjI7VVh0f/hpv9XVSvrf67lMvl2t+wbduybVvpdLoWeCeTSf1X/+3Jgff//nf/25H3/7apcb8/ZRwAAADgOY7HlctlJxKJOIZhHHuNjIw4GxsbJ1734sUL5969e86VK1ecS5cuOYZhOJcuXXKePn3a4ztAr42PjzuSnPHxcbdb6ahCoeBEIhFHUldfe3t7x+be29tzUqmU4/P5Tr3ONE0nlUqdeP1p9xMKhRr2srCw4BSLxab/jbLZrBMMBk+s5fP5nEgk4qRSKSebzTqFQsHJZrNOKpVykslk3XU+n8/JZDJNzVksFk/8t8hmsyeOz2QytX/HSCTS9L0dvc9qj5lMxonFYk4oFHKCwWDd76h6z6f1UlX92zrt9xsMBp1kMnnmWNM0nUgkUvsbiMVijmmaJ9YMhUK1mtls9tS/BdM0nVgsdqznvb29uvrBYNBZWFioG1P93tG/ob29vTPv96Q5k8lkbT7TNJ2FhYW6v/e9vb3afRz+NztqYWGhru/Df2vn+V2cJpVKOaFQqFbD5/PVrqv2+88/+x/rXv7/ft75k3/+5yfO+Y/+9LLj+xf/jfPPP/sfnSsP/+8Nx/1Z5F8eq93sCwAAAIPDzc/thuP0x2MUNzc3lc1mZVmWfD6frl+/rlgspuHh4WNjV1dXT90qOTU1pQcPHnS7XbhoYmJCOzs7Gh8f16tXr9xup23V1T29EAwGVSgU6r5nGMa56/h8Pu3t7Z34s2g02nBly2lOWuVzmo2NDT148ODE1WuNmKapeDyuWCx2rlVg1TOpjt6Xz+fT9PR0bZVOPp+vncN2dAUR0EvvfP6J2y0c87tf/MrtFgAAANAjbn5u75sgDGjWRQvC0Lrq9r21tbXatrjqNlDTNGsPBrh+/boikci5HxJw1nzVOavzTE9PKxqNEoDBdQRhAAAAcJObn9vf6ulsANBDPp9PkUjkxMP0L8J8AAAAAIDz8fRh+Z22vb3tdgsAAAAAAABwyUAFYdFo1O0WAAAAAAAA4JKBCsKqZwMBAAAAAABg8AxEEFapVHT79m2Vy2W3WwEAAAAAAIBLXDssf2trS7Ozs7JtW/F4XPfv3z82Znp6WltbW23NUw2/HMeRYRht1QIAAAAAAED/ci0Ii0ajsixLkpRMJjU9Pa333nuvbszU1FRtDAAAAAAAANAO17ZGWpZVt0LrpPO7bt++LUkyDKPu1axWrgEAAAAAAMDF5NqKsLm5Oa2urtbeRyKRY2MmJyfl8/n05s0bOY4jn8+n0dFR+Xy+puYol8sqlUqcDQYAAAAAAAD3grBUKqVwOKx8Pq94PK633377xHFzc3P66KOPZFmWrl271vJ8iURCH330UcvXAwAAAAAAoL+5+tTISCSihw8fyu/3nzrm/fffl2mabYVg0sE5ZMPDw23VAAAAAAAAQP9yNQhrxuTkZMcCLNM0O1IHAAAAAAAA/cfzQZgkbW5udqTO4TPJAAAAAAAAMFj6Igjr1Iownh4JAAAAAAAwuPoiCOuUubk5t1sAAAAAAACASwYqCLNt2+0WAAAAAAAA4JILH4RVKhVtb29rdnZW5XLZ7XYAAAAAAADgkrfcmPTNmzcaHR3t6ZyO43BGGAAAAAAAwABzZUXY8PCwrl27JsdxevYCAAAAAADAYHNta+T7778v6eBJjt1eqcVKMAAAAAAAALiyNVKSQqGQpIMti6ZpyjRN+Xy+js9TLpdl2zYH5QMAAAAAAAw414KwyclJ+Xw+hcNhra2tdX2+dDqtO3fudH0eAAAAAAAAeJNrQZh0sCosHA73ZK5YLKZ79+71ZC54w+7uriYmJhqOmZ+f1/z8fI86AgAAAADgYlteXtby8nLDMbu7uz3q5jhXg7BehWBV09PTPZ0P7trf39fOzk7DMZVKpUfdAAAAAABw8VUqlTM/i7vJ1SBsbm5Ob9686dl8z54969lccN+lS5c0NjbWcMzQ0FCPugEANPLO55+cOeZ3v/hV1/sAAABAe4aGhjQ+Pt5wzO7urvb393vUUT1XgzBJGh4e7vocb9680cOHD/XgwYOuzwXvGBsb06tXr9xuAwAAAACAgdHMEUQTExOurRq75MqsPTY8PKxsNquf/vSnbrcCAAAAAAAAlwxEECYdnA9WKBT04Ycfut0KAAAAAAAAXOD61sjz2t7eVrlcVqlUavoay7KUyWTkOI5SqZTu37/fxQ4BAAAAAADgRX0RhD19+lSpVEq5XK7tWuVyuf2GAAAAAAAA0Hc8H4Q9evRI9+7dkyQ5jtNyHcMwZBiGgsFgp1oDAAAAAABAH/H0GWEvXrxQIpGQdHIIZhhGU3UMw5DjOPL7/VpdXe1ojwAAAAAAAOgPnl4RlkqlJB089TEWiykQCMg0TUnS3t6eZmdnNTIyovX19ROvL5fLevbsmR4/fizLsnTt2rVetQ4AAAAAAACP8XQQlsvlFAgE9M0335z487m5OT1+/FiBQEBvv/32iWNu3rwpSbp3755++9vfdqtVAAAAAAAAeJynt0batl1bFXaSe/fuyXEcLS0tNayTSCT07Nkzffzxx51uEQAAAAAAAH3C00GYJE1PT5/6M7/fr5mZGaVSKVUqlVPHmaapyclJLSwsNBwHAAAAAACAi8vTQVgwGFSpVGo4JpFIyHGc2pMlT3P9+nU5jqOHDx92skUAAAAAAAD0CU8HYaZpKp1ONxwTCoU0OTmpVCqlr7/++tRx+XxekpTJZDraIwAAAAAAAPqDp4Ow2dlZJZNJffzxx9re3tbz58/1/PnzY+MWFxflOI6CwaC++OKLYz9/9OiRLMuSdHDuGAAAAAAAAAaP4TiO43YTjYyMjBw712tqakp/+7d/W/e9cDiszc1NGYahYDBYO1ssl8vJtm1Vb7PRUyhxMUxMTGhnZ0fj4+N69eqV2+0AgOe88/knbrfQkt/94ldutwAAAIAOcPNz+1s9na0Fq6urmp2dlWEYtTCrUCjo5cuXunbtWm1cKpXSlStXJEmWZdVWgB3O+aohGQAAAAAAAAaPp7dGSlIkEtH6+npdoOXz+epCMOngPLFnz57p6AI3wzBkGEbtutXV1a73DAAAAAAAAO/xfBAmHYRhe3t7SqVSSiaTp57zFQqF9O233+rGjRtyHKfuFQwGlc/nNTQ01OPuAQAAAAAA4AWe3xpZNTw8rLm5uTPHmaapbDarN2/e1J4UaZqm/H5/t1sEAAAAAACAh/VNEHZew8PDmpmZqfve9va23n77bXcaAgAAAAAAgKv6Ymtkp8TjcbdbAAAAAAAAgEsGKgirbpUEAAAAAADA4OnLrZHb29sql8tNj7dtW6lU6lzXnNfS0pKy2azy+bzK5bJM01QwGFQ8HlcoFOravN2au9M1y+WyHjx4IMuyZNu2bNuu1QyHw4rFYi31CQAAAAAA0Ky+CMK2t7eVTCaVy+VOfWLkWRzHkWEYHe5MyuVyikajKpfLCoVCymQyMk1TlmUpkUgoHA7Xvu/z+Tw/dzdqLi0tKZFIyOfzaXFxUcFgUKOjo8rn80qlUorH40omk0qlUl0PDQEAAAAAwOAyHMdx3G6ikcXFRS0tLUk6CLPaYRiGfvjhh060JekgNAqHw5KkWCymVCp1bMzU1JQsy5JpmioUCh0Lw7oxdzdqRqNRbWxsKBgMqlAonDgmHo8rnU5LkgqFgoLBYMOaZ5mYmNDOzo7Gx8f16tWrtmoBwEX0zuefuN1CS373i1+53QIAAAA6wM3P7Z4Owp48eaJoNCpJtdVc7bTbySCsXC7L7/fXtg0Wi8UTx9m2rUAgIEkKhULKZrOenLsbNasrwSRpb2+vYWgWCARk27Z8Pp/29vZOHdcMgjAAaIwgDAAAAG5y83O7p7dGPnjwQNJBgOU4Tu1MKdM0JUmXL18+s8br169VLpe1vr6uN2/edKy36vZBSbWw5ySmaSoSiWhjY0O5XE7pdLrt87C6MXc3albrBIPBM1eORSIRLS0tqVwua2NjQ5FIpOF4AAAAAACA8/L0irBLly7VVoI9e/ZMMzMzLdeybVtXr17tyIqww6uipLNXO21sbNRWtrW74qkbc3ej5uFtlpFIRJlMpuF9Ha65sLCgZDLZcHwjrAgDgMZYEQYAAAA3ufm5/VJPZzunahizsLDQVggmHaxk8vv9HehKdSFNKBRqarVTVXXFk5fm7kbNww81sCyrYb2jmlnpBwAAAAAAcF6eDsKqWyCvX7/ekXonHf7eiurB7pKaPti9ei+StLa25qm5u1FzdHS09rVt22c+7fOrr746sTYAAAAAAECneDoIq64CK5VKHa3XjqOrm5oN6Q4HTK2uCOvG3N26n6NhVjweb1ivWsPn83E+GAAAAAAA6ApPB2EffvihHMc599a60zx+/LjtGrlcru59s6uXjo5r5Z66MXe37icYDNaFZblcrnYG2FHpdLq2Yqyds8EAAAAAAAAa8XQQNjw8rIcPH2ptbU3ff/992/U6sTXy8BY+SWeep1V19NyrfD7vibm7eT+rq6t17w8fiF+Vy+Vqq8VSqVTbT9QEAAAAAAA4jaeDMOngoPxgMHjqaqJmbW1tdWRl2dGzrlpdQVUsFj0xdzfvJxgMHnta5MbGhgKBgCzL0tLSksLhsEzTVDabJQQDAAAAAABd9ZbbDTQjm81qenpaV69eVSKRqDuIvZFSqaRyuaxisaj19fWO9HLWoe/NKpfLnpi72/cTiUSUSqXqzgizbVtTU1OSDoJOtkMCAAAAAIBe6Isg7Pnz55IOVh2ddej6aRzHkWEYbffSSoAlHd9y2MoDALoxdy/up7rS66TfXS6XU7lcbnpLJgAAAAAAQKs8H4TduXNH6XRakmQYhhzHOXeNTgRgndZqAOXVuc+qGYvFVCgUar/LKsuy5Pf7tbm5WXe4fifs7u5qYmKi7Trz8/Oan5/vQEcAAAAAAPSv5eVlLS8vt11nd3e3A920xtNB2Orqau2A+1ZDMEktX3cSn8/XkSCplRVQ3Zi7V/cTj8eVTqcVi8WUy+XqtmSWy2VNTU0pm80qFAq13UvV/v6+dnZ22q5TqVQ60A0AAAAAAP2tUql05HO2mzwdhB0NwUKhkMLhsHw+37nPCVtZWdH29nbbPY2OjnYkOGq2/27P3Yv7CYfDyuVydeeBVYOxo+M6GYZdunRJY2NjbdcZGhrqQDcAAAAAAPS3oaEhjY+Pt11nd3dX+/v7Hejo/DwdhFmWJcMw5PP5lM/n5ff7W641Nzeny5cvt91Tq2dZHQ2bWl0R1um5u30/U1NTsixLoVCo7lD8VCqlcDh87Gmg0WhUW1tbHTkzbGxsTK9evWq7DgAAAAAA6NzRQRMTE66tLLvkyqxNqoYhi4uLbYVg1VqTk5Nt9zQ9PV33vtnVVEcPkw8EAp6Yu5v3E41GZVmWpD+u7jssEomoUCjUhV7lclmJRKKpHgAAAAAAAM7D00HY1NSUJMk0zY7UW11dbbtGtaeqw2ddNVIsFuvet7L9rxtzd+t+bNvWxsaGJCkYDJ76OwwGgyoUCnXfS6fTrj5MAAAAAAAAXEyeDsLi8bgcx2k6nDlLN1aENdvb4WDH5/O1FO51Y+5u3c/hFWBH5zjKNM1jK8by+XxTfQAAAAAAADTL00FYJBLR5OSk1tbWOlLv6dOnbdcIBoN1W/m++uqrpq47HOycFQz1cu5u3c/hoKyZbaCxWKzufafCTwAAAAAAgCpPH5YvSZlMRleuXNEXX3yhv/zLv2yr1oMHD/Tee++13dPs7GztiYfVM7DOcnhcO2dgdWPubtQ8fIbY0W2UpwkGg03PDwA42Tuff+J2CwAAAIBneXpFmHSwbW5lZUUffPBBW3XevHnTsZAlHo/Xvs7lcmeOPzzGNM2Wzgfr5tzdqHl4q2Qrq7s6dS4cAAAAAABAladXhFW3Mv74xz/WyMiIrl69qkgkcu465XJZ6+vrHesrGAwqFArVAqGNjY2GfWUymdrXZ60GS6fTKhaLisfjJ4ZB3Zi7GzVv3bqlpaUlSQfbKMvlct0WzJMcDszaCQsBAAAAAABOYjiO47jdxGmmp6f14sWL2nvHcWQYRku1qtf+8MMPHenNtu3a2VcnPfmwqlwua2RkRNJBuJPNZk+tGQ6H61Zb7e3tnRgedWPubt/PwsKCksnkqWNzuZzC4bAkKZlMamFh4dSxZ5mYmNDOzo7Gx8f16tWrlusAQD+6yFsjf/eLX7ndAgAAADrAzc/tnt4aOTs7K8dxVM3qWg3BusE0zdrKKMuyaqufjpqZmZF08GTFwyupTnJ0W+Jpq9i6MXc3amYymVqQt7S0VDuH7CjbthWNRiUdhGvthGAAAAAAAACn8XQQVj27yjCMWiDW6qsbIpGIstmsfD6fEomEotGoLMtSuVxWLpfT1NSULMtSMBjU1tbWmVsDj/680TlZnZ67W/eztbVVeyJkPB5XOBxWOp2WZVnK5XJKJBIKBAIql8tKJpMNV5gBAAAAAAC0w9NbI6U/bo98+PChgsGgRkdHz13Dtm3dv39fL1++7NjWyKOWlpa0trYm27Zr52FNT08rHo83fa5ZLpdTPB5XqVRSLBZruJWw03N3u6ZlWUqlUsrlcrWzwEzTVDAYlGmaWlxcbCqsawZbIwEMMrZGAgAAwOvc/Nzu+SDs0aNHyufzWltba7vW6OioSqVSB7qClxGEARhkBGEAAADwOs4IayAUCnVsa+P09HRH6gAAAAAAAKD/eD4Im5ycbHqL4Fk6VQcAAAAAAAD9x9NBWKVS0Z07d3T79m19/PHHbdebnJzsQFcAAAAAAADoR2+53UAjkUhEm5ubchxHuVxOfr9f7733ntttAQAAAAAAoA95ekVYLpere9+ppwoCAAAAAABg8Hg6CDNNU5JkGIYikYhu3LjhckcAAAAAAADoV54OwmKxWO2JkWtra23Xu3PnTts1AAAAAAAA0J88HYQtLCxoZmZGkvTdd9+1Xe/oVksAAAAAAAAMDk8fli9J2WxW0WhUkUhEz58/1z/7Z/+spTpbW1uybbvD3QEAgF555/NPzhzzu1/8qut9AAAAoH95ekVY1WeffaZYLKZgMKjPPvtMlUqlqesqlYoqlYqeP3+uaDTa5S4BAAAAAADgZZ5eEXblyhVtbW3V3juOo1gsplgsdu5ajuPIMIxOtgcAAAAAAIA+4ukVYdXD8qsvwzDq3p/nBQAAAAAAgMHm6SAsHo9LkgzDqIVgrWAlGAAAAAAAADy9NXJ4eFg3b97UkydPJEmhUEg+n+/cdWzblmVZHe4OAAAAAAAA/cTTQZh0sCrs6dOnKhQKunbtWst10um07ty507nGAAAAAAAA0Fc8vTVSOlgFNjw83FYIJv3xvDEAAAAAAAAMJs8HYZK0uLioSqXSdp1WnjYJAAAAAACAi8HzWyMl6e7dux2ps7Ky0pE6AAAAAAAA6D99EYQdValUlMvllM1mVSqVZNu2RkdHZZqmAoGAIpGI3n77bbfbBAAAAAAAgIf0VRC2vb2tRCKhjY2Nuu87jiPDMGrvE4mETNPUvXv39Mtf/rLXbQIAAAAAAMCD+uKMMElaXV1VIBDQxsaGHMepvSTVhWDSQTBWLBYVi8X005/+VN99950bLQMAAAAAAMBD+iIIe/TokW7fvl0XfFXDr8Oh2OFwrPqzfD6vQCCgr7/+2pXeAQAAAAAA4A2e3xr55MkTJRKJWvhVDbqCwaCmp6cVCATk8/lkmqZGR0dl27ZKpZKKxaI2NjZk27b29/c1MzOjfD7P2WEAAAAAAAADyvNBWDUEcxxHPp9PyWRSs7OzGh4ePnH85ORk7euHDx/qxYsXun//vp48eaLbt2/rt7/9ba9ah8t2d3c1MTHRcMz8/Lzm5+d71BEAAAAAABfb8vKylpeXG47Z3d3tUTfHeToIe/LkiWzbliTF43F9+umn564xOTmpTCajpaUlLS4u6ssvv9Rf/MVfdLpVeND+/r52dnYajqlUKj3qBgAAAACAi69SqZz5WdxNng7C1tbWZBiGksmkfvOb37RVa2FhQblcTuvr6wRhA+LSpUsaGxtrOGZoaKhH3QAAAAAAcPENDQ1pfHy84Zjd3V3t7+/3qKN6hnP4dHmPuXLlikZGRvTVV191pN6TJ0907949ffPNNx2pB2+amJjQzs6OxsfH9erVK7fbAYCeeufzT9xuwVW/+8Wv3G4BAAAAZ3Dzc7unV4TZtq10Ot2xej6fr7bVEgAAAAAAAIPlktsNnMU0zY7VIgQDAAAAAAAYXJ4OwkzT7Gh4lUqlOhqsAQAAAAAAoH94OggLBoPKZDIdqXXv3j1ZlqVgMNiRegAAAAAAAOgvng7CZmdnlc1m9eGHH7Zco1Kp6NatW1paWpJhGIrH4x3sEAAAAAAAAP3C00FYJBKR3+9XMpnUX/3VX2l7e7vpa58/f65bt25pZGREGxsbMgxDwWBQN27c6F7DAAAAAAAA8CxPPzVSOjjX691331UqlVIqlVIoFFIwGFQgEKid91Uul1UqlVQoFJTP52VZVu16x3EkSYZhaHV11ZV7AAAAAAAAgPs8H4SFQiGtrKzo9u3bMgxDuVxOuVzu1PHV4Es6CL8Mw5DjOFpfX9e1a9d60DEAAAAAAAC8yNNbI6tisZjW19c1PDxcF3Q5jnPsVQ2/qgHY8PCwCoWCbt686eIdAAAAAAAAwG19EYRJB+eFbW1t6e7du7XQ6yTVnw0PDyuZTKpUKmlycrLH3QIAAAAAAMBrPL818rBquJVMJrW5uSnLslQsFlUqlSRJo6OjCgQCCoVChF8AAAAAAACo01dB2GEzMzOamZlxuw0AAAAAAAD0ib7ZGtkJT58+dbsFAAAAAAAAuGSggrBEIuF2CwAAAAAAAHDJwARhT548kW3bbrcBAAAAAAAAl/TNGWEvX75ULpdTsVg8V6BVKpVULpcJwQAAAAAAAAac54Ow7e1txeNx5XK5lq53HKf2tWEYnWoLAAAAAAAAfcbzQVgoFNLW1pYcx2kpyKpeczgQAwAAAAAAwODxdBB2+/Zt2bYtwzBkGAZhFgAAAAAAAFrm6cPy8/l87Wu/369MJqO9vT3t7++f61UoFHTz5k0X7wQAAAAAAABu8/SKMMuyZBiGfD6fLMvS0NBQS3UmJyeVyWQ0Ojra4Q4BAAAAAADQLzy9Iszn80mSZmdnWw7BDovFYm3XAAAAAAAAQH/ydBAWjUYlSYFAoCP1Hj582JE6AAAAAAAA6D+eDsLu3bsnx3HqzgprR6VS6UgdAAAAAAAA9B9PB2F+v18rKyvKZDL6+uuv2643MzPTga4AAAAAAADQjzwdhEkH53p98MEHikQi+v7779uqZVlWh7oCAAAAAABAv/H0UyOrWxnv3bunQqGgGzduKJlMnuvpj6VSSeVyWalUqlttAgAAAAAAoA94Ogh7++239ebNm7rvhcPhlmo5jiPDMDrRFgAAAAAAAPqQp7dGzs3NyXGc2ktS3fvzvAAAAAAAADDYPB2Evf/++5JUW8lFoAUAAAAAAIBWeXpr5OTkpEzT1NbWlkKhkILBoC5fvnyuGq9fv1a5XFY6ne5SlwAAAAAAAOgHng7CJCkSiejFixf6m7/5m7bqLCws6OrVqx3qCgAAAAAAAP3G01sjJenWrVsaHh5uu45pmpqcnOxARwAAAAAAAOhHnl8RNjk5qcXFxY7UymQyHakDAAC86Z3PPzlzzO9+8auu9wEAAABv8vyKMEkdW8nl9/s7UgcAAAAAAAD9x7UVYS9fvtS1a9fcmv6YSqWiUqmkt99+2+1W0CG7u7uamJhoOGZ+fl7z8/M96ggAAAAAgItteXlZy8vLDcfs7u72qJvjXAvC7t+/rytXruj+/ftutVAnGo0qHA7rN7/5jdutoEP29/e1s7PTcEylUulRNwAAAAAAXHyVSuXMz+Juci0IS6fTMk1TgUBAv/zlL91qQ5J0584dlUolQrAL5tKlSxobG2s4ZmhoqEfdAAAAAABw8Q0NDWl8fLzhmN3dXe3v7/eoo3quBWE+n0/r6+t69913Jcm1MOzOnTtaX19XoVBwZX50z9jYmF69euV2GwAAAAAADIxmjiCamJhwbdWYq4flh0IhPXz4UHNzc/rwww97OnelUtGtW7eUTqe1ubnJ2WAAAAAAAAAXnOtPjVxYWNDDhw/18OFD/fSnP9WXX37Z9TkfP34sv9+vjY0N5fN5Tx3aDwAAAAAAgO5wPQiTDsKwlZUV5fN5hUIh/fSnP9UXX3zR0TmeP3+uxcVFXb58WfF4XCMjI/r22281OTnZ0XkAAAAAAADgTa6dEXZULBbT6Oio5ubmlM/nFYlEJEnBYFChUEjXr1+XaZoyTbPhAeeVSkWlUkm2bSubzSqXy8myrNrPHcdRJBLR+vp61+8JAAAAAAAA3uGZIEySIpGIwuGwIpGINjc3JUmWZdUFWUf5fD6Vy+WGdR3HqX2dTqf1wQcfdKRfAAAAAAAA9A9PbI08bHh4WNlsVuvr6woGg3IcpxZkVb8+/Nrb2zvx+4df0sH2y729PUIwAAAAAACAAeW5IKwqEokon88rm83q5s2bdau6qgzDqHsdZZpmLQB7+PChhoeHe9E6AAAAAAAAPMhTWyNPMjMzo5mZGUnSixcvlMvl9NVXX6lcLqtUKtW2Rfp8PpmmqdHRUYXDYYVCIYIvAAAAAAAA1Hg+CDtscnKSpzwCAAAAAACgJZ7dGgkAAAAAAAB0Ul+tCAMAYJC98/knbrcAAAAA9DVWhAEAAAAAAGAgEIQBAAAAAABgIBCEAQAAAAAAYCAQhAEAAAAAAGAgEIQBAAAAAABgIBCEAQAAAAAAYCAQhAEAAAAAAGAgEIQBAAAAAABgIBCEAQAAAAAAYCAQhAEAAAAAAGAgEIQBAAAAAABgILzldgPdsL29Lcuy5PP5ND09raGhIbdbAgAAAAAAgMsuVBC2vb2taDQqy7Lqvj81NaVMJqOf/OQnLnUGAAAAAAAAt3l+a+S7776r69ev6+rVq7p69aouX76sW7duHRv34sULTU1NybIsOY5T98rn8woEAvryyy9duAMAAAAAAAB4geeDMJ/Pp0KhoNevXysWiymfz2ttba1uzJs3bzQzM6O9vT1JkmEYtWtDoZBM09T+/r6i0WjP+wcAAAAAAIA3eD4IsyxLiURCpVJJd+/eld/vPzZmbm5O5XJZhmHUVoElk0mVSiU9e/ZM3377rZ49e6b9/X19+OGHLtwFAAAAAAAA3ObpIOzRo0cKBoN68ODBqWOePHmijY2NWghmGIaSyaTu3r1bNy4UCunhw4cqFArdbhsAAAAAAAAe5OkgLJ1On7mCa25urrYV0jAMBYPBYyFY1a1bt5TP5zveJwAAAAAAALzP00FYsVjUtWvXTv35nTt3VC6XJUmO40iSVldXTx0/PDxcGwcAAAAAAIDB4ukgzDRNbW9vn/izFy9eKJVK1W2JjMViDYOzFy9eaHp6ujvNAgAAAAAAwNM8H4Sl0+lj33/z5k3dEyANw5Bpmvr0008b1tvc3FQikeh4nwAAAAAAAPC+t9xuoJFYLKbZ2VlJ0r179yRJuVxOiURCtm3XrQbLZDINa7148UIPHjzQ69evu943AAAAAAAAvMfTK8IikYhmZmaUTCY1MjKikZERRaNRFYvFWggmSSsrKw23RD5+/FihUKhHXQMAAAAAAMCLPB2ESdLGxobee+89OY5Te0kHh+P7fD5lMhnNzc0du+7ly5daXFzU1atXFY/Htbe3p3K5rC+++KLXtwAAAAAAAAAP8PTWSOngSY+ZTEabm5vKZrOyLEs+n0/Xr19XLBbT8PDwsWtWV1drWyX9fr/8fn/tZ3/7t3+rv/zLv+xZ/3DP7u6uJiYmGo6Zn5/X/Px8jzoCAAAAAOBiW15e1vLycsMxu7u7PermOM8HYVUzMzOamZlpauzc3NyJq8QwWPb397Wzs9NwTKVS6VE3AAAAAABcfJVK5czP4m7qmyCsE16+fNnwLDFcLJcuXdLY2FjDMUNDQz3qBgAAAACAi29oaEjj4+MNx+zu7mp/f79HHdXzfBC2vb2tt99+uyO15ubm9NVXX3WkFrxvbGxMr169crsNAAAAAAAGRjNHEE1MTLi2aszzh+XH4/GO1Nna2pJlWR2pBQAAAAAAgP7j+SDMtu2O1EkkEh2pAwAAAAAAgP7UF0HY999/31aNjz76SBsbGx3qCAAAAAAAAP3I80GY4zhtreZaXFxkNRgAAAAAAAC8H4RJUiqV0pdffnnu627duqWlpSU5jtOFrgAAAAAAANBP+iIIcxxH0Wi06S2S29vbunr1qjY2NuQ4jgzD6HKHAAAAAAAA8Lq+CMIikYhKpZJmZmbOHPvkyRMFAoHaIfuGYchxHEUikW63CQAAAAAAAA/zfBAWCoW0vr6ufD6vfD6v999//9Sxi4uLmp2drW2FdBxHw8PDsixL6+vrunnzZq/aBgAAAAAAgMe85XYDZwkGg7X/mc/nNT09LdM0df/+/dqYSqWimZkZWZZV2wrpOI5CoZAymYyGh4clHQRlAAAAAAAAGEyeXxH28OHD2tfBYFDr6+t6+PChPvvsM0nSixcv5Pf7j4VgyWRSz549q4VgkjQ5Odnz/gEAAAAAAOANng/CjopEIlpZWVEsFtOdO3c0PT2tvb292s+Hh4dVKBR09+7dY9d+9NFHvWwVAAAAAAAAHtJ3QZgkxWIx/eY3v1EqlTq2FXJra+vUlV/ZbLbHnQIAAAAAAMAr+jIIk6RkMlk7/N5xHC0tLR3bCnlUPp/vVXsAAAAAAADwGFcOy3/z5o02NzfbrvP+++9rc3NT8Xhcpmnq6dOnJ44rlUpKpVIql8ttzwkAAAAAAID+5NpTIyORiAzD6EitpaWlM8dUt1ACAAAAAABgMLmyNXJ4eFjBYFCO47T9ktTUGAAAAAAAAAw2184IC4VCktT2Kq1mgi7CMAAAAAAAALi2NfLWrVu1LY0LCwsKBAIaHR3t+DylUknlclkrKyva3t7ueH0AAAAAAAD0B9eCsMnJSfl8Pi0tLemDDz7o+nw3b97U1atXuz4PAAAAAAAAvMm1rZHSwfZI0zR7MpdpmvL7/T2ZCwAAAAAAAN7jahB269atrmyHPE0kEunZXAAAAAAAAPAWV4Owmzdv6tq1az2b7+HDh12rvbS0pHA4rJGRERmGoUAgoGg0qlwu17U5uzm3G/djWZY2Nja0tLTUk383AAAAAAAwWFwNwi6CXC6nkZERJRIJSVImk1GxWFQymZRlWQqHwwqHwyqXy30xdy/vp1wua2lpSVNTUzIMQzMzM/rqq68UDAY1PT3ddn0AAAAAAIDDDMdxHLebaMbz58+VzWYVCATOPFz/yZMnunfvnpaWlvSXf/mXXespl8spHA5LkmKxmFKp1LExU1NTsixLpmmqUCjI5/N5du5e3U+5XFYikVA6nZYkBYNBJZNJhUKhc9c6ycTEhHZ2djQ+Pq5Xr151pCYAeME7n3/idgsXwu9+8Su3WwAAABhobn5u74sg7NatW9rY2Ki9X1pa0q9//euG11iWpVAopCtXriiTyegnP/lJR3sql8vy+/0ql8syTVPFYvHEcbZtKxAISDp4OEA2m/Xk3L26n3Q6rUQiUVtRlkqlFIvFzlXjLARhAC4qgrDOIAgDAABwl5uf2z2/NfLOnTvKZDJyHEfVzO7Zs2dnXhcMBmXbtr755htNTU3p66+/7mhf0Wi0FuZUtxGexDTN2iH9uVyutgrKa3P34n4SiYTi8Xhd2NbpEAwAAAAAAOA0ng7C3rx5o1QqJcMwZBiGJMlxHEWj0aau9/l8KhQKKpVKHQ3DbNuuO8x9dna24fhbt27Vvm4UMrk1dy/uJxqNamlpSdIffy+maTZ1LQAAAAAAQCd4Ogh78OCBpIPwa3h4WLFYTMVi8cwzwg4zTVNzc3Pa399vOkA7SzKZrH0dCoXOPCeruoJKOtiCeHibpxfm7vb9hMPhujGdPCsNAAAAAACgWZ4OwqpPMMxmsyqVSlpZWZHf7z93nXfffVeSVCwW9dlnn7Xd1+HtgMFgsKlrDq9+Wltb89Tc3byfdDpdt9oslUqxEgwAAAAAALjC00GYbdtaXFzUzMxMW3UOBy/r6+tt1bIsq+799evXm7rucMDU6oqwbszdzfuxbVvxeLzuGs4EAwAAAAAAbvF0EFY9VL1dpVJJ0sEWy3w+31atw6ubJDXd39FxRwMot+bu5v0c3Yq6uLjYVG0AAAAAAIBu8HQQZppmLcRqRzabrX1dfTJiq7766qu6982edXX58uW6960Ect2Yu1v3Y9t2XTjm8/nqzhYDAAAAAADoNU8HYcFgUJlMpu066XS69tTJdg9pt2277n2rK6iKxaIn5u7W/aRSqbr3oVBI0sE2ymg0qkAgIMMwNDIyoqmpKS0tLbUdUgIAAAAAADTi6SAsFospl8vpyy+/bLnGrVu3agGLYRianp5uq6ejwVGrWgl9ujF3t+7n8AH8kjQ6OqqpqSlFo1FtbGzU5i2Xy7IsS4lEQiMjI209URMAAAAAAKARTwdhoVBI165dUygUOncYVqlUdOvWLWUyGRmGIcdxJB0/t+q8Wl21dHQlWitbPrsxdzdq2rZ9rO76+rri8bj29vbkOI4cx1GxWDx2eH41KAMAAAAAAOi0t9xu4Cyrq6uanp5WKBRSOBxWIpHQX/zFX5w6vlKpKJFIHFuRZBiGTNPUBx980O2Wm+LmNsBuzN1olZnP59PW1tax8Mw0TaVSKU1NTdU9XXJubk6hUKjtbay7u7uamJhoq4Ykzc/Pa35+vu06AAAAAAD0s+XlZS0vL7ddZ3d3twPdtMbzQVgwGNT6+rpmZ2eVzWaVzWbl8/lkmmbtJf3xcPZqCFNdAVZdDWYYRkfOG/P5fB0JkloJeboxdzdqHg3CYrFYw/uNxWIqFAq18LJcLuvBgwdKJpNt9bS/v6+dnZ22akgH4SoAAAAAAIOuUql05HO2mzwfhElSJBJRPp/XzMyM3rx5UztX6vBTCaU/hl+SaofjO44jn8+nzc1NXbt2re1eRkdHOxIcjY6OemLubtQ8enD+9evXz7z+6Cq+paWltoOwS5cuaWxsrK0akjQ0NNR2DQAAAAAA+t3Q0JDGx8fbrrO7u6v9/f0OdHR+fRGESQcrw7a3t3X//n09evTo2M8Nw6gLv6qhWCwWUzKZ1PDwcEf6aHW73tGwqdUVYZ2euxs1W7lX0zQVDAbrwk3LshQMBlvqT5LGxsb06tWrlq8HAAAAAAB/1KmjgyYmJlxbWebpw/KPGh4eVjKZ1P7+vrLZrBYWFhQKhRQMBjU8PCy/36/JyUnFYjFlMhnt7e1pZWWlYyGYpGNPnWx2NdXRw/EDgYAn5u5GzVbu7aReOvVESwAAAAAAAKmPVoQdNTMzo5mZmZ7POzU1Vffetu2mVi0d3S4YCoU8MXc3ah5dAdZsuHY0QGvlyZoAAAAAAACn6asVYa168+aNFhcXO1Kr1VVLh8Og6mH/XpjbSzWPBmitnKMGAAAAAABwmoEIwoaHh5XNZvXTn/607VrBYLAusPnqq6+aui6fz9e+PhoUuTl3t2oednT1WLNaCQsBAAAAAABOMxBBmHQQ1hQKBX344Ydt15qdna19ffTJlac5PC6RSHhq7m7UPLxVMpfLNVXz6BbKdg7KBwAAAAAAOKrvzgjb3t5WuVw+1/lRlmUpk8nIcRylUindv3+/rR7i8bjS6bSk5kKew2NM02zpfLBuzt2NmolEojbOtm2Vy+Uznx55eOVYO/9GAAAAAAAAJ+mLIOzp06dKpVJNryxqpNmD2xsJBoMKhUK1fjY2NhSJRE4dn8lkal+ftRosnU6rWCwqHo+fuDWwG3N3o2YoFJJpmrXzwR48eKBkMnlqTak+YDtrLAAAAAAAwHkZjuM4bjfRyKNHj3Tv3j1JUjutGoYh6SD0afYcrEZs26495TAYDKpQKJw4rlwua2RkRNJBOJTNZk+tGQ6H68Kgvb29E1dRdWPubtS0LKvuqZTFYvHUc79yuZzC4bAkKRaLKZVKnVr3LBMTE9rZ2dH4+LhevXrVch0A8Jp3Pv/E7RYuhN/94ldutwAAADDQ3Pzc7ukzwl68eFFbcXRSCFYNt85iGIYcx5Hf79fq6mpHejNNs7YyyrIsLS0tnThuZmZG0sETEQ+vpDrJ0RVv6+vrPZu7GzWDwWBdoBUOh09ckVculxWPx0+8BgAAAAAAoFM8HYRVA5Hh4WEtLCwolUopm80qm81qfX1djuNoZGSk9r2jr0wmo7m5OUkH4c63336ra9euday/SCSibDYrn8+nRCKhaDQqy7JULpeVy+U0NTUly7IUDAa1tbV15hlZR3/e6KmJnZ67WzVjsVitpm3b8vv9WlpakmVZtcDN7/fLtm3FYrFTV6IBAAAAAAC0y9NbI69cuSLDMPTNN9+c+PN4PK7Hjx+rWCzq7bffPrVOPB7Xd999p9/+9rdd6lRaWlrS2tpa3cHw09PTisfjDc/bOiyXyykej6tUKikWizV9TlYn5u5FzXQ6rUwmo3w+X6tZPWz/tDPRWsHWSAAXFVsjO4OtkQAAAO5y83O7p4OwS5cuKZfL6caNGyf+fGtrS4FAQLdv39Zf//Vfn1rHtm1duXJFjx490q9//etutQuPIAgDcFERhHUGQRgAAIC7OCOsgenp6VN/5vf7NTMzo1QqpUqlcuo40zQ1OTmphYWFhuMAAAAAAABwcXk6CAsGgyqVSg3HJBIJOY5Te7Lkaa5fvy7HcfTw4cNOtggAAAAAAIA+4ekgzDRNpdPphmNCoZAmJyeVSqX09ddfnzoun89L0plPOgQAAAAAAMDF5OkgbHZ2VslkUh9//LG2t7f1/PlzPX/+/Ni4xcVFOY6jYDCoL7744tjPHz16JMuyJB2cFwYAAAAAAIDB4+nD8iVpZGTk2LleU1NT+tu//du674XDYW1ubsowDAWDwdrZYrlcTrZtq3qbgUDg1KdQ4mLgsHwAFxWH5XcGh+UDAAC4y83P7W/1dLYWrK6uanZ2VoZh1MKsQqGgly9f6tq1a7VxqVRKV65ckSRZllVbAXY456uGZAAAeA0hFwAAANB9nt4aKUmRSETr6+t1gZbP56sLwaSD88SePXumowvcDMOQYRi161ZXV7veMwAAAAAAALzH80GYdBCG7e3tKZVKKZlMnnrOVygU0rfffqsbN27IcZy6VzAYVD6f19DQUI+7BwAAAAAAgBd4fmtk1fDwsObm5s4cZ5qmstms3rx5U3tSpGma8vv93W4RAAAAAAAAHtY3Qdh5DQ8Pa2Zmxu02AACAxzR7HhuH6gMAAFw8nt4aWalUdOfOHf3sZz/Txx9/7HY7AAAAAAAA6GOeXhEWiUS0ubkpx3GUy+Xk9/v13nvvud0WAAAAAAAA+pCnV4Tlcrm69z6fz51GAAAAAAAA0Pc8HYSZpilJMgxDkUhEN27ccLkjAAAAAAAA9CtPB2GxWEyO40iS1tbW2q53586dtmsAAAAAAACgP3k6CFtYWKg9+fG7775ru97RrZYAAAAAAAAYHJ4OwiQpm83qvffeUyQS0ffff99yna2tLdm23cHOAAAAAAAA0E88H4RJ0meffaZYLKZgMKjPPvtMlUqlqesqlYoqlYqeP3+uaDTa5S4BAAAAAADgZW+53UAjV65c0dbWVu294ziKxWKKxWLnruU4jgzD6GR7AAAAAAAA6COeXhFWPSy/+jIMo+79eV4AAAAAAAAYbJ4OwuLxuCTJMIxaCNYKVoIBAAAAAADA01sjh4eHdfPmTT158kSSFAqF5PP5zl3Htm1ZltXh7gAAAAAAANBPPB2ESQerwp4+fapCoaBr1661XCedTuvOnTudawwAAAAAAAB9xXA8coBW9UmQpVJJkjQ6OqqhoaHa19Xvt+PSpUva399vuw68bWJiQjs7O7p06ZLGxsYajp2fn9f8/HyPOgOA073z+Sdut4AjfveLX7ndAgAAQN9ZXl7W8vJywzG7u7va39/X+Pi4Xr161aPODri6IuxHP/rRqT9LpVL64IMPJEmLi4uqVCq1YKxVrTxtEv1rf39fOzs7DcdUA1gAAAAAANC+SqVy5mdxN7kahB1djBYKhRSPxxUKhTQ8PFz7/t27dzsy38rKSkfqoD80syKs3XAVAAAAAAD80dDQkMbHxxuOqa4Ic4PrZ4RVn+iYzWZ148YNl7vBRTI2NtbzJZYAAAAAAAyyZo4gqh5p5IZLrsx6RDKZJAQDAAAAAABAV3kiCItEIm63AAAAAAAAgAvOE0HY22+/7XYLAAAAAAAAuOBcD8J8Pl/P5rp69WrP5gIAAAAAAIC3uB6EjY6O9myuYrHYs7kAAAAAAADgLa4HYb3y4sWL2hMqAQAAAAAAMHgGIgirVCpKJBJutwEAAAAAAAAXveV2A7Zt62c/+1lXapdKJZXLZdm2LcdxWBEGAAAAAAAwwFwPwiQpl8t1pa7jOF2pCwAAAAAAgP7jiSCsWw6vACMUAwAAAAAAGGyeCMK6GVKxHRIAAAAAAACSR4KwYDDYtdrVM8IAAAAAAAAw2FwPwkzTVD6f7+octm0rGo3q5cuXXZ0HAAAAAAAA3nXJ7QZ6wTRNra6uut0GAAAAAAAAXDQQQZjU3e2XAAAAAAAA8D7Xg7BSqdSzuSYnJ3s2FwAAAAAAALzF9SCsXC73bK5un0UGAAAAAAAA73I9CJPEIfYAAAAAAADoOk8EYel02u0WAAAAAAAAcMF5IghLpVL64osv3G4DAAAAAAAAF5gngjBJikQi+vnPf64vvvhClUrF7XYAAAAAAABwwbgehDmOU3s9e/ZMN2/e1MjIiB4/fux2awAAAAAAALhA3nJz8v39fUnSmzdvJEmlUknSwZMkTdN0rS8AAAAAAABcPK4GYVXDw8N1/xMAAAAAAADoNNe3RgIAAAAAAAC9QBAGAAAAAACAgUAQBgAAAAAAgIFAEAYAAAAAAICBQBAGAAAAAACAgUAQBgAAAAAAgIFAEAYAAAAAAICBQBAGAAAAAACAgeBqEPb48WNdvXpV77//vpttAAAAAAAAYAC85dbEL168UCwWkyTZtq3Z2Vm99957brUDAEDXvPP5J263AAAAAEAurgh78OCBJMkwDEmSz+dzqxUAAAAAAAAMANdWhFmWJUlyHEfpdFo3btw4cdytW7cUj8dP/Tlwmt3dXU1MTDQcMz8/r/n5+R51BAAAAADAxba8vKzl5eWGY3Z3d3vUzXGuBWG2bWtkZES5XE6Tk5OnjstkMgqHwx0Jwl6+fKlr1661XQf9YX9/Xzs7Ow3HVCqVHnUDAOg3zWxp/d0vftX1PgAAAPpJpVI587O4m1wLwnw+nxYXFxuGYJ2WSCT0N3/zNz2bD+66dOmSxsbGGo4ZGhrqUTcAAAAAAFx8Q0NDGh8fbzhmd3dX+/v7PeqonmtBmGmaMk2zp3Patt3T+eCusbExvXr1yu02AAAAAAAYGM0cQTQxMeHaqjHXDsu/deuW1tbWejbfixcvCMIAAAAAAAAGmGsrwmKxmBKJhLa2thSLxWSapkZHR08cWygUWl49Vi6XZdu27t+/3067AAAAAAAA6HOuBWHDw8NaX1/X7OysCoVCw7HpdFrpdLqt+RzHkWEYbdUAAAAAAABA/3Jta6QkRSIRra+vy3GcU1+SGv682RcAAAAAAAAGm6tBmHQQhu3t7Wlubk4+n8/tdgAAAAAAAHBBubY18rDh4WGlUimlUiltbW3JsiyVSiU5jqPbt28rGo1qenq6pdqvX7+Wbdva2NjocNcAAAAAAADoJ54Iwg7z+/3y+/2197dv31Y4HNYHH3zQVt1cLqef/exn7bYHAAAAAACAPuX61sheCYVCdQEbAAAAAAAABsvABGGSZJqm2y0AAAAAAADAJZ7bGnnU3t6ehoeHO1Irk8l0pA4AAAAAAAD6j+dXhHUqBOt0LQAAAAAAAPQXz68IO0mlUlEul1M2m1WpVJJt2xodHZVpmgoEAopEInr77bfdbhMAAAAAAAAe0ldB2Pb2thKJhDY2Nuq+7ziODMOovU8kEjJNU/fu3dMvf/nLXrcJAAAAAAAAD/L81siq1dVVBQIBbWxsyHGc2ktSXQgmHQRjxWJRsVhMP/3pT/Xdd9+50TIAAAAAAAA8pC+CsEePHun27dt1wVc1/Docih0Ox6o/y+fzCgQC+vrrr13pHQAAAAAAAN7g+a2RT548USKRqIVf1aArGAxqenpagUBAPp9PpmlqdHRUtm2rVCqpWCxqY2NDtm1rf39fMzMzyufznB0GAAAAAAAwoDwfhFVDMMdx5PP5lEwmNTs7e+oTICcnJ2tfP3z4UC9evND9+/f15MkT3b59W7/97W971ToAAAAAAAA8xNNbI588eSLbtuU4juLxuEqlkubm5k4NwU4yOTmpTCajhw8fKpvN6ssvv+xixwAAAAAAAPAqTwdha2trMgxDS0tL+vTTT9uqtbCwoJmZGa2vr3eoOwAAAAAAAPQTTwdhlmUpGAzqN7/5TUfqxeNx5XK5jtQCAAAAAABAf/H0GWG2bSudTnesns/nk23bHasHAAAAAACA/uHpFWGSZJpmx2oRggEAAAAAAAwuTwdhpml2NLxKpVIdDdYAAAAAAADQPzwdhAWDQWUymY7UunfvXu3MMQAAAAAAAAweTwdhs7Ozymaz+vDDD1uuUalUdOvWLS0tLckwDMXj8Q52CAAAAAAAgH7h6SAsEonI7/crmUzqr/7qr7S9vd30tc+fP9etW7c0MjKijY0NGYahYDCoGzdudK9hAAAAAAAAeJannxopHZzr9e677yqVSimVSikUCikYDCoQCNTO+yqXyyqVSioUCsrn87Isq3a94ziSJMMwtLq66so9AAAAAAAAwH2eD8JCoZBWVlZ0+/ZtGYahXC6nXC536vhq8CUdhF+GYchxHK2vr+vatWs96BgAAAAAAABe5OmtkVWxWEzr6+saHh6uC7ocxzn2qoZf1QBseHhYhUJBN2/edPEOAAAAAAAA4La+CMKkg/PCtra2dPfu3VrodZLqz4aHh5VMJlUqlTQ5OdnjbgEAAAAAAOA1nt8aeVg13Eomk9rc3JRlWSoWiyqVSpKk0dFRBQIBhUIhwi8AAAAAAADU6asg7LCZmRnNzMy43QYAAAAAAAD6RN9sjQQAAAAAAADaQRAGAAAAAACAgUAQBgAAAAAAgIHQt2eEAWfZ3d3VxMREwzHz8/Oan5/vUUcAAAAAAFxsy8vLWl5ebjhmd3e3R90cRxCGC2t/f187OzsNx1QqlR51AwAAAADAxVepVM78LO4mgjBcWJcuXdLY2FjDMUNDQz3qBgAAAACAi29oaEjj4+MNx+zu7mp/f79HHdUjCMOFNTY2plevXrndBgAAAAAAA6OZI4gmJiZcWzXGYfkAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCJ4OwiqViu7cuaOf/exn+vjjj91uBwAAAAAAAH3M00+NjEQi2tzclOM4yuVy8vv9eu+999xuCwAAAAAAAH3I0yvCcrlc3Xufz+dOIwAAAAAAAOh7ng7CTNOUJBmGoUgkohs3brjcEQAAAAAAAPqVp4OwWCwmx3EkSWtra23Xu3PnTts1AAAAAAAA0J88HYQtLCxoZmZGkvTdd9+1Xe/oVksAAAAAAAAMDk8HYZKUzWb13nvvKRKJ6Pvvv2+5ztbWlmzb7mBnAAAAAAAA6CeeD8Ik6bPPPlMsFlMwGNRnn32mSqXS1HWVSkWVSkXPnz9XNBrtcpcAAAAAAADwsrfcbqCRK1euaGtrq/becRzFYjHFYrFz13IcR4ZhdLI9AAAAAAAA9BFPrwirHpZffRmGUff+PC8AAAAAAAAMNk8HYfF4XJJkGEYtBGsFK8EAAAAAAADg6a2Rw8PDunnzpp48eSJJCoVC8vl8565j27Ysy+pwdwAAAAAAAOgnng7CpINVYU+fPlWhUNC1a9darpNOp3Xnzp3ONQYAAAAAAIC+4umtkdLBKrDh4eG2QjDpj+eNAQAAAAAAYDB5PgiTpMXFRVUqlbbrtPK0SQAAAAAAAFwMnt8aKUl3797tSJ2VlZWO1AEAAJCkdz7/5Mwxv/vFr7reBwAAAJrTFyvCzmtxcVHfffed220AAAAAAADAQ/ouCHv69Knu3Lmj69ev6+nTpyeOmZqa0uTkpN5///2eBWJLS0sKh8MaGRmRYRgKBAKKRqPK5XJ9OXcv7ycQCMgwDG1sbHS8NgAAAAAAQFXfBGEfffSRLl++rGg0qnQ6LcuyVCqVThwbiURk27a++eYbmaapL774omt95XI5jYyMKJFISJIymYyKxaKSyaQsy1I4HFY4HFa5XO6LuXt9P4lEQrZtd6QWAAAAAABAI54/I+zNmzeanp6Wbdt1T300DKPhdT6fT4VCQVNTU4pEIkqn0/rlL3/Z0d5yuZzC4bCkg4P4U6lU7WemaSoSiWhqakq5XE5TU1MqFAry+XyenbvX95PL5bS0tNTy9QAAAAAAAOfh+RVh0WhUxWJR0kH4dVYAdtTm5qYcx1EsFtOXX37Zsb7K5bKi0aikg5DocGh0WCaTkSTZtl0b78W5e30/h+cDAAAAAADoBU8HYZubm8rlcjIMQ47jyHEcDQ8PKxQKNV3D5/Pp7t27chxH8Xi8Y71Fo9Ha9sDqNsKTVFdSSQcroNLptCfn7vX9zM3NaXR0tGMr5AAAAAAAAM7i6SCsuiqpuqKrWCyqVCrp2bNnddskz/L+++9LkorFoj777LO2+7Jtu+7Q+NnZ2Ybjb926Vfu6Ucjk1ty9vp90Oq2NjY3a6jIAAAAAAIBe8HQQVl0Nlk6ntbKyIr/f31Id0zRrXz979qztvpLJZO3rUCh05qqm6goq6WBLYDtPR+zG3L28H9u2FY/HtbCwoGAw2PR1AAAAAAAA7fJ0EFYul2Wapj744IO26hx+uqRlWe22VbcdsNkw53AYt7a25qm5e3k/0WhUwWCwLnwDAAAAAADoBU8HYT6fryOrhqrhl+M4sm27I7Wqrl+/3tR1h++j1RVh3Zi7l/eTSCRkWRZbIgEAAAAAgCs8HYSZplk7wL0dDx48qH3d7uHsh8/SkupXRjVydFwrK9O6MXev7seyLC0tLSmVSjU9BwAAAAAAQCd5OgibmZlRPp9vq8ajR49kWZYMw5DUfNBzmq+++qrufbPB2uXLl+vet3Jf3Zi7V/czMzOjSCSiWCzWVH0AAAAAAIBO83QQtri4qL29PX388cctX3/v3j0ZhiHHcWQYRt0TD1txdGtlqyuoisWiJ+buxf1Eo1FJ0urqalO1AQAAAAAAuuEttxtoxOfz6e7du1pYWNDr16917949DQ0NNbymUqlofX1dyWRStm3XArCqdlcktXvGWFUrWz67MXe372djY0MbGxvKZrNtb0sFAAAAAABoh6eDMElKJpOyLEsPHz5UMplUOBxWKBSSJBUKBY2OjqpUKqlYLCqXy9UdjC+pLgRbWVk5M0g7S6tnlh0NgQ4/ydLNubt5P+VyWdFoVLFYrPY7AwAAAAAAcIvngzBJymazisfjWl1dVTabVTablWEYSqfTSqfTdWOPBmDV96lUSnNzc71tvIFOPATAS3OfVHNmZkamaSqVSnV8vmbs7u5qYmKi7Trz8/Oan5/vQEcAAAAAAPSv5eVlLS8vt11nd3e3A920pi+CMOkgyIrH40okEtrc3Dz282rwVT0PrBqAhUIhpVIp+f3+jvTh8/k6EiS1sk2wG3N3636WlpZkWZYKhULbtVu1v7+vnZ2dtutUKpUOdAMAAAAAQH+rVCod+Zztpr4JwiQpGAwqm81qa2tLuVxO2WxWtm2rXC6rVCppdHRUPp9PpmkqHA5rdnZWw8PDHe1hdHS0I8HR6OioJ+buRk3LspRIJJRMJhUMBtuu3apLly5pbGys7TrtbqcFAAAAAOAiGBoa0vj4eNt1dnd3tb+/34GOzq+vgrAqv9+vubk5V7Y6tnrg+9GwqdUVYZ2euxs1o9GogsGgFhYWWqrdKWNjY3r16pWrPQAAAAAAcFF06uigiYkJ11aW9WUQ5qbp6enagfzSQSDUTJh09DD5QCDgibk7XXNpaUm2bSsUCikajZ5Z53Cg9uDBA62trdXe37p1S5FI5MwaAAAAAAAAzejLIGx7e1u5XE6FQqEWyIyOjioQCCgUCunatWtdm3tqaqruvW3bTW3/KxaLde9beYpiN+budM3Xr19LknK53Jk1jrIsqy6UM02TIAyA573z+SdutwAAAACgSX0VhD1+/FjJZFK2bZ85Nh6Pa2FhQW+//XZHe5ienq5732xwdHjlU/UcMy/M7eb9AAAAAAAA9NIltxtoxvb2tq5evap4PK5isVh7KmT1yZCHVb+fSqUUCAT08ccfd7SXYDBYt3Xwq6++auq6fD5f+/po+OTm3J2umUwm634/Z70OB2iZTKbuZ8lksqleAAAAAAAAmuH5IOzFixeampqqBWCGYdReko4FK1XV9wsLC/r5z3/e0Z5mZ2drXx/eytfI4XGJRMJTc7t5PwAAAAAAAL3i+a2R0WhUe3t7dcGXdHB+VCgUUiAQqG3NGx0dlW3bsm1bxWJR6+vrKpfLymaz+vnPf67f/va3HekpHo8rnU5Lau4srMNjqn17aW437wcAAAAAAKBXPL0ibHV1VbZt14VgoVBIhUJB3377rVZWVnT37l3Nzc1pZmZGk5OTunnzpu7evauVlRWVSiWtr6/r2rVrymazHdsmGQwG68KfjY2NhuMzmUzt67NWT6XTaSUSiVPPQevG3N28HwAAAAAAAK8wnJMO2vKI6enp2hY8wzC0srKiubm5lmqFw2E9f/5ce3t7Ghoaars327YVCAQkHQRJhULhxHHlclkjIyOSDp6smM1mG/Z4eLXV3t5e3fld3Zy7GzWbEQgEaqFfJpPpyFMiJyYmtLOzo/Hxcb169artegDQCE+NxFl+94tfud0CAACAp7j5ud3TK8Kqq8EMw9DCwkLLIZj0x4PYD69maodpmrValmVpaWnpxHEzMzOSDp6seNbcR7clrq+v92zubtQEAAAAAADwEk8HYeVyuXYm2OLiYlu1fD6fYrHYqeFSKyKRiLLZrHw+nxKJhKLRqCzLUrlcVi6X09TUlCzLUjAY1NbW1omru472eNjhJyp2e+5u1QQAAAAAAPAKTwdhwWBQ0kEg1IntjIe34XVKKBTS3t6eksmkbNvWzMyMRkZGFI1GNTo6qkwmo0Kh0FRolMlkZJqmfD6fFhYWzjyEvpNzd7NmI9WngTqO05FtkQAAAAAAAKfx9BlhiURCjx490sjIiF6/ft12vUePHunevXv64YcfOtAdvIozwgD0EmeE4SycEQYAAFDPzc/tb/V0tnP68MMP9ejRI5XLZW1vb+vtt99uq16xWGQ7HwAA6KlmwlLCMgAAgN7w9NbI4eFhra+vy3Ec3bt3r+166+vrGh0d7UBnAAAAAAAA6DeeDsKkgwPcU6mUnj17pr/6q79quc69e/dULpdr544BAAAAAABgsLiyNfL27dsqFArnumZ0dFSpVEqpVOrcYVa5XJZt2zIMQ+Fw+FzXAgAAAAAA4GJwJQjz+XwqFAoyDEPNnNVvGIYk1caeN0Q7XGd2dralawEAAAAAANDfXNkaGY/Ha18bhnHm6zxjG71isZiGhobcuGUAAAAAAAC4zJUgzO/3yzRNSQervHrxmpycVDKZdON2AQAAAAAA4AGuHZY/MzMjScrlctrf3+/6K5/PsxoMAAAAAABggLkWhM3OzioYDOrGjRtutQAAAAAAAIAB4uqKML/f39M5t7e3ezofAAAAAAAAvMO1IEyS1tfXezrf4UP6AQAAAAAAMFhcDcJ6LZ/Pu90CAAAAAAAAXPKW2w20Ynt7W+Vyuenxtm0rlUqd6xoAAAAAAABcLH0RhG1vbyuZTCqXy8m27ZZqOI4jwzA63BkAAAAAAAD6heeDsMXFRS0tLUk6CLMAAAAAAACAVnj6jLAnT54omUzWAjBWdAEAAAAAAKBVnl4R9uDBA0kHAZjjODJNU8FgUKZpSpIuX758Zo3Xr1+rXC5rfX1db9686Wq/AAAAAAAA8C5PB2GWZdVWgWWzWc3MzLRca2FhQVevXu1UawAAAAAAAOgznt4a6fP5JB2EWO2EYJJkmqb8fn8HugIAAAAAAEA/8nQQVt0Cef369Y7US6VSHakDAAAAAACA/uPpIKy6CqxUKnW0HgAAAAAAAAaPp4OwDz/8UI7jyLKsjtR7/PhxR+oAAAAAAACg/3g6CBseHtbDhw+1tram77//vu16bI0EAAAAAAAYXJ5+aqR0cFB+NptVNBrVb3/725brbG1tdWxlGfrD7u6uJiYmGo6Zn5/X/Px8jzoCAAAAAOBiW15e1vLycsMxu7u7PermOM8HYZKUzWY1PT2tq1evKpFIaHR0tKnrSqWSyuWyisWi1tfXu9wlvGZ/f187OzsNx1QqlR51AwAAAADAxVepVM78LO6mvgjCnj9/LkkqFouKx+Mt1XAcR4ZhdLIteNylS5c0NjbWcMzQ0FCPugEAAAAA4OIbGhrS+Ph4wzG7u7va39/vUUf1PB+E3blzR+l0WpJkGIYcxzl3DQKwwTQ2NqZXr1653QYAAAAAAAOjmSOIJiYmXFs15unD8ldXV5VKpWrhVyshWDvXAQAAAAAA4OLw9Iqw6lMeqyvBQqGQwuGwfD7fuc8JW1lZ0fb2dhe7BQAAAAAAgJd5OgizLEuGYcjn8ymfz8vv97dca25uTpcvX+5gdwAAAAAAAOgnnt4a6fP5JEmLi4tthWDVWpOTkx3oCgAAAAAAAP3I00HY1NSUJMk0zY7UW11d7UgdAAAAAAAA9B9PB2HxeFyO48i27Y7UY0UYAAAAAADA4PJ0EBaJRDQ5Oam1tbWO1Hv69GlH6gAAAAAAAKD/eDoIk6RMJqNCoaAvvvii7VoPHjzoQEcAAAAAAADoR54PwkzT1MrKij744IO26rx580aWZXWoKwAAAAAAAPSbt9xuoJHqVsYf//jHGhkZ0dWrVxWJRM5dp1wua319vdPtAQAAAAAAoI94Ogi7f/++Xrx4UXvvOI6WlpZaquU4jgzD6FRrAAAAAAAA6DOe3ho5Ozsrx3HkOI4kEWQBAAAAAACgZZ4OwuLxuKSDAKwaiLX6AgAAAAAAwGDz9NbI4eFhBYNBvXjxQslkUsFgUKOjo+euY9u27t+/r5cvX3a+SQAAAAAAAPQFTwdhknTr1i0FAgHdvXu35RqTk5O6efNmSyEaAAAAAAAALgZPb42UpFAo1LGtjdPT0x2pAwAAAAAAgP7j+SBscnJSyWSyI7U6VQcAAAAAAAD9x/NbIyXJ7/e3XWN7e1uTk5Md6AYAAKCz3vn8kzPH/O4Xv+p6HwAAABed51eEdcKTJ08UCAT09ddfu90KAAAAAAAAXDIQQdhXX30lx3H0v/wv/4vbrQAAAAAAAMAlnt8a+fjx45avLZfLKhaLSqfTMgxDuVxODx486GB3AAAAAAAA6BeeD8JisZgMw2irRvWpk5ZlaXt7W2+//XYHOgMAAAAAAEA/8XwQVuU4zrkDsWoAdvi6dDqt+/fvd7Q3AMDF1MwB5gAAAAD6R1+dEeY4zrle0kEIdvh7mUzG5bsAAAAAAACAG/piRZjf71cikZBpmue6rlgsamlpSVNTU1pdXdXQ0FCXOgQAAAAAAIDX9UUQlsvlWjrXa2ZmRrFYTFeuXFEsFuOpkQAAAAAAAAPM81sjfT5f24fbr6ysaH19XR9//HFnmgIAAAAAAEDf8XwQlkwm264RCoVkmqYWFha0vb3dflMAAAAAAADoO54Pwubm5jpSJxgMynEcLS0tdaQeAAAAAAAA+ovng7BO++qrr9xuAQAAAAAAAC4YiCDszZs3yuVykiTLslzuBgAAAAAAAG648EHYy5cvNT09rTdv3kiSTNN0uSMAAAAAAAC44S23GzjL1atXW77Wtm1JkuM4kiTDMBQKhTrSFwAAAAAAAPqL54OwYrEowzBqYVYrDl/fiadQAgAAAAAAoP/0zdZIwzBaekkHK8J8Pp+ePXumoaEhl+8EAAAAAAAAbvD8ijDpj1sbfT6fRkdHm77O5/PJNE1dv35dd+/e7VZ78Kjd3V1NTEw0HDM/P6/5+fkedQQAAAAAwMW2vLys5eXlhmN2d3d71M1xfRGELS0t6Te/+Y3bbaDP7O/va2dnp+GYSqXSo24AAAAAALj4KpXKmZ/F3eT5IMw0TUIwtOTSpUsaGxtrOIatsgAAAAAAdM7Q0JDGx8cbjtnd3dX+/n6POqrn+SAskUi43QL61NjYmF69euV2GwAAAAAADIxmjiCamJhwbdWYq4flv3z58swxc3Nz3W8EAAAAAAAAF56rK8Kmpqb0ww8/uNkCAABAX3jn80/OHPO7X/yq630AAAD0M1dXhDmOo++++87NFgAAAAAAADAgXA3CJCmZTLrdAgAAAAAAAAaA60FYKpXSz3/+cz19+lTb29uqVCqqVCputwUAAAAAAIALxhNPjcxms8pmsz2bj3PJAAAAAAAABo8ngjDHcWpf+3w+SdLo6GhLtUqlksrl8ok/M02zp4EbAAAAAAAAvMMTQVgymVQkEpHf72+rzubmpqLRqAzDqPu+4ziKRqNaW1trqz4AAAAAAAD6lyfOCLt7927bIdhHH32kd999V2/evKmtMHMcR47jKJlMEoIBAAAAAAAMOFdXhBmGodnZ2bbrvPvuu9rc3KwFYIZhyHEc+Xw+bW5uanJysu05AAAAAAAA0N9cDcKGh4c1NDTU8vXb29sKh8OybVuO49S2RDqOo2AwqM3NTQ0PD3eqXQAAAAAAAPQxV7dGbm1ttXztkydPFAgETgzB4vG48vk8IRgAAAAAAABqXA3CWg2qFhcXNTs7e2wrpOM4SqVS+vTTTzvZJgAAAAAAAC4ATzw1slmVSkXRaFS5XO7YKjDOAwMAAAAAAEAjrj81slkvX76U3+8/MQQLhULa2toiBAMAAAAAAMCp+iIIW11d1dTUlPb29o6FYIlEQs+ePeM8MAAAAAAAADTk+a2Rd+7cUTqdPhaASVImk9HNmzfdbA8AAAAAAAB9wrNBWKVS0czMjCzLOhaCmaapbDYrv9/vcpcAgH70zuefuN0CAAAAABd4cmtk9Tywk0KwaDSqb7/9lhAMAAAAAAAA5+K5IOyk88Acx5HjOEomk1pbW3O7RQAAAAAAAPQhT22NvHXrljY2No6tAvP5fMpkMpqZmXG5QwAAAAAAAPQrT6wI297e1tWrV08MwYLBoLa2tjoSgl29erXtGgAAAAAAAOhPrgdhz58/19TUlIrF4rEQLB6PK5/Pa3h4uCNzFYvFjtQBAAAAAABA/3E1CHv06JHC4bD29vZkGEbdeWCpVEqffvppx+ZaXV2thWwAAAAAAAAYPK6eEZZIJGoBmHSwCmxkZESbm5u6du1ax+Z5/Pix4vE4QRgAAAAAAMAA89Rh+YZhaHR0VHNzcx2pVy6XZdt2R2oBAAAAAACgv3kmCHMcRxLneAEAAAAAAKA7PBGE+f1+ZTIZ+Xy+jtQrl8u1r/P5vFKplCzL6khtAAAAAAAA9CfXgzDTNDv6ZMijJicnNTc3p2g0qqdPn3ZlDgAAAAAAAHifq0+NlKRMJtO1EOywZDLZ9TkAAAAAAADgXa4GYT6fr6NPh2zENM2eBG4AAAAAAADwJleDsF6v0mJVGAAAAAAAwOByNQibm5u70PMBAAAAAADAO1w/IwwAAAAAAADoBYIwAAAAAAAADIS33G4A6Jbd3V1NTEw0HDM/P6/5+fkedQQAQHe98/knZ4753S9+1fU+AADA4FpeXtby8nLDMbu7uz3q5jiCMFxY+/v72tnZaTimUqn0qBsAAAAAAC6+SqVy5mdxNxGE4cK6dOmSxsbGGo4ZGhrqUTcAAAAAAFx8Q0NDGh8fbzhmd3dX+/v7PeqoHkEYLqyxsTG9evXK7TYAAAAAABgYzRxBNDEx4dqqMQ7LBwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAI65ClpSWFw2GNjIzIMAwFAgFFo1Hlcrm+nLvTNS3LUjweVyAQkGEYtZqJRELlcrnlPgEAAAAAAJplOI7juN1EP8vlcopGoyqXywqFQkokEjJNU5ZlKZFIyLZthUIhZTIZ+Xw+z8/d6Zrlcllzc3Pa2NhoOC6VSikWizXV41kmJia0s7Oj8fFxvXr1qiM1AVws73z+idstAJ73u1/8yu0WAADABeXm53aCsDbkcjmFw2FJUiwWUyqVOjZmampKlmXJNE0VCoWOhWHdmLvTNcvlsqampmTbdlP3dNqc50UQBgw2Qi6gMwjCAABAt7j5uZ2tkS0ql8uKRqOSJNM0Tw1wMpmMJMm27dp4L87djZrRaFS2bSsYDCqTyahYLKpYLCqTyWhhYeHY+HQ6febKMQAAAAAAgFYRhLWoun1QkhKJxKnjTNNUJBKRdLDiKp1Oe3LuTtdMp9PK5XJaWFhQoVBQJBKRaZq165PJpIrFooLBYN11c3Nzp84NAAAAAADQDrZGtsC2bQUCgdr7vb29hlsENzY2aqunfD6f9vb2PDV3N2oGAgGZpqlsNnuu+5GkbDarUCjU8LpG2BoJDDa2RgKdwdZIAADQLWyN7DPJZLL2dSgUOvPsreoKKulgC2I72/+6MXena1qWJdu2a9soGzFNs27+6vUAAAAAAACdRhDWgsPbAY9u7TuNaZq1r9fW1jw1d6drrq2tKRaLNf1ggKOrv16/ft3UdQAAAAAAAOfxltsN9Jujq5WuX7/e1HXBYLD29MRWV4R1Y+5u1Lx161ZdUNZMrcOObpUEAAC918w2Y7ZPAgCAfsOKsHPK5XJ175sNfI6Oa2X7Xzfm7kbNYDDY9GowSbVD+s/bAwAAAAAAwHkQhJ3TV199Vfe+2cDn8uXLde/z+bwn5nbzfqqqK8uq2jkoHwAAAAAA4DQEYed0NLRpdQVVsVj0xNxu3k/V4RAtFou1XAcAAAAAAKARgrBzOhocterodkC35nbzfqpSqVTt60Qi0YFuAAAAAAAAjiMIO6dWA5+jWw5LpZIn5nbzfqSDIK56vlgymeR8MAAAAAAA0DU8NdIl///27t5HzSzNG/Bd3t5VB7t+qerIsiMqnIzqzkcy6M02AjsfyVXpyAGo/wILAmvSwtLkNiQbvoKWNrchm7DopK3SBu1ivLMf2g/zBl5YoIACiu/nuiTURdXDOQdz9wP8OOdwnxlUu9j3sm2Wy+WI+LrUslgsrnBEEdfX1/HkyZN7t/Py5ct4+fLlCkYEAAAA++v169fx+vXre7dzfX29gtEsRxC2oFQqtZIgaZFvVVxn39u8P+12O6rVaqRSqWg0Gvcew7gvX77Ex48f793O58+fVzAaAAAA2G+fP39eyfvsbRKELejk5GQlwdHJyclO9L3N+/PixYuIiPjpp5/WsiTywYMH8ejRo3u38/DhwxWMBgAAAPbbw4cP4/Hjx/du5/r6Or58+bKCES1OELagZWY+RdxeOrjsjLBV972t+3NxcRHtdjtqtVpkMpmlxnCXR48exS+//LKWtgEAACBpVrV10JMnT7Y2s8xm+Qv6/vvvR67PO5tqfDP509PTneh7G/enWq1GtVqNy8vLyOfzc98OAAAA4D4EYQs6Ozsbud7pdOa63dXV1cj1bDa7E31v+v40m824uLiIy8vLOD8/n+s2AAAAAKsgCFvQ+AyqeYOj4ZlWqVRqqT2x1tH3Ju9Pu92OXC4X5XJZCAYAAABsnCBsQZlMZmQ/rPfv3891uw8fPgx+Hg+fttn3pu5Pp9OJp0+fRrFYjGKxOFcfAAAAAKskCFvCs2fPBj+32+25bjN8XKlU2qm+131/Op1OnJ2dxfn5eZTL5bna73Q6UalU5joWAAAAYB6CsCVcXFwMfm42m3ceP3xMOp1ean+wdfa9zvvT7XYjl8vFs2fP5g7BIiIKhcK9/p0AAAAAxn2z7QHso0wmE9lsdhAI1ev1md9+WKvVBj/fNXuqWq3G1dVVXFxcTNx3ax19r+v+dLvdODs7i3Q6HaVSaa79xzqdzqDNTCZz5/FAsvzmj3/Y9hAAAIA9dtTr9XrbHsQ+6nQ6cXp6GhFfA5tWqzXxuG63G8fHxxHx9ZsVG43G1DZzudzIbKubm5uR/bvW2fc62jw7O5t7qeW4+3yr5JMnT+Ljx4/x+PHj+OWXX5ZqA9hNgjDYLX/63e+3PQQAYA9t8327pZFLSqfTg5lR7XZ76n5WT58+jYiv36w4PJNqkvFlie/evdtY36tu8z4hWET4VkkAAABg5QRh95DP56PRaEQqlYpSqRSFQiHa7XZ0u91oNpuDMCiTycTPP/88cXbXsPG/T1oaua6+V9lm/3bLEoIBAAAA6yAIu6dsNhs3NzdRLpej0+nE06dP4/j4OAqFQpycnEStVotWqzVXEFWr1SKdTkcqlYpisXjnZvGr7HuVbdZqtej1ektfLi8v5x4vAAAAwLzsEcbBsUcYHC57hMFusUcYALAMe4QBAAAAwJoJwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEuGbbQ8AAIDD9Zs//uHOY/70u9+vfRwAABFmhAEAAACQEIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBE+GbbAwAAYD/95o9/2PYQAAAWYkYYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIvjWSg3V9fR1PnjyZeczLly/j5cuXGxoRAAAAHLbXr1/H69evZx5zfX29odHcJgjjYH358iU+fvw485jPnz9vaDQAAABw+D5//nzne/FtEoRxsB48eBCPHj2aeczDhw83NBoAAAA4fA8fPozHjx/PPOb6+jq+fPmyoRGNEoRxsB49ehS//PLLtocBAAAAiTHPFkRPnjzZ2qwxm+UDAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIngWyMB2Am/+eMftj0EAADgwJkRBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBFslg8AwFbN82UZf/rd79c+DgDg8AnCAFg73wgJAADsAksjAQAAAEgEQRgAAAAAiWBpJAAAO88+YgDAKpgRBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEiEb7Y9AAAAWIXf/PEPdx7zp9/9fu3jAAB2lxlhAAAAACSCIAwAAACARLA0EgCAxJhn+WSEJZQAcKjMCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAINssHAIAx82yqb0N9ANg/ZoQBAAAAkAhmhHGwrq+v48mTJzOPefnyZbx8+XJDIwIAAIDD9vr163j9+vXMY66vrzc0mtsEYRysL1++xMePH2ce8/nz5w2NBgA4NJZPAsBtnz9/vvO9+DYJwjhYDx48iEePHs085uHDhxsaDQAAABy+hw8fxuPHj2cec319HV++fNnQiEYJwjhYjx49il9++WXbwwAAAIDEmGcLoidPnmxt1pjN8gEAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARPCtkQBM9Zs//uHOY/70u9+vfRwAAACrYEYYAAAAAIlgRhgAAKyJmbUAsFsEYQDcyzxv8gAAAHaBIAwggYRXAABAEgnCAABgiyyfBIDNEYQBAMCOE5YBwGr41kgAAAAAEkEQBgAAAEAiWBoJAAAJMe+XpVhmCcChMiMMAAAAgEQQhAEAAACQCIIwAAAAABLBHmEAB2be/V8AAACSxowwAAAAABJBEAYAAABAIgjCAAAAAEgEe4QBAMABWOUekfO09aff/X5l/QHAppgRBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBFslg8AAKyFTfcB2DVmhAEAAACQCGaEAQAAW2PWGACbZEYYAAAAAIlgRhgAALCweWZybZKZZQDMw4wwAAAAABLBjDAAAIA1MEsNYPcIwgAAABa0a0tDAZiPIIyDdX19HU+ePJl5zMuXL+Ply5cbGhHcnxfdALC8eZ9HzdICWN7r16/j9evXM4+5vr7e0GhuE4RxsL58+RIfP36cecznz583NBoAAJblgyCA/fH58+c734tvkyCMg/XgwYN49OjRzGMePny4odEAAMBt9hEDDs3Dhw/j8ePHM4+5vr6OL1++bGhEowRhHKxHjx7FL7/8su1hAAAAQGLMswXRkydPtjZrTBAGAAAwxFJMgMMlCAPYEV50AwDLssQSYD4Ptj0AAAAAANgEQRgAAAAAiWBpJAAAwA6zfQLA6pgRBgAAAEAiCMIAAAAASARLIwEAABjwDZTAITMjDAAAAIBEMCMMYANscgsAHJJVvbYxswzYNEEYAABAAvhgDsDSSAAAAAASwowwgHvy6SoAAMB+EIQBAACwFZvca2zevuxbBofN0kgAAAAAEsGMMCCRfCIIAECSeP0LXwnCAAAA2GuHvGfrPPdNeAXzE4TBjnj9+nV8/vw5Hj58GC9fvtz2cDgwv/6/f4z//vd/j7/69tv47v/+dtvD4QCpMdZJfbFuaox18jqfdVJfixOEwY54/fp1fPz4MR4/fuwEtkMO5dPFXxv/GP918+f45vj/eIHPWqgx1kl9sW5qjEUtMktr1uv8Q3mtyfZ4H7k4QRgAAAD8j1WFU/12/ulf/zL4r+ALtk8QBgAAAHtsXwM2+5+xDQ+2PYBDUalUIpfLxfHxcRwdHcXp6WkUCoVoNpt72fe+tAkAAAAwLzPC7qnZbEahUIhutxvZbDZqtVqk0+lot9tRKpUil8sNfp9KpXa+731pEwAAgNUzS4tDJwi7h2azGblcLiIizs/P4/LycvC3dDod+Xw+zs7OotlsxtnZWbRarZUFPevoe1/aJNk8MQMAwHbt61LMXeO9zXYIwpbU7XajUChExNdAZzjgGVar1eL09DQ6nU4UCoVoNBo72fe+tAkAAADDVhkoCacOnz3CltRf6hcRUSqVph7Xn/UU8XV2VLVa3cm+96VNAAAAgGWZEbaETqczssH7s2fPZh7//PnzqNfrEfE1EDo/P9+pvvelzU15/fp1fP78OR4+fBgvX77c2jg2ZZv3d1193/Upzq//7x/jv//93+Ovvv02vvu/v11Zv/PYZt/bsq37nMTHWX39NhF9J/E+b5PHeXN9q6/fHny/2+xbff12b/teZBnmpu7zpDGN972qWWN33f9/+te/rKSfZezre2dB2BLK5fLg52w2e+eeVv3ZThFflwvW6/WR3227731pc1Nev34dHz9+jMePH+/V/8zL2ub93Vbfvzb+Mf7r5s/xzfH/2fyLgi32vS3bus9JfJzV128T0XcS7/M2eZw317f6+u3B97vNvtXXbxPR96x+172vWRJrbF/fOwvCljC8dC+Tycx1m3Q6HZ1OJyIi3r59u3TIs46+96VNAAAA2Ae+UGB3CcIW1G63R67/8MMPc90uk8kMQp7+EsBd6Htf2mS32VASAACAfSAIW9DwvlcRX2cxzWP8uHa7PfdMqXX2vS9tkgw+NQEAAGCdfGvkgt6/fz9y/a69r/q+++67kesfPnzYib73pU0AAACA+xKELai/dK9v2dlOV1dXO9H3vrQJAAAAcF+WRi5oPORZVrfb3Ym+96VN/teq9uPqt9P/ut1/+te/rHVp4qS2N9U3AAAARAjCFrZsODO+PPDTp0870fe+tJkkqwiFhEoAAABw21Gv1+ttexD75OjoaOT6vP98zWYzcrnc4Ho2m41Go7H1vvelzUX8zd/8Tfznf/5nREQ8eLD46t8vX74Mfn7w4EH83d/9Xfzt3/7twu0s6vr6+mvfR0fxTerh2vvr+6/u54heb+P9brNv99l9PtS+3Wf3+VD7dp/d50PtO2n9brNv99l9PtS++/0+ePAgHj16tPb+/vKXv8Q///M/R8Tt986L6N/2r//6r+M//uM/VjfAOZgRtqBUKrWSJXvzbiC/7r73pc1F/Pd///fg5+H/MZfx5cuX+POf/xx//vOf79XOQnq9+K+bDfa37X632bf7nIy+3edk9O0+J6Nv9zkZfbvPh9/vNvt2n5PRdwLv85cvX+Ljx48b73e4/2UMv3/fFEHYgk5OTlYS8pycnOxE3/vS5iK+/fbb+Ld/+7fo/U8qfl+bmhEGAAAAu2x4Rth9fPnyJY6OjuLbb79dwagWIwhb0LKzlMaDoWVnhK26731pcxH/8i//stTtAAAAgMN2/+kyCfP999+PXJ935tP4xu+np6c70fe+tAkAAABwX4KwBZ2dnY1c73Q6c93u6upq5Ho2m92JvvelTQAAAID7EoQtaHy207whz/CsqFQqFel0eif63pc2AQAAAO5LELagTCYzsnfV+/fv57rdhw8fBj+PB0Xb7Htf2gQAAAC4L0HYEp49ezb4ud1uz3Wb4eNKpdJO9b0vbQIAAADcx1Gv1+ttexD7pt1uj+yDddc/YbPZjFwuFxER6XT61l5Y2+57X9oEAAAAuA8zwpaQyWRGNnKv1+szj6/VaoOf75rpVK1Wo1QqTd1Xax1970ubAAAAAPdhRtiSOp1OnJ6eRsTX0KfVak08rtvtxvHxcUR8/RbERqMxtc1cLhfNZnNw/ebmZmSvrXX2vS9tAgAAACzLjLAlpdPpwSymdrsdlUpl4nFPnz6NiK/fgjg862mS4RAsIuLdu3cb63tf2gQAAABYliDsHvL5fDQajUilUlEqlaJQKES73Y5utxvNZjPOzs6i3W5HJpOJn3/+eeLsrmHjf0+n0xvre5/aBAAAAFiGIOyestls3NzcRLlcjk6nE0+fPo3j4+MoFApxcnIStVotWq3WXAFPrVaLdDodqVQqisXiyB5b6+5739rcpE6nM9jIf9nb3rVH2l0qlUrkcrk4Pj6Oo6OjOD09jUKhcGsW4bbbZDmL1Fi73Y6Li4s4PT2No6OjwWNXKpWi2+0uPQY1drgWqa9OpzNSX8fHx3F2dhYXFxdT966ch/o6bPd5nhzWr7tlnjPV2OFaVX3dp031dbhWXV/tdjvq9XpUKpW5H0v1ddjWcQ5blBqboAcJdXNz04uIuS7n5+cLt53P5we3v7y8XGqMjUajl0qlehHRy2azvUaj0bu6uurVarVeOp0e/P7m5marbTLZKmtsvKamXRatNTW2v1Z9DiuXy3e2Uy6XFxqj+tpv63yeHFcsFgdt1Wq1uW+nxvbXOupr1W2qr/21qfPXzc1Nr1wu9zKZTC8ieqlUqlcsFnuNRuPOx1B97bdV1Vj/8VrmclftqrHpBGEk1jxv+vqXq6urudq8ubkZeTG/bDjR6309ydx1kus/6abT6blONutok+lWVWM3NzeDJ5ZVvqBTY/ttleewbDY7eAGfz+d7xWKxl8/nJ9bdvCGF+tp/63ienGT4cVVjybGO+lplm+prv637/HVzc9M7Pz8ftJHJZHqNRmPu26uv/beKGqvVanO3Meky6/lSjc0mCCOx5k3fs9nsXO2Vy+VeOp0evKEcviwahN3c3AzGl06npx53dXU19zjX0SazrarG+jWVyWR6tVqtd3V1NfjkZVLwOs8bSTW2/1ZVX/0amjbba9ILvbuor8Ow6ufJSYYf13nPX+O3U2P7aR31tao21df+W+f56/LycqR9r/OTaRU1Nul94yKXadTY3QRhJNLl5WUvIgZTl2dd5kmyW61Wr9Vq3Wp/2SfI4ZPiXbeddwnmOtpkulXV2HA701xdXQ0+felfUqnUzPGpsf22qvrqv1i561Ps4U+9I2LkfDeJ+tp/q36enKY/83D4DcU8QZga22/rqK9Vtqm+9ts6z1/DH0Cm0+mlZpOpr/23ihrrvwZLp9O9y8vL3tXVVe/m5ubOy/Dyw2nU2N0EYSRSOp2emWTfV6vVWjoIG07RI+LOJ+jhKbXTwo91tMlsq6qx/izDu4w/xrPCDTW2/1ZVX/l8fq59v8b3wZh1G/V1GNb9PNnr/e8biVartVAQpsb23zrqa1Vtqq/9t67z1/Cb+1QqtdSHAOrrMKyixorF4sLLB4cf62nvL9XYfARhJE7/f8x1ptPjJ4tF+hqeeTHvdNLhvia9gVhHm0y3qhrrB6rzPkGOL2GbFlaosf22ynPYIlPWh/cLm9W3+tp/m3ye7M92XSQIU2P7bR31tco21dd+W9f5a3wJ27L7Iqqv/beqGkulUnfOsB83/Fp/2vsDNTYfQRiJk8lklv4UZ173CcKGbzdrOdyw4Teo+Xx+I20y3apqrFgsLvRNRuMzEac91mpsv23iHDbJcFAx64Wb+tp/m6ixTCbTy2Qyg+uLBGFqbL+to75W2ab62m/rqK/7bnkyTH3tv1XV2CJfrjDc911hlBqbz4OABGm329Fut6Pb7cbx8XGcnp7GxcVF1Ov1bQ8tIr6Ob9gPP/ww1+0ymczg5/H7so42mW6VNfb8+fMol8tzHz/8mEVEnJ6eThzfMDW2X7Z1Dut2u9HtdiMiIpvN3qq14fENU1/7ZxM1ViqVot1uR61WW2p8w9TYfllHfa2yTfW139ZRX51OJy4uLgbXM5lMnJ+fLz2+Yepr/6yyxrLZ7ELHd7vdweNdKBSmjm+YGptOEEailEqlkeudTieq1WoUCoU4OjqKQqFw63/2TWo2myPX0+n0XLcbP274PqyjTaZbZY1lMplIpVJz990PKvomPdZqbL9t6xz27t27iPj6mM0KL9TX/lt3jbXb7ahUKnF5eTn3YzlMje23ddTXKttUX/ttHfU1Hjj8+OOPS49Pfe2/bb6XrFarg5+fPXs28Rg1Nj9BGInR6XRu/Y88rl6vx9nZ2cgnP5v0/v37kevzhiDffffdyPUPHz6stU0m23aNdTqdkeuTPmlSY/trW/XV7Xbj4uIiMplMNBqNmY+v+tpvm6ixp0+fRj6fX3pGhRrbX+uor1W3qb7217rqa/jNeyqVinw+v/QY1dd+2/br/Ldv30bE7A/K1dj8vtn2AGBT0ul0XF5eRrfbjaurq2g2m7eCg75qtRofPnyIVqu10TGOj2fZxP3q6mqtbTLZtmts+Alm2ptMNba/tlFfnU4ncrlcpFKp+Omnn+588aO+9tu6a6w/s+LNmzdLj1GN7a911Neq21Rf+2sd9XV5eTlyvf8BY71ej7dv30a73Y5OpxOpVCrS6XQ8f/48zs/Ppz5Xqq/9ts3X+cPLIp8/fz71ODU2P0EYiTIeDnS73ahWq/Hq1atby8ra7XbkcrloNBobG9+0k+mihu/LOtpkum3W2PALtvGp231qbL9tsr7q9frIkpDj4+Mol8tRLBan3kZ97b911Vi9Xo96vX7nrMK7qLH9to76WmWb6mu/rbq+hpeiRUScnJzE2dnZrSVe/ZCi3W5HqVSKWq02ceaY+tp/23qd39+iIiJmzkpUY/OzNJJES6VSUSwW4+bmJmq12q0X581mMyqVysbGs+wJYnzcnz59WmubzG9TNTY8fb9cLk/9tEaNHZZV11e3241KpRKnp6cTN2ItlUpTN2jt334Z6mt3raLGut1uFAqFOD8/X3hz4EltLUON7aZ1PEfep031dVjuUwudTufWY/fu3bu4uLiIm5ub6PV60ev14urq6lY4UigUJm4Orr4Oz6Ze5/c/7M5kMjNnZKmx+QnC4H/k8/n4+eefb30b2qtXr7Y0ouWtI3HftRR/H62zxvrfLplOp2fO2FkVNbZ7VlFfzWYzrq6uIpvNTg0s6vX62j8gUF+7adkae/r06WBJya5QY7tnHc+R23ptp752z6K1MD4LJpVKxc8//3xr6WP/3DZ+fnvx4sXaHjP1tZvWdb6Zd1nkKiWhxgRhMCSVSkWr1Ro5gXW73Ts3Rlxl/6tuZx1tsrx11Fi73Y5qtRqpVOrO6ddq7LDdt77y+fzgBX2j0YherxeXl5e3HptSqTTxBY36OnyL1lilUol2uz3z20YX7X/V7aix3bGO58hF2lRfh22RWhgPwmbt/dX/+/DMsG63eysAUV+Hbx3nsHmXRfb7X4Uk1JggDCYY38h3U/uEnZycrLyddbTJ/a2yxl68eBERET/99NOdG1iqsWRYZX2dn59Hq9W69QJmfO+UCPWVJPPUWH+/nHK5fOsT8mWpsWRYx+uwedpUX8kwTy2Mb+z9ww8/3Nnu+P6s47On1VdyrPIc1p9tmE6nvc5fIUEYTJDJZEaWBa1qk8C7LJuUj8/MWEWKP6tN7m9VNXZxcTGYbTHPG001lgyrPoel0+n46aefRn43/nXaEeorSeapsUKhEJlMZqXLtdVYMqzjddg8baqvZJinFpb590+n07deiw1vrK++kmNV57DhZZF3zQaLUGOLEITBFLlcbuN9fv/99yPX511LPb754Onp6VrbZDXuW2PVajWq1WpcXl7O9eQYocaSZNXnsEwmM1Jnk17Uqa9kmVVjlUolOp1OnJycRKFQuPMy/Li+evVq5G/Dm06rseRYx+uwu9pUX8lxVy0s++89/ngPP1eqr2RZxTlseFnkPPuDqbH5fbPtAcCuGp56uqmpnGdnZyPXO53OXLN8xqdvD38CsY42WY371Fiz2YyLi4u4vLy89W1Fs6ix5FjHOez58+eDUGLSCyH1lSyzauzXX3+NiFhqX5R2uz0yiyKdTg9CWDWWHOs4h93VpvpKjrtqYXz2yrxv/sff7A+HAeorWVZxDuvvr5lKpeZ6XNXY/MwIgymGT16bmso561OkWYafnFOp1MjY19Emq7FsjbXb7cjlclEulxcKwSLUWJKs4xw2/MJnUpvqK1k8T05vk/tbR33d1ab6So511cJ4W8MBiPpKlvuew4Y32Z/39b4am58gDKb48OHD4OdNLZPMZDIjJ8pJe/BMMjzW8ZPVOtpkNZapsU6nE0+fPo1isbjUvjtqLDnWfQ6b9Jipr2SZVWPlcjl6vd7cl+EXyLVabeRv5XJ58Dc1lhzrOIfd1ab6So55amHY+OyWeQ2f29RXstz3HLbossgINbYIQRhMMfyEt8mpnM+ePRv8PLw0ZJbh48a/sWZdbXJ/i9ZYp9OJs7OzOD8/H3ljeNdtxr+1SI0lwzrOYcOfAk57Uae+ksPzpBpbp3XU1zxtqq9kmKcWhn8/7zLv8SWU44Ga+kqO+57DFl0W2afG5tQDJkqn072I6BWLxYVve3V11YuIweXy8nLu27ZarZHb3qXRaAyOTafTG2uT+1ukxm5ubnrpdLp3fn6+UB+ZTKbXarVGfqfGkuE+57BpyuVyLyJ6qVRq6jHqKzlWWWP9tiKiV6vVZh6rxpJhHeewedpUX8kwTy0MPw4R0bu5ubmz3fPz88Hx2Wz21t/VV3Lc5xx2c3MzeIwWfe2vxuYjCIMJarXa4M3ePE9648ZPFosEYb1er5fNZud+QzD8hDurn3W0yfIWqbF+CJbNZntXV1dzXRqNRi+TyfQymczENtXYYbvvOWyaVCo11+Orvg7fqmtskSCs11Njh24d57BF2lRfh22RWhg+N80TaAwfP/5BZJ/6Onz3PYddXl4OHqNGo7Hw7dXY3QRhJEKj0Ri8gctms1OfmHq9r7O5+sfOOm6W/smvfymXywvdfnhG2bQgo9cb/bRg0qdO626T/7XOGstkMiP1tMhl2pOPGtsv66qvcrncy2QyvWKxeOcLtWKxOPcbAfW1fzb9PDlu0SBMje2XddTXOmtWfe2XddbC+IfbV1dXM8fRP27WLB71tX82/RzZD51mzcCfRY3dTRBGIgyn0rOeoPonuXQ6PfOJbpb+7J3hvmadLKYZDtOmBWn9gGTeTxvW0SZfravG7hOCRcw+xaux/bGO+hp+odK/TAu58vn8zMd0EvW1Xzb5PDnJokFYr6fG9sk66mvdNau+9se6a2F4dk46nZ74uAy//p/ndb/62i+bfi/Z7yOfzy89ZjU2myCMRBhf49+/pFKpXj6f752fnw/+p51nZsS4m5ubXj6fH5kyOumSzWZ7+Xx+7k8Hhj996N/u5uZmsOyt/2S7yHjX0SbrqbF++LDsZZ49BdTYfljXOWw8tB9us1gs9rLZ7OD6Mi/o1Nf+WPfz5F2WCcL641Zju28d9bWJmlVf+2HTtZBKpXrlcrnXarV6rVarVy6XB39bZD8n9bU/Nvkced9lkePjVmOTCcJIjKurq975+XkvnU6PPJGl0+lePp/v1Wq1nf0ftr98aXjc2Wx2oTcLm2gz6dTY+ttMsnXU183NTa9YLN56nPptXl5erqRm1dd+cA5bf5tJto762lTNqq/dt6lauLy8HHxI1O+jv8XAsjOA1Nd+2FSNDU+sWBU1dttRr9frBQAAAAAcuAfbHgAAAAAAbIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAJA43W43jo6O7ry02+1tD3VnVSqVO//9Tk9Ptz3MEUe9Xq+37UEAAAAAbFK3243j4+PB9UwmE2/evIl0Oj1yXCqV2vDI9ku32x38/OnTp2g2m3FxcTH4XTqdjqurqy2MbDJBGAAAAJA440FYrVaLfD6/xREdjkKhEPV6PSJ2LwizNBIAAABIPDO/Vmd8Vt0uEYQBAAAAiXdycrLtIbABgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAMCCut1uVCqVODs7G3xDYl+9Xo9cLhfHx8dxdHQUZ2dnUa1Wp7ZTKpXi7Oxs5PjxNnd9HPvim20PAAAAAIgolUpRqVSWum0mk4lWq7XiETGu3W5Hs9mMt2/fRrvdvvX3TqcThULh1t/a7XZcXFxEq9WKy8vLwe8rlUqUSqWJ/RQKhSgWi1Eul3d2HPtIEAYAAAA7oNvtRkREOp2Oi4uLSKfTE497//79rcDsUEKKXdbpdOLVq1cRERPDp2q1GhcXF5HJZKJcLkc6nR7cpv/YVqvVKBQKkc1mI5fLxYcPH+L8/DzOzs7i5OTk1mNbqVRu1cKujGNfHfV6vd62BwEAAABJd3FxEe/evYubm5uZx52dnY0EIOfn5yOze5hPt9uN4+PjwfVWqxWZTGau247PoEqn0/Hp06d48+ZN5PP5kWM7nU6cnp4Orvf7ODk5iVqtFqlUauT4ZrMZuVxucH3W47sr4xg3PLsxnU7H1dXVXLfbBHuEAQAAwI748ccfZ/69UqmMhGCpVEoItgWTArObm5tb4VPE1yAom80Orrfb7eh2u9FoNG6FTxER2Wx2ZOZVs9nc+XHsE0EYAAAA7IBPnz7NnJHU6XRu7eNUq9XWPSwmODk5Gbk+KXgaNjyzKiIm7sc1bLgOOp3Ozo9jnwjCAAAAYAeUy+WRGTvjCoXCyPXz8/OZx7M7xmdcjQdY48b34lpVCLUr49gmQRgAAADsgFkbkVer1VtLIhfZIL9SqUQul4ujo6PB5ezsbKHxVSqVkdsfHx/HxcXFQm0k1V2B0136m9wfyji2SRAGAAAAO6zT6dwKnCZtbj5LsViMRqMxsnRukdk97XZ7ZBldKpWKn3/+2f5ka/Ldd99tewgRsTvjWCVBGAAAAOyw8RAsn88vvSRyOPxaZHbP+LLMZ8+eLRTEwa4QhAEAAMCOqlarI9/Wl0ql4s2bN0u11e12o91ujwRY88wKK5VK8enTp5Glm+PBGOwLQRgAAADsoG63e+tb/d68ebP0TKx+oPbs2bPB7+4KwtrtdlQqlXjz5s3IsTbpZ18JwgAAAGAHFQqFkeWL+Xx+ZI+vRb19+zby+Xycnp4OfnfX8shCoRDn5+cjvxOCsc8EYQAAALBj6vX6ypZE9jWbzcjlciNLHGfNCOvvTXZ5eRlv374d/D6Xy83VX3+T/1wuF4VCYRDs5XK5OD4+Hrl/08Z6dnY2uMw6HuYlCAMAAIAd0u1248WLFyO/u8+SyIivSxy73W5ks9mRIOzq6mri8c1mM6rVatRqtcH1vnlmpVUqlTg9PY3T09NoNBpRq9WiXC5HoVCIZrM5GMsk/fAsl8tFq9WKVqsV6XQ6crlcVCqVwX2BZQjCAAAAYIe8ePFi4SWRlUolqtXq1L+/ffs20un04NI3aUZYt9uNQqEQxWIxMplMdDqdwXhSqdTI7ScpFApRKpWiVqtFsVgc/D6dTsenT58iYvryykKhENVqNc7Pz0du+/z584j4unH/2dnZrb3TYF6CMAAAANgRzWYz6vX64Pq8SyIbjUacnJzMbLcfPt31rZEvXryIk5OTKJfLEREj4xneaH+Si4uLqNfrcX5+PjG86wdqk5ZXVqvVQV/9vvsymczg56urq7i8vJw5jl3XDwS3bVfGsUmCMAAAANgRhUJh5Po8SyK73W40m82pM7W63W602+2Rtvttjgch9Xo96vX6YElkxNeQrW/W/mD1ej2q1WqkUqmpQVU/eJs0I6zfZz6fv3WfhwO7u77pcheN/zvftbTz119/PehxbJMgDAAAAHbAxcXFSDCRzWbn2o+rv5/YtCCsv7/XcPjUP3a4v/6SyHK5PDIDa979wfrj+PHHH2eOI5VKjbQ//vcffvjh1t+Gw7jvv/9+6hg2ZTyMuytQGv/7tL3Zph0/LfzblXHsE0EYAAAAbFl/c/ph/Y3lxy/9mVelUilOT08HywmnzRx7+/btreBp0j5hhUIhMpnMyN5cwyHYpPCqr1KpDEKT8/Pzicf0Z3xNC7Kmjb/b7UalUomIiGKxeK8vDViVV69ejVx/9+7d1BCq2+3emiH37t27meHWu3fvRn43bYbdroxjr/QAAACArcpkMr2IWPqSSqWmtp1KpXrlcnnkd8VicXDbRqPRK5fLvYjoXV1djRx3fn4+OG68jfE+IqKXz+cn/v3m5ubOdmq1Wi8ieplMZuR26XS6FxG9YrE4tf9lDI8pInqtVmvm8a1Wq5fNZgf3ddIlk8n0arXa4Pi7HtdMJtO7vLzs9Xq9XqPRGNzXaY9xNpvt/cM//MNOjGO8VoYN11c6nV7Fw7Uy39wvRgMAAADuq9VqraXddrsd3W731p5cp6eng58bjUZUKpUol8u3llcOzwib9k2P/T4ipu8hNjxzaVo7+Xw+Wq1WPH36NM7OzuLk5CQ+ffoUmUwmGo3Gnd9WuW79cSxy/CKPazabvXOpYt/f//3f78Q49pEgDAAAAA7U27dvJ+7JNfwNk5VK5daSyIivS+n6y+am7esVMbpv1KRlj51OZ+4llq9evYrvv/9+ocAJFmGPMAAAADhQ9Xp94gys8dlVw98S2Te8P9S0WVwRd2+gXiqV4vnz5yPtdLvdwd5mfYVCIer1+sygDO5LEAYAAAAHqN1uR6fTmfgtjMNB2OXl5cRlh8Ph2LQlj+NtvX37dvBzt9uNXC4X5XI53r9/HxFfZ4N1u9148eLFrXCtP2usUqnE2dnZrS8PWLdPnz5ttD+2QxAGAAAAB6hUKk39W/+bF7PZ7MRveex/Q+U8stnsoL1KpRIXFxdRKBTi7OxsELL1Z43V6/V4+vRplMvlW9/+WC6XBz+32+24uLiIo6OjuLi4mGsc93XXzDbmN+2bK3eBIAwAAAAOSLPZjLOzs0GQVSqVolAo3Aq2MpnMrSWR1Wo1crncrRlg/XBr0iytVCoVP/3002BJ47t37+Lk5CRardZgtlh/aWQ6nY5arXZrBlq9Xo9arRZXV1dRq9VGZotVq9WRzf3XpVQqRbPZjG63O3JhtvF/r2azufHZfIs46vV6vW0PAgAAAEimSqUSb9++vfXNhp1OJ0ql0mAvsfPz87i8vFxZv91uN46Pj+88rtVq2bdsikqlMnPmYcTX8HOXvoVSEAYAAABsRb1ej0KhMDNsKpVKUalUdi5QYT8JwgAAAICtyOVy0Ww2465o4ujoKDKZzK1ZY7Aoe4QBAAAAW9HfMH/WXlz9v41/yyQsQxAGAAAAbEV/E/1Xr15NPaZUKkU6nY4ff/xxU8PigAnCAAAAgK3I5/NRLpejUqnExcVFtNvtiIjBtw/mcrn49OlTtFqtwewxuA97hAEAAABb1e12o1qtxtXVVXz69CnS6XScnp5GNpuNdDq97eFxQARhAAAAACSCpZEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCL8f9VGx7hum6xuAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig = plt.figure()\n",
|
|
"plt.hist(array[\"z_mag_xEndT\"],\n",
|
|
" bins=100,\n",
|
|
" range=[5100, 5700],\n",
|
|
" color=\"#2A9D8F\",\n",
|
|
" density=True)\n",
|
|
"plt.xlabel(r\"z$_{Mag}$ [mm]\")\n",
|
|
"plt.ylabel(\"Number of Tracks (normalised)\")\n",
|
|
"mplhep.lhcb.text(\"Simulation\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 35,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClyUlEQVR4nOz9X4xi953n/7+o7kSO4tBQHs1PpULKNMjz9VzNNFTvRe42BZu9iJVsDN0/xV87+mnTVGxFq59q1+COr+0yJKmblbKGztw4G2m6IZ5EyUXW0J777YLO3FmbcNqRqsSVq04TR7EyNnwv6guBKgoOcM7hz3k+JCSq+PA5b4r6A6/6fN7H1+l0OgIAAAAAAABW3Nq8CwAAAAAAAADcQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhc2AYhhKJxFxryOfzSiQSCgaD8vl8ikQiSqVSqlarCzUnAAAAAACAXQjCbGSapnw+39hLJBJROBy+cJ5ukDTNZWdnZ2SN1WpVwWBQ2WxWklQqldRoNJTL5VSv15VIJJRIJGSapuXH7cScAAAAAAAAdvN1Op3OvItYFfl8vhcGjdNoNIaGYeVyWalUauoaSqWSksnk0Nuq1WpvJVo6nVahUDg3JhaLqV6vKxwOq1arKRAIjDyeE3MCAAAAAAA4gSDMRsFg0NKqp3g8rkqlMvS2RCIx01bCi55O0zR19epVmaapcDisRqMxdJxhGIpEImPrdGpOAAAAAAAAp1yedwGrolgsyjRNZTKZsf2/tra2hn7eMAxVq1WFw2Fls1nF43Gtr6+PPXYsFpNhGIrH4xeOSaVSvZBu1Kq1cDisZDKpcrmsarWqYrGodDrt2pwAAAAAAABOYUWYTborni5aFWVFNptVuVyeaPtg/2qrQqEwNGDqHyNJJycnI+fv354ZCAR0cnLiypwAAAAAAABOolm+DcrlsgzDsNwf7CLFYlGlUmmiHlrlcrl3/caNG0PH5HK53vV4PD52/v4eY6ZpDhzDyTkBAAAAAACcRBBmg729PQUCgQuDKKtKpZKi0ehE97l7966k0WFUsVjsXbc6f38j/+4xnJ4TAAAAAADASQRhM6rX66rX6zJNU8FgUJFIRDs7O1OteBrV42sY0zRVr9cl6cIzTXZv77p+/bqlufvDrbOPxYk5AQAAAAAAnEYQNqOz2yENw1CxWFQqlZLP51MqlToXHNmlf1XWRavRzp6Bsn9V1ihnx/U/BifmBAAAAAAAcBpB2Ay6Z3kcpVwuKxaLaWdnx/bjd7cXRqPRC7dFPnjwYOBjq/3HnnrqqYGPDw4OHJ0TAAAAAADAaZfnXcAyC4fDKhQKMk1TjUZD1WpVhmEMHVssFnVwcKBarWbLsfu3Rd68efPCcWfrmXb1Vv/ZMJ2YEwAAAAAAwGkEYTNKp9MDH5umqWKxqL29PZmmOXBbvV5XIpFQpVKZ+bj37t3rXe8/I+NZFwVzk+p/LE7MCQAAAAAA4DSCMJsFAgFlMhllMhmVy2XdunVrIPCpVqvK5/PKZDIzHadQKEg63RY5akXWtGHT2e2Ox8fHjs45qc9//vP605/+pE6no7W12Xf4fuELX9CTTz458zwAAAAAAKyqjz76SH/4wx9mnqfdbsvn8+lzn/uc/vjHP9pQmXUEYQ5KJpOKx+Pa3t4eaAy/t7c3UxBmdVuknZxYvTXLnB9//LE6nY6k0x+gWT1+/FiPHz+eeR4AAAAAADBep9PRxx9/7PpxCcIcFggEVKvVFIvFeuGVaZqqVquKx+NTzWl1W2T3+HaEWP2ruZyYc1KXLl3qBWDLtCKs2Wyq3W5rbW1NGxsbE9//qDX69k3/lIXZbNbHuQy88BglHucq8cJjlLzxOL3wGCVvPE4vPEbJG4/TC49R8sbj9MJjlLzxOL3wGCX3H6edK8Kk0/f2biMIc8mdO3cUi8V6H1cqlamDsO62yHA4PLZR/fr6ui2h1fr6uqNzTuqv//qvdXR0pM3NTR0eHs5ci1tCoZCOjo60sbExcd2ftqXLr40e8/vXpUsLcC7YWR7nsvDCY5R4nKvEC49R8sbj9MJjlLzxOL3wGCVvPE4vPEbJG4/TC49R8sbj9MJjlJb3cXbr/uu//mvXj70Ab5m9IRqNDgRf0zac798WOW41mDT9qquzQdfZFWF2zwkAAAAAAOC0ua4Ie/rpp+d5+AE+n0//5//8H0ePkUgkVK1WZ5qjf1uklf5gW1tbA/3JTNO0FECdbWQfiUQcnRMAAAAAAMBpcw3CGo2GfD5fr+n5PHSP7/P5HD9W/zbGabcFlkolSaerqaLR6Njx/dsxpdOVaFbu12g0Bj7uX83mxJwAAAAAAABO8/zWSDdDuP4gbJptgd0m+5KUTqct3Wdra2vgY6tbMvu3MQYCgYHanZgTAAAAAADAaXNvlt/pdJRMJucWipimqWKx6MqxDg4OetcTicTE9590W6R02pus/yyPDx48sNRbrL/Ws8GXE3MCAAAAAAA4be5BWLFY1Le//e251pBMJvWVr3zF8eP0bw2cZlvgpNsiu27cuNEL+/p7e43SPy6bzboyJwAAAAAAgJPmvjVyEfpEXb9+3ZXjlMtlSVImk5n4vv3bIm/cuDHRfXd2dnrXrTTr7x8TDoeHPkdOzAkAAAAAAOCkua8Im7Zp/LIpl8syDEOBQEC3b9+e+P792yJTqdRE941Go4rH470wqlwuj9zK2F15Jl28csuJObE6dnd31Wq15Pf7512KY7zwGCXvPE4v8Mpz6YXH6YXH6BVeeS698Di98Bi9wivPpRcepxceI6bj68zxlI2XLl3SycnJ3L8xHz9+rPX1dX366aeW71OtVpVKpWSapuLxuHK53IXbFQ3DUCwWk2maqtVqE21r7EokEqpWqwoEAjo5OZn4/oZhKBKJSDoNsWq12tBxpmkqGAxKOl2tV6lUXJ3TqlAopKOjI21uburw8HDm+dwyS92ftqXLr40e88nr0qW5r/MEls+y/k4BVhk/l8Di4ecSWDzL+nM5z7rn+pZ5jhncOZPWUiqVes3iq9WqYrHYwHbBru5t6+vrajQaU4Vg/dsip91SGA6He6uy6vW68vn80HHb29uSTvuQ9a/icmtOAAAAAAAAp8w1CMvlcnNfDSZJV65cUS6Xm+g+w7YnFotFBYNBpVIp7ezsKBaLKZFIKJ1Oq1arTX1mzP5tkcPCNquSyaQqlYoCgYCy2axSqZTq9XovaIvFYqrX64pGo3r06JECgcBc5gQAAAAAAHDCXIOwV155xdXjffDBBxfeNmkt8XhcjUZD6XRa4XB4IOCp1+s6Pj7W7du3dXJyolwuN1MA1L+KatYm8/F4vFeTYRja3t7uhXfr6+sqlUqq1WoT1evEnAAAAAAAAHabe7N8N+3s7Oh//a//Zdt84XBYhULBtvkuYkdPrbMymcxUZ690e04AAAAAAAC7eKqt9sHBwbxLAAAAAAAAwJws5YqwDz74oNeo3grDMFQoFCa6DwAAAAAAAFbLUgRhH3zwgXK5nKrVqgzDmGqOTqcjn89nc2UAAAAAAABYFgsfhN2+fVv5fF7SaZgFLLPd3V21Wq2FOFsqgL/gZxNYPPxcAouHn0tg8fBzOTlfZ4HTpZ/97GdKpVKS1FvNNUu5Pp9Pn376qS21Yb5CoZCOjo60ubmpw8PDeZfjik/b0uXXRo/55HXpkqc6/wEAAAAAls0839Mv9Iqwvb09SacBVqfTUTgcVjQaVTgcliQ99dRTY+f48MMPZZqm7t27p8ePHztaLwAAAAAAABbXQgdh9Xq9txKsUqloe3t76rkymYyefvppu0oDAAAAAADAklnoTVSBQEDSaYg1SwgmSeFwWFevXrWhKgAAAAAAACyjhV4RFg6H9fDhQ12/ft2W+QqFgi3zYHE0m02FQqGRY3Z3d7W7u+tSRQAAAAAAeNf+/r729/dHjmk2my5Vc95CB2Hb29t6+PChjo+PbZsPq6Xdbuvo6GjkmFar5VI1AAAAAAB4W6vVGvs+fZ4WOgj73ve+p+9///uq1+u2zPfjH/9Y3/72t22ZC4thbW1NGxsbI8dwGlkAAAAAANzh9/u1ubk5ckyz2VS73XapokG+TqfTmcuRLcrn88rlcvrggw/0hS98Yaa5rl+/rgcPHthUGeZpnqdanZdP29Ll10aP+eR16dJCd/4DAAAAAHjdPN/TL/xb5kwmo2g0qlQqNdM8jx49sm1lGQAAAAAAAJbPQm+N7KpUKtra2tLTTz+tbDar9fV1S/c7Pj6WaZpqNBq6d++ew1UCAAAAAABgkS1FEPbee+9JkhqNhnZ2dqaao9PpyOfz2VkWAAAAAAAAlsjCB2EvvfSSisWiJMnn82malmYEYAAAAAAAAFjoHmF37txRoVDohV/T9vVf8PMBAAAAAAAAwAULvSKsUChI+stKsHg8rkQioUAgMHGfsLfeeksffPCBg9UCAAAAAABgkS10EFav1+Xz+RQIBHRwcKCrV69OPdetW7f01FNP2VgdAAAAAAAAlslCb40MBAKSpNu3b88UgnXnunbtmg1VAfA60zTnXQIAAAAAYAoLHYTFYjFJUjgctmW+O3fu2DIPAO+p1+vKZrMKBoO6devWvMsBAAAAAExhobdG7uzs6P79+zIMw5b5WBEGrKZ6va67d++qXq/LMIxeb8BAIKBwOKz19XVFo1ElEgnF4/Fz90+lUjIMQ7Varfc50zRVrVZ19+5dVatVVoEBAAAAwArwdRb8lIqxWExra2t68ODBzHO98847+sY3vmFDVZi3UCiko6MjbW5u6vDwcN7lzKxYLGpnZ2fyO/5/otL/7y/hzSevS5emWOfp8/kmvk8gENDJycnQ21KplMrl8sRzViqVoUHVMKZpam9vT/l8fuLjRKNRxeNxRSIRVSoVlctlRaPRgSCsG47V6/Vz908mkyqVShMfFwAAAAAw3/f0C701UpJKpZJqtZr++Z//eea59vb2bKgIsF86ndbJyYlqtZqSyeTowX8Tl/6/Fen/fzIQgs2i0+mo0WioUCj0evMNEw6HVSgU1Gg0LgzBpNOf25OTE0vBViaTUa1W08nJieUQrLtF8WwI1g2ouvN1H1elUlE6ne49tnq9rnw+r52dnV5gd3bFV3eeTqdj2/ZsAAAAAMB8LfyKMOl0tczt27f14YcfTj3H48ePtb6+rk8//dTGyjAvq7Yi7KydnR0Vi8XzN/xfSek/XbwSadoVYf0Mw1AkEhl628nJycig7CKxWGzoyqpCoaB0Oj1RbYlE4tx26XQ6rUKhYGmOfD6vbDZ77vPhcFiNRmPofc4+H6wIAwAAAIDpzfM9/UL3CHvnnXckSX/1V3+lYDCop59+evxqmSFM09S9e/fsLg9wzIVB2LUptk9OKBwOKxqNnguuksnkVCGYdPp4hm39nCQEq1arSiQSA58LBAK6f/++otGo5XkymYySyaRisdjAKrDj4+ML7zPt4wYAAAAALJaFDsLeeOMNPXz4sPdxp9OZqh9Q977T9EEC5uHCrXgBd7bohcPhc0HYLNsDh913knCpXq/bEoL11/Po0SNdvXq1F4bRDB8AAAAAVt9C9wi7ceOGOp2Ours3CbLgFReGRE+su1rHIjAMQ9vb2+c+XyqVpgrBugKBwEBzfAAAAADA6lvoIKy7lcrn8/UCsWkvAKxbXz8fuD311FO2zjfsc8OkUqlzq7XS6bTlxvqjhMNhZTKZmedZJOVy+VwPNfxFtVqddwkAAAAA5miht0ZeuXJF0WhUDx8+VC6XUzQatfzmuZ9hGHrjjTf0m9/8xv4iATimWq0ObbKfy+VsO8bt27d7W65N01zYfmD1el2FQkHValWGYSgQCGh9fV2BQEDhcFg3b96UJN26dUu5XG5k/7VqtapUKqX19XUVCgVbQsVFZRiGqtWqSqVSLwRbpH+OeOm5AAAAABbBQgdhknTz5k1FIhG98sorU89x7do1Pffcc1OFaADmZ1iD/Vma9g8TCASUTqeHn5xgAZimqVu3bqlcLks6XcXWPWmIYRiq1+uq1+u927v3GaW7ys40Te3s7Fx4tsxlZhiGUqmUDMNY6P5vXnguAAAAgEWy0FsjJSkej9v23/utrS1b5gHgvO7Kp7Nu375t+7FSqZSk0WeOHKW7qicSicjn8ykYDCqRSNgSrqVSqV7IVSgU1Gg0VCqVVCqVVKvV1Gg0zq0iGhemeOGfAuFwWLVaTScnJwu9/dULzwUAAACwSBY+CLt27Zpt26D+y3/5L7bMA8B5pVJp6OdnaZB/kXg8rlwuN3EoYZqmYrGYEonEQG8u0zRVrVa1s7OjSCQydHunFfl8vredL5PJDN3uGA6HValUBn5PjusRVigUFA6HFQ6HL/w6r5KzZxxdJF57LgAAAIB5W/itkZJ09epVW+b57//9v+urX/2qLXNhMTSbTYVCoZFjdnd3tbu761JFsMuwpuZO9k+adNWQYRiKxWJjt911x1UqlYnr39vb610ftk20XyaT0Ycffqh8Pj92ZVs8HvfUFrx5rbra2dlRoVAYOcZrzwUAAABW3/7+vvb390eOaTabLlVz3lIEYXY5ODiYdwmwWbvd1tHR0cgxrVbLpWpgF8Mwhq5qcmI12DRM0+z1dkomk0okEtra2tLx8bEqlUqv+X6/RCKhRqOhcDhs6RjT9LbK5XIXbimFu4rFoorF4tggDAAAAFg1rVZr7Pv0eVrKIOyDDz6Y6A2iYRgqFAoL3TAZ01lbW9PGxsbIMX6/36VqYJeLgpxIJOJyJcN1V6sNW+UVj8e1s7OjRCJx7nGkUinVajVLxzj7+6parY48E2TX7du3ez3PMB+GYYxdwQcAAACsKr/fr83NzZFjms2m2u22SxUNWoog7IMPPph5pUOn05HP57O5MszbxsaGDg8P510GbHbRz/kiNRYftdWx27frbHBXr9dVrVYtbZE8u3Ism83qxo0bY8+Y2T2jpGmatp5dE9aYprnQPckAAAAAp1lpTxQKhea2amzhm+Xfvn1bkUhExWJRjUZDnU5nqguA2WSzWfl8vqkusVhsomNdtHpzUYKdQCAwNswKh8NDT/Rh9eQfgUBg4PF2G/Nb+WdAp9NZmK+Vl5imqe3tbbamAgAAAAtsoYOwn/3sZ8rlcr0gixVdgDcsevPwra0tS+Mymcy5QGrYSQAucjY0Mwyj94+BWdXr9d5ZLUcxTVPFYlGxWGzguN3tf8FgUD6fT5FIZGhvNMMwlM1mFYlEeuN2dnaGhp3d45wNUs9KJBK9+fovdm5/LxaLA8cJBoOKxWJDH6N0+vW8evXquTOE9td30dfa6nPRZZqm8vm8EolE7+vfrS+bzVoK4gzDUD6fP3dW0/7nIBKJ9HrhAQAAAKtiobdGds+Y5vP51Ol0FA6HFY1Ge1uGnnrqqbFzfPjhhzJNU/fu3dPjx48drRdYZel0euq+RwcHBxPd96LVTIvyhnyS1VbxeFzlcnngc/V63VLj/3Q6rVKpdC48656N8M6dOxOdQKBer6tQKOjevXu9r+Wwx9INv+7evXsu2JFOVweeDYS6gVej0eg1iL9oXLFYVLVaVa1WGzh+Op3ufZ+NCvsqlYokKZ/PK5vNWnnolpXLZaVSKQUCAd25c6e31bReryuVSimbzapQKJyrPRwO6/79+6pWqwM1XdQTzupzcVaxWOz9LOVyOeVyOQUCAdXrde3t7SmfzyufzyuZTKpUKg3c1zRN7e3tqVwunwvLuqvZ+p/v7kkrus+V1RM9AAAAAItsoYOwer3eWw1QqVS0vb099VyZTEZPP/20XaUBnhOJRFw7a+NFIffx8bErx7fTzZs3zwVhBwcHlr+WlUpFqVRqaJgWi8WUTCZ1586dsSGKYRi6e/eu5VVH0WhUgUBgIMCs1WqKxWJaX19XqVRSNBrV+vp6L4CR/hLUZLPZ3lk0uyvoDg4OeiuMDMPQ3t7e0K2iqVTK0qq3ZDJpaxBWrVZ7Jxq4fft2LwSTTr8epVKptz311q1bA0FTIBBQNBo99z067Hme9Lno6gaLgUDgXDAVDoeVTCZ73yvlclmRSGQgsDs+PlYikegFnV0HBwfa3t5WPB5XLpdTOBzuBXqmaco0Te3s7PQCSAAAAGCZLfTWyO6L90wmM1MIJp2+Sbh69aoNVQFw2qKvCJvEsFU0kz6OUql0YW+xcrmsYDA4Njjq9izLZDK6ffv2yLHdHmjpdHogyCkWi8rlcqpUKkomkwqHwwoEAsrlcgM902KxmMLhsGq1muLxeK/fWTwe1507dwbmm4XdJ0/ormS7SP/X4mwwOYlJnouuYrHYCxu7YdUwpVKpd5thGANnEA2Hw4rH4+ceZzabValUUqlUUjweVzgcVjqdHniuqtXqUv78AQAAAGctdBDWfTF//fp1W+Yb9yYHwGK46E3+ovcOG2ZYqPfhhx9OPE8mk9HJycnAKqV+Ozs7vdU+40yyxa0/bEqn0xeeJODsmRIv+n3bX393tdEiuiiM7f+8HU3xrT4X3ZVvgUBA6XTa0ljpNMAa1peu/3HcuXNn6PN69nvt4ODAUq0AAADAIlvoIKy7Csyu7VCzrioD4I6LwpZJGs0vimFBh5X+hsMEAgGVSiXVarWhW+6q1aq2t7dtDZes9kPrf5yT9FBbpDMs3rlzR7lcTqVSaWzYJLm3QrFYLPaOZSU4S6fTA8+B1TOVDtN/vEV6rgAAAIBpLXQQ9r3vfU+dTmdos+Zp/PjHP7ZlHgDOu6i30qKuIJrErE3Ho9GoarXa0FVX9Xpdt27dmmn+aUwSfvVbpL5vgUBAmUxm6Kq7er1u29+iSfX35rL6vdMfJi9jgAwAAAA4ZaGDsCtXrujNN9/U3bt39Yc//GHm+dgaCSyPmzdvDv38Mr6pPxsS2XX2vXQ6rUajcW7+crm80F+naUMzt/Wf4TIajbp2sohhdUzq7PfYKgTIAAAAgB0WOgiTTvviRKPRgYa/03j06NHc/psPLJp6vT7zz5TTLtqatoyB9tkQws5ApduU/my4tIxfp0VRr9eVSCRUKBRG9kVzS//3j9VQ7OwZKRdp5R0AAAAwT5fnXYAVlUpFW1tbevrpp5XNZi2fKez4+FimaarRaOjevXsOVwksj1u3btl+xj27BQIBJZPJc2fnq1arqtfrc1udM6mzIZiVUKVarSqbzapWq1k6Rjgc1p07dwbCTYL/6ezs7KhYLCqdTs/UW8tO0zToP/vzbdcqRAAAAGDZLUUQ9t5770k6PWPczs7OVHN0Oh35fD47ywKWUjdIGvUm3+7VI9POl8vlzgVh0ulZ8fr7JtnBNE1HtuydPdOeld9h4XBY9Xpd1WrV8mqks32taGw+uW4IJs3WYN5u3e8H6S9n2hz3vdr/M0cIBgAAAPzFwm+NfOmll5RIJPTw4UP5fD51Op2JLwBOmabZWzU0rCH4KB9++KGttVgJx8Lh8NBAolqtKp/P21aLYRiKxWJTB+2jnG10buXr3g0uZqlnWVbMzcLOwLZer/dCsHA4vFB9zM72y+vWOUqj0ehdn/RnHQAAAFhlCx2E3blzR4VCoRdmTRtqEYZh2TjR2No0TW1vb/dWk0y6SsTumqzOl8lkhq6KymaztjSEr1arvX5KTqwC6l/RNknfrnA4LMMwlM1mLY0/uwLsopMNLIOz2/ou+l6xc9Vb//fSqHnn0XQ+mUwOBHNWvo/6H8/t27edKAsAAABYSgu9NbL7Yr+7EiwejyuRSCgQCEzcJ+ytt97SBx984GC1gH0ufCP+8bH0RGDi+arVqnZ2dnrz3rhxY+Ljz7L6ZtbAolKpKJVKndsmmUgklMvllMlkJp7TNE1ls1kVi8ULG86Puq8VxWKx99gnbbreDcLy+bwikciFJw/o6g9HwuHwVF+TYaw+1v5x4+4z7vazq9mKxeK5xzMsJDw+PrZtJVe5XD63kmrY8c46GzAbhjHwuWm34Pb3gDMMY+S22Xq93ttKmcvlFmp1GwAAADB3nQXm8/k6a2trnfX19Y5hGDPNdXJy0llbW7OpMszb5uZmR1Jnc3Nz3qU4Ip1OdySdv/xNvKPvNDp6tTP08smnp/c/OTnpVCqVTiaT6YTD4XPzlEqlC4/daDSGH1vqnJycTPV4otHo0PkKhcJE82QymaHzRKPRTqVSsTTHyclJJ5fLdQKBQEdSJx6Pj31cZ48bCATGHqf/6xiPxy3V1u/s90A6nb6wzkKhMDC20WiMnPvs+FHi8fhADRcplUqW57Tyvdh/3O6xK5VKp1Qq9b42lUql9zx2Px6mUqmM/T4+O0ZSJ5fLdSqVSieXy3XC4XAnmUwO/Dwlk8nez1n/nP1zdL+/Go1GJ51Od3K53MBxJ3kucrncwPfgsMdxcnLS+3kb9XxZ/X1w9usBAAAA2GGe7+kXOggLBoOdtbW1zve//31b5ovFYrbMg/lb1SCsVqt1ksnkhUGUXZeL3kAXCoWBYOHsJRwOdwqFguVArFarnQs0zl4ymczY4KZfpVK5MFgLBAKdZDLZKRQKnUql0qnVap1KpdIpFAqdXC43cL9AIDAyAOg3LBwMh8MXBi+lUqn3dUwmk5YfW7+zAUl/+JLJZDqFQqGTTqcHgpl4PG7pa3n263fR1+Hk5ORc4HiRs9+3F4WcZwOni8Kak5OTC78XA4FA72vfPyYajXYajca570+rtY362euGQMNC6rPP8UWB7bDHavW56Or/3goEAp1CodBpNBqdRqPRKRQKve+HUaGV1efg7LhpAl0AAABgGIKwC8Tj8c7a2lrnZz/7mS3z1et1W+bB/K1aEHZR6OHEZViYMc08o1ZFTRvmWV3V1emcBgIXBWKjLuFwuJPL5SZe3dZoNIY+rkAg0InH451kMtmJx+MDIcUkj+es7mqnUqnUWwUVj8c70Wh0IPzphn/jjtUNWS8Kl6LRaC88GTW2uzKq+/U7G8adDU66c1YqlQtD0XA4PDSMOTk5GZg/Go12MpnMwJju584GgCcnJ2Mf77Bjdld/des6u9rr5OSk9zj6v2Zn9a/GjEajAwHXJM/FRQqFwrnvt+79LvreHhVM9z8HjUZj5DhWhgEAAGBW83xP7+t0FreTfLlc1o0bN5TP5/Xf/tt/m3c5WCChUEhHR0fa3NzU4eHhvMtxxadt6fJro8d88rp0aaFPgWE/0zRVrVZ19+5dGYYh0zR7fbm6Z/8Lh8O6fv26ksnkxCcJGHe87jG7x9na2lIqlZqoHxgAAAAAeMk839MvdBAmSbFYTGtra3rw4MHMc73zzjv6xje+YUNVmDeCsOG8GIQBAAAAAJbLPN/TL/xb5lKppFqtpn/+53+eea69vT0bKgIAAAAAAMAyujzvAsYJh8N666239O1vf1v/6T/9p6nnefz4ce908lgdzWZToVBo5Jjd3V3t7u66VBEAAAAAAN61v7+v/f39kWOazaZL1Zy30EHYO++8I0n6q7/6KwWDQT399NNKJpMTz2Oapu7du2d3eVgA7XZbR0dHI8e0Wi2XqgEAAAAAwNtardbY9+nztNBB2BtvvKGHDx/2Pu50Osrn81PN1el05PP57CoNC2JtbU0bGxsjx/j9fpeqAQAAAADA2/x+vzY3N0eOaTabarfbLlU0aKGDsBs3bvS2M/p8PoIsnLOxseGZZvkAAAAAACw6K+2Jus3y52Ghm+Xv7OxIOg3BOp3OTBcAAAAAAAB420KvCLty5Yqi0agePnyoXC6naDSq9fX1iecxDENvvPGGfvOb39hfJAAAAAAAAJbCQgdhknTz5k1FIhG98sorU89x7do1Pffcc1OFaAAAAAAAAFgNC701UpLi8bhtWxu3trZsmQcAAAAAAADLZ+GDsGvXrimXy9kyl13zAAAAAAAAYPksfBAmSVevXrVlnmvXrtkyDwAAAAAAAJbPXIOwRWpev0i1AAAAAAAAwH5zDcJisZhardY8S5AkPX78WLFYbN5lAAAAAAAAwEFzDcLsaoJvh0WqBQAAAAAAAPabaxDm8/nmefgBi1QLAAAAAAAA7MeKMAAAAAAAAHjC3M8a+ejRo3mXoIODg3mXAAAAAAAAAIddnncBt27d0quvvqpAIKD19XVXj318fCzDMJTJZFw9LgAAAAAAANw39yCsVqsplUrNtYZOp0OPMAAAAAAAgBU39yCsa179wgjAAAAAAAAAvGHuQdi8G+bP+/gAAAAAAABwx1yDsJOTk3keHgAAAAAAAB4y1yDsypUr8zw8AAAAAAAAPGRt3gUAAAAAAAAAbiAIAwAAAAAAgCcQhAEAAAAAAMAT5n7WSGAWzWZToVBo5Jjd3V3t7u66VBEAAAAAAN61v7+v/f39kWOazaZL1ZxHEIal1m63dXR0NHJMq9VyqRoAAAAAALyt1WqNfZ8+TwRhWGpra2va2NgYOcbv97tUDQAAAAAA3ub3+7W5uTlyTLPZVLvddqmiQb5Op9OZy5GBGYRCIR0dHWlzc1OHh4fzLscVn7aly6+NHvPJ69IlOv8BAAAAABbYPN/T85YZAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4wkoGYY8fP9ZLL7007zIuZBiGEomEbfPV63WVy2Xl83lVq1VL98nn80okEgoGg/L5fIpEIkqlUpbv79acAAAAAAAAdlnJIMwwDBWLRf3+97/Xe++9p1ar5cpxTdOUz+cbe4lEIgqHwzMdJ5/PKxaLyefzaXt7Ww8ePFA0GtXW1tbI+1arVQWDQWWzWUlSqVRSo9FQLpdTvV5XIpFQIpGQaZqW63FiTgAAAAAAALtdnncBTqhWq+p0OgNhUzab1RtvvOHocYvFouWx3dBoEqZpKpvN9o4TjUZVqVQUj8ct3b9arfZWoqXTaRUKhd5t4XBYyWRSsVhM1WpVsVhMtVpNgUDA9TkBAAAAAACcsHIrwu7fv98LmTqdTu+Sy+X0ve9978L7vfTSS3r66ad1/fp1fe9735tqFdne3p6lcfF4fOIVYcViUVevXu2FYIVCQbVazXIIZpqmUqmUpNOAqj+w6lcqlSSdrqrrjndzTgAAAAAAAKes3IqwbDarZDKpmzdvKhqNyjAMvfvuu/r+97+vXC6nnZ0dffGLXxy4z9NPPy3DMNTpdCRJtVpNpVJJtVpNfr/f0nGLxaJM01Qmkxnb/2vc9sVhjymfz0s6DZwqlcrEQVoqleptTRy1Gq27iqtcLqtarapYLCqdTrs2JwAAAAAAgFN8nW76syK2trZ0cHBw7vOmaSoWi+n69ev6p3/6p97nX3rpJRUKBfl8PmUyGe3t7fW2IJqmqbt371o6biQSkSQ1Gg17Hsj/K5VKqVwuS5ICgYAePXo08dZCwzB69UnSycnJyDnK5XJv5VYgENDJyYkrc04iFArp6OhIm5ubOjw8nGmuZfFpW7r82ugxn7wuXVq5dZ4AAAAAgFUyz/f0K/eW2efzDf18IBBQrVY7F1R1Q7BkMtnb2hgIBFQoFHRycqIPPvhg7DHL5bIMw5iq79coiUSiF4JJmrq/Vi6X612Px+Nj50gmk73rpmkO1ODknAAAAAAAAE5auSAsGAzqhz/84dDbAoGAgsFg7+M7d+70rvcHO13ZbFbVanXsMff29hQIBHTjxo0pKh6uWCwOHLtQKEx9psn+Jv7RaNTSffqPNWxVnBNzAgAAAAAAOGnlgrBMJqNXXnlFL7/88tCG9/1b8rqrweLxuP7mb/7m3Nitra2xWx3r9brq9bpM01QwGFQkEtHOzs5MK54Mw9DOzk7v42g0OnVPrXq9PvDx9evXLd2vP9w6+1icmBMAAAAAAMBpKxeExeNx3bp1S2+99ZaCwaBu3rypH/zgB/rBD36g69evq9Fo6Ctf+Ypu377dC3T6Q6d+V65ckWEYI493djukYRgqFotKpVLy+XxKpVLngqNxzp5Z8fbt2xPdv9/ZFW1WV5WdHdf/GJyYEwAAAAAAwGkrF4RJpyu9nnvuOXU6HZXLZWWzWWWzWdXrdd2/f19+v39gK+RFW/sePnyo9fX1C49jGMbYrZPlclmxWOzCsG3YnP0BUSAQGOivNakHDx4MfGy1x9hTTz018HH/CQicmBMAAAAAAMBpKxmESVKpVNJbb72l7e1tdTodXblyRffu3dO1a9dUKpX03HPPKRAI6K233rowpCoWiwNnRjwrHA6rUCgol8spnU6PXBlVLBYVi8XG1l0oFAY+jsfjkv5y1sVIJCKfz6dgMKhYLKZ8Pi/TNC+c7+yKtmlXb/VvEXViTgAAAAAAAKddnncBTkqn0xf21iqVSr3rwWBQ169f149//GP9/d//vVqtlt544w0Vi8WBnmIXHaOfaZoqFova29s7F1DV63UlEglVKpUL5+tvQi9J6+vrisVi57YRmqbZ60+WzWZVKpWGrhwbt7XTqv7H4sScAAAAAAAATlvZFWGTSCaTSqVSunbtmi5duqRgMKjvf//7evPNN+X3+yeaKxAIKJPJ6OTkRKVS6dy2wWq1qnw+P/S+hmGcC4fu3bunnZ0dnZycqNPpqNPpqNFonAvgUqnU0Ab004ZNZ+s+Pj52dE4AAAAAAACnrfSKsElkMhmFw2EVi0UFAgHdvHlTzz333ExzJpNJxeNxbW9vD6zo2tvbUyaTOTf+7EqrQCCgR48enQuQulsyz/Yeu3XrluLxuOWeXZNwYvWWHXM2m02FQqGZ59nd3dXu7u7M8wAAAAAAsKr29/e1v78/8zzNZtOGaqazckHYe++9py9/+ctjx73zzjuKx+MDK76SyeRMjemHCQQCqtVqA9sbTdNUtVrt9f/qOhuEpdPpkaFWOp1WrVbrbac0TVN7e3sDJwIIBAK2BE79dTgx57Ta7baOjo5mnqfVas08BwAAAAAAq6zVatnyHnyeVi4ISyaTevz4seLxuBKJhOLxuP7hH/7h3Ljt7W19+9vfVj6f19/8zd84XtedO3cGmuVXKpVzQdjZ5vHXr18fO282mx3oK5bP5weCsPX1dVtCq/6zZzox57TW1ta0sbEx8zyTboEFAAAAAMBr/H6/Njc3Z56n2Wyq3W7bUNHkVi4Ii8Viun//vqrVqqrVqqTTlUdbW1sDwdiVK1d0584dxeNxlctlffGLX3S0rmg0qng83qtpWMP5s+GSlRVT4XBY0Wh0YOtlvV5XNBq1PMcwo2pxYs5pbWxs6PDwcOZ5AAAAAADAaHa1FQqFQnNbWbZyzfLL5bLi8biuXbumq1evqtPp6OTkRJVKRdlsVrFYTJcuXdJ//I//UW+++aZOTk4G+mw5KZFIjLw9EolMNe/W1tbAx/0h29nbrK7kOtvIvr82J+YEAAAAAABw2soFYel0WsViUQcHB/rd736ndrutSqWiW7du9c662Ol09O677yqfz8swDFUqFVdqC4fDvevDtgWeXSFlNWA6Gyj1B0792zGl4SvRhjm7TbN/G6cTcwIAAAAAADht5YKwTqdzrufX9va2CoWCTk5O9MorrygajSqXy+m5555TNBrVm2++6Upt/UHYsG2Bo1Z2jXJ2rv6Qbdo5+0O4QCAwULsTc8IeP3047woAAAAAAFhcKxeEPX78+MLbrly5olwup1KppAcPHiifz+vg4ECvvPKKK7UdHBz0rg/bJtnt69V1dgWVVf0BUzQaHQjKHjx4YGmO/lrPBl9OzInxrIRc3yoThgEAAAAAcJGVC8KuXr2qH/7wh2PH3Lt3T+l0Wr///e9dqmww2LpoW2D/57uN9cc5u4XybKB248aN3vX+pvqj9I/LZrPnbndiTlzs8cfSy7+wNvY7P5daHztaDgAAAAAAS2nlgrBMJqNXXnlF//zP/zx27L179xSPx9VqtVyo7LSRv3Ra40X6AyLDMCz1CRsXsPWfDMBKuNY/JhwOuzYnLvaTuvTHf7M29qM/S29byyYBAAAAAPCUlQvCwuGw3nzzTSWTSb388ssjxwYCAV27dk2vvvqq43WVy2UZhqFAIKDbt29fOC4ejw9sbdzb2xs7d3/IlMvlzt0ejUYHgqduIHeRUqnUu37Ryi0n5sTFfvn+ZON/NeF4AAAAAAC8YOWCMOl0xdU3vvENvfXWW/qrv/or/fCHP7xw1df6+rru3r078TGq1aqCwaB8Pp8SicTI7YGGYejWrVuSpPv37w9tlN+vPzTqntlyVB3d29Pp9LltkV2FQqF3fVS4ZpqmisWipNNQLp1OXzjWiTkx3MmfnB0PAAAAAIAXrGQQJp2GSbdu3dLx8bEymYyCwaBu3rypH//4x/rNb36j3/zmN7p9+7aKxaKl7YfD5u/er1qtKhaLDWwX7Oretr6+rkajcWFQ1S8ajQ6ETIlEYmiNpmn2jnn2PmeFw+FewFav15XP54eO297elnS6Wq4/kHNrTgwX/Jyz4wEAAAAA8IKVDcKk0xVL9+7dk9/vV6fTUblc1s7OjmKxmGKxWC+4sRJOnZVKpc59rlgsKhgMKpVK9Y6TSCSUTqdVq9UGtjyOk06nValUFAgEZBiGrl69qnw+r3q93gudrl69KsMwevOPk0wme3Nms1mlUinV63WZptkL7Or1uqLRqB49ejR25ZpTc+K8Z5+ZbPxXJxwPAAAAAIAX+DqdTmfeRbghn8/rzTffPLeyKhAI6L333tM//MM/TDynYRjK5XKqVqs6Pj6WaZoKBAJaX19XNBrVzZs3FY/HZw5/isWiSqWSDg4OesfoNpzf2dmZKGDryufzunv3bq8hfyAQ0NbWlnZ2dpRMJqeq04k5LxIKhXR0dKTNzU0dHh7aOvcievyxtPmGtYb5T35WOrot+Z9wvi4AAAAAACY1z/f0ngnCuh4+fCjDMGQYRi9MunLlyrzLwoS8FoRJ0ts16Vujz0kgSfqfN6TnrzlfDwAAAAAA05jne/rLrh7NRi+99JL+x//4HxPf79q1a7p2jZQAy+f5a+ODsLeThGAAAAAAAFxkaXuE3bt3T3/4wx/mXQawUL5JCAYAAAAAwIWWNgg7OTnR3/zN3+ill17Se++9N+9yAAAAAAAAsOCWNgiTJNM0VSwWlUgkdOnSJX3lK1/RD37wA33wwQfzLg0AAAAAAAALZqmDMEnqdDq9S7VaVTabVSQS0VNPPaWXXnpJ77zzztg5fvzjH7tQKQAAAAAAAOZpaYOwN998U51ORz6fT5FIRNJgKHZycqJisahUKqVLly7p+vXr+sEPfqDf/OY35+aqVCouVw8AAAAAAAC3Le1ZIzOZjOLxuFKplI6Pj1Uul9XpdPRP//RPun//vkzTVKfT6Y2v1+uq1+uSpEAgoHg8rkQiIUkql8ecig8AAAAAAABLb2mDMEmKRqNqNBrKZrNKpVLa2dlRqVSSJD169EjlclmVSkXVanUgFDs5OVG5XCYAAwAAAAAA8JCl3RrZL5fL6cGDB3r33Xf1t3/7t/rXf/1XXb16Va+88oreffddtdttVSoVpdNphcNhSYPbKAEAAAAAALD6lnpFWL9oNKrf/e532tnZUTQaVTab1RtvvNG7fXt7W9vb25Kkx48f6969eyqVSqpWq/MqGTZoNpsKhUIjx+zu7mp3d9eligAAAAAA8K79/X3t7++PHNNsNl2q5ryVCcK6CoWCUqmUbty4oXK5rFKppL//+78fGHPlyhXdunVLt27dUrVa1Ve+8pU5VYtZtdttHR0djRzTarVcqgYAAAAAAG9rtVpj36fP08oFYZIUj8dlGIZu3bqlaDSqfD6v//pf/+uFY7srxbB81tbWtLGxMXKM3+93qRoAAAAAALzN7/drc3Nz5Jhms6l2u+1SRYN8nRVvklUul3Xjxg1tbW2pVCrpi1/84rkxd+7c0a1bt+ZQHaYVCoV0dHSkzc1NHR4ezrscV3zali6/NnrMJ69Ll1ai8x8AAAAAYFXN8z39yr9lTiaTOj4+1pUrVxQOh/XDH/7w3BhCMAAAAAAAgNW38kGYJAUCAVUqFe3t7emVV17Rv/t3/06///3v510WAAAAAAAAXOSJIEySPvjgA21tbSmTyejg4EDhcFj/+I//OO+yAAAAAAAA4JKVaJb/wQcfyDAMmaYpwzDUaDRkGIYMw9Dx8bFM0xwY7/P51Ol0lE6nVSqVVCqV9IUvfGE+xQMAAAAAAMAVSxuEXb9+vRd+jTLqXACdTkfvvvuuvvzlL+vBgwc2VwgAAAAAAIBFsrRBWK1W663sGiUQCCgcDvcukUhE6+vrvY+vXLniUsUAAAAAAACYp6UNwvoFg0HduHFjIPAi5AIAAAAAAEC/pW6W/9xzzykajerk5ETFYlEHBwc6OTlRMBgkBAMAAAAAAMCApQ3C4vG47t271wu/7t69q06no0wmo0gkoqefflovvfSS/uVf/mXsXO+9954LFQMAAAAAAGCeljYISyQSvetXrlxRMpnUvXv3dHx8rAcPHugb3/iGHjx4oO3tbV26dEnXr1/XD3/4Q/3mN785N1ehUHCxcgAAAAAAAMyDrzOu2/ySe/z4sSqViu7du6dqtarHjx8rEAgoHo/r+vXrkqRsNqtPP/10zpViEqFQSEdHR9rc3NTh4eG8y3HFp23p8mujx3zyunRpaeNtAAAAAIAXzPM9/Uo0yx+lu1osmUxKkur1uu7evauf/exnKpVK8vl8c64QAAAAAAAAbvDc2pFoNKpcLqff/e53Ojg40Je//OV5lwQAAAAAAAAXeC4I6xeNRlWpVHTt2rV5lwIAAAAAAACHeToI68rlcvMuAQAAAAAAAA4jCJO0vb097xIAAAAAAADgsKUIwn7wgx/ovffem3cZAAAAAAAAWGJLEYT97//9v5VIJPSP//iPM81z584dXbp0SX/7t3+rf/3Xf7WpOgAAAAAAACyDpQjCJKnT6SidTut73/ve1HNks1l1Oh397ne/UzQa1QcffGBfgQAAAAAAAFhol+ddwKTeffddNRoN3b17d+L7Xr16VY8fP1Y8Hpd0GoxNMw8AAAAAAACWz9IFYQcHB0qlUrp+/bree+89feELX7B831qtNvDx008/bXd5AAAAAAAAWFBLF4RJUqlUUj6fVzQaVbVa1Re/+MWJ53j06JGOj48dqA5uajabCoVCI8fs7u5qd3fXpYoAAAAAAPCu/f197e/vjxzTbDZdqua8pQzCJCmTySgajSoajapcLuvf//t/b/m+jx8/ViKR0NbWloMVwg3tdltHR0cjx7RaLZeqAQAAAADA21qt1tj36fO0tEGYJMXjcT148ED/4T/8B92+fVv/+T//57H3ee+995RKpWSapl599VUXqoST1tbWtLGxMXKM3+93qRoAAAAAALzN7/drc3Nz5Jhms6l2u+1SRYOWOgiTpHA4rIODA924cUONRkNvvPHGhWO///3v69VXX1Wn01EwGNS3v/1tFyuFEzY2NnR4eDjvMgAAAAAAgKy1JwqFQnNbNbY2l6PaLBAI6N1339Xx8bFu3rw5dMzt27d7IZjP51Mul3O5SgAAAAAAAMzTSgRhXW+99Za2t7d1/fp1/eEPf+h9/v79+73gy+fzKRqNshoMAAAAAADAY5YuCPuXf/mXkben02kVCgV9+ctf1u9//3tJ6oVgnU5n4GMAAAAAAAB4x1IEYVevXpV0GmSl0+lewHWRaDSqu3fv6rnnntM777yjarUqn8/Xu+3LX/6y4zUDAAAAAABgsSxFEJbL5XRycqJSqaTt7W3F43H9+Mc/HnmfbhP9t956q/c5n893YQ8xAAAAAAAArLalOWvklStX9Nxzz+m5556b6H7vvvuustmsvv/97/f6gwEAAAAAAMB7lmJF2KxyuZzu3bunTqejR48ezbscAAAAAAAAzIEngjBJSiaTOjg40N27d+ddCgAAAAAAAObAM0GYdNoo/9133513GQAAAAAAAJgDTwVhAAAAAAAA8C6CMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5wed4FALNoNpsKhUIjx+zu7mp3d9eligAAAAAA8K79/X3t7++PHNNsNl2q5jyCMCy1druto6OjkWNarZZL1QAAAAAA4G2tVmvs+/R5IgjDUltbW9PGxsbIMX6/36VqAAAAAADwNr/fr83NzZFjms2m2u22SxUN8nU6nc5cjgzMIBQK6ejoSJubmzo8PJx3Oa74tC1dfm30mE9ely7R+Q8AAAAAsMDm+Z6et8wAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5wed4FALNoNpsKhUIjx+zu7mp3d9eligAAAAAA8K79/X3t7++PHNNsNl2q5jyCMCy1druto6OjkWNarZZL1QAAAAAA4G2tVmvs+/R5IgjDUltbW9PGxsbIMX6/36VqAAAAAADwNr/fr83NzZFjms2m2u22SxUN8nU6nc5cjgzMIBQK6ejoSJubmzo8PJx3Oa74tC1dfm30mE9ely7R+Q8AAAAAsMDm+Z6et8wAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhc2AYhhKJxFznzOfzSiQSCgaD8vl8ikQiSqVSqlarU9fgxJwAAAAAAAB2IQizkWma8vl8Yy+RSEThcHguc1arVQWDQWWzWUlSqVRSo9FQLpdTvV5XIpFQIpGQaZqWH7cTcwIAAAAAANjt8rwLWCXFYtHy2G5o5Oac1Wq1t2osnU6rUCj0bguHw0omk4rFYqpWq4rFYqrVagoEAq7PCQAAAAAA4ARfp9PpzLuIVREMBi2teorH46pUKq7OaZqmrl69KtM0FQ6H1Wg0ho4zDEORSGRuc1oVCoV0dHSkzc1NHR4ezjzfMvi0LV1+bfSYT16XLrHOEwAAAACwwOb5np4VYTYpFosyTVOZTGZsr66trS3X50ylUr1AbdTKse4qrnK5rGq1qmKxqHQ67dqcAAAAAAAATmFFmE26K54uWhU1zzn7V2RJ0snJycjtieVyWalUSpIUCAR0cnLiypyTYEXYcKwIAwAAAAAsunm+p+ctsw3K5bIMw7Dc98vtOXO5XO96PB4f26MrmUz2rpumqXK57MqcAAAAAAAATiIIs8He3p4CgYBu3LixkHP2N9yPRqOW7tN/Bsq7d++6MicAAAAAAICTCMJmVK/XVa/XZZqmgsGgIpGIdnZ2ZlrxZOec9Xp94OPr169bul9/uHX2uE7MCQDLoNM53aY86kLDAQAAAGBxEYTN6OzWRcMwVCwWlUql5PP5lEqlzgVHbs5ZrVYHPu5flTXK2XH9x3NiTgBYBu3Oaa++UZc2QRgAAACwsAjCZmAYxrlQ6KxyuaxYLKadnZ25zPngwYOBj8f18up66qmnBj4+ODhwdE4AAAAAAACnXZ53AcssHA6rUCjINE01Gg1Vq1UZhjF0bLFY1MHBgWq1mqtznr3vtKu3+s9c6cScAAAAAAAATiMIm1E6nR742DRNFYtF7e3tyTTNgdvq9boSiYQqlYprc14Uok2q/7hOzAkAAAAAAOA0gjCbBQIBZTIZZTIZlctl3bp1ayDwqVaryufzymQyrsw5bdh0drvj8fGxo3NOq9lsKhQKzTzP7u6udnd3Z54HAAAAAIBVtb+/r/39/ZnnaTabNlQzHYIwByWTScXjcW1vbw80ht/b25soCHN6TiucWL1lx5ztdltHR0czz9NqtWaeAwAAAACAVdZqtWx5Dz5PBGEOCwQCqtVqisViveDKNE1Vq1XF43HH5wwEArYETv2ruZyYc1pra2va2NiYeR6/3z/zHAAAAAAArDK/36/Nzc2Z52k2m2q32zZUNDmCMJfcuXNHsVis93GlUpk6CJtkzvX1dVtCq/X1dUfnnNbGxoYODw9nngcAAAAAAIxmV1uhUCg0t5Vla3M5qgdFo9GBkMqOhvNW5px21dXZoOvsijC75wQAAAAAAHAaQZiLEomE63NubW0NfGx1JdfZRvaRSMTROQEAAAAAAJxGEOaicDjcu27HtkArc/ZvnZSsr0RrNBoDH/evPHNiTgAAAAAAAKcRhLmoP7Sya1vguDnPrt6yGlr1r/IKBAIDx3FiTgAAAAAAAKcRhLno4OCgd92ubZLj5oxGowMB2YMHDyae92zw5cScAAAAAAAATiMIc1H/1kC7tgVamfPGjRu96/V63dK8/eOy2awrcwIAAAAAADiJIMxF5XJZkpTJZFydc2dnp3e9Wq2OnbN/TDgcHhqwOTEnAAAAAACAkwjCXFIul2UYhgKBgG7fvu3qnNFodCB46oZnFymVSr3rF63ccmJOAAAAAAAAJxGETalarSoYDMrn8ymRSIzcHmgYhm7duiVJun///oWN8p2Ys6tQKPSu7+3tXTjONE0Vi0VJp1st0+m0q3MCAAAAAAA4hSBsSqVSqXcWxGq1qlgsNrBdsKt72/r6uhqNhqLRqKtzdoXD4d6qrHq9rnw+P3Tc9va2pNOzOvav4nJrTgAAAAAAAKcQhE0plUqd+1yxWFQwGFQqldLOzo5isZgSiYTS6bRqtZrC4bDrc/ZLJpOqVCoKBALKZrNKpVKq1+syTbMXrtXrdUWjUT169GjsKjOn5gQAAAAAAHACQdiU4vG4Go2G0um0wuHwQMBTr9d1fHys27dv6+TkRLlczlIA5MScw47Rvb9hGNre3u4Fbevr6yqVSqrVahPN7cScAAAAAAAAdvN1Op3OvIsAJhUKhXR0dKTNzU0dHh7OuxxXfNqWLr82eswnr0uXiLcBx/BzCAAAAMxunu/peakOAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnnB53gUAs2g2mwqFQiPH7O7uand316WKAAAAAADwrv39fe3v748c02w2XarmPIIwLLV2u62jo6ORY1qtlkvVAAAAAADgba1Wa+z79HkiCMNSW1tb08bGxsgxfr/fpWoAAAAAAPA2v9+vzc3NkWOazaba7bZLFQ0iCMNS29jY0OHh4bzLAAAAAAAAstaeKBQKzW3VGM3yAQAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnnB53gUAs2g2mwqFQiPH7O7uand316WKAAAAAADwrv39fe3v748c02w2XarmPIIwLLV2u62jo6ORY1qtlkvVAAAAAADgba1Wa+z79HkiCMNSW1tb08bGxsgxfr/fpWoAwJpOR2p3Ro9Z80k+nzv1AAAAAHbx+/3a3NwcOabZbKrdbrtU0SCCMCy1jY0NHR4ezrsMAJhIuyNdfm30mE9ely4RhAEAAGDJWGlPFAqF5rZqjGb5AAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAAT7g87wKAWTSbTYVCoZFjdnd3tbu761JFAAAAAAB41/7+vvb390eOaTabLlVzHkEYllq73dbR0dHIMa1Wy6VqAAAAAADwtlarNfZ9+jwRhGGpra2taWNjY+QYv9/vUjUAAAAAAHib3+/X5ubmyDHNZlPtdtuligYRhGGpbWxs6PDwcN5lAAAAAAAAWWtPFAqF5rZqjGb5AAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AmX510AAGBynY7U7owes+aTfD536gEAAACAZUAQBgBLqN2RLr82eswnr0uXCMIAAAAAoIetkQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADzh8rwLAGbRbDYVCoVGjtnd3dXu7q5LFQEAAAAA4F37+/va398fOabZbLpUzXkEYVhq7XZbR0dHI8e0Wi2XqgEAAAAAwNtardbY9+nzRBCGpba2tqaNjY2RY/x+v0vVAAAAAADgbX6/X5ubmyPHNJtNtdttlyoaRBCGpbaxsaHDw8N5lwEAAAAAAGStPVEoFJrbqjGCMAAAAAAAsBI6HandGT1mzSf5fO7Ug8VDEAYAAAAAAFZCuyNdfm30mE9ely4RhHnW2rwLAAAAAAAAANzAijAAAAAAsAFbsoDp8LMDNxGEAQAAAIAN2JIFTIefHbiJrZEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIGwODMNQIpGYeZ5IJCKfz6dyuTzxffP5vBKJhILBoHw+nyKRiFKplKrV6tT1ODEnAAAAAACAXQjCbGSapnw+39hLJBJROBye6VjZbFaGYUx8v2q1qmAwqGw2K0kqlUpqNBrK5XKq1+tKJBJKJBIyTXOucwIAAAAAANiNs0baqFgsWh7bDY2mUa1Wlc/np7pfdyVaOp1WoVDo3RYOh5VMJhWLxVStVhWLxVSr1RQIBFyfEwAAAAAAwAmsCLPR3t6epXHxeHzqFWGmaSqVSs10v3A4PBBY9SuVSpJOt2+OO44TcwIAAAAAADiFFWE2KRaLMk1TmUxmbP+vra2tqY9z69Ytra+vS9JEWw1TqVRv/KjVaN1VXOVyWdVqVcViUel02rU5AQAA3NDpSO3O6DFrPsnnc6ceAADgDoIwm+RyOYXDYeVyOceOUSwWVS6XVavVtL29bfl+hmEMNKy/cePGyPE3b97sNeDPZrNDQysn5gQAAHBLuyNdfm30mE9ely4RhAEAsFLYGmmDcrkswzBm6vs1jmEY2tnZUSaTUTQanei+/eFcPB4f26MrmUz2rpumOfSslE7MCQAAAAAA4CSCMBvs7e0pEAiMXRU1i1QqpWg0OtWKs/4m/lZDtP4eZnfv3nVlTgAAAAAAACcRhM2oXq+rXq/LNE0Fg0FFIhHt7OzYuuIpm82qXq/3ms5PWl+/69evW7pff7h19rE4MSewqDod6dP26EtnTI8ZAAAAAMBioEfYjM5uhzQMQ8VisbdiKplM6vbt2xNvZ+yq1+vK5/MqFApTnWmyv4+XJMtznB1Xr9d7j8GJOYFFRQ8ZAAAAAFgdrAibwdmG8cOUy2XFYjHt7OxMdYzt7W0lk8mpm8s/ePBg4ONxvby6nnrqqYGPDw4OHJ0TAAAAAADAaawIm0E4HFahUJBpmmo0GqpWqzIMY+jYYrGog4MD1Wo1y/OnUilJ0p07d6au8Ww9067eajQajs4JAAAAAADgNIKwGZ1dqWWaporFovb29mSa5sBt9XpdiURClUpl7LzlclnlclmVSsXyiqthLgrmJtX/WJyYEwAAAAAAwGkEYTYLBALKZDLKZDIql8u6devWQOBTrVaVz+eVyWQunMM0TaVSKaXTacXj8ZnqmTZsOhu+HR8fOzrntJrNpkKh0Mzz7O7uand3d+Z5AAAAAABYVfv7+9rf3595nmazaUM10yEIc1AymVQ8Htf29vbAmRb39vZGBmHb29u9bZeLwonVW3bM2W63dXR0NPM8rVZr5jkAAAAAAFhlrVbLlvfg80QQ5rBAIKBaraZYLNYLw0zTVLVaHbraK5/Pq16vT9RLbNzx7Qic+ldzOTHntNbW1rSxsTHzPH6/f+Y5AAAAAABYZX6/X5ubmzPP02w21W63bahocgRhLrlz545isVjv40qlci4Iq9frymazyuVyikajthx3fX3dltBqfX3d0TmntbGxocPDw5nnAQAAAAAAo9nVVigUCs1tZdnaXI7qQdFodCD4GtZwPpVKKRqNjtw2OalpV12dDbrOrgize04AAAAAAACnsSLMRYlEQtVqdeht+XxehmEoHo8rlUqNnas/VNrb29Pdu3d7H9+8eVPJZFKStLW1NdCfzDRNSwHU2Ub2kUikd92JOQEAAAAAAJxGEOaicDjcu352W+CHH34oSRcGZaPU6/WBYCocDveCsP7tmNLpSjQr2y4bjcbAx/2r2ZyYEwAAAAAAwGlsjXRRfxDm1rbAra2tgY+Hbckcpn/FWSAQGKjdiTkBAMBi6XSkT9ujL53OvKsEAACYDEGYiw4ODnrXE4nEwG25XE6dTsfypT9EKpVKA7flcrnebdFodCB0e/DgwcS1ng2+nJgTAAAslnZHuvza6EubIAwAACwZgjAX9W8NdHNb4I0bN3rX+7dQjtI/LpvNujInAAAAAACAkwjCXFQulyXJ1rNCWrGzs9O7bqUHWf+YcDg8NLRzYk4AALB62GIJAAAWCUGYS8rlsgzDUCAQ0O3bt109djQaHQieuoHcRUqlUu/6RSu3nJgTAACsHrZYAgCARUIQNqVqtapgMCifz6dEIjFye6BhGLp165Yk6f79+641yu9XKBR61/f29i4cZ5qmisWipNPtm+l02tU5AQAAMDtW4gEAMBxB2JRKpVLvLIjValWxWGxgu2BX97b19XU1Gg1Fo1GXKz0VDod7q7Lq9bry+fzQcdvb25JOz+rYv4rLrTkBAAAWxU8fzruC6S3qSjwCOgDAvBGETSmVSp37XLFYVDAYVCqV0s7OjmKxmBKJhNLptGq12sCZHuchmUyqUqkoEAgom80qlUqpXq/LNM1eYFev1xWNRvXo0SNLK9ecmBMAAMBpVkKub5WXOwxbRIsa0AEAvIMgbErxeFyNRkPpdFrhcHgg4KnX6zo+Ptbt27d1cnKiXC5newDUaDTU6XTU6XSUTCYnqrtbk2EY2t7e7oV36+vrKpVKqtVqE9XrxJwAAABOefyx9PIvrI39zs+l1seOlgMAAFx0ed4FLLNwODzQJ2uZZDIZ289e6cScAAAAXZ3O+NVCaz7J5xs95id16Y//Zu2YH/1ZersuffdL1sYDAIDFRhAGAACApdDdVjfKJ69Ll8YEYb98f7Lj/up9gjAAAFYFWyMBAADgKSd/cnY8AABYXARhAAAA8JTg55wdDwAAFhdBGAAAwIrodKRP26MvnQU8I5/bZ2Z89pnJxn91wvEAAGBx0SMMAABgRdjVQ8tOVkKub5WlS2vS89ecr0eSXohKr/7aWsP8Jz8rvRh1viYAAOAOVoQBAADAEY8/ll7+hbWx3/m51PrY0XJ6rjwh/ehr1sa+9XXJ/4Sj5QAAABcRhAEAAMARP6lbW3UlSR/9WXq77mw9/aysPns76d4qNQAA4A6CMAAAAExl3LbHX74/2Xy/mnC8075JCAYAwMqhRxiWWrPZVCgUGjlmd3dXu7u7LlUEAMBqsKO318mfJjvmpOMBAMDi2d/f1/7+/sgxzWbTpWrOIwjDUmu32zo6Oho5ptVquVQNAACrYdLeXs/+3fA+WsHPTXbcSccDcF+nc3pijlHWfJLPxZNyAFgsrVZr7Pv0eSIIw1JbW1vTxsbGyDF+v9+lagAAWA3T9Pb67pfO3/bsM9K7v7V+3K8+Y30sgPlYxLPTAlgsfr9fm5ubI8c0m021222XKhpEEIaltrGxocPDw3mXAQC2++lD6cXYvKuAV03T22tYEPZCVHr119ZCtSc/K70Yney4AABg8VhpTxQKhea2aoxm+QAAuMxq7yUr4wAn2NXb68oT0o++Zm2Ot74+fHvlMuh0pE/boy+dMVvJ7JwHAABcjBVhAAC4yK7eS4CT7Ozt9fy102B3lLeTFzfcXwZ2bRVjyxkAAM5jRRgAAC6apvcS4LZnJ+zVNWtvr28ucQgGAACWC0EYAAAumqb3ElbbIm6HeyEqff4z1sbS2wsAACwTtkYCAOAiu3ovYXUs4na4bm+vcVsapeXu7QUAALyHFWEAALjIzt5LgJOs9Oxa9t5eAADAewjCAACw0bgzPbrdewlwEr29AADAsiEIAwDAonEhl3S6lWzUOHovAQAAAPNDEAYAgAWPP5Ze/oW1sd/5udT6ePht3d5LVtB7CQAAALAXQRgAABb8pC798d+sjf3oz9Lb9Ytvp/cSgEVgZZUrAACrhrNGAgBgwS/fn2z8r96Xvvul6Y9H7yU45acPpRdj7h1vzXd61stxY2Avq1u5L60RugMAvIUgDAAAC07+5Ox4wA6LGH74fNKlBQy6Vjmgm3Qr97N/xzZsAIB3sDUSAAALgp9zdjwwK7v62HmFz3caCI66+JY0CLNzKzcAAKuGIAwAAAuefWay8V+dcPwi6HSkT9ujL53OvKvERQg/0DXNVm4AALyCrZEAAFjwQlR69dfWgoYnPyu9GHW+Jru1O9Ll10aP+eT1xdzmBvf72GFxsZUbAICLsSIMAAALrjwh/ehr1sa+9XX67cB9hB/oYiv3YuNsnQAwXwRhAABYZKW5+NtJzsDmBYu4jZTwA11e2Mq9qKyesIIwDADmh62RAADY6JuEYJ7g9jbSnz6UXoyNHvPsM9K7v7U+J+HH6vLCVu5FxNk656fTOf29PMqab3lPgAHAXgRhAAAAc2R1BcmltdGrDQk/0NXdyv2t8vixbOW2zzQnrKBPnz3ocWkdoSFAEAYAADA3dq4gIfxAv+evjf9esLqVmzfO1nDCCiwDQkOAIAwAAGBu7F5BYmf4gdVndSs3b5yt4YQVALAcCMKw1JrNpkKh0Mgxu7u72t3ddakiAIDEChKr5rGCxGr4seY7DTfGjYG7rPSLw3xwwgoAOLW/v6/9/f2RY5rNpkvVnEcQhqXWbrd1dHQ0ckyr1XKpGgBA1yKuIFnEcG6RV5D4fKzwcZtd/eIwH5ywAgBOtVqtse/T54kgDEttbW1NGxsbI8f4/X6XqgEALLJFDOdYQYIuzji4/DhhBQCc8vv92tzcHDmm2Wyq3W67VNEggjAstY2NDR0eHs67DAAApsIKEnRxxsHlxwkrAOCUlfZEoVBobqvG1uZyVAAAAOiFqPT5z1gbywqS1TZNvzgsHitbVjlhBVZFpyN92h596YxpSQDMAyvCAADAQlvE3l52YQUJuha5XxzsZfWEFcCiW8SWA4AVBGEAAGChrfoL7eevjQ/CWEGy+ugXN7lVDskBAM4hCAMAAFhwrCBZffSLm9yqh+QAAGfQIwwAAMABP3047wqwTOgXBwCAOwjCACwMGm4CWBZWQq5vlQnDYF23X5wV9IsDAGB6bI0EsDDY4gBgGTz+WHr5F9bGfufn0rN/R2gBa+gXd+qnD6UXY/OuAgCwqlgRBgAAMIGf1KU//pu1sR/9WXq77mw98JZl7xfHakoAwLwRhAGYCdsZAXjNL9+fbPyvJhwPrKpJV1O2Pna0HACAR7E1EsBM2M4IwGtO/uTseGBVTbOa8rtfcrYmAID3EIQBAABMIPg5Z8fPYs13+s+HcWOAeZhmNaUbQVinc/qPvVHWfJKPnx1b8XUHMC8EYQAAABN49hnp3d9aH//VZ5yr5SyfjxW4WFyLupqS1e3zwdcdwLzQIwwAAGACL0Slz3/G2tgnPyu9GHW2HmBZLPJqSgCAd7AiDACAJcbWEvddeUL60ddOz2w3zltfl/xPjB7DdkZ4xSKvpgQAeAdBGICVs6jBwKLWheXG1pL5eP7a+CDs7eTpuHHYzgiveCEqvfpraw3zWU0JAHAKQRiAlbOowcCi1gXAGd+0EIIBXmL3akoAAKZBjzAAWFE/fTjvCgAAGGRllaTV1ZRYXLwGAbDIWBEGAEvIygvMb5WlS2u8mQAAL1rm3nOsplxsvAYBsOxYEQYAS+bxx9LLv7A29js/l1ofO1oOAGAB+XynQcSoCz0pMSlegwBYBQRhALBkflK31mhYkj76s/R23dl6AACA/Tod6dP26EtnzEl47MZrEACrgK2RgAdx9sLl9sv3Jxv/q/el737JmVqcwvcoAMDrFvEkO7wGOcVrEGC5EYRhqTWbTYVCoZFjdnd3tbu761JFy2ERX1jBupM/OTt+EfA9CgDA4uE1yClegwCj7e/va39/f+SYZrPpUjXnEYRhqbXbbR0dHY0c02q1XKoGcEfwc86OBwAAGIbXIACsaLVaY9+nzxNBGJba2tqaNjY2Ro7x+/0uVQO449lnpHd/a338V59xrhYAAOAdvAYBYIXf79fm5ubIMc1mU+1226WKBhGEYaltbGzo8PBw3mUArnohKr36a2vNap/8rPRi1PmaAK9Z851ujRk3BgBWCa9BAFhhpT1RKBSa26oxzhoJAEvmyhPSj75mbexbX5f8TzhaDuBJPp90aW30hUbKwPz99OG8K1gtvAYBsAoIwgBgCT1/bfyYt5PWxgEAsIyshFzfKhOG2Y3XIACWHUEYAKyob/ICFAuON6fA6nD75/nxx9LLv7A29js/l1ofO1oOzuA1CIBFRhAGAABsx0oNYHUs4s/zT+rW+lRJ0kd/lt6uO1sPAGB5EIQBAABbsVIDWB2L+vP8y/cnG/+rCccDAFYXQRgAALDVPFZqsLIMcMairrw6+ZOz4wEAq4sgDAAA2MrulRqLuC0L8IpFXXkV/Jyz48/i9wsArI7L8y4AALAaOh2p3Rk9Zs0n+Xzu1IP5sXOlxqTbsp79O8n/xGTHBxbFmk/65PXxY9y0qCuvnn1Geve31sd/9ZmLb7Matl9a40yIALAKCMIAALZod6TLr40e88nr0iWCsJVn50qNabZlffdLkx0fWBQ+3+L9jnR75ZVVL0SlV39t7ffDk5+VXowOv42wHQC8h62RAADAVs+OWHkxzKiVGou6LQvwCjt/nu105QnpR1+zNvatr18cXi1qDzQAgHMIwgAAK63TkT5tj750xmzpxGReiEqf/4y1saNWakiLuy0L8Ao7f57tZmWb4tvJ0eMI2+EkXoMAi4mtkQCAlcaWTfd1V2p8qzx+7KiVGtLibssCvMLOn+d5+OaYsIywHU7iNQiwmFgRBgAAbGfHSg1pcbdlAV5i18/zIiJsB7BsWGk4O1aEAQCAuRi3UkOyryE2AGdZ+XleRHaefRIA3MBKw9mxIgwAACwsuxpiA8Awi9wDDQDgDIIwAACw0FZ5WxaA+SJsBwDvIQgDAABLb1m3ZQGYP8J2APAWgjAAAAAAGIGwHQBWB0EYAAAAAAAAPIEgDAAAAAAAAJ5wed4FAAAAAACc0+lI7c7oMWs+yedzpx4AmCeCMCy1ZrOpUCg0cszu7q52d3ddqggAAABeteaTPnl9/Bi3tTvS5ddGj/nkdekSQRgAG+zv72t/f3/kmGaz6VI15xGEYam1220dHR2NHNNqtVyqBgAAAF7m8xEmAUCr1Rr7Pn2eCMKw1NbW1rSxsTFyjN/vd6kaAAAAAIvopw+lF2PzrgKz4DlcHn6/X5ubmyPHNJtNtdttlyoaRBCGpbaxsaHDw8N5lwGP448yAADWLOrWQSwmq6+xfvpw/JhvlaVLa9Lz12avC/bjOVwtVtoThUKhua0a46yRADCC1T/KVsYBAOB1Pt/pG9lRFxq2e4Ndr7Eefyy9/Atrx/zOz6XWx9bGwj08h3AbQRgAXIA/ygAAAPaz8zXWT+rSH//N2lwf/Vl6u25tLNzDcwi3EYQBwAW88ke505E+bY++dMacch0AAMAqO19j/fL9yY79qwnHw3k8h3AbPcIA4ALT/FH+7pecqcVJnFIdAAC4yc7XWCd/mmyuScfDeTyHcBtBGABcgD/Ki22ZT1JAs2gAmB2/S5eXna+xgp+bbK5Jx8N5PIdwG1sjAeAC/FGen1U/SQHNogHnLOvvBUyO36XLy87XWM8+M9lcX51wPJzHcwi3EYQBwAX4ozwfnKQAwEVWPSQHvMLO11gvRKXPf8baPE9+VnoxOtmx4TyeQ7iNIGwODMNQIpGwPHZnZ0eRSEQ+n0/BYFCxWEw7OzsyDGPqGvL5vBKJhILBoHw+nyKRiFKplKrV6kLNCcwTf5TnwysnKQAwGUJyYHXY+RrryhPSj75mba63vi75n7A2Fu7hOYTbCMJsZJqmfD7f2EskElE4HB47Xz6fVyQSUbFY7IVepmmqXq+rWCwqEokon89PVGO1WlUwGFQ2m5UklUolNRoN5XI51et1JRIJJRIJmaY51zmBRcAf5fngzEEAhiEkh1O6vcZGXeg1Zi+7X2M9f238PG8nrY3DfPAcwk00y7dRsVi0PLYbGl0kkUioWq0qEAgoHo8rHA7LMAzV6/WBlWDZbFbhcFjJZHLsMavVam8lWjqdVqFQ6N3WnSMWi6larSoWi6lWqykQCLg+J7BInr92us1mFP4o24uTFAAYxitn8oX7fD7OjDwPbr/G+iav1ZYezyHsQhBmo729PUvjusHWRbLZrKrVqnK5nDKZzLnb8/n8QJCWSqXU6XRGHtM0TaVSKUmnAVV/YNWvVCopEonIMAylUilVKhVX5wSWEX+U7cVJCgAMQ0gOLAY3z9bJaywATiAIs0mxWJRpmspkMmP7f21tbV14m2EYyufzqlQqisfjQ8dkMhk1Go2BFWj1el3R6MWb51OpVG9r4qjVaN1VXOVyWdVqVcViUel02rU5AeDZZ6R3f2t9PCcpALyBkBxYDKygc1+nI7VHr3vQmo+zpAJWEYTZJJfLKRwOK5fLzTRPNptVLpe7MATrP15/EFatVi8MwgzDGGhYf+PGjZFz37x5U+VyuVfPsNDKiTkBrL6fPpRejI0e80JUevXX1noBcZICwDsIyQF4VbsjXX5t9JhPXiegBKyiWb4NyuWyDMMY2/fLiu6qsnECgcDA9spRfbf6w7l4PD62R1d/vzHTNHsBltNzAlhuP304fsy3yuPHcZICAMNwJl8AAGAHgjAb7O3tKRAIjF0VZcUk/bOOj49710dtt+xfOTZq+2S//pDt7t27rswJYHk9/lh6+RfWxn7n51Lr49FjOHMQgLMIyQEAgB0IwmZUr9dVr9dlmqaCwaAikYh2dnYcX/FkmmavP1c8Hr8wjKrXB88dfv36dUvz98939rE4MSeA5faTurWtjJL00Z+lt+vjx41DA13AewjJAQDArAjCZnR2O6RhGCoWi0qlUvL5fEqlUueCIzvcu3dP0ukqq1KpdOG4/j5e3fFWnB3X/xicmBPAcvvl+5ON/9WE4zEbK9tWgVVBSA4vsfP3O38rrONrBSw3grAZnG0YP0y5XFYsFtPOzo5txzVNUzs7O4pGo6pUKiP7cz148GDg43G9vLqeeuqpgY8PDg4cnRPAcjv5k7PjcTG7erMBABaLnb/f+VthHV8rYPURhM0gHA6rUCgol8spnU6PXBlVLBYVi405VZoFhmEoFospEAjo/v37Y1djGYZxrmYrzo5rNBqOzglguQU/5+x4DGd3bzYAwGKw8/c7fyus42sFeANB2IzS6bQymYwKhYIajYZOTk6Uy+WGrpKq1+tKJBJTH6tcLisSicgwjF5Psnw+P/I+Z0OraXX7kTk1J+A2/otnr2efmWz8Vyccj+Hm0ZsNAOA8O3+/87fCOr5WgDcQhNksEAgok8no5OREpVLpXCBWrVbHhlf9TNNUPp9XJBJRKpU6d3s2mx36+f77T+Ns3f1nqHRiTsBOLGl33wtR6fOfsTb2yc9KL1o72SzGoDcbAKwmO3+/87fCOr5WgDdcnncBqyyZTCoej2t7e3ugMfze3p4ymYylOarVqhqNhuLx+IU9ycrlsvL5vOU5p+HE6i075mw2mwqFQjPPs7u7q93d3ZnnwfxNuqT92b+T/E84WpInXHlC+tHXTgPGcd76Ol9zu9CbDQBWk52/3/lbYR1fK2C8/f197e/vzzxPs9m0oZrpEIQ5LBAIqFarKRaL9cIw0zRVrVYVj8fH3j+ZTCqZTA58rlgsKpvNDgRJ2WxW6XT63KqrQCBgS+DUP68Tc06r3W7r6Oho5nlardbMc2AxTLOk/btfcrYmr3j+2vgg7O3k6TjYg95sALCa7Pz9zt8K6/haAeO1Wi1b3oPPE0GYS+7cuTPQLL9SqVgKwoZJp9OKx+OKxWIDgVSxWDy3Kmx9fd2W0Gp9fd3ROae1tramjY2Nmefx+/0zz4HFMM2SdoIw93yTEMxWzz4jvftb6+PpzQYAy8HO3+/8rbCOrxUwnt/v1+bm5szzNJtNtdttGyqaHEGYS6LRqOLxeG9r46wN58PhsO7fvz8Qrj148ODcuGlXXZ0Nus6uCLN7zmltbGzo8PBw5nmwOljSDi95ISq9+mtrqyDpzQYAy8PO3+/8rbCOrxUwnl1thUKh0NxWltEs30WznDFymGg0OrBtcli4trW1NfCx1ZVcZxvZRyIRR+cE7MKSdnhJtzebFfRmA4DlYefvd/5WWMfXCquCk4KNRhDmonA43Ltux7ZASbp582bv+rBAqn/FmGR9JVqj0Rj4uH8bpxNzAnZ5dsIl6ixpx7Kz0nON3mwAsHzs/P3O3wrr+Fph0VkJub5VJgwbhSDMRf1BmB3bAqXTVWGj5jy7estqaNUfqgUCgYHanZgTsMsLUenzn7E2liXt8Ap6swHAarLz9zt/K6zja4V5efyx9PIvrI39zs+l1seOlrO0CMJcdHBw0Ltu9zZJ6XxAJZ0GZf0B2bA+YsP013p2XifmBOzCknZgMaz5pE9eH31Z8827SgAAgOXxk7q1HnaS9NGfpbfrztazrAjCXNS/NdCubYH9q7EuCtdu3LjRu16vW/tJ6B+XzWZdmROwC0vaMSmWjtvP55MurY2++AjCAAAALPvl+5ON/9WE472CIMxF5XJZkpTJZGybsxsuBQKBgcb5/XZ2dnrXu2etHKV/TDgcHhraOTEn4CaWtHsHfRQAAACwCiY94/2k472CIMwl5XJZhmEoEAjo9u3bts27t7cnSbpz586FY6LR6EDw1A3kLlIqlXrXL1q55cScAGA3+iisBrZZAgAAOy3rP0AnPeP9pOO9giBsStVqVcFgUD6fT4lEYuT2QMMwdOvWLUnS/fv3RzbKz+fzisViymazQ88C2a87JpPJXLgarKtQKPSud8OzYUzTVLFYlHS6fTOdTrs6JwDYiT4Kq4FtlgAAuGdZQ6KuVd4N8OyEZ7z/6oTjvYIgbEqlUqkXVFWrVcVisYHtgl3d29bX19VoNAbO8niWaZrKZrOq1+vK5/MKBoMXrp5KpVLK5/PK5XLK5XJj6w2Hw71VWd35h9ne3pZ0utWyfxWXW3MCgJ3oowAAAPAXqxwSSau/G+CFqPT5z1gb++RnpRcvjh88jSBsSqlU6tznisWigsGgUqmUdnZ2FIvFlEgklE6nVavVFA6HR84ZCATOjekGYqlUStlsVolEQsFgUNJp8/1J+o0lk0lVKhUFAgFls1mlUinV63WZptkL7Or1uqLRqB49ejRy5ZqTcwKAXeijAAAAcGrVQyJp9XcDXHlC+tHXrI196+uS/wlHy1laBGFTisfjajQaSqfTCofDAwFPvV7X8fGxbt++rZOTE+VyOcsBUK1WUyaTUTQaPTenYRhKpVJ69OiRSqXS2GDtorq7NRmGoe3t7V7Qtr6+rlKppFqtNlFg5cScAGAH+igAAACcWvWQSPLGbgArZ75/O2ltnFddnncByywcDg/0ybJDIBCwtNVxVplMxtazVzo1JwDM4tlnpHd/a308fRQAAMCqmiYk+u6XnKnFKewGOPVNQrCRWBEGAFhZ9FEAAAA45YWQiN0AsIIVYQCAldXto/Ct8vix9FEAgOHWfNInr48fA2CxeSEkWtTdAJ2O1O6MHrPm4yzYbiEIAwCstOevjQ/C6KMAABfz+aRLvDkDlt48QqKfPpRejM0+j1UvRKVXf22tF5qbuwHaHenya6PHfPI6v2vdwtZIAFggy3qq6mVHHwUAALDq7G4ZYeV167fK7r6+5ayKsIIgDABcsogvFgAAAOANdoZEjz+WXv6Ftbm+83Op9bG1sXbgrIoYhyAMAFywyC8WAAAA4A12hUQ/qVvbfihJH/1Zertubaxb2A3gbfQIA7BU3O4zYJdpXiws2+mqAQAArOIkDIvLSkj0y/cnm/NX7/PaFouDIAzAwrC6dfDS2vItZebFAgAAmJdFDJ04CcNyO/mTs+MBJ7E1EsBCWPWtg7xYAAAA8+Lznf4jcdTFRyiFCQQ/5+x4wEmsCMNSazabCoVCI8fs7u5qd3fXpYowrVXfOsiLhcks4n+uAQAAcOrZZ6R3f2t9/Fefca4WLJ79/X3t7++PHNNsNl2q5jyCMCy1druto6OjkWNarZZL1WAWq751kBcLk2G7BAAAsIp/oLnvhaj06q+t/SP7yc9KL0adrwmLo9VqjX2fPk8EYVhqa2tr2tjYGDnG7/e7VA1msepbB3mxAAAA4Az+gea+K09IP/raaf/ecd76uuR/wvGSsED8fr82NzdHjmk2m2q32y5VNIggDEttY2NDh4eH8y4DNlj1rYNeeLHghf/GeuExAgAAWPH8tfGvbd9OLt9JrjA7K+2JQqHQ3FaN0SwfwEJ4dsKtgMu4ddDKi4BlfrHghUa8XniMAAAAdvnmkr6uxWojCAOwEF6ISp//jLWxq7x1kBcLAAAAAOAcgjAAC6G7ddCKZd06CAAAAACYL4IwAAtj1bcOAgAAAADmiyAMwFJh6yAAAAAAYFoEYQAAAAAAAPAEgjAAAAAAAAB4AkEYgKF++nDeFQAAAAAAYC+CMMCDrIRc3yoThgEAAADLgNftgHUEYYDHPP5YevkX1sZ+5+dS62NHywEAAAAwAv/EBuxFEAZ4zE/q0h//zdrYj/4svV13th4AAAAAw/FPbMB+BGGAx/zy/cnG/2rC8QAAAADswT+xAftdnncBANx18idnx8Mdaz7pk9fHjwEAAIB1i/Yaa5p/Yn/3S87UAqwKgjDAY4Kfc3Y83OHzSZcIugAAAGy1aK+x+Cc2YD+2RgIe8+wzk43/6oTjAQAAANiDf2ID9iMIAzzmhaj0+c9YG/vkZ6UXo87WAwAAAGA4/okN2I8gDPCYK09IP/qatbFvfV3yP+FoOQAAAAAuwD+xAfsRhAEe9Py18WPeTlobBwAAAMAZ/BMbsB9BGIChvkkIBgAAAMwd/8QG7EUQBgAAAADAHPz0oT3z8E9swDqCMACOs+sPPAAAALAsrLwG/laZ18qA2y7PuwBgFs1mU6FQaOSY3d1d7e7uulSR91j9A39pjeXaAAAA8IbHH0sv/8La2O/8XHr27+jvhdWxv7+v/f39kWOazaZL1ZxHEIal1m63dXR0NHJMq9VyqRrv4Q88AAAAcN5P6tIf/83a2I/+LL1dl777JWdrAtzSarXGvk+fJ4IwLLW1tTVtbGyMHOP3+12qxnv4Aw8AAACc98v3Jxv/q/d5nQxr1nzSJ6+PHzNPfr9fm5ubI8c0m021222XKhpEEIaltrGxocPDw3mX4Vn8gQcAAADOO/mTs+PhXT6fdGnOQdc4VtoThUKhua0ao1k+gKnxBx4AAAA4L/g5Z8cDmB4rwgBMbVH/wC/DcmEAAACsrmefkd79rfXxX33GuVoADGJFGICpPTvhH2y3/sD7fKdnqRx18RGEAQAAwCEvRKXPf8ba2Cc/K70YdbYeAH9BEAZgavyBBwAAAM678oT0o69ZG/vW1zmzOuAmgjAAU+MPPAAAADDc89fGj3k7aW0cAPsQhAGYCX/gAQAAgOl8k9fIgOsIwgA4jj/wAAAAAIBFwFkjAWAEzkAJAAAAAKuDIAwARvD5pEsEXQAAAACwEtgaCQAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAABj/fThvCsAAAAAgNnRLB8APM5KyPWtsnRpTXr+mvP1YDKc2RQAAACwjiAMADzs8cfSy7+wNvY7P5ee/TvJ/4SjJdlu1YMizmwKAAAAWMfWSADwsJ/UpT/+m7WxH/1ZervubD1O8PlOV7ONuvgIkgAAAABPIAgDAA/75fuTjf/VhOMBAAAAjEdPXvcQhAGAh538ydnxAAAAgNdZ7clLGOYOgjAA8LDg55wdDwAAAHjZpD15Wx87Wg5Es3wA8LRnn5He/a318V99xrlaAAAA4E2rfHKjaXryfvdLztbkdawIAwAPeyEqff4z1sY++Vnpxaiz9QAAAMB7VvnkRvTkXTysCMNSazabCoVCI8fs7u5qd3fXpYqA5XLlCelHXzvtSTDOW1+X/E84XhIAAAAwd52O1O6MHrPmGx/QebEn7/7+vvb390eOaTabLlVzHkEYllq73dbR0dHIMa1Wy6VqgOX0/LXxQdjbydNxAAAAgBe0O9Ll10aP+eR16dKYIMyLPXlbrdbY9+nzRBCGpba2tqaNjY2RY/x+v0vVAKvrm4RgAAAAwMS82JPX7/drc3Nz5Jhms6l2u+1SRYMIwrDUNjY2dHh4OO8yAAAAAFutcvNwwEteiEqv/tpaw/xV6clrpT1RKBSa26oxmuUDAAAAwIJZ5ebhgJd0e/JaQU9edxCEAQAAAAAAOMRKr1168rqHIAwAAAAAAGCO6MnrHnqEAYBL6PUBAAAAAPNFEAYALvH5xp9eGQAAAOjHP1MBexGEAQAAAACwoPhnKmAveoQBAAAAAADAE1gRBgAAAACAB7DNEiAIAwAAAADAE9hmCbA1EgAAAAAAAB5BEAYAAAAAAABPYGskAAAAAACYCP3GsKwIwgAAAAAAwEToN4ZlxdZIAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQI8wwAWPP5berku/el86+ZMU/Jz07DPSC1HpyhPzrg4AAAAAAG8gCAMc9j8fSi/9XProz4Off/e30u3/Jf2Pr0v/97V5VLZ4OPMMAAAAAMBJBGGAg/7nQ+mFexff/tGfT2/3SXqeMIwzzwAAAAAAHEWPMMAhjz8+XQlmxXd+LrU+drIaAAAAAADAijAstWazqVAoNHLM7u6udnd3XaroL35SP78d8iIf/fm0h9h3v+RsTQAAAAAAOGl/f1/7+/sjxzSbTZeqOY8gDEut3W7r6Oho5JhWq+VSNYN++f5k43/1PkEYAAAAAGC5tVqtse/T54kgDEttbW1NGxsbI8f4/X6Xqhl08idnxwMAAAAAsGj8fr82NzdHjmk2m2q32y5VNIggDEttY2NDh4eH8y5jqODnnB0PAAAAAMCisdKeKBQKzW3VGM3yAYc8+8xk47864XgAAAAAADAZgjDAIS9EpSc/a23sk5+VXow6Ww8AAAAAAF5HEAY45MoT0v/4urWxb31d8j/hZDUAAAAAAIAgDHDQ/31N+p83Ll4Z9uRnT29//pq7dQEAAAAA4EU0ywcc9vw16at/J/2kLv3q/dOzQwY/d9oT7MUoK8EAAAAAAHALQRjggitPSN/90ukFAAAAAADMB1sjAQAAAAAA4AkEYQAAAAAAAPAEgrA5MAxDiUTC0th6va6dnR1FIhH5fD75fD5FIhFls1mZpjl1Dfl8XolEQsFgsDdnKpVStVpdqDkBAAAAAADsQhBmI9M0e2HVqEskElE4HB47VyqVUiwWU7FYlGEYvdsMw1A+n1cwGFSxWJyoxmq1qmAwqGw2K0kqlUpqNBrK5XKq1+tKJBJKJBIThWxOzAkAAAAAAGA3muXbaJJQqhsaDWOapmKx2ED4dZGdnR3VajUVCoWxY6vVam8lWjqdHrhPOBxWMplULBZTtVpVLBZTrVZTIBBwfU4AAAAAAAAnsCLMRnt7e5bGxePxkSvCUqmUDMNQNBrtra5qNBoqlUrKZDLnxheLRZXL5ZHH7K4wk04DqouCs1KpJOl01Vl3vJtzwh1rPumT10df1nzzrhIAAAAAAHuxIswmxWJRpmkqk8mM7f+1tbU1cp5qtapMJqNcLjdwW3eF1c7OjlKplOr1eu+2W7duKZlMXjhvKpXqbU0ctRqte4xyuaxqtapisah0Ou3anHCHzyddIugCAAAAgKn99KH0YmzeVWBSBGE2yeVyCofD58KraeaJx+Mj5wmHwyqVSopEIr3PmaaparWqeDx+brxhGAMN62/cuDGyhps3b/ZWmGWz2aGhlRNzAgAAAACwCH76cPyYb5WlS2vS89ecrwf2YWukDcrlsgzDGLkqyop6vS7DMHpbCUcZFrr1rxDr1z8uHo+P7dHVv7LMNM2h2y6dmBMAAAAAgHl7/LH08i+sjf3Oz6XWx46WA5sRhNlgb29PgUBg7Kqoce7evat0Om25mfzZ1V8ffvjh0HH9Tfyj0ailuft7mN29e9eVOQEAAAAAmLef1KU//pu1sR/9WXp7+JoULCiCsBnV63XV63WZpqlgMKhIJKKdnZ2pVjzdvHlzoq2VZwOo/q2S/fX1u379+sRzn30sTswJAAAAAMAi+OX7k43/1YTjMV8EYTM6ux3SMAwVi0WlUin5fL5zTe1HiUajlleDSeo1qu8adibK/j5eF40Z5uy4/sfgxJwAAAAAACyCkz85Ox7zRbP8GZxtGD9MuVxWuVxWOp1WoVCw/fj9hjXKf/DgwcDHVoO2p556auDjg4OD3oouJ+YEAAAAAGBWaz7pk9fHjxkl+LnJjjnpeMwXQdgMwuGwCoWCTNNUo9FQtVo9F051FYtFHRwcqFar2Xb8g4OD3vWLzsJ4tp5pV281Gg1H5wQAAAAAYFY+n3RpTNA1zrPPSO/+1vr4rz4z2/HgLoKwGZ0NoEzTVLFY1N7e3rmti/V6XYlEQpVKxZZj968wu+iMlRcFc5PqfyxOzAkAAAAAwCJ4ISq9+mtrDfOf/Kz0IhudlgpBmM0CgYAymYwymYzK5bJu3bo1EPhUq1Xl83llMpmZjmMYRq/HVi6Xu3BV1rRh09ntjsfHx47OOa1ms6lQKDTzPLu7u9rd3Z15HgAAAADAcrvyhPSjr0nfsnCOt7e+LvmfcLykhbG/v6/9/f2Z52k2mzZUMx2CMAclk0nF43Ftb28PNIbf29ubOQjrnl0yHA7PPJcVTqzesmPOdruto6OjmedptVozz+E0O/a6AwAAAADGe/7a+CDs7eTpOC9ptVq2vAefJ4IwhwUCAdVqNcVisV4YZpqmqtXq0Ob2VtTrdRWLRQUCgbHbLAOBgC2BU/9qLifmnNba2po2NjZmnsfv9888h9Ps2OsOAAAAALDHNz0Wgkmn7503NzdnnqfZbKrdbttQ0eQIwlxy584dxWKx3seVSmXqIOzWrVuSpPv3749tVL++vm5LaLW+vu7onNPa2NjQ4eHhzPMAAAAAAIDR7GorFAqF5raybG0uR/WgaDQ6EHxN23B+Z2dH9XpdpVJJ0ej4jnzTrro6G3SdXRFm95wAAAAAAABOIwhzUSKRmOn+xWJRxWJRhUJByWTS0n22trYGPra6kutsI/tIJOLonAAAAAAAAE4jCHNR/zbGSbcFVqtV7ezsqFAoKJ1OW75f/3ZMyfpKtEajMfBx/2o2J+YEAAAAAABwGkGYi/qDsEm2BdbrdSUSCeVyuYlCMOn86i2roVX/Kq9AIDBQuxNzAgAAAAAAOI0gzEUHBwe961a3SRqGoe3tbWUyGWUymYmPGY1GB0K3Bw8eWLpff61ngy8n5gQAAAAAAHAaQZiL+rcGWtkWaBiGYrGY0um0crmcpWMYhqF8Pj/wuRs3bvSu1+t1S/P0j8tms+dud2JOAAAAAAAAJxGEuahcLkuSpZVdpmkqkUjoxo0blkMwSUqlUudCtp2dnd71arU6do7+MeFweGho58ScAAAAAAAATiIIc0m5XJZhGAoEArp9+/bIsaZpKhaLKRwOK5vNyjCMsZdqtdprYh+NRgfmi0ajA8FTN5C7SKlU6l2/aOWWE3MCAAAAAAA46fK8C1hW1WpVqVRKpmkqHo8rl8udC6C6DMPQrVu3JEn3798f2yh/e3u7F3BFIpGJ6ioUChd+vjvX3t6eksnk0HGmaapYLEo63b45qjm/E3MCAAAAAAA4hRVhUyqVSr2zIHZXY/VvF+zq3ra+vq5Go3FhWNYVi8Us99wa5qKQKRwO91Zl1ev1c33Eura3tyWdntWxfxWXW3Ni+az5pE9eH31Z8827SgAAAAAACMKmlkqlzn2uWCwqGAwqlUppZ2dHsVhMiURC6XRatVpN4XB47JxOhGBdyWRSlUpFgUBA2Wy2dzzTNHuBXb1eVzQa1aNHj8auXHNqTiwXn0+6tDb64iMIAwAAAAAsALZGTikej6vRaCiXy6larer4+Li3Qqwb/Ny+fVvxeNxy+OPGaql4PK6TkxPl83ndvXtX29vbMk1TgUBAW1tbKpVKF25xdHNOAAAAAAAAuxGEzSAcDl/Yk2vRZTIZS2evnPecAAAAAAAAdmFrJAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHjC5XkXAMyi2WwqFAqNHLO7u6vd3V2XKgIAAAAAwLv29/e1v78/ckyz2XSpmvMIwrDU2u22jo6ORo5ptVouVQMAAAAAgLe1Wq2x79PniSAMS21tbU0bGxsjx/j9fpeqAQAAAADA2/x+vzY3N0eOaTabarfbLlU0iCAMS21jY0OHh4fzLgMAAAAAAMhae6JQKDS3VWM0ywcAAPh/2rt/38bSNU/sj+r2jK/tmTJV7aTQldyjZFNT1YlTUZkNOyCrARv2RiIXC0cViGhsPChIQYULk53NYoMqMtjFbmSy/oIqcdMBDLGTblTils7W3Os7vnNv0UENeUmKkkiJPw51Ph+AAFl1eM77inx5xK+e9z0AAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkwlebbgAAAABAljzaifjj39y+DdtHEAYAAAAwZmcn4leCrgdJEAYAAACwIqrLskUQBgAAALAiqsuyxWL5AAAAAOSCijAAAABYMtPhIJsEYQAAALBkpsNBNpkaCQAAAEAuCMIAAAAAyAVTIwEA2ArW2wEA7ksQBgDAVrDeDgBwX6ZGAgAAAJALKsLYah8/foxnz57duM3Lly/j5cuXa2oRAAAA5Nfr16/j9evXN27z8ePHNbXmKkEYW+3z58/x888/37jNp0+f1tQaAAAAyLdPnz7d+j19kwRhbLVHjx7F06dPb9zm8ePHa2oNAAAA5Nvjx4/jm2++uXGbjx8/xufPn9fUokmCMLba06dP46efftp0MwAAAICYb3miZ8+ebaxqzGL5AAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC58tekGwH18/Pgxnj17duM2L1++jJcvX66pRQAAAJBfr1+/jtevX9+4zcePH9fUmqsEYWy1z58/x88//3zjNp8+fVpTawAAACDfPn36dOv39E0ShLHVHj16FE+fPr1xm8ePH6+pNQAAAJBvjx8/jm+++ebGbT5+/BifP39eU4smCcLYak+fPo2ffvpp080AAAAAYr7liZ49e7axqjGL5QMAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFi+UD5NyjnYg//s3t2wAAAGw7QRhAzu3sRPxK0AUAAOSAqZEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAgH/yb//TplsAAMAqCcIAgFyYJ+T6521hGADAQyYIAwAevP/8DxH/8t/Pt+2/+HcRn/5hpc0BAGBDBGEAwIP3b3oRv/vH+bb97R8i/ra32vYAALAZX226AXAfHz9+jGfPnt24zcuXL+Ply5drahEAWfQf/m6x7f/j30X8H//9atoCAPCQvX79Ol6/fn3jNh8/flxTa64ShLHVPn/+HD///PON23z69GlNrQEgqy5/v9rtAQD44tOnT7d+T98kQRhb7dGjR/H06dMbt3n8+PGaWgNAVu3+l6vdHgCALx4/fhzffPPNjdt8/PgxPn/+vKYWTRKEsdWePn0aP/3006abAUDG/Y//LOL/+r/n3/5/+GerawsAwEM2z/JEz54921jVmMXyAYAH738rRvzXfzHftn/1lxH/e3G17QEAYDMEYQDAg/ff/DriX/9P8237f/7PEY9/vdLmAACwIYIwACAX/tf/7vZt/rY833YAAGwna4TBGr1+/To+ffoUjx8/vnXONLA+xiZD/4sQLDOMS8ge4xKyx7hc3M5gMBhsuhGwqOHCet98881WLZa/re2Gh87Y/OJPnyO++lc3b/PHv4n41ZbWkz/0/j002zQuvbfIi20al5AX2zouN9lup2MAAAAAckEQBgAAAEAuCMIAAAAAyAVB2Ab0+/04PDy813Pb7fa92nB6ehqHh4exu7sbOzs7sbe3F5VKJbrdbqb2CQAAALAsgrAlStM0dnZ2br3t7e1FkiQL77tSqcTe3l50u924uLi4Uxu73W7s7u5GvV6PiIhWqxXn5+dxcnISvV4vDg8P4/DwMNI03eg+AQAAAJbtq0034CFpNptzbzsMjW6Tpmm8evUqTk9P79qskW63O6pEq1ar0Wg0Rv+XJEmUy+XY39+Pbrcb+/v7cXZ2FoVCYe37BAAAAFgFFWFL9OrVq7m2K5VKc1WEnZ6exv7+fvR6vfs2bVRRFvEloBoPrMa1Wq2I+DIFc7j9OvcJAAAAsCoqwpak2WxGmqZxfHx86/pfz58/v3V/vV4vSqVSHB8fj/Zfq9Xu3L5KpTKamnhTNdqwiqvdbke3241msxnVanVt++RheP36dXz69CkeP34cL1++3HRzViIPfYzITz/zIC+vZR76mYc+5kVeXss89DMPfcyLvLyWeehnHvrI3ewMBoPBphvxEOzt7UVExPn5+Ur23+v1Yn9/f/S40WjMHSb1+/1R+yIiLi8vb5ye2G63R5VbhUIhLi8v17LPRTx79ix+/vnn+Oabb+Knn366177WaVvbvag89DMPfYzQz4dknj7+6XPEV//q5v388W8ifpXhevKb+vkQ+heRj/drxHb1867vrW3q433koZ956GNEPvqZhz5G5KOfeehjxPb2c5Ptzvivetuh3W5Hv9+fe92vu7jPulonJyej+6VS6dZ9lcvl0f00TWdeoXIV+wQAAABYJUHYErx69SoKhUK8ePFi002ZaXwR/2KxONdzxtcwe/PmzVr2CQDwUP3b/7TpFgAAEYKwe+v1etHr9SJN09jd3Y29vb2o1WqZqXiaXmj/22+/net54+HWdF9WsU8AgG01T8j1z9vCMADIAkHYPU1Ph+z3+9FsNqNSqcTOzk5UKpWlXPXxrrrd7sTjea5WOWu78T6sYp8AANvoP/9DxL/89/Nt+y/+XcSnf1hpcwCAWwjC7qHf718Jhaa12+3Y39+/1xUf7+P9+/cTj+dda+zrr7+eePzhw4eV7hMAYBv9m17E7/5xvm1/+4eIv/V3QADYKEHYPSRJEo1GI05OTqJard5YGdVsNieu+rgu/X5/4vFdq7fGr4a5in0CAGyj//B3i23/HxfcHgBYrq823YBtV61WJx6naRrNZjNevXoVaZpO/F+v14vDw8PodDpra990aHVX431ZxT4BALbR5e9Xuz0AsFw7g8FgsOlGPFTtdjuOjo6uBD4nJydxfHy80L76/X7s7e2NHjcajSsh3Cw7OzsTj+d9ubvdbhweHo4el8vlaLVaK9vnov7yL/8y/vEfv8xDePTo/oWNf/3Xfx1/9Vd/de/93Objx4/x+fPnePToUTx9+nTlx9uUPPQzD32M0M+HZN4+/vzp5v1883jJDVuy2/q57f2LyMf7NWJ7+vn//L8R/98f59/+v/gq4r/9r77c35Y+3lce+pmHPkbko5956GNEPvqZhz5GrL+fv/3tb+Pv//7v772fz58/R0TEX/zFX8Qf/vCHe+9vEYKwFUvTNA4ODiYWhi8UCnF5ebnQfjYdhJVKpVEl2yr2uahf/epXo4EDAAAAbJ9Hjx7Fn/70p7Ue09TIFSsUCnF2dhb7+/ujMCxN0+h2u1EqldZy/GVMQRxfEH8V+1zUr3/96/j9738fg8FgqyrCAAAAYFstsyJsZ2cnfv3rXy+hVYsRhK3JDz/8MLFYfqfTWUsQ9uTJk6WEVk+ePFnpPhf1u9/97t7HBwAAAPLFVSPXpFgsTgRfy1pw/jZ3rbqaDrqmK8KWvU8AAACAVROErdH4+ljr8vz584nH81ZyXVxcTDweX59sFfsEAAAAWDVB2BolSTK6f59pgYsYn44ZMX8l2vn5+cTj8Wq2VewTAAAAYNUEYWs0HoSta1rgdPXWvKHVeJVXoVCYaPsq9gkAAACwaoKwNfrw4cPo/rqmSRaLxYnQ7f3793M9b7yt08HXKvYJAAAAsGqCsDUanxq4zmmBL168GN3v9XpzPWd8u3q9vpZ9AgAAAKySIGyN2u12REQcHx+v9bi1Wm10v9vt3rr9+DZJkswM7VaxTwAAAIBVEoStSbvdjn6/H4VCIb7//vuFnz/vlRlnKRaLE8HTMJC7TqvVGt2/rnJrFfsEAAAAWCVB2B11u93Y3d2NnZ2dODw8vHF6YL/fj6Ojo4iIePfu3Z0Wyp9ekH7RYKzRaIzuv3r16trt0jSNZrMZEV+mb1ar1bXuEwAAAGBVBGF31Gq1RmFUt9uN/f39iemCQ8P/e/LkSZyfn0exWFz4WGmaXqmievPmzUL7SJJkVJXV6/Xi9PR05nYHBwcR8eWqjuNVXOvaJwAAAMCq7AwGg8GmG7GNut3uzCs/FgqFKJVK8eTJk/jw4UP0er04Pj6O77//fqFKsDRN4+joKNI0vXENrlKpNJpuOU/I1u12o1KpRJqmUS6X4/vvv48kSeLDhw9Rr9ej1+tFsVhcqHJtFfsEAAAAWDYVYXdUKpXi/Pw8qtVqJEkyEfD0er24uLiI77//Pi4vL+Pk5GThAGhYPdXpdGIwGFx763Q60Wq15q40K5VKozb1+/04ODiI3d3dqFQq8eTJk2i1WnF2drZQe1exz212enoah4eHo6mze3t7UalU5rqowKrs7e3Fzs7OrWu5wUO1qXHZ6/WiVquNxuDw2PV6/V5rP0KWbfI8mMVzMGSB8yBkTxbPWbn53jgAlqLT6QwKhcIgIgalUmnQ6XQG5+fng1arNUiSZPTvl5eXa23X8fHxICIGETFotVprPTZs2qbG5eXl5aBcLo/G3nW3RqOx1OPCJm3yPJjVczBsmvMgZE9Wz1l5+t4oCIMl6HQ6ow+NarU6c5tisTiIiEGSJGv7UBtvVx4+0GDcpsbl5eXl6JeYeW7XtQ22ySbPg1k9B8OmOQ9C9mT1nJW3742CMLiny8vLUaKfJMm1252fn48+WEql0lrblZcPNBja5LgslUqDiBgUi8VBq9UanJ+fj/7KN/6XNmOTh2KT4y2r52DYNOdByJ6snrPy+L1REAb3NDzZz1PePV4ivupS8HK5PEiSZOJD7aF/oMHQpsZlo9EYRMTg+Pj42m3Oz89Hf+kb3gqFwr2OC5u0yfNgVs/BsGnOg5A9WT1n5fF7oyAM7mE8rY+IW0tXW63WWk74w19Czs7OcvWBBoPBZsdlkiRz/eVuuo0RMeh0Ovc6NmzCJsdbVs/BsGnOg5A9WT1n5fV7o6tGwj2cnJyM7pdKpVuvjFkul0f30zRdydU4+v1+1Gq1OD4+nvtqovCQbGpc9nq96Pf70Wq1bt02SZKJdg6fD9tmk+fBLJ6DIQucByF7snjOyvP3RkEY3EOz2Rzdn/fDI0mS0f03b94svU2VSiWKxeKVXy4gLzY1Lt+8eRPVavXWX2yGSqXSxONffvnlTseFTdrkeTCL52DIAudByJ4snrPy/L3xq003ALbV9F+tvv3227meVywWo9/vR0QsPdmv1+vR6/Xi/Px8qfuFbbHJcfndd99N/MIyzzHH7e3t3em4sCmbHG9ZPAdDFjgPQvZk8ZyV9++NKsLgjrrd7sTjeU/809stqwy81+vF6elpNBqNhX4JgYdkk+OyWCzO/VfwiC9l7je1AbJuk+Mta+dgyArnQcierJ2zfG8UhMGdvX//fuLxvCf+r7/+euLxhw8fltKeg4ODKJfLUa1Wl7I/2EZZG5c3Gf6Fb2h6ighk3SbH2zaNdVinbRobzoPkRdbGpe+NgjC4s+mT912T/WWUo1YqlYiI+OGHH+69L9hmWRqXtxn/ZSbPv4iwvTY53rZprMM6bdPYcB4kL7I0Ln1v/MIaYXBH0x9odzVdFr6odrsd7XY7Op3OQuXo8BBlZVzOo9FojO7X6/WVHw+WbZPjbZvGOqzTNo0N50HyIivj0vfGP1MRBnd01w+i6Q+di4uLe7WhUqlEtVpVTg6RjXE5j36/P1rn4eTkJLfrM7DdNjnetmWsw7pty9hwHiRPsjAufW+cJAiDDbtPsn9wcBBJkkz8RQ24v1X/JXx4meokSeL4+Hilx4Ks22RVloowmM15ELLH98blEYTBHS2rnPSu+zk9PY1erxetVmsp7YCHYNPjch69Xi+azWYUCoXodDorOw6s2ibH2zaMddiEbRgbzoPkzabHpe+NVwnCeJCazWbs7Ows9ba/vz9xjCdPniylrXfZT6/Xi3q9HicnJ1EsFpfSDli1hz4u53V0dBQREe/evTMVhK22yfG2DWMdNmEbxobzIHnje2P2CMLgju6ayE+XtN5lP5VKJYrFolJymLLJcTmPWq02+oucX0bYdpscb1kf67ApWR8bzoPkke+N2eOqkTxIpVJp6aWf0x88z58/Hy3yGfHlg2qeD6fpRQ739vYWasfp6Wn0+/0olUqjy9/eZPwD9NWrV/HmzZvR4++++y7K5fJCx4e7esjjch7NZjOazWY0Gg3jjgdhk+Mty2MdNinLY8N5kLzyvTF7BGE8SEmSrLzUenpKVr/fn+svW+fn5xOPF71qxy+//BIREd1ud6HnRXwpjR3/EE6S5EF9oJFtD3lc3qbb7UatVotGoxHVanWp+4ZN2eR4y+pYh03L6thwHiTPfG/MHlMj4Y6eP38+8bjf78/1vPGkvVAoWBsBliiL47LX68Xh4WGcnJz45Z8HZZPjLYtjHbIgi2PDeZC8y+K4zDtBGNxRsVicKGl9//79XM/78OHD6P70h+I8Tk5OYjAYzH0b/8BstVoT/ze8dDU8FJsal9fp9/txcHAQx8fH1mbgwdnkeMvaWIesyNrYcB4E3xuzSBAG9/DixYvR/fHS0ZuMb1ev15feJsi7rIzLfr8f+/v7Ua1W5/7lod/vx+np6VKOD+uwyfGWlbEOWZOVseE8CH+WlXHJF4IwuIdarTa6P8/c6/FtkiSxNgmsQBbGZZqmcXh4GC9evFjoL2iVSsXnAltlk+MtC2MdsigLY8N5ECZlYVzyZ4IwuIdisTjxodRut2/cfvyKebel+s1mM+r1+txzyIEvNj0u0zSN/f39SJJktO1tt263O1pI1eXk2SabHG+rPDZsM+dByJ5Nj0umDIB7OT8/H0TEICIGxWLx2u0uLy9H25VKpRv3WSqVRttGxODy8vLO7UuSZLSfVqt15/3ANtnkuCwWixPbLXJrNBr36TZsxCbH2yqODQ+B8yBkj++N2aEiDO4pSZJRYt/r9a5d1+Dg4CAivlzxYzzhn2W6XPbt27dLaCnkx6bG5f7+/tzrPszialpso02eB1dxbHgInAche3xvzA5BGCxBuVyOTqcThUIh6vV6VCqV6PV6kabpqNS71+tFsViMH3/8ceKqIbNM/79L5cLi1j0uh/u/K7/8s802eR5c9rHhoXAehOzxvTEjNl2SBg/NycnJoFgsDgqFwiAiBoVCYVAqlRYqL+10OoMkSQaFQmFwfHy8wtZCPhiXsD6bHG/LODY8RM6DkD3G5ebsDAaDwSaDOAAAAABYB1MjAQAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgF77adAMAAABgVXq9Xrx58ybSNI1Go7Hp5izdQ+8fLJuKMAAAAB6UbrcbtVot9vb2Yn9/P05PT6Pf72+6WRN2d3djZ2cnut3uws/Nev/SNI1KpRK9Xm/TTeGfDN8z+/v7sbe3Fzs7O7GzsxN7e3txeHgY9Xr9Tq/X6elp1Ov1FbR4dQRhAAAAPBjDL/XNZjNT4dC4brcbaZpGRESpVFrouVnvX7fbjd/85jeRJEkUi8XRvw2Dl9tuu7u70Ww2bz1Or9cbhYnX3fb39yMiotlszn38u9zGLXqs3d3d5b8IY05PT2N3dzcODw+j2WxGr9eLQqEQ5XI5yuVyFAqF6Ha7cXp6Gvv7+7G7uxunp6dz779arUav14u9vb1Mvh9n2RkMBoNNNwIAAACWqdvtxuHh4ehxqVSKTqezwRb9Wa1Wi2azGeVyOVqt1p32kcX+DauDGo1GVKvVK//fbrfj6OhoFAKOq1ard5ramabpKBgcKpVK0Wq1olAoTGzb6/WiXq/PrMJLkiSSJLnynOExIiIuLi6i3+9faf+sWOW2YzUajYVD0EVM/6wLhUKcnJzMfF3SNI1msxmvXr0abb9oG2u1Wrx9+zbevXs3CkCzShAGAADAgzRerZOFoGhod3c30jSNVqsV5XL5zvvJUv9uC8GGpgO8obOzszsHKGmajiqrCoVC/PjjjzMDraHhz3/cItFIv9+fmPp5eXl57fFmHes+fZ3H9HTFed8bwymt4+Hdba/nuEqlEu12e+X9uy9TIwEAAGBNer3enadFZlWz2Yx6vR7Hx8e3hialUmlm+Pfhw4c7H//i4mJ0/+Tk5MYQLCLi+fPnE49v235akiTx7t27uZ43fayIWGlIVK/X7xSCRXz5OXQ6nUiSZPRvtVpt7qmSrVYrisViHBwczKz6ywpBGAAAAKzJcPpfqVRaOIDJona7HbVaLYrFYpycnMz1nFnb3eeKl8PKrEKhMFf10jJ+7sOphosea5Wv+XCtr/Fj3WXqbafTmWjndVM8Z2m1WpGmaRwcHCx83HURhAEAAMCavH37NiK+TCPbdmmaxtHRUUTMDreukyTJlaqwXq9356tMDkO0eafwPXny5E7HmTZPRd+yjnWb4bTGcfNUx82SJMmVn2WlUpmrymv43OEaaVkkCAMAAIA1GJ8W+eLFi802ZgmG4UixWFx4mues4OzVq1cLtyFN01G1Uq1WW/j595EkycxF+TehXq9fCarmDQZn+f777ycep2k69+szDMBOT0/nriRbJ0EYAAAArMGbN28i4ssaUVkIT+6j3W6PQo7p0GQeSZJcCc/a7fbCa0sNrxZZLBYn1rZal/tc7GBZhld9HHefECziy7TK6b7Nu1bY+Gu77nByHoIwAAAAtlK73Y7Dw8PY3d2NnZ2d2N/fj1qtFv1+f9NNm6ndbkdExHfffTf39lnt33h10F3DoFlT5xatChtOi7xLGHdXaZpmajH46RAsYjlTb2dd3XPWsW56br/fn/s56yIIAwAAYKv0+/3Y29uLSqUSFxcXcXJyEp1OJ7777rvodruxt7c3V/VKpVIZhUyzbvv7+6PQqVarzdx2b29vrlCk3++P9nVbcLSs/kV8CZuu699tt/39/Zn77Ha7o/W87nMFxFKpdKWKa5HQpNvtzv0zXabpKzNu2rDScNysq1UuatZ013kX3x9/7iLrx63DV5tuAAAAAMyr1+uNApqTk5M4Pj4e/V+pVIrj4+Oo1WpzBRXDL/W1Wu1KADO970ajEbVabXTsYrEY7969m3uK47AaLEmSG6fwLbN/ETEK6ZIkiVqtdu2x379/fyVcuy7AGL/C46Jrg02r1+sT0+eG0/zmmdq36CL5y/Lhw4elBE3LMn2RgUKhsJSpt0mSRKFQmAh6513zazwg7ff70W63MzGNNEJFGAAAAFui3++PQqJyuTwREo1rNBoLVSo1Go0rgc75+fmV7T58+BARX8Kfs7OzhcKGYdXOTWHAqvpXKBTi/Pw8jo+Po1wuz7xNBxzVavXakGsY6kVEfPvtt3O3Y5ZqtXrl5zhPBVGapqN2rHMdqvtc3XIVZrVlmSHdrKtezjs1d/z90+l0ltam+xKEAQAAsBXG1z26LSxZdDrW9JSvZrM5UQmTpmnU6/UoFApzTw8bf+4wsLhpfbBV9e+29bNOT08nApVCoTBR9TVuOnhZxgL10xVd/X7/1sqj8UXy7zM9c17Dta4ODg5WfqxFzAqllnkhhln7mjcIG39d3r59u6wm3ZsgDAAAgMxrt9sT61LdFsAsWhUzK/w5OjqauJ+mabRarYWDhmEIUCgUrg1tVtW/i4uLG4Oifr9/ZZrlTUHfdEC1jCBsVlB3W9A3fK2WUQ2Wpumt66Xt7e1FrVbL1CL5EV9e32mzqrjuatbrO+/P4Ouvv554ThYu8hBhjTAAAAC2wPjVBOcJP+5SFVOtVqPVao3Cnna7PVqQvd1u3zhd8CbDYOnFixfXbrOq/p2cnNwYVk1fXfC2Pr5///5O7bhJoVCIarU6sU7b8Oc+q+29Xm8UqixrfbDbAr2Li4vMhWARs0OpZVaEzTIrfJtl+mfa6/WWEpzelyAMAACATOv3+xNT8lb5ZbrRaMTe3t7o8TAoSpLk2umCtxkGa9Oh09Aq+3fTvprN5pUpkbdVYq0qDKrX6zMvWDDrZz4MDZe1+PpwDbXb9Hq9ODo6ytQaYbNCr2W+RrP2NW/F2XTb5g3QVs3USAAAADJtFdPxrpMkyUQYlKbpaErkXQwXdC8UCtdWWq2zf0P9fv9K5dk80z5XFWYkSXLl5zO9TlvE5CL5t619tmzFYvHO74NVmRVKLfM1mrWvu1acZaWiThAGAABApp2dnU08XnVQdHx8vLQF2IdXi7xpuuG6+xdxdfpluVyea9rneJix7Cl402uVRcSVKrHhemtJkqxlkfxpswK7TbrPGl7zmLWu17zvz+mQ7pdffllKm+5LEAYAAECmbWKR7enKn+umNd5mWL1009Ui192/ZrM5UYVWKBTihx9+WHg/y67wKZVKV0KW8bXTIv68iP4yFsm/q2KxuPJ1uOY1Kwxc5vtp1muchXW+7kMQBgAAQKZNT89aR3A0vTbVrKsr3mY8bLppPat19i9N0yv9+OGHH+YOdlYdAE23LU3TUVXYKhbJv4uTk5Nb11Jbp+kwrN/vLyWknLUW2iLVcNPv6/GrSG6SIAwAAICtsuq1hnq9Xpyenl4Jr05PTxdaKH1YVbboou6r7F+lUpnYf7lcXqh9q64GqlarV8K2Yeg0vkh+ViqysmBWODW97txdzNrH4eHhnfeXlddMEAYAAECmTa81tOqKsEqlMpouOF0ZtsgUyeF6VjdNi4xYX//a7fa9p0ROt3UVod10tVe/3492uz2aZrrJaZHXabfba1sMvl6vTwSysy4a0Ol07n2cWftYpBJv+ueRlSmVgjAAAAAybfoL9DK+5F+nVqtFv98fTResVqsTU8/6/X6cnp7eup9utzsKAm6bTraO/qVpGkdHRxP/tsiUyKHpiqBVXEVyVrAzDCCztlh9xJfXulKprOyKmuOG1Yrj75lCoXClqm/6IgN3MV0Rdnx8vND7ZTrQff78+b3btAyCMAAAADJtOnwZVlotW7fbjWazGaVSaSJYmF44v16v31q1NXxOqVS6NTxYR/+Ojo4WnhJ5enp6JVCZDqFWUb02DCBnyWI1WK1Wi0KhsJaKp6Ojo0iS5Nrpo+PuE4ZNh72FQmFmQHmT8atEzmrzpgjCAAAAyLTp8CVN09E0uXnNU60zrDqaDr6SJLkSNNw2RXIYZs0zlXLV/et2uxP7m3dKZKfTuTIVcjrwWVV13nUXJljGIvnLrNwahqLXVakt+1i9Xm9mgJkkyZVpvPV6/U7TNdM0vXK1zlartXCQNR6SZqmKTxAGAABAps2a+jVd4TRtelH72wKB4SLyjUZj5hf+4+PjiQBoOEXtumMPj/fixYsbjxux+v5Nh3HzTIlM0zS63e7MKqfxti5jUfZZZk2BnKe6bh7LWsvr9PR09B64bh24ZR2rXq+PjnXdgvXVanUiKEzTdKE17YYODg4m2n1ycnKnIGv8vXGXdqzMAAAAADLu8vJyEBETt2KxOLi8vLyy7fn5+SBJkivbdzqdmftutVqDiBgkSXJjG87Ozq7s8+zs7Mp2x8fHo/Ztun/VanVim1KpNFd7yuXyICJmHn+6ravS6XTmev0WVSgUrvzsZvXzOq1Wa1AsFud6/qxjzXrPzHJ+fj5oNBpXXuvbDN9/w1u5XJ6rf5eXl4NSqTTx3EajMVdbZ+1ruI/bxtW67QwGg8EygzUAAABYhXa7PbOypFqtxuHhYVxcXMTZ2Vk0m82oVqvXrpFUrVZH08i63e6owub4+HjmWktDaZrG7u7uxL8VCoV49+7dxIL6e3t70e/34+TkJI6PjzfWv/G+DTUajZlVXmmaxsXFRZyfn0e73R5Na7suMhivUOp0Oiub+jb8WRYKhbi8vLzXvvr9ftRqtWur2IrFYjx58mRm1VmaptHv92euiVYsFuPs7GyhYw3XzJqeenpxcTF6LWZVk5VKpbmmo7bb7StVhY1G49qppc1mc2IqZaFQiFardefXtdlsjtZzu+m4G7HhIA4AAADm1ul0ZlbZjN+q1epgMBhM/FuSJIOTk5PB+fn5YDD4Um0zXdUT/1QxNat65uTkZGYV1vBWLBYH5+fng/Pz89G/DY+1if4NBoOZ/VvkVigUrm3neMXP8fHxwv2cV6PRuPcxhvtY1W28bas+1snJyUJ9Pz4+vvJ+KpVKg2q1OiiXy1cqwAqFwsLHmGX43staNdhgoCIMAACALXR6ehpv3ryJfr8faZpGoVCIUqkUtVptVMWyt7cX5XI5vvvuu4mKrVW3q16vR5IkcX5+fq/9ZLF/44ZVP8uo1rrJ7u5unJ2dreWqjA9Vt9uNVqsVHz58GFW3DSvSkiSJYrG4tPdRv9+Pvb29iIg4OzvbyHvzJoIwAAAAWJL9/f3o9Xq3TrN8KCqVSrTb7exNf2NjDg8Po9vtZnYMCMIAAABgCcbXEMtiJcyq7O3txcXFRfz4449Luaoj22u4Lt2sddOy4tGmGwAAAAAPwdu3byPiy0LjeQnBIr4slp+maRwdHW26KWxQmqZRqVQiSZJ49+7dpptzLUEYAAAALEGr1YqIiBcvXmy4JeuVJEmcnZ1Fu90eXSmQfEnTNPb39+PJkydxdnaW6cpAQRgAAADcU5qm0e12I+LLull5M5wK9/btW2FYzgxDsGEgmuUQLEIQBgAAAPc2DMGGV3fMo2EY9uHDhzg8PIw0TTfdJFas1+vFb37zm6jVatHpdDIfgkVYLB8AAADubTz02YYwYNVOT0+jXC5HkiSbbgor1G63I0mSrVoTTxAGAAAAQC6YGgkAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAv/PwDjjgJfZ4gAAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"bins = np.linspace(-0.4, 0.4, 50)\n",
|
|
"sns.regplot(\n",
|
|
" x=ak.to_numpy(array[\"ideal_state_770_tx\"]),\n",
|
|
" y=ak.to_numpy(array[\"z_mag_xEndT\"]),\n",
|
|
" x_bins=bins,\n",
|
|
" fit_reg=None,\n",
|
|
" x_estimator=np.mean,\n",
|
|
")\n",
|
|
"plt.ylim(5100, 5700)\n",
|
|
"plt.xlabel(\"dx/dz(VELO)\")\n",
|
|
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
|
|
"mplhep.lhcb.text(\"Simulation\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 36,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACiQklEQVR4nOzdTWxj55nm/YuqSuAgCYuUGw0IIpA2BQ/cq+4iVbPo3UTkZBYxEsRkFZAgzmJSZBw0ZqEZk67O2lbIJNoMkDFZ7o0DA11Fxp0gWfSYLPd+SmJldsGkecoBJHDl4ikmQYzE5nkXeskm9UEekueD1Pn/AAH6eHifWx9li5fu5zkhy7IsAQAAAAAAAJfcmt8NAAAAAAAAAF4gCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAfGIahdDrtaw/lclnpdFrRaFShUEhbW1vKZrNqNptLVRMAAAAAAMApBGEOMk1ToVBo6svW1pbi8fiFdQZB0jwv+Xx+Yo/NZlPRaFTFYlGSVKvV1G63VSqV1Gq1lE6nlU6nZZqm7c/bjZoAAAAAAABOC1mWZfndxGVRLpeHYdA07Xb73DCsXq8rm83O3UOtVlMmkzn3Y81mcziJlsvlVKlUzqxJJpNqtVqKx+M6PDxUJBKZeD03agIAAAAAALiBIMxB0WjU1tRTKpVSo9E492PpdHqhrYQXfTtN09Rzzz0n0zQVj8fVbrfPXWcYhra2tqb26VZNAAAAAAAAt1z1u4HLolqtyjRNFQqFqed/bW9vn/t+wzDUbDYVj8dVLBaVSqW0vr4+9drJZFKGYSiVSl24JpvNDkO6SVNr8XhcmUxG9XpdzWZT1WpVuVzOs5oAAAAAAABuYSLMIYOJp4umouwoFouq1+szbR8cnbaqVCrnBkyjaySp2+1OrD+6PTMSiajb7XpSEwAAAAAAwE0clu+Aer0uwzBsnw92kWq1qlqtNtMZWvV6ffj6zZs3z11TKpWGr6dSqan1R88YM01z7Bpu1gQAAAAAAHATQZgD9vb2FIlELgyi7KrVakokEjM95t69e5Imh1HVanX4ut36owf5D67hdk0AAAAAAAA3EYQtqNVqqdVqyTRNRaNRbW1tKZ/PzzXxNOmMr/OYpqlWqyVJF95pcvDxgRs3btiqPRpunf5c3KgJAAAAAADgNoKwBZ3eDmkYhqrVqrLZrEKhkLLZ7JngyCmjU1kXTaOdvgPl6FTWJKfXjX4ObtQEAAAAAABwG0HYAgZ3eZykXq8rmUwqn887fv3B9sJEInHhtsiHDx+OvW33/LFnn3127O2DgwNXawIAAAAAALjtqt8NrLJ4PK5KpSLTNNVut9VsNmUYxrlrq9WqDg4OdHh46Mi1R7dF3rp168J1p/uZd3pr9G6YbtQEAAAAAABwG0HYgnK53NjbpmmqWq1qb29PpmmOfazVaimdTqvRaCx83fv37w9fH70j42kXBXOzGv1c3KgJAAAAAADgNoIwh0UiERUKBRUKBdXrdd2+fXss8Gk2myqXyyoUCgtdp1KpSDrZFjlpImvesOn0dscnT564WnNWn/3sZ/XHP/5RlmVpbW3xHb6f//zn9bnPfW7hOgAAAAAAXFa///3v9bvf/W7hOv1+X6FQSJ/5zGf0hz/8wYHO7CMIc1Emk1EqldLOzs7YwfB7e3sLBWF2t0U6yY3prUVqfvTRR7IsS9LJP6BFPX36VE+fPl24DgAAAAAAmM6yLH300UeeX5cgzGWRSESHh4dKJpPD8Mo0TTWbTaVSqblq2t0WObi+EyHW6DSXGzVndeXKlWEA5sVEWKfTUb/f19ramjY2Nha+nhPoafX6kejJLnqyZ9l6WrZ+JHqyi57sWbaelq0fiZ7soqfV60eiJ7voyZ5l68luP05OhEknz+29RhDmkbt37yqZTA7fbjQacwdhg22R8Xh86kH16+vrjoRW6+vrrtac1V/+5V/q+PhYm5ubOjo6WriXaWKxmI6Pj7WxseHJ9eygp9XrR6Inu+jJnmXradn6kejJLnqyZ9l6WrZ+JHqyi55Wrx+JnuyiJ3uWrSev+xlc7y//8i9dv9Zpi4/SwJZEIjEWfM174Pzotshp02DS/FNXp4Ou0xNhTtcEAAAAAABwm68TYc8//7yflx8TCoX0//7f/3P1Gul0Ws1mc6Eao9si7ZwPtr29PXY+mWmatgKo0wfZb21tuVoTAAAAAADAbb4GYe12W6FQaHjouR8G1w+FQq5fa3Qb47zbAmu1mqSTaapEIjF1/eh2TOlkEs3O49rt9tjbo9NsbtQEAAAAAABwW+C3RnoZwo0GYfNsCxwcsi9JuVzO1mO2t7fH3ra7JXN0G2MkEhnr3Y2aAAAAAAAAbvP9sHzLspTJZHwLRUzTVLVa9eRaBwcHw9fT6fTMj591W6R0cjbZ6F0eHz58aOtssdFeTwdfbtQEAAAAAABwm+9BWLVa1be//W1fe8hkMvrSl77k+nVGtwbOsy1w1m2RAzdv3hyGfaNne00yuq5YLHpSEwAAAAAAwE2+b41chnOibty44cl16vW6JKlQKMz82NFtkTdv3pzpsfl8fvi6ncP6R9fE4/Fzv0du1AQAAAAAAHCT7xNh8x4av2rq9boMw1AkEtGdO3dmfvzotshsNjvTYxOJhFKp1DCMqtfrE7cyDibPpIsnt9youcx2d3fV6/UUDof9bmWInlbTMn6N6MmeZexp2Szj14ie7FnGnpbRsn2dlq0fiZ5W2bJ9nZatH4meVtkyfp2Wradl68dNIcvHWzZeuXJF3W7X9y/006dPtb6+rk8++cT2Y5rNprLZrEzTVCqVUqlUunC7omEYSiaTMk1Th4eHM21rHEin02o2m4pEIup2uzM/3jAMbW1tSToJsQ4PD89dZ5qmotGopJNpvUaj4WlNu2KxmI6Pj7W5uamjo6OF6+Fy4ucElx0/47jM+PnGZcbPNy4zfr5hh58/J75ujfQxgztj1l5qtdrwsPhms6lkMjm2XXBg8LH19XW12+25QrDRbZHzbimMx+PDqaxWq6VyuXzuup2dHUkn55CNTnF5VRMAAAAAAMAtvgZhpVLJ92kwSbp27ZpKpdJMjzlve2K1WlU0GlU2m1U+n1cymVQ6nVYul9Ph4eHcd8Yc3RZ5XthmVyaTUaPRUCQSUbFYVDabVavVGgZtyWRSrVZLiURCjx8/ViQS8aUmAAAAAACAG3wNwl599VVPr/fBBx9c+LFZe0mlUmq328rlcorH42MBT6vV0pMnT3Tnzh11u12VSqWFAqDRKapFD5lPpVLDngzD0M7OzjC8W19fV61W0+Hh4Uz9ulETAAAAAADAab4flu+lfD6v//2//7dj9eLxuCqVimP1LuLEmVqnFQqFue5e6XVNAAAAAAAAp/g6Eea1g4MDv1sAAAAAAACAT1ZyIuyDDz4YHlRvh2EYqlQqMz0GAAAAAAAAl8tKBGEffPCBSqWSms2mDMOYq4ZlWQqFQg53BgAAAAAAgFWx9EHYnTt3VC6XJZ2EWQBg1+7urnq93lLcnRZwAz/juMz4+cZlxs83LjN+vrHsQtYSp0s//elPlc1mJWk4zbVIu6FQSJ988okjvcFfsVhMx8fH2tzc1NHRkd/tAAAAAAAAm/x8Tr/UE2F7e3uSTgIsy7IUj8eVSCQUj8clSc8+++zUGh9++KFM09T9+/f19OlTV/sFAAAAAADA8lrqIKzVag0nwRqNhnZ2duauVSgU9PzzzzvVGgAAAAAAAFbMmt8NTBKJRCSdhFiLhGCSFI/H9dxzzznQFQAAAAAAAFbRUk+ExeNxPXr0SDdu3HCkXqVScaQOlken01EsFpu4Znd3V7u7ux51BAAAAABAcO3v72t/f3/imk6n41E3Zy11ELazs6NHjx7pyZMnjtXD5dLv93V8fDxxTa/X86gbAAAAAACCrdfrTX2e7qelDsL+4R/+QT/4wQ/UarUcqffWW2/p29/+tiO1sBzW1ta0sbExcQ237QUAAAAAwBvhcFibm5sT13Q6HfX7fY86GheyLMvy5co2lctllUolffDBB/r85z+/UK0bN27o4cOHDnUGP/l5q1UAAAAAADA/P5/TL/Vh+dLJQfmJRELZbHahOo8fP3ZssgwAAAAAAACrZ6m3Rg40Gg1tb2/r+eefV7FY1Pr6uq3HPXnyRKZpqt1u6/79+y53CQAAAAAAgGW2EkHY+++/L0lqt9vK5/Nz1bAsS6FQyMm2AAAAAAAAsEKWPgh75ZVXVK1WJUmhUEjzHGlGAAYAAAAAAIClPiPs7t27qlQqw/Br3nP9l/x+AAAAAAAAAPDAUk+EVSoVSf8+CZZKpZROpxWJRGY+J+zNN9/UBx984GK3AAAAAAAAWGZLHYS1Wi2FQiFFIhEdHBzoueeem7vW7du39eyzzzrYHQAAAAAAAFbJUm+NjEQikqQ7d+4sFIINal2/ft2BrgAEnWmafrcAAAAAAJjDUgdhyWRSkhSPxx2pd/fuXUfqAAieVqulYrGoaDSq27dv+90OAAAAAGAOS701Mp/P68GDBzIMw5F6TIQBl1Or1dK9e/fUarVkGMbwbMBIJKJ4PK719XUlEgml02mlUqkzj89mszIMQ4eHh8P3maapZrOpe/fuqdlsMgUGAAAAAJdAyFryWyomk0mtra3p4cOHC9d699139bWvfc2BruC3WCym4+NjbW5u6ujoyO92FlatVpXP52d+XCKRGAtv5hUKhWZ+TCQSUbfbPfdj2WxW9Xp95pqNRuPcoOo8pmlqb29P5XJ55uskEgmlUiltbW2p0WioXq+f+VoOwrFWq3Xm8ZlMRrVabebrAgAAAAD8fU6/1FsjJalWq+nw8FD//M//vHCtvb09BzoCnJfL5dTtdnV4eKhMJjNxbSqVUqPRGK53gmVZarfbqlQqw7P5zhOPx1WpVNRuty8MwaSTf7fdbtdWsFUoFHR4eKhut2s7BBtsUTwdgg0CqkG9wefVaDSUy+WGn1ur1VK5XFY+nx8GdqcnvgZ1LMtybHs2AAAAAMBfSz8RJp1My9y5c0cffvjh3DWePn2q9fV1ffLJJw52Br9ctomw0/L5vKrV6pn3ezGJZBiGtra2zv1Yt9udGJRdJJlMnjtZValUlMvlZuotnU6f2S6dy+VUqVRs1SiXyyoWi2feH4/H1W63z33M6e8HE2EAAAAAMD8/n9Mv9Rlh7777riTpL/7iLxSNRvX8889PnZY5j2maun//vtPtAa65KAibZ/vkrOLxuBKJxJngKpPJzBWCSSd9n9f7LCFYs9lUOp0ee18kEtGDBw+USCRs1ykUCspkMkomk2NTYE+ePLnwMfN+3gAAAACA5bLUQdgbb7yhR48eDd+2LGuu84AGj53nHCTADxdtxfNqi148Hj8ThC1y7fMeO0u41Gq1HAnBRvt5/PixnnvuuWEYxmH4AAAAAHD5LfUZYTdv3pRlWRrs3iTIQlBcFBKtr69728gSMAxDOzs7Z95fq9XmCsEGIpGIY2esAQAAAABWw1IHYYOtVKFQaBiIzfsCwL7zArdnn33W0Xp2Q71sNntmWiuXy9k+WH+SeDyuQqGwcJ1lUq/Xz5yhhn/XbDb9bgEAAACAj5Z6a+S1a9eUSCT06NEjlUolJRKJuSZiDMPQG2+8oV/96lfONwnANc1m89xD9kulkmPXuHPnznDLtWmaS3seWKvVUqVSUbPZlGEYikQiWl9fVyQSUTwe161btyRJt2/fVqlUmnj+WrPZVDab1fr6uiqViiOh4rIyDEPNZlO1Wm0Ygi3TH0eC9L0AAAAAlsFSB2GSdOvWLW1tbenVV1+du8b169f10ksvBXJbGbDKzjtgf5FD+88TiUSUy+XOvTnBMjBNU7dv31a9Xpd0MsU2uGmIYRhqtVpqtVrDjw8eM8lgys40TeXz+QvvlrnKDMNQNpuVYRhLff5bEL4XAAAAwDJZ6q2RkpRKpRz76/329rYjdQC4bzD5dNqdO3ccv1Y2m5U0+c6Rkwymera2thQKhRSNRpVOpx0J17LZ7DDkqlQqarfbqtVqqtVqOjw8VLvdPjNFNC1MCcIfBeLxuA4PD9Xtdpd6+2sQvhcAAADAMln6IOz69euObYP6b//tvzlSB4D7arXaue9f5ID8i6RSKZVKpZlDCdM0lUwmlU6nx87mMk1TzWZT+XxeW1tb527vtKNcLg+38xUKhXO3O8bjcTUajbH/Tk47I6xSqSgejysej1/4db5MTt9xdJkE7XsBAAAA+G3pt0ZK0nPPPedInf/5P/+nvvzlLztSC8uh0+koFotNXLO7u6vd3V2POoJTzjvU3M3zk2adGjIMQ8lkcuq2u8G6RqMxc/97e3vD18/bJjqqUCjoww8/VLlcnjrZlkqlArUFz6+pq3w+r0qlMnFN0L4XAAAAuPz29/e1v78/cU2n0/Gom7NWIghzysHBgd8twGH9fl/Hx8cT1/R6PY+6gVMMwzh3qsmNabB5mKY5PNspk8konU5re3tbT548UaPRGB6+PyqdTqvdbisej9u6xjxnW5VKpQu3lMJb1WpV1Wp1ahAGAAAAXDa9Xm/q83Q/rWQQ9sEHH8z0BNEwDFUqlaU+MBnzWVtb08bGxsQ14XDYo27glIuCnK2tLY87Od9gWu28Ka9UKqV8Pq90On3m88hmszo8PLR1jdP/vWo2mxPvBDlw586d4Zln8IdhGFMn+AAAAIDLKhwOa3Nzc+KaTqejfr/vUUfjViII++CDDxaedLAsS6FQyOHO4LeNjQ0dHR353QYcdtG/82U6WHzSVsfBuV2ng7tWq6Vms2lri+TpybFisaibN29OvWPm4I6Spmk6endN2GOa5lKfSQYAAAC4zc7xRLFYzLepsaU/LP/OnTva2tpStVpVu92WZVlzvQBYTLFYVCgUmuslmUzOdK2LpjeXJdiJRCJTw6x4PH7ujT7s3vwjEomMfb6Dg/nt/DHAsqyl+VoFiWma2tnZYWsqAAAAsMSWOgj76U9/qlKpNAyymOgCgmHZDw/f3t62ta5QKJwJpM67CcBFTodmhmEM/zCwqFarNbyr5SSmaaparSqZTI5dd7D9LxqNKhQKaWtr69yz0QzDULFY1NbW1nBdPp8/N+wcXOd0kHpaOp0e1ht9cXL7e7VaHbtONBpVMpk893OUTr6ezz333Jk7hI72d9HX2u73YsA0TZXLZaXT6eHXf9BfsVi0FcQZhqFyuXzmrqaj34Otra3hWXgAAADAZbHUWyMHd0wLhUKyLEvxeFyJRGK4ZejZZ5+dWuPDDz+UaZq6f/++nj596mq/wGWWy+XmPvfo4OBgpsdeNM20LE/IZ5m2SqVSqtfrY+9rtVq2Dv7P5XKq1WpnwrPB3Qjv3r070w0EWq2WKpWK7t+/P/xanve5DMKve/funQl2pJPpwNOB0CDwarfbwwPiL1pXrVbVbDZ1eHg4dv1cLjf8OZsU9jUaDUlSuVxWsVi086nbVq/Xlc1mFYlEdPfu3eFW01arpWw2q2KxqEqlcqb3eDyuBw8eqNlsjvV00Zlwdr8Xp1Wr1eG/pVKppFKppEgkolarpb29PZXLZZXLZWUyGdVqtbHHmqapvb091ev1M2HZYJpt9Ps9uGnF4Htl90YPAAAAwFKzllgoFLLW1tastbU1q9lsLlSr3W5ba2trDnUGv21ublqSrM3NTb9bcY2kMy/dbteTa+dyuTPXLpVKc9c7PDw8Uy8ej1+4vlQqnfv5VyqVuXtYRKFQGOsjk8nYfmytVlv488hkMud+PQa92Pm5aLfbVqFQsEqlkhWJRIaPj0QiZ9Z2u12r0WhYlUpl7Fq5XM5KJBJWKpWyarWa1W63rW63e+brc3h4aKVSKSuRSFiNRsPqdrvDmqPXLhQK5/baaDTG6k36nOz8+zj983eR0eue9/M+WueinwE7vc/yvRg1+DpHIhGr3W6fu2b0ZyUej499TdrtttVoNM78+65UKlYkErEymYzVaDSsdrs9fN9gTSqVmtgbAAAAMAs/n9MvdRAWjUattbU167XXXnOk3tbWliN14D+CMHf5HYSdDmCc6GERiwRh533u83weF4WD84Rro7WmhS+JRGLsOo1G49x1qVTqTGh2ntFg8KJr2w3Cut2uo0HYaIh00fdoWh27vQ/Y/V6M/puY9r2Ox+NTA6zRHiORyLnf19Mhrlf//QEAAMDl5+dz+qU+I2ywDePGjRuO1Bts1wGw3C7agrXsZ4ed57ztbh9++OHMdQqFgrrd7nCr3mn5fF7pdNrW9tFZtriN3qkzl8tdeJOA03dKvOi/t6P9m6a5NNtdT7tom+Lo+504FN/u92Kw3TISiSiXy9laK52cSXfeuXSjn8fdu3fP/b6e/lk7ODiw1SsAAACwzJY6CNvZ2ZEkPXnyxNF6AJbbRWHLLAfNL4vzgg475xueJxKJqFar6fDw8NyzwZrNpnZ2dhwNl+yehzb6ec5yhtoy3WHx7t27KpVKqtVqU8Mmybsz66rV6vBadoKzXC439j2we6fS84xeb5m+VwAAAMC8ljoI+4d/+AdZlnXuYc3zeOuttxypA8B95wU9hmEs7QTRLBY9dDyRSOjw8PDcqatWq6Xbt28vVH8es4Rfo5z6Q4cTIpGICoXCuVN3rVbLsf8XzWpwcwDJ/s/OaJi8igEyAAAA4JalDsKuXbum73//+7p3755+97vfLVyPrZHA6rh169a571/FJ/WnQyKn7r6Xy+XUbrfP1K/X60v9dZo3NPPa6B0uE4nETHfodLqPWZ3+GbsMATIAAADghKUOwqSTc3ESiYSy2exCdR4/fuzbX/OBZdNqtRb+N+W2i7amrWKgfTqEcDJQicfjOjw8PBMureLXaVm0Wi2l02lVKpWJ56J5ZfTnx24otrW1Nfb2Mk3eAQAAAH666ncDdjQaDW1vb+v5559XsVgcO7x5kidPnsg0TbXbbd2/f9/lLoHVcfv2bdv/jvwSiUSUyWRUr9fH3t9sNtVqtXybzpnV6RDMTqjSbDZVLBZ1eHho6xrxeFx3794dCzcJ/ueTz+dVrVaVy+UWOlvLSfMc0H/637dTU4gAAADAqluJIOz999+XdHLHuHw+P1cNy7IUCoWcbAtYSYMgadKTfKenR+atVyqVzgRh0sld8UbPTXKCaZqubNk7fac9O/8Ni8fjarVaajabtqeRTp9rxcHmsxuEYNJiB8w7bfDzIP37nTan/ayO/psjBAMAAAD+3dJvjXzllVeUTqf16NEjhUIhWZY18wuAE6ZpDqeGzjsQfJIPP/zQ0V7shGPxePzcQKLZbKpcLjvWi2EYSiaTcwftk5w+6NzO130QXCzSz6pMzC3CycC21WoNQ7B4PL5U55idPi9v0Ock7XZ7+Pqs/9YBAACAy2ypg7C7d++qUqkMw6x5Qy3CMKwaNw62Nk1TOzs7w2mSWadEnO7Jbr1CoXDuVFSxWHTkQPhmszk8T8mNKaDRibZZzu2Kx+MyDEPFYtHW+tMTYBfdbGAVnN7Wd9HPipNTb6M/S5Pq+nHofCaTGQvm7PwcjX4+d+7ccaMtAAAAYCUt9dbIwS/7g0mwVCqldDqtSCQy8zlhb775pj744AMXuwWcc9ET8SdPnsw1qdJsNpXP54d1b968OfP1F5m+WTSwaDQaymazZ7ZJptNplUolFQqFmWuapqlisahqtXrhgfOTHmtHtVodfu6zHro+CMLK5bK2trYuvHnAwGg4Eo/H5/qanMfu5zq6btpjpn389DRbtVo98/mcFxLO++/jPPV6/cwk1XnXO+10wGwYxtj75t2CO3oGnGEYE7fNtlqt4VbKUqm0VNNtAAAAgO+sJRYKhay1tTVrfX3dMgxjoVrdbtdaW1tzqDP4bXNz05JkbW5u+t2KK3K5nCXpzEsqlbLa7fbUx3e7XavRaFiFQsGKx+Nn6tRqtQsf2263z722JKvb7c71+SQSiXPrVSqVmeoUCoVz6yQSCavRaNiq0e12rVKpZEUikeHXdNrndfq6kUhk6nVGv46pVMpWb6NO/wzkcrkL+6xUKmNrp/2MnF4/SSqVGuvhIrVazXZNOz+Lo9cdXLvRaFi1Wm34tWk0GsPv4+Dt8zQajak/x6fXSLJKpZLVaDSsUqlkxeNxK5PJjP17ymQyw39nozVP/5vtdrtWu922crmcVSqVxq47y/eiVCqN/Qye93l0u93hv7dJ3y+7/z04/fUAAAAAnODnc/qlDsKi0ai1trZm/eAHP3CkXjKZdKQO/HdZg7DDw0Mrk8lcGEQ59XLRE+hKpTIWLJx+icfjVqVSsR2IHR4engk0Tr8UCgVb4d5Ao9G4MFiLRCJWJpOxKpWK1Wg0rMPDQ6vRaFiVSsUqlUpjj4tEIhMDgFHnhYPxePzC4KVWqw2/jplMxvbnNup0QDIavhQKBatSqVi5XG4smLEblJ7++l30deh2u2cCx4uc/rm9KOQ8HThdFNZ0u90LfxYjkcjwaz+6JpFIWO12+8zPp93eJv3bG4RA54XUp7/HFwW2532udr8XA6M/W5FIxKpUKla73bba7bZVqVSGPw+TQiu734PT6+YJdAEAAIDzEIRdIJVKWWtra9ZPf/pTR+q1Wi1H6sB/ly0Iuyj0cOPlvDBjnjqTpqLmDfPsTnVZ1kkgcFEgNuklHo9bpVJp5um2drt97ucViUSsVCplZTIZK5VKjYUUs3w+pw2mnWq12nAKKpVKWYlEYiz8GYR/0641CFkvCpcSicQwPJm0djAZNfj6nQ7jTgcng5qNRuPCUDQej58bxnS73bH6iUTCKhQKY2sG7zsdAHa73amf73nXHEx/Dfo6Pe3V7XaHn8fo1+y00WnMRCIxFnDN8r24SKVSOfPzNnjcRT/bk4Lp0e9Bu92euI7JMAAAACzKz+f0Icta3pPk6/W6bt68qXK5rP/xP/6H3+1gicRiMR0fH2tzc1NHR0d+twMfmaapZrOpe/fuyTAMmaY5PJdrcPe/eDyuGzduKJPJzHyTgGnXG1xzcJ3t7W1ls9mZzgMDAAAAgCDx8zn9UgdhkpRMJrW2tqaHDx8uXOvdd9/V1772NQe6gt8IwgAAAAAAWE1+Pqdf8/Rqc6jVajo8PNQ///M/L1xrb2/PgY4AAAAAAACwipZ+IkySqtWq7ty5ow8//HDuGk+fPtX6+ro++eQTBzuDXwbp8dramjY2Niau3d3d1e7urkedAQAAAAAQXPv7+9rf35+4ptPpqN/v+zIRdtXTq83o3XfflST9xV/8haLRqJ5//nllMpmZ65imqfv37zvdHpZAv9/X8fHxxDW9Xs+jbgAAAAAACLZerzf1ebqfljoIe+ONN/To0aPh25ZlqVwuz1XLsiyFQiGnWsOSsDMRFg6HPeoGAAAAAIBgC4fD2tzcnLhmMBHmh6XeGlkul/Xaa69J0sIh1iAIY2vk5cBh+QAAAAAArCYOy79APp+XdBKCWZa10AsAAAAAAACCbam3Rl67dk2JREKPHj1SqVRSIpHQ+vr6zHUMw9Abb7yhX/3qV843CQAAAAAAgJWw1EGYJN26dUtbW1t69dVX565x/fp1vfTSS3OFaAAAAAAAALgclnprpCSlUinHtjZub287UgcAAAAAAACrZ+mDsOvXr6tUKjlSy6k6AAAAAAAAWD1LH4RJ0nPPPedInevXrztSBwAAAAAAAKvH1yBsmQ6vX6ZeAAAAAAAA4Dxfg7BkMqler+dnC5Kkp0+fKplM+t0GAAAAAAAAXORrEObUIfhOWKZeAAAAAAAA4Dxfg7BQKOTn5ccsUy8AAAAAAABwHhNhAAAAAAAACATf7xr5+PFjv1vQwcGB3y0AAAAAAADAZVf9buD27dt67bXXFIlEtL6+7um1nzx5IsMwVCgUPL0uAAAAAAAAvOd7EHZ4eKhsNutrD5ZlcUYYAAAAAADAJed7EDbg13lhBGAAAAAAAADB4HsQ5veB+X5fHwAAAAAAAN7wNQjrdrt+Xh4AAAAAAAAB4msQdu3aNT8vDwAAAAAAgABZ87sBAAAAAAAAwAsEYQAAAAAAAAgEgjAAAAAAAAAEgu93jQQW0el0FIvFJq7Z3d3V7u6uRx0BAAAAABBc+/v72t/fn7im0+l41M1ZBGFYaf1+X8fHxxPX9Ho9j7oBAAAAACDYer3e1OfpfiIIw0pbW1vTxsbGxDXhcNijbgAAAAAACLZwOKzNzc2Jazqdjvr9vkcdjQtZlmX5cmVgAbFYTMfHx9rc3NTR0ZHf7QAAAAAAAJv8fE7PYfkAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQLmUQ9vTpU73yyit+t3EhwzCUTqcdq9dqtVSv11Uul9VsNm09plwuK51OKxqNKhQKaWtrS9ls1vbjvaoJAAAAAADglEsZhBmGoWq1qt/+9rd6//331ev1PLmuaZoKhUJTX7a2thSPxxe6TrlcVjKZVCgU0s7Ojh4+fKhEIqHt7e2Jj202m4pGoyoWi5KkWq2mdrutUqmkVquldDqtdDot0zRt9+NGTQAAAAAAAKdd9bsBNzSbTVmWNRY2FYtFvfHGG65et1qt2l47CI1mYZqmisXi8DqJREKNRkOpVMrW45vN5nASLZfLqVKpDD8Wj8eVyWSUTCbVbDaVTCZ1eHioSCTieU0AAAAAAAA3hCzLsvxuwkkPHjw4d9thKBSaGIa98sorajabikQiSqfTeu211xQOh2e6djQatTX1lEql1Gg0ZqpdrVZVLBaH9SuVinK5nO3Hm6ap5557TqZpKh6Pq91un7vOMAxtbW3Z6tONmnbFYjEdHx9rc3NTR0dHC9cDAAAAAADe8PM5/aULwra3txWPx3Xr1i0lEgkZhqH33ntPP/jBDxQKhWQYhr7whS+MPeb555+XYRga/VJsbW3p8PDQdhhWrVaVz+dVKBSmnv+1vb0901RUsVhUuVyWdDJl1Wg0Zt5amU6nh2d1TQvRstms6vX61LVu1LSLIAwAAAAAgNVEEOag7e1tHRwcnHm/aZpKJpO6ceOG/umf/mn4/ldeeUWVSkWhUEiFQkF7e3vDLYimaerevXu2rjuYeLpoKmpeowFSJBLR48ePZ95aODqRJUndbndijXq9rmw2O7xmt9v1pOYsCMIAAAAAAFhNfj6nv3SH5YdCoXPfH4lEdHh4eCaoGoRgmUxGe3t7w7WVSkXdblcffPDB1GvW63UZhjHXuV+TpNPpYQgmae7ztUql0vD1VCo1tUYmkxm+bprmWA9u1gQAAAAAAHDTpQvCotGofvSjH537sUgkomg0Onz77t27w9dHg52BYrE43Po3yd7eniKRiG7evDlHx+erVqtj165UKnPfaXL0EP9EImHrMaPXOm8qzo2aAAAAAAAAbrp0QVihUNCrr76q7373u+r1emc+ProlbzANlkql9Fd/9Vdn1m5vb0/d6thqtdRqtWSapqLRqLa2tpTP5xeaeDIMQ/l8fvh2IpGY+0ytVqs19vaNGzdsPW403Dr9ubhREwAAAAAAwG2XLghLpVK6ffu23nzzTUWjUd26dUs//OEP9cMf/lA3btxQu93Wl770Jd25c2cY6IyGTqOuXbsmwzAmXu/0dkjDMFStVpXNZhUKhZTNZs8ER9MMztIauHPnzkyPH3V6os3uVNnpdaOfgxs1AQAAAAAA3HbpgjDpZNLrpZdekmVZqtfrKhaLKhaLarVaevDggcLh8NhWyIu29j169Ejr6+sXXscwjKlbJ+v1upLJ5IVh23k1RwOiSCQydr7WrB4+fDj2tt0zxp599tmxt0dvQOBGTQAAAAAAALddyiBMkmq1mt58803t7OzIsixdu3ZN9+/f1/Xr11Wr1fTSSy8pEonozTffvDCkqlarY3dGPC0ej6tSqahUKimXy02cjKpWq0omk1P7rlQqY2+nUilJ/37Xxa2tLYVCIUWjUSWTSZXLZZmmeWG90xNt805vjW4RdaMmAAAAAACA26763YCbcrnchWdr1Wq14evRaFQ3btzQW2+9pb/5m79Rr9fTG2+8oWq1Onam2EXXGGWapqrVqvb29s4EVK1WS+l0Wo1G48J6o4fQS9L6+rqSyeSZbYSmaQ7PJysWi6rVaudOjk3b2mnX6OfiRk0AAAAAAAC3XdqJsFlkMhlls1ldv35dV65cUTQa1Q9+8AN9//vfVzgcnqlWJBJRoVBQt9tVrVY7s22w2WyqXC6f+1jDMM6EQ/fv31c+n1e325VlWbIsS+12+0wAl81mzz2Aft6w6XTfT548cbUmAAAAAACA2y71RNgsCoWC4vG4qtWqIpGIbt26pZdeemmhmplMRqlUSjs7O2MTXXt7eyoUCmfWn560ikQievz48ZkAabAl8/TZY7dv31YqlbJ9Ztcs3JjecqJmp9NRLBZbuM7u7q52d3cXrgMAAAAAwGW1v7+v/f39het0Oh0HupnPpQvC3n//fX3xi1+cuu7dd99VKpUam/jKZDILHUx/nkgkosPDw7HtjaZpqtlsDs//GjgdhOVyuYmhVi6X0+Hh4XA7pWma2tvbG7sRQCQScSRwGu3DjZrz6vf7Oj4+XrhOr9dbuAYAAAAAAJdZr9dz5Dm4ny5dEJbJZPT06VOlUiml02mlUin97d/+7Zl1Ozs7+va3v61yuay/+qu/cr2vu3fvjh2W32g0zgRhpw+Pv3HjxtS6xWJx7Fyxcrk8FoStr687ElqN3j3TjZrzWltb08bGxsJ1Zt0CCwAAAABA0ITDYW1ubi5cp9PpqN/vO9DR7C5dEJZMJvXgwQM1m001m01JJ5NH29vbY8HYtWvXdPfuXaVSKdXrdX3hC19wta9EIqFUKjXs6bwD50+HS3YmpuLxuBKJxNjWy1arpUQiYbvGeSb14kbNeW1sbOjo6GjhOgAAAAAAYDKnjhWKxWK+TZZdusPy6/W6UqmUrl+/rueee06WZanb7arRaKhYLCqZTOrKlSv6L//lv+j73/++ut3u2Dlbbkqn0xM/vrW1NVfd7e3tsbdHQ7bTH7M7yXX6IPvR3tyoCQAAAAAA4LZLF4TlcjlVq1UdHBzo3/7t39Tv99VoNHT79u3hXRcty9J7772ncrkswzDUaDQ86S0ejw9fP29b4OkJKbsB0+lAaTRwGt2OKZ0/iXae09s0R7dxulETAAAAAADAbZcuCLMs68yZXzs7O6pUKup2u3r11VeVSCRUKpX00ksvKZFI6Pvf/74nvY0GYedtC5w02TXJ6VqjIdu8NUdDuEgkMta7GzUBAAAAAADcdumCsKdPn174sWvXrqlUKqlWq+nhw4cql8s6ODjQq6++6klvBwcHw9fP2yY5ONdr4PQElV2jAVMikRgLyh4+fGirxmivp4MvN2oCAAAAAAC47dIFYc8995x+9KMfTV1z//595XI5/fa3v/Wos/Fg66JtgaPvHxysP83pLZSnA7WbN28OXx89VH+S0XXFYvHMx92oCQAAAAAA4KZLF4QVCgW9+uqr+ud//uepa+/fv69UKqVer+dBZycH+UsnPV5kNCAyDMPWOWHTArbRmwHYCddG18Tjcc9qAgAAAAAAuOnSBWHxeFzf//73lclk9N3vfnfi2kgkouvXr+u1115zva96vS7DMBSJRHTnzp0L16VSqbGtjXt7e1Nrj4ZMpVLpzMcTicRY8DQI5C5Sq9WGr180ueVGTQAAAAAAADdduiBMOpm4+trXvqY333xTf/EXf6Ef/ehHF059ra+v6969ezNfo9lsKhqNKhQKKZ1OT9weaBiGbt++LUl68ODBuQfljxoNjQZ3tpzUx+DjuVzuzLbIgUqlMnx9Urhmmqaq1aqkk1Aul8tduNaNmgAAAAAAAG65lEGYdBIm3b59W0+ePFGhUFA0GtWtW7f01ltv6Ve/+pV+9atf6c6dO6pWq7a2H55Xf/C4ZrOpZDI5tl1wYPCx9fV1tdvtC4OqUYlEYixkSqfT5/Zomubwmqcfc1o8Hh8GbK1WS+Vy+dx1Ozs7kk6m5UYDOa9qAgAAAAAAuCVkWZbldxNuqtfrun37tp4+fapQKHTm45ZlKZlM2r7z4UCz2Tz3zo+RSESpVErr6+s6ODhQq9VSoVDQnTt3pk6CnXeNbDYr0zSHWyoH2xGbzab29vZkmqZyudzEEOyimplMRnfu3FE8HtfBwYGKxaJarZYSiYStyTU3a04Ti8V0fHyszc1NHR0dOVITAAAAAAC4z8/n9Jc+CBsol8v6/ve/f2ayKhKJ6P3339ff/u3fzlzTMAyVSiU1m009efJkGFitr68rkUjo1q1bSqVSC4c/1WpVtVpNBwcHw2sMDpzP5/NjZ4rZVS6Xde/eveGB/JFIRNvb28rn88pkMnP16UbNixCEAQAAAACwmgjCPPTo0SMZhiHDMIZh0rVr1/xuCzMiCAMAAAAAYDX5+Zz+qqdXc9Arr7yi//W//tfMj7t+/bquX7/uQkcAAAAAAABYZit7WP79+/f1u9/9zu82AAAAAAAAsCJWNgjrdrv6q7/6K73yyit6//33/W4HAAAAAAAAS25lgzBJMk1T1WpV6XRaV65c0Ze+9CX98Ic/1AcffOB3awAAAAAAAFgyKx2ESZJlWcOXZrOpYrGora0tPfvss3rllVf07rvvTq3x1ltvedApAAAAAAAA/LSyQdj3v/99WZalUCikra0tSeOhWLfbVbVaVTab1ZUrV3Tjxg398Ic/1K9+9asztRqNhsfdAwAAAAAAwGsre9fIQqGgVCqlbDarJ0+eqF6vy7Is/dM//ZMePHgg0zRlWdZwfavVUqvVkiRFIhGlUiml02lJUr1e9+VzAAAAAAAAgHdWNgiTpEQioXa7rWKxqGw2q3w+r1qtJkl6/Pix6vW6Go2Gms3mWCjW7XZVr9cJwAAAAAAAAAIkZI0mRCus1Wrp5s2bWltbU61W09/8zd+MffzBgweq1WpqNpsyDGPsY6FQSJ988omX7WJBsVhMx8fH2tzc1NHRkd/tAAAAAAAAm/x8Tn9pgrCBfD6vt956S8ViUW+88ca5a54+far79+8PgzGCsNUz+EeztramjY2NiWt3d3e1u7vrUWcAAAAAAATX/v6+9vf3J67pdDrq9/u+BGErvTXyPJVKRdlsVjdv3lS9Xj93OuzatWu6ffu2bt++rWazqS996Us+dYtF9ft9HR8fT1zT6/U86gYAAAAAgGDr9XpTn6f76dIFYZKUSqVkGIZu376tRCKhcrms//7f//uFa3d2djzuEE6xMxEWDoc96gYAAAAAgGALh8Pa3NycuGYwEeaHS7c18rR6va6bN29qe3tbtVpNX/jCF86suXv3rm7fvu1Dd5gXZ4QBAAAAALCa/HxOv+bp1XyQyWT05MkTXbt2TfF4XD/60Y/OrCEEAwAAAAAAuPwufRAmSZFIRI1GQ3t7e3r11Vf1H//jf9Rvf/tbv9sCAAAAAACAhwIRhEnSBx98oO3tbRUKBR0cHCgej+sf//Ef/W4LAAAAAAAAHrkUh+V/8MEHMgxDpmnKMAy1220ZhiHDMPTkyROZpjm2PhQKybIs5XI51Wo11Wo1ff7zn/eneQAAAAAAAHhiZYOwGzduDMOvSSbdC8CyLL333nv64he/qIcPHzrcIQAAAAAAAJbJygZhh4eHw8muSSKRiOLx+PBla2tL6+vrw7evXbvmUccAAAAAAADw08oGYaOi0ahu3rw5FngRcgEAAAAAAGDUSh+W/9JLLymRSKjb7aparerg4EDdblfRaJQQDAAAAAAAAGNWNghLpVK6f//+MPy6d++eLMtSoVDQ1taWnn/+eb3yyiv613/916m13n//fQ86BgAAAAAAgJ9WNghLp9PD169du6ZMJqP79+/ryZMnevjwob72ta/p4cOH2tnZ0ZUrV3Tjxg396Ec/0q9+9asztSqVioedAwAAAAAAwA8ha9pp8yvu6dOnajQaun//vprNpp4+fapIJKJUKqUbN25IkorFoj755BOfO8UsYrGYjo+Ptbm5qaOjI7/bAQAAAAAANvn5nP7SB2GntVot3bt3Tz/96U9lGIZCoZAkEYStGIIwAAAAAABWk5/P6Vd2a+S8EomESqWS/u3f/k0HBwf64he/6HdLAAAAAAAA8EDggrBRiURCjUZD169f97sVAAAAAAAAuCzQQdhAqVTyuwUAAAAAAAC4jCBM0s7Ojt8tAAAAAAAAwGUrEYT98Ic/1Pvvv+93GwAAAAAAAFhhKxGE/Z//83+UTqf1j//4jwvVuXv3rq5cuaL/8B/+g/7v//2/DnUHAAAAAACAVbASQZgkWZalXC6nf/iHf5i7RrFYlGVZ+rd/+zclEgl98MEHzjUIAAAAAACApXbV7wZm9d5776ndbuvevXszP/a5557T06dPlUqlJJ0EY/PUAQAAAAAAwOpZuSDs4OBA2WxWN27c0Pvvv6/Pf/7zth97eHg49vbzzz/vdHsAAAAAAABYUisXhElSrVZTuVxWIpFQs9nUF77whZlrPH78WE+ePHGhO3ip0+koFotNXLO7u6vd3V2POgIAAAAAILj29/e1v78/cU2n0/Gom7NWMgiTpEKhoEQioUQioXq9rv/0n/6T7cc+ffpU6XRa29vbLnYIL/T7fR0fH09c0+v1POoGAAAAAIBg6/V6U5+n+2llgzBJSqVSevjwof7zf/7PunPnjv7rf/2vUx/z/vvvK5vNyjRNvfbaax50CTetra1pY2Nj4ppwOOxRNwAAAAAABFs4HNbm5ubENZ1OR/1+36OOxoUsy7J8ufIMbt68qXq9rlAopE8++eTMx03T1M2bN7W9va033njjwjo/+MEP9Nprr8myLEWjUX344Ydutg0XxWIxHR8fa3NzU0dHR363AwAAAAAAbPLzOf2ap1dzSSQS0XvvvacnT57o1q1b5665c+fOMAQLhUIqlUoedwkAAAAAAAA/XYogbODNN9/Uzs6Obty4od/97nfD9z948GAYfIVCISUSCX3729/2q00AAAAAAAD4YOWCsH/913+d+PFcLqdKpaIvfvGL+u1vfytJwxBssAuUaTAAAAAAAIDgWYkg7LnnnpN0EmTlcrlhwHWRRCKhe/fu6aWXXtK7776rZrOpUCg0/NgXv/hF13sGAAAAAADAclmJIKxUKqnb7apWq2lnZ0epVEpvvfXWxMfE43EdHBzozTffHL4vFApdeIYYAAAAAAAALrerfjdg17Vr1/TSSy/ppZdemulx7733norFon7wgx8MzwcDAAAAAABA8KzERNiiSqWS7t+/L8uy9PjxY7/bAQAAAAAAgA8CEYRJUiaT0cHBge7du+d3KwAAAAAAAPBBYIIw6eSg/Pfee8/vNgAAAAAAAOCDQAVhAAAAAAAACC6CMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAuGq3w0Ai+h0OorFYhPX7O7uand316OOAAAAAAAIrv39fe3v709c0+l0POrmLIIwrLR+v6/j4+OJa3q9nkfdAAAAAAAQbL1eb+rzdD8RhGGlra2taWNjY+KacDjsUTcAAAAAAARbOBzW5ubmxDWdTkf9ft+jjsaFLMuyfLkysIBYLKbj42Ntbm7q6OjI73YAAAAAAIBNfj6n57B8AAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIFz1uwFgEZ1OR7FYbOKa3d1d7e7uetQRAAAAAADBtb+/r/39/YlrOp2OR92cRRCGldbv93V8fDxxTa/X86gbAAAAAACCrdfrTX2e7ieCMKy0tbU1bWxsTFwTDoc96gYAAAAAgGALh8Pa3NycuKbT6ajf73vU0biQZVmWL1cGFhCLxXR8fKzNzU0dHR353Q4AAAAAALDJz+f0HJYPAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQ5gPDMJROp32tWS6XlU6nFY1GFQqFtLW1pWw2q2azOXcPbtQEAAAAAABwCkGYg0zTVCgUmvqytbWleDzuS81ms6loNKpisShJqtVqarfbKpVKarVaSqfTSqfTMk3T9uftRk0AAAAAAACnXfW7gcukWq3aXjsIjbys2Ww2h1NjuVxOlUpl+LF4PK5MJqNkMqlms6lkMqnDw0NFIhHPawIAAAAAALghZFmW5XcTl0U0GrU19ZRKpdRoNDytaZqmnnvuOZmmqXg8rna7fe46wzC0tbXlW027YrGYjo+Ptbm5qaOjo4XrAQAAAAAAb/j5nJ6JMIdUq1WZpqlCoTD1rK7t7W3Pa2az2WGgNmlybDDFVa/X1Ww2Va1WlcvlPKsJAAAAAADgFibCHDKYeLpoKsrPmqMTWZLU7XYnbk+s1+vKZrOSpEgkom6360nNWTARBgAAAADAavLzOT2H5TugXq/LMAzb5355XbNUKg1fT6VSU8/oymQyw9dN01S9XvekJgAAAAAAgJsIwhywt7enSCSimzdvLmXN0QP3E4mErceM3oHy3r17ntQEAAAAAABwE0HYglqtllqtlkzTVDQa1dbWlvL5/EITT07WbLVaY2/fuHHD1uNGw63T13WjJgAAAAAAgNsIwhZ0euuiYRiqVqvKZrMKhULKZrNngiMvazabzbG3R6eyJjm9bvR6btQEAAAAAABwG0HYAgzDOBMKnVav15VMJpXP532p+fDhw7G3p53lNfDss8+OvX1wcOBqTQAAAAAAALdd9buBVRaPx1WpVGSaptrttprNpgzDOHdttVrVwcGBDg8PPa15+rHzTm+N3rnSjZoAAAAAAABuIwhbUC6XG3vbNE1Vq1Xt7e3JNM2xj7VaLaXTaTUaDc9qXhSizWr0um7UBAAAAAAAcFvIsizL7yYuq3q9rtu3b58JfEqlkgqFgic1Q6HQ2Nt2v93NZlPpdHr4diaTUa1Wc63mrGKxmI6Pj7W2tqaNjY25aoza3d3V7u7uwnUAAAAAALis9vf3tb+/v3CdTqejfr+vzc1NHR0dOdCZfUyEuSiTySiVSmlnZ2fsYPi9vb25gzA3atrhxvSWEzX7/b6Oj48XrtPr9RauAQAAAADAZdbr9Rx5Du4ngjCXRSIRHR4eKplMDoMr0zTVbDaVSqVcrxmJRBwJnEYPxHej5rycmggLh8ML1wAAAAAA4DILh8Pa3NxcuM5gIswPBGEeuXv3rpLJ5PDtRqMxdxA2S8319XVHQqv19XVXa85rY2PD8zFKAAAAAACCyKljhQbHHflhzZerBlAikRgLqZw4cN5OzXmnrk4HXacnwpyuCQAAAAAA4DaCMA+NHhTvVc3t7e2xt+1Ocj158mTs7a2tLVdrAgAAAAAAuI0gzEPxeHz4uhPbAu3UHN06KdmfRGu322Nvj06euVETAAAAAADAbQRhHhoNrZzaFjit5unpLbuh1eiUVyQSGbuOGzUBAAAAAADcRhDmoYODg+HrTm2TnFYzkUiMBWQPHz6cue7p4MuNmgAAAAAAAG4jCPPQ6NZAp7YF2ql58+bN4eutVstW3dF1xWLRk5oAAAAAAABuIgjzUL1elyQVCgVPa+bz+eHrzWZzas3RNfF4/NyAzY2aAAAAAAAAbiII80i9XpdhGIpEIrpz546nNROJxFjwNAjPLlKr1YavXzS55UZNAAAAAAAANxGEzanZbCoajSoUCimdTk/cHmgYhm7fvi1JevDgwYUH5btRc6BSqQxf39vbu3CdaZqqVquSTrZa5nI5T2sCAAAAAAC4hSBsTrVabXgXxGazqWQyObZdcGDwsfX1dbXbbSUSCU9rDsTj8eFUVqvVUrlcPnfdzs6OpJO7Oo5OcXlVEwAAAAAAwC0EYXPKZrNn3letVhWNRpXNZpXP55VMJpVOp5XL5XR4eKh4PO55zVGZTEaNRkORSETFYlHZbFatVkumaQ7DtVarpUQiocePH0+dMnOrJgAAAAAAgBtClmVZfjexqgzDUKlUUrPZ1JMnT2SapiKRiNbX15VIJHTr1i2lUqmZwh83ap6nXC7r3r17MgxjeI3t7W3l83llMpmlqXmRWCym4+NjbW5u6ujoyNHaAAAAAADAPX4+pycIw0oiCAMAAAAAYDX5+ZyerZEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCFf9bgBYRKfTUSwWm7hmd3dXu7u7HnUEAAAAAEBw7e/va39/f+KaTqfjUTdnEYRhpfX7fR0fH09c0+v1POoGAAAAAIBg6/V6U5+n+4kgDCttbW1NGxsbE9eEw2GPugEAAAAAINjC4bA2Nzcnrul0Our3+x51NC5kWZbly5WBBcRiMR0fH2tzc1NHR0d+twMAAAAAAGzy8zk9h+UDAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAAC4arfDQCL6HQ6isViE9fs7u5qd3fXo47GWZbUtyavWQtJoZA3/QAAAAAA4Kb9/X3t7+9PXNPpdDzq5iyCMKy0fr+v4+PjiWt6vZ5H3ZzVt6Sr35u85uPXpSsEYQAAAACAS6DX6019nu4ngjCstLW1NW1sbExcEw6HPeoGAAAAAIBgC4fD2tzcnLim0+mo3+971NG4kGVZUzZuAcsnFovp+PhYm5ubOjo68rudC33StzkRxml9AAAAAICA8PM5PU+/AQAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgXDV7waARXQ6HcVisYlrdnd3tbu761FHAAAAAAAE1/7+vvb39yeu6XQ6HnVzFkEYVlq/39fx8fHENb1ez6NuAAAAAAAItl6vN/V5up8IwrDS1tbWtLGxMXFNOBz2qBsAAAAAAIItHA5rc3Nz4ppOp6N+v+9RR+NClmVZvlwZWEAsFtPx8bE2Nzd1dHTkdzsX+qQvXf3e5DUfvy5d4bQ+AAAAAEBA+PmcnqffAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgXPW7AQAAAMAOy5L61uQ1ayEpFPKmHwAAsHoIwgAAALAS+pZ09XuT13z8unSFIAwAAFyArZEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEC46ncDwCI6nY5isdjENbu7u9rd3fWoIwAAMMqypL41ec1aSAqFvOkHAAC4a39/X/v7+xPXdDodj7o5iyAMK63f7+v4+Hjiml6v51E3AADgtL4lXf3e5DUfvy5dIQgDAOBS6PV6U5+n+4kgDCttbW1NGxsbE9eEw2GPugEAAAAAINjC4bA2Nzcnrul0Our3+x51NI4gDCttY2NDR0dHfrcBAAAAAABk73iiWCzm29QYh+UDAAAAAAAgEAjCAAAAAAAAEAgEYQAAALg03nnkdwcAAGCZEYQBAABgJdgJub5VJwwDAAAXIwgDAADA0nv6kfTdn9tb+52fSb2PXG0HAACsKIIwAAAALL2ftKQ//Nne2t//SXq75W4/AABgNRGEAQAAYOn94tezrf/ljOsBAEAwEIT5wDAMpdPphetsbW0pFAqpXq/P/Nhyuax0Oq1oNKpQKKStrS1ls1k1m825+3GjJgAAgCR1/+juegAAEAwEYQ4yTVOhUGjqy9bWluLx+ELXKhaLMgxj5sc1m01Fo1EVi0VJUq1WU7vdVqlUUqvVUjqdVjqdlmmavtYEAAAYFf2Mu+sBAEAwXPW7gcukWq3aXjsIjebRbDZVLpfnetxgEi2Xy6lSqQw/Fo/HlclklEwm1Ww2lUwmdXh4qEgk4nlNAACA0158QXrvN/bXf/kF93oBAACri4kwB+3t7dlal0ql5p4IM01T2Wx2ocfF4/GxwGpUrVaTdLJ9c9p13KgJAABwnm8mpM9+yt7az31aejnhbj8AAGA1MRHmkGq1KtM0VSgUpp7/tb29Pfd1bt++rfX1dUmaaathNpsdrp80jTaY4qrX62o2m6pWq8rlcp7VBAAAOM+1Z6Qff0X6lo2jUd/8qhR+xvWWAADACgpZlmX53cRlsLW1JUlqt9uuXaNarSqfz+vw8FA7OzvDEKpWqymTyVz4OMMwhv1JUrfbnbg9sV6vDye3IpGIut2uJzVnEYvFdHx8rM3NTR0dHS1Uy02f9KWr35u85uPXpSvMZgIALikn/19op9bbGembSfv9AQAA7/n5nJ6n3w6o1+syDGOhc7+mMQxD+XxehUJBicRss/6lUmn4eiqVmnpG12ioZprmuXeldKMmAADAor5+3e8OAADAMiMIc8De3p4ikYhu3rzp2jWy2awSicRYAGXX6CH+dkO00TPM7t2750lNAAAQTO888rsDAAAQFARhC2q1Wmq1WjJNU9FoVFtbW8rn845OPBWLRbVareGh87P2N+rGjRu2Hjcabp3+XNyoCQAALic7Ide36oRhAADAGwRhCzq9HdIwDFWrVWWzWYVCIWWz2TPB0SxarZbK5bIqlcpcd5psNptjb9utcXrd6OfgRk0AAHD5PP1I+u7P7a39zs+k3keutgMAAEAQtgjDMM6EQqfV63Ulk0nl8/m5rrGzs6NMJjP3XRYfPnw49va0s7wGnn322bG3Dw4OXK0JAAAun5+0pD/82d7a3/9Jepu/kQEAAJcRhC0gHo+rUqmoVCopl8tNnIyqVqtKJme7hdHgLot3796du0fDMMbennd6a/RumG7UBAAAl88vfj3b+l/OuB4AAGBWV/1uYNWdntQyTVPValV7e3syTXPsY61WS+l0Wo1GY2rder2uer2uRqNhe+LqPKdDq3mNfi5u1AQAAJdP94/urgcAAJgVE2EOi0QiKhQK6na7qtVqZ0KsZrOpcrk8sYZpmspms8rlckqlUgv1M2/YdLrvJ0+euFoTAABcPtHPuLseAABgVkyEuSiTySiVSmlnZ2fsYPi9vT0VCoULH7ezszPcdrks3JjecqJmp9NRLBZbuM7u7q52d3cXrgMAAP7diy9I7/3G/vovv+BeLwAAYHH7+/va399fuE6n03Ggm/kQhLksEono8PBQyWRyGIaZpqlms3nutFe5XFar1dLh4aFj13cicBqd5nKj5rz6/b6Oj48XrtPr9RauAQAAxn0zIb32L/YOzP/cp6WXE+73BAAA5tfr9Rx5Du4ngjCP3L17d+yw/EajcSYIa7VaKhaLKpVKSiSc+U1wfX3dkdBqfX3d1ZrzWltb08bGxsJ1wuHwwjUAAMC4a89IP/6K9K369LVvflUKP+N6S0OWJfWtyWvWQlIo5E0/AACsgnA4rM3NzYXrdDod9ft9BzqaHUGYRxKJhFKplJrNpqTzD5zPZrNKJBITt03Oat6pq9NB1+mJMKdrzmtjY0NHR0cL1wEAwC/LGsg41dc3rk8Pwt7OnKzzUt+Srn5v8pqPX5euEIQBADDk1LFCsVjMt8kygjAPpdPpYRB2WrlclmEYSqVSymazU2uNhkp7e3u6d+/e8O1bt24pk8lIkra3t8fOJzNN01YAdfog+62treHrbtQEACColjWQ8bKvr3scggEAgOAiCPNQPB4fvn56W+CHH34oSRcGZZO0Wq2xYCoejw+DsNHtmNLJJJqdbZftdnvs7dFtnG7UBAAAAAAAcNua3w0EyWgQ5sS2QDu2t7fH3j5vS+Z5RifOIpHIWO9u1AQAAAAAAHAbQZiHDg4Ohq+n0+mxj5VKJVmWZftlNESq1WpjHyuVSsOPJRKJsdDt4cOHM/d6OvhyoyYAAAAAAIDbCMI8NLo10MttgTdv3hy+PrqFcpLRdcVi0ZOaAAAAAAAAbuKMMA/V6ye3THLyrpB25PN5VatVSfbOIBtdE4/Hzw3t3KgJAAAwyVro5ID+aWsAAAAuwkSYR+r1ugzDUCQS0Z07dzy9diKRGAueBoHcRWq12vD1iya33KgJAAAwSSgkXVmb/BLyIQizLOmT/uQXy/K+LwAAcBZB2Jyazaai0ahCoZDS6fTE7YGGYej27duSpAcPHnh2UP6oSqUyfH1vb+/CdaZpDie9UqmUcrmcpzUBAABWTd+Srn5v8kufIAwAgKVAEDanWq02vAtis9lUMplUPp8/s27wsfX1dbXbbSUSCY87PRGPx4dTWa1WS+Vy+dx1Ozs7kk7u6jg6xeVVTQAAAADLiwlIAKuOIGxO2Wz2zPuq1aqi0aiy2azy+bySyaTS6bRyuZwODw/H7vToh0wmo0ajoUgkomKxqGw2q1arJdM0h4Fdq9VSIpHQ48ePbU2uuVETAAAAwHJiAhLAqiMIm1MqlVK73VYul1M8Hh8LeFqtlp48eaI7d+6o2+2qVCo5HgC1221ZliXLspTJZGbqe9CTYRja2dkZhnfr6+uq1Wo6PDycqV83agIAAAAAADiNu0YuIB6Pj52TtUoKhYLjd690oyYAAAAAAIBTmAgDAAAAzvHOI787AAAATiMIAwAAwFxWOSiy0/u36qv9OQIAgLMIwgAAAHDGZQ6Knn4kfffn9tZ+52dS7yNX2wEAwDbu3Lo4zggDAADAmFmDohf/Wgo/c/7H10LSx69PrrEWmqm9hf2kJf3hz/bW/v5P0tst6e//zt2eAACwY3Dn1kk+fl264vH/W1cJE2EAAABLzuupq3mCoouEQtKVtckvIY9/Wf/Fr2db/8sZ1wMAgOVFEAYAAOCjZdyCeNmDou4f3V0PAACWF0EYAACAT5b1rKrLHhRFP+Pu+nlx7gsAAO7jjDAAAACfLOtZVcsaFDnlxRek935jf/2XX3Cvl1Gc+wIAgPuYCAMAAPDJsm5BfHHG4MeroMgp30xIn/2UvbWf+7T0csLdfgAAgHeYCMNK63Q6isViE9fs7u5qd3fXo44AALBvWbcgfjMhvfYv9qbVVjEouvaM9OOvnJy9Ns2bX734jpgAAOCs/f197e/vT1zT6XQ86uYsgjCstH6/r+Pj44lrer2eR90AAILCsk62sU2yFpp+N0SntyA61VcQgqJvXJ/++b2dOVkHAADs6/V6U5+n+4kgDCttbW1NGxsbE9eEw2GPugGA1eZUiBIETp3l5PRZVU6eMUVQJH3dwc/tnUfSy0nn6gEAsKzC4bA2Nzcnrul0Our3+x51NI4gDCttY2NDR0dHfrcBAJfCsh7UfZkDulXfguhkULTK3nk0fc236tKVtdUMDi/zv0EAgPPsHE8Ui8V8mxojCAMAAEttWQM6JwRhC+Jl9/Qj6bs/t7f2Oz+TXvzr1fs+XuZ/gwCA4OGukQAAAD6yMyF02bcgrrKftOxN9EnS7/8kvd1ytx8AADAZQRgAAMCSYwvi8vrFr2db/8sZ18/LsqRP+pNfrCnbHQEAuIzYGgkAwArj7B7AX90/urt+XmxnBADgfARhAAB4zMnwiie7gL+in3F3PQAAcBZBGAAAHiO8Ai6PF1+Q3vuN/fVffsG9XgAAwHScEQYAAADM6ZsJ6bOfsrf2c5+WXk6420+QcA4aAGAeTIQBAGAT53GtNr5/cMO1Z6Qff0X6Vn362je/KoWfWex67zySXk4uVuOyYLoWADAPgjAAAGziSddq4/sHt3zj+vQg7O3MybpJ3nk0/VrfqktX1qbXAgAA5yMIAwAAjmP6avWthU6CwWlrYM/XpwRXTz+Svvtze7W+8zPpxb9efLoMAIAgIggDAACOY/pqedndWhcKXe7vz7IFfT9pSX/4s721v/+T9HZL+vu/c7cnAAAuIw7LBwAAuCTsbq2zs+6yC4VOthhOevFyYvEXv55t/S9nXA94if/GAFhmBGEAAAAu8PqJ4Kxb63ofudoOZtT9o7vrEWxO3mGTwB3AqmNrJAAAwIyW8VBzttattuhn3F2Pizl5puGyno/o1HZ1zrIDcBkQhAEAAMxgWZ8IzrO1jiBsebz4gvTeb+yv//IL7vUSNE6eaXjZz0ckcAdwGRCEAcAKWta/OANB4PQTQacObWdr3Wr7ZkJ67V/s/Wx97tPSywn3e4K/lvH/9QTuAC4DgjAAWEGX/S/OwDJz+omgU3dnZGvdarv2jPTjr5xsqZ3mza86M2Vo9w6iXtfCiWX8fz2BO4DLgMPyAQAAZrCsTwRfnHGrHFvrlo+d8+Tezthb5+SB5hyOjgECdwCXAUEYAACwbVmf6HrZ17I+EfxmQvrsp+ytZWvd6vq6jRDMyTuIOn03UifvXgjvEbgDuAwIwgAAgKTlnfpYtr6W9YngYGudHU5trcNymuccOy9qSf++3W/Sy7RzseAfAncAlwFBGAAAcHzqwynL2NcyPxF0cmsdVtc859h5UcsPyzrFuqoI3AFcBgRhWGmdTkexWGziy/7+vt9tAoCv7DwRdHrqwynL2NeqPxG0s7UOq83Jc+yW9Uw8afmmRYPisgfubN8FFre/vz/1eXqn0/GtP+4aiZXW7/d1fHw8cU2v1/OoGwDwnt0nglfWJj8pcfpOiE7xui+7d777xvXpd/db5SeCmM1a6OTufdPWeMXJc+yW9Uy8WadFX/zr5QulL7NVDtyX8W6dwKrp9XpTn6f7iSAMK21tbU0bGxsT14TDYY+6AQDn2AlknHwiuKxTH0725VRoaNcqPxHEbEKh5XpS/OIL0nu/sb9+0jl2TtZy0jzTol6E9wCAk+fgm5ubE9d0Oh31+32POhpHEIaVtrGxoaOjI7/bAICZOBXIOPlEcFmnPpzqi+kRBMk3E9Jr/2Lvvw/TzrFzspaTlnWKFQAg7e7uand3d+KaWCzm29QYZ4QBAOAhJw9/d/IQaz/uhGgnEHSqr2U8awxwi5Pn2C3rmXjLOsUKAFh+BGEAAHjIyUDGySeCTt8J0alDrJ3qa9XvfAfMyskDzZfxcPRlnWIFACw/gjAAADzkZCDj5BNBJ6c+nJx6c6ovpkeAs5w8x87rM/H8mGIFAFwOBGEAAHjIyUDG6SeCTk19OL0N0Ym+mB4BLhenp1gBAMHBYfkAAHjIyUDGj0Os7Ux9+HGI9bS+lvXOd8CotZD08evT1+Dfp0W/VZ++1suzywAAy4+JMAAAPOTkFBeHWNvH9AhWQSh0crfYSS8hgrChZTy7zA47ZygCANzDRBgAAB5yeorrG9enT0RwiHVwpkeYKMJl8M4j6eWkM7W8PrvM7o1CrqwtX0AHAEHBRBgABJxlSZ/0J79Ylt9dzm/ZPj8/prg4xPrEqk6PzIKJIiw7p+4o6zU7/Th5oxAAgHuYCAOAgOtb0tXvTV7z8evSFQ+fPFvWSV+TrIXsPaFfxs9vGae4nOTH2WVO8To0BIJk1qDoxb/2ZjrTqSmueW4Usuj5iE5ychIPAJYZE2EAgKUzCK8mvUwLyvzi1BTDKgcyy3p2GQB/OX1HWSc4OcU1z41CvLKqk3gA4AYmwgAAsImzX+y77FNvnMUFzM6PO8pO4+QU1zLeKERa3kk8J6e/AWAWBGEAANiwrE8kVtkqT72FQt5upwUug2UMipwM5/y4UYid7YzLumVzGY8uABAMBGEAANiwrE8kAOA8yzi1uIx3lHUynHvxBem939ivNe1GIU5NIS/jJB4A+IkzwgAAsGGZz34BgNOW8Q6iy3hHWSfDuW8mpM9+yl6daTcKcfLssmWcxMNslu0O2MCqYyIMAAAbeCIBAItZxjvKOjnFNbhRyLTzEaXpNwpxcgp5GSfxgsKpc9DYRgo4iyAMAAAbeCIBIKic2mbpZFDkFKfDOaduFOLkdkant2zCPgIsYDmxNRIAABuWcUsPAHjByW2Wdu4U6+UdZQfhnB1OhXN2bhTi5BSyk1s2AeAyYCIMAAAblnFLj9OW8XBtAMFj946yTv03y6kpLic5OYW8jJN4AOAngjAAAGwIwhOJUGg5t2cQ0AE4j5f/zbIbzjnF6e2Myxj2Ocmps7iCgK8VQBAGAIBtl/2JxLJy6skugRqAVeHHFLLXYZ+TOIvLPr5WAEEYAACO8vqJBOGOfcs68QYApy3zFDL/3wGw6gjCsNI6nY5isdjENbu7u9rd3fWoIwDwFuEOAFxOyzqFzP93AEyzv7+v/f39iWs6nY5H3ZxFEIaV1u/3dXx8PHFNr9fzqBsAwAATAwDgvlXezgjg8ur1elOfp/uJIAwrbW1tTRsbGxPXhMNhj7oBAAwwMQAAABBM4XBYm5ubE9d0Oh31+32POhpHEIaVtrGxoaOjI7/bAICZMC0FAACAy8rO8USxWMy3qTGCMAAAPMa0FAAAAOCPNb8bAADAb+888rsDAAAAAF4gCAMAXGp2Qq5v1QnDAAAAgCBgayQAYCW980h6OTl5zdOPpO/+3F697/xMevGvpfAzC7cGALgAZyQCAPzGRBgAXFJeTzhZlvRJf/KLZdmr5dQU109a0h/+bO+av/+T9HbL3loAwHxCIenK2uSXEEEYlhxT5MBqYyIMAFaQ3aDoypr0jevu9yNJfUu6+r3Jaz5+ffoh8U5Ocf3i1/bqDPzy19Lf/91sjwEAAJfHMv6OBcBZBGEAsGIu+3a/eaa4Lgqvun+c7dqzrgcAYBRbP1fbZf8dC8AJgjAAWDFOBkXLyMkpruhnZqs163oAwOpzMrwKhaZPPmN5XfbfsQCc4IwwAFgx8wRFq8TJKa4XX5it1pdnXA8AWH2cW4aBy/47FoATBGEAsGIu+3Y/J6e4vpmQPvspe3U+92np5cRs1wYAAO7x+lD6y/47FoATbI0EgAks6+QQ+EnWQt7+pfiyb/d78QXpvd/YXz9piuvaM9KPv3JyqO00b36Vcz4AAJfTMp5dtoyH0l/237EAnGAiDAAmGNwJcdLLtKDMaX5s9/PyL7JOT3HZ+eX57Qx3fgIAXF7Ltv1z1kPpex+52s4QRyoAwUAQBgArxumgyO5fZL0KwwZTXHY4NcX1dUIwAAA8M8+h9F7gSAUgGAjCAGDFOBkULetfZJniAgDg8lrWQ+n9+GMcAO9xRhgArKBvXJ9+7pWdoGiVbxPOFBcA4DJbxnO9nLLMh9I79TsWgOXFRBgAXFJ2gqJl/YssAABBt2znejlp1Q+l549xwGojCAOAAFvmv8gCAIDLiUPpAfiJIAwAAmzV/yILAABWD4fSO8/LO3wDq44gDAACjL/IAgAAr/lxKP0qB0XLdodvYNURhAFAgPEXWQAA4Acn7xC9ykHRtJ6W9Q7fwCojCAOAAOM24QAAYFnZOZR+mYMiJwK6ee7wDWAygjCstE6no1gsNvFlf3/f7zaBpebkX2QBAAC8tKxBkVMBHXf4xira39+f+jy90+n41t9V364MOKDf7+v4+Hjiml6v51E3wGSWJfWtyWvWQst5K3RuEw4AAJbRPEHR3/+dO72MmiegO68v7vCNVdTr9aY+T/cTQRhW2tramjY2NiauCYfDHnUDTNa3pKvfm7zm49elK0sYhAEAACyjZQ2KnArouMM3VlE4HNbm5ubENZ1OR/1+36OOxhGEYaVtbGzo6OjI7zYAAAAA+GBZgyKnAroXX5De+439OtzhG8tgd3dXu7u7E9fEYjHfpsYIwgAAnnnnkfRy0u8u5rcWOpnam7YGAAB4Y1mDIqcCum8mpNf+xd42S+7wDdjDYfkAAEes8q3L7QqFpCtrk1+W8Yw3AAAuq28mpM9+yt5aL4OiF2cM3C4K6LjDN+A8JsIAAAub9c5IL/715F/UmLwCAAB2DIKib9Wnr/UyKHJykusb16d/ftzhG7CPIAwAsDCn7ow0EAo5d9MAQjUAAC63ZQyKvA7ouMM3YB9bIwEAC5vnzkheYTsjAADwIyiyE7wxyQV4jyAMALCwZb11OQAAwDJjkgvwHlsjASzEsqS+NXnNWoiJm8tuWW9dDgAAAACjmAjzgWEYSqfTttfm83ltbW0pFAopGo0qmUwqn8/LMIy5eyiXy0qn04pGowqFQtra2lI2m1Wz2Vyqmlh+fUu6+r3JL9OCMqw+p+6MBAAAAABuIghzkGmaCoVCU1+2trYUj8en1iuXy9ra2lK1Wh2GXqZpqtVqqVqtamtrS+VyeaYem82motGoisWiJKlWq6ndbqtUKqnVaimdTiudTss0TV9rAlgty3rrcgAAAAAYxdZIB1WrVdtrB6HRRdLptJrNpiKRiFKplOLxuAzDUKvVGpsEKxaLisfjymQyU6/ZbDaHk2i5XE6VSmX4sUGNZDKpZrOpZDKpw8NDRSIRz2sCWD3LeutyAAAAABjFRJiD9vb2bK0bBFsXKRaLajabKpVK6na7qtVqKpVKY5NWo7LZ7NRrmqY5XBePx8cCq1G1Wk3SyZbMaXXdqAlgdXFnJAAAAADLjokwh1SrVZmmqUKhMPX8r+3t7Qs/ZhiGyuWyGo2GUqnUuWsKhYLa7fbYBFqr1VIicfFeo2w2O9yaOGkabTDFVa/X1Ww2Va1WlcvlPKsJ4HLjzkgAAAAA/EQQ5pBSqaR4PH5mWmtWxWJRpVLpwhBs9HqjQViz2bwwCDMMY+zA+ps3b06sfevWLdXr9WE/54VWbtQEAAAAAABwE0GYA+r1ugzDuHBr4CwGU2XTRCKR4blhg7cvMhrOpVKpqWd0jZ43Zpqm6vX6mTPI3KgJAAAAIBjWQtLHr09fAwBOIwhzwN7eniKRyNSpKDsajYbttU+ePBm+Pmm75ejk2KTtk6NGQ7Z79+6dCa3cqAkAAAAgGEIh6coSBl0EdMDlx2H5C2q1Wmq1WjJNU9FoVFtbW8rn88NtgG4xTXN4PlcqlbowjGq1WmNv37hxw1b90XqnPxc3agIAAACA30Ih6cra5JcQQRiw0gjCFnT6kHjDMFStVpXNZhUKhZTNZs8ER064f/++pJMpq8FdGc8zeo7XYL0dp9eNfg5u1AQAAAAAAHAbQdgCTh8Yf556va5kMql8Pu/YdU3TVD6fVyKRUKPRmHg+18OHD8fennaW18Czzz479vbBwYGrNQEAAAAAANxGELaAeDyuSqWiUqmkXC43cTKqWq0qmUwufE3DMJRMJhWJRPTgwYOp01iDM7lGe7bj9Lp2u+1qTQAn3nnkdwcAAAAIMn4fxWXHYfkLyuVyY2+bpqlqtaq9vb3hGV4DrVZL6XR6pgPxR9XrdWWz2eHb0WhUpVJp4l0mT4dW8xr9XNyoCayydx5JL9vIue38UvGt+snZE9+4vnhfdnEoLAAAQDAs6++jgJeYCHNYJBJRoVBQt9tVrVY7s22w2WyqXC7brmeapsrlsra2tsZCsIFisXju+0cfP4/TfY/eodKNmsCysvvLwrR1Tz+Svvtze9f8zs+k3kf21jqBQ2EBAAAuP6d/H7Us6ZP+5BfLWrhtwHFMhLkok8kolUppZ2dn7GD4vb29iVNco5rNptrttlKp1IVnktXrdZXLZds15+HG9JYTNTudjmKx2MJ1dnd3tbu7u3AdXC6z/rLw4l9L4WfO//hPWtIf/myv1u//JL3dkv7+7y5ewxQXAAAAZuH076N9S7r6vcl1Pn5dusLvpJfK/v6+9vf3F67T6XQc6GY+BGEui0QiOjw8VDKZHIZhpmmq2WwqlUpNfXwmk1Emkxl7X7VaVbFYHAuSisWicrncmamrSCTiSOA0WteNmvPq9/s6Pj5euE6v11u4Bi4fJ39Z+MWvZ7v2L389+RePUIhfKgAAAGCf07+PIph6vZ4jz8H9RBDmkbt3744dlt9oNGwFYefJ5XJKpVJKJpNjgVS1Wj0zFba+vu5IaLW+vu5qzXmtra1pY2Nj4TrhcHjhGrh8nPxlofvH2WrNuh4AAACYhN9H4YRwOKzNzc2F63Q6HfX7fQc6mh1BmEcSiYRSqdRwa+OiB87H43E9ePBgLFx7+PDhmXXzTl2dDrpOT4Q5XXNeGxsbOjo6WrgOcB4nf1mIfma2WrOuBwAACCqOjLCH30fhBKeOFYrFYr5NlnFYvofS6bSj9RKJxNi2yfPCte3t7bG37U5ynT7Ifmtry9WawDJy8peFF1+YrdaXZ1y/DAa/hE564ZdQAADgNG78Y08Qfh8F7CAI81A8Hh++7sS2QEm6devW8PXzAqnRiTHJ/iRau90ee3t0G6cbNYFl5OQvC99MSJ/9lL06n/u09HJitmsvA34JBQAAWF5B+H0UsIOtkR4aDcKc2BYonUyFTap5enrLMIyxx1xkNFSLRCJjvbtRE1hG30xIr/2LvQPzp/2ycO0Z6cdfkb5Vn17rza9efPdJAAAABItTWz/5fRQ4wUSYhw4ODoavO71NUjobUEknQdloQHbeOWLnGe31dF03agLLaPDLgh12fln4xvXpdd7O2FsHAACA5ebUsRFOTt3z+yhAEOap0a2BTm0LHN2WeFG4dvPmzeHrrVbLVt3RdcVi0ZOagFMsS/qkP/nFsuzV8vqXha/zSwcAAMClsKrHRvjx+6iTv78D07A10kP1+skMaqFQcKzmIFyKRCJjB+ePyufzqlarkjS8a+Uko2vi8fi5oZ0bNQGn9C3p6vcmr/n4demKQ794EF4BAAAA8/P693cEGxNhHqnX6zIMQ5FIRHfu3HGs7t7eniTp7t27F65JJBJjwdMgkLtIrVYbvn7R5JYbNQEAAAAAANxEEDanZrOpaDSqUCikdDo9cXugYRi6ffu2JOnBgwcTD8ovl8tKJpMqFovn3gVy1GBNoVC4cBpsoFKpDF8fhGfnMU1zOOmVSqWUy+U8rQkAAAAAAOAWgrA51Wq1YVDVbDaVTCaVz+fPrBt8bH19Xe12e+LdFU3TVLFYVKvVUrlcVjQavXB6KpvNqlwuq1QqqVQqTe03Ho8Pp7IG9c+zs7Mj6WSr5egUl1c1AQAAAAAA3EIQNqdsNnvmfdVqVdFoVNlsVvl8XslkUul0WrlcToeHh4rH4xNrRiKRM2sGgVg2m1WxWFQ6nVY0GpV0cvj+LOeNZTIZNRoNRSIRFYtFZbNZtVotmaY5DOxarZYSiYQeP348cXLNzZoAAAAAAABuIAibUyqVUrvdVi6XUzweHwt4Wq2Wnjx5ojt37qjb7apUKtkOgA4PD1UoFJRIJM7UNAxD2WxWjx8/Vq1WmxqsXdT3oCfDMLSzszMM2tbX11Wr1XR4eDhTYOVGTQAAAAAAAKdx18gFxOPxsXOynBCJRGxtdVxUoVBw9O6VbtUEAAAAAABwChNhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAADHvfPI7w6AswjCAAAAAADATOyEXN+qE4Zh+RCEAQAAAAAA255+JH335/bWfudnUu8jV9sBZnLV7waARXQ6HcVisYlrdnd3tbu761FHAAAAAHC5/aQl/eHP9tb+/k/S2y3p7//O3Z6wPPb397W/vz9xTafT8aibswjCsNL6/b6Oj48nrun1eh51A0y2FpI+fn36GgAAAGCZ/eLXs63/5a8JwoKk1+tNfZ7uJ4IwrLS1tTVtbGxMXBMOhz3qBhd555H0ctLvLvwXCklXCLoAAACw4rp/dHc9Vls4HNbm5ubENZ1OR/1+36OOxhGEYaVtbGzo6OjI7zYCze4hmVfWpG9cd78fAAAAAO6Kfsbd9Vhtdo4nisVivk2NcVg+gLmt8iGZ3L0GAAAAmM+LL8y2/sszrgfcRBAGYG7zHJLpBW7lDAAAALjnmwnps5+yt/Zzn5ZeTrjbDzALtkYCmNsyHpI565Tai38thZ+5eA0H3AMAAADjrj0j/fgrJ39cnubNr07+fRvwGhNhAOa2jIdkOj2lFgqdnG826SVEEAYAAICAsXP+79sZzgnG8iEIAzC3ZTwkc54pNQAAAADO+zohGJYQQRiAuS3jIZnLOKUGAAAAAFgOBGEA5raMh2Qu45QaAAAAgMVwoys4hSAMwNwGh2Ta4dUhmcs4pQYAAADgYtz1HV4iCAOwkGU7JHMZp9QAAAAAnG/Wu773PnK1HQQAQRgA13l5SOYyTqkBAAAAOJ/Td31fRpYlfdKf/GJZfncZHFf9bgAAnPaN6yej05NwK2cAAADAf/Pc9f3v/86dXtzSt6Sr35u85uPXpSshb/oJOibCAAQSt3IGAAAA/Mdd3+E1gjAAAAAAAOAL7voOr7E1EgAAAACAAFgLnWzBm7bGSy++IL33G/vrues7FsVEGIClwSGSAAAAgHtCIenK2uSXkMdBGHd9h9eYCAOwNDhEEgAAAAiWwV3fp93sSuKu73AGE2EAAAAAAMA3du7mzl3f4RSCMAAAAAAAsNS46zucQhAGAAAAAACAQCAIAwAAAAAAQCBwWD5WWqfTUSwWm7hmd3dXu7u7HnUEAAAAAEBw7e/va39/f+KaTqfjUTdnEYRhpfX7fR0fH09c0+v1POoGAAAAAIBg6/V6U5+n+4kgDCttbW1NGxsbE9eEw2GPugEAAAAAINjC4bA2Nzcnrul0Our3+x51NI4gDCttY2NDR0dHfrcBAAAAAIGyFpI+fn36GgSPneOJYrGYb1NjBGEAAAAAAGAmoZB0haALK4ggDMBKeeeR9HJy8hr+OgUAAAAEk2VJfWvymrXQSZCHYCIIA7A03nk0fc236tKVNekb1y9ew1+nAAAAgGDqW9LV701e8/HrPF8IsjW/GwAASXr6kfTdn9tb+52fSb2PXG0HAAAAAHAJEYQBWAo/aUl/+LO9tb//k/R2y91+AAAAAACXD0EYgKXwi1/Ptv6XM64HAAAAAIAgDMBS6P7R3fUAAAAAABCEAVgK0c+4ux4AAAAAAIIwAEvhxRdmW//lGdcDAAAAAEAQBmApfDMhffZT9tZ+7tPSywl3+wEAAAAAXD4EYQCWwrVnpB9/xd7aN78qhZ9xtR0AAAAAwCVEEAZgaXzj+vQ1b2fsrQMAAAAA4DSCMAAr5euEYAAAAACAOV31uwEAAAAAABBcayHp49enrwGcQBAGAAAAAAB8EwpJVwi64BG2RgIAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACATOCAOwEA62BAAAAACsCoIwIIAsS+pbk9eshU4OrZyGgy0BAAAAAKuCIAwIoL4lXf3e5DUfv07ABQAAAODyeeeR9HLS7y7gF4IwrLROp6NYLDZxze7urnZ3dz3qCItgmyUAAACARbzzaPqab9WlK2vSN667308Q7e/va39/f+KaTqfjUTdnEYRhpfX7fR0fH09c0+v1POoGi2KbJQAAAIB5Pf1I+u7P7a39zs+kF/9aCj/jakuB1Ov1pj5P9xNBGFba2tqaNjY2Jq4Jh8MedQMAAAAA8MtPWtIf/mxv7e//JL3dkv7+787/uJPnKgdNOBzW5ubmxDWdTkf9ft+jjsYRhGGlbWxs6OjoyO82AAAAAAA++8WvZ1v/y19fHIRxrvL87BxPFIvFfJsaW/PlqgAAAAAAAA7q/tHd9bgcCMIAAAAAAMDKi37G3fW4HAjCAAAAAADAynvxhdnWf3nG9bgcCMIAAAAAAMDK+2ZC+uyn7K393KellxPu9oPlRBAGAAAAAABW3rVnpB9/xd7aN78qhZ9xtR0sKYIwAAAAAABwKXzj+vQ1b2fsrcPlRBAGAAAAAAAC4+uEYIFGEAbgXO888rsDAAAAAACcddXvBgDYY1lS35q8Zi0khULTa9kJub5Vl66sMTIMAAAAALg8CMKAFdG3pKvfm7zm49elK1OCsKcfSd/9ub1rfudn0ot/zSGSAAAAAIDLga2RQMD8pCX94c/21v7+T9LbLXf7AQAAAADAKwRhQMD84tezrf/ljOsBAAAAAFhWBGFAwHT/6O56AAAAAACWFUEYEDDRz7i7HgAAAACAZUUQBgTMiy/Mtv7LM64HAAAAAGBZEYQBAfPNhPTZT9lb+7lPSy8n3O0HAAAAAFbRO4+WsxYmIwgDAubaM9KPv2Jv7ZtflcLPuNoOAAAAACwdO8HUt+r21jlZC4sjCAMC6BvXp695O2NvHQAAAABcJk8/kr77c3trv/MzqfeRN7XgDIIwAOf6OiEYAAAAgAD6SUv6w5/trf39n6S3W97UgjMIwgAAAAAAAP5/v/j1bOt/OWG9k7XgjKt+NwAAAAAAAOCEtZD08evT10zS/eNs15y03slacAZBGFZap9NRLBabuGZ3d1e7u7sedQQAAAAA8EsoJF2ZEnRNE/2Mc+udrLUq9vf3tb+/P3FNp9PxqJuzCMKw0vr9vo6Pjyeu6fV6HnUDAAAAAFh1L74gvfcb++u//II3tVZFr9eb+jzdTwRhWGlra2va2NiYuCYcDnvUDQAAAABg1X0zIb32L/YOuf/cp6WXE97UWhXhcFibm5sT13Q6HfX7fY86GkcQhpW2sbGho6Mjv9sAAAAAAFwS156RfvwV6Vv16Wvf/KoUfsabWqvCzvFEsVjMt6kx7hoJAAAAAAAw4hvXp695O2NvnZO1sDiCMAAAAAAAgBl93cHgyslamIwgDAAAAAAAAIHAGWFAAK2FpI9fn74GAAAAAIDLhCAMCKBQSLpC0AUAAAAACBi2RgIAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMB8YhqF0Om1rbavVUj6f19bWlkKhkEKhkLa2tlQsFmWa5tw9lMtlpdNpRaPRYc1sNqtms7lUNQEAAAAAAJxCEOYg0zSHYdWkl62tLcXj8am1stmsksmkqtWqDMMYfswwDJXLZUWjUVWr1Zl6bDabikajKhaLkqRaraZ2u61SqaRWq6V0Oq10Oj1TyOZGTQAAAAAAAKdx10gHzRJKDUKj85imqWQyORZ+XSSfz+vw8FCVSmXq2mazOZxEy+VyY4+Jx+PKZDJKJpNqNptKJpM6PDxUJBLxvCYAAAAAAIAbmAhz0N7enq11qVRq4kRYNpuVYRhKJBLD6ap2u61araZCoXBmfbVaVb1en3jNwYSZdBJQXRSc1Wo1SSdTZ4P1XtYEAAAAAABwCxNhDqlWqzJNU4VCYer5X9vb2xPrNJtNFQoFlUqlsY8NJqzy+byy2axardbwY7dv31Ymk7mwbjabHW5NnDSNNrhGvV5Xs9lUtVpVLpfzrCYAAAAAAIBbQpZlWX43cRlsbW1Jktrt9sJ14vG4Go3GxHWGYQyvOdBoNJRKpaau7Xa7E7cn1uv14eRWJBJRt9v1pOYsYrGYjo+Ptbm5qaOjo4VquemTvnT1e5PXfPy6dMXGbKaTtQAAAAAAF1vW53KX5Xmhn8/pl/xLsxrq9boMw5g4FWVHq9WSYRjDrYSTxOPxMxNjoxNio0bXpVKpqWd0jU6WmaZ57rZLN2oCAAAAALAM1kIngdKkl7WQ311iHgRhDtjb21MkEtHNmzcXqnPv3j3lcjnbh8mfnv768MMPz103eoh/IpGwVXv0DLN79+55UhOLe+eR3x0AAAAAwOoLhU6mqia9hAjCVhJB2IJarZZarZZM01Q0GtXW1pby+fxcE0+3bt06M+U1yekA6vRWyUF/o27cuDFz7dOfixs1MZ2dkOtbdcIwAAAAAAAuQhC2oNPbIQ3DULVaVTabVSgUOnOo/SSJRML2NJik4UH1A+fdibLZbE5dc57T60Y/BzdqYrKnH0nf/bm9td/5mdT7yNV2AAAAAABYSQRhCzAM40wodFq9XlcymVQ+n3fl+qPOOyj/4cOHY2/bDdqeffbZsbcPDg5crYnJftKS/vBne2t//yfpbTJGAAAAAADOIAhbQDweV6VSUalUUi6XmzgZVa1WlUwmHb3+aJCUy+XOXXM6LJt3emv0bphu1MRkv/j1bOt/OeN6AAAAAACC4KrfDay60wGUaZqqVqva29s7s3Wx1WopnU6r0Wg4cu1KpTJ8/aI7Vp4OreY1+rm4UROTdf/o7noAAAAAAIKAIMxhkUhEhUJBhUJB9Xpdt2/fHgt8ms2myuWyCoXCQtcxDGN4xlapVLpwKmvesOn0dscnT564WnNenU5HsVhs4Tq7u7va3d1duI5bop9xdz0AAAAAANPs7+9rf39/4TqdTseBbuZDEOaiTCajVCqlnZ2dsYPh9/b2Fg7CBneXjMfjC9eyw43pLSdq9vt9HR8fL1yn1+stXMNNL74gvfcb++u//IJ7vQAAAAAAgqnX6znyHNxPBGEui0QiOjw8VDKZHIZhpmmq2Wyee7i9Ha1WS9VqVZFIZOo2y0gk4kjgNDrN5UbNea2trWljY2PhOuFweOEabvpmQnrtX+wdmP+5T0svJ9zvCQAAAAAQLOFwWJubmwvX6XQ66vf7DnQ0O4Iwj9y9e3fssPxGozF3EHb79m1J0oMHD6YeVL++vu5IaLW+vu5qzXltbGzo6Oho4TrL7toz0o+/In2rPn3tm1+Vws+43hIAAAAAIGCcOlYoFov5NlnGXSM9kkgkxoKveQ+cz+fzarVaqtVqSiSmj/3MO3V1Oug6PRHmdE1M943r09e8nbG3DgAAAACAICII81A6nV7o8dVqVdVqVZVKRZlMxtZjtre3x962O8l1+iD7ra0tV2vCGV8nBAMAAAAA4EIEYR4a3cY467bAZrOpfD6vSqWiXC5n+3Gj2zEl+5No7XZ77O3RaTY3agIAAAAAALiNIMxDo0HYLNsCW62W0um0SqXSTCGYdHZ6y25oNTrlFYlExnp3oyYAAAAAAIDbCMI8dHBwMHzd7jZJwzC0s7OjQqGgQqEw8zUTicRY6Pbw4UNbjxvt9XTw5UZNAAAAAAAAtxGEeWh0a6CdbYGGYSiZTCqXy6lUKtm6hmEYKpfLY++7efPm8PVWq2Wrzui6YrF45uNu1AQAAAAAAHATQZiH6vW6JNma7DJNU+l0Wjdv3rQdgklSNps9E7Ll8/nh681mc2qN0TXxePzc0M6NmgAAAAAAAG4iCPNIvV6XYRiKRCK6c+fOxLWmaSqZTCoej6tYLMowjKkvzWZzeIh9IpEYq5dIJMaCp0Egd5FarTZ8/aLJLTdqAgAAAAAAuOmq3w2sqmazqWw2K9M0lUqlVCqVzgRQA4Zh6Pbt25KkBw8eTD0of2dnZxhwbW1tzdRXpVK58P2DWnt7e8pkMueuM01T1WpV0sn2zUmH87tREwAAAAAAwC1MhM2pVqsN74I4mMYa3S44MPjY+vq62u32hWHZQDKZtH3m1nkuCpni8fhwKqvVap05R2xgZ2dH0sldHUenuLyqCQAAAAAA4BaCsDlls9kz76tWq4pGo8pms8rn80omk0qn08rlcjo8PFQ8Hp9a040QbCCTyajRaCgSiahYLA6vZ5rmMLBrtVpKJBJ6/Pjx1Mk1t2oCAAAAAAC4ga2Rc0qlUmq32yqVSmo2m3ry5MlwQmwQ/Ny5c0epVMp2+OPFtFQqlVK321W5XNa9e/e0s7Mj0zQViUS0vb2tWq124RZHL2sCAAAAAAA4LWRZluV3E8CsYrGYjo+Ptbm5qaOjI7/budAnfenq9yav+fh16YqN2UwnawEAAAAAvMHzwrP8fE6/5F8aAAAAAAAAwBkEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBCu+t0AsIhOp6NYLDZxze7urnZ3dz3qCAAAAACA4Nrf39f+/v7ENZ1Ox6NuziIIw0rr9/s6Pj6euKbX63nUDQAAAAAAwdbr9aY+T/cTQRhW2tramjY2NiauCYfDHnUDAAAAAECwhcNhbW5uTlzT6XTU7/c96mgcQRhW2sbGho6OjvxuAwAAAAAAyN7xRLFYzLepMQ7LBwAAAAAAQCAQhAEAAAAAACAQ2BoJAAAAAADgkrWQ9PHr09fAGwRhAAAAAAAALgmFpCsEXUuDrZEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQOCukcCK4Ja7AAAAAAAshiAMWBHcchcAAAAAgMWwNRIAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEC46ncD/197d5OcOJb+e/zBt7qjBt0O4Ro5nJMSOxCuFVjsAJwrMMw9gH/GHd9wwMBzqBU4xQ6kXEEa7QDVpDI8KqNwd0dH9It1B3mlK4QACSQk0PcToQhj6+UIDkb++TlHwD5eXl7kw4cPG9e5v7+X+/v7A7UIAAAAAIDqenx8lMfHx43rvLy8HKg1qwjCcNTe39/l27dvG9d5e3s7UGsAAAAAAKi2t7e3rX+nF4kgDEft7OxMLi8vN65zfn5+oNYAAAAAAFBt5+fncnV1tXGdl5cXeX9/P1CLlhGE4ahdXl7K77//XnQzAAAAAACAJJue6MOHD4VVjTFZPgAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASiAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqASCMAAAAAAAAFQCQRgAAAAAAAAqgSAMAAAAAAAAlUAQBgAAAAAAgEogCAMAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBJ+KLoBwD5eXl7kw4cPG9e5v7+X+/v7A7UIAAAAAIDqenx8lMfHx43rvLy8HKg1qwjCcNTe39/l27dvG9d5e3s7UGsAAAAAAKi2t7e3rX+nF4kgDEft7OxMLi8vN65zfn5+oNYAAAAAAFBt5+fncnV1tXGdl5cXeX9/P1CLlhGE4ahdXl7K77//XnQzAAAAAACAJJue6MOHD4VVjTFZPgAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASiAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqASCMAAAAAAAAFQCQRgAAAAAAAAqgSAMAAAAAAAAlUAQBgAAAAAAgEogCAMAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBJ+KLoBwD5eXl7kw4cPG9e5v7+X+/v7A7UIAAAAAIDqenx8lMfHx43rvLy8HKg1qwjCcNTe39/l27dvG9d5e3s7UGsAAAAAAKi2t7e3rX+nF4kgDEft7OxMLi8vN65zfn5+oNYAAAAAAFBt5+fncnV1tXGdl5cXeX9/P1CLlhGE4ahdXl7K77//XnQzAAAAAACAJJue6MOHD4VVjTFZPgAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASmCOMAAn6/HxUd7e3uT8/HzrGHXgGNHHccro3zhl9G+cMvo3yq7meZ5XdCOAtPyJ9a6urko9Wf5/30V++N+b1/nP/xH5X9Rm5uJY+gmwK/o4Thn9G6eM/o1TRv/O16n8jVlkPyn5UwMAAAAAAABkgyAMAAAAAAAAlUAQVgDHcaTVau217XQ63asNo9FIWq2W1Ot1qdVq0mg0pNPpiGVZpdonAAAAAABAVgjCMuS6rtRqta1Lo9EQVVVT77vT6Uij0RDLsuT19XWnNlqWJfV6XQaDgYiIGIYh8/lchsOh2LYtrVZLWq2WuK5b6D4BAAAAAACyxl0jMzSZTBKv64dG27iuKw8PDzIajXZtVsCyrKASrdvtyng8Dn6mqqq0221pNptiWZY0m02ZzWaiKMrB9wkAAAAAAJAHKsIy9PDwkGg9XdcTVYSNRiNpNpti2/a+TQsqykS+B1ThwCrMMAwR+T4E01//kPsEAAAAAADICxVhGZlMJuK6rvT7/a3zf11fX2/dn23bouu69Pv9YP+9Xm/n9nU6nWBo4qZqNL+KazqdimVZMplMpNvtHmyfAAAAAAAAeSEIy8hwOBRVVWU4HGayP03Tlh4nCc/WcRxnacL629vbjet//PgxmIx/MBjEhlZ57LPMHh8f5e3tTc7Pz+X+/r7o5ogIbTpWZXyOaFMyZWxT2ZTxOaJNyZSxTWVUtuepbO0RoU3HrGzPU9naI0KbjlkZn6eytals7cmVh70ZhuGJiDcej3M7xnw+90QkWNIcq9vtBtvpup5om/CxDMM4yD7TuLq68kTEu7q62ms/eR/vP//1PPmfzct//nvYNuWpbG0qW3s8jzYlRZuSKVubytYez6NNSdGmZMrWprK1x/NoU1K0abuytcfzaFNStCmZsv2NeSx/Y2eBOcIy8PDwIIqibK2KKkp4Ev9opdk64TnMnp6eDrJPAAAAAACAPBGE7cm2bbFtW1zXlXq9Lo1GQ3q9XjAMsGjRifZ/+eWXRNuFw63oueSxTwAAAAAAgLwRhO0pOkm84zgymUyk0+lIrVaTTqeTyV0fdxWex0tEEt2tMm698DnksU8AAAAAAIC8EYTtITphfJzpdCrNZnOvOz7u4+vXr0uPFUVJtN1PP/209Pj5+TnXfQIAAAAAAOSNu0buQVVVGY/H4rquzOdzsSxLHMeJXXcymcjz87PMZrODtjHanl2rt+bzea77BAAAAAAAyBtB2J663e7SY9d1ZTKZyMPDg7iuu/Qz27al1WqJaZoHa9+6YC6t8LnksU8AAAAAAIC8MTQyY4qiSL/fl8ViIYZhrAwbtCxLRqPRwdqza9gUbffr62uu+wQAAAAAAMhbzfM8r+hGnDLXdeXm5mZpYnhFUWSxWKTaj+M40mg0gsfj8XilGi1OrVZbepz05bYsS1qtVvBY1/Wgki2Pfab15z//Wf7973+LiMjZ2f557l//+lf5y1/+svbnLy8v8v7+LmdnZ3J5eZlq39/eNv/86jzV7jJpU17K1qaytUeENiVFm5IpW5vK1h4R2pQUbUqmbG0qW3tEaFNStOn42iNCm5KiTcmU7W/MpO35+9//Ln/729/SHyDi/f1dRET+9Kc/yb/+9a+995eKh4PQNM0TkWAxTTPV9vP5fGn78XicaDtFUZa2S8o0zaXt2u12rvtM6+zsbGlfLCwsLCwsLCwsLCwsLCwsx7WcnZ3tnAvsijnCDuTXX3+VZrMZPDZNU3Rdz/24FxcXmczFdXFxkes+0/rxxx/ln//8p3ied5CKMAAAAAAAqi7LirBarSY//vhjBq1KhyDsQDRNE13XxbIsEcluwvltovNyJRUNusL7yWOfaf3jH//YeVsAAAAAAFBNTJZ/QOH5sQ7l+vp66XHSSq7oRPbh+cny2CcAAAAAAEDeCMIOSFXV4Ot9hgWmER6OKZK8Em0+ny89Dg/jzGOfAAAAAAAAeSMIO6BwELbPsMA0otVbSUOrcJWXoihLbc9jnwAAAAAAAHkjCDug5+fn4OtDDZPUNG0pdPv69Wui7cJtjQZfeewTAAAAAAAgbwRhBxQeGnjIYYG3t7fB17ZtJ9omvN5gMDjIPgEAAAAAAPJEEHZA0+lURET6/f5Bj9vr9YKv/btWbhJeR1XV2NAuj30CAAAAAADkiSDsQKbTqTiOI4qiyKdPn1Jvn/TOjHE0TVsKnvxAbh3DMIKv11Vu5bFPAAAAAACAPBGE7ciyLKnX61Kr1aTVam0cHug4jtzd3YmIyJcvX3aaKD86IX3aYGw8HgdfPzw8rF3PdV2ZTCYi8n34ZrfbPeg+AQAAAAAA8kIQtiPDMIIwyrIsaTabS8MFff7PLi4uZD6fi6ZpqY/luu5KFdXT01OqfaiqGlRl2bYto9Eodr2bmxsR+X5Xx3AV16H2CQAAAAAAkJea53le0Y04RpZlxd75UVEU0XVdLi4u5Pn5WWzbln6/L58+fUpVCea6rtzd3Ynruhvn4NJ1PRhumSRksyxLOp2OuK4r7XZbPn36JKqqyvPzswwGA7FtWzRNS1W5lsc+AQAAAAAAskZF2I50XZf5fC7dbldUVV0KeGzbltfXV/n06ZMsFgsZDoepAyC/eso0TfE8b+1imqYYhpG40kzX9aBNjuPIzc2N1Ot16XQ6cnFxIYZhyGw2S9XePPYJJDUajaTVagVDlRuNhnQ6nUQ3cdiHbdvS6/Wk0WhIrVYLjj0YDPaa0w8IK6p/RzmOI61Wa+t8kIBIsf22LO8ZnK6y9DF+LyMPXFejMjwAOEKmaXqKongi4um67pmm6c3nc88wDE9V1eD7i8Ui0+MuFguv3W57IrJxGY/HmR4X1VJU/46K9nf6NTYpst+W5T2D01WWPsbvZeSB62pUDUEYgKNjmmbwwdjtdmPX0TTNExFPVdXMPrQXi0VwMZBkWdc2YJOi+nfYYrHw+v0+F6JIrMh+W4b3DE5bGfoYv5eRF66rUUUEYQCOymKxCP5jparq2vXm83nwwanreibH1nXdExFP0zTPMAxvPp8H/y2LuzgVEc8wjEyOjWoosn/7hsOhp6pq0N/5gwvbFNlvy/CewWkrQx/j9zLywnU1qoogDMBRCV8Ebrv4y3LowHg89kTE6/f7a9eZz+fBf8z8RVGUvY6Laimqf/tms5k3m82Cx36/5w8ubFJkvy36PYPTV3Qf4/cy8sR1NaqKu0YCOBqO40ij0QgeLxaLjTdhmE6n0ul0ROT7DSgWi8XOx240GqKqqpimmaqNIiKmaYqu6zsfG9VQZP9ex7ZtaTabwePxeCzdbjfz4+B4Fdlvy/iewWkpYx/j9zKywnU1qoy7RgI4GsPhMPha1/WtdyJtt9vB167r7nxnJdu2xXEcMQxj67qqqi61098e2Kao/r0Jd/vFNkX22zK+Z3BaytjH+L2MrHBdjSojCANwNCaTSfC1pmmJtlFVNfj66elpp+M+PT1Jt9tNfPEZ/S/VH3/8sdNxUS1F9W9gH0X2W94zyBt9DKeM62pUGUEYgKMQ/e/PL7/8kmi78Af7rv+5+vjx48p/o5IeU0RWSrqBqCL7N7CrIvst7xnkjT6GU8Z1NaqOIAzAUbAsa+lx+D9Sm0TX26WcWtO0VEMRXNfd2AYgqsj+DeyqyH7LewZ5o4/hlHFdjaojCANwFL5+/br0OOkH6E8//bT0+Pn5OasmreU4ztJjJvTENsfUvwFfkf2W9wzyRh/DKTum/s11NfJAEAbgKEQ/BHf9z9V8Ps+sTeuELwq4kxOSOKb+DfiK7Le8Z5A3+hhO2TH1b66rkQeCMABHIfqBvatoeXUexuNx8PVgMMj9eDh+x9S/AV+R/Zb3DPJGH8MpO6b+zXU18kAQBuAo7PpBGy31fn193b8xGziOE8yXMBwOmccAiRxL/wbCiuy3vGeQN/oYTtmx9G+uq5EXgjAAlZL3f678u+Coqir9fj/XYwFRVB7gGBXZb3nPIG/0MZwyrqtxrAjCAByFNHeXOcR+4ti2LZPJRBRFEdM0czsOTs8x9G8gqsh+y3sGeaOP4ZQdQ//muhp5IggDsLfJZCK1Wi3TpdlsLh3j4uIik7ZmtZ84d3d3IiLy5csXSrdPCP0biFdkv+U9g7zRx3DKjqF/c12NPBGEATgKu/7HKVqyndd/rnq9nti2LYZhiKZpuRwDp6vs/RuIU2S/5T2DvNHHcMrK3r+5rkbefii6AQCOn67rYhhGpvuMfrBeX18Hk2WKfP8gTvLhG53Es9FoZNG8JZPJRCaTiYzHY2m325nvH8Wqev8G1imy3/KeQd7oYzhlZe7fXFfjEAjCAOxNVdXcS5ajQ8kcx0n0H6L5fL70WNf1TNtlWZb0ej0Zj8fS7XYz3TfKocr9G9ikyH7LewZ5o4/hlJW1f3NdjUNhaCSAo3B9fb302HGcRNuFS7gVRck00LBtW1qtlgyHQz6ssZcy9m9gmyL7Le8Z5I0+hlNWxv7NdTUOiSAMwFHQNG2pZPvr16+Jtnt+fg6+jn7o78NxHLm5uZF+v8/tnLG3svVvIIki+y3vGeSNPoZTVrb+zXU1Do0gDMDRuL29Db4Oz2uwSXi9wWCQSTscx5FmsyndbleGw2HibUajUSbHx2kqS/8G0iiy3/KeQd7oYzhlZenfXFejCARhAI5Gr9cLvrYsa+v64XVUVc1kHgPXdaXVasnt7W3iD2sRkU6nwzwh2KgM/RtIq8h+y3sGeaOP4ZSVoX9zXY2iEIQBOBqapi196E2n043rh+/0t+2/VpPJRAaDwcY5ElzXlWazKaqqButuWyzLCiYk5fbP2KTo/h0nept0IKrIfpvnsQERfi/jtBXdv7muRqE8ADgi8/ncExFPRDxN09aut1gsgvV0Xd+4T13Xg3VFxFssFrHraZq2tF6aZTwe73PaqIgi+3ccwzCWth0Oh4m3RXUU2W/zODYQxu9lnDKuq1FVBGEAjk74InDdBaD/4aooytYLzCQfrvt8WPM/B6RRRP+Os1gsPFVVl7bddJGMaiuy32Z9bCCK38s4ZVxXo4roRQCOkmmanqIonoh47Xbbm81m3mKx8EzTDD5cNU1L9AePvx9/MU1z6eftdnuvD+tut5vTs4BTdcj+HbZYLLx2u73y39zoout60C7AV1S/zfrYQBx+L+OUcV2NqiEIA3DUhsOhp2la8KGrKIqn67pnGEbifZim6amq6imK4vX7/RxbC6RD/8YxKrLfZnFsYBN+L+OU0b9RFTXP8zwBAAAAAAAAThx3jQQAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBIIwgAAAAAAAFAJBGEAAAAAAACohB+KbgAAAAAAAHmxbVuenp7EdV0Zj8dFNydzp35+QNaoCAMAAAAAnBTLsqTX60mj0ZBmsymj0Ugcxym6WUvq9brUajWxLCv1tmU/P9d1pdPpiG3bRTcF/4/fZ5rNpjQaDanValKr1aTRaEir1ZLBYLDT6zUajWQwGOTQ4vwQhAEAAAAATob/R/1kMilVOBRmWZa4risiIrqup9q27OdnWZb8/PPPoqqqaJoWfM8PXrYt9XpdJpPJ1uPYth2EieuWZrMpIiKTySTx8XdZwtIeq16vZ/8ihIxGI6nX69JqtWQymYht26IoirTbbWm326IoiliWJaPRSJrNptTrdRmNRon33+12xbZtaTQapeyPcWqe53lFNwIAAAAAgCxZliWtVit4rOu6mKZZYIv+v16vJ5PJRNrtthiGsdM+ynh+fnXQeDyWbre78vPpdCp3d3dBCBjW7XZ3Gtrpum4QDPp0XRfDMERRlKV1bduWwWAQW4WnqqqoqrqyjX8MEZHX11dxHGel/XGxyrZjjcfj1CFoGtHnWlEUGQ6Hsa+L67oymUzk4eEhWD9tG3u9nnz+/Fm+fPkSBKBlRRAGAAAAADhJ4WqdMgRFvnq9Lq7rimEY0m63d95Pmc5vWwjmiwZ4vtlstnOA4rpuUFmlKIr89ttvsYGWz3/+w9JEI47jLA39XCwWa48Xd6x9zjWJ6HDFpH3DH9IaDu+2vZ5hnU5HptNp7ue3L4ZGAgAAAABwILZt7zwssqwmk4kMBgPp9/tbQxNd12PDv+fn552P//r6Gnw9HA43hmAiItfX10uPt60fpaqqfPnyJdF20WOJSK4h0WAw2CkEE/n+PJimKaqqBt/r9XqJh0oahiGapsnNzU1s1V9ZEIQBAAAAAHAg/vA/XddTBzBlNJ1OpdfriaZpMhwOE20Tt94+d7z0K7MURUlUvZTF8+4PNUx7rDxfc3+ur/Cxdhl6a5rmUjvXDfGMYxiGuK4rNzc3qY97KARhAAAAAAAcyOfPn0Xk+zCyY+e6rtzd3YlIfLi1jqqqK1Vhtm3vfJdJP0RLOoTv4uJip+NEJanoy+pY2/jDGsOSVMfFUVV15bnsdDqJqrz8bf050sqIIAwAAAAAgAMID4u8vb0ttjEZ8MMRTdNSD/OMC84eHh5St8F13aBaqdfrpd5+H6qqxk7KX4TBYLASVCUNBuN8+vRp6bHruolfHz8AG41GiSvJDokgDAAAAACAA3h6ehKR73NElSE82cd0Og1CjmhokoSqqivh2XQ6TT23lH+3SE3Tlua2OpR9bnaQFf+uj2H7hGAi34dVRs8t6Vxh4df20OFkEgRhAAAAAICjNJ1OpdVqSb1el1qtJs1mU3q9njiOU3TTYk2nUxER+fjxY+L1y3p+4eqgXcOguKFzaavC/GGRu4Rxu3Jdt1STwUdDMJFsht7G3d0z7libtnUcJ/E2h0IQBgAAAAA4Ko7jSKPRkE6nI6+vrzIcDsU0Tfn48aNYliWNRmNr9YplWUHAFLc0Go21cxyFw6nw+tva7AdY24KjLM7PNxgM1p7jtqXZbMbu07KsYD6vfe6AqOv6ShVXmtDEsqzEz2mWondmLJpfaRgWd7fKtOKGuyadfD+8bZr54w7hh6IbAAAAAABAUrZtBwHNcDiUfr8f/EzXden3+9Lr9bYGFbquy2KxkF6vtxK+GIaxMVgxTVNEROr1uriuK/1+f+sf+341mKqqG4fwZXV+Pr9ySVVV6fV6a4/99evXlXBt3TmF7/CYdm6wqMFgsDR8zh/ml2RoX9pJ8rPy/PycSdCUlehNBhRFyWToraqqoijKUvVb0jm/wgGp4zgynU5LMYxUhIowAAAAAMCRcBwnCIna7fZSSBQ2Ho8TVyqNx+OdQwPXdUVRlEQVL37VzqYwII/zE/kejMznc+n3+9Jut2OXaMDR7XbXhlx+qCci8ssvvyRuR5xut7vy/Cd5Pl3XDdpxyHmo9rm7ZR7i2pJlSBd318ukQ3PD/ccPj8uAIAwAAAAAcBTC8x5tC0vSDMeKzi+V5I92P4RJUo3kum4QWGyaH+xQ5xc1Go2WAhVFUZaqvsKiwUsWE9RHn0PHcbZWHoUnyd9neGZS/lxXNzc3uR8rjbhQKssbMcTtK2kQFn5dPn/+nFWT9kYQBgAAAAAovel0ujQv1bYAJk1VTLTyajKZbJ0M3Q+KklQj+SGAoihrQ5u8zu/19XVjUOQ4zsowy03zQEUDqiyCsLigblvQl+b538Z13a3zpTUaDen1eqWaJF/k++sbFVfFtau41zfpc/DTTz8tbVOGmzyIEIQBAAAAAI5A+G6CScKPtFUxcWHYOq7rimVZW+f78vnB0u3t7dp18jq/4XC4cR6v6N0FNw2JFPk+l9gu7dhEUZSVqrDwRPhRtm0HP8tqfjD/tVy3ZFlllaW4UCrvtsaFb3Gi742yDCklCAMAAAAAlJrjOEt/RGdRhRQVrUoKB1NRfoVX0gnr/SqqaOjky/P8Nu1rMpmsDIncVomVV0VU3HO5ri3+a5PV5Ov+HGqblsViIbPZ7CDDMNOIC72yfI3i9pW04izatqQBWt4IwgAAAAAApZbHcLyoaFVSeDL2qCQVXj5/H4qirK20OsT5RTmOs1J5ZhjG1mqivMIMVVVXnp+4Iarh12Xb3GdZ0zRt47DRIsSFUlm+RnH72ufmEmVAEAYAAAAAKLXZbLb0OK+gKFqVFFel5A+LbLfbiQIB/26Rm4YbHur8wqIhWLvd3thGXzjMyHoIXtzzHR2i6lfjqapaSHVWXGBXpH3m8Eoibnhq0v4ZDen++OOPTNq0L4IwAAAAAECpHWqS7WjIEXf3Qj+YSTpJu1+9tOlukYeeRHwymSydl6Io8uuvv6beT9YVPrqur4Qs0SGq/nDJLCbJ35WmaaWZMywuDMyyP8W9xocIavNEEAYAAAAAKLXo8Kw8g6PovFTRx09PTxuHOYaFw6ZN81kd8vxc112pvPr1118TBzt5B0DRtrmuG4SPeUySv4vhcLh1LrVDioZhjuNkElLGTW6fphou2q/Dd5EsEkEYAAAAAOCo5DnXkKZpS8FC+O6F/qT2SUMYfz6ptJO653l+nU5naf/tdjtV+/KuBup2uythmx86hSfJL0tFVhnEhVPRSsZdxO2j1WrtvL+yvGYEYQAAAACAUovONZT3UMLoJOx+lZI/zDHpsDx/PqtNwyJFDnd+0+l07yGR0bbmEdpFg0bHcWQ6naZ+/g9pOp0ebDL4wWCwVK0Vd9MA0zT3Pk7cPtJU4kWfj7IMqSQIAwAAAACUWvQP6Cz+yN+k3W4vHdMPOcbjsaiqmugPesuygiBg23CyQ5yf67pyd3e39L00QyJ90YqgPO4iGRfsdDodESnfZPUi31/rTqeT2x01w2zbltFotNRnFEVZqeqL3mRgF9GKsH6/n6q/RAPd6+vrvduUBYIwAAAAAECpRcMXv9IqT9G5qjqdjjiOE3tnwzj+sEhd17eGB4c4v7u7u9RDIkej0UqgEg2h8qheUxRlbeVRGavBer2eKIpykIqnu7s7UVV17fDRsH3CsNFotPRYUZTYgHKT8F0i49pcFIIwAAAAAECpRcMX13WDYXJJpa3W6Xa7S8GGXx1ze3ubaHs/zPIrmTbJ+/wsy1raX9IhkaZprgyFjAY+eVXnrQscs5gkP8vKrcFgII7jrK1Sy/pYtm3HBpiqqsp4PF5Zf5fhmq7rrtyt0zCM1EFWOCQtUxUfQRgAAAAAoNTihn5FK5yione82yUQiFbZJJ2k3bbt4HhJgrO8zy8axiUZEum6rliWFVvlFG5rFpOyx4kbApmkui6JrObyGo1GQeXUunngsjrWYDAIjrVuwvput7sUFLqumyiIjbq5uVlq93A43CnICveNXdqRGw8AAAAAgJJbLBaeiCwtmqZ5i8ViZd35fO6pqrqyvmmaqY8b3k/S7fv9ftC+pPI6v263u7SOruuJ2tNutz0RiT1+tK15MU1z79cvjqIoK89d3HmuYxiGp2laou3jjjWbzRIdZz6fe+PxeOW13sbvf/7SbrcTnd9isfB0XV/adjweJ2pr3L78faiqutM+8lLzPM/LOFsDAAAAACBz0+k0trKk2+1Kq9WS19dXmc1mMplMpNvtrp0jqdvtrgwjW8evxFEURRaLRaJtGo2GOI4jw+FQ+v1+om1Esj8/y7JWqof8Cf+jXNeV19dXmc/nMp1Og2Ft6yKDcIWSaZq5DX3zn8s0z/86juNIr9dbW8WmaZpcXFzEVp25riuO48TOiaZpmsxms1TH8ufMig49fX19DV6LuGoyXdcTDUedTqcrVYXj8Xjt0NLJZLI0lFJRFDEMY+fXdTKZBPO5bTpuIQoO4gAAAAAASMw0zdgqm/DS7XY9z/OWvqeqqjccDr35fJ7qeOPx2BMRr9/vJ1p/Pp8Hx0x7rKzPL1q1lHZRFGVtO8MVP0mfm12kff437SOvJdy2vI81HA5TnXu/31/pT7que91u12u32ysVYIqipD5GHL/vla0azPOoCAMAAAAAHKHRaCRPT0/iOI64riuKooiu69Lr9YIqlkajIe12Wz5+/Ciapu10nE6nI9PpVGazWaJ9jEYjGQwGoqqqzOfznY7p7+cQ57cPv+oni2qtTer1usxms4PclfFUWZYlhmHI8/NzUN3mV6SpqiqapmXWjxzHkUajISKS+H1zSARhAAAAAACsUavVYoe+rdNsNsW2ben3+yuT7Z8iPygs3fA3FKbVaollWaV9DxCEAQAAAAAQw694ShryuK4r9XpdRMpZCZOXRqMhr6+v8ttvv2VyV0ccL39eujTh8aERhAEAAAAAEMMPeJIO+zvUUMGy8YfCtdttMQyj6OagIK7rys8//ywXFxcym81KG4qeFd0AAAAAAADKZjQaieM4qYb7+SHQ7e1tXs0qJVVVZTabyXQ6De4UiGpxXVeazWbpQzARKsIAAAAAABXW6/XEcRzRNE1arZZcX1/L58+fg8qupMP9wsMiTdMMJrSvEtu25ebmRm5vb2U8HhfdHByIH4KpqiqGYZQ6BBMhCAMAAAAAVNRgMJDRaLT252kmgJ9Op9LpdCo3LDLKcRzpdDpycXFxFKEI9uOHn58+fZJ+v190cxL5oegGAAAAAABQBNd11/6s3W6nGhap63qlAzCfP0xyNBrJ6+srQdiJcxxHvnz5clQ3hqAiDAAAAABQSbZtS7PZXPk+k74Dp4sgDAAAAABQWY7jyHg8Fsdx5OLiQjqdTiXn9wKqgiAMAAAAAAAAlXBWdAMAAAAAAACAQyAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqASCMAAAAAAAAFQCQRgAAAAAAAAqgSAMAAAAAAAAlUAQBgAAAAAAgEogCAMAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBIIwgAAAAAAAFAJBGEAAAAAAACoBIIwAAAAAAAAVAJBGAAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASiAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqIT/C9g1mcaG1kosAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"bins = np.linspace(-0.25, 0.25, 50)\n",
|
|
"sns.regplot(\n",
|
|
" x=ak.to_numpy(array[\"ideal_state_770_ty\"]),\n",
|
|
" y=ak.to_numpy(array[\"z_mag_xEndT\"]),\n",
|
|
" x_bins=bins,\n",
|
|
" fit_reg=None,\n",
|
|
" x_estimator=np.mean,\n",
|
|
")\n",
|
|
"plt.ylim(5100, 5700)\n",
|
|
"\n",
|
|
"plt.xlabel(\"dy/dz(VELO)\")\n",
|
|
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
|
|
"mplhep.lhcb.text(\"Simulation\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 37,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# bins = np.linspace( -300, 300, 50 )\n",
|
|
"# sns.regplot(x=ak.to_numpy(array[\"x\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 38,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# bins = np.linspace( -300, 300, 50 )\n",
|
|
"# sns.regplot(x=ak.to_numpy(array[\"y\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# bins = np.linspace( -1.0, 1.0, 50 )\n",
|
|
"# sns.regplot(x=ak.to_numpy(array[\"dSlope_out\"]), y=ak.to_numpy(array[\"z_mag_x\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 40,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh7UlEQVR4nOz9X2xbZ5rn+/4ouzIOkqJJpYHZggR0mUR6Ujen26Q8+6CuzpTI6d5AjGQqpD1IkAQbE1FJUBgcaDpkXLl2FLKqhAMMTsaiq3EOHAS7bbJTCRLgVId0+vqMpeXqu8xUcTkFSOCei0jLrBTinXLIfaFNFilR5CK5Fv9+P4BQkvXw5SPJTkk/Pe/7emq1Wk0AAAAAAADAlJsbdQMAAAAAAADAMBCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhI2AaZqKRqMj7SGTySgajcrv98vj8SgYDCoej6tYLI7VmgAAAAAAAE4hCHOQZVnyeDxdX4LBoAKBwInr1IOkfl7W1tY69lgsFuX3+5VKpSRJuVxOpVJJ6XRahmEoGo0qGo3KsizbH7cbawIAAAAAADjNU6vVaqNuYlpkMplGGNRNqVRqG4bl83nF4/G+e8jlcorFYm3fVywWG5NoiURCW1tbx2rC4bAMw1AgENDOzo58Pl/H53NjTQAAAAAAADcQhDnI7/fbmnqKRCIqFApt3xeNRgfaSnjSl9OyLJ07d06WZSkQCKhUKrWtM01TwWCwa59urQkAAAAAAOCW06NuYFpks1lZlqVkMtn1/K/l5eW2f26aporFogKBgFKplCKRiObn57s+dzgclmmaikQiJ9bE4/FGSNdpai0QCCgWiymfz6tYLCqbzSqRSAxtTQAAAAAAALcwEeaQ+sTTSVNRdqRSKeXz+Z62DzZPW21tbbUNmJprJOng4KDj+s3bM30+nw4ODoayJgAAAAAAgJs4LN8B+XxepmnaPh/sJNlsVrlcrqcztPL5fOP1S5cuta1Jp9ON1yORSNf1m88Ysyyr5TncXBMAAAAAAMBNBGEO2NjYkM/nOzGIsiuXyykUCvX0mJs3b0rqHEZls9nG63bXbz7Iv/4cbq8JAAAAAADgJoKwARmGIcMwZFmW/H6/gsGg1tbW+pp46nTGVzuWZckwDEk68abJ+vvrLly4YGvt5nDr6MfixpoAAAAAAABuIwgb0NHtkKZpKpvNKh6Py+PxKB6PHwuOnNI8lXXSNNrRGyibp7I6OVrX/DG4sSYAAAAAAIDbCMIGUL/lsZN8Pq9wOKy1tTXHn7++vTAUCp24LfLOnTstb9s9f+yJJ55oeXt7e9vVNQEAAAAAANx2etQNTLJAIKCtrS1ZlqVSqaRisSjTNNvWZrNZbW9va2dnx5Hnbt4Wefny5RPrjvbT7/RW822YbqwJAAAAAADgNoKwASUSiZa3LctSNpvVxsaGLMtqeZ9hGIpGoyoUCgM/761btxqvN9/IeNRJwVyvmj8WN9YEAAAAAABwG0GYw3w+n5LJpJLJpPL5vFZXV1sCn2KxqEwmo2QyOdDzbG1tSTrcFtlpIqvfsOnodsf9/X1X1+zVY489pq+//lq1Wk1zc4Pv8P3ud7+rxx9/fOB1AAAAAACYVl999ZV+//vfD7xOtVqVx+PRo48+qj/84Q8OdGYfQZiLYrGYIpGIVlZWWg6G39jYGCgIs7st0kluTG8NsmY9BJMO/wEN6v79+7p///7A6wAAAAAAgO5qtZq+/vrroT8vQZjLfD6fdnZ2FA6HG+GVZVkqFouKRCJ9rWl3W2T9+Z0IsZqnudxYs1f1EEzSRE2ElctlVatVzc3NaWFhoefH71U6v3/R685a3fp2si8nDfr5HqVJ7Z2+h4u+h4u+h4u+h4u+h4u+h2uUfQ/yfbJbfbv9vfs4/D3p52Ns1/eofv7qxbA/305OhEmtP9sPC0HYkFy/fl3hcLjxdqFQ6DsIq2+LDAQCXQ+qn5+fdyS0mp+fd3XNXs3NzTX+sX/77bcD9zIsS0tL2tvb08LCgnZ3d3t67LdV6fRbnWt+d1U6ZSMX7HWtTn072ZfTBvl8j9qk9k7fw0Xfw0Xfw0Xfw0Xfw0XfwzWqvgf9PtmNvofxvfuo/570+zEe7XuUP3/1YtSf736dOnWq8TP9sI3gR9PZFAqFWoKvfg+cb94W2W0aTOp/6upo0HV0IszpNQEAAAAAANw20omwJ598cpRP38Lj8ei///f/7upzRKNRFYvFgdZo3hZp53yw5eXllvPJLMuyFUAdPcg+GAy6uiYAAAAAAIDbRhqElUoleTyekewJras/v8fjcf25mrcx9rstMJfLSTqcpgqFQl3rm7djSoeTaHYeVyqVWt5unmZzY00AAAAAAAC3zfzWyGGGcM1BWD/bAuuH7EtSIpGw9Zjl5eWWt+1uyWzexujz+Vp6d2NNAAAAAAAAt438sPxaraZYLDayUMSyLGWz2aE81/b2duP1aDTa8+N73RYpHZ5N1nzL4507d2ydLdbc69Hgy401AQAAAAAA3DbyICybzeqVV14ZaQ+xWEx//dd/7frzNG8N7GdbYK/bIusuXbrUCPuaz/bqpLkulUoNZU0AAAAAAAA3jXxr5DicE3XhwoWhPE8+n5ckJZPJnh/bvC3y0qVLPT12bW2t8bqdw/qbawKBQNuvkRtrAgAAAAAAuGnkE2H9Hho/afL5vEzTlM/n05UrV3p+fPO2yHg83tNjQ6GQIpFII4zK5/MdtzLWJ8+kkye33FizF9/97nd1//59ffe73x14LXS3vr6uSqUir9c76lZ6Mql9S5Pb+6T2Pakm9fNN38M1qX1Pqkn9fNP3cE1q35NqUj/f9D1ck9r3pBrlz/Se2givbDx16pQODg5G/hft/v37mp+f17fffmv7McViUfF4XJZlKRKJKJ1On7hd0TRNhcNhWZalnZ2dnrY11kWjURWLRfl8Ph0cHPT8eNM0FQwGJR2GWDs7O23rLMuS3++XdDitVygUhrqmXUtLS9rb29Pi4qJ2d3cHXm9YBun726p0+q3ONQ+vSqdszHmO61rAqEzqf1OAaca/S2D88O+yN+P4ffI49uQ0pz7GSfmZaVL/XY6y75H+9R5hBndMr73kcrnGYfHFYlHhcLhlu2Bd/X3z8/MqlUp9hWDN2yL73VIYCAQaU1mGYSiTybStW1lZkXR4DlnzFNew1gQAAAAAAHDLSIOwdDo98mkwSTp79qzS6XRPj2m3PTGbzcrv9ysej2ttbU3hcFjRaFSJREI7Ozt934zZvC2yXdhmVywWU6FQkM/nUyqVUjwel2EYjaAtHA7LMAyFQiHdu3dPPp9vJGsCAAAAAAC4YaRB2BtvvDHU5/viiy9OfF+vvUQiEZVKJSUSCQUCgZaAxzAM7e/v68qVKzo4OFA6nR4oAGqeohr0kPlIJNLoyTRNraysNMK7+fl55XI57ezs9NSvG2sCAAAAAAA4beSH5Q/T2tqa/vEf/9Gx9QKBgLa2thxb7yROnKl1VDKZ7Ov2ymGvCQAAAAAA4JQJPgKvd9vb26NuAQAAAAAAACMykRNhX3zxReOgejtM09TW1lZPjwEAAAAAAMB0mYgg7IsvvlA6nVaxWJRpmn2tUavV5PF4HO4MAAAAAAAAk2Lsg7ArV64ok8lIOgyzgEm2vr6uSqUyFrelAvgT/m0C44d/l8D44d8lMH74d9m7sQ7C/uEf/kHpdFqS5PF45PF4CMMw0dbX10fdAoA2+LcJjB/+XQLjh3+XwPjh32XvxjoI29jYkKRGABYIBBQKhRQIBCRJTzzxRNc1vvzyS1mWpVu3bun+/fuu9gsAAAAAAIDxNdZBmGEYjXO9CoWCVlZW+l4rmUzqySefdKo1AAAAAAAATJi5UTfQic/nk3QYYg0SgklSIBDQuXPnHOgKAAAAAAAAk2isJ8ICgYDu3r2rCxcuOLLe1taWI+tgfJTLZS0tLXWsWV9fZ980AAAAAABDsLm5qc3NzY415XJ5SN0cN9ZB2MrKiu7evav9/X3H1sN0qVar2tvb61hTqVSG1A0AAAAAALOtUql0/Tl9lMY6CPvJT36in/70pzIMw5H1fvGLX+iVV15xZC2Mh7m5OS0sLHSs4RpZAAAAAACGw+v1anFxsWNNuVxWtVodUketxjoIO3v2rN555x2l02ml02l997vfHWi9ra0tgrAps7CwoN3d3VG3AQAAAAAAZO94oqWlpZFNjY31YfnS4UH5oVBI8Xh8oHXu3bvn2GQZAAAAAAAAJs9YT4TVFQoFLS8v68knn1QqldL8/Lytx+3v78uyLJVKJd26dcvlLgEAAAAAADDOJiII++yzzyRJpVJJa2trfa1Rq9Xk8XicbAsAAAAAAAATZOyDsNdee03ZbFaS5PF4VKvVel6DAAwAAAAAAABjfUbY9evXtbW11Qi/+gnBBnkcAAAAAAAApsdYT4RtbW1J+tMkWCQSUTQalc/n6/mcsGvXrumLL75wsVsAAAAAAJxVq0nVLrMdcx6JjVCAPWMdhBmGIY/HI5/Pp+3tbZ07d67vtVZXV/XEE0842B0AAAAAAO6q1qTTb3WueXhVOkUQBtgy1lsjfT6fJOnKlSsDhWD1tc6fP+9AVwBmnWVZo24BAAAAANCHsQ7CwuGwJCkQCDiy3vXr1x1ZB8DsMQxDqVRKfr9fq6uro24HAAAAANCHsd4auba2ptu3b8s0TUfWYyIMmE6GYejmzZsyDEOmaTbOBvT5fAoEApqfn1coFFI0GlUkEjn2+Hg8LtM0tbOz0/gzy7JULBZ18+ZNFYtFpsAAAAAAYAqMdRAWi8V0/vx53bx5U3/7t3878HoffPCBfvSjHznQGeCsbDartbW13h/4L0PS/7rTva6bd44fKHD6nc4P8fl8Ojg4aP/OX8al/5a3vVZdoVBoG1S1Y1mWNjY2lMlkOtYYhiFJKhaLjdpQKKRIJKJgMKhCoaB8Pq9QKNTy2NXVVZmm2Xg8AAAAAGDyjfXWSEnK5XLa2dnRL3/5y4HX2tjYcKAjwHmJREIHBwfa2dlRLBbrXPy9iPTvC9L/88CZEEyS3qxJr5akv9mS/oXvxLJAIKCtrS2VSqWTQzBJ+ne5w/7+feGw3w6SyaR2dnZ0cHBgOwSrb1E8GoLFYrHGfzMODg5Uq9VUKpVUKBSUSCQa5w4ahqFMJqO1tTXl84eB3dGJr/o6tVrNse3ZAAAAAIDRGvsgLBAI6Nq1a3rllVcGWuf+/ftMdmCs+Xw+hUIh5XI5JRKJ9kX/KvancOmMz+EGAtJfJTqGazs7O0okEvaCoTO+Rmh3dNqqbmtrS+l0WqFQqBFSdWKapoLB4LEALJFIqFarKZfLKRaLtawXCAQUiUS0tbWlg4MDpdPp7r0fYTegAwAAAACMt7HeGvnBBx9Ikv7sz/5Mfr9fTz75ZPdpmTYsy9KtW7ecbg9wzdramrLZ7PF3nO9j+2SvfIHDLZf/ozU4jsVitsKqdlZX1/Taa8d7Pxr41WqH10O3UywW9Td/HW1t1efT7du3Twza2kkmk4rFYgqHwy1TYPv7+yc+pt+PGwAAAAAwXsY6CHv77bd19+7dxtu1Wq3jeUCd1Go1eTzHz0ECxtGJE1e+IW3R8wWOBWGDbA881+ax7cKlak06/VabBf53Q/r/Dh6C1QUCAd27d0/nzp1rhGEchg8AAAAA02+st0ZeunRJtVpNtdrhiAhBFmbFiRNIZ+aH2odTPvvtAA+2TOl/Wzn2x7lcrq8QrM7n87XcEgkAAAAAmH5jHYTVb9HzeDyNQKzfFwA9ePR44PbEE0+0LX3/bts/bpG5c3y9+Xmbod4v49L/YbX8USKRcOTcrkAgoGQyOfA64ySfz8s0zVG3MbaKxeKoWwAAAAAwQmO9NfLs2bMKhUK6e/du40Bt2z88NzFNU2+//bZ+/etfO98kMMPuP5Be/8jFJ/iieGyLpqS+Drw/yZUrVxpbri3LGtvzwAzD0NbWlorFokzTlM/n0/z8vHw+nwKBgC5fvixJWl1dVTqdPvnCBR2GQfF4XPPz89ra2prqywBM01SxWFQul2uEYOP0y5FZ+loAAAAA42CsgzBJunz5soLBoN54442+1zh//ryee+65vkI0ACd7z5D+8EcXn+BXxw/Yf+65/g/tb8fn8ymRSLS/nGAMWJal1dVV5fN5SYdTbPVLQ0zTlGEYMgyj8f76YzqJx+OyLEuWZWltbU2lUsm1/kfFNE3F43GZpjnW57/NwtcCAAAAGCdjvTVSkiKRiGO/vV9eXnZkHQCHPv7cxcW/KB6eD3ZE6s0rjj9VPB6X1PnmyE7qUz3BYFAej0d+v1/RaNSRcC0ejzdCrq2tLZVKJeVyOeVyOe3s7KhUKh2bIuoWpszCLwUCgYB2dnZ0cHAw1ttfZ+FrAQAAAIyTsQ/Czp8/79g2qP/4H/+jI+sAOHTwtYuLf55r+8eDHJB/kkgkonQ63XMoYVmWwuGwotFoy9lclmWpWCxqbW1NwWBQhnF8e6cdmUymsZ0vmUy23e4YCARUKBRa/jvZ7Yywra0tBQIBBQIB5XLtP8/TJBqNdi8akVn7WgAAAACjNvZbIyXp3Llzjqzzn//zf9bTTz/tyFoYD+VyWUtLSx1r1tfXtb6+PqSOZov/URcX/6LNoebfc+/8pF6nhkzTVDgc7rrtrl5XKBR6Pv9pY2Oj8Xr98pCTJJNJffnll8pkMl0n2yKRyExtwRvV1NXa2pq2trY61sza1wIAAADTb3NzU5ubmx1ryuXykLo5biKCMKdsb2+PugU4rFqtam9vr2NNpVIZUjez5+JT0qe/cWFhy2y7LVL/0vlpsH5YltU42ykWiykajWp5eVn7+/sqFAqNw/ebRaNRlUolBQIBW8/Rz9lW6XS6cZg+RiubzSqbzXYNwgAAAIBpU6lUuv6cPkoTGYR98cUXPf2AaJqmtra2xvrAZPRnbm5OCwsLHWu8Xu+Qupk9L4akN3/lwoH57UIwSfIHHX6i/tS3K7ab8opEIlpbW1M0Gj0WSMXjce3s7Nh6jqP/vSoWiy1bI2s1qdrm+MRU6oouX47r26o055E8HltPBweZptl1gg8AAACYVl6vV4uLix1ryuWyqtXqkDpqNRFB2BdffDHwpEOtVpOHnwinzsLCgnZ3d0fdxsw6e0Z69xnp5Xz32p6cFISdGZ+DxTttdayf2xUMtgZ3hmGoWCza2iJ5dHIslUrp0qVLjRszqzXp9FvtHnl4o+Tp/2Tp4c99OsV/9obKsqyxPpMMAAAA0vt3pZfCo+5ietk5nmhpaWlkU2NjH4RduXKlsc3IqdsjAfQulUoplUoN58keWO3//IxvOM/fhc/n6xpmBQIBpdPpY5+zdDptKwjz+Xzy+XyNybD6wfyFQqH79so3+W/lKFiWpZWVFbamAgAAjND7d7vXvJyXTs1JL5x3vx+Mn7G+NfIf/uEflE6nGwEYE13AjLDG+/Dw5eVlW3XJZLIxwVVX31Zpx9Ebc03TVDAYVDabtb3GSQzDaNxq2YllWcpmswqHwy3PW9/+5/f75fF4FAwG256NZpqmUqmUgsFgo25tba3tVvX683g8npaXo6LRaGO95hcnt79ns9mW5/H7/QqHw20/Runw83nu3LljN4Q293fS59ru16LOsixlMhlFo9HG57/eXyqVshXEmaapTCZz7FbT5q9BMBhsnIUHAAAwCe4/kF7/yF7tqx9KlQeutoMxNdYTYfUb0zwej2q1mgKBgEKhUGMa4oknnui6xpdffinLsnTr1i3dv3/f1X6BaZZIJNqee/RtVfrX/+/Oj/0v//O2XnuthzOT/oWv/Z+fNCk2ZEfDrU4ikYjy+da9o4ZhKBTqfvB/IpFQLpc7Fp41biP8v12X/if7FwgYhqGtrS3dunWrEW60+1jq4dfNmzePBTvS4XTg0UCoHniVSqXGAfEn1WWzWRWLRe3s7LQ8fyKRaPw96xT2FQoFSVImk3F8SjGfzysej8vn8+n69euKxQ63mhqGoXg8rlQqpa2trWO9BwIB3b59W8VisaWnk86Es/u1OCqbzTb+HabTaaXTafl8PhmGoY2NDWUyGWUyGcViMeVyuZbHWpaljY0N5fP5Y2FZfZqt+ettmqZM02x8rexe9AAAADAq7xn2zy/+6hvphiH9+Afu9oTxM9ZBmGEYjWmAQqGglZWVvtdKJpN68sknnWoNmDnBYLBtePNtVdL/1PmxYXsDVH/y6Akh94P9HhcavcuXLx8Lwra3t20FYdLhf/vi8XjbME1GWPpXMel/ud5126hpmrp586btqaNQKCSfz9cSfu7s7CgcDmt+fl65XE6hUEjz8/ONAEb6U1CTSqUat2jWJ+i2t7cbE0amaWpjY+PY1Jt0eKmAnam3WCzmaBBWLBYVj8clHW7Lr4dg0uHnI5fLKRwOyzRNra6utgRNPp9PoVBI+/utf0fbfZ17/VrU1YNFn893LJgKBAKKxWKNvyv5fF7BYLAlsNvf31c0Gm0EnXXb29taWVlRJBJROp1WIBBoBHqWZcmyLK2trTUCSAAAgHH18ee91X/yOUHYLBrrrZH1b96TyeRAIZh0+EPCuXPnHOgKgOtOCnXGZCKsF+2maHrdapbL5doGRpKk/5aX/l9+6dedg6P6mWXJZFJXrlzpWFs/Ay2RSLQEOdlsVul0WoVCQbFYTIFAQD6f79i5Z+FwWIFAQDs7O4pEIo3zziKRiK5fv96y3iDm5529PKE+yXaS5s/F0WCyF718Leqy2WwjbKyHVe3kcrnG+0zTbAR79eeNRCLHPs5UKqVcLqdcLqdIJKJAIKBEItHytSoWi2yRBAAAY+/ga3frMR3GOgirfzN/4cIFR9br9kMOgDHhO2EL1pifHdZOu+1uX375Zc/rJJNJHRwctEwptfjVmvT3UVthYS9b3JrDpkQiceJB/0dvSjzpv7fN/denjcbRSdsUm//ciUPx7X4t6pNvPp9PiUTCVq10GGC1O5eu+eO4fv1626/r0b9r29vbtnoFAAAYFf+j7tZjOox1EFafAju61WTQ9QCMue+dcKviF/YPmh8X7YIOO+cbtuPz+ZTL5bSzs9N+a+UXRel/W3F0cs7ueWjNH2cvZ6iN0w2L169fVzqdVi6X6xo2Sb1P9vUrm802nstOcJZIJFq+BidOE9rQ/Hzj9LUCAABo5+JTvdU/3WM9psNYB2E/+clPVKvV2h7W3I9f/OIXjqwDYAj+ZZugxzLHdoKoF4MeOh4KhfRf7+xIf9Nm6up/GNL/b3Wg9fvRS/jVzKlfdDjB5/MpmUy2nbozDMOx/y/qVfPZXHb/7jRPePVyUykAAMAkezEkPfYde7WPPyK9ZP/eKUyRsQ7Czp49q3feeUc3b97U73//+4HXY2skMEG+f7ntH9+ewB/qj4ZEjt2+91cJ6dXS8Vs2/1t+rKfn+g3Nhq35hstQKGT7ggM3+ujV0b9j0xAgAwAAdHP2jPTuM/Zqrz0rec+42g7G1FgHYdLhuTihUKjlwN9+3Lt3b2S/zQfGjWEY0i8H+zflur9qvzUtm528QPtoCOFooOILSP/rzvEw7O7kfZ7GhWEYikaj2tra6ngu2rA0//2xG4odvZFynCbvAAAA3PTC+e41N2L26jCdTo+6ATsKhYKWl5f15JNPKpVK2b4pbH9/X5ZlqVQq6datWy53CUyOV9dWpf/D2Rv3HHfGJ/2r2OF0U5Pbt4syDGNk0zm9OhqC2QlVisWiUqmUdnZ27D2JLyD9L9elD5vCzf9B8N+PtbU1ZbNZJRKJgc7WclI/B/Qf/f9Jx6YQAQAApsDzhGAzbSKCsM8++0ySVCqVtLa21tcatVpNHo/HybaAiVQsHgZJ+n90+CH/a2enR/qeRvk36WNBmHR4K17zuUlOsCzLlS17R2/as/PfsEAgIMMwVCwW7U8jPXXkXCuLg817VQ/BpMEOmHda/e+D9KebNrv9XW3+N0cIBgAAAPzJ2G+NfO211xSNRnX37l15PB7VarWeXwAcsizrT9uMjwYnXXz55ZeO9mIrHPMF2gZ2xWJRmUzGsV5M01Q4HO47aO/k6EHn7Q5iP6oeXAzUT7vLBqaMk9v9DMNohGCBQGCszjG7fLn1vLx6n52USqXG63b+zgEAAACzYqyDsOvXr2tra6sRZvUbahGGYdK4cbC1ZVlaWVn50zSJr7cpEad7sr3e/z0pfe/4VFQqlXLkNrxisdg4T8mNKaB8/k8Tbb1c2BEIBGSaplKplL0HHJ0AO+GygUlwdFvfSX9X+jlE/iTNf5c6rTuKQ+djsVhLMGfn71Hzx3PlyhU32gIAAAAm0lhvjax/s1+fBItEIopGo/L5fD2fE3bt2jV98cUXLnYLOOfEH8Qf7B+endWjYrGotbW1xrrx+CVd7/SANtvqBpm+uTdoYPHvC4eH+x/ZJhmNRpVOp5VMJnte0rIspVIpZbNZBQIB7ezs2J4CshuGZLPZxue810PX60FYJpNRMBhUItH+8oCG5sPxfYHDANEBdj/W5rpuj+n2/qPnv2Wz2WNf43Yh4f7+vmOTXPl8/tgkVbvnO+roNkTTNFv+rN8tuNevX29Mc5qm2XHbrGEYja2U6XR6rKbbAAAAgFEb6yDMMAx5PB75fD5tb2/r3Llzfa+1urqqJ554wsHuAPecOPHxqzXpb7a6TnNZlqXt7W0VCgXl8/ljwVokEtX1uyc92Gx70Ho+nx/gh/j2H0/9UHJb/l1O+qeU9P9v3RKZSqV08+ZNpdNpW0GTZVnKZrPa2NiQZVmKRCLK5XI9fVxHz/1qxzTNxtbGSCTS0zSY1BqorK2taWdn5+RQ49fZ1s/Lv+98flpzgDOKCadmJz1/JBJpTDWlUimVSiXF43FZlqVCoaBsNqtCodD4M+l46FR3NLBq9/f4aPgWj8eVTqcVCoVkGIa2trYUCoUaAaX0p3+nhUJBV65ckc/nO/b8a2tryuVy2t/fVzqdVjAYbAn17H4tYrGY0ul0I4yLx+O6d+/esY/Dsiytrq5KOgxfTwqJ7X7dm//bMeq/KwAAAIATxnprZP0b/CtXrgwUgtXXOn+eqyEw3gzDUDweP/kMoC+K0rWg9I6n7cvpUx55PB75/X5Fo1FlMpm202Ur7QKjB9ZhoPL/CZ/YXzgcVjabtf8D8f9uSH8fbUynHLW2tqZUKmV/i9u/SetX/1g4FloYhqFoNCq/39/4/NUvBSgWi8pms8pkMgqHw/L7/Y0wIZfLqVAodA3Bjp7VZVmWgsHgiVsz8/m8wuHDz2MsFuvrYP/64+uy2Wzj40ulUrqezR4Go9eCh/8rHW4hfbXUNSg9Gso1b99sZllWy8fYKQC8efPmsX7bOfo5O+lzczSczGazikajisfjunXrlgqFwrHgs/536ejfz6Mfb7tbhCORSNsJsGg0qlQq1Qi0mp8zn88rGo3KNM2WXpvDp2KxKL/f39h+ezSYsvu1qD+2/nmxLEvnzp1rTB2apqlsNqtwOCzDMJROp08MX+1+DezWAQAAAJPEUxvjA7Si0ag+++wz5XI5/ehHPxp4vbt37xKGTYmlpSXt7e1pcXFRu7u7o25nYNls1pWD2tsJhUL6r3d2dPqtpj98p/cbVX0+nw4ODvRtVa1rSW23Mdrxq38s6G/+qfNU18Or0qm5w8BgY2PjxJDtJIFAQGtra0okEj1NgdW34h0NKnw+n5aXlxvhxPb2dmPi6Ghw0otisah4PK7r1w83sRYKBZmmqf39/daw51/4DgOw82vHzlKrf66kw7BwY2NDxWKxbZAZCoV0+fJlJZPJjrWBQEChUEjXr1+Xz+fT2tqaisVi2zCzvp09mUyqWCwqnU63DQ8DgUDbqbn69tX6+qFQSJFIpOUst3A4rEgkorW1tWNbEFdXVzt+vMvLy8eeM5PJaGtrqzFdFovFGtNe9XXj8biKxWLL5+yo+t+Vet9XrlxpBG29fC1Oks1mlcvlWv6+BQIBXb58+cS/24ZhnHi2XvPXoD7NeFLd2tpaX9uRAQCYNW2/Tz6i+fs1t9dxeq1xxed9MozyZ/qxDsLy+bwuXbqkTCajv/3bvx11Oxgj0xaE2TGu/yEe9Vr1qaWbN282AqJ6KFO//S8QCOjChQuKxWJtt8714ujz1Z+z/jzLy8uKx+N9B2B28X+mAAAA441AZjT4vE+GUf5MP9ZnhMViMZ0/f143b950JAj74IMPHJksAzA+fD6fYrHYsW1t0/J8AAAAAADnjH3emMvltLOzo1/+8pcDr7WxseFARwAAAAAAAJhEYz0RJh1ubbp27ZpeeeUV/bt/9+/6Xuf+/fs9nyWE8Vcul7W0tNSxZn19Xevr60PqCAAAAACA2bW5uanNzc2ONeVyeUjdHDfWQdgHH3wgSfqzP/sz+f1+Pfnkk31tR7Isq+0tYZh81WpVe3t7HWsqlcqQugEAAAAAYLZVKpWuP6eP0lgHYW+//bbu3r3beLtWqymTyfS1Vq1Wk8fT+814GG9zc3NaWFjoWOP1eofUDQAAAAAAs83r9WpxcbFjTblcVrVaHVJHrcY6CLt06VJjO6PH4yHIwjELCwszc2vksL1/V3opPOouAAAAAACTxM7xRPVbI0dhrA/LX1tbk3QYgtVqtYFeAPzJ+3e717yct1cHAAAAAMCkGOuJsLNnzyoUCunu3btKp9MKhUKan5/veR3TNPX222/r17/+tfNNAhPm/gPp9Y/s1b76oXTx+5L3jKstAQAAAAAwFGMdhEnS5cuXFQwG9cYbb/S9xvnz5/Xcc8/1FaIB0+Y9Q/rDH+3VfvWNdMOQfvwDd3sCAAAAAGAYxnprpCRFIhHHtjYuLy87sg4wyT7+vLf6T3qsBwAAAABgXI19EHb+/Hml02lH1nJqHWCSHXztbj0AAAAAAONq7IMwSTp37pwj65w/f96RdYBJ5n/U3XoAAAAAAMbVSIOwcTq8fpx6Adx08ane6p/usR4AAAAAgHE10iAsHA6rUqmMsgVJ0v379xUOh0fdBjAUL4akx75jr/bxR6SXQu72M+5qNenbaucXh44xBAAAAAC4bKS3Rjp1CL4TxqkXwE1nz0jvPiO9nO9ee+1ZyXvG9ZbGWrUmnX6rc83Dq9Ipz3D6AQAAAAD0b6QTYR7P+PzkOE69AG57wcZxeTdi9uoAAAAAAJgUIw3CmMICxtfzhGAAAAAAgCkz8lsj7927N+oWtL29PeoWAAAAAAAA4LKRnhEmSaurq3rzzTfl8/k0Pz8/1Ofe39+XaZpKJpNDfV4AAAAAAAAM38iDsJ2dHcXj8ZH2UKvVOCMMAAAAAABgyo08CKsb1XlhBGAAAAAAAACzYeRB2KgPzB/18wMAAAAAAGA4RhqEHRwcjPLpAQAAAAAAMENGGoSdPXt2lE8PAAAAAACAGTLyrZEAMCtqNanaZTf2nEfi6EIAAAAAcAdBGAAMSbUmnX6rc83Dq9IpgjAAAACMyPt3pZfCo+4CcM/cqBsAAAAAAADue/9u95qX8/bqgEnFRBgmWrlc1tLSUsea9fV1ra+vD6kjAAAAABg/9x9Ir39kr/bVD6WL35e8Z1xtCVNqc3NTm5ubHWvK5fKQujmOIAwTrVqtam9vr2NNpVIZUjcAAAAAMJ7eM6Q//NFe7VffSDcM6cc/cLcnTKdKpdL15/RRIgjDRJubm9PCwkLHGq/XO6RuAAAAAGA8ffx5b/WffE4Qhv54vV4tLi52rCmXy6pWq0PqqBVBGCbawsKCdnd3R90GAAAAAIy1g6/drQfq7BxPtLS0NLKpMYIwAAAAAACmnP9Rd+sHUasd3rDeyZxH8nC7OhxAEAYAAAAAwJS7+JT06W/s1z/9lHu9HFWtSaff6lzz8Kp0iiAMDpgbdQMAAAAAAMBdL4akx75jr/bxR6SXQu72A4wKQRgAAAAAAFPu7Bnp3Wfs1V57VvKecbUdYGQIwgAAAAAAmAEvnO9ecyNmrw6YVARhAAAAAABAkvQ8IRimHEEYAAAAAAAAZsJUBmH379/Xa6+9Nuo2TmSapqLRqGPrGYahfD6vTCajYrFo6zGZTEbRaFR+v18ej0fBYFDxeNz244e1JgAAAAAAgFOmMggzTVPZbFa/+93v9Nlnn6lSqQzleS3Lksfj6foSDAYVCAQGep5MJqNwOCyPx6OVlRXduXNHoVBIy8vLHR9bLBbl9/uVSqUkSblcTqVSSel0WoZhKBqNKhqNyrIs2/24sSYAAAAAAIDTTo+6ATcUi0XVarWWsCmVSuntt9929Xmz2azt2npo1AvLspRKpRrPEwqFVCgUFIlEbD2+WCw2JtESiYS2trYa7wsEAorFYgqHwyoWiwqHw9rZ2ZHP5xv6mgAAAAAAAG6Yuomw27dvN0KmWq3WeEmn0/rJT35y4uNee+01Pfnkk7pw4YJ+8pOf9DVFtrGxYasuEon0PBGWzWZ17ty5Rgi2tbWlnZ0d2yGYZVmKx+OSDgOq5sCqWS6Xk3Q4VVevH+aaAAAAAAAAbpm6ibBUKqVYLKbLly8rFArJNE19+umn+ulPf6p0Oq21tTX9+Z//ectjnnzySZmmqVqtJkna2dlRLpfTzs6OvF6vrefNZrOyLEvJZLLr+V/dti+2+5gymYykw8CpUCj0HKTF4/HG1sRO02j1Ka58Pq9isahsNqtEIjG0NQEn1GpStda5Zs4jeTzD6QcAAAAAMB6mLgiTpFu3bjVeP3funFZWVnTlyhWFw2GlUin9/d//feP9r732mkqlkjwej1KplDY2NhpbEFdXV3Xz5k1bz5lOpxUIBJROpx39WOLxuPL5vCTJ5/P1tbXQNM2WA+svXbrUsf7y5cuN50ylUm1DKzfWBJxSrUmn3+pc8/CqdIogDAAAAABmytRtjfScMOJRD5FKpVLLn29tbcnj8SgWizW2Nvp8Pm1tbeng4EBffPFF1+fM5/MyTbOvc786iUajjfBIUt/nazWHc5FIpOsasVis8bplWS09uLkmAAAAAACAm6YuCPP7/fr5z3/e9n0+n09+v7/x9vXr1xuvt5vkSqVSLVNPJ9nY2JDP5+s6FdWLbDbb8txbW1t93zTZfIh/KBSy9Zjm52o3FefGmgAAAAAAAG6auiAsmUzqjTfe0Ouvv972wPuDg4PG6/VpsEgkou9973vHapeXl49NkB1lGIYMw5BlWfL7/QoGg1pbWxto4sk0Ta2trTXeDoVCfW8lNAyj5e0LFy7YelxzuHX0Y3FjTcCu9++OugMAAAAAwKSauiAsEolodXVV165dk9/v1+XLl/Wzn/1MP/vZz3ThwgWVSiX99V//ta5cudIIdJpDp2Znz56VaZodn+/odkjTNJXNZhWPx+XxeBSPx48FR90cvVnxypUrPT2+2dGJNrtTZUfrmj8GN9YEJHsh18t5wjAAAAAAo8fPJZNp6oIw6XDS67nnnlOtVlM+n1cqlVIqlZJhGLp9+7a8Xm/LVsiTtvbdvXtX8/PzJz7P0QPj28nn8wqHwyeGbe3WbA6IfD5fy/lavbpz507L23bPGHviiSda3t7e3nZ1TeD+A+n1j+zVvvqhVHngajsAAAAAZhi/pJ9eUxmESVIul9O1a9e0srKiWq2ms2fP6tatWzp//rxyuZyee+45+Xw+Xbt27cSQKpvNKhgMnvgcgUBAW1tbSqfTSiQSHSejstmswuFw1763trZa3o5EIpIOA7V4PK5gMCiPxyO/369wOKxMJiPLsk5c7+hEW7/TW81bRN1YE3jPkP7wR3u1X30j3WCgEAAAAIAL+CX9dDs96gbclEgkTjxbK5fLNV73+/26cOGCfvGLX+gv//IvValU9PbbbyubzbacKXbSczSzLEvZbFYbGxvHAirDMBSNRlUoFE5cr/kQekman59XOBw+to3QsqzG+WSpVEq5XK7t5Fi3rZ12NX8sbqwJfPx5b/WffC79+Afu9AIAAABgdvXzS3p+NpkcUzsR1otYLKZ4PK7z58/r1KlT8vv9+ulPf6p33nlHXq+3p7V8Pp+SyaQODg6Uy+WObRssFovKZDJtH2ua5rFw6NatW1pbW9PBwYFqtZpqtZpKpdKxAC4ej7c9gL7fsOlo3/v7+66uCRx87W49AAAAANjRzy/pMTmmeiKsF8lkUoFAQNlsVj6fT5cvX9Zzzz030JqxWEyRSEQrKystE10bGxtKJpPH6o9OWvl8Pt27d+9YgFTfknn07LHV1VVFIhHbZ3b1wo3pLSfWLJfLWlpaGnid9fV1ra+vD7wO+ud/1N16AAAAALCDX9KfbHNzU5ubmwOvUy6XHeimP1MXhH322Wf64Q9/2LXugw8+UCQSaZn4isViAx1M347P59POzk7L9kbLslQsFhvnf9UdDcISiUTHUCuRSGhnZ6exndKyLG1sbLRcBODz+RwJnJr7cGPNflWrVe3t7Q28TqVSGXgNDObiU9Knv7Ff//RT7vUCAAAAYHbxS/qTVSoVR34GH6WpC8JisZju37+vSCSiaDSqSCSiv/qrvzpWt7KyoldeeUWZTEbf+973XO/r+vXrLYflFwqFY0HY0cPjL1y40HXdVCrVcq5YJpNpCcLm5+cdCa2ab890Y81+zc3NaWFhYeB1et0CC+e9GJLe/JW9vfiPPyK91P6yVwAAAAAYCL+kP5nX69Xi4uLA65TLZVWrVQc66t3UBWHhcFi3b99WsVhUsViUdDh5tLy83BKMnT17VtevX1ckElE+n9ef//mfu9pXKBRSJBJp9NTuwPmj4ZKdialAIKBQKNSy9dIwDIVCIdtrtNOpFzfW7NfCwoJ2d3cHXgejd/aM9O4zh1cQd3PtWcl7xvWWAAAAAMwgfkl/MqeOFVpaWhrZZNnUHZafz+cViUR0/vx5nTt3TrVaTQcHByoUCkqlUgqHwzp16pT+5m/+Ru+8844ODg5aztlyUzQa7fj+YDDY17rLy8stbzeHbEffZ3eS6+hB9s29ubEmIEkvnO9ecyNmrw4AAAAYd+/fHXUHaKf+S3o7+CX95Jm6ICyRSCibzWp7e1u//e1vVa1WVSgUtLq62rh1sVar6dNPP1Umk5FpmioUCkPpLRAINF5vty3w6ISU3YDpaKDUHDg1b8eU2k+itXN0m2bzNk431gTsep4QDAAAABPATsj1cp4wbFzxS/rpNXVBWK1WO3bm18rKira2tnRwcKA33nhDoVBI6XRazz33nEKhkN55552h9NYchLXbFthpsquTo2s1h2z9rtkcwvl8vpbe3VgTAAAAAKbF/QfS6x/Zq331Q6nywNV24BJ+ST+Zpi4Iu3///onvO3v2rNLptHK5nO7cuaNMJqPt7W298cYbQ+lte3u78Xq7bZL1c73qjk5Q2dUcMIVCoZag7M6dO7bWaO71aPDlxpoAAAAAMC3eM+ydLyVJX30j3TC61wFwxtQFYefOndPPf/7zrjW3bt1SIpHQ7373uyF11hpsnbQtsPnP6wfrd3N0C+XRQO3SpUuN15sP1e+kuS6VSh17vxtrAgAAAMA0+Pjz3uo/6bEeQP+mLghLJpN644039Mtf/rJr7a1btxSJRFSpVIbQ2eFB/tJhjydpDohM07R1Tli3gK35MgA74VpzTSAQGNqaAAAAADANDr52tx5A/6YuCAsEAnrnnXcUi8X0+uuvd6z1+Xw6f/683nzzTdf7yufzMk1TPp9PV65cObEuEom0bG3c2NjounZzyJROp4+9PxQKtQRP9UDuJLlcrvH6SZNbbqwJAAAAANPA/6i79QD6N3VBmHQ4cfWjH/1I165d05/92Z/p5z//+YlTX/Pz87p582bPz1EsFuX3++XxeBSNRjtuDzRNU6urq5Kk27dvtz0ov1lzaFS/2bJTH/X3JxKJY9si67a2thqvdwrXLMtSNpuVdBjKJRKJE2vdWBMAAAAAJt3Fp3qrf7rHegD9m8ogTDoMk1ZXV7W/v69kMim/36/Lly/rF7/4hX7961/r17/+ta5cuaJsNmtr+2G79euPKxaLCofDLdsF6+rvm5+fV6lUOjGoahYKhVpCpmg02rZHy7Iaz3n0MUcFAoFGwGYYhjKZTNu6lZUVSYfTcs2B3LDWBAAAAIBJ92JIeuw79moff0R6qfuPiQAcMrVBmHQ4sXTr1i15vV7VajXl83mtra0pHA4rHA43ghs74dRR8Xj82J9ls1n5/X7F4/HG80SjUSUSCe3s7LRseewmkUioUCjI5/PJNE2dO3dOmUxGhmE0Qqdz587JNM3G+t3EYrHGmqlUSvF4XIZhyLKsRmBnGIZCoZDu3bvXdXLNrTUBAAAAYJKdPSO9+4y92mvPSt4zrrbjilpN+rba+aVWG3WXwHFTHYRJh0HNwcGB3nnnHZ09e1a1Wq3lxefz6fr16z2vG4lEVCqVlEgkFAgEWgIewzC0v7+vK1eu6ODgQOl0uq8AKBKJ6ODgQFtbW1peXtbGxobC4bBWVlZ08+ZNJRIJlUqljpNgJ62ZTqdlmqZWVlYa4d38/LxyuZx2dnZ66teNNQEAAABgkr1wvnvNjZi9unFUrUmn3+r8UiUIwxg6PeoGhiWZTCqZTOru3bsyTVOmaTZuLzx79mxfawYCgZ5CqH4lEgnHz9Wqfz7GfU0AAAAAmFbPT2gIBkyyiQ3CXnvtNf2X//Jfen7c+fPndf48/7UBAAAAAACYNRO7NfLWrVv6/e9/P+o2AAAAAAAAMCEmNgg7ODjQ9773Pb322mv67LPPRt0OAAAAAAAAxtzEbo2UJMuylM1mlc1mJR0e2h6NRhWLxfS9731vtM0BAAAAAICZN+eRHl7tXoPhmNiJsLrmGyCLxaJSqZSCwaCeeOIJvfbaa/rggw+6rvGLX/xiCJ0CAAAAAIBZ4/FIp+Y6v3gIwoZmYoOwd955R7VaTR6PR8FgUFJrKHZwcKBsNqt4PK5Tp07pwoUL+tnPfqZf//rXx9YqFApD7h4AAAAAAADDNrFbI5PJpCKRiOLxuPb395XP51Wr1fT3f//3un37tizLUq1Wa9QbhiHDMCRJPp+vsY1SkvL5/Eg+BgAAAAAAAAzPxAZhkhQKhVQqlZRKpRSPx7W2tqZcLidJunfvnvL5vAqFgorFYksodnBwoHw+TwAGAAAAAAAwQyZ2a2SzdDqtO3fu6NNPP9Vf/MVf6J//+Z917tw5vfHGG/r0009VrVZVKBSUSCQUCAQktW6jBAAAAAAAwPSb6ImwZqFQSL/97W+1tramUCikVCqlt99+u/H+lZUVraysSJLu37+vW7duKZfLqVgsjqplOKBcLmtpaaljzfr6utbX14fUEQAAAAAAs2tzc1Obm5sda8rl8pC6OW5qgrC6ra0txeNxXbp0Sfl8XrlcTn/5l3/ZUnP27Fmtrq5qdXVVxWJRf/3Xfz2ibjGoarWqvb29jjWVSmVI3QAAAAAAMNsqlUrXn9NHaeqCMEmKRCIyTVOrq6sKhULKZDL6T//pP51YW58Uw+SZm5vTwsJCxxqv1zukbgAAAAAAmG1er1eLi4sda8rlsqrV6pA6ajWVQZh0eDNkLpdTPp/XpUuXdPPmTeVyOf35n//5sdp4PD6CDuGEhYUF7e7ujroNAAAAAMAYmPNID692r4F77BxPtLS0NLKpsak4LL+TWCym/f19nT17VoFAQD//+c+P1ayuro6gMwAAAAAA4CSPRzo11/nFQxA206Y+CJMOp8MKhYI2Njb0xhtv6F//63+t3/3ud6NuCwAAAAAAAEM0E0GYJH3xxRdaXl5WMpnU9va2AoGA/u7v/m7UbQEAAAAAAGBIpuKMsC+++EKmacqyLJmmqVKpJNM0ZZqm9vf3ZVlWS73H41GtVlMikVAul1Mul9N3v/vd0TQPYOK9f1d6KTzqLgAAAAAA3UxsEHbhwoVG+NVJrVbr+L5PP/1UP/zhD3Xnzh2HOwQwDd6/273m5fzhWQMvnHe/HwAAAABA/yY2CNvZ2WlMdnXi8/kUCAQaL8FgUPPz8423z549O6SOAUya+w+k1z+yV/vqh9LF70veM662BAAAAAAYwMQGYc38fr8uXbrUEngRcgEY1HuG9Ic/2qv96hvphiH9+Afu9gQAAADMIo4jgVMm+rD85557TqFQSAcHB8pms9re3tbBwYH8fj8hGICBffx5b/Wf9FgPAAAAwP5xJHbqgG4mNgiLRCK6detWI/y6efOmarWaksmkgsGgnnzySb322mv6p3/6p65rffbZZ0PoGMCkOfja3XoAAADACZMcEPV6HEnlgavtYAZMbBAWjUYbr589e1axWEy3bt3S/v6+7ty5ox/96Ee6c+eOVlZWdOrUKV24cEE///nP9etf//rYWltbW0PsHMCk8D/qbj0AAADQzbRPS/VzHAkwiIk9I+yNN9448X2hUEihUEiSdP/+fRUKBd26dUtXr15VMpmUz+dTJBLRhQsXJEn5fH4oPQOYLBefkj79jf36p59yrxcAAADMnlm4vKmf40g4lxeDmNiJMLvaTYu98sor2tnZUTKZVCqVGnWLAMbUiyHpse/Yq338Eeml0ODPOam/yQMAAIDzZmFaiuNIMGxTH4QdFQqFlE6n9dvf/lbb29v64Q9/OOqWAIyps2ekd5+xV3vt2e6/fZv2sXYAAAA4axYub+I4EgzbzAVhzUKhkAqFgs6fPz/qVgCMqRds/OfhRqx7HYeAAgAAoFezMC11scfjRTiOBIOa6SCsLp1Oj7oFABPseRth2SyMtQMAAMBZszAtNYrjSDDbCMIkraysjLoFAFNuFsbaAQAA4KxZmJZy+jgSoJuJCMJ+9rOf6bPPPht1GwDQt1kYawcAABiFWk36ttr5pVYbdZf9mZVpKaeOIwHsmIgg7L/+1/+qaDSqv/u7vxtonevXr+vUqVP6i7/4C/3zP/+zQ90BQHejGGvn0H0AADALqjXp9FudX6oTGoQxLfUndo4jAeyYiCBMkmq1mhKJhH7yk5/0vUYqlVKtVtNvf/tbhUIhffHFF841CAAdOD3Wzg2UAAAAs4FpKcBZExOE1X366ae6fPlyX489d+6cAoGAEomEVldXlUqlHO4OANpzcqydGygBAADQjGkpwL6JC8K2t7dVrVZ14cIF/f73v+/psTs7O/rtb3+ra9eu6dq1azIMrmUDMBxOjrVzAyUAAAAA9GfigjBJyuVyisfjCoVC+t3vftfXGvfu3dP+/r7DnWHYyuWylpaWOr5sbm6Ouk1AknNj7dxACQAAAGBcbW5udv05vVwuj6y/0yN75gElk0mFQiGFQiHl83n9m3/zb2w/9v79+4pGo1peXnaxQwxDtVrV3t5ex5pKpTKkboDB2Rlr5wZKAAAAAOOqUql0/Tl9lCY2CJOkSCSiO3fu6N/+23+rK1eu6D/8h//Q9TGfffaZ4vG4LMvSm2++OYQu4aa5uTktLCx0rPF6vUPqBhiOUdxACQAAAAB2eL1eLS4udqwpl8uqVqtD6qjVRAdhkhQIBLS9va1Lly6pVCrp7bffPrH2pz/9qd58803VajX5/X698sorQ+wUblhYWNDu7u6o2wCG6uJT0qe/sV/f7QZKAAAAAHDK+vq61tfXO9YsLS2NbGpsIs8IO8rn8+nTTz/V/v7+iTdKXrlypRGCeTwepdPpIXcJAM5w8gZKAAAAAJglUxGE1V27dk0rKyvHbpS8fft2I/jyeDwKhUJMgwGYWE7eQAkAAAAAs2TigrB/+qd/6vj+RCKhra0t/fCHP2zcKFkPwWq1WsvbADCpnLqBEgAAAABmyUQEYefOnZN0GGQlEolGwHWSUCikmzdv6rnnntMHH3ygYrEoj8fTeN8Pf/hD13sGMN7evzvqDtxn5wZKAAAAAJglExGEpdNpHRwcKJfLaWVlRZFIRL/4xS86PqZ+iP61a9caf+bxeE48QwzA9LATcr2cn40wDAAAAADwJxMRhEnS2bNn9dxzz+natWv6zW9+Y/uMr08//VRvvPFGY1tkKMSp0cA0u/9Aev0je7WvfihVHrjaDgAAAABgjJwedQPDkE6ndeHCBV26dEn37t0bdTtAX+Y80sOr3Wtm3XuG9Ic/2qv96hvphiH9+Afu9gQAAAAAGA8TMxE2qFgspu3tbd28eXPUrQB98XikU3OdXzwEYfr4897qP+mxHgAAAAAwuWYmCJMOt0V++umno24DgIsOvna3HgAAAAAwuWYqCAMw/fyPulsPAAAAAJhcBGEApsrFp3qrf7rHegAAAADA5JqJw/IBTAYnLgR4MSS9+St7B+Y//oj0EhfJAgAAAK54/670UnjUXQCtmAgDMDacuBDg7Bnp3WfsPd+1ZyXvmYHbBgAAAGbO+3e717yct1cHDBNBGICp88L57jU3YvbqAAAAALS6/0B6/SN7ta9+KFUeuNoO0BOCMAAz6XlCMAAAAKAv7xn2jiKRpK++kW4Y7vYD9IIgDAAAAAAA2Pbx573Vf9JjPeAmgjAAAAAAAGDbwdfu1gNuIggDAAAAAAC2+R91tx5wE0EYAAAAAACw7eJTvdU/3WM94CaCMAAAAAAAYNuLIemx79irffwR6aWQu/0AvSAIAwAAAAAAtp09I737jL3aa89K3jOutgP05PSoGwAGUS6XtbS01LFmfX1d6+vrQ+oIAAAAAKbfC+ell/Oda27EDuswWzY3N7W5udmxplwuD6mb4wjCMNGq1ar29vY61lQqlSF1M5vmPNLDq91rAAAAAMyW5wnBZlKlUun6c/ooEYRhos3NzWlhYaFjjdfrHVI3s8njkU4RdAEAAAAAdPgz+OLiYseacrmsarU6pI5aEYRhoi0sLGh3d3fUbQATrVaTqrXONXOew9ATAAAAADqxczzR0tLSyKbGCMIAYMZVa9LptzrXPLzK5B8AAACAycetkQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJp0fdAAAAAAAAmF1zHunh1e41gBMIwgAAAAAAwMh4PNIpgi4MCVsjAQAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBM4LB8TrVwua2lpqWPN+vq61tfXh9QRAAAAgElVq0nVWueaOc/h4e4A2tvc3NTm5mbHmnK5PKRujiMIw0SrVqva29vrWFOpVIbUzeTgemIAAADguGpNOv1W55qHV7nhEOikUql0/Tl9lAjCMNHm5ua0sLDQscbr9Q6pm8nB9cQYd/w2FgAAAJhMXq9Xi4uLHWvK5bKq1eqQOmpFEIaJtrCwoN3d3VG3AcBh/DYWAAAAmEx2jidaWloa2dQYh+UDAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJnBYPgAAAADAFm52BjDpCMIAoIM5z+HthN1qAAAAZgE3OwOYdARhANCBx8M3cgAAAAAwLTgjDAAAAAAAADOBIGwETNNUNBod6ZqZTEbRaFR+v18ej0fBYFDxeFzFYrHvHtxYEwAAAAAAwCkEYQ6yLEsej6frSzAYVCAQGMmaxWJRfr9fqVRKkpTL5VQqlZROp2UYhqLRqKLRqCzLsv1xu7EmAAAAAACA0zgjzEHZbNZ2bT00GuaaxWKxMTWWSCS0tbXVeF8gEFAsFlM4HFaxWFQ4HNbOzo58Pt/Q1wSmFQfvAwAAAMBoMRHmoI2NDVt1kUjE9kSYU2talqV4PC7pMKBqDqya5XI5SYdbLev1w1wTmGYej3RqrvMLV40DAAAAgHuYCHNINpuVZVlKJpNdz+paXl4e+prxeLyxNbHT5Fh9iiufz6tYLCqbzSqRSAxtTQAAAAAAALcQhDkknU4rEAgonU6P3ZqmabYcWH/p0qWO9ZcvX1Y+n5d0GHC1C63cWBMAAAAAAMBNbI10QD6fl2mats/9GvaazUFaJBLpekZXLBZrvG5ZViPAcntNAAAAAAAANxGEOWBjY0M+n6/rVNSo1mw+cD8UCtl6TPN5Yzdv3hzKmgAAAAAAAG4iCBuQYRgyDEOWZcnv9ysYDGptbW2giScn1zQMo+XtCxcu2Hpcc7h19HndWBMAAAAAAMBtBGEDOrp10TRNZbNZxeNxeTwexePxY8HRMNdsPsdLku3bKo/WNT+fG2sCAAAAAAC4jcPyB3D0wPh28vm88vm8EomEtra2hr7mnTt3Wt7udpZX3RNPPNHy9vb2dmOiy401AQAAAADumvNID692rxn2WsAwEYQNIBAIaGtrS5ZlqVQqqVgsyjTNtrXZbFbb29va2dkZ6ppHH9vv9FapVHJ1TcBJ/J8yAAAAcJzHI51y6PtgJ9cChokgbECJRKLlbcuylM1mtbGxIcuyWt5nGIai0agKhcLQ1jwpROtV8/O6sSbgJP5PGQAAAMAg+OX69CIIc5jP51MymVQymVQ+n9fq6mpL4FMsFpXJZJRMJoeyZr9h09Htjvv7+66u2a9yuaylpaWB11lfX9f6+vrA6wCzrFaTqrXONXOew6ASAAAAGGf8cr29zc1NbW5uDrxOuVx2oJv+EIS5KBaLKRKJaGVlpeVg+I2NjZ6CMLfXtMON6S0n1qxWq9rb2xt4nUqlMvAawKyr1qTTb3WueXiVbygAAACASVWpVBz5GXyUCMJc5vP5tLOzo3A43AiuLMtSsVhUJBJxfU2fz+dI4NQ8zeXGmv2am5vTwsLCwOt4vd6B1wAAAAAAYJp5vV4tLi4OvE65XFa1WnWgo94RhA3J9evXFQ6HG28XCoW+g7Be1pyfn3cktJqfn3d1zX4tLCxod3d34HUAAAAAAEBnTh0rtLS0NLLJMoKwIQmFQopEIioWi5KcOXDezpr9Tl0dDbqOToQ5vSYAAAAATBMOWwfG09yoG5gl0Wh06GsuLy+3vG13kuvoQfbBYNDVNQEAAABgmng80qm5zi9cIgQMH0HYEAUCgcbrTmwLtLNm89ZJyf4kWqlUanm7eculG2sCAAAAAAC4jSBsiJpDK6e2BXZb8+j0lt3QqnnKy+fztTyPG2sCAAAAAAC4jSBsiLa3txuvO7VNstuaoVCoJSC7c+dOz+seDb7cWBMAAAAAAMBtBGFD1Lw10KltgXbWvHTpUuN1wzBsrdtcl0qlhrImAAAAALjh/buj7gDAuCAIG6J8Pi9JSiaTQ11zbW2t8Xr9hslOmmsCgUDbgM2NNQGML755BAAA48rO9ykv5/l+BsAhgrAhyefzMk1TPp9PV65cGeqaoVCoJXiqh2cnyeVyjddPmtxyY00Ao8E3jwAAYFLdfyC9/pG92lc/lCoPXG0HwAQgCOtTsViU3++Xx+NRNBrtuD3QNE2trq5Kkm7fvn3iQflurFm3tbXVeH1jY+PEOsuylM1mJR1utUwkEkNdE8Bw8c0jAACYZO8Z0h/+aK/2q2+kG/ZOdQEwxQjC+pTL5Rq3IBaLRYXD4ZbtgnX1983Pz6tUKikUCg11zbpAINCYyjIMQ5lMpm3dysqKpMNbHZunuIa1JoDh4ptHAAAwyT7+vLf6T3qsBzB9CML6FI/Hj/1ZNpuV3+9XPB7X2tqawuGwotGoEomEdnZ2FAgEhr5ms1gspkKhIJ/Pp1QqpXg8LsMwZFlWI1wzDEOhUEj37t3rOmXm1poAhodvHgEAwCQ7+NrdegDT5/SoG5hUkUhEpVJJ6XRaxWJR+/v7jWmuevBz5coVRSIR2+GPG2u2e46DgwNlMhndvHlTKysrsixLPp9Py8vLyuVyisViI18TwHDwzSMAAJhk/kfdrR8Hcx7p4dXuNQDsIQgbQCAQaDkna1zXbCeZTDp6e6VbawJw1yx88wgAAKbXxaekT39jv/7pp9zrxS0ej3SKoAtwDFsjAWCGXezxm8FJ/OYRAABMrxdD0mPfsVf7+CPSS92PVwYw5QjCAGCG8c1jb2o16dtq55dabdRdAgAwO86ekd59xl7ttWcl7xlX2wEwAdgaCQAzrP7N48v57rV88yhVa9LptzrXPLzK9gUAAIbphfPdv5e5ETusAwAmwgBgxtn5ppBvHgEAwCR7nu9jAPxfCMIAAF3xzSMAAACAaUAQBgAAAAAAgJlAEAYAAAAAAICZwGH5ADCB5jyHh7J3qwEAAAAA/AlBGCZauVzW0tJSx5r19XWtr68PqSNgODwebiYEAAAAMH42Nze1ubnZsaZcLg+pm+MIwjDRqtWq9vb2OtZUKpUhdQMAAAAAwGyrVCpdf04fJYIwTLS5uTktLCx0rPF6vUPqBgAAAACA2eb1erW4uNixplwuq1qtDqmjVgRhmGgLCwva3d0ddRsAAAAAAED2jidaWloa2dQYt0YCAAAAAABgJhCEAQAm0vt3R90BAADoV60mfVvt/FKrjbpLANOIrZEAgLFjJ+R6OS+dmpNeOO9+PwAATLJaTap2CZXmPIe3Ug9LtSadfqtzzcOr3JINwHkEYQCAsXL/gfT6R/ZqX/1Quvh9yXvG1ZYAAJhohE4A8CdsjQQAjJX3DOkPf7RX+9U30g3D3X4AAAAATA+CMADAWPn4897qP+mxHpOHc2QAAADgFLZGAgDGysHX7tZj8rClBwAAAE5hIgwAMFb8j7pbDwAAAGB2EYQBAIbGzm2QF5/qbc2ne6wHAAAAMLsIwgAAjrATcr2c7173Ykh67Dv2nvPxR6SXQvZqAQAAAIAgDAAwsPsPpNc/slf76odS5cHJ7z97Rnr3GXtrXXtW8p6xVwsAAAAABGEAgIG9Z0h/+KO92q++kW4YnWteON99nRsxe3UAAABOsjMFD2B8EYQBAAb28ee91X/SY307zxOCAQAAhzl11AOA8UUQBgAY2MHX7tYDAAC4zcmjHgCML4IwAMDA/I+6Wz9tajXp22rnl1pt1F0CADBbnD7qAcB4Oj3qBgAAk+/iU9Knv7Ff//RT7vUyCao16fRbnWseXpVOeYbTDwAA6O+ohx//wJ1eALiHiTAAwMBeDEmPfcde7eOPSC+F3O0HAACgVxz1AMwGgjAAwMDOnpHefcZe7bVnJe8ZV9sBAADoGUc9ALOBIAwA4IgXbNzieCNmr85JnMcFAADsuNjj0Q2zftQDMKk4IwwAMDTPDzkEkziPCwAA2PNiSHrzV/YOzOeoB2ByMREGAAAAAJh5HPUAzAYmwjDRyuWylpaWOtasr69rfX19SB0BAAAAmFQvnJdezneuGcVRD8Ak2dzc1ObmZseacrk8pG6OIwjDRKtWq9rb2+tYU6lUhtQNAAAAgPfvSi+FR92Fe0Zx1AMwSSqVStef00eJIAwTbW5uTgsLCx1rvF7vkLoBAAAAptv7d7vXvJyXTs0xNQXMKq/Xq8XFxY415XJZ1Wp1SB21IgjDRFtYWNDu7u6o2wAAAACm3v0H0usf2at99UPp4vc5RwuYRXaOJ1paWhrZ1BiH5QMAAAAAunrPsHejoiR99Y10w3C3HwDoB0EYAAAAADigVpO+rXZ+qdVG3WX/Pv68t/pPeqwHgGFgayQAAAAAOKBak06/1bnm4VXplGc4/Tjt4Gt36wFgGJgIAwAAAAB05X/U3XoAGAaCMAAAAABAVxef6q3+6R7rAWAYCMIAAAAAAF29GJIe+4692scfkV4KudsPAPSDIAwAAAAA0NXZM9K7z9irvfas5D3jajsA0BeCMAAAAACALS+c715zI2avDgBGgVsjAWDGzXkOb7DqVgMAAGDH84RgAMYYE2EAMOM8HunUXOcXD0EYAAAYsvfvjroDANOIIAwAAAAAMFR2Qq6X84RhAJxHEAYAAAAAGJr7D6TXP7JX++qHUuWBq+0AmDEEYQAAOIjfXAMA0Nl7hvSHP9qr/eob6Ybhbj8AZgtBGAAANrGNAwCAwX38eW/1n/RYDwCdEIQBAGAD2zgAAHDGwdfu1gNAJwRhAADYwDYOAACc4X/U3XoA6IQgDAAAG9jGAQCAMy4+1Vv90z3WA0AnBGEAANjANg4AwDDVatK31c4vtdqou+zPiyHpse/Yq338EemlkLv9AJgtp0fdAAAAk4BtHACAYarWpNNvda55eFU65RlOP046e0Z695nDC2a6ufas5D3jeksAZggTYQAA2MA2DgAAnPPC+e41N2L26gCgFwRhAADYwDYOAACG63lCMAAuYGskJlq5XNbS0lLHmvX1da2vrw+pIwDTim0cAAAAQHebm5va3NzsWFMul4fUzXEEYZho1WpVe3t7HWsqlcqQugEw7V443z0IYxsHAAAAZlmlUun6c/ooEYRhos3NzWlhYaFjjdfrHVI3AMA2DgAAAMw2r9erxcXFjjXlclnVanVIHbUiCMNEW1hY0O7u7qjbAAAAACba+3ell8Kj7gLANLBzPNHS0tLIpsY4LB8AAAAAptj7d7vXvJy3VwcAk46JMACAI+Y80sOr3WsAAMDw3H8gvf6RvdpXP5Qufp8LXwBMNybCAACO8HikU3OdXzwEYQAADNV7hvSHP9qr/eob6Ybhbj8AMGoEYQAAAAAwpT7+vLf6T3qsB4BJQxAGAAAAAFPq4Gt36wFg0nBGGABg7HDeGAAAzvA/6m49AEwaJsIAAGOH88YAAHDGxad6q3+6x3oAmDRMhAEAAADAlHoxJL35K3sH5j/+iPRSyP2enMYkOYBeMBEGAMAEq9Wkb6udX2q1UXcJABiVs2ekd5+xV3vtWcl7xtV2XMEkOYBeMBEGAMAEq9ak0291rnl4VTrFDwAAMLNeOC+9nO9ccyN2WAcA046JMAAAxtD7d0fdAQBgljxPCAZgRhCEAQAwZHZCrpfzhGEAAACA0wjCAAAzb5iB0/0H0usf2at99UOp8sDVdgAAAICZQhAGAJhq4zZ99Z5h7+YuSfrqG+mG4W4/ADDruHQEAGYLh+UDAKZWr9NXF7/v/m1ZH3/eW/0nn0s//oE7vQAAuHQEreY8h1/vbjUAJhcTYQCAqTWO01cHX7tbDwAA+ufxSKfmOr94CMKAiUYQBgCYWv1MX7nN/6i79QAAAABORhAGAJha4zh9dfGp3uqf7rEeAAAAwMkIwgAAU2scp69eDEmPfcde7eOPSC+F3O0HAAAAmCUEYQCAqTWO01dnz0jvPmOv9tqz7h/eDwAAAMwSgjAAwNQa1+mrF853r7kRs1cHAAAAwL7To24AGES5XNbS0lLHmvX1da2vrw+pIwDjpD599XK+e+24TV89P4IQrFaTqrXONXMebssCAADAyTY3N7W5udmxplwuD6mb4wjCMNGq1ar29vY61lQqlSF1A2AcvXC+exDG9NWhak06/VbnmodXpVMEYQCAAc15Dv8/pVsNgMlTqVS6/pw+SgRhmGhzc3NaWFjoWOP1eofUDYBJNYrpKwDAbHr/rvRSeNRdjJ7Hwy9WgGnl9Xq1uLjYsaZcLqtarQ6po1YEYZhoCwsL2t3dHXUbAAAAgN6/273m5bx0ao5JZADTy87xREtLSyObGuOwfAAAAAAY0P0H0usf2at99UOp8sDVdgAAJyAIAwAAAIABvWdIf/ijvdqvvpFuGO72AwBojyAMAAAAAAb08ee91X/SYz0AwBkEYQAAYOLZOZcHANx08LW79QAAZxCEAQCAsWb38GnCMACj5H/U3XoAgDMIwgAAwNji8GkAk+LiU73VP91jPQDAGQRhAABgbHH4NIBJ8WJIeuw79moff0R6KeRuPwCA9gjCAADA2OLwaQCT4uwZ6d1n7NVee1bynhn8OdkSDgC9IwgbAdM0FY1GB14nGAzK4/Eon8/3/NhMJqNoNCq/3y+Px6NgMKh4PK5isdh3P26sCQCYbRw+DWCSvHC+e82NmL06zkcEAHcQhDnIsix5PJ6uL8FgUIFAYKDnSqVSMk2z58cVi0X5/X6lUilJUi6XU6lUUjqdlmEYikajikajsixrpGsCACBx+DSA6fO8jRCM8xEBwD0EYQ7KZrO2a+uhUT+KxaIymUxfj6sHUolEQoVCQZFIRIFAQLFYTKVSSaFQSMViUeFw2FZw5caaAADUcfg0gFnE+YgA4B6CMAdtbGzYqqsHRf2wLEvxeHygxwUCAW1tbbWty+Vykg63b3Z7HjfWBACgGYdPA5hFnI8IAO45PeoGpkU2m5VlWUomk13P/1peXu77eVZXVzU/Py9JPU1XxePxRn2nabT6JFc+n1exWFQ2m1UikRjamgAANKsfPv2yjeMwnTp8GgBGjfMRAcA9BGEOSafTCgQCSqfTrj1HNptVPp/Xzs6OVlZWbD/ONM2WA+svXbrUsf7y5cuNA/hTqVTb0MqNNQEAaOeF892DMLuHTwPAJOB8RABwD0GYA/L5vEzTPHFroBNM09Ta2pqSyaRCod72fTSHc5FIRD6fr2N9LBZrvG5ZlvL5fMufubUmAAD9snP4NABMiotPSZ/+xn79MM9HnPNID692rwGAccUZYQ7Y2NiQz+frOhU1iHg8rlAo1NfEWfMh/nZDtOYzzG7evDmUNQEAAACM9/mIHo90aq7zi4cgDMAYIwgbkGEYMgxDlmXJ7/crGAxqbW2tsQ3QCalUSoZhNA6d77W/ZhcuXLD1uOZw6+jH4saaAAAAQC9qNenbaueXWm3UXfanfj6iHZyPCAC9YWvkgI4eEm+aprLZbGNiKhaL6cqVKz1vZ6wzDEOZTEZbW1t93TTZfI6XJNtrHK0zDKPxMbixJgBMAraDAMD4qNak0291rnl4VTo1of9d5nxEAHAHQdgAjh4Y304+n1c+n1cikejrDLGVlRXFYrG+D5e/c+dOy9vdzvKqe+KJJ1re3t7eboRWbqwJAJPA45ncH6iGrVY7/CG1kzkP22cAYBB2z0fkFzkA8CcEYQMIBALa2tqSZVkqlUoqFosyTbNtbTab1fb2tnZ2dmyvH4/HJUnXr1/vu8ej/fQ7vVUqlVxdEwDgnvfvSi+Fh/uc0z6pAQCThF/kAMCfEIQN6OiklmVZymaz2tjYkGVZLe8zDEPRaFSFQqHruvVJskKhYHviqp2TgrleNX8sbqwJAOjP+3e717ycPzy8mO0zAAAAmHUEYQ7z+XxKJpNKJpPK5/NaXV1tCXyKxaIymYySyeSJa1iWpXg8rkQioUgkMlA//YZNR8O3/f19V9fsV7lc1tLS0sDrrK+va319feB1AGCY7j+QXv/IXu2rH0oXv8+BygAAAOjf5uamNjc3B16nXC470E1/CMJcFIvFFIlEtLKy0nLT4sbGRscgbGVlpbHtcly4Mb3lxJrValV7e3sDr1OpVAZeAwCG7T1D+sMf7dV+9Y10w5B+/AN3ewIAAMD0qlQqjvwMPkoEYS7z+Xza2dlROBxuhGGWZalYLLad9spkMjIMo6ezxLo9vxOBU/M0lxtr9mtubk4LCwsDr+P1egdeAwCG7ePPe6v/5HOCMAAAAPTP6/VqcXFx4HXK5bKq1aoDHfWOIGxIrl+/rnD4TycVFwqFY0GYYRhKpVJKp9OO3aY4Pz/vSGg1Pz/v6pr9WlhY0O7u7sDrAMAkOvja3XoAwKFRXDoCAOPIqWOFlpaWRjZZNjeSZ51BoVCoJfhqd+B8PB5XKBTquG2yV/1OXR0Nuo5OhDm9JgCgd/5H3a0HgFlg99IRO3UAgPHHRNgQRaNRFYvFtu/LZDIyTVORSETxeLzrWs2h0sbGhm7evNl4+/Lly4rFYpKk5eXllvPJLMuyFUAdPcg+GAw2XndjTQBA7y4+JX36G/v1Tz/lXi8AMIm4dAQAZg9B2BAFAoHG60e3BX755ZeSdGJQ1olhGC3BVCAQaARhzdsxpcNJNDvbLkulUsvbzdNsbqwJAOjdiyHpzV/ZOzD/8Uekl5zZdQ8AU4NLRwBg9rA1coiag7BhbQtcXl5uebvdlsx2mifOfD5fS+9urAkA6N3ZM9K7z9irvfYsUwwAcFQ/l44AACYbQdgQbW9vN16PRqMt70un06rVarZfmkOkXC7X8r50Ot14XygUagnd7ty503OvR4MvN9YEAPTnhfPda27E7NUBgNtqNenbaueXWm14/XDpCADMHrZGDlHz1sBhbgu8dOmSstmsJLVsoeykuS6VSg1lTQCAO54nBAMwJqo16fRbnWseXpVOeYbTD5eOAMDsYSJsiPL5vCQ5eiukHWtra43X7ZxB1lwTCATahnZurAkAAAAM08UeLxHh0hEAmHwEYUOSz+dlmqZ8Pp+uXLky1OcOhUItwVM9kDtJLpdrvH7S5JYbawIAAADD9GJIeuw79mq5dAQApgNBWJ+KxaL8fr88Ho+i0WjH7YGmaWp1dVWSdPv27aEdlN9sa2ur8frGxsaJdZZlNbY8RiIRJRKJoa4JALNgznO49afTy9yQtgUBwCzj0hEAmD0EYX3K5XKNWxCLxaLC4XDLdsG6+vvm5+dVKpUUCo3m10iBQKAxlWUYhjKZTNu6lZUVSYe3OjZPcQ1rTQCYBR6PdGqu84uHIAwAhoJLRwBgthCE9Skejx/7s2w2K7/fr3g8rrW1NYXDYUWjUSUSCe3s7LTc9DgKsVhMhUJBPp9PqVRK8XhchmHIsqxGYGcYhkKhkO7du2drcs2NNQHASUxfAQAGxaUjADA9CML6FIlEVCqVlEgkFAgEWgIewzC0v7+vK1eu6ODgQOl02vEAqFQqqVarqVarKRaL9dR3vSfTNLWystII7+bn55XL5bSzs9NTv26sCQBOYfoKAAAAQN3pUTcwyQKBQMs5WZMkmUw6fnulG2sCAMbL+3ell8Kj7gIAAADoD0EYAACQdBhydfNy/nCKbhLPyqnVpGqtc82chwlBAACAaUYQBgAAdP+B9PpH9mpf/VC6+P3Juz2tWpNOv9W55uFV6RRBGAAAwNTijDAAAKD3DOkPf7RX+9U30g3D3X4AAAAANxCEAQAAffx5b/Wf9FgPAAAAjAOCMAAAoIOv3a0HAAAAxgFBGAAAkP9Rd+sBAACAcUAQBgAAdPGp3uqf7rEewOSq1aRvq51fal1uZAUAYFxwayQAANCLIenNX9k7MP/xR6SXQu73NM5qtcNbKDuZ80gebqDEFODGVQDANCEIw0Qrl8taWlrqWLO+vq719fUhdQQAk+nsGendZ6SX891rrz0rec8M/pzv35VeCg++zigQDAAAALS3ubmpzc3NjjXlcnlI3RxHEIaJVq1Wtbe317GmUqkMqRsAmGwvnO8ehN2IHdZ18/7d7jUv56VTc/bWAwAAwGSoVCpdf04fJYIwTLS5uTktLCx0rPF6vUPqBgCm3/M2Qqv7D6TXP7K33qsfShe/78yEGTDp2HLrvEmePJ3zHE6WdqsBgHHj9Xq1uLjYsaZcLqtarQ6po1YEYZhoCwsL2t3dHXUbAIAm7xn2zhqTpK++kW4Y0o9/4G5PwCRgy21vpn3y1OPhaw1gMtk5nmhpaWlkU2PcGgkAABz18ee91X/SYz0A9Dp5WnngajsAgAlCEAYAABx18LW79QDQz+QpAAASWyMBAIDD/I+6Ww8A/UyeDmMLNud6AcD4YyIMAAA46uJTvdU/3WM9AIzr5KnHc3gmWacXLjsAgNEiCAMAAI56MSQ99h17tY8/Ir0UcrcfANOHyVMAQL8IwgAAgKPOnpHefcZe7bVnJe8ZV9sZe7Wa9G2180utNuougfHC5CkAoF+cEQYAABz3wnnp5Xznmhuxw7pZV61Jp9/qXPPwqnSK7VSYEe/flV4Kd655MSS9+St7B+YzeQoAaEYQBgDABJvkg5mfJwQDZs77d7vXvJw/PEurU1BenzztFrhLTJ4CAFqxNRIAgAnGwcwAJsX9B9LrH9mrffVDqfKgc42diVImTwEARxGEAQAAAHDde4a9rYyS9NU30g1j8Odk8hQAcBRBGAAAAADXffx5b/Wf9FgPAIAdBGEAAAAAXHfwtbv1AADYwWH5AAAAAFznf9Td+n5N8qUjAIDeMREGAADwf7Fzox2A/lx8qrf6p3us7xeXjgDAbCEIAwAAM8FOyPVynjAMcMuLIemx79irffwR6aWQu/0AAGYTQRgAAJh69x9Ir39kr/bVD6XKA1fbAWbS2TPSu8/Yq732rOQ942o7AIAZRRAGAACm3nuG9Ic/2qv96hvphuFuP8CseuF895obMXt1AAD0gyAMAABMvY8/763+kx7rATjneUIwAICLCMIAAMDUO/ja3XoAAABMhtOjbgAAAKCTOY/08Gr3mk78j/b2nL3WAwAAYDIwEQYAAMaaxyOdmuv84ukShF18qrfnfLrHegAAAEwGJsIw0crlspaWljrWrK+va319fUgdAQDG0Ysh6c1f2Tsw//FHpJdC7vcEAAAwjTY3N7W5udmxplwuD6mb4wjCMNGq1ar29vY61lQqlSF1AwAYV2fPSO8+I72c71577VnJe8b1lgAAAKZSpVLp+nP6KBGEYaLNzc1pYWGhY43X6x1SNwCAcfbC+e5B2I3YYZ0T3r8rvRR2Zi2gV7WaVK11rpnzdN9WDABAr7xerxYXFzvWlMtlVavVIXXUiiAME21hYUG7u7ujbgMAMCWetxmCvX+3e83L+cPzy5wK1oBeVGvS6bc61zy8Kp0iCAMAOMzO8URLS0sjmxrjsHwAAIAe3H8gvf6RvdpXP5QqD1xtBwAAAD0gCAMAAOjBe4a9Q/cl6atvpBuGu/0A48DOlCQAAOOAIAwAAKAHH3/eW/0nPdYD48buVmDCMADAJCAIAwAA6MHB1+7WA+OErcAAgGlDEAYAANAD/6Pu1mPy1GrSt9XOL7UuNziOK7YCAwCmDbdGAgAA9ODiU9Knv7Ff//RT7vWC8TDNNzT2sxX4xz9wpxcAAJxAEAYAACRJc57DH9a71Qx7rXHzYkh681f2pmQef0R6KeR+T4Bb2AoMAJg2bI0EAACSJI9HOjXX+cVjM7xycq1xc/aM9O4z9mqvPSt5zwz+nBxCjlFhKzAAYNoQhAEAAPTohfPda27E7NVxIx/G2cUet/ayFRgAMO4IwgAAAFzwvI0QjBv5MO5eDEmPfcdeLVuBAQCTgCAMAABgRLiRD70a9mTgKLYCAwDgJoIwAACAEennRj5Mr3HdJuvkVmAAAEaNIAwAAGBEuJEPdZO+TdbOVmAAAMbB6VE3AAAAMKu4kQ91/WyT/fEP3O1p3M15pIdXu9cAANCMiTAAAIAR4UY+1LFNtncej3RqrvOLhyAMAHAEE2EAAAAj8mJIevNX9iaBuJFvus3KNlmmuAAAo8ZEGAAAwIhwIx/qRrFNdtiH7ktMcQEARo8gDAAAYIS4kQ+S89tkx/UGSgAARo2tkQAAYCZM8pYsbuSbfk5uk+31BsqL32faEAAwO5gIAwAAM4EtWRhnTm6T7ecGSgAAZgVBGAAAADAGnNomyw2UAACcjK2RmGjlcllLS0sda9bX17W+vj6kjgAAANxjZ5vsrNxACQAYT5ubm9rc3OxYUy6Xh9TNcQRhmGjValV7e3sdayqVypC6AQAAk6JWk6q1zjVznsncLjuKGygBAKirVCpdf04fJYIwTLS5uTktLCx0rPF6vUPqBgAATIpqTTr9Vueah1elUxMYhF18Svr0N/bru91ACQBAL7xerxYXFzvWlMtlVavVIXXUiiAME21hYUG7u7ujbgMAAGBsOHkDJQAAvbJzPNHS0tLIpsY4LB8AAACYIk7eQAkAwLQhCAMAAACmjFM3UAIAMG0IwgAAAIAZZOcGSgAApg1BGAAAAAAAAGYCQRgAAMCUqNWkb6udX2q1UXc5Od6/O+oOAACA07g1EgAAoEdzHunh1e41w1atSaff6lzz8Kp0agS9jRs7IdfLeenUHOdoAQAwTZgIAwAA6JHHcxiQdHrxEDaNrfsPpNc/slf76odS5YGr7QAAgCEiCAMAAMBMec+Q/vBHe7VffSPdMNztBwAADA9BGAAAAGbKx5/3Vv9Jj/UAAGB8EYQBAABgphx87W49AAAYXxyWDwAAMELjevD+NPM/6m59O+/flV4KD74OAAAYDBNhAAAAIzSuB+/XatK31c4vtdrw+3LCxad6q3+6S73dGyjt1AEAAHcxEQYAADBD7E4mVWvS6bc61zy8Kp2awGm1F0PSm7+yd2D+449IL4VOfn+vN1Be/L7kPWOvHgAAOI+JMAAAgCnBZJI9Z89I7z5jr/bas52DK26gBABgshCEAQAATIFeJ5MqD1xtp8HJLZZOrvXC+e41N2Ld67iBEgCAycLWSAAAgCnQz2TSj3/gbk+Ss1ssh71d83kbYRk3UAIAMFmYCAMAAJgCTCaNxihuoAQAAP0jCAMAAJgCTCaNhtM3UAIAAHexNRIAAGAKMJk0Gk7eQDnnOdza2cncCG7pHNe+AADoB0EYAADAFLj4lPTpb+zXM5nkjPoNlC/nu9d2u4HS43HufDMnwysn+wIAYNTYGgkAADAFXgxJj33HXm23yST0xqkbKJ3k8Uin5jq/eAi3AAAziIkwTLRyuaylpaWONevr61pfXx9SRwAAjIaTk0l2vX9Xeik8+DqzwM4NlAAATIPNzU1tbm52rCmXy0Pq5jiCMEy0arWqvb29jjWVSmVI3QAAMFovnO8ehNmdTHr/bveal/OHk0XDnHRyCudeAQDgjkql0vXn9FEiCMNEm5ub08LCQscar9c7pG4AABh/diaT7j+QXv/I3nqvfihd/L4zE2bDxLlXAAC4w+v1anFxsWNNuVxWtVodUketCMIw0RYWFrS7uzvqNgAAmCrvGfZuQZSkr76RbhjSj3/gbk8AAGAy2DmeaGlpaWRTYxyWDwAAgBYff95b/Sc91gMAAIwKQRgAAABaHHztbj0AAMCoEIQBAACghf9Rd+sBAABGhSAMAAAALS4+1Vv90z3WAwAAjApBGAAAAFq8GJIe+4692scfkV4KudsPAACAU7g1EgAAYErMeaSHV7vXdHP2jPTuM9LL+e61156VvGdstQcAADByTIQBAABMCY9HOjXX+cVjIwiTpBfOd6+5EbNXBwAAMC4IwkbANE1Fo1HbtWtrawoGg/J4PPL7/QqHw1pbW5Npmn33kMlkFI1G5ff75fF4FAwGFY/HVSwWx2pNAAAwvp4nBAMAABOGIMxBlmXJ4/F0fQkGgwoEAl3Xy2QyCgaDymazjdDLsiwZhqFsNqtgMKhMJtNTj8ViUX6/X6lUSpKUy+VUKpWUTqdlGIai0aii0agsyxrpmgAAAAAAAE7jjDAHZbNZ27X10Ogk0WhUxWJRPp9PkUhEgUBApmnKMIyWSbBUKqVAIKBYLNb1OYvFYmMSLZFIaGtrq/G++hrhcFjFYlHhcFg7Ozvy+XxDXxMAAAAAAMANTIQ5aGNjw1ZdPdg6SSqVUrFYVDqd1sHBgXK5nNLpdMukVbN4PN71OS3LatQFAoGWwKpZLpeTdLgls9u6bqwJAAAAAADgFibCHJLNZmVZlpLJZNfzv5aXl098n2maymQyKhQKikQibWuSyaRKpVLLBJphGAqFTr67PB6PN7YmdppGq09x5fN5FYtFZbNZJRKJoa0JAAAAAADgFk+tVquNuolpEAwGJUmlUmmgdeLxuC5cuKBkMtmxzrIs+f3+xtvpdPrEx5im2ehPkg4ODjpuT8zn843JLZ/Pp4ODg6Gs2YulpSXt7e1pcXFRu7u7A60FAACO+7YqnX6rc83Dq4c3UQ5jHafXctK49gUAwLga5c/0/N+xA/L5vEzT7Hrulx31qbJufD5fy/bKTiFU81bKSCTS9Yyu5vPGLMtSPp8fypoAAAAAAABuIghzwMbGhnw+ny5dujTwWoVCwXbt/v5+4/VO2y2bt1B22j7ZrDlku3nz5lDWBAAAAAAAcBNB2IAMw5BhGI2tisFgUGtra65PPFmW1TifKxKJnBhGGYbR8vaFCxdsrd+83tGPxY01AQAAAAAA3EYQNqCj2yFN01Q2m1U8HpfH41E8Hj8WHDnh1q1bkg6nrOq3MrZTLBZb3u50W2WnuuaPwY01AQAAAAAA3MatkQMwTfNYKHRUPp9XPp9XIpHQ1taWI89rWZbW1tYUCoWUy+U6ns91586dlre7neVV98QTT7S8vb293ZjocmNNAAAwXuY8hwe8d6sBAACYJARhAwgEAtra2pJlWSqVSioWizJNs21tNpvV9va2dnZ2BnpO0zQVjUbl8/l0+/btriHU0X76nd5qvg3TjTUBAMB48XikUwRdAABgyrA1ckCJRELJZFJbW1sqlUo6ODhQOp1uG1AZhqFoNNr3c+XzeQWDQZmm2TiTLJPJdHzMScFcr+rnkbm1JgAAAAAAgNsIwhzm8/mUTCZ1cHDQdttisVjsGl41syxLmUxGwWBQ8Xj82PtTqVTbP29+fD+O9t18Q6UbawIAAAAAALiNrZEuisViikQiWllZaTkYfmNjQ8lk0tYaxWJRpVJJkUjkxDPJ8vm8MpmM7TX74cb0lhNrlstlLS0tDbzO+vq61tfXB14HAAAAAIBptbm5qc3NzYHXKZfLDnTTH4Iwl/l8Pu3s7CgcDjfCMMuyVCwWFYlEuj4+FospFou1/Fk2m1UqlWoJklKplBKJxLGpK5/P50jg1LyuG2v2q1qtam9vb+B1KpXKwGsAAAAAADDNKpWKIz+DjxJB2JBcv35d4XC48XahULAVhLWTSCQUiUQUDodbAqlsNntsKmx+ft6R0Gp+ft7VNfs1NzenhYWFgdfxer0DrwEAAAAAwDTzer1aXFwceJ1yuaxqtepAR70jCBuSUCikSCTS2No46IHzgUBAt2/fbgnX7ty5c6yu36mro0HX0Ykwp9fs18LCgnZ3dwdeBwAAAAAAdObUsUJLS0sjmyzjsPwhGuTGyHZCoVDLtsl24dry8nLL23YnuY4eZB8MBl1dEwAAAAAAwG1MhA1RIBBovO7EtkBJunz5svL5vKT2gVTzxJh0GJaFQqGu65ZKpZa3m7dxurEmAADApJrzSA+vdq8BAACjx0TYEDUHYU5sC5TUEkC1W/Po9JbdLZnNoZrP52vp3Y01AQAAJpXHI52a6/ziIQgDAGAsEIQN0fb2duN1p7dJSscDKukwKGsOyNqdI9ZOc69H13VjTQAAAAAAALcRhA1R89ZAp7YFNk9jnRSuXbp0qfG6YRi21m2uS6VSQ1kTAAAAAADATQRhQ1Q/yyuZTDq2Zj1c8vl8LQfnN1tbW2u8Xr+1spPmmkAg0Da0c2NNAAAAAAAANxGEDUk+n5dpmvL5fLpy5Ypj625sbEiSrl+/fmJNKBRqCZ7qgdxJcrlc4/WTJrfcWBMAAAAAAMBNBGF9KhaL8vv98ng8ikajHbcHmqap1dVVSdLt27c7HpSfyWQUDoeVSqXa3gLZrF6TTCZPnAar29raarxeD8/asSxL2WxW0uH2zUQiMdQ1AQAAAAAA3EIQ1qdcLtcIqorFosLhcMt2wbr6++bn51UqlVpueTzKsiylUikZhqFMJiO/33/i9FQ8Hlcmk1E6nVY6ne7abyAQaExl1ddvZ2VlRdLhVsvmKa5hrQkAAAAAAOAWgrA+xePxY3+WzWbl9/sVj8e1tramcDisaDSqRCKhnZ0dBQKBjmv6fL5jNfVALB6PK5VKKRqNyu/3Szo8fL+X88ZisZgKhYJ8Pp9SqZTi8bgMw5BlWY3AzjAMhUIh3bt3r+PkmptrAgAAAAAAuIEgrE+RSESlUkmJREKBQKAl4DEMQ/v7+7py5YoODg6UTqdtB0A7OztKJpMKhULH1jRNU/F4XPfu3VMul+sarJ3Ud70n0zS1srLSCNrm5+eVy+W0s7PTU2DlxpoAAAAAAABO89RqtdqomwB6tbS0pL29PS0uLmp3d3fU7QAAgBN8W5VOv9W55uFV6ZSNX886uRYAABidUf5Mz7cJAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCadH3QAwiHK5rKWlpY416+vrWl9fH1JHAAAAAADMrs3NTW1ubnasKZfLQ+rmOIIwTLRqtaq9vb2ONZVKZUjdAAAAAAAw2yqVStef00eJIAwTbW5uTgsLCx1rvF7vkLoBAAAAAGC2eb1eLS4udqwpl8uqVqtD6qgVQRgm2sLCgnZ3d0fdBgAAAAAAkL3jiZaWlkY2NcZh+QAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAmnR90AMIhyuaylpaWONevr61pfXx9SRwAAAAAAzK7NzU1tbm52rCmXy0Pq5jiCMEy0arWqvb29jjWVSmVI3QAAAAAAMNsqlUrXn9NHiSAME21ubk4LCwsda7xe75C6AQAAAABgtnm9Xi0uLnasKZfLqlarQ+qoFUEYJtrCwoJ2d3dH3QYAAAAAAJC944mWlpZGNjXGYfkAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJp0fdADCIcrmspaWljjXr6+taX18fUkcAAAAAAMyuzc1NbW5udqwpl8tD6uY4gjBMtGq1qr29vY41lUplSN0AAAAAADDbKpVK15/TR4kgDBNtbm5OCwsLHWu8Xu+QugEAAAAAYLZ5vV4tLi52rCmXy6pWq0PqqBVBGCbawsKCdnd3R90GAAAAAACQveOJlpaWRjY1xmH5AAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJp0fdADCIcrmspaWljjXr6+taX18fUkcAAAAAAMyuzc1NbW5udqwpl8tD6uY4gjBMtGq1qr29vY41lUplSN0AAAAAADDbKpVK15/TR4kgDBNtbm5OCwsLHWu8Xu+QugEAAAAAYLZ5vV4tLi52rCmXy6pWq0PqqBVBGCbawsKCdnd3R90GAAAAAACQveOJlpaWRjY1xmH5AAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEjYJqmotGorVrDMLS2tqZgMCiPxyOPx6NgMKhUKiXLsvruIZPJKBqNyu/3N9aMx+MqFotjtSYAAAAAAIBTCMIcZFlWI6zq9BIMBhUIBLquFY/HFQ6Hlc1mZZpm432maSqTycjv9yubzfbUY7FYlN/vVyqVkiTlcjmVSiWl02kZhqFoNKpoNNpTyObGmgAAAAAAAE47PeoGpkkvoVQ9NGrHsiyFw+GW8Oska2tr2tnZ0dbWVtfaYrHYmERLJBItjwkEAorFYgqHwyoWiwqHw9rZ2ZHP5xv6mgAAAAAAAG5gIsxBGxsbtuoikUjHibB4PC7TNBUKhRrTVaVSSblcTslk8lh9NptVPp/v+Jz1CTPpMKA6KTjL5XKSDqfO6vXDXBMAAAAAAMAtTIQ5JJvNyrIsJZPJrud/LS8vd1ynWCwqmUwqnU63vK8+YbW2tqZ4PC7DMBrvW11dVSwWO3HdeDze2JrYaRqt/hz5fF7FYlHZbFaJRGJoawIAAAAAALjFU6vVaqNuYhoEg0FJUqlUGnidQCCgQqHQsc40zcZz1hUKBUUika61BwcHHbcn5vP5xuSWz+fTwcHBUNbsxdLSkvb29rS4uKjd3d2B1gIAAO75tiqdfqtzzcOr0ikb+xScXAsAAIzOKH+m59sEB+TzeZmm2XEqyg7DMGSaZmMrYSeBQODYxFjzhFiz5rpIJNL1jK7myTLLstpuu3RjTQAAAAAAADcRhDlgY2NDPp9Ply5dGmidmzdvKpFI2D5M/uj015dfftm2rvkQ/1AoZGvt5jPMbt68OZQ1AQAAAAAA3EQQNiDDMGQYhizLkt/vVzAY1NraWl8TT5cvXz425dXJ0QDq6FbJen/NLly40PPaRz8WN9YEAAAAAABwG0HYgI5uhzRNU9lsVvF4XB6P59ih9p2EQiHb02CSGgfV17W7ibJYLHataedoXfPH4MaaAAAAAAAAbiMIG4BpmsdCoaPy+bzC4bDW1tZcef5m7Q7Kv3PnTsvbdoO2J554ouXt7e1tV9cEAAAAAABw2+lRNzDJAoGAtra2ZFmWSqWSisXisXCqLpvNant7Wzs7O449f3OQlEgk2tYc7aff6a3m2zDdWBMAAAAAAMBtBGEDOhpAWZalbDarjY2NY1sXDcNQNBpVoVBw5Lm3trYar590Y+VJwVyvmj8WN9YEAAAAAABwG0GYw3w+n5LJpJLJpPL5vFZXV1sCn2KxqEwmo2QyOdDzmKbZOGMrnU6fOJXVb9h0dLvj/v6+q2v2q1wua2lpaeB11tfXtb6+PvA6AAAAAABMq83NTW1ubg68TrlcdqCb/hCEuSgWiykSiWhlZaXlYPiNjY2Bg7D67ZKBQGDgtexwY3rLiTWr1ar29vYGXqdSqQy8BgD8n+3dP29b3b4f+J98ngT3IOdqKJ1KsCqqmTaUzysw2U2QKUg/RTBJZap3IcG49R1DKlwGIz5dgin8iF3Skc8rsMRppyFPY0OdtKN7Lm6Q3CNOYZBDUv8oidx7U/vzAQST8uLavy1jcYtfr7U2AAC8ZFdXVwv5DJ4lQdiSlUqlODs7i93d3XEYliRJdLvdWze3n0ev14tWqxWlUunBZZalUmkhgdPkbK5l9PlUr169iq2trWf3s76+/uw+AAAA4CVbX1+P169fP7uf8/PzuL6+XkBFjycIS8kvv/wSu7u74+edTufJQdj79+8jIuK33357cKP6zc3NhYRWm5ubS+3zqba2tuLbt2/P7gcAAAC436K2Fdre3s5sZtmrTI5aQJVKZSr4euqG83t7e9Hr9eLk5CQqlcqD7Z8662o26JqdEbboPgEAAACWTRCWolqt9qzXt1qtaLVacXx8HPV6fa7XvHnzZur5vDO5Zjey39nZWWqfAAAAAMsmCEvR5DLGxy4L7Ha7sbe3F8fHx9FsNud+3eRyzIj5Z6L1+/2p55Oz2ZbRJwAAAMCyCcJSNBmEPWZZYK/Xi1qtFoeHh48KwSJuzt6aN7SanOVVKpWmal9GnwAAAADLJghL0enp6fjxvMskB4NBvH37Nvb392N/f//Rx6xUKlOh29evX+d63WSts8HXMvoEAAAAWDZBWIomlwbOsyxwMBjE7u5uNJvNODw8nOsYg8Egjo6Opr737t278eNerzdXP5PtDg4Obvz9MvoEAAAAWCZBWIra7XZExFwzu5IkiVqtFu/evZs7BIuIaDQaN0K2vb298eNut/tgH5NtyuXyraHdMvoEAAAAWCZBWEra7XYMBoMolUrx8ePHe9smSRK7u7tRLpfj4OAgBoPBg1/dbne8iX2lUpnqr1KpTAVPo0DuLicnJ+PHd83cWkafAAAAAMu0NhwOh1kXsYq63W40Go1IkiSq1WocHh7eCKBGRksckySJs7OzO9uN7O7uzr3ccNZdd5UcDAaxs7MTET9CrLOzs1tfnyRJbGxsRMSP5ZudTufOYy2jz3ltb2/H9+/f4/Xr1/Ht27dn9wcALMdfryN++rv72/zz30f8bo7/nl1kXwBAdrL8TO/XhCc6OTkZ3wVxNBtrcrngyOjvNjc3o9/vLzUEi4g77ypZLpfHs7J6vd6NfcRG3r59GxE/7uo4OYsrrT4BAAAAlkUQ9kSNRuPG91qtVmxsbESj0Yi9vb3Y3d2NWq0WzWYzzs7OolwuP9jnMkKwkXq9Hp1OJ0qlUhwcHIyPlyTJOLDr9XpRqVTiz3/+89SdIdPsEwAAAGAZLI18hsFgEIeHh9HtduPi4iKSJIlSqRSbm5tRqVTi559/jmq1msvw5+joKL58+RKDwWBc95s3b2Jvby/q9Xpu+ryLpZEAsBosjQQAZmX5mV4QxkoShAHAahCEAQCz7BEGAAAAAEsmCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKISfsi4AnuP8/Dy2t7fvbfPhw4f48OFDShUBAABAcX3+/Dk+f/58b5vz8/OUqrlJEMZKu76+ju/fv9/b5urqKqVqAAAAoNiurq4e/JyeJUEYK+3Vq1extbV1b5v19fWUqgEAAIBiW19fj9evX9/b5vz8PK6vr1OqaJogjJW2tbUV3759y7oMAAAAIObbnmh7ezuzWWM2ywcAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAK4aesC4DnOD8/j+3t7XvbfPjwIT58+JBSRQAAAFBcnz9/js+fP9/b5vz8PKVqbhKEsdKur6/j+/fv97a5urpKqRoAAAAotqurqwc/p2dJEMZKe/XqVWxtbd3bZn19PaVqAAAAoNjW19fj9evX97Y5Pz+P6+vrlCqaJghjpW1tbcW3b9+yLgMAAACI+bYn2t7ezmzWmM3yAQAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEL4KesC4DnOz89je3v73jYfPnyIDx8+pFQRAAAAFNfnz5/j8+fP97Y5Pz9PqZqbBGGstOvr6/j+/fu9ba6urlKqBgAAAIrt6urqwc/pWRKEsdJevXoVW1tb97ZZX19PqRoAAAAotvX19Xj9+vW9bc7Pz+P6+jqliqYJwlhpW1tb8e3bt6zLAAAAAGK+7Ym2t7czmzVms3wAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEH7KugB4jvPz89je3r63zYcPH+LDhw8pVQQAAADF9fnz5/j8+fO9bc7Pz1Oq5iZBGCvt+vo6vn//fm+bq6urlKoBAACAYru6unrwc3qWBGGstFevXsXW1ta9bdbX11OqBgAAAIptfX09Xr9+fW+b8/PzuL6+TqmiaYIwVtrW1lZ8+/Yt6zIAAACAmG97ou3t7cxmjdksHwAAAIBCEIQBAAAAUAiCMAAAMvV//z9ZVwAAFIU9wiBFnz9/jqurq1hfX39wzTSQHmMTlmeekOs/tCN+9yri3/3r//97xiXkj3EJ+WNcPt7acDgcZl0EPNZoY73Xr1+v1Gb5q1o3vHTGJizHf/vvEa//z4h//J8Pt/3Dv4z4/jFi/W9+PL9tXP71OuKnv7u/n3/++x+hGrB4rpeQP6s6LrOs268JAAAsxX/uzReCRUT85X9E/KfecusBABCEAQCwFP/l/31c+//6yPYAAI8lCAMAYCku/2m57QEAHksQloHBYBC1Wu1Zr22328+q4ejoKGq1WmxsbMTa2lrs7OxEo9GIbrebqz4BgNW18fvltgcAeCxB2AIlSRJra2sPfu3s7ES5XH50341GI3Z2dqLb7cbFxcWTaux2u7GxsREHBwcREXFychL9fj8ODw+j1+tFrVaLWq0WSZJk2icAsPr+zf/6uPb/2yPbAwA8liBsgVqt1txtR6HRQ5IkiYODg9jY2Hj2LLButzsOpJrNZnQ6nahWq1Eul6Ner0e/349KpRLdbjd2d3fnCq6W0ScA8DL8H5WIf/Uv5mv7h38Z8e8ry60HAEAQtkCfPn2aq90oKHrI0dFR7O7uRq/3/FsojWaURUSUy+U4Pj6+td3JyUlE/FiCOWqfZp8AwMvxv/xNxH/8t/O1/b/+94j1v1lqOQAA8VPWBbwUrVYrkiSJ/f39B/f/evPmzYP99Xq9qFarsb+/P+5/b2/vyfU1Go3xbKz7ZqONZnK12+3odrvRarWi2Wym1ue8/vKXv0z9yXJ9/vw5rq6uYn19PT58+JB1OXNb1bojVrf2Va17Va3qz1vd6cq67n/3ryP+wwOT2v9T/Ue7lyDrn/dTqTtdq1r3qlrVn7e607Wqda+qLD/Trw2Hw2HqR32BdnZ2IiKi3+8vpf9erxe7u7vj58fHx3OHSYPBYFxfRMTl5WWUSqU727fb7fHMrVKpFJeXl6n0+Ri/+93v4vr6Ol69ehV//etfn9VXmra3t+P79+/x+vXr+PbtW9blzE3d6VvV2tWdLnWnS91P89friJ/+7v42//z3Eb+bWadwW91P7StNWf+8n0rd6VJ3utSdLnWna1XrzvIzvaWRC9But2MwGMy979dT3BcyPeTw8HD8uFqtPthXvV4fP06S5Na9yZbRJwAAAMAyCcIW4NOnT1EqleLdu3dZl3KryU38K5X5dqGd3MPsy5cvqfQJAAAAsEyCsGfq9XrR6/UiSZLY2NiInZ2d2Nvby82Mp9mN9v/0pz/N9brJcGv2XJbRJwAAAMCyCcKeaXY55GAwiFarFY1GI9bW1qLRaCzkro9P1e12p57Pc7fK29pNnsMy+gQAAABYNkHYMwwGgxuh0Kx2ux27u7vPuuPjc3z9+nXq+bx7jf3xj3+cen56errUPgEAAACW7aesC1hl5XI5jo+PI0mS6Pf70e12YzAY3Nq21WrF6elpnJ2dpVrjbD1Pnb01eTfMZfQJAAAAsGyCsGdqNptTz5MkiVarFZ8+fYokSab+rtfrRa1Wi06nk1p9dwVzjzV5LsvoEwAAAGDZ1obD4TDrIl6qdrsd79+/vxH4HB4exv7+/qP6GgwGsbOzM35+fHx8I4S7zdra2tTzef+5u91u1Gq18fN6vR4nJydL6/OxJmt49er5K3z/9m//Nv7whz88u5+HnJ+fx/X1dbx69Sq2traWfrxFUXf6VrV2dadL3elS99N9v7r/71+v3/zeXXU/pa805eHn/RTqTpe606XudKk7XWnX/Ze//CX+4R/+4dn9XF9fjx+nHUsJwpYsSZJ4+/bt1MbwpVIpLi8vH9VP1kFYtVodz2RbRp+P9erVq9QHCwAAALA4a2trU6FYGiyNXLJSqRRnZ2exu7s7DsOSJIlutxvVajWV4y9iCeLkhvjL6POxfv/738c//dM/xXA4XKkZYQAAALCqFjkjbG1tLX7/+98voKrHEYSl5Jdffond3d3x806nk0oQtrm5uZDQanNzc6l9PtY//uM/Pvv4AAAAQLE8fyoNc6lUKlPB16I2nH/IU2ddzQZdszPCFt0nAAAAwLIJwlI0uT9WWt68eTP1fN6ZXBcXF1PPJ/cnW0afAAAAAMsmCEtRuVweP37OssDHmFyOGTH/TLR+vz/1fHI22zL6BAAAAFg2QViKJoOwtJYFzs7emje0mpzlVSqVpmpfRp8AAAAAyyYIS9Hp6en4cVrLJCuVylTo9vXr17leN1nrbPC1jD4BAAAAlk0QlqLJpYFpLgt89+7d+HGv15vrNZPtDg4OUukTAAAAYJkEYSlqt9sREbG/v5/qcff29saPu93ug+0n25TL5VtDu2X0CQAAALBMgrCUtNvtGAwGUSqV4uPHj49+/bx3ZrxNpVKZCp5GgdxdTk5Oxo/vmrm1jD4BAAAAlkkQ9kTdbjc2NjZibW0tarXavcsDB4NBvH//PiIifvvttydtlD+7If1jg7Hj4+Px40+fPt3ZLkmSaLVaEfFj+Waz2Uy1TwAAAIBlEYQ90cnJyTiM6na7sbu7O7VccGT0d5ubm9Hv96NSqTz6WEmS3JhF9eXLl0f1US6Xx7Oyer1eHB0d3dru7du3EfHjro6Ts7jS6hMAAABgWdaGw+Ew6yJWUbfbvfXOj6VSKarVamxubsbp6Wn0er3Y39+Pjx8/PmomWJIk8f79+0iS5N49uKrV6ni55TwhW7fbjUajEUmSRL1ej48fP0a5XI7T09M4ODiIXq8XlUrlUTPXltEnAAAAwKKZEfZE1Wo1+v1+NJvNKJfLUwFPr9eLi4uL+PjxY1xeXsbh4eGjA6DR7KlOpxPD4fDOr06nEycnJ3PPNKtWq+OaBoNBvH37NjY2NqLRaMTm5macnJzE2dnZo+pdRp8vxWAwiFqt9uAeaotydHQUtVptvGx3Z2cnGo3GXDc0gJcs72Nj9F4BL0GW4y3vYx2ykvex4TpI0ficmLEhsHCXl5fDer0+jIhhRAyPj4+XerxOpzMslUrDiBhWq9Vhp9MZ9vv94cnJybBcLo+/f3l5udQ6IG+yHhuXl5fj94GHvprN5lJqgLRkOd6yHuuQV1mPDddBmOZzYj4IwmCBLi8vh/v7+zcu7Mt8g+t0Og/+AlGpVIYRMSyXy4V7k6O48jA2Dg8P5/4A0O/3F358SEuW4y0PYx3yKA9jw3UQfvA5MV8EYbAgh4eHw3K5PKxWq6m9wV1eXo4T/nK5fGe7fr8/rqVarS6lFsiTvIyNUQ0PfRmXrLIsx1texjrkTV7Ghusg+JyYR/YIgwXo9XrjfeM6nU4cHx+nctzRTQoi4sadRSeVy+Wo1+sR8ePmBq1WK43yIDN5GButViuSJIn9/f3odDr3frmjLqssy/GWh7EOeZSHseE6CD4n5pW7RsIS9Hq92N3dHT8/Pj6OZrO50GMMBoPY2dkZP7+8vLz3hgTtdjsajUZE/LgZw+Xl5ULrgbzIy9gY1dDv9xfSH+RRluMtL2Md8iYvY8N1EG7yOTEfzAiDJUjjDpmHh4fjx9Vq9cFjjpL+iIgkSVK7QwmkLQ9jo91ux2AwuPd/4OAlyHK85WGsQx7lYWy4DsLtfE7MB0EYrKjJaauVSmWu15TL5fHjL1++LLwmyIM8jI1Pnz5FqVSKd+/ePbsvyLMsx1sexjrkUR7GhusgZCcP7wF5JwiDFdTr9aae/+lPf5rrdZNvhEVI+imePIyNXq8XvV4vkiSJjY2N2NnZib29PWOOFyfL8ZaHsQ55lIex4ToI2cnDe8AqEITBCup2u1PPJxP8+8y2m32jhFWXh7ExuwxkMBhEq9WKRqMRa2tr0Wg0jD1ehCzHWx7GOuRRHsaG6yBkJw/vAatAEAYr6OvXr1PP511r/sc//nHq+enp6aJKglzIemwMBoMbv4DMarfbsbu7G3t7e086BuRFluMt67EOeZX12HAdhGxl/R6wKn7KugDg8QaDwdTzpyb97uLDS5P12CiXy3F8fBxJkkS/349ut3ujppFWqxWnp6dxdnb2pGNB1rIcb1mPdcirrMeG6yBkK+v3gFUhCIMVdNcvFI+VJMlC+oG8yMPYmL0FdpIk0Wq14tOnTzf67fV6UavVotPpPPl4kJUsx1sexjrkUR7GhusgZCcP7wGrwNJIWEFPfWOanRp7cXHx/GIgR/I4NkqlUuzv78fl5WWcnJzcOFa3242jo6OFHQ/SkuV4y+NYhzzI49hwHYT05PE9II8EYVBgLz3ph6da1tio1+vx5z//+catrD99+rSU48EqyPJa5DoIt3MdhGJ76ddHQRisoHk3PUyrH8iLVRgbpVIpzs7Opj4EJEny4ObCkDdZjrdVGOuQhVUYG66DsDyr8B6QB4IwXqRWqxVra2sL/drd3c36tMY2Nzdz1Q/MI41xuUpj45dffpl6bn8UVk2W422VxjqkaZXGhusgLN4qvQdkSRAGK+ipCf3sFNeXnvRTPKs0NiqVSlSr1fHzRW1uCmnJcryt0liHNK3S2HAdhMVbpfeALLlrJC9StVqNk5OThfaZpzeDN2/eRK/XGz9PkmSu+mY3PdzZ2Vl0aXCnNMblqo2NWq1mKQgrK8vxtmpjHdKyamPDdRAWa9XeA7IiCONFKpfLUS6Xsy5jaWaXgw0Ggxubjt6m3+9PPZ/8XzhYtjTG5aqNjcmfx0ufgs7Lk+V4W7WxDmlZtbHhOgiLtWrvAVmxNBJW0Js3b6aezzuVfHLKa6lUetFhIcW0amNj8jh5mnUK88hyvK3aWIe0rNrYcB2ExVq194CsCMJgBVUqlalfFr5+/TrX605PT8ePZ98k4SVYtbExedxarZbacWERshxvqzbWIS2rNjZcB2GxVu09ICuCMFhR7969Gz+eXAd+n8l2BwcHC68J8mCVxsbkNPSXPgWdlynL8bZKYx3StEpjw3UQFm+V3gOyIgiDFbW3tzd+PM8mo5NtyuWyXzZ4sVZpbLTb7YiI2N/fT+2YsEhZjrdVGuuQplUaG66DsHir9B6QFUEYLMHs7WefotVqxcHBwZ3rumdvOT36ReIuk3frK0LKT3Etc2w8NC4fo91ux2AwiFKpFB8/fnx2f5CFLMeb6yDcznUQ8svnxJwYAgt3cnIyjIjx1+Hh4aNeX61Wp15/eXl5a7t+vz9uU6lU7uzv8vJy3K5arT6qFlhFyxgbD43LTqczLJVK477Ozs7urW/U9r52sAqyGG/LPDa8BK6DkE8+J+aDIAwW7PLyclgul6feoO5787nN5GsjYnh8fHxn28k307veSCuVyjAihqVS6c43S3hpFj02HhqXzWbzRptms3mjn9EHhXK5POz3+08+P8iTtMfbMo8NL4XrIOSLz4n5IQiDBbi8vBzW6/UbCf3sV7VaHdbr9Qf/52v0P2Sjr06nc2/7yf+BG/V/eXk57HQ64ze3SqVSqDc3GA4XOzYeGpedTufWcV8qlYb1en3YbDbHx9zf3zceeXHSHG/LPDa8JK6DkC2fE/NJEAY51Ol0huVyeVgqlYb7+/tzv+7w8HBYqVTGb3alUmlYrVaHJycnS6wW8m8RY2Oecdnv94fNZnPcbnSscrk8rNfrw5OTk8L9okHxpDXelnVseIlcB+FlcH1cjLXhcDgMAAAAAHjh3DUSAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAK4aesCwAAAADIu16vF1++fIkkSeL4+DjrchbupZ/fiCAMAAAAWBkbGxtxdnYW5XJ56cfqdrtxcnIS3W43BoNBRERUq9WlH/cxNjY2IkmS6HQ6j65tFc5v0QRhAAAAwEo4Ojoaz1g6PDxc6rFqtVpcXFxEr9db6nGeo9vtRpIkEfH4AGsVzm8Z7BEGAAAArITRkr1Wq7X0Y3U6nTg7O4tOp7P0Yz3VyclJRETU6/VHv3YVzm8ZBGEAAABA7rXb7fHyvSRJot1up3LcPC8V/PXXXyMi4ueff35yH3k+v2UQhAEAAAC59+nTp3ufF02v13vyssgiE4QBAAAAudbr9W7sZXXb94pktEy0Wq1GqVTKtpgVIggDAAAAcu2u2V+jMKiIRssiG41GxpWsFkEYAAAAkFuT+4GNNocfSWPT/DyaXBb57t27bItZMYIwAAAAILdGs8GazWbU6/Uol8tTf1/EMOzLly8REVGpVCyLfCRBGAAAAJBbo6Dr4OBg6s+Rw8PDZx+j3W5HrVaLjY2NWFtbi93d3djb2xvfpTJvRjPk5r1b5Kqd3zIJwgAAAIBcarVakSRJVKvV8UywZrM51WYwGES3231S/4PBIHZ2dqLRaMTFxUUcHh5Gp9OJn3/+Obrdbuzs7MTR0dGD/TQajXHIdNvX7u7uOHTa29u7te3Ozs54ueNDNY/6qtfrqZxfxI8A8q7ze+hrd3d3rmOkYW04HA6zLgIAAABg1s7OTgwGg+h0OlGtVsff39vbm1oSWa/Xb+wf9pBerzcOaA4PD2N/f/9Gm9njRPy4S2On07m1z9va39b35LErlUr89ttvcy9xPDo6ioODgyiXy9Hv9+9st+jzG7Utl8uxt7d3Y4nqyNevX2+Ea7P/fln6KesCAAAAAGZ1u90YDAZRLpdvhCizAU673Y4kSeYOkwaDwTgkqtfrt4ZEET/uSnl6ehq9Xm+ufo+Pj2/MULstrDo9PY2I+0O1u4z2B7tvNtiyzq9UKt0bvkXcvMNns9nMTQgWYWkkAAAAkEOjvb9m9wSL+DGLqlKpTH3vMZvmNxqNG8d5qI553XZny8klj0mSxMHBQZRKpUfPYkuSZBxa3bc/2LLO7+PHj/f+/dHR0VSoViqV4vj4eO7+0yAIAwAAAHJlNKuqVCrd2BNsZG9vb+r57Eyku7Tb7XFYU6lU7lziN/LmzZu5+h25Lfx5//791OMkSeLk5OTRd3z89ddfx8eYDQJHlnV+FxcXdx4z4se/2Wxo+digLw2CMAAAACBXRrOU7grBRn83GSQlSTK+m+J9JgOz2TDtNo8Nq0a1TS4HbLfb0e12o9VqRbvdfvJywVGw9O7duzvbLOv8Dg8P7615chZaRP6WRI4IwgAAAIDcSJJkvMzxoaV4s4HQQ8vwBoPB1NK9h2ZLPcdsLY1GY7zJ/VOXC472HpsNnUaWeX739dVqtW4siXzsktK0CMIAAACA3BiFYPV6/cHZSrNL8UYb7N9lchP7iOUGYeVyeSoMSpJkvCTyKUaz3Uql0p0zrdI8v5HBYHBj5tlTln2mRRAGAAAA5MZoad9Ds8EifgQ9s/tW3TcT6ezs7Mbrl2l/f//efbUeY3S3yPuWG6Z9fhE3l1/W6/VcLokcEYQBAAAAudButyNJklvvCnmX2cDsvrtH3jdbbFlmZ4DdtazxIaMZYffdLTLt82u1WlOz0EqlUvzyyy+p1vBYgjAAAAAgFx4zG2zktiWUd4VhFxcXU8/TCI5m9wO77e6KD5kMm+r1+p3t0jy/JElunMcvv/yS2yWRI4IwAAAAIHO9Xi96vV6USqV7w57bzN5dct7N6JMkedRxHqvX68XR0dGN8zk6OpraXP4ho1llj/25LPP8Go3GVP/1ev3R9WVBEAYAAABk7imzwUZm96kahWqzNjc3p54ve0ZYo9EYLxe87S6S8/r1118j4v5lkRHpnV+73V65JZEjgjAAAAAgU0mSjPfAmp3dNY9yuXxjg/ZRsDbbblKn03n0sea1t7cXg8FgvFyw2WxO7Xs2GAzi6OjowX663e545tVDm9CncX5JksT79++nvrcKSyJHBGEAAABApkahVbPZfHKgMjsrbLTx/qRarTb1fDTTatG63W60Wq2oVqtTywVnN84/ODh4cNbW6DXVavXBn00a5/f+/ftHL4k8Ojq69yYGaRKEAQAAAJkahSSP3UR+0jyb5s/OqJqciTav2Q3pbzNa9jgbfJXL5Tg8PLy17V1GYdY8SymXfX7dbneqv3mXRHY6nRvLNrMiCAMAAAAy02q1IkmSqFarN5b2PdZDm+bfthH/7AynWbN7jT20Af1oE/nj4+NbZ3Dt7+9PnedoQ/27jj063rt37+49bsTyz282jJtnSWSSJNHtdp/9b7sogjAAAAAgM6MZUs+ZDTYyu9H+YDCY2tQ9Im7MYEqSJN6+fXtrADQYDG6EP7f1OdJut6Pdbke5XL53r7Pblkjetrn/ly9fIiKiUqnMvWR0Wee3t7c31cfsss+7jPYTy0sQtjYcDodZFwEAAAAUT7fbHe9rtaigZHbPrWq1emPT+Ha7fetSw2azGbVaLS4uLuLs7CxarVY0m80797dqNpvjWWeT57K/v39jCeSkJEliY2Nj6nulUil+++23qQ31d3Z2YjAYxOHhYezv799z1tMWfX6T5zZyfHx8679ZkiRxcXER/X4/2u32+N8jL/GTIAwAAADIRK1Wu3N21SL1+/0boU232x0vY7zLKAhaW1sbf69cLsfe3l7U6/Uol8vjWVWzM7qq1WqcnJzcmMl1dHQUx8fHd26SX6lUxjPGdnZ27qz/IYs6v4iI3d3dW2eszatUKsXl5eWTX79IgjAAAACgsI6OjuLLly8xGAwiSZIolUpRrVZjb29vvPn8zs5O1Ov1+Pnnn6dmbC27roODgyiXy9Hv95/VTx7PLyuCMAAAAICcGc3CemiZJY8jCAMAAADIkck9xM7Ozl78LK00uWskAAAAQI78+uuvEfFjby0h2GIJwgAAAAByZLRZ/rt37zKu5OURhAEAAADkRJIk4ztpNhqNjKt5eQRhAAAAADkxCsFGd3dksWyWDwAAAJATSZKMH5dKpczqeKkEYQAAAAAUgqWRAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACF8P8B2QSodwWV0a8AAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"bins = np.linspace(-1, 1, 50)\n",
|
|
"sns.regplot(\n",
|
|
" x=ak.to_numpy(array[\"dSlope_xEndT\"]),\n",
|
|
" y=ak.to_numpy(array[\"z_mag_xEndT\"]),\n",
|
|
" x_bins=bins,\n",
|
|
" fit_reg=None,\n",
|
|
" x_estimator=np.mean,\n",
|
|
")\n",
|
|
"plt.ylim(5100, 5700)\n",
|
|
"\n",
|
|
"plt.xlabel(\"$\\Delta$dx/dz\")\n",
|
|
"plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
|
|
"mplhep.lhcb.text(\"Simulation\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 41,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# # import matplotlib.pyplot as plt\n",
|
|
"# bins = np.linspace(-2000, 2000, 50)\n",
|
|
"# sns.regplot(\n",
|
|
"# x=ak.to_numpy(array[\"x_l0\"]),\n",
|
|
"# y=ak.to_numpy(array[\"z_mag_x_fringe\"]),\n",
|
|
"# x_bins=50,\n",
|
|
"# fit_reg=None,\n",
|
|
"# x_estimator=np.mean,\n",
|
|
"# label=\"T1X1\",\n",
|
|
"# )\n",
|
|
"# sns.regplot(\n",
|
|
"# x=ak.to_numpy(array[\"x_l4\"]),\n",
|
|
"# y=ak.to_numpy(array[\"z_mag_x_fringe\"]),\n",
|
|
"# x_bins=50,\n",
|
|
"# fit_reg=None,\n",
|
|
"# x_estimator=np.mean,\n",
|
|
"# label=\"T2X1\",\n",
|
|
"# )\n",
|
|
"# sns.regplot(\n",
|
|
"# x=ak.to_numpy(array[\"x_l8\"]),\n",
|
|
"# y=ak.to_numpy(array[\"z_mag_x_fringe\"]),\n",
|
|
"# x_bins=50,\n",
|
|
"# fit_reg=None,\n",
|
|
"# x_estimator=np.mean,\n",
|
|
"# label=\"T3X1\",\n",
|
|
"# )\n",
|
|
"# plt.legend()\n",
|
|
"# plt.xlabel(\"x [mm]\")\n",
|
|
"# plt.ylabel(\"$z_{Mag}$ [mm]\")\n",
|
|
"# mplhep.lhcb.text(\"Simulation\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 44,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"['ideal_state_770_tx' 'dSlope_xEndT' 'dSlope_xEndT_abs' 'x_EndT_abs'\n",
|
|
" 'ideal_state_770_tx^2' 'ideal_state_770_tx dSlope_xEndT'\n",
|
|
" 'ideal_state_770_tx dSlope_xEndT_abs' 'ideal_state_770_tx x_EndT_abs'\n",
|
|
" 'dSlope_xEndT^2' 'dSlope_xEndT dSlope_xEndT_abs'\n",
|
|
" 'dSlope_xEndT x_EndT_abs' 'dSlope_xEndT_abs^2'\n",
|
|
" 'dSlope_xEndT_abs x_EndT_abs' 'x_EndT_abs^2']\n",
|
|
"intercept= 5092.708143256812\n",
|
|
"coef= {'ideal_state_770_tx': 2018.6886668629327, 'dSlope_xEndT': 389.7888543955816, 'dSlope_xEndT_abs': 1464.867616153959, 'x_EndT_abs': 0.09763035198073229, 'ideal_state_770_tx^2': -4259.173364636334, 'ideal_state_770_tx dSlope_xEndT': 887.6220587366868, 'ideal_state_770_tx dSlope_xEndT_abs': -677.4689885623392, 'ideal_state_770_tx x_EndT_abs': -0.9313147953743464, 'dSlope_xEndT^2': 179.9382929971653, 'dSlope_xEndT dSlope_xEndT_abs': 88.39317926994904, 'dSlope_xEndT x_EndT_abs': -0.19078236037510163, 'dSlope_xEndT_abs^2': 2.3666592074995823, 'dSlope_xEndT_abs x_EndT_abs': -0.48044427953929886, 'x_EndT_abs^2': 5.0288654463924435e-06}\n",
|
|
"r2 score= -0.09609938850755273\n",
|
|
"RMSE = 356.01344182664485\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from sklearn.preprocessing import PolynomialFeatures\n",
|
|
"from sklearn.linear_model import LinearRegression, Lasso, Ridge\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.pipeline import Pipeline\n",
|
|
"from sklearn.metrics import mean_squared_error\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"features = [\n",
|
|
" \"ideal_state_770_tx\",\n",
|
|
" \"dSlope_xEndT\",\n",
|
|
" \"dSlope_xEndT_abs\",\n",
|
|
" \"x_EndT_abs\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_xEndT\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(\n",
|
|
" data, target, test_size=0.2, random_state=42\n",
|
|
")\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"poly_features = poly.get_feature_names_out(input_features=features)\n",
|
|
"# keep = [\n",
|
|
"# \"ideal_state_770_tx^2\",\n",
|
|
"# \"dSlope_xEndT^2\",\n",
|
|
"# \"dSlope_xEndT_abs\",\n",
|
|
"# \"x_EndT_abs\",\n",
|
|
"# ]\n",
|
|
"# remove = [i for i, f in enumerate(poly_features) if f not in keep]\n",
|
|
"# X_train_model = np.delete(X_train_model, remove, axis=1)\n",
|
|
"# X_test_model = np.delete(X_test_model, remove, axis=1)\n",
|
|
"# poly_features = np.delete(poly_features, remove)\n",
|
|
"print(poly_features)\n",
|
|
"\n",
|
|
"# lin_reg = LinearRegression()\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 72,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(exptext: Custom Text(0.0, 1, 'LHCb'),\n",
|
|
" expsuffix: Custom Text(0.0, 1.005, 'Simulation'))"
|
|
]
|
|
},
|
|
"execution_count": 72,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADXPElEQVR4nOz9T2xb+X3v/7+ONLdIcVvpSL47G4h1OL7odxWLlO+iu4zImS5apBmT8iBF20Ut0g76uwulJqXJOrZJz2hzf0hMyrP4pWhQi7LToF1MTcrZfRexeOzsgjvhkQKMd9fSkdqiQRvr/Ba6ZEiJoij+PRKfD4CoKH34OW+KtBq+5v35fAzP8zwBAAAAAAAA59zIoAsAAAAAAAAA+oEgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMOINc1x10CQAAAAAAnDkEYcAZYdu2UqmUJiYmND8/P+hyAAAAAAA4c94ZdAHAeWDbth4/fizbtuU4jra3t+W6rkzTlGVZmpycVDAYVCQSUTgcPvL4WCwmx3FUKpWq33NdV8ViUY8fP1axWKQLDAAAAACADhme53mDLgKDl8vllEgkTv24YDBYF960yzCMUz/GNE3t7Ow0/FksFtPa2tqp5ywUCg2DqkZc19W9e/eUyWROfZ1gMKhwOKxAIKBCoaC1tbUjv8tKOGbb9pHHR6NR5fP5U18XAAAAAIBhxtJISJLi8bh2dnZUKpUUjUabjg2HwyoUCtXx3eB5nsrlsrLZrEzTPHacZVnKZrMql8vHhmCSlM/ntbOz01KwlUwmVSqVtLOz03IIVlmieDgEqwRUlfkqz6tQKCgej1efm23bymQySiQS1cDucMdXZR7P82RZVkt1AQAAAACA49ERhoYSiYRyudyR7/ejE8lxHAUCgYY/29nZaRqUHScUCjXsrMpms4rH46eqLRKJyHGcuu/H43Fls9mW5shkMkqlUke+b1mWyuVyw8ccfj3oCAMAAAAA4PToCENDxy2TbGf55GlZlqVgMHjk+9FotK0QTDq+7tOEYMViUYFAoC4EM01TpVKp5RBMOuhAK5fLR57L9vb2sY9p93kDAAAAAIDfIghDQ8ctxevXEr1G1+nk2o0ee5pwybZtRSKRI49fX19vGNq1Us/m5mZdDWyGDwAAAABAbxGEoaHjQqLJycn+FuIDjuNodnb2yPfz+XxbIVhFpZvsPFpbWzuyfBS/VSwWB10CAAAAAAwlgjD4UqPA7cKFC12dr9VQLxaLHenWisfjLW+s34xlWUomkx3P0y+2bSuRSCgQCMgwDE1MTCgQCCgUClVP6lxbW9P8/PyJYU+xWKw+/rwHQ47jKJfLKRKJyDCMI92FgzZMrwUAAACA4fbOoAsA/KxYLDbcZD+dTnftGktLS9XTJ13X9eV+YK7ran5+vnrCpWVZ1dNFHceRbduybbv688pjmqkEjK7rKpFIHHtQwFnmOI5isZgcx/H10tdheC0AAAAAQKIjDGiq0Sb7nWza34hpmqfatH8QKt1e0sFJm+VyWfl8Xvl8XqVSSeVy+UiH3ElhyjAss7UsS6VSSTs7O77u/BuG1wIAAAAAJIIw4FjFYrHhPldLS0tdv1YsFpPU/OTIZorFomKxWN2SxUgkolwu13FtmUymulwumUw2DO0sy1KhUKjrlDtpj7BsNivLsmRZlvL5fMd1+p3flkPWGrbXAgAAAMDwYmkkcIzjAoFONsg/TjgcVjqdPnVnjuu6mp2dPbJ803VdFYtFFYtFpdPpjjb2v3fvXvXrRh1ytZLJpN68eaNMJnNiqBcOh4dqCd6guq4SiYSy2WzTMcP2WgAAAAAYXnSEAcdotGl4NzbIP04ymTzVkkvHcTQ1NdVwD7PD40KhUFuboLezt1U6nVYwGOTUSB/I5XJd6QoEAAAAgPOCIAxowHGchkFOL7rB2uG6bnWD82g0qmw2q1KppEKhcOxeVJFI5NTh1OEQrNUwbWlpydebww8Dx3FO7OADAAAAgGHD0kiggeMCo0Ag0OdKGqsEUoVC4UiXWjgcViKRaBh8xWIxlUqllq9jWVbd/VQqpbm5uRM71yonSvr1FMzzznVdX+9JBgAAAACDQkcY0MBxQZifTtdrFIJVVDavP8y27VMtkTRNsy7Icl1XoVCopc4yz/MIwQagsm8cS1MBAAAA4CiCMJwZqVRKhmG0dQuFQqe61nHL+vwS7JimeeJ+ZZZl1Z3iWNHoe80cHu84jgKBQFf2nrJtW4lE4sROO9d1lcvlFAqF6q5bWf43MTEhwzAUCASUyWSOPN5xHKVSqeqpmoFAQIlEouHrXLnO4ffQYZFIpDpf7a2bS0JzuVzddSYmJhQKhRo+R+ng99lo37ja+o77Xbf6WlS4rqtMJqNIJFL9/VfqS6VSLQVxjuMok8koEAjU1Vz7GgQCgeoyYAAAAADomAccQ9KR287OTl+uHY/HG16/mzfLsk59/UKh0Jfnf1gymayrIxwOt/xY0zSPPI/TCofDDX8fwWDQK5VKp5qrVCp58Xi8ri7TNI+M29nZ8dLptBcMBuuumc1mPc87+jupvcXj8eo8zcZZlnXse/rwe+A46XS6pX8jpVKp5dcgn89Xfy/5fL5uDsuyjq19Z2fHK5VKR2oqlUp1t9r5WnktDstms9Xx6XTaK5VKXrlc9vL5fN3rFY1Gjzx2Z2fHSyaT1edRW+POzs6R17u2rnK5fGJtAAAAANAMHWE4M+LxuEqlUlu3bDZ7qmsd1/nll66U03SmNeocO+mkycMKhUJ136/D84RCoZY7dhzH0ePHj1vuOgoGg0c2fC+VSgqFQrJtW/l8XuVyWTs7O3WHBORyOdm2rUgkomKxqEKhoJ2dHe3s7KhQKFR/f47j6N69ew2vHYvFWqqx0e+lE8VisXrtpaWluvmDwaDy+bykg9rn5+frHmuapoLB4JFDHSrfq/3ZaV+LilQqpUQiIdM0VS6XlUwmFQwGZVmWotGoSqVStea1tTUFAoG698b29rYikciR9+XGxoampqaqy3rL5bKy2Wz1tXJdl83/AQAAAHRu0Ekc/Es+6whLp9Ntz3e4G0cndIQd7qip3CrdSP12uKupUafNcSrdRd14Hsf9XtqZt3auk7qQDncJHdeZd7hzrbYzrFbt7+S4axcKhZY6uHZ2drraERaNRk98z580T6u1V7T6WtR2gp30Wtd2fB3XwVhbo2maDV/Xw+/ffv0NAgAAAHA+0REGNOD3jrDTOHzyo9T+80gmk9rZ2Tm2C6pyWmUr8zeq6zi1hxTE4/Fj90c7fFLicZ2AtfW7ruvb1/W492Ht97uxKX6rr0UqlapePx6PtzRWOuhya3RIQ+3zWFlZafi6Hn6vbWxstFQrAAAAADRCEAY0cFwwUC6X+1xJ5xqFKW/evOlovnw+r1KpdGQJnnQQeszOznY1XGp1KWjt63aa5aN+OmFxZWVF6XRa+Xz+xLBJ6l84m8vlqtdqJTiLx+N1r8FpD2moVXs9P71WAAAAAM4egjCggeM6jhp1tfhdo9DiwoULHc8bDAaP3X/Ntu0j+1f1Q7unem5vb3e3kA6YpqlkMnnsnmyn3d+tWwqFQvXrVjvIav8dncV/OwAAAADOH4Iw4BiNup0cx/HtMrrTOM2yxJPE43GVy+UjIdTa2pqvw492Q7N+cxxHuVxOxWKx4Ub4/azjtA6/z87Dvx0AAAAAZxtBGHCMGzduNPy+n8Od4xwOfboZhFXmK5VKR65z2tM68VuVUy+z2WzTfdH6pTbEajUUO3wipZ867wAAAAAMJ4IwDIRt24rFYoMuo6nj9mc6i+HO4U6cVrqKisWiQqFQy9ewLEsrKyt13xvUMr6zLpFIKBQKybKsjvbW6qZ2NuivPeRA6n4ACwAAAACnRRCGgZifn/f9MinTNBvu01QsFs9UwHP499xqZ5FlWbJt+1QdcId/X2xsfnqJREK5XE5SZxvMd1ttiNXqSZu1HWCEYAAAAAD8gCAMfVcJkiKRyLFjur2Eqt35jgsiUqlUJ+U01KtgcGNjo+5+IpFo6XGV4KLV8Y0Maj+rfurme9W27WoIZlmWr/YxO7xUuFJnM7WnrDYKlQEAAACg3wjC0Feu61aXRJ72g/GbN2+6WksrAcZxS9OKxaIymUzXanEcR6FQqKPQ6TiHT/s7ze/dsiw5jtNy8He4A+y4fdbOgsPL+o4LKrvZ9Vbbfdds3kF0U0aj0bpgrpUlwrXPZ2lpqRdlAQAAAMCpEIShoV580HZdV7Ozs3JdV6ZpnnqpVLdranW+ZDLZcDlhKpXqysb5xWKxuql4L5bCra2tVb8+7f5mldcok8m01AFUO79lWUomk6e63nFafa1qx530mJN+fribrdHzbxQSdrNDrPa1q2jleof/bR0O1dr9t1S7B5zjOE3f/7ZtV5cQp9NpX3W3AQAAABheBGFo6LhulHY/5Fc2Xq98MJ6bmzv19TsJGDrt2ikUCg07qSKRSNudYa7rKpFIKBKJHHvqYrPHtiKXy1WfezsnD9YGKolEQolE4thr53K5ut9FbSdaI7Wv56D3izvu+rW/r1QqpUQioWKxqLW1NSUSCQUCgSMhT6v/dhpd83D4FovFlMlkqh2IgUBAjuPUvS7ZbFbFYlGpVKo65+EgrPK6OY5TtwdZo9qavRbRaLQurI3FYg3Hu66r+fl5SQfvu+MC0VZf99rf6aDfKwAAAADOOA9oIB6Pe5KO3MLhsFcul098/M7OjlcoFLxkMulZlnVknnw+f+xjy+Vyw2tL8nZ2dtp6PsFgsOF82Wz2VPMkk8mG8wSDQa9QKLQ0x87OjpdOpz3TNKu/05Oe1+HrmqZ54nVqf4/hcLil2g7LZrMNn280GvWSyaSXzWa9eDxe9xq3+h45/Joc957Y2dk58rs+TjQaben1LRQKdePi8fix1668TodvpmlWX/PaMcFg0CuXy0de01ZrOzyu9pZOpz3Pa/zvMxqN1s1z3Hu10XNt9bWoyOfz1edsmqaXzWa9crnslctlL5vNVt8PlXobafU1ODyu3fcyAAAAAHie5xGEoU6pVGr6Qbxbt0bBz87OjpfNZo8NHiR5lmV52Wy25UCsVCp54XC4aS3JZLKl4KaiUCgcG6yZpulFo1Evm816hULBK5VKXqFQ8LLZrJdOp+seZ5rmiYFDRaNw0LKsY8O32qDicEByGoVCoVpnPp/34vG4Fw6HvWAwWPc6VZ73SWFg5f113GscDAar4UmzsZZledFotPo+OBzGHQ5OKnMWCoVj3w+WZTUMY3Z2durmDwaDXjKZrBtT+d7h99HOzs6Jz7fRNdPpdPV6lmV5yWSy7j2/s7NTfR61v7PDaoPoYDBY9347zWtxnGw264XD4bpQrPK44/6NNvs3WfsalMvlpuNOqg0AAAAAGjE8z/OEoZfL5XqyUXsjwWBQpVKp7nuGYZx6HtM0tbOz0/BnsVis4f5KJykUCi0vH1xbW9O9e/eqyz1bZVmWEomE4vH4qfZNquxHdfh5maapmZkZmaYp13W1sbFR3Yctn8+fejkkAAAAAADnFUEY0CHXdVUsFvX48WM5jlPdi0k6CL0qBwNcu3ZN0Wj01IcEnHS9yjUr15mZmVEsFiMAAwAAAADgEIIwAAAAAAAADAVOjQQAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUHhn0AVg8AzDqH49MkI2CgAAAADn0f7+fvVrz/MGWAkwOARhqFP7hxEAAAAAAOA8IQjDEb3uCqsN23p5rX5d57xe6zw+p35e6zw+p35e6zw+p/N6rfP4nPp5rfP4nPp5rfP4nPp5rfP4nPp5rfP4nPp5rfP4nPp5rXavQ+MDumVra0u2bcs0Tc3MzGhsbGzQJbXOw9AbGRnxJHmSvIsXL/b8ehcvXuzLtfp1nfN6rfP4nPp5rfP4nPp5rfP4nM7rtc7jc+rntc7jc+rntc7jc+rntc7jc+rntc7jc+rntc7jc+rntdq9TuWz38jISI8qw3m3ubnpzczMeCMjI3W3a9eueVtbW4MuryVsCAUAAAAAADCk3n//fV27dk1XrlzRlStXdOHCBd24cePIuJcvXyoUCsm2bXmeV3fb2NhQIBDQT3/60wE8g9NhaSQAAAAAAGfc8vKylpeXm45haSQaMU1TxWJRpmlqaWlJ0WhUU1NTdWN2d3c1Ozsr13VlGIYMw5DnedWlkY7jyHEcxWIx/Z//838G9ExaM9Ag7MqVK4O8fB3DMPS///f/HnQZAAAAAACc2t7enl6/fj3oMnAG2batVCqle/fuHTtmfn6+GoJ5//fE0XQ6rTt37lTHFItFzc3N6eOPP9bdu3d7Xne7BhqElcvlul/iIFSubxjGwGoAAAAAAKATY2NjunjxYtMxBGU47MGDBwoGg01DsCdPnmhtba0uP7l//35dCCZJ4XBY9+/f15MnT3pddkeGfmnkIEM4AAAAAAC6YWFhQQsLC03HjI6OsjwSdXK5nPL5fNMx8/Pz1eYhwzAUDAaPhGAVN27c0NLSUtfr7KaBB2Ge5ykajcqyrIFc33Vd5XK5gVwbAAAAAABgUMrlsq5evXrsz2/fvl23JNIwDK2srBw7fnx83PcNRwMPwnK5nG7evDnQGqLRqD744IOB1gAAAAAAANBPlmVpa2tLly9fPvKzly9fKpvN1oVg8Xi8aXD28uVLzczM9K7gLhh4EBYOhwddgq5duzboEnzBMIwTW2m7YWFhQXt7exobG+v5tfqln8+pX9c6j8+pn87r7+88vv/6idfq7FyrX87r7+88vv/66Tz+/s7rtfrlPP7+zuNz6qfz+JwwGJZlKZfLHdncfnd3V7FYrHrfMAxZlqUf/OAHTedbX19XKpXqSa3dYngD7FkbGRmR67oD/8e7u7uryclJvX37dqB1DEplnfjIyMi5+h1cunRJr1+/1sWLF/Xll18Ouhz4BO8LHMZ7Ao3wvsBhvCdwGO8JNOL398V5/eyH9q2trWlubk6Li4taXFyUdHD6YyqVqjvg0DAMlUqlE7vBwuGw3rx506fq2zPQjjBOavSX/f19Xbp0qemYVjZgBAAAAAAA/heNRjU7O6t0Oq10Ol39fiX8qvROPXz4sGkI9ujRI993glUMNAjz0wZqfqplkE46Tndvb69PlQAAAAAAgF5bW1vTzZs39eTJk7rve54n0zS1srKi69evH3ncq1ev9PjxY62trclxnGp49uMf/1jf/OY3+1X+qQ00CEun0wNfFikdnGpQm3wOs4sXLzb9uR9eLwAAAAAA0B3j4+PK5/NaX19XoVCQbdsyTVPXrl1TPB7X+Pj4kcesrKwon89LkqampjQ1NVX92c9+9jOCsOPcuXOnr9c77iSEQdTiRyMjI75cxw4AAAAAAHprdnZWs7OzLY2dn5/X/Px8jyvqjZFBF9BPiURi0CUAAAAAAACcS69evRp0CScaqiBsY2Nj0CUAAAAAAAD4xtbWVtfmOgtdYgNdGtmura0tua7b8njHcZTNZk/1GAAAAAAAgPMukUjon//5nzueZ3NzU7Ztd6Gi3joTQdjW1pbS6bSKxaIcx2lrjsrpBRgeCwsL2tvbY4N/1OF9gcN4T6AR3hc4jPcEDuM9gUZ4X+AsajdnOSyVSnVlnl4zPM/zBl1EM0tLS8pkMpIOwqxOGIaht2/fdqOsc2V0dFT7+/saGRnh9wMAAAAA5xSf/dDI6OioXNfV7//+77c9xyeffKJkMnkmchdf7xH25MkTpdPpagBGRxcAAAAAAED3eJ7XUTfX0tLSmekGk3zeETYzMyPbtmUYhjzPk2VZCgaDsixLknThwoUT53jz5o1c19Xq6qp2d3d9n0wOAv9VAAAAAADOPz77oZGRkREZhqFisaivf/3rp3rsjRs3tLa2VtfA5Pf3lq+DsMqLIUnPnj3T7Oxs23M5jqMrV674/gUZBP4YAgAAAMD5x2c/NDIycrBYcHJyUpubmy0tkdza2lIkEpHjONU92Sv/1+/vLV8vjTRNU5KUTCY7CsEkybIsTU1NdaEqAAAAAACA8yMajWp7e7ul7OXJkycKBALVTfYrIVg0Gu11mV3h6yCssgTy2rVrXZkvm812ZR4AAAAAAIDzIBwOa3V1VRsbG9rY2NBHH3107NilpSXNzc1Vl0J6nqfx8XHZtq3V1VVdv369X2W37Z1BF9DM7OysXr58qe3t7a7NBwAAAADAebO8vKzl5eWmY/b39/tUDc6SYDBY/b8bGxuamZmRZVm6e/dudcze3p5mZ2dl23bdUshwOKx8Pq/x8XFJB0GZ3/m6I+zjjz+W53mybbsr8z169Kgr88CfPE96u9/85t8d8QAAAACgfXt7e3r9+nXTG9DI/fv3q18Hg0Gtrq7q/v37+uyzzyRJL1++1NTU1JEQLJ1O69mzZ9UQTJKmp6f7Xv9p+XqzfEnKZDJKp9Pa2tpqacO2Zq5du6YXL150qbLz47xsmPh2X3rnu83H/OZ70qiv418AAAAAOL1WOsIqYdhZ/+yH3svlcrp9+7bi8bhyuVxdAGaaptbX1xuGXp988on+5m/+ZgAVt873QZgkRSIRjY6O6vPPP297js3NTb377rv8Y2+AIAwAAAAAzr/z8tkP/ZFKpfTgwQNJOnYp5GEffPCB/vmf/7mfZZ7amQjCJGlmZka7u7tKpVKanJxs6THb29tyXVflclmrq6tyXZd/7A2clz+GBGEAAAAAcLzz8tkP/ROLxfTkyRNJByv2Tur2unDhgt68edOP0trm683yK54/fy5JKpfLSiQSbc1RaeMDAAAAAAA4z3Z3d7W+vt7xPB999JHW19eVSCRkWZaePn3acNz29ray2axc1+34mr3m+46w27dvK5fLVe+3U26lhc8wDFLvBs7LfxWgIwwAAAAAjndePvvhZLu7u5qYmOhrQ9BZyV18HQmsrKwom81Ww692MzufZ30AAAAAAABdMz4+rmAwKM/zOr5JamnMWeHrpZHZbFZS/aZskUhEpmmeep+whw8famtrq4fVAgD8YO4nP+rbtVa/8a2+XQsAAAA4jXA4LNu2q5lKu1p57FkKw3wdhFVeMNM0tbGxoampqbbnmp+f14ULF7pYHQAAAAAAaMa2bTmOI8dxFAwGFQ6HT3xMJpNRoVDQxsaGXNeVZVkKBoNKJBItPZ45D9y4cUOZTEaSlEwmFQgEWm4qOo2z1oDk6yDMNE3t7u5qaWmpoxCsMtf09HSXKjuf9vf3denSpaZjFhYWtLCw0KeKAAAAAABnieu6yuVyevz4sWzblmmaisfjikQimpmZafrYYrGoWCwm13UVDoeVz+dlWZZs21YqlVIkEql+3zTNluoZ5jmnp6dlmqYymYxu3rzZ0mM6cf36dV25cqXn1+mUr4OwUCik58+fy7Ksrsy3srLSlXnOs9evXzf9+d7eXp8qAQAAAACcFa7rKpVKVQ+7CwaDKhQKLXcxFYtFRSIRSVI8Hq9ulSRJlmUpGo0qFAqpWCwqFAqpVCqdGAgN85wV4XC4a5nKSSzL6riJqR98vVl+IpGQ53lyHKcr89ERdrKLFy82vY2NjQ26RAAAAACAj+RyOU1NTVVDsGw2q1Kp1HII5rquYrGYpIMwpTYIqpXP5yVJjuNUxzNnczdu3OjJcsjjRKPRvl2rXb4OwqLRqKanp/X48eOuzPf06dOuzHNejYyM6Msvv2x6Y1kkAAAAAKAilUopkUhU97Mql8uKx+OnmqOyJLAy33Eq3VHSQRdVJXhjzuNdv35dV69ebWlsN9y/f79v12qX4fl8a3/HcfTuu+/qyZMn+uY3v9nRXNeuXdOLFy+6VNn5MTo6qv39fY2MjOjt27eDLqdtb/eld77bfMxvvieN+jr+BdApTo0EAABorNuf/WKxmNbW1iQd7Mu9ubnZ8pK9CsdxFAgEqvd3dnaazrG2tlbtiDJNUzs7O8yJU/F9JGBZlh4+fNjxxm67u7uybbtLVQEAAAAAMLwikUg1BJN0qn2raqXT6erX4XD4xDlql965rltXA3N25vnz51paWtKjR49OHPvkyRNduXJFP/7xj7taQz/4erP8ylLG//bf/psmJiZ05cqVttabuq6r1dXVbpcHAAAAAMDQyeVyKhaL1fvZbLbtDdlrl/gFg8GWHmNZVnUv8cePHx/JCYZ5znbduHGjLljb3d3Vd77znWPHX79+XVNTUwqHw7p3757y+by++tWvdqWWXvN1EHb37l29fPmyet/zPGUymbbm8jxPhmF0qzQAAAAAAIaO4zhKJBLV+8Fg8NR7glUcXrV17dq1lh4XDAarYdDhrqhhnrNdt2/frm7GL0mGYejZs2dNg7DaWqamphQKhbS+vq6vfe1rXampl3y9NHJubk6e56myjRlBFgAAAAAAg3P4xMKlpaW256rtKpPUclfZ4XG1odIwz9mO3d1dZbNZGYZRzVw8z2v5ZErTNFUqlbS9va1QKKSf//znHdXTD74Owiops2EY1UCs3RsAAAAAAGif4zh1wYtpmh0tzTt8mF2re4xduHCh7v7GxgZztunevXuSDsKv8fFxxeNxlcvlU+3TblmW5ufntb+/33KANki+Xho5Pj6uYDColy9fKp1OKxgManJy8tTzOI6ju3fv6tWrV90vEgAAAACAIZDNZuvuh8NhSQdL9B4/fizbtuU4jkzTlGVZunHjhuLx+LEhT2WJX0W7XVHlcpk521QsFjUxMaHV1VXNzs62Pc/777+vlZUVlctlffbZZ/qrv/qrjurqJV8HYdLBhm2BQEB37txpe47p6Wldv369rRCtFZU10olEomsb1TVS+aPiOI6CwWD1jw4AAAAAAL1Wu7m7JE1OTioUCh1Znue6rmzblm3bSqVSyufzDT8rHw6D2uW6LnO2yXEcffzxxx2FYFJ9QLe6uurrIMzXSyOlg4S5W0sbZ2ZmujJPheu6isViCgQCKhaL2t7e7vr8mUxGoVBIhmFodnZWL168UDAY7PpzAQAAAAD40/Lysi5dutTxbX9/v+0aHMc5Erqsrq4qkUhoZ2enui1RuVw+snl+LBZruLF7uyHO4Q6z2s/iwzxnO1zXbfvEz0Z1eJ7X8XLNXvN9R9j09LTS6XRX5vqf//N/dmUe13V17969tk+wbGX+VCpVTduDwaAKhQIdYAAAAAAwhPb29vT69euB1nC4g8k0TW1ubh4JZizLUjabVSgUqjtdcn5+XuFwuOW9sE6j066oYZ7TsqyuNPUUCoXq1714nt3k+44wSZqamurKPP/rf/2vjueodGh1ejLDcXK5nKampqohWDabValUIgQDAAAAgCE1NjamixcvdnzrxOEgrNneX5Wf13aGVRpKanUrFKudZ5jnbEcwGFQ+n++4jlwuVz11shdhZzediSCsWzptz7NtW+FwWOVyWYVC4chGgZ1KpVJKJBLV1sRGLaUAAAAAgOGysLCgL7/8suPbyEj7EcDhTdmvXbt24mNSqVTd/cOrqrq1j3ftPMM8Zzvi8biKxaJ++tOftj3HjRs3ql1ghmH4fisn3y+NbGRra+tUrXaO4yibzXbcnhcMBuvud/PFrV0zbZqmSqWS71NUAAAAAMBwOPx5upXPq5ZlKRgM1q2osm27+tm63c+8zWoZ5jnbEQ6HdfXqVYXDYRWLRX39619v+bF7e3uan59XPp+XYRjyPE+GYSgWi3VUU6+diSBsa2tL6XRaxWKx7ZMVKi9IN3UrqIpEIioWi9X7hGAAAAAAAD8JBAJtPW5mZqYuCHMcpxqEHf6Z67otfRY+vKdVbW3DPGe7VlZWNDMzo3A4rEgkolQq1TQQ29vbq9vXvMIwDFmWpZs3b3ZcUy/5PghbWlqqtk926/RIP8nlcnUhWDab7cqJDQAAAAAAdMvhkKbVFVeHg5raICcUCtX9rDYka+bwMs3aPbWHec52BYNBra6uam5uToVCQYVCQaZpyrKs6q1So23b1QalSkZT2w3Wjf3Ges3XQdiTJ0+qJ0YahlH95Z4XjuPUnaIRDAbZEwwAAAAA4DuHtwZqdbXW4QCtdk+rRnO2EgbVhnCVwIY5OxONRrWxsaHZ2Vnt7u7KdV3Ztn3koMDaTKay6s7zPJmmqfX1dV29erUr9fSSr4OwyokSlQCssr648kJfuHDhxDnevHkj13W1urqq3d3dntZ7WofXzS4tLQ2oEgAAAAAAjnc4pDncmdSq2uAmGAzKNM1quPPixQtFo9ET56g9CO9woDTMc3YqGAxqa2tLd+/e1YMHD478vNKgJB2EX5VQLB6PK51Oa3x8vKv19IqvgzDbtqu/5EKhoNnZ2bbnSiaTunLlSrdK61ilpbDCNM2W3vQAAAAAAAxCZUN1SXVb/DRzeAnl4UBtbm6uutfU4e6j49SOO3wy5bDP2anx8XGl02ml02mtr6+rUCjItm1tb2/LcRxNTk7KNE3NzMwoEokoHA6fmQCsov2zU/ug0kKZTCY7CsGkg9R5amqqC1V1RzabrbtfWde7tramWCymQCAgwzA0MTGhUCikTCbT8amXAAAAAAC0qzZ4cRynpc+otZ1jjfazqt0uqJVwrXaMZVnM2UOzs7O6f/++nj17po2NDW1vb+uXv/ylNjY29PDhQ12/fv3MhWCSz4OwSsvktWvXujLf4fBpkA6frjA5OalQKKRYLKa1tbXqeuvKutxUKqWJiQmtra0NolwAAAAAwJALh8N1Sxsr2xk1UxveVPYArxUMBusCnZM+89Zuxn5cR9Qwzzkou7u7Z2a7J8Pz8e7zqVRKn3zyibLZrC+P33Qcp+4EjGw229Jm94cfJx10v6XTac3NzVU74RzHUTqdPhKa5fP5ri6jHB0d1f7+viTp4sWLHc+3sLCghYWFjuc5rbf70jvfbT7mN9+TRn0d/wLo1NxPftS3a61+41t9uxYAAECnKp/9RkZG9Pbt27bmsG277sTDcrl87IbtxWJRkUhE0sE+Usc1p9R+Rg4GgyqVSg3Hua6riYkJSQehXKFQOLbOYZ5zUGZmZjQyMqKf/exngy6lKV9HAh9//LE8z2t5rexJHj161JV5OnX4dA3TNLW5ual4PF53ooZlWcpms0f+WMzPz/dsmeTr1687vu3t7fWkNgAAAADAYAWDwbrPqJFIpOHnU9d1q0v/Dj/mMMuyqt1Otm0rk8k0HFfZMsk0zbruKOb0h5mZGZVKJX388ceDLqUpXwdh4+Pjun//vh4/fqx/+Zd/6Xg+vyyNPByEHQ7ADovH43WdZq7rttSC2o6LFy92fBsbG+tJbQAAAACAwYvH4yoUCjJNU47jaGpqSplMRrZtV8OcqakpOY6jeDx+bJdTrWg0Wp0zlUopFovJtm25rqtisahQKCTbthUMBrW5udn0MzRzdmZra0uvXr3S8+fPW7598sknyufz8jzPN9nLcXy9NLIiEolodHRUn3/+edtzbG5u6t133227/bORdpdGplKpupS3laWOjZZTduul60Z7rB+wNBKAxNJIAACA4/Tis18ul1M+n9fGxoZc15VpmtWN3BOJxLHLJpvJZDJ6/PhxdUP+yimFiUSi7W2ChnnOVjx9+lTZbLbl00CP43meDMPwdbZwJoIw6aDFbnd3V6lUSpOTky09Znt7W67rqlwua3V1Va7r+iIISyQSdft+FQqFlk57qKTAFaVS6cjRs+0gCANwnhCEAQAANHZePvuhux48eKDFxUVJnTXcGIYh6WAp7IsXL7pSWy+8M+gCWvH8+XNJB5vw1R4vehqVVNIPDnd2tWpmZqYuCHMcpytB2DD5u5fSX4ROHgcAAAAAwHn38uVLpVIpGYbRMAQ77vvHjbMsSysrK70otWt8H4Tdvn272j3V6gtwmF8CsIrD63lb3fj+cIC2vb3dpYrOh797efKYv1w76Aj7s+ne1wMAAAAAgJ9V9vMaHx9XPB5XIBCoLmfd2dnR3NycJiYmtLq62vDxruvq2bNnevTokWzb1tWrV/tVett8HYStrKxUX5R2QzCpe3tpdcvMzEzd/cOb5x/ncIDW6hLRYbD7a+nbP2lt7K1/kP7k/5HGvtLTkgAAAAAA8LVisahAIKAvvvii4c/n5+f16NEjBQIBXb58ueGY69evS5IWFxc72tu9X3wdhB0OwcLhsCKRiEzTPPU+YQ8fPtTW1lYPq23d4eWM5XK5rXna2XTwvPpbW/q3/2xt7L/+h/RDW/rrP+xtTQAAAAAA+JnjOE03yF9cXNTKyooymYy+//3vHzsulUrp3Xff1aeffqrvfOc7vSi1a3wdhNm2LcMwZJqmNjY2NDU11fZc8/PzunDhQher60w4HK6+2Vo9leHwEkr2B/utf/zF6cb/0y8IwgAAAAAAOLxqrdbU1JRmZ2eVzWZ1//59jY2NNRxnWZamp6eVTCY1Pz9/7Dg/8PX5eZWlgEtLSx2FYJW5pqf9szFUKpWqfl05FvUktZ1jrZwyOUx2/r234wEAAADAz5aXl3Xp0qWmt/39/UGXCZ8JBoMn7j+eSqXkeV71ZMnjXLt2TZ7n6f79+90sset8HYSFQgfH+3VrCWC3Ty5odZP7RsLhcN3zunfv3omPqe0cS6fTbV/7PJr43d6OBwAAAAA/29vb0+vXr5vegMMsy6oeUHiccDis6elpZbNZ/fznPz923MbGhiQpn893tcZu83UQlkgk5Hley5vJn6TbHWGH6zptMFb75shkMk2fZ7FYrP48Ho+zLPKQP/mD043/41OOBwAAAAA/Gxsb08WLF5vegMPm5uaUTqf16aefamtrS8+fP9fz58+PjFtaWpLneQoGg/rxj3985OcPHjyQbduSWj8QcFAMz29HKh4SCoU0MjKiFy9edDzX06dP9eGHH3ahqoPQKxQK1b3AwWBQpVLpVPPkcjklEglJB0lsqVQ6cjpk7bXaucZJRkdHtb+/r5GREb19+7arc/fL7q+li3db2zD/935Her3EqZHAeTX3kx/17Vqr3/hW364FAADQqfPw2Q/dNzExob29vbrvhUIh/exnP6v7XiQS0fr6ugzDUDAYrO4tVmncqcRLzU6h9ANfd4RJB11TpVKpYeJ4Wq0sP2zGdV3FYjFFIhFNTEwcSTkrm/tHIhHFYrFqGtpMPB5XoVCQaZpyHEdTU1PKZDKybVu2bSuTyWhqakqO4ygej3c9BDsvxr8iff8brY19+KeEYAAAAAAASAfbSFVCLM/z5HmeSqWSXr16VTcum81Wv7ZtW7lcTrlcTuVyufr4SkjmZ77vCJMOuqaWlpb05s2btufY3d3V5OSkr1PvXC6nfD6vjY0Nua4r0zRlWZbC4bASiUTX9ko77Lz8V4G3+9I7320+5odR6c9D/akHwGDQEQYAANDYefnsh+5bW1vT3Nxc9f7ExETDDKZYLOr999+XYRhHfuZ5niYmJrS5uenrUyN9HYQ9ffq0+nUymZRhGIpGo6eex3Vdra6uynVd/rE3cF7+GLYShP3me9Ko7/sgAXSCIAwAAKCx8/LZD72xu7tbzU7i8bjGx8cbjnMcR4lEQuvr63XfDwaDyufzmpqa6ke5bfN1EDYzM6OXL19W73ue1zB1bEXlsfxjP+q8/DEkCAMgEYQBAAAc57x89oM/7O7uVk+KtCzL9wFYxTuDLqCZubm56j5bhmG0HYIBAAAAAACge8bHxzU7OzvoMk7N170xldMUDcOobtjW7g0AAAAAAAC/tbe3p9u3b+uDDz7Qp59+Ouhy+sLXHWHj4+MKBoN6+fKl0um0gsGgJicnTz2P4zi6e/fukRMPAAAAAAAAhlU0GtX6+ro8z1OxWNTU1JQ+/PDDQZfVU74OwiTpxo0bCgQCunPnTttzTE9P6/r1622FaAAAAAAAAOdRsVis24bKNM3BFdMnvl4aKUnhcLhrSxtnZma6Mg8AAAAAAMBZZ1mWpIMtqaLRqN57770BV9R7vg/CpqenlU6nuzJXt+YBAAAAAAA46+LxeLX56PHjxx3Pd/v27Y7n6DXfB2GSunYE5/T0dFfmAQAAAAAAOOuSyWT15Mdf/epXHc9XLBY7nqPXBhqE+Wnzej/VMij7+/u6dOlS09vy8vKgywQAAAAAAF1SKBT04YcfKhqN6l/+5V/anmdzc1OO43Sxst4Y6Gb5oVBIOzs7GhsbG2QZ2t3dVSgU0tu3bwdahx+8fv266c/39vb6VAkAAAAAAOiHzz77TI8fP1YwGNTi4qJisVhLWU0lI9jY2FAymex1mV0x0CCsW5vgd4OfahmkixcvNv35oENLAAAAAADQHe+++642Nzer9z3PUzweVzweP/VcnufVnUDpVwMNwvz0C/JTLYMyMjKiL7/8ctBlAAAAAACAPojH41pcXKzeNwzj3DcKDXSPsPP+ywUAAAAAAPCrRCIh6SAA6yQEO0vNRQPtCJMONlP72te+NtAaNjY2Bnp9AAAAAACAfhsfH9f169f15MkTSVI4HJZpmqeex3Ec2bbd5ep6Y+BB2Pz8vBYXF2WapiYnJ/t67e3tbTmOc2Y2dAMAAAAAAOimRCKhp0+fqlQq6erVq23Pk8vldPv27e4V1iOGN8D1iSMjI75on6ts6Dasp0aOjo5qf39fIyMjZ/p38HZfeue7zcf85nvS6EAXBAPotbmf/Khv11r9xrf6di0AAIBOnZfPfmhP5YTH7e1tSdLk5GT1QLzJycnq9zsxMjKi/f39jufppYF3hFUMKo/zQxAHAAAAAEAnlpeXtby83HSM3wMKdN/o6OixP8tms7p586YkaWlpSXt7e9VgrF3tnDbZbwMPwga9Yf6grw8AAAAAQKf29vb0+vXrQZcBnzmceYTDYSUSCYXDYY2Pj1e/f+fOna5c7+HDh12Zp5cGGoTt7OwM8vIAAAAAAJwLY2NjunjxYtMxBGXDqbISrlAo6L333htwNYM30CCsNn0EAAAAAADtWVhY0MLCQtMxlT3CMHzS6TQh2P/FtuEAAAAAAADnWDQaHXQJvkEQBgAAAAAAcI5dvnx50CX4BkEYAAAAAADAOWWaZt+udeXKlb5dq10EYQAAAAAAAOfU5ORk365VLpf7dq12EYQBAAAAAACgIy9fvqyeUOlnBGEAAAAAAABo297enlKp1KDLaMk7gy4AAAAAAAAAveE4jj744IOezL29vS3XdeU4jjzPOxMdYQRhAAAAAAAA51ixWOzJvJ7n9WTeXiIIAwAAAAAAwKnVdoCdlVCMIAwAAAAAAOAc62VIdRaWQ9YiCMO5MWJIv/neyWMAAAAAABgmwWCwZ3NX9gg7KwjCcG4YhjRK0AUAAAAAQJVlWdrY2OjpNRzHUSwW06tXr3p6nW4gCEPV/v6+Ll261HTMwsKCFhYW+lQRAAAAAADwO8uytLKyomvXrg26lBMRhKHO69evm/58b2+vT5UAAAAAAICzopfLL7tpqIKwp0+f6sMPPxx0Gb528eLFpj8fGxvrUyUAAAAAAKBT29vbfbvW9PR0367VLsM7K+dbdsGVK1f0xRdfDLoM3xkdHdX+/r5GRkb09u3bQZcDAB2Z+8mP+nat1W98q2/XAgAA6BSf/YbPyMiIDMPg9a4xMugC+uXJkydn6hQDAAAAAACAbjgLm9j3y5lZGvnq1SsVi0WVy+VTBVrb29tn7ihPAAAAAACAbsnlcvr+978/6DJ8wfdB2NbWlhKJhIrFYluPr135aRhGt8oCAAAAAMA3lpeXtby83HTM/v5+n6qB32SzWUUiEX3zm98cdCkD5/sgLBwOa3NzU57ntRVkVR4zRFuhAQAAAACGzN7enl6/fj3oMuBj0WhUkUhEiURCs7OzQ3sYnq+DsFu3bslxHBmGIcMwCLMAAAAAAGhgbGxMFy9ebDqGoGw41WYpz54907Nnz2QYhrLZrG7evDnAygbD10HYxsZG9eupqSml02mFw2GNj4+fap6XL1/q7t27evr0abdLBAAAAABg4BYWFrSwsNB0TOXUSAyPyuu9u7sr6WAfdUlyXVeWZQ2srkEyPB+3WVWO+TRNU5ubmx237U1OTlZfdPwWR+gCOE/mfvKjvl1r9Rvf6tu1AAAAOsVnP0AaGXQBzZimKUmam5vrytrVeDze8RwAAAAAAAA4m3wdhMViMUlSIBDoynz379/vyjwAAAAAAAA4e3wdhC0uLsrzvLq9wjqxt7fXlXkAAAAAAABw9vg6CJuamtLDhw+Vz+f185//vOP5Zmdnu1AVAAAAAAAAziJfB2HSwb5eN2/eVDQa1b/8y790NJdt212qCgAAAAAAAGfNO4MuoJnKUsbFxUWVSiW99957SqfTmpycbHmO7e1tua6rbDbbqzIBAAAAAABwBvg6CLt8+bJ2d3frvheJRNqay/M8GYbRjbIAAAAAAABwBvl6aeT8/Lw8z6veJNXdP80NAAAAAAAAw83XQdhHH30kSdVOLgItAAAAAACA1jx69EhXrlyp5ivw+dLI6elpWZalzc1NhcNhBYNBXbhw4VRzvHnzRq7rKpfL9ahKAAAAAAAAf3n58qXi8bgkyXEczc3N6cMPPxxwVYPn6yBMkqLRqF6+fKl//ud/7mieZDKpK1eudKkqAAAAAAAA/7p3756k366yM01zgNX4h6+XRkrSjRs3ND4+3vE8lmVpenq6CxUBAAAAAAD4m23bkg62mcpms3rvvfcajrtx44aeP3/ez9IGyvdB2PT0tJaWlroyVz6f78o8AAAAAAAAfuY4jiYmJlQqlXTz5s1jx+XzeTmO05Vrvnr1qivz9JLvgzBJXevkmpqa6so8AAAAAAAAfmaappaWlvq6Oi6VSvXtWu3y/R5hjezt7alYLKpQKGh7e1uO42hyclKWZSkQCCgajery5cuDLvPM2d/f16VLl5qOWVhY0MLCQp8qAgAAAAAA7bAsS5Zl9fWa3eos66UzFYRtbW0plUppbW2t7vue51U3f5MOEkjLsrS4uKi/+qu/6neZZ9rr16+b/nxvb69PlQAAAAAAgHbduHFDjx8/7ttJkS9fviQI66aVlRXdunVL0kHwVWEYRl0IVvl5uVxWPB5XNptVPp/XV7/61b7We1ZdvHix6c/Hxsb6VAkAAAAAAGhXPB5XKpXS5uam4vG4LMvS5ORkw7GlUqnt7jHXdeU4ju7evdtJuX1jeLWpkk89ePBAi4uLRzq/Wi19ZGREpVJJX/va13pV4pk2Ojqq/f19jYyM6O3bt4MuBwA6MveTH/XtWqvf+FbfrgUAANDM8vKylpeXm46prADis9/wWFtb09zc3JEGolqHs5Z2Vebx+3vL9x1hT548USqVqnZ+VcKvYDComZkZBQIBmaZZTTYdx9H29rbK5bLW1tbkOI729/c1OzurjY0N9g4DAAAAAJw7e3t7J251g+ETjUa1urqqubm5puPOQI9U1/g+CKuEYJ7nyTRNpdNpzc3NaXx8vOH42tMQ7t+/r5cvX+ru3bt68uSJbt26pc8//7xfpQMAAAAA0BdjY2MnbnVDUDacotGodnZ2lEwmlc/n5bruoEsaKF8vjXzy5IlisZgkKZFI6Ac/+EHbc2UyGS0tLalYLOrrX/96t0o8F1gaCeA8YWkkAABAY3z2gyRtbm7Ktm1tb2/L8zzdunVLsVhMMzMzbc335s0bOY6jtbU1lkZ26vHjxzIMQ+l0Wn/zN3/T0VzJZFLFYlGrq6sEYQAAAAAAYChNTU1pamqqev/WrVuKRCK6efNmR/MWi0V98MEHnZbXcyODLqAZ27YVDAY7DsEqEomEisViV+YCAAAAAADAgXA4XBew+ZWvO8Icx1Eul+vafKZpynGcrs0HAAAAAACAA5ZlDbqEE/k6CJO6+0skBAMAAAAAAPitnZ2dYw8kPK18Pt+VeXrJ10sjLcvqaniVzWZ7kk46jqNIJKK1tbWuzy1JgUBAhmH0bH4AAAAAADCcuhWCdXuuXvF1EBYMBruWJi4uLlb3HOsW13UVi8UUCARULBa1vb3dtbkrUqkUnWwAAAAAgDOr0jzSqkwmo0gkoomJCRmGoUAgoFgs1tGe38M8Zzv29vb09OlT3b59Wzdu3NC1a9f0wQcf6Pbt2/rkk0+0tbXV13q6yddB2NzcnAqFgj7++OO259jb29ONGzeUyWRkGIYSiUTHdbmuq1QqpYmJiZ52aRWLRWUymZ7NDwAAAABAu1zXlWEYJ94CgUBLq7OKxaImJiaUSqUkHSyzK5fLSqfTsm1bkUhEkUhEruu2XOMwz9mOra0t3bhxQxMTE4rFYsrlclpbW1OpVFKxWFQul1MqlVIgENCVK1f02Wef9bSeXjA8z/MGXUQzgUBAW1tbSiQSSiaTunz5ckuPe/78ubLZbF1QFQwG9eLFi47qyWQy1SWWhxPZbDareDze0fwVrutqamqq7k2ez+cVjUa7Mn+t0dFR7e/va2RkRG/fvu36/ADQT3M/+VHfrrX6jW/17VoAAACd6vZnv0wmUw1uTlIul5uGYcVisdo1Fo/Hlc1mj4wJhUKybVuWZalUKsk0zabXHOY527GysqJbt25JkmqjIsMwjoyt/NwwDIVCIeXzeX31q1/tek294PsgrFgs6v3336/+4sPhsILBYF2i7Lqutre3VSqVtLGxIdu2q4+vfXFKpZKuXr3adi2VeSvLK3O5XF2HWTeDsFgsJtu2tb29XQ3DCMIA4GQEYQAAAI11+7PfxMRESx1K4XBYhULh2J/XNoJYlqVyudxwnOM4CgQCzHnCnO148OCBFhcX5XleXfDVamQ0MjKiUqmkr33ta12tqxd8f2pkOBzWw4cPdevWLRmGoWKx2HRt7OHU0jAMeZ6n1dXVjkIwSUf2F5uZmelovuPUth7Ozs725BoAAAAAALQrl8vJdV0lk8kT9/866bNzLBarBmrNOswsy1I0GtXa2lp1md5xzSjDPOdpPXnyRKlUqi5DkQ4ykJmZGQUCAZmmKcuyNDk5KcdxtL29rXK5rLW1NTmOo/39fc3OzmpjY6PllXyD4vuOsIq1tTXF4/HqGmSpcTJ5OLk0TVPr6+uanp7uek21iazUnY6wypzJZFLpdLouYacjDABORkcYAABAY9387Ff5LHxcB1OrDn+u3tnZabrsb21tTbFYTJJkmqZ2dnaYs0PvvvuuNjc3qxlKOp3W3NxcyydAvnz5Unfv3tWTJ0/0/vvv6/PPP+9KXb3i683ya0WjUW1uburOnTvyPO/Y9rzKz8bHx5VOp7W9vd2TEKxXYrGYgsGg0un0oEsBAAAAAOCIShdQq/uDNVP72TccDp+491Vtc4jrug0PsBvmOU/ryZMnchxHnucpkUhoe3tb8/PzLYdgkjQ9Pa18Pq/79++rUCjopz/9acd19dKZCcIkVcOt/f19FQoFpdNpxeNxRaNRRaNRxeNxpdNplUolbW9v686dO4Mu+VRSqZRs21Y+nx90KQAAAAAANHTv3j2Zpqm5ubmO58rlctWvD29HdJzaTfcfP37MnB14/PixDMNQJpPRD37wg47mSiaTmp2d1erqasd19ZLv9wg7zuzs7LnaP8u27boTKQEAAAAA8BvbtqsHyU1MTMiyLIXDYUUikVNv5VN70J0kXbt2raXHBYNBOY4jSUe6ooZ5znbYtq1gMKi/+Zu/6XguSUokElpcXOzKXL1ypjrCOrW1tTXoEo41Oztb7WoDAAAAAMCPDi+HdBxHuVxOsVhMhmEoFosdCXmOc/ggvFabQg6Pq73eMM/ZDsdxlEgkOpqjlmma1aDOr4YqCKtsKuc3lbpWVlYGXAkAAAAAAI05jnMkwDlsbW1NoVCopXDlxYsXdfdP2iOr4sKFC3X3NzY2mLMD3VyV5vcQTBqyIMyPL8ja2prW1taUz+dbfuMDAAAAANBvlmUpm81W9+tuFqDkcjmFQqGm8x3+jN5uV1TtyZXDPGc7LMvqalZyFrZ7OrN7hJ3G3t6eksmkXNcddCl1XNdVLBZTPB5XOBwedDna39/XpUuXOp5nYWFBCwsLXagIAAAAAOAnh7fzcV1XuVxO9+7dO/KZ27ZtRSIRFQqFhnN1K4Cpve4wz9mOYDCofD6vmzdvdlzL4uKibNv27Wq8ioEFYZubm5qbm6uuR7179+6RMTMzM9rc3OzoOpU3hed5Mgyjo7m6bXZ2tpqo+8Xr1687nmNvb68LlQAAAAAAJGl5eVnLy8sdz7O/v9+FauqZpqlkMqlkMqm1tTXNz8/XhTPFYlGZTEbJZPLIY9sNcQ6vptre3mbONs3NzWlubk4ff/xxw1ymFXt7e5qfn1c+n5dhGF3dc6wXBhaE1W6gl06nNTMzow8//LBuTCgU6njjN7/KZDKybVulUmnQpdS5ePFix3OMjY11oRIAAAAAgHQQNHSjaaHXotGowuGwZmdn6z7L37t3r2EQ1i29WP01LHNGo1FNTU0pnU7LdV0lk0ldvny5pcc+f/5c2Wy2enqlYRgKBoN67733Oqqp1wYWhNm2LcMw5HmepMZtgbdu3dLKysqRTq7KY05S+7hWH9MPtm0rlUopnU4rGAwOupyqkZERffnll4MuAwAAAABQY2xsrCtNC/0I00zTVKlUqmtscV1XxWLxyJZApml2JRyq7ZIa5jnblc1m9f777yubzSqbzSocDisYDCoQCFT3+3JdV9vb2yqVStrY2KgLOit5i2EYZ+IQwIEFYfPz83W/oGg0emTM9PS0TNPU7u6uPM+TaZqanJxs+YWuvFB+2xssFospGAz2NBEHAAAAAJwP3dqHeXR0tCfLIxtZWVmp2yy/UCgcCcImJye78nl9cnKSOTsQDof18OFD3bp1S4ZhqFgsNj0dtLbRyDCMapPT6uqqrl692nE9vTawICybzSoSiWhjY0OJROLY1rv5+Xl98sknsm27o19oKpXSJ5980vbjuyWTychxHIXD4ZY2kKv9h3Hv3j09fvy4ev/GjRsNA0QAAAAAAAYpGAwqHA5XA5VGq8Da7WY6HCAd7rQa1jk7EY/HNTk5qXg8Ltd1qyvsGq2uO7z6zjRNra+va3p6uiu19NpAT42MRqMnBjkfffSRnj592nGqmE6nfdGi9+bNG0lqmq4ex7btuvZDy7IIwgAAAAAAvhSJRJp+9p2Zman7jOu6bkvBzuEN4gOBAHN2QTQaVSQS0d27d/XgwYNjx1XCMdM0tbS0pDt37nSthn4YaBDWiunpaY2Pj3dlrsraVgAAAAAA0Fu1n8EbLeGrXTopHXSNtbKPdrlcrrtfu+RymOfshvHxcaXTaaXTaa2vr8u2bZXL5WoANzk5qUAgoHA4fGY6wA7zfRAmSevr6x09fm9vT2NjY77oCKu8oVoVCASqLaT5fJ4OMAAAAADAmVAbhDXqdpqZmam732oYVLs80DTNuusM85zdNjs7q9nZ2Z7NPygjgy7gJM+fPz9yauRpJZNJffTRR2c2rQQAAAAA4KzZ2Niofh2JRI78PBgM1gVkL168OPW8hwOlYZ4TrfF9EBaJRLS6utrRHA8fPtQvf/lL/dEf/VGXqgIAAAAAAM3ULuM7bgnf3Nxc9evaPbOaqR2XSqWYE6fi+yCs0QkF7YjH4yoUCvrss8+6Mp909LQGAAAAAABwYG1tTdLBKq3jJBKJ6tetHCpXO8ayrIYB2zDPiZP5PgjrFsMw5Hmestls1+Y8fPwrwRgAAAAAAAchmOM41ZMFjxMMBusCnUp4dpx8Pl/9+riOqGGeEyc7E0FYp3uEPX/+vPomKZVK3ShJruseeeM9fvy4K3MDAAAAAOAnxWJRExMTMgxDkUik6VI+x3E0Pz8v6eDwu0Yb5deqbVi5d+/eseNc11Uul5N0sNQyHo8zJ07NN0HYkydPdO3atSM36aCNstHPTrpduXJFo6OjikQi1W6tk/4BNuO6rmKxmCKRiCYmJo50hNm2Xf2jEIvFWl7jCwAAAACAn+Xz+ern6mKxqFAoVLe0r6Lys8nJSZXL5ZZOQrQsq9rtZNu2MplMw3GVEwxN06zrjmJOnIbhdWsTri5YW1vT3NxctQOsm6VV5oxGo3RuHTI6Oqr9/X2NjIzo7du3gy4HADoy95Mf9e1aq9/4Vt+uBQAA0KlOPvsVi8WGJz+apqlwOKzJyUltbGzItm0lk0ktLS2duhGlWCwqFovJdV1Fo1EtLS3JsixtbGwolUrJtm0Fg8GWusyYE8fxVRAmHbRQRiIRbW5uVvf16nRpZOUpWpYl27Y1NjbWjVLPDYIwAOcJQRgAAEBjnX72cxxH6XRaxWJR29vbcl1XpmlqcnJSwWBQN27cUDgc7jioyWQyevz4sRzHqV5jZmZGiURC0WiUOdER3wVhFZFIROvr69UwrN1/SJZlybIs3bhxQ9evX+9ukecEQRiA84QgDAAAoDE++wHSO4Mu4DiFQkGxWExPnz5VLpfTzZs3B10SAAAAAAAAzjDfbJbfSD6f19TU1KDLAAAAAAAAwDng246wilKppO3t7UGXAQAAAAAAcK7s7e0plUrJcRy9//77+s53vjPoknrO90HY+Pi4xsfHO5pjd3dX9+/f171797pUFQAAAAAAwNkWjUa1vr4uz/NULBY1NTWlDz/8cNBl9ZSvl0Z2y/j4uAqFgv7H//gfgy4FAAAAAADAF4rFYt39Tk/8PAuGIgiTpJmZGZVKJX388ceDLgUAAAAAgK5aXl7WpUuXmt729/cHXSZ8xrIsSZJhGIpGo3rvvfcGXFHv+X5p5GFbW1tyXfdU+4bZtq18Pi/P85TNZnX37t0eVggAAAAAQH/t7e3p9evXgy4DZ0w8Htfi4qIMw9Djx487nu/27dv6wQ9+0IXKeudMBGFPnz5VNps90rLXDtd1Oy/onNrf39elS5eajllYWNDCwkKfKgIAAAAAtGJsbEwXL15sOoagDIclk0kVCgU9f/5cv/rVr/TVr361o/m6kdv0mu+DsAcPHmhxcVGS5Hle2/MYhiHDMBQMBrtV2rl00h/Gvb29PlUCAAAAAGhVK00Lo6OjLI/EEYVCQbFYTNFoVM+fP9fv//7vtzXP5uamHMfpcnXd5+sg7OXLl0qlUjIMo2EIdtz3jxtnWZZWVlZ6Ueq5cdJ/QRgbG+tTJQAAAAAAoB8+++wzPX78WMFgUIuLi4rFYi19/q80y2xsbCiZTPa6zK7wdRCWzWYlHZz6GI/HFQgEqhu57ezsaG5uThMTE1pdXW34eNd19ezZMz169Ei2bevq1av9Kv1MGhkZ0ZdffjnoMgAAAAAAQB+8++672tzcrN73PE/xeFzxePzUc3meJ8MwulleT/g6CCsWiwoEAvriiy8a/nx+fl6PHj1SIBDQ5cuXG465fv26JGlxcVGff/55r0oFAAAAAAA4Uyqb5Ve0uvLuLBsZdAHNOI5T7QprZHFxUZ7nKZPJNJ0nlUrp2bNn+vTTT7tdIgAAAAAAwJmUSCQk/XZf9XZDsLPQCVZheD6O+kZGRuS6btN1qZFIRM+fP9fOzk7TcaFQSK9evTpx3DCqbJg4MjKit2/fDrocAOjI3E9+1LdrrX7jW327FgAAQKf47IdGYrGYnjx5IkkKh8MyTfPUcziOI9u2ZRiG799bvl4aGQwGtb293TS4SqVSWl9f1+Lior7//e8fO+7atWt6+fKl7t+/r7t37/aiXAAAAAAAgDMlkUjo6dOnKpVKHe2tnsvldPv27e4V1iO+XhppWZZyuVzTMeFwWNPT08pms/r5z39+7LiNjQ1JUj6f72qNAAAAAAAAZ1U4HNb4+HjHBwzG4/Ezsb+Yr4Owubk5pdNpffrpp9ra2tLz58/1/PnzI+OWlpbkeZ6CwaB+/OMfH/n5gwcPZNu2pIN2PQAAAAAAABxYWlrS3t5ex/O0c9pkv/l6jzBJmpiYOPJihEIh/exnP6v7XiQS0fr6ugzDUDAY1MzMjKSDkycdx6mmks1OoRxWrBMHcJ6wRxgAAEBjfPYDfN4RJkkrKyvVEMvzPHmep1KppFevXtWNqz1d0rZt5XI55XI5lcvl6uMrIRkAAAAAAADas7S0pF/96leDLqMtvg/CotGoVldX69aZmqZ5ZO2qZVl69uzZkfWolSNAK49bWVnpec0AAAAAAABn0dOnT3X79m1du3ZNT58+bTgmFAppenpaH3300ZkLxHwfhEkHYdjOzo6y2azS6fSx+3yFw2H98pe/1HvvvVftHqvcgsGgNjY2mp5ACQAAAAAAMIw++eQTXbhwQbFYTLlcTrZta3t7u+HYaDQqx3H0xRdfyLKshvu1+9U7gy6gVePj45qfnz9xnGVZKhQK2t3drZ4UaVmWpqamel0iAAAAAADAmbK7u6uZmZm6/dUlVVfXHcc0TZVKJYVCIUWjUeVyOf3VX/1Vr8vt2JkJwk5rfHxcs7Ozgy4DAAAAAADAt2KxmMrlct3WUqc5V3F9fV2Tk5OKx+OyLEtf//rXe1VqV5yJpZHdsrW1NegSAAAAAAAAfGF9fV3FYlGGYVS3lhofH1c4HG55DtM0defOHXmep0Qi0cNqu2OogrBYLDboEgAAAAAAAHwhm81KOugAi8fjKpfL2t7ebngYYTMfffSRJKlcLuuzzz7rSa3dMlRB2HGb7AMAAAAAAAybSjdYLpfTw4cP295f3bKs6tfPnj3rVnk9MRRB2N7enm7duiXXdQddCgAAAAAAgC+4rivLsnTz5s2O5qk9XdK27U7L6qmBbZa/ubmpubk5OY6jRCKhu3fvHhkzMzOjzc3Njq5TCb88zzvxxAMAAAAAAM6i5eVlLS8vNx2zv7/fp2pwVpimqWAw2PE8lfDL8zzfr8YbWBAWi8Wqv6h0Oq2ZmRl9+OGHdWNCoZDvk0QAAAAAAAZtb29Pr1+/HnQZOGMsy+rK6rl79+5VvzZNs+P5emlgQZht29VTCaTG+3fdunVLKysrRzq5Wt2wrfZxp9nkDQAAAACAs2RsbEwXL15sOoagDIfNzs7q0aNHHc3x4MGDuoyndr8wPxpYEDY/P6+VlZXq/Wg0emTM9PS0TNPU7u6uPM+TaZqanJxsOV10XVfb29vsDQYAAAAAONcWFha0sLDQdMzo6CjLI1FnaWlJDx480KeffqrvfOc7bT0+k8lUQzDDMHTjxo0eVNo9AwvCstmsIpGINjY2lEgkdPny5Ybj5ufn9cknn8i2bV29erXt66VSKX3yySdtP34Y7O/v69KlS03HtPLHFQAAAAAA+J9pmrpz546SyaTevHmjxcVFjY2NNX3M3t6eVldXlU6n5TjOkT3Z4/F4r8vuyMCCMOmgC6xRJ1itjz76SE+fPu0oBJMO9iGr7UBDYye1yu7t7fWpEgAAAAAA0GvpdFq2bev+/ftKp9OKRCIKh8OSpFKppMnJSW1vb6tcLqtYLNZtjC/Vb0v18OHDE4O0QRtoENaK6elpjY+Pd2Uuv69T9YOT1pT7/Q0NAAAAAABOp1AoKJFIaGVlRYVCQYVCQYZhKJfLKZfL1Y09HIBV7mezWc3Pz/e38DYY3hnYRX53d7crYdjLly81PT3dhYrOl8o68ZGREb19+3bQ5QBAR+Z+8qO+XWv1G9/q27UAAAA6xWc/nMS2baVSKa2vrx/52XEHEobDYWWzWU1NTfWlxk75viNsb2+vax1hhGAAAAAAAACNBYNBFQoFbW5uqlgsqlAoyHGc6mGElQMMLctSJBLR3Nxc1zKbfvF9R9iVK1f0xRdfDLqMc43/KgDgPKEjDAAAoDE++wHSyKALOEm5XNa3v/3tQZcBAAAAAACAM873SyOlgw3XHj9+rEQi0dJRngAAAAAAAGjP1taWisWiSqWStre3JUmTk5MKBAIKh8O6evXqYAvsgO+XRo6M1DetGYahSCSiRCKhb37zmwOq6nyhPRbAecLSSAAAgMb47IeTPHr0SOl0Wo7jnDg2kUgomUzq8uXLvS+si3y/NFI6OLVgf39fz54904cffqhnz54pGo3qwoUL+vjjj7W1tTXoEgEAAAAAAM6kra0tXblyRYlEQuVyWZ7nVW+HVb6fzWYVCAT06aefDqDi9vk+CAsGg9WWu3A4rHw+r/39ff3gBz9QMBjU/fv3FQgEdO3aNX322WeDLRYAAAAAAOAMefnypUKhUDUAMwyjepNUF4rVBmOV+8lkUn/0R380qPJPzfdLI0+yubmpfD6vXC4nx3FkGIYSiYQSiYS+9rWvDbq8M4H2WADnCUsjAQAAGuOzHxp59913q3mKpGrYZVmWwuGwAoGATNOUZVmanJyU4zhyHEflclmrq6tyXbe6jdXnn38+yKfSkjMfhNWybVvZbFYrKysyDEOWZenWrVuan59ng/0m+GMI4DwhCAMAAGiMz344bGVlRYlEoi4EC4fDSqfTmp6ebmmOtbU13bt3T69evVImk9F3vvOdXpbcsXMVhNV68OCBUqlU9cWMxWJKJBL6+te/PuDK/Ic/hgDOE4IwAACAxvjsh8NmZmZk27akg8MJHz58qPn5+bbmikQiev78uXZ2dnzdjOT7PcJO6+nTp/rggw+0uLgowzCqa1bz+bzC4bA++OCDQZcIAAAAAAAwcJUlkYZhKJlMth2CSVI+n6/mL352LoKwra0tLS0t6cKFC4rFYioWi9U1rbXtffPz83r48OEgSwUAAAAAAPAF13Wr+cnS0lJHc5mmqXg8rtXV1W6U1jO+D8KePn3a9GfXrl1TIBBQJpPRzs7OkRMMpqenlc1mtb+/r4cPH2pqaqofZQMAAAAAAPhaMBiUdLAxfjeWMwYCATmO0/E8veT7ICyVStXdf/XqlW7fvq3R0VHFYjGVSqWG3V/RaFSlUkkbGxsdtfYBAAAAAACcR7Ozs5Kk7e3trs3p9yDsnUEXcJJyuaxvf/vb8jxPxWKx+gutDb8q+4BZlqVEIqF4PK7x8fFBlg0AAAAAQN8sLy9reXm56Zj9/f0+VYOz4uOPP9aDBw/kuq62trZ0+fLljuYrl8syTbMrtfWK74MwScpms5Lqw6/aACwajSqRSFSTTAAAAAAAhsne3p5ev3496DJwxoyPj2t1dVVzc3NaXFzU3//933c03+rqqi5cuNCl6nrjTARh0kEIVrv00TRNLS0t0f0FAAAAABh6Y2NjunjxYtMxBGVoJBqNKpvNKpVK6dvf/ra+//3vtzXP4uKiXNdVJBLpcoXdZXi1u8v70MjISLX7SzrYyG1paUnXr18fcGXnx+joqPb39zUyMqK3b98OuhwA6MjcT37Ut2utfuNbfbsWAABAp/jsNzxu3bqlUql0qsfs7Oxoc3NT0m830W+V67rVrayy2axu3rx5qsf305noCPM8T+FwWOl0WtPT04MuBwAAAAAAwLdM01SpVKprLGqmdgWepFOHaLXzzM3NtfXYfvH9qZGSlMvl9OzZM0IwAAAAAACAEyQSierXlX3Wm91OM7bZLR6Pa2xsbBBPuWW+7wgLBoO+bqk7T/b393Xp0qWmYxYWFrSwsNCnigAAAAAAwGlNTU3Jsixtbm621BHWDcFgUOl0ui/X6oTvg7D19fVTP2ZpaUm3bt3SV7/61R5UdL6dtHni3t5enyoBAAAAAADtmp2d1aNHj1QsFvXee+8Nuhzf8H0QdvhEyKdPn6pQKGhjY0NLS0v68MMPjzwmFAppenpa77//vtLpNIHYKZx0yojfWxwBAAAAAIA0Nzcn27YJwQ7xfRBW8cknn+jevXtyXbf6ve3t7YZjo9GowuGwZmdnZVmW1tbW9M1vfrNPlZ5dIyMj+vLLLwddBgAAAAAA6NDs7Kympqb6es2trS1dvny5r9c8Ld9vlr+7u6srV64olUppZ2dHnue1tL61ckLC1atXFY1G9dlnn/WhWgAAAAAAAH9YXV3t6/VqN+n3K98HYbFYTOVyWZKOnGbQivX1dXmep3g8rp/+9Ke9KBEAAAAAAGDobWxsDLqEE/l6aeT6+rqKxaIMw6h2gZmmqZmZmZY30TdNU3fu3NGDBw+USCT0v//3/+5lyQAAAAAAAGfa1tZW3dZUJ3EcR9ls9lSPGRRfB2HZbFaSqh1dqVSqur51ZKT1ZraPPvpIDx48ULlc1meffaa/+qu/6km9AAAAAAAAZ83W1pbS6bSKxaIcx2lrDs/zTr2KbxB8HYRVusGy2axu3rzZ9jyWZVW/fvbsGUEYAAAAAACApKWlJWUyGUlqaU/2s87Xe4S5rivLsjoKwaT60yVt2+60LAAAAAAAgDPvyZMnSqfT1QDsLHR0dcrXHWGmaSoYDHY8TyX88jyv7RY/AAAAAACA8+TevXuSVN2b3bIsBYPB6sq6CxcunDjHmzdv5LquVldXtbu729N6u8HXQZhlWV3ZaK3ywkoH4RoAAAAAAMCws2272gVWKBQ0Ozvb9lzJZFJXrlzpVmk94+ulkbOzsx0fvfngwYO6F7Z2v7BucRxHkUhEa2trbc9h27YSiYQCgYAMw5BhGAoEAkqlUmfi1AUAAAAAAHC2VJqFkslkRyGYdJC3VA449DNfB2FLS0va2dnRp59+2vbjFxcXqy1+hmHoxo0bXavPdV3FYjEFAgEVi8W6vchOO0coFFIul6tbuuk4jjKZjCYmJpTL5bpWNwAAAAAAQKVZ6Nq1a12ZL5vNdmWeXvJ1EGaapu7cuaNkMqmPP/5Ye3t7Jz5mb29Pjx490pUrV5TJZI6ceBCPxzuuy3VdpVIpTUxMdNQF5rquQqFQS3MkEgklEom2rwUAAAAAAFCr0gXWTmNPs/n8zNdBmCSl02m99957un//viYmJvRHf/RH+uSTTyRJpVJJT58+1aNHj7S0tKRr165pYmJCiURC5XK52gVW8fDhQ42NjXVUTyaTUSgU6srpk7FYTI7jKBgMKp/Pq1wuq1wuK5/PK5lMHhmfy+U6Ct4AAAAAAAAqPv74Y3me15WMQ5IePXrUlXl6yfAOt0z5VCKR0MrKyolHeR4+8rNyP5vNan5+vqMaKm+MykmWuVyurksrm8223HFWeWwymVQ6nW44xnEcxWKxujekaZra2dlp9yk0NDo6qv39fY2MjOjt27ddnRsA+m3uJz/q27VWv/Gtvl0LAACgU3z2QyOZTEbpdFpbW1v6/d///Y7munbtml68eNGlynrjzARh0kEQlUqltL6+fuRntQFZ7VMKh8PKZrM92bDNtm2FQqHq/dMEYYFAQJZlqVAoNB3nOI4CgUDd9wqFgsLh8OkLPgZ/DAGcJwRhAABgGC0vL2t5ebnpmNevX0sSn/1wRCQS0ejoqD7//PO259jc3NS7777r+/fWO4Mu4DSCwaAKhYI2NzdVLBZVKBTkOI5c19X29rYmJydlmqYsy1IkEtHc3JzGx8d7Vk/ldIXTsm1bjuOoVCqdONayLKXTaaVSqbrHdzMIAwAAAACcnudJ+ye0lowY0gkLm7pib2+vGnQBp1UoFDQzM6MrV64olUppcnKypcdtb2/LdV2Vy2Wtrq72uMruOFNBWMXU1JTm5+c7Xuo4KI8fP1Y8Hm85SDscer1586YHVQEAAAAATmPfk975bvMxv/meNNqHIGxsbEwXL15sOoagDMd5/vy5JKlcLrd9UN/hfdr96kwGYWfdjRs3qkeUtqKyJ1nF4aWSAAAAAIDhtrCwoIWFhaZjKtviALVu376tXC4n6WDbqXZ20DoLAVjFmQrCtra2qssgLcvS5ORkx6dADsLhYOskruvW3T9NiAYAAAAAANDIysqKstmspPZDMEltP24QfB2EbW1taW1tTY8fP256lGc0Gq3uCXYWg7GTOI5Td5/9wQAAAAAAQKcOh2DhcFiRSESmaZ56n7CHDx9qa2urh9V2hy+DsL29PaVSqWpr3knJ4tramtbW1pRIJJTJZPSd73ynH2X2zcbGRvXrVk+lBAAAAAAAaMa2bRmGIdM0tbGxoampqbbnmp+f14ULF7pYXW+MDLqAw54/f66pqSnlcjl5nlcNwQzDOPZWGed5npLJpP7bf/tv+vnPfz7gZ9I9lYRWUt3pkQAAAAAAAO2qHOK3tLTUUQhWmWt6eroLVfWWr4KwJ0+eKBKJaGdnp3raQOUmqS7wqr0dDsW2t7cVDAb14x//eMDPqHOO41SXhabT6Z7uD7a/v69Lly51fFteXu5ZjQAAAACAsyEQCMgwDK2trZ36sZlMRpFIRBMTEzIMQ4FAQLFYTMVise16hnnO44RCIUnd24t8ZWWlK/P0km+WRr58+VKxWExS/WkDlY4wy7JkmqYsy5JlWXJdV47jaHt7W47jVDeUrw3NotGoisWivv71r/f3yXRROp2WdPD8k8lkz6/XjeN09/b2ulAJAAAAAOCsSqVSR/a7bkWxWFQsFpPrugqHw8rn87IsS7ZtK5VKKRKJVL9f6WZizvYlEgmtr6+39Vo1chY6wgzPB1v77+7uKhQKyXGcuiDLsiwlEglFo9ETW/TW19e1urpaTR8r3WGTk5NyHKcnm+g7jqNAIFC9n81mu7qHl23bCoVCMk1TpVKpZ91gtUfoXrx4seP5Wjm2FwB6Ze4nP+rbtVa/8a2+XQsAAPjP233pne82H/Ob70mjPlmLVfnsNzIyordv3/bsOsViUZFIpHo/n88rGo2e6nHxeLxum6CKUCgk27ZlWZZKpdKJgdAwz9mqUCikkZERvXjxouO5nj59qg8//LALVfWOL4KwW7duKZfL1R3VmU6ndefOnVPP5bquYrGY1tfXq6FaLBbT3//933e1Zqn3QVjlTV4qlRQMBrs272H9+mMIAP1AEAYAAPqllSDs/xeV/iLUn3pO0o/Pfq7rampqqrpqS2otCKt9nGVZKpfLDcfVfg4Ph8MqFArM2SHHcfTuu+/qyZMn+uY3v9nRXNeuXetKoNZLA8+ld3d3qyGYpOqL3k4IJh1szlYoFPTw4cPqHmL5fP7MLddLJBKybVv5fL6nIRgAAAAAoD1/9/LkMX+51tq482J+fl6Tk5On7laqLAmUmh8SZ1lWNVQrFovK5XLM2SHLsvTw4UPdvHmzo3l2d3ere5z72cA7wh48eKBUKlU9rnNzc7NryxhTqZQePHggwzCUSqV09+7drsxb0auOsFwup0Qi0fUOs+PQEQbgPKEjDAAA9MPur6WLd6V/+8+Tx/7e70ivl6Sxr/S+rmZ6/dmv8lm2VCppdna2Gu6c1BF2+LP1zs5O0yBtbW2tuse4aZra2dlhzjY9ffq0+nUymZRhGC0tYz3MdV2trq7KdV3f5woD3yy/dt1rqVTq6l5e6XRatm1rfX1d2Wy260FYLxSLxb6GYAAAAACA0/tbu7UQTJL+9T+kH9rSX/9hb2saJMdxlEgklEwmT72qqXJInHSw5O+kbrLaoMZ1Xa2trR0Jb4Z5ztO4e/euXr78bcui53nKZDJtzeV5Xt3hh3410KWRu7u71Q3y79+/r8uXL3f9GpWgzXVdbW1tdX3+brJtW5FIROl0mhAMAAAAAHzsH39xuvH/dMrxZ00sFlMwGKwLdlpVu8Sv1RCt9jC5x48fM2eb5ubmqttKSToTQVanBhqEFYtFSQftfO3uCXYSy7I0Oztbdz0/chxHs7OzSiaTSiaTgy4HAAAAANDEzr/3dvxZkkqlqntcn9bhPaWuXbvW0uNqQ6O1tTXmbFMikZCk6uGFndzOioEujSwUCjIMo+fdT4lEQuvr6yoUCh1v/tYLjuMoFAopHo+3nJ47jqO1tTVCMwAAAAAYgInf7e34s8K2bWUyGWWz2bpOpVYdblhpdY7D42zbrgZEwzznaY2PjysYDOrly5dKp9MKBoOanJw89TyO4+ju3bt69epVW3X000CDMMdxJEk3btzo6XUikUjd9fzEdV1FIhHNzc2dqoU0FotpZWWlh5UBAAAAAI7zJ38gPfui9fF//Ae9q2WQZmdnFY1G225wefHiRd39Vk+bvHDhQt39jY2Nahg0zHO248aNGwoEAh2t1Juentb169fbCtH6baBB2Pb2tiTp6tWrPb3O+Pi4TNOsnljRLZ3O57quQqGQLMtSKpVqKahzHKd6nGonb3QAAAAAQPv+PCgtft76qZF/cQ4/vlVOL+ykSePw5+B2u6LK5TJztikcDh8J5do1MzPTlXl6aaBBmOu6bbVOtsOyLG1ubnZ1zsNv2tMGY7Ozs3Ic58hxqa2oPW0TAAAAANBf41+Rvv8N6S9b2KLp4Z9KY1/peUl9tba2prW1NRUKhZY7mRrp1sqt2s/jwzxnO6anp9s65KCRbs3TSwPdLH97e7tvQdjk5GRXO8Jc1612ZlWc5rSGUCh0ZGO80+BUSQAAAAAYrD+bPnnMD6OtjTtLXNdVLBZTPB5XOBzueK52HA7fKivOhn3Odk1NTXU8x9bWlqan/f9mH3hHWL90klBXuK6r+fl5ua7b8ARK27ZlGIbC4bBM09TS0lLD5YuxWIwQDAAAAACGwLe6kAssLy9reXm543n29/c7L0YHq5ssy/LVSqVe5AvDPOdpPXnyRHNzc7JtW1/72tcGXU5TAw3CpO4EVP1immZbx8Ee1o05AAAAAADDYW9vT69fvx50GZKkTCYj27ZVKpW6Ml+39vOuzRaGec5BefHihTzP09///d8ThJ2kX8mlHxJSAAAAAABOa2xsTBcvXux4nk7DNNu2lUqllE6nu3Z4W7e2Mao9rXCY52zHo0eP2n6s67oql8vK5XIyDEPFYlH37t3rqJ5eG3gQViwW9dOf/lShUKhn19jY2FCxWJRhGD27BgAAAAAAvbCwsKCFhYWO5xkdHe1oeWQsFlMwGFQymey4lop2u5kOB0iHO62Gdc52xOPxjvMSz/MkHYSlW1tbunz5ckfz9dLAgzBJHW+uBwAAAAAAeieTychxHIXDYcVisRPH14Y19+7dqztc7saNG4pGo5KkmZmZuj20XddtKdg5vEF8IBCofj3Mc3bC87xTB2KVAKz2cblcTnfv3u1KTb3giyCs8osDAAAAAAD+8+bNG0lqeHDcSWzbrgt8LMuqBmGHV4c5jtPSsstyuVx3v7bBZpjn7FQ7+YxhGHWPy+fzBGEn6ceSRcI2AAAAAAD8ZWZmpu5+q2FQbceZaZqyLIs5OzA1NaVUKnXqucrlsjKZjEKhkFZWVjQ2NtZxLb3miyCMkAoAAAAAAP9Kp9NKp9Mtjw8EAnIcR9JBh1ClA+ywYDBYd3riixcvjh1ba2Njo/r14UBpmOdsV7FYbGtfr9nZWcXjcb377ruKx+P6+7//+67U00u+CMLC4bAikUhPjvx0XVeFQqGt9k0AAAAAAI4zYki/+d7JY9Dc3NyccrmcJNUtoWymdlwqlWLODpim2fHm9g8fPtT777+va9eu6Tvf+U7HNfWS4Q2wHWtkZESpVKovR2umUil98sknevv2bc+vddZUTg4ZGRnh9wPgzJv7yY/6dq3Vb3yrb9cCAAAn8zxp/4RPuCOG1IfdeXypn5/9Wu0Ikw6Cndr9sk6KKYrFoiKRiKSD/cYO75k17HOe1srKiubn5zue591339Xm5qbK5bKvT40cGeTFDcPQ0tJSX67Vr+ucZfv7+7p06VLT2/Ly8qDLBAAAAICG9j3pne82v50UlKH/gsFg3Ybva2trTcfn8/nq18d1RA3znKfVjRBMOngunucpk8l0Zb5eGWgQNj4+3reN1EzT1Pj4eF+udZa9fv266W1vb2/QJQIAAAAAzplsNlv9utmqMdd1q0sJw+Gw4vE4c/rMixcvBl1CUwMNwmqTzPN4vbPo4sWLTW9n4QQIAAAAAMDZYllW9TO7bdvHdhXNzs5KOmh2Oekz/jDP2W+7u7vVvdlb3etsUAYahFVexPN6vbNmZGREX375ZdPbwsLCoMsEAAAAAJxD0WhUhUJBpmkqlUopFovJtm25rqtisahQKCTbthUMBrW5udnSgXvDPGe/vHr1SjMzM9rd3ZV0EOz52UA3y4c/sFk+gPOEzfIBABheb/cP9gFr5jffk0YH2hIyOGfps18mk9Hjx4/lOI5c15VpmpqZmVEikWi68T5znt6VK1fafmzlQIRKtGQYhuLxuH7wgx90pbZeIAjDmfpjCAAnIQgDAGB4EYQ1x2c/NDIyMiLDME48sbKZyuMNw9DOzo6vt1Ua0n/+AAAAAAAAqDAMo62bdNARZpqmnj175usQTJLeGXQBAAAAAAAAGJxKN5hpmpqcnGz5caZpyrIsXbt2TXfu3OlVeV1FEAYAAAAAADDEMpmM/uZv/mbQZfQFSyMBAAAAAACGlGVZQxOCSXSEAQAAAAB6xPOk/RP23x4xpP+7zRCAAUilUoMuoa8IwgAAAAAAPbHvtXiKI0EY0BOvXr3S1atXm46Zn5/vTzE+QRAGAAAAAMAZt7y8rOXl5aZj9vf3+1QN/CIUCunt27eDLsNXCMIAAAAAADjj9vb29Pr160GXAZ/xPE+/+tWv9NWvfnXQpfjGUG2W//Tp00GXAAAAAABA142NjenixYtNbxhO6XR60CX4iuF53glbF54fV65c0RdffDHoMnxndHRU+/v7GhkZoWUSwJk395Mf9e1aq9/4Vt+uBQDAWfR2v8U9wrrUotHv6501fPYbPiMjIzIMQ5FIRPF4XMFgUJOTk5IOwtNhNDRLI588eSLHcQZdBgAAAAAAQF8VCgUVCoW+Xc/PQeuZCcJevXqlYrGocrl8qkBre3tbrusSggEAAAAAgKFUuxjQNE1JqnaGnVYlZ2nEsqy+Bm7t8H0QtrW1pUQioWKx2Nbja19sw+BMXgAAAAAAMFzS6bSi0aimpqY6mmd9fV2xWOxIvuJ5nmKxmB4/ftzR/P3g+yAsHA5rc3NTnue1FWRVHjNEW6EBAAAAAABIkrLZrG7evNnxPJ988olSqZQkVTOaStaSTqd1586djq/RD74Owm7duiXHcWQYRt0vGAAAAAAAAM0ZhqG5ubmO53n//fe1vr5ezWUqGY1pmlpfX9f09HTH1+gXX5+VsbGxUf16ampK+XxeOzs72t/fP9WtVCrp+vXrA3wmAAAAAAAA/TU+Pt7R6ZBbW1u6cuVKNQSrbVQKBoPa3Nw8UyGY5PMgzLZtGYYh0zRl27auX7+u8fHxU88zPT2tfD7f1mMBAAAA4DzxPOntfvPbeV6M83cvB10B0D+bm5ttP/bJkycKBAJyHKduuyrP85RIJLSxsXEmcxZfL400TVO7u7uam5vrKMGsiMfjXagKAAAAAM6ufU9657vNx/zme9LoGTxrrJWQ6y/XpNER6c/OVhML0JZ2g6qlpSVlMpkjXWDSwZ5j8/Pz3Syzr3zdERaLxSRJgUCgK/Pdv3+/K/MAEv8lDQAAAPCT3V9L3/5Ja2Nv/YO09+uelgOcSXt7e/rggw/qQjBJ1f3ASqXSmQ7BJJ93hC0uLmplZaVur7BO7O3tdaWz7Lza39/XpUuXmo5ZWFjQwsJCnyryt/P8X9IAAACAs+Zvbenf/rO1sf/6H9IPbemv/7C3NQFnyatXrzQ7OyvXdY+EYOFw+NxsOeXrjrCpqSk9fPhQ+XxeP//5zzueb3Z2tgtVnW+vX79uetvb2xt0iQAAAABwxD/+4nTj/+mU44HzbGVlRaFQSDs7O0dCsFQqpWfPnp2LEEzyeUeYdLCvV6lUUjQalW3b+v3f//2257Jtu4uVnU8XL15s+nM66gAAAAD40c6/93Y8cF7dvn1buVzuSAAmSfl8XtevXx9keV3n6yCs0n20uLioUqmk9957T+l0WpOTky3Psb29Ldd1lc1me1XmuTEyMqIvv/xy0GUAAAAAwKlN/G5vxwPnzd7enmZnZ2Xb9pEQzLIsFQoFTU1NDbjK7vN1EHb58mXt7u7WfS8SibQ1V+2LCgAAAADwh797Kf1FqPN5/uQPpGdftD7+j/+g82sCZ1Wz/cBisZgeP3484Ap7x9d7hM3Pz8vzvOpNUt3909wAAAAAAP31dy9PHvOXa62NO8mfB6X/+l9aG/t7vyP9RbDzawJnUaP9wCrZSTqdPtchmOTzIOyjjz6SpCNrVAEAAAAA/rb7a+nbP2lt7K1/kPZ+3dn1xr8iff8brY19+KfS2Fc6ux5wFt24cUO3bt2qBmCVEMw0TRUKBd25c2fQJfacr5dGTk9Py7IsbW5uKhwOKxgM6sKFC6ea482bN3JdV7lcrkdVAgAAAAAO+1tb+rf/bG3sv/6H9ENb+us/7OyafzZ90GHWzA+jB+OAYbK1taVIJCLHcY4shQwGg1pfX+/KqZBXrlzRF1+cYo3yAPg6CJOkaDSqly9f6p//+Z87mieZTOrKlStdqgoAAAAA0Mw//uJ04//pF50HYa34FiEYhszz588Vi8W0s7MjqX7VXSKR0A9+8IOuXatcLndtrl7xfRB248YNOY7T8TyWZWl6mr94AAAAANAPO//e2/Got7y8rOXl5aZj9vf3+1QN/OLBgwdaXFw80gUmSdlsVvPz81271srKypk4pND3Qdj09LSWlpa6Mlc+n+/KPAAAAACA5iZ+t7fjUW9vb0+vX78edBnwmVQqVd0LTDoIwSYmJrS+vq6rV6927TqPHj1SIpEgCOuWTju5dnd3df/+fd27d69LFQEAAAAAmvmTP5CenWKroD/+g97VMgzGxsZ08eLFpmMIymAYhiYnJ7vWCea6bldW8fXTmQjCOjU+Pq5CoaD19XX97Gc/G3Q5AAAAAHDu/XlQWvy8tQ3zf+93pL8I9r6m82xhYUELCwtNx4yOjrI8cohVlkSehX28emkogjBJmpmZ0crKij7++GPdvXt30OUAAAAAwLk2/hXp+984+RRHSXr4p9LYV3peEjC0pqamlM/nZZpmV+ZzXbf69cbGhrLZrGzb7srcvXbmgrCtrS25rqvt7e2WH2PbtvL5vDzPUzabJQgDAAAAgCb+7qX0F6HO5/mz6ZODsB9GD8YB6A3LsrSxsaHx8fGezD89Pa35+XnFYjE9ffq0J9fopjMRhD19+lTZbFbFYrHjuWpTSwAAAAAYNn/38uQxf7kmjY70J6D6FiEY0FP5fL5nIVitdDpNENYNlaM+pd+uZ21H5ZSEYJCF5wAAAACG0+6vpW//pLWxt/5B+pP/hyWLwFlmmmZXT4dsxrKsvgRunRoZdAHNvHz5UqlUSlLjEKzVYzkNw5DneZqamtLKykpXawQAAACAs+Jv7dY2r5ekf/0P6YdnY8sfAMdIp9Pn+nrt8HVHWDablXRw6mM8HlcgEJBlWZKknZ0dzc3NaWJiQqurqw0f77qunj17pkePHsm27b6loAAAAADgR//4i9ON/6dfSH/9h72pBUDvzc/Pn+vrtcPXQVixWFQgENAXX3zR8Ofz8/N69OiRAoGALl++3HDM9evXJUmLi4v6/PPPe1UqAAAAAPjezr/3djwA+J2vl0Y6jlPtCmtkcXFRnucpk8k0nSeVSunZs2f69NNPu10iAAAAAJwZE7/b2/EA4He+DsIkaWZm5tifTU1NaXZ2VtlsVnt7e8eOsyxL09PTSiaTTccBAAAAwHn2J39wuvF/fMrxAOB3vg7CgsGgtre3m45JpVLyPK96suRxrl27Js/zdP/+/W6WCAAAAABnxp8Hpf/6X1ob+3u/I/1FsLf1AEC/+ToIsyxLuVyu6ZhwOKzp6Wlls1n9/Oc/P3bcxsaGJCmfz3e1RgAAAAA4K8a/In3/G62Nffin0thXeloOAPSdr4Owubk5pdNpffrpp9ra2tLz58/1/PnzI+OWlpbkeZ6CwaB+/OMfH/n5gwcPZNsH5/46jtPzus+q/f19Xbp0qelteXl50GUCAAAA6MCfTZ885ofR1sYBwFnj61Mjo9GoxsbGlEwmlUwmq98PhUL62c9+VjdudnZW6+vrikajCgaD1b3FisViXfhlWVb/nsAZ9Pr166Y/Z4+1wfE8ad9rPmbEkAyjP/UAAADg/PoWIRiAc8rXQZgkraysaG5uToZhyPMOUoBSqaRXr17p6tWr1XHZbFbvvvuuJMm27WoHWOUxkmQYhoJBFrk3c/HixaY/Hxsb61MlOGzfk975bvMxv/meNEoQBgAAcKbwHzwBoH98H4RFo1Gtrq5qbm6u+j3TNOtCMOmg0+vZs2d6//33ZdT8f4jK157nyTRNrays9KXus2hkZERffvnloMsAAAAAhgr/wbN7RoyD39VJYwAML1/vEVYRjUa1s7OjbDardDp97D5f4XBYv/zlL/Xee+/J87y6WzAY1MbGBh1NAAAAAE7kedLb/eY374QuLvSfYUijI81vdNYBw833HWEV4+Pjmp+fP3GcZVkqFAra3d2tnhRpWZampqZ6XSIAAACAc4IuLQA4n85MEHZa4+Pjmp2dHXQZAAAAAAAA8IlzG4QBAAAAADAslpeXtby83HTM/v5+n6oB/OtcBmFLS0u6deuWvvrVrw66FAAAAAAYWmxe3z97e3t6/fr1oMsAfO9MbJZf6+nTp7p9+7auXbump0+fNhwTCoU0PT2tjz76SL/61a/6XCEAAAAAQGLz+n4aGxvTxYsXm94AnKGOsE8++UT37t2T67rV721vbzccG41GFQ6HNTs7K8uytLa2pm9+85t9qhQAAAAAgP5aWFjQwsJC0zGjo6Msj8TQ831H2O7urq5cuaJUKqWdnR15nievhXOKTdNUqVTS1atXFY1G9dlnn/WsRsdxFIlEtLa21tE8mUxGkUhEExMTMgxDgUBAsVhMxWKxS5UCAAAAAAAML98HYbFYTOVyWZJkGIaMU/bNrq+vy/M8xeNx/fSnP+1qba7rKhaLKRAIqFgsHtuhdpJisaiJiQmlUilJUj6fV7lcVjqdlm3bikQiikQidd1wAAAAAAAAOB1fB2Hr6+sqFosyDKPaCTY+Pq5wONzyHKZp6s6dO/I8T4lEoit1ua6rVCqliYmJjrvAisViNeSKx+MqFAoKh8OyLEvRaFTlclnBYFDFYlGhUIgwDAAAAAAAoE2+DsKy2awkVTu6yuWytre39ezZs5aWR1Z89NFHkqRyudzxEslMJqNQKCTbtjuaR/ptR5kkWZZVfb6H5fN5SQdLMCvjAQAAAAAAcDq+DsIq3WC5XE4PHz7U1NRUW/NYllX9+tmzZ23XY9u2wuGwyuWyCoXCscFVq2KxWLXDq7IsspFKd5h08DvJ5XIdXRcAAAAAAGAY+ToIc11XlmXp5s2bHc1Tu3dXJ51cwWBQwWCwen9mZqbtuRzHqdsEf25urun4GzduVL9uFpoBAAAAOH/+7uWgKwCA8+GdQRfQjGmadcFTuyrhl+d5chyn4/kqTNNs+7HpdLr6dTgcPnGuSkeYdBAQrq2t1X0PAAAAwNnUSsj1l2vS6Ij0Z9OdX2/EkH7zvZPHAMB55OuOMMuyurI5/L1796pfdxJedVPt8sZWw77aJZ6PHz/uek0AAAAAWteNLq3dX0vf/klrY2/9g7T3686vaRgHoVqzm0EQBuCc8nUQNjs7q42NjY7mePDggWzblvF//5LXhkmDcnh55rVr11p6XG1g1ulplQAAAACO12qXVqdh2N/a0r/9Z2tj//U/pB92fmYXAAw1XwdhS0tL2tnZ0aefftr24xcXF2UYhjzPk2EYdXttDUrt3mBS6+Hc4XHdOLkSAAAAQL1+dmn94y9ON/6fTjkeAFDP10GYaZq6c+eOksmkPv74Y+3t7Z34mL29PT169EhXrlxRJpOR53l1P4/H470qt2UvXryou9/qcs0LFy7U3e+0Ww7wC8+T3u43vx36pwwAANAz/ezS2vn33o4HANTz9Wb50sGm8rZt6/79+0qn04pEIgqHw5KkUqmkyclJbW9vq1wuq1gs1m2ML6m6JFKSHj58qLGxsf4/iUMOb9jfbkdYuVzuWk3AIO170jvfbT7mN9+TRtmrAgAA9EE7XVp//YftXWvid3s7HgBQz/dBmCQVCgUlEgmtrKyoUCioUCjIMAzlcrm6TeelowFY5X42m9X8/Hx/Cz9Gt06u7MZBAgAAAADq9bNL60/+QHr2Revj//gP2r8WAMDnSyNrZbNZbWxs6L333pPneUduFbUBmOd5CofDKpfLvgnBpPYDrMNLKLe3tzsvBgAAAECdfnZp/XlQ+q//pbWxv/c70l+0duA8AOAYZ6IjrCIYDKpQKGhzc1PFYlGFQkGO48h1XW1vb2tyclKmacqyLEUiEc3NzWl8fHzQZfdMtzvC9vf3denSpY7nWVhY0MLCQhcqOvv+7qX0F6FBVwEAAIDT6GeX1vhXpO9/4+AEypM8/FNp7CvtXwsAcMaCsIqpqSnNz8/7qsvrNEzT7EqI1eom+6fx+vXrjudo5VCD86DVI7VHR6Q/m+59PQAAAOiOPw9Ki5+3tmF+N7q0/mz65CDsh1H+NyUAdMNAg7CtrS1dvnz53F7vOJOTk10JwiYnJzsv5pCLFy92PIcfDiTotdMeqf0n/w//9Q4AAOCs8GOX1rcIwQCgKwYahAUCAb19+7Zv1wuFQnrz5k3frnecdju5Dodn3e4IGxkZ0ZdfftnVOc+rdo7UbvckoUHwvIOTHJsZMSSDUxwBAMA5RZcWAJxPAw3CPM/T3t5eXzqIdnd3tbOz0/PrtGJmZka2bVfvu67bUqh1eHP8QCDQ7dLQon4eqT0I+570znebj/nN96RRgjAAADDE6NKCnywvL2t5ebnpmP39/T5VA/jXwPcIW1lZ0Xe+852eXyeXy1VPlBy0UKh+93THcRQMnryxQLlcrrsfDoe7Whda188jtQEAAADgJHt7e13Z8xk47wYehCWTSf3sZz9TJBKpnvrYLZXTJAuFgvL5vG+CsJmZmbr7rQZhtUsjK6djYjD6eaQ2AAAA2LoBOMnY2NiJez4TlAE+CMIkaW1tTWtrLexEeU4Eg8G6kyNfvHihaDR64uM2NjaqXx8O09Bf/TxSGwAAAGzdAJxkYWFBCwsLTceMjo6yPBJDb2TQBUgHe4X1+uY3c3Nz1a9r9wtrpnZcKpXqek1o3Z8Hpf/6X1ob240jtVv1dy/7cx0AAAAAAM4iXwRhhmH0/OY3iUSi+nWxWDxxfO0Yy7LYH2zAKkdqt6JbR2q3EnL95RphGAAAAAAAx/FFECb1viusF2r37DqtYDBYF2adtDQ0n89Xv6YbzB9aOSq7W0dq7/5a+vZPWht76x+kvV93fk0AAAAAAM6bge4RNjU1pc3NTUkHXWHhcFipVEpTU1Mdz10Jqba3t7W6uqqVlZWO5zzMcZyG12xVNptVIBCQJN27d+/YfcJc11Uul5N0cFJkPB4/fbEYiG4dqf23tvRv/9na2H/9D+mHtvTXf9idawMAAAAAcF4MNAgrl8sqFotKp9NaX19XsVhUsVhULBbT0tKSvva1r3XlOrOzswqFQrp9+3ZX5pMOwqnDnVmPHz9WMplseQ7LspTP5xWLxWTbtjKZTMPHz87OSjo4KbK2MwzD4x9/cbrx//QLgjAAAAAAAA4b+NLIcDisQqGgX/7yl/rwww/leZ5WV1cVDAb1R3/0R/rpT3/alet0o4vKdV3FYjFFIhFNTEwc6QizbVuGYSgSiVTDrZNEo1EVCgWZpqlUKlV9nOu6KhaLCoVCsm1bwWBQm5ubMk2z4+eBs2fn33s7HgAAAABOy3EcJRIJBQIBGYahiYkJhUIhJRKJI5+XTyOTyVQ/dxuGoUAgoFgs1tL+2syJkww8CKuodEft7Ozozp07Gh8f17NnzxQOh/Xf//t/12effdbxNcbHxzt6fKUjq1AoNN2PrFAoKJ/PKxhs7ajAcDisnZ0dpdNpOY6j2dlZTUxMKBaLaXJyUvl8XqVSiRBsiE38bm/HAwAAAMBpZDIZBQIB5XK5aujluq5s21Yul1MgEFAmkznVnMViURMTE9XVV/l8XuVyWel0WrZtKxKJKBKJnGpbomGeE40ZXq92ku+CXC6ndDqtzc3Narq8tLSk+fl5jY2NnXq+zc3Nruw/dt6Mjo5qf39fIyMjevv27aDLOTPe7kvvfLf5mN98TxrtQtz8//1/pf/PP7Y+/n/9SWdLI/v53AZxPZxvcz/5Ud+utfqNb/XtWgAw7M7z/z7xPGn/hE9lI4ZkGJ1fC8OtW5/9IpGIisWiTNNUOByWZVlyHEe2bR/pBMvn88fuh12rWCwqEolIOljRlc1mj4yprJiyLKulZpFhnhPH83UQVlG7j5jxf//6JxIJJZNJXb58ebDFnQMEYe3p5/842v21dPFuaxvm/97vSK+XpLGvtH+98/w/NHH+EYQBwPnE/z4BOteNz36pVEqZTEbpdLrhHteZTObIftonxQ6u62pqakqu68qyLJXL5YbjHMepHjhX2WaJOXFaZ+LPduVFLpfLunnzpjzP08OHDxUIBPTRRx/p5z//+aBLBHpq/CvS97/R2tiHf9pZCAYAAICDDqzffK/5bYQOLQwZx3GUyWRUKBSOPSgumUwe2aP7pP2zY7FYdcnf4RCtlmVZ1e6yYrGoXC7HnDi1MxGEVUxNTSmbzWpnZ0f379/X2NhYdWP9//E//od+/OMfD7pEoGf+bPrkMT+MtjYOAAAAzRnGQbdXsxtLFTFsUqmU0um0wuFw03HpdLrufrON3h3Hqfv53Nxc07lv3LhRVw9z4rTOVBBWMT4+rmQyqZ2dHa2ururq1ava2NhQNBrt2sb6wFn0LUIwAAAAAD3iuu6xnWC1TNOUZVl1949TG5qFw+ET976q3W/MdV2tra0xJ07lTAZhtaLRqEqlkjY2NvTee+/pl7/8peLxuC5cuKCPP/5Ye3t7gy4RAAAAQB/83ctBVwCcb6fZl2p7e7v69czMzLHjapf4BYPBluauDdkeP37MnDiVMx+EVQSDQRUKBaXTaXmep52dHaXTaU1MTOjb3/62tra2Bl0iAAAAgDa1EnL95RphGOAHrutW970Kh8PHhjyH9w67du1aS/PXzne4K2qY50Rrzk0Q9ujRI125ckWLi4syDEOGYcjzPHmep2w2q0AgoA8++GDQZQIAAAA4pd1fS9/+SWtjb/2DtPfrnpYD4ASrq6uSDrqX8vn8seMO7x1W2+3UzOFxtaHSMM+J1pz5IOyTTz7RhQsXlEgkVC6Xq+GXpLpAbGpq6sjJFQAAAAD8729t6d/+s7Wx//of0g/5XAgMjOu6SiQS1VVbzfa9evHiRd39k/bIqrhw4ULd/Y2NDeZEy94ZdAHt2Nvb071795TJZCSpLviqqHwvGAwqnU5rdna2/4WeMfv7+7p06VLTMQsLC1pYWOhTRQAAAID0j7843fh/+oX013/Ym1oAHM9xHEUiEZmmqfX19RPDHcdx6u632xVVLpeZEy07U0HY1taW0ul0dUO5ZgFYNBrV0tKSpqc5Ru80Xr9+3fTnHD4AAACAftv5996OB9C5tbU1xWKx6v2JiQml0+mmp0weDoPaVdmPbNjnRGvORBD26tUr3bt3r7oRXLMALB6PK5VKaWpqqv+FngMXL15s+vOxsbE+VQIAAAAcmPjd3o4H/G55eVnLy8sdz7O/v9+Fan7LdV3lcjlls9mGwU4qldKLFy+O3Ses3RDncKdZ7QmVwzwnWuPrIOz58+dKpVLVzd+OC8BM01Q8HtfS0pLGx8cHUut5MDIyoi+//HLQZQAAAAB1/uQPpGdftD7+j/+gd7UAg7C3t3fi6p1BKBaLKpfLCofDchznyAbw0kGnWCaTadoZ1qledEUN85znnS+DsKdPnyqVSlUT5WYB2NLSku7cuTOQOgEAAID/f3v3E+PIeeZ5/kdSFkp/QEVmAd2HLMCoSPRCc5mFgqU9+Fok5mKNDDSZAqS1BAymSI/Xc8lDcgo+qwskGnnpWUNkNRZYeSRsFomBBfvQMFnXwS6qGMLMyZgGWfBOJXY9gDJDCVvWWkrGHrJJk0wmGUwy/pDx/QBEkZkP33gY9TIy+PB934D/fmhJ/+4fvC2Y/+qL0vuW/zkBQUqn03Nn73ix6mJaPp9XPp8f+1m9Xle5XB4r0JTLZRWLxUujmQzDWEkhZ7TdOLcJbyJVCPvbv/1bPXjwQI7jDItf0p8LYIOfmaapSqWiv/7rvw4lTwDB++Rz6f1M2FkA4/Y++zSQ7Tx6+91AtgMAi3Bdqe/OjkkmpJHvsq/ttRvSz96WPmjOj/3oB1L6xvLbBKJkVRctS6VSK58eOalYLCqbzSqTyYwVeur1+qVRYdvb2yspBm1vb9MmPAu9EDa4AmS9Xh8rgE1b/yubzapcLl/7CpB/9Vd/pX/8xwXGVAMIxCefz4/5oCmlktJ7XP8CAIBI6LvSCz+dHfPth1JqBYUw6eIcYF4h7OM85wpAFJimqcePHyuT+fM32U+ePLkUd93RTJMFpMmRVnFtE94kw9z4v/k3/0ZbW1uqVqs6PT2V67pKJBJjI8Bc11U+n1en09Gvf/3raxfBJC4rCkTRl19LP/7MW+yPfiGdfe1rOgAAYI29SxEMiAzLssamTU5bTP/OnTtjj72OkJpcIH53d5c24VmohbBarTYsdg0KYIPHruuqWCyq2+3q0aNHeuON5f6qPXz4cGyUGYBo+Lntbb0PSfr9n6SPbX/zAQAAALAa77zzzvD+tELP6IgxaXqxbJrJQS7ZbJY24VmohTBJl0aAbW1tDRfW++ijj3T79u2lt/H3f//3KpVKS7cDYPV++ZvF4n+1YDwAAACAcFjWn69cMW0K3+SoKK/FoNGimmEYMk2TNuFZ6GuEjUokEjJNU+12e+plVxflOI7nzgQgHKd/9DceAAAAQPgmCz/SRaFs9OqJT548uXQVymmePn16ZbtxbhPeRKIQNnqFyE6nE2ImAIK29ZK/8QAAAADCMTowJZfLTY3Z29tTvV6XJNm2t3VQRuPK5TJtYiGRKIQdHBwol8tpe3t7JVc8GFRUT05O1Ov1VKvVPHcqAMF663Xp1wtczPX7r/uXCwAAAIDVGXwONwzjytFOpVJpWAzyMjNsNMY0zalrZMW5TcwXeiGsVqvpX//rf+1b+3fv3tW9e/dUKBT0H//jf/RtOwCu54eW9O/+wduC+a++KL1vzY8DAAAAEL4HDx5Iurh43VUsy1I2mx0WeZrN5swpgo1GY3j/qhFRcW4T84W6WH4ikdDe3l4g26pUKoFsB8BiXrsh/extb7Ef/UBK3/A1HQAAAABXqFarymQywwvczTKIOTg4mLv2Va1WG94fFM+mcRxnOIIqm82qWCzSJhYWaiHstddeUzqdDmRbpmnqtddeC2RbABbz3hvzYz7Oe4sDAAAAsHqO46hcLsu2bVWrVW1tbV05KqlQKKharapSqXgalGKa5nC006D9ae7evSvpYqrl6Ogo2sQiQi2EzRoe6QdGhQHr612KYAAArJ1PPg87AwCrYhiGTNMc+9mgIFYoFFQul5XL5bS1tSVJ6na7Ojg48Nx+Pp9Xq9WSYRgql8sqFAqybVuO46jdbiuTyci2bVmWpWfPnnlaXzzObeJqoRbC/vqv/zrQ7d27dy/Q7QGbjBNbAADizcu5wAdNzhmATdLpdHRwcCDLssaKMbZtq9frqVAo6NmzZ2o0GpeKZl5ks1mdnp6qUqmo1+vp7t27w0Lb9va2Go2GOp3OQoWgOLeJ6RKu67phJ4FwpVIp9ft9JZNJnZ+fh53O2jjvSy/8dHbMtx9KqRWVm4Pc3sedixPXef7D3mqmKwb52lxX6s856iUTUiKx/LYQjr3PPg07hZV79Pa7YacAAGO+/Fra+RvvF7s5vr/8Op/8DQeWx2c/IAJXjQQQLV9+Lf34M2+xP/qF9NY/W68F7Puux6IbJ9EAAFzp57a3Ipgk/f5P0se29JPvLbfNRIK/zwCA5YU6NRJA9FznxBYAAMTLL3+zWPyvFowHAMAvFMIAjOHEFgAAzHP6R3/jAQDwC4UwAGM4sQUAAPNsveRvPAAAfqEQBmAMJ7YAAGCet15fLP77C8YDAOAXCmEY6vf7unXr1szb4eFh2GnCZ5zYAgCwvlz34mrMs26ruGb8Dy3ple94i331Rel9a/ltAgCwClw1EmOOj49n/v7s7CygTBCWH1rSv/sH75dD58QWAIDoCOrqyK/dkH72tvRBc37sRz9YrytMA+vq8PBw7sCFfr8fUDZAdFEIw5idnZ2Zv0+n0wFlEn3JxMWJ5LyYdcOJLQAA8OK9N+afL3ycv4gD4L+zs7O5AxsAUAjDiGQyqefPn4edxtpIJJb/NjWqOLEFAACr8C7nCkBg0un03IENFMoACmHA2ojaCDRObAEAAIDo2N/f1/7+/syYVCrF9EjEHoUwYE1s8gg0AAAAAACCwFUjAQAAAAAAEAsUwgAAAAAAABALFMIAAAAAAAAQCxTCAAAAAAAAEAsUwgAAAAAAABALFMIAAACAGPnk87AzAAAgPC+EnQAAAACA1fBS5PqgKaWS0ntvLLetZEL69sP5MQAARAkjwgAAAIAN8OXX0o8/8xb7o19IZ18vt71E4qKgNuuWoBAGAIgYCmEAAADABvi5Lf3hG2+xv/+T9LHtbz4AAEQRhTAAAABgA/zyN4vF/2rBeAAANgGFMAAAAGADnP7R33gAADYBi+UDCB2L7QIAsLytl/yNBwBgEzAiDEDoWGwXAIDlvfX6YvHfXzAeAIBNQCEMAAAA2AA/tKRXvuMt9tUXpfctf/MBACCKKIQBAAAAG+C1G9LP3vYW+9EPpPQNX9MBACCSKIQBAAAAG+K9N+bHfJz3FgcAwCaiEAYAAADEyLsUwQAAMcZVIwEAAAAAWHOHh4c6PDycGdPv9wPKBoguCmEAMOGTz6X3M2FnAQAAAHh3dnam4+PjsNMAIo9CGIb6/b5u3bo1M2Z/f1/7+/sBZQSs3iefz4/5oCmlkqyfAgAAgPWRTqe1s7MzM4ZCGUAhDBPmHRjPzs4CygRYvS+/ln78mbfYH/1CeuufcUUtAAAArAcvgxZSqRTTIxF7FMIwZt43COl0OqBMgNX7uS394Rtvsb//k/SxLf3ke/7mBAAAAAAIDoUwDCWTST1//jzsNADf/PI3i8X/6jcUwgAAAABgk1AIAxAbp3/0Nx4AgEmuK/Xd2THJhJRIBJMPAABxRyEMQGxsveRvPAAAk/qu9MJPZ8d8+6GUohAGAEAgKIQBiI23Xpd+/Y/e47//un+5AADgh2TiorA2LwYAgLhKhp0AAATlh5b0yne8xb76ovS+5W8+AACsWiIhpZKzb0zDBADEGYUwALHx2g3pZ297i/3oB1L6hq/pAAAAAAACRiEMQKy898b8mI/z3uIAAAAAAOuFQhgATHiXIhgAAAAAbCQWy48Yx3H04MED2batXq+nXq8n0zRlWZZyuZyKxWLYKSIGWGgXAAAAALCJGBEWIdVqVVtbW6rX68rlcqrVaup0OiqXy+r1eiqVStrd3VW73Q47VWw4FtoFAAAAAGwiRoRFRKFQULPZlGVZ6nQ6Y7+zLEvFYlGlUmlYJOt0OrIsLmkHAAAAAADgFSPCIqBararZbEqSHj9+fGVcrVaTaZqSpLt37waSGwAAAPz1yedhZwAAQHxQCIuAcrks6WLkl2EYM2Pz+byki7XEBsUzAAAARJOXItcHTYphAAAEhUJYyEbX+xqM9prlzTffHN5/8uSJLzkBAABgeV9+Lf34M2+xP/qFdPa1r+kAAABRCAtdr9cb3rdte6Hn3rx5c9XpAAAAYEV+bkt/+MZb7O//JH282KkgAAC4BgphIdve3h7e7/V6Y4WxaUZHgXkZQQYAAIBw/PI3i8X/asF4AACwOAphIZssZpVKpZnxg3XBDMMYrhcGAACA6Dn9o7/xAABgcRTCQmZZlizLGj5ut9sqFApTY+v1+nDEWKVSCSQ/AAAAXM/WS/7GA8Cow8ND3bp1a+at3++HnSYQuhfCTgDSw4cPlclkho+bzaYKhYIajcbwZ+12ezharFarqVgsBp4nAAAAvHvrdenX/+g9/vuv+5cLgM13dnam4+PjsNMAIo8RYRFgWdZY0Uu6KIbt7u7Ktm1Vq1XlcjmZpqlWq0URDAAAYA380JJe+Y632FdflN635scBwFXS6bR2dnZm3gBICdd13bCTwIV6vX7lGmEHBwe+TYdMpVLq9/tKJpM6Pz/3ZRtAVJz3pRd+Ojvm2w+lFF8TrK29zz4NO4WVe/T2u2GnAOCaPu5IHzTnx/2HPem9N/zPB0C88dkPYGpkpAxGek0rhrXbbTmOI8MwfNt+v9/XrVu3lm5nf39f+/v7K8gIAABgvb33xvxC2Md5imAAAASFQljEFItFdTod1ev1sZ/btq3bt2/r8ePHY4vrr9oq5pSfnZ2tIBMAAIB4eJciGAAAgaEQFjGlUkn1el3FYlHtdnt4lUhJchxHmUxGrVZL2WzWl+2vYt54Op1eQSYAAAAAAACrRSEsQnK5nNrt9th6YIPC2GScH8WwZDKp58+fr7RNAAAAAACAqGA56IjIZDJqt9vKZrNji+LXarVLV5SUpEKhIMdxAswQAAAAAABgvVEIi4BCoSDbtiVdFL4m5fN5dTqdsYXyHcdRuVwOKkUAAAAAAIC1RyEsZL1eT83mxaWELMuSaZpT4yzLUqfTGftZvV5nVBgAAMCCXFc678++uW7YWQIAAD+wRljIRkeA3blzZ2asaZqq1WoqlUrDnz19+tS3hfMBLM91pf6cD1PJhJRIBJMPAODiuPzCT2fHfPuhlOLYDADAxqEQFrLREV27u7tz44vF4lghbPSqkgCihw9bABBvycTFcX5eDAAACAZTI0N2cnIyvN/tdj09x7Isv9IBAADACiUSUio5+8aoYAAAgkMhLGSja4JdZ3TXVWuKAQAAAAAAYByFsJC98847w/tPnz71tPj9aMGM9cEAAAAAAAC8oRAWMsuyhsUsx3H04MGDmfHtdntYLKtUKn6nBwAAAAAAsDFYLD8CGo2Gbt++LcdxVK1Wtbu7q2KxeCmu1+upUChIuhgJdnBwEHSqwNpj0WIAAAAAiC9GhEWAYRh69uzZsPhVKpWUy+VUr9dl27ba7bbK5bJ2d3flOI4qlYparVbIWQPriUWLAQAAACC+GBEWEYZhqFarqVQqqVarqd1uq1QqSbpYEN+yLB0cHOj+/fsyDCPcZAEAAAAAANYQhbCIsSxLtVot7DQAAABi7ZPPpfczYWcBAABWjamRAAAAiJVPPp8f80HTWxwAAFgvjAgDAABAbHz5tfTjz7zF/ugX0lv/TErf8DUlAFiJw8NDHR4ezozp9/sBZQNEF4UwAAAAxMbPbekP33iL/f2fpI9t6Sff8zcnAFiFs7MzHR8fh50GEHkUwgAAABAbv/zNYvG/+g2FMADrIZ1Oa2dnZ2YMhTKAQhgAAABi5PSP/sYDQFj29/e1v78/MyaVSjE9ErHHYvkAEDIWYwaA4Gy95G88AACINgphAOAjrkwGANHy1uuLxX9/wXgAABBtFMIAwCeLXpns7Gtf0wEASPqhJb3yHW+xr74ovW/5mw8AAAgWhTAM9ft93bp1a+Zt3uV4AfzZda5MBgDw12s3pJ+97S32ox9I6Ru+pgMAAALGYvkYM+8qImdnZwFlAqw/rkwGANH03hsX09Jn+Th/EQcAADYLI8IwZmdnZ+YtnU6HnSKwNrgyGQCsr3cpggHAXLZtq1QqaXd3V4lEQolEQru7uyqXy3Ic59rtVqtV5XI5bW1tDdssFApqt9u0iaVRCMNQMpnU8+fPZ97mXY4XwJ9xZTIAAABsIsdxVCgUlMlkVK/X1ev1hr/r9XqqVqva2tpSvV5fqN12u62trS2Vy2VJUqPRULfbVaVSkW3byuVyyuVyCxXZ4twmpku4ruuGnQTClUql1O/3lUwmdX5+HnY6wMb49/9J+re/9B7/d28xNXIV9j77NOwUVu7R2++GnQKwUc770gs/nR3z7YdSiq+MAWyYVXz2cxxHmUxmrPg1S7FYVK1WmxvXbreVy+VmPieTyci2bZmmqU6nI8MwaBMLoxAGCmGAT778Wtr5G28L5r/6onR8n0WZV4FCGIB5KIQBiKtVfPbL5XJqt9uyLEv379+XZV1cXte2bT158kTVavXScxqNhvL5/JVtOo6j27dvy3Ecmaapbrc7Na7X62l3d1eSlM1m1Wq1aBML4887APiEK5MBAABgk9TrdbXbbR0cHKjT6Sifz8s0TZmmqXw+r0qlom63OyyODdy7d29mu4VCYTjlbzA1cJrBdqSLUVSzpl7GuU3MxogwMCIM8JGXUQcf56UfZoLJJw4YEQZgHkaEAYirZT/77e7uyjTNuaORRkcvDbRaLWWz2bmxp6enM6f9NZtNFQoFSZJhGDo9PaVNLIQ/7wAQMq5MBgDBSiYuCl2zbslE2FkCQLTYtq1er6dGozE31jRNVSqVS8+fZjQum83OXftqdIql4zhqNpu0iYVQCAMAAECsJBIXo71m3RIUwgBgzNHRkYrFoudF2idHf33xxRdT40an+E1OqbyKaZpjedEmFkEhDAA2iOteTPmZdWNCPAAAABb1zjvvXBrlNctkYWdyqqR0eZTYm2++uXDbk6Oi4twmvHkh7AQAAKvTdz2ue8NIBwAAACzA64ilgcEC8AOjI5kG2u323JhpJuNs2x7mF+c24Q0jwgAAAAAAwEr1er2xx9MWyn/y5MnYY6/TLm/evDn2+OnTp7QJzyiEAQAAAACAlRot0BSLxakxk8Wy646K6na7tAnPKIQBAAAAAICVqtVqw/vlcnlqzGQx6LpGp2HGuU14wxphAAAAAABE2OHhoQ4PD5dup9/vryCb+Xq93nAx+EqlcuVop+sWcSanEZ6cnNAmPKMQBgAAAABAhJ2dnen4+DjsNDwbXF3SNE0dHBz4vj0/RkXFuc1NRyEMAAAAAIAIS6fT2tnZWbqdIIpptm2rXq/LMAy1Wq2ZsYZhrKSQMzpKKs5twhsKYQAAAAAARNj+/r729/eXbieVSvk+PfLevXuSpMePH89dAH57e3slxaDt7W3ahGcslg8AAAAAAJZWKpVk27YajYYsy5obf93RTJMFpMmRVnFtE95QCAMAAECoXFc678++uW7YWQIAZqnX66rX66rVasrn856ec+fOnbHHXkdITS4Qv7u7S5vwjKmRAOCjZEL69sP5MZtu77NPw04BQIT1XemFn86O+fZDKRWD4yUArKN2u61SqaRaraZisej5eZlMZuxxr9fzNJKs2+2OPc5ms7QJzyiEAYCPEgk+uGF5QRYSH739bmDbAgAA68+2beVyOVUqlYWKYNLlUVFei0Gjo6cMwxhbiyzObcIbpkYCAAAAAICF9Xo93b17VwcHBzo4OFj4+ZZlja1x9eTJE0/Pe/r06fD+ZEEpzm3CGwphGOr3+7p169bM2+HhYdhpAgAAAABC1uv1lMlkVCwWValUPD+nWq2O/Wxvb29437ZtT+2MxpXL5Uu/j3ObmI9CGMYcHx/PvJ2dnYWdIoAlffJ52BkAAABgnTmOo1wup729Pc9FMEkqFAqX1rQqlUrD++12e24bozGmaU5dIyvObWI+CmEYs7OzM/OWTqfDThHADF6KXB80KYYBAADgehzHUSaTkWmaKpfL6vV6c2/tdnu4OPzkOliWZY0VdJrN5sztNxqN4f2rRkTFuU3Ml3BdLkYdd6lUSv1+X8lkUufn52GnA+Cavvxa2vkb6Q/fzI999UXp+L6UvuF/XhJXjVwnLJaPMJz3PV41kq9wAWApq/jsl8lkPE/jm3TVVSV7vZ52d3clXRSHOp3O1Oc7jqOtrS1JF1dLbLVaV24rzm1iNk4nAGBD/Nz2VgSTpN//Sfr4eucvABAKRrICQPiWKYJJuvKqkqZpDkc72bZ9aR2xgbt370q6uFri6Ogo2sQiKIQBwIb45W8Wi//VgvEA4BemdQNA9BUKBV+KYAP5fF6tVkuGYahcLg+35zjOcGqlbduyLEvPnj0bu+IibWIRTI0EUyOBDfE//a/Sk+cLxN+S/q//xb98RjE1cn0wNRJBi/K0bgDYNOvy2a9arero6Ei9Xk+O48gwDN25c0elUkn5fJ42sRQKYVibgyGA2f7F/yb9+h8XiP8r6R/+lX/5jKIQtj4ohCFo//4/Sf/2l97j/+4t6Sff8y8fANhkfPYDmBoJABvjrdcXi//+gvEA4AemdQMAgCBRCAOADfFDS3rlO95iX31Ret+aHwcAfjv9o7/xAAAAoyiEAcCGeO2G9LO3vcV+9APW2AEQDVsv+RsPAAAwikIYAGyQ996YH/Nx3lscAASBad0AACBIFMIAIGbepQgGIEKY1g0AAIL0QtgJAAAAIL4G07o/aM6PZVo3AFzt8PBQh4eHM2P6/X5A2QDRRSEMAAAAoXrvjfmFMKZ1A8BsZ2dnOj4+DjsNIPIohAEAACDymNYNALOl02nt7OzMjKFQBlAIAwAAAABg7e3v72t/f39mTCqVYnokYo/F8gEAAAAAABALFMIAAAAAAAAQCxTCAAAAAAAAEAusEQYAuBbXlfru7JhkQkokgskHwPpKJqRvP5wfAwAAsCwKYQCAa+m70gs/nR3z7YdSig+vAOZIJDhWAACAYDA1EgAAAAAAALHAiDAA2CBMLwIAAACAq1EIA4ANwvQiAAAAALgahTAM9ft93bp1a2bM/v6+9vf3A8oIAAAAAABgdSiEYczx8fHM35+dnQWUCQAAAAAAwGpRCMOYnZ2dmb9Pp9MBZQIAAAAAALBaFMIwlEwm9fz587DTAAAAAAAA8AWFMAAAAFziulLfnR2TTFxcpAMAAGBdUAgDAADAJX1XeuGns2O+/ZAr1QIAgPWSDDsBAAAAAAAAIAgUwgAAAAAAABALFMIAAAAAAAAQCxTCAAAAAAAAEAsslg8A8M0nn0vvZ8LOAoBfeI8DQHQcHh7q8PBwZky/3w8oGyC6KIStKdu21ev11Ov1ZFmWstls2CkBiJlPPp8f80FTSjH2GFhLi7zH33vD/3wAALOdnZ3p+Pg47DSAyOPjyZpwHEfValWZTEaJREJ3797VkydPZFmW7ty5E3Z6AGLmy6+lH3/mLfZHv5DOXV/TAbBii77Hz772NR0AgAfpdFo7OzszbwAYERZ5juOoXC6rXq9LkizLUqvVYgQYgFD93Jb+8I232N//SfriK+kvXvE3JwCrs+h7/GNb+sn3/M0JADDb/v6+9vf3Z8akUimmRyL2GBEWYfV6Xbdv3x4WwWq1mjqdDkUwAKH75W8Wi3cYLQKslUXf479aMB4AACAsjAiLqHK5rGq1KkkyTVOtVkumaYacFQBcOP3jYvHnfPEIrJVF3+OLxgMAAISFQlgEFQoFNZtNSZJhGOp0OjIMI9ykAGDE1kuLxbNgPrBeFn2PLxoPAAAQFj6aREwulxsWwSRRBAMQSW+9vli8ccOfPAD4Y9H3+PcXjAcAAAgLhbAIqdfrarfbw8e1Wo3pkAAi6YeW9Mp3vMW++qJ082V/8wGwWou+x9+3/M0HAABgVSiERUSv11OpVBo+tixLxWIxxIwA4Gqv3ZB+9ra32I9+IKUSvqYDYMUWfY+nGfUJAADWBIWwiCgUCmOP79+/H1ImAODNe2/Mj/k47y0OQPTwHgcAAJuIQlgE9Ho92bY9fGwYhvL5fIgZAcBqvMsHZGCj8R4HAADrhkJYBNRqtbHH2WxWktRsNlUoFLS7u6tEIqGtrS1lMhlVq1U5jhNCpgAAAAAAAOvrhbATwMUi+aO2t7eVyWTGRolJkuM4sm1btm2rXC6r0WgwcgwAAAAAAMAjCmEh6/V6l0Z3PXr0SJVKRXt7ezIMYxhXqVTGimaFQmGlxbB+v69bt24t3c7+/r729/dXkBEAAAAAAMDqUAgLWa/XG3tsGIaePXs2LIANmKapWq2mTCYzdnXJe/fuKZvNXoq/ruPj46XbODs7W0EmAAAgTMmE9O2H82MAAADWCYWwkE0WworF4syiVrFYVKfTGY4McxxHDx48UKVSWUk+Ozs7S7eRTqdXkAkAAAhTIiGlKHQBAIANQyEsZN1ud+zxm2++Ofc55XJ5bIpktVpdSSEsmUzq+fPnS7cDAAAAAAAQRVw1MmST64N5meJomqYsyxr72eTC+gAAAAAAABhHISxku7u713renTt3xh5PTrEEAAAAAADAOKZGhmxyBNjkCLGrTBbQTk5OVpQRACDO9j77NLBtPXr73cC2BQAAAEgUwkJ33ZFdkwW07e3tVaUEAJ5wRTkAAAAA64ZCWMgm1/qaXDzfK9M0V5EOAHjGFeUAAAAArBsKYRGQzWbVbrclafjvPJNTKCcLagAAAACA+Dg8PNTh4eHMmH6/H1A2QHRRCIuAcrk8LID1ej05jjP36pGjI8ey2ayf6QEAAAAAIu7s7EzHx8dhpwFEHoWwCMhmszJNc7g+2IMHD1SpVGY+Z3Tk2LxYAAAAAMBmS6fT2tnZmRlDoQyQEq7rumEnAcm2bWUymeHjbrd75bpf7XZbuVxOklQsFlWr1ZbadiqVUr/fVzKZ1Pn5+VJtAcA0QV6JEOuDq0YCABAsPvsBUjLsBHDBsqyxglYul7u0Dph0sTZYqVSa+hwAAAAAAABcjUJYhBSLRbVaLRmGoV6vp9u3b6tarcq2bdm2rWq1qtu3b6vX66lYLKrT6YSdMgAACIjrSuf92TfG+QMAAMzG1MiIqtfrajQaevr06XDxfNM0lc1mVSqVrpw2eR0MjwXgN6ZGYhqmRi7mvC+98NPZMd9+KKX4mhMAcAU++wEslh9ZxWJRxWIx7DQAAAAAAAA2Bt8ZAgAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQDWguvxBsTZJ5+HnQEAAEC0sVg+AGBtdI5n/z6zE0weQBi8FLk+aF5cNfK9N/zPBwAAYB0xIgwAACDivvxa+vFn3mJ/9Avp7Gtf0wEAAFhbFMIAAAAi7ue29IdvvMX+/k/Sx7a/+QAAAKwrpkZiqN/v69atWzNj9vf3tb+/H1BGALCYk6+kmy+HnQWwer/8zWLxv/qN9JPv+ZMLAADAOqMQhjHHx7MX4Dk7OwsoEwAYd/LV/Jhnpxf/UgzDpjn9o7/xAAAAcUEhDGN2dmavNJ1OpwPKBAD+7NyVfut4i/2tIxkvSamEnxkBwdp6yd94AACAuKAQhqFkMqnnz5+HnQYAXPLFV1Lf9Rbbdy/i/+IVf3MCgvTW69Kv/9F7/Pdf9y8XAACAdcZi+QCAyHMWvALeovFA1P3Qkl75jrfYV1+U3rf8zQcAAGBdUQgDAETeed/feCDqXrsh/extb7Ef/UBK3/A1HQAAgLVFIQwAEHmpBf9aLRoPrIP33pgf83HeWxwAAEBcsUYYACDyjBvS2QLTHQ1GwyCm3qUIBgCxdXh4qMPDw5kx/T7D5gEKYQCAyLv5svT8S28L5icTF/EAAABxcnZ2puPj47DTACKPQhgAIPJSCem7hvTsdH7sd42LeAAAgDhJp9Pa2dmZGUOhDKAQBgBYE9svzy+E3d5iNBgAAIin/f197e/vz4xJpVJMj0TsUQgDAGyMbYpg2GDJhPTth/NjAAAAcDUKYQCAtZGZPdof2GiJBNN+AQAAlkUhDACwFvj8DwAAAGBZybATAAAAAAAAAIJAIQwAAAAAAFxLr9dTLpdTs9lcqp1qtapcLqetrS0lEgnt7u6qUCio3W7TJlaKQhgAAAAAAFiI4zgqFAra3d1Vu93WycnJtdppt9va2tpSuVyWJDUaDXW7XVUqFdm2rVwup1wuJ8dxaBMrkXBd1w07CYRrcAndZDKp8/PzsNMBsIH2Pvs07BQQQY/efjfsFAAAiJVVfPZzHEcPHjxQtVod+3mtVlOxWFyorXa7rVwuJ0kqFouq1WqXYjKZjGzblmma6nQ6MgyDNrEUCmGgEAbAdxTCECYKbgAAXFj2s1+1WlWtVpNpmpem7S1aCHMcR7dv35bjODJNU91ud2pcr9fT7u6uJCmbzarVatEmlsLUSAAAAAAAMJNt28pms+p2u2q1WlNHMC2iUCgMp/wNpgZOY5qm8vm8pItRVPV6nTaxFEaEgRFhAHzHiDCEiRFhAABcWOVnP9u2lclkho8XGRE2OtJJkk5PT2dO+2s2myoUCpIkwzB0enpKm7g2RoQBAAAAAICFLLNeVaVSGd7PZrNz2xqMipIuphVOu0JlnNvEYiiEAQAAAACAwIxO8bMsy9NzTNMc3j86OqJNXBuFMAAAAAAAEAjbtscev/nmm56eN1o0mhwVFec2sTgKYQAAAAAAIBCTV5scHe00y2TcaFEpzm1icRTCMNTv93Xr1q2Zt8PDw7DTBAAAAACsqSdPnow99rrW2M2bN8ceP336lDZxLS+EnQCi5fj4eObvz87OAsoEAAAAALBper3e2OPrjorqdru0iWuhEIYxOzs7M3+fTqcDygQAAAAAsGkmi0HX5TgObeJaKIRhKJlM6vnz52GnAQAAAADYUNct4kxOIzw5OaFNXAuFMAAAAAAAIuzw8HAl6zX3+/0VZBMNfoyKinObcUIhDAAAAACACDs7O5u7nvO6MAxjJYWc0VFScW4Ti6MQBgAAAABAhKXT6bnrOXsRhWLa9vb2SopB29vbtIlroRAGAAAAAECE7e/va39/f+l2UqlU6NMjrzuaabKANDnSKq5tYnHJsBMAAAAAAADxcOfOnbHHXkdITS4Qv7u7S5u4FgphAAAA1+C60nl/9s11w84SAIBoyWQyY497vZ6n53W73bHH2WyWNnEtTI0EAAC4hr4rvfDT2THffiilEsHkAwDAOpgcFdXr9WRZ1tznjY6eMgxDpmnSJq6FEWEAAAAAACAQlmWNrXH15MkTT897+vTp8P5kQSnObWJxFMIAAAAAAEBg9vb2hvdt2/b0nNG4crlMm7g2CmEAAAAAACAwpVJpeL/dbs+NH40xTXPqGllxbhOLoRAGAAAAAAAW4vWKh9NYljVW0Gk2mzPjG43G8P5VI6Li3CYWk3BdrmcUd6lUSv1+X8lkUufn52GnA2AD7X32adgpIMYevf2uL+2e9+cvlv+/56X3M7NjAAAIyio/+zWbTRUKheHjSqWig4MDz8/v9Xra3d2VdFEc6nQ6U+Mcx9HW1paki6sltlot2sRSGBEGAABwDZ98Pj/mg6a3OAAA1onjOJdGJx0dHS3Uhmmaw9FOtm2rWq1Ojbt7966ki6sljo6Ook1cFyPCwIgwAL5btxFhgz+M533pi6+kL7++uJ9KSq/dkG6+fHE/EWqWCNO5K/3n/0fqT5xFPftvl0efvfqidHxfSt8IKDkAAK6wzGc/x3F07949OY4zc22rbDYrwzB0//59WZY1t912u61CoSDHcZTP53X//n2ZpqmnT5+qXC7Ltm1ZlqXHjx+PXXGRNnFdFMJAIQyA79axENY5nh1ze+uiIIZ4+u9/kP5v5/LPpxXCJOnv3pJ+8j1/cwIAYJ4of/arVqs6OjpSr9eT4zgyDEN37txRqVRSPp+nTawMhTBE+mAIYDOsWyHsi6+kZ6fz4yiGxdd//UI6+/ryz68qhP2Lv5L+4V/5nBQAAHPw2Q9gjTAAAMacu9JvHW+xv3Uu4hE/5/3F4k//6E8eAAAAWAyFMAAARnzx1eV1n67Sdy/iET+pBc+gtl7yJw8AAAAshkIYAAAjnCnT3VYZj81gLLjw/fdf9ycPAAAALIZCGAAAIxad8rZoPDbDzZelpMfLhr76ovT+/ItmAQAAIAAvhJ0AoqPf7+vWrVszY/b397W/vx9QRgAQvEWnvC0aj82QSkjfNbxdVOGjH0jpBUeQAQAAwB8UwjDm+Ph45u/Pzs4CygQAwmHcmH41wFnxiKftl+cXwj7OS++9EUw+AAAAmI9CGMbs7OzM/H06nQ4oEwAIx82XpedfelswP5m4iAeu8i5FMABAQA4PD3V4eDgzpt9nTQeAQhiGksmknj9/HnYaABCqRaa8fde4iAcAAAjb2dnZ3Bk+ACiEAQBwyWCU12+d6SPDkv9ULGM0GAAAiIp0Oj13hg+FMkBKuK7rYfIHNlkqlVK/31cymdT5+XnY6QDYQHuffRp2Ctdy7kpffCU5X19cHTKVvFgT7ObLjASDNO0E6v94692xx8mElKCvAAAigs9+ACPCAAC4Uioh/cUrFzdg0rT6FlcRBQAAiDYKYQAAACsS5OjHR2+/Oz8IAAAAY/jeEgAAAAAAALFAIQwAAAAAAACxQCEMAAAAAAAAsUAhDAAAAAAAALFAIWwN7e7uKpFIqNlshp0KAAAAAADA2qAQtmbK5bJ6vV7YaQAAAAAAAKwdCmFrpN1uq1qthp0GAAAAAADAWqIQtiYcx1GhUAg7DQAAAAAAgLVFIWxN3Lt3T9vb2zIMI+xUAAAAAAAA1hKFsDVQr9fVbDbVaDTCTgUAAAAAAGBtUQiLuF6vp1KppIODA1mWFXY6AAAAAAAAa+uFsBPAbIVCQZZlqVKphJ0KAACR53qMS/iaRTD2Pvs0kO08evvdQLYDAAAQBAphEVYul2XbtrrdbtipAACwNjrHs3+f2QkmDwAAAEQPUyMjyrZtVatV1Wo1maYZdjoAAAAAAABrj0JYRN29e1f5fF7FYjHsVAAAAAAAADYChbAIKhQKkqSHDx+GnAkAAAAAAMDmYI2wiGk2m2o2m2q1WjIMI+x0AAAAAABr4PDwUIeHhzNj+v1+QNkA0UUhLEIcx1GhUFCxWFQ2mw18+/1+X7du3Vq6nf39fe3v768gIwAAAACAF2dnZzo+nnPFGAAUwqLk7t27Mk1TtVottBxWceA8OztbQSYAAPjj5Cvp5sthZwEAwGql02nt7My+NDKFMoBCWGRUq1XZtq1OpxNqHvMOnF6k0+kVZAIAwOJOvpof8+z04l+KYQCATeJlZk4qlWJ6JGKPQlgE2LatcrmsSqUiy7JCyyOZTOr58+ehbR8AgGWcu9JvHW+xv3Uk4yUplfAzIwAAAEQNhbAIKBQKsixLBwcHYacCAMDa+uIrqe96i+27F/F/8Yq/OW2Cvc8+DWxbj95+N7BtAQCAeKIQFrJqtaper6dsNqtCoTA33nGc4f0HDx7o6Oho+Pidd95RPp/3I00AACLP+XrxeAphAAAA8UIhLGRffPGFJKndbi/8XNu2Zdv28LFpmhTCAACxdb7gkieLxgMAAGD9JcNOAAAAYBVSC57VLBoPAACA9ccpYMgqlYpc1/V8M01z+NxGozH2u0qlEuIrAQAgXMYNf+MBAACw/iiEAQCAjXDzZSnp8SqQycRFPAAAAOKFQhgAANgIqYT0XcNb7HeNi3gAAADEC4UwAACwMbY9jPK6vcVoMAAAgLiiEAYAAGLFS7EMAAAAm+mFsBMAAAAAJGnvs08D29ajt98NbFsAACA6GBEGAAAAAACAWGBE2JrpdrthpwAAQKRldsLOAAAAAFFFIQwAAPjG9Ri3qgs4ciFIAAAAzEIhDAAA+KpzPPv3jOACAABAUFgjDAAAAAAAALFAIQwAAAAAAACxwNRIAAAQqpOvpJsvh50F4mbvs08D2c6jt98NZDsAAMAbCmEAAMA3J1/Nj3l2evEvxTAAAK7v8PBQh4eHM2P6/X5A2QDRRSEMAAD44tyVfut4i/2tIxkvSSku+wgAwLWcnZ3p+HjOFWoAUAgDAAD++OIrqe96i+27F/F/8Yq/OQEAsKnS6bR2dmZfiplCGSAlXNf1eIqKTZVKpYZDZOcdOPf397W/vx9EWgA2SFBr8cAbr3/4lx2c9V+/kM6+9h6fviH9DzeX3CgQMawRBiBKBp/9ksmkzs/Pw04HCAUjwjBm3jcEZ2dnAWUCAPBTZ84XwpnZ34t4cr7gMiSLxgPrIMgvAii6AQAwH4UwjJk3IiydTgeUCQDEx2CE1nn/Ynrgl19f3E8lpdduXCwin0ouP0IraKmkv/EAAADAoiiEYSiZTOr58+dhpwEAsXTVCK2z/0/6b19Kt7eCvariyVfLb8+4sdjUSOPGctsDAAAA5uG7VwAAQnby1fyYZ6cXo8XWaXs3X5aSHoexJRPBFvoAAAAQT4wIAwAgROeu9FvHW+xvHcl4SUotMUcyyO2lEtJ3jYui2jzfNZZ7XQBYjwwAAC8ohAFATHElx2j44iup7/Eyjn33Iv4vXlmf7W2/PL8QFvS0TwAAAMQXUyMBAAiRs8AaWteJD3t7XmxTBAMAAEBAGBEGAECIzvv+xoe9PUnKzL4gMYA1FNSoYqZgAgBWjUIYAAAhSi04NnvR+LC3x7JfAAAAiBKmRgIAECLjhr/xYW8PAAAAiBJGhAEAEKKbL0vPv/S2gH0ysfyi8kFvDwCWwZUwAQCrxogwAABClEpI3zW8xX7XuIhfp+0BAAAAUUIhDACAkHm5auLtrdWNzgp6ewAAAEBUMDUSAIAIyOxcXKHxi6+kL7++uJ9KSq/duChILbtofdjbAwAAAKIg4bquh1VCsMlSqZT6/b6SyaTOz8/DTgdAQIJcdwUAAPwZ65EhLHz2A5gaCQAAAAAAgJigEAYAAAAAAIBYYI0wAAAAAAhQUMsTMAUTAC6jEAYAAAAAwJo7PDzU4eHhzJh+vx9QNkB0UQgDgIhhEXsAAAAs6uzsTMfHx2GnAUQehTAAAAAA2EBBfrnGNMzwpdNp7ezszIyhUAZICdd13bCTQLi4hC4QLYwIAwAAuBpFt+vjsx/AiDAAAAAAwBrhYgMAlkEhDBvr8PBQZ2dnSqfT2t/fDzsdRAT9ApN+97vf6fz8XKlUSn/5l38ZdjqICPoFJtEnMIk+gWk41wSij6mRGA6PlTR3Tvn+/v7aHNBv3bql4+Nj7ezs6Pnz52Gng4hYh37B1Mhg/ef/8l/0zTff6Dvf+Y7+x3/+z8NOBxFBv8Ak+gQm0Sc233VGhEX9XJOpkQAjwjBh3uKJZ2dnAWUCAAAAAACwWhTCMGbeiLB0Oh1QJgAAAAAAAKtFIQxDyWQyksN3gShguiIAAAAwXbVaVavV0tOnT+U4jkzTlGVZKpVKymazYacHjEmGnQAAAAAAAFg/7XZbW1tbKpfLkqRGo6Fut6tKpSLbtpXL5ZTL5eQ4TriJAiMYEQYAAAAAABbSbreVy+UkScViUbVabfg70zSVz+eVyWTUbreVyWTU6XRkGEZI2QJ/xogwAAAAAADgmeM4KhQKki6KXqNFsFGNRkOS1Ov1hvFA2BgRBmBtXWfdrldK/7Nu/9Olzln3CwAAAFhcoVAYTnccTIucZjAyrNlsqt1uq16vq1gsBpQlMB2FMAy5rqvDw0Pt7+/7up3Dw0OdnZ0pnU77vq2gBPmagtrWJr6mIP3ud7/T+fm5UqmU/vIv/5JtRXQ7QeP/an22FZRN3X+b2P+CtIn7b1O3FZRN3H+b+JqCFOb5c6/XU7vdHj7e29ubGf/OO++o2WxKuiiaUQhD2CiEYSjIQtjx8bF2dnY2pugR5GsKalvLbGfRkVb/+Q//Xd/0v9F3/vC1/s8NGaX1//7ud/rmn0ae+X3CtYnbCvI1BYn/q/XZVlA2df9tYv8L0ibuv03dVlA2cf9t4msKUpifqSqVyvB+Npudu+5XPp8f3nccR81mc+xnQNBYIwwAAAAAAHhSr9eH9y3L8vQc0zSH94+OjlaeE7AIRoQBMbHoKC3W0gIAAAAwyrbtscdvvvmmp+dZlqVerydJw2mSQFgohAEhYrF3AAAAAOtidG0waXyk1yyTcbZtex5NBqwahTBgCkZPAQAAAMC4J0+ejD2etz7YwM2bN8ceP336lEIYQkMhDGuD4hQAAAAAhGcwvXHguiPCut3uynICFsVi+QAAAAAAYK7JQth1OY6zknaA66AQBgAAAAAA5rpuAWtyCuXJycnyyQDXlHBd1w07CYQrkUiMPU4m/a2P9vv9a20r+erLC21ntGdPvMSV28RtbeJrCnJbm/iagtzWJr6mTd3WJr6mILe1ia8pyG1t4msKclub+JqC3NYmvqYgt7UOr6n/+68W3tZ1P+vM47quVv3R/TrtTX529NpGu91WLpcbPs5ms2q1WgtvH1gF1gjDJaMH7yhtq3/2ex8zAQAAAIDVCfJzVVAMw1jJtEavi+wDfqAQhjF+jwYDAAAAACzGjxFh17G9vb2SQtj29vbyyQDXRCEMkTigAgAAAACi7bojuSaLZ4wIQ5gY/gMAAAAAAOa6c+fO2GOvo8MmF8ff3d1dVUrAwiiEAQAAAACAuTKZzNjjXq/n6XndbnfscTabXVlOwKIohAEAAAAAgLkmR4R5LYSNjhwzDEOmaa4yLWAhFMIAAAAAAMBclmWNre/15MkTT897+vTp8P5kMQ0IGoUwAAAAAADgyd7e3vC+bduenjMaVy6XV54TsIiEyyUDAQAAAACAB7Ztj60VNq+k0G63lcvlJEmmaV5aLwwIGiPCAAAAAACAJ5ZljS1232w2Z8Y3Go3hfUaDIQoYEQYAAAAAADzr9Xra3d2VdFEY63Q6U+Mcx9HW1pakiytFtlqtwHIErsKIMAAAAAAA4JlpmsORXrZtq1qtTo27e/eupIsrRY6ODAPCRCEMAAAAAAAsJJ/Pq9VqyTAMlctlFQoF2bYtx3HUbreVyWRk27Ysy9KzZ8/GrjYJhIlCGELR6/WGCyZe97nz5qKvwqJ5VqtV5XI5bW1tKZFIaHd3V4VCQe1228csN8O69Ak/LPPaN90i+8a2bZVKJe3u7iqRSAzfg+VyWY7jXDsHP97XHCuuL+w+4Vc/84JjxXRh9wk/8pQ4TixrXfqFHzhWTLfIfun1emN9YmtrS5lMRqVSSb1e79o5bOI5RTab1enpqSqVinq9nu7evautrS0VCgVtb2+r0Wio0+lQBEO0uMAKnZ6eupI83YrF4sJt5/P54fNrtVpk8my1Wq5hGK4kN5vNuq1Wy+12u26j0XBN0xz+/PT09No5r6so94nB/9l1bl5y9fO1r7tV7pvJfnDVbdH+4cf7mmPF1aLeJ/zqZ6t+7Zsk6n3Cjzxdl+PEPFHuF5xXhGPV+6VSqcxtp1KpLJQj5xRAtFAIw0p5+cMxuHW7XU9tnp6eugcHBys5WfUjz1arNfePq2VZriTXNM3Y/TGKap9oNBrXPlmV5DYajVBe+6ZY1b45PT0dnuyt8oOBH+9rjhWzRblP+NXPVv3aN02U+4QfebouxwkvotovOK8Izyr3SzabdSW5hmG4+XzePTg4cPP5/NS+4uX/zHU5pwCiiEIYVsrrN2HZbNZTe5VKxTVNc/hHafS2TCFsVXmenp4O2zJN88q4bre78GvfFFHtE9Oev8gtjNe+SVa1bwb/j5ZluY1Gw+12u8NvQ6cVS72cuPrxvuZYMV+U+4Qfbfrx2jdNlPuEH3lynPAmqv2C84rwrGq/DP7frxrtNa3gNg/nFEA0JVzXdQWsQL1eV6lU0sHBwdz593fu3Jk7T9y2bUkXl+MdbX+gVqupWCyGmmculxvOv5+XT6FQGK5hdd3c101U+8Tgcs+maapcLiubzWp7e3vu8zKZjHq9nqdLP6/6tW+SVe2b0XYqlcrUmF6vN1y4dcAwDJ2enl65TT/e1xwrZotyn/Crn01rn2PFn0W5T/iRp8Rxwouo9gvOK8Kzqv0y+D9stVrKZrNXtlEqlVSv14ePO53O8Lx0Gs4pgIgKuxKHzWGa5sxvJZbV6XTGvoG57oiwVeU5+i2LpLlDjkeHzBuGsfT210FU+8TBwcHCw8RH/7+9bMfv177OVrVvBiMD55l8r0pyW62Wp9hVvK85VswX5T7hR5uT7XOsuCzKfcKPPDlOeBPVfsF5RXhWtV/y+byndb8m1yOb9RzOKYDoohCGlRgcZJeZrjjP5IH/OttaZZ7FYnHh4caj+S8y7WIdRblPGIbhdjqdhbY1Ohze60mHn699Xa1q3wyKoF4/dExOZ7jqxNWP9zXHitmi3Cf86mcDHCumi3Kf8CNP1+U44UWU+wXnFeFY5X5ZZOrg6Hphs7bNOQUQXUkBK/DgwQMZhqG9vb2wU5lplXmODoueNSR6lGmaw/tHR0dL5xBlUe4TjUbD8//ZwOD/K5vNzp1uEOXXHrZV7ZujoyMVi0XPUz8mpzl88cUXU+P8eF9zrJgtyn3Cr342wLFiuij3iVGcUwQryv2C84pwrHK/zJuaOurk5GR4/86dO1fGcU4BRFjYlTisv8npaaZpusViceXfOCw7ImyVeU625bWNyUt0b6p16RNejQ6Dn7eNoF77Olr1e3DRKyDN6yt+vK85Vsy2Dn1i1W2Ots2x4rKo9wm/8uQ4Mdu69AuvOK9YXlj7ZfT/btaILM4pgGjjnYClzbtKTj6fX3i4+DTLFj1WmefkMHmvz5u8CtEq9ksUrUuf8GqR6QtBvfZ1FOa+mVzTY9oaL368rzlWzBb1PuFnmxwrpluXPsE5RbDWpV94xXnF8sLaL7VazZU0d004zimAaKMQhqVMW0T0qluxWFzpthYpeqw6z8lvVrrdrqc8Jv+AbeJaD+vSJxZhWZYrXVxifZF8/Hzt6ybsfTP5Leo0fryvOVZcbR36hF9thv3aoyrs/RLW/x/HidnWpV8sgvOK5YS1XwZFUcuy5r5POacAou0FAUswTVO1Wk2O46jb7ardbqvX602Nrdfrevr0qTqdTsBZrj7PyeeOzr2fl8eobrfr6XnrZF36hFeO4wwvnf7OO+/MjN20175KYe+bp0+fDu9fdelwP97XHCuutg59wq82w37tURX2fgnr/4/jxGzr0i+84rxieWHsl16vp1wuJ8Mw9Pjx47nrunFOAURc2JU4bJ7T01O3Uqm4hmFM/WZmkauyjFr16J9l8px8jlejlzBWjL69W5c+Mc1gCLwW+OZtlF+vfRMEuW8G377P+n/0433NsWIxUesTQbbJsWK6dekTnFMEa136xTScV/jDz/0y+V6T5l9VlnMKINoohMFXjUZj6h+keX88pvGz6LFonpNxXrVarbHn5fP5Vb2EtbEufWLA6/QFL1b52jeNn/tmtJ/Mas+P9zXHiuuLQp8Iq02OFdOtS5/gnCJY69IvBjiv8N8q9sugsGaa5tTC2rz3HOcUQLRRCIPvTk9Px75Nk+QahrFwO34XPRbJc1V/iOL8rd269IlVn1Su6rVvIr/2TbFYdKWLhW1n8eN9zbFiOWH3iTDb5Fgx3br0Cc4pgrVO/YLzimAsu18ajYZbLBbdYrE4c2F+vwvcnFMA/kgK8JlhGOp0OrIsa/gzx3HUbrdDzOqyRfKcty7AItuMo3XpE48ePRrez+fzK2lzXV57GPzYN7Ztq16vyzAMtVqtudtfhdF2OFYsJ+w+EWabHCumW5c+wTlFsNalX3BeEZxl90s+n1etVlOtVlOr1ZLruqrVapfeZ+VyWY7jTN3+KnBOAfiDQhgC8/Dhw7HHqzqpWDUveW5vb69kW6tqZ11FvU/UajVJF4uMel2Q1Kuov/YwrXLf3Lt3T5L0+PHjuf+HfryvOVasRlh9Isw2BzhWTBf1PjHAOUWwot4vOK8I3ir3S7FYVKfTuVRIqtfrl2I5pwCijUIYAmNZlrLZ7PDxVVd3CZuXPK/7TcrkN0Zx/0Ymyn1i9KpOq/rWdlSUX3vYVrVvSqWSbNtWo9EY+0b4Kn68rzlWrEZYfSKsNkdxrJguyn1iFOcUwYpyv+C8Ihyr3i+maerx48djP3vy5MmlOM4pgGijEIZA5XK5sFPwZF6ed+7cGXs8bUj0NCcnJ2OPd3d3F8prE0W1T4xOX5h3efPriuprj4Jl9029Xle9XletVvP8gcOP9zXHitUJo0+E0eY0HCumi2KfmIZzimBFtV9wXhGeVe8Xy7LG+sa04hrnFEC0UQhDoEaHgUd5WO68PDOZzNhjr98udbvdscej31DFVVT7RKPRkHTxrZkfowSk6L72KFhm37TbbZVKJdVqNRWLRc/P8+N9zbFidcLoE0G3eRWOFdNFrU9chXOKYEW1X3BeER4/9stoMXNaQYpzCiDaKIQhUKN/iKI8LHdenpPfyHj9QzT6h9IwjJWvD7GOotgnRhdT9fMDUhRfe1Rcd9/Ytq1cLqdKpbLw/50f72uOFasTRp8Iss1ZOFZMF6U+MQvnFMGKYr/gvCJcfuyX0WJmUO9rjhXA6lAIQ6CePn06vB/l4dvz8rQsa+yP3rS1Aea1O/nHLK6i2CeCmL4gRfO1R8V19k2v19Pdu3d1cHCgg4ODhbfpx/uaY8XqhNEngmpzHo4V00WlT8zDOUWwotgvOK8Il9/7Zdr7j3MKINoohCFQo0Nzozws10uee3t7w/uDxU/nGY0rl8vXzG6zRLFPBDF9QYrma4+KRfdNr9dTJpNRsVhUpVLxtI1er6dqtTr2Mz/e1xwrViOsPuF3m15wrJguCn3CC84pghXFfsF5Rbj82C+jo7GuKq5xTgFEmAsEyDRNV5J7cHCw8HO73a4raXir1Wo+ZHjBS56dTmcsn3lardYw1jTNVaa71qLWJ05PT4ftFYvFpdubZZnXvukW2Tenp6euaZoL/39ZluV2Op2xn/nxvuZYsRph9Qk/2/SKY8V0YfcJrzinCFbU+gXnFeHzY79UKhVXkmsYxpUxnFMA0UUhDIFpNBrDPxinp6cLP3/ywO9XIWyRPLPZ7DCfRqMxM7ZYLAZSxFsnUewTtVpt2F6r1Vq6vass+9o32SL7ZvAhJpvNut1u19Ot1Wq5lmW5lmVNbdOP9zXHiuWE3Sf8aNOP1x4nYfcJP/LkOLG8KPYLzivC5dd+MQzD03uVcwogmiiE4dpardbwj0A2m535zVi32x3GXveb1cEfssGtUqmEnufoiKRZJ0Wj3wZms1lPea+jdekTswxOLmZ9wzdN0K99nfi5byzLGusDi9yuOiH0433NsWLcuvWJVbbJsWK6dekTnFMEa136xSycV6yWX/ulUqm4lmW5BwcHcwtmBwcHruRthBnnFEA0UQjDtY1+wzC4TRvyPfiDZZqm2+12r7Wtwbd2o9vy+m2c33mOFmOuKsQMTrY2/Vu6dekTs9octJXP5xd6bpCvfd34tW+W+RAjzf7z58f7mmPFn61Tn1h1mxwrpluXPsE5RbDWpV9chfOK1fNjv4z+Pw1uVxW58vn8zPfnNJxTANFDIQzXNjrnfPRmGIabz+fdYrE4PAB7+XZl0unpqZvP58eG/067ZbNZN5/PX/lNj995DrYx+MZpkMvp6elwCL10UaTZ9D9C69InrrLM9IUg+tm68mPfDE5Er3vzsk6LH+9rjhUX1qVP+NEmx4rp1qVPcE4RrHXpF1fhvGL1/Novk1+ujrZ5cHDgZrPZ4ePrFBw5pwCihUIYltLtdt1iseiapjk8EA++fcnn826j0YjEwTeoPAfDqke3kc1m587f3yTr0iemGS2wXcc6v3a/rfO+8eN9zbFivfvEsuL82mdZl/3COUWw1qVfTMN5hT/82C+np6fuwcHBpffcoM1arRbZ9zXHCmBxCdd1XQEAAAAAAAAbLhl2AgAAAAAAAEAQKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAAIBYohAEAAAAAACAWKIQBAAAAAAAgFiiEAQAAAAAC4ziOEonE3Jtt22GnGlnVanXu/tvd3Q07TSCSEq7rumEnAQAAAACIB8dxtLW1NXxsWZYePnwo0zTH4gzDCDiz9eI4zvD+ycmJ2u22SqXS8Gemaarb7YaQGRBtFMIAAAAAAIGZLIQ1Gg3l8/kQM9ochUJBzWZTEoUw4CpMjQQAAAAAhIaRX6szOaoOwGUUwgAAAAAAodne3g47BQAxQiEMAAAAAAAAsUAhDAAAAAAAALFAIQwAAAAAAACxQCEMAAAAALA2HMdRtVpVJpMZXiFxoNlsKpfLaWtrS4lEQplMRvV6/cp2yuWyMpnMWPxkm1HPA8BiXgg7AQAAAAAIU7lcVrVavdZzLctSp9NZcUaYZNu22u22jo6OZNv2pd/3ej0VCoVLv7NtW6VSSZ1OR7VabfjzarWqcrk8dTuFQkEHBweqVCqRzQPA9VEIAwAAABBrjuNIkkzTVKlUkmmaU+OePHlyqWBGkcJ/vV5PDx48kKSpxad6va5SqSTLslSpVGSa5vA5g//ber2uQqGgbDarXC6np0+fqlgsKpPJaHt7+9L/bbVavdQXopIHgOUkXNd1w04CAAAAAMJSKpX06NEjnZ6ezozLZDJjBZBisTg2ugfeOI6jra2t4eNOpyPLsjw9d3IElWmaOjk50cOHD5XP58die72ednd3h48H29je3laj0ZBhGGPx7XZbuVxu+HjW/29U8pg0OrrRNE11u11PzwPihDXCAAAAAMTe/fv3Z/6+Wq2OFcEMw6AIFoJpBbPT09NLxSfpohCUzWaHj23bluM4arVal4pPkpTNZsdGXrXb7cjnAWBxFMIAAAAAxNrJycnMEUm9Xu/SOk6NRsPvtDDF9vb22ONphadRoyOrJE1dj2vUaD/o9XqRzwPA4iiEAQAAAIi1SqUyNmJnUqFQGHtcLBZnxiM6JkdcTRawJk2uxbWqIlRU8gBAIQwAAABAzM1aiLxer1+aErnIAvnValW5XE6JRGJ4y2QyC+VXrVbHnr+1taVSqbRQG3E1r+A0z2CR+03JAwCFMAAAAACYqtfrXSo4TVvcfJaDgwO1Wq2xqXOLjO6xbXtsGp1hGHr27Bnrk/nk5s2bYacgKTp5AJuIQhgAAAAATDFZBMvn89eeEjla/FpkdM/ktMy9vb2FCnEAgHEUwgAAAABgQr1eH7tan2EYevjw4bXachxHtm2PFbC8jAorl8s6OTkZm7o5WRgDACyGQhgAAAAAjHAc59JV/R4+fHjtkViDgtre3t7wZ/MKYbZtq1qt6uHDh2OxLNIPAMuhEAYAAAAAIwqFwtj0xXw+P7bG16KOjo6Uz+e1u7s7/Nm86ZGFQkHFYnHsZxTBAGB5FMIAAAAA4J80m82VTYkcaLfbyuVyY1McZ40IG6xNVqvVdHR0NPx5LpfztL3BIv+5XE6FQmFY2Mvlctra2hp7fVflmslkhrdZ8QCwbiiEAQAAAIAuRmndu3dv7GfLTImULqY4Oo6jbDY7VgjrdrtT49vttur1uhqNxvDxgJdRadVqVbu7u9rd3VWr1VKj0VClUlGhUFC73R7mMs2geJbL5dTpdNTpdGSapnK5nKrV6vC1AMA6oxAGAAAAAJLu3bu38JTIarWqer1+5e+Pjo5kmubwNjBtRJjjOCoUCjo4OJBlWer1esN8DMMYe/40hUJB5XJZjUZDBwcHw5+bpqmTkxNJV0+vLBQKqtfrKhaLY8995513JF0s3J/JZC6tnQYA64ZCGAAAAIDYa7fbajabw8dep0S2Wi1tb2/PbHdQfJp31ch79+5pe3tblUpFksbyGV1of5pSqaRms6lisTi1eDcoqE2bXlmv14fbGmx7wLKs4f1ut6tarTYzj6gbFATDFpU8gDiiEAYAAAAg9gqFwthjL1MiHcdRu92+cqSW4ziybXus7UGbk4WQZrOpZrM5nBIpXRTZBmatD9ZsNlWv12UYxpWFqkHhbdqIsME28/n8pdc8WrCbd6XLKJrcz/Omdn7xxRcbnQcACmEAAAAAYq5UKo0VJrLZrKf1uAbriV1VCBus7zVafBrEjm5vMCWyUqmMjcDyuj7YII/79+/PzMMwjLH2J3//5ptvXvrdaDHuzp07V+YQlMli3LyC0uTvr1qb7ar4q4p/UckDwOIohAEAAACIrcHi9KMGC8tP3gYjr8rlsnZ3d4fTCa8aOXZ0dHSp8DRtnbBCoSDLssbW5hotgk0rXg1Uq9Vh0aRYLE6NGYz4uqqQdVX+juOoWq1Kkg4ODpa6aMCqPHjwYOzxo0ePrixCOY5zaYTco0ePZha3Hj16NPazq0bYRSUPANfgAgAAAEBMWZblSrr2zTCMK9s2DMOtVCpjPzs4OBg+t9VquZVKxZXkdrvdsbhisTiMm2xjchuS3Hw+P/X3p6enc9tpNBquJNeyrLHnmabpSnIPDg6u3P51jOYkye10OjPjO52Om81mh6912s2yLLfRaAzj5/2/Wpbl1mo113Vdt9VqDV/rVf/H2WzW/eyzzyKRx2RfGTXav0zTXMV/F7BxXliujAYAAAAA66vT6fjSrm3bchzn0ppcu7u7w/utVkvValWVSuXS9MrREWFXXelxsA3p6jXERkcuXdVOPp9Xp9PR3bt3lclktL29rZOTE1mWpVarNfdqlX4b5LFI/CL/r9lsdu5UxYF/+S//ZSTyAHB9FMIAAAAAYMWOjo6mrsk1eoXJarV6aUqkdDGVbjBt7qp1vaTxdaOmTXvs9Xqep1g+ePBAd+7cWajgBADriDXCAAAAAGDFms3m1BFYk6OrRq8SOTC6PtRVo7ik+Quol8tlvfPOO2PtOI4zXNtsoFAoqNlsziyUAcCmoBAGAAAAACtk27Z6vd7UqzCOFsJqtdrUaYejxbGrpjxOtnV0dDS87ziOcrmcKpWKnjx5IuliNJjjOLp3796l4tpg1Fi1WlUmk7l08QC/nZycBLo9APFGIQwAAAAAVqhcLl/5u8GVF7PZ7NSrPA6uUOlFNpsdtletVlUqlVQoFJTJZIZFtsGosWazqbt376pSqVy6+mOlUhnet21bpVJJiURCpVLJUx7LmjeyDd5ddeVKAH9GIQwAAAAAVqDdbiuTyQwLWeVyWYVC4VJhy7KsS1Mi6/W6crncpRFgg+LWtFFahmHo8ePHwymNjx490vb2tjqdznC02GBqpGmaajQal0agNZtNNRoNdbtdNRqNsdFi9Xp9bHF/v5TLZbXbbTmOM3bDbJP7q91uBz6aD1hHCdd13bCTAAAAAAAEq1qt6ujo6NKVDXu9nsrl8nAtsWKxqFqttrLtOo6jra2tuXGdTod1y65QrVZnjjyULoqfXIUSuIxCGAAAAADETLPZVKFQmFlsKpfLqlarFFQAbBQKYQAAAAAQM7lcTu12W/M+DiYSCVmWdWnUGACsK9YIAwAAAICYGSyYP2strsHvJq8yCQDrjEIYAAAAAMTMYBH9Bw8eXBlTLpdlmqbu378fVFoA4DsKYQAAAAAQM/l8XpVKRdVqVaVSSbZtS9Lw6oO5XE4nJyfqdDrD0WMAsAlYIwwAAAAAYspxHNXrdXW7XZ2cnMg0Te3u7iqbzco0zbDTA4CVoxAGAAAAAACAWGBqJAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABigUIYAAAAAAAAYoFCGAAAAAAAAGKBQhgAAAAAAABi4f8Hg92xM9tqm1EAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"bins = np.linspace(5150, 5300, 30)\n",
|
|
"ax = sns.regplot(\n",
|
|
" x=y_test,\n",
|
|
" y=abs(y_test - y_pred_test),\n",
|
|
" x_bins=bins,\n",
|
|
" fit_reg=None,\n",
|
|
" x_estimator=np.mean,\n",
|
|
" label=\"bla\",\n",
|
|
")\n",
|
|
"ax2 = ax.twinx()\n",
|
|
"ax2.hist(y_test,\n",
|
|
" bins=30,\n",
|
|
" range=[5150, 5300],\n",
|
|
" color=\"#2A9D8F\",\n",
|
|
" alpha=0.8,\n",
|
|
" align=\"left\")\n",
|
|
"ax.set_xlabel(r\"z$_{Mag}$ [mm]\")\n",
|
|
"ax.set_ylabel(\"Mean Deviation [mm]\")\n",
|
|
"ax2.set_ylabel(\"Number of Tracks\")\n",
|
|
"mplhep.lhcb.text(\"Simulation\", loc=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"median_z_mag_x = np.median(array[\"z_mag_x_fringe\"])\n",
|
|
"print(median_z_mag_x)\n",
|
|
"params_per_layer = [[] for _ in range(12)]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def format_array(name, intercept, coef):\n",
|
|
" coef = [str(c) + \"f\" for c in coef if c != 0.0]\n",
|
|
" intercept = str(intercept) + \"f\"\n",
|
|
" code = f\"constexpr std::array {name}\"\n",
|
|
" code += \"{\" + \", \".join([intercept] + list(coef)) + \"};\"\n",
|
|
" return code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_diff_straight_l0\"] = (array[\"x_l0\"] - array[\"x\"] - array[\"tx\"] *\n",
|
|
" (array[\"z_l0\"] - array[\"z\"]))\n",
|
|
"array[\"x_l0_rel\"] = array[\"x_l0\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" # \"x_l0_rel\",\n",
|
|
" \"x_diff_straight_l0\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"poly_features = poly.get_feature_names_out(input_features=features)\n",
|
|
"keep = [\n",
|
|
" # \"tx\",\n",
|
|
" # \"ty\",\n",
|
|
" # \"x_l0_rel\",\n",
|
|
" \"tx^2\",\n",
|
|
" # \"tx x_l0_rel\",\n",
|
|
" \"tx x_diff_straight_l0\",\n",
|
|
" \"ty^2\",\n",
|
|
" # \"x_l0_rel^2\"\n",
|
|
" \"x_diff_straight_l0^2\",\n",
|
|
"]\n",
|
|
"remove = [i for i, f in enumerate(poly_features) if f not in keep]\n",
|
|
"X_train_model = np.delete(X_train_model, remove, axis=1)\n",
|
|
"X_test_model = np.delete(X_test_model, remove, axis=1)\n",
|
|
"poly_features = np.delete(poly_features, remove)\n",
|
|
"print(poly_features)\n",
|
|
"\n",
|
|
"lin_reg = LinearRegression() # Lasso(alpha=0.004)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l0\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[0] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l1_rel\"] = array[\"x_l1\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l1_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l1\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[1] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l2_rel\"] = array[\"x_l2\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l2_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l2\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[2] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l3_rel\"] = array[\"x_l3\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l3_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l3\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[3] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l4_rel\"] = array[\"x_l4\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l4_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l4\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[4] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l5_rel\"] = array[\"x_l5\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l5_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l5\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[5] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l6_rel\"] = array[\"x_l6\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l6_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l6\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[6] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l7_rel\"] = array[\"x_l7\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l7_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l7\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[7] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l8_rel\"] = array[\"x_l8\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l8_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l8\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[8] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l9_rel\"] = array[\"x_l9\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l9_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l9\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[9] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l10_rel\"] = array[\"x_l10\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l10_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l10\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[10] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"array[\"x_l11_rel\"] = array[\"x_l11\"] / 3000\n",
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"x_l11_rel\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"lin_reg = Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\n",
|
|
" \"coef=\",\n",
|
|
" dict(\n",
|
|
" zip(poly.get_feature_names_out(input_features=features),\n",
|
|
" lin_reg.coef_)),\n",
|
|
")\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_l11\", lin_reg.intercept_, lin_reg.coef_))\n",
|
|
"params_per_layer[11] = [lin_reg.intercept_] + list(lin_reg.coef_)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"features = [\n",
|
|
" \"tx\",\n",
|
|
" \"ty\",\n",
|
|
" \"dSlope_fringe\",\n",
|
|
"]\n",
|
|
"target_feat = \"z_mag_x_fringe\"\n",
|
|
"\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42)\n",
|
|
"\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"\n",
|
|
"poly_features = poly.get_feature_names_out(input_features=features)\n",
|
|
"keep = [\n",
|
|
" # \"tx\",\n",
|
|
" # \"ty\",\n",
|
|
" # \"dSlope_fringe\",\n",
|
|
" \"tx^2\",\n",
|
|
" \"tx dSlope_fringe\",\n",
|
|
" \"ty^2\",\n",
|
|
" \"dSlope_fringe^2\",\n",
|
|
"]\n",
|
|
"remove = [i for i, f in enumerate(poly_features) if f not in keep]\n",
|
|
"X_train_model = np.delete(X_train_model, remove, axis=1)\n",
|
|
"X_test_model = np.delete(X_test_model, remove, axis=1)\n",
|
|
"poly_features = np.delete(poly_features, remove)\n",
|
|
"print(poly_features)\n",
|
|
"\n",
|
|
"lin_reg = LinearRegression() # Lasso(alpha=0.01)\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"intercept=\", lin_reg.intercept_)\n",
|
|
"print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n",
|
|
"print(format_array(\"zMagnetParams_dSlope\", lin_reg.intercept_, lin_reg.coef_))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import scipy.optimize\n",
|
|
"\n",
|
|
"\n",
|
|
"def parabola(x, a, b, c):\n",
|
|
" return a * x**2 + b * x + c\n",
|
|
"\n",
|
|
"\n",
|
|
"params_1 = np.array([p[1] / params_per_layer[0][1] for p in params_per_layer])\n",
|
|
"x = [array[f\"z_l{n}\"][0] - array[\"z_ref\"][0] for n in range(12)]\n",
|
|
"print(params_1)\n",
|
|
"print(x)\n",
|
|
"plt.plot(x, params_1, \"o\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"params_3 = np.array([params_per_layer[0][3] / p[3] for p in params_per_layer])\n",
|
|
"x = [array[f\"z_l{n}\"][0] - array[\"z_ref\"][0] for n in range(12)]\n",
|
|
"print(params_3**2)\n",
|
|
"print(x)\n",
|
|
"plt.plot(x, params_3, \"o\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from sklearn.preprocessing import PolynomialFeatures\n",
|
|
"from sklearn.linear_model import LinearRegression, Lasso\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.metrics import mean_squared_error\n",
|
|
"\n",
|
|
"feautures = [\"tx\", \"ty\", \"dSlope\"]\n",
|
|
"data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n",
|
|
"target = ak.to_numpy(array[target_feat])\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(\n",
|
|
" data,\n",
|
|
" target,\n",
|
|
" test_size=0.2,\n",
|
|
" random_state=42,\n",
|
|
")\n",
|
|
"poly = PolynomialFeatures(degree=2, include_bias=False)\n",
|
|
"X_train_model = poly.fit_transform(X_train)\n",
|
|
"X_test_model = poly.fit_transform(X_test)\n",
|
|
"lin_reg = LinearRegression() # or Lasso if regularisation is needed\n",
|
|
"lin_reg.fit(X_train_model, y_train)\n",
|
|
"y_pred_test = lin_reg.predict(X_test_model)\n",
|
|
"print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n",
|
|
"print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.10.6",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "a2eff8b4da8b8eebf5ee2e5f811f31a557e0a202b4d2f04f849b065340a6eda6"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|