tracking-parametrisation-tuner/moore_options/get_calo_data.py
2024-02-26 16:18:03 +01:00

165 lines
5.3 KiB
Python

# flake8: noqa
from Moore import options, run_reconstruction
from RecoConf.hlt2_tracking import (
make_hlt2_tracks,
get_default_out_track_types_for_light_reco,
convert_tracks_to_v3_from_v1,
get_global_ut_hits_tool,
)
from RecoConf.hlt1_tracking import make_all_pvs
from RecoConf.event_filters import require_gec
from RecoConf.mc_checking import (
get_track_checkers,
get_fitted_tracks_checkers,
check_tracking_efficiency,
make_links_lhcbids_mcparticles_tracking_system,
make_links_tracks_mcparticles,
get_mc_categories,
get_hit_type_mask,
)
from RecoConf.calorimeter_reconstruction import (
make_photons_and_electrons,
make_clusters,
make_acceptance,
make_track_cluster_matching,
make_digits,
make_track_electron_and_brem_matching,
make_trackbased_eshower,
)
from Moore.config import Reconstruction
from PyConf.Algorithms import (
PrFilterTracks2CaloClusters,
PrMatchNNv3,
PrFilterTracks2ElectronMatch,
PrFilterTracks2ElectronShower,
fromPrMatchTracksV1Tracks,
fromV3TrackV1Track,
)
import Functors as F
import glob
decay = "BJpsi"
options.evt_max = -1
options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_{decay}_filter_shower_dll_NegFive_mlp_NullFive.root"
if decay == "B":
options.input_files = glob.glob("/auto/data/guenther/Bd_Kstee/*.xdigi")
elif decay == "BJpsi":
options.input_files = glob.glob("/auto/data/guenther/Bd_JpsiKst_ee/*.xdigi")
elif decay == "D":
options.input_files = glob.glob("/auto/data/guenther/Dst_D0ee/*.xdigi")
elif decay == "testJpsi":
options.input_files = [
"/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi",
"/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi",
"/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi",
]
elif decay == "test":
options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"]
options.input_type = "ROOT"
options.dddb_tag = "dddb-20210617"
options.conddb_tag = "sim-20210617-vc-md100"
options.simulation = True
def standalone_hlt2_fastest_reco():
hlt2_tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True)
digisEcal = make_digits(calo_raw_bank=False)["digitsEcal"]
ecalClusters = make_clusters(digisEcal)
tracks_v3, trackrels = convert_tracks_to_v3_from_v1(
hlt2_tracks["Seed"]["v1"],
track_types=["Ttrack"],
)
# track acceptances
tracks_incalo = make_acceptance(tracks_v3)
tcmatches = make_track_cluster_matching(ecalClusters, tracks_incalo)
PhElOutput = make_photons_and_electrons(
ecalClusters, tcmatches["combined"], make_all_pvs()["v3"]
)
photons = PhElOutput["photons"]
electrons = PhElOutput["electrons"]
eshower = make_trackbased_eshower(tracks_incalo, digisEcal)
tcmatches_e = make_track_electron_and_brem_matching(
tracks_incalo, tcmatches, digisEcal, electrons, photons
)
# filter with calo clusters
calo_matched_seeds = PrFilterTracks2CaloClusters(
Relation=tcmatches["Ttrack"],
Cut=F.FILTER((F.MIN_ELEMENT_NOTZERO @ F.FORWARDARG0 @ F.WEIGHT) < 20),
).Output
# corrections on track (bit better for elec?)
# Cut=F.FILTER(F.ALL) ).Output
electron_matched_seeds = PrFilterTracks2ElectronMatch(
Relation=tcmatches_e["Ttrack"]["ElectronMatch"],
Cut=F.FILTER(F.MIN_ELEMENT_NOTZERO @ F.FORWARDARG0 @ F.WEIGHT < 20),
).Output
# should be best; shape of shower etc; E/p statt chi2; DLL even better? GET(1)
# Cut=F.FILTER(F.ALL)).Output
shower_matched_seeds = PrFilterTracks2ElectronShower(
# Relation=eshower["Ttrack"], Cut=F.FILTER((F.GET(0) @ F.WEIGHT) > 0.7)
Relation=eshower["Ttrack"],
Cut=F.FILTER(((F.GET(1) @ F.WEIGHT) > -5)), # & ((F.GET(0) @ F.WEIGHT) > 0.5)),
).Output
matched_seeds = {}
matched_seeds["v3"] = shower_matched_seeds
matched_seeds["v1"] = fromV3TrackV1Track(
InputTracks=matched_seeds["v3"]
).OutputTracks
matching_params = dict(
MinMatchNN=0.5, # NN response cut value
)
calo_long = PrMatchNNv3(
VeloInput=hlt2_tracks["Velo"]["Pr"],
SeedInput=matched_seeds["v3"],
AddUTHitsToolName=get_global_ut_hits_tool(),
**matching_params,
).MatchOutput
match_tracks = {}
match_tracks["Pr"] = calo_long
match_tracks["v1"] = fromPrMatchTracksV1Tracks(
InputTracksLocation=match_tracks["Pr"],
VeloTracksLocation=hlt2_tracks["Velo"]["v1"],
SeedTracksLocation=matched_seeds["v1"],
).OutputTracksLocation
out_track_types = get_default_out_track_types_for_light_reco()
best_tracks = {
track_type: hlt2_tracks[track_type] for track_type in out_track_types["Best"]
}
data = [
calo_long,
calo_matched_seeds,
electron_matched_seeds,
shower_matched_seeds,
]
# data = [shower_matched_seeds]
types_and_locations_for_checkers = {
"Forward": hlt2_tracks["Forward"],
"Seed": hlt2_tracks["Seed"],
"Match": match_tracks, # hlt2_tracks["Match"],
}
data += get_track_checkers(types_and_locations_for_checkers)
# data += get_fitted_tracks_checkers(best_tracks)
return Reconstruction("hlt2_reco", data, [require_gec()])
run_reconstruction(options, standalone_hlt2_fastest_reco)