Go to file
2024-03-27 12:24:01 +01:00
arc6_data New Param 2024-02-29 15:54:19 +01:00
data_matching perf selection and eff data 2024-03-27 09:23:35 +01:00
efficiencies perf selection and eff data 2024-03-27 09:23:35 +01:00
env first commit 2023-12-19 13:00:59 +01:00
moore_options perf selection and eff data 2024-03-27 09:23:35 +01:00
parameterisations perf selection and eff data 2024-03-27 09:23:35 +01:00
scripts mod compare 2024-03-27 12:24:01 +01:00
thesis perf selection and eff data 2024-03-27 09:23:35 +01:00
.gitignore added sample 4 files 2024-02-25 12:09:04 +01:00
.gitlab-ci.yml first commit 2023-12-19 13:00:59 +01:00
.pre-commit-config.yaml first commit 2023-12-19 13:00:59 +01:00
electron_main.py perf selection and eff data 2024-03-27 09:23:35 +01:00
LICENSE first commit 2023-12-19 13:00:59 +01:00
main_tracking_losses.py first commit 2023-12-19 13:00:59 +01:00
main.py New Param 2024-02-29 15:54:19 +01:00
README.md readme 2023-12-19 13:05:56 +01:00
setup.sh first commit 2023-12-19 13:00:59 +01:00
tuner.code-workspace fixed calo filter 2024-02-22 15:39:31 +01:00

Parameterisation Tuner

This project provides utils for producing magic parameters used by the pattern recognition algorithms in the Rec project. Typical parameters are coefficients for extrapolation polynomials and weights for TMVA methods. This is based on this repo by André Günther.

Setup

There's a bash script for setting up the necessary (python) environment. Simply do:

chmod +x setup.sh
./setup.sh

This will install dependencies like ROOT and Jupyter. To enter the environment do:

source env/tuner_env/bin/activate
conda activate tuner