tracking-parametrisation-tuner/parameterisations/parameterise_track_model_electron.py
2024-02-23 16:00:50 +01:00

258 lines
8.0 KiB
Python

# flake8: noqa
from parameterisations.utils.parse_regression_coef_to_array import (
parse_regression_coef_to_array,
)
from parameterisations.utils.fit_linear_regression_model import (
fit_linear_regression_model,
)
import uproot
import argparse
from pathlib import Path
def parameterise_track_model(
input_file: str = "data/param_data_selected.root",
tree_name: str = "Selected",
) -> Path:
"""Function that calculates the parameterisations to estimate track model coefficients.
Args:
input_file (str, optional): Defaults to "data/param_data_selected.root".
tree_name (str, optional): Defaults to "Selected".
Returns:
Path: Path to cpp code files containing the found parameters.
"""
input_tree = uproot.open({input_file: tree_name})
# this is an event list of dictionaries containing awkward arrays
array = input_tree.arrays()
array["dSlope_fringe"] = array["tx_ref"] - array["tx"]
array["dSlope_fringe_abs"] = abs(array["dSlope_fringe"])
array["yStraightRef"] = array["y"] + array["ty"] * (array["z_ref"] - array["z"])
array["y_ref_straight_diff"] = array["y_ref"] - array["yStraightRef"]
array["ty_ref_straight_diff"] = array["ty_ref"] - array["ty"]
array["dSlope_xEndT"] = array["tx_l11"] - array["tx"]
array["dSlope_yEndT"] = array["ty_l11"] - array["ty"]
array["dSlope_xEndT_abs"] = abs(array["dSlope_xEndT"])
array["dSlope_yEndT_abs"] = abs(array["dSlope_yEndT"])
array["yStraightOut"] = array["y"] + array["ty"] * (array["z_out"] - array["z"])
array["yDiffOut"] = array["y_out"] - array["yStraightOut"]
array["yStraightEndT"] = array["y"] + array["ty"] * (9410.0 - array["z"])
array["yDiffEndT"] = (
array["y_l11"] + array["ty_l11"] * (9410.0 - array["z_l11"])
) - array["yStraightEndT"]
stereo_layers = [1, 2, 5, 6, 9, 10]
for layer in stereo_layers:
array[f"y_straight_diff_l{layer}"] = (
array[f"y_l{layer}"]
- array["y"]
- array["ty"] * (array[f"z_l{layer}"] - array["z"])
)
model_cx, poly_features_cx = fit_linear_regression_model(
array,
target_feat="CX_ex",
features=["tx", "ty", "dSlope_fringe"],
degree=3,
keep_only_linear_in="dSlope_fringe",
fit_intercept=False,
)
model_dx, poly_features_dx = fit_linear_regression_model(
array,
target_feat="DX_ex",
features=["tx", "ty", "dSlope_fringe"],
degree=3,
keep_only_linear_in="dSlope_fringe",
fit_intercept=False,
)
# this list has been found empirically by C.Hasse
keep_y_corr = [
"ty dSlope_fringe_abs",
"ty tx^2 dSlope_fringe_abs",
"ty^3 dSlope_fringe_abs",
"ty^3 tx^2 dSlope_fringe_abs",
"dSlope_fringe",
"ty tx dSlope_fringe",
"ty tx^3 dSlope_fringe",
"ty^3 tx dSlope_fringe",
]
model_y_corr_ref, poly_features_y_corr_ref = fit_linear_regression_model(
array,
target_feat="y_ref_straight_diff",
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
keep=keep_y_corr,
degree=6,
fit_intercept=False,
)
rows = []
for layer in stereo_layers:
model_y_corr_l, poly_features_y_corr_l = fit_linear_regression_model(
array,
target_feat=f"y_straight_diff_l{layer}",
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
keep=keep_y_corr,
degree=6,
fit_intercept=False,
)
rows.append(
"{"
+ ",".join(
[str(coef) + "f" for coef in model_y_corr_l.coef_ if coef != 0.0],
)
+ "}",
)
model_ty_corr_ref, poly_features_ty_corr_ref = fit_linear_regression_model(
array,
target_feat="ty_ref_straight_diff",
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
# this list was found by using Lasso regularisation to drop useless features
keep=[
"ty dSlope_fringe^2",
"ty tx^2 dSlope_fringe_abs",
"ty^3 dSlope_fringe_abs",
"ty^3 tx^2 dSlope_fringe_abs",
"ty tx dSlope_fringe",
"ty tx^3 dSlope_fringe",
],
degree=6,
fit_intercept=False,
)
model_cy, poly_features_cy = fit_linear_regression_model(
array,
target_feat="CY_ex",
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
# this list was found by using Lasso regularisation to drop useless features
keep=[
"ty dSlope_fringe^2",
"ty dSlope_fringe_abs",
"ty tx^2 dSlope_fringe_abs",
"ty^3 dSlope_fringe_abs",
"ty tx dSlope_fringe",
],
degree=4,
fit_intercept=False,
)
model_y_match, poly_features_y_match = fit_linear_regression_model(
array,
target_feat="yDiffOut",
features=[
"ty",
"dSlope_xEndT",
"dSlope_yEndT",
],
keep=[
"ty dSlope_yEndT^2",
"ty dSlope_xEndT^2",
],
degree=3,
fit_intercept=False,
)
keep_y_match_precise = [
"dSlope_yEndT",
"ty dSlope_xEndT_abs",
"ty dSlope_yEndT_abs",
"ty dSlope_yEndT^2",
"ty dSlope_xEndT^2",
"ty tx dSlope_xEndT",
"tx^2 dSlope_yEndT",
"ty tx^2 dSlope_xEndT_abs",
"ty^3 tx dSlope_xEndT",
]
model_y_match_precise, poly_features_y_match_precise = fit_linear_regression_model(
array,
"yDiffEndT",
[
"ty",
"tx",
"dSlope_xEndT",
"dSlope_yEndT",
"dSlope_xEndT_abs",
"dSlope_yEndT_abs",
],
keep=keep_y_match_precise,
degree=5,
)
cpp_cx = parse_regression_coef_to_array(model_cx, poly_features_cx, "cxParams")
cpp_dx = parse_regression_coef_to_array(model_dx, poly_features_dx, "dxParams")
cpp_y_corr_layers = parse_regression_coef_to_array(
model_y_corr_l,
poly_features_y_corr_l,
"yCorrParamsLayers",
rows=rows,
)
cpp_y_corr_ref = parse_regression_coef_to_array(
model_y_corr_ref,
poly_features_y_corr_ref,
"yCorrParamsRef",
)
cpp_ty_corr_ref = parse_regression_coef_to_array(
model_ty_corr_ref,
poly_features_ty_corr_ref,
"tyCorrParamsRef",
)
cpp_cy = parse_regression_coef_to_array(model_cy, poly_features_cy, "cyParams")
cpp_y_match = parse_regression_coef_to_array(
model_y_match,
poly_features_y_match,
"bendYParamsMatch",
)
cpp_y_match_precise = parse_regression_coef_to_array(
model_y_match_precise,
poly_features_y_match_precise,
"bendYParams",
)
outpath = Path("nn_electron_training/result/track_model_params.hpp")
outpath.parent.mkdir(parents=True, exist_ok=True)
with open(outpath, "w") as result:
result.writelines(
cpp_cx
+ cpp_dx
+ cpp_y_corr_layers
+ cpp_y_corr_ref
+ cpp_ty_corr_ref
+ cpp_cy
+ cpp_y_match
+ cpp_y_match_precise,
)
return outpath
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-file",
type=str,
help="Path to the input file",
required=False,
)
parser.add_argument(
"--tree-name",
type=str,
help="Path to the input file",
required=False,
)
args = parser.parse_args()
args_dict = {arg: val for arg, val in vars(args).items() if val is not None}
outfile = parameterise_track_model(**args_dict)
try:
import subprocess
# run clang-format for nicer looking result
subprocess.run(
[
"clang-format",
"-i",
f"{outfile}",
],
check=True,
)
except:
pass