489 lines
201 KiB
Plaintext
489 lines
201 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import mplhep\n",
|
|
"import awkward as ak\n",
|
|
"\n",
|
|
"mplhep.style.use([\"LHCbTex2\"])\n",
|
|
"plt.rcParams[\"savefig.dpi\"] = 600\n",
|
|
"# %matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"train_tree = uproot.open({\n",
|
|
" \"/work/cetin/LHCb/reco_tuner/nn_electron_training/result_bestprecuts_NozMagCut/matching_ghost_mlp_training.root\":\n",
|
|
" \"MatchNNDataSet/TrainTree\"\n",
|
|
"})\n",
|
|
"test_tree = uproot.open({\n",
|
|
" \"/work/cetin/LHCb/reco_tuner/nn_electron_training/result_bestprecuts_NozMagCut/matching_ghost_mlp_training.root\":\n",
|
|
" \"MatchNNDataSet/TestTree\"\n",
|
|
"})\n",
|
|
"train_array = train_tree.arrays()\n",
|
|
"test_array = test_tree.arrays()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9b4wbeZ7feX6o6u7pcbulYGowZ20KmM5glYFdrG2JzOpHZ8BdSXZ7gQVuPUVKfYfBDXankyz50Z5milTW/hl44SmJWV1aP9oRmVW2BzvYGSlYVXfA4rYtMlWH9QG2u5Khas+DO281Q+qF5PR5p5KhbPd0TXdXxj3QRgz/J5OMZJCZ7xdASEn++IsvI34MMr78/Yl5nucJAAAAAAAAOOHORB0AAAAAAAAAMAskwgAAAAAAAHAqkAgDAAAAAADAqUAiDAAAAAAAAKcCiTAAAAAAAACcCiTCAAAAAAAAcCqQCAMAAAAAAMCpQCIMAAAAAAAApwKJMAAAAAAAAJwKJMIAAAAAAABwKpAIAwAAAAAAwKlAIgwAAAAAAACnAokwAAAAAAAAnAokwgAAAAAAAHAqkAgDAAAAAADAqUAiDAAAAAAAAKcCiTAAAAAAAACcCiTCAAAAAAAAcCqQCAMAAAAAAMCpQCIMAAAAAAAApwKJMAAAAAAAAJwKJMIAAAAAAABwKpAIAwAAAAAAwKlAIgwAAAAAAACnAokwAAAAAAAAnAokwgAAAAAAAHAqkAgDAAAAAADAqUAiDFhArutGHQIAAAAAAAuHRBiwIGzbVqlUUjwe1/r6etThAAAAAACwcL4QdQDASWDbtu7evSvbtuU4jvb29uS6rgzDkGmaWlpaUjKZVCaTUTqd7nt+LpeT4zhqNpvBfa7rqtFo6O7du2o0GvQCAwAAAABgSjHP87yog0D0qtWqCoXCkZ+XTCa7kjeTisViR36OYRhqt9sDH8vlcqrVakeus16vD0xUDeK6rm7evKnNzc0jbyeZTCqdTiuRSKher6tWq/XtSz85Ztt23/Oz2awsyzrydgEAAAAAOM0YGglJUj6fV7vdVrPZVDabHVk2nU6rXq8H5cPgeZ5arZYqlYoMwxhazjRNVSoVtVqtoUkwSbIsS+12e6zEVrFYVLPZVLvdHjsJ5g9R7E2C+Qkqvz7/ddXrdeXz+eC12batzc1NFQqFIGHX2+PLr8fzPJmmOVZcAAAAAABgOHqEYaBCoaBqtdp3/yx6IjmOo0QiMfCxdrs9MlE2TCqVGtizqlKpKJ/PHym2TCYjx3G67s/n86pUKmPVsbm5qVKp1He/aZpqtVoDn9N7POgRBgAAAADA0dEjDAMNGyY5yfDJozJNU8lksu/+bDY7URJMGh73UZJgjUZDiUSiKwlmGIaazebYSTDpeQ+0VqvV91r29vaGPmfS1w0AAAAAAP4CiTAMNGwo3qyG6A3azjTbHvTcoySXbNtWJpPpe/729vbApN048Tx69KgrBibDBwAAAADgeJEIw0DDkkRLS0uzDWQOOI6jtbW1vvsty5ooCebze5OdRLVarW/4KP5Co9GIOgQAAAAAOJVIhGEuDUq4nT9/PtT6xk3q5XK5vt5a+Xx+7In1RzFNU8Vicep6ZsW2bRUKBSUSCcViMcXjcSUSCaVSqWClzlqtpvX19UOTPY1GI3j+SU8MOY6jarWqTCajWCzW17swaqfpWAAAAAA43b4QdQDAPGs0GgMn2S+Xy6FtY2NjI1h90nXduZwPzHVdra+vBytcmqYZrC7qOI5s25Zt28Hj/nNG8ROMruuqUCgMXShgkTmOo1wuJ8dx5nro62k4FgAAAAAg0SMMGGnQJPvTTNo/iGEYR5q0Pwp+by/p+UqbrVZLlmXJsiw1m021Wq2+HnKHJVNOwzBb0zTVbDbVbrfnuuffaTgWAAAAACCRCAOGajQaA+e52tjYCH1buVxO0uiVI0dpNBrK5XJdQxYzmYyq1erUsW1ubgbD5YrF4sCknWmaqtfrXT3lDpsjrFKpyDRNmaYpy7KmjnPezdtwyE6n7VgAAAAAOL0YGgkMMSwhMM0E+cOk02mVy+Uj98xxXVdra2t9wzdd11Wj0VCj0VC5XJ5qYv+bN28G/x/UQ65TsVjUp59+qs3NzUOTeul0+lQNwYuq11WhUFClUhlZ5rQdCwAAAACnFz3CgCEGTRoexgT5wxSLxSMNuXQcRysrKwPnMOstl0qlJpoEfZK5rcrlspLJJKtGzoFqtRpKr0AAAAAAOClIhAEDOI4zMJFzHL3BJuG6bjDBeTabVaVSUbPZVL1eHzoXVSaTOXJyqjcJNm4ybWNjY64nhz8NHMc5tAcfAAAAAJw2DI0EBhiWMEokEjOOZDA/IVWv1/t6qaXTaRUKhYGJr1wup2azOfZ2TNPs+rtUKunKlSuH9lzzV5Sc11UwTzrXded6TjIAAAAAiAo9woABhiXC5ml1vUFJMJ8/eX0v27aPNETSMIyuRJbrukqlUmP1LPM8jyRYBPx54xiaCgAAAAD9SIRhYZRKJcVisYluqVTqSNsaNqxvXhI7hmEcOl+ZaZpdqzj6Bt03Sm95x3GUSCRCmXvKtm0VCoVDe9q5rqtqtapUKtW1XX/4XzweVywWUyKR0ObmZt/zHcdRqVQKVtVMJBIqFAoDj7O/nd421CuTyQT1dd7CHBJarVa7thOPx5VKpQa+Run5/hw0b1xnfMP29bjHwue6rjY3N5XJZIL978dXKpXGSsQ5jqPNzU0lEomumDuPQSKRCIYBAwAAAMDUPGAISX23drs9k23n8/mB2w/zZprmkbdfr9dn8vp7FYvFrjjS6fTYzzUMo+91HFU6nR64P5LJpNdsNo9UV7PZ9PL5fFdchmH0lWu32165XPaSyWTXNiuViud5/fuk85bP54N6RpUzTXNom+5tA8OUy+Wx3iPNZnPsY2BZVrBfLMvqqsM0zaGxt9ttr9ls9sXUbDa7bp31jXMselUqlaB8uVz2ms2m12q1PMuyuo5XNpvte2673faKxWLwOjpjbLfbfce7M65Wq3VobAAAAAAwCj3CsDDy+byazeZEt0qlcqRtDev5NS+9Uo7SM21Qz7HDVprsVa/Xg3m/eutJpVJj99hxHEd3794du9dRMpnsm/C92WwqlUrJtm1ZlqVWq6V2u921SEC1WpVt28pkMmo0GqrX62q322q326rX68H+cxxHN2/eHLjtXC43VoyD9ss0Go1GsO2NjY2u+pPJpCzLkvQ89vX19a7nGoahZDLZt6iDf1/nY0c9Fr5SqaRCoSDDMNRqtVQsFpVMJmWaprLZrJrNZhBzrVZTIpHoaht7e3vKZDJ97XJnZ0crKyvBsN5Wq6VKpRIcK9d1mfwfAAAAwPSizsRhfmnOeoSVy+WJ6+vtjaNDeoT19qjxb35vpFnr7dU0qKfNMH7vojBex7D9Mkm9nXUd1gupt5fQsJ55vT3XOnuGdercJ8O2Xa/Xx+rB1W63Q+0Rls1mD23zh9Uzbuy+cY9FZ0+ww451Z4+vYT0YO2M0DGPgce1tv7M6BwEAAAA4megRBgww7z3CjqJ35Udp8tdRLBbVbreH9oLyV6scp/5BcQ3TuUhBPp8fOj9a70qJw3oCdsbvuu7cHtdh7bDz/jAmxR/3WJRKpWD7+Xx+rLLS815ugxZp6HwdW1tbA49rb1vb2dkZK1YAAAAAGIREGDDAsMRAq9WacSTTG5RM+fTTT6eqz7IsNZvNviF40vOkx9raWqjJpXGHgnYet6MMH52nFRa3trZULpdlWdahySZpdsnZarUabGucxFk+n+86BkddpKFT5/bm6VgBAAAAWDwkwoABhvU4GtSrZd4NSlqcP39+6nqTyeTQ+dds2+6bv2oWJl3Vc29vL9xApmAYhorF4tA52Y46v1tY6vV68P9xe5B1vo8W8b0DAAAA4OQhEQYMMai3k+M4czuM7iiOMizxMPl8Xq1Wqy8JVavV5jr5MWnSbNYcx1G1WlWj0Rg4Ef4s4ziq3nZ2Et47AAAAABYbiTBgiKtXrw68f56TO8P0Jn3CTIT59TWbzb7tHHW1TvwFf9XLSqUycl60WelMYo2bFOtdkXKeet4BAAAAOJ1IhCEStm0rl8tFHcZIw+ZnWsTkTm9PnHF6FTUaDaVSqbG3YZqmtra2uu6LahjfoisUCkqlUjJNc6q5tcI0yQT9nYscSOEnYAEAAADgqEiEIRLr6+tzP0zKMIyB8zQ1Go2FSvD07udxexaZpinbto/UA653fzGx+dEVCgVVq1VJ000wH7bOJNa4K2129gAjCQYAAABgHpAIw8z5iaRMJjO0TNhDqCatb1giolQqTRPOQMeVGNzZ2en6u1AojPU8P3ExbvlBoprPapbCbKu2bQdJMNM052oes96hwn6co3SusjooqQwAAAAAs0YiDDPlum4wJPKoF8affvppqLGMk8AYNjSt0Whoc3MztFgcx1EqlZoq6TRM72p/R9nvpmnKcZyxE3+9PcCGzbO2CHqH9Q1LVIbZ662z992oeqPoTZnNZrsSc+MMEe58PRsbG8cRFgAAAAAcCYkwDHQcF9qu62ptbU2u68owjCMPlQo7pnHrKxaLA4cTlkqlUCbObzQawaTixzEUrlarBf8/6vxm/jHa3NwcqwdQZ/2maapYLB5pe8OMe6w6yx32nMMe7+3NNuj1D0oShtlDrPPY+cbZXu97qzepNul7qXMOOMdxRrZ/27aDIcTlcnmuercBAAAAOL1IhGGgYb1RJr3I9yde9y+Mr1y5cuTtT5NgmLbXTr1eH9iTKpPJTNwzzHVdFQoFZTKZoasujnruOKrVavDaJ1l5sDOhUigUVCgUhm67Wq127YvOnmiDdB7PqOeLG7b9zv1VKpVUKBTUaDRUq9VUKBSUSCT6kjzjvncGbbM3+ZbL5bS5uRn0QEwkEnIcp+u4VCoVNRoNlUqloM7eRJh/3BzH6ZqDbFBso45FNpvtStbmcrmB5V3X1fr6uqTn7W5YQnTc4965T6NuKwAAAAAWnAcMkM/nPUl9t3Q67bVarUOf3263vXq97hWLRc80zb56LMsa+txWqzVw25K8drs90etJJpMD66tUKkeqp1gsDqwnmUx69Xp9rDra7bZXLpc9wzCCfXrY6+rdrmEYh26ncz+m0+mxYutVqVQGvt5sNusVi0WvUql4+Xy+6xiP20Z6j8mwNtFut/v29TDZbHas41uv17vK5fP5odv2j1PvzTCM4Jh3lkkmk16r1eo7puPG1luu81Yulz3PG/z+zGazXfUMa6uDXuu4x8JnWVbwmg3D8CqVitdqtbxWq+VVKpWgPfjxDjLuMegtN2lbBgAAAADP8zwSYejSbDZHXoiHdRuU+Gm3216lUhmaeJDkmabpVSqVsRNizWbTS6fTI2MpFotjJW589Xp9aGLNMAwvm816lUrFq9frXrPZ9Or1ulepVLxyudz1PMMwDk04+AYlB03THJp860xU9CZIjqJerwdxWpbl5fN5L51Oe8lksus4+a/7sGSg376GHeNkMhkkT0aVNU3Ty2azQTvoTcb1Jk78Ouv1+tD2YJrmwGRMu93uqj+ZTHrFYrGrjH9fbztqt9uHvt5B2yyXy8H2TNP0isViV5tvt9vB6+jcZ706E9HJZLKrvR3lWAxTqVS8dDrdlRTznzfsPTrqPdl5DFqt1shyh8UGAAAAAIPEPM/zhFOvWq0ey0TtgySTSTWbza77YrHYkesxDEPtdnvgY7lcbuD8Soep1+tjDx+s1Wq6efNmMNxzXKZpqlAoKJ/PH2neJH8+qt7XZRiGVldXZRiGXNfVzs5OMA+bZVlHHg4JAAAAAMBJRSIMmJLrumo0Grp7964cxwnmYpKeJ738hQFefvllZbPZIy8ScNj2/G3621ldXVUulyMBBgAAAABADxJhAAAAAAAAOBVYNRIAAAAAAACnAokwAAAAAAAAnAokwgAAAAAAAHAqkAgDAAAAAADAqUAiDAAAAAAAAKcCiTAAAAAAAACcCiTCAAAAAAAAcCqQCAMAAAAAAMCp8IWoA0D0vvKVr+izzz7TCy+8oF/91V+NOhwAAAAAAHCC/dt/+2/1+eef68tf/rJ+8pOfzHTbMc/zvJluEXPnhRde0MHBQdRhAAAAAACAU+TMmTP6/PPPZ7pNeoQhSISdOXNGFy5ciDqcI9vd3V3o+KXFfw3EHy3ijxbxR4v4o0X80SL+6C36ayD+aBF/tIg/Wn78L7zwwsy3vXCJsMePH8u2be3t7cl1XX366aeSpPPnz8swDJmmqdXVVZ09ezbiSBfHr/7qr+rp06e6cOGCnjx5EnU4R3bx4sWFjl9a/NdA/NEi/mgRf7SIP1rEHy3ij96ivwbijxbxR4v4o+XHH8X0TAuRCHv//fdVr9d17949ua471nNM01Q6nVYul9Mrr7xyvAECAAAAAABg7s11Iuydd95RuVyW4ziSpM7pzGKx2MDn+GVarZYcx1G1WpVpmrpx44Z+67d+6/iDBgAAAAAAwFw6E3UAgzx48EAvvfSSCoXCwCSY//eg26AyjuMon8/rr/7Vv6of/OAHM3sdAAAAAAAAmB9z1yNsY2NDm5ubfUmtdDqtZDKp8+fPyzRNGYYhSVpaWpIk7e3tSZJc15XjOPr000/lOI4ajUYwnPKHP/yhksmkSqWS3nzzzZm9pkWxu7urixcvjixz/fp1Xb9+fUYRAQAAAACARXL79m3dvn17ZJnd3d0ZRdNvbhJh+/v7WltbU7PZlPQ88ZXJZJROp3X58uWp6n727Jnu3r2rarUq27ZVLpfVaDTUaDSYVL/DwcGBnj59OrLM/v7+jKIBAAAAAACLZn9//9DcQpTmIhH28ccfa21tTe12W/l8XqVSSSsrK6HVf+7cOeXzeeXzeTmOo0KhoO3tba2urqrZbOqrX/1qaNtaZOMsu0riEAAAAAAADHP27FktLy+PLLO7u6uDg4MZRdQt8kTYw4cPlUqllEwmtbOzE2oCbBDTNFWv19VoNJTL5ZRKpbSzs0OCR1rYZVcBAAAAAMB8GGdKpYsXL0bWayzSRNijR4+0trambDare/fuzXTb6XRajx49UiqV0pUrV/S9731vptsHOl2/fl37+/sLm5Alfkxj0fc/8WMai77/iR/TOAn7f9Ffw6LHv+gWff8TPxZVzOudlX6GXnzxRaXTad25cyeqEOS6rlZXV3Xt2jX99m//dmRxRMnPxC4vLy9kj7BFjx+YFu8BnGa0f5xmtH+cdrwHcJotevuPMv7IeoTduHFDpmlGmgSTJMMwtLOzI9M0tba2pkuXLkUaDwAAAAAAAI7Hmag2fP78eVmWFdXmuxiGoe3tbTmOE3UoAAAAAAAAOCaR9Qh7/fXXo9r0QJcvX9bly5ejDgMAAAAAAADHJLIeYbN27dq1qEMAAAAAAABAhE5NIqxarerx48dRhwEAAAAAAICInIpE2Pb2tjzP03vvvRd1KAAAAAAAAIhIJHOEvfbaa3r06NGxb2dvb0+u6waT4N+5c0e//du/fezbBQAAAAAAwPyJJBFmGIbq9bpisdixbsfzvK6/HcfRxx9/rEuXLh3rdjFb169f1/7+vs6ePRt1KEAkeA/gNKP94zSj/eO04z2A04z2P7mY15stmoGHDx8qlUqNnQjzPG/qpJlfR6lU0ptvvjlVXSfNxYsX9fTpUy0vL+vJkydRhwMAAAAAAE6wKPMQkcwRdvnyZZmmKel5guqwWywWG6vcsJvP8zxZlhXFSwYAAAAAAEDEIpssf21tTZLUaDR0cHAw9FYul+V5npLJpOr1utrt9sjyvbednR2trKyoUCjo4OBAn3zySVQvGQAAAAAAABGKZI4wSbpy5Yps29Yrr7wytMyjR49048YNFQoF/f7v//5E20kmk7p//75efPFFxWIx/Xf/3X83acgAAAAAAABYYJH2CIvH4yPLlMtlmaY5cRLMZ5qm1tfXValU9OGHH05VFwAAAAAAABZTZIkwSbp///7Ix3d2dlQoFELZ1urqqjzPU6VSCaU+AAAAAAAALJZIE2GHsW1byWQylLqWlpYkSfV6PZT6AAAAAAAAsFjmOhFmGIYePXoUSl1+Asx13VDqAwAAAAAAwGKZ60TY6uqq7ty5M3U9z549U7ValfQ8uQYAAAAAAIDTZ64TYfl8Xs1mU2+//fbEdezv7yudTkuSYrGYTNMMKzwAAAAAAAAskLlOhGWzWa2srKhYLOrb3/62Hj9+fKTnv//++1pZWZFt28F9V69eDTlKAAAAAAAALIKY53le1EGM4jiOXnzxRcViMUlSMplUoVCQaZoyTVNf+9rXJEmPHz+W67pyHEf1el337t2T67ryPE+xWEye5ykej+vTTz+N8NXMp4sXL+rp06daXl7WkydPog4HAAAAAACcYFHmIeY+ESY9Xz1ydXVVkoKE2GH8l9VZvl6v65VXXgk/wAXnN8AzZ87owoULI8tev35d169fn1Fk4fA+++nA+2Nf/uUZRwIAAAAAwMl2+/Zt3b59e2SZ3d1dHRwcRJII+8JMtzahZDKpH/7wh8rlcnr48OFYz/ETYH5CzLIskmCHODg40NOnT0eW2d/fn1E04dn/jf944P3natszjgQAAAAAgJNtf3//0NxClBYiESZJpmmq2WyqVqvp1q1bXfN+Sf2JL//fbDarra0tnTt3brYBL6BxeoSdPXt2RtEAAAAAAIBFc/bsWS0vL48s4/cIi8JCDI0c5NGjR2o0Gmo2m3IcR3t7e5KkpaUlmaapTCajdDpNAmwMJ32OMH9o5OePf6if/Jf/ub7y9/+BXvjaiwyNBAAAAAAgAlHmIRamR1ivlZUVra+va319PepQMOf8hFfsS78U/EsSDAAAAACA0+dM1AEAAAAAAAAAs3AiE2EbGxv60Y9+FHUYAAAAAAAAmCMLlwh7//33de3aNb388st6//33B5ZJpVK6fPmyvv3tb5MQAwAAAAAAgKQFSoR997vf1fnz55XL5VStVmXbdjBBfq9sNivHcfTJJ5/INE198MEHM44WAAAAAAAA82buE2HPnj3TSy+9pFKppHa7Lc/zNM5Cl4ZhqNls6tKlS8pms3r33XdnEC3mkffTP9Nnf/SP9JPf25Ak/eT3NvTZH/0jeT/9s4gjAwAAAAAAszT3ibBcLqdWqyVJisViisViR3r+9va2PM9TPp/Xhx9+eBwhYo55P/0z/bvfva4/f+8P5T1zn9/3zNWfv/eH+ne/e51kGAAAAAAAp8hcJ8K2t7fVaDQUi8WCnmDnzp1TOp0euw7DMPT666/L8zwVCoVjjBbz6M//73d14Hwy8LED5xP9+f/j7owjAgAAAAAAUZnrRFilUpGkoEdXq9XS3t6e7t+/P9bwSN+3v/1tSVKr1WKI5Cnzsw+/N/rxB6MfBwAAAAAAJ8dcJ8L83mDValV37tzRysrKRPWYphn8//79+2GFhznneZ68vT8dXWbvT4+UVAUAAAAAAItrrhNhruvKNE195zvfmaqeztUlbdueNiwsiFgsptjSr4wus/QrR553DgAAAAAALKa5ToQZhqFkMjl1PX7yy/M8OY4zdX1YHF/6xt8e/fgrox8HAAAAAAAnxxeiDmAU0zTluu7U9dy8eTP4v2EYU9eH+fPZ3T8YeL/3+eeKGUvy3L2+x2LGkrxffD7wuV+++puhxwgAAAAAAKI11z3C1tbWtLOzM1Udb731lmzbDoa/dc4XhpMv9sUv6ot/61t64d//69Ivffn5nb/0Zb3w7/91ffFvfUuxL34x2gABAAAAAMDMzHUibGNjQ+12W2+//fbEz79x44ZisZg8z1MsFtPVq1dDjhLzLvbFL+oL/+ElffFvrkmSvvg31/SF//ASSTAAAAAAAE6ZuU6EGYah119/XcViUW+88Yb29/cPfc7+/r7eeecdvfTSS9rc3OxbETCfzx9XuAAAAAAAAJhjcz1HmCSVy2XZtq1bt26pXC4rk8konU5LkprNppaWlrS3t6dWq6VGo9E1Mb6krhUB79y5o7Nnz87+RQAAAAAAACByc58Ik6R6va5CoaCtrS3V63XV63XFYjFVq1VVq9Wusr0JMP/vSqWi9fX12QaOueD94ufP//38F8G/3i9+rtgXGBoJAAAAAMBpshCJMOl5IqtQKKhUKml7e7vvcT/x5c8H5ifA0um0KpWKVlZWZhov5sfPPvijrr9/8eE/kST9Uu7/GkU4wNy49eGDqENYSDe+8UrUIQAIWaPRCEYcAACAk22u5wjrlUwmVa/X1Wq1VKlUlM1mlUwmZZqmzp07p5WVFV2+fFnZbFaVSkXtdlv3798nCQYAwAw1Gg3F43ElEgk1Go0Tv10sHsdxVK1WlclkFIvFlMlkog4JJxTnJQCYPzGvdzZ5nDoXL17U06dPtby8rCdPnkQdzkQ+u/sHQx/zh0b2GjU08stXf3PqmIB5R4+wydAj7HDxeFyu60qSTNNUq9U60dvF4nAcR7lcTo7jBG3Fx1diHAfOSwAwWJR5iIUZGonjt7u7q4sXL44sc/36dV2/fn1GEYWDucAAYLaWlpb6kgwnebtYHKZpqtlsSpJKpZI2NzcjjggnHeclAKfR7du3dfv27ZFldnd3ZxRNvxOZCHv8+LFs25ZhGFpdXWWlyDEdHBzo6dOnI8vs7+/PKBoAwKLy5/WUJMuyTvx2sZgymQyJMBw7zksATqP9/f1DcwtROlGJsMePHyuXy8m27a77U6mULMvSr/3ar0UU2WI4c+aMLly4MLIMSUUAmA+FQkGVSiXqMAZKp9ORDP+JartYTEtLS1GHEIp5PheA8xKA0+ns2bNaXl4eWWZ3d1cHBwcziqjb3M8R9s1vflPtdjvoUry3t6d0Oq27d+92lXv48KHS6bRc1x04x8OZM2dUr9f1jW98YxZhL5STPkfYJJgjDKcBc4RNZh7mCKtWqyoUCsxpBEzBtm2lUqng70V8P3EuAAAsqijzEHO/aqRhGGo2m/r000+Vz+e1s7PTlwR79uyZ1tbW1G63JUmxWCx4bjqdlmmaOjg4UC6Xm3n8AACEyXGcYJgNgNOLcwEAAJOZ+0SYbdsqlUra29vT66+/rpWVlb4y6+vrcl1XsVhMnufJ8zyVy2Xt7e3p/v37+uEPf6j79+/r4OBAb7zxRgSvAgCA6bmuq0wmE3UYACLGuQAAgMnNdSLsrbfeUjKZ1M2bN4eWee+991Sr1YIkWCwWU7lc1uuvv95VLp1O69atW8FKQQAALBLXdbW2tibHcaIOBUCEOBcAADCduU6EVavVQ3twra+vB0MhY7GYkslkXxLMd/XqVe3s7IQeJwAAx8m2ba2srPQtBhOLxYJbIpHoe57ruqpWq0qlUsFFs+M4ymQywXMajcbAbVarVWUyGSUSCcViMcXjcaVSqbFX2bNtW4VCYWBcnRzH0ebmphKJRNfr8+P248zlcsF8ofO43d7nx+PxoI5CoTB0P0+j0WgExygejwc3/75xYp30GHe2rWq1GtzvD9frfP2D6nMcR6VSKdi2v58O29eu6wbHrbNNd9bl74Pe90sYXNft2pYfe6lUCn1bgxz3uaCz/XfeenW2m87bOMfvuPffcbSRWZ0PJz1nT3suAIDTZq4nyz9z5szIVQSuXbumSqXS1Rus2Wzq0qVLQ5+ztLSkvb29Y4h2cTFZfj8my8dpwGT5k4lisnzXdeU4jhqNRtcFY28v52QyKdd11Wg0VKlUui6YWq1W0JOk82LVNM2uFc1qtZpyuZwMw9DW1pay2ayk5xdyuVxOjuPINE01m00ZhtG1fdu2ValUdO/evWAbhmEEc3h2vp6bN2+qVqt19WppNpsyTVNra2sDL1D9eUNN05yL7XZyHCdYubpcLiubzQYX336dhmHoypUrMgxD58+flyTl8/m+/TiOXC6nWq2mSqWifD4f3F8oFILEVLvdHlj3pMfYv0i/e/du137yYyiVSkMTA/l8PljZcFS5Qdut1WoyTbOv/bdarSDmYcrlsorF4sDHjjpZfrVaValUUjqd1ssvvyxJqtfrwfvMNE1ZlqVkMjmynmnM6lzQ2Y6k4ftmc3OzK45hbU463v13XG1kVufDac7Z05wLACBKTJY/hGmaevz48cDHHj582JcEy+fzI5NgDx8+1Orq6vEECwDAMTEMQ8lksu8C0b+v87F79+7po48+6vvRx0/U5PP54GLOr9vXaDSCC8aNjY2ucslkUpZlBXWtr6/31X/37t2xeh/s7e0pk8konU533b+zs6OVlRWZpql6va5Wq6VKpRLE6Lpu3+TgUW23l9+7xL+oNk1T6XRa29vbQQLNTyT5yQN/DtSj2tzcVK1WU7FY7LrwldR3MdxrmmPsl+ndF81mU6lUSrZty7IstVottdvtruRCtVqVbdvKZDJqNBqq1+tqt9tqt9uq1+vBvnYcp29KjGw2q2Qy2XfcKpWKcrmcstmsKpWKKpVK1+uRRifdjqJQKKhQKMiyLFmWpWKxqGKxqHq9rnK5HMTe2ZPnOMzqXDDuAlO9+3uY495/x9FGZnU+nOY4TXMuAIDTbK57hH3zm9/U6uqq3nzzza77nz17FnxQ+t21TdPUJ598MrK+7373u7p8+bLW1taOLeZFRI+wfvQIw2lAj7DJRNEjzOcPf/GN+gjv7e3iJ3n8pEytVlO9XlepVAru83sWSMN7SXQOkxqnl8igHhDD6jMMQ5Zl9V3M+r0yfMN6N0S13c6eF4P2Se9xa7VaI3uXHcYf8jXsGLmuq3g8PnA7YR1jP/Hlq9frfftPUpD48nX2DOvUua+HHTv/dfl627Svd39Lg4/duD3CqtWqCoWCisVikLTp1TkML51Oq16vDywXluM+F4xbf+8xGbSfZ7n/wmwjsz4fTnKcpjkXAEDU6BE2RD6f161bt/TGG29of39f+/v7ev/997W6uhokwfwPHf9XmWEePnyomzdvkgQDAJwKvRc9hUKh6z6/h8Swi6Nhw2g67x/Wc+MoF1yd9W1tbQ1MpvT24Bg232cU2/V7efXW2SmdTnfFNigRdBT+fr979+7Axw3DGKunzjTHeGlpKfh/Pp8fuP8k9SUbhr32znhd1x1rXjbLsgYe83Q63fe9cJo5qPznjuoV2Pn6G43GXE1kP+25YFpR7r+w2sgszoeTHKewzgUAcNrMdSIsm81qbW1N5XI5mPQxl8up1Wp1JcHu3LkzckjkO++8M/QL2rQ6J7/snfTzKJPrTsKfPBMAgF69F27jfA5ubW2pXC7LsqyxhtQc9+dcp0EXf/Ow3c7k2Kj90XkxOm38fkz+UMNB2y2XywMvwMM6xuPON9QZw1HmKBpnH42qL5vNdm170sWSqtVqsA9c15Vt2wNvvbEcx+IIk5rkXBCWqPffNG1k1ufDSY7TNOcCADjNvhB1AIep1Wr6zne+o/fee6/rfs/zgokrX3311b7nffzxx7p7924wIa4/j9gHH3ygv/N3/s7Ucbmuq/X19aDLdCd/JarNzc2Jxuf3dusehbH/AIBxjJOEMAxj5MTiOJzrugP3tT85uHS0nmuDlEqloHdNo9HQysqKyuVy13eCUT39ZnmMJ52gO4yFjQqFQtDLZ9LX1tlrqHPY2mF6J6+fJ7OcNH3e99+oNhL1+XCc4zTNuQAATrO5T4SdO3dOlmVpe3tb9Xo9+NXo5ZdfVj6f17lz5/qes7W1FXzwrqysaGVlJXjs+9///tSJMNd1x57Ms1AoqNlsHmkYROcqPYeZ1XLdAIDTx1+dzp/4Hf16F+GpVqtDL559nUmxSeTzedXr9eDHOH8y/3K5HKxYOa55OsaGYYTay7A3ATAsSTmK30somUzOdXJrXs37/jtKG5mn94ovzHMBAJwmc58I862trY09v9f6+vrAlY7C4i+XnEwmtbGxEazOY9u2Pvroo76VZ6rVqjKZzNgfRr2rJQ3TO+cIAABhsG1bpVJJyWRy6OTWeM4wDJXL5eCHqZs3byqfz/ddTPtz+CSTyVAuTi3L6pqEW/qLVebS6fShcz6dhmMcxnekzmF9OLp533/jtJF5f69Mey4AgNNorucIm0fValWNRkPFYlHNZjOYX8A0TWWzWZXLZbVarb5lrcdNzPlzKfhLSo+6HbZAAAAAR1UoFJRKpWSa5lxe9M2jztXw/F7j/hxHrutqc3NTtVpN2WxW29vboW633W73JdYajYYSicTQ4Vun9RhPMyTQcZy5TeYsgkXZf71tZFHeK5OeCwDgtDpVibDHjx9PXUe5XFY6nR75YWiaZl+SynXdsSb+9Ce09Lcz6jbLOR4AACdfoVAIhufP80XfPCoWi2q1WpKez2+Vy+UUi8WUSqX00UcfqdlsyrKs0D+7DcOQZVlqNpt9w7UG9aQ/Tce4cwqL3h8oJ3Hv3r2p6zjN5nH/jWoji/ZeOeq5AABOs1OVCMvlclM937ZtOY4zVk+sQb8cHfZrjD+xP/N+AQBmzbbt4KLPNE1+bJlAoVBQpVJRu91Wu92W53lqtVqyLCuURIxv0PeZZDKper3eNSep67pdi/qctmPcmeS4evXqRHV0JhSOkgwZdy7ZRXfYogbzvv+GtZFFea9Mei4AgNPuVCXCpv1AvXv37sB5P4bp/TXm008/HVn+5s2bMgxDV65cmTREAAAm0tlredTn5SIMb5o1fzhkJpOZyWrOoy5o8/l812T9nYmK03aM/XnZpMlX2e5MNDiOE6zQd9hzFn0e16Wlpa6/h7WJw75bz/v+G9ZGFuW9Mum5AABOu1ORCNvf39drr7029YfV1atXj/RrVu+vv4lEYmhZ27Zl27Zc11U8HlcikVChUODXGwBAoPfCsPcCrfNzrvcz76ifgYM+f3p7LHNh9Vwul5Nt26H2+jrMqBWmM5lM8P9Rq9tNc4zHbU+j2uSkdY5T3v9eJUmVSmXiHj35fL7rfVetVoNFk3o1Gg2lUinZtt33fdFxHKVSKcViMWUymal/nD3uc0FvWx7U3gaNYuhtL2Htv0mF1UZmcT6c9JwdxrkAAE6byBJhjx490ssvv6zz58/rjTfeGFhmdXVV58+fn+r2wgsvKB6Pj/yQGFcymTzSF6neD7BRv2z1fpg6jhN8WYjFYsGXbADA6dX7OVIoFOS6btDTYtRn3WEXab0XvrlcTpubm2o0Gtrc3FQikZDjOF0xVCoVNRoNlUqlrs+8zm2FlfzovHAe9pwotts5B2gmk1EqlVIul1OhUFCpVNLm5qaq1Wqw2E5YPUh693kn//tCb6+aMI/xcRtnW+vr6wPLOY4TzImUz+eH9gbrfU8M22bnEDPpeVIkkUgokUgok8kok8koHo8rk8nIdV01m82+OgqFQnBc/ITPNI7zXODrTJyUSiUVCgU1Gg3VajUVCgUlEgmVy+Wu78aDElxh7L9JTdpGojofdhr3OE1yLgCA0y6yRFgul1Oz2VS73Va5XNb777/fVyaVSgXzbEx68zxPnudF8Ar7vwwM+yXGcZxDJ9Kv1WpKpVJjdSkHAJxcnUNdGo1G0Iu497HeC+Hei9Fe6XS6b8WxUqmkTCYTXARbltX1WVar1YLeLZ0Xw4MufAfp/eyr1+tTlYtiu4ZhdL1227ZVq9VUrVa1ubkZ7LtCodB1wT9tjyDXdbWystL3Gmu1mkqlkpLJZN+cpmEd494FgHZ2dobG2Tn0TBree2XcY9IrHo8HPej9BE0qlZLruiqXyyPbfe9jwyZzT6fTajabfT+G+t/f/ATnsHLS4KTbtL3+j+tc4Otd3KFarSqTySiXy+nevXuq1+t9321LpVLfCpFh7L9pTNJGojgfTnqcJjkXAMBpF1kizLZtxWKx4O9BXwhfe+01SVIsFuu6jWuS54Sp84vhqLkpTNNUpVJRuVzu60Leq1qtTv0rIgBgcZXLZRWLxeCzwr/I8S+aSqWS4vF4X0/jWq2meDyuXC439McXy7KC1Yul559PxWJR7XY7uLD2VzX2t10ul2VZlmzbVi6XUzwe7+vBnMvllEqltLm5Ken5dwC/J0inarUaTA0gPf9uMKhco9FQIpHQ5uZmZNvtNGiVtlH8HkGT9rDKZrOqVCpaWloKeo4nEgnF43FVKhVVKpWhCYUwjvHKykpXnbZtK5FIKJfLBa/J7zHUe3HuJwT9fdhoNMY6JoP47d5xHK2vrwdtO5/Pq9VqdSWDfK7rBu1lUGzDfnRMJpPBPursLZRMJpXNZtVsNlWv14cmcba2tvrayLTJ0OM8F0jPk7yPHj3q+m6aTCaD9uK/Hr8NtVotNZvNgZPLT7v/JjVJG+l87izOh9Mcp2nOBQBwmsW8iLpLFQoFbW1tPQ8iFlOr1dLXvva1vnJLS0t69uyZPM+TYRhaWloa+2Tuuq729vaCL2WxWEyff/55SK/gcP48B5LUarWO1CXZdV1Vq1XdvHlz4BfldDo99q+lh7l48aKePn2q5eVlPXnyJJQ6Z+2zu38Qan1fvvqbodYHzKNbHz6IOoSFdOMbr0QdAuaM67paW1sLLpr9IWqd30E+/fTT4HuJ3wOmWCyGNhfSaeDPo+o76nereeG/Dsuy+nodYTonpY0AwGkQZR7iCzPdWodKpaJMJqOdnR0VCoWBSTDp+dj+7373u7JtW5cuXZp4e6VSSd/97ncnfv5ROY4TJME6f00al2EYKhaLKhaLqtVqfXMc+HMUjPolCwBGIaEDTM+2ba2trWljY6Orx89hE+f78y3h9PF7gjF5OQAA0YisR9i4Hj58qCtXruiTTz6Zuq6lpaWZrXDlT1RqmqZardbU9fm/Nnd2rzYMQ+12e+q6/UzsmTNndOHChanru379uq5fvz51PUdBjzAAwKz5KwG6rnvk+UgbjYbK5XJovbtPg5PS2yeVSunq1av8mHkMTkobAYB5dvv2bd2+fXvqenZ3d3VwcHC6eoSN6/Llyzp37lwodc3qg9C2bVWrVRmGEdoXXMMw1Gw2u4Zb+pPVhvWL4sHBgZ4+fTp1Pfv7+yFEAwDAfPNXa5tk/h3LspTL5cIPCnMtl8sFc00BALCI9vf3Q8kbRGnuE2GStL29HUo9/pxkx219fV3S87jDTr5tbW11TZY/aMWeSYXVI+zs2bMhRAMAwHzzhzb683qOWhinU6FQ0M7OztirwuFkSKVSSqfTzAsHAFhoZ8+e1fLy8tT1+D3CorAQibCweoTNYvXIQqEg27ZlWdah84NMIplMKp1OB1++p11xqNOFCxcWdrJ8AABmLZ1OBysPFgqFoJdXOp0OFvfxJ8h3HEeWZenevXtaXV1Vs9mMOPrF0zu9xaSrbkbFsiyG6R2zRW8jALAIwpoKyZ+iKQpnItlqRPyeWselWq2qWq2qUqkc6ypAvUuMAwCA2etd9a/RaKhQKCiRSCgejysWiykejyuRSCiTyejevXva2tpiXrAJ9fakunnzZkSRTIYk2PFb9DYCAJiNU5UIC7P3VC//y2+lUhl7aMSkOr9ILS0tHeu2AADAcJZlqV6vD/0BzDAMZbNZWZaldrt9rD+UnVSFQkHxeFzVarXr/lqtpng8rlQq1fcYThfaCADgKBZiaOQ09vf3tbe3p2KxeGzdo23bViaTUblcPvYkmNSdCJtkgl4AABCedDodzNfpD4WUFAyPxHQqlQrzqWEk2ggA4CgiSYQ9e/Zs5j2ZPM87ljnCHMfR2tqaisXizFYA2tnZCf7PMEkAAOaHYRgkvwAAAOZYJEMjz507p0uXLsnzvJndjoPjOEqlUsrn82OvAOQ4jjY3N6fabqvVCv4f1oqRAAAAAAAAJ11kc4R9+9vflvR8JcfjXs3xOOp3XVeZTEZXrlw50jLY/mpS0/BXqJpVDzQAAAAAAICTILI5wvxkkOd5Mk1Tpmkey1AC13XlOE6oE+W7rqtUKiXTNFUqlcaq23EclUolSVIymZx427VaTY7jyDAMbWxsTFwPAAAAAADAaRNZIuzy5csyDEOZTEZ379499u1Vq1Vdu3YtlLrW1taC5FoikTjSc3sn8mw0GsrlcnJdV+l0WuVyeWiizHEcra+vS5K2t7eZgwQAAAAAAOAIIhsaKT3vFTaryd7z+bzOnTs3dT2pVEq2bU8VRyfLsoLVLBuNhlKplAqFQt/z/MeWlpbUarWm6lUGAAAAAABwGkWaCJv1ioerq6tTPT+Xy4WaBPPr7FWtVhWPx5XL5VQoFJRKpZTJZJTP59VsNmWa5sQxAAAAAAAAnFYx77iWVBzTs2fPQumptcgcx1G5XFaj0dDe3p5c15VhGFpaWlIymdTVq1eVTqePbSjkxYsX9fTpUy0vL+vJkyfHso3j9tndPwi1vi9f/c1Q6wMAAPOr0WiwEjcAADMUZR4isjnCfLNIgj179ky3bt3SzZs3j31bkzBNs2/uMAA4bmEnkE8LEuWH8+e/XFpaUqVSmVmCIartYvE4jqNGoyHLstRoNCQ9X8AJOE04ZwI4rSLvETYrq6urOnPmjL7//e9HHcrcoUdYPy50cRqQCJsM54fDxePxYP5L0zTVarVO9HaxOBzHUS6Xk+M4QVvxnZKvxECAcyaAKEWZh4h0jrBZWl1dVbPZ1BtvvBF1KAAAnGhLS0unartYHKZpqtlsqt1uq1gsRh0OECnOmQBOq8iHRh7V48eP5bqu9vb2xn6ObduyLEue56lSqejNN988xggBADjdKpVKsAKyZVknfrtYTJlMRpubm1GHAUSGcyaA02ohEmHvv/++KpVKMIfDNHq7wQMAsIgKhcLczi+ZTqcjGWIT1XaxmOgNg9OOcyaA02ruh0a+9dZbyuVyajQa8jxv4pskxWIxJZPJiF8RAADTqVarqlarUYcBAAAALJy5ToQ9fPhQpVJJ0uAJTGOx2Fj1xGIxeZ6nlZUVbW1thRojAACz5DhOMJQFAAAAwNHM9dBIf8jHuXPnlM/nlUgkZJqmJKndbuvKlSuKx+O6d+/ewOe7rqv79+/rnXfekW3bunTp0qxCBwAgdK7rKpPJRB0GAAAAsLDmOhHWaDSUSCT0ySefDHx8fX1d77zzjhKJhL72ta8NLPPqq69Kkm7cuKHvfe97xxUqAADHynVdra2tyXGcqEMBAAAAFtZcD410HGfkRMA3btyQ53mHrvhTKpV0//59vf3222GHCADAsbNtWysrK7Jtu+v+WCwW3BKJRN/zXNdVtVpVKpUKEmiO4yiTyQTPGbYQTbVaVSaTUSKRUCwWUzweVyqVGnuVPdu2VSgUBsbVyXEcbW5uKpFIdL0+P24/zlwuN9aCN1Ftt/f58Xg8qKNQKISy4E+vRqMRHKN4PB7c/PvGiXXSY9zZtjrnq/OH7na+/kH1OY6jUqkUbNvfT4fta9d1g+PW2aY76/L3Qe/7JQyu63Zty4/dn8rjuLmu27Vt/xaPx7tiKBQKfWX8crlcrq/eXC7XVW5Qz9Npzif+cctkMkHb8NtbqVQaK8F/Et6zx9F+Z3WunvT4T3ueAoDjEPMGTb41J86cOSPXdXX27NmhZTKZjB48eKB2uz2yXCqV0scff3xoudPo4sWLevr0qc6cOaMLFy6MLHv9+nVdv359RpGN77O7fxBqfV+++puh1gfMo7DfN6dFFOcH13XlOI4ajUbXxW6z2ewql0wm5bquGo1G32rLrVYr6FXWeZFommbXqmG1Wk25XE6GYWhra0vZbFbS84ulXC4nx3FkmqaazaYMw+javm3bqlQqunfvXrANwzDUbrf7Xs/NmzdVq9W6LoCbzaZM09Ta2trAi0DDMIIy87DdTo7jKJfLybZtlctlZbPZ4ALXr9MwDF25ckWGYej8+fOSpHw+37cfx5HL5VSr1VSpVJTP54P7C4VCkJhqt9sD6570GPsXwnfv3u3aT34MpVJp6MV3Pp8PftwcVW7Qdmu1mkzT7Gv/rVYriHmYcrmsYrE48DHbtpVKpYK/D/tKXK1WVSqVlE6n9fLLL0uS6vV68D4zTVOWZc1kYabORIr0fF/0tk/HcZRKpYL3RO97vZffLpLJZHBumfZ8Ij3fb/68huVyWel0WoZhyLZt3bx5M2hL2WxWlmV1PfckvGePq/3O6lw9zfGf5jwFYLHdvn1bt2/fHllmd3dXBwcHWl5e1pMnT2YU2XNz3SMsmUxqb29vZJlSqSTP83Tjxo2R5V5++WV5nqdbt26FGeKJcnBwoKdPn4687e/vRx0mAJw6hmEomUz2XWD793U+du/ePX300Ud9n5/+RV8+nw8umPy6fY1GI7go29jY6CqXTCaDi1THcbS+vt5X/927d8f6hX9vb0+ZTEbpdLrr/p2dHa2srMg0TdXrdbVaLVUqlSBG13X7FgqIaru9/B4c/oWraZpKp9Pa3t4OLsb9RNLm5qZKpZJKpdKh33MG2dzcVK1WU7FY7Lq4lNR3wdlrmmPsl+ndF81mU6lUSrZty7IstVottdvtrgv4arUq27aVyWTUaDRUr9fVbrfVbrdVr9eDfe04jm7evNlVfzabVTKZ7DtulUpFuVxO2WxWlUpFlUql6/VIo5NuR1EoFFQoFGRZlizLUrFYVLFYVL1eV7lcDmLv7C1znPxtjmKapjY2Nqaqe5rzifR8/xcKBRmGoVarpWKxqGQyKdM0lc1m1Ww2g+fXajUlEomuxMpJeM8eR/ud1bl6muM/zXkKwOLb398/NLdwcHAQWXxz3SPsypUrevHFF/Xmm2+OLOf39rJtW3/jb/yNgWVWV1dl2/bIOcdOK3qE9aNHGE4DeoRNJsrzgz/ExDfqI7y3t4t/wehf4NVqNdXrdZVKpeA+/9d7aXhPhM4Vm4dt379olAb3MhhWn2EYsiyr74LR7/ngG9aDIKrtdvZuGLRPeo/boN47R+H3Bhp2jFzXVTweH7idsI6xn/jy1ev1vv0nKUh8+Tp7hnXq3NfDjp3/uny9bdrXu7+lwcdu3B5hfo+mYrE4NAHV2UMrnU6rXq8PLBemeDweJI0Oawu+UW3P7x01qNfYJOeTzp5ghyU+xtl/i/yelcJtv7M+V09y/Kc5TwFYfPQIm8KVK1dULpf19ttv6/Hjx3rw4IEePHjQV25jY0Oe5ymZTOqDDz7oe/ytt94KvqwxyfBwFy5c0JMnT0be5jEJBgDo13thUSgUuu7zeyEMuwAZNlSl8/5hn6lHuajprG9ra2tgMqW3l8TOzs7cbNfvMdJbZ6d0Ot0V26j5T8fh7/e7d+8OfNwwjL7Yh5U77P5hx3hpaSn4fz6fH7j/JPVd0A977Z3xuq471hxPlmUNPObpdLpviN00c3j5zx3Vw6jz9TcajZl83+zs7TVsv/a2hWGJPNd1VavVhr7GSc4nnQmWw3r/dB6fRqMxcK6pRX7PDhJW+53FuXqS4x/WeQrAYrp+/fqhuYXDOuEcp7lOhGWzWZ09e1bFYlGJREKZTEaZTEZf//rX+8qtra3J8zxls1m9/PLLunbtmq5du6aXXnqpa9gkvzgAAE6D3oujYYmKTltbWyqXy7Isa6xhK0eZkHpagy6w5mG7nRfao/ZH5wXftPH7MflDDQdtt1wuD/zOE9YxHndOn84YjjIP0Dj7aFR92Wy2a9vDkqeHqVarwT5wXVe2bQ+89cZyHBOt9+o8fv4cgoN0Ji07Fzbo5N8/rE0c9XzSud/G+e7dO+/WOEM/h5nH9+wg07TfWZ+rJ/k8meY8BQDHba4TYdLzE73fndfzPHmep2azqY8//rirXOcvNbZtq1qtqlqtqtVqBc+PxWIzmcAUAIB5M04SwjAMFYvFgb/S+xf8GG3YBac/ubo0/Y9yvb1nVlZW+hIco3r6zfIYTzoJ9iRzp/Xq7N006evq7JmTSqWG3nrncepdyOI49PaoGdRrqbP3k88fUtfp5s2bR5oE/rBynUMbx23vvb3qZmUW79lJjGq/UZ+rx2kn05ynAOC4zX0iLJvN6t69e11j2w3D0KVLl7rKmaap+/fv942B95eB9p+3tbV17DEDAHASOI6jarWqRqMxcLJ+PJ+DtNOwHjedOi+wJ9E7QbU/MXgikRiY5Bhlno5x2CvH9V5kT9Irxu+Jk0wmgx9kx7kdx1C6QTqHR9Zqtb7X6CcjOuPpXYzAf940w0d7TdKDKozjNY4o3rOTOMr+mKf3sS/M8xQAhG3uE2HS82RYu91WpVJRuVwe+uGaTqf1wx/+UK+88krfF5JkMqmdnR2dPXt2xtEDALBY/KEs/gTX4wyDOa0Mw+gaxnXz5s2BF6z+PDnJZDKUeXEsy+obPuav5JbJZA5NRJyGYxxGb5POYZHzqDfp0ZnU8XuD+av2+YlG27a72kelUumbE2tanftr3KRY7yqGYfQKHCSq9+xRjXM85v19PO15CgCOy0IkwiTp3LlzWl9f1+uvv65z584NLeevYuIvx+0vqewvswwAAIYrFApKpVIyTXOqeXpOk87VBF3XVSqVCoZ2ua6rzc1N1Wo1ZbNZbW9vh7rddrvdd5HeaDSUSCSGDo86rcd4mh5njuPMbTKscwjdoJ5ffq+xzrmk/OPuzy02aiGASYwzUXuvzrnMpOMdNhfVe3Yave13Ud7Hk56nAOA4LUwi7KjOnTuntbU1ra2tBQmwx48fRxsUAABzrFAoBD1K5vnCah4Vi0W1Wi1Jz3uy5HI5xWIxpVIpffTRR2o2m7IsK/Thf4ZhyLIsNZvNvt4ga2trfeVP0zHuTMCEMVTs3r17U9dxHDp7e/mJLT+ZUywWg8c6h1H6r6VcLh/L6n2dSaxxVwHt7AE2i7mjonrPjmtU+1209/FRz1MAcNxObCJskLB/7QIA4KTwF5qRnl+ERnXxt8gKhYIqlYra7bba7bY8z1Or1ZJlWaHO2ZPL5fruSyaTqtfrXT2CXNftmovntB3jzkTC1atXJ6qj86L9KAmHVCo102Ffnb29KpVKX28wqXtyfT9RVq1Wu8qEpXd/jzMPl5+UkjSzoYizes9OYlj7XZT38aTnKQCYhVOVCJt06WwAAE66zlXaRl3Az+vwsCj5Q6symUxXQuK4jLpozOfzKhaLwd+dvWxO2zH253iSNPFx6byYdxxnrB9Vc7lc6HNuHaYzrlqt1tcbbFA5f3L842iz2Wy2a9vjLB7Q2T6PIznXadbv2UkMa7+L8j6e9DwFALOwkImwx48f6+OPPx779v777+tb3/pW5B8IAABMo/fCuvciqPNzrvcz76ifgYMuYnpXlePi5blcLifbtmfag2RUD5tMJhP8f9Tk2dMc43Hb06g2OWmd45S3bTuYe6hSqUzcayafz3e976rVqnK53MAERKPRUCqVkm3bAycIT6VSisVixzJJuGmafcd6UDKpN0HXm7AaZpLzSedK7f6QzWE6j5c/XPM4RfGe7RVW+53FuXrSz5MwzlMAcBy+EHUA43j8+LHK5bIajcbEXxw8z1MsFgs5MgAAZqc3EVYoFGRZlvb29lQul5VIJLp+Ze902IVQ7wVhLpdTuVxWMpmUbduqVCpKJpMyTTP4LPZ7edTrdW1sbAQXa53bCiv50fn5P+w5UWzXdd3gAj+TyQT7aGlpSYZh6Pz588F+MU1Tq6uroVzkl0olXblyZWBd/gV0b9IjzGN83MY5Puvr69re3u6LyXGcYN6hfD4/tMdP73vCdd2Br69SqXRdtNdqNdVqNZmmGezfnZ0dua4r0zTVbDb76igUCsFx8RNm7Xb70Nd4FKVSKWiLnfOGDYrFT5RM2vNqnMRKNptVuVwOtpXL5fTo0aO+uFzX1fr6ehD3sHPYor9ne03afqM6V3caN7E2yXkKAGZh7nuEbWxsKJFIqFqtqtVqyfO8iW4AAJwEnReJjUZD8XhciUSi77HeX+IPG5qUTqf75uUplUrKZDIqlUpB0q3zl/tarRb0bhk1DGrYEJneHiL1en2qclFs1zCMrtdu27ZqtZqq1ao2NzeDfVcoFJTJZBSPx0PpEeS6rlZWVvpeY61WU6lUUjKZlGVZXY+FdYw7EwnS6KknOod3ScN7iIx7THrF43EVCoUgOeWvpOe6rsrl8sh23/vYsMnw0+m0ms3mwIRFo9EIJqcfVk4anHQLe16kzoTCqPnM/MRKMpkcu0fUUc8nvmKxGEw477fZarUqx3HkOI6q1WpXL7ph9Z6E9+wgk7TfKM7Vkx7/Sc5TADALc50Ie++991Qul4NEFj26AACnXblcVrFYDC54/QsJ/8KkVCopHo/3DY2p1WqKx+PK5XJDhyhZlqVyuRzUbZqmisWi2u12kGQrl8vBBVYymVS5XJZlWbJtW7lcTvF4PPil35fL5ZRKpbS5uSnp+YVnJpPp6mUjPb/YSiQSwTxGjuMMLNdoNJRIJLS5uRnZdjsNWgltFL9H0KRTNmSzWVUqFS0tLQUr3SUSCcXjcVUqFVUqlaEJmTCOsb8at8+2bSUSCeVyueA1FQoFJRKJvgtgP7ng78NGozHWMRnEb/eO42h9fT1o2/l8Xq1Wa2DPItd1g/YyKLZUKjVwm8lkMthHncmjZDKpbDarZrOper0+tOfQ1tZWXxs5jsSKf34Y1YPJMAzl8/mxJv+f5nziy2azarfbqlQqWl1dValUUiKRUCqVUqVSUaFQ6Gp/nU7Ke3aQSdpv53Nnca6e5vhPc54CgOMW8+a4u9Tq6qps21YsFpPneTJNM+jqK0nnz58/tI5PP/1Uruvq3r17evbsmT7//PPjDnvhXLx4UU+fPtXy8rKePHkSdTgT+ezuH4Ra35ev/mao9QHzKOz3zWnB+QG9XNfV2tpacGHquq4cx9He3l5w4ex/H9nb2wt6EBWLxSOtRHjaua6reDwe/N1qtRZySJX/OizLmtnqiOgWxXv2pLRfAAhLlHmIuZ4jzE+CSc+7Nvvj5SdRLBb10ksvhRUaACw8EjrA9Gzb1tramjY2Nrp6mBw25KxQKBzakwYnk98TjAnCo8F7FgAw10Mj/a6yxWJxqiSY9LzLcG9XfgAAgEn5k1r7PUWOIpfLaWlp6ZgiwzxbX1+fycqI6Md7FgAgzXkizO8u/PLLL4dS37gTOwIAABymVCoNXWnwMJZlKZfLhR8U5loulwvmc8Ls8Z4FAEhzngjze4GNu0TvuPUBAABMyx8m5bru0NUQBykUCtrZ2QlW78PpkEqlZJomq+RFiPcsAECa80TYG2+8Ic/z+lY0mdQ777wTSj0AAACd8wv5qyFWq1U5jhNMuO1Pwt1oNFQoFBSPx+U4jprNZkRRL67eH0bDXMFvFvyV/hCdKN+zi95+AeAkmetVIyVpc3NT5XJZjx8/1le/+tWp6nr55Zf10UcfhRTZycGqkf2YRBwAMI5cLqdarTZWWcMwtLW1xUqBEyoUCl29eLLZLL2rcGRRvWdpvwDQLco8xFz3CJOeT5SfTCanHpP/6NGj0HqWAQAASM97+dTr9aEXyoZhBBe87XabJNgE/F45vUPZarWa4vG4UqnUkYa54XSb9XuW9gsA82fue4T5VldX9ezZM5VKpbFXbNnb25Prumq1Wrp3755c19Xnn39+zJEuHnqE9aNHGABgEq7rBkOglpaWWBkQmHO8ZwEgGlHmIb4w061N6MGDB5KkVqulQqEwUR2e5ykWi4UZ1omzu7urixcvjixz/fp1Xb9+fUYRAThNfvKznw28/ytf+tKMIwEmZxgGF9LAAuE9CwDhu337tm7fvj2yzO7u7oyi6Tf3ibBr164F3YVjsZgm6cBGAmw8BwcHevr06cgy+/v7M4oGwGlz8ff+/sD723/vv5lxJAAAAAAmtb+/f2huIUpznQjb2tpSpVKRNHkSTNLEzzttzpw5owsXLowsc/bs2RlFAwAAAAAAFs3Zs2e1vLw8sszu7q4ODg5mFFG3uZ4jbHV1VbZtB0mwdDqtTCYjwzCOPE/YnTt39PjxY+YIG4A5wvoxRxgwe/7QyD/Z3dV/9A/f1f/0n/2W/tqFCwyNBAAAAE4Y5ggbwk+CGYahnZ0draysTFzX+vq6zp8/H2J0AIAw+QmvX/7iF4N/SYIBAAAACNOZqAMYxZ+4cmNjY6okmF/X5cuXQ4gKAAAAAAAAi2iuE2GpVEqSZJpmKPVtbW2FUg8AAAAAAAAWz1wnwgqFgjzPk+M4odRHjzAAAAAAAIDTa64TYdlsVpcvX9bdu3dDqe/9998PpR4AAAAAAAAsnrlOhEmSZVlqNpv64IMPpq7r5s2bIUQEAACw+BqNRtQhAAAAzNzcJ8JM09SdO3f0ne98Z6p6nj17Jtu2Q4oKAABgsTiOo2q1qkwmo1gspkwmE3VIOKEajYbi8bgSiQQJVwDA3PlC1AGM4g9l/JVf+RXF43G99NJLymazR67HdV3du3cv7PAAAADmnuM4yuVychxHrutGHQ5OgVwuJ9d15bquCoWCWq1W1CEBABCY60TYm2++qYcPHwZ/e56nzc3NieryPE+xWCys0AAAABaCaZpqNpuSpFKpNPF3KWBcS0tLJF0BAHNrrodGXrlyRZ7nyfM8SSKRBQAAMAWGQ2IWKpWKTNOUaZqyLCvqcAAA6DLXibBCoSDpeQLMT4hNegMA4CTxPyMXwSLFetItLS1FHUIoaFPzLZ1Oq9VqqdVqKZlMRh0OAABd5npo5Llz55RMJvXw4UOVy2Ulk8mJvsA5jqM333xTH3/8cfhBAgAwY9VqVdVqVZVKJepQDrVIsWIx0KYAAMA05joRJklXr15VIpHQ66+/PnEdly9f1quvvnpifgUFgJPqs5//XH/08fO5IX/2+ecRRzOfHMdZmN4wixQrFgNtCgAATGuuh0ZKz7tWhzW0cXV1NZR6AADH47+3bVX+xb+QJP0//7//n4ijmT+u6y7MHE+LFCsWA20KAACEYe4TYZcvX1a5XA6lrrDqAQCE77Of/1z/4P/9T4O///DhQ/35L34RYUTzxXVdra2tyXGcqEM51CLFisVAmwIAAGGZ60TY/v6+rl27ptdee01vv/321PVdvnw5hKgAAMfhv7dt/ev9/eDvP/3JT/Tf23aEEc0P27a1srIiu2d/xGKx4JZIJIY+33VdlUolJRKJrvKlUmms7TcaDWUyGSUSCcXj8eDm3xdmrGHGMki1Wg3KxmIxxeNxpVIpbW5uHvpc13VVrVaVSqVUrVaD+/3hevF4PHh9g+pzHKfrOCQSCRUKBbmue+h2Nzc3lUgkgkRQb13+Pujd72GYtv1Ma9I21Xm8OvdbJpMJntNoNIIynfUNWqm8s9103sY5fse9/46jjUzzXpGeH7dCoXDo+3Lc49Rr2nMBAOAU8+ZYJpPxzpw548ViMe/MmTPee++9F3VIJ9Ly8rInyVteXo46lIn99I//cag3ALP105/9zPsPvvuWZ/zX/1XX7T/47lveZz//edThRa7dbnvNZtMrl8uepODWbDa7boNUKhXPMAwvm8165XLZK5fLXjqdDuowTXPocz3P87LZrCfJq1QqXffn8/mgjna7HUqshzlqLJ0sy/IkeYZheJZlBfc3m03PNM1gX/Q+v91ue+Vy2Usmk12vx4+hWCx23d95y+fzQT2jyg3armVZA/djq9UKXsuwW7lcHroPm81mV9nDTNt+wnCUNtVutz3Lsrpi9Pdbs9n0DMPo2/e+znY0at/0xjGszXne8e6/42ojk75X/DL5fL5rPxuG0VdumuPkedOdCwAA8yHKPMRcJ8L8BJj/7/b2dtQhnUgkwkiEAVGr/vN/3pcE829b/+JfRB3e3KjX60dKYvgXhfV6ve+xQRfPw8oUi8WR9Q+64DxqrIcJK5ZBCYDO5FA2m+16rN1ue/V63atUKn1JrmQy6aXTac+yLK/Vanntdrsv4dVsNr10Ou0lk0mvXq977XY7qLPzYn/Y6+pNXPn1Z7NZr1KpeJVKJUgKjJPoOEoibNr2E7Zx2lSlUvGKxWJf4rJer3umaXrFYrFrfyWTySPV73me12q1xkqEzWr/hdlGpnmvtFotr1gseuVy+dBE2DTHaZpzAQBgfpAIGyKRSHhnzpzxzpw54125ciXqcE4sEmEkwoAoffbznw/sDUavsH5HSS75iZthF4ue5wW9OyR56XR66OPDkirtdnvoRXzYibBpYum8oB72/HFiHXTRPkhvL5fOnmGdOnvtDEoWdL6uzp4x4+zvYYmAcRNhYbSfsB2lTfW+zt79ZlmWl8/nu+4bt/7eYzJoP89y/4XZRsJ6r3Qm+oa1bc+b7DhNcy4AAMyPKPMQcz1HWD6fD1aMvHv37tT1Xbt2beo6AADh6p0brNe/3t/XHzJX2JH58w8VCoWhZdLpdPD/RqPRNxG5//ewz2DDMJTNZqcNdSxhxWIYxqH3D5uQfWlpKfh/Pp/v2n+delc2rFQqA8t1xuu67qFzTUmSZVkyTbPv/nQ6Lcuyuu6bZg6qMNpPlHr3UaFQ6Lovm82qUqkM3JdhiHL/hdVGpnmvjLtfJzlO83ReAgAspi9EHcAoxWJR9XpdDx480I9+9CP92q/92lT1DZpoEwAQnT//xS/03/7T//nQcrf/6f+s30gm9UtfmOuPrblRrVaDpIrrukMnx+690G00Gsrn88HfpmnKcRzZtq1MJiPLsvqeUy6Xjy2Z0GmaWLa2tvTyyy/LNM2xLpCHJaSGJQYGxXrU50jPL/CTyeTIMqPqy2azwX6SpJ2dnbG33Sms9hOl3tiGJS2PQ9T7b5o2EtZ7ZVyTHKd5Oi8BABbT3F9R1Ot15XI5ZbNZPXjwQF/96lcnqufRo0dz9UslAODw3mA+v1fYb3396zOIavF19vpIpVJjP6/ZbHb9XSqVgh4tjUZDKysrKpfLfcmyWZgmFsMwVCwWBz52HKssHiX51Wlvb2/qbRcKhaCXz6SvLaz2M08mPSaTmPf9N6qNzPq90muc4zRP5yUAwGKa66GRvnfffVf5fF7JZFLvvvuu9se4aJKk/f197e/v68GDB8rlcscc5eLb3d3VxYsXR95u374ddZgATohxe4P5bv/T/1l//otfHGNEJ4ffyyOZTMp7Ph/oWLfeIXz5fL5v+F6hUFAikVCtVpvpawozFsdxVK1W1Wg0lEwmD+2FdZzCTtD0JgAm6bETVvs5reZ9/x2ljczTe8U3T+clAMBgt2/fPjS3sLu7G1l8c50Ie/HFF/XCCy8oHo/rtddeU6vVUj6fVzwe1wsvvHDoLR6PKx6PK5PJzORXrEV3cHCgp0+fjryNm4QEgMOM2xvMx1xh4+scljUty7JULpe77nMcR7lcTplMZqa9raeNxR9KValURs7xtcjC6AkTZvs5jeZ9/43TRub9vTJP5yUAQL/9/f1DcwsHBweRxTfXQyPz+bxu3LgR/B2LxYLJ8xG+M2fO6MKFCyPLnD17dkbRADjpfuPyZf2fL13qu/9Pdnf1H/3Dd/U//We/pb/Wc056IRabUXQng+M4cl136l5HxWJR+Xxe6+vrXT0uGo2GEomEms3mzHqKTBpLoVBQtVpVPp/vu4A+yaY59mG1n9NqUfZfb3yL8l6Zp/MSAKDb2bNntby8PLLM7u5uZMmwue4R5o//j8ViUyXBYlw4jeXChQt68uTJyNv169ejDhPACfHlL35RX/nSl/puv/zFL0qSfnnA41/+3x/D+O7duxdKPYZhyLIsNZvNvt4ha2troWzjuGLxL+wlzfWFfRg6e8KEkQQIq/2cVvO4/0a1kUV7r8zTeQkA8BeuX79+aG7hsE44x2muE2Hnzp3Tq6++GsydkE6nlc1mj3y7fPly1C8FAICZ6bwgPMrFbCqV6rpIHjS/ZjKZVL1e75rPyHXdY5+bZ9JYbNsOLuxN05z73jnT6jx+V69enaiOsNrPSXXYogbzvv+GtZFFea/M03kJALCY5npopPT8l6n3339fzWZTlwYMoRlXtVrVtWvXwgsMAIA5lcvl1Gg0JD2/6C0UCodOxJ3L5ZROp7vmDxp1EZnP59VqtbS5uSkpnBUPR5k0Fn8/SBqZZJjX+ZyO6u7du8H/O1fRO4qw2s+iWVpa6vp72LDGw5JV877/hrWRRXmvzNN5CQCwmOa6R5j0/Fe1c+fOTZUEk55/MDK/GABgkfVeJPderPoXqPl8vqtstVpVLpcbeHHbaDSUSqVk2/bA3it+D5FBMplM8P/eYUnjxnoUk8bSadBFdKlU6vp72MXzuDF3ljvsOUfdD6PK27YdLA5UqVQm7tETVvtxHEepVEqxWCyUCcyP0qZ699M4+7l3mOCg9uY4zqHtJcz33yTCaiPTvFfGNclxksI5FwAATq+5T4RJ0sbGRiirFU76yygAAPOgNxFQKBTkum7Q66Tz4rC3B0qtVlMikVAikVAmk1EmkwlWVnZdV81mc+A2S6XS0ItT/4J6UE+Wo8Q6rkli6U1u5HI5bW5uqtFoaHNzU4lEQo7jdD2nUqmo0WiM3N5xGGdb6+vrA8s5jhPMiZTP54d+5+lNXAzbZhjtp1AoBMfFT/hMY5o2NW7CpjNxUiqVVCgU1Gg0VKvVVCgUlEgkVC6XuxJIgxJcYb3/JjFpGwnzvdK5v4/yHhr3OE16XgIAQJLk4dRbXl72JHnLy8tRhzKxn/7xPw71BiA6Hz996hn/9X/lffz0adShzKVisehJ6rvl8/m+ss1m0zMMY2B5/5ZOp712uz1wW34ZwzA8y7K6HrMsy5PkJZPJoc8/SqyHmSaWbDY79PWXy2XP8zwvn8/3PZbNZoM62u1212PJZHJorL3bq1QqA8vV6/VD98ug7fplLcvyLMvy8vl8cJz91zNtbJ43ffvxY+289R67oxq3TZXL5aHHcpR2uz30NRuG4dXrdc/zvK4yyWTSa7Vaffth2v03rjDbSBjvFc/rP/bDjvskx2na8xIAYD5EmYdYyETYs2fPvPfee8977bXXvCtXrnirq6veN7/5Te+1117z3nrrLe/Ro0dRh7hQSISRCAPmCYmwwxWLRc80zeCC77DkQrFY7LowTSaTXjab9ZrN5sjnZbNZr1KpBNuS5Jmm6RmG4aXT6ZFJlEljPa5YyuVy8FzTNL1isdh1odxut710Oh3E6V/0N5tNL5vNDkxomKbpZbPZoJ58Pt8VX2/Cw6+zXq8H2xpUZ2dSpzfJ0Wq1vEql4qXT6SAm//W0Wq2Br73dbg99Df7rHZWcnLT9NJvNvtd5WKJuHKPaVLFYHJnIymazQTJrmHa73XUsk8mkVywWu8r49w3b573xTrL/xhVGG+l0HO+V3rLTHKcwzksAgOhFmYeIed7iTJz1+PFjlUqlvjkLPM9TLBbrus80Td24cUO/9Vu/NcsQF9LFixf19OlTLS8v68mTJ1GHM5HP7v5BqPV9+epvhlofgPH94F//a/2tyh39vwqv6W/8e/9e1OEAkXJdV/F4PPi71Wot5HAv/3VYlqVsNht1OCfKSWkjAIDTJco8xELMESZJW1tbSiQSqtVq8p73ZAsmv+9Ngnmep1arpXw+r69//ev60Y9+FEXIAAAA0F/Mo8Xk5QAAIGoLkQh766239Nprr3UlvvzkV2dSrDM55j+2s7OjRCKhH/zgB5HEDgAAcNqtr6/3TTIPAAAQhS9EHcBh3nvvPZVKpSD55Se6ksmkVldXlUgkZBiGTNPU0tKSHMfR3t6eWq2WarWaHMfRwcGB1tbWtLOzo6997WvRviAAwEA/+dnPJEk//fnPg39/8rOf6Stf+lKUYQGYUi6Xk2maKhaLUYcCAAAw/4kwPwnmeZ4Mw1C5XNaVK1d07ty5geUvX74c/P/WrVt6+PCh3nzzTb333nt67bXX9L3vfW9WoQMAjuDi7/39rr//o3/4riSp/ff+myjCARCCVCqldDqtcrkcdSgAAACS5nxo5HvvvSfHceR5ngqFgvb29rS+vj40CTbI5cuXZVmWbt26pXq9rg8//PAYIwYAAAjP3t5e19+u60YTyIQsyyIJdswWvY0AADBrc90j7O7du4rFYiqXy/qd3/mdqeoqFotqNBq6d++evvGNb4QUIQAgLE/+i/8y6hCAudObRLp586Ysy4oomqNj9cLjt+htBACAWZvrHmG2bSuZTE6dBPMVCgU1Go1Q6gIAhOsrX/rSwBtwGhUKBcXjcVWr1a77a7Wa4vG4UqlU32M4XWgjAABMZq57hDmOE+oHuGEYwfLdAID54n3204H3x778yzOOBIhepVJRpVKJOgzMMdoIAACTmetEmBRul3qSYAAwv/Z/4z8eeP+52vaMIwEAAABwUs310EjTNENNXlUqFeaqAAAAAAAAOKXmOhGWTCZDm+zzxo0bwZxjAID5c/YP/0ed/cP/UV/5+/9AkvSVv/8PdPYP/8dogwIAAABwosx1IuzKlSuq1+t64403Jq5jf39fV69e1ebmpmKxmAqFQogRAgDCEvvyLz+/femXnv/9pV9ifjAAAAAAoZrrRFg2m9XKyorK5bL+7t/9u3r8+PHYz33w4IGuXr2qeDyuWq2mWCymZDKpV1555fgCBgAAAAAAwNya+8nyK5WKvvnNbwYr46TTaSWTSSUSiWC+L9d1tbe3p2azqZ2dHdm2HTzf8zxJUiwW09bWViSvAQAAAAAAANGb+0RYOp3WnTt39NprrykWi6nRaKjRaAwt7ye+pOfJr1gsJs/zdO/ePV26dGkGES+u3d1dXbx4cWSZ69ev6/r16zOKCAAAHJdGo6F0Oh11GAAA4IS5ffu2bt++PbLM7u7ujKLpN/eJMEnK5/NaWlpSPp+X67qKxWKSupNePv8x/3HDMLS9va3Lly/PLN5FdXBwoKdPn44ss7+/P6NoAABAmBzHUaPRkGVZwY+Kg75LASdZo9FQLpfT0tJSMNoEABCu/f39Q3MLUVqIRJj0fL6wTCajN998U2+99dbQcv4XOsMwtLGxoddff31WIS68M2fO6MKFCyPLnD17dkbRAACAMDiOo1wuJ8dx5Lpu1OEAkcrlcnJdV67rqlAoqNVqRR0SAJw4Z8+e1fLy8sgyu7u7Ojg4mFFE3WLegv4UuL29Ldu21Wq1tLe3J0laWlpSIpFQOp2mB9gRXLx4UU+fPtXy8rKePHkSdTgT+ezuH4Ra35ev/mao9QEY3+fO/6J/V7ymv7z5+3rB/KtRhwOcKKVSSZubm8HfC/o1EJhYIpGQ4ziSJNM0SYQBQESizEMsTI+wXmtra1pbW4s6DAAAgIWRyWS6EmHAaVOpVFQoFCRJlmVFHA0AIApnog5glt5///2oQwAAIBT+hdwiWKRYT7qlpaWoQwAilU6n1Wq11Gq1lEwmow4HABCBU5UIK5VKUYcAAMDUqtWqqtVq1GGMZZFiBQAAwMl3ahJh7733XjAfAAAAi8pxnIXpYbVIsQIAAOB0WJg5wj7++GM1Gg21Wq0jJbT29vbkui5JMADAwnNdV5lMJuowxrJIsQIAAOD0mPtE2OPHj1UoFNRoNCZ6fudqSLFYLKywAACYKdd1tba2thA/7CxSrAAAADhd5n5oZDqdVqPRmHh571gsRgIMABaA99M/02d/9I/0k9/bkCT95Pc29Nkf/SN5P/2ziCOLnm3bWllZkW3bXff7n3GxWEyJRGLo813XValUUiKR6Co/7tyZjUZDmUxGiURC8Xg8uPn3hRlrmLEMUq1Wg7KxWEzxeFypVGqslRRd11W1WlUqleqa98wfAhqPx4PXN6g+x3G6jkMikVChUJDruodud3NzU4lEIkgu9tbl74Pe/R6GadtPGNvv3LZ/i8fjXTEUCoW+Mn65XC7XV28ul+sqN6gHY+cx79z3mUwm2A/Dfqz1j1smkwnaht/eSqXSWIlix3GCY995bP2Y/Bhyudyh7aiT//zONjvND8+jHEf7neZ9LD0/TxUKhUPPGZMe/2nPUwCAY+bNsUKh4MViMe/MmTPemTNnvFgsNtXtzJkzUb+kubS8vOxJ8paXl6MOZWI//eN/HOoNwGwd/NlPvP3XC5776it9t/3XC97Bn/0k6hAj1W63vWaz6ZXLZU9ScGs2m123QSqVimcYhpfNZr1yueyVy2UvnU4HdZimOfS5nud52WzWk+RVKpWu+/P5fFBHu90OJdbDHDWWTpZleZI8wzA8y7KC+5vNpmeaZrAvep/fbre9crnsJZPJrtfjx1AsFrvu77zl8/mgnlHlBm3XsqyB+7HVagWvZditXC4P3YfNZrOr7GGmbT9h8o9T577o1Wq1PMMwuuIbxd+XyWQyuK/dbnuWZXW9Tn97zWazq/5h26hUKl3Ho9lsBseusy1ls9m+57bbba9YLPa93maz6bXb7b626N8Mwxi4T3r3j//8crnstVotr16vd9VpGIaXz+e9YrEYHPNh76tR+/U42u+k72O/TD6f7zp+hmH0lZv2+E9zngKA0yTKPMRcJ8JSqVSQwEokEl6tVvNc1z1yPbZte9ls9lgSYf6HaueXFdM0vWKxONWHnP9F0/+wNU3Ty2azXr1eDy/4/x2JMBJhQNR++j/8w4FJMP/20z/6h1GHOBfq9fqRkhj+hdegz45BF6jDyhSLxZH1D/q8O2qshwkrlkEX2Z3Jod7ERLvd9ur1eldiw09yJZNJL51Oe5Zlea1WK0hg9CYv0um0l0wmvXq97rXb7aDOzgvqYa+rN3Hl15/NZr1KpeJVKpXgwnucZMJREmHTtp+w9SZQhm2zM7ZxE2Gdr7FSqXjFYrEv4VSv14PveJ37vDOJ5nl/kfQclZjqfH5v4sZPTnUmTvzEip+UrNfrXqvVCu7zy6TT6ZGv1/++2ts+2u12X+ItjOMbZvud5n3carWCxN5hibBpjv805ykAOG1IhA3hJ8GWlpa8Z8+eTV1fPB4PIarn2u32wA/u3lvvr0GH6fxinE6ngy86lmUFX1DS6XSoH6AkwkiEAVF7tn5lZCLs2fqVqEOcC0dJLvmJm2EXZJ7X3cNm0AX0sItmX7vdHnqRHHYibJpYOj+vhz1/nFgHXRgP0tuTpLNnWKfOxM6gC/LO19WZNBlnfw+72B43ERZG+zkOnUmMw9rCOEmcbDY7NFnWu696971lWV4+n++6rzNheth3wHH2X+f2DcMY2OZ6E4TDviN2JtYG6W1DYSQ3w2y/Yb2POxOlw953njfZ8Z/mPAUAp02UeYi5niPMMAxJ0pUrV3T27Nmp68vn81PXIT2fLyCVSqlWqx1atlAojL10vD+fgOu6yufzqtfrSqfTMk1T2WxWrVZLyWRSjUZDqVTqSHNBAMC88jxP3t6fji6z96cTzxV5WvlzJ436DEqn08H/G41G35xF/t93794d+HzDMJTNZqcNdSxhxeJ/txh1/7C5m5aWloL/5/P5rv3XqXeuqUqlMrBcZ7yu6471uW5ZlkzT7Ls/nU7Lsqyu+6aZwyuM9nMcNjY2gv8P26+9baFcLg8s57quarXa0NfYu58LhULXfdlsVpVKpes+f78ZhnHo987O49NoNAbONdXZLre2tga2ud52v7Oz01fGn+uqt85O/ndO37D9O42w2u807+NB2x+n3DjHf57OmQCA4eY6EeZPbBrWpJK3bt0KpZ5cLifHcZRMJmVZllqtllqtlizLUrFY7CtfrVYPTZq5rhu8XtM0h3758L8kOI4zcOJXAFg0sVhMsaVfGV1m6VdY+OQIqtVqkFRxXVe2bQ+89V5M9l6I+xd4tm0HP9T0KpfLY19YTmOaWLa2tlQul2VZ1lg/ig1LSA27+B4W61GeIw2/cB83hmw227XtQQmRcYTVfo5D5/FzHGfoNjuTlp0LG3Ty7x/WJnpf37DEZ2d9/n4b5z2Rz+e7tjEsYTeOQcmYTp1tYVTCtTNJcxyJzWnab1jv43Ed9fhL83XOBAAMN9eJsBs3bsjzvIm/yPXa39+fuo5qtapGo6Fisahmsxl8aPu9tsrlctBzq9P6+vrIejtX+xn1C5i/Hen5F85hX+4AYJF86Rt/e/Tjr4x+HN06e1akUqmht94V1prNZtffvT1WVlZW+j53ZnVBN00shmGoWCwO7InhJ3XCdJTkV6e9vb2pt93Zu2nS1xVW+zkOvT1qBv1w2Nn7yTfoB8mbN2/2JaMO2/Yo9Xo9+P+474veXnWzMixJ9PLLLwf/jyJZM6r9zvp93GucdjJP50wAwHBznQhbWVnRnTt3ZFmWfvCDH0xd39ra2tR1lMtlpdPpkb/amabZ173bdd2hX3B6f9G8cuXKyBiuXr0a/H9WS5cDwHH6pf/kqs6YLw187Iz5kn7p/3R14GMYzP8BKZlMPh96OuatN6mQz+f7hu8VCgUlEomxpgcIU5ixOI4T/LCVTCb7fryapUmTZsP0XmRP0ismrPZzXDqHR9Zqtb7X6H836ozn5s2bXWX854X5PWqSHlRhHK9xrK6udv09zg+pnUmxWTnK/pin97Fvns6ZAIDh5joRJj3/QPnOd76jbDarH//4x1PVNe0vRbZty3GcviTXIKZp9iXLhm2/s1w6nT70S3HvBywfrAAWXeyX/5L+8t+7rV/K/oZi54zn950z9EvZ39Bf/nu3FfvlvxRtgAumc1jbtCzL6vs884fnZzKZmcwLFVYs/nClSqUyco6vRRZGb5Mw289x6E16dCZ1/N5gxWKxq7eX/x3OV6lU+ubEmlbn/hr3fdE7/UcYvQIHMQyj671z8+bNgcfXn9sqmUxGMpfVOMdj3t/H83TOBAAMNteJsP39fe3v7+vGjRs6d+6cXnnlFT148EAff/zx2LcHDx7o/fff17e+9a2p47l79+6RutD3fjB/+umnA8t1foEb99eszi8KwybkBIBFEvvlv6Qvf/s/1Vf+i+c9N77yX9zUl7/9n5IEm4LjOKEkM4rFotrtdt+FcaPRUCKROPYhSWHEUigUlEqlBv5QdZJN0+MsrPZzHDqH0A3q+eX3GuucS8o/7n5P/HEXMxrXOBO19+qcy0w63mFzxWIx2Af+wk/+iATXdbW5ualaraZsNqvt7e1ji+MoetvvoryP5+mcCQDoN9eJsK997WuKx+N68cUX9fDhw+AXoFHzVfTeMpmMcrlc17wNk7p69eqRPnR7k1qDJv3v/SActxt6Z930CAMADHPv3r1Q6jEMQ5Zlqdls9v3QE8bUA8cZS6FQCH50mueL5zB0JmDCGCoWVvsJW+cPk35iy0/mFIvF4LHOYZT+aymXy8eyel9nEmvcVUA7e4DNYu6oYrGoVqsVbDuXyykWiymVSumjjz5Ss9mUZVmhD9kd16j2u2jv43k6ZwIAus11Imx9fb1r7glJR5qrove500omk0f6YtD7BWjQF5xhK3QdprccvywBAHydF11HuWBMpVJdF6KDVidOJpOq1+tdvXBmMUx/0lhs2w4unk3TjOwCf1Y6j1/nnKJHEVb7OW6dvb0qlUpfbzCpe3J9P1FWrVa7yoSld3+PMw+Xn5SSNLOhiIVCQZVKRe12W+12W57nBaufRz3P1rD2uyjv43k6ZwIAhpvrRNi3v/1tSVIsFpOk0BJas9L7ZXDQHAYfffRR19/jfrCfP3++6++wVtYEACy+zosxx3HGGgKWy+X65kwadaGWz+dVLBaDv49rbqNpY+n8wWlUkmZehwAeVed0CZ2JoqMIq/0ct864arVaX2+wQeX8yfEn3TejZLPZrm2Ps3hAZ/s8juRcJ384ZCaTOZbXH4Zh7XdR3sfzdM4EAAw314mwy5cvB1+o0ul0MLfBUW7+ZKlR6ExODYuh98N80h5hnb8oAgBOpt5zf+9niH8RmM/nu8pWq1XlcrmBF5CNRkOpVEq2bQ/s/TOqV0smkwn+3/tjz7ixHsWksXQadKHau3LgsAvUcWPuLHfYc466H0aVt2076CFeqVQm7jUTVvtxHEepVEqxWOxYJgk3TbPvWA9KJvUm6HoTVsP07utxjtXW1lbw/95VwXt1Hi9/uOZxyuVysm070l5fYbXfad7H45rk+EvhnKcAAMfrC1EHcJhsNquHDx/qn/yTfzJVPcViUS+99FJIUY2n85fAYctzh/WlMOpfwAAAx683uVQoFGRZlvb29lQul5VIJIIeB5VKpeuiq1arqVaryTTNoJ6dnR25rivTNNVsNgdus1Qq6cqVKwMvSv2L1kE9gY4S67gmiaX3oj+Xy6lcLiuZTMq2bVUqFSWTSZmmGXwm+5/f9XpdGxsbMxuGNc5n+fr6ura3t/tichwnmHcon88P/QGuNznguu7A1xdG+ykUCsFx8RNm7Xb70Nd4FKVSKUg2jVrQqFAoBN/FJu15NU5iJZvNqlwuB9vK5XJ69OhRX1yu62p9fT2Ie9h7Ydzvd53fJwc9x3XdYD9lMpmgzS8tLckwDJ0/fz6I0TRNra6uHku7n7T9hvk+7jyOR/n+PG5ibdJzJgBghrw5Z9u2l8vlQqkrlUqFUs84Wq2WJ8mT5JXL5aHl/DL+bVz1er3redlsduJYl5eXPUnemTNnvOXl5alvb7/99sSxTOqnf/yPQ70BiM4vWv/Kc199xftF619FHcpcKhaLfZ8dkrx8Pt9XttlseoZhDCzv39LptNdutwduyy9jGIZnWVbXY5ZleZK8ZDI59PlHifUw08SSzWaHvn7/Mzqfz/c91vnZ2m63ux5LJpNDY+3dXqVSGViu97N80H4ZtF2/rGVZnmVZXj6fD47zqO8cR4nN86ZvP36snbfeYxcG0zQ9SUPj8Ly/2I+jjluvcrk88Xcty7KCfWcYhlepVLxWq+W1Wi2vUqkEMY86XuO0j0Hl0un0wHKHHctBx7bVao39mgcJs/2G8T72vP52OaxNTnL8pz1nAsAiePvtt0PJG5w5c8aT5C0vL8/8Ncx9IszznifDwuA4Tij1jMP/IDZNc2S5sBJhw770jMNPhIV1+93f/d2JY5kUiTDg5CARdrhisRhcSCeTyUOTC8ViseviL5lMetls1ms2myOfl81muy7a/c81wzC8dDo9MokyaazHFUu5XA6ea5qmVywWuy5G2+22l06ngzj9C+tms+lls9mBSQTTNL1sNhvUk8/nu+Lr/Zz266zX68G2BtXZmfDoTST4iZR0Oh3E5L+eYUmLdrs99DX4r3dUcnLS9tNsNvte52GJuklYluUVi8VDy+Xzea9erx9arlgsDt1XhmF42Wx2rHo8z+s7VoZhBO1rWDJk0H4b1D5ardbIcr37elT5YTfDMKZK2oTRfjsdx/u4t+w0xz+McyYAzLvf/d3fDTV/EEUiLOZ5CzYD/QKwbVupVEqGYajZbI7s+hyPx7u6ZY97OBqNRteQhWw2K8uyJor34sWLevr0qc6cOaMLFy5MVEen69ev6/r161PXcxSf3f2DUOv78tXfDLU+AOP73Plf9O+K1/SXN39fL5h/NepwgEi5rqt4PB783Wq1FnJIlf86LMua2eqI6Oa6rtbW1lQul2WaplzXleM42tvbC76Lfvrpp3JdV3t7e2o0GnJdN5ijd9JtnoT2CwD4C7dv39bt27enrmd3d1cHBwdaXl7WkydPQohsfJHNEfbxxx/r0qVLUW2+z/7+vvb29vS1r31t6rr8OR+2t7cP/bBfWloKZX6vpaWlqeu4cOHCzBsgAAA4+fx5m5ggPBq2bWttbU0bGxtdx+CwifMLhcLICf8BAKdPWB1f/A45UYhs1cg333xTb7zxRlSb75PL5UYueTwuf2JYy7LGWpVn0olIe5Nns5rIFwAA4KjW19dnsjIi+vkT0fu9u44il8uF8mMrAADzJLJEWLVa1Z07d/Tuu+9GFULg2rVr2tvb0+/8zu9MVU+1WlW1WlWlUhm72//q6mrX3+P2DutduSaRSIz1PAAAgFnK5XIyTfPISRiEo1QqDV0d9DCWZSmXy4UfFAAAEYosEWYYhu7du6f19fVIk2HXrl3TvXv3Jp5fy9doNFQoFFSpVIYuWT5IKpXq+rtz+etRWq1W198MNQAAAPMmlUrJNM2pv2dhcv7QRtd1Va1Wx35eoVDQzs7Okb7XAgCwCCJLhEnPkze3bt3S+vr6zIdJ7u/v6+rVq6pWq9re3p5qbjDbtpXJZFQul4/8ZaG3R9i4ibDOnmOGYTDxKICF53320+e3n/35879/9ufyPvtpxFEB0ertAR7GvKKzZFnWxBOtIxydP5YWCgVlMhlVq1U5jhO0J3/ifP+H3Xg8Lsdx1Gw2p9r2ordfAMDJFNlk+T6/m/yNGzfUaDRULpf1jW9841i3+c477wTdxHd2dqaatN+fd6FYLE7U5T+ZTMowjOCLwUcffTTWsMqdnZ3g/73JNABYRPu/8R93/f2T//I/lySdq21HEA0wH3qTSDdv3lyo3lX8UBc9f3ijPxduo9EYOQG+YRja2toKZXXPRW+/AICTKdIeYb5isag7d+5oZ2dH6XRaX//61/XBBx+Euo0HDx5oY2ND58+fD37p+uEPf6jLly9PXKfjOEqlUsrn82P/2uk4jjY3N7vuu3LlSvB/27bHqqezXKlUGus5AABgMfjfVXqHstVqNcXjcaVSqSMNc8PpZlmW6vX60OSWYRjKZrOyLEvtdnvqJBjtFwAwz2Ke53lRB+Gr1WpaX1/Xs2fPFIvFJD3vMZVOp/Xyyy/LNE2ZpqmzZ88OrWN/f197e3tyHEf1el2NRqMraeR5nrLZrO7duzdVrK7rKpVKKZ1Oq1KpjP28VCqlra2trhUlbdvumivssEPSaDSUyWQkPf+ltXe+sKPyly1dXl7WkydPpqorKp/d/YNQ6/vy1d8MtT4Ahxs2DDL25V+ecSQAcLK5rhsMW1xaWmI1TwDAzEWZh4h8aGSnbDarTCajbDar7e3nQ2Fs2x7ZS6pzWOEwnYmlarWq73znO1PF6SfBTNNUqVQaa14vx3GCnludSTD/73Q6HXRTr9VqI3+J6+xSTm8wACcFCS8AmA3DMEh+AQBOrbnqEdapVqvp1q1bQRIsFosd2lNqlGKxqI2NDZ07d27q2FKp1NhDGHsNW1XScRwlEglJzxNjwyYndV1X8Xhc0vPJT+v1+kRxdKJHWD96hAEAAAAAcDyizEPMxRxhg2SzWe3s7Kher+vVV18dmASLxWJdt16maapYLKrdbuvWrVuRJ8EkDV1VsnNpcdu2++YR862trUl6/ksek40CAAAAAACMb66GRg6ytrYWJH8ePnyoRqOhjz76KJjbwB8WaRiGTNPU0tKSMpmM0ul0KImvTrlc7liSYL5sNqt6va5cLqdSqaSPPvpIGxsbMk1TOzs7KpVKsm1byWRS29vbdGkHAAAAAAA4grlPhHW6fPnyVKs8TmsWPbDS6bTa7bY2Nzd19+5dra2tyXVdGYah1dVVWZYVynLWAAAAAAAAp81CJcJOk2KxqGKxGHUYAAAAAAAAJ8bczhEGAAAAAAAAhIlEGAAAAAAAAE4FEmEAAAAAAAA4FUiEAQAAAAAA4FQgEQYAAAAAAIBTgUQYAAAAAAAATgUSYQAAAAAAADgVSIQBAAAAAADgVCARBgAAAAAAgFPhC1EHgPmxu7urixcvjixz/fp1Xb9+fUYRAQAAAACARXL79m3dvn17ZJnd3d0ZRdOPRBgCBwcHevr06cgy+/v7M4oGAAAAAAAsmv39/UNzC1EiEYbAmTNndOHChZFlzp49O6NoAAAAAADAojl79qyWl5dHltnd3dXBwcGMIup2IhNhjx8/lm3bMgxDq6urJG/GdOHCBT158iTqMAAAAAAAwIIaZ0qlixcvRtZr7EQlwh4/fqxcLifbtrvuT6VSsixLv/ZrvxZRZAAAAAAAAIja3K8a+c1vflMvv/yyXnrpJb300ks6f/68rl692lfu4cOHSqVSsm1bnud13XZ2dpRIJPThhx9G8AoAAAAAAAAwD+Y+EWYYhprNpj799FPl83nt7Ozo7t27XWWePXumtbU1tdttSVIsFguem06nZZqmDg4OlMvlZh4/AAAAAAAA5sPcJ8Js21apVNLe3p5ef/11rays9JVZX1+X67qKxWJBL7Byuay9vT3dv39fP/zhD3X//n0dHBzojTfeiOBVAAAAAAAAIGpznQh76623lEwmdfPmzaFl3nvvPdVqtSAJFovFVC6X9frrr3eVS6fTunXrlprN5nGHDQAAAAAAgDk014mwarV6aA+u9fX1YChkLBZTMpnsS4L5rl69qp2dndDjBAAAAAAAwPyb60RYq9XSpUuXhj5+7do1ua4rSfI8T5K0tbU1tPy5c+eCcgAAAAAAADhd5joRZpqmHj9+PPCxhw8fqlKpdA2JzOfzIxNnDx8+1Orq6vEECwAAAAAAgLk294mwarXad/+zZ8+6VoCMxWIyTVO///u/P7K+7e1tlUql0OMEAAAAAADA/PtC1AGMks/ndeXKFUnSjRs3JEmNRkOlUkmO43T1BrMsa2RdDx8+1M2bN/Xpp58ee9wAAAAAAACYP3PdIyybzWptbU3lclnxeFzxeFy5XE6tVitIgknSnTt3Rg6JfOedd5ROp2cUNQAAAAAAAObRXCfCJKlWq+nXf/3X5XlecJOeT45vGIYsy9L6+nrf8z7++GNtbGzopZdeUqFQULvdluu6+uCDD2b9EgAAAAAAADAH5npopPR8pUfLsrS9va16vS7btmUYhl5++WXl83mdO3eu7zlbW1vBUMmVlRWtrKwEj33/+9/X3/k7f2dm8QMAAAAAAGA+zH0izLe2tqa1tbWxyq6vrw/sJQYAAAAAAIDTa+6HRobp448/jjoEAAAAAAAARGTuE2GPHz8OrS56iQEAAAAAAJxec58IKxQKodTz6NEj2bYdSl0AAAAAAABYPHOfCHMcJ5R6SqVSKPUAAAAAAABgMS1EIuzHP/7xVHV897vfVa1WCykiAAAAAAAALKK5T4R5njdVb66NjQ16gwEAAAAAAGD+E2GSVKlU9OGHHx75eVevXtXm5qY8zzuGqAAAAAAAALBIvhB1AOPwPE+5XE6PHj3SV7/61UPLP378WJlMRo7jyPM8xWIxkmFj2N3d1cWLF0eWuX79uq5fvz6jiAAAAAAAwCK5ffu2bt++PbLM7u7ujKLptxCJsGw2q1qtprW1NX3/+98fWfa9997TlStXgr/9JFg2m9V777133KEutIODAz19+nRkmf39/RlFAwAAAAAAFs3+/v6huYUozX0iLJ1O6969e7JtW6urq/r2t7+tP/7jPx5YdmNjIxgK6SfADMPQgwcPdOnSpa4EGfqdOXNGFy5cGFnm7NmzM4oGAAAAAAAsmrNnz2p5eXlkmd3dXR0cHMwoom5znwhLJpPBvzs7O1pdXZVpmnrzzTeDMvv7+1pbW5Nt211JsHQ6LcuydO7cOUnPE2UY7sKFC3ry5EnUYQAAAAAAgAU1zpRKFy9ejKzX2NxPln/r1q3g/8lkUvfu3dOtW7f07rvvSpIePnyolZWVviRYuVzW/fv3gySYJF2+fHnm8QMAAAAAAGA+zH0irFc2m9WdO3eUz+d17do1ra6uqt1uB4+fO3dOzWZTr7/+et9zv/vd784yVAAAAAAAAMyRhUuESVI+n9fv/M7vqFKp9A2FfPTo0dCeX/V6fcaRAgAAAAAAYF4sZCJMksrlsl599VVJkud52tzc7BsK2WtnZ2dW4QEAAAAAAGDORDJZ/rNnz7S9vT11Pd/+9re1vb2tQqEg0zT1/vvvDyy3t7enSqUi13Wn3iYAAAAAAAAWU2SrRmazWcVisVDq2tzcPLSMP4QSAAAAAAAAp1MkQyPPnTunZDIpz/OmvkkaqwwAAAAAAABOt8jmCEun05I0dS+tcRJdJMMAAAAAAAAQ2dDIq1evBkMai8WiEomElpaWQt/O3t6eXNfVnTt39Pjx49DrBwAAAAAAwGKILBF2+fJlGYahzc1Nfec73zn27b366qt66aWXjn07AAAAAAAAmE+RDY2Ung+PNE1zJtsyTVMrKysz2RYAAAAAAADmT6SJsKtXrx7LcMhhstnszLYFAAAAAACA+RLZ0Ejp+XDFWbp169ZMtwcAAAAAAID5EWmPMAAAAAAAAGBWFiYR9uDBA21sbOidd945tOx7772nl156SR988MEMIgMAAAAAAMAiiHRo5LiuXr2qWq0W/P3s2TP99m//9tDyr776qlZWVpROp3Xz5k1ZlqVf+7Vfm0WoAAAAAAAAmFNz3yPs2rVrsixLnufJ8zxJ0v379w99XjKZlOM4+uSTT5RKpfSDH/zguEMFAAAAAADAHJvrRNizZ89UqVQUi8UUi8UkSZ7nKZfLjfV8wzDUbDa1t7dHMgwAAAAAAOCUm+tE2M2bNyU9T36dO3dO+XxerVZL3/nOd8auwzRNra+v6+DgYOwEGgAAAAAAAE6euU6ENRoNxeNx1et17e3t6c6dO1pZWTlyPd/85jclSa1WS++++27YYQIAAAAAAGABzHUizHEcbWxsaG1tbap6TNMM/n/v3r1pwwIAAAAAAMACmutVI13X7UpiTWpvb0/S8yGWOzs7U9d3Uu3u7urixYsjy1y/fl3Xr1+fUUQAAAAAAGCR3L59W7dv3x5ZZnd3d0bR9JvrRJhpmkESaxr1ej34v+u6U9d3Uh0cHOjp06cjy+zv788oGgAAAAAAsGj29/cPzS1Eaa4TYclkUpZlHWly/EGq1apisZg8z5NhGOEEdwKdOXNGFy5cGFnm7NmzM4oGAAAAAAAsmrNnz2p5eXlkmd3dXR0cHMwoom5znQjL5/P61re+pQ8//FDf+MY3Jqrj6tWrcl1XsVhMsVhMq6urIUd5cly4cEFPnjyJOgwAAAAAALCgxplS6eLFi5H1GpvryfLT6bQuXbqkdDqtDz/88EjP3d/f19WrV2VZVtAbTJJyudxxhAoAAAAAAIA5N9eJMEna2tqS53lKp9P623/7bx+aENvf39e1a9cUj8dVq9WC+2OxmEzTnHqYJQAAAAAAABbTXA+NlJ7PE3bv3j1duXJF9Xpd9XpdhmHINM3gJkmO48i2bTmOI0lBDzC/N1gsFpNlWZG9DgAAAAAAAERr7hNhkpTNZrWzs6O1tTU9e/ZMruvKtm3Ztt1Vzk9+Sc8TYP59hmFoe3tbly5dmmXYAAAAAAAAmCNzPzTSl0wm9fjxY73++uvyPK/vJimYEF9ScH8+n9ejR490+fLlKMMHAAAAAABAxBaiR5jv3LlzKpfLKpfL2t7eVr1el23b2tvbk+M4WlpakmEYWl1dVSaTUTqd1rlz56IOGwAAAAAAAHNgoRJhndbW1rS2thZ1GAAAAAAAAFgQCzM0chrPnj3TxsZG1GEAAAAAAAAgQqciEXbu3DnV63V9/etfjzoUAAAAAAAARORUJMIkaXV1Vc1mU2+88UbUoQAAAAAAACACCzdH2OPHj+W6rvb29sZ+jm3bsixLnuepUqnozTffPMYIAQAAAAAAMI8WIhH2/vvvq1KpqNFoTF2X67rTBwQAAAAAAICFM/eJsLfeeks3btyQJHmeN3E9sVhMsVhMyWQyrNAAAAAAAACwQOZ6jrCHDx+qVCpJGpwEi8ViY9UTi8XkeZ5WVla0tbUVaowAAAAAAABYDHPdI6xSqUh6vupjPp9XIpGQaZqSpHa7rStXrigej+vevXsDn++6ru7fv6933nlHtm3r0qVLswodAAAAAAAAc2auE2GNRkOJREKffPLJwMfX19f1zjvvKJFI6Gtf+9rAMq+++qok6caNG/re9753XKECAAAAAABgzs310EjHcYJeYYPcuHFDnudpc3NzZD2lUkn379/X22+/HXaIAAAAAAAAWBBznQiTpNXV1aGPraysaG1tTZVKRfv7+0PLmaapy5cvq1gsjiwHAAAAAACAk2uuE2HJZFJ7e3sjy5RKJXmeF6wsOczLL78sz/N069atMEMEAAAAAADAgpjrRJhpmqpWqyPLpNNpXb58WZVKRT/4wQ+GltvZ2ZEkWZYVaowAAAAAAABYDHOdCLty5YrK5bLefvttPX78WA8ePNCDBw/6ym1sbMjzPCWTSX3wwQd9j7/11luybVvS83nHAAAAAAAAcPrEPM/zog5ilHg83jevVyqV0ve///2u+zKZjLa3txWLxZRMJoO5xRqNhhzHkf8yR61CeVpdvHhRT58+1fLysp48eRJ1OBP57O4fhFrfl6/+Zqj1AQAAAACA56LMQ3xhplubwNbWlq5cuaJYLBYks5rNpj7++GNdunQpKFepVPTiiy9KkmzbDnqAdeb5/CQZBtvd3dXFixdHlrl+/bquX78+o4gAAAAAADj5fvKznw28/ytf+tKMI5ne7du3dfv27ZFldnd3ZxRNv7lPhGWzWd27d09XrlwJ7jMMoysJJj2fT+z+/fv65je/qVgsFtzv/9/zPBmGoa2trZnEvYgODg709OnTkWVYdRMAAAAAgHBd/L2/P/D+9t/7b2YcyfT29/cPzS1Eae4TYdLzZFi73da9e/fkuq7y+fzAcul0Wj/84Q9VKBS0vb3d9VgymZRlWTp79uwsQl5IZ86c0YULF0aWYf8BAAAAAIBhzp49q+Xl5ZFldnd3dXBwMKOIus39HGGTevbsWbBSpGmaWllZiTii+cUcYf2YIwwAAAAAELZbH/YvAChJP/v8c0nS/+/HP9b/8PHH+r9cuqT/w1e/qi+98MLQum5845VjiXEWmCPsGJw7d05ra2tRhwEAAAAAADDSl154Qb/4/HP9q//tf5MknYnFRibBMLkzUQcwyv7+vq5du6Zvfetbevvtt6MOBwAAAAAA4Fj8y3/zb9T83+fW+uRP/zTiaE6uue4Rls1mtb29Lc/z1Gg0tLKyol//9V+POiwAAAAAAIDQ/OLzz/XPfvSj4O8/+Tf/Rv/HlRV94cxc919aSHO9RxuNRtffhmFEEwgAAAAAAMAx+Zf/5t/o3/3sZ8Hff/bzn+tf7u5GGNHJNdeJMNM0JUmxWEzZbFavvLK4E8EBAAAAAAD06u0N5vtnP/qRfhHRyoon2VwnwvL5vPxFLe/evTt1fdeuXZu6DgAAAAAAgLD09gbz/buf/YxeYcdgrhNhxWIxWPnxRwOyo0fVO9QSAAAAAAAgKr84OBjYG8z3z//X/5VeYSGb60SYJNXrdf36r/+6stmsfvzjH09cz6NHj+Q4ToiR/QXHcZTJZFSr1Y6l/kHbAgAAAAAAi+1f7u4O7A3m+/Gf/7n+hF5hoZr7RJgkvfvuu8rn80omk3r33Xe1v78/1vP29/e1v7+vBw8eKJfLhR6X67rK5XJKJBJqNBra29ubqq5YLHboLZFIBHOnAQAAAACAxXRYbzDfP6NXWKi+EHUAo7z44ot69OhR8Lfnecrn88rn80euy/M8xWKxUOJyXVc3b97U5uZmKPVJUrVaHbtsqVQKbbsAAAAAAGD2DusN5vN7hV1eXp5BVCffXPcI8yfL92+xWKzr76PcwrK5ualUKiXbtkOrU5Ju3rw5Vrl0Ok2PMAAAAAAAFti4vcF89AoLz1z3CCsUCrpx40bQk2vShJafQJuWbdtKp9MqFouSnvfiKhQKU9dbrVbluq6KxeKh83+trq5OvT0AAAAAABCdcXuD+egVFp65ToSdO3dOr776qt577z1Jz3tDGYZx5HocxwmlB1cymez6O6ykVLlclmmaKpfLodQHAAAAAADm11//K39F/+Ff+SvB3z///HNJ0r/98Y9170/+RFf+2l/Tr371q/riCy8EZeZ6SN8CmetEmPS8V9j777+vZrOpS5cuTVxPtVrVtWvXwgtMmigp16tWq8lxHFUqlekDAgAAAAAAc+8LHQkuSfpv/+k/7fr73p/8iSSp9Lf+1qxCOjXmJqHor/D4+PFjPX78OFgZMp1O69y5c1MlwaS/mG9s3ty8eVOGYejKlStRhwIAAAAAAHCiRdoj7IWeDGinSqWi73znO5KkjY0N7e/v6+zZs1Ntb5LVJo+TbdvBkM14PC7TNJVOp5XJZJTNZiOODgAAAAAAzML/7W/+zahDODUi7RHWu7Lj2tqa7t27p729vSAJJkmvv/761EkwSbpz587UdYSpVCp1/e04jqrVqnK5nGKxmHK5XOirUwIAAAAAgPnypRdeGHhD+CIfGhmLxRSLxdRoNHT//n29+uqrOnfuXNRhHTvHcdRoNEaWqdVqSqVSoaxMCQAAAAAAcNrNxWT55XJZr7zyStRhzJRpmqpUKnJdV61WS41GQ47jDCxbrVa1s7OjZrM54ygBAAAAAABOjrlIhJ3W+bB65yxzXVfValU3b96U67pdj9m2rUwmo3q9PsMIAQAAAAAATo7Ih0ZK0te+9rWoQ5gLhmGoWCyq3W7LsiwZhtH1eKPR0ObmZjTBAQAAAAAALLjIe4T1JnuO00svvaRPPvlkZtubRjabVTqd1traWteE+Tdv3lSxWDyWbe7u7urixYtT13P9+nVdv349hIgAAAAAAMC8uH37tm7fvj11Pbu7uyFEM5nIE2FLS0sz21ar1ZrZtsJgGIaazaZSqVSQDHNdV41GQ+l0OvTtHRwc6OnTp1PXs7+/H0I0AAAAAABgnuzv74eSN4hS5ImwWXn48KFisVjUYUxka2tLqVQq+Lterx9LIuzMmTO6cOHC1PWcPXs2hGgAAAAAAMA8OXv2rJaXl6euZ3d3VwcHByFEdHSnIhG2v7+vUqkUdRgTSyaTSqfTajQakjR0dclpXbhwQU+ePDmWugEAAAAAwGILayqkixcvRtazLPJEmOM4+ta3vnUsde/t7cl1XTmOI8/zFrZHmCRlMpkgEQYAAAAAAICjizwRJunYEjye5x1LvVEwTTP4/yznVQMAAAAAADgp5iIRdlw6e4AtelKsMxE2y5U2AQAAAAAAToq5SIQdZ5JqkYdDdtrZ2Qn+n8lkIowEAAAAAABgMc1FIiyZTB5b3f4cYYuu1WoF/z+OFSMBAAAAAABOusgTYaZpdvV2Og6O4yiXy+njjz8+1u0cp1qtJkkqFosRRwIAAAAAALCYzkQdwCyYpqmtra3Q63VdN/Q6B6nVanIcR4ZhaGNjYybbBAAAAAAAOGlORSJMOp7hl71DLsdNjDUaDcXjccViMWUyGdm2PXIb6+vrkqTt7W0mygcAAAAAAJhQ5Imwvb29mW3r8uXLodXluq5KpVLXfXfv3h3ruZZlBUmzRqOhVCqlQqHQV85/bGlpSa1W61jnUgMAAAAAADjpIk+EzWp4oaSp5yJzXVe5XE6ZTEbxeLyvR5ht20Evr1wuN7SnVy6X67uvWq0qHo8rl8upUCgolUopk8kon8+r2WzKNP//7f1/fBv3fef7vkGJ8m8KopxEjJitBUbrtHFcCZTTpqfZTSww8Tmn+7h7YkDKntOfmwh0sudxei9Tk1HSvZt0k8hgEqY5vZsYlN2brns3lkDbzW67dQxIbi23TmICduJkWzcBJLuS4TQWAUPWD4oU5v5BAwZA/BgAQ8yAeD0fDz4kAIPvfDAYkJw3P/MdT1u1AwAAAAAA9DrbJ8uXpGeffVa7du2yu4yG3G63IpFI2+P4fD4lk0mFQiHFYjEtLCwUA8FEIiGv16uDBw/K5/NxKiQAAAAAAIBFHBGEzc7O6mtf+5rdZXSUx+NROBy2uwwAAAAAAICeYfupkZIUDof1yCOP2F0GAAAAAAAA1jFHBGGS5Pf7dccdd+iRRx5RLpezuxwAAAAAAACsM7YHYYZhFL8ee+wx3XnnndqyZYvuu+8+u0sDAAAAAADAOmLrHGH5fF6S9Oqrr0qSFhYWJK1cnZGrJAIAAAAAAMBKjpgsf/PmzWX/AgAAAAAAAFaz/dRIAAAAAAAAoBMIwgAAAAAAANATCMIAAAAAAADQEwjCAAAAAAAA0BMcMVk+nCGdTmt4eLjuMhMTE5qYmOhQRQAAAAAAoJvMzMxoZmam7jLpdLpD1axGEIaifD6vM2fO1F0ml8t1qBoAAAAAANBtcrlcw2zBTgRhKOrr69PQ0FDdZQYGBjpUDQAAAAAA6DYDAwPavn173WXS6bTy+XyHKipHEIaioaEhnT592u4yAAAAAABAlzIzpdLw8LBtXWO2TpZ/3333aefOnfrwhz9sZxkAAAAAAADoAbYFYc8884yCwaCSyaQikYgefvhhu0oBAAAAAABAD7AtCDt06JAkyeVySZLcbrddpQAAAAAAAKAH2BaEJRIJSZJhGAqHw7r99turLrd//34dP368k6UBAAAAAABgHbItCEulUtqyZYvi8bg++tGP1lwuEokolUpZss5nn33WknEAAAAAAADQfWwLwtxutw4ePKjdu3d3bJ1TU1MdWxcAAAAAAACcxbYgzOPxyOPxdHSdVnWWAQAAAAAAoPvYFoTt379fR44c6dj6nnnmGYIwAAAAAACAHrbRrhUHg0FNTU3p5MmTCgaD8ng8GhwcrLpsPB5vuXssm80qlUrpC1/4QjvlAgAAAAAAoMvZFoRt3rxZR48e1b59+xSPx+suOzs7q9nZ2bbWZxiGXC5XW2MAAAAAAACge9l2aqQk+f1+HT16VIZh1PySVPdxs18AAAAAAADobbYGYdJKGJbJZHTgwAG53W67ywEAAAAAAMA6ZdupkaU2b96scDiscDiskydPKpFIaGFhQYZh6K677lIgENCePXtaGvvs2bNKpVKam5uzuGoAAAAAAAB0E0cEYaV27NihHTt2FG/fddddGhsb00c/+tG2xo3FYvrgBz/YbnkAAAAAAADoUrafGtkpPp+vLGADAAAAAABAb+mZIEySPB6P3SUAAAAAAADAJo47NbJSJpPR5s2bLRkrEolYMg4AAAAAAAC6j+M7wqwKwaweCwAAAAAAAN3F8R1h1eRyOcViMUWjUS0sLCiVSmlwcFAej0cjIyPy+/266aab7C4TAAAAAAAADtJVQdipU6c0NTWlubm5svsNw5DL5Srenpqaksfj0Sc/+Ul95CMf6XSZAAAAAAAAcCDHnxpZcPjwYY2MjGhubk6GYRS/JJWFYNJKMJZMJhUMBvXud79bL7zwgh0lAwAAAAAAwEG6Igj74he/qLvuuqss+CqEX6WhWGk4Vnhsfn5eIyMj+v73v29L7QAAAAAAAHAGx58a+dBDD2lqaqoYfhWCLq/Xqz179mhkZERut1sej0eDg4NKpVJaWFhQMpnU3NycUqmU8vm89u7dq/n5eeYOqyOdTmt4eLjuMhMTE5qYmOhQRQAAAAAAoJvMzMxoZmam7jLpdLpD1azm+CCsEIIZhiG3261QKKR9+/bVvALk7t27i/+/55579Mwzz+gLX/iCHnroId1111169NFHO1V618nn8zpz5kzdZXK5XIeqAQAAAAAA3SaXyzXMFuzk6CDsoYceUiqVkiSNj4/r61//etNj7N69W5FIRNPT0zp48KAef/xxvf/977e61HWhr69PQ0NDdZcZGBjoUDUAAAAAAKDbDAwMaPv27XWXSafTyufzHaqonKODsCNHjsjlcikUCun3fu/32hprcnJSsVhMR48eJQirYWhoSKdPn7a7DAAAAAAA0KXMTKk0PDxsW9eYoyfLTyQS8nq9bYdgBePj44rFYpaMBQAAAAAAgO7i6I6wVCql2dlZy8Zzu93FUy0BAAAAAADQWxzdESZJHo/HsrEIwQAAAAAAAHqXo4Mwj8djaXgVDoctDdYAAAAAAADQPRwdhHm9XkUiEUvG+uQnP1mccwwAAAAAAAC9x9FB2L59+xSNRvWpT32q5TFyuZz279+v6elpuVwujY+PW1ghAAAAAAAAuoWjgzC/368dO3YoFArp4x//uE6dOmX6ucePH9f+/fu1ZcsWzc3NyeVyyev16vbbb1+7ggEAAAAAAOBYjr5qpLQyr9cHPvABhcNhhcNh+Xw+eb1ejYyMFOf7ymazWlhYUDwe1/z8vBKJRPH5hmFIklwulw4fPmzLawAAAAAAAID9HB+E+Xw+3XvvvbrrrrvkcrkUi8UUi8VqLl8IvqSV8MvlcskwDB09elS7du3qQMUAAAAAAABwIkefGlkQDAZ19OhRbd68uSzoMgxj1Vch/CoEYJs3b1Y8Htedd95p4ysAAAAAAACA3boiCJNW5gs7efKk7r777mLoVU3hsc2bNysUCmlhYUG7d+/ucLUAAAAAAABwGsefGlmqEG6FQiEdO3ZMiURCyWRSCwsLkqTBwUGNjIzI5/MRfgEAAAAAAKBMVwVhpfbu3au9e/faXQYAAAAAAAC6RNecGgkAAAAAAAC0gyAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPWGj3QXAOdLptIaHh+suMzExoYmJiQ5VBAAAAAAAusnMzIxmZmbqLpNOpztUzWoEYSjK5/M6c+ZM3WVyuVyHqgEAAAAAAN0ml8s1zBbsRBCGor6+Pg0NDdVdZmBgoEPVAAAAAACAbjMwMKDt27fXXSadTiufz3eoonKODsJyuZympqaUSqX0gQ98QJ/4xCfsLmldGxoa0unTp+0uAwAAAAAAdCkzUyoNDw/b1jXm6CDM7/fr2LFjMgxDsVhMO3bs0Ic+9CG7ywIAAAAAAEAXcvRVI2OxWNltt9ttTyEAAAAAAADoeo4OwjwejyTJ5XLJ7/fr9ttvt7kiAAAAAAAAdCtHB2HBYFCGYUiSjhw50vZ4H/vYx9oeAwAAAAAAAN3J0UHY5OSk9u7dK0l64YUX2h6v8lRLAAAAAAAA9A5HB2GSFI1G9aEPfUh+v1/nzp1reZyTJ08qlUpZWBkAAAAAAAC6ieODMEm6//77FQwG5fV6df/99yuXy5l6Xi6XUy6X0/HjxxUIBNa4SgAAAAAAADjZRrsLqOftb3+7Tp48WbxtGIaCwaCCwWDTYxmGIZfLZWV5AAAAAAAA6CKO7ggrTJZf+HK5XGW3m/kCAAAAAABAb3N0EDY+Pi5JcrlcxRCsFXSCAQAAAAAAwNGnRm7evFl33nmnHnroIUmSz+eT2+1uepxUKqVEImFxdQAAAAAAAOgmjg7CpJWusIcffljxeFy7du1qeZzZ2Vl97GMfs64wAAAAAAAAdBVHnxoprXSBbd68ua0QTHpjvjEAAAAAAAD0JscHYZJ08OBB5XK5tsdp5WqTAAAAAAAAWB8cf2qkJN19992WjHPvvfdaMg4AAAAAAAC6T1d0hDXr4MGDeuGFF+wuAwAAAAAAAA7SdUHYww8/rI997GO67bbb9PDDD1ddZnR0VLt379aHP/xhAjEAAAAAAABI6qIg7Etf+pK2bt2qQCCg2dlZJRIJLSwsVF3W7/crlUrpxz/+sTwejx555JEOVwsAAAAAAACncXwQ9uqrr2rnzp2amppSJpORYRimrv7odrsVj8e1a9cu+f1+3X///R2oFgAAAAAAAE7l+CAsEAgomUxKklwul1wuV1PPP3bsmAzDUDAY1OOPP74WJQIAAAAAAKALODoIO3bsmGKxmFwuV7ETbPPmzfL5fKbHcLvduvvuu2UYhsbHx9ewWgAAAAAAADiZo4OwcDgsScWOrmQyqYWFBT322GOmTo8s+PCHPyxJSiaTnCJZRzqd1vDwcN2vmZkZu8sEAAAAAAAONTMz0zBbSKfTttW30bY1m1DoBguHw/roRz/a8jgej6f4/8cee0wf+chHrChv3cnn8zpz5kzdZXK5XIeqAQAAAAAA3SaXyzXMFuzk6CAsm81qZGSkrRBMUtnVJROJRLtlrVt9fX0aGhqqu8zAwECHqgEAAAAAAN1mYGBA27dvr7tMOp1WPp/vUEXlHB2Eud1ueb3etscphF+GYSiVSrU93no1NDSk06dP210GAAAAAADoUhMTE5qYmKi7zPDwsG1dY46eI8zj8SibzbY9zqFDh4r/d7vdbY8HAAAAAACA7uPoIGzv3r2an59va4wvfvGLSiQScrlcksrnCwMAAAAAAEDvcHQQdvDgQWUyGX35y19u+fmf/OQn5XK5ZBiGXC6X9u/fb3GVAAAAAAAA6AaODsLcbrfuvvtuTU5O6lOf+pSpKxbmcjndd9992rlzp6anp2UYRtnjwWBwrcoFAAAAAACAgzl6snxJCoVCSiQSuueeexQKhTQ2NiafzydJisfjGhwc1MLCgpLJpGKxWNnE+JKKp0RK0r333stVDwEAAAAAAHqU44MwSYpGoxofH9fhw4cVjUYVjUblcrk0Ozur2dnZsmUrA7DC7XA4rAMHDnS2cAAAAAAAADiGo0+NLBUOhzU/P6/bb79dhmGs+iooDcAMw5DP51MymSQEAwAAAAAA6HFd0RFW4PV6FY1GdfLkScViMUWjUaVSKWWzWS0sLGhwcFBut1sej0djY2Pat2+fNm/ebHfZAAAAAAAAcICuCsIKduzYoQMHDjimyyuVSml8fFzj4+Py+/0tjzM9Pa1oNKr5+Xlls1l5PB55vV6Nj48X50UDAAAAAABAa7rm1EgnymazCgQCGhkZUSwW08LCQkvjxGIxbdmyRVNTU5KkSCSiZDJZvFDA2NiYxsbGlM1mLaweAAAAAACgt3RlR9ipU6cUi8UUj8eL4dPg4KBGRkbk8/m0a9euNV1/NpvVoUOHND093fZYsVhMY2NjkqRgMKhwOFx8zOPxyO/3a3R0VLFYTKOjo4rH43K73W2vFwAAAAAAoNd0VRB23333KRQKKZVKNVx2fHxck5OTuummmyytYXp6WuFwWB6Pp+2xCh1l0kroVRqClYpEIhoZGVEqlVIgEFA0Gm173QAAAAAAAL2mK06NPHXqlHbu3Knx8XElk8mqV4ssKNwfDoc1MjKiL3/5y5bVkUgkilehjEajNYMrswKBQPF0x8JpkdUUOsOklQ6y2dnZttYLAAAAAADQixwfhD3zzDMaHR0tBmAul6v4JaksFCsNxgq3Jycndccdd1hSi9frldfrLd7es2dPy2OlUinFYrHi7X379tVdfv/+/cX/1wvNAAAAAAAAUJ3jT40MBALKZDJlwZe00iXl8/k0MjIit9stj8ejwcFBpVIppVIpJZNJHT16VNlsVtFoVHfccYceffRRS2trZ66uUChU/L/P52s4VunVKLPZrObm5tq6QiUAAAAAAECvcXQQdvjwYaVSqbIQzOfzKRQKaffu3VWfU3r/vffeq7m5OR06dEjRaFRf/vKX9YlPfKIjtTdSenpjaZdZPR6Ppzg/2pEjRwjCAAAAAAAAmuDoUyMLc3AVusDC4bAee+yxmiFYNX6/X/F4XLfffrsmJyeVy+XWpNZmJBKJstu33XabqeeVBmZzc3OW1gQAAAAAALDeOToIK3SDuVwuTU5O6sCBAy2PFYlEZBiGIpGIhRW2pnRuMEmmr0BZuVxloAYAAAAAAIDaHB2EZbPZYjfYwYMH2xrL7XYrGAzq6NGjVpTWlqeffrrsttm5xrZu3Vp2e35+3qqSAAAAAAAA1j1HB2GFUwE9Ho8GBgbaHm9kZKQ4x5adKmtotSMsmUxaVhMAAAAAAMB65+ggbO/evZKkhYUFy8Z0YhDWqmw2a8k4AAAAAAAAvcDRQdinPvUpSSuBz6lTp9oeL5lMmj4NcS21GmBV1m5lQAgAAAAAALDebbS7gHo2b96so0ePat++ffrkJz+pBx98sK3xjh49umqerW5mdUdYOp3W8PBw2+NMTExoYmLCgooAAAAAAIBTzMzMaGZmpu1x0um0BdW0xtFBmCT5/X6Fw2FNTU3p4x//uL72ta+1NM4nP/lJZbNZjY2NWVxh89xutyUhltXdbfl8XmfOnGl7nFwuZ0E1AAAAAADASXK5nCW5gZ1sCcLuuusuxePxpp4zODiocDiscDhcnETfrGw2q1QqJZfL5YggbHBw0JIgbHBwsP1iSvT19WloaKjtcay4sAEAAAAAAHCWgYEBbd++ve1x0um08vm8BRU1z5YgzO12Kx6Py+VyyTCMhsu7XC5JKi7bbIhWOs6+fftaeq6VWu3kqgzPrO4IGxoa0unTpy0dEwAAAAAArA9WTYU0PDxsW2eZLZPlj4+PF//vcrkafjWzbL2vYDDoiG6lPXv2lN022x1WOTn+yMiIVSUBAAAAAACse7YEYTt27JDH45G00uXVia/du3crFArZ8XJXGR0dLbudSqVMPS+ZTJbd9vl8ltUEAAAAAACw3tkShEnS3r17JUmxWEz5fH7Nv+bn5x3RDSat7ggzG4SVdo653e5imAgAAAAAAIDGbAvC9u3bJ6/Xq9tvv92uEmzj9XrL5vd6+umnTT1vfn6++P/KMA0AAAAAAAD12doRtmPHjo6u89SpUx1dXz2lk/YnEglTzyldbmpqyvKaAAAAAAAA1jPbgjBJOnr0aEfXVzpJv91Ka4nFYg2XL13G4/EwPxgAAAAAAECTbA3COq301EIrmL3aYzVer7cszJqbm6u7fCQSKf6fbjAAAAAAAIDmbbS7gFacOnWqqRAqlUopHA63FVzVGrdUs+OHw2GNjIxIkg4dOiS/3191uWw2q9nZWUkrV4oMBoPNFwsAAAAAANDjuiIIO3XqlEKhkGKxmOkrLFYyDEMul8uymrLZ7KrOrCNHjmhyctL0GB6PR5FIRIFAQIlEQtPT01WfX7jCptvtLusMAwAAAAAAgHmOPzXy4MGDGhkZ0ezsrJLJpAzDaOnLCtlsVoFAQGNjY9qyZcuqUC6RSMjlcmlsbKwYbjXi9/sVjUbldrs1NTVVfF42m1UsFtPo6KgSiYS8Xq9OnjxZdrVJAAAAAAAAmOfojrCHHnpIoVBIkuRyueRyuSwLtVqxVh1ZPp9PmUxG09PTOnLkiPbu3atsNiu32609e/YoEonUPG0SAAAAAAAA5jg6CDt06JAkFQMwj8cjr9crj8cjSdq6dWvDMc6ePatsNqujR4/q1VdfXdN62zU5OdnUqZUAAAAAAMAe5y9frnr/dZs2dbgSNMPRQVjhVENJikajxbmyWjE5OamdO3daVRoAAAAAAOhhw5//XNX7M5/9gw5XgmY4eo6wwnxYk5OTbYVg0srE9Dt27LCgKgAAAAAAAHQjRwdhhVMgb7vtNkvGC4fDlowDAAAAAAB62+lP/74+98E7irf/3Xveo9Of/n0bK4IZjg7CCl1gCwsLlo4HAAAAAADQjg0ul7721N8Wbx/5wQ+0sc/RMQvk8CDsU5/6lAzDUCKRsGS8++67z5JxAAAAAABAb3sgkdBLuVzx9ivnz+sBi/ILrB1HB2GbN2/WPffcoyNHjujcuXNtj8epkQAAAAAAoF2Xlpb0h0+eWHX/V048ocXlZRsqglmODsKklYnyvV6vAoFAW+OcPHnSss4yAAAAAADQuyq7wQpeyuXoCnO4jXYXYEY0GtWePXu0c+dOTU1NaXBw0NTzFhYWlM1mlUwmdfTo0TWuEgAAAAAArHeLy8tVu8EKvnLiCf2G16urNnZF5NJzuuJdOX78uCQpmUxqfHy8pTEMw5DL5bKyLAAAAAAA0GNqdYMVvJTL6U8TCX3k3e/uYFUwy/FB2Mc+9jHNzs5KklwulwzDaHoMAjBz0um0hoeH6y4zMTGhiYmJDlUEAAAAAIBzLC4v6ysnnmi43MyJJ/TrPdoVNjMzo5mZmbrLpNPpDlWzmqPfkcOHDxcnuG81BJPU8vN6TT6f15kzZ+ouk6uTegMAAAAAsJ416gYr6OWusFwu1zBbsJOjg7DKEMzn82lsbExut7vpecLuvfdenTp1ag2r7X59fX0aGhqqu8zAwECHqgEAAAAAwDnMdoMV9GpX2MDAgLZv3153mXQ6rXw+36GKyjn63UgkEnK5XHK73Zqfn9eOHTtaHuvAgQPaunWrhdWtP0NDQzp9+rTdZQAAAAAA4Dhmu8EKerUrzMyUSsPDw7Z1jTk6CHO73Xr11Vd18ODBtkKwwli7d++2qDIAAAAAALDe3fP48eL/l69c0f/rve8t3v7KiepXjixdJp17tWwM2M/RQdjo6KiOHz8uj8djyXiHDx+2ZBwAAAAAANBbNm7YUHa7NPAqtaliOThLn90F1DM+Pi7DMJRKpSwZj44wAAAAAABghU0bNlT9grM5Ogjz+/3avXu3jhw5Ysl4Dz/8sCXjAAAAAAAAoPs4OgiTpEgkong8rkceeaTtsQ4dOmRBRQAAAAAAAOhGjg/CPB6P7r33Xn30ox9ta5xXX31ViUTCoqoAAAAAAADQbRw9WX7hVMYbb7xRW7Zs0c6dO+X3+5seJ5vN6ujRo1aXBwAAAAAAgC7i6CDsC1/4gp555pnibcMwND093dJYhmHI5XJZVRoAAAAAAAC6jKNPjdy3b58Mw5BhGJJEkAUAAAAAAICWOToIGx8fl7QSgBUCsVa/AAAAAAAA0NscfWrk5s2b5fV69cwzzygUCsnr9WpwcLDpcVKplL7whS/o2Weftb5IAAAAAAAAdAVHB2GStH//fo2MjOjuu+9ueYzdu3frzjvvbClEAwAAAAAAwPrg6FMjJcnn81l2auOePXssGQcAAAAAAADdx/FB2O7duxUKhSwZy6pxAAAAAAAA0H0cH4RJ0o4dO9oe49SpU9q9e7cF1QAAAAAAAKAbdUUQ1q6HHnpIIyMj+v73v293KQAAAAAAALBJTwRhTz/9tAzD0IMPPmh3KQAAAAAAALCJ468aed9997X83Gw2q2QyqdnZWblcLsViMR06dMjC6gAAAAAAANAtHB+EBYNBuVyutsYoXHUykUjo1KlTuummmyyoDAAAAAAAAN2ka06NLIRZzT7HMAy5XK5imDY7O2t1aQAAAAAAAOgCXROESW8EW2a/JMnlcpXdF4lEbH4VAAAAAAAAsIPjT42UpB07dmhqakoej6ep5yWTSU1PT2t0dFSHDx/WwMDAGlW4PqTTaQ0PD9ddZmJiQhMTEx2qCAAAAAAAdJOZmRnNzMzUXSadTneomtW6IgiLxWItzeu1d+9eBYNBvf3tb1cwGOSqkQ3k83mdOXOm7jK5XK5D1QAAAAAAgG6Ty+UaZgt2cnwQ5na7257c/t5779UHPvAB3XbbbfrEJz5hTWHrUF9fn4aGhuouQ1cdAAAAAACoZWBgQNu3b6+7TDqdVj6f71BF5RwfhIVCobbH8Pl88ng8mpyc1J133slVI2sYGhrS6dOn7S4DAAAAAAB0KTNTKg0PD9vWNeb4yfIPHDhgyTher1eGYWh6etqS8QAAAAAAANBdHB+EWe3pp5+2uwQAAAAAAADYoCeCsFdffVWxWEySlEgkbK4GAAAAAAAAdlj3Qdizzz6rPXv26NVXX5UkeTwemysCAAAAAACAHRw/Wf7OnTtbfm4qlZIkGYYhSXK5XPL5fJbUBQAAAAAAgO7i+CAsmUzK5XIVw6xWlD7fiqtQAgAAAAAAoPt0zamRLperpS9ppSPM7Xbrscce08DAgM2vBAAAAAAAAHZwfEeY9MapjW63W4ODg6af53a75fF4dNttt+nuu+9eq/IAAAAAAADQBboiCJuentbv/d7v2V0GAAAAAAAAupjjT430eDyEYAAAAAAAAGib44Owqakpu0sAAAAAAADAOmBrEPbss882XObAgQNrXwgAAAAAAADWPVuDsNHRUTtXDwAAAAAAgB5iaxBmGIZeeOEFO0sAAAAAAABAj7B9jrBQKGR3CQAAAAAAAOgBtgdh4XBYd9xxhx5++GGdOnVKuVxOuVzO7rIAAAAAAACwzmy0uwBJikajikajHVvflStXOrYuAAAAAAAAOIMjgjDDMIr/d7vdkqTBwcGWxlpYWFA2m636mMfj6WjgBgAAAAAAAOdwRBAWCoXk9/u1Y8eOtsY5duyYAoGAXC5X2f2GYSgQCOjIkSNtjQ8AAAAAAIDu5Yg5wu6+++62Q7AvfelL+sAHPqBXX3212GFmGIYMw1AoFCIEAwAAAAAA6HG2doS5XC7t27ev7XE+8IEP6NixY8UAzOVyyTAMud1uHTt2TLt37257HQAAAAAAAOhutgZhmzdv1sDAQMvPP3XqlMbGxpRKpWQYRvGUSMMw5PV6dezYMW3evNmqcgEAAAAAANDFbA3CTp482fJzH3rooWI3WWUINj4+rq9//euW1NhL0um0hoeH6y4zMTGhiYmJDlUEAAAAAAC6yczMjGZmZuouk06nO1TNarZ3hLXi4MGDmp6eLgZghVMhpZU5xw4cOGBlmT0jn8/rzJkzdZfJ5XIdqgYAAAAAAHSbXC7XMFuwkyOuGmlWLpdTIBBQLBZb1QXGfGDt6+vr09DQUN1l2jmVFQAAAAAArG8DAwPavn173WXS6bTy+XyHKirXNUHYs88+q7179yqbza4KwXw+nyKRCPOBtWloaEinT5+2uwwAAAAAANClzEypNDw8bFvXWJ8ta23S4cOHNTo6qkwmsyoEm5qa0mOPPUYIBgAAAAAAgLoc3xH2sY99TLOzs6sCMEmKRCK688477SwPAAAAAAAAXcKxQVgul9PevXuVSCRWhWAej0fRaFQ7duywuUoAAAAAAAB0C0eeGvnss89qx44dVUOwQCCgn/zkJ4RgAAAAAAAAaIrjgrBq84EZhiHDMBQKhXTkyBG7SwQAAAAAAEAXctSpkfv379fc3NyqLjC3261IJKK9e/faXCEAAAAAAAC6lSM6wk6dOqWdO3dWDcG8Xq9OnjxpSQi2c+fOtscAAAAAAABAd7I9CDt+/LhGR0eVTCZXhWDj4+Oan5/X5s2bLVlXMpm0ZBwAAAAAAAB0H1uDsC9+8YsaGxtTJpORy+Uqmw8sHA7r61//umXrOnz4cDFkAwAAAAAAQO+xdY6wqampYgAmrXSBbdmyRceOHdOuXbssW899992n8fFxgjAAAAAAAIAe5qjJ8l0ulwYHB3XgwAFLxstms0qlUpaMBQAAAAAAgO7mmCDMMAxJzOMFAAAAAACAteGIIGzHjh2KRCJyu92WjJfNZov/n5+fVzgcViKRsGRsAAAAAAAAdCfbgzCPx2PplSEr7d69WwcOHFAgENDDDz+8JutA7zAuXax6v+vqazpcCQAAAAAAaJbtQVgkElmzEKxUKBQiCEPbcr/+a1Xv3zx3rMOVAAAAAACAZtkahLndbkuvDlmPx+PpSOCG9eHSkT+xbPmr9/9Wu+UAAAAAAAAL9Nm58lAotK7Xh/Wn/9f86rv5ndJVV63ccdVV6rv5nTKWluwtDAAAAAAANGRrR9iBAwfW9fqwvhhLS1p+8riM7MIbdy4uKv/8j7T007T63/dBufr77SsQAAAAAADUZWtHGNBNrjz/w/IQrISRXdCV53/U4YoAAAAAAEAzCMIAk66cSjZ4/CcdqgQAAAAAALSCIAwwwTAM6eKF+gtdvLCyHAAAAAAAcCRb5wiDs6TTaQ0PD9ddZmJiQhMTEx2qyDlcLpd0zbX1w7Brrl1ZDgAAAACAHjUzM6OZmZm6y6TT6Q5VsxpBGIry+bzOnDlTd5lcLtehapxnw00juvJ3z9V5/O0drAYAAAAAAOfJ5XINswU7EYShqK+vT0NDQ3WXGRgY6FA1zrPh5luUT5+Wkc2seszlHtSGm99pQ1UAAAAAADjHwMCAtm/fXneZdDqtfD7foYrKEYShaGhoSKdPn7a7DMdy9fdXDcEkqf99H5Srv7/DFQEAAAAA4CxmplQaHh62rWuMyfIBCxCCAQAAAADgfHSEAU3Y9L/9G7tLAAAAAAAALSIIA5rg2kjnFwAAAAAA3YpTIwEAAAAAANATCMIAAAAAAADQEwjCAAAAAAAA0BMIwgAAAAAAANATCMIAAAAAAADQEwjCulgqldLY2JjdZQAAAAAAAHQFgjAHymazcrlcDb9GRkbk8XjsLhcAAAAAAKArEIQ50OzsrOllp6am1rASAAAAAACA9YMgzIEOHTpkajmfz0dHGAAAAAAAgEkb7S4A5WZnZ5XNZjU5Odlw/q89e/Z0qCoAAAAAAIDuRxDmMKFQSB6PR6FQyO5SAAAAAAAA1hWCMAeZm5tTKpVSOBy2uxQAAAAAAIB1hznCHOTQoUNyu93at2+f3aUAAAAAAACsOwRhDpFIJJRIJJTNZrVlyxaNjIxofHxcc3NzdpcGAAAAAACwLhCEOcTU1FTZ7VQqpdnZWQUCAblcLgUCASUSCZuqAwAAAAAA6H4EYQ6QSqUUi8XqLjM3N6fR0VGNj493qCoAAAAAAID1hcnyHcDj8SgcDiubzSqZTCoWiymVSlVddnZ2VvPz84rH4x2uEgAAAAAAoLsRhDlEMBgsu53NZjU7O6tDhw4pm82WPZZIJDQ2NqZoNNrBCgEAAAAAALobQZhDud1uTU5OanJyUnNzczpw4EBZIBaLxTQ9Pa3JyUnL1plOpzU8PNz2OBMTE5qYmLCgIgAAAAAA4BQzMzOamZlpe5x0Om1BNa0hCOsCfr9fPp9Pe/fuLZsw/9ChQ5YGYfl8XmfOnGl7nFwuZ0E1AAAAAADASXK5nCW5gZ0IwrqE2+1WPB7X6OhoMQzLZrOKxWLy+XyWrKOvr09DQ0NtjzMwMGBBNQAAAAAAwEkGBga0ffv2tsdJp9PK5/MWVNQ8grAuc/jwYY2OjhZvR6NRy4KwoaEhnT592pKxAAAAAADA+mLVVEjDw8O2dZb12bJWtMzr9ZYFX7WuLgkAAAAAAIByBGFdaGxszO4SAAAAAAAAug6nRnYhj8dT/P/g4KCNlQAAAAAA0D3OX75c9f7rNm3qcCWwC0FYFyoNwtxut32FAAAAAADQRYY//7mq92c++wcdrgR24dTILjQ/P1/8P6dJAgAAAAAAmEMQ1oWSyWTx/1ZdMRIAAAAAgPXuJ1Of1LYbbije3nrttUpOfdLGitBpBGFdaG5uTpI0OTlpcyUAAAAAAHSPh597Ti+fO1e8ffbCBT38wx/aWBE6jTnCuszc3JxSqZTcbrcOHjxodzkAAAAAADjKPY8fr3r/8pUrCn/3u6vu/2z0Mb18LqeNffQK9QLeZZvFYjFt2bJFLpdLY2NjSiQSNZdNpVI6cOCAJOnYsWNMlA8AAAAAgEk/ePllvVblqpGvXb6sH6TTNlQEOxCE2SwSiSibzUpaCcVGR0c1Pj6+arnCY4ODg0omk/J6vR2uFAAAAACA7rScz+upF16o+fh3XnxRy/l8ByuCXQjCbBYIBFbdNzs7qy1btigQCGh8fFyjo6MaGxtTMBhUPB6Xx+OxoVIAAAAAALrTD9Lpqt1gBecWF/UcXWE9gSDMZj6fT8lkUsFgUB6Pp+x0x0QioYWFBR08eFCZTEahUIjTIQEAAAAAaEKjbrCCp+gK6wlMlu8AHo9H4XDY7jIAAAAAAFh3GnWDFRS6wnZv396BqmAXOsIAAAAAAMC6ZLYbrICusPWPIAwAAAAAAKxLZrvBCpgrbP3j1EgAAAAAALAu3bptm27Ztq2p59AxtL4RhAEAAAAAgHVp44YNdpcAhyHoBAAAAAAAQE8gCAMAAAAAAEBPIAgDAAAAAABATyAIAwAAAAAAQE8gCAMAAAAAAEBP4KqRKEqn0xoeHq67zMTEhCYmJjpUEQAAAAAA6CYzMzOamZmpu0w6ne5QNasRhKEon8/rzJkzdZfJ5XIdqgYAAAAAAHSbXC7XMFuwE0EYivr6+jQ0NFR3mYGBgQ5VAwAAAAAAus3AwIC2b99ed5l0Oq18Pt+hisoRhKFoaGhIp0+ftrsMAAAAAADQpcxMqTQ8PGxb1xiT5QMAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCdstLsAAAAAAACAas5fvqxLy8v646e/J0n6yG3v1lUbN+q6TZtsrgzdiiAMAAAAAAA40vDnP1d2+wvHj0uSMp/9AzvKwTrAqZEAAAAAAADoCQRhAAAAAADAkT73wTtW3ff5KvcBZhGEAQAAAAAAx7m0tKSvPfW3q+7/T0/9rRaXl22oCOsBQRgAAAAAAHCcBxIJvZTLrbr/pVxODyQSNlSE9YAgDAAAAAAAOMri8rL+8MkTNR//yokn6ApDSwjCAAAAAACAo9TqBit4KZfTn9IVhhYQhAEAAAAAAMdYXF7WV0480XC5GbrC0IKNdhcA50in0xoeHq67zMTEhCYmJjpUEQAAAACgF9zz+PHi/xNnztTtBit4KZfTbz74Te3evn0tS0OTZmZmNDMzU3eZdDrdoWpWIwhDUT6f15kzZ+oukzPxzQgAAAAAgFYs5/N66oUXTC//1Isv6l1DQ9rYxwlvTpHL5RpmC3YiCENRX1+fhoaG6i4zMDDQoWoAAAAAAL3mB+m0Xrt82fTy5xYX9Vw6TVeYgwwMDGh7g/cjnU4rn893qKJyBGEoGhoa0unTp+0uAwAAAADQo27dtk23bNvW1HPoBXMWM1MqDQ8P29Y1RhAGAAAAAAAcYeOGDXaXgHWO4BQAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9YaPdBQC9yrh08Y3/G4ZcLpckyXX1NXaVBAAAAADAukYQBtgk9+u/VvX+gQf+m1zXXNvhagAAAAAAWP84NRKwgXHxQs3HXvsPE3UfBwAAAACnu7S0pK8+eUJfffKEFpeX7S4HKKIjDLDB4p8dqflYPvVjLX7riK7+8O90sCIAAAAAsMb5y5f1jfl5fSYalST1923Qb+3Zo+s2bbK5MoCOMMAWlx9/tP7jx+s/DgAAAABONfz5z+n3v/3GMc2nv/2ohj//ORsrAt5AEAZ0mGEYMhZeqb/MwisyDKNDFQEAAAAA0BsIwoAOc7lccg3eWH+ZwRuLV5EEAAAAgG5xaWlJ2264YdX92264gbnC4AjMEQassUtH/mTVfX1vGdKVOl1hfW95a9XnXb3/tyytDQAAAACs9EAioZfPnVt1/8vnzumBREIfffe7bagKeAMdYYANNtx8S83HXO5Bbbj5nR2sBgAAAADat7i8rD988kTNx79y4gm6wmA7gjDABq7+fvX/ml99N79TuvqalTuvvkZ9N79T/e/7oFz9/fYWCAAAAABNeiCR0Eu5XM3HX8rl9KeJRAcrAlbj1EjAJn3XXKu+W0elW0dlGAZzggEAAADoKvc8frz4/+V8XuHvfKfhcz4biyp9LqeNffTlwB7seYADEIIBAAAA6GY/SKf12uXLDZc7t7io59LpDlQEVEcQBgAAAAAAWracz+upF14wvfxTL76o5Xx+DSsCauPUSBSl02kNDw/XXWZiYkITExMdqggAAAAA4HRmu8EKCl1hu7dvX8OqYJeZmRnNzMzUXSZtY1cgQRiK8vm8zpw5U3eZXJ2JDwEAAAAA3evS0pLC312Z5+uuX36PrtpoLjK4dds23bJtW1Pr4vS09SuXyzXMFuxEEIaivr4+DQ0N1V1mYGCgQ9UAAAAAADrl/OXL+sb8vD4TjUqS+vs26Lf27NF1mzY1fO7GDRvWujx0kYGBAW1v0O2XTqeVt+n0WIIwFA0NDen06dN2lwEAAAAA6LDhz3+u7Panv/2oPv3tR5X57B/YVBG6lZkplYaHh23rGqMbEQAAAAAAAD2BIAwAAAAAgB52aWlJ2264YdX92264QYvLyzZUBKwdgjAAAAAAAHrYA4mEXj53btX9L587pwcSCRsqAtYOQRiwThiXLha/8hcvFP8PAAAAALUsLi/rD588UfPxr5x4gq4wrCtMlg+sE7lf/7Wq9w888N/kuubaDlcDAAAAwInuefx42e3EmTN6KZerufxLuZx+88FvaneDqwAC3YKOMGAdMC5eqPnYa/9hou7jAAAAAHrTcj6vp154oeFyT734opbz+Q5UBKw9gjBgHVj8syM1H8unfqzFb9V+HAAAAEBv+kE6rdcuX2643LnFRT2XTnegImDtEYQB68Dlxx+t//jx+o8DAAAA6C1mu8EK6ArDekEQBnQ5wzBkLLxSf5mFV2QYRocqAgAAANApl5aW9NUnT+irT55oalJ7s91gBXSFYb1gsnygi1w68ifVH7jmWqnePGDXXKvFo/+57K6r9/+WhZUBAAAAsMMDiYQ+E41Kkq7bdJU++u53m3rerdu26ZZt25paF500WA/Yj4F1YMNNIw0ef3uHKgEAAADQKWcvXNDMiSeKt7/8xF9r4YK5C2Vt3LBBm5r82rhhw1q9FKBj6AgD1oENN9+ifPq0jGxm1WMu96A23PxOG6oCAAAAUM2lpSWFv/sdSdJdv/weXbWx9qH5PY8fr/lY6K/+quz2y+fOaSR0j6be9z4rygTWJYIwYB1w9fer/3136MrzP9KVUz9ZOU3ymmu14aa3a8PN75Srv9/uEgEAAAC8rtXTGUstX7lS+7F8Xhv7OAEMqIYgDFgnXP392njLLm28ZZcMw5DL5bK7JAAAAAAVqp3O+KFbbtHgtdc2Nc4PXn659mPptLzbt7dcI7CeERED6xAhGAAAAOBMbw/do5fPnSveLpzO2IzlfF5PvfBCzce/8+KLWs7nW64RWM8IwgAAAAAAqOPS0pK++uQJffXJE1pcXm5rnFqaGfcH6bReu3y55uPnFhf1XDrdVG1AryAIAwAAAACghvOXL+v+p5/WZ6JRfSYa1f3f+57O1wmh6nkgkWjpsVKNusEKnqIrDKiKOcIA1MV8YwAAAOhlw5//XNntT3/7UX36248q89k/qPmcald6XM7nFf7Od2o+5w9iUb18LtdwkvtG3WAFha6w3cwVBpQhCAN61KUjf1LzsfzFC7ry479T/oWUdOmidPU16vs5jzb+/K01r0B59f7fWqtSAQAAgK5n9nTGesGV2W6wgqdefFHvGhriCpJACT4NAMoYS0ta+vM55Z//0UoIJkmXLir//I+09FffllFnXoOGYxuGRVUCAAAAa+/S0pK23XDDqvu33XBDU3N6WXU6o9lusALmCgNWoyMMQJkrz/+w5mNGdkFXnv+RNt6yy/R4+cxZLf75Q1p6IiYjc1auLVvV/y98utr/63Jd09wlogEAAACzLi0tKfzdlVMR7/rl9+iqjc0f/j6QSJRd4bHg5XPn9EAioY+++92mxrHqdMZbt23TLdu2mVpnAd0vQDmCMABlrpxKNnj8J6aDMOPiBZ07sK/8vsxZXf7WES0/l9D1n50hDAMAAMCaeCCR0GeiUUnSdZuuMh1aFSwuL+sPnzxR8/GvnHhCv+H1NgzYrDydceOGDabHAVAdQRiK0um0hoeH6y4zMTGhiYmJDlWETjMMQ7p4of5CFy+YnkB/8c+O1Hwsn/qxFr91RFd/+HeaLRMAAADrlBVdXJJ09sIFzZx4onj7y0/8tT50yy0avLb2H2ErJ7hPnDmjl3K5msu/lMvpNx/8ZsPJ6Fs9nZFJ7tGtZmZmNDMzU3eZtI2n7BKEoSifz+vMmTN1l8nV+UGA7udyuaRrrq0fhl1zremrSF5+/NH6jx9/lCAMAAAARe12cRW8PXRP2e2Xz53TSOieuld6LNXMnF6NJqPndEb0mlwu1zBbsBNBGIr6+vo0NDRUd5mBgYEOVQO7bLhpRFf+7rk6j7+96v2VV6E0DEPGwit112UsvKKLD35jVbDGFSgBAAB6TytdXNVcqnNxp8XlZVNdZlbN6SVxOiN6z8DAgLY36GhMp9PK17kwxFoiCEPR0NCQTp8+bXcZsNmGm29RPn1aRjaz6jGXe1Abbn6nqXGs7i4DAADA+tZKF1fl6YzSyimNtfzGg9+Ut8EBupVzegG9yMyUSsPDw7Z1jfFJBVDG1d+v/vfdoQ0/f+tKkCVJ11yrDT9/q/rf90G5+vtNj7XhppEGj1fvLjPDMIyWnwsAAADrXFpa0lefPKGvPnlCi8vLLY9RSzNjNgqxvvPii1pu0IXS6pxeALoDHWEAVnH192vjLbu08ZZdpifGr8aq7rKCfOasFv/8IS09EZOROSvXlq3q/xc+Xe3/da4+CQAAYBMr5vV6IJGo+5jZMRuFWGZOZWROL2B9IwgDUFc7py4WusuuPP8jXTn1k5XTJK+5Vhtuers23PzOmt1llfONSZKxtKTLf/bN8vsyZ3X5W0e09NfRmt1qZuYbayfsAwAA6EZWXZ3x0tKS/vDJE8XbXznxhH7D621qvMXl5bIxKpkd06oJ7pnTC1jfCMLQ9WZmZrTwt0/ohmuv0e/+r3fYXQ4qWNVdduX5H9Z8zMgu6MrzP9LGW3aZHm89dZfNzMwol8tpYGCg4bn4wHrD/o9exv6Pdlh1dcb7n35aL5VcWf6lXE73f+97+viv/ErV5WvN6fVSnavTv5TL6Tcf/OaqLq4TkYgWz1/QVdddq/cGApZOcA843YlIRJf++gl+BrTAZTDRTs8rTFK3ffv2rpwsv1D/Wwe3KPm1r9hdDtbI4p/PNZx4/6pf86+6u1pHmHHxgnK/8a+qDtPn2anrPzvTVhjW6Q6zbv8MA+1g/0cvY/9Hq85euKBf/dp/0svnzkmStt1wg/7m4/+upaszDn3uP1Z97OV///+u2sFVGYQt5/MKf+c7DQOsG666SsFf+qWyLq5D+/Yr98orGrjxRt394DdNjVNvPKCbFPb/bv0ZYOfPMDrCADieYRj1QzBJunjBdAC1+GdHaj6WT/1Yi986oqs//DtN1bieOswAAIA1rDr90Oqxmr06Y7UuLqn9qzNK5iemb9TF1eoE93SFAb2HIAyA47lcrpUrWDboCDPbhXX58UfrP3780aaCMOPiBZ07sK/8vtfnL1t+LtFWh5mV3WXMhQYAQGdZdfqhlWM1ujqj2YDNzNUZb60zD5eZMSrVm9uLCe4BmEUQBqArbLhpRFf+7rk6j7+96v2VE+8bhiFj4ZW66zIWXtHFB7+xKjSqNfG+1R1mVnaX0akGALCSlV1JTmXVazx74YJmTjxRvP3lJ/5aH7rllqZPP7R6LCddndHKLi4muAdg1vr7ybWOTE9PKxqNan5+XtlsVh6PR16vV+Pj4/L5fHaXB3TUhptvUT59WkY2s+oxl3tQG25+p6lx2ukuq3Y1S0la/O8P113n4l88LLlW/82x1vxlVnWXrWWnmpWc3Knm1NqcWheA9c/KDienhmpWvcZmTz+0eqxqpzMW5uOq5Q9iUb18Ltdw3iyrrs5IFxcAOzjjpw3KxGIxBQIBZbNZ+Xw+RSIReTweJRIJTU1NaWxsrHi/2+22u1ygI1z9/ep/3x268vyPdOXUT1aCrGuu1Yab3q4NN79Trv5+02O12l1WjZPnL1uLudAK2g1ijIsXtPhnR3T58UdlLLwi1+CN2vT+O3TVv97fdjjn1NrarWutuvsI1ZrHNkM3sXqOqj988kTx9ldOPKHf8HpbHtOJoZpVr7HV0w+rhldXrtQc63PHYk1N9m5FF5eZccyORxcXADsQhDlMLBbT2NiYJCkYDCocDhcf83g88vv9Gh0dVSwW0+joqOLxOGEYeoarv18bb9mljbfsautAdKW77IyM7MLqdTTRXSZZ32HWSneZUWPdVs+FZlUQY1y8oNf+/f9T+VPJN+5beEWLD/2plp75bkudalaFV1bXZmVdVnb3rWUQuV51wzZzaneN1XrhdVr5Gq0Mm+5/+mm9lMsVb7+Uy+n+731PH/+VX2l6LKeGas2+xrWcRL7gBy+/XPuxdNr0WFZ1cVk5rxd6gGFIVv3xyMqxnKoXXqMDrL/fHLpYNptVIBCQtBJ6lYZgpSKRiEZGRpRKpRQIBBR9/Yc+OutSPq/7F16VJH100K2r+viG1UntdGOsdJd90JLuMsm6DrN2u8uMixeK4ZrVc6FZGcQs/tmRsqCpVCudalaGV1bWZnVdtdhZV6+ot80uJ76jG/7gK464IMYD8bhlgYeVrA6urHydTr2in1WhjpXzSl1aWtLvf3v1H1g+/e1H9ZF3v7vp12tlqHb2wgXNPPHXxdutvk6rXqMVk8ivxVhrenXGOgfvXJ2x9/RfXtSuZ57SO/7uB7r+/Dm9dt0N+vufv1XP7n6PljZd1dRY15x/Tbd+/3v65//wnK4//5peu+56/cM/f5cSe/6npsdyKiu3F8whCHOQwumQkjQ1NVVzuUJn2NzcnGKxmGZnZxUMBjtUJQq+mT2nz/3TSkfRdX19+u3BzS2P9dW/eFTnLlzUDddeo9/9X++wqsSO6cb6S7vLvvrnf6lzFy/phhde1u/esqvpsazqMLPy6phWX2nTyiDG6k41K8OrVmqbmZlRLpfTwMCAJiYmHFNXLVYHkaUuXr6s2e99V5KzQgWpvcCp1jYzJOnkT1oKb0u7yxY2btLf3PhW+Q99RVffMNBUbYWxFh9/VPsWXtF7N25SxP1mhf/qeFvdNWa3f639v5QVoc5avc7f+dKX9Oili23VVmBVQFfslHo9WGinU8rKOaqsmmBdsi5wKuwXP/vWUX1n+bLShf3iyva6r9PKLq4TkYgWz1/QVdddq/e+/gdtq04/rDpWReBkdqy1uDpj/+VFjT77Xf3C88/phvPndO66G/Q/bn6X4rt+adXBe1O9YFZ3xDi1w8YwdGJubtX+Y7smtle1/b//8qL+H488oDe98tPictefP6c983+jn3shqW/96183He70X17Ub3/jq2X3XX/+NXmfeUpvO32yqbHM1t+SNvYxK7cXzCMIc4hUKqVYLFa8vW/fvjpLS/v379fc3JykldCMIMwcq7q4LuXz+qNX3pi0/f9+JaN/4x5oebz/+y++rZcWMnrr4Ja2gyQrO9XMjmVl/VbXZsZXv31MCzt3auCaa3RX3mh6rNIOs+VTP5Hr4gWdv+pqXbdjp/rfcYsl85cZklxqbv4yq660KVl3QQCznWrNhBZWhUSt1jYzM6MzZ85o+/btZUGA3XXVXK/FQWRlqPPB1w9Ev2lIv/3e95oep9IDiYQ+89hjkstlSXiihVd0/vobNDD2r3Tdh/5NUx1ctbZZYWsvNrHNqnWXDS5f1r96+ZRe/uS/0899KdzUBTEqxxpavqz/65XTev9rGf3JkycUfN/7TY1Vyez2r7X/F1gR6qzV67y0tKRvv/Iz6frrJbV2ap7VAZ1x8YLm/z9f0kPxpzRUEuy08hpbnaOq1vLF0xirHPA1u+2KoVqVsWqFapXhVenB49Dr95XuFx++6Zam5s8qC4qq1FWr8+rJyJxyr7yigRtv1HsDActOPyyt6boryxp/5YwC2X8q2y/CN27X+Q0bTY1lZRfXxg0bVrb/f/0vZQfvN5w/p19K/K08/5hq+uDd6q4fp3bYVNb1rxcv609TZ/THZ8/bFsRUq8vs9qrc/yVp1zNPle0Xpd70s5e165nv6Olf+pem6tr1zFM1H2t2rFUMo2r9Zlm1j1m5vWAeQZhDhEKh4v99Pl/Deb/8fn/x/9lsVnNzc2X3oTqrurj+JJNTevmNiUvTy1f0J5lXFdzqbmk8Y8MGXfUr79HSNddosYUgppSVnWpWjiVZG15ZWdvyL/yCrvmX/1JLkr6ZzbU0VqHD7IG37tCn0j+TXC4d2najfrvZ0yxrdJe51Pz8ZfU61dTEWO2csln1SpsmOtUWj/5n07VZdQqoy+WSa/DGuuO5Bm80FTZZGV6ZqUs21CXVDyj+/r4ZXdr1iy11OGUjf6r3PfpnOnV5UemNm/SX2Ze1MOLR4NYbmxqnsrbrXjunK4/8F732/adNnwJqZpupiW1Wr7tsy09f0vlHvqnr//ePNByn0VjvunRex498Q4u/+t6mg53zD/8Xve8vHi5u/0ezL+vSz7+jpffSilDH6tdZCK8Wvv1fdfK1XFkXUTOn5lkd0BkXL+jc7/+u3vVCatV4z933FV0aHW3qPSjr4Ko4SK7XwVWtW+pHp07pwz9+rmYQ81Iup9988JumOpz6z+V05dv/VU+dTVcdy+xVC2sdPBb2i+DZM03Nn/X8iy8q+I8/rvka25pEvkpIYWa8H6TTMi5e0IOnfqh3XTpfvL8y8Du3qIZj1eriSi8u6U9PpfXHmQu66xvfKHtOvXfAyoN3q7t+1rTDxuLOn6GrNunun9+hO85d0HcvLzb9Oq0IYqzeXu/4ux80ePz7pvcNK8eSqgSRv/yOYhDZDCu3mdWvEeYQhDnE7Oxs8f9er9fUczwej1KplV+Wjhw5QhDWgFVdXJfyeX3mp2dX3f8ffnpWv7Vlc0vhjhVBTKE2qzrVrO56k6wLr6x+ncujo5aN9UevZIq/ILUyVqG7bPHvf6ifJZ/Xm5dWfhn/y63b9G9/6Vea6i6rNhdaeuMmHd3yZr31F27Vr5scy+rTLK3serP6YgV9bxnSlYVXirVU1tb3lreuel7hYgWlc7QV1mtV4Feoq1Khru8PDOrdVV5PK2Gf2VBNqh9QvON8TvP3flW/eve/NzWW9Eaw0HcqqTe/ft/Q8mX92zNJPfe7/1b/0+EH257vzVBzp4Ca2WbpjZt09ZUrpoKYRt1l5x77c9NBWKOx9mX+qalT1kqDndLt/ztnknpp6t9px5eb61azKtSx8nWWvsbrKup6/2sZffi/y/Spee0EdNXCptu++1faU7K9Ksebu+czOu37tbLHzi0uFv8tHXM5n9cDf/OkJn76QtVgx2zYJEmuSxf1sePf0jsvvla8rzKIMduV1H95Uf/b/+/r2nplueZYZkIdqfbBY+l+cZ/J+bNcly7q48e/pV9o8zWWdoM16uKS6neFFcYaf+VMWQhWUBr4feXNP9ewtlpdXENX9evum//ZShBzZdmWg3eru36s7rDpROfPu264VotNhodWBTGWbi/D0PXnz9Vd5Prz58wFilaOJWuDSMu2mcWvEeYRhDlAomLOhdtuu83U87xebzEIK5wmidqs6uL6Zrb2N6tWQiwrgxgrO9Ws7nqzMryy+nUar58WY8VYVtTl6u/Xn7x1hz6zYaDsB9+G1y4oeNWmpsfaeMsuLf/CrfqVH7+g9JW8JGko+5oCN241vf0bhVf6uRHTNa10qp2Wkc2U3e+S9PfXXK937PyFpn44FWqrFV41dTrp6110qtKRt3DDZm1rpiNvDeqq1in43NXX6X+/eot+VKWbtF7YV6lRqCatDtYaBRQ3xv+25ilY1Wpb/uEzdYOF3Oc/pavetbv8sRpBZK3TeYunM5o8nVeSNr3/Di0+9Kc138ujW96st5oIYsx0l137Wk6XlpZ0dYOg2sxYQ8uX9ZUn/tr0KWv1gp2t/9R8t5pRJ9R5ZvaP9J5PfLrhOFa/zkbhVfDsGdOn5v3Go9/S9auWKg9imrk6YKNg592pv9ep/P9iKrx6/sUXdf8/JOp2EZmdo2r4RKwsBCuoDGLMdDjdmvjbshCs1lgNQzUTB49Dy5d17tIlU69z+ESsLASrVZfZSeSvu7LcsIurUZdZYaxA9p+qrqt0PzO7/S0LYiw+eLe6I8bK8Zza+WNleGXp9ne59Np1N9TdP1677oaa+8We7z1Rdvty/yZtWqo9397l/k3a8/SJmo+X2n76VN39f/Avjuil7TeZGuvW7z/d4PHvyaiz78+/+1+s/KfN7YXWEYQ5QOncYNJKp5cZlcslEgnT3WS9ptkuridPnaw6zpJh6EuXjJrr+dJPX9HPvXpW/SXfrH71ph11a7MqiLGyU20tut6sComc+jrXbKySfant7f96CCY1v/0bBTE/ePPb9G9N1rLSqXaHrjz/I51L/YOuXbxU7FSb3bpdv3/+on67icBvw823aDl9Rq4atb2riWDN1d+v/L8Y0x9/9yn9L2dfLv4V/+iWN+tbb/lnOr5ho8z+7XfDzbdo+aXTcr26OvBrpa7+931Q8WfjuvH0qbK6ZreudBeYDeJbDdWk8vDKbEDx/539T/ptk/vZlRqT+BcquXDyx6uCsGqsPp3XuHJFcg/W3Mdmt27X5m//pQLJ/9H489mgUzC9cZP+6r6vm/ujiomxXjp3Tt84/DX9VsV41X7O/eKz31W1T17hFWX+25y+84//WPbY4rlc8d9Y6DPF+2999rtVPyuFsbY+/aT+8p7/UPbzspZfbHAgVHidv3/Pf9QH++uP1+g17sv8k37tv/+5th//i1W17Sm9YTKISfz4H/Q7p3/S+HWaGO8tS4t69W+f0Ac3vREObbq8uGq55Xxet8w/2bCL6L4XrzM1R9Wek89XfawyiJEaz3u180fPmhqrYahj4uAxvXGT5HJVran0YHvJMDSS+nvTrzH+kx/rt2u8p4XTD3/5e0/U3f5/fN0Gfee2lTkUK7dUobZbDUO/efXKflTP0PJlPXC1JJdLfad/ok1n3vg+WjzYfl07gceaBRQmQ7U93/3rqmFA4TOw6fLiSo1tjlepXnjypp+9rP/ZbHhicV3tBjFW1bVq+0vKDbh1/flzNf949Opm96r9qZZXbnyL3pr+x5pj/exNbzE1jiTdWON9LHjTz35q+r2st+9LWnm8ThBc+vrb2V7VfgbAHIIwB3j66fJvZI3mByvYunVr2e35+XmCsBqs6uI6viwt1M7BdNZYWeaDJs9eszI8sbJTbS263tb763TqWJI127/0lM2Xf/L86iDm7Kv6P95kvsPM1d+v5V+4VbdvcuvlpeWyXxS+2mS3oKu/X5Ff/GWl/8cPtC/zT6tqazZY++b5S/qPN75N//HGt5X/EmM0t/1d/f2K7HqPZXVd3rBRwc3blL7uTVV/ufojk9vNqlDNzGmp6Y2b9Edns/o3Zv7gYBi6rUF4de3iJT2eSqq/5ID28vJy8d/SMRuFJ7n+TXr+hVN111fq8bf9c13Vf7rqe3l+w0adX76izyVPNgxitru36q0XL9TtLvvPVf6oUs0291a9rcFYkvTFn76if9ZoPBO/2A8sXdZSPl+2/WuNdVWDsd6yfFmHlwx9cFPjz/lPb3yL3lbnQKjwOh9ZNnT7RtV+nSZe49DyZZ3NGzq+7Kr/s9zlahgEpDdu0lm5TP1esCTppxs36S11Qo/0xk165Ip0u2Gseo2lB6HfXjL0kbPp6mW//m8h2Hn1qRN199lvX85r21L9A62h5TcO+M4tLtYccymf15ZL9T/jpWPVC5wk6Znr3XpvnYPHwn5RryZJOr5k6FdMhE2Fuip/1ysNAn45/jeSpF98br7qOIUKdv9gXn19G+quc5PLZWo/u9y/SVfX+EyWHTxbHMRYFlCYfI2mO2IsHs+y8MTKuiwIYtakrtelh4a1+dWMrrtQ3mXpknT+2uv18rbhzo/l4G1m5faCeQRhDlA4vbGg1Y6wZLL6X9J7ReVBUEErXVzVLBmGHl6uk4K9rvIX8VrdZZL06FLt8cwcUJXWZsVrbHWsWgeiBXa+zlodeYt5o+xUzUrVQgUrOwVrcfL2l6RHr96s+2++reovCk2PtWTo5eXV47xsMlAoWDIM3XPJ0MKbf27lL/YVtbW1/Sue08z2t7IuaeXgNl34HlTlOS81sd2WDEP/5/Vv0sLN1UM1s7WZCXVM1+VyKde/SQMNgoXjV1z6oImLwDUKT46436x3VgkUqlkyDD1obKj5XhY0DGK08guvK7ugoYvl3SKl3WXnTf5R5Zs3btf/nFlY1XlSOpZk8o80Fm7/dkOdSpa9TpdLi/2b6oZ0hS4iM++lZQGdVuqed79Z/9crp+uO1+g1LhmGHl7K6/dNBjuPLKtube/vb7zNFvs36YFr39gpau0ex6+4tGPjprodToXtL9V/P5cMQwcH36qvv9p4v5DqvwdWvkZJ1h5wy7mBk5UH71Z2/Vg6Xqfey9e7k+16L63e/vkNG/X373iXtr18Wm/62U+1aemyLvdv0s/e9Ba9vG1Y+Q3mIwjLxnLwNrNye8E8c9cTxpqqDMJalc1mLRlnvTHbxdXuOM2Ot2QYeqROsPbIsqElw8QKTdRmtiarx5Lsf51PnjpZ9etzyZNlp2pWKhy8lz7Hyro6MZZk7fYvG6tGCNDSWG3WtWqbVdRm1/a3sq5mgngz262stirvpdnaXty2XX939XWqHKHyQNRMXUuGoSPuleCgcsnC7aNb3mz6NX7zxu16rk5tf7h1u2XvZYGZ7bbYt0GBm27RV980vHLQr5WD/6++abg4b5DUeJsVwrkPmxjL7HhWbf/jyzI1lpntZfXr/N7gWxrWJZl7LxvtY5UBXb3X+PCyobDJ8eq9xuPL0oJcxe1USyFwalTbJpdLZ2+sv81eedNbdLXLVfzaVCtU2ygtvanGWK+/nqU3vUUPXOMqfr2/xvHf8WXpdN9G0/tFvddp5WuUVDzgrqfZwOn8tddX3S9aCZyk2tu/lYP3M299W/H1Xu7fpDNvfZv+/h3vaurg3crXaOl4nXovXS79MHfemvfy9X+beS+t3v7Syv7x0vab9P1dv6Sn9/yqvr/rl/TS9ptaCnWsGsvK/d/qbWbl9oI5LsMweaSBNVM5P4nZtyQWi2lsbKx42+/3KxKJNL3+TZs2aWlpSZLUZ2IC1kZuuOEGXV8y59VaS6fTyufz6nO5NHhD+XoNSVlDyld/alGfJLdLq76ZNTuO2fEk6ZKk8w3e6utc0tUN1mXVa2xnrIVzrylvGFXfg/X0Op06Vie2v1PHcur2t7Iuydz2Kmi03ays7ZKkC4Z0ff6Krslf0QZJVyRd7Nug1/o2lP2y2aiuwlhbl5fUv+rXVGlJLp3duPJI6Vj1tr+h+rVZuV8UNBrTqveymXHMjmfF9i/d9mbGsnJ7NXqdhqRXDWmLibrUoDaz+5hMjFX6Gl0mxyu8xmrbX5I2XLmijfnaf+xZ7tugKxveODWv0fegjctL6qvy+2ne5dLyRvNXM7ZqrFYPXuq9zlbrqvY9aMOVK9pQZ/tfqdj+Zmy4ckV9+StyaeX151sYQ6r9OpfyeRlXmfkJvnZaeY31fgeyYput9Xt5xTB0YfmKLlzJa8sNzR0/Wfm5rKzLiu3vRFbv/1Z9LltV3P59fRoaGurYel977TWdO1f/VGsz8vmV3676+/t1+XL97kurEYQ5gFVBmM/nUzQabXr9GzZsKO6EAAAAAAAAndDX16crV2oHzmuBXjsHcLvdlpzWaHaS/UpXX321Ll68KOP1NLldne4IAwAAAAAAa8/KjjCXy6Wrr+58NypBmAMMDg5aEoQNDg629Lzz51df3hkAAAAAAGC9YbJ8B2i1k6syPGt1HAAAAAAAgF5AEOYAe/bsKbtttjtsYWGh7PbIyIhVJQEAAAAAAKw7BGEOMDo6WnY7lUqZel4ymSy77fP5LKsJAAAAAABgvSEIc4DKjjCzQVhp55jb7ZbH47GyLAAAAAAAgHWFIMwBvF5v2fxeTz/9tKnnzc/PF/9fGaYBAAAAAACgHEGYQ+zbt6/4/0QiYeo5pctNTU1ZXhMAAAAAAMB64jIMw7C7CKyEWqVzhTV6W2KxmMbGxiRJHo9n1XxhAAAAAAAAKEdHmEN4vd6yye7n5ubqLh+JRIr/pxsMAAAAAACgMTrCHCSVSmlkZETSSjAWj8erLpfNZrVlyxZJK1eKjEajHasRAAAAAACgW9ER5iAej6fY6ZVIJDQ9PV11ub1790pauVJkaWcYAAAAAAAAaiMIcxi/369oNCq3262pqSkFAgElEglls1nFYjGNjo4qkUjI6/Xq5MmTZVebBAAAAAAAQG0EYQ7k8/mUyWQUCoWUSqW0d+9ebdmyRYFAQIODg4pEIorH4+siBJuentbY2Ji2bNkil8ulkZERBQIBxWKxdb1uQLJvH0wkEhofH9fIyIhcLldx3VNTU8pms2u6bqDAid+DC5+JRvN0Au1y4v5fkEgkNDc3p+npaUfUg/XJrs9ANpvV1NSUxsbGit/zC+uenZ1d03UD0sp0SGNjYx37XcPJP29sZQA2iEajhtvtNiQZPp/PiEajRjKZNCKRiOHxeIr3ZzKZdbVuwDDs2wczmYzh9/sNSXW/wuGwpesFSjn1e/Dk5GTxMxCJRDq6bvQOJ+7/mUzGCIVChtfrNSQZbrfbmJycNKLRKL8LwXJ2fgZCoVBxHw+FQkY0GjXi8bgRDoeL+7/H4zGi0ajl6wYqfw9f69+3nfjzxkkIwtBx0Wi0+A0gGAxWXab0h5GVH0471w0Yhn37YCaTKf7QM/NVqzagHU79HlxaF0EY1orT9v9MJmMEg8FiTV6vlwAAa8rOz0AhgPB6vTWXKf08xONxy9aN3pbJZMr+2NaJIMxpP2+ciCAMHZXJZIrJtMfjqblcMpksfnh9Pl/XrxswDHv3QZ/PV/wFMBKJGMlksvhXoWo/nAkDYDWnfg8urYt9H2vFaft/OBwu2+/pBMZas/MzUOgEk9TwgL/wR0O3223JutHbQqGQ4fF4ir+HdyIIc9rPG6ciCENHlX4TaPTht7p11M51A4Zh3z4YDocNScbk5GTNZZLJZPEvQ4UvfgmElZz6Pdjv9xsej6csFCAIg9WctP+X/vHD4/EYyWTS8nUAlez8DJR2PTbCafKwSjweL+ssLPw+vta/3zjp542TEYShY0pTZzN/kYlEIpYdkNu5bsAw7N0HC3+JarZGSZwmA0s49Xtw4ZfSeDxOEIY146T9v/Sgx+129+TpMOg8Oz8DpaeI+f3+hsuXrrveHxCBZsXj8TUPwpz088bpuGokOiYUChX/7/P5Gl710u/3F/+fzWbburKGnesGJPv2wUQioVQqpUgk0nBZj8dTVmfh+UC7nPg9OJVKaXx8XJOTk/J6vZaPDxQ4Zf+vvErZerkCOZzPzs9AKpUq/r/Z32m2bt3a8nqBSp34fuuUnzfdgCAMHVN6SWKzBx0ej6f4/yNHjnTlugHJvn3wyJEjCgaDpn/4+ny+sttnz55tab1AKSd+Dw4EAvJ6vavCX8BqTtj/Z2dnFYvFirfD4XDZOoC1ZOdnYHBwsPj/VCpVFoxV8/TTT1etAegGTvh50y0IwtARlX+Bue2220w9r/QD3E5HjF3rBiR798H9+/c3daBf+UNzZGSkpfUCBU78Hjw1NaVEImGqUxJohxP2/0L3Y+nYwWCwrTEBs+z+DFSGWaWfhWoK63K73WXdMoDT2f1Z6zYEYeiI0r9CSub/wlK5XCunadm5bkCydx/0er1NtWJns9m6NQDNctr34EQioenpaTpi0BFO2P8DgUDZ7YMHD7Y8FtAsuz8DXq+37EA/Fout+kwUzM7OFjvG6BZGt7H7s9ZtCMLQEaVtxpL5c6Qrz82fn5/vqnUDUnftg5WnDFSeKgk0y2n7/969e+X3++mIQUfYvf+nUqmygxq6XNBpdn8GJOnw4cNlt+fm5laFYbFYrNgtFg6H+RmBruOEz1o3IQhDR1QeXLeaUCeTya5aNyB11z5Y+sOPXwJhBSft/4UDn8qDImCt2L3/h8PhstuFP24UgoCRkRG5XC5t2bJFo6Ojmp6eXtUZDLTD7s+AtNIVVnkq/NzcnEZGRopdwmNjY/J4PIpGo/z+g67khM9aN9lodwHoDY0mpjSrlV/O7Fw3IHXXPlh60DQ1NbXm68P655T9f25uTnNzc4pGo1wpDx1j9/5fOnGytDJx+Ojo6KpTX7LZrBKJhBKJhKamphSJROgcgyXs/gwU+P1+hcPhsjnCUqmURkdHJUmTk5OcDomu5pTPWregIwwd0eoHqvJgZWFhoavWDUjdsw+WnkITCoWYPwmWcML+n81mFQgEFAwGOd0XHWXn/p9KpVat/+jRoxofH1cmk5FhGDIMQ8lkclUHTCAQ6KlJk7F2nPAzoCAYDK7qkiyIxWI9EwBgfXLSZ60bEIShq9j5A4ofjrDbWu+Dhb+EejweTU5Orum6gGa1s//v3btXHo+n5gEQ4HRWdMS73W6dPHlSwWCw7MCn8Nmo/HwcOHCA333gGFbti8FgsOqpj4lEQjt27OiZicKBWnrl+z5BGDrCqtNQWhnHznUDUnfsg4lEQrOzs3K73YpGo2u2HvQeu/f/6elpJRKJVfPDAJ1g5/5fGYRVBmCVKgOCbDarQ4cONb1eoJTdPwMqjY+Pa3Z2VsFgcFXnezab1ejo6Kqr7wHdwGmfNacjCENHDA4O2jaOnesGpO7YBw8cOCBJOnbsGKdEwlJ27v+F+Y5CoZC8Xq8ldQDNsHP/r5zw+Lbbbmv4nMq5Iaenp5teL1DKSb8DjY2NaXZ2VpOTkwqHw1VPCy4sRxiGbuOkz1o3IAhDR7SaLFe2ZnayI8yKdQOS8/fB8fHxYscMYQGsZuf+HwgE5PV6OdUXtrFz/29lDI/Hs+rnAKeKoR1O+R2o0Onl8/nKJsUPh8NVO4YDgUDPnCKG9cEpn7VuQRCGjtizZ0/ZbbM/WCon6xsZGemqdQOSs/fB2dlZzc7OKhwOc4UwrAm79v/p6WmlUikNDg4qEAg0/Cqt69ChQ2WPMWk4WmXn9/9Wf2ZU1mzVlcjQm5zwO1AgECgGutXmivT7/YrH42UBQDab5erZ6CpO+Kx1k412F4DeULg0cUEqlTLVeVLZ1t/K1b7sXDcgOXcfjMViGh8fVzgcrnpqAGAFu/b/s2fPSlJLp7ckEomyLhiPx0NQjJbY+f2/8q/6Zg+KKg+CeuUKYlgbdv8OlEqlin/M8Hq9Nad/8Hq9isfjZfv/7OysQqFQz3TIoLvZ/VnrNnSEoSNa/eti6S9tbre7pbmL7Fw3IDlzH0wkEhobG1MoFCIEw5py4v4PdEo3/v5TedDfK/PFYG3Y/TOgtAOsspZK1a4uPD8/39J6gU6z+7PWbQjC0BFer7fsF6unn37a1PNKf/g0+uHlxHUDkvP2wVQqpb1792pycpK5k7Dm7Nr/Q6GQDMMw/VX6i18kEil7rHQ+GaAZdv/+U6ryr/5m9cpBEdaG3b8DlR7kmznlq/KPg5wajG5h92et2xCEoWP27dtX/L/ZiVdLl2vnPH071w1IztkHU6mURkdHFQwGTR/cp1IprhyGtjhl/wfsYOf+X3qKi9nThCtPoeQiKmiXnZ+B0lN7zYbB7PPoVvy+ZR5BGDpmfHy8+H8zv4yVLuPxeNo6X9nOdQOSM/bBbDarsbEx7du3r6kOl0AgwGcAbXHC/g/Yxc79v/SgJpVKmZonrDQs4LMHK9j5GSjtaGylu4uOSHQTft8yjyAMHeP1ess+XI2uwlV6KeNG6fTs7KympqZq/oBby3UDZti5/0srIdjo6Kg8Hk9x2UZfsVisOPEmfx1FO+ze/wE72bn/+3y+sgP5Q4cONay39MCI04JhBTs/A/v37y/+f35+3lQYXDpWLwUDWFtmL1hSD8e8FjKADkomk4YkQ5Lh9XprLpfJZIrL+Xy+umP6fL7ispKMTCbTsXUDzbBz//d6vWXLNfMVDofbedmAYRj27v9meDye4jiRSKTlcYBq7Nz/4/F42XLJZLLmmNFotLhcMBg09doAM+z8DJQuNzk5WXfM0s9AKBRq+LoAsyKRSNn+2uz+xTGvtQjC0HGl3wRqfQMoHLS73e6GBzbNHLRbvW6gWXbs/+2EYPy9BFay8/t/IwRhWGt27v/hcLi4nMfjqTp2JpMpfg7qHTwBrbLrM5DJZAy3291wuWQyWVyuF4MBrJ3S769mQqpqOOa1Fkc4sEU0Gi3+oPH7/UY8HjcymYwRjUaLH0qv12vqQ1n6g02SEY1GO7ZuoBWd3P/9fn9bIRgdAbCand//6yEIQyc45fcft9tthEIhIx6PG/F43AiFQsXH+L6PtWTXZyCTyRjBYLCsAyYcDhvxeNyIRqPG5ORky506QDWZTMbw+/2rOrkqv3w+X/GzUA/HvNYiCIOtQqGQ4fV6y34x8/l8TR2ERKNRw+PxGG63u2G7s9XrBtph5/4P2I39H73Mzv0/HA4bPp+vbN1er9eYnJyse9okYCW7PgPxeNwIBoNlf/zweDyG3+83JicnezYUgPNxzGstl2EYhgAAAAAAAIB1jqtGAgAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAwBrLZrN2l4Auls1m2YcAixCEAQAAAMAaSCQSmp6e1ujoqLZs2WJ3OegyiURCU1NTxf0nFovZXRKwLmy0uwAAAAAAWC9mZ2cVjUYVi8Xo4EHT5ubmdOTIEfYfYA3REQYAAAAAFigEF2NjY/L5fPYWg67k8Xg0Pj6uUChkdynAuuUyDMOwuwgAAAAAWG9GRkaUSqWKtzn0QjOmpqY0PT1dvB2JROT3+22sCFgf6AgDAAAAgDXg8XjsLsER5ubm7C6hK42MjNhdArAuEYQBAAAAwBpwu912l2C7ubk5HTp0yO4yutLg4KDdJQDrEkEYAAAAAMByqVRKgUDA7jIAoAxBGAAAAADAcmNjY3aXAACrEIQBAAAAACw1NjZWdqEAAHAKgjAAAABgHUkkEpqamtKWLVuUzWaL96dSKY2Pj2vLli1yuVwaHR3V+Ph40+Nns1lNTU1pdHS0ONaWLVsUCAQUi8UsfCWtyWazmp6eXjXReOE+l8ulsbGxsm1TaW5uToFAQKOjo3K5XHK5XBoZGdH4+LgSicQav4LGnP4eO2VfaEdhHyjsM4V9IBAIND35vxX7pJ2sqN/K7xtzc3MaGxsrrntkZKTs6pqNpFKp4uen2riF+gqf+VYCXSv3n7X8vLe7LQuc/nNhFQMAAABAV4vH48bk5KTh8XgMScWvTCZjGIZhhMPhsvtLvzwej5FMJk2tZ3Jy0pBkuN1uw+fzGX6/f9U6fT5fcb2lwuHwqmUL66+2rNvtrlpvOByuWls0GjX8fn/ZsgU+n2/VOMFgcNUYkUikuN7JyUkjmUwamUzGiEajZbWHQiFT26tWPa3ohvc4k8lUfY+rfUWjUcMwjLrL+/3+4tjRaLTmPlGot9q+EQwGTb33pesp1OTz+YxwOGxEo1EjHA4bXq+3bJtGIpG627LdfTISiZQ9Xm19k5OTVccq1Ojz+Uy/91bXX1pjq/tUqUwmU1xv4fNpGCufjcKYfr/f8Pl8VZ9b+R4WXk8mk1l1f+WX2c+8VfvPWn/e29mWlax6fzuJIAwAAADoYoUDl2oHpslkshgE+P1+IxQKGcFgcFWgYOZgpzB+tQPCyoOyauFWQSgUMr1sMplcdUBVGXaEQqGaAUkmk1l1IF/rNZeGDrUOekvX0ygEMQzrgrBueY+TyaQRDodXLVsIqUq/Sg+Kq4UQtQ6aqwVbjd6LZDJZNVyr9xonJyerLlO5/1bbVmuxTzZ6naVjBoPBtkIHq+o3DOu+b5S+xlrvTSGQ8Xq9Ve+v9pVMJouvtRAc1grFGoVhVu0/nfi8t7otK1n5/nYSQRgAAACwTlQeOHm9XsPj8RjxeLxsuWqdO5XLlCoceNU6aCpdxsxBYzMHR5UHU5VBWOGAPx6PrzpoLHRhFLodSg/gS+vLZDKrDjarKT2gNhMsWdkRVtAt73HpgXmjg+nK987tdtddvvKg34zCtqj13paGTvU6xgxj9XZYi32ysqZ6QVhhPW63u9hp1w6r6rdyn4pGo2VhXC1ut3vV95Rq4Wnp9x+fz7fqsxGPx6t2K3Zi/ym1Fp/3drZltddh1feMTiIIAwAAANaJys4Hr9db80Cn8iC71gFK6cFwvYOm0q6bRmFGaZDRKAgrPWhr9qDR4/Gsqjkaja4KFCrDtlphQuVyjaxFENaN73GjIMwwVneF1aujsqumXsBnGG8EnbXCy0wmU1avmVMJK8O4Ws9pdZ80DHNBWOG9q7cftKPV+q3ep0r3+0b7Rq3vKdWCvXodgpX7Ra3l13L/WYvPu9Xb0qrvGZ3EZPkAAADAOrF169ay26FQSG63u+qyPp+v7HYymay63NTUVHH5WmNJksfjKXs8m83WnBR6cHCw5jjtqKxvampq1X0+n09+v7/sPrOTlHs8nrLbdlwVsVve42YdPHiw7Pbs7GzNZYPBYNntcDhcd+zCZN21JhI/dOhQcR/w+Xyr3udqQqFQ2e3CNqzU6j5pxtzcnEZHR+X3+xWPx+u+d61qtX6r96nSi1TUm3zd7/drYWGh6mNer1der7fsvsr3sZTb7V71+Nzc3KrvF2u5/6zF592KbemE7xntIAgDAAAA1ql6gVPlwUu1UCeVShUPlMbGxhqub8+ePWW3o9GoiSrXzr59+0wtFwwGi9vD6/WuOqCsxQlX+Vsv73FlkFIv3HK73WWBxtGjR+uOHQ6H5Xa7a4ZNpVfJqwxKaqnct6oFJGae16rZ2VkFAgFNTk4qEolYMqYZZupfi32qdF+empqqua09Hk/dz2/l56VRaFUZukqrw6NO7j/tft4rl2tlWzrle0Y7CMIAAAAAVFV6wDc1NSWXy1X3q/IAcX5+vtMllzHbIeN2u5XJZBSPxxWPx2suV3nAWKtbops46T0uDR1SqVRZ50ql0oPrbDZbs7OlcNBeLdCQVocaIyMjpmqtDOOqjVXree2amprS+Pi4wuFw3Y6mtWCm/rXYp2677bbi/1OplEZHR2vuH/WCwVa2f+W+UxrkdHr/sUK729JJ3zNatdHuAgAAAAA4U+kBXzAY1OjoaFPPX6tTINdKrW6OVCqlUChU93S9buWk93h8fLxsG4fD4ZqdYZXvRTgcrtq9Unh+rdMiKwMAM6e1FezZs6fs+dFotKVTHJsRCAQ0NzenYDBYM9yz21rsU8FgsOwUxEKAEwwGG54a266xsbGy/a00AO+2/Udqf1s66XtGqwjCAAAAAFRVemrN2NhYRw7SnCQWiykUChU7GtxutyNOh7SSk95jr9crj8dTrOno0aNVD8wLp6KVLls4tayy42d2drY4bjW15lEyo7L7Z607BA8cOFDc/2ZnZzU+Pm76VLxOWot9yu126/DhwwoEAmX3z87O6ujRozp8+PCa7bv1Tjnspv2noN1t6aTvGa3i1EgAAAAAVZWGPuvhNECzCpOQj42NFU+rSyaTHZ2LqVOc9h6XThpea2LtQ4cOye12r5prqHKusFgspmw2W7MbTFr9mpsJOs3OyWSVyg6wvXv3OjKYXat9yu/3Vw1Gs9msAoGAAoHAmmyPyhC1tKOpm/afUu1sS6d9z2gFQRgAAACAqkoPctrpfOgWqVRKY2NjCgQCSiQSCgaDymQyCofDTZ3y1E2c9h5XTiJeebBe6Pw6ePDgqsm8K5ctzJ/VzCmEzRzY1wtI1sJtt91WNidYNpvV3r1713SdrVjLfSoYDCoej1f9PM7NzWnHjh1155ZrReW66s0z5uT9p1Kr29Jp3zNaQRAGAAAAoKrSA7NOTeRsl1gsppGRkeLrjMfjxasNrmdOe48rr+5Y6OoqOHTokKQ3wq3Sbq9EIlHsqilMoN8oBKsMH+pdLKHRczsRlk5OTpaFf4lEoqyLzgnWep/yer1KJpNV39tCOGhld1VlZ1Tp+9xt+0+lVral075ntIIgDAAAAEBVpSFQIpFw5GlYVih0ghVEIhFHzr20Fpz4Hleeylg45TGRSBQ79Qp1V85PVOgKK0xuXu+0SGn1PE3NXNGuMiAwe8XAdkUikbL3bXp6uuoppHbp1D4VDocVj8dXfVYLp/dZpfJ9Lr3qYjfuP9U0sy2d+D2jWQRhAAAAAKqq7FConIOpkbm5Ocd1q1RTGpZ4vd6unPy5VU58j30+X9nBdiHcKnSDVa6vtJulEAgdOnRIHo+nYaBZeaXJZk6rqzwNrlP7jdvt1rFjx8ruCwQCHZ1jqp612KdqXbHV6/UqHo+XnTIqlXcHtqtynNJ9phv3n3a3pRO/ZzSLIAwAAABAVaVdUpJWHSDVk81mdeDAgYYdOXYrnEJXsGfPHhur6Tynvsel4VYikVAsFtPc3Jz8fv+qA/HS9adSKU1NTTWcJL/A6/WuOv3V7OlepfMjeTyejp7a5vV6V71Xle+lXdZin4pEInVDpsnJyaoBjhVKQ6DKkLYb9592t6VTv2c0gyAMAAAAQFWVE5cXQgYz9u7dK5/PV/XgrvTAsVHXRuXjzZyGY2bZZk5l6sZTgBpZq/e4VCvbrfJAuXDwffDgwVXLer3eshqmp6clmZ8kv3LMalfTq6b0dESz28zKfahyvrBUKmXpKYHVmKl/rfapI0eO1H3u5ORk2fcWq+b3K90fqgU4ndx/rNLOtuzE94y1RhAGAAAArBNnz54tu93MFcyqLet2u1ed+jM9PV0MGqrJZrMaHR1VIpGo2SlQeRBUrzuhcoy1vkpZvW6OaDTa1FiVoYEVIUg3vsetnKJWeUVIaSXwqnWqY2VA4ff7TQchlQf9hStT1lN6upjX623qypRmmXlvK+cLc8JpZ2u1T5mZB620o9NMd2ez73O10xfXcv+x+vNeWmMjtbblWr2/nUQQBgAAAKwTzQQvleFTrWWrdTdMTU1pdHRUc3NzSqVSymazxavXbdmyRYlEQpFIpOZf/Usnm5ZW5jeqXH/hKo6Vwcfs7KympqaqHshVBi5mur0qa0ylUqsO6FKplMbHx1fNrVO6Dattv8p6mjmIraVb3uPK+ysDxvHx8YZhQWW4Ve8AujKgaPbUq8o5tw4cOFB3+cJ8ZdJKGFVLK/tkQeX2qRVkVtbeKJRoRqv1r8U+lUqlas5vVVlvtVMWq2k0Xul+UO99Xqv9Zy0+71L723It3t+OMgAAAAB0vWQyaUgq+/L5fDWX9/v9q5aPRCJVlw2Hw6uWrfcVDocb1ut2u8ue43a7Db/fb/j9fsPj8RiSDL/fb2QymZrrSSaTdWv0er1ly9Ti9XqrPjcYDBYf8/l8RjweX1VzYZnJycmG28zv9zespZ5ueo8jkciqbRUOh41wOGx4vV7T26Kwn3g8nobL+ny+4rpaUVlz5XtaEAqFiuuJx+M1x2tnn0wmk8XPQelza6n2Xvv9flPrWov6az2/1X2q9L2ttc2j0WjV7w2lqm2nWu9z6bL13ucCq/eftfq8W7Ut1+LnQqcQhAEAAABdLJlMVg1yKg9eM5mMYRiGMTk5uSqEKv3yeDxVD57MHPR4PB4jGo2aqrv0QKvaVygUKi5b+VomJyeLB3DBYNBUXcFgsO42rLdNSmupDCcqAwqfz1d3LLfbbXi9XlMH1qX1deN7XG1bNTqYr1R4f80cRBeCiNL3q1nxeLxsW3u9XiMcDhvRaNSIRCLFEMHn89UMCNrZJycnJ2tut8L+4/P5iq8xHo9XDUAq941m9jcrPlMFVu1TpeGN2+02QqFQ8TVlMhkjHA4XH6s3VuW2mpycLI4bDAaNUChU9vnxeDxNhYlW7D9r/Xm3alsahvXfMzqFIAwAAACAKZlMxgiFQobX6y07UPT7/S39tT+TyRjBYLB44F/owqo8QPR4PMbk5GRb3S1maintRiuss3CwWVB6oOt2u2t2fXQrK9/jwjYtjFMIBZodo5ngrDQgaEc0Gi3bH0rDH6cd1DudFfvU5ORkWZgTjUaLoXMhHDTzWawMwgzjjTCx8F4XxqvVPWmGk/cfq7ZlgdU/FzrBZRiGIQAAAAAAgHUsEAiUzS9IHNKbmCwfAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAArHvZbLbubfQGgjAAAAAAALDupVKpurfRGwjCAAAAAADAujY7O7sq+JqamqIrrAe5DMMw7C4CAAAAAADAaoFAQHNzc3WXcbvd2rNnj6LRaIeqgp0IwgAAAAAAANATODUSAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEg9Q7JHwAAAEtJREFUDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD3h/w9FBNJaNImpTQAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"train_bkg = train_array[train_array.classID == 1]\n",
|
|
"train_sig = train_array[train_array.classID == 0]\n",
|
|
"test_bkg = test_array[test_array.classID == 1]\n",
|
|
"test_sig = test_array[test_array.classID == 0]\n",
|
|
"plt.hist(\n",
|
|
" train_sig.matching_mlp,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" train_bkg.matching_mlp,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"mplhep.histplot(\n",
|
|
" np.histogram(np.array(test_sig.matching_mlp), 50),\n",
|
|
" histtype=\"errorbar\",\n",
|
|
" density=True,\n",
|
|
" yerr=True,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" marker=\"^\",\n",
|
|
" markersize=7,\n",
|
|
" label=\"test sample, true pairs\",\n",
|
|
")\n",
|
|
"mplhep.histplot(\n",
|
|
" np.histogram(np.array(test_bkg.matching_mlp), 50),\n",
|
|
" histtype=\"errorbar\",\n",
|
|
" density=True,\n",
|
|
" yerr=True,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"test sample, wrong pairs\",\n",
|
|
")\n",
|
|
"plt.xlabel(\"neural network response\")\n",
|
|
"plt.ylabel(\"Number of Tracks (normalised)\")\n",
|
|
"mplhep.lhcb.text(\"Simulation\", loc=0)\n",
|
|
"plt.legend(loc=\"upper center\")\n",
|
|
"# plt.savefig(\n",
|
|
"# \"/work/cetin/LHCb/reco_tuner/thesis/new_electron_NN_response.pdf\",\n",
|
|
"# format=\"PDF\",\n",
|
|
"# )\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"The cut is set to 0.5, thereby rejecting 0.901 of fake tracks, while keeping 0.935 of the true matches.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"response = 0.5\n",
|
|
"\n",
|
|
"n_sig_keep = ak.num(train_sig[train_sig.matching_mlp >= response], axis=0)\n",
|
|
"n_bkg_rej = ak.num(train_bkg[train_bkg.matching_mlp < response], axis=0)\n",
|
|
"nevents = 115e3\n",
|
|
"\n",
|
|
"print(\n",
|
|
" f\"The cut is set to {response}, thereby rejecting {np.round(n_bkg_rej/nevents,3)} of fake tracks, while keeping {np.round(n_sig_keep/nevents,3)} of the true matches.\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABYoAAAXtCAYAAABDGW5jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9QWwjaX7nff6oLts1brcqpDSM1Sst0Bnsmvewh6kilQO8wDsLdCnoWWBPdjOUvvlgi+zeywLyNFnZp/fUKrJsAbuHcZPZBl6fdpRkt7GHeeEtMqsWfl/sC3SKUe3rtBlZBlLLhTElRbLt6bY9pdiD3ogiKYmiJAYjSH4/gJCk9PCJP4PByNBPD58n5fu+LwAAAAAAAADA0lqJuwAAAAAAAAAAQLwIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHEExAAAAAAAAACw5gmIAAAAAAAAAWHIExQAAAAAAAACw5AiKAQAAAAAAAGDJERQDAAAAAAAAwJIjKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGEMcx1GxWFQ6nVYqlVIqlVI6nVa5XJbneXGXBwAAAAAAACACKd/3/biLQPw8z9Pe3p6azebYdrVaTYVCYUZVAQAAAAAAAJgFgmLI8zxls1m5rjtR+0KhoFqtFnFVAAAAAAAAAGaFqScg27bluq4ymYwajYa63a663a4ajYZKpdKl9vV6/caRxwAAAAAAAADmByOKl1y9XlexWFSpVFKlUrmyjeu6sm1bjuOE3zMMQ2dnZ7MqEwAAAAAAAECECIqXXDqdlmmaarVaY9u5rqt0Oj30vVarJcuyoiwPAAAAAAAAwAww9cQScxxHruuq0Wjc2NY0zUsjjgdHGAMAAAAAAACYXwTFS+zo6EiFQkGGYUzUfnT08Oeffx5BVQAAAAAAAABm7Y24C0B8Hj9+LNM0J26fyWSG7o9ORQEAAAAAAABgPhEUL7HR4PcmnucN3b9NyAwAAAAAAAAguZh6AhNzXXfoPgvZAQAAAAAAAIuBoBgTOz4+Dm8XCoUYKwEAAAAAAAAwTSnf9/24i8B8yGazchxHktTtdqc29cRXv/pV/eIXv5Dv+1pZuf/fLr72ta/pN37jN6ZQGQAAmBd///d/r5///Of37uf8/FypVEr/4l/8C/3DP/zDFCpDHL761a/ql7/8pb7yla/ot37rt+IuBwAALLm/+7u/0xdffKE333wz0deYBMWYiOu64eJ1lUpFpVJpan1/5Stf0fn5+dT6AwAAuK+VlRV98cUXcZeBO+L6EgAAJFHSrzFZzA4TqVQqki4WsJtmSCwNX8hHNaK41+vp/PxcKysr2tjYuPc27oIaklUHNSSrjiTUkJQ6qCFZdSShhqTUkfQapjmiWLq4PsH8Cq4vozxek/CemAaeR7LwPJKF55Esi/I8pMV5LjyP228j6deYBMW4keM4qtfrMgxDrVZr6v3/1m/9lk5OTrS5ualXr15NvX9J2tra0snJiTY2NiLbBjXMVx3UkKw6klBDUuqghmTVkYQaklLHstQQbIPpCuZbcH05i2Ml7vPDffE8koXnkSw8j2RZlOchLc5z4XncfhtJv8ZkMTvcaG9vT5L0/Pnzqc1LDAAAgNlwHEfNZlPValXtdnuix1SrVeVyOa2trSmVSimdTsu27YkfP6s+AQAAMD0ExRirWCzKcRw1Gg1lMpm4ywEAAMANPM9TtVpVNptVKpXSzs6OXrx4oUwmo+3t7bGPbbfbWltbU7lcliQ1Gg11u11VKhU5jqNcLqdcLifP8yauJ4o+AQAAMH1MPYFr1et11et11Wo15fP5uMsBAADAGJ7nqVwuq16vS5IymYxarZYsy5ro8e12W7lcTpJUKBRUq9XCn5mmqXw+r2w2q3a7rWw2q06nI8MwZt4nAAAAosGIYlyp3W6rWCyqVqupUCjEXQ4AAADGqNfrevjwYRgS12o1dTqdiUNiz/Nk27akiwB3MNAd1Gg0JEmu64btZ9knAAAAokNQjEuCjwBWKhVCYgAAgIQrl8sqFovyPE+maarb7d76Gs627XDqh2CKiKsEo4Cli4EFQTA9qz4BAAAQHYJiDHFdVzs7OyqVSiqVSnGXAwAAgDFs21a1WpUkGYahTqdz68WHXdcdWlBud3d3bPvHjx+Ht68LgKPoEwAAANEiKEbIdV1ls1kVCgVVKpWJHxP8cgIAAIDZyeVyajab4f27zu87eN1nWdaNfQyuXeF53lANUfYJAACAaLGYHSRdXJDncjnt7u5OHBJLF6NYnj59GmFli2N/f1/9fl+rq6tLXUNS6khCDUmRhH2RhBqSUkcSakiKJOyLJNSQlDqSUAO+VK/Xh0bs1mq1W48kHuwrkMlkJnqMaZpyXVeSdHR0dGnh4yj6RDQW5b3N80iWRXkei2JRXo9FeR7S4jyXRXke+FLK930/7iIQL8/zlM1mxy4yMsp13fBjgZ1O517b39ra0snJiTY3N/Xq1at79RXnNoDb4rhEUnFsIqm4Zrjguq7S6XR4P5PJ3Pl6zHEcZbPZ8H6j0ZgooLVte2jU7+CvFFH0eVscKwCmgfc5sBy4bvgSI4qhnZ0dua576ZeOSUwaLAMAAGA6bNseuv/kyZM79zU4KlnSxKOSR9s5jhOOHI6iTwAAAESPOYqXXDableM4d378bVfUBgAAwN25rjt07WYYxr2maHjx4sXQ/UnnOH7w4MHQ/ePj40j7BAAAQPQIipeYbduExAAAAHNk9NNclmVJkprNpmzbVjqdViqV0tramrLZrKrVqjzPu7a/YE7gwF1H/3a73Uj7BAAAQPSYemKJNRqNuEsAAADALQwuEidJ6+vrV35CzPM8OY4jx3FULpevnSd4NNS9q8EwOoo+AQAAED2CYiyVn//jP+qDTz4e2+b9b743o2oAAAAm57rupfD02bNnqlQq2t3dDad4cF1XlUplKFS2bfvKsPiuYezodBKnp6eR9nlXvV5PW1tb9+5nf39f+/v7V/7M/8V/0S+P/nzs4998/Pv3rgEAAMze4eGhDg8P791Pr9ebQjXRIygGAAAA5sDoSF3DMPTy5ctLAatpmqrVaspmsyoWi+H39/b2ZFnWxHMG30YUo3+n0ef5+blOTk7u3U+/3793HwAAYP70+/2pXEvMC4JiAAAAYA6MBsWFQmFs6FsoFNTpdMKRxZ7n6eDgQJVKJWxjGMZUAtnBOqLo865WVla0sbFx735WV1fv3QcAAJg/q6ur2tzcvHc/vV5P5+fnU6goWgTFWAr7+/v6n/76r/VrX/31uEsBQvv7++r3+/zyicTh2ERSLfuxObq426NHj258TLlcHpqColqtDgXF6+vrUwl119fXI+3zrjY2NvTq1at793OV/f19nf5//kpf+/V/EUn/AOK37P/vAMti3Ht93PRTt7G1tTUXI5MJirEU9vf39U83zE0MzNo0/rMBosCxiaRa9mNzNHydZMStaZrKZDJDi905jqNMJjNxH7etJYo+k2h/f1+/3HwQdxkAIrTs/+8Ay4L3+pdW4i4AAAAAwM3S6fSdHre9vT10f3AKi9GfTToSeHShucHaougTAAAA0SMoBgAAAObA6AjbSQPY0cB1MJDNZrNDPxudB/k6o9NgWJYVaZ8AAACIHkExAAAAMAfGjQweZzRgHpz79659DobUhmHINM1I+wQAAED0CIoBAACAORDMKxwYHYE7qcEANpPJDAXJL168mKiP4+Pj8PZoMBxFnwAAAIgeQTEAAAAwJwanY2i32xM9ZnSKitHAeXd3N7w9uOjdOIPtyuXypZ9H0ScAAACiRVAMAAAAzInBANV13YnmKR4ceXzVvL/FYjG8PUn4PNjGNM2Z9QkAAIBoERQDAAAAc8KyrKGpIw4ODm58zGAIW6lULv08k8kMBbPNZnNsf41GI7x93cjfKPoEAABAtAiKAQAAgDkyGKpWq9Wxi8W12+3w54VC4dK0E4FarRbeHhc+e56ner0u6SK0LhQK17aNok8AAABEh6AYAAAAmCOZTGYohM3lcldOQeF5XjgFxOhjRpmmGQbQjuOoWq1e2W5nZ0eSZBjGUGA9qz4BAAAQHYJiAAAAYM4UCgW1Wi0ZhiHXdfXw4UNVq1U5jhOGsg8fPpTruioUCup0Ojf2mc/nwz7L5bJs25bjOPI8T+12W9lsVo7jKJPJ6OXLlzIMI5Y+AQAAEA2CYgAAAGAOWZals7Mz1Wo1bW9v6+DgQNlsVjs7Ozo6OlKhUFC32x07kvi6PiuVilzX1c7OjtbW1mTbttbX19VoNNTpdG4V6EbRJwAAAKbvjbgLAAAAAHB3hUJh6vP6lkollUqlxPcJAACA6WFEMQAAAAAAAAAsOYJiAAAAAAAAAFhyTD2BxOj1etra2hrbZn9/X/v7+zOqCAAALJLDw0MdHh6ObdPr9WZUDQAAAJAsBMVIjPPzc52cnIxt0+/3Z1QNAABYNP1+/8ZrDQAAAGBZERQjMVZWVrSxsTG2zerq6oyqAQAAi2Z1dVWbm5tj2/R6PZ2fn8+oIgAAACA5CIqRGBsbG3r16lXcZWCKPvjk47hLiNT733wv7hIAALcwyRRWW1tbjDoGAADAUmIxOwAAAAAAAABYcgTFAAAsGdd1Va/Xlcvl4i4FAAAAAJAQBMUAAElSs9nU2tqaqtXqXPSL23McR7lcTul0WsViUe12O+6SMCHeRwAAAACiRlAMAAnleZ48z5vZ9g4ODuR5nmq12lz0i9vLZDJqtVqJeS1mfYzPM95HAAAAAKJGUAwACWXbtlzXndn2KpWKLMtSpVKZi35xd6Zpxl2CpNkf4/OM9xEAAACAqL0RdwEAgMvK5fLMpwWwLEuWZc1Nv5hvcRzj84z3EXA3vV5PW1tbY9vs7+9rf39/RhUBAIBFc3h4qMPDw7Fter3ejKq5H4JiAEiYZrPJPKRYaBzjAGbl/PxcJycnY9v0+/0ZVQMAABZRv9+/8XpjXjD1BAAkSLPZ1N7eXnh/Z2dHa2trWltbG2rXbrdl27bq9bokqVgsKpVKKZfLXeovl8vJtm3lcjlls9nwMaNc11W5XFY2m730M8/zVK/XlcvlwsfX63Wl02mlUills1k5jjPTfgPVajVcoC2bzapYLKrZbN567lvP82TbdviVTqfDRd+ucpt922w2Zdu2yuWypC8XlUulUpcWKHNdV8ViUWtra+Fret1zCWoItlsul4ced58Ru57nqVgsDr0W0wh3p3GMN5tNZbNZpVIppVKpoedZrVaHfhbs86ie331eg2m9P6XJzgm3PcaBRbCysqLNzc2xX6urq3GXCQAA5tjq6uqN1xsrK/MRwc5HlQCwJPL5vF6+fBnef/78uc7OznR2dibpIgRLp9NhWCZJuVxOz549k3QRFgVzvgYBVKPRUKPRUKvVkmVZKhaLQ4FYEFqm02lVq9VLc8a2223t7OyoWCyq3W6HYVOtVpNlWTJNU47jKJvNDgWaUfU7KJvN6ujoSK1WS91uV0+ePFG9Xpdt22FYl0qlJtr32WxWjx49CvdXp9ORJJ2enl5qO+m+bbfbYdsgvC6Xy9rb21Mmk1GhUAi/V6/Xw+BQkgqFgkzTDPfToGDf2rYd7rt0Oq12ux3OPxxs+y7hZ7BN27bV7XbV7Xa1vr4+Nqic1DSO8Uwmo0ajcWX/pVJJnU5HhmFE+vzu+xpM6/15m3PCbY5xYFFsbGzo1atXY7+YdgIAANzH/v7+jdcbGxsbcZc5kZTv+37cRWC5bW1t6eTkRJubm3r16lVk2/ngk48navf+N9+LrIZlM+k+n1dRHSue54WjKzudjjKZzLU/N00zDFar1aq63a5qtVoYUBmGEQZw0sWoxHQ6fen70sUIxHq9fuXPJGltbU2e58kwDDUajXC+VM/z9PDhQ3mep0qlolKpNJN+y+WyqtWqGo2G8vl8+P0glDVNMwzCxoWG0sUo5mKxqG63O7TQW7vdVq1WGwol77JvB0eWjtY7uH8syxraVtCnpEu1SQpDcMMw9Pz58/BY8TxP2Ww2DAivel5BID16GRBsc/TYGzzuSqXSvRZVm8YxPvj8g5B1UDqdluu6l2qd9vO7y2sw7ffnJPvrNsf4spvVdQmiNavX8ZdHfz5Ruzcf/35kNQAAgOSbl2tMRhQDwJwxDCMMPgcXuCqVSmGAFhgNFtfX1yVdBEujo3RvGkkZ9FUoFIZCOcMwtL29LekiDBsVVb/B6MnR5xh8jD4I6G4KiQf7D/oMBCObx9UdGLdvB1+vwZBYugi2g8c9ffr00jaCx46bguPJkydDoadhGGq1WuH924S65XJZhmFcCm8Hv3fd9AjTcptjfFwfV4nq+d3lNZjW+3OS/XWXYxwAAADAcmExOwCYY9eFR5ZlXTkCdfBj66enp0NhWhBS3UWwndGPxUfZb/C90Y/ND4bNo8/xOsGo3XK5rM8//3wo1BsN+O6zb6+q5ab9s76+Ls/zrtwHhmGEo7FHmaapTCYjx3F0fHw8dhuDgiAx2CeDghqCIHOSfXtf953qYtS0n99dXoMo35/X7a/bHOMAAAAAlhMjigFgQQ2GUMFiakdHRzFWFI1xI20nHSlZKBTC0aDBnK/jFiGb5b69TxgbhOZXhcxXCfZlEGSOfvm+H37NIiSetjie33Wvwazfn7c9xgEAAAAsH4JiAFhg9Xpd6XRap6enajQaevLkSdwlTU2hUJCkS1MRBB/ZH53i4SadTid8jOu64WJj1y2kNw/79sGDB7dqH4zOnjRYnjdxPL9xr8Gsj6HbHuMAAAAAlgtTTwDAggoWULvqI+6LoFaryXVdtdtt2batSqWi9fV12batTCZzp8W5Go2Gms2myuWyXNdVs9mU4ziX5kiet30bzPV8k2B6g0UNiuN8fqOvQVzH0KTHOAAAAIDlw4hiAFhA5XJZ7XZbhUJhLoLMu2q1WspkMlpfX1e5XFa5XFaxWFSn07lVP4PTV+TzeXW7XZVKJUkXoeLg4mbztG+D8G904bbrjE6HcB3P8yJf0O6+rholG8fzu+o1iOMYus0xDgAAAGA5ERQDQIKNLtQ2qXELdi0S27bVaDRUq9XCf2875YT05ejkQZVKJexrcLTlPO3bYA7aYrE4UXvDMMLgcm9v79opCWzbHlo08D7ueowPuqrOq/qN4/ld9RrEcQzd5hgHAAAAsJwIigEgYQYX0RocBXibj8sHIdno4lgHBwfh7dGQLHjMXeYrHRf2RdVvsViU67pTG5E5OtexdDE9gCQ9evToUk132bd3EfT1+eef39hmULvdluu6KpVKt9pHlUol7DObzQ4dg47jKJvNKpPJDPVZLBaVzWbHjtIdNI1jXPpyhPDoa1cul6/sX7rb85vEbV6DWb8/A5Me4wAAAACWE0ExACRQMJrx4OBA1WpVuVxuKEQLwqLrpljY3d2VdBF8pdNp2batdDo9FAbZti3btsN+B0cUXhVGBe2uCvOC710ViEbV77Nnz+Q4jlKplNbW1pROp5XNZsMFuqrV6q1CtWq1Go7+DDQaDWUymaFRynfZt0Ed456/JB0fH1/6+SQLsJXL5aGpA4J5mwuFQhiMXrfN0Zry+fzQgmfZbFapVEqpVErZbFbb29tDfTabTdXrdTmOc6uF0e57jEtfjtJtt9vKZrPha/HgwYOw/3a7rVQqFfZ92+c3qdu8BlG8PyfZX5Me4wAAAACWlA/EbHNz05fkb25uRrqdg4+fT/QFJEG32/UzmYwvyc9kMn6r1fJ93/crlYpvmqYvKfwqFAp+o9G41EehUPANw/ANw/ALhYJ/dnYW9iHJN03Tb7VafqfT8QuFwlCfmUzGr1Qqvu/7fqfT8S3LurTNbrfrd7tdP5/PD/0sn8/73W43sn4DjUbDNwxjqM3ol2EY4fMep1Kp+Pl83jcMw7csyy8UCr5lWX6pVLqy/X32baFQ8DudTth+8DmYphnun1arde3+CQSPrdVqfqFQ8E3T9A3D8DOZjF+r1a48rsa9JoNqtZpvWVb4PC3LCo/DQWdnZ+GxKunKY/Eq0zjGR9tblhXu20Kh4Ofz+WsfN+nzu8ltX4PAtN6fk+6v2x7jy2xW1yWI1qxex1/8h/9xoi8AALDc5uUaM+X7vj+NwBm4q62tLZ2cnGhzc1OvXr2KbDsffPLxRO3e/+Z7kdUAYHra7bYajYYqlYpc19Xp6Wk4qvL09FTdblfNZlOWZV35kftFsLa2Js/zVKvVVCgU4i5H6XQ6HKG6LJL2GuD+ZnVdgmjN6nX85dGfT9Tuzce/H1kNAAAg+eblGvONuAsAAOC2ms2m9vb2dHZ2JknXBpPFYnFovlpEx3VdGYaxVCExAAAAACwS5igGAMwVz/Nk2/ZEi405jhMu1oXoeJ6nYrGoRqMRdykAAAAAgDsiKAYAzJVgcTfHcdRsNq9t12w2dXR0tNDTAdxmsb4oHRwcqNFoTBTeL5qkvAYAAAAAcF8ExQCAuWKapvL5vCTJtm2tra3Jtm0Vi0XZtq1cLqe1tTW9ePFioUe41uv18HatVpPrurHVUqlUZBhGbNuPS5JeAwAAAAC4L4JiAMDcaTQaajQasixL0sXo4Xa7LUnK5XJ6+fKlKpVKnCVGKp1Oq1gshvcdx1E6nVY2m42xquXCawAAAABg0bCYHQBgLuXz+XBk8bLpdrtxl7D0eA0AAAAALBpGFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOOYoBROaXR38edwmRevPx78ddAgAAAAAAwFQQFCMxer2etra2xrbZ39/X/v7+jCoCAACL5PDwUIeHh2Pb9Hq9GVUDAAAAJAtBMRLj/PxcJycnY9v0+/0ZVQMAi8t1XbXbbTUaDbVarbjLAWam3+/feK0BAAAALCuCYiTGysqKNjY2xrZZXV2dUTXA8mk2m9rb29OTJ09UKpUS3y9uz3EclctltdvtuEtBwi3q+3Z1dVWbm5tj2/R6PZ2fn8+oIkSNT6wBAICoLdKn1giKkRgbGxt69epV3GUAieF5niTJMIyZbO/g4ECe56lWq001GIqqX9xeJpNRq9VSvV5XsViMuxwk2KK+bycJBLe2thh1vED4xBoAAIjaIn1qjaAYABLKtm1VKhVlMpmZbK9SqahSqUw9QIyqX9ydaZpxl4CE432LRcEn1gAAQNQW6VNrBMUAkEBxTA9gWZYsy5qbfgFEh/ctFgWfWAMAAFFbpE+trcRdAABgWLPZVLVajbsMAAAAAACwRAiKASBBggWkAjs7O1pbW9Pa2tpQu3a7Ldu2Va/XJUnFYlGpVEq5XO5Sf7lcTrZtK5fLKZvNho8Z5bquyuWystnspZ95nqd6va5cLhc+vl6vK51OK5VKKZvNynGcmfYbqFaryuVySqfTymazKhaLajab4RzPk/I8T7Zth1/pdFrpdPraj97fZt82m03Ztq1yuSzpYlG5XC6nVCqltbW1oT8MuK6rYrGotbW18DW97rkENQTbLZfLQ4+7z6h0z/NULBaHXotp/AHDcZywxlQqpXQ6HdZZrVYv/Wxwn3qeF+63dDo9tF8mfU8E2wles3Q6PbQPr9oPSTlGpfu95tM6H0iT7e/bvqcAAAAAxIupJwAgQfL5vCzLCoPh58+fD81RXK1WVavV5LquJCmXyymXy+n4+FjSRXjjuq5M0wxDo7Ozs3BBvHK5rGKxKM/zwgWqHMcZmupidPG8drutcrkchmFB0OS6rizLUrvdluM4ymazQ9uKqt9BQYjV6XQkfRnIjoZfvu/fuO+DAC/YL57nKZvN6vT09FLbSfdtu91WpVIJ90GhUAj3iWVZMk1T9Xpd5XJZhmFofX1d5XJZlmWpUCio2Wyq3W5rZ2cnfI5X7dsghDQMQ6ZpynEctdvtcPu3XYwseG0qlUp4vBWLRZXLZR0dHQ3VcluZTEaNRiMMFCuVSjjFQalUkmVZ4etaq9WGpj8wDEONRkNra2tqNBoyDONW7wnHcWTbdrion3TxOu/t7alYLKrRaIT9Du6HJByj933Np3U+uM3+vs17CgAAAED8Uv4kvz0DEQrmadnc3Ix0DrkPPvl4onbvf/O9yGpYNr88+vO4S4jUm49/P5J+Pc8Lg+JOp3NpMbvBn5umGYZp1WpV3W5XtVpN7XZbuVxOhmHo7OwsfKzrumG4NPh96WJEYL1ev/JnkrS2tibP88KwLgjwPM/Tw4cP5XnelQFVVP2Wy2VVq1U1Gg3l8/nw+7Ztq9lsyjTNMJy7KsAbVK/XVSwW1e12hxZ6a7fbqtVqajQaQ9+77b4dHOk5Wu/g/rEsa2hbQZ+SLtUmSalUKnx+g39UCAK5IMy76nkFQe3oZUCwzdFjb/C4K5VKqlQqY/bozdLptFzXvbKv4GdXve5BeDsYVk/ynpAUtrnqOAxeI8uywhA5kIRjNHCX13za54NJ9vdt3lNJM6vrEkRrVq/jpNc6UV0zAACA+TAv15hMPQEAc8YwjDBUGlxwqlQqhYFYYDRYXF9fl3QR9Ix+7P26j5iP9lUoFC6N8tze3pZ0EU6NiqrfZrM59PhA8LH2IDCbJIAL+g/6DASjfsfVHRi3bwdfr8HAULoIDYPHPX369NI2BkdoX+fJkydDoa5hGENh521C3WB08+gfKAa/d910BbcRvE5X9RX8bPR4Dr43OnXBJO+Jcrksz/NUKBSurCfYR+12+9JxkIRjdNRdXvNpnQ8m2d93eU8BAAAAiBdBMQDMsevCHMuy1O12L00REARTki59/DsIje4iCH4G+4+63+B7o89jMMib9CPuwajdcrkcziMcGA3c7rNvrwoEb9o/wc+v2gdBf1f1a5pmGCQG0wJMIpg7N5hPdvArCKuvChZvKwhsPc+7NK9uEDK6rjsUkAdtrwt7pevfE0Fg+ejRoyt/nslkwuPt6Ohowmcxu2M0cJfXPMrzwXX7+zbvKQAAAADJQFAMAAtqcNReMC/qbQKweTFupO2kIxcLhUIYsFWr1aEF1m7qN+p9e5fRpoEgkLwqxLxKsC+DYHH0y/f98Os+dUkXzysYXT04cjhYPC6offBnz549GwpZb2OSfRC8rjctTndb0zhGJ3Xdaz7r88Ft31MAAAAA4kdQDAALrF6vK51O6/T0VI1GQ0+ePIm7pKkJRpWOTk8QjHQdneLhJp1OJ3yM67rhwmXXjZydh3374MGDW7UPRpVOGizfVzAFQzCKWbrYr/l8Phx1+uzZs7B9pVK5034eN3J2UBCmTmuxtWkfo5MY95rP+pi97XsKAAAAQLwIigFgQeVyORWLRbVarbEf1Z9XwQJaruvKtm25rivP82TbtjKZzJ0Wy2o0Gmo0GmFg2Gw2r/xo/bzt22Ae3ZuMm+YiCpZlhSOTg0D44OAgnH/XNE15nqdmsxmOyh2dO3kSg6Npr5pLOBDUMq1RvlEco5Mafc3jOmYnfU8BAAAAiB9BMQAsoHK5HM7lusgLR7VaLWUyGa2vr4dzoRaLxUtzsd5kcGqAfD6vbrerUqkk6SI0HVxwbZ72bRCKThqujk5PcJ1geohpGBx122w2tb29HdY7uKjdVYvY3Ubw3MZNfxAE5JMG65OY1jE6qate8ziO2du8pwAAAAAkwxtxFwAAuN5dPwIfhHzBglKLyrbtodGKd1Wr1VQul4f6qVQqcl1XzWZzaBTqPO3bIBSdNGA1DEOmacp1Xe3t7Q2N+B1k2/al6RTuqlgsqlqtynEc7e3tDY2yLRQKYcgpSWdnZ/faTrlcluM4cl33ymMmCDdHF1+7j2kdo5O66jWP45i9zXsKAAAAQDIwohgAEmYwmBsclXeb6QCCgHl0saqDg4Pw9ug8ocFj7jJ/6LhAO6p+i8XitYHfXVwVfOZyOUnSo0ePLtV0l317F0Ffn3/++Y1tBrXbbbmuq1KpdKt9FMwN7Hmestns0DHoOI6y2Ww4LUSgWCwqm82OHYV8HdM0wwXY1tfXhxarMwwjvJ/P5++1gN7gfgie46AgQL7t/prlMTroNq/5rM8HgUnfUwAAAACSgaAYABIoCMcODg5UrVaVy+WGguIgvLnu4+u7u7uSLsKvdDot27aVTqeHwhnbtsN5U6XhuVuvCoeCdlcF1sH3rgrNour32bNnchxHqVRKa2trSqfTymaz4YJZ1Wr1ViFXtVq9NC1Bo9FQJpMZWnTsLvs2qGPc85ek4+PjSz+fZIG5crk89FH+drst27ZVKBSuDEWvOpYC+Xx+aAGybDarVCqlVCqlbDar7e3toT6bzabq9bocx7nzQmXB6Nerag1+dtOo6JveE9LFNBCmaaper6tarYbfD+YQvml/xX2MDrrNax7F+WCS/T3pewoAAABAQvhAzDY3N31J/ubmZqTbOfj4+URfQBJ0u10/k8n4kvxMJuO3Wi3f932/Uqn4pmn6ksKvQqHgNxqNS30UCgXfMAzfMAy/UCj4Z2dnYR+SfNM0/Var5Xc6Hb9QKAz1mclk/Eql4vu+73c6Hd+yrEvb7Ha7frfb9fP5/NDP8vm83+12I+s30Gg0fMMwhtqMfhmGET7vcSqVip/P533DMHzLsvxCoeBbluWXSqUr299n3xYKBb/T6YTtB5+DaZrh/mm1Wtfun0Dw2Fqt5hcKBd80Td8wDD+Tyfi1Wu3K42rcazKoVqv5lmWFz9OyrPA4HHR2dhYeq5KuPBYnYVnWnX52m/fE4GMsy/JN0/Qzmcy1zy1Jx2jgtq95YFrng0n3923fU0kyq+sSRGtWr+Mv/sP/ONEXAABYbvNyjZnyfd+/c8oMTMHW1pZOTk60ubmpV69eRbadDz75eKJ273/zvchqADA97XZbjUYjnPf09PQ0HOV4enqqbrerZrMpy7KmNp9u0qytrcnzPNVqtXBRuDil0+lwxCiiOUaT9povolldlyBas3odf3n05xO1e/Px70dWAwAASL55ucZkMTsAwNxpNpva29sLFze7LpgMFjBD9FzXlWEYhMT/G45RAAAAAPOGOYoBAHPF8zzZtj3RAmGO44SLZyE6nuepWCyq0WjEXUoicIwCAAAAmEcExQCAuRIsGuY4jprN5rXtms2mjo6OFvrj+XddCG3aDg4O1Gg0JgpGl0GUx2hSXnMAAAAAi4egGAAwV0zTVD6flyTZtq21tTXZtq1isSjbtpXL5bS2tqYXL14s9AjXer0e3q7VanJdN7ZaKpWKDMOIbftJE9UxmqTXHAAAAMDiISgGAMydRqOhRqMhy7IkXYzMbLfbkqRcLqeXL1+qUqnEWWKk0um0isVieN9xHKXTaWWz2RirwqBpH6O85gAAAACixmJ2AIC5lM/nw1Gby6bb7cZdAiYwzWOU1xwAAABA1BhRDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcixmBwAAAGAh9Xo9bW1tjW2zv7+v/f39GVUEAAAWzeHhoQ4PD8e26fV6M6rmfgiKAQAAACyk8/NznZycjG3T7/cjr+ODTz6eqN3733wv4koAAMC09fv9G6835gVBMQAAAICFtLKyoo2NjbFtVldXZ1QNAABYRKurq9rc3Bzbptfr6fz8fEYV3R1BMQAAAICFtLGxoVevXsVdBgAAWGCTTGO1tbU1F6OOWcwOAAAAAAAAAJYcI4qRGCw2AgAAorRIC40AAAAA00ZQjMRIymIjAABgMS3SQiMAAADAtBEUIzFYbAQAAERpkRYaAQAAAKaNoBiJwWIjAAAgSou00AgAAAAwbSxmBwAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAALKp1OK5VKqdls3vqx1WpVuVxOa2trSqVSSqfTsm1b7Xb7zvVE0ScAAACmg6AYAAAAWEDlclmu6976ce12W2trayqXy5KkRqOhbrerSqUix3GUy+WUy+XkeV6sfQIAAGC63oi7AAAAAADT1W63Va1W7/S4XC4nSSoUCqrVauHPTNNUPp9XNptVu91WNptVp9ORYRgz7xMAAADTx4hiAAAAYIF4nifbtu/1ONM0hwLdQY1GQ5Lkuu6N24miTwAAAESDoBgAAABYIHt7e1pfX7/1qFzbtsOpH4IpIq4SjAKWLkYL1+v1mfYJAACAaBAUAwAAAAuiXq+r2WyGI3Qn5bru0IJyu7u7Y9s/fvw4vH1dABxFnwAAAIgOQTEAAACwAFzXVbFYVKlUUiaTudVjK5VKeNuyrBtHIwejf6WL6SWazeZM+gQAAEB0CIoBAACABWDbtjKZzFBAO6nBqR4mDZlN0wxvHx0dzaRPAAAARIegGAAAAJhz5XJZjuPcesoJSXIcZ+j+o0ePJnrcYPg7Ovo3ij4BAAAQLYJiAAAAYI45jqNqtaparTY0IndSg/MIS5q4j9F2g+FwFH0CAAAgWgTFAAAAwBzb2dlRPp9XoVC40+NfvHgxdP+muYQDDx48GLp/fHwcaZ8AAACIFkExAAAAMKds25YkPX369M59uK47dP+uo3+73W6kfQIAACBab8RdAAAAAIDbazabajabarVaE4/YvcpoqHtXnudF2icAAACiRVAMAAAAzBnP82TbtgqFgizLundfdzEaTp+enkba5130ej1tbW3dqw9J2t/f1/7+/r37AQAA8+Xw8FCHh4f37qfX602hmugRFAMAAABzZmdnR6ZpqlarxV1KKIrRv/ft8/z8XCcnJ/euo9/v37sPAAAwf/r9/lSuJeYFQTEAAAAwR6rVqhzHUafTmUp/hmFMJeQdHA0cRZ93sbKyoo2NjXvXsbq6eu8+AADA/FldXdXm5ua9++n1ejo/P59CRdEiKAYAAADmhOM4KpfLqlQqymQyU+lzfX19KqHu+vp6pH3excbGhl69enXvOq7zv3z2crKGv/W/j6wGAAAQnWlNP7W1tTUXI5NX4i4AAAAAwGRs21Ymk1GpVJpan3cdtTsaBI+OKJ52nwAAAIgWI4oBAACAOVCtVuW6rizLkm3bN7YfDF0PDg50dHQU3n/8+LHy+bwkaXt7W47jDD1ukoB2dKG5dDod3o6iTwAAAESLoBgAAACYA59//rkkqd1u3/qxjuMMBbemaYZBcTabHWrruu5E01p0u92h+5Zlhbej6BMAAADRYuoJAAAAYIltb28P3Xddd6LHDY5YNgxDpmlG2icAAACiRVAMAAAAzIFKpSLf9yf+GgxZG43G0M8qlUr4s0wmMzQtxIsXLyaq5/j4OLw9GgxH0ScAAACiRVAMAAAALLnd3d3w9uAUFeMMtiuXyzPpEwAAANEhKAYAAACWXLFYDG9PMgfyYBvTNK+cSziKPgEAABAdgmIAAABgyWUymaFgttlsjm3faDTC29eN/I2iTwAAAESHoBgAAACAarVaePvg4ODadp7nqV6vS5Isy1KhUJhpnwAAAIgGQTESo9fraWtra+zX4eFh3GUCAIA5dXh4eOO1Rq/Xi7vM2JimGY7qdRxH1Wr1ynY7OzuSJMMwhkYBz6pPAAAARIOgGIlxfn6uk5OTsV/9fj/uMgEAwJzq9/s3Xmucn5/HXWas8vm8Wq2WDMNQuVyWbdtyHEee56ndbiubzcpxHGUyGb18+VKGYcTSJwAAAKbvjbgLAAIrKyva2NgY22Z1dXVG1QAAgEWzurqqzc3NsW16vd7ChMXdbvdOj7MsS2dnZ6pWqzo6OtLOzo48z5NhGNre3laj0VA+n4+9TwAAAEwXQTESY2NjQ69evYq7DAAAsKD29/e1v78/ts3W1pZOTk5mVFGylUollUqlxPcJAACA6WDqCQAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyb0RdwEAAAAAEIVer6etra2xbfb397W/vz+jigAAwKI5PDzU4eHh2Da9Xm9G1dwPQTEAAACAhXR+fq6Tk5Oxbfr9/oyqAQAAi6jf7994vTEvCIoBAAAALKSVlRVtbGyMbbO6uhp5Hds/+avJGn7zvWgLAQAAU7e6uqrNzc2xbXq9ns7Pz2dU0d0RFAMAAABYSBsbG3r16lXcZQAAgAU2yTRWW1tbczHqmMXsAAAAAAAAAGDJERQDAAAAAAAAwJIjKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYl7iuq1wup2azGXcpAAAAAAAAAGaAoBghz/Nk27bS6bTa7bZOT0/jLgkAAAAAAADADBAUQ57nqVwua21tjVHEAAAAAAAAwBIiKF5y1WpV2WxWjuPEXQoAAAAAAACAmBAULzHHcWRZlrrdrlqtlmq1WtwlAQAAAAAAAIjBG3EXgPhkMpmh+9vb2zFVAgAAAAAAACBOjChGyDCMuEsAAAAAAAAAEAOCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAl90bcBQCBXq+nra2te/ezv7+v/f39KVQEAADmxeHhoQ4PD+/dT6/Xm0I1AAAAwPwhKEZinJ+f6+Tk5N799Pv9KVQDAADmSb/fn8p1BAAAALCsCIqRGCsrK9rY2Lh3P6urq1OoBgAAzJPV1VVtbm7eu59er6fz8/MpVAQAAADMF4JiJMbGxoZevXoVdxkAAGAOTWvqqa2tLUYmAwAAYCmxmB0AAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMmxmB0AAACAhdTr9bS1tTW2zbQWQgQAAMvp8PBQh4eHY9v0er0ZVXM/BMUAAAAAFtL5+blOTk7Gtun3+zOqBgAALKJ+v3/j9ca8ICgGAAAAsJBWVla0sbExts3q6uqMqgEAAItodXVVm5ubY9v0ej2dn5/PqKK7IygGAAAAsJA2Njb06tWruMsAAAALbJJprLa2tuZi1DGL2SHkeV7cJQAAAAAAAACIAUExQq7rDt0nOAYAAAAAAACWA0ExJF2EwuVyeeh7R0dHMVUDAAAAAAAAYJaYo3iJeZ6nvb09eZ6ndrt96eeO4yiVSsmyLBmGoSdPniiTycRQKQAAALD4Pvjk44navf/N9yKuBAAALCOC4iVmGIYajUbcZQAAAAAAAACIGVNPAAAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHEExAAAAAAAAACw5gmIAAAAAAAAAWHIExQAAAAAAAACw5AiKAQAAAAAAAGDJERQDAAAAAAAAwJIjKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEvujbgLAAK9Xk9bW1tj2+zv72t/f39GFQEAgEVyeHiow8PDsW16vd6MqgEAAACShaAYiXF+fq6Tk5Oxbfr9/oyqAQAAi6bf7994rYHFwkAEAAAQtUUajEBQjMRYWVnRxsbG2Darq6szqgYAACya1dVVbW5ujm3T6/V0fn4+o4oQNQYiAACAqC3SYASCYiTGxsaGXr16FXcZAABgQU0ycnRra2thLvTBQAQAABC9RRqMQFAMAAAAYCExEAEAAERtkQYjrMRdAAAAAAAAAAAgXgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAA5pTjOCoWi0qn00qlUkqlUkqn0yqXy/I87879VqtV5XI5ra2thX3atq12u52oPgEAADA9BMUAAADAnPE8T7ZtK5vNql6vy3Xd8Geu66parWptbU31ev1W/bbbba2tralcLkuSGo2Gut2uKpWKHMdRLpdTLpe7VQgdRZ8AAACYvjfiLgAAAADA5DzPUzabHQqHr1MsFtXpdFSr1W5s2263lcvlJEmFQmHoMaZpKp/PK5vNqt1uK5vNqtPpyDCMmfcJAACAaDCiGAAAAJgjtm3LdV1lMplwdG6321Wj0VCpVLrUvl6vq9lsju0zGKEsXQS41wXLjUZD0sWo5aD9LPsEAABAdAiKAQAAgDlRr9fVbrdVKpXU6XSUz+dlmmY4OrdSqajb7SqTyQw9bm9vb2y/tm2HUz8EU0RcJdiOdDFaeNzUFlH0CQAAgOgQFAMAAABzolKpyLIsVSqVa9uYphmO0g14nnftonGu6w79bHd3d2wNjx8/Dm9fFwBH0ScAAACixRzFAAAAwBxwHEeu66rT6dzY1jRNVSqVodDVcRxZlnWp7WDobFnWjXMEB6N/pYsAutlsDn0vqj6XwfZP/mqyht98L9pCAADAUmJEMQAAADAHjo6OVCgUJl7sbTQU/vzzz69sNzjVw+iUFdcxTXOorln0CQAAgGgxohgAAACYA48fPx4KU28yGtCm0+lLbRzHGbr/6NGjift2XVeSLi2UF0WfAAAAiB4jigEAAIA5kMlkJh5NLClcSC5wVcg8Om/xpEH0aLvBcDiKPgEAABA9gmIAAABgAQWjcwNXzU/84sWLofuTBtEPHjwYun98fBxpnwAAAIgeQTEAAACwgAaD1kKhcGWb0TD5rqN/u91upH0CAAAgesxRDAAAACygWq0W3i6Xy1e2GQ1172pwmoso+ryrXq+nra2te/ezv7+v/f39e/cDAADmy+HhoQ4PD+/dT6/Xm0I10SMoBgAAABaM67rhHL+VSuXaUb13DWNHp5M4PT2NtM+7Oj8/18nJyb376ff79+4DAADMn36/P5VriXlBUAwAAAAsmEqlIuliOodSqRT59qYx+jeKPldWVrSxsXHvflZXV+/dBwAAmD+rq6va3Ny8dz+9Xk/n5+dTqChaBMUAAADAAnEcR/V6XYZhqNVqjW1rGMZUAtnB0cBR9HlXGxsbevXq1b37SZoPPvl4onbvf/O9iCsBAGCxTWv6qa2trbkYmcxidgAAAMAC2dvbkyQ9f/78xoXk1tfXp7LNwX6i6BMAAADRIygGAAAAFkSxWJTjOGo0GspkMje2v+uo3dERw6MjiqfdJwAAAKLH1BNIjElWpWbFaQAAcFeTrFo9LytSX6Ver6ter6tWqymfz0/0mO3t7XDRO+kirJ0koB1daC6dTkfaJwAAAKJHUIzEmGRValacBgAAd7XIq1a3220Vi0XVajUVCoWJH5fNZofuu6470Ujkbrc7dN+yrEj7BAAAQPQIipEYk6xKzYrTAADgriZZtXpeVqQe5DiOcrmcKpXKrUJi6WL076BJQ93BaSIMwxiaCzmKPgEAABA9gmIkxqKuSg0AAJJhkims5mVF6oDrutrZ2VGpVFKpVLr14zOZjAzDCEPaFy9eTDRtxfHxcXh7NBiOok8AAABEj8XsAAAAgDnkuq6y2awKhYIqlcrEj6lWq0Pf293dDW8Pzi08zmC7crl86edR9AkAAIBoERQDAAAAc8bzPOVyOe3u7k4cEkuSbduX5v4tFovh7Xa7fWMfg21M07xyLuEo+gQAAEC0CIoBAACAOeJ5nrLZrEzTVLlcluu6N3612+1wkbnR+YIzmcxQMNtsNsduv9FohLevG/kbRZ8AAACIFnMUAwAAAHNkZ2cnDIDT6fStHlur1a79ftDXwcHBtXMKe56ner0uSbIsa+zieVH0CQAAgOgwohgAAACYE9lsduI5f69yXQhrmmY4qtdxnEvzGAd2dnYkSYZhDI0CnlWfAAAAiA5BMQAAADAHbNuOJCQO5PN5tVotGYahcrkcbs/zvHDqCsdxlMlk9PLlSxmGceM2o+gTAAAA0WDqCQAAAGAOzGK0rWVZOjs7U7Va1dHRkXZ2duR5ngzD0Pb2thqNxrVTSMyyTwAAAEwfQTEAAACAIaVSSaVSKfF9AgAAYHqYegIAAAAAAAAAlhxBMQAAAAAAAAAsOaaeAEZ88MnHE7V7/5vvRVwJAAAAAAAAMBuMKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcm/EXQAAAAAAYHLbP/mryRp+871oCwEAAAuFoBgAAAAAFtAHn3w8Ubv3CZQBAIAIigEAAAAsqF6vp62trbFt9vf3tb+/P6OKAADAojk8PNTh4eHYNr1eb0bV3A9BMQAAAICFdH5+rpOTk7Ft+v3+jKoBAACLqN/v33i9MS8IigEAAAAspJWVFW1sbIxts7q6OqNqAADAIlpdXdXm5ubYNr1eT+fn5zOq6O4IigEAAAAspI2NDb169SruMgAAwAKbZBqrra2tuRh1vBJ3AQAAAAAAAACAeBEUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHEExAAAAAAAAACw5gmIAAAAAAAAAWHIExQAAAAAAAACw5AiKAQAAAAAAAGDJERQDAAAAAAAAwJJ7I+4CgECv19PW1tbYNvv7+9rf359RRQAAYJEcHh7q8PBwbJterzejagAAAIBkIShGYpyfn+vk5GRsm36/P6NqAADAoun3+zdeawAAAADLiqAYibGysqKNjY2xbVZXV2dUDQAAWDSrq6va3Nwc26bX6+n8/HxGFQEAAADJQVCMxNjY2NCrV6/iLgMAACyoSaaw2traYtQxFsb2T/5qsobffC/aQgAAwFxgMTsAAAAAAAAAWHKMKAYAAACAJfbBJx9P1O59Rh4DALDQGFEMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS+6NuAsAAAAAgCj0ej1tbW2NbbO/v6/9/f0ZVQQAABbN4eGhDg8Px7bp9XozquZ+CIoBAAAALKTz83OdnJyMbdPv92dUTXJt/+SvJmv4zfeiLQQAgDnU7/dvvN6YFwTFAAAAABbSysqKNjY2xrZZXV2dUTUAAGARra6uanNzc2ybXq+n8/PzGVV0dwTFAAAAABbSxsaGXr16FXcZC+ODTz6eqN37jDwGACyRSaax2tramotRxyxmBwAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAknsj7gIAAAAAAMm3/ZO/mqzhN9+LthAAABAJgmIAAAAAwNR88MnHE7V7n0AZAIBEYeoJAAAAAAAAAFhyjCgG7oiREgAAAAAAAFgUjCgGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHHMUAwAAAACmZvsnfzVZQ9byAAAgURhRDAAAAAAAAABLjhHFAAAAAICZ++CTjydq9z4jjwEAmAmCYiRGr9fT1tbW2Db7+/va39+fUUUAAGCRHB4e6vDwcGybXq83o2oAAACAZCEoRmKcn5/r5ORkbJt+vz+jagAAwKLp9/s3XmsAAAAAy4qgGImxsrKijY2NsW1WV1dnVA0AAFg0q6ur2tzcHNum1+vp/Px8RhUBy41F7wAASBaCYiTGxsaGXr16FXcZAABgQU0yhdXW1hajjoGEYS5jAABmYyXuAgAAAAAAAAAA8SIoBgAAAAAAAIAlx9QTAAAAAIDEYi5jAABmg6AYAAAAwELq9Xra2toa22aSuasBAACuc3h4qMPDw7Fter3ejKq5H4JiAAAAAAvp/Pz8xsUJ+/3+jKoBAACLqN/vL8xiyATFAAAAABbSysqKNjY2xrZZXV2dUTWIWrvyP0zUzipP1g4AgEmsrq5qc3NzbJter6fz8/MZVXR3BMUAAAAAFtLGxoZevXoVdxkAAGCBTTKN1dbW1lyMOiYoBiL2wScfT9TufRbfAAAAAAAAQEwIigEAAAAAS4MpKgAAuBpBMQAAAAAAI3559OcTtXvz8e9HXAkAALOxEncBAAAAAAAAAIB4MaIYAAAAAIAR/8tnLydqZ0VcBwAAs0JQDAAAAADAHTFFBQBgURAUYykcHh6q/dd/rV/76q/r39h23OUAki6Oy36/r9XVVe3v78ddDhDi2ERScWwiSQ4PD/XT1v9bv/7mryn/b/67uMtBjCYdefzfEyjPHf7fAZYD7/UvpXzf9+MuAstta2tLJycn2tzc1KtXryLdxm+ufk3/j++Nf9Mf/+v/YyQ13OT9b74Xy3YRn1kc+8BdcGwiqWZ5zcDxP9+Sdn0JSNJ///WHE7UjKE4O/k8AlgPXmF9iRDEwYvsnfzVRu2kHyh988vFE7QiUAQAAgMXFVBYAgLgQFAN3NGmgPKm4RjIDAAAAiN7EU1RMOPKYQBkAMG0ExcCc4YIQAAAAWFwEygCAuBAUAwkx8QjlKV8QTooLRwAAACA5Jg2UJ8ViewAAgmJcqVqtqtVq6fj4WJ7nyTRNZTIZFYtFWZYVd3mIwbSD57hwYQsAQDy4vgQWAyOUAWBxERRjSLvdlm3b8jxPlmWp0WjINE05jqNyuaxcLhd+3zCMuMtdStP+KNqySVLg7f/iv4T/xl0XF/IAgKhwfQksJwJlAJg/BMUItdtt5XI5SVKhUFCtVgt/Zpqm8vm8stms2u22stmsOp0OF/PAgog7qJ53k/6CE9eUMIvyi9qiPA9gmXB9CcyPaU9lMalJp7yYFNcBAHB3BMWQJHmeJ9u2JV1ctA9exA9qNBpKp9NyXVe2bavVas2yzLnW/J//V/2XX/6jfv3NX1P+3/x3sdTwf/uPf6mf/5df6Gu//i/0f/0//59iqSEpdSShhqRIwr5IQg33qWOaAfBtaph28Bz0l5TR7kl5PX5h/rdaXV3V/v7+zLZ7VR1xv0dGa1i2P1Tg9ri+nA9JuEadBp5HssT5PKb5/3FwTTTvDg8P1e/3J7qeSbJFeR7S4jyXRXke+BJBMSQp/DigJJXL5WvbBSM/ms2m2u226vW6CoXCjKqcbz/6n/9X/ef+z/Wbq1+bycXSVSMC/vj/+R/DGrL/h/9WUjxTVPzf/+P/S//f0zP9N+trsQUeSaghKZKwL5JQQ1LqSEINSZGEfXFRw3/Qf7O+pv/L5oNYaviyjiTsiy9riOoPFeMsyi/sy4Lry/kw62vUqPA8kuU2zyO2kcy3+D0ojj+eT/MPqIeHhzo5OdHm5uZch3mL8jykxXkui/I88CWCYsh1XbXb7fD+7u7u2PaPHz9Ws9mUdHHRz4U8AAAABnF9CSDpJgmo/+m//tcZVHK1KD6RM0ngzSd8gOVGUAxVKpXwtmVZN84Ll8/nw9ue56nZbA59D/OFxfEAAMC0cX0JYJH803/9rzMf+Tzp71/T/kROXGtqAEgGgmKoXq+HtzOZzESPMU1TrutKko6OjriQXwIEygAAYFJcXwLA/UwzmA5GRk8SeE/797ko5oye5lQgBNnAMILiJec4ztD9R48eTfS4TCYTXsgHHxMEAAAAuL4EgPkV15zRk4gi8I5i7um4pgNhAWFMA0HxkhucO066GMkxidF2juNMPFoEi+02c33F8RdtAAAQLa4vAQDzIpJgvPI/3NjkH3/elzTh78RTDrPbE9QnTfa7eBSjvOPAgslfIiheci9evBi6f9P8cYEHD4ZXfj8+PuZCHpGY9n/cBM8AAESL60sAQNySPDL6tuJ6LtMeBJZkcS5cmTQExUsu+Hhf4K4jPrrd7tRqAqIU/OeVhP/QrqqBIBsAMO+4vgQAAJhPKd/3/biLQHzW1tbkeV54f9LDodlsyrbt8H6hUFCtVrtTDb/6q7+qf/7nf5Ykrays3KmPQV/72tf0G7/xG0Pf6/V6Oj8/10oqpfWv/cY1j4zW6c//Xue+v/Q1JKUOakhWHTfV8KtvzObvmv+/My+s43+3Zsxkm9SQ7DqSUENS6khUDSsr2tjYGPrZ3//93+vnP//5vbdxfn4uSfqVX/kV/dM//dO9+1tGXF/OlyRcB0wDzyNZeB7JwvNInkV5Lgv3PLjGJChedqlUauj+pIdDu91WLpcL7+fzeTUajTvV8JWvfCV8wwAAACTBysqKvvjii7jLmEtcXwIAAFwt6deYTD2BqRgcNXJbb775pn7xi1/I/9/+enNfV434AAAAi22aoz1SqZTefPPNKVSF++D6EgAAxG3ZrjEJipecYRj3uggf7Oeu/uEf/uHe2wcAAEAycH0JAAAwn+7/53XMtfX19UT1AwAAgPnG9SUAAMB8IihecncdqTE6SuQ+Iz4AAACwOLi+BAAAmE8ExUtue3t76P6kHxM8PT0dup9Op6dVEgAAAOYY15cAAADziaB4yWWz2aH7rutO9Lhutzt037KsqdUEAACA+cX1JQAAwHwiKF5yoyM+Jr2QHxwZYhiGTNOcZlkAAACYU1xfAgAAzCeC4iWXyWSG5n978eLFRI87Pj4Ob4/+MgAAAIDlxfUlAADAfCIohnZ3d8PbjuNM9JjBduVyeeo1AQAAYH5xfQkAADB/Ur7v+3EXgXg5jjM0l9xNh0S73VYul5MkmaZ5aT45AAAALDeuLwEAAOYPI4qhTCYztFhIs9kc277RaIS3Ge0BAACAUVxfAgAAzB9GFEPSxSIj6XRa0sWFfafTubKd53laW1uTdLESdavVmlmNAAAAmB9cXwIAAMwXRhRD0sVH/IKRHI7jqFqtXtluZ2dH0sVK1IMjPwAAAIBBXF8CAADMF4JihPL5vFqtlgzDULlclm3bchxHnuep3W4rm83KcRxlMhm9fPlyaDVrAAAAYBTXlwAAAPODoBhDLMvS2dmZKpWKXNfVzs6O1tbWZNu21tfX1Wg01Ol05uIivlqtKpfLaW1tTalUSul0WrZtq91ux10aMJbruuGCPsB9BcfTTfOD3oRzKqZtWsfmbbaFeMzq+jLO81QU2+a8C1y2aO/zQbP8fxFIskV6nzuOo2KxqHQ6rVQqFfZZLpfled50i58WH1gwrVbLNwzDl+RbluW3Wi2/2+36jUbDN00z/P7Z2VncpWLJnJ2d+ZIm+ioUCnGXizl3dnbm5/P58Jiq1Wp36odzKqZtWsdm0BfnVcR5nopi25x3gcsW7X0+aJr/LwLzbJHe56Pv6+u+kvh+JyjGQmm1Wjf+QpjJZHxJvmmaXGBjpiqVysSBRrfbjbtczKmzszO/VCpN5SKEcyqmaZrHZoDzKuI8T0Wxbc67wGWL9j4PRPH/IjCvFul9fnZ2FobL8ziYgaAYC+Ps7Cz8C5Bpmte263a74RvSsqwZVohlFxyfN31xXOKuKpWKb5qmb1nWvX/p4JyKaZrmsTmI8+pyi/M8FcW2Oe8Cly3a+zwQ1f+LwDxatPd58L7OZDJ+o9Hwu91uODr5qj8OSfIbjcZUns80EBRjYQz+J3vTf658tAezVqvVfEl+qVTyW63W2C9GB+EuOp2O3+l0wvvBMXfXcx3nVEzLtI/N0X44ry6vOM9TUWyb8y5w2aK9z30/uv8XgXm1SO/zwevT63S73XCEcvBlGMa9nsc0ERRjIQz+dUfSjb8QNhqNRL4hsbhM0xz7F0pg2jqdzp1/6eCciijd59gcxHl1ucV5nopi25x3gcsW7X1+nWn9vwjMo0V7nwefFLjttiX5rVbrLk9j6lYELIBKpRLetizrxlWz8/l8eNvzPFaWRaSazaZc11W5XI67FCyRm86D43BORZTuc2wGOK8izvNUFNvmvAtctmjv8+tM4/9FYF4t0vvccRy5rqtGo3Hjtk3THNp+8PgkICjGQqjX6+HtTCYz0WNM0wxvHx0dTb0mIHBwcCDDMLS7uxt3KcBEOKci6TivIs7zVBTb5rwLXLZo73MAly3S+/zo6EiFQmHiP/5YljV0//PPP5/ocVEjKMbcG/2ry6NHjyZ63OCJgFEYiIrjOHIcR57naW1tTel0WsVikWMOicU5FUnHeRVxnqei2DbnXeCyRXufA7hs0d7njx8/vjRKeNK+JCmdTk/82CgRFGPutdvtofuDf+EZZ7RdUob5Y7GMfizadV3V63XZtq1UKiXbtjn2kCicU5F0nFcR53kqim1z3gUuW7T3OYDLFu19nslkbjWVjOd5d6ohagTFmHsvXrwYuj/pG/PBgwdD94+Pj6dVEiDpIrwY/Q9oVLPZVDabVbFYnFFVwHicU5FknFchxXueimLbnHeByxbtfQ7gsmV/n7uuO3R/dCqKuLwRdwHAfY2+ue76l6Butzu1mgDp4hir1WryPE/dblftdvvS8Rqo1+s6Pj5Wp9OZcZXAMM6pSDLOq5DiPU9FsW3Ou8Bli/Y+B3DZsr/PB0PmQqFw536mjaAYc++6XxBva3TYPzANoyd8z/NUr9d1cHBw6ZhzHEe5XE6tVmuGFQLDOKci6TivIs7zVBTb5rwLXLZo73MAly37+7xWq4W3R6dWixNTT2Du3fWNOfrRgtPT0/sXA9zAMAyVSiWdnZ2p0WhcOg7b7baq1Wo8xQHinIr5w3l1+cR5nopi25x3gcsW7X0O4LJlfp+7rhvOb1ypVBIzP7FEUAyE+IsvZi2fz+vly5eXVjs9ODiIqSJgejinIg6cV3EbcZ6notg2513gskV7nwO4bB7f55VKRdLFVBalUmmKFd0fQTHm3m1WlZxFP8BtGIahTqczFGp4nnfjYk1AVDinYt5xXl18cZ6notg2513gskV7nwO4bFnf547jqF6vyzCMRE6PRlCMube+vp6ofoC7ePr06dD9JP6HgeXAORWLgvPq4orzPBXFtjnvApct2vscwGXL+j7f29uTJD1//jxRU04ECIox9+76l6DRjwjwF1/EKZPJyLKs8P60JtcHbotzKhYF59XFFed5Koptc94FLlu09zmAy5bxfV4sFuU4jhqNxqWp0pKCoBhzb3t7e+j+pHPEjE46nk6np1UScCe5XC7uEgDOqVgonFcXU5znqSi2zXkXuGzR3ucALlu293m9Xle9XletVlM+n5/4cbP2RtwF3NZnn30mx3F0enoqz/P0+eefS5IePHggwzBkmqa2t7e1uroac6WYlWw2O3Tfdd2J/jLT7XaH7g+OOgLiMPixEz6qhrhwTsUi4by6mOI8T0Wxbc67wGWL9j4HcNkyvc/b7baKxaJqtZoKhcLkhcZgLoLiH//4x2q1Wnr27NnEKb9pmrIsS7Zt67333ou2QMRq9C9Bk77BB4+l4I8MQJwGj0E+qoa4cE7FIuG8upjiPE9FsW3Ou8Bli/Y+B3DZsrzPHcdRLpdTpVJJfEgsJXzqiR/+8Id6++23Zdu26vW6zs7O5Pu+fN+/9jHBz7vdrur1unK5nN5++2392Z/92QwrxyxlMpmhX/5evHgx0eOOj4/D26MnCSAOg8ckH5dGXDinYpFwXl1McZ6notg2513gskV7nwO4bBne567ramdnR6VSSaVS6dZ1xiGRQfHHH3+st99+W8ViMVx4ZDQcDgLh0a+r2riuq0KhoH/5L/+l/vqv/3pmzwOzs7u7G952HGeixwy2K5fLU68JuK3Bj7HwUTXEiXMqFgXn1cUV53kqim1z3gUuW7T3OYDLFvl97rqustmsCoWCKpXKRP27rqtqtTpR26ik/HHDc2Pw5MkTVavVS6GvZVnKZDJ68OCBTNMMk/9gvrlgQmnP8+S6rj7//HO5rqt2uz00NDyVSqlcLuv73//+TJ4PZsNxnKE5Zm46rNvtdjiyyDTNS/PMAHFIp9NyXVelUmni/0iA67iuO7S4wm3mw+Kciijd59i8Lc6riyvO81QU2+a8C1y2aO/z68zy/0UgaRb1fe55nrLZrCzLUq1Wm7imbDarp0+fTjQNRmT8hHj9+rW/vb3tp1IpP5VK+blczq9Wq77jOPfu2/M8v1ar+dls1k+lUv7Kyor/6NEj//Xr11OoHElhWZYvyZfkNxqNsW0LhULYtlarzahC4HqNRsOX5BuG4Z+dncVdDhZAp9MJz3N3OddxTkVU7ntsTorz6uKL6jxVq9X8Uqnkd7vdmW6b8y5w2aK9z68yq/8XgaRatPf52dmZb5qmb1mW3+12J/pqtVp+JpPxM5nM2BpmIRFB8aeffuqvr6/7qVTKLxaLvuu6kW2r2+36lmX5qVTKf/vtt/1+vx/ZtjBb3W43fNOOe3OdnZ2F7SzLmmGFWCatVss3DCM8zjqdzrVtu91u2HZcO+A2gpAs+KpUKrd6POdUROWuxybnVYyK4jw1+AujpGv/yBDFtjnvApct2vv8Kve9ZgPm3aK9zzOZzNC2b/OVhD8UxR4UO47jp1IpP5vNRhoQjwp+2Xj77bcZWbxABv+Tve4/2OBNywgjRGnwr43BV6FQuNQuOBeZpjn2L53AbQR/xR48/u7y12nOqZi2+xybnFdxlWmfp27zC1sU50jOu8Bli/Y+HzStazZg3i3K+/w+IbEUe0Tr+37MQbHruv7a2ppv23Ys2w9Oyv/23/7bWLaPaAyOOMrn836n0/HPzs7CofzBf75cWCNKrVbryhO/YRh+Pp/3C4VCeDyWSiWOR9zb2dmZn8/nL/31fPTLsqzw3DgJzqm4r2kdm5xXcZ1pnqeCfoKvVqs1s21H2Scw7xbpfR7VNRsw7+b9fZ7P5+8VEl81ACIOsQbF6XTaLxaLcZbgn52d+el02v/jP/7jWOvA9FUqFT+TyYRvdsMwfMuybpx3BpiWbrfrFwoF3zTNoePQNE0/n8/7jUaDX/IwNzinIgk4r2KcaZynWq1WeHyVSqWZbnsWfQLzbtHe5wAu430er5Tv37CsX0Tef/99OY6jjz76KI7ND/E8T6Zp6uOPP9Y777wTdzkAAAAAAAAAMFMrcW34wYMHajQacW1+iGEYev78uVzXjbsUAAAAAAAAAJi52EYUAwAAAAAAAACSIbYRxbP2ne98J+4SAAAAAAAAACCRlmZE8Ve+8hV1u119/etfj7sUAAAAAAAAAEiUpRhR/Pz5c/m+rx/96EdxlwIAAAAAAAAAiRPLiOJvf/vbevnyZeTbOT09led5cl1Xvu8rnU7rZz/7WeTbBQAAAAAAAIB58kYcGzUMQ61WS6lUKtLtjGbgruvqpz/9qd55551ItwsAAAAAAAAA8ySWqSceP358q/Z3HfScSqXCr8CzZ8/u1BcAAAAAAAAALKrYFrP7xje+oZcvX04UAqdSqTuHxaOPZ/oJAAAAAAAAABgW22J2Ozs7kqR2u63z8/NrvyqVinzfVyaTUavV0tnZ2dj2o1/Hx8d6+PChisWizs/PCYkBAAAAAAAAYERsI4qfP3+u999/Xy9evLi2zcuXL/WNb3xDhUJBf/qnf3rnbbmuq2984xv69re/rX//7//9nfsBAAAAAAAAgEUU64jitbW1sW0qlYpM07xXSCxJpmlqb29PtVpNn3zyyb36AgAAAAAAAIBFE1tQLEkfffTR2J8fHx+rWCxOZVvb29vyfV+1Wm0q/QEAAAAAAADzznEcFYtFpdNppVIpZbNZFYtFeZ4Xd2mJtaj7LNag+CaO4yiTyUylr/X1dUlSq9WaSn8AAACLaFEvegEAAHBZtVpVNptVvV6X67qSLq4H6/W6Hj58qGazGXOFybPI+yy2OYonsb6+rg8//FB/8Ad/cO++vv3tb6teryuVSumLL76YQnUAAACLpVqtqlwuX/kzwzD09OlT5fP5GVcFAACAKATXfoVCQdlsVuvr63rx4oXq9frQIIFutyvTNOMrNEEWfZ8lOij+7d/+bZ2dnY1d8G4Sr1+/DudDXltb0+effz6N8gAAABbGol/0AgAA4Euu6yqdTqvVasmyrKGfeZ6nnZ0dOY4jScrn82o0GnGUmSjLsM8SHRQ3m03t7u7qww8/1B/90R/dqY9+v6+dnR11Oh2lUillMpl7B88AAACLZBkuegEAAPClYrEowzBUqVSu/HlwfShdfLLs7OxsluUl0jLss0QHxZKUTqf12WefybZtffDBB/r6178+8WN//OMfa29vT57nyfd9pVIpVSoV/bt/9++iKxgAAGDOLMNFLwAAAL6UzWb1/PlzGYZxbZtcLqd2uy1JOjs7G9t2GSzDPkt8UOy6rr7xjW8olUpJkjKZjIrFokzTlGmaYXD82WefyfM8ua6rVqulZ8+eDQXEvu8z7QQAAMAVluGiFwAAAF9yHEeZTGZsm2KxqHq9LklKeHw4E8uwz96Iu4CbmKap4+NjbW9vS/pyJe6bBC9GEDCnUik+JgkAAHCFp0+f3hj8Ds5LTEgMAAAw324KPCXp9PR04rbLYBn22UrcBUwik8nob/7mb/Tuu+/K9/2JvlKpVDiS2Pd9PXv2TO+9917cTwUAACBxluGiFwAAALfjuq4kTTRgExfmfZ/NRVAsXYxi6XQ6evbs2ZW/oATBcCAIiPP5vM7OzvStb31rluUCAAAslHm/6AUAAMDkXNeV4zgyDEOFQiHucubCIuyzxE89MSqfzyufz+vly5dqt9vqdDpyXTcc5bK+vi7TNJXL5WRZlt56662YKwYAAJhvi3DRCwAAgMnVajVJF1OUYTKLsM8Sv5gdAAAA4lUul1WtVtVoNJTP5+MuBwAAABFyXVfpdFqFQiEMPzHeouwzgmIAAABca1EuegEAADCZXC4nSWq1WjFXMj8WZZ/NzRzFt/HkyRP97d/+bdxlAAAAzL1isSjLsgiJAQAA5pTnearX6xO1LZfLOj09nfvA876WdZ/NXVD84x//WN/5znf06NEj/fjHP76yTTab1bvvvqvf+73fIzAGAAC4o0W66AUAAFhGnucpm81OdD3XbDbVbDb1/PnzGVR2med5qlarqlar4ULKcdUxL/ts2uYmKP7jP/5jPXjwQLZtq16vy3GccAG7Ufl8Xq7r6mc/+5lM09Rf/MVfzLhaAACA+bZoF70AAADLxvM87ezsyHXdcGqE67TbbZXLZXU6HRmGMZsCR5yenqpcLqtcLscWFM/bPpu2xAfFr1+/1ttvv61yuayzszP5vq9JplU2DEOdTkfvvPOO8vm8/uzP/mwG1QIAAMy/RbzoBQAAWDY7OztyHEeStLu7e207x3FULBZvvPaLc5TvrCz7Pkt8UGzbtrrdriQplUoplUrd6vHPnz+X7/sqFAr65JNPoigRAABgYSzqRS8AAMCycBxH6XQ6DDxN07z2us5xHNm2rVarNfbar9lsqt1uR1BtMrDPLrwRdwHjPH/+XO12W6lUKhxFbBiGtre3J/4YpGEY+u53v6sPP/xQxWJR/+k//acoSwYAAJhbt7noPT09VaFQmF1xAAAAGMtxHB0cHKjZbA593zCMoYXZgms413W1s7OjQqEgx3HCkHTUixcvVK/XdXZ2Fl3xMWGfDUv5k8zjEJPd3d3whSoUCiqXy3r48KEkaWVlRfV6XX/4h394Yz+ffvqpstmsUqmU6vW6/uAP/iDSugEAAKISrMDc7XZVLpdlmuZU+nVdV9lsVoVCQY8ePbq23bxe9AIAACyyZrMp27ZvbGcYhs7OzuR5nh4+fCjP8ybqv1AoqFar3bPK8VzXVTqdliS1Wi1ZlhXp9hZhn01bokcUB6OJa7XaRIHwdQZ/gfroo48IigEAwFwJwuGjo6OhUQvtdjucous2bNuW4zjh9BLBys7BStM3YSQxAABAsuTz+fDT+O12e2ghtqvGiAbXfpMqFov3rjFp2GeXJXqOYs/zZJrmvUJi6WLVxMB1Q8IBAACS6vj4WJZlqdFoDIW0ruveet4z27bVbDZVq9XC6SWW4aIXAABgWTQajfB2JpO5sk2325Xv+xN/XdfPomCfXUh0UGwYxlR2ahAO+77PwisAAGDuWJalTCYj0zQvfXyt1WpN3E+xWFSz2VSlUhn6KN8yXPQCAAAsi8GBBI8fP46xkvnBPruQ6KDYNM1bjW65zsHBQXh73MIsAAAA82Aw5J3001Llcln1el2FQkGlUimq0gAAABAjz/OGBklGPc/vImCffSnRcxTv7Ozohz/84b36+PDDD+U4jlKplHzfn9qCLwAAAHEZvJ45Pj6+sX25XFa1WpVlWXO3oAYAAAAmNzotWRI+CRast3GTzz//PLxdq9UmGhCRz+fvnfUlcZ/FJdFB8ZMnT/Thhx/qT/7kT/RHf/RHd3p8tVoNQ+JUKrXUw8cBAMBiyGaz4e2bPn0VhMSZTOZW01QAAABg/gxe7yVlZOzx8bHK5fKtHtNsNtVsNm9sZxjGvRdaTuI+i0uip54wDEPf/e53VSqV9L3vfU/9fv/Gx/T7ff3whz/U22+/rWq1emmVQlbpBgAA82501MR1oy2CkNg0TT1//nwWpQEAACBGz549C2/bth1jJfODffalRI8olqRKpSLHcfTBBx+oUqkol8uF6X6n09H6+rpOT0/V7XbVbreHFq6TpFQqFfb1gx/8QKurq7N/EgAAAFM0GhS7rnvpI3KDIXGn02GdBgAAgAXnuu7Qp82SMjrWsqxLAzmv4rqu0um0pItRvrOoP6n7LC6JD4qli4OjWCzq6dOnarVaarVaSqVSqtfrl+Y4GQ2Ig/u1Wk17e3uzLRwAACACo0HxixcvlM/nw/vFYlH1ep2QGAAAYIkMzrVrGAbrdE2AfTYs0VNPDKrVajo+PtZ7770n3/cvfQUGA2Lf92VZlrrdLiExAABYKIMXsYOrNNu2TUgMAACwhJhr9/bYZ8PmYkRxIFiE5eXLl2q322q1WuEQ8dPTU62vr4fpfy6X0+7urt566624ywYAAJi6TCYTBsTB1Fu5XE7tdluZTEbPnz8nJAYAAFgig6NjHz9+HGMl84N9NmyuguLAw4cPtbe3xyhhAACwtEZHFGezWTmOo0wmo06nE2NlAAAAmDXm2r099tllczP1BAAAAL4ULPQRcBxHlmUREt+C67oql8vK5XJxlwIAAHAvzWYzvG2a5tAny0bX98IF9tllczmi+CafffaZHMeRYRja3t7W6upq3CUBAABM1fb29tD9fD6vRqMRUzXzpV6vq1KphFN3LPuiJQAAYP5dN9dutVplOrJrsM8uW6gRxZ999pkePXqkdDot27aVy+W0tramf/2v/7X+9m//Nu7yAAAApubo6GjoPmHn5AqFgrrd7tL+AgAAABbP4Fy7waelms2mWq2WCoXCtY9zXVfVajXM0EY/aeV5nmzb1tramqrVajTFx2TSfRbsI9u2lc1mlUqlwjVCBtXrda2tralYLEZffEQSHxT/9m//th49eqS3335bb7/9th48eHDl5NKffvppODef7/tDX8fHx0qn0/rkk09ieAYAAADTVSwWL12oB6NjF1W5XJ56n4TrAABgEYyGli9evFC9XtfBwcGNnzhrt9uyLEu5XE6e56ndbof9eZ4XZm2e5w2NwJ13t91nlmXp0aNH4eMODg4utel0OvI8T/V6fW6vzRM/9YRhGGq32zIMQ0+ePFE+n9fDhw+H2rx+/Vo7OzvyPE+pVEqpVEq+74dTT7iuK9d1Zdu2/vN//s8xPRMAAID7s21bzWYznEctuFid14vRSRSLRR0fH0+93/X19an3CQAAMGuj14HValWmaarT6dz4Capg5Gwmkwn/MN9ut5XJZGTbthqNhjKZjFzXXag/st9mnwXPO5PJSLoYwNBsNuV53lDbWq2m09NTNZvNub3OTPyIYsdxVC6XdXp6qu9+97uXQmJJ2tvbC0PiYBRxpVLR6empPvroI/3N3/yNPvroI52fn+t73/teDM8CAADg/nK5nJrNpizLUrfbHZpLbVGD4mazubSLiQAAAEwin8+rUCjIMAyZpqlSqXSnabaCa8tWqxVOtRCEo7MIiU3TDHO9wevcKNx1nw1OSfHs2bNLP3/69OmlhfHmSaKD4g8//FCZTObK4dyBH/3oR2o2m2FInEqlVKlU9N3vfneonWVZ+uCDD1gJHAAAzKVcLqd2u618Ph9+7C+dToc/9zxPnufFVF002u22bNuOuwwAAIDEq9VqOjs7U7fbVaVSuVMfwTy97Xb7xrmNF8Fd9plhGGGIfdUUFcfHx8rn81Otc5YSHRTX6/UbRwDv7e0plUpJklKplDKZzKWQOPD48eNIPrYIAAAQpWw2q3a7rVKpNHRBur29PdTuPqOKg0U60ul02I/jOMrlckqlUlcuzOE4Tri4SbD4ybgaXNdVsVhUNptVLpdTOp0OR0mPajabQ4upOI4TTjG2trZ2Zf+e54X9r62thQscDy5UMk7w+LW1NaVSKWWz2StrAwAAWESDo3jvGjYvg2Agw1XXmLVaTU+ePJl1SVOT6KC42+3qnXfeufbn3/nOd8KRM77vS7oY4n2dt956K2wHAAAwD4IFRGq12qUL9tGPAN4lKA7C4HQ6rXK5HPZRLBa1s7Mj6WI+tmBhjuDCuFwuK5vNyvM8bW9vh4ufZLPZK7fTbDaVTqd1enqqTqejVqulbrcr6eJie3Sxunw+L9/3h+aECz6KeHZ2dqn/arWqhw8fKpvN6vnz5zo7O1OtVgsD55sWw3McRw8fPtSzZ8/CAD4IwgmLAQDAMgimmZCk09PTGCtJtsFAfXBRPM/ztL6+PrfTTkgJD4pN09Rnn3125c8+/fRT1Wq1oSknCoXC2GD5008/vTTyBgAAIKlyuVwYEl/10b/Ri9C7BMWZTEatVkulUmlou7lcTmdnZ2q1Wup0OuH2g+D1wYMH8n1frVYrbCMpDJRHBQHz48ePh74fhN/VavXOU2eUy2WVy2U1Go1wrjnp4iI++IWnWq1eu39OT0+1t7cXBsxBiB30c1PIDAAAsAgGr5WCqc5wmWma4WCGwVHFwTXpPEt8UHzVLxqvX78emq8ulUrJNE396Z/+6dj+nj9/PvcvGAAAWA7BnMRB+HmdwZEfL168uPP2Hj16FN6uVCqX5lYbnHbCMIyhYDmoI7hgHv3FYlyAPRh232WKMMdxVK1WZVnWlYueTPrRv+fPnw/tS9M0tbu7K2lxFwoEAAAYZNt2eD016dRdyyq4bgyuv4PrxVks+helRAfFhUJBH3zwgb73ve+p3++r3+/rxz/+sba3t+W6bjiaWLp6AulBn376qQ4ODsKPUAIAACRVMK9urVa7cTGMwYvRqwLNer1+65G6V31cbnA7110AB48brcM0zXDqjNHns76+Ht6+y4jiYBDAdYve5fN5dbtdnZ2dXVv3dR8RHJxGg7AYAAAssmKxqGKxGF5bDU6pgMuCtTSC/VQulxdiXudEB8X5fF47OzuqVCrhIim2bavb7Q6FxD/4wQ/GTjnxwx/+8MoRJgAAAElTLpfVbDavnW5i1OiCb4Nha7PZVKvVmso8aZP0EYS+VwW+hUJhaBRyMEXF4KfH7jIXXjDaZdz0YqZp3nsf3HVaDAAAgKRrt9s6PT1VoVAYuqYaDIuv+sT/MgtyRtd11W639ejRo7memziQ6KBYuvgF53d/93fDxUuCcNj3fRmGoUajob29vUuP++lPf6onT57o7bffVrFY1NnZmTzP01/8xV/M+ikAAABMpF6vq1qtqlKpTBQSS7r0x/BgQbpqtaqDg4MbP3U1a47jqFgs6tmzZyoUChM/z6swyhcAAOD2gkWIpYvrqUqlEl4zGoYRTqtQq9UkXYw2Zs2vYYOfVCuXy5emZZtXb8RdwE3eeustNRoNPX/+XK1WS47jyDAMPXr0SIVCQW+99dalxzx9+jQ8wB8+fKiHDx+GP/vJT36i3/md35lZ/QAAAJMIAtTRkbc3MU1T+XxezWZTksJRupZl6fnz51GVe2ue58m2bbmuq06nM5URF4OjfF3XHZpjGAAAAFcLpjkzDEPr6+vhosQBy7LkOI7q9bra7bbK5TLXWVfIZDJyHGchppwIJD4oDuzs7Ew8v/De3t6Vo4wBAACS6uDgQJVK5U6jERqNhmzbVrPZlGmaKpfL9xqpO22e5+nhw4fyPE/dbndqH8sb/IWl1WrdOJ8zAAAALoLi4+Njra+vXzlN2ZMnT9RsNnV6ehoOZMBl6+vryufzCzXd7dwExQAAAIvsvlNEJG2KiUHlclme58kwjEsLyt1lXuJBhmGE8x2Xy+VrF6xzXVfNZnNhPhYIAABwVzdN/2UYhrrd7gwrmj+e5+n09FStVivuUqYq8XMUT9Nnn30WdwkAAABL5/j4WNLVC8LdtEhcMMLlunaDv+TYtn1lO9d1Zdv2pV+I7htSAwAAYDnt7e3p6dOncZcxdUsVFNu2HXcJAAAAc++mcHfU+vp6eLtarYa3HccZmi4sGLky2H/wWNd1w+8PLsBSqVTCMNlxHD18+FDlclnNZjOcUy+bzerJkyfXTnlBYAwAAIBJVatV5XK5hZy3eamCYlbGBgAAuNqLFy/C21cFwY7jhLeDEcKjgmut0WuuYrEY3i6Xy0qn01pbW9Pe3t7QlBnValXpdFoHBwdXPjabzcq2bWWz2aGVtzudTjjlhOd5qlarsm1buVxO1WpVlUrlyvmLgzo9z7vyOQ8u7HLdcwYAAMDiCq4tg2vFYAHpRZ23eSmC4n6/r29/+9u3Hv0CAACw6BzHUbFYHBrpu7e3p3K5HI7iLZfLQ4sKO46jXC6ner0uSarX68pms0MBcTqdDvvM5/Oq1WpD8wdXKpUw4K3VauH8xcVicWjl6Hw+r1KpJMMwwpG/nU5naHSwaZrqdrsqlUrhNkzTVD6fV7fbvXQhH9Q7eG2YzWZVLpfD52fbdvj8pIvAejC0BgAAwOILrovX1tbC691FXvMi5fu+H8eGX758qd3dXbmuq2KxqO9///uX2mxvb+vly5f32k7wC4Dv+0qlUvriiy/u1R8AAAAAAACAxddut2XbttbX11Wr1WRZVtwlRSq2oHh7ezv8CGMqlVKj0dDv/u7vDrUpFotTnRiaoBgAAAAAAAAALott6gnHcZRKpcL7V80f/O1vf1vSRcA7+DWpuzwGAAAAAAAAAJZNbCOKB0cLp1Ipdbtdff3rX7/Ubn19Xa9fv5bv+zIMQ+vr69euWD3K8zydnp6G008wohgAAAAAAAAALostKJYuVgo8Pj5WsVjUw4cPr2xTLpf1x3/8x+p0OnrnnXfuvK2gH4JiAAAAAAAAABgWa1A8iU8//VS7u7v62c9+du++1tfXw9WyAQAAAAAAAAAXYpujeFLvvvuu3nrrran0ZZrmVPoBAAAAAAAAgEWS+BHFkvT69euphMWffvqp3n333SlUBAAAAAAAAACLI/EjiiVNbURxKpWaSj8AAAAAAAAAsEjmIiielr29vbhLAAAAAAAAAIDEWaqg2HXduEsAAAAAAAAAgMRZ+KC43+/rs88+0+7urjzPi7scAAAAAAAAAEicN+LY6OvXr7W+vj7Tbfq+zxzFAAAAAAAAAHCFWEYUv/XWW3rnnXfk+/7MvgAAAAAAAAAAV4tt6onf+73fkySlUqnIR/oykhgAAAAAAAAArhfL1BOSZFmWpIspIUzTlGmaMgxj6tvxPE+u67KQHQAAAAAAAABcI+XHOC/D+vq6crmcjo6OIt9WvV7Xd77zHX3xxReRbwsAAAAAAAAA5klsU09IF6OKc7ncTLZVKBT01ltvzWRbAAAAAAAAADBPYg2KZxUSB7a3t2e6PQAAAAAAAACYB7FOPSFJr1+/ZqQvAAAAAAAAAMQo1hHFkmYSEr9+/VpPnjyJfDsAAAAAAAAAMI9iH1E8K9vb21pZWdFPfvKTuEvBiK9+9av65S9/qa985Sv6rd/6rbjLAQAAS+zv/u7v9MUXX+jNN9/UP/zDP8RdDu6I60sAAJAk83KNuTRB8be//W09ffpU5XJZ3//+9+MuBwO+8pWv6Pz8PO4yAAAAQisrK/riiy/iLgN3xPUlAABIoqRfY85dUPzZZ5/J8zydnp5O/BjHcXRwcKCzszOtra3p888/j7BC3Nav/uqv6p//+Z+1srKijY2NSLbR6/V0fn4e6TaoYb7qoIZk1ZGEGpJSBzUkq44k1JCUOpalhmAbv/Irv6J/+qd/imQbiB7Xl8tXBzUkq44k1JCUOqghWXUkoYak1EENs61jbq4x/Tnwox/9yP/t3/5tf2Vl5V5fqVTKX1lZifvpYMTm5qYvyd/c3JzrbVDDfNVBDcmqIwk1JKUOakhWHUmoISl1LEsNSXieuL9lOVaSUENS6qCGZNWRhBqSUgc1JKuOJNSQlDqoYbZ1JOW53uSNaGPo+/vwww/1/vvvS5L8ewx+TqVSSqVSymQy0yoNAAAAQIL1ej1tbW2NbbO/v6/9/f0ZVQQAABbN4eGhDg8Px7bp9XozquZ+Eh0Uf/rppyqXy0qlUleGxNd9/7p2pmnq6dOnUZQKAAAAIGHOz891cnIytk2/359RNQAAYBH1+/0brzfmRaKD4lqtJkl66623VCgUlE6nZZqmJOns7Ey7u7taW1vTs2fPrny853n66KOP9MMf/lCO4+idd96ZVekAAAAAYjbJXIOrq6szqgYAACyi1dVVbW5ujm0TzFGcdIkOitvtttLptH72s59d+fO9vT398Ic/VDqd1te//vUr23zrW9+SJL3//vv6y7/8y6hKBQAAAJAwGxsbevXqVdxlAACABTbJNFZbW1tzMep4Je4CxnFdNxxVfJX3339fvu+rWq2O7adcLuujjz7Sn/zJn0y7RAAAAAAAAACYe4kOiiVpe3v72p89fPhQOzs7qtVqY+cWM01T7777rkqlUmRzkFWrVeVyOa2trSmVSimdTsu2bbXb7Ui2dx3XdZXL5dRsNme2LQAAAAAAAADzLdFBcSaT0enp6dg25XJZvu/r/fffH9vu0aNH8n1fH3zwwTRLVLvd1tramsrlsiSp0Wio2+2qUqnIcRzlcjnlcjl5njfV7Y7yPE+2bSudTqvdbt+4327qK5VK3fg1OGc0AAAAAAAAgPmV6DmKTdNUvV7X97///WvbWJald999V7VaTcViUf/qX/2rK9sdHx9Lughyx/V3G+12OxxRWygUhqbJME1T+Xxe2WxW7XZb2WxWnU5HhmFMZdsBz/N0cHBw4/Qbt1Gv1yduGwTkuNn+/r76/X6sC6YkoYak1JGEGpIiCfsiCTUkpY4k1JAUSdgXSaghKXUkoQYAw5LyvkxCHdSQLEnZF0mogxqSJSn7Igl1UAOukvJ934+7iOs0m009fvxY1WpV3/rWt+S6riTpvffeu9Rud3dXqVRKzWZTv/M7vzP08w8//DAMNFOplL744ot71+Z5nh4+fCjP82Saprrd7pXtXNdVOp2WdBFqt1qte287UK1WVavVZJrmpSkuarWaCoXCnfpdW1ubaAT0tJ5PMKH35uZmZIuNzGIbwG1xXCKpODaRVFwzYFIcK1hmHJtIKo5NJBXXDV9K9IjifD6v1dVVlUollUql8PvZbFY/+clPhtrt7Ozo+fPnyufzymQy4dzG7XY7DJglTW2qBNu2wzB13KjaYGRxs9lUu91WvV6/c4A7yHEcWZYV7pd6va5isXjvfuv1ujzPU6lUunH+4XHzRwMAAAAAAACYH4kOiiXp6dOn4WjhYPBzp9PRT3/6U73zzjthu1qtpm984xuSLkJUx3EkSYMDplOplDKZzL1rcl13aATv7u7u2PaPHz8OF5crl8tTCYpHn8e0QttKpSLTNFWpVKbSHwAAAAAAAIDkS/RidtLFaOFnz54NBb6GYQyFxNLFyN2PPvpIozNpBAuvBY97+vTpvWsaDFEty7px3uF8Ph/e9jwvDI2naRpzHzebTbmuy7zDAAAAAAAAwJJJfFAsXQStZ2dnqtVqqlQqQ1NJDLIsS3/zN3+j9957T77vD31lMhkdHx9PZYLswcXeJh2hPDjlxdHR0b1riMLBwYEMw7hxhDQAAAAAAACAxZL4qScCb731lvb29m5sZ5qmWq2WXr9+rePj4/B7Dx8+nEodwZQWgUePHk30uEwmEwbcUYwovq/B6TrW1tZkmqYsy1IulxsaEQ0AAAAAAABg8cxNUHxbb731lnZ2doa+99lnn+nrX//6vfodnJtYmnxxvNF2juNMZb7kaRmdbsJ1XdXr9XD0dD6f15MnTxJV8138/B//UR988vHYNu9/870ZVQMAAIB5x/UlAABYFHMx9cS0FIvFe/fx4sWLofuTzg384MGDofvBaOckGF2c7yrNZlPZbHYq+xAAAAAAAABAsizsiOKrTCOcHZ0f+a4jirvd7r1rmRbTNFWr1eR5nrrdrtrt9rXzQNfrdR0fH6vT6cy4yvvZ39/X//TXf61f++qvx10KENrf31e/35/K3OnANHFsIqk4NpEkXF8iqThXIqk4NpFUHJtfmsug+LPPPpPneRO3d103DELv67oA9bamUcs0FQqFofue56ler+vg4OBSrY7jKJfLqdVqzbDC+9nf39c/3fCRQGDW9vf34y4BuBLHJpKKYxNJwvUlkopzJZKKYxNJxbH5pbkIij/77DNVKpWxI11v4vu+UqnUvWu5a8A7OkXF6enpvWuJkmEYKpVKKpVKajab2tvbG3ru7XZb1WpVpVJpatvs9Xra2tq6dz/7+/u8yQEAWDKHh4c6PDy8dz+9Xm8K1QAAAADzJ/FB8ZMnT1StViVdhL2LImkjisfJ5/OyLEs7OztyHCf8/sHBwVSD4vPzc52cnNy7n36/P4VqAADAPOn3+1O5jgAAAACWVaKD4h/96EeqVCqSpFQqpVQqFXtYbBjGVELeSRfBSwrDMNTpdJTNZsOw2PM8tdttWZY1lW2srKxoY2Pj3v0wpwwAAMtndXVVm5ub9+6n1+vp/Px8ChUBAAAA8yXRQfHBwYEkhQGxaZrKZDLhwnAPHjy4sY/PP/9cnufp2bNnev369b1rWl9fn0pQvL6+fu8+4vD06VNls9nwfqvVmlpQvLGxoVevXk2lLwAAsFymNfXU1tYWI5MBAACwlBIdFDuOE84r3Gq1tLOzc+e+SqWS3n777XvXdNeRwKPh8ryNKA5kMhlZlqV2uy1peov7AQAAAAAAAIjPStwFjBOEqaVS6V4hsSSZpqmHDx/eu6bt7e2h+5OOLh5dvC6dTt+7lrjkcrm4SwAAAAAAAAAwRYkOioMpJh49ejSV/mq12r37GJx2QZp8RG232x26P63pGuIQvC7S/E6hAQAAAAAAAOBLiQ6Kg1HEo6Nx79vffYyOKJ40KB4ceWwYxlDYOm8Ga5/XKTQAAAAAAAAAfCnRQfH3vvc9+b4vx3Gm0t8Pf/jDe/eRyWSGwtEXL15M9Ljj4+Pw9mjYPG8GnwvTUAAAAAAAAADzL9FB8VtvvaUPPvhAR0dH+vnPf37v/qYx9YQk7e7uhrcnDbEH25XL5anUEZfBaTTmeQoNAAAALLZer6etra2xX4eHh3GXCQAA5tjh4eGN1xu9Xi/uMifyRtwF3KRUKqnVasm2bf3lX/7lnft5+fLl1EYmF4tF1et1SVK73b6x/WAb0zTnPlxtNpuSLl4bAAAAIKnOz891cnIytk2/359RNQAAYBH1+/0brzfmReKDYklqtVra3t7W22+/rXK5PPECaqenp/I8T91uV8+ePZtaPZlMRpZlhQFws9lUPp+/tn2j0Qhv3zSauF6vq9vtqlgs3moe48E5kKPUbDbluq4Mw9CTJ09msk0AAADgLlZWVrSxsTG2zerq6oyqAQAAi2h1dVWbm5tj2/R6PZ2fn8+oorubi6D4448/lqQwQL0L3/eVSqWmVlOtVlM6nZYkHRwcXBsUe54Xjj62LEuFQuHaPnO5XBg+V6tVnZ2dTbxY3OiiepMGx+12W7Zty/M8WZalSqWiTCZz7Tb29vYkSc+fP2chOwAAACTaxsaGXr16FXcZAABgge3v72t/f39sm62trbkYdZzoOYol6Tvf+Y5yuZw+/fRTpVIp+b5/668omKYZjhR2HEfVavXKdjs7O5IkwzCGRhZfZXQai0lHQXued2mk8tHR0USPbTQaYajcbreVzWavDOODn62vr6vb7V4bJgMAAAAAAACYP4kOip8+faparRaGvXcNfaMKi/P5vFqtlgzDULlclm3bchxHnueFwarjOMpkMnr58uWNI3BHfz5u6gnP82TbtnK5nNbW1i6NKHYcR6lUSrlcLqzrKrZtX/pevV7X2tqabNtWsVhUNptVLpdToVBQp9O51ZQYAAAAAAAAAJIv0VNP1Go1SQpHEluWpVwuJ8Mwbj1P8Q9+8AN99tlnU6/RsiydnZ2pWq3q6OhIOzs78jxPhmFoe3tbjUZj7PzFgxqNhorFok5PT1UoFMYuejfJCOVJ6+92u6pUKmq32+H+khSG3E+ePJFlWUw1AQAAAAAAACyoRAfFwahYwzB0fHyshw8f3rmvvb09PXjwYIrVDSuVSiqVSvfqIwhtZ800zTCUBwAAAAAAALB8Ej31RDCC9cmTJ/cKiYO+3n333SlUBQAAAAAAAACLJdFBcTablTR+rt7bePr06VT6AQAAAAAAAIBFkuiguFgsyvf9Swu13RUjigEAAAAAAADgskQHxfl8Xu+++66Ojo6m0t+Pf/zjqfQDAAAAAAAAAIsk0UGxJDUaDXU6Hf3FX/zFvfs6ODiYQkUAAAAAAAAAsFjeiLuAm5imqR/84Af6wz/8Q/3O7/zOnft5/fq1HMeZYmWYtl6vp62trbFt9vf3tb+/P6OKAADAIjk8PNTh4eHYNr1eb0bVAAAAAMmS6KA4mCriN3/zN7W2tqa3335b+Xz+1v14nqdnz55NuzxM2fn5uU5OTsa26ff7M6oGAAAsmn6/f+O1BgAAALCsEh0Uf//739enn34a3vd9X9Vq9U59+b6vVCo1rdIQgZWVFW1sbIxts7q6OqNqAADAolldXdXm5ubYNr1eT+fn5zOqCAAAAEiORAfFu7u74XQRqVSKoHfBbWxs6NWrV3GXAQAAFtQkU1htbW0x6hgAAABLKdGL2RWLRUkXIbHv+/f6AgAAAAAAAABcLdEjit966y1lMhl9+umnqlQqymQyWl9fv3U/ruvq+9//vn76059Ov0gAAAAAAAAAmHOJDool6fHjx0qn0/rud7975z7effddfetb37pTyAwAAAAAAAAAiy7RU09IkmVZU5s6Ynt7eyr9AAAAAAAAAMAiSXxQ/O677+r/z97//TaS3nm+5yfkmhnvzJgKqQ4Gq5UAl4JV151JqgwcYM4AVSLLBvaqXaTSe9UXLpGZfbNYtYuU6g+oTCptLfamXaTKF311WiKzjLnYhbvIzFrMDnCATolZvh03Q2lAebgYTEmRrOlpzw8z9kJLtqgfFEUGGUHy/QIEk9LDJ76RjmQ9+dHDb+RyOU/m8moeAAAAAAAAAJgkgQ6KG42GHjx4oPv37+sXv/jFwPPdvXvXg6oAAAAAAAAAYLIEukdxIpHQ06dP5bquKpWKlpeX9eMf/9jvsgAAAAAAAABgogR6R3GlUul4bpqmP4UAAAAAAAAAwAQLdFBsWZYkyTAMJRIJvf/++z5XBAAAAAAAAACTJ9BBcSqVkuu6kqS9vb2B53vw4MHAcwAAAAAAAADApAl0j+JMJqNyuaxnz57p97//vb7//e8PNN/FVhYAAAAAJle9XtfS0lLXMRsbG9rY2BhRRQAAYNLs7OxoZ2en65h6vT6iagYT6KBYksrlspLJpBKJhJ49e6bvfe97fc1zdHQk27Y9rg4AAABAUDWbTb169arrmEajMaJqAADAJGo0GjeuN8ZF4INiSfrVr36lvb09RSIRbW5uKplMKhQK3fi61qLv4OBAmUxm2GUCAAAACJCZmRktLCx0HdPLvysAAACuEwqFtLi42HVMvV5Xs9kcUUX9C3RQ/Pbbb+vo6Kj93HVdpVIppVKpW8/luq4Mw/CyPAAAAAABtrCwoOPjY7/LAAAAE6yXNlZLS0tjset4LG5m1/oyDKPj+W2+AAAAAAAAAABXC3RQnE6nJUmGYbRD4n6wkxgAAAAAAAAArhfo1hOzs7P68MMP9eTJE0lSLBaTaZq3nse2bVWrVY+rAwAAAAAAAIDJEOigWDrbVfzFF1/o8PBQd+7c6XueQqGgBw8eeFcYAAAAAAAAAEyIwAfFsVhMs7OzA4XE0lm/4/v373tTFIaiXq9raWmp65heGoQDAABcZWdnRzs7O13H1Ov1EVUDAAAABEvgg2JJ2traUqPRUCgUGmieVCrlUUUYhmazeeMdIBuNxoiqAQAAk6bRaIzF3aYBAAAAP4xFUPzxxx97Ms9nn33myTwYjpmZGS0sLHQdM+gvCwAAwPQKhUJaXFzsOqZer6vZbI6oIgAAACA4xiIovqjRaKhSqahcLuvk5ES2bWt+fl6WZSkcDiuRSOitt97yu0zc0sLCgo6Pj/0uAwAATKheWlgtLS2x6xgAAABTaayC4pcvXyqbzapUKnV833VdGYbRfp7NZmVZljY3N/XTn/501GUCAAAAAAAAwFiZ8buAXu3u7iocDqtUKsl13faXpI6QWDoLjmu1mlKplH7wgx/o97//vR8lAwAAAAAAAMBYGIug+PHjx7p//35HMNwKh8+HxufD49bPDg4OFA6H9dvf/taX2gEAAAAAAAAg6AIfFD958kTZbFbSWUDcCoPv3r2rVCqlXC6nfD6vcrmsw8NDFYtF5fN5ZTIZWZYlSWo2m1pdXdXLly99PBMAAACgd9vb24rH45qbm5NhGAqHw0omk6pUKiOtw7ZtxePxS+3fbiso5wMAAICrBb5HcTabbQfEpmkql8tpbW1Ns7OzV46/e/du+/GjR4/04sULffrpp3ry5Inu37+v3/zmN6MqHQAAALi1SqWiZDIpx3EUi8VULBZlWZaq1aqy2azi8Xj7+6ZpDq0Ox3G0vr7eDoiTyWRf8wTlfAAAANBdoHcUP3nyRLZty3VdpdNpnZycaH19/dqQ+Cp3795VsVjUo0ePVC6X9dVXXw2xYgAAAKB/lUpF8XhcjuMolUqpXC4rFovJsiwlEgnVajVFIhFVKhVFo1E5juN5DY7jKJvNam5ubuBdxEE4HwAAAPQm0EHx3t6eDMPQ9va2fvnLXw40VyaT0erqqvb39z2qDgAAAPCO4zjtXbuWZSmfz185rlgsSjprCdHvLt/rbG9vKxqNqlqtDjxXEM4HAAAAvQt0UFytVhWJRPSzn/3Mk/nS6TQ90AAAABBIrfYMktr36LhKazeudLZjt1AoeHL8arWqWCymWq2mcrl8bbDbK7/PBwAAALcT6KDYtm2l02nP5jNNU7ZtezYfAAAA4AXbtjs2NKytrXUdf+/evfbjbiHsbUQiEUUikfbzlZWVvucKwvkAAADgdgIdFEtnOwy8QkgMAACAIMrlcu3HsVjsxpu6tXbgSmctHgbtJXyVQW4sF8TzAQAAQHeBDooty/I03M3n854GzwAAAIAXzrdbOL+rt5vz69q9vT3PaxrEpJ0PAADANAh0UByJRNo3txjU5uZmu+cxAAAAEBQXbxz37rvv9vS68+vaIO3AnbTzAQAAmBaBDorX1tZULpf1ySef9D1Ho9HQvXv3tL29LcMwPO15DAAAAAzq4s2We/0E3MVxFwNav0za+QAAAEyLQAfFiURCy8vLyuVy+vM//3O9fPmy59c+e/ZM9+7d09zcnEqlkgzDUCQS0fvvvz+8ggEAAIBbev78ecfzXnsDv/nmmx3PDw4OvCppIJN2PgAAANPiDb8LuEk+n9cHH3ygfD6vfD6vWCymSCSicDjc3nXgOI5OTk50eHiog4ODjt0HrutKkgzD0O7uri/nAAAAAFzn4j05+t2BW6vVPKtpEJN2PgAAANMi8EFxLBbTZ599pvv378swDFUqlUsfZzuvFQxLZ+GwYRhyXVf7+/u6c+fOCCoGAAAAeufVzZsdx/FknkEF6Xzq9bqWlpYGnmdjY0MbGxsDzwMAAMbLzs6OdnZ2Bp6nXq97UM3wBT4olqRUKqX5+XmlUik5jiPDMCR1hsItrZ+1fm6app4+faq7d++OrF4AAACgV/0GohdbOpycnAxejAeCdD7NZlOvXr0aeJ5GozHwHAAAYPw0Gg1P1hLjYiyCYumsX3E8Htenn36qx48fXzuuFR6bpqmtrS19/PHHoyoRAAAA8E1QdhR7xYvzmZmZ0cLCwsDzhEKhgecAAADjJxQKaXFxceB56vW6ms2mBxUN19gExZI0OzurXC6nXC6np0+fqlqtqlartXcbzM/PKxwOKxaLsYMYAAAAY8E0TU9C0V5vGjdsQTqfhYUFHR8fDzwPAACYTl61n1paWhqLncljFRSft7q6qtXVVb/LgId66SFHfzgAANCvXnrM+dE/bn5+3pNgdX5+fvBiPDBp5wMAADAtxjYo7scXX3yhH//4x36XgWv00kOO/nAAAKBfQe0x1+/O2YthbJB2FPcjqOcDAAAwLaYqKM5mswTFAdZLDzn6wwEAgH710mPOj/5xKysrqlar7eeO4/QUkl682Vs4HPa6tL5M2vkAAABMi6kJip88eSLbtv0uA13QQw4AAAxTLy2s/OgfF41GO57btq1IJHLj62q1WsfzWCzmaV39mrTzAQAAmBZjExR//fXXqlQqqtVqtwp8T05O5DgOITEAAAACaWVlpeN5r8Hq+VYNpmnKsiyvS+vLpJ0PAADAtAh8UPzy5Uul02lVKpW+Xu+6bvuxYRhelQUAAAB4IhKJyDTNdlD6/PlzJRKJG193cHDQfnwxnPXTpJ0PAADAtJjxu4CbxGIxVSqVjsD3NgzDICAGAABAoK2trbUfn+/v2835cdls1vOaBjFp5wMAADANAh0U379/v90ywjAMua7b9xcAAAAQVOl0uv24l0/SnR9jWVbg+vlO2vkAAABMg0AHxec/fra8vKxisajT01M1m81bfR0eHurDDz/08UwAAACA60UikY5wtFQqdR1fLBbbj2/afVsoFJTNZm99z47zPYNva5jnAwAAgOEIdFBcrVZlGIZM01S1WtWHH36o2dnZW89z9+5dFYvFvl4LAAAAjEI+n28/fvjw4bXjHMdRoVCQdNamLZVKXTs2Ho8rnU5re3tb4XD4VuHvxWD5tsHxMM4HAAAAwxPooNg0TUlnPc5CodDA87HoBAAAQFBZltXeWVutVrW9vX3luNXVVUlna+XzO3GvcrHtw/7+fk+1OI5zaWfv3t5eT69tGcb5AAAAYHgCHRQnk0lJUjgc9mS+R48eeTIPAAAAMAyJRELlclmmaSqbzSqZTKparcpxHFUqFUWjUVWrVUUiER0dHbU3Vlzn4s8ty7p2rOM4SiaTisfjmpubu7SjuPVpv3g83q5r1OcDAACA4XnD7wK62dzc1O7ubkev4kE0Gg1PdiYDAAAAwxKLxXR6eqrt7W3t7e1pdXVVjuPINE2trKyoWCwqkUj0NFexWFQ6ndbJyYlSqVTXm8QNa0evl+cDAACA4Ql0ULy8vKzPPvtMDx480NbWlv7kT/5koPlWV1f1/Plzj6oDAAAAhieTySiTyQw0RywWU61W86iiwXhxPgAAABieQLeekM76Cn/00UdKJBL69ttvB5qrl4/HAQAAAAAAAMC0CfSO4kajIemsBcXh4aHef/995XI5zc/P9zzHycmJHMfpuOsyAAAAAAAAAOAfBToofuutt/T69euO78Xj8b7mcl1XhmF4URYAAAAAAAAATJRAt55YX1+X67rtL0kdz2/zBQAAAAAAAAC4WqCD4p/85CeS1N4JTOALAAAAAAAAAN4LdOuJu3fvyrIsHR0dKRaLKRKJ6M0337zVHN98840cx1GhUBhSlQAAAAAAAAAw3gIdFEtSIpHQixcv9Dd/8zcDzZPJZPTOO+94VBUAAAAAAAAATI5At56QpHv37ml2dnbgeSzL0t27dz2oCAAAAAAAAAAmS+B3FN+9e1dbW1uezFUsFj2ZB8NRr9e1tLTUdczGxoY2NjZGVBEAAJgkOzs72tnZ6TqmXq+PqBoAAAAgWAIfFEvybCfw8vKyJ/NgOJrNpl69etV1TKPRGFE1AABg0jQajRvXGgAAAMC08i0o/vrrr3Xnzh2/Dn9Jo9HQycmJ3nrrLb9LmVozMzNaWFjoOiYUCo2oGgAAMGlCoZAWFxe7jqnX62o2myOqCMPGJ9YAAMCwTdKn1nwLij/99FO9/fbb+vTTT/0qoUMymVQ8HtfPfvYzv0uZWgsLCzo+Pva7DAAAMKF6CQSXlpbYdTxB+MQaAAAYtkn61JpvQXGhUJBlWQqHw/rpT3/qVxmSpAcPHujk5ISQGAAAAJggfGINAAAM2yR9as23oNg0Te3v7+uDDz6QJN/C4gcPHmh/f1+Hh4e+HB8AAADAcPCJNQAAMGyT9Km1GT8PHovF9OjRI62vr+uTTz4Z6bEbjYbu3bunQqGgp0+f0psYAAAAAAAAwNTyNSiWpEwmo0ePHunRo0f6wQ9+oK+++mrox/z888+1vLysUqmkg4ODQN1UDwAAAAAAAABGzfegWDoLiz/77DMdHBwoFovpBz/4gX796197eoxnz55pa2tLb775ptLptObm5vR3f/d3unv3rqfHAQAAAAAAAIBx41uP4otSqZTm5+e1vr6ug4MDJRIJSVIkElEsFtO7774ry7JkWVbXG040Gg2dnJzItm2Vy2VVKhVVq9X2z13XVSKR0P7+/tDPCQAAAAAAAADGQWCCYklKJBKKx+NKJBJ6+vSpJKlarXYEvReZpinHcbrO67pu+3GhUNBHH33kSb3nbW9vq1wu6+DgQI7jyLIsRSIRpdNpxWIxz493Hdu2lU6nlU6n22F7P4JyPgAAAAAAAACGLxCtJ86bnZ1VuVzW/v6+IpGIXNdtB72tx+e/Tk9Pr/z++S/prL3F6emp5yFxpVLR3NycstmsJKlYLKpWqymXy6larSoejysej98YZg/KcRwlk0mFw2FVKhWdnJz0NU9QzgcAAAAAAADA6AQuKG5JJBI6ODhQuVzWhx9+2LEruMUwjI6viyzLagfEjx490uzsrKc1ViqVdmiaSqVULpcVi8VkWZYSiYRqtZoikYgqlYqi0ehQwlXHcZTNZjU3N6dSqTTQXEE4HwAAAAAAAACjF6jWE1dZXV3V6uqqJOnFixeqVCp6/vy5HMfRyclJO6w0TVOWZWl+fl7xeFyxWMzzYPi81g5e6SyQzufzV44rFosKh8OybVvJZFLlctmzGra3t5XP52VZ1sBzBeF8AAAAAAAAAPgj8EHxeXfv3tXdu3f9LkOSlEwm2yF1q03DVVq7cUulkiqVigqFglKp1MDHr1arisViymQyks56L6fT6b7n8/t8AAAAAAAAAPgnsK0ngsy2bVUqlfbztbW1ruPv3bvXftwthL2NSCSiSCTSfr6ystL3XEE4HwAAAAAAAAD+ISjuQy6Xaz+OxWIyTbPr+EQi0X7sOM7AvYSvclMN3QTxfAAAAAAAAACMDkFxHwqFQvvx+V293ZzvI7y3t+d5TYOYtPMBAAAAAAAAcDsExbdUrVY7nr/77rs9ve58ABukHbiTdj4AAAAAAAAAbo+g+JbO9/KVOnfWdnNx3MWA1i+Tdj4AAAAAAAAAbo+g+JaeP3/e8bzX3sBvvvlmx/ODgwOvShrIpJ0PAAAAAAAAgNsjKL4l27Y7nve7A7dWq3lW0yAm7XwAAAAAAAAA3N4bfhcwbi4Gq/1yHMeTeQYVpPOp1+taWloaeJ6NjQ1tbGwMPA8AABgfOzs72tnZGXieer3uQTUAAADA+CEovqV+A9GLLR1OTk4GL8YDQTqfZrOpV69eDTxPo9EYeA4AADBeGo2GJ+sIAAAAYFoRFPskKDuKveLF+czMzGhhYWHgeUKh0MBzAACA8RIKhbS4uDjwPPV6Xc1m04OKAAAAgPFCUHxLpml6Eor2etO4YQvS+SwsLOj4+HjgeQAAwPTxqvXU0tISO5MBAAAwlbiZ3S3Nz88Hap5BTdr5AAAAAAAAALg9guJb6nfn7MVdu0HaUdyPoJ4PAAAAAAAAgNubyKD45cuX+uKLL/Ts2TPPb2y2srLS8bzXtg0Xb/YWDoe9Kmkgk3Y+AAAAAAAAAG5vonoUv3z5UslkUtVqteP70WhUxWJR3//+9wc+RjQa7Xhu27YikciNr6vVah3PY7HYwLV4YdLOBwAAAGip1+taWlrqOsar/tYAAGA67ezsaGdnp+uYer0+omoGE/ig+IMPPtDp6Wl7p+vJyYlisZj29vY6xr148UKxWEyO48h13Y6fHRwcKBwOq1wu67333huonos7cHsNVs/v1DVNU5ZlDVSHVybtfAAAAICWZrN5480Jvf4EIgAAmC6NRmNiboYc+KDYNE1VKhWZpqmtrS0lEgktLy93jHn9+rVWV1flOI4Mw5BhGHJdV6ZpamVlRbZty7ZtJZNJ/af/9J8GqicSicg0zXZQ+vz5cyUSiRtfd3Bw0H58MZz106SdDwAAANAyMzOjhYWFrmNCodCIqgEAAJMoFAppcXGx65h6va5mszmiivoX+KC4Wq0qm83q4cOH145ZX19vh8St3cS5XE4ff/xxe0ylUtHa2po++eQTffrppwPVtLa2pkKh0K6vF+fHZbPZgY7vtUk7HwAAAECSFhYWdHx87HcZAABggvXSxmppaWksdh0H+mZ2jx8/ViQS6RoSP3nyRKVSqR0SG4ZxKSSWznroPnr0SIeHhwPXlU6n248rlcqN48+PsSwrcP18J+18AAAAAAAAANxOoIPiQqGgTz75pOuY9fV1GYYhSTIMQ5FI5FJI3HLv3r2Olgn9ikQiHeFoqVTqOr5YLLYf37T7tlAoKJvNyrbtW9V0vmfwbQ3zfAAAAAAAAAAEX6CD4lqtpjt37lz78wcPHrQD0lbLid3d3WvHz87OXrrRXb/y+Xz7cbcdz47jtNs6xGIxpVKpa8fG43Gl02ltb28rHA7fKvy9GCzfNjgexvkAAAAAAAAAGA+BDooty9LLly+v/NmLFy+Uz+c7Wk6kUqmuwfKLFy88u/GaZVntnbXValXb29tXjltdXZV0dlO+8ztxr3Kx7cP+/n5PtTiOc2ln797eXk+vbRnG+QAAAAAAAAAYD4EPilu7V897/fq1kslk+7lhGLIsS7/85S+7zvf06VNPWyUkEgmVy2WZpqlsNqtkMqlqtSrHcVSpVBSNRlWtVhWJRHR0dCTTNLvOd/HnlmVdO9ZxHCWTScXjcc3NzV3aUVytVmUYhuLxeLuuUZ8PAAAAAAAAgPHwht8FdJNKpbS2tiZJ2tzclHS267bVw/f8buKbdre+ePFCDx8+1DfffONpjbFYTKenp9re3tbe3p5WV1flOI5M09TKyoqKxaISiURPcxWLRaXTaZ2cnCiVSnW9SdywdvR6eT4AAAAAAAAAxkOgg+JEIqHV1VXlcjnlcrn291vhcKvf8Geffda15cTnn38+9JuuZTIZZTKZgeaIxWKq1WoeVTQYL84HAAAAAAAAwHgIdOsJSSqVSvrxj38s13XbX9JZWNzaVbu+vn7pdV9//bW2trb0zjvvKJ1O6/T0VI7j6Ne//vWoTwEAAAAAAAAAAi3QO4olaXZ2VsViUU+fPlW5XFa1WpVpmnr33XeVSqU0Ozt76TW7u7vttgzLy8taXl5u/+xv//Zv9ad/+qcjqx8AAADAdHv01bOexm2+9/6QKwEAALhe4IPiltXVVa2urvY0dn19/cpdxgAAAAAAAACAywLfesJLX3/9td8lAAAAAAAAAEDgBD4ofvnypWdzscsYAAAAAAAAAC4LfOuJdDqtv/mbvxl4nqOjI1WrVQ8qwrDU63UtLS11HbOxsaGNjY0RVQQAACbJzs6OdnZ2uo6p1+sjqgYAAAAIlsAHxbZtezJPNpv1ZB4MT7PZ1KtXr7qOaTQaI6oGAABMmkajceNaAwAAAJhWYxEUf/vtt/re977X9xw///nPVSqVZBiGh5XBazMzM1pYWOg6JhQKjagaAAAwaUKhkBYXF7uOqdfrajabI6oIAAAACI7AB8Wu6yqbzeov//Iv+3r91taWtre3Pa4Kw7CwsKDj42O/ywAAABOqlxZWS0tL7DoGAADAVAr8zewkKZ/P66uvvrr16+7du6ft7W25rjuEqgAAAAAAAABgMoxFUOy6rpLJpL799tuexr98+VLvvPOOSqWSXNel5QQAAAAAAAAAdDEWQXEikdDJyYlWV1dvHPvkyROFw+H2TfAMw5DrukokEsMuEwAAAAAAAADGUuCD4lgspv39fR0cHOjg4EA/+clPrh27tbWltbW1dqsJ13U1OzurarWq/f19ffjhh6MqGwAAAAAAAADGRuBvZheJRNr/e3BwoJWVFVmWpU8//bQ9ptFoaHV1VdVqtd1qwnVdxWIxFYtFzc7OSjoLkgEAAAAAAAAAnQK/o/jRo0ftx5FIRPv7+3r06JF+9atfSZJevHih5eXlSyFxLpfTl19+2Q6JJenu3bsjrx8AAAAAAAAAgi7wQfFFiURCn332mVKplB48eKCVlRWdnp62fz47O6vDw0N9/PHHl17785//fJSlAgAAAAAAAMBYCHzriaukUinVajU9fvxYkq5tNXFRuVzWz372s1GWCgAAAMAn9XpdS0tLXcdsbGxoY2NjRBUBAIBJs7Ozo52dna5j6vX6iKoZzFgGxZKUy+Vk27aePHki13W1vb19Ywh8cHAwouowzh599ayncZvvvT/kSgAAADCIZrOpV69edR3TaDRGVA0AAJhEjUbjxvXGuPAlKH79+rWePn068Dw/+clP9PTpU6XTaVmWpS+++OLKcScnJ8rn83IcZ+BjAgAAABgPMzMzWlhY6DomFAqNqBoAADCJQqGQFhcXu46p1+tqNpsjqqh/vu0oTiQSMgzDk7m2t7dvHNO60R0AAACA6bCwsKDj42O/ywAAABOslzZWS0tLY7Hr2Jeb2c3OzioSich13YG/JPU0BgAAAAAAAABwNV+CYkmKxWKSNPAu316CYMJiAAAAAAAAALieb60n7t27124ZkclkFA6HNT8/7/lxTk5O5DiOPvvsM718+dLz+QEAAAAAAABg3PkWFN+9e1emaWp7e1sfffTR0I/34Ycf6p133hn6cQAAAAAAAABg3PjWekI6az9hWdZIjmVZlpaXl0dyLAAAAAAAAAAYJ74Gxffu3RtKu4nrJBKJkR0LAAAAAAAAAMaFb60npLN2EKP06NGjkR4PAAAAAAAAAMaBr0ExcF69XtfS0lLXMRsbG9rY2BhRRQAAYJLs7OxoZ2en65h6vT6iagAAAIBgGZug+NmzZyqXywqHwzfe/O7Jkyfa3NzU9va2/vRP/3REFWJQzWZTr1696jqm0WiMqBoAADBpGo3GjWsNAAAAYFqNRVB87949lUql9vPXr1/rL/7iL64d/+GHH2p5eVmxWEwPHz5UsVjU97///VGUigHMzMxoYWGh65hQKDSiagAAwKQJhUJaXFzsOqZer6vZbI6oIgAAACA4Ah8UP3jwQMVisf3cMAx9+eWXXYNiSYpEIrJtW8vLy4pGo3r69Kn+5E/+ZNjlYgALCws6Pj72uwwAADChemlhtbS0xK5jAAAATKUZvwvo5vXr18rn8zIMQ4ZhSJJc11Uymezp9aZp6vDwUCcnJ4pGo/rtb387zHIBAAAAAAAAYCwFOih++PChpLNweHZ2VqlUSrVa7cYexedZlqX19XU1m82eA2YAAAAAAAAAmCaBDoorlYrm5uZULpd1cnKizz77TMvLy7ee54MPPpAk1Wo1/epXv/K6TAAAAAAAAAAYa4EOim3b1tbWllZXVweax7Ks9uP9/f1BywIAAAAAAACAiRLooNhxnI6Qt18nJyeSzlpYHBwcDDwfAAAAAAAAAEySQAfFlmW1Q95BlMvl9mPHcQaeDwAAAAAAAAAmSaCD4kgkomKxOPA8hUJBhmFIkkzTHHg+AAAAAAAAAJgkgQ6KU6mUKpWKvvrqq77nuHfvXnsXsWEYWllZ8ag6AAAAAAAAAJgMgQ6KY7GY7ty5o1gsduuwuNFo6N69eyoWizIMQ67rSpKSyeQwSgUAAAAAAACAsRXooFiSdnd35bquYrGYfvSjH90YGDcaDT148EBzc3MqlUrt7xuGIcuy9NFHHw27ZAAAAAAAAAAYK2/4XcBNIpGI9vf3tba2pnK5rHK5LNM0ZVlW+0uSbNtWtVqVbduS1N5B3NpNbBiGJ/2OAQAAAAAAAGDSBD4olqREIqGDgwOtrq7q9evXchxH1WpV1Wq1Y1wrHJbUvnmd67oyTVNPnz7VnTt3Rlk2AAAAAAAAAIyFsQiKpbOdxS9fvtSnn36qx48fX/q5YRgd4XArNE6lUsrlcpqdnR1pvQAAAAD8Va/XtbS01HXMxsaGNjY2RlQRAACYNDs7O9rZ2ek6pl6vj6iawYxNUCxJs7OzyuVyyuVyevr0qcrlsqrVqk5OTmTbtubn52WaplZWVhSPxxWLxQiIAQAAgCnVbDb16tWrrmMajcaIqgEAAJOo0WjcuN4YF2MVFJ+3urqq1dVVv8sAAAAAEFAzMzNaWFjoOiYUCo2oGgAAMIlCoZAWFxe7jqnX62o2myOqqH9jGxTfxuvXr/Xo0SM9fPjQ71IAAAAAjMjCwoKOj4/9LgMAAEywXtpYLS0tjcWu4xm/CxiF2dlZlctl/eAHP/C7FAAAAAAAAAAInKkIiiVpZWVFh4eH+uSTT/wuBQAAAAAAAAACZexaT7x8+VKO4+jk5KTn11SrVRWLRbmuq3w+r08//XSIFaJf3JUaAAAM0yTdkRoAAADw2lgExV988YXy+bwqlcrAczmOM3hBGAruSg0AAIZpku5IDQAAAHgt8EHx48ePtbm5KUlyXbfveQzDkGEYikQiXpUGj3FXagAAMEyTdEdqAAAAwGuBDopfvHihbDYrwzCuDImv+/514yzL0u7u7jBKhQe4KzUAABimSbojNQAAAOC1QAfF+XxekjQ7O6tUKqVwOCzLsiRJp6enWltb09zcnPb39698veM4+vLLL/X555+rWq3qzp07oyodAAAAAAAAAMZGoIPiSqWicDis3/3ud1f+fH19XZ9//rnC4bDeeuutK8d8+OGHkqTNzU395je/GVapAAAAAAAAADC2ZvwuoBvbttu7iq+yubkp13W1vb3ddZ5sNqsvv/xSv/jFL7wuEQAAAAAAAADGXqCDYklaWVm59mfLy8taXV1VPp9Xo9G4dpxlWbp7964ymUzXcQAAAAAAAAAwjQIdFEciEZ2cnHQdk81m5bquNjc3u45799135bquHj165GWJAAAAAAAAADD2Ah0UW5alQqHQdUwsFtPdu3eVz+f129/+9tpxBwcHkqRisehpjQAAAMAwbG9vKx6Pa25uToZhKBwOK5lMqlKpTOyxbdtWPB4f6jEAAABwtUAHxWtra8rlcvrFL36hly9f6tmzZ3r27NmlcVtbW3JdV5FIRL/+9a8v/fzx48eqVquSzhafAAAAQFBVKhXNzc0pm81KOtvoUKvVlMvlVK1WFY/HFY/H5TjO2BzbcRwZhnHjVzgclmVZnp8XAAAAbvaG3wV0k0gkFAqFlMlklMlk2t+PRqP627/9245xq6urevr0qRKJhCKRSLu3caVS6QiHWXgCAAAgqCqVSntHbSqV6rixs2VZSiQSikajqlQqikajOjw8lGmagT/2TZ8SPK8VUgMAAGC0Ar2jWJJ2d3fluq4kyXVdua6rw8NDff311x3jzi9kq9WqCoWCCoWCarVa+/WGYSgSiYysdgAAAKBXjuMomUxKOgtmz69vz2u1UrNtuz0+6Md++PBhT+NisRgbOwAAAHwS+KA4kUhof3+/HfZKkmmaunPnTsc4y7L05ZdfdoyT1P4YW+t1u7u7Q68ZAAAAuK1kMtlu6dBtV21rd690tgv4Nrt1/Th2oVCQ4zjKZDIql8tdv7ifCAAAgH8M92KyGlCvX7/W/v6+HMdRKpXS7OzsleNs21Y6ndbTp087vh+JRFQsFrW8vDyKcnELS0tLevXqlRYXF3V8fDy04zz66nJ/60Fsvve+p/MBAAD/jWpdcpFt2wqHw+3np6enXds6lEql9o5e0zR1enoa2GO35q7Van3XeFusLwEAQJD4tca8rUD3KD5vdnZW6+vrN46zLEvlclmvX7/WwcFB+3sExAAAAAiqXC7XfhyLxW7s/dva1SudtY0olUod3wvKsUulkmzbvraVBQAAAIIj8K0n+jU7O6vV1VWtrq4SEgMAACDQzrdw6PWeGud7+e7t7QXy2A8fPpRpmlpbW+u7PgAAAIxGoIPiRqOhBw8e6Ic//KF+8Ytf+F0OAAAA4Llqtdrx/N133+3pdedD3VKpFLhjV6tVVatVOY6jubk5hcNhpdPpvmsFAADAcAU6KE4kEioUCiqXy8pkMvriiy/8LgkAAADwVKVS6Xh+frduNxfHXQx9/T72xZvi2batQqGgZDIpwzCUTCb7qhkAAADDEeig+OLC9aZ+aQAAAMC4ef78ecfzXte8b775Zsfz1v05gnBs27YvreUvKpVKikajSqfTPR0TAAAAwxXom9lZlqWjoyMZhqFEIqH33+cuwAAAAJgstm13PO93V2+tVgvMsS3LUj6fl+M4qtVqqlQql47VUigUdHBwoMPDw1tUDgAAAK8FOihOpVLa3NyUYRgD3aCj5cGDB/rlL3/pQWUAAACAN64LUG/LcZxAHTuVSl0aUygU9PDhw0vjq9Wq4vG4yuWyJ/W01Ot1LS0tDTzPxsaGNjY2PKgIAACMk52dHe3s7Aw8T71e96Ca4Qt0UJzJZFQul/Xs2TP9/ve/1/e///2B5rvp428AAADAqPUT8EqX20ScnJwE+timaSqTySiTyahUKml9fb3j+JVKRdvb28pkMn3VdJVms6lXr14NPE+j0fCgGgAAMG4ajYYna4lxEeigWJLK5bKSyaQSiYSePXum733ve33Nc3R05NmOCQxHLzs+2M0BAAD61cuOkHHZ7XGVfkNfP46dSCQUi8W0urracUO7hw8fehoUz8zMaGFhYeB5QqGQB9UAAIBxEwqFtLi4OPA89XpdzWbTg4qGK/BBsST96le/0t7eniKRiDY3N5VMJntarLV+839wcODpghPD0cuOD3ZzAACAfgV1R4hpmp6EvP3c+NnvYx8eHioajbbDYsdxVKlUFIvFBq5JkhYWFnR8fOzJXAAAYPp4tWFxaWkpkOvQiwIdFL/99ts6OjpqP3ddV6lU6lK/s164rivDMLwsDx7rZccHuzkAAEC/etkR4sduj/n5eU/C2vn5+bE6dsvu7q6i0Wj7eblc9iwoBgAAQO8CHRS3bmbXYhiGXNf1sSIMEzs+AADAMPWyI8SP3R797MaVLrd76HdXr1/HbolEIorFYu37idAuDgAAwB8zfhfQTTqdlnQWEA8SErOTGAAAAEG1srLS8bzXHb4XbyAXDofH6tjnxePxgV4PAACAwQV6R/Hs7Kw+/PBDPXnyRJIUi8X62q1g23bHTTIAAACAoDjfdkE6W7tGIpEbX1er1Tqe99Ouwc9jn2dZVvvxIG0sAAAA0L9AB8XS2a7iL774QoeHh7pz507f8xQKBT148MC7wgAAAAAPXNzV22tYe373r2maHWHrOBz7vPOvH6SNBQAAAPoXmNYTjUZDjUZDL1++1MuXL9VoNCSd7U6YnZ0dKCSWzvod098YAAAAQROJRDrC0efPn/f0uoODg/bji4HvOBz7uvloQwEAAOAPX4Pi73znO+2vubk5zc3NKRwOKxwOa39/vz1ua2urHRwPIpVKDTwHAAAA4LW1tbX2415bpp0fl81mx/LYLedbWQzaxgIAAAD98TUodl2342t1dVX7+/s6OTnRRx991B738ccfKxQKDXy8zz77bOA5AAAAAK+1buIsSZVK5cbx58dYljVQuOrnsVtKpZIkKZPJDDwXAAAA+uN76wnDMGQYhiqVir788kt9+OGHmp2d9busW9ve3lY8Htfc3JwMw1A4HFYymexpsT2ux7Ztm48GAgAAeCASiXQErq3g9DrFYrH9+KYdvYVCQdlsVrZtj/zYvSiVSrJtW6Zpamtra+D5AAAA0B/fg2JJyuVyev/99/0uoy+VSkVzc3PtRXKxWFStVlMul1O1WlU8Hlc8Hu+44UfQj+04TjvA7/YVDocHvnEJAAAAzuTz+fbjhw8fXjvOcRwVCgVJZ20aurVXi8fjSqfT2t7eVjgcvnZd6OWxW2tUwzAUj8e7trOwbVvr6+uSpKdPn3IjOwAAAB8FIihOJBJ+l9CXSqXSDmJTqZTK5bJisZgsy1IikVCtVlMkElGlUlE0GvU0LB7msVuL/154sYsEAAAAZ20cWrt1q9Wqtre3rxy3uroqSTJNs2N371UufsLs/H1AhnXsYrHYXnu21qLn21ucry0ajWp+fr69dgUAAIB/AhEUv/XWW36XcGuO4yiZTEo6W1if34VxXmsBbdt2e3zQj91tF8l5rWAaAAAA3kgkEiqXyzJNU9lsVslkUtVqVY7jtIPVarWqSCSio6OjG3fgXvx5t7WbV8e+at1ZKBQ0NzenZDKpdDqtaDSqeDyuVCqlw8ND1pQAAAAB8IbfBYzy42XvvPOOfve733kyVzKZbO+U6LartrXDt1QqqVKpqFAodP14oN/HLhQKchxHmUzmxv7DKysrt64dAAAA3cViMZ2enmp7e1t7e3taXV2V4zgyTVMrKysqFos9fyKvWCwqnU7r5OREqVTqxhvPeXHsWCzWbodWqVR0cnLSXru2guatrS3FYjFaTVzw6KtnPY3bfG882/YBAIBgM1zXdf06+MzMjMLhsGfhbS/HazabA89j27bC4XD7+enpaddFbqlUau+sME1Tp6engT12a+5ardZ3jbe1tLSkV69eaXFxUcfHx0M7Tq8L716xQAcAYPKMal2C4RrX9WWvWIcCADBexmWNGYjWE6Pw4sULGYbhyVy5XK79uJedEOd3XTiOc+OdpP06duuO0/QdBgAAAAAAAKbLVATFjUbD0/Dz/M3eer3pxvm+a3t7e4E89sOHD2WaptbW1vquDwAAAAAAAMD48b1HsW3b+uEPfziUuVv90Gzbluu6nuworlarHc/ffffdnl4XiURk27Yk9b2jeJjHrlar7fnn5uZkWZZisZji8XjPPfAAAAAAAAAAjCffg2JJqlQqQ5l3GO2XL9ba6x2aL45r3cgjKMe+uOPatm0VCoX2DuZEIqGtra1b1wwAAAAAAAAg+Ca69YRhGO0vrzx//rzjea93an7zzTc7nh8cHATm2LZt3xjWl0olRaNRpdPpno4JAAAAAAAAYHwEYkfxMHb+tngZEktqt3Bo6XdXb61WC8yxLctSPp+X4ziq1WqqVCqXjtVSKBR0cHCgw8PDW1QOAAAAAAAAIMgCERQPs51Bq0exV7yay3GcQB07lUpdGlMoFPTw4cNL46vVquLxuMrlsif1tNTrdS0tLQ08z8bGhjY2NjyoCAAAjIudnR3t7OwMPE+9XvegGgAAAGD8+B4UW5bVVxuG27BtW8lkUl9//fXAc/UT8EqX20ScnJwE+timaSqTySiTyahUKml9fb3j+JVKRdvb28pkMn3VdJVms6lXr14NPE+j0fCgGgAAME4ajYYn6wgAAABgWvkeFI+CZVna3d3Vu+++63cpbf2Gvn4cO5FIKBaLaXV1VdVqtf39hw8fehoUz8zMaGFhYeB5QqGQB9UAAIBxEgqFtLi4OPA89XpdzWbTg4oAAACA8TIVQbHkXXsL0zQ9CXl7vRFdkI59eHioaDTaDosdx1GlUlEsFhu4JklaWFjQ8fGxJ3MBAIDp4lXrqaWlJXYmT5BeWpvRtgwAAAyilxZo49LezPeguJ8WDP26e/fuwHPMz897EtbOz8+P1bFbdnd3FY1G28/L5bJnQTEAAADgpV5am9G2DAAADGKSWqD5HhSPsgWDF72Q+9mNK10+z3539fp17JZIJKJYLKZKpSLJuxvsAQAAAF7rpbUZbcsAAMAgemmBNi7tzXwPiiXp66+/1p07d/wuoycrKysdfXodx+kpeL24czocDo/Vsc+Lx+PtoBgAAAAIKlqbAQCAYeuljdW4tDeb8bsASSoUCn6X0LPzbRek3nfU1mq1juf9tGvw89jnWZbVfjxIGwsAAAAAAAAAwRCIoDifz+vXv/6132X0ZGVlpeN5r2Ht+fYPpml2hK3jcOzzzr9+kDYWAAAAAAAAAIIhEEGxJCUSCf3oRz/Sr3/960DfUCISiXSEo8+fP+/pdef7I18MfMfh2NfNF4/HB54PAAAAAAAAgL98D4pd121/ffnll/rwww81Nzenzz//3O/SrrW2ttZ+fL5ncDfnx2Wz2bE8dsv5VhaDtrEAAAAAAAAA4D9fg+Jms6lms6nT01Odnp6qVqupVqvp4OBAyWTSz9K6SqfT7ce93NTt/BjLsgYKV/08dkupVJIkZTKZgecCAAAAAAAA4D/fdxRL0uzsrGZnZ7W8vKzl5WXdvXtXs7Ozfpd1rUgk0hG4toLT6xSLxfbjm3b0FgoFZbPZa/sPD/PYvSiVSrJtW6Zpamtra+D5AAAAAAAAAPgvEEHxOMrn8+3HDx8+vHac4zgqFAqSzto0pFKpa8fG43Gl02ltb28rHA533IRuWMeuVCqam5uTYRiKx+Nd21nYtq319XVJ0tOnT7mRHQAAAAAAADAhCIr7ZFlWe7dutVrV9vb2leNWV1clSaZpduzuvcrFVhL7+/tDP3axWGwH0pVKRdFotKO9xfnaotGo5ufnVavVFIlEup4LAAAAAAAAgPFBUDyARCKhcrks0zSVzWaVTCZVrVblOE47WK1Wq4pEIjo6OrpxB+7Fn1uWNfRjX9ULulAoaG5uTslkUul0WtFoVPF4XKlUSoeHh13rAgAAAAAAADB+CIoHFIvFdHp6qlwuJ9u2tbq62g5Z5+fnVSwWdXh42FObhmKxKMuyZJqmMpnMjTee8+LYsVhMtVpNqVSqfeyWarWqk5MTbW1ttY9DuwkAAAAAAABg8hiu67p+F4HptrS0pFevXmlxcVHHx8dDO86jr54Nbe5uNt9735fjAgCA2xvVugTDxfoSAAAEybisMdlRDAAAAAAAAABTjqAYAAAAAAAAAKYcQTEAAAAAAAAATDlfg+LPP/9c77zzjn7yk5/4WQYAAAAAAAAATLU3/DrwixcvlEqlJEm2bWttbU0//vGP/SoHAVCv17W0tNR1zMbGhjY2NkZUEQAAmCQ7Ozva2dnpOqZer4+oGgAAACBYfAuKHz58KEkyDEOSZJqmX6UgIJrNpl69etV1TKPRGFE1AABg0jQajRvXGgAAAMC08i0orlarkiTXdVUoFPT+++9fOe7evXtKp9PX/hyTY2ZmRgsLC13HhEKhEVUDAAAmTSgU0uLiYtcx9XpdzWZzRBUBAAAAweFbUGzbtubm5lSpVHT37t1rxxWLRcXjcU+C4q+//lp37twZeB4Mx8LCgo6Pj/0uAwAATKheWlgtLS2x6xgAAABTybeb2Zmmqa2tra4hsdey2ezIjgUAAAAAAAAA48K3oNiyLFmWNdJj2rY90uMBAAAAAAAAwDjwLSi+d++e9vb2Rna8Fy9eEBQDAAAAAAAAwBV861GcSqWUzWZ1dHSkVColy7I0Pz9/5djDw8O+dx87jiPbtvXpp58OUi4AAAAAAAAATCzfguLZ2Vnt7+9rbW1Nh4eHXccWCgUVCoWBjue6rgzDGGgOAAAAAOOjXq9raWmp65hebnIIAABwnZ2dHe3s7HQdU6/XR1TNYHwLiiUpkUi0w+JuXNcdUUUAAAAAJkWz2dSrV6+6jmk0GiOqBgAATKJGo3HjemNc+BoUS2dh8enpqTKZjIrFohzH8bskAAAAABNgZmZGCwsLXceEQqERVQMAACZRKBTS4uJi1zH1el3NZnNEFfXP96BYOmtDkc/nlc/ndXR0pGq1qpOTE7muq/v37yuZTGplZaWvub/55hvZtq1SqeRx1QAAAACCbGFhQcfHx36XAQAAJlgvbayWlpbGYtdxIILi85aXl7W8vNx+fv/+fcXjcX300UcDzVupVPTDH/5w0PIAAAAAAAAAYOLM+F3AqMRisY4AGgAAAAAAAABwZmqCYkmyLMvvEgAAAAAAAAAgcALXeuKi09NTzc7OejJXsVj0ZB4AAAAAAAAAmCSBD4q9Com9ngsAAAAA/PDoq2c9jdt87/0hVwIAACZJ4IPiqzQaDVUqFZXLZZ2cnMi2bc3Pz8uyLIXDYSUSCb311lt+lwkAAAAAAAAAY2GsguKXL18qm82qVCp1fN91XRmG0X6ezWZlWZY2Nzf105/+dNRlAgAAAAAAAMBYGZub2e3u7iocDqtUKsl13faXpI6QWDoLjmu1mlKplH7wgx/o97//vR8lAwAAAAAAAMBYGIug+PHjx7p//35HMNwKh8+HxufD49bPDg4OFA6H9dvf/taX2gEAAAAAAAAg6ALfeuLJkyfKZrPtcLgVBEciEa2srCgcDss0TVmWpfn5edm2rZOTE9VqNZVKJdm2rWazqdXVVR0cHNC7GAAAAAAAAAAuCHxQ3AqJXdeVaZrK5XJaW1vT7OzslePv3r3bfvzo0SO9ePFCn376qZ48eaL79+/rN7/5zahKBwAAAAAAAICxEOig+MmTJ7JtW5KUTqf1y1/+8tZz3L17V8ViUdvb29ra2tJXX32l9957z+tS4YF6va6lpaWuYzY2NrSxsTGiigAAwCTZ2dnRzs5O1zH1en1E1QAAAADBEuigeG9vT4ZhKJfL6Wc/+9lAc2UyGVUqFe3v7xMUB1Sz2dSrV6+6jmk0GiOqBgAATJpGo3HjWgMAAACYVoEOiqvVqiKRyMAhcUs6ndbm5qYnc8F7MzMzWlhY6DomFAqNqBoAADBpQqGQFhcXu46p1+tqNpsjqggAAAAIjkAHxbZtq1AoeDafaZrtVhYInoWFBR0fH/tdBgAAmFC9tLBaWlpi1zF6tvK3/87T+Q5+8G88nQ8AAOA2Ah0US5JlWZ7NRUgMAAAAIKh6DZ4JlAEAwDAEOii2LEu2bev999/3ZL58Pu9p8AwAAAAAQfWHvb/qadx37/3ZkCsBAADjINBBcSQSUbFY1EcffTTwXJubm6pWq0omkx5UBgAAAAD+6LnlxVvLwy0EAABMlBm/C+hmbW1N5XJZn3zySd9zNBoN3bt3T9vb2zIMQ+l02sMKAQAAAAAAAGD8BXpHcSKR0PLysnK5nBzHUSaT0VtvvdXTa589e6Z8Pq9SqSRJMgxDkUjEszYWAAAAADAJaFEBAACkgAfF0llf4Q8++ED5fF75fF6xWEyRSEThcLjdb9hxHJ2cnOjw8FAHBweqVqvt17uuK+ksKN7d3fXlHAAAAAAAAAAgyAIfFMdiMX322We6f/++DMNQpVJRpVK5dnwrGJbOwmHDMOS6rvb393Xnzp0RVAwAAAAAAAAA4yXwQbEkpVIpzc/PK5VKyXEcGYYhqTMUbmn9rPVz0zT19OlT3b17d2T1AgAAAMCkoUUFAACTLdA3szsvkUjo6OhIH3/8sVzXvTIkltT+2ezsrHK5nE5OTgiJAQAAgClUr9e1tLTU9WtnZ8fvMgEAwBjb2dm5cb1Rr9f9LrMnY7GjuKUV/uZyOT19+lTValW1Wk0nJyeSpPn5eYXDYcViMcJhAAAAYMo1m029evWq65hGozGiaqYHO48BANOk0WjcuN4YF2MVFJ+3urqq1dVVv8vAGFn523/X07iDH/ybIVcCAACAUZiZmdHCwkLXMaFQaETVAACASRQKhbS4uNh1TL1eV7PZHFFF/RvboBgAAAAAullYWNDx8bHfZQAAgAm2sbGhjY2NrmOWlpbGYtfx2PQoBgAAAAAAAAAMB0ExAAAAAAAAAEw5gmIAAAAAAAAAmHL0KAYAAAAAjNwf9v6qp3HfvfdnQ64EAABIBMXAJSt/++96Gnfwg38z5EoAAACA/v37l0c9jfvXby0PuRIAADAOaD0BAAAAAAAAAFOOHcUIjHq9rqWlpa5jNjY2tLGxMaKKAADAJNnZ2dHOzk7XMfV6fUTVAAAAAMFCUIzAaDabevXqVdcxjUZjRNV459FXz3oat/ne+0OuBACA6dZoNG5cawAAAADTiqAYgTEzM6OFhYWuY0Kh0IiquRm9jAEAGC+hUEiLi4tdx9TrdTWbzRFVBAAAAAQHQTECY2FhQcfHx36XAQAAJlQvLayWlpbYdQwAAICpFOib2TUaDT148EA//OEP9Ytf/MLvcgAAAAAAAABgIgV6R3EikdDTp0/luq4qlYqWl5f14x//2O+yAAAAAAAAAGCiBDoorlQqMgyj/dw0Tf+KAfrUay9jcTM7AAAA4JI/7P1VT+O+e+/PhlwJAACTLdCtJyzLkiQZhqFEIqH33ydIAwAAAAAAAACvBXpHcSqV0ubmpgzD0N7e3sDzPXjwQL/85S89qAzwHjslAAAAAAAA4JdA7yjOZDJaXV2VJP3+978feL5KpTLwHAAAAAAAAAAwaQIdFEtSuVzWj3/8YyUSCX377bd9z3N0dCTbtj2sDAAAAAAAAAAmQ6BbT7T86le/0t7eniKRiDY3N5VMJhUKhW58XaPRkCQdHBwok8kMu0xgJHptUdErWlkAAAAAAAAg0EHx22+/raOjo/Zz13WVSqWUSqVuPZfrujIMw8vyAAAAAAAAAGAiBDoobt3MrsUwDLmu62NFwOThJnoAAADT7d+/PLp5kKR//dbykCsZDOtaAAAGE+gexel0WtJZQDxISMxOYgAAAAAAAAC4XqB3FM/OzurDDz/UkydPJEmxWEymad56Htu2Va1WPa4OAAAAAAAAACZDoINi6WxX8RdffKHDw0PduXOn73kKhYIePHjgXWHAlOGjfAAAAAAAAJMr8EFxLBbT7OzsQCGxdNbv+P79+94UBQAAAAAYS2yAAADgaoEPiiVpa2tLjUZDoVBooHlSqZRHFQG4DgtvAAAQFPV6XUtLS13HbGxsaGNjY0QVAQCASbOzs6OdnZ2uY+r1+oiqGcxYBMUff/yxJ/N89tlnnswDAAAAIPiazaZevXrVdUyj0RhRNQAAYBI1Go0b1xvjYiyC4tva2trS/fv39f3vf9/vUgBcg53HAABg2GZmZrSwsNB1zKCfWgQAANMtFAppcXGx65h6va5mszmiivo3dkHxF198oXK5rIODA21tbenHP/7xpTHRaFR3797VBx98oFwuR2AMjDECZQAA0K+FhQUdHx/7XQbGFOtQAEAvemljtbS0NBa7jscmKP75z3+uhw8fynGc9vdOTk6uHJtIJBSLxbS6uirLslQqlfSnf/qnI6oU/Zr2HnL//uVRT+P+9VvLQ64EAIDJNEn94wAAAACvBT4ofv36tVZWVmTbtlzXbX/fMIyurzNNU4eHh4pGo0okEioUCvrpT3867HIxAHrIYRDs+AAA3GSS+scBAAAAXgt8UJxMJlWr1WQYRjscPh8Y3+Tp06ean59XKpWSZVl67733hlUqBkQPOQAAMEyT1D8O8AOfgLsaGxYAAJMi0EHx06dPValUZBhGOxw2TVMrKyt6+vRpT3OYpqmPP/5Yjx8/Vjqd1n/4D/9hmCVjAPSQwyiwkAeA6TVJ/eMAAAAArwU6KM7n85LOdhCnUills1ktL5/9dnpmZqbneX7yk5/o8ePHqtVq+tWvfkULCgAAAADASLFhAQAQdIEOilu7ifP5vD766KO+57Esq/34yy+/JCieQjs7O/q6/P/WP//uP1Pif/mf/S4HY2AUC/mdnR01Gg2FQqGJvUkjxhPXJoKKaxNBwvoSQcV7JYKKaxNBxbX5jwz3Ng1/R2xmZkbhcFi/+93vrvxZoVDoKUA+OjpSOByWYRiyLOvK+eCf1kc8FxcXh9Z6onWM/yn0Pf2vn4z3X/pp6/k2Ka4KlEdx7QP94NpEUI1yzcD1P95YX/qL9epgBt1RzPsYgoprE0HFGvMfBXpHsWmaikQiA89TrVYlnbWwsG174PkA4Lau2qHs/sN/af9v6+d81BAAAGC60aICAOCXQAfFlmXJcZyB53n48GH7sWmaA88HAMPCPwwAAADQi+vWjRc3I7BuBAD0KtBB8erqqj7//POB5nj8+LGq1aoMw5Druh39igFgXBEoAwCAoPr3L496GkeLCgAAgiXQQfHW1pYeP36sX/ziF/qLv/iLvl6/vb3dDokNw9C9e/eGUKm0vb2tcrmsg4MDOY4jy7IUiUSUTqcVi8WGcsxhHtvP8wHgHQJlABhfrC8BeIH1IACgV4EOik3T1Mcff6xMJqNvvvlGm5ubCoVCXV/TaDS0v7+vXC4n27bbAXFLKpXytMZKpaJkMinHcRSLxVQsFmVZlqrVqrLZrOLxePv7Xre9GMax/Twf9IYdGhgG/gEBAMHB+hKAH1gPAgACHRRLUi6XU7Va1aNHj5TL5doLSUk6PDzU/Py8Tk5OVKvVVKlUOm5cJ6kjJP7ss89uDJpvo1KpKB6PSzoLoPP5fPtnlmUpkUgoGo2qUqkoGo3q8PDQs8XvMI7t5/kAGA+9/gOiV/xDAwA6sb5kfTlN2AAxngiUAWByGW4rUQ24dDqt3d3djuD3KhcD4tbzfD6v9fV1z+pxHEfLy8vtj83VarUrx9m2rXA4LEmKxWIql8uBPLaf57O0tKRXr15pcXFRx8fHA8/X7Rj/U+h7+l8/2RjKMYKGBXXwhf/8/6b//eRU/6f5OdX+8v/udzmBxj80RmsU78tAP0a5ZvDj+md9yfoSV2NdezvjtsZknTc9WGMiqCZ9jXkbgd9R3JLP55VOp5XNZvX06dNLP28Fw61+xK2AOBaLKZ/Pa3nZ28VF6+NzkpTNZq8d19opUSqVVKlUVCgUBm5/MYxj+3k+06L0//nf9F/+8F/1z7/7z5T4X/5nX2r4f/w/f6Nv/8s/6Hv//P+g/+v/+Ue+1BCUOoJQQ1AE4c/iphpGtZN5Z2dHjUZDoVBIGxv+/KM/CDUERRD+LIJQQ1DqCEINk471JevL2wrC+jIodYzDemaa3ObPYpg7lIPw3y5qCJag/FkEoQ5qwFXGZkfxeUdHR6pUKiqXy7JtW47j6OTkRPPz8zJNU5ZlKR6Pa21tTbOzs54f//yuB0k6PT3t+hG5UqmkZDIp6azv8unpaaCO7ef5SNOz4+P/8umO/lPj28DV4McOjSDscqCGYNURhBoGqcPLnTBB+E1zEGoISh1BqCEodUxLDX6dJ+tL1pf9CML6chR19LJeDcJaIgg1BKUOP2s4vy6blv92jUMNQakjCDUEpQ5qGG0dQTnXm4zNjuLzlpeXtb6+7mkridvI5XLtx7FY7MY+aolEov3YcRyVSqWO7/l9bD/PBwAmgZc7nt1/+C+ezQVgfLC+ZH2J6/XSy/i//Y//MYJKMA7Or8ta6yr3H/6L559Qu4gWGgAmwYzfBYyjQqHQfhyJRHp6jWVZ7cd7e3uBOraf5wMAuFrrHzTdvgBMDtaXrC8BjLfr1mujDKsBYFBjuaP45cuXqlQqOjw81MnJiSRpfn5e4XBYsVhMd+7cGdqxq9Vqx/N33323p9dFIhHZti3p7KN1QTm2n+eDYOBu08D4GlXvZgDDxfry5jmBXv23//E/blzfsq6Fn/wIi/nEGoBejVVQ/PnnnyuXy7UXkN2k02llMhm99dZbntZQqVQ6np/f+dDNxXHVarXn3RXDPLaf54PxQqAMTL7WP1xGvfOFgBrTjvXlzXMCAAbn5dqO9RswmcYiKH758qXi8bhs29bFe+8ZhtHxvPXzfD6vfD6v7e1t/cVf/IVntTx//rzj+U391lrefPPNjucHBwe3XvgO49h+ng8mEz3kANzWdf9gGXZgfZt/4PRSA/9gQr9YX948J+AlNkAAg+tnbUbPaCD4Ah8Uv3jxQrFYrH3n4/PBsOu6l4Lj8z+TpEwmo3K5rN/85jee1HNxN3O/OyRqtVogju3n+QB8NBCAn3r5B8ptPqo5zH/wePEPK/7BFFysL2+eE/ADgTIwvvzaiNCr29TBGg6jFPigOJlM6vT0tB0QtwJgy7IUi8UUDodlmqYsy9L8/Lxs25Zt26rVatrf35fjOCqXy/rRj37kSVjcS9uLXjiOE4hj+3k+QC96XaDfVmtX83VhNQt+AJNm0H8MBeEfVpPaY5H15c1zAkHWWkvetL7sFetQAOcNa90VpLVdUIJ7SIZ73ZbcANjd3VU6ne4IiWOxmHK5nO7evdvTHKVSSQ8fPtTXX3/tSRuK61pd3KRSqSgej7efJxIJFYtF34/t5/m0/NN/+k/13//7f5ckzczM9DXHed/73vf0L//lv+z4Xr1eV7PZ1IxhaP57//KaVw7Xybf/WU3XnfoaglIHNQSjjn/6xtnvK/+/p067hv/jnDnSGs4LQh3UEKw6glBDUOoIVA0zM1pYWOj42X/+z/9Z33777cDHaDabkqR/8k/+if7bf/tvA8/XC9aXN895W6wvp68OaghWHUGoISh19FtDa53shSD8NzwodQShhqDUQQ1X1DFha8x+BHpHcT6fl3S2uDQMQ/l8Xuvr67eaI5FIKJFIKB6PK5PJaH19XaFQaBjl3oqfOySGcexB5vzjH//Yftz6izOI169f6/Xr11f+rOm6+k+Nwf+CD4IaglUHNQSrjqbr6n8/OfW1hqDUQQ3BqiMINQSljkDU0Gzq1atXQz3G+fXJuGB9+Y9YX05vHdQQrDqCUENQ6ghKDX7/NzwodQShhqDUQQ3n6mCNGeyg2Lbt9o6EVsjbr2KxqPn5eRWLRf30pz/tex7TND1ZCPd6U49hH9vP82n57ne/q3/4h3+Q+///7c2grtrxAQAAJpuXuz0Mw9B3v/tdD6rqDevLm+e8LdaXAADAC+O8xuxHoIPi1gLTMAxtbW0NNJdpmkqlUtrf3x8oKJ6fn/dk4Ts/Px+IY/t5Pi1///d/P/DxAQAAxhXry5vnvC3WlwAAALc3+K/XhygSiUg6u3GdF+0iwuHwwDfX6Hdnw8XFcr87Prw+tp/nAwAAANaXvcwJAACA4Qt0ULy6uipJOjk58WzOQYPilZWVjue97pa4eA7hcDgQx/bzfAAAAMD6spc5AQAAMHyBDoo/+eQTSWeLy5cvXw48X61WG3hnQjQa7Xjea/Bcq9U6nsdisUAc28/zAQAAAOvLXuYEAADA8AU6KJ6dndX+/r5c19Xm5ubA8+3v7w/U60y6vEOi14Xv+Z0UpmnKsqxAHNvP8wEAAADry17mBAAAwPAFOiiWpEQioXw+ry+//FJ//ud/3vc8m5ubchyn3fe4X5FIpGNX8vPnz3t63cHBQfvxxcWzn8f283wAAADA+rKXOQEAADB8b/hx0Pv37+vw8PBWr5mfn1c+n1c+n7912Os4jmzblmEYisfjt3rtVdbW1lQoFCRJ1Wq1p9ecH5fNZgN1bD/PBwAAAKwve5kTAAAAw2W4ruuO+qCbm5va3t6WYRjq5fCGYUhST2Nvmuf09FShUGigearVakfvtZvqqlQq7YDasqxL/df8Praf5wMAAADWl6wvAQAA/OdL64l0Ot1+bBjGjV+3GdvtK5VKDRwSS2cfpzt/c41SqdR1fLFYbD++aXdEoVBQNpu9tpfbMI49zPMBAADAzVhfsr4EAADwmy87iiXp7bff1tHR0cC7hHsViUT07NkzT4Ji6eymHOFwuD33da00HMfR3NycpLM7N5fL5WvnjMfjqlQq7eenp6cd/d2GeexhzAkAAIDesb5kfQkAAOAn325mt7q6KunsY2bNZnPoXwcHB56FxNLZR+JaOx+q1aq2t7e7nqdpmh07Ja5yfhEvSfv7+yM79jDmBAAAQO9YX7K+BAAA8JNvQfHa2poikYjef/99v0oYWCKRULlclmmaymazSiaTqlarchxHlUpF0WhU1WpVkUhER0dHV+7eOO/izy3LGtmxhzUnAAAAesf68uY5AQAAMBy+7iheXl4e6TFfvnzp+ZyxWEynp6fK5XKybVurq6uam5tTMpnU/Py8isWiDg8Pe1r0FotFWZYl0zSVyWQ6+roN+9jDnNMv29vbisfjmpubk2EYCofDSiaTl3bWAKNi23b7Rj294BrGdVrX0k09P28yjGuM63a6eXVt3uZYvRqna5P1ZbCN07WEyTfJ74UYPdaYCCrWmCPkTpEPPvjA7xIwAuVy2TVN05XkxmIxt1wuu7VazS0Wi65lWe3vn56e+l0qJsTp6akrqaevVCp143xcw7jO6empm0gk2tdTPp/va55hXGNct9PNq2uzNRfvqQgiriWMEu+FGCXWmAgq1pijN1VB8fz8vN8lYMjK5fKNf7EjkYgrybUsa+z+wiKYcrlcz//BqdVqXefiGsZVTk9P3Uwmc+l66mehNIxrjOt2enl5bbbwnoog4lrCqPFeiFFgjYmgYo3pn7EMio+OjtwXL170/PXkyRP3gw8+cGdmZvwuHUN0enra/m2OZVnXjqvVau2/0LFYbIQVYlK1rrubvm663riGcZVcLudaluXGYrGBF0rDuMa4bqeXl9fmebynImi4luAH3gsxbKwxEVSsMf01FkHx0dGRe//+ffftt992Z2Zm+voyDIOgeMKdfxO56c3Dq48uAPl83pXkZjIZt1wud/266beIXMO46PDw0D08PGw/b11v/f5/P4xrjOt2Onl9bV6ch/dUBAnXEkaN90IMG2tMBBVrTP8FPije3NzsCHsH+SIonlznf1Mj6ca/2MVisT3WNM3RFImJZFlW198i9oprGL04PDzse6E0jGuM6xYtg1yb5/GeiqDhWoIfeC/EqLHGRFCxxhy9GQXYkydPlMvl5LquJMkwDJ8rQlDlcrn241gsduNdsxOJRPux4zgjuXMmJk+pVJJt28pmswPPxTWMXtx0XXQzjGuM6xYtg1ybLbynIoi4ljBqvBfCD6wxEVSsMUfvDb8L6Obhw4eSzgJi13VlWZYikYgsy5IkvfnmmzfO8c0338hxHO3v7+v169dDrRf+KRQK7ceRSKSn11iWJdu2JUl7e3sdf4GBXjx8+FCmaWptbW3gubiGMWzDuMa4buEl3lMRRFxLGDXeCzFuWGMi6HhfvZ1AB8XVarW9i7hcLmt1dbXvuTKZjN555x2vSkOAVKvVjufvvvtuT6+LRCLtv6zj8FsdBEu1Wm1fe3Nzc7IsS7FYTPF4/NZv/FzDGLZhXGNct/AS76kIIq4ljBrvhRg3rDERdLyv3l6gW0+0tnBnMpmBQmLpLMFfXl72oCoETaVS6Xje2nF+k4vjLv6lB7q5+LEV27ZVKBSUTCZlGIaSyWTP1xTXMIZtGNcY1y28xHsqgohrCaPGeyHGDWtMBB3vq7cX6KC49YfZa0p/k3w+78k8CJbnz593PO+1h83F1iUHBwdelYQJZ9v2pf9IXFQqlRSNRpVOp2+cj2sYwzaMa4zrFl7hPRVBxbWEUeK9EOOINSaCjPfV/gS69cTq6qpevHihk5MTz+bD5Glt4W/p97c6tVrNs5ow2SzLUj6fl+M4qtVqqlQql67DlkKhoIODAx0eHl47H9cwhm0Y1xjXLbzCeyqCimsJo8R7IcYRa0wEGe+r/Ql0UPzJJ5/o8ePHnm3L/vzzz/XRRx95MheC47q/6LflOI4n82A6pFKpjueO46hQKOjhw4eXrqVqtap4PK5yuXzlXFzDGLZhXGNct/AS76kIIq4ljBrvhRg3rDERdLyv3l6gW0/Mzs7q0aNH2tvb07fffjvwfLSemEz9/iW7+DEBr3auYzqZpqlMJqPT01MVi8VL11elUtH29vaVr+UaxrAN4xrjusUw8Z6KIOBagt94L0TQscbEuOF99WaBDoqlsxvZRSIRJZPJgeY5OjoKfMNo+Cvov9XB+EgkEjo6OlIkEun4/sOHD4d6XK5hDNswrjGuW9yE91SMO64leIH3Qkwy1pjwA++rVwt064mWcrmslZUVvfPOO8pms5qfn+/pdScnJ+1eJPv7+0OuEn4xTdOTv2i9NiIHemGapg4PDxWNRtu/pHIcR5VKRbFY7NJYrmEM0zCuMa5bjBLvqfAD1xKChvdCBA1rTIw73lcvG4ug+NmzZ5LOGj73cifCq7iuK8MwvCwLATE/P+/JX9ZefwEB3Mbu7q6i0Wj7eblcvvQfHK5hDNswrjGuW/iB91SMEtcSgor3QgQFa0xMCt5X/1HgW088ePBA8XhcL168kGEYcl331l+YbP3+NubiX/Cg/1YH4ykSiXT8B+aqBvhcwxi2YVxjXLfwA++pGCWuJQQV74UICtaYmBS8r/6jQAfFu7u7yufz7bC339CXsHiyraysdDzv9Tc8FxuIh8Nhr0oCOsTj8a4/5xrGsA3jGuO6hV94T8WocC0hyHgvRBCwxsQk4X31TKBbT+TzeUlq7ySOxWKKx+MyTfPWfYo/++wzvXz5cojVwi/nPx4gnf3m52Iz8qvUarWO5xc/VgB4xbKs9uOr3ru4hjFsw7jGuG7hF95TMSpcSwgy3gsRBKwxMUl4Xz0T6KC4Wq3KMAyZpqmDgwMtLy/3Pdf6+rrefPNND6tDUFz8rU6vf1nP//bHNM2ONwXAS+evras+ZsI1jGEbxjXGdQu/8J6KUeFaQpDxXoggYI2JScL76plAt55o/R+ztbU1UEjcmuvu3bseVIWgiUQiHX+Jnz9/3tPrDg4O2o8v/oUHvHT+Wrvq4yxcwxi2YVxjXLfwC++pGBWuJQQZ74UIAtaYmCS8r54JdFDc2tbtVdq+u7vryTwInrW1tfbjarXa02vOj8tms57XBLSc/6jJdR8z4RrGsA3jGuO6hR94T8UocS0hqHgvRFCwxsSk4H31TKCD4nQ6Ldd1r7zbYD/YUTy50ul0+3GlUrlx/PkxlmUFvkcMxlupVJIkZTKZa8dwDWPYhnGNcd3CD7ynYpS4lhBUvBciKFhjYlLwvnom0EFxIpHQ3bt3tbe358l8X3zxhSfzIHgikUjHX7jWX/DrFIvF9uNx+I0OxlepVJJt2zJNU1tbW9eO4xpGL3q9s+5VhnGNcd2iZZBr8zZ4T8WocS0hiHgvhNdYYyKoWGP6wA24Wq3mGobhfvHFFwPPtbKy4kFFCKpareZKciW5kUjk2nGnp6ftcbFYbIQVYhKUy2XXNM329XN4eHjt2Fqt1h7bbdz58VzD6KZYLLb/v5fk5nK5W71+GNcY1y1ct/9rk/dUjAOuJQwb74XwG2tMBBVrzNELfFDsuq6bz+fd+fn5geZwHMedmZnxqCIE1fk3keveQCKRiCvJNU3TPT09HW2BGHupVKrjP1SS3FQqdWlc6z9MlmW5tVqt5/m5hnGd09NT17Ksjmuv28LkOsO4xrhup9sg1ybvqRgXXEsYJt4L4SfWmAgq1pj+CHRQ/OTJk/ZXOBx23377bXdzc/PWX/fv33fn5+cJiqfE+d8cJRIJ9/Dw0D09PXXL5XL7L2okEhmrv6gIjnK5fOk/OK03/0Qi4aZSqfZ1lslk+rrOuIbRcnp66iYSCTcWi1153Z3/DXXrWunFMK4xrtvp4tW1yXsqxgnXEoaF90KMGmtMBBVrTP8FOiiORqPuzMxM+8swjI7nt/lqvRbTI5fLuZFIpP0X1zRNNxaLucVi0e/SMOZqtZqbSqVcy7I6ri/LstxEIuEWi0VP/mPANYxhG8Y1xnWL2+I9FeOGawnDwHshJglrTAQB76v9MVzXdRVQ29vb2tzclCQZhjHQXK7ryjAM/fGPf/SiNAAAAAAAAACYGIEOil+/fq25uTkZhiEvyiQoBgAAAAAAAIDLAh0US9LKyopevHihR48eKRKJaH5+/tZz2LatTz/9VF9//TVBMQAAAAAAAABcEPig+PHjxzo4ONDe3t7Ac83Pz+vk5MSDqgAAAAAAAABgcsz4XcBNYrGYJ20npLPdyQAAAAAAAACAToHfUSxJR0dHWl5eHnieFy9e6O7dux5UBAAAAAAAAACTYyyCYi+8fPlSb731lt9lAAAAAAAAAEDgBL71hBeePHmicDis3/72t36XAgAAAAAAAACBMxVB8fPnz+W6rv76r//a71IAAAAAAAAAIHAC33ri888/7/u1juOoVqupUChIkiKRiJ4/f+5VaQAAAAAAAAAwEQIfFM/MzMgwjIHmaJ2iYRiq1Wr0KgYAAAAAAACAc8am9UQ/ebbrunJdV4ZhtMPm1u5iAAAAAAAAAMCZsdlR3G+ZF18bDof1u9/9zqvyAAAAAAAAAGDsveF3Ab1YXl5WNpuVZVm3el2tVtP29rai0ah2d3cVCoWGVCEAAAAAAAAAjK+x2FFs2/ZAfYXffvttrays6K//+q+9KwwAAAAAAAAAJkTgexSbpjnwzec+++wz7e/v6xe/+IU3RQEAAN/Ztq1wONy+F0GvX3Nzc4pGo0qn0yqVSnIcx+9TuZbjOD2dU7Va9bvUwNre3r7xzy8cDvtdJgAACJBJXmeyvhzcJK8vA7+jeHd3V+vr6wPP8/bbb+vo6Ei1Wm3g4BkAAARLqVRSMpm89P1IJKJ0Oq35+XnZtq1arSbbtnVwcNCxcE8kEsrlcrduczVsjuNobm6u/TwSiWh3d/dSnaZpjriy8XL+/+uTkxNVKhWl0+n29yzLUq1W86EyAAAQdJO2zmR96Y1JXV8GPij2ytramkqlku7fv6+//Mu/9LscAADgsbm5uY4Fm2maOjo6unaR21rM2bbd/l4ul1Mmkxlypb27uJAvFotKJBI+VjQ5ksmkSqWSpPFdyAMAgNGYpHUm68vhmYT1ZeBbT3jt+fPnfpcAAACG4OJH+9bW1rruhIjFYqrVaorFYu3vZbPZK3eMBAU7O7wTlF09AAAg+CZ5ncn60juTsL6ciqD49evXqlQqkkSPFQAAJtD53Rot8Xi8p9eWy2VFIpH281KppGw261ltXpqfn/e7BAAAgKky6etM1pc4b+KD4q+//lorKyt6/fq1pMlI9wEAQKfWL4TPu81H6HZ3dzueb29v88tlAAAAsM7EVHnD7wJu8s477/T92tZvfVptmA3D6Nj2DwAAJkO5XO54fn7nRi8ikYhisVjHPwTW19d1eHjoSX0AAAAYT6wzMU0CHxTXajUZhqFB7rl3/vW5XM6r0gAAQEBc3Olx7969W88Rj8c75qlWq7Jtm08jAQAATDHWmZgmY9N6wjCMvr6ksx3Fpmnqyy+/VCgU8vlMAACAl6rV6qUbjPTzCaKrPkLYumvxuHIcR9vb24pGo5fOpVQqKR6Pa25uToZhKBqNqlAoXDtPNptVNBrtGN/rn09Q6gAAALgN1pmXBWVdF5Q6Jo4bcIZhtL/m5ubccDjc81c0GnWTyaS7vb3t92kAAIAhyeVyrqT2l2mafc1zenraMY8kNxaLeVztYDUdHh7e+JrDw0M3l8u5kUik47XFYtF1Xdet1WqXfnb+K5VKdcx38c/34lcmkwl0HdfJZDLt11qWdavXAgCA6TCJ60zWl4PXcZ1JWF8arjtAT4cRmJmZ0fb2tn72s5/5XQoAAAigaDTacUOQRCKhYrHY11ytTyO1WJalWq02UH2DcBxHc3Nz7eeHh4dd++LZtt2+k/bFXRDFYlEnJydKp9OKRCK6d++eLMuSbdt6+PBhx26ZcrmsWCymeDyug4MDra2tKRqNan5+Xs+fP9f29nbH3LVareOjk0Gpo5tsNtt+vd//PwMAgGCaxHUm60vWl135nVTfJBwO+10CAAAIMF34zX9rR4EXc/W7a8Qr/ez4aLm4Q8KyLNc0zSv/fGq1WsfYSCTiRiIRNxaLuaenp5fGl8vlrrszgljHRZOw4wMAAAzXJK4zWV+yvuwm8D2KW78tAAAAuOiq3mH99I2TdKn/3Li7amfI6enplT3yLMvq+HNr9eMrl8syTfPS+Fgs1rGz4uJNXoJYBwAAwG2wzrwsKOu6oNQxiXwNir/++usbx6yvrw+/EAAAMJbK5XLH80gkcuWCrxe2bV/63jjfiXp+fr7j+VUL5/Pi8XjH85t+WX9+gX7Vn13Q6gAAALgN1pmXBWVdF5Q6JpGvQXE0GvXz8AAAYMxd/A1/v7s8pMlZwPfr4j98Li7AL7r4Z+PVIjoodQAAgOnGOnNwQVnXBaWOceBrUOy6rn7/+9/7WQIAABhTtm1fWrTdu3ev7/ku7hqRpmMB33LTgvkmXn2kMih1AACA6cU60xtBWdcFpY5x4HuP4lwu53cJAABgDF3VL6zbHZv7mW+QfxBMujfffNPvEiQFpw4AADA5WGf6IyjruqDU4Qffg+J8Pq8f/ehH+uKLL/Ty5Us1Gg01Gg2/ywIAAAFXLBY7nt/Um6ybq3aNWJY10D8IAAAAMJ5YZ2JaveF3AdLZFvyrtuEPyx//+MeRHQsAAAzHxZ0ZF29ScRv5fP7S99LpdN/zAQAAYHyxzsS0CkRQ7Lpu+3GrwXS//UNOTk6u7R1iWdZIA2kAADAcV318r98bjDiOo+3t7Y7vmaapVCrV13wAAAAYX6wzMc0CERTncjklEgktLy8PNM/Tp0+VTCZlGEbH913XVTKZ1N7e3kDzAwCAYLj4i1/Lsvq+IcjDhw8vfW93d/fS3ZEBAAAw+VhnYpoFokfxxx9/PHBI/POf/1wffPCBXr9+3d6h7LquXNdVLpcjJAYAYIJc3OnR7y4P27Yv7fJIJBJd+9C1XhOPxzU3N3fpo4iO4yiZTGpubu7S3AAAAAi2Ua8zW+OSyaSi0agMw1C1Wr00X6FQ0NzcHG0rMFS+BsWGYWhtbW3geT744ANls9l2MGwYhlzXlWmaOjw81Mcff+xBtQAAIAgcx7m0eE4mk33NdTHktSxLu7u7XV9TqVQUi8UUj8flOI4qlUq7HsdxFI1GVa1W5TgOLa8AAADGiF/rzFgspnfffbd97Kt2Ih8eHspxHBUKhUs3xwO84mvridnZWYVCob5f//LlS8Xjcdm23Q6IpbOdxJFIRE+fPtXs7KxX5QIAgADwqm9cMpnsWGRblqXDw8MbPwrY6ikXiUSUzWbbNUUiESWTSRWLRUUiEdm23ffHFAEAADB6fqwzW+vFSCQiScpmsyqVSnIcp2N8Pp/XycmJSqVS3/f1Am7i647io6Ojvl/75MkThcPhK0PidDqtg4MDQmIAACbQxXZSrUV1rxzHUTweV6lU6pijl5D4otY/HMrlcvsjg616xj0kPjk58bsEScGpAwAATD6/15nnb3K3v79/6ee7u7uyLGtsexwHZV0XlDqCyNeguN8gd2trS2tra+1exK1WE67rKp/P65e//KWXZQIAgAC5uNNjZWXlVq+NRqMdc2Qymb5CYukfP1JYqVRULpfH+g7WFxfMjuN0Hf/NN99MdB0AAGD6+L3ONE2zvRGhWCxe+vnBwUHXe2kETVDWdUGpYxz4fjO722g0GvrhD3+o7e3tS7uIW/2I19fXfa4SAAAMS+tjeOf1siOgVCopGo22W1ZJZ7uBa7Wacrlc3/Wc/yjiIPMMw8XedTctiC/+vFar3Wr8db3yglIHAABAN0FZZ7Z6Il/VBiOfz2tra+vWc3olKOu6oNQxiQy3tS034L7++mutrq7KcZxLIXEsFlOxWKTVBAAAE6xarbbXAhelUilFo1HNz8/r5OREjuPom2++6bjRnHTWDiKdTiuRSHjWGqK1JimXy33fFfs6juNobm6u/fzw8LDnj0C2bqrXYpqmjo6OrtzR0roJ3/lFcOuX8Ff9Odm2rWg02vH/RSwWu/LmfUGp46JsNtu+E7llWTf+gwEAAEyuIK0zbdtWOByW1Ln2cxxH2WxW+Xy+77lb87C+ZH15LXcMFAoFd2ZmxjUMwzUMw52ZmWk/39zc9Ls8AAAwROVy2TVN05XU85dpmq5lWW4sFnNTqZRbLBbdWq3meW21Wq19zEwm4/n8p6enHed1eHjYdfzh4aEbi8W6/nlFIhG3WCy2x0cika5/lpFIxM3n867rnv1/YVlW1z/3WCzm/tt/+28DUUe3/88zmUx7vGVZXvzfBQAAxkxQ15mtdU4ul2t/L5VKeXIc1pesL7sJ/I7iBw8eqFAoXNpFLJ31a/nwww/9LA8AAEyx1u6SSqXSvlGJlwbZ8YHuJmLHBwAAmEjJZFKlUkmJRELFYlG2bSuXyw28m1hifTlMk7C+fMPvAq7TaDS0urqqarV6KSS2LEvlclnLy8s+VwkAAKZVOp1WOp2WZVmXPnoIAAAA9Csej6tUKrXXl9lsVru7uz5XhWkQyJvZff3111peXr4yJE4mk/q7v/s7QmIAAOCbSqWik5MTpVKpjrthnw+LC4WCH6UBAABgzLXue2HbtiqVit59990r++8CXgtcULy7u6toNKrT09N2SOy6rlzXVS6X097ent8lAgCAKeM4TvvO062P/hWLRUlnN8NofVyv9XHAdDrdESB7pZc7bwMAAGC8nb/JWjabVSaTGdqxWF/ivEAFxffu3dP9+/fbAXErJDZNU+VyWR9//LHfJQIAgCmUTCYVj8c1NzeneDzeDolbWrs+CoWCwuGwotHoUHq9nb9bMwZz1V3NAQAAgqK1lszlckM9DutL70zC+jIQPYpfvnypeDwu27YvtZqIRCJ6+vSpZmdnBz7OO++8o9/97ncDzwMAAKZLMpnUwcGB5ufnVS6XL330b2trS6VSSScnJ0qn00qlUkOpI5vNyrKsS7uV+ShidxcX7QcHB7QGAQAAgTY/P69EItHekDAsrC/7M6nrS8N1XdfPAp49e6ZkMqnT09Ozgs6FxOl0Wr/85S89O9bMzIyazaZn8wEAAAzTxbtSX4e7VV9ve3tb2Wy265hxvSs1AACYTI7jaHV1VYeHh0OZm/XlYCZ5felrUPz48WNtbm5e2kUsnfX4W19f9+xYu7u7un//vv74xz96NicAAAAAAADgpWQyqa2tLYJajJyvQfHMzEw7IJbOQuK5uTk9ffpUd+7c8ew4n3/+uVKplAzDICgGAAAAAABAIG1vb8s0zaG1MgO6CVRQLJ1tzfaqD4rjOO2m3K1dywTFAAAAAAAA8JvjOCoUCkqlUjJNU6VSSbZtK5PJ+F0aplRgguJRlEFQDAAAAAAAgCBIJpMqlUqSpEgkonv37hESw1eBCIqXl5dVLBY93UnccnBwoHw+r2q1SlAMAAAAAACAQKhUKkomk5qfn1c+n1csFvO7JEw534PicDisg4MDzc7ODvVYyWRSX3zxBUExAAAAAAAAAFzge1BcrVY9vXHddWzb1jvvvENQDAAAAAAAAAAX+BoUz8/P6+TkZGKPBwAAAAAAAADjYMbPg+dyuYk+HgAAAAAAAACMA193FAMAAAAAAAAA/OfrjmIAAAAAAAAAgP8IigEAAAAAAABgyhEUAwAAAAAAAMCUIygGAAAAAAAAgClHUAwAAAAAAAAAU46gGAAAAAAAAACmHEExAAAAAAAAAEw5gmIAAAAAAAAAmHIExQAAAAAAAAAw5QiKAQAAAAAAAGDKERQDAAAAAAAAwJQjKAYAAAAAAACAKUdQDAAAAAAAAABTjqAYAAAAAAAAAKYcQTEAAAAAAAAATDmCYgAAAAAAAACYcgTFAAAAAAAAADDlCIoBAAAAAAAAYMoRFAMAAAAAAADAlCMoBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAphxBMQAAADChwuGwDMNQqVS69Wu3t7cVj8c1NzcnwzAUDoeVTCZVqVT6rmcYcwIAAMAbBMUAAADABMpms7Jt+9avq1QqmpubUzablSQVi0XVajXlcjlVq1XF43HF43E5juPrnAAAAPCW4bqu63cRAAAAALxTqVQUj8fbz4vFohKJxK1el0qllM/nL42JRqOqVquyLEuHh4cyTXPkcwIAAMB7BMUAAADABHEcR8vLyx27c3sJis+/zrIs1Wq1K8fZtq1wOCxJisViKpfLI50TAAAAw0HrCQAAAGCCrK+va35+/ta7cpPJZDtcbrWIuIplWe3QuVKpqFAojHROAAAADAc7iuG7f/Ev/oX+8Ic/6Dvf+Y7+1b/6V36XAwAApth//I//UX/84x/13e9+V3//93/vdzm3VigUlE6ndXh4qNXV1XZIe9OO4vM7eiXp9PS0a9BcKpWUTCYlSaZp6vT0dCRz9or1JQAACJJxWWO+4XcBwB/+8Ac1m001m029evXK73IAAAD0hz/8we8Sbs22baXTaWUyGUUikVu9NpfLtR/HYrEbdyOfD50dx1GpVLoURA9jzl6xvgQAAEEU9DUmQTF8953vfEfNZlMzMzNaWFgYyjHq9frQj3FbQaxJoq7bCGJNEnXdVhDrCmJNEnXdRhBrkqjrNrV85zvf8bWOfiSTSUUikY6AtlfnWz30GjJbliXbtiVJe3t7l0LdYczZq2lZXwahhqDUQQ3BqiMINQSlDmoIVh1BqCEodVDDaOsYmzWmC/hscXHRleQuLi6O9TFuK4g1uS513UYQa3Jd6rqtINYVxJpcl7puI4g1uS51jVstt5HJZFxJbq1Wa3/PNE1XkivJLRaL17728PCwPe6mseclEomO1w17ztuYlvVlEGoISh3UEKw6glBDUOqghmDVEYQaglIHNYy2jqCc6024mR0AAAAwxqrVqra3t5XP52VZ1q1fX6lUOp73OsfFcdVqdahzAgAAYLgIigEAAIAxtrq6qkQioVQq1dfrnz9/3vH8pl7CLW+++WbH84ODg6HOCQAAgOEiKAYAAADGVDKZlCTt7u72PUerJ3BLv7t/a7XaUOcEAADAcHEzOwAAAGAMlUollUollcvlnnfsXuViqNsvx3GGOicAAACGi6AYAAAAGDOO4yiZTCqVSikWiw08Vz8uhtMnJydDnbMf9XpdS0tLA80hSRsbG9rY2Bh4HgAAMF52dna0s7Mz8Dz1et2DaoaPoBgAAAAYM6urq7IsS/l83u9S2oax+3fQOZvNpl69ejVwHY1GY+A5AADA+Gk0Gp6sJcYFQTEAAAAwRra3t1WtVnV4eOjJfKZpehLynt8NPIw5+zEzM6OFhYWB6wiFQgPPAQAAxk8oFNLi4uLA89TrdTWbTQ8qGi6CYsAnGxsbajQagfuHB3X1Log1BVlQ/7yCWFcQa5KCW1cQBfXPirrGX7VaVTabVS6XUyQS8WTO+fl5T0Ld+fn5oc7Zj4WFBR0fHw9cR1AF5e9OEOqghmAJyp9FEOqghmAJyp9FEOqght541X5qaWlpLHYmG67run4XgenW+suyuLg4tIX8KI4BBAXXO6YN1zy8FPTrKRwOyzTNnnYTz83NtcPaYrGoRCJx5bhoNKpqtdp+3us/D0qlkpLJZPt5JpNRLpcb2py3wfoS04xrE0HFtYmgYt3wj9hRDAAAAIyB7e1t2batWCzWEaZe5/yO3ocPH2pvb6/9/N69e+3geGVlpSPUdRynp5YPF280Fw6H24+HMScAAACGi6AYAAAAGAPffPONJKlSqdz6tdVqtSO4tSyrHRRHo9GOsbZt99TWolardTyPxWLtx8OYEwAAAMM143cBAAAAAPyzsrLS8dy27Z5ed37HsmmasixrqHMCAABguAiKAQAAgDGQy+Xkum7PX+dD1mKx2PGz831/I5FIR1uI58+f91TPwcFB+/HFYHgYcwIAAGC4aD0BXPDoq2c9jdt87/0hVwIAADAaa2trKhQKktTRoqKb8+Oy2exI5gyib//rf71x/ci6EQAAjAN2FAMAAABTLp1Otx/30gP5/BjLsq7sJTyMOQEAADA8BMUAAADAlItEIh3BbKlU6jq+WCy2H1+383cYcwIAAGB4aD2BqbCxsaFGo6FQKOR3KcDQcb1j2nDNA97I5/MKh8OSpIcPHyqRSFw5znGcdkuJWCymVCo10jmDYmNjQ/+v3/5W/+xf/HO/SwE68N9FBBXXJoKKa/MfGa7run4Xgem2tLSkV69eaXFxUcfHx36XQ49iAACmWNDWJYMIh8OybVvS2W7d60La80qlkpLJpKSzm+dlMplLY6LRqKrVqkzT1NHRUcdN60Y1501G9f8j60YAANCLcVlj0noCAAAAgCQpkUioXC7LNE1ls1klk0lVq1U5jqNKpdIOdCORSM+B7jDmBAAAgPdoPQEAAABMoFqt1tfrYrGYTk9Ptb29rb29Pa2urspxHJmmqZWVlZ53Jw97TgAAAHiLoBgAAADAJZlM5so2EUGbEwAAAN4gKAb6RE86AAAAAAAATAp6FAMAAAAAAADAlCMoBgAAAAAAAIApR+sJBEa9XtfS0lLXMRsbG9rY2BhRRQAAYJLs7OxoZ2en65h6vT6iagAAAIBgIShGYDSbTb169arrmEajMaJqAADApGk0GjeuNQAAAIBpRVCMwJiZmdHCwkLXMaFQaETVAACASRMKhbS4uNh1TL1eV7PZHFFFAAAAQHAQFCMwFhYWdHx87HcZAABgQvXSwmppaYldxwAAAJhK3MwOAAAAAAAAAKYcQTEAAAAAAAAATDmCYgAAAAAAAACYcgTFAAAAAAAAADDlCIoBAAAAAAAAYMoRFAMAAAAAAADAlCMoBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAphxBMQAAAAAAAABMOYJiAAAAAAAAAJhyBMUAAAAAAAAAMOUIigEAAAAAAABgyr3hdwHApHv01bOexm2+9/6QKwEAAAAAAACuxo5idKhWq0qn0wqHwzIMQ4ZhKBwOK5vNynEcv8sDAAAAAAAAMATsKIYkyXEcra+vq1QqXfqZbdva3t7W9va28vm8UqmUDxVOvl52HrPrGAAAAAAAAMPAjmLIcRxFo9ErQ+KL0um00un0CKoCAAAAAAAAMCoExVAymZRt24pEIioWi6rVaqrVaioWi8pkMpfGFwqFnkJlAAAAAAAAAOOBoHjKFQoFVSoVZTIZHR4eKpFIyLIsWZalRCKhXC6nWq2mSCTS8br19XWfKgYAAAAAAADgNXoUT7lcLqdYLKZcLnftGMuyVCwWFQ6H299zHEeVSkWxWGwUZQIAAAC3Vq/XtbS01HXMxsaGNjY2RlQRAACYNDs7O9rZ2ek6pl6vj6iawRAUT7FqtSrbtnV4eHjjWMuylMvllM1mO15PUDxavdzwTuKmdwAAAJLUbDb16tWrrmMajcaIqgEAAJOo0WjcuN4YFwTFU2xvb0+pVEqmafY0/mIo/M033wyhKgAAAMAbMzMzWlhY6DomFAqNqBoAADCJQqGQFhcXu46p1+tqNpsjqqh/BMVT7N69e7Isq+fxF/sUn29FAQAAAATNwsKCjo+P/S4DAABMsF7aWC0tLY3FrmOC4il2Mfi9ieM4Hc9vEzIDAAAAAAAACK4ZvwvA+LBtu+M5/YkBAAAAAACAyUBQjJ4dHBy0H6dSKR8rAQAAAAAAAOAlWk+gZ/l8vv04m816Pn+9XtfS0tLA8/TSGwYAAEyWnZ0d7ezsDDxPvV73oBoAAABg/BAUoye2batarUqScrncUPoTN5tNTxp7NxoND6oBAADjpNFojMUNQgAAAICgIihGT3K5nKSzG9hlMpmhHGNmZkYLCwsDzxMKhTyoBgAAjJNQKKTFxcWB56nX62o2mx5UBAAAAIwXgmLcqFqtqlAoyDRNlcvloR1nYWFBx8fHQ5sfAABMLq9aTy0tLbEzGQAAAFOJm9nhRuvr65Kkp0+fDqXlBAAAAAAAAAB/ERSjq3Q6rWq1qmKxqEgk4nc5AAAAAAAAAIaAoBjXKhQKKhQKyufzSiQSfpcDAAAAAAAAYEgIinGlSqWidDqtfD6vVCrldzkAAAAAAAAAhoigGJdUq1XF43HlcjlCYgAAAAAAAGAKvOF3AQgW27a1urqqTCajTCbjdzno06OvnvU0bvO994dcCQAAAAAAAMYBO4rRZtu2otGoUqmUcrlcz6/Z3t4ecmUAAAAAAAAAhomgGJIkx3EUj8e1trbWc0gsSclkUrFYbIiVAQAAAAAAABg2Wk9AjuMoGo3Ksixls1nZtn3ja2zbVjablSRFIpFhlwgAAAAAAABgiAiKodXVVdm2Ldu2FQ6Hb/XafD4/pKoAAAAAAAAAjAqtJ6ZcNBpVtVrt+/WpVMrDagAAAAAAAAD4gaB4iiWTSUJiAAAAAAAAALSemGbFYtHvEgAAAAAAAAAEADuKAQAAAAAAAGDKERQDAAAAAAAAwJQjKAYAAAAAAACAKUdQDAAAAAAAAABTjpvZAVPs0VfPehq3+d77Q64EAAAAAAAAfmJHMQAAAAAAAABMOYJiAAAAAAAAAJhyBMUAAAAAAAAAMOUIigEAAAAAAABgyhEUAwAAAAAAAMCUe8PvAgAA/+gPe3/V07jv3vuzIVcCAAAAAACmCTuKAQAAAAAAAGDKERQDAAAAAAAAwJSj9QQCo16va2lpqeuYjY0NbWxsjKgiAAAwSXZ2drSzs9N1TL1eH1E1mCaPvnrW07jN994fciUAAADXIyhGYDSbTb169arrmEajMaJqAADApGk0GjeuNQAAAIBpRVCMwJiZmdHCwkLXMaFQaETVAMHGTe8A4PZCoZAWFxe7jqnX62o2myOqCAAAAAgOgmIExsLCgo6Pj/0uAwAATKheWlgtLS2x6xgAAABTiZvZAQAAAAAAAMCUIygGAAAAAAAAgClHUAwAAAAAAAAAU44exQAAAAAmUr1e19LSUtcxvfSuBgAAuM7Ozo52dna6jqnX6yOqZjAExQAwAn/Y+yu/SwAAYOo0m80bb07YaDRGVA0AAJhEjUZjYm6GTFAM4EaPvnp245jN994fQSUAAAC9m5mZ0cLCQtcxoVBoRNUAAIBJFAqFtLi42HVMvV5Xs9kcUUX9IygGgAnW607m7977syFXAgDA6C0sLOj4+NjvMgAAwATrpY3V0tLSWOw65mZ2AAAAAAAAADDlCIoBAAAAAAAAYMoRFAMAAAAAAADAlCMoBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAptwbfhcAAPDfH/b+qqdx3733Z0OuBAAAAAAA+IEdxQAAAAAAAAAw5QiKAQAAAAAAAGDK0XoCgCceffWsp3Gb770/5EoAAAAAAABwW+woBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAphxBMQAAAAAAAABMOYJiAAAAAAAAAJhyBMUAAAAAAAAAMOUIigEAAAAAAABgyhEUAwAAAAAAAMCUIygGAAAAAAAAgCn3ht8FAC31el1LS0tdx2xsbGhjY2NEFQEAgEmys7OjnZ2drmPq9fqIqgEAAACChaAYgdFsNvXq1auuYxqNxoiqAQAAk6bRaNy41gAAAACmFUExAmNmZkYLCwtdx4RCoRFVAwAAJk0oFNLi4mLXMfV6Xc1mc0QVAQAAAMFBUIzAWFhY0PHxsd9lAACACdVLC6ulpSV2HQMAAGAqERQDGKlHXz3radzme+8PuRJv/GHvr/wuYaR6Pd/v3vuzIVcCAAAAAAC8NON3AQAAAAAAAAAAfxEUAwAAAAAAAMCUIygGAAAAAAAAgClHUAwAAAAAAAAAU46gGAAAAAAAAACmHEExAAAAAAAAAEw5gmIAAAAAAAAAmHIExQAAAAAAAAAw5d7wuwBgVB599czvEgAAAAAAAIBAYkcxAAAAAAAAAEw5gmIAAAAAAAAAmHIExQAAAAAAAAAw5QiKAQAAAAAAAGDKERQDAAAAAAAAwJQjKAYAAAAAAACAKff/a+9ufttK08TQP/bUzFQG0wLlzkaxFl3Uf0C5BgjQGaDbFBAgW9Je9srUMoAW5Hh3dzXUQkCyo2pVSxcV3NUACciauehpYIC2Rdx/gKwGYkcXQcYi1PNRmUnEu3DIJvVJSfw4POf3AwST0stzHskvqUcPn/O+ny07AAAAgHk4OTmJzc3NG8fs7e3F3t7egiICANLm4OAgDg4ObhxzcnKyoGgeRqEYAABIpfPz8/jw4cONY87OzhYUDQCQRmdnZ7fmG6tCoRgAAEilx48fx8bGxo1j1tbWFhQNAJBGa2tr8fTp0xvHnJycxPn5+YIiuj+FYgBm7oc330w17vOXv5hzJABk2cbGRrx//37ZYQAAKTbNMlabm5sr0XVsMzsAAAAAgIxTKAYAAAAAyDiFYgAAAACAjFMoBgAAAADIOIViAAAAAICM+2zZAQBc5c//6i+nGvdnP/v5nCMBAAAASD+FYhLj5OQkNjc3bxyzt7cXe3t7C4oIAEiTg4ODODg4uHHMycnJgqIBAIBkUSgmMc7Pz+PDhw83jjk7O1tQNGTdD2++WXYIAMzY2dnZrbkGAABklUIxifH48ePY2Ni4ccza2tqCogEA0mZtbS2ePn1645iTk5M4Pz9fUEQAAJAcCsUkxsbGRrx//37ZYQAAKTXNElabm5u6jgEAyKTHyw4AAAAAAIDlUigGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyDiFYgAAAACAjPts2QEAPMSf/9Vf3jrmz3728wVEAgAAALC6dBQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGfbbsAADIrh/efDPVuM9f/mLOkQAAAEC26SgGAAAAAMg4hWIAAAAAgIyz9ASQen/+V3851bg/+9nP5xwJAAAAQDLpKAYAAAAAyDiFYgAAAACAjLP0BAAArKhOpxONRiPa7Xb0er2IiMjn81EqleL169eRy+Xuddz9/f1otVrx7t276Pf7kc/no1AoxO7ubhSLxcQcM20slwUALJNCMZApz379y2u/9sN//68LjAQA7q/f78erV6/i6Ojo0td6vV7s7+/H/v5+NBqNqFQqUx+33W5HuVyOfr8fxWIxms1m5PP56HQ6UavVYmdnZ/T5aYvQ8zgmAACzp1AMAAArpN/vx/b29qiD+Ca7u7txfHwcjUbj1rHtdjt2dnYiIqJSqUw8ZtilvL29He12O7a3t+P4+PjWwu48jgkAwHxYoxgAAFZIuVyOXq8XhUIhms1mdLvd6Ha70Ww2o1qtXhp/eHh4ZefxuH6/H+VyOSI+FXCvKyw3m82I+NS1PBy/yGMCADA/CsUAALAiDg8Po91uR7VajePj4yiVSpHP50fdufV6PbrdbhQKhYnHvXr16sbjDpeGiIio1WrXjhueJ+JTt/Dh4eFCjwkAwPwoFAMAwIqo1+tRLBajXq9fOyafz4+6dIf6/X602+0rx/d6vYmvvXjx4sYYXr58Obp9XQF4HscEAGC+FIoBAGAFdDqd6PV6l4rAV8nn85eKyZ1O58qx4+OKxeKtawQPu38jPhWgr1rWYh7HBABgvhSKSYyTk5PY3Ny88ePg4GDZYQIAK+rg4ODWXOPk5GTZYV7rzZs3UalUpt7srVgsTtz/27/92yvHjS/1cHHJiuvk8/mJuBZxTAAA5uuzZQcAQ+fn5/Hhw4cbx5ydnS0oGgAgbc7Ozm7NNZLs5cuXjtqfVAAAMxBJREFUE8XU21ws0G5tbV0ac7HL+Msvv5z62L1eLyLiUvfvPI4JAMD8KRSTGI8fP46NjY0bx6ytrS0oGgAgbdbW1uLp06c3jjk5OYnz8/MFRXQ303bmDg03khu6qsh8cd3iaQvRF8d1Op1RfPM4JgAA86dQTGJsbGzE+/fvlx0GAJBSe3t7sbe3d+OYzc3Nle46Hjfszh26uBRFRMTbt28n7k+7rMWPf/zjifvv3r0bFXXncUwAAOZPoRjg//jVb76fatxPf/LFnCMBgId79+7d6HalUrlyzMVi8n27f7vd7lyPCQDA/CkUAwBACjUajdHtWq125ZiLRd37Gl/mYh7HvK/hZskPNU03OgCQPgcHB3FwcPDg4yR5w+RxCsUAAJAyvV5vtKlcvV6/tqv3vsXYi8tJfPz4ca7HvK9pNkuehg2VASCbVn0z5LtSKAYg8X54881U4z5/+Ys5RwKwGur1ekR8Ws6hWq3O/Xyz6P6dxzGn2Sx5GjZUBoBsmmYz5GkkecPkcQrFQCo8+/Uvlx0CACRCp9OJw8PDyOVy0Wq1bhyby+VmUpAd7waexzHvy2bJAMBDzGr5qVXZMPnxsgMAAABm59WrVxER8d133926kdyTJ09mcs7x48zjmAAAzJ9CMQAApMTu7m50Op1oNptRKBRuHX/frt2LHcMXO4pnfUwAAOZPoRgAAFLg8PAwDg8Po9FoRKlUmuoxz549m7g/7ZIRFzea29ramusxAQCYP4ViAABYce12O3Z3d6PRaESlUpn6cdvb2xP3e73eVI/rdrsT94vF4lyPCQDA/CkUAwDACut0OrGzsxP1ev1OReKIy92/0xZ1x7uEc7ncxFrI8zgmAADzp1AMAAArqtfrxfPnz6NarUa1Wr3z4wuFwsRawG/fvp3qce/evRvdvlgYnscxAQCYP4ViAABYQb1eL7a3t6NSqUS9Xp/6Mfv7+xOfe/Hixeh2p9OZ6jjj42q12qWvz+OYAADM12fLDgBg1fzqN99PNe6nP/lizpFw0Q9vvplq3OcvfzHnSADmq9/vx87OTrx48WLqInFERLlcjq+//nric7u7u3F4eBgRn9Y6vs34mHw+f+VawvM4JgAA86VQDCzFs1//ctkhzN00BWXFZADuqt/vx/b2duTz+ajValOtAdzr9UZduoVCYeJrhUIhisXiqFh7dHQUpVLp2mM1m83R7es6f+dxTAAA5kuhmEt6vV7s7u7G7u7ujQk9AACL9/z58+j1etHr9WJra+tOj200Gtd+fnisr7766tocsN/vjzqFi8XijZvnzeOYAADMjzWKGen3+1Eul2Nrayva7XZ8/Phx2SGRIM9+/cupPgCA+dne3p56zd+rXFeEzefzo67eTqdzaR3joefPn0dERC6Xm+gCXtQxAQCYHx3FRL/fj6+++ura5J2HmbZ4+u5P/nTOkQAAq6xcLs+lSDxUKpWi1WpFuVyOWq0Wb9++jdevX0c+n493795FrVaLTqcThUIhvvvuu8jlcreecx7HBABgPhSKM25/fz8ajUbk8/llhwIAwA0W0W1bLBbj9PQ09vf3482bN/H8+fPo9/uRy+Xi2bNn0Ww277w02TyOCQDA7CkUZ1in04lisRjVajUiIg4PD2N3d3fJUQEAsGzVanWUIyb5mAAAzI5CcYZd3PH62bNnS4oEAAAAAFgmm9kxYk04AAAAAMgmHcVwT9NuUpc1fi4AAAAAq0dHMQAAAABAxukoBliiX/3m+6nG/fQnX8w5EgAAACDLFIphxUy7tMO7P/nTOUcCAAAAQFooFENCWNsXAAAAgGVRKCYxTk5OYnNz88HH2dvbi729vRlEtNoUngHIkoODgzg4OHjwcU5OTmYQDQAArB6FYhLj/Pw8Pnz48ODjnJ2dzSAaAGCVnJ2dzSSPAACArFIoJjEeP34cGxsbDz7O2traDKIBAFbJ2tpaPH369MHHOTk5ifPz8xlEBAAAq0WhmMTY2NiI9+/fLzsMIAN+ePPNVOM+f/mLOUcCzMqslp7a3NzUmQwAQCY9XnYAAAAAAAAsl45iuMAmcAAAAABkjY5iAAAAAICM01EMsAJ+9Zvvpxr30598MedIAAAAgDTSUQwAAAAAkHEKxQAAAAAAGadQDAAAAACQcQrFAAAAAAAZp1DMSL/fX3YIAAAAAMASKBQz0uv1Ju4rHAMAAABANny27ABIhn6/H7VabeJzb968iWq1uqSIgPv41W++n2rcT3/yxZwjAQAAAFaJjuIM6/f7US6XY2dnJ9bX1y91FHc6nXj06FHs7OxEuVyOTqezpEgBAAAAgHnSUZxhuVwums3mssMAAAAAAJZMRzEAAAAAQMYpFAMAAAAAZJylJwAAgFQ6OTmJzc3NG8fs7e3F3t7egiICANLm4OAgDg4ObhxzcnKyoGgeRqEYAABIpfPz8/jw4cONY87OzhYUDQCQRmdnZ7fmG6tCoRgArvHDm2+mGvf5y1/MORIA7uPx48exsbFx45i1tbUFRQMApNHa2lo8ffr0xjEnJydxfn6+oIjuT6EYIIN+9Zvvpxr30598MedIAGB+NjY24v3798sOAwBIsWmWsdrc3FyJrmOb2QEAAAAAZJyOYgAAgBXy53/1l1ON+7Of/XzOkQAAaaKjGAAAAAAg4xSKAQAAAAAyTqEYAAAAACDjFIoBAAAAADJOoRgAAAAAIOM+W3YAMHRychKbm5s3jtnb24u9vb0FRQQApMnBwUEcHBzcOObk5GRB0QAAQLIoFJMY5+fn8eHDhxvHnJ2dLSgaACBtzs7Obs01AAAgqxSKSYzHjx/HxsbGjWPW1tYWFA0AkDZra2vx9OnTG8ecnJzE+fn5giICAIDkUCgmMTY2NuL9+/fLDgMASKlplrDa3NzUdQwAQCbZzA4AAAAAION0FANwrV/95vtbx/z0J18sIBIAAABgnnQUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScNYoBeJBp1jGOsJYxAAAAJJlCMQA80A9vvplq3OcvfzHnSAAAAOB+LD0BAAAAAJBxCsUAAAAAABmnUAwAAAAAkHEKxQAAAAAAGadQDAAAAACQcQrFAAAAAAAZp1AMAAAAAJBxCsUAAAAAABn32bIDAAAAWEXPfv3LmR7v3Z/86UyPBwBwFwrFACzEr37z/VTjfvqTL+YcCQAAAHCRpScAAAAAADJOoRgAAAAAIOMUigEAAAAAMs4axQAAAAkw7eZ4Nr0DAOZBoRgAFuSHN99MNe7zl7+YcyQAAAAwydITAAAAAAAZp6MYAABghUy7RMWfT3m8P/vZz+8fDACQGjqKAQAAAAAyTqEYAAAAACDjLD1BYpycnMTm5uaNY/b29mJvb29BEQHL8KvffD/VuJ/+5Is5RwKkzcHBQRwcHNw45uTkZEHRAABAsigUkxjn5+fx4cOHG8ecnZ0tKBoAIG3Ozs5uzTUAACCrFIpJjMePH8fGxsaNY9bW1hYUDQCQNmtra/H06dMbx5ycnMT5+fmCImLesn7F2rSb3oXN7ADg3tJ01ZpCMYmxsbER79+/X3YYAEBKTVMQ3Nzc1HWcIq5YAwDmLU1XrSkUAwAAqeSKNQBg3tJ01ZpCMQAAkEquWAMA5i1NV609XnYAAAAAAAAsl0IxAAAAAEDGWXoCAAAgw354881U4z5/+Ys5RwIALJOOYgAAAACAjFMoBgAAAADIOIViAAAAAICMs0YxACvpV7/5/tYxP/3JFwuIBAAAAFafjmIAAAAAgIzTUQwACWP3eQCSyO8nAEg3HcUAAAAAABmnUAwAAAAAkHGWngAgtabZ8C7CpncAAACgoxgAAAAAION0FAMAADAzNr0DgNWkoxgAAAAAIOMUigEAAAAAMs7SEwBknk3vAAAAyDodxQAAAAAAGaejGAAAIMNcWQMAROgoBgAAAADIPIViAAAAAICMUygGAAAAAMg4axQDwJSs4QgAAEBaKRQDAACwcD+8+WaqcZ+//MWcIwEAIhSKSZCTk5PY3Ny8ccze3l7s7e0tKCIAIE0ODg7i4ODgxjEnJycLigYAAJJFoZjEOD8/jw8fPtw45uzsbEHRAABpc3Z2dmuuAQAAWaVQTGI8fvw4NjY2bhyztra2oGgAks8lu3A3a2tr8fTp0xvHnJycxPn5+YIiAgCA5FAoJjE2Njbi/fv3yw4DAEipaZaw2tzc1HUMAEAmKRQDAACQWK6gAYDFUCgmM579+pfLDgEAAAAAEkmhGABm7Fe/+f7WMT/9yRcLiAQAZmea328RfscBwKp6vOwAAAAAAABYLoViAAAAAICMUygGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyLjPlh0AAAAAPNQPb76ZatznL38x50gAYDXpKAYAAAAAyDiFYgAAAACAjLP0BAAAAJlhiQoAuJpCMQAswa9+8/1U4376ky/mHAlAep2cnMTm5uaNY/b29mJvb29BEQEAaXNwcBAHBwc3jjk5OVlQNA+jUAwAKadzCsiq8/Pz+PDhw41jzs7OFhRNdngzFIAsOTs7uzXfWBUKxQAAQCo9fvw4NjY2bhyztra2oGgAgDRaW1uLp0+f3jjm5OQkzs/PFxTR/SkUAwAAqbSxsRHv379fdhisKFfkADCNaZax2tzcXImu48fLDgAAAAAAgOVSKAYAAAAAyDiFYgAAAACAjLNGMQAkmJ3jAQAAWASFYgAAABYuLW+G2vQOgLSw9AQAAAAAQMYpFAMAAAAAZJxCMQAAAABAxlmjGAAAAObMWsYAJJ1CMYlxcnISm5ubN47Z29uLvb29BUUEkC3+gCXtDg4O4uDg4MYxJycnC4oGAACSRaGYxDg/P48PHz7cOObs7GxB0QCslrTsHA/zdHZ2dmuuAbBs3rgFYFkUikmMx48fx8bGxo1j1tbWFhQNAJA2a2tr8fTp0xvHnJycxPn5+YIiAgCA5FAoJjE2Njbi/fv3yw4DAEipaZaw2tzc1HUMCeOqGQBYDIViAAAAWDGWqABg1h4vOwAAAAAAAJZLRzEAAACklM5jAKalUAwAAMDKs5YxADyMQjEAZMg0f0T7AxoAuI4OZYD0UigGAACAjJu2AAxAetnMDgAAAAAg43QUAwB34pJTAFaZtYwXQ74AsHoUismEg4OD+H9b/0/80ed/GKV/86+XHQ7M1dFf/038ww//03wnMw4ODuLs7CzW1tZib29v2eEAGSG/JKn+w1/85/jtP/xj/OiP/kX8+3/3b5cdDozI2Ugqc/N3FIrJhIODg/jw4UP8y7UfSeRJvf/0138T/+Pst+Y7mTF8jX/69GnmEztgceSX6beqncf/8S/+S/y3j6fxr56sKxSTKHI2ksrc/B2FYgBgwqr+YQwArJ5Zb6JnKQuA+1MoBgAAAFLB2sgA96dQDAAAAPfkSpzVpKAMcJlCMQAAAMAVFJSBLFEo5kr7+/vRarXi3bt30e/3I5/PR6FQiN3d3SgWi8sOD4AV4A8rYJz8kqzTeUyENZmBZFMoZkK73Y5yuRz9fj+KxWI0m83I5/PR6XSiVqvFzs7O6PO5XG7Z4QKwRP7gBaYhvwSyYNYFYIBlUChmpN1ux87OTkREVCqVaDQao6/l8/kolUqxvb0d7XY7tre34/j4WDIPAMC15Jdwd96I5S5cwQXMkkIxERHR7/ejXC5HxKekfTyJH9dsNmNrayt6vV6Uy+VotVqLDDNVjv76b+Iffvif8Uef/2GU/s2/XnY4I+KaXhJjSrKk/rySGFcSY4q4f1y3/cH77q/+MiIi/uxnP39QfElycHAQZ2dnsba2Fnt7e8sOZ0RcLJL8cv6S8vsiCXGIIVn+w1/85/jtP/xj/OiP/kX8+3/3bzMdR2JiaP7fM41hVQvPSck5khCHGLiKQjEREaPLASMiarXateOGnR9HR0fRbrfj8PAwKpXKgqJMl//0138T/+Pst/Ev136UqERSXNNLYkxJltSfVxLjSmJMEfOL69mvfxkRET/89/9647hV+oPk4OAgPnz4EE+fPk1U0isuFkl+OX9J+X2RhDiyGMN1b8T+0//6X6N/p+1Ojphth/J//Iv/Ev/t42n8qyfrSy0UJyGOtMawqp3MSck5khCHGLiKQjHR6/Wi3W6P7r948eLG8S9fvoyjo6OI+JT0S+QBABgnv4TVY8kL5mG8oDz4x38Y/busNZ0vxpC0QjYsm0IxUa/XR7eLxeKt68KVSqXR7X6/H0dHRxOfAwAg2+SXkF7TFJSHXc2QdMsuWE9jVbu3WU0KxcTh4eHodqFQmOox+Xw+er1eRES8efNGIg/Ag936h2f9/4qIy51MOkMgeeSXQMTdl7+4iU5m0miW3dV3Pc6sOrzl3umiUJxxnU5n4v6XX3451eMKhcIokR9eJggAi3DxD86LazG++6u/TNXGeLBq5JfAPFgaA5LpIUXmhxSrFajnQ6E448bXjov41MkxjYvjOp3O1N0iADBPz379y1s3xrsLSSjcjfwSWKbxgvJ9N/Ybp/AMyTTLZUPushRI2ikUZ9zbt28n7t+2ftzQj3/844n77969k8gDkBizusw1InQowx3JL4E0eWhOMYti9UNZMxqYlkJxxg0v7xu6b8dHt9udWUwAkCTPfv3LaP/6l1ONHXYd3XQZnQ5l0k5+CZBMyyxWD8//0Dhm3eF9lzh0l5MFjwaDwWDZQbA86+vr0e/3R/ennQ5HR0dRLpdH9yuVSjQajXvF8Ad/8Afxz//8zxER8fjx43sdY9yPfvSj+OM//uOJz52cnMT5+Xk8fvQonvzoj6955GJ9/O3fxflgkKiYIsR1F0mMKUJcd5XEuJIYU4S47mIWMf3TH/zhTGP60R/+4e9+Hz5+HBsbGzM9/kPMIq6/+7u/i9/+9rcPjuX8/DwiIn7/938//umf/unBx8si+eXiJOX1LwlxiCFZcSQhhqTEIYZkxZGEGJISR1Zi+IPPbu+R/f9O+5/iuCIXzVqOqVCccY8ePZq4P+10aLfbsbOzM7pfKpWi2WzeK4bf+73fGz1hAACS4PHjx/G///f/XnYYK0l+CQBwtaTnmJaeYCbGu0bu6vPPP49//Md/jMH/effmoa7q+AAA0m2W3R6PHj2Kzz//fAZR8RDySwBg2bKWYyoUZ1wul3tQEj5+nPv6+7//+wefHwCAZJBfAgCspoe/vc5Ke/LkSaKOAwDAapNfAgCsJoXijLtvp8bFLpGHdHwAAJAe8ksAgNWkUJxxz549m7g/7WWCHz9+nLi/tbU1q5AAAFhh8ksAgNWkUJxx29vbE/d7vd5Uj+t2uxP3i8XizGICAGB1yS8BAFaTQnHGXez4mDaRH+8MyeVykc/nZxkWAAArSn4JALCaFIozrlAoTKz/9vbt26ke9+7du9Hti38MAACQXfJLAIDVpFBMvHjxYnS70+lM9ZjxcbVabeYxAQCwuuSXAACr59FgMBgsOwiWq9PpTKwld9uUaLfbsbOzExER+Xz+0npyAABkm/wSAGD16CgmCoXCxGYhR0dHN45vNpuj27o9AAC4SH4JALB6dBQTEZ82Gdna2oqIT4n98fHxleP6/X6sr69HxKedqFut1sJiBABgdcgvAQBWi45iIuLTJX7DTo5OpxP7+/tXjnv+/HlEfNqJerzzAwAAxskvAQBWi0IxI6VSKVqtVuRyuajValEul6PT6US/3492ux3b29vR6XSiUCjE999/P7GbNQAAXCS/BABYHQrFTCgWi3F6ehr1ej16vV48f/481tfXo1wux5MnT6LZbMbx8fHCkvj9/f3Y2dmJ9fX1ePToUWxtbUW5XI52u53qc5NNSZ9zvV5vtNEQPNRwPt22bumsJP35BWm2qPwybXmj1630SNvcHLfo3+fMTprmZafTid3d3dja2opHjx6Njlmr1aLf7882eOYuTXOz1+tNzM319fXY3t6O3d3d6PV6M45+RgaQQK1Wa5DL5QYRMSgWi4NWqzXodruDZrM5yOfzo8+fnp6m6txk07Ln3Onp6SAipvqoVCpziYHsOD09HZRKpdGcajQacz3fsp9fwPylLW/0upUeaZub4xb9+5zZSdO8vDgPr/swP1dDmubmYDAY1Ov1W+dmvV6f+ffyUArFJE6r1bq1KFUoFAYRMcjn8zN9kVjmucmmJMy5aX6BDT+63e7Mz082nJ6eDqrV6kIT9yQ8v4D5Slve6HUrPdI2N4eW8fuc2UnTvDw9PR0V8DS8rL40zc3BYDAoFouDiBjkcrlBqVQaVKvVQalUunLONpvNmX0vs6BQTKKcnp6O3sXJ5/PXjut2u6MnVbFYXPlzk01JmXPDGG77MN+5r3q9Psjn86OEaRF/WCbl+QXMT9ryRq9b6ZG2uTm0jN/nzE7a5uVwHhYKhUGz2Rx0u91RB+hVb2YksSDHJ2mbm8P5d1238FWNWkmSrGjIvPGk47ZkY9aXOi3z3GRTEuZco9EYRMSgWq0OWq3WjR+6lriP4+PjwfHx8ej+cM7N+zU0Cc8vYL7Sljd63UqPtM3NwWB5v8+ZnTTNy/G/Ya7T7XZHXaDDj1wu96Dvg/lI09wcFpRbrdaNx6pUKhNzc/z1ddkUikmM8XdoIuLWolSz2ZzZC/4yz002JWXO5fP5G985hVk7Pj6e+x+WSXl+AfOTtrzR61Z6pG1uXmcRv8+ZnbTNy2Fn+13PPU0Bj8VK29wslUpTrTt8cZ+gJK1V/DggIer1+uh2sVi8defrUqk0ut3v9x+00+4yz002JWHOHR0dRa/Xi1qt9uBjwbRum+uzkITnFzBfacsbvW6lR9rm5nUW8fuc2UnTvOx0OtHr9aLZbN567nw+P3H+4eNJjjTNzeHnq9XqrefO5XKRz+cn7ieFQjGJcXh4OLpdKBSmesz4E+vNmzcreW6yKQlz7quvvopcLhcvXrx48LEgSZLw/ALmK215o9et9Ejb3CQd0jQv37x5E5VKZerCWrFYnLj/t3/7t1M9jsVI09yMiGi1WlOf/+PHj6Pbz549m/px86ZQTCJcfFfvyy+/nOpx40/m+76TtMxzk01JmHOdTic6nU70+/1YX1+Pra2t2N3dNZdZeUl4fgHzlba80etWeqRtbpIOaZuXL1++vNQlPO2xIiK2tramfizzlba5eRf9fj/6/X5EfHozY9pC9SIoFJMI7XZ74v74uzQ3uTjuPpeRLPPcZFMS5tzF5SZ6vV4cHh5GuVyOR48eRblcNqdZSUl4fgHzlba80etWeqRtbpIOaZuXhULhTpfpD4txd42B+Uvb3LyLb7/9dnS8aZZRWSSFYhLh7du3E/enfeH/8Y9/PHH/3bt3K3VusmnZc67X6136xXjR0dFRbG9vx+7u7r3OAcuy7OcXMH9pyxu9bqVH2uYm6ZD1ednr9SbuX1yKguXJ6tzs9/uxu7sbhUIhWq1WotYnjoj4bNkBQMTlF+/7vpvT7XZX6txk07LnXD6fj0ajEf1+P7rdbrTb7UsxDR0eHsa7d+/i+Pj4XueCRVv28wuYv7TljV630iNtc5N0yPq8HC/kVSqVex+H2cvi3Oz1erGzsxO5XC6+++67xBWJI3QUkxDXFanu6uJlJUk/N9mUhDlXqVSiWq1Go9GIbrcbp6enUa/Xr/xF1el0Ymdn5/6BwgIl4fkFzFfa8kavW+mRtrlJOmR9XjYajdHti8vvsVxZm5tHR0extbUVvV5vtFfQ/v7+TOKYJYViEuG+L/wXi1rju0auwrnJpiTOuVwuF9VqNU5PT6PZbF46V7vdTuQvMbgoic8vYLbSljd63UqPtM1N0iHL87LX643WkK3X69YnTpgszM1+vx/7+/uxtbUV5XL50tdrtdqVn18mhWJSZZnvgHv3nUWb15wrlUrx/fffX9p59auvvprL+SCJvKZD+qUtb/S6lR5pm5ukwyrOy3q9HhGflguoVqszjIgkSfLcbLfb0e12o1gsXrs+9tHRUaKashSKSYRZrctyn+Ms89xk0yrMuVwuF8fHxxPF4n6/f+smeLBsq/D8Ah4mbXmj1630SNvcJB2yOi87nU4cHh5GLpeLVqs1kziYrSzMzVKpFI1GIxqNRrRarRgMBtFoNC49rlarJeaNOoViEuHJkydLO84yz002rdKc+/rrryfuS7JIulV6fgH3k7a80etWeqRtbpIOWZ2Xr169ioiI7777zpITCZXVuVmpVOL4+PhSsfjw8HAmMT2UQjGJcN93cy6+47LId5JmcW6yaZXmXKFQmLhEZlaL/sO8rNLzC7iftOWNXrfSI21zk3TI4rzc3d2NTqcTzWbz0nJ6JEcW5+ZQPp+P7777buJzb9++vdexZk2hmER49uzZxP1pW+4vLhy+tbW1Uucmm1Ztzu3s7CzkPDALq/b8Au4ubXmj1630SNvcJB2yNi8PDw/j8PAwGo1GlEqlqR/H4mVtbl5UKBQm5mhSmrIUikmE7e3tifvTPkG63e7E/esWB0/qucmmVZtz45dquRyRpFu15xdwd2nLG71upUfa5ibpkKV52W63Y3d3NxqNRlQqlemCZGmyNDev8/Lly9FtaxTDmIvv5kz7JB1/IuVyuXutPbTMc5NNqzbnxs/jckSSbtWeX8DdpS1v9LqVHmmbm6RDVuZlp9OJnZ2dqNfrisQrIitz8ybjS6Mk5W9thWISoVAoTDwppl2b5d27d6PbF5/oq3BusmnV5tz4eS1DQdKt2vMLuLu05Y1et9IjbXOTdMjCvOz1evH8+fOoVqtRrVbvHCfLkYW5eRdJeQ1WKCYxXrx4Mbrd6XSmesz4uFqttpLnJptWac6NX17jckRWwSo9v4D7SVve6HUrPdI2N0mHNM/LXq8X29vbUalUol6vT3X8Xq8X+/v7U41lvtI8N6cx3smcmKasASTE8fHxICJGH7dptVqjsfl8fmXPTTat0pzL5/ODiBhUq9WFnpd06na7E3O/0WjM/Byr9PwC7idteaPXrfRI29y8ziJ+nzM7aZ2Xp6eng3w+P6hUKneKqVAoDI6Pj+/0GOYjrXNzWvV6fRARg1wuN5PjzYKOYhKjUChMdCseHR3dOL7ZbI5u3/ZOzuHhYdRqtWvXnZnnueEqy5zvd3F0dBS9Xi9yuVy8fv36wceDWWzS4DUdSFve6HUrPdI2N6+TlE2XmE4a52W/34/t7e3I5/Oj89/20W63R5uYja8Ny/KkcW7exVdffRUREV9//fVMjjcTy65Uw7jxd6YLhcK1405PT0fjisXijccsFosT7xKdnp4u7Nxwk2XM91arNcjlcqNj3fROerfbHY31jjuz0mw2J+ZovV6/0+O9pgNDacsbvW6lR9rm5lUe+vucxUvbvCwUChPnvsuHDvhkSdPcrNfrg0KhMKhWq9eec6harQ4iknflrkIxiTOedFyXcAx/KeRyuVuffHf5pTDrc8NtFj3fK5XKpTFXXao1LCjn8/lBt9u99/cH44aXB47Pv5sSsqt4TQfGpS1v9LqVHmmbm+Nm8fuc5UjLvHxIkThCGSyJ0jA3x4vJw4/risClUunG8y2TZwiJNN71WCqVBsfHx4PT09NBq9UaPUELhcJUSc3wOMOPVqu1sHPDNBY538fXVRr/yOVyg1KpNKhUKqNzTvMuKNzm9PR0UCqVLr2rf/GjWCyO5v9NvKYDF6Utb/S6lR5pmpuz/n3O8qz6vBwW2O77cdf1jFmcVZ+bg8Hg0pto439rV6vVQbFYHN1PakOWQjGJNmzbHz5hc7ncoFgsDprN5tTHaLVag3w+P8jlcndq6Z/FueEuFjXfu93uoFKpjMYNz5XP5welUmnQbDb98UlieU0HrpO2vNHrVnqkbW6SDuYlSbXKc/P09HRQrVYvHWP4t3aj0Uj839qPBoPBIAAAAAAAyKzHyw4AAAAAAIDlUigGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyDiFYgAAAACAjFMoBgAAAADIOIViAAAAAICMUygGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyDiFYgAAAACAjFMoBgAAAADIOIViAAAAACCTer1e1Gq12NnZWXYoS/fZsgMAAIBp9Xq9aDQa0el0otVqLTscAABW1OHhYdTr9ej1ehERkc/nlxzR8j0aDAaDZQcBAAA3uSqR73a7S44KAIBVt76+Hv1+X34Zlp4AAGAFVCqV6Ha7kcvllh0KAABLUqvVZn5MncS/o1AMAMBcSOQBAJiV3d3daLfbMz/ukydPZn7MVaVQDADAzEnkAQCYlaOjozg8PFx2GKmnUAwAwExJ5AEAmJV2ux3lcnnZYWSCQjEAADMjkQcAsqrX60Wv14t+vz+T462vr4828l2UXq8X+/v7sbW1NTp3p9OJnZ2dePToUayvr8fu7u7EYzqdTpTL5VhfX4/19fXY2dm5Me5erxe7u7uxvb0dOzs7sbW1FTs7O3F0dHRp7NHRUezs7Eyc69GjR6NYrtLv90fHX19fj62trSiXy1Nf7TZ8/Pr6ejx69Ci2t7evjO3i9zTL//tlUSgGADJJIi+RX/VEHgBIlmGu9OrVqwcfa39/P/r9fjQajRlEdrthDrm1tRW1Wm2UH+7u7sbz588jIqJQKES/34/Dw8NRY0CtVovt7e3o9/vx7Nmz6Pf70W63Y3t7+8rzHB0dxdbWVnz8+DGOj4+j1WpFt9uNiIhyuXxpj4tSqRSDwWC0T0WhUIjBYBCDwSBOT08vHX9/fz+++OKL2N7eju+++y5OT0+j0WiM8tTb9tDodDrxxRdfxLfffhvPnj0bfa5cLt+YY87y/36pBgAAGZTP5wcRMSiVSg8+Vr1eH0TEoFqtziCy2x0fHw+KxeIgIkYf3W53UKlUBrlcblAsFgeFQmH0teH3WK1WBxExKBaLE4/P5XJXnqfZbF75Mxo+9rrvd/izLRQKN34f9Xp9kMvlBo1GY3B6ejoYDAaDVqs1iuuq4w/Pnc/nB8fHx4NcLjf6nsd/Hs1m89rzzvL/HgBgaJY5xvBY1+Vp8zLMF4f51sWcqlKpjL5eLBYH9Xp94uvHx8ejrzcajUvHvy5XG3/cMC8cN01+OYy91Wpd+tp4btztdie+Nswjc7ncoFAoDI6Pj0df63a7g1wuN/p5XCct+aWOYgCABxp2eixqXd5CoRCtViuq1eroczs7O7GzsxOnp6fRarXi+Pg4KpVKRPyu0/fHP/5xDAaDaLVaozERMeoMuWjYKfLy5cuJz9fr9Yj4XafLfdRqtajVatFsNqNSqUQul4uIiGKxGIVCYXT867qdP378GK9evRp1igy7UYbHua1bBAAgqY6OjkY5UL/fv/VqqVn68ssvR7fr9XqUSqWJr49frZbL5Sby0YhPeeqw+7fVak187aar2IY5XETEu3fv7hx3p9OJ/f39KBaLUSwWL3399evXUx3nu+++G+WiERH5fD5evHgRETfHnxYKxQAADyCRl8gDAMzSV199deP9RRnP+YaGuePF21c97mI+ls/no9FoXJm3PnnyZHT7Po0IwyaB6/bKKJVK0e124/T09Nq4nzx5cuX3PL6MRtpzzM+WHQAAwCq7KpG/mPguwrwS+X6/v7RE/rpkfRjDNIn8dd83AEASdTqd6HQ6V35u/A3yZbkuNxs3zBWvyhOHV7wN9fv9+PbbbyfGfvz48c5xDfe3GK4rfJVZ5IVp3+NCRzEAwD3dlMgnwSwS+fEu5OESFePLVMwzkZ8m/pukPZEHANLnuu7hWW9qd93SY4vS6XRid3c3vv3226hUKpcKyHeR9i7fRVIoBgC4J4n83UnkAQCuNr6MWbPZnPjaLHPBfr8f29vbl5YeW4R+vx87OztRLpejXq8/KK8cP+aQXPNhFIoBAO5BIn//Yw5J5AEAfmfYhFCpVKJUKl1aKmEWOWa/34/nz59Hr9eLnZ2dBx/vruf+4osvot1uR6vVevDVY0PjS3IsI2dOE4ViAIB7kMjfj0QeAOBqw/xxuJ/D8N+her3+4HM8f/58tEzacBPgRanVatHv9yOXy13Kne+znNm4Ya56eHh4YzNCr9eL/f39B50rzRSKAQDuQSJ/fxJ5AIBJh4eH0e/3o1gsjnKvi1dz9Xq90V4Pd9XpdGJra2uUW85iP4i7evfuXURcvY/EbXtLDGO9btz4z6pcLl85rtfrRblcvvRzfWhumyYKxQAAdySRv/y5cRJ5AIC7GTYZXGw+uJgL3XUvjE6nE+VyOba3tyfeoM/lcqNNiu97JdxdNw4ebqIcERPNAJ1OJ169ejW63+12Lx1/+Nherzf6fL/fH+Xb9Xp9lIN2Op344osvolarxdHRUbTb7ajVarG9vR2vX7++Nq+WZyoUAwDcmUReIg8AMCvtdjt6vV7k8/koFosTX9vd3Z24f3R0NHVed3R0FNvb26N9NcYNNyve3d2dyGnfvn07un3VeYaNDBG/ayy4aJjHXrxybPx7qdVqsbW1Fevr6/Hq1auJPT/29/dja2trYuPo8cdub2+PcuZnz56NPn98fDxq4uj3+7G/vx/lcjl2dnZif38/6vV6lEqla+Pt9/tXfs/Hx8e3fs+pMQAAyKB8Pj+IiEGpVLrT41qt1iAiBvl8/tLXjo+PBxEx8XF6ejrVcZvN5qXHXvWRy+VGj6lWq6PPN5vNG+MpFApXnnf4c7iYFl6MJ5/PD3K53KBQKAy63e6lr1Wr1Ssfm8/nB6VSaZDP5yd+Ft1ud+LcFz8ajcaV8eZyuRt/tpVK5dZj3Pf/HgDgJvfNMYrF4o25S6FQmMiT6vX6nWMb5rBX5X2Dwae8cTyPGuad1Wp10O12B6enp4NqtTqRi0XEoFgsjuJuNBqXYs3n8xPxNhqN0c8pn89PfM+NRmOQy+UuPWZoeP5cLjcolUrX5tnVanXiHKVSadDtdi+Nuy7eYV57fHw8KJVKl/LUSqVy6VhpyS8VigGATJLIS+RXPZEHAJLlPjnG8A348WaAixqNxrWNA9Mazx2vayDg/tKSXz4aDAaDmzqOAQDSaGtrK3q9XpRKpYlL3W7S6/Via2srcrlcnJ6eXjnm8PBw4tK4m8ZeZ3d3d7TERKFQmLjcjYe7z/89AMBt7pNjDPO+arV642bI6+vrE8siNJvNK5dRuC22iE/LgFWr1akfy+3Skl9aoxgAYErD5P3iWsTjKpXKxLq6/X7/ynXhbjK+Cd7Lly/vFiQAACuh3++PmgNev35949gXL15M3L/LXhj9fn9iveCL6yDDkEIxAMAUJPIAAMzSMLcslUrXbuA7dHET5eEGeNMYb0KI+HTFGlxFoRgAYAoSeQAAZumrr76KiNubECIi8vn8pbzwpqUqxrVardFtTQjcRKEYAGAKEnkAAGbl6Ogo+v1+FAqFqRsDLuahw0aG23z77bej2+VyefogyRyFYgCAW0jkAQCYpbs0IQxddWXbbTlmr9eb2ARPIwI3USgGALiFRB4AgFnpdDrR6XQil8tFqVS602Mvbqp8214Y48ua5XK5yOfzdzof2aJQDABwA4k8AACzdJ8mhKHd3d2J+8Nc9TqWNeMuFIoBAG4gkQcAYFb6/X4cHR1FxOWmgmnk8/lLeeIwX73KeCPCy5cv73w+skWhGADgGhJ5AABmaZgLViqVS8uUTetiM8JwP42LLGvGXSkUAwBcQyIPAMAsDfesqNVq9z7GtHthDBseIj41MIw/ZtqNlskWhWIAgGtI5AEAmJXDw8Po9/tRLBYfvBfFNHthXLes2f7+/oPOTXopFAMAXEEiDwDALNXr9Yh4WBPC0MX9M3q93sQyZhGTy5rt7OxExKfmhFarNZGf9nq92N/fj3K5HNvb2/Ho0aMr99U4PDyM9fX1S1fMkR6fLTsAAIAkmnUiP17wHSby4wXhmxL58SLyRb1ebzTu3bt38ezZs4nx/X4/Xr16Fe12O16/fh3VavXB3w8AAHfTbrej1+tFxOWlyWalXq+P8suLhd63b9/Gx48fo9FoxHfffXfpscPHDa9y++qrr6LZbE6MOT4+jn6/H4eHh1Gr1R7cTEHyKBQDAFyQ9ET+YqzD47Tb7Wi329HpdKJQKES/34/t7e2I+FQwbrVaCsUAAEswbEKIiFGeOWvDHDafz186x/7+fuTz+Tg+Pr60LNqw4FsoFCLiU6PEcF+N8bGNRiM+fvwYR0dH8eTJk7l8DyyXQjEAwAVJTuQvGl42WCgURt3P7XY7CoVClMvlaDabUSgURucCAGDxbrpCbB5KpVJUKpX49ttv48mTJ1EqlSZy3OtUKpVRTvntt99eWkLt66+/jk6nc++Nnkk2axQDAFzQarViMBjM/WNYuB0m8rlcLvL5fFSr1eh2u3dOwIedxa1Wa7TO3LAzRJEYACBbGo1GnJ6eRrfbnapIHBGRy+VGOeXFpSciIt69exelUmmmcZIcOooBABKg0WhcucndXezs7IyWn4hYfOcKAACrr1wuT+SU4xqNRnz99ddLiIpF0FEMAJAS45vjTds1AgAA48ZzyvG9NPr9fjx58sSyEymmUAwAkBLDZSYiIj5+/LjESAAAWFX5fH60bNl4V3GtVhutX0w6KRQDAKTE+KZ4lp0AAOC+hg0Ib9++jYjf5Zn2vUg3hWIAgJQol8ujSwWvWlMOAACmsbOzExG/W3qiVqtZ2iwDbGYHAJACu7u7sbu7G/l8Ptrt9sR6cgAAcBfD5oNerxftdju+/PJLaxNngEIxAMCKa7fb8fHjx6hUKtHv90ef73Q6o8sGDw8Po1KpLClCAID063a7yw5hZsaXmKjVanF8fLzEaJIvLf/3lp4AADKp2+3GYDCIZrO57FDurN/vj5aW6PV6Ua/XR99HLpcbFYcbjUZEfOo2fvbs2XKCTaBV/r8HAFiUYU5pyYnsUCgGAFgx5XI5dnZ2Yn19PXZ2di4VPIeXCh4eHsbW1lZsb2+PEn0AAJjGkydPolQqjXJL0k+hGABgxZTL5cjlcvHkyZNotVqX1ot7/fp15PP5yOVysbu7a8kJAADupN/vx8ePH12BlTGPBoPBYNlBAAAAAADJUC6X4/Xr165KyxgdxQAAAABARETs7+/Hzs6OInEGKRQDAAAAQAb1+/3Y39+Pfr8fERFHR0cREZYuyyhLTwAAAABABpXL5VFxuFAoxMuXL6NarS45KpZFoRgAAAAAMqjdbke5XI4nT55Eo9GIYrG47JBYIoViAAAAAICMs0YxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxv3/JhxtpX9goYcAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1400x1500 with 6 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, axes = plt.subplots(3, 2, figsize=(14, 15), sharey=False)\n",
|
|
"# 0,0\n",
|
|
"axes[0, 0].hist(\n",
|
|
" train_sig.chi2,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[0, 0].hist(\n",
|
|
" train_bkg.chi2,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[0, 0].set_xlabel(r\"$\\chi^{2}_{\\mathrm{match}}$\")\n",
|
|
"axes[0, 0].legend(prop={\"size\": 20})\n",
|
|
"# 1,0\n",
|
|
"axes[1, 0].hist(\n",
|
|
" train_sig.distX,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 150),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[1, 0].hist(\n",
|
|
" train_bkg.distX,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 150),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[1, 0].set_xlabel(r\"$D_{x}$ [mm]\")\n",
|
|
"axes[1, 0].set_ylabel(\"Number of Tracks (normalised)\",\n",
|
|
" va=\"bottom\",\n",
|
|
" ha=\"center\")\n",
|
|
"# 0,1\n",
|
|
"axes[0, 1].hist(\n",
|
|
" train_sig.teta2,\n",
|
|
" bins=50,\n",
|
|
" range=(0.0, 0.02),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[0, 1].hist(\n",
|
|
" train_bkg.teta2,\n",
|
|
" bins=50,\n",
|
|
" range=(0.0, 0.02),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[0, 1].set_xlabel(r\"$t_{x}^{2}+t_{y}^{2}$\")\n",
|
|
"# 1,1\n",
|
|
"axes[1, 1].hist(\n",
|
|
" train_sig.distY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 150),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[1, 1].hist(\n",
|
|
" train_bkg.distY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 150),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[1, 1].set_xlabel(r\"$D_{y}$ [mm]\")\n",
|
|
"# 2,0\n",
|
|
"axes[2, 0].hist(\n",
|
|
" train_sig.dSlope,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[2, 0].hist(\n",
|
|
" train_bkg.dSlope,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[2, 0].set_xlabel(r\"$|\\Delta t_{x}^{\\mathrm{match}}|$\")\n",
|
|
"# 2,1\n",
|
|
"axes[2, 1].hist(\n",
|
|
" train_sig.dSlopeY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 0.03),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[2, 1].hist(\n",
|
|
" train_bkg.dSlopeY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 0.03),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[2, 1].set_xlabel(r\"$|\\Delta t_{y}^{\\mathrm{match}}|$\")\n",
|
|
"plt.savefig(\n",
|
|
" \"/work/cetin/LHCb/reco_tuner/thesis/new_electron_NN_variables.pdf\",\n",
|
|
" format=\"PDF\",\n",
|
|
")\n",
|
|
"# plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig, axes = plt.subplots(2, 3, figsize=(25, 13), sharey=False)\n",
|
|
"# 0,0\n",
|
|
"axes[0, 0].hist(\n",
|
|
" train_sig.chi2,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[0, 0].hist(\n",
|
|
" train_bkg.chi2,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[0, 0].set_xlabel(r\"$\\chi^{2}_{\\mathrm{match}}$\")\n",
|
|
"axes[0, 0].legend(prop={\"size\": 20})\n",
|
|
"\n",
|
|
"# 0,1\n",
|
|
"axes[0, 1].hist(\n",
|
|
" train_sig.teta2,\n",
|
|
" bins=50,\n",
|
|
" range=(0.0, 0.02),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[0, 1].hist(\n",
|
|
" train_bkg.teta2,\n",
|
|
" bins=50,\n",
|
|
" range=(0.0, 0.02),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[0, 1].set_xlabel(r\"$t_{x}^{2}+t_{y}^{2}$\")\n",
|
|
"# 0,2\n",
|
|
"axes[0, 2].hist(\n",
|
|
" train_sig.distX,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 100),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[0, 2].hist(\n",
|
|
" train_bkg.distX,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 100),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[0, 2].set_xlabel(r\"$D_{x}$ [mm]\")\n",
|
|
"axes[0, 0].set_ylabel(\"Number of tracks (normalised)\", va=\"bottom\", ha=\"center\")\n",
|
|
"# 1,0\n",
|
|
"axes[1, 0].hist(\n",
|
|
" train_sig.distY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 100),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[1, 0].hist(\n",
|
|
" train_bkg.distY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 100),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[1, 0].set_xlabel(r\"$D_{y}$ [mm]\")\n",
|
|
"# 2,0\n",
|
|
"axes[1, 1].hist(\n",
|
|
" train_sig.dSlope,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[1, 1].hist(\n",
|
|
" train_bkg.dSlope,\n",
|
|
" bins=50,\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[1, 1].set_xlabel(r\"$|\\Delta t_{x}^{\\mathrm{match}}|$\")\n",
|
|
"# 2,1\n",
|
|
"axes[1, 2].hist(\n",
|
|
" train_sig.dSlopeY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 0.02),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#107E7D\",\n",
|
|
" label=\"training sample, true pairs\",\n",
|
|
")\n",
|
|
"axes[1, 2].hist(\n",
|
|
" train_bkg.dSlopeY,\n",
|
|
" bins=50,\n",
|
|
" range=(0, 0.02),\n",
|
|
" alpha=0.5,\n",
|
|
" density=True,\n",
|
|
" log=False,\n",
|
|
" color=\"#F05342\",\n",
|
|
" label=\"training sample, wrong pairs\",\n",
|
|
")\n",
|
|
"axes[1, 2].set_xlabel(r\"$|\\Delta t_{y}^{\\mathrm{match}}|$\")\n",
|
|
"plt.savefig(\n",
|
|
" \"/work/cetin/LHCb/reco_tuner/thesis/newparams_filtered_NN_elec_variables_landscape.pdf\",\n",
|
|
" format=\"PDF\",\n",
|
|
")\n",
|
|
"# plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "tuner",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|