258 lines
8.0 KiB
Python
258 lines
8.0 KiB
Python
# flake8: noqa
|
|
from parameterisations.utils.parse_regression_coef_to_array import (
|
|
parse_regression_coef_to_array,
|
|
)
|
|
from parameterisations.utils.fit_linear_regression_model import (
|
|
fit_linear_regression_model,
|
|
)
|
|
import uproot
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
|
|
def parameterise_track_model(
|
|
input_file: str = "data/param_data_selected.root",
|
|
tree_name: str = "Selected",
|
|
) -> Path:
|
|
"""Function that calculates the parameterisations to estimate track model coefficients.
|
|
|
|
Args:
|
|
input_file (str, optional): Defaults to "data/param_data_selected.root".
|
|
tree_name (str, optional): Defaults to "Selected".
|
|
|
|
Returns:
|
|
Path: Path to cpp code files containing the found parameters.
|
|
"""
|
|
input_tree = uproot.open({input_file: tree_name})
|
|
# this is an event list of dictionaries containing awkward arrays
|
|
array = input_tree.arrays()
|
|
array["dSlope_fringe"] = array["tx_ref"] - array["tx"]
|
|
array["dSlope_fringe_abs"] = abs(array["dSlope_fringe"])
|
|
array["yStraightRef"] = array["y"] + array["ty"] * (array["z_ref"] - array["z"])
|
|
array["y_ref_straight_diff"] = array["y_ref"] - array["yStraightRef"]
|
|
array["ty_ref_straight_diff"] = array["ty_ref"] - array["ty"]
|
|
array["dSlope_xEndT"] = array["tx_l11"] - array["tx"]
|
|
array["dSlope_yEndT"] = array["ty_l11"] - array["ty"]
|
|
array["dSlope_xEndT_abs"] = abs(array["dSlope_xEndT"])
|
|
array["dSlope_yEndT_abs"] = abs(array["dSlope_yEndT"])
|
|
array["yStraightOut"] = array["y"] + array["ty"] * (array["z_out"] - array["z"])
|
|
array["yDiffOut"] = array["y_out"] - array["yStraightOut"]
|
|
array["yStraightEndT"] = array["y"] + array["ty"] * (9410.0 - array["z"])
|
|
array["yDiffEndT"] = (
|
|
array["y_l11"] + array["ty_l11"] * (9410.0 - array["z_l11"])
|
|
) - array["yStraightEndT"]
|
|
|
|
stereo_layers = [1, 2, 5, 6, 9, 10]
|
|
for layer in stereo_layers:
|
|
array[f"y_straight_diff_l{layer}"] = (
|
|
array[f"y_l{layer}"]
|
|
- array["y"]
|
|
- array["ty"] * (array[f"z_l{layer}"] - array["z"])
|
|
)
|
|
|
|
model_cx, poly_features_cx = fit_linear_regression_model(
|
|
array,
|
|
target_feat="CX_ex",
|
|
features=["tx", "ty", "dSlope_fringe"],
|
|
degree=3,
|
|
keep_only_linear_in="dSlope_fringe",
|
|
fit_intercept=False,
|
|
)
|
|
model_dx, poly_features_dx = fit_linear_regression_model(
|
|
array,
|
|
target_feat="DX_ex",
|
|
features=["tx", "ty", "dSlope_fringe"],
|
|
degree=3,
|
|
keep_only_linear_in="dSlope_fringe",
|
|
fit_intercept=False,
|
|
)
|
|
# this list has been found empirically by C.Hasse
|
|
keep_y_corr = [
|
|
"ty dSlope_fringe_abs",
|
|
"ty tx^2 dSlope_fringe_abs",
|
|
"ty^3 dSlope_fringe_abs",
|
|
"ty^3 tx^2 dSlope_fringe_abs",
|
|
"dSlope_fringe",
|
|
"ty tx dSlope_fringe",
|
|
"ty tx^3 dSlope_fringe",
|
|
"ty^3 tx dSlope_fringe",
|
|
]
|
|
model_y_corr_ref, poly_features_y_corr_ref = fit_linear_regression_model(
|
|
array,
|
|
target_feat="y_ref_straight_diff",
|
|
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
|
|
keep=keep_y_corr,
|
|
degree=6,
|
|
fit_intercept=False,
|
|
)
|
|
rows = []
|
|
for layer in stereo_layers:
|
|
model_y_corr_l, poly_features_y_corr_l = fit_linear_regression_model(
|
|
array,
|
|
target_feat=f"y_straight_diff_l{layer}",
|
|
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
|
|
keep=keep_y_corr,
|
|
degree=6,
|
|
fit_intercept=False,
|
|
)
|
|
rows.append(
|
|
"{"
|
|
+ ",".join(
|
|
[str(coef) + "f" for coef in model_y_corr_l.coef_ if coef != 0.0],
|
|
)
|
|
+ "}",
|
|
)
|
|
|
|
model_ty_corr_ref, poly_features_ty_corr_ref = fit_linear_regression_model(
|
|
array,
|
|
target_feat="ty_ref_straight_diff",
|
|
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
|
|
# this list was found by using Lasso regularisation to drop useless features
|
|
keep=[
|
|
"ty dSlope_fringe^2",
|
|
"ty tx^2 dSlope_fringe_abs",
|
|
"ty^3 dSlope_fringe_abs",
|
|
"ty^3 tx^2 dSlope_fringe_abs",
|
|
"ty tx dSlope_fringe",
|
|
"ty tx^3 dSlope_fringe",
|
|
],
|
|
degree=6,
|
|
fit_intercept=False,
|
|
)
|
|
|
|
model_cy, poly_features_cy = fit_linear_regression_model(
|
|
array,
|
|
target_feat="CY_ex",
|
|
features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"],
|
|
# this list was found by using Lasso regularisation to drop useless features
|
|
keep=[
|
|
"ty dSlope_fringe^2",
|
|
"ty dSlope_fringe_abs",
|
|
"ty tx^2 dSlope_fringe_abs",
|
|
"ty^3 dSlope_fringe_abs",
|
|
"ty tx dSlope_fringe",
|
|
],
|
|
degree=4,
|
|
fit_intercept=False,
|
|
)
|
|
|
|
model_y_match, poly_features_y_match = fit_linear_regression_model(
|
|
array,
|
|
target_feat="yDiffOut",
|
|
features=[
|
|
"ty",
|
|
"dSlope_xEndT",
|
|
"dSlope_yEndT",
|
|
],
|
|
keep=[
|
|
"ty dSlope_yEndT^2",
|
|
"ty dSlope_xEndT^2",
|
|
],
|
|
degree=3,
|
|
fit_intercept=False,
|
|
)
|
|
keep_y_match_precise = [
|
|
"dSlope_yEndT",
|
|
"ty dSlope_xEndT_abs",
|
|
"ty dSlope_yEndT_abs",
|
|
"ty dSlope_yEndT^2",
|
|
"ty dSlope_xEndT^2",
|
|
"ty tx dSlope_xEndT",
|
|
"tx^2 dSlope_yEndT",
|
|
"ty tx^2 dSlope_xEndT_abs",
|
|
"ty^3 tx dSlope_xEndT",
|
|
]
|
|
model_y_match_precise, poly_features_y_match_precise = fit_linear_regression_model(
|
|
array,
|
|
"yDiffEndT",
|
|
[
|
|
"ty",
|
|
"tx",
|
|
"dSlope_xEndT",
|
|
"dSlope_yEndT",
|
|
"dSlope_xEndT_abs",
|
|
"dSlope_yEndT_abs",
|
|
],
|
|
keep=keep_y_match_precise,
|
|
degree=5,
|
|
)
|
|
|
|
cpp_cx = parse_regression_coef_to_array(model_cx, poly_features_cx, "cxParams")
|
|
cpp_dx = parse_regression_coef_to_array(model_dx, poly_features_dx, "dxParams")
|
|
cpp_y_corr_layers = parse_regression_coef_to_array(
|
|
model_y_corr_l,
|
|
poly_features_y_corr_l,
|
|
"yCorrParamsLayers",
|
|
rows=rows,
|
|
)
|
|
cpp_y_corr_ref = parse_regression_coef_to_array(
|
|
model_y_corr_ref,
|
|
poly_features_y_corr_ref,
|
|
"yCorrParamsRef",
|
|
)
|
|
cpp_ty_corr_ref = parse_regression_coef_to_array(
|
|
model_ty_corr_ref,
|
|
poly_features_ty_corr_ref,
|
|
"tyCorrParamsRef",
|
|
)
|
|
cpp_cy = parse_regression_coef_to_array(model_cy, poly_features_cy, "cyParams")
|
|
cpp_y_match = parse_regression_coef_to_array(
|
|
model_y_match,
|
|
poly_features_y_match,
|
|
"bendYParamsMatch",
|
|
)
|
|
cpp_y_match_precise = parse_regression_coef_to_array(
|
|
model_y_match_precise,
|
|
poly_features_y_match_precise,
|
|
"bendYParams",
|
|
)
|
|
|
|
outpath = Path("parameterisations/result/track_model_params.hpp")
|
|
outpath.parent.mkdir(parents=True, exist_ok=True)
|
|
with open(outpath, "w") as result:
|
|
result.writelines(
|
|
cpp_cx
|
|
+ cpp_dx
|
|
+ cpp_y_corr_layers
|
|
+ cpp_y_corr_ref
|
|
+ cpp_ty_corr_ref
|
|
+ cpp_cy
|
|
+ cpp_y_match
|
|
+ cpp_y_match_precise,
|
|
)
|
|
return outpath
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--input-file",
|
|
type=str,
|
|
help="Path to the input file",
|
|
required=False,
|
|
)
|
|
parser.add_argument(
|
|
"--tree-name",
|
|
type=str,
|
|
help="Path to the input file",
|
|
required=False,
|
|
)
|
|
args = parser.parse_args()
|
|
args_dict = {arg: val for arg, val in vars(args).items() if val is not None}
|
|
outfile = parameterise_track_model(**args_dict)
|
|
|
|
try:
|
|
import subprocess
|
|
|
|
# run clang-format for nicer looking result
|
|
subprocess.run(
|
|
[
|
|
"clang-format",
|
|
"-i",
|
|
f"{outfile}",
|
|
],
|
|
check=True,
|
|
)
|
|
except:
|
|
pass
|