Go to file
2023-12-19 13:00:59 +01:00
electron_training first commit 2023-12-19 13:00:59 +01:00
env first commit 2023-12-19 13:00:59 +01:00
moore_options first commit 2023-12-19 13:00:59 +01:00
neural_net_training first commit 2023-12-19 13:00:59 +01:00
nn_electron_training first commit 2023-12-19 13:00:59 +01:00
nn_trackinglosses_training/result first commit 2023-12-19 13:00:59 +01:00
outputs_nn first commit 2023-12-19 13:00:59 +01:00
parameterisations first commit 2023-12-19 13:00:59 +01:00
scripts first commit 2023-12-19 13:00:59 +01:00
test first commit 2023-12-19 13:00:59 +01:00
.gitignore first commit 2023-12-19 13:00:59 +01:00
.gitlab-ci.yml first commit 2023-12-19 13:00:59 +01:00
.pre-commit-config.yaml first commit 2023-12-19 13:00:59 +01:00
electron_main.py first commit 2023-12-19 13:00:59 +01:00
LICENSE first commit 2023-12-19 13:00:59 +01:00
main_tracking_losses.py first commit 2023-12-19 13:00:59 +01:00
main.py first commit 2023-12-19 13:00:59 +01:00
README.md first commit 2023-12-19 13:00:59 +01:00
setup.sh first commit 2023-12-19 13:00:59 +01:00
tuner.code-workspace first commit 2023-12-19 13:00:59 +01:00

Parameterisation Tuner

This project provides utils for producing magic parameters used by the pattern recognition algorithms in the Rec project. Typical parameters are coefficients for extrapolation polynomials and weights for TMVA methods.

Setup

There's a bash script for setting up the necessary (python) environment. Simply do:

chmod +x setup.sh
./setup.sh

This will install dependencies like ROOT and Jupyter. To enter the environment do:

source env/tuner_env/bin/activate
conda activate tuner