tracking-parametrisation-tuner/moore_options/get_calo_data_reproduce.py
2024-02-21 08:34:33 +01:00

92 lines
2.9 KiB
Python

# flake8: noqa
from Moore import options, run_reconstruction
from RecoConf.hlt2_tracking import (
make_hlt2_tracks,
get_default_out_track_types_for_light_reco,
convert_tracks_to_v3_from_v1,
get_global_ut_hits_tool,
)
from RecoConf.hlt1_tracking import make_all_pvs
from RecoConf.event_filters import require_gec
from RecoConf.mc_checking import get_track_checkers, get_fitted_tracks_checkers
from RecoConf.calorimeter_reconstruction import (
make_photons_and_electrons,
make_clusters,
make_acceptance,
make_track_cluster_matching,
make_digits,
make_track_electron_and_brem_matching,
make_trackbased_eshower,
)
from Moore.config import Reconstruction
from PyConf.Algorithms import (
PrFilterTracks2CaloClusters,
PrMatchNNv3,
PrFilterTracks2ElectronMatch,
PrFilterTracks2ElectronShower,
fromPrMatchTracksV1Tracks,
fromV3TrackV1Track,
)
import Functors as F
import glob
options.evt_max = -1
options.ntuple_file = f"data/calo_data_test_tinker.root"
options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"]
options.input_type = "ROOT"
options.dddb_tag = "dddb-20210617"
options.conddb_tag = "sim-20210617-vc-md100"
options.simulation = True
def standalone_hlt2_fastest_reco():
hlt2_tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True)
digisEcal = make_digits(calo_raw_bank=False)["digitsEcal"]
tracks_v3, trackrels = convert_tracks_to_v3_from_v1(
hlt2_tracks["Seed"]["v1"],
track_types=["Ttrack"],
)
# track acceptances
tracks_incalo = make_acceptance(tracks_v3)
eshower = make_trackbased_eshower(tracks_incalo, digisEcal)
# should be best; shape of shower etc; E/p statt chi2; DLL even better? GET(1)
# Cut=F.FILTER(F.ALL)).Output
shower_matched_seeds = PrFilterTracks2ElectronShower(
Relation=eshower["Ttrack"], Cut=F.FILTER((F.GET(0) @ F.WEIGHT) > 0.7)
).Output
matched_seeds = {}
matched_seeds["v3"] = shower_matched_seeds
matched_seeds["v1"] = fromV3TrackV1Track(
InputTracks=matched_seeds["v3"]
).OutputTracks
calo_long = PrMatchNNv3(
VeloInput=hlt2_tracks["Velo"]["Pr"],
SeedInput=matched_seeds["v3"],
AddUTHitsToolName=get_global_ut_hits_tool(),
).MatchOutput
match_tracks = {}
match_tracks["Pr"] = calo_long
match_tracks["v1"] = fromPrMatchTracksV1Tracks(
InputTracksLocation=match_tracks["Pr"],
VeloTracksLocation=hlt2_tracks["Velo"]["v1"],
SeedTracksLocation=matched_seeds["v1"],
).OutputTracksLocation
data = [calo_long, shower_matched_seeds]
types_and_locations_for_checkers = {
"Match": match_tracks,
}
data += get_track_checkers(types_and_locations_for_checkers)
# data += get_fitted_tracks_checkers(best_tracks)
return Reconstruction("hlt2_reco", data, [require_gec()])
run_reconstruction(options, standalone_hlt2_fastest_reco)