Go to file
2023-12-27 11:18:47 +01:00
data_results D decay 2023-12-27 11:18:47 +01:00
env first commit 2023-12-19 13:00:59 +01:00
moore_options added ghost rate to CompareEfficiency.py 2023-12-26 23:59:04 +01:00
parameterisations first commit 2023-12-19 13:00:59 +01:00
scripts added ghost rate to CompareEfficiency.py 2023-12-26 23:59:04 +01:00
.gitignore mod gitignore 2023-12-26 13:04:30 +01:00
.gitlab-ci.yml first commit 2023-12-19 13:00:59 +01:00
.pre-commit-config.yaml first commit 2023-12-19 13:00:59 +01:00
electron_main.py first commit 2023-12-19 13:00:59 +01:00
LICENSE first commit 2023-12-19 13:00:59 +01:00
main_tracking_losses.py first commit 2023-12-19 13:00:59 +01:00
main.py first commit 2023-12-19 13:00:59 +01:00
README.md readme 2023-12-19 13:05:56 +01:00
setup.sh first commit 2023-12-19 13:00:59 +01:00
tuner.code-workspace first commit 2023-12-19 13:00:59 +01:00

Parameterisation Tuner

This project provides utils for producing magic parameters used by the pattern recognition algorithms in the Rec project. Typical parameters are coefficients for extrapolation polynomials and weights for TMVA methods. This is based on this repo by André Günther.

Setup

There's a bash script for setting up the necessary (python) environment. Simply do:

chmod +x setup.sh
./setup.sh

This will install dependencies like ROOT and Jupyter. To enter the environment do:

source env/tuner_env/bin/activate
conda activate tuner