# flake8: noqa """ This set of options is used for reconstruction development purposes, and assumes that the input contains MCHits (i.e. is of `Exended` DST/digi type). author: Furkan Cetin date: 10/2023 Moore/run gaudirun.py /work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py """ from Moore import options, run_reconstruction from Moore.config import Reconstruction from PyConf.Algorithms import PrKalmanFilter from PyConf.Tools import TrackMasterExtrapolator import glob from RecoConf.mc_checking import ( check_track_resolution, check_tracking_efficiency, get_mc_categories, get_hit_type_mask, make_links_lhcbids_mcparticles_tracking_system, make_links_tracks_mcparticles, ) from RecoConf.core_algorithms import make_unique_id_generator from RecoConf.hlt2_tracking import make_hlt2_tracks from RecoConf.hlt1_tracking import ( make_VeloClusterTrackingSIMD_hits, make_PrStorePrUTHits_hits, make_PrStoreSciFiHits_hits, get_global_materiallocator, ) decay = "B" options.evt_max = -1 options.ntuple_file = f"data/resolutions_and_effs_{decay}_EndVeloP.root" options.input_type = "ROOT" if decay == "B": options.input_files = glob.glob("/auto/data/guenther/Bd_Kstee/*.xdigi") elif decay == "BJpsi": options.input_files = glob.glob("/auto/data/guenther/Bd_JpsiKst_ee/*.xdigi") elif decay == "D": options.input_files = glob.glob("/auto/data/guenther/Dst_D0ee/*.xdigi") elif decay == "test": options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"] options.dddb_tag = "dddb-20210617" options.conddb_tag = "sim-20210617-vc-md100" options.simulation = True options.output_level = 3 def run_tracking_resolution(): tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True) fitted_forward_tracks = PrKalmanFilter( Input=tracks["Forward"]["Pr"], MaxChi2=2.8, MaxChi2PreOutlierRemoval=20, HitsVP=make_VeloClusterTrackingSIMD_hits(), HitsUT=make_PrStorePrUTHits_hits(), HitsFT=make_PrStoreSciFiHits_hits(), ReferenceExtrapolator=TrackMasterExtrapolator( MaterialLocator=get_global_materiallocator(), ), InputUniqueIDGenerator=make_unique_id_generator(), ).OutputTracks links_to_lhcbids = make_links_lhcbids_mcparticles_tracking_system() links_to_forward = make_links_tracks_mcparticles( InputTracks=tracks["Forward"], LinksToLHCbIDs=links_to_lhcbids, ) links_to_match = make_links_tracks_mcparticles( InputTracks=tracks["Match"], LinksToLHCbIDs=links_to_lhcbids, ) links_to_best = make_links_tracks_mcparticles( InputTracks=tracks["BestLong"], LinksToLHCbIDs=links_to_lhcbids, ) links_to_seed = make_links_tracks_mcparticles( InputTracks=tracks["Seed"], LinksToLHCbIDs=links_to_lhcbids, ) res_checker_forward = check_track_resolution(tracks["Forward"], suffix="Forward") res_checker_best_long = check_track_resolution( tracks["BestLong"], suffix="BestLong", ) res_checker_best_forward = check_track_resolution( dict(v1=fitted_forward_tracks), suffix="BestForward", ) res_checker_seed = check_track_resolution( tracks["Seed"], suffix="Seed", ) eff_checker_forward = check_tracking_efficiency( "Forward", tracks["Forward"], links_to_forward, links_to_lhcbids, get_mc_categories("Forward"), get_hit_type_mask("Forward"), ) eff_checker_match = check_tracking_efficiency( "Match", tracks["Match"], links_to_match, links_to_lhcbids, get_mc_categories("Match"), get_hit_type_mask("Match"), ) eff_checker_best_long = check_tracking_efficiency( "BestLong", tracks["BestLong"], links_to_best, links_to_lhcbids, get_mc_categories("BestLong"), get_hit_type_mask("BestLong"), ) eff_checker_seed = check_tracking_efficiency( "Seed", tracks["Seed"], links_to_seed, links_to_lhcbids, get_mc_categories("Seed"), get_hit_type_mask("Seed"), ) data = [ res_checker_forward, res_checker_best_long, res_checker_best_forward, res_checker_seed, eff_checker_forward, eff_checker_match, eff_checker_best_long, eff_checker_seed, ] return Reconstruction("run_tracking_debug", data) run_reconstruction(options, run_tracking_resolution)