# flake8: noqaq import os import subprocess import argparse from parameterisations.parameterise_magnet_kink_electron import parameterise_magnet_kink from parameterisations.parameterise_track_model_electron import parameterise_track_model from parameterisations.parameterise_search_window import parameterise_search_window from parameterisations.parameterise_field_integral import parameterise_field_integral from parameterisations.parameterise_hough_histogram import parameterise_hough_histogram from parameterisations.utils.preselection_trackinglosses import preselection from parameterisations.train_forward_ghost_mlps import ( train_default_forward_ghost_mlp, train_veloUT_forward_ghost_mlp, ) from parameterisations.train_matching_ghost_mlps import train_matching_ghost_mlp from parameterisations.utils.parse_tmva_matrix_to_array import ( parse_tmva_matrix_to_array, ) parser = argparse.ArgumentParser() parser.add_argument( "--field-params", action="store_true", help="Enables determination of magnetic field parameterisations.", ) parser.add_argument( "--forward-weights", action="store_true", help="Enables determination of weights used by neural networks.", ) parser.add_argument( "--matching-weights", action="store_true", # default=True, help="Enables determination of weights used by neural networks.", ) parser.add_argument( "-p", "--prepare", action="store_true", help="Enables preparation of data for matching.", ) parser.add_argument( "--prepare-params-data", action="store_true", help="Enables preparation of data for magnetic field parameterisations.", ) parser.add_argument( "--prepare-weights-data", action="store_true", help="Enables preparation of data for NN weight determination.", ) args = parser.parse_args() selected = "data/tracking_losses_ntuple_B_def_selected.root" if args.prepare_params_data: selection = "fromSignal == 1 && isElectron == 1 && pt > 10 && p > 1500 && p < 100000 && !std::isnan(ideal_state_770_x) && !std::isnan(ideal_state_9410_x) && !std::isnan(ideal_state_10000_x)" print("Run selection cuts =", selection) selected_md = preselection( cuts=selection, input_file="data/tracking_losses_ntuple_B_def.root", ) cpp_files = [] if args.field_params: print("Parameterise magnet kink position ...") cpp_files.append(parameterise_magnet_kink(input_file=selected)) print("Parameterise track model ...") cpp_files.append(parameterise_track_model(input_file=selected)) # selected_all_p = ( # "nn_neural_net_training/data/param_data_B_default_thesis_selected_all_p.root" # ) # if args.prepare_params_data: # selection_all_momenta = "chi2_comb < 5 && pid != 11" # print() # print("Run selection cuts =", selection_all_momenta) # selected_md_all_p = preselection( # cuts=selection_all_momenta, # outfile_postfix="selected_all_p", # input_file="nn_neural_net_training/data/param_data_B_default_thesis.root", # ) # if args.field_params: # print("Parameterise magnet kink position ...") # cpp_files.append(parameterise_magnet_kink(input_file=selected_all_p)) # print("Parameterise track model ...") # cpp_files.append(parameterise_track_model(input_file=selected_all_p)) # print("Parameterise search window ...") # cpp_files.append(parameterise_search_window(input_file=selected_all_p)) # print("Parameterise magnetic field integral ...") # cpp_files.append(parameterise_field_integral(input_file=selected_all_p)) # print("Parameterise Hough histogram binning ...") # cpp_files.append(parameterise_hough_histogram(input_file=selected_all_p)) ###>>> ghost_data = "neural_net_training/data/ghost_data.root" if args.prepare_weights_data: merge_cmd = [ "hadd", "-fk", ghost_data, "data/ghost_data_MD.root", "data/ghost_data_MU.root", ] print("Concatenate polarities for neural network training ...") subprocess.run(merge_cmd, check=True) ###<<< if args.forward_weights: train_default_forward_ghost_mlp(prepare_data=args.prepare_weights_data) # FIXME: use env variable instead os.chdir(os.path.dirname(os.path.realpath(__file__))) train_veloUT_forward_ghost_mlp(prepare_data=args.prepare_weights_data) # this ensures that the directory is correct os.chdir(os.path.dirname(os.path.realpath(__file__))) cpp_files += parse_tmva_matrix_to_array( [ "neural_net_training/result/GhostNNDataSet/weights/TMVAClassification_default_forward_ghost_mlp.class.C", "neural_net_training/result/GhostNNDataSet/weights/TMVAClassification_veloUT_forward_ghost_mlp.class.C", ], ) ###>>> if args.matching_weights: os.chdir(os.path.dirname(os.path.realpath(__file__))) train_matching_ghost_mlp( prepare_data=args.prepare, input_file="data/ghost_data_B_default_phi_eta.root", tree_name="PrMatchNN_3e224c41.PrMCDebugMatchToolNN/MVAInputAndOutput", outdir="neural_net_training", exclude_electrons=False, only_electrons=True, ) # this ensures that the directory is correct os.chdir(os.path.dirname(os.path.realpath(__file__))) cpp_files += parse_tmva_matrix_to_array( [ "neural_net_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C", ], simd_type=True, ) ###<<< for file in cpp_files: subprocess.run( [ "clang-format", "-i", f"{file}", ], )