# flake8: noqaq import os import subprocess import argparse from parameterisations.parameterise_magnet_kink import parameterise_magnet_kink from parameterisations.parameterise_track_model_electron import parameterise_track_model from parameterisations.parameterise_search_window import parameterise_search_window from parameterisations.parameterise_field_integral import parameterise_field_integral from parameterisations.parameterise_hough_histogram import parameterise_hough_histogram from parameterisations.utils.preselection import preselection from parameterisations.train_forward_ghost_mlps import ( train_default_forward_ghost_mlp, train_veloUT_forward_ghost_mlp, ) from parameterisations.train_matching_ghost_mlps_electron import ( train_matching_ghost_mlp, ) from parameterisations.utils.parse_tmva_matrix_to_array_electron import ( parse_tmva_matrix_to_array, ) parser = argparse.ArgumentParser() parser.add_argument( "--matching-weights", action="store_true", default=True, help="Enables determination of weights used by neural networks.", ) parser.add_argument( "-p", "--prepare", action="store_true", default=True, help="Enables preparation of data for matching.", ) parser.add_argument( "--prepare-weights-data", action="store_true", help="Enables preparation of data for NN weight determination.", ) args = parser.parse_args() cpp_files = [] ghost_data = "data/ghost_data.root" if args.prepare_weights_data: merge_cmd = [ "hadd", "-fk", ghost_data, "data/ghost_data_B.root", "data/ghost_data_D.root", ] print("Concatenate decays for neural network training ...") subprocess.run(merge_cmd, check=True) file_name = "newpars" tree_names = {} tree_names["seed"] = "PrMatchNN_b60a058d.PrMCDebugMatchToolNN/MVAInputAndOutput" tree_names["newpars"] = "PrMatchNN_b826666c.PrMCDebugMatchToolNN/MVAInputAndOutput" if args.matching_weights: os.chdir(os.path.dirname(os.path.realpath(__file__))) train_matching_ghost_mlp( input_file="data/ghost_data_B_sample4.root", tree_name=tree_names[file_name], exclude_electrons=False, only_electrons=True, filter_velos=False, filter_seeds=True, n_train_signal=110e3, n_train_bkg=110e3, n_test_signal=10e3, n_test_bkg=10e3, prepare_data=True, outdir="nn_electron_training", ) # this ensures that the directory is correct os.chdir(os.path.dirname(os.path.realpath(__file__))) cpp_files += parse_tmva_matrix_to_array( [ "nn_electron_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C", ], simd_type=True, ) for file in cpp_files: subprocess.run( [ "clang-format", "-i", f"{file}", ], )