# flake8: noqa from Moore import options, run_reconstruction from RecoConf.hlt2_tracking import ( make_hlt2_tracks, get_default_out_track_types_for_light_reco, convert_tracks_to_v3_from_v1, get_global_ut_hits_tool, ) from RecoConf.hlt1_tracking import make_all_pvs from RecoConf.event_filters import require_gec from RecoConf.mc_checking import ( get_track_checkers, get_fitted_tracks_checkers, check_tracking_efficiency, make_links_lhcbids_mcparticles_tracking_system, make_links_tracks_mcparticles, get_mc_categories, get_hit_type_mask, ) from RecoConf.calorimeter_reconstruction import ( make_photons_and_electrons, make_clusters, make_acceptance, make_track_cluster_matching, make_digits, make_track_electron_and_brem_matching, make_trackbased_eshower, ) from Moore.config import Reconstruction from PyConf.Algorithms import ( PrFilterTracks2CaloClusters, PrMatchNNv3, PrFilterTracks2ElectronMatch, PrFilterTracks2ElectronShower, fromPrMatchTracksV1Tracks, fromV3TrackV1Track, ) import Functors as F import glob decay = "testJpsi" options.evt_max = -1 options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/calo_data_{decay}_filter_shower_dll_NegFive_ep_NullFive.root" if decay == "B": options.input_files = glob.glob("/auto/data/guenther/Bd_Kstee/*.xdigi") elif decay == "BJpsi": options.input_files = glob.glob("/auto/data/guenther/Bd_JpsiKst_ee/*.xdigi") elif decay == "D": options.input_files = glob.glob("/auto/data/guenther/Dst_D0ee/*.xdigi") elif decay == "testJpsi": options.input_files = [ "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi", "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi", "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi", ] elif decay == "test": options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"] options.input_type = "ROOT" options.dddb_tag = "dddb-20210617" options.conddb_tag = "sim-20210617-vc-md100" options.simulation = True def standalone_hlt2_fastest_reco(): hlt2_tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True) digisEcal = make_digits(calo_raw_bank=False)["digitsEcal"] ecalClusters = make_clusters(digisEcal) tracks_v3, trackrels = convert_tracks_to_v3_from_v1( hlt2_tracks["Seed"]["v1"], track_types=["Ttrack"], ) # track acceptances tracks_incalo = make_acceptance(tracks_v3) tcmatches = make_track_cluster_matching(ecalClusters, tracks_incalo) PhElOutput = make_photons_and_electrons( ecalClusters, tcmatches["combined"], make_all_pvs()["v3"] ) photons = PhElOutput["photons"] electrons = PhElOutput["electrons"] eshower = make_trackbased_eshower(tracks_incalo, digisEcal) tcmatches_e = make_track_electron_and_brem_matching( tracks_incalo, tcmatches, digisEcal, electrons, photons ) # filter with calo clusters calo_matched_seeds = PrFilterTracks2CaloClusters( Relation=tcmatches["Ttrack"], Cut=F.FILTER((F.MIN_ELEMENT_NOTZERO @ F.FORWARDARG0 @ F.WEIGHT) < 20), ).Output # corrections on track (bit better for elec?) # Cut=F.FILTER(F.ALL) ).Output electron_matched_seeds = PrFilterTracks2ElectronMatch( Relation=tcmatches_e["Ttrack"]["ElectronMatch"], Cut=F.FILTER(F.MIN_ELEMENT_NOTZERO @ F.FORWARDARG0 @ F.WEIGHT < 20), ).Output # should be best; shape of shower etc; E/p statt chi2; DLL even better? GET(1) # Cut=F.FILTER(F.ALL)).Output shower_matched_seeds = PrFilterTracks2ElectronShower( # Relation=eshower["Ttrack"], Cut=F.FILTER((F.GET(0) @ F.WEIGHT) > 0.7) Relation=eshower["Ttrack"], Cut=F.FILTER(((F.GET(1) @ F.WEIGHT) > -5) & ((F.GET(0) @ F.WEIGHT) > 0.5)), ).Output matched_seeds = {} matched_seeds["v3"] = shower_matched_seeds matched_seeds["v1"] = fromV3TrackV1Track( InputTracks=matched_seeds["v3"] ).OutputTracks calo_long = PrMatchNNv3( VeloInput=hlt2_tracks["Velo"]["Pr"], SeedInput=matched_seeds["v3"], AddUTHitsToolName=get_global_ut_hits_tool(), ).MatchOutput match_tracks = {} match_tracks["Pr"] = calo_long match_tracks["v1"] = fromPrMatchTracksV1Tracks( InputTracksLocation=match_tracks["Pr"], VeloTracksLocation=hlt2_tracks["Velo"]["v1"], SeedTracksLocation=matched_seeds["v1"], ).OutputTracksLocation out_track_types = get_default_out_track_types_for_light_reco() best_tracks = { track_type: hlt2_tracks[track_type] for track_type in out_track_types["Best"] } data = [ calo_long, calo_matched_seeds, electron_matched_seeds, shower_matched_seeds, ] # data = [shower_matched_seeds] types_and_locations_for_checkers = { "Forward": hlt2_tracks["Forward"], "Seed": hlt2_tracks["Seed"], "Match": match_tracks, # hlt2_tracks["Match"], } data += get_track_checkers(types_and_locations_for_checkers) # data += get_fitted_tracks_checkers(best_tracks) return Reconstruction("hlt2_reco", data, [require_gec()]) run_reconstruction(options, standalone_hlt2_fastest_reco)