# flake8: noqaq import os import subprocess import argparse from parameterisations.parameterise_magnet_kink import parameterise_magnet_kink from parameterisations.parameterise_track_model_electron import parameterise_track_model from parameterisations.parameterise_search_window import parameterise_search_window from parameterisations.parameterise_field_integral import parameterise_field_integral from parameterisations.parameterise_hough_histogram import parameterise_hough_histogram from parameterisations.utils.preselection import preselection from parameterisations.train_forward_ghost_mlps import ( train_default_forward_ghost_mlp, train_veloUT_forward_ghost_mlp, ) from parameterisations.residual_train_matching_ghost_mlps_electron import ( res_train_matching_ghost_mlp, ) from parameterisations.train_matching_ghost_mlps_electron import ( train_matching_ghost_mlp, ) from parameterisations.utils.parse_tmva_matrix_to_array_electron import ( parse_tmva_matrix_to_array, ) parser = argparse.ArgumentParser() parser.add_argument( "--field-params", action="store_true", help="Enables determination of magnetic field parameterisations.", ) parser.add_argument( "--forward-weights", action="store_true", help="Enables determination of weights used by neural networks.", ) parser.add_argument( "--matching-weights", action="store_true", # default=True, help="Enables determination of weights used by neural networks.", ) # parser.add_argument( # "-r", # "--residuals", # action="store_true", # help="Trains neural network with residual tracks.", # ) parser.add_argument( "-p", "--prepare", action="store_true", default=True, help="Enables preparation of data for matching.", ) parser.add_argument( "--prepare-params-data", action="store_true", help="Enables preparation of data for magnetic field parameterisations.", ) parser.add_argument( "--prepare-weights-data", action="store_true", help="Enables preparation of data for NN weight determination.", ) args = parser.parse_args() selected = "nn_electron_training/data/param_data_B_default_thesis_selected.root" if args.prepare and args.field_params: selection: str = "isElectron == 1" print("Selection Cuts = ", selection) selected_sample = preselection( cuts=selection, input_file="nn_electron_training/data/param_data_B_default_thesis.root", ) cpp_files = [] if args.field_params: print("Parameterise magnet kink position ...") cpp_files.append(parameterise_magnet_kink(input_file=selected)) print("Parameterise track model ...") cpp_files.append(parameterise_track_model(input_file=selected)) ghost_data = "data/ghost_data.root" if args.prepare_weights_data: merge_cmd = [ "hadd", "-fk", ghost_data, "data/ghost_data_B.root", "data/ghost_data_D.root", ] print("Concatenate decays for neural network training ...") subprocess.run(merge_cmd, check=True) if args.forward_weights: train_default_forward_ghost_mlp(prepare_data=args.prepare_weights_data) # FIXME: use env variable instead os.chdir(os.path.dirname(os.path.realpath(__file__))) train_veloUT_forward_ghost_mlp(prepare_data=args.prepare_weights_data) # this ensures that the directory is correct os.chdir(os.path.dirname(os.path.realpath(__file__))) cpp_files += parse_tmva_matrix_to_array( [ "nn_electron_training/result/GhostNNDataSet/weights/TMVAClassification_default_forward_ghost_mlp.class.C", "nn_electron_training/result/GhostNNDataSet/weights/TMVAClassification_veloUT_forward_ghost_mlp.class.C", ], ) # if args.matching_weights and args.residuals: # os.chdir(os.path.dirname(os.path.realpath(__file__))) # res_train_matching_ghost_mlp( # prepare_data=args.prepare, # input_file="data/ghost_data_B_default_only_e_as_seed.root", # tree_name="PrMatchNN_b60a058d.PrMCDebugMatchToolNN/MVAInputAndOutput", # e6feac0d, B: 3e224c41, B res: 1e13cc7e, D: 8cb154ca # exclude_electrons=False, # only_electrons=True, # residuals="PrMatchNN_1e13cc7e.PrMCDebugMatchToolNN/MVAInputAndOutput", # outdir="nn_electron_training", # n_train_signal=0, # n_train_bkg=20e3, # n_test_signal=1e3, # n_test_bkg=5e3, # ) # # this ensures that the directory is correct # os.chdir(os.path.dirname(os.path.realpath(__file__))) # cpp_files += parse_tmva_matrix_to_array( # [ # "nn_electron_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C", # ], # simd_type=True, # ) file_name = "seed" tree_names = {} tree_names["seed"] = "PrMatchNN_b60a058d.PrMCDebugMatchToolNN/MVAInputAndOutput" tree_names["def"] = "PrMatchNN.PrMCDebugMatchToolNN/MVAInputAndOutput" if args.matching_weights: os.chdir(os.path.dirname(os.path.realpath(__file__))) train_matching_ghost_mlp( prepare_data=args.prepare, input_file="data/ghost_data_B_vars_thesis.root", tree_name=tree_names[file_name], exclude_electrons=False, only_electrons=True, filter_seeds=True, outdir="nn_electron_training", n_train_signal=150e3, n_train_bkg=150e3, n_test_signal=10e3, n_test_bkg=10e3, ) # this ensures that the directory is correct os.chdir(os.path.dirname(os.path.realpath(__file__))) cpp_files += parse_tmva_matrix_to_array( [ "nn_electron_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C", ], simd_type=True, ) for file in cpp_files: subprocess.run( [ "clang-format", "-i", f"{file}", ], )