import uproot import awkward as ak from pathlib import Path from scipy.optimize import curve_fit import numpy as np import pandas as pd from math import ceil import argparse def fastSigmoid(x, p0, p1, p2): return p0 + p1 * x / (1 + abs(p2 * x)) def parameterise_hough_histogram( input_file: str = "data/param_data_selected_all_p.root", tree_name: str = "Selected", n_bins_start: int = 900, hist_range: tuple[float, float] = (-3000.0, 3000.0), first_bin_center: float = 2.5, ) -> Path: """Function to parameterise the binning of the Hough histogram using the occupancy on the reference plane. Args: input_file (str, optional): Defaults to "data/param_data_selected_all_p.root". tree_name (str, optional): Defaults to "Selected". n_bins_start (int, optional): Starting (minimal) number of bins in histogram. Defaults to 900. hist_range (tuple[float, float], optional): Range in mm the histogram covers. Defaults to (-3000.0, 3000.0). first_bin_center (float, optional): Calculated bin center at lower range. Defaults to 2.5. Returns: Path: Path to cpp code file. """ input_tree = uproot.open({input_file: tree_name}) # this is an event list of dictionaries containing awkward arrays array = input_tree.arrays() array = array[[field for field in ak.fields(array) if "scifi_hit" not in field]] df = ak.to_pandas(array) selection = (df["x_ref"] > hist_range[0]) & (df["x_ref"] < hist_range[1]) data = df.loc[selection, "x_ref"] _, equal_bins = pd.qcut(data, q=n_bins_start, retbins=True) bin_numbering = np.arange(0, n_bins_start + 1) equalbins_center = equal_bins[int(n_bins_start / 10) : int(9 * n_bins_start / 10)] bin_numbering_center = bin_numbering[ int(n_bins_start / 10) : int(9 * n_bins_start / 10) ] func = fastSigmoid popt, _ = curve_fit(func, xdata=equalbins_center, ydata=bin_numbering_center) print("Parameterisation for central occupancy:") print("fastSigmoid(x,", *popt, ")") print("Scan shift to match first bin center ...") shift = 0.0 while func(hist_range[0], popt[0] + shift, *popt[1:]) < first_bin_center: shift += 0.1 popt[0] += shift - 0.1 popt[2] = abs(popt[2]) print("shifted: fastSigmoid(x,", *popt, ")") n_bins_final = ceil(func(hist_range[1], *popt)) print( "Final number of bins:", n_bins_final, "including offset of", int(first_bin_center), ) comment = f"// p[0] + p[1] * x / (1 + p[2] * abs(x)) for nBins = {n_bins_final}\n" cpp = ( "constexpr auto p = std::array{" + ", ".join([str(p) + "f" for p in popt]) + "};" ) outpath = Path("parameterisations/result/hough_histogram_binning_params.hpp") outpath.parent.mkdir(parents=True, exist_ok=True) with open(outpath, "w") as result: result.writelines([comment, cpp]) return outpath if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--input-file", type=str, help="Path to the input file", required=False, ) parser.add_argument( "--tree-name", type=str, help="Path to the input file", required=False, ) args = parser.parse_args() args_dict = {arg: val for arg, val in vars(args).items() if val is not None} outfile = parameterise_hough_histogram(**args_dict)