trained e def and e filter

This commit is contained in:
cetin 2024-02-19 15:41:09 +01:00
parent 5597683360
commit b5c6e51864
8 changed files with 342 additions and 139 deletions

Binary file not shown.

View File

@ -185,8 +185,8 @@ if args.matching_weights and not args.residuals:
only_electrons=True,
filter_seeds=True,
outdir="nn_electron_training",
n_train_signal=100e3,
n_train_bkg=100e3,
n_train_signal=150e3,
n_train_bkg=150e3,
n_test_signal=10e3,
n_test_bkg=10e3,
)

View File

@ -53,9 +53,6 @@ elif decay == "both":
options.dddb_tag = "dddb-20210617"
options.conddb_tag = "sim-20210617-vc-md100"
# options.geometry_version = "run3/trunk" #"run3/before-rich1-geom-update-26052022"
# options.conditions_version = "master"
options.simulation = True

View File

@ -39,7 +39,7 @@ decay = "B"
options.evt_max = -1
options.ntuple_file = f"data/resolutions_and_effs_{decay}_thesis.root"
options.ntuple_file = f"data/resolutions_and_effs_{decay}_elec_sig_def_bkg.root"
options.input_type = "ROOT"

View File

@ -0,0 +1,168 @@
# flake8: noqa
"""
This set of options is used for reconstruction development purposes,
and assumes that the input contains MCHits (i.e. is of `Exended`
DST/digi type).
author: Furkan Cetin
date: 10/2023
Moore/run gaudirun.py /work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py
"""
from Moore import options, run_reconstruction
from Moore.config import Reconstruction
from PyConf.Algorithms import PrKalmanFilter
from PyConf.Tools import TrackMasterExtrapolator
import glob
from RecoConf.mc_checking import (
check_track_resolution,
check_tracking_efficiency,
get_mc_categories,
get_hit_type_mask,
make_links_lhcbids_mcparticles_tracking_system,
make_links_tracks_mcparticles,
get_track_checkers,
)
from RecoConf.core_algorithms import make_unique_id_generator
from RecoConf.hlt2_tracking import make_hlt2_tracks
from RecoConf.hlt1_tracking import (
make_VeloClusterTrackingSIMD_hits,
make_PrStorePrUTHits_hits,
make_PrStoreSciFiHits_hits,
get_global_materiallocator,
)
decay = "BJpsi"
options.evt_max = -1
options.ntuple_file = f"data/resolutions_and_effs_{decay}_elec_sig_def_bkg.root"
options.input_type = "ROOT"
if decay == "B":
options.input_files = glob.glob("/auto/data/guenther/Bd_Kstee/*.xdigi")
elif decay == "BJpsi":
options.input_files = glob.glob("/auto/data/guenther/Bd_JpsiKst_ee/*.xdigi")
elif decay == "D":
options.input_files = glob.glob("/auto/data/guenther/Dst_D0ee/*.xdigi")
elif decay == "test2":
options.input_files = [
"/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi"
]
elif decay == "test":
options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"]
options.dddb_tag = "dddb-20210617"
options.conddb_tag = "sim-20210617-vc-md100"
options.simulation = True
options.output_level = 3
def run_tracking_resolution():
tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True)
fitted_forward_tracks = PrKalmanFilter(
Input=tracks["Forward"]["Pr"],
MaxChi2=2.8,
MaxChi2PreOutlierRemoval=20,
HitsVP=make_VeloClusterTrackingSIMD_hits(),
HitsUT=make_PrStorePrUTHits_hits(),
HitsFT=make_PrStoreSciFiHits_hits(),
ReferenceExtrapolator=TrackMasterExtrapolator(
MaterialLocator=get_global_materiallocator(),
),
InputUniqueIDGenerator=make_unique_id_generator(),
).OutputTracks
links_to_lhcbids = make_links_lhcbids_mcparticles_tracking_system()
links_to_forward = make_links_tracks_mcparticles(
InputTracks=tracks["Forward"],
LinksToLHCbIDs=links_to_lhcbids,
)
links_to_match = make_links_tracks_mcparticles(
InputTracks=tracks["Match"],
LinksToLHCbIDs=links_to_lhcbids,
)
links_to_best = make_links_tracks_mcparticles(
InputTracks=tracks["BestLong"],
LinksToLHCbIDs=links_to_lhcbids,
)
links_to_seed = make_links_tracks_mcparticles(
InputTracks=tracks["Seed"],
LinksToLHCbIDs=links_to_lhcbids,
)
res_checker_forward = check_track_resolution(tracks["Forward"], suffix="Forward")
res_checker_best_long = check_track_resolution(
tracks["BestLong"],
suffix="BestLong",
)
res_checker_best_forward = check_track_resolution(
dict(v1=fitted_forward_tracks),
suffix="BestForward",
)
res_checker_seed = check_track_resolution(
tracks["Seed"],
suffix="Seed",
)
eff_checker_forward = check_tracking_efficiency(
"Forward",
tracks["Forward"],
links_to_forward,
links_to_lhcbids,
get_mc_categories("Forward"),
get_hit_type_mask("Forward"),
)
eff_checker_match = check_tracking_efficiency(
"Match",
tracks["Match"],
links_to_match,
links_to_lhcbids,
get_mc_categories("Match"),
get_hit_type_mask("Match"),
)
eff_checker_best_long = check_tracking_efficiency(
"BestLong",
tracks["BestLong"],
links_to_best,
links_to_lhcbids,
get_mc_categories("BestLong"),
get_hit_type_mask("BestLong"),
)
eff_checker_seed = check_tracking_efficiency(
"Seed",
tracks["Seed"],
links_to_seed,
links_to_lhcbids,
get_mc_categories("Seed"),
get_hit_type_mask("Seed"),
)
# types_and_locations_for_checkers = {
# "Forward": tracks["Forward"],
# "Seed": tracks["Seed"],
# "Match": tracks["Match"],
# }
# data = []
# data += get_track_checkers(types_and_locations_for_checkers)
data = [
res_checker_forward,
res_checker_best_long,
res_checker_best_forward,
res_checker_seed,
eff_checker_forward,
eff_checker_match,
eff_checker_best_long,
eff_checker_seed,
]
return Reconstruction("run_tracking_debug", data)
run_reconstruction(options, run_tracking_resolution)

View File

@ -105,20 +105,20 @@ def train_matching_ghost_mlp(
dataloader.AddVariable("distX", "F")
dataloader.AddVariable("distY", "F")
dataloader.AddVariable("dSlope", "F")
# dataloader.AddVariable("dSlopeY", "F")
dataloader.AddVariable("dSlopeY", "F")
# dataloader.AddVariable("zmag", "F")
dataloader.AddVariable("eta", "F")
# dataloader.AddVariable("eta", "F")
# dataloader.AddVariable("dEta", "F")
# dataloader.AddVariable("meanEta", "F")
# dataloader.AddVariable("eta_scifi", "F")
dataloader.AddSignalTree(signal_tree, 1.0)
dataloader.AddBackgroundTree(bkg_tree, 1.0)
# these cuts are also applied in the algorithm
preselectionCuts = ROOT.TCut(
# "chi2<30 && distX<500 && distY<500 && dSlope<2.0 && dSlopeY<0.15", #### ganz raus für elektronen
# "eta>2 && eta<5 && eta_scifi>2 && eta_scifi<5"
)
dataloader.PrepareTrainingAndTestTree(
preselectionCuts,

View File

@ -236,6 +236,11 @@ def get_eff(eff, hist, tf, histoName, label, var):
numerator = findRootObjByName(tf[lab], numeratorName)
except:
numerator = denominator
# except:
# denominator = findRootObjByName(
# tf[lab], denominatorName.replace("dP_", "P_")
# )
# numerator = findRootObjByName(tf[lab], numeratorName.replace("dP_", "P_"))
if numerator.GetEntries() == 0 or denominator.GetEntries() == 0:
continue

File diff suppressed because one or more lines are too long