diff --git a/data_matching/logs/match_effs_BJpsi_EFilter.log b/data_matching/logs/match_effs_BJpsi_EFilter.log new file mode 100644 index 0000000..c60957a --- /dev/null +++ b/data_matching/logs/match_effs_BJpsi_EFilter.log @@ -0,0 +1,378 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EFilter.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.1 + running on lhcba2 on Sun Feb 25 15:42:13 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EFilter.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EFilter.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 94233 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 15:44:17 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1776.51, timed 2945 Events: 180967 ms, Evts/s = 16.2737 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 2955 | + | "Nb events removed" | 666 | +ForwardTrackChecker_6cc3e097.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_b1740bbc.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 2955 | +MatchTrackChecker_b09f1436.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_6718f41f.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 2289 | 363254 | 158.70 | + | "Created long tracks" | 2289 | 181236 | 79.177 | + | "Input tracks" | 2289 | 380749 | 166.34 | + | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | + | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | + | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | + | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | + | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | + | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | + | "Removed duplicates" | 2289 | 9647 | 4.2145 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 166072 | 673152 | 4.0534 | + | "#tracks with hits added" | 166072 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | + | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | + | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | + | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | + | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | + | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | + | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | + | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | + | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | + | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | + | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | + | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | + | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | + | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | +PrMatchNN_e3e0ccb5 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 2289 | 2797547 | 1222.2 | + | "#MatchingMLP" | 200197 | 177384.8 | 0.88605 | + | "#MatchingTracks" | 2289 | 200197 | 87.460 | +PrMatchNN_e3e0ccb5.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 175781 | 707963 | 4.0275 | + | "#tracks with hits added" | 175781 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | + | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | + | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | + | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | + | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | + | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | + | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | + | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | + | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | + | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | + | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | + | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | + | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | + | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | + | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | + | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | + | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | + | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | + | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | + | "MC particles per track" | 279294 | 279304 | 1.0000 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | + | "MC particles per track" | 155077 | 181813 | 1.1724 | +PrTrackAssociator_43e58d3b INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 200197 | 155137 |( 77.49217 +- 0.09333982)% | + | "MC particles per track" | 155137 | 181810 | 1.1719 | +SeedTrackChecker_88c2003d.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | + | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | +fromPrMatchTracksV1Tracks_13de62af INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 200197 | 87.460 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_6cc3e097 INFO Results +ForwardTrackChecker_6cc3e097 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** +ForwardTrackChecker_6cc3e097 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % +ForwardTrackChecker_6cc3e097 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % +ForwardTrackChecker_6cc3e097 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % +ForwardTrackChecker_6cc3e097 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % +ForwardTrackChecker_6cc3e097 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % +ForwardTrackChecker_6cc3e097 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % +ForwardTrackChecker_6cc3e097 INFO +ForwardUTHitsChecker_b1740bbc INFO Results +ForwardUTHitsChecker_b1740bbc INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 26159 ghost, 2.61 UT per track +ForwardUTHitsChecker_b1740bbc INFO 01_long :134215 tr 3.91 from 4.07 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_b1740bbc INFO 01_long >3UT :132800 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV : 92174 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV >3UT : 90908 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4919 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] +ForwardUTHitsChecker_b1740bbc INFO +MatchTrackChecker_b09f1436 INFO Results +MatchTrackChecker_b09f1436 INFO **** Match 200197 tracks including 45060 ghosts [22.51 %], Event average 20.57 % **** +MatchTrackChecker_b09f1436 INFO 01_long : 132832 from 152279 [ 87.23 %] 760 clones [ 0.57 %], purity: 99.32 %, hitEff: 98.51 % +MatchTrackChecker_b09f1436 INFO 02_long_P>5GeV : 90668 from 98421 [ 92.12 %] 450 clones [ 0.49 %], purity: 99.42 %, hitEff: 99.11 % +MatchTrackChecker_b09f1436 INFO 03_long_strange : 6591 from 8121 [ 81.16 %] 28 clones [ 0.42 %], purity: 98.96 %, hitEff: 98.11 % +MatchTrackChecker_b09f1436 INFO 04_long_strange_P>5GeV : 3451 from 3856 [ 89.50 %] 11 clones [ 0.32 %], purity: 99.16 %, hitEff: 99.12 % +MatchTrackChecker_b09f1436 INFO 05_long_fromB : 7141 from 7959 [ 89.72 %] 49 clones [ 0.68 %], purity: 99.44 %, hitEff: 98.74 % +MatchTrackChecker_b09f1436 INFO 05_long_fromD : 3771 from 4226 [ 89.23 %] 17 clones [ 0.45 %], purity: 99.38 %, hitEff: 98.65 % +MatchTrackChecker_b09f1436 INFO 06_long_fromB_P>5GeV : 5597 from 5983 [ 93.55 %] 29 clones [ 0.52 %], purity: 99.55 %, hitEff: 99.16 % +MatchTrackChecker_b09f1436 INFO 06_long_fromD_P>5GeV : 2707 from 2894 [ 93.54 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.14 % +MatchTrackChecker_b09f1436 INFO 07_long_electrons : 11008 from 15125 [ 72.78 %] 163 clones [ 1.46 %], purity: 97.95 %, hitEff: 98.12 % +MatchTrackChecker_b09f1436 INFO 07_long_electrons_pairprod : 7233 from 10831 [ 66.78 %] 126 clones [ 1.71 %], purity: 97.32 %, hitEff: 97.82 % +MatchTrackChecker_b09f1436 INFO 08_long_fromB_electrons : 3610 from 4210 [ 85.75 %] 39 clones [ 1.07 %], purity: 99.13 %, hitEff: 98.79 % +MatchTrackChecker_b09f1436 INFO 09_long_fromB_electrons_P>5GeV : 3390 from 3850 [ 88.05 %] 37 clones [ 1.08 %], purity: 99.20 %, hitEff: 98.91 % +MatchTrackChecker_b09f1436 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4852 from 5182 [ 93.63 %] 27 clones [ 0.55 %], purity: 99.64 %, hitEff: 99.06 % +MatchTrackChecker_b09f1436 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3283 from 3659 [ 89.72 %] 35 clones [ 1.05 %], purity: 99.28 %, hitEff: 98.92 % +MatchTrackChecker_b09f1436 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2204 from 2343 [ 94.07 %] 9 clones [ 0.41 %], purity: 99.64 %, hitEff: 99.05 % +MatchTrackChecker_b09f1436 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1789 from 2010 [ 89.00 %] 6 clones [ 0.33 %], purity: 99.50 %, hitEff: 98.93 % +MatchTrackChecker_b09f1436 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4840 from 5164 [ 93.73 %] 27 clones [ 0.55 %], purity: 99.64 %, hitEff: 99.07 % +MatchTrackChecker_b09f1436 INFO +MatchUTHitsChecker_6718f41f INFO Results +MatchUTHitsChecker_6718f41f INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_13de62af/OutputTracksLocation **** 45060 ghost, 2.31 UT per track +MatchUTHitsChecker_6718f41f INFO 01_long :133592 tr 3.90 from 4.08 mcUT [ 95.6 %] 0.12 ghost hits on real tracks [ 3.1 %] +MatchUTHitsChecker_6718f41f INFO 01_long >3UT :132241 tr 3.93 from 4.10 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_6718f41f INFO 02_long_P>5GeV : 91118 tr 3.95 from 4.08 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_6718f41f INFO 02_long_P>5GeV >3UT : 89937 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_6718f41f INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4879 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4857 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4867 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4857 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO +SeedTrackChecker_88c2003d INFO Results +SeedTrackChecker_88c2003d INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** +SeedTrackChecker_88c2003d INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % +SeedTrackChecker_88c2003d INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % +SeedTrackChecker_88c2003d INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % +SeedTrackChecker_88c2003d INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % +SeedTrackChecker_88c2003d INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % +SeedTrackChecker_88c2003d INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % +SeedTrackChecker_88c2003d INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % +SeedTrackChecker_88c2003d INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % +SeedTrackChecker_88c2003d INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % +SeedTrackChecker_88c2003d INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % +SeedTrackChecker_88c2003d INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % +SeedTrackChecker_88c2003d INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % +SeedTrackChecker_88c2003d INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % +SeedTrackChecker_88c2003d INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % +SeedTrackChecker_88c2003d INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % +SeedTrackChecker_88c2003d INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % +SeedTrackChecker_88c2003d INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % +SeedTrackChecker_88c2003d INFO +HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.039102 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 347.612 +/- 3.41441 (min: 4, max: 489) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 2955 | 177.766 | 60157.719 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 100.541 | 34023.994 | + | "SeedTrackChecker_88c2003d" | 2289 | 15.789 | 6897.598 | + | "ForwardTrackChecker_6cc3e097" | 2289 | 14.419 | 6299.424 | + | "MatchTrackChecker_b09f1436" | 2289 | 13.010 | 5683.798 | + | "ForwardUTHitsChecker_b1740bbc" | 2289 | 5.735 | 2505.404 | + | "MatchUTHitsChecker_6718f41f" | 2289 | 5.685 | 2483.596 | + | "PrForwardTrackingVelo_6024f9ec" | 2289 | 5.172 | 2259.581 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.910 | 1708.166 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 3.000 | 1310.725 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.374 | 1037.245 | + | "Unpack__Event_MC_Particles" | 2289 | 2.267 | 990.405 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.850 | 371.456 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.684 | 298.841 | + | "VPClusFull_38754d8c" | 2289 | 0.644 | 281.133 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.555 | 242.552 | + | "PrTrackAssociator_3adf94fb" | 2289 | 0.457 | 199.488 | + | "PrMatchNN_e3e0ccb5" | 2289 | 0.436 | 190.292 | + | "PrTrackAssociator_43e58d3b" | 2289 | 0.434 | 189.591 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.432 | 188.832 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.304 | 132.853 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.229 | 100.144 | + | "fromPrMatchTracksV1Tracks_13de62af" | 2289 | 0.204 | 89.157 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.160 | 70.066 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.146 | 63.995 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.137 | 59.899 | + | "FTRawBankDecoder" | 2289 | 0.074 | 32.220 | + | "UnpackRawEvent_UT" | 2955 | 0.031 | 10.448 | + | "reserveIOV" | 2289 | 0.028 | 12.217 | + | "Decode_ODIN" | 2289 | 0.007 | 3.034 | + | "DefaultGECFilter" | 2955 | 0.007 | 2.336 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.007 | 3.013 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.005 | 1.690 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.005 | 2.065 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.005 | 2.042 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.956 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.935 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.804 | + | "DummyEventTime" | 2289 | 0.004 | 1.708 | + | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.539 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 1.037 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_matching_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_matching_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNN/PrMatchNN_e3e0ccb5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_6cc3e097 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_b1740bbc #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_b09f1436 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_6718f41f #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_88c2003d #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_88c2003d.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_6718f41f.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_b09f1436.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_b1740bbc.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_6cc3e097.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/parameterisations/sample4/param_data.log b/data_matching/parameterisations/arc_sample4/param_data.log similarity index 100% rename from data_matching/parameterisations/sample4/param_data.log rename to data_matching/parameterisations/arc_sample4/param_data.log diff --git a/data_matching/parameterisations/sample4/track_model_params.hpp b/data_matching/parameterisations/arc_sample4/track_model_params.hpp similarity index 100% rename from data_matching/parameterisations/sample4/track_model_params.hpp rename to data_matching/parameterisations/arc_sample4/track_model_params.hpp diff --git a/data_matching/parameterisations/sample4/z_mag_kink_params.hpp b/data_matching/parameterisations/arc_sample4/z_mag_kink_params.hpp similarity index 100% rename from data_matching/parameterisations/sample4/z_mag_kink_params.hpp rename to data_matching/parameterisations/arc_sample4/z_mag_kink_params.hpp diff --git a/data_matching/sample4_data/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.root b/data_matching/sample4_data/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.root new file mode 100644 index 0000000..fd46b7f Binary files /dev/null and b/data_matching/sample4_data/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.root differ diff --git a/data_matching/sample4_data/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.root b/data_matching/sample4_data/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.root new file mode 100644 index 0000000..3e9df5f Binary files /dev/null and b/data_matching/sample4_data/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.root differ diff --git a/data_matching/sample4_data/logs/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.log b/data_matching/sample4_data/logs/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.log new file mode 100644 index 0000000..1325d1e --- /dev/null +++ b/data_matching/sample4_data/logs/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.log @@ -0,0 +1,588 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.1 + running on lhcba2 on Sun Feb 25 15:59:26 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_BJpsi_filter_shower_dll_NegFive_mlp_NullFive.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 21958 ms +ApplicationMgr INFO Application Manager Initialized successfully +FunctorFactory INFO Reusing functor library: "/tmp/FunctorJitLib_0xeb0369b98b903158_0x310b845526c44081.so" +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +CaloFutureClusterCovarianceAlg_1... INFO == Parameters for covariance estimation == +CaloFutureClusterCovarianceAlg_1... INFO Stochastic : [0.21, 0.14, 0.14] Sqrt(GeV) +CaloFutureClusterCovarianceAlg_1... INFO GainError : [0.045, 0.025, 0.025] +CaloFutureClusterCovarianceAlg_1... INFO IncoherentNoise : [2.2, 2.2, 2.2] ADC +CaloFutureClusterCovarianceAlg_1... INFO CoherentNoise : [1.3, 1.3, 1.3] ADC +CaloFutureClusterCovarianceAlg_1... INFO ConstantE : [0, 0, 0] MeV +CaloFutureClusterCovarianceAlg_1... INFO ConstantX : [9, 2, 0.5] mm +CaloFutureClusterCovarianceAlg_1... INFO ConstantY : [9, 2, 0.5] mm +CaloFutureClusterCovarianceAlg_1... INFO Energy mask : (from DB) +CaloFutureClusterCovarianceAlg_1... INFO Position mask : (from DB) +HLTControlFlowMgr INFO Timing started at: 16:00:08 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1472.8, timed 35313 Events: 2077919 ms, Evts/s = 16.9944 +CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#total tracks" | 27023 | 3390744 | 125.48 | 43.466 | 7.0000 | 248.00 | + | "#tracks in acceptance" | 27023 | 2778273 | 102.81 | 35.894 | 6.0000 | 212.00 | +CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# clusters" | 5468229 | +CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Corrected Clusters: # cells " | 506145 | 2202788 | 4.3521 | 1.3681 | 2.0000 | 14.000 | + | "Corrected Clusters: ET" | 506145 |1.427525e+08 | 282.04 | 485.19 | 0.20000 | 48407. | + | "Corrected Clusters: size ratio" | 506145 | 256599.4 | 0.50697 | 0.44574 | -1.4689e-15 | 7.0882 | +CaloSelectiveElectronMatchAlg_Tt... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#links in table" | 27023 | 2333436 | 86.350 | 32.195 | 4.0000 | 190.00 | + | "average chi2" | 2333436 | 337993.2 | 0.14485 | 0.17721 | 1.8316e-09 | 8.8763 | +CaloSelectiveTrackMatchAlg_Ttrac... INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#above threshold" | 1 | 1 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "#links in table" | 27023 | 2351155 | 87.006 | 32.313 | 4.0000 | 190.00 | + | "average chi2" | 2351155 | 60090.14 | 0.025558 | 0.054299 | 1.0142e-08 | 38.942 | +CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "average DLL" | 2778273 | -69619.55 | -0.025059 | 0.041791 | -1.6606 | 0.67251 | + | "average E/p" | 2778273 | 11217.89 | 0.0040377 | 0.0046318 | 0.0000 | 0.41566 | +ClassifyPhotonElectronAlg_3be601a8 INFO Number of counters : 14 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Electron Delta(E)" | 1947852 |-7.619496e+08 | -391.17 | 529.53 | -17870. | 18170. | + | "Electron Delta(X)" | 1947852 | -605566.4 | -0.31089 | 12.267 | -102.44 | 125.88 | + | "Electron Delta(Y)" | 1947852 | -477649.9 | -0.24522 | 12.239 | -125.61 | 103.95 | + | "Electron Delta(Z)" | 1947852 |1.288819e+08 | 66.166 | 14.242 | -10.741 | 145.13 | + | "Electron corrected energy" | 1947852 |1.291287e+10 | 6629.3 | 8992.0 | 19.838 | 7.5158e+05 | + | "Electrons pT-rejected after correction" | 13818 | + | "Photon Delta(E)" | 3530700 |-8.048871e+08 | -227.97 | 397.90 | -15163. | 71165. | + | "Photon Delta(X)" | 3530700 | -1180549 | -0.33437 | 12.797 | -210.93 | 240.51 | + | "Photon Delta(Y)" | 3530700 | -1052002 | -0.29796 | 12.789 | -125.38 | 178.24 | + | "Photon Delta(Z)" | 3530700 |1.970481e+08 | 55.810 | 13.194 | -11.014 | 134.35 | + | "Photon corrected energy" | 3530700 |1.24712e+10 | 3532.2 | 6372.1 | 19.585 | 8.3650e+05 | + | "Photons pT-rejected after correction" | 60209 | + | "electronHypos" | 27023 | 1934034 | 71.570 | 23.703 | 4.0000 | 144.00 | + | "photonHypos" | 27023 | 3470491 | 128.43 | 36.021 | 9.0000 | 237.00 | +ClassifyPhotonElectronAlg_3be601... INFO Number of counters : 7 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | " Inner" | 1504331 | 1496015 | 0.99447 | 0.019783 | 0.96422 | 1.2521 | + | " Middle" | 1462071 | 1470993 | 1.0061 | 0.020231 | 0.97664 | 1.4334 | + | " Outer" | 2502223 | 2500479 | 0.99930 | 0.016294 | 0.97356 | 1.3093 | + | "Pileup offset" | 5468625 |1.94304e+09 | 355.31 | 420.26 | -31783. | 5246.5 | + | "Pileup scale" | 5478552 |3.044617e+07 | 5.5573 | 1.7606 | 1.0000 | 14.000 | + | "Pileup subtracted ratio" | 5468625 | 4834973 | 0.88413 | 0.11987 | 8.5081e-06 | 2.2284 | + | "Skip negative energy correction" | 9927 | +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_6cc3e097.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_b1740bbc.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +GraphClustering_72971694 INFO Number of counters : 4 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# clusters" | 27023 | 5468229 | 202.35 | 57.096 | 14.000 | 354.00 | + | "Cluster energy" | 5468229 |2.68272e+10 | 4906.0 | 7778.0 | 0.80003 | 8.1052e+05 | + | "Cluster size" | 5468229 |5.558464e+07 | 10.165 | 2.4041 | 4.0000 | 28.000 | + | "Negative energy clusters" | 317 | 338 | 1.0662 | 0.26109 | 1.0000 | 3.0000 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 3390744 | 125.48 | +MatchTrackChecker_48085bc3.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_3c90a51f.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrFilterTracks2CaloClusters_cae3... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 2215176 |( 65.33009 +- 0.02584553)% | +PrFilterTracks2ElectronMatch_426... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 1714975 |( 50.57813 +- 0.02715148)% | +PrFilterTracks2ElectronShower_ad... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 2646478 |( 78.05007 +- 0.02247790)% | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNNv3_64048e8f INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |2.864296e+07 | 1059.9 | + | "#MatchingMLP" | 1895005 | 1651871 | 0.87170 | + | "#MatchingTracks" | 27023 | 1895005 | 70.126 | +PrMatchNNv3_64048e8f.PrAddUTHits... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1652309 | 6603610 | 3.9966 | + | "#tracks with hits added" | 1652309 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +PrTrackAssociator_70fdc9ae INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 1895005 | 1372153 |( 72.40894 +- 0.03246946)% | + | "MC particles per track" | 1372153 | 1585374 | 1.1554 | +SeedTrackChecker_88c2003d.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +TrackBeamLineVertexFinderSoA_f85... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb PVs" | 27023 | 141928 | 5.2521 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_2fdca02c INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 1895005 | 70.126 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +fromV3TrackV1Track_51dc622a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 2646478 | 97.934 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_6cc3e097 INFO Results +ForwardTrackChecker_6cc3e097 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_6cc3e097 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_6cc3e097 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_6cc3e097 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_6cc3e097 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_6cc3e097 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_6cc3e097 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_6cc3e097 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_6cc3e097 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_6cc3e097 INFO +ForwardUTHitsChecker_b1740bbc INFO Results +ForwardUTHitsChecker_b1740bbc INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_b1740bbc INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_b1740bbc INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO +GraphClustering_72971694 INFO Built <202.355> graph calo clustering clusters/event +MatchTrackChecker_48085bc3 INFO Results +MatchTrackChecker_48085bc3 INFO **** Match 1895005 tracks including 522852 ghosts [27.59 %], Event average 25.33 % **** +MatchTrackChecker_48085bc3 INFO 01_long : 1145314 from 1811265 [ 63.23 %] 6245 clones [ 0.54 %], purity: 99.27 %, hitEff: 98.38 % +MatchTrackChecker_48085bc3 INFO 02_long_P>5GeV : 727795 from 1172326 [ 62.08 %] 3229 clones [ 0.44 %], purity: 99.40 %, hitEff: 99.12 % +MatchTrackChecker_48085bc3 INFO 03_long_strange : 60414 from 98994 [ 61.03 %] 260 clones [ 0.43 %], purity: 98.90 %, hitEff: 97.93 % +MatchTrackChecker_48085bc3 INFO 04_long_strange_P>5GeV : 27934 from 46918 [ 59.54 %] 94 clones [ 0.34 %], purity: 99.18 %, hitEff: 99.13 % +MatchTrackChecker_48085bc3 INFO 05_long_fromB : 57459 from 94402 [ 60.87 %] 319 clones [ 0.55 %], purity: 99.43 %, hitEff: 98.70 % +MatchTrackChecker_48085bc3 INFO 05_long_fromD : 31444 from 50932 [ 61.74 %] 186 clones [ 0.59 %], purity: 99.29 %, hitEff: 98.50 % +MatchTrackChecker_48085bc3 INFO 06_long_fromB_P>5GeV : 42398 from 71030 [ 59.69 %] 210 clones [ 0.49 %], purity: 99.54 %, hitEff: 99.20 % +MatchTrackChecker_48085bc3 INFO 06_long_fromD_P>5GeV : 21121 from 35044 [ 60.27 %] 107 clones [ 0.50 %], purity: 99.46 %, hitEff: 99.16 % +MatchTrackChecker_48085bc3 INFO 07_long_electrons : 131143 from 181213 [ 72.37 %] 2004 clones [ 1.51 %], purity: 97.91 %, hitEff: 98.12 % +MatchTrackChecker_48085bc3 INFO 07_long_electrons_pairprod : 86793 from 130212 [ 66.66 %] 1432 clones [ 1.62 %], purity: 97.32 %, hitEff: 97.81 % +MatchTrackChecker_48085bc3 INFO 08_long_fromB_electrons : 42020 from 48919 [ 85.90 %] 570 clones [ 1.34 %], purity: 99.08 %, hitEff: 98.83 % +MatchTrackChecker_48085bc3 INFO 09_long_fromB_electrons_P>5GeV : 39414 from 44696 [ 88.18 %] 548 clones [ 1.37 %], purity: 99.15 %, hitEff: 98.98 % +MatchTrackChecker_48085bc3 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 36989 from 61675 [ 59.97 %] 187 clones [ 0.50 %], purity: 99.65 %, hitEff: 99.11 % +MatchTrackChecker_48085bc3 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38287 from 42838 [ 89.38 %] 520 clones [ 1.34 %], purity: 99.22 %, hitEff: 98.94 % +MatchTrackChecker_48085bc3 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 17156 from 28214 [ 60.81 %] 89 clones [ 0.52 %], purity: 99.61 %, hitEff: 99.05 % +MatchTrackChecker_48085bc3 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 14395 from 24129 [ 59.66 %] 51 clones [ 0.35 %], purity: 99.53 %, hitEff: 98.90 % +MatchTrackChecker_48085bc3 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 36897 from 61506 [ 59.99 %] 187 clones [ 0.50 %], purity: 99.65 %, hitEff: 99.11 % +MatchTrackChecker_48085bc3 INFO +MatchUTHitsChecker_3c90a51f INFO Results +MatchUTHitsChecker_3c90a51f INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_2fdca02c/OutputTracksLocation **** 522852 ghost, 2.44 UT per track +MatchUTHitsChecker_3c90a51f INFO 01_long :1151559 tr 3.88 from 4.07 mcUT [ 95.2 %] 0.14 ghost hits on real tracks [ 3.4 %] +MatchUTHitsChecker_3c90a51f INFO 01_long >3UT :1139511 tr 3.91 from 4.10 mcUT [ 95.5 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_3c90a51f INFO 02_long_P>5GeV :731024 tr 3.94 from 4.08 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.5 %] +MatchUTHitsChecker_3c90a51f INFO 02_long_P>5GeV >3UT :720537 tr 3.99 from 4.11 mcUT [ 97.1 %] 0.09 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_3c90a51f INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 37176 tr 3.99 from 4.08 mcUT [ 97.8 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_3c90a51f INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 37033 tr 4.01 from 4.09 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_3c90a51f INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 37084 tr 4.00 from 4.09 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_3c90a51f INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 37026 tr 4.01 from 4.09 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_3c90a51f INFO +SeedTrackChecker_88c2003d INFO Results +SeedTrackChecker_88c2003d INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_88c2003d INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_88c2003d INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_88c2003d INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_88c2003d INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_88c2003d INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_88c2003d INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_88c2003d INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_88c2003d INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_88c2003d INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_88c2003d INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_88c2003d INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_88c2003d INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_88c2003d INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_88c2003d INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_88c2003d INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_88c2003d INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_88c2003d INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_88c2003d INFO +HLTControlFlowMgr INFO Memory pool: used 4.72932 +/- 0.0139567 MiB (min: 0, max: 6) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 696.413 +/- 2.04844 (min: 4, max: 1064) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 2028.011 | 57413.341 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1154.761 | 32691.472 | + | "SeedTrackChecker_88c2003d" | 27023 | 165.581 | 6127.391 | + | "ForwardTrackChecker_6cc3e097" | 27023 | 154.541 | 5718.859 | + | "MatchTrackChecker_48085bc3" | 27023 | 132.124 | 4889.316 | + | "ForwardUTHitsChecker_b1740bbc" | 27023 | 60.568 | 2241.356 | + | "MatchUTHitsChecker_3c90a51f" | 27023 | 59.103 | 2187.139 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 56.396 | 2086.973 | + | "PrHybridSeeding_4d0337cc" | 27023 | 41.925 | 1551.453 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 31.855 | 1178.814 | + | "Unpack__Event_MC_Vertices" | 27023 | 24.945 | 923.092 | + | "Unpack__Event_MC_Particles" | 27023 | 23.878 | 883.608 | + | "GraphClustering_72971694" | 27023 | 20.388 | 754.464 | + | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 27023 | 11.360 | 420.397 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.676 | 358.058 | + | "ClassifyPhotonElectronAlg_3be601a8" | 27023 | 7.371 | 272.765 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.145 | 264.412 | + | "VPClusFull_38754d8c" | 27023 | 6.895 | 255.170 | + | "PrStorePrUTHits_df75b912" | 27023 | 6.577 | 243.377 | + | "PrMatchNNv3_64048e8f" | 27023 | 6.286 | 232.609 | + | "FutureEcalZSup" | 27023 | 5.463 | 202.165 | + | "CaloFutureClusterCovarianceAlg_1a2d4ea3" | 27023 | 5.268 | 194.949 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.869 | 180.175 | + | "PrTrackAssociator_3adf94fb" | 27023 | 4.859 | 179.816 | + | "PrTrackAssociator_70fdc9ae" | 27023 | 3.689 | 136.505 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.273 | 121.133 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.422 | 89.625 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.693 | 62.659 | + | "fromPrMatchTracksV1Tracks_2fdca02c" | 27023 | 1.667 | 61.704 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.603 | 59.327 | + | "fromV3TrackV1Track_51dc622a" | 27023 | 1.552 | 57.441 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.460 | 54.041 | + | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 27023 | 1.369 | 50.666 | + | "CaloSelectiveTrackMatchAlg_Ttrack_bd1b5be2" | 27023 | 1.258 | 46.566 | + | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 27023 | 0.966 | 35.750 | + | "CaloSelectiveElectronMatchAlg_Ttrack_7febcd2c" | 27023 | 0.848 | 31.368 | + | "FTRawBankDecoder" | 27023 | 0.818 | 30.270 | + | "TrackBeamLineVertexFinderSoA_f85e7c3b" | 27023 | 0.815 | 30.156 | + | "PrFilterTracks2CaloClusters_cae3b638" | 27023 | 0.451 | 16.675 | + | "PrFilterTracks2ElectronMatch_4265680d" | 27023 | 0.404 | 14.961 | + | "PrFilterTracks2ElectronShower_ad25cd90" | 27023 | 0.393 | 14.553 | + | "UnpackRawEvent_UT" | 35323 | 0.332 | 9.385 | + | "CaloMergeTrackMatchTables_2ce8beb5" | 27023 | 0.154 | 5.685 | + | "UniqueIDGeneratorAlg_26e527e9" | 27023 | 0.109 | 4.020 | + | "Decode_ODIN" | 27023 | 0.101 | 3.750 | + | "DefaultGECFilter" | 35323 | 0.095 | 2.690 | + | "reserveIOV" | 27023 | 0.090 | 3.320 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.075 | 2.763 | + | "DummyEventTime" | 27023 | 0.067 | 2.482 | + | "UnpackRawEvent_VP" | 27023 | 0.066 | 2.431 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.058 | 1.633 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.051 | 1.869 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.048 | 1.790 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.047 | 1.725 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.046 | 1.684 | + | "UnpackRawEvent_ODIN" | 27023 | 0.044 | 1.624 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.043 | 1.593 | + | "UnpackRawEvent_EcalPacked" | 27023 | 0.039 | 1.445 | + | "UnpackRawEvent_EcalPackedError" | 27023 | 0.032 | 1.198 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNNv3/PrMatchNNv3_64048e8f #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2CaloClusters/PrFilterTracks2CaloClusters_cae3b638 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2ElectronMatch/PrFilterTracks2ElectronMatch_4265680d #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2ElectronShower/PrFilterTracks2ElectronShower_ad25cd90 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_6cc3e097 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_b1740bbc #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_48085bc3 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_3c90a51f #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_88c2003d #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_88c2003d.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_3c90a51f.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_48085bc3.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_b1740bbc.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_6cc3e097.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/sample4_data/logs/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.log b/data_matching/sample4_data/logs/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.log new file mode 100644 index 0000000..04542c8 --- /dev/null +++ b/data_matching/sample4_data/logs/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.log @@ -0,0 +1,485 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.1 + running on lhcba2 on Sun Feb 25 15:53:19 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/sample4_data/calo_data_testJpsi_filter_shower_dll_NegFive_mlp_NullFiveFive.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 22160 ms +ApplicationMgr INFO Application Manager Initialized successfully +FunctorFactory INFO Reusing functor library: "/tmp/FunctorJitLib_0xeb0369b98b903158_0x310b845526c44081.so" +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +CaloFutureClusterCovarianceAlg_1... INFO == Parameters for covariance estimation == +CaloFutureClusterCovarianceAlg_1... INFO Stochastic : [0.21, 0.14, 0.14] Sqrt(GeV) +CaloFutureClusterCovarianceAlg_1... INFO GainError : [0.045, 0.025, 0.025] +CaloFutureClusterCovarianceAlg_1... INFO IncoherentNoise : [2.2, 2.2, 2.2] ADC +CaloFutureClusterCovarianceAlg_1... INFO CoherentNoise : [1.3, 1.3, 1.3] ADC +CaloFutureClusterCovarianceAlg_1... INFO ConstantE : [0, 0, 0] MeV +CaloFutureClusterCovarianceAlg_1... INFO ConstantX : [9, 2, 0.5] mm +CaloFutureClusterCovarianceAlg_1... INFO ConstantY : [9, 2, 0.5] mm +CaloFutureClusterCovarianceAlg_1... INFO Energy mask : (from DB) +CaloFutureClusterCovarianceAlg_1... INFO Position mask : (from DB) +HLTControlFlowMgr INFO Timing started at: 15:54:01 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1841.84, timed 2945 Events: 172197 ms, Evts/s = 17.1025 +CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#total tracks" | 2289 | 284763 | 124.40 | 43.203 | 7.0000 | 248.00 | + | "#tracks in acceptance" | 2289 | 233690 | 102.09 | 35.860 | 7.0000 | 212.00 | +CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# clusters" | 460619 | +CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Corrected Clusters: # cells " | 42592 | 185661 | 4.3591 | 1.3800 | 2.0000 | 14.000 | + | "Corrected Clusters: ET" | 42592 |1.217924e+07 | 285.95 | 492.01 | 0.60000 | 19198. | + | "Corrected Clusters: size ratio" | 42592 | 21653.6 | 0.50840 | 0.45223 | -1.1017e-15 | 7.0882 | +CaloSelectiveElectronMatchAlg_Tt... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#links in table" | 2289 | 196473 | 85.834 | 32.359 | 4.0000 | 186.00 | + | "average chi2" | 196473 | 28600.87 | 0.14557 | 0.18097 | 2.5694e-07 | 8.8763 | +CaloSelectiveTrackMatchAlg_Ttrac... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#links in table" | 2289 | 197985 | 86.494 | 32.486 | 4.0000 | 186.00 | + | "average chi2" | 197985 | 5063.975 | 0.025578 | 0.045867 | 7.4238e-08 | 3.6636 | +CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "average DLL" | 233690 | -5899.35 | -0.025244 | 0.042736 | -1.6606 | 0.49540 | + | "average E/p" | 233690 | 950.3228 | 0.0040666 | 0.0046573 | 0.0000 | 0.20127 | +ClassifyPhotonElectronAlg_3be601a8 INFO Number of counters : 14 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Electron Delta(E)" | 164102 |-6.43632e+07 | -392.21 | 527.89 | -12989. | 9687.1 | + | "Electron Delta(X)" | 164102 | -52538.47 | -0.32016 | 12.236 | -102.44 | 73.909 | + | "Electron Delta(Y)" | 164102 | -42581.65 | -0.25948 | 12.219 | -90.385 | 90.646 | + | "Electron Delta(Z)" | 164102 |1.085137e+07 | 66.126 | 14.233 | -9.9102 | 134.58 | + | "Electron corrected energy" | 164102 |1.07999e+09 | 6581.2 | 8795.1 | 20.865 | 6.0331e+05 | + | "Electrons pT-rejected after correction" | 1176 | + | "Photon Delta(E)" | 297172 |-6.845382e+07 | -230.35 | 398.21 | -8742.9 | 8635.4 | + | "Photon Delta(X)" | 297172 | -88809.13 | -0.29885 | 12.805 | -92.061 | 86.241 | + | "Photon Delta(Y)" | 297172 | -100248.4 | -0.33734 | 12.794 | -92.484 | 73.654 | + | "Photon Delta(Z)" | 297172 |1.657882e+07 | 55.789 | 13.183 | -10.359 | 128.42 | + | "Photon corrected energy" | 297172 |1.041506e+09 | 3504.7 | 6206.4 | 20.198 | 3.5395e+05 | + | "Photons pT-rejected after correction" | 5064 | + | "electronHypos" | 2289 | 162926 | 71.178 | 23.775 | 4.0000 | 140.00 | + | "photonHypos" | 2289 | 292108 | 127.61 | 35.793 | 11.000 | 214.00 | +ClassifyPhotonElectronAlg_3be601... INFO Number of counters : 7 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | " Inner" | 126684 | 125993.2 | 0.99455 | 0.019853 | 0.96422 | 1.2194 | + | " Middle" | 123144 | 123893 | 1.0061 | 0.020270 | 0.97669 | 1.2090 | + | " Outer" | 210566 | 210420.9 | 0.99931 | 0.016327 | 0.97360 | 1.1546 | + | "Pileup offset" | 460394 |1.64556e+08 | 357.42 | 422.51 | -4249.0 | 4724.6 | + | "Pileup scale" | 461274 | 2574610 | 5.5815 | 1.7679 | 1.0000 | 14.000 | + | "Pileup subtracted ratio" | 460394 | 406791.8 | 0.88357 | 0.12017 | 6.7550e-05 | 1.6696 | + | "Skip negative energy correction" | 880 | +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 2955 | + | "Nb events removed" | 666 | +ForwardTrackChecker_6cc3e097.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_b1740bbc.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +GraphClustering_72971694 INFO Number of counters : 4 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# clusters" | 2289 | 460619 | 201.23 | 56.959 | 14.000 | 333.00 | + | "Cluster energy" | 460619 |2.244434e+09 | 4872.6 | 7606.7 | 3.6000 | 5.9362e+05 | + | "Cluster size" | 460619 | 4680898 | 10.162 | 2.4013 | 4.0000 | 28.000 | + | "Negative energy clusters" | 25 | 26 | 1.0400 | 0.19596 | 1.0000 | 2.0000 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 2955 | +LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 2289 | 284763 | 124.40 | +MatchTrackChecker_8d1e5aae.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_99d3399d.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrFilterTracks2CaloClusters_cae3... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 284763 | 186532 |( 65.50430 +- 0.08907906)% | +PrFilterTracks2ElectronMatch_426... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 284763 | 144590 |( 50.77556 +- 0.09368628)% | +PrFilterTracks2ElectronShower_ad... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 284763 | 222362 |( 78.08669 +- 0.07751767)% | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 2289 | 363254 | 158.70 | + | "Created long tracks" | 2289 | 181236 | 79.177 | + | "Input tracks" | 2289 | 380749 | 166.34 | + | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | + | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | + | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | + | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | + | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | + | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | + | "Removed duplicates" | 2289 | 9647 | 4.2145 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 166072 | 673152 | 4.0534 | + | "#tracks with hits added" | 166072 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | + | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | + | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | + | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | + | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | + | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | + | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | + | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | + | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | + | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | + | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | + | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | + | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | + | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | +PrMatchNNv3_bd96cc08 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 2289 | 2392716 | 1045.3 | + | "#MatchingMLP" | 154638 | 136348.3 | 0.88173 | + | "#MatchingTracks" | 2289 | 154638 | 67.557 | +PrMatchNNv3_bd96cc08.PrAddUTHits... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 135905 | 544914 | 4.0095 | + | "#tracks with hits added" | 135905 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | + | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | + | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | + | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | + | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | + | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | + | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | + | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | + | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | + | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | + | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | + | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | + | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | + | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | + | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | + | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | + | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | + | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | + | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_15d60904 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 154638 | 114647 |( 74.13896 +- 0.1113495)% | + | "MC particles per track" | 114647 | 132412 | 1.1550 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | + | "MC particles per track" | 279294 | 279304 | 1.0000 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | + | "MC particles per track" | 155077 | 181813 | 1.1724 | +SeedTrackChecker_88c2003d.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +TrackBeamLineVertexFinderSoA_f85... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb PVs" | 2289 | 12075 | 5.2752 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | + | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | +fromPrMatchTracksV1Tracks_547b325e INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 154638 | 67.557 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | +fromV3TrackV1Track_51dc622a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 2289 | 222362 | 97.144 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_6cc3e097 INFO Results +ForwardTrackChecker_6cc3e097 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** +ForwardTrackChecker_6cc3e097 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % +ForwardTrackChecker_6cc3e097 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % +ForwardTrackChecker_6cc3e097 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % +ForwardTrackChecker_6cc3e097 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % +ForwardTrackChecker_6cc3e097 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % +ForwardTrackChecker_6cc3e097 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % +ForwardTrackChecker_6cc3e097 INFO +ForwardUTHitsChecker_b1740bbc INFO Results +ForwardUTHitsChecker_b1740bbc INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 26159 ghost, 2.61 UT per track +ForwardUTHitsChecker_b1740bbc INFO 01_long :134215 tr 3.91 from 4.07 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_b1740bbc INFO 01_long >3UT :132800 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV : 92174 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV >3UT : 90908 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4919 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] +ForwardUTHitsChecker_b1740bbc INFO +GraphClustering_72971694 INFO Built <201.232> graph calo clustering clusters/event +MatchTrackChecker_8d1e5aae INFO Results +MatchTrackChecker_8d1e5aae INFO **** Match 154638 tracks including 39991 ghosts [25.86 %], Event average 23.64 % **** +MatchTrackChecker_8d1e5aae INFO 01_long : 95783 from 152279 [ 62.90 %] 559 clones [ 0.58 %], purity: 99.29 %, hitEff: 98.40 % +MatchTrackChecker_8d1e5aae INFO 02_long_P>5GeV : 61015 from 98421 [ 61.99 %] 301 clones [ 0.49 %], purity: 99.41 %, hitEff: 99.12 % +MatchTrackChecker_8d1e5aae INFO 03_long_strange : 4989 from 8121 [ 61.43 %] 22 clones [ 0.44 %], purity: 98.90 %, hitEff: 97.88 % +MatchTrackChecker_8d1e5aae INFO 04_long_strange_P>5GeV : 2339 from 3856 [ 60.66 %] 9 clones [ 0.38 %], purity: 99.14 %, hitEff: 99.10 % +MatchTrackChecker_8d1e5aae INFO 05_long_fromB : 4773 from 7959 [ 59.97 %] 34 clones [ 0.71 %], purity: 99.42 %, hitEff: 98.66 % +MatchTrackChecker_8d1e5aae INFO 05_long_fromD : 2604 from 4226 [ 61.62 %] 13 clones [ 0.50 %], purity: 99.34 %, hitEff: 98.54 % +MatchTrackChecker_8d1e5aae INFO 06_long_fromB_P>5GeV : 3524 from 5983 [ 58.90 %] 19 clones [ 0.54 %], purity: 99.54 %, hitEff: 99.20 % +MatchTrackChecker_8d1e5aae INFO 06_long_fromD_P>5GeV : 1740 from 2894 [ 60.12 %] 6 clones [ 0.34 %], purity: 99.51 %, hitEff: 99.15 % +MatchTrackChecker_8d1e5aae INFO 07_long_electrons : 10897 from 15125 [ 72.05 %] 162 clones [ 1.46 %], purity: 97.96 %, hitEff: 98.15 % +MatchTrackChecker_8d1e5aae INFO 07_long_electrons_pairprod : 7146 from 10831 [ 65.98 %] 125 clones [ 1.72 %], purity: 97.33 %, hitEff: 97.85 % +MatchTrackChecker_8d1e5aae INFO 08_long_fromB_electrons : 3595 from 4210 [ 85.39 %] 39 clones [ 1.07 %], purity: 99.13 %, hitEff: 98.81 % +MatchTrackChecker_8d1e5aae INFO 09_long_fromB_electrons_P>5GeV : 3377 from 3850 [ 87.71 %] 37 clones [ 1.08 %], purity: 99.20 %, hitEff: 98.93 % +MatchTrackChecker_8d1e5aae INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 3073 from 5182 [ 59.30 %] 17 clones [ 0.55 %], purity: 99.65 %, hitEff: 99.07 % +MatchTrackChecker_8d1e5aae INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3269 from 3659 [ 89.34 %] 35 clones [ 1.06 %], purity: 99.27 %, hitEff: 98.93 % +MatchTrackChecker_8d1e5aae INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 1426 from 2343 [ 60.86 %] 7 clones [ 0.49 %], purity: 99.65 %, hitEff: 99.03 % +MatchTrackChecker_8d1e5aae INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1236 from 2010 [ 61.49 %] 3 clones [ 0.24 %], purity: 99.54 %, hitEff: 98.96 % +MatchTrackChecker_8d1e5aae INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 3063 from 5164 [ 59.31 %] 17 clones [ 0.55 %], purity: 99.65 %, hitEff: 99.08 % +MatchTrackChecker_8d1e5aae INFO +MatchUTHitsChecker_99d3399d INFO Results +MatchUTHitsChecker_99d3399d INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_547b325e/OutputTracksLocation **** 39991 ghost, 2.48 UT per track +MatchUTHitsChecker_99d3399d INFO 01_long : 96342 tr 3.89 from 4.08 mcUT [ 95.3 %] 0.13 ghost hits on real tracks [ 3.3 %] +MatchUTHitsChecker_99d3399d INFO 01_long >3UT : 95349 tr 3.92 from 4.10 mcUT [ 95.6 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_99d3399d INFO 02_long_P>5GeV : 61316 tr 3.95 from 4.08 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.5 %] +MatchUTHitsChecker_99d3399d INFO 02_long_P>5GeV >3UT : 60465 tr 3.99 from 4.11 mcUT [ 97.1 %] 0.10 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_99d3399d INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 3090 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_99d3399d INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 3073 tr 4.01 from 4.08 mcUT [ 98.4 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_99d3399d INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 3080 tr 4.01 from 4.07 mcUT [ 98.4 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_99d3399d INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 3073 tr 4.01 from 4.08 mcUT [ 98.4 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_99d3399d INFO +SeedTrackChecker_88c2003d INFO Results +SeedTrackChecker_88c2003d INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** +SeedTrackChecker_88c2003d INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % +SeedTrackChecker_88c2003d INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % +SeedTrackChecker_88c2003d INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % +SeedTrackChecker_88c2003d INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % +SeedTrackChecker_88c2003d INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % +SeedTrackChecker_88c2003d INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % +SeedTrackChecker_88c2003d INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % +SeedTrackChecker_88c2003d INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % +SeedTrackChecker_88c2003d INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % +SeedTrackChecker_88c2003d INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % +SeedTrackChecker_88c2003d INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % +SeedTrackChecker_88c2003d INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % +SeedTrackChecker_88c2003d INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % +SeedTrackChecker_88c2003d INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % +SeedTrackChecker_88c2003d INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % +SeedTrackChecker_88c2003d INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % +SeedTrackChecker_88c2003d INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % +SeedTrackChecker_88c2003d INFO +HLTControlFlowMgr INFO Memory pool: used 4.78838 +/- 0.0475562 MiB (min: 0, max: 6) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 705.46 +/- 6.98485 (min: 4, max: 1064) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 2955 | 169.109 | 57228.200 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 93.741 | 31722.824 | + | "SeedTrackChecker_88c2003d" | 2289 | 14.340 | 6264.541 | + | "ForwardTrackChecker_6cc3e097" | 2289 | 13.337 | 5826.350 | + | "MatchTrackChecker_8d1e5aae" | 2289 | 11.474 | 5012.744 | + | "ForwardUTHitsChecker_b1740bbc" | 2289 | 5.229 | 2284.418 | + | "MatchUTHitsChecker_99d3399d" | 2289 | 5.105 | 2230.423 | + | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.758 | 2078.448 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.554 | 1552.667 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.729 | 1192.338 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.180 | 952.333 | + | "Unpack__Event_MC_Particles" | 2289 | 2.072 | 905.261 | + | "GraphClustering_72971694" | 2289 | 1.752 | 765.279 | + | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 2289 | 0.985 | 430.284 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.797 | 348.318 | + | "ClassifyPhotonElectronAlg_3be601a8" | 2289 | 0.647 | 282.558 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.637 | 278.098 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.618 | 269.771 | + | "VPClusFull_38754d8c" | 2289 | 0.597 | 260.767 | + | "PrMatchNNv3_bd96cc08" | 2289 | 0.525 | 229.239 | + | "FutureEcalZSup" | 2289 | 0.518 | 226.131 | + | "CaloFutureClusterCovarianceAlg_1a2d4ea3" | 2289 | 0.449 | 196.144 | + | "PrTrackAssociator_3adf94fb" | 2289 | 0.418 | 182.653 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.399 | 174.468 | + | "PrTrackAssociator_15d60904" | 2289 | 0.308 | 134.545 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.282 | 123.293 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.194 | 84.553 | + | "fromPrMatchTracksV1Tracks_547b325e" | 2289 | 0.138 | 60.399 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.137 | 60.022 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.136 | 59.432 | + | "fromV3TrackV1Track_51dc622a" | 2289 | 0.136 | 59.369 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.135 | 59.123 | + | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 2289 | 0.119 | 51.908 | + | "CaloSelectiveTrackMatchAlg_Ttrack_bd1b5be2" | 2289 | 0.107 | 46.580 | + | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 2289 | 0.083 | 36.226 | + | "TrackBeamLineVertexFinderSoA_f85e7c3b" | 2289 | 0.078 | 33.873 | + | "CaloSelectiveElectronMatchAlg_Ttrack_7febcd2c" | 2289 | 0.074 | 32.268 | + | "FTRawBankDecoder" | 2289 | 0.069 | 30.195 | + | "PrFilterTracks2CaloClusters_cae3b638" | 2289 | 0.038 | 16.676 | + | "PrFilterTracks2ElectronMatch_4265680d" | 2289 | 0.036 | 15.869 | + | "PrFilterTracks2ElectronShower_ad25cd90" | 2289 | 0.033 | 14.458 | + | "UnpackRawEvent_UT" | 2955 | 0.031 | 10.552 | + | "reserveIOV" | 2289 | 0.025 | 10.964 | + | "CaloMergeTrackMatchTables_2ce8beb5" | 2289 | 0.012 | 5.431 | + | "UniqueIDGeneratorAlg_26e527e9" | 2289 | 0.010 | 4.547 | + | "Decode_ODIN" | 2289 | 0.010 | 4.210 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.007 | 3.187 | + | "DefaultGECFilter" | 2955 | 0.007 | 2.389 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.006 | 1.994 | + | "DummyEventTime" | 2289 | 0.005 | 2.289 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.005 | 2.271 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.005 | 2.211 | + | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.759 | + | "UnpackRawEvent_EcalPacked" | 2289 | 0.004 | 1.641 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.628 | + | "UnpackRawEvent_EcalPackedError" | 2289 | 0.003 | 1.507 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.003 | 1.200 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.003 | 1.197 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.002 | 0.973 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNNv3/PrMatchNNv3_bd96cc08 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2CaloClusters/PrFilterTracks2CaloClusters_cae3b638 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2ElectronMatch/PrFilterTracks2ElectronMatch_4265680d #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2ElectronShower/PrFilterTracks2ElectronShower_ad25cd90 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_6cc3e097 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_b1740bbc #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_8d1e5aae #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_99d3399d #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_88c2003d #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_88c2003d.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_99d3399d.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_8d1e5aae.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_b1740bbc.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_6cc3e097.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/sample4_data/logs/match_effs_BJpsi_Default.log b/data_matching/sample4_data/logs/match_effs_BJpsi_Default.log new file mode 100644 index 0000000..41b3b70 --- /dev/null +++ b/data_matching/sample4_data/logs/match_effs_BJpsi_Default.log @@ -0,0 +1,480 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_Default.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.1 + running on lhcba2 on Sun Feb 25 17:49:38 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_Default.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_Default.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 21678 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 17:50:18 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1425.49, timed 35313 Events: 2026064 ms, Evts/s = 17.4294 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +MatchTrackChecker_637fd38f.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_c7a5ed44.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNN_fe76ef5a INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.380926e+07 | 1251.1 | + | "#MatchingMLP" | 2215019 | 1874222 | 0.84614 | + | "#MatchingTracks" | 27023 | 2215019 | 81.968 | +PrMatchNN_fe76ef5a.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1971761 | 7978335 | 4.0463 | + | "#tracks with hits added" | 1971761 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_2fb28deb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2215019 | 1828649 |( 82.55681 +- 0.02549768)% | + | "MC particles per track" | 1828649 | 2141439 | 1.1710 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_2472c8a1 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2215019 | 81.968 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_482fda95 INFO Results +ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_482fda95 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_482fda95 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_482fda95 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_482fda95 INFO +ForwardUTHitsChecker_fe9d9ac2 INFO Results +ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO +MatchTrackChecker_637fd38f INFO Results +MatchTrackChecker_637fd38f INFO **** Match 2215019 tracks including 386370 ghosts [17.44 %], Event average 15.99 % **** +MatchTrackChecker_637fd38f INFO 01_long : 1582663 from 1811265 [ 87.38 %] 8409 clones [ 0.53 %], purity: 99.35 %, hitEff: 98.55 % +MatchTrackChecker_637fd38f INFO 02_long_P>5GeV : 1087125 from 1172326 [ 92.73 %] 4992 clones [ 0.46 %], purity: 99.43 %, hitEff: 99.13 % +MatchTrackChecker_637fd38f INFO 03_long_strange : 78743 from 98994 [ 79.54 %] 342 clones [ 0.43 %], purity: 99.03 %, hitEff: 98.19 % +MatchTrackChecker_637fd38f INFO 04_long_strange_P>5GeV : 41485 from 46918 [ 88.42 %] 149 clones [ 0.36 %], purity: 99.23 %, hitEff: 99.14 % +MatchTrackChecker_637fd38f INFO 05_long_fromB : 85290 from 94402 [ 90.35 %] 478 clones [ 0.56 %], purity: 99.50 %, hitEff: 98.82 % +MatchTrackChecker_637fd38f INFO 05_long_fromD : 45182 from 50932 [ 88.71 %] 259 clones [ 0.57 %], purity: 99.39 %, hitEff: 98.68 % +MatchTrackChecker_637fd38f INFO 06_long_fromB_P>5GeV : 66991 from 71030 [ 94.31 %] 339 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.20 % +MatchTrackChecker_637fd38f INFO 06_long_fromD_P>5GeV : 32804 from 35044 [ 93.61 %] 170 clones [ 0.52 %], purity: 99.50 %, hitEff: 99.18 % +MatchTrackChecker_637fd38f INFO 07_long_electrons : 116017 from 181213 [ 64.02 %] 1828 clones [ 1.55 %], purity: 98.27 %, hitEff: 98.46 % +MatchTrackChecker_637fd38f INFO 07_long_electrons_pairprod : 73149 from 130212 [ 56.18 %] 1273 clones [ 1.71 %], purity: 97.75 %, hitEff: 98.25 % +MatchTrackChecker_637fd38f INFO 08_long_fromB_electrons : 40827 from 48919 [ 83.46 %] 562 clones [ 1.36 %], purity: 99.15 %, hitEff: 98.91 % +MatchTrackChecker_637fd38f INFO 09_long_fromB_electrons_P>5GeV : 38537 from 44696 [ 86.22 %] 542 clones [ 1.39 %], purity: 99.20 %, hitEff: 99.03 % +MatchTrackChecker_637fd38f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58307 from 61675 [ 94.54 %] 300 clones [ 0.51 %], purity: 99.66 %, hitEff: 99.11 % +MatchTrackChecker_637fd38f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37577 from 42838 [ 87.72 %] 516 clones [ 1.35 %], purity: 99.25 %, hitEff: 98.99 % +MatchTrackChecker_637fd38f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26544 from 28214 [ 94.08 %] 140 clones [ 0.52 %], purity: 99.63 %, hitEff: 99.07 % +MatchTrackChecker_637fd38f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21366 from 24129 [ 88.55 %] 79 clones [ 0.37 %], purity: 99.52 %, hitEff: 98.92 % +MatchTrackChecker_637fd38f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58201 from 61506 [ 94.63 %] 300 clones [ 0.51 %], purity: 99.66 %, hitEff: 99.11 % +MatchTrackChecker_637fd38f INFO +MatchUTHitsChecker_c7a5ed44 INFO Results +MatchUTHitsChecker_c7a5ed44 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_2472c8a1/OutputTracksLocation **** 386370 ghost, 2.25 UT per track +MatchUTHitsChecker_c7a5ed44 INFO 01_long :1591072 tr 3.90 from 4.07 mcUT [ 95.7 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_c7a5ed44 INFO 01_long >3UT :1575030 tr 3.93 from 4.10 mcUT [ 96.0 %] 0.11 ghost hits on real tracks [ 2.8 %] +MatchUTHitsChecker_c7a5ed44 INFO 02_long_P>5GeV :1092117 tr 3.94 from 4.08 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_c7a5ed44 INFO 02_long_P>5GeV >3UT :1077684 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +MatchUTHitsChecker_c7a5ed44 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58607 tr 3.99 from 4.08 mcUT [ 97.7 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58430 tr 4.00 from 4.09 mcUT [ 97.8 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58501 tr 4.00 from 4.09 mcUT [ 97.8 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58423 tr 4.00 from 4.09 mcUT [ 97.8 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_ad9abe4e INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_ad9abe4e INFO +HLTControlFlowMgr INFO Memory pool: used 3.89435 +/- 0.011476 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 343.336 +/- 1.00196 (min: 4, max: 505) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 1978.030 | 55998.345 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1144.516 | 32401.436 | + | "SeedTrackChecker_ad9abe4e" | 27023 | 169.117 | 6258.255 | + | "ForwardTrackChecker_482fda95" | 27023 | 156.029 | 5773.926 | + | "MatchTrackChecker_637fd38f" | 27023 | 139.837 | 5174.726 | + | "ForwardUTHitsChecker_fe9d9ac2" | 27023 | 61.500 | 2275.838 | + | "MatchUTHitsChecker_c7a5ed44" | 27023 | 60.839 | 2251.378 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 57.252 | 2118.625 | + | "PrHybridSeeding_4d0337cc" | 27023 | 43.169 | 1597.492 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 32.621 | 1207.147 | + | "Unpack__Event_MC_Vertices" | 27023 | 25.979 | 961.378 | + | "Unpack__Event_MC_Particles" | 27023 | 24.654 | 912.336 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.465 | 350.241 | + | "VPClusFull_38754d8c" | 27023 | 7.395 | 273.669 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.342 | 271.688 | + | "PrStorePrUTHits_df75b912" | 27023 | 5.841 | 216.137 | + | "PrTrackAssociator_3adf94fb" | 27023 | 5.016 | 185.619 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.502 | 166.594 | + | "PrTrackAssociator_2fb28deb" | 27023 | 4.470 | 165.422 | + | "PrMatchNN_fe76ef5a" | 27023 | 4.362 | 161.399 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.342 | 123.688 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.355 | 87.141 | + | "fromPrMatchTracksV1Tracks_2472c8a1" | 27023 | 2.072 | 76.662 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.634 | 60.471 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.548 | 57.282 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.416 | 52.410 | + | "FTRawBankDecoder" | 27023 | 0.753 | 27.852 | + | "UnpackRawEvent_UT" | 35323 | 0.318 | 9.009 | + | "DefaultGECFilter" | 35323 | 0.081 | 2.300 | + | "Decode_ODIN" | 27023 | 0.080 | 2.943 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.073 | 2.704 | + | "reserveIOV" | 27023 | 0.064 | 2.350 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.056 | 1.583 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.053 | 1.966 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.052 | 1.928 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.050 | 1.867 | + | "DummyEventTime" | 27023 | 0.041 | 1.527 | + | "UnpackRawEvent_VP" | 27023 | 0.038 | 1.422 | + | "UnpackRawEvent_ODIN" | 27023 | 0.037 | 1.359 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.032 | 1.193 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.029 | 1.090 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_matching_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_matching_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNN/PrMatchNN_fe76ef5a #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_482fda95 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_637fd38f #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_c7a5ed44 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_c7a5ed44.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_637fd38f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/sample4_data/logs/match_effs_BJpsi_EFilter.log b/data_matching/sample4_data/logs/match_effs_BJpsi_EFilter.log new file mode 100644 index 0000000..458d3ee --- /dev/null +++ b/data_matching/sample4_data/logs/match_effs_BJpsi_EFilter.log @@ -0,0 +1,480 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_EFilter.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.1 + running on lhcba2 on Sun Feb 25 16:12:05 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_EFilter.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_EFilter.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 23596 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 16:12:50 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1441.27, timed 35313 Events: 2123230 ms, Evts/s = 16.6317 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_6cc3e097.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_b1740bbc.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +MatchTrackChecker_b09f1436.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_6718f41f.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNN_e3e0ccb5 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.350144e+07 | 1239.7 | + | "#MatchingMLP" | 2384626 | 2113334 | 0.88623 | + | "#MatchingTracks" | 27023 | 2384626 | 88.244 | +PrMatchNN_e3e0ccb5.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 2093136 | 8420295 | 4.0228 | + | "#tracks with hits added" | 2093136 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +PrTrackAssociator_43e58d3b INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2384626 | 1845127 |( 77.37595 +- 0.02709431)% | + | "MC particles per track" | 1845127 | 2164191 | 1.1729 | +SeedTrackChecker_88c2003d.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_13de62af INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2384626 | 88.244 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_6cc3e097 INFO Results +ForwardTrackChecker_6cc3e097 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_6cc3e097 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_6cc3e097 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_6cc3e097 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_6cc3e097 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_6cc3e097 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_6cc3e097 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_6cc3e097 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_6cc3e097 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_6cc3e097 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_6cc3e097 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_6cc3e097 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_6cc3e097 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_6cc3e097 INFO +ForwardUTHitsChecker_b1740bbc INFO Results +ForwardUTHitsChecker_b1740bbc INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_b1740bbc INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_b1740bbc INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_b1740bbc INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_b1740bbc INFO +MatchTrackChecker_b09f1436 INFO Results +MatchTrackChecker_b09f1436 INFO **** Match 2384626 tracks including 539499 ghosts [22.62 %], Event average 20.72 % **** +MatchTrackChecker_b09f1436 INFO 01_long : 1580539 from 1811265 [ 87.26 %] 8501 clones [ 0.53 %], purity: 99.32 %, hitEff: 98.51 % +MatchTrackChecker_b09f1436 INFO 02_long_P>5GeV : 1080762 from 1172326 [ 92.19 %] 4947 clones [ 0.46 %], purity: 99.42 %, hitEff: 99.11 % +MatchTrackChecker_b09f1436 INFO 03_long_strange : 79205 from 98994 [ 80.01 %] 344 clones [ 0.43 %], purity: 98.97 %, hitEff: 98.14 % +MatchTrackChecker_b09f1436 INFO 04_long_strange_P>5GeV : 41219 from 46918 [ 87.85 %] 153 clones [ 0.37 %], purity: 99.22 %, hitEff: 99.12 % +MatchTrackChecker_b09f1436 INFO 05_long_fromB : 85106 from 94402 [ 90.15 %] 474 clones [ 0.55 %], purity: 99.47 %, hitEff: 98.79 % +MatchTrackChecker_b09f1436 INFO 05_long_fromD : 45140 from 50932 [ 88.63 %] 266 clones [ 0.59 %], purity: 99.36 %, hitEff: 98.63 % +MatchTrackChecker_b09f1436 INFO 06_long_fromB_P>5GeV : 66659 from 71030 [ 93.85 %] 329 clones [ 0.49 %], purity: 99.57 %, hitEff: 99.18 % +MatchTrackChecker_b09f1436 INFO 06_long_fromD_P>5GeV : 32640 from 35044 [ 93.14 %] 168 clones [ 0.51 %], purity: 99.49 %, hitEff: 99.16 % +MatchTrackChecker_b09f1436 INFO 07_long_electrons : 130866 from 181213 [ 72.22 %] 2000 clones [ 1.51 %], purity: 97.92 %, hitEff: 98.11 % +MatchTrackChecker_b09f1436 INFO 07_long_electrons_pairprod : 86520 from 130212 [ 66.45 %] 1429 clones [ 1.62 %], purity: 97.32 %, hitEff: 97.80 % +MatchTrackChecker_b09f1436 INFO 08_long_fromB_electrons : 42026 from 48919 [ 85.91 %] 569 clones [ 1.34 %], purity: 99.08 %, hitEff: 98.82 % +MatchTrackChecker_b09f1436 INFO 09_long_fromB_electrons_P>5GeV : 39421 from 44696 [ 88.20 %] 547 clones [ 1.37 %], purity: 99.15 %, hitEff: 98.96 % +MatchTrackChecker_b09f1436 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58017 from 61675 [ 94.07 %] 297 clones [ 0.51 %], purity: 99.66 %, hitEff: 99.10 % +MatchTrackChecker_b09f1436 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38304 from 42838 [ 89.42 %] 519 clones [ 1.34 %], purity: 99.22 %, hitEff: 98.93 % +MatchTrackChecker_b09f1436 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26404 from 28214 [ 93.58 %] 139 clones [ 0.52 %], purity: 99.63 %, hitEff: 99.05 % +MatchTrackChecker_b09f1436 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21172 from 24129 [ 87.75 %] 82 clones [ 0.39 %], purity: 99.52 %, hitEff: 98.91 % +MatchTrackChecker_b09f1436 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 57916 from 61506 [ 94.16 %] 297 clones [ 0.51 %], purity: 99.66 %, hitEff: 99.10 % +MatchTrackChecker_b09f1436 INFO +MatchUTHitsChecker_6718f41f INFO Results +MatchUTHitsChecker_6718f41f INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_13de62af/OutputTracksLocation **** 539499 ghost, 2.31 UT per track +MatchUTHitsChecker_6718f41f INFO 01_long :1589040 tr 3.90 from 4.07 mcUT [ 95.6 %] 0.13 ghost hits on real tracks [ 3.1 %] +MatchUTHitsChecker_6718f41f INFO 01_long >3UT :1572925 tr 3.93 from 4.10 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_6718f41f INFO 02_long_P>5GeV :1085709 tr 3.95 from 4.08 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_6718f41f INFO 02_long_P>5GeV >3UT :1071438 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +MatchUTHitsChecker_6718f41f INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58314 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58141 tr 4.00 from 4.09 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58213 tr 4.00 from 4.09 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58134 tr 4.00 from 4.09 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_6718f41f INFO +SeedTrackChecker_88c2003d INFO Results +SeedTrackChecker_88c2003d INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_88c2003d INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_88c2003d INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_88c2003d INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_88c2003d INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_88c2003d INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_88c2003d INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_88c2003d INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_88c2003d INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_88c2003d INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_88c2003d INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_88c2003d INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_88c2003d INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_88c2003d INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_88c2003d INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_88c2003d INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_88c2003d INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_88c2003d INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_88c2003d INFO +HLTControlFlowMgr INFO Memory pool: used 3.89435 +/- 0.011476 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 343.336 +/- 1.00196 (min: 4, max: 505) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 2071.994 | 58658.491 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1200.626 | 33989.912 | + | "SeedTrackChecker_88c2003d" | 27023 | 176.403 | 6527.868 | + | "ForwardTrackChecker_6cc3e097" | 27023 | 163.328 | 6044.038 | + | "MatchTrackChecker_b09f1436" | 27023 | 145.869 | 5397.945 | + | "ForwardUTHitsChecker_b1740bbc" | 27023 | 64.777 | 2397.118 | + | "MatchUTHitsChecker_6718f41f" | 27023 | 64.378 | 2382.346 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 59.699 | 2209.187 | + | "PrHybridSeeding_4d0337cc" | 27023 | 44.574 | 1649.485 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 33.916 | 1255.070 | + | "Unpack__Event_MC_Vertices" | 27023 | 26.865 | 994.168 | + | "Unpack__Event_MC_Particles" | 27023 | 25.625 | 948.270 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.656 | 357.341 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.647 | 282.996 | + | "VPClusFull_38754d8c" | 27023 | 7.306 | 270.357 | + | "PrStorePrUTHits_df75b912" | 27023 | 6.265 | 231.857 | + | "PrTrackAssociator_3adf94fb" | 27023 | 5.166 | 191.155 | + | "PrMatchNN_e3e0ccb5" | 27023 | 4.951 | 183.208 | + | "PrTrackAssociator_43e58d3b" | 27023 | 4.943 | 182.921 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.762 | 176.220 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.465 | 128.237 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.638 | 97.603 | + | "fromPrMatchTracksV1Tracks_13de62af" | 27023 | 2.326 | 86.083 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.817 | 67.247 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.646 | 60.907 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.475 | 54.594 | + | "FTRawBankDecoder" | 27023 | 0.804 | 29.770 | + | "UnpackRawEvent_UT" | 35323 | 0.337 | 9.552 | + | "Decode_ODIN" | 27023 | 0.083 | 3.073 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.075 | 2.769 | + | "DefaultGECFilter" | 35323 | 0.075 | 2.117 | + | "reserveIOV" | 27023 | 0.071 | 2.623 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.058 | 1.642 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.056 | 2.077 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.054 | 2.010 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.053 | 1.966 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.052 | 1.914 | + | "UnpackRawEvent_ODIN" | 27023 | 0.045 | 1.664 | + | "UnpackRawEvent_VP" | 27023 | 0.040 | 1.492 | + | "DummyEventTime" | 27023 | 0.038 | 1.397 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.028 | 1.032 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_matching_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_matching_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNN/PrMatchNN_e3e0ccb5 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_6cc3e097 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_b1740bbc #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_b09f1436 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_6718f41f #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_88c2003d #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_88c2003d.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_6718f41f.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_b09f1436.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_b1740bbc.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_6cc3e097.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/sample4_data/logs/match_effs_BJpsi_Electron_mlp_0215.log b/data_matching/sample4_data/logs/match_effs_BJpsi_Electron_mlp_0215.log new file mode 100644 index 0000000..2d42417 --- /dev/null +++ b/data_matching/sample4_data/logs/match_effs_BJpsi_Electron_mlp_0215.log @@ -0,0 +1,480 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_Default.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.1 + running on lhcba2 on Sun Feb 25 17:04:03 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_Default.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_BJpsi_Default.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 23295 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 17:04:47 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1787.5, timed 35313 Events: 1965663 ms, Evts/s = 17.9649 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +MatchTrackChecker_637fd38f.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_c7a5ed44.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNN_fe76ef5a INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.350144e+07 | 1239.7 | + | "#MatchingMLP" | 2677131 | 2217079 | 0.82815 | + | "#MatchingTracks" | 27023 | 2677131 | 99.069 | +PrMatchNN_fe76ef5a.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 2253482 | 8992793 | 3.9906 | + | "#tracks with hits added" | 2253482 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_2fb28deb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2677131 | 1887473 |( 70.50357 +- 0.02787119)% | + | "MC particles per track" | 1887473 | 2220400 | 1.1764 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_2472c8a1 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2677131 | 99.069 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_482fda95 INFO Results +ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_482fda95 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_482fda95 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_482fda95 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_482fda95 INFO +ForwardUTHitsChecker_fe9d9ac2 INFO Results +ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO +MatchTrackChecker_637fd38f INFO Results +MatchTrackChecker_637fd38f INFO **** Match 2677131 tracks including 789658 ghosts [29.50 %], Event average 27.21 % **** +MatchTrackChecker_637fd38f INFO 01_long : 1607506 from 1811265 [ 88.75 %] 9243 clones [ 0.57 %], purity: 99.30 %, hitEff: 98.49 % +MatchTrackChecker_637fd38f INFO 02_long_P>5GeV : 1093182 from 1172326 [ 93.25 %] 5165 clones [ 0.47 %], purity: 99.42 %, hitEff: 99.10 % +MatchTrackChecker_637fd38f INFO 03_long_strange : 80915 from 98994 [ 81.74 %] 403 clones [ 0.50 %], purity: 98.96 %, hitEff: 98.11 % +MatchTrackChecker_637fd38f INFO 04_long_strange_P>5GeV : 41840 from 46918 [ 89.18 %] 169 clones [ 0.40 %], purity: 99.21 %, hitEff: 99.11 % +MatchTrackChecker_637fd38f INFO 05_long_fromB : 86232 from 94402 [ 91.35 %] 517 clones [ 0.60 %], purity: 99.46 %, hitEff: 98.78 % +MatchTrackChecker_637fd38f INFO 05_long_fromD : 45805 from 50932 [ 89.93 %] 293 clones [ 0.64 %], purity: 99.35 %, hitEff: 98.61 % +MatchTrackChecker_637fd38f INFO 06_long_fromB_P>5GeV : 67230 from 71030 [ 94.65 %] 345 clones [ 0.51 %], purity: 99.57 %, hitEff: 99.18 % +MatchTrackChecker_637fd38f INFO 06_long_fromD_P>5GeV : 32950 from 35044 [ 94.02 %] 176 clones [ 0.53 %], purity: 99.49 %, hitEff: 99.15 % +MatchTrackChecker_637fd38f INFO 07_long_electrons : 135102 from 181213 [ 74.55 %] 2109 clones [ 1.54 %], purity: 97.85 %, hitEff: 98.05 % +MatchTrackChecker_637fd38f INFO 07_long_electrons_pairprod : 90155 from 130212 [ 69.24 %] 1505 clones [ 1.64 %], purity: 97.26 %, hitEff: 97.74 % +MatchTrackChecker_637fd38f INFO 08_long_fromB_electrons : 42506 from 48919 [ 86.89 %] 590 clones [ 1.37 %], purity: 99.05 %, hitEff: 98.79 % +MatchTrackChecker_637fd38f INFO 09_long_fromB_electrons_P>5GeV : 39797 from 44696 [ 89.04 %] 567 clones [ 1.40 %], purity: 99.13 %, hitEff: 98.94 % +MatchTrackChecker_637fd38f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58447 from 61675 [ 94.77 %] 305 clones [ 0.52 %], purity: 99.66 %, hitEff: 99.10 % +MatchTrackChecker_637fd38f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38620 from 42838 [ 90.15 %] 536 clones [ 1.37 %], purity: 99.20 %, hitEff: 98.91 % +MatchTrackChecker_637fd38f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26605 from 28214 [ 94.30 %] 142 clones [ 0.53 %], purity: 99.63 %, hitEff: 99.04 % +MatchTrackChecker_637fd38f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21456 from 24129 [ 88.92 %] 87 clones [ 0.40 %], purity: 99.52 %, hitEff: 98.90 % +MatchTrackChecker_637fd38f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58343 from 61506 [ 94.86 %] 305 clones [ 0.52 %], purity: 99.66 %, hitEff: 99.10 % +MatchTrackChecker_637fd38f INFO +MatchUTHitsChecker_c7a5ed44 INFO Results +MatchUTHitsChecker_c7a5ed44 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_2472c8a1/OutputTracksLocation **** 789658 ghost, 2.13 UT per track +MatchUTHitsChecker_c7a5ed44 INFO 01_long :1616749 tr 3.88 from 4.07 mcUT [ 95.3 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_c7a5ed44 INFO 01_long >3UT :1599991 tr 3.92 from 4.10 mcUT [ 95.6 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_c7a5ed44 INFO 02_long_P>5GeV :1098347 tr 3.93 from 4.08 mcUT [ 96.6 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_c7a5ed44 INFO 02_long_P>5GeV >3UT :1083604 tr 3.98 from 4.11 mcUT [ 97.0 %] 0.09 ghost hits on real tracks [ 2.2 %] +MatchUTHitsChecker_c7a5ed44 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58752 tr 3.98 from 4.08 mcUT [ 97.6 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58576 tr 3.99 from 4.09 mcUT [ 97.7 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58648 tr 3.99 from 4.08 mcUT [ 97.7 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58569 tr 3.99 from 4.09 mcUT [ 97.7 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_c7a5ed44 INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_ad9abe4e INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_ad9abe4e INFO +HLTControlFlowMgr INFO Memory pool: used 3.89435 +/- 0.011476 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 343.336 +/- 1.00196 (min: 4, max: 505) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 1916.559 | 54258.090 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1112.796 | 31503.448 | + | "SeedTrackChecker_ad9abe4e" | 27023 | 162.772 | 6023.462 | + | "ForwardTrackChecker_482fda95" | 27023 | 149.443 | 5530.227 | + | "MatchTrackChecker_637fd38f" | 27023 | 135.219 | 5003.832 | + | "ForwardUTHitsChecker_fe9d9ac2" | 27023 | 59.132 | 2188.193 | + | "MatchUTHitsChecker_c7a5ed44" | 27023 | 58.960 | 2181.841 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 55.349 | 2048.229 | + | "PrHybridSeeding_4d0337cc" | 27023 | 41.377 | 1531.166 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 31.443 | 1163.565 | + | "Unpack__Event_MC_Vertices" | 27023 | 24.793 | 917.493 | + | "Unpack__Event_MC_Particles" | 27023 | 23.669 | 875.890 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 8.887 | 328.869 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.086 | 262.216 | + | "VPClusFull_38754d8c" | 27023 | 6.756 | 250.003 | + | "PrStorePrUTHits_df75b912" | 27023 | 5.644 | 208.847 | + | "PrTrackAssociator_2fb28deb" | 27023 | 5.068 | 187.535 | + | "PrMatchNN_fe76ef5a" | 27023 | 4.941 | 182.838 | + | "PrTrackAssociator_3adf94fb" | 27023 | 4.779 | 176.865 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.197 | 155.321 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.210 | 118.798 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.448 | 90.599 | + | "fromPrMatchTracksV1Tracks_2472c8a1" | 27023 | 2.363 | 87.426 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.641 | 60.732 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.511 | 55.908 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.391 | 51.461 | + | "FTRawBankDecoder" | 27023 | 0.716 | 26.501 | + | "UnpackRawEvent_UT" | 35323 | 0.310 | 8.766 | + | "Decode_ODIN" | 27023 | 0.076 | 2.828 | + | "DefaultGECFilter" | 35323 | 0.071 | 2.002 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.067 | 2.493 | + | "reserveIOV" | 27023 | 0.066 | 2.450 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.051 | 1.439 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.050 | 1.857 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.050 | 1.850 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.048 | 1.773 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.044 | 1.630 | + | "UnpackRawEvent_VP" | 27023 | 0.039 | 1.461 | + | "DummyEventTime" | 27023 | 0.036 | 1.341 | + | "UnpackRawEvent_ODIN" | 27023 | 0.033 | 1.227 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.025 | 0.933 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_matching_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_matching_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNN/PrMatchNN_fe76ef5a #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_482fda95 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_637fd38f #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_c7a5ed44 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_c7a5ed44.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_637fd38f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/sample4_data/match_effs_BJpsi_Default.root b/data_matching/sample4_data/match_effs_BJpsi_Default.root new file mode 100644 index 0000000..833da60 Binary files /dev/null and b/data_matching/sample4_data/match_effs_BJpsi_Default.root differ diff --git a/data_matching/sample4_data/match_effs_BJpsi_EFilter.root b/data_matching/sample4_data/match_effs_BJpsi_EFilter.root new file mode 100644 index 0000000..33630b0 Binary files /dev/null and b/data_matching/sample4_data/match_effs_BJpsi_EFilter.root differ diff --git a/data_matching/sample4_data/match_effs_BJpsi_Electron_mlp_0215.root b/data_matching/sample4_data/match_effs_BJpsi_Electron_mlp_0215.root new file mode 100644 index 0000000..e848cdd Binary files /dev/null and b/data_matching/sample4_data/match_effs_BJpsi_Electron_mlp_0215.root differ diff --git a/electron_main.py b/electron_main.py index 37f6f6a..d3d8887 100644 --- a/electron_main.py +++ b/electron_main.py @@ -72,8 +72,8 @@ if args.matching_weights: only_electrons=True, filter_velos=False, filter_seeds=True, - n_train_signal=150e3, - n_train_bkg=150e3, + n_train_signal=110e3, + n_train_bkg=110e3, n_test_signal=10e3, n_test_bkg=10e3, prepare_data=True, diff --git a/main.py b/main.py index bb23d4c..cd70688 100644 --- a/main.py +++ b/main.py @@ -2,12 +2,12 @@ import os import subprocess import argparse -from parameterisations.parameterise_magnet_kink import parameterise_magnet_kink -from parameterisations.parameterise_track_model import parameterise_track_model +from parameterisations.parameterise_magnet_kink_electron import parameterise_magnet_kink +from parameterisations.parameterise_track_model_electron import parameterise_track_model from parameterisations.parameterise_search_window import parameterise_search_window from parameterisations.parameterise_field_integral import parameterise_field_integral from parameterisations.parameterise_hough_histogram import parameterise_hough_histogram -from parameterisations.utils.preselection import preselection +from parameterisations.utils.preselection_trackinglosses import preselection from parameterisations.train_forward_ghost_mlps import ( train_default_forward_ghost_mlp, train_veloUT_forward_ghost_mlp, @@ -53,19 +53,19 @@ parser.add_argument( ) args = parser.parse_args() -selected = "data_matching/parameterisations/param_data_B_default_thesis_selected.root" +selected = "data/tracking_losses_ntuple_B_def_selected.root" if args.prepare_params_data: - selection = "chi2_comb < 5 && pid == 11 && pt > 10 && p > 1500 && p < 100000" + selection = "fromSignal == 1 && isElectron == 1 && pt > 10 && p > 1500 && p < 100000 && !std::isnan(ideal_state_770_x) && !std::isnan(ideal_state_9410_x) && !std::isnan(ideal_state_10000_x)" print("Run selection cuts =", selection) selected_md = preselection( cuts=selection, - input_file="data_matching/parameterisations/param_data_B_default_thesis.root", + input_file="data/tracking_losses_ntuple_B_def.root", ) cpp_files = [] if args.field_params: print("Parameterise magnet kink position ...") - cpp_files.append(parameterise_magnet_kink(input_file=selected, per_layer=False)) + cpp_files.append(parameterise_magnet_kink(input_file=selected)) print("Parameterise track model ...") cpp_files.append(parameterise_track_model(input_file=selected)) diff --git a/moore_options/get_calo_data.py b/moore_options/get_calo_data.py index faec7fb..273ba8a 100644 --- a/moore_options/get_calo_data.py +++ b/moore_options/get_calo_data.py @@ -39,7 +39,7 @@ import Functors as F import glob -decay = "testJpsi" +decay = "BJpsi" options.evt_max = -1 diff --git a/moore_options/get_ghost_data.py b/moore_options/get_ghost_data.py index aeb4385..1bad952 100644 --- a/moore_options/get_ghost_data.py +++ b/moore_options/get_ghost_data.py @@ -28,6 +28,8 @@ from RecoConf.hlt2_tracking import ( make_PrMatchNN_tracks, get_fast_hlt2_tracks, ) +from RecoConf.event_filters import require_gec + from RecoConf.mc_checking import make_links_lhcbids_mcparticles_tracking_system import glob @@ -222,7 +224,7 @@ def run_tracking_debug(): data = [forward_debug, forward_ut_debug, match_debug] # match_residual] - return Reconstruction("run_tracking_debug", data) + return Reconstruction("run_tracking_debug", data, [require_gec()]) run_reconstruction(options, run_tracking_debug) diff --git a/moore_options/get_match_eff_data.py b/moore_options/get_match_eff_data.py index 849008d..847684b 100644 --- a/moore_options/get_match_eff_data.py +++ b/moore_options/get_match_eff_data.py @@ -43,11 +43,13 @@ from RecoConf.hlt1_tracking import ( ) import glob -decay = "testJpsi" +decay = "BJpsi" options.evt_max = -1 -options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_{decay}_EFilter.root" +# options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_{decay}_EFilter.root" +options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_{decay}_Default.root" + options.input_type = "ROOT" @@ -76,7 +78,7 @@ def run_tracking_debug(): tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True) matching_params = dict( - MinMatchNN=0.5, # NN response cut value + MinMatchNN=0.215, # NN response cut value ) match_long = PrMatchNN( diff --git a/moore_options/get_parameterisation_data.py b/moore_options/get_parameterisation_data.py index fd687f6..63a42b2 100644 --- a/moore_options/get_parameterisation_data.py +++ b/moore_options/get_parameterisation_data.py @@ -5,6 +5,8 @@ from PyConf.Algorithms import PrParameterisationData from RecoConf.data_from_file import mc_unpackers from PyConf.application import make_data_with_FetchDataFromFile from RecoConf.mc_checking import make_links_lhcbids_mcparticles_tracking_system +from RecoConf.event_filters import require_gec + import glob @@ -50,7 +52,7 @@ def run_tracking_param_debug(): data = [param_data] - return Reconstruction("run_tracking_debug", data) + return Reconstruction("run_tracking_debug", data, [require_gec()]) run_reconstruction(options, run_tracking_param_debug) diff --git a/moore_options/get_tracking_losses.py b/moore_options/get_tracking_losses.py index 71b9eea..5485bd5 100644 --- a/moore_options/get_tracking_losses.py +++ b/moore_options/get_tracking_losses.py @@ -24,6 +24,8 @@ from RecoConf.mc_checking import ( make_links_tracks_mcparticles, make_default_IdealStateCreator, ) +from RecoConf.event_filters import require_gec + from PyConf.Algorithms import PrTrackAssociator, PrDebugTrackingLosses from PyConf.application import make_data_with_FetchDataFromFile @@ -38,11 +40,10 @@ tested by mc_matching_example.py """ -decay = "test" +decay = "B" options.evt_max = -1 - if decay == "B": options.input_files = glob.glob("/auto/data/guenther/Bd_Kstee/*.xdigi") elif decay == "BJpsi": @@ -61,7 +62,9 @@ options.dddb_tag = "dddb-20210617" options.simulation = True options.input_type = "ROOT" -options.ntuple_file = f"data/tracking_losses_ntuple_{decay}_endVelo2endT.root" +options.ntuple_file = ( + f"/work/cetin/LHCb/reco_tuner/data/tracking_losses_ntuple_{decay}_default.root" +) def run_tracking_losses(): @@ -129,7 +132,7 @@ def run_tracking_losses(): ) data = [tracking_losses] - return Reconstruction("run_tracking_losses", data) + return Reconstruction("run_tracking_losses", data, [require_gec()]) run_reconstruction(options, run_tracking_losses) diff --git a/parameterisations/notebooks/magnet_kink_position.ipynb b/parameterisations/notebooks/magnet_kink_position.ipynb index 671d252..24ab396 100644 --- a/parameterisations/notebooks/magnet_kink_position.ipynb +++ b/parameterisations/notebooks/magnet_kink_position.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 18, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -12,32 +12,34 @@ "import seaborn as sns\n", "import numpy as np\n", "import mplhep\n", + "\n", "mplhep.style.use([\"LHCbTex2\"])\n", - "input_tree = uproot.open({\"/work/guenther/reco_tuner/data/param_data_selected.root\": \"Selected\"})\n", + "input_tree = uproot.open({\n", + " \"/work/cetin/LHCb/reco_tuner/data/tracking_losses_ntuple_B_def_selected.root\":\n", + " \"Selected\"\n", + "})\n", "array = input_tree.arrays()\n", - "array[\"dSlope_fringe\"] = array[\"tx_ref\"] - array[\"tx\"]\n", - "array[\"z_mag_x_fringe\"] = (array[\"x\"] - array[\"x_ref\"] - array[\"tx\"] * array[\"z\"] + array[\"tx_ref\"] * array[\"z_ref\"] ) / array[\"dSlope_fringe\"]" + "\n", + "array[\"dSlope_xEndT\"] = array[\"ideal_state_9410_tx\"] - array[\n", + " \"ideal_state_770_tx\"]\n", + "array[\"dSlope_xEndT_abs\"] = abs(array[\"dSlope_xEndT\"])\n", + "array[\"x_EndT_abs\"] = abs(array[\"ideal_state_9410_x\"])\n", + "\n", + "array[\"z_mag_xEndT\"] = (\n", + " array[\"ideal_state_770_x\"] - array[\"ideal_state_9410_x\"] -\n", + " array[\"ideal_state_770_tx\"] * array[\"ideal_state_770_z\"] +\n", + " array[\"ideal_state_9410_tx\"] *\n", + " array[\"ideal_state_9410_z\"]) / array[\"dSlope_xEndT\"]" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n", - " expsuffix: Custom Text(0.05, 0.955, 'Simulation'))" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmaElEQVR4nOz9z28bV77n/79KncUAg5ZK8sUFBAnoqBjP4pvFWJTc+7HIdG8nJuWs0xFpzypQt0Urf4Bt0h19s5qYlJP1tSg7274m5exvpLKzyKrDkgJIIDADU2U2BphNVJ+FhmxRPymyxCpazwdAtCidOudNUQ7AV7/PKcPzPE8AAAAAAADAO24g6AIAAAAAAACAXiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAl8J7QRcA/Of//J/1f//v/9VvfvMb/eu//mvQ5QAAAAAAgAv0v/7X/9Kvv/6q//Sf/pP+z//5Pz1d2/A8z+vpisAhv/nNb7S3txd0GQAAAAAAoIcGBgb066+/9nRNOsIQuEYQNjAwoNHR0XNdW61WO762W6zd+7WDXp+1WZu1WftdXJ+1WZu13921g16ftVmbtVn7rOt/85vfXEB1p+u7IGxra0u2batWq8l1Xb1580aSdOXKFZmmKcuyND09rcHBwYArRbv+9V//VTs7OxodHdX29va5rh0fH+/42m6xdu/XDnp91mZt1mbtd3F91mZt1n531w56fdZmbdZm7bOuD+J4pL4Iwp4/f65SqaSVlRW5rtvWNZZlKRaLKZlM6saNGxdbIAAAAAAAAEIv1EHYkydPlM1m5TiOJOngcWaGYRx7TWNMpVKR4zgqFAqyLEv37t3Tn/70p4svGgAAAAAAAKE0EHQBx3n58qWuXr2qdDp9bAjWeH7c47gxjuMolUrpv/yX/6Iff/yxZ68DAAAAAAAA4RG6jrDFxUXlcrkjoVYsFlM0GtWVK1dkWZZM05QkjYyMSJJqtZokyXVdOY6jN2/eyHEclcvl5nbKn3/+WdFoVJlMRvfv3+/ZawIAAAAAAEDwQhOE1et1zczMaGNjQ9J+8BWPxxWLxTQ5OdnV3G/fvtXTp09VKBRk27ay2azK5bLK5TKH6gMAAAAAAFwSodga+fr1a01MTGhjY0OpVEqVSkUvXrzQ3bt3uw7BJGloaEipVErr6+v6+eefdePGDa2vr2t6elr/+Mc/fHgFAAAAAAAACLvAg7BXr14pGo1qYmJClUpFjx8/1sTExIWtZ1mWSqWSXrx4of/9v/+3pqamVK/XL2w9AAAAAAAAhEOgWyM3Nzc1MzOjRCKhlZWVnq4di8W0ubmpqakpzc7O6m9/+1tP14c/5ufnVa/XL90W1yBfd9C/88v82oNyWX/nl3XtIF3m3/llfu1Buay/88u6dpCCft2X9T0P+vcelMv6O7+sawepn1+34R0+lb6HPvjgA8ViMT1+/DioEuS6rqanp3Xnzh39+c9/DqyOy2x8fFw7OzsaGxvT9vZ20OW0rV/rRn/i7w29wt8aeom/N/QKf2voJf7e0Cv9/LcWZO2BdYTdu3dPlmUFGoJJkmmaWl9fl2VZmpmZ0bVr1wKtBwAAAAAAABcjsDPCrly5omKxGNTyLUzT1NramhzHCboUAAAAAAAAXJDAOsLu3r0b1NLHmpyc9OUOlQAAAAAAAAinwO8a2St37twJugQAAAAAAAAE6NIEYYVCQVtbW0GXAQAAAAAAgIBciiBsbW1Nnufp2bNnQZcCAAAAAACAgARyRtjt27e1ubl54evUajW5rts8BP/x48f685//fOHrojPValXj4+Onjpmfn9f8/HyPKgIAAAAAAOextLSkpaWlU8dUq9UeVXNUIEGYaZoqlUoyDONC1/E8r+W54zh6/fq1rl27dqHrojN7e3va2dk5dUy9Xu9RNWebn59XvV7X4OBg0KXgEuDvDb3C3xp6ib839Ap/a+gl/t7QK2H9W6vX62d+tg+S4R1Oi3rg1atXmpqaajsI8zyv69CsMUcmk9H9+/e7mgv+Gh8f187OjgYGBjQ6OnrqWDrCAAAAAAAIr3Y7wvb29jQ2Nqbt7e0eVbYvkCBMkj744ANtbm4e6do6jmEYbY1r5/pIJKK///3vHc8F/zWCsCD+AQAAAAAAgN4KMgcI7LD8mZkZSVK5XNbe3t6Jj2w2K8/zFI1GVSqVtLu7e+r4w4/19XVNTEwonU5rb2+PEAwAAAAAAOCSCuSMMEmanZ2Vbdu6cePGiWM2Nzd17949pdNpff311x2tE41G9eLFC33wwQcyDEP/83/+z05LBgAAAAAAQB8LtCNseHj41DHZbFaWZXUcgjVYlqW5uTnl83l9//33Xc0FAAAAAACA/hRYECZJL168OPXn6+vrSqfTvqw1PT0tz/OUz+d9mQ8AAAAAAAD9JdAg7Cy2bSsajfoy18jIiCSpVCr5Mh8AAAAAAAD6S6iDMNM0tbm56ctcjQDMdV1f5gMAAAAAAEB/CXUQNj09rcePH3c9z9u3b1UoFCTth2sAAAAAAAC4fEIdhKVSKW1sbOjLL7/seI56va5YLCZJMgxDlmX5VR4AAAAAAAD6SKiDsEQioYmJCS0sLOiTTz7R1tbWua5//vy5JiYmZNt283u3bt3yuUoAAAAAAAD0A8PzPC/oIk7jOI4++OADGYYhSYpGo0qn07IsS5Zl6f3335ckbW1tyXVdOY6jUqmklZUVua4rz/NkGIY8z9Pw8LDevHkT4KvBccbHx7Wzs6OxsTFtb28HXQ4AAAAAALhAQeYA7/V0tQ5YlqX19XVNT09L2r+TZDqdPvO6Rr7XCNAMw1CxWLy4QgEAAAAAABBqod4a2RCNRvXzzz9rcnJSnue19TAMo9kJ5nmeVlZWdOPGjaBfCgAAAAAAAALSF0GYtN8ZtrGxoZWVFUWj0SM/bwRfDY0ALJFIaHd3Vzdv3uxluQAAAAAAAAiZ0G+NPCyRSCiRSGhzc1PlclkbGxtyHEe1Wk2SNDIyIsuyFI/HFYvFNDQ0FHDFAAAAAAAACIPQH5aPdx+H5SNIruvKNM2gywD6wofffuXbXD99+rlvcwEAAKC/BJkD9M3WSADwi23bymQyGh4e1tzcXNDlAAAAAAB6pO+2RrZjcXFRt2/f1u9+97ugSwFwTrZt6+nTp7Jtu7ntudG1ZVmWRkZGFI1Gm9ufD0smk3IcRxsbG83vua6rcrmsp0+fqlwuy3XdHr4iAAAAAEBY9F1H2PPnz3Xnzh1dv35dz58/P3bM1NSUJicn9cknn+iXX37pcYW47AqFQvPmDed5TE1N+bJ+J2sPDw+fOF8ymexoznK53HbNrusqk8k0fw+5XE7lclmO4zRDK9d1Zdu2yuWycrmc4vF4c3wmk1GhUFAymdTq6uqR+efm5vTgwQOtrq4SggEAAADAJdY3Qdhf//pXXblyRclkUoVCQbZtNw/IPyyRSMhxHP3973+XZVn67rvvelwtLrNUKqXd3V1tbGwokUicOjYWi6lUKjXH+8HzPFUqFeXz+VPPvrIsS/l8XpVKRbu7uyeOKxaL2t3dValUOrYD66CFhQVtbGxod3f3zLENjS2KuVyu5fuJRELFYrE5X+N1lUolpVKp5muzbVu5XE7pdLoZgh0OuxrzeJ4ny7LaqgsAAAAA8O4JfRD29u1bXb16VZlMpvlhuJ3z/U3T1MbGhq5du6ZEIqFvvvmmB9UC+0zTVDQaVbFYVCqVOnZMIpFohkt+H9ZuWZZSqdSp4drGxoZSqVRbwZBpms3QLhqNHjsmn88rm80qGo229Xocx1EkEjkSgKVSKXmep2KxqEQi0TKfZVmKxWLK5/Pa3d1VNps9c53D2g3oAAAAAADvntAHYclkUpVKRdI/t3ydx9ramjzPUyqV0vfff38RJQKnSqfT5/q+nyzLOja4SiQSHYdvJ9V9UuB3nHK5rEgkIsdxmt9rhNf5fL7teRYWFlSpVI68lpO6RRvrAAAAAAAup1AHYWtrayqXyzIMo9kJNjQ0dK6ODtM0dffuXXme15PgATjspI6rXm3RO26dbtY+7trzhEu2bSsejx+5fm1t7cRus7Pq2dzcbKmBc8AAAAAAAMcJdRDW6AxpdHRVKhXVajW9ePGire2RDZ988okkqVKpsEUSPXdSSDQyMtLbQkLAcRzNzMwc+X6xWOwoBGtodJO9a1ZXV1u65tDqPDdkAAAAAAAp5EFYoxusUCjo8ePHmpiY6Giegx0sL1688Ks8+KxarWp8fPzUx9LSUtBl9p3jArcrV674Ol+7oV4ymTzSrZVKpXw5t8uyLC0sLHQ9Ty/Ytq10Oq1IJNK8a2ckEtHU1FTzzperq6uam5s7M+wpl8vN69/1YMhxHBUKheYdQw93FgbtMr0XAAAAwEmWlpbO/GxfrVYDq++9wFZug+u6ikQi+uyzz7qa5+B5QbZtd1sWLsje3p52dnZOHVOv13tUDfxWLpeP/ffXyYH3J1lcXGwevu+6bujOA3NdV3Nzc827W1qW1byzqOM4sm1btm03f9645jSNcNF1XaXT6eaZiu8Sx3GUTCblOE6ot71ehvcCAAAAOEu9Xj/zs32QQh2ENe68163Gh2/P89hmFGIDAwMaHR09dczg4GCPqoHfjjujr5tD+49jmqZSqZQKhYJvc/opmUw2O4Xy+fyRGww4jqN0Ot3STXRWmDIyMhLqcMgPlmU1t75mMpkjdxoNi8vwXgAAAABnGRwc1NjY2KljqtWq9vb2elRRq1BvjbQsy5cPFQ8ePGh+HbYOEfzT6Oiotre3T33Mz88HXSY6UC6Xjw2hFxcXfV8rmUxKOv3Okacpl8tKJpMt2xbj8XjX4Voul2sGXAsLC8feZdOyLJVKpZYuubPC+3w+L8uyZFmWisViVzX2g7Bthzzosr0XAAAAwHHm5+fP/Gx/VhPMRQp1EDYzM6P19fWu5nj06JFs25ZhGJJ6d6c+AP90UijgR8fnYbFYTNls9tw3I3BdV1NTU4rH4y2H1Luuq3K53DzTq9Pt1QcD+bPuYLuwsNA87+ysQC8Wi6lSqahSqVzI7zNsgrrJRDt3Hb5s7wUAAADQj0IdhC0uLmp3d1dffvllx9ffu3dPhmHI8zwZhqFbt275XCWAsxx3cLgfB+SfZGFh4Vzdn47jaGJi4syQy3EcTU1Nnfsg9E7Otspms4pGo2znDoFCoRDa7bYAAAAAzifUQZhpmrp7964WFhb0xRdftHVQer1e15MnT3T16lXlcjl5ntfy8+O2IwG4OI7jHBvmhKVjxnXd5iHniURC+XxeGxsbKpVKJ96FMh6PnyugOhyCtRukLS4ucuZUwBrntgEAAAB4N4T6sHxpvyvCtm09fPhQ2WxW8Xi82UmysbGhkZER1Wo1VSqVlrvSNQKwxpZISXr8+DGHrQM9dlJgFIlEelzJ8RqhVKlUOtKlFovFlE6njw2+kslk8wD3sxzekp3JZDQ7O3tm11rjjpJhvAPmZeC6bqjPJAMAAABwfqEPwqT9D6jpdFrLy8sqlUoqlUoyDOPY7SqHA7DG83w+r7m5ud4WDuDEICyos56Oc1wI1tA4wP5wcGfbtsrlcltbPE3TlGmaze6uxnlkpVLpzHMLD3e1ojdc19XMzAxbUwEAAIB3TKi3Rh6Uz+e1vr6uGzduyPO8I4+GgwGY53nNw4sJwYB/ymQyMgyjo8fU1NS51jppa19YOpxM0zwzzLIsq+VOjg3Hfe8kh8c6jqNIJOLL2VO2bTcP8z+N67oqFAqamppqWbex/W94eFiGYSgSiSiXyx253nEcZTKZ5h01I5GI0un0se9xY53Dfz+HxePx5nwHH35uCS0UCi3rDA8Pa2pq6tjXKO3/Po87M+5gfSf9rtt9Lxpc11Uul1M8Hm/+/hv1ZTKZtoI4x3GUy+WO3Mzh4HsQiUSaW4ABAACAy6xvgjBp/0yhUqmkSqWifD6vRCKhaDQqy7I0NDSkiYkJTU5ONs/52d3d1YsXLzQxMRF06cClValUgi7hVNPT022NO+4A/vMcmp9KpY4N3NLptKamps59N8pG4NIITQqFwrF3mGwELVNTUxoeHlY6nW5ZqxFsFQqFZkjSCLwOno3VGJfL5ZrhjOM4zbDlcMCSSqW0sbFx5rmMjf+mnydUbNfq6qoMw2i+lkqlIs/ztLa2Jtd1m6/pcO2WZWltbe1ITRsbG83HwTuhtvteHFYoFDQ8PKxMJqN4PK61tTVVKhUtLy9LUjPcSiaTR649WH8kEmkJzRodhwffa8dxtLq6qomJCbrcAAAAcKn1VRDWMDExobm5Oa2srGh9fV0///yzarWafv75Z62vr2tlZUVzc3MaGhoKulQglBohRSePfD5/rrVO6vwKS2fKeTrTjguyzhNglUql5rlfh+eYmppqu2PHcRw9ffq07a6jaDR65MD3jY2NZgBXLBZVqVS0u7vbcoOAQqEg27YVj8dVLpdVKpW0u7ur3d1dlUql5u/OcRw9ePDg2LWPC3GOc9zvpRvlcrm59uLiYsv80Wi0GWQ5jnOkY9g0TUWj0SM3dGh87+DPzvteNDTCOdM0ValUtLCw0Pw/dhKJhDY2Npo1r66uHgnsarVay5mZDevr65qYmGhu6W38H0eN98p1XQ7/BwAAwKXWF2eEAfBXJBLp2V0br1y5cuz32+mYCZtbt25pdXW15Xvr6+vn+l0Wi0XlcjllMpkjP1tdXdXq6qry+fypnVSHt2oeN1fDwa2f+Xy+GdwVCoVjz0Zr3KCk0e02NTWlVCqlUqnUMi4Wi2l5ebkZNhUKha66uvw+M+6swPbge3b4PT2P87wXDYVCobktM5vNnnhOXLFYVCQSad55NZlMNt8Hy7JkWZZisVjLNtdMJqNisdjyvqZSKY2MjDTfq3K5zA0YAAAAcGn1ZUfYWba2tvT8+XO9fPlS9Xo96HKASy3sHWHncVxg0cnrWFhY0O7u7oldUI07VbYz91mH7R90MGw6aaumpCN3SjwpVDpYv+u6oX1PT/obPPh9P7YLtvteNMIy0zTP3Dp6MFgrl8vHbsc9+DqWl5ePfV8P/62tr6+3VSsAAADwrnmngrCtrS1dv369eaZK4/Dh3//+9/rll18udO3Dhx03ajjPGUL9trbjOEc+MAOHnRQOhP3ssOMcF6i8efOm47mKxaI2NjaO7Sgrl8uamZnxNVxqtwPo4Ht2nq6hMJ09tby8rGw2q2KxeGbYJPUumD14Fls7wVkqlWp5D7rpuju4XpjeKwAAAKCXQh+EffTRR7p+/bquXr2qq1ev6sqVK7p169aRca9evWqed3P4jpLr6+uKRCL6/vvvfa+vXC43DzuW1Dxrp7G9KB6Pt93ZEZa1Xddt6+6BkUjkXN0ouJxO6jrqRUjst+P+3k/a+tmuaDR64tlrtm0HcsfbTrfMhWm7q2maWlhYOPFMtvPenMAvB7eYtvvfz4P/hvrx3w0AAAAQJqEPwkzT1MbGht68eaNUKqX19XU9ffq0Zczbt281MzOj3d1dSfu3uG9cG4vFZFmW9vb22j60uV3lcrkZNDXO0Gmsl0gkVKlUFI1GVS6Xj72rWljXPnjezFnaOQ8HOK7jyXGc0G6lOw+/wuBUKqVKpXIkhFpdXQ11+NEv50w17nBZLpePPQi/l3Wc1+G/sXfh3w0AAAAQlNAHYbZtK5PJqFar6e7du5qYmDgyZm5urtnF1OgCy2azqtVqevHihX7++We9ePFCe3t7+uKLL3ypy3XdZrBmWdaJZ+gcvDOZX0HcRa990t3fDmsEb8BZjuvilPqzu+Vw8OPnvwHLsrSxsXFkjfPeqRP/1OiObdyA4KQOxV45GGK1G4odviNlmDrvAAAAgH4T6iDs0aNHikajpwYzz5490+rqajMEMwxD2WxWd+/ebRkXi8X08OFDbWxs+FJbMplsfqA5rSuq0aEl7X/oP0+3VRBrN86vWVhYUKlUOvXRCNoQLNu2fe929NtJZzT1Y8BzuBvnrM6iRldmuyzL0vLycsv3gtrG1+/S6bSmpqaO3NkxSJ0c0H/4jpr8HxAAAABA50IdhBUKhTM7uObm5ppbIQ3DUDQaPRKCNdy6dcuXO2U5jtPSyTI7O3vq+IPdMN1uJbzotbPZbPNDYywWO/XRL1ui3nWNjsgwM03z2LOayuVyX4U8h3/P7XQXWZYl27bP1f12+HfFwebnl06nm+F/WEIwqTXEavdOmwc7wAjBAAAAgO6EOgirVCq6du3aiT+/c+dO80OE53mSdKST4qChoaHmuG4c/FDVTiB08EOt67paXV0N5dqrq6tyHIdzv/pII0g67e6dfm+j6nS+k8KIi/h7u6hg8HCQnk6nz7ymEVy0M/YkQZ1n1Ut+/p3att0MwSzLClVof3ibcDudugfvsHpcoAwAAACgfaEOwizL0tbW1rE/e/XqlfL5fMuWyFQqdWpw9urVK01PT3dd18EPLu1+QD34/+IfPuw/LGs/ePBApmme2WWGcDh4Vtx5Pxy/efPG11raCTFO2p5WLpeVy+V8q8VxHE1NTXUVPJ3k8B3/2v29W5Z1rpD5cAfYSWes9YPD2/pOCin97Ho72H132rxBdFImEomWYK6d7cEHX8/i4uJFlAUAAABcGqEPwo77f8vfvn3bciaSYRiyLEtff/31qfOtra113X1yeBvX9evX27ruYGjVaUfYRa5t27Zs25bruhoeHlYkElE6ne6qew37LuLDtuu6mpmZkeu6Mk3z3Nul/K6p3fkWFhaO3U6YyWR8OTi/XC43Dxa/iO1wB/89nOd8s8b7k8vl2uoAOji3ZVlaWFg4R5Una/d9OjjurGvO+vnhwP64139cSOhnh9hx/x1rZ73D/64Oh2qd/js62Ll8eLv7YY3/Nkv7f9Nh6m4DAAAA+lGog7BUKqWHDx/qiy++UL1eV71e1/PnzzU9PS3HcZrdYJLOPLj91atXevDggWZmZrqq6fAHlnYDiMPjOjkX6SLXPvyh0HEcFQoFJZNJGYahZDLZV2c5hclJHSmdftBvHL7eeD/O6uA7bv1uQoZuO3dKpdKxnVTxeLzjzjDXdZVOpxWPx0+88+Jp17ajUCg0X/t57z548N9gOp1WOp0+cd1CodDyezjYhXacg+9l0GfFnbT+wd9VJpNROp1WuVzW6uqq0um0IpHIkZCn3X83x615OHxLJpPK5XLN7sNIJCLHcVrel3w+r3K5rEwm05zz8H87G++b4zgtZ5AdV9tp70UikWgJag/eAOXwa5ubm5O0/zd3UiDa7vt+8Hca9N8KAAAAEJRQB2GJREIzMzPKZrMaHh7W8PCwksmkKpVKSwj2+PHjU7dEPnny5FwfWk/zww8/tDxv98P2lStXWp53cmj/Ra19VkeCtN9RcVHbzd51J3UOpdPptkIl13WbH9AjkYji8XjLdaedD+Y4zrEB5urqascfhE96Pee5I2qxWDz2Q30mk9HU1FTb3WGu6yqXy2liYkKFQkGxWOxcIZjU3r/FRvAh7Yc6573b5eG7RhYKheZ/zzKZjAqFQjMQOrhOpVI5M/A+XMtJXZyNv6OG01734S3UJ723h9+nk0K7YrHY8p4UCgXF43Elk0mtrKyoVCod+W90JpOR4zhH/k4Pv96VlZUj68VisSNhayaTUTwebwZxxWKxZc3V1dXmv62DtR78Oy2Xy82O2cM/O6620zpqFxYWmr8X13Wbf8OO4zT/j4hG4J3NZk/8m2v3PWh3HAAAAPDO80LOdV0vkUh4hmEceQwPD3urq6vHXvfq1Svv3r173gcffOANDAx4hmF4AwMD3vPnz7uqJxqNepKaj3YVi8WW6xYWFkK1dj6f97LZrJdKpTzLslrGH35Eo9Fz136asbExT5I3Njbm67xB29jY8BKJxKm/Sz8eu7u7R9be3d318vm8Z5rmiddZluXl8/ljrz/p9cRisVNrWVhY8CqVStu/o1KpdOTvuvEwTdNLJBJePp/3SqWSt7Gx4ZVKpebf6sHrTNP0isViW2tWKpVjfxelUunY8cVisfl7TCQSbb+2w6+zUWOxWPRSqZQXi8W8aDTa8h41XvNJtTQ0/rZOen+j0aiXzWbPHGtZlpdIJJp/A6f9+4/FYs05S6XSiX8LlmV5qVTqSM27u7st80ej0SP/LWp87/Df0O7u7pmv97g1s9lscz3LsryFhYWWv/fd3d3m6zj4OztsYWGhpe6Df2vneS9Oks/nvVgs1pzDNM3mdSf9+zzt3+PB96BSqZw67qzaDvv/ffP/9+0BAACAyyvIHMDwPB9uo9gDa2trKpVKsm1bpmnq+vXrSqVSGhoaOjJ2eXn5xK2SU1NTevDgQcd1DA8Pt3QotPvrW11dbTnXLJVKnburpJdru66rQqGgBw8eHNs5FIvFfOsoGB8f187OjsbGxrS9ve3LnEFqdPf0QjQa1cbGRsv3DMM49zymaWp3d/fYnyWTyY7Oijuuy+ckq6urevDgwbm331qWpXQ6rVQqda4usMaZVIdfl2mamp6ebnbprK+vN89hO9xBBFxGH377lW9z/fTp577NBQAAgP4SZA7QN0FYWBwOGdr99ZXL5ZYtbIlE4sxzzcKy9urqqubm5o4EYtls1pdDvBv/AAYGBjQ6Otr1fPPz85qfn+96HvReY/ve06dPm9viGttALctq3hjg+vXrSiQS575JwFnrNdZsrDM9Pa1kMkkABvw/BGEAAACX29LSkpaWlrqep1qtam9vL5Ag7L2eroamIA8qPu/aiURCsVhMMzMzLR07Dx488O1udpK0t7ennZ2druep1+s+VIMgmKapRCJx7GH678J6AAAAANDP6vW6L5/bg3SpgrCtrS29//77Xc3R2DLVrfNs4wrL2hsbGy13K2x00/jVLeNXR9jg4KAP1QAAAAAAgIMGBwc1NjbW9TyNjrAgXKogLJlMHrnz4nmNjIz4EkaNjIz01doNy8vLLXfAO885UGcZHR19J84IAwAAAADgXeTXUUSNI5KCMBDIqgFpnDXUjU66qaSj2xE77coKau2GaDTaEnz58TsFAAAAAADohUsRhNXrdd2+fduXbqrp6emW5+3OWavVWp5HIpG+WvuggwfvAwAAAAAA9IvAtkZubm5qdnZWjuMonU7r/v37R8ZMT09rc3Ozq3UaYZHneUfuutiJg9sCpf2OqGg0euZ1lUql5Xkn2wmDXPugg3fq62abJQAAAAAAQC8FFoQlk8nmoevZbFbT09P6+OOPW8YcPJg9LA53ZbUbRh3s3jJNsyVM6oe1Dzp4fTfbLAEAAAAAAHopsK2Rtm23dGgdd9bU7du3JUmGYbQ82tXJNWeJRqMt4U+7h++vr683vz4caPXD2ifNxzZJAAAAAADQLwLrCJubm9Py8nLzeSKRODJmcnJSpmnq7du38jxPpmlqZGSk7S4k13VVq9V8ORvsoNnZWRUKBUlqu2Pt4LhMJtOXazcc3Grp1x0jAQAAAAAALlpgQVg+n1c8Htf6+rrS6bTef//9Y8fNzc3pr3/9q2zb1rVr1zpeL5PJ6K9//WvH1x+UTqebYVS5XD5z/MExlmV1FR4FuXbD6uqqJGlhYaHruQAAAAAAAHol0LtGJhIJPXz4UBMTEyeO+eSTT2RZVlchmLR/DtnQ0FBXczREo9GWQKkRDJ2kWCw2vz6rI6tQKCiTyRy7VfSi127H6uqqHMeRaZpaXFzsej4AAAAAAIBeCTQIa8fk5KRvAVa3h8QflM/nm18/ePDgxHGu6zY7uGKxmFKp1Ilj4/G40um0crmcIpHIiVs6/Vy7XC5reHhYhmEoHo+fut3ScRzNzc1JktbW1jgoHwAAAAAA9JXQB2HSfujih4NnknXLsqxmt5Vt28rlcseOm5mZkbR/d8WD3VnHObzVcWVl5cLXLhaLzcCtXC5rampK6XT62NqmpqY0MjKiSqXS1t0qAQAAAAAAwqQvgjC/OsL8vHuktL+1s1QqyTRNZTIZJZNJ2bYt13WbwZFt24pGo9rc3Dyzg+rwz0/rYPNr7WQyeeR7hUJBw8PDSiaTSqfTmpqaUjweVyqV0sbGhq+ddQAAAAAAAL3SF0GYXxrb+vwUi8W0u7urbDYrx3E0MzPTDJFGRkZULBa1sbHR1jbCYrEoy7JkmqYWFhbOPNjej7VjsZgqlYpSqVRz7QbbtlWr1bS4uNhch+2QAAAAAACgXxme53lBF9ErV65c0Zs3b4IuA4eMj49rZ2dHY2Nj2t7eDrocAMAJPvz2K9/m+unTz32bCwAAAP0lyBzgne8Iq9fr2tra0uzs7ImHzwMAAAAAAODd914Qi759+1YjIyM9XdPzPN/PCAMAAAAAAED/CKQjbGhoSNeuXZPneT17AAAAAAAA4HILbGvkJ598Imn/To4X3alFJxgAAAAAAAAC2RopqXlHRM/zZFnWkTsW+sV1XTmOI8dxfJ8bAAAAAAAA/SOwIGxyclKmaSoej+vp06cXvl6hUNCdO3cufB0AAAAAAACEU6B3jYzFYorH4z1ZK5VKaWhoqCdrAQAAAAAAIHwCDcJ6FYI1TE9P93Q9AAAAAAAAhEdgWyMlaW5uTm/fvu3Zei9evOjZWgAAAAAAAAiXQDvCJPVku+Lbt2+1uLh44esAAAAAAAAgvAIPwnphaGhIpVJJv//974MuBQAAAAAAAAEJdGtkL01PT2t5eVlffPGF7t+/H3Q5OEa1WtX4+PipY+bn5zU/P9+jigAAAAAAwHksLS1paWnp1DHVarVH1RzVd0HY1taWXNdVrVZr+xrbtlUsFuV5nvL5PEFYSO3t7WlnZ+fUMfV6vUfVAAAAAACA86rX62d+tg9SXwRhz58/Vz6fV7lc7nou13W7LwgXYmBgQKOjo6eOGRwc7FE1AAAAAADgvAYHBzU2NnbqmGq1qr29vR5V1Cr0QdijR4907949SZLneR3PYxiGDMNQNBr1qzT4bHR0VNvb20GXAQAAAAAAOtTOkUbj4+OBdY2F+rD8V69eKZPJSDo+BDMMo615DMOQ53mamJjQ8vKyrzUCAAAAAACgP4S6Iyyfz0vav+tjKpVSJBKRZVmSpN3dXc3Ozmp4eFgrKyvHXu+6rl68eKEnT57Itm1du3atV6UDAAAAAAAgZEIdhJXLZUUiEf39738/9udzc3N68uSJIpGI3n///WPH3Lx5U5J07949/e1vf7uoUgEAAAAAABByod4a6ThOsyvsOPfu3ZPnecrlcqfOk8lk9OLFC3355Zd+lwgAAAAAAIA+EeogTJKmp6dP/NnExIRmZmaUz+dVr9dPHGdZliYnJ7WwsHDqOAAAAAAAALy7Qh2ERaNR1Wq1U8dkMhl5nte8s+RJrl+/Ls/z9PDhQz9LBAAAAAAAQJ8IdRBmWZYKhcKpY2KxmCYnJ5XP5/Xjjz+eOG59fV2SVCwWfa0RAAAAAAAA/SHUQdjs7Kyy2ay+/PJLbW1t6eXLl3r58uWRcYuLi/I8T9FoVN99992Rnz969Ei2bUvaP3cMAAAAAAAAl4/heZ4XdBGnGR4ePnKu19TUlP7jP/6j5XvxeFxra2syDEPRaLR5tli5XJbjOGq8zNPuQolgjI+Pa2dnR2NjY9re3g66HADACT789ivf5vrp0899mwsAAAD9Jcgc4L2ertaB5eVlzc7OyjCMZpi1sbGh169f69q1a81x+XxeH3zwgSTJtu1mB9jBnK8RkgEAcJn4GWABAAAA/SzUWyMlKZFIaGVlpSXQMk2zJQST9s8Te/HihQ43uBmGIcMwmtctLy9feM0AAAAAAAAIn9AHYdJ+GLa7u6t8Pq9sNnviOV+xWEw///yzbty4Ic/zWh7RaFTr6+saHBzscfUAAAAAAAAIg9BvjWwYGhrS3NzcmeMsy1KpVNLbt2+bd4q0LEsTExMXXSIAAAAAAABCrG+CsPMaGhrSzMxMy/e2trb0/vvvB1MQAAAAAAAAAtUXWyP9kk6ngy4BAAAAAAAAAblUQVhjqyQAAAAAAAAun77cGrm1tSXXddse7ziO8vn8ua4BAAAAAADAu6UvgrCtrS1ls1mVy+UT7xh5Fs/zZBiGz5UBAAAAAACgX4Q+CFtcXFQul5O0H2YBAAAAAAAAnQj1GWHPnj1TNpttBmB0dAEAAAAAAKBToe4Ie/DggaT9AMzzPFmWpWg0KsuyJElXrlw5c443b97IdV2trKzo7du3F1ovAAAAAAAAwivUQZht280usFKppJmZmY7nWlhY0NWrV/0qDQAAAAAAAH0m1FsjTdOUtB9idROCSZJlWZqYmPChKgAAAAAAAPSjUHeEWZalV69e6fr1677Ml8/nfZkHF6NarWp8fPzUMfPz85qfn+9RRQAAAAAA4DyWlpa0tLR06phqtdqjao4KdRA2MzOjV69eqVar+TYfwmtvb087OzunjqnX6z2qBgAAAAAAnFe9Xj/zs32QQh2EffHFF3r06JFs2/ZlvidPnuizzz7zZS74b2BgQKOjo6eOGRwc7FE1AAAAAADgvAYHBzU2NnbqmGq1qr29vR5V1MrwPM8LZOU25XI5ZbNZbW1t6be//W1Xc12/fl0//PCDT5XBL+Pj49rZ2dHY2Ji2t7eDLgcA3jkffvtV0CUc8dOnnwddAgAAAAISZA4Q6sPypf2D8qPRqJLJZFfzbG5u+tZZBgAAAAAAgP4T6q2RDaVSSdPT07p69aoymYxGRkbauq5Wq8l1XVUqFa2srFxwlQAAAAAAAAizvgjCXr58KUmqVCpKp9MdzeF5ngzD8LMsAAAAAAAA9JHQB2F37txRoVCQJBmGoU6ONCMAAwAAAAAAQKjPCFteXlY+n2+GX52e6x/y+wEAAAAAAACgB0LdEZbP5yX9sxMsFospHo/LNM1znxP2+PFjbW1tXWC1AAAAAAAACLNQB2G2bcswDJmmqfX1dU1MTHQ819zcnK5cueJjdQAAAAAAAOgnod4aaZqmJGlxcbGrEKwx1+TkpA9VAQAAAAAAoB+FOgibmpqSJFmW5ct8y8vLvswDAAAAAACA/hPqICydTsvzPDmO48t8dIQBAAAAAABcXqEOwhKJhCYnJ/X06VNf5nv+/Lkv8wAAAAAAAKD/hDoIk6RisaiNjQ199913Xc/14MEDHyoCAAAAAABAPwp9EGZZlh4/fqzPPvusq3nevn0r27Z9qgoAAAAAAAD95r2gCzhNYyvjv/zLv2h4eFhXr15VIpE49zyu62plZcXv8gAAAAAAANBHQh2E3b9/X69evWo+9zxPuVyuo7k8z5NhGH6VBgAAAAAAgD4T6q2Rs7Oz8jxPnudJEkEWAAAAAAAAOhbqICydTkvaD8AagVinDwAAAAAAAFxuod4aOTQ0pGg0qlevXimbzSoajWpkZOTc8ziOo/v37+v169f+FwkAAAAAAIC+EOogTJJu3bqlSCSiu3fvdjzH5OSkbt682VGIBgAAAAAAgHdDqLdGSlIsFvNta+P09LQv8wAAAAAAAKD/hD4Im5ycVDab9WUuv+YBAAAAAABA/wl1EFav13Xnzh3dvn1bX375ZdfzTU5O+lAVAAAAAAAA+lGozwhLJBJaW1uT53kql8uamJjQxx9/HHRZAAAAAAAA6EOh7ggrl8stz03TDKYQAAAAAAAA9L1Qd4RZlqXNzU0ZhqFEIqEbN24EXRIuULVa1fj4+Klj5ufnNT8/36OKAAAAAADAeSwtLWlpaenUMdVqtUfVHBXqICyVSunevXsyDENPnz7ter47d+7o66+/9qEyXIS9vT3t7OycOqZer/eoGgAAAAAAcF71ev3Mz/ZBCnUQtrCwoFKppJcvX+qXX37R7373u67mO7zVEuEyMDCg0dHRU8cMDg72qBoAAAAAAHBeg4ODGhsbO3VMtVrV3t5ejypqZXie5wWy8jkkk0ltbW3p5cuX+u1vf9vRHJubm/rggw/066+/+lwdujU+Pq6dnR2NjY1pe3s76HIA4J3z4bdfBV3CET99+nnQJQAAACAgQeYAoT4sv+Gbb75RKpVSNBrVN9980/b2uHq9rnq9rpcvXyqZTF5wlQAAAAAAAAizUG+N/OCDD7S5udl87nmeUqmUUqnUuefyPE+GYfhZHgAAAAAAAPpIqDvCUqmUPM9rPgzDaHl+ngcAAAAAAAAut1AHYel0WpJkGEYzBOsEnWAAAAAAAAAI9dbIoaEh3bx5U8+ePZMkxWIxmaZ57nkcx5Ft2z5XBwAAAAAAgH4S6iBM2u8Ke/78uTY2NnTt2rWO5ykUCrpz545/hQEAAAAAAKCvhHprpLTfBTY0NNRVCCb987wxAAAAAAAAXE6hD8IkaXFxUfV6vet5OrnbJAAAAAAAAN4Nod8aKUl37971ZZ7Hjx/7Mg8AAAAAAAD6T18EYYfV63WVy2WVSiXVajU5jqORkRFZlqVIJKJEIqH3338/6DIBAAAAAAAQIn0VhG1tbSmTyWh1dbXl+57nyTCM5vNMJiPLsnTv3j396U9/6nWZAAAAAAAACKG+OCNMkpaXlxWJRLS6uirP85oPSS0hmLQfjFUqFaVSKf3+97/XL7/8EkTJAAAAAAAACJG+CMIePXqk27dvtwRfjfDrYCh2MBxr/Gx9fV2RSEQ//vhjILUDAAAAAAAgHEK/NfLZs2fKZDLN8KsRdEWjUU1PTysSicg0TVmWpZGRETmOo1qtpkqlotXVVTmOo729Pc3MzGh9fZ2zwwAAAAAAAC6p0AdhjRDM8zyZpqlsNqvZ2VkNDQ0dO35ycrL59cOHD/Xq1Svdv39fz5490+3bt/W3v/2tV6UDAAAAAAAgREK9NfLZs2dyHEee5ymdTqtWq2lubu7EEOw4k5OTKhaLevjwoUqlkr7//vsLrBgAAAAAAABhFeog7OnTpzIMQ7lcTl9//XVXcy0sLGhmZkYrKys+VQcAAAAAAIB+EuogzLZtRaNR/eUvf/FlvnQ6rXK57MtcAAAAAAAA6C+hPiPMcRwVCgXf5jNNU47j+DYfAAAAAAAA+keoO8IkybIs3+YiBAMAAAAAALi8Qh2EWZbla3iVz+d9DdYAAAAAAADQP0IdhEWjURWLRV/munfvXvPMMQAAAAAAAFw+oQ7CZmdnVSqV9MUXX3Q8R71e161bt5TL5WQYhtLptI8VAgAAAAAAoF+E+rD8RCKhiYkJZbNZua6rhYUFvf/++21d+/LlS+Xzea2urkqSDMNQNBrVjRs3LrBidKNarWp8fPzUMfPz85qfn+9RRQAAAAAA4DyWlpa0tLR06phqtdqjao4KdRAm7Z/r9dFHHymfzyufzysWiykajSoSiTTP+3JdV7VaTRsbG1pfX5dt283rPc+TtB+ELS8vB/Ia0J69vT3t7OycOqZer/eoGgAAAAAAcF71ev3Mz/ZBCn0QFovF9PjxY92+fVuGYahcLqtcLp84vhF8Sfvhl2EY8jxPKysrunbtWg8qRqcGBgY0Ojp66pjBwcEeVQMAAAAAAM5rcHBQY2Njp46pVqva29vrUUWtQh+ESVIqldLIyIhSqZRc15VhGJJaQ6+Gxs8aPzdNU2tra5qcnOxZvejM6Oiotre3gy4DAAAAAAB0qJ0jjcbHxwPrGgv1YfkHJRIJbW5u6u7du/I879gQTFLzZ0NDQ8pms6rVaoRgAAAAAAAA6I+OsIZGuJXNZrW2tibbtlWpVFSr1SRJIyMjikQiisVihF8AAAAAAABo0VdB2EEzMzOamZkJugwAAAAAAAD0ib7ZGumH58+fB10CAAAAAAAAAnKpgrBMJhN0CQAAAAAAAAjIpQnCnj17Jsdxgi4DAAAAAAAAAembM8Jev36tcrmsSqVyrkCrVqvJdV1CMAAAAAAAgEsu9EHY1taW0um0yuVyR9d7ntf82jAMv8oCAAAAAABAnwl9EBaLxbS5uSnP8zoKshrXHAzEAAAAAAAAcPmEOgi7ffu2HMeRYRgyDIMwCwAAAAAAAB0L9WH56+vrza8nJiZULBa1u7urvb29cz02NjZ08+bNC601l8spHo9reHhYhmEoEokomUx2vKUzrGtHIhEZhqHV1VXf5wYAAAAAALhIoQ7CbNuWYRgyTVO2bevmzZsaGho69zyTk5MqFosdXXuWcrms4eFhZTIZSVKxWFSlUlE2m5Vt24rH44rH43Jdt+/XzmQy3HQAAAAAAAD0rVBvjTRNU2/fvtXs7KwGBwe7ni+VSvlQ1T+Vy2XF4/Hm3Pl8vvkzy7KUSCQ0NTWlcrmsqakpbWxsyDTNvly7XC4rl8t1WzYAAAAAAEBgQt0RlkwmJe1vx/PDw4cPfZlHklzXbdZnWVZLEHVQsViUJDmO0xzfb2sfXA8AAAAAAKBfhToIu3fvnjzPazkrrBv1et2XeaT9kK6x5bCxNfE4je4sab+rqlAo9N3ac3NzGhkZ8a2bDQAAAAAAIAihDsImJib0+PFjFYtF/fjjj13PNzMz40NV+x1WBw+in52dPXX8rVu3ml+fFlyFce1CoaDV1dVmdxkAAAAAAEC/CnUQJu2ff/XZZ58pkUjoH//4R1dz2bbtS03ZbLb5dSwWO7NTqtGVJe1vM+zmjou9XNtxHKXTaS0sLCgajZ67VgAAAAAAgDAJ9WH5ja2M9+7d08bGhm7cuKFsNquRkZG256jVanJd98RztDpxcIthuwGRZVnNOy4+ffq0JaAK69rJZFLRaLQlfAMAAAAAAOhXoQ7C3n//fb19+7ble407JZ6X53kyDKPrmg53lV2/fr2t66LRaDOM6rQjrJdrZzIZ2batSqVyviIBAAAAAABCKtRbI+fm5uR5XvMhqeX5eR5+OXg+l7TfbdWOw+M62abZq7Vt21Yul1M+n297DQAAAAAAgLALdRD2ySefSFKzk8vPQKtTP/zwQ8vzdu+keOXKlZbnndwJs1drz8zMKJFIKJVKnas+AAAAAACAMAv11sjJyUlZlqXNzU3FYjFFo9Ejoc5Z3rx5I9d1W87W6kZji2FDp11ZnWw57MXayWRSkrS8vHzO6gAAAAAAAMIt1EGYtH/Xw1evXunf//3fu5pnYWFBV69e7bqew2FUp1zXDd3aq6urWl1dValUarvbDAAAAAAAoF+EPgi7deuWLwGQZVmanJzsep5OAizp6DbGWq0WqrVd11UymVQqlVIsFutonW5Vq1WNj493Pc/8/Lzm5+d9qAgAAAAAADQsLS1paWmp63mq1aoP1XQm9EHY5OSkFhcXfZmrWCz6Mo8fOg21LmrtmZkZWZalfD7f+4L+n729Pe3s7HQ9T71e96EaAAAAAABwUL1e9+Vze5BCH4RJ8qWTS5ImJia6nsM0TV9CrE62Hl7U2rlcTrZta2Njo+u5uzEwMKDR0dGu5xkcHPShGgAAAAAAcNDg4KDGxsa6nqdarWpvb8+His4vsCDs9evXunbtWlDLH1Gv11Wr1fT++++fOm5kZMSXMGpkZKSja/xe27ZtZTIZZbNZRaPRrufuxujoqLa3twOtAQAAAAAAHM+vo4jGx8cD6ywbCGRVSffv39cXX3wR1PJHJJNJra6unjmu00PkDwdYnXaE+b12MplUNBrVwsJCR3MDAAAAAAD0i8A6wgqFgizLUiQS0Z/+9KegypAk3blzR7VaTX/5y1/OHDs9PS3btpvPXddtK6A6fEB9JBI5d51+r53L5eQ4jmKxmJLJ5JnzHAzUHjx4oKdPnzaf37p1S4lE4sw5AAAAAAAAghJYEGaaplZWVvTRRx9JUmBh2J07d7SystL2+VhTU1Mtzx3HaWtLYaVSaXneyZ0Z/V77zZs3kqRyuXzuWmzbbgnlLMsiCAMAAAAAAKEW2NZIaT+Qefjwoebm5nq+TbJer+vWrVsqFApaW1s782ywhunp6ZbnjuO0dd3BbirTNGVZVrulhmJtAAAAAACAfhdoECZJCwsLevjwoR4+fKjf//73+v777y98zSdPnmhiYkKrq6taX18/16H90Wi0ZTviDz/80NZ16+vrza8PB1pBrZ3NZuV5XtuPgwFasVhs+Vk2m+3oNQEAAAAAAPRK4EGYtB+GPX78WOvr64rFYvr973+v7777ztc1Xr58qcXFRV25ckXpdFrDw8P6+eefNTk5ee65Zmdnm18f3B54moPjMpnMudcMw9oAAAAAAAD9LLAzwg5LpVIaGRnR3Nyc1tfXm+dNRaNRxWIxXb9+XZZlybIsDQ4OnjhPvV5XrVaT4zgqlUoql8stQZDneUokElpZWem41nQ6rUKhIKm987UOjrEsq6PzwcKwNgAAAAAAQD8LTRAmSYlEQvF4XIlEQmtra5KOHsp+mGmaLWdgHcfzvObXhUJBn332WVd1NsK5Rsi0urp66kHxxWKx+fVZHVmFQkGVSkXpdPrYs7wucm0AAAAAAIB3WSi2Rh40NDSkUqmklZUVRaPR5hlUko49t2p3d/fMs62k/e2Xu7u7XYdgDfl8vvn1gwcPThznum6zgysWiymVSp04Nh6PK51OK5fLKRKJnBjwXcTaAAAAAAAA77rQBWENiURC6+vrKpVKunnzZktXV4NhGC2PwyzLagZgDx8+1NDQkG/1WZbV7LaybVu5XO7YcTMzM5L2O9cOdmcd5/BWx5O2b17E2gAAAAAAAO+6UG2NPM7MzEwz0Hn16pXK5bJ++OEHua6rWq3W7JoyTVOWZWlkZETxeFyxWMzX4Os4iURCpVJJyWRSmUxGP/zwgxYXF2VZltbX15XJZGTbtqLRqNbW1lru+Hicw9s8j9saeVFrAwAAAAAAvOtCH4QdNDk52dFdHi9SLBbT7u6ucrmcnj59qpmZGbmuK9M0NT09rWKxeOoZXgcVi0Wl02nVajWlUqkzD7b3c+12VCoV3+YCAAAAAADoNcM7bs8h0EPj4+Pa2dnR2NiYtre3gy4HAN45H377VdAlHPHTp58HXQIAAAACEmQOENozwgAAAAAAAAA/EYQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKXwXtAFAA3ValXj4+Onjpmfn9f8/HyPKgIAAAAAAOextLSkpaWlU8dUq9UeVXPUOxmEbW1tybZtmaap6elpDQ4OBl0S2rC3t6ednZ1Tx9Tr9R5VAwAAAAAAzqter5/52T5I71QQtrW1pWQyKdu2W74/NTWlYrGo3/3udwFVhnYMDAxodHT01DGEmgAAAAAAhNfg4KDGxsZOHVOtVrW3t9ejiloZnud5gazcpo8++ki7u7tyXVeSVKvVFIvF9PTp05Zxr169UiwWk+u6Ou4lDQwMqFQq6b/9t//Wi7JxDuPj49rZ2dHY2Ji2t7eDLgcA3jkffvtV0CUc8dOnnwddAgAAAAISZA4Q+sPyTdPUxsaG3rx5o1QqpfX19SMh2Nu3bzUzM6Pd3V1JkmEYzWtjsZgsy9Le3p6SyWTP6wcAAAAAAEA4hD4Is21bmUxGtVpNd+/e1cTExJExc3Nzcl1XhmHI8zx5nqdsNqtaraYXL17o559/1osXL7S3t6cvvvgigFcBAAAAAACAoIU6CHv06JGi0agePHhw4phnz55pdXW1GYIZhqFsNqu7d++2jIvFYnr48KE2NjYuumwAAAAAAACEUKiDsEKhcGYH19zcXHMrpGEYikajR0Kwhlu3bml9fd33OgEAAAAAABB+oQ7CKpWKrl27duLP79y50zxEv3FA/vLy8onjh4aGjj1IHwAAAAAAAO++UAdhlmVpa2vr2J+9evVK+Xy+ZUtkKpU6NTh79eqVpqenL6ZYAAAAAAAAhFrog7BCoXDk+2/fvm25A6RhGLIsS19//fWp862trSmTyfheJwAAAAAAAMLvvaALOE0qldLs7Kwk6d69e5KkcrmsTCYjx3FausGKxeKpc7169UoPHjzQmzdvLrxuAAAAAAAAhE+oO8ISiYRmZmaUzWY1PDys4eFhJZNJVSqVZggmSY8fPz51S+STJ08Ui8V6VDUAAAAAAADCKNRBmCStrq7q448/lud5zYe0fzi+aZoqFouam5s7ct3r16+1uLioq1evKp1Oa3d3V67r6rvvvuv1SwAAAAAAAEAIhHprpLR/p8disai1tTWVSiXZti3TNHX9+nWlUikNDQ0duWZ5ebm5VXJiYkITExPNn/3Hf/yH/vt//+89qx8AAAAAAADhEPogrGFmZkYzMzNtjZ2bmzu2SwwAAAAAAACXV+i3Rvrp9evXQZcAAAAAAACAgIQ+CNva2vJtLrrEAAAAAAAALq/QB2HpdNqXeTY3N2Xbti9zAQAAAAAAoP+EPghzHMeXeTKZjC/zAAAAAAAAoD/1RRD2j3/8o6s5/vrXv2p1ddWnigAAAAAAANCPQh+EeZ7XVTfX4uIi3WAAAAAAAAAIfxAmSfl8Xt9///25r7t165ZyuZw8z7uAqgAAAAAAANBP+iII8zxPyWSy7S2SW1tbunr1qlZXV+V5ngzDuOAKAQAAAAAAEHZ9EYQlEgnVajXNzMycOfbZs2eKRCLNQ/YNw5DneUokEhddJgAAAAAAAEIs9EFYLBbTysqK1tfXtb6+rk8++eTEsYuLi5qdnW1uhfQ8T0NDQ7JtWysrK7p582avygYAAAAAAEDIvBd0AWeJRqPN/11fX9f09LQsy9L9+/ebY+r1umZmZmTbdnMrpOd5isViKhaLGhoakrQflAEAAAAAAOByCn0Q9vDhw+bX0WhUKysrmp2dVSQS0Z/+9Ce9evVKsVhMruu2hGDZbFZ3795tmWtycrLX5eMcqtWqxsfHTx0zPz+v+fn5HlUEAAAAAADOY2lpSUtLS6eOqVarParmqNAHYYclEgk9fvxYqVRK6+vrKhQKLQfiDw0NaW1t7djQ669//av+8pe/9LpktGlvb087OzunjqnX6z2qBgAAAAAAnFe9Xj/zs32Q+i4Ik6RUKqVKpaJHjx5J0olbIQ8rlUoEYSE2MDCg0dHRU8cMDg72qBoAAAAAAHBeg4ODGhsbO3VMtVrV3t5ejypqZXiNk+X7UDKZ1LNnzyRJuVzuzJDrypUrevPmTS9KwzmMj49rZ2dHY2Nj2t7eDrocAHjnfPjtV0GXcMRPn34edAkAAAAISJA5QCAdYW/fvtXa2lrX83zyySdaW1tTOp2WZVl6/vz5seNqtZry+bxc1+16TQAAAAAAAPSnwLZGJhKJ5rle3crlcmeOOXiOGAAAAAAAAC6fgSAWHRoaUjQaled5XT8ktTUGAAAAAAAAl1sgQZgkxWIxSeq6S6udoIswDAAAAAAAAIFtjbx161ZzS+PCwoIikYhGRkZ8X6dWq8l1XT1+/FhbW1u+zw8AAAAAAID+EFgQNjk5KdM0lcvl9Nlnn134ejdv3tTVq1cvfB0AAAAAAACEU2BbI6X97ZGWZfVkLcuyNDEx0ZO1AAAAAAAAED6BBmG3bt26kO2QJ0kkEj1bCwAAAAAAAOES2NZIaX+7Yi89fPiwp+sBAAAAAAAgPALtCAMAAAAAAAB6pW+CsJcvX2pxcVFPnjw5c+yzZ8909epVfffddz2oDAAAAAAAAP0g0K2R7bp165ZWV1ebz9++fas///nPJ46/efOmJiYmFIvF9ODBAxWLRf3ud7/rRakAAAAAAAAIqdB3hN25c0fFYlGe58nzPEnSixcvzrwuGo3KcRz9/e9/19TUlH788ceLLhUAAAAAAAAhFuog7O3bt8rn8zIMQ4ZhSJI8z1MymWzretM0tbGxoVqtRhgGAAAAAABwyYU6CHvw4IGk/fBraGhIqVRKlUpFn332WdtzWJalubk57e3ttR2gAQAAAAAA4N0T6iCsXC5reHhYpVJJtVpNjx8/1sTExLnn+eijjyRJlUpF33zzjd9lAgAAAAAAoA+EOghzHEeLi4uamZnpah7Lsppfr6ysdFsWAAAAAAAA+lCogzDXdVtCrE7VajVJ+1ss19fXu54PAAAAAAAA/SfUQZhlWc0QqxulUqn5teu6Xc8HAAAAAACA/hPqICwajapYLHY9T6FQaN510jTNrucDAAAAAABA/wl1EJZKpVQul/X99993PMetW7eaXWCGYWh6etqn6gAAAAAAANBPQh2ExWIxXbt2TbFY7NxhWL1e161bt1QsFmUYhjzPkyQlk8mLKBUAAAAAAAAhF+ogTJKWl5fleZ5isZj++Mc/nhmI1et13blzR8PDw1pdXW1+3zAMWZalzz777KJLBgAAAAAAQAi9F3QBZ4lGo1pZWdHs7KxKpZJKpZJM05RlWc2HJDmOI9u25TiOJDU7wBrdYIZh+HLeGAAAAAAAAPpT6IMwSUokElpfX9fMzIzevn0r13Vl27Zs224Z1wi/JDUPx/c8T6Zpam1tTdeuXetl2TinarWq8fHxU8fMz89rfn6+RxUBAAAAAIDzWFpa0tLS0qljqtVqj6o5qi+CMGm/M2xra0v379/Xo0ePjvzcMIyW8KsRiqVSKWWzWQ0NDfW0Xpzf3t6ednZ2Th1Tr9d7VA0AAAAAADiver1+5mf7IPVNECZJQ0NDymazymazWltbU6lUkm3bqtVqchxHIyMjMk1T09PTisfjisViBGB9ZGBgQKOjo6eOGRwc7FE1AAAAAADgvAYHBzU2NnbqmGq1qr29vR5V1MrwDu4nBAIwPj6unZ0djY2NaXt7O+hyAOCd8+G3XwVdwhE/ffp50CUAAAAgIEHmAKG/a6Qf3r59q8XFxaDLAAAAAAAAQIAuRRA2NDSkUqmk3//+90GXAgAAAAAAgIBciiBMkqanp7WxsaEvvvgi6FIAAAAAAAAQgL46LF+Stra25LquarVa29fYtq1isSjP85TP53X//v0LrBAAAAAAAABh1BdB2PPnz5XP51Uul7uey3Xd7gsCAAAAAABA3wl9EPbo0SPdu3dPktTNDS4Nw5BhGIpGo36VBgAAAAAAgD4S6jPCXr16pUwmI+n4EMwwjLbmMQxDnudpYmJCy8vLvtYIAAAAAACA/hDqjrB8Pi9p/66PqVRKkUhElmVJknZ3dzU7O6vh4WGtrKwce73runrx4oWePHki27Z17dq1XpUOAAAAAACAkAl1EFYulxWJRPT3v//92J/Pzc3pyZMnikQiev/9948dc/PmTUnSvXv39Le//e2iSgUAAAAAAEDIhXprpOM4za6w49y7d0+e5ymXy506TyaT0YsXL/Tll1/6XSIAAAAAAAD6RKiDMEmanp4+8WcTExOamZlRPp9XvV4/cZxlWZqcnNTCwsKp4wAAAAAAAPDuCnUQFo1GVavVTh2TyWTkeV7zzpInuX79ujzP08OHD/0sEQAAAAAAAH0i1EGYZVkqFAqnjonFYpqcnFQ+n9ePP/544rj19XVJUrFY9LVGAAAAAAAA9IdQB2Gzs7PKZrP68ssvtbW1pZcvX+rly5dHxi0uLsrzPEWjUX333XdHfv7o0SPZti1p/9wxAAAAAAAAXD6G53le0EWcZnh4+Mi5XlNTU/qP//iPlu/F43Gtra3JMAxFo9Hm2WLlclmO46jxMk+7CyWCMT4+rp2dHY2NjWl7ezvocgDgnfPht18FXcIRP336edAlAAAAICBB5gDv9XS1DiwvL2t2dlaGYTTDrI2NDb1+/VrXrl1rjsvn8/rggw8kSbZtNzvADuZ8jZAMAAAAAAAAl0/og7BEIqGVlRXNzs42v2eaZksIJu2fJ/bixQt99NFHMgyj+f3G157nyTRNLS8v96RuAABwMj+71OguAwAAQLtCfUZYQyKR0O7urvL5vLLZ7InnfMViMf3888+6ceOGPM9reUSjUa2vr2twcLDH1QMAAAAAACAMQt8R1jA0NKS5ubkzx1mWpVKppLdv3zbvFGlZliYmJi66RAAAAAAAAIRY3wRh5zU0NKSZmZmgywAAAAAAAEBIhHprZL1e1507d/SHP/xBX375ZdDlAAAAAAAAoI+FuiMskUhobW1NnuepXC5rYmJCH3/8cdBlAQAAAAAAoA+FuiOsXC63PDdNM5hCAAAAAAAA0PdC3RFmWZY2NzdlGIYSiYRu3LgRdEm4QNVqVePj46eOmZ+f1/z8fI8qAgAAAAAA57G0tKSlpaVTx1Sr1R5Vc1Sog7BUKqV79+7JMAw9ffq06/nu3Lmjr7/+2ofKcBH29va0s7Nz6ph6vd6jagAAAAAAwHnV6/UzP9sHKdRB2MLCgkqlkl6+fKlffvlFv/vd77qa7/BWS4TLwMCARkdHTx0zODjYo2oAAAAAAMB5DQ4Oamxs7NQx1WpVe3t7PaqoleF5nhfIyueQTCa1tbWlly9f6re//W1Hc2xubuqDDz7Qr7/+6nN16Nb4+Lh2dnY0Njam7e3toMsBgHfOh99+FXQJF+qnTz8PugQAAACcQ5A5QKgPy2/45ptvlEqlFI1G9c0337S9Pa5er6ter+vly5dKJpMXXCUAAAAAAADCLNRbIz/44ANtbm42n3uep1QqpVQqde65PM+TYRh+lgcAAAAAAIA+EuqOsFQqJc/zmg/DMFqen+cBAAAAAACAyy3UQVg6nZYkGYbRDME6QScYAAAAAAAAQr01cmhoSDdv3tSzZ88kSbFYTKZpnnsex3Fk27bP1QEAAAAAAKCfhDoIk/a7wp4/f66NjQ1du3at43kKhYLu3LnjX2EAAAAAAADoK6HZGtm4w+PW1pa2traad4aMxWIaGhrqKgST/nneGAAAAAAAAC6nQIOw3/zmN83H8PCwhoeHFYlEFIlEtLKy0hy3uLjYDMa60cndJgEAAAAAAPBuCHRr5OEOrVgspnQ63ewCa7h7964v6z1+/NiXeQAAAAAAANB/Aj8jrHFHx1KppBs3bgRcDQAAAAAAAN5VoTgjLJvN9n0IlsvlFI/HNTw8LMMwFIlElEwmVS6X+25tx3GUTqcViURkGIaGh4c1NTWldDotx3F8rh4AAAAAAKA3QhGEJRKJoEvoWLlc1vDwsDKZjCSpWCyqUqkom83Ktm3F43HF43G5rtsXa+dyOUUiERUKhWbo5bqubNtWoVBQJBJRLpfz/bUAAAAAAABcNMML8FaKAwMDMgxDv/76a1AldKVcLisej0vaP4g/n88fGTM1NSXbtmVZljY2NmSaZmjXjsfjKpfLMk1TsVhMlmXJcRzZtn2kE6xYLPoWYI6Pj2tnZ0djY2Pa3t72ZU4AwD99+O1XQZdwoX769POgSwAAAMA5BJkDBN4R5lcw1I6rV6/6Npfrukomk5Iky7KODaKk/cBI2t9u2BgfxrUzmYzK5bKy2ax2d3dVLBaVzWZbuswO8uu1AAAAAAAA9ErgQdjIyEjP1qpUKr7NlUwmm1sOG1sTj2NZVrNzqlwuq1AohG5tx3GUy+VUKpW0sLBw7JiFhQWlUqmW79m23UH1AAAAAAAAwQg8COuVV69eNe9Q2S3HcVoOop+dnT11/K1bt5pfnxZcBbV2JpNRNptVLBY7da7DXWG9uBEAAAAAAACAXy5FEFav17sOoA46GAjFYrEzt3cePEvLdV2trq6Gam3XdU/sBDvINE1ZltXyHAAAAAAAoF+8F3QBjuPoD3/4w4XMXavV5LquHMeR53m+dYQd3GIYjUbbuqZx8LwkPX36tOOD5i9i7VKp1Pb6tVqt+fX09HTb1wEAAAAAAAQt8CBMurgtdhdxQ8zD52Jdv369reui0WgzjOq0IyzItaX9zrHG2WSxWKztIA4AAAAAACAM3umtkYZhNB9+ORzaHdwqeJrD4zo5aD7ItSVpZWWlOV/jjpQAAAAAAAD9IhRBmOd5F/bw2w8//NDyvN1zsq5cudLyfH19va/Wdl1X6XRa0WhUpVKJ88EAAAAAAEDfCcXWyIvcYtc4I8wvh+fqtCurUqn0zdqO4ygej8s0Ta2trRGCAQAAAACAvhR4EGZZVkcdSufhOI6SyaRev37ty1x+aJy1Ffa1V1dXlUwmm8+Hh4eVzWbbusskAAAAAABAmIRia+RFsyxLy8vLvszVSYAlHd3GePDui2Fb23Vd5XI5RSKRlhCsIZPJHPt9AAAAAACAMAu8I6xXwnaHw05DrV6sXS6XValUFIvF5DjOsXf1XF1dVS6X87UzrFqtanx8vOt55ufnNT8/70NFAAAAAACgYWlpSUtLS13PU61WfaimM4EHYZ10RnVqcnKy6zlM0/QlxOrknK1erZ1IJJRIJFq+VygUlMlkWtbPZDJKpVK+nRm2t7ennZ2druep1+s+VAMAAAAAAA6q1+u+fG4PUuBBWC87o/w4i2xkZMSXmkdGRvpq7VQqpVgspqmpqZYaCoWCb11hAwMDGh0d7XqewcFBH6oBAAAAAAAHDQ4OamxsrOt5qtWq9vb2fKjo/AIPwiTp9evXunbtWtBltKXT7qfDAVanHWFBrS3tn7W2tramqamp5vd++OGHjuY6zujoqLa3t32bDwAAAAAA+Mevo4jGx8cD6ywLxWH5hUIh6BLaNj093fK83Q6tw1tAI5FIX63dEI1GW7ZN+nUnSwAAAAAAgIsWiiAsn8/ru+++C7qMthzshpLaD4IqlUrL81gs1ldrH3Tr1q3m10Ee+g8AAAAAAHAeoQjCpP0D2v/4xz/qu+++C/Vh54e7stoNow4GRqZpyrKsvlr7oIN34PTroHwAAAAAAICLFngQ5nle8/HixQvdvHlTw8PDevLkSdClHSsajbaEP+2ekXXwoP7DgVY/rH0Sv+cDAAAAAAC4KIEGYXt7e9rb29Pu7q52d3dVqVRUqVS0vr6uZDIZZGmnmp2dbX5t23Zb1xwcl8lk+nLthoOdaPF4vOv5AAAAAAAAeiHwjjBJGhoa0tDQkCYmJjQxMaHJyUkNDQ0FXdaJ0ul08+tyuXzm+INjLMvq6oyuINduaARrpmm2HJwPAAAAAAAQZqEIwvpNNBptCZRWV1dPHV8sFptfn9WRVSgUlMlkTjz/6yLXbteDBw8kScvLy77MBwAAAAAA0AsEYR3K5/PNrxvB0HFc11WhUJC0f7fGVCp14th4PK50Oq1cLqdIJHLiHRn9XjuXy2lqakqZTObMu0A2xiwsLNANBgAAAAAA+gpBWIcsy2p2W9m2rVwud+y4mZkZSfvbCA92Zx3n8FbHlZWVC1/bdV1lMpnmPMPDwyd2jiWTSeVyOWWzWWWz2VNfCwAAAAAAQNgQhHUhkUioVCrJNE1lMhklk0nZti3XdVUulzU1NSXbthWNRrW5udlyx8fjHP65ZVkXvrZpmkfWaQRiyWRSmUxG8Xhcw8PDkqRKpaKFhYUzfzcAAAAAAABhQxDWpVgspt3dXWWzWTmOo5mZmWaINDIyomKxqI2NjTNDMGn/PC/LsmSaphYWFs482N6vtTc2NrSwsKBoNNoy1rZtOY6jZDKpzc3NZn0AAAAAAAD9yPA8zwu6CFxu4+Pj2tnZ0djYmLa3t4MuBwDeOR9++1XQJVyonz79POgSAAAAcA5B5gB0hAEAAAAAAOBSIAgDAAAAAADApRBoEPbkyRNdvXpVn3zySZBlAAAAAAAA4BIILAh79eqVUqmUKpWKisWinj9/HlQpAAAAAAAAuAQCC8IePHggSTIMQ5LauqsiAAAAAAAA0KnAgjDbtiVJnucpn8/rxo0bx467deuWXr582cvSAAAAAAAA8A4KLAhzHEfDw8Pa2NjQZ599duK4YrEox3F8WfP169e+zAMAAAAAAID+E1gQZpqmFhcXNTk52bM1M5lMz9YCAAAAAABAuAQWhFmWJcuyerqmX51lAAAAAAAA6D+BBWG3bt3S06dPe7beq1evCMIAAAAAAAAusfeCWjiVSimTyWhzc1OpVEqWZWlkZOTYsRsbGx13j7muK8dxdP/+/W7KBQAAAAAAQJ8zPM/zglp8dXVVs7OzMgzjxDGe553683Y15vn111+7ngv+Gh8f187OjgYGBjQ6Onrq2Pn5ec3Pz/eoMgB4N3z47VdBl3Chfvr086BLAAAAwP+ztLSkpaWlU8dUq1Xt7e1pbGxM29vbPapsX2AdYZKUSCS0srKi2dnZU8cFmNWhh/b29rSzs3PqmHq93qNqAAAAAADAedXr9TM/2wcp0CBM2g/Ddnd3tbCwoGKxKNd1gy4JAWmnI2xwcLBH1QAAAAAAgPMaHBzU2NjYqWMaHWFBCHRr5HE2Nzdl27ZqtZo8z9Pt27eVTCY1PT3d0Xxv3ryR4zhaXV1la2RINbZGBtESCQCXAVsjAQAAECZB5gCBd4QdNjExoYmJiebz27dvKx6P67PPPutq3nK5rD/84Q/dlgcAAAAAAIA+NRB0Ab0Si8VaAjYAAAAAAABcLpcmCJMky7KCLgEAAAAAAAABCd3WyMN2d3c1NDTky1zFYtGXeQAAAAAAANB/Qt8R5lcI5vdcAAAAAAAA6C+h7wg7Tr1eV7lcVqlUUq1Wk+M4GhkZkWVZikQiSiQSev/994MuEwAAAAAAACHSV0HY1taWMpmMVldXW77veZ4Mw2g+z2QysixL9+7d05/+9KdelwkAAAAAAIAQCv3WyIbl5WVFIhGtrq7K87zmQ1JLCCbtB2OVSkWpVEq///3v9csvvwRRMgAAAAAAAEKkL4KwR48e6fbt2y3BVyP8OhiKHQzHGj9bX19XJBLRjz/+GEjtAAAAAAAACIfQb4189uyZMplMM/xqBF3RaFTT09OKRCIyTVOWZWlkZESO46hWq6lSqWh1dVWO42hvb08zMzNaX1/n7DAAAAAAAIBLKvRBWCME8zxPpmkqm81qdnb2xDtATk5ONr9++PChXr16pfv37+vZs2e6ffu2/va3v/WqdAAAAAAAAIRIqLdGPnv2TI7jyPM8pdNp1Wo1zc3NnRiCHWdyclLFYlEPHz5UqVTS999/f4EVAwAAAAAAIKxCHYQ9ffpUhmEol8vp66+/7mquhYUFzczMaGVlxafqAAAAAAAA0E9CHYTZtq1oNKq//OUvvsyXTqdVLpd9mQsAAAAAAAD9JdRnhDmOo0Kh4Nt8pmnKcRzf5gMAAAAAAED/CHVHmCRZluXbXIRgAAAAAAAAl1eogzDLsnwNr/L5vK/BGgAAAAAAAPpHqIOwaDSqYrHoy1z37t1rnjkGAAAAAACAyyfUQdjs7KxKpZK++OKLjueo1+u6deuWcrmcDMNQOp32sUIAAAAAAAD0i1AHYYlEQhMTE8pms/of/+N/aGtrq+1rX758qVu3bml4eFirq6syDEPRaFQ3bty4uIIBAAAAAAAQWqG+a6S0f67XRx99pHw+r3w+r1gspmg0qkgk0jzvy3Vd1Wo1bWxsaH19XbZtN6/3PE+SZBiGlpeXA3kNAAAAAAAACF7og7BYLKbHjx/r9u3bMgxD5XJZ5XL5xPGN4EvaD78Mw5DneVpZWdG1a9d6UDEAAAAAAADCKNRbIxtSqZRWVlY0NDTUEnR5nnfk0Qi/GgHY0NCQNjY2dPPmzQBfAQAAAAAAAILWF0GYtH9e2Obmpu7evdsMvY7T+NnQ0JCy2axqtZomJyd7XC06Ua1WNT4+fupjaWkp6DIBAAAAAMAJlpaWzvxsX61WA6sv9FsjD2qEW9lsVmtra7JtW5VKRbVaTZI0MjKiSCSiWCxG+NWH9vb2tLOzc+qYer3eo2oAAAAAAMB51ev1Mz/bB6mvgrCDZmZmNDMzE3QZ8NHAwIBGR0dPHTM4ONijagAAAAAAwHkNDg5qbGzs1DHValV7e3s9qqhV3wZhePeMjo5qe3s76DIAAAAAAECH5ufnNT8/f+qY8fHxwLrG+uaMMAAAAAAAAKAbBGEAAAAAAAC4FAjCAAAAAAAAcCkQhAEAAAAAAOBSIAgDAAAAAADApUAQBgAAAAAAgEuBIAwAAAAAAACXAkEYAAAAAAAALgWCMAAAAAAAAFwKBGEAAAAAAAC4FEIdhNXrdd25c0d/+MMf9OWXXwZdDgAAAAAAAPrYe0EXcJpEIqG1tTV5nqdyuayJiQl9/PHHQZcFAAAAAACAPhTqjrByudzy3DTNYAoBAAAAAABA3wt1EGZZliTJMAwlEgnduHEj4IoAAAAAAADQr0IdhKVSKXmeJ0l6+vRp1/PduXOn6zkAAAAAAADQn0IdhC0sLGhmZkaS9Msvv3Q93+GtlgAAAAAAALg8Qh2ESVKpVNLHH3+sRCKhf/zjHx3Ps7m5KcdxfKwMAAAAAAAA/ST0QZgkffPNN0qlUopGo/rmm29Ur9fbuq5er6ter+vly5dKJpMXXCUAAAAAAADC7L2gCzjNBx98oM3NzeZzz/OUSqWUSqXOPZfneTIMw8/yAAAAAAAA0EdC3RHWOCy/8TAMo+X5eR4AAAAAAAC43EIdhKXTaUmSYRjNEKwTdIIBAAAAAAAg1Fsjh4aGdPPmTT179kySFIvFZJrmuedxHEe2bftcHQAAAAAAAPpJqIMwab8r7Pnz59rY2NC1a9c6nqdQKOjOnTv+FQYAAAAAAIC+EuqtkdJ+F9jQ0FBXIZj0z/PGAAAAAAAAcDmFviNMkhYXF1Wv1zU4ONjVPJ3cbRK9U61WNT4+fuqY+fl5zc/P96giAAAAAABwHktLS1paWjp1TLVa7VE1R/VFEHb37l1f5nn8+LEv8+Bi7O3taWdn59Qx9Xq9R9UAAAAAAIDzqtfrZ362D1JfBGHntbi4qNu3b+t3v/td0KXgHAYGBjQ6OnrqmG67AgEAAAAAwMUZHBzU2NjYqWOq1ar29vZ6VFGrvgvCnj9/rlKppPX1dS0uLurjjz8+MmZqakqTk5P66KOPlM1mCcT6xOjoqLa3t4MuAwAAAAAAdKidI43Gx8cD6xoL/WH5DX/961915coVJZNJFQoF2batWq127NhEIiHHcfT3v/9dlmXpu+++63G1AAAAAAAACJvQB2Fv377V1atXlclktLu7K8/z2rr7o2ma2tjY0LVr15RIJPTNN9/0oFoAAAAAAACEVeiDsGQyqUqlIkkyDEOGYZzr+rW1NXmep1Qqpe+///4iSgQAAAAAAEAfCHUQtra2pnK5LMMwmp1gQ0NDisVibc9hmqbu3r0rz/OUTqcvsFoAAAAAAACEWagPy8/n85LU7OjKZDKamJiQtH+HwXZ98sknevTokSqVir755hv96U9/upB6AQBA73347Ve+zPPTp5/7Mg8AAADCK9QdYY1usEKhoMePHzdDsPOyLKv59YsXL/wqDwAAAAAAAH0k1EGY67qyLEufffZZV/McvLukbdvdlgUAAAAAAIA+FOogzDRNRaPRrudphF+e58lxnK7nAwAAAAAAQP8JdRBmWZZc1+16ngcPHjS/Nk2z6/kAAAAAAADQf0IdhM3MzGh9fb2rOR49eiTbtmUYhqTW88IAAAAAAABweYQ6CFtcXNTu7q6+/PLLjq+/d++eDMOQ53kyDEO3bt3yuUoAAAAAAAD0g1AHYaZp6u7du1pYWNAXX3yher1+5jX1el1PnjzR1atXlcvl5Hley89TqdRFlQsAAAAAAIAQey/oAs6SzWZl27YePnyobDareDyuWCwmSdrY2NDIyIhqtZoqlYrK5XLLwfiSmlsiJenx48caHBzs/YsAAAAAAABA4AzvcMtUSKXTaS0vL7cEW8c5HIA1nufzec3NzV1skejI+Pi4dnZ2NDY2pu3t7aDLAYB3zofffhV0CX3hp08/D7oEAACASyHIHCDUWyMPyufzWl9f140bN+R53pFHw8EAzPM8xWIxVSoVQjAAAAAAAIBLLvRbIw+KRqMqlUra3NxUuVxWqVSS4zhyXVe1Wk0jIyMyTVOWZSkej2t2dlZDQ0NBlw0AAAAAAIAQ6KsgrGFiYkJzc3N0eQEAAAAAAKBtfbM1EgAAAAAAAOhGX3aEbW1tqVwua2NjQ7VaTZI0MjKiSCSiWCyma9euBVsgAAAAAAAAQqevgrAnT54om83KcZwzx6bTaS0sLOj999+/+MIAAAAAAAAQen2xNXJra0tXr15VOp1WpVI59m6RDY3v5/N5RSIRffnllwFUDAAAAAAAgLAJfRD26tUrTU1NNQMwwzCaD0ktodjBYKzxfGFhQX/84x+DKh8AAAAAAAAhEfqtkclkUru7uy3BlyRZlqVYLKZIJCLTNGVZlkZGRuQ4jhzHUaVS0crKilzXValU0h//+Ef97W9/C/KlAAAAAAAAIEChDsKWl5flOE5LCBaLxZTNZjU5OXnsNQe///jxY62ururBgwcqlUr68ssv9ec//7knteP8qtWqxsfHTx0zPz+v+fn5HlUEAAAAAADOY2lpSUtLS6eOqVarParmqFAHYfl8XpKaWyLz+bzm5ubONUcikVAikVA8HtfCwoLm5uY0ODh4EeWiS3t7e9rZ2Tl1TL1e71E1AAAAAADgvOr1+pmf7YMU6iDsYDdYI8TqVLFY1MjIiIrFov70pz/5VSJ8NDAwoNHR0VPHEGICAAAAABBeg4ODGhsbO3VMtVrV3t5ejypqZXjH3XoxJAYG9s/yNwxDu7u7XYcgt2/f1ubmpv793//dj/Lgk/Hxce3s7GhsbEzb29tBlwMA75wPv/0q6BL6wk+ffh50CQAAAJdCkDlAqO8aGY1GJe0fjO9HJ1AkEpHjOF3PAwAAAAAAgP4T6iBsZmZGklSr1XybkyAMAAAAAADgcgp1EPbFF19IklzX1dbWVtfzVSoVmabZ9TwAAAAAAADoP6EOwoaGhrSysiLP83Tv3r2u51tZWdHIyIgPlQEAAAAAAKDfhDoIk6REIqF8Pq8XL17of/yP/9HxPPfu3ZPrus1zxwAAAAAAAHC5vBfEordv39bGxsa5rhkZGVE+n1c+nz93mOW6rhzHkWEYisfj57oWAAAAAAAA74ZAgjDTNLWxsSHDMOR53pnjDcOQpObY84ZoB+eZnZ3t6FoAAAAAAAD0t0C2RqbT6ebXhmGc+TjP2NMeqVRKg4ODQbxkAAAAAAAABCyQIGxiYkKWZUna7/LqxWNyclLZbDaIlwsAAAAAAIAQCOyw/JmZGUlSuVzW3t7ehT/W19fpBgMAAAAAALjEAgvCZmdnFY1GdePGjaBK8FUul1M8Htfw8LAMw1AkElEymVS5XO67tW3bVjqdViQSaW4rjUQiymQycl3X3+IBAAAAAAB6JNCOsImJiZ6uubW15fuc5XJZw8PDymQykqRisahKpaJsNivbthWPxxWPxy8kQPJ7bdd1lUwmNTU1pUKhIMdxmj9zHEe5XE7Dw8MqFAq+vxYAAAAAAICLZnjt3LbxHfGHP/xB//7v/+7bfOVyWfF4XJKUSqWUz+ePjJmampJt27IsSxsbGzJNM5Rru66rqamplvDrNCet2Ynx8XHt7OxobGxM29vbvswJAPinD7/9KugS+sJPn34edAkAAACXQpA5QGAdYUFYX1/3ba5G95QkWZZ1YihULBYl7XdUNcaHce1kMinHcRSNRpudZZVKRcViUQsLC0fGFwoFra6udvlKAAAAAAAAeue9oAvoxNbW1rm2GjqOo3w+7+v2xGQy2ZyvsTXxOJZlKZFIaHV1VeVyWYVCQalUKlRrFwoFlctlLSwsHLmzZmOOdDqtZDIp27abP5ubm1MikejqtQAAAAAAAPRKX2yN3NraUjabVblcbnvr3mGe58kwDP36669d1+M4jiKRSPP57u7uqdsOV1dXmx1Zpmlqd3c3VGtHIhFZlqVSqXSutSWpVCopFoud4xUcxdZIALhYbI1sD1sjAQAAeoOtkadYXFxUJBJRoVBQpVKR53kdPfx0sGsqFoudee7Xwa4p13W72lLo99q2bctxnOY2ytNYlnWkY+xghxgAAAAAAECYhToIe/bsmbLZbDPIMgwj4Ir2HbxrYjQabesay7KaXz99+jQ0az99+lSpVKrtQ/wPd3+9efOmresAAAAAAACCFuozwh48eCBpPwDzPE+WZSkajTaDnStXrpw5x5s3b+S6rlZWVvT27duuazrcAXX9+vW2rotGo81tnZ12hF3E2rdu3WoJytqZ66DDWyUBAAAAAADCKtRBmG3bzS6wUqmkmZmZjudaWFjQ1atXu66pXC63PG83RDo8zrbttju6LnLt89Zw+IYD5wnRAAAAAAAAghTqrZGN7XoLCwtdhWDSfmAzMTHRdU0//PBDy/N2txQe7l5bX1/vq7UbDt+soNuD8gEAAAAAAHol1EFYo9uo3S2AZ8nn813PcTgI6rQrq1Kp9NXaDQdDtFQq1fE8AAAAAAAAvRbqIKzRBVar1XydrxuHw6hOHd5iGPa1Gw6GiZlMxodqAAAAAAAAeiPUQdgXX3whz/OOHBLfqSdPnnQ9R6ch0uFtjJ2Ee0GuLe0HcY33IpvNcj4YAAAAAADoK6E+LH9oaEgPHz5UNptVNpvVb3/7267my+fz+uyzz3yqrjvddGUFtXY2m5W0v9VyYWHBx4r2VatVjY+Pdz3P/Py85ufnfagIAAAAAAA0LC0taWlpqet5qtWqD9V0JtRBmLR/UH6pVFIymdTf/va3jufZ3Nz0pbPMNE1fQqx2D7oPy9q2batQKMg0TZVKpa5rOM7e3p52dna6nqder/tQDQAAAAAAOKher/vyuT1IoQ/CJKlUKml6elpXr15VJpPRyMhIW9fVajW5rqtKpaKVlRVfahkZGfEljGr3NYRl7bm5OUnS2trahW2JHBgY0OjoaNfzDA4O+lANAAAAAAA4aHBwUGNjY13PU61Wtbe350NF59cXQdjLly8l7d/tMJ1OdzSH53kyDKPrWjrpppKObkfstCMsiLXT6bRs21axWFQ0Gu2ohnaMjo5qe3v7wuYHAAAAAACd8+soovHx8cA6y0J9WL4k3blzR/F4XK9evZJhGPI879wPP01PT7c8b7dD6/AB9ZFIpC/WLhQKKhQKyufzSiQSbV8HAAAAAAAQNqEOwpaXl5XP55thVqehlp9h2NTUVMtzx3Hauq5SqbQ8j8VioV+7XC4rnU4rn88rlUq1VyQAAAAAAEBIhXprZD6fl6RmJ1gsFlM8Hpdpmuc+J+zx48fa2trquqbDXVmO47S1XfBg95Zpmh2ds9XLtW3bVjweVzabJQQDAAAAAADvhFAHYbZtyzAMmaap9fV1TUxMdDzX3Nycrly50nVN0Wi05e6NP/zwQ1tbBtfX15tfHw60wra24ziamZnRwsKCFhYWOqoVAAAAAAAgbEK9NbJxqPvi4mJXIVhjrsnJSR+qkmZnZ5tf27bd1jUHx2UymdCu7TiOpqamlEqllM1m25rfcRzlcrm2xgIAAAAAAAQl1EFY40ysTrYRHmd5edmXeQ7eubJcLp85/uAYy7I6Oh+sF2u7rqt4PK7Z2dm2QzBJSiaTXb0mAAAAAACAXgh1EJZOp+V5XtuHwp/Fr46waDTaEvysrq6eOr5YLDa/Pqsjq1AoKJPJnPiaL2pt13U1NTUly7Ka65/1KJfLzbCynbPKAAAAAAAAgmR4ft5S8QJMTU1pYGBAP/zwQ9dzPX/+XB9//LEPVe1vB4xEIpL2Q6CNjY1jx7muq+HhYUn7d2sslUonzhmPx1s6uHZ3d5vbQy967ampqba3Wh7W7V0lx8fHtbOzo7GxMW1vb3c8DwDgeB9++1XQJfSFnz79POgSAAAALoUgc4BQd4RJ+x1NGxsb+u6777qe68GDBz5UtM+yrGa3lW3bJ56RNTMzI2n/jLKD3VnHObzVcWVlpSdrdxOCSeKukgAAAAAAoC+EPgizLEuPHz/WZ5991tU8b9++7SrsOU4ikVCpVJJpmspkMkomk7JtW67rNrcN2rataDSqzc3NY7u7Djr889PORvNr7cZ1nSIEAwAAAAAA/eK9oAs4zfPnzyVJ//Iv/6Lh4WFdvXpViUTi3PO4rntid1W3YrGYdnd3lcvl9PTpU83MzMh1XZmmqenpaRWLxbZrLhaLSqfTqtVqSqVSZx5A78faZ3WpAQAAAAAAvCtCfUbY9PS0Xr161XzueZ4Mw+horsa1v/76q1/lwSecEQYAF4szwtrDGWEAAAC9wRlhJ5idnZXneWpkdZ2GYAAAAAAAAECog7B0Oi1pPwBrBGKdPgAAAAAAAHC5hfqMsKGhIUWjUb169UrZbFbRaFQjIyPnnsdxHN2/f1+vX7/2v0gAAAAAAAD0hVAHYZJ069YtRSIR3b17t+M5JicndfPmzY5CNAAAAAAAALwbQr01Utq/M6JfWxunp6d9mQcAAAAAAAD9J/RB2OTkpLLZrC9z+TUPAAAAAAAA+k/ogzBJmpiY6HqOra0tTU5O+lANAAAAAAAA+lFfBGHdevbsmSKRiH788cegSwEAAAAAAEBAQn9Yvh9++OEHeZ6nf/u3f9N//a//NehyAABACH347Ve+zfXTp5/7NhcAAAD8E/og7MmTJx1f67quKpWKCoWCDMNQuVzWgwcPfKwOAAAAAAAA/SL0QVgqlZJhGF3N0bjrpG3b2tra0vvvv+9DZQAAAAAAAOgnoQ/CGjzPO3cg1gjADl5XKBR0//59X2uDP6rVqsbHx08dMz8/r/n5+R5VBAAAAAAAzmNpaUlLS0unjqlWqz2q5qi+CcKkfwZb52EYRst1xWKRICyk9vb2tLOzc+qYer3eo2oAAAAAAMB51ev1Mz/bB6kvgrCJiQllMhlZlnWu6yqVinK5nKamprS8vKzBwcELqhB+GBgY0Ojo6KljeA8BAAAAAAivwcFBjY2NnTqmWq1qb2+vRxW1MrxO2qx6aGBgQI7jdHWu1wcffKDp6Wn927/9m3+FwTfj4+Pa2dnR2NiYtre3gy4HAN45ft4NEe3hrpEAAAAnCzIHGOjpah0wTbPrw+0fP36slZUVffnll/4UBQAAAAAAgL4T+iAsm812PUcsFpNlWVpYWNDW1lb3RQEAAAAAAKDvhD4Im5ub82WeaDQqz/OUy+V8mQ8AAAAAAAD9JfRBmN9++OGHoEsAAAAAAABAAC5FEPb27VuVy2VJkm3bAVcDAAAAAACAILzzQdjr1681PT2tt2/fSpIsywq4IgAAAAAAAAThvaALOMvVq1c7vtZxHEmS53mSJMMwFIvFfKkLAAAAAAAA/SX0QVilUpFhGM0wqxMHr/fjLpQAAAAAAADoP32zNdIwjI4e0n5HmGmaevHihQYHBwN+JQAAAAAAAAhC6DvCpH9ubTRNUyMjI21fZ5qmLMvS9evXdffu3YsqDwAAAAAAAH2gL4KwXC6nv/zlL0GXAQAAAAAAgD4W+q2RlmURggEAAAAAAKBroQ/CMplM0CUAAAAAAADgHRBoEPb69eszx8zNzV18IQAAAAAAAHjnBRqETU1NBbk8AAAAAAAALpFAgzDP8/TLL78EWQIAAAAAAAAuicDPCMtms0GXAAAAAAAAgEsg8CAsn8/rj3/8o54/f66trS3V63XV6/WgywIAAAAAAMA75r2gC5CkUqmkUqnUs/V+/fXXnq0FAAAAAACAcAhFEOZ5XvNr0zQlSSMjIx3NVavV5LrusT+zLKungRsAAAAAAADCIxRBWDabVSKR0MTERFfzrK2tKZlMyjCMlu97nqdkMqmnT592NT8AAAAAAAD6VyjOCLt7927XIdhf//pXffTRR3r79m2zw8zzPHmep2w2SwgGAAAAAABwyQXaEWYYhmZnZ7ue56OPPtLa2lozADMMQ57nyTRNra2taXJysus1AAAAAAAA0N8CDcKGhoY0ODjY8fVbW1uKx+NyHEee5zW3RHqep2g0qrW1NQ0NDflVLi5YtVrV+Pj4qWPm5+c1Pz/fo4oAAAAAAMB5LC0taWlp6dQx1Wq1R9UcFWgQtrm52fG1z549a3aTHQ7B0um0vv76a19qRO/s7e1pZ2fn1DH1er1H1QAAAAAAgPOq1+tnfrYPUuAdYZ1YXFxULpdrBmCNrZDS/pljc3NzfpaJHhkYGNDo6OipY7rpIAQAAAAAABdrcHBQY2Njp46pVqva29vrUUWtQnHXyHbV63Ulk0mVy+UjXWCcB9b/RkdHtb29HXQZAAAAAACgQ+0caTQ+Ph5Y11jgd41s1+vXrzUxMXFsCBaLxbS5uUkIBgAAAAAAgBP1RRC2vLysqakp7e7uHgnBMpmMXrx4waH4AAAAAAAAOFXot0beuXNHhULhSAAmScViUTdv3gyyPAAAAAAAAPSJ0AZh9XpdMzMzsm37SAhmWZZKpZImJiYCrhIAAAAAAAD9IpRbIxvngR0XgiWTSf3888+EYAAAAAAAADiX0AVhx50H5nmePM9TNpvV06dPgy4RAAAAAAAAfShUWyNv3bql1dXVI11gpmmqWCxqZmYm4AoBAAAAAADQr0LREba1taWrV68eG4JFo1Ftbm76EoJdvXq16zkAAAAAAADQnwIPwl6+fKmpqSlVKpUjIVg6ndb6+rqGhoZ8WatSqfgyDwAAAAAAAPpPoEHYo0ePFI/Htbu7K8MwWs4Dy+fz+vrrr31ba3l5uRmyAQAAAAAA4PIJ9IywTCbTDMCk/S6w4eFhra2t6dq1a76t8+TJE6XTaYIwAAAAAACASyxUh+UbhqGRkRHNzc35Mp/runIcx5e5AAAAAAAA0N9CE4R5nieJc7wAAED/+/Dbr3yb66dPP/dtLgAAgMsuFEHYxMSEisWiTNP0ZT7XdZtfr6+vK5/Py7ZtX+YGAAAAAABAfwo8CLMsy9c7Qx42OTmpubk5JZNJPX/+/ELWAAAAAAAAQPgFetdISSoWixcWgh2UzWYvfA0AAAAAAACEV6BBmGmavt4d8jSWZfUkcAMAAAAAAEA4BRqE9bpLi64wAAAAAACAyyvQIGxubu6dXg8AAAAAAADhEfgZYQAAAAAAAEAvEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAl8J7QRcANFSrVY2Pj586Zn5+XvPz8z2qCAAAAAAAnMfS0pKWlpZOHVOtVntUzVEEYQiNvb097ezsnDqmXq/3qBoAAAAAAHBe9Xr9zM/2QSIIQ2gMDAxodHT01DGDg4M9qgYAAAAAAJzX4OCgxsbGTh1TrVa1t7fXo4paEYQhNEZHR7W9vR10GQAAAAAAoEPtHGk0Pj4eWNcYh+UDAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAAC4FgjAAAAAAAABcCgRhAAAAAAAAuBQIwgAAAAAAAHApEIQBAAAAAADgUiAIAwAAAAAAwKVAEAYAAAAAAIBLgSAMAAAAAAAAlwJBGAAAAAAAwP/X3h3DJpbl+eL/ubZ31cGuH3ZHpaoIh5PhmvxJBXrZRlCdj9Q4HTmwNdn/H5UgsCY1LU3uwsmGK9PS5FUm6xBGeqqS9YK2Ge/uf1e7O+Yf1IMBG2OwgXvx/Xwk1OC6nHPurVOnj7+ceyATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZukGwAAwP1+9YffL6Scn3/z24WUAwCwzqwIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAywbdGkhoXFxfx+vXrqcfs7+/H/v7+iloEAAAAzOPo6CiOjo6mHnNxcbGi1twlCCM1bm5u4suXL1OPub6+XlFrAAAAgHldX18/+Lt9kgRhpMaLFy/i5cuXU4/Z3NxcUWsAAACAeW1ubsarV6+mHnNxcRE3NzcratE4QRip8fLly/j8+XPSzQAAAAAeaZYtjV6/fp3YqjGb5QMAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRC2IPV6PUqlUmxtbcXGxkbs7OxEpVKJVqu19nV3u90olUpxenq6kPIAAAAAkiAIe6JWqxVbW1txeHgYERHNZjM6nU7UarVot9tRKpWiVCpFr9dbu7p7vV5UKpXY2dmJVqsVl5eXC2w9AAAAwGp9k3QD1lmr1YpSqRQREdVqNY6Pj4d/ls/no1wux+7ubrRardjd3Y3z8/PI5XKpr7vX68X79++jXq8vpK0AAAAAaWBF2CMNVktFfA2eRoOoUc1mMyK+3l44OD7Nddfr9djd3Y12u72QtgIAAACkhRVhj1SpVIa3HA5uTZxksDrr9PQ0Wq1WNBqNqFarqay73W5HsViMg4ODiIhoNBqxt7f3pLYCAOnwqz/8fmFl/fyb3y6sLACAVbIi7BG63e7YRvTv3r2bevz3338/fD4tuEq67kKhEIVCYfj6zZs3j2wlAAAAQPoIwh6hVqsNnxeLxQf33iqXy8PnvV7vSd++uMq6F7WfGQAAAEAaCMIeodFoDJ+PrqCaJp/PD5+fnJysZd0AAAAA60wQNqfbm8j/+te/nul9o6HVY1eEJVk3AAAAwLoThM1pdH+uiPHVVtPcPu4x38qYZN0AAAAA604QNqePHz+OvZ51H63vvvtu7PWnT5/Wqm4AAACAdScIm1O32x17/dhVWZ1OZ63qBgAAAFh3grA53Q6jHqvX661V3QAAAADrThA2p8eGSLdvY7y8vFyrugEAAADW3TdJNyCrklyVldYVYRcXF/H69esnl7O/vx/7+/sLaBEAAAAwcHR0FEdHR08u5+LiYgGteRxB2JxyudxCgqRZN7pPS92rcHNzE1++fHlyOdfX1wtoDQAAADDq+vp6Ib+3J0kQNqft7e2FhFHb29trVfcqvHjxIl6+fPnkcjY3NxfQGgAAAGDU5uZmvHr16snlXFxcxM3NzQJaND9B2Jweu5rqdoD12BVhSdW9Ci9fvozPnz8n3QwAAABggkVtRfT69evEVpbZLH9Ob968GXs96wqt2xvU7+zsrFXdAAAAAOtOEDan3d3dsdfdbnem93U6nbHXxWJxreoGAAAAWHeCsDndXpU1axg1unorl8tFPp9fq7oBAAAA1p0gbE6FQmFsj62PHz/O9L5Pnz4Nn98OtNahbgAAAIB1Jwh7hHfv3g2ft9vtmd4zetzh4eFa1g0AAACwzgRhj7C3tzd83mq1Hjx+9Jh8Pv+kPbqSrBsAAABgnX2TdAPWUaFQiGKxOAyZTk9Po1wu33t8s9kcPn9oRVaj0YhOpxN7e3sT9/JaZt23zfqtlABAtvzqD79fWFk//+a3CysLAOAhVoQ90vHx8fD5+/fv7z2u1+tFo9GIiK/f1litVu89tlQqxd7eXtTr9djZ2bk3iFpG3ZPc3oxfMAYAAACsM0HYI+Xz+eFqq3a7HfV6feJxb9++jYiv39Y4ujprktu3On748GFldd/W6/XurCA7OTmZqwwAAACANBGEPUG5XI6zs7PI5XJxeHgYlUol2u129Hq9aLVasbu7G+12OwqFQvzpT38a+8bHSW7/+aRbI5dVd8TX8KtSqUSpVIqtra07K8La7XZsbGxEqVQa1gcAAACwLuwR9kTFYjGurq6iXq/HyclJvH37Nnq9XuRyuXjz5k00m82pe3iNajabsbe3F5eXl1GtVh/c2H6RdUc8buUYAAAAwLrY6Pf7/aQbQba9fv06vnz5Eq9evYrPnz8n3RyAZ2eRG5vDotksHwCyJ8kcwK2RAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkwjdJNwAAgOz61R9+v5Byfv7NbxdSDgDwvFkRBgAAAEAmWBFGalxcXMTr16+nHrO/vx/7+/srahEAAAAwj6Ojozg6Opp6zMXFxYpac5cgjNS4ubmJL1++TD3m+vp6Ra0BAAAA5nV9ff3g7/ZJEoSRGi9evIiXL19OPWZzc3NFrQEAAADmtbm5Ga9evZp6zMXFRdzc3KyoReMEYaTGy5cv4/Pnz0k3AwAAAHikWbY0ev36dWKrxmyWDwAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgm+NBABg7f3qD79fWFk//+a3CysLAEgXK8IAAAAAyARBGAAAAACZIAgDAAAAIBPsEQYAKbTI/Y4AAICvrAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJnyTdAMAACBNfvWH3y+srJ9/89uFlQUAPJ0VYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiEb5JuAAxcXFzE69evpx6zv78f+/v7K2oRAAAAMI+jo6M4OjqaeszFxcWKWnOXIIzUuLm5iS9fvkw95vr6ekWtAQB4ul/94fcLKefn3/x2IeUAwLJdX18/+Lt9kgRhpMaLFy/i5cuXU4/Z3NxcUWsAAACAeW1ubsarV6+mHnNxcRE3NzcratE4QRip8fLly/j8+XPSzQAAAAAeaZYtjV6/fp3YqjGb5QMAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEm+UDAEDK/eoPv19YWT//5rcLKwsA1o0VYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiEb5JuAAAAsDq/+sPvF1bWz7/57cLKAoBVsCIMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJtgsHwAAeJRFbbxv030AVsWKMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJlgs3wAACBRi9p0P8LG+wBMZ0UYAAAAAJkgCAMAAAAgE9waSWpcXFzE69evpx6zv78f+/v7K2oRAAAAMI+jo6M4OjqaeszFxcWKWnOXIIzUuLm5iS9fvkw95vr6ekWtAQAAAOZ1fX394O/2SRKEkRovXryIly9fTj1mc3NzRa0BAGAd2XgfIFmbm5vx6tWrqcdcXFzEzc3Nilo0ThBGarx8+TI+f/6cdDMAAACAR5plS6PXr18ntmrMZvkAAAAAZIIgDAAAAIBMcGskAADABIvab8xeYwDpYUUYAAAAAJkgCAMAAAAgE9waCQAAsESLusUywm2WAE8lCAOABVnkLzoAAMDiCcIAAADWhNVlAE9jjzAAAAAAMkEQBgAAAEAmCMIAAAAAyAR7hAEAAGTQovYbs9cYsE6sCAMAAAAgEwRhAAAAAGSCWyMBAAB4tEXdYhnhNktg+awIAwAAACATrAgDAAAgFawuA5bNijAAAAAAMsGKMAAAAJ6dRa0us7IMnhcrwgAAAADIBCvCAAAA4B72LYPnRRAGQOYtcoILAACklyAMAAAAVsDqMkieIIzUuLi4iNevX089Zn9/P/b391fUIgAAAGAeR0dHcXR0NPWYi4uLFbXmLkEYqXFzcxNfvnyZesz19fWKWgMAAJBevhWTtLq+vn7wd/skCcJIjRcvXsTLly+nHrO5ubmi1gAAAADz2tzcjFevXk095uLiIm5ublbUonEb/X6/n0jN8H+9fv06vnz5Eq9evYrPnz8n3Rwgg2yWDwDwdFaXMaskcwArwgAAAIAn82UArANBGABrySouAIDnyx5oLIsgDAAAAHiWrFLjthdJNwAAAAAAVsGKMAAAAIAHpHFrDqvU5mdFGAAAAACZYEUYPNLR0VFcX1/H5uZm7O/vJ90cnrnn0t/S+Cka43755z/GX/7jP+Jvvv02vvtf/zPp5vDM6W+sir7GKulvrMov//zH+H/+d2/tf0dYNUEYPNLR0VF8+fIlXr16ZdBh6fQ3VuWXsz/Gf1/9Ob7Z+h8m7yyd/saq6Guskv7Gqvxy9sf4fz/8k98R5uTWSAAAAAAywYowAB7klkYAAOA5sCJsQer1epRKpdja2oqNjY3Y2dmJSqUSrVZrLetO8nwAAAAAlkEQ9kStViu2trbi8PAwIiKazWZ0Op2o1WrRbrejVCpFqVSKXq+3FnUneT4AAAAAy+TWyCdotVpRKpUiIqJarcbx8fHwz/L5fJTL5djd3Y1WqxW7u7txfn4euVwutXUneT7A4rmdEQAAYJwVYY/U6/WiUqlExNeQaDQ0GtVsNiMiotvtDo9PY91Jng8AAADAKlgR9kiVSmV4e+DgNsJJBiupTk9Po9VqRaPRiGq1mrq6kzwfYNyklVz/5//71+F/rfQCAAB4HEHYI3S73bFN49+9ezf1+O+//z5OT08j4mvI9JTgaBl1J3k+T3V0dBTX19exubkZ+/v7ibVj1ZI876SveVrP/TmHU7/88x/jL//xH/E3334b3/2v/6nuZ153krJ8zbN87knJ6jXPat1JSvq8s/p3nvR1T0pWr3lW605S0r8XPoUg7BFqtdrwebFYfHCfrHK5PHze6/Xi9PR07GdJ153k+TzV0dFRfPnyJV69erV2//ieIsnzTvqaZ/nck/LL2R/jv6/+HN9s/Y/VTyzUnakJVZaveZbPPSlZveZZrTtJSZ93Vv/Ok77uScnqNc9q3Ula59+NBGGP0Gg0hs8LhcJM78nn89HtdiMi4uTk5NHB0TLqTvJ8IEnzruJyeyIAAMB6E4TNqd1uj73+9a9/PdP7CoXCMDga3FaYhrqTPB94CmEUAAAA8xKEzWl0L62IryujZnH7uHa7PfPqq2XWneT5kH5p3LR9UD8AAADMSxA2p48fP469fmg/rYHvvvtu7PWnT5/mDo6WUXeS58O4eUKlpMMoAAAAWEeCsDkNbgcceOwKqk6nk4q6kzyf50IYBQAAAOvhRdINWDe3g6PH6vV6qag7yfMBAAAAWCVB2JweG/jcvuXw8vIyFXUneT4AAAAAq7TR7/f7STdinWxsbIy9nvXytVqtKJVKw9fFYjHOzs4SrzvJ8xn4u7/7u/iv//qviIh48WK+bPbm5mb4fPDef/iHf4i///u/f1Rb5nFxcfG1/o2N+Ca3ufT6Rv137zqi389c3UnXr251q1vdz7F+datb3c+37qTrV7e61b2aul+8eBEvX75cSZ3/+q//Gv/yL/8y8XfxeQze/7d/+7fxn//5nwtr3yzsETanXC63kNsAZ92Uftl1J3k+A3/5y1+Gz0f/Mc1r8N4///nP8ec///nR5cyt34//vlphfepOvn51q1vd6n6O9atb3ep+vnUnXb+61a3upbq5uYkvX74kUveg/scazQNWRRA2p+3t7YUER9vb26moO8nzGfj222/j3//936P/f5Psp1rVijAAAADIksGKsKe6ubmJjY2N+PbbbxfQqvkIwub02JVPt8Omx64IW3TdSZ7PwL/92789+r0AAAAAs7JZ/pzevHkz9nrW1VS3N5Pf2dlJRd1Jng8AAADAKgnC5rS7uzv2utvtzvS+Tqcz9rpYLKai7iTPBwAAAGCVBGFzur2CatbgaHSlVS6Xi3w+n4q6kzwfAAAAgFUShM2pUCiM7Yf18ePHmd736dOn4fPb4VOSdSd5PgAAAACrJAh7hHfv3g2ft9vtmd4zetzh4WGq6k7yfAAAAABWZaPf7/eTbsS6abfbY3trPXQJW61WlEqliIjI5/N39tdKuu4kzwcAAABgVawIe4RCoTC2Ofzp6enU45vN5vD5Q6unGo1GHB4e3rtX1zLqXub5AAAAAKSFFWGP1O12Y2dnJyK+Bknn5+cTj+v1erG1tRURX79Z8ezs7N4yS6VStFqt4eurq6ux/buWWfcyygQAAABIEyvCHimfzw9XRrXb7ajX6xOPe/v2bUR8/WbF0ZVUk4yGYBERHz58WFndyygTAAAAIE0EYU9QLpfj7OwscrlcHB4eRqVSiXa7Hb1eL1qtVuzu7ka73Y5CoRB/+tOfJq7uGnX7z/P5/MrqXlaZAAAAAGkhCHuiYrEYV1dXUavVotvtxtu3b2NraysqlUpsb29Hs9mM8/PzmUKjZrMZ+Xw+crlcHBwcjO3btey6l1lmErrd7nBD/8e+96G90hZh3nbW6/UolUqxtbUVGxsbsbOzE5VK5c5qQlZnXfraMjzl3Hmcea55u92Ovb292NnZiY2NjeGYcXh4GL1e79FtWMY4ZGxLn6T72rL67yyMbauXdH9bRjsjjG1ptC59bRmMbas3zzXvdrtj/W1rayt2d3djb2/v3v3DZ2Hedo8+rJGrq6t+RMz0qFarc5ddLpeH7z8+Pk5NO8/Ozvq5XK4fEf1isdg/OzvrdzqdfrPZ7Ofz+eHPr66uHt1mxqW5rw36wmMes7R1mefOZIu85rf7132PefvdMsYhY9vqpb2vLav/LvrcmU3a+9sy2tnvG9uSkOa+Zt72/Cz6mtdqtQfLqdVqc7XRvG06QRhrZZZBYvDodDozlXl1ddU/ODhYyERqGe08Ozt7cCAtFAr9iOjn8/m1GHjWQVr7WrPZfPRkKiL6zWYzkXNnukVd86urq+FEZJET4mWMQ8a2ZKS5ry2r/y763JldmvvbMtrZ7xvbkpLWvmbe9jwt8poXi8V+RPRzuVy/XC73Dw4O+uVyeWI/nKU/9PvmbbMQhLFWZv1EpVgszlRerVbr5/P54QA0+nhKELaodl5dXQ3Lyufz9x7X6XTmPnemS2tfm/T+eR5JnDsPW9Q1H/SPQqHQbzab/U6nM/ykblIIO8ukahnjkLEtOWnua8socxnnzuzS3N+W0U5jW3LS2tfM256nRV3zQZ+6b7XXpMDtIeZts9no9/v9gDXQaDRib28vDg4OHrzX+s2bNw/uY9ZutyMiolAojJU/cHx8HNVqNdF2lkql4b3WD7WnUqkM95p6bNv5Kq19rdvtxs7OTuTz+Tg8PIxisRjb29sPvm93dze63W4Ui8U4Ozubeuyiz52HLeqaj5ZTq9UmHtPtdodfhDKQy+Xi6urq3jqXMQ4Z25KR5r62rP47qXxj22qkub8to50RxrakpLWvmbc9T4u65oP+cXZ2NnVv8L29vWg0GsPX5+fnw98pJjFvm1HSSRzMKp/PT02gn+r8/HwsbX/sirBFtXM0UY+IB5eXji69zuVyT64/y9La1w4ODuZeajzaj2apZ9nnzl2LuuaDFYcPuT22RET/7OxspmMXMQ4Z25KT5r62jDJvl29sW60097dltNPYlpy09jXztudpUde8XC7PtO/X7f3Ipr3HvG12gjDWwuAf1FNuV3zI7X/kj6lrke2sVqtzLy0dbf88twTwV2nua7lcrn9+fj5XXaNLqmf9H9cyz51xi7rmg3B11sn27aX2902qljEOGduSkea+tqz+O2BsW70097dltLPfN7YlJc19zbzt+VnkNZ/n1sHR/cKm1W3eNrsXAWvg/fv3kcvl4t27d0k3ZapFtnN0Cey05a+j8vn88PnJycmT25BFae5rzWZz5r4wMOgHxWLxweXwaT7352pR1/zk5CSq1erMtzzcXoL/yy+/TDxuGeOQsS0Zae5ry+q/A8a21Utzfxtl3rb+0tzXzNuen0Ve84duex11eXk5fP7mzZt7jzNvm0PSSRw85PZtZPl8vl+tVheeLj91Rdgi23m7rFnLuP1Vz8xnXfrarEaXUj9Ux6rOnb9a9Jgx77fzPNQHlzEOGduSsQ59bdFljpZtbFuttPe3ZbXT2LZ669LXZmXelm5JXfPRfjFtRZZ523zS2SoY8dC3rZTL5bmXHU/y1HBike28vdx61vfd/jabRVyXLFmXvjareZbXr+rc+askr/nt/SYm7W2yjHHI2JaMtPe1ZZZpbFu9delv5m3rb1362qzM29ItqWt+fHzcj4gH95szb5uPIIxUm7QZ5X2ParW60LrmCScW3c7bKXqn05mpHbcHK3sGzG5d+to8CoVCP+LrV4DP055lnjtfJX3Nb3/CN8kyxiFj2+qtQ19bVplJn3sWJX3Nk+obxrbVW5e+Ng/ztvRK6poPAtdCofDguGLeNp9vAlIsn8/H8fFx9Hq96HQ60Wq1otvtTjy20WjEp0+f4vz8fMWtXHw7b7939D7rh9oxqtPpzPQ+1qevzarX6w2/2vv777+feuxzO/d1kPQ1//Tp0/D5fV9rvYxxyNi2euvQ15ZVZtLnnkVJX/Ok+oaxbfXWpa/Nyrwt3ZK45t1uN0qlUuRyufjpp58e3DPOvG1OSSdxMK+rq6t+rVbr53K5iSn8PN/AMWrRq3Se0s7b75nV6NfVhk+Bnmxd+tokg2XUMcenN6OWde7cb5XXfPCp87T+sYxxyNiWDmnra6ss09i2euvS38zb1t+69LVJzNvWzzKv+e2xIeLhb8E1b5uPIIy11mw2Jw4+Dw0UkywznJi3nbePm9XZ2dnY+8rl8qJOIfPWpa8NzLq8fhaLPHdms8xrPtr/ppW3jHHI2JY+aehrSZVpbFu9delv5m3rb1362oB523pbxDUfBGv5fH5isPbQGGHeNh9BGGvv6upq7FOZiOjncrm5y1l2ODFPOxc16Pj0Z7HWqa8tetKzqHNndsu65tVqtR/xddPVaZYxDhnb0inpvpZkmca21VuX/mbetv7Wqa+Zt62/p17zZrPZr1ar/Wq1OnVj/mUH8lmZt70IWHO5XC7Oz8+jUCgMf9br9aLVaiXYqrvmaedD94DPUyeLsy597cOHD8Pn5XJ5IWWuy7k/J8u45u12OxqNRuRyuTg7O3uw/kUYLcfYlk5J97UkyzS2rd669DfztvW3Ln3NvO15eOo1L5fLcXx8HMfHx3F2dhb9fj+Oj4/vjAuHh4fR6/Um1r8IWZm3CcJ4Nn788cex14v6n9OizdLO7e3thdS1qHIYl/a+dnx8HBFfN6qcdVPLWaX93J+jRV7zH374ISIifvrppwf7xjLGIWNbuiXV15Isc8DYtnpp728D5m3rL+19zbzteVnkNa9Wq3F+fn4nSGo0GneONW+bjyCMZ6NQKESxWBy+vu+bPJI2Szsfm5rf/nQgjen7c5Dmvjb6rUOL+lRxVJrP/bla1DXf29uLdrsdzWZz7NPK+yxjHDK2pVtSfS2pMkcZ21Yvzf1tlHnb+ktzXzNve34Wfc3z+Xz89NNPYz/7+PHjnePM2+YjCONZKZVKSTdhJg+1882bN2OvJy1/neTy8nLs9c7OzlztYnZp7Wujy+sf+vrtx0rruT9nT73mjUYjGo1GHB8fzzzRXsY4ZGxLvyT6WhJlTmJsW7009rdJzNvWX1r7mnnb87Toa14oFMb63aRwzbxtPoIwnpXR5cRpXII58FA7d3d3x17P+klCp9MZez36aQSLlda+1mw2I+LrJy/L+GQ8Ir3n/pw95Zq3Wq3Y29uL4+PjqFarM79vGeOQsS39kuhrqy7zPsa21Utbf7uPedv6S2tfM297npZxzUeD0kmBlHnbfARhPCujg04al2AOPNTO2+n7rIPO6KCYy+UWvs8Af5XGvja6IecyfylI47k/d4+95u12O0qlUtRqtbn7xDLGIWNb+iXR11ZZ5jTGttVLU3+bxrxt/aWxr5m3PV/LuOajQemqxqHnPLYJwnhWPn36NHye5mXAD7WzUCiMDXCT7gN/qNzbAxeLlca+torl9RHpPPfn7jHXvNvtxtu3b+Pg4CAODg7mrnMZ45CxLf2S6GurKvMhxrbVS0t/e4h52/pLY18zb3u+ln3NJ40X5m3zEYTxrIwuw0zjEsyBWdr57t274fPBJpoPGT3u8PDwka1jFmnsa6tYXh+RznN/7ua95t1uN3Z3d6NarUatVpupjm63G/V6fexnyxiHjG3pllRfW3aZszC2rV4a+tsszNvWXxr7mnnb87WMaz66Guu+cM28bQ59eEby+Xw/IvoHBwdzv7fT6fQjYvg4Pj5eQgu/mqWd5+fnY+15yNnZ2fDYfD6/yOYyQdr62tXV1bC8arX65PKmecq58zjzXPOrq6t+Pp+fux8UCoX++fn52M+WMQ4Z29Itqb62zDJnZWxbvaT726zM29Zf2vqaedvztoxrXqvV+hHRz+Vy9x5j3jY7QRjPRrPZHA4OV1dXc7//9j/yZQVh87SzWCwO29NsNqceW61WVxLikc6+dnx8PCzv7OzsyeXd56nnzvzmueaDyXuxWOx3Op2ZHmdnZ/1CodAvFAoTy1zGOGRsS6ek+9oyylzGubMYSfe3ZbTT2JZOaexr5m3P17KueS6Xm2lsMW+bjSCM1Do7Oxv+gy8Wi1M/Yel0OsNjH/up32DQGjxqtVri7RxdOTTtf66jnyoVi8WZ2s1frUtfm2bwP6hpnxJNsupzZ7nXvFAojPWteR73TVaWMQ4Z21Zj3fraIss0tq3euvQ387b1ty59bRrztvWxrGteq9X6hUKhf3Bw8GBgdnBw0I+YbYWZedtsBGGk1miaPHhMWjo8GJzy+Xy/0+k8qq7Bpz+jdc36qc6y2zkamtwXmAz+p+3TnsdZl742rcxBWeVyea73rvLc+WpZ1/wpk/eI6dOBZYxDxrblW6e+tugyjW2rty79zbxt/a1LX7uPedt6WcY1H+0Dg8d9IVe5XJ46nkxi3vYwQRipNXp/8egjl8v1y+Vyv1qtDv+xzZKk33Z1ddUvl8tjSz0nPYrFYr9cLt+b6i+7nYM6Bp8uDNpydXU1XIod8TVMSfuAk1br0tfu85Tl9avov4xbxjUfTJIe+5hlf5JljEPGtuVal762jDKNbau3Lv3NvG39rUtfu49523pZ1jW//cH4aJkHBwf9YrE4fP2YMNO8bTpBGKnW6XT61Wq1n8/nh//oBkl7uVzuN5vNVPxDW1U7B0toR+soFosP3qvNw9alr00yGrA9xjqf+7pa52u+jHHI2LY869zXnirL556Udbnm5m3rb1362iTmbetnGdf86uqqf3BwcGeMGJR5fHyc2nHoOYxtG/1+vx8AAAAA8My9SLoBAAAAALAKgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAABA5vR6vdjY2Hjw0W63k25qatXr9Qev387OTtLNHLPR7/f7STcCAAAAYJV6vV5sbW0NXxcKhfjxxx8jn8+PHZfL5VbcsvXS6/WGzy8vL6PVasXe3t7wZ/l8PjqdTgItm0wQBgAAAGTO7SCs2WxGuVxOsEXPR6VSidPT04hIXxDm1kgAAAAg86z8Wpzbq+rSRBAGAAAAZN729nbSTWAFBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAIA59Xq9qNfrsbu7O/yGxIHT09MolUqxtbUVGxsbsbu7G41G495yDg8PY3d3d+z422WmvR3r4pukGwAAAABEHB4eRr1ef9R7C4VCnJ+fL7hF3NZut6PVasXJyUm02+07f97tdqNSqdz5s3a7HXt7e3F+fh7Hx8fDn9fr9Tg8PJxYT6VSiYODg6jVaqltxzoShAEAAEAK9Hq9iIjI5/Oxt7cX+Xx+4nEfP368E5g9l5Aizbrdbrx//z4iYmL41Gg0Ym9vLwqFQtRqtcjn88P3DP5uG41GVCqVKBaLUSqV4tOnT1GtVmN3dze2t7fv/N3W6/U7fSEt7VhXG/1+v590IwAAACDr9vb24sOHD3F1dTX1uN3d3bEApFqtjq3uYTa9Xi+2traGr8/Pz6NQKMz03tsrqPL5fFxeXsaPP/4Y5XJ57Nhutxs7OzvD14M6tre3o9lsRi6XGzu+1WpFqVQavp7295uWdtw2uroxn89Hp9OZ6X2rYI8wAAAASInf/e53U/+8Xq+PhWC5XE4IloBJgdnV1dWd8CniaxBULBaHr9vtdvR6vTg7O7sTPkVEFIvFsZVXrVYr9e1YJ4IwAAAASIHLy8upK5K63e6dfZyazeaym8UE29vbY68nBU+jRldWRcTE/bhGjfaDbreb+nasE0EYAAAApECtVhtbsXNbpVIZe12tVqceT3rcXnF1O8C67fZeXIsKodLSjiQJwgAAACAFpm1E3mg07twSOc8G+fV6PUqlUmxsbAwfu7u7c7WvXq+PvX9rayv29vbmKiOrHgqcHjLY5P65tCNJgjAAAABIsW63eydwmrS5+TQHBwdxdnY2duvcPKt72u322G10uVwu/vSnP9mfbEm+++67pJsQEelpxyIJwgAAACDFbodg5XL50bdEjoZf86zuuX1b5rt37+YK4iAtBGEAAACQUo1GY+zb+nK5XPz444+PKqvX60W73R4LsGZZFXZ4eBiXl5djt27eDsZgXQjCAAAAIIV6vd6db/X78ccfH70SaxCovXv3bvizh4Kwdrsd9Xo9fvzxx7FjbdLPuhKEAQAAQApVKpWx2xfL5fLYHl/zOjk5iXK5HDs7O8OfPXR7ZKVSiWq1OvYzIRjrTBAGAAAAKXN6erqwWyIHWq1WlEqlsVscp60IG+xNdnx8HCcnJ8Ofl0qlmeobbPJfKpWiUqkMg71SqRRbW1tj53dfW3d3d4ePacfDrARhAAAAkCK9Xi9++OGHsZ895ZbIiK+3OPZ6vSgWi2NBWKfTmXh8q9WKRqMRzWZz+HpgllVp9Xo9dnZ2YmdnJ87OzqLZbEatVotKpRKtVmvYlkkG4VmpVIrz8/M4Pz+PfD4fpVIp6vX68FzgMQRhAAAAkCI//PDD3LdE1uv1aDQa9/75yclJ5PP54WNg0oqwXq8XlUolDg4OolAoRLfbHbYnl8uNvX+SSqUSh4eH0Ww24+DgYPjzfD4fl5eXEXH/7ZWVSiUajUZUq9Wx937//fcR8XXj/t3d3Tt7p8GsBGEAAACQEq1WK05PT4evZ70l8uzsLLa3t6eWOwifHvrWyB9++CG2t7ejVqtFRIy1Z3Sj/Un29vbi9PQ0qtXqxPBuEKhNur2y0WgM6xrUPVAoFIbPO51OHB8fT21H2g0CwaSlpR2rJAgDAACAlKhUKmOvZ7klstfrRavVunelVq/Xi3a7PVb2oMzbQcjp6Wmcnp4Ob4mM+BqyDUzbH+z09DQajUbkcrl7g6pB8DZpRdigznK5fOecRwO7h77pMo1uX+eHbu385ZdfnnU7kiQIAwAAgBTY29sbCyaKxeJM+3EN9hO7Lwgb7O81Gj4Njh2tb3BLZK1WG1uBNev+YIN2/O53v5vajlwuN1b+7T//9a9/fefPRsO4N2/e3NuGVbkdxj0UKN3+8/v2Zrvv+PvCv7S0Y50IwgAAACBhg83pRw02lr/9GKy8Ojw8jJ2dneHthPetHDs5ObkTPE3aJ6xSqUShUBjbm2s0BJsUXg3U6/VhaFKtViceM1jxdV+QdV/7e71e1Ov1iIg4ODh40pcGLMr79+/HXn/48OHeEKrX691ZIffhw4ep4daHDx/GfnbfCru0tGOt9AEAAIBEFQqFfkQ8+pHL5e4tO5fL9Wu12tjPDg4Ohu89Ozvr12q1fkT0O53O2HHVanV43O0ybtcREf1yuTzxz6+urh4sp9ls9iOiXygUxt6Xz+f7EdE/ODi4t/7HGG1TRPTPz8+nHn9+ft4vFovDc530KBQK/WazOTz+ob/XQqHQPz4+7vf7/f7Z2dnwXO/7Oy4Wi/1/+qd/SkU7bveVUaP9K5/PL+Kva2G+eVqMBgAAADzV+fn5Usptt9vR6/Xu7Mm1s7MzfH52dhb1ej1qtdqd2ytHV4Td902Pgzoi7t9DbHTl0n3llMvlOD8/j7dv38bu7m5sb2/H5eVlFAqFODs7e/DbKpdt0I55jp/n77VYLD54q+LAP/7jP6aiHetIEAYAAADP1MnJycQ9uUa/YbJer9+5JTLi6610g9vm7tvXK2J836hJtz12u92Zb7F8//59vHnzZq7ACeZhjzAAAAB4pk5PTyeuwLq9umr0WyIHRveHum8VV8TDG6gfHh7G999/P1ZOr9cb7m02UKlU4vT0dGpQBk8lCAMAAIBnqN1uR7fbnfgtjKNB2PHx8cTbDkfDsftuebxd1snJyfB5r9eLUqkUtVotPn78GBFfV4P1er344Ycf7oRrg1Vj9Xo9dnd373x5wLJdXl6utD6SIQgDAACAZ+jw8PDePxt882KxWJz4LY+Db6icRbFYHJZXr9djb28vKpVK7O7uDkO2waqx09PTePv2bdRqtTvf/lir1YbP2+127O3txcbGRuzt7c3Ujqd6aGUbs7vvmyvTQBAGAAAAz0ir1Yrd3d1hkHV4eBiVSuVOsFUoFO7cEtloNKJUKt1ZATYItyat0srlcvHTTz8Nb2n88OFDbG9vx/n5+XC12ODWyHw+H81m884KtNPT02g2m9HpdKLZbI6tFms0GmOb+y/L4eFhtFqt6PV6Yw+mu329Wq3WylfzzWOj3+/3k24EAAAAkE31ej1OTk7ufLNht9uNw8PD4V5i1Wo1jo+PF1Zvr9eLra2tB487Pz+3b9k96vX61JWHEV/DzzR9C6UgDAAAAEjE6elpVCqVqWHT4eFh1Ov11AUqrCdBGAAAAJCIUqkUrVYrHoomNjY2olAo3Fk1BvOyRxgAAACQiMGG+dP24hr82e1vmYTHEIQBAAAAiRhsov/+/ft7jzk8PIx8Ph+/+93vVtUsnjFBGAAAAJCIcrkctVot6vV67O3tRbvdjogYfvtgqVSKy8vLOD8/H64eg6ewRxgAAACQqF6vF41GIzqdTlxeXkY+n4+dnZ0oFouRz+eTbh7PiCAMAAAAgExwayQAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAn/PwyR3Jm6yAhkAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACloklEQVR4nOz9XWxbaZ7nef6OM7rR0zUtUXJWARoJyOChXYPtuFiLkhOYq0ZZZGQutm8qTMpxNQNkhki7rnKVadGKBeZittc25QhNXFWIlCMwO1cjUXZcbAOTZVIO9M0uUEEeOy6ygOkIHim2LQjd1aZoxmRlYxqhsxcCmaJeKIpv51D8fgCiROk5/+d/LGVW8VfP8xzDcRxHAAAAAAAAwAV3ye0GAAAAAAAAgF4gCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEB4y+0GgE77kz/5E/2n//Sf9KMf/Uh/9md/5nY7AAAAAADgkP/wH/6DfvjhB/2Tf/JP9Pvf/76ncxuO4zg9nRHosh/96Efa3993uw0AAAAAANDApUuX9MMPP/R0TlaE4cKpBmGXLl3S2NjYua/f3d1t6/pWDdq8bs7NPXPPF3Vu7pl7vqhzc8/c80Wde9DmdXNu7pl7vqhz9+s9V6/90Y9+1KXuTtd3Qdj29rYsy1KpVFK5XNbr168lSZcvX5bP55NpmpqentbQ0JDLncItf/Znf6adnR2NjY3p1atX575+YmKiretbNWjzujk398w9X9S5uWfu+aLOzT1zzxd17kGb1825uWfu+aLO3a/3XL3WjeOM+iIIe/r0qbLZrNbX11Uul5u6xjRNhUIhRaNR3bhxo7sNAgAAAAAAwPM8HYQ9fvxYyWRStm1Lkg4fZ2YYxonXVMcUi0XZtq10Oi3TNHXv3j398pe/7H7TAAAAAAAA8KRLbjdwkufPn+vq1auKx+MnhmDV9ye9Thpj27ZisZj+/M//XF9//XXP7gMAAAAAAADe4bkVYYuLi1paWjoWaoVCIQWDQV2+fFmmacrn80mSRkdHJUmlUkmSVC6XZdu2Xr9+Ldu2lcvlatspv/32WwWDQSUSCd2/f79n9wQAAAAAAAD3eSYIq1QqmpmZUaFQkHQQfIXDYYVCIU1OTrZV+82bN1pbW1M6nZZlWUomk8rlcsrlchyqDwAAAAAAMCA8sTXy5cuX8vv9KhQKisViKhaLevbsme7evdt2CCZJw8PDisViyufz+vbbb3Xjxg3l83lNT0/r+++/78AdAAAAAAAAwOtcD8JevHihYDAov9+vYrGolZUV+f3+rs1nmqay2ayePXumv//7v9fU1JQqlUrX5gMAAAAAAIA3uLo1cmtrSzMzM4pEIlpfX+/p3KFQSFtbW5qamtLs7Kx++9vf9nR+eNf8/LwqlcrAbJt1837dmnsQ79lN/J4v/rxu4vfcW/yNXfx53Zybv6+LP6+bc/P3NRhzD+I9u6lf79lwjp5K30NXrlxRKBTSysqKWy2oXC5renpad+7c0a9//WvX+kDnTExMaGdnR+Pj43r16pXb7TStX/tGf+DvC93G3xi6ib8vdBt/Y+gm/r7QTf369+Vm366tCLt3755M03Q1BJMkn8+nfD4v0zQ1MzOja9euudoPAAAAAAAAusO1M8IuX76sTCbj1vR1fD6fNjc3Zdu2260AAAAAAACgS1xbEXb37l23pj7R5ORkR55QCQAAAAAAAG9y/amRvXLnzh23WwAAAAAAAICLBiYIS6fT2t7edrsNAAAAAAAAuMS1rZG9tLm5Kcdx9OTJE54MOUB2d3c1MTHRcMz8/Lzm5+d71BEAAAAAABfb8vKylpeXG47Z3d3tUTfHuRKE3b59W1tbW12fp1QqqVwu1w7BX1lZIQgbIPv7+9rZ2Wk4plKp9KgbAAAAAAAuvkqlcuZncTe5EoT5fD5ls1kZhtHVeRzHqXtv27Zevnypa9eudXVeeMOlS5c0NjbWcMzQ0FCPujnb/Py8KpWKp3rCxcHfF7qNvzF0E39f6Db+xtBN/H2hm7z49zU0NKTx8fGGY3Z3d7W/v9+jjuoZztG0qAdevHihqamppoMwx3HaDs2qNRKJhO7fv99WLXjbxMSEdnZ2ND4+rlevXrndDgAAAAAAOMTNz+2uHJY/OTkp0zQlHQRUZ70Mw2hq3GmvKsdxlMlk3LhlAAAAAAAAuMy1p0bOzMxIknK5nPb39099JZNJOY6jYDCobDarvb29huOPvvL5vPx+v+LxuPb39/XNN9+4dcsAAAAAAABwkWtPjZydnZVlWbpx48apY7a2tnTv3j3F43F9+umnLc0TDAb17NkzXblyRYZh6K//+q9bbRkAAAAAAAB9zNUVYSMjIw3HJJNJmabZcghWZZqm5ubmlEql9OWXX7ZVCwAAAAAAAP3JtSBMkp49e9bw5/l8XvF4vCNzTU9Py3EcpVKpjtQDAAAAAABAf3E1CDuLZVkKBoMdqTU6OipJymazHakHAAAAAACA/uLpIMzn82lra6sjtaoBWLlc7kg9AAAAAAAA9BdPB2HT09NaWVlpu86bN2+UTqclHYRrAAAAAAAAGDyeDsJisZgKhYI+/vjjlmtUKhWFQiFJkmEYMk2zU+0BAAAAAACgj3g6CItEIvL7/VpYWND777+v7e3tc13/9OlT+f1+WZZV+96tW7c63CUAAAAAAAD6geE4juN2E43Ytq0rV67IMAxJUjAYVDwel2maMk1Tb7/9tiRpe3tb5XJZtm0rm81qfX1d5XJZjuPIMAw5jqORkRG9fv3axbtBL0xMTGhnZ0fj4+N69eqV2+0AAAAAAIBD3Pzc/lZPZ2uBaZrK5/Oanp6WdPAkyXg8fuZ11XyvGqAZhqFMJtO9RgEAAAAAAOBpnt4aWRUMBvXtt99qcnJSjuM09TIMo7YSzHEcra+v68aNG27fCgAAAAAAAFzSF0GYdLAyrFAoaH19XcFg8NjPq8FXVTUAi0Qi2tvb082bN3vZLgAAAAAAADzG81sjj4pEIopEItra2lIul1OhUJBt2yqVSpKk0dFRmaapcDisUCik4eFhlzsGAAAAAACAF3j+sHzgvDgsH24ql8vy+XxutwF0xDuff3LmmN/94ldd7wMAAAAXi5uf2/tmayQAeJVlWUokEhoZGdHc3Jzb7QAAAAAATtF3WyObsbi4qNu3b+snP/mJ260AcJllWVpbW5NlWbVt1NVVW6ZpanR0VMFgsLad+qhoNCrbtlUoFGrfK5fLyuVyWltbUy6XU7lc7uEdAQAAAABa1XdB2NOnT5XNZpXP57W4uKj33nvv2JipqSlNTk7q3XffVTKZJBBDX0un04rH4+e+LhgM1oU3rTr8EIpm+Xw+7e3tnfizaDSqjY2Nc9fMZrMnBlUnKZfLevDggZaWlhqOsSxLkpTL5Wpjg8GgQqGQAoGAstmsNjY2jj2gY25uTrZt164HBhnbJwEAANBP+mZr5EcffaTLly8rGo0qnU7LsqzaAflHRSIR2batb775RqZp6osvvuhxt0DnxGIx7e3tqVAoKBKJNBwbCoWUzWZr4zvBcRwVi0WlUqmGZ1+ZpqlUKqVisXhqCCZJmUxGe3t7TQVbCwsLKhQK2tvbazoEq25RPBqCRSIRZTKZWr3qfWWzWcVisdq9WZalpaUlxePxWmB3dMVXtY7jODJNs6m+AAAAAADu83wQ9ubNG129elWJRKL24bWZ8/19Pp8KhYKuXbumSCSizz77rAfdAt3h8/kUDAaVyWQUi8VOHBOJRGrhUqcPazdNU7FYrGG4VigUFIvFmgqGfD5fLbQ7utqqKpVKKZlMKhgMNnU/tm0rEAgcC8BisZgcx1Emk1EkEqmrZ5qmQqGQUqmU9vb2lEwmz5znqGYDOgAAAACA+zwfhEWjURWLRUkHW7TOu01rc3NTjuMoFovpyy+/7EaLQE+dtk2yle2T52Wa5onBVSQSaTl8O63v0wK/k+RyOQUCAdm2XfteNQxPpVJN11lYWFCxWDx2L6etPq3OAwAAAADoD54OwjY3N5XL5WQYRm0l2PDw8LlWYPh8Pt29e1eO4/QkKAC67bQVV73aonfSPO3MfdK15wmXLMtSOBw+dv3m5uapq83O6mdra6uuBw7DBwAAAICLwdNBWHUlR3VFV7FYVKlU0rNnz5raHln1/vvvS5KKxSJbJNH3TguJRkdHe9uIB9i2rZmZmWPfz2QyLYVgVdXVZBfNxsZG3ao51Mvlcm63AAAAAKDLPB2EVVeDpdNpraysyO/3t1Tn8IqTZ8+edao9YCCdFLhdvny5o/WaDfWi0eix1VqxWKwj53aZpqmFhYW26/SCZVmKx+MKBAIyDEMjIyMKBAKampqqPaVzY2NDc3NzZ4Y9uVyudv1FD4Zs21Y6nVY4HJZhGMdWFrptkH4XAAAAQK+85XYDjZTLZQUCAX3wwQdt1Tl8vo9lWe22BcADcrncif95buXA+9MsLi7WDt8vl8ueOw+sXC5rbm6u9nRL0zRrTxa1bVuWZcmyrNrPq9c0Ug0Xy+Wy4vF47YzGi8S2bUWjUdm27eltrxfpd/HO55+cOeZ3v/hV1/sAAAAAPB2EVZ+U167qh2XHcdgWBFwQJ535186h/Sfx+XyKxWJKp9Mdq9lJ0Wi0tlIolUode8CAbduKx+N1q4nOClNGR0c9HQ51gmmata2viUTi2JNGvaKbv4tmgikAAADgIvL01kjTNDvyIeDBgwe1r722ogPA+eVyuRND7cXFxY7PFY1GJTV+cmQjuVxO0Wi0bttiOBxuO1xbWlqqBVwLCwsnPmXTNE1ls9m6VXJn/T8DUqmUTNOUaZrKZDJt9dgPvLYd8rBB+10AAAAAveDpIGxmZkb5fL6tGo8ePZJlWTIMQ1LvnqwHoHtOCwU6sYL0qFAopGQyee6HEZTLZU1NTSkcDtcdUl8ul5XL5WpnerW6XftwwH/WE3EXFhZq552dFeiFQiEVi0UVi8Wu/Ht6jVsPmWjmKcaD9rsAAAAAesHTQdji4qL29vb08ccft3z9vXv3ZBiGHMeRYRi6detWh7sE0GsnHRzeiQPyT7OwsHCu1aS2bcvv958Zctm2rampqXMfhN7K2VbJZFLBYJDt4R6QTqc9u90WAAAAuOg8HYT5fD7dvXtXCwsL+vDDD1WpVM68plKp6PHjx7p69aqWlpbkOE7dz0/aPgSgf9i2fWKY45UVM+VyuXbIeSQSUSqVUqFQUDabPfUplOFw+FwB1dEQrNkgbXFx8cKf/+V11XPbAAAAALjD04flSwerGCzL0sOHD5VMJhUOh2srPwqFgkZHR1UqlVQsFuueIlcNwKpbIiVpZWVFQ0NDvb8JAB1zWmAUCAR63MnJqqFUNps9tkotFAopHo+fGHxFo9HaAe5nObrFO5FIaHZ29sxVa9UnSnrxCZiDoFwue/pMMgAAAGAQeD4Ikw4+UMbjca2uriqbzSqbzcowjBO3lxwNwKrvU6mU5ubmets4gI47LQhz66ynk5wUglVVD7A/GtxZlqVcLtfUFk+fzyefz1db3VU9jyybzZ55DuLRVbLojXK5rJmZGbamAgAAAC7z9NbIw1KplPL5vG7cuCHHcY69qg4HYI7j1A4bJgQDuieRSMgwjJZeU1NT55rrtK19Xlnh5PP5zgyzTNOse5Jj1UnfO83RsbZtKxAIdOTsKcuyaof5N1Iul5VOpzU1NVU3b3X738jIiAzDUCAQ0NLS0rHrbdtWIpGoPVEzEAgoHo+f+DuuznP07+eocDhcq3f41cktoel0um6ekZERTU1NnXiP0sG/50lnxh3u77R/62Z/F1XlcllLS0sKh8O1f/9qf4lEoqkg7v/4+/+o//i/buqbe/9Kf/ju39W+v/dv/j+y/4eP9Xe//L/pm3v/Sv/ur/8n/fAPf2iqLwAAAMAr+iYIkw7OAMpmsyoWi0qlUopEIgoGgzJNU8PDw/L7/ZqcnKydy7O3t6dnz57J7/e73TqADikWi2630ND09HRT4046gP88h+bHYrETA7d4PK6pqalzP42yGrhUQ5N0On3iEyarQcvU1JRGRkYUj8fr5qoGW+l0uhY+VQOvw2djVcctLS3VwhnbtmuB19HgKhaLqVAonHnOY/V/R5wnVGzWxsaGDMOo3UuxWJTjONrc3FS5XK7d09HeTdPU5ubmsZ4KhULtdfhJqM3+Lo5Kp9MaGRlRIpFQOBzW5uamisWiVldXJUlLS0sKBAKKRqPHrv3hH/6gf5/5f+ube/9K3977f+o/bPxr/ee/f137mf0/fKzd/zmj//TdK0nSf/771/q+8LW+Sfw/9H/8/X88178jAAAA4Ka+2Bp5lN/v19zcHKu80NDu7q4mJiYajpmfn9f8/HyPOrq4YrFYyweA5/P5c1172sovrxwCf56VaaFQSBsbG3Xfsyyr6YP/s9msotHoiTWmpqYUiUS0urp6Zk+2bWttba3pVUfBYFA+n6/u91YoFDQ1NaXR0VFlMhkFg0GNjo7qwYMHtZVS6XRa8XhciURCpVJJ2Wy2Fhzm8/naQwZs29aDBw9ODLOi0WhTq94ikYgSiURT99OMXC5XC5AWFxdr561JB/8emUxGU1NTsm1bc3NzdcGWz+dTMBg8Fmad9Hs+7++iKpFIaGlpST6fT4VCoW6LrGmaikQitb+VjY0N/aN/86XM//7X+tE//S8kST/8/vf6k3f+XD/84Q8q/5v/b+3a/7T97/TdR5/qT/5Pf64/i/xL/eM/vazf/92/1b/f+Nfa/4c/aP8f/qDd/zmjn/z6zrn6BQAAwMW1vLys5eXlhmN2d3d71M1xfRmEAc3Y39/Xzs5OwzHNPIkUZwsEAj17auPly5dP/H4zK2a85tatW8dCrHw+f65/y0wmo6WlpRNDn2rokUqlGq6kOrpVs1GAdHjrZyqVqq0GS6fTJ56NVn3gSXW129TUlGKxmLLZbN24UCik1dXVWtiUTqfbWtXV6TPjUqlUw58f/p0d/Z2ex3l+F1XpdLoWNiaTyVPPictkMgoEArJtW//571/r1af/Uy3A+sd/+mP94z/9sf7Lf/5f1wVh/37jX2vizn+n//Kf/9e17/3jf/Fj/ehP/qleffr/kiT9/u/+rX74hz/UQjUAAAAMtkqlcuZncTf11dbIZm1vb+vp06d6/vw5QccAu3TpksbHxxu+eIpo//H6irDzOCmwaOU+FhYWtLe3V7dK6bDqkyqbqX3WYfuHHQ6bTtuqKenYkxJPC5UO918ulz37Oz3tb/Dw9ztxKH6zv4tqWObz+c7cOno4WPv93/1b/e9/978dG3PpUKD1X/13s3UhWNXQ9LW693/Y/v811SsAAAAuvqGhoTM/i1+65F4cdaFWhG1vbysajR47G2dqakqZTEY/+clPXOoMbhgbG9OrV6/cbgMddlo44PWzw05yUqDy+vXrlmtlMhlZlqW5ublj/z2Yy+U0MzOjzc3Njj1YoNk6h39n55nbtu2erTQ8y+rqqq5fv17bZniWXoV4h89iayY4i8ViSiQStWte/6/PTwy6mvGP/vRy7Ryx6v8EAAAAmjmCaGJiwrVVY55fEfbuu+/q+vXrunr1qq5evarLly/r1q1bx8a9ePGidkD00SdK5vN5BQIBffnlly7cAYBOOm3V0XkOmveKk4KL07Z+NisYDKpQKJy46qoakvVaq8Gbl7a7+nw+LSwsnBiCWZZ17ocTdMrhLabNriA7/J+h3//dv+14TwAAAICXeT4Iqx78+/r1a8ViMeXzea2trdWNefPmjWZmZrS3tyfp4JH01WtDoZBM09T+/v6JT8oC0H9OO2Tcq1vpzuM8WxMbicViKhaLx0KojY0NT4eGnVqt1m3VJ1zmcjkFg0HXVq61sgXz6N/YD//wh061AwAAAHie54Mwy7JqTxi7e/eu/H7/sTFzc3Mql8syDKO2CiyZTKpUKunZs2f69ttv9ezZM+3v7+vDDz904S4AdNJJq0Kl/lwVdjT46VQQVq1VKBSOzXHWwe84nWVZCofDtQcQnLZCsVcOh7/NhmJHn0j5w+9/38mWAAAAAE/zdBD26NEjBYNBPXjw4NQxT5480cbGRi0EMwxDyWRSd+/erRsXCoX08OFDFQqFbrcN9DXLsjy/evK0A8H7MeA5uortrJVFuVxOU1NTTdc3TVOrq6t133NrG1+/i8fjmpqaOvZkRze1ckD/0Sdq/uM//XEnWwIAAAA8zdNBWDqdPnMF19zcXG0rpGEYCgaDx0Kwqlu3bimfz3e8T+Aiqa6w9DKfz3fiWU25XK6vQp6j/87NrC4yTVOWZZ1r9dvRf6tOPNFw0MTjcaXTaUnyTAgm1a8gbPZJm4fPXvtHf9remXQAAABAv/F0EFYsFnXt2rVTf37nzp3a/9HvOI4kHVv5cNjw8HBtHIDjqkFSOBw+dUynDzBvtd5pYUQikWinnRN1Kxg8GszH4/Ezr6kGH82MPY1XnsTYTZ38O7UsqxaCmabpqXPMjm4TrvbZyOEnrA5N/Z873hMAAADgZZ4OwkzT1Pb29ok/e/HihVKpVN2WyFgs1jA4e/Hihaanp7vTLNDnyuVybUvkSautGnn9+nVHe2kmxDhte1oul9PS0lLHerFtW1NTU20FT6c5+sS/Zv/dTdOUbdtNh35HV4CddsZaPzi6re+0kLKTq94Or75rVNeNlZSRSKQumGtme/Dh+/nx/9XdM84AAACAXvN8EHbS/3f7zZs3dWcYGYYh0zT16aefNqy3ubnZldUiQC9148N2uVzWzMyMyuWyfD7fuQ9s73RPzdZbWFg4cTthIpHoyMH5uVyudrB4N7bDbWxs1L4+z/lm1d/P0tJSUyuADtc2TVMLCwvn6PJ0zf6eDo8765qzfn50NdtJ939SSNjJFWKHf29Vzcx39D9XR0O1Vv9zdHgltG3bDf/2LcuqbR/+s8i/1I/+6X/R0pwAAABAv/J0EBaLxfTw4UN9+OGHqlQqqlQqevr0qaanp2Xbdm01mCRlMpmGtV68eKEHDx5oZmamF60DXXPaipRWP+hXD1+vfjienZ099/zthAztrtzJZrMnrqQKh8Mtrwwrl8uKx+MKh8OnPnmx0bXNSKfTtXs/79MHDwcq8Xhc8Xj81HnT6XTdv8PhVWgnOfy7dPusuNPmP/xvlUgkFI/HlcvltLGxoXg8rkAgoGQy2dRB8kf/dk+a82j4Fo1GtbS0VFt9GAgEZNt23e8llUopl8spkUjUah4Nwqq/N9u2684gO6m3Rr+LSCRSF9RGo9ETx5fLZc3NzUmSfP/iv9GP/y8n/+/D/X/4w6lzHfaf//6PK0F/aPIaAAAAwG2eDsIikYhmZmaUTCY1MjKikZERRaNRFYvFuhBsZWWl4ZbIx48fu/6Ie6BTTls5FI/HmwqVyuVy7QN6IBBQOByuu67R+WC2bZ94GP3GxkbLoclp99PMSqeqTCZz4iqnRCKhqamppleHlctlLS0tye/3K51OKxQKnSsEk46f+3WSavAhHYQ6533a5dGnRqbT6dp/PyYSCaXT6VogdHieYrF45mq/o72ctPpJ+uPfUVWj+15bWzvW70mO/p5OC+0ymUzd7ySdTiscDisajWp9fV3ZbPbYf+cnEgnZtn3s7/To/a6vrx+bLxQKHQtbE4mEwuFwLYjLZDJ1c25sbNT+s3W418N/p7lcTiMjI7VVh0f/hpv9XVSvrf67lMvl2t+wbduybVvpdLoWeCeTSf1X/+3Jgff//nf/25H3/7apcb8/ZRwAAADgOY7HlctlJxKJOIZhHHuNjIw4GxsbJ1734sUL5969e86VK1ecS5cuOYZhOJcuXXKePn3a4ztAr42PjzuSnPHxcbdb6ahCoeBEIhFHUldfe3t7x+be29tzUqmU4/P5Tr3ONE0nlUqdeP1p9xMKhRr2srCw4BSLxab/jbLZrBMMBk+s5fP5nEgk4qRSKSebzTqFQsHJZrNOKpVykslk3XU+n8/JZDJNzVksFk/8t8hmsyeOz2QytX/HSCTS9L0dvc9qj5lMxonFYk4oFHKCwWDd76h6z6f1UlX92zrt9xsMBp1kMnnmWNM0nUgkUvsbiMVijmmaJ9YMhUK1mtls9tS/BdM0nVgsdqznvb29uvrBYNBZWFioG1P93tG/ob29vTPv96Q5k8lkbT7TNJ2FhYW6v/e9vb3afRz+NztqYWGhru/Df2vn+V2cJpVKOaFQqFbD5/PVrqv2+88/+x/rXv7/ft75k3/+5yfO+Y/+9LLj+xf/jfPPP/sfnSsP/+8Nx/1Z5F8eq93sCwAAAIPDzc/thuP0x2MUNzc3lc1mZVmWfD6frl+/rlgspuHh4WNjV1dXT90qOTU1pQcPHnS7XbhoYmJCOzs7Gh8f16tXr9xup23V1T29EAwGVSgU6r5nGMa56/h8Pu3t7Z34s2g02nBly2lOWuVzmo2NDT148ODE1WuNmKapeDyuWCx2rlVg1TOpjt6Xz+fT9PR0bZVOPp+vncN2dAUR0EvvfP6J2y0c87tf/MrtFgAAANAjbn5u75sgDGjWRQvC0Lrq9r21tbXatrjqNlDTNGsPBrh+/boikci5HxJw1nzVOavzTE9PKxqNEoDBdQRhAAAAcJObn9vf6ulsANBDPp9PkUjkxMP0L8J8AAAAAIDz8fRh+Z22vb3tdgsAAAAAAABwyUAFYdFo1O0WAAAAAAAA4JKBCsKqZwMBAAAAAABg8AxEEFapVHT79m2Vy2W3WwEAAAAAAIBLXDssf2trS7Ozs7JtW/F4XPfv3z82Znp6WltbW23NUw2/HMeRYRht1QIAAAAAAED/ci0Ii0ajsixLkpRMJjU9Pa333nuvbszU1FRtDAAAAAAAANAO17ZGWpZVt0LrpPO7bt++LUkyDKPu1axWrgEAAAAAAMDF5NqKsLm5Oa2urtbeRyKRY2MmJyfl8/n05s0bOY4jn8+n0dFR+Xy+puYol8sqlUqcDQYAAAAAAAD3grBUKqVwOKx8Pq94PK633377xHFzc3P66KOPZFmWrl271vJ8iURCH330UcvXAwAAAAAAoL+5+tTISCSihw8fyu/3nzrm/fffl2mabYVg0sE5ZMPDw23VAAAAAAAAQP9yNQhrxuTkZMcCLNM0O1IHAAAAAAAA/cfzQZgkbW5udqTO4TPJAAAAAAAAMFj6Igjr1Iownh4JAAAAAAAwuPoiCOuUubk5t1sAAAAAAACASwYqCLNt2+0WAAAAAAAA4JILH4RVKhVtb29rdnZW5XLZ7XYAAAAAAADgkrfcmPTNmzcaHR3t6ZyO43BGGAAAAAAAwABzZUXY8PCwrl27JsdxevYCAAAAAADAYHNta+T7778v6eBJjt1eqcVKMAAAAAAAALiyNVKSQqGQpIMti6ZpyjRN+Xy+js9TLpdl2zYH5QMAAAAAAAw414KwyclJ+Xw+hcNhra2tdX2+dDqtO3fudH0eAAAAAAAAeJNrQZh0sCosHA73ZK5YLKZ79+71ZC54w+7uriYmJhqOmZ+f1/z8fI86AgAAAADgYlteXtby8nLDMbu7uz3q5jhXg7BehWBV09PTPZ0P7trf39fOzk7DMZVKpUfdAAAAAABw8VUqlTM/i7vJ1SBsbm5Ob9686dl8z54969lccN+lS5c0NjbWcMzQ0FCPugEANPLO55+cOeZ3v/hV1/sAAABAe4aGhjQ+Pt5wzO7urvb393vUUT1XgzBJGh4e7vocb9680cOHD/XgwYOuzwXvGBsb06tXr9xuAwAAAACAgdHMEUQTExOurRq75MqsPTY8PKxsNquf/vSnbrcCAAAAAAAAlwxEECYdnA9WKBT04Ycfut0KAAAAAAAAXOD61sjz2t7eVrlcVqlUavoay7KUyWTkOI5SqZTu37/fxQ4BAAAAAADgRX0RhD19+lSpVEq5XK7tWuVyuf2GAAAAAAAA0Hc8H4Q9evRI9+7dkyQ5jtNyHcMwZBiGgsFgp1oDAAAAAABAH/H0GWEvXrxQIpGQdHIIZhhGU3UMw5DjOPL7/VpdXe1ojwAAAAAAAOgPnl4RlkqlJB089TEWiykQCMg0TUnS3t6eZmdnNTIyovX19ROvL5fLevbsmR4/fizLsnTt2rVetQ4AAAAAAACP8XQQlsvlFAgE9M0335z487m5OT1+/FiBQEBvv/32iWNu3rwpSbp3755++9vfdqtVAAAAAAAAeJynt0batl1bFXaSe/fuyXEcLS0tNayTSCT07Nkzffzxx51uEQAAAAAAAH3C00GYJE1PT5/6M7/fr5mZGaVSKVUqlVPHmaapyclJLSwsNBwHAAAAAACAi8vTQVgwGFSpVGo4JpFIyHGc2pMlT3P9+nU5jqOHDx92skUAAAAAAAD0CU8HYaZpKp1ONxwTCoU0OTmpVCqlr7/++tRx+XxekpTJZDraIwAAAAAAAPqDp4Ow2dlZJZNJffzxx9re3tbz58/1/PnzY+MWFxflOI6CwaC++OKLYz9/9OiRLMuSdHDuGAAAAAAAAAaP4TiO43YTjYyMjBw712tqakp/+7d/W/e9cDiszc1NGYahYDBYO1ssl8vJtm1Vb7PRUyhxMUxMTGhnZ0fj4+N69eqV2+0AgOe88/knbrfQkt/94ldutwAAAIAOcPNz+1s9na0Fq6urmp2dlWEYtTCrUCjo5cuXunbtWm1cKpXSlStXJEmWZdVWgB3O+aohGQAAAAAAAAaPp7dGSlIkEtH6+npdoOXz+epCMOngPLFnz57p6AI3wzBkGEbtutXV1a73DAAAAAAAAO/xfBAmHYRhe3t7SqVSSiaTp57zFQqF9O233+rGjRtyHKfuFQwGlc/nNTQ01OPuAQAAAAAA4AWe3xpZNTw8rLm5uTPHmaapbDarN2/e1J4UaZqm/H5/t1sEAAAAAACAh/VNEHZew8PDmpmZqfve9va23n77bXcaAgAAAAAAgKv6Ymtkp8TjcbdbAAAAAAAAgEsGKgirbpUEAAAAAADA4OnLrZHb29sql8tNj7dtW6lU6lzXnNfS0pKy2azy+bzK5bJM01QwGFQ8HlcoFOravN2au9M1y+WyHjx4IMuyZNu2bNuu1QyHw4rFYi31CQAAAAAA0Ky+CMK2t7eVTCaVy+VOfWLkWRzHkWEYHe5MyuVyikajKpfLCoVCymQyMk1TlmUpkUgoHA7Xvu/z+Tw/dzdqLi0tKZFIyOfzaXFxUcFgUKOjo8rn80qlUorH40omk0qlUl0PDQEAAAAAwOAyHMdx3G6ikcXFRS0tLUk6CLPaYRiGfvjhh060JekgNAqHw5KkWCymVCp1bMzU1JQsy5JpmioUCh0Lw7oxdzdqRqNRbWxsKBgMqlAonDgmHo8rnU5LkgqFgoLBYMOaZ5mYmNDOzo7Gx8f16tWrtmoBwEX0zuefuN1CS373i1+53QIAAAA6wM3P7Z4Owp48eaJoNCpJtdVc7bTbySCsXC7L7/fXtg0Wi8UTx9m2rUAgIEkKhULKZrOenLsbNasrwSRpb2+vYWgWCARk27Z8Pp/29vZOHdcMgjAAaIwgDAAAAG5y83O7p7dGPnjwQNJBgOU4Tu1MKdM0JUmXL18+s8br169VLpe1vr6uN2/edKy36vZBSbWw5ySmaSoSiWhjY0O5XE7pdLrt87C6MXc3albrBIPBM1eORSIRLS0tqVwua2NjQ5FIpOF4AAAAAACA8/L0irBLly7VVoI9e/ZMMzMzLdeybVtXr17tyIqww6uipLNXO21sbNRWtrW74qkbc3ej5uFtlpFIRJlMpuF9Ha65sLCgZDLZcHwjrAgDgMZYEQYAAAA3ufm5/VJPZzunahizsLDQVggmHaxk8vv9HehKdSFNKBRqarVTVXXFk5fm7kbNww81sCyrYb2jmlnpBwAAAAAAcF6eDsKqWyCvX7/ekXonHf7eiurB7pKaPti9ei+StLa25qm5u1FzdHS09rVt22c+7fOrr746sTYAAAAAAECneDoIq64CK5VKHa3XjqOrm5oN6Q4HTK2uCOvG3N26n6NhVjweb1ivWsPn83E+GAAAAAAA6ApPB2EffvihHMc599a60zx+/LjtGrlcru59s6uXjo5r5Z66MXe37icYDNaFZblcrnYG2FHpdLq2Yqyds8EAAAAAAAAa8XQQNjw8rIcPH2ptbU3ff/992/U6sTXy8BY+SWeep1V19NyrfD7vibm7eT+rq6t17w8fiF+Vy+Vqq8VSqVTbT9QEAAAAAAA4jaeDMOngoPxgMHjqaqJmbW1tdWRl2dGzrlpdQVUsFj0xdzfvJxgMHnta5MbGhgKBgCzL0tLSksLhsEzTVDabJQQDAAAAAABd9ZbbDTQjm81qenpaV69eVSKRqDuIvZFSqaRyuaxisaj19fWO9HLWoe/NKpfLnpi72/cTiUSUSqXqzgizbVtTU1OSDoJOtkMCAAAAAIBe6Isg7Pnz55IOVh2ddej6aRzHkWEYbffSSoAlHd9y2MoDALoxdy/up7rS66TfXS6XU7lcbnpLJgAAAAAAQKs8H4TduXNH6XRakmQYhhzHOXeNTgRgndZqAOXVuc+qGYvFVCgUar/LKsuy5Pf7tbm5WXe4fifs7u5qYmKi7Trz8/Oan5/vQEcAAAAAAPSv5eVlLS8vt11nd3e3A920xtNB2Orqau2A+1ZDMEktX3cSn8/XkSCplRVQ3Zi7V/cTj8eVTqcVi8WUy+XqtmSWy2VNTU0pm80qFAq13UvV/v6+dnZ22q5TqVQ60A0AAAAAAP2tUql05HO2mzwdhB0NwUKhkMLhsHw+37nPCVtZWdH29nbbPY2OjnYkOGq2/27P3Yv7CYfDyuVydeeBVYOxo+M6GYZdunRJY2NjbdcZGhrqQDcAAAAAAPS3oaEhjY+Pt11nd3dX+/v7Hejo/DwdhFmWJcMw5PP5lM/n5ff7W641Nzeny5cvt91Tq2dZHQ2bWl0R1um5u30/U1NTsixLoVCo7lD8VCqlcDh87Gmg0WhUW1tbHTkzbGxsTK9evWq7DgAAAAAA6NzRQRMTE66tLLvkyqxNqoYhi4uLbYVg1VqTk5Nt9zQ9PV33vtnVVEcPkw8EAp6Yu5v3E41GZVmWpD+u7jssEomoUCjUhV7lclmJRKKpHgAAAAAAAM7D00HY1NSUJMk0zY7UW11dbbtGtaeqw2ddNVIsFuvet7L9rxtzd+t+bNvWxsaGJCkYDJ76OwwGgyoUCnXfS6fTrj5MAAAAAAAAXEyeDsLi8bgcx2k6nDlLN1aENdvb4WDH5/O1FO51Y+5u3c/hFWBH5zjKNM1jK8by+XxTfQAAAAAAADTL00FYJBLR5OSk1tbWOlLv6dOnbdcIBoN1W/m++uqrpq47HOycFQz1cu5u3c/hoKyZbaCxWKzufafCTwAAAAAAgCpPH5YvSZlMRleuXNEXX3yhv/zLv2yr1oMHD/Tee++13dPs7GztiYfVM7DOcnhcO2dgdWPubtQ8fIbY0W2UpwkGg03PDwA42Tuff+J2CwAAAIBneXpFmHSwbW5lZUUffPBBW3XevHnTsZAlHo/Xvs7lcmeOPzzGNM2Wzgfr5tzdqHl4q2Qrq7s6dS4cAAAAAABAladXhFW3Mv74xz/WyMiIrl69qkgkcu465XJZ6+vrHesrGAwqFArVAqGNjY2GfWUymdrXZ60GS6fTKhaLisfjJ4ZB3Zi7GzVv3bqlpaUlSQfbKMvlct0WzJMcDszaCQsBAAAAAABOYjiO47jdxGmmp6f14sWL2nvHcWQYRku1qtf+8MMPHenNtu3a2VcnPfmwqlwua2RkRNJBuJPNZk+tGQ6H61Zb7e3tnRgedWPubt/PwsKCksnkqWNzuZzC4bAkKZlMamFh4dSxZ5mYmNDOzo7Gx8f16tWrlusAQD+6yFsjf/eLX7ndAgAAADrAzc/tnt4aOTs7K8dxVM3qWg3BusE0zdrKKMuyaqufjpqZmZF08GTFwyupTnJ0W+Jpq9i6MXc3amYymVqQt7S0VDuH7CjbthWNRiUdhGvthGAAAAAAAACn8XQQVj27yjCMWiDW6qsbIpGIstmsfD6fEomEotGoLMtSuVxWLpfT1NSULMtSMBjU1tbWmVsDj/680TlZnZ67W/eztbVVeyJkPB5XOBxWOp2WZVnK5XJKJBIKBAIql8tKJpMNV5gBAAAAAAC0w9NbI6U/bo98+PChgsGgRkdHz13Dtm3dv39fL1++7NjWyKOWlpa0trYm27Zr52FNT08rHo83fa5ZLpdTPB5XqVRSLBZruJWw03N3u6ZlWUqlUsrlcrWzwEzTVDAYlGmaWlxcbCqsawZbIwEMMrZGAgAAwOvc/Nzu+SDs0aNHyufzWltba7vW6OioSqVSB7qClxGEARhkBGEAAADwOs4IayAUCnVsa+P09HRH6gAAAAAAAKD/eD4Im5ycbHqL4Fk6VQcAAAAAAAD9x9NBWKVS0Z07d3T79m19/PHHbdebnJzsQFcAAAAAAADoR2+53UAjkUhEm5ubchxHuVxOfr9f7733ntttAQAAAAAAoA95ekVYLpere9+ppwoCAAAAAABg8Hg6CDNNU5JkGIYikYhu3LjhckcAAAAAAADoV54OwmKxWO2JkWtra23Xu3PnTts1AAAAAAAA0J88HYQtLCxoZmZGkvTdd9+1Xe/oVksAAAAAAAAMDk8fli9J2WxW0WhUkUhEz58/1z/7Z/+spTpbW1uybbvD3QEAgF555/NPzhzzu1/8qut9AAAAoH95ekVY1WeffaZYLKZgMKjPPvtMlUqlqesqlYoqlYqeP3+uaDTa5S4BAAAAAADgZZ5eEXblyhVtbW3V3juOo1gsplgsdu5ajuPIMIxOtgcAAAAAAIA+4ukVYdXD8qsvwzDq3p/nBQAAAAAAgMHm6SAsHo9LkgzDqIVgrWAlGAAAAAAAADy9NXJ4eFg3b97UkydPJEmhUEg+n+/cdWzblmVZHe4OAAAAAAAA/cTTQZh0sCrs6dOnKhQKunbtWst10um07ty507nGAAAAAAAA0Fc8vTVSOlgFNjw83FYIJv3xvDEAAAAAAAAMJs8HYZK0uLioSqXSdp1WnjYJAAAAAACAi8HzWyMl6e7dux2ps7Ky0pE6AAAAAAAA6D99EYQdValUlMvllM1mVSqVZNu2RkdHZZqmAoGAIpGI3n77bbfbBAAAAAAAgIf0VRC2vb2tRCKhjY2Nuu87jiPDMGrvE4mETNPUvXv39Mtf/rLXbQIAAAAAAMCD+uKMMElaXV1VIBDQxsaGHMepvSTVhWDSQTBWLBYVi8X005/+VN99950bLQMAAAAAAMBD+iIIe/TokW7fvl0XfFXDr8Oh2OFwrPqzfD6vQCCgr7/+2pXeAQAAAAAA4A2e3xr55MkTJRKJWvhVDbqCwaCmp6cVCATk8/lkmqZGR0dl27ZKpZKKxaI2NjZk27b29/c1MzOjfD7P2WEAAAAAAAADyvNBWDUEcxxHPp9PyWRSs7OzGh4ePnH85ORk7euHDx/qxYsXun//vp48eaLbt2/rt7/9ba9ah8t2d3c1MTHRcMz8/Lzm5+d71BEAAAAAABfb8vKylpeXG47Z3d3tUTfHeToIe/LkiWzbliTF43F9+umn564xOTmpTCajpaUlLS4u6ssvv9Rf/MVfdLpVeND+/r52dnYajqlUKj3qBgAAAACAi69SqZz5WdxNng7C1tbWZBiGksmkfvOb37RVa2FhQblcTuvr6wRhA+LSpUsaGxtrOGZoaKhH3QAAAAAAcPENDQ1pfHy84Zjd3V3t7+/3qKN6hnP4dHmPuXLlikZGRvTVV191pN6TJ0907949ffPNNx2pB2+amJjQzs6OxsfH9erVK7fbAYCeeufzT9xuwVW/+8Wv3G4BAAAAZ3Dzc7unV4TZtq10Ot2xej6fr7bVEgAAAAAAAIPlktsNnMU0zY7VIgQDAAAAAAAYXJ4OwkzT7Gh4lUqlOhqsAQAAAAAAoH94OggLBoPKZDIdqXXv3j1ZlqVgMNiRegAAAAAAAOgvng7CZmdnlc1m9eGHH7Zco1Kp6NatW1paWpJhGIrH4x3sEAAAAAAAAP3C00FYJBKR3+9XMpnUX/3VX2l7e7vpa58/f65bt25pZGREGxsbMgxDwWBQN27c6F7DAAAAAAAA8CxPPzVSOjjX691331UqlVIqlVIoFFIwGFQgEKid91Uul1UqlVQoFJTP52VZVu16x3EkSYZhaHV11ZV7AAAAAAAAgPs8H4SFQiGtrKzo9u3bMgxDuVxOuVzu1PHV4Es6CL8Mw5DjOFpfX9e1a9d60DEAAAAAAAC8yNNbI6tisZjW19c1PDxcF3Q5jnPsVQ2/qgHY8PCwCoWCbt686eIdAAAAAAAAwG19EYRJB+eFbW1t6e7du7XQ6yTVnw0PDyuZTKpUKmlycrLH3QIAAAAAAMBrPL818rBquJVMJrW5uSnLslQsFlUqlSRJo6OjCgQCCoVChF8AAAAAAACo01dB2GEzMzOamZlxuw0AAAAAAAD0ib7ZGtkJT58+dbsFAAAAAAAAuGSggrBEIuF2CwAAAAAAAHDJwARhT548kW3bbrcBAAAAAAAAl/TNGWEvX75ULpdTsVg8V6BVKpVULpcJwQAAAAAAAAac54Ow7e1txeNx5XK5lq53HKf2tWEYnWoLAAAAAAAAfcbzQVgoFNLW1pYcx2kpyKpeczgQAwAAAAAAwODxdBB2+/Zt2bYtwzBkGAZhFgAAAAAAAFrm6cPy8/l87Wu/369MJqO9vT3t7++f61UoFHTz5k0X7wQAAAAAAABu8/SKMMuyZBiGfD6fLMvS0NBQS3UmJyeVyWQ0Ojra4Q4BAAAAAADQLzy9Iszn80mSZmdnWw7BDovFYm3XAAAAAAAAQH/ydBAWjUYlSYFAoCP1Hj582JE6AAAAAAAA6D+eDsLu3bsnx3HqzgprR6VS6UgdAAAAAAAA9B9PB2F+v18rKyvKZDL6+uuv2643MzPTga4AAAAAAADQjzwdhEkH53p98MEHikQi+v7779uqZVlWh7oCAAAAAABAv/H0UyOrWxnv3bunQqGgGzduKJlMnuvpj6VSSeVyWalUqlttAgAAAAAAoA94Ogh7++239ebNm7rvhcPhlmo5jiPDMDrRFgAAAAAAAPqQp7dGzs3NyXGc2ktS3fvzvAAAAAAAADDYPB2Evf/++5JUW8lFoAUAAAAAAIBWeXpr5OTkpEzT1NbWlkKhkILBoC5fvnyuGq9fv1a5XFY6ne5SlwAAAAAAAOgHng7CJCkSiejFixf6m7/5m7bqLCws6OrVqx3qCgAAAAAAAP3G01sjJenWrVsaHh5uu45pmpqcnOxARwAAAAAAAOhHnl8RNjk5qcXFxY7UymQyHakDAAC86Z3PPzlzzO9+8auu9wEAAABv8vyKMEkdW8nl9/s7UgcAAAAAAAD9x7UVYS9fvtS1a9fcmv6YSqWiUqmkt99+2+1W0CG7u7uamJhoOGZ+fl7z8/M96ggAAAAAgItteXlZy8vLDcfs7u72qJvjXAvC7t+/rytXruj+/ftutVAnGo0qHA7rN7/5jdutoEP29/e1s7PTcEylUulRNwAAAAAAXHyVSuXMz+Juci0IS6fTMk1TgUBAv/zlL91qQ5J0584dlUolQrAL5tKlSxobG2s4ZmhoqEfdAAAAAABw8Q0NDWl8fLzhmN3dXe3v7/eoo3quBWE+n0/r6+t69913Jcm1MOzOnTtaX19XoVBwZX50z9jYmF69euV2GwAAAAAADIxmjiCamJhwbdWYq4flh0IhPXz4UHNzc/rwww97OnelUtGtW7eUTqe1ubnJ2WAAAAAAAAAXnOtPjVxYWNDDhw/18OFD/fSnP9WXX37Z9TkfP34sv9+vjY0N5fN5Tx3aDwAAAAAAgO5wPQiTDsKwlZUV5fN5hUIh/fSnP9UXX3zR0TmeP3+uxcVFXb58WfF4XCMjI/r22281OTnZ0XkAAAAAAADgTa6dEXZULBbT6Oio5ubmlM/nFYlEJEnBYFChUEjXr1+XaZoyTbPhAeeVSkWlUkm2bSubzSqXy8myrNrPHcdRJBLR+vp61+8JAAAAAAAA3uGZIEySIpGIwuGwIpGINjc3JUmWZdUFWUf5fD6Vy+WGdR3HqX2dTqf1wQcfdKRfAAAAAAAA9A9PbI08bHh4WNlsVuvr6woGg3IcpxZkVb8+/Nrb2zvx+4df0sH2y729PUIwAAAAAACAAeW5IKwqEokon88rm83q5s2bdau6qgzDqHsdZZpmLQB7+PChhoeHe9E6AAAAAAAAPMhTWyNPMjMzo5mZGUnSixcvlMvl9NVXX6lcLqtUKtW2Rfp8PpmmqdHRUYXDYYVCIYIvAAAAAAAA1Hg+CDtscnKSpzwCAAAAAACgJZ7dGgkAAAAAAAB0Ul+tCAMAYJC98/knbrcAAAAA9DVWhAEAAAAAAGAgEIQBAAAAAABgIBCEAQAAAAAAYCAQhAEAAAAAAGAgEIQBAAAAAABgIBCEAQAAAAAAYCAQhAEAAAAAAGAgEIQBAAAAAABgIBCEAQAAAAAAYCAQhAEAAAAAAGAgEIQBAAAAAABgILzldgPdsL29Lcuy5PP5ND09raGhIbdbAgAAAAAAgMsuVBC2vb2taDQqy7Lqvj81NaVMJqOf/OQnLnUGAAAAAAAAt3l+a+S7776r69ev6+rVq7p69aouX76sW7duHRv34sULTU1NybIsOY5T98rn8woEAvryyy9duAMAAAAAAAB4geeDMJ/Pp0KhoNevXysWiymfz2ttba1uzJs3bzQzM6O9vT1JkmEYtWtDoZBM09T+/r6i0WjP+wcAAAAAAIA3eD4IsyxLiURCpVJJd+/eld/vPzZmbm5O5XJZhmHUVoElk0mVSiU9e/ZM3377rZ49e6b9/X19+OGHLtwFAAAAAAAA3ObpIOzRo0cKBoN68ODBqWOePHmijY2NWghmGIaSyaTu3r1bNy4UCunhw4cqFArdbhsAAAAAAAAe5OkgLJ1On7mCa25urrYV0jAMBYPBYyFY1a1bt5TP5zveJwAAAAAAALzP00FYsVjUtWvXTv35nTt3VC6XJUmO40iSVldXTx0/PDxcGwcAAAAAAIDB4ukgzDRNbW9vn/izFy9eKJVK1W2JjMViDYOzFy9eaHp6ujvNAgAAAAAAwNM8H4Sl0+lj33/z5k3dEyANw5Bpmvr0008b1tvc3FQikeh4nwAAAAAAAPC+t9xuoJFYLKbZ2VlJ0r179yRJuVxOiURCtm3XrQbLZDINa7148UIPHjzQ69evu943AAAAAAAAvMfTK8IikYhmZmaUTCY1MjKikZERRaNRFYvFWggmSSsrKw23RD5+/FihUKhHXQMAAAAAAMCLPB2ESdLGxobee+89OY5Te0kHh+P7fD5lMhnNzc0du+7ly5daXFzU1atXFY/Htbe3p3K5rC+++KLXtwAAAAAAAAAP8PTWSOngSY+ZTEabm5vKZrOyLEs+n0/Xr19XLBbT8PDwsWtWV1drWyX9fr/8fn/tZ3/7t3+rv/zLv+xZ/3DP7u6uJiYmGo6Zn5/X/Px8jzoCAAAAAOBiW15e1vLycsMxu7u7PermOM8HYVUzMzOamZlpauzc3NyJq8QwWPb397Wzs9NwTKVS6VE3AAAAAABcfJVK5czP4m7qmyCsE16+fNnwLDFcLJcuXdLY2FjDMUNDQz3qBgAAAACAi29oaEjj4+MNx+zu7mp/f79HHdXzfBC2vb2tt99+uyO15ubm9NVXX3WkFrxvbGxMr169crsNAAAAAAAGRjNHEE1MTLi2aszzh+XH4/GO1Nna2pJlWR2pBQAAAAAAgP7j+SDMtu2O1EkkEh2pAwAAAAAAgP7UF0HY999/31aNjz76SBsbGx3qCAAAAAAAAP3I80GY4zhtreZaXFxkNRgAAAAAAAC8H4RJUiqV0pdffnnu627duqWlpSU5jtOFrgAAAAAAANBP+iIIcxxH0Wi06S2S29vbunr1qjY2NuQ4jgzD6HKHAAAAAAAA8Lq+CMIikYhKpZJmZmbOHPvkyRMFAoHaIfuGYchxHEUikW63CQAAAAAAAA/zfBAWCoW0vr6ufD6vfD6v999//9Sxi4uLmp2drW2FdBxHw8PDsixL6+vrunnzZq/aBgAAAAAAgMe85XYDZwkGg7X/mc/nNT09LdM0df/+/dqYSqWimZkZWZZV2wrpOI5CoZAymYyGh4clHQRlAAAAAAAAGEyeXxH28OHD2tfBYFDr6+t6+PChPvvsM0nSixcv5Pf7j4VgyWRSz549q4VgkjQ5Odnz/gEAAAAAAOANng/CjopEIlpZWVEsFtOdO3c0PT2tvb292s+Hh4dVKBR09+7dY9d+9NFHvWwVAAAAAAAAHtJ3QZgkxWIx/eY3v1EqlTq2FXJra+vUlV/ZbLbHnQIAAAAAAMAr+jIIk6RkMlk7/N5xHC0tLR3bCnlUPp/vVXsAAAAAAADwGFcOy3/z5o02NzfbrvP+++9rc3NT8Xhcpmnq6dOnJ44rlUpKpVIql8ttzwkAAAAAAID+5NpTIyORiAzD6EitpaWlM8dUt1ACAAAAAABgMLmyNXJ4eFjBYFCO47T9ktTUGAAAAAAAAAw2184IC4VCktT2Kq1mgi7CMAAAAAAAALi2NfLWrVu1LY0LCwsKBAIaHR3t+DylUknlclkrKyva3t7ueH0AAAAAAAD0B9eCsMnJSfl8Pi0tLemDDz7o+nw3b97U1atXuz4PAAAAAAAAvMm1rZHSwfZI0zR7MpdpmvL7/T2ZCwAAAAAAAN7jahB269atrmyHPE0kEunZXAAAAAAAAPAWV4Owmzdv6tq1az2b7+HDh12rvbS0pHA4rJGRERmGoUAgoGg0qlwu17U5uzm3G/djWZY2Nja0tLTUk383AAAAAAAwWFwNwi6CXC6nkZERJRIJSVImk1GxWFQymZRlWQqHwwqHwyqXy30xdy/vp1wua2lpSVNTUzIMQzMzM/rqq68UDAY1PT3ddn0AAAAAAIDDDMdxHLebaMbz58+VzWYVCATOPFz/yZMnunfvnpaWlvSXf/mXXespl8spHA5LkmKxmFKp1LExU1NTsixLpmmqUCjI5/N5du5e3U+5XFYikVA6nZYkBYNBJZNJhUKhc9c6ycTEhHZ2djQ+Pq5Xr151pCYAeME7n3/idgsXwu9+8Su3WwAAABhobn5u74sg7NatW9rY2Ki9X1pa0q9//euG11iWpVAopCtXriiTyegnP/lJR3sql8vy+/0ql8syTVPFYvHEcbZtKxAISDp4OEA2m/Xk3L26n3Q6rUQiUVtRlkqlFIvFzlXjLARhAC4qgrDOIAgDAABwl5uf2z2/NfLOnTvKZDJyHEfVzO7Zs2dnXhcMBmXbtr755htNTU3p66+/7mhf0Wi0FuZUtxGexDTN2iH9uVyutgrKa3P34n4SiYTi8Xhd2NbpEAwAAAAAAOA0ng7C3rx5o1QqJcMwZBiGJMlxHEWj0aau9/l8KhQKKpVKHQ3DbNuuO8x9dna24fhbt27Vvm4UMrk1dy/uJxqNamlpSdIffy+maTZ1LQAAAAAAQCd4Ogh78OCBpIPwa3h4WLFYTMVi8cwzwg4zTVNzc3Pa399vOkA7SzKZrH0dCoXOPCeruoJKOtiCeHibpxfm7vb9hMPhujGdPCsNAAAAAACgWZ4OwqpPMMxmsyqVSlpZWZHf7z93nXfffVeSVCwW9dlnn7Xd1+HtgMFgsKlrDq9+Wltb89Tc3byfdDpdt9oslUqxEgwAAAAAALjC00GYbdtaXFzUzMxMW3UOBy/r6+tt1bIsq+799evXm7rucMDU6oqwbszdzfuxbVvxeLzuGs4EAwAAAAAAbvF0EFY9VL1dpVJJ0sEWy3w+31atw6ubJDXd39FxRwMot+bu5v0c3Yq6uLjYVG0AAAAAAIBu8HQQZppmLcRqRzabrX1dfTJiq7766qu6982edXX58uW6960Ect2Yu1v3Y9t2XTjm8/nqzhYDAAAAAADoNU8HYcFgUJlMpu066XS69tTJdg9pt2277n2rK6iKxaIn5u7W/aRSqbr3oVBI0sE2ymg0qkAgIMMwNDIyoqmpKS0tLbUdUgIAAAAAADTi6SAsFospl8vpyy+/bLnGrVu3agGLYRianp5uq6ejwVGrWgl9ujF3t+7n8AH8kjQ6OqqpqSlFo1FtbGzU5i2Xy7IsS4lEQiMjI209URMAAAAAAKARTwdhoVBI165dUygUOncYVqlUdOvWLWUyGRmGIcdxJB0/t+q8Wl21dHQlWitbPrsxdzdq2rZ9rO76+rri8bj29vbkOI4cx1GxWDx2eH41KAMAAAAAAOi0t9xu4Cyrq6uanp5WKBRSOBxWIpHQX/zFX5w6vlKpKJFIHFuRZBiGTNPUBx980O2Wm+LmNsBuzN1olZnP59PW1tax8Mw0TaVSKU1NTdU9XXJubk6hUKjtbay7u7uamJhoq4Ykzc/Pa35+vu06AAAAAAD0s+XlZS0vL7ddZ3d3twPdtMbzQVgwGNT6+rpmZ2eVzWaVzWbl8/lkmmbtJf3xcPZqCFNdAVZdDWYYRkfOG/P5fB0JkloJeboxdzdqHg3CYrFYw/uNxWIqFAq18LJcLuvBgwdKJpNt9bS/v6+dnZ22akgH4SoAAAAAAIOuUql05HO2mzwfhElSJBJRPp/XzMyM3rx5UztX6vBTCaU/hl+SaofjO44jn8+nzc1NXbt2re1eRkdHOxIcjY6OemLubtQ8enD+9evXz7z+6Cq+paWltoOwS5cuaWxsrK0akjQ0NNR2DQAAAAAA+t3Q0JDGx8fbrrO7u6v9/f0OdHR+fRGESQcrw7a3t3X//n09evTo2M8Nw6gLv6qhWCwWUzKZ1PDwcEf6aHW73tGwqdUVYZ2euxs1W7lX0zQVDAbrwk3LshQMBlvqT5LGxsb06tWrlq8HAAAAAAB/1KmjgyYmJlxbWebpw/KPGh4eVjKZ1P7+vrLZrBYWFhQKhRQMBjU8PCy/36/JyUnFYjFlMhnt7e1pZWWlYyGYpGNPnWx2NdXRw/EDgYAn5u5GzVbu7aReOvVESwAAAAAAAKmPVoQdNTMzo5mZmZ7POzU1Vffetu2mVi0d3S4YCoU8MXc3ah5dAdZsuHY0QGvlyZoAAAAAAACn6asVYa168+aNFhcXO1Kr1VVLh8Og6mH/XpjbSzWPBmitnKMGAAAAAABwmoEIwoaHh5XNZvXTn/607VrBYLAusPnqq6+aui6fz9e+PhoUuTl3t2oednT1WLNaCQsBAAAAAABOMxBBmHQQ1hQKBX344Ydt15qdna19ffTJlac5PC6RSHhq7m7UPLxVMpfLNVXz6BbKdg7KBwAAAAAAOKrvzgjb3t5WuVw+1/lRlmUpk8nIcRylUindv3+/rR7i8bjS6bSk5kKew2NM02zpfLBuzt2NmolEojbOtm2Vy+Uznx55eOVYO/9GAAAAAAAAJ+mLIOzp06dKpVJNryxqpNmD2xsJBoMKhUK1fjY2NhSJRE4dn8lkal+ftRosnU6rWCwqHo+fuDWwG3N3o2YoFJJpmrXzwR48eKBkMnlqTak+YDtrLAAAAAAAwHkZjuM4bjfRyKNHj3Tv3j1JUjutGoYh6SD0afYcrEZs26495TAYDKpQKJw4rlwua2RkRNJBOJTNZk+tGQ6H68Kgvb29E1dRdWPubtS0LKvuqZTFYvHUc79yuZzC4bAkKRaLKZVKnVr3LBMTE9rZ2dH4+LhevXrVch0A8Jp3Pv/E7RYuhN/94ldutwAAADDQ3Pzc7ukzwl68eFFbcXRSCFYNt85iGIYcx5Hf79fq6mpHejNNs7YyyrIsLS0tnThuZmZG0sETEQ+vpDrJ0RVv6+vrPZu7GzWDwWBdoBUOh09ckVculxWPx0+8BgAAAAAAoFM8HYRVA5Hh4WEtLCwolUopm80qm81qfX1djuNoZGSk9r2jr0wmo7m5OUkH4c63336ra9euday/SCSibDYrn8+nRCKhaDQqy7JULpeVy+U0NTUly7IUDAa1tbV15hlZR3/e6KmJnZ67WzVjsVitpm3b8vv9WlpakmVZtcDN7/fLtm3FYrFTV6IBAAAAAAC0y9NbI69cuSLDMPTNN9+c+PN4PK7Hjx+rWCzq7bffPrVOPB7Xd999p9/+9rdd6lRaWlrS2tpa3cHw09PTisfjDc/bOiyXyykej6tUKikWizV9TlYn5u5FzXQ6rUwmo3w+X6tZPWz/tDPRWsHWSAAXFVsjO4OtkQAAAO5y83O7p4OwS5cuKZfL6caNGyf+fGtrS4FAQLdv39Zf//Vfn1rHtm1duXJFjx490q9//etutQuPIAgDcFERhHUGQRgAAIC7OCOsgenp6VN/5vf7NTMzo1QqpUqlcuo40zQ1OTmphYWFhuMAAAAAAABwcXk6CAsGgyqVSg3HJBIJOY5Te7Lkaa5fvy7HcfTw4cNOtggAAAAAAIA+4ekgzDRNpdPphmNCoZAmJyeVSqX09ddfnzoun89L0plPOgQAAAAAAMDF5OkgbHZ2VslkUh9//LG2t7f1/PlzPX/+/Ni4xcVFOY6jYDCoL7744tjPHz16JMuyJB2cFwYAAAAAAIDB4+nD8iVpZGTk2LleU1NT+tu//du674XDYW1ubsowDAWDwdrZYrlcTrZtq3qbgUDg1KdQ4mLgsHwAFxWH5XcGh+UDAAC4y83P7W/1dLYWrK6uanZ2VoZh1MKsQqGgly9f6tq1a7VxqVRKV65ckSRZllVbAXY456uGZAAAeA0hFwAAANB9nt4aKUmRSETr6+t1gZbP56sLwaSD88SePXumowvcDMOQYRi161ZXV7veMwAAAAAAALzH80GYdBCG7e3tKZVKKZlMnnrOVygU0rfffqsbN27IcZy6VzAYVD6f19DQUI+7BwAAAAAAgBd4fmtk1fDwsObm5s4cZ5qmstms3rx5U3tSpGma8vv93W4RAAAAAAAAHtY3Qdh5DQ8Pa2Zmxu02AACAxzR7HhuH6gMAAFw8nt4aWalUdOfOHf3sZz/Txx9/7HY7AAAAAAAA6GOeXhEWiUS0ubkpx3GUy+Xk9/v13nvvud0WAAAAAAAA+pCnV4Tlcrm69z6fz51GAAAAAAAA0Pc8HYSZpilJMgxDkUhEN27ccLkjAAAAAAAA9CtPB2GxWEyO40iS1tbW2q53586dtmsAAAAAAACgP3k6CFtYWKg9+fG7775ru97RrZYAAAAAAAAYHJ4OwiQpm83qvffeUyQS0ffff99yna2tLdm23cHOAAAAAAAA0E88H4RJ0meffaZYLKZgMKjPPvtMlUqlqesqlYoqlYqeP3+uaDTa5S4BAAAAAADgZW+53UAjV65c0dbWVu294ziKxWKKxWLnruU4jgzD6GR7AAAAAAAA6COeXhFWPSy/+jIMo+79eV4AAAAAAAAYbJ4OwuLxuCTJMIxaCNYKVoIBAAAAAADA01sjh4eHdfPmTT158kSSFAqF5PP5zl3Htm1ZltXh7gAAAAAAANBPPB2ESQerwp4+fapCoaBr1661XCedTuvOnTudawwAAAAAAAB9xXA8coBW9UmQpVJJkjQ6OqqhoaHa19Xvt+PSpUva399vuw68bWJiQjs7O7p06ZLGxsYajp2fn9f8/HyPOgOA073z+Sdut4AjfveLX7ndAgAAQN9ZXl7W8vJywzG7u7va39/X+Pi4Xr161aPODri6IuxHP/rRqT9LpVL64IMPJEmLi4uqVCq1YKxVrTxtEv1rf39fOzs7DcdUA1gAAAAAANC+SqVy5mdxN7kahB1djBYKhRSPxxUKhTQ8PFz7/t27dzsy38rKSkfqoD80syKs3XAVAAAAAAD80dDQkMbHxxuOqa4Ic4PrZ4RVn+iYzWZ148YNl7vBRTI2NtbzJZYAAAAAAAyyZo4gqh5p5IZLrsx6RDKZJAQDAAAAAABAV3kiCItEIm63AAAAAAAAgAvOE0HY22+/7XYLAAAAAAAAuOBcD8J8Pl/P5rp69WrP5gIAAAAAAIC3uB6EjY6O9myuYrHYs7kAAAAAAADgLa4HYb3y4sWL2hMqAQAAAAAAMHgGIgirVCpKJBJutwEAAAAAAAAXveV2A7Zt62c/+1lXapdKJZXLZdm2LcdxWBEGAAAAAAAwwFwPwiQpl8t1pa7jOF2pCwAAAAAAgP7jiSCsWw6vACMUAwAAAAAAGGyeCMK6GVKxHRIAAAAAAACSR4KwYDDYtdrVM8IAAAAAAAAw2FwPwkzTVD6f7+octm0rGo3q5cuXXZ0HAAAAAAAA3nXJ7QZ6wTRNra6uut0GAAAAAAAAXDQQQZjU3e2XAAAAAAAA8D7Xg7BSqdSzuSYnJ3s2FwAAAAAAALzF9SCsXC73bK5un0UGAAAAAAAA73I9CJPEIfYAAAAAAADoOk8EYel02u0WAAAAAAAAcMF5IghLpVL64osv3G4DAAAAAAAAF5gngjBJikQi+vnPf64vvvhClUrF7XYAAAAAAABwwbgehDmOU3s9e/ZMN2/e1MjIiB4/fux2awAAAAAAALhA3nJz8v39fUnSmzdvJEmlUknSwZMkTdN0rS8AAAAAAABcPK4GYVXDw8N1/xMAAAAAAADoNNe3RgIAAAAAAAC9QBAGAAAAAACAgUAQBgAAAAAAgIFAEAYAAAAAAICBQBAGAAAAAACAgUAQBgAAAAAAgIFAEAYAAAAAAICBQBAGAAAAAACAgeBqEPb48WNdvXpV77//vpttAAAAAAAAYAC85dbEL168UCwWkyTZtq3Z2Vm99957brUDAEDXvPP5J263AAAAAEAurgh78OCBJMkwDEmSz+dzqxUAAAAAAAAMANdWhFmWJUlyHEfpdFo3btw4cdytW7cUj8dP/Tlwmt3dXU1MTDQcMz8/r/n5+R51BAAAAADAxba8vKzl5eWGY3Z3d3vUzXGuBWG2bWtkZES5XE6Tk5OnjstkMgqHwx0Jwl6+fKlr1661XQf9YX9/Xzs7Ow3HVCqVHnUDAOg3zWxp/d0vftX1PgAAAPpJpVI587O4m1wLwnw+nxYXFxuGYJ2WSCT0N3/zNz2bD+66dOmSxsbGGo4ZGhrqUTcAAAAAAFx8Q0NDGh8fbzhmd3dX+/v7PeqonmtBmGmaMk2zp3Patt3T+eCusbExvXr1yu02AAAAAAAYGM0cQTQxMeHaqjHXDsu/deuW1tbWejbfixcvCMIAAAAAAAAGmGsrwmKxmBKJhLa2thSLxWSapkZHR08cWygUWl49Vi6XZdu27t+/3067AAAAAAAA6HOuBWHDw8NaX1/X7OysCoVCw7HpdFrpdLqt+RzHkWEYbdUAAAAAAABA/3Jta6QkRSIRra+vy3GcU1+SGv682RcAAAAAAAAGm6tBmHQQhu3t7Wlubk4+n8/tdgAAAAAAAHBBubY18rDh4WGlUimlUiltbW3JsiyVSiU5jqPbt28rGo1qenq6pdqvX7+Wbdva2NjocNcAAAAAAADoJ54Iwg7z+/3y+/2197dv31Y4HNYHH3zQVt1cLqef/exn7bYHAAAAAACAPuX61sheCYVCdQEbAAAAAAAABsvABGGSZJqm2y0AAAAAAADAJZ7bGnnU3t6ehoeHO1Irk8l0pA4AAAAAAAD6j+dXhHUqBOt0LQAAAAAAAPQXz68IO0mlUlEul1M2m1WpVJJt2xodHZVpmgoEAopEInr77bfdbhMAAAAAAAAe0ldB2Pb2thKJhDY2Nuq+7ziODMOovU8kEjJNU/fu3dMvf/nLXrcJAAAAAAAAD/L81siq1dVVBQIBbWxsyHGc2ktSXQgmHQRjxWJRsVhMP/3pT/Xdd9+50TIAAAAAAAA8pC+CsEePHun27dt1wVc1/Docih0Ox6o/y+fzCgQC+vrrr13pHQAAAAAAAN7g+a2RT548USKRqIVf1aArGAxqenpagUBAPp9PpmlqdHRUtm2rVCqpWCxqY2NDtm1rf39fMzMzyufznB0GAAAAAAAwoDwfhFVDMMdx5PP5lEwmNTs7e+oTICcnJ2tfP3z4UC9evND9+/f15MkT3b59W7/97W971ToAAAAAAAA8xNNbI588eSLbtuU4juLxuEqlkubm5k4NwU4yOTmpTCajhw8fKpvN6ssvv+xixwAAAAAAAPAqTwdha2trMgxDS0tL+vTTT9uqtbCwoJmZGa2vr3eoOwAAAAAAAPQTTwdhlmUpGAzqN7/5TUfqxeNx5XK5jtQCAAAAAABAf/H0GWG2bSudTnesns/nk23bHasHAAAAAACA/uHpFWGSZJpmx2oRggEAAAAAAAwuTwdhpml2NLxKpVIdDdYAAAAAAADQPzwdhAWDQWUymY7UunfvXu3MMQAAAAAAAAweTwdhs7Ozymaz+vDDD1uuUalUdOvWLS0tLckwDMXj8Q52CAAAAAAAgH7h6SAsEonI7/crmUzqr/7qr7S9vd30tc+fP9etW7c0MjKijY0NGYahYDCoGzdudK9hAAAAAAAAeJannxopHZzr9e677yqVSimVSikUCikYDCoQCNTO+yqXyyqVSioUCsrn87Isq3a94ziSJMMwtLq66so9AAAAAAAAwH2eD8JCoZBWVlZ0+/ZtGYahXC6nXC536vhq8CUdhF+GYchxHK2vr+vatWs96BgAAAAAAABe5OmtkVWxWEzr6+saHh6uC7ocxzn2qoZf1QBseHhYhUJBN2/edPEOAAAAAAAA4La+CMKkg/PCtra2dPfu3VrodZLqz4aHh5VMJlUqlTQ5OdnjbgEAAAAAAOA1nt8aeVg13Eomk9rc3JRlWSoWiyqVSpKk0dFRBQIBhUIhwi8AAAAAAADU6asg7LCZmRnNzMy43QYAAAAAAAD6RN9sjQQAAAAAAADaQRAGAAAAAACAgUAQBgAAAAAAgIHQt2eEAWfZ3d3VxMREwzHz8/Oan5/vUUcAAAAAAFxsy8vLWl5ebjhmd3e3R90cRxCGC2t/f187OzsNx1QqlR51AwAAAADAxVepVM78LO4mgjBcWJcuXdLY2FjDMUNDQz3qBgAAAACAi29oaEjj4+MNx+zu7mp/f79HHdUjCMOFNTY2plevXrndBgAAAAAAA6OZI4gmJiZcWzXGYfkAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCJ4OwiqViu7cuaOf/exn+vjjj91uBwAAAAAAAH3M00+NjEQi2tzclOM4yuVy8vv9eu+999xuCwAAAAAAAH3I0yvCcrlc3Xufz+dOIwAAAAAAAOh7ng7CTNOUJBmGoUgkohs3brjcEQAAAAAAAPqVp4OwWCwmx3EkSWtra23Xu3PnTts1AAAAAAAA0J88HYQtLCxoZmZGkvTdd9+1Xe/oVksAAAAAAAAMDk8HYZKUzWb13nvvKRKJ6Pvvv2+5ztbWlmzb7mBnAAAAAAAA6CeeD8Ik6bPPPlMsFlMwGNRnn32mSqXS1HWVSkWVSkXPnz9XNBrtcpcAAAAAAADwsrfcbqCRK1euaGtrq/becRzFYjHFYrFz13IcR4ZhdLI9AAAAAAAA9BFPrwirHpZffRmGUff+PC8AAAAAAAAMNk8HYfF4XJJkGEYtBGsFK8EAAAAAAADg6a2Rw8PDunnzpp48eSJJCoVC8vl8565j27Ysy+pwdwAAAAAAAOgnng7CpINVYU+fPlWhUNC1a9darpNOp3Xnzp3ONQYAAAAAAIC+4umtkdLBKrDh4eG2QjDpj+eNAQAAAAAAYDB5PgiTpMXFRVUqlbbrtPK0SQAAAAAAAFwMnt8aKUl3797tSJ2VlZWO1AEAAJCkdz7/5Mwxv/vFr7reBwAAAJrTFyvCzmtxcVHfffed220AAAAAAADAQ/ouCHv69Knu3Lmj69ev6+nTpyeOmZqa0uTkpN5///2eBWJLS0sKh8MaGRmRYRgKBAKKRqPK5XJ9OXcv7ycQCMgwDG1sbHS8NgAAAAAAQFXfBGEfffSRLl++rGg0qnQ6LcuyVCqVThwbiURk27a++eYbmaapL774omt95XI5jYyMKJFISJIymYyKxaKSyaQsy1I4HFY4HFa5XO6LuXt9P4lEQrZtd6QWAAAAAABAI54/I+zNmzeanp6Wbdt1T300DKPhdT6fT4VCQVNTU4pEIkqn0/rlL3/Z0d5yuZzC4bCkg4P4U6lU7WemaSoSiWhqakq5XE5TU1MqFAry+XyenbvX95PL5bS0tNTy9QAAAAAAAOfh+RVh0WhUxWJR0kH4dVYAdtTm5qYcx1EsFtOXX37Zsb7K5bKi0aikg5DocGh0WCaTkSTZtl0b78W5e30/h+cDAAAAAADoBU8HYZubm8rlcjIMQ47jyHEcDQ8PKxQKNV3D5/Pp7t27chxH8Xi8Y71Fo9Ha9sDqNsKTVFdSSQcroNLptCfn7vX9zM3NaXR0tGMr5AAAAAAAAM7i6SCsuiqpuqKrWCyqVCrp2bNnddskz/L+++9LkorFoj777LO2+7Jtu+7Q+NnZ2Ybjb926Vfu6Ucjk1ty9vp90Oq2NjY3a6jIAAAAAAIBe8HQQVl0Nlk6ntbKyIr/f31Id0zRrXz979qztvpLJZO3rUCh05qqm6goq6WBLYDtPR+zG3L28H9u2FY/HtbCwoGAw2PR1AAAAAAAA7fJ0EFYul2Wapj744IO26hx+uqRlWe22VbcdsNkw53AYt7a25qm5e3k/0WhUwWCwLnwDAAAAAADoBU8HYT6fryOrhqrhl+M4sm27I7Wqrl+/3tR1h++j1RVh3Zi7l/eTSCRkWRZbIgEAAAAAgCs8HYSZplk7wL0dDx48qH3d7uHsh8/SkupXRjVydFwrK9O6MXev7seyLC0tLSmVSjU9BwAAAAAAQCd5OgibmZlRPp9vq8ajR49kWZYMw5DUfNBzmq+++qrufbPB2uXLl+vet3Jf3Zi7V/czMzOjSCSiWCzWVH0AAAAAAIBO83QQtri4qL29PX388cctX3/v3j0ZhiHHcWQYRt0TD1txdGtlqyuoisWiJ+buxf1Eo1FJ0urqalO1AQAAAAAAuuEttxtoxOfz6e7du1pYWNDr16917949DQ0NNbymUqlofX1dyWRStm3XArCqdlcktXvGWFUrWz67MXe372djY0MbGxvKZrNtb0sFAAAAAABoh6eDMElKJpOyLEsPHz5UMplUOBxWKBSSJBUKBY2OjqpUKqlYLCqXy9UdjC+pLgRbWVk5M0g7S6tnlh0NgQ4/ydLNubt5P+VyWdFoVLFYrPY7AwAAAAAAcIvngzBJymazisfjWl1dVTabVTablWEYSqfTSqfTdWOPBmDV96lUSnNzc71tvIFOPATAS3OfVHNmZkamaSqVSnV8vmbs7u5qYmKi7Trz8/Oan5/vQEcAAAAAAPSv5eVlLS8vt11nd3e3A920pi+CMOkgyIrH40okEtrc3Dz282rwVT0PrBqAhUIhpVIp+f3+jvTh8/k6EiS1sk2wG3N3636WlpZkWZYKhULbtVu1v7+vnZ2dtutUKpUOdAMAAAAAQH+rVCod+Zztpr4JwiQpGAwqm81qa2tLuVxO2WxWtm2rXC6rVCppdHRUPp9PpmkqHA5rdnZWw8PDHe1hdHS0I8HR6OioJ+buRk3LspRIJJRMJhUMBtuu3apLly5pbGys7TrtbqcFAAAAAOAiGBoa0vj4eNt1dnd3tb+/34GOzq+vgrAqv9+vubk5V7Y6tnrg+9GwqdUVYZ2euxs1o9GogsGgFhYWWqrdKWNjY3r16pWrPQAAAAAAcFF06uigiYkJ11aW9WUQ5qbp6enagfzSQSDUTJh09DD5QCDgibk7XXNpaUm2bSsUCikajZ5Z53Cg9uDBA62trdXe37p1S5FI5MwaAAAAAAAAzejLIGx7e1u5XE6FQqEWyIyOjioQCCgUCunatWtdm3tqaqruvW3bTW3/KxaLde9beYpiN+budM3Xr19LknK53Jk1jrIsqy6UM02TIAyA573z+SdutwAAAACgSX0VhD1+/FjJZFK2bZ85Nh6Pa2FhQW+//XZHe5ienq5732xwdHjlU/UcMy/M7eb9AAAAAAAA9NIltxtoxvb2tq5evap4PK5isVh7KmT1yZCHVb+fSqUUCAT08ccfd7SXYDBYt3Xwq6++auq6fD5f+/po+OTm3J2umUwm634/Z70OB2iZTKbuZ8lksqleAAAAAAAAmuH5IOzFixeampqqBWCGYdReko4FK1XV9wsLC/r5z3/e0Z5mZ2drXx/eytfI4XGJRMJTc7t5PwAAAAAAAL3i+a2R0WhUe3t7dcGXdHB+VCgUUiAQqG3NGx0dlW3bsm1bxWJR6+vrKpfLymaz+vnPf67f/va3HekpHo8rnU5Lau4srMNjqn17aW437wcAAAAAAKBXPL0ibHV1VbZt14VgoVBIhUJB3377rVZWVnT37l3Nzc1pZmZGk5OTunnzpu7evauVlRWVSiWtr6/r2rVrymazHdsmGQwG68KfjY2NhuMzmUzt67NWT6XTaSUSiVPPQevG3N28HwAAAAAAAK8wnJMO2vKI6enp2hY8wzC0srKiubm5lmqFw2E9f/5ce3t7Ghoaars327YVCAQkHQRJhULhxHHlclkjIyOSDp6smM1mG/Z4eLXV3t5e3fld3Zy7GzWbEQgEaqFfJpPpyFMiJyYmtLOzo/Hxcb169artegDQCE+NxFl+94tfud0CAACAp7j5ud3TK8Kqq8EMw9DCwkLLIZj0x4PYD69maodpmrValmVpaWnpxHEzMzOSDp6seNbcR7clrq+v92zubtQEAAAAAADwEk8HYeVyuXYm2OLiYlu1fD6fYrHYqeFSKyKRiLLZrHw+nxKJhKLRqCzLUrlcVi6X09TUlCzLUjAY1NbW1omru472eNjhJyp2e+5u1QQAAAAAAPAKTwdhwWBQ0kEg1IntjIe34XVKKBTS3t6eksmkbNvWzMyMRkZGFI1GNTo6qkwmo0Kh0FRolMlkZJqmfD6fFhYWzjyEvpNzd7NmI9WngTqO05FtkQAAAAAAAKfx9BlhiURCjx490sjIiF6/ft12vUePHunevXv64YcfOtAdvIozwgD0EmeE4SycEQYAAFDPzc/tb/V0tnP68MMP9ejRI5XLZW1vb+vtt99uq16xWGQ7HwAA6KlmwlLCMgAAgN7w9NbI4eFhra+vy3Ec3bt3r+166+vrGh0d7UBnAAAAAAAA6DeeDsKkgwPcU6mUnj17pr/6q79quc69e/dULpdr544BAAAAAABgsLiyNfL27dsqFArnumZ0dFSpVEqpVOrcYVa5XJZt2zIMQ+Fw+FzXAgAAAAAA4GJwJQjz+XwqFAoyDEPNnNVvGIYk1caeN0Q7XGd2dralawEAAAAAANDfXNkaGY/Ha18bhnHm6zxjG71isZiGhobcuGUAAAAAAAC4zJUgzO/3yzRNSQervHrxmpycVDKZdON2AQAAAAAA4AGuHZY/MzMjScrlctrf3+/6K5/PsxoMAAAAAABggLkWhM3OzioYDOrGjRtutQAAAAAAAIAB4uqKML/f39M5t7e3ezofAAAAAAAAvMO1IEyS1tfXezrf4UP6AQAAAAAAMFhcDcJ6LZ/Pu90CAAAAAAAAXPKW2w20Ynt7W+Vyuenxtm0rlUqd6xoAAAAAAABcLH0RhG1vbyuZTCqXy8m27ZZqOI4jwzA63BkAAAAAAAD6heeDsMXFRS0tLUk6CLMAAAAAAACAVnj6jLAnT54omUzWAjBWdAEAAAAAAKBVnl4R9uDBA0kHAZjjODJNU8FgUKZpSpIuX758Zo3Xr1+rXC5rfX1db9686Wq/AAAAAAAA8C5PB2GWZdVWgWWzWc3MzLRca2FhQVevXu1UawAAAAAAAOgznt4a6fP5JB2EWO2EYJJkmqb8fn8HugIAAAAAAEA/8nQQVt0Cef369Y7US6VSHakDAAAAAACA/uPpIKy6CqxUKnW0HgAAAAAAAAaPp4OwDz/8UI7jyLKsjtR7/PhxR+oAAAAAAACg/3g6CBseHtbDhw+1tram77//vu16bI0EAAAAAAAYXJ5+aqR0cFB+NptVNBrVb3/725brbG1tdWxlGfrD7u6uJiYmGo6Zn5/X/Px8jzoCAAAAAOBiW15e1vLycsMxu7u7PermOM8HYZKUzWY1PT2tq1evKpFIaHR0tKnrSqWSyuWyisWi1tfXu9wlvGZ/f187OzsNx1QqlR51AwAAAADAxVepVM78LO6mvgjCnj9/LkkqFouKx+Mt1XAcR4ZhdLIteNylS5c0NjbWcMzQ0FCPugEAAAAA4OIbGhrS+Ph4wzG7u7va39/vUUf1PB+E3blzR+l0WpJkGIYcxzl3DQKwwTQ2NqZXr1653QYAAAAAAAOjmSOIJiYmXFs15unD8ldXV5VKpWrhVyshWDvXAQAAAAAA4OLw9Iqw6lMeqyvBQqGQwuGwfD7fuc8JW1lZ0fb2dhe7BQAAAAAAgJd5OgizLEuGYcjn8ymfz8vv97dca25uTpcvX+5gdwAAAAAAAOgnnt4a6fP5JEmLi4tthWDVWpOTkx3oCgAAAAAAAP3I00HY1NSUJMk0zY7UW11d7UgdAAAAAAAA9B9PB2HxeFyO48i27Y7UY0UYAAAAAADA4PJ0EBaJRDQ5Oam1tbWO1Hv69GlH6gAAAAAAAKD/eDoIk6RMJqNCoaAvvvii7VoPHjzoQEcAAAAAAADoR54PwkzT1MrKij744IO26rx580aWZXWoKwAAAAAAAPSbt9xuoJHqVsYf//jHGhkZ0dWrVxWJRM5dp1wua319vdPtAQAAAAAAoI94Ogi7f/++Xrx4UXvvOI6WlpZaquU4jgzD6FRrAAAAAAAA6DOe3ho5Ozsrx3HkOI4kEWQBAAAAAACgZZ4OwuLxuKSDAKwaiLX6AgAAAAAAwGDz9NbI4eFhBYNBvXjxQslkUsFgUKOjo+euY9u27t+/r5cvX3a+SQAAAAAAAPQFTwdhknTr1i0FAgHdvXu35RqTk5O6efNmSyEaAAAAAAAALgZPb42UpFAo1LGtjdPT0x2pAwAAAAAAgP7j+SBscnJSyWSyI7U6VQcAAAAAAAD9x/NbIyXJ7/e3XWN7e1uTk5Md6AYAAKCz3vn8kzPH/O4Xv+p6HwAAABed51eEdcKTJ08UCAT09ddfu90KAAAAAAAAXDIQQdhXX30lx3H0v/wv/4vbrQAAAAAAAMAlnt8a+fjx45avLZfLKhaLSqfTMgxDuVxODx486GB3AAAAAAAA6BeeD8JisZgMw2irRvWpk5ZlaXt7W2+//XYHOgMAAAAAAEA/8XwQVuU4zrkDsWoAdvi6dDqt+/fvd7Q3AMDF1MwB5gAAAAD6R1+dEeY4zrle0kEIdvh7mUzG5bsAAAAAAACAG/piRZjf71cikZBpmue6rlgsamlpSVNTU1pdXdXQ0FCXOgQAAAAAAIDX9UUQlsvlWjrXa2ZmRrFYTFeuXFEsFuOpkQAAAAAAAAPM81sjfT5f24fbr6ysaH19XR9//HFnmgIAAAAAAEDf8XwQlkwm264RCoVkmqYWFha0vb3dflMAAAAAAADoO54Pwubm5jpSJxgMynEcLS0tdaQeAAAAAAAA+ovng7BO++qrr9xuAQAAAAAAAC4YiCDszZs3yuVykiTLslzuBgAAAAAAAG648EHYy5cvNT09rTdv3kiSTNN0uSMAAAAAAAC44S23GzjL1atXW77Wtm1JkuM4kiTDMBQKhTrSFwAAAAAAAPqL54OwYrEowzBqYVYrDl/fiadQAgAAAAAAoP/0zdZIwzBaekkHK8J8Pp+ePXumoaEhl+8EAAAAAAAAbvD8ijDpj1sbfT6fRkdHm77O5/PJNE1dv35dd+/e7VZ78Kjd3V1NTEw0HDM/P6/5+fkedQQAAAAAwMW2vLys5eXlhmN2d3d71M1xfRGELS0t6Te/+Y3bbaDP7O/va2dnp+GYSqXSo24AAAAAALj4KpXKmZ/F3eT5IMw0TUIwtOTSpUsaGxtrOIatsgAAAAAAdM7Q0JDGx8cbjtnd3dX+/n6POqrn+SAskUi43QL61NjYmF69euV2GwAAAAAADIxmjiCamJhwbdWYq4flv3z58swxc3Nz3W8EAAAAAAAAF56rK8Kmpqb0ww8/uNkCAABAX3jn80/OHPO7X/yq630AAAD0M1dXhDmOo++++87NFgAAAAAAADAgXA3CJCmZTLrdAgAAAAAAAAaA60FYKpXSz3/+cz19+lTb29uqVCqqVCputwUAAAAAAIALxhNPjcxms8pmsz2bj3PJAAAAAAAABo8ngjDHcWpf+3w+SdLo6GhLtUqlksrl8ok/M02zp4EbAAAAAAAAvMMTQVgymVQkEpHf72+rzubmpqLRqAzDqPu+4ziKRqNaW1trqz4AAAAAAAD6lyfOCLt7927bIdhHH32kd999V2/evKmtMHMcR47jKJlMEoIBAAAAAAAMOFdXhBmGodnZ2bbrvPvuu9rc3KwFYIZhyHEc+Xw+bW5uanJysu05AAAAAAAA0N9cDcKGh4c1NDTU8vXb29sKh8OybVuO49S2RDqOo2AwqM3NTQ0PD3eqXQAAAAAAAPQxV7dGbm1ttXztkydPFAgETgzB4vG48vk8IRgAAAAAAABqXA3CWg2qFhcXNTs7e2wrpOM4SqVS+vTTTzvZJgAAAAAAAC4ATzw1slmVSkXRaFS5XO7YKjDOAwMAAAAAAEAjrj81slkvX76U3+8/MQQLhULa2toiBAMAAAAAAMCp+iIIW11d1dTUlPb29o6FYIlEQs+ePeM8MAAAAAAAADTk+a2Rd+7cUTqdPhaASVImk9HNmzfdbA8AAAAAAAB9wrNBWKVS0czMjCzLOhaCmaapbDYrv9/vcpcAgH70zuefuN0CAAAAABd4cmtk9Tywk0KwaDSqb7/9lhAMAAAAAAAA5+K5IOyk88Acx5HjOEomk1pbW3O7RQAAAAAAAPQhT22NvHXrljY2No6tAvP5fMpkMpqZmXG5QwAAAAAAAPQrT6wI297e1tWrV08MwYLBoLa2tjoSgl29erXtGgAAAAAAAOhPrgdhz58/19TUlIrF4rEQLB6PK5/Pa3h4uCNzFYvFjtQBAAAAAABA/3E1CHv06JHC4bD29vZkGEbdeWCpVEqffvppx+ZaXV2thWwAAAAAAAAYPK6eEZZIJGoBmHSwCmxkZESbm5u6du1ax+Z5/Pix4vE4QRgAAAAAAMAA89Rh+YZhaHR0VHNzcx2pVy6XZdt2R2oBAAAAAACgv3kmCHMcRxLneAEAAAAAAKA7PBGE+f1+ZTIZ+Xy+jtQrl8u1r/P5vFKplCzL6khtAAAAAAAA9CfXgzDTNDv6ZMijJicnNTc3p2g0qqdPn3ZlDgAAAAAAAHifq0+NlKRMJtO1EOywZDLZ9TkAAAAAAADgXa4GYT6fr6NPh2zENM2eBG4AAAAAAADwJleDsF6v0mJVGAAAAAAAwOByNQibm5u70PMBAAAAAADAO1w/IwwAAAAAAADoBYIwAAAAAAAADIS33G4A6Jbd3V1NTEw0HDM/P6/5+fkedQQAQHe98/knZ4753S9+1fU+AADA4FpeXtby8nLDMbu7uz3q5jiCMFxY+/v72tnZaTimUqn0qBsAAAAAAC6+SqVy5mdxNxGE4cK6dOmSxsbGGo4ZGhrqUTcAAAAAAFx8Q0NDGh8fbzhmd3dX+/v7PeqoHkEYLqyxsTG9evXK7TYAAAAAABgYzRxBNDEx4dqqMQ7LBwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAIAwAAAAAAwEAgCAMAAAAAAMBAIAgDAAAAAADAQCAI65ClpSWFw2GNjIzIMAwFAgFFo1Hlcrm+nLvTNS3LUjweVyAQkGEYtZqJRELlcrnlPgEAAAAAAJplOI7juN1EP8vlcopGoyqXywqFQkokEjJNU5ZlKZFIyLZthUIhZTIZ+Xw+z8/d6Zrlcllzc3Pa2NhoOC6VSikWizXV41kmJia0s7Oj8fFxvXr1qiM1AVws73z+idstAJ73u1/8yu0WAADABeXm53aCsDbkcjmFw2FJUiwWUyqVOjZmampKlmXJNE0VCoWOhWHdmLvTNcvlsqampmTbdlP3dNqc50UQBgw2Qi6gMwjCAABAt7j5uZ2tkS0ql8uKRqOSJNM0Tw1wMpmMJMm27dp4L87djZrRaFS2bSsYDCqTyahYLKpYLCqTyWhhYeHY+HQ6febKMQAAAAAAgFYRhLWoun1QkhKJxKnjTNNUJBKRdLDiKp1Oe3LuTtdMp9PK5XJaWFhQoVBQJBKRaZq165PJpIrFooLBYN11c3Nzp84NAAAAAADQDrZGtsC2bQUCgdr7vb29hlsENzY2aqunfD6f9vb2PDV3N2oGAgGZpqlsNnuu+5GkbDarUCjU8LpG2BoJDDa2RgKdwdZIAADQLWyN7DPJZLL2dSgUOvPsreoKKulgC2I72/+6MXena1qWJdu2a9soGzFNs27+6vUAAAAAAACdRhDWgsPbAY9u7TuNaZq1r9fW1jw1d6drrq2tKRaLNf1ggKOrv16/ft3UdQAAAAAAAOfxltsN9Jujq5WuX7/e1HXBYLD29MRWV4R1Y+5u1Lx161ZdUNZMrcOObpUEAAC918w2Y7ZPAgCAfsOKsHPK5XJ175sNfI6Oa2X7Xzfm7kbNYDDY9GowSbVD+s/bAwAAAAAAwHkQhJ3TV199Vfe+2cDn8uXLde/z+bwn5nbzfqqqK8uq2jkoHwAAAAAA4DQEYed0NLRpdQVVsVj0xNxu3k/V4RAtFou1XAcAAAAAAKARgrBzOhocterodkC35nbzfqpSqVTt60Qi0YFuAAAAAAAAjiMIO6dWA5+jWw5LpZIn5nbzfqSDIK56vlgymeR8MAAAAAAA0DU8NdIl///27t5HzSzNG/Bd3t5VB7t+qerIsiMqnIzqzkcy6M02AjsfyVXpyAGo/wILAmvSwtLkNiQbvoKWNrchm7DopK3SBu1ivLMf2g/zBl5YoIACiu/nuiTURdXDOQdz9wP8OOdwnxlUu9j3sm2Wy+WI+LrUslgsrnBEEdfX1/HkyZN7t/Py5ct4+fLlCkYEAAAA++v169fx+vXre7dzfX29gtEsRxC2oFQqtZIgaZFvVVxn39u8P+12O6rVaqRSqWg0Gvcew7gvX77Ex48f793O58+fVzAaAAAA2G+fP39eyfvsbRKELejk5GQlwdHJyclO9L3N+/PixYuIiPjpp5/WsiTywYMH8ejRo3u38/DhwxWMBgAAAPbbw4cP4/Hjx/du5/r6Or58+bKCES1OELagZWY+RdxeOrjsjLBV972t+3NxcRHtdjtqtVpkMpmlxnCXR48exS+//LKWtgEAACBpVrV10JMnT7Y2s8xm+Qv6/vvvR67PO5tqfDP509PTneh7G/enWq1GtVqNy8vLyOfzc98OAAAA4D4EYQs6Ozsbud7pdOa63dXV1cj1bDa7E31v+v40m824uLiIy8vLOD8/n+s2AAAAAKsgCFvQ+AyqeYOj4ZlWqVRqqT2x1tH3Ju9Pu92OXC4X5XJZCAYAAABsnCBsQZlMZmQ/rPfv3891uw8fPgx+Hg+fttn3pu5Pp9OJp0+fRrFYjGKxOFcfAAAAAKskCFvCs2fPBj+32+25bjN8XKlU2qm+131/Op1OnJ2dxfn5eZTL5bna73Q6UalU5joWAAAAYB6CsCVcXFwMfm42m3ceP3xMOp1ean+wdfa9zvvT7XYjl8vFs2fP5g7BIiIKhcK9/p0AAAAAxn2z7QHso0wmE9lsdhAI1ev1md9+WKvVBj/fNXuqWq3G1dVVXFxcTNx3ax19r+v+dLvdODs7i3Q6HaVSaa79xzqdzqDNTCZz5/FAsvzmj3/Y9hAAAIA9dtTr9XrbHsQ+6nQ6cXp6GhFfA5tWqzXxuG63G8fHxxHx9ZsVG43G1DZzudzIbKubm5uR/bvW2fc62jw7O5t7qeW4+3yr5JMnT+Ljx4/x+PHj+OWXX5ZqA9hNgjDYLX/63e+3PQQAYA9t8327pZFLSqfTg5lR7XZ76n5WT58+jYiv36w4PJNqkvFlie/evdtY36tu8z4hWET4VkkAAABg5QRh95DP56PRaEQqlYpSqRSFQiHa7XZ0u91oNpuDMCiTycTPP/88cXbXsPG/T1oaua6+V9lm/3bLEoIBAAAA6yAIu6dsNhs3NzdRLpej0+nE06dP4/j4OAqFQpycnEStVotWqzVXEFWr1SKdTkcqlYpisXjnZvGr7HuVbdZqtej1ektfLi8v5x4vAAAAwLzsEcbBsUcYHC57hMFusUcYALAMe4QBAAAAwJoJwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEuGbbQ8AAIDD9Zs//uHOY/70u9+vfRwAABFmhAEAAACQEIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBE+GbbAwAAYD/95o9/2PYQAAAWYkYYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIvjWSg3V9fR1PnjyZeczLly/j5cuXGxoRAAAAHLbXr1/H69evZx5zfX29odHcJgjjYH358iU+fvw485jPnz9vaDQAAABw+D5//nzne/FtEoRxsB48eBCPHj2aeczDhw83NBoAAAA4fA8fPozHjx/PPOb6+jq+fPmyoRGNEoRxsB49ehS//PLLtocBAAAAiTHPFkRPnjzZ2qwxm+UDAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIngWyMB2Am/+eMftj0EAADgwJkRBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBFslg8AwFbN82UZf/rd79c+DgDg8AnCAFg73wgJAADsAksjAQAAAEgEQRgAAAAAiWBpJAAAO88+YgDAKpgRBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEiEb7Y9AAAAWIXf/PEPdx7zp9/9fu3jAAB2lxlhAAAAACSCIAwAAACARLA0EgCAxJhn+WSEJZQAcKjMCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAINssHAIAx82yqb0N9ANg/ZoQBAAAAkAhmhHGwrq+v48mTJzOPefnyZbx8+XJDIwIAAIDD9vr163j9+vXMY66vrzc0mtsEYRysL1++xMePH2ce8/nz5w2NBgA4NJZPAsBtnz9/vvO9+DYJwjhYDx48iEePHs085uHDhxsaDQAAABy+hw8fxuPHj2cec319HV++fNnQiEYJwjhYjx49il9++WXbwwAAAIDEmGcLoidPnmxt1pjN8gEAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARPCtkQBM9Zs//uHOY/70u9+vfRwAAACrYEYYAAAAAIlgRhgAAKyJmbUAsFsEYQDcyzxv8gAAAHaBIAwggYRXAABAEgnCAABgiyyfBIDNEYQBAMCOE5YBwGr41kgAAAAAEkEQBgAAAEAiWBoJAAAJMe+XpVhmCcChMiMMAAAAgEQQhAEAAACQCIIwAAAAABLBHmEAB2be/V8AAACSxowwAAAAABJBEAYAAABAIgjCAAAAAEgEe4QBAMABWOUekfO09aff/X5l/QHAppgRBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBFslg8AAKyFTfcB2DVmhAEAAACQCGaEAQAAW2PWGACbZEYYAAAAAIlgRhgAALCweWZybZKZZQDMw4wwAAAAABLBjDAAAIA1MEsNYPcIwgAAABa0a0tDAZiPIIyDdX19HU+ePJl5zMuXL+Ply5cbGhHcnxfdALC8eZ9HzdICWN7r16/j9evXM4+5vr7e0GhuE4RxsL58+RIfP36cecznz583NBoAAJblgyCA/fH58+c734tvkyCMg/XgwYN49OjRzGMePny4odEAAMBt9hEDDs3Dhw/j8ePHM4+5vr6OL1++bGhEowRhHKxHjx7FL7/8su1hAAAAQGLMswXRkydPtjZrTBAGAAAwxFJMgMMlCAPYEV50AwDLssQSYD4Ptj0AAAAAANgEQRgAAAAAiWBpJAAAwA6zfQLA6pgRBgAAAEAiCMIAAAAASARLIwEAABjwDZTAITMjDAAAAIBEMCMMYANscgsAHJJVvbYxswzYNEEYAABAAvhgDsDSSAAAAAASwowwgHvy6SoAAMB+EIQBAACwFZvca2zevuxbBofN0kgAAAAAEsGMMCCRfCIIAECSeP0LXwnCAAAA2GuHvGfrPPdNeAXzE4TBjnj9+nV8/vw5Hj58GC9fvtz2cDgwv/6/f4z//vd/j7/69tv47v/+dtvD4QCpMdZJfbFuaox18jqfdVJfixOEwY54/fp1fPz4MR4/fuwEtkMO5dPFXxv/GP918+f45vj/eIHPWqgx1kl9sW5qjEUtMktr1uv8Q3mtyfZ4H7k4QRgAAAD8j1WFU/12/ulf/zL4r+ALtk8QBgAAAHtsXwM2+5+xDQ+2PYBDUalUIpfLxfHxcRwdHcXp6WkUCoVoNpt72fe+tAkAAAAwLzPC7qnZbEahUIhutxvZbDZqtVqk0+lot9tRKpUil8sNfp9KpXa+731pEwAAgNUzS4tDJwi7h2azGblcLiIizs/P4/LycvC3dDod+Xw+zs7OotlsxtnZWbRarZUFPevoe1/aJNk8MQMAwHbt61LMXeO9zXYIwpbU7XajUChExNdAZzjgGVar1eL09DQ6nU4UCoVoNBo72fe+tAkAAADDVhkoCacOnz3CltRf6hcRUSqVph7Xn/UU8XV2VLVa3cm+96VNAAAAgGWZEbaETqczssH7s2fPZh7//PnzqNfrEfE1EDo/P9+pvvelzU15/fp1fP78OR4+fBgvX77c2jg2ZZv3d1193/Upzq//7x/jv//93+Ovvv02vvu/v11Zv/PYZt/bsq37nMTHWX39NhF9J/E+b5PHeXN9q6/fHny/2+xbff12b/teZBnmpu7zpDGN972qWWN33f9/+te/rKSfZezre2dB2BLK5fLg52w2e+eeVv3ZThFflwvW6/WR3227731pc1Nev34dHz9+jMePH+/V/8zL2ub93Vbfvzb+Mf7r5s/xzfH/2fyLgi32vS3bus9JfJzV128T0XcS7/M2eZw317f6+u3B97vNvtXXbxPR96x+172vWRJrbF/fOwvCljC8dC+Tycx1m3Q6HZ1OJyIi3r59u3TIs46+96VNAAAA2Ae+UGB3CcIW1G63R67/8MMPc90uk8kMQp7+EsBd6Htf2mS32VASAACAfSAIW9DwvlcRX2cxzWP8uHa7PfdMqXX2vS9tkgw+NQEAAGCdfGvkgt6/fz9y/a69r/q+++67kesfPnzYib73pU0AAACA+xKELai/dK9v2dlOV1dXO9H3vrQJAAAAcF+WRi5oPORZVrfb3Ym+96VN/teq9uPqt9P/ut1/+te/rHVp4qS2N9U3AAAARAjCFrZsODO+PPDTp0870fe+tJkkqwiFhEoAAABw21Gv1+ttexD75OjoaOT6vP98zWYzcrnc4Ho2m41Go7H1vvelzUX8zd/8Tfznf/5nREQ8eLD46t8vX74Mfn7w4EH83d/9Xfzt3/7twu0s6vr6+mvfR0fxTerh2vvr+6/u54heb+P9brNv99l9PtS+3Wf3+VD7dp/d50PtO2n9brNv99l9PtS++/0+ePAgHj16tPb+/vKXv8Q///M/R8Tt986L6N/2r//6r+M//uM/VjfAOZgRtqBUKrWSJXvzbiC/7r73pc1F/Pd///fg5+H/MZfx5cuX+POf/xx//vOf79XOQnq9+K+bDfa37X632bf7nIy+3edk9O0+J6Nv9zkZfbvPh9/vNvt2n5PRdwLv85cvX+Ljx48b73e4/2UMv3/fFEHYgk5OTlYS8pycnOxE3/vS5iK+/fbb+Ld/+7fo/U8qfl+bmhEGAAAAu2x4Rth9fPnyJY6OjuLbb79dwagWIwhb0LKzlMaDoWVnhK26731pcxH/8i//stTtAAAAgMN2/+kyCfP999+PXJ935tP4xu+np6c70fe+tAkAAABwX4KwBZ2dnY1c73Q6c93u6upq5Ho2m92JvvelTQAAAID7EoQtaHy207whz/CsqFQqFel0eif63pc2AQAAAO5LELagTCYzsnfV+/fv57rdhw8fBj+PB0Xb7Htf2gQAAAC4L0HYEp49ezb4ud1uz3Wb4eNKpdJO9b0vbQIAAADcx1Gv1+ttexD7pt1uj+yDddc/YbPZjFwuFxER6XT61l5Y2+57X9oEAAAAuA8zwpaQyWRGNnKv1+szj6/VaoOf75rpVK1Wo1QqTd1Xax1970ubAAAAAPdhRtiSOp1OnJ6eRsTX0KfVak08rtvtxvHxcUR8/RbERqMxtc1cLhfNZnNw/ebmZmSvrXX2vS9tAgAAACzLjLAlpdPpwSymdrsdlUpl4nFPnz6NiK/fgjg862mS4RAsIuLdu3cb63tf2gQAAABYliDsHvL5fDQajUilUlEqlaJQKES73Y5utxvNZjPOzs6i3W5HJpOJn3/+eeLsrmHjf0+n0xvre5/aBAAAAFiGIOyestls3NzcRLlcjk6nE0+fPo3j4+MoFApxcnIStVotWq3WXAFPrVaLdDodqVQqisXiyB5b6+5739rcpE6nM9jIf9nb3rVH2l0qlUrkcrk4Pj6Oo6OjOD09jUKhcGsW4bbbZDmL1Fi73Y6Li4s4PT2No6OjwWNXKpWi2+0uPQY1drgWqa9OpzNSX8fHx3F2dhYXFxdT966ch/o6bPd5nhzWr7tlnjPV2OFaVX3dp031dbhWXV/tdjvq9XpUKpW5H0v1ddjWcQ5blBqboAcJdXNz04uIuS7n5+cLt53P5we3v7y8XGqMjUajl0qlehHRy2azvUaj0bu6uurVarVeOp0e/P7m5marbTLZKmtsvKamXRatNTW2v1Z9DiuXy3e2Uy6XFxqj+tpv63yeHFcsFgdt1Wq1uW+nxvbXOupr1W2qr/21qfPXzc1Nr1wu9zKZTC8ieqlUqlcsFnuNRuPOx1B97bdV1Vj/8VrmclftqrHpBGEk1jxv+vqXq6urudq8ubkZeTG/bDjR6309ydx1kus/6abT6blONutok+lWVWM3NzeDJ5ZVvqBTY/ttleewbDY7eAGfz+d7xWKxl8/nJ9bdvCGF+tp/63ienGT4cVVjybGO+lplm+prv637/HVzc9M7Pz8ftJHJZHqNRmPu26uv/beKGqvVanO3Meky6/lSjc0mCCOx5k3fs9nsXO2Vy+VeOp0evKEcviwahN3c3AzGl06npx53dXU19zjX0SazrarG+jWVyWR6tVqtd3V1NfjkZVLwOs8bSTW2/1ZVX/0amjbba9ILvbuor8Ow6ufJSYYf13nPX+O3U2P7aR31tao21df+W+f56/LycqR9r/OTaRU1Nul94yKXadTY3QRhJNLl5WUvIgZTl2dd5kmyW61Wr9Vq3Wp/2SfI4ZPiXbeddwnmOtpkulXV2HA701xdXQ0+felfUqnUzPGpsf22qvrqv1i561Ps4U+9I2LkfDeJ+tp/q36enKY/83D4DcU8QZga22/rqK9Vtqm+9ts6z1/DH0Cm0+mlZpOpr/23ihrrvwZLp9O9y8vL3tXVVe/m5ubOy/Dyw2nU2N0EYSRSOp2emWTfV6vVWjoIG07RI+LOJ+jhKbXTwo91tMlsq6qx/izDu4w/xrPCDTW2/1ZVX/l8fq59v8b3wZh1G/V1GNb9PNnr/e8biVartVAQpsb23zrqa1Vtqq/9t67z1/Cb+1QqtdSHAOrrMKyixorF4sLLB4cf62nvL9XYfARhJE7/f8x1ptPjJ4tF+hqeeTHvdNLhvia9gVhHm0y3qhrrB6rzPkGOL2GbFlaosf22ynPYIlPWh/cLm9W3+tp/m3ye7M92XSQIU2P7bR31tco21dd+W9f5a3wJ27L7Iqqv/beqGkulUnfOsB83/Fp/2vsDNTYfQRiJk8lklv4UZ173CcKGbzdrOdyw4Teo+Xx+I20y3apqrFgsLvRNRuMzEac91mpsv23iHDbJcFAx64Wb+tp/m6ixTCbTy2Qyg+uLBGFqbL+to75W2ab62m/rqK/7bnkyTH3tv1XV2CJfrjDc911hlBqbz4OABGm329Fut6Pb7cbx8XGcnp7GxcVF1Ov1bQ8tIr6Ob9gPP/ww1+0ymczg5/H7so42mW6VNfb8+fMol8tzHz/8mEVEnJ6eThzfMDW2X7Z1Dut2u9HtdiMiIpvN3qq14fENU1/7ZxM1ViqVot1uR61WW2p8w9TYfllHfa2yTfW139ZRX51OJy4uLgbXM5lMnJ+fLz2+Yepr/6yyxrLZ7ELHd7vdweNdKBSmjm+YGptOEEailEqlkeudTieq1WoUCoU4OjqKQqFw63/2TWo2myPX0+n0XLcbP274PqyjTaZbZY1lMplIpVJz990PKvomPdZqbL9t6xz27t27iPj6mM0KL9TX/lt3jbXb7ahUKnF5eTn3YzlMje23ddTXKttUX/ttHfU1Hjj8+OOPS49Pfe2/bb6XrFarg5+fPXs28Rg1Nj9BGInR6XRu/Y88rl6vx9nZ2cgnP5v0/v37kevzhiDffffdyPUPHz6stU0m23aNdTqdkeuTPmlSY/trW/XV7Xbj4uIiMplMNBqNmY+v+tpvm6ixp0+fRj6fX3pGhRrbX+uor1W3qb7217rqa/jNeyqVinw+v/QY1dd+2/br/Ldv30bE7A/K1dj8vtn2AGBT0ul0XF5eRrfbjaurq2g2m7eCg75qtRofPnyIVqu10TGOj2fZxP3q6mqtbTLZtmts+Alm2ptMNba/tlFfnU4ncrlcpFKp+Omnn+588aO+9tu6a6w/s+LNmzdLj1GN7a911Neq21Rf+2sd9XV5eTlyvf8BY71ej7dv30a73Y5OpxOpVCrS6XQ8f/48zs/Ppz5Xqq/9ts3X+cPLIp8/fz71ODU2P0EYiTIeDnS73ahWq/Hq1atby8ra7XbkcrloNBobG9+0k+mihu/LOtpkum3W2PALtvGp231qbL9tsr7q9frIkpDj4+Mol8tRLBan3kZ97b911Vi9Xo96vX7nrMK7qLH9to76WmWb6mu/rbq+hpeiRUScnJzE2dnZrSVe/ZCi3W5HqVSKWq02ceaY+tp/23qd39+iIiJmzkpUY/OzNJJES6VSUSwW4+bmJmq12q0X581mMyqVysbGs+wJYnzcnz59WmubzG9TNTY8fb9cLk/9tEaNHZZV11e3241KpRKnp6cTN2ItlUpTN2jt334Z6mt3raLGut1uFAqFOD8/X3hz4EltLUON7aZ1PEfep031dVjuUwudTufWY/fu3bu4uLiIm5ub6PV60ev14urq6lY4UigUJm4Orr4Oz6Ze5/c/7M5kMjNnZKmx+QnC4H/k8/n4+eefb30b2qtXr7Y0ouWtI3HftRR/H62zxvrfLplOp2fO2FkVNbZ7VlFfzWYzrq6uIpvNTg0s6vX62j8gUF+7adkae/r06WBJya5QY7tnHc+R23ptp752z6K1MD4LJpVKxc8//3xr6WP/3DZ+fnvx4sXaHjP1tZvWdb6Zd1nkKiWhxgRhMCSVSkWr1Ro5gXW73Ts3Rlxl/6tuZx1tsrx11Fi73Y5qtRqpVOrO6ddq7LDdt77y+fzgBX2j0YherxeXl5e3HptSqTTxBY36OnyL1lilUol2uz3z20YX7X/V7aix3bGO58hF2lRfh22RWhgPwmbt/dX/+/DMsG63eysAUV+Hbx3nsHmXRfb7X4Uk1JggDCYY38h3U/uEnZycrLyddbTJ/a2yxl68eBERET/99NOdG1iqsWRYZX2dn59Hq9W69QJmfO+UCPWVJPPUWH+/nHK5fOsT8mWpsWRYx+uwedpUX8kwTy2Mb+z9ww8/3Nnu+P6s47On1VdyrPIc1p9tmE6nvc5fIUEYTJDJZEaWBa1qk8C7LJuUj8/MWEWKP6tN7m9VNXZxcTGYbTHPG001lgyrPoel0+n46aefRn43/nXaEeorSeapsUKhEJlMZqXLtdVYMqzjddg8baqvZJinFpb590+n07deiw1vrK++kmNV57DhZZF3zQaLUGOLEITBFLlcbuN9fv/99yPX511LPb754Onp6VrbZDXuW2PVajWq1WpcXl7O9eQYocaSZNXnsEwmM1Jnk17Uqa9kmVVjlUolOp1OnJycRKFQuPMy/Li+evVq5G/Dm06rseRYx+uwu9pUX8lxVy0s++89/ngPP1eqr2RZxTlseFnkPPuDqbH5fbPtAcCuGp56uqmpnGdnZyPXO53OXLN8xqdvD38CsY42WY371Fiz2YyLi4u4vLy89W1Fs6ix5FjHOez58+eDUGLSCyH1lSyzauzXX3+NiFhqX5R2uz0yiyKdTg9CWDWWHOs4h93VpvpKjrtqYXz2yrxv/sff7A+HAeorWVZxDuvvr5lKpeZ6XNXY/MwIgymGT16bmso561OkWYafnFOp1MjY19Emq7FsjbXb7cjlclEulxcKwSLUWJKs4xw2/MJnUpvqK1k8T05vk/tbR33d1ab6So511cJ4W8MBiPpKlvuew4Y32Z/39b4am58gDKb48OHD4OdNLZPMZDIjJ8pJe/BMMjzW8ZPVOtpkNZapsU6nE0+fPo1isbjUvjtqLDnWfQ6b9Jipr2SZVWPlcjl6vd7cl+EXyLVabeRv5XJ58Dc1lhzrOIfd1ab6So55amHY+OyWeQ2f29RXstz3HLbossgINbYIQRhMMfyEt8mpnM+ePRv8PLw0ZJbh48a/sWZdbXJ/i9ZYp9OJs7OzOD8/H3ljeNdtxr+1SI0lwzrOYcOfAk57Uae+ksPzpBpbp3XU1zxtqq9kmKcWhn8/7zLv8SWU44Ga+kqO+57DFl0W2afG5tQDJkqn072I6BWLxYVve3V11YuIweXy8nLu27ZarZHb3qXRaAyOTafTG2uT+1ukxm5ubnrpdLp3fn6+UB+ZTKbXarVGfqfGkuE+57BpyuVyLyJ6qVRq6jHqKzlWWWP9tiKiV6vVZh6rxpJhHeewedpUX8kwTy0MPw4R0bu5ubmz3fPz88Hx2Wz21t/VV3Lc5xx2c3MzeIwWfe2vxuYjCIMJarXa4M3ePE9648ZPFosEYb1er5fNZud+QzD8hDurn3W0yfIWqbF+CJbNZntXV1dzXRqNRi+TyfQymczENtXYYbvvOWyaVCo11+Orvg7fqmtskSCs11Njh24d57BF2lRfh22RWhg+N80TaAwfP/5BZJ/6Onz3PYddXl4OHqNGo7Hw7dXY3QRhJEKj0Ri8gctms1OfmHq9r7O5+sfOOm6W/smvfymXywvdfnhG2bQgo9cb/bRg0qdO626T/7XOGstkMiP1tMhl2pOPGtsv66qvcrncy2QyvWKxeOcLtWKxOPcbAfW1fzb9PDlu0SBMje2XddTXOmtWfe2XddbC+IfbV1dXM8fRP27WLB71tX82/RzZD51mzcCfRY3dTRBGIgyn0rOeoPonuXQ6PfOJbpb+7J3hvmadLKYZDtOmBWn9gGTeTxvW0SZfravG7hOCRcw+xaux/bGO+hp+odK/TAu58vn8zMd0EvW1Xzb5PDnJokFYr6fG9sk66mvdNau+9se6a2F4dk46nZ74uAy//p/ndb/62i+bfi/Z7yOfzy89ZjU2myCMRBhf49+/pFKpXj6f752fnw/+p51nZsS4m5ubXj6fH5kyOumSzWZ7+Xx+7k8Hhj996N/u5uZmsOyt/2S7yHjX0SbrqbF++LDsZZ49BdTYfljXOWw8tB9us1gs9rLZ7OD6Mi/o1Nf+WPfz5F2WCcL641Zju28d9bWJmlVf+2HTtZBKpXrlcrnXarV6rVarVy6XB39bZD8n9bU/Nvkced9lkePjVmOTCcJIjKurq975+XkvnU6PPJGl0+lePp/v1Wq1nf0ftr98aXjc2Wx2oTcLm2gz6dTY+ttMsnXU183NTa9YLN56nPptXl5erqRm1dd+cA5bf5tJto762lTNqq/dt6lauLy8HHxI1O+jv8XAsjOA1Nd+2FSNDU+sWBU1dttRr9frBQAAAAAcuAfbHgAAAAAAbIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAJA43W43jo6O7ry02+1tD3VnVSqVO//9Tk9Ptz3MEUe9Xq+37UEAAAAAbFK3243j4+PB9UwmE2/evIl0Oj1yXCqV2vDI9ku32x38/OnTp2g2m3FxcTH4XTqdjqurqy2MbDJBGAAAAJA440FYrVaLfD6/xREdjkKhEPV6PSJ2LwizNBIAAABIPDO/Vmd8Vt0uEYQBAAAAiXdycrLtIbABgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAMCCut1uVCqVODs7G3xDYl+9Xo9cLhfHx8dxdHQUZ2dnUa1Wp7ZTKpXi7Oxs5PjxNnd9HPvim20PAAAAAIgolUpRqVSWum0mk4lWq7XiETGu3W5Hs9mMt2/fRrvdvvX3TqcThULh1t/a7XZcXFxEq9WKy8vLwe8rlUqUSqWJ/RQKhSgWi1Eul3d2HPtIEAYAAAA7oNvtRkREOp2Oi4uLSKfTE497//79rcDsUEKKXdbpdOLVq1cRERPDp2q1GhcXF5HJZKJcLkc6nR7cpv/YVqvVKBQKkc1mI5fLxYcPH+L8/DzOzs7i5OTk1mNbqVRu1cKujGNfHfV6vd62BwEAAABJd3FxEe/evYubm5uZx52dnY0EIOfn5yOze5hPt9uN4+PjwfVWqxWZTGau247PoEqn0/Hp06d48+ZN5PP5kWM7nU6cnp4Orvf7ODk5iVqtFqlUauT4ZrMZuVxucH3W47sr4xg3PLsxnU7H1dXVXLfbBHuEAQAAwI748ccfZ/69UqmMhGCpVEoItgWTArObm5tb4VPE1yAom80Orrfb7eh2u9FoNG6FTxER2Wx2ZOZVs9nc+XHsE0EYAAAA7IBPnz7NnJHU6XRu7eNUq9XWPSwmODk5Gbk+KXgaNjyzKiIm7sc1bLgOOp3Ozo9jnwjCAAAAYAeUy+WRGTvjCoXCyPXz8/OZx7M7xmdcjQdY48b34lpVCLUr49gmQRgAAADsgFkbkVer1VtLIhfZIL9SqUQul4ujo6PB5ezsbKHxVSqVkdsfHx/HxcXFQm0k1V2B0136m9wfyji2SRAGAAAAO6zT6dwKnCZtbj5LsViMRqMxsnRukdk97XZ7ZBldKpWKn3/+2f5ka/Ldd99tewgRsTvjWCVBGAAAAOyw8RAsn88vvSRyOPxaZHbP+LLMZ8+eLRTEwa4QhAEAAMCOqlarI9/Wl0ql4s2bN0u11e12o91ujwRY88wKK5VK8enTp5Glm+PBGOwLQRgAAADsoG63e+tb/d68ebP0TKx+oPbs2bPB7+4KwtrtdlQqlXjz5s3IsTbpZ18JwgAAAGAHFQqFkeWL+Xx+ZI+vRb19+zby+Xycnp4OfnfX8shCoRDn5+cjvxOCsc8EYQAAALBj6vX6ypZE9jWbzcjlciNLHGfNCOvvTXZ5eRlv374d/D6Xy83VX3+T/1wuF4VCYRDs5XK5OD4+Hrl/08Z6dnY2uMw6HuYlCAMAAIAd0u1248WLFyO/u8+SyIivSxy73W5ks9mRIOzq6mri8c1mM6rVatRqtcH1vnlmpVUqlTg9PY3T09NoNBpRq9WiXC5HoVCIZrM5GMsk/fAsl8tFq9WKVqsV6XQ6crlcVCqVwX2BZQjCAAAAYIe8ePFi4SWRlUolqtXq1L+/ffs20un04NI3aUZYt9uNQqEQxWIxMplMdDqdwXhSqdTI7ScpFApRKpWiVqtFsVgc/D6dTsenT58iYvryykKhENVqNc7Pz0du+/z584j4unH/2dnZrb3TYF6CMAAAANgRzWYz6vX64Pq8SyIbjUacnJzMbLcfPt31rZEvXryIk5OTKJfLEREj4xneaH+Si4uLqNfrcX5+PjG86wdqk5ZXVqvVQV/9vvsymczg56urq7i8vJw5jl3XDwS3bVfGsUmCMAAAANgRhUJh5Po8SyK73W40m82pM7W63W602+2Rtvttjgch9Xo96vX6YElkxNeQrW/W/mD1ej2q1WqkUqmpQVU/eJs0I6zfZz6fv3WfhwO7u77pcheN/zvftbTz119/PehxbJMgDAAAAHbAxcXFSDCRzWbn2o+rv5/YtCCsv7/XcPjUP3a4v/6SyHK5PDIDa979wfrj+PHHH2eOI5VKjbQ//vcffvjh1t+Gw7jvv/9+6hg2ZTyMuytQGv/7tL3Zph0/LfzblXHsE0EYAAAAbFl/c/ph/Y3lxy/9mVelUilOT08HywmnzRx7+/btreBp0j5hhUIhMpnMyN5cwyHYpPCqr1KpDEKT8/Pzicf0Z3xNC7Kmjb/b7UalUomIiGKxeK8vDViVV69ejVx/9+7d1BCq2+3emiH37t27meHWu3fvRn43bYbdroxjr/QAAACArcpkMr2IWPqSSqWmtp1KpXrlcnnkd8VicXDbRqPRK5fLvYjoXV1djRx3fn4+OG68jfE+IqKXz+cn/v3m5ubOdmq1Wi8ieplMZuR26XS6FxG9YrE4tf9lDI8pInqtVmvm8a1Wq5fNZgf3ddIlk8n0arXa4Pi7HtdMJtO7vLzs9Xq9XqPRGNzXaY9xNpvt/cM//MNOjGO8VoYN11c6nV7Fw7Uy39wvRgMAAADuq9VqraXddrsd3W731p5cp6eng58bjUZUKpUol8u3llcOzwib9k2P/T4ipu8hNjxzaVo7+Xw+Wq1WPH36NM7OzuLk5CQ+ffoUmUwmGo3Gnd9WuW79cSxy/CKPazabvXOpYt/f//3f78Q49pEgDAAAAA7U27dvJ+7JNfwNk5VK5daSyIivS+n6y+am7esVMbpv1KRlj51OZ+4llq9evYrvv/9+ocAJFmGPMAAAADhQ9Xp94gys8dlVw98S2Te8P9S0WVwRd2+gXiqV4vnz5yPtdLvdwd5mfYVCIer1+sygDO5LEAYAAAAHqN1uR6fTmfgtjMNB2OXl5cRlh8Ph2LQlj+NtvX37dvBzt9uNXC4X5XI53r9/HxFfZ4N1u9148eLFrXCtP2usUqnE2dnZrS8PWLdPnz5ttD+2QxAGAAAAB6hUKk39W/+bF7PZ7MRveex/Q+U8stnsoL1KpRIXFxdRKBTi7OxsELL1Z43V6/V4+vRplMvlW9/+WC6XBz+32+24uLiIo6OjuLi4mGsc93XXzDbmN+2bK3eBIAwAAAAOSLPZjLOzs0GQVSqVolAo3Aq2MpnMrSWR1Wo1crncrRlg/XBr0iytVCoVP/3002BJ47t37+Lk5CRardZgtlh/aWQ6nY5arXZrBlq9Xo9arRZXV1dRq9VGZotVq9WRzf3XpVQqRbPZjG63O3JhtvF/r2azufHZfIs46vV6vW0PAgAAAEimSqUSb9++vfXNhp1OJ0ql0mAvsfPz87i8vFxZv91uN46Pj+88rtVq2bdsikqlMnPmYcTX8HOXvoVSEAYAAABsRb1ej0KhMDNsKpVKUalUdi5QYT8JwgAAAICtyOVy0Ww2465o4ujoKDKZzK1ZY7Aoe4QBAAAAW9HfMH/WXlz9v41/yyQsQxAGAAAAbEV/E/1Xr15NPaZUKkU6nY4ff/xxU8PigAnCAAAAgK3I5/NRLpejUqnExcVFtNvtiIjBtw/mcrn49OlTtFqtwewxuA97hAEAAABb1e12o1qtxtXVVXz69CnS6XScnp5GNpuNdDq97eFxQARhAAAAACSCpZEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCL8f9VGx7hum6xuAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -48,32 +50,25 @@ ], "source": [ "fig = plt.figure()\n", - "plt.hist(array[\"z_mag_x_fringe\"], bins=50,\n", - " range=[5150,5300], color='#2A9D8F', density=True)\n", + "plt.hist(array[\"z_mag_xEndT\"],\n", + " bins=100,\n", + " range=[5100, 5700],\n", + " color=\"#2A9D8F\",\n", + " density=True)\n", "plt.xlabel(r\"z$_{Mag}$ [mm]\")\n", "plt.ylabel(\"Number of Tracks (normalised)\")\n", - "mplhep.lhcb.text(\"Simulation\")" + "mplhep.lhcb.text(\"Simulation\")\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n", - " expsuffix: Custom Text(0.05, 0.955, 'Simulation'))" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC20UlEQVR4nOz9b2xbd57ne34oO4Fzk5JJpdGAVgKqTE4a6bsPuk3K86Duoy6RUwvcZJPpkPYg6STYizKZZGv+QDMh4wQX6MHCUcjuFjDbs2mTrr7AOB1gZLKqEyQD1ER09aM7wI6l4+pnwVTpOA1Iy8VgIx2rk403iXn2gZoskpLIQ/KQh3/eL4CIZH3545f645gf/X7f47Nt2xYAAAAAAAAw4Wa8bgAAAAAAAAAYBoIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEwFgjAAAAAAAABMhdNeNwD04tFHH9X9+/d16tQp/fZv/7bX7QAAAAAAAIf++3//73rw4IHOnDmjL7/8cqiP7bNt2x7qIwIuOHXqlKrVqtdtAAAAAACAHs3MzOjBgwdDfUx2hGEsNQZhMzPtT/h+5zvf0WOPPTaMtjqqVCqqVquamZnR/Py81+0MzDQ8z2l4jhLPc5JMw3OUpuN5TsNzlKbjeU7Dc5Sm43lOw3OUpuN5TsNzlKbjeU7Dc5RG83l+8cUX+vu///u2NbXX86dOnRpGS00IwjCWfvu3f1u7u7uS1HFn2L/6V/9Kf/zHfzyErjpbXFzU7u6u5ufntbOz43U7AzMNz3ManqPE85wk0/Acpel4ntPwHKXpeJ7T8Byl6Xie0/Acpel4ntPwHKXpeJ7T8Byl0Xyef/zHf6x/+2//raNaL0YdEYRhrDlJvWdnZ4fUDQAAAAAA0212dlYLCwtta2o72bzgaRD2xBNPePnwTXw+n/7bf/tvXreBLo1S6g0AAAAAwLRbWVnRyspK25raTjYveBqEbW9vy+fzyct5/bXH9/l8nvUAAAAAAACAwWs/ZXwKcNFMAAAAAACA6eD5jDDbthWPxxUMBj15fMuyVCgUPHlsAAAAAAAADI/nQVihUNCPfvQjT3uIx+P64Q9/6GkPAAAAAAAAGCzPj0ZGo1GvW9CFCxe8bgEAAAAAAAAD5vmOsLm5Oa9bAOCylZUVHRwcaHZ21utWBmYanqM0Pc9zGkzL13Ianuc0PMdpMS1fy2l4ntPwHKfFtHwtp+F5TsNzRG98tofT4k+dOqX9/X3PvzHv3bunubk5PXjwwNM+4FztUqsLCwva2dnxuh3HxrVvYNLxswmMHn4ugdHDzyUwesb159LLvj09GjlKV2wcpV4AAAAAAADgPk+DsGw26/luMEk6e/asstms120AAAAAAABggDwNwl5//fWhPt5nn3124seG3QsAAAAAAACGy/OrRg5TKpXyugUAAAAAAAB4ZKqCsM3NTa9bAAAAAAAAgEdOe91ALz777DNZluW43jRN5fP5ru4DAAAAAACAyTIWQdhnn32mbDarcrks0zR7WsO2bfl8Ppc7AwAAAAAAwLgY+SDsypUryuVykg7DLGCcrays6ODgYCSulgrgN/jZBEYPP5fA6OHnEhg9/Fx2z2ePcLr005/+VIlEQpLqu7n6adfn8+nBgweu9AZvLS4uand3VwsLC9rZ2fG6HQAAAAAA4JCXr+lHekfY6uqqpMMAy7ZtBYNBhcNhBYNBSdLjjz/ecY3PP/9clmXp5s2bunfv3kD7BQAAAAAAwOga6SDMMIz6TrCNjQ0tLy/3vFY6ndYTTzzhVmsAAAAAAAAYMzNeN9CO3++XdBhi9ROCSVIwGNS5c+dc6AoAAAAAAADjaKSDsNoRyAsXLriyXj6fd2UdAAAAAAAAjJ+RDsJqu8D29vZcXQ8AAAAAAADTZ6SDsDfffFO2bcswDFfW+8lPfuLKOhgdlUpFi4uLbW9ra2tetwkAAAAAwFRYW1vr+Dq9Uql41t9ID8s/e/as3nnnHWWzWWWzWX3nO9/pa718Pq8f/ehHLnWHUVCtVrW7u9u25uDgYEjdAAAAAAAw3Q4ODjq+TvfSSAdh0uGg/I2NDSUSCf385z/veZ27d++6trMMo2NmZkbz8/Nta2ZnZ4fUDQAAAAAA0212dlYLCwttayqViqrV6pA6auazbdv25JG7tLS0pHv37imTyWhubs7Rffb29mRZlra3t3Xz5k1ZlqUHDx4MuFMMw+LionZ3d7WwsKCdnR2v2wEAAAAAAA55+Zp+5HeESdIvfvELSdL29rZSqVRPa9i2LZ/P52ZbAABgCGxbqnb4td2MT+r0v3m31gEAAMD4Gvkg7NVXX1WhUJAk+Xw+9bKBjQAMAIDxVbWl02+1r/n2qnSqw//u3VoHAAAA42ukrxp5/fp15fP5evjV6ynOMTn9CQAAAAAAgAEa6R1h+Xxe0m92gkWjUcViMfn9/q7nhF27dk2fffbZALsFAABeef+O9FJkdNYBcDyOKAMAvDbSQZhhGPL5fPL7/drc3NS5c+d6Xuvy5ct6/PHHXewOAAAMw/t3Ote8XJJOzUgvnB/8OsC0cTO84ogyAMBrIx2E+f1+3bt3T1euXOkrBKutdf48/6oFAGCc3Lsvvfahs9pXPpCe/l1p9szg1gGmEeEVAGCSjPSMsEjk8GxCMBh0Zb3r16+7sg6A6WZZltctAFPjPUP68htntV98Ld0wBrsOAAAAxttIB2GpVEq2bcs0TVfWG5UdYaZpKhaLOao1DEOpVEqhUEg+n08+n0+hUEiZTGYgL8Zrj1Mqlbq+by6XUywWUyAQqPeZSCRULpdd7xMYNsMwlMlkFAgEdPnyZa/bAabGR592V//xCfVurQPgeE6OHnuxFgAArUY6CIvH4zp//rzW19ddWe9nP/uZK+ucxLKseljV7hYKhTrucrMsS4lEQpFIRIVCoSkMNE1TuVxOgUBAhULBtf4zmUxPoWO5XFYgEFAmk5EkFYtFbW9vK5vNyjAMxWIxxWIxdtFgYGohVSwWUygUqoexgUBAkUhEsVhMmUzmxFC29rPWyLIslUolJRKJ+jq5XI7vY2DI9r9yp96tdYBp5HS+npM6N9cCAKAXIx2ESYehytbWlv76r/+677VWV1dd6Ohk3YRStdDoOJZlKRKJONqVlUqllEqlHD/uScrlsnK5XE/3q4VcyWRSGxsbikajCgaDisfj2t7eVjgcVrlcViQSIUQ4QaFQcBSitt5aw5te9fLYgUDgxPUSiURPa3aze9CyLGUymfrnIZfLqVwuyzTN+veZZVkyDKP+/R2Lxer1mUxGhUJBiUTi2J+1y5cva3V1VaVSie9bwEOBR9ypd2sdYNp0O1/v4P5w1gIAoFcjH4QFg0Fdu3ZNP/rRj/pa5969ezKMwQ78cBq01YKikyQSCZmmqXA4XN9dtb29rWKxqHQ6faS+UCj0dJSxprb7rJ/7BYNB5fP5Y+uKxaKkw51svTzONEgmk9rf39fW1pbi8Xjb2mg0qo2NjXq9G2zb1vb2tvL5vPx+/4l1ta/z9va29vf3T6wrFova39+vB6PtpNNpbW1taX9/v2NtTe2IYmt4G4/H6+H5/v5+/XltbGwomUzWn5thGMrlckqlUvWfndawq7aObduuzSkEpoltSw+q7W92h6vQSdLTT3b3uE+dUO/WOjVuPT9g1Lk5X49ZfQCAUeCz7dH9Z1rjUcZ0Oi2fz9cxJDiOZVm6efOmLMvSgwcP3GyxrlAoKJVKKZ1Od5z/tbS0dGLY0LhONps9tqYWKDUGe36/v20w0U5trb29vXoYUCwWO36uY7FYfQdPPp9XMpls+xi1wKFTrROLi4va3d3VwsKCdnZ2+lprFKVSqWN3GNaCnkEyTVOhUOjYj+3v77cNyk4SiUSODaK7/V6ozddrPcKbTCZPDGJb5XK5Y3dkBoNBbW9vH3uf1q/HML4OwLh7UHV4lbkOv5K7d19aeNvZi+fHHpZ2r5x81Ug31qlx6/kBo+6H/5v0ya+6qH9C+vn/Mvi1AADjzcvX9KeH+mhdevvtt3Xnzm8GBNi23dPxvdp9fb7BXdM5m80qGAyeGF51s040Gm27TjAYVLFYbAorLMtSuVx2vKOmprabbGtrS8vLy47vZ5pm0zG2ixcvtq2/dOlSPQjLZDJ9B2GT7qQgzI1jsJ0Eg0GFw+EjwVU8Hu8pBJNOPsLbzfdB7RhuI7/fr1u3bikcDjteJ51OKx6PHzmqu7e3d+J9en3eAPp39oz07jOHM4M6ufbsyeGVW+sA08bN+XrM6gMAjIKR/j3lxYsXZdu2apvWBhlk9aNUKsk0zbZzv5wwDEOmaTraaXJc6Nbt0U/TNOu7z7oJEiQ1PXY0Gu0YFDTuLqsNIcfJTjqKN6wjesc9Tj+Pfdx9uwmXahddaL1/tyFYYz93795t6oE5YMDoesHBRZ9vxDvXubWOUwz7xiRwc76e27P6OKIMAOjFSAdhtR0kPp+vHoj1ehuk1dVV+f3+jruiOllfX2+aY9RJ6+6vzz//vKvHSyQSCofDPe1ia9yt5DSIaAxD3LoS6KQ66Xtgbm5uuI2MANM0j92tWCwWewrBavx+v2sz1kZJLZjH8bq5IAMGz82g6HmXwiun63DlO0wLN+fruT2rr2ofHlFud6sShAEAWoz00cizZ88qHA7rzp07ymazCofDPQUBpmnq7bff1i9/+UvXezQMo74TKxAIKBgMKhqNKhaLdT3P7NKlS13tumkNAU6a63ScTCYjwzBOnInUTuvOswsXLji6Xzgcrr9AZ0fYaDvu5+zxxx93dT2nP8uJROLIbq1kMtn1MeDjBINBpdPpno9cD5NhGMrn8/UrY/r9fs3Nzcnv9ysYDOrSpUuSDq92mc1m2x47LZfLSiQSmpubUz6fd+VzOapqx7iLxWI9BBul0ZiT/LVwGhSdmum8A2vGdzhvq1NNJ26t0+2V757+XY5aYvhsu3MINOOTOh24eDEsvfFz5/P1XmrzOyo31wIAoFcjHYRJh+FQKBTS66+/3vMa58+f13PPPTeQ3TStxyFN01ShUKjvmIrH47py5YqjnSvd7m5pDQechmi1K+bl8/mejru17qhwukZrnWEYfe3oweQrl8vHHvntdxZfoytXrtSDMMuyRm4emGVZunz5cj08DgaD9ZDdNM16GN8YLnc65lkLFy3LUiqV6ikQH3W1i4qYpjnSx14n9WvhdlDk80mnXJiO4NY6vVz57sff7/9xgW7Udku18+3Vzj8Tbs7XY1YfAGAUjPTRSOnw+J9bv71fWlpyZZ2a1oHxxymVSopEIgMZct56/MnpToLl5WXF4/GeB9bfvn276X2nwUHrjqLNzc2eHh/T47ifm36G9h/H7/eP9MUbWq+4ur29rWKxqGKxqK2tLW1vbx/52e8UpkzDEdtgMKitrS3t7+8rnU573c6JJvVr0UtQNE4++rS7+o+7rAeGxenRXTfn6zGrDwDgtZEPws6fP+/a7o9/8S/+hSvr1ASDQeXz+foxpHY7owqFgiKRiKuP3xgkOX0hn0gkJEnXr1/v+XFbA7hed4RNys4HDEbtCGCrK1euuP5YtZ+LdleObKd2vC0UCsnn8ykQCCgWix175c9u5HK5etieTqeP/TkPBoPa2Nho+nuy04yw2m7Q2hVoJ13rhRZGyaR+LSY9KOLKdxgHw55j59acvm7WYlYfAKAXI380UpLOnTvnyjp//ud/rqeeesqVtWpaX5halqVCoaDV1dUjx3FqV77b2Nhw5bHz+Xz9bSdXrCyVSiqVStrY2OhrR41bg7hH+bgSvHdSKDCI47TRaFTZbLbr3TmWZWl5efnI8U3LslQul1Uul5XNZnse7L+6ulp/u9Ou0nQ6rc8//1y5XK5joBeNRqcqiPZq11UqlWr6e/o4k/q1mPSgyO0r3wFuc/t4slvz9dxci1l9AIBejfyOMDcN4yie3+9XOp3W/v6+isXikcCpXC67Mpi7NhtIOpyX1GlXlmVZSiQSrgwZ7zXAav1c9Lr7BtPhuGPHgxwknk6nuwqITdPUuXPnjp1h1loXiUS6vlphL7OtahcV4aqR3mucFTmNJj0ocvvKd4Db3D6e7PMdXtii3a3T0H2315r0I9gAgMEZix1hrT777LOuXiCapql8Pj/0HUjxeFzRaPTIjpHV1dW+Z9bUjkHVrnrXyfLycv0o56hw4+tRqVS0uLjY9zorKytaWVnpex24wzTNY8OcUbm4Qi1YtixL8XhcsVhMS0tL2tvb08bGxrFhdywW0/b2tuOjxK0/H+Vy2dER6CtXrtSPesIbpmkOZC7kOHn6SemTXzmvH7egiCvfYdT1cjx53C7oMA3PEQBG0dramtbW1vpep1KpuNBNb8YiCPvss8+UzWZPnBnkhG3b8jn9VZWL/H6/tra2FIlE6mFY7dhUr7tbDMNQoVCQ3+93dMwyl8vJMAxtbW319Hit/H6/KyGWGwPPq9Wqdnd3+17n4OCg7zXgnpN+zkOh0JA7OV5td9fGxsaRn+NoNKpUKqVYLHbkeSQSCcc/h62BWSaT0cWLFzv+3NSuKDmKV8CcBpZljfRMsmGZ9KCIK99h1E368WRpOp4jAIyig4MDV16De2nkg7ArV67Ud1e4dfVIL1y/fr1pWP5xL6Cdunz5siTp1q1bHXeXGIahTCZTPzLlhrm5OVeCMDfm9szMzGh+fr7vdWZnZ/teA+45KQgbpSvstfsZrg2wbw3uDMNwHIL7/f6m0NmyLEUiEW1sbHT8uR/nvyvHWW1m3DgfTbVtqdrh22fG1/nY0jQERS+c7/z83LzyHdCNST+eLE3HcwSAUTQ7O6uFhYW+16lUKqpWqy501L2RnhH205/+VNlstv6izosdXW4Jh8NNL357faGUSqVkGIbj4duJRELhcLjvo5iNet1l0hqeubFbZX5+Xjs7O33fOBbZWSaTkc/n6+nW7RVTTwpaR2WHk9/v7xhmBYPBY694281VcFtrTdNUKBRyZfaUYRhKpVIdd9nVLgASiUSaHrd2/C8QCMjn8ykUCh17JNQ0TWUymfoVNUOhkFKp1LFf49rjtH7/tIrFYvX1Gm9uHn8vFApNjxMIBBSJRE6c8WgYxrEz4xr7O+lz7fRrUWNZlnK5nGKxWP3zX+svk8k4+v+LaZrK5XIKhUJNPefzBZ3+P0R0+pRPpx8P6fT/mNDpf23p9Fuq3zoFZTVOAqBxDopqA78//1+lf/eU9E/+kXRh4fC//+4pae9/lf5ozHa6YXJMwxy7aXiOADCKVlZWXHkN7saGll6N9I6w2hXTfD6fbNtWMBhUOByu74Z4/PHHO67x+eefy7Is3bx5U/fu3Rtov53EYrGuB2Y3qg1fzufz9eNP7eRyOZmmqWg06mhmUOOLyNXVVa2vr9ffv3TpUv0xl5aWml44OT2C1Tocf1SOuWH0jPpV9JaWlhzVpdPpI1eQ7ebvgGQyqWKxeOQ+tasRXr9+vaudnoZhKJ/P6+bNm/WejvvZrYVf6+vrx14MIJPJHAmEaoHX9vZ2fRbhSXWFQkHlcllbW1tNj59MJpVMJpVKpdqGfbUj4blcztEVc7tRKpWUSCTk9/t1/fr1+t97hmEokUgok8kon88f6T0YDOrWrVsql8tNPZ10FNbp16JVoVCozx/LZrPKZrPy+/0yDEOrq6vK5XLK5XKKx+NHrrxqWZZWV1dVKpWOhGXHXgHVMg9vn5Wl/8uW5Hc2364bz49pCCb9w8BvnzT3P0j/4n86vAGjYtKPJ0vT8RwBAIMx0kGYYRj13QAbGxtaXl7uea10Oq0nnnjCrdZ60nicqdsjXuVyuf7i18nAbOkwBKzdt1uGYTS9IAoGg/UXhK27e0zTdPRivDXcGOQVAOG+WkDRi83Nza7ue1IgMOwLXpykm51p0WhUpVLz+SnDMBwHWBsbG0okEseuEYlEFI/Hdf369Y49maap9fV1xwF0OByW3+9v+rrV5h3Ozc3Vd6XOzc3VAxjpN0FNJpOpXzygFhxubm7WLzJgmqZWV1eP3SGXSCQc7XqLx+OuBmHlcrn+S4MrV640/cIhHA6rWCwqEonINE1dvny5KWjy+/0Kh8NHAv/jvs7dfi1qasFibfZk4/9Tan9H175XSqWSQqFQU2C3t7enWCxWDzprNjc3tby8rGg0qrdXs/o//XXwMPz6m4z0/7MObz9PSf+s80xKAKNhGo4nT8NzBAAMxkgHYX6/X/fu3VM6ne4rBJMOXyScO3fOpc5676GmmxfShmEoFospm806DsEGqXU3jNMgrDHE8Pv9jq+eh9EQCoWGdtXGk3Z7toYM4+DSpUtHQqzNzc2uPpfFYvHE3U+10KNTSN56VLNdgNR49DOfz9dD8UKhcOxstGw2W59/Jh2G5clk8sjFPKLRqK5fv14PmwqFQldHRVu5PTOu01V1G79mrV/TbnTztagpFAr1sDGbzZ7492exWFQoFKpfeTWRSNS/DsFgUMFgUNFotCkIy2QyKhaLikajelCV9DeSfj8pnZmTPviH3cSflaX7lnTGr/fvSC85OO1cOzrYqQbAYEzDHDu3nqNb8xEBAONhpGeE1f6hf+HCBVfW6/QiZ9A2Nzfrbzu9qphpmlpeXlY6ne56zldtvprTW+MLq2Kx2PSxxhdttZ0iNbdv33bUT+Pzd3q0DNNp1HeEdeO4wKKX55FOp7W/v3/isejalSqdrN1NCN0YNiWTyRN3crb+nXbS37eN/VuWNbJf05O+Bxv/3I2h+E6/FrWwzO/3d/yFSGOwVi6Xj90V3Pg8rl+/Xv+6vn+noejJlu+1//fh3+Evl1rqTuDzSadm2t94UQl4a5yPJzvl5DlWbTXNQjzu5nQ+IgBg9I10EFbbBebWLpB+d5X1q/FooJNjgaZp1ndWON01URuAPGgXL16sv33cDKHjNNa5PdcHk+WkcGDUZ4cd57hApXZsuZe1isWitra2jt1RVi6Xtby87Gq45HT3aq87XkfpCovXr19XNptVsVh0tPt2WCFeoVCoP5aT4CyZTDZ9DZz+/+Pefem1D1v+sHEumPWbr9UrH0gH9x0tC8AjtV2Z7W7sygQATKORDsLefPNN2bbtOGjp5Cc/+Ykr6/SqdpTGyc4uy7IUi8V08eLFro4OJRKJoczeapwb5GQGWWNN7WgOcJKTvj/6udiEV44LLpxc6KOdcDisra2tY3ddGYahy5cv97V+L3q9oucoHXf1+/1Kp9PH7rprnZs4TI1HTJ3uIGv8GXL6c/Oe4WzotCR98bV0w5tPx0SybelBVdr7/0r/7n+X/slfShf+/eF//+//++Gf2+xGQZemYVcmYR8AoBcjHYSdPXtW77zzjtbX1/X3f//3fa/n5dHI2lW6/H6/rly50rbWsixFIhEFg0FlMpn6rJd2t3K5XB9iP4w5TuFwuOmFVqd5OY1DpdkNBidOGjI+qkfpuuHWfLxkMqnt7e0jIVSpVBrp0LDX0GzYGq9wGQ6HhzYj77g+utX6Pebk5+ajT7t7jI+7rMfJaseyHv+/Sf/qY2nj19Lm7uF//+XHh3/+HsEjcMQwwz4nR8IBAONhpIMw6XD3VDgcrg9X7tXdu3dd/W1+uVxWIBCQz+dTLBZru3btCmOSdOvWrY4vApeXl+vhVigUcnSr9dDrVf160Rgsrq6unljXeIWyaDQ6EgP/MfouXbp07J+PcsBzktafeTcvFBEMBpuuDFjj9UzEcVa7QEntAgRe72BtDLGchmKtV6R0svNu/6uu2uq6Hidz8gLb6Ww2jLfa7sB2N3YHuo+fQQCYLiN91ciajY0NLS0t6YknnlAmk3F8pbC9vT1ZlqXt7W3dvHnT1Z6KxWL9xUltN1YymTzy4rNcLiuRSGhubu7I5e6PE4lE+grshhkyBYNBFYtFJRIJGYahXC537LHP2my22nwjeM8wDK2uro701yOZTB67ezCfz584MH5Ute7G6bSzqFwuK5PJaGtry9H6wWCw6WqMkvPZfWiWSqVUKBS6ms04aL0M6G/9/6ST8DXwSFdtdV2P4x07m+0Er3wgPf270uyZgbYED9V2B7bz7VXpFMf9XMPPIABMn7EIwn7xi19IOhyU3euOJ9u25XNxEEIikWi6/Lx0OND45s2bikajmpub0+bmpgzDUDqd1pUrVzruBKsFSr3yYqdVPB7XxsaGEomEMpmMbt++rStXrigYDGpzc1OZTEaGYSgcDjvaDYfhuHz5suNA2St+v1/xePzIsdtyuVz/nhoHrSGYk91FwWBQhmGoXC473o3UGg6O0hD6cVELwSTnA+aHofb9IP3mSpud/i5t3AHmdAfi009Kn/zKeV9PPem8FifrZTbbj78/2J4w2t6/I70U8bqLycHPIABMn5E/Gvnqq68qFovpzp078vl8sm2769sgRKNRbW9vK5lMKhgMNr0oMQxDe3t7unLlivb395XNZh0FQMVisafnV7v1exRqe3u7vlY3O26i0Wj9eZqmqeXlZQUCgfpOuNpV7gjBRkMtSIrFYifWuD3AvNf1TgojBjFnblCzxzY3N5vedxLm14KLfo46j0tQ2A83v08Nw6iHYK1/p3ut9Zhw6y9hjtN4hVWnf5+/GJYefchZT489LL00+d9iQ8FsNjTiiN7w8TMIANNnpIOw69evK5/P18OsXkOtQYVhwWBQ+Xxe29vb2t/fl23b2t/f1/b2torFouLx+Ei9mBq0dDqtra2tps/FxsbG2B1jm2SWZdWPz3X7dfn8889d7cVJiBEMBo8Nw8rlsnK5nGu9mKapSCQykBl7rVf8c/p5DwaDMk3TcejXugPspBlr46B1t+JJIaWbu94aZ8+1W9eLizW0/r/EyS89Gp9Ppwu01Jw9I737jLOerj3L0SC3MJsNNd0e0Tu4P9B2pgY/gwAwfUb6aGTtH/u1nWDRaFSxWEx+v7/rOWHXrl3TZ599NsBuAfcM4sW2ZVlaXl6uH6vqdmC72z05XS+dTmtjY+PIkPxMJnPk6qW9KJfLisViJ4Zu/Wo82tnNrs1aEJbL5RQKhToefW5cOxgMHjuvrxdOv06NdZ3u0+njrbvZCoXCkedzXEi4t7fn2i8fSqXSkdDyuMdr1fpzZZpm0585OdZ4nMYZcLWLqZz0vW8YRv0opdMdyTUvnD/cbdLOjfhhHdzBbDbUcETPG/wMAsD0GekgzDAM+Xw++f1+bW5u6ty5cz2vdfnyZT3++OMudgcMzkk7Unp9oV8ul5VKperrXrx4sevH7+cYWr87d2pz6FrnhcViMWWz2Z5CH8uylMlkVCgUTrzyYrv7OlEoFOrPvdurDzaGJ6lUSltbWyeGGoVCoWmHXOMutOM0fi292OHU6KTHj0aj9fAzk8loe3tbiURClmVpY2NDhUKh/n1RW6M1dKpp/d49LoxqDd8SiYSy2azC4bAMw1A+n1c4HK4HlNJvwseNjY36HMjWx0+lUioWi9rb21M2m1UoFGr6fnX6tYjH48pms/UwLpFI6O7du0eeh2VZ9asUJ5PJE382HH/drYaf3fuH93meEMxVzGZDTS9H9AjC+sfPIABMn5E+Gln7B/6VK1f6CsFqa50/z7/eMR5O2jnUGGa1Y1lW/cqDoVBIsVis6X7t5oOZpnnsRRtKpVLPoclJz8fJrKOaYrF47Iv6TCajSCRyZMfYSSzLUi6X07lz51QoFBSNRrueYdc69+s4pmnWj1pGo9GuZ/hFIs2TkAuFQn32Xi3AS6VSCoVCTY+zvb3dcbdfay+tAWNN7fuopt3zXl9fP9LvcVq/TieFdsViselrUigUFIvFlEgkdPPmTW1sbBwJFjOZjEzTPPJ92vp8j7uKcDQaPXYHWCwWUyaTqQdajY9ZKpXqP1uNvTZ+n5bLZQUCAYVCoSMfO663k74WtfvWPi+WZdW/h03TlGmaKhQK9SsPZ7PZE7/nnH4N9FnLz9Rn7QNW9IbZbKjhiJ43+BkEgClkj7BoNGrPzMzYP/3pT11ZzzAMV9aB9xYWFmxJ9sLCgtetuGpra8uOx+O2pIHe9vf3jzz2/v6+nc/nbb/ff+L9gsGgnc/nj73/Sc8nGo227SWdTtvb29uOP0cbGxt2OBw+di2/32/H43E7n8/bGxsb9tbWlr2xsWHn83k7m8023c/v99vFYtHRY25vbx/7udjY2Di2vlgs1j+P8Xjc8XNrfZ61HovFop1MJu1oNGqHw+Gmr1HtOZ/US03te+ukr284HLaz2WzH2mAwaMfj8fr3QDKZtIPB4LFrRqPR+pobGxsnfi8Eg0E7mUwe6Xl/f79p/XA4bKfT6aaa2p+1fg/t7+93fL7HPWY2m60/XjAYtNPpdNP3+/7+fv15NH7OWqXT6aa+G7/XuvlanCSfz9vRaLS+ht/vt8PhsL36Ttb+/3y+b3/7wG66Vavtfx5rX4Nq1bb/26+27eXlk+veead9b+jef9i0bb3R+fZX/DNmov2Tv3T2fVC7/fAvve54cvAzCADD5+Vrep9tD2iSvAtKpZIuXryoXC6nf/Nv/o3X7WCELC4uand3VwsLC9rZ2fG6nb7VdvcMQzgc1tbWVtOf+Xy+rtfx+/3a398/9mPHHWN04rhdPicplUpaXV09dvdaO8FgUKlUSslksqtdYLWZVK3Py+/3a2lpqb5LZ3Nzs370rnUHETAID6rS6bfa13x7VTo10nvAp5uTr+GNuPRipH0Nxtu//y/SP//Ief2fP83RSLfwMwgAw+fla/qRDsKkw+NBMzMzun37dt9r/exnP9Mf/uEfutAVvDZpQRh6Vzu+t76+Xj8WVzsGGgwG63ObLly4oHg83vVFAjo9Xu0xa4+ztLSkRCJBAIahIQgbf7YtVe3Dqwb+1R3pP316eOwt8Ij0Pz8pvXhe8j8i9fA7C4yRe/elhbedDcx/7GFp9wpXb3ULf48CwPARhLVhmqb+0T/6R/rpT3+qf/pP/2lfa124cMGVQA3eIwgDgEO8gAMmx42tzldulaS/usjVW93E36MAMHxevqYf+b/Og8Ggrl27ph/96Ed9rXPv3r2uj1ABAAAAw+Ik3LoRJwQDAKAfp71uoJ2f/exnkqTf+q3fUiAQ0BNPPHHkql5OWJZ17FXCAACYBu/fkV5itg0w8mZ8hzuPOh2Thbtqn/dONQCAyTDSRyOXlpZ0586d+vu2bfc01Lvxvg8ePHCrPXioto1yZmZG8/PzbWtXVla0srIypM4AYLg4SgUAAIBRsra2prW1tbY1lUpF1WrVk6ORI70j7OLFi/XjjD6fr+cQDJOrWq1qd3e3bc3BwcGQugGA4bp3X3rtQ2e1r3wgPf27DNcGgEGqXfyinRkfF78AMNkODg46vk730kgHYalUSm+88YZ8Pp9GeOMaPORkR9js7OyQugGA4XrPcHaFOUn64mvphiH9+PuD7QkAplnVdjh4nyAMwASbnZ3VwsJC25rajjAvjHQQdvbsWYXDYd25c0fZbFbhcFhzc3Ndr2Oapt5++2398pe/dL9JeGp+fp6rRgKYWh992l39x58ShAEAAGCwnIwnqo078sJIB2GSdOnSJYVCIb3++us9r3H+/Hk999xzPYVoAACMqv2vBlsPAAAATJoZrxvoJBqNunYscmlpyZV1AAAYBYEurx7XbT0AAAAwaUY+CDt//ryy2awra7m1DgAAo+DpJ7urf6rLegAAAGDSjHwQJknnzp1zZZ3z57luPABgcrwYlh59yFntYw9LL4UH2w8AoLP373jdAQBMN0+DsFEaXj9KvQAA4MTZM9K7zzirvfasNHtmoO0AwNRzEnK9XCIMAwAveRqERSIRHRwceNmCJOnevXuKRCJetwEAQNdecLDZ+UbcWR0AoHf37kuvfeis9pUPpIP7A20HAHACT4Mwt4bgu2GUegEAwE3PE4IBwMC9Z0hffuOs9ouvpRvGYPsBABzP0yDM5/N5+fBNRqkXAAAAAOPlo0+7q/+4y3oAgDvYEQYAAAAAfdr/arD1AAB3nPa6gbt37+r3fu/3PO1hc3PT08cHAKBXMz7p26udazAdbFuq2oezit67I/2nTw9fbAcekZ56Uvqj84dvsxEecF/gkcHWAwDc4XkQdvnyZb3xxhvy+/2am5sb6mPv7e3JNE2l0+mhPi4AAG7x+aRThBr4B1VbOv3W8R/b+LX0Lz+W/kNceolrBAGue/pJ6ZNfOa9/6snB9QIAOJnnQdjW1pYSiYSnPdi2zYwwAMDQ1HbttDPjY9cOuvf+nc41L5ekUzNcSdRN7MSDJL0Ylt74ubOB+Y89LL0UHnxPAICjPA/CaryaF0YABgAYtna7dmq+vcpOL3Tn3n3ptQ+d1b7ygfT070qzZwba0tRgJx4k6ewZ6d1nDsPmTq49y88fAHjF02H50mEA5uXQfAb2AwCASfCe4WwniiR98bV0wxhsP9PE6U48J3UYb052Wt6IsyMTALzk6Y6w/f19Lx8eAABgYnz0aXf1H38q/fj7g+llmrATD916nhAMADzlaRB29uxZLx8eAABgYux/Ndh6HK+XnXgEkAAAeGdkZoQBAACgd4FHBluP47ETD41mfIczHjvVAAC84/mMMAAAcBSzhNCtp5/srv6pLutxPHbioZHPd3hV1nY3rtUFAN4iCAMAYMgYrI1BeDEsPfqQs9rHHpZeCg+2n2nBTjwAAMYLQRgAAEPU7WDtg/sDbQcT5OwZ6d1nnNVee5aB7W5hJx4AAOOFIAwAgCHqZbA24NQLDq5GdyPurA7OsBMPg2Lb0oNq+5tte90lAIwfhuVjrFUqFS0uLratWVlZ0crKypA6AoD2GKyNQaoN6r53X/qrO9J/+vRwJlXgEel/flJ68bzk52ieq2o78V4uda5lJx66UbWl02+1r/n2qnSKmWMARsza2prW1tba1lQqlSF1cxRBGMZatVrV7u5u25qDg4MhdQMAnTFYG4Pk8x2+KJ77H6R/8T8d3jB4L5zvHISxEw8AMC0ODg46vk73EkEYxtrMzIzm5+fb1szOzg6pGwDojMHawORhJx4AAL8xOzurhYWFtjWVSkXVanVIHTXz2TYnyzF+FhcXtbu7q4WFBe3s7HjdDgA49u//i/TPP3Je/+dPczQSAKbRg6rDo5FMfQYwhrx8Tc9fmwAADBGDtQEAAADvEIQBADBEtcHaTjBYGwDQzvt3vO4AAMYPQRgAAEPmZGA2g7UBYLo5CbleLhGGAUC3CMIAABhBzxOCAcDUundfeu1DZ7WvfCAd3B9oOwAwUQjCAAAAAGCEvGdIX37jrPaLr6UbxmD7AYBJMpFB2L179/Tqq6963QYAAAAAdO2jT7ur/7jLegCYZqe9bmAQTNNUoVDQG2+8oe3tbS0tLWl2dtbrtgAAkCTN+A4ved+pBgAwnfa/Gmw9AEyzidwRVi6XZdu2gsGgYrGYAoGA3nzzTa/bAgBAkuTzSadm2t98BGEAMLUCjwy2HgCm2cQFYbdu3VImk5Ek2bZdv2Wz2bZh2KuvvqonnnhCFy5c0JtvvqmDg4NhtQwAAAAAdU8/2V39U13WA8A089m2bXvdhJuWlpYUDAZ16dIlhcNhmaapTz75RH/yJ38in88n0zT13e9+t+k+TzzxhEzTVOOnIhQKaWtriyOVI2pxcVG7u7taWFjQzs6O1+0AAAAArrl3X1p429nA/McelnavSLNnBt8XALjFy9f0E7cjTJJu3ryp5557TufOndPy8rKy2az29vb0ve99r75brObVV1/V9va2JCmTyaharWpvb08/+MEPdPnyZS/aBwAAADDFzp6R3n3GWe21ZwnBAKAbExeE+U4YquL3+7W1tVUPvWry+bx8Pp/i8bhWV1frtfl8Xvv7+/rss88G3TIAAAAANHnhfOeaG3FndQCA35i4ICwQCOjP/uzPjv2Y3+9XIBCov3/9+vX629ls9kh9JpNRuVx2v0kAAAAA6NPzhGAA0LWJC8LS6bRef/11vfbaa8cOvN/f36+/XdsNFo1G9b3vfe9I7dLS0pEdZAAAAAAAABhPp71uwG3RaFSXL1/WtWvXlM/nFY/HdeHCBUnS+vq6tre39cMf/lDhcFiGYcjn8ymVSh271tmzZ2Wa5jDbBwCMMNuWqh0uMTPjk044pQ8AAADAYxMXhEmHO7329vb005/+VKVSSaVSqf6xzc1Nvf32201HIcPh8LHr3LlzR3NzcwPvFwAwHqq2dPqt9jXfXpVOEYQBAAAAI2kigzBJKhaLKhQKKpVKKpfL8vv9un79us6fP69isahEIqFbt24pm80qlUrpP//n/3xkjUKhoFAo5EH3AAAAAKbZjO/wlyudagAA3ZnYIEySksmkksnksR8rFov1twOBgC5cuKCf/OQn+r3f+z0dHBzo7bffVqFQaJopBgAAAADD4POxwxgABmGigzCn4vG4TNPU+fPn5WsY7PLOO+9odnbWw84AAAAAAADgFoKwf5BOpxUMBlUoFOT3+3Xp0iU999xzXrcFAAAAAAAAl8x43YDbfvGLXziq+9nPfqaDg4OmP4vH4/rkk0908+ZNQjAAQE/ev+N1BwAANLNt6UG1/c3ucFVkAJgUE7cjLB6P6969e4pGo4rFYopGo/r93//9I3XLy8v60Y9+pFwup+9973tD7xPuqFQqWlxcbFuzsrKilZWVIXUEYJI5CbleLkmnZqQXzg++HwC9s+3DK8Heuy+9d0f6T59K+19JgUekp56U/uj84ds+ZjRhAnDVYwDDtLa2prW1tbY1lUplSN0cNXFBWCQS0a1bt1Qul1UulyVJfr9fS0tLTcHY2bNndf36dUWjUZVKJX33u9/1uHP0olqtand3t21N684/AOjFvfvSax86q33lA+np35Vmzwy0JWCgJj0oahcMbPxa+pcfS/8hLr0UGW5fAACMu4ODg46v0700cUFYqVRSIpHQ3t6eLMuSaZra39/XxsZGPRiTpFgspvPnz2t/f1+pVEo///nPPewavZqZmdH8/HzbGi54AMAN7xnSl984q/3ia+mGIf34+4PtCRikSQ+K2OEJAMBgzM7OamFhoW1NpVJRtVodUkfNfLY9WafBL126pGw223Tc8datW7p586auX7/eVOvz+WTbtnw+nx48eDDkTtGPxcVF7e7uamFhQTs7O163A2AK/PB/kz75VRf1T0g//18G1w8waDe2DoOgTv7q4vgFRffuSwtvOwu3H3tY2r3CDk+MtwdVh0cjJ26CNIBR5eVr+on7q8627SMzv5aXl5XP57W/v6/XX39d4XBY2WxWzz33nMLhsN555x1vmgUAjI39rwZbD4ySbo8CH9wfaDuu62WHJwAAmAwTdzTy3r17J37s7Nmzymazunv3rjKZDIPyAQCOBR4ZbD0wSib9KPBHn3ZX//Gn4/X8AADAySZuR9i5c+f0Z3/2Zx1rbt68qWQyqb/7u78bUmcAgHH29JPd1T/VZT0wSnoJisYJOzyBo5zMzQOASTBxQVg6ndbrr7+uv/7rv+5Ye/PmTUWjUa4qCADo6MWw9OhDzmofe1h6KTzYfoBBmvSgiB2emDZOLw5BGAZgGkxcEBYMBvXOO+8oHo/rtddea1vr9/t1/vx5vfHGG0PqDgAwrs6ekd59xlnttWcZrI3xNulBETs8MU0mfeYfAHRr4oIw6XBX2B/+4R/q2rVr+q3f+i392Z/92Ym7vubm5rS+vj7kDgEA48jJlfFuxMfvCnpAq0kPitjhiWnCxSEAoNlEBmGSVCwWdfnyZe3t7SmdTisQCOjSpUv6yU9+ol/+8pf65S9/qStXrqhQKMiyLK/bBQBMiOcJwTABJj0oYocnpsmkz/wDgG5N3FUjG+XzecViMV2+fFn37t1TqVRSqVQ6UhcOj9m/3gAAAAaoFhS9fPSfTUeMa1D0YljySXr1w+N3yzz60OFzY4cnxt2kz/wDgG5N7I6wmng8rv39fb3zzjs6e/asbNtuuvn9fl2/fn2oPZmmqVgs5qjWMAylUimFQiH5fD75fD6FQiFlMpmed7INYk1JyuVyisViCgQC9TUTiYTK5XLPawIAAG+8GD486nvSzrBHH5LeS4xvUOTzSS9GpN03pT9/WvrhE9I/Xjz8758/Lf2/3pT+iN+VYgJM+sw/AOiWz7Zt2+smhunOnTsyTVOmaSoYDCoajers2bOurG1ZlgKBgKPaZDKpfD7fdq3Lly8fu4OtUT6fVzKZdNyf22tKUrlcViKRkGVZikajymQyCgaDMgxDmUxGpmkqGo2qWCzK7/c7XredxcVF7e7uamFhQTs7O66sCQCdPKhKp99qX/PtVenUxP+aCdPk3v3DGUMff3q4UyTwyOFMsJfC47kTDJg2//6/SP/8I+f1f/609OPvD64fAJC8fU0/tkHYq6++qr/4i7/wuo0muVxOmUzGUe329raCweCxH7MsS5FIRKZpOlqrU6g2qDWlwxCstrvtpPtEIhEZhqFgMKitrS1XwjCCMABesG2p2uH/mjO+w50mAACMgnv3pYW3nQ3Mf+xhafcKITeAwfPyNf3Y/s765s2b+vu//3uv22iyurrqqC4ajZ4YgklSIpGQaZoKh8MqFova3t7W9va2isWi0un0kfpCodBxl9cg1rQsS4lEQpIUDAZPDM6KxaKkwyOhtXoAGEc+3+Fur3Y3QjAAwCjh4hAA0Gxsd4TNzMwoEAjo4sWLSiQS+sEPfuBpP4VCQalUSul0uuP8r6WlpRN3RTWuk81mj62pBUqG8ZtrG/v9fu3v7w9tTUmKxWL1+V+djlMmEol6sNbt0cvjsCMMAAAAcMbJ0f4b8cO5eQAwDByN7MHMzIx8Lb92j0ajisViisfj+t73vjfUfkKhkKTDI4/9rhMMBrWxsdG2zjTN+mPWbGxsKBqNDmXN1tr9/f22Rx5LpVJ9N1ingM0JgjAAAADAGWZcAhg1HI3sQ+MVIMvlsjKZjEKhkB5//HG9+uqr+tnPftZxjZ/85Cd99VAqlWSapuP5YCcxDEOmadaPErYTDAaP7O5q3M01yDUlNdVFo9GOc7/i8Xj9bcuyOh67BAAAAAAAcNvYBmHvvPOObNuWz+er70xqDMX29/dVKBSUSCR06tQpXbhwQX/6p3+qX/7yl0fW6rRTqpPV1VX5/X5dvHixr3XW19eVTCYdD5Nv3an1+eefD2VN6fC4ZU047Oza4o1z0dbX1x3dBwAAAAAAwC2nvW6gV+l0WtFoVIlEQnt7eyqVSrJtW//xP/5H3bp1S5ZlqfHUp2EY9d1Nfr+/foxSUl+7kxrXDQQCCgaDTUc0u3Hp0qW2Q/RbtQZQrccaB7Vm6y6xCxcuOF67dtVKdoQBAAAAAIBhG9sgTDoMVra3t5XJZJRIJJRKpepHAO/evatSqaSNjQ2Vy+WmUGx/f1+lUsmVMKb1OKRpmioUCvUdU/F4XFeuXHG0a8rpzqoay7Ka3j8u8BrEmrUB+e1qjtNaZxhG1/0BAAAA6M6M73AGWKcaAJgGY3s0slE2m9Xt27f1ySef6Hd+53f0t3/7tzp37pxef/11ffLJJ6pWq9rY2FAymayHMY3HKHtlmuaRUKhVqVRSJBJRKpXq+XHaPX6j44baD2LN27dvN73v9Njl448/3vT+5uZmd80BAAAA6JrPdzgIv93NRxAGYEpMRBAmHe58+vWvf60/+IM/UDgc1ptvvtn08eXlZV27dk2//vWvtb+/r3w+33dwFAwGlc/nlc1mm0K24xQKBUUi7l6PuDFISiaTQ1uzNSzrdUdYv1fYBAAnbPvwalntbuN5/WQAAAAA3fLZ/WyJGlHlclkXL17Ub/3Wb6lYLOr3fu/32tb+8Ic/1IMHD1x5bMuyVCgUtLq6euSYoXS4w6rf4fw1kUikPq9re3u7q1lg/awZCASanpvTb6FSqaREIlF/P5lMKp/P99Snl5daBTBeuGQ8AAAAMFq8fE0/1jPCThKNRmWapi5fvqxwOKxcLqd//a//9Ym1y8vLrj223+9XOp1WOp1WqVTS5cuXm0KjcrmsXC6ndDrd1+OYplkPrLLZrCshmNM1jwv4nGg9Qrm3t9fTOo0qlYoWFxf7XmdlZUUrKyt9rwMAAAAAwKRaW1vT2tpa3+tUKhUXuunNRAZh0mHoUiwWVSqVdPHiRa2vr6tYLOq73/3ukdrGXUpuisfj9aCt8UqLq6urfQdh2WxW0uFxw37XGuSa7fQaqDWqVqva3d3te52Dg4O+1wAAAAAAYJIdHBy48hrcSxMbhNXE43Ht7e0pkUgoGAweuzvs8uXLA3t8v9+vra2tpiOHlmWpXC73PKPMMAwVCgX5/X7Xjll2s6bf73clxHI6ZL+dmZkZzc/P973O7Oxs32sAAAAAADDJZmdntbCw0Pc6lUpF1WrVhY66N/FBmKR6uJPL5fT666+33R02KNevX28alr+xsdFzEFYL7m7duuXKkchu15ybm3MlCJubm+t7jfn5eWaEAQAAAAAwBG6NFarNCPPC1IwG/uyzz7S0tKR0Oq3NzU0Fg0H95V/+5dAePxwONwVfrVdedCqVSskwDBWLRYXDYVd663bNXndytYZnbuwIAwAAAAAAcGoidoR99tlnMk1TlmXJNE1tb2/LNE2Zpqm9vb0jAYzP55Nt20omkyoWiyoWi/rOd74z8D5jsZjK5XLP9y8UCioUCsrn84rH46701MuaS0tLTTPPLMtyFGq1DscPhUJd9QoAg/L+HemlSOc6AN2zbalqS/fuS+/dkf7Tp9L+V1LgEempJ6U/On/4ts833LUAAMB0Gtsg7MKFC/Xwqx3bttt+7JNPPtEPfvAD3b592+UOj2o8ctjtscByuaxUKqV8Pq9kMulKP72u2XjEUzrc3eZkJ9n29nbT+70eDQWAbrx/p3PNyyXp1Iz0wvnB9wNMm6otnX7r+I9t/Fr6lx9L/yHuLIx2cy0AvakF0u3M+AikAYyusQ3Ctra26ju72vH7/QoGg/VbKBTS3Nxc/f2zZ88OqePmIKybY4GGYSgWiymbzboWgvWz5tLSUtP7ToOwxtCy9nUBgEG6d1967UNnta98ID39u9LsmYG2BEwdN8Nogm3Ae+0C6Zpvr0qnCMIAjKixDcIaBQIBXbx4sSnwGnbI5cTm5mb97Vgs5ug+pmlqeXlZ6XRa6XTalT76XTMcDjddOfL27duOjlU2Pv/WMA0ABuE9Q/ryG2e1X3wt3TCkH39/sD0B08TNMJpgGwAAuGGsh+U/99xzCofD2t/fV6FQ0Obmpvb39xUIBEYuBJOajwY6ORZomqYikYiSyaSy2ayjxzBNU7lcbuBrXrx4sf5247ywdhrrMpmMo/sAQD8++rS7+o+7rAfQXi9h9DDWAgAA02tsg7BoNKqbN2/Ww6/19XXZtq10Oq1QKKQnnnhCr776qv7mb/6m41q/+MUvhtCxVCqVJMnRLizLshSLxXTx4kXHgZUkJRKJE0M2N9dMpVL1t51cAKCxJhgMMh8MwFDsfzXYegDtuRlGE2wDAAA3jO3RyMajhWfPnlU8Hq8fzzMMQ+vr67p165by+bx8Pp/C4bD+2T/7Z1peXtbv//7vN62Vz+f1gx/8YKD9lkolmaYpv9+vK1eutK21LEuRSETBYFCZTEamaXZc3zTN+i6r4+Z1ub1mOBxWNBqtB1ylUqnt8chisVh/m91gAIYl8Mhg6wG052YYTbANAADcMLZB2Ouvv37ix8LhcD24uXfvnjY2NnTz5k1dvXpV6XRafr9f0WhUFy5ckPSbnVrdKJfLSiQSsixL0WhU2Wz2xIHxpmnq8uXLkqRbt251HJS/vLws0zRlmqZCoVBXfeXz+aGtmc/n62utrq6eGIRZlqVCoSDpcCefWwP/AaCTp5+UPvmV8/qnnhxcL8A0cjOMJtgGAABuGNujkU7VdovdvHlTe3t7un37tn70ox9pa2tL6XS6591JxWKxPiy+XC4rEok0HResqX1sbm5O29vbHa+uGIlEHM/cOs5xIdMg1pQOjzjWdnoZhnHibLLl5WVJh1eKbNwZBgCD9mJYevQhZ7WPPSy91PkCuAC68HSX4XK7MNrNtQAAwPSa+CCsVTgcVjab1a9//Wttbm72fCQykUgc+bNCoaBAIKBEIqFUKqVIJKJYLKZkMqmtrS0Fg8GOa7odWA1izUbxeFwbGxvy+/3KZDL1x7Msqx4CGoahcDisu3fvdtwNBwBuOntGevcZZ7XXnuUKc4Db3AyjCbaB8fH+Ha87AICT+Wzbtr1uwmtLS0va3Nzs+n6maSqbzapcLmtvb0+WZcnv92tubk7hcFiXLl1SNBqdmvAnl8tpfX1dpmnWPxdLS0tKpVJt54f1YnFxUbu7u1pYWNDOzo6rawOYLA+q0um32tfciEsvRobTDzBtbmxJLzuYQvFXF6UXzg9vLQC94ecQgBu8fE1PEKbDuV2143sYDwRhAJxyEoR9e1U6NXV7pIHhsG3prwzp1Q+lL785+vFHHzrckflHDnZwubkWgO7duy8tvH38z1+rxx6Wdq+w2xrA8bx8TT+2w/LdRAgGAAAwGD7f4Y7L//P/UXrPkD7+9PCKjoFHDud4vRR2/kLZzbUAdO89w1kIJklffC3dMKQff3+wPQFAt8YiCPvTP/1ThcPhnud5AQAAwFtnzxy+IHbjRbGbawFw7qNPu6v/+FN+TgGMnrE4CPJf/+t/VSwW01/+5V/2tc7169d16tQp/c7v/I7+9m//1qXuAAAAAGDy7X812HoAGIaxCMIkybZtJZNJvfnmmz2vkclkZNu2fv3rXyscDuuzzz5zr0EAAAAAmGCBRwZbDwDDMDZBWM0nn3yiS5cu9XTfc+fOKRgMKplM6vLly8pkMi53BwAAAACT6eknu6t/qst6ABiGsZgR1mhzc1OJREIXLlzQL37xC33nO99xfN+tra2m95944gm32wMAjJgZ3+FVITvVAACA9l4MS2/83PlVI1/iCq4ARtDY7QiTpGKxqEQioXA4rL/7u7/raY27d+9qb2/P5c4AAKPG55NOzbS/+QjCAADo6OwZ6d1nnNVee5aruAIYTWMZhElSOp3WX/zFXygcDutv/uZvurrvvXv3FIvFtLS0NKDuAAAAAGDyvHC+c82NuLM6APDC2AZhkhSNRnX79m1dvnzZ8RUlf/GLXygYDOru3btKJBID7hAAAAAApsvzhGAARtjYzQhrFQwGtbm5qYsXL2p7e1tvv/32ibV/8id/ojfeeEO2bSsQCOhHP/rREDvFIFQqFS0uLratWVlZ0crKypA6AgAAAABgeq2trWltba1tTaVSGVI3R419ECZJfr9fn3zyiV555RVdunRJ6+vrR2quXLmiXC4n27bl8/mUzWY96BRuq1ar2t3dbVtzcHAwpG4AAAAAAJhuBwcHHV+ne2kigrCaa9euqVAoHLmi5K1bt5TNZuXz+eTz+RQOh9kNNiFmZmY0Pz/ftmZ2dnZI3QAAAAAAMN1mZ2e1sLDQtqZSqaharQ6po2ZjF4T9zd/8jf7gD/7gxI8nk0ktLS3pBz/4gUqlkr773e/Wd3+xG2zyzM/Pa2dnx+s2AAAAAACAnI0nWlxc9GzX2FgEYefOnZN0GGQlk0mVy2V997vfPbE+HA5rfX1dzz33nN58802Vy2X5fD7Ztq1wOKwf/OAHw2odAAAAACbGjE/69mrnGgAYVWNx1chsNqv9/X0Vi0UtLy8rGo3qJz/5Sdv71IboX7t2rf5nPp9Ply5dGnS7AAAAADCRfD7p1Ez7m48gDMAIG4sdYZJ09uxZPffcc3ruuee6ut8nn3yiTCajP/mTP6nPBwMAAAAAAMD0GYsdYf3KZrO6efOmbNvW3bt3vW4HAAAAAAAAHpiKIEyS4vG4Njc3tb6+7nUrAAAAAAAA8MDUBGHS4RD9Tz75xOs2AAAAAAAA4IGpCsIAAAAAAAAwvcZmWD4AYHrYtlS129fM+LgqFQAAAIDuEIQBAEZO1ZZOv9W+5tur0imCMAAAxhK/9ALgFYIwAAAAAMBQ8UsvAF5hRhgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGABgLL1/x+sOAAAAAIwbgjAAwMhxEnK9XCIMAwBgkvH/eQCDQBAGABgp9+5Lr33orPaVD6SD+wNtBwAADAC/9ALgFYIwAMBIec+QvvzGWe0XX0s3jMH2AwAA3MUvvQB4iSAMADBSPvq0u/qPu6wHAADe4pdeALxEEAYAcIVtSw+q7W+23Xmd/a+6e9xu6wEAgLf4pRcAL532ugGgH5VKRYuLi21rVlZWtLKyMqSOgOlVtaXTb7Wv+faqdMrXvibwSHeP2209AADwFr/0Aibb2tqa1tbW2tZUKpUhdXMUQRjGWrVa1e7ubtuag4ODIXUDwA1PPyl98ivn9U89ObheAACA+/ilFzDZDg4OOr5O9xJBGMbazMyM5ufn29bMzs4OqRsAbngxLL3xc2ezQx57WHopPPieAACAe/ilFzDZZmdntbCw0LamUqmoWq0OqaNmPtt2MrEFGC2Li4va3d3VwsKCdnZ2vG4HgA5ngDk6GulgOuWNrcNLpnfyVxelF8476w8AAIyGe/elhbed/9Jr94o0e2bwfQEYHi9f0zMsHwAwcpyEWzfihGAAAIyjs2ekd59xVnvtWUIwAO4iCAMAjKXnCcEAABhb/NILgFcIwgAAAAAAI4dfegEYBIIwAAAAAAAATAWCMAAAAAAAAEwFgjAAwNC8f8frDgAAAABMM4IwAIArnIRcL5cIwwAAAAB457TXDQAAxt+9+9JrHzqrfeUD6enfbX8p9Bmf9O3V9uvM+By3BwAAAACSCMIAAC54z5C+/MZZ7RdfSzcM6cffP7nG55NOEXQBADCx+KUXAK9wNBIA0LePPu2u/uMu6wEAwGTx+aRTM+1vPoIwAANAEAYA6Nv+V4OtBwAAAAA3EIQBAPoWeGSw9QAAAADgBoIwAEDfnn6yu/qnuqwHAAAAADcQhAEA+vZiWHr0IWe1jz0svRQebD8AAGB62Lb0oNr+ZttedwlgVHDVSABA386ekd59Rnq51Ln22rPS7JmBtwQAAKZE1ZZOv9W+5turXJEawCF2hAEAXPHC+c41N+LO6gAAAABgEAjCAABD8zwhGAAAAAAPEYQBAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAqEIQBAAAAAABgKpz2ugGgH5VKRYuLi21rVlZWtLKyMqSOAAAAAACYXmtra1pbW2tbU6lUhtTNUQRhGGvValW7u7ttaw4ODobUDQAAAIBR9P4d6aWI110A0+Hg4KDj63QvEYRhrM3MzGh+fr5tzezs7JC6AabbjE/69mrnGgAAADe9f6dzzcsl6dSM9ML5wfcDTLvZ2VktLCy0ralUKqpWq0PqqJnPtm3bk0cG+rC4uKjd3V0tLCxoZ2fH63YAAAAAeODefWnhbenLbzrXPvawtHtFmj0z+L4AtOfla3qG5QMAAAAAxtJ7hrMQTJK++Fq6YQy2HwCjjyAMAAAAADCWPvq0u/qPu6wHMHkIwgAAAAAAY2n/q8HWA5g8BGEAAAAAgLEUeGSw9QAmD0EYAAAAAGAsPf1kd/VPdVkPYPIQhAEAAAAAxtKLYenRh5zVPvaw9FJ4sP0AGH0EYQAAAACAsXT2jPTuM85qrz0rzZ4ZaDsAxgBBmAdM01QsFnNUaxiGUqmUQqGQfD6ffD6fQqGQMpmMLMvquYdcLqdYLKZAIFBfM5FIqFwuj9SaAAAAANDOC+c719yIO6sDMPkIwlxkWVY9rGp3C4VCCgaDHddKJBKKRCIqFAoyTbP+MdM0lcvlFAgEVCgUuuqxXC4rEAgok8lIkorFora3t5XNZmUYhmKxmGKxWFch2yDWBAAAAAC3PE8IBuAfnPa6gUnSTShVC42OY1mWIpFIU/h1klQqpa2tLeXz+Y615XK5vhMtmUw23ScYDCoejysSiahcLisSiWhra0t+v3/oawIAAAAAAAwCO8JctLq66qguGo223RGWSCRkmqbC4XB9d9X29raKxaLS6fSR+kKhoFKp1PYxazvMpMOA6qTgrFgsSjrcdVarH+aaAAAAAAAAg8KOMJcUCgVZlqV0Ot1x/tfS0lLbdcrlstLptLLZbNPHajusUqmUEomEDMOof+zy5cuKx+MnrptIJOpHE9vtRqs9RqlUUrlcVqFQUDKZHNqaAAAAAAAAg+Kzbdv2uolJEAqFJEnb29t9rxMMBrWxsdG2zjTN+mPWbGxsKBqNdqzd399vezyxVCrVd275/X7t7+8PZc1uLC4uand3VwsLC9rZ2elrLQAAAADj60FVOv1W+5pvr0qnOA8FjAwvX9PzV4ELSqWSTNNsuyvKCcMwZJpm/ShhO8Fg8MiOscYdYo0a66LRaMcZXY07yyzLOvbY5SDWBAAAAAAAGCSCMBesrq7K7/fr4sWLfa2zvr6uZDLpeJh86+6vzz///Ni6xiH+4XDY0dqNM8zW19eHsiYAAAAAAMAgMSOsT4Zh1HdiBQIBBYNBRaNRxWKxtjO7jnPp0qW2Q/RbtQZQrUcla/01unDhguO1a1etbN29NYg1AQAAAKAXM77Do4+dagBAYkdY31qPQ5qmqUKhoEQiIZ/Pd2SofTvhcNjxbjBJ9UH1NceFaOVyuWPNcVrrGp/DINYEAAAAgF74fIfzv9rdfARhAP4BQVgfTNM8Egq1KpVKikQiSqVSA3n8RscNyr99+3bT+06Dtscff7zp/c3NzYGuCQAAAAAAMGgcjexDMBhUPp+XZVna3t5WuVw+Ek7VFAoFbW5uamtry7XHbwySksnksTWt/fS6e6vxapiDWBMAAAAAAGDQCML61BpAWZalQqGg1dXVI0cXDcNQLBbTxsaGK4+dz+frb590xcqTgrluNT6XQawJAAAAAAAwaByNdJnf71c6ndb+/r6KxeKRY4Plclm5XK7vxzFNsz5jK5vNnrgrq9ewqbXvvb29ga4JAAAAAAAwaOwIG6B4PK5oNKrl5eWmwfCrq6tKp9N9rZ3NZiUdHjfsdy0nBrF7y401K5WKFhcX+15nZWVFKysrfa8DAAAAAMCkWltb09raWt/rVCoVF7rpDUHYgPn9fm1tbSkSidTDMMuyVC6Xjx1u74RhGCoUCvL7/R2PWfr9flcCp8bdXINYs1fValW7u7t9r3NwcND3GsC4sm2parevmfFxtSUAAABg2h0cHLjyGtxLBGFDcv36dUUikfr7GxsbPQdhly9fliTdunWr46D6ubk5V0Krubm5ga7Zq5mZGc3Pz/e9zuzsbN9rAOOqakun32pf8+1V6RRBGAAAADDVZmdntbCw0Pc6lUpF1WrVhY66RxA2JOFwWNFoVOVyWVLvA+dTqZQMw1CxWFQ4HO5Y3+uuq9agq3VHmNtr9mp+fl47Ozt9rwMAAAAAANpza6zQ4uKiZzvLGJY/RLFYrK/7FwoFFQoF5fN5xeNxR/dZWlpqet/pTq7WQfahUGigawIAAAAAAAwaQdgQNR5j7PZYYLlcViqVUj6fVzKZdHy/xuOYkvOdaNvb203vNx7jHMSaAAAAAOA125YeVNvf7A6zVQGMNo5GDlFjENbNsUDDMBSLxZTNZrsKwaSju7dM03R0pLJxl5ff72/qfRBrAgAAAIDXmJ0KTD52hA3R5uZm/W2nxyRN09Ty8rLS6bTS6XTXjxkOh5tCt9u3bzu6X2OvrcHXINYEAAAAAAAYNIKwIWo8GujkWKBpmopEIkomk8pms44ewzRN5XK5pj+7ePFi/W3DMByt01iXyWSOfHwQawIAAAAAAAwSQdgQlUolSXK0s8uyLMViMV28eNFxCCZJiUTiSMiWSqXqb9euWtlOY00wGDw2tBvEmgAAAAAAAINEEDYkpVJJpmnK7/frypUrbWsty1IkElEwGFQmk5Fpmh1v5XK5PsS+dV5XOBxuCp5qgdxJisVi/e2Tdm4NYk0Ao+v9O153AAAAAAD989k217zoRblcViKRkGVZikajymazJw6Mrx1xtCxLW1tbHQfLRyIRx8cNW510VUnTNBUKhSQdhlhbW1vH3t+yLAUCAUmHxzc3NjZOfKxBrOnU4uKidnd3tbCwoJ2dnb7XA6bZjS3p5fZZtiTpry5KL5wffD8AAABeeVB1OCyfLSVAX7x8Tc+Pb4+KxWL9Koi13ViNxwVrah+bm5vT9vb2QEMwSSdeVTIYDNZ3ZRmGcWSOWM3y8rKkw6s6Nu7iGtaaAIbr3n3ptQ+d1b7ygXRwf6DtAAAAAMBAEYT1KJFIHPmzQqGgQCCgRCKhVCqlSCSiWCymZDKpra0tBYPBjmsOIgSricfj2tjYkN/vVyaTqT+eZVn1wM4wDIXDYd29e7fpypDDXBPA8LxnSF9+46z2i6+lG73/FQUAAAAAniMI61E0GtX29raSyaSCwWBTwGMYhvb29nTlyhXt7+8rm806CoCKxaJs2+75ls/nHfVd68k0TS0vL9fDu7m5ORWLRW1tbXUVWA1iTQDD8dGn3dV/3GU9AADApGF2KjDemBGGscSMMMAd//j/Id3u4kfoHy9K/8//6+D6AQAA8BKzU4HhYEYYAMATgUcGWw8AADAumJ0KTAeCMACYYk8/2V39U13WAwAAjAtmpwLTgSAMAMaQbR9e3rvdzcnB9xfD0qMPOXvMxx6WXmp/4VsAAICxxexUYDqc9roBAED3qrZ0+q32Nd9elU752tecPSO9+4yzWRjXnpVmzzhuEQAAYKzsfzXYegCjgR1hADDlnAx6vRFnICwAAJhszE4FpgNBGACgo+cJwQAAwIRjdiowHQjCAAAAAABTj9mpwHQgCAMAAAAATL3a7FQnmJ0KjC+CMAAAAAAAxOxUYBpw1UiMtUqlosXFxbY1KysrWllZGVJHAAAAACYZs1OB9tbW1rS2tta2plKpDKmbowjCMNaq1ap2d3fb1hwcHAypGwAAAAAAptvBwUHH1+leIgjDWJuZmdH8/HzbmtnZ2SF1AwAAAADAdJudndXCwkLbmkqlomq1OqSOmhGEYazNz89rZ2fH6zaAkfT+HemliNddAAAAAJgmTsYTLS4uerZrjCAMAMbQ+3c617xckk7NdB7mOuOTvr3auQYAAAAAxh1XjQSAMXPvvvTah85qX/lAOrjfvsbnOwzM2t18BGEAAAAAJgBBGACMmfcM6ctvnNV+8bV0wxhsPwAAAAAwLjgaCQBj5qNPu6v/+FPpx98fTC8AAACThJERwOQjCAOAMbP/1WDrAQAAppXPJ50i6AImGkEYAIyZwCODrQcAAED/bFuq2u1rZnzMYgWGjSAMAMbM009Kn/zKef1TTw6uFwAAAByvakun32pf8+1VdqABw8awfAAYMy+GpUcfclb72MPSS+HB9gMAAAAA44IgDADGzNkz0rvPOKu99qw0e2ag7QAAAADA2CAIA4Ax9ML5zjU34s7qAAAAAGBaEIQBwIR6nhAMAAAAAJoQhAEAAAAAAGAqEIQBAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAqEIQBAAAAAABgKhCEAQAAAADggffveN0BMH0IwgAAAAAAcJmTkOvlEmEYMGwEYQAAAAAAuOjefem1D53VvvKBdHB/oO0AaHDa6wYAAN2b8UnfXu1cAwAAgOF7z5C+/MZZ7RdfSzcM6cffH2xPAA6xIwwAxpDPJ52aaX/zEYQBAAB44qNPu6v/uMt6AL1jRxjGWqVS0eLiYtualZUVraysDKkjAAAAANNu/6vB1gOjbG1tTWtra21rKpXKkLo5iiAMY61arWp3d7dtzcHBwZC6AQAAAAAp8Mhg64FRdnBw0PF1upcIwjDWZmZmND8/37ZmdnZ2SN0AAAAAgPT0k9Inv3Je/9STg+sFGLbZ2VktLCy0ralUKqpWq0PqqJnPtm3bk0cG+rC4uKjd3V0tLCxoZ2fH63YAAAAAoO7efWnhbWcD8x97WNq9Is2eGXxfwKjw8jU9w/IBAAAAAHDR2TPSu884q732LCEYMEwEYQAAAAAAuOyF851rbsSd1QFwD0EYAAAAAAAeeJ4QDBg6gjAAAAAAAABMBYIwAAAAAAAATAWCMAAAAAAAAEyF0143AAAAAAAAjmfbUtVuXzPjk3y+4fQDjDuCMAAYEv4RAwAAgG5Vben0W+1rvr0qneLfkIAjBGEAMCT8IwYAAAAAvMWMMAAAAAAAAEwFdoQBAAAAAOCyGd/hbv9ONQCGiyAMAAAAAACX+XyMvABGEUcjAQAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAGGPv3/G6A2B8EIQBAAAAADCinIRcL5cIwwCnCMIAYITwDxgAAADU3Lsvvfahs9pXPpAO7g+0HWAiEIQBwJDw2zwAAAB04z1D+vIbZ7VffC3dMAbbDzAJCMIAYAj4bR4AAAC69dGn3dV/3GU9MI1Oe90A0I9KpaLFxcW2NSsrK1pZWRlSR8Dxevlt3o+/P9ieAAAAMNr2vxpsPTAIa2trWltba1tTqVSG1M1RBGEYa9VqVbu7u21rDg4OhtQNcLJefptHEAYAADDdAo8Mth4YhIODg46v071EEIaxNjMzo/n5+bY1s7OzQ+oGOBm/zQMAAEC3nn5S+uRXzuufenJwvQBOzc7OamFhoW1NpVJRtVodUkfNCMIw1ubn57Wzs+N1G0BH/DYPAAAA3XoxLL3xc2cjNh57WHopPPiegE6cjCdaXFz0bNcYw/IBYAie7vK3c/w2DwAAAGfPSO8+46z22rPS7JmBtgNMBIIwABiCF8PSow85q+W3eQAAAKh54XznmhtxZ3UACMIAYCj4bR4AAAAG5XlCMMAxgjAAGBJ+mwcAAAAA3iIIA4ARwm/zAAAAAGBwCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMI8YJqmYrFYX/ctlUo9P75lWcpkMorFYgqFQvL5fAqFQkokEioUCj2vm8vlFIvFFAgEmtYsl8s9rwkAAAAAAOAWgjAXWZYln8/X8RYKhRQMBrteO5FIKBQKqVwua29vr6cec7mcAoGACoWCYrGY8vm8tra2lMlkZJqmUqlU/TGcKpfLCgQCymQykqRisajt7W1ls1kZhqFYLKZYLCbLsnrqGQAAAAAAwA2nvW5gknSzm6oWGnViWZZWV1eVy+V6basukUioVCopHA5ra2ur6WPhcFjJZFKpVKoekm1tbSkcDrdds1wu13e3JZNJ5fP5+seCwaDi8bgikYjK5bIikYi2trbk9/v7fi4AAAAAAADdIghz0erqqqO6aDTqaEdYLpdTPp/vevfYSWvVjlPeunXrxLp8Pq9yuSzTNLW8vKz9/f0Ta2u71KTD0KsxBGtULBYVCoVkmqYSiYQ2Njb6eCYAAAAAMD1mfNK3VzvXAHCGIMwlhUJBlmUpnU53nP+1tLTUcT3DMBSNRpVOp+vrp1Kpnvur7UALh8Mdd2TF43HlcjlZlqVSqaR4PH5sXSKRqB93bLfDrbYzrFQqqVwuq1AoKJlM9vQ8AAAAAGCa+HzSKYIuwDUEYS7JZrMKBoPKZrOurNd6JNFJeHaSxnlfTnaXXbhwof727du3jw3CTNNsWvfixYtt17x06VJ9R1omkyEIAwAAAAAAQ0cQ5oJSqSTTNE88GuiGfuZqmaZZf9swjK7u+/jjjx/7542BXzQadbTLrKbTTjNglNi2VLXb18z4Dn9T1wnb2gEAAADAWwRhLlhdXZXf7++4K8orc3Nz9bdN05Rpmm13ht2+fbv+9kl1jRcG6DRQv3GtWii3vr5OEIaxULWl02+1r/n2qrPt6mxrBwAAAABvzXjdwLgzDEOGYciyLAUCAYVCIaVSqfoxwFHQGmZ1mjVW693v9x8bVrXuKms8StlOY2A2Sp8fAAAAAAAwHQjC+tQ6JN40TRUKBSUSCfl8PiUSia6PI7otHA43hVDlcrl+tcdWhUKhvmvrpHlnjbPBJGdzx46r8/rzAgAAAAAApgtBWB9aB8Yfp1QqKRKJ9HXFRzdcv3696f1SqXQkDCuXy/U+8/n8iQPtG49OSs7nl7XOG9vc3HR0PwAAAAAAADcQhPUhGAwqn88rm80qmUy23RlVKBQUiUSG2F2zcDisYrHY9GelUkmhUEiGYSiXyykWiykYDGpjY6PtVR0bh+9Lve8I297edtg9AAAAAABA/xiW36fWwMiyLBUKBa2ursqyrKaPGYahWCymjY2NIXb4G/F4XPl8vml3mmma9YAunU6feByyUWsQ1qvWzw8AAAAAAMAgEYS5zO/3K51OK51Oq1Qq6fLly02BT7lcVi6XUzqd9qS/WnB33FHNcrksy7I6HnXsNcBqXXdvb6+ndRpVKhUtLi72vc7KyopWVlb6XgcAAAAAgEm1tramtbW1vtepVCoudNMbgrABisfjikajWl5ebhoMv7q66lkQJh2GYVtbWyoUCk1/bhiGzp07p1u3bjUN1x8UN3aEVatV7e7u9r3OwcFB32sAAAAAADDJDg4OXHkN7iWCsAHz+/3a2tpSJBKph2GWZalcLisajXrSUyqVUqFQUDKZVLlcbjrqaFmWIpGINjY2TuzP7/e7EmI5HbLfzszMjObn5/teZ3Z2tu81AAAAAACYZLOzs1pYWOh7nUqlomq16kJH3SMIG5Lr1683DctvFzQNUiwWU7lcbpoHVgvGWutO6nFubs6VIGxubq7vNebn57Wzs9P3OgAAAAAAoD23xgotLi56trOMq0YOSTgcbgqV3Bo4341IJFLfidY4FD+fzx+5oqQkJRKJYwOvXndyta7lxo4wYBS8f8frDgAAAAAAThCEDVEsFvPssROJRP1oZj6fP/LxeDyura2tpnDKsixlMpkjtUtLS03vO90d1jocPxQKObof4CUnIdfLJcIwAAAAABgHBGFDFAwG62+7cSzQKdM0VSqVJB3uTGvso1E4HNbW1lbTnxUKhSNBV+MRz9r6Tmxvbze979WMNMCpe/el1z50VvvKB9LB/YG2AwAAAADoE0HYEDUGUMM8Fti4A6x1N1erYDB4ZMfY5uZm0/utazgNwhoDNb/ff2IgB4yK9wzpy2+c1X7xtXTD6FwHAAAAAPAOQdgQNQZKwzwm2RhAOTmOmEwmm95vDbrC4XBTkHf79m1HfTQ+/06BHDAKPvq0u/qPu6wHAAAAAAwXQdgQNR4NHOaxwMbZXK3HE08SDofbfvzixYv1t2uzxzpprDtu9hgwava/Gmw9AAAAAGC4CMKGqDanK51OD/VxG48g9nK1yuOOMKZSqfrb5XK54xqNNcFgkPlgGAuBRwZbDwAAAAAYLoKwISmVSjJNU36/X1euXOn6/k6vzHicS5cu1d/e3Nx0tFZjYHZcaBUOh5v+vBbynaRYLNbfZjcYxsXTT3ZX/1SX9QAAAACA4SII61G5XFYgEJDP51MsFmt7PNA0TV2+fFmSdOvWrZ4G5bfu5OomGGsMrSzL0urqatv6crlcXz+bzZ5Y1zhUv92almWpUChIOgzVWmeQAaPqxbD06EPOah97WHqp/YliAAAAAIDHCMJ6VCwW62FRuVxWJBJpOi5YU/vY3Nyctre3O87eOo5lWUd2Ua2vr3fdby2Ay+Vy9WCqlWmaSiQSkg5Dq3bHOIPBYH2nl2EYyuVyx9YtLy9LOrxSZOPOMGDUnT0jvfuMs9prz0qzZwbaDgAAAACgTwRhPaqFRY0KhYICgYASiYRSqZQikYhisZiSyaS2traOnbV1EsuylEgkFIvFFAgEjuwIMwyjvhstkUh0HFjv9/t19+7d+m6sVCqlWCymQqEgwzBULpeVyWQUCoVkWZay2aw2NjY69hmPx7WxsSG/369MJlPvxbKseghoGIbC4bDu3r3b0244wEsvnO9ccyPurA4AAAAA4C2fbdu2102MK9M0lc1mVS6Xtbe3J8uy5Pf7NTc3p3A4rEuXLikajY5c+GMYhvL5vMrlcj1gCwaDCofDCgaDunLlSk8953I5ra+vyzTN+udiaWlJqVRK8Xjc1eewuLio3d1dLSwsaGdnx9W1gUYPqtLpt9rXfHtVOsWvFQAAADDibFuqdkgAZnySzzecfjC9vHxNTxCGsUQQhmEhCAMAAMCk4N+2GBVevqbn2xsAAAAAAABTgSAMAAAAAAAAU4EgDAAAAAAAAFOBIAwAAAAAAABTgSAMAAAAAAAAU4EgDAAAAAAAAFOBIAwAAAAAAABT4bTXDQDAKJvxSd9e7VwDAAAAABh9BGEYa5VKRYuLi21rVlZWtLKyMqSOMApsW6ra7WtmfJLPQYDl80mnCLoAAAAAwJG1tTWtra21ralUKkPq5iiCMIy1arWq3d3dtjUHBwdD6gajompLp99qX/PtVQIuAAAAoNX7d6SXIl53gXF2cHDQ8XW6lwjCMNZmZmY0Pz/ftmZ2dnZI3QAAAADA6Hr/Tueal0vSqRnphfOD7weTaXZ2VgsLC21rKpWKqtXqkDpq5rNtu8MBImD0LC4uand3VwsLC9rZ2fG6HYyYB1WHO8K4XAgAAACmxL370sLb0pffdK597GFp94o0e+bkGjfHkWD6ePmanh1hAAAAAABMuPcMZyGYJH3xtXTDkH78/ZNrGEeCccV+CAAAAAAAJtxHn3ZX/3GX9cC4IAgDAAAAAGDC7X812HpgXBCEAQAAAAAw4QKPDLYeGBcEYQAAAAAATLinn+yu/qku64FxQRAGAAAAAMCEezEsPfqQs9rHHpZeCg+2H8ArBGEAAAAAAEy4s2ekd59xVnvtWWn2zEDbATxDEAYAAAAAwBR44XznmhtxZ3XAuCIIAzCV3r/jdQcAAADA6HmeEAwTjiAMwMRxEnK9XCIMAwAAAIBpQxAGYKLcuy+99qGz2lc+kA7uD7QdAAAAAMAIIQgDMFHeM6Qvv3FW+8XX0g1jsP0AAAAAAEYHQRiAifLRp93Vf9xlPQAAAABgfBGEAZgo+18Nth4AAACAM8zkxSgiCAMwUQKPDLYeAAAAABeowvgiCAMwUZ5+srv6p7qsBwAAAKYdF6jCODvtdQMA4KYXw9IbP3c2MP+xh6WXwoPvCQAAABgFMz7p26udazrp5QJVP/6+s3pg0NgRBmCinD0jvfuMs9prz0qzZwbaDgAAADAyfD7p1Ez7m89BEMYFqjDOCMIATJwXzneuuRF3VgcAAACgGReowjgjCAMwlZ4nBAMAAAB6wgWqMM4IwgAAAAAAgGNcoArjjCAMAAAAAAA49mJYevQhZ7VcoAqjhqtGYqxVKhUtLi62rVlZWdHKysqQOgIAAACAyVa7QNXLpc61XKBq+qytrWltba1tTaVSGVI3RxGEYaxVq1Xt7u62rTk4OBhSNwAAAAAwHV443zkI4wJV0+ng4KDj63QvEYRhrM3MzGh+fr5tzezs7JC6AQAAAADUcIGq6TQ7O6uFhYW2NZVKRdVqdUgdNSMIw1ibn5/Xzs6O120AAAAAAAA5G0+0uLjo2a4xhuUDAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAqMCMMwMSZ8UnfXu1cAwAAAACYLgRhACaOzyedIugCAAAAALTgaCQAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAsPyAQAAAABAV7hSO8YVQRgAAAAAAOgKV2rHuOJoJAAAAAAAAKYCO8IAjAzblqp2+5oZ3+FvnwAAAAAA6BZBGICRUbWl02+1r/n2KluwAQAAAAC94WgkAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApsJprxsA+lGpVLS4uNi2ZmVlRSsrK0PqCAAAAACA6bW2tqa1tbW2NZVKZUjdHEUQhrFWrVa1u7vbtubg4GBI3QAAAAAAMN0ODg46vk73EkEYxtrMzIzm5+fb1szOzg6pGwAAAAAAptvs7KwWFhba1lQqFVWr1SF11Mxn27btySMDfVhcXNTu7q4WFha0s7PjdTtwyYOqdPqt9jXfXpVOMd0QAAAAAMaWl6/p2REGAAAAAAA8Y9tStcMWnRmf5PMNpx9MNoIwAAAAAADgmart8GQIQRhcwAEjAGPl/TtedwAAAAAAGFcEYQBGhpOQ6+USYRgAAAAAoDcEYQBGwr370msfOqt95QPp4P5A2wEAAAAATCCCMAAj4T1D+vIbZ7VffC3dMAbbDwAAAABg8hCEARgJH33aXf3HXdYDAAAAAEAQ5gHTNBWLxfq6b6lUcrmrZoZhqFQqKZfLqVwuO7pPLpdTLBZTIBCQz+dTKBRSIpFwfH9Mt/2vBlsPAAAAAABBmIssy5LP5+t4C4VCCgaDXa+dSCQUCoVULpe1t7fneu+5XE6RSEQ+n0/Ly8u6ffu2wuGwlpaW2t63XC4rEAgok8lIkorFora3t5XNZmUYhmKxmGKxmCzLcrVnTJbAI4OtBwAAAADgtNcNTJJCoeC4thYadWJZllZXV5XL5Xptq+P6mUym3ns4HNbGxoai0aij+5fL5frutmQyqXw+X/9YMBhUPB5XJBJRuVxWJBLR1taW/H6/688D4+/pJ6VPfuW8/qknB9cLAAAAAGAysSPMRaurq47qotGoox1htR1ahjGYqeCFQkHnzp2rh2D5fF5bW1uOQ7DaLjXpMPRqDMEaFYtFSYfHOmv1QKsXw9KjDzmrfexh6aXwYPsBAAAAAEwedoS5pFAoyLIspdPpjvO/Oh01lA5ndEWjUaXT6fr6qVTKlV6lwx1ptV1mwWBQGxsbXR/XTCQS9eOO7Xa41XaGlUollctlFQoFJZPJnnvHZDp7Rnr3GellB+Pvrj0rzZ4ZeEsAAAAAgAnjs23b9rqJSRAKhSRJ29vbA1nfMAxFIpH6+/l8vucwKZFI1Ift+/1+3b17t+vjiqZp1p+zJO3v77ddo1Qq1XeD+f1+7e/vd913o8XFRe3u7mphYUE7Ozt9rYXR8aAqnX6rfc2NuPRipH0NAAAAgPHh5HXAt1elU5xpmxhevqbn28gFpVJJpmk6nvvVC7fmarVecbLXmV3ZbLb+djQa7bhGPB6vv21Z1sCveonJ9fx5rzsAAAAAAIwrgjAXrK6uyu/36+LFi1630lahUFC5XK6/n8/nuz4O2bhWTTjsbFhT42Otr6/39LgAAAAAAAC9Igjrk2EYMgxDlmUpEAgoFAoplUqN3I4n0zSbZoyFw+Gej1a2Du+/cOGCo/s1Bmaj9vkBAAAAAIyu9+943QEmBUFYn1qPQ5qmqUKhoEQiIZ/Pp0QiMbCrPnaj9WqNV65c6Xmtxl1lkhzvKmutG4XPCwAAAADAW05CrpdLhGFwB0FYH0zTPBIKtSqVSopEIq5e8bFbpmk2hU5+v79pZle3bt++3fS+0xljjz/+eNP7m5ubPfcAAAAAABh/9+5Lr33orPaVD6SD+wNtB1OAIKwPwWBQ+Xxe2WxWyWSy7c6oQqHQdNXHYcrn803vR6NRSb+5kmMoFJLP51MgEFAkElEul5NlWSeuZ5pm0/u97ggb1BU2AQAAAADj4T1D+vIbZ7VffC3d4GAR+nTa6wbGXeucLcuyVCgUtLq6eiRMMgxDsVhMGxsbQ+ywebC9JM3NzSkSiRw5mmhZVn3mWSaTUbFYPHbnWGsQ1qt2YRsAAAAAYPJ99Gl39R9/Kv34+4PpBdOBHWEu8/v9SqfT2t/fV7FYPHJssFwuK5fLDa0f0zSPBE43b95UKpXS/v6+bNuWbdva3t4+EuolEoljh9r3GmC1fi729vZ6WgcAAAAAMBn2vxpsPdCKHWEDFI/HFY1Gtby83LT7anV1Vel0eig9tO7e8vv9unv37pFQqnbMs3We2eXLlxWNRh3PAeuGGzvCKpWKFhcX+15nZWVFKysrfa8DAAAAAHAu8Mhg6+GutbU1ra2t9b1OpVJxoZveEIQNmN/v19bWVtNRRMuyVC6X67O6Bqk1CEsmk21DrWQyqa2trfpxSsuytLq6qmw2W6/x+/2uhFhuhGvValW7u7t9r3NwcND3GgAAAACA7jz9pPTJr5zXP/Xk4HpBZwcHB668BvcSQdiQXL9+vWlY/sbGxlCCsNaB9BcuXOh4n0wm0zRXLJfLNQVhc3NzrgRhc3Nzfa8xMzOj+fn5vteZnZ3tew0AAAAAQHdeDEtv/NzZwPzHHpZeCg++J5xsdnZWCwsLfa9TqVRUrVZd6Kh7BGFDEg6HFY1GVS6XJbk3cL6T1sDKyS6sYDCocDjcdJzTMAyFw2HHa7jVSyfz8/Pa2dnpex0AAAAAwPCdPSO9+4z08tHx1Edce1aaPTPwltCGW2OFFhcXPdtZRhA2RLFYrB6EDUsoFOrpfktLS01BmGma9SCs9WOWZTkKtVqH4/faGybXjE/69mrnGgAAAACT44XznYOwG/HDOqBfXDVyiILBYP1tN44FOtEaUDk90tgaUjWGWI1HPCXnu9taj2kO42goxovPJ52aaX/zEYQBAAAAU+d5QjC4hCBsiBqDsEFchfE4S0tLTe87Da1a+2sM7npdszGE8/v9TZ8PAAAAAACAQSMIG6LNzc3627FYbCiPWTvOWNO6K8upxtAqHA43BWW3b992tEbj828N0wAAAAAAAAaNIGyIGkOoYR4LbHwspzPKWo9QtgZqFy9erL/dOC+snca6TCbj6D4AAAAAAABuIQgbolLpcPpfOp0e6uM2hk6maTqaE9YptEulUvW3nYRrjTXBYJD5YAAAAAAAYOgIwoakVCrJNE35/X5duXKl6/s7HXJ/nGg02nS0cXV1teN9GoOrbDZ75OPhcLgpzKqFfCcpFov1t9kNBgAAAAAAvEAQ1qNyuaxAICCfz6dYLNb2eKBpmrp8+bIk6datWz0Nym8dSN9tMNYYROVyubYD7svlcv3jyWTyyLHImnw+X3+7XbhmWZYKhYKkw1AumUx21TsAAAAAAIAbCMJ6VCwW62FUuVxWJBJpOi5YU/vY3Nyctre3TwyV2rEs68guqvX19a7WCIfDTcFVLBY7NkyzLKv+PFrv0yoYDNYDNsMwlMvljq1bXl6WdHilyMZADgAAAAAAYJgIwnqUSCSO/FmhUFAgEFAikVAqlVIkElEsFlMymdTW1lbT8cROLMtSIpFQLBZTIBA4soPLMIz6brREIuFoYH0ymdTGxob8fr9M09S5c+eUy+VkGEY9yDp37pxM06z33Ek8Hq+vmclk6r1YllUPAQ3DUDgc1t27d3vaDYfRZtvSg2r7m2173SUAAAAAAJLPtnmJ2ivTNJXNZlUul7W3tyfLsuT3+zU3N6dwOKxLly4pGo2OZPhTKBRULBa1ublZ77s2xD6VSnUV2tXkcjmtr6/XB/L7/X4tLS0plUopHo+72v/i4qJ2d3e1sLCgnZ0dV9dGdx5UpdNvta/59qp0itgdAAAAwDF4TTF9vHxNTxCGsUQQNjr4nxYAAACAfti2VO2QTMz4JJ9vOP1g8Lx8TX96qI8GAAAAAADQwOeTThFyYUjYowEAAAAAAICpQBAGAAAAAACAqUAQBgAAAAAAgKlAEAYAAAAAAICpQBAGAAAAAACAqUAQBgAAAAAAgKlAEAYAAAAAAICpQBAGAAAAAACAqXDa6waAflQqFS0uLratWVlZ0crKypA6AgAAAABgeq2trWltba1tTaVSGVI3RxGEYaxVq1Xt7u62rTk4OBhSNwAAAAAATLeDg4OOr9O9RBCGsTYzM6P5+fm2NbOzs0PqBgAAAACA6TY7O6uFhYW2NZVKRdVqdUgdNfPZtm178shAHxYXF7W7u6uFhQXt7Ox43c5Ue1CVTr/Vvubbq9IpJhICAAAAAOTta3pemgIAAAAAAGAqEIQBGLj373jdAQAAAAAABGEA+uQk5Hq5RBgGAAAAAPAeQRiAnt27L732obPaVz6QDu4PtB0AAAAAANoiCAPQs/cM6ctvnNV+8bV0wxhsPwAAAAAAtEMQBqBnH33aXf3HXdYDAAAAAOAmgjAAPdv/arD1AAAAAAC4iSAMQM8Cjwy2HgAAAAAANxGEAejZ0092V/9Ul/UAAAAAALiJIAxAz14MS48+5Kz2sYell8KD7QcAAAAAgHYIwgD07OwZ6d1nnNVee1aaPTPQdgAAAABMOduWHlTb32zb6y7hpdNeNwBgvL1wXnq51L7mRvywDgAAAAAGqWpLp99qX/PtVemUbzj9YPSwIwzAwD1PCAYAAAAAGAEEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCqe9bgDoR6VS0eLiYtualZUVraysDKkjAAAAAACm19ramtbW1trWVCqVIXVzFEEYxlq1WtXu7m7bmoODgyF1AwAAAADAdDs4OOj4Ot1LBGEYazMzM5qfn29bMzs7O6RuAAAAAACYbrOzs1pYWGhbU6lUVK1Wh9RRM4IwjLX5+Xnt7Ox43QYAAAAAAJCz8USLi4ue7RpjWD4AAAAAAACmAjvCAPRlxid9e7VzDQAAAAAAXiMIA9AXn086RdAFAAAAABgDHI0EAAAAAABT4/07XncALxGEAQAAAACAieAk5Hq5RBg2zQjCAAAAAADA2Lt3X3rtQ2e1r3wgHdwfaDsYUQRhwBSybelBtf3Ntr3uEgAAAACce8+QvvzGWe0XX0s3jMH2g9HEsHxgClVt6fRb7Wu+vcoQfAAAAADj46NPu6v/+FPpx98fTC8YXewIAwAAAAAAY2//q8HWYzIQhAEAAAAAgLEXeGSw9ZgMBGEAAAAAAGDsPf1kd/VPdVmPyUAQBgAAAAAAxt6LYenRh5zVPvaw9FJ4sP1gNBGEAQAAAACAsXf2jPTuM85qrz0rzZ4ZaDsYUQRhAAAAAABgIrxwvnPNjbizOkwmgjAAAAAAADA1nicEm2oEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAqnvW4A6EelUtHi4mLbmpWVFa2srAypIwAAAAAAptfa2prW1tba1lQqlSF1cxRBGMZatVrV7u5u25qDg4MhdQMAAAAAwHQ7ODjo+DrdSwRhGGszMzOan59vWzM7OzukbgAAAAAAmG6zs7NaWFhoW1OpVFStVofUUTOCMIy1+fl57ezseN0GAAAAAACQs/FEi4uLnu0aY1g+AAAAAAAApgJBGAAAAAAAAKYCQRiAY71/x+sOAAAAAMAbti09qLa/2bbXXaIXzAgDppCTkOvlknRqRnrh/OD7AQAAAIBRUrWl02+1r/n2qnTKN5x+4B52hAFT5t596bUPndW+8oF0cH+g7QAAAAAAMDQEYcCUec+QvvzGWe0XX0s3jMH2AwAAAADAsHA0EpgyH33aXf3Hn0o//v5gegEAAAAAN834Do8sdqrB9CIIA6bM/leDrQcAAAAAr/h8zO1CexyN9IBpmorFYn3dt1QqudzVoVAoJJ/P19P6uVxOsVhMgUBAPp9PoVBIiURC5XJ5AJ2iV4FHBlsPAAAAAMCoIghzkWVZ8vl8HW+hUEjBYLDrtROJhEKhkMrlsvb29lzvP5PJyDTNru9XLpcVCASUyWQkScViUdvb28pmszIMQ7FYTLFYTJZludwxevH0k93VP9VlPQAAAAAAo4ogzEWFQsFxbS006sSyLGUyGQUCgYHtApMOw6xcLtfT/WohVzKZ1MbGhqLRqILBoOLxuLa3txUOh1UulxWJRAjDRsCLYenRh5zVPvaw9FJ4sP0AAAAAADAsBGEuWl1ddVRXC4o6yeVyikQiMozBXravttusn/sFg0Hl8/lj64rFoqTDY529PA7cdfaM9O4zzmqvPSvNnhloOwAAAAAADA3D8l1SKBRkWZbS6XTH+V9LS0sd1zMMQ9FoVOl0ur5+KpVypddWly9f1tzcnCR1tWMrkUjU69vtcKvtDiuVSiqXyyoUCkomk/20jD69cF56ucMGwxvxwzoAAAAAACYFQZhLstmsgsGgstmsK+uFw83n0ZyEZ70oFAoqlUra2trS8vKy4/uZptk0BP/ixYtt6y9dulQ/2pnJZAjCxsDzhGAAAAAAgAnD0UgXlEolmabpeO5XL/x+v+trmqapVCqldDp9JHjrpDHwi0ajHfuLx+P1ty3LGui8MwAAAAAAgOMQhLlgdXVVfr+/466oUZNIJBQOh3vaxdZ4YQCnIVrjXLT19fWuHxMAAAAAAKAfBGF9MgxDhmHIsiwFAgGFQiGlUqmR3/GUyWRkGEZ9kH03Wof3X7hwwdH9GgOzUf/8AAAAAACAyUMQ1qfW45CmaapQKCiRSMjn8ymRSAz8qo/dMgxDuVxO+Xze0dUrWzXOBpPkeI3WulH7vIw625YeVNvfbNvrLgEAAAAAGF0My+9D68D445RKJZVKJSWTSeXz+SF11t7y8rLi8XjPA+tv377d9L7T+WWPP/540/ubm5tdzyabZlVbOv1W+5pvr0qnfMPpBwAAAACAcUMQ1odgMKh8Pi/LsrS9va1yuSzTNI+tLRQK2tzc1NbW1pC7bJZIJCRJ169f73mN1ufY646w7e3tnnsAAAAAAADoFkFYn1p3VVmWpUKhoNXVVVmW1fQxwzAUi8W0sbExxA5/o7Y7bWNjo6+rUJ4U9nWr9fMDAAAAAMC4eP+O9FLE6y7QLYIwl/n9fqXTaaXTaZVKJV2+fLkp8CmXy8rlckqn00Pty7IsJRIJJZNJRaPRvtfqRWv4tre311cfklSpVLS4uNj3OisrK1pZWel7HQAAAADA+Hv/Tueal0vSqRnphfOD72dUrK2taW1tre91KpWKC930hiBsgOLxuKLRqJaXl5sGw6+urg49CFteXq4f5RwVbuwIq1ar2t3d7Xudg4ODvtcAAAAAAIy/e/el1z50VvvKB9LTvyvNnhloSyPj4ODAldfgXiIIGzC/36+trS1FIpF6GGZZlsrlct87s5zK5XIyDMO1+WR+v9+VEKuf45k1MzMzmp+f73ud2dnZvtcAAAAAAIy/9wzpy2+c1X7xtXTDkH78/cH2NCpmZ2e1sLDQ9zqVSkXVatWFjrpHEDYk169fVyTym8PDGxsbQwnCDMNQJpNRNpt17QqNc3NzrgRhc3Nzfa8xPz+vnZ2dvtcBAAAAAECSPvq0u/qPP52eIMytsUKLi4ue7Syb8eRRp1A4HG4KvtwaON9JIpFQOBx29Shmrzu5WsMzN3aEAQAAAADgpv2vBlsPb7EjbIhisZjK5fLQHi+Xy8k0TUWjUSUSiY71jUHV6uqq1tfX6+9funRJ8XhckrS0tNQ088yyLEehVutw/FAo1PE+AAAAAAAMU+CRwdbDWwRhQxQMButvu3EssJPPP/9cknoK3wzDaAq7gsFgPQhrPOIpHe5uc3Lscnt7u+n9Yc1IAwAAAADAqaeflD75lfP6p54cXC9wH0cjh6gxCBvnY4FLS0tN7zs95tm448zv9zd9PgAAAAAAGAUvhqVHH3JW+9jD0kvujOPGkBCEDdHm5mb97VgsNvDHy2azsm3b8a0xmCoWi00fy2az9Y+Fw+GmIO/27duO+ml8/q1hGgAAAAAAo+DsGendZ5zVXntWmj0z0HbgMoKwIWo8GjjuxwIvXrxYf7vxCGU7jXWZTMb1ngAAAAAAcMML5zvX3Ig7q8NoIQgbolKpJEmuXsHRK6lUqv62kxlkjTXBYHDsg0AAAAAAwHR7nhBsLDEsf0hKpZJM05Tf79eVK1e6vn/jfK1REA6HFY1G6wFXqVSqD9M/TrFYrL/NbjDvzfikb692rgEAAAAAYJKwI6xH5XJZgUBAPp9PsVis7fFA0zR1+fJlSdKtW7d6GpTfOpB+FIKxfD5ff3t1dfXEOsuyVCgUJB0eCU0mkwPvDe35fNKpmfY3H0EYAAAAAGDCEIT1qFgs1sOocrmsSCTSdFywpvaxubk5bW9vKxzu/nISlmUd2UW1vr7eU99uCgaD9Z1ehmEol8sdW7e8vCzp8EqRjTvDAAAAAAAAhokgrEeJROLInxUKBQUCASUSCaVSKUUiEcViMSWTSW1tbTVdlbETy7KUSCQUi8UUCASO7AgzDKO+Gy2RSDgeWO+2eDyujY0N+f1+ZTKZei+WZdVDQMMwFA6Hdffu3Z52wwEAAAAAALiBGWE9ikaj2t7eVjabVblc1t7eXn2HWC34uXLliqLRaE/hjxe7pxqvatmNaDSq/f195XI5ra+va3l5WZZlye/3a2lpScVise38MLjn/TvSSxGvuwAAAAAAYDT5bNu2vW4C6Nbi4qJ2d3e1sLCgnZ0dr9sZihtb0sulznV/dZFL+AIAAABAPx5UpdNvta/59urhfGV0z8vX9HzJgDFw77702ofOal/5QDq4P9B2AAAAAAAYSwRhwBh4z5C+/MZZ7RdfSze8GRkHAAAAAMBIIwgDxsBHn3ZX/3GX9QAAAAAATAOCMGAM7H812HoAAAAAAKYBQRgwBgKPDLYeAAAAAIBpQBAGjIGnn+yu/qku6wEAAAAAmAYEYcAYeDEsPfqQs9rHHpZeCg+2HwAAAAAAxhFBGDAGzp6R3n3GWe21Z6XZMwNtBwAAAACAsXTa6waAflQqFS0uLratWVlZ0crKypA6GpwXzksvl9rX3Igf1gEAAAAA4IW1tf9/e/fv21aW3gH/kXcSTJBAoTxAAENqlmrShvQ2b2uqS5AUpA0kSFKZDIK3ckFhkHphiIXKIORU7wYpPGSRIOlE/wVjMW0acRobAhYY6UbIIotkV3wLh1yJoiT+JqX7+QACRPvw3HNEXV3xq+ecexiHh4d3tjk9PV3SaG4ShPGgXV5exqdPn+5sc3FxsaTRrN6fC8EAAADWSq8Xcdm7u82TjYiNjeWMZ9EuLi7ufZ++SoIwHrQnT57Es2fP7myzubm5pNEAAADAdZe9iC/+7u42v/ppxI8eSRC2ubkZ29vbd7Y5PT2Ny8vLJY3oOkEYD9qzZ8/i48ePqx4GAAAAj8iTjc/h1H1tuGmc7Yl2dnZWVjUmCAMAAAC4YmPj8VRocZ27RgIAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFb5Y9QCA8TzZiPjVT+9vAwAAAIwmCIMHYmMj4keCLgAAAJiapZEAAAAApIIgDAAAAGCF/unfVz2C9BCEAQAAACzIOCHXX7eEYcsiCAMAAABYgP/8ZcTf/st4bf/mnyMufrnQ4RA2y+eBOz09jZ2dnTvbvHnzJt68ebOkEQEAAMBn/9iJ+MX/jtf2v/4n4mediP/3/1nsmBbt8PAwDg8P72xzenq6pNHcJAjjQbu8vIxPnz7d2ebi4mJJowEAAIDf+Nf/mKz9v/3Hww/CLi4u7n2fvkqCMB60J0+exLNnz+5ss7m5uaTRAAAAwG+c//di26+jzc3N2N7evrPN6elpXF5eLmlE1wnCeNCePXsWHz9+XPUwAAAA4Iat31ls+3U0zvZEOzs7K6sas1k+AAAAwAL8yR9O1v6PJ2zP5ARhAAAAAAvwl7mI3/2t8dr+3m9H/FVuseNBEAYAAACwEL//ZcTf/+l4bf/hzyI2v1zocAhBGAAAAMDC/MUf3d/mZ8Xx2jE7QRgAAADACv25EGxpBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkwherHgDM4vT0NHZ2du5s8+bNm3jz5s2SRgQAAADpdXh4GIeHh3e2OT09XdJobhKE8aBdXl7Gp0+f7mxzcXGxpNEAAABAul1cXNz7Pn2VBGE8aE+ePIlnz57d2WZzc3NJowEAAIDrnmxE/Oqn97d5LDY3N2N7e/vONqenp3F5ebmkEV230ev1eis5MsxgZ2cnPn36FNvb2/Hx48dVDwcAAAAY0yrf09ssHwAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhK9DtdmNvb2+m57ZaramP3+l0olKpxO7ubmxsbMTGxkbs7u7G/v5+JEkydb+1Wi329vZia2tr0GepVIp2uz11nwAAAADzIgiboyRJBsHSXR+7u7uRzWYn7rtUKsXu7m602+04OzubanylUiny+Xw0Go3odruD/+t2u1Gr1WJraysajcZE/bbb7dja2or9/f2IiGg2m3FychIHBwfR6XRib28v9vb2ZgrZAAAAAGb1xaoH8JhMEiD1Q6P7JEkSb9++jVqtNu2wBv3k8/lr4ddtKpVKHB8fR71ev7dtu90eVLeVy+Vrz8lms1EsFiOfz0e73Y58Ph/Hx8eRyWSmngcAAADAtFSEzdHbt2/HalcoFMaqCKvVapHP56PT6cw6tCiVStHtdiOXyw0qtk5OTqLZbEa1Wr3RvtFo3Lv8sl9hFvE59LotOGs2mxHxueqs3x4AAABg2VSEzUmj0YgkSaJard67/9fz58/v7a/T6UShUBiEVI1GIyqVytRja7fbUa1W4+Dg4Nr/9au2KpVKlEqla6Hb69evo1gs3tpvqVQaLHe8q8Ktf4xWqxXtdjsajUaUy+Wp5gIAAAAwrY1er9db9SAeg93d3YiIODk5WUj/nU4n8vn84HG9Xh87TOrvSXZ0dHRnu263O5hH39HRURQKhXvbnp+f37nksdVqDarBMplMnJ+fjzX22+zs7MSnT59ie3s7Pn78OFNfAAAAwPKs8j29pZFz0Gq1otvtjr3v1zSm3Ver0+lEt9sdLE+8SzabvVExdtuyzKvtCoXCveO7WlmWJMlMd70EAAAAmIYgbA7evn0bmUwmXr58ueqh3PDu3bsol8tjB2nD1V8//PDDyHZXbwyQy+XG6vvqvmjv3r0b6zkAAAAA82KPsBl1Op1B1dTW1lZks9koFAqxt7d35/5ay/Lq1auxNubvGw61hpdKRtysEvvJT34ydt/9u1aqCAMAAACWTUXYjIaXQ3a73Wg0GlEqlWJjY+PGBvTLlsvlJlpW2d/8vm9UiNZut+9tM8pwu1V+XQAAAID0EYTNoNvt3giFhrVarcjn81Pf8XHZ+hVbfaM2yv/uu++uPR43aPvqq6+uPf7w4cNkgwMAAACYgaWRM8hms1Gv1yNJkjg5OYl2u30jSOprNBrx4cOHOD4+XvIoJ3M1nLrtrpTDc5y2ImxRd9gEAAAAGEUQNqPhsChJkmg0GvH27dsbyww7nU7s7e3F0dHREkc4mXq9Pvj8trtg3hb2TWr46wMAAACwSJZGzlkmk4lqtRrn5+fRbDZvLBtst9tRq9VWM7h7dLvdwb5dBwcHt1Z6TRtgDX8tzs7OpuoHAAAAYBoqwhaoWCxGoVCIFy9eXNsY/u3bt1GtVlc4stEODg4i4vMSxmWMbx4VYaenp7GzszNzP2/evIk3b97M3A8AAAA8VoeHh3F4eDhzP6enp3MYzXQEYQuWyWTi+Pg48vn8IAxLkiTa7fbIjehXpdPpRKPRiEwmc+/SzUwmM5cQa5K7Wd7m8vIyPn36NHM/FxcXM/cBAAAAj9nFxcVc3oOvkiBsSb755pvI5/ODx0dHR2sVhL1+/ToiIt6/f3/v5vdPnz6dSxD29OnTmft48uRJPHv2bOZ+Njc3Z+4DAAAAHrPNzc3Y3t6euZ/T09O4vLycw4gmJwhbklwuF4VCIdrtdkTMb8P5eahUKtHpdKLZbEYul7u3/bSVXMPh2Twqwp49exYfP36cuR8AAADgbvPaVmhnZ2dllWU2y1+ivb29VQ/hhkajEY1GI+r1ehSLxbGe8/z582uPx60OG94cf3d3d6znAQAAAMyDIGyJri45nMeywFm12+2oVCpRr9ejXC6P/byrSzwjxq9uOzk5ufZ4nZaGAgAAAI+fIGyJrgZh81gWOItOpxN7e3txcHAwUQgWcbMibNwg7GrlWCaTuXcvMgAAAIB5EoQt0YcPHwafr3KZZLfbjRcvXkS1Wo1qtTrx83O53LUg77vvvhvreVfnPxymAQAAACyaIGyJri4NXNWywG63G/l8PsrlchwcHIz9nFqtdu3fXr58Ofi80+mM1c/Vdvv7+2M9BwAAAGBeBGFL1Gq1IiKmqsKahyRJYm9vL16+fDl2CBYRUSqVbgR3lUpl8Hn/Tph3udomm83aHwwAAABYui9WPYC0aLVa0e12I5PJxNdffz3x88e9M+Ndz8/n85HNZmN/f3+sfb263e6gciuXy137v1wuF4VCYRBwtVqtO+862Ww2B5+rBgMAAABWQRA2pXa7HaVSKZIkiUKhEAcHBzfCor5utxuvX7+OiIj3799PtVH+cHA1aTD24sWL6Ha70e12Y3d3d6Ln1uv1W/+939fbt29vDcKSJIlGoxERn5eETro5PwAAAMA8WBo5pWazOQij2u125PP5a8sF+/r/9/Tp0zg5Obk1LLtLkiQ3qqjevXs39vPz+fzY+3iNcltwlc1mB5VenU7nxj5ifS9evIiIz3eKvFoZBgAAALBMgrAplUqlG//WaDRia2srSqVSVCqVyOfzsbe3F+VyOY6PjyObzY7df5IkUSqVYm9vL7a2tm5UhHU6ndjY2Ii9vb0olUq3Bl13/d847qveKhaLcXR0FJlMJvb39wfHS5JkEAJ2Op3I5XLx/fffT1UNBwAAADAPG71er7fqQTxU3W43Dg4Oot1ux9nZWSRJEplMJp4+fRq5XC5evXoVhUIhNeFPrVaLd+/eRbfbHXwtnj9/HpVK5c79w6axs7MTnz59iu3t7fj48eNc+wYAAAAWZ5Xv6QVhPEiCMAAAAHiYVvme3mb5sEC9XsTlPVHzk42IjY3ljAcAAADSTBAGC3TZi/ji7+5u86ufRvxIEAYAAAALZ7N8AAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBU+GLVA4BZnJ6exs7Ozp1t3rx5E2/evFnSiAAAACC9Dg8P4/Dw8M42p6enSxrNTYIwHrTLy8v49OnTnW0uLi6WNBoAAABIt4uLi3vfp6+SIIwH7cmTJ/Hs2bM722xubi5pNAAAAJBum5ubsb29fWeb09PTuLy8XNKIrtvo9Xq9lRwZZrCzsxOfPn2K7e3t+Pjx46qHc6tfX0Z88Xd3t/n/ihF/lV/OeAAAAGDVVvme3mb5sED/9O/3t/nr1njtAAAAgNkIwmBB/vOXEX/7L+O1/Zt/jrj45UKHAwAAAKknCIMF+cdOxC/+d7y2//U/ET/rLHY8AAAAkHaCMFiQf/2Pydr/24TtAQAAgMkIwmBBzv97se0BAACAyQjCYEG2fmex7QEAAIDJCMJgQf7kDydr/8cTtgcAAAAmIwiDBfnLXMTv/tZ4bX/vtyP+KrfY8QAAAEDaCcJgQX7/y4i//9Px2v7Dn0VsfrnQ4QAAAEDqCcJggf7ij+5v87PieO0AAACA2QjCYMX+XAgGAAAASyEIAwAAACAVBGEAAAAApMIXqx4AAAAAAPfr9SIue3e3ebIRsbGxnPE8RIIwAAAAgAfgshfxxd/d3eZXP434kSDsVpZGAgAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBW+WPUAYBanp6exs7NzZ5s3b97EmzdvljSi655sfL517X1tAAAA4DE4PDyMw8PDO9ucnp4uaTQ3CcJ40C4vL+PTp093trm4uFjSaG7a2Ij4kaALAACAlLi4uLj3ffoqCcJ40J48eRLPnj27s83m5uaSRgMAAADptrm5Gdvb23e2OT09jcvLyyWN6LqNXq/XW8mRYQY7Ozvx6dOn2N7ejo8fP656OAAAALBwv76M+OLv7m7zq59G/GjNd4Rf5Xv6Nf/SAAAAAMB8CMIAAAAASAVBGAAAAMAj8U//vuoRrDdBGAAAAMADME7I9dctYdhdBGEAAAAAa+4/fxnxt/8yXtu/+eeIi18udDgPliAMAAAAYM39YyfiF/87Xtv/+p+In3UWO56HShAGAAAAsOb+9T8ma/9vE7ZPC0EYAAAAwJo7/+/Ftk8LQRgAAADAmtv6ncW2TwtBGAAAAMCa+5M/nKz9H0/YPi0EYQAAAABr7i9zEb/7W+O1/b3fjvir3GLH81AJwgAAAADW3O9/GfH3fzpe23/4s4jNLxc6nAdLEAYAAADwAPzFH93f5mfF8dqllSAMAAAA4JH4cyHYnQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACp8MWqBwCzOD09jZ2dnTvbvHnzJt68ebOkEQEAAEB6HR4exuHh4Z1tTk9PlzSamwRhPGiXl5fx6dOnO9tcXFwsaTQAAACQbhcXF/e+T18lQRgP2pMnT+LZs2d3ttnc3FzSaAAAAGBxnmxE/Oqn97dZpc3Nzdje3r6zzenpaVxeXi5pRNdt9Hq93kqODDPY2dmJT58+xfb2dnz8+HHVwwEAAADGtMr39DbLBwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCFuBbrcbe3t7Mz231WrNNIZarRZ7e3uxtbUVGxsbsbu7G6VSKdrt9lr1CQAAADAvgrA5SpIkNjY27v3Y3d2NbDY7cd+lUil2d3ej3W7H2dnZVGNst9uxtbUV+/v7ERHRbDbj5OQkDg4OotPpxN7eXuzt7UWSJCvtEwAAAGDevlj1AB6TRqMxdtt+aHSfJEni7du3UavVph3WQLvdHlSilcvlqNfrg//LZrNRLBYjn89Hu92OfD4fx8fHkclklt7nY3Z4eBgXFxexubkZb968WfVwgP/j3IT147yE9eO8hPXjvJzcRq/X6616EI/F1tbWWFVPhUIhjo6O7m1Xq9WiXq9HNpu9sbywXq9HuVwee2xJksSPf/zjSJIkstlsnJycjGzX7XZjd3d3rHEuos9x7ezsxKdPn2J7ezs+fvw4c3/L8lDHDY+dcxPWj/MS1o/zEtbPQz0vVzluFWFz0mg0IkmSqFar9+7/9fz583v763Q6USgUolqtDvqvVCpTj69UKg1Curuq0fpVXK1WK9rtdjQajVsDt0X0CQAAALAogrA5OTg4iGw2GwcHB3PpL5fLXXs8Tnh2m263e62i7OXLl3e2f/Xq1WAz/v39/ZGh1SL6BAAAAFgkm+XPQavVim63O/a+X9OYZV+tq+FcoVC4t69isTj4PEmSkXeoXESfAAAAAIskCJuDt2/fRiaTubcqalWubuI/XGl2m6t3tXz37t1S+gQAAABYJEHYjDqdTnQ6nUiSJLa2tmJ3dzcqlcraVDx1Op1rj3/yk5+M9byr4dbwXBbRJwAAAMCiCcJmNLwcstvtRqPRiFKpFBsbG1EqlW4ER8s0fLfJq1VZdxlud3UOi+gTAAAAYNEEYTMY3jB+lFarFfl8fqY7Ps7iu+++u/Z43L3Gvvrqq2uPP3z4sNA+AQAAABbNXSNnkM1mo16vR5IkcXJyEu12O7rd7si2jUYjPnz4EMfHx0sd4/B4pq3eOjk5WWifPC6Hh4dxcXERm5ub8ebNm1UPZyHSMMeI9MwzDdLyWqZhnmmYY1qk5bVMwzzTMMe0SMtrmYZ5pmGOTKnHXJ2fn/cODg56mUymFxE3PgqFwlT9npycXOunXq+P9bzhcYyr2Wxee165XF5on5Pa3t7uRURve3t76j5W4aGOe1JpmGca5tjrmedjkoY59nrpmGca5tjrpWOeaZhjr5eOeaZhjr1eOuaZhjn2eumYZxrm2Os93HmuctwqwuYsk8lEtVqNarUarVYrXr9+HUmSDP6/3W5HrVaLarW6lPFcPfYkhpc7np2dLbTPaZ2ensbOzs7M/bx588ZfCQAAAOAOh4eHcXh4OHM/p6encxjNdARhC1QsFqNQKMSLFy+ubQz/9u3bpQVh8zJt+LXoPi8vL+PTp08z93NxcTFzHwAAAPCYXVxczOU9+CoJwhYsk8nE8fFx5PP5QRiWJEm02+0oFApLOf48Aqer1VyL6HNaT548iWfPns3cz+bm5sx9AAAAwGO2ubkZ29vbM/dzenoal5eXcxjR5ARhS/LNN99EPp8fPD46OlpKEPb06dO5hFZPnz5daJ/TevbsWXz8+HHmfgAAAIC7zWtboZ2dnZVVlj1ZyVFTKJfLXQu+bru75LxNW3U1HHQNV4TNu08AAACARROELdHe3t7Sj/n8+fNrj8et5BreyH53d3ehfQIAAAAsmiBsibLZ7ODzeSwLHMfV5ZgR41einZycXHt8tZptEX0CAAAALJo9wpboahC2rGWBw9Vb3W43crncvc+7WuWVyWSujX0RfU7q5z//eUR83mBvZ2dn6n6WrX+L2Ic27kmlYZ5pmGOEeT4maZhjRDrmmYY5RqRjnmmYY0Q65pmGOUakY55pmGNEOuaZhjlGPNx59sfdf2+/TIKwJfrw4cPg82Utk8zlctfu8vjdd99FsVi893lXxzocfC2iz0n9+te/joiIy8vLB3nr1oc67kmlYZ5pmGOEeT4maZhjRDrmmYY5RqRjnmmYY0Q65pmGOUakY55pmGNEOuaZhjlGPNx59t/bL5MgbImuLg1c5rLAly9fRqPRiIiITqcz1nOuttvf319Kn5P48ssv45e//GX86Ec/ij/4gz+YqS8AAABgeX7+85/Hr3/96/jyyy+XfmxB2BK1Wq2IiKhWq0s9bqVSGYRW7Xb73vZX22Sz2ZGh3SL6nMQvfvGLmZ4PAAAApI/N8pek1WpFt9uNTCYTX3/99cTPH/fOjKPkcrlrwVM/kLtNs9kcfH5b5dYi+gQAAABYJEHYlNrtdmxtbcXGxkbs7e3duTyw2+3G69evIyLi/fv3U22UP3xnxkmDsXq9Pvj87du3t7ZLkmRQ6VUoFKJcLi+1TwAAAIBFEYRNqdlsDsKodrsd+Xw+KpXKjXb9/3v69GmcnJyMdXfFYUmS3Kiievfu3UR9ZLPZQVVWp9OJWq02st2LFy8i4vNdHa9WcS2rTwAAAIBF2ej1er1VD+IharfbI+/8mMlkolAoxNOnT+PDhw/R6XSiWq3G119/PVElWJIk8fr160iS5M49uAqFwmC55TghW7vdjlKpFEmSRLFYjK+//jqy2Wx8+PAh9vf3o9PpRC6Xm6hybRF9AgAAAMybIGwG3W43Dg4Oot1ux9nZWSRJEplMJp4+fRq5XC5evXo1CKrWTa1Wi3fv3kW32x2M+/nz51GpVKJYLK5NnwAAAADzIggDAAAAIBXsEQYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDOasVqvF3t5ebG1txcbGRuzu7kapVIp2u72yMe3u7sbGxka0Wq2VjQFWaVXnZafTiUqlMjgH+8fe39+PJEkWemxYlVVeB9fxGgzrwHUQ1s86XrNS876xB8zF0dFRL5PJ9CKiVygUekdHR72Tk5Nes9nsZbPZwb+fn58vdVzVarUXEb2I6DWbzaUeG1ZtVefl+fl5r1gsDs692z7q9fpcjwurtMrr4Lpeg2HVXAdh/azrNStN7xsFYTAHR0dHgx8a5XJ5ZJtcLteLiF42m13aD7Wr40rDDzS4alXn5fn5+eCXmHE+bhsbPCSrvA6u6zUYVs11ENbPul6z0va+URAGMzo/Px8k+tls9tZ2Jycngx8shUJhqeNKyw806FvleVkoFHoR0cvlcr1ms9k7OTkZ/JXv6l/anJs8Fqs839b1Ggyr5joI62ddr1lpfN8oCIMZ9S/245R3Xy0RX3QpeLFY7GWz2Ws/1B77DzToW9V5Wa/XexHRq1art7Y5OTkZ/KWv/5HJZGY6LqzSKq+D63oNhlVzHYT1s67XrDS+bxSEwQyupvURcW/parPZXMoFv/9LyPHxcap+oEGvt9rzMpvNjvWXu+ExRkTv6OhopmPDKqzyfFvXazCsmusgrJ91vWal9X2ju0bCDA4ODgafFwqFyGQyd7YvFouDz5MkWcjdOLrdblQqlahWq5HL5ebeP6y7VZ2XnU4nut1uNJvNe9tms9lr4+w/Hx6aVV4H1/EaDOvAdRDWzzpes9L8vlEQBjNoNBqDz8f94ZHNZgefv3v3bu5jKpVKkcvlbvxyAWmxqvPy3bt3US6X7/3Fpq9QKFx7/MMPP0x1XFilVV4H1/EaDOvAdRDWzzpes9L8vvGLVQ8AHqrhv1r95Cc/Get5uVwuut1uRMTck/39/f3odDpxcnIy137hoVjlefnq1atrv7CMc8yrdnd3pzourMoqz7d1vAbDOnAdhPWzjtestL9vVBEGU2q329cej3vhH243rzLwTqcTtVot6vX6RL+EwGOyyvMyl8uN/VfwiM9l7neNAdbdKs+3dbsGw7pwHYT1s27XLO8bBWEwte++++7a43Ev/F999dW1xx8+fJjLeF68eBHFYjHK5fJc+oOHaN3Oy7v0/8LXN7xEBNbdKs+3h3SuwzI9pHPDdZC0WLfz0vtGQRhMbfjiPW2yP49y1FKpFBER33zzzcx9wUO2Tuflfa7+MpPmX0R4uFZ5vj2kcx2W6SGdG66DpMU6nZfeN35mjzCY0vAPtGkNl4VPqtVqRavViqOjo4nK0eExWpfzchz1en3w+f7+/sKPB/O2yvPtIZ3rsEwP6dxwHSQt1uW89L7xN1SEwZSm/UE0/EPn7OxspjGUSqUol8vKySHW47wcR7fbHezzcHBwkNr9GXjYVnm+PZRzHZbtoZwbroOkyTqcl943XicIgxWbJdl/8eJFZLPZa39RA2a36L+E929Tnc1mo1qtLvRYsO5WWZWlIgxGcx2E9eN94/wIwmBK8yonnbafWq0WnU4nms3mXMYBj8Gqz8txdDqdaDQakclk4ujoaGHHgUVb5fn2EM51WIWHcG64DpI2qz4vvW+8SRDGo9RoNGJjY2OuH/l8/toxnj59OpexTtNPp9OJ/f39ODg4iFwuN5dxwKI99vNyXK9fv46IiPfv31sKwoO2yvPtIZzrsAoP4dxwHSRtvG9cP4IwmNK0ifxwSes0/ZRKpcjlckrJYcgqz8txVCqVwV/k/DLCQ7fK823dz3VYlXU/N1wHSSPvG9ePu0byKBUKhbmXfg7/4Hn+/Plgk8+Izz+oxvnhNLzJ4e7u7kTjqNVq0e12o1AoDG5/e5erP0Dfvn0b7969Gzx+9epVFIvFiY4P03rM5+U4Go1GNBqNqNfrzjsehVWeb+t8rsMqrfO54TpIWnnfuH4EYTxK2Wx24aXWw0uyut3uWH/ZOjk5ufZ40rt2/PDDDxER0W63J3pexOfS2Ks/hLPZ7KP6gcZ6e8zn5X3a7XZUKpWo1+tRLpfn2jesyirPt3U912HV1vXccB0kzbxvXD+WRsKUnj9/fu1xt9sd63lXk/ZMJmNvBJijdTwvO51O7O3txcHBgV/+eVRWeb6t47kO62Adzw3XQdJuHc/LtBOEwZRyudy1ktbvvvturOd9+PBh8PnwD8VxHBwcRK/XG/vj6g/MZrN57f/6t66Gx2JV5+Vtut1uvHjxIqrVqr0ZeHRWeb6t27kO62Ldzg3XQfC+cR0JwmAGL1++HHx+tXT0Llfb7e/vz31MkHbrcl52u93I5/NRLpfH/uWh2+1GrVaby/FhGVZ5vq3LuQ7rZl3ODddB+I11OS/5TBAGM6hUKoPPx1l7fbVNNpu1NwkswDqcl0mSxN7eXrx8+XKiv6CVSiU/F3hQVnm+rcO5DutoHc4N10G4bh3OS35DEAYzyOVy134otVqtO9tfvWPefal+o9GI/f39sdeQA5+t+rxMkiTy+Xxks9lB2/s+2u32YCNVt5PnIVnl+bbIY8ND5joI62fV5yVDesBMTk5OehHRi4heLpe7td35+fmgXaFQuLPPQqEwaBsRvfPz86nHl81mB/00m82p+4GHZJXnZS6Xu9Zuko96vT7LtGElVnm+LeLY8Bi4DsL68b5xfagIgxlls9lBYt/pdG7d1+DFixcR8fmOH1cT/lGGy2W//fbbOYwU0mNV52U+nx9734dR3E2Lh2iV18FFHBseA9dBWD/eN64PQRjMQbFYjKOjo8hkMrG/vx+lUik6nU4kSTIo9e50OpHL5eL777+/dteQUYb/361yYXLLPi/7/U/LL/88ZKu8Ds772PBYuA7C+vG+cU2suiQNHpuDg4NeLpfrZTKZXkT0MplMr1AoTFReenR01Mtms71MJtOrVqsLHC2kg/MSlmeV59s8jg2PkesgrB/n5eps9Hq93iqDOAAAAABYBksjAQAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFb5Y9QAAAABgUTqdTrx79y6SJIl6vb7q4czdY58fzJuKMAAAAB6VdrsdlUoldnd3I5/PR61Wi263u+phXbO1tRUbGxvRbrcnfu66zy9JkiiVStHpdFY9FP5P/3smn8/H7u5ubGxsxMbGRuzu7sbe3l7s7+9P9XrVarXY399fwIgXRxAGAADAo9F/U99oNNYqHLqq3W5HkiQREVEoFCZ67rrPr91ux49//OPIZrORy+UG/9YPXu772Nraikajce9xOp3OIEy87SOfz0dERKPRGPv403xcNemxtra25v8iXFGr1WJrayv29vai0WhEp9OJTCYTxWIxisViZDKZaLfbUavVIp/Px9bWVtRqtbH7L5fL0el0Ynd3dy2/H0fZ6PV6vVUPAgAAAOap3W7H3t7e4HGhUIijo6MVjug3KpVKNBqNKBaL0Ww2p+pjHefXrw6q1+tRLpdv/H+r1YrXr18PQsCryuXyVEs7kyQZBIN9hUIhms1mZDKZa207nU7s7++PrMLLZrORzWZvPKd/jIiIs7Oz6Ha7N8Y/Kla571j1en3iEHQSw1/rTCYTBwcHI1+XJEmi0WjE27dvB+0nHWOlUolvv/023r9/PwhA15UgDAAAgEfparXOOgRFfVtbW5EkSTSbzSgWi1P3s07zuy8E6xsO8PqOj4+nDlCSJBlUVmUymfj+++9HBlp9/a//VZNEI91u99rSz/Pz81uPN+pYs8x1HMPLFcf93ugvab0a3t33el5VKpWi1WotfH6zsjQSAAAAlqTT6Uy9LHJdNRqN2N/fj2q1em9oUigURoZ/Hz58mPr4Z2dng88PDg7uDMEiIp4/f37t8X3th2Wz2Xj//v1Yzxs+VkQsNCTa39+fKgSL+Px1ODo6imw2O/i3SqUy9lLJZrMZuVwuXrx4MbLqb10IwgAAAGBJ+sv/CoXCxAHMOmq1WlGpVCKXy8XBwcFYzxnVbpY7XvYrszKZzFjVS/P4uveXGk56rEW+5v29vq4ea5qlt0dHR9fGedsSz1GazWYkSRIvXryY+LjLIggDAACAJfn2228j4vMysocuSZJ4/fp1RIwOt26TzWZvVIV1Op2p7zLZD9HGXcL39OnTqY4zbJyKvnkd6z79ZY1XjVMdN0o2m73xtSyVSmNVefWf298jbR0JwgAAAGAJri6LfPny5WoHMwf9cCSXy028zHNUcPb27duJx5AkyaBaqVKpTPz8WWSz2ZGb8q/C/v7+jaBq3GBwlK+//vra4yRJxn59+gFYrVYbu5JsmQRhAAAAsATv3r2LiM97RK1DeDKLVqs1CDmGQ5NxZLPZG+FZq9WaeG+p/t0ic7nctb2tlmWWmx3MS/+uj1fNEoJFfF5WOTy3cfcKu/raLjucHIcgDAAAgAep1WrF3t5ebG1txcbGRuTz+ahUKtHtdlc9tJFarVZERLx69Wrs9us6v6vVQdOGQaOWzk1aFdZfFjlNGDetJEnWajP44RAsYj5Lb0fd3XPUse56brfbHfs5yyIIAwAA4EHpdruxu7sbpVIpzs7O4uDgII6OjuLVq1fRbrdjd3d3rOqVUqk0CJlGfeTz+UHoVKlURrbd3d0dKxTpdruDvu4LjuY1v4jPYdNt87vvI5/Pj+yz3W4P9vOa5Q6IhULhRhXXJKFJu90e+2s6T8N3Zly1fqXhVaPuVjmpUctdx918/+pzJ9k/bhm+WPUAAAAAYFydTmcQ0BwcHES1Wh38X6FQiGq1GpVKZaygov+mvlKp3Ahghvuu1+tRqVQGx87lcvH+/fuxlzj2q8Gy2eydS/jmOb+IGIR02Ww2KpXKrcf+7rvvboRrtwUYV+/wOOneYMP29/evLZ/rL/MbZ2nfpJvkz8uHDx/mEjTNy/BNBjKZzFyW3maz2chkMteC3nH3/LoakHa73Wi1WmuxjDRCRRgAAAAPRLfbHYRExWLxWkh0Vb1en6hSqV6v3wh0Tk5ObrT78OFDRHwOf46PjycKG/pVO3eFAYuaXyaTiZOTk6hWq1EsFkd+DAcc5XL51pCrH+pFRPzkJz8ZexyjlMvlG1/HcSqIkiQZjGOZ+1DNcnfLRRg1lnmGdKPuejnu0tyr3z9HR0dzG9OsBGEAAAA8CFf3PbovLJl0Odbwkq9Go3GtEiZJktjf349MJjP28rCrz+0HFnftD7ao+d23f1atVrsWqGQymWtVX1cNBy/z2KB+uKKr2+3eW3l0dZP8WZZnjqu/19WLFy8WfqxJjAql5nkjhlF9jRuEXX1dvv3223kNaWaCMAAAANZeq9W6ti/VfQHMpFUxo8Kf169fX/s8SZJoNpsTBw39ECCTydwa2ixqfmdnZ3cGRd1u98Yyy7uCvuGAah5B2Kig7r6gr/9azaMaLEmSe/dL293djUqlslab5Ed8fn2Hjarimtao13fcr8FXX3117TnrcJOHCHuEAQAA8ABcvZvgOOHHNFUx5XI5ms3mIOxptVqDDdlbrdadywXv0g+WXr58eWubRc3v4ODgzrBq+O6C983xu+++m2ocd8lkMlEul6/t09b/uo8ae6fTGYQq89of7L5A7+zsbO1CsIjRodQ8K8JGGRW+jTL8Ne10OnMJTmclCAMAAGCtdbvda0vyFvlmul6vx+7u7uBxPyjKZrO3Lhe8Tz9YGw6d+hY5v7v6ajQaN5ZE3leJtagwaH9/f+QNC0Z9zfuh4bw2X+/voXafTqcTr1+/Xqs9wkaFXvN8jUb1NW7F2fDYxg3QFs3SSAAAANbaIpbj3SabzV4Lg5IkGSyJnEZ/Q/dMJnNrpdUy59fX7XZvVJ6Ns+xzUWFGNpu98fUZ3qct4vom+fftfTZvuVxu6u+DRRkVSs3zNRrV17QVZ+tSUScIAwAAYK0dHx9fe7zooKharc5tA/b+3SLvWm647PlF3Fx+WSwWx1r2eTXMmPcSvOG9yiLiRpVYf7+1bDa7lE3yh40K7FZplj28xjFqX69xvz+HQ7offvhhLmOalSAMAACAtbaKTbaHK39uW9Z4n3710l13i1z2/BqNxrUqtEwmE998883E/cy7wqdQKNwIWa7unRbxm03057FJ/rRyudzC9+Ea16gwcJ7fT6Ne43XY52sWgjAAAADW2vDyrGUER8N7U426u+J9roZNd+1ntcz5JUlyYx7ffPPN2MHOogOg4bElSTKoClvEJvnTODg4uHcvtWUaDsO63e5cQspRe6FNUg03/H199S6SqyQIAwAA4EFZ9F5DnU4narXajfCqVqtNtFF6v6ps0k3dFzm/Uql0rf9isTjR+BZdDVQul2+Ebf3Q6eom+etSkbUORoVTw/vOTWNUH3t7e1P3ty6vmSAMAACAtTa819CiK8JKpdJgueBwZdgkSyT7+1ndtSwyYnnza7VaMy+JHB7rIkK74WqvbrcbrVZrsMx0lcsib9NqtZa2Gfz+/v61QHbUTQOOjo5mPs6oPiapxBv+eqzLkkpBGAAAAGtt+A30PN7k36ZSqUS32x0sFyyXy9eWnnW73ajVavf20263B0HAfcvJljG/JEni9evX1/5tkiWRfcMVQYu4i+SoYKcfQK7bZvURn1/rUqm0sDtqXtWvVrz6PZPJZG5U9Q3fZGAawxVh1Wp1ou+X4UD3+fPnM49pHgRhAAAArLXh8KVfaTVv7XY7Go1GFAqFa8HC8Mb5+/v791Zt9Z9TKBTuDQ+WMb/Xr19PvCSyVqvdCFSGQ6hFVK/1A8hR1rEarFKpRCaTWUrF0+vXryObzd66fPSqWcKw4bA3k8mMDCjvcvUukaPGvCqCMAAAANbacPiSJMlgmdy4xqnW6VcdDQdf2Wz2RtBw3xLJfpg1zlLKRc+v3W5f62/cJZFHR0c3lkIOBz6Lqs677cYE89gkf56VW/1Q9LYqtXkfq9PpjAwws9nsjWW8+/v7Uy3XTJLkxt06m83mxEHW1ZB0nar4BGEAAACstVFLv4YrnIYNb2p/XyDQ30S+Xq+PfMNfrVavBUD9JWq3Hbt/vJcvX9553IjFz284jBtnSWSSJNFut0dWOV0d6zw2ZR9l1BLIcarrxjGvvbxqtdrge+C2feDmdaz9/f3BsW7bsL5cLl8LCpMkmWhPu74XL15cG/fBwcFUQdbV741pxrEwPQAAAFhz5+fnvYi49pHL5Xrn5+c32p6cnPSy2eyN9kdHRyP7bjabvYjoZbPZO8dwfHx8o8/j4+Mb7arV6mB8q55fuVy+1qZQKIw1nmKx2IuIkccfHuuiHB0djfX6TSqTydz42o2a522azWYvl8uN9fxRxxr1PTPKyclJr16v33it79P//ut/FIvFseZ3fn7eKxQK155br9fHGuuovvp93HdeLdtGr9frzTNYAwAAgEVotVojK0vK5XLs7e3F2dlZHB8fR6PRiHK5fOseSeVyebCMrN1uDypsqtXqyL2W+pIkia2trWv/lslk4v3799c21N/d3Y1utxsHBwdRrVZXNr+rc+ur1+sjq7ySJImzs7M4OTmJVqs1WNZ2W2RwtULp6OhoYUvf+l/LTCYT5+fnM/XV7XajUqncWsWWy+Xi6dOnI6vOkiSJbrc7ck+0XC4Xx8fHEx2rv2fW8NLTs7OzwWsxqpqsUCiMtRy11WrdqCqs1+u3Li1tNBrXllJmMploNptTv66NRmOwn9tdx12JFQdxAAAAMLajo6ORVTZXP8rlcq/X6137t2w22zs4OOidnJz0er3P1TbDVT3xfxVTo6pnDg4ORlZh9T9yuVzv5OSkd3JyMvi3/rFWMb9erzdyfpN8ZDKZW8d5teKnWq1OPM9x1ev1mY/R72NRH1fHtuhjHRwcTDT3arV64/upUCj0yuVyr1gs3qgAy2QyEx9jlP733rpVg/V6KsIAAAB4gGq1Wrx79y663W4kSRKZTCYKhUJUKpVBFcvu7m4Ui8V49erVtYqtRY9rf38/stlsnJyczNTPOs7vqn7Vzzyqte6ytbUVx8fHS7kr42PVbrej2WzGhw8fBtVt/Yq0bDYbuVxubt9H3W43dnd3IyLi+Ph4Jd+bdxGEAQAAwJzk8/nodDr3LrN8LEqlUrRarfVb/sbK7O3tRbvdXttzQBAGAAAAc3B1D7F1rIRZlN3d3Tg7O4vvv/9+Lnd15OHq70s3at+0dfFk1QMAAACAx+Dbb7+NiM8bjaclBIv4vFl+kiTx+vXrVQ+FFUqSJEqlUmSz2Xj//v2qh3MrQRgAAADMQbPZjIiIly9frngky5XNZuP4+DhardbgToGkS5Ikkc/n4+nTp3F8fLzWlYGCMAAAAJhRkiTRbrcj4vO+WWnTXwr37bffCsNSph+C9QPRdQ7BIgRhAAAAMLN+CNa/u2Ma9cOwDx8+xN7eXiRJsuohsWCdTid+/OMfR6VSiaOjo7UPwSJslg8AAAAzuxr6PIQwYNFqtVoUi8XIZrOrHgoL1Gq1IpvNPqg98QRhAAAAAKSCpZEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKnw/wO6HpSyM/T8igAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClyUlEQVR4nOz9X4xi953n/7+o7kSO4tBQHs1PpULKNMjz9VzNNFTvRe42BZu9iJVsDN0/xV87+mnTVGxFq59q1+COr+0yJKmblbKGztw4G2m6IZ5EyUXW0J777YLO3FmbcNqRqsSVq04TR7EyNnwv6guBKgoOcM7hz3k+JCSq+PA5b4r6A6/6fN7H1+l0OgIAAAAAAABW3Nq8CwAAAAAAAADcQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhc2AYhhKJxFxryOfzSiQSCgaD8vl8ikQiSqVSqlarCzUnAAAAAACAXQjCbGSapnw+39hLJBJROBy+cJ5ukDTNZWdnZ2SN1WpVwWBQ2WxWklQqldRoNJTL5VSv15VIJJRIJGSapuXH7cScAAAAAAAAdvN1Op3OvItYFfl8vhcGjdNoNIaGYeVyWalUauoaSqWSksnk0Nuq1WpvJVo6nVahUDg3JhaLqV6vKxwOq1arKRAIjDyeE3MCAAAAAAA4gSDMRsFg0NKqp3g8rkqlMvS2RCIx01bCi55O0zR19epVmaapcDisRqMxdJxhGIpEImPrdGpOAAAAAAAAp1yedwGrolgsyjRNZTKZsf2/tra2hn7eMAxVq1WFw2Fls1nF43Gtr6+PPXYsFpNhGIrH4xeOSaVSvZBu1Kq1cDisZDKpcrmsarWqYrGodDrt2pwAAAAAAABOYUWYTborni5aFWVFNptVuVyeaPtg/2qrQqEwNGDqHyNJJycnI+fv354ZCAR0cnLiypwAAAAAAABOolm+DcrlsgzDsNwf7CLFYlGlUmmiHlrlcrl3/caNG0PH5HK53vV4PD52/v4eY6ZpDhzDyTkBAAAAAACcRBBmg729PQUCgQuDKKtKpZKi0ehE97l7966k0WFUsVjsXbc6f38j/+4xnJ4TAAAAAADASQRhM6rX66rX6zJNU8FgUJFIRDs7O1OteBrV42sY0zRVr9cl6cIzTXZv77p+/bqlufvDrbOPxYk5AQAAAAAAnEYQNqOz2yENw1CxWFQqlZLP51MqlToXHNmlf1XWRavRzp6Bsn9V1ihnx/U/BifmBAAAAAAAcBpB2Ay6Z3kcpVwuKxaLaWdnx/bjd7cXRqPRC7dFPnjwYOBjq/3HnnrqqYGPDw4OHJ0TAAAAAADAaZfnXcAyC4fDKhQKMk1TjUZD1WpVhmEMHVssFnVwcKBarWbLsfu3Rd68efPCcWfrmXb1Vv/ZMJ2YEwAAAAAAwGkEYTNKp9MDH5umqWKxqL29PZmmOXBbvV5XIpFQpVKZ+bj37t3rXe8/I+NZFwVzk+p/LE7MCQAAAAAA4DSCMJsFAgFlMhllMhmVy2XdunVrIPCpVqvK5/PKZDIzHadQKEg63RY5akXWtGHT2e2Ox8fHjs45qc9//vP605/+pE6no7W12Xf4fuELX9CTTz458zwAAAAAAKyqjz76SH/4wx9mnqfdbsvn8+lzn/uc/vjHP9pQmXUEYQ5KJpOKx+Pa3t4eaAy/t7c3UxBmdVuknZxYvTXLnB9//LE6nY6k0x+gWT1+/FiPHz+eeR4AAAAAADBep9PRxx9/7PpxCcIcFggEVKvVFIvFeuGVaZqqVquKx+NTzWl1W2T3+HaEWP2ruZyYc1KXLl3qBWDLtCKs2Wyq3W5rbW1NGxsbE9//qDX69k3/lIXZbNbHuQy88BglHucq8cJjlLzxOL3wGCVvPE4vPEbJG4/TC49R8sbj9MJjlLzxOL3wGCX3H6edK8Kk0/f2biMIc8mdO3cUi8V6H1cqlamDsO62yHA4PLZR/fr6ui2h1fr6uqNzTuqv//qvdXR0pM3NTR0eHs5ci1tCoZCOjo60sbExcd2ftqXLr40e8/vXpUsLcC7YWR7nsvDCY5R4nKvEC49R8sbj9MJjlLzxOL3wGCVvPE4vPEbJG4/TC49R8sbj9MJjlJb3cXbr/uu//mvXj70Ab5m9IRqNDgRf0zac798WOW41mDT9qquzQdfZFWF2zwkAAAAAAOC0ua4Ie/rpp+d5+AE+n0//5//8H0ePkUgkVK1WZ5qjf1uklf5gW1tbA/3JTNO0FECdbWQfiUQcnRMAAAAAAMBpcw3CGo2GfD5fr+n5PHSP7/P5HD9W/zbGabcFlkolSaerqaLR6Njx/dsxpdOVaFbu12g0Bj7uX83mxJwAAAAAAABO8/zWSDdDuP4gbJptgd0m+5KUTqct3Wdra2vgY6tbMvu3MQYCgYHanZgTAAAAAADAaXNvlt/pdJRMJucWipimqWKx6MqxDg4OetcTicTE9590W6R02pus/yyPDx48sNRbrL/Ws8GXE3MCAAAAAAA4be5BWLFY1Le//e251pBMJvWVr3zF8eP0bw2cZlvgpNsiu27cuNEL+/p7e43SPy6bzboyJwAAAAAAgJPmvjVyEfpEXb9+3ZXjlMtlSVImk5n4vv3bIm/cuDHRfXd2dnrXrTTr7x8TDoeHPkdOzAkAAAAAAOCkua8Im7Zp/LIpl8syDEOBQEC3b9+e+P792yJTqdRE941Go4rH470wqlwuj9zK2F15Jl28csuJObE6dnd31Wq15Pf7512KY7zwGCXvPE4v8Mpz6YXH6YXH6BVeeS698Di98Bi9wivPpRcepxceI6bj68zxlI2XLl3SycnJ3L8xHz9+rPX1dX366aeW71OtVpVKpWSapuLxuHK53IXbFQ3DUCwWk2maqtVqE21r7EokEqpWqwoEAjo5OZn4/oZhKBKJSDoNsWq12tBxpmkqGAxKOl2tV6lUXJ3TqlAopKOjI21uburw8HDm+dwyS92ftqXLr40e88nr0qW5r/MEls+y/k4BVhk/l8Di4ecSWDzL+nM5z7rn+pZ5jhncOZPWUiqVes3iq9WqYrHYwHbBru5t6+vrajQaU4Vg/dsip91SGA6He6uy6vW68vn80HHb29uSTvuQ9a/icmtOAAAAAAAAp8w1CMvlcnNfDSZJV65cUS6Xm+g+w7YnFotFBYNBpVIp7ezsKBaLKZFIKJ1Oq1arTX1mzP5tkcPCNquSyaQqlYoCgYCy2axSqZTq9XovaIvFYqrX64pGo3r06JECgcBc5gQAAAAAAHDCXIOwV155xdXjffDBBxfeNmkt8XhcjUZD6XRa4XB4IOCp1+s6Pj7W7du3dXJyolwuN1MA1L+KatYm8/F4vFeTYRja3t7uhXfr6+sqlUqq1WoT1evEnAAAAAAAAHabe7N8N+3s7Oh//a//Zdt84XBYhULBtvkuYkdPrbMymcxUZ690e04AAAAAAAC7eKqt9sHBwbxLAAAAAAAAwJws5YqwDz74oNeo3grDMFQoFCa6DwAAAAAAAFbLUgRhH3zwgXK5nKrVqgzDmGqOTqcjn89nc2UAAAAAAABYFgsfhN2+fVv5fF7SaZgFLLPd3V21Wq2FOFsqgL/gZxNYPPxcAouHn0tg8fBzOTlfZ4HTpZ/97GdKpVKS1FvNNUu5Pp9Pn376qS21Yb5CoZCOjo60ubmpw8PDeZfjik/b0uXXRo/55HXpkqc6/wEAAAAAls0839Mv9Iqwvb09SacBVqfTUTgcVjQaVTgcliQ99dRTY+f48MMPZZqm7t27p8ePHztaLwAAAAAAABbXQgdh9Xq9txKsUqloe3t76rkymYyefvppu0oDAAAAAADAklnoTVSBQEDSaYg1SwgmSeFwWFevXrWhKgAAAAAAACyjhV4RFg6H9fDhQ12/ft2W+QqFgi3zYHE0m02FQqGRY3Z3d7W7u+tSRQAAAAAAeNf+/r729/dHjmk2my5Vc95CB2Hb29t6+PChjo+PbZsPq6Xdbuvo6GjkmFar5VI1AAAAAAB4W6vVGvs+fZ4WOgj73ve+p+9///uq1+u2zPfjH/9Y3/72t22ZC4thbW1NGxsbI8dwGlkAAAAAANzh9/u1ubk5ckyz2VS73XapokG+TqfTmcuRLcrn88rlcvrggw/0hS98Yaa5rl+/rgcPHthUGeZpnqdanZdP29Ll10aP+eR16dJCd/4DAAAAAHjdPN/TL/xb5kwmo2g0qlQqNdM8jx49sm1lGQAAAAAAAJbPQm+N7KpUKtra2tLTTz+tbDar9fV1S/c7Pj6WaZpqNBq6d++ew1UCAAAAAABgkS1FEPbee+9JkhqNhnZ2dqaao9PpyOfz2VkWAAAAAAAAlsjCB2EvvfSSisWiJMnn82malmYEYAAAAAAAAFjoHmF37txRoVDohV/T9vVf8PMBAAAAAAAAwAULvSKsUChI+stKsHg8rkQioUAgMHGfsLfeeksffPCBg9UCAAAAAABgkS10EFav1+Xz+RQIBHRwcKCrV69OPdetW7f01FNP2VgdAAAAAAAAlslCb40MBAKSpNu3b88UgnXnunbtmg1VAfA60zTnXQIAAAAAYAoLHYTFYjFJUjgctmW+O3fu2DIPAO+p1+vKZrMKBoO6devWvMsBAAAAAExhobdG7uzs6P79+zIMw5b5WBEGrKZ6va67d++qXq/LMIxeb8BAIKBwOKz19XVFo1ElEgnF4/Fz90+lUjIMQ7Varfc50zRVrVZ19+5dVatVVoEBAAAAwArwdRb8lIqxWExra2t68ODBzHO98847+sY3vmFDVZi3UCiko6MjbW5u6vDwcN7lzKxYLGpnZ2fyO/5/otL/7y/hzSevS5emWOfp8/kmvk8gENDJycnQ21KplMrl8sRzViqVoUHVMKZpam9vT/l8fuLjRKNRxeNxRSIRVSoVlctlRaPRgSCsG47V6/Vz908mkyqVShMfFwAAAAAw3/f0C701UpJKpZJqtZr++Z//eea59vb2bKgIsF86ndbJyYlqtZqSyeTowX8Tl/6/Fen/fzIQgs2i0+mo0WioUCj0evMNEw6HVSgU1Gg0LgzBpNOf25OTE0vBViaTUa1W08nJieUQrLtF8WwI1g2ouvN1H1elUlE6ne49tnq9rnw+r52dnV5gd3bFV3eeTqdj2/ZsAAAAAMB8LfyKMOl0tczt27f14YcfTj3H48ePtb6+rk8//dTGyjAvq7Yi7KydnR0Vi8XzN/xfSek/XbwSadoVYf0Mw1AkEhl628nJycig7CKxWGzoyqpCoaB0Oj1RbYlE4tx26XQ6rUKhYGmOfD6vbDZ77vPhcFiNRmPofc4+H6wIAwAAAIDpzfM9/UL3CHvnnXckSX/1V3+lYDCop59+evxqmSFM09S9e/fsLg9wzIVB2LUptk9OKBwOKxqNnguuksnkVCGYdPp4hm39nCQEq1arSiQSA58LBAK6f/++otGo5XkymYySyaRisdjAKrDj4+ML7zPt4wYAAAAALJaFDsLeeOMNPXz4sPdxp9OZqh9Q977T9EEC5uHCrXgBd7bohcPhc0HYLNsDh913knCpXq/bEoL11/Po0SNdvXq1F4bRDB8AAAAAVt9C9wi7ceOGOp2Ours3CbLgFReGRE+su1rHIjAMQ9vb2+c+XyqVpgrBugKBwEBzfAAAAADA6lvoIKy7lcrn8/UCsWkvAKxbXz8fuD311FO2zjfsc8OkUqlzq7XS6bTlxvqjhMNhZTKZmedZJOVy+VwPNfxFtVqddwkAAAAA5miht0ZeuXJF0WhUDx8+VC6XUzQatfzmuZ9hGHrjjTf0m9/8xv4iATimWq0ObbKfy+VsO8bt27d7W65N01zYfmD1el2FQkHValWGYSgQCGh9fV2BQEDhcFg3b96UJN26dUu5XG5k/7VqtapUKqX19XUVCgVbQsVFZRiGqtWqSqVSLwRbpH+OeOm5AAAAABbBQgdhknTz5k1FIhG98sorU89x7do1Pffcc1OFaADmZ1iD/Vma9g8TCASUTqeHn5xgAZimqVu3bqlcLks6XcXWPWmIYRiq1+uq1+u927v3GaW7ys40Te3s7Fx4tsxlZhiGUqmUDMNY6P5vXnguAAAAgEWy0FsjJSkej9v23/utrS1b5gHgvO7Kp7Nu375t+7FSqZSk0WeOHKW7qicSicjn8ykYDCqRSNgSrqVSqV7IVSgU1Gg0VCqVVCqVVKvV1Gg0zq0iGhemeOGfAuFwWLVaTScnJwu9/dULzwUAAACwSBY+CLt27Zpt26D+y3/5L7bMA8B5pVJp6OdnaZB/kXg8rlwuN3EoYZqmYrGYEonEQG8u0zRVrVa1s7OjSCQydHunFfl8vredL5PJDN3uGA6HValUBn5PjusRVigUFA6HFQ6HL/w6r5KzZxxdJF57LgAAAIB5W/itkZJ09epVW+b57//9v+urX/2qLXNhMTSbTYVCoZFjdnd3tbu761JFsMuwpuZO9k+adNWQYRiKxWJjt911x1UqlYnr39vb610ftk20XyaT0Ycffqh8Pj92ZVs8HvfUFrx5rbra2dlRoVAYOcZrzwUAAABW3/7+vvb390eOaTabLlVz3lIEYXY5ODiYdwmwWbvd1tHR0cgxrVbLpWpgF8Mwhq5qcmI12DRM0+z1dkomk0okEtra2tLx8bEqlUqv+X6/RCKhRqOhcDhs6RjT9LbK5XIXbimFu4rFoorF4tggDAAAAFg1rVZr7Pv0eVrKIOyDDz6Y6A2iYRgqFAoL3TAZ01lbW9PGxsbIMX6/36VqYJeLgpxIJOJyJcN1V6sNW+UVj8e1s7OjRCJx7nGkUinVajVLxzj7+6parY48E2TX7du3ez3PMB+GYYxdwQcAAACsKr/fr83NzZFjms2m2u22SxUNWoog7IMPPph5pUOn05HP57O5MszbxsaGDg8P510GbHbRz/kiNRYftdWx27frbHBXr9dVrVYtbZE8u3Ism83qxo0bY8+Y2T2jpGmatp5dE9aYprnQPckAAAAAp1lpTxQKhea2amzhm+Xfvn1bkUhExWJRjUZDnU5nqguA2WSzWfl8vqkusVhsomNdtHpzUYKdQCAwNswKh8NDT/Rh9eQfgUBg4PF2G/Nb+WdAp9NZmK+Vl5imqe3tbbamAgAAAAtsoYOwn/3sZ8rlcr0gixVdgDcsevPwra0tS+Mymcy5QGrYSQAucjY0Mwyj94+BWdXr9d5ZLUcxTVPFYlGxWGzguN3tf8FgUD6fT5FIZGhvNMMwlM1mFYlEeuN2dnaGhp3d45wNUs9KJBK9+fovdm5/LxaLA8cJBoOKxWJDH6N0+vW8evXquTOE9td30dfa6nPRZZqm8vm8EolE7+vfrS+bzVoK4gzDUD6fP3dW0/7nIBKJ9HrhAQAAAKtiobdGds+Y5vP51Ol0FA6HFY1Ge1uGnnrqqbFzfPjhhzJNU/fu3dPjx48drRdYZel0euq+RwcHBxPd96LVTIvyhnyS1VbxeFzlcnngc/V63VLj/3Q6rVKpdC48656N8M6dOxOdQKBer6tQKOjevXu9r+Wwx9INv+7evXsu2JFOVweeDYS6gVej0eg1iL9oXLFYVLVaVa1WGzh+Op3ufZ+NCvsqlYokKZ/PK5vNWnnolpXLZaVSKQUCAd25c6e31bReryuVSimbzapQKJyrPRwO6/79+6pWqwM1XdQTzupzcVaxWOz9LOVyOeVyOQUCAdXrde3t7SmfzyufzyuZTKpUKg3c1zRN7e3tqVwunwvLuqvZ+p/v7kkrus+V1RM9AAAAAItsoYOwer3eWw1QqVS0vb099VyZTEZPP/20XaUBnhOJRFw7a+NFIffx8bErx7fTzZs3zwVhBwcHlr+WlUpFqVRqaJgWi8WUTCZ1586dsSGKYRi6e/eu5VVH0WhUgUBgIMCs1WqKxWJaX19XqVRSNBrV+vp6L4CR/hLUZLPZ3lk0uyvoDg4OeiuMDMPQ3t7e0K2iqVTK0qq3ZDJpaxBWrVZ7Jxq4fft2LwSTTr8epVKptz311q1bA0FTIBBQNBo99z067Hme9Lno6gaLgUDgXDAVDoeVTCZ73yvlclmRSGQgsDs+PlYikegFnV0HBwfa3t5WPB5XLpdTOBzuBXqmaco0Te3s7PQCSAAAAGCZLfTWyO6L90wmM1MIJp2+Sbh69aoNVQFw2qKvCJvEsFU0kz6OUql0YW+xcrmsYDA4Njjq9izLZDK6ffv2yLHdHmjpdHogyCkWi8rlcqpUKkomkwqHwwoEAsrlcgM902KxmMLhsGq1muLxeK/fWTwe1507dwbmm4XdJ0/ormS7SP/X4mwwOYlJnouuYrHYCxu7YdUwpVKpd5thGANnEA2Hw4rH4+ceZzabValUUqlUUjweVzgcVjqdHniuqtXqUv78AQAAAGctdBDWfTF//fp1W+Yb9yYHwGK46E3+ovcOG2ZYqPfhhx9OPE8mk9HJycnAKqV+Ozs7vdU+40yyxa0/bEqn0xeeJODsmRIv+n3bX393tdEiuiiM7f+8HU3xrT4X3ZVvgUBA6XTa0ljpNMAa1peu/3HcuXNn6PN69nvt4ODAUq0AAADAIlvoIKy7Csyu7VCzrioD4I6LwpZJGs0vimFBh5X+hsMEAgGVSiXVarWhW+6q1aq2t7dtDZes9kPrf5yT9FBbpDMs3rlzR7lcTqVSaWzYJLm3QrFYLPaOZSU4S6fTA8+B1TOVDtN/vEV6rgAAAIBpLXQQ9r3vfU+dTmdos+Zp/PjHP7ZlHgDOu6i30qKuIJrErE3Ho9GoarXa0FVX9Xpdt27dmmn+aUwSfvVbpL5vgUBAmUxm6Kq7er1u29+iSfX35rL6vdMfJi9jgAwAAAA4ZaGDsCtXrujNN9/U3bt39Yc//GHm+dgaCSyPmzdvDv38Mr6pPxsS2XX2vXQ6rUajcW7+crm80F+naUMzt/Wf4TIajbp2sohhdUzq7PfYKgTIAAAAgB0WOgiTTvviRKPRgYa/03j06NHc/psPLJp6vT7zz5TTLtqatoyB9tkQws5ApduU/my4tIxfp0VRr9eVSCRUKBRG9kVzS//3j9VQ7OwZKRdp5R0AAAAwT5fnXYAVlUpFW1tbevrpp5XNZi2fKez4+FimaarRaOjevXsOVwksj1u3btl+xj27BQIBJZPJc2fnq1arqtfrc1udM6mzIZiVUKVarSqbzapWq1k6Rjgc1p07dwbCTYL/6ezs7KhYLCqdTs/UW8tO0zToP/vzbdcqRAAAAGDZLUUQ9t5770k6PWPczs7OVHN0Oh35fD47ywKWUjdIGvUm3+7VI9POl8vlzgVh0ulZ8fr7JtnBNE1HtuydPdOeld9h4XBY9Xpd1WrV8mqks32taGw+uW4IJs3WYN5u3e8H6S9n2hz3vdr/M0cIBgAAAPzFwm+NfOmll5RIJPTw4UP5fD51Op2JLwBOmabZWzU0rCH4KB9++KGttVgJx8Lh8NBAolqtKp/P21aLYRiKxWJTB+2jnG10buXr3g0uZqlnWVbMzcLOwLZer/dCsHA4vFB9zM72y+vWOUqj0ehdn/RnHQAAAFhlCx2E3blzR4VCoRdmTRtqEYZh2TjR2No0TW1vb/dWk0y6SsTumqzOl8lkhq6KymaztjSEr1arvX5KTqwC6l/RNknfrnA4LMMwlM1mLY0/uwLsopMNLIOz2/ou+l6xc9Vb//fSqHnn0XQ+mUwOBHNWvo/6H8/t27edKAsAAABYSgu9NbL7Yr+7EiwejyuRSCgQCEzcJ+ytt97SBx984GC1gH0ufCP+8bH0RGDi+arVqnZ2dnrz3rhxY+Ljz7L6ZtbAolKpKJVKndsmmUgklMvllMlkJp7TNE1ls1kVi8ULG86Puq8VxWKx99gnbbreDcLy+bwikciFJw/o6g9HwuHwVF+TYaw+1v5x4+4z7vazq9mKxeK5xzMsJDw+PrZtJVe5XD63kmrY8c46GzAbhjHwuWm34Pb3gDMMY+S22Xq93ttKmcvlFmp1GwAAADB3nQXm8/k6a2trnfX19Y5hGDPNdXJy0llbW7OpMszb5uZmR1Jnc3Nz3qU4Ip1OdySdv/xNvKPvNDp6tTP08smnp/c/OTnpVCqVTiaT6YTD4XPzlEqlC4/daDSGH1vqnJycTPV4otHo0PkKhcJE82QymaHzRKPRTqVSsTTHyclJJ5fLdQKBQEdSJx6Pj31cZ48bCATGHqf/6xiPxy3V1u/s90A6nb6wzkKhMDC20WiMnPvs+FHi8fhADRcplUqW57Tyvdh/3O6xK5VKp1Qq9b42lUql9zx2Px6mUqmM/T4+O0ZSJ5fLdSqVSieXy3XC4XAnmUwO/Dwlk8nez1n/nP1zdL+/Go1GJ51Od3K53MBxJ3kucrncwPfgsMdxcnLS+3kb9XxZ/X1w9usBAAAA2GGe7+kXOggLBoOdtbW1zve//31b5ovFYrbMg/lb1SCsVqt1ksnkhUGUXZeL3kAXCoWBYOHsJRwOdwqFguVArFarnQs0zl4ymczY4KZfpVK5MFgLBAKdZDLZKRQKnUql0qnVap1KpdIpFAqdXC43cL9AIDAyAOg3LBwMh8MXBi+lUqn3dUwmk5YfW7+zAUl/+JLJZDqFQqGTTqcHgpl4PG7pa3n263fR1+Hk5ORc4HiRs9+3F4WcZwOni8Kak5OTC78XA4FA72vfPyYajXYajca570+rtY362euGQMNC6rPP8UWB7bDHavW56Or/3goEAp1CodBpNBqdRqPRKRQKve+HUaGV1efg7LhpAl0AAABgGIKwC8Tj8c7a2lrnZz/7mS3z1et1W+bB/K1aEHZR6OHEZViYMc08o1ZFTRvmWV3V1emcBgIXBWKjLuFwuJPL5SZe3dZoNIY+rkAg0InH451kMtmJx+MDIcUkj+es7mqnUqnUWwUVj8c70Wh0IPzphn/jjtUNWS8Kl6LRaC88GTW2uzKq+/U7G8adDU66c1YqlQtD0XA4PDSMOTk5GZg/Go12MpnMwJju584GgCcnJ2Mf77Bjdld/des6u9rr5OSk9zj6v2Zn9a/GjEajAwHXJM/FRQqFwrnvt+79LvreHhVM9z8HjUZj5DhWhgEAAGBW83xP7+t0FreTfLlc1o0bN5TP5/Xf/tt/m3c5WCChUEhHR0fa3NzU4eHhvMtxxadt6fJro8d88rp0aaFPgWE/0zRVrVZ19+5dGYYh0zR7fbm6Z/8Lh8O6fv26ksnkxCcJGHe87jG7x9na2lIqlZqoHxgAAAAAeMk839MvdBAmSbFYTGtra3rw4MHMc73zzjv6xje+YUNVmDeCsOG8GIQBAAAAAJbLPN/TL/xb5lKppFqtpn/+53+eea69vT0bKgIAAAAAAMAyujzvAsYJh8N666239O1vf1v/6T/9p6nnefz4ce908lgdzWZToVBo5Jjd3V3t7u66VBEAAAAAAN61v7+v/f39kWOazaZL1Zy30EHYO++8I0n6q7/6KwWDQT399NNKJpMTz2Oapu7du2d3eVgA7XZbR0dHI8e0Wi2XqgEAAAAAwNtardbY9+nztNBB2BtvvKGHDx/2Pu50Osrn81PN1el05PP57CoNC2JtbU0bGxsjx/j9fpeqAQAAAADA2/x+vzY3N0eOaTabarfbLlU0aKGDsBs3bvS2M/p8PoIsnLOxseGZZvkAAAAAACw6K+2Jus3y52Ghm+Xv7OxIOg3BOp3OTBcAAAAAAAB420KvCLty5Yqi0agePnyoXC6naDSq9fX1iecxDENvvPGGfvOb39hfJAAAAAAAAJbCQgdhknTz5k1FIhG98sorU89x7do1Pffcc1OFaAAAAAAAAFgNC701UpLi8bhtWxu3trZsmQcAAAAAAADLZ+GDsGvXrimXy9kyl13zAAAAAAAAYPksfBAmSVevXrVlnmvXrtkyDwAAAAAAAJbPXIOwRWpev0i1AAAAAAAAwH5zDcJisZhardY8S5AkPX78WLFYbN5lAAAAAAAAwEFzDcLsaoJvh0WqBQAAAAAAAPabaxDm8/nmefgBi1QLAAAAAAAA7MeKMAAAAAAAAHjC3M8a+ejRo3mXoIODg3mXAAAAAAAAAIddnncBt27d0quvvqpAIKD19XVXj318fCzDMJTJZFw9LgAAAAAAANw39yCsVqsplUrNtYZOp0OPMAAAAAAAgBU39yCsa179wgjAAAAAAAAAvGHuQdi8G+bP+/gAAAAAAABwx1yDsJOTk3keHgAAAAAAAB4y1yDsypUr8zw8AAAAAAAAPGRt3gUAAAAAAAAAbiAIAwAAAAAAgCcQhAEAAAAAAMAT5n7WSGAWzWZToVBo5Jjd3V3t7u66VBEAAAAAAN61v7+v/f39kWOazaZL1ZxHEIal1m63dXR0NHJMq9VyqRoAAAAAALyt1WqNfZ8+TwRhWGpra2va2NgYOcbv97tUDQAAAAAA3ub3+7W5uTlyTLPZVLvddqmiQb5Op9OZy5GBGYRCIR0dHWlzc1OHh4fzLscVn7aly6+NHvPJ69IlOv8BAAAAABbYPN/T85YZAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4wkoGYY8fP9ZLL7007zIuZBiGEomEbfPV63WVy2Xl83lVq1VL98nn80okEgoGg/L5fIpEIkqlUpbv79acAAAAAAAAdlnJIMwwDBWLRf3+97/Xe++9p1ar5cpxTdOUz+cbe4lEIgqHwzMdJ5/PKxaLyefzaXt7Ww8ePFA0GtXW1tbI+1arVQWDQWWzWUlSqVRSo9FQLpdTvV5XIpFQIpGQaZqW63FiTgAAAAAAALtdnncBTqhWq+p0OgNhUzab1RtvvOHocYvFouWx3dBoEqZpKpvN9o4TjUZVqVQUj8ct3b9arfZWoqXTaRUKhd5t4XBYyWRSsVhM1WpVsVhMtVpNgUDA9TkBAAAAAACcsHIrwu7fv98LmTqdTu+Sy+X0ve9978L7vfTSS3r66ad1/fp1fe9735tqFdne3p6lcfF4fOIVYcViUVevXu2FYIVCQbVazXIIZpqmUqmUpNOAqj+w6lcqlSSdrqrrjndzTgAAAAAAAKes3IqwbDarZDKpmzdvKhqNyjAMvfvuu/r+97+vXC6nnZ0dffGLXxy4z9NPPy3DMNTpdCRJtVpNpVJJtVpNfr/f0nGLxaJM01Qmkxnb/2vc9sVhjymfz0s6DZwqlcrEQVoqleptTRy1Gq27iqtcLqtarapYLCqdTrs2JwAAAAAAgFN8nW76syK2trZ0cHBw7vOmaSoWi+n69ev6p3/6p97nX3rpJRUKBfl8PmUyGe3t7fW2IJqmqbt371o6biQSkSQ1Gg17Hsj/K5VKqVwuS5ICgYAePXo08dZCwzB69UnSycnJyDnK5XJv5VYgENDJyYkrc04iFArp6OhIm5ubOjw8nGmuZfFpW7r82ugxn7wuXVq5dZ4AAAAAgFUyz/f0K/eW2efzDf18IBBQrVY7F1R1Q7BkMtnb2hgIBFQoFHRycqIPPvhg7DHL5bIMw5iq79coiUSiF4JJmrq/Vi6X612Px+Nj50gmk73rpmkO1ODknAAAAAAAAE5auSAsGAzqhz/84dDbAoGAgsFg7+M7d+70rvcHO13ZbFbVanXsMff29hQIBHTjxo0pKh6uWCwOHLtQKEx9psn+Jv7RaNTSffqPNWxVnBNzAgAAAAAAOGnlgrBMJqNXXnlFL7/88tCG9/1b8rqrweLxuP7mb/7m3Nitra2xWx3r9brq9bpM01QwGFQkEtHOzs5MK54Mw9DOzk7v42g0OnVPrXq9PvDx9evXLd2vP9w6+1icmBMAAAAAAMBpKxeExeNx3bp1S2+99ZaCwaBu3rypH/zgB/rBD36g69evq9Fo6Ctf+Ypu377dC3T6Q6d+V65ckWEYI493djukYRgqFotKpVLy+XxKpVLngqNxzp5Z8fbt2xPdv9/ZFW1WV5WdHdf/GJyYEwAAAAAAwGkrF4RJpyu9nnvuOXU6HZXLZWWzWWWzWdXrdd2/f19+v39gK+RFW/sePnyo9fX1C49jGMbYrZPlclmxWOzCsG3YnP0BUSAQGOivNakHDx4MfGy1x9hTTz018HH/CQicmBMAAAAAAMBpKxmESVKpVNJbb72l7e1tdTodXblyRffu3dO1a9dUKpX03HPPKRAI6K233rowpCoWiwNnRjwrHA6rUCgol8spnU6PXBlVLBYVi8XG1l0oFAY+jsfjkv5y1sVIJCKfz6dgMKhYLKZ8Pi/TNC+c7+yKtmlXb/VvEXViTgAAAAAAAKddnncBTkqn0xf21iqVSr3rwWBQ169f149//GP9/d//vVqtlt544w0Vi8WBnmIXHaOfaZoqFova29s7F1DV63UlEglVKpUL5+tvQi9J6+vrisVi57YRmqbZ60+WzWZVKpWGrhwbt7XTqv7H4sScAAAAAAAATlvZFWGTSCaTSqVSunbtmi5duqRgMKjvf//7evPNN+X3+yeaKxAIKJPJ6OTkRKVS6dy2wWq1qnw+P/S+hmGcC4fu3bunnZ0dnZycqNPpqNPpqNFonAvgUqnU0Ab004ZNZ+s+Pj52dE4AAAAAAACnrfSKsElkMhmFw2EVi0UFAgHdvHlTzz333ExzJpNJxeNxbW9vD6zo2tvbUyaTOTf+7EqrQCCgR48enQuQulsyz/Yeu3XrluLxuOWeXZNwYvWWHXM2m02FQqGZ59nd3dXu7u7M8wAAAAAAsKr29/e1v78/8zzNZtOGaqazckHYe++9py9/+ctjx73zzjuKx+MDK76SyeRMjemHCQQCqtVqA9sbTdNUtVrt9f/qOhuEpdPpkaFWOp1WrVbrbac0TVN7e3sDJwIIBAK2BE79dTgx57Ta7baOjo5mnqfVas08BwAAAAAAq6zVatnyHnyeVi4ISyaTevz4seLxuBKJhOLxuP7hH/7h3Ljt7W19+9vfVj6f19/8zd84XtedO3cGmuVXKpVzQdjZ5vHXr18fO282mx3oK5bP5weCsPX1dVtCq/6zZzox57TW1ta0sbEx8zyTboEFAAAAAMBr/H6/Njc3Z56n2Wyq3W7bUNHkVi4Ii8Viun//vqrVqqrVqqTTlUdbW1sDwdiVK1d0584dxeNxlctlffGLX3S0rmg0qng83qtpWMP5s+GSlRVT4XBY0Wh0YOtlvV5XNBq1PMcwo2pxYs5pbWxs6PDwcOZ5AAAAAADAaHa1FQqFQnNbWbZyzfLL5bLi8biuXbumq1evqtPp6OTkRJVKRdlsVrFYTJcuXdJ//I//UW+++aZOTk4G+mw5KZFIjLw9EolMNe/W1tbAx/0h29nbrK7kOtvIvr82J+YEAAAAAABw2soFYel0WsViUQcHB/rd736ndrutSqWiW7du9c662Ol09O677yqfz8swDFUqFVdqC4fDvevDtgWeXSFlNWA6Gyj1B0792zGl4SvRhjm7TbN/G6cTcwIAAAAAADht5YKwTqdzrufX9va2CoWCTk5O9MorrygajSqXy+m5555TNBrVm2++6Upt/UHYsG2Bo1Z2jXJ2rv6Qbdo5+0O4QCAwULsTc8IeP3047woAAAAAAFhcKxeEPX78+MLbrly5olwup1KppAcPHiifz+vg4ECvvPKKK7UdHBz0rg/bJtnt69V1dgWVVf0BUzQaHQjKHjx4YGmO/lrPBl9OzInxrIRc3yoThgEAAAAAcJGVC8KuXr2qH/7wh2PH3Lt3T+l0Wr///e9dqmww2LpoW2D/57uN9cc5u4XybKB248aN3vX+pvqj9I/LZrPnbndiTlzs8cfSy7+wNvY7P5daHztaDgAAAAAAS2nlgrBMJqNXXnlF//zP/zx27L179xSPx9VqtVyo7LSRv3Ra40X6AyLDMCz1CRsXsPWfDMBKuNY/JhwOuzYnLvaTuvTHf7M29qM/S29byyYBAAAAAPCUlQvCwuGw3nzzTSWTSb388ssjxwYCAV27dk2vvvqq43WVy2UZhqFAIKDbt29fOC4ejw9sbdzb2xs7d3/IlMvlzt0ejUYHgqduIHeRUqnUu37Ryi0n5sTFfvn+ZON/NeF4AAAAAAC8YOWCMOl0xdU3vvENvfXWW/qrv/or/fCHP7xw1df6+rru3r078TGq1aqCwaB8Pp8SicTI7YGGYejWrVuSpPv37w9tlN+vPzTqntlyVB3d29Pp9LltkV2FQqF3fVS4ZpqmisWipNNQLp1OXzjWiTkx3MmfnB0PAAAAAIAXrGQQJp2GSbdu3dLx8bEymYyCwaBu3rypH//4x/rNb36j3/zmN7p9+7aKxaKl7YfD5u/er1qtKhaLDWwX7Oretr6+rkajcWFQ1S8ajQ6ETIlEYmiNpmn2jnn2PmeFw+FewFav15XP54eO297elnS6Wq4/kHNrTgwX/Jyz4wEAAAAA8IKVDcKk0xVL9+7dk9/vV6fTUblc1s7OjmKxmGKxWC+4sRJOnZVKpc59rlgsKhgMKpVK9Y6TSCSUTqdVq9UGtjyOk06nValUFAgEZBiGrl69qnw+r3q93gudrl69KsMwevOPk0wme3Nms1mlUinV63WZptkL7Or1uqLRqB49ejR25ZpTc+K8Z5+ZbPxXJxwPAAAAAIAX+DqdTmfeRbghn8/rzTffPLeyKhAI6L333tM//MM/TDynYRjK5XKqVqs6Pj6WaZoKBAJaX19XNBrVzZs3FY/HZw5/isWiSqWSDg4OesfoNpzf2dmZKGDryufzunv3bq8hfyAQ0NbWlnZ2dpRMJqeq04k5LxIKhXR0dKTNzU0dHh7aOvcievyxtPmGtYb5T35WOrot+Z9wvi4AAAAAACY1z/f0ngnCuh4+fCjDMGQYRi9MunLlyrzLwoS8FoRJ0ts16Vujz0kgSfqfN6TnrzlfDwAAAAAA05jne/rLrh7NRi+99JL+x//4HxPf79q1a7p2jZQAy+f5a+ODsLeThGAAAAAAAFxkaXuE3bt3T3/4wx/mXQawUL5JCAYAAAAAwIWWNgg7OTnR3/zN3+ill17Se++9N+9yAAAAAAAAsOCWNgiTJNM0VSwWlUgkdOnSJX3lK1/RD37wA33wwQfzLg0AAAAAAAALZqmDMEnqdDq9S7VaVTabVSQS0VNPPaWXXnpJ77zzztg5fvzjH7tQKQAAAAAAAOZpaYOwN998U51ORz6fT5FIRNJgKHZycqJisahUKqVLly7p+vXr+sEPfqDf/OY35+aqVCouVw8AAAAAAAC3Le1ZIzOZjOLxuFKplI6Pj1Uul9XpdPRP//RPun//vkzTVKfT6Y2v1+uq1+uSpEAgoHg8rkQiIUkql8ecig8AAAAAAABLb2mDMEmKRqNqNBrKZrNKpVLa2dlRqVSSJD169EjlclmVSkXVanUgFDs5OVG5XCYAAwAAAAAA8JCl3RrZL5fL6cGDB3r33Xf1t3/7t/rXf/1XXb16Va+88oreffddtdttVSoVpdNphcNhSYPbKAEAAAAAALD6lnpFWL9oNKrf/e532tnZUTQaVTab1RtvvNG7fXt7W9vb25Kkx48f6969eyqVSqpWq/MqGTZoNpsKhUIjx+zu7mp3d9eligAAAAAA8K79/X3t7++PHNNsNl2q5ryVCcK6CoWCUqmUbty4oXK5rFKppL//+78fGHPlyhXdunVLt27dUrVa1Ve+8pU5VYtZtdttHR0djRzTarVcqgYAAAAAAG9rtVpj36fP08oFYZIUj8dlGIZu3bqlaDSqfD6v//pf/+uFY7srxbB81tbWtLGxMXKM3+93qRoAAAAAALzN7/drc3Nz5Jhms6l2u+1SRYN8nRVvklUul3Xjxg1tbW2pVCrpi1/84rkxd+7c0a1bt+ZQHaYVCoV0dHSkzc1NHR4ezrscV3zali6/NnrMJ69Ll1ai8x8AAAAAYFXN8z39yr9lTiaTOj4+1pUrVxQOh/XDH/7w3BhCMAAAAAAAgNW38kGYJAUCAVUqFe3t7emVV17Rv/t3/06///3v510WAAAAAAAAXOSJIEySPvjgA21tbSmTyejg4EDhcFj/+I//OO+yAAAAAAAA4JKVaJb/wQcfyDAMmaYpwzDUaDRkGIYMw9Dx8bFM0xwY7/P51Ol0lE6nVSqVVCqV9IUvfGE+xQMAAAAAAMAVSxuEXb9+vRd+jTLqXACdTkfvvvuuvvzlL+vBgwc2VwgAAAAAAIBFsrRBWK1W663sGiUQCCgcDvcukUhE6+vrvY+vXLniUsUAAAAAAACYp6UNwvoFg0HduHFjIPAi5AIAAAAAAEC/pW6W/9xzzykajerk5ETFYlEHBwc6OTlRMBgkBAMAAAAAAMCApQ3C4vG47t271wu/7t69q06no0wmo0gkoqefflovvfSS/uVf/mXsXO+9954LFQMAAAAAAGCeljYISyQSvetXrlxRMpnUvXv3dHx8rAcPHugb3/iGHjx4oO3tbV26dEnXr1/XD3/4Q/3mN785N1ehUHCxcgAAAAAAAMyDrzOu2/ySe/z4sSqViu7du6dqtarHjx8rEAgoHo/r+vXrkqRsNqtPP/10zpViEqFQSEdHR9rc3NTh4eG8y3HFp23p8mujx3zyunRpaeNtAAAAAIAXzPM9/Uo0yx+lu1osmUxKkur1uu7evauf/exnKpVK8vl8c64QAAAAAAAAbvDc2pFoNKpcLqff/e53Ojg40Je//OV5lwQAAAAAAAAXeC4I6xeNRlWpVHTt2rV5lwIAAAAAAACHeToI68rlcvMuAQAAAAAAAA4jCJO0vb097xIAAAAAAADgsKUIwn7wgx/ovffem3cZAAAAAAAAWGJLEYT97//9v5VIJPSP//iPM81z584dXbp0SX/7t3+rf/3Xf7WpOgAAAAAAACyDpQjCJKnT6SidTut73/ve1HNks1l1Oh397ne/UzQa1QcffGBfgQAAAAAAAFhol+ddwKTeffddNRoN3b17d+L7Xr16VY8fP1Y8Hpd0GoxNMw8AAAAAAACWz9IFYQcHB0qlUrp+/bree+89feELX7B831qtNvDx008/bXd5AAAAAAAAWFBLF4RJUqlUUj6fVzQaVbVa1Re/+MWJ53j06JGOj48dqA5uajabCoVCI8fs7u5qd3fXpYoAAAAAAPCu/f197e/vjxzTbDZdqua8pQzCJCmTySgajSoajapcLuvf//t/b/m+jx8/ViKR0NbWloMVwg3tdltHR0cjx7RaLZeqAQAAAADA21qt1tj36fO0tEGYJMXjcT148ED/4T/8B92+fVv/+T//57H3ee+995RKpWSapl599VUXqoST1tbWtLGxMXKM3+93qRoAAAAAALzN7/drc3Nz5Jhms6l2u+1SRYOWOgiTpHA4rIODA924cUONRkNvvPHGhWO///3v69VXX1Wn01EwGNS3v/1tFyuFEzY2NnR4eDjvMgAAAAAAgKy1JwqFQnNbNbY2l6PaLBAI6N1339Xx8bFu3rw5dMzt27d7IZjP51Mul3O5SgAAAAAAAMzTSgRhXW+99Za2t7d1/fp1/eEPf+h9/v79+73gy+fzKRqNshoMAAAAAADAY5YuCPuXf/mXkben02kVCgV9+ctf1u9//3tJ6oVgnU5n4GMAAAAAAAB4x1IEYVevXpV0GmSl0+lewHWRaDSqu3fv6rnnntM777yjarUqn8/Xu+3LX/6y4zUDAAAAAABgsSxFEJbL5XRycqJSqaTt7W3F43H9+Mc/HnmfbhP9t956q/c5n893YQ8xAAAAAAAArLalOWvklStX9Nxzz+m5556b6H7vvvuustmsvv/97/f6gwEAAAAAAMB7lmJF2KxyuZzu3bunTqejR48ezbscAAAAAAAAzIEngjBJSiaTOjg40N27d+ddCgAAAAAAAObAM0GYdNoo/9133513GQAAAAAAAJgDTwVhAAAAAAAA8C6CMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5wed4FALNoNpsKhUIjx+zu7mp3d9eligAAAAAA8K79/X3t7++PHNNsNl2q5jyCMCy1druto6OjkWNarZZL1QAAAAAA4G2tVmvs+/R5IgjDUltbW9PGxsbIMX6/36VqAAAAAADwNr/fr83NzZFjms2m2u22SxUN8nU6nc5cjgzMIBQK6ejoSJubmzo8PJx3Oa74tC1dfm30mE9ely7R+Q8AAAAAsMDm+Z6et8wAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5wed4FALNoNpsKhUIjx+zu7mp3d9eligAAAAAA8K79/X3t7++PHNNsNl2q5jyCMCy1druto6OjkWNarZZL1QAAAAAA4G2tVmvs+/R5IgjDUltbW9PGxsbIMX6/36VqAAAAAADwNr/fr83NzZFjms2m2u22SxUN8nU6nc5cjgzMIBQK6ejoSJubmzo8PJx3Oa74tC1dfm30mE9ely7R+Q8AAAAAsMDm+Z6et8wAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhc2AYhhKJxFznzOfzSiQSCgaD8vl8ikQiSqVSqlarU9fgxJwAAAAAAAB2IQizkWma8vl8Yy+RSEThcHguc1arVQWDQWWzWUlSqVRSo9FQLpdTvV5XIpFQIpGQaZqWH7cTcwIAAAAAANjt8rwLWCXFYtHy2G5o5Oac1Wq1t2osnU6rUCj0bguHw0omk4rFYqpWq4rFYqrVagoEAq7PCQAAAAAA4ARfp9PpzLuIVREMBi2teorH46pUKq7OaZqmrl69KtM0FQ6H1Wg0ho4zDEORSGRuc1oVCoV0dHSkzc1NHR4ezjzfMvi0LV1+bfSYT16XLrHOEwAAAACwwOb5np4VYTYpFosyTVOZTGZsr66trS3X50ylUr1AbdTKse4qrnK5rGq1qmKxqHQ67dqcAAAAAAAATmFFmE26K54uWhU1zzn7V2RJ0snJycjtieVyWalUSpIUCAR0cnLiypyTYEXYcKwIAwAAAAAsunm+p+ctsw3K5bIMw7Dc98vtOXO5XO96PB4f26MrmUz2rpumqXK57MqcAAAAAAAATiIIs8He3p4CgYBu3LixkHP2N9yPRqOW7tN/Bsq7d++6MicAAAAAAICTCMJmVK/XVa/XZZqmgsGgIpGIdnZ2ZlrxZOec9Xp94OPr169bul9/uHX2uE7MCQDLoNM53aY86kLDAQAAAGBxEYTN6OzWRcMwVCwWlUql5PP5lEqlzgVHbs5ZrVYHPu5flTXK2XH9x3NiTgBYBu3Oaa++UZc2QRgAAACwsAjCZmAYxrlQ6KxyuaxYLKadnZ25zPngwYOBj8f18up66qmnBj4+ODhwdE4AAAAAAACnXZ53AcssHA6rUCjINE01Gg1Vq1UZhjF0bLFY1MHBgWq1mqtznr3vtKu3+s9c6cScAAAAAAAATiMIm1E6nR742DRNFYtF7e3tyTTNgdvq9boSiYQqlYprc14Uok2q/7hOzAkAAAAAAOA0gjCbBQIBZTIZZTIZlctl3bp1ayDwqVaryufzymQyrsw5bdh0drvj8fGxo3NOq9lsKhQKzTzP7u6udnd3Z54HAAAAAIBVtb+/r/39/ZnnaTabNlQzHYIwByWTScXjcW1vbw80ht/b25soCHN6TiucWL1lx5ztdltHR0czz9NqtWaeAwAAAACAVdZqtWx5Dz5PBGEOCwQCqtVqisViveDKNE1Vq1XF43HH5wwEArYETv2ruZyYc1pra2va2NiYeR6/3z/zHAAAAAAArDK/36/Nzc2Z52k2m2q32zZUNDmCMJfcuXNHsVis93GlUpk6CJtkzvX1dVtCq/X1dUfnnNbGxoYODw9nngcAAAAAAIxmV1uhUCg0t5Vla3M5qgdFo9GBkMqOhvNW5px21dXZoOvsijC75wQAAAAAAHAaQZiLEomE63NubW0NfGx1JdfZRvaRSMTROQEAAAAAAJxGEOaicDjcu27HtkArc/ZvnZSsr0RrNBoDH/evPHNiTgAAAAAAAKcRhLmoP7Sya1vguDnPrt6yGlr1r/IKBAIDx3FiTgAAAAAAAKcRhLno4OCgd92ubZLj5oxGowMB2YMHDyae92zw5cScAAAAAAAATiMIc1H/1kC7tgVamfPGjRu96/V63dK8/eOy2awrcwIAAAAAADiJIMxF5XJZkpTJZFydc2dnp3e9Wq2OnbN/TDgcHhqwOTEnAAAAAACAkwjCXFIul2UYhgKBgG7fvu3qnNFodCB46oZnFymVSr3rF63ccmJOAAAAAAAAJxGETalarSoYDMrn8ymRSIzcHmgYhm7duiVJun///oWN8p2Ys6tQKPSu7+3tXTjONE0Vi0VJp1st0+m0q3MCAAAAAAA4hSBsSqVSqXcWxGq1qlgsNrBdsKt72/r6uhqNhqLRqKtzdoXD4d6qrHq9rnw+P3Tc9va2pNOzOvav4nJrTgAAAAAAAKcQhE0plUqd+1yxWFQwGFQqldLOzo5isZgSiYTS6bRqtZrC4bDrc/ZLJpOqVCoKBALKZrNKpVKq1+syTbMXrtXrdUWjUT169GjsKjOn5gQAAAAAAHACQdiU4vG4Go2G0um0wuHwQMBTr9d1fHys27dv6+TkRLlczlIA5MScw47Rvb9hGNre3u4Fbevr6yqVSqrVahPN7cScAAAAAAAAdvN1Op3OvIsAJhUKhXR0dKTNzU0dHh7OuxxXfNqWLr82eswnr0uXiLcBx/BzCAAAAMxunu/peakOAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnnB53gUAs2g2mwqFQiPH7O7uand316WKAAAAAADwrv39fe3v748c02w2XarmPIIwLLV2u62jo6ORY1qtlkvVAAAAAADgba1Wa+z79HkiCMNSW1tb08bGxsgxfr/fpWoAAAAAAPA2v9+vzc3NkWOazaba7bZLFQ0iCMNS29jY0OHh4bzLAAAAAAAAstaeKBQKzW3VGM3yAQAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnnB53gUAs2g2mwqFQiPH7O7uand316WKAAAAAADwrv39fe3v748c02w2XarmPIIwLLV2u62jo6ORY1qtlkvVAAAAAADgba1Wa+z79HkiCMNSW1tb08bGxsgxfr/fpWoAwJpOR2p3Ro9Z80k+nzv1AAAAAHbx+/3a3NwcOabZbKrdbrtU0SCCMCy1jY0NHR4ezrsMAJhIuyNdfm30mE9ely4RhAEAAGDJWGlPFAqF5rZqjGb5AAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAAT7g87wKAWTSbTYVCoZFjdnd3tbu761JFAAAAAAB41/7+vvb390eOaTabLlVzHkEYllq73dbR0dHIMa1Wy6VqAAAAAADwtlarNfZ9+jwRhGGpra2taWNjY+QYv9/vUjUAAAAAAHib3+/X5ubmyDHNZlPtdtuligYRhGGpbWxs6PDwcN5lAAAAAAAAWWtPFAqF5rZqjGb5AAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AmX510AAGBynY7U7owes+aTfD536gEAAACAZUAQBgBLqN2RLr82eswnr0uXCMIAAAAAoIetkQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADzh8rwLAGbRbDYVCoVGjtnd3dXu7q5LFQEAAAAA4F37+/va398fOabZbLpUzXkEYVhq7XZbR0dHI8e0Wi2XqgEAAAAAwNtardbY9+nzRBCGpba2tqaNjY2RY/x+v0vVAAAAAADgbX6/X5ubmyPHNJtNtdttlyoaRBCGpbaxsaHDw8N5lwEAAAAAAGStPVEoFJrbqjGCMAAAAAAAsBI6HandGT1mzSf5fO7Ug8VDEAYAAAAAAFZCuyNdfm30mE9ely4RhHnW2rwLAAAAAAAAANzAijAAAAAAsAFbsoDp8LMDNxGEAQAAAIAN2JIFTIefHbiJrZEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIGwODMNQIpGYeZ5IJCKfz6dyuTzxffP5vBKJhILBoHw+nyKRiFKplKrV6tT1ODEnAAAAAACAXQjCbGSapnw+39hLJBJROBye6VjZbFaGYUx8v2q1qmAwqGw2K0kqlUpqNBrK5XKq1+tKJBJKJBIyTXOucwIAAAAAANiNs0baqFgsWh7bDY2mUa1Wlc/np7pfdyVaOp1WoVDo3RYOh5VMJhWLxVStVhWLxVSr1RQIBFyfEwAAAAAAwAmsCLPR3t6epXHxeHzqFWGmaSqVSs10v3A4PBBY9SuVSpJOt2+OO44TcwIAAAAAADiFFWE2KRaLMk1TmUxmbP+vra2tqY9z69Ytra+vS9JEWw1TqVRv/KjVaN1VXOVyWdVqVcViUel02rU5AQAA3NDpSO3O6DFrPsnnc6ceAADgDoIwm+RyOYXDYeVyOceOUSwWVS6XVavVtL29bfl+hmEMNKy/cePGyPE3b97sNeDPZrNDQysn5gQAAHBLuyNdfm30mE9ely4RhAEAsFLYGmmDcrkswzBm6vs1jmEY2tnZUSaTUTQanei+/eFcPB4f26MrmUz2rpumOfSslE7MCQAAAAAA4CSCMBvs7e0pEAiMXRU1i1QqpWg0OtWKs/4m/lZDtP4eZnfv3nVlTgAAAAAAACcRhM2oXq+rXq/LNE0Fg0FFIhHt7OzYuuIpm82qXq/3ms5PWl+/69evW7pff7h19rE4MSewqDod6dP26EtnTI8ZAAAAAMBioEfYjM5uhzQMQ8VisbdiKplM6vbt2xNvZ+yq1+vK5/MqFApTnWmyv4+XJMtznB1Xr9d7j8GJOYFFRQ8ZAAAAAFgdrAibwdmG8cOUy2XFYjHt7OxMdYzt7W0lk8mpm8s/ePBg4ONxvby6nnrqqYGPDw4OHJ0TAAAAAADAaawIm0E4HFahUJBpmmo0GqpWqzIMY+jYYrGog4MD1Wo1y/OnUilJ0p07d6au8Ww9067eajQajs4JAAAAAADgNIKwGZ1dqWWaporFovb29mSa5sBt9XpdiURClUpl7LzlclnlclmVSsXyiqthLgrmJtX/WJyYEwAAAAAAwGkEYTYLBALKZDLKZDIql8u6devWQOBTrVaVz+eVyWQunMM0TaVSKaXTacXj8ZnqmTZsOhu+HR8fOzrntJrNpkKh0Mzz7O7uand3d+Z5AAAAAABYVfv7+9rf3595nmazaUM10yEIc1AymVQ8Htf29vbAmRb39vZGBmHb29u9bZeLwonVW3bM2W63dXR0NPM8rVZr5jkAAAAAAFhlrVbLlvfg80QQ5rBAIKBaraZYLNYLw0zTVLVaHbraK5/Pq16vT9RLbNzx7Qic+ldzOTHntNbW1rSxsTHzPH6/f+Y5AAAAAABYZX6/X5ubmzPP02w21W63bahocgRhLrlz545isVjv40qlci4Iq9frymazyuVyikajthx3fX3dltBqfX3d0TmntbGxocPDw5nnAQAAAAAAo9nVVigUCs1tZdnaXI7qQdFodCD4GtZwPpVKKRqNjtw2OalpV12dDbrOrgize04AAAAAAACnsSLMRYlEQtVqdeht+XxehmEoHo8rlUqNnas/VNrb29Pdu3d7H9+8eVPJZFKStLW1NdCfzDRNSwHU2Ub2kUikd92JOQEAAAAAAJxGEOaicDjcu352W+CHH34oSRcGZaPU6/WBYCocDveCsP7tmNLpSjQr2y4bjcbAx/2r2ZyYEwAAAAAAwGlsjXRRfxDm1rbAra2tgY+Hbckcpn/FWSAQGKjdiTkBAMBi6XSkT9ujL53OvKsEAACYDEGYiw4ODnrXE4nEwG25XE6dTsfypT9EKpVKA7flcrnebdFodCB0e/DgwcS1ng2+nJgTAAAslnZHuvza6EubIAwAACwZgjAX9W8NdHNb4I0bN3rX+7dQjtI/LpvNujInAAAAAACAkwjCXFQulyXJ1rNCWrGzs9O7bqUHWf+YcDg8NLRzYk4AALB62GIJAAAWCUGYS8rlsgzDUCAQ0O3bt109djQaHQieuoHcRUqlUu/6RSu3nJgTAACsHrZYAgCARUIQNqVqtapgMCifz6dEIjFye6BhGLp165Yk6f79+641yu9XKBR61/f29i4cZ5qmisWipNPtm+l02tU5AQAAMDtW4gEAMBxB2JRKpVLvLIjValWxWGxgu2BX97b19XU1Gg1Fo1GXKz0VDod7q7Lq9bry+fzQcdvb25JOz+rYv4rLrTkBAAAWxU8fzruC6S3qSjwCOgDAvBGETSmVSp37XLFYVDAYVCqV0s7OjmKxmBKJhNLptGq12sCZHuchmUyqUqkoEAgom80qlUqpXq/LNM1eYFev1xWNRvXo0SNLK9ecmBMAAMBpVkKub5WXOwxbRIsa0AEAvIMgbErxeFyNRkPpdFrhcHgg4KnX6zo+Ptbt27d1cnKiXC5newDUaDTU6XTU6XSUTCYnqrtbk2EY2t7e7oV36+vrKpVKqtVqE9XrxJwAAABOefyx9PIvrI39zs+l1seOlgMAAFx0ed4FLLNwODzQJ2uZZDIZ289e6cScAAAAXZ3O+NVCaz7J5xs95id16Y//Zu2YH/1ZersuffdL1sYDAIDFRhAGAACApdDdVjfKJ69Ll8YEYb98f7Lj/up9gjAAAFYFWyMBAADgKSd/cnY8AABYXARhAAAA8JTg55wdDwAAFhdBGAAAwIrodKRP26MvnQU8I5/bZ2Z89pnJxn91wvEAAGBx0SMMAABgRdjVQ8tOVkKub5WlS2vS89ecr0eSXohKr/7aWsP8Jz8rvRh1viYAAOAOVoQBAADAEY8/ll7+hbWx3/m51PrY0XJ6rjwh/ehr1sa+9XXJ/4Sj5QAAABcRhAEAAMARP6lbW3UlSR/9WXq77mw9/aysPns76d4qNQAA4A6CMAAAAExl3LbHX74/2Xy/mnC8075JCAYAwMqhRxiWWrPZVCgUGjlmd3dXu7u7LlUEAMBqsKO318mfJjvmpOMBAMDi2d/f1/7+/sgxzWbTpWrOIwjDUmu32zo6Oho5ptVquVQNAACrYdLeXs/+3fA+WsHPTXbcSccDcF+nc3pijlHWfJLPxZNyAFgsrVZr7Pv0eSIIw1JbW1vTxsbGyDF+v9+lagAAWA3T9Pb67pfO3/bsM9K7v7V+3K8+Y30sgPlYxLPTAlgsfr9fm5ubI8c0m021222XKhpEEIaltrGxocPDw3mXAQC2++lD6cXYvKuAV03T22tYEPZCVHr119ZCtSc/K70Yney4AABg8VhpTxQKhea2aoxm+QAAuMxq7yUr4wAn2NXb68oT0o++Zm2Ot74+fHvlMuh0pE/boy+dMVvJ7JwHAABcjBVhAAC4yK7eS4CT7Ozt9fy102B3lLeTFzfcXwZ2bRVjyxkAAM5jRRgAAC6apvcS4LZnJ+zVNWtvr28ucQgGAACWC0EYAAAumqb3ElbbIm6HeyEqff4z1sbS2wsAACwTtkYCAOAiu3ovYXUs4na4bm+vcVsapeXu7QUAALyHFWEAALjIzt5LgJOs9Oxa9t5eAADAewjCAACw0bgzPbrdewlwEr29AADAsiEIAwDAonEhl3S6lWzUOHovAQAAAPNDEAYAgAWPP5Ze/oW1sd/5udT6ePht3d5LVtB7CQAAALAXQRgAABb8pC798d+sjf3oz9Lb9Ytvp/cSgEVgZZUrAACrhrNGAgBgwS/fn2z8r96Xvvul6Y9H7yU45acPpRdj7h1vzXd61stxY2Avq1u5L60RugMAvIUgDAAAC07+5Ox4wA6LGH74fNKlBQy6Vjmgm3Qr97N/xzZsAIB3sDUSAAALgp9zdjwwK7v62HmFz3caCI66+JY0CLNzKzcAAKuGIAwAAAuefWay8V+dcPwi6HSkT9ujL53OvKvERQg/0DXNVm4AALyCrZEAAFjwQlR69dfWgoYnPyu9GHW+Jru1O9Ll10aP+eT1xdzmBvf72GFxsZUbAICLsSIMAAALrjwh/ehr1sa+9XX67cB9hB/oYiv3YuNsnQAwXwRhAABYZKW5+NtJzsDmBYu4jZTwA11e2Mq9qKyesIIwDADmh62RAADY6JuEYJ7g9jbSnz6UXoyNHvPsM9K7v7U+J+HH6vLCVu5FxNk656fTOf29PMqab3lPgAHAXgRhAAAAc2R1BcmltdGrDQk/0NXdyv2t8vixbOW2zzQnrKBPnz3ocWkdoSFAEAYAADA3dq4gIfxAv+evjf9esLqVmzfO1nDCCiwDQkOAIAwAAGBu7F5BYmf4gdVndSs3b5yt4YQVALAcCMKw1JrNpkKh0Mgxu7u72t3ddakiAIDEChKr5rGCxGr4seY7DTfGjYG7rPSLw3xwwgoAOLW/v6/9/f2RY5rNpkvVnEcQhqXWbrd1dHQ0ckyr1XKpGgBA1yKuIFnEcG6RV5D4fKzwcZtd/eIwH5ywAgBOtVqtse/T54kgDEttbW1NGxsbI8f4/X6XqgEALLJFDOdYQYIuzji4/DhhBQCc8vv92tzcHDmm2Wyq3W67VNEggjAstY2NDR0eHs67DAAApsIKEnRxxsHlxwkrAOCUlfZEoVBobqvG1uZyVAAAAOiFqPT5z1gbywqS1TZNvzgsHitbVjlhBVZFpyN92h596YxpSQDMAyvCAADAQlvE3l52YQUJuha5XxzsZfWEFcCiW8SWA4AVBGEAAGChrfoL7eevjQ/CWEGy+ugXN7lVDskBAM4hCAMAAFhwrCBZffSLm9yqh+QAAGfQIwwAAMABP3047wqwTOgXBwCAOwjCACwMGm4CWBZWQq5vlQnDYF23X5wV9IsDAGB6bI0EsDDY4gBgGTz+WHr5F9bGfufn0rN/R2gBa+gXd+qnD6UXY/OuAgCwqlgRBgAAMIGf1KU//pu1sR/9WXq77mw98JZl7xfHakoAwLwRhAGYCdsZAXjNL9+fbPyvJhwPrKpJV1O2Pna0HACAR7E1EsBM2M4IwGtO/uTseGBVTbOa8rtfcrYmAID3EIQBAABMIPg5Z8fPYs13+s+HcWOAeZhmNaUbQVinc/qPvVHWfJKPnx1b8XUHMC8EYQAAABN49hnp3d9aH//VZ5yr5SyfjxW4WFyLupqS1e3zwdcdwLzQIwwAAGACL0Slz3/G2tgnPyu9GHW2HmBZLPJqSgCAd7AiDACAJcbWEvddeUL60ddOz2w3zltfl/xPjB7DdkZ4xSKvpgQAeAdBGICVs6jBwKLWheXG1pL5eP7a+CDs7eTpuHHYzgiveCEqvfpraw3zWU0JAHAKQRiAlbOowcCi1gXAGd+0EIIBXmL3akoAAKZBjzAAWFE/fTjvCgAAGGRllaTV1ZRYXLwGAbDIWBEGAEvIygvMb5WlS2u8mQAAL1rm3nOsplxsvAYBsOxYEQYAS+bxx9LLv7A29js/l1ofO1oOAGAB+XynQcSoCz0pMSlegwBYBQRhALBkflK31mhYkj76s/R23dl6AACA/Tod6dP26EtnzEl47MZrEACrgK2RgAdx9sLl9sv3Jxv/q/el737JmVqcwvcoAMDrFvEkO7wGOcVrEGC5EYRhqTWbTYVCoZFjdnd3tbu761JFy2ERX1jBupM/OTt+EfA9CgDA4uE1yClegwCj7e/va39/f+SYZrPpUjXnEYRhqbXbbR0dHY0c02q1XKoGcEfwc86OBwAAGIbXIACsaLVaY9+nzxNBGJba2tqaNjY2Ro7x+/0uVQO449lnpHd/a338V59xrhYAAOAdvAYBYIXf79fm5ubIMc1mU+1226WKBhGEYaltbGzo8PBw3mUArnohKr36a2vNap/8rPRi1PmaAK9Z851ujRk3BgBWCa9BAFhhpT1RKBSa26oxzhoJAEvmyhPSj75mbexbX5f8TzhaDuBJPp90aW30hUbKwPz99OG8K1gtvAYBsAoIwgBgCT1/bfyYt5PWxgEAsIyshFzfKhOG2Y3XIACWHUEYAKyob/ICFAuON6fA6nD75/nxx9LLv7A29js/l1ofO1oOzuA1CIBFRhAGAABsx0oNYHUs4s/zT+rW+lRJ0kd/lt6uO1sPAGB5EIQBAABbsVIDWB2L+vP8y/cnG/+rCccDAFYXQRgAALDVPFZqsLIMcMairrw6+ZOz4wEAq4sgDAAA2MrulRqLuC0L8IpFXXkV/Jyz48/i9wsArI7L8y4AALAaOh2p3Rk9Zs0n+Xzu1IP5sXOlxqTbsp79O8n/xGTHBxbFmk/65PXxY9y0qCuvnn1Geve31sd/9ZmLb7Matl9a40yIALAKCMIAALZod6TLr40e88nr0iWCsJVn50qNabZlffdLkx0fWBQ+3+L9jnR75ZVVL0SlV39t7ffDk5+VXowOv42wHQC8h62RAADAVs+OWHkxzKiVGou6LQvwCjt/nu105QnpR1+zNvatr18cXi1qDzQAgHMIwgAAK63TkT5tj750xmzpxGReiEqf/4y1saNWakiLuy0L8Ao7f57tZmWb4tvJ0eMI2+EkXoMAi4mtkQCAlcaWTfd1V2p8qzx+7KiVGtLibssCvMLOn+d5+OaYsIywHU7iNQiwmFgRBgAAbGfHSg1pcbdlAV5i18/zIiJsB7BsWGk4O1aEAQCAuRi3UkOyryE2AGdZ+XleRHaefRIA3MBKw9mxIgwAACwsuxpiA8Awi9wDDQDgDIIwAACw0FZ5WxaA+SJsBwDvIQgDAABLb1m3ZQGYP8J2APAWgjAAAAAAGIGwHQBWB0EYAAAAAAAAPIEgDAAAAAAAAJ5wed4FAAAAAACc0+lI7c7oMWs+yedzpx4AmCeCMCy1ZrOpUCg0cszu7q52d3ddqggAAABeteaTPnl9/Bi3tTvS5ddGj/nkdekSQRgAG+zv72t/f3/kmGaz6VI15xGEYam1220dHR2NHNNqtVyqBgAAAF7m8xEmAUCr1Rr7Pn2eCMKw1NbW1rSxsTFyjN/vd6kaAAAAAIvopw+lF2PzrgKz4DlcHn6/X5ubmyPHNJtNtdttlyoaRBCGpbaxsaHDw8N5lwGP448yAADWLOrWQSwmq6+xfvpw/JhvlaVLa9Lz12avC/bjOVwtVtoThUKhua0a46yRADCC1T/KVsYBAOB1Pt/pG9lRFxq2e4Ndr7Eefyy9/Atrx/zOz6XWx9bGwj08h3AbQRgAXIA/ygAAAPaz8zXWT+rSH//N2lwf/Vl6u25tLNzDcwi3EYQBwAW88ke505E+bY++dMacch0AAMAqO19j/fL9yY79qwnHw3k8h3AbPcIA4ALT/FH+7pecqcVJnFIdAAC4yc7XWCd/mmyuScfDeTyHcBtBGABcgD/Ki22ZT1JAs2gAmB2/S5eXna+xgp+bbK5Jx8N5PIdwG1sjAeAC/FGen1U/SQHNogHnLOvvBUyO36XLy87XWM8+M9lcX51wPJzHcwi3EYQBwAX4ozwfnKQAwEVWPSQHvMLO11gvRKXPf8baPE9+VnoxOtmx4TyeQ7iNIGwODMNQIpGwPHZnZ0eRSEQ+n0/BYFCxWEw7OzsyDGPqGvL5vBKJhILBoHw+nyKRiFKplKrV6kLNCcwTf5TnwysnKQAwGUJyYHXY+RrryhPSj75mba63vi75n7A2Fu7hOYTbCMJsZJqmfD7f2EskElE4HB47Xz6fVyQSUbFY7IVepmmqXq+rWCwqEokon89PVGO1WlUwGFQ2m5UklUolNRoN5XI51et1JRIJJRIJmaY51zmBRcAf5fngzEEAhiEkh1O6vcZGXeg1Zi+7X2M9f238PG8nrY3DfPAcwk00y7dRsVi0PLYbGl0kkUioWq0qEAgoHo8rHA7LMAzV6/WBlWDZbFbhcFjJZHLsMavVam8lWjqdVqFQ6N3WnSMWi6larSoWi6lWqykQCLg+J7BInr92us1mFP4o24uTFAAYxitn8oX7fD7OjDwPbr/G+iav1ZYezyHsQhBmo729PUvjusHWRbLZrKrVqnK5nDKZzLnb8/n8QJCWSqXU6XRGHtM0TaVSKUmnAVV/YNWvVCopEonIMAylUilVKhVX5wSWEX+U7cVJCgAMQ0gOLAY3z9bJaywATiAIs0mxWJRpmspkMmP7f21tbV14m2EYyufzqlQqisfjQ8dkMhk1Go2BFWj1el3R6MWb51OpVG9r4qjVaN1VXOVyWdVqVcViUel02rU5AeDZZ6R3f2t9PCcpALyBkBxYDKygc1+nI7VHr3vQmo+zpAJWEYTZJJfLKRwOK5fLzTRPNptVLpe7MATrP15/EFatVi8MwgzDGGhYf+PGjZFz37x5U+VyuVfPsNDKiTkBrL6fPpRejI0e80JUevXX1noBcZICwDsIyQF4VbsjXX5t9JhPXiegBKyiWb4NyuWyDMMY2/fLiu6qsnECgcDA9spRfbf6w7l4PD62R1d/vzHTNHsBltNzAlhuP304fsy3yuPHcZICAMNwJl8AAGAHgjAb7O3tKRAIjF0VZcUk/bOOj49710dtt+xfOTZq+2S//pDt7t27rswJYHk9/lh6+RfWxn7n51Lr49FjOHMQgLMIyQEAgB0IwmZUr9dVr9dlmqaCwaAikYh2dnYcX/FkmmavP1c8Hr8wjKrXB88dfv36dUvz98939rE4MSeA5faTurWtjJL00Z+lt+vjx41DA13AewjJAQDArAjCZnR2O6RhGCoWi0qlUvL5fEqlUueCIzvcu3dP0ukqq1KpdOG4/j5e3fFWnB3X/xicmBPAcvvl+5ON/9WE4zEbK9tWgVVBSA4vsfP3O38rrONrBSw3grAZnG0YP0y5XFYsFtPOzo5txzVNUzs7O4pGo6pUKiP7cz148GDg43G9vLqeeuqpgY8PDg4cnRPAcjv5k7PjcTG7erMBABaLnb/f+VthHV8rYPURhM0gHA6rUCgol8spnU6PXBlVLBYVi405VZoFhmEoFospEAjo/v37Y1djGYZxrmYrzo5rNBqOzglguQU/5+x4DGd3bzYAwGKw8/c7fyus42sFeANB2IzS6bQymYwKhYIajYZOTk6Uy+WGrpKq1+tKJBJTH6tcLisSicgwjF5Psnw+P/I+Z0OraXX7kTk1J+A2/otnr2efmWz8Vyccj+Hm0ZsNAOA8O3+/87fCOr5WgDcQhNksEAgok8no5OREpVLpXCBWrVbHhlf9TNNUPp9XJBJRKpU6d3s2mx36+f77T+Ns3f1nqHRiTsBOLGl33wtR6fOfsTb2yc9KL1o72SzGoDcbAKwmO3+/87fCOr5WgDdcnncBqyyZTCoej2t7e3ugMfze3p4ymYylOarVqhqNhuLx+IU9ycrlsvL5vOU5p+HE6i075mw2mwqFQjPPs7u7q93d3ZnnwfxNuqT92b+T/E84WpInXHlC+tHXTgPGcd76Ol9zu9CbDQBWk52/3/lbYR1fK2C8/f197e/vzzxPs9m0oZrpEIQ5LBAIqFarKRaL9cIw0zRVrVYVj8fH3j+ZTCqZTA58rlgsKpvNDgRJ2WxW6XT63KqrQCBgS+DUP68Tc06r3W7r6Oho5nlardbMc2AxTLOk/btfcrYmr3j+2vgg7O3k6TjYg95sALCa7Pz9zt8K6/haAeO1Wi1b3oPPE0GYS+7cuTPQLL9SqVgKwoZJp9OKx+OKxWIDgVSxWDy3Kmx9fd2W0Gp9fd3ROae1tramjY2Nmefx+/0zz4HFMM2SdoIw93yTEMxWzz4jvftb6+PpzQYAy8HO3+/8rbCOrxUwnt/v1+bm5szzNJtNtdttGyqaHEGYS6LRqOLxeG9r46wN58PhsO7fvz8Qrj148ODcuGlXXZ0Nus6uCLN7zmltbGzo8PBw5nmwOljSDi95ISq9+mtrqyDpzQYAy8PO3+/8rbCOrxUwnl1thUKh0NxWltEs30WznDFymGg0OrBtcli4trW1NfCx1ZVcZxvZRyIRR+cE7MKSdnhJtzebFfRmA4DlYefvd/5WWMfXCquCk4KNRhDmonA43Ltux7ZASbp582bv+rBAqn/FmGR9JVqj0Rj4uH8bpxNzAnZ5dsIl6ixpx7Kz0nON3mwAsHzs/P3O3wrr+Fph0VkJub5VJgwbhSDMRf1BmB3bAqXTVWGj5jy7estqaNUfqgUCgYHanZgTsMsLUenzn7E2liXt8Ap6swHAarLz9zt/K6zja4V5efyx9PIvrI39zs+l1seOlrO0CMJcdHBw0Ltu9zZJ6XxAJZ0GZf0B2bA+YsP013p2XifmBOzCknZgMaz5pE9eH31Z8827SgAAgOXxk7q1HnaS9NGfpbfrztazrAjCXNS/NdCubYH9q7EuCtdu3LjRu16vW/tJ6B+XzWZdmROwC0vaMSmWjtvP55MurY2++AjCAAAALPvl+5ON/9WE472CIMxF5XJZkpTJZGybsxsuBQKBgcb5/XZ2dnrXu2etHKV/TDgcHhraOTEn4CaWtHsHfRQAAACwCiY94/2k472CIMwl5XJZhmEoEAjo9u3bts27t7cnSbpz586FY6LR6EDw1A3kLlIqlXrXL1q55cScAGA3+iisBrZZAgAAOy3rP0AnPeP9pOO9giBsStVqVcFgUD6fT4lEYuT2QMMwdOvWLUnS/fv3RzbKz+fzisViymazQ88C2a87JpPJXLgarKtQKPSud8OzYUzTVLFYlHS6fTOdTrs6JwDYiT4Kq4FtlgAAuGdZQ6KuVd4N8OyEZ7z/6oTjvYIgbEqlUqkXVFWrVcVisYHtgl3d29bX19VoNAbO8niWaZrKZrOq1+vK5/MKBoMXrp5KpVLK5/PK5XLK5XJj6w2Hw71VWd35h9ne3pZ0utWyfxWXW3MCgJ3oowAAAPAXqxwSSau/G+CFqPT5z1gb++RnpRcvjh88jSBsSqlU6tznisWigsGgUqmUdnZ2FIvFlEgklE6nVavVFA6HR84ZCATOjekGYqlUStlsVolEQsFgUNJp8/1J+o0lk0lVKhUFAgFls1mlUinV63WZptkL7Or1uqLRqB49ejRy5ZqTcwKAXeijAAAAcGrVQyJp9XcDXHlC+tHXrI196+uS/wlHy1laBGFTisfjajQaSqfTCofDAwFPvV7X8fGxbt++rZOTE+VyOcsBUK1WUyaTUTQaPTenYRhKpVJ69OiRSqXS2GDtorq7NRmGoe3t7V7Qtr6+rlKppFqtNlFg5cScAGAH+igAAACcWvWQSPLGbgArZ75/O2ltnFddnncByywcDg/0ybJDIBCwtNVxVplMxtazVzo1JwDM4tlnpHd/a308fRQAAMCqmiYk+u6XnKnFKewGOPVNQrCRWBEGAFhZ9FEAAAA45YWQiN0AsIIVYQCAldXto/Ct8vix9FEAgOHWfNInr48fA2CxeSEkWtTdAJ2O1O6MHrPm4yzYbiEIAwCstOevjQ/C6KMAABfz+aRLvDkDlt48QqKfPpRejM0+j1UvRKVXf22tF5qbuwHaHenya6PHfPI6v2vdwtZIAFggy3qq6mVHHwUAALDq7G4ZYeV167fK7r6+5ayKsIIgDABcsogvFgAAAOANdoZEjz+WXv6Ftbm+83Op9bG1sXbgrIoYhyAMAFywyC8WAAAA4A12hUQ/qVvbfihJH/1Zertubaxb2A3gbfQIA7BU3O4zYJdpXiws2+mqAQAArOIkDIvLSkj0y/cnm/NX7/PaFouDIAzAwrC6dfDS2vItZebFAgAAmJdFDJ04CcNyO/mTs+MBJ7E1EsBCWPWtg7xYAAAA8+Lznf4jcdTFRyiFCQQ/5+x4wEmsCMNSazabCoVCI8fs7u5qd3fXpYowrVXfOsiLhcks4n+uAQAAcOrZZ6R3f2t9/Fefca4WLJ79/X3t7++PHNNsNl2q5jyCMCy1druto6OjkWNarZZL1WAWq751kBcLk2G7BAAAsIp/oLnvhaj06q+t/SP7yc9KL0adrwmLo9VqjX2fPk8EYVhqa2tr2tjYGDnG7/e7VA1msepbB3mxAAAA4Az+gea+K09IP/raaf/ecd76uuR/wvGSsED8fr82NzdHjmk2m2q32y5VNIggDEttY2NDh4eH8y4DNlj1rYNeeLHghf/GeuExAgAAWPH8tfGvbd9OLt9JrjA7K+2JQqHQ3FaN0SwfwEJ4dsKtgMu4ddDKi4BlfrHghUa8XniMAAAAdvnmkr6uxWojCAOwEF6ISp//jLWxq7x1kBcLAAAAAOAcgjAAC6G7ddCKZd06CAAAAACYL4IwAAtj1bcOAgAAAADmiyAMwFJh6yAAAAAAYFoEYQAAAAAAAPAEgjAAAAAAAAB4AkEYgKF++nDeFQAAAAAAYC+CMMCDrIRc3yoThgEAAADLgNftgHUEYYDHPP5YevkX1sZ+5+dS62NHywEAAAAwAv/EBuxFEAZ4zE/q0h//zdrYj/4svV13th4AAAAAw/FPbMB+BGGAx/zy/cnG/2rC8QAAAADswT+xAftdnncBANx18idnx8Mdaz7pk9fHjwEAAIB1i/Yaa5p/Yn/3S87UAqwKgjDAY4Kfc3Y83OHzSZcIugAAAGy1aK+x+Cc2YD+2RgIe8+wzk43/6oTjAQAAANiDf2ID9iMIAzzmhaj0+c9YG/vkZ6UXo87WAwAAAGA4/okN2I8gDPCYK09IP/qatbFvfV3yP+FoOQAAAAAuwD+xAfsRhAEe9Py18WPeTlobBwAAAMAZ/BMbsB9BGIChvkkIBgAAAMwd/8QG7EUQBgAAAADAHPz0oT3z8E9swDqCMACOs+sPPAAAALAsrLwG/laZ18qA2y7PuwBgFs1mU6FQaOSY3d1d7e7uulSR91j9A39pjeXaAAAA8IbHH0sv/8La2O/8XHr27+jvhdWxv7+v/f39kWOazaZL1ZxHEIal1m63dXR0NHJMq9VyqRrv4Q88AAAAcN5P6tIf/83a2I/+LL1dl777JWdrAtzSarXGvk+fJ4IwLLW1tTVtbGyMHOP3+12qxnv4Aw8AAACc98v3Jxv/q/d5nQxr1nzSJ6+PHzNPfr9fm5ubI8c0m021222XKhpEEIaltrGxocPDw3mX4Vn8gQcAAADOO/mTs+PhXT6fdGnOQdc4VtoThUKhua0ao1k+gKnxBx4AAAA4L/g5Z8cDmB4rwgBMbVH/wC/DcmEAAACsrmefkd79rfXxX33GuVoADGJFGICpPTvhH2y3/sD7fKdnqRx18RGEAQAAwCEvRKXPf8ba2Cc/K70YdbYeAH9BEAZgavyBBwAAAM678oT0o69ZG/vW1zmzOuAmgjAAU+MPPAAAADDc89fGj3k7aW0cAPsQhAGYCX/gAQAAgOl8k9fIgOsIwgA4jj/wAAAAAIBFwFkjAWAEzkAJAAAAAKuDIAwARvD5pEsEXQAAAACwEtgaCQAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAABj/fThvCsAAAAAgNnRLB8APM5KyPWtsnRpTXr+mvP1YDKc2RQAAACwjiAMADzs8cfSy7+wNvY7P5ee/TvJ/4SjJdlu1YMizmwKAAAAWMfWSADwsJ/UpT/+m7WxH/1ZervubD1O8PlOV7ONuvgIkgAAAABPIAgDAA/75fuTjf/VhOMBAAAAjEdPXvcQhAGAh538ydnxAAAAgNdZ7clLGOYOgjAA8LDg55wdDwAAAHjZpD15Wx87Wg5Es3wA8LRnn5He/a318V99xrlaAAAA4E2rfHKjaXryfvdLztbkdawIAwAPeyEqff4z1sY++Vnpxaiz9QAAAMB7VvnkRvTkXTysCMNSazabCoVCI8fs7u5qd3fXpYqA5XLlCelHXzvtSTDOW1+X/E84XhIAAAAwd52O1O6MHrPmGx/QebEn7/7+vvb390eOaTabLlVzHkEYllq73dbR0dHIMa1Wy6VqgOX0/LXxQdjbydNxAAAAgBe0O9Ll10aP+eR16dKYIMyLPXlbrdbY9+nzRBCGpba2tqaNjY2RY/x+v0vVAKvrm4RgAAAAwMS82JPX7/drc3Nz5Jhms6l2u+1SRYMIwrDUNjY2dHh4OO8yAAAAAFutcvNwwEteiEqv/tpaw/xV6clrpT1RKBSa26oxmuUDAAAAwIJZ5ebhgJd0e/JaQU9edxCEAQAAAAAAOMRKr1168rqHIAwAAAAAAGCO6MnrHnqEAYBL6PUBAAAAAPNFEAYALvH5xp9eGQAAAOjHP1MBexGEAQAAAACwoPhnKmAveoQBAAAAAADAE1gRBgAAAACAB7DNEiAIAwAAAADAE9hmCbA1EgAAAAAAAB5BEAYAAAAAAABPYGskAAAAAACYCP3GsKwIwgAAAAAAwEToN4ZlxdZIAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQI8wwAWPP5berku/el86+ZMU/Jz07DPSC1HpyhPzrg4AAAAAAG8gCAMc9j8fSi/9XProz4Off/e30u3/Jf2Pr0v/97V5VLZ4OPMMAAAAAMBJBGGAg/7nQ+mFexff/tGfT2/3SXqeMIwzzwAAAAAAHEWPMMAhjz8+XQlmxXd+LrU+drIaAAAAAADAijAstWazqVAoNHLM7u6udnd3XaroL35SP78d8iIf/fm0h9h3v+RsTQAAAAAAOGl/f1/7+/sjxzSbTZeqOY8gDEut3W7r6Oho5JhWq+VSNYN++f5k43/1PkEYAAAAAGC5tVqtse/T54kgDEttbW1NGxsbI8f4/X6Xqhl08idnxwMAAAAAsGj8fr82NzdHjmk2m2q32y5VNIggDEttY2NDh4eH8y5jqODnnB0PAAAAAMCisdKeKBQKzW3VGM3yAYc8+8xk47864XgAAAAAADAZgjDAIS9EpSc/a23sk5+VXow6Ww8AAAAAAF5HEAY45MoT0v/4urWxb31d8j/hZDUAAAAAAIAgDHDQ/31N+p83Ll4Z9uRnT29//pq7dQEAAAAA4EU0ywcc9vw16at/J/2kLv3q/dOzQwY/d9oT7MUoK8EAAAAAAHALQRjggitPSN/90ukFAAAAAADMB1sjAQAAAAAA4AkEYQAAAAAAAPAEgrA5MAxDiUTC0th6va6dnR1FIhH5fD75fD5FIhFls1mZpjl1Dfl8XolEQsFgsDdnKpVStVpdqDkBAAAAAADsQhBmI9M0e2HVqEskElE4HB47VyqVUiwWU7FYlGEYvdsMw1A+n1cwGFSxWJyoxmq1qmAwqGw2K0kqlUpqNBrK5XKq1+tKJBJKJBIThWxOzAkAAAAAAGA3muXbaJJQqhsaDWOapmKx2ED4dZGdnR3VajUVCoWxY6vVam8lWjqdHrhPOBxWMplULBZTtVpVLBZTrVZTIBBwfU4AAAAAAAAnsCLMRnt7e5bGxePxkSvCUqmUDMNQNBrtra5qNBoqlUrKZDLnxheLRZXL5ZHH7K4wk04DqouCs1KpJOl01Vl3vJtzwh1rPumT10df1nzzrhIAAAAAAHuxIswmxWJRpmkqk8mM7f+1tbU1cp5qtapMJqNcLjdwW3eF1c7OjlKplOr1eu+2W7duKZlMXjhvKpXqbU0ctRqte4xyuaxqtapisah0Ou3anHCHzyddIugCAAAAgKn99KH0YmzeVWBSBGE2yeVyCofD58KraeaJx+Mj5wmHwyqVSopEIr3PmaaparWqeDx+brxhGAMN62/cuDGyhps3b/ZWmGWz2aGhlRNzAgAAAACwCH76cPyYb5WlS2vS89ecrwf2YWukDcrlsgzDGLkqyop6vS7DMHpbCUcZFrr1rxDr1z8uHo+P7dHVv7LMNM2h2y6dmBMAAAAAgHl7/LH08i+sjf3Oz6XWx46WA5sRhNlgb29PgUBg7Kqoce7evat0Om25mfzZ1V8ffvjh0HH9Tfyj0ailuft7mN29e9eVOQEAAAAAmLef1KU//pu1sR/9WXp7+JoULCiCsBnV63XV63WZpqlgMKhIJKKdnZ2pVjzdvHlzoq2VZwOo/q2S/fX1u379+sRzn30sTswJAAAAAMAi+OX7k43/1YTjMV8EYTM6ux3SMAwVi0WlUin5fL5zTe1HiUajlleDSeo1qu8adibK/j5eF40Z5uy4/sfgxJwAAAAAACyCkz85Ox7zRbP8GZxtGD9MuVxWuVxWOp1WoVCw/fj9hjXKf/DgwcDHVoO2p556auDjg4OD3oouJ+YEAAAAAGBWaz7pk9fHjxkl+LnJjjnpeMwXQdgMwuGwCoWCTNNUo9FQtVo9F051FYtFHRwcqFar2Xb8g4OD3vWLzsJ4tp5pV281Gg1H5wQAAAAAYFY+n3RpTNA1zrPPSO/+1vr4rz4z2/HgLoKwGZ0NoEzTVLFY1N7e3rmti/V6XYlEQpVKxZZj968wu+iMlRcFc5PqfyxOzAkAAAAAwCJ4ISq9+mtrDfOf/Kz0IhudlgpBmM0CgYAymYwymYzK5bJu3bo1EPhUq1Xl83llMpmZjmMYRq/HVi6Xu3BV1rRh09ntjsfHx47OOa1ms6lQKDTzPLu7u9rd3Z15HgAAAADAcrvyhPSjr0nfsnCOt7e+LvmfcLykhbG/v6/9/f2Z52k2mzZUMx2CMAclk0nF43Ftb28PNIbf29ubOQjrnl0yHA7PPJcVTqzesmPOdruto6OjmedptVozz+E0O/a6AwAAAADGe/7a+CDs7eTpOC9ptVq2vAefJ4IwhwUCAdVqNcVisV4YZpqmqtXq0Ob2VtTrdRWLRQUCgbHbLAOBgC2BU/9qLifmnNba2po2NjZmnsfv9888h9Ps2OsOAAAAALDHNz0Wgkmn7503NzdnnqfZbKrdbttQ0eQIwlxy584dxWKx3seVSmXqIOzWrVuSpPv3749tVL++vm5LaLW+vu7onNPa2NjQ4eHhzPMAAAAAAIDR7GorFAqF5raybG0uR/WgaDQ6EHxN23B+Z2dH9XpdpVJJ0ej4jnzTrro6G3SdXRFm95wAAAAAAABOIwhzUSKRmOn+xWJRxWJRhUJByWTS0n22trYGPra6kutsI/tIJOLonAAAAAAAAE4jCHNR/zbGSbcFVqtV7ezsqFAoKJ1OW75f/3ZMyfpKtEajMfBx/2o2J+YEAAAAAABwGkGYi/qDsEm2BdbrdSUSCeVyuYlCMOn86i2roVX/Kq9AIDBQuxNzAgAAAAAAOI0gzEUHBwe961a3SRqGoe3tbWUyGWUymYmPGY1GB0K3Bw8eWLpff61ngy8n5gQAAAAAAHAaQZiL+rcGWtkWaBiGYrGY0um0crmcpWMYhqF8Pj/wuRs3bvSu1+t1S/P0j8tms+dud2JOAAAAAAAAJxGEuahcLkuSpZVdpmkqkUjoxo0blkMwSUqlUudCtp2dnd71arU6do7+MeFweGho58ScAAAAAAAATiIIc0m5XJZhGAoEArp9+/bIsaZpKhaLKRwOK5vNyjCMsZdqtdprYh+NRgfmi0ajA8FTN5C7SKlU6l2/aOWWE3MCAAAAAAA46fK8C1hW1WpVqVRKpmkqHo8rl8udC6C6DMPQrVu3JEn3798f2yh/e3u7F3BFIpGJ6ioUChd+vjvX3t6eksnk0HGmaapYLEo63b45qjm/E3MCAAAAAAA4hRVhUyqVSr2zIHZXY/VvF+zq3ra+vq5Go3FhWNYVi8Us99wa5qKQKRwO91Zl1ev1c33Eura3tyWdntWxfxWXW3Ni+az5pE9eH31Z8827SgAAAAAACMKmlkqlzn2uWCwqGAwqlUppZ2dHsVhMiURC6XRatVpN4XB47JxOhGBdyWRSlUpFgUBA2Wy2dzzTNHuBXb1eVzQa1aNHj8auXHNqTiwXn0+6tDb64iMIAwAAAAAsALZGTikej6vRaCiXy6larer4+Li3Qqwb/Ny+fVvxeNxy+OPGaql4PK6TkxPl83ndvXtX29vbMk1TgUBAW1tbKpVKF25xdHNOAAAAAAAAuxGEzSAcDl/Yk2vRZTIZS2evnPecAAAAAAAAdmFrJAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHjC5XkXAMyi2WwqFAqNHLO7u6vd3V2XKgIAAAAAwLv29/e1v78/ckyz2XSpmvMIwrDU2u22jo6ORo5ptVouVQMAAAAAgLe1Wq2x79PniSAMS21tbU0bGxsjx/j9fpeqAQAAAADA2/x+vzY3N0eOaTabarfbLlU0iCAMS21jY0OHh4fzLgMAAAAAAMhae6JQKDS3VWM0ywcAAPh/2rt/38bSNU/sj+r2jK/tmTJV7aTQldyjZFNT1YlTUZkNOyCrARv2RiIXC0cViGhsPChIQYULk53NYoMqMtjFbmSy/oIqcdMBDLGTblTils7W3Os7vnNv0UENeUmKkkiJPw51Ph+AAFl1eM77inx5xK+e9z0AAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkwlebbgAAAABAljzaifjj39y+DdtHEAYAAAAwZmcn4leCrgdJEAYAAACwIqrLskUQBgAAALAiqsuyxWL5AAAAAOSCijAAAABYMtPhIJsEYQAAALBkpsNBNpkaCQAAAEAuCMIAAAAAyAVTIwEA2ArW2wEA7ksQBgDAVrDeDgBwX6ZGAgAAAJALKsLYah8/foxnz57duM3Lly/j5cuXa2oRAAAA5Nfr16/j9evXN27z8ePHNbXmKkEYW+3z58/x888/37jNp0+f1tQaAAAAyLdPnz7d+j19kwRhbLVHjx7F06dPb9zm8ePHa2oNAAAA5Nvjx4/jm2++uXGbjx8/xufPn9fUokmCMLba06dP46efftp0MwAAAICYb3miZ8+ebaxqzGL5AAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC58tekGwH18/Pgxnj17duM2L1++jJcvX66pRQAAAJBfr1+/jtevX9+4zcePH9fUmqsEYWy1z58/x88//3zjNp8+fVpTawAAACDfPn36dOv39E0ShLHVHj16FE+fPr1xm8ePH6+pNQAAAJBvjx8/jm+++ebGbT5+/BifP39eU4smCcLYak+fPo2ffvpp080AAAAAYr7liZ49e7axqjGL5QMAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFi+UD5NyjnYg//s3t2wAAAGw7QRhAzu3sRPxK0AUAAOSAqZEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAgH/yb//TplsAAMAqCcIAgFyYJ+T6521hGADAQyYIAwAevP/8DxH/8t/Pt+2/+HcRn/5hpc0BAGBDBGEAwIP3b3oRv/vH+bb97R8i/ra32vYAALAZX226AXAfHz9+jGfPnt24zcuXL+Ply5drahEAWfQf/m6x7f/j30X8H//9atoCAPCQvX79Ol6/fn3jNh8/flxTa64ShLHVPn/+HD///PON23z69GlNrQEgqy5/v9rtAQD44tOnT7d+T98kQRhb7dGjR/H06dMbt3n8+PGaWgNAVu3+l6vdHgCALx4/fhzffPPNjdt8/PgxPn/+vKYWTRKEsdWePn0aP/3006abAUDG/Y//LOL/+r/n3/5/+GerawsAwEM2z/JEz54921jVmMXyAYAH738rRvzXfzHftn/1lxH/e3G17QEAYDMEYQDAg/ff/DriX/9P8237f/7PEY9/vdLmAACwIYIwACAX/tf/7vZt/rY833YAAGwna4TBGr1+/To+ffoUjx8/vnXONLA+xiZD/4sQLDOMS8ge4xKyx7hc3M5gMBhsuhGwqOHCet98881WLZa/re2Gh87Y/OJPnyO++lc3b/PHv4n41ZbWkz/0/j002zQuvbfIi20al5AX2zouN9lup2MAAAAAckEQBgAAAEAuCMIAAAAAyAVB2Ab0+/04PDy813Pb7fa92nB6ehqHh4exu7sbOzs7sbe3F5VKJbrdbqb2CQAAALAsgrAlStM0dnZ2br3t7e1FkiQL77tSqcTe3l50u924uLi4Uxu73W7s7u5GvV6PiIhWqxXn5+dxcnISvV4vDg8P4/DwMNI03eg+AQAAAJbtq0034CFpNptzbzsMjW6Tpmm8evUqTk9P79qskW63O6pEq1ar0Wg0Rv+XJEmUy+XY39+Pbrcb+/v7cXZ2FoVCYe37BAAAAFgFFWFL9OrVq7m2K5VKc1WEnZ6exv7+fvR6vfs2bVRRFvEloBoPrMa1Wq2I+DIFc7j9OvcJAAAAsCoqwpak2WxGmqZxfHx86/pfz58/v3V/vV4vSqVSHB8fj/Zfq9Xu3L5KpTKamnhTNdqwiqvdbke3241msxnVanVt++RheP36dXz69CkeP34cL1++3HRzViIPfYzITz/zIC+vZR76mYc+5kVeXss89DMPfcyLvLyWeehnHvrI3ewMBoPBphvxEOzt7UVExPn5+Ur23+v1Yn9/f/S40WjMHSb1+/1R+yIiLi8vb5ye2G63R5VbhUIhLi8v17LPRTx79ix+/vnn+Oabb+Knn366177WaVvbvag89DMPfYzQz4dknj7+6XPEV//q5v388W8ifpXhevKb+vkQ+heRj/drxHb1867vrW3q433koZ956GNEPvqZhz5G5KOfeehjxPb2c5Ptzvivetuh3W5Hv9+fe92vu7jPulonJyej+6VS6dZ9lcvl0f00TWdeoXIV+wQAAABYJUHYErx69SoKhUK8ePFi002ZaXwR/2KxONdzxtcwe/PmzVr2CQDwUP3b/7TpFgAAEYKwe+v1etHr9SJN09jd3Y29vb2o1WqZqXiaXmj/22+/net54+HWdF9WsU8AgG01T8j1z9vCMADIAkHYPU1Ph+z3+9FsNqNSqcTOzk5UKpWlXPXxrrrd7sTjea5WOWu78T6sYp8AANvoP/9DxL/89/Nt+y/+XcSnf1hpcwCAWwjC7qHf718Jhaa12+3Y39+/1xUf7+P9+/cTj+dda+zrr7+eePzhw4eV7hMAYBv9m17E7/5xvm1/+4eIv/V3QADYKEHYPSRJEo1GI05OTqJard5YGdVsNieu+rgu/X5/4vFdq7fGr4a5in0CAGyj//B3i23/HxfcHgBYrq823YBtV61WJx6naRrNZjNevXoVaZpO/F+v14vDw8PodDpra990aHVX431ZxT4BALbR5e9Xuz0AsFw7g8FgsOlGPFTtdjuOjo6uBD4nJydxfHy80L76/X7s7e2NHjcajSsh3Cw7OzsTj+d9ubvdbhweHo4el8vlaLVaK9vnov7yL/8y/vEfv8xDePTo/oWNf/3Xfx1/9Vd/de/93Objx4/x+fPnePToUTx9+nTlx9uUPPQzD32M0M+HZN4+/vzp5v1883jJDVuy2/q57f2LyMf7NWJ7+vn//L8R/98f59/+v/gq4r/9r77c35Y+3lce+pmHPkbko5956GNEPvqZhz5GrL+fv/3tb+Pv//7v772fz58/R0TEX/zFX8Qf/vCHe+9vEYKwFUvTNA4ODiYWhi8UCnF5ebnQfjYdhJVKpVEl2yr2uahf/epXo4EDAAAAbJ9Hjx7Fn/70p7Ue09TIFSsUCnF2dhb7+/ujMCxN0+h2u1EqldZy/GVMQRxfEH8V+1zUr3/96/j9738fg8FgqyrCAAAAYFstsyJsZ2cnfv3rXy+hVYsRhK3JDz/8MLFYfqfTWUsQ9uTJk6WEVk+ePFnpPhf1u9/97t7HBwAAAPLFVSPXpFgsTgRfy1pw/jZ3rbqaDrqmK8KWvU8AAACAVROErdH4+ljr8vz584nH81ZyXVxcTDweX59sFfsEAAAAWDVB2BolSTK6f59pgYsYn44ZMX8l2vn5+cTj8Wq2VewTAAAAYNUEYWs0HoSta1rgdPXWvKHVeJVXoVCYaPsq9gkAAACwaoKwNfrw4cPo/rqmSRaLxYnQ7f3793M9b7yt08HXKvYJAAAAsGqCsDUanxq4zmmBL168GN3v9XpzPWd8u3q9vpZ9AgAAAKySIGyN2u12REQcHx+v9bi1Wm10v9vt3rr9+DZJkswM7VaxTwAAAIBVEoStSbvdjn6/H4VCIb7//vuFnz/vlRlnKRaLE8HTMJC7TqvVGt2/rnJrFfsEAAAAWCVB2B11u93Y3d2NnZ2dODw8vHF6YL/fj6Ojo4iIePfu3Z0Wyp9ekH7RYKzRaIzuv3r16trt0jSNZrMZEV+mb1ar1bXuEwAAAGBVBGF31Gq1RmFUt9uN/f39iemCQ8P/e/LkSZyfn0exWFz4WGmaXqmievPmzUL7SJJkVJXV6/Xi9PR05nYHBwcR8eWqjuNVXOvaJwAAAMCq7AwGg8GmG7GNut3uzCs/FgqFKJVK8eTJk/jw4UP0er04Pj6O77//fqFKsDRN4+joKNI0vXENrlKpNJpuOU/I1u12o1KpRJqmUS6X4/vvv48kSeLDhw9Rr9ej1+tFsVhcqHJtFfsEAAAAWDYVYXdUKpXi/Pw8qtVqJEkyEfD0er24uLiI77//Pi4vL+Pk5GThAGhYPdXpdGIwGFx763Q60Wq15q40K5VKozb1+/04ODiI3d3dqFQq8eTJk2i1WnF2drZQe1exz212enoah4eHo6mze3t7UalU5rqowKrs7e3Fzs7OrWu5wUO1qXHZ6/WiVquNxuDw2PV6/V5rP0KWbfI8mMVzMGSB8yBkTxbPWbn53jgAlqLT6QwKhcIgIgalUmnQ6XQG5+fng1arNUiSZPTvl5eXa23X8fHxICIGETFotVprPTZs2qbG5eXl5aBcLo/G3nW3RqOx1OPCJm3yPJjVczBsmvMgZE9Wz1l5+t4oCIMl6HQ6ow+NarU6c5tisTiIiEGSJGv7UBtvVx4+0GDcpsbl5eXl6JeYeW7XtQ22ySbPg1k9B8OmOQ9C9mT1nJW3742CMLiny8vLUaKfJMm1252fn48+WEql0lrblZcPNBja5LgslUqDiBgUi8VBq9UanJ+fj/7KN/6XNmOTh2KT4y2r52DYNOdByJ6snrPy+L1REAb3NDzZz1PePV4ivupS8HK5PEiSZOJD7aF/oMHQpsZlo9EYRMTg+Pj42m3Oz89Hf+kb3gqFwr2OC5u0yfNgVs/BsGnOg5A9WT1n5fF7oyAM7mE8rY+IW0tXW63WWk74w19Czs7OcvWBBoPBZsdlkiRz/eVuuo0RMeh0Ovc6NmzCJsdbVs/BsGnOg5A9WT1n5fV7o6tGwj2cnJyM7pdKpVuvjFkul0f30zRdydU4+v1+1Gq1OD4+nvtqovCQbGpc9nq96Pf70Wq1bt02SZKJdg6fD9tmk+fBLJ6DIQucByF7snjOyvP3RkEY3EOz2Rzdn/fDI0mS0f03b94svU2VSiWKxeKVXy4gLzY1Lt+8eRPVavXWX2yGSqXSxONffvnlTseFTdrkeTCL52DIAudByJ4snrPy/L3xq003ALbV9F+tvv3227meVywWo9/vR0QsPdmv1+vR6/Xi/Px8qfuFbbHJcfndd99N/MIyzzHH7e3t3em4sCmbHG9ZPAdDFjgPQvZk8ZyV9++NKsLgjrrd7sTjeU/809stqwy81+vF6elpNBqNhX4JgYdkk+OyWCzO/VfwiC9l7je1AbJuk+Mta+dgyArnQcierJ2zfG8UhMGdvX//fuLxvCf+r7/+euLxhw8fltKeg4ODKJfLUa1Wl7I/2EZZG5c3Gf6Fb2h6ighk3SbH2zaNdVinbRobzoPkRdbGpe+NgjC4s+mT912T/WWUo1YqlYiI+OGHH+69L9hmWRqXtxn/ZSbPv4iwvTY53rZprMM6bdPYcB4kL7I0Ln1v/MIaYXBH0x9odzVdFr6odrsd7XY7Op3OQuXo8BBlZVzOo9FojO7X6/WVHw+WbZPjbZvGOqzTNo0N50HyIivj0vfGP1MRBnd01w+i6Q+di4uLe7WhUqlEtVpVTg6RjXE5j36/P1rn4eTkJLfrM7DdNjnetmWsw7pty9hwHiRPsjAufW+cJAiDDbtPsn9wcBBJkkz8RQ24v1X/JXx4meokSeL4+Hilx4Ks22RVloowmM15ELLH98blEYTBHS2rnPSu+zk9PY1erxetVmsp7YCHYNPjch69Xi+azWYUCoXodDorOw6s2ibH2zaMddiEbRgbzoPkzabHpe+NVwnCeJCazWbs7Ows9ba/vz9xjCdPniylrXfZT6/Xi3q9HicnJ1EsFpfSDli1hz4u53V0dBQREe/evTMVhK22yfG2DWMdNmEbxobzIHnje2P2CMLgju6ayE+XtN5lP5VKJYrFolJymLLJcTmPWq02+oucX0bYdpscb1kf67ApWR8bzoPkke+N2eOqkTxIpVJp6aWf0x88z58/Hy3yGfHlg2qeD6fpRQ739vYWasfp6Wn0+/0olUqjy9/eZPwD9NWrV/HmzZvR4++++y7K5fJCx4e7esjjch7NZjOazWY0Gg3jjgdhk+Mty2MdNinLY8N5kLzyvTF7BGE8SEmSrLzUenpKVr/fn+svW+fn5xOPF71qxy+//BIREd1ud6HnRXwpjR3/EE6S5EF9oJFtD3lc3qbb7UatVotGoxHVanWp+4ZN2eR4y+pYh03L6thwHiTPfG/MHlMj4Y6eP38+8bjf78/1vPGkvVAoWBsBliiL47LX68Xh4WGcnJz45Z8HZZPjLYtjHbIgi2PDeZC8y+K4zDtBGNxRsVicKGl9//79XM/78OHD6P70h+I8Tk5OYjAYzH0b/8BstVoT/ze8dDU8FJsal9fp9/txcHAQx8fH1mbgwdnkeMvaWIesyNrYcB4E3xuzSBAG9/DixYvR/fHS0ZuMb1ev15feJsi7rIzLfr8f+/v7Ua1W5/7lod/vx+np6VKOD+uwyfGWlbEOWZOVseE8CH+WlXHJF4IwuIdarTa6P8/c6/FtkiSxNgmsQBbGZZqmcXh4GC9evFjoL2iVSsXnAltlk+MtC2MdsigLY8N5ECZlYVzyZ4IwuIdisTjxodRut2/cfvyKebel+s1mM+r1+txzyIEvNj0u0zSN/f39SJJktO1tt263O1pI1eXk2SabHG+rPDZsM+dByJ5Nj0umDIB7OT8/H0TEICIGxWLx2u0uLy9H25VKpRv3WSqVRttGxODy8vLO7UuSZLSfVqt15/3ANtnkuCwWixPbLXJrNBr36TZsxCbH2yqODQ+B8yBkj++N2aEiDO4pSZJRYt/r9a5d1+Dg4CAivlzxYzzhn2W6XPbt27dLaCnkx6bG5f7+/tzrPszialpso02eB1dxbHgInAche3xvzA5BGCxBuVyOTqcThUIh6vV6VCqV6PV6kabpqNS71+tFsViMH3/8ceKqIbNM/79L5cLi1j0uh/u/K7/8s802eR5c9rHhoXAehOzxvTEjNl2SBg/NycnJoFgsDgqFwiAiBoVCYVAqlRYqL+10OoMkSQaFQmFwfHy8wtZCPhiXsD6bHG/LODY8RM6DkD3G5ebsDAaDwSaDOAAAAABYB1MjAQAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgF77adAMAAABgVXq9Xrx58ybSNI1Go7Hp5izdQ+8fLJuKMAAAAB6UbrcbtVot9vb2Yn9/P05PT6Pf72+6WRN2d3djZ2cnut3uws/Nev/SNI1KpRK9Xm/TTeGfDN8z+/v7sbe3Fzs7O7GzsxN7e3txeHgY9Xr9Tq/X6elp1Ov1FbR4dQRhAAAAPBjDL/XNZjNT4dC4brcbaZpGRESpVFrouVnvX7fbjd/85jeRJEkUi8XRvw2Dl9tuu7u70Ww2bz1Or9cbhYnX3fb39yMiotlszn38u9zGLXqs3d3d5b8IY05PT2N3dzcODw+j2WxGr9eLQqEQ5XI5yuVyFAqF6Ha7cXp6Gvv7+7G7uxunp6dz779arUav14u9vb1Mvh9n2RkMBoNNNwIAAACWqdvtxuHh4ehxqVSKTqezwRb9Wa1Wi2azGeVyOVqt1p32kcX+DauDGo1GVKvVK//fbrfj6OhoFAKOq1ard5ramabpKBgcKpVK0Wq1olAoTGzb6/WiXq/PrMJLkiSSJLnynOExIiIuLi6i3+9faf+sWOW2YzUajYVD0EVM/6wLhUKcnJzMfF3SNI1msxmvXr0abb9oG2u1Wrx9+zbevXs3CkCzShAGAADAgzRerZOFoGhod3c30jSNVqsV5XL5zvvJUv9uC8GGpgO8obOzszsHKGmajiqrCoVC/PjjjzMDraHhz3/cItFIv9+fmPp5eXl57fFmHes+fZ3H9HTFed8bwymt4+Hdba/nuEqlEu12e+X9uy9TIwEAAGBNer3enadFZlWz2Yx6vR7Hx8e3hialUmlm+Pfhw4c7H//i4mJ0/+Tk5MYQLCLi+fPnE49v235akiTx7t27uZ43fayIWGlIVK/X7xSCRXz5OXQ6nUiSZPRvtVpt7qmSrVYrisViHBwczKz6ywpBGAAAAKzJcPpfqVRaOIDJona7HbVaLYrFYpycnMz1nFnb3eeKl8PKrEKhMFf10jJ+7sOphosea5Wv+XCtr/Fj3WXqbafTmWjndVM8Z2m1WpGmaRwcHCx83HURhAEAAMCavH37NiK+TCPbdmmaxtHRUUTMDreukyTJlaqwXq9356tMDkO0eafwPXny5E7HmTZPRd+yjnWb4bTGcfNUx82SJMmVn2WlUpmrymv43OEaaVkkCAMAAIA1GJ8W+eLFi802ZgmG4UixWFx4mues4OzVq1cLtyFN01G1Uq1WW/j595EkycxF+TehXq9fCarmDQZn+f777ycep2k69+szDMBOT0/nriRbJ0EYAAAArMGbN28i4ssaUVkIT+6j3W6PQo7p0GQeSZJcCc/a7fbCa0sNrxZZLBYn1rZal/tc7GBZhld9HHefECziy7TK6b7Nu1bY+Gu77nByHoIwAAAAtlK73Y7Dw8PY3d2NnZ2d2N/fj1qtFv1+f9NNm6ndbkdExHfffTf39lnt33h10F3DoFlT5xatChtOi7xLGHdXaZpmajH46RAsYjlTb2dd3XPWsW56br/fn/s56yIIAwAAYKv0+/3Y29uLSqUSFxcXcXJyEp1OJ7777rvodruxt7c3V/VKpVIZhUyzbvv7+6PQqVarzdx2b29vrlCk3++P9nVbcLSs/kV8CZuu699tt/39/Zn77Ha7o/W87nMFxFKpdKWKa5HQpNvtzv0zXabpKzNu2rDScNysq1UuatZ013kX3x9/7iLrx63DV5tuAAAAAMyr1+uNApqTk5M4Pj4e/V+pVIrj4+Oo1WpzBRXDL/W1Wu1KADO970ajEbVabXTsYrEY7969m3uK47AaLEmSG6fwLbN/ETEK6ZIkiVqtdu2x379/fyVcuy7AGL/C46Jrg02r1+sT0+eG0/zmmdq36CL5y/Lhw4elBE3LMn2RgUKhsJSpt0mSRKFQmAh6513zazwg7ff70W63MzGNNEJFGAAAAFui3++PQqJyuTwREo1rNBoLVSo1Go0rgc75+fmV7T58+BARX8Kfs7OzhcKGYdXOTWHAqvpXKBTi/Pw8jo+Po1wuz7xNBxzVavXakGsY6kVEfPvtt3O3Y5ZqtXrl5zhPBVGapqN2rHMdqvtc3XIVZrVlmSHdrKtezjs1d/z90+l0ltam+xKEAQAAsBXG1z26LSxZdDrW9JSvZrM5UQmTpmnU6/UoFApzTw8bf+4wsLhpfbBV9e+29bNOT08nApVCoTBR9TVuOnhZxgL10xVd/X7/1sqj8UXy7zM9c17Dta4ODg5WfqxFzAqllnkhhln7mjcIG39d3r59u6wm3ZsgDAAAgMxrt9sT61LdFsAsWhUzK/w5OjqauJ+mabRarYWDhmEIUCgUrg1tVtW/i4uLG4Oifr9/ZZrlTUHfdEC1jCBsVlB3W9A3fK2WUQ2Wpumt66Xt7e1FrVbL1CL5EV9e32mzqrjuatbrO+/P4Ouvv554ThYu8hBhjTAAAAC2wPjVBOcJP+5SFVOtVqPVao3Cnna7PVqQvd1u3zhd8CbDYOnFixfXbrOq/p2cnNwYVk1fXfC2Pr5///5O7bhJoVCIarU6sU7b8Oc+q+29Xm8UqixrfbDbAr2Li4vMhWARs0OpZVaEzTIrfJtl+mfa6/WWEpzelyAMAACATOv3+xNT8lb5ZbrRaMTe3t7o8TAoSpLk2umCtxkGa9Oh09Aq+3fTvprN5pUpkbdVYq0qDKrX6zMvWDDrZz4MDZe1+PpwDbXb9Hq9ODo6ytQaYbNCr2W+RrP2NW/F2XTb5g3QVs3USAAAADJtFdPxrpMkyUQYlKbpaErkXQwXdC8UCtdWWq2zf0P9fv9K5dk80z5XFWYkSXLl5zO9TlvE5CL5t619tmzFYvHO74NVmRVKLfM1mrWvu1acZaWiThAGAABApp2dnU08XnVQdHx8vLQF2IdXi7xpuuG6+xdxdfpluVyea9rneJix7Cl402uVRcSVKrHhemtJkqxlkfxpswK7TbrPGl7zmLWu17zvz+mQ7pdffllKm+5LEAYAAECmbWKR7enKn+umNd5mWL1009Ui192/ZrM5UYVWKBTihx9+WHg/y67wKZVKV0KW8bXTIv68iP4yFsm/q2KxuPJ1uOY1Kwxc5vtp1muchXW+7kMQBgAAQKZNT89aR3A0vTbVrKsr3mY8bLppPat19i9N0yv9+OGHH+YOdlYdAE23LU3TUVXYKhbJv4uTk5Nb11Jbp+kwrN/vLyWknLUW2iLVcNPv6/GrSG6SIAwAAICtsuq1hnq9Xpyenl4Jr05PTxdaKH1YVbboou6r7F+lUpnYf7lcXqh9q64GqlarV8K2Yeg0vkh+ViqysmBWODW97txdzNrH4eHhnfeXlddMEAYAAECmTa81tOqKsEqlMpouOF0ZtsgUyeF6VjdNi4xYX//a7fa9p0ROt3UVod10tVe/3492uz2aZrrJaZHXabfba1sMvl6vTwSysy4a0Ol07n2cWftYpBJv+ueRlSmVgjAAAAAybfoL9DK+5F+nVqtFv98fTResVqsTU8/6/X6cnp7eup9utzsKAm6bTraO/qVpGkdHRxP/tsiUyKHpiqBVXEVyVrAzDCCztlh9xJfXulKprOyKmuOG1Yrj75lCoXClqm/6IgN3MV0Rdnx8vND7ZTrQff78+b3btAyCMAAAADJtOnwZVlotW7fbjWazGaVSaSJYmF44v16v31q1NXxOqVS6NTxYR/+Ojo4WnhJ5enp6JVCZDqFWUb02DCBnyWI1WK1Wi0KhsJaKp6Ojo0iS5Nrpo+PuE4ZNh72FQmFmQHmT8atEzmrzpgjCAAAAyLTp8CVN09E0uXnNU60zrDqaDr6SJLkSNNw2RXIYZs0zlXLV/et2uxP7m3dKZKfTuTIVcjrwWVV13nUXJljGIvnLrNwahqLXVakt+1i9Xm9mgJkkyZVpvPV6/U7TNdM0vXK1zlartXCQNR6SZqmKTxAGAABAps2a+jVd4TRtelH72wKB4SLyjUZj5hf+4+PjiQBoOEXtumMPj/fixYsbjxux+v5Nh3HzTIlM0zS63e7MKqfxti5jUfZZZk2BnKe6bh7LWsvr9PR09B64bh24ZR2rXq+PjnXdgvXVanUiKEzTdKE17YYODg4m2n1ycnKnIGv8vXGXdqzMAAAAADLu8vJyEBETt2KxOLi8vLyy7fn5+SBJkivbdzqdmftutVqDiBgkSXJjG87Ozq7s8+zs7Mp2x8fHo/Ztun/VanVim1KpNFd7yuXyICJmHn+6ravS6XTmev0WVSgUrvzsZvXzOq1Wa1AsFud6/qxjzXrPzHJ+fj5oNBpXXuvbDN9/w1u5XJ6rf5eXl4NSqTTx3EajMVdbZ+1ruI/bxtW67QwGg8EygzUAAABYhXa7PbOypFqtxuHhYVxcXMTZ2Vk0m82oVqvXrpFUrVZH08i63e6owub4+HjmWktDaZrG7u7uxL8VCoV49+7dxIL6e3t70e/34+TkJI6PjzfWv/G+DTUajZlVXmmaxsXFRZyfn0e73R5Na7suMhivUOp0Oiub+jb8WRYKhbi8vLzXvvr9ftRqtWur2IrFYjx58mRm1VmaptHv92euiVYsFuPs7GyhYw3XzJqeenpxcTF6LWZVk5VKpbmmo7bb7StVhY1G49qppc1mc2IqZaFQiFardefXtdlsjtZzu+m4G7HhIA4AAADm1ul0ZlbZjN+q1epgMBhM/FuSJIOTk5PB+fn5YDD4Um0zXdUT/1QxNat65uTkZGYV1vBWLBYH5+fng/Pz89G/DY+1if4NBoOZ/VvkVigUrm3neMXP8fHxwv2cV6PRuPcxhvtY1W28bas+1snJyUJ9Pz4+vvJ+KpVKg2q1OiiXy1cqwAqFwsLHmGX43staNdhgoCIMAACALXR6ehpv3ryJfr8faZpGoVCIUqkUtVptVMWyt7cX5XI5vvvuu4mKrVW3q16vR5IkcX5+fq/9ZLF/44ZVP8uo1rrJ7u5unJ2dreWqjA9Vt9uNVqsVHz58GFW3DSvSkiSJYrG4tPdRv9+Pvb29iIg4OzvbyHvzJoIwAAAAWJL9/f3o9Xq3TrN8KCqVSrTb7exNf2NjDg8Po9vtZnYMCMIAAABgCcbXEMtiJcyq7O3txcXFRfz4449Luaoj22u4Lt2sddOy4tGmGwAAAAAPwdu3byPiy0LjeQnBIr4slp+maRwdHW26KWxQmqZRqVQiSZJ49+7dpptzLUEYAAAALEGr1YqIiBcvXmy4JeuVJEmcnZ1Fu90eXSmQfEnTNPb39+PJkydxdnaW6cpAQRgAAADcU5qm0e12I+LLull5M5wK9/btW2FYzgxDsGEgmuUQLEIQBgAAAPc2DMGGV3fMo2EY9uHDhzg8PIw0TTfdJFas1+vFb37zm6jVatHpdDIfgkVYLB8AAADubTz02YYwYNVOT0+jXC5HkiSbbgor1G63I0mSrVoTTxAGAAAAQC6YGgkAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAv/PwDjjgJfZ4gAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -83,32 +78,29 @@ } ], "source": [ - "bins = np.linspace( -0.4, 0.4, 50 )\n", - "sns.regplot(x=ak.to_numpy(array[\"tx\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)\n", + "bins = np.linspace(-0.4, 0.4, 50)\n", + "sns.regplot(\n", + " x=ak.to_numpy(array[\"ideal_state_770_tx\"]),\n", + " y=ak.to_numpy(array[\"z_mag_xEndT\"]),\n", + " x_bins=bins,\n", + " fit_reg=None,\n", + " x_estimator=np.mean,\n", + ")\n", + "plt.ylim(5100, 5700)\n", "plt.xlabel(\"dx/dz(VELO)\")\n", "plt.ylabel(\"$z_{Mag}$ [mm]\")\n", - "mplhep.lhcb.text(\"Simulation\")" + "mplhep.lhcb.text(\"Simulation\")\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n", - " expsuffix: Custom Text(0.05, 0.955, 'Simulation'))" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACi9UlEQVR4nOz9X4xbd57n/X1IyR4Z9lCscmN2C1XBtFnjWXUuMiNSmjxpIEi2i5zZABbsaZPSwI6lBOsibaOxCGrHpDW+yoVcZvV03SziEakeIJEfIVsiu9uGDaSjojwPEAR4nlUV5clNvNvDIzdSBebZrKuO2DastSWeXFSTXX/Jwz+Hh+R5vwDC9efL3/nWH5XJD39/fJZlWQIAAAAAAADGnN/tBgAAAAAAAIBBIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJx91uAOjGk08+qQcPHujYsWP6gz/4A7fbAQAAAAAANv3n//yf9ejRI504cUJfffXVQK/tsyzLGugVgT44duyY6vW6220AAAAAAIAu+f1+PXr0aKDXZEYYRlIjCPP7/ZqamnL8etVqdaDXs4OeRq8fiZ7soid7hq2nYetHoie76MmeYetp2PqR6Mkuehq9fiR6soue7Bm2ngbdT+N6x44dc/xa+xGEYST9wR/8gTY3NzU1NaWNjQ3HrzczMzPQ69lBT6PXj0RPdtGTPcPW07D1I9GTXfRkz7D1NGz9SPRkFz2NXj8SPdlFT/YMW0+D7qdxPTe2OmKzfAAAAAAAAHiCqzPCnn32WTcvv4fP59N/+k//ye02AAAAAAAA4BBXg7BKpSKfzyc39+tvXN/n87nWAwAAAAAAAJzn+aWRHJoJAAAAAADgDa5vlm9ZluLxuEKhkCvXN01T+XzelWsDAAAAAABgcFwPwvL5vF599VVXe4jH4/qLv/gLV3sAAAAAAACAs1xfGhmNRt1uQWfPnnW7BQAAAAAAADjM9Rlhk5OTbrcAtLWwsKBaraZAIOB2K030NJqG8XtET/YMY0/DZhi/R/RkzzD2NIyG7fs0bP1I9DTKhu37NGz9SPQ0yobx+zRsPQ1bP07yWS7uFn/s2DFtb2+7/o2+f/++Jicn9ejRI1f7gH0zMzPa3NzU9PS0NjY23G4HQ4rfE4w7fscxzvj9xjjj9xvjjN9v2OHm74mrSyOH6cTGYeoFAAAAAAAA/edqEJbNZl2fDSZJJ0+eVDabdbsNAAAAAAAAOMjVIOzNN98c6PU+//zzIz836F4AAAAAAAAwWK6fGjlIqVTK7RYAAAAAAADgEtdPjRyktbU1t1tAn1WrVc3MzLSsWVhY0MLCwoA6AgAAAADAu5aXl7W8vNyyplqtDqibg0YyCPv8889lmqbtesMwlMvlOroPRkO9Xtfm5mbLmlqtNqBuAAAAAADwtlqt1vZ5uptGIgj7/PPPlc1mVSqVZBhGV2NYliWfz9fnzuA2v9+vqampljXDcCADAAAAAABeEAgEND093bKmWq2qXq8PqKO9hj4Iu3z5spaWliTthFnAblNTU9rY2HC7DQyphYUF1Wo1wlCMLX7HMc74/cY44/cb44zfb9jZnmhmZsa1WWM+a4jTpZ/97GdKJBKS1JzN1Uu7Pp9Pjx496ktvcFfjH8309DRBGAAAAAAAI8TN5/RDPSNscXFR0k6AZVmWQqGQwuGwQqGQJOnpp59uO8YXX3wh0zR18+ZN3b9/39F+AQAAAAAAMLyGOggrl8vNmWCrq6uam5vreqx0Oq1nn322X60BAAAAAABgxPjdbqCVYDAoaSfE6iUEk6RQKKRnnnmmD10BAAAAAABgFA11ENZYAnn27Nm+jJfL5foyDgAAAAAAAEbPUAdhjVlgW1tbfR0PAAAAAAAA3jPUQdjf/M3fyLIslcvlvoz305/+tC/jAAAAAAAAYPQMdRB28uRJvfvuu1pZWdFvfvObnsdjaSQAAAAAAIB3DXUQJu1slB8Oh5VIJHoa5969e32bWQYAAAAAAIDRc9ztBuxYXV3VmTNn9OyzzyqTyWhyctLW/ba2tmSapiqVim7evOlwlwAAAAAAABhmIxGEffLJJ5KkSqWiVCrV1RiWZcnn8/WzLQDALpYl1a3WNX6fxJ9iAAAAAG4Z+iDs9ddfVz6flyT5fD5ZVptnWYcgAAMA59Ut6fjbrWseXpGO8ScZAAAAgEuGeo+wa9euKZfLNcOvbkKwXu4HAAAAAACA8THUM8Iapzw2ZoJFo1HFYjEFg8GO9wm7evWqPv/8cwe7BQAAAAAAwDAb6iCsXC7L5/MpGAxqbW1NzzzzTNdjzc/P6+mnn+5jdwAAAAAAABglQ700MhgMSpIuX77cUwjWGOv06dN96AoAAAAAAACjaKiDsEgkIkkKhUJ9Ge/atWt9GQeAt5mm6XYLfWVZ0qN66xtbLQIAAAAYB0O9NDKVSun27dsyDKMv4zEjDEC3yuWyVlZWlM/nFY1GVSgU3G6pbzjtEQAAAIBXDHUQFo/Hdfr0aa2srOiv//qvex7v5z//uX74wx/2oTMAw6QRUpXLZRmG0TwkIxgMKhQKaXJyUuFwWLFYTNFo9MD9E4mEDMPQ+vp682OmaapUKmllZUWlUmnsZoEBAAAAgBcNdRAmSYVCQX/0R3+kX/ziF/rLv/zLnsZaXFwkCMNQyufzSqVSHd8vHA7vCW+65fN1PtUnGAxqe3v70M8lEgkVi8WOx1xdXT00qDqMaZpaXFzU0tJSy5pyuSxJKpVKzdpwOKxoNKrZ2Vmtrq6qWCwqHA7vue/8/LwMw2jeH4NlWTsz1Vrx+6QufnUBAAAAeNhQ7xEm7ewPdvXqVb366qs9jXP//n2e0GJoJZNJbW9va319XfF4vGVtNBrV6upqs74fLMtSpVJRLpdrHlJxmFAopFwup0qlcmQIJu0E2Nvb27aCrXQ6rfX1dW1vb9sOwTKZjCYmJg6EYPF4XIVCoTle4+taXV1VMplsfm3lcllLS0tKpVLNwG7/jK/GOJZl9W2fQtjXWK7Z6tYuKAMAAACA/YZ6RtjPf/5zSdJ3vvMdTUxM6Nlnn20bEhzGNE3dvHmz3+0BfRUMBhUOh1UoFJRKpZTP5w/UNIIeJ4RCISWTyeZMqcOsr6+3DMp2CwaDikajikajikQihwbRuVxOyWTSdo+GYSgWix3YNzCZTCqXyx16n1AopFAopGg0qlwup6WlJWUyGdvXlHbCx8N+HgAAAACA0TLUQdg777yju3fvNt+3LKvlMqhWLMvqavkX4IajgrBulk92KhQKKRwOHwiu4vG47RBsv1QqdWjvnYRgpVJJsVhsz8eCwaBu3759YFljK+l0WvF4XJFIZM8ssK2trSPv0+3XDQAAAAAYLkO9NPL8+fOyLEuWtbP+hSALXnHUUrxBLdE77Dq9XPuw+3YSLpXL5b6EYLv7uXfv3p4e2AwfAAAAAMbfUAdhjRkkPp+vGYh1ewNGyVEh0eTk5GAbGQKGYWhubu7AxwuFQlchWEMwGOzbHmvDpFgsHlg6it8plUputwAAAADARUO9NPLkyZMKh8O6e/eustmswuFwV0GAYRh655139Omnn/a/SWAMHfbv7Omnn+7reHb/LScSiQOztRp7mfUqFAopnU53veR6kMrlsnK5nEqlkgzDUDAY1OTkpILBoEKhkC5cuCBp57TLbDbbctlpqVRSIpHQ5OSkcrmc/uUPev9eDivDMFQqlVQoFJoh2DC9OLL/Z9GP32sAAAAARxvqIEySLly4oNnZWb355ptdj3H69Gm9+OKLnpxNA4yyUql06Cb72Wy2b9e4fPlyMwgzTXPo9gMzTVPz8/PN0y1DoVDz0BDDMFQul1Uul5ufb9ynlUa4aJqmUqmU/tOvKo717xbDMJRIJGQYxlAve93/s6hUxu9nAQAAAAyToV4aKe2c1tavV+/PnDnTl3EADMZhG+z3smn/YYLBYEeb9g9aIpFohly5XE6VSkWFQkGFQkHr6+uqVCoHZhG1C1O88KJAKBTS+vq6tre3lU6n3W7nSF74WQAAAADDZOiDsNOnT/dt9se/+Tf/pi/jYHhUq1XNzMy0vC0vL7vdJrrQWAK43+XLl/t+rUQiIan1yZGtNJa3zc7OyufzaWJiQrFY7NCTPzuxtLTUXM6XTqcPDexCoZBWV1f3/J1st0dYLpdTKBRSKBRSoVDoqcdRsP+ghWHitZ8FAAAAxt/y8nLb5+nVatW1/oZ+aaQkPfPMM30Z59/9u3+n5557ri9jYTjU63Vtbm62rKnVagPqBv10VCjQywb5R4lGo8pmsx3PzjFNU3NzcweWb5qmqVKppFKppGw22/XG/ouLi823D5sdt1s6ndYXX3yhpaWltoFeNBrdM2vsUb3j1kaKW7OuUqmUcrlcy5r9PwsAAABg1NVqtbbP0900EkFYv6ytrbndAvrM7/dramqqZU0gEBhQN+inw073c3Ij8U6XzxmGoUgk0nb/qUbd6upqR/13s7dVNps9cibdsLhxV7oYcbsL5+XzeeXz+bZBGAAAADBuAoGApqenW9ZUq1XV6+68Ij+SQdjnn3/e0RNEwzCUy+WGesNkdGdqakobGxtut4E+Mwzj0DDHidlg3TBNs7nJeTweVywW05kzZ7S1taXV1dVDT6GMxWKqVCoKhUK2r7FbqVSytZfZ5cuXm0s9B+3G3fY1l4rSMb/08mnn+3GLYRhtZ/ABAAAA42phYUELCwsta2ZmZlybNTYSQdjnn3/e80wHy7Lk8/n63BkAJxz173x2dnbAnRyuMVvtsFle0WhUqVRKsVjswNeRSCS0vr5u6xr7A7NMJqPz5883DwqwLKl+yDkif/nDnRMlv9gyNTkR1KD+7N1/IL3xob3a1z6Qzn1PCpxwtCVXmKY51HuSAQAAAF439JvlX758WbOzs8rn86pUKrIsq6sbgNFxVBA2TCfstVrq2NjAfr9yuXzoks/DBIPBPadjmqapSCTS/N7ULen424ff9Jal7/w4eGhQ5pT3y9JX39qr/fIb6Xq5fd2oaewZN8xLUwEAAACvG+og7Gc/+5my2WwzyGJGF+CeTCYjn8/X1S0S6WxTqKOWMe8OhtwUDAbb7vcVCoUOPfG2k1Nw99cahtF8YaBX5XJZqVSq/Sy7B6b0aV5/djay57qN5X8TExPy+XxKvzAr/fcHl4TKNKR/yEhXZ6V3fTv//WVKvyibB0rz+bwikYh8Pp+OH/Pt1L97yN/9fx+Trs7q+LG9v2f9XP6ez+cVi8X2nAQaiUQOXfYq7Xw/n3nmmQMHJ+zu76jvte2fxW+ZpqmlpSXFYrHm97/RXyaTsRXEGYahpaUlzc7O7ul5989gdna2uQQYAAAAGBdDvTSycWKaz+eTZVkKhUIKh8PNJUNPP/102zG++OILmaapmzdv6v79+472C6A/hv0UvTNnztiqS6fTWlxc3BMk2J0RJknJZFKFQuHAfZqnEf7Prkn/3P6+aeVyWblcTjdv3mz2dGi4+NvwS//vFel/3AlJdsc7mUzmQCD09f/PkP67jGRWpH/12w3i/yEj/Q/7giPTkD7N6//5fyzJ/N+u77l+MplUMplUKpVqHfb91c5su8Xgki6/lWn/hXegWCwqkUgoGAzq2rVrisd3lpqWy2UlEgllMhnlcjmtr+/tPRQK6fbt2yqVSspkftfTUUthbf8s9snn8839x7LZrLLZrILBoMrlshYXF7W0tKSlpSXF4/EDJ6+apqnFxUUVi8UDYdlhJ6A29uorlUpaX1+3vb8dAAAAMMyGOggrl8vNWWCrq6uam5vreqx0Oq1nn322X60BntMIKLqxtrbW0X2PCgSGZWZKJzPTotGoisXino+Vy2XbG/+vrq4qkUgcOobKEelfxKX/zTXpROueDMPQysqK/X3W/nl4Z8xf/u7ntr6+rkgkosnJSRUKBYXDYU1OTjYDGEk7AdqfpnZCsa+3dkKrf/7b4PD/uyb9IiH9V1P/9b8YWlxcPHSGXCKRsDXr7cUX430NwkqlUvOggcuXLzdDMGnnoIZCodBcnjo/P78naAoGgwqHw9ra2toz5mE/545/Fr/VCCCDweCBYCoUCikejzd/V4rFomZnZ/cEdltbW4rFYjJNc8/3d21tTXNzc4pGo8pmswqFQs1AzzRNmaapVCp16HJfAAAAYNQMdRAWDAZ1//59pdPpnkIwaedJwjPPPNOnzgDvmZ2dHdipjUfN9twfMoyCCxcuHAix1tbWOvpeFgoFLS0t7Zlp1PQfizu3f5WT/vToUyX3L9U8dKyGE0Hpu79d+nk315wVls/nD90bLZvN6sNPyvqPa7+dufZ/juz08lf7gpPvRndCuw8SzfE6WSq6X7/3jMvlci0/v/tntv9n2omOfha/lc/nm2FjI6w6TKFQ0OzsbHM2VyKRaAZYoVBIoVBI0Wh0TxCWyWRUKBT2/FyTyaQmJyebwWCpVJJpmkOzPBkAAADo1lDvEdZ4oH/27Nm+jNfuSQ6A4TDsM8I6cVhg0c3XkU6ntb29vWeW0h6/TO3snfWg/dgdLXF74ndhUzKZPHJvtJde2HdS4r864u/tqd/135ht1K2b/6+u79rWUb+Duz/ej03x7f4sGmFZMBhUMnl04Lm7VtoJsA5bjrv767h27dqhP9f9v2tra2u2egUAYNAsS3pUb33j/DQADUMdhDVmgfVrFkivs8oADMZR4cCw7x12mMMClS+++KLrsQqFgtbX1w+fUfZ5Sfq/ztkKw3a7cbfFJ38v2HzzV//l6LL/6b/Y9TPbdZ92egmT3viw67se6tq1a8pmsyoUCm3DJmlwwWw+n29ey05wlkwm9/ze9TLrbvf1OA0TADCsWp2m3bgN8jRtAMNtqIOwv/mbv5FlWQdO4erWT3/6076MA8BZR8066mSj+WFxWHBh56CPVsLhsP7DnfXDZ139j2Xp/zZveyxL9gOl/8fnUu3B4Z+zu2Tu+r4JbYe90PHVN/b66bdgMKh0On3orLtyudy3/xd1avfeXHZnkO3+NzSK/24AABgHzFQDhtNQB2EnT57Uu+++q5WVFf3mN7/peTyWRgKj46hNxkdxeeR+fTt970+T0muVgzOw/mNxZ3aYDd88kr761t7lHtal6z1mQS+dbh+arf6qt2v0i2EYyufzKpVKCofDA9sj77A+OrX/d2wc/t0AADBqmKkGDKehDsKknX1xwuFwc8Pebt27d8+1V/MBdO7ChQuHfnwUZ7fsD376FoRJUjAk/e/XD4Zhd+0F/98+6uxyH3/WWX03/vv/j/PXaKVcLisWiymXy7XcF21QdodYdkOx/SdSjuJBEwAAAIAThvrUyIbV1VWdOXNGzz77rDKZjO2Twra2tmSapiqVim7evOlwl8DoKJfLWlxcVKFQcLuVIyWTyUNP08vlckdvGD+k9s/GaTezqFQqKZPJaH193d4FgqE9pzFKap702E6n0/G3v+6svhu/+a/OX+MoqVRK+XxeyWSyp721+qmbDfr3/3+yr+ErAAAAMMJGIgj75JNPJO1slJ1Kpboaw7Is+Xy+frYFjKz5+XnbgbJbgsGg4vG4isXino+XSiWVy2XXlql1an8IZmd2USgUUrlcVqlUsj8b6dS+cNC0F5h0+mdx4onO6rvx+7/n/DUO0wjBpN42mO+3xu+D9LuTNtstL909A4wQDAAAAPidoV8a+frrrysWi+nu3bvy+XyyLKvjG4DfaQRJsVjsyJp+L6PqdryjwojDZor1yqk9lNbW1va8byfMbwQX3Qb/kqR/Zi8ofOxYZ8M+d6qLXjr03/xPbBY+6N/vablcboZgoVDI9ub/g7B/mXCjz1Z2n7A6ajMoAQAAACcNdRB27do15XK5ZpjVbag1bGGYYRgtQ4jdyuWyUqmUZmdn5fP55PP5NDs7q0wm4/jmx530KUlLS0uKxWKamJho9plIJEZyT6dxZZpmc7+9Tp8cf/HFF33txU44FgqFDg3DSqWSlpaW+taLYRiKRCK9BU9H2H/i31/+MG7r5KBQKCTDMOyHfvtngH3v8D3W9nv8mPTkY/YucdwvXRzARLzEn+2brfjAPLzQ5qw3O3b/nWq1/NCNTefj8fieYM7OwS+7v57Lly870RYAAAAwkoZ6aWTjwX5jJlg0GlUsFlMwGOx4n7CrV6/q888/d7DbnSdIExMTtmqTyWTbsebn5w8sC5N2nqQtLS1paWmpuZmzW31KO0+4EomETNNUNBpVoVBoLuXJZDKKxWLNjw/TLIth5sSTbdM0NTc311xW1elyqX73ZHe8dDqt1dXVA4FqJpNROBzueSPzUqmkWCx2ZOjWq93/ht/7u5yOv926/uEV6Zjvd0HY0tKSZmdn2/9b3L05fjAk/TdpW/35JL33vHTp4J+aHf/VbL75v/yuFDhxeNmen+eu+7StPcT/6n+xL237NH/w6zEN6R/2hoRbW1t9+xtTLBYPhMX7Q8nDwtz9/64Mw9jzMTvLGg9z7dq1ZohtGEbLZbPlcrm5lDKbzfJ3FwAAANhlqIOwcrksn8+nYDCotbU1PfPMM12PNT8/r6effrqP3R1kZ7lKQ6tZHqZpKhKJ2NoUOZVKaX193dYMgYZ+9Sn9LkSQdkKz3X2EQiHF43FFIhGVSiVFIhGtr6/zpMyGo3723T7RL5VKSqVSzXHPnz/f8fV7WS5pd4Pvo6yuriqRSBwIhmOxmLLZrNJpe6HPbqZpKpPJKJ/PKxQKdfS7aTfEy+fzza+9efrgP9jrb3d40vh3fmSo8Wle+h92zZD7q9WDNbvs/lmapqmXT7cIwnZ59jvtazp11Pdybi6q27d/G37+dxnJrEinEjuzwz5flT7NK/1/WlX+7URzjP2hU8P+393Dwqj9e84lEglls1mFw2GVy2XlcjmFw+FmQCn97sWa1dVVXb58+dCAOZVKqVAoaGtrS9lsVrOzs3t+X/f/LI4Sj8eVzWabf5MTiYTu3bt34OtovIgi7fzOHfVvw+7v8O5/u27MhgMAAAD6zhpiExMTlt/vt3784x/3ZbxIJNKXcY4SDAYtSW1v0Wi05TjRaNSSZIXDYatQKFiVSsWqVCpWoVCw0un0oWMWCoWB97m9vd0cKxQKHVlXqVRsj2nX9PS0Jcmanp7uy3jDJplMHvkzqVQqbe+/vb1tra6uWul02gqFQh39vuz+ee2/bW9vd/X1hMPhQ8fL5XIdjXPU7384HLZWV1dtjbG9vW1ls9nm7240Gm37de2/bjAYbHudw37vHz6yLL3V+vbw0c79c7ncoV9rPB630um09Xd/l7P0p0lLwV0/3+9GLb1WOTDWfvt/HisrhcP7+T9sH/g+HyUej+/t9V/lDh3zl//31T11yWTy0PH+yxfbln7viL9Vvxe09Fer1sNHe/+ehcNhq1KpHPh57u/tqN+7A1/Drls2m7Us6/B/m/F4fM84R/2eHva17v9ZtPtbXigUml9zMBi0crlc8/8RuVyu+e+90e9hVlft/Qz21/Xr7zcAAP3WyWMs+gKGg5vP6Yc6CItGo5bf77d+9rOf9WW8crncl3EO03jSmk6nrdXV1Za3Vk+6d49zlEqlcuDJk50n5v3s07J+F9jZCTR2P8HsNPw4zLgGYevr6y2fjPfrdtjPdnt728rlci2D0lAoZOVyOduB2Pr6+p7fk8Nu6XTaVrjXsLq6emSwFgwGrXg8buVyOWt1ddVaX1+3VldXrVwuZ2Wz2T33CwaDtgPkw8LBUCh0ZPi2O6zYHZJ08mBodXW12WOhULCSyaQVjUatcDi892f0e0FL/yJu6a9WWz6wavxuHfnz/WdhS//r7M59/3frO2MeEkSFQiErHo83fweSyeShYWszmGuM+VerO+8f8Xu1P4x5+Oi3QdzusO+fhS39z9N7vr5wOHzo79D29nbLrzccDh8aAGWz2ebXEwqFrHQ6vef3fXt7e8+LFUcFTrtD6MaLGnZ/Fq3GbcjlclY0Gt0TijXud9S/z1b/Hnf/DCqVSsu6dr0BAGBHvb7z//JWt3rd3ljDGjgNa1/AMHDzOb3PsoZsJ/ldisWizp8/r6WlJf31X/+12+20NDs7K2nvSV3djhMKhfZssH0YwzCa12xYXV1tu19Sv/rcf/3t7e2Wy8qKxWJzf5tgMKjt7e2erj8zM6PNzU1NT09rY2Ojp7GGQT6fd2Sj9sOEw2Gtr6/v+ZjP5+t4nFY/x8OWMdph53e4oVgsanFxsbkXkl2hUEipVErJZLKjZaaNjev3f13BYFBnzpxRMBiUaZpaW1trLr0rFAp7vp5HddnbI8zGMSbDONYw9gQAAIaTFx43DGtfwDBw8zn9UP+Ti8fjOn36tFZWVvoy3s9//vO+jLNfsVjs7HS3I5TLZRmGoUKh0Lb2sI292wUC/epT0p5rR6PRtoHC7k2nTdPsKiQZZ8lkUtbODE3Hb/tDMEldjdMqzCwUCl2N2cnG9/F4XOvr69re3lahUFA8Hm/u4dQQCoUUDoeb+ytVKhVVKhWl0+mO91oLhUIqFAoHrift7MFWKpW0tbWl8+fPa3V1Vdvb2z1v5A8AAAAA6K+h3ixf2nlC/Ud/9Ef6xS9+ob/8y7/saazFxUX98Ic/7FNne8cNBoNtNyBvZ2VlpaNZKvufZH/xxRct6/vVp7R3w/39m0wfZfcm0ysrKwdOZAO6EQwGFY/HB/b7NOjrAQAAAAD6Z6hnhEk74cnVq1f16quv9jTO/fv3O15CZUfjmHrTNDUxMaHZ2VmlUqmuZjxduHDhwCyvVvYHUPuXSjrV5/7v49mzZzvulxlhAAbFsnaWJrS6De8mAQAAYJB43ACMv6GeEdZYyvid73xHExMTevbZZ7uahWGapm7evNnv9iTpwDJDwzCUz+ebM6bi8bguX75sa9aU3ZlVDfuPst+9JMzJPkulku3rtqorl8sdf80A0Km6ZXN/js63ygMAAGOGxw3A+BvqIOydd97R3bt3m+9blqWlpaWuxrIsq6sNwVsxDONAKLRfsVhUsVhUMplULpfr+/V3O2o/on73eefOnT3v213K+fTTT+95f21tjSAMcNCNu9LFiNtdAAAAAMDwGOog7Pz5881leD6fr+9BVq9CoZByuZxM01SlUlGpVDoQTjXk83mtra0dulF5t9bW1ppvJ5PJgfW5/77dzgjr9eRKwMtu3G1fc6m4cwrRy6ed7wcAAAAARsFQ7xGWSqUk7YRgvZ6U55RkMql0Oq1cLqdKpaLt7W1ls9lDZ0mVy2XFYrG+XXv3zK12J0H2s8+jQrRO7V/aCcCe+w+kNz60V/vaB1LtgaPteAr7hgAAMJrsvIgIwBuGekbYyZMnFQ6HdffuXWWzWYXDYU1OTnY8jmEYeuedd/Tpp5/2v8l9gsGg0um00um0isWi5ufn9wQ+pVJJS0tLSqfTPV3HMIzmbLlsNmt7VlY/+uw2wNofum1tbXU1DuB175elr761V/vlN9L1svSj7zvbkyT5fTt7ZrSrGWXsGwIAwPBhpjyATgx1ECbtnKQ4OzurN998s+sxTp8+rRdffLGrEK0X8Xhc0WhUc3Nze05aXFxc7DkIa5wuGQqFeh7LyT5b6ceMsGq1qpmZmZ7HWVhY0MLCQs/jAIPw0Wed1X/82WCCMJ+PAAgAAAxWpzPlz31PCpxwtCVgrC0vL2t5ebnncarVah+66c7QB2HRaPTA5uzdOnPmTF/G6UQwGNT6+roikUgzZDJNU6VS6cjN7dspl8vK5/MKBoNaXV0deJ/BYLAvIZbdTfZbqdfr2tzc7HmcWq3W8xjAoGx/7Ww9AADAqBjWmfJ2cbgRRk2tVuvLc3A3DX0Qdvr06ebsp171a5xuXLt2TZHI7/7Cra6udh2Ezc/PS5Ju377d8ZLIduz0OTk52ZcgrB8z9Px+v6ampnoeJxAI9DwGMCgTTzhbDwAAMCqGdaa8xJJNjKdAIKDp6emex6lWq6rX633oqHNDH4RJ0jPPPNOXcU6fdu+vSzgcVjQaValUktT9hvOpVErlclmFQkHhcLifLUqy12e3M7n2h2f9mBE2NTWljY2NnscBRsm5U9KtX9mvf+6Uc70AAAC4aVhnyrNkE+OqX9sKzczMuDazzNVTIwexeb1dg+il1xMj8/m88vm8crmc4vF4n7o6qF2f+5eY2p0dtn9z/NnZ2Y76ArDjlbD05GP2ap96XLrY/8wcAAB41LCdoDysM+W7WbIJYDBcnREWiUS0vb3t+rK0+/fvKxKJ6NGjR45eZ/cyxk6XBZZKJaVSKeVyOSWTyX63tke7PncvnZR2Zo3ZmZ1WqVT2vN/t0lDA606ekN57fmcqfTtXXxjNVxe9cAIlAACjaNhOUB7WmfLDvGQT8DpXZ4RZg3ypoI1B9LI7YOpkWWC5XFYsFlM2m3U8BJPa97l/RpjdZZ67Z44Fg8G+728GeImdfSSux0d3vwmfb2e/jFY3H0EYAACeN6wz5Yd1ySYAl4Mw3xA9ixlEL2tra8237S6TNAxDc3NzSqfTSqfTTrW2R7s+w+HwnoDM7qmeu8d14wRPoBvDNv2/Ey+NaAgGAABgV2OmvB2DnCk/rEs2Abi8NHKYZoQNwu6lgXaWBRqGoUgkomQyafvES8MwVCwWewrN7PR5/vx55fN5STsz1uzYXZfJZLruDxikYZv+7wSWIQIAgGF04650MdK+7uXT7beMGPRM+WFdsgnA5RlhknTv3j23W9gzU8lJxeLOX2c7IZVpmorFYjp//rztEEySEolEz3tv2ekzlUo1326cMNnK7ppQKMT+YMAR7Byz3W8sQwQAAINm5zHPpWL/HhsNeqb8sC7ZBODyjDBJmp+f11tvvaVgMNjxBvK92trakmEYA1lyWCwWZRiGgsGgLl++3LLWNE1FIhGFQiFlMhlbe3AZhtGcZWVn4/pe+wyHw4pGo82Aq1gstjzJslAoNN9mNhi8yu4DvmP+0d3ba1TZfcUZAAD07v4D6Y0P7dW+9oF07nujd/iPFw43AkaV60HY+vq6EomEqz1YltXxHmGlUkmJREKmaSoajSqbzR4ZQBmGofn5eUnS7du3226UPzc3J8MwZBiGZmdnO+orl8sNrM9cLtfsb3Fx8cggzDTN5jLKaDQ6kA3/gWHjhQd8w4oAEgCA4fJ+WfrqW3u1X34jXS+P5omKw7hkE8AQLI1ssCzLlVu3CoVC8xTEUqmkSCSyZ7lgQ+Nzk5OTqlQqbWdrRSIR23tuHWZ/yORUn9LOEsfGTK9yuaylpaVD6+bm5iTtnBS5e2YY4CXdPOBD7zoNIGsPHG0HAABI+uizzuo/7rB+lHC4ETB4rgdhvQZS/bh+Nw6bxZbP5zUxMaFEIqFUKqVIJKJYLKZkMqn19XWFQqG2Y/YzBHOqz93i8bhWV1cVDAaVyWSaX4Npms1wrVwuKxwO6969e21nmQHjigd87iCABABg+Gx/7Ww9ALTi6tLI7e1tNy/fk2g0qkqlomw2q1KppK2trebMq0bwc/nyZUWjUdvhjxOzpZzo87BrbG9va2lpSSsrK5qbm5NpmgoGgzpz5owKhULL/cMAL+ABnzu6CSB7XXrBfmMAALQ28YSz9QDQiqtB2MmTJ928fM9CodCBPbmG0aD6TKfTAzl4ABhFPOBzR78DSPYbAwCgd+dOSbd+Zb/+uVPO9dINXvQCRpvrSyMBwAvOdfgAbtge8I2qfgaQ/dxvzLKkR/XWNxd3DQAAwFGvhKUnH7NX+9Tj0sX22xf3jd0XvezUARhOBGEAMADD/IBvnPUzgOznfmN1Szr+dutbnSAMADCmTp6Q3nveXu3VFwZ3kjaH7ADeQBAGAAMwrA/4xl0/A0gOPAAAoH/sbCFwPT7YrQY4ZAfwBoIwABiQYXzAN+76GUBy4AEAAIP10oAfE/GiF+ANBGEAMEQG/YDPC/oVQHLgAQAA440XvQBvIAgDAHienQCSAw8AALBnVDeS50UvwBsIwgAAsIEDDwAAGO9TFXnRC/AGgjAAAGzgwAMAgNeN+6mKvOgFeANBGAAANnHgAQDAy8b9VEVe9AK8gSAMAIA+4sADAMC48sKpirzoBYy/4243AAAAAAAYfsN6qqLfJz280r6mX3jRCxhtBGEAAAAAgLaG9VRFn0861segC8B4IwgDgBE06Fc+AQAAzp2Sbv3Kfj2nKgIYRuwRBgAjyOeTjvlb33wEYQAAQJJlSY/qrW+W1X4cTlUEMA7GckbY/fv39dZbb+nv/u7v3G4FAAAAAFxVt6Tjb7eueXil/fLCxqmKl4rtr8mpigCG1VjOCDMMQ/l8Xr/+9a/1ySefqFarud0SHFKtVjUzM9Pytry87HabANCxG3fd7gAAgIM4VRFAO8vLy22fp1erVdf6G8sZYaVSSZZlKRQKNT+WyWT0zjvvuNgVnFCv17W5udmyhiDUeyxr55XPVvw+lg7CPXZCrkvFnSWuPJEAAIwaTlXcwZ6u8Kpardb2ebqbxi4Iu337tjKZjCTJ2rXQPZvNStKRYdjrr7+uUqmkYDCoWCymt956S4FAwPmG0RO/36+pqamWNfwcvadf0/8BJ9x/IL3xob3a1z6Qzn2PpSUAAIwiTrOEVwUCAU1PT7esqVarqtfrA+por7ELwjKZjOLxuC5cuKBwOCzDMHTr1i39+Mc/VjabVSqV0h/+4R/uuc+zzz4rwzCawdn6+roKhYLW19cJUYbc1NSUNjY23G4DHnfjrnQx4nYXGBXvl6WvvrVX++U30vWy9KPvO9sTAAAA0C8LCwtaWFhoWTMzM+ParLGx3CPs5s2bevHFF/XMM89obm5O2WxWW1tb+u53v9ucLdbw+uuvq1KpSNoJ0er1ura2tvSDH/xA8/PzbrQPYIjYXcLGfk6w66PPOqv/uMN6AAAAAEcbuxlhviM2/QkGg1pfX1csFtvz8VwuJ5/Pp3g8rsXFxWZtLpfTn//5n+vzzz/Xd7/7XafbBjCEWMIGJ2x/7Ww9AACjgP2zALhl7IKwiYkJ/eQnP9G//bf/9sDngsGgJiYmmu9fu3at+XZjD7HdMpmMSqWSXn31VWeaBTDUWMI2HobtgfbEE87WAwAwCtg/C4Bbxm5pZDqd1ptvvqk33njj0NMCt7e3m283ZoNFo9FDZ32dOXOmuWwSgPewhG08+Hw7py+2ug3yBNFzpzqrf67DegAAAABHG7sZYdFoVPPz87p69apyuZzi8bjOnj0rSVpZWVGlUtFf/MVfKBwOq1wuy+fzKZVKHTrWyZMnZRjGINsHMERYwob9+jG77JWw9NYv7c02fOpx6WLYfn8AAAAAWhu7IEzamem1tbWln/3sZyoWiyoWi83Pra2t6Z133tmzFDIcPvxZxt27dzU5Oel4vwCGE0vYsF8/lnGcPCG99/zOIQvtXH2BfecAAACAfhq7pZENhUJBV69e1dzcnCzL0smTJ3Xz5k2dPn1ahUJBL774ooLBoK5evXrkjLB8Pq/Z2dkBdw5gWPR7CVtjNlGrG5vCesPLp9vXXI/bqwMAAABg31jOCGtIJpNKJpOHfq5QKDTfnpiY0NmzZ/XTn/5Uf/Inf6JaraZ33nlH+Xx+z55iALyl30vY2BQWnXiJEAwAAADou7EOwuyKx+MyDEOnT5+Wb9eOye+++64CgYCLnQFwE0vYAAAAAGC8EIT9VjqdVigUUj6fVzAY1IULF/Tiiy+63RYAl718un0QxhI2AAAw6m7clS5G3O4CAJw3dkHYJ598oh/84Adt637+858rGo3umfEVj8cVj8edbA/AGGIJGwAAGGY37ravuVSUjvl5cW8YWZZUt1rX+H0723AAaG/sgrB4PK779+8rGo0qFospGo3qT//0Tw/Uzc3N6dVXX9XS0pK++93vDrxPAAAAAHDa/QfSGx/aq33tA+nc91pv99A4/KcVDv/pr7olHX+7dc3DK+xFC9g1dkFYJBLR7du3VSqVVCqVJEnBYFBnzpzZE4ydPHlS165dUzQaVbFY1B/+4R+63DkAAAAA9Nf7ZXsH/0jSl99I18vSj75/dM24H/5D0AeMv7ELworFohKJhLa2tmSapgzD0Pb2tlZXV5vBmCTFYjGdPn1a29vbSqVS+uUvf+li1wAAAADQfx991ln9x5+1DsLG3bgHfQDGMAhLJpPK5/N7ljvevn1bN2/e1LVr15ofu3XrllZXV2VZlu7du+dCpwAAAABwuH7tC7X9dWfX7bQeAEbN2AVhlmUd2PNrbm5Oc3NzWlpa0jvvvKPbt2/rwoULunPnjgzD0IULF9xpFgAAAAAO0a99oSae6Oy6ndYDwKgZuyDs/v37R37u5MmTymazunfvnjKZDBvlAwAAABhr505Jt35lv/65U871AgDDwO92A/32zDPP6Cc/+Unbmps3byqZTOrXv/71gDoDAAAAgMF6JSw9+Zi92qcely6Gne0HANw2dkFYOp3Wm2++qV/84hdta2/evKloNKparTaAzgAAAABgsE6ekN573l7t1RekwAlH2wEA141dEBYKhfTuu+8qHo/rjTfeaFkbDAZ1+vRpvfXWWwPqDgAAAAAG6+XT7Wuux+3VAcCoG7s9wqSdWWF37tzR1atXdfPmTV2+fFnz8/MKBAIHaicnJ7WysqL33nvPhU4BAF7k9+1scNyuBgCAQXmJEAyAR4zdjLCGQqGg+fl5bW1tKZ1Oa2JiQhcuXNBPf/pTffrpp/r00091+fJl5fN5mabpdrsAAA/x+aRj/tY3H0EYAAAA0HdjOSOsIZfLKRaLaX5+Xvfv31exWFSxWDxQFw6zIyQAAAAAAMC4G9sZYQ3xeFzb29t69913dfLkSVmWtecWDAZ17do1t9sEAAAAAACAw8Z6Rthu6XRa6XRad+/elWEYMgxDoVBI0WhUJ0+edLs9AAN24650MeJ2F0DvLEuqW61r/D6WWgIAAADSCAdhr7/+uv7u7/6u4/udPn1ap0+zEyQwzm7cbV9zqbizDxOnI2HU1S3p+Nutax5ekY4RhAEAAACjuzTy5s2b+s1vfuN2GwCGzP0H0hsf2qt97QOp9sDRdgAAAAAAQ2Rkg7Dt7W1997vf1euvv65PPvnE7XYADIn3y9JX39qr/fIb6XrZ2X4AAACcYmcWPABgr5FdGilJpmkqn88rn89LkqLRqGKxmOLxuL773e+62xwGolqtamZmpmXNwsKCFhYWBtQR3PbRZ53Vf/yZ9KPvO9MLAABAt9jqAcCoWl5e1vLycsuaarU6oG4OGukgTJIs63c7BJdKJZVKJWUyGQWDQZ0/f16xWEw//OEPW47x05/+VK+++qrTrcIB9Xpdm5ubLWtqtdqAusEw2P7a2XoAAACndbrVw7nvSYETjrYEALbVarW2z9PdNLJLI999911ZliWfz6fZ2VlJO6FY47a9va18Pq9EIqFjx47p7Nmz+tu//Vt9+umnB8ZaXV0dcPfoF7/fr+np6Za3QCDgdpsYoIknnK0HAABwGls9ABhlgUCg7fN0v9+9OGpkZ4Sl02lFo1ElEgltbW2pWCzKsiz9+3//73X79m2Zprlntli5XFa5vPN/iGAw2FxGKUnFYtGVrwG9m5qa0sbGhtttYIicOyXd+pX9+udOOdcLAABAN9jqAcAos7M90czMjGuzxkZ2RpgkhcNhVSoVvfrqq0okErp9+7YKhYK2trZUqVSUzWYVjUYlHZwtViwWlUqllEqlXP4qAPTTK2Hpycfs1T71uHQx7Gw/AAAAnWKrBwBwzkgHYQ3ZbFZ37tzRrVu39Md//Mf6x3/8Rz3zzDN68803devWLdXrda2uriqZTCoUCknaG4wBGB8nT0jvPW+v9uoL7KcBAACGD1s9AIBzRnZp5H7hcFj/9E//pFQqpXA4rEwmo3feeaf5+bm5Oc3NzUmS7t+/r5s3b6pQKKhUKrnVMgCHvHx65xSlVq7H7Z2w5PdJD6+0rwEAAOgXtnoAAOf4rDGcElUqlXT+/Hl95zvfUaFQ0J/8yZ+0rP2Lv/gLPXr0aIAdoleN9cTT09PsEYYDHtWl42+3rnl4Zee4cWDU8fsOAOPn/gNp+h17G+Y/9bi0ebn1LHfLkuptnvX5fZKPF/eGkp3/1/9f4tLFyGD6AfrBzef0Y/mwOBqNyjAM/cmf/InC4bB+8pOftKxtzBQDAGAc3bjrdgcAgE70e6sHn2/nBZFWN0Kw4WXn/+OXivz/HrBrLIMwaedkyEKhoJWVFb355pv6sz/7M/36178+tDaRSAy4OwAA+oMHxwAwnuxs4WB3qweMrvsPpDc+tFf72gdS7YGj7QBjYWyDsIZ4PK6trS2dPHlSoVDo0Nlh8/PzLnQGAEBveHAMAN72EiHY2Hu/bG+JrCR9+Y10vexsP8A4GPsgTNqZHba6uqrFxcW2s8MAABgVPDgGAGC8ffRZZ/Ufd1gPeJEngjBJ+vzzz3XmzBml02mtra0pFArp7//+791uCwCArvHgGACA8bb9tbP1gBcdd7uBfvj8889lGIZM05RhGKpUKjIMQ4ZhaGtrS6Zp7qn3+XyyLEvJZFKFQkGFQkG///u/707zAAB0iQfHAACMt4knnK0HvGhkg7CzZ882w69WLOvoc4Ity9KtW7f0gx/8QHfu3OlzhwAAOIsHxwAAjLdzp6Rbv7Jf/9wp53oBxsXIBmHr6+vNmV2tBINBhUKh5m12dlaTk5PN90+ePDmgjgEA6C8eHAMAMN5eCUtv/dLenqBPPS5dDDvfEzDqRjYI221iYkLnz5/fE3gRcgEAxh0PjgEAGG8nT0jvPS9dKravvfqCFDjheEvAyBvpzfJffPFFhcNhbW9vK5/Pa21tTdvb25qYmCAEAwCMvcaDYzt4cAwAwGh6+XT7mutxe3UARjgIi0ajunnzZjP8WllZkWVZSqfTmp2d1bPPPqvXX39d//AP/9B2rE8++WQAHQMA0H88OAYAAC/x/3nAtpENwmKxWPPtkydPKh6P6+bNm9ra2tKdO3f0wx/+UHfu3NHc3JyOHTums2fP6ic/+Yk+/fTTA2PlcrkBdg4AwGDx4BgAAADYMbJ7hL355ptHfi4cDisc3tkI5f79+1pdXdXNmzd15coVpdNpBYNBRaNRnT17VpJULNpYcA0AAAAALViWVG99lpf8PsnnG0w/AICDRjYIs6sxWywej0uSyuWyVlZW9LOf/UyFQkE+/i8EAAAAoA/qlnT87dY1D69Ix3gKAgCuGdmlkd0Kh8PKZrP6p3/6J62trekHP/iB2y0BAAAAAABgAMZ+Rlgr4XBYq6urOnPmjNutAAAAAECT37cze6xdDQCgM54Owhqy2azbLQAAAABAk8/HEkoAcILnlkYeZm5uzu0WAAAAAAAA4LCRCML+9m//Vp988onbbQAAAAAAAGCEjUQQ9h/+w39QLBbT3//93/c0zrVr13Ts2DH98R//sf7xH/+xT90BAAAAAABgFIxEECZJlmUpmUzqb/7mb7oeI5PJyLIs/dM//ZPC4bA+//zz/jUIAAAAAACAoTZym+XfunVLlUpFKysrHd/3mWee0f379xWNRiXtBGPdjAMAAAAAAIDRM3JB2NramhKJhM6ePatPPvlEv//7v2/7vuvr63vef/bZZ/vdHgAAAAAAQ8mypLrVusbv2zm1FBhXIxeESVKhUNDS0pLC4bBKpZL+8A//sOMx7t27p62tLQe6A+A2v096eKV9DTAO+H0HAAB21S3p+Nutax5ekY7x2AFjbCSDMElKp9MKh8MKh8MqFov6l//yX9q+7/379xWLxXTmzBkHO8QgVKtVzczMtKxZWFjQwsLCgDrCMPD5+J83vIPfdwAAAAyT5eVlLS8vt6ypVqsD6uagkQ3CJCkajerOnTv68z//c12+fFn/+l//67b3+eSTT5RIJGSapt56660BdAkn1et1bW5utqyp1WoD6gYAAAAAAG+r1Wptn6e7aaSDMEkKhUJaW1vT+fPnValU9M477xxZ++Mf/1hvvfWWLMvSxMSEXn311QF2Cif4/X5NTU21rAkEAgPqBgAAAGjtxl3pYsTtLgDAOYFAQNPT0y1rqtWq6vX6gDraa+SDMEkKBoO6deuWXnvtNV24cOHQkyAvX76spaUlWZYln8+nbDbrQqfot6mpKW1sbLjdBgAAAKAbd9vXXCpKx/zSy6ed7wcA3GBne6KZmRnXZo35XbmqQ65evaq5uTmdPXtWv/nNb5ofv337djP48vl8CofDzAYDAAAA0Df3H0hvfGiv9rUPpNoDR9sBABxh5IKwf/iHf2j5+WQyqVwupx/84Af69a9/LUnNEMyyrD3vAwAAAEA/vF+WvvrWXu2X30jXy872AwA43EgEYc8884yknSArmUw2A66jhMNhrays6MUXX9TPf/5zlUol+Xy+5ud+8IMfON4zAAAAAO/46LPO6j/usB4A0B8jEYRls1ltb2+rUChobm5O0WhUP/3pT1vep7GJ/tWrV5sf8/l8unDhgtPtAgAAAPCY7a+drQcA9MfIbJZ/8uRJvfjii3rxxRc7ut+tW7eUyWT04x//uLk/GAAAAAD008QTztbDu/w+6eGV9jUA7BmJGWG9ymazunnzpizL0r1799xuBwAAAMCYOXeqs/rnOqyHd/l8OyeNtrr5CMIA2zwRhElSPB7X2tqaVlZW3G4FwBEsS3pUb3377ZkXAAAAQ+WVsPTkY/Zqn3pcushCFQBwxcgsjeyHcDisW7duud0GgCPULen4261rHl6RjvGKFwAAGDInT0jvPS9dKravvfqCFDjheEsAgEN4ZkYYAAAAADjp5dPta67H7dUBAJzhqRlhAADgaJa1MzOzFb+PfUgAoBcvEYIBgKsIwgAAgCSWJwMAAGD8sTQSAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5w3O0GAAAAAGAc+H3Swyvta4BhduOudDHidheAc5gRBgAAbLtx1+0OAGB4+XzSMX/rm48gDC6y8//xS0X+f4/xRhAGAAAk8eAYAIBxdv+B9MaH9mpf+0CqPXC0HcA1BGEAAIAHxwAAjLn3y9JX39qr/fIb6XrZ2X4AtxCEAQAAHhwD8CzLkh7VW98sy+0ugd599Fln9R93WA+MCjbLBwAAXT04/tH3nekFAAapbknH325d8/CKdIy9vTDitr92th4YFQRhAACAB8cAAIy5iSf6W29ZO0FyK34fB0Rg+BCEYaRVq1XNzMy0rFlYWNDCwsKAOgKA0dTvB8cAAGC4nDsl3fqV/frnTrX+PLMpcZTl5WUtLy+3rKlWqwPq5iCCMIy0er2uzc3NljW1Wm1A3QDA6Or3g2MAADBcXglLb/3S3p6gTz0uXQw73xPGU61Wa/s83U0EYRhpfr9fU1NTLWsCgcCAugGA0cWDYwAAxtvJE9J7z0uXiu1rr74gBU443hLGVCAQ0PT0dMuaarWqer0+oI72IgjDSJuamtLGxobbbQDAyOPBMQAA4+/l0+3/X389vlMHdMvO9kQzMzOuzRrzu3JVAAAwdOw86OXBMQAA4+0l/j+PMUcQBgAAbOPBMQAAAEYZQRiAkXLjrtsdAAAAAABGFUEYgKFhJ+S6VCQMAwAAAAB0hyAMwFC4/0B640N7ta99INUeONoOAAAAAGAMEYQBGArvl6WvvrVX++U30vWys/0AAAA0MBsdAMYHQRiAofDRZ53Vf9xhPQAAwGHYmgEAvIUgDMBQ2P7a2XoAAID92JoBALyHIAzAUJh4wtl6AACA/diaAQC8hyAMwFA4d6qz+uc6rAcAANiPrRkAwHuOu90AAEjSK2HprV/ae1X2qceli2HnewK8xu+THl5pXwMA44KtGQDAe5gRBmAonDwhvfe8vdqrL0iBE462A3iSzycd87e++QjCAIwRtmYAAO8hCAMwNF4+3b7metxeHQAAQDtszQAA3kMQBmCkvEQIBgAA+uSVsPTkY/Zq2ZoBAMYDQZgLDMNQLBazVVsul5VKpTQ7Oyufzyefz6fZ2VllMhmZptn33hrXKRaLHd93aWlJsVhMExMTzT4TiYRKpVLf+wQAAAB6xdYMAOA9BGF9ZJpmM6xqdZudnVUoFGo7ViKRUCQSUT6fl2EYzc8ZhqGlpSVNTEwon8/3rf9MJrPnOnaVSiVNTEwok8lIkgqFgiqVirLZrMrlsmKxmGKxmCPBHQAAANALtmYAAG/h1Mg+6iSUaoRGhzFNU5FIxFYolUqltL6+rlwuZ/vahymVSlpaWurqfo3Zbclkck8foVBI8XhckUhEpVJJkUhE6+vrCgaDPfUKAAAADBJbMwDA+GBGWB8tLi7aqotGoy1nhCUSCRmGoXA43JxdValUVCgUlE6nD9Tn8/muljI2NGaf9XK/UCh0ZBhXKBQk7cxk6+Y6AAAAAAAA/cCMsD7J5/MyTVPpdLrt/l9nzpxpOU6pVFI6nVY2m93zucYMq1QqpUQioXK53Pzc/Py84vF4V73Pz89rcnJSkjpavphIJJr1rWa4NfouFosqlUrK5/NKJpNd9QoAAAAAANAtgrA+yWazCoVCB8KrbsaJRqMtxwmFQioUCpqdnW1+zDRNlUolRaPRjq7XmE22vr6uubk52/czDGPPJvjnz59vWX/hwoXmrLVMJkMQBgAAAAAABo6lkX1QLBZlGEbLWVF2lMtlGYbRXErYymGh2+4ZYnYYhqFUKqV0Oq1wuLOzoHdfOxqNtt33a/dsNdM0e1rKCQAAAAAA0A2CsD5YXFxUMBhsOyuqnZWVFSWTSdubye+f/fXFF190dL1EIqFwONzVLLbdBwPYDdF274u2srLS8TUBAAAAAAB6wdLIHpXL5eZMrImJCYVCIUWjUcVisY737Lpw4ULLTfT32x9A7V4q2U4mk1G5XFalUrF9n4b9M8/Onj1r637hcLh5EiYzwgAAAABgvN24K12MuN0FsBczwnq0fzmkYRjK5/NKJBLy+XwHNrVvJRwO254NJh3c2N5uiFYul7W0tKRcLtdR8Nawe2+wTq67v67TpZwAAAAAgOFw4277mktFe3XAIDEjrAf7N4w/TLFYVLFYVDKZVC6X6/v1d7O7Uf7c3Jzi8XjXG9bfuXNnz/t2w7unn356z/tra2sd700GAAAAAOiO3yc9vNK+pp37D6Q3PrR3zdc+kM59TwqcsFcPOI0grAehUEi5XE6maapSqahUKh0Ipxry+bzW1ta0vr7et+uvra0137YbaiUSCUnStWvXur7u/q+x2xlh3SzLBAAAAAB0x+eTjtkIutp5vyx99a292i+/ka6XpR99v/frAv1AENaj/QGUaZrK5/NaXFw8sHSxXC4rFotpdXW1L9fePcPMzomVjdlpq6urHS3B3O+osK9T+78/AAAAwKD1a4YM4CUffdZZ/cefEYRheLBHWJ8Fg0Gl02ltb2+rUCgcCJxKpZKWlpZ6vo5hGM09trLZbNtZWaZpKpFIKJlM2l5C2Wqsbuz/XmxtbfXUBwAAANArn0865m998xGEAXtsf+1sPeAkZoQ5KB6PKxqNam5ubs/G8IuLi0qn0z2Nnc1mJe0sN7Qz1tzcXHMp57Dox4ywarWqmZmZnsdZWFjQwsJCz+MAAAAAwLibeMLZegyv5eVlLS8v9zxOtVrtQzfdIQhzWDAY1Pr6uiKRSDMMM01TpVKp65lZ5XJZ+XxewWDQ1jLLpaUllcvlvu1PFgwG+xJi9bI8s6Fer2tzc7PncWq1Ws9jAAAAAIAXnDsl3fqV/frnTjnXCwarVqv15Tm4mwjCBuTatWuKRCLN91dXV7sOwubn5yVJt2/fbrskslwuK5PJKJvN9u2ExsnJyb4EYZOTkz2P4ff7NTU11fM4gUCg5zEAAAAAwAteCUtv/dLehvlPPS5d7M9TUQyBQCCg6enpnsepVquq1+t96KhzBGEDEg6HFY1GVSqVJHW/4XwqlVK5XFahULAVbCUSCYXD4Z6XYu7W7Uyu/eFZP2aETU1NaWNjo+dxAAAAAAD2nDwhvfe8dKnYvvbqC1LghOMtYUD6ta3QzMyMazPLCMIGKBaLNYOwbuTzeeXzeeVyOcXj8bb1S0tLMgxD0WhUiUSibf3uoGpxcVErKyvN9y9cuNC85pkzZ/bseWaapq1Qa//m+LOzs23vAwAYTZYl1a3WNX4fG1ADADCqXj7dPgi7Ht+pA4YJQdgA7V7G2OmywFKppFQqpVwup2Qyaes+X3zxRfO+nSqXy3vCrlAo1AzCdi/xlHZmt9mZnVapVPa83+vplQCA4VW3pONvt655eEU6RhAGAMDYeslmCMYLaBgkgrAB2h2EdbIssFwuKxaLKZvN2g7BnHTmzJk979sNwnbPOAsGg233NwMAAACOwhNnYHzwAhoGiSBsgNbW1ppvx2IxW/cxDENzc3NKp9Md7/OVzWaVzWZt18/Ozjb3LisUCkcuvwyHw3tOjrxz546tpZq7v/79YRoAAADQCZ44AwC64Xe7AS/ZvTTQzrJAwzAUiUSUTCZtB1qGYWhpaanrHu06f/588+3dSyhb2V2XyWT63hMAAAAAAEArBGEDVCzu7CRoZ2aXaZqKxWI6f/58R7O6EonEQPbeSqVSzbft7EG2uyYUCrE/GAAAAAAAGDiWRg5IsViUYRgKBoO6fPlyy1rTNBWJRBQKhZTJZJrLFVsxDKM5y8rOfl29CofDikajzYCrWCy2XB5ZKBSabzMbDEfx+3aWMLSrAQAAAACgGwRhXSqVSkokEjJNU9FoVNls9sgAyjAMzc/PS5Ju377ddqP8ubk5GYYhwzA0OzvbUV+5XK6j+l7kcrlmf4uLi0cGYaZpKp/PS9pZEjoMG/5jOPl87OMBAAAAAHAOSyO7VCgUmpvFl0olRSKRPcsFGxqfm5ycVKVSaTtbKxKJ2N5z6zCDDJlCoVBzple5XD5yb7K5uTlJOydF7p4ZBgAAAAAAMEgEYV1KJBIHPpbP5zUxMaFEIqFUKqVIJKJYLKZkMqn19XWFQqG2Y45KCNYQj8e1urqqYDCoTCbT/BpM02yGgOVyWeFwWPfu3Ws7Gw4AAAAAAMApLI3sUjQaVaVSUTabValU0tbWVnOGWCP4uXz5sqLRqO3wx+3ZUrtPtexENBrV9va2lpaWtLKyorm5OZmmqWAwqDNnzqhQKLTcPwwA4E037koXI253AQAAAC8hCOtBKBQa6J5cwy6dTts6ERPjxbKkutW6xu/b2f8LgHfcuNu+5lJROuaXXj7tfD8AAACARBAGoEd1Szr+duuah1fYBB/wkvsPpDc+tFf72gfSue9JgROOtgTAo5h5CgDYjz3CAABAX71flr761l7tl99I17vfHhOAh9mdeWqnDgDgHQRhAACgrz76rLP6jzusB4BOZ57WHjjaDgBghBCEAQCAvtr+2tl6AGDmKQCgWwRhAACgryaecLYeAJh5CgDoFkEYAADoq3OnOqt/rsN6AGDmKQCgWwRhAACgr14JS08+Zq/2qceli2Fn+wEwfph5CgDoFkEYAADoq5MnpPeet1d79QUpcMLRdgCMIWaeAgC6RRAGAAD67uXT7Wuux+3VAcB+zDwFAHSLIAwAALjiJUIwAF1i5ikAoFsEYQAAAABGDjNPAQDdIAgDAAAAMJaYeQoA2I8gDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBOOu90A0ItqtaqZmZmWNQsLC1pYWBhQRwAAAAAw/vw+6eGV9jX9cuOudDHSv/HgnOXlZS0vL7esqVarA+rmIIIwjLR6va7Nzc2WNbVabUDdAAAAAIA3+HzSsT4FXTfutq+5VJSO+aWXOQ126NVqtbbP091EEIaR5vf7NTU11bImEAgMqBsAQMOgXyUG4D38nQHGw/0H0hsf2qt97QPp3PekwAlHW0KPAoGApqenW9ZUq1XV6/UBdbQXQRhG2tTUlDY2NtxuAwCwTz9fJQaAw/B3BhgP75elr761V/vlN9L1svSj7zvbE3pjZ3uimZkZ12aNsVk+AAAAAABwxUefdVb/cYf1wH4EYQAAAAAAwBXbXztbD+xHEAYAAAAAAFwx8YSz9cB+BGEAAAAAAMAV5051Vv9ch/XAfgRhAAAAAADAFa+EpScfs1f71OPSxbCz/WD8EYQBAAAAAABXnDwhvfe8vdqrL0iBE462Aw8gCAMAAAAAAK55+XT7mutxe3VAOwRhAAAAAABgqL1ECIY+IQgDAAAAAACAJxCEAXDcjbtudwAAAAAAAEEYgB7ZCbkuFQnDAAAAAADuIwgD0LX7D6Q3PrRX+9oHUu2Bo+0AAAAAANASQRiArr1flr761l7tl99I18vO9gMAAAAAQCsEYQC69tFnndV/3GE9AAAAAAD9RBAGoGvbXztbDwAAAABAPx13uwEAo2viCWfrAUCSLEuqW61r/D7J5xtMPwAAABhdBGEAunbulHTrV/brnzvlXC8Axlfdko6/3brm4RXpGEEYAAAA2mBpJICuvRKWnnzMXu1Tj0sXw872AwAAAABAKwRhALp28oT03vP2aq++IAVOONoOAAAAAAAtEYQB6MnLp9vXXI/bqwMAAAAAwEkEYQAc9xIhGAAAAABgCBCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAw8m7cdbsDAAAAjAKCMAAAMNTshFyXioRhAAAAaI8gDAAADK37D6Q3PrRX+9oHUu2Bo+0AAABgxB13uwGgF9VqVTMzMy1rFhYWtLCwMKCOAAD99H5Z+upbe7VffiNdL0s/+r6zPQEAAOBoy8vLWl5ebllTrVYH1M1BBGEYafV6XZubmy1rarXagLoBAPTbR591Vv/xZwRhAAAAbqrVam2fp7uJIAwjze/3a2pqqmVNIBAYUDcAgH7b/trZegAAAPRXIBDQ9PR0y5pqtap6vT6gjvYiCMNIm5qa0sbGhtttAAAcMvGEs/UAAADoLzvbE83MzLg2a4zN8gEAwNA6d6qz+uc6rAcAAIC3MCMMAAAMrVfC0lu/tLdh/lOPSxfDzvcEoHuWJdWt1jV+n+TzDaYfAMPB75MeXmlfA/QDQRgAABhaJ09I7z0vXSq2r736ghQ44XhLAHpQt6Tjb7eueXhFOsYTXsBTfD7+3WNwWBoJAACG2sun29dcj9urAwAAgLcRhAEAgJH3EiEYAAAAbCAIAwAAAAAAgCewRxgAAAAAABgLHMqBdgjCAAAAAADAWOBQDrTD0kgAAAAAAAB4AkEYAAAAgKFx467bHQAAxhlBGAAAAICBsBNyXSoShgEAnMMeYQAAYKj5fTt7ebSrATDc7j+Q3vjQXu1rH0jnvicFTjjaEgDAg5gRBgAAhprPJx3zt75x8hMw/N4vS199a6/2y2+k62Vn+wEAeBNBGAAAAADHffRZZ/Ufd1gPAIAdBGEAAAAAHLf9tbP1AADYQRAGAAAAwHETTzhbDwCAHQRhAAAAABx37lRn9c91WA8AgB0EYQAAAAAc90pYevIxe7VPPS5dDDvbDwDAm4673QCA0eb3SQ+vtK8BAADedvKE9N7z0qVi+9qrL0iBE463BADwIGaEAeiJzycd87e++QjCAACApJdPt6+5HrdXBwBAN5gRBniQZUl1q3WN30eABQAABu8lQjAAgIMIwgAPqlvS8bdb1zy8Ih0jCAMAAAAAjBGWRgIAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gVMjAQAAAAyE37dzMnW7GgAAnEIQhpFWrVY1MzPTsmZhYUELCwsD6ggAAABH8fmkYwRdADDWlpeXtby83LKmWq0OqJuDCMIw0ur1ujY3N1vW1Gq1AXUDAAAAAIC31Wq1ts/T3UQQhpHm9/s1NTXVsiYQCAyoGwAAAAAAvC0QCGh6erplTbVaVb1eH1BHexGEYaRNTU1pY2PD7TYAAAAAAIDsbU80MzPj2qwxTo0EAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAA8Iwbd93uAG4iCAMAAAAAAGPBTsh1qUgY5mUEYQAAAAAAYOTdfyC98aG92tc+kGoPHG0HQ4ogDAAAAAAAjLz3y9JX39qr/fIb6XrZ2X4wnAjCAAAAAADAyPvos87qP+6wHuOBIAwAAAAAAIy87a+drcd4IAgDAAAAAAAjb+IJZ+sxHgjCAACAJ1iW9Kje+mZZbncJAAC6de5UZ/XPdViP8XDc7QYAAAAGoW5Jx99uXfPwinTMN5h+AABAf70Slt76pb0N8596XLoYdr4nDB9mhAEAAAAAgJF38oT03vP2aq++IAVOONoOhhRBGAAAAAAAGAsvn25fcz1urw7jiSAMAAAAAAB4xkuEYJ5GEAYAAAAAAABPIAgDAAAAAACAJxCEAQAA/NaNu253AAAAACcRhAEAAE+wE3JdKhKGAQAAjDOCMACH4okggHFy/4H0xof2al/7QKo9cLQdAAAAuIQgDPAgZkUA8Jr3y9JX39qr/fIb6XrZ2X4AAADgDoIwwGOYFQHAiz76rLP6jzusBwAAwGggCAM8hlkRALxo+2tn6wEAADAaCMIAj2FWBAAvmnjC2XoAAACMBoIwwGOYFQHAi86d6qz+uQ7rAQAAMBoIwgCPYVYEAC96JSw9+Zi92qcely6Gne0HAAAA7jjudgNAL6rVqmZmZlrWLCwsaGFhYUAdDb9zp6Rbv7Jfz6wIAOPg5Anpved3TsRt5+oLUuCE4y0BAACMpeXlZS0vL7esqVarA+rmIIIwjLR6va7Nzc2WNbVabUDdjIZXwtJbv7S3YT6zIgCMk5dPtw/Crsd36gAAANCdWq3W9nm6mwjCMNL8fr+mpqZa1gQCgQF1MxqYFQEAR3uJEAwAAKAngUBA09PTLWuq1arq9fqAOtqLIAwjbWpqShsbG263MXKYFQEAAAAAcIKd7YlmZmZcmzXGZvkADsWsCAAAAADAuCEIAwAAAAAAgCcQhAEAAAAAAMAT2CMMAAAAwJEsS6pbrWv8PsnnG0w/AAD0giAMAAB4gt8nPbzSvgbAXnVLOv5265qHV6Rj/PsBAIwAgjAAAOAJPh9P1AEAALyOPcIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAQE9u3HW7AwAA7CEIAwAAAHAkOyHXpSJhGABgNBx3uwEAAAAAw+n+A+mND+3VvvaBdO57UuCEoy0BQEt+n/TwSvsaeBczwgAAAAAc6v2y9NW39mq//Ea6Xna2HwBox+eTjvlb33wEYZ5GEOYCwzAUi8Vs1ZbLZaVSKc3Ozsrn88nn82l2dlaZTEamaXZ9/d1jTkxMKBKJKJVKyTCMrsaUpKWlJcViMU1MTDT7TCQSKpVKXY8JAAAA93z0WWf1H3dYDwDAoBGE9ZFpms2wqtVtdnZWoVCo7ViJREKRSET5fH5PQGUYhpaWljQxMaF8Pt9Rj0tLS5qdnd0zpmmaKpfLyufzmp2d1dLSUkdjlkolTUxMKJPJSJIKhYIqlYqy2azK5bJisZhisVjXwR0AAADcsf21s/UAAAwae4T1USehVCM0OoxpmopEIrZmZ6VSKa2vryuXy7WtjcViKpVKCgaDikajCoVCMgxD5XJ5z7UymYxCoZDi8XjbMUulUnN2WzKZ3NNHY4xIJKJSqaRIJKL19XUFg8G24wIAAMB9E084Ww8AwKAxI6yPFhcXbdU1QqijJBIJGYahcDjcnF1VqVRUKBSUTqcP1OfzeRWLxZbXzGQyKpVKymaz2t7eVqFQUDab3TN7a38P7TRmrUk7oddRYVyhUJC0M5PNzrgAAAAYDudOdVb/XIf1AAAMms+yLMvtJsZBPp9XKpVSOp1uu//XmTNnjpwVtXuc/eFUQyNQKpd/txtpMBjU9vb2kfWzs7NaXV1VNBo9sq9UKrVnVtv6+rrC4fCR9Y0ZZpKUy+WUTCaPrE0kEs2wrl2tHTMzM9rc3NT09LQ2NjZ6GsuLHtWl42+3rnl4ZWcjSQAA4F33H0jT79jbMP+px6XNy5waCQBoz83n9ARhfTI7OytJqlQqPY8TCoW0urrasq4Rbu12VNCVSCR09uzZQ2eT7WaapiYmJprvZ7PZI++z//rb29stlzwWi8XmbLBWoZ1dBGG9IQgDAAB2XV+XLrVefCBJ+m/PSy+fdr4fAMDoc/M5PU9z+6BYLMowjJb7ftnR2KursZSwlVAodGDG2O4ZYruZptk2BJN2AqrdSzZbBVu7rx2NRtvu+7V7vzHTNNsu5QQAAMBwsBNuXY8TggEARgNBWB8sLi4qGAzq/PnzPY2zsrKiZDJpezP5/bO/vvjii0Pr2s0u221ra6v59pkzZ46s272EstXyyd12h2wrKyu2ewIAAMBwe4kQDAAwIjg1skflcrk5E2tiYkKhUEjRaFSxWMzWqYu7XbhwoeUm+vvtD6D2L5XslGmaMk1T0k7IdlTAtX/m2dmzZ22NHw6Hm6dTMiMMAAAAAAAMGjPCerR/OaRhGMrn80okEvL5fAc2tW8lHA7bng0mqRlaNXQSoh3m5s2bzXFaLc9sbJDf6XX319n9vgAAAAAAAPQDQVgPDMM4EArtVywWFYlElEqlHLn+bq1OhGzHNE2lUimFw2Gtrq62DOTu3Lmz53274d3TTz+95/21tbVO2wQAAAAAAOgaSyN7EAqFlMvlZJqmKpWKSqXSgXCqIZ/Pa21tTevr6327/u4gKZlMdj2OYRiKxWIKBoO6fft222Br/9fY7YywXk/YBAAAAAAA6ARBWI/2B1CmaSqfz2txcfHA0sVyuaxYLNbR5vWt5HK55tvdnlhZLBaVSCSa709MTCibzbY8ZfKosK9T+78/AAAAGD5+n/TwSvsaAABGAUFYnwWDQaXTaaXTaRWLRc3Pz+8JfEqlkpaWlloGTXYYhtHcYyubzXa0P1gjrMvlcoeGWplMRnfu3Dlyn7BuA6z9M812n1DZrWq1qpmZmZ7HWVhY0MLCQs/jAAAAjBufTzpG0AUAkLS8vKzl5eWex6lWq33opjsEYQ6Kx+OKRqOam5vbszH84uJiz0FYNpuVtLPcsNOxSqWSKpWKotHokfucFYvFvgR2rfRjRli9Xtfm5mbP49RqtZ7HcJplSXWrdY3ft/NgFQAAAACAfqvVan15Du4mgjCHBYNBra+vKxKJNMMw0zRVKpW63ty+XC4rn88rGAx2tcwyHo8rHo/v+Vg+n1cmk9kTTmUyGSWTyQMzuYLBYF9CrE5OyDyK3+/X1NRUz+MEAoGex3Ba3ZKOv9265uEVXrEFAAAAADgjEAhoenq653Gq1arq9XofOuocQdiAXLt2TZFIpPn+6upq10HY/Py8JOn27dsdLYlsJZlMKhqNKhKJ7Am58vn8gVlhk5OTfQnCJicnex5jampKGxsbPY/jNez1AQAAAADoVL+2FZqZmXFtZpnflat6UDgc3hN8dbvhfCqVUrlcVqFQUDgc7ld7knaWWd6+fXvPx+7cuXOgrtuZXPvDs37MCEN3fD7pmL/1jSWWAAAAAIBxQxA2QLFYrKf75/P55ib3+5c29ks4HN4z9mGB3ZkzZ/a8b3d22P7N8WdnZztvEAAAAAAAoEsEYQO0exljp8sCS6WSUqmUcrmckslkv1vb48KFC823Dwu5di/xlOzPbqtUKnve73ZpKAAAAAAAQDcIwgZodxDWybLAcrmsWCymbDbreAgmac+Sy8P63D8jzG4QtjtUCwaDfdvfDAAAAAAAwA6CsAFaW1trvm13maRhGJqbm1M6nT6waf0g7A+9pJ2gbHdAdtg+YofZ/fUfNi4AAAAAAICTCMIGaPfSQDvLAg3DUCQSUTKZVDabtXUNwzC0tLTUdY+NMRqOCuzOnz/ffLtcLtsad3ddJpPpsjsAAAAAAIDuEIQNULFYlCRbM7tM01QsFtP58+dth2CSlEgket57qxFYBYPBIzflT6VSzbdLpVLbMXfXhEIh9gcDAAAAAAADd9ztBryiWCzKMAwFg0Fdvny5Za1pmopEIgqFQspkMrb24DIMoznLavceX91YXFyUJF27du3ImnA4rGg02gy4isViy5MsC4VC821mgwEAAAAAADcQhHWpVCopkUjINE1Fo1Fls9kjAyjDMDQ/Py9Jun37dtuN8ufm5mQYhgzD0OzsbEd95XK5Ax9bWlrSysqKotGoLl++3PL6mUxGpmkqnU63DLYa12r0t7i4eGS9aZrK5/OSdpaEDmLDfwAAAAAAgP1YGtmlQqHQPAWxVCopEonsWS7Y0Pjc5OSkKpVK29lakUjE9p5bh9kfMpmmqUwmo3K5rKWlJU1MTBw5IyuRSGhpaUnZbNbWcsxQKNSc6dUY/zBzc3OSdpZa7p4ZBgAAAAAAMEgEYV1KJBIHPpbP5zUxMaFEIqFUKqVIJKJYLKZkMqn19XWFQqG2Y/YzBJN2wqf9120EYolEQplMRrFYTBMTE5J2NvTv5HTKeDyu1dVVBYNBZTKZ5tdgmmYzBCyXywqHw7p3717b2XAAAAAAAABO8VmWZbndxKgyDEPZbFalUklbW1syTVPBYFCTk5MKh8O6cOGCotGo6+GPaZpaXFxUqVSSYRgH+mxsyt9rn40lmLuvcebMGaVSqbbLLDs1MzOjzc1NTU9Pa2Njo69jD6tHden4261rHl6RjhFvAwAAAACGmJvP6QnCMJIIwg5HEAYAAAAAGHZuPqfnKTMAAAAAAAA8gVMjAQAAOmRZUr3NnHq/T/L5BtMPAAAA7CEIAwAA6FDdsrlcnSAMAABgqLA0EgAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAOuHHX7Q4AAACwH0EYAABAh+yEXJeKhGEAAADDhiAMAACgA/cfSG98aK/2tQ+k2gNH2wEAAA6wLOlRvfXNstzuEt047nYDAAAAo+T9svTVt/Zqv/xGul6WfvR9Z3sCAAD9Vbek42+3rnl4RTrmG0w/6B9mhAEAAHTgo886q/+4w3oAAAA4hyAMAACgA9tfO1sPAAAA5xCEAQAAdGDiCWfrAQAA4Bz2CMNIq1armpmZaVmzsLCghYWFAXUEABh3505Jt35lv/65U871AgAAMGyWl5e1vLzcsqZarQ6om4MIwjDS6vW6Njc3W9bUarUBdQMA8IJXwtJbv7S3Yf5Tj0sXw873BOxnWTsbPbfi90k+NnkGAPRZrVZr+zzdTQRhGGl+v19TU1MtawKBwIC6AQB4wckT0nvPS5eK7WuvviAFTjjeEnAAp50BANwSCAQ0PT3dsqZaraperw+oo70IwjDSpqamtLGx4XYbAACPefl0+yDsenynDgAAwEvsbE80MzPj2qwxNssHAABwwEuEYAAAAEOHIAwAAAAAAACeQBAGjJEbd93uAAAAAACA4UUQBowIOyHXpSJhGAAAsIfHDAAALyIIA0bA/QfSGx/aq33tA6n2wNF2AADAkOMFNAAADsepkcAIeL8sffWtvdovv5Gul6Uffd/ZngDAy/w+6eGV9jWAGzp9Ae3c96TACUdbAgBgaDAjDBgBH33WWf3HHdYDADrj80nH/K1vPoIwuKSbF9AAAPAKgjBgBGx/7Ww9AAAYH7yABgDA0QjCgBEw8YSz9QAAYHzwAhoAAEcjCANGwLlTndU/12E9AAAYH7yABgDA0QjCgBHwSlh68jF7tU89Ll0MO9sPAAAYXryABgDA0QjCgBFw8oT03vP2aq++wMlPAAB4GS+gAQBwNIIwYES8fLp9zfW4vToAADC+eAENAICjEYQBY+QlQjAAACBeQAMA4CgEYQAAAIAH8QIaAMCLCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA84bjbDQAAAADoL79PenilfQ0AAF5DEAYAAACMGZ9POkbQBQDAASyNBAAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAAA6dOOu2x2gGwRhAAAAAAAAu9gJuS4VCcNGEUEYAAAAAADAb91/IL3xob3a1z6Qag8cbQd9RhAGAAAAAADwW++Xpa++tVf75TfS9bKz/aC/jrvdANCLarWqmZmZljULCwtaWFgYUEcAAAAAgFH20Wed1X/8mfSj7zvTyyhaXl7W8vJyy5pqtTqgbg4iCMNIq9fr2tzcbFlTq9UG1A0AAAAAYNRtf+1s/bir1Wptn6e7iSAMI83v92tqaqplTSAQGFA3AAAAAIBRN/GEs/XjLhAIaHp6umVNtVpVvV4fUEd7EYRhpE1NTWljY8PtNgAAAAAAY+LcKenWr+zXP3fKuV5GkZ3tiWZmZlybNcZm+QAAAAAAAL/1Slh68jF7tU89Ll0MO9sP+osgDAAAAAAA4LdOnpDee95e7dUXpMAJR9tBnxGEAQAAAAAA7PLy6fY11+P26jBcCMIAAAAAAAA69BIh2EgiCAMAAAAAAIAnEIQBAAAAAADAE4673QAAAAAAAMC4siypbrWu8fskn28w/XgdQRgAAAAAAIBD6pZ0/O3WNQ+vSMcIwgaCpZEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCccd7sBAPb4fTtH6rarAQAAAAAAhyMIA0aEzycdI+gCAAAAAKBrLI0EAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ITjbjcA9KJarWpmZqZlzcLCghYWFgbUEQAAAAAA3rW8vKzl5eWWNdVqdUDdHEQQhpFWr9e1ubnZsqZWqw2oGwAAAAAAvK1Wq7V9nu4mgjCMNL/fr6mpqZY1gUBgQN0AAAAAAOBtgUBA09PTLWuq1arq9fqAOtqLIAwjbWpqShsbG263AQBA1yxLqluta/w+yecbTD8AAAC9sLM90czMjGuzxgjCAAAAXFS3pONvt655eEU6RhAGAMDA+H07//9tV4PRQxAGAAAAAACwi8/Hi1Djyu92AwAAAAAAAMAgEIQBAAAAAADAEwjCAAAAhtyNu253AAAAMB4IwgAAAFxkJ+S6VCQMAwAA6AeCMAAAAJfcfyC98aG92tc+kGoPHG0HAABg7BGEAQAAuOT9svTVt/Zqv/xGul52th8AAIBxRxAGAADgko8+66z+4w7rAQAAsBdBGAAAgEu2v3a2HgAAAHsRhAEAALhk4gln6wEAALAXQRgAAIBLzp3qrP65DusBAACwF0EYAACAS14JS08+Zq/2qceli2Fn+wEAAO64cdftDryDIAwAAMAlJ09I7z1vr/bqC1LghKPtAAAAB9gJuS4VCcMGhSAMAADARS+fbl9zPW6vDqPNsqRH9dY3y3K7SwBAJ+4/kN740F7tax9ItQeOtgNJx91uAAAAAK29RAjmCXVLOv5265qHV6RjvsH0AwDo3ftl6atv7dV++Y10vSz96PvO9uR1zAgDAAAAAABwwEefdVb/cYf16BxBGAAAAAAAgAO2v3a2Hp1jaSQAAICL/L6d5W7tagAAwOiZeMLZenSOGWEAAAAu8vmkY/7WNx9BGH6LE8UAYLScO9VZ/XMd1qNzBGEAAADAELATcl0qEoYBwCh5JSw9+Zi92qcely6Gne0HBGEAAACA6+4/kN740F7tax9ItQeOtgMA6JOTJ6T3nrdXe/UFKXDC0XYggjAAAADAde+Xpa++tVf75TfS9bKz/QAA+ufl0+1rrsft1aF3BGEAAACAyz76rLP6jzusBwAMt5cIwQaGIAwAAABw2fbXztYDAIAdBGEAAACAyyaecLYeAADsIAgDAAAAXHbuVGf1z3VYDwAAdhCEAQAAAC57JSw9+Zi92qcely6Gne0HAIBxddztBoBeVKtVzczMtKxZWFjQwsLCgDoCAADo3MkT0nvPS5eK7WuvviAFTjjeEgAAXVleXtby8nLLmmq1OqBuDiIIw0ir1+va3NxsWVOr1QbUDQAAQPdePt0+CLse36kDAGBY1Wq1ts/T3UQQhpHm9/s1NTXVsiYQCAyoGwAAAGe9RAgGABhygUBA09PTLWuq1arq9fqAOtqLIAwjbWpqShsbG263AQAAAAAAZG97opmZGddmjbFZPgAAAAAAADyBGWEAAADAEPD7pIdX2tcAAIDuEYQBAAAAQ8Dnk44RdAEA4CiWRgIAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAXGIahWCxmq7ZcLiuVSml2dlY+n08+n0+zs7PKZDIyTbOr6zsxpiQtLS0pFotpYmKiOWYikVCpVOp6TAAAAAAAgH4hCOsj0zSbwVKr2+zsrEKhUNuxEomEIpGI8vm8DMNofs4wDC0tLWliYkL5fL6j/vo9piSVSiVNTEwok8lIkgqFgiqVirLZrMrlsmKxmGKxWE8hGwAAAAAAQK+Ou93AOOkkQGqERocxTVORSGRPUHWUVCql9fV15XK5lnVOjCnthGCN2W3JZHLPfUKhkOLxuCKRiEqlkiKRiNbX1xUMBtuOCwAAAAAA0G/MCOujxcVFW3XRaLTljLBEIiHDMBQOh5uzqyqVigqFgtLp9IH6fD6vYrHY8ppOjNmYYSbthF5HBWeFQkHSzqyzRj0AAAAAAMCg+SzLstxuYhzk83mlUiml0+m2+3+dOXPmyFlRu8fJZrOH1jQCpXK53PxYMBjU9vb2wMaUpFgs1tz/K5fLKZlMHlmbSCSawVq7WjtmZma0ubmp6elpbWxs9DQWAAAAAABOeVSXjr/duubhFemYh6YqufmcniCsT2ZnZyVJlUql53FCoZBWV1db1hmG0bxmw+rqqqLR6EDG3F+7vb3dcsljsVhszgZrF7DZQRAGAAAAABgFBGEHufmc3kPfZucUi0UZhtFy3y87yuWyDMNoLiVsJRQKHZjdtXs2l5NjStpTF41G2+77FY/Hm2+bptl22SUAAAAAAEC/EYT1weLiooLBoM6fP9/TOCsrK0omk7Y3k98/U+uLL74YyJjS3oMBwuGwrbF374u2srJi6z4AAAAAAAD9wqmRPSqXy81ZUxMTEwqFQopGo4rFYntmQdlx4cKFlpvo77c/gNq/rNGpMffPEjt79qztsRunVjIjDAAAAAAADBozwnq0fzmkYRjK5/NKJBLy+XwHNqBvJRwO2565Je0sMdztsMDLiTEbG+S3qjnM/jq73xcAAAAAAIB+IAjrgWEYB0Kh/YrFoiKRiFKplCPX3+2wTe2dGPPOnTt73rcbtD399NN73l9bW+usOQAAAAAAgB6wNLIHoVBIuVxOpmmqUqmoVCodCJIa8vm81tbWtL6+3rfr7w6SksnkwMbc/zV2OyOs1xM2AQAAAAAAOkEQ1qP9YZFpmsrn81pcXDywzLBcLisWi2l1dbUv187lcs23ez2xspMxjwr7OrX/+wMAAAAAAOAkgrA+CwaDSqfTSqfTKhaLmp+f3xP4lEolLS0tKZ1O93QdwzCae2xls9mONsTvdcxuA6z9Syi3tra6Gme3arWqmZmZnsdZWFjQwsJCz+MAAAAAADCulpeXtby83PM41Wq1D910hyDMQfF4XNFoVHNzc3s2hl9cXOw5CMtms5J2lhv2OpaTY7bSjxlh9Xpdm5ubPY9Tq9V6HgMAAAAAgHFWq9X68hzcTQRhDgsGg1pfX1ckEmmGYaZpqlQqdb25fblcVj6fVzAY7Nsyy07GDAaDfQmxOjnN8ih+v19TU1M9jxMIBHoeAwAAAACAcRYIBDQ9Pd3zONVqVfV6vQ8ddY4gbECuXbumSCTSfH91dbXrIGx+fl6SdPv27b4siex0zMnJyb4EYZOTkz2PMTU1pY2NjZ7HAQAAAAAArfVrW6GZmRnXZpYRhA1IOBxWNBpVqVSS1P2G86lUSuVyWYVCQeFwuC+9dTpmtzO59odn/ZgRBgAAAADAMPP7pIdX2tdgMPxuN+AlsVisp/vn83nl83nlcjnF4/G+9NTNmGfOnNnzvt3ZYfs3x5+dnbV1PwAAAAAARpXPJx3zt775CMIGhiBsgHYvOex0WWCpVFIqlVIul1MymexLP92OuXuJp2R/dlulUtnzfrdLQwEAAAAAALpBEDZAu4OwTpYFlstlxWIxZbPZvoVgvYy5f0aY3SBs98yxYDDYt/3NAAAAAAAA7CAIG6C1tbXm23aXSRqGobm5OaXTaaXT6b700euY4XB4T5B3584dW/fb/fXvD9MAAAAAAACcRhA2QLuXBtpZFmgYhiKRiJLJpLLZrK1rGIahpaUlx8c8f/588+1yuWxrnN11mUzG1n0AAAAAAAD6hSBsgIrFoiTZmoVlmqZisZjOnz9vO7CSpEQicWTI1s8xU6lU8+3GSZit7K4JhULsDwYAAAAAAAbuuNsNeEWxWJRhGAoGg7p8+XLLWtM0FYlEFAqFlMlkbO3BZRhGc5ZVOBx2fMxwOKxoNNoMuIrFYstTJwuFQvNtZoMBAAAAAAA3+CzLstxuYhSVSiUlEgmZpqloNKpsNntoACX9bjmiaZpaX18/sq4hEonYXm6431EnQDoxpmEYmp2dlbQTjK2vrx96f9M0NTExIWlnSejq6mpXfew2MzOjzc1NTU9Pa2Njo+fxAAAAAADAYLj5nJ6lkV0qFArNUxBLpZIikcie5YINjc9NTk6qUqk4GoJJ6nsIdtSY0s4Sx8ZMr3K5fOTeZHNzc5J2TorcPTPMCyxLelRvfSOKBgAAAABgMAjCupRIJA58LJ/Pa2JiQolEQqlUSpFIRLFYTMlkUuvr6wqFQm3H7Hdg5cSYu8Xjca2urioYDCqTyTSvZ5pmMwQsl8sKh8O6d+/entMmvaBuScffbn2rE4QBAAAAADAQLI3sgWEYymazKpVK2trakmmaCgaDmpycVDgc1oULFxSNRj0T/iwtLWllZUWGYTS/F2fOnFEqlWq5f1g3RmVp5KP6TtjVysMr0jEiaQAAAACAR7j5nJ4gDCOJIAwAAAAAgNHk5nN6To0EAAAYE5bVfsm93yf5fIPpBwAAYNgQhAEAAIyJxt6UrTy8Ih0jCAMAAB7FgiwAAAAAAAB4AkEYAAAAAAAAPIEgDAAAwENu3HW7AwAAAPewRxgAAMCYsBNyXSrunFb88mnn+/EKDikAAGB0EIQBAACMgfsPpDc+tFf72gfSue9JgROOtuQZHFIAAMDoYGkkAADAGHi/LH31rb3aL7+Rrped7QcAAGAYEYQBAACMgY8+66z+4w7rAQAAxgFBGAAAwBjY/trZevSGQwoAABgOBGEAAABjYOIJZ+txNLuHFBCGAQDgPoIwAACAMXDuVGf1z3VYj8N1ekhB7YGj7QAAgDYIwgAAAMbAK2Hpycfs1T71uHQx7Gw/XsEhBQAAjBaCMAAAgDFw8oT03vP2aq++IAVOONqOZ3BIAQAAo4UgDAAAYEy8fLp9zfW4vTrYwyEFAACMluNuNwD0olqtamZmpmXNwsKCFhYWBtQRAADD7SVCsL7ikAIAAPZaXl7W8vJyy5pqtTqgbg4iCMNIq9fr2tzcbFlTq9UG1A0AAO7y+6SHV9rXoH/OnZJu/cp+PYcUAADGXa1Wa/s83U0EYRhpfr9fU1NTLWsCgcCAugEAwF0+n3SMoGugXglLb/3S3ob5HFIAAPCCQCCg6enpljXValX1en1AHe3lsyzLcuXKQA9mZma0ubmp6elpbWxsuN3OkR7VpeNvt655eEU6xm59AACMrOvr0qVi+7r/9jz7swEAILn7nJ6n3wAAAEAPOKQAAIDRQRAGAAAAOIxDCgAAGA4EYQAAAAAAAPAENssHAAAAesBpnQAAjA6CMAAAAKAHnNYJAMDoYGkkAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAxw2Y27bncAAAAAAIA3EIQBDrITcl0qEoYBAAAAADAIBGGAQ+4/kN740F7tax9ItQeOtgMAAAAAgOcRhAEOeb8sffWtvdovv5Gul53tBwAAAAAAryMIAxzy0Wed1X/cYT0AAAAAAOjMcbcbAMbV9tfO1gMA4DWWJdWt1jV+n+TzDaYfAAAwegjCAIdMPOFsPQAAo6Cf4VXdko6/3brm4RXpGEEYAAA4AkEY4JBzp6Rbv7Jf/9wp53oBAMAthFcAAGCYsEcY4JBXwtKTj9mrfepx6WLY2X4AAPCCG3fd7gAAAAwzgjDAISdPSO89b6/26gtS4ISj7QAAMPLshFyXioRhAADgaARhgINePt2+5nrcXh0AAOPKTnB1/4H0xof2xnvtA6n2oKeWAADAmCIIA1z2EiEYAGCM9WsW1/tl6atv7V3zy2+k62V7tQAAwFsIwgAAAOCIfs7i+uizzq79cYf1AADAGwjCAAAA4Ih+zuLa/rqza3daDwAAvOG42w0AvahWq5qZmWlZs7CwoIWFhQF1BAAAGrqZxfWj7x/+uYknOhur03oAANAfy8vLWl5ebllTrVYH1M1BBGEYafV6XZubmy1rarXagLoBAAC79XMW17lT0q1f2R/ruVOdXRsAAPRHrVZr+zzdTQRhGGl+v19TU1MtawKBwIC6AQAAu/VzFtcrYemtX9pbavnU49LFcGfXBgAA/REIBDQ9Pd2yplqtql6vD6ijvQjCMNKmpqa0sbHhdhsAAOAQ/ZzFdfKE9N7zOydMtnP1BSlwwv51AQBA/9jZnmhmZsa1WWNslg8AAABHvBKWnnzMXq2dWVwvn24/zvW4vToAAOBNBGEAAABwRGMWlx39msX1EiEYAABogSAMAAAAB1iW9Kje+mZZ7cdhFhcAABgm7BEGAACAA+qWdPzt1jUPr0jHfL1fy+4sLr9v55rtagAAAI5CEAYAAADH9DO88vn6E7xJO7PZ6m1mtPl9O9cEAADjgyAMAAAAXblxV7oYaV3Tz/CqnwY54w0AAAwP9ggDAADAATfutq+5VLRXBwAAMCwIwgAAALDH/QfSGx/aq33tA6n2wNF2XEPIBwDA+CEIAwAAwB7vl6WvvrVX++U30vWys/04gRlvAAB4E0EYAAAA9vjos87qP+6w3m3MeAMAwLsIwgAAALDH9tfO1rvNCzPeAADA4QjCAAAAsMfEE87Wu23cZ7wBAICjEYQBAABgj3OnOqt/rsN6t437jDcAAHA0gjAAAADs8UpYevIxe7VPPS5dDDvbT7+N+4w3AABwNIIwAAAA7HHyhPTe8/Zqr74gBU442k7fjfuMNwAAcDSCMAAAABzw8un2Ndfj9uqGzbjPeAMAAEcjCAMAAEBXXhrBEEwa/xlvAADgaMfdbgAAAADDx++THl5pXzOqXj4tXSq2rhnVGW8AAOBoBGEAAAA4wOeTjo1w0NUPozrjDQAAHI2lkQAAAAAAAPAEZoQBAADAc8Z96ScAADgcQRgAAAA8h6WfAAB4E0sjAQAAAAAA4AnMCAMcxLILAAAAAACGB0EY4CCWXQAAAAAAMDxYGgkAAAAAAABPIAgDAAAAAACAJ7A0EiOtWq1qZmamZc3CwoIWFhYG1BEAAAAAAN61vLys5eXlljXVanVA3RxEEIaRVq/Xtbm52bKmVqsNqBsAAAAAAJxjWVLdal3j9+3sV+2WWq3W9nm6mwjCMNL8fr+mpqZa1gQCgQF1AwAAAACAc+qWdPzt1jUPr7h7aFsgEND09HTLmmq1qnq9PqCO9vJZltUmSwSGz8zMjDY3NzU9Pa2NjQ232wEAAAAAwHGP6jaDsCHfEd7N5/RD/q0BAAAAAAAA+oMgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxx3uwGgF9VqVTMzMy1rFhYWtLCwMKCOAAAAAADwruXlZS0vL7esqVarA+rmIIIwjLR6va7Nzc2WNbVabUDdAAAAAADgbbVare3zdDcRhGGk+f3+/397d+zbOJr/d/yr2bnDBgkcygscMPA0RzVpQ3n/AlNdgqSQPECCJJXFIOUWEhZXHwypmDKIuN0vSOEhiwRJJ85fMBbTphG3mcEAB6zFDBLkcHdrppiQkShKIiVSpMT3CxBg2RSfh9Iji/74+zyUV69ebd3m4uLiSL0BAAAAAKDeLi4u5Orqaus2nz9/lufn5yP1aFUjCIKglJaBA7x+/Vo+ffokV1dX8vHjx7K7AwAAAABA4X59Fnn5h+3b/O2PIt9UfEX4Mv+mr/hTAwAAAAAAAOSDIAwAAAAAAAC1QBAGAAAAAABwJv7Tfy+7B9VGEAYAAAAAAHAC0oRc/8YmDNuGIAwAAAAAAKDi/uefRf7df0m37b/9zyJf/lxod04WQRgAAAAAAEDF/UdX5H//Nd22/+svIn/nFtufU0UQBgAAAAAAUHH/9X9k2/6/Zdy+LgjCAAAAAAAAKm7xf4rdvi4IwgAAAAAAACqu+feK3b4uCMIAAAAAAAAq7p/+o2zb/5OM29cFQRgAAAAAAEDF/StN5O//Jt22/+C3Iv9aK7Y/p4ogDAAAAAAAoOL+4bci//6fpdv2P/xzkYtvC+3OySIIAwAAAAAAOAH/8h/v3ubvuum2qyuCMAAAAAAAgDPxLwjBtiIIK4HnedLpdFJt67quGIYhrVZLGo2GNBoNabVaMhwOxff9XPtj2/ZB+xmPx9LpdKTZbEb97PV64jhOLv0EAAAAAAA4BEFYjnzfj8KqbbdWqyWqqu7cV6/Xk3a7LaZpiud50c88z5PxeCzNZlNM0zyov71eT1qtljiOI09PT3vtx3EcaTabMhwORUTEsiyZz+cyGo3EdV3pdDrS6XRyC+4AAAAAAAD28bLsDpyTLKFUGBol8X1f2u32Svi1iWEYMpvNZDKZpG7b9325v7+X8Xic+jGbOI4TVbf1+/2VfqiqKt1uV9rttjiOI+12W2azmSiKcnC7AAAAAAAAWVERlqP7+/tU2+m6vrUirNfried5omlaVF01n8/FsiwZDAZr25ummXpa43g8lna7La7rptp+m7CiTORr6LUpjLMsS0S+VrKF2wMAAAAAABwbFWE5MU1TfN+XwWCwc/2v6+vrrftxHEcGg4GMRqOVn4UVVoZhSK/XWwmz7u7upNvtbm3XdV3RdT0K00zTFMMwdh3aRr1eL5ruuK3CLey3bdviOI6Ypin9fn/vdgEAAAAAAPbRCIIgKLsT56DVaomIyHw+P3g/qqrKdDrdup3neVGboel0Krqup27LdV1pt9vR/clkkjqgire/WCy2Tnm0bTuqBlMURRaLRep+Jnn9+rV8+vRJrq6u5OPHjwftCwAAAACAU/Drs8jLP2zf5m9/FPmm4vP/yvybvuJPzWmwbVs8z9taFZWG67rieV40lXAbVVXXKsayTnc8ZK2u5bZ1Xd+5r+VqNd/3D75CJQAAAAAAQFYEYTm4v78XRVHk9vb2oP08PDxIv99PHVDFq79++eWXg9rPYvnCAJqmpXrM8rpoDw8PufcJAAAAAABgG9YIO5DrulElVrPZFFVVRdd16XQ6O9fsinvz5s3WRfTj4gFUfKpkUeKVZ99//32qx2maFl0Jk4owAAAAAABwbFSEHSg+HdLzPDFNU3q9njQajbVF7bfRNC3TdMVwofpQlhDtEI7j7NVufLs8rlwJAAAAAACQFkHYATzPWwuF4mzblna7fdDVGbe1vyzLQvmH+PDhw8r9tOHdd999t3L/8fExry4BAAAAAADsxNTIA6iqKpPJRHzfl/l8Lo7jrIVTIdM05fHxUWazWW7tLwdJaa/2mIf4Me5bEXboFTYBAAAAAACyIAg7UDyA8n1fTNOU+/v7tamLrutKp9OR6XSaS9uTyST6+tArVmaxKezLKv78AAAAAAAAFImpkTlTFEUGg4EsFguxLGtt2qDjODIejw9ux/O8aI2t0Wh0tPXBRPYPsOLPxdPT0+GdAQAAAAAASImKsAJ1u13RdV1ubm5WFoa/v7+XwWBw0L5Ho5GIfJ1ueOi+ypJHRdjnz5/l9evXB+/nhx9+kB9++OHg/QAAAAAAcK7evn0rb9++PXg/nz9/zqE3+yEIK5iiKDKbzaTdbkdhmO/74jjO3ovbu64rpmmKoii5TbPMQlGUXEKsLFfI3OT5+Vk+ffp08H6+fPly8D4AAAAAADhnX758yeVv8DIRhB3JTz/9JO12O7o/nU73DsLu7u5EROT9+/dHnRIZury8zCUIu7y8PHgfL168kFevXh28n4uLi4P3AQAAAADAObu4uJCrq6uD9/P582d5fn7OoUfZEYQdiaZpouu6OI4jIvsvOG8YhriuK5ZliaZpeXYxtX0rueLhWR4VYa9evZKPHz8evB8AAAAAALBdXssKvX79urTKMhbLP6JOp3PQ403TFNM0ZTKZSLfbzalX2V1fX6/cT1sdFl8cv9Vq5dUlAAAAAACAnQjCjmh5GmPWaYGO44hhGDKZTKTf7+fdtUyWp3iKpK9um8/nK/f3nRoKAAAAAACwD4KwI1oOwrJMC3RdVzqdjoxGo9JDMJH1irC0Qdhy5ZiiKKWsbwYAAAAAAOqLIOyIHh8fo6/TTpP0PE9ubm5kMBjIYDAoqmuZaJq2EuR9+PAh1eOWjz8epgEAAAAAABSNIOyIlqcGppkW6HmetNtt6ff7MhqNUrXheZ6Mx+O9+5jW7e1t9LXruqkes7zdcDjMvU8AAAAAAADbEIQdkW3bIiKpKrt835dOpyO3t7epQzARkV6vd5S1twzDiL4Or4S5zfI2qqqyPhgAAAAAADi6l2V3oC5s2xbP80RRFPnxxx+3buv7vrTbbVFVVYbDYao1uDzPi6qsNE1L1ae0V3tMomma6LoeBVy2bW+9kqVlWdHXVIMBAAAAAIAyEITtyXEc6fV64vu+6Louo9FoYwDleZ7c3d2JiMj79+93LpR/c3MjnueJ53nSarUy9WsymaTeNh6wZQ3GJpNJ1L/7+/uNQZjv+2Kapoh8nRJahQX/AQAAAABA/TA1ck+WZUXBkeM40m63V6YLhsKfXV5eynw+31mt1W63U6+5lSRtyOT7/lpl1sPDQ6a2VFWNKr1c1924NtnNzY2IfL1S5HJlGAAAAAAAwDERhO2p1+utfc80TWk2m9Lr9cQwDGm329LpdKTf78tsNhNVVXfus8gQzPd96fV60ul0pNlsrlWEua4rjUZDOp1O6r50u12ZTqeiKIoMh8Pocb7vRyGg67qiaZr8/PPPO6vhAAAAAAAAitIIgiAouxOnyvM8GY1G4jiOPD09ie/7oiiKXF5eiqZp8ubNG9F1vTbhz3g8loeHB/E8L3ourq+vxTCMreuH7eP169fy6dMnubq6ko8fP+a6bwAAAAAAqujXZ5GXf9i+zd/+KPJNxcueyvybniAMJ4kgDAAAAABQNwRhh6v4UwMAAAAAAADkgyAMAAAAAAAAtfCy7A4AAAAAAABgtxeNr1Mfd22DzQjCAAAAAAAATkCjIfINQddBmBoJAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAAAAAAABQCwRhAAAAAAAAqAWCMAAAAAAAANQCQRgAAAAAAABqgSAMAAAAAAAAtUAQBgAAAAAAgFogCAMAAAAAAEAtvCy7AwBQlLdv38qXL1/k4uJCfvjhh7K7A+SOMY5zxvjGOWN845wxvlF1jSAIgrI7AWT1+vVr+fTpk7x48UJevXq1ddsffviBX8A1FY6Tq6sr+fjxY9ndAXLHGMc5Y3zjnDG+cc4Y33j79q28fft26zafP3+W5+fnUsYJFWE4ac/Pz/Lp06et23z58uVIvQEAAAAAoN6+fPmy8+/0MhGE4aSlqQi7uLg4Um8AAAAAAKi3i4sLubq62rpNWBFWBoIwnLRXr15RbgsAAAAAQEWkWZ4onEJbBq4aCQAAAAAAgFogCAMAAAAAAEAtEIQBAAAAAACgFgjCAAAAAAAAUAsslg+k8PbtW/ny5YtcXFzsXPTvWOjTaaric0Sf0qlin6qmis8RfUqnin2qoqo9T1Xrjwh9OmVVe56q1h8R+nTKqvg8Va1PVetPoQLgBF1dXQUiElxdXZ1le2nQp92q1p8goE9p0ad0qtanqvUnCOhTWvQpnar1qWr9CQL6lBZ92q1q/QkC+pQWfUqnan2q09/YTI0EAAAAAABALRCEAQAAAAAAoBYIwgAAAAAAAFALBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC10AiCICi7E0BWv/3tb+Wvf/2rvHjxQl69elV4e58/f5bn5+ejtZcGfTq9/ojQp7ToUzpV61PV+iNCn9KiT+lUrU9V648IfUqLPp1ef0ToU1r0KZ2q9enY/Qnb+81vfiN/+ctfCm9vGUEYTtI333wjz8/PZXcDAAAAAADs6cWLF/Lrr78etc2XR20NyMm3334rf/7zn+Wbb76R3/3ud2V3BwAAAAAApPSnP/1Jfv31V/n222+P3jYVYQAAAAAAAKgFFssHAAAAAABALRCEAQAAAAAAoBYIwgAAAAAAAFALBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC1QBAGAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAnLTxeCydTkeazaY0Gg1ptVrS6/XEcZxC23VdVwzDkFarJY1GI2p7OByK7/uFto36KGt8x3meJ51OR2zbPmq7OE1ljtuqvGdwvqoyxvi9jCJwXo3aCADgBE2n00BRlEBEAl3Xg+l0Gszn88CyrEBV1ej7i8Ui13YXi0XQ7XYDEdl6m0wmubaLeilrfMfFxzvjGtuUOW6r8p7B+arKGOP3MorAeTXqhiAMwMmZTqfRB2O/30/cRtO0QEQCVVVz+9BeLBbRyUCa26a+AduUNb6XLRaLYDAYcCKK1Moct1V4z+C8VWGM8XsZReG8GnVEEAbgpCwWi+g/VqqqbtxuPp9HH5y6rufStq7rgYgEmqYFlmUF8/k8+m9Z0smpiASWZeXSNuqhzPEdGo1Ggaqq0XjnDy7sUua4rcJ7BuetCmOM38soCufVqCuCMAAnZfkkcNfJX55TByaTSSAiwWAw2LjNfD6P/mMW3hRFOahd1EtZ4zs0m82C2WwW3Q/HPX9wYZsyx23Z7xmcv7LHGL+XUSTOq1FXjSAIAgGAE+B5nrRarej+YrEQRVE2bm/btvR6PRERURRFFovF3m23Wi1RVVWm02mmPoqITKdT0XV977ZRD2WO701c15V2ux3dn0wm0u/3c28Hp6vMcVvF9wzOSxXHGL+XkRfOq1FnXDUSwMkYjUbR17qub/2wFhHpdrvR177v731lJdd1xfM8sSxr57aqqq70M3w8sEtZ43ubXX0Ayhy3VXzP4LxUcYzxexl54bwadUYQBuBkmKYZfa1pWqrHqKoaff3w8LBXuw8PD9Lv91OffMb/S/XLL7/s1S7qpazxDRyizHHLewZFY4zhnHFejTojCANwEuL//fn+++9TPW75g33f/1y9efNm7b9RadsUkbWSbiCuzPEN7KvMcct7BkVjjOGccV6NuiMIA3ASHMdZub/8H6lt4tvtU06taVqmqQi+72/tAxBX5vgG9lXmuOU9g6IxxnDOOK9G3RGEATgJHz58WLmf9gP0u+++W7n/+PiYV5c28jxv5T4LemKXUxrfQKjMcct7BkVjjOGcndL45rwaRSAIA3AS4h+C+/7naj6f59anTZZPCriSE9I4pfENhMoct7xnUDTGGM7ZKY1vzqtRBIIwACch/oG9r3h5dREmk0n09XA4LLw9nL5TGt9AqMxxy3sGRWOM4Zyd0vjmvBpFIAgDcBL2/aCNl3o/PT0d3pktPM+L1ksYjUasY4BUTmV8A8vKHLe8Z1A0xhjO2amMb86rURSCMAC1UvR/rsKr4KiqKoPBoNC2gDgqD3CKyhy3vGdQNMYYzhnn1ThVBGEATkKWq8scYz9JXNcV0zRFURSZTqeFtYPzcwrjG4grc9zynkHRGGM4Z6cwvjmvRpEIwgAczDRNaTQaud7a7fZKG5eXl7n0Na/9JLm7uxMRkffv31O6fUYY30CyMsct7xkUjTGGc3YK45vzahSJIAzASdj3P07xku2i/nNlGIa4riuWZYmmaYW0gfNV9fENJClz3PKeQdEYYzhnVR/fnFejaC/L7gCA06fruliWles+4x+s19fX0WKZIl8/iNN8+MYX8Wy1Wnl0b4VpmmKapkwmE+l2u7nvH+Wq+/gGNilz3PKeQdEYYzhnVR7fnFfjGAjCABxMVdXCS5bjU8k8z0v1H6L5fL5yX9f1XPvlOI4YhiGTyUT6/X6u+0Y11Hl8A9uUOW55z6BojDGcs6qOb86rcSxMjQRwEq6vr1fue56X6nHLJdyKouQaaLiuK51OR0ajER/WOEgVxzewS5njlvcMisYYwzmr4vjmvBrHRBAG4CRomrZSsv3hw4dUj3t8fIy+jn/oH8LzPLm5uZHBYMDlnHGwqo1vII0yxy3vGRSNMYZzVrXxzXk1jo0gDMDJuL29jb5eXtdgm+XthsNhLv3wPE/a7bb0+30ZjUapHzMej3NpH+epKuMbyKLMcct7BkVjjOGcVWV8c16NMhCEATgZhmFEXzuOs3P75W1UVc1lHQPf96XT6cjt7W3qD2sRkV6vxzoh2KoK4xvIqsxxy3sGRWOM4ZxVYXxzXo2yEIQBOBmapq186Nm2vXX75Sv97fqvlWmaMhwOt66R4Pu+tNttUVU12nbXzXGcaEFSLv+Mbcoe30nil0kH4soct0W2DYjwexnnrezxzXk1ShUAwAmZz+eBiAQiEmiatnG7xWIRbafr+tZ96roebSsiwWKxSNxO07SV7bLcJpPJIYeNmihzfCexLGvlsaPRKPVjUR9ljtsi2gaW8XsZ54zzatQVQRiAk7N8ErjpBDD8cFUUZecJZpoP10M+rPmfA7IoY3wnWSwWgaqqK4/ddpKMeitz3ObdNhDH72WcM86rUUeMIgAnaTqdBoqiBCISdLvdYDabBYvFIphOp9GHq6Zpqf7gCfcT3qbT6crPu93uQR/W/X6/oGcB5+qY43vZYrEIut3u2n9z4zdd16N+AaGyxm3ebQNJ+L2Mc8Z5NeqGIAzASRuNRoGmadGHrqIoga7rgWVZqfcxnU4DVVUDRVGCwWBQYG+BbBjfOEVljts82ga24fcyzhnjG3XRCIIgEAAAAAAAAODMcdVIAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC1QBAGAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAAAAAAABQCwRhAAAAAAAAqAWCMAAAAAAAANQCQRgAAAAAAABqgSAMAAAAAAAAtUAQBgAAAAAAgFp4WXYHAAAAAAAoiuu68vDwIL7vy2QyKbs7uTv34wPyRkUYAAAAAOCsOI4jhmFIq9WSdrst4/FYPM8ru1srms2mNBoNcRwn82Orfny+70uv1xPXdcvuCv6fcMy0221ptVrSaDSk0WhIq9WSTqcjw+Fwr9drPB7LcDgsoMfFIQgDAAAAAJyN8I960zQrFQ4tcxxHfN8XERFd1zM9turH5ziO/P73vxdVVUXTtOh7YfCy69ZsNsU0zZ3tuK4bhYmbbu12W0RETNNM3f4+t2VZ22o2m/m/CEvG47E0m03pdDpimqa4riuKoki325VutyuKoojjODIej6Xdbkuz2ZTxeJx6//1+X1zXlVarVcnxmKQRBEFQdicAAAAAAMiT4zjS6XSi+7quy3Q6LbFH/59hGGKapnS7XbEsa699VPH4wuqgyWQi/X5/7ee2bcvd3V0UAi7r9/t7Te30fT8KBkO6rotlWaIoysq2ruvKcDhMrMJTVVVUVV17TNiGiMjT05N4nrfW/6RYZVdbk8kkcwiaRfy5VhRFRqNR4uvi+76Ypin39/fR9ln7aBiGvHv3Tt6/fx8FoFVFEAYAAAAAOEvL1TpVCIpCzWZTfN8Xy7Kk2+3uvZ8qHd+uECwUD/BCs9ls7wDF9/2oskpRFPn5558TA61Q+PwvyxKNeJ63MvVzsVhsbC+prUOONY34dMW0YyOc0roc3u16PZf1ej2xbbvw4zsUUyMBAAAAADgS13X3nhZZVaZpynA4lMFgsDM00XU9Mfx7fHzcu/2np6fo69FotDUEExG5vr5eub9r+zhVVeX9+/epHhdvS0QKDYmGw+FeIZjI1+dhOp2KqqrR9wzDSD1V0rIs0TRNbm5uEqv+qoIgDAAAAACAIwmn/+m6njmAqSLbtsUwDNE0TUajUarHJG13yBUvw8osRVFSVS/l8byHUw2ztlXkax6u9bXc1j5Tb6fT6Uo/N03xTGJZlvi+Lzc3N5nbPRaCMAAAAAAAjuTdu3ci8nUa2anzfV/u7u5EJDnc2kRV1bWqMNd1977KZBiipZ3Cd3l5uVc7cWkq+vJqa5dwWuOyNNVxSVRVXXsue71eqiqv8LHhGmlVRBAGAAAAAMARLE+LvL29LbczOQjDEU3TMk/zTArO7u/vM/fB9/2oWskwjMyPP4SqqomL8pdhOByuBVVpg8EkP/7448p93/dTvz5hADYej1NXkh0TQRgAAAAAAEfw8PAgIl/XiKpCeHII27ajkCMemqShqupaeGbbdua1pcKrRWqatrK21bEccrGDvIRXfVx2SAgm8nVaZfzY0q4VtvzaHjucTIMgDAAAAABwkmzblk6nI81mUxqNhrTbbTEMQzzPK7triWzbFhGRN2/epN6+qse3XB20bxiUNHUua1VYOC1ynzBuX77vV2ox+HgIJpLP1Nukq3smtbXtsZ7npX7MsRCEAQAAAABOiud50mq1pNfrydPTk4xGI5lOp/LmzRtxHEdardbO6hXHcaKAKenWarU2rnG0HE4tb7+rz2GAtSs4yuP4QsPhcOMx7rq12+3EfTqOE63ndcgVEHVdX6viyhKaOI6T+jnNU/zKjGULKw2XJV2tMquk6a5pF99ffmyW9eOO4WXZHQAAAAAAIC3XdaOAZjQayWAwiH6m67oMBgMxDGNnUKHruiwWCzEMYy18sSxra7AynU5FRKTZbIrv+zIYDHb+sR9Wg6mqunUKX17HFworl1RVFcMwNrb94cOHtXBt0zEtX+Ex69pgccPhcGX6XDjNL83UvqyL5Ofl8fExl6ApL/GLDCiKksvUW1VVRVGUleq3tGt+LQeknueJbduVmEYqQkUYAAAAAOBEeJ4XhUTdbnclJFo2mUxSVypNJpO9QwPf90VRlFQVL2HVzrYwoIjjE/kajMzncxkMBtLtdhNv8YCj3+9vDLnCUE9E5Pvvv0/djyT9fn/t+U/zfPq+H/XjmOtQHXJ1yyIk9SXPkC7pqpdpp+Yuj58wPK4CgjAAAAAAwElYXvdoV1iSZTpWfH2pNH+0hyFMmmok3/ejwGLb+mDHOr648Xi8EqgoirJS9bUsHrzksUB9/Dn0PG9n5dHyIvmHTM9MK1zr6ubmpvC2skgKpfK8EEPSvtIGYcuvy7t37/Lq0sEIwgAAAAAAlWfb9sq6VLsCmCxVMfHKK9M0dy6GHgZFaaqRwhBAUZSNoU1Rx/f09LQ1KPI8b22a5bZ1oOIBVR5BWFJQtyvoy/L87+L7/s710lqtlhiGUalF8kW+vr5xSVVc+0p6fdM+B999993KY6pwkQcRgjAAAAAAwAlYvppgmvAja1VMUhi2ie/74jjOzvW+QmGwdHt7u3Gboo5vNBptXccrfnXBbVMiRb6uJbZPP7ZRFGWtKmx5Ifw413Wjn+W1Plj4Wm665VlllaekUKroviaFb0ni742qTCklCAMAAAAAVJrneSt/ROdRhRQXr0paDqbiwgqvtAvWh1VU8dApVOTxbduXaZprUyJ3VWIVVRGV9Fxu6kv42uS1+Hq4htq222KxkNlsdpRpmFkkhV55vkZJ+0pbcRbvW9oArWgEYQAAAACASitiOl5cvCppeTH2uDQVXqFwH4qibKy0OsbxxXmet1Z5ZlnWzmqiosIMVVXXnp+kKarLr8uutc/ypmna1mmjZUgKpfJ8jZL2dcjFJaqAIAwAAAAAUGmz2WzlflFBUbwqKalKKZwW2e12UwUC4dUit003PNbxLYuHYN1ud2sfQ8thRt5T8JKe7/gU1bAaT1XVUqqzkgK7Mh2yhlcaSdNT047PeEj3yy+/5NKnQxGEAQAAAAAq7ViLbMdDjqSrF4bBTNpF2sPqpW1Xizz2IuKmaa4cl6Io8tNPP2XeT94VPrqur4Us8Smq4XTJPBbJ35emaZVZMywpDMxzPCW9xscIaotEEAYAAAAAqLT49Kwig6P4ulTx+w8PD1unOS5bDpu2rWd1zOPzfX+t8uqnn35KHewUHQDF++b7fhQ+FrFI/j5Go9HOtdSOKR6GeZ6XS0iZtLh9lmq4+LhevopkmQjCAAAAAAAnpci1hjRNWwkWlq9eGC5qnzaECdeTyrqoe5HH1+v1Vvbf7XYz9a/oaqB+v78WtoWh0/Ii+VWpyKqCpHAqXsm4j6R9dDqdvfdXldeMIAwAAAAAUGnxtYaKnkoYX4Q9rFIKpzmmnZYXrme1bVqkyPGOz7btg6dExvtaRGgXDxo9zxPbtjM//8dk2/bRFoMfDocr1VpJFw2YTqcHt5O0jyyVePHnoypTKgnCAAAAAACVFv8DOo8/8rfpdrsrbYYhx2QyEVVVU/1B7zhOFATsmk52jOPzfV/u7u5WvpdlSmQoXhFUxFUkk4KdXq8nItVbrF7k62vd6/UKu6LmMtd1ZTwer4wZRVHWqvriFxnYR7wibDAYZBov8UD3+vr64D7lgSAMAAAAAFBp8fAlrLQqUnytql6vJ57nJV7ZMEk4LVLX9Z3hwTGO7+7uLvOUyPF4vBaoxEOoIqrXFEXZWHlUxWowwzBEUZSjVDzd3d2Jqqobp48uOyQMG4/HK/cVRUkMKLdZvkpkUp/LQhAGAAAAAKi0ePji+340TS6trNU6/X5/JdgIq2Nub29TPT4Ms8JKpm2KPj7HcVb2l3ZK5HQ6XZsKGQ98iqrO2xQ45rFIfp6VW8PhUDzP21illndbrusmBpiqqspkMlnbfp/pmr7vr12t07KszEHWckhapSo+gjAAAAAAQKUlTf2KVzjFxa94t08gEK+ySbtIu+u6UXtpgrOijy8exqWZEun7vjiOk1jltNzXPBZlT5I0BTJNdV0aea3lNR6Po8qpTevA5dXWcDiM2tq0YH2/318JCn3fTxXExt3c3Kz0ezQa7RVkLY+NffpRmAAAAAAAgIpbLBaBiKzcNE0LFovF2rbz+TxQVXVt++l0mrnd5f2kffxgMIj6l1ZRx9fv91e20XU9VX+63W4gIontx/talOl0evDrl0RRlLXnLuk4N7EsK9A0LdXjk9qazWap2pnP58FkMll7rXcJx19463a7qY5vsVgEuq6vPHYymaTqa9K+wn2oqrrXPorSCIIgyDlbAwAAAAAgd7ZtJ1aW9Pt96XQ68vT0JLPZTEzTlH6/v3GNpH6/vzaNbJOwEkdRFFksFqke02q1xPM8GY1GMhgMUj1GJP/jcxxnrXooXPA/zvd9eXp6kvl8LrZtR9PaNkUGyxVK0+m0sKlv4XOZ5fnfxPM8MQxjYxWbpmlyeXmZWHXm+754npe4JpqmaTKbzTK1Fa6ZFZ96+vT0FL0WSdVkuq6nmo5q2/ZaVeFkMtk4tdQ0zZWplIqiiGVZe7+upmlG67lta7cUJQdxAAAAAACkNp1OE6tslm/9fj8IgmDle6qqBqPRKJjP55nam0wmgYgEg8Eg1fbz+TxqM2tbeR9fvGop601RlI39XK74Sfvc7CPr879tH0XdlvtWdFuj0SjTsQ8Gg7XxpOt60O/3g263u1YBpihK5jaShGOvatVgQUBFGAAAAADgBI3HY3l4eBDP88T3fVEURXRdF8MwoiqWVqsl3W5X3rx5I5qm7dVOr9cT27ZlNpul2sd4PJbhcCiqqsp8Pt+rzXA/xzi+Q4RVP3lUa23TbDZlNpsd5aqM58pxHLEsSx4fH6PqtrAiTVVV0TQtt3HkeZ60Wi0RkdTvm2MiCAMAAAAAYINGo5E49W2TdrstruvKYDBYW2z/HIVBYeWmv6E0nU5HHMep7HuAIAwAAAAAgARhxVPakMf3fWk2myJSzUqYorRaLXl6epKff/45l6s64nSF69JlCY+PjSAMAAAAAIAEYcCTdtrfsaYKVk04Fa7b7YplWWV3ByXxfV9+//vfy+Xlpcxms8qGoi/K7gAAAAAAAFUzHo/F87xM0/3CEOj29raoblWSqqoym83Etu3oSoGoF9/3pd1uVz4EE6EiDAAAAABQY4ZhiOd5ommadDodub6+lnfv3kWVXWmn+y1Pi5xOp9GC9nXiuq7c3NzI7e2tTCaTsruDIwlDMFVVxbKsSodgIgRhAAAAAICaGg6HMh6PN/48ywLwtm1Lr9er3bTIOM/zpNfryeXl5UmEIjhMGH7++OOPMhgMyu5OKi/L7gAAAAAAAGXwfX/jz7rdbqZpkbqu1zoAC4XTJMfjsTw9PRGEnTnP8+T9+/cndWEIKsIAAAAAALXkuq602+2177PoO3C+CMIAAAAAALXleZ5MJhPxPE8uLy+l1+vVcn0voC4IwgAAAAAAAFALL8ruAAAAAAAAAHAMBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC1QBAGAAAAAACAWiAIAwAAAAAAQC0QhAEAAAAAAKAWCMIAAAAAAABQCwRhAAAAAAAAqAWCMAAAAAAAANQCQRgAAAAAAABqgSAMAAAAAAAAtUAQBgAAAAAAgFogCAMAAAAAAEAtEIQBAAAAAACgFgjCAAAAAAAAUAsEYQAAAAAAAKgFgjAAAAAAAADUAkEYAAAAAAAAaoEgDAAAAAAAALVAEAYAAAAAAIBaIAgDAAAAAABALRCEAQAAAAAAoBYIwgAAAAAAAFALBGEAAAAAAACoBYIwAAAAAAAA1AJBGAAAAAAAAGqBIAwAAAAAAAC18H8B3hxE74JZk98AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACiQklEQVR4nOzdTWxj55nm/YuqSuAgCYuUGw0IIpA2BQ/cq+4iVbPo3UTkZBYxEsRkFZAgzmJSZBw0ZqEZk67O2lbIJNoMkDFZ7o0DA11Fxp0gWfSYLPd+SmJldsGkecoBJHDl4ikmQYzE5nkXeskm9UEekueD1Pn/AAH6eHifWx9li5fu5zkhy7IsAQAAAAAAAJfcmt8NAAAAAAAAAF4gCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAfGIahdDrtaw/lclnpdFrRaFShUEhbW1vKZrNqNptLVRMAAAAAAMApBGEOMk1ToVBo6svW1pbi8fiFdQZB0jwv+Xx+Yo/NZlPRaFTFYlGSVKvV1G63VSqV1Gq1lE6nlU6nZZqm7c/bjZoAAAAAAABOC1mWZfndxGVRLpeHYdA07Xb73DCsXq8rm83O3UOtVlMmkzn3Y81mcziJlsvlVKlUzqxJJpNqtVqKx+M6PDxUJBKZeD03agIAAAAAALiBIMxB0WjU1tRTKpVSo9E492PpdHqhrYQXfTtN09Rzzz0n0zQVj8fVbrfPXWcYhra2tqb26VZNAAAAAAAAt1z1u4HLolqtyjRNFQqFqed/bW9vn/t+wzDUbDYVj8dVLBaVSqW0vr4+9drJZFKGYSiVSl24JpvNDkO6SVNr8XhcmUxG9XpdzWZT1WpVuVzOs5oAAAAAAABuYSLMIYOJp4umouwoFouq1+szbR8cnbaqVCrnBkyjaySp2+1OrD+6PTMSiajb7XpSEwAAAAAAwE0clu+Aer0uwzBsnw92kWq1qlqtNtMZWvV6ffj6zZs3z11TKpWGr6dSqan1R88YM01z7Bpu1gQAAAAAAHATQZgD9vb2FIlELgyi7KrVakokEjM95t69e5Imh1HVanX4ut36owf5D67hdk0AAAAAAAA3EYQtqNVqqdVqyTRNRaNRbW1tKZ/PzzXxNOmMr/OYpqlWqyVJF95pcvDxgRs3btiqPRpunf5c3KgJAAAAAADgNoKwBZ3eDmkYhqrVqrLZrEKhkLLZ7JngyCmjU1kXTaOdvgPl6FTWJKfXjX4ObtQEAAAAAABwG0HYAgZ3eZykXq8rmUwqn887fv3B9sJEInHhtsiHDx+OvW33/LFnn3127O2DgwNXawIAAAAAALjtqt8NrLJ4PK5KpSLTNNVut9VsNmUYxrlrq9WqDg4OdHh46Mi1R7dF3rp168J1p/uZd3pr9G6YbtQEAAAAAABwG0HYgnK53NjbpmmqWq1qb29PpmmOfazVaimdTqvRaCx83fv37w9fH70j42kXBXOzGv1c3KgJAAAAAADgNoIwh0UiERUKBRUKBdXrdd2+fXss8Gk2myqXyyoUCgtdp1KpSDrZFjlpImvesOn0dscnT564WnNWn/3sZ/XHP/5RlmVpbW3xHb6f//zn9bnPfW7hOgAAAAAAXFa///3v9bvf/W7hOv1+X6FQSJ/5zGf0hz/8wYHO7CMIc1Emk1EqldLOzs7YwfB7e3sLBWF2t0U6yY3prUVqfvTRR7IsS9LJP6BFPX36VE+fPl24DgAAAAAAmM6yLH300UeeX5cgzGWRSESHh4dKJpPD8Mo0TTWbTaVSqblq2t0WObi+EyHW6DSXGzVndeXKlWEA5sVEWKfTUb/f19ramjY2Nha+nhPoafX6kejJLnqyZ9l6WrZ+JHqyi57sWbaelq0fiZ7soqfV60eiJ7voyZ5l68luP05OhEknz+29RhDmkbt37yqZTA7fbjQacwdhg22R8Xh86kH16+vrjoRW6+vrrtac1V/+5V/q+PhYm5ubOjo6WriXaWKxmI6Pj7WxseHJ9eygp9XrR6Inu+jJnmXradn6kejJLnqyZ9l6WrZ+JHqyi55Wrx+JnuyiJ3uWrSev+xlc7y//8i9dv9Zpi4/SwJZEIjEWfM174Pzotshp02DS/FNXp4Ou0xNhTtcEAAAAAABwm68TYc8//7yflx8TCoX0//7f/3P1Gul0Ws1mc6Eao9si7ZwPtr29PXY+mWmatgKo0wfZb21tuVoTAAAAAADAbb4GYe12W6FQaHjouR8G1w+FQq5fa3Qb47zbAmu1mqSTaapEIjF1/eh2TOlkEs3O49rt9tjbo9NsbtQEAAAAAABwW+C3RnoZwo0GYfNsCxwcsi9JuVzO1mO2t7fH3ra7JXN0G2MkEhnr3Y2aAAAAAAAAbvP9sHzLspTJZHwLRUzTVLVa9eRaBwcHw9fT6fTMj591W6R0cjbZ6F0eHz58aOtssdFeTwdfbtQEAAAAAABwm+9BWLVa1be//W1fe8hkMvrSl77k+nVGtwbOsy1w1m2RAzdv3hyGfaNne00yuq5YLHpSEwAAAAAAwE2+b41chnOibty44cl16vW6JKlQKMz82NFtkTdv3pzpsfl8fvi6ncP6R9fE4/Fzv0du1AQAAAAAAHCT7xNh8x4av2rq9boMw1AkEtGdO3dmfvzotshsNjvTYxOJhFKp1DCMqtfrE7cyDibPpIsnt9youcx2d3fV6/UUDof9bmWInlbTMn6N6MmeZexp2Szj14ie7FnGnpbRsn2dlq0fiZ5W2bJ9nZatH4meVtkyfp2Wradl68dNIcvHWzZeuXJF3W7X9y/006dPtb6+rk8++cT2Y5rNprLZrEzTVCqVUqlUunC7omEYSiaTMk1Th4eHM21rHEin02o2m4pEIup2uzM/3jAMbW1tSToJsQ4PD89dZ5qmotGopJNpvUaj4WlNu2KxmI6Pj7W5uamjo6OF6+Fy4ucElx0/47jM+PnGZcbPNy4zfr5hh58/J75ujfQxgztj1l5qtdrwsPhms6lkMjm2XXBg8LH19XW12+25QrDRbZHzbimMx+PDqaxWq6VyuXzuup2dHUkn55CNTnF5VRMAAAAAAMAtvgZhpVLJ92kwSbp27ZpKpdJMjzlve2K1WlU0GlU2m1U+n1cymVQ6nVYul9Ph4eHcd8Yc3RZ5XthmVyaTUaPRUCQSUbFYVDabVavVGgZtyWRSrVZLiURCjx8/ViQS8aUmAAAAAACAG3wNwl599VVPr/fBBx9c+LFZe0mlUmq328rlcorH42MBT6vV0pMnT3Tnzh11u12VSqWFAqDRKapFD5lPpVLDngzD0M7OzjC8W19fV61W0+Hh4Uz9ulETAAAAAADAab4flu+lfD6v//2//7dj9eLxuCqVimP1LuLEmVqnFQqFue5e6XVNAAAAAAAAp/g6Eea1g4MDv1sAAAAAAACAT1ZyIuyDDz4YHlRvh2EYqlQqMz0GAAAAAAAAl8tKBGEffPCBSqWSms2mDMOYq4ZlWQqFQg53BgAAAAAAgFWx9EHYnTt3VC6XJZ2EWQBg1+7urnq93lLcnRZwAz/juMz4+cZlxs83LjN+vrHsQtYSp0s//elPlc1mJWk4zbVIu6FQSJ988okjvcFfsVhMx8fH2tzc1NHRkd/tAAAAAAAAm/x8Tr/UE2F7e3uSTgIsy7IUj8eVSCQUj8clSc8+++zUGh9++KFM09T9+/f19OlTV/sFAAAAAADA8lrqIKzVag0nwRqNhnZ2duauVSgU9PzzzzvVGgAAAAAAAFbMmt8NTBKJRCSdhFiLhGCSFI/H9dxzzznQFQAAAAAAAFbRUk+ExeNxPXr0SDdu3HCkXqVScaQOlken01EsFpu4Znd3V7u7ux51BAAAAABAcO3v72t/f3/imk6n41E3Zy11ELazs6NHjx7pyZMnjtXD5dLv93V8fDxxTa/X86gbAAAAAACCrdfrTX2e7qelDsL+4R/+QT/4wQ/UarUcqffWW2/p29/+tiO1sBzW1ta0sbExcQ237QUAAAAAwBvhcFibm5sT13Q6HfX7fY86GheyLMvy5co2lctllUolffDBB/r85z+/UK0bN27o4cOHDnUGP/l5q1UAAAAAADA/P5/TL/Vh+dLJQfmJRELZbHahOo8fP3ZssgwAAAAAAACrZ6m3Rg40Gg1tb2/r+eefV7FY1Pr6uq3HPXnyRKZpqt1u6/79+y53CQAAAAAAgGW2EkHY+++/L0lqt9vK5/Nz1bAsS6FQyMm2AAAAAAAAsEKWPgh75ZVXVK1WJUmhUEjzHGlGAAYAAAAAAIClPiPs7t27qlQqw/Br3nP9l/x+AAAAAAAAAPDAUk+EVSoVSf8+CZZKpZROpxWJRGY+J+zNN9/UBx984GK3AAAAAAAAWGZLHYS1Wi2FQiFFIhEdHBzoueeem7vW7du39eyzzzrYHQAAAAAAAFbJUm+NjEQikqQ7d+4sFIINal2/ft2BrgAEnWmafrcAAAAAAJjDUgdhyWRSkhSPxx2pd/fuXUfqAAieVqulYrGoaDSq27dv+90OAAAAAGAOS701Mp/P68GDBzIMw5F6TIQBl1Or1dK9e/fUarVkGMbwbMBIJKJ4PK719XUlEgml02mlUqkzj89mszIMQ4eHh8P3maapZrOpe/fuqdlsMgUGAAAAAJdAyFryWyomk0mtra3p4cOHC9d699139bWvfc2BruC3WCym4+NjbW5u6ujoyO92FlatVpXP52d+XCKRGAtv5hUKhWZ+TCQSUbfbPfdj2WxW9Xp95pqNRuPcoOo8pmlqb29P5XJ55uskEgmlUiltbW2p0WioXq+f+VoOwrFWq3Xm8ZlMRrVabebrAgAAAAD8fU6/1FsjJalWq+nw8FD//M//vHCtvb09BzoCnJfL5dTtdnV4eKhMJjNxbSqVUqPRGK53gmVZarfbqlQqw7P5zhOPx1WpVNRuty8MwaSTf7fdbtdWsFUoFHR4eKhut2s7BBtsUTwdgg0CqkG9wefVaDSUy+WGn1ur1VK5XFY+nx8GdqcnvgZ1LMtybHs2AAAAAMBfSz8RJp1My9y5c0cffvjh3DWePn2q9fV1ffLJJw52Br9ctomw0/L5vKrV6pn3ezGJZBiGtra2zv1Yt9udGJRdJJlMnjtZValUlMvlZuotnU6f2S6dy+VUqVRs1SiXyyoWi2feH4/H1W63z33M6e8HE2EAAAAAMD8/n9Mv9Rlh7777riTpL/7iLxSNRvX8889PnZY5j2maun//vtPtAa65KAibZ/vkrOLxuBKJxJngKpPJzBWCSSd9n9f7LCFYs9lUOp0ee18kEtGDBw+USCRs1ykUCspkMkomk2NTYE+ePLnwMfN+3gAAAACA5bLUQdgbb7yhR48eDd+2LGuu84AGj53nHCTADxdtxfNqi148Hj8ThC1y7fMeO0u41Gq1HAnBRvt5/PixnnvuuWEYxmH4AAAAAHD5LfUZYTdv3pRlWRrs3iTIQlBcFBKtr69728gSMAxDOzs7Z95fq9XmCsEGIpGIY2esAQAAAABWw1IHYYOtVKFQaBiIzfsCwL7zArdnn33W0Xp2Q71sNntmWiuXy9k+WH+SeDyuQqGwcJ1lUq/Xz5yhhn/XbDb9bgEAAACAj5Z6a+S1a9eUSCT06NEjlUolJRKJuSZiDMPQG2+8oV/96lfONwnANc1m89xD9kulkmPXuHPnznDLtWmaS3seWKvVUqVSUbPZlGEYikQiWl9fVyQSUTwe161btyRJt2/fVqlUmnj+WrPZVDab1fr6uiqViiOh4rIyDEPNZlO1Wm0Ygi3TH0eC9L0AAAAAlsFSB2GSdOvWLW1tbenVV1+du8b169f10ksvBXJbGbDKzjtgf5FD+88TiUSUy+XOvTnBMjBNU7dv31a9Xpd0MsU2uGmIYRhqtVpqtVrDjw8eM8lgys40TeXz+QvvlrnKDMNQNpuVYRhLff5bEL4XAAAAwDJZ6q2RkpRKpRz76/329rYjdQC4bzD5dNqdO3ccv1Y2m5U0+c6Rkwymera2thQKhRSNRpVOpx0J17LZ7DDkqlQqarfbqtVqqtVqOjw8VLvdPjNFNC1MCcIfBeLxuA4PD9Xtdpd6+2sQvhcAAADAMln6IOz69euObYP6b//tvzlSB4D7arXaue9f5ID8i6RSKZVKpZlDCdM0lUwmlU6nx87mMk1TzWZT+XxeW1tb527vtKNcLg+38xUKhXO3O8bjcTUajbH/Tk47I6xSqSgejysej1/4db5MTt9xdJkE7XsBAAAA+G3pt0ZK0nPPPedInf/5P/+nvvzlLztSC8uh0+koFotNXLO7u6vd3V2POoJTzjvU3M3zk2adGjIMQ8lkcuq2u8G6RqMxc/97e3vD18/bJjqqUCjoww8/VLlcnjrZlkqlArUFz6+pq3w+r0qlMnFN0L4XAAAAuPz29/e1v78/cU2n0/Gom7NWIghzysHBgd8twGH9fl/Hx8cT1/R6PY+6gVMMwzh3qsmNabB5mKY5PNspk8konU5re3tbT548UaPRGB6+PyqdTqvdbisej9u6xjxnW5VKpQu3lMJb1WpV1Wp1ahAGAAAAXDa9Xm/q83Q/rWQQ9sEHH8z0BNEwDFUqlaU+MBnzWVtb08bGxsQ14XDYo27glIuCnK2tLY87Od9gWu28Ka9UKqV8Pq90On3m88hmszo8PLR1jdP/vWo2mxPvBDlw586d4Zln8IdhGFMn+AAAAIDLKhwOa3Nzc+KaTqejfr/vUUfjViII++CDDxaedLAsS6FQyOHO4LeNjQ0dHR353QYcdtG/82U6WHzSVsfBuV2ng7tWq6Vms2lri+TpybFisaibN29OvWPm4I6Spmk6endN2GOa5lKfSQYAAAC4zc7xRLFYzLepsaU/LP/OnTva2tpStVpVu92WZVlzvQBYTLFYVCgUmuslmUzOdK2LpjeXJdiJRCJTw6x4PH7ujT7s3vwjEomMfb6Dg/nt/DHAsqyl+VoFiWma2tnZYWsqAAAAsMSWOgj76U9/qlKpNAyymOgCgmHZDw/f3t62ta5QKJwJpM67CcBFTodmhmEM/zCwqFarNbyr5SSmaaparSqZTI5dd7D9LxqNKhQKaWtr69yz0QzDULFY1NbW1nBdPp8/N+wcXOd0kHpaOp0e1ht9cXL7e7VaHbtONBpVMpk893OUTr6ezz333Jk7hI72d9HX2u73YsA0TZXLZaXT6eHXf9BfsVi0FcQZhqFyuXzmrqaj34Otra3hWXgAAADAZbHUWyMHd0wLhUKyLEvxeFyJRGK4ZejZZ5+dWuPDDz+UaZq6f/++nj596mq/wGWWy+XmPvfo4OBgpsdeNM20LE/IZ5m2SqVSqtfrY+9rtVq2Dv7P5XKq1WpnwrPB3Qjv3r070w0EWq2WKpWK7t+/P/xanve5DMKve/funQl2pJPpwNOB0CDwarfbwwPiL1pXrVbVbDZ1eHg4dv1cLjf8OZsU9jUaDUlSuVxWsVi086nbVq/Xlc1mFYlEdPfu3eFW01arpWw2q2KxqEqlcqb3eDyuBw8eqNlsjvV00Zlwdr8Xp1Wr1eG/pVKppFKppEgkolarpb29PZXLZZXLZWUyGdVqtbHHmqapvb091ev1M2HZYJpt9Ps9uGnF4Htl90YPAAAAwFKzllgoFLLW1tastbU1q9lsLlSr3W5ba2trDnUGv21ublqSrM3NTb9bcY2kMy/dbteTa+dyuTPXLpVKc9c7PDw8Uy8ej1+4vlQqnfv5VyqVuXtYRKFQGOsjk8nYfmytVlv488hkMud+PQa92Pm5aLfbVqFQsEqlkhWJRIaPj0QiZ9Z2u12r0WhYlUpl7Fq5XM5KJBJWKpWyarWa1W63rW63e+brc3h4aKVSKSuRSFiNRsPqdrvDmqPXLhQK5/baaDTG6k36nOz8+zj983eR0eue9/M+WueinwE7vc/yvRg1+DpHIhGr3W6fu2b0ZyUej499TdrtttVoNM78+65UKlYkErEymYzVaDSsdrs9fN9gTSqVmtgbAAAAMAs/n9MvdRAWjUattbU167XXXnOk3tbWliN14D+CMHf5HYSdDmCc6GERiwRh533u83weF4WD84Rro7WmhS+JRGLsOo1G49x1qVTqTGh2ntFg8KJr2w3Cut2uo0HYaIh00fdoWh27vQ/Y/V6M/puY9r2Ox+NTA6zRHiORyLnf19Mhrlf//QEAAMDl5+dz+qU+I2ywDePGjRuO1Bts1wGw3C7agrXsZ4ed57ztbh9++OHMdQqFgrrd7nCr3mn5fF7pdNrW9tFZtriN3qkzl8tdeJOA03dKvOi/t6P9m6a5NNtdT7tom+Lo+504FN/u92Kw3TISiSiXy9laK52cSXfeuXSjn8fdu3fP/b6e/lk7ODiw1SsAAACwzJY6CNvZ2ZEkPXnyxNF6AJbbRWHLLAfNL4vzgg475xueJxKJqFar6fDw8NyzwZrNpnZ2dhwNl+yehzb6ec5yhtoy3WHx7t27KpVKqtVqU8Mmybsz66rV6vBadoKzXC439j2we6fS84xeb5m+VwAAAMC8ljoI+4d/+AdZlnXuYc3zeOuttxypA8B95wU9hmEs7QTRLBY9dDyRSOjw8PDcqatWq6Xbt28vVH8es4Rfo5z6Q4cTIpGICoXCuVN3rVbLsf8XzWpwcwDJ/s/OaJi8igEyAAAA4JalDsKuXbum73//+7p3755+97vfLVyPrZHA6rh169a571/FJ/WnQyKn7r6Xy+XUbrfP1K/X60v9dZo3NPPa6B0uE4nETHfodLqPWZ3+GbsMATIAAADghKUOwqSTc3ESiYSy2exCdR4/fuzbX/OBZdNqtRb+N+W2i7amrWKgfTqEcDJQicfjOjw8PBMureLXaVm0Wi2l02lVKpWJ56J5ZfTnx24otrW1Nfb2Mk3eAQAAAH666ncDdjQaDW1vb+v5559XsVgcO7x5kidPnsg0TbXbbd2/f9/lLoHVcfv2bdv/jvwSiUSUyWRUr9fH3t9sNtVqtXybzpnV6RDMTqjSbDZVLBZ1eHho6xrxeFx3794dCzcJ/ueTz+dVrVaVy+UWOlvLSfMc0H/637dTU4gAAADAqluJIOz999+XdHLHuHw+P1cNy7IUCoWcbAtYSYMgadKTfKenR+atVyqVzgRh0sld8UbPTXKCaZqubNk7fac9O/8Ni8fjarVaajabtqeRTp9rxcHmsxuEYNJiB8w7bfDzIP37nTan/ayO/psjBAMAAAD+3dJvjXzllVeUTqf16NEjhUIhWZY18wuAE6ZpDqeGzjsQfJIPP/zQ0V7shGPxePzcQKLZbKpcLjvWi2EYSiaTcwftk5w+6NzO130QXCzSz6pMzC3CycC21WoNQ7B4PL5U55idPi9v0Ock7XZ7+Pqs/9YBAACAy2ypg7C7d++qUqkMw6x5Qy3CMKwaNw62Nk1TOzs7w2mSWadEnO7Jbr1CoXDuVFSxWHTkQPhmszk8T8mNKaDRibZZzu2Kx+MyDEPFYtHW+tMTYBfdbGAVnN7Wd9HPipNTb6M/S5Pq+nHofCaTGQvm7PwcjX4+d+7ccaMtAAAAYCUt9dbIwS/7g0mwVCqldDqtSCQy8zlhb775pj744AMXuwWcc9ET8SdPnsw1qdJsNpXP54d1b968OfP1F5m+WTSwaDQaymazZ7ZJptNplUolFQqFmWuapqlisahqtXrhgfOTHmtHtVodfu6zHro+CMLK5bK2trYuvHnAwGg4Eo/H5/qanMfu5zq6btpjpn389DRbtVo98/mcFxLO++/jPPV6/cwk1XnXO+10wGwYxtj75t2CO3oGnGEYE7fNtlqt4VbKUqm0VNNtAAAAgO+sJRYKhay1tTVrfX3dMgxjoVrdbtdaW1tzqDP4bXNz05JkbW5u+t2KK3K5nCXpzEsqlbLa7fbUx3e7XavRaFiFQsGKx+Nn6tRqtQsf2263z722JKvb7c71+SQSiXPrVSqVmeoUCoVz6yQSCavRaNiq0e12rVKpZEUikeHXdNrndfq6kUhk6nVGv46pVMpWb6NO/wzkcrkL+6xUKmNrp/2MnF4/SSqVGuvhIrVazXZNOz+Lo9cdXLvRaFi1Wm34tWk0GsPv4+Dt8zQajak/x6fXSLJKpZLVaDSsUqlkxeNxK5PJjP17ymQyw39nozVP/5vtdrtWu922crmcVSqVxq47y/eiVCqN/Qye93l0u93hv7dJ3y+7/z04/fUAAAAAnODnc/qlDsKi0ai1trZm/eAHP3CkXjKZdKQO/HdZg7DDw0Mrk8lcGEQ59XLRE+hKpTIWLJx+icfjVqVSsR2IHR4engk0Tr8UCgVb4d5Ao9G4MFiLRCJWJpOxKpWK1Wg0rMPDQ6vRaFiVSsUqlUpjj4tEIhMDgFHnhYPxePzC4KVWqw2/jplMxvbnNup0QDIavhQKBatSqVi5XG4smLEblJ7++l30deh2u2cCx4uc/rm9KOQ8HThdFNZ0u90LfxYjkcjwaz+6JpFIWO12+8zPp93eJv3bG4RA54XUp7/HFwW2532udr8XA6M/W5FIxKpUKla73bba7bZVqVSGPw+TQiu734PT6+YJdAEAAIDzEIRdIJVKWWtra9ZPf/pTR+q1Wi1H6sB/ly0Iuyj0cOPlvDBjnjqTpqLmDfPsTnVZ1kkgcFEgNuklHo9bpVJp5um2drt97ucViUSsVCplZTIZK5VKjYUUs3w+pw2mnWq12nAKKpVKWYlEYiz8GYR/0641CFkvCpcSicQwPJm0djAZNfj6nQ7jTgcng5qNRuPCUDQej58bxnS73bH6iUTCKhQKY2sG7zsdAHa73amf73nXHEx/Dfo6Pe3V7XaHn8fo1+y00WnMRCIxFnDN8r24SKVSOfPzNnjcRT/bk4Lp0e9Bu92euI7JMAAAACzKz+f0Icta3pPk6/W6bt68qXK5rP/xP/6H3+1gicRiMR0fH2tzc1NHR0d+twMfmaapZrOpe/fuyTAMmaY5PJdrcPe/eDyuGzduKJPJzHyTgGnXG1xzcJ3t7W1ls9mZzgMDAAAAgCDx8zn9UgdhkpRMJrW2tqaHDx8uXOvdd9/V1772NQe6gt8IwgAAAAAAWE1+Pqdf8/Rqc6jVajo8PNQ///M/L1xrb2/PgY4AAAAAAACwipZ+IkySqtWq7ty5ow8//HDuGk+fPtX6+ro++eQTBzuDXwbp8dramjY2Niau3d3d1e7urkedAQAAAAAQXPv7+9rf35+4ptPpqN/v+zIRdtXTq83o3XfflST9xV/8haLRqJ5//nllMpmZ65imqfv37zvdHpZAv9/X8fHxxDW9Xs+jbgAAAAAACLZerzf1ebqfljoIe+ONN/To0aPh25ZlqVwuz1XLsiyFQiGnWsOSsDMRFg6HPeoGAAAAAIBgC4fD2tzcnLhmMBHmh6XeGlkul/Xaa69J0sIh1iAIY2vk5cBh+QAAAAAArCYOy79APp+XdBKCWZa10AsAAAAAAACCbam3Rl67dk2JREKPHj1SqVRSIpHQ+vr6zHUMw9Abb7yhX/3qV843CQAAAAAAgJWw1EGYJN26dUtbW1t69dVX565x/fp1vfTSS3OFaAAAAAAAALgclnprpCSlUinHtjZub287UgcAAAAAAACrZ+mDsOvXr6tUKjlSy6k6AAAAAAAAWD1LH4RJ0nPPPedInevXrztSBwAAAAAAAKvH1yBsmQ6vX6ZeAAAAAAAA4Dxfg7BkMqler+dnC5Kkp0+fKplM+t0GAAAAAAAAXORrEObUIfhOWKZeAAAAAAAA4Dxfg7BQKOTn5ccsUy8AAAAAAABwHhNhAAAAAAAACATf7xr5+PFjv1vQwcGB3y0AAAAAAADAZVf9buD27dt67bXXFIlEtL6+7um1nzx5IsMwVCgUPL0uAAAAAAAAvOd7EHZ4eKhsNutrD5ZlcUYYAAAAAADAJed7EDbg13lhBGAAAAAAAADB4HsQ5veB+X5fHwAAAAAAAN7wNQjrdrt+Xh4AAAAAAAAB4msQdu3aNT8vDwAAAAAAgABZ87sBAAAAAAAAwAsEYQAAAAAAAAgEgjAAAAAAAAAEgu93jQQW0el0FIvFJq7Z3d3V7u6uRx0BAAAAABBc+/v72t/fn7im0+l41M1ZBGFYaf1+X8fHxxPX9Ho9j7oBAAAAACDYer3e1OfpfiIIw0pbW1vTxsbGxDXhcNijbgAAAAAACLZwOKzNzc2Jazqdjvr9vkcdjQtZlmX5cmVgAbFYTMfHx9rc3NTR0ZHf7QAAAAAAAJv8fE7PYfkAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQLmUQ9vTpU73yyit+t3EhwzCUTqcdq9dqtVSv11Uul9VsNm09plwuK51OKxqNKhQKaWtrS9ls1vbjvaoJAAAAAADglEsZhBmGoWq1qt/+9rd6//331ev1PLmuaZoKhUJTX7a2thSPxxe6TrlcVjKZVCgU0s7Ojh4+fKhEIqHt7e2Jj202m4pGoyoWi5KkWq2mdrutUqmkVquldDqtdDot0zRt9+NGTQAAAAAAAKdd9bsBNzSbTVmWNRY2FYtFvfHGG65et1qt2l47CI1mYZqmisXi8DqJREKNRkOpVMrW45vN5nASLZfLqVKpDD8Wj8eVyWSUTCbVbDaVTCZ1eHioSCTieU0AAAAAAAA3hCzLsvxuwkkPHjw4d9thKBSaGIa98sorajabikQiSqfTeu211xQOh2e6djQatTX1lEql1Gg0ZqpdrVZVLBaH9SuVinK5nO3Hm6ap5557TqZpKh6Pq91un7vOMAxtbW3Z6tONmnbFYjEdHx9rc3NTR0dHC9cDAAAAAADe8PM5/aULwra3txWPx3Xr1i0lEgkZhqH33ntPP/jBDxQKhWQYhr7whS+MPeb555+XYRga/VJsbW3p8PDQdhhWrVaVz+dVKBSmnv+1vb0901RUsVhUuVyWdDJl1Wg0Zt5amU6nh2d1TQvRstms6vX61LVu1LSLIAwAAAAAgNVEEOag7e1tHRwcnHm/aZpKJpO6ceOG/umf/mn4/ldeeUWVSkWhUEiFQkF7e3vDLYimaerevXu2rjuYeLpoKmpeowFSJBLR48ePZ95aODqRJUndbndijXq9rmw2O7xmt9v1pOYsCMIAAAAAAFhNfj6nv3SH5YdCoXPfH4lEdHh4eCaoGoRgmUxGe3t7w7WVSkXdblcffPDB1GvW63UZhjHXuV+TpNPpYQgmae7ztUql0vD1VCo1tUYmkxm+bprmWA9u1gQAAAAAAHDTpQvCotGofvSjH537sUgkomg0Onz77t27w9dHg52BYrE43Po3yd7eniKRiG7evDlHx+erVqtj165UKnPfaXL0EP9EImHrMaPXOm8qzo2aAAAAAAAAbrp0QVihUNCrr76q7373u+r1emc+ProlbzANlkql9Fd/9Vdn1m5vb0/d6thqtdRqtWSapqLRqLa2tpTP5xeaeDIMQ/l8fvh2IpGY+0ytVqs19vaNGzdsPW403Dr9ubhREwAAAAAAwG2XLghLpVK6ffu23nzzTUWjUd26dUs//OEP9cMf/lA3btxQu93Wl770Jd25c2cY6IyGTqOuXbsmwzAmXu/0dkjDMFStVpXNZhUKhZTNZs8ER9MMztIauHPnzkyPH3V6os3uVNnpdaOfgxs1AQAAAAAA3HbpgjDpZNLrpZdekmVZqtfrKhaLKhaLarVaevDggcLh8NhWyIu29j169Ejr6+sXXscwjKlbJ+v1upLJ5IVh23k1RwOiSCQydr7WrB4+fDj2tt0zxp599tmxt0dvQOBGTQAAAAAAALddyiBMkmq1mt58803t7OzIsixdu3ZN9+/f1/Xr11Wr1fTSSy8pEonozTffvDCkqlarY3dGPC0ej6tSqahUKimXy02cjKpWq0omk1P7rlQqY2+nUilJ/37Xxa2tLYVCIUWjUSWTSZXLZZmmeWG90xNt805vjW4RdaMmAAAAAACA26763YCbcrnchWdr1Wq14evRaFQ3btzQW2+9pb/5m79Rr9fTG2+8oWq1Onam2EXXGGWapqrVqvb29s4EVK1WS+l0Wo1G48J6o4fQS9L6+rqSyeSZbYSmaQ7PJysWi6rVaudOjk3b2mnX6OfiRk0AAAAAAAC3XdqJsFlkMhlls1ldv35dV65cUTQa1Q9+8AN9//vfVzgcnqlWJBJRoVBQt9tVrVY7s22w2WyqXC6f+1jDMM6EQ/fv31c+n1e325VlWbIsS+12+0wAl81mzz2Aft6w6XTfT548cbUmAAAAAACA2y71RNgsCoWC4vG4qtWqIpGIbt26pZdeemmhmplMRqlUSjs7O2MTXXt7eyoUCmfWn560ikQievz48ZkAabAl8/TZY7dv31YqlbJ9Ztcs3JjecqJmp9NRLBZbuM7u7q52d3cXrgMAAAAAwGW1v7+v/f39het0Oh0HupnPpQvC3n//fX3xi1+cuu7dd99VKpUam/jKZDILHUx/nkgkosPDw7HtjaZpqtlsDs//GjgdhOVyuYmhVi6X0+Hh4XA7pWma2tvbG7sRQCQScSRwGu3DjZrz6vf7Oj4+XrhOr9dbuAYAAAAAAJdZr9dz5Dm4ny5dEJbJZPT06VOlUiml02mlUin97d/+7Zl1Ozs7+va3v61yuay/+qu/cr2vu3fvjh2W32g0zgRhpw+Pv3HjxtS6xWJx7Fyxcrk8FoStr687ElqN3j3TjZrzWltb08bGxsJ1Zt0CCwAAAABA0ITDYW1ubi5cp9PpqN/vO9DR7C5dEJZMJvXgwQM1m001m01JJ5NH29vbY8HYtWvXdPfuXaVSKdXrdX3hC19wta9EIqFUKjXs6bwD50+HS3YmpuLxuBKJxNjWy1arpUQiYbvGeSb14kbNeW1sbOjo6GjhOgAAAAAAYDKnjhWKxWK+TZZdusPy6/W6UqmUrl+/rueee06WZanb7arRaKhYLCqZTOrKlSv6L//lv+j73/++ut3u2Dlbbkqn0xM/vrW1NVfd7e3tsbdHQ7bTH7M7yXX6IPvR3tyoCQAAAAAA4LZLF4TlcjlVq1UdHBzo3/7t39Tv99VoNHT79u3hXRcty9J7772ncrkswzDUaDQ86S0ejw9fP29b4OkJKbsB0+lAaTRwGt2OKZ0/iXae09s0R7dxulETAAAAAADAbZcuCLMs68yZXzs7O6pUKup2u3r11VeVSCRUKpX00ksvKZFI6Pvf/74nvY0GYedtC5w02TXJ6VqjIdu8NUdDuEgkMta7GzUBAAAAAADcdumCsKdPn174sWvXrqlUKqlWq+nhw4cql8s6ODjQq6++6klvBwcHw9fP2yY5ONdr4PQElV2jAVMikRgLyh4+fGirxmivp4MvN2oCAAAAAAC47dIFYc8995x+9KMfTV1z//595XI5/fa3v/Wos/Fg66JtgaPvHxysP83pLZSnA7WbN28OXx89VH+S0XXFYvHMx92oCQAAAAAA4KZLF4QVCgW9+uqr+ud//uepa+/fv69UKqVer+dBZycH+UsnPV5kNCAyDMPWOWHTArbRmwHYCddG18Tjcc9qAgAAAAAAuOnSBWHxeFzf//73lclk9N3vfnfi2kgkouvXr+u1115zva96vS7DMBSJRHTnzp0L16VSqbGtjXt7e1Nrj4ZMpVLpzMcTicRY8DQI5C5Sq9WGr180ueVGTQAAAAAAADdduiBMOpm4+trXvqY333xTf/EXf6Ef/ehHF059ra+v6969ezNfo9lsKhqNKhQKKZ1OT9weaBiGbt++LUl68ODBuQfljxoNjQZ3tpzUx+DjuVzuzLbIgUqlMnx9Urhmmqaq1aqkk1Aul8tduNaNmgAAAAAAAG65lEGYdBIm3b59W0+ePFGhUFA0GtWtW7f01ltv6Ve/+pV+9atf6c6dO6pWq7a2H55Xf/C4ZrOpZDI5tl1wYPCx9fV1tdvtC4OqUYlEYixkSqfT5/Zomubwmqcfc1o8Hh8GbK1WS+Vy+dx1Ozs7kk6m5UYDOa9qAgAAAAAAuCVkWZbldxNuqtfrun37tp4+fapQKHTm45ZlKZlM2r7z4UCz2Tz3zo+RSESpVErr6+s6ODhQq9VSoVDQnTt3pk6CnXeNbDYr0zSHWyoH2xGbzab29vZkmqZyudzEEOyimplMRnfu3FE8HtfBwYGKxaJarZYSiYStyTU3a04Ti8V0fHyszc1NHR0dOVITAAAAAAC4z8/n9Jc+CBsol8v6/ve/f2ayKhKJ6P3339ff/u3fzlzTMAyVSiU1m009efJkGFitr68rkUjo1q1bSqVSC4c/1WpVtVpNBwcHw2sMDpzP5/NjZ4rZVS6Xde/eveGB/JFIRNvb28rn88pkMnP16UbNixCEAQAAAACwmgjCPPTo0SMZhiHDMIZh0rVr1/xuCzMiCAMAAAAAYDX5+Zz+qqdXc9Arr7yi//W//tfMj7t+/bquX7/uQkcAAAAAAABYZit7WP79+/f1u9/9zu82AAAAAAAAsCJWNgjrdrv6q7/6K73yyit6//33/W4HAAAAAAAAS25lgzBJMk1T1WpV6XRaV65c0Ze+9CX98Ic/1AcffOB3awAAAAAAAFgyKx2ESZJlWcOXZrOpYrGora0tPfvss3rllVf07rvvTq3x1ltvedApAAAAAAAA/LSyQdj3v/99WZalUCikra0tSeOhWLfbVbVaVTab1ZUrV3Tjxg398Ic/1K9+9asztRqNhsfdAwAAAAAAwGsre9fIQqGgVCqlbDarJ0+eqF6vy7Is/dM//ZMePHgg0zRlWdZwfavVUqvVkiRFIhGlUiml02lJUr1e9+VzAAAAAAAAgHdWNgiTpEQioXa7rWKxqGw2q3w+r1qtJkl6/Pix6vW6Go2Gms3mWCjW7XZVr9cJwAAAAAAAAAIkZI0mRCus1Wrp5s2bWltbU61W09/8zd+MffzBgweq1WpqNpsyDGPsY6FQSJ988omX7WJBsVhMx8fH2tzc1NHRkd/tAAAAAAAAm/x8Tn9pgrCBfD6vt956S8ViUW+88ca5a54+far79+8PgzGCsNUz+EeztramjY2NiWt3d3e1u7vrUWcAAAAAAATX/v6+9vf3J67pdDrq9/u+BGErvTXyPJVKRdlsVjdv3lS9Xj93OuzatWu6ffu2bt++rWazqS996Us+dYtF9ft9HR8fT1zT6/U86gYAAAAAgGDr9XpTn6f76dIFYZKUSqVkGIZu376tRCKhcrms//7f//uFa3d2djzuEE6xMxEWDoc96gYAAAAAgGALh8Pa3NycuGYwEeaHS7c18rR6va6bN29qe3tbtVpNX/jCF86suXv3rm7fvu1Dd5gXZ4QBAAAAALCa/HxOv+bp1XyQyWT05MkTXbt2TfF4XD/60Y/OrCEEAwAAAAAAuPwufRAmSZFIRI1GQ3t7e3r11Vf1H//jf9Rvf/tbv9sCAAAAAACAhwIRhEnSBx98oO3tbRUKBR0cHCgej+sf//Ef/W4LAAAAAAAAHrkUh+V/8MEHMgxDpmnKMAy1220ZhiHDMPTkyROZpjm2PhQKybIs5XI51Wo11Wo1ff7zn/eneQAAAAAAAHhiZYOwGzduDMOvSSbdC8CyLL333nv64he/qIcPHzrcIQAAAAAAAJbJygZhh4eHw8muSSKRiOLx+PBla2tL6+vrw7evXbvmUccAAAAAAADw08oGYaOi0ahu3rw5FngRcgEAAAAAAGDUSh+W/9JLLymRSKjb7aparerg4EDdblfRaJQQDAAAAAAAAGNWNghLpVK6f//+MPy6d++eLMtSoVDQ1taWnn/+eb3yyiv613/916m13n//fQ86BgAAAAAAgJ9WNghLp9PD169du6ZMJqP79+/ryZMnevjwob72ta/p4cOH2tnZ0ZUrV3Tjxg396Ec/0q9+9asztSqVioedAwAAAAAAwA8ha9pp8yvu6dOnajQaun//vprNpp4+fapIJKJUKqUbN25IkorFoj755BOfO8UsYrGYjo+Ptbm5qaOjI7/bAQAAAAAANvn5nP7SB2GntVot3bt3Tz/96U9lGIZCoZAkEYStGIIwAAAAAABWk5/P6Vd2a+S8EomESqWS/u3f/k0HBwf64he/6HdLAAAAAAAA8EDggrBRiURCjUZD169f97sVAAAAAAAAuCzQQdhAqVTyuwUAAAAAAAC4jCBM0s7Ojt8tAAAAAAAAwGUrEYT98Ic/1Pvvv+93GwAAAAAAAFhhKxGE/Z//83+UTqf1j//4jwvVuXv3rq5cuaL/8B/+g/7v//2/DnUHAAAAAACAVbASQZgkWZalXC6nf/iHf5i7RrFYlGVZ+rd/+zclEgl98MEHzjUIAAAAAACApXbV7wZm9d5776ndbuvevXszP/a5557T06dPlUqlJJ0EY/PUAQAAAAAAwOpZuSDs4OBA2WxWN27c0Pvvv6/Pf/7zth97eHg49vbzzz/vdHsAAAAAAABYUisXhElSrVZTuVxWIpFQs9nUF77whZlrPH78WE+ePHGhO3ip0+koFotNXLO7u6vd3V2POgIAAAAAILj29/e1v78/cU2n0/Gom7NWMgiTpEKhoEQioUQioXq9rv/0n/6T7cc+ffpU6XRa29vbLnYIL/T7fR0fH09c0+v1POoGAAAAAIBg6/V6U5+n+2llgzBJSqVSevjwof7zf/7PunPnjv7rf/2vUx/z/vvvK5vNyjRNvfbaax50CTetra1pY2Nj4ppwOOxRNwAAAAAABFs4HNbm5ubENZ1OR/1+36OOxoUsy7J8ufIMbt68qXq9rlAopE8++eTMx03T1M2bN7W9va033njjwjo/+MEP9Nprr8myLEWjUX344Ydutg0XxWIxHR8fa3NzU0dHR363AwAAAAAAbPLzOf2ap1dzSSQS0XvvvacnT57o1q1b5665c+fOMAQLhUIqlUoedwkAAAAAAAA/XYogbODNN9/Uzs6Obty4od/97nfD9z948GAYfIVCISUSCX3729/2q00AAAAAAAD4YOWCsH/913+d+PFcLqdKpaIvfvGL+u1vfytJwxBssAuUaTAAAAAAAIDgWYkg7LnnnpN0EmTlcrlhwHWRRCKhe/fu6aWXXtK7776rZrOpUCg0/NgXv/hF13sGAAAAAADAclmJIKxUKqnb7apWq2lnZ0epVEpvvfXWxMfE43EdHBzozTffHL4vFApdeIYYAAAAAAAALrerfjdg17Vr1/TSSy/ppZdemulx7733norFon7wgx8MzwcDAAAAAABA8KzERNiiSqWS7t+/L8uy9PjxY7/bAQAAAAAAgA8CEYRJUiaT0cHBge7du+d3KwAAAAAAAPBBYIIw6eSg/Pfee8/vNgAAAAAAAOCDQAVhAAAAAAAACC6CMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAuGq3w0Ai+h0OorFYhPX7O7uand316OOAAAAAAAIrv39fe3v709c0+l0POrmLIIwrLR+v6/j4+OJa3q9nkfdAAAAAAAQbL1eb+rzdD8RhGGlra2taWNjY+KacDjsUTcAAAAAAARbOBzW5ubmxDWdTkf9ft+jjsaFLMuyfLkysIBYLKbj42Ntbm7q6OjI73YAAAAAAIBNfj6n57B8AAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIFz1uwFgEZ1OR7FYbOKa3d1d7e7uetQRAAAAAADBtb+/r/39/YlrOp2OR92cRRCGldbv93V8fDxxTa/X86gbAAAAAACCrdfrTX2e7ieCMKy0tbU1bWxsTFwTDoc96gYAAAAAgGALh8Pa3NycuKbT6ajf73vU0biQZVmWL1cGFhCLxXR8fKzNzU0dHR353Q4AAAAAALDJz+f0HJYPAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQ5gPDMJROp32tWS6XlU6nFY1GFQqFtLW1pWw2q2azOXcPbtQEAAAAAABwCkGYg0zTVCgUmvqytbWleDzuS81ms6loNKpisShJqtVqarfbKpVKarVaSqfTSqfTMk3T9uftRk0AAAAAAACnXfW7gcukWq3aXjsIjbys2Ww2h1NjuVxOlUpl+LF4PK5MJqNkMqlms6lkMqnDw0NFIhHPawIAAAAAALghZFmW5XcTl0U0GrU19ZRKpdRoNDytaZqmnnvuOZmmqXg8rna7fe46wzC0tbXlW027YrGYjo+Ptbm5qaOjo4XrAQAAAAAAb/j5nJ6JMIdUq1WZpqlCoTD1rK7t7W3Pa2az2WGgNmlybDDFVa/X1Ww2Va1WlcvlPKsJAAAAAADgFibCHDKYeLpoKsrPmqMTWZLU7XYnbk+s1+vKZrOSpEgkom6360nNWTARBgAAAADAavLzOT2H5TugXq/LMAzb5355XbNUKg1fT6VSU8/oymQyw9dN01S9XvekJgAAAAAAgJsIwhywt7enSCSimzdvLmXN0QP3E4mErceM3oHy3r17ntQEAAAAAABwE0HYglqtllqtlkzTVDQa1dbWlvL5/EITT07WbLVaY2/fuHHD1uNGw63T13WjJgAAAAAAgNsIwhZ0euuiYRiqVqvKZrMKhULKZrNngiMvazabzbG3R6eyJjm9bvR6btQEAAAAAABwG0HYAgzDOBMKnVav15VMJpXP532p+fDhw7G3p53lNfDss8+OvX1wcOBqTQAAAAAAALdd9buBVRaPx1WpVGSaptrttprNpgzDOHdttVrVwcGBDg8PPa15+rHzTm+N3rnSjZoAAAAAAABuIwhbUC6XG3vbNE1Vq1Xt7e3JNM2xj7VaLaXTaTUaDc9qXhSizWr0um7UBAAAAAAAcFvIsizL7yYuq3q9rtu3b58JfEqlkgqFgic1Q6HQ2Nt2v93NZlPpdHr4diaTUa1Wc63mrGKxmI6Pj7W2tqaNjY25aoza3d3V7u7uwnUAAAAAALis9vf3tb+/v3CdTqejfr+vzc1NHR0dOdCZfUyEuSiTySiVSmlnZ2fsYPi9vb25gzA3atrhxvSWEzX7/b6Oj48XrtPr9RauAQAAAADAZdbr9Rx5Du4ngjCXRSIRHR4eKplMDoMr0zTVbDaVSqVcrxmJRBwJnEYPxHej5rycmggLh8ML1wAAAAAA4DILh8Pa3NxcuM5gIswPBGEeuXv3rpLJ5PDtRqMxdxA2S8319XVHQqv19XVXa85rY2PD8zFKAAAAAACCyKljhQbHHflhzZerBlAikRgLqZw4cN5OzXmnrk4HXacnwpyuCQAAAAAA4DaCMA+NHhTvVc3t7e2xt+1Ocj158mTs7a2tLVdrAgAAAAAAuI0gzEPxeHz4uhPbAu3UHN06KdmfRGu322Nvj06euVETAAAAAADAbQRhHhoNrZzaFjit5unpLbuh1eiUVyQSGbuOGzUBAAAAAADcRhDmoYODg+HrTm2TnFYzkUiMBWQPHz6cue7p4MuNmgAAAAAAAG4jCPPQ6NZAp7YF2ql58+bN4eutVstW3dF1xWLRk5oAAAAAAABuIgjzUL1elyQVCgVPa+bz+eHrzWZzas3RNfF4/NyAzY2aAAAAAAAAbiII80i9XpdhGIpEIrpz546nNROJxFjwNAjPLlKr1YavXzS55UZNAAAAAAAANxGEzanZbCoajSoUCimdTk/cHmgYhm7fvi1JevDgwYUH5btRc6BSqQxf39vbu3CdaZqqVquSTrZa5nI5T2sCAAAAAAC4hSBsTrVabXgXxGazqWQyObZdcGDwsfX1dbXbbSUSCU9rDsTj8eFUVqvVUrlcPnfdzs6OpJO7Oo5OcXlVEwAAAAAAwC0EYXPKZrNn3letVhWNRpXNZpXP55VMJpVOp5XL5XR4eKh4PO55zVGZTEaNRkORSETFYlHZbFatVkumaQ7DtVarpUQiocePH0+dMnOrJgAAAAAAgBtClmVZfjexqgzDUKlUUrPZ1JMnT2SapiKRiNbX15VIJHTr1i2lUqmZwh83ap6nXC7r3r17MgxjeI3t7W3l83llMpmlqXmRWCym4+NjbW5u6ujoyNHaAAAAAADAPX4+pycIw0oiCAMAAAAAYDX5+ZyerZEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCFf9bgBYRKfTUSwWm7hmd3dXu7u7HnUEAAAAAEBw7e/va39/f+KaTqfjUTdnEYRhpfX7fR0fH09c0+v1POoGAAAAAIBg6/V6U5+n+4kgDCttbW1NGxsbE9eEw2GPugEAAAAAINjC4bA2Nzcnrul0Our3+x51NC5kWZbly5WBBcRiMR0fH2tzc1NHR0d+twMAAAAAAGzy8zk9h+UDAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAAC4arfDQCL6HQ6isViE9fs7u5qd3fXo47GWZbUtyavWQtJoZA3/QAAAAAA4Kb9/X3t7+9PXNPpdDzq5iyCMKy0fr+v4+PjiWt6vZ5H3ZzVt6Sr35u85uPXpSsEYQAAAACAS6DX6019nu4ngjCstLW1NW1sbExcEw6HPeoGAAAAAIBgC4fD2tzcnLim0+mo3+971NG4kGVZUzZuAcsnFovp+PhYm5ubOjo68rudC33StzkRxml9AAAAAICA8PM5PU+/AQAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgXDV7waARXQ6HcVisYlrdnd3tbu761FHAAAAAAAE1/7+vvb39yeu6XQ6HnVzFkEYVlq/39fx8fHENb1ez6NuAAAAAAAItl6vN/V5up8IwrDS1tbWtLGxMXFNOBz2qBsAAAAAAIItHA5rc3Nz4ppOp6N+v+9RR+NClmVZvlwZWEAsFtPx8bE2Nzd1dHTkdzsX+qQvXf3e5DUfvy5d4bQ+AAAAAEBA+PmcnqffAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgXPW7AQAAAMAOy5L61uQ1ayEpFPKmHwAAsHoIwgAAALAS+pZ09XuT13z8unSFIAwAAFyArZEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEC46ncDwCI6nY5isdjENbu7u9rd3fWoIwAAMMqypL41ec1aSAqFvOkHAAC4a39/X/v7+xPXdDodj7o5iyAMK63f7+v4+Hjiml6v51E3AADgtL4lXf3e5DUfvy5dIQgDAOBS6PV6U5+n+4kgDCttbW1NGxsbE9eEw2GPugEAAAAAINjC4bA2Nzcnrul0Our3+x51NI4gDCttY2NDR0dHfrcBAAAAAABk73iiWCzm29QYh+UDAAAAAAAgEAjCAAAAAAAAEAgEYQAAALg03nnkdwcAAGCZEYQBAABgJdgJub5VJwwDAAAXIwgDAADA0nv6kfTdn9tb+52fSb2PXG0HAACsKIIwAAAALL2ftKQ//Nne2t//SXq75W4/AABgNRGEAQAAYOn94tezrf/ljOsBAEAwEIT5wDAMpdPphetsbW0pFAqpXq/P/Nhyuax0Oq1oNKpQKKStrS1ls1k1m825+3GjJgAAgCR1/+juegAAEAwEYQ4yTVOhUGjqy9bWluLx+ELXKhaLMgxj5sc1m01Fo1EVi0VJUq1WU7vdVqlUUqvVUjqdVjqdlmmavtYEAAAYFf2Mu+sBAEAwXPW7gcukWq3aXjsIjebRbDZVLpfnetxgEi2Xy6lSqQw/Fo/HlclklEwm1Ww2lUwmdXh4qEgk4nlNAACA0158QXrvN/bXf/kF93oBAACri4kwB+3t7dlal0ql5p4IM01T2Wx2ocfF4/GxwGpUrVaTdLJ9c9p13KgJAABwnm8mpM9+yt7az31aejnhbj8AAGA1MRHmkGq1KtM0VSgUpp7/tb29Pfd1bt++rfX1dUmaaathNpsdrp80jTaY4qrX62o2m6pWq8rlcp7VBAAAOM+1Z6Qff0X6lo2jUd/8qhR+xvWWAADACgpZlmX53cRlsLW1JUlqt9uuXaNarSqfz+vw8FA7OzvDEKpWqymTyVz4OMMwhv1JUrfbnbg9sV6vDye3IpGIut2uJzVnEYvFdHx8rM3NTR0dHS1Uy02f9KWr35u85uPXpSvMZgIALikn/19op9bbGembSfv9AQAA7/n5nJ6n3w6o1+syDGOhc7+mMQxD+XxehUJBicRss/6lUmn4eiqVmnpG12ioZprmuXeldKMmAADAor5+3e8OAADAMiMIc8De3p4ikYhu3rzp2jWy2awSicRYAGXX6CH+dkO00TPM7t2750lNAAAQTO888rsDAAAQFARhC2q1Wmq1WjJNU9FoVFtbW8rn845OPBWLRbVareGh87P2N+rGjRu2Hjcabp3+XNyoCQAALic7Ide36oRhAADAGwRhCzq9HdIwDFWrVWWzWYVCIWWz2TPB0SxarZbK5bIqlcpcd5psNptjb9utcXrd6OfgRk0AAHD5PP1I+u7P7a39zs+k3keutgMAAEAQtgjDMM6EQqfV63Ulk0nl8/m5rrGzs6NMJjP3XRYfPnw49va0s7wGnn322bG3Dw4OXK0JAAAun5+0pD/82d7a3/9Jepu/kQEAAJcRhC0gHo+rUqmoVCopl8tNnIyqVqtKJme7hdHgLot3796du0fDMMbennd6a/RumG7UBAAAl88vfj3b+l/OuB4AAGBWV/1uYNWdntQyTVPValV7e3syTXPsY61WS+l0Wo1GY2rder2uer2uRqNhe+LqPKdDq3mNfi5u1AQAAJdP94/urgcAAJgVE2EOi0QiKhQK6na7qtVqZ0KsZrOpcrk8sYZpmspms8rlckqlUgv1M2/YdLrvJ0+euFoTAABcPtHPuLseAABgVkyEuSiTySiVSmlnZ2fsYPi9vT0VCoULH7ezszPcdrks3JjecqJmp9NRLBZbuM7u7q52d3cXrgMAAP7diy9I7/3G/vovv+BeLwAAYHH7+/va399fuE6n03Ggm/kQhLksEono8PBQyWRyGIaZpqlms3nutFe5XFar1dLh4aFj13cicBqd5nKj5rz6/b6Oj48XrtPr9RauAQAAxn0zIb32L/YOzP/cp6WXE+73BAAA5tfr9Rx5Du4ngjCP3L17d+yw/EajcSYIa7VaKhaLKpVKSiSc+U1wfX3dkdBqfX3d1ZrzWltb08bGxsJ1wuHwwjUAAMC4a89IP/6K9K369LVvflUKP+N6S0OWJfWtyWvWQlIo5E0/AACsgnA4rM3NzYXrdDod9ft9BzqaHUGYRxKJhFKplJrNpqTzD5zPZrNKJBITt03Oat6pq9NB1+mJMKdrzmtjY0NHR0cL1wEAwC/LGsg41dc3rk8Pwt7OnKzzUt+Srn5v8pqPX5euEIQBADDk1LFCsVjMt8kygjAPpdPpYRB2WrlclmEYSqVSymazU2uNhkp7e3u6d+/e8O1bt24pk8lIkra3t8fOJzNN01YAdfog+62treHrbtQEACColjWQ8bKvr3scggEAgOAiCPNQPB4fvn56W+CHH34oSRcGZZO0Wq2xYCoejw+DsNHtmNLJJJqdbZftdnvs7dFtnG7UBAAAAAAAcNua3w0EyWgQ5sS2QDu2t7fH3j5vS+Z5RifOIpHIWO9u1AQAAAAAAHAbQZiHDg4Ohq+n0+mxj5VKJVmWZftlNESq1WpjHyuVSsOPJRKJsdDt4cOHM/d6OvhyoyYAAAAAAIDbCMI8NLo10MttgTdv3hy+PrqFcpLRdcVi0ZOaAAAAAAAAbuKMMA/V6ye3THLyrpB25PN5VatVSfbOIBtdE4/Hzw3t3KgJAAAwyVro5ID+aWsAAAAuwkSYR+r1ugzDUCQS0Z07dzy9diKRGAueBoHcRWq12vD1iya33KgJAAAwSSgkXVmb/BLyIQizLOmT/uQXy/K+LwAAcBZB2Jyazaai0ahCoZDS6fTE7YGGYej27duSpAcPHnh2UP6oSqUyfH1vb+/CdaZpDie9UqmUcrmcpzUBAABWTd+Srn5v8kufIAwAgKVAEDanWq02vAtis9lUMplUPp8/s27wsfX1dbXbbSUSCY87PRGPx4dTWa1WS+Vy+dx1Ozs7kk7u6jg6xeVVTQAAAADLiwlIAKuOIGxO2Wz2zPuq1aqi0aiy2azy+bySyaTS6bRyuZwODw/H7vToh0wmo0ajoUgkomKxqGw2q1arJdM0h4Fdq9VSIpHQ48ePbU2uuVETAAAAwHJiAhLAqiMIm1MqlVK73VYul1M8Hh8LeFqtlp48eaI7d+6o2+2qVCo5HgC1221ZliXLspTJZGbqe9CTYRja2dkZhnfr6+uq1Wo6PDycqV83agIAAAAAADiNu0YuIB6Pj52TtUoKhYLjd690oyYAAAAAAIBTmAgDAAAAzvHOI787AAAATiMIAwAAwFxWOSiy0/u36qv9OQIAgLMIwgAAAHDGZQ6Knn4kfffn9tZ+52dS7yNX2wEAwDbu3Lo4zggDAADAmFmDohf/Wgo/c/7H10LSx69PrrEWmqm9hf2kJf3hz/bW/v5P0tst6e//zt2eAACwY3Dn1kk+fl264vH/W1cJE2EAAABLzuupq3mCoouEQtKVtckvIY9/Wf/Fr2db/8sZ1wMAgOVFEAYAAOCjZdyCeNmDou4f3V0PAACWF0EYAACAT5b1rKrLHhRFP+Pu+nlx7gsAAO7jjDAAAACfLOtZVcsaFDnlxRek935jf/2XX3Cvl1Gc+wIAgPuYCAMAAPDJsm5BfHHG4MeroMgp30xIn/2UvbWf+7T0csLdfgAAgHeYCMNK63Q6isViE9fs7u5qd3fXo44AALBvWbcgfjMhvfYv9qbVVjEouvaM9OOvnJy9Ns2bX734jpgAAOCs/f197e/vT1zT6XQ86uYsgjCstH6/r+Pj44lrer2eR90AAILCsk62sU2yFpp+N0SntyA61VcQgqJvXJ/++b2dOVkHAADs6/V6U5+n+4kgDCttbW1NGxsbE9eEw2GPugGA1eZUiBIETp3l5PRZVU6eMUVQJH3dwc/tnUfSy0nn6gEAsKzC4bA2Nzcnrul0Our3+x51NI4gDCttY2NDR0dHfrcBAJfCsh7UfZkDulXfguhkULTK3nk0fc236tKVtdUMDi/zv0EAgPPsHE8Ui8V8mxojCAMAAEttWQM6JwRhC+Jl9/Qj6bs/t7f2Oz+TXvzr1fs+XuZ/gwCA4OGukQAAAD6yMyF02bcgrrKftOxN9EnS7/8kvd1ytx8AADAZQRgAAMCSYwvi8vrFr2db/8sZ18/LsqRP+pNfrCnbHQEAuIzYGgkAwArj7B7AX90/urt+XmxnBADgfARhAAB4zMnwiie7gL+in3F3PQAAcBZBGAAAHiO8Ai6PF1+Q3vuN/fVffsG9XgAAwHScEQYAAADM6ZsJ6bOfsrf2c5+WXk6420+QcA4aAGAeTIQBAGAT53GtNr5/cMO1Z6Qff0X6Vn362je/KoWfWex67zySXk4uVuOyYLoWADAPgjAAAGziSddq4/sHt3zj+vQg7O3MybpJ3nk0/VrfqktX1qbXAgAA5yMIAwAAjmP6avWthU6CwWlrYM/XpwRXTz+Svvtze7W+8zPpxb9efLoMAIAgIggDAACOY/pqedndWhcKXe7vz7IFfT9pSX/4s721v/+T9HZL+vu/c7cnAAAuIw7LBwAAuCTsbq2zs+6yC4VOthhOevFyYvEXv55t/S9nXA94if/GAFhmBGEAAAAu8PqJ4Kxb63ofudoOZtT9o7vrEWxO3mGTwB3AqmNrJAAAwIyW8VBzttattuhn3F2Pizl5puGyno/o1HZ1zrIDcBkQhAEAAMxgWZ8IzrO1jiBsebz4gvTeb+yv//IL7vUSNE6eaXjZz0ckcAdwGRCEAcAKWta/OANB4PQTQacObWdr3Wr7ZkJ67V/s/Wx97tPSywn3e4K/lvH/9QTuAC4DgjAAWEGX/S/OwDJz+omgU3dnZGvdarv2jPTjr5xsqZ3mza86M2Vo9w6iXtfCiWX8fz2BO4DLgMPyAQAAZrCsTwRfnHGrHFvrlo+d8+Tezthb5+SB5hyOjgECdwCXAUEYAACwbVmf6HrZ17I+EfxmQvrsp+ytZWvd6vq6jRDMyTuIOn03UifvXgjvEbgDuAwIwgAAgKTlnfpYtr6W9YngYGudHU5trcNymuccOy9qSf++3W/Sy7RzseAfAncAlwFBGAAAcHzqwynL2NcyPxF0cmsdVtc859h5UcsPyzrFuqoI3AFcBgRhWGmdTkexWGziy/7+vt9tAoCv7DwRdHrqwynL2NeqPxG0s7UOq83Jc+yW9Uw8afmmRYPisgfubN8FFre/vz/1eXqn0/GtP+4aiZXW7/d1fHw8cU2v1/OoGwDwnt0nglfWJj8pcfpOiE7xui+7d777xvXpd/db5SeCmM1a6OTufdPWeMXJc+yW9Uy8WadFX/zr5QulL7NVDtyX8W6dwKrp9XpTn6f7iSAMK21tbU0bGxsT14TDYY+6AQDn2AlknHwiuKxTH0725VRoaNcqPxHEbEKh5XpS/OIL0nu/sb9+0jl2TtZy0jzTol6E9wCAk+fgm5ubE9d0Oh31+32POhpHEIaVtrGxoaOjI7/bAICZOBXIOPlEcFmnPpzqi+kRBMk3E9Jr/2Lvvw/TzrFzspaTlnWKFQAg7e7uand3d+KaWCzm29QYZ4QBAOAhJw9/d/IQaz/uhGgnEHSqr2U8awxwi5Pn2C3rmXjLOsUKAFh+BGEAAHjIyUDGySeCTt8J0alDrJ3qa9XvfAfMyskDzZfxcPRlnWIFACw/gjAAADzkZCDj5BNBJ6c+nJx6c6ovpkeAs5w8x87rM/H8mGIFAFwOBGEAAHjIyUDG6SeCTk19OL0N0Ym+mB4BLhenp1gBAMHBYfkAAHjIyUDGj0Os7Ux9+HGI9bS+lvXOd8CotZD08evT1+Dfp0W/VZ++1suzywAAy4+JMAAAPOTkFBeHWNvH9AhWQSh0crfYSS8hgrChZTy7zA47ZygCANzDRBgAAB5yeorrG9enT0RwiHVwpkeYKMJl8M4j6eWkM7W8PrvM7o1CrqwtX0AHAEHBRBgABJxlSZ/0J79Ylt9dzm/ZPj8/prg4xPrEqk6PzIKJIiw7p+4o6zU7/Th5oxAAgHuYCAOAgOtb0tXvTV7z8evSFQ+fPFvWSV+TrIXsPaFfxs9vGae4nOTH2WVO8To0BIJk1qDoxb/2ZjrTqSmueW4Usuj5iE5ychIPAJYZE2EAgKUzCK8mvUwLyvzi1BTDKgcyy3p2GQB/OX1HWSc4OcU1z41CvLKqk3gA4AYmwgAAsImzX+y77FNvnMUFzM6PO8pO4+QU1zLeKERa3kk8J6e/AWAWBGEAANiwrE8kVtkqT72FQt5upwUug2UMipwM5/y4UYid7YzLumVzGY8uABAMBGEAANiwrE8kAOA8yzi1uIx3lHUynHvxBem939ivNe1GIU5NIS/jJB4A+IkzwgAAsGGZz34BgNOW8Q6iy3hHWSfDuW8mpM9+yl6daTcKcfLssmWcxMNslu0O2MCqYyIMAAAbeCIBAItZxjvKOjnFNbhRyLTzEaXpNwpxcgp5GSfxgsKpc9DYRgo4iyAMAAAbeCIBIKic2mbpZFDkFKfDOaduFOLkdkant2zCPgIsYDmxNRIAABuWcUsPAHjByW2Wdu4U6+UdZQfhnB1OhXN2bhTi5BSyk1s2AeAyYCIMAAAblnFLj9OW8XBtAMFj946yTv03y6kpLic5OYW8jJN4AOAngjAAAGwIwhOJUGg5t2cQ0AE4j5f/zbIbzjnF6e2Myxj2Ocmps7iCgK8VQBAGAIBtl/2JxLJy6skugRqAVeHHFLLXYZ+TOIvLPr5WAEEYAACO8vqJBOGOfcs68QYApy3zFDL/3wGw6gjCsNI6nY5isdjENbu7u9rd3fWoIwDwFuEOAFxOyzqFzP93AEyzv7+v/f39iWs6nY5H3ZxFEIaV1u/3dXx8PHFNr9fzqBsAwAATAwDgvlXezgjg8ur1elOfp/uJIAwrbW1tTRsbGxPXhMNhj7oBAAwwMQAAABBM4XBYm5ubE9d0Oh31+32POhpHEIaVtrGxoaOjI7/bAICZMC0FAACAy8rO8USxWMy3qTGCMAAAPMa0FAAAAOCPNb8bAADAb+888rsDAAAAAF4gCAMAXGp2Qq5v1QnDAAAAgCBgayQAYCW980h6OTl5zdOPpO/+3F697/xMevGvpfAzC7cGALgAZyQCAPzGRBgAXFJeTzhZlvRJf/KLZdmr5dQU109a0h/+bO+av/+T9HbL3loAwHxCIenK2uSXEEEYlhxT5MBqYyIMAFaQ3aDoypr0jevu9yNJfUu6+r3Jaz5+ffoh8U5Ocf3i1/bqDPzy19Lf/91sjwEAAJfHMv6OBcBZBGEAsGIu+3a/eaa4Lgqvun+c7dqzrgcAYBRbP1fbZf8dC8AJgjAAWDFOBkXLyMkpruhnZqs163oAwOpzMrwKhaZPPmN5XfbfsQCc4IwwAFgx8wRFq8TJKa4XX5it1pdnXA8AWH2cW4aBy/47FoATBGEAsGIu+3Y/J6e4vpmQPvspe3U+92np5cRs1wYAAO7x+lD6y/47FoATbI0EgAks6+QQ+EnWQt7+pfiyb/d78QXpvd/YXz9piuvaM9KPv3JyqO00b36Vcz4AAJfTMp5dtoyH0l/237EAnGAiDAAmGNwJcdLLtKDMaX5s9/PyL7JOT3HZ+eX57Qx3fgIAXF7Ltv1z1kPpex+52s4QRyoAwUAQBgArxumgyO5fZL0KwwZTXHY4NcX1dUIwAAA8M8+h9F7gSAUgGAjCAGDFOBkULetfZJniAgDg8lrWQ+n9+GMcAO9xRhgArKBvXJ9+7pWdoGiVbxPOFBcA4DJbxnO9nLLMh9I79TsWgOXFRBgAXFJ2gqJl/YssAABBt2znejlp1Q+l549xwGojCAOAAFvmv8gCAIDLiUPpAfiJIAwAAmzV/yILAABWD4fSO8/LO3wDq44gDAACjL/IAgAAr/lxKP0qB0XLdodvYNURhAFAgPEXWQAA4Acn7xC9ykHRtJ6W9Q7fwCojCAOAAOM24QAAYFnZOZR+mYMiJwK6ee7wDWAygjCstE6no1gsNvFlf3/f7zaBpebkX2QBAAC8tKxBkVMBHXf4xira39+f+jy90+n41t9V364MOKDf7+v4+Hjiml6v51E3wGSWJfWtyWvWQst5K3RuEw4AAJbRPEHR3/+dO72MmiegO68v7vCNVdTr9aY+T/cTQRhW2tramjY2NiauCYfDHnUDTNa3pKvfm7zm49elK0sYhAEAACyjZQ2KnArouMM3VlE4HNbm5ubENZ1OR/1+36OOxhGEYaVtbGzo6OjI7zYAAAAA+GBZgyKnAroXX5De+439OtzhG8tgd3dXu7u7E9fEYjHfpsYIwgAAnnnnkfRy0u8u5rcWOpnam7YGAAB4Y1mDIqcCum8mpNf+xd42S+7wDdjDYfkAAEes8q3L7QqFpCtrk1+W8Yw3AAAuq28mpM9+yt5aL4OiF2cM3C4K6LjDN+A8JsIAAAub9c5IL/715F/UmLwCAAB2DIKib9Wnr/UyKHJykusb16d/ftzhG7CPIAwAsDCn7ow0EAo5d9MAQjUAAC63ZQyKvA7ouMM3YB9bIwEAC5vnzkheYTsjAADwIyiyE7wxyQV4jyAMALCwZb11OQAAwDJjkgvwHlsjASzEsqS+NXnNWoiJm8tuWW9dDgAAAACjmAjzgWEYSqfTttfm83ltbW0pFAopGo0qmUwqn8/LMIy5eyiXy0qn04pGowqFQtra2lI2m1Wz2Vyqmlh+fUu6+r3JL9OCMqw+p+6MBAAAAABuIghzkGmaCoVCU1+2trYUj8en1iuXy9ra2lK1Wh2GXqZpqtVqqVqtamtrS+VyeaYem82motGoisWiJKlWq6ndbqtUKqnVaimdTiudTss0TV9rAlgty3rrcgAAAAAYxdZIB1WrVdtrB6HRRdLptJrNpiKRiFKplOLxuAzDUKvVGpsEKxaLisfjymQyU6/ZbDaHk2i5XE6VSmX4sUGNZDKpZrOpZDKpw8NDRSIRz2sCWD3LeutyAAAAABjFRJiD9vb2bK0bBFsXKRaLajabKpVK6na7qtVqKpVKY5NWo7LZ7NRrmqY5XBePx8cCq1G1Wk3SyZbMaXXdqAlgdXFnJAAAAADLjokwh1SrVZmmqUKhMPX8r+3t7Qs/ZhiGyuWyGo2GUqnUuWsKhYLa7fbYBFqr1VIicfFeo2w2O9yaOGkabTDFVa/X1Ww2Va1WlcvlPKsJ4HLjzkgAAAAA/EQQ5pBSqaR4PH5mWmtWxWJRpVLpwhBs9HqjQViz2bwwCDMMY+zA+ps3b06sfevWLdXr9WE/54VWbtQEAAAAAABwE0GYA+r1ugzDuHBr4CwGU2XTRCKR4blhg7cvMhrOpVKpqWd0jZ43Zpqm6vX6mTPI3KgJAAAAIBjWQtLHr09fAwBOIwhzwN7eniKRyNSpKDsajYbttU+ePBm+Pmm75ejk2KTtk6NGQ7Z79+6dCa3cqAkAAAAgGEIh6coSBl0EdMDlx2H5C2q1Wmq1WjJNU9FoVFtbW8rn88NtgG4xTXN4PlcqlbowjGq1WmNv37hxw1b90XqnPxc3agIAAACA30Ih6cra5JcQQRiw0gjCFnT6kHjDMFStVpXNZhUKhZTNZs8ER064f/++pJMpq8FdGc8zeo7XYL0dp9eNfg5u1AQAAAAAAHAbQdgCTh8Yf556va5kMql8Pu/YdU3TVD6fVyKRUKPRmHg+18OHD8fennaW18Czzz479vbBwYGrNQEAAAAAANxGELaAeDyuSqWiUqmkXC43cTKqWq0qmUwufE3DMJRMJhWJRPTgwYOp01iDM7lGe7bj9Lp2u+1qTQAn3nnkdwcAAAAIMn4fxWXHYfkLyuVyY2+bpqlqtaq9vb3hGV4DrVZL6XR6pgPxR9XrdWWz2eHb0WhUpVJp4l0mT4dW8xr9XNyoCayydx5JL9vIue38UvGt+snZE9+4vnhfdnEoLAAAQDAs6++jgJeYCHNYJBJRoVBQt9tVrVY7s22w2WyqXC7brmeapsrlsra2tsZCsIFisXju+0cfP4/TfY/eodKNmsCysvvLwrR1Tz+Svvtze9f8zs+k3kf21jqBQ2EBAAAuP6d/H7Us6ZP+5BfLWrhtwHFMhLkok8kolUppZ2dn7GD4vb29iVNco5rNptrttlKp1IVnktXrdZXLZds15+HG9JYTNTudjmKx2MJ1dnd3tbu7u3AdXC6z/rLw4l9L4WfO//hPWtIf/myv1u//JL3dkv7+7y5ewxQXAAAAZuH076N9S7r6vcl1Pn5dusLvpJfK/v6+9vf3F67T6XQc6GY+BGEui0QiOjw8VDKZHIZhpmmq2WwqlUpNfXwmk1Emkxl7X7VaVbFYHAuSisWicrncmamrSCTiSOA0WteNmvPq9/s6Pj5euE6v11u4Bi4fJ39Z+MWvZ7v2L389+RePUIhfKgAAAGCf07+PIph6vZ4jz8H9RBDmkbt3744dlt9oNGwFYefJ5XJKpVJKJpNjgVS1Wj0zFba+vu5IaLW+vu5qzXmtra1pY2Nj4TrhcHjhGrh8nPxlofvH2WrNuh4AAACYhN9H4YRwOKzNzc2F63Q6HfX7fQc6mh1BmEcSiYRSqdRwa+OiB87H43E9ePBgLFx7+PDhmXXzTl2dDrpOT4Q5XXNeGxsbOjo6WrgOcB4nf1mIfma2WrOuBwAACCqOjLCH30fhBKeOFYrFYr5NlnFYvofS6bSj9RKJxNi2yfPCte3t7bG37U5ynT7Ifmtry9WawDJy8peFF1+YrdaXZ1y/DAa/hE564ZdQAADgNG78Y08Qfh8F7CAI81A8Hh++7sS2QEm6devW8PXzAqnRiTHJ/iRau90ee3t0G6cbNYFl5OQvC99MSJ/9lL06n/u09HJitmsvA34JBQAAWF5B+H0UsIOtkR4aDcKc2BYonUyFTap5enrLMIyxx1xkNFSLRCJjvbtRE1hG30xIr/2LvQPzp/2ycO0Z6cdfkb5Vn17rza9efPdJAAAABItTWz/5fRQ4wUSYhw4ODoavO71NUjobUEknQdloQHbeOWLnGe31dF03agLLaPDLgh12fln4xvXpdd7O2FsHAACA5ebUsRFOTt3z+yhAEOap0a2BTm0LHN2WeFG4dvPmzeHrrVbLVt3RdcVi0ZOagFMsS/qkP/nFsuzV8vqXha/zSwcAAMClsKrHRvjx+6iTv78D07A10kP1+skMaqFQcKzmIFyKRCJjB+ePyufzqlarkjS8a+Uko2vi8fi5oZ0bNQGn9C3p6vcmr/n4demKQ794EF4BAAAA8/P693cEGxNhHqnX6zIMQ5FIRHfu3HGs7t7eniTp7t27F65JJBJjwdMgkLtIrVYbvn7R5JYbNQEAAAAAANxEEDanZrOpaDSqUCikdDo9cXugYRi6ffu2JOnBgwcTD8ovl8tKJpMqFovn3gVy1GBNoVC4cBpsoFKpDF8fhGfnMU1zOOmVSqWUy+U8rQkAAAAAAOAWgrA51Wq1YVDVbDaVTCaVz+fPrBt8bH19Xe12e+LdFU3TVLFYVKvVUrlcVjQavXB6KpvNqlwuq1QqqVQqTe03Ho8Pp7IG9c+zs7Mj6WSr5egUl1c1AQAAAAAA3EIQNqdsNnvmfdVqVdFoVNlsVvl8XslkUul0WrlcToeHh4rH4xNrRiKRM2sGgVg2m1WxWFQ6nVY0GpV0cvj+LOeNZTIZNRoNRSIRFYtFZbNZtVotmaY5DOxarZYSiYQeP348cXLNzZoAAAAAAABuIAibUyqVUrvdVi6XUzweHwt4Wq2Wnjx5ojt37qjb7apUKtkOgA4PD1UoFJRIJM7UNAxD2WxWjx8/Vq1WmxqsXdT3oCfDMLSzszMM2tbX11Wr1XR4eDhTYOVGTQAAAAAAAKdx18gFxOPxsXOynBCJRGxtdVxUoVBw9O6VbtUEAAAAAABwChNhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAADHvfPI7w6AswjCAAAAAADATOyEXN+qE4Zh+RCEAQAAAAAA255+JH335/bWfudnUu8jV9sBZnLV7waARXQ6HcVisYlrdnd3tbu761FHAAAAAHC5/aQl/eHP9tb+/k/S2y3p7//O3Z6wPPb397W/vz9xTafT8aibswjCsNL6/b6Oj48nrun1eh51A0y2FpI+fn36GgAAAGCZ/eLXs63/5a8JwoKk1+tNfZ7uJ4IwrLS1tTVtbGxMXBMOhz3qBhd555H0ctLvLvwXCklXCLoAAACw4rp/dHc9Vls4HNbm5ubENZ1OR/1+36OOxhGEYaVtbGzo6OjI7zYCze4hmVfWpG9cd78fAAAAAO6Kfsbd9Vhtdo4nisVivk2NcVg+gLmt8iGZ3L0GAAAAmM+LL8y2/sszrgfcRBAGYG7zHJLpBW7lDAAAALjnmwnps5+yt/Zzn5ZeTrjbDzALtkYCmNsyHpI565Tai38thZ+5eA0H3AMAAADjrj0j/fgrJ39cnubNr07+fRvwGhNhAOa2jIdkOj2lFgqdnG826SVEEAYAAICAsXP+79sZzgnG8iEIAzC3ZTwkc54pNQAAAADO+zohGJYQQRiAuS3jIZnLOKUGAAAAAFgOBGEA5raMh2Qu45QaAAAAgMVwoys4hSAMwNwGh2Ta4dUhmcs4pQYAAADgYtz1HV4iCAOwkGU7JHMZp9QAAAAAnG/Wu773PnK1HQQAQRgA13l5SOYyTqkBAAAAOJ/Td31fRpYlfdKf/GJZfncZHFf9bgAAnPaN6yej05NwK2cAAADAf/Pc9f3v/86dXtzSt6Sr35u85uPXpSshb/oJOibCAAQSt3IGAAAA/Mdd3+E1gjAAAAAAAOAL7voOr7E1EgAAAACAAFgLnWzBm7bGSy++IL33G/vrues7FsVEGIClwSGSAAAAgHtCIenK2uSXkMdBGHd9h9eYCAOwNDhEEgAAAAiWwV3fp93sSuKu73AGE2EAAAAAAMA3du7mzl3f4RSCMAAAAAAAsNS46zucQhAGAAAAAACAQCAIAwAAAAAAQCBwWD5WWqfTUSwWm7hmd3dXu7u7HnUEAAAAAEBw7e/va39/f+KaTqfjUTdnEYRhpfX7fR0fH09c0+v1POoGAAAAAIBg6/V6U5+n+4kgDCttbW1NGxsbE9eEw2GPugEAAAAAINjC4bA2Nzcnrul0Our3+x51NI4gDCttY2NDR0dHfrcBAAAAAIGyFpI+fn36GgSPneOJYrGYb1NjBGEAAAAAAGAmoZB0haALK4ggDMBKeeeR9HJy8hr+OgUAAAAEk2VJfWvymrXQSZCHYCIIA7A03nk0fc236tKVNekb1y9ew1+nAAAAgGDqW9LV701e8/HrPF8IsjW/GwAASXr6kfTdn9tb+52fSb2PXG0HAAAAAHAJEYQBWAo/aUl/+LO9tb//k/R2y91+AAAAAACXD0EYgKXwi1/Ptv6XM64HAAAAAIAgDMBS6P7R3fUAAAAAABCEAVgK0c+4ux4AAAAAAIIwAEvhxRdmW//lGdcDAAAAAEAQBmApfDMhffZT9tZ+7tPSywl3+wEAAAAAXD4EYQCWwrVnpB9/xd7aN78qhZ9xtR0AAAAAwCVEEAZgaXzj+vQ1b2fsrQMAAAAA4DSCMAAr5euEYAAAAACAOV31uwEAAAAAABBcayHp49enrwGcQBAGAAAAAAB8EwpJVwi64BG2RgIAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACATOCAOwEA62BAAAAACsCoIwIIAsS+pbk9eshU4OrZyGgy0BAAAAAKuCIAwIoL4lXf3e5DUfv07ABQAAAODyeeeR9HLS7y7gF4IwrLROp6NYLDZxze7urnZ3dz3qCItgmyUAAACARbzzaPqab9WlK2vSN667308Q7e/va39/f+KaTqfjUTdnEYRhpfX7fR0fH09c0+v1POoGi2KbJQAAAIB5Pf1I+u7P7a39zs+kF/9aCj/jakuB1Ov1pj5P9xNBGFba2tqaNjY2Jq4Jh8MedQMAAAAA8MtPWtIf/mxv7e//JL3dkv7+787/uJPnKgdNOBzW5ubmxDWdTkf9ft+jjsYRhGGlbWxs6OjoyO82AAAAAAA++8WvZ1v/y19fHIRxrvL87BxPFIvFfJsaW/PlqgAAAAAAAA7q/tHd9bgcCMIAAAAAAMDKi37G3fW4HAjCAAAAAADAynvxhdnWf3nG9bgcCMIAAAAAAMDK+2ZC+uyn7K393KellxPu9oPlRBAGAAAAAABW3rVnpB9/xd7aN78qhZ9xtR0sKYIwAAAAAABwKXzj+vQ1b2fsrcPlRBAGAAAAAAAC4+uEYIFGEAbgXO888rsDAAAAAACcddXvBgDYY1lS35q8Zi0khULTa9kJub5Vl66sMTIMAAAAALg8CMKAFdG3pKvfm7zm49elK1OCsKcfSd/9ub1rfudn0ot/zSGSAAAAAIDLga2RQMD8pCX94c/21v7+T9LbLXf7AQAAAADAKwRhQMD84tezrf/ljOsBAAAAAFhWBGFAwHT/6O56AAAAAACWFUEYEDDRz7i7HgAAAACAZUUQBgTMiy/Mtv7LM64HAAAAAGBZEYQBAfPNhPTZT9lb+7lPSy8n3O0HAAAAAFbRO4+WsxYmIwgDAubaM9KPv2Jv7ZtflcLPuNoOAAAAACwdO8HUt+r21jlZC4sjCAMC6BvXp695O2NvHQAAAABcJk8/kr77c3trv/MzqfeRN7XgDIIwAOf6OiEYAAAAgAD6SUv6w5/trf39n6S3W97UgjMIwgAAAAAAAP5/v/j1bOt/OWG9k7XgjKt+NwAAAAAAAOCEtZD08evT10zS/eNs15y03slacAZBGFZap9NRLBabuGZ3d1e7u7sedQQAAAAA8EsoJF2ZEnRNE/2Mc+udrLUq9vf3tb+/P3FNp9PxqJuzCMKw0vr9vo6Pjyeu6fV6HnUDAAAAAFh1L74gvfcb++u//II3tVZFr9eb+jzdTwRhWGlra2va2NiYuCYcDnvUDQAAAABg1X0zIb32L/YOuf/cp6WXE97UWhXhcFibm5sT13Q6HfX7fY86GkcQhpW2sbGho6Mjv9sAAAAAAFwS156RfvwV6Vv16Wvf/KoUfsabWqvCzvFEsVjMt6kx7hoJAAAAAAAw4hvXp695O2NvnZO1sDiCMAAAAAAAgBl93cHgyslamIwgDAAAAAAAAIHAGWFAAK2FpI9fn74GAAAAAIDLhCAMCKBQSLpC0AUAAAAACBi2RgIAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMB8YhqF0Om1rbavVUj6f19bWlkKhkEKhkLa2tlQsFmWa5tw9lMtlpdNpRaPRYc1sNqtms7lUNQEAAAAAAJxCEOYg0zSHYdWkl62tLcXj8am1stmsksmkqtWqDMMYfswwDJXLZUWjUVWr1Zl6bDabikajKhaLkqRaraZ2u61SqaRWq6V0Oq10Oj1TyOZGTQAAAAAAAKdx10gHzRJKDUKj85imqWQyORZ+XSSfz+vw8FCVSmXq2mazOZxEy+VyY4+Jx+PKZDJKJpNqNptKJpM6PDxUJBLxvCYAAAAAAIAbmAhz0N7enq11qVRq4kRYNpuVYRhKJBLD6ap2u61araZCoXBmfbVaVb1en3jNwYSZdBJQXRSc1Wo1SSdTZ4P1XtYEAAAAAABwCxNhDqlWqzJNU4VCYer5X9vb2xPrNJtNFQoFlUqlsY8NJqzy+byy2axardbwY7dv31Ymk7mwbjabHW5NnDSNNrhGvV5Xs9lUtVpVLpfzrCYAAAAAAIBbQpZlWX43cRlsbW1Jktrt9sJ14vG4Go3GxHWGYQyvOdBoNJRKpaau7Xa7E7cn1uv14eRWJBJRt9v1pOYsYrGYjo+Ptbm5qaOjo4VquemTvnT1e5PXfPy6dMXGbKaTtQAAAAAAF1vW53KX5Xmhn8/pl/xLsxrq9boMw5g4FWVHq9WSYRjDrYSTxOPxMxNjoxNio0bXpVKpqWd0jU6WmaZ57rZLN2oCAAAAALAM1kIngdKkl7WQ311iHgRhDtjb21MkEtHNmzcXqnPv3j3lcjnbh8mfnv768MMPz103eoh/IpGwVXv0DLN79+55UhOLe+eR3x0AAAAAwOoLhU6mqia9hAjCVhJB2IJarZZarZZM01Q0GtXW1pby+fxcE0+3bt06M+U1yekA6vRWyUF/o27cuDFz7dOfixs1MZ2dkOtbdcIwAAAAAAAuQhC2oNPbIQ3DULVaVTabVSgUOnOo/SSJRML2NJik4UH1A+fdibLZbE5dc57T60Y/BzdqYrKnH0nf/bm9td/5mdT7yNV2AAAAAABYSQRhCzAM40wodFq9XlcymVQ+n3fl+qPOOyj/4cOHY2/bDdqeffbZsbcPDg5crYnJftKS/vBne2t//yfpbTJGAAAAAADOIAhbQDweV6VSUalUUi6XmzgZVa1WlUwmHb3+aJCUy+XOXXM6LJt3emv0bphu1MRkv/j1bOt/OeN6AAAAAACC4KrfDay60wGUaZqqVqva29s7s3Wx1WopnU6r0Wg4cu1KpTJ8/aI7Vp4OreY1+rm4UROTdf/o7noAAAAAAIKAIMxhkUhEhUJBhUJB9Xpdt2/fHgt8ms2myuWyCoXCQtcxDGN4xlapVLpwKmvesOn0dscnT564WnNenU5HsVhs4Tq7u7va3d1duI5bop9xdz0AAAAAANPs7+9rf39/4TqdTseBbuZDEOaiTCajVCqlnZ2dsYPh9/b2Fg7CBneXjMfjC9eyw43pLSdq9vt9HR8fL1yn1+stXMNNL74gvfcb++u//IJ7vQAAAAAAgqnX6znyHNxPBGEui0QiOjw8VDKZHIZhpmmq2Wyee7i9Ha1WS9VqVZFIZOo2y0gk4kjgNDrN5UbNea2trWljY2PhOuFweOEabvpmQnrtX+wdmP+5T0svJ9zvCQAAAAAQLOFwWJubmwvX6XQ66vf7DnQ0O4Iwj9y9e3fssPxGozF3EHb79m1J0oMHD6YeVL++vu5IaLW+vu5qzXltbGzo6Oho4TrL7toz0o+/In2rPn3tm1+Vws+43hIAAAAAIGCcOlYoFov5NlnGXSM9kkgkxoKveQ+cz+fzarVaqtVqSiSmj/3MO3V1Oug6PRHmdE1M943r09e8nbG3DgAAAACAICII81A6nV7o8dVqVdVqVZVKRZlMxtZjtre3x962O8l1+iD7ra0tV2vCGV8nBAMAAAAA4EIEYR4a3cY467bAZrOpfD6vSqWiXC5n+3Gj2zEl+5No7XZ77O3RaTY3agIAAAAAALiNIMxDo0HYLNsCW62W0um0SqXSTCGYdHZ6y25oNTrlFYlExnp3oyYAAAAAAIDbCMI8dHBwMHzd7jZJwzC0s7OjQqGgQqEw8zUTicRY6Pbw4UNbjxvt9XTw5UZNAAAAAAAAtxGEeWh0a6CdbYGGYSiZTCqXy6lUKtm6hmEYKpfLY++7efPm8PVWq2Wrzui6YrF45uNu1AQAAAAAAHATQZiH6vW6JNma7DJNU+l0Wjdv3rQdgklSNps9E7Ll8/nh681mc2qN0TXxePzc0M6NmgAAAAAAAG4iCPNIvV6XYRiKRCK6c+fOxLWmaSqZTCoej6tYLMowjKkvzWZzeIh9IpEYq5dIJMaCp0Egd5FarTZ8/aLJLTdqAgAAAAAAuOmq3w2sqmazqWw2K9M0lUqlVCqVzgRQA4Zh6Pbt25KkBw8eTD0of2dnZxhwbW1tzdRXpVK58P2DWnt7e8pkMueuM01T1WpV0sn2zUmH87tREwAAAAAAwC1MhM2pVqsN74I4mMYa3S44MPjY+vq62u32hWHZQDKZtH3m1nkuCpni8fhwKqvVap05R2xgZ2dH0sldHUenuLyqCQAAAAAA4BaCsDlls9kz76tWq4pGo8pms8rn80omk0qn08rlcjo8PFQ8Hp9a040QbCCTyajRaCgSiahYLA6vZ5rmMLBrtVpKJBJ6/Pjx1Mk1t2oCAAAAAAC4ga2Rc0qlUmq32yqVSmo2m3ry5MlwQmwQ/Ny5c0epVMp2+OPFtFQqlVK321W5XNa9e/e0s7Mj0zQViUS0vb2tWq124RZHL2sCAAAAAAA4LWRZluV3E8CsYrGYjo+Ptbm5qaOjI7/budAnfenq9yav+fh16YqN2UwnawEAAAAAvMHzwrP8fE6/5F8aAAAAAAAAwBkEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBCu+t0AsIhOp6NYLDZxze7urnZ3dz3qCAAAAACA4Nrf39f+/v7ENZ1Ox6NuziIIw0rr9/s6Pj6euKbX63nUDQAAAAAAwdbr9aY+T/cTQRhW2tramjY2NiauCYfDHnUDAAAAAECwhcNhbW5uTlzT6XTU7/c96mgcQRhW2sbGho6OjvxuAwAAAAAAyN7xRLFYzLepMQ7LBwAAAAAAQCAQhAEAAAAAACAQ2BoJAAAAAADgkrWQ9PHr09fAGwRhAAAAAAAALgmFpCsEXUuDrZEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQOCukcCK4Ja7AAAAAAAshiAMWBHcchcAAAAAgMWwNRIAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEC46ncD/197d5OcOJb+e/zBt7qjBt0O4Ro5nJMSOxCuFVjsAJwrMMw9gH/GHd9wwMBzqBU4xQ6kXEEa7QDVpDI8KqNwd0dH9It1B3mlK4QACSQk0PcToQhj6+UIDkb++TlHwD5eXl7kw4cPG9e5v7+X+/v7A7UIAAAAAIDqenx8lMfHx43rvLy8HKg1qwjCcNTe39/l27dvG9d5e3s7UGsAAAAAAKi2t7e3rX+nF4kgDEft7OxMLi8vN65zfn5+oNYAAAAAAFBt5+fncnV1tXGdl5cXeX9/P1CLlhGE4ahdXl7K77//XnQzAAAAAACAJJue6MOHD4VVjTFZPgAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASiAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqASCMAAAAAAAAFQCQRgAAAAAAAAqgSAMAAAAAAAAlUAQBgAAAAAAgEogCAMAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBJ+KLoBwD5eXl7kw4cPG9e5v7+X+/v7A7UIAAAAAIDqenx8lMfHx43rvLy8HKg1qwjCcNTe39/l27dvG9d5e3s7UGsAAAAAAKi2t7e3rX+nF4kgDEft7OxMLi8vN65zfn5+oNYAAAAAAFBt5+fncnV1tXGdl5cXeX9/P1CLlhGE4ahdXl7K77//XnQzAAAAAACAJJue6MOHD4VVjTFZPgAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASiAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqASCMAAAAAAAAFQCQRgAAAAAAAAqgSAMAAAAAAAAlUAQBgAAAAAAgEogCAMAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBJ+KLoBwD5eXl7kw4cPG9e5v7+X+/v7A7UIAAAAAIDqenx8lMfHx43rvLy8HKg1qwjCcNTe39/l27dvG9d5e3s7UGsAAAAAAKi2t7e3rX+nF4kgDEft7OxMLi8vN65zfn5+oNYAAAAAAFBt5+fncnV1tXGdl5cXeX9/P1CLlhGE4ahdXl7K77//XnQzAAAAAACAJJue6MOHD4VVjTFZPgAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASmCOMAAn6/HxUd7e3uT8/HzrGHXgGNHHccro3zhl9G+cMvo3yq7meZ5XdCOAtPyJ9a6urko9Wf5/30V++N+b1/nP/xH5X9Rm5uJY+gmwK/o4Thn9G6eM/o1TRv/O16n8jVlkPyn5UwMAAAAAAABkgyAMAAAAAAAAlUAQVgDHcaTVau217XQ63asNo9FIWq2W1Ot1qdVq0mg0pNPpiGVZpdonAAAAAABAVgjCMuS6rtRqta1Lo9EQVVVT77vT6Uij0RDLsuT19XWnNlqWJfV6XQaDgYiIGIYh8/lchsOh2LYtrVZLWq2WuK5b6D4BAAAAAACyxl0jMzSZTBKv64dG27iuKw8PDzIajXZtVsCyrKASrdvtyng8Dn6mqqq0221pNptiWZY0m02ZzWaiKMrB9wkAAAAAAJAHKsIy9PDwkGg9XdcTVYSNRiNpNpti2/a+TQsqykS+B1ThwCrMMAwR+T4E01//kPsEAAAAAADICxVhGZlMJuK6rvT7/a3zf11fX2/dn23bouu69Pv9YP+9Xm/n9nU6nWBo4qZqNL+KazqdimVZMplMpNvtHmyfAAAAAAAAeSEIy8hwOBRVVWU4HGayP03Tlh4nCc/WcRxnacL629vbjet//PgxmIx/MBjEhlZ57LPMHh8f5e3tTc7Pz+X+/r7o5ogIbTpWZXyOaFMyZWxT2ZTxOaJNyZSxTWVUtuepbO0RoU3HrGzPU9naI0KbjlkZn6eytals7cmVh70ZhuGJiDcej3M7xnw+90QkWNIcq9vtBtvpup5om/CxDMM4yD7TuLq68kTEu7q62ms/eR/vP//1PPmfzct//nvYNuWpbG0qW3s8jzYlRZuSKVubytYez6NNSdGmZMrWprK1x/NoU1K0abuytcfzaFNStCmZsv2NeSx/Y2eBOcIy8PDwIIqibK2KKkp4Ev9opdk64TnMnp6eDrJPAAAAAACAPBGE7cm2bbFtW1zXlXq9Lo1GQ3q9XjAMsGjRifZ/+eWXRNuFw63oueSxTwAAAAAAgLwRhO0pOkm84zgymUyk0+lIrVaTTqeTyV0fdxWex0tEEt2tMm698DnksU8AAAAAAIC8EYTtITphfJzpdCrNZnOvOz7u4+vXr0uPFUVJtN1PP/209Pj5+TnXfQIAAAAAAOSNu0buQVVVGY/H4rquzOdzsSxLHMeJXXcymcjz87PMZrODtjHanl2rt+bzea77BAAAAAAAyBtB2J663e7SY9d1ZTKZyMPDg7iuu/Qz27al1WqJaZoHa9+6YC6t8LnksU8AAAAAAIC8MTQyY4qiSL/fl8ViIYZhrAwbtCxLRqPRwdqza9gUbffr62uu+wQAAAAAAMhbzfM8r+hGnDLXdeXm5mZpYnhFUWSxWKTaj+M40mg0gsfj8XilGi1OrVZbepz05bYsS1qtVvBY1/Wgki2Pfab15z//Wf7973+LiMjZ2f557l//+lf5y1/+svbnLy8v8v7+LmdnZ3J5eZlq39/eNv/86jzV7jJpU17K1qaytUeENiVFm5IpW5vK1h4R2pQUbUqmbG0qW3tEaFNStOn42iNCm5KiTcmU7W/MpO35+9//Ln/729/SHyDi/f1dRET+9Kc/yb/+9a+995eKh4PQNM0TkWAxTTPV9vP5fGn78XicaDtFUZa2S8o0zaXt2u12rvtM6+zsbGlfLCwsLCwsLCwsLCwsLCwsx7WcnZ3tnAvsijnCDuTXX3+VZrMZPDZNU3Rdz/24FxcXmczFdXFxkes+0/rxxx/ln//8p3ied5CKMAAAAAAAqi7LirBarSY//vhjBq1KhyDsQDRNE13XxbIsEcluwvltovNyJRUNusL7yWOfaf3jH//YeVsAAAAAAFBNTJZ/QOH5sQ7l+vp66XHSSq7oRPbh+cny2CcAAAAAAEDeCMIOSFXV4Ot9hgWmER6OKZK8Em0+ny89Dg/jzGOfAAAAAAAAeSMIO6BwELbPsMA0otVbSUOrcJWXoihLbc9jnwAAAAAAAHkjCDug5+fn4OtDDZPUNG0pdPv69Wui7cJtjQZfeewTAAAAAAAgbwRhBxQeGnjIYYG3t7fB17ZtJ9omvN5gMDjIPgEAAAAAAPJEEHZA0+lURET6/f5Bj9vr9YKv/btWbhJeR1XV2NAuj30CAAAAAADkiSDsQKbTqTiOI4qiyKdPn1Jvn/TOjHE0TVsKnvxAbh3DMIKv11Vu5bFPAAAAAACAPBGE7ciyLKnX61Kr1aTVam0cHug4jtzd3YmIyJcvX3aaKD86IX3aYGw8HgdfPzw8rF3PdV2ZTCYi8n34ZrfbPeg+AQAAAAAA8kIQtiPDMIIwyrIsaTabS8MFff7PLi4uZD6fi6ZpqY/luu5KFdXT01OqfaiqGlRl2bYto9Eodr2bmxsR+X5Xx3AV16H2CQAAAAAAkJea53le0Y04RpZlxd75UVEU0XVdLi4u5Pn5WWzbln6/L58+fUpVCea6rtzd3Ynruhvn4NJ1PRhumSRksyxLOp2OuK4r7XZbPn36JKqqyvPzswwGA7FtWzRNS1W5lsc+AQAAAAAAskZF2I50XZf5fC7dbldUVV0KeGzbltfXV/n06ZMsFgsZDoepAyC/eso0TfE8b+1imqYYhpG40kzX9aBNjuPIzc2N1Ot16XQ6cnFxIYZhyGw2S9XePPYJJDUajaTVagVDlRuNhnQ6nUQ3cdiHbdvS6/Wk0WhIrVYLjj0YDPaa0w8IK6p/RzmOI61Wa+t8kIBIsf22LO8ZnK6y9DF+LyMPXFejMjwAOEKmaXqKongi4um67pmm6c3nc88wDE9V1eD7i8Ui0+MuFguv3W57IrJxGY/HmR4X1VJU/46K9nf6NTYpst+W5T2D01WWPsbvZeSB62pUDUEYgKNjmmbwwdjtdmPX0TTNExFPVdXMPrQXi0VwMZBkWdc2YJOi+nfYYrHw+v0+F6JIrMh+W4b3DE5bGfoYv5eRF66rUUUEYQCOymKxCP5jparq2vXm83nwwanreibH1nXdExFP0zTPMAxvPp8H/y2LuzgVEc8wjEyOjWoosn/7hsOhp6pq0N/5gwvbFNlvy/CewWkrQx/j9zLywnU1qoogDMBRCV8Ebrv4y3LowHg89kTE6/f7a9eZz+fBf8z8RVGUvY6Laimqf/tms5k3m82Cx36/5w8ubFJkvy36PYPTV3Qf4/cy8sR1NaqKu0YCOBqO40ij0QgeLxaLjTdhmE6n0ul0ROT7DSgWi8XOx240GqKqqpimmaqNIiKmaYqu6zsfG9VQZP9ex7ZtaTabwePxeCzdbjfz4+B4Fdlvy/iewWkpYx/j9zKywnU1qoy7RgI4GsPhMPha1/WtdyJtt9vB167r7nxnJdu2xXEcMQxj67qqqi61098e2Kao/r0Jd/vFNkX22zK+Z3BaytjH+L2MrHBdjSojCANwNCaTSfC1pmmJtlFVNfj66elpp+M+PT1Jt9tNfPEZ/S/VH3/8sdNxUS1F9W9gH0X2W94zyBt9DKeM62pUGUEYgKMQ/e/PL7/8kmi78Af7rv+5+vjx48p/o5IeU0RWSrqBqCL7N7CrIvst7xnkjT6GU8Z1NaqOIAzAUbAsa+lx+D9Sm0TX26WcWtO0VEMRXNfd2AYgqsj+DeyqyH7LewZ5o4/hlHFdjaojCANwFL5+/br0OOkH6E8//bT0+Pn5OasmreU4ztJjJvTENsfUvwFfkf2W9wzyRh/DKTum/s11NfJAEAbgKEQ/BHf9z9V8Ps+sTeuELwq4kxOSOKb+DfiK7Le8Z5A3+hhO2TH1b66rkQeCMABHIfqBvatoeXUexuNx8PVgMMj9eDh+x9S/AV+R/Zb3DPJGH8MpO6b+zXU18kAQBuAo7PpBGy31fn193b8xGziOE8yXMBwOmccAiRxL/wbCiuy3vGeQN/oYTtmx9G+uq5EXgjAAlZL3f678u+Coqir9fj/XYwFRVB7gGBXZb3nPIG/0MZwyrqtxrAjCAByFNHeXOcR+4ti2LZPJRBRFEdM0czsOTs8x9G8gqsh+y3sGeaOP4ZQdQ//muhp5IggDsLfJZCK1Wi3TpdlsLh3j4uIik7ZmtZ84d3d3IiLy5csXSrdPCP0biFdkv+U9g7zRx3DKjqF/c12NPBGEATgKu/7HKVqyndd/rnq9nti2LYZhiKZpuRwDp6vs/RuIU2S/5T2DvNHHcMrK3r+5rkbefii6AQCOn67rYhhGpvuMfrBeX18Hk2WKfP8gTvLhG53Es9FoZNG8JZPJRCaTiYzHY2m325nvH8Wqev8G1imy3/KeQd7oYzhlZe7fXFfjEAjCAOxNVdXcS5ajQ8kcx0n0H6L5fL70WNf1TNtlWZb0ej0Zj8fS7XYz3TfKocr9G9ikyH7LewZ5o4/hlJW1f3NdjUNhaCSAo3B9fb302HGcRNuFS7gVRck00LBtW1qtlgyHQz6ssZcy9m9gmyL7Le8Z5I0+hlNWxv7NdTUOiSAMwFHQNG2pZPvr16+Jtnt+fg6+jn7o78NxHLm5uZF+v8/tnLG3svVvIIki+y3vGeSNPoZTVrb+zXU1Do0gDMDRuL29Db4Oz2uwSXi9wWCQSTscx5FmsyndbleGw2HibUajUSbHx2kqS/8G0iiy3/KeQd7oYzhlZenfXFejCARhAI5Gr9cLvrYsa+v64XVUVc1kHgPXdaXVasnt7W3iD2sRkU6nwzwh2KgM/RtIq8h+y3sGeaOP4ZSVoX9zXY2iEIQBOBqapi196E2n043rh+/0t+2/VpPJRAaDwcY5ElzXlWazKaqqButuWyzLCiYk5fbP2KTo/h0nept0IKrIfpvnsQERfi/jtBXdv7muRqE8ADgi8/ncExFPRDxN09aut1gsgvV0Xd+4T13Xg3VFxFssFrHraZq2tF6aZTwe73PaqIgi+3ccwzCWth0Oh4m3RXUU2W/zODYQxu9lnDKuq1FVBGEAjk74InDdBaD/4aooytYLzCQfrvt8WPM/B6RRRP+Os1gsPFVVl7bddJGMaiuy32Z9bCCK38s4ZVxXo4roRQCOkmmanqIonoh47Xbbm81m3mKx8EzTDD5cNU1L9AePvx9/MU1z6eftdnuvD+tut5vTs4BTdcj+HbZYLLx2u73y39zoout60C7AV1S/zfrYQBx+L+OUcV2NqiEIA3DUhsOhp2la8KGrKIqn67pnGEbifZim6amq6imK4vX7/RxbC6RD/8YxKrLfZnFsYBN+L+OU0b9RFTXP8zwBAAAAAAAAThx3jQQAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBIIwgAAAAAAAFAJBGEAAAAAAACohB+KbgAAAAAAAHmxbVuenp7EdV0Zj8dFNydzp35+QNaoCAMAAAAAnBTLsqTX60mj0ZBmsymj0Ugcxym6WUvq9brUajWxLCv1tmU/P9d1pdPpiG3bRTcF/4/fZ5rNpjQaDanValKr1aTRaEir1ZLBYLDT6zUajWQwGOTQ4vwQhAEAAAAATob/R/1kMilVOBRmWZa4risiIrqup9q27OdnWZb8/PPPoqqqaJoWfM8PXrYt9XpdJpPJ1uPYth2EieuWZrMpIiKTySTx8XdZwtIeq16vZ/8ihIxGI6nX69JqtWQymYht26IoirTbbWm326IoiliWJaPRSJrNptTrdRmNRon33+12xbZtaTQapeyPcWqe53lFNwIAAAAAgCxZliWtVit4rOu6mKZZYIv+v16vJ5PJRNrtthiGsdM+ynh+fnXQeDyWbre78vPpdCp3d3dBCBjW7XZ3Gtrpum4QDPp0XRfDMERRlKV1bduWwWAQW4WnqqqoqrqyjX8MEZHX11dxHGel/XGxyrZjjcfj1CFoGtHnWlEUGQ6Hsa+L67oymUzk4eEhWD9tG3u9nnz+/Fm+fPkSBKBlRRAGAAAAADhJ4WqdMgRFvnq9Lq7rimEY0m63d95Pmc5vWwjmiwZ4vtlstnOA4rpuUFmlKIr89ttvsYGWz3/+w9JEI47jLA39XCwWa48Xd6x9zjWJ6HDFpH3DH9IaDu+2vZ5hnU5HptNp7ue3L4ZGAgAAAABwILZt7zwssqwmk4kMBgPp9/tbQxNd12PDv+fn552P//r6Gnw9HA43hmAiItfX10uPt60fpaqqfPnyJdF20WOJSK4h0WAw2CkEE/n+PJimKaqqBt/r9XqJh0oahiGapsnNzU1s1V9ZEIQBAAAAAHAg/vA/XddTBzBlNJ1OpdfriaZpMhwOE20Tt94+d7z0K7MURUlUvZTF8+4PNUx7rDxfc3+ur/Cxdhl6a5rmUjvXDfGMYxiGuK4rNzc3qY97KARhAAAAAAAcyOfPn0Xk+zCyY+e6rtzd3YlIfLi1jqqqK1Vhtm3vfJdJP0RLOoTv4uJip+NEJanoy+pY2/jDGsOSVMfFUVV15bnsdDqJqrz8bf050sqIIAwAAAAAgAMID4u8vb0ttjEZ8MMRTdNSD/OMC84eHh5St8F13aBaqdfrpd5+H6qqxk7KX4TBYLASVCUNBuN8+vRp6bHruolfHz8AG41GiSvJDokgDAAAAACAA3h6ehKR73NElSE82cd0Og1CjmhokoSqqivh2XQ6TT23lH+3SE3Tlua2OpR9bnaQFf+uj2H7hGAi34dVRs8t6Vxh4df20OFkEgRhAAAAAICjNJ1OpdVqSb1el1qtJs1mU3q9njiOU3TTYk2nUxER+fjxY+L1y3p+4eqgXcOguKFzaavC/GGRu4Rxu3Jdt1STwUdDMJFsht7G3d0z7libtnUcJ/E2h0IQBgAAAAA4Ko7jSKPRkE6nI6+vrzIcDsU0Tfn48aNYliWNRmNr9YplWUHAFLc0Go21cxyFw6nw+tva7AdY24KjLM7PNxgM1p7jtqXZbMbu07KsYD6vfe6AqOv6ShVXmtDEsqzEz2mWondmLJpfaRgWd7fKtOKGuyadfD+8bZr54w7hh6IbAAAAAABAUrZtBwHNcDiUfr8f/EzXden3+9Lr9bYGFbquy2KxkF6vtxK+GIaxMVgxTVNEROr1uriuK/1+f+sf+341mKqqG4fwZXV+Pr9ySVVV6fV6a4/99evXlXBt3TmF7/CYdm6wqMFgsDR8zh/ml2RoX9pJ8rPy/PycSdCUlehNBhRFyWToraqqoijKUvVb0jm/wgGp4zgynU5LMYxUhIowAAAAAMCRcBwnCIna7fZSSBQ2Ho8TVyqNx+OdQwPXdUVRlEQVL37VzqYwII/zE/kejMznc+n3+9Jut2OXaMDR7XbXhlx+qCci8ssvvyRuR5xut7vy/Cd5Pl3XDdpxyHmo9rm7ZR7i2pJlSBd318ukQ3PD/ccPj8uAIAwAAAAAcBTC8x5tC0vSDMeKzi+V5I92P4RJUo3kum4QWGyaH+xQ5xc1Go2WAhVFUZaqvsKiwUsWE9RHn0PHcbZWHoUnyd9neGZS/lxXNzc3uR8rjbhQKssbMcTtK2kQFn5dPn/+nFWT9kYQBgAAAAAovel0ujQv1bYAJk1VTLTyajKZbJ0M3Q+KklQj+SGAoihrQ5u8zu/19XVjUOQ4zsowy03zQEUDqiyCsLigblvQl+b538Z13a3zpTUaDen1eqWaJF/k++sbFVfFtau41zfpc/DTTz8tbVOGmzyIEIQBAAAAAI5A+G6CScKPtFUxcWHYOq7rimVZW+f78vnB0u3t7dp18jq/4XC4cR6v6N0FNw2JFPk+l9gu7dhEUZSVqrDwRPhRtm0HP8tqfjD/tVy3ZFlllaW4UCrvtsaFb3Gi742yDCklCAMAAAAAlJrjOEt/RGdRhRQVrUoKB1NRfoVX0gnr/SqqaOjky/P8Nu1rMpmsDIncVomVV0VU3HO5ri3+a5PV5Ov+HGqblsViIbPZ7CDDMNOIC72yfI3i9pW04izatqQBWt4IwgAAAAAApZbHcLyoaFVSeDL2qCQVXj5/H4qirK20OsT5RTmOs1J5ZhjG1mqivMIMVVVXnp+4Iarh12Xb3GdZ0zRt47DRIsSFUlm+RnH72ufmEmVAEAYAAAAAKLXZbLb0OK+gKFqVFFel5A+LbLfbiQIB/26Rm4YbHur8wqIhWLvd3thGXzjMyHoIXtzzHR2i6lfjqapaSHVWXGBXpH3m8Eoibnhq0v4ZDen++OOPTNq0L4IwAAAAAECpHWqS7WjIEXf3Qj+YSTpJu1+9tOlukYeeRHwymSydl6Io8uuvv6beT9YVPrqur4Qs0SGq/nDJLCbJ35WmaaWZMywuDMyyP8W9xocIavNEEAYAAAAAKLXo8Kw8g6PovFTRx09PTxuHOYaFw6ZN81kd8vxc112pvPr1118TBzt5B0DRtrmuG4SPeUySv4vhcLh1LrVDioZhjuNkElLGTW6fphou2q/Dd5EsEkEYAAAAAOCo5DnXkKZpS8FC+O6F/qT2SUMYfz6ptJO653l+nU5naf/tdjtV+/KuBup2uythmx86hSfJL0tFVhnEhVPRSsZdxO2j1WrtvL+yvGYEYQAAAACAUovONZT3UMLoJOx+lZI/zDHpsDx/PqtNwyJFDnd+0+l07yGR0bbmEdpFg0bHcWQ6naZ+/g9pOp0ebDL4wWCwVK0Vd9MA0zT3Pk7cPtJU4kWfj7IMqSQIAwAAAACUWvQP6Cz+yN+k3W4vHdMPOcbjsaiqmugPesuygiBg23CyQ5yf67pyd3e39L00QyJ90YqgPO4iGRfsdDodESnfZPUi31/rTqeT2x01w2zbltFotNRnFEVZqeqL3mRgF9GKsH6/n6q/RAPd6+vrvduUBYIwAAAAAECpRcMXv9IqT9G5qjqdjjiOE3tnwzj+sEhd17eGB4c4v7u7u9RDIkej0UqgEg2h8qheUxRlbeVRGavBer2eKIpykIqnu7s7UVV17fDRsH3CsNFotPRYUZTYgHKT8F0i49pcFIIwAAAAAECpRcMX13WDYXJJpa3W6Xa7S8GGXx1ze3ubaHs/zPIrmTbJ+/wsy1raX9IhkaZprgyFjAY+eVXnrQscs5gkP8vKrcFgII7jrK1Sy/pYtm3HBpiqqsp4PF5Zf5fhmq7rrtyt0zCM1EFWOCQtUxUfQRgAAAAAoNTihn5FK5yione82yUQiFbZJJ2k3bbt4HhJgrO8zy8axiUZEum6rliWFVvlFG5rFpOyx4kbApmkui6JrObyGo1GQeXUunngsjrWYDAIjrVuwvput7sUFLqumyiIjbq5uVlq93A43CnICveNXdqRGw8AAAAAgJJbLBaeiCwtmqZ5i8ViZd35fO6pqrqyvmmaqY8b3k/S7fv9ftC+pPI6v263u7SOruuJ2tNutz0RiT1+tK15MU1z79cvjqIoK89d3HmuYxiGp2laou3jjjWbzRIdZz6fe+PxeOW13sbvf/7SbrcTnd9isfB0XV/adjweJ2pr3L78faiqutM+8lLzPM/LOFsDAAAAACBz0+k0trKk2+1Kq9WS19dXmc1mMplMpNvtrp0jqdvtrgwjW8evxFEURRaLRaJtGo2GOI4jw+FQ+v1+om1Esj8/y7JWqof8Cf+jXNeV19dXmc/nMp1Og2Ft6yKDcIWSaZq5DX3zn8s0z/86juNIr9dbW8WmaZpcXFzEVp25riuO48TOiaZpmsxms1TH8ufMig49fX19DV6LuGoyXdcTDUedTqcrVYXj8Xjt0NLJZLI0lFJRFDEMY+fXdTKZBPO5bTpuIQoO4gAAAAAASMw0zdgqm/DS7XY9z/OWvqeqqjccDr35fJ7qeOPx2BMRr9/vJ1p/Pp8Hx0x7rKzPL1q1lHZRFGVtO8MVP0mfm12kff437SOvJdy2vI81HA5TnXu/31/pT7que91u12u32ysVYIqipD5GHL/vla0azPOoCAMAAAAAHKHRaCRPT0/iOI64riuKooiu69Lr9YIqlkajIe12Wz5+/Ciapu10nE6nI9PpVGazWaJ9jEYjGQwGoqqqzOfznY7p7+cQ57cPv+oni2qtTer1usxms4PclfFUWZYlhmHI8/NzUN3mV6SpqiqapmXWjxzHkUajISKS+H1zSARhAAAAAACsUavVYoe+rdNsNsW2ben3+yuT7Z8iPygs3fA3FKbVaollWaV9DxCEAQAAAAAQw694ShryuK4r9XpdRMpZCZOXRqMhr6+v8ttvv2VyV0ccL39eujTh8aERhAEAAAAAEMMPeJIO+zvUUMGy8YfCtdttMQyj6OagIK7rys8//ywXFxcym81KG4qeFd0AAAAAAADKZjQaieM4qYb7+SHQ7e1tXs0qJVVVZTabyXQ6De4UiGpxXVeazWbpQzARKsIAAAAAABXW6/XEcRzRNE1arZZcX1/L58+fg8qupMP9wsMiTdMMJrSvEtu25ebmRm5vb2U8HhfdHByIH4KpqiqGYZQ6BBMhCAMAAAAAVNRgMJDRaLT252kmgJ9Op9LpdCo3LDLKcRzpdDpycXFxFKEI9uOHn58+fZJ+v190cxL5oegGAAAAAABQBNd11/6s3W6nGhap63qlAzCfP0xyNBrJ6+srQdiJcxxHvnz5clQ3hqAiDAAAAABQSbZtS7PZXPk+k74Dp4sgDAAAAABQWY7jyHg8Fsdx5OLiQjqdTiXn9wKqgiAMAAAAAAAAlXBWdAMAAAAAAACAQyAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqASCMAAAAAAAAFQCQRgAAAAAAAAqgSAMAAAAAAAAlUAQBgAAAAAAgEogCAMAAAAAAEAlEIQBAAAAAACgEgjCAAAAAAAAUAkEYQAAAAAAAKgEgjAAAAAAAABUAkEYAAAAAAAAKoEgDAAAAAAAAJVAEAYAAAAAAIBKIAgDAAAAAABAJRCEAQAAAAAAoBIIwgAAAAAAAFAJBGEAAAAAAACoBIIwAAAAAAAAVAJBGAAAAAAAACqBIAwAAAAAAACVQBAGAAAAAACASiAIAwAAAAAAQCUQhAEAAAAAAKASCMIAAAAAAABQCQRhAAAAAAAAqIT/C9g1mcaG1kosAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -118,70 +110,60 @@ } ], "source": [ - "bins = np.linspace( -0.25, 0.25, 50 )\n", - "sns.regplot(x=ak.to_numpy(array[\"ty\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)\n", + "bins = np.linspace(-0.25, 0.25, 50)\n", + "sns.regplot(\n", + " x=ak.to_numpy(array[\"ideal_state_770_ty\"]),\n", + " y=ak.to_numpy(array[\"z_mag_xEndT\"]),\n", + " x_bins=bins,\n", + " fit_reg=None,\n", + " x_estimator=np.mean,\n", + ")\n", + "plt.ylim(5100, 5700)\n", + "\n", "plt.xlabel(\"dy/dz(VELO)\")\n", "plt.ylabel(\"$z_{Mag}$ [mm]\")\n", - "mplhep.lhcb.text(\"Simulation\")" + "mplhep.lhcb.text(\"Simulation\")\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ - "#bins = np.linspace( -300, 300, 50 )\n", - "#sns.regplot(x=ak.to_numpy(array[\"x\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)" + "# bins = np.linspace( -300, 300, 50 )\n", + "# sns.regplot(x=ak.to_numpy(array[\"x\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ - "#bins = np.linspace( -300, 300, 50 )\n", - "#sns.regplot(x=ak.to_numpy(array[\"y\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)" + "# bins = np.linspace( -300, 300, 50 )\n", + "# sns.regplot(x=ak.to_numpy(array[\"y\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ - "#bins = np.linspace( -1.0, 1.0, 50 )\n", - "#sns.regplot(x=ak.to_numpy(array[\"dSlope_out\"]), y=ak.to_numpy(array[\"z_mag_x\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)" + "# bins = np.linspace( -1.0, 1.0, 50 )\n", + "# sns.regplot(x=ak.to_numpy(array[\"dSlope_out\"]), y=ak.to_numpy(array[\"z_mag_x\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n", - " expsuffix: Custom Text(0.05, 0.955, 'Simulation'))" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/work/guenther/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/IPython/core/pylabtools.py:151: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", - " fig.canvas.print_figure(bytes_io, **kw)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrjklEQVR4nOz9XWxbZ5rme1+UncDZSdGk0hhAIIEuU51GCvug26Q9B7WPpkR2HUyyk66QNlCZJEB3iUqya3oA9YSMK8eJiuwuAe/b86YtumaAcTrA2GTVJEgayIR0+mgPsMcSnT4LporLKUAEgQFKWmYnO0Y+uN4DNVmkPsjFj8XFj/8PEFq0bj7rlimlmpfv51key7IsAQAAAAAAADNuwe0GAAAAAAAAgHEgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFw47XYDwCAefvhh3b9/X6dOndK/+Bf/wu12AAAAAACATf/rf/0vffPNNzpz5ow+//zzsV7bY1mWNdYrAiOwsLAgfnQBAAAAAJheCwsL+uabb8Z6TSbCMJXaQ7BAIOBiJ/2p1WpqNBpaWFjQ0tKS2+3YRt/jN6290/d40fd40fd40fd40fd40fd40fd40fd4TXvfp06dGvu1CcIwlRYWFlq/7Lu7u263Y1swGFS1WtXS0hJ9j8G09i1Nb+/0PV70PV70PV70PV70PV70PV70PV70PV7T3rcbRx1xWD4AAAAAAADmgqsTYY899pibl+/g8Xj0P//n/3S7DQAAAAAAADjE1SCsUqnI4/G4euh58/oej8e1HgAAAAAAAOC8ud8ayZ0HAQAAAAAA5oPrh+VblqV4PK5QKOTK9U3TVC6Xc+XaAAAAAAAAGB/Xg7BcLqcf/ehHrvYQj8f1/e9/39UeAAAAAAAA4CzXt0ZGo1G3W9DFixfdbgEAAAAAAAAOc30ibHFx0e0WMIW+9a1v6d69e/rWt77lditzYX19XfV6XV6v1+1W+jKtfUvT2/u09j2tpvXvm77Ha1r7nlbT+vdN3+M1rX1Pq2n9+6bv8ZrWvtE/j+XiafGnTp3S/v6+6z9o9+7d0+Lior755htX+4B9wWBQ1WpVgUBAu7u7brdj27T2Dcw6fjeBycPvJTB5+L0EJs+0/l662berWyMn6Y6Nk9QLAAAAAAAARs/VICyTybg+DSZJZ8+eVSaTcbsNAAAAAAAAOMjVIOyVV14Z6/U+/fTTE7827l4AAAAAAAAwXq4flj9Oa2tr+m//7b+53QZGqFarKRgMdq1ZX1/X+vr6mDoCAAAAAGB+bW5uanNzs2tNrVYbUzdHzVUQtr297XYLGLFGo6Fqtdq1pl6vj6kbAAAAAADmW71e7/k+3U1TGYR9+umnMk3Tdr1hGNra2urrOZgOCwsLWlpa6lozCefQAQAAAAAwD7xerwKBQNeaWq2mRqMxpo46TUUQ9umnnyqTyahUKskwjIHWsCxLHo9nxJ3BbUtLS1N1i1gAAAAAAGaZneOJgsGga1NjEx+EXblyRdlsVtJBmAVMs/X1ddXrdabUgAnD7yYwefi9BCYPv5fA5OH3sn8ea4LTpV/84hdKJBKS1JrmGqZdj8ejb775ZiS9wV3N9DgQCDARBgAAAADAFHHzPf1ET4RtbGxIOgiwLMtSKBRSOBxWKBSSJD366KM91/jtb38r0zR18+ZN3bt3z9F+AQAAAAAAMLkmOggrl8utSbBisaiVlZWB10qlUnrsscdG1RoAAAAAAACmzILbDXTj8/kkHYRYw4RgkhQKhXTu3LkRdAUAAAAAAIBpNNFBWHML5MWLF0ey3tbW1kjWGZZhGIrFYq6umc1mFYvF5Pf75fF4tLy8rEQioVKpNHAPTqwJAAAAAAAwKhMdhDWnwPb29ka6nlNM05TH4+n5sby83Ar5xr1mqVSS3+9XOp2WJOXzeVUqFWUyGZXLZcViMcViMZmmafv7dmJNAAAAAACAUZvoIOwnP/mJLMtSuVweyXo///nPR7LOSXK5nO3aZmg0zjVLpVIrkEomkyoWi4pGowqFQorH46pUKgqHwyqVSopEIraCKyfWBAAAAAAAcILHsizL7Sa6yWazymQy+vTTT/Wtb31rqLUuXryo27dvj6izo/x+v62gJxqNqlgsjnVN0zR17tw5maapUCikSqVybJ1hGFpeXnZtTbvcvNUqAAAAAAAYnJvv6Sf6rpHSwUH5xWJRiURCH3zwwcDr3L17d2STZcfJ5XIyTVOpVKrnWV0XLlwY+5qJRKIVqHWbHGtOchUKBZVKJeVyOSWTybGtCQAAAAAA4JSJnwhrunDhgu7du6d0Oq3FxUVbz9nb25NpmqpUKrp586ZM09Q333zjSH/NiaeTpqLcXLN9IkuS9vf3W3fkPE6hUFAikZB0cOfO/f39sazZDybCAAAAAACYTkyE9fDRRx9JOgiE1tbWBlrDsix5PJ5RttVSKBRkGMZI70o5yjUzmUzr82g02jWwkqR4PN763DRNFQqFjj9zak0AAAAAAHAyy5IaPcaZFjySQ/HHTJj4IOyll15qHRjv8Xg0yACbUwFY08bGhnw+ny5dujSRa7YfuB8Oh209JxQKyTAMSdKNGzeOhFZOrAkAAAAAAE7WsKTTr3Wv+fp16RRB2Ikm+q6R165d09bWViv8GnQXp5O7P8vlssrlskzTlN/v1/LystbW1lQoFCZizcPnol28eNHW89rDrcPXdWJNAAAAAAAAp030RFhzW2BzEiwajSoWi8nn8/V9TtjVq1f16aefjrzHw4fEG4ahXC7XmpiKx+O6cuWK7ampUa9ZKpU6HodCIVs9HK4rl8ut6zmxJgAAAAAAgNMmOggrl8vyeDzy+Xza3t7WuXPnBl5rdXVVjz766Ai7OwioDodChxUKBRUKBSWTSVvnfY16zdu3b3c87nWWV9Phv6vt7e1WaOXEmgAAAAAAAE6b6CDM5/Pp3r17unLlylAhWHOt8+fPj6izA6FQSFtbW607U5ZKpdYZWIflcjltb29rZ2dnrGsefu6g01vtd650Yk0AAAAAAACnTXQQFolE9NFHH9kOWnq5du3aSNZpl0wmOx6bpqlcLqeNjQ2ZptnxtXK5rFgspmKxOLY1TwrR+tV+XSfWBKaJaZq2JyEBAAAAAJNjog/LX1tbk2VZIwteRj0Rdhyfz6dUKqX9/X3l8/kjb5ZLpZKy2ezY1hw0bDp8jb29PUfXBCZduVxWOp2W3+/X6uqq2+0AAAAAAAbgsZy8peIIRCIRLSwsHDmXahC//OUv9YMf/GAEXdlnmqZWVlY67rTo8/m0v78/ljU9ns57ptp9uUulkmKxWOtxNBptTZ05sWa/gsGgqtWqFhYWtLS0NNAa7dbX17W+vj70OnBHuVzWjRs3VC6XZRhG6yYZPp9PoVBIi4uLCofDisViikajR56fSCRkGEbHNmPTNFUqlXTjxg2VSqWOADgejyufz4/jWwMAAACAlm8a0unXutd8/bp0yqGxp83NTW1ubg69Tq1WU6PRUCAQ0O7u7gg6s2+it0ZKUj6f1x/8wR/ov/7X/6o//dM/HWqtjY2NsQdhPp9POzs7ikQireCq+Qb7uDfko17T5/ONZAti+zSXE2sOqtFoqFqtDr1OvV4feo1h5HI5ra2t9f28cDjc89w5Ow6Hm3Z0C3QTiYQKhULfaxaLRdu/F6ZpamNjo+uEpWmard+R9snJcDisaDSq5eVlFYtFFQqFIzduWF1dlWEYHYEzAAAAAMyzer0+kvfgbpr4ICwUCunq1av60Y9+NFQQdu/ePVff0F67dk2RSKT1uJ83/MOsubi4OJLQanFx0dE1BzWqiTCv1zv0GsNIJpO6dOmSDMPQxsZG1xApGo0qnU7rwoULIzunqrkFuVQqKZ1On/j6hkIhpdNpRaPRrmf35fN5maap7e1tZTKZrndCTaVSunz5skKhkO3vJ51OHxuAxePx1lrN9QzDkGEYyufzunnzZiscO/zfg8Pfc/vE1/Ly8si2aAMAAADAtPJ6vQoEAkOv05wIc8NEB2G//OUvJUm/93u/J7/fr8cee0zxeLzvdUzT1M2bN0fdXl+aEyjNQGAUb6rtrDloUHI4FDg8ETbqNQe1tLQ09jFKp/h8PoXDYeXzea2trSmXyx2pcXJLXigUUjKZbE1KHWdnZ8f26+bz+RSNRhWNRjumF9ttbW0duTlEN4ZhKBaLHflZTyaT2traOvY5zVAsGo1qa2tL2WxW6XTa9jWlg/DxuNcDAAAAAObJqI4Vah535IaJDsLeeOMN3blzp/XYsqy+D5pvf+4g279GKRaLdZ2McWLNCxcudAQQdu92d/gg+/ZgxIk10emkIGyQ7ZP9CoVCCofDR4KreDw+cHi5trZ2bO/9hGCHz5iTDsK2W7duHdnW2E0qlVI8HlckEukIZ7vdvIE7RAIAAADAbJjou0ZeunRJlmW1DmN3O8gaVvtWslFsC7SzZvvWScn+JFqlUul43L7l0ok10emkbYfdtiM6ff1hrn3cc/sJl8rl8khCsPZ+7t6929HDKLb7AgAAAAAm20QHYc0JEo/H0wrEBv2YBO1hwKgmTHqteeHChY7HdkOr9lCgeec9J9dEp5N+PkYVoE4TwzC0srJy5M/z+fxAIVhT86YTs6ZQKHCeWRejnsoFAAAAMF0mOgg7e/Zs641uJpNRsVjUzs5O3x/5fF7nz593+buRtre3W58fnm5xas1wONwRqty+fbvvdQ8HX06siclyXOD26KOPjnQ9u6FeIpE4Mq3VPMtsWKFQSKlUauh1xqFcLmttbU3Ly8vyeDzy+/1aXl5WJBJp3aWzUChodXW1Z9hTKpVaz5/1YMgwDOVyOcViMXk8npH9t3dU5um1AAAAACbBRJ8RJkmXL1/W8vKyXnnllYHXOH/+vJ555hnXp2natwaOalugnTUvXbrUOm/K7p0z2+uOO1jciTWBw0ql0rE/X5lMZmTXuHLlSuvsQbvn3Y2TaZpaXV1t3Uk0FAq1bhpiGEbrDpjtdxrttc2zGS6apqm1tbUj25ZngWEYSiQSMgxjore9zsNrAQAAAEySiZ4Ikw7CnVFtbXR7Cqn5RnWUEyh21mw/pNzOxEF7TfNue+NYEzjsuAP2hzm0/zg+n6+vQ/vHrTntJR3cZbNSqSifzyufz2tnZ0eVSuXI71OvMMXtfxQYh1AopJ2dHe3v70/01N88vBYAAADAJJn4IOz8+fMjm/74i7/4i5GsM4jmuT0+n09XrlwZ65rhcLjjjXL75Mhx8vl86/OTJrecWBNoVyqVjj3ralS/P+0SiYSk7neO7KZUKimRSHRsW4zFYsfe+bMf2Wy2FSKnUqljA7tQKKRisdjx38leZ4RtbW0pFAopFAp1/G7OqknbDtlu3l4LAAAAwG0TH4RJ0rlz50ayzt/8zd+MZB3pd+e6NM+c6bY90DAMra6uSpJu3bp14jSLE2s2bW1ttT7f2Ng4sc40zdab92g02nVSxok1Z41lSd80un9MyL0cJs5JocAwB+SfJBqNKpPJ9D2dY5qmIpGIYrFYxyH1pmmqVCq1zvSyu334sPbfq+Om49qlUqnW5FOvQC8ajapSqahSqTjy9zlp3Jq66vWaSfP3WgAAAMB5b99xu4PJNhVB2Ki0H9Y+rHw+3zp3plQqKRKJHPump/m1xcXFnm90nFizqX3aoFwut85EOqx5dz6fz9dzOsGJNWdNw5JOv9b9o0EQdqzjttw6uaU2lUr1teXSMAydO3euZ8hlGIYikUjfB6EPcrZVJpNROBzmrpETIJfLDT0RCAAAABxmJ+R6oUAY1s1UBmGffvqpPv74Y9sfv/zlL/X9739/pAcmN7dStcvlcvL7/UokElpbW2tNiiSTSe3s7CgUCo19zXbxeFzFYlE+n0/pdFqJRELlcrk1vRKJRFQulxUOh3X37l1boYATawKGYRwb5kzKxIxpmq1DzuPxuLa2trSzs6NisXjieVSxWKyvgOrwf6/sBmlXrlyZ6MPh54FhGLamwQAAAIB+3LsvvfyuvdoX35Hq9x1tZ2pN/F0jpYPgK5PJnHhmkB2WZcnj8Yysp+Z2lmZfe3t7rTefzeDnypUrikajtsMfJ9Y87hr7+/vKZrO6ceOGVlZWWnfKu3DhgvL5fOuOdG6uifl20u/58vLymDs5XjOUKhaLR6bUotGo1tbWjg2+EomEdnZ2bF3jcMidTqd16dKlnr/7zd+1SbwD5jwwTXOizyQDAADA9HqrLH3+lb3az76UrpelH3/X2Z6m0cQHYVeuXGltuRvV3SNHJRQKdZyTNalrHqf9PKFJXhPz6aQgbJLusHdcCNbUPMD+cHBXLpdVKpVsbfH0+Xzy+XytMLx5HlmxWOw5CTpp/62cF6ZpamVlha2pAAAAcMR7n/RX//4nBGHHmeitkb/4xS+UyWRab+pGOdEFoD/pdFoej2egj0gk0te1TtraNykTTj6fr2eYFQqFjr3jbT93wT1caxiGlpeXR3L2VLlcbh3m303zZheRSKTjus3tf80bfCwvLx97TqBhGEqn0607ai4vL2ttbe3Y17h5ncM/P4fFYrHWeu0fo9wSmsvlOq7j9/sViUROPAuxXC4fe2Zce38n/V3bfS2aTNNUNptVLBZr/f03+0un07aCOMMwlM1mj9zMof01WF5ebm0BBgAAgPv2v3C2fl5M9ERY845pHo9HlmUpFAopHA63piEeffTRnmv89re/lWmaunnzpu7du+dovwBGo1KpuN1CVxcuXLBVl0qltLGx0REk9HNofjKZVD6fP/KctbU1bW1t6dq1a32dm1Yul7W1taWbN2+2ejouXGyGXzdu3Dj2ZgDpdPpIINQMvCqVSmuq9aS6XC6nUqmknZ2djusnk0klk0mtra11DfuKxaIkKZvNKp1O2/nWbSsUCkokEvL5fLp27Vprq2m5XFYikVA6nW6dCdfeeygU0q1bt1QqlTp6OmkrrN3X4rBcLtc6fyyTySiTycjn86lcLmtjY0PZbFbZbFbxePzIzUlM09TGxkbHHU7bv7aystLxejfP6mu+Vv2cSQkAAIDR8z/kbP28mOggrFwut6YBisVi6+6Dg0ilUnrsscdG1Rowd5oBxSC2t7f7eu5JgcCkTKb0M5kWjUZVKBQ6/qx55p8dxWJRiUTi2DUikYji8biuXbvWsyfDMHTjxg3bU0fhcFg+n6/jddvZ2WndsTafzyscDmtxcbEVwEi/C2rS6bT29vZULBZbweH29nZrwsgwDG1sbBw7IZdIJGxNvcXj8ZEGYaVSqXXTkitXrnScbRgOh5XP5xWJRGQYhlZXVzuCJp/Pp3A4rL29vY41j3ud+30tmprBos/nOxJMhUIhxePx1s9KoVDQ8vJyR2C3t7enWCzWCjqbtre3tbKyomg0qkwmo1Ao1Ar0TNOUaZpaW1trBZAAAABwx5OPSx/+yn79E48718s0m+ggzOfz6d69e0qlUkOFYNLBm4Rz586NqDNg/iwvL4/tro0nTXseDhmmweXLl4+EWNvb2339Xebz+ROnn5qhx9bWlpLJ5IlrHN6q2S1Aat/6ubW11ZoSyuVyx56NlslkWuefSVIkElEymTwSnESjUV27dq0VNuVyub62ih426jPjep3P2P6aHX5N+9HPa9GUy+VaYWMzrDpOPp/X8vJya5orkUi0XodQKKRQKKRoNNoRhKXTaeXz+Y7XNZlManFxsfValUolbsAAAADgsufC0qsf2Dsw/5EHpefH8/Zt6kz0GWHN/0f/4sWLI1lvHIfQAxjepE+E9eO4wGKQ7yOVSml/f//EO7A271RpZ+1+tri1h03JZPLEs9EO3ynxpP/etvffnDaaRCf9DLb/+SgOxbf7WjTDMp/P1zXwbK+VDgKs47bjtn8f165dO/Z1Pfyztr29batXAAAAOOPsGenNp+zVXn1a8p5xtJ2pNdFBWHMKbFRTIMNOlQEYj5PCgUk/O+w4xwUqv/3tbwdeK5/Pa2dn59iJslKppJWVlZGGS3YngNpfs36mhibpDovXrl1TJpNRPp/vGTZJ4wtmc7lc61p2grNkMtnxGgwzddd+vUl6rQAAAObVs+d711yP26ubVxMdhP3kJz+RZVnHHtY8iJ///OcjWQeAs06aOurnoPlJcVxwYedGH92Ew2Ht7OwcO3VVLpe1uro61PqDGHTL3CRtd/X5fEqlUsdO3ZXL5ZH9b1G/2reY2p0ga/8dmsbfGwAAAAzuh4RgXU10EHb27Fn99Kc/1Y0bN/RP//RPQ6/H1sjZU6vVFAwGu35sbm663SYGcNIh45O6la4fo7r7XjKZVKVSORJCFQqFiQ4/puWcqfY7XIbD4bGdkXdcH/06/DM2C783AAAAmA6bm5s936fXajXX+pvow/Klg3NxmndN++CDDwZe5+7du679az6c02g0VK1Wu9bU6/UxdYNRunz58rG/s6VS6cRzsiaVz+frCCJGFYQ112rezbH9GltbWydO1qG7crmsdDqtcDg81LbCUWl/Xe2GYofvSLm3tzc1ASQAAACmW71e7/k+3U0TH4RJB9tCLly4oMcee0zpdNr2ncL29vZkmqYqlYpu3rzpcJdww8LCgpaWlrrWeL3eMXUzPcrlsjY2NpTP591u5UTJZPLYu+ltbW1NXRB2eBqn12RRqVRSOp3Wzs6OrfVDoVDH3RglEfwPaG1tTblcTslkciJCMGmwA/oP/+/kKMNXAAAAoBuv16tAINC1plarqdFojKmjTlMRhH300UeSDg7KXltbG2gNy7Lk8XhG2RYmwNLSknZ3d91uY+qsrq7aDpTd4vP5FI/HVSgUOv68VCqpXC67tk2tX4dDMDtTWqFQSOVyWaVSyfZU1+FwkIPN+9cMwaThDpgftebPg/S7O232mu5qP3uNEAwAAADjtL6+rvX19a41wWDQtamxiT4jTJJeeuklxWIx3blzRx6PR5Zl9f0B4HeaQVIsFjuxZtQHmA+63klhxHGTYsNy6gyl7e3tjsd2wvxmcDFo8C/1njqbBaP8OS2Xy60QLBQKTdQ2wsuXL3c8bvbZTfsdVqdtghIAAABw0kQHYdeuXdPW1lYrzBo01CIMAw6YptnaPtfvm+Pf/va3I+3FTogRCoWODcNKpZKy2ezIejEMQ5FIZKjg6SSH7/hn9+89FArJMAzbod/hCbDD4ck0OTyteFJIOcqpt/abC3Rb141D5+PxeEcwZ+fGL+3fz5UrV5xoCwAAAJhKE701svn/7DcnwaLRqGKxmHw+X9/nhF29elWffvqpg90Co+PEm23TNLWystLaVtXvdqlR92R3veYNMw7fBbF5mPmwB8KXSiXFYrETQ7dhtW/t7OfOtc0gLJvNanl5Wclksmt9+9qhUEipVKr/Zo9h93Vqr+v1nF5fPzzNlsvljnw/x4WEozwQvlAoHAktj7veYYd/rwzD6PgzO9saj9N+BpxhGF23zZbL5dZWykwmM1HTbQAAAIDbJjoIK5fL8ng88vl82t7e1rlz5wZea3V1VY8++ugIuwOcc9JEyqBv9EulktbW1lrrXrp0qe/rD7MNbdjJneadYw+fFxaLxZTJZAYKfUzTVDqdVi6Xa9150e7frd1wKJfLtb73ZDLZV2jXHp6sra1pZ2fnxFAjl8t1TMi1T6Edp/21dGPCqd1J149Go63wM51Oq1KpKJFIyDRNFYtF5XK51s9Fc43DoVPT4Z/d48Kow+FbIpFQJpNROBxWuVzW1taWwuFwK6CUfhc+FotFXbly5diAeW1tTfl8Xnt7e8pkMlpeXu74ebX7WsTjcWUymVYYl0gkdPfu3SPfh2maWl1dlXTwM3fS74bd1739d9ftnxUAAABgJKwJ5vf7rYWFBeuv/uqvRrJeJBIZyTpwXyAQsCRZgUDA7Va6+voby9Kr3T++/ubo85LJpCXpyEc0GrUqlUrP6+7v71vFYtFKpVJWKBQ6sk4+nz/xuZVK5dhrS7L29/cH+nsIh8PHrre1tdXXOqlU6th1wuGwVSwWba2xv79vZTIZy+fztf5Oe31fh6/r8/l6Xqf97zEajdrqrd3W1tax32s8HrdSqZS1tbVlJZPJjtfX7s/H4dfjpJ+H/f39I3/PJ4nH47Ze22Kx2FGXTCZPvHbzNTr84fP5Wq93e004HLYqlcqR19Nub4fr2j8ymYxlWcf/bsbj8Y51Tvo5Pe57tftaNOXz+db37PP5rK2tLatSqViVSsXa2tpq/Tw0+z2O3dfgcN0gP8cAAAAYrUHfY04aN9/TT3QQFo1GrYWFBesXv/jFSNYrl8sjWQfum6Ug7D9v/65+Z2en65vxUX0cF/zs7+9bW1tbJ4YPkqxQKGRtbW3ZDsR2dnasaDTatZdUKmUrvGkqFosnBms+n8+Kx+PW1taWVSwWrZ2dHatYLFpbW1tWJpPpeJ7P5+sZOjQdFw6GQqETw7f2sOJwSNLP99nsMZ/PW8lk0opGo1Y4HO54jZrfc68gsPmzddLrGw6HW+FJt9pQKGTF4/HWz8DhMO5wcNJcs1gsnvizEAqFjg1j9vf3O9YPh8NWKpXqqGn+2eGfof39/Z7f73HXzGQyreuFQiErlUp1/Lzv7++3vo/2v7PD2kPocDjc8bPWz2txkq2tLSsajXaEYs3nnfT72e33sf01qFQqXet69QYAAADnEIQNz2NZk3uSfKFQ0KVLl5TNZvXv//2/d7sdTJDmrVYDgYB2d3fdbudE13ekFwq96/7sVE7/6fXRH9R+nHA4rJ2dnY4/83g8fa/j8/m0v79/7NeO28ZoR7FYtL19sFAoaGNjo3UWkl2hUEhra2tKJpN9bTNtnkl1+Pvy+Xy6cOGCfD6fTNPU9vZ2a+tdPp8f+gwzAAAAAGj6piGdfq17zdevS6cm+taI7r6nn+ggTJIikYgWFhZ0+/btodf65S9/qR/84Acj6Apum4Yg7N59KfCG9PlXvWsfeVCqXpG8Z5zva9aYpqlSqaQbN27IMAyZptk61ygUCrXObbp48aLi8XjfNwnodb3mNZvXuXDhghKJBAEYAAAAgJEjCBvexAdhhmHoD/7gD/SLX/xCf/qnfzrUWhcvXhxJoAb3TUMQ9h/+u/Rv37Nf/zdPSj/+rnP9AAAAAACmG0HY8Cb8r+ZgouPq1av60Y9+NNQ69+7d63sLFTCM9z7pr/79PusBAAAAAEB/TrvdQDe//OUvJUm/93u/J7/fr8cee0zxeLzvdUzT1M2bN0fdHtDV/hfO1gMAAAAA5suC52Diq1cNTjbRQdgbb7yhO3futB5blqVsNjvQWpZlDXQgODAo/0PO1gMAAAAA5ovHI50i2hjKRG+NvHTpkizLUvMYM4IsTJMnH++v/ok+6wEAAAAAQH8mOghbW1uTdBCANQOxQT+AcXsuLD38gL3aRx6Ung872w8AAAAAAPNuordGnj17VuFwWHfu3FEmk1E4HNbi4mLf6xiGoTfeeEMff/zx6JsETnD2jPTmU9ILhd61V5+WvGccbwkAAAAAgLk20UGYJF2+fFnLy8t65ZVXBl7j/PnzeuaZZwYK0YBhPHu+dxB2PX5QBwAAAAAAnDXRWyMlKRqNjmxr44ULF0ayDjBKPyQEAwAAAABgLCY+CDt//rwymcxI1hrVOgAAAAAAAJg+Ex+ESdK5c+dGss7584zeAAAAAAAAzCtXzwj7+OOP9cd//MduttAySb3AvlqtpmAw2LVmfX1d6+vrY+oIAAAAAID5tbm5qc3Nza41tVptTN0c5WoQFolEtL+/L6/X62YbunfvniKRiL755htX+0D/Go2GqtVq15p6vT6mbgAAAAAAmG/1er3n+3Q3uRqEjeoQ/FGYpF5g38LCgpaWlrrWuB20AgAAAAAwL7xerwKBQNeaWq2mRqMxpo46uRqEeTweNy/fYZJ6gX1LS0va3d11uw0AAAAAACB7xxMFg0HXpsZcPSyfKSwAAAAAAACMi+t3jbx7967bLWh7e9vtFgAAAAAAAOAwV7dGStLq6qpeffVV+Xw+LS4ujvXae3t7MgxDqVRqrNcFAAAAAADA+LkehO3s7CiRSLjag2VZnBEGAAAAAAAw41wPwprcOi+MAAwAAAAAAGA+uB6EuX1gvtvXBwAAAAAAwHi4GoTt7++7eXkAAAAAAADMEVeDsLNnz7p5eQAAAAAAAMyRBbcbAAAAAAAAAMaBIAwAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHPB1cPyAQAAAAAAZpllSQ2re82CR/J4xtPPvCMIAxy04JG+fr13DQAAAABgNjUs6fRr3Wu+fl06xXvDsSAIAxzk8fAfMwAAAAAAJgVnhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAucFg+plqtVlMwGOxas76+rvX19TF1BAAAAADA/Nrc3NTm5mbXmlqtNqZujiIIw1RrNBqqVqtda+r1+pi6AQAAAABgvtXr9Z7v091EEIaptrCwoKWlpa41Xq93TN0AAAAAADDfvF6vAoFA15paraZGozGmjjp5LMuyXLmyg+7du6dXX31Vf/u3f+t2K3BIMBhUtVpVIBDQ7u6u2+0AAAAAAHCsbxrS6de613z9unRqjk5xd/M9/Uz+NRuGoVwup9/85jf66KOP2BoHAAAAAACA2QzCSqWSLMtSKBRSLBaT3+/XT37yE7fbAgAAAAAAgItmLgi7deuW0um0JMmyrNZHJpPpGoa99NJLeuyxx3Tx4kX95Cc/YYoMAAAAAABgxszcGWEXLlxQKBTS5cuXFQ6HZRiGPvzwQ/3VX/2VPB6PDMPQ7//+73c857HHHpNhGGr/q1heXtbOzg4HrU8ozggDAAAAAEwDzgg7ijPCRuzmzZt65plndO7cOa2srCiTyWhvb0/f/va3W9NiTS+99JIqlYokKZ1Oq9FoaG9vT9/73ve0urrqRvvAsSzr4D+g3T5mK9YGAAAAAGC0TrvdwKh5PJ5j/9zn82lnZ0exWKzjz7e2tuTxeBSPx7WxsdGq3dra0p/8yZ/o008/1be//W2n2wZ6alg2/xXh+F8BAAAAAADm3sxNhPn9fv3sZz879ms+n09+v7/1+Nq1a63PM5nMkfp0Oq1SqTT6JgEAAAAAADB2MxeEpVIpvfLKK3r55ZePPfB+f3+/9XlzGiwajR479XXhwoXWtkkAAAAAAAAnvH3H7Q7mx8xtjYxGo1pdXdXVq1e1tbWleDyuixcvSpJu3LihSqWi73//+wqHwyqXy/J4PFpbWzt2rbNnz8owjHG2DwAAAAAAZoidkOuFwsFh+c+ed76feTdzQZh0MOm1t7enX/ziFyoUCioUCq2vbW9v64033ujYChkOh49d586dO1pcXHS8XwAAAAAAMHvu3Zdeftde7YvvSE9+R/KecbSluTdzWyOb8vm8rl69qpWVFVmWpbNnz+rmzZs6f/688vm8nnnmGfl8Pl29evXEibBcLqfl5eUxdw4AAAAAAGbBW2Xp86/s1X72pXS97Gw/mNGJsKZkMqlkMnns1/L5fOtzv9+vixcv6uc//7n+6I/+SPV6XW+88YZyuVzHmWIAAAAAAAB2vfdJf/XvfyL9+LvO9IIDMx2E2RWPx2UYhs6fPy+Px9P685/+9Kfyer0udgYAAAAAAKbV/hfO1qN/BGH/LJVKKRQKKZfLyefz6fLly3rmmWfcbgsAAAAAAEwp/0PO1qN/M3dG2EcffWSr7pe//KXq9XrHn8XjcX344Ye6efMmIRgAAAAAABjKk4/3V/9En/Xo38wFYfF4XKdOndL3v/99/fVf/7U+/vjjY+tWVlb0ox/9SJ9++ulY+wMAAAAAAPPhubD08AP2ah95UHo+7Gw/mMEgLBKJyLIslUolpdNpRSIRPfroo0eCsbNnz+ratWtKJBL6zW9+427TAAAAAABg5pw9I735lL3aq09L3jOOtgPN4BlhhUJBiURCe3t7Mk1ThmFof39fxWJRpVKpVReLxXT+/Hnt7+9rbW1NH3zwgYtdAwAAAACAWfTseemFQvea6/GDOjhv5oKwZDKpXC6nb3/7260/u3Xrlm7evKlr1661/uzDDz9UsViUZVm6e/euC50CAAAAAABIPyQEG5uZC8Isy+oIwaSD88BWVlaUzWb1xhtv6NatW7p8+bJu374twzB0+fJld5rF0Gq1moLBYNea9fV1ra+vj6kjAAAAAADm1+bmpjY3N7vW1Gq1MXVz1MwFYffu3Tvxa2fPnlUmk9Hdu3eVTqeVzWaPhGaYLo1GQ9VqtWvN4buDAgAAAAAAZ9Tr9Z7v0900c0HYuXPn9LOf/Ux/+Zd/2bXm5s2b+pM/+RNdu3ZNv//7vz/GDjFKCwsLWlpa6lrj9XrH1I373r4jPR9xuwsAAAAAwLzyer0KBAJda2q1mhqNxpg66uSxLMty5coOMQxDf/AHf6Bf/OIX+tM//dOutaZp6uLFi9rZ2ZmrsGQWBINBVatVBQIB7e7uut3OWFzf6X3AoiT93SUOWQQAAACASfFNQzr9Wvear1+XTi2Mp59J4OZ7+pn7aw6FQvrpT3+qeDyul19+uWutz+fT+fPn9eqrr46pO2Aw9+5LL79rr/bFd6T6fUfbAQAAAABgKs1cECZJqVRKP/jBD3T16lX93u/9nn72s5+deE7U4uKibty4MeYOgf68VZY+/8pe7WdfStfLzvYDAAAAAMA0mskgTJLy+bxWV1e1t7enVColv9+vy5cv6+c//7k+/vhjffzxx7py5YpyuZxM03S7XaCr9z7pr/79PusBAAAAAJgHM3dYfrutrS3FYjGtrq7q3r17KhQKKhSOHrIUDodd6A6wb/8LZ+sBAAAAAJgHMzsR1hSPx7W/v6+f/vSnOnv2rCzL6vjw+Xy6du2a220CXfkfcrYeAAAAAIB5MPNBWFMqldLe3p52dnaUz+eVyWSUz+d19+5d/fEf//FYezEMQ7FYbOh1lpeX5fF4jp1yG4V++8xms4rFYvL7/fJ4PFpeXlYikVCpVHKkv3ny5OP91T/RZz0AAAAAAPNgaoOwl156aaDnnT9/Xs8884xeeeUVPfPMMzp79uzIejJNUx6Pp+fH8vKyQqHQUNdKp9MyDGMi+iyVSvL7/Uqn05IOzmerVCrKZDIql8uKxWKKxWKcxTaE58LSww/Yq33kQel5dvsCAAAAAHDE1AZhN2/e1D/90z+53UaHXC5nu7YZGg2iVCopm80O/PxR9lkqlVohVzKZVLFYVDQaVSgUUjweV6VSUTgcVqlUUiQSIQwb0Nkz0ptP2au9+rTkPeNoOwAAAAAATKWpDcL29/f17W9/Wy+99JI++ugjt9uRJG1sbNiqawZFgzBNU4lEYqDnNo2qz/ZeQqGQtra2jq3L5/OSDrZaDtv7PHv2fO+a63F7dQAAAAAAzKOpvmukaZrK5XKtCadoNKpYLKZ4PK5vf/vbY+0ll8vJNE2lUqme52pduHBh4Ousrq5qcXFRkgaarhpln4lEotVDt8mx5nRYoVBQqVRSLpdTMpnsu3f09kNCMAAAAAAATuSxLMtyu4lBLCwsyOPxqL19j8fT+tzn8+nSpUuKxWL6wQ9+0HWtn//85/rRj340VD/Ly8uSpEqlMtQ63eRyOa2trWlnZ0crKyutECqfzysej9taY1R9GobRWks6mNDz+Xwn1hcKhdY0mM/n0/7+/lDXDwaDqlarCgQC2t3dHWqtafFNQzr9Wvear1+XTk3tnCcAAAAAzB7Lkho9kpcFj9QWacw8N9/TT+1b5p/+9KeyLKt1qLskWZbV+tjf31cul1MikdCpU6d08eJF/fVf/7U+/vjjI2sVi8WheikUCjIMY6hzv3oxDENra2tKpVIKhwc7CX2UfWYymdbn0Wi0awgmqSOoM03TsTtdAgAAAAAwSTyeg4GFbh/zFIK5bWq3RqZSKUWjUSUSCe3t7alQKMiyLP2X//JfdOvWLZmm2TEtVi6XVS6XJR1MJDW3UUoaOpTZ2NhoTaA5JZFIKBwOdwRQ/Rpln+0H7tsN5kKhUOtOlzdu3LA9xQYAAAAAADAKUxuESQcBTKVSUTqdViKR0NraWutg9rt376pQKKhYLKpUKnWEYvv7+yoUCiOZSmoP2Px+v0KhUMdZZaOQTqdVLpeH2s44yj6b6zRdvHjR1vPC4XArCGMiDAAAAAAAjNvUbo1sl8lkdPv2bX344Yf6wz/8Q/3jP/6jzp07p1deeUUffvihGo2GisWikslk6y6I7dsoh3F4m6FhGK0tmR6PR4lE4khw1I9yuaxsNqutra2B7zQ56j5LpVLHY7t9Ha4b5u8FAAAAAACgXzMRhEkH00a//vWv9a/+1b9SOBzWT37yk46vr6ys6OrVq/r1r3+t/f19bW1tKRqNDnVNwzCOhEKHFQoFRSIRra2tDXSNlZUVxePxoe6yOOo+b9++3fG41/lgTY8++mjH4+3tbVvPw+hZ1sHh+90+pvM2GgAAAAAAnGyqt0YeZ2trS4lEQpcuXVKhUFA+n9cf/dEfddScPXtWq6urWl1dValU0ve///2BrhUKhbS1tSXTNFWpVFQqlVpb/w7L5XLa3t7Wzs6O7fWbd1m8du3aQP051efh5w46EebkHTbRXcOyeQdKDmwEAAAAAMyQmQvCpIO7GBqGodXVVYXDYWWzWf3lX/7libUrKysDX+vwpJZpmsrlctrY2JBpmh1fK5fLisVitu5S2TzDrFgs2p64GlefJ4Vo/Tp8XQAAAAAAACfNzNbIw3w+n/L5vG7cuKFXXnlF//Jf/kv95je/Oba2OXk1quumUint7+8rn88fCbFKpZKy2WzXNUzTVCKRUDKZHHr7phN9DhpgHb7G3t7eQOsAAAAAAAAMwmMNe1r8FGgGSx999FHX6TCnrr2ystJxMLzP59P+/v6Jz4lEIq1tjCfx+/2tQCqfzw99h8p++vR4OvfL2f0RKpVKisVircfRaNTWdNxxgsGgqtWqFhYWtLS0NNAa7dbX17W+vj70Ok76pmFzO6ONeHuUawEAAAAA5sPm5qY2NzeHXqdWq6nRaCgQCGh3d3cEndk3k1sjD/P5fCoWi8pms3rllVd048YN5fN5/f7v//5Yrr2zs6NIJNIKmUzTVKlUOnbaK5vNqlwu93WW2Lj79Pl8I9nWOIotn41GQ9Vqdeh16vX60GsAAAAAADDL6vX6SN6Du2kugjBJ+vTTT3XhwgWlUills1mFQiHlcjn9+Z//+Viuf+3aNUUikdbjYrF4JGAql8tKp9PKZDIKh8Nj6eswO30uLi6OJAhbXFwceo1RTYR5vd6h1wAAAAAAYJZ5vV4FAoGh12lOhLlhJoKwTz/9VIZhyDRNGYahSqUiwzBkGIb29vaOhDYej0eWZSmZTCqfzyufz+tb3/qWoz2Gw2FFo1GVSiVJxx84n0gkFA6HlUqlHO2lGzt9DjrJdfh1GMVE2NLS0tjHKAEAAAAAmEejOlaoedyRG6Y2CLt48WIr/Oqm2/lVlmXpww8/1Pe+9z3dvn17xB0eFYvFWgHTYdlsVoZhKBqN2jq8v/373tjY0I0bN1qPL1++PNSZYd36lKQLFy50nCVmmqatUOvw4fjLy8sD9wgAAAAAANCvqQ3CdnZ2WpNd3fh8PoVCodbH8vKyFhcXW4/Pnj07po6lUCjU+vzwtsDf/va3ktQ1gDpJuVzuCKZCodBQQVi3PiV1bJ2UDqbG7GzlPHz4v1N3xJxVC56DA+x71QAAAAAAgONNbRDWzu/369KlSx2B17hDLjvaA6ZRbAt0Sq8+L1y40PHYbhDWPsXWDChhn8cjnSLoAgAAAABgYAtuNzCMZ555RuFwWPv7+8rlctre3tb+/r78fv/EhWCStL293fo8Fot1fC2TyciyLNsf7SFSPp/v+Fomk3GsT+ngHLH2gMzuttL2dQ+HaQAAAAAAAE6b2iAsGo3q5s2brfDrxo0bsixLqVRKy8vLeuyxx/TSSy/pH/7hH3qu9dFHH42h486tgZO8LdBOn5cuXWp93r4ts5v2unQ6PWB3AAAAAAAAg5naIKx9Uuns2bOKx+O6efOm9vb2dPv2bf3gBz/Q7du3tbKyolOnTunixYv62c9+po8//vjIWltbW2PpuVAoSJKrd4W0w06fa2trrc/tnGvWXhMKhSY6CMSBt++43QEAAAAAAKM1tWeEvfLKKyd+LRwOt86sunfvnorFom7evKnXX39dqVRKPp9P0WhUFy9elPS74MdJhUJBhmHI5/PpypUrjl9vUHb7DIfDikajrYCrUCh0PaA/n8+3PmcazH12Qq4XCtKpBenZ8873AwAAAADAOEztRJhdx02L/ehHP9LOzo5SqdTAoUypVJLf75fH41EsFuu6PdAwDK2urkqSbt26NdaD8p3ss32SbmNj48Q60zSVy+UkHWy1TCaTfXwHGLV796WX37VX++I7Uv2+o+0AAAAAADA2Mx+EHRYOh5XJZPTrX/9a29vb+t73vjfQOvl8vnUXxFKppEgk0rFdsKn5tcXFRVUqFVt3VxwlJ/sMhUKtSa9yuaxsNnts3crKiqSDO0W2T4bBHW+Vpc+/slf72ZfSdXtHwAEAAAAAMPHmLghrFw6HVSwWdf58/3u/EonEkT/L5XLy+/1KJBJaW1tTJBJRLBZTMpnUzs5Ox50ex8XpPuPxuIrFonw+n9LptBKJhMrlskzTbIVr5XJZ4XBYd+/eHes0HI733if91b/fZz0AAAAAAJNqroOwpkwm0/dzotGoKpWKksmkQqFQR8BTLpe1t7enK1euaH9/X5lMZuQBUKVSkWVZsiyr69lc4+gzGo22nm8YhlZWVlpB2+LiovL5vHZ2dgjBJsT+F87WAwAAAAAwqTyWZVluNwH0KxgMqlqtKhAIaHd31+12psr3/5P04a/6qH9M+uDPnOsHAAAAACaNZUmNHmnJgkfyeMbTz6xx8z39VNw18q//+q8VDocHPs8LwO88+Xh/QdgTjzvXCwAAAABMooYlnX6te83Xr0unCMKmzlRsjfwf/+N/KBaL6T/+x/841DrXrl3TqVOn9Id/+If6x3/8xxF1B0yX58LSww/Yq33kQen58d7fAQAAAAAAx0xFECZJlmUpmUzqJz/5ycBrpNNpWZalX//61wqHw/r0009H1yAwJc6ekd58yl7t1acl7xlH2wEAAAAAYGymJghr+vDDD3X58uWBnnvu3DmFQiElk0mtrq4qnU6PuDtgOjxr40ap1+P26gAAAAAAmBZTcUZYu+3tbSUSCV28eFEfffSRvvWtb9l+7s7OTsfjxx57bNTtATPjh4RgAAAAAIAZM3UTYZKUz+eVSCQUDof1m9/8ZqA17t69q729vRF3BgAAAAAAgEk1lUGYJKVSKf3t3/6twuGw/uEf/qGv5967d0+xWEwXLlxwqDsAAAAAAABMmqnbGtkuGo3q9u3b+pM/+RNduXJFf/7nf97zOR999JESiYRM09Srr746hi7hpFqtpmAw2LVmfX1d6+vrY+oIAAAAAID5tbm5qc3Nza41tVptTN0cNdVBmCSFQiFtb2/r0qVLqlQqeuONN06s/au/+iu9+uqrsixLfr9fP/rRj8bYKZzQaDRUrVa71tTr9TF1AwAAAADAfKvX6z3fp7tp6oMwSfL5fPrwww/14osv6vLly7px48aRmitXriibzcqyLHk8HmUyGRc6xagtLCxoaWmpa43X6x1TNwAAAAAAzDev16tAINC1plarqdFojKmjTjMRhDVdvXpVuVzuyB0lb926pUwmI4/HI4/Ho3A4zDTYjFhaWtLu7q7bbQAAAAAAANk7nigYDLo2NTZ1h+X3Ohg/mUxqa2tL3/ve91p3lGxOf1mW1fEYAAAAAAAA82MqgrBz585JOgiykslkK+A6STgc1o0bN/TMM8/ol7/8pUqlkjweT+tr3/ve9xzvGQAAAAAAzK6377jdAQYxFUFYJpPR/v6+8vm8VlZWFI1G9fOf/7zrc5qH6F+9erX1Zx6PR5cvX3a6XQAAAAAAMMXshFwvFAjDptFUBGGSdPbsWT3zzDO6evWqfvWrX9k+4+vDDz/UK6+80toWGQ6HnWwTAAAAAABMsXv3pZfftVf74jtS/b6j7WDEZuqw/JNkMhldvHhRly5d0t27d91uB3Ddgkf6+vXeNQAAAAAwb94qS59/Za/2sy+l62Xpx991tieMztRMhA0rHo9re3tbN27ccLsVwHUej3RqofuHhyAMAAAAwBx675P+6t/vsx7umpsgTDrYFvnhhx+63QYAAAAAAJhQ+184Ww93zVUQBgAAAAAA0I3/IWfr4S6CMAAAAAAAgH/25OP91T/RZz3cRRAGAAAAAADwz54LSw8/YK/2kQel58PO9oPRIggDAAAAAAD4Z2fPSG8+Za/26tOS94yj7WDECMIAAAAAAADaPHu+d831uL06TBaCMAAAAAAAgD79kBBsKhGEAQAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLpx2uwFgGLVaTcFgsGvN+vq61tfXx9QRAAAAAADza3NzU5ubm11rarXamLo5iiAMU63RaKharXatqdfrY+oGAAAAAID5Vq/Xe75PdxNBGKbawsKClpaWutZ4vd4xdTOfLEtqWN1rFjySxzOefgAAAAAA7vF6vQoEAl1rarWaGo3GmDrq5LEsq8dbWGDyBINBVatVBQIB7e7uut3OXPumIZ1+rXvN169LpziREAAAAMCU4H2Os9x8T89EGAAAAAAAQJsFz0HQ1asG04cgDAAAAAAAoI3HI50i6JpJDPEBAAAAAABgLhCEAQAAAAAAYC6wNRIAAAAAAMwE7mqPXgjCAAAAAADATGhYNu/2SBA2t9gaCQAAAAAAgLlAEAYAAAAAAIC5QBAGwHFv33G7AwAAAAAACMIADMlOyPVCgTAMAAAAAOA+gjAAA7t3X3r5XXu1L74j1e872g4AAAAAAF0RhAEY2Ftl6fOv7NV+9qV0vexsPwAAAAAAdEMQBmBg733SX/37fdYDAAAAADBKBGEABrb/hbP1AAAAAACMEkEYgIH5H3K2HgAAAACAUSIIAzCwJx/vr/6JPusBAAAAYNS4o/18IwgDMLDnwtLDD9irfeRB6fmws/0AAAAAmG92Qq4XCoRh84wgDMDAzp6R3nzKXu3VpyXvGUfbAQAAADDH7t2XXn7XXu2L70j1+462gwlFEAZgKM+e711zPW6vDgAAAAAG9VZZ+vwre7WffSldLzvbDybTabcbAIZRq9UUDAa71qyvr2t9fX1MHeE4PyQEAwAAAOCw9z7pr/79T6Qff9eZXubZ5uamNjc3u9bUarUxdXMUQRimWqPRULVa7VpTr9fH1A0AAAAAwC37XzhbD3vq9XrP9+luIgjDVFtYWNDS0lLXGq/XO6ZuAAAAAABu8T/kbD3s8Xq9CgQCXWtqtZoajcaYOupEEIaptrS0pN3dXbfbAAAAAAC47MnHpQ9/Zb/+iced62We2TmeKBgMujY1xmH5AAAAAABg6j0Xlh5+wF7tIw9Kz4ed7QeTiSAMAAAAAABMvbNnpDefsld79WnJe8bRdjChCMIAAAAAAMBMeNbGHeuvx+3VYTYRhAEAAAAAgLnxQ0KwuUYQBgAAAAAAgLnAXSMBDGXBI339eu8aAAAAAADcRhAGYCgej3SKoAsAAAAAMAXYGgkAAAAAAIC5QBAGAAAAAACAuUAQBgAAAAAAgLlAEAYAAAAAAIC5QBAGAAAAAACAuUAQBgAAAAAAgLlw2u0GAAAAAAAARmHBI339eu8azC+CMAAAAAAAMBM8HukUQRe6YGskAAAAAAAA5gJBGAAAAAAAAOYCQRgAAAAAAADmAkEYAAAAAAAA5gKH5WOq1Wo1BYPBrjXr6+taX18fU0cAAAAAAMyvzc1NbW5udq2p1Wpj6uYogjBMtUajoWq12rWmXq+PqRsAAAAAAOZbvV7v+T7dTQRhmGoLCwtaWlrqWuP1esfUDYZlWVLD6l6z4Dm4JTIAAAAAYPJ4vV4FAoGuNbVaTY1GY0wddfJYltXjbScweYLBoKrVqgKBgHZ3d91uByPyTUM6/Vr3mq9fl05xuiEAAAAATC0339PzdhIAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABzgSAMAAAAAAAAc4EgzAWGYSgWiw29zvLysjwejwqFQt/PzWazisVi8vv98ng8Wl5eViKRUKlUGrgfJ9YEAAAAAAAYFYKwETJNUx6Pp+fH8vKyQqHQUNdKp9MyDKPv55VKJfn9fqXTaUlSPp9XpVJRJpNRuVxWLBZTLBaTaZqurgkAAAAAmA+WJX3T6P5hWW53iVlx2u0GZkkul7Nd2wyNBlEqlZTNZgd6XnMSLZlMamtrq/W1UCikeDyuSCSiUqmkSCSinZ0d+Xy+sa8JdPP2Hen5iNtdAAAAABiVhiWdfq17zdevS6c84+kHs42JsBHa2NiwVReNRgeeCDNNU4lEYqjnhUKhjsCqXT6fl3SwfbPXdZxYE/Pt7Tu9a14o2KsDAAAAAOAwJsJGJJfLyTRNpVKpnud/XbhwYeDrrK6uanFxUZL62mqYSCRa9d2m0ZpTXIVCQaVSSblcTslkcmxrYn7duy+9/K692hffkZ78juQ942hLAAAAAIAZ47EsdtqOwvLysiSpUqk4do1cLqe1tTXt7OxoZWWlFULl83nF4/ETn2cYRqs/Sdrf3++6PbFQKLQmt3w+n/b398eyZj+CwaCq1aoCgYB2d3eHWguT4T/8d+nfvme//m+elH78Xef6AQAAADAe3zRsbo1kT9vMcPM9PT9GI1AoFGQYxlDnfvViGIbW1taUSqUUDof7em4mk2l9Ho1Ge57R1R6qmaZ57F0pnVgT8+29T/qrf7/PegAAAAAACMJGYGNjQz6fT5cuXXLsGolEQuFwuCOAsqv9EH+7IVr7GWY3btwYy5qYb/tfOFsPAAAAAABB2JDK5bLK5bJM05Tf79fy8rLW1tZGOvGUTqdVLpdbh87321+7ixcv2npee7h1+HtxYk3A/5Cz9QAAAAAAEIQN6fB2SMMwlMvllEgk5PF4lEgkjgRH/SiXy8pms9ra2hroTpOlUqnjsd01Dte1fw9OrAk8+Xh/9U/0WQ8AAAAAAEHYEAzDOBIKHVYoFBSJRLS2tjbQNVZWVhSPxwe+y+Lt27c7Hvc6y6vp0Ucf7Xi8vb3t6JrAc2Hp4Qfs1T7yoPR8f0flAQAAAABAEDaMUCikra0tZTIZJZPJrpNRuVxOkUikr/Wbd1m8du3awD0ahtHxeNDprfa7YTqxJnD2jPTmU/Zqrz4tec842g4AAACACfL2Hbc7wKw47XYD0+7wpJZpmsrlctrY2JBpmh1fK5fLisViKhaLPdctFAoqFAoqFou2J66Oczi0GlT79+LEmoAkPXteeqHH8XHX4wd1AAAAAGaDnZDrhYJ0aoH3AhgeQdiI+Xw+pVIppVIpFQoFra6udgQ+pVJJ2WxWqVTqxDVM01QikVAymVQ0Gh2qn0HDpsPh297enqNrDqpWqykYDA69zvr6utbX14deB877If/DBwAAAMyMe/ell9+1V/viO9KT32F3iJs2Nze1ubk59Dq1Wm0E3QyGIMxB8Xhc0WhUKysrHQfDb2xsdA3CVlZWWtsuJ4UT01ujWLPRaKharQ69Tr1eH3oNAAAAAEB/3ipLn39lr/azL6XrZenH33W2J5ysXq+P5D24mwjCHObz+bSzs6NIJNIKw0zTVKlUOnbaK5vNqlwua2dnZ2TXH0Xg1D7N5cSag1pYWNDS0tLQ63i93qHXAAAAAAD0571P+qt//xOCMDd5vV4FAoGh16nVamo0GiPoqH8EYWNy7dq1jsPyi8XikSCsXC4rnU4rk8koHB7NLfEWFxdHElotLi46uuaglpaWtLu7O/Q6AAAAAIDx2//C2XqM1qiOFQoGg65NlnHXyDEJh8MdwddxB84nEgmFw+Gu2yb7NejU1eGg6/BE2KjXBAAAAADMH/9DztYDhzERNkaxWEylUunYr2WzWRmGoWg0qkQi0XOt9lBpY2NDN27caD2+fPmy4vG4JOnChQsd55OZpmkrgDp8kP3y8nLrcyfWBAAAAADMnycflz78lf36Jx53rhfMB4KwMQqFQq3PD28L/O1vfytJJwZl3ZTL5Y5gKhQKtYKw9u2Y0sEkmp1tl5VKpeNx+zSbE2sCAAAAAObPc2Hp1Q/sHZj/yIPS86M5RQhzjCBsjNqDsHFtC7xw4ULHY7uhVfvEmc/n6+jdiTUBSVrwSF+/3rsGAAAAwGw4e0Z68ynphULv2qtPS94zjreEGccZYWO0vb3d+jwWi3V8LZPJyLIs2x/tIVI+n+/4WiaTaX0tHA53hG63b9/uu9fDwZcTawKS5PFIpxa6f3gIwgAAAICZ8uz53jXX4/bqgF4IwsaofWvgOLcFXrp0qfV5+xbKbtrr0un0WNYEAAAAAOA4PyQEw4gQhI1RoXAw6znKu0Lasba21vrczhlk7TWhUOjY0M6JNQEAAAAAAJxEEDYmhUJBhmHI5/PpypUrY712OBzuCJ6agdxJ8vl86/OTJrecWBMAAAAAAMBJBGEDKpVK8vv98ng8isViXbcHGoah1dVVSdKtW7fGdlB+u62trdbnGxsbJ9aZpqlcLifpYPtmMpkc65oAAAAAAABOIQgbUD6fb90FsVQqKRKJdGwXbGp+bXFxUZVKxdbdFZ0QCoVaU1nlclnZbPbYupWVFUkHd3Vsn+Ia15oAAAAAAABOIQgbUCKROPJnuVxOfr9fiURCa2trikQiisViSiaT2tnZ6bjToxvi8biKxaJ8Pp/S6bQSiYTK5bJM02wFduVyWeFwWHfv3rU1uebEmgAAAAAAAE7wWJZlud3EtDIMQ5lMRqVSSXt7ezJNUz6fT4uLiwqHw7p8+bKi0ehEhj/ZbFY3btyQYRitvi9cuKC1tTXF4/GJWfMkwWBQ1WpVgUBAu7u7I10bAAAAADA+3zSk0691r/n6dekUozwzw8339ARhmEoEYQAAAAAwGyxLavRIJhY8kscznn7gPDff058e69UAAAAAAADaeDzSKUIujAmDhQAAAAAAAJgLBGEAAAAAAACYCwRhAAAAAAAAmAsEYQAAAAAAAJgLBGEAAAAAAACYC9w1ElOtVqspGAx2rVlfX9f6+vqYOsIk4PbLAAAAAOCOzc1NbW5udq2p1Wpj6uYogjBMtUajoWq12rWmXq+PqRtMioYlnX6te83Xr3OLZgAAAAAYtXq93vN9upsIwjDVFhYWtLS01LXG6/WOqRsAAAAAAOab1+tVIBDoWlOr1dRoNMbUUSePZVk9NhABkycYDKparSoQCGh3d9ftdjBhvmnYnAjjlEQAAAAAGDs339PzNhAAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABzgSAMwFx6+47bHQAAAAAAxu202w0AwKjZCbleKBzcNfLZ8873AwAAAMway5IaVveaBY/k8YynH8AugjAAM+Xefenld+3VvviO9OR3JO8ZR1sCAAAAZk7Dkk6/1r3m69elUwRhmDBsjQQwU94qS59/Za/2sy+l62Vn+wEAAAAATA6CMAAz5b1P+qt/v896AAAAAMD0IggDMFP2v3C2HgAAAAAwvQjCAMwU/0PO1gMAAAAAphdBGICZ8uTj/dU/0Wc9AAAAAGB6EYQBmCnPhaWHH7BX+8iD0vNhZ/sBAAAAAEwOgjAAM+XsGenNp+zVXn1a8p5xtB0AAAAAwAQhCAMwc54937vmetxeHQAAAIDBvH3H7Q6AowjCAMylHxKCAQAAAAOzE3K9UCAMw+QhCAMAAAAAALbduy+9/K692hffker3HW0H6AtBGAAAAAAAsO2tsvT5V/ZqP/tSul52th+gHwRhAAAAAADAtvc+6a/+/T7rASeddrsBYBi1Wk3BYLBrzfr6utbX18fUEQAAAADMtv0vnK3HdNvc3NTm5mbXmlqtNqZujiIIw1RrNBqqVqtda+r1+pi6AQAAAIDZ53/I2XpMt3q93vN9upsIwjDVFhYWtLS01LXG6/WOqRtMigWP9PXrvWsAAAAA9O/Jx6UPf2W//onHnesFk8fr9SoQCHStqdVqajQaY+qok8eyLMuVKwNDCAaDqlarCgQC2t3ddbsdAAAAAJgb9+5LgTfsHZj/yINS9YrkPeN8X5gebr6n57B8AAAAAABg29kz0ptP2au9+jQhGCYLQRgAAAAAAOjLs+d711yP26sDxokgDAAAAAAAjNwPCcEwgQjCAAAAAAAAMBcIwgAAAAAAADAXTrvdAABMMsuSGj3urbvgkTye8fQDAAAAABgcQRgAdNGwpNOvda/5+nXpFEEYAAAAAEw8tkYCAAAAAABgLhCEAQAAAAAAYC6wNRIAAAAAAPRlwXNwREivGmDSEIQBAAAAAIC+eDyck4vpxNZIAAAAAAAAzAWCMAAY0tt33O4AAAAAAGAHWyMBoAs7IdcLBenUgvTseef7AQAAAAZlWVLD6l6z4DnY9gjMKoIwADjBvfvSy+/aq33xHenJ70jeM462BAAAAAysYUmnX+te8/XrnP2F2cbWSAA4wVtl6fOv7NV+9qV0vexsPwAAAACA4RCEAcAJ3vukv/r3+6wHAAAAAIwXQRgAnGD/C2frAQAAAADjRRAGACfwP+RsPQAAAABgvDgsH1OtVqspGAx2rVlfX9f6+vqYOsIsefJx6cNf2a9/4nHnegEAAACAabC5uanNzc2uNbVabUzdHEUQhqnWaDRUrVa71tTr9TF1g1nzXFh69QN7B+Y/8qD0fNj5ngAAAAAnvX1Hej7idheYZvV6vef7dDcRhGGqLSwsaGlpqWuN1+sdUzeYNWfPSG8+Jb1Q6F179WnJe8bxlgAAAICBvX2nd80LBenUgvTseef7wWzyer0KBAJda2q1mhqNxpg66uSxLMty5crAEILBoKrVqgKBgHZ3d91uBzPsm4Z0+rXuNdfj0nP8qxkAAAAm2L37UuAN+7sdqlf4h144x8339ByWDwBD+iH/WgYAAIAJ91bZXggmSZ99KV0vO9sP4BaCMAAAAAAAZtx7n/RX/36f9cC0IAgDAAAAAGDG7X/hbD0wLQjCAAAAAACYcf6HnK0HpgVBGAAAAAAAM+7Jx/urf6LPemBanHa7AQCYZAse6evXe9cAAAAAk+y5sPTqB/bvGvl82PmeADcwEQYAXXg80qmF7h8egjAAAABMuLNnpDefsld79WnJe8bRdgDXEIQBAAAAADAHnj3fu+Z63F4dMK0IwgAAAAAAgCTph4RgmHEEYQAAAAAAAJgLBGEAAAAAAACYCwRhAAAAAAAAmAun3W4AAOaFZUkNq3vNgoe7UAIAAACAUwjCAGBMGpZ0+rXuNV+/Lp0iCAMAAIADFjwH//9mrxpglhGEAQAAAAAwBzwe/tEV4IwwAAAAAAAAzAUmwgAAAAAAmFCcMwuMFkEYAEyQt+9Iz0fc7gIAAACTgnNmgdFiayQAjMnbd3rXvFCwVwcAAAAA6B8TYZhqtVpNwWCwa836+rrW19fH1BFwvHv3pZfftVf74jvSk9+RvGccbQkAAAAARm5zc1Obm5tda2q12pi6OYogDFOt0WioWq12ranX62PqBjjZW2Xp86/s1X72pXS9LP34u872BAAAAACjVq/Xe75PdxNBGKbawsKClpaWutZ4vd4xdQOc7L1P+qt//xOCMAAAAADTx+v1KhAIdK2p1WpqNBpj6qgTQRim2tLSknZ3d91uA+hp/wtn6wEAADC/uOESJomd44mCwaBrU2Mclg8AY+B/yNl6AAAAzCZuuASMFkEYAIzBk4/3V/9En/UAAACYPf3ecKl+39F2gJlAEAYAY/BcWHr4AXu1jzwoPR92th8AAABMvkFuuASgO4IwABiDs2ekN5+yV3v1acl7xtF2AAAAMAUGueESgO4IwgBgTJ4937vmetxeHQAAAGYfN1wCRo8gDAAmyA8JwQAAAPDPuOESMHoEYS4wDEOxWMx27drampaXl+XxeOT3+xWJRLS2tibDMCamT0nKZrOKxWLy+/3yeDxaXl5WIpFQqVRysEsAAAAAmE3ccAkYPYKwETJNUx6Pp+fH8vKyQqFQz/Wy2ayWl5eVy+VaoZdpmiqXy8rlclpeXlY2m3W9z1KpJL/fr3Q6LUnK5/OqVCrKZDIql8uKxWKKxWIyTbPvXgEAAABgXnHDJWD0TrvdwCzJ5XK2a5uh0UlisZhKpZJ8Pp+i0ahCoZAMw1C5XO6YBEun0wqFQorH4670WSqVWlNjyWRSW1tbra81+4pEIiqVSopEItrZ2ZHP57N9fQAAAACYV80bLr1Q6F3LDZcAezyWZVluNzEr/H6/ramnaDSqYrF44tfT6bSy2awymYxSqdSRr2ez2SMBVT8v46j6NE1T586dk2maCoVCqlQqx9YZhqHl5WVba9oVDAZVrVYVCAS0u7s79HrAOFiW1Ojxq7rgkTye8fQDAACAyfdNQzr9Wvea63Hpuch4+gFGwc339EyEjUgul5NpmkqlUj3P1bpw4cKJXzMMQ9lsVsViUdFo9NiaVCqlSqXSMdlVLpcVDveegx1Vn5KUSCRagVq3ybHmZFihUFCpVFIul1MymezZKzBrPB7pFCEXAAAARowbLgH2MRE2Is2Jp5OmouxKJBK6ePHisZNg7UzTlN/vbz0+aXrMqT7bp7wkaX9/v+uWx0KhoEQiIUny+Xza398f6vpMhAEAAACYB3Ymwr5+XTrFCeCYIm6+p+dXZQQKhYIMw+h5npYdzWmtXnw+X8dB9nbO3Rpln5lMpvV5NBrtef32M8xM01ShYGOTOwAAAAAAwAgRhI3AxsaGfD6fLl26NPRa/Zyftbe31/q81zZGabR9tm/LtLMlU1JHcHfjxo2hewAAAAAAAOgHZ4QNqVwuq1wuSzo4hD4UCikajSoWi/V1J8d+mabZOp8rGo32DKNG2WdznaaLFy/ael44HG7d8ZKJMAAAAADobcFzsPWxVw0Ae5gIG9LhbYaGYSiXyymRSMjj8SiRSBwJjkbh5s2bkg6mrPL5/Fj7LJVKHY/bJ726OVznxN8LAAAAAMwSj+fg/K9uH9x1HLCPIGwIhmEcCYUOKxQKikQiWltbG9l1TdPU2tqawuGwisViz/O5Rt3n7du3Ox7bOZ9Mkh599NGOx9vb27aeBwAAAAAAMApsjRxCKBTS1taWTNNUpVJRqVRqbf07LJfLaXt7Wzs7O0Nd0zAMxWIx+Xw+3bp1y1YINeo+Dz930ImwYe9cCQAAAAAA0A+CsCElk8mOx6ZpKpfLaWNjo3WGV1O5XFYsFuvrQPx2hUJBiUSi9djv9yuTydi6y+Qo+zwpROvX4esCAAAAAAA4yWNZluV2E7OqUChodXX1SOBjN7ySfhdYbW1tnRhAxeNxW+eEjapPz6EN6HZ/hEqlkmKxWOvxMH0Hg0FVq1UtLCxoaWlpoDXara+va319feh1AAAAAACYVZubm9rc3Bx6nVqtpkajoUAgoN3d3RF0Zh8TYQ6Kx+OKRqNaWVnpOBh+Y2PDdhBWKpVUqVQUjUZPPOurUCgom83aXtOJPgcxiomwRqOharU69Dr1en3oNQAAAAAAmGX1en0k78HdRBDmMJ/Pp52dHUUikVbIZJqmSqWSotFoz+fH43HF4/GOP8vlckqn0x1BUjqdVjKZtH1w/TB9+ny+kYRYg/bablQTYV6vd+g1AAAAAACYZV6vV4FAYOh1mhNhbiAIG5Nr164pEom0HheLRVtB2HGSyaSi0agikUhHIJXL5Yae4LLT5+Li4kiCsMXFxaHXWFpaGvsYJTAJLEtq9NiVvODhVtoAAAAARmdUxwo1jztyA0HYmITDYUWj0dbWxmEPnA+FQrp161ZHaHX79u2h1pTs9TnoJNfh8GwUE2HAvGpY0unXutd8/bp0iiAMAAAAAFoW3G5gnrQfFD8K4XC4Y9vkqO7m2KvPCxcudDy2Ox22t7fX8Xh5ebmvvgAAAAAAAIZBEDZGoVCo9fkotgVK0uXLl1ufj2K7otS7z/YpNMl+AFepVDoeD7o1FAAAAAAmnWVJ3zS6f1g9jroAMHpsjRyj9oBpVNsCw+HwyNfs1efhiTDDMDr6OEl7UOfz+TquAwAAAACzhKMsgMnERNgYbW9vtz4f9TZJ6WhANahefYbD4Y6AzO7ZZO3rjqpXACd7+47bHQAAAADAZCEIG6P2rYGj2hbYvi1xVOGanT4vXbrU+rxcLttat70unU4P2B0AyV7I9UKBMAwAAAAA2hGEjVGhUJAkpVKpka3ZDJd8Pl/HwfnDsNPn2tpa6/PmHSa7aa8JhUKcDwYM4d596eV37dW++I5Uv+9oOwAAABgQ/2gJjB9B2JgUCgUZhiGfz6crV66MbN2NjQ1J0rVr10aynt0+w+FwR5jVDM9Oks/nW58zDQYM562y9PlX9mo/+1K6bm9oEwAAACPEBD8wmQjCBlQqleT3++XxeBSLxbpuDzQMQ6urq5KkW7dudT3UPpvNKhKJKJ1O97wLZLMmlUqdOA3mVJ+StLW11fq8GcgdxzRN5XI5SQdbLZPJZNd1AXT33if91b/fZz0AAACGwwQ/MLkIwgaUz+dbQVWpVFIkEunYLtjU/Nri4qIqlUrXuyuapql0Oq1yuaxsNiu/33/i9FQikVA2m1Umk1Emkxlrn02hUKg16dXs+TgrKyuSDrZvtk+GARjM/hfO1gMAAGA4TPADk4sgbECJROLIn+VyOfn9fiUSCa2trSkSiSgWiymZTGpnZ0ehUKjrmj6f70hNMxBLJBJKp9OKxWLy+/2SDg6173XemBN9tovH4yoWi/L5fEqn00okEiqXyzJNsxWulctlhcNh3b17t+eUGYDe/A85Ww8AAIDhMMEPTC6CsAFFo1FVKhUlk0mFQqGOgKdcLmtvb09XrlzR/v6+MpmM7QBoZ2dHqVRK4XD4yJqGYSiRSOju3bvK5/O2Aiun+jx8jebzDcPQyspKK2hbXFxUPp/Xzs4OIRgwIk8+3l/9E33WAwAAYDhM8AOTy2NZluV2E0C/gsGgqtWqAoGAdnd33W4HGKt796XAG/bG7R95UKpekbxnnO8LAAAAB77/n6QPf9VH/WPSB3/mXD/ApHHzPT0TYQAwZc6ekd58yl7t1acJwQAAAMaNCX5gchGEAcAUevZ875rrcXt1AAAAGK3nwtLDD9irfeRB6fne9yoDMCIEYQAwo35ICAYAAOAKJviByUUQBgAAAADAiDHBD0ym0243AADo34JH+vr13jUAAACYXEzwA+NHEAYAU8jjkU4RdAEAAABAXwjCMNVqtZqCwWDXmvX1da2vr4+pIwAAAAAA5tfm5qY2Nze71tRqtTF1cxRBGKZao9FQtVrtWlOv18fUDQAAAAAc4CgLzKt6vd7zfbqbCMIw1RYWFrS0tNS1xuv1jqkbAAAAADjAURaYV16vV4FAoGtNrVZTo9EYU0edPJZlWa5cGRhCMBhUtVpVIBDQ7u6u2+0AAAAAAACb3HxPvzDWqwEAAAAAAAAuIQgDAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXDjtdgMAAHdZltTocf/gBc/BLcABAAAAYJoRhAHAnGtY0unXutd8/bp0iiAMAAAAwJRjayQAAAAAAADmAhNhAAAAAACIIyOAeUAQBgDo6e070vMRt7sAAABwFkdGALOPrZEAMOfevtO75oWCvToAAAAAmGQEYQAwx+7dl15+117ti+9I9fuOtgMAAAAAjiIIA4A59lZZ+vwre7WffSldLzvbDwAAwKRjSh6YbgRhADDH3vukv/r3+6wHAACYJhwZAcw+gjAAmGP7XzhbDwAAMC04MgKYDwRhADDH/A85Ww8AADAtODICmA8EYQAwx558vL/6J/qsBwAAmBYcGQHMB4IwAJhjz4Wlhx+wV/vIg9LzYWf7AQAAcAtHRgDzgSAMAObY2TPSm0/Zq736tOQ942g7AAAAruHICGA+nHa7AWAYtVpNwWCwa836+rrW19fH1BEwfZ49f3D3o26uxw/qAAAAZtWTj0sf/sp+PUdGAMfb3NzU5uZm15parTambo4iCMNUazQaqlarXWvq9fqYugFm1w8JwQAAwIx7Liy9+oG9A/M5MgI4Wb1e7/k+3U0EYZhqCwsLWlpa6lrj9XrH1A0AAACAadU8MqLXpLzEkRFAN16vV4FAoGtNrVZTo9EYU0edPJZlWa5cGRhCMBhUtVpVIBDQ7u6u2+0AU82ypEaP/yVY8Egez3j6AQAAcMs3Den0a91rrsel5yLj6QeYVW6+p2ciDADmnMcjnSLkAgAAsIUjI4Dpxl0jAQAAAAAAMBeYCAMAAAAAQAfHQXz9eu8aANOLIAwAAAAAAHFkBDAP2BoJAAAAAACAuUAQBgAAAAAAgLlAEAYAAAAAAIC5QBAGAAAAAACAuUAQBgAAAAAAgLlAEAYAAAAAAIC5QBAGAAAAAACAuXDa7QYAAAAAABiUZUkNq3vNgkfyeMbTD4DJRhAGAAAAAJhaDUs6/Vr3mq9fl04RhAEQWyMBAAAAAAAwJ5gIAwCMBNsSAAAAAEw6gjAAwEiwLQEAAEyqt+9Iz0fc7gLAJGBrJAAAAABgar19p3fNCwV7dQBmH0EYAGBs+H9AAQDAKN27L738rr3aF9+R6vcdbQfAFCAIAwCMBP8aCwAAxu2tsvT5V/ZqP/tSul52th8Ak48zwjDVarWagsFg15r19XWtr6+PqSNgPvX7r7FPfkfynnG0JQAAMAfe+6S/+vc/kX78XWd6AXBgc3NTm5ubXWtqtdqYujmKIAxTrdFoqFqtdq2p1+tj6gaYX4P8ayz/TygAABjW/hfO1gPoX71e7/k+3U0EYZhqCwsLWlpa6lrj9XrH1A0wv/jXWAAA4Ab/Q87WA+if1+tVIBDoWlOr1dRoNMbUUSeCMEy1paUl7e7uut0GMPf411gAAOCGJx+XPvyV/fonHneuFwAH7BxPFAwGXZsa47B8AMDQ+NdYAADghufC0sMP2Kt95EHp+bCz/QCYfARhAIChPdnnv67yr7EAAGAUzp6R3nzKXu3Vp7lZDwCCMADACPCvsQAAwC3Pnu9dcz1urw7A7CMIAwAMjX+NBQAAk+yHhGAA/hmH5QMARuLZ89ILhe41/GssAAAYtQWP9PXrvWsAQCIIAwCMEf8aCwAARs3jkU4RdAGwia2RAAAAAAAAmAtMhAEARoJtCQAAAAAmHUEYAGAk2JYAAAAAYNKxNRIAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABzgSAMAAAAAAAAc4EgDAAAAAAAAHOBIAwAAAAAAABz4bTbDQAAcJhlSQ2re82CR/J4xtMPAAAAgNlAEAYAmDgNSzr9Wvear1+XThGEAQAAAOgDWyMBAAAAAAAwF5gIw1Sr1WoKBoNda9bX17W+vj6mjgCMy9t3pOcjbncBAAAAoN3m5qY2Nze71tRqtTF1cxRBGKZao9FQtVrtWlOv18fUDYBReftO75oXCtKpBenZ8873AwAAAMCeer3e8326mwjCMNUWFha0tLTUtcbr9Y6pGwCjcO++9PK79mpffEd68juS94yjLQEAAACwyev1KhAIdK2p1WpqNBpj6qiTx7KsHvflAiZPMBhUtVpVIBDQ7u6u2+0AGKH/8N+lf/ue/fq/eVL68Xed6wcAAIwed4gG5pub7+mZCAMATJT3Pumv/v1PCMIAAJg23CEagFu4ayQAYKLsf+FsPQAAAID5RRAGAJgo/oecrQcAANPBzs1zAKBfBGEAgIny5OP91T/RZz0AAHCf3TtEE4YBGDWCMADARHkuLD38gL3aRx6Ung872w8AABitfu8QXb/vaDsA5gxBGABgopw9I735lL3aq09L3jOOtgMAAEbsrbL0+Vf2aj/7UrpedrYfAPOFIMwFhmEoFovZrl1bW9Py8rI8Ho/8fr8ikYjW1tZkGMbAPWSzWcViMfn9fnk8Hi0vLyuRSKhUKk3UmgDm07Pne9dcj9urAwAAk2WQO0QDwKgQhI2QaZryeDw9P5aXlxUKhXqul81mtby8rFwu1wq9TNNUuVxWLpfT8vKystlsXz2WSiX5/X6l02lJUj6fV6VSUSaTUblcViwWUywWk2marq4JAL38kBAMAICpxB2iAbjptNsNzJJcLme7thkanSQWi6lUKsnn8ykajSoUCskwDJXL5Y5JsHQ6rVAopHg83vOapVKpNYmWTCa1tbXV+lpzjUgkolKppEgkop2dHfl8vrGvCQAAAGB2cYdoAG7yWJZlud3ErPD7/bamnqLRqIrF4olfT6fTymazymQySqVSR76ezWaPBGm9XkbTNHXu3DmZpqlQKKRKpXJsnWEYWl5ettWnE2vaFQwGVa1WFQgEtLu7O/R6ACaLZUmNHv/rtOCRPJ7x9AMAAEbnP/x36d++Z7/+b56Ufvxd5/oBMH5uvqdnImxEcrmcTNNUKpXqef7XhQsXTvyaYRjKZrMqFouKRqPH1qRSKVUqlY4JtHK5rHD45FunJRKJVkjXbRqtOcVVKBRUKpWUy+WUTCbHtiYASAcB1ylCLgAAZtJzYenVD+wdmM8dogGMGhNhI9KceDppKsquRCKhixcvHjsJ1s40Tfn9/tbjk6bHpM6JLEna39/vuj2xUCgokUhIknw+n/b398eyZj+YCAMAAACm1/Ud6YVC77q/u8TNcYBZ5OZ7eg7LH4FCoSDDMHqe+2VHc6qsF5/P13HgfrcQKpPJtD6PRqM9z+hqP2/MNE0VCkf/F8qJNQEAAADMB+4QDcAtBGEjsLGxIZ/Pp0uXLg29Vj/nZ+3t7bU+77bdsn0LZbftk+3aQ7YbN26MZU0AAAAAaOIO0QCcwBlhQyqXyyqXy5IODssPhUKKRqOKxWK27uQ4KNM0W+dzRaPRE8OoZm9NFy9etLV+OBxu3Z3y8PSWE2sCAAAAmB8LHunr13vXAMCoMRE2pMPbIQ3DUC6XUyKRkMfjUSKROBIcjcLNmzclHUxZ5fP5E+tKpVLH4/aprG4O17V/D06sCQAAAGB+eDzSqYXuH9wdGoATCMKGYBjGkVDosEKhoEgkorW1tZFd1zRNra2tKRwOq1gsdj2f6/bt2x2Pe53l1fToo492PN7e3nZ0TQAAAAAAAKexNXIIoVBIW1tbMk1TlUpFpVKptfXvsFwup+3tbe3s7Ax1TcMwFIvF5PP5dOvWrZ4h1OF+Bp3ear8bphNrAgAAAAAAOI2JsCElk0mlUiltbW2pUqlof39fmUzm2ICqXC4rFosNfK1CoaDl5WUZhiHTNOX3+5XNZrs+56Rgrl/N88icWhMAAAAAAMBpTISNmM/nUyqVUiqVUqFQ0OrqakfgUyqVlM1mlUqlbK1nmqZyuZy2traODaDS6bRu37594jlhg4ZNh4O89jtUOrHmoGq1moLB4NDrrK+va319feh1AAAAAACYVZubm9rc3Bx6nVqtNoJuBkMQ5qB4PK5oNKqVlZWOg+E3NjZsB2GlUkmVSkXRaPTEM8kKhUJf4dognJjeGsWajUZD1Wp16HXq9frQawAAAAAAMMvq9fpI3oO7iSDMYT6fTzs7O4pEIq0wzDRNlUolRaPRns+Px+OKx+Mdf5bL5ZROpzuCpHQ6rWQyeWTqyufzjSRwal/XiTUHtbCwoKWlpaHX8Xq9Q68BYDJZltSwutcseLgzFQAAANCL1+tVIBAYep1araZGozGCjvpHEDYm165dUyQSaT0uFou2grDjJJNJRaNRRSKRjkAql8sdmQpbXFwcSWi1uLjo6JqDWlpa0u7u7tDrAJhdDUs6/Vr3mq9fl04RhAEAAABdjepYoWAw6NpkGYflj0k4HO4IvoY9cD4UCunWrVsdf3b79u0jdYNOXR0Oug5PhI16TQBw09t33O4AAAAAwDgQhI3RMHeMPE44HO7YNnlcuHbhwoWOx3YnuQ4fZL+8vOzomgDgFDsh1wsFwjAAAOywLOmbRvcPq8eRBADgJrZGjlEoFGp9PoptgZJ0+fJlFQoFSccHUu3bMaWDsCwcDvdct1KpdDxun2ZzYk0AcMK9+9LL79qrffEd6cnvSN4zjrYEAMBU48gBANOOibAxag/CRrUtsD2AOm7Nw9NbdrdktodqPp+vo3cn1gQAJ7xVlj7/yl7tZ19K18u96wAAQHdMWQOYZARhY7S9vd36fNTbJKWjAZV0EJS1B2THnSN2nPZeD6/rxJoA4IT3Pumv/v0+6wEAmDccOQBg2hGEjVH71sBRbQtsn8Y6KVy7dOlS6/Ny2d64Q3tdOp0ey5oAMGr7XzhbDwDAPOn3yIH6fUfbAYCBEISNUfMsr1QqNbI1m+GSz+frODi/3draWuvzUqnUc832mlAodGxo58SaADBq/oecrQcAYJ5w5ACAWUAQNiaFQkGGYcjn8+nKlSsjW3djY0OSdO3atRNrwuFwR/DUDOROks/nW5+fNLnlxJoAMGpPPt5f/RN91gMAME84cgDALCAIG1CpVJLf75fH41EsFuu6PdAwDK2urkqSbt261fWg/Gw2q0gkonQ6fexdINs1a1Kp1InTYE1bW1utz5vh2XFM01Qul5N0sH0zmUyOdU0AGKXnwtLDD9irfeRB6fneN8AFAGBuceQAgFlAEDagfD7fCqpKpZIikUjHdsGm5tcWFxdVqVQ67vJ4mGmaSqfTKpfLymaz8vv9J05PJRIJZbNZZTIZZTKZnv2GQqHWVFZz/eOsrKxIOthq2T7FNa41AWCUzp6R3nzKXu3VpyXvGUfbAQBgqnHkAIBZQBA2oEQiceTPcrmc/H6/EomE1tbWFIlEFIvFlEwmtbOzo1Ao1HVNn893pKYZiCUSCaXTacViMfn9fkkHh+/3c95YPB5XsViUz+dTOp1WIpFQuVyWaZqtwK5cLiscDuvu3btdJ9ecXBMARunZ871rrsft1QEAMM84cgDALCAIG1A0GlWlUlEymVQoFOoIeMrlsvb29nTlyhXt7+8rk8nYDoB2dnaUSqUUDoePrGkYhhKJhO7evat8Pt8zWDup72ZPhmFoZWWlFbQtLi4qn89rZ2enr8DKiTUBYJx+SAgGAEBPHDkAYBZ4LMuy3G4C6FcwGFS1WlUgENDu7q7b7QCYYJYlNXr8L92CR/J4xtMPAADT7PqO9EL3+2RJkv7uEtPWAE7m5nt6JsIAADPN45FOLXT/IAQDAMAejhwAMO0IwgAAAAAAI8ORAwAm2Wm3GwAAAAAATIcFj/T1671rAGBSEYQBAAAAAGzxeKRTBF0AphhbIwEAAAAAADAXCMIAAAAAAAAwF9gaialWq9UUDAa71qyvr2t9fX1MHQEAAAAAML82Nze1ubnZtaZWq42pm6MIwjDVGo2GqtVq15p6vT6mbgAAAAAAmG/1er3n+3Q3EYRhqi0sLGhpaalrjdfrHVM3AAAAAADMN6/Xq0Ag0LWmVqup0WiMqaNOHsuyLFeuDAwhGAyqWq0qEAhod3fX7XYAAAAAAIBNbr6n57B8AAAAAAAAzAWCMAAAAAAAAMwFgjAAAAAAAADMBYIwAAAAAAAAzAXuGgkAgE2WJTV63GJmwSN5POPpBwAAAEB/CMIAALCpYUmnX+te8/Xr0imCMAAAAGAisTUSAIARevuO2x0AAAAAOAkTYQAA2GQn5HqhIJ1akJ4973w/AADYwdZ+APgdgjAAAGy4d196+V17tS++Iz35Hcl7xtGWAACwha39APA7bI0EAMCGt8rS51/Zq/3sS+l62dl+AAAYJbb2A5gXBGEAANjw3if91b/fZz0AAE6xu7WfMAzAPCAIAwDAhv0vnK0HAMAJ/W7tr993tB0AcB1BGAAANvgfcrYeAAAnsLUfADoRhAEAYMOTj/dX/0Sf9QAAOIGt/QDQiSAMAAAbngtLDz9gr/aRB6Xnw872AwCAHWztB4BOBGEAANhw9oz05lP2aq8+LXnPONoOAAC2sLUfADoRhAEAYNOz53vXXI/bqwMAYBzY2g8AnU673QAAANNiwSN9/frBHbj+7o70958cbCHxPyT968el585LPv4lHQAwQZ4LS69+YO/AfLb2A5gHBGEAANjk8UinPNLi/yb9xf9x8AEAwCRrbu1/odC7lq39AOYBQRimWq1WUzAY7Fqzvr6u9fX1MXUEAAAATJbnwpJH0kvvHj8Z9vADByEYW/sBjMLm5qY2Nze71tRqtTF1cxRBGKZao9FQtVrtWlOv18fUDQAAADB5PB7puYj0f/7v0ltl6f22rf1PPH6wHZJJMACjUq/Xe75PdxNBGKbawsKClpaWutZ4vd4xdQMAAABMrrNnpB9/9+ADAJzi9XoVCAS61tRqNTUajTF11MljWZblypWBIQSDQVWrVQUCAe3u7rrdDgAAAAAAsMnN9/QLY70aAAAAAAAA4BKCMAAAAAAAAMwFgjAAAAAAAADMBYIwAAAAAAAAzAWCMAAAAAAAAMwFgjAAAAAAAADMhdNuNwAAwLyxLKlhSffuS2/dkf7+E2n/C8n/kPTE49K/OX/wucfjdqcAAADAbCEIAwBgzBqWdPq1479W/LX0796X/nNcej4y3r4AAACAWcfWSAAAxuztO71rXijYqwMAAABgHxNhAACM0b370svv2qt98R3pye9I3jOOtgQAmEBsowcAZxCEAQAwRm+Vpc+/slf72ZfS9bL04+862xMAYPKwjR4AnMHWSAAAxui9T/qrf7/PegDAbGAbPQA4gyAMAIAx2v/C2XoAwPTrdxt9/b6j7QDATCEIAwBgjPwPOVsPAJh+g2yjBwDYQxAGAMAYPfl4f/VP9FkPAJh+bKMHAOcQhAEAMEbPhaWHH7BX+8iD0vNhZ/sBAEwettEDgHMIwgAAGKOzZ6Q3n7JXe/VpyXvG0XYAABOIbfQA4ByCMAAAxuzZ871rrsft1QEAZg/b6AHAOafdbgAAgHmz4JG+fv3grmB/d0f6+08OtrX4H5L+9ePSc+clH/+6DwBz67mw9OoH9g7MZxs9APTHY1mW5XYTQL+CwaCq1aoWFha0tLTUtXZ9fV3r6+tj6gwAAAAY3vUd6YVC77q/u8QEMYDJsrm5qc3Nza41tVpNjUZDgUBAu7u7Y+rsABNhmGqNRkPVarVrTb1eH1M3AAAAwGg8e753EMY2egCTqF6v93yf7iaCMEw1OxNhXq93TN0AAAAAo8E2egDTyuv1KhAIdK1pToS5ga2RmErNrZFujFECAAAAAIDBufmenrtGAgAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAuEIQBAAAAAABgLhCEAQAAAAAAYC4QhAEAAAAAAGAunHa7AQAAMDjLkhqWdO++9NYd6e8/kfa/kPwPSU88Lv2b8wefezxudwoAAAC4jyAMAIAp1rCk068d/7Xir6V/9770n+PS85Hx9gUAAABMIoIwAACm2Nt3ete8UJBOLUjPnne+HwCYZ0zpAsDkIwgDAGBK3bsvvfyuvdoX35Ge/I7kPeNoSwAw15jSBYDJx2H5AABMqbfK0udf2av97EvpetnZfgBg3tmd0rVTBwBwBkEYAABT6r1P+qt/v896AIB9/U7p1u872g4A4AQEYQAATKn9L5ytBwDYx5QuAEwHgjAAAKaU/yFn6wEA9jGlCwDTgSAMAIAp9eTj/dU/0Wc9AMA+pnQBYDoQhAEAMKWeC0sPP2Cv9pEHpefDzvYDAPOMKV0AmA4EYQAATKmzZ6Q3n7JXe/VpyXvG0XYAYK4xpQsA08FjWZbldhNAv4LBoKrVqhYWFrS0tNS1dn19Xevr62PqDADG65uGdPq17jXX49JzkfH0AwDz6t59KfCGvQPzH3lQql7hHygAzKbNzU1tbm52ranVamo0GgoEAtrd3R1TZwdOj/VqwIg1Gg1Vq9WuNfV6fUzdAMD4LXikr18/eAP2d3ekv//k4NwZ/0PSv35ceu685GP7DQA4rjml+0Khdy1TugBmWb1e7/k+3U0EYZhqdibCvF7vmLoBgPHzeKRTHmnxf5P+4v84+AAAuOO5sOSR9NK7x0+GPfzAQQj27PlxdwYA4+P1ehUIBLrWNCfC3MDWSEyl5tZIN8YoAQAAgG7u3ZfeKkvvt03pPvH4wU1LmAQDAHff0zMRBgAAAAAjdPaM9OPvHnwAACYLd40EAAAAAADAXCAIAwAAAAAAwFwgCAMAAAAAAMBcIAgDAAAAAADAXCAIAwAAAAAAwFwgCHOBYRiKxWK2asvlstbW1rS8vCyPxyOPx6Pl5WWl02mZpjkxfUpSNptVLBaT3+9v9ZlIJFQqlRzsEgAAAAAAwB6CsBEyTbMVVnX7WF5eVigU6rlWIpFQJBJRLpeTYRitrxmGoWw2K7/fr1wu52qfklQqleT3+5VOpyVJ+XxelUpFmUxG5XJZsVhMsVjM8eAOAAAAAACgm9NuNzBL+gmlmqHRcUzTVCQS6Qi/TrK2tqadnR1tbW3Zvvao+pQOQrDm1FgymezoIxQKKR6PKxKJqFQqKRKJaGdnRz6fz/b1AQAAAAAARoWJsBHa2NiwVReNRrtOWiUSCRmGoXA43JquqlQqyufzSqVSR+pzuZwKhcLY+2xOrUkHoddJYVw+n5d0MMnWrAcAAAAAABg3JsJGJJfLyTRNpVKpnudqXbhwoes6pVJJqVRKmUym42vNCau1tTUlEgmVy+XW11ZXVxWPx8fWp3QQ2DW3O3abHGv2XSgUVCqVlMvllEwme/YKABgvy5IalnTvvvTWHenvP5H2v5D8D0lPPC79m/MHn3s8bncKAAAADMZjWZbldhOzYHl5WZJUqVSGXicUCqlYLHatMwyjdc2mYrGoaDQ6lj4PX39/f7/rlsdCodCaBvP5fNrf3x/q+sFgUNVqVYFAQLu7u0OtBQA48E1DOv1a95r/HJeej4ynHwAAAMwmN9/TszVyBAqFggzD6HmeVi/lclmGYbS2EnYTCoWOTIy1T4g52aekjmtHo9Ge5361T6uZptnXVk4AwHi8fad3zQsFe3UAAADAJCIIG4GNjQ35fD5dunRpqHVu3LihZDJp+zD5w9Nfv/3tb7vWj6pPqfPA/XA4bOs57eeN3bhxY+geAACjc+++9PK79mpffEeq33e0HQAYG8s6mIjd+3+l/8//Lf3Jf5Qu/oeD//v//b8P/pw9NAAwOzgjbEjlcrk1ieX3+xUKhRSNRhWLxWyd2dXu8uXLXQ+nP+xwAHV4q6RTfR6ePLt48aLtfpt3wmQiDAAmy1tl6fOv7NV+9qV0vSz9+LvO9gQA49CwTt4WXvy19O/eZ1s4AMwSJsKGdHiboWEYyuVySiQS8ng8Rw617yYcDtueBpPUOqi+qVuINso+S6WS7et2q7N7PQCA8977pL/69/usB4BJxbZwAJgvBGFDMAzjSCh0WKFQUCQS0dramiPXb3fSQfmj7vP27dsdj+2Gd48++mjH4+3tbVvPAwA4b/8LZ+sBYBKxLRwA5g9bI4cQCoW0tbUl0zRVqVRUKpWOhFNNuVxO29vb2tnZGdn124OkZDI5tj4PP3fQibBh71wJABgd/0PO1gPAJGJbOADMH4KwIR0OoEzTVC6X08bGxpGti+VyWbFYTMVicSTX3traan3e606Qo+zzpBCtX4evCwBwz5OPSx/+yn79E4871wsAjMsg28IJwgBgunksi3ugOKVQKGh1dfVI4JPJZJRKpYZa2zCM1uH4w67Xb58ej6fjsd0foVKppFgs1nocj8eVz+f7b1hSMBhUtVrVwsKClpaWBlqj3fr6utbX14deBwCm1b37UuANe5MRjzwoVa9I3jPO9wUATvqX/z/p9m4f9UHp//m/nOsHACbd5uamNjc3h16nVqup0WgoEAhod7eP/xCPABNhDorH44pGo1pZWek4GH5jY2PoICyTyUg62G447FpO9tnNKCbCGo2GqtXq0OvU6/Wh1wCAaXb2jPTmUwcHQvdy9WlCMACzgW3hANCfer0+kvfgbiIIc5jP59POzo4ikUgrZDJNU6VS6cTD7Xspl8vK5XLy+Xwj22bZT58+n28kIVY/d8g8yagmwrxe79BrAMC0ey4seSS99O7xk2EPP3AQgj17ftydAYAz2BYOAP3xer0KBAJDr9OcCHMDQdiYXLt2TZFIpPW4WCwOHIStrq5Kkm7dumX7oHq77PS5uLg4kiBscXFx6DWWlpbGPkYJALPK45Gei0j/5/9+cID0+58c3B3S/9DBm7/nw0yCAZgtz4WlVz+wvy38+bDzPQHAJBvVsULN447csODKVedQOBzuCJQGPXB+bW1N5XJZ+Xxe4fDo/5fYTp+DTnIdDs9GMREGABi9s2cODoP+4M8OzsL54M8OHhOCAZg1zW3hdrAtHABmA0HYGLUfFD+IXC6nXC6nra0txePxEXV1VK8+L1y40PHY7nTY3t5ex+PmYf8AAACAW54LS9fjB9u/j/PwA9JbCbaFA8CsYGvkGLVvY+x3W2CpVNLa2pq2traUTCZH3VqHXn22b52UDqbG7EynVSqVjseDbg0FAAAARoVt4QAwXwjCxqg9YOpnW2C5XFYsFlMmk3E8BJN693l4IsxuENY+Oebz+UZ+vhkAAAAwqOa28B9/1+1OAABOYmvkGG1vb7c+t7tN0jAMraysKJVKKZVKOdVah159hsPhjoDs9u3bfa97OEwDAAAAAABwGkHYGLVvDbSzLdAwDEUiESWTSWUyGVvXMAxD2f9/e/fz2+h15gv+UcU2yoihoipAA9XSisIAFfSqqMpdZGtq7sbu9kKUF3Y5K0tJEOACtZC60H9AQVoImOk7nYjGDNCxsyiLCwfxBToRs7x34xK9NZArZlOCgAa69JbgXBccWJwFhxz9pEiJP16Snw8gWD+Ozvuw7EMWv37OedfXr1xjRHt1Li4uNj+vVCptzXt83Orq6hWrAwAAALgaQVgflUqliIi2OruSJIn5+flYXFxsOwSLiCgUCtc+e6udOpeXl5ufl8vlS+c8PiabzTofDAAAAOg7Z4T1SalUimq1GplMJh49etRybJIkMTc3F9lsNlZXV6NarV46f7VabXZZtXNe13XrzOVykc/nmwFXqVRqeSfLra2t5ue6wQAAAIBBmKjVarVBFzGMyuVyFAqFSJIk8vl8rK2tXRhANbY4JkkSOzs7lwZVc3NzbW83PO30XSV7WWe1Wo3Z2dmIqAdjOzs7545LkiSmpqYior7Vcnt7+yoP7YSZmZnY29uL6enpePbs2bXnAwAAAPpjkO/pbY28oq2treZdEMvlcszNzZ3YLtjQ+Nnt27djd3e3pyFYRJy5q2Sv6oyob3FsdHpVKpULzyZ78803I6J+p8jjnWEAAAAA/SQIu6JCoXDme8ViMaampqJQKMTy8nLMzc3F/Px8LC0txc7OTmSz2Uvn7GYI1qs6j1tYWIjt7e3IZDKxurrafAxJkjTDtUqlErlcLv785z+fuNskAKOrVov47iji+f+K+D/+e8T//n9H/Oi/1v/5f/73+vf1pAMA0G+2Rl5DtVqNtbW1KJfL8fz580iSJDKZTNy+fTtyuVy8++67kc/nBx7+9KvO9fX1ePLkSVSr1eY17t+/H8vLyy3PD7sKWyMB0u27o4hX/qn1mH9diPhgrj/1AKPrxcuIX1ciPv8q4uCbiKnXI96+G/EgF3Hr5qCrA+A8g3xPLwhjKAnCANLt1zsRPyldPu6TxYj37vW+HmD01GoRH1cifv7biL/89ezPv/9qxC/fqQdiAKSLM8IAgJHx4mX9jWk7fvpZxOHLnpYDjKiPK/XA/bwQLKL+/Q+2In7zZX/rAiDdBGEAQFd9XLn4jelpX39b39IE0AmBOwBXJQgDALrqd191Nv7zDscDCNwBuCpBGADQVQff9HY8gMAdgKsShAEAXTX1em/HAwjcAbgqQRgA0FVv3+1s/FsdjgcQuANwVa8MugC4jv39/ZiZmWk55uHDh/Hw4cM+VQTAg1zEP/5be+f3vPFaxAe53tcEjJa370b84U/tjxe4A/TPxsZGbGxstByzv7/fp2rOEoQx1I6OjmJvb6/lmMPDwz5VA0BExK2bEf/yDxE/KV0+9lfvREze7HlJwIgRuAOk1+Hh4aXv0wdJEMZQu3HjRty5c6flmMnJyT5VA0DDg1zERET87Lfnv1H9/qv1EOy9e/2uDBgFAneA9JqcnIzp6emWY/b39+Po6KhPFZ00UavVagO5MlzDzMxM7O3txfT0dDx79mzQ5QBwgRcvIz6u1O/YdvBN/Zyet+7WuzO8MQWuo1aL+KRyeeD+vm4wgNQZ5Ht6HWEAQM/cuhnxix/XPwC6aWIi4sFcxN//ncAdgPYJwgAAgKElcAegEzcGXQAAAAAA9IMgDAAAAICxIAgDAAAAYCwIwgAAAAAYC4IwAAAAAMaCu0YCAKlWq0Uc1SJevIz4+MuI//ZVxME3EVOvR7x1N+L9e/XPJyYGXSkAAGknCAMAUu2oFvHKP53/s+3/GfFfPo/414WID+b6WxcAAMNHEAYApNpvvrx8zE9KEd+7EfHevd7XA1ydDk8ABk0QBgCk1ouXET//bXtjf/pZxNs/jJi82dOSgGvQ4QnAoDksHwBIrY8rEX/5a3tjv/424teV3tYDXE+7HZ7tjAOAqxCEAQCp9buvOhv/eYfjgf7ptMPz8GVPywFgTAnCAIDUOvimt+OB/tHhCUAaCMIAgNSaer2344H+0eEJQBoIwgCA1Hr7bmfj3+pwPNA/OjwBSANBGACQWg9yEd9/tb2xb7wW8UGut/UAV6fDE4A0EIQBAKl162bEL99pb+yv3omYvNnLaoDr0OEJQBoIwgCAVHuQi/hksd7xdZ43Xqv//L17/a0L6IwOTwDS4JVBFwDXsb+/HzMzMy3HPHz4MB4+fNinigDohffuRbz1w/pd5z7/qn520NTr9Y6RD3I6wWAY3LoZ8S//EPGT0uVjdXgCDK+NjY3Y2NhoOWZ/f79P1ZwlCGOoHR0dxd7eXssxh4eHfaoGgF66dTPiFz+ufwDD6UEuYiIifvbbiL/89ezPv/9qPQTT4QkwvA4PDy99nz5IgjCG2o0bN+LOnTstx0xOTvapGgAAWpmYiHgwF/H3f6fDE2BUTU5OxvT0dMsx+/v7cXR01KeKTpqo1Wq1gVwZrmFmZib29vZieno6nj17NuhyAAAAgDYN8j29w/IBAAAAGAuCMAAAAADGgiAMAAAAgLHgsHwAYCzUahFHtYgXLyM+/jLiv506pPv9e/XPJyYGXSkAAL0iCAMAxsJRLeKVfzr/Z9v/M+K/fB7xrwsRH8z1ty4AAPpHEAYAjIXffHn5mJ+UIr53I+K9e72vB4aFbkoARokgDAAYeS9eRvz8t+2N/elnEW//MGLyZk9LgqGhmxKAUeKwfABg5H1cifjLX9sb+/W3Eb+u9LYeGCbtdlO2Mw4ABk0QBgCMvN991dn4zzscD6Oq027Kw5c9LQcArk0QBgCMvINvejseRpVuSgBGjSAMABh5U6/3djyMKt2UAIwaQRgAMPLevtvZ+Lc6HA+jSjclAKNGEAYAjLwHuYjvv9re2Ddei/gg19t6YFjopgRg1AjCAICRd+tmxC/faW/sr96JmLzZy2pgeOimBGDUCMIAgLHwIBfxyWK94+s8b7xW//l79/pbF6SZbkoARs0rgy4AAKBf3rsX8dYP63fC+/yr+nlGU6/Xu1g+yOkEg9Ma3ZQfbF0+VjclAMNAEAYAjJVbNyN+8eP6B3C5B7mIGxMRP/0s4utvz/78jdfqIZhuSgCGgSAMAABoSTclAKNCEAYAAFxKNyUAo0AQxlDb39+PmZmZlmMePnwYDx8+7FNFAAAAML42NjZiY2Oj5Zj9/f0+VXOWIIyhdnR0FHt7ey3HHB4e9qkaAMbNi5cRvz61Veztu/UzlW7ZKgYAjKHDw8NL36cPkiCMoXbjxo24c+dOyzGTk5N9qgaAcfLJlxE/++zs4eF/+FPEo9/X77T3vsPDGTBhLQD9Njk5GdPT0y3H7O/vx9HRUZ8qOmmiVqvVBnJluIaZmZnY29uL6enpePbs2aDLAWDMfPJlxINP2xi36E56DEatVj/Y/ue/jfjLX8/+/Puv1sPaB7m+lwYAA31Pf6OvVwMAGHIvXtY7wdrx088iDl/2sho438eViJ+Uzg/BIurf/2Ar4jdf9rcuABg0QRgAQAc+rpzdDnmRr7+tb0uDfnrxst4J1g5hLQDjRhAGANCB333V2fjPOxwP1/Vx5eJOsNOEtQCMG0EYAEAHDr7p7Xi4LmEtAFxMEAYA0IGp13s7Hq5LWAsAFxOEAQB04O27nY1/q8PxcF3CWgC4mCAMAKADD3IRb7zW3tg3Xov4INfbeuA0YS0AXEwQBgDQgVs3I375Tntjf/VOxOTNXlYDZz3IRXz/1fbGCmsBGDeCMACADr1/L+KTxYs7w954rf7z9+71ty6IqIe1//IP7Y0V1gIwbl4ZdAEAAMPovXsRb/0w4uNK/a57B9/Uz1p66269w0a4wCA9yEVMRMTPfhvxl7+e/fn3X62HYMJaAMaNIAwA4Ipu3Yz4xY/rH5AmExMRD+Yi/v7vhLUAcJwgDAAgBV68jPj1qcDi7bv1zp5bAguuSFgLACcJwgAABuyTLyN+9lnE19+e/P4f/hTx6Pf1w/nft4VtbAhFAaB3BGEAAAP0yZcRDz69+Odff1v/+UQ4z2nU1Wr1bYw/P+dcrz/8KeIf/60eij5wl0cAuDJ3jQQAGJAXL+udYO346WcRhy97WQ2D9nEl4iel8w+3j6h//4OtiN982d+6AGCUCMIAAAbk48rZ7ZAX+frb+nY5RtOLl/VOsHYIRQHg6gRhAAAD8ruvOhv/eYfjGR4fVy7uBDtNKAoAVycIAwAYkINvejue4SEUBYD+EIQBAAzI1Ou9Hc/wEIoCQH+4ayRDbX9/P2ZmZlqOefjwYTx8+LBPFQFA+96+W78bYLveutu7WhgsoSgAo2JjYyM2NjZajtnf3+9TNWcJwhhqR0dHsbe313LM4eFhn6oBgM48yEU8+n17B+a/8VrEB7ne18RgCEUBGBWHh4eXvk8fJEEYQ+3GjRtx586dlmMmJyf7VA0AdObWzYhfvhPx4NPLx/7qnYjJm72uiEF5kIv4x39r78B8oSgAaTY5ORnT09Mtx+zv78fR0VGfKjppolar1QZyZbiGmZmZ2Nvbi+np6Xj27NmgywGAa/nNlxE//ez8zrA3XquHYO/d63dV9NuvdyJ+Urp83CeL/nsAYLgN8j29jjAAgAF7717EWz+M+LhSvxvgwTf1M6Deulvv/Om0E+zFy4hfn5rr7bv1rqNbuspS60EuYiIifvbb8zvDvv+qUBQArktHGENJRxgAnO+TLyN+9tnF3WW/fCfifUFKT3QrgHzxsnuhKACkkY4wAACu7ZMvW5839vW39Z9PhK6ibrsogPzDn+o3ROgkgLx1M+IXP65/AADddWPQBQAAcH0vXtaDmHb89LOIw5e9rGa8NALIi+7+2Qggf/Nlf+sCAM4ShAEAjICPKxcHMad9/W19Cx/XJ4AEgOEiCBuAarUa8/PzbY2tVCqxvLwcs7OzMTExERMTEzE7Oxurq6uRJMmVa1hfX4/5+fmYmppqzlkoFKJcLqdqTgCgPb/7qrPxn3c4nvMJIAFguAjCuihJkmZY1epjdnY2stnspXMVCoWYm5uLYrEY1Wq1+bNqtRrr6+sxNTUVxWKxoxrL5XJMTU3F6upqRERsbW3F7u5urK2tRaVSifn5+Zifn+8oZOvFnABAZw6+6e14zieABIDh4rD8LuoklGqERudJkiTm5uZOhF8XWV5ejp2dndjc3Lx0bLlcbnaiLS0tnfidbDYbCwsLMTc3F+VyOebm5mJnZycymUzf5wQAOjf1em/Hcz4BJAAMFx1hXfT48eO2xuXz+ZYdYYVCIarVauRyuWZ31e7ubmxtbcXKysqZ8cViMUqlUstrNjrMIuoB1UXB2dbWVkTUu84a4/s5JwBwNW/f7Wz8W22Of/Ey4p//R8R//n8i/tP/Vf/nf/0f9e8jgASAYaMjrEuKxWIkSRIrKyuXnv91//79lvOUy+VYWVmJtbW1Ez9rdFgtLy9HoVCISuX/P2Tiww8/jIWFhQvnLRQKza2JrbrRGtcolUpRLpejWCzG0tJS3+YEAK7mQS7i0e/bO6/qjdciPshdPu6TL+sHwZ+e8w9/ql/rl+9EvH/vKtWmx4uX9XO7Pv+q3q019Xo9VHyQi7h18/Lff/tu/c+jXe0GkABAb0zUarXaoIsYBbOzsxERsbu7e+15stlsbG9vtxxXrVab12zY3t6OfD5/6diDg4OW2xNLpVKzcyuTycTBwUFf5uzEzMxM7O3txfT0dDx79uxacwHAqPjky4gHn7YxbjHivUsCrG7OlVYXBX0R9bCwnaDvxcuImcftB5B7jyIm2wjYAGCUDfI9va2RXVAqlaJarbbsimpHpVKJarXa3ErYSjabPdMxdrxD7Ljj4/L5/KVndB3vLEuS5Nxtl72YEwC4nvfv1YOpN147/+dvvNZecPXiZT0gasdPP4s4HMJtko2g76IA6+tv6z//zZet57l1sx6YteNX7wjBAGDQBGFd8Pjx48hkMrG4uHiteZ48eRJLS0ttHyZ/uvvrP/7jP84dd/wQ/1yujX0QESfOMHvy5Elf5gQAru+9exHPHkX889sR//l/i/hPM/V//vPb9W6kdrq3Pq601+EUUR/36/P/X1xqdTvo61YACQD0njPCrqlSqTQ7saampiKbzUY+n4/5+fmWZ3ad59133215iP5ppwOo01slG/Ud96Mf/ajtuRt3rTzdvdWLOQGA7rl1M+IXP65/XMXvvups/OdfXX6t657F1c25rhL0Xfb43rsX8dYP63Mfr+utu/Xz2HSCAUA6CMKu6fR2yGq1GsVisdkxtbCwEI8ePWqra6rdzqqGxkH1DeeFaOVy+dIx5zk9rlKpNOvrxZwAQHocfNPd8d08dL8bc/Ui6Iu4fgAJAPSerZHXUK1Wz4RCp5VKpZibm4vl5eWeXP+48w7K/+KLL0583e62yx/84Acnvn769GlP5wQA0mPq9e6N79ZZXN2cq9tBHwAwPARh15DNZmNzczPW1tZiaWmpZWdUsViMubm5rl7/eJC0tLR07pjTYdlVu7eO3w2zF3MCAOnx9t3Oxr91wfhunsXVzbm6GfQBAMNFEHZNS0tLsbKyEpubm7G7uxsHBwextrZ2bpdUpVKJ+fn5rl17c3Oz+flFd6w8HVpd1fFtmL2YEwBIjwe5iw9+P+2N1+pnYJ2nm4fud3OubgV9AMDwEYR1WSaTiZWVlTg4OIitra0zgVi5XI719fVrX6darTYPrV9bW7uwK+uqYdPpup8/f97TOQGA9Lh1s37WVjt+9c7FB8Ff5Syui3Rzrm4FfQDA8HFYfg8tLCxEPp+PN99888SdFh8/fhwrKyvXmnttbS0i6tsNrztXO3rRvdWNOff392NmZuba8zx8+DAePnx47XkAYFS8fy9iIurbDM/rxHrjtXoI9l6Lg+m7eRZXN+dqBH0PPr18nlZBHwCMm42NjdjY2Lj2PPv7+12o5moEYT2WyWRiZ2cn5ubmmmFYkiRRLpfPPdy+HZVKJYrFYmQymdje3r70+t0InI53c/Vizqs6OjqKvb29a89zeHh47TkAYNS8dy/irR/WtyV+/lU9XJp6vb5V8IPc5QFRN8/i6va5Xt0I+gBg3BweHnblPfggCcL65KOPPjpxWP729vaVg7APP/wwIiL++Mc/XnpQ/e3bt7sSWt2+fbunc17VjRs34s6dO9eeZ3Jy8tpzAMAounUz4hc/rn906u27EX/4U/vjW53F1c25Gq4b9AHAuJmcnIzp6elrz7O/vx9HR0ddqKhzgrA+yeVykc/no1wuR8TVD5xfXl6OSqUSW1tbkctdfmDFVbuuTgddpzvCuj3nVd25cyeePXt27XkAgO57kIt49Pv2Drm/7Cyubs513HWCPgAYN906VmhmZmZgnWUOy++j694xslgsRrFYjM3NzVhYWGjrd+7fv3/i63Y7uU4fZD87O9vTOQGA0dOtQ/e7PRcAML4EYX10fBtjp9sCy+VyLC8vx+bmZiwtLbX9e8e3Y0a034m2u7t74uvj2zh7MScAMJrevxfxyeLFd2l847X6z9s5i6ubcwEA48nWyD46HoR1si2wUqnE/Px8rK2tdRSCRZzt3qpWq21tqTze5ZXJZE7U3os5AYDR1c2zuJzrBQBchyCsj54+fdr8vN1tktVqNd58881YWVmJlZWVjq+Zy+VO3OXxiy++aGtb5fFaTwdfvZgTABht3TyLy7leAMBV2RrZR8e3BrazLbBarcbc3FwsLS3F2tpaW9eoVquxvr5+4nuLi4vNzyuVSlvzHB+3urp65ue9mBMAAACglwRhfVQqlSIi2ursSpIk5ufnY3Fxse0QLCKiUCicCdmWl5ebnzfuWtnK8THZbPbc0K4XcwIAAAD0kiCsT0qlUlSr1chkMvHo0aOWY5Mkibm5uchms7G6uhrVavXSj3K53DzE/vR5Xblc7kTw1AjkLrK1tdX8/KLOrV7MCQAAANBLE7VarTboIoZRuVyOQqEQSZJEPp+PtbW1Cw+Mb2xxTJIkdnZ2Lj1Yfm5uru3thqdddFfJarUas7OzEVEPsXZ2ds79/SRJYmpqKiLq2ze3t7cvvFYv5mzXzMxM7O3txfT0dDx79uza8wEAAAD9Mcj39DrCrmhra6t5WHyjG+v4dsGGxs9u374du7u7PQ3BIuLCu0pms9lmV1alUjlzjljDm2++GRH1uzoe7+Lq15wAAAAAvSIIu6JCoXDme8ViMaampqJQKMTy8nLMzc3F/Px8LC0txc7OTmSz2Uvn7EUI1rCwsBDb29uRyWRidXW1eb0kSZqBXaVSiVwuF3/+858jk8lces1ezAkAAADQC7ZGXkO1Wo21tbUol8vx/PnzSJIkMplM3L59O3K5XLz77ruRz+dTGf6sr6/HkydPolqtNuu+f/9+LC8vx8LCQmrmvIitkQAAADCcBvmeXhDGUBKEAQAAwHAa5Hv6V/p6NRhzGxsbcXh4GJOTk/Hw4cNBlwP8f6xNSB/rEtLHuoT0sS47pyOMoTSsHWHDWjeMOmsT0se6hPSxLiF9hnVdumskAAAAAPSYIAwAAACAsSAIAwAAAGAsCMIAAAAAGAuCMAAAAADGwiuDLgCuY39/P2ZmZlqOefjwodvIAgAAQB9sbGzExsZGyzH7+/t9quYsQRhD7ejoKPb29lqOOTw87FM1AAAAMN4ODw8vfZ8+SIIwhtLXX38dERETExPxt3/7ty3HTk5O9qOkkbaxsRGHh4cxOTk5VN11w1p3xPDWPqx1D6th/fNWd38Na93Dalj/vNXdX8Na97Aa1j9vdffXsNadRpOTkzE9Pd1yzP7+fhwdHfWpopMmarVabSBXhmv43ve+F0dHR3Hjxo347rvvBl1O22ZmZmJvby+mp6fj2bNngy6nberuv2GtXd39pe7+Und/qbu/1N1f6u4vdfeXuvtL3Z1zWD4AAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWJmq1Wm3QRUCnJiYmmp9PT08PsJLO7O/vx9HRUdy4cSPu3Lkz6HLapu7+G9ba1d1f6u4vdfeXuvtL3f2l7v5Sd3+pu7+Gve5XX301vv32275eWxDGULpx40b4TxcAAACG140bN+K7777r6zVf6evVoEtef/31ePnyZXzve9+Lv/mbvxl0OQAAAECb/v3f/z2+++67uHnzZt+vrSMMAAAAgLHgsHwAAAAAxoIgDAAAAICxIAgDAAAAYCwIwgAAAAAYC4IwAAAAAMaCIAwAAACAsSAIAwAAAGAsCMIAAAAAGAuCMAAAAADGgiAMAAAAgLEgCAMAAABgLAjCoIeq1WrMz89HqVTqy/XW19djfn4+pqamYmJiImZnZ6NQKES5XO7L9SGt0r42Gs8VMAoGud7SvtZhUNK+NrwOMm68TxwsQRj0QJIkUSgUYnZ2Nsrlcjx//ryn1yuXyzE1NRWrq6sREbG1tRW7u7uxtrYWlUol5ufnY35+PpIk6WkdkDaDXhtJksTExMSlH7Ozs5HNZntSA/TLINfboNc6pNWg14bXQTjJ+8SUqAFdc3BwUFtZWalFxImPzc3Nnl1ze3u7eZ2lpaVzx+RyuVpE1LLZbO3g4KBntUCapGFtrK2tnXk+uOhjd3e369eHfhnkekvDWoc0SsPa8DoIdd4nposgDLpkbW2tls1ma/l8vm9PcAcHB7VMJtN88rrI7u5us5Z8Pt+TWiBN0rI2GjVc9mFdMswGud7SstYhbdKyNrwOgveJaWRrJHRBpVKJfD4fu7u7sb29HZubm325bqFQaLaxNtpdz5PNZmNhYSEi6u2xxWKxH+XBwKRhbRSLxUiSJFZWVmJ7e7vlx9bWVteuC/02yPWWhrUOaZSGteF1ELxPTKuJWq1WG3QRMGoqlUrMzc01v97c3IylpaWuXqNarcbs7Gzz64ODg8hkMheOL5VKUSgUIiIik8nEwcFBV+uBtEjL2mjUsLu725X5II0Gud7SstYhbdKyNrwOwlneJ6aDjjDogVZPNN2ytrbW/Dyfz196zUbSH1E/pLFfdyiBfkvD2iiVSlGtVlv+HzgYBYNcb2lY65BGaVgbXgfhfN4npoMgDIbU8bbVXC7X1u8cvxvPkydPul4TpEEa1sbjx48jk8nE4uLiteeCNBvkekvDWoc0SsPa8DoIg5OG54C0E4TBEKpUKie+/tGPftTW7x1/IhyHpJ/xk4a1UalUolKpRJIkMTU1FbOzs7G8vGzNMXIGud7SsNYhjdKwNrwOwuCk4TlgGAjCYAiVy+UTXx9P8Fs5Pe70EyUMuzSsjdPbQKrVahSLxSgUCjExMRGFQsHaYyQMcr2lYa1DGqVhbXgdhMFJw3PAMBCEwRD64osvTnzd7l7zH/zgBye+fvr0abdKglQY9NqoVqtn/gJyWqlUirm5uVheXr7SNSAtBrneBr3WIa0GvTa8DsJgDfo5YFi8MugCgM5Vq9UTX1816XcXH0bNoNdGNpuNzc3NSJIkdnd3o1wun6mpoVgsxtOnT2NnZ+dK14JBG+R6G/Rah7Qa9NrwOgiDNejngGEhCIMhdNFfKDqVJElX5oG0SMPaOH0L7CRJolgsxuPHj8/MW6lUYn5+Pra3t698PRiUQa63NKx1SKM0rA2vgzA4aXgOGAa2RsIQuuoT0+nW2OfPn1+/GEiRNK6NTCYTKysrcXBwEFtbW2euVS6XY319vWvXg34Z5HpL41qHNEjj2vA6CP2TxueANBKEwRgb9aQfrqpXa2NhYSH+/Oc/n7mV9ePHj3tyPRgGg3wt8joI5/M6CONt1F8fBWEwhNo99LBf80BaDMPayGQysbOzc+JNQJIklx4uDGkzyPU2DGsdBmEY1obXQeidYXgOSANBGCOpWCzGxMREVz/m5uYG/bCabt++nap5oB39WJfDtDY++uijE187H4VhM8j1NkxrHfppmNaG10HovmF6DhgkQRgMoasm9KdbXEc96Wf8DNPayOVykc/nm19363BT6JdBrrdhWuvQT8O0NrwOQvcN03PAILlrJCMpn8/H1tZWV+dM05PB/fv3o1KpNL9OkqSt+k4fejg7O9vt0uBC/ViXw7Y25ufnbQVhaA1yvQ3bWod+Gba14XUQumvYngMGRRDGSMpms5HNZgddRs+c3g5WrVbPHDp6nt3d3RNfH/+/cNBr/ViXw7Y2jv95jHoLOqNnkOtt2NY69MuwrQ2vg9Bdw/YcMCi2RsIQun///omv220lP97ymslkRjosZDwN29o4fp00dZ1COwa53oZtrUO/DNva8DoI3TVszwGDIgiDIZTL5U78ZeGLL75o6/eePn3a/Pz0kySMgmFbG8evOz8/37frQjcMcr0N21qHfhm2teF1ELpr2J4DBkUQBkNqcXGx+fnxfeCtHB+3urra9ZogDYZpbRxvQx/1FnRG0yDX2zCtdeinYVobXgeh+4bpOWBQBGEwpJaXl5uft3PI6PEx2WzWXzYYWcO0NkqlUkRErKys9O2a0E2DXG/DtNahn4ZpbXgdhO4bpueAQRGEQQ+cvv3sVRSLxVhdXb1wX/fpW043/iJxkeN36xuHlJ/x1cu1cdm67ESpVIpqtRqZTCYePXp07flgEAa53rwOwvm8DkJ6eZ+YEjWg67a2tmoR0fxYW1vr6Pfz+fyJ3z84ODh33O7ubnNMLpe7cL6Dg4PmuHw+31EtMIx6sTYuW5fb29u1TCbTnGtnZ6dlfY2xrcbBMBjEeuvltWEUeB2EdPI+MR0EYdBlBwcHtWw2e+IJqtWTz3mO/25E1DY3Ny8ce/zJ9KIn0lwuV4uIWiaTufDJEkZNt9fGZetyaWnpzJilpaUz8zTeKGSz2dru7u6VHx+kSb/XWy+vDaPC6yCki/eJ6SEIgy44ODioLSwsnEnoT3/k8/nawsLCpf/nq/F/yBof29vbLccf/z9wjfkPDg5q29vbzSe3XC43Vk9uUKt1d21cti63t7fPXfeZTKa2sLBQW1paal5zZWXFemTk9HO99fLaMEq8DsJgeZ+YToIwSKHt7e1aNputZTKZ2srKStu/t7a2Vsvlcs0nu0wmU8vn87Wtra0eVgvp14210c663N3drS0tLTXHNa6VzWZrCwsLta2trbH7iwbjp1/rrVfXhlHkdRBGg9fH7pio1Wq1AAAAAIAR566RAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWBGEAAAAAjAVBGAAAAABjQRAGAAAAwFh4ZdAFAAAAAKRdpVKJJ0+eRJIksbm5Oehyum7UH1+DIAwAAAAYGlNTU7GzsxPZbLbn1yqXy7G1tRXlcjmq1WpEROTz+Z5ftxNTU1ORJElsb293XNswPL5uE4QBAAAAQ2F9fb3ZsbS2ttbTa83Pz8fz58+jUqn09DrXUS6XI0mSiOg8wBqGx9cLzggDAAAAhkJjy16xWOz5tba3t2NnZye2t7d7fq2r2traioiIhYWFjn93GB5fLwjCAAAAgNQrlUrN7XtJkkSpVOrLddO8VfDTTz+NiIh33333ynOk+fH1giAMAAAASL3Hjx+3/HrcVCqVK2+LHGeCMAAAACDVKpXKmbOszvveOGlsE83n85HJZAZbzBARhAEAAACpdlH3VyMMGkeNbZGFQmHAlQwXQRgAAACQWsfPA2scDt/Qj0Pz0+j4tsjFxcXBFjNkBGEAAABAajW6wZaWlmJhYSGy2eyJn49jGPbkyZOIiMjlcrZFdkgQBgAAAKRWI+haXV098c+GtbW1a1+jVCrF/Px8TE1NxcTERMzNzcXy8nLzLpVp0+iQa/dukcP2+HpJEAYAAACkUrFYjCRJIp/PNzvBlpaWToypVqtRLpevNH+1Wo3Z2dkoFArx/PnzWFtbi+3t7Xj33XejXC7H7OxsrK+vXzpPoVBohkznfczNzTVDp+Xl5XPHzs7ONrc7XlZzY66FhYW+PL6IegB50eO77GNubq6ta/TDRK1Wqw26CAAAAIDTZmdno1qtxvb2duTz+eb3l5eXT2yJXFhYOHN+2GUqlUozoFlbW4uVlZUzY05fJ6J+l8bt7e1z5zxv/HlzH792LpeLP/7xj21vcVxfX4/V1dXIZrOxu7t74bhuP77G2Gw2G8vLy2e2qDZ88cUXZ8K10//+BumVQRcAAAAAcFq5XI5qtRrZbPZMiHI6wCmVSpEkSdthUrVabYZECwsL54ZEEfW7Uj59+jQqlUpb825ubp7pUDsvrHr69GlEtA7VLtI4H6xVN1ivHl8mk2kZvkWcvcPn0tJSakKwCFsjAQAAgBRqnP11+kywiHoXVS6XO/G9Tg7NLxQKZ65zWR3tOu/Olse3PCZJEqurq5HJZDruYkuSpBlatTofrFeP79GjRy1/vr6+fiJUy2Qysbm52fb8/SAIAwAAAFKl0VWVyWTOnAnWsLy8fOLr051IFymVSs2wJpfLXbjFr+H+/fttzdtwXvjz4Ycfnvg8SZLY2trq+I6Pn376afMap4PAhl49vufPn194zYj6v7PToWWnQV8/CMIAAACAVGl0KV0UgjV+djxISpKkeTfFVo4HZqfDtPN0GlY1aju+HbBUKkW5XI5isRilUunK2wUbwdLi4uKFY3r1+NbW1lrWfLwLLSJ9WyIbBGEAAABAaiRJ0tzmeNlWvNOB0GXb8KrV6omte5d1S13H6VoKhULzkPurbhdsnD12OnRq6OXjazVXsVg8syWy0y2l/SIIAwAAAFKjEYItLCxc2q10eite44D9ixw/xD6it0FYNps9EQYlSdLcEnkVjW63TCZzYadVPx9fQ7VaPdN5dpVtn/0iCAMAAABSo7G177JusIh60HP63KpWnUg7Oztnfr+XVlZWWp6r1YnG3SJbbTfs9+OLOLv9cmFhIZVbIhsEYQAAAEAqlEqlSJLk3LtCXuR0YNbq7pGtusV65XQH2EXbGi/T6AhrdbfIfj++YrF4ogstk8nERx991NcaOiUIAwAAAFKhk26whvO2UF4Uhj1//vzE1/0Ijk6fB3be3RUvczxsWlhYuHBcPx9fkiRnHsdHH32U2i2RDYIwAAAAYOAqlUpUKpXIZDItw57znL67ZLuH0SdJ0tF1OlWpVGJ9ff3M41lfXz9xuPxlGl1lnf659PLxFQqFE/MvLCx0XN8gCMIAAACAgbtKN1jD6XOqGqHaabdv3z7xda87wgqFQnO74Hl3kWzXp59+GhGtt0VG9O/xlUqlodsS2SAIAwAAAAYqSZLmGVinu7vakc1mzxzQ3gjWTo87bnt7u+NrtWt5eTmq1Wpzu+DS0tKJc8+q1Wqsr69fOk+5XG52Xl12CH0/Hl+SJPHhhx+e+N4wbIlsEIQBAAAAA9UIrZaWlq4cqJzuCmscvH/c/Pz8ia8bnVbdVi6Xo1gsRj6fP7Fd8PTB+aurq5d2bTV+J5/PX/pn04/H9+GHH3a8JXJ9fb3lTQz6SRAGAAAADFQjJOn0EPnj2jk0/3RH1fFOtHadPpD+PI1tj6eDr2w2G2tra+eOvUgjzGpnK2WvH1+5XD4xX7tbIre3t89s2xwUQRgAAAAwMMViMZIkiXw+f2ZrX6cuOzT/vIP4T3c4nXb6rLHLDqBvHCK/ubl5bgfXysrKicfZOFD/oms3rre4uNjyuhG9f3ynw7h2tkQmSRLlcvna/267RRAGAAAADEyjQ+o63WANpw/ar1arJw51j4gzHUxJksSbb755bgBUrVbPhD/nzdlQKpWiVCpFNpttedbZeVskzzvc/8mTJxERkcvl2t4y2qvHt7y8fGKO09s+L9I4TywtQdhErVarDboIAAAAYPyUy+XmuVbdCkpOn7mVz+fPHBpfKpXO3Wq4tLQU8/Pz8fz589jZ2YlisRhLS0sXnm+1tLTU7Do7/lhWVlbObIE8LkmSmJqaOvG9TCYTf/zjH08cqD87OxvVajXW1tZiZWWlxaM+qduP7/hja9jc3Dz331mSJPH8+fPY3d2NUqnU/PeRlvhJEAYAAAAMxPz8/IXdVd20u7t7JrQpl8vNbYwXaQRBExMTze9ls9lYXl6OhYWFyGazza6q0x1d+Xw+tra2znRyra+vx+bm5oWH5OdyuWbH2Ozs7IX1X6Zbjy8iYm5u7tyOtXZlMpk4ODi48u93kyAMAAAAGFvr6+vx5MmTqFarkSRJZDKZyOfzsby83Dx8fnZ2NhYWFuLdd9890bHV67pWV1cjm83G7u7uteZJ4+MbFEEYAAAAQMo0urAu22ZJZwRhAAAAACly/AyxnZ2dke/S6id3jQQAAABIkU8//TQi6mdrCcG6SxAGAAAAkCKNw/IXFxcHXMnoEYQBAAAApESSJM07aRYKhQFXM3oEYQAAAAAp0QjBGnd3pLsclg8AAACQEkmSND/PZDIDq2NUCcIAAAAAGAu2RgIAAAAwFgRhAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWBGEAAAAAjAVBGAAAAABjQRAGAAAAwFgQhAEAAAAwFgRhAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGNBEAYAAADAWBCEAQAAADAWBGEAAAAAjAVBGAAAAABjQRAGAAAAwFgQhAEAAAAwFgRhAAAAAIwFQRgAAAAAY0EQBgAAAMBYEIQBAAAAMBYEYQAAAACMBUEYAAAAAGPh/wWSI5X7Hno1agAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh7UlEQVR4nOz9X2xbZ5rn+/4ouzIOkqJJpYHZggR0mUR6Ujen26Q8+6CuzpTI6d5AjGQqpD1IkAQbE1FJUBgcaDpkXLl2FLKqhAMMTsaiq3EOHAS7bbJTCRLgVId0+vqMpeXqu8xUcTkFSOCei0jLrBTinXLIfaFNFilR5CK5Fv9+P4BQkvXw5SPJTkk/Pe/7emq1Wk0AAAAAAADAlJsbdQMAAAAAAADAMBCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhI2AaZqKRqMj7SGTySgajcrv98vj8SgYDCoej6tYLI7VmgAAAAAAAE4hCHOQZVnyeDxdX4LBoAKBwInr1IOkfl7W1tY69lgsFuX3+5VKpSRJuVxOpVJJ6XRahmEoGo0qGo3KsizbH7cbawIAAAAAADjNU6vVaqNuYlpkMplGGNRNqVRqG4bl83nF4/G+e8jlcorFYm3fVywWG5NoiURCW1tbx2rC4bAMw1AgENDOzo58Pl/H53NjTQAAAAAAADcQhDnI7/fbmnqKRCIqFApt3xeNRgfaSnjSl9OyLJ07d06WZSkQCKhUKrWtM01TwWCwa59urQkAAAAAAOCW06NuYFpks1lZlqVkMtn1/K/l5eW2f26aporFogKBgFKplCKRiObn57s+dzgclmmaikQiJ9bE4/FGSNdpai0QCCgWiymfz6tYLCqbzSqRSAxtTQAAAAAAALcwEeaQ+sTTSVNRdqRSKeXz+Z62DzZPW21tbbUNmJprJOng4KDj+s3bM30+nw4ODoayJgAAAAAAgJs4LN8B+XxepmnaPh/sJNlsVrlcrqcztPL5fOP1S5cuta1Jp9ON1yORSNf1m88Ysyyr5TncXBMAAAAAAMBNBGEO2NjYkM/nOzGIsiuXyykUCvX0mJs3b0rqHEZls9nG63bXbz7Iv/4cbq8JAAAAAADgJoKwARmGIcMwZFmW/H6/gsGg1tbW+pp46nTGVzuWZckwDEk68abJ+vvrLly4YGvt5nDr6MfixpoAAAAAAABuIwgb0NHtkKZpKpvNKh6Py+PxKB6PHwuOnNI8lXXSNNrRGyibp7I6OVrX/DG4sSYAAAAAAIDbCMIGUL/lsZN8Pq9wOKy1tTXHn7++vTAUCp24LfLOnTstb9s9f+yJJ55oeXt7e9vVNQEAAAAAANx2etQNTLJAIKCtrS1ZlqVSqaRisSjTNNvWZrNZbW9va2dnx5Hnbt4Wefny5RPrjvbT7/RW822YbqwJAAAAAADgNoKwASUSiZa3LctSNpvVxsaGLMtqeZ9hGIpGoyoUCgM/761btxqvN9/IeNRJwVyvmj8WN9YEAAAAAABwG0GYw3w+n5LJpJLJpPL5vFZXV1sCn2KxqEwmo2QyOdDzbG1tSTrcFtlpIqvfsOnodsf9/X1X1+zVY489pq+//lq1Wk1zc4Pv8P3ud7+rxx9/fOB1AAAAAACYVl999ZV+//vfD7xOtVqVx+PRo48+qj/84Q8OdGYfQZiLYrGYIpGIVlZWWg6G39jYGCgIs7st0kluTG8NsmY9BJMO/wEN6v79+7p///7A6wAAAAAAgO5qtZq+/vrroT8vQZjLfD6fdnZ2FA6HG+GVZVkqFouKRCJ9rWl3W2T9+Z0IsZqnudxYs1f1EEzSRE2ElctlVatVzc3NaWFhoefH71U6v3/R685a3fp2si8nDfr5HqVJ7Z2+h4u+h4u+h4u+h4u+h4u+h2uUfQ/yfbJbfbv9vfs4/D3p52Ns1/eofv7qxbA/305OhEmtP9sPC0HYkFy/fl3hcLjxdqFQ6DsIq2+LDAQCXQ+qn5+fdyS0mp+fd3XNXs3NzTX+sX/77bcD9zIsS0tL2tvb08LCgnZ3d3t67LdV6fRbnWt+d1U6ZSMX7HWtTn072ZfTBvl8j9qk9k7fw0Xfw0Xfw0Xfw0Xfw0XfwzWqvgf9PtmNvofxvfuo/570+zEe7XuUP3/1YtSf736dOnWq8TP9sI3gR9PZFAqFWoKvfg+cb94W2W0aTOp/6upo0HV0IszpNQEAAAAAANw20omwJ598cpRP38Lj8ei///f/7upzRKNRFYvFgdZo3hZp53yw5eXllvPJLMuyFUAdPcg+GAy6uiYAAAAAAIDbRhqElUoleTyekewJras/v8fjcf25mrcx9rstMJfLSTqcpgqFQl3rm7djSoeTaHYeVyqVWt5unmZzY00AAAAAAAC3zfzWyGGGcM1BWD/bAuuH7EtSIpGw9Zjl5eWWt+1uyWzexujz+Vp6d2NNAAAAAAAAt438sPxaraZYLDayUMSyLGWz2aE81/b2duP1aDTa8+N73RYpHZ5N1nzL4507d2ydLdbc69Hgy401AQAAAAAA3DbyICybzeqVV14ZaQ+xWEx//dd/7frzNG8N7GdbYK/bIusuXbrUCPuaz/bqpLkulUoNZU0AAAAAAAA3jXxr5DicE3XhwoWhPE8+n5ckJZPJnh/bvC3y0qVLPT12bW2t8bqdw/qbawKBQNuvkRtrAgAAAAAAuGnkE2H9Hho/afL5vEzTlM/n05UrV3p+fPO2yHg83tNjQ6GQIpFII4zK5/MdtzLWJ8+kkye33FizF9/97nd1//59ffe73x14LXS3vr6uSqUir9c76lZ6Mql9S5Pb+6T2Pakm9fNN38M1qX1Pqkn9fNP3cE1q35NqUj/f9D1ck9r3pBrlz/Se2givbDx16pQODg5G/hft/v37mp+f17fffmv7McViUfF4XJZlKRKJKJ1On7hd0TRNhcNhWZalnZ2dnrY11kWjURWLRfl8Ph0cHPT8eNM0FQwGJR2GWDs7O23rLMuS3++XdDitVygUhrqmXUtLS9rb29Pi4qJ2d3cHXm9YBun726p0+q3ONQ+vSqdszHmO61rAqEzqf1OAaca/S2D88O+yN+P4ffI49uQ0pz7GSfmZaVL/XY6y75H+9R5hBndMr73kcrnGYfHFYlHhcLhlu2Bd/X3z8/MqlUp9hWDN2yL73VIYCAQaU1mGYSiTybStW1lZkXR4DlnzFNew1gQAAAAAAHDLSIOwdDo98mkwSTp79qzS6XRPj2m3PTGbzcrv9ysej2ttbU3hcFjRaFSJREI7Ozt934zZvC2yXdhmVywWU6FQkM/nUyqVUjwel2EYjaAtHA7LMAyFQiHdu3dPPp9vJGsCAAAAAAC4YaRB2BtvvDHU5/viiy9OfF+vvUQiEZVKJSUSCQUCgZaAxzAM7e/v68qVKzo4OFA6nR4oAGqeohr0kPlIJNLoyTRNraysNMK7+fl55XI57ezs9NSvG2sCAAAAAAA4beSH5Q/T2tqa/vEf/9Gx9QKBgLa2thxb7yROnKl1VDKZ7Ov2ymGvCQAAAAAA4JQJPgKvd9vb26NuAQAAAAAAACMykRNhX3zxReOgejtM09TW1lZPjwEAAAAAAMB0mYgg7IsvvlA6nVaxWJRpmn2tUavV5PF4HO4MAAAAAAAAk2Lsg7ArV64ok8lIOgyzgEm2vr6uSqUyFrelAvgT/m0C44d/l8D44d8lMH74d9m7sQ7C/uEf/kHpdFqS5PF45PF4CMMw0dbX10fdAoA2+LcJjB/+XQLjh3+XwPjh32XvxjoI29jYkKRGABYIBBQKhRQIBCRJTzzxRNc1vvzyS1mWpVu3bun+/fuu9gsAAAAAAIDxNdZBmGEYjXO9CoWCVlZW+l4rmUzqySefdKo1AAAAAAAATJi5UTfQic/nk3QYYg0SgklSIBDQuXPnHOgKAAAAAAAAk2isJ8ICgYDu3r2rCxcuOLLe1taWI+tgfJTLZS0tLXWsWV9fZ980AAAAAABDsLm5qc3NzY415XJ5SN0cN9ZB2MrKiu7evav9/X3H1sN0qVar2tvb61hTqVSG1A0AAAAAALOtUql0/Tl9lMY6CPvJT36in/70pzIMw5H1fvGLX+iVV15xZC2Mh7m5OS0sLHSs4RpZAAAAAACGw+v1anFxsWNNuVxWtVodUketxjoIO3v2rN555x2l02ml02l997vfHWi9ra0tgrAps7CwoN3d3VG3AQAAAAAAZO94oqWlpZFNjY31YfnS4UH5oVBI8Xh8oHXu3bvn2GQZAAAAAAAAJs9YT4TVFQoFLS8v68knn1QqldL8/Lytx+3v78uyLJVKJd26dcvlLgEAAAAAADDOJiII++yzzyRJpVJJa2trfa1Rq9Xk8XicbAsAAAAAAAATZOyDsNdee03ZbFaS5PF4VKvVel6DAAwAAAAAAABjfUbY9evXtbW11Qi/+gnBBnkcAAAAAAAApsdYT4RtbW1J+tMkWCQSUTQalc/n6/mcsGvXrumLL75wsVsAAAAAAJxVq0nVLrMdcx6JjVCAPWMdhBmGIY/HI5/Pp+3tbZ07d67vtVZXV/XEE0842B0AAAAAAO6q1qTTb3WueXhVOkUQBtgy1lsjfT6fJOnKlSsDhWD1tc6fP+9AVwBmnWVZo24BAAAAANCHsQ7CwuGwJCkQCDiy3vXr1x1ZB8DsMQxDqVRKfr9fq6uro24HAAAAANCHsd4auba2ptu3b8s0TUfWYyIMmE6GYejmzZsyDEOmaTbOBvT5fAoEApqfn1coFFI0GlUkEjn2+Hg8LtM0tbOz0/gzy7JULBZ18+ZNFYtFpsAAAAAAYAqMdRAWi8V0/vx53bx5U3/7t3878HoffPCBfvSjHznQGeCsbDartbW13h/4L0PS/7rTva6bd44fKHD6nc4P8fl8Ojg4aP/OX8al/5a3vVZdoVBoG1S1Y1mWNjY2lMlkOtYYhiFJKhaLjdpQKKRIJKJgMKhCoaB8Pq9QKNTy2NXVVZmm2Xg8AAAAAGDyjfXWSEnK5XLa2dnRL3/5y4HX2tjYcKAjwHmJREIHBwfa2dlRLBbrXPy9iPTvC9L/88CZEEyS3qxJr5akv9mS/oXvxLJAIKCtrS2VSqWTQzBJ+ne5w/7+feGw3w6SyaR2dnZ0cHBgOwSrb1E8GoLFYrHGfzMODg5Uq9VUKpVUKBSUSCQa5w4ahqFMJqO1tTXl84eB3dGJr/o6tVrNse3ZAAAAAIDRGvsgLBAI6Nq1a3rllVcGWuf+/ftMdmCs+Xw+hUIh5XI5JRKJ9kX/KvancOmMz+EGAtJfJTqGazs7O0okEvaCoTO+Rmh3dNqqbmtrS+l0WqFQqBFSdWKapoLB4LEALJFIqFarKZfLKRaLtawXCAQUiUS0tbWlg4MDpdPp7r0fYTegAwAAAACMt7HeGvnBBx9Ikv7sz/5Mfr9fTz75ZPdpmTYsy9KtW7ecbg9wzdramrLZ7PF3nO9j+2SvfIHDLZf/ozU4jsVitsKqdlZX1/Taa8d7Pxr41WqH10O3UywW9Td/HW1t1efT7du3Twza2kkmk4rFYgqHwy1TYPv7+yc+pt+PGwAAAAAwXsY6CHv77bd19+7dxtu1Wq3jeUCd1Go1eTzHz0ECxtGJE1e+IW3R8wWOBWGDbA881+ax7cKlak06/VabBf53Q/r/Dh6C1QUCAd27d0/nzp1rhGEchg8AAAAA02+st0ZeunRJtVpNtdrhiAhBFmbFiRNIZ+aH2odTPvvtAA+2TOl/Wzn2x7lcrq8QrM7n87XcEgkAAAAAmH5jHYTVb9HzeDyNQKzfFwA9ePR44PbEE0+0LX3/bts/bpG5c3y9+Xmbod4v49L/YbX8USKRcOTcrkAgoGQyOfA64ySfz8s0zVG3MbaKxeKoWwAAAAAwQmO9NfLs2bMKhUK6e/du40Bt2z88NzFNU2+//bZ+/etfO98kMMPuP5Be/8jFJ/iieGyLpqS+Drw/yZUrVxpbri3LGtvzwAzD0NbWlorFokzTlM/n0/z8vHw+nwKBgC5fvixJWl1dVTqdPvnCBR2GQfF4XPPz89ra2prqywBM01SxWFQul2uEYOP0y5FZ+loAAAAA42CsgzBJunz5soLBoN54442+1zh//ryee+65vkI0ACd7z5D+8EcXn+BXxw/Yf+65/g/tb8fn8ymRSLS/nGAMWJal1dVV5fN5SYdTbPVLQ0zTlGEYMgyj8f76YzqJx+OyLEuWZWltbU2lUsm1/kfFNE3F43GZpjnW57/NwtcCAAAAGCdjvTVSkiKRiGO/vV9eXnZkHQCHPv7cxcW/KB6eD3ZE6s0rjj9VPB6X1PnmyE7qUz3BYFAej0d+v1/RaNSRcC0ejzdCrq2tLZVKJeVyOeVyOe3s7KhUKh2bIuoWpszCLwUCgYB2dnZ0cHAw1ttfZ+FrAQAAAIyTsQ/Czp8/79g2qP/4H/+jI+sAOHTwtYuLf55r+8eDHJB/kkgkonQ63XMoYVmWwuGwotFoy9lclmWpWCxqbW1NwWBQhnF8e6cdmUymsZ0vmUy23e4YCARUKBRa/jvZ7Yywra0tBQIBBQIB5XLtP8/TJBqNdi8akVn7WgAAAACjNvZbIyXp3Llzjqzzn//zf9bTTz/tyFoYD+VyWUtLSx1r1tfXtb6+PqSOZov/URcX/6LNoebfc+/8pF6nhkzTVDgc7rrtrl5XKBR6Pv9pY2Oj8Xr98pCTJJNJffnll8pkMl0n2yKRyExtwRvV1NXa2pq2trY61sza1wIAAADTb3NzU5ubmx1ryuXykLo5biKCMKdsb2+PugU4rFqtam9vr2NNpVIZUjez5+JT0qe/cWFhy2y7LVL/0vlpsH5YltU42ykWiykajWp5eVn7+/sqFAqNw/ebRaNRlUolBQIBW8/Rz9lW6XS6cZg+RiubzSqbzXYNwgAAAIBpU6lUuv6cPkoTGYR98cUXPf2AaJqmtra2xvrAZPRnbm5OCwsLHWu8Xu+Qupk9L4akN3/lwoH57UIwSfIHHX6i/tS3K7ab8opEIlpbW1M0Gj0WSMXjce3s7Nh6jqP/vSoWiy1bI2s1qdrm+MRU6oouX47r26o055E8HltPBweZptl1gg8AAACYVl6vV4uLix1ryuWyqtXqkDpqNRFB2BdffDHwpEOtVpOHnwinzsLCgnZ3d0fdxsw6e0Z69xnp5Xz32p6cFISdGZ+DxTttdayf2xUMtgZ3hmGoWCza2iJ5dHIslUrp0qVLjRszqzXp9FvtHnl4o+Tp/2Tp4c99OsV/9obKsqyxPpMMAAAA0vt3pZfCo+5ietk5nmhpaWlkU2NjH4RduXKlsc3IqdsjAfQulUoplUoN58keWO3//IxvOM/fhc/n6xpmBQIBpdPpY5+zdDptKwjz+Xzy+XyNybD6wfyFQqH79so3+W/lKFiWpZWVFbamAgAAjND7d7vXvJyXTs1JL5x3vx+Mn7G+NfIf/uEflE6nGwEYE13AjLDG+/Dw5eVlW3XJZLIxwVVX31Zpx9Ebc03TVDAYVDabtb3GSQzDaNxq2YllWcpmswqHwy3PW9/+5/f75fF4FAwG256NZpqmUqmUgsFgo25tba3tVvX683g8npaXo6LRaGO95hcnt79ns9mW5/H7/QqHw20/Runw83nu3LljN4Q293fS59ru16LOsixlMhlFo9HG57/eXyqVshXEmaapTCZz7FbT5q9BMBhsnIUHAAAwCe4/kF7/yF7tqx9KlQeutoMxNdYTYfUb0zwej2q1mgKBgEKhUGMa4oknnui6xpdffinLsnTr1i3dv3/f1X6BaZZIJNqee/RtVfrX/+/Oj/0v//O2XnuthzOT/oWv/Z+fNCk2ZEfDrU4ikYjy+da9o4ZhKBTqfvB/IpFQLpc7Fp41biP8v12X/if7FwgYhqGtrS3dunWrEW60+1jq4dfNmzePBTvS4XTg0UCoHniVSqXGAfEn1WWzWRWLRe3s7LQ8fyKRaPw96xT2FQoFSVImk3F8SjGfzysej8vn8+n69euKxQ63mhqGoXg8rlQqpa2trWO9BwIB3b59W8VisaWnk86Es/u1OCqbzTb+HabTaaXTafl8PhmGoY2NDWUyGWUyGcViMeVyuZbHWpaljY0N5fP5Y2FZfZqt+ettmqZM02x8rexe9AAAADAq7xn2zy/+6hvphiH9+Afu9oTxM9ZBmGEYjWmAQqGglZWVvtdKJpN68sknnWoNmDnBYLBtePNtVdL/1PmxYXsDVH/y6Akh94P9HhcavcuXLx8Lwra3t20FYdLhf/vi8XjbME1GWPpXMel/ud5126hpmrp586btqaNQKCSfz9cSfu7s7CgcDmt+fl65XE6hUEjz8/ONAEb6U1CTSqUat2jWJ+i2t7cbE0amaWpjY+PY1Jt0eKmAnam3WCzmaBBWLBYVj8clHW7Lr4dg0uHnI5fLKRwOyzRNra6utgRNPp9PoVBI+/utf0fbfZ17/VrU1YNFn893LJgKBAKKxWKNvyv5fF7BYLAlsNvf31c0Gm0EnXXb29taWVlRJBJROp1WIBBoBHqWZcmyLK2trTUCSAAAgHH18ee91X/yOUHYLBrrrZH1b96TyeRAIZh0+EPCuXPnHOgKgOtOCnXGZCKsF+2maHrdapbL5doGRpKk/5aX/l9+6dedg6P6mWXJZFJXrlzpWFs/Ay2RSLQEOdlsVul0WoVCQbFYTIFAQD6f79i5Z+FwWIFAQDs7O4pEIo3zziKRiK5fv96y3iDm5529PKE+yXaS5s/F0WCyF718Leqy2WwjbKyHVe3kcrnG+0zTbAR79eeNRCLHPs5UKqVcLqdcLqdIJKJAIKBEItHytSoWi2yRBAAAY+/ga3frMR3GOgirfzN/4cIFR9br9kMOgDHhO2EL1pifHdZOu+1uX375Zc/rJJNJHRwctEwptfjVmvT3UVthYS9b3JrDpkQiceJB/0dvSjzpv7fN/denjcbRSdsUm//ciUPx7X4t6pNvPp9PiUTCVq10GGC1O5eu+eO4fv1626/r0b9r29vbtnoFAAAYFf+j7tZjOox1EFafAju61WTQ9QCMue+dcKviF/YPmh8X7YIOO+cbtuPz+ZTL5bSzs9N+a+UXRel/W3F0cs7ueWjNH2cvZ6iN0w2L169fVzqdVi6X6xo2Sb1P9vUrm802nstOcJZIJFq+BidOE9rQ/Hzj9LUCAABo5+JTvdU/3WM9psNYB2E/+clPVKvV2h7W3I9f/OIXjqwDYAj+ZZugxzLHdoKoF4MeOh4KhfRf7+xIf9Nm6up/GNL/b3Wg9fvRS/jVzKlfdDjB5/MpmUy2nbozDMOx/y/qVfPZXHb/7jRPePVyUykAAMAkezEkPfYde7WPPyK9ZP/eKUyRsQ7Czp49q3feeUc3b97U73//+4HXY2skMEG+f7ntH9+ewB/qj4ZEjt2+91cJ6dXS8Vs2/1t+rKfn+g3Nhq35hstQKGT7ggM3+ujV0b9j0xAgAwAAdHP2jPTuM/Zqrz0rec+42g7G1FgHYdLhuTihUKjlwN9+3Lt3b2S/zQfGjWEY0i8H+zflur9qvzUtm528QPtoCOFooOILSP/rzvEw7O7kfZ7GhWEYikaj2tra6ngu2rA0//2xG4odvZFynCbvAAAA3PTC+e41N2L26jCdTo+6ATsKhYKWl5f15JNPKpVK2b4pbH9/X5ZlqVQq6datWy53CUyOV9dWpf/D2Rv3HHfGJ/2r2OF0U5Pbt4syDGNk0zm9OhqC2QlVisWiUqmUdnZ27D2JLyD9L9elD5vCzf9B8N+PtbU1ZbNZJRKJgc7WclI/B/Qf/f9Jx6YQAQAApsDzhGAzbSKCsM8++0ySVCqVtLa21tcatVpNHo/HybaAiVQsHgZJ+n90+CH/a2enR/qeRvk36WNBmHR4K17zuUlOsCzLlS17R2/as/PfsEAgIMMwVCwW7U8jPXXkXCuLg817VQ/BpMEOmHda/e+D9KebNrv9XW3+N0cIBgAAAPzJ2G+NfO211xSNRnX37l15PB7VarWeXwAcsizrT9uMjwYnXXz55ZeO9mIrHPMF2gZ2xWJRmUzGsV5M01Q4HO47aO/k6EHn7Q5iP6oeXAzUT7vLBqaMk9v9DMNohGCBQGCszjG7fLn1vLx6n52USqXG63b+zgEAAACzYqyDsOvXr2tra6sRZvUbahGGYdK4cbC1ZVlaWVn50zSJr7cpEad7sr3e/z0pfe/4VFQqlXLkNrxisdg4T8mNKaB8/k8Tbb1c2BEIBGSaplKplL0HHJ0AO+GygUlwdFvfSX9X+jlE/iTNf5c6rTuKQ+djsVhLMGfn71Hzx3PlyhU32gIAAAAm0lhvjax/s1+fBItEIopGo/L5fD2fE3bt2jV98cUXLnYLOOfEH8Qf7B+endWjYrGotbW1xrrx+CVd7/SANtvqBpm+uTdoYPHvC4eH+x/ZJhmNRpVOp5VMJnte0rIspVIpZbNZBQIB7ezs2J4CshuGZLPZxue810PX60FYJpNRMBhUItH+8oCG5sPxfYHDANEBdj/W5rpuj+n2/qPnv2Wz2WNf43Yh4f7+vmOTXPl8/tgkVbvnO+roNkTTNFv+rN8tuNevX29Mc5qm2XHbrGEYja2U6XR6rKbbAAAAgFEb6yDMMAx5PB75fD5tb2/r3Llzfa+1urqqJ554wsHuAPecOPHxqzXpb7a6TnNZlqXt7W0VCgXl8/ljwVokEtX1uyc92Gx70Ho+nx/gh/j2H0/9UHJb/l1O+qeU9P9v3RKZSqV08+ZNpdNpW0GTZVnKZrPa2NiQZVmKRCLK5XI9fVxHz/1qxzTNxtbGSCTS0zSY1BqorK2taWdn5+RQ49fZ1s/Lv+98flpzgDOKCadmJz1/JBJpTDWlUimVSiXF43FZlqVCoaBsNqtCodD4M+l46FR3NLBq9/f4aPgWj8eVTqcVCoVkGIa2trYUCoUaAaX0p3+nhUJBV65ckc/nO/b8a2tryuVy2t/fVzqdVjAYbAn17H4tYrGY0ul0I4yLx+O6d+/esY/Dsiytrq5KOgxfTwqJ7X7dm//bMeq/KwAAAIATxnprZP0b/CtXrgwUgtXXOn+eqyEw3gzDUDweP/kMoC+K0rWg9I6n7cvpUx55PB75/X5Fo1FlMpm202Ur7QKjB9ZhoPL/CZ/YXzgcVjabtf8D8f9uSH8fbUynHLW2tqZUKmV/i9u/SetX/1g4FloYhqFoNCq/39/4/NUvBSgWi8pms8pkMgqHw/L7/Y0wIZfLqVAodA3Bjp7VZVmWgsHgiVsz8/m8wuHDz2MsFuvrYP/64+uy2Wzj40ulUrqezR4Go9eCh/8rHW4hfbXUNSg9Gso1b99sZllWy8fYKQC8efPmsX7bOfo5O+lzczSczGazikajisfjunXrlgqFwrHgs/536ejfz6Mfb7tbhCORSNsJsGg0qlQq1Qi0mp8zn88rGo3KNM2WXpvDp2KxKL/f39h+ezSYsvu1qD+2/nmxLEvnzp1rTB2apqlsNqtwOCzDMJROp08MX+1+DezWAQAAAJPEUxvjA7Si0ag+++wz5XI5/ehHPxp4vbt37xKGTYmlpSXt7e1pcXFRu7u7o25nYNls1pWD2tsJhUL6r3d2dPqtpj98p/cbVX0+nw4ODvRtVa1rSW23Mdrxq38s6G/+qfNU18Or0qm5w8BgY2PjxJDtJIFAQGtra0okEj1NgdW34h0NKnw+n5aXlxvhxPb2dmPi6Ghw0otisah4PK7r1w83sRYKBZmmqf39/daw51/4DgOw82vHzlKrf66kw7BwY2NDxWKxbZAZCoV0+fJlJZPJjrWBQEChUEjXr1+Xz+fT2tqaisVi2zCzvp09mUyqWCwqnU63DQ8DgUDbqbn69tX6+qFQSJFIpOUst3A4rEgkorW1tWNbEFdXVzt+vMvLy8eeM5PJaGtrqzFdFovFGtNe9XXj8biKxWLL5+yo+t+Vet9XrlxpBG29fC1Oks1mlcvlWv6+BQIBXb58+cS/24ZhnHi2XvPXoD7NeFLd2tpaX9uRAQCYNW2/Tz6i+fs1t9dxeq1xxed9MozyZ/qxDsLy+bwuXbqkTCajv/3bvx11Oxgj0xaE2TGu/yEe9Vr1qaWbN282AqJ6KFO//S8QCOjChQuKxWJtt8714ujz1Z+z/jzLy8uKx+N9B2B28X+mAAAA441AZjT4vE+GUf5MP9ZnhMViMZ0/f143b950JAj74IMPHJksAzA+fD6fYrHYsW1t0/J8AAAAAADnjH3emMvltLOzo1/+8pcDr7WxseFARwAAAAAAAJhEYz0RJh1ubbp27ZpeeeUV/bt/9+/6Xuf+/fs9nyWE8Vcul7W0tNSxZn19Xevr60PqCAAAAACA2bW5uanNzc2ONeVyeUjdHDfWQdgHH3wgSfqzP/sz+f1+Pfnkk31tR7Isq+0tYZh81WpVe3t7HWsqlcqQugEAAAAAYLZVKpWuP6eP0lgHYW+//bbu3r3beLtWqymTyfS1Vq1Wk8fT+814GG9zc3NaWFjoWOP1eofUDQAAAAAAs83r9WpxcbFjTblcVrVaHVJHrcY6CLt06VJjO6PH4yHIwjELCwszc2vksL1/V3opPOouAAAAAACTxM7xRPVbI0dhrA/LX1tbk3QYgtVqtYFeAPzJ+3e717yct1cHAAAAAMCkGOuJsLNnzyoUCunu3btKp9MKhUKan5/veR3TNPX222/r17/+tfNNAhPm/gPp9Y/s1b76oXTx+5L3jKstAQAAAAAwFGMdhEnS5cuXFQwG9cYbb/S9xvnz5/Xcc8/1FaIB0+Y9Q/rDH+3VfvWNdMOQfvwDd3sCAAAAAGAYxnprpCRFIhHHtjYuLy87sg4wyT7+vLf6T3qsBwAAAABgXI19EHb+/Hml02lH1nJqHWCSHXztbj0AAAAAAONq7IMwSTp37pwj65w/f96RdYBJ5n/U3XoAAAAAAMbVSIOwcTq8fpx6Adx08ane6p/usR4AAAAAgHE10iAsHA6rUqmMsgVJ0v379xUOh0fdBjAUL4akx75jr/bxR6SXQu72M+5qNenbaucXh44xBAAAAAC4bKS3Rjp1CL4TxqkXwE1nz0jvPiO9nO9ee+1ZyXvG9ZbGWrUmnX6rc83Dq9Ipz3D6AQAAAAD0b6QTYR7P+PzkOE69AG57wcZxeTdi9uoAAAAAAJgUIw3CmMICxtfzhGAAAAAAgCkz8lsj7927N+oWtL29PeoWAAAAAAAA4LKRnhEmSaurq3rzzTfl8/k0Pz8/1Ofe39+XaZpKJpNDfV4AAAAAAAAM38iDsJ2dHcXj8ZH2UKvVOCMMAAAAAABgyo08CKsb1XlhBGAAAAAAAACzYeRB2KgPzB/18wMAAAAAAGA4RhqEHRwcjPLpAQAAAAAAMENGGoSdPXt2lE8PAAAAAACAGTLyrZEAMCtqNanaZTf2nEfi6EIAAAAAcAdBGAAMSbUmnX6rc83Dq9IpgjAAAACMyPt3pZfCo+4CcM/cqBsAAAAAAADue/9u95qX8/bqgEnFRBgmWrlc1tLSUsea9fV1ra+vD6kjAAAAABg/9x9Ir39kr/bVD6WL35e8Z1xtCVNqc3NTm5ubHWvK5fKQujmOIAwTrVqtam9vr2NNpVIZUjcAAAAAMJ7eM6Q//NFe7VffSDcM6cc/cLcnTKdKpdL15/RRIgjDRJubm9PCwkLHGq/XO6RuAAAAAGA8ffx5b/WffE4Qhv54vV4tLi52rCmXy6pWq0PqqBVBGCbawsKCdnd3R90GAAAAAIy1g6/drQfq7BxPtLS0NLKpMYIwAAAAAACmnP9Rd+sHUasd3rDeyZxH8nC7OhxAEAYAAAAAwJS7+JT06W/s1z/9lHu9HFWtSaff6lzz8Kp0iiAMDpgbdQMAAAAAAMBdL4akx75jr/bxR6SXQu72A4wKQRgAAAAAAFPu7Bnp3Wfs1V57VvKecbUdYGQIwgAAAAAAmAEvnO9ecyNmrw6YVARhAAAAAABAkvQ8IRimHEEYAAAAAAAAZsJUBmH379/Xa6+9Nuo2TmSapqLRqGPrGYahfD6vTCajYrFo6zGZTEbRaFR+v18ej0fBYFDxeNz244e1JgAAAAAAgFOmMggzTVPZbFa/+93v9Nlnn6lSqQzleS3Lksfj6foSDAYVCAQGep5MJqNwOCyPx6OVlRXduXNHoVBIy8vLHR9bLBbl9/uVSqUkSblcTqVSSel0WoZhKBqNKhqNyrIs2/24sSYAAAAAAIDTTo+6ATcUi0XVarWWsCmVSuntt9929Xmz2azt2npo1AvLspRKpRrPEwqFVCgUFIlEbD2+WCw2JtESiYS2trYa7wsEAorFYgqHwyoWiwqHw9rZ2ZHP5xv6mgAAAAAAAG6Yuomw27dvN0KmWq3WeEmn0/rJT35y4uNee+01Pfnkk7pw4YJ+8pOf9DVFtrGxYasuEon0PBGWzWZ17ty5Rgi2tbWlnZ0d2yGYZVmKx+OSDgOq5sCqWS6Xk3Q4VVevH+aaAAAAAAAAbpm6ibBUKqVYLKbLly8rFArJNE19+umn+ulPf6p0Oq21tTX9+Z//ectjnnzySZmmqVqtJkna2dlRLpfTzs6OvF6vrefNZrOyLEvJZLLr+V/dti+2+5gymYykw8CpUCj0HKTF4/HG1sRO02j1Ka58Pq9isahsNqtEIjG0NQEn1GpStda5Zs4jeTzD6QcAAAAAMB6mLgiTpFu3bjVeP3funFZWVnTlyhWFw2GlUin9/d//feP9r732mkqlkjwej1KplDY2NhpbEFdXV3Xz5k1bz5lOpxUIBJROpx39WOLxuPL5vCTJ5/P1tbXQNM2WA+svXbrUsf7y5cuN50ylUm1DKzfWBJxSrUmn3+pc8/CqdIogDAAAAABmytRtjfScMOJRD5FKpVLLn29tbcnj8SgWizW2Nvp8Pm1tbeng4EBffPFF1+fM5/MyTbOvc786iUajjfBIUt/nazWHc5FIpOsasVis8bplWS09uLkmAAAAAACAm6YuCPP7/fr5z3/e9n0+n09+v7/x9vXr1xuvt5vkSqVSLVNPJ9nY2JDP5+s6FdWLbDbb8txbW1t93zTZfIh/KBSy9Zjm52o3FefGmgAAAAAAAG6auiAsmUzqjTfe0Ouvv972wPuDg4PG6/VpsEgkou9973vHapeXl49NkB1lGIYMw5BlWfL7/QoGg1pbWxto4sk0Ta2trTXeDoVCfW8lNAyj5e0LFy7YelxzuHX0Y3FjTcCu9++OugMAAAAAwKSauiAsEolodXVV165dk9/v1+XLl/Wzn/1MP/vZz3ThwgWVSiX99V//ta5cudIIdJpDp2Znz56VaZodn+/odkjTNJXNZhWPx+XxeBSPx48FR90cvVnxypUrPT2+2dGJNrtTZUfrmj8GN9YEJHsh18t5wjAAAAAAo8fPJZNp6oIw6XDS67nnnlOtVlM+n1cqlVIqlZJhGLp9+7a8Xm/LVsiTtvbdvXtX8/PzJz7P0QPj28nn8wqHwyeGbe3WbA6IfD5fy/lavbpz507L23bPGHviiSda3t7e3nZ1TeD+A+n1j+zVvvqhVHngajsAAAAAZhi/pJ9eUxmESVIul9O1a9e0srKiWq2ms2fP6tatWzp//rxyuZyee+45+Xw+Xbt27cSQKpvNKhgMnvgcgUBAW1tbSqfTSiQSHSejstmswuFw1763trZa3o5EIpIOA7V4PK5gMCiPxyO/369wOKxMJiPLsk5c7+hEW7/TW81bRN1YE3jPkP7wR3u1X30j3WCgEAAAAIAL+CX9dDs96gbclEgkTjxbK5fLNV73+/26cOGCfvGLX+gv//IvValU9PbbbyubzbacKXbSczSzLEvZbFYbGxvHAirDMBSNRlUoFE5cr/kQekman59XOBw+to3QsqzG+WSpVEq5XK7t5Fi3rZ12NX8sbqwJfPx5b/WffC79+Afu9AIAAABgdvXzS3p+NpkcUzsR1otYLKZ4PK7z58/r1KlT8vv9+ulPf6p33nlHXq+3p7V8Pp+SyaQODg6Uy+WObRssFovKZDJtH2ua5rFw6NatW1pbW9PBwYFqtZpqtZpKpdKxAC4ej7c9gL7fsOlo3/v7+66uCRx87W49AAAAANjRzy/pMTmmeiKsF8lkUoFAQNlsVj6fT5cvX9Zzzz030JqxWEyRSEQrKystE10bGxtKJpPH6o9OWvl8Pt27d+9YgFTfknn07LHV1VVFIhHbZ3b1wo3pLSfWLJfLWlpaGnid9fV1ra+vD7wO+ud/1N16AAAAALCDX9KfbHNzU5ubmwOvUy6XHeimP1MXhH322Wf64Q9/2LXugw8+UCQSaZn4isViAx1M347P59POzk7L9kbLslQsFhvnf9UdDcISiUTHUCuRSGhnZ6exndKyLG1sbLRcBODz+RwJnJr7cGPNflWrVe3t7Q28TqVSGXgNDObiU9Knv7Ff//RT7vUCAAAAYHbxS/qTVSoVR34GH6WpC8JisZju37+vSCSiaDSqSCSiv/qrvzpWt7KyoldeeUWZTEbf+973XO/r+vXrLYflFwqFY0HY0cPjL1y40HXdVCrVcq5YJpNpCcLm5+cdCa2ab890Y81+zc3NaWFhYeB1et0CC+e9GJLe/JW9vfiPPyK91P6yVwAAAAAYCL+kP5nX69Xi4uLA65TLZVWrVQc66t3UBWHhcFi3b99WsVhUsViUdDh5tLy83BKMnT17VtevX1ckElE+n9ef//mfu9pXKBRSJBJp9NTuwPmj4ZKdialAIKBQKNSy9dIwDIVCIdtrtNOpFzfW7NfCwoJ2d3cHXgejd/aM9O4zh1cQd3PtWcl7xvWWAAAAAMwgfkl/MqeOFVpaWhrZZNnUHZafz+cViUR0/vx5nTt3TrVaTQcHByoUCkqlUgqHwzp16pT+5m/+Ru+8844ODg5aztlyUzQa7fj+YDDY17rLy8stbzeHbEffZ3eS6+hB9s29ubEmIEkvnO9ecyNmrw4AAAAYd+/fHXUHaKf+S3o7+CX95Jm6ICyRSCibzWp7e1u//e1vVa1WVSgUtLq62rh1sVar6dNPP1Umk5FpmioUCkPpLRAINF5vty3w6ISU3YDpaKDUHDg1b8eU2k+itXN0m2bzNk431gTsep4QDAAAABPATsj1cp4wbFzxS/rpNXVBWK1WO3bm18rKira2tnRwcKA33nhDoVBI6XRazz33nEKhkN55552h9NYchLXbFthpsquTo2s1h2z9rtkcwvl8vpbe3VgTAAAAAKbF/QfS6x/Zq331Q6nywNV24BJ+ST+Zpi4Iu3///onvO3v2rNLptHK5nO7cuaNMJqPt7W298cYbQ+lte3u78Xq7bZL1c73qjk5Q2dUcMIVCoZag7M6dO7bWaO71aPDlxpoAAAAAMC3eM+ydLyVJX30j3TC61wFwxtQFYefOndPPf/7zrjW3bt1SIpHQ7373uyF11hpsnbQtsPnP6wfrd3N0C+XRQO3SpUuN15sP1e+kuS6VSh17vxtrAgAAAMA0+Pjz3uo/6bEeQP+mLghLJpN644039Mtf/rJr7a1btxSJRFSpVIbQ2eFB/tJhjydpDohM07R1Tli3gK35MgA74VpzTSAQGNqaAAAAADANDr52tx5A/6YuCAsEAnrnnXcUi8X0+uuvd6z1+Xw6f/683nzzTdf7yufzMk1TPp9PV65cObEuEom0bG3c2NjounZzyJROp4+9PxQKtQRP9UDuJLlcrvH6SZNbbqwJAAAAANPA/6i79QD6N3VBmHQ4cfWjH/1I165d05/92Z/p5z//+YlTX/Pz87p582bPz1EsFuX3++XxeBSNRjtuDzRNU6urq5Kk27dvtz0ov1lzaFS/2bJTH/X3JxKJY9si67a2thqvdwrXLMtSNpuVdBjKJRKJE2vdWBMAAAAAJt3Fp3qrf7rHegD9m8ogTDoMk1ZXV7W/v69kMim/36/Lly/rF7/4hX7961/r17/+ta5cuaJsNmtr+2G79euPKxaLCofDLdsF6+rvm5+fV6lUOjGoahYKhVpCpmg02rZHy7Iaz3n0MUcFAoFGwGYYhjKZTNu6lZUVSYfTcs2B3LDWBAAAAIBJ92JIeuw79moff0R6qfuPiQAcMrVBmHQ4sXTr1i15vV7VajXl83mtra0pHA4rHA43ghs74dRR8Xj82J9ls1n5/X7F4/HG80SjUSUSCe3s7LRseewmkUioUCjI5/PJNE2dO3dOmUxGhmE0Qqdz587JNM3G+t3EYrHGmqlUSvF4XIZhyLKsRmBnGIZCoZDu3bvXdXLNrTUBAAAAYJKdPSO9+4y92mvPSt4zrrbjilpN+rba+aVWG3WXwHFTHYRJh0HNwcGB3nnnHZ09e1a1Wq3lxefz6fr16z2vG4lEVCqVlEgkFAgEWgIewzC0v7+vK1eu6ODgQOl0uq8AKBKJ6ODgQFtbW1peXtbGxobC4bBWVlZ08+ZNJRIJlUqljpNgJ62ZTqdlmqZWVlYa4d38/LxyuZx2dnZ66teNNQEAAABgkr1wvnvNjZi9unFUrUmn3+r8UiUIwxg6PeoGhiWZTCqZTOru3bsyTVOmaTZuLzx79mxfawYCgZ5CqH4lEgnHz9Wqfz7GfU0AAAAAmFbPT2gIBkyyiQ3CXnvtNf2X//Jfen7c+fPndf48/7UBAAAAAACYNRO7NfLWrVv6/e9/P+o2AAAAAAAAMCEmNgg7ODjQ9773Pb322mv67LPPRt0OAAAAAAAAxtzEbo2UJMuylM1mlc1mJR0e2h6NRhWLxfS9731vtM0BAAAAAICZN+eRHl7tXoPhmNiJsLrmGyCLxaJSqZSCwaCeeOIJvfbaa/rggw+6rvGLX/xiCJ0CAAAAAIBZ4/FIp+Y6v3gIwoZmYoOwd955R7VaTR6PR8FgUFJrKHZwcKBsNqt4PK5Tp07pwoUL+tnPfqZf//rXx9YqFApD7h4AAAAAAADDNrFbI5PJpCKRiOLxuPb395XP51Wr1fT3f//3un37tizLUq1Wa9QbhiHDMCRJPp+vsY1SkvL5/Eg+BgAAAAAAAAzPxAZhkhQKhVQqlZRKpRSPx7W2tqZcLidJunfvnvL5vAqFgorFYksodnBwoHw+TwAGAAAAAAAwQyZ2a2SzdDqtO3fu6NNPP9Vf/MVf6J//+Z917tw5vfHGG/r0009VrVZVKBSUSCQUCAQktW6jBAAAAAAAwPSb6ImwZqFQSL/97W+1tramUCikVCqlt99+u/H+lZUVraysSJLu37+vW7duKZfLqVgsjqplOKBcLmtpaaljzfr6utbX14fUEQAAAAAAs2tzc1Obm5sda8rl8pC6OW5qgrC6ra0txeNxXbp0Sfl8XrlcTn/5l3/ZUnP27Fmtrq5qdXVVxWJRf/3Xfz2ibjGoarWqvb29jjWVSmVI3QAAAAAAMNsqlUrXn9NHaeqCMEmKRCIyTVOrq6sKhULKZDL6T//pP51YW58Uw+SZm5vTwsJCxxqv1zukbgAAAAAAmG1er1eLi4sda8rlsqrV6pA6ajWVQZh0eDNkLpdTPp/XpUuXdPPmTeVyOf35n//5sdp4PD6CDuGEhYUF7e7ujroNAAAAAMAYmPNID692r4F77BxPtLS0NLKpsak4LL+TWCym/f19nT17VoFAQD//+c+P1ayuro6gMwAAAAAA4CSPRzo11/nFQxA206Y+CJMOp8MKhYI2Njb0xhtv6F//63+t3/3ud6NuCwAAAAAAAEM0E0GYJH3xxRdaXl5WMpnU9va2AoGA/u7v/m7UbQEAAAAAAGBIpuKMsC+++EKmacqyLJmmqVKpJNM0ZZqm9vf3ZVlWS73H41GtVlMikVAul1Mul9N3v/vd0TQPYOK9f1d6KTzqLgAAAAAA3UxsEHbhwoVG+NVJrVbr+L5PP/1UP/zhD3Xnzh2HOwQwDd6/273m5fzhWQMvnHe/HwAAAABA/yY2CNvZ2WlMdnXi8/kUCAQaL8FgUPPz8423z549O6SOAUya+w+k1z+yV/vqh9LF70veM662BAAAAAAYwMQGYc38fr8uXbrUEngRcgEY1HuG9Ic/2qv96hvphiH9+Afu9gQAAADMIo4jgVMm+rD85557TqFQSAcHB8pms9re3tbBwYH8fj8hGICBffx5b/Wf9FgPAAAAwP5xJHbqgG4mNgiLRCK6detWI/y6efOmarWaksmkgsGgnnzySb322mv6p3/6p65rffbZZ0PoGMCkOfja3XoAAADACZMcEPV6HEnlgavtYAZMbBAWjUYbr589e1axWEy3bt3S/v6+7ty5ox/96Ee6c+eOVlZWdOrUKV24cEE///nP9etf//rYWltbW0PsHMCk8D/qbj0AAADQzbRPS/VzHAkwiIk9I+yNN9448X2hUEihUEiSdP/+fRUKBd26dUtXr15VMpmUz+dTJBLRhQsXJEn5fH4oPQOYLBefkj79jf36p59yrxcAAADMnlm4vKmf40g4lxeDmNiJMLvaTYu98sor2tnZUTKZVCqVGnWLAMbUiyHpse/Yq338Eeml0ODPOam/yQMAAIDzZmFaiuNIMGxTH4QdFQqFlE6n9dvf/lbb29v64Q9/OOqWAIyps2ekd5+xV3vt2e6/fZv2sXYAAAA4axYub+I4EgzbzAVhzUKhkAqFgs6fPz/qVgCMqRds/OfhRqx7HYeAAgAAoFezMC11scfjRTiOBIOa6SCsLp1Oj7oFABPseRth2SyMtQMAAMBZszAtNYrjSDDbCMIkraysjLoFAFNuFsbaAQAA4KxZmJZy+jgSoJuJCMJ+9rOf6bPPPht1GwDQt1kYawcAABiFWk36ttr5pVYbdZf9mZVpKaeOIwHsmIgg7L/+1/+qaDSqv/u7vxtonevXr+vUqVP6i7/4C/3zP/+zQ90BQHejGGvn0H0AADALqjXp9FudX6oTGoQxLfUndo4jAeyYiCBMkmq1mhKJhH7yk5/0vUYqlVKtVtNvf/tbhUIhffHFF841CAAdOD3Wzg2UAAAAs4FpKcBZExOE1X366ae6fPlyX489d+6cAoGAEomEVldXlUqlHO4OANpzcqydGygBAADQjGkpwL6JC8K2t7dVrVZ14cIF/f73v+/psTs7O/rtb3+ra9eu6dq1azIMrmUDMBxOjrVzAyUAAAAA9GfigjBJyuVyisfjCoVC+t3vftfXGvfu3dP+/r7DnWHYyuWylpaWOr5sbm6Ouk1AknNj7dxACQAAAGBcbW5udv05vVwuj6y/0yN75gElk0mFQiGFQiHl83n9m3/zb2w/9v79+4pGo1peXnaxQwxDtVrV3t5ex5pKpTKkboDB2Rlr5wZKAAAAAOOqUql0/Tl9lCY2CJOkSCSiO3fu6N/+23+rK1eu6D/8h//Q9TGfffaZ4vG4LMvSm2++OYQu4aa5uTktLCx0rPF6vUPqBhiOUdxACQAAAAB2eL1eLS4udqwpl8uqVqtD6qjVRAdhkhQIBLS9va1Lly6pVCrp7bffPrH2pz/9qd58803VajX5/X698sorQ+wUblhYWNDu7u6o2wCG6uJT0qe/sV/f7QZKAAAAAHDK+vq61tfXO9YsLS2NbGpsIs8IO8rn8+nTTz/V/v7+iTdKXrlypRGCeTwepdPpIXcJAM5w8gZKAAAAAJglUxGE1V27dk0rKyvHbpS8fft2I/jyeDwKhUJMgwGYWE7eQAkAAAAAs2TigrB/+qd/6vj+RCKhra0t/fCHP2zcKFkPwWq1WsvbADCpnLqBEgAAAABmyUQEYefOnZN0GGQlEolGwHWSUCikmzdv6rnnntMHH3ygYrEoj8fTeN8Pf/hD13sGMN7evzvqDtxn5wZKAAAAAJglExGEpdNpHRwcKJfLaWVlRZFIRL/4xS86PqZ+iP61a9caf+bxeE48QwzA9LATcr2cn40wDAAAAADwJxMRhEnS2bNn9dxzz+natWv6zW9+Y/uMr08//VRvvPFGY1tkKMSp0cA0u/9Aev0je7WvfihVHrjaDgAAAABgjJwedQPDkE6ndeHCBV26dEn37t0bdTtAX+Y80sOr3Wtm3XuG9Ic/2qv96hvphiH9+Afu9gQAAAAAGA8TMxE2qFgspu3tbd28eXPUrQB98XikU3OdXzwEYfr4897qP+mxHgAAAAAwuWYmCJMOt0V++umno24DgIsOvna3HgAAAAAwuWYqCAMw/fyPulsPAAAAAJhcBGEApsrFp3qrf7rHegAAAADA5JqJw/IBTAYnLgR4MSS9+St7B+Y//oj0EhfJAgAAAK54/670UnjUXQCtmAgDMDacuBDg7Bnp3WfsPd+1ZyXvmYHbBgAAAGbO+3e717yct1cHDBNBGICp88L57jU3YvbqAAAAALS6/0B6/SN7ta9+KFUeuNoO0BOCMAAz6XlCMAAAAKAv7xn2jiKRpK++kW4Y7vYD9IIgDAAAAAAA2Pbx573Vf9JjPeAmgjAAAAAAAGDbwdfu1gNuIggDAAAAAAC2+R91tx5wE0EYAAAAAACw7eJTvdU/3WM94CaCMAAAAAAAYNuLIemx79irffwR6aWQu/0AvSAIAwAAAAAAtp09I737jL3aa89K3jOutgP05PSoGwAGUS6XtbS01LFmfX1d6+vrQ+oIAAAAAKbfC+ell/Oda27EDuswWzY3N7W5udmxplwuD6mb4wjCMNGq1ar29vY61lQqlSF1M5vmPNLDq91rAAAAAMyW5wnBZlKlUun6c/ooEYRhos3NzWlhYaFjjdfrHVI3s8njkU4RdAEAAAAAdPgz+OLiYseacrmsarU6pI5aEYRhoi0sLGh3d3fUbQATrVaTqrXONXOew9ATAAAAADqxczzR0tLSyKbGCMIAYMZVa9LptzrXPLzK5B8AAACAycetkQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJp0fdAAAAAAAAmF1zHunh1e41gBMIwgAAAAAAwMh4PNIpgi4MCVsjAQAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBM4LB8TrVwua2lpqWPN+vq61tfXh9QRAAAAgElVq0nVWueaOc/h4e4A2tvc3NTm5mbHmnK5PKRujiMIw0SrVqva29vrWFOpVIbUzeTgemIAAADguGpNOv1W55qHV7nhEOikUql0/Tl9lAjCMNHm5ua0sLDQscbr9Q6pm8nB9cQYd/w2FgAAAJhMXq9Xi4uLHWvK5bKq1eqQOmpFEIaJtrCwoN3d3VG3AcBh/DYWAAAAmEx2jidaWloa2dQYh+UDAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJnBYPgAAAADAFm52BjDpCMIAoIM5z+HthN1qAAAAZgE3OwOYdARhANCBx8M3cgAAAAAwLTgjDAAAAAAAADOBIGwETNNUNBod6ZqZTEbRaFR+v18ej0fBYFDxeFzFYrHvHtxYEwAAAAAAwCkEYQ6yLEsej6frSzAYVCAQGMmaxWJRfr9fqVRKkpTL5VQqlZROp2UYhqLRqKLRqCzLsv1xu7EmAAAAAACA0zgjzEHZbNZ2bT00GuaaxWKxMTWWSCS0tbXVeF8gEFAsFlM4HFaxWFQ4HNbOzo58Pt/Q1wSmFQfvAwAAAMBoMRHmoI2NDVt1kUjE9kSYU2talqV4PC7pMKBqDqya5XI5SYdbLev1w1wTmGYej3RqrvMLV40DAAAAgHuYCHNINpuVZVlKJpNdz+paXl4e+prxeLyxNbHT5Fh9iiufz6tYLCqbzSqRSAxtTQAAAAAAALcQhDkknU4rEAgonU6P3ZqmabYcWH/p0qWO9ZcvX1Y+n5d0GHC1C63cWBMAAAAAAMBNbI10QD6fl2mats/9GvaazUFaJBLpekZXLBZrvG5ZViPAcntNAAAAAAAANxGEOWBjY0M+n6/rVNSo1mw+cD8UCtl6TPN5Yzdv3hzKmgAAAAAAAG4iCBuQYRgyDEOWZcnv9ysYDGptbW2giScn1zQMo+XtCxcu2Hpcc7h19HndWBMAAAAAAMBtBGEDOrp10TRNZbNZxeNxeTwexePxY8HRMNdsPsdLku3bKo/WNT+fG2sCAAAAAAC4jcPyB3D0wPh28vm88vm8EomEtra2hr7mnTt3Wt7udpZX3RNPPNHy9vb2dmOiy401AQAAAADumvNID692rxn2WsAwEYQNIBAIaGtrS5ZlqVQqqVgsyjTNtrXZbFbb29va2dkZ6ppHH9vv9FapVHJ1TcBJ/J8yAAAAcJzHI51y6PtgJ9cChokgbECJRKLlbcuylM1mtbGxIcuyWt5nGIai0agKhcLQ1jwpROtV8/O6sSbgJP5PGQAAAMAg+OX69CIIc5jP51MymVQymVQ+n9fq6mpL4FMsFpXJZJRMJoeyZr9h09Htjvv7+66u2a9yuaylpaWB11lfX9f6+vrA6wCzrFaTqrXONXOew6ASAAAAGGf8cr29zc1NbW5uDrxOuVx2oJv+EIS5KBaLKRKJaGVlpeVg+I2NjZ6CMLfXtMON6S0n1qxWq9rb2xt4nUqlMvAawKyr1qTTb3WueXiVbygAAACASVWpVBz5GXyUCMJc5vP5tLOzo3A43AiuLMtSsVhUJBJxfU2fz+dI4NQ8zeXGmv2am5vTwsLCwOt4vd6B1wAAAAAAYJp5vV4tLi4OvE65XFa1WnWgo94RhA3J9evXFQ6HG28XCoW+g7Be1pyfn3cktJqfn3d1zX4tLCxod3d34HUAAAAAAEBnTh0rtLS0NLLJMoKwIQmFQopEIioWi5KcOXDezpr9Tl0dDbqOToQ5vSYAAAAATBMOWwfG09yoG5gl0Wh06GsuLy+3vG13kuvoQfbBYNDVNQEAAABgmng80qm5zi9cIgQMH0HYEAUCgcbrTmwLtLNm89ZJyf4kWqlUanm7eculG2sCAAAAAAC4jSBsiJpDK6e2BXZb8+j0lt3QqnnKy+fztTyPG2sCAAAAAAC4jSBsiLa3txuvO7VNstuaoVCoJSC7c+dOz+seDb7cWBMAAAAAAMBtBGFD1Lw10KltgXbWvHTpUuN1wzBsrdtcl0qlhrImAAAAALjh/buj7gDAuCAIG6J8Pi9JSiaTQ11zbW2t8Xr9hslOmmsCgUDbgM2NNQGML755BAAA48rO9ykv5/l+BsAhgrAhyefzMk1TPp9PV65cGeqaoVCoJXiqh2cnyeVyjddPmtxyY00Ao8E3jwAAYFLdfyC9/pG92lc/lCoPXG0HwAQgCOtTsViU3++Xx+NRNBrtuD3QNE2trq5Kkm7fvn3iQflurFm3tbXVeH1jY+PEOsuylM1mJR1utUwkEkNdE8Bw8c0jAACYZO8Z0h/+aK/2q2+kG/ZOdQEwxQjC+pTL5Rq3IBaLRYXD4ZbtgnX1983Pz6tUKikUCg11zbpAINCYyjIMQ5lMpm3dysqKpMNbHZunuIa1JoDh4ptHAAAwyT7+vLf6T3qsBzB9CML6FI/Hj/1ZNpuV3+9XPB7X2tqawuGwotGoEomEdnZ2FAgEhr5ms1gspkKhIJ/Pp1QqpXg8LsMwZFlWI1wzDEOhUEj37t3rOmXm1poAhodvHgEAwCQ7+NrdegDT5/SoG5hUkUhEpVJJ6XRaxWJR+/v7jWmuevBz5coVRSIR2+GPG2u2e46DgwNlMhndvHlTKysrsixLPp9Py8vLyuVyisViI18TwHDwzSMAAJhk/kfdrR8Hcx7p4dXuNQDsIQgbQCAQaDkna1zXbCeZTDp6e6VbawJw1yx88wgAAKbXxaekT39jv/7pp9zrxS0ej3SKoAtwDFsjAWCGXezxm8FJ/OYRAABMrxdD0mPfsVf7+CPSS92PVwYw5QjCAGCG8c1jb2o16dtq55dabdRdAgAwO86ekd59xl7ttWcl7xlX2wEwAdgaCQAzrP7N48v57rV88yhVa9LptzrXPLzK9gUAAIbphfPdv5e5ETusAwAmwgBgxtn5ppBvHgEAwCR7nu9jAPxfCMIAAF3xzSMAAACAaUAQBgAAAAAAgJlAEAYAAAAAAICZwGH5ADCB5jyHh7J3qwEAAAAA/AlBGCZauVzW0tJSx5r19XWtr68PqSNgODwebiYEAAAAMH42Nze1ubnZsaZcLg+pm+MIwjDRqtWq9vb2OtZUKpUhdQMAAAAAwGyrVCpdf04fJYIwTLS5uTktLCx0rPF6vUPqBgAAAACA2eb1erW4uNixplwuq1qtDqmjVgRhmGgLCwva3d0ddRsAAAAAAED2jidaWloa2dQYt0YCAAAAAABgJhCEAQAm0vt3R90BAADoV60mfVvt/FKrjbpLANOIrZEAgLFjJ+R6OS+dmpNeOO9+PwAATLJaTap2CZXmPIe3Ug9LtSadfqtzzcOr3JINwHkEYQCAsXL/gfT6R/ZqX/1Quvh9yXvG1ZYAAJhohE4A8CdsjQQAjJX3DOkPf7RX+9U30g3D3X4AAAAATA+CMADAWPn4897qP+mxHpOHc2QAAADgFLZGAgDGysHX7tZj8rClBwAAAE5hIgwAMFb8j7pbDwAAAGB2EYQBAIbGzm2QF5/qbc2ne6wHAAAAMLsIwgAAjrATcr2c7173Ykh67Dv2nvPxR6SXQvZqAQAAAIAgDAAwsPsPpNc/slf76odS5cHJ7z97Rnr3GXtrXXtW8p6xVwsAAAAABGEAgIG9Z0h/+KO92q++kW4YnWteON99nRsxe3UAAABOsjMFD2B8EYQBAAb28ee91X/SY307zxOCAQAAhzl11AOA8UUQBgAY2MHX7tYDAAC4zcmjHgCML4IwAMDA/I+6Wz9tajXp22rnl1pt1F0CADBbnD7qAcB4Oj3qBgAAk+/iU9Knv7Ff//RT7vUyCao16fRbnWseXpVOeYbTDwAA6O+ohx//wJ1eALiHiTAAwMBeDEmPfcde7eOPSC+F3O0HAACgVxz1AMwGgjAAwMDOnpHefcZe7bVnJe8ZV9sBAADoGUc9ALOBIAwA4IgXbNzieCNmr85JnMcFAADsuNjj0Q2zftQDMKk4IwwAMDTPDzkEkziPCwAA2PNiSHrzV/YOzOeoB2ByMREGAAAAAJh5HPUAzAYmwjDRyuWylpaWOtasr69rfX19SB0BAAAAmFQvnJdezneuGcVRD8Ak2dzc1ObmZseacrk8pG6OIwjDRKtWq9rb2+tYU6lUhtQNAAAAgPfvSi+FR92Fe0Zx1AMwSSqVStef00eJIAwTbW5uTgsLCx1rvF7vkLoBAAAAptv7d7vXvJyXTs0xNQXMKq/Xq8XFxY415XJZ1Wp1SB21IgjDRFtYWNDu7u6o2wAAAACm3v0H0usf2at99UPp4vc5RwuYRXaOJ1paWhrZ1BiH5QMAAAAAunrPsHejoiR99Y10w3C3HwDoB0EYAAAAADigVpO+rXZ+qdVG3WX/Pv68t/pPeqwHgGFgayQAAAAAOKBak06/1bnm4VXplGc4/Tjt4Gt36wFgGJgIAwAAAAB05X/U3XoAGAaCMAAAAABAVxef6q3+6R7rAWAYCMIAAAAAAF29GJIe+4692scfkV4KudsPAPSDIAwAAAAA0NXZM9K7z9irvfas5D3jajsA0BeCMAAAAACALS+c715zI2avDgBGgVsjAWDGzXkOb7DqVgMAAGDH84RgAMYYE2EAMOM8HunUXOcXD0EYAAAYsvfvjroDANOIIAwAAAAAMFR2Qq6X84RhAJxHEAYAAAAAGJr7D6TXP7JX++qHUuWBq+0AmDEEYQAAOIjfXAMA0Nl7hvSHP9qr/eob6Ybhbj8AZgtBGAAANrGNAwCAwX38eW/1n/RYDwCdEIQBAGAD2zgAAHDGwdfu1gNAJwRhAADYwDYOAACc4X/U3XoA6IQgDAAAG9jGAQCAMy4+1Vv90z3WA0AnBGEAANjANg4AwDDVatK31c4vtdqou+zPiyHpse/Yq338EemlkLv9AJgtp0fdAAAAk4BtHACAYarWpNNvda55eFU65RlOP046e0Z695nDC2a6ufas5D3jeksAZggTYQAA2MA2DgAAnPPC+e41N2L26gCgFwRhAADYwDYOAACG63lCMAAuYGskJlq5XNbS0lLHmvX1da2vrw+pIwDTim0cAAAAQHebm5va3NzsWFMul4fUzXEEYZho1WpVe3t7HWsqlcqQugEw7V443z0IYxsHAAAAZlmlUun6c/ooEYRhos3NzWlhYaFjjdfrHVI3AMA2DgAAAMw2r9erxcXFjjXlclnVanVIHbUiCMNEW1hY0O7u7qjbAAAAACba+3ell8Kj7gLANLBzPNHS0tLIpsY4LB8AAAAAptj7d7vXvJy3VwcAk46JMACAI+Y80sOr3WsAAMDw3H8gvf6RvdpXP5Qufp8LXwBMNybCAACO8HikU3OdXzwEYQAADNV7hvSHP9qr/eob6Ybhbj8AMGoEYQAAAAAwpT7+vLf6T3qsB4BJQxAGAAAAAFPq4Gt36wFg0nBGGABg7HDeGAAAzvA/6m49AEwaJsIAAGOH88YAAHDGxad6q3+6x3oAmDRMhAEAAADAlHoxJL35K3sH5j/+iPRSyP2enMYkOYBeMBEGAMAEq9Wkb6udX2q1UXcJABiVs2ekd5+xV3vtWcl7xtV2XMEkOYBeMBEGAMAEq9ak0291rnl4VTrFDwAAMLNeOC+9nO9ccyN2WAcA046JMAAAxtD7d0fdAQBgljxPCAZgRhCEAQAwZHZCrpfzhGEAAACA0wjCAAAzb5iB0/0H0usf2at99UOp8sDVdgAAAICZQhAGAJhq4zZ99Z5h7+YuSfrqG+mG4W4/ADDruHQEAGYLh+UDAKZWr9NXF7/v/m1ZH3/eW/0nn0s//oE7vQAAuHQEreY8h1/vbjUAJhcTYQCAqTWO01cHX7tbDwAA+ufxSKfmOr94CMKAiUYQBgCYWv1MX7nN/6i79QAAAABORhAGAJha4zh9dfGp3uqf7rEeAAAAwMkIwgAAU2scp69eDEmPfcde7eOPSC+F3O0HAAAAmCUEYQCAqTWO01dnz0jvPmOv9tqz7h/eDwAAAMwSgjAAwNQa1+mrF853r7kRs1cHAAAAwL7To24AGES5XNbS0lLHmvX1da2vrw+pIwDjpD599XK+e+24TV89P4IQrFaTqrXONXMebssCAADAyTY3N7W5udmxplwuD6mb4wjCMNGq1ar29vY61lQqlSF1A2AcvXC+exDG9NWhak06/VbnmodXpVMEYQCAAc15Dv8/pVsNgMlTqVS6/pw+SgRhmGhzc3NaWFjoWOP1eofUDYBJNYrpKwDAbHr/rvRSeNRdjJ7Hwy9WgGnl9Xq1uLjYsaZcLqtarQ6po1YEYZhoCwsL2t3dHXUbAAAAgN6/273m5bx0ao5JZADTy87xREtLSyObGuOwfAAAAAAY0P0H0usf2at99UOp8sDVdgAAJyAIAwAAAIABvWdIf/ijvdqvvpFuGO72AwBojyAMAAAAAAb08ee91X/SYz0AwBkEYQAAYOLZOZcHANx08LW79QAAZxCEAQCAsWb38GnCMACj5H/U3XoAgDMIwgAAwNji8GkAk+LiU73VP91jPQDAGQRhAABgbHH4NIBJ8WJIeuw79moff0R6KeRuPwCA9gjCAADA2OLwaQCT4uwZ6d1n7NVee1bynhn8OdkSDgC9IwgbAdM0FY1GB14nGAzK4/Eon8/3/NhMJqNoNCq/3y+Px6NgMKh4PK5isdh3P26sCQCYbRw+DWCSvHC+e82NmL06zkcEAHcQhDnIsix5PJ6uL8FgUIFAYKDnSqVSMk2z58cVi0X5/X6lUilJUi6XU6lUUjqdlmEYikajikajsixrpGsCACBx+DSA6fO8jRCM8xEBwD0EYQ7KZrO2a+uhUT+KxaIymUxfj6sHUolEQoVCQZFIRIFAQLFYTKVSSaFQSMViUeFw2FZw5caaAADUcfg0gFnE+YgA4B6CMAdtbGzYqqsHRf2wLEvxeHygxwUCAW1tbbWty+Vykg63b3Z7HjfWBACgGYdPA5hFnI8IAO45PeoGpkU2m5VlWUomk13P/1peXu77eVZXVzU/Py9JPU1XxePxRn2nabT6JFc+n1exWFQ2m1UikRjamgAANKsfPv2yjeMwnTp8GgBGjfMRAcA9BGEOSafTCgQCSqfTrj1HNptVPp/Xzs6OVlZWbD/ONM2WA+svXbrUsf7y5cuNA/hTqVTb0MqNNQEAaOeF892DMLuHTwPAJOB8RABwD0GYA/L5vEzTPHFroBNM09Ta2pqSyaRCod72fTSHc5FIRD6fr2N9LBZrvG5ZlvL5fMufubUmAAD9snP4NABMiotPSZ/+xn79MM9HnPNID692rwGAccUZYQ7Y2NiQz+frOhU1iHg8rlAo1NfEWfMh/nZDtOYzzG7evDmUNQEAAACM9/mIHo90aq7zi4cgDMAYIwgbkGEYMgxDlmXJ7/crGAxqbW2tsQ3QCalUSoZhNA6d77W/ZhcuXLD1uOZw6+jH4saaAAAAQC9qNenbaueXWm3UXfanfj6iHZyPCAC9YWvkgI4eEm+aprLZbGNiKhaL6cqVKz1vZ6wzDEOZTEZbW1t93TTZfI6XJNtrHK0zDKPxMbixJgBMAraDAMD4qNak0291rnl4VTo1of9d5nxEAHAHQdgAjh4Y304+n1c+n1cikejrDLGVlRXFYrG+D5e/c+dOy9vdzvKqe+KJJ1re3t7eboRWbqwJAJPA45ncH6iGrVY7/CG1kzkP22cAYBB2z0fkFzkA8CcEYQMIBALa2tqSZVkqlUoqFosyTbNtbTab1fb2tnZ2dmyvH4/HJUnXr1/vu8ej/fQ7vVUqlVxdEwDgnvfvSi+Fh/uc0z6pAQCThF/kAMCfEIQN6OiklmVZymaz2tjYkGVZLe8zDEPRaFSFQqHruvVJskKhYHviqp2TgrleNX8sbqwJAOjP+3e717ycPzy8mO0zAAAAmHUEYQ7z+XxKJpNKJpPK5/NaXV1tCXyKxaIymYySyeSJa1iWpXg8rkQioUgkMlA//YZNR8O3/f19V9fsV7lc1tLS0sDrrK+va319feB1AGCY7j+QXv/IXu2rH0oXv8+BygAAAOjf5uamNjc3B16nXC470E1/CMJcFIvFFIlEtLKy0nLT4sbGRscgbGVlpbHtcly4Mb3lxJrValV7e3sDr1OpVAZeAwCG7T1D+sMf7dV+9Y10w5B+/AN3ewIAAMD0qlQqjvwMPkoEYS7z+Xza2dlROBxuhGGWZalYLLad9spkMjIMo6ezxLo9vxOBU/M0lxtr9mtubk4LCwsDr+P1egdeAwCG7ePPe6v/5HOCMAAAAPTP6/VqcXFx4HXK5bKq1aoDHfWOIGxIrl+/rnD4TycVFwqFY0GYYRhKpVJKp9OO3aY4Pz/vSGg1Pz/v6pr9WlhY0O7u7sDrAMAkOvja3XoAwKFRXDoCAOPIqWOFlpaWRjZZNjeSZ51BoVCoJfhqd+B8PB5XKBTquG2yV/1OXR0Nuo5OhDm9JgCgd/5H3a0HgFlg99IRO3UAgPHHRNgQRaNRFYvFtu/LZDIyTVORSETxeLzrWs2h0sbGhm7evNl4+/Lly4rFYpKk5eXllvPJLMuyFUAdPcg+GAw2XndjTQBA7y4+JX36G/v1Tz/lXi8AMIm4dAQAZg9B2BAFAoHG60e3BX755ZeSdGJQ1olhGC3BVCAQaARhzdsxpcNJNDvbLkulUsvbzdNsbqwJAOjdiyHpzV/ZOzD/8Uekl5zZdQ8AU4NLRwBg9rA1coiag7BhbQtcXl5uebvdlsx2mifOfD5fS+9urAkA6N3ZM9K7z9irvfYsUwwAcFQ/l44AACYbQdgQbW9vN16PRqMt70un06rVarZfmkOkXC7X8r50Ot14XygUagnd7ty503OvR4MvN9YEAPTnhfPda27E7NUBgNtqNenbaueXWm14/XDpCADMHrZGDlHz1sBhbgu8dOmSstmsJLVsoeykuS6VSg1lTQCAO54nBAMwJqo16fRbnWseXpVOeYbTD5eOAMDsYSJsiPL5vCQ5eiukHWtra43X7ZxB1lwTCATahnZurAkAAAAM08UeLxHh0hEAmHwEYUOSz+dlmqZ8Pp+uXLky1OcOhUItwVM9kDtJLpdrvH7S5JYbawIAAADD9GJIeuw79mq5dAQApgNBWJ+KxaL8fr88Ho+i0WjH7YGmaWp1dVWSdPv27aEdlN9sa2ur8frGxsaJdZZlNbY8RiIRJRKJoa4JALNgznO49afTy9yQtgUBwCzj0hEAmD0EYX3K5XKNWxCLxaLC4XDLdsG6+vvm5+dVKpUUCo3m10iBQKAxlWUYhjKZTNu6lZUVSYe3OjZPcQ1rTQCYBR6PdGqu84uHIAwAhoJLRwBgthCE9Skejx/7s2w2K7/fr3g8rrW1NYXDYUWjUSUSCe3s7LTc9DgKsVhMhUJBPp9PqVRK8XhchmHIsqxGYGcYhkKhkO7du2drcs2NNQHASUxfAQAGxaUjADA9CML6FIlEVCqVlEgkFAgEWgIewzC0v7+vK1eu6ODgQOl02vEAqFQqqVarqVarKRaL9dR3vSfTNLWystII7+bn55XL5bSzs9NTv26sCQBOYfoKAAAAQN3pUTcwyQKBQMs5WZMkmUw6fnulG2sCAMbL+3ell8Kj7gIAAADoD0EYAACQdBhydfNy/nCKbhLPyqnVpGqtc82chwlBAACAaUYQBgAAdP+B9PpH9mpf/VC6+P3Juz2tWpNOv9W55uFV6RRBGAAAwNTijDAAAKD3DOkPf7RX+9U30g3D3X4AAAAANxCEAQAAffx5b/Wf9FgPAAAAjAOCMAAAoIOv3a0HAAAAxgFBGAAAkP9Rd+sBAACAcUAQBgAAdPGp3uqf7rEewOSq1aRvq51fal1uZAUAYFxwayQAANCLIenNX9k7MP/xR6SXQu73NM5qtcNbKDuZ80gebqDEFODGVQDANCEIw0Qrl8taWlrqWLO+vq719fUhdQQAk+nsGendZ6SX891rrz0rec8M/pzv35VeCg++zigQDAAAALS3ubmpzc3NjjXlcnlI3RxHEIaJVq1Wtbe317GmUqkMqRsAmGwvnO8ehN2IHdZ18/7d7jUv56VTc/bWAwAAwGSoVCpdf04fJYIwTLS5uTktLCx0rPF6vUPqBgCm3/M2Qqv7D6TXP7K33qsfShe/78yEGTDp2HLrvEmePJ3zHE6WdqsBgHHj9Xq1uLjYsaZcLqtarQ6po1YEYZhoCwsL2t3dHXUbAIAm7xn2zhqTpK++kW4Y0o9/4G5PwCRgy21vpn3y1OPhaw1gMtk5nmhpaWlkU2PcGgkAABz18ee91X/SYz0A9Dp5WnngajsAgAlCEAYAABx18LW79QDQz+QpAAASWyMBAIDD/I+6Ww8A/UyeDmMLNud6AcD4YyIMAAA46uJTvdU/3WM9AIzr5KnHc3gmWacXLjsAgNEiCAMAAI56MSQ99h17tY8/Ir0UcrcfANOHyVMAQL8IwgAAgKPOnpHefcZe7bVnJe8ZV9sZe7Wa9G2180utNuougfHC5CkAoF+cEQYAABz3wnnp5Xznmhuxw7pZV61Jp9/qXPPwqnSK7VSYEe/flV4Kd655MSS9+St7B+YzeQoAaEYQBgDABJvkg5mfJwQDZs77d7vXvJw/PEurU1BenzztFrhLTJ4CAFqxNRIAgAnGwcwAJsX9B9LrH9mrffVDqfKgc42diVImTwEARxGEAQAAAHDde4a9rYyS9NU30g1j8Odk8hQAcBRBGAAAAADXffx5b/Wf9FgPAIAdBGEAAAAAXHfwtbv1AADYwWH5AAAAAFznf9Td+n5N8qUjAIDeMREGAADwf7Fzox2A/lx8qrf6p3us7xeXjgDAbCEIAwAAM8FOyPVynjAMcMuLIemx79irffwR6aWQu/0AAGYTQRgAAJh69x9Ir39kr/bVD6XKA1fbAWbS2TPSu8/Yq732rOQ942o7AIAZRRAGAACm3nuG9Ic/2qv96hvphuFuP8CseuF895obMXt1AAD0gyAMAABMvY8/763+kx7rATjneUIwAICLCMIAAMDUO/ja3XoAAABMhtOjbgAAAKCTOY/08Gr3mk78j/b2nL3WAwAAYDIwEQYAAMaaxyOdmuv84ukShF18qrfnfLrHegAAAEwGJsIw0crlspaWljrWrK+va319fUgdAQDG0Ysh6c1f2Tsw//FHpJdC7vcEAAAwjTY3N7W5udmxplwuD6mb4wjCMNGq1ar29vY61lQqlSF1AwAYV2fPSO8+I72c71577VnJe8b1lgAAAKZSpVLp+nP6KBGEYaLNzc1pYWGhY43X6x1SNwCAcfbC+e5B2I3YYZ0T3r8rvRR2Zi2gV7WaVK11rpnzdN9WDABAr7xerxYXFzvWlMtlVavVIXXUiiAME21hYUG7u7ujbgMAMCWetxmCvX+3e83L+cPzy5wK1oBeVGvS6bc61zy8Kp0iCAMAOMzO8URLS0sjmxrjsHwAAIAe3H8gvf6RvdpXP5QqD1xtBwAAAD0gCAMAAOjBe4a9Q/cl6atvpBuGu/0A48DOlCQAAOOAIAwAAKAHH3/eW/0nPdYD48buVmDCMADAJCAIAwAA6MHB1+7WA+OErcAAgGlDEAYAANAD/6Pu1mPy1GrSt9XOL7UuNziOK7YCAwCmDbdGAgAA9ODiU9Knv7Ff//RT7vWC8TDNNzT2sxX4xz9wpxcAAJxAEAYAACRJc57DH9a71Qx7rXHzYkh681f2pmQef0R6KeR+T4Bb2AoMAJg2bI0EAACSJI9HOjXX+cVjM7xycq1xc/aM9O4z9mqvPSt5zwz+nBxCjlFhKzAAYNoQhAEAAPTohfPda27E7NVxIx/G2cUet/ayFRgAMO4IwgAAAFzwvI0QjBv5MO5eDEmPfcdeLVuBAQCTgCAMAABgRLiRD70a9mTgKLYCAwDgJoIwAACAEennRj5Mr3HdJuvkVmAAAEaNIAwAAGBEuJEPdZO+TdbOVmAAAMbB6VE3AAAAMKu4kQ91/WyT/fEP3O1p3M15pIdXu9cAANCMiTAAAIAR4UY+1LFNtncej3RqrvOLhyAMAHAEE2EAAAAj8mJIevNX9iaBuJFvus3KNlmmuAAAo8ZEGAAAwIhwIx/qRrFNdtiH7ktMcQEARo8gDAAAYIS4kQ+S89tkx/UGSgAARo2tkQAAYCZM8pYsbuSbfk5uk+31BsqL32faEAAwO5gIAwAAM4EtWRhnTm6T7ecGSgAAZgVBGAAAADAGnNomyw2UAACcjK2RmGjlcllLS0sda9bX17W+vj6kjgAAANxjZ5vsrNxACQAYT5ubm9rc3OxYUy6Xh9TNcQRhmGjValV7e3sdayqVypC6AQAAk6JWk6q1zjVznsncLjuKGygBAKirVCpdf04fJYIwTLS5uTktLCx0rPF6vUPqBgAATIpqTTr9Vueah1elUxMYhF18Svr0N/bru91ACQBAL7xerxYXFzvWlMtlVavVIXXUiiAME21hYUG7u7ujbgMAAGBsOHkDJQAAvbJzPNHS0tLIpsY4LB8AAACYIk7eQAkAwLQhCAMAAACmjFM3UAIAMG0IwgAAAIAZZOcGSgAApg1BGAAAAAAAAGYCQRgAAMCUqNWkb6udX2q1UXc5Od6/O+oOAACA07g1EgAAoEdzHunh1e41w1atSaff6lzz8Kp0agS9jRs7IdfLeenUHOdoAQAwTZgIAwAA6JHHcxiQdHrxEDaNrfsPpNc/slf76odS5YGr7QAAgCEiCAMAAMBMec+Q/vBHe7VffSPdMNztBwAADA9BGAAAAGbKx5/3Vv9Jj/UAAGB8EYQBAABgphx87W49AAAYXxyWDwAAMELjevD+NPM/6m59O+/flV4KD74OAAAYDBNhAAAAIzSuB+/XatK31c4vtdrw+3LCxad6q3+6S73dGyjt1AEAAHcxEQYAADBD7E4mVWvS6bc61zy8Kp2awGm1F0PSm7+yd2D+449IL4VOfn+vN1Be/L7kPWOvHgAAOI+JMAAAgCnBZJI9Z89I7z5jr/bas52DK26gBABgshCEAQAATIFeJ5MqD1xtp8HJLZZOrvXC+e41N2Ld67iBEgCAycLWSAAAgCnQz2TSj3/gbk+Ss1ssh71d83kbYRk3UAIAMFmYCAMAAJgCTCaNxihuoAQAAP0jCAMAAJgCTCaNhtM3UAIAAHexNRIAAGAKMJk0Gk7eQDnnOdza2cncCG7pHNe+AADoB0EYAADAFLj4lPTpb+zXM5nkjPoNlC/nu9d2u4HS43HufDMnwysn+wIAYNTYGgkAADAFXgxJj33HXm23yST0xqkbKJ3k8Uin5jq/eAi3AAAziIkwTLRyuaylpaWONevr61pfXx9SRwAAjIaTk0l2vX9Xeik8+DqzwM4NlAAATIPNzU1tbm52rCmXy0Pq5jiCMEy0arWqvb29jjWVSmVI3QAAMFovnO8ehNmdTHr/bveal/OHk0XDnHRyCudeAQDgjkql0vXn9FEiCMNEm5ub08LCQscar9c7pG4AABh/diaT7j+QXv/I3nqvfihd/L4zE2bDxLlXAAC4w+v1anFxsWNNuVxWtVodUketCMIw0RYWFrS7uzvqNgAAmCrvGfZuQZSkr76RbhjSj3/gbk8AAGAy2DmeaGlpaWRTYxyWDwAAgBYff95b/Sc91gMAAIwKQRgAAABaHHztbj0AAMCoEIQBAACghf9Rd+sBAABGhSAMAAAALS4+1Vv90z3WAwAAjApBGAAAAFq8GJIe+4692scfkV4KudsPAACAU7g1EgAAYErMeaSHV7vXdHP2jPTuM9LL+e61156VvGdstQcAADByTIQBAABMCY9HOjXX+cVjIwiTpBfOd6+5EbNXBwAAMC4IwkbANE1Fo1HbtWtrawoGg/J4PPL7/QqHw1pbW5Npmn33kMlkFI1G5ff75fF4FAwGFY/HVSwWx2pNAAAwvp4nBAMAABOGIMxBlmXJ4/F0fQkGgwoEAl3Xy2QyCgaDymazjdDLsiwZhqFsNqtgMKhMJtNTj8ViUX6/X6lUSpKUy+VUKpWUTqdlGIai0aii0agsyxrpmgAAAAAAAE7jjDAHZbNZ27X10Ogk0WhUxWJRPp9PkUhEgUBApmnKMIyWSbBUKqVAIKBYLNb1OYvFYmMSLZFIaGtrq/G++hrhcFjFYlHhcFg7Ozvy+XxDXxMAAAAAAMANTIQ5aGNjw1ZdPdg6SSqVUrFYVDqd1sHBgXK5nNLpdMukVbN4PN71OS3LatQFAoGWwKpZLpeTdLgls9u6bqwJAAAAAADgFibCHJLNZmVZlpLJZNfzv5aXl098n2maymQyKhQKikQibWuSyaRKpVLLBJphGAqFTr67PB6PN7YmdppGq09x5fN5FYtFZbNZJRKJoa0JAAAAAADgFk+tVquNuolpEAwGJUmlUmmgdeLxuC5cuKBkMtmxzrIs+f3+xtvpdPrEx5im2ehPkg4ODjpuT8zn843JLZ/Pp4ODg6Gs2YulpSXt7e1pcXFRu7u7A60FAACO+7YqnX6rc83Dq4c3UQ5jHafXctK49gUAwLga5c/0/N+xA/L5vEzT7Hrulx31qbJufD5fy/bKTiFU81bKSCTS9Yyu5vPGLMtSPp8fypoAAAAAAABuIghzwMbGhnw+ny5dujTwWoVCwXbt/v5+4/VO2y2bt1B22j7ZrDlku3nz5lDWBAAAAAAAcBNB2IAMw5BhGI2tisFgUGtra65PPFmW1TifKxKJnBhGGYbR8vaFCxdsrd+83tGPxY01AQAAAAAA3EYQNqCj2yFN01Q2m1U8HpfH41E8Hj8WHDnh1q1bkg6nrOq3MrZTLBZb3u50W2WnuuaPwY01AQAAAAAA3MatkQMwTfNYKHRUPp9XPp9XIpHQ1taWI89rWZbW1tYUCoWUy+U6ns91586dlre7neVV98QTT7S8vb293ZjocmNNAAAwXuY8hwe8d6sBAACYJARhAwgEAtra2pJlWSqVSioWizJNs21tNpvV9va2dnZ2BnpO0zQVjUbl8/l0+/btriHU0X76nd5qvg3TjTUBAMB48XikUwRdAABgyrA1ckCJRELJZFJbW1sqlUo6ODhQOp1uG1AZhqFoNNr3c+XzeQWDQZmm2TiTLJPJdHzMScFcr+rnkbm1JgAAAAAAgNsIwhzm8/mUTCZ1cHDQdttisVjsGl41syxLmUxGwWBQ8Xj82PtTqVTbP29+fD+O9t18Q6UbawIAAAAAALiNrZEuisViikQiWllZaTkYfmNjQ8lk0tYaxWJRpVJJkUjkxDPJ8vm8MpmM7TX74cb0lhNrlstlLS0tDbzO+vq61tfXB14HAAAAAIBptbm5qc3NzYHXKZfLDnTTH4Iwl/l8Pu3s7CgcDjfCMMuyVCwWFYlEuj4+FospFou1/Fk2m1UqlWoJklKplBKJxLGpK5/P50jg1LyuG2v2q1qtam9vb+B1KpXKwGsAAAAAADDNKpWKIz+DjxJB2JBcv35d4XC48XahULAVhLWTSCQUiUQUDodbAqlsNntsKmx+ft6R0Gp+ft7VNfs1NzenhYWFgdfxer0DrwEAAAAAwDTzer1aXFwceJ1yuaxqtepAR70jCBuSUCikSCTS2No46IHzgUBAt2/fbgnX7ty5c6yu36mro0HX0Ykwp9fs18LCgnZ3dwdeBwAAAAAAdObUsUJLS0sjmyzjsPwhGuTGyHZCoVDLtsl24dry8nLL23YnuY4eZB8MBl1dEwAAAAAAwG1MhA1RIBBovO7EtkBJunz5svL5vKT2gVTzxJh0GJaFQqGu65ZKpZa3m7dxurEmAADApJrzSA+vdq8BAACjx0TYEDUHYU5sC5TUEkC1W/Po9JbdLZnNoZrP52vp3Y01AQAAJpXHI52a6/ziIQgDAGAsEIQN0fb2duN1p7dJSscDKukwKGsOyNqdI9ZOc69H13VjTQAAAAAAALcRhA1R89ZAp7YFNk9jnRSuXbp0qfG6YRi21m2uS6VSQ1kTAAAAAADATQRhQ1Q/yyuZTDq2Zj1c8vl8LQfnN1tbW2u8Xr+1spPmmkAg0Da0c2NNAAAAAAAANxGEDUk+n5dpmvL5fLpy5Ypj625sbEiSrl+/fmJNKBRqCZ7qgdxJcrlc4/WTJrfcWBMAAAAAAMBNBGF9KhaL8vv98ng8ikajHbcHmqap1dVVSdLt27c7HpSfyWQUDoeVSqXa3gLZrF6TTCZPnAar29raarxeD8/asSxL2WxW0uH2zUQiMdQ1AQAAAAAA3EIQ1qdcLtcIqorFosLhcMt2wbr6++bn51UqlVpueTzKsiylUikZhqFMJiO/33/i9FQ8Hlcmk1E6nVY6ne7abyAQaExl1ddvZ2VlRdLhVsvmKa5hrQkAAAAAAOAWgrA+xePxY3+WzWbl9/sVj8e1tramcDisaDSqRCKhnZ0dBQKBjmv6fL5jNfVALB6PK5VKKRqNyu/3Szo8fL+X88ZisZgKhYJ8Pp9SqZTi8bgMw5BlWY3AzjAMhUIh3bt3r+PkmptrAgAAAAAAuIEgrE+RSESlUkmJREKBQKAl4DEMQ/v7+7py5YoODg6UTqdtB0A7OztKJpMKhULH1jRNU/F4XPfu3VMul+sarJ3Ud70n0zS1srLSCNrm5+eVy+W0s7PTU2DlxpoAAAAAAABO89RqtdqomwB6tbS0pL29PS0uLmp3d3fU7QAAgBN8W5VOv9W55uFV6ZSNX886uRYAABidUf5Mz7cJAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCadH3QAwiHK5rKWlpY416+vrWl9fH1JHAAAAAADMrs3NTW1ubnasKZfLQ+rmOIIwTLRqtaq9vb2ONZVKZUjdAAAAAAAw2yqVStef00eJIAwTbW5uTgsLCx1rvF7vkLoBAAAAAGC2eb1eLS4udqwpl8uqVqtD6qgVQRgm2sLCgnZ3d0fdBgAAAAAAkL3jiZaWlkY2NcZh+QAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAmnR90AMIhyuaylpaWONevr61pfXx9SRwAAAAAAzK7NzU1tbm52rCmXy0Pq5jiCMEy0arWqvb29jjWVSmVI3QAAAAAAMNsqlUrXn9NHiSAME21ubk4LCwsda7xe75C6AQAAAABgtnm9Xi0uLnasKZfLqlarQ+qoFUEYJtrCwoJ2d3dH3QYAAAAAAJC944mWlpZGNjXGYfkAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJp0fdADCIcrmspaWljjXr6+taX18fUkcAAAAAAMyuzc1NbW5udqwpl8tD6uY4gjBMtGq1qr29vY41lUplSN0AAAAAADDbKpVK15/TR4kgDBNtbm5OCwsLHWu8Xu+QugEAAAAAYLZ5vV4tLi52rCmXy6pWq0PqqBVBGCbawsKCdnd3R90GAAAAAACQveOJlpaWRjY1xmH5AAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJp0fdADCIcrmspaWljjXr6+taX18fUkcAAAAAAMyuzc1NbW5udqwpl8tD6uY4gjBMtGq1qr29vY41lUplSN0AAAAAADDbKpVK15/TR4kgDBNtbm5OCwsLHWu8Xu+QugEAAAAAYLZ5vV4tLi52rCmXy6pWq0PqqBVBGCbawsKCdnd3R90GAAAAAACQveOJlpaWRjY1xmH5AAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJBGEjYJqmotGorVrDMLS2tqZgMCiPxyOPx6NgMKhUKiXLsvruIZPJKBqNyu/3N9aMx+MqFotjtSYAAAAAAIBTCMIcZFlWI6zq9BIMBhUIBLquFY/HFQ6Hlc1mZZpm432maSqTycjv9yubzfbUY7FYlN/vVyqVkiTlcjmVSiWl02kZhqFoNKpoNNpTyObGmgAAAAAAAE47PeoGpkkvoVQ9NGrHsiyFw+GW8Oska2tr2tnZ0dbWVtfaYrHYmERLJBItjwkEAorFYgqHwyoWiwqHw9rZ2ZHP5xv6mgAAAAAAAG5gIsxBGxsbtuoikUjHibB4PC7TNBUKhRrTVaVSSblcTslk8lh9NptVPp/v+Jz1CTPpMKA6KTjL5XKSDqfO6vXDXBMAAAAAAMAtTIQ5JJvNyrIsJZPJrud/LS8vd1ynWCwqmUwqnU63vK8+YbW2tqZ4PC7DMBrvW11dVSwWO3HdeDze2JrYaRqt/hz5fF7FYlHZbFaJRGJoawIAAAAAALjFU6vVaqNuYhoEg0FJUqlUGnidQCCgQqHQsc40zcZz1hUKBUUika61BwcHHbcn5vP5xuSWz+fTwcHBUNbsxdLSkvb29rS4uKjd3d2B1gIAAO75tiqdfqtzzcOr0ikb+xScXAsAAIzOKH+m59sEB+TzeZmm2XEqyg7DMGSaZmMrYSeBQODYxFjzhFiz5rpIJNL1jK7myTLLstpuu3RjTQAAAAAAADcRhDlgY2NDPp9Ply5dGmidmzdvKpFI2D5M/uj015dfftm2rvkQ/1AoZGvt5jPMbt68OZQ1AQAAAAAA3EQQNiDDMGQYhizLkt/vVzAY1NraWl8TT5cvXz425dXJ0QDq6FbJen/NLly40PPaRz8WN9YEAAAAAABwG0HYgI5uhzRNU9lsVvF4XB6P59ih9p2EQiHb02CSGgfV17W7ibJYLHataedoXfPH4MaaAAAAAAAAbiMIG4BpmsdCoaPy+bzC4bDW1tZcef5m7Q7Kv3PnTsvbdoO2J554ouXt7e1tV9cEAAAAAABw2+lRNzDJAoGAtra2ZFmWSqWSisXisXCqLpvNant7Wzs7O449f3OQlEgk2tYc7aff6a3m2zDdWBMAAAAAAMBtBGEDOhpAWZalbDarjY2NY1sXDcNQNBpVoVBw5Lm3trYar590Y+VJwVyvmj8WN9YEAAAAAABwG0GYw3w+n5LJpJLJpPL5vFZXV1sCn2KxqEwmo2QyOdDzmKbZOGMrnU6fOJXVb9h0dLvj/v6+q2v2q1wua2lpaeB11tfXtb6+PvA6AAAAAABMq83NTW1ubg68TrlcdqCb/hCEuSgWiykSiWhlZaXlYPiNjY2Bg7D67ZKBQGDgtexwY3rLiTWr1ar29vYGXqdSqQy8BgD8n+3dP29b3b4f+J98ngT3IOdqKJ1KsCqqmTaUzysw2U2QKUg/RTBJZap3IcG49R1DKlwGIz5dgin8iF3Skc8rsMRppyFPY0OdtKN7Lm6Q3CNOYZBDUv8oidx7U/vzAQST8uLavy1jcYtfr7U2AAC8ZFdXVwv5DJ4lQdiSlUqlODs7i93d3XEYliRJdLvdWze3n0ev14tWqxWlUunBZZalUmkhgdPkbK5l9PlUr169iq2trWf3s76+/uw+AAAA4CVbX1+P169fP7uf8/PzuL6+XkBFjycIS8kvv/wSu7u74+edTufJQdj79+8jIuK33357cKP6zc3NhYRWm5ubS+3zqba2tuLbt2/P7gcAAAC436K2Fdre3s5sZtmrTI5aQJVKZSr4euqG83t7e9Hr9eLk5CQqlcqD7Z8662o26JqdEbboPgEAAACWTRCWolqt9qzXt1qtaLVacXx8HPV6fa7XvHnzZur5vDO5Zjey39nZWWqfAAAAAMsmCEvR5DLGxy4L7Ha7sbe3F8fHx9FsNud+3eRyzIj5Z6L1+/2p55Oz2ZbRJwAAAMCyCcJSNBmEPWZZYK/Xi1qtFoeHh48KwSJuzt6aN7SanOVVKpWmal9GnwAAAADLJghL0enp6fjxvMskB4NBvH37Nvb392N/f//Rx6xUKlOh29evX+d63WSts8HXMvoEAAAAWDZBWIomlwbOsyxwMBjE7u5uNJvNODw8nOsYg8Egjo6Opr737t278eNerzdXP5PtDg4Obvz9MvoEAAAAWCZBWIra7XZExFwzu5IkiVqtFu/evZs7BIuIaDQaN0K2vb298eNut/tgH5NtyuXyraHdMvoEAAAAWCZBWEra7XYMBoMolUrx8ePHe9smSRK7u7tRLpfj4OAgBoPBg1/dbne8iX2lUpnqr1KpTAVPo0DuLicnJ+PHd83cWkafAAAAAMu0NhwOh1kXsYq63W40Go1IkiSq1WocHh7eCKBGRksckySJs7OzO9uN7O7uzr3ccNZdd5UcDAaxs7MTET9CrLOzs1tfnyRJbGxsRMSP5ZudTufOYy2jz3ltb2/H9+/f4/Xr1/Ht27dn9wcALMdfryN++rv72/zz30f8bo7/nl1kXwBAdrL8TO/XhCc6OTkZ3wVxNBtrcrngyOjvNjc3o9/vLzUEi4g77ypZLpfHs7J6vd6NfcRG3r59GxE/7uo4OYsrrT4BAAAAlkUQ9kSNRuPG91qtVmxsbESj0Yi9vb3Y3d2NWq0WzWYzzs7OolwuP9jnMkKwkXq9Hp1OJ0qlUhwcHIyPlyTJOLDr9XpRqVTiz3/+89SdIdPsEwAAAGAZLI18hsFgEIeHh9HtduPi4iKSJIlSqRSbm5tRqVTi559/jmq1msvw5+joKL58+RKDwWBc95s3b2Jvby/q9Xpu+ryLpZEAsBosjQQAZmX5mV4QxkoShAHAahCEAQCz7BEGAAAAAEsmCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKISfsi4AnuP8/Dy2t7fvbfPhw4f48OFDShUBAABAcX3+/Dk+f/58b5vz8/OUqrlJEMZKu76+ju/fv9/b5urqKqVqAAAAoNiurq4e/JyeJUEYK+3Vq1extbV1b5v19fWUqgEAAIBiW19fj9evX9/b5vz8PK6vr1OqaJogjJW2tbUV3759y7oMAAAAIObbnmh7ezuzWWM2ywcAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAK4aesC4DnOD8/j+3t7XvbfPjwIT58+JBSRQAAAFBcnz9/js+fP9/b5vz8PKVqbhKEsdKur6/j+/fv97a5urpKqRoAAAAotqurqwc/p2dJEMZKe/XqVWxtbd3bZn19PaVqAAAAoNjW19fj9evX97Y5Pz+P6+vrlCqaJghjpW1tbcW3b9+yLgMAAACI+bYn2t7ezmzWmM3yAQAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEL4KesC4DnOz89je3v73jYfPnyIDx8+pFQRAAAAFNfnz5/j8+fP97Y5Pz9PqZqbBGGstOvr6/j+/fu9ba6urlKqBgAAAIrt6urqwc/pWRKEsdJevXoVW1tb97ZZX19PqRoAAAAotvX19Xj9+vW9bc7Pz+P6+jqliqYJwlhpW1tb8e3bt6zLAAAAAGK+7Ym2t7czmzVms3wAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEH7KugB4jvPz89je3r63zYcPH+LDhw8pVQQAAADF9fnz5/j8+fO9bc7Pz1Oq5iZBGCvt+vo6vn//fm+bq6urlKoBAACAYru6unrwc3qWBGGstFevXsXW1ta9bdbX11OqBgAAAIptfX09Xr9+fW+b8/PzuL6+TqmiaYIwVtrW1lZ8+/Yt6zIAAACAmG97ou3t7cxmjdksHwAAAIBCEIQBAAAAUAiCMAAAMvV//z9ZVwAAFIU9wiBFnz9/jqurq1hfX39wzTSQHmMTlmeekOs/tCN+9yri3/3r//97xiXkj3EJ+WNcPt7acDgcZl0EPNZoY73Xr1+v1Gb5q1o3vHTGJizHf/vvEa//z4h//J8Pt/3Dv4z4/jFi/W9+PL9tXP71OuKnv7u/n3/++x+hGrB4rpeQP6s6LrOs268JAAAsxX/uzReCRUT85X9E/KfecusBABCEAQCwFP/l/31c+//6yPYAAI8lCAMAYCku/2m57QEAHksQloHBYBC1Wu1Zr22328+q4ejoKGq1WmxsbMTa2lrs7OxEo9GIbrebqz4BgNW18fvltgcAeCxB2AIlSRJra2sPfu3s7ES5XH50341GI3Z2dqLb7cbFxcWTaux2u7GxsREHBwcREXFychL9fj8ODw+j1+tFrVaLWq0WSZJk2icAsPr+zf/6uPb/2yPbAwA8liBsgVqt1txtR6HRQ5IkiYODg9jY2Hj2LLButzsOpJrNZnQ6nahWq1Eul6Ner0e/349KpRLdbjd2d3fnCq6W0ScA8DL8H5WIf/Uv5mv7h38Z8e8ry60HAEAQtkCfPn2aq90oKHrI0dFR7O7uRq/3/FsojWaURUSUy+U4Pj6+td3JyUlE/FiCOWqfZp8AwMvxv/xNxH/8t/O1/b/+94j1v1lqOQAA8VPWBbwUrVYrkiSJ/f39B/f/evPmzYP99Xq9qFarsb+/P+5/b2/vyfU1Go3xbKz7ZqONZnK12+3odrvRarWi2Wym1ue8/vKXv0z9yXJ9/vw5rq6uYn19PT58+JB1OXNb1bojVrf2Va17Va3qz1vd6cq67n/3ryP+wwOT2v9T/Ue7lyDrn/dTqTtdq1r3qlrVn7e607Wqda+qLD/Trw2Hw2HqR32BdnZ2IiKi3+8vpf9erxe7u7vj58fHx3OHSYPBYFxfRMTl5WWUSqU727fb7fHMrVKpFJeXl6n0+Ri/+93v4vr6Ol69ehV//etfn9VXmra3t+P79+/x+vXr+PbtW9blzE3d6VvV2tWdLnWnS91P89friJ/+7v42//z3Eb+bWadwW91P7StNWf+8n0rd6VJ3utSdLnWna1XrzvIzvaWRC9But2MwGMy979dT3BcyPeTw8HD8uFqtPthXvV4fP06S5Na9yZbRJwAAAMAyCcIW4NOnT1EqleLdu3dZl3KryU38K5X5dqGd3MPsy5cvqfQJAAAAsEyCsGfq9XrR6/UiSZLY2NiInZ2d2Nvby82Mp9mN9v/0pz/N9brJcGv2XJbRJwAAAMCyCcKeaXY55GAwiFarFY1GI9bW1qLRaCzkro9P1e12p57Pc7fK29pNnsMy+gQAAABYNkHYMwwGgxuh0Kx2ux27u7vPuuPjc3z9+nXq+bx7jf3xj3+cen56errUPgEAAACW7aesC1hl5XI5jo+PI0mS6Pf70e12YzAY3Nq21WrF6elpnJ2dpVrjbD1Pnb01eTfMZfQJAAAAsGyCsGdqNptTz5MkiVarFZ8+fYokSab+rtfrRa1Wi06nk1p9dwVzjzV5LsvoEwAAAGDZ1obD4TDrIl6qdrsd79+/vxH4HB4exv7+/qP6GgwGsbOzM35+fHx8I4S7zdra2tTzef+5u91u1Gq18fN6vR4nJydL6/OxJmt49er5K3z/9m//Nv7whz88u5+HnJ+fx/X1dbx69Sq2traWfrxFUXf6VrV2dadL3elS99N9v7r/71+v3/zeXXU/pa805eHn/RTqTpe606XudKk7XWnX/Ze//CX+4R/+4dn9XF9fjx+nHUsJwpYsSZJ4+/bt1MbwpVIpLi8vH9VP1kFYtVodz2RbRp+P9erVq9QHCwAAALA4a2trU6FYGiyNXLJSqRRnZ2exu7s7DsOSJIlutxvVajWV4y9iCeLkhvjL6POxfv/738c//dM/xXA4XKkZYQAAALCqFjkjbG1tLX7/+98voKrHEYSl5Jdffond3d3x806nk0oQtrm5uZDQanNzc6l9PtY//uM/Pvv4AAAAQLE8fyoNc6lUKlPB16I2nH/IU2ddzQZdszPCFt0nAAAAwLIJwlI0uT9WWt68eTP1fN6ZXBcXF1PPJ/cnW0afAAAAAMsmCEtRuVweP37OssDHmFyOGTH/TLR+vz/1fHI22zL6BAAAAFg2QViKJoOwtJYFzs7emje0mpzlVSqVpmpfRp8AAAAAyyYIS9Hp6en4cVrLJCuVylTo9vXr17leN1nrbPC1jD4BAAAAlk0QlqLJpYFpLgt89+7d+HGv15vrNZPtDg4OUukTAAAAYJkEYSlqt9sREbG/v5/qcff29saPu93ug+0n25TL5VtDu2X0CQAAALBMgrCUtNvtGAwGUSqV4uPHj49+/bx3ZrxNpVKZCp5GgdxdTk5Oxo/vmrm1jD4BAAAAlkkQ9kTdbjc2NjZibW0tarXavcsDB4NBvH//PiIifvvttydtlD+7If1jg7Hj4+Px40+fPt3ZLkmSaLVaEfFj+Waz2Uy1TwAAAIBlEYQ90cnJyTiM6na7sbu7O7VccGT0d5ubm9Hv96NSqTz6WEmS3JhF9eXLl0f1US6Xx7Oyer1eHB0d3dru7du3EfHjro6Ts7jS6hMAAABgWdaGw+Ew6yJWUbfbvfXOj6VSKarVamxubsbp6Wn0er3Y39+Pjx8/PmomWJIk8f79+0iS5N49uKrV6ni55TwhW7fbjUajEUmSRL1ej48fP0a5XI7T09M4ODiIXq8XlUrlUTPXltEnAAAAwKKZEfZE1Wo1+v1+NJvNKJfLUwFPr9eLi4uL+PjxY1xeXsbh4eGjA6DR7KlOpxPD4fDOr06nEycnJ3PPNKtWq+OaBoNBvH37NjY2NqLRaMTm5macnJzE2dnZo+pdRp8vxWAwiFqt9uAeaotydHQUtVptvGx3Z2cnGo3GXDc0gJcs72Nj9F4BL0GW4y3vYx2ykvex4TpI0ficmLEhsHCXl5fDer0+jIhhRAyPj4+XerxOpzMslUrDiBhWq9Vhp9MZ9vv94cnJybBcLo+/f3l5udQ6IG+yHhuXl5fj94GHvprN5lJqgLRkOd6yHuuQV1mPDddBmOZzYj4IwmCBLi8vh/v7+zcu7Mt8g+t0Og/+AlGpVIYRMSyXy4V7k6O48jA2Dg8P5/4A0O/3F358SEuW4y0PYx3yKA9jw3UQfvA5MV8EYbAgh4eHw3K5PKxWq6m9wV1eXo4T/nK5fGe7fr8/rqVarS6lFsiTvIyNUQ0PfRmXrLIsx1texjrkTV7Ghusg+JyYR/YIgwXo9XrjfeM6nU4cHx+nctzRTQoi4sadRSeVy+Wo1+sR8ePmBq1WK43yIDN5GButViuSJIn9/f3odDr3frmjLqssy/GWh7EOeZSHseE6CD4n5pW7RsIS9Hq92N3dHT8/Pj6OZrO50GMMBoPY2dkZP7+8vLz3hgTtdjsajUZE/LgZw+Xl5ULrgbzIy9gY1dDv9xfSH+RRluMtL2Md8iYvY8N1EG7yOTEfzAiDJUjjDpmHh4fjx9Vq9cFjjpL+iIgkSVK7QwmkLQ9jo91ux2AwuPd/4OAlyHK85WGsQx7lYWy4DsLtfE7MB0EYrKjJaauVSmWu15TL5fHjL1++LLwmyIM8jI1Pnz5FqVSKd+/ePbsvyLMsx1sexjrkUR7GhusgZCcP7wF5JwiDFdTr9aae/+lPf5rrdZNvhEVI+imePIyNXq8XvV4vkiSJjY2N2NnZib29PWOOFyfL8ZaHsQ55lIex4ToI2cnDe8AqEITBCup2u1PPJxP8+8y2m32jhFWXh7ExuwxkMBhEq9WKRqMRa2tr0Wg0jD1ehCzHWx7GOuRRHsaG6yBkJw/vAatAEAYr6OvXr1PP511r/sc//nHq+enp6aJKglzIemwMBoMbv4DMarfbsbu7G3t7e086BuRFluMt67EOeZX12HAdhGxl/R6wKn7KugDg8QaDwdTzpyb97uLDS5P12CiXy3F8fBxJkkS/349ut3ujppFWqxWnp6dxdnb2pGNB1rIcb1mPdcirrMeG6yBkK+v3gFUhCIMVdNcvFI+VJMlC+oG8yMPYmL0FdpIk0Wq14tOnTzf67fV6UavVotPpPPl4kJUsx1sexjrkUR7GhusgZCcP7wGrwNJIWEFPfWOanRp7cXHx/GIgR/I4NkqlUuzv78fl5WWcnJzcOFa3242jo6OFHQ/SkuV4y+NYhzzI49hwHYT05PE9II8EYVBgLz3ph6da1tio1+vx5z//+catrD99+rSU48EqyPJa5DoIt3MdhGJ76ddHQRisoHk3PUyrH8iLVRgbpVIpzs7Opj4EJEny4ObCkDdZjrdVGOuQhVUYG66DsDyr8B6QB4IwXqRWqxVra2sL/drd3c36tMY2Nzdz1Q/MI41xuUpj45dffpl6bn8UVk2W422VxjqkaZXGhusgLN4qvQdkSRAGK+ipCf3sFNeXnvRTPKs0NiqVSlSr1fHzRW1uCmnJcryt0liHNK3S2HAdhMVbpfeALLlrJC9StVqNk5OThfaZpzeDN2/eRK/XGz9PkmSu+mY3PdzZ2Vl0aXCnNMblqo2NWq1mKQgrK8vxtmpjHdKyamPDdRAWa9XeA7IiCONFKpfLUS6Xsy5jaWaXgw0Ggxubjt6m3+9PPZ/8XzhYtjTG5aqNjcmfx0ufgs7Lk+V4W7WxDmlZtbHhOgiLtWrvAVmxNBJW0Js3b6aezzuVfHLKa6lUetFhIcW0amNj8jh5mnUK88hyvK3aWIe0rNrYcB2ExVq194CsCMJgBVUqlalfFr5+/TrX605PT8ePZ98k4SVYtbExedxarZbacWERshxvqzbWIS2rNjZcB2GxVu09ICuCMFhR7969Gz+eXAd+n8l2BwcHC68J8mCVxsbkNPSXPgWdlynL8bZKYx3StEpjw3UQFm+V3gOyIgiDFbW3tzd+PM8mo5NtyuWyXzZ4sVZpbLTb7YiI2N/fT+2YsEhZjrdVGuuQplUaG66DsHir9B6QFUEYLMHs7WefotVqxcHBwZ3rumdvOT36ReIuk3frK0LKT3Etc2w8NC4fo91ux2AwiFKpFB8/fnx2f5CFLMeb6yDcznUQ8svnxJwYAgt3cnIyjIjx1+Hh4aNeX61Wp15/eXl5a7t+vz9uU6lU7uzv8vJy3K5arT6qFlhFyxgbD43LTqczLJVK477Ozs7urW/U9r52sAqyGG/LPDa8BK6DkE8+J+aDIAwW7PLyclgul6feoO5787nN5GsjYnh8fHxn28k307veSCuVyjAihqVS6c43S3hpFj02HhqXzWbzRptms3mjn9EHhXK5POz3+08+P8iTtMfbMo8NL4XrIOSLz4n5IQiDBbi8vBzW6/UbCf3sV7VaHdbr9Qf/52v0P2Sjr06nc2/7yf+BG/V/eXk57HQ64ze3SqVSqDc3GA4XOzYeGpedTufWcV8qlYb1en3YbDbHx9zf3zceeXHSHG/LPDa8JK6DkC2fE/NJEAY51Ol0huVyeVgqlYb7+/tzv+7w8HBYqVTGb3alUmlYrVaHJycnS6wW8m8RY2Oecdnv94fNZnPcbnSscrk8rNfrw5OTk8L9okHxpDXelnVseIlcB+FlcH1cjLXhcDgMAAAAAHjh3DUSAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAK4aesCwAAAADIu16vF1++fIkkSeL4+DjrchbupZ/fiCAMAAAAWBkbGxtxdnYW5XJ56cfqdrtxcnIS3W43BoNBRERUq9WlH/cxNjY2IkmS6HQ6j65tFc5v0QRhAAAAwEo4Ojoaz1g6PDxc6rFqtVpcXFxEr9db6nGeo9vtRpIkEfH4AGsVzm8Z7BEGAAAArITRkr1Wq7X0Y3U6nTg7O4tOp7P0Yz3VyclJRETU6/VHv3YVzm8ZBGEAAABA7rXb7fHyvSRJot1up3LcPC8V/PXXXyMi4ueff35yH3k+v2UQhAEAAAC59+nTp3ufF02v13vyssgiE4QBAAAAudbr9W7sZXXb94pktEy0Wq1GqVTKtpgVIggDAAAAcu2u2V+jMKiIRssiG41GxpWsFkEYAAAAkFuT+4GNNocfSWPT/DyaXBb57t27bItZMYIwAAAAILdGs8GazWbU6/Uol8tTf1/EMOzLly8REVGpVCyLfCRBGAAAAJBbo6Dr4OBg6s+Rw8PDZx+j3W5HrVaLjY2NWFtbi93d3djb2xvfpTJvRjPk5r1b5Kqd3zIJwgAAAIBcarVakSRJVKvV8UywZrM51WYwGES3231S/4PBIHZ2dqLRaMTFxUUcHh5Gp9OJn3/+Obrdbuzs7MTR0dGD/TQajXHIdNvX7u7uOHTa29u7te3Ozs54ueNDNY/6qtfrqZxfxI8A8q7ze+hrd3d3rmOkYW04HA6zLgIAAABg1s7OTgwGg+h0OlGtVsff39vbm1oSWa/Xb+wf9pBerzcOaA4PD2N/f/9Gm9njRPy4S2On07m1z9va39b35LErlUr89ttvcy9xPDo6ioODgyiXy9Hv9+9st+jzG7Utl8uxt7d3Y4nqyNevX2+Ea7P/fln6KesCAAAAAGZ1u90YDAZRLpdvhCizAU673Y4kSeYOkwaDwTgkqtfrt4ZEET/uSnl6ehq9Xm+ufo+Pj2/MULstrDo9PY2I+0O1u4z2B7tvNtiyzq9UKt0bvkXcvMNns9nMTQgWYWkkAAAAkEOjvb9m9wSL+DGLqlKpTH3vMZvmNxqNG8d5qI553XZny8klj0mSxMHBQZRKpUfPYkuSZBxa3bc/2LLO7+PHj/f+/dHR0VSoViqV4vj4eO7+0yAIAwAAAHJlNKuqVCrd2BNsZG9vb+r57Eyku7Tb7XFYU6lU7lziN/LmzZu5+h25Lfx5//791OMkSeLk5OTRd3z89ddfx8eYDQJHlnV+FxcXdx4z4se/2Wxo+digLw2CMAAAACBXRrOU7grBRn83GSQlSTK+m+J9JgOz2TDtNo8Nq0a1TS4HbLfb0e12o9VqRbvdfvJywVGw9O7duzvbLOv8Dg8P7615chZaRP6WRI4IwgAAAIDcSJJkvMzxoaV4s4HQQ8vwBoPB1NK9h2ZLPcdsLY1GY7zJ/VOXC472HpsNnUaWeX739dVqtW4siXzsktK0CMIAAACA3BiFYPV6/cHZSrNL8UYb7N9lchP7iOUGYeVyeSoMSpJkvCTyKUaz3Uql0p0zrdI8v5HBYHBj5tlTln2mRRAGAAAA5MZoad9Ds8EifgQ9s/tW3TcT6ezs7Mbrl2l/f//efbUeY3S3yPuWG6Z9fhE3l1/W6/VcLokcEYQBAAAAudButyNJklvvCnmX2cDsvrtH3jdbbFlmZ4DdtazxIaMZYffdLTLt82u1WlOz0EqlUvzyyy+p1vBYgjAAAAAgFx4zG2zktiWUd4VhFxcXU8/TCI5m9wO77e6KD5kMm+r1+p3t0jy/JElunMcvv/yS2yWRI4IwAAAAIHO9Xi96vV6USqV7w57bzN5dct7N6JMkedRxHqvX68XR0dGN8zk6OpraXP4ho1llj/25LPP8Go3GVP/1ev3R9WVBEAYAAABk7imzwUZm96kahWqzNjc3p54ve0ZYo9EYLxe87S6S8/r1118j4v5lkRHpnV+73V65JZEjgjAAAAAgU0mSjPfAmp3dNY9yuXxjg/ZRsDbbblKn03n0sea1t7cXg8FgvFyw2WxO7Xs2GAzi6OjowX663e545tVDm9CncX5JksT79++nvrcKSyJHBGEAAABApkahVbPZfHKgMjsrbLTx/qRarTb1fDTTatG63W60Wq2oVqtTywVnN84/ODh4cNbW6DXVavXBn00a5/f+/ftHL4k8Ojq69yYGaRKEAQAAAJkahSSP3UR+0jyb5s/OqJqciTav2Q3pbzNa9jgbfJXL5Tg8PLy17V1GYdY8SymXfX7dbneqv3mXRHY6nRvLNrMiCAMAAAAy02q1IkmSqFarN5b2PdZDm+bfthH/7AynWbN7jT20Af1oE/nj4+NbZ3Dt7+9PnedoQ/27jj063rt37+49bsTyz282jJtnSWSSJNHtdp/9b7sogjAAAAAgM6MZUs+ZDTYyu9H+YDCY2tQ9Im7MYEqSJN6+fXtrADQYDG6EP7f1OdJut6Pdbke5XL53r7Pblkjetrn/ly9fIiKiUqnMvWR0Wee3t7c31cfsss+7jPYTy0sQtjYcDodZFwEAAAAUT7fbHe9rtaigZHbPrWq1emPT+Ha7fetSw2azGbVaLS4uLuLs7CxarVY0m80797dqNpvjWWeT57K/v39jCeSkJEliY2Nj6nulUil+++23qQ31d3Z2YjAYxOHhYezv799z1tMWfX6T5zZyfHx8679ZkiRxcXER/X4/2u32+N8jL/GTIAwAAADIRK1Wu3N21SL1+/0boU232x0vY7zLKAhaW1sbf69cLsfe3l7U6/Uol8vjWVWzM7qq1WqcnJzcmMl1dHQUx8fHd26SX6lUxjPGdnZ27qz/IYs6v4iI3d3dW2eszatUKsXl5eWTX79IgjAAAACgsI6OjuLLly8xGAwiSZIolUpRrVZjb29vvPn8zs5O1Ov1+Pnnn6dmbC27roODgyiXy9Hv95/VTx7PLyuCMAAAAICcGc3CemiZJY8jCAMAAADIkck9xM7Ozl78LK00uWskAAAAQI78+uuvEfFjby0h2GIJwgAAAAByZLRZ/rt37zKu5OURhAEAAADkRJIk4ztpNhqNjKt5eQRhAAAAADkxCsFGd3dksWyWDwAAAJATSZKMH5dKpczqeKkEYQAAAAAUgqWRAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACF8P8B2QSodwWV0a8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -191,74 +173,79 @@ } ], "source": [ - "bins = np.linspace( -1, 1, 50 )\n", - "sns.regplot(x=ak.to_numpy(array[\"dSlope_fringe\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=bins, fit_reg=None, x_estimator=np.mean)\n", + "bins = np.linspace(-1, 1, 50)\n", + "sns.regplot(\n", + " x=ak.to_numpy(array[\"dSlope_xEndT\"]),\n", + " y=ak.to_numpy(array[\"z_mag_xEndT\"]),\n", + " x_bins=bins,\n", + " fit_reg=None,\n", + " x_estimator=np.mean,\n", + ")\n", + "plt.ylim(5100, 5700)\n", + "\n", "plt.xlabel(\"$\\Delta$dx/dz\")\n", "plt.ylabel(\"$z_{Mag}$ [mm]\")\n", - "mplhep.lhcb.text(\"Simulation\")" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n", - " expsuffix: Custom Text(0.05, 0.955, 'Simulation'))" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/work/guenther/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/IPython/core/pylabtools.py:151: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", - " fig.canvas.print_figure(bytes_io, **kw)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwAElEQVR4nOz9bWxb953nf38o2WnSpDKlDIK6UqY1NRn0j6LNmJSv5Or1qBW5vUFypTMh7SZGkuI/EZkExQ5GuyXjFthnjUq21WCwQGLSnQdx1k1tst3JlaDNWnTm2R+Ztcg0LbIIdsrjzEaKimAiHatJk8Y2z/VAQ5akJPLw5vBGfL8Aorr58ne+unFcfvz7fY/LsixLAAAAAAAAwB430usGAAAAAAAAgG4gCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFDY1+sGgFbceOON+uCDDzQ6Oqpbbrml1+0AAAAAAACb3n77bV27dk3XX3+93nvvva5e22VZltXVKwIdMDo6qmKx2Os2AAAAAABAi0ZGRnTt2rWuXpMdYRhIpSBsZGREBw8e3Pb5tbW1up/vlX7tS+rf3uiref3aG301p1/7kvq3N/pqXr/2Rl/N69fe6Kt5/dobfTWnX/uS+rc3+mpev/Zmp69SzejoaJe7IwjDgLrlllu0urqqgwcPamVlZdvnp6am6n6+V/q1L6l/e6Ov5vVrb/TVnH7tS+rf3uiref3aG301r197o6/m9Wtv9NWcfu1L6t/e6Kt5/dqbnb5KNb0YdcSwfAAAAAAAAAyFnu4Iu+2223p5+Soul0v/+3//7163gSatra1pampqx4+X/ndxcVHz8/Pdbg0AAAAAgKHzu9/9TtLur9dLn+uVngZhhUJBLpdLvZzXX7q+y+XqWQ9oXbFY1Orqat3Pb25udrEjAAAAAACGVynjafR6vVeGfkYYN80cbHaG5Y+NjfWgMwAAAAAAhk9po5GdYfm90PMgzLIsBYNBeTyenlzfNE2lUqmeXBvtszMsn2ORAAAAAAB0x8c+9jFtbm7aGpbfCz0PwlKplB5++OGe9hAMBvWlL32ppz0AAAAAAADAWT2/a6Tf7+91Czpy5EivWwAAAAAAAIDDer4jbGJiotctYA+an5/X5uZm380H69e+pP7urR/18/erX3ujr72jX79n9NW8fu6tH/Xz96tfe6OvvaNfv2f01bx+7q0f9fP3q19769e+SlxWD6fFj46OamNjo+ffnMuXL2tiYkLXrl3raR+wr3SeeHJyctczx9gb+FljWPG7j2HG7z+GGb//GFb87g+XXv68e3o0sp/u2NhPvQAAAAAAAKDzehqExePxnu8Gk6QDBw4oHo/3ug0AAAAAAAA4qKdB2Le+9a2uXu+NN97Y9XPd7gUAAAAAAADd1fO7RnZTJBLpdQsAAAAAAADokaEKwpaXl3vdAgAAAAAAAHpkX68baMUbb7wh0zRt1xuGoWQy2dRzAAAAAAAAsLcMRBD2xhtvKB6PK5vNyjCMltawLEsul6vDnQEAAAAAAGBQ9H0QduLECSUSCUlbYRaA4TI/P6/Nzc2+uMMs0E387mOY8fuPYcbvP4YVv/voFpfVx+nST3/6U4VCIUkq7+Zqp12Xy6Vr1651pLd2GIahSCSipaUlW7WVu+Hcbrc8Ho9mZmYUi8Xk8Xiavn4+n1cymazaYefxeBQMBnXixAm53e6m15SkRCKhpaUlLS8vyzRNeTweeb1eRSIR+f3+ltbczdTUlFZXVzU5OamVlZWOrg0AAAAAAJzTy9f0fR2EzczMKJ/Py+VyybKscrBSCn9uvvnmhmu88847Mk1T586d0+XLlx0NwkzT1Pj4uK3acDisZDJZtyaRSCgWi9Wticfjikajtvubm5tTJpOpW5dMJhUOh22tKUnZbFahUEimacrv95cDunw+r1gsJsMw5Pf7lU6nWw7ZahGEAQAAAAAwmAjCdjEyMlLeCXb+/HnNzs62vJZhGLrtttscDcLsBFclhUKh7m6uQCCgbDYrt9stv98vj8cjwzCUz+e3zUlLp9MKBoN1r2eapnw+n+0Za3aCOmkrBAsEAnWf4/P5lM/n5fF4lMvlOhKGEYQBAAAAADCYevmafqSrV2tSKTCJRqNthWDS1tG/Q4cOdaCr3S0sLNiqKwVbu4nFYspms4rH49rY2FA6nVY8Hlc6nVahUFA8Hq+qLx0frScUCskwDHm93vI6hUJB6XR6xx1lqVSq4c4x0zTL1/Z4PLsGZ+l0WtJWGGmnVwAAAAAAACf09bB8j8ejV155RUeOHOnIenZ2OLUqlUrJNE1Fo9HyDqndzMzM7Po5wzDKs7Z2m6sVjUZVKBSUSqXKH8vn8/J6vbv2ls1mFY1Gt4VopdlgkUhEoVBI+Xy+/Lm5ubm6O81KxyEl1d0JV7pGJpNRNptVKpVq6uglAAAAAABAJ/T10chYLKYf/OAHSiaTevjhh3vdTl3T09OSto48tiMUCunIkSMN537VziOrNytsenpaHo+n4XB+wzDKX0fJboFcbe3GxkbdI4+ZTKa8G8ztdmtjY6NuL41wNBIAAAAAgMHE0chdfPvb35ZlWVW7lNrxox/9qCPr1MpkMjIMw/Z8sHpKu8oaKd09svL9nZRmipWOJ9bj8Xi27Rjb7XtfWef3+xvO/arcWWaaZsNjlwAAAAAAAJ3W10HYgQMH9L3vfU9nz57V7373u7bXc+po5MLCgtxut44ePdr2Wo12bVVaX18vv73bccuzZ88qHA7bHlBfu/vrnXfe2bGu8ljmbkcya1UGd2fPnrX1HAAAAAAAgE7p6yBM2pqH5fV62x6yfunSpY7tLKuUz+eVz+fLRxWnp6cViUQc3/FkmmZ5Ppff7981jDp27Ni2XV711K5Te1RS2r5LzO4Mt8q12REGAAAAAAC6ra+H5ZcsLS1pZmZGt912m2KxmCYmJmw9b319XaZpqlAo6Ny5c470Vnsc0jAMpVKp8o6pYDCoEydO2N41ZVfp6/F4PHWPPTZ73VK4VrLT3S2z2WzDmp3U1tUb8A8AAAAAANBpAxGEvfTSS5K2BtFHIpGW1rAsSy6Xq5NtyTCMbaFQrUwmo0wmo3A43LGjmaZpKhKJyOv1Kp1O2z72aIdhGFXv7zQo/+LFi1Xv273+zTffXPX+8vLyng/CLMtSsUHNiNTx300AAAAAALBd3wdhjz76aHl3lcvlUis3uXQqZPB4PEomk+VdZ9lsdluQVJJKpbS8vKxcLtfWNQ3DUCAQkNvt1oULFzoagklb4VRJOBzetYdKre4Ia/cOm4OgKGnsuRfr1mze82WNdqcdAAAAAACGWl/PCDt16pSSyWQ5/GolBGvneXaEw2FFo1Elk0kVCgVtbGwoHo/vGFDl83kFAoGWr5XJZDQ9PS3DMMozyRKJRBvdb1e5a223u2DuFvY1q/YYJgAAAAAAgJP6ekdYKZQp7QTz+/3l3VDNzgk7efKk3njjDQe73eJ2uxWNRhWNRpXJZDQ3N1cV+GSzWSUSCUWjUVvrmaapVCqlZDK5YwAVi8V08eLFunPC7DIMozwIPx6P77rTq9UAqzYcrLzrZavW1tY0NTXV9jrz8/Oan59vex0AAAAAAPaqxcVFLS4utr3O2tpaB7ppTV8HYfl8Xi6XS263W8vLyzp06FDLa83NzW2bUeW0YDAov9+v2dnZqjstLiws2A7CstmsCoWC/H7/rjPJMplMU+Habkp3l/R4PG2vZUcndoQVi0Wtrq62vc7m5mbba7TqJ2+u6vifth/mAQAAAADgpM3NzY68Bu+lvg7C3G63Ll++rBMnTrQVgpXWOnz4cIc6a+66uVxOPp+vHIaZpqlsNrvjIPpawWBQwWCw6mOpVEqxWKwqSIrFYgqHwy3PDMvn80qlUnK73VpaWqpb63a7OxJidWK+2cjIiA4ePNj2OmNjY22vsZOfvNn4PxDh/K816nLp67dOOtIDAAAAAACdMDY2psnJ9l+7rq2tqVhsdGs5Z/R1EObz+fTSSy/ZHsbeyKlTpzqyTqvX9vl85feXlpZsBWE7CYfD8vv98vl8VYFUKpVqeSfX3NycJOnChQsNv98TExMdCcLsHm+t5+DBg1pZWWl7HSdcvnJFf/vqa7Zq/+bV1/TVj9+isf37He4KnWCaZsdvVAEAAAAA/a5TY4WmpqZ6trOsr4flRyIRWZbVseHsvdgRVuL1equCr3a/Jo/HowsXLlR97OLFiy2tFYlElM/nlU6n5fV6G9a3GgDUhmd7PUh49s239N41ewn3u1ev6cdvvuVwR2hHPp9XLBbT+Ph4OTgGAAAAAAyWvg7CgsGgDh8+rLNnz3ZkvZ/97GcdWadV7dwxcider7fq2GQr4VoqlSoP4689grmbmZmZqvft7g6rHY4/PT1t63mD6ue/fbup+l80WY8/KoVUgUBA09PTGh8fl8vl0vj4uHw+nwKBgGKx2I4z9iQpFApV7diUtn6vM5mMQqFQeZ1EIsHdTgEAAABggPV1ECZJ6XRauVxO//2///e211pYWOhAR62rPHLYiWOBknTs2LHy282+QM9ms4pEIkomkwqHw7afVxsY2A3gCoVC1futHg0dFOaHV2zXXj3/C/3//j//L7lcrqYetT+LVjV73VLItJtQKNTSmrsFVTsxTVOxWKz8fUgkEspmszIMo/xnwTRN5fP58t1aA4FAuT4WiymVSikUCimTyWxbf25uTgsLC8pkMoRfAAAAALBH9H0Q5vF4dPLkST388MNtrXP58uWqOzf2QmUQ1qljgZVHGZtZM5/PKxAIKB6PNxWCSdt3hNkNwirDBLfb3bHZb/3KfZ39eV/7/sNX9JUXLyiXyzXcmef3+7W0tKSNjQ3lcrl225QkWZalQqGgZDJZ9/fI4/EomUyqUChoY2Nj17p0Oq2NjQ1bs/Ci0ahyuZw2NjZsh6OlI4qJRKLq48FgsByeb2xslL+upaWlqptJ5PN5JRIJRSKRcghWG3aV1rEsa8//rgIAAADAsOjrYfmlo4x/8id/ovHxcd122222j+9VMk1T586d63R7TVteXi6/3eljktL2gGo3hmFodnZW0Wi0peH6Xq+36s6RFy9etPVzqfz67fY6yL768Vt04e1/s13//71tWl7PJ5VOpxWJRJRKpbbVlIIeJ3g8nvKNGHY7tprL5WwHrm63W36/v3xjh52C6GZ3IxqGoUAgsC18DYfDSiaTOz7H4/HI4/HI7/crmUwqkUgoFovZvqa0FT7u9PMAAAAAAAyWvg7CnnjiCb3yyivl9y3L2rYDxC7LsuRyuTrVWksqjwZ26lhgZSBgJ1wzDEM+n0/hcFjxeNz2NTKZTFVodvTo0XIwYHenXWVds0HEILrv1k/ov7z2uq2B+TftG9X9t36i/P5uQVgkEulojzvxeDzyer3bfq7BYLDlnYyRSGTH3psJwbLZ7LbfcbfbrQsXLti6yUNJNBpVMBjcdtfV2hl2tdcBAAAAAAy+vj4aefToUVmWJcuyJKnnQVa7SkewWtmFtZtSWOF2uxvuyjJNU4FAQEePHrUdgklb855qg7vKUMPOXKfKmtLunL3uwP79+rvbP2Or9u9v/4zG9v/xKOVuR/G6dURvp+u0c+2dntvKUd7a5zcbglX2c+nSpaoemAMGAAAAAHtfXwdhpbDF5XKVA7FWH72WyWRkGIbcbrdOnDjRsXVLNwA4depU3TrTNOXz+eTxeBSLxWQYRsNHNpstD2OvDRu8Xm9VmLXTsPFKlcf5hmE3WMnXb51sWHPK+9ltdbuFRJ26ycIgKR3lrZVOp1sKwUrcbnfHZqz1k9J/a7CzZm7IAAAAAGDv6eujkQcOHJDX69Urr7yieDwur9fbUhBgGIaeeOIJ/fKXv+xYb9lsVqFQSKZpyu/3l/vb7fpzc3OSpAsXLtTdCZNIJHT27Fn5/X6dOHGibm0sFpNpmuWjXvXMzs6WA67d5j/tZrfZS8lksrzWwsLCrj2Yplk+5uf3+5sezr/XHbMRlnXbTn/Obr755o6uZ/fPcunPWaXSLLN2eTweRaPRlo9cd1M+n1cymSzfGdPtdmtiYqJ844nSHWTn5uYa3gSj9N+viYkJJZPJPb1DsxTqp9PpcgjWD/84UjJMPwsAAACgH/R1ECZJx44d0/T0tL71rW+1vMbhw4d17733dnQ3TTqdLr84L+2c2mlgd+WLnFwuV/d4mWma5d1SpbvaRaPRHY8xhkIhZTIZxePxhkctdxtUbtduL6g9Ho/S6bRCoVBVv7VKu3ncbrdjg96xN2Wz2R1/d5s52tvIiRMnykGYaZp9Nw/MNE3Nzc2Vd116PJ5y6GwYhvL5vPL5fNWuzEbHPEvhommaikQiVfML9wrDMBQKhWQYRl8fex2GnwUAAADQT/r6aKS0tYOoU/9638k7FYZCoW0fS6VSGh8fVygUUiQSkc/nUyAQUDgcbhiCSSrv7KiUSCTKa8ZiMQUCAY2Pj0vaGr7fKAQrhVStarR7KxgMamlpSW63W7FYrHw90zTLAWE+n5fX6902kwloZKcB++0M7d+J2+3u612KpdBb2tqFWSgUlE6nlU6nlcvlVCgUtu0iahSmDMMRW4/Ho1wup42NjY7OZey0YfhZAAAAAP2k74Oww4cPd2z3x3/8j/+xI+tIWwFdoVBQOByWx+OpemGez+e1vr6uEydOaGNjQ/F43PYL91wup2g0Kq/Xu23N0g6HS5cuKZ1O2xpenk6n25qtttuxyNrvRenrLM1zKoV3ExMT5RfswxiCjUjavOfLdR99/4ewR0pHAGt1csZeSSnYrnfnyHpKOz+np6flcrk0Pj6uQCCw450/m5FIJMrH+aLR6I6Bncfj0dLSUtV/JxvNCEsmk/J4POVdnXudnTvq9sqw/SwAAACAXuv7o5GSdOjQoY6s81//63/VXXfd1ZG1pK0XoHaComa43e6OHvvqpmg02tc7L3rB5XJptNdNDKjdQoF2BuTvpjTnr9ndOaZpanZ2dtuuy9KOyGw2q3g83vJg/9LNMKSdd8dVikajeuedd5RIJBoGeqUgf1j0atdVJBJp+HfEsP0sAAAAgF4bqs0oy8vLvW4BgE073d3PyUHi0Wi0qV2LhmHo0KFDDY8eG4Yhn8/X9N0KW5ltVbppB3eN7L1UKtX2jkAAAAAAnTcQO8JqvfHGG029QDQMQ8lksq8HJgP4o9IdTms5sRusFaZploecB4NBBQIBzczMaH19XUtLSzvehTIQCKhQKNg60ly6RqVsNmtrltmJEyd2nGGI7jEMo+EOPgAAAKAVlmWp2KBmRFunk7CzgQjC3njjDcXj8V1nBtlhWRa/CMCA2O3P+fT0dJc72Vlpd9fS0tK2XWp+v1+RSESBQGDb1xEKhZTL5WxdozYwi8ViOnr0aMNda6U7SvbjHTCHgWmafT2TDAAAAIOtKGnsuRfr1mze82VG9NTR90cjT5w4oenpaaVSKRUKhZaHvgMYHLsFYf10h72dQrCS0gD7Wvl83vYRSbfbXRVkmaYpn89n6x8DLMsiBOuB0sw4jqYCAAAA/auvg7Cf/vSnisfj5SCLHV1A78RiMblcrpYePp+vqWvtdoy5X8Idt9vdcF6Zx+PZ8cYXzdwMo7bWMIzyPwy0K5/PKxKJNNxlZ5qmUqmUfD5f1XVLx//Gx8flcrk0PT2945FQwzAUi8XKd9Scnp5WJBLZ8Wdcuk7t70+tQCBQXq/y0cnj76lUquo64+Pj8vl8O36N0tb3c6eZcZX97fa9tvuzKDFNU4lEQoFAoPz9L/UXi8VsBXGGYSiRSGh6erqq58qfwfT0dPkIMAAAALBX9PXRyNId01wulyzLksfjkdfrLR8Zuvnmmxuu8c4778g0TZ07d06XL192tF8AndHvd9GbmZmxVReNRrWwsFAVJDQzND8cDiudTm97TuluhKdOnWpqblo+n1cymdS5c+fKPe0ULpbCr7Nnz+54M4BYLLYtECoFXoVCoXynxN3qUqmUstmscrlc1fXD4bDC4bAikUjdsK+02y6RSCgWi9n50m3LZDIKhUJyu906depU+ahpPp9XKBRSLBZTMpnc1rvH49GFCxeUzWaretrtKKzdn0WtVCpVnj8Wj8cVj8fldruVz+e1sLCgRCKhRCKhYDC47c6rpmlqYWFBmUxmW1i20x1QS7P6Sj8ru/PtAAAAgH7W10FYPp8v7wZYWlrS7Oxsy2tFo1HddtttnWoNGDqlgKIVy8vLTT13t0CgX3amNLMzze/3K5PJVH0sn8/bDrCWlpYUCoV2XMPn8ykYDOrUqVMNezIMQ2fPnrW968jr9crtdlf93HK5nHw+nyYmJpROp+X1ejUxMVEOYKQ/BjWxWKx884BScLi8vFzeYWQYhhYWFnbcIRcKhWztegsGgx0NwrLZbPlGAydOnCiHYNLW9yOdTpePp87NzVUFTW63W16vV+vr61Vr7vRzbvZnUVIKFt1u97ZgyuPxKBgMln9XMpmMpqenqwK79fV1BQKBctBZsry8rNnZWfn9fsXjcXk8nnKgZ5qmTNNUJBLZ8bgvAAAA+s9P3lzV8T+d6nUb/cvqY+Pj49bIyIj1+OOPd2S96enpjqyD3pucnLQkWZOTk71uxTGStj02Nja6cu1wOLzt2vF4vOX1crnctvU8Hs+u9fF4fMevP5lMttxDO6LRaFUfwWDQ9nPT6XRHvo7dvietrFm5ltvtrlvr9XqrrrO0tLRjnd/vr6oLh8M71lV+P3a79tLSUtVau9nY2LD156P29283wWCw4e97o3Xs9l5i92eRTCZt/6w9Hk+51u/3N/w63G73jj/X2t/dbv33BwAAALv7b//6pvXR//7zho9n/89Kr1utq5ev6ft6RljpX7uPHDnSkfVKx3UA9Ld+3xHWjJ2Ok7XydUSjUW1sbFTtUqpUulOlnbWbOeJWeYOCcDi862y02jsl7vbf28r+S7uN+tFuv4OVH+/EUHy7P4vSzje3261wOGyrVtra5bbTcdzKr+PUqVM7/lxrf9eWl5dt9QoAAABnXL5yRX/76mu2av/m1de0eeWKwx0Npr4OwkpHIWuPmrS7HoD+tls40O+zw3ayU6DyzjvvtLxWOp1WLpfb8chdNpvV7OxsR8Mlu8dAK39mzRwd7ac7LJ46dUrxeFzpdLph2CR1L5hNpVLla9kJzsLhcNXPoJkbNNSqvF4//awAAACG0bNvvqX3rhVt1b579Zp+/OZbDnc0mPo6CPv2t78ty7J2HNbcih/96EcdWQeAs3bbddTMoPl+sVNwYedGH/V4vV7lcrkdd13l83nNzc21tX4rWr2jZ6f+oaMT3G63otHojrvu8vl8x/4ualblbC67O8gq/wwN4p8bAAAAbPfz377dVP0vmqwfFn0dhB04cEDf+973dPbsWf3ud79rez2ORgKDY7ch4/16lK4Znbr7XjgcVqFQ2BZCZTKZvg4/Wg3Nuq3yDpder7epO3R2uo9m1f6O7YU/NwAAAMPO/LC5o44mRyN31NdBmLQ1F8fr9Zbv5NWqS5cu9exf8wE079ixYzt+vJ8Dnt3UBj+dCsJKa1XeGbCE4L91+XxegUBAyWSy7ly0bqkMseyGYrV3pOynnXcAAABojfu6/c3V72+ufljs63UDdiwtLWlmZka33XabYrFY1fDmetbX12WapgqFgs6dO+dwl+iFtbU1TU3Vvy3s/Py85ufnu9TRYMjn81pYWFA6ne51K7sKh8NVQ79LksnkrgPj+1XtbpxGO4uy2axisZhyuZyt9T0ej06dOlX1DwYE/62JRCJKpVIKh8NtzdbqpFYG9Nf+PdnJ8BUAAAC98dWP36ILb/+b7fqvfPwWB7vZ3eLiohYXF+vWrK2tdamb7QYiCHvppZckbQ3KjkQiLa1hWZZcLlcn20IfKBaLWl1drVuzubnZpW4Gx9zcnO1AuVfcbreCwaAymUzVx7PZrPL5fM+OqTWrNgSzs7vI4/Eon88rm83a3o1UGw4y2Lx5pRBMam/AfKeVfh+kP95ps9Hx0sodYIRgAAAAe8N9t35C/+W1120NzL9p36juv/UTXehqu83NzYav03up749GPvroowoEAnrllVfkcrlkWVbTD+xdIyMjmpycrPsYGxvrdZt9pRQkBQKBXWs6fYyq1fV2CyN22inWLqdmKC0vL1e9byfMLwUXrQb/UuNdZ3tBJ39P8/l8OQTzeDx9Nces9phwqc96Ku+wOmg7KAEAALCzA/v36+9u/4yt2r+//TMa69HRyLGxsYav00dGehdH9XUQdurUKSWTyXKY1WqoRRi2dx08eFArKyt1HxyL/CPTNMvH55p9cfzOO+90tBc7IYbH49kxDMtms0okEh3rxTAM+Xy+toKn3dTe8c/u993j8cgwDNuhX+0OsN1mrA2C2t2Ku4WUndz1Vjl7rt66vRg6HwwGq4I5O/PfKr+eEydOONEWAAAAeuDrt042rDnl/aytOqfMz883fJ1+8ODBnvXX10cjS/9nv7QTzO/3KxAIyO12Nz0n7OTJk3rjjTcc7BboHCdebJumqdnZ2fKxqmaPS3W6J7vrRaNRLS0tbRuSH4vF5PV62x5kns1mFQgEdg3d2lV5tLOZAfalICyRSGh6elrhcLhufeXaHo9H0Wi0+WZ3YPfnVFnX6DmNPl+7my2VSm37enYKCdfX1zu2kyuTyWwLLXe6Xq3aP1eGYVR9zM6xxp1UzoAzDKPusdl8Pl8+ShmPx/tqdxsAAACcd6yHIdgg6OsgLJ/Py+Vyye12a3l5WYcOHWp5rbm5Od18880d7A5wzm47Ulp9oZ/NZhWJRMrrHj16tOnrt3MMrd2dO0tLSwqFQtvmhQUCAcXj8ZZCH9M0FYvFlEqldr3zYr3n2pFKpcpfe7N3H6wMTyKRiHK53K6hRiqVqtohV7kLbSeVP8te7HCqtNv1/X5/OfyMxWIqFAoKhUIyTVNLS0tKpVLl34vSGrWhU0nt7+5OYVRt+BYKhRSPx+X1epXP55VMJuX1essBpfTH8HFpaUknTpzYMWCORCJKp9NaX19XPB7X9PR01e+r3Z9FMBhUPB4vh3GhUEiXLl3a9nWYpqm5uTlJW79zu/3ZsPtzr/yz2+vfFQAAAKAjrD42Pj5ujYyMWN///vc7sp7P5+vIOui9yclJS5I1OTnZ61YcEQ6HLUnbHn6/3yoUCg2fv7GxYS0tLVnRaNTyeDzb1kmn07s+t1Ao7HhtSdbGxkZLX4/X691xvWQy2dQ60Wh0x3W8Xq+1tLRka42NjQ0rHo9bbre7/D1t9HXVXtftdje8TuX30e/32+qtUjKZ3PFrDQaDVjQatZLJpBUOh6t+vnZ/P2p/Hrv9PmxsbGz7Pu8mGAza+tkuLS1V1YXD4V2vXfoZ1T7cbnf5511Z4/V6rUKhsO3nabe32rrKRzwetyxr5z+bwWCwap3dfk93+lrt/ixK0ul0+Wt2u91WMpm0CoWCVSgUrGQyWf59KPW7E7s/g9q6Vn6PAQAA0FlXi0Xro//953UfV4vFXrfZUC9f0/d1EOb3+62RkRHrpz/9aUfWy+fzHVkHvbdXg7BcLlf3xXinHjsFPxsbG1Yymdw1fJBkeTweK5lM2g7Ecrmc5ff76/YSjUZthTclS0tLuwZrbrfbCgaDVjKZtJaWlqxcLmctLS1ZyWTSisfjVc9zu90NQ4eSncJBj8eza/hWGVbUhiTNfJ2lHtPptBUOhy2/3295vd6qn1Hpa24UBJZ+t3b7+Xq93nJ4Uq/W4/FYwWCw/DtQG8bVBielNZeWlnb9XfB4PDuGMRsbG1Xre71eKxqNVtWUPlb7O7SxsdHw693pmvF4vHw9j8djRaPRqt/3jY2N8tdR+T2rVRlCe73eqt+1Zn4Wu0kmk5bf768KxUrP2+3PZ70/j5U/g0KhULeuUW8AAABwTrFYtK42eBQJwupyWVb/TpLPZDI6evSoEomE/vN//s+9bgd9ZGpqSqurq5qcnNTKykqv22lbKpVyZFD7Trxer3K5XNXHXC5X0+u43W5tbGzs+LmdjjHasbS0ZPv4YCaT0cLCQnkWkl0ej0eRSEThcLipY6almVS1X5fb7dbMzIzcbrdM09Ty8nL56F06nW57hhkAAAAA7DW9fE3f10GYJPl8Po2MjOjixYttr/Wzn/1Mf/VXf9WBrtBrey0IQ+tM01Q2m9XZs2dlGIZM0yzPNfJ4POW5TUeOHFEwGGz6JgGNrle6Zuk6MzMzCoVCBGAAAAAAsAuCsDoMw9Cf/dmf6ac//an+8i//sq21jhw50pFADb1HEAYAAAAAwGDq5Wv6ka5erQUej0cnT57Uww8/3NY6ly9fbvoIFQAAAAAAAPaOfb1uoJ6f/exnkqQ/+ZM/0fj4uG677TYFg8Gm1zFNU+fOnet0ewAAAAAAABggfR2EPfHEE3rllVfK71uWpUQi0dJalmW1NBAcAAAAAAAAe0NfH408evSoLMtSaYwZQRYAAAAAAABa1ddBWCQSkbQVgJUCsVYfAAAAAAAAGG59fTTywIED8nq9euWVVxSPx+X1ejUxMdH0OoZh6IknntAvf/nLzjcJAAAAAACAgdDXQZgkHTt2TNPT0/rWt77V8hqHDx/Wvffe21KIBgAAAAAAgL2hr49GSpLf7+/Y0caZmZmOrAMAAAAAAIDB0/dB2OHDhxWPxzuyVqfWAQAAAAAAwODp+yBMkg4dOtSRdQ4fPtyRdQAAAAAAADB4ehqE9dPw+n7qBQAAAAAAAJ3X0yDM5/Npc3Ozly1Iki5fviyfz9frNgAAAAAAAOCgngZhnRqC3wn91AsAAAAAAAA6r6dBmMvl6uXlq/RTLwAAAAAAAOg8doQBAAAAAABgKPT8rpGXLl3qdQtaXl7udQsAAAAAAABw2L5eNzA3N6fHH39cbrdbExMTXb32+vq6DMNQNBrt6nUBAAAAAADQfT0PwnK5nEKhUE97sCyLGWEAAAAAAAB7XM+DsJJezQsjABtsa2trmpqaqlszPz+v+fn5LnUEAAAAAMDwWlxc1OLiYt2atbW1LnWzXc+DsF4PzO/19dGeYrGo1dXVujWbm5td6gYAAAAAgOG2ubnZ8HV6L/U0CNvY2Ojl5bEHjIyM6ODBg3VrxsbGutQNAAAAAADDbWxsTJOTk3Vr1tbWVCwWu9RRNZfFligMoKmpKa2urmpyclIrKyu9bgcAAAAAANjUy9f0I129GgAAAAAAANAjBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgK+3rdAIA9zrIkq1i/xjUiuVzd6QcAAAAAMLT2ZBB2+fJlPf7443rqqad63QoAqyg92uA/NU9dlVyj3ekHAAAAADC09uTRSMMwlEql9K//+q966aWXtLm52euWAAAAAAAA0GN7MgjLZrOyLEsej0eBQEDj4+P69re/3eu2AAAAAAAA0EN7Lgi7cOGCYrGYJMmyrPIjHo/XDcMeffRR3XbbbTpy5Ii+/e1vs4sMAAAAAABgj3FZlmX1uolOmpmZkcfj0bFjx+T1emUYhs6fP6/vf//7crlcMgxDn/zkJ6uec9ttt8kwDFV+K6anp5XL5TQ2NtbtLwE2TE1NaXV1VZOTk1pZWel1O6ineK3xjLCHnpY+/2B3+gEAAAAA9FQvX9PvuR1hknTu3Dnde++9OnTokGZnZxWPx7W+vq5PfepT5d1iJY8++qgKhYIkKRaLqVgsan19XV/84hc1NzfXi/aBveXlM41rnn5I+mcbdQAAAAAAtGHPBWEul2vHj7vdbuVyuXLoVZJMJuVyuRQMBrWwsFCuTSaT2tjY0BtvvOF0y8De9f5l6dnH7NWeeUR6nyPJAAAAAADn7LkgbHx8XD/84Q93/Jzb7db4+Hj5/VOnTpXfjsfj2+pjsZiy2WznmwSGxcvPSB++Z6/2D+9KL592th8AAAAAwFDbc0FYNBrVt771LT322GM7Drzf2Ngov13aDeb3+/WpT31qW+3MzMy2HWQAmvCr55usf8GZPgAAAAAAkNRggvXg8fv9mpub08mTJ5VMJhUMBnXkyBFJ0tmzZ1UoFPSlL31JXq9X+XxeLpdLkUhkx7UOHDggwzC62T6wt/x+o3FNO/UAAAAAADRhzwVh0tZOr/X1df30pz9VJpNRJpMpf255eVlPPPFE1VFIr9e74zqvvPKKJiYmHO8X2LM+Ot64pp16AAAAAACasOeORpak02mdPHlSs7OzsixLBw4c0Llz53T48GGl02nde++9crvdOnny5K47wlKplKanp7vcObCHfO7uJuvvcqYPAAAAAAAkuSzLsnrdRK9lMhnF43H96Ec/0u23367NzU098cQT+v73v6+NjQ2NjY31ukXUmJqa0urqqkZGRnTw4MG6tfPz85qfn+9SZ6jy/mUpOmlvYP5HbpLiq9IN/HkDAAAAgEG1uLioxcXFujVra2sqFouanJzUyspKlzrbsiePRjYrGAzKMAwdPnxYLper/PHvfe97hGB9rlgsanV1tW7NTjdNQJfccEC670np6Yca1x4/SQgGAAAAAANuc3Oz4ev0XiII+3fRaFQej0epVEput1vHjh3Tvffe2+u20ICdHWGEmT125/HGQdg3Tkt3HO9OPwAAAAAAx4yNjWlycrJuTWlHWC/suaORL730kr74xS82rPvZz34mv99PSDKgSkcje7GNEk0qXpMebZC5P3VVGhntTj8AAAAAgJ7q5Wv6PTcsPxgManR0VF/60pf0gx/8QL/85S93rJudndXDDz+sN954o6v9AQAAAACAFljW1j+013vsrb0+cMCeOxrp8/l04cIFZbNZZbNZSZLb7dbMzIwCgYD8fr/+4i/+QgcOHNCpU6fk9/uVyWT0yU9+ssedAwAAAACAXVlFe6dNXJw2we72XBCWyWQUCoW0vr4u0zRlGIY2Nja0tLRUDsYkKRAI6PDhw9rY2FAkEtGLL77Yw66BPcw1svWXUaMaAAAAAAActueCsHA4rFQqpU996lPlj124cEHnzp3TqVOnyh87f/68lpaWZFmWLl261INOgSHhcvEvMgAAAACAvrDngjDLsqpCMGlrHtjs7KwSiYSeeOIJXbhwQceOHdPFixdlGIaOHTvWm2YBAAAAAADQNXsuCLt8+fKunztw4IDi8bguXbqkWCymRCKxLTQDAAAAAADA3rTnBvMcOnRIP/zhDxvWnDt3TuFwWP/6r//apc4AAAAAAICjXj7T6w7Q5/bcjrBoNKo/+7M/k8fj0V/+5V/WrT137pyOHDmiXC6nsbGxLnUIAAAAAACaZifkevohaXRUuuO48/1gIO25HWEej0ff+973FAwG9dhjj9WtdbvdOnz4sB5//PEudQcAAAAAAJr2/mXp2fqv8cvOPCK9v+lsPxhYey4Ik7Z2hf3VX/2VTp48qT/5kz/RD3/4Q21u7vyHYGJiQmfPnu1yhwAAAAAAwLaXn5E+fM9e7R/elV4+7Ww/GFh7MgiTpHQ6rbm5Oa2vrysajWp8fFzHjh3Tj370I/3yl7/UL3/5S504cUKpVEqmafa6XQAAAAAAsJtfPd9k/QvO9IGBt+dmhFVKJpMKBAKam5vT5cuXlclklMlkttV5vd4edAcAAAAAAGz5/Yaz9Rgae3ZHWEkwGNTGxoa+973v6cCBA7Isq+rhdrt16tSprvZkGIYCgYDt2kgkounpablcLo2Pj8vn8ykSicgwjJZ7SCQSCgQCGh8fl8vl0vT0tEKhkLLZbF+tCQAAAACAPjrubD2Gxp4Pwkqi0ajW19eVy+WUTqcVj8eVTqd16dIl/cVf/EVHrmGaplwuV8PH9PS0PB5Pw/USiYSmp6eVSqXKoZdpmsrn80qlUpqenlYikWiqx2w2q/HxccViMUlbR0gLhYLi8bjy+bwCgYACgUBTx0WdWBMAAAAAgLLP3d1k/V3O9IGB57Isy+p1E6149NFH9dRTT/W6jSqJRKIcBjVSKBTqhmGBQEDZbFZut1t+v18ej0eGYSifz2/bCZZOpxUMBhteM5vNlneihcNhJZPJbTU+n0/5fF4ej0e5XE5ut7vra9oxNTWl1dVVTU5OamVlpe31AAAAAAB97P3LUnTS3sD8j9wkxVelG8ac7wst6eVr+oENwm6++Wa98cYb+tjHPtbrVsrGx8dt7Xry+/1aWlra9fOxWEyJRELxeFzRaHTb53cK3Br9GE3T1KFDh2SapjwejwqFwo51hmFoenraVp9OrGkXQRgAAAAADJn/57T09EON6/7v/ybdcdz5ftCyXr6mH9ijkRsbG/rUpz6lRx99VC+99FKv2ynffTIajWppaanuI51O77qOYRhKJBJaWlraMQSTto55hsPhqo/l8/m6/YVCoXJIV2/XmsfjKe8uy2azSqVSXV0TAAAAAIAd3Wkj3PrGaUIw1DWwO8JGRkbkcrmqPub3+xUIBBQMBvWpT32qq/2UdjzttivKrlAopCNHjuwagpWYpqnx8T8O/9tt95hUvSNL2goR6x1PzGQyCoVCkiS3262Nje1323BizWawIwwAAAAAhkzxmvTovvo1T12VRka70w9axo6wNlTeATKbzSoWi2l6elo333yzHn30Uf3sZz9ruMaPfvSjtnrIZDIyDMP2fLB6SrvKGnG73VUzxuqFUPF4vPy23+9vOKOrct6YaZrKZDJdWRMAAAAAAMBJAxuEfe9735NlWeW7MErVodjGxoZSqZRCoZBGR0d15MgR/eAHP9Avf/nLbWu1O7NqYWFBbrdbR48ebWudZntZX18vvz0zM7NrXeVRRK/Xa2vtypDt7NmzXVkTAAAAAADASQ32FPavaDQqv9+vUCik9fV1ZTIZWZaln/zkJ7pw4YJM06waIJ/P58tztEp3Yizd7bCd3UmV646Pj8vj8VQd0XSKaZrl+Vx+v3/XMKp2dtiRI0dsre/1est3p6z9/jixJgAAAAAAdblGto4+NqoB6hjo3xCv16tCoaCHH35YoVBIFy5cUDqd1vr6ugqFguLxuPx+v6Ttu8UymYwikYgikUhbPdQehzQMo7wTzeVyKRQKNRxk34pz585J2tplVW/4fjabrXq/cldWPbV1lV+DE2sCAAAAAFCXy7U1/6veo2aWOFBroIOwkng8rosXL+r8+fP68z//c7366qs6dOiQvvWtb+n8+fMqFotaWlpSOBwuhzGVwVirDMPYFgrVymQy8vl8bQdulUzTVCQSkdfr1dLSUt35XBcvXqx6v9Esr5Kbb7656v3l5WVH1wQAAAAAAHDangjCpK3dYb/5zW/0hS98QV6vV9/+9rerPj87O6uTJ0/qN7/5jTY2NpRMJsu7xVrl8XiUTCYVj8erQradpFIp+Xy+tq4nbYVvPp9PbrdbFy5caLgbq3QUsbJnO2rrKu+G6cSaAAAAAAAATtszQVhJMpnU//gf/0MnT54s7w6rdeDAAc3Nzen8+fM6f/58W9cLh8OKRqNKJpMqFAra2NhQPB7fcZdUPp8vzyVrRSaT0fT0tAzDkGmaGh8fVyKRqPuc2tCqVaV5ZE6tCQAAAAAA4LQ9F4RJW8PjDcPQ7bffLq/Xqx/+8Id1a2dnZzt2bbfbrWg0qo2NDaXT6W2BWDabbRheVTJNU4lEQtPT0wqFQts+H4vFdvx45fNbUdt35R0qnVgTAAAAAADAaQN718hG3G630um0MpmMjh49qrNnzyqdTuuTn/zkttp6QVI7gsFgOWirHAy/sLCgaDRqa41sNqtCoVAO93aaSZbJZJRIJGyv2Qondm91Ys21tTVNTU21vc78/Lzm5+fbXgcAAAAAgL1qcXFRi4uLba+ztrbWgW5as2eDsJJgMKj19XWFQiF5PB4lEgn9p//0n6pq5ubmHLu+2+1WLpeTz+crh2GmaSqbzdqaURYMBhUMBqs+lkqlFIvFqoKkWCymcDi8bdeV2+3uSOBUua4Ta7aqWCxqdXW17XU2NzfbXgMAAAAAgL1sc3OzI6/Be2nPB2HSVuCytLSkRCKhb33rW3V3hznl1KlTVcPyl5aWWh7WHw6H5ff75fP5qgKpVCq1bVfYxMRER0KriYkJR9ds1cjIiA4ePNj2OmNjY22vAQAAAADAXjY2NqbJycm211lbW1OxWOxAR80biiBMkt544w3NzMwoGo0qkUjI4/EolUrpr//6r7tyfa/XK7/fXz7a2O7AeY/HowsXLlSFaxcvXtxW1+quq9qgq3ZHWKfXbNXBgwe1srLS9joAAAAAAKC+To0Vmpqa6tnOsj0RhL3xxhvlOykahqFCoSDDMGQYhtbX17cFMC6XS5ZlKRwOK51OK51O62Mf+5jjfQYCgR1nfLXK6/UqGAwqk8lI2jlcm5mZqZpPZpqmrQCqdpD99PS0o2sCAAAAAAA4bWCDsCNHjpTDr3osy6r7ufPnz+uLX/zijrupOs3j8ZTf7sSxQEk6duxYOQjb6XtRuWNM2grLvF5vw3ULhULV+5XHOJ1YEwAAAAAAwGkDG4Tlcrnyzq563G63PB5P+TE9Pa2JiYny+wcOHOhSx9VBWCeOBUqqCqB2WnNmZqbqfbuhVWWoVvoeOrkmAAAAAACA0wY2CKs0Pj6uo0ePVgVe3Q657FheXi6/HQgEOr5+bUAlbQVllXd5vHjx4ra7UO6kstfadZ1YEwAAAAAAwGkjvW6gHffee6+8Xq82NjaUSqW0vLysjY0NjY+P910IJlUfDezUscDKuWC7hWtHjx4tv10526ueyrpYLNaVNQEAAAAAAJw0sEGY3+/XuXPnyuHX2bNnZVmWotGopqenddttt+nRRx/VP/3TPzVc66WXXupCxyrP8opGox1bsxQuud3uXXdlRSKR8tt2hvVX1ng8nh1DOyfWBAAAAAAAcNLABmGVu58OHDigYDCoc+fOaX19XRcvXtRf/dVf6eLFi5qdndXo6KiOHDmiH/7wh/rlL3+5ba1kMul4v5lMRoZhyO1268SJEx1bd2FhQZJ06tSpXWu8Xm9V8FQK5HaTTqfLb++2c8uJNQEAAAAAAJzkshpNmx9wly9f1tLSks6dO6dsNqvLly/L7XbL7/fryJEjkraCmWvXrjW1bjabVSgUkmma8vv9isfjuw6MNwxDPp9Ppmkql8vVHSyfSCR09uxZ+f1+nThxou5Q/VgspkQioWg0qng8XrdfwzA0PT0taSvEyuVyO9aZpqnx8XFJW7vulpaWurqmXVNTU1pdXdXk5KRWVlbaXg8AAAAAAHRHL1/TD+yOMLt22i328MMPK5fLKRqNtrw7KZ1Ol4fFZ7NZ+Xy+quOCJaXPTUxMqFAo1A3BTNNULBZTPp9XIpHQ+Pj4rv2FQiElEgnF4/GGIZi0dRyxtCurtP5OZmdnJW0dtazcxdWtNQEAAAAAAJyy54OwWl6vV/F4XL/5zW+0vLysL37xiy2tEwqFtn0slUppfHxcoVBIkUhEPp9PgUBA4XBYuVxOHo+n7pput3tbTSkQC4VCisViCgQC5d1VhUKhqXljwWBQS0tLcrvdisViCoVCyufzMk2zHNjl83l5vV5dunSp7m40J9cEAAAAAABwwp4/GmnHzMyMlpeXm36eYRiKx+PKZrNaX1+XaZpyu92amJiQ1+vVsWPH5Pf7mwp/TNPUwsKCstmsDMPYtmYgENDRo0fbDpRKRzArrzEzM6NIJLLr0P1erLkbjkYCAAAAADCYevmaniBM0oULF8rH9zAYCMIAAAAAABhMzAjrMUIwAAAAAACAvW8ggrAf/OAHeumll3rdBgAAAAAAAAbYQARh//N//k8FAgH9wz/8Q1vrnDp1SqOjo/rzP/9zvfrqqx3qDgAAAAAAAINgIIIwSbIsS+FwWN/+9rdbXiMWi8myLP3mN7+R1+vVG2+80bkGAQAAAAAA0Nf29bqBZp0/f16FQkFnz55t+rmHDh3S5cuX5ff7JW0FY62sAwAAAAAAgMEzcEHY8vKyQqGQjhw5opdeekkf+9jHbD83l8tVvX/bbbd1uj0AAAAAAAD0qYE5GlkpnU4rFArJ6/XqX//1X1ta49KlS1pfX+9wZwAAAAAAAOhXAxmESVI0GtVTTz0lr9erf/qnf2rquZcvX1YgENDMzIxD3QEAAAAAAKDfDGwQJkl+v18XL17U3Nyc7TtKvvTSS/J4PLp06ZJCoZDDHQIAAAAAAKBfDHQQJkkej0fLy8s6e/ZswztKfv/731cgENDGxobcbrcefvjhLnUJAAAAAACAXhv4IEyS3G63zp8/r/X1dR07dmzHmhMnTujxxx+XZVlyuVyKx+Nd7hIAAAAAAAC9tCeCsJKTJ09qdnZWR44c0e9+97vyxy9cuFAOvlwul7xeL7vBAAAAAAAAhszABWGNBuOHw2Elk0l98YtfLN9RshSCWZZV9T4AAAAAAACGx75eN2DHoUOHJG0FWeFwWNlsVp/85Cd3rfd6vTp79qzuvfdeffvb31Y2m5XL5ZJlWfJ6vfriF7/YrdbhsLW1NU1NTdWtmZ+f1/z8fJc6AgAAAABgeC0uLmpxcbFuzdraWpe62W4ggrB4PF4OtJaWluT3+xWLxeoebywN0f8P/+E/lD/mcrl2nSGGwVQsFrW6ulq3ZnNzs0vdAAAAAAAw3DY3Nxu+Tu+lgQjCJOnAgQO69957de+99zb1vPPnzysWi+n73/9+eT4Y9o6RkREdPHiwbs3Y2FiXugEAAAAAYLiNjY1pcnKybs3a2pqKxWKXOqrmskqDs/a4TCajo0eP6tSpU/rrv/7rXreDNk1NTWl1dVWTk5NaWVnpdTsAAAAAAMCmXr6mH7hh+a0KBoNaXl7W2bNne90KAAAAAAAAemBogjBpa4j++fPne90GAAAAAAAAemCogjAAAAAAAAAML4IwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAyFfb1uAGjH2tqapqam6tbMz89rfn6+Sx0BAAAAADC8FhcXtbi4WLdmbW2tS91sRxCGgVYsFrW6ulq3ZnNzs0vdAAAAAAAw3DY3Nxu+Tu8lgjAMtJGRER08eLBuzdjYWJe6AQAAAABguI2NjWlycrJuzdramorFYpc6quayLMvqyZWBNkxNTWl1dVWTk5NaWVnpdTsAAAAAAMCmXr6mZ1g+AAAAAAAAhgJBGAAAAAAAAIYCQRgAAAAAAACGAkEYAAAAAAAAhgJBGAAAAAAAAIbCvl43AAB7jWVJxQb34x1xSS5Xd/oBAAAAAGwhCAOADita0r7v1K+5+l1plCAMAAAAALqKo5EAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEA0ANnXul1BwAAAAAwfAjCAKDD7IRcD2UIwwAAAACg2wjCAKCDLn8gPfacvdpH/lHa/MDRdgAAAAAAFQjCAKCDnslL712xV/vuh9LpvLP9AAAAAAD+iCAMADro+debq3+hyXoAAAAAQOsIwgCggzbed7YeAAAAANC6fb1uAMDwsixLxQY1I5JcLlc32umI8RucrQcAAAAAtI4gDEDPFCWNPfdi3ZrNe76s0e600xF3f1o6/y/26+/6tHO9AAAAAACqcTQSADroAa904357tTddJz3odbYfAAAAAMAfEYQBQAcduF568h57tSe/Jo1d72g7AAAAAIAKBGEA+tpP3lztdQtNO364cc3poL06AAAAYCeWJV0r1n9YVq+7BPoPM8IA9IydkCuc/7VGXS59/dbJLnTUPfcTggEAAKANRUva9536NVe/K40Ozn2ngK5gRxiAnrh85Yr+9tXXbNX+zauvafPKFYc7AgAAAADsdQRhAHri2Tff0nvXirZq3716TT9+8y2HOwIAAAAA7HUEYQB64ue/fbup+l80WQ8AAAAAQC1mhGGgra2taWpqqm7N/Py85ufnu9QR7DI/bO6oozlARyNHXFvzGBrVAAAAAMBes7i4qMXFxbo1a2trXepmO4IwDLRisajV1foD1zc3N7vUDZrhvm5/c/X7m6vvJZeLoaQAAADovTOvSA/6et0Fhs3m5mbD1+m9RBCGgTYyMqKDBw/WrRkbG+tSN2jGVz9+iy68/W+267/y8Vsc7AYAAAAYLGdeaVzzUEYaHZGOc8dydNHY2JgmJyfr1qytralYtDczutNclmVZPbky0IapqSmtrq5qcnJSKysrvW4HLbh85Ypue/ElWwPzb9o3qn/50hc0NkC7wgAAAACnXP5AmnxCes/G9JCbrpNWT0hj1zvfF2BXL1/TMywfQE8c2L9ff3f7Z2zV/v3tnxnMEMyypOK1+g/+LQIAAABNeiZvLwSTpHc/lE7nne0HGCQcjQTQM1+/dVLh/K/r1pzyflZfv7X+ttq+ZRWlRxv8Z/apq5JrtDv9AAAAYE94/vXm6l94Xfrm553ppZMsy1Kj8yIjklwuBvKidQRhAPrasUENwQAAAACHbLzvbH2vFCWNPfdi3ZrNe74s/hkZ7eBoJAAAAAAAA2T8Bmfrgb2MIAwAAAAAgAFy96ebq7+ryXpgL+NoJICeGdHW1uZGNXvay2ekzz/Y6y4AAAAwQB7wSo+/aP+ukQ96ne8JGBR7/jUmgP7lcrk02uAx0IMwXz7TuObph6R/tlEHAAAA/LsD10tP3mOv9uTXpLHrHW2nq37y5mqvW8CAIwgDACe8f1l69jF7tWcekd7fdLYfAAAA7CnHDzeuOR20V9cv7IRc4fyvCcPQFoIwAHDCy89IH75nr/YP70ovn3a2HwAAAAyd+wcoBLt85Yr+9tXXbNX+zauvafOKjXOhwA4IwgDACb96vsn6F5zpAwAAABgAz775lt67VrRV++7Va/rxm2853BH2KoIwAHDC7zecrQcAAAD2kJ//9u2m6n/RZD1QQhAGAE746Liz9QAAAMAeYn7Y3FFHk6ORaNG+XjcAAHvS5+6W/tf5Jurvcq4XAAAA7DkjLunqdxvXDAr3dfubq9/fXD1Qwo6wHjAMQ4FAwFZtPp9XJBLR9PS0XC6XXC6XpqenFYvFZJpmS9c3TVOxWEyBQKC87vT0tEKhkFKpVEtrSlIikVAgEND4+HjVmtlstuU1gYF15wPSdTfaq/3ITdKdDzrbDwAAAPYUl0saHan/cA1QEPbVj9/SVP1XmqwHSgjCOsg0zXJYVe8xPT0tj8fTcK1QKCSfz6dUKiXDMMqfMwxDiURC4+PjTQdXlc8LBAJKJpPK5XKKxWIyDKMcujUTXmWzWY2PjysWi0mS0um0CoWC4vG48vm8AoGAAoFAy8EdMJBuOCDd96S92uMnpRvGnO0HAAAA6GP33foJ3ThqL6K4ad+o7r/1Ew53hL3KZVmW1esm9opEIlEOgxopFAq7hmGmacrn81WFX/WEw2Elk8mGdaFQSJlMRl6vV7lcbseaSCRSDtdyuZy8Xm/dNbPZbHl32259+Hw+5fN5eTwe5XI5ud3uhr02MjU1pdXVVU1OTmplZaXt9QBHFK9JjzY4gf6N09L/+4Hu9AMAAAD0sTP/Z0Xh/K8b1v2D73P6+q2TXegITunla3p2hHXQwsKCrTq/3193R1goFJJhGPJ6veXdVYVCQel0WtFodFt9KpVSJpOpe81EIlGuuXDhwq51yWSy3Nvs7GzdNUu71iTJ4/HsGsal02lJWzvZSvUA/t0d9/e6AwAAAKAv2Am3Tnk/SwiGtjAsv0NSqZRM01Q0Gm04/2tmZqbuOtlsVtFoVPF4vOpzHo9HwWBQkUhEoVBI+Xy+/Lm5uTkFg8Fd1y3tVPN6vQ13ZAWDQSUSCZmmqUwms+u6oVCofNyx3k64Ut+ZTEbZbFapVErhcLhuDwAAAACAHViWZBXr17gGbEBYE44RgqFNBGEdEo/H5fF4toVXrazj9/vrruPxeJROpzU9PV3+mGmaymaz8vv92+or5301mk0mSUeOHCm/ffHixR2DMMMwqtY9evRo3TWPHTtW3pEWi8UIwgAAAACgFVax8fiNp65KrtHu9AMMGIKwDshkMjIMw9acrnry+bwMw9h1flelUuhWuRMrn8/vGIRVzhqr3EVmx80337zjxyuDOr/fb2uXWUmjnWbAnuEa2fo/IY1qAAAAAGhE0uY9X25YA7SD36EOWFhYkNvtbrgrqpGzZ88qHA7bHiZfG3q98847O9ZNTEyU3zYMo+EQ/osXL5bf3m0HWeXdKhsN1N9prbNnz9p6DjDQXC5pZLT+Y49uWQcAAACa5XK5NNrg4eL/P6NNBGFtyufzyufzMk1T4+Pjmp6eViQSaTi8fifHjh1r6mhlbQBVeVSyUm2YFYlE6q5b6t3tdu+4a6t2V1nlUcp6Kvtt5fsDoLcsS7pWrP/gPsQAAAAA+hlBWJtqh8QbhqFUKqVQKCSXy7VtqH09dgbZVyoNqi/ZbfeW1+utCqGy2eyud29MpVLlHWO7hXKVs8HqXbdWbV2zxzQB9FbRkvZ9p/6jSBAGAADQey+f6XUHQN8iCGtD7cD4nWQyGfl8voa7sFq9fqWd5oOVnDp1altftWFYNpst95lMJncdaF95dFKS7fCudt7Y8vKyrecBAAAAAP6dnZDr6YekfyYMA3ZCENYGj8ejZDKpeDyucDhcd2dUKpWSz+fr6PUrg6RGd2H0er1Kp9NVH8tkMpqenlY+n1cikVAgEJDH49HS0lLd9WoDuFZ3hBUKBVvPAwAAAABIev+y9Oxj9mrPPCK9v+lsP8AA4q6RbaoNjEzTVCqV0sLCwraji/l8XoFAQEtLSx25duVdKmuPaO4kGAwqmUxW7U4zDKMc0EWjUVszyhoN27er9vsDAAAAAKjj5WekD9+zV/uHd6WXT0tf+KazPQEDhiCsw9xut6LRqKLRqDKZjObm5qoCn2w2q0QioWg02tZ1DMMoz9iKx+O2d2WVgrudjmpms1mZptnwqGOrAVbtuuvr6y2tU2ltbU1TU1NtrzM/P6/5+fm21wGG3ZlXpAc7u/kVAAAAJb96vsn6FwjC0FGLi4taXFxse521tbUOdNMagjAHBYNB+f1+zc7OVg2GX1hYaDsIK+3c8ng8Ta8VDoeVy+WUSqWqPp7P53Xo0CFduHBh2x0pndCJHWHFYlGrq6ttr7O5yZZhoJEzrzSueSgjjY5Ixw873w8AAMDQ+f2Gs/VAA5ubmx15Dd5LBGEOc7vdyuVy8vl85TDMNE1ls9m6w+3ryefzSqVScrvdLR2zjEQiSqVSCofDymazVUcdTdOUz+fT0tLSrv253e6OhFjN3CFzNyMjIzp48GDb64yNjbW9BrCXXf5Aeuw5e7WP/KN09/8ljV3vaEsAAADD56PjztYDDYyNjWlycrLtddbW1lQsFjvQUfMIwrrk1KlTVcPy6wVNjczNzUmSLly4YPtIZEkgEFA2m62aB1YKxmrrdutxYmKiI0HYxMRE22scPHhQKysrba8DoL5n8tJ7V+zVvvuhdDovffPzzvYEAAAwdD53t/S/zjdRf5dzvWAodWqs0NTUVM92lnHXyC7xer1VoVKrA+cjkYjy+bzS6XTTxxd9Pl95J1rlUPxkMrntjpKSFAqFdgy8Wt3JVbtWJ3aEAeiO519vrv6FJusBAABgw50PSNfdaK/2IzdJdz7obD/AACII66JAINDW81OplFKplJLJpILBYFPPDYVC5aOZlXebLAkGg8rlclXhlGmaO96NcmZmpup9u7vDaofjT09P23oegN7beN/ZegAAANhwwwHpvift1R4/Kd3ACBigFkFYF1UeY2z2WGA2m1UkElEymSzf+dEuwzCUyWQkbe1M2+04pdfrVS6Xq/pYKpXaFnRVHvEsrW9HoVCoer/Vo6EAum/8BmfrAQAAYNOdxxvXfOO0dIeNOmAIEYR1UWUA1cyxwHw+r0AgoHg83nQIJlXvAKvdzbVTj7U7xpaXl6ver13DbhBWGai53e6m55sB6J27P91c/V1N1gMAAKCD7ri/1x0AfYsgrIsqAyW7xyQNw9Ds7Kyi0aii0WhL160MoOwcR6wN22qDLq/XWxXkXbx40VYflV9/o0AOQH95wCvduN9e7U3XSQ82N8IQAAAAALqCIKyLKo8G2jkWaBiGfD6fwuFw1XD7Rs9JJBJVH6uczVV7PHE3jQbxHz16tPx2afZYI5V1O80eA9C/DlwvPXmPvdqTX5PGrne0HQAAAABoyb5eNzBMSnO67OzsMk1TgUBAR48etR2CSVtD8U+dOlX1scojiK3crXKnI4yRSESpVErS1vyyRiprPB4P88GAAXT8sPRQpn7N6eBWHQAAABziGpGeutq4BsCO+NPRJZlMRoZhyO1268SJE3VrTdOUz+eTx+NRLBaTYRgNH9lstjzEvnY317Fjx8pvLy8v27rLY2VgtlNo5fV6qz5eCvl2k06ny2+zGwzYu+4nBAMAAH3EsqRrxfoPy+p1l01yuaSR0foPl6vXXQJ9ix1hLcpmswqFQjJNU36/X/F4fNfjhIZhaG5uTpJ04cKFhoPyZ2dnywGXnZlelWoH3Ut/DK2y2axM09TCwkLdXWalOkl165LJZLm/hYUFBYPBHetM0yzvHvP7/S0N/AcAAACAZhUtad936tdc/a40Sm4EDA12hLUonU6Xw6LSbqxIJLKtrvS5iYkJFQqFhrO3fD6f7ZlbO9ktZEqn0+UALpFIlIOpWoZhKBQKSdoKreod4/R4POWdXvl8fttsspLZ2VlJW3eKrNwZBgAAAAAA0E0EYS0qhUWVUqmUxsfHFQqFFIlE5PP5FAgEFA6Hlcvldpy1VbumEyGYtBVCXbp0qVwTiUQUCASUSqWUz+eVzWYVi8U0PT0t0zQVj8e1tLTU8JrBYFBLS0tyu92KxWLlr8E0zXIImM/n5fV6denSpYa74QAAAAAAAJzisqyBOxHdNwzDUDweVzab1fr6ukzTlNvt1sTEhLxer44dOya/39934U8+n1cymVQ2my3PAvN4PPJ6vfJ4PDpx4kRLPScSCZ09e1aGYZS/FzMzM4pEIrsem2zV1NSUVldXNTk5qZWVlY6uDWBnlrV1vKCeERcjKQAAQP+4VrR5NJItIkBX9fI1PUEYBhJBGAAAAIBG7ARhTwelB33d6QfAll6+pif3BgAAAADsSWdeaVzzUMZeHYC9gSAMAAAAALDnXP5Aeuw5e7WP/KO0+YGj7QDoEwRhAAAAAIA955m89N4Ve7Xvfiidbv2+ZQAGCEEYAAAAAGDPef715upfaLIewGAiCAMAAAAA7Dkb7ztbD2AwEYQBAAAAAPac8RucrQcwmAjCAAAAAAB7zt2fbq7+ribrAQwmgjAAAAAAwJ7zgFe6cb+92puukx70OtsPgP5AEAYAAAAA2HMOXC89eY+92pNfk8aud7QdAH2CIAwAAAAAsCcdP9y45nTQXh2AvYEgDAAAAAAwtO4nBAOGCkEYAAAAAAAAhgJBGAAAAAAAAIbCvl43ALRjbW1NU1NTdWvm5+c1Pz/fpY4AAAAA9IsRl3T1u41rAHTO4uKiFhcX69asra11qZvtCMIw0IrFolZXV+vWbG5udqkbAAAAAP3E5ZJGCbqArtrc3Gz4Or2XCMIw0EZGRnTw4MG6NWNjY13qBgAAAACA4TY2NqbJycm6NWtrayoWi13qqJrLsiyrJ1cG2jA1NaXV1VVNTk5qZWWl1+0AAAAAAACbevmanmH5AAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAr7et0AAOwVlmWp2KBmRJLL5epGOwAAAACAGgRhANAhRUljz71Yt2bzni9rtDvtAAAAAABqcDQSAAAAAAAAQ4EdYRhoa2trmpqaqlszPz+v+fn5LnUEAAAAAMDwWlxc1OLiYt2atbW1LnWzHUEYBlqxWNTq6mrdms3NzS51AzT2kzdXdfxP64e3AAAAADCoNjc3G75O7yWCMAy0kZERHTx4sG7N2NhYl7rBsPvJm43/Yx/O/1qjLpe+futkFzoCAAAAgO4aGxvT5GT91ztra2sqFhvdaswZLsuyrJ5cGWjD1NSUVldXNTk5qZWVlV63A+jylSu67cWX9N61xv8xv2nfqP7lS1/Q2P79XegMAAAAAPpLL1/TMywfADrg2TffshWCSdK7V6/px2++5XBHAAAAAIBaBGEA0AE//+3bTdX/osl6AAAAAED7CMIAoAPMD680V3+luXoAAAAAQPsYlg8AHeC+rrl5X+5+nA9mWZLV4Hina0RyubrTDwAAAOqyLEuNhnOMSHLx/9+AMoIwAOiAr378Fl14+99s13/l47c42E2LrKL0aIO/Fp66KrlGu9MPAAAA6ipKGnvuxbo1m/d8Wfy/N+CPOBoJAB1w362f0I2j9v6TetO+Ud1/6ycc7ggAAAAAUIsgDAA64MD+/fq72z9jq/bvb/+MxvrxaCQAAAD2nJ+8udrrFoC+QhAGAB3y9VsnG9ac8n7WVl3fevlMrzsAAADAv7MTcoXzvyYMAyoQhAFAFx3r5xDMTsj19EPSPxOGAQAA9NrlK1f0t6++Zqv2b159TZvctRyQxLB8AOiYEW0NI21U05fevyw9+5i92jOPSJ+7W7phzNmeAAAAsKtn33xL711rdM/ILe9evaYfv/mWHvF80uGugP7Xt6/JAGDQuFwujTZ49O2tq19+RvrwPXu1f3hXevm0s/00wbKka8X6D8vqdZcAAACd9fPfvt1U/S+arAf2KnaEAQCkXz3fZP0L0he+6UwvTSpa0r7v1K+5+l1ptE8zSAAA0COWJVkNdlS5RqQ+/YdM88PmjjqaHI0EJBGEAQAk6fcbztYDAAD0G6soPdrgJfFTVyXXaHf6aZL7uubuQu7mruWAJI5GAgAk6aPjztYDAACgo7768Vuaqv9Kk/XAXkUQBgDYGn7fVP1dzvThkDOv9LoDAACAzrrv1k/oxlF7L+lv2jeq+2/9hMMdAYOBIAwAIN35gHTdjfZqP3KTdOeDzvbTBDsh10MZwjAAANCCl8/0uoNdHdi/X393+2ds1f797Z/RGEcjAUkEYQAASbrhgHTfk/Zqj5+Ubhhzth+bLn8gPfacvdpH/lHa/MDRdgAAwCCxE3I9/ZD0z/0bhn391smGNae8n7VVBwwLgjAAwJY7jzeu+cZp6Q4bdV3yTF56z+YNkN79UDqdd7YfAAAwIN6/LD37mL3aM49I728624+DjhGCAVUIwgAA9t1xf687qPL8683Vv9BkPQAAsMeypGvF+g/L6nWXFV5+RvrwPXu1f3hXevm0s/0A6JoG94oFAKB/bbzvbD0AALCnaEn7vlO/5up3pVFXd/pp6FfPN1n/gvSFbzrTSxtGJG3e8+WGNQD+iCAMALDFNSI9dbVxTR8Zv8HZegAAsEf9fsPZ+i5xuVwa7XUTwIDpr1c0AIDecbmkkdH6D1e//DPulrs/3Vz9XU3WAwCAPeqj487WA+hbBGEAgIH1gFe60eadwG+6TnrQ62w/AABgQHzu7ibr73KmDwBdRxAGABhYB66XnrzHXu3Jr0lj1zvaDgAAqOPMK73uoMKdD0jX3Wiv9iM3SXc+6Gw/ALqGIAwAMNCOH25cczporw4AALTGTsj1UKaPwrAbDkj3PWmv9vhJ6YYxZ/sB0DUEYQCAPe9+QjAAABxz+QPpsefs1T7yj9LmB462Y9+dxxvXfOO0dIeNOgADg7tGYqCtra1pamqqbs38/Lzm5+e71BEAAAAwXJ7JS+9dsVf77ofS6bz0zc8721PH3HF/rzsABs7i4qIWFxfr1qytrXWpm+0IwjDQisWiVldX69Zsbm52qRsAAABg+Dz/enP1L7w+QEEYgKZtbm42fJ3eSwRhGGgjIyM6ePBg3ZqxMc7zA3vZiEu6+t3GNQAAwBkb7ztb7xjXiPTU1cY1AJoyNjamycnJujVra2sqFotd6qgaQRgG2sGDB7WystLrNgD0kMsljRJ0AQDQM+M3OFvvGJdLco32ugtgz7Eznmhqaqpnu8aItwEAAAAALbv7083V39VkPQB0EkEYAAAAAKBlD3ilG/fbq73pOulBr7P9AEA9BGEAAAAAgJYduF568h57tSe/Jo1d72g7AFAXQRgAAAAAoC3HDzeuOR20VwcATiIIAwAAAAA47n5CMAB9gCAMAAAAAAAAQ2FfrxsAAAAAAAy2EZd09buNawCg1wjCAAAAAABtcbmkUYIuAAOAo5EAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhPWAYhgKBgK3afD6vSCSi6elpuVwuuVwuTU9PKxaLyTRNx3rM5/PKZDJKJBLKZrO2npNIJBQIBDQ+Pl7uMxQK2X4+AAAAAACAkwjCOsg0zXJYVe8xPT0tj8fTcK1QKCSfz6dUKiXDMMqfMwxDiURC4+PjSqVSHes9kUjI5/PJ5XJpdnZWFy9elNfr1czMTN3nZrNZjY+PKxaLSZLS6bQKhYLi8bjy+bwCgYACgYCjwR0AAAAAAEAj+3rdwF7STChVCo12YpqmfD5fVfi1m0gkolwup2QyafvatdeKxWLl3r1er5aWluT3+209P5vNlne3hcPhqj48Ho+CwaB8Pp+y2ax8Pp9yuZzcbndLvQIAAAAAALSDHWEdtLCwYKvO7/fX3REWCoVkGIa8Xm95d1WhUFA6nVY0Gt1Wn0qllMlkmu43lUrp0KFD5RAsmUwql8vZDsFKu9akrdBrtzAunU5L2trJVqoHAAAAAADoNnaEdUgqlZJpmopGow3nf9U7aphKpZTNZhWNRhWPx6s+V9phFYlEFAqFlM/ny5+bm5tTMBi03W8sFlMikSivu7S01PC4Zq1QKFQ+7lhvh1up70wmo2w2q1QqpXA43NS1AAAAAAAA2uWyLMvqdRN7wfT0tCSpUCi0vU4pmKrHMIzyNUvsHmkMhULlHWRut1uXLl1q+rhi7fU3NjbqrpHJZMq7wdxutzY2Npq6Xq2pqSmtrq5qcnJSKysrba0FAAAAAAC6p5ev6Tka2QGZTEaGYdTdFWVHPp+XYRjlo4T1eDyebTvGKneI7SYQCFQdo2x1Zlfltf1+f8M1KnermabZ0lFOAAAAAACAdhCEdcDCwoLcbreOHj3a1jpnz55VOBy2HUzV7v5655136taXjl2WJJPJpo9DVq5V4vV6bT2n8lpnz55t6boAAAAAAACtYkZYm/L5fHkn1vj4uDwej/x+vwKBQFMzuyTp2LFjTQVTtQFU7VHJSoZhKBKJVD231TldtTvPjhw5Yut5Xq+3fCdMdoQBAAAAAIBuY0dYm2qPQxqGoVQqpVAoJJfLtW2ofT1er7epY4qlQfUlje5EWenEiRO2r1OrcldZo+vWq7P7fQEAAAAAAOgEgrA2GIaxLRSqlclk5PP5qnZjdfL6lXYblG8YRlXo5Ha7m96tVunixYtV79sN726++eaq95eXl1vuAQAAAAAAoFkEYW3weDxKJpOKx+MKh8N1d0alUin5fL6OXr8ySKp3zDGZTFa9XwrMSndynJ6elsvl0vj4uHw+nxKJxLbdZpVqA7hWd4S1e4dNAAAAAACAZjAjrE21AZRpmkqlUlpYWNgWJuXzeQUCAS0tLXXk2pUBV707VlYOtpekiYkJ+Xy+bUcTTdMszzyLxWJKp9M77hyrDcJaVS9sAwAAAAAA6DSXZVlWr5vYqzKZjObm5rYFPvF4XNFotK21DcMoD8evt15lXYnb7VY8HtfRo0fLxxoNw1A8Ht8Wmu0Uhrlcrqr37f4KZbNZBQKB8vvBYFDpdNrWc2tNTU1pdXVVIyMjOnjwYEtrVJqfn9f8/Hzb6wAAAAAAsFctLi5qcXGx7XXW1tZULBY1OTmplZWVDnRmHzvCHBQMBuX3+zU7O1u1+2phYaHtICwej0vaOm5Yb63a3Vtut1uXLl3aNterdMyzdp7Z3Nyc/H5/U0P87erEjrBisajV1dW219nc3Gx7DQAAAAAA9rLNzc2OvAbvJYIwh7ndbuVyuaqjiKZpKpvN7jrcvpF8Pq9UKiW3293wmGVtEBYOh+uGWuFwWLlcrrwzzDRNLSwslIO30tfUiRCrE+Fap3aEjY2Ntb0GAAAAAAB72djYmCYnJ9tep7QjrBcIwrrk1KlTVcPyl5aWWg7C5ubmJEkXLlxoOKi+diD9kSNHGq4fi8WqjkgmEomqIGxiYqIjQdjExETbaxw8eLDr2ygBAAAAABhGnRorVBp31AvcNbJLvF5vVfDV6sD5SCSifD6vdDotr9fbsL42sLKzC8vj8Wxbu/JoZ6s7uVrpBQAAAAAAoFMIwrqoclB8K1KplFKplJLJ5I53c9xJ7aB8u2ZmZqrerwzuaj9nd3fY+vp6R3oDAAAAAABoBUFYF1UeY2z2WGA2m1UkElEymVQ4HLb9vNpdV3ZDq9qQqjLEqjziKdnf3VZ7TLPVo6EAAAAAAACtIAjrosogrJljgfl8XoFAQPF4vKkQTKq/s6ue2v4qg7tW16wM4dxud8P5ZgAAAAAAAJ1EENZFy8vL5bftHpM0DEOzs7OKRqOKRqNNX7N21lftriy7KkMrr9dbFZRdvHjR1hqVX39tmAYAAAAAAOA0grAuqgyh7BwLNAxDPp9P4XC46q6NjZ6TSCSqPlZ5rWw2a2ud2iOUtYHa0aNHy29XDtKvp7IuFovZeg4AAAAAAECnEIR1USaTkSRbO7tM01QgENDRo0dth2CSFAqFtoVslaGTYRi25oQ1Cu0ikUj5bTvhWmWNx+NhPhjQA5Zl6VqDh2VZvW4TAAAAAByzr9cNDItMJiPDMOR2u3XixIm6taZpyufzyePxKBaL2ZrBZRhGOfCq3b3l9/vl8XjK6ywsLDQM1yqDq51qvV6v/H5/uS6TydS9k2U6nS6/zW4woDeKksaee7FuzeY9X9Zod9qpz7Ikq1i/xjUiuVzd6WcHliUVG+SGI66etggAAACghsvin/9bks1mFQqFZJqm/H6/4vH4tgCqpHTE0TRN5XK5XetKfD6f7eOGtXa7q2Q+n6+622OhUNh1WH02my3PMAuHw0omkzvWGYZRvruk1+tVLpfbsc40TY2Pj0vaCuWWlpbsf0G7mJqa0urqqiYnJ7WystL2esAwuGZZ9oKwfkhuitekRxv8W81TV6WR3sV214rSvu/Ur7n6XWmUvdcAAABAlV6+puf/nrconU6Xjxhms1n5fL6q44Ilpc9NTEyoUCg4GoJJ2vWukl6vtyrQCgQCOx6RNE2z/HXUPqeWx+Mp7/TK5/PbZpOVzM7OStq6U2TlzjAAAAAAAIBuIghrUSgU2vaxVCql8fFxhUIhRSIR+Xw+BQIBhcNh5XK5XXdgVa7pRAhW+fmlpSW53W4ZhqFDhw4pkUgon8+Xg6xDhw7JMIxyz40Eg8HymrFYrPw1mKZZDgHz+by8Xq8uXbpUdbdJAP3nJ2+u9roFAAAAAHAMRyPbYBiG4vG4stms1tfXZZqm3G63JiYm5PV6dezYMfn9/r4Mf1KplNLptJaXl8t9l4bYRyKRhqHdThKJhM6ePVseyO92uzUzM6NIJFJ3flgrOBoJNO/M/1lROP/rhnX/4Pucvn7rZBc6qsPO0ciHnpY+/2B3+tmBnaORTwelB331awAAAIBh08vX9ARhGEgEYUBzLl+5ottefEnvXWswgF7STftG9S9f+oLG9u/vQme7+H9OS08/1Lju//5v0h3Hne9nB6dz0kOZxnX/7ah0/LDz/QAAAACDghlhAABHPfvmW7ZCMEl69+o1/fjNtxzuqI73L0vPPmav9swj0vubzvazg8sfSI89Z6/2kX+UNj9wtB0AAAAANhGEAcAQ+Plv326q/hdN1nfUy89IH75nr/YP70ovn3a2nx08k5feu2Kv9t0PpdOtj38EAAA9YlmWrjV4cMAKGDwNBrAAAPYC80ObqU2p/kpz9R31q+ebrH9B+sI3nellF8+/3lz9C69L3/y8M70AAABnFCWNPfdi3ZrNe76s0e60A6BD2BEGAEPAfV1z877cvZwP9vsNZ+s7YON9Z+sBAAAAOIMgDACGwFc/fktT9V9psr6jPjrubH0HjN/gbD0AAK2yrK07G9d7cJoPwDDjaCQADIH7bv2E/strr9u+a+T9t36iC13t4nN3S//rfBP1dznXyy7u/rR0/l/s19/1aed6AQCgUtGS9n2nfs3V70qjru70s9f95M1VHf/TqV63AaAJ7AgDgCFwYP9+/d3tn7FV+/e3f0ZjvTwaeecD0nU32qv9yE3SnQ86288OHvBKN9r8Ft10nfSg19l+AABA5/3kzdWGNeH8r23VAegfBGEAMCS+futkw5pT3s/aqnPUDQek+560V3v8pHTDmLP97ODA9dKT99irPfk1aex6R9sBAGBwWJZUvFb/0QdnNy9fuaK/ffU1W7V/8+pr2uzljYYANIUgDABQdqzXIVjJnccb13zjtHSHjTqHHD/cuOZ00F4dAADddOaVHl7cKkqP7qv/sBqPcnDas2++ZWukhCS9e/WafvzmWw53BKBTmBEGAENiRFu3+G5UMzDuuL/XHTR0PyEYAKDL7IRcD2Wk0RH+saaen//27abqf/Hbt/WI55MOdQOgkwbqNQ8AoHUul0ujDR4uF5NzAQAYVJc/kB57zl7tI/8obX7gaDute/lMrzuQ+WFzRx1NjkYCA4MdYQCA/uMakZ662rimh0ZcW3fdalQDAEC3PJOX3rOZx7z7oXQ6L33z8872tI2dkOvph6TR0Z6OQHBf19yNg9y9vNEQgKawIwwA0H9cLmlktP6jx7vXXK6tYyX1HmywAwB00/OvN1f/QpP1bXv/svTsY/Zqzzwivb/pbD91fPXjtzRV/5Um6wH0DjvCMNDW1tY0NTVVt2Z+fl7z8/Nd6ggAAADojY33na1v28vPSB++Z6/2D+9KL5+WvvBNZ3vaxX23fkL/5bXXbQ3Mv2nfqO6/9RNd6AoYDIuLi1pcXKxbs7a21qVutiMIw0ArFotaXV2tW7O52bt/SQIAAAC6ZfwGZ+vb9qvnm6x/oWdB2IH9+/V3t39G4fyvG9b+/e2f0RhHI4Gyzc3Nhq/Te4kgDANtZGREBw8erFszNjbWpW4AAACA3rn709L5f7Fff9ennetlR7/fcLa+w75+62TDIOyU97P6+q2TXeoIGAxjY2OanKz/52JtbU3FYuMdl04gCMNAO3jwoFZWVnrdBgAAANBzD3ilx1+0NzD/puukB73O91Tlo+PO1vfAMUIwYBs744mmpqZ6tmuMIAwAAAAA9oAD10tP3iM9lGlce/Jr0tj1jrdU7XN3S//rfBP1dznXiw0jkjbv+XLDGgCDhT+3AAAAALBHHD/cuOZ00F5dx935gHTdjfZqP3KTdOeDzvbTgMvl0miDh4tbRAMDhyAMAAAAAIbI/b0IwSTphgPSfU/aqz1+UrqBWb8AOo8gDAAAAADQHXceb1zzjdPSHTbqAKAFzAgDAAAAgD1ixCVd/W7jmr52x/297gDAHkYQBgAAAAB7hMsljfZ70AUAPUQQBgAAAADoDteI9NTVxjUA4BCCMAAAAABAd7hckmu0110AGGJE7QAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAr7et0A0I61tTVNTU3VrZmfn9f8/HyXOgIAAAAAYHgtLi5qcXGxbs3a2lqXutmOIAwDrVgsanV1tW7N5uZml7oBAAAAAGC4bW5uNnyd3ksEYRhoIyMjOnjwYN2asbGxLnUDAAAAAMBwGxsb0+TkZN2atbU1FYvFLnVUzWVZltWTKwNtmJqa0urqqiYnJ7WystLrdgAAAAAAgE29fE3PjjAAAPqUZUnFBv9cNeKSXK7u9AMAAAAMOoIwAAD6VNGS9n2nfs3V70qjBGEAAACALQRhAABIW9uvrAZzClwjbL8CAAAABhhBGAAA0lYI9miDvxafuiq5RrvTDwAAAICOG+l1AwAAoHVnXul1BwAAAMDgIAgDAMCul8909XJ2Qq6HMoRhAAAAgF0EYQAASPZCrqcfkv65O2HY5Q+kx56zV/vIP0qbHzjaDgAAALAnEIQBAPD+ZenZx+zVnnlEen/T2X4kPZOX3rtir/bdD6XTeWf7AQAAAPYCgjAAQFdZlqVrDR6WZXW3qZefkT58z17tH96VXj7tbD+Snn+9ufoXmqwHAAAAhhF3jQQAdFVR0thzL9at2bzny+rqvRl/9XyT9S9IX/imM738u433na0HAHSfZUnFBv/WM+KSXK7u9AMAw4ggDADQd37y5qqO/+lU9y74+w1n61swfoOz9QCA7ita0r7v1K+5+l1ptFtBmGVJVrF+jWuEZA7AnkIQBgDoqp+8udqwJpz/tUZdLn391skudCTpo+PO1rfg7k9L5//Ffv1dn3auFwDAHmUVpUcbvCR86qrk6uo+bQBwFDPCAABdc/nKFf3tq6/Zqv2bV1/T5hWb0+Lb9bm7m6y/y5k+KjzglW7cb6/2puukB73O9gMA6I4zr/S6AwDY2wjCAABd8+ybb+m9aw2OYPy7d69e04/ffMvhjv7dnQ9I191or/YjN0l3PuhsP5IOXC89eY+92pNfk8aud7QdAEAH2Am5Hsr0WRj28pledwAAHUUQBgDomp//9u2m6n/RZH3Lbjgg3fekvdrjJ6Ubxpztp3Spw41rTgft1QEAeuvyB9Jjz9mrfeQfpc0PHG1ni52Q6+mHpH8mDAOwdxCEAQC6xvywuaOOZreORkrSnccb13zjtHSHjbouup8QDAAGwjN56T2bf629+6F0Ou9sP3r/svTsY/Zqzzwivb/pbD81LMvStQYPy2pwC04A2AHD8gEAXeO+zubQq1L9/ubqHXfH/V293Ihr6+5hjWoAAP3v+debq3/hdembn3emF0nSy89IH75nr/YP70ovn5a+8E0HG6pWlDT23It1azbv+bIY4w+gWQRhAICu+erHb9GFt//Ndv1XPn6Lg93UcI1s3RmrUU0XuVzSKEEXAOwJG+87W9+0Xz3fZP0LXQ3CAMApHI0EAHTNfbd+QjeO2vur56Z9o7r/1k843FEFl0saGa3/cJFKAQBaM36Ds/VN+/2Gs/Vd8JM3V3vdAoABRBAGAOiaA/v36+9u/4yt2r+//TMa67ejkQAAtOjuTzdXf1eT9U376Liz9W2yE3KF878mDAPQNIIwAEBXff3WyYY1p7yftVUHAMCgeMAr3Wjz33duuk560OtsP/rc3U3W3+VMHzu4fOWK/vbV12zV/s2rr2mzmzfXATDwCMIAAH3nGCEYAGCPOXC99OQ99mpPfk0au97RdqQ7H5Cuu9Fe7Uduku580Nl+Kjz75lt671rRVu27V6/px2++5XBHAPYShuUDALpqRFt3eWpUAwDAXnP8sPRQpn7N6eBWneNuOCDd96T09EONa4+flG4Yc76nf/fz377dVP0vfvu2HvF80qFuAOw1vNYAAHSVy+XSaIOHi6H0AIAhdX83QrCSO483rvnGaekOG3UdZH7Y3FFHk6ORAJpAEAYAAAAA2Nkd93f9ku7rmrtZjpub6wBoAkcjMdDW1tY0NTVVt2Z+fl7z8/Nd6ggAAADY2YhLuvrdxjVd4xqRnrrauKbLvvrxW3Th7X+zXf+Vj9/iYDcAmrW4uKjFxcW6NWtra13qZjuCMAy0YrGo1dX6t0ze3NzsUjcAAADA7lwuabSfTv+7XJJrtNddbHPfrZ/Qf3ntdVsD82/aN6r7b/1EF7oCYNfm5mbD1+m9RBCGgTYyMqKDBw/WrRkb695gTwAAAADtObB/v/7u9s8onP91w9q/v/0zGuNoJNBXxsbGNDlZ/y7wa2trKhbt3R2201yWZVk9uTLQhqmpKa2urmpyclIrKyu9bgcAAABAB12zLI0992LdmlPez+r+P60/JgVAf+rla3qG5QMAAAAABs6xW+vvOAGAnXA0EgAAAADQV0Ykbd7z5YY1ANAsgjAAAAAAQF9xuVzqvzH+APYCQnQAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgjAAAAAAAAAMBYIwAAAAAAAADAWCMAAAAAAAAAwFgrAeMAxDgUDAVm0+n1ckEtH09LRcLpdcLpemp6cVi8VkmmbHeytdJ5PJNP3cRCKhQCCg8fHxcp+hUEjZbLbjfQIAmmdZ0rVi/Ydl9bpLAAAAwDkEYR1kmmY5rKr3mJ6elsfjabhWKBSSz+dTKpWSYRjlzxmGoUQiofHxcaVSqY71H4vFqq5jVzab1fj4uGKxmCQpnU6rUCgoHo8rn88rEAgoEAg4EtwBAOwrWtK+79R/FAnCAAAAsIft63UDe0kzoVQpNNqJaZry+Xy2QqlIJKJcLqdkMmn72jvJZrNKJBItPa+0uy0cDlf14fF4FAwG5fP5lM1m5fP5lMvl5Ha72+oVAAAAAACgFewI66CFhQVbdX6/v+6OsFAoJMMw5PV6y7urCoWC0um0otHotvpUKtXSUcaS0u6zdp7n8Xh2DePS6bSkrZ1srVwHANA9Z17pdQcAAACAc9gR1iGpVEqmaSoajTac/zUzM1N3nWw2q2g0qng8XvW50g6rSCSiUCikfD5f/tzc3JyCwWBLvc/NzWliYkKSmjq+GAqFyvX1driV+s5kMspms0qlUgqHwy31CgBonZ2Q66GMNDoiHT/sfD8AAABAt7ksi7G4nTA9PS1JKhQKba/j8Xi0tLRUt84wjPI1S5aWluT3+5u6XiqVKh+vnJ2dLQdb6XS6brBWe/2NjY26Rx4zmUx5N5jb7dbGxkZTfdaamprS6uqqJicntbKy0tZaADAMLn8gTT4hvXelce1N10mrJ6Sx653vCwAAAMOnl6/pORrZAZlMRoZh1N0VZUc+n5dhGOWjhPV4PJ5tO8Yqd4jZYRiGIpGIotGovF5vU8+tvLbf728496syVDNNs62jnAAwsCxLKl6r/3Do36eeydsLwSTp3Q+l0839lQIAAAAMBI5GdsDCwoLcbreOHj3a1jpnz55VOBy2PUy+dvfXO++809T1QqGQvF7vtkDNjsobA9gN0TweT/kGAGfPnm35KCcADCyrKD3a4K/ep65KrtGOX/r515urf+F16Zuf73gbAAAAQE8RhLUpn8+Xd2KNj4/L4/HI7/crEAg0HfQcO3as7hD9WrUBVO1RyXpisZjy+XxLRzlrd54dOXLE1vO8Xm85CGNHGADs4uUz0ucf7PiyG+87Ww8AAAAMAo5Gtqn2OKRhGEqlUgqFQnK5XNuG2tfj9Xpt7waTtg+2txui5fN5JRIJJZPJpoK3kmw229J1a+uaPcoJAAPv5TONa55+SPpnG3VNGr/B2XoA2GssS7pWrP9g2jIADB52hLXBMIxtoVCtTCajTCajcDisZDLZ8etXsjsof3Z2VsFgsOU7N168eLHqfbvh3c0331z1/vLyctOzyQCgWZZlqdigZkSSy+VytpH3L0vPPmav9swj0ufulm4Y69jl7/60dP5f7Nff9emOXRoABlLRkvZ9p37N1e9Kow7/9QEA6CyCsDZ4PB4lk0mZpqlCoaBsNrstnCpJpVJaXl5WLpfr2PWXl5fLb9sNtUp3bjx16lTL1639GlvdEdbuHTYBwI6ipLHnXqxbs3nPl9X5qVw1Xn5G+vA9e7V/eFd6+bT0hW927PIPeKXHX7R/18gH+XcKAAAA7EEcjWxTOBxWNBpVMplUoVDQxsaG4vH4jruk8vm8AoFAx65ducPMzh0rS7vT0ul0U0cwa+0W9jWr9mgnAOxpv3q+yfoXOnr5A9dLT95jr/bk16Sx6zt6eQDYk8680usOAADNIgjrMLfbrWg0qo2NjR0Dp2w2q0Qi0fZ1DMMoz9iKx+MNd2WZpqlQKKRwOGz7CGW9tVpR+71YX19vqw8A6JSfvLnq/EV+v+FsvQ3HDzeuOR20VwcAe52dkOuhjMNhmGVJxWv1HwwqA4CmcDTSQcFgUH6/X7Ozs1WD4RcWFhSNRttaOx6PS9o6bmhnrdnZ2fJRzn7RiR1ha2trmpqaanud+fl5zc/Pt70OgP5jJ+QK53+tUZdLX7910rlGPjrubH2H3E8IBgC6/IH02HP2ah/5R+nu/8uhnbRWUXq0wUu2p65KLscP+AOAJGlxcVGLi4ttr7O2ttaBblpDEOYwt9utXC4nn89XDsNM01Q2m215Z1Y+n1cqlZLb7dbS0lLD+kQioXw+37H5ZG63uyMhVjvHM0uKxaJWV9vfybG5udn2GgD6z+UrV/S3r75mq/ZvXn1NX/34LRrbv9+ZZj53t/S/zjdRf1fHWxhxbQ12blQDAMPumby9mYqS9O6H0um89M3PO9sTAPSDzc3NjrwG7yWCsC45deqUfD5f+f2lpaWWg7C5uTlJ0oULFxoeiczn84rFYorH4x27Q+PExERHgrCJiYm21xgZGdHBgwfbXmdsrHN3ZgPQP5598y29d63RPSO3vHv1mn785lt6xPNJZ5q58wHpZ4/bG5j/kZukOx/seAsuF3c3AwA7nn+9ufoXXu9hEPbyGenznf87o1Lf3IEZQM+NjY1pcrL9UxRra2sqFu39//ROIwjrEq/XK7/fr2w2K6n1gfORSET5fF7pdNpWsBUKheT1ets+ilmp1Z1cteFZJ3aEHTx4UCsrK22vA2Bv+vlv326q/he/fdu5IOyGA9J9T0pPP9S49vhJ6QYCegDolY33na237eUzjWuefkgaHZXuOO5QE310B2YAPdepsUJTU1M921lGENZFgUCgHIS1IpVKKZVKKZlMKhgMNqxPJBIyDEN+v1+hUKhhfWVQtbCwoLNnz5bfP3bsWPmaMzMzVTPPTNO0FWrVDsefnp5u+BwAaIf5oc1zLaX6K83VN+3O442DsG+cdvTFDACgsfEbnK235f3L0rOP2as988jWEfwe/iPKT95c1fE/bX92LwA4jSCsiyqPMTZ7LDCbzSoSiSiZTCocDtt6zjvvvFN+brPy+XxV2OXxeMpBWOURT2lrd5ud3WmFQqHq/XbvXgkAjbiva27el9up+WDNuOP+XncAAEPv7k9L5//Ffv1dn3agiZefsXecXpL+8K708mnpC990oJE+uvEMAHQAQVgXVQZhzRwLzOfzCgQCisfjtkMwJ83MzFS9bzcIq9xx5na7G843A4B2ffXjt+jC2/9mu/4rH7/FwW4kuUa27u7VqAYA0FMPeKXHX7Q3MP+m66QHOzOKt9qvnm+y/gVHgrC+uvEMAHQA/2+7i5aXl8tvBwIBW88xDEOzs7OKRqNNz/mKx+OyLMv2ozKYSqfTVZ+Lx+Plz3m93qog7+LFi7b6qfz6a8M0AHDCfbd+QjeO2vur7qZ9o7r/1k8425DLJY2M1n8waBgAeu7A9dKT99irPfk1aex6B5r4/Yaz9Ta1cuMZAOhnBGFdVHk00M6xQMMw5PP5FA6Hq4KoRs9JJBIt92jX0aNHy29XHqGsp7IuFot1vCcAqHVg/3793e2fsVX797d/hn/BBgCUHT/cuOZ00F5dSz467my9Ta3ceAYA+hlBWBdlMhlJsrWzyzRNBQIBHT161HYIJm3dJbIbs7cikUj5bTszyCprPB4P88EAdI2dWSWnvJ9lpgkAoGn3OxWCSVvD75uqv8uRNvruxjMA0CZmhHVJJpORYRhyu906ceJE3VrTNOXz+eTxeBSLxWQYRsP1DcMo77KyM6+rXV6vV36/vxxwZTKZuneyTKfT5bfZDQagm0a0dUv3y1eu6CdvvqUXf/u2zCtX5N6/X1/++C2679ZP9MeQfAAAKt35gPSzx+0NzP/ITdKdDzrSxkDeeAYA6iAIa1E2m1UoFJJpmvL7/YrH47sGUIZhaG5uTpJ04cKFhoPyZ2dnZRiGDMPQ9PR0U30lk8mm6tuRTCbL/S0sLOwahJmmqVQqJWnrSGg/DPwHMDxcLpdGJU1cd50em/6UHpv+VK9bAgAMgBGXdPW7jWscc8MB6b4npacfalx7/KR0w5gjbfTdjWcAoE0cjWxROp0u3wUxm83K5/NVHRcsKX1uYmJChUKh4W4tn89ne+bWTroZMnk8nvJOr3w+v+tsstnZWUlbd4qs3BkGAAAA9CuXSxodqf9w/P4mdx5vXPON09IdNupa1Hc3ngGANhGEtSgUCm37WCqV0vj4uEKhkCKRiHw+nwKBgMLhsHK5XNVdGXdbc1BCsJJgMKilpSW53W7FYrHy12CaZjkEzOfz8nq9unTpUsPdcAAAAACacMf9ji7PjWcA7DUuy7KsXjcxqAzDUDweVzab1fr6ukzTlNvt1sTEhLxer44dOya/3z804U8ikdDZs2dlGEb5ezEzM6NIJFJ3flgrpqamtLq6qsnJSa2srHR0bQAAAKAvWJZkFevXuJzfmnbNsjT23It1a055P6v7/3TK0T4A7B29fE1PEIaBRBAGAAAAdIedIGzzni9r1PGzogD2il6+pmdYPgAAAABgV6U7MDeqAYBBQBAGAAAAANhV6Q7MALAXENwDAAAAAABgKLAjDAAANMWypGKDCaMjLsdnNwMAAABNIwgDAABNKVrSvu/Ur7n6XWmUIAwAAAB9hqORAAAAAAAAGAoEYQAAoOPOvNLrDgAAAIDtCMIAAEBT7IRcD2UIwwAAANB/CMIAAIBtlz+QHnvOXu0j/yhtfuBoOwAAAEBTCMIAAIBtz+Sl967Yq333Q+l03tl+AAAAgGYQhAEAANuef725+hearAcAAACcRBAGAABs23jf2XoAAADASft63QAAABgc4zc4Ww8AnWBZUtGqXzPiklyu7vQDAOgfBGEYaGtra5qamqpbMz8/r/n5+S51BAB7292fls7/i/36uz7tXC8AsJuiJe37Tv2aq9+VRgnCAKDjFhcXtbi4WLdmbW2tS91sRxCGgVYsFrW6ulq3ZnNzs0vdAEAPWJZkFevXuEY6tu3hAa/0+Iv2BubfdJ30oLcjlwWAjjvzivSgr9ddAMDes7m52fB1ei8RhGGgjYyM6ODBg3VrxsbGutQNAPSAVZQebfDX+VNXJddoRy534HrpyXukhzKNa09+TRq7viOXBYCmnHmlcc1DGWl0RDp+2Pl+AGCYjI2NaXJysm7N2tqaisUG/5jrEJdlWQ1OzwP9Z2pqSqurq5qcnNTKykqv2wGA3ileaxyEPfS09PkHO3bJa8XGR45OB6UH2GkBoAcufyBNPmF/5+rqCUJ7AOi2Xr6m566RAAAMspfPNK55+iHpn23UddD97LAA0CPP5O2FYJL07ofS6byz/QAA+gtHIwEAaJNlWWq0sXtEkqvTtyd7/7L07GP2as88In3ubumG9o+Lj7i2hkw3qgGAXnj+9ebqX3hd+ubnO3DhLs9sBAC0hiAMAIA2FSWNPfdi3ZrNe76szkzpqvDyM9KH79mr/cO70sunpS98s+3LulzcaQ1A/9p439n6XXV5ZiMAoDUcjQQAYFD96vkm619wpg8A6CPjNzhbDwAYbARhAAB0wU/edOAW0r/fcLYeAAbQ3Z9urv6uJuvbYmeuIwDAUQRhAAC0yU7IFc7/uvNh2EfHna0HgAH0gFe6cb+92puukx70dujCfXrzEgBANYIwAADacPnKFf3tq6/Zqv2bV1/T5hWbtzKz43N3N1l/V+euDQB96sD10pP32Ks9+TVp7PoOXLTZm5e8v9mBi/6RZVm61uBhWVZHrwkAg4ph+QAAtOHZN9/Se9ca3TNyy7tXr+nHb76lRzyf7MzF73xA+tnj9gbmf+Qm6c4HO3NdAOhzxw9LD2Xq15wObtV1RI9uXlLSs5u2AMAAYkcYAABt+Plv326q/hdN1td1wwHpvift1R4/Kd0w1rlrA8CAu79TIZg0EDcvcWRWJYD/f3t/H952feb7vh/ZccjT2JJhMklsQyuvrqFkSAYptCnsNV00cstDUnrWsQJJCOk8WAoMAzRnVW6mZzqda3aHy967aTOdAaxMZy0SQkil3V1KKBmstNN9Vtu0xGIBTWEWtZg2CaHQ2HIIBOLEOn8IKZKth99Pz7Ler+vSZUu69f19nfwkS7e/9/1FHWJFGAAARYieM1fqGC1laaQkrd4U7zmTy2d3Sx/dVNrjAkANa7JI57+SP6Zkqrx5idFelc0Wi27v6ijpsQGg3rAiDACAIljnGuzInIhvMRdfEh/dWPljAkAVWSxSc1Pui6WUibAqbl5S1V6VAFCHWBEGAEARbl6yWIfe+K3h+JuWLC7tBCxN0kPn88cAAMpnxTrpF8+YiC/d5iVV7VUJAHWId8YAABRhQ9cyLWw29ut00ZxmbexaVtoJWCxSU3PuS0mXPQAAZli9WZq70FhsiTcvqWqvSgCoQyTCAAAoQltLi762crmh2J0rl6u1GqWRAIDyquLmJVXvVQkAdYZEGAAARTLSeHiX42oaFAPAbLbawKYkZdi8pC56VQJADaFHGAAARWqSdPrWGzUxOanHj72mg6+/oejkpKwtLbpxyWJt6FrGBw8AmO0SPRvPTkiHH5VefCq+O+QCm3T1LfHyyQXWkh+26r0qAaDOWGKxWKzakwDM6uzs1IkTJ9TR0aHjx49XezoAAABAVUxMTupDB79vqGH+ojnNeuVTN1CmD6DqqvmZntJIAAAAAKhT9KoEAHNIhAEAAABAHaNXJQAYR48wAABQMbGYNJWnKUOTRbJYKjMfAGgUt5EEAwBJJMIAAEAFTcWkOV/MHXP+K1IziTAAMCyxaUu+GAAAr4cAAKDG7H2u2jMAgPpisVjUnOdiYaktAEhiRRgAAKggI0muLUGpuUnadE355wOgNlFGDQAoFxJhAACgIibele5+wljs1u9I6z4stc4r65QA1CjKqAEA5UJpJAAAqIg9YentSWOxZ85Ju8PlnQ8AAAAaD4kwAABQEU++bC7+gMl4AI2FfoIAgEJQGom6dvLkSXV2duaM2bZtm7Zt21ahGQEAshk/W954ALMH/QQBoH7t2LFDO3bsyBlz8uTJCs1mJhJhqGtTU1M6ceJEzpjTp09XaDYAUMdiMSk2lTvG0lRUZ2rb/PLGA5gd6CcIAPXt9OnTeT+nVxOJMNS1pqYmLV26NGdMa2trhWYDAHUsNiXdledtwUPnJUtzwYdYd6X0zCvG49deWfChANSxQvoJ3nNdeecEADCutbVVHR0dOWNOnjypqak8f4QtE0ssFsuzMTFQezo7O3XixAl1dHTo+PHj1Z4OANS/qQv5E2FbHpGuu7PgQ0y8K3X8nbEPuIvmSie2s8oDaESf+mdzSfNPfUg6+Cflmw8AoPSq+ZmeZvkAAEA6vDd/zCNbpJ8aiMuibZ704K3GYh/+DEkwoFHRTxAAUE4kwgAAqEGxWEwX8lxKtqj77IS0725jsXu3SmcL771opKn17l6aXwONjH6CAIByokcYAAA1aEpS6xMHc8acvvVGFd6xK8XhPdK5t43FvndGOrxbuuGegg7VZJHOfyVeJvnoc9JTL8dXc9jmS7dcKW2+RrLyoRZoaPQTBACUE4kwAADq1OPHTmjT5Z3FD/TCkybjDxScCLNYpGaL1L5Auvf6+AUAUm12SF84aLyf4J2O8s8JADB7UBoJAEANevxY/i2nPeEXDcXl9c54eeMBwISK9hOMxeKbheS6sLcYAMwqrAgDAKDGTExO6nPPHzUUe9/zR3XzksVqbWkp/IALbOWNBwCTNl0jbQnmjilJP8HYVP4dcx86L1lKUogOAKgBJMIAAKgx+469prcvTBmKPXP+gh479pq22q8o/IAr1km/eMZE/NrCjwUABtRUP8HDe6Xr7qzQwQAA5UYiDACAGvO9198wFf/0628UlwhbvVn69heMNcy/ZJG0mg+EAMqrYv0ED+/NH/PIFqm5WfropqIPF4vFlO/PHE2SLBZL0ccCAGRGIgwAgBoTPWegQ3Rq/KS5+Bnmt0kbHox/2Mtn08PS/NbijgcAteDshLTvbmOxe7fGV88W+fpX0R2BAQAZ0SwfAIAaY51rrt+XtZj+YAmrDax0+OzukqyIAICacHiPsZWwkvTeGenw7vLO530l2QQFAJAVK8IAAKgxNy9ZrENv/NZw/E1LFhd/UEtTvCH02Qnp8KPSi0/Fd4dcYJOuviVePrnAWvxxChSLSVN5Nm5rssTLqQDAkBeeNBl/QLrhnqIOaXRH4GaLRbd3dRR1LABAZiTCAACoMRu6lulLR1821DB/0ZxmbexaVvxBLZb4rmgL26U198YvNWQqJs35Yu6Y81+J9xQCAEPeGS9v/DQV3xEYAJARpZEAANSYtpYWfW3lckOxO1cu54PS+/Y+V+0ZAKgrC2zljZ+mkB2BAQClRyIMAIAaZKQkZpfj6oYpnTGS5NoSJBkGwIQV60zGry3qcIXsCAwAKD1KIwEAqEFNiu8cNjE5qcePvaaDr7+h6OSkrC0tunHJYm3oWlaaJvl1YOJd6e4njMVu/Y607sNS67yyTgnAbLB6s/TtLxhrmH/JImn1nUUdruI7AgMAMiIRBgBADbJYLGqW1D53ru7u/oDu7v5AtadUNXvC0tsGPw+eOSftDkv3XFfeOQGYBea3SRselB7Zkj9208PS/NaiDleVHYEBADNQGgkAAGraky+biz9gMh5AA1u9KX/MZ3dLHzUQl8fNJnf4LcmOwACAGUiEAUARIpGILBZLyS89PT2m5uD1etXf358zLhqNqru7O++xbTabnE6n/H7/jDHC4bCcTmfF547GNn62vPEAkNNHN5ZkmA1dy7Sw2djHr5LtCAwAmIHSSAAoMYfDIbvdnrwejUYVCoWS161Wq1wuV9r9kUhEkUgkedvY2Fje40QiEfX39ysYDEqSfD5fznir1arR0VFFo1H19/dnTHTZ7XaNjo7m/NlGRkYkSU6nU+FwODn2rl271Nvbm3fehcwdjc02v7zxABqYpUl66Hz+mBJI7AjsCb+YN5YdgQGgfEiEAUARotFo8nufz6ft27fLarWmxUQiEXV3dyev2+12BQKBGWOFw2H19fUlk0vZTE8imWW1WjU0NKTu7u4ZK7FSE3j5tLe3S4onxw4dOjTj586k2LmjMa27UnrmFePxa68s31wAmBeLSVOx3DFNFsliqcx80lgskqW5Yoe7vasjbyKskXYEBoBqIBEGACXgcrk0MDBQ1BgOh0OBQEDd3d1pCbZUfr9fo6Oj8nq9uu222+R2uws+ns/n07PPPpuWlAqFQopEInkTYqFQSKFQSFar1XASrJRzR2PZ7JC+cNBYw/xFc6U7HeWfEwDjpmLSnC/mjjn/Fam5GomwCmNHYACoPhJhAFCERAnj0NBQScaz2+3y+XxZV0x5PJ4Z8akllWYlEm+pY/T392dcsZYQjUaTSayRkRFDSTCp9HNH42ibJz14q7TFwELChz8jtc4r+5QAoCDsCAwA1UezfAAokt1uN1VSmE9PT4+hHmGSDCehchkeHk67HgwG03qaTed2uxWNRhUIBIr6uUsxd9SQWEyaupD7EstTG5XDpmvyx+zuNRYHoPbsfa7aMwAANApWhAFAEdrb2+X1eks6psvl0vr160s6Zi52u10DAwNp/cLcbrdeffXVGckqr9erUCgkn89nuDE+GkRsSrorz9uKh86XtRfPRpJgQE0ykuTaEpSam0hmAwDKj0QYABTB4XDI4Sh9Q6JSlVoa5fP5tH///mSj/mg0qr6+vrQSyWAwKL/fX5J+aGhQh/dK191Z0EObLPEeQvliANSWiXelu58wFrv1O9K6D1PeDAAoLxJhqGsnT55UZ2dnzpht27Zp27ZtFZoRUL8S/cISgsGggsGgent7FQ6H5Xa7ZbVac/YPQwM7vDd/zCNbpOZm6aObTA9vsTRGI21gttkTNrbRhSSdOSftDkv3XFfeOQEAymvHjh3asWNHzpiTJ09WaDYzkQhDXZuamtKJEydyxpw+fbpCs5m9Jt6NvzE98LI0flayzZfWXRnfya2Nv9rOGna7XUNDQ2mlnn19fbLb7VqzZo0kGd4hEg3m7IS0725jsXu3SivWSfNbyzsnADXhyZfNxR942WQiLBaLl2afnZB+skf6+VPSO+PSApt09Vpp9R3x7y1k0gGgUk6fPp33c3o1kQhDXWtqatLSpUtzxrS28mGrGI8+J931nfhfaVM984q0/V+khz4j3UE/j1nD4/EoEAgkm+VHo1E5nU5J8XLNcpSBYhY4vEc697ax2PfOSId3SzfcU945AagJ42fLG5+zP+FLw9K37pO2PFJwWTYAwLzW1lZ1dHTkjDl58qSmpqYqNKN0JMJQ15YuXarjx49Xexqz1qPPSZu/lf3+M+fi91tEc9vZZGhoKK1EUoo38Pd4PFWaEWreC0+ajD9AIgxoELb55Y0vd1k2AMA8I+2JOjs7q7ZqrKkqRwVQ8ybeja8EM2Lrd6TT75ZzNqikRIlkqlAopEgkUqUZoVixWEwX8lxisVjhB3hnvLzxAOrWuivNxa81E2+2LPss7TIAAKwIA5DFnvDMcshsaG47+6xatWrGbW63WyMjI1WYDYo1Jan1iYM5Y07feqOaCz3AAlt54wsQi0lTeXJ7TRbaBgHlttkhfeGgsYb5i+ZKd5qpwKcsGwBQAFaEAciokOa2mB2i0WiyOX6qcDis/v7+KswIlfD4sSKWpq9YZzJ+beHHMmgqJs35Yu5LvkQZgOK1zZMevNVY7MOfkVrNbMJTSFk2AKDhkQgDkFHZm9uiZq1Zs0bRaFQDAwMzSiQHBwcVDoerNDMUykiSyxN+sfBk2OrN0tyFxmIvWSStpmk10EiM9BHd3VtAv1HKsgEABaA0EkBGZW9ui5rk9XoVDofV29srn88nSWm7SErxEsnR0dFqTREmTUxO6nPPHzUUe9/zR3XzksVqbWkxd5D5bdKGB+MNqfPZ9LA0vzZ28937nHSns9qzAGa/Jot0/ivx/qOPPic99XL8D2i2+dItV0qbr5GshbyPqGBZdiwWU769zZokWai3BoCaRyIMQEbrrpSeecV4vKnmtqhJfr9ffr9fdrtdgUAgeXsgEJDNdvHDQyQSkdfrnbFaDLVp37HX9PYFY1tTnzl/QY8de01b7VeYP9DHNscbbj12V+aePXMXxpNgFdq1be9z+WO2BKXmJna9BcrNYpGaLVL7Aune6+OXklixTvrFMybiCy/LLnuvRQBAxVAaCSCjzY5401ojTDe3Rc0Jh8Pyer2yWq0aHh5Ou89qtc5Ievn9/rRVYqhd33v9DVPxT5uMT7JY4smwwRPS7d+QrvqU9IGPxL/e/g1p8DVp9R2FjW3SxLvS3U8Yi2XXW6CO1VhZdlG9FgEAFUMiDEBGbfOkhz5jLNZ0c1vUlNTm+IFAQHa7fUaMx+ORy+VKu83tdisajVZiiihC9JyBrdpS4yfNxc8wvy2+K9t9B6XtP41/veGeipZD7gkb26FOurjrLQDjYjHpwlTuS6wSm1EkyrKNKLIsu+y9FgEAFUMiDEBWd1wjPbo++8qwRXPj91NWVN9Sm+NPT3alSi2XlOIJtL6+vnJPD0WyzjXX78tqtj9YDWLXW6C8ampX1tUGyq0/u7uosmyzvRZPF/sHBQBAWZEIA5DTpmuk49ulb6yTPvUh6SOd8a/fWCed2E4SrN4lmuO7XK5kc/xsrFarBgYG0m4LBoMKBoPlnCKKdPOSxabibzIZX4vY9RaoPiN9+krC0iQ9dF7acUpav1P68CelK66Nf12/U9oxVnRZdiG9FgEAtYtm+QDyapsn3XNd/ALzppcP1ko54eDgoPx+v6SZq72y8fl8GhoaUiQSSd7W19cnl8slq9VajmmiSBu6lulLR1829CFu0ZxmbexaVoFZlRe73gLlVVObUVgskqVZWtgurbk3fimxQnotFrTpCACgIlgRBgBlduTIkbTrY2NjJRs7NSFlJsEWDAbV398vKZ7cMpPESjwu9biJHmNmFDp3mNPW0qKvrVxuKHbnyuVqnQWlketM7mLLrreAcY24GUXFey0CAMqKRBgAlFEkEplRThiNRmckkwoRDAbTEkhGd3H0+/1yu93J6+GwuU7ho6OjM24Lh8NyOp1pya1cCp07CrOxq0O7HFdrYXPmX/sLm5v0T46rdXtXR4VnVh6bHdJCg/k8dr0FzGnEzSgasdciAMxmJMKqIBKJqKenx1BsOByW1+tVd3e3LBaLLBaLuru71d/fX/AKinKMKcXLrHp6emSz2ZJjut1uPuCiIbndbtlsNnV3d2dMDg0ODiafJ2Z6bIVCIXm9XjmdzrRklhR/bbHZbOrp6ZHX651x3MHBQdlsNnm93hljJuaS7fmaSHTZbDYNDg5mjenu7s76MxczdxTHYrFo4+WdeuXGT+irK66Sa/FlWmVrk2vxZfrqiqv0yxs/oQ2Xd1Z7miXTNk968FZjsex6C5jTiJtRNGKvRQCYzSyxWEU2N24I0WhUNpvNUKzH49HQ0FDOsfr6+vJ+QB4aGpLH4zE8v1KPKcU/3LrdbkWjUblcLvX398tutyscDqu/v1+RSEQul0uBQKBkPYQ6Ozt14sQJdXR06Pjx4yUZEwBQJbGYFMvTw8zSFO8FZNCFqfjOdbns7pU2Ow0PCUDSR/5RetbEW6+PdEo//fPyzacSJiYn9aGD3zfca/GVT90wK8rMAaCcqvmZnmb5JZRoOm1ErrKoaDRquMTI6/VqZGQkZ1KtXGNK8SRYYnXb9OSe3W5Xb2+vnE6nQqGQnE6nRkZGaKgNAEgXm5LuyvOW5KHz8YbYBjVZpPNfifczevQ56amX47tD2uZLt1wpbb5GstIkHzCtETejSPRa9IRfzBs7W3otAsBsRmlkCT3wwAOG4lwul+x2e9b73W63IpGIHA6HAoGARkdHNTo6qkAgIJ/PNyPe7/fnXeVVjjGj0WiyvMlut2dNnCV2o4tEIjPKoQAAMOTwXlPhFkt8x7r2BdK910v/8qfSz+6Jf733esm2wNQCMwDva9TNKIz0UNw1i3otAsBsRmlkifj9fnm9Xvl8vrz9v1atWpV1VVTqONMbbCckEkqpDa6tVqvGx8crNqYk9fT0JPsJ5SundLvdycSa2dLLTCiNBIBZ5Me7pUe25I/7k0elj24q/3wAZDXxrtTxd8Ya5i+aK53YbrAPXxlKpEspFotpSvEyycePvaaDr7+h6OSkrC0tunHJYm3oWiZrS4ssZNgBwJBqfqYnEVYi3d3dkjLvpmZ2HLvdruHh4ZxxkUgkecyE4eFhuVyuiow5PXZ8fDxnyWMwGEyuBsuXYDOCRBgAzBJnJyRfh3Tu7fyxlyySBk5I81vLPy8AWe0ekbYY2Ofl0fXSpmsMDjp1wViJdJPxEmkAQO2q5md6SiNLIBgMKhKJ5Oz7ZUQ4HFYkEkmWEuZit9tnrO5KXc1VzjElpcW5XK68fb96e3uT30ejUVO75AEAZrHDe4wlwSTpvTPS4d3lnQ+AvIwkt3b3mkiCGWWyRBoAgExIhJXAAw88IKvVqvXr1xc1zv79++XxeAw3k5++UuvUqVMVGVNK3xjA4XAYGju1L9r+/fsNPQYAMMu98KTJ+APlmQcAwxKbUZz6K2nnWumT/0G6tiP+dedaaeyvpDuMvT28yEiS65Et0k9JhgEAisOukUUKh8PJVVM2m012u10ul0s9PT1pq6CMuO2223I20Z9uegJqelljucacvkrs2muvNTx2YtdKVoQBQH1J9MfJpUky3x/nHZOl8mbjAZScxSI1Wy5uRnHv9UUOeHZC2ne3sdi9W6UV6yiRBgAUjERYkaaXQ0YiEfn9/uSKqd7eXm3fvt3QqimjK6sSotFo2vVMCa9yjJlokJ8rJpPpceFw2PT8AADVMSWp9YmDOWNO33qjTHfvWWArb7wBsZg0FYs3Ad/znPTUy9L4Wck2P77j3R3XxL+nBzZQJoWUSN9wT3nnBACYtSiNLEIkEpmRFJouGAzK6XTK6/WW5fipMjW1L8eYzz77bNp1o2WXl156adr1I0eOmJscAKCmPX7shPkHrVhnMn6t+WPkMRWT5nxRuvRvpfsPSMO/lI6ciH+970D89j2ZW2YCKAVKpAEAFUQirAh2u11DQ0MaGBiQx+PJuTLK7/fL6XSW9PipiSSPx1OxMacnywpdEVbsDpsAgMoxkuTyhF80nwxbvVmau9BY7CWLpNV3mhvfgL3P5Y/ZEjQWB9SrWEy6MJX7Ura95imRBgBUEKWRRZqeLIpGo/L7/XrggQdmlBmGw2H19PRoeHi4JMceGhpKfl/sjpVmxpyeCCvU9H8fAEBtmpic1OeeP2oo9r7nj+rmJYvV2tJibPD5bdKGB+NNsPPZ9HDJ+wJNvCvd/YSx2K3fkdZ9WGqdV9IpADUhsTIyl/NfifcGK7kaKJEGADQOEmElZrVa5fP55PP5FAwG1dfXl5bwCYVCGhwclM/nK+o4kUgk2bR+YGDAVEP8YscsNIE1vYRybGysoHFSnTx5Up2dnUWPs23bNm3btq3ocQBgNtp37DW9fSFfq/y4M+cv6LFjr2mr/QrjB1i9KX8i7LO7pY9uMj6mQXvC0tuTxmLPnJN2h6V7riv5NIC6sPc56c7SFjjErVgn/eIZE/GlL5EGABizY8cO7dixo+hxTp48WYLZFIZEWBn19vbK5XJpzZo1aTstPvDAA0UnwgYGBiTFyw2LHaucY+ZSihVhU1NTOnGigJ4005w+fbroMQBgtvre62+Yin/69TfMJcIsTdJD5+M7xx1+VHrxqXjp0wKbdPUt8fLJBVZzkzboyZfNxR94mUQYZiejJcLNTdKma0p88NWbpW9/wVjD/AJKpBO73k5MTmrfr0/o4G/eVPTcpKxzW3TTksW6vWuZbC0t5ne9BYAGdPr06ZJ8Bq8mEmFlZrVaNTIyIqfTmUyGRaNRhUKhgpvbh8Nh+f1+Wa3WkpVZmhnTarWWJIlltMl+Lk1NTVq6dGnR47S2sgU3AGQTPWdwyVQiftJcvCwWydIsLWyX1twbv1TI+NnyxgP1oOolwmUukc616+333zylz7/4kvyOq7Xp8uKrDABgtmttbVVHR0fR45w8eVJTU8YqDkqNRFiF7Nq1K61Z/vDwcMGJsL6+PknSoUOHSlISaXbM9vb2kiTC2tvbix5j6dKlOn78eNHjAACys8412O8rEW+0P1gNsM0vbzxQD2qiRLiMJdJGN/totlh0e1fxH+4AYDYrVVuhzs7Oqq0sY9fICnE4HGmJr0Ibznu9XoXDYQUCATkcjpLMzeyYha7kmp48K8WKMABA+d28ZLGp+JtMxlfTuivNxa81GQ/Ug0JKhEsuUSK945S0fqf04U9KV1wb/7p+p7RjTFp9h+lhzW72cdrsilYAQN0hEVZBPT09RT3e7/fL7/draGhIvb29JZlTIWOuWrUq7brR1WHTm+N3d3cbehxQyyKRiCwWS8kvuV4votGoBgcH5XQ6ZbPZZLFY1N3dLbfbndaPMNPjuru78x7bZrPJ6XTK7/fPGCMcDsvpdBY890z/fl6vt2Q736I8NnQt08JmY28ZFs1p1sauZWWeUelsdkgLDS5gWzRXurM0f4MCakpNlAhbLFJTSon0/f8i/eXP4l/X3CsttMVjTCpksw8AwOxGaWQFpZYcmi0LDIVC8nq9GhoaksfjKcl8Ch0ztcRTin+QNbKSbHR0NO16oaWhQK1zOBxpz/dEX8AEq9Wadv5Ho1FFIpG0laLZdlXNtButpOTjg8GgfD5fcvOLVFarVaOjo4pGo+rv78+Y6LLb7TOeq9N/tpGREUlK631otVq1a9cuwwn1SCSi/v5+BYNBSarIBh0oXFtLi762crk84Rfzxu5cuVytdVQa2TZPevDWeBPwfB7+TIn7IgE1YjaXCJd9sw8AQN0hEVZBqR+MzZQFhsNh9fT0aGBgoGRJsGLGnL4izGgiLPWDu9VqLVl/M6CaUs9rn8+n7du3z3h+RyKRtBWQdrtdgUBgxljhcFh9fX1ZV3UFg0G53e7k9WwbVwwODiocDmfd+MJqtWpoaEjd3d0zVmKZeV4mEvoOh0OHDh0y9Lo2PQGG+rGxq0MWSfc/fzTj6oqFzU3auXJ55frrxGJSbCq+0+RP9kg/T91pcm28hGqBsRUkm67Jnwjb3VuGnfKAGrHuSumZV4zH11OJcNk3+wAA1B1KIyvoyJEjye+Nlg5FIhGtWbNGPp+vZCsmih3T4XCkfeB99tlnDT0u9eefnkwD6p3L5dLAwEBRve8cDkcyQZZpxZfb7U4m0WKxmMbHxxWLxTQyMjJjhWUoFMq44iuVz+ebsYIrFAoZ6mEYCoUUCoVktVoNJ8ESZdherzdjIhC1zWKxaOPlnXrlxk/oqyuukmvxZVpla5Nr8WX66oqr9MsbP6ENldxxLTYl3TVH2napFLhfemlY+tWR+Ndv3Re//Sd7DA3VZJHOf0U69VfSzrXSJ/+DdG1H/OvOtdLYX0l3UBKJWWw2lwjP5s0+AACFIRFWQanlRkbKAiORiJxOpzweT8Yyp2yPGRwcLPuY69evT36fqydRqtQ4+gFhtkiUMA4NDZVkPLvdnjFB7fV6ZbVaNTIyMiN55XA4NDw8PGMORp5ngUBgxiqwfI+LRqPJlWkjIyOGk3+J1x2Xy6Xe3l5WhdaptpYWbbVfoSeuu1Y//Ph1euK6a7XVfkXlyyEP780f88gW6af54ywWqblJal8g3Xu99C9/Kv3snvjXe6+XbAsKak0E1I1EibARhkqEYzFp6kLuSyxW7LQNmc2bfQAACkMirILM9MKJRqPq6enR+vXrDSesJMntdmdNspVyTK/Xm/w+tfdRNqkxdrud/mCYVex2e0mTOj09PWk9wiKRiEKhUN6VVx6PZ0bvMSOJ6ukllMFgMOfz2u12KxqNZkyimcHOsSjY2Qlp393GYvdulc6eLu98gFnASOmv4RLhxIrNXJeYsQb2xZrNm30AAApDj7AKCQaDikQislqt2r59e87YaDQqp9Mpu92u/v5+Q2VKib47kjL26yr1mA6HQy6XK/lhORgM5mySnVoGxWowzCbt7e1pieFScLlcaasuE88vI734BgYG0ja0MNLDz263a2BgIO256Xa79eqrr85IVnm9XoVCoYxllUDFHN4jnXvbWOx7Z6TDu6Ub7invnIA6lygRnnhXevQ56amX47tD2uZLt1wpbb5GspaySf7hvdJ1d5ZwwMxm82YfAIDCkAgrUCgUSq6KSPQGyvZhMxKJqK+vT5IM9dJZs2ZNcge41AbbRmQrzyrHmIlm25L0wAMPZP1QHI1Gk72KXC5XyRr+A7XA4XAYSlCZlfq8O3XqlOFVnIWu0PL5fNq/f39yBVk0GlVfX19aEjsYDMrv9ydf84CqeeFJk/EHSpIIi8WkqTzVXE0WyihRnywWqdlysUT43uuLGMxo6XJzs/TRTUUcyJjbuzryJsJ2Oa6u3GYfAICqIhFWoEAgkGxmHQqFkn23pieNEgmz9vZ2jYyM5P2Q6nQ6DffcyiRTkqkcY0oXd75zu90Kh8MaHBzMWPa5Zs0aSfEyKBpkA+aZSTpNT7SbSdIFAoG0RHkwGEyuRguHw3K73TyPUZBYLKYpSROTk9r36xM6+Js3FT03KevcFt20ZLFu71omW0uLLEYzSO+Mm5uA2fgspmLSnC/mjjn/lXgyAWhYZkuXV6yT5reWdUpNkk7feqMmJif1+LHXdPD1NxSdnJS1pUU3LlmsDV3LaJIPAA2EHmEFSjSKTuX3+2Wz2eR2u+X1euV0OtXT0yOPx2MoCZZIKBUqU8KqHGOm6u3t1fDwsKxWq/r7+5PHi0ajyQRhOByWw+HIWGYFoLRSd5u0Wq2mVojZ7fYZyfy+vj6Fw+FkQtvoDpFAqilJrU8cVNf3Dsn385f1/TdPKTxxWt9/85Q+/+JL6vreIT127ITxARfYzE3AbHwR9j5XsUMBhsRi0oWp3JeS9q0vpHS5zCwWi5otFrXPnau7uz+g717/Ef0///l6fff6j+ju7g/INneu8UQ8AKDusSKsQC6XS6OjoxoYGFAoFNLY2FjyA2gi8bN9+3a5XC7DHxrLscqiEis3XC6XxsfHNTg4qP3792vNmjWKRqOyWq1atWqVAoEAvYTq3dkJ6Se7pRcPxFdWLLDF/4K7erM0v63as0OKI0eOJL8vpAzZ4/EoEAgk+/8l+gtK8XLNcpSBYvZ73ECSyxN+Uc0Wi7HSpBXrpF88Y3wCK9Yaj83BSJJrSzC+A6WhhuJABVR8JWOVSpcBADCKRFgRMq2eaGQ+n8/QjpioM4cflR67K/5X21S/eEb6v7dLGx+SVt9RnblhhtTkd6FN/FP7/yXQ3w+Fmpic1OeeP2oo9r7nj+rmJYvzN6tevVn69heMrTq5ZJG0uviG3BPvSnc/YSx263ekdR+WWucVfVigIvY+J93pzB9nSBlKlxPl1bk0SazqAgAYQiIMQHaHH5X+2+bs9793Jn6/xVKRZrfIL7ExxcDAQMGN8xNJ/tREWigUUiQSKXhMNK59x17T2xfyfYSNO3P+gh479pq22q/IHTi/TdrwYLzZdj6bHi5J/6E9YentSWOxZ85Ju8PSPdcVfVigaBVfyViG0uVEeXUup2+9Uc3mjgwAaFD0CAOQ2dmJ+EowI/Zulc6eLu98kNfg4KCkeIP8Yldnrlq1asZtmXojAvl87/U3TMU/bTR+tYHk+2d3lyxJ/+TL5uIPmIwHysHsSsbT75bgoCvWmYwvTemykRJsAAAkEmEAsjm8Z2Y5ZDYVanaL7KLRqPr7+2W1WnXo0KGix0o0x08VDofV399f1NhoPNFzBpdRJeInDcZbmqSHzks7Tknrd0of/qR0xbXxr+t3SjvGLpZtx2LS1AXp7TEptFP6+ielv7s2/vXQ38dvz9MtfPysqR/DdDxQDoWsZCza6s3S3IXGYg2WLhvtM0gyDABgBKWRADKj2W1dSazWKsWujokNLwYGBmS1WtNKJAcHB3XbbbfRNB+GWefm6fc1PT5ff7AEi0WyNEsL26U198Yv2cSmpLuyvOV5aVj61n3Slkek67J/ILfNNzatQuOBcihkJWPRJb0lLl0uS59BAEBDY0UYgMzK0OwW5TE4OKhQKKTh4eGiE1Rer1fhcFi9vb3y+XzyeDxyuVxpMZRIwoyblyw2FX+TyXhDDu/NH/PIFumn2ePWXWnukGtNxgPlULWVjCUsXS6kzyAAALmQCAOQWRma3aL0gsGg+vv7FQgEZiSszPL7/fL7/bLb7Wm7T6Z+L0mRSKTgHSnReDZ0LdPCZmNvNxbNadbGrmWlncDZCWnf3cZic/Q73OyQFhpcZLJornQniyZRA6q2ktFM6XIeZeszCABoWCTCAGRWpWa3MC4cDsvtdisQCKi3t7fosbxer6xWq4aHh9Pus1qtGhoaSrvN7/crFAoVdUw0hraWFn1t5XJDsTtXLi99SdPhPdK5t43F5uh32DZPevBWY8M8/BmpdZ6xWKCcSraS0WyfPYtFakopXb7/X6S//Fn865p7pYW2eIwBZeszCABoWCTCAGS2enO8ia0RBpvdonQikYjWrFmjoaGhopNgqc3xA4GA7Hb7jJhsJZLRaLSoY6Mx3N7VkTdml+NqQ3GmFdLvMIvNDml3b/aVYQtb4vffvlK6MJX9kqcvP1AyJVvJmOizt+1SKXB/vLfer45c7LG37VLpJ3tKNe00ZeszCABoWDTLB5DZ/DZp40PSf9ucP9ZAs1uUTiQSkdPp1MDAgDwej6H49vb2rE30U5vj5yqvDAQCstkulsBGo1H19fXNKJ0EpmuSdPrWGzUxOanHj72mg6+/oejkpKwtLbpxyWJt6FpWvg+vJex3aLFIm53Sp5fHd+M78HK8p5JtfnwlzZ0OaeFcac4Xcx/i/FekZmOLYYCiJFYybgnmj825ktFon73mZkN9v8y4ecliHXrjt4bjy9JnEAAwq7AiDEB2q++Q/uTR7CvDLlkUv7/Eb3qRXTQaldPp1Pbt2w0lwaTcze0TzfFdLpd8Pl/OcaxWqwYGBtJuCwaDCgYNfMJCQ7NYLGq2WNQ+d67u7v6Avnv9R/T//Ofr9d3rP6K7uz8g29y5shgskzKtDP0O2+bFd9Y7+CfST/88/vWe64yXQ+59ztyUgGJsuiZ/zO7eHHEl6rNXqKr3GQQAzDokwgDk9tFN0sBx6fZvSFd9SvrAR+Jfb/+GNHCCJJgB08sHCy0nTE2C5UtaJeJ7enpkt9szrgYbHByU3++XNLMhfjY+n29G6WRfXx8lkqhdFe53aCTJtSVIMgylEYvlLsO9MCVZFF+FeOqvpJ1rpU/+B+najvjXnWulsb+S7si1uUOJ+uwVqup9BgEAsw6lkQDym98m3XBP/ALTjhw5knZ9bGzM9BiJJFgkElF/f78eeOCBvPEJ05vfSxd3m5Tiya1sZZOZ9Pf3p+0amegxNjIyYngMKV6ymWm+QEIsFtOUpInJSe379Qkd/M2bip6blHVui25asli3dy2TraUl92qy1Zulb3/B2Af5IvsdTrwr3f2Esdit35HWfZim+ijOVMxgKW6T1L5Auvf6+MWUQvrslfj9wsauDlkk3f/8Ub19YWrG/Qubm7Rz5fLy9BkEAMw6JMIAoIwikciMcsJoNKr+/v4Zt+eyZs2aghJHdrt9Rt8vv9+flsgKh8OG5yFJo6OjM24Lh8NyOp1Zm+1PFwwG034GdqBEJlOSWp84mPG+7795Sp9/8SX5HVdr0+Wd2QeZ3yZteDDevyifIvsd7glLbxvcsO7MOWl3OF5SCZTT3uekO51FDFDCPnuFslgs2nh5p25Z+nvad+w1PZ3SZ/CmJYu1sWsZK8EAAIZRGom6dvLkSXV2dua87Nixo9rTRANyu92y2Wzq7u5OS2AlDA4OymKxqLu7O2+PrZ6eHtPJqoTUhNfg4KBsNlvabVI8CZWYS7aEVCLRZbPZNDg4mDWmu7s7688cCoXk9XrldDpn9C2LRCKy2Wzq6emR1+vN+Hg0nsePncgb4wm/mD/uY5ulz+6W5i7MfP/chdIf7ym61PvJl83FHzAZD0xXkVLcMvTZK1RbS4u22q/QE9ddqx9+/Do9cd212mq/giQYANSYHTt25P2cfvLkyarNzxKLsYk36k9nZ6dOnMj/AUmS/vqv/1pf/vKXyzshAEBJTUxO6kMHv5+xDGq6RXOa9cqnbsj/YfjsRLzf0QsH4qtWFtjiPcFW31mSnW8/8o/Ss8dNxHfGm+0DhZh4V+r4O2OrEBfNlU5sL7AU9wf/ID3+F8bjb/8GrRQAoMF9+ctf1t/8zd8Yiu3o6NDx4ybeQJUApZGoa01NTVq6dGnOmNbW4j/cAAAqa9+x1wwlwSTpzPkLeuzYa9pqvyJ3YJn7HdrmlzceSFWxUtwS99krSe8/AEBNa21tVUdH7r6NJ0+e1NSUsfd6pUYiDHVt6dKlFc8eAwDK73uvv2Eq/unX38ifCCuzdVdKz7xiPH7tleWbC2a/QkpxC0qElbjPXkl6/wEAatq2bdu0bdu2nDFmqrxKjR5hAACg5kTPGVzqkoifNBefVSwmTV2Q3h6TQjulr39S+rtr418P/X389ixdJTY7pIUGWxUtmivd6SjNlNGYxs+WNz7NagP98z6721CfvZL1/gMAoECsCAMAADXHOtdc82trqZplx6aku7K8PXppWPrWfdKWR6TrZpZ/tc2THrw13pw8n4c/U2C/JuB9FS3FtTRJD51/v8/eo9KLT13ss3f1LfHyyQXWvMNMTE7qc88fNXTI+54/qpuXLKYRPgCg5EiEAQCAmnPzksU69MZvDcfftGRxaQ58eG/+mEe2SM3NGVe/bHZIFkl3PZG5f9OCOdJDn5Fu+n1p54+kp16Or9SxzY+XSt5xTfx72iMhn4qW4loskqVZWtgurbk3filAWXr/AQBgErtGoi4l6omrscMEAKD8yrJrZD5nJyRfh/Gm4AMnsvZDmng33sz8wLRE16Y/lNr/NvfQj/RKdzrNTx+NpWK7RpbQp3/8rKkEt2vxZXriumvLOCMAQLVU8zM9K8IAAEDNaWtp0ddWLpcn/GLe2J0rl5emfOrwHmNJMEl674x0eHfWHSjb5sUbk09vTr57JP/QW4JSc5O06RpjU0FjKroUNxaLlwKfnZB+skf6eWq541pp9R3x70u4PLFqvf8AAEhBIgwAANSkjV0dski6//mjGVeGLWxu0s6Vy3V7V+7tuQ174UmT8QeyJsIymXhXuvsJY7FbvyOt+3D1V/CgtuUrxV3YEk+CZUyqFtEPr1BV6/0HAEAKEmEAAKAmWSwWbby8U7cs/T3tO/aann79DUUnJ2VtadFNSxZrY9ey0jbSfme8rPF7wsbK2CTpzDlpd3jmijIglcUibXZKn16euRT3TkeOZGqR/fAKUbXefwAApCARBgAAalpbS4u22q/I2zQ7FotpSvH+Yvt+fUIHf/OmoucmZZ0bT5zd3rVMtpYWWbKVei2wmZuYyfgnXzY3/IGXSYQ1ulhMmoq933PuueybK2Qrxc3q7IS0725jsXu3SivWZe2HZ8aGrmX60tGXDff+29i1rOhjAgAwHYkwAAAwK0xJan3iYMb7vv/mKX3+xZfkd1ytTZd3Zh5gxTrpF88YP+CKtabmN37WVLjpeMw+UzFpzhcz3zf8S+m+AwVurlDCfnhmVKX3HwAA0zRVewIAAACl8PixE3ljPOEXs8et3izNXWjsYJcsklab651km28q3HQ8Zp+9z+WP2RI0FpemkH54JbKxq0O7HFdrYXPmjyELm5v0T46rS9f7DwCAaUiEAQCAujcxOanPPX/UUOx9zx/V6Uy70c1vkzY8aOyAmx42XSq27kpT4VprMh6zi9nNFU6/a2LwMvfDyyXR+++VGz+hr664Sq7Fl2mVrU2uxZfpqyuu0i9v/IQ2ZFu1CQBACVAaCQAA6t6+Y68Z6jskSWfOX9Bjx17L3HPsY5vjHcgfuytz6djchdLGh6Rrb5feHpN+skf6+VPxRMECm3T1Wmn1HfHvp/Ui2+yQvnDQWMP8libp20elR8Iz+0Fla3GG2aWsmyuUqB9eMX35jPb+AwCg1EiEAQCAuve9198wFf/0629k/gBuscSTYX/46XgfpRcOXExyrVgbL4e8ZKF0V5a3UC8NS9+6T9ryiHRdeulk2zzpwVvjpWz5TE5JP4hcvF5UPyjUpbJurlCifnhF9+UDAKAKSIQBAIC6Fz1ncOlMIj5TaWSq+W3x5uCZGoT/eHf+AzyyRWpulj66Ke3mTdcYS4RlsyUoNTfFx8HsVtbNFVZvlr79BWMN83P0wzPal6/ZYqHnFwCgZpAIAwAAdc8619zuctZCd6M7OyHtu9tY7N6t8ZU3Kb3EmizS+a/E+z89+pz01MvxBMaiudL/+HdpMpZ/2K3fkdZ9WGqdV9BPgBoSi8V3hszEavL/N7m5Qiwmxabi52qu0t0ND8YTtvlk6Ydnti/fzUsWswskAKAm0CwfAIoQiURksVhKfunp6cl5XL/fL7fbre7ublksFnV3d8vtdiscDmd9TDQaTcbnuthsNjmdTvn9/hljhMNhOZ3OouY+/d/P6/Wqv7/f8GOATG5esthU/E0m45MO7zG2ikaS3jsjHU5fPWaxxFd0tS+Q7r1e+pc/lX52j/Rf/sBYEky62A8K9W8qJs35YubL8C/NjZXcXCE2FS/d3XapFLg/Xq77qyMXy3a3XRpPkK3elGu4uM/unrGqMaGQvnwAANQCVoQBQIk5HA7Z7fbk9Wg0qlAolLxutVrlcrnS7o9EIopELjYEGhsbyzh2OBxWX1/fjIRX4vHBYFAej0dDQ0MzHmu1WjU6OqpoNKr+/v6MiS673a7R0dGcP9vIyIgkyel0JudhtVq1a9cu9fb2Zn3s9Pn29/crGIzXiPl8PkOPA7LZ0LVMXzr6sqEP5ovmNGtj17LCDvTCkybjD2Qur5ymrP2gMOstmivd6Xj/yuG9+R/wyBapqUl66Hx85djhR6UXU1eO3RIvn1xgzTpEyfryAQBQYSTCAKAI0Wg0+b3P59P27dtltVrTYiKRiLq7u5PX7Xa7AoHAjLGyJblS73c6nbJarfJ4PHI64x2zR0ZG0pJafr9f3d3dWZNLVqtVQ0ND6u7unrESKzWBl097e7ukeHLs0KFDM37uTKYnwIBSaWtp0ddWLpcn/GLe2J0rlxdeovXOeFniy9oPCjVr73OlGefhz7xfKmumdPexu6SVn5YWtktr7o1fTCh5Xz4AACqE0kgAKAGXy6WBgQFDyaBsHA5HMkGWmmBLXF+zZo16e3s1Pj6uoaEheTye5Oqv8fFxORyOZLyRUkOfzzdjBVcoFEpbmZZNKBRSKBSS1Wo1nATz+/0aGhqS1+vNmAgEirWxq0O7HFdrYXPmtzcLm5v0T46rk027Y7GYLsRiGjt3Tv/4y1e17kc/03/6wY+07kc/04Oj/66xc+cUi02rV1xgMzcpg/HJ/k4GmY1H7Zl4V7r7ieLGWNgi7XGnbJ5QZOmuGRXrywcAQImxIgwAipAoYcxUilgIu90un883Y8VUf3+/1q9fn/U4VqtVgUAgbeVZOBxOS45lknhMavKrv78/Z6IqGo3K7XZLiq9GM5r883g8adftdruhpBtglMVi0cbLO3XL0t/TvmOv6enX31B0clLWlhbdtGSxNnYtS1sJNiWp9YmDGcf6/pun9PkXX5LfcbU2Xd558Y4V66RfPGN8UivWGgpbd6X0zCvGh73596XpVaBNlngPMtSHPWHpbROLpHr/QHrrvfhqQNv8eE+wOx3TNk0oU+luJjcvWaxDb/zWcHzBffkAACgxEmEAUCS73W6qpDCfnp6eGf27jhw5kuzNlW8eieRSJBLJmwiTpOHh4bQEWjAYVCgUSutjlsrtdisajSoQCBT1cxezeg7Ipa2lRVvtV+TtR/T4sRN5x/KEX1SzxZJcRabVm6Vvf8HYqptLFkmr7zQyZW12SF84aDwxct+B+CXV+a9IzSTC6obZvnBvvScd/JM8QWUq3c2kYn35AAAoMUojAaAI7e3t8nq9JR3T5XJp/fr1abcdOnTI0GNTE1NGk1R2u10DAwNptyWSXdN5vV6FQqGMZZVAPZmYnNTnnj9qKPa+54/qdKK/0fw2acODxg6y4UFp6rwU2il9/ZPS310b/3ro76W3x6SUssu2edKDt5r9KdKVqt8UKqMsfeGKLN01Uy6c6MtnRFF9+QAAKDFWhAFAERwOh6FVV2ZNL4E0unrqyJEjkszPy+fzaf/+/clG/dFoVH19fWklksFgUH6/P9kPDahn+469ZmgliySdOX9Bjx177eIKs49tjtcgPnZX5pVhcxfGk2D/PctqsJeGpW/dJ215RLruYsyma6QtRewjsSUoNTel9ItCzYjFpKlYvC/Ynuekp16WXja36aKxvnBFlu6aLRfe2NUhi6T7nz+a8fm0sLlJO1cuv7iiEgCAGkAiDABmiXA4rGg0muwXZtb0HmPBYFDBYFC9vb0Kh8Nyu90Fjw3Umu+9bi4L8fTrb1xMhFks8WTYH3463pz8hQPxErMFtnhiYfWd0nPfyT/oI1uk5mbpo5skxXt8nf9KPFny6PvJkvGz0qK50v/4d2kylns4Sdr6HWndh6f1jULVTcWkOV8sboy1VxoIKrJ012y5sNm+fAAA1AISYQDympic1GO/PqGnf/OmoucmZZ3bopuXLNaGrmVq4w1uzXC73cmdJwvp3WW325O7Oib09fXJbrdrzZo1kmR4h0ig1kXPmehSLik6mSF+flu80fj0ZuNnJ6R9dxsbeO/W+Cqe+a2yWOI9vtoXSPdeH79I0j/8WPrBq8aGO3NO2h2W7rnOWDwqo9iy1UVz443x80qU7j6yJX/spoel+a3Jq2bLhW9esjiZ5DLalw8AgFpAIgx17eTJk+rs7MwZs23bNm3btq1CM5p99h07ofufP6oz5y+k3X7ojd/qr3/xb/r6yuXaQMlDVUUiEbndbkUiEQ0PDxfVwN7j8SgQCCgUCkmKl0g6nU5J8XLNcpSBAtVgnWsuiW81k/Q/vMfYihxJeu+MdHh3zp37zDZVP/AyibBaMvGudPcTxY3x8GdSVvnFYlJsKp5w/cke6edPXVyRePVa6SMb8g/42d3JlYgJRZULAwCQYseOHdqxY0fOmJMnT1ZoNjORCENdm5qa0okTuZfxnz59ukKzmX32HTuhPxt5Iev9Z85f0J+NvCCLRP+PKhkcHFR/f3/yek9Pj1wulwKBQMErt4aGhtJKJKV4A3+Px1PMVIGacvOSxTr0xm8Nx9+0ZLHxwV940txkXjiQMxFWlqbqqJg9YeO7gU63sCWeBEvr+xabku7K8hY+0X9u83+Trvm0dPhR6cXURNkt8fLJBdYZDy2qXBgAgBSnT5/O+zm9mkiEoa41NTVp6dKlOWNaW1tz3o/MJiYndX+BJRIoP7fbrWAwc1ftUCikD37wg3r11VcLSoZlKpEMhUKKRCJFrTYDasmGrmX60tGXDa2AWTSnWRu7lhkf/J1xc5PJE2+oSXqKl96QPvnNeE+pO66JP95iMTcGSsfsir62S6TVl8f//+50ZOj3dnhv/kH2/LHU8qi05t74xYCSlAsDAKD4Z/COjtwLJU6ePKmpKWMrkUuNRBjq2tKlS3X8+PFqT2NW2nfstRnlkNlQIlF5u3bt0q5duzQ2NqZwOKyhoaFkOaOUeddHM1atWjXjNrfbrZGRkYLnDNSStpYWfW3lcnnCL+aN/fqKq7RwzhyNnTunfb8+oYMp/RJvWrJYt3ctk62lRZZEtmmBzdxk8sSvu1J65hXjw711Thr+Zfxy3wHpkV7pTqe5KaF0zK7Q+/3flQ7+SZY7C+w/Z0RZy4UBAA3FSHuizs7Oqq0aa6rKUQHUvEJKJFA5VqtVVqtVdrtdvb29Gh4e1vDwcFpMMBhUOBw2PXY0Gk02x08VDofTyjCBerexq0O7HFdrYXPmt0MLm5v0T46rtb6rQ61PHFTX9w7J9/OX9f03Tyk8cVrff/OUPv/iS+r63iE9lrrb3op15iZyySLp65+U/u7a+NdDfy+9PRbvBSVpsyNeIleoLcHim7Ujv1hMujAljb0j7fxRfFXetf8gjZ4yN07OFYCF9J8z6GYz5b8yWS4MAEANIREGICNKJOqPy+WakQw7cuSI6XHWrFmjaDSqgYEBDQ0Npd03ODhYUHINqEUWi0UbL+/UKzd+Ql9dcZVciy/TKlubXIsv01dXXKVf3vgJbbi8U48fy//XSk/4xYtxqzdLcxcan8hz/1e8t9Ovjlzs8bTt0ngjdElt86QHby3kJ7xo63ek0+8WNwZym4pJc74oXfq30v0H4ivyjpyQxkyuCFt7ZY47C+k/JykWi+lCLKaxc+f0j798Vet+9DP9px/8SOt+9DM9OPrvGjt3Trd3Ls2aFJ7OdLkwAAA1hNJIABlRIlGfXC6XXC5XskzSbCmj1+tVOBxWb2+vfD6fJKXtIinFSyRHR0dLN2mgytpaWrTVfkXG8u6JyUl9zmy/xPlt0oYHpUe2FDexR7ZIzc3SRzdps0OySLrricIar585J+0Os5tkOZVi1d2iufG+YFkV2H9uSlLrEwczhiRWNvodVxsuF965cjl9QQEAdYsVYQAyokSifqU2uR8bGzP8OL/fL7/fL7vdntZbbHqfsUgkknYMYDbbd+w1Qw31pYv9EiVJH9ssfXa3uZVhmezdKp09LYtF2uyUTvyl9I110qc+JLVeYm6oAyabtsO4iXelu58ofpyHPyO1XhKTpi7Ey2NDO9PLZs+a3An7/f5zRlc1NkmGyoXZKRoAUM9IhAHIaEPXMi2a02wolhKJ2uJwXFxO0N7ebugx4XBYXq9XVqt1Rnml1WqdUSLp9/vTVokBs1XB/RItlngybPCEdPs3pKs+JX3gI/Gvjl7jA07r89Q2L76q6+CfxJuqm/HjX0l//6N4D6v324+hRPaEC1upl7CwRdrjljZdIyk2Jd01J14eG7g/vWz2N/9mbuAVa02tarz/hV9o7dLfy1suDABAPaM0EkBGbS0t+vrK5fqzkRfyxlIiUbt6enryxqQ2xw8EArLb7TNiPB5PxhLJV199VVartWTzBWpN0f0S57dJN9wTvyTs/JS5SbxwIP3x78vZVD2Dt87Fd5FkJ8nSe9LkartLF0jd7fH/w7VXxsshW+e9f+fhvaWZ1CWLpNV3FrSqMVEqzG7QAIDZiEQYgKw2dHXIonjfmzPnL8y4f9GcZu1cuZwSiRqT2sze5XLljU9tjp8rPhAIyGazJa9Ho1H19fXNKJ0EZhOz/RIXNjXpH3/5qg7+5k1Fz03KOrdFNy1ZrNu7lsnW0iKLxVJwn6fp1l0pPfOKuaEStgSl5qb3VyAVKBaLN4ifeFfa85z01MvS+NmLyZ07rol/b7EUfoxaNf1n/8mvzD2+u1366Z9nuOPshLTv7pLMUZselua36nuvm1tF9vTrb5AAAwDMaiTCAOR0e1eHblqyWPuOvaanX39D0clJWVviH+w2di1jJVgN2r9/vyRpYGAg72qtRHN8l8uVbI6fjdVq1cDAgPr7+5O3BYNBBYNB9faaKPUC6sjNSxbr0Bu/NRz/w1Pj+uGp9MRVajPyTZd3Jvs2GXZ2It4f6p3x+GOvXiutvkObr7HpCwctBZfkbf2OtO7DKSuRTErskpjJ8C9n98qzXD+7EVlX8x3eI517u/CBpXhfuk0PSx/dJIldoAEAmI5EGIC8cu2ohvyi0WjO60aEQiFFIhGtX78+Z3IrHA4rGAzK4XDkTWwNDg7K7/dLmtkQPxufz6ehoSFFIpHkbX19fXK5XJRIYlba0LVMXzr6suHSslw84RfVbLHo9hXrpF88Y/yBv/m39N5QLw1L37pPbVse0YO33qktwcLmU+xOkkZ2SSzFyjOjKrlCragdImMxrfuPU9LbE9JP9kg/f+piknPs1+bGWnKl1H7FxcevWCutvlOa35oMYRdoAADSkQgDgDI7cuRI2nUzOzlK8eRWoteX1+uVx+PJuNorFArJ7XbL5XLNaHg/XTAYTK7s8vl8ppJY/f39abtGJnqMjYyMGB5DUloyrZDkIFAJbS0t+trK5fKEXyzJePc9f1Q3f3yDWr/9heJX/jyyRZv+eI62aGPBQ/zlv0jffcl8osjMLol/HJS+eUR6672LSalNfxhv/H/6vZlJq1t+X9r4h1KTRXr0fxq/7+bflz73VOY5lHKFWrE7RLbOndKf75kj7SluHpKkea2K3fu0piRNTE5q369P6GD45bSy3I9f1m5qVSO7QAMAZjtLLMa+Qag/nZ2dOnHihDo6OnT8+PFqTwfIKhKJqKenJy3pI8WTTwMDA4bGiEajab25Enp7e3Xttdfq1KlTCofDikQiGhgYyFum6Pf70xJZRhJnqfr7+zU4ODjjdofDkbXZ/nTBYFButzt53W63a3R01PAcgEqKxWLad+yE7n/+aMaVYS0WadLEu6mvrrhKW1//ofTIluLndskiTT1wQhOWVj36nPT/fSbeFL9QRhNF//Bj6S+eLPw41fTo+uJWqBX7s/+Plbt1/Q+K/7+XJF31KV2492m1PnEwZ1iLJCMFj4vmNOuVT91A2wMAQNlV8zN9U0WPBgANwu12y2azqbu7e0YSTIqXJVosFnV3dysYzF3XZLVaNTo6qt7e3rQkUygUSvYD6+/vT8ZkMzg4KJvNlpYES4yTmEvqrpCpwuGwnE6nbDZbxiRYIqa7uzvrzxwKheT1euV0OtOSYFI8YWiz2dTT0yOv15vx8UC1WCwWbby8U6/c+Al9dcVVci2+TKtsbXItvkxfXXGVrru03dR4T7/+hvSxzdJnd8f7ORUzt/fOqPlnu9W+QLr3euljRVawbwkaK/szu0tiLfnjoPSJXdK1/yB98pvS3/9IGnsnXlqZSSwmXZiKx+z8kfTXmV8m81rYIj3+6Qld/6MSNcOXpBVr9fixE3nDjHb9YhdoAEAjYEUY6hIrwgAAteKP/vXHGolOGI5fZWvTDz/+fmOusxPxBukvHEjpE/Ur6XUTmaZLfkeyr5auXqtdljvkecZWVCOsRXOlE9svNtHP1HvrR/8uvXO+4EPUpGyr4S5MFdcYv+0S6X//pHSnQ2r9yT9Ij/9F4YOlumSRJv73X+lDP3zWUA+7uRZpjqVJ70zNjF3Y3KSdK5drw+WdpZkbAAB5VPMzPT3CAAAAilBUM/L5bdIN98QvCQ98xNwE3nsr3kD/pWH16T4dbt2tf56z2dwYKaY30S92h8R6ka2xf1GN8SWtvjxlQ4IXSlhPuulh7fvtW4Y3cjgXk7501Yc0v7mZXaABAA2NRBgAAEARbl6y2FQz8j+6rF3/+MtXdfA3b6Y1Nb+9a5lsLS2yLJjZE9AM/+kt+uf2whNhUrz8byoWb6D/5EtFDVVXtn5HWvfhi6vhim2ML8U3B0h6Z7y4waR4Oe2mh6WPbtL3fvysqYf+65un9MR117ILNACgoZEIAwAAKMKGrmX60tGXDa/M+dIv/teM277/5il9/sWX5HdcrU0r1km/eKbg+TQpprNvtemD1mN6/UJrQWOMnY3vsnjfAWluA3WUPXNO+u8j8QTgnuekhw5LbxttsDVdLKbWuVO68/cnpNAe6edPSSdNNldbcqXUfsXFstkVa6XVd0rz4/+v0XPmJhedLPSHAQBg9iARBgAAUIS2lhZ9beVyecIvFj2WJ/yimq++UbfPXSide7ugMSyS5k2eVuSPduubi+7RgZeln/xaOv1eYXM6Zyy/N2skEoDFatKUJn4zR/rLwseIffzPNXXDn2ticlL7fn0ivorw8IvJVYQLm81lKa2UPwIAQCIMAACgWBu7OmSRdP/zRzOuDFvQZNHkVMzQ7n33vRTRzbc9pNY9dxY1p/kvHdA9992je66T/uHH0l+UsD0VclvYIh388F7pX4sY5JJFmlq9Wa1PHMx49/ffPGV6yJuWLC5iQgAAzA4NtNgdAACgPCwWizZe3qlXbvyEvrriKrkWX6ZVtja5Fl+mr664Sl/88H80lASTpDPnL+ixpf9J+uzueD+oQo3+WPq7a6Wvf1J/+tbfq6NpLL4FZKFiMTXFLmS83H32G7JeGNPCOTF9wt5Y5ZSpLl0gfWOd9NrnJvS//fju4gbb9LAe/+1bpZmYpEVzmrWxa1nJxgMAoF5ZYrFi3hEB1VHNrVYBADDr0z9+1lRD/Q8tXKCuBfMVffddWd95Uze9+VPd/vM9sr39uixFzKPZdl5TluaCHtsUu6AL47mLCf4P+yP6fP+d2j0S34WxYLGYmpS7JnNKTZIl/7/G70xNaNO5R/XwvD8vYkL5j7Hl3G593npAl88dl959S3rdZD+whPeb4U84b9OHDn7fcO+5fL7pXKHbuzpKMhYAAMWq5md6SiMBAADKzGxT81fefkevvP3O+9cW6PvtN+jzf3SDdv3P/0MbT/6g4HmcG2/Rn7U9qv/evLHgMXL5fGSL9NNmbbp2U95EWN+10mP/M3Mz+kssU3p3LPfb1E0Lduuxeem7Yy5skXbcHO9rduClmFa/tke+E3frktg78l+ydcYYRpNpWb2fsPt1tEtWvSW9k/8hGc1rk+yr05rh74v8ylQSbK7FonMZ/r69sLlJO1cuJwkGAMD7SIQBAACUmXVuaZqUe1ZuKyoR1qyY/vldr1b/l7X64v+vVacKTdzk8qhXTfbrdf4T39XkC9/T2JvjOn7Bpn9dcIt+umSj/vPyNt3x4dOy/s89+kfrU/H7z9v0g4VrdXjpHfrPf2DTn57fKz2W+zB737lTK5dIz8y7Rf/vM3t0y+RT6pgzrubDNunqtbrHPkf62cVVYJlWszXbzmtKha2Qk+IN8fOtkjNiYtkKPbb2YT39mzcV/enPZZ3bomPvnDU1xnWX2rRu2RI9/fobik5OytoSb6i/sWuZWmmSDwBAEqWRqEuURgIA6snDkV/p//PCL4oexxK7oDMH1xU/IVuXfj3vSg1E1+nheXcbWhllpDSyJDY8JP1f/7XgXTPNKKZU9HemJi6uBCtQTNJjyz6hz119r95umlvwOJK0ytamH378uqLGAACgUqr5mb5BW5kCAABUzoauZVrYXPzbrpia9Ds3PqmhD/6X4gYaP6bLTw7rH8/eqwvjc/L246qofXdVJAlm2vubBbRdGNNfnN2p5858tKgkmCTtW3qDPCv/a9FJMEmysuoLAABDKI0EAAAos7aWFn195XL1hV8sbiCLRVNq1t/+gVePXnWHrG//RjdNHNXt/ytYdCN95FaqMshU25bP7FtWqJuWLC7ZWAAAzGasCAMAAKiAjZd36pvOFVo0p/CeVAnj5y8oPDVP359/hT6/5GZ1/dE/a9/SGwoe79x4i94ba9H3Jj6pptiFrJfZJtfP2hS7IJW5g8iZOQtKMs6iOc3a2LWsJGMBADDb0SMMdSlRT9zU1KSlS5fmjN22bZu2bdtWoZkBAJDbxOSk9h17La2p+a/fOav/daa4csBS9A+7IBXROn722bBgjx6fd0dJ+oFNNM/Xvo41Ovi71yraskivLliq385tK27Xyvd907mCXSEBADVjx44d2rFjR86YkydPampqqio9wiiNRF2bmprSiRMncsacPn26QrMBACC/tpYWbbVfoa32K5K3laqZfrFIgqV79J3N2v7ugBY3TxScBEs2xP+De/R287ySzm/RnGbtXLmcJBgAoKacPn067+f0aiIRhrpmZEVYa2trhWYDAEBhNnQt05eOvqy3LxTetD6mJi268Un9xzPH9Dvnz8o6eUY3vvGsbjvxfdmm3pl1/cMmmuapberdsh6jWdKKqZ+rmL0EEg3xi/X7ixaqa8H85CrCm5Ys1sauZWqlST4AoMa0traqoyP3H2kSK8KqgdJI1KVqbrUKAEA5PPbr48U308/i9NNr1WwymxOTNJWhnWyv46/0yTdHdNtrP5DtQrycc0pNmrikVY8v/t/kPfa9GY9p0pTpRFy24yd0rdmrE4c21HyCb4lrv95q+Z2ix/nqiqvSVhECAFDPqvmZnhVhAAAANWDj5Z1qslh03/NHdeZ89RvTT6lJrTcdyHjfM7/3Uf3XP7hb/hPf1u3nj6v1inuT933+D+6eEX/66bVq0lTOxJaUkjCbu1D71j2kvncuyzvHXOPaPvVtLbjwnr529CHdfvJf4wm75vl6vOMTGr7MoWD4bzMf36RE0m6iaZ4e71yjf/ndVYq2LNJbLQv11pxFBYyYjmb4AACUDokwAACAGnF7V4duWrI4rZl+5O13NHZustpTy8jT8V90+IpO6Ve5/5LbduMT+pNfPaVvfuDTOeMssQv6p+f/T930KY/u/+2lMlKTmCthJ0lvNc3Vn/2hT7HOFeq77Ma0+6Y/rpCVc0bmUKydK5dTAgkAQImQCAMAAKgh05vpl6KR/oUcK7EKXQWV8M95kmCSFLM065tX5N/RMmZp1n3X+PT6ZVfq7d/8W974thufMDRHSfrz370xvnSrjixsbqIZPgAAJUYiDAAAoIaVopG+7abvZr1v/OlPZ1wFlSt5VhCLsXTbmZhFjxhIrknxxJlR5wwkwWLK/nMnyh8zJQ5L9W916dwWfXDhAprhAwBQRiTCAAAAalhbS4u+vnJ52Rrp50qSVcvr775XleNOqamq/x5/eeWHaIgPAECZlfhPfQAAACi1jZd36pvOFVo0x/gKKJhnu/H/rtqxaYgPAEBlsCIMAACgDmRqpP/W5Hn925m3qz21kls67xKdPnO+8gc2UWpZajTEBwCgMlgRBgAAUCcSjfSfuO5a/fDj1+kHH/+YFjbPvrdzm6/onJU/VyYLm5v0T46raYgPAECFsCIMAACgTpW7f1g1LJrTrD/9QJcWXzJXHgM/11yLRedi9bMd5O8vWqjfaZlDQ3wAAKqERBgAAEAd23h5p5osFt33/FGdOX+h4sf/0ys69U0Duzz+yRWd+mcDcYkSwY1dHbJIuv/5oxl3zFzY3KSdK5drSqqbhNmiOc36149/jMQXAABVRCIMAACgzmXqH7aouVk/PjVetuTPojnN2rlyuW7v6tB1l7VnTcQl4m7rXKaPXWrLm9hKlAhaLBZtvLxTtyz9vbSfa/pKqlgsZihhFpOqvnKOPmAAAFSfJRaro7XkwPs6Ozt14sQJdXR06Pjx/H9dBgCgEe399XFDq6Xy+X8tW6K3zp/PmIhKmJiczJmwMhtnlpFxHz92ImvCbmFzkyanYmVJHKYmDQEAQHU/05MIq4JIJCKv16vh4eG8seFwWENDQwqFQopEIpIku92u3t5ebd++XVartaA5DA4Oanh4WEeOHFE0GpXdbpfD4ZDX65XL5aqZMbMhEQYAQH6xWEz7jp3IulrKiEVzmvXKp26YNSuZciXMnjz5m6ITh3ObLLru0nadOX+ePmAAAGRBImyWiEajstlshmI9Ho+GhoZyjtXX16dgMJhznKGhIXk8HsNzDIVCcrvdikajcrlc6u/vl91uVzgcVn9/vyKRiFwulwKBgOEkWznGzIdEGAAAxmVK/vzu3BbtO34y72O/6VzRMCuZSpE4bKR/LwAACkUibJYYHBxUf3+/odjR0VHZ7faM90WjUTmdzuQKsHzyJdUSQqGQenp6cj7G6XQqHA7LbrdrZGQkb+KqHGMaQSIMAIDi5SoVbORyvmyrxi5psugLP3+Zfy8AAIpEImyWsNlsikajeeNcLlfOssienh6FQiE5HA5t375dDodDUrxM8tlnn9Xg4OCMxwQCAfX29mYdMxqN6oMf/GCyZHF0dDRjXCQSUXd3t6F5lmNMo0iEAQBQGuXq2TVb8e8FAEDxSITNAn6/X16vVz6fL7lCKptVq1ZlXRWVOs7AwEDGmEgkIrfbrXA4nLzNarVqfHw86zETyTUpfzml2+1OlmTmii3HmEaRCAMAAAAAoD6RCJsFEiuesq2KMjOO3W7Pu2oqdZVVwvDwcMam9NNjx8fHc5YnBoNBud1uSdkTbOUY0wwSYQAAAAAA1KdqfqZvqujRZqlgMKhIJGK4P1g24XBYkUhEgUAgb6zdbp+xYix1hViq1DiXy5W3R1dqiWU0Gs3YsL8cYwIAAAAAAJQTibASeOCBB2S1WrV+/fqixtm/f788Ho/hZvLTV3+dOnUqY5zf709+n+g3lk9qI//9+/dXZEwAAAAAAIByIhFWpHA4rHA4rGg0KpvNpu7ubnm93oJWPN12221Z+4JlMj0BNb1UMjG/VNdee63psaf/LOUYEwAAAAAAoNxIhBVpejlkJBKR3++X2+2WxWKZ0dQ+F4fDYXg1mKQZO1SmrrhKSDSzzxWTyfS41J+hHGMCAAAAAACUG4mwIkQikRlJoemCwaCcTqe8Xm9Zjp8qU6P8Z599Nu260UTbpZdemnb9yJEjZR0TAAAAAACg3OZUewL1zG63a2hoSNFoVKOjowqFQjOSUwl+v19HjhzRyMhIyY6fmkjyeDwZY6bPp9DVW6m7YZZjTAAAAAAAgHIjEVak6QmoaDQqv9+vBx54YEbpYjgcVk9Pj4aHh0ty7KGhoeT32XaszJaYMyv1ZynHmAAAAAAAAOVGIqzErFarfD6ffD6fgsGg+vr60hI+oVBIg4OD8vl8RR0nEokke2wNDAxkXZVVaLJpernj2NhYWccs1MmTJ9XZ2Vn0ONu2bdO2bduKHgelt2PHDp0+fVqtra38H6GhcO6jkXH+o5Fx/qNRce7Xhx07dmjHjh1Fj3Py5MkSzKYwllgsFqva0RtANBrVmjVr0hrDW61WjY+PFzWu1+uV3++X3W7PWWJosVjSrhv97w6FQurp6Uled7lcyZVs5RjTrM7OTp04caKgx2by13/91/ryl79csvFQOon/646ODh0/frza0wEqhnMfjYzzH42M8x+NinO/Pnz5y1/W3/zN35RsvGr8f7MirMysVqtGRkbkdDqTybBoNKpQKJSxub0R4XBYfr9fVqs1byLJarWWpAQxdTVXOcYsVFNTk5YuXVr0OK2trUWPAQAAAADAbNba2qqOjo6ixzl58qSmpqZKMCPzSIRVyK5du+R0OpPXh4eHC06E9fX1SZIOHTqUt1F9e3t7SZJW7e3tZR2zUEuXLuWvBQAAAAAAVECp2gqVusrLjKaqHLUBORyOtMRXoQ3nvV6vwuGwAoGAHA5H3vhCV11NT3RNXxFW6jEBAAAAAADKjURYBaX2xyqE3++X3+/X0NCQent7DT1m1apVadeNruSa3si+u7u7rGMCAAAAAACUG4mwCkotYzRbFhgKheT1ejU0NCSPx2P4canlmJLxlWjTG/CnrmYrx5gAAAAAAADlRiKsglITYWbKAsPhsHp6ejQwMGAqCSbNXL1lNGmVusrLarWmzb0cYwIAAAAAAJQbibAKOnLkSPJ7o2WSkUhEa9askc/nk8/nM31Mh8ORlnR79tlnDT0uda7TE1/lGBMAAAAAAKDc2DWyglJLA42UBUYiETmdTnk8Hg0MDBg6RiQSUTAYTEuarV+/Xn6/X1J8dZkRqXH9/f0z7i/HmKW0Y8cOnT59Wq2trSXZ0aJUanVeUm3PrRbV8r9Xrc6Nec0etfpvxrzMq+W51aJa/veq1bkxr9mjVv/NmJd5tTy3WlTL/161OrdanVdSDBVjt9tjkmI+ny9v7Pj4eMxut8c8Ho+pYzgcjtjIyEjabSMjIzFJyUs+w8PDyVi73Z4xphxjmtHR0RGTFOvo6Cjo/mqp1XnFYrU7N+ZlXq3OjXmZU6vzisVqd27My7xanRvzMq9W58a8zKvVuTEvc2p1XrFY7c6NeZlXq3MzMq9qzp3SyAoJBoOKRCKyWq3avn17zthoNCqn0ym73a7+/n5FIpG8l1AolGxi73A40sZzOBxpK9CCwWDO4wcCgeT32VZulWNMAAAAAACAcqI0skChUEhut1vRaFQul0sDAwMzElAJkUhEfX19kqRDhw7lbZS/Zs2aZIKru7vb1LyGhoay3p4Y64EHHlBvb2/GuGg0mix5dLlcOZvzl2NMAAAAAACAcmFFWIECgUByF8TEaiyv1zsjLnFfe3u7RkdHsybLEpxOp+GeW5lkSzLZ7fbkqqxwOKzBwcGMcWvWrJEU39UxdRVXpcYEAAAAAAAoFxJhBXK73TNu8/v9stlscrvd8nq9cjqd6unpkcfj0cjIiOx2e94xy5EES+jt7dXw8LCsVqv6+/uTx4tGo8mEXTgclsPh0Kuvvpp35Vq5xgQAAAAAACgHSiML5HK5NDo6qoGBAYVCIY2NjSVXiCUSP9u3b5fL5TKc/KnEaimXy6Xx8XENDg5q//79WrNmjaLRqKxWq1atWqVAIJC1xLGSYwIAAAAAAJQaibAi2O32rD25ap3P55PP56v5MQEAAAAAAEqF0kgAAAAAAAA0BEssFotVexKAWXPnztXk5KSampq0dOnSGfefPHlSU1NTWe+vllqdl1S7c2Ne5tXq3JiXObU6L6l258a8zKvVuTEv82p1bszLvFqdG/Myp1bnJdXu3JiXebU6NyPzSsS0tLTo3LlzFZ0fiTDUpebmZk1NTVV7GgAAAAAAoEBNTU26cOFCRY9JjzDUpXnz5undd99Vc3OzFi9eXO3pAAAAAAAAg9544w1duHBB8+bNq/ixWREGAAAAAACAhkCzfAAAAAAAADQEEmEAAAAAAABoCCTCAAAAAAAA0BBIhAEAAAAAAKAhkAgDAAAAAABAQyARBgAAAAAAgIZAIgwAAAAAAAANgUQYAAAAAAAAGgKJMAAAAAAAADQEEmEAAAAAAABoCCTCAAAAAAAA0BBIhAEoSjgcltfrVXd3tywWiywWi7q7u9Xf369oNFrwuIODg+rp6ZHNZkuO6Xa7FQqFZv2YqF+RSEQ9PT0KBoNFjVMv5yrnP0qNcwrVwus3z7VGxXt5ngsNKQYABRgfH4/19vbGJOW8DA0NmRp3eHg4ZrVaY5JiLpcrNjw8HBsdHY0FAoGY3W5P3j4+Pj7rxkT9mv58MHveJ9TLucr5j1LjnEK18PrNc61R8V6e50IjIxEGwLTx8fHkLwgjF4/HY2jc4eHhvI9xOBwxSTG73W7oF1O9jIn6ND4+HvP5fEW/aYzF6udc5fxHqXFOoRp4/ea51sh4L89zodGRCANgmsvlikmKORyOWCAQiI2Ojib/gpLpTaWkWCAQyDnm+Ph48q8ydrs9a9zo6GhyTJfLNSvGRH0aGBiI2e325POhmA9S9XKucv6j1DinUA28fvNca3S8l+e50OhIhAEwZWhoKCYp5vP5ssaMjo4m/4qSuFit1pzjpr4Zzfcm1GgJQ72MifozMjISGxkZSV5PPC8K/f+ul3OV8x+lxjmFSuP1m+dao+O9PM8FkAgDYFLiL6j5pP4VJXEZHh42FJtv+XEgEMj7S7lexsTsMDIyUvAHqXo5Vzn/UWqcU6gFvH4XNibqF+/leS6ARBgAExJvFo3WyQ8MDKT9shkYGMgY5/F4kjFGlx6njptpqXa9jInZYfobKzMfpOrlXOX8R6lxTqEW8Ppd2JioT7yX57mAuCYBgEH79++Xx+OR1Wo1FO9yudKunzp1KmOc3+9Pfu9wOAyNbbfb0+ZVr2MC9XKucv6j1DinUO/q5bWW5xoSeC/PcwFxJMIAGHbbbbdpYGDAcPz0XzDd3d0zYsLhcNr1a6+91vTYwWCwLscE6uVc5fxHqXFOod7Vy2stzzWk4r18acdE/SIRBsAwh8Nh+C9IkhSNRtOup/5FJSEUCuWNyWR6XOovt3oZE6iXc5XzH6XGOYV6Vy+vtTzXkIr38qUdE/WLRBiAsolEImnXpy+vlqRnn3027brRX86XXnpp2vUjR47U3ZhAvZyrnP8oNc4p1Lt6ea3luYZi8F6e58JsRSIMQNmk/qLweDwZY6b/gi30rzOjo6N1NyZQL+cq5z9KjXMK9a5eXmt5rqEYvJfnuTBbkQgDUDZDQ0PJ7/v7+zPGTP+lVKjUpdv1MiZQL+cq5z9KjXMK9a5eXmt5rqEYvJfPPSbqF4kwAGURiUSSNfQDAwNZ/+pS6C+T6cuZx8bG6m5MoF7OVc5/lBrnFOpdvbzW8lxDoXgvn39M1C8SYQDKIrEjjd1ul8/nK/vxyvHXmXoZE6iXc5XzH6XGOYV6Vy+vtTzXGg/v5Ss3JiqPRBiAkguHw/L7/bJarRoeHs4Za2bnGqPj1MuYQL2cq5z/KDXOKdS7enmt5bmGQvBe3tiYqF8kwoBZwu/3y2KxlPTidDoLmktfX58k6dChQ3kbUba3txd0jFzj1MuYKJ1aOv/NqJdzlfMfpcY5hXpXL6+1PNdQCN7LGxsT9YtEGICS8nq9CofDCgQCcjgceeML/avK9GXJpfiLT6XHBOrlXOX8R6lxTqHe1ctrLc81mMV7eeNjon7NqfYEAJSGy+VSIBAo6ZhmX+j9fr/8fr+GhobU29tr6DGrVq1KNuKU4r9sjBx3eqPK7u7uuhsTpVML538h6uVc5fxHqXFOod7Vy2stzzWYwXt5c2OifpEIA2YJu92ed+lyOYVCIXm9Xg0NDcnj8Rh+3PTys0gkYuivT6Ojo2nXXS5X3Y2J0qn2+V+oejlXOf9RapxTqHf18lrLcw1G8V7e/JioX5RGAihaOBxWT0+PBgYGTP3ilOJ/nUkViUQMPS51mbLVak1LgtTLmEC9nKuc/yg1zinUu3p5reW5BiN4L1/YmKhfJMIAFCUSiWjNmjXy+XwFba3scDjSliU/++yzhh535MiR5PfTf7HVy5hAvZyrnP8oNc4p1Lt6ea3luYZ8eC9f+JioXyTCABQsEonI6XTK4/FoYGDA8GMGBwfTblu/fn3y+9Ta/VxS4/r7+2fcXy9jAvVyrnL+o9Q4p1Dv6uW1lucasuG9fPFjok7FAKAA4+PjMbvdHvN4PKYe53A4YiMjI2m3jYyMxCQlL/kMDw8nY+12e8aYehkTs8Po6GjauTE0NGT4sfVyrnL+o9Q4p1ALeP0ubEzUP97L81xoZKwIA2BaNBqV0+mU3W5Xf3+/IpFI3ksoFEo2qZzemNLhcKQ1ngwGgzmPn7o7YLa/zNTLmJgdpm+tbUa9nKuc/yg1zinUAl6/CxsT9Y338qUbE3Wq2pk4APXH4XCk/TXFzCXbX1pT/yLrcDiyHnt8fDwZ53K5cs6zXsZE/QsEAmnn+cDAgKnH18u5yvmPUuOcQrXx+l34mKhfvJfnudDoSIQBMKWYX5z5cu+pb0azvRFNHN9qtcbGx8fzzrdexkT9SpQWpJ7nud5YZVMv5yrnP0qNcwrVwut38WOi/vBenucCSIQBMKG3t7eoX5xGehAMDw/HrFZrTFKst7c3NjIyEhsfH48NDw8nfyE5HA5Tv5DqZUzUj/Hx8Vhvb2/M5XLlPOddLlfy/DCiXs5Vzn+UGucUKoXXb55rjYz38uUdE/WDRBiAmjQwMBBzOBzJX1BWqzXmcrligUBg1o8J1Mu5yvmPUuOcQr2rl9danmsot3o5b3kuNCZLLBaLCQAAAAAAAJjl2DUSAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAICGE41GZbFY8l7C4XC1p1qzBgcH8/77dXd3V3uaaSyxWCxW7UkAAAAAAABUUjQalc1mS153OBzatWuX7HZ7WpzVaq3wzOpLNBpNfj82NqZQKCSv15u8zW63a3R0tAozy4xEGAAAAAAAaDjTE2GBQEC9vb1VnNHs4Xa7FQwGJdVeIozSSAAAAAAA0PBY+VU601fV1RISYQAAAAAAoOG1t7dXewqoABJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAMCkajWpwcFBOpzO5Q2JCMBhUT0+PbDabLBaLnE6n/H5/1nH6+/vldDrT4qePWevzqBdzqj0BAAAAAADQGNxut0KhkKLRaMb7HQ6HAoGA7Ha7vF6vvvWtb82ItdvtGhkZqcouj+FwWKFQSPv371c4HJ5xfyQSkdvtnnFfOByW1+vVyMiIhoaGkrcPDg6qv78/43Hcbrd8Pp8GBgZqdh71yBKLxWLVngQAAAAAAGgcXq93xsqkgYEB+Xy+tNvC4bCcTqekeJLs0KFDJUuARaNR2Wy25PWRkRE5HI6s8ZFIJJksmr5KKhAIaGxsTF6vVw6HQ7fddpvsdrsikYgeeOCBtGTe8PCwXC6Xenp6dOTIEa1fv15Op1Pt7e169tlnNTg4mDb26Oio7HZ7zc0jl/7+/uTj7Xa7RkdHDT2uEkiEAQAAAACAiuvp6VEoFEpe93g8aauUJMnv98vr9crlcml4eLikxzebCEs1fQWV3W7X2NiYdu3apd7e3rTYSCSi7u7u5PXEMdrb2xUIBGYk9kKhkHp6epLXM/271No8pqvlRBg9wgAAAAAAQMUFAoG0636/P23FUqJnldVqnRFbbZkSZuPj4zOST1I8EeRyuZLXw+GwotGohoeHM65uc7lcaSuvUpOFtTqPekIiDAAAAAAAVJzVap2xwqivry/t+2g0mnG1UrW1t7enXc+UeEqVurJKUsZ+XKlSE1yRSKTm51FPSIQBAAAAAICq8Hg8aauUgsGgQqGQ/H6/gsHgjPvr1fRE3vQE1nTTe3GVKglVK/OoJnaNBAAAAAAAVTM0NJTWu8rtdkuKJ2GM9qSqdfkSTvlk22WzXudRTawIAwAAAAAAVWO32zUwMJC8Ho1GkyWRjerSSy+t9hQk1c48SolEGAAAAAAAqCqfz2d4x0agGCTCAAAAAABA1U1fAZYokQRKiUQYAAAAAACouun9wCKRSN5dDQGzSIQBAAAAAICqCofDGhwcVG9vb9rtg4ODCofDVZoVZiMSYQAAAAAAoKrcbresVqt27do1Y2UYJZIoJRJhAAAAAACgarxeryKRiHbt2iWr1SqPx5PWOD8SiWhwcLCKM8RsQiIMAAAAAABURSgUkt/vl8vlSiuLnN44v7+/X5FIpNLTwyxEIgwAAAAAAFRFouxxeuLLbrdrYGAgY+xsMDY2Vu0pSKqdeVQSiTAAAAAAAFBxbrdb0WhUQ0NDslqtM+73+Xyy2+3J64mG+vVoesIpGo3mjD916tSsnkc1kQgDAAAAAAAVFQwGFQwGZbfb5fF4ssZlKpGshV0kp5dp5ksoTb9/dHTUVHy2stBamUc9IREGAAAAAAAqJhQKJcscU/uCZZK6IixhzZo1VU+GPfDAA2nXv/Wtb2VNQiVWvU2Pz5Xc+ta3vpV22/TH19o86gmJMAAAAAAAUHaRSEROp1M9PT3J2wYHB9XT05MxeTM4OCin0znj9mg0KqfTKafTWdEVSuFwWD09PbLZbDMScdFoVDabTU6nU8FgMBnvdDpls9kyrtzq7u6W0+mU3++XFE8Qdnd3q7u7e8a/RygUks1mU09Pj7773e/WxDzqdXWYJRaLxao9CQAAAAAAgEpKJI0SRkZG5HA4qjij2aO/vz/Zz81ut+ctwawkVoQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAABre2NhYtaeACiARBgAAAAAAGl69Nn+vRdl2rqwFc6o9AQAAAAAAgGrr7++X3W7XqlWr0m63Wq3VmVCdmJ70OnLkSHIHylpEIgwAAAAAADS8aDSqnp6eGbezm2R2g4OD6u/vr/Y0TLHEYrFYtScBAAAAAAAAlBs9wgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAgkwgAAAAAAANAQSIQBAAAAAACgIZAIAwAAAAAAQEMgEQYAAAAAAICGQCIMAAAAAAAADYFEGAAAAAAAABoCiTAAAAAAAAA0BBJhAAAAAAAAaAj/f8x/U6T/7xF7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#import matplotlib.pyplot as plt\n", - "bins = np.linspace( -2000, 2000, 50 )\n", - "sns.regplot(x=ak.to_numpy(array[\"x_l0\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=50, fit_reg=None, x_estimator=np.mean, label=\"T1X1\")\n", - "sns.regplot(x=ak.to_numpy(array[\"x_l4\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=50, fit_reg=None, x_estimator=np.mean, label=\"T2X1\")\n", - "sns.regplot(x=ak.to_numpy(array[\"x_l8\"]), y=ak.to_numpy(array[\"z_mag_x_fringe\"]), x_bins=50, fit_reg=None, x_estimator=np.mean, label=\"T3X1\")\n", - "plt.legend()\n", - "plt.xlabel(\"x [mm]\")\n", - "plt.ylabel(\"$z_{Mag}$ [mm]\")\n", - "mplhep.lhcb.text(\"Simulation\")" + "mplhep.lhcb.text(\"Simulation\")\n", + "plt.show()" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, + "outputs": [], + "source": [ + "# # import matplotlib.pyplot as plt\n", + "# bins = np.linspace(-2000, 2000, 50)\n", + "# sns.regplot(\n", + "# x=ak.to_numpy(array[\"x_l0\"]),\n", + "# y=ak.to_numpy(array[\"z_mag_x_fringe\"]),\n", + "# x_bins=50,\n", + "# fit_reg=None,\n", + "# x_estimator=np.mean,\n", + "# label=\"T1X1\",\n", + "# )\n", + "# sns.regplot(\n", + "# x=ak.to_numpy(array[\"x_l4\"]),\n", + "# y=ak.to_numpy(array[\"z_mag_x_fringe\"]),\n", + "# x_bins=50,\n", + "# fit_reg=None,\n", + "# x_estimator=np.mean,\n", + "# label=\"T2X1\",\n", + "# )\n", + "# sns.regplot(\n", + "# x=ak.to_numpy(array[\"x_l8\"]),\n", + "# y=ak.to_numpy(array[\"z_mag_x_fringe\"]),\n", + "# x_bins=50,\n", + "# fit_reg=None,\n", + "# x_estimator=np.mean,\n", + "# label=\"T3X1\",\n", + "# )\n", + "# plt.legend()\n", + "# plt.xlabel(\"x [mm]\")\n", + "# plt.ylabel(\"$z_{Mag}$ [mm]\")\n", + "# mplhep.lhcb.text(\"Simulation\")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['tx^2' 'tx dSlope_fringe' 'ty^2' 'dSlope_fringe^2']\n", - "intercept= 5205.144186525624\n", - "coef= {'tx^2': -320.7206595710594, 'tx dSlope_fringe': 702.1384894815535, 'ty^2': -316.36350963107543, 'dSlope_fringe^2': 441.59909857558097}\n", - "r2 score= 0.9604900589467942\n", - "RMSE = 8.772908410819978\n" + "['ideal_state_770_tx' 'dSlope_xEndT' 'dSlope_xEndT_abs' 'x_EndT_abs'\n", + " 'ideal_state_770_tx^2' 'ideal_state_770_tx dSlope_xEndT'\n", + " 'ideal_state_770_tx dSlope_xEndT_abs' 'ideal_state_770_tx x_EndT_abs'\n", + " 'dSlope_xEndT^2' 'dSlope_xEndT dSlope_xEndT_abs'\n", + " 'dSlope_xEndT x_EndT_abs' 'dSlope_xEndT_abs^2'\n", + " 'dSlope_xEndT_abs x_EndT_abs' 'x_EndT_abs^2']\n", + "intercept= 5092.708143256812\n", + "coef= {'ideal_state_770_tx': 2018.6886668629327, 'dSlope_xEndT': 389.7888543955816, 'dSlope_xEndT_abs': 1464.867616153959, 'x_EndT_abs': 0.09763035198073229, 'ideal_state_770_tx^2': -4259.173364636334, 'ideal_state_770_tx dSlope_xEndT': 887.6220587366868, 'ideal_state_770_tx dSlope_xEndT_abs': -677.4689885623392, 'ideal_state_770_tx x_EndT_abs': -0.9313147953743464, 'dSlope_xEndT^2': 179.9382929971653, 'dSlope_xEndT dSlope_xEndT_abs': 88.39317926994904, 'dSlope_xEndT x_EndT_abs': -0.19078236037510163, 'dSlope_xEndT_abs^2': 2.3666592074995823, 'dSlope_xEndT_abs x_EndT_abs': -0.48044427953929886, 'x_EndT_abs^2': 5.0288654463924435e-06}\n", + "r2 score= -0.09609938850755273\n", + "RMSE = 356.01344182664485\n" ] } ], @@ -269,45 +256,46 @@ "from sklearn.pipeline import Pipeline\n", "from sklearn.metrics import mean_squared_error\n", "import numpy as np\n", + "\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", - " \"dSlope_fringe\",\n", + " \"ideal_state_770_tx\",\n", + " \"dSlope_xEndT\",\n", + " \"dSlope_xEndT_abs\",\n", + " \"x_EndT_abs\",\n", "]\n", - "target_feat = \"z_mag_x_fringe\"\n", + "target_feat = \"z_mag_xEndT\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(\n", + " data, target, test_size=0.2, random_state=42\n", + ")\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "poly_features = poly.get_feature_names_out(input_features=features)\n", - "keep = [\n", - " #\"tx\",\n", - " #\"ty\",\n", - " #\"dSlope_fringe\",\n", - " \"tx^2\",\n", - " \"tx dSlope_fringe\",\n", - " \"ty^2\",\n", - " \"dSlope_fringe^2\"\n", - "]\n", - "remove = [i for i, f in enumerate(poly_features) if f not in keep]\n", - "X_train_model = np.delete( X_train_model, remove, axis=1)\n", - "X_test_model = np.delete( X_test_model, remove, axis=1)\n", - "poly_features = np.delete(poly_features, remove )\n", + "# keep = [\n", + "# \"ideal_state_770_tx^2\",\n", + "# \"dSlope_xEndT^2\",\n", + "# \"dSlope_xEndT_abs\",\n", + "# \"x_EndT_abs\",\n", + "# ]\n", + "# remove = [i for i, f in enumerate(poly_features) if f not in keep]\n", + "# X_train_model = np.delete(X_train_model, remove, axis=1)\n", + "# X_test_model = np.delete(X_test_model, remove, axis=1)\n", + "# poly_features = np.delete(poly_features, remove)\n", "print(poly_features)\n", "\n", - "\n", - "lin_reg = LinearRegression()#Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "# lin_reg = LinearRegression()\n", + "lin_reg = Lasso(alpha=0.01)\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly_features,lin_reg.coef_)))\n", + "print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", - "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n" + "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))" ] }, { @@ -338,11 +326,22 @@ } ], "source": [ - "bins = np.linspace( 5150,5300, 30 )\n", - "ax = sns.regplot(x=y_test, y=abs(y_test-y_pred_test), x_bins=bins, fit_reg=None, x_estimator=np.mean, label=\"bla\")\n", + "bins = np.linspace(5150, 5300, 30)\n", + "ax = sns.regplot(\n", + " x=y_test,\n", + " y=abs(y_test - y_pred_test),\n", + " x_bins=bins,\n", + " fit_reg=None,\n", + " x_estimator=np.mean,\n", + " label=\"bla\",\n", + ")\n", "ax2 = ax.twinx()\n", - "ax2.hist(y_test, bins=30,\n", - " range=[5150,5300], color='#2A9D8F', alpha=0.8, align='left')\n", + "ax2.hist(y_test,\n", + " bins=30,\n", + " range=[5150, 5300],\n", + " color=\"#2A9D8F\",\n", + " alpha=0.8,\n", + " align=\"left\")\n", "ax.set_xlabel(r\"z$_{Mag}$ [mm]\")\n", "ax.set_ylabel(\"Mean Deviation [mm]\")\n", "ax2.set_ylabel(\"Number of Tracks\")\n", @@ -367,10 +366,10 @@ "outputs": [], "source": [ "def format_array(name, intercept, coef):\n", - " coef = [str(c)+\"f\" for c in coef if c != 0.0]\n", + " coef = [str(c) + \"f\" for c in coef if c != 0.0]\n", " intercept = str(intercept) + \"f\"\n", " code = f\"constexpr std::array {name}\"\n", - " code += \"{\" + \", \".join([intercept]+list(coef)) +\"};\"\n", + " code += \"{\" + \", \".join([intercept] + list(coef)) + \"};\"\n", " return code" ] }, @@ -380,45 +379,48 @@ "metadata": {}, "outputs": [], "source": [ - "\n", - "array[\"x_diff_straight_l0\"] = array[\"x_l0\"] - array[\"x\"] - array[\"tx\"] * ( array[\"z_l0\"] - array[\"z\"])\n", + "array[\"x_diff_straight_l0\"] = (array[\"x_l0\"] - array[\"x\"] - array[\"tx\"] *\n", + " (array[\"z_l0\"] - array[\"z\"]))\n", "array[\"x_l0_rel\"] = array[\"x_l0\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", - " #\"x_l0_rel\",\n", + " \"tx\",\n", + " \"ty\",\n", + " # \"x_l0_rel\",\n", " \"x_diff_straight_l0\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "poly_features = poly.get_feature_names_out(input_features=features)\n", "keep = [\n", - " #\"tx\",\n", - " #\"ty\",\n", - " #\"x_l0_rel\",\n", + " # \"tx\",\n", + " # \"ty\",\n", + " # \"x_l0_rel\",\n", " \"tx^2\",\n", - " #\"tx x_l0_rel\",\n", + " # \"tx x_l0_rel\",\n", " \"tx x_diff_straight_l0\",\n", " \"ty^2\",\n", - " #\"x_l0_rel^2\"\n", - " \"x_diff_straight_l0^2\"\n", + " # \"x_l0_rel^2\"\n", + " \"x_diff_straight_l0^2\",\n", "]\n", "remove = [i for i, f in enumerate(poly_features) if f not in keep]\n", - "X_train_model = np.delete( X_train_model, remove, axis=1)\n", - "X_test_model = np.delete( X_test_model, remove, axis=1)\n", - "poly_features = np.delete(poly_features, remove )\n", + "X_train_model = np.delete(X_train_model, remove, axis=1)\n", + "X_test_model = np.delete(X_test_model, remove, axis=1)\n", + "poly_features = np.delete(poly_features, remove)\n", "print(poly_features)\n", "\n", - "lin_reg = LinearRegression()#Lasso(alpha=0.004)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg = LinearRegression() # Lasso(alpha=0.004)\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", "print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", @@ -435,25 +437,33 @@ "source": [ "array[\"x_l1_rel\"] = array[\"x_l1\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l1_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l1\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -473,25 +483,33 @@ "source": [ "array[\"x_l2_rel\"] = array[\"x_l2\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l2_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l2\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -506,25 +524,33 @@ "source": [ "array[\"x_l3_rel\"] = array[\"x_l3\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l3_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l3\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -539,25 +565,33 @@ "source": [ "array[\"x_l4_rel\"] = array[\"x_l4\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l4_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l4\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -572,25 +606,33 @@ "source": [ "array[\"x_l5_rel\"] = array[\"x_l5\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l5_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l5\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -605,25 +647,33 @@ "source": [ "array[\"x_l6_rel\"] = array[\"x_l6\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l6_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l6\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -638,25 +688,33 @@ "source": [ "array[\"x_l7_rel\"] = array[\"x_l7\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l7_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l7\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -671,25 +729,33 @@ "source": [ "array[\"x_l8_rel\"] = array[\"x_l8\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l8_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l8\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -704,25 +770,33 @@ "source": [ "array[\"x_l9_rel\"] = array[\"x_l9\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l9_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l9\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -737,25 +811,33 @@ "source": [ "array[\"x_l10_rel\"] = array[\"x_l10\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l10_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l10\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -770,25 +852,33 @@ "source": [ "array[\"x_l11_rel\"] = array[\"x_l11\"] / 3000\n", "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"x_l11_rel\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "lin_reg = Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly.get_feature_names_out(input_features=features),lin_reg.coef_)))\n", + "print(\n", + " \"coef=\",\n", + " dict(\n", + " zip(poly.get_feature_names_out(input_features=features),\n", + " lin_reg.coef_)),\n", + ")\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_l11\", lin_reg.intercept_, lin_reg.coef_))\n", @@ -802,42 +892,44 @@ "outputs": [], "source": [ "features = [\n", - " \"tx\", \n", - " \"ty\", \n", + " \"tx\",\n", + " \"ty\",\n", " \"dSlope_fringe\",\n", "]\n", "target_feat = \"z_mag_x_fringe\"\n", "\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", - "X_train_model = poly.fit_transform( X_train ) \n", - "X_test_model = poly.fit_transform( X_test ) \n", + "X_train_model = poly.fit_transform(X_train)\n", + "X_test_model = poly.fit_transform(X_test)\n", "\n", "poly_features = poly.get_feature_names_out(input_features=features)\n", "keep = [\n", - " #\"tx\",\n", - " #\"ty\",\n", - " #\"dSlope_fringe\",\n", + " # \"tx\",\n", + " # \"ty\",\n", + " # \"dSlope_fringe\",\n", " \"tx^2\",\n", " \"tx dSlope_fringe\",\n", " \"ty^2\",\n", - " \"dSlope_fringe^2\"\n", + " \"dSlope_fringe^2\",\n", "]\n", "remove = [i for i, f in enumerate(poly_features) if f not in keep]\n", - "X_train_model = np.delete( X_train_model, remove, axis=1)\n", - "X_test_model = np.delete( X_test_model, remove, axis=1)\n", - "poly_features = np.delete(poly_features, remove )\n", + "X_train_model = np.delete(X_train_model, remove, axis=1)\n", + "X_test_model = np.delete(X_test_model, remove, axis=1)\n", + "poly_features = np.delete(poly_features, remove)\n", "print(poly_features)\n", "\n", - "\n", - "lin_reg = LinearRegression()#Lasso(alpha=0.01)\n", - "lin_reg.fit( X_train_model, y_train)\n", - "y_pred_test = lin_reg.predict( X_test_model )\n", + "lin_reg = LinearRegression() # Lasso(alpha=0.01)\n", + "lin_reg.fit(X_train_model, y_train)\n", + "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"intercept=\", lin_reg.intercept_)\n", - "print(\"coef=\", dict(zip(poly_features,lin_reg.coef_)))\n", + "print(\"coef=\", dict(zip(poly_features, lin_reg.coef_)))\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", "print(\"RMSE =\", mean_squared_error(y_test, y_pred_test, squared=False))\n", "print(format_array(\"zMagnetParams_dSlope\", lin_reg.intercept_, lin_reg.coef_))" @@ -850,13 +942,17 @@ "outputs": [], "source": [ "import scipy.optimize\n", - "def parabola(x, a,b,c):\n", - " return a*x**2 + b * x + c\n", + "\n", + "\n", + "def parabola(x, a, b, c):\n", + " return a * x**2 + b * x + c\n", + "\n", + "\n", "params_1 = np.array([p[1] / params_per_layer[0][1] for p in params_per_layer])\n", "x = [array[f\"z_l{n}\"][0] - array[\"z_ref\"][0] for n in range(12)]\n", "print(params_1)\n", "print(x)\n", - "plt.plot(x, params_1, 'o')" + "plt.plot(x, params_1, \"o\")" ] }, { @@ -869,7 +965,7 @@ "x = [array[f\"z_l{n}\"][0] - array[\"z_ref\"][0] for n in range(12)]\n", "print(params_3**2)\n", "print(x)\n", - "plt.plot(x, params_3, 'o')" + "plt.plot(x, params_3, \"o\")" ] }, { @@ -883,6 +979,7 @@ "from sklearn.linear_model import LinearRegression, Lasso\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import mean_squared_error\n", + "\n", "feautures = [\"tx\", \"ty\", \"dSlope\"]\n", "data = np.column_stack([ak.to_numpy(array[feat]) for feat in features])\n", "target = ak.to_numpy(array[target_feat])\n", @@ -895,7 +992,7 @@ "poly = PolynomialFeatures(degree=2, include_bias=False)\n", "X_train_model = poly.fit_transform(X_train)\n", "X_test_model = poly.fit_transform(X_test)\n", - "lin_reg = LinearRegression() # or Lasso if regularisation is needed\n", + "lin_reg = LinearRegression() # or Lasso if regularisation is needed\n", "lin_reg.fit(X_train_model, y_train)\n", "y_pred_test = lin_reg.predict(X_test_model)\n", "print(\"r2 score=\", lin_reg.score(X_test_model, y_test))\n", @@ -919,7 +1016,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.10.12" }, "orig_nbformat": 4, "vscode": { diff --git a/parameterisations/parameterise_magnet_kink.py b/parameterisations/parameterise_magnet_kink.py index af91a95..5ac84be 100644 --- a/parameterisations/parameterise_magnet_kink.py +++ b/parameterisations/parameterise_magnet_kink.py @@ -7,6 +7,7 @@ from parameterisations.utils.fit_linear_regression_model import ( ) import uproot import argparse +import awkward as ak from pathlib import Path diff --git a/parameterisations/parameterise_magnet_kink_electron.py b/parameterisations/parameterise_magnet_kink_electron.py new file mode 100644 index 0000000..adde60a --- /dev/null +++ b/parameterisations/parameterise_magnet_kink_electron.py @@ -0,0 +1,108 @@ +# flake8: noqa +from parameterisations.utils.parse_regression_coef_to_array import ( + parse_regression_coef_to_array, +) +from parameterisations.utils.fit_linear_regression_model import ( + fit_linear_regression_model, +) +import uproot +import argparse +from pathlib import Path + + +def parameterise_magnet_kink( + input_file: str = "data/tracking_losses_ntuple_B_default_selected.root", + tree_name: str = "Selected", +) -> Path: + """Function that calculates parameters for estimating the magnet kink z position. + + Args: + input_file (str, optional): Defaults to "data/param_data_selected.root". + tree_name (str, optional): Defaults to "Selected". + per_layer (bool, optional): If true also calculates parameters per SciFi layer. Defaults to False. + + Returns: + Path: Path to cpp code file. + """ + input_tree = uproot.open({input_file: tree_name}) + # this is an event list of dictionaries containing awkward arrays + array = input_tree.arrays() + # array = allarray[ + # (allarray.ideal_state_770_x == allarray.ideal_state_770_x) + # & (allarray.ideal_state_9410_x == allarray.ideal_state_9410_x) + # & (allarray.ideal_state_10000_x == allarray.ideal_state_10000_x) + # ] + array["dSlope_xEndT"] = array["ideal_state_9410_tx"] - array["ideal_state_770_tx"] + array["dSlope_xEndT_abs"] = abs(array["dSlope_xEndT"]) + array["x_EndT_abs"] = abs(array["ideal_state_9410_x"]) + # the magnet kink position is the point of intersection of the track tagents + array["z_mag_xEndT"] = ( + array["ideal_state_770_x"] + - array["ideal_state_9410_x"] + - array["ideal_state_770_tx"] * array["ideal_state_770_z"] + + array["ideal_state_9410_tx"] * array["ideal_state_9410_z"] + ) / array["dSlope_xEndT"] + + model_endt, poly_features_endt = fit_linear_regression_model( + array, + target_feat="z_mag_xEndT", + features=[ + "ideal_state_770_tx", + "dSlope_xEndT", + "dSlope_xEndT_abs", + "x_EndT_abs", + ], + keep=[ + "ideal_state_770_tx^2", + "dSlope_xEndT^2", + "dSlope_xEndT_abs", + "x_EndT_abs", + ], + degree=2, + fit_intercept=True, + ) + cpp_ref = parse_regression_coef_to_array( + model_endt, + poly_features_endt, + "zMagnetParamsEndT", + ) + + outpath = Path("parameterisations/result/z_mag_kink_params_electron.hpp") + outpath.parent.mkdir(parents=True, exist_ok=True) + with open(outpath, "w") as result: + result.writelines(cpp_ref) + return outpath + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--input-file", + type=str, + help="Path to the input file", + required=False, + ) + parser.add_argument( + "--tree-name", + type=str, + help="Path to the input file", + required=False, + ) + args = parser.parse_args() + args_dict = {arg: val for arg, val in vars(args).items() if val is not None} + outfile = parameterise_magnet_kink(**args_dict) + + try: + import subprocess + + # run clang-format for nicer looking result + subprocess.run( + [ + "clang-format", + "-i", + f"{outfile}", + ], + check=True, + ) + except: + pass diff --git a/parameterisations/parameterise_track_model_electron.py b/parameterisations/parameterise_track_model_electron.py index 6009809..93c18ae 100644 --- a/parameterisations/parameterise_track_model_electron.py +++ b/parameterisations/parameterise_track_model_electron.py @@ -11,7 +11,7 @@ from pathlib import Path def parameterise_track_model( - input_file: str = "data/param_data_selected.root", + input_file: str = "data/tracking_losses_ntuple_B_default_selected.root", tree_name: str = "Selected", ) -> Path: """Function that calculates the parameterisations to estimate track model coefficients. @@ -26,148 +26,57 @@ def parameterise_track_model( input_tree = uproot.open({input_file: tree_name}) # this is an event list of dictionaries containing awkward arrays array = input_tree.arrays() - array["dSlope_fringe"] = array["tx_ref"] - array["tx"] - array["dSlope_fringe_abs"] = abs(array["dSlope_fringe"]) - array["yStraightRef"] = array["y"] + array["ty"] * (array["z_ref"] - array["z"]) - array["y_ref_straight_diff"] = array["y_ref"] - array["yStraightRef"] - array["ty_ref_straight_diff"] = array["ty_ref"] - array["ty"] - array["dSlope_xEndT"] = array["tx_l11"] - array["tx"] - array["dSlope_yEndT"] = array["ty_l11"] - array["ty"] + # array = allarray[ + # (allarray.ideal_state_770_x == allarray.ideal_state_770_x) + # & (allarray.ideal_state_9410_x == allarray.ideal_state_9410_x) + # & (allarray.ideal_state_10000_x == allarray.ideal_state_10000_x) + # ] + array["yStraightOut"] = array["ideal_state_770_y"] + array["ideal_state_770_ty"] * ( + array["ideal_state_10000_z"] - array["ideal_state_770_z"] + ) + array["yDiffOut"] = array["ideal_state_10000_y"] - array["yStraightOut"] + array["yStraightEndT"] = array["ideal_state_770_y"] + array[ + "ideal_state_770_ty" + ] * (9410.0 - array["ideal_state_770_z"]) + array["yDiffEndT"] = array["ideal_state_9410_y"] - array["yStraightEndT"] + + array["dSlope_xEndT"] = array["ideal_state_9410_tx"] - array["ideal_state_770_tx"] + array["dSlope_yEndT"] = array["ideal_state_9410_ty"] - array["ideal_state_770_ty"] array["dSlope_xEndT_abs"] = abs(array["dSlope_xEndT"]) array["dSlope_yEndT_abs"] = abs(array["dSlope_yEndT"]) - array["yStraightOut"] = array["y"] + array["ty"] * (array["z_out"] - array["z"]) - array["yDiffOut"] = array["y_out"] - array["yStraightOut"] - array["yStraightEndT"] = array["y"] + array["ty"] * (9410.0 - array["z"]) - array["yDiffEndT"] = ( - array["y_l11"] + array["ty_l11"] * (9410.0 - array["z_l11"]) - ) - array["yStraightEndT"] - - stereo_layers = [1, 2, 5, 6, 9, 10] - for layer in stereo_layers: - array[f"y_straight_diff_l{layer}"] = ( - array[f"y_l{layer}"] - - array["y"] - - array["ty"] * (array[f"z_l{layer}"] - array["z"]) - ) - - model_cx, poly_features_cx = fit_linear_regression_model( - array, - target_feat="CX_ex", - features=["tx", "ty", "dSlope_fringe"], - degree=3, - keep_only_linear_in="dSlope_fringe", - fit_intercept=False, - ) - model_dx, poly_features_dx = fit_linear_regression_model( - array, - target_feat="DX_ex", - features=["tx", "ty", "dSlope_fringe"], - degree=3, - keep_only_linear_in="dSlope_fringe", - fit_intercept=False, - ) - # this list has been found empirically by C.Hasse - keep_y_corr = [ - "ty dSlope_fringe_abs", - "ty tx^2 dSlope_fringe_abs", - "ty^3 dSlope_fringe_abs", - "ty^3 tx^2 dSlope_fringe_abs", - "dSlope_fringe", - "ty tx dSlope_fringe", - "ty tx^3 dSlope_fringe", - "ty^3 tx dSlope_fringe", - ] - model_y_corr_ref, poly_features_y_corr_ref = fit_linear_regression_model( - array, - target_feat="y_ref_straight_diff", - features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"], - keep=keep_y_corr, - degree=6, - fit_intercept=False, - ) - rows = [] - for layer in stereo_layers: - model_y_corr_l, poly_features_y_corr_l = fit_linear_regression_model( - array, - target_feat=f"y_straight_diff_l{layer}", - features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"], - keep=keep_y_corr, - degree=6, - fit_intercept=False, - ) - rows.append( - "{" - + ",".join( - [str(coef) + "f" for coef in model_y_corr_l.coef_ if coef != 0.0], - ) - + "}", - ) - - model_ty_corr_ref, poly_features_ty_corr_ref = fit_linear_regression_model( - array, - target_feat="ty_ref_straight_diff", - features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"], - # this list was found by using Lasso regularisation to drop useless features - keep=[ - "ty dSlope_fringe^2", - "ty tx^2 dSlope_fringe_abs", - "ty^3 dSlope_fringe_abs", - "ty^3 tx^2 dSlope_fringe_abs", - "ty tx dSlope_fringe", - "ty tx^3 dSlope_fringe", - ], - degree=6, - fit_intercept=False, - ) - - model_cy, poly_features_cy = fit_linear_regression_model( - array, - target_feat="CY_ex", - features=["ty", "tx", "dSlope_fringe", "dSlope_fringe_abs"], - # this list was found by using Lasso regularisation to drop useless features - keep=[ - "ty dSlope_fringe^2", - "ty dSlope_fringe_abs", - "ty tx^2 dSlope_fringe_abs", - "ty^3 dSlope_fringe_abs", - "ty tx dSlope_fringe", - ], - degree=4, - fit_intercept=False, - ) model_y_match, poly_features_y_match = fit_linear_regression_model( array, target_feat="yDiffOut", features=[ - "ty", + "ideal_state_770_ty", "dSlope_xEndT", "dSlope_yEndT", ], keep=[ - "ty dSlope_yEndT^2", - "ty dSlope_xEndT^2", + "ideal_state_770_ty dSlope_yEndT^2", + "ideal_state_770_ty dSlope_xEndT^2", ], degree=3, fit_intercept=False, ) keep_y_match_precise = [ "dSlope_yEndT", - "ty dSlope_xEndT_abs", - "ty dSlope_yEndT_abs", - "ty dSlope_yEndT^2", - "ty dSlope_xEndT^2", - "ty tx dSlope_xEndT", - "tx^2 dSlope_yEndT", - "ty tx^2 dSlope_xEndT_abs", - "ty^3 tx dSlope_xEndT", + "ideal_state_770_ty dSlope_xEndT_abs", + "ideal_state_770_ty dSlope_yEndT_abs", + "ideal_state_770_ty dSlope_yEndT^2", + "ideal_state_770_ty dSlope_xEndT^2", + "ideal_state_770_ty ideal_state_770_tx dSlope_xEndT", + "ideal_state_770_tx^2 dSlope_yEndT", + "ideal_state_770_ty ideal_state_770_tx^2 dSlope_xEndT_abs", + "ideal_state_770_ty^3 ideal_state_770_tx dSlope_xEndT", ] model_y_match_precise, poly_features_y_match_precise = fit_linear_regression_model( array, "yDiffEndT", [ - "ty", - "tx", + "ideal_state_770_ty", + "ideal_state_770_tx", "dSlope_xEndT", "dSlope_yEndT", "dSlope_xEndT_abs", @@ -177,25 +86,6 @@ def parameterise_track_model( degree=5, ) - cpp_cx = parse_regression_coef_to_array(model_cx, poly_features_cx, "cxParams") - cpp_dx = parse_regression_coef_to_array(model_dx, poly_features_dx, "dxParams") - cpp_y_corr_layers = parse_regression_coef_to_array( - model_y_corr_l, - poly_features_y_corr_l, - "yCorrParamsLayers", - rows=rows, - ) - cpp_y_corr_ref = parse_regression_coef_to_array( - model_y_corr_ref, - poly_features_y_corr_ref, - "yCorrParamsRef", - ) - cpp_ty_corr_ref = parse_regression_coef_to_array( - model_ty_corr_ref, - poly_features_ty_corr_ref, - "tyCorrParamsRef", - ) - cpp_cy = parse_regression_coef_to_array(model_cy, poly_features_cy, "cyParams") cpp_y_match = parse_regression_coef_to_array( model_y_match, poly_features_y_match, @@ -211,14 +101,7 @@ def parameterise_track_model( outpath.parent.mkdir(parents=True, exist_ok=True) with open(outpath, "w") as result: result.writelines( - cpp_cx - + cpp_dx - + cpp_y_corr_layers - + cpp_y_corr_ref - + cpp_ty_corr_ref - + cpp_cy - + cpp_y_match - + cpp_y_match_precise, + cpp_y_match + cpp_y_match_precise, ) return outpath diff --git a/parameterisations/result/track_model_params_electron.hpp b/parameterisations/result/track_model_params_electron.hpp new file mode 100644 index 0000000..e1002c3 --- /dev/null +++ b/parameterisations/result/track_model_params_electron.hpp @@ -0,0 +1,15 @@ +// param[0]*ideal_state_770_ty dSlope_xEndT^2 + param[1]*ideal_state_770_ty +// dSlope_yEndT^2 +static constexpr std::array bendYParamsMatch{-1604.57100708853f, + 66.0556032125645f}; +// param[0]*dSlope_yEndT + param[1]*ideal_state_770_ty dSlope_xEndT_abs + +// param[2]*ideal_state_770_ty dSlope_yEndT_abs + param[3]*ideal_state_770_ty +// ideal_state_770_tx dSlope_xEndT + param[4]*ideal_state_770_ty dSlope_xEndT^2 +// + param[5]*ideal_state_770_ty dSlope_yEndT^2 + param[6]*ideal_state_770_tx^2 +// dSlope_yEndT + param[7]*ideal_state_770_ty ideal_state_770_tx^2 +// dSlope_xEndT_abs + param[8]*ideal_state_770_ty^3 ideal_state_770_tx +// dSlope_xEndT +static constexpr std::array bendYParams{ + 292.25509372378673f, -102.98897190277876f, -3210.784313935311f, + 5496.265661754457f, -296.2025342631322f, 4252.751889560355f, + 621.5026566906829f, 2860.5216504191094f, 25376.702017410385f}; diff --git a/parameterisations/result/z_mag_kink_params_electron.hpp b/parameterisations/result/z_mag_kink_params_electron.hpp new file mode 100644 index 0000000..f840ba6 --- /dev/null +++ b/parameterisations/result/z_mag_kink_params_electron.hpp @@ -0,0 +1,5 @@ +// param[0] + param[1]*dSlope_xEndT_abs + param[2]*x_EndT_abs + +// param[3]*ideal_state_770_tx^2 + param[4]*dSlope_xEndT^2 +static constexpr std::array zMagnetParamsEndT{ + 5182.686831161441f, 751.3593035656784f, 0.013739767853469087f, + -3123.1016408330274f, -41.266857851983644f}; diff --git a/parameterisations/utils/preselection_trackinglosses.py b/parameterisations/utils/preselection_trackinglosses.py new file mode 100644 index 0000000..b66b5a5 --- /dev/null +++ b/parameterisations/utils/preselection_trackinglosses.py @@ -0,0 +1,45 @@ +# flake8: noqa +import ROOT + + +def preselection( + cuts: str = "", + input_file: str = None, + outfile_postfix: str = "selected", + tree_name: str = "PrDebugTrackingLosses.PrDebugTrackingTool/Tuple", +) -> str: + """Function that apply a selection to given data. + + Args: + cuts (str, optional): String specifying the selection. Defaults to "". + input_file (str, optional): Defaults to None. + outfile_postfix (str, optional): Defaults to "selected". + tree_name (str, optional): Defaults to "PrDebugTrackingLosses.PrDebugTrackingTool/Tuple". + + Returns: + str: Path to the output file. + """ + rdf = ROOT.RDataFrame(tree_name, input_file) + rdf = rdf.Filter(cuts, "Selection") + out_file = input_file.strip(".root") + f"_{outfile_postfix}.root" + rdf.Snapshot("Selected", out_file) + return out_file + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument( + "--input-file", + type=str, + help="Path to the input file", + ) + parser.add_argument( + "--cuts", + type=str, + default="pt > 10 && p > 1500 && p < 100000 && isElectron == 1", + help="Cuts of the preselection", + ) + args = parser.parse_args() + preselection(**vars(args)) diff --git a/thesis/MatchingParameterisation.ipynb b/thesis/MatchingParameterisation.ipynb new file mode 100644 index 0000000..d216f70 --- /dev/null +++ b/thesis/MatchingParameterisation.ipynb @@ -0,0 +1,201 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import uproot\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import mplhep\n", + "import awkward as ak\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "mplhep.style.use([\"LHCbTex2\"])\n", + "plt.rcParams[\"savefig.dpi\"] = 600\n", + "# %matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "tree = uproot.open({\n", + " \"/work/cetin/LHCb/reco_tuner/data_matching/parameterisations/sample4/param_data_B_default_thesis_selected.root\":\n", + " \"Selected\"\n", + "})\n", + "allcols = tree.arrays()\n", + "allcols = allcols[allcols.isElectron == 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "zMagnetParamsEndT = [\n", + " 5283.043384741342,\n", + " 28.45437483916609,\n", + " 0.016308934185688337,\n", + " -1668.3602223088105,\n", + " 301.07580662497,\n", + "]\n", + "dSlope_xEndT = allcols.tx_l11 - allcols.tx\n", + "dSlope_xEndT_abs = abs(dSlope_xEndT)\n", + "x_EndT_abs = abs(allcols.x_l11 + allcols.tx_l11 * (9410.0 - allcols.z_l11))\n", + "\n", + "zMagTerm = zMagnetParamsEndT[0] + zMagnetParamsEndT[3] * allcols.tx * allcols.tx\n", + "\n", + "z_mag_xEndT = (\n", + " zMagTerm + dSlope_xEndT_abs *\n", + " (zMagnetParamsEndT[1] + zMagnetParamsEndT[4] * dSlope_xEndT_abs) +\n", + " zMagnetParamsEndT[2] * x_EndT_abs)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "zmag = (allcols[\"x\"] - allcols[\"x_l11\"] - allcols[\"tx\"] * allcols[\"z\"] +\n", + " allcols[\"tx_l11\"] * allcols[\"z_l11\"]) / dSlope_xEndT" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMEAAAOWCAYAAADm+IXMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0EklEQVR4nOz9T2wb2b3nf3/KyfwQYHClkgwMIEhAWsV4tmOR8l09+AGxip1s0yal3t1FWqQ9SyUmrV7NqmWq01pOTMq9uLsrkXa2GbPkBn74rdJiubOdNEsKHhsCZmCyzGCAYAatehZ6yIj6S4kUWZTeL4BoUTp1zpeU3AA/+J5TRhAEgQAAAAAAAIBr7NagCwAAAAAAAACuGiEYAAAAAAAArj1CMAAAAAAAAFx7hGAAAAAAAAC49gjBAAAAAAAAcO0RggEAAAAAAODaIwQDAAAAAADAtUcIBgAAAAAAgGuPEAwAAAAAAADXHiEYAAAAAAAArj1CMAAAAAAAAFx7hGAAAAAAAAC49gjBAAAAAAAAcO0RggEAAAAAAODaIwQDAAAAAADAtUcIBgAAAAAAgGuPEAwAAAAAAADXHiEYAAAAAAAArj1CMAAAAAAAAFx7hGAAAAAAAAC49gjBAAAAAAAAcO0RggEAAAAAAODaIwQDAAAAAADAtUcIBgAAAAAAgGuPEAwAAAAAAADXHiEYAAAAAAAArj1CMAAAAAAAAFx7hGAABs73/UGXAAAAAAC45gjBAAyE67rKZrMaGxvT4uLioMsBAAAAAFxzPx50AQDCx3VdbWxsyHVdeZ6nWq0m3/dlmqYsy9L4+Lii0aji8bhs2z52fTKZlOd5qlQqre/5vi/HcbSxsSHHcej+AgAAAAD0lREEQTDoIoBeKxQKSqfTF74uGo22BTeXZRjGha8xTVP1ev3EnyWTSZVKpQvPWS6XTwypTuL7vlZWVrS6unrhdaLRqGzbViQSUblcVqlUOvZeNoMx13WPXZ9IJFQsFi+8LgAAAAAAnWI7JK6lVCqler2uSqWiRCJx5ljbtlUul1vjeyEIAlWrVeXzeZmmeeo4y7KUz+dVrVZPDcAkqVgsql6vdxRqZTIZVSoV1ev1jgOw5rbEowFYM5xqztd8XeVyWalUqvXaXNfV6uqq0ul0K6w72unVnCcIAlmW1VFdAAAAAAD0Cp1guBHS6bQKhcKx7/ejA8nzPEUikRN/Vq/XzwzJThOLxU7sqMrn80qlUheqLR6Py/O8tu+nUinl8/mO5lhdXVU2mz32fcuyVK1WT7zm6O+DTjAAAAAAwFWjEww3wmlbIy+zZfKiLMtSNBo99v1EInGpAEw6ve6LBGCO4ygSibQFYKZpqlKpdByASQedZ9Vq9dhrqdVqp15z2dcNAAAAAMBlEYLhRjht+12/tuWdtE43a5907UWCJdd1FY/Hj12/tbV1YmDXST07OzttNXDwPQAAAAAgTAjBcCOcFhCNj4/3t5AQ8DxPc3Nzx75fLBYvFYA1NbvIrqNSqXRsyyj+wXGcQZcAAAAAAOciBAP64KSw7fbt2z2dr9NAL5lMHuvSSqVSHR+ifxbLspTJZLqep19c11U6nVYkEpFhGBobG1MkElEsFmvdkbNUKmlxcfHcoMdxnNb11z0U8jxPhUJB8XhchmEc6yoctJv0uwAAAADQuR8PugAA/eM4zokH6udyuZ6tsby83LrLpO/7oTz/y/d9LS4utu5kaVlW6y6inufJdV25rtv6efOaszTDRd/3lU6nT70pwDDzPE/JZFKe54V6u+tN+F0AAAAAuDg6wYAb5KQD9bs5oP8kpmle6ID+QWh2eUkHd9SsVqsqFosqFouqVCqqVqvHOuPOC1JuwtZay7JUqVRUr9dD3fF3E34XAAAAAC6OEAy4IRzHOfFcq+Xl5Z6vlUwmJZ19h8izOI6jZDLZtk0xHo+rUCh0Xdvq6mpri1wmkzkxsLMsS+Vyua1D7rwzwfL5vCzLkmVZKhaLXdcZdmHbAnnYTftdAAAAAOgM2yGBG+K0MKCbw/BPY9u2crnchTtyfN/X3NzcsS2bvu/LcRw5jqNcLtfVIf4rKyutr0/qjDssk8no/fv3Wl1dPTfQs237Rm27G1S3VTqdVj6fP3PMTftdAAAAAOgMnWDADXHSAeG9OAz/NJlM5kLbLD3P0/T09Ilnlh0dF4vFLnXg+WXOssrlcopGo9wdMgQKhUJPugEBAAAA3EyEYMAN4HneiSHOVXSBXYbv+63DzBOJhPL5vCqVisrl8qlnT8Xj8QsHU0cDsE6DtOXl5VAfBH8TeJ53buceAAAAAJyF7ZDADXBaWBSJRPpcycmaYVS5XD7WnWbbttLp9ImhVzKZVKVS6Xgdy7LanmezWc3Pz5/bsda8c2RY73Z53fm+H+ozyAAAAAAMBzrBgBvgtBAsTHfROykAa2oeVH+U67oX2hZpmmZbiOX7vmKxWEcdZUEQEIANQPOcOLajAgAAAOgWIRgwINlsVoZhXOoRi8UutNZpW/nCEuqYpnnu+WSWZbXdrbHppO+d5eh4z/MUiUR6ctaU67pKp9Pndtj5vq9CoaBYLNa2bnPL39jYmAzDUCQS0erq6rHrPc9TNptt3T0zEokonU6f+HturnP0b+ioeDzemu/wo5fbQAuFQts6Y2NjisViJ75G6eD9POmcuMP1nfZed/q7aPJ9X6urq4rH4633v1lfNpvtKITzPE+rq6uKRCJtNR/+HUQikdbWXwAAAAB9FgA3hKRjj3q93pe1U6nUiev38mFZ1oXXL5fLfXn9R2UymbY6bNvu+FrTNI+9jouybfvE9yMajQaVSuVCc1UqlSCVSrXVZZrmsXH1ej3I5XJBNBptWzOfzwdBcPw9OfxIpVKtec4aZ1nWqX/TR/8GTpPL5Tr6N1KpVDr+HRSLxdb7UiwW2+awLOvU2uv1elCpVI7VVKlU2h6H5+vkd3FUPp9vjc/lckGlUgmq1WpQLBbbfl+JROLYtfV6PchkMq3XcbjGer1+7Pd9uK5qtXpubQAAAAB6h04wYEBSqZQqlcqlHvl8/kJrndbxFZZulIt0pJ3UMXbeHSWPKpfLrXO+js4Ti8U67tTxPE8bGxsddxtFo9Fjh7tXKhXFYjG5rqtisahqtap6vd52Q4BCoSDXdRWPx+U4jsrlsur1uur1usrlcuv98zxPKysrJ66dTCY7qvGk96UbjuO01l5eXm6bPxqNqlgsSjqofXFxse1a0zQVjUaP3cCh+b3DP7vo76Ipm80qnU7LNE1Vq1VlMhlFo1FZlqVEIqFKpdKquVQqKRKJtP1t1Go1xePxY3+X29vbmp6ebm3lrVaryufzrd+V7/sc9A8AAAD026BTOKBfFLJOsFwud+n5jnbh6JxOsKOdNM1Hswup3452M53UYXOaZldRL17Hae/LZeY9PNd53UdHu4NO68g72rF2uCPssMPvyWlrl8vljjq36vV6TzvBEonEuX/z583Tae1Nnf4uDneAnfe7PtzpdVrn4uEaTdM88fd69O+3X/8PAgAAAEAnGHAjhL0T7CKO3uFRuvzryGQyqtfrp3Y/Ne9K2cn8J9V1msM3JEilUqeeh3b0joindQAert/3/dD+Xk/7Ozz8/V4cgN/p7yKbzbbWT6VSHY2VDrrbTrohw+HXsb6+fuLv9ejf2vb2dke1AgAAAOgeIRhwA5wWClSr1T5X0r2TgpT37993NV+xWFSlUjm27U46CDzm5uZ6Gix1uv3z8O/tIltGw3QnxfX1deVyORWLxXODJql/wWyhUGit1Ulolkql2n4HF70hw2GH1wvT7woAAAC47gjBgBvgtE6jk7pZwu6kwOL27dtdzxuNRk89b8113WPnVfXDZe/eWavVeltIF0zTVCaTOfUMtoue59Yr5XK59XWnnWOH/x0N478dAAAA4KYjBANuiJO6nDzPC+3WuYu4yFbE86RSKVWr1WMBVKlUCnXwcdnArN88z1OhUJDjOCceet/POi7q6N/Zdfi3AwAAANwkhGDADbGwsHDi98Mc7JzmaODTyxCsOV+lUjm2zkXvyol/aN7dMp/Pn3kOWr8cDrA6DcSO3nkyTB13AAAAAM5HCAb0gOu6SiaTgy7jTKedxzSMwc7RDpxOuokcx1EsFut4DcuytL6+3va9QW3dG3bpdFqxWEyWZXV1llYvXeYw/sM3NJB6H74CAAAAuFqEYEAPLC4uhn5rlGmaJ57L5DjOUIU7R9/nTjuKLMuS67oX6nw7+n5xiPnFpdNpFQoFSd0dJt9rhwOsTu+oebjziwAMAAAAGD6EYECXmiFSPB4/dUyvt01ddr7TQohsNttNOSe6qlBwe3u77Xk6ne7oumZo0en4kwzq/Kp+6uXfquu6rQDMsqxQnVt2dHtws86zHL6b6kmBMgAAAIBwIwQDuuD7fmsb5EU/FL9//76ntXQSXpy2Hc1xHK2urvasFs/zFIvFugqcTnP0rn4Xed8ty5LneR2Hfkc7v047V20YHN3Kd1pI2ctut8Ndd2fNO4guykQi0RbKdbIt+PDrWV5evoqyAAAAAFwhQjDcCFfxIdv3fc3Nzcn3fZmmeeHtUb2uqdP5MpnMiVsIs9lsTw7JdxyndYD4VWx/K5VKra8vep5Z83e0urraUefP4fkty1Imk7nQeqfp9Hd1eNx515z386NdbCe9/pMCwl52hh3+3TV1st7Rf1tHA7XL/ls6fOab53ln/v27rtvaNpzL5ULV1QYAAACgM4RguBFO60K57Af85iHrzQ/F8/PzF16/m3Ch226dcrl8YgdVPB6/dEeY7/tKp9OKx+On3l3xrGs7USgUWq/9MncYPBympNNppdPpU9cuFApt78XhDrSTHP59Dvp8uNPWP/x+ZbNZpdNpOY6jUqmkdDqtSCRyLODp9N/OSWseDd6SyaRWV1dbnYeRSESe57X9XvL5vBzHUTabbc15NARr/t48z2s7c+yk2s76XSQSibagNplMnjje930tLi5KOvi7Oy0M7fT3fvg9HfTfCgAAAHCjBMANkEqlAknHHrZtB9Vq9dzr6/V6UC6Xg0wmE1iWdWyeYrF46rXVavXEtSUF9Xr9Uq8nGo2eOF8+n7/QPJlM5sR5otFoUC6XO5qjXq8HuVwuME2z9Z6e97qOrmua5rnrHH4fbdvuqLaj8vn8ia83kUgEmUwmyOfzQSqVavsdd/o3cvR3ctrfRL1eP/ZenyaRSHT0+y2Xy23jUqnUqWs3f09HH6Zptn7nh8dEo9GgWq0e+512WtvRcYcfuVwuCIKT/30mEom2eU77Wz3ptXb6u2gqFout12yaZpDP54NqtRpUq9Ugn8+3/h6a9Z6k09/B0XGX/VsGAAAAcHGEYLjWKpXKmR/Ce/U4KfSp1+tBPp8/NXSQFFiWFeTz+Y7DsEqlEti2fWYtmUymo9CmqVwunxqqmaYZJBKJIJ/PB+VyOahUKkG5XA7y+XyQy+XarjNN89ywoemkYNCyrFODt8MhxdFw5CLK5XKrzmKxGKRSqcC27SAajbb9npqv+7wgsPn3ddrvOBqNtoKTs8ZalhUkEonW38HRIO5oaNKcs1wun/r3YFnWiUFMvV5vmz8ajQaZTKZtTPN7R/+O6vX6ua/3pDVzuVxrPcuygkwm0/Y3X6/XW6/j8Ht21OEQOhqNtv29XeR3cZp8Ph/Ytt0WiDWvO+3f6Fn/Jg//DqrV6pnjzqsNAAAAQPeMIAgCAddMoVC4kkPZTxKNRlWpVNq+ZxjGhecxTVP1ev3EnyWTyRPPUzpPuVzueMtgqVTSyspKa4tnpyzLUjqdViqVutA5Sc3zp46+LtM0NTs7K9M05fu+tre3W+euFYvFC2+BBAAAAABAkgjBALTxfV+O42hjY0Oe57XOXpIOAq/mTQDu3bunRCJx4RsCnLdec83mOrOzs0omk4RfAAAAAICuEIIBAAAAAADg2uPukAAAAAAAALj2CMEAAAAAAABw7RGCAQAAAAAA4NojBAMAAAAAAMC1RwgGAAAAAACAa48QDAAAAAAAANceIRgAAAAAAACuPUIwAAAAAAAAXHs/HnQB18Xq6qrK5bK2t7fl+74sy1I0GlU6nZZt20O1tuu6yufzchxHnudJkizLUiKR0PLyskzT7PEr+AfP85ROp1Uuly89x7//9/9ef//73/WjH/1I/+E//IceVgcAAAAAALr1P/7H/9APP/ygn/zkJ/pf/+t/9W/hAF0pl8uBaZqBpMC27aBcLgfVajUoFouBZVmt79fr9dCvXa/Xg0QiEUg685HP5y9ca71eP3fe5iOVSl14/sNu3brV8Vo8ePDgwYMHDx48ePDgwYMHj8E8bt261dXn/4sygiAIhEtxHEfxeFySlEqllM/nj42JxWJyXVeWZalSqfSsi6rXa/u+r1gs1ur8Os9pa55mdXVV2Wy2o7HValWWZXU891H/1//1f+n//J//o1u3bmliYuLUcXt7e9rf3z93XK+wHuuxHuuxHuuxHusNy1qsx3qsx3qsx3pXuV5zjn/37/6d/vf//t89rvAMfY3cemBnZyd48eJFsL6+Hnz55ZfBkydPgidPngRffvllsL6+HmxtbQUfPny48jrq9XqrC8uyrFPHVavVVsJp23Zo17ZtO5AURKPRoFgsBtVqtdVVlslkTkxsi8VixzU36z3v0Yv3aHJyMpAUTE5O9mRcr7Ae67Ee67Ee67Ee6w3LWqzHeqzHeqzHele5Xr9rbhqKM8Fevnypcrmszc1N+b7f0TWWZcm2bSWTSd2/f7/nNSWTyVYtZ3U4Nc/SKpVKchxHhUJBqVQqVGsXCgU5jqNMJqNcLnfiHOl0WslkUq7rtn62uLioRCJxbr2FQkG+7yuTybS6104zOzt77nwAAAAAAAAXFeoQ7Pnz58rlcq0tesGhnZuGYZx4TXNMtVqV53kqFAqyLEtPnjzRr3/9657U5XmeHMdpPZ+fnz9z/MLCgkqlkqSD0KqbEOwq1s7lcrJt+1gAdphlWSoWi4pEIq3v+b4vx3HOPXw/l8vJsqwz5wcAAAAAALhKtwZdwElev36tO3fuKJ1OnxiANZ+f9DhpjOd5SqVS+o//8T/qz3/+c9f1HQ5zbNs+95yvw91Svu+3QqkwrO26rjzPU7FYPHftk4Ksw51hJymVSvI8r+PzwAAAAAAAAK5C6DrBlpeXtbq6eizQsm1b0WhUt2/flmVZrfBnfHxcklSr1SQdBD2e5+n9+/etrqnm1sHvv/9e0WhU2WxWX3zxxaVrLBQKra+j0WhH11iW1Qr0NjY2OtpG2I+1NzY2lEqlOj6w/2jX1/v3788cv7KyItM0z+1YAwAAAAAAuEqhCcEajYbm5uZUqVQkHYQt8Xhctm1rZmamq7k/fPigjY0NFQoFua6rXC4nx3HkOI5GRkYuNNfRzqd79+51dF00Gm0FUZftBLuKtRcWFi50J8ajwdvh7ZFHua7bqnlsbKx1Tls8Hr90CAgAAAAAAHAZodgO+d1332l6elqVSkWpVErValWvXr3S48ePuw7AJGl0dFSpVErb29v6/vvvdf/+fW1vb2t2dlZ/+9vfLjTX4fO4JHUcIB0dd942wn6tHY1GO+4Ck3TsxgRn1XB0C2TzjLZkMinDMI4dtA8AAAAAAHBVBh6CvXnzRtFoVNPT06pWq3r27Jmmp6evbD3LslQul/Xq1Sv9z//5PxWLxdRoNDq+/ttvv2173mmAdPv27bbn29vbHa8ZhrWbmh1lTacdin/0AP+TlEolxWIxpdPpS9cDAAAAAADQiYFuh9zZ2dHc3JwSiYQ2Nzf7urZt29rZ2VEsFtP8/Lz++Mc/dnTd0RDost1Y1Wq1s0JDsnbT4QDtrLtcWpalfD4v3/dVrVblOM6x+psKhYK2t7dbW2H7ZWlpSY1G48JbYlkvHOv123V/P6/7ev123d/P675ev1339/O6r9dP1/29vO7r9dt1fz+v+3r9dt3fz+u+Xr8N8+szgqMn0PfRz372M9m2rWfPng2qBPm+r9nZWT169Ei/+c1vzh0/NjbWtiWw07evVCopmUy2nqdSKeXz+QvVOsi1m2KxWGsLY7VavdB5Yr7vq1AoaGVl5di2SukgmCyXy5eq67CpqSm9e/dOk5OTevv2bdfzIZz4PeMi+HvBRfD3govg7wWd4m8FF8HfCy5iGP9eBlXzwDrBnjx5IsuyBhqASQdbCre3t2VZlubm5nT37t0zx58U3nS6zmHNu1lexCDXlg460ZoBWC6Xu1AA1qwjk8kok8moVCppcXGx7TU5jqPV1VVlMplL1XfU3t6epqamup5naWlJS0tLPagIAAAAAIDhtba2prW1ta7n2dvb60E1FzewEOz27dsqFouDWr6NaZra2tqS53nnhmC9ctlAa5Br53I5SQdbHbsNqhKJhGzb1tzcXNvh+CsrKz0Lwfb39/Xu3buu57nImXEAAAAAAFxXjUajJ5+zB2VgIdjjx48HtfSJZmZmOroTpWmaPQmwLnJHxjCs7bquCoWCTNPsyZbFZh2VSqVti6Xv+3Ic59QD9y/i1q1bmpiY6HqeYdznDAAAAABAr42MjGhycrLrefb29rS/v9+Dii5moAfj99OjR4/0+9//vut5xsfHexJEjY+PD9Xai4uLkqStra0Lb4M8z/r6umKxWOt5uVzuSQg2MTExNPuhAQAAAAAIu14dF9Q8E6zfbvV9xQEpFAra3d3tep7LdFFJx7cgXrYTbBBrp9Npua6rYrGoaDR6qRrOEo1G20Kv0+4iCQAAAAAAcFk3IgTb2tpSEAR68eJF13PNzs62Pe+0M+voYfSRSGQo1i4UCioUCsrn80okEh1fd1HxePzK5gYAAAAAABjIdsiHDx9qZ2fnytep1Wryfb/VWfTs2TP95je/6WrOw9v2pIOupU66o6rVatvzy2z36/fajuMonU4rn88rlUp1XuglHN5ieZntmgAAAAAAAGcZSAjWPFzdMIwrXScIgrbnnufpu+++6+oOkEe7sToNog53bZmmealztfq5tuu6isfjyuVyVx6ASe0h2GW3feJmWVpaUqPR4MYF6Ah/L7gI/l5wEfy9oFP8reAi+HvBRfD30jkjOJoU9cGbN28Ui8U6DsGCIOg6MGvOkc1m9cUXX3Q119jYWCtYymQyyuVy515z+A6Itm1f+g6L/Vjb8zzFYjGlUqmO5u+FQqGgdDotqfuD8ZsH7E1OTnIwPgAAAAAAITOoz+0DORNsZmam1fkTBMG5D8MwOhp32qMpCAIVi8Wu65+fn2993QyXznN4XDabDe3alwnAPM/T6upqR2NPc3jLZi/uDAkAAAAAAHDYwA7Gn5ubk3Rw7tT+/v6pj1wupyAIFI1GVS6XVa/Xzxx/9LG9va3p6Wml02nt7+/rL3/5S9e1NzuWmvWf5/AYy7K6Cnmucm3f9xWPxzU/P3+hDrBkMtl1cFUqlSQddLcBAAAAAAD02kDOBJMOOppc19X9+/dPHbOzs6MnT54onU7r97///aXWiUajevXqlX72s5/JMAz91//6Xy9bctuctm23AqZSqXTmnRMPd5+d14lVKBRUrVaVTqdPPLvrqtb2fV+xWEyWZSmbzbZuJnAWz/Nac3ZyNtlpSqWSPM+TaZpaXl6+9DwAAAAAAACnGciZYE0ff/yxXr16derPHz58qK2trZ51bz1//lyO4+jnP/951/N5nqdIJCLpIACqVConjvN9X2NjY5LOP48rHo+3dW7V6/UTD4m/irUPnxt2UUfvHuk4jpLJpHzfl23byuVyp4Zkze2Xvu+rUql0FaY1cSYYAAAAAADhdaPOBGs6KwCTpO3t7bbtf92YnZ1VEATK5/M9mc+yrFaXleu6p56J1dz2aZrmueeRHd3euLm52Ze1uwnAJB27e2SxWGwd3u84jmKx2Im/x+bPxsfHVa1WexKAAQAAAAAAnGSgIdh5XNftWTAyPj4uSZe+K+NJEomEyuWyTNNUNptVMpmU67ryfb8V8DRfw87OzoldXYcd/flJ2yF7vXbzuss6GoA15zyqUChobGxMyWRS6XRasVhM8XhcqVRKlUrlzNcKAAAAAADQrVCHYKZpamdnpydzNcOvZodSr9i2rXq9rlwuJ8/zNDc31wp7xsfHVSwWValUzg3ApIMOKsuyZJqmMpnMuYfN92LtYrHY1Z03T+qss21b1WpVqVSq9XqaXNdVrVbT8vJyq/ZO3hsAAAAAAIBuDPRMsPN8/PHHqtfr+vbbb7ua58OHD62zscbGxvT+/ftelIeQ4kwwAAAAAADC60aeCXae5la5r7766tJzNBqNVkeVYRhsuwMAAAAAALiBQh2CJRIJTU9PK5PJ6NNPP9Xu7u6Frn/58qWmp6fbzrxaWFjocZUAAAAAAAAIu1Bvh5Qkz/P0s5/9TIZhSJKi0ajS6bQsy5JlWfroo48kSbu7u/J9X57nqVwua3NzU77vKwgCGYahIAjYCnlDsB0SAAAAAIDwGtTn9h/3baVLsixL29vbmp2dlXRwsHo6nT73uma21wzPDMNQsVi8ukIBAAAAAAAQWqHeDtkUjUb1/fffa2ZmpuO7FhqG0eoAC4JAm5ubun///qBfCgAAAAAAAAYg9J1gTZZlqVKpqFQq6enTp23nfEn/6PhqdoA1/5tIJLS+vq7R0dH+FgwAAK7M3zf+tSfz/GThX3oyDwAAAMJvaEKwpkQioUQioZ2dHTmOo0qlIs/zVKvVJEnj4+OyLEvxeFy2bRN+AQAAAAAAYPhCsKbp6WktLi5qcXFx0KUAAAAAAAAg5IbiTDAAAAAAAACgG9cyBFteXtZf//rXQZcBAAAAAACAkBi6EOzly5d69OiR7t27p5cvX544JhaLaWZmRp9++ilhGAAAAAAAAIbnTLDf/e53WllZke/7re81D8M/KpFIyLZtzc3NybIslUol/epXv+pTpQiLvb09TU1NnTlmaWlJS0tLfaoIAAAAAIDrbW1tTWtra2eO2dvb61M17UIfgn348EGzs7PyPE9BELS+bxjGmdeZpqlKpaJYLKZEIqFCoaBf//rXV10uQmR/f1/v3r07c0yj0ehTNQAAAAAAXH+NRuPcz+KDEvoQLJlMqlqtyjCMVvB1OAw7z9bWlsbHx5VKpWRZln7+859fVakImVu3bmliYuLMMSMjI32qBgAAAACA629kZESTk5Nnjtnb29P+/n6fKvqHUIdgW1tbchxHhmG0gi/TNDU7O6utra2O5jBNU48fP9aXX36pdDqt//7f//tVlowQmZiY0Nu3bwddBgAAAAAAN0Ynxw5NTU0NpFss1Afj5/N5SQedX6lUStVqVbVaTa9evbpQN9inn34qSapWq/r666+vpFYAAAAAAACEV6hDsGYXWKFQ0LNnzzQ9PX2peSzLan396tWrXpUHAAAAAACAIRHqEMz3fVmWpc8++6yreQ7fRdJ13W7LAgAAAAAAwJAJdQhmmqai0WjX8zSDryAI5Hle1/MBAAAAAABguIQ6BLMsS77vdz3PyspK62vTNLueDwAAAAAAAMMl1CHY3Nyctre3u5rjyy+/lOu6MgxDUvv5YAAAAAAAALgZQh2CLS8vq16v66uvvrr09U+ePJFhGAqCQIZhaGFhocdVAgAAAAAAIOxCHYKZpqnHjx8rk8no888/V6PROPeaRqOh58+f686dO1pdXVUQBG0/T6VSV1UuAAAAAAAAQurHgy7gPLlcTq7r6unTp8rlcorH47JtW5JUqVQ0Pj6uWq2marUqx3HaDsGX1NoGKUnPnj3TyMhI/18EAAAAAAAABsoIjrZKhVQ6ndb6+npbqHWSo+FX83k+n9fi4uLVFolQmJqa0rt37zQ5Oam3b98OuhwAwBX4+8a/9mSenyz8S0/mAQAAQOcG9bk99J1gTfl8Xul0WtlsVltbW8d+3gy9mud/NcMv27aVz+c1PT3d13oBAAAAoNeefvN60CUMpSc/vz/oEgCEwNCEYJIUjUZVLpe1s7Mjx3FULpfleZ5831etVtP4+LhM05RlWYrH45qfn9fo6OigywYAAAAAAMCADVUI1jQ9Pa3FxUW2NwIAAAAAQsnzPEUikZ7Pa9u2yuVyz+cFboKhDMEAAAAAABg20WhUlmW1nvu+L8dxWs9N02zdCK75c8/z5Hle63u1Wq0/xQLX0LUMwXZ3d+W6rkzT1OzsLHeEBAAAAAD0le/7ra8zmYyWl5dlmmbbmKPdYpZlqVgsHpvLdV0tLi7Kdd2rKhe4Ea5VCLa7u6tkMnnsfwyxWEzFYlE//elPB1QZAAAAAOAmsm1buVyuqzmi0aiKxaIikUhbuAbgYm4NuoDzfPzxx7p3757u3LmjO3fu6Pbt21pYWDg27s2bN4rFYnJdt3V3yOZje3tbkUhE33zzzQBeAQAAAADgpmluW8zn8z2Zz7IsZTKZnswF3FShD8FM01SlUtH79++VSqW0vb2tjY2NtjEfPnzQ3Nyc6vW6JMkwjNa1tm3Lsizt7+8rmUz2vX4AAAAAwM1kWVbbGWDdisfjnAkGdCH0IZjruspms6rVanr8+LGmp6ePjVlcXJTv+zIMo9X9lcvlVKvV9OrVK33//fd69eqV9vf39fnnnw/gVQAAAAAAbpLx8XGl0+mezmnbtubn53s6J3CThPpMsC+//FLRaFQrKyunjnnx4oVKpVIrADMMQ0+fPtXjx4/bxtm2radPn+rFixdXXTYAAAAA4IaLRqOKRqM9n7dX2yuBmyjUnWCFQuHczq3FxcXW9kfDMBSNRo8FYE0LCwva3t7ueZ0AAAAAAAAIt1CHYNVqVXfv3j31548ePWrdGSMIAknS+vr6qeNHR0db4wAAAAAAGGa+76tQKCgWi8nzPEmS53mKx+MyDEORSESO47TGGIbR9jgqHo8rEokcG3feHSl931c2m227NhKJKJvNXsXLBi4t1CGYZVna3d098Wdv3rxRPp9v2waZSqXODM3evHmj2dnZqykWAAAAAIAr5vu+SqWS4vG4xsbGlE6n5bqupIMztWOxmBzHkXQQiKXTaaVSKVUqFaVSqTPnLpfLqlaryuVyHddTKBQ0PT3dWiuXy8m2bXmep9XVVUUikVZ9wKCFPgQrFArHvv/hw4e2Oz0ahiHLsvT73//+zPm2trZIogEAAAAAQ2tzc1PffvvtsbtEep6nZDKpVCqlRCLR+r5pmq2vD3+OPsvh68+STqeVTqdVLBZVLBaVyWSUyWRULpdbQZrneW2dasAghfpg/FQq1brzxZMnTyRJjuMom83K87y2LrBisXjmXG/evNHKyorev39/5XUjHPb29jQ1NXXmmKWlJS0tLfWpIgAAAADoTrObq9n11ZROp1Uul2VZliSpVCqpXC5fqhFkfHz83DGFQkGFQkGZTEa2bR/7eSaTUT6fb4Vfzfpw/a2trWltbe3MMXt7e32qpl2oQ7BEIqG5uTnlcrm2dsxm8NU83+vZs2dnboN8/vw5HWA30P7+vt69e3fmmEaj0adqAAAAAKB3mmFXUzqdbvteIpHouKPrMpqfsdPp9KljbNtu7e5yHEee5x2rG9dPo9E497P4oIQ6BJMO0uvPPvtML168aPt+EAQyTVPr6+t68ODBseu+++47bWxsqFQqyfO8VnD2hz/8Qb/61a/6VT4G6NatW5qYmDhzzMjISJ+qAQAAAIDeObzNUdKJ3VhXpVAotA7L933/1DO/jtboOM6555Jh+I2MjGhycvLMMXt7e9rf3+9TRf8Q+hBsdHRUxWJRW1tbKpfLcl1Xpmnq3r17SqVSGh0dPXbN+vp6a3vk9PS0pqenWz/705/+RAh2Q0xMTOjt27eDLgMAAAAArtzRwOkqHT6O6PCWzPNUKpWrKAch08mxQ1NTUwPpFgt9CNY0Nzenubm5jsYuLi5qcXHxiisCAAAAAODm2d7eliRFo1GCLQyVUN8dEgAAAAAAhMvhrZDAMLlRIdju7u6gSwAAAAAA4FrwPI8gDEPlRoVgyWRy0CUAAAAAAHBtbG5uDroEoGM3KgTzPG/QJQAAAAAAEGq1Wu3Mnx++E2Uul+t43lgsxudyDNSNCMEajYYePnxImyYAAAAA4MYaHx9ve37aZ+TzgqrDu6w8z1M6nT537WQyKdu2ZVnW+YUCV2RgIdjOzo7u3bun27dv6/PPPz9xzOzsrG7fvt3V40c/+pHGxsZUKBT6/AoBAAAAADjd0RDqIo0bl7k2Go22PT/pc7Lnecpms23fO9oZlkql2sKsQqGgZDJ5YnjmOI5isZhc171Q1xhwFX48qIWTyaRc15V00D45OzurTz75pG1M8x8KAAAAAADXzfb2dtvz87YhnqXTa23bluM4kqRsNqtqtapkMinf91Uul1UoFFQul1vfkw6CsaMdXPl8XvF4vPW8VCqpVCrJsqzW2O3tbfm+L8uyVKlULv3agF4ZWCeY67oyDKP1/KTE+OHDh5IkwzDaHp26zDUAAAAAAFw1z/OOdUb5vn+sC+s0R7u48vl8R9cVi0WZptk2TzweVzKZ1ObmpsrlctuZX9JBWHb0TpC2batSqbTNJR28Lsdx5DiOfN8/dRwwCAPrBFtcXNT6+nrreSKRODZmZmZGpmnqw4cPCoJApmlqfHy84388vu+rVqtxFhgAAAAAIBSSyWQrIDrJ6uqqVldXZVmWcrncsc/K2WxWhULh2PWlUkljY2OybVvpdPpYkNVkmqZ2dnaUzWblOI48z1M0GpVt222hnGVZrblOO8crGo2qXq+35mru5IpGo7IsS8vLy8e2YAKDZARBEAxq8VKppO3tbaXTaU1PT584JpvN6ne/+50qlYru3r176bWa8/zwww+XngPDYWpqSu/evdPk5KTevn076HIAAFfg7xv/2pN5frLwLz2ZBwAAAJ0b1Of2gd4dMpFI6OnTp6cGYJL06aefyrKsrgIw6eDcsdHR0a7mAAAAAAAAwHAaaAjWiZmZmZ6FV9yKFQAAAAAA4GYKfQgmSVtbWz2Z5/AZZAAAAAAAALg5hiIE61UnGHeJBAAAAAAAuJmGIgTrlcXFxUGXAAAAAAAAgAG4USGY53mDLgEAAAAAAAADcO1DsEajod3dXc3Pz8v3/UGXAwAAAAAAgAH48SAW/fDhg8bHx/u6ZhAEnAkGAAAAAABwQw2kE2x0dFR3795VEAR9ewAAAAAAAODmGth2yE8//VTSwR0br7pDiw4wAAAAAACAm20g2yElybZtSQfbFC3LkmVZMk2z5+v4vi/P8zgUHwAAAAAA4AYbWAg2MzMj0zQVj8e1sbFx5esVCgU9evToytcBAAAAAABA+Az07pC2bSsej/dlrVQqpdHR0b6sBQAAAAAAgHAZaAjWrwCsaXZ2tq/rAQAAAAAAIBwGth1SkhYXF/Xhw4e+rffq1au+rYXB29vb09TU1JljlpaWtLS01KeKAAAAAAC43tbW1rS2tnbmmL29vT5V026gIZikvmxR/PDhg54+faqVlZUrXwvhsb+/r3fv3p05ptFo9KkaAAAAoHt/3/jXQZcwlH6y8C+DLgG4MRqNxrmfxQdl4CFYP4yOjqpcLmtra0t/+tOfBl0O+uTWrVuamJg4c8zIyEifqgEAAABwkziOo2QyKd/3OxpvWZZM05Rt27p3754SicTVFtgnvu9rc3NTs7Ozikajx37efJ/Gx8eVz+dl2/YAqgyH896rYTEyMqLJyckzx+zt7Wl/f79PFf3DjQjBpIPzwNbX1/X555/riy++GHQ56IOJiQm9fft20GUAAAAAuIFs21a9XpfneUomk3Jdt+3nmUxGt2/f1vv37+X7vra3t+W6bmucaZpKpVLK5XKDKL8rnuepVCqpXC7LcRxJUj6fPzHYaQaFvu8rnU6rWq32u9yBush7NSw6OXZoampqIN1iQxeC7e7uyvd91Wq1jq9xXVfFYlFBECifzxOCAQAAAAD6wrIsLS8vK5lMtn3vpHDL8zxls1mVSiX5vq/V1dVWQGJZVj/LvrRSqaSNjQ25rivP884dPz4+3nG33HVz0fcK3RuKEOzly5fK5/OtVLQbN/UfFwAAAABgMI4GWKZpnjquWCwqnU6rUChIUquTrFKpXHWZPZFIJFpbOQ3DOHd8Pp9XOp2WJBWLxSutLWwu+l6he7cGXcB5vvzySyWTSTmOoyAILv2QDv6ohrmlEAAAAAAwfE4LvU6Tz+fbgjPXdVuh2DDppHvNtm1Vq1VVq9W+fl5vBm9hMSydfsMu1CHYmzdvlM1mJakVZB3WaVJqGIaCIND09LTW19d7WiMAAAAAAL129ID4m9YldZUKhcJQhoroXqi3Q+bzeUkHd3dMpVKKRCKtdLRer2t+fl5jY2Pa3Nw88Xrf9/Xq1Ss9f/5cruvq7t27/SodAAAAAIBLi8Vibc85M6o3PM8LXRcY+ifUIZjjOIpEIvrLX/5y4s8XFxf1/PlzRSIRffTRRyeOefDggSTpyZMn+uMf/3hVpQIAAAAA0DNHt8dd5OZwOJnv+4rH44MuAwMU6u2Qnue1usFO8uTJEwVBoNXV1TPnyWazevXqlb766qtelwgAAAAAQM+5rtv2nDOjuuP7vubm5uiou+FCHYJJ0uzs7Kk/m56e1tzcnPL5vBqNxqnjLMvSzMyMMpnMmeMAAAAAAAiDb7/9tu35wsLCsTG+76tQKCgWi7XCHc/zFI/HZRiGIpGIHMc5cX7f95XNZhWJRGQYRmt881zuTvi+r9XVVcViMY2NjWlsbEzxePzcRpWjXNdVOp1WJBLp+JpSqaR4PK6xsbFW7fF4XKVS6cT5p6enjwWLzdfdvP40YXqv0J1Qh2DRaPTcls9sNqsgCPTkyZMzx927d09BEOjp06e9LBEAAAAAgJ5yXfdYmJNKpSQdhCmHA6B0Ot0Kd1zXVSwWawVfp51/VSgUND093fp5LpeTbdvyPE+rq6uKRCLHAqOjSqWSpqenlc1mZdu2isWiKpWK0um08vm8IpHImZ/nm8HX2NiYYrGYCoVCR1s+m69xcXFR8XhcxWJR1WpV2WxWjuMomUwqEom0dXxZlqWtrS3lcrm2uSqVSutx2o0HwvBeoXdCfSaYZVkqFAr64osvTh1j27ZmZmaUz+eVTqf1n/7Tfzpx3Pb2tqSDO2qcNR8AAAAAAIPieZ6SyWTb98rlskzTlCRtbm6qWq0eC02aIU0qlZLnea0QrXldUzqdVqFQULlcbrsDZSaT0erqqrLZrDzPUywWU7VaPXEbZqFQUDqdlmmaqlQqikajrZ9ZlqVEItHWnXbSa9zY2LhQ59fhdaPRqHZ2dtpeWyqVUrlcVqlUatVfr9db78FJTTaH6z5JGN4r9FaoO8Hm5+eVy+X01VdfaXd3V69fv9br16+PjVteXlYQBIpGo/rDH/5w7OdffvllK5nlDwsAAAAAMEi+78v3/dZzz/NO7GIyTVPFYrEtgEmlUsrlclpfX2+bM51Oq1wuK5fLqVgsqlgsKpVKtXU4FQoFFQoFZTKZtjmbMplMW5BzUhdZs4NLknK53KlB0mmdVdJB+JPL5ZTJZLS8vHzquMNKpVJr3a2trWPh3tF6fd8/dStoJ8LyXqG3Qt0JlkgkNDIyokwmo0wm0/p+LBbTn/70p7Zxc3Nz2traUiKRUDQabZ0l5jjOsTZIAAAAAAAGxfM8jY2NnfrzZofQ8vLyiWFPc8xh6XS67XuJREKJRKJtTPMMq5MCmybbtlUoFCT94/P04XkXFxclHQR0zS2ap9VnmmZb2NfJ6zhNc91cLnfqe2LbtmzbluM4Mk2zq8//YXyv0L1Qh2CStL6+rvn5eRmGoSAIJB3s2/3uu+909+7d1rh8Pq+f/exnkg7S1mbnV/Ma6eDQu/PaHQEAAAAAuEqmaWp5eVnv379vfe/27duyLEuWZXX0ufVoEHRSt9JhhUKhFbL4vn/qOVZH53UcpxXgOI7Tuu689SRpfHy8J8HO4drPW7dcLh8Lo7pZb9jeK5wt9CFYIpHQ5uam5ufnW98zTbMtAJMOktNXr17p448/lmEYre83vw6CQKZpHmsZBQAAAACgnyzLatvt1AundUc1Hd5yF4vFOp63UqmcOEc/d1kdXreTgLDb2ob5vcLZQh+CSQdBWL1e1+bmpnzfP7WN0LZtff/990qn09ra2mr7WTQaVbFY1MjISD9KBgAAAAAgNJo3i4tGo21hzUUcPmProofad6NZe7/XG8b3CmcbihBMkkZHR1v7ac9iWZbK5bI+fPjQ+sO1LEvT09NXXSIAAAAAAKF0eHvfZR2+u2I/t+4dXsv3/XO73nq13jC+VzhbqO8O2Y3R0VHNzc1pbm6uFYDt7u4OtigAAAAAAAbI87xLhzKHr6tWq70p6IL62RU27O8Vjru2IdhJzrqrAwAAAAAAN8Hm5ualrjt8tpXneb0q51yHO78On7XVD8P2XuFsNyoE6/c+YgAAAAAAwuDwHQpzuVzH18VisVaIc/hQesdx+rbN73DthUKho1DJ8zwlk8mu1xu29wpnG8oQbHd3V999913Hj5cvX+oXv/gFf3QAAAAAgIEbxGfTw4GQ53kd7ZRKJpOybbvV1bSwsND282w229siT3G01mQyeeZ76Hme4vG4lpeXL7XeML9XONtQhGC7u7t69OiR7ty5ox/96EeKRCKKxWIdP5LJpMrl8qBfBgAAAAAAPXE0BDovWEulUm1b9AqFgpLJ5IldVY7jKBaLyXXdtk6oRCLR1uFUKBRUKBROXM913ba5uzkXy7ZtJRKJtrmnp6dVKpWOjS0UCorFYkqn0221Su1bFKXj2xSb7+Ewv1c4W+hDsOXlZUUiERUKBVWrVQVBcKkHAAAAAACD4Lpu2/OrOCPq8N0IT5PP59uel0olRSIRRSIRxeNxxeNxjY2NKR6Py/d9VSqVY3McPZMrnU4rnU63XpPneVpdXdXc3FzbWV6rq6tKp9PHOqI6vYvi+vp623y+7yuZTMowjNZrMAxD6XRatm0rk8kcm+NoCJZOp+X7fqvb63BIFcb3Ct0LdQj24sUL5XK5VohlGMaAKwIAAAAAoHO+72tlZeXY97u9cdvRrqKjoc1JbNtWpVJpC1ykgzDGcZzW2VWnjZMOgqRqtXqsU6oZQkUiEa2srGhra0vj4+Nt15mmeex1nxQ2ncQ0TVUqlWNBVrP+ZrCUy+XOPDz/cDjmOI7GxsYUiUSO/SyM7xW6ZwQhbpOanZ2V67oyDENBEMiyLEWj0dYf0O3bt8+d4/379/J9X5ubm/rw4YN++OGHqy4bAzY1NaV3795pcnJSb9++HXQ5AIAr8PeNf+3JPD9Z+JeezAMA/dKr///dNIP4/73jOG1dP6exLEu5XK5tu99ZstmsCoXCiV1TpmnKtu1WN9R58ziO0+pSa37WXl5ePraN8DSrq6va2NiQ53nyfV+WZcm2beVyOZmmqXg8Lsuyjm1NdF1XKysrpx4YH41GtbCwcGI3l3QQJOXz+da60WhUs7OzymazJ4ZkJ732Uqkkz/MUjUa1vLx85vs/yPfquhrU5/ZQh2C3bt1qdX+9evVKc3Nzl57L8zzduXOHEOwGaP5junXrliYmJs4cu7S0pKWlpT5VBgDoFUIwAACAcFpbW9Pa2tqZY/b29rS/v9/3EOzHfVvpEkzT1IcPH5TJZLoKwKSDdH16erpHlWEY7O/v6927d2eOaTQafaoGAAAAAIDrr9FonPtZfFBCHYJZlqU3b97o3r17PZmvkz3SuD466QQbGRnpUzUAAAAAAFx/IyMjmpycPHNMsxOs30Idgs3NzenNmzcd3eWi0/lwc0xMTHAmGAAAAAAAfdTJsUPNY4z6LdR3h/z8888VBMGx28le1vPnz3syDwAAAAAAAIZLqEOw0dFRPX36VBsbG/rb3/7W9XxshwQAAAAAALiZQh2CSVImk1E0GlUymexqnp2dnZ51lAEAAAAAAGC4hPpMsKZyuazZ2VnduXNH2WxW4+PjHV1Xq9Xk+76q1ao2NzevuEoAAAAAAACE1VCEYK9fv5YkVatVpdPpS80RBIEMw+hlWQAAAAAAABgSoQ/BHj16pEKhIEkyDENBEFx4DsIvAAAAAACAmy3UZ4Ktr68rn8+3gq/LBGDdXAcAAAAAAIDrIdSdYM27OTY7wGzbVjwel2maFz4X7NmzZ9rd3b3CagEAAAAAABBWoQ7BXNeVYRgyTVPb29uanp6+9FyLi4u6fft2D6sDAAAAAADAsAj1dkjTNCVJy8vLXQVgzblmZmZ6UBUAAAAAAACGTahDsFgsJkmyLKsn862vr/dknpOsrq4qHo9rbGxMhmEoEokomUzKcZwrW/Oq1nZdV+l0WpFIRIZhtObMZrPyfT80dQIAAAAAAHQq1CFYOp1WEATyPK8n811FJ5jjOBobG1M2m5UkFYtFVatV5XI5ua6reDyueDzeVXjUr7V931cymVQsFlOhUGh73z3P0+rqqsbGxlp36xxUnQAAAAAAABdlBCG/dWIsFtOtW7f07bffdj3Xy5cv9cknn/SgqgOO4ygej0uSUqlU6yD/w2KxmFzXlWVZqlQqrS2eYVvb933FYrGOA8fT1rzqOjsxNTWld+/eaXJyUm/fvu1qLgBAOP194197Ms9PFv6lJ/MAAACgc4P63B7qTjDpoGuoUqnoD3/4Q9dzrays9KCiA82uKelgu+ZpgVCxWJR00EnVHB/GtZPJpDzPUzQabXVqVatVFYtFZTKZY+MLhYJKpVLf6wQAAAAAALiM0IdglmXp2bNn+uyzz7qa58OHD3Jdt0dVHYRGze17zW1+J7EsS4lEQtJBV9RFtxL2Y+1CoSDHcZTJZFSpVJRIJGRZVuv6XC6narWqaDTadt3i4mJf6wQAAAAAALisUG+HfPnyZevrTCYjwzBaYclF+L6vzc1N+b6vH374oeu6PM9TJBJpPa/X62du4SuVSq0OJ9M0Va/XQ7V2JBKRZVkql8sXWluSyuWybNvuS52dYjskAFx/bIcEAAAYXoP63P7jvq10CV988YXevHnTeh4EgVZXVy81VxAEMgyjJ3XlcrnW17Ztn3uG1eHgzvd9lUqlS4V5V7G267ryPE+VSuXctS3LUi6Xa+vqcl33xBBskO8RAAAAAADAUaHeDjk/P68gCNRsVutViNWtw9v1jm4RPI1lWa2vNzY2QrP2xsaGUqlUx4fRHw283r9/35c6AQAAAAAAuhHqECydTks6CL+aYdhlH71y9Fyxe/fudXTd4SDovAPl+7n2wsJCW9fWReaSdGx7pDTY9wgAAAAAAOAkod4OOTo6qmg0qjdv3iiXyykajWp8fPzC83iepy+++ELfffdd1zU5jtP2/HD30lmOjnNdt+MOqatc+6I1NA+6P6uGQb5HAAAAAAAAJwl1CCYddCpFIhE9fvz40nPMzMzowYMHlwrQjvr222/bnne6jfD27dttz7e3ty8c8Axy7SbP89qen3QeWBjqBAAAAAAAOCzU2yGlg5ClV9sZZ2dnu57jaAh02S6narU6VGs3bW9vt75OpVInjglDnQAAAAAAAIeFPgSbmZm50JlVZ+nFPEcDnss6uq0w7Gs35fP51teH7xJ5WBjqBAAAAAAAOCzUIVij0dCjR4/08OFDffXVV13PNzMz0/Uclw1mjm4JrNVqQ7W2dBBuNQ+9z+Vyp3Z4DbpOAAAAAACAo0J9JlgikdDW1paCIJDjOJqentYnn3wy6LJ6YpBdTpddu9lJZ1mWMplMDys6Wbfv0d7enqamprquY2lpSUtLS13PAwAAAADAMFtbW9Pa2lrX8+zt7fWgmosLdQjmOI4Mw2g97/SA9atkmmZPAqzLvJZBru26rgqFgkzTVLlcPnf+QdV52P7+vt69e9d1HY1Go+s5AAAAAAAYdo1Goyefswcl1CGYZVna2dmRYRhKJBK6f//+oEvS+Ph4TwKey9ypcpBrLy4uSpK2trbOPeh+kHUeduvWLU1MTHRdx8jISNdzAAAAAAAw7EZGRjQ5Odn1PHt7e9rf3+9BRRcT6hAslUrpyZMnMgxDGxsbXc/36NEj/f73v+9qjst2Jx0NhS7bCTaItdPptFzXVbFYVDQaPXf8IN+jwyYmJvT27duu5gAAAAAAAAd6dVzQ1NTUQDrKQn0wfiaT0dzcnCTpr3/9a9fzOY7T9Ryzs7NtzzvteDp6yHskEhmKtQuFggqFgvL5vBKJREfXDPI9AgAAAAAAOEmoQzBJKpfL+uSTT5RIJPS3v/3t0vPs7OzI87yu64nFYm3PO52zWq22PbdtO/RrO46jdDqtfD6vVCrVWZEa7HsEAAAAAABwktCHYJL09ddfK5VKKRqN6uuvv+74oPJGo6FGo6HXr18rmUz2pJajXU6dBjyHu6FM0zz3XK1Br+26ruLxuHK53IUCsH7XCQAAAAAA0IlQh2A/+9nP9KMf/UhjY2N6+PChqtWqUqmUxsbG9KMf/ejcx9jYmMbGxhSPx+W6bk9qikajbWdVffvttx1dt7293fr6aEgUtrU9z9Pc3JwymYwymUxo6wQAAAAAAOhUqEOwVCqlIAhaD8Mw2p5f5NFL8/Pzra87DdcOj8tms6Fd2/M8xWIxpVIp5XK5jub3PE+rq6t9rRMAAAAAAOAiQh2CpdNpSZJhGK0A7DIMw+hlWa26pM4O2z88xrKsrs66usq1fd9XPB7X/Px8xwGYJCWTyWPzDvI9AgAAAAAAOOrHgy7gLKOjo3rw4IFevHgh6eCg9MPb7DrleV7PtkNKB9v9bNtuBTelUunMOycWi8XW1+d1OBUKBVWrVaXT6RPPxLqqtX3fVywWk2VZymazHZ3j5Xlea85oNNqXOgEAAAAAAC7DCHq9V7DHHMfRL37xC1UqFd29e/fS8xQKBT169Eg//PBDT+ryPE+RSETSQeBTqVROHOf7vsbGxiQdhHjlcvnUOePxeFtHVL1ePzH0u4q1Y7HYpYPC0+4eeRV1dmJqakrv3r3T5OSk3r5929VcAIBw+vvGv/Zknp8s/EtP5gEAAEDnBvW5PdTbIaWDUGR0dLSrAEz6x/livWJZVqt7yXXdY2diNc3NzUk6uNvh4W6nkxzdNri5udmXtbsJwCSdevfIq3iPAAAAAAAALiP0IZgkLS8vq9FodD3PaWHNZSUSCZXLZZmmqWw2q2QyKdd15fu+HMdphUvRaFQ7OzvnbuU8+vOTtkP2eu3mdZd13nva6/cIAAAAAADgMkK/HXJYrK6uamNjQ57nyfd9maap2dlZpdPpM8/COsxxHKXTadVqtQvdnbEXa/dDv+pkOyQAXH9shwQAABheg/rcPpQhWKPRkOM4KpfLqtVq8jxP4+PjsixLkUhEiURCH3300aDLxIAQggHA9UcIBgAAMLwG9bk91HeHPGp3d1fZbFalUqnt+0EQyDCM1vNsNivLsvTkyRP9+te/7neZAAAAAAAACJmhOBNMktbX1xWJRFQqlRQEQeshqS0Akw5CsWq1qlQqpX/+53/WX//610GUDAAAAAAAgJAYihDsyy+/1MOHD9tCr2bwdTgQOxyMNX+2vb2tSCSiP//5zwOpHQAAAAAAAIMX+u2QL168UDabbQVfzZArGo1qdnZWkUhEpmnKsiyNj4/L8zzVajVVq1WVSiV5nqf9/X3Nzc1pe3ubs8IAAAAAAABuoNCHYM0ALAgCmaapXC6n+fl5jY6Onjh+Zmam9fXTp0/15s0bffHFF3rx4oUePnyoP/7xj/0qHQAAAAAAACER6u2QL168kOd5CoJA6XRatVpNi4uLpwZgJ5mZmVGxWNTTp09VLpf1zTffXGHFAAAAAAAACKNQh2AbGxsyDEOrq6v6/e9/39VcmUxGc3Nz2tzc7FF1AAAAAAAAGBahDsFc11U0GtVvf/vbnsyXTqflOE5P5gIAAAAAAMDwCPWZYJ7nqVAo9Gw+0zTleV7P5gMAAAAAAMBwCHUnmCRZltWzuQjAAAAAAAAAbqZQh2CWZfU0uMrn8z0N1QAAAAAAADAcQh2CRaNRFYvFnsz15MmT1hljAAAAAAAAuFlCfSbY/Py85ufn9fnnn+uLL7641ByNRkOLi4sqFosyDEPpdLrHVSKs9vb2NDU1deaYpaUlLS0t9akiAAAAAACut7W1Na2trZ05Zm9vr0/VtAt1CJZIJDQ9Pa1cLiff95XJZPTRRx91dO3r16+Vz+dVKpUkSYZhKBqN6v79+1dYMcJkf39f7969O3NMo9HoUzUAAAAAAFx/jUbj3M/igxLqEEw6OMfr448/Vj6fVz6fl23bikajikQirfO9fN9XrVZTpVLR9va2XNdtXR8EgaSDEGx9fX0grwGDcevWLU1MTJw5ZmRkpE/VAAAAAABw/Y2MjGhycvLMMXt7e9rf3+9TRf9gBM2UKMQKhYIePnwowzDOHXv45TTHB0GgYrGoBw8eXFmNCI+pqSm9e/dOk5OTevv27aDLAQBcgb9v/GtP5vnJwr/0ZB4AAAB0blCf20N9MH5TKpXS5uamRkdH20KuIAiOPQzDaD2CINDo6KgqlQoBGAAAAAAAwA02FCGYdHA+2M7Ojh4/ftwKvE7S/Nno6KhyuZxqtZpmZmb6XC0AAAAAAADCJPRngh3WDLZyuZy2trbkuq6q1apqtZokaXx8XJFIRLZtE3wBAAAAAACgZahCsMPm5uY0Nzc36DIAAAAAAAAwBIZmO2QvvHz5ctAlAAAAAAAAYACGthPsMrLZrD755JNBlwEAALr0/+7u9GQeuyezAAAAYBjcmE6wFy9eyPO8QZcBAAAAAACAARiaTrDvvvtOjuOoWq1eKMyq1WryfZ8ADAAAAAAA4AYLfQi2u7urdDotx3EudX0QBK2vDcPoVVkAAAAAAAAYIqEPwWzb1s7OjoIguFSI1bzmcBgGAAAAAACAmyXUIdjDhw/leZ4Mw5BhGARZAAAAAAAAuJRQH4y/vb3d+np6elrFYlH1el37+/sXelQqFT148GCArwQAAAAAAACDFOpOMNd1ZRiGTNOU67oaGRm51DwzMzMqFosaHx/vcYUAAAAAAAAYBqHuBDNNU5I0Pz9/6QDssFQq1fUcAAAAAAAAGD6hDsGSyaQkKRKJ9GS+p0+f9mQeAAAAAAAADJdQh2BPnjxREARtZ4N1o9Fo9GQeAAAAAAAADJdQh2DT09N69uyZisWi/vznP3c939zcXA+qAgAAAAAAwLAJdQgmHZzj9dlnnymRSOhvf/tbV3O5rtujqgAAAAAAADBMQn13yOb2xSdPnqhSqej+/fvK5XIXustjrVaT7/vK5/NXVSYAAAAAAABCLtQh2EcffaQPHz60fS8ej19qriAIZBhGL8oCAAAAAADAkAn1dsjFxUUFQdB6SGp7fpEHAAAAAAAAbq5Qh2CffvqpJLU6uAizAAAAAAAAcBmh3g45MzMjy7K0s7Mj27YVjUZ1+/btC83x/v17+b6vQqFwRVUCAAAAAAAg7EIdgklSIpHQmzdv9N/+23/rap5MJqM7d+70qCoAAAAAAAAMk9CHYAsLC/I8r+t5LMvSzMxMDyrCsNjb29PU1NSZY5aWlrS0tNSnigAAAAAAuN7W1ta0trZ25pi9vb0+VdMu9CHYzMyMlpeXezJXsVjsyTwYDvv7+3r37t2ZYxqNRp+qAQAAAADg+ms0Gud+Fh+U0IdgknrWwTU9Pd2TeTAcbt26pYmJiTPHjIyM9KkaAAAAAACuv5GREU1OTp45Zm9vT/v7+32q6B8GFoJ99913unv37qCWP6bRaKhWq+mjjz4adCnokYmJCb19+3bQZQAAAAAAcGN0cuzQ1NTUQLrFbvV9xf+/L774Qp9//vmglj8mmUyqVCoNugwAAAAAAABcgYF1ghUKBVmWpUgkol//+teDKkOS9OjRI9VqNf32t78daB0AAAAAAAC4GgMLwUzT1Obmpj7++GNJGlgQ9ujRI21ubqpSqQxkfQAAAAAAAFy9gW2HlCTbtvX06VMtLi72fWtko9HQwsKCCoWCtra2OAsMAAAAAADgGhtoCCZJmUxGT58+1dOnT/XP//zP+uabb658zefPn2t6elqlUknb29uhOqAfAAAAAAAAvTew7ZCHZTIZmaaphw8fyrZtxWIxLS8v61e/+lXP1nj9+rXK5bIKhYJ839f09LS2t7c1PT3dszUAAMBwefrN667nePLz+z2oBAAAAFctFCGYJKVSKY2Pj2txcVHb29tKJBKSpGg0Ktu2de/ePVmWJcuyNDIycuo8jUZDtVpNnuepXC7LcRy5rtv6eRAESiQS2tzcvPLXBAAAAAAAgHAITQgmSYlEQvF4XIlEQltbW5Ik13XbQqyjTNOU7/tnzhsEQevrQqGgzz77rCf1AgAAAAAAYDgM/Eywo0ZHR1Uul7W5ualoNKogCFohVvPrw496vX7i9w8/pIMtl/V6nQAMAAAAAADgBgpdCNaUSCS0vb2tcrmsBw8etHVzNRmG0fY4yrKsVvj19OlTjY6O9qN0AAAAAAAAhEyotkOeZG5uTnNzc5KkN2/eyHEcffvtt/J9X7VarbUV0jRNWZal8fFxxeNx2bZN6AUAAAAAAABJQxCCHTYzM6OZmZlBlwEAAAAAAIAhE9rtkAAAAAAAAECvEIIBAAAAAADg2iMEAwAAAAAAwLVHCAYAAAAAAIBrjxAMAAAAAAAA1x4hGAAAAAAAAK49QjAAAAAAAABce4RgAAAAAAAAuPYIwQAAAAAAAHDtEYIBAAAAAADg2iMEAwAAAAAAwLVHCAYAAAAAAIBr78eDLgC4Knt7e5qamjpzzNLSkpaWlvpUEQAAAAAA19va2prW1tbOHLO3t9enatpdyxBsd3dXruvKNE3Nzs5qZGRk0CVhAPb39/Xu3bszxzQajT5VAwAAAADA9ddoNM79LD4o1yoE293dVTKZlOu6bd+PxWIqFov66U9/OqDKMAi3bt3SxMTEmWMISAEAAAAA6J2RkRFNTk6eOWZvb0/7+/t9qugfQh+Cffzxx6rX6/J9X5JUq9Vk27Y2Njbaxr1580a2bcv3fQVB0Paz7e1tRSIRlctl/fznP+9X6RiwiYkJvX37dtBlAAAAAABwY3Ry7NDU1NRAusVCfzC+aZqqVCp6//69UqmUtre3jwVgHz580NzcnOr1uiTJMIzWtbZty7Is7e/vK5lM9r1+AAAAAAAADF7oQzDXdZXNZlWr1fT48WNNT08fG7O4uCjf92UYhoIgUBAEyuVyqtVqevXqlb7//nu9evVK+/v7+vzzzwfwKgAAAAAAADBIoQ7BvvzyS0WjUa2srJw65sWLFyqVSq0AzDAM5XI5PX78uG2cbdt6+vSpKpXKVZcNAAAAAACAkAl1CFYoFM7t3FpcXGxtfzQMQ9Fo9FgA1rSwsKDt7e2e1wkAAAAAAIBwC3UIVq1Wdffu3VN//ujRo9aB+c3D8NfX108dPzo6euzQfAAAAAAAAFx/oQ7BLMvS7u7uiT978+aN8vl82zbIVCp1Zmj25s0bzc7OXk2xAAAAAAAACK3Qh2CFQuHY9z98+NB2p0fDMGRZln7/+9+fOd/W1pay2WzP6wQAAAAAAEC4/XjQBZwllUppfn5ekvTkyRNJkuM4ymaz8jyvrQusWCyeOdebN2+0srKi9+/fX3ndAAAAAAAACJdQd4IlEgnNzc0pl8tpbGxMY2NjSiaTqlarrQBMkp49e3bmNsjnz5/Ltu0+VQ0AAAAAAICwCXUIJkmlUkmffPKJgiBoPaSDg/BN01SxWNTi4uKx67777jstLy/rzp07SqfTqtfr8n1ff/jDH/r9EgAAAAAAADBgod4OKR3c0bFYLGpra0vlclmu68o0Td27d0+pVEqjo6PHrllfX29tj5yentb09HTrZ3/605/0q1/9qm/1AwAAAAAAYPBCH4I1zc3NaW5urqOxi4uLJ3aHAQAAAAAA4GYK/XbIXvruu+8GXQIAAAAAAAAGIPQh2O7ubs/mojsMAAAAAADgZgp9CJZOp3syz87OjlzX7clcAAAAAAAAGC6hD8E8z+vJPNlstifzAAAAAAAAYPgMRQj2t7/9ras5fve736lUKvWoIgAAAAAAAAyb0IdgQRB01cW1vLxMFxgAAAAAAMANF/oQTJLy+by++eabC1+3sLCg1dVVBUFwBVUBAAAAAABgWAxFCBYEgZLJZMfbInd3d3Xnzh2VSiUFQSDDMK64QgAAAAAAAITZUIRgiURCtVpNc3Nz54598eKFIpFI60B9wzAUBIESicRVlwkAAAAAAICQCn0IZtu2Njc3tb29re3tbX366aenjl1eXtb8/Hxr+2MQBBodHZXrutrc3NSDBw/6VTYAAAAAAABC5MeDLuA80Wi09d/t7W3Nzs7Ksix98cUXrTGNRkNzc3NyXbe1/TEIAtm2rWKxqNHRUUkHIRkAAAAAAABuntB3gj19+rT1dTQa1ebmpp4+faqvv/5akvTmzRtNT08fC8ByuZxevXrVCsAkaWZmpu/1AwAAAAAAYPBCH4IdlUgk9OzZM6VSKT169Eizs7Oq1+utn4+OjqpSqejx48fHrv3d737Xz1IBAAAAAAAQEqHfDnmSVCqlarWqL7/8UpJO3f54VLlc1m9/+9t+looB2tvb09TU1JljlpaWtLS01KeKAAAAAAC43tbW1rS2tnbmmL29vT5V024oQzBJyuVy8jxPL168UBAEWl1dPTfg2t7e7lN1CIP9/X29e/fuzDGNRqNP1QAAAAAAcP01Go1zP4sPykBCsA8fPmhra6vreT799FNtbW0pnU7Lsiy9fPnyxHG1Wk35fF6+73e9JobHrVu3NDExceaYkZGRPlUDAAAAAMD1NzIyosnJyTPH7O3taX9/v08V/YMRBEHQ70U/fPigsbExGYbRtzWbh+b/8MMPfVsTgzE1NaV3795pcnJSb9++HXQ5AIAr4OT+S0/m2f7n/7vrOZ78/H4PKgEAALg5BvW5fSAH44+OjioajSoIgq4fkjoaAwAAAAAAgJtrYHeHtG1bkrruBusk5CIIAwAAAAAAuNkGdjD+wsKCVldXJUmZTEaRSETj4+M9X6dWq8n3fT179ky7u7s9nx8AAAAAAADhN7AQbGZmRqZpanV1VZ999tmVr/fgwQPduXPnytcBAAAAAABA+AxsO6R0sCXSsqy+rGVZlqanp/uyFgAAAAAAAMJloCHYwsLClWyBPE0ikejbWgAAAAAAAAiPgW2HlA62KPbT06dP+7oeAAAAAAAAwmGgnWAAAAAAAABAPwxNCPb69WstLy/r+fPn54598eKF7ty5oz/84Q99qAwAAAAAAABhN9DtkJ1aWFhQqVRqPf/w4YN+85vfnDr+wYMHmp6elm3bWllZUbFY1E9/+tN+lAoAAAAAAIAQCn0n2KNHj1QsFhUEgYIgkCS9evXq3Oui0ag8z9Nf/vIXxWIx/fnPf77SOldXVxWPxzU2NibDMBSJRJRMJuU4zpWu24+1Pc9TPB5vCyKvSnMtAAAAAACAXgp1CPbhwwfl83kZhiHDMCRJQRAomUx2dL1pmqpUKqrValcWhDmOo7GxMWWzWUlSsVhUtVpVLpeT67qKx+OKx+PyfX/o1vZ9X8lkUpFIRI7jqFarXbpW3/dbv8ezHpFIRJZlXXodAAAAAACAk4Q6BFtZWZF0EHyNjo4qlUqpWq3qs88+63gOy7K0uLio/f39jsOzTjmO0wqZUqmUyuWybNuWZVlKJBKqVquKRqNyHEexWKynQdhVru37vrLZrMbGxnrW/VUoFDoe2wz1AAAAAAAAeiXUIViz06lcLqtWq+nZs2eanp6+8Dwff/yxJKlarerrr7/uSW3NLinpIGjL5/MnjisWi5IOtvn1KoS7yrVXV1cVi8Xkum5Pam1qBprnaQZ5AAAAAAAAvRTqEMzzPC0vL2tubq6reQ6HKpubm92WJUlKJpOt7qqzOpeanVnSQah3kY6ofq/tuq5s21a1WlW5XD41XLuoQqEg3/eVyWRULpfPfDSDOwAAAAAAgF4K9d0hfd/vSVdQ8yyrIAi0vb3d9Xye57UdOj8/P3/m+MN3t8xms0qlUqFcOxqNtj2fnZ29dJ2H5XI5WZalXC7Xk/kAAAAAAAAuKtSdYJZldXUYe1O5XG593YtzuQ6HObZtyzTNM8c3u7Ga63dzzlY/1z5v7k6USiV5nsc5XwAAAAAAYKBCHYJFo9GebI8rFAqtu0v2Itg5vK3waPfUaQ53tG1sbAzl2pexsrIi0zTP7VgDAAAAAAC4SqEOwVKplBzH0TfffHPpORYWFlrdX4ZhdL3F7+iB8ffu3evousOB1WU7wQa59mW4rivXdeX7vsbGxhSJRJROp/taAwAAAAAAgBTyEMy2bd29e1e2bV84CGs0GlpYWFCxWJRhGAqCQJK6vkPj4fO4JHV8ZtnRcZe5++Ig176Mo1sgPc9ToVBQMpmUYRhKJpN9qwUAAAAAANxsoQ7BJGl9fV1BEMi2bf3yl788NwxrNBp69OiRxsbG2jqODMOQZVn67LPPuqrn22+/bXve6fbK27dvtz2/zAH9g1z7oo4e4H+SUqmkWCymdDp95fUAAAAAAICbLdR3h5QOtvJtbm5qfn5e5XJZ5XJZpmnKsqzWQzoIXVzXled5ktTq/Gp2gRmG0ZPzxZrzN122G6tarQ7V2hdlWZby+bx831e1WpXjOMfqbyoUCtre3lalUrnyugAAAAAAwM0U+hBMOrjD4fb2tubm5vThwwf5vt86b+qwZvAlqXUQfhAEMk1TW1tbunv3bte1nBbkXNRl7lI5yLUvI5VKHVu3UChoZWXlWA2u6yoej7fdyRMAAAAAAKBXQr8dsikajWp3d1ePHz9WEATHHtJB8HU4/AqCQKlUSjs7O5qZmelJHZcNkI5uXazVakO1di+YpqlMJqN6va5isXisLsdxtLq6OpDaAAAAAADA9TYUnWBNo6OjyuVyyuVy2traUrlcluu6qtVq8jxP4+PjMk1Ts7Ozisfjsm1bo6Ojgy77RP3qxgrb2k2JREK2bWtubq6to29lZUWZTKYna+zt7WlqaqrreZaWlrS0tNSDigAAAAAAGF5ra2taW1vrep69vb0eVHNxQxWCHTY3N6e5ubm+r2uaZk9CpE4PtQ/L2lfBNE1VKhXFYrFWEOb7vhzHkW3bXc+/v7+vd+/edT1Po9Hoeg4AAAAAAIZdo9HoyefsQRnaEOwiPnz4oKdPn2plZaXrucbHx3sSRI2Pjw/V2ldpfX1dsVis9bxcLvckBLt165YmJia6nmdkZKTrOQAAAAAAGHYjIyOanJzsep69vT3t7+/3oKKLuREh2OjoqMrlsra2tvSnP/2pq7ku20V1NLy6bCfYoNa+StFoVLZty3EcSb27AcDExITevn3bk7kAAAAAALjpenVc0NTU1EA6yobmYPxuzc7OqlKp6PPPP+96nsM67cw6ehh9JBIZqrWvWjweH3QJAAAAAADgGhu6TrDd3V35vn+hOxy6rqtisaggCJTP5/XFF19cev3D2/akg66laDR67nXVarXt+WW2+w1y7atmWVbr67Bt1wQAAAAAAMNvKEKwly9fKp/Pt7bLdaPbM7WOdmN1GkQdXtc0zbbQZxjWvmqHawrbdk0AAAAAADD8Qr8d8ssvv1QymZTjOAqC4NIPSTIMo6PQ6CzRaLQtpPn22287um57e7v19dEwaxjWvmqHa2RrJAAAAAAA6LVQh2Bv3rxRNpuVpFaQdZhhGB3NYxiGgiDQ9PS01tfXu65rfn6+9bXruh1dc3hc8zUN29pX6fCWzTBu1wQAAAAAAMMt1Nsh8/m8pIO7O6ZSKUUikda2uXq9rvn5eY2NjWlzc/PE633f16tXr/T8+XO5rqu7d+/2pK50Oq1CoSBJHW3RPDzGsqyuQp5Brn2VSqWSJCmTyQy4EgAAAAAAcB2FOgRzHEeRSER/+ctfTvz54uKinj9/rkgkoo8++ujEMQ8ePJAkPXnyRH/84x97Ulc0GpVt262AqVQqKZFInDq+WCy2vj6vE6tQKKharSqdTp94dtdVrn1Ut+endapUKsnzPJmmqeXl5b6sCQAAAAAAbpZQb4f0PK/VDXaSJ0+eKAgCra6unjlPNpvVq1ev9NVXX/WstsN1raysnDrO9/1W55Zt20qlUqeOjcfjSqfTWl1dVSQSOTWEuoq1T+J53rH5OuE4jsbGxmQYhuLx+JnbNj3P0+LioiRpa2uLQ/EBAAAAAMCVCHUIJp19kPv09LTm5uaUz+fVaDROHWdZlmZmZpTJZM4cdxGWZbW6rFzXPTWIm5ubk3Rwx8PDXVknObq98bRtnlex9lG+7x/rHNvY2Ojo2mKx2ArMHMdRLBZTOp0+Nq75s/HxcVWr1a5vWgAAAAAAAHCaUIdg0WhUtVrtzDHZbFZBEOjJkydnjrt3756CINDTp097Vl8ikVC5XJZpmspms0omk3JdV77vtwIe13UVjUa1s7NzbpfT0Z+ftB3yqtaWDoKvZDKpeDyusbGxY51gruu2urua650kmUwe+16hUNDY2JiSyaTS6bRisZji8bhSqZQqlcqZrxUAAAAAAKBboQ7BLMtqbec7jW3bmpmZUT6f15///OdTx21vb0vShTuizmPbtur1unK5nDzP09zcXCvsGR8fV7FYVKVS6SiEKhaLsixLpmkqk8mce4h9L9eW/tExVi6XFQTBqY9yuaxisXhq55Zt26pWq0qlUq3X0+S6rmq1mpaXl1u1swUSAAAAAABcNSMIgmDQRZymVCppYWFBq6urevDgQasz6f79+8fGzc/PyzAMlUol/epXv2r7+Zdfftna2mcYhn744Yf+vAAMxNTUlN69e6fJyUm9fft20OUAAK6Ak/svPZln+5//767nePLz++cPAgAAQMugPreH+u6QiURCIyMjymQyymQyre/HYjH96U9/ahs3Nzenra0tJRIJRaPR1llijuO0betj2x0AAAAAAMDNE+oQTJLW19dbXV7NprVKpaLvvvtOd+/ebY3L5/P62c9+Julgy13zvKrDjW6GYXD4OgAAAAAAwA0U6jPBpIMur83NzbYwyzTNtgBMOujwevXqlY7u7jQMQ4ZhtK5bX1+/8poBAAAAAAAQLqEPwaSDIKxeryufz7cOgT+Jbdv6/vvvdf/+/WOHuUejUW1vb2tkZKTP1QMAAAAAAGDQQr8dsml0dFSLi4vnjrMsS+VyWR8+fGjdEdKyLE1PT191iQAAYMjM/un/6XqOv/+P/69+svAvPagGAAAAV2loQrCLGh0d1dzc3KDLAAAAAAAAQAiEejtko9HQo0eP9Itf/EJfffXVoMsBAAAAAADAkAp1J1gikdDW1paCIJDjOJqentYnn3wy6LIAAAAAAAAwZELdCeY4Tttz0zQHUwgAAAAAAACGWqhDMMuyJEmGYSiRSOj+/fsDrggAAAAAAADDKNQhWCqVUhAEkqSNjY2u53v06FHXcwAAAAAAAGD4hDoEy2QyrTs8/vWvf+16vqPbKwEAAAAAAHAzhPpgfEkql8tKJpNKJBJ6/fq1/umf/ulS8+zs7MjzvB5XhzDb29vT1NTUmWOWlpa0tLTUp4oAAAAAALje1tbWtLa2duaYvb29PlXTLvQhmCR9/fXX2tjYUDQa1ZMnT5RMJjUyMnLudY1GQ5K0vb2tTCZz1WUiZPb39/Xu3bszxzT/RgAAAAAAQPcajca5n8UHJdQh2M9+9jPt7Oy0ngdBoFQqpVQqdeG5giCQYRi9LA8hd+vWLU1MTJw5ppMwFQAAAAAAdGZkZESTk5Nnjtnb29P+/n6fKvqHUIdgqVRKT548aT03DKN1UD5wnomJCb19+3bQZQAAAAAAcGN0cuzQ1NTUQLrFQn0wfjqdlnQQfnUTgNEBBgAAAAAAcLOFuhNsdHRUDx480IsXLyRJtm3LNM0Lz+N5nlzX7XF1AAAAAAAAGBahDsGkg26wly9fqlKp6O7du5eep1Ao6NGjR70rDAAAAAAAAEMj1NshpYPur9HR0a4CMOngfDHOEwMAAAAAALiZQh+CSdLy8rIajcalr29ee5m7SgIAAAAAAGD4hX475OvXr5VOpzUyMnLpOTKZjHzf17/927/1sDIAAAAAAAAMi9B3gsXjcRWLxa7mePbsmb7//nv98pe/7FFVAAAAAAAAGCahD8GCIOjJWV6pVErlcllff/11D6oCAAAAAADAMAl9CNYrhmEoCALl8/lBlwIAAAAAAIA+G4oQzDCMrq5//fq1stmsJKlSqfSiJAAAAAAAAAyR0ByM/+LFCz19+vTEn2UyGT179uzCc/q+L8/zJKm1pdI0zUvXCAAAAAAAgOEUmhDswYMHCoJA8/Pzrc6vZnBVr9e77uBqzmnbdneFAgAAAAAAYOiEajtkIpHQ999/r48++khBELSCK8MwunpIB4Ha9PS01tfXB/kSAQAAAAAAMACh6QRrsixL1WpV8XhcW1tbrQPtL7uN0bIsWZalhYUFPXjwoLfFAgAAAAAAYCiELgRrKpfLSiaTevnypQqFgj777LNBlwQAAAAAAIAhFartkEcVi0VNT08PugwAAAAAAAAMudB2gjVVKhXVarVBlwEAAAAAAIAhFvoQbHR0VKOjo4MuAwAAAAAAAEMs1NshAQAAAAAAgF4gBAMAAAAAAMC1RwgGAAAAAACAa48QDAAAAAAAANceIRgAAAAAAACuPUIwAAAAAAAAXHs/HnQBwFXZ29vT1NTUmWOWlpa0tLTUp4oAAAAAALje1tbWtLa2duaYvb29PlXTjhAM19b+/r7evXt35phGo9GnagAAAAAAuP4ajca5n8UHZaAh2PPnz5XL5RSLxfRv//ZvgywF19CtW7c0MTFx5piRkZE+VQMAAAAAwPU3MjKiycnJM8fs7e1pf3+/TxX9w8BCsDdv3iiVSkmSPM/T/Py8Pvnkk0GVg2toYmJCb9++HXQZAAAAAADcGJ0cOzQ1NTWQbrGBHYy/srIiSTIMQ5JkmuagSgEAAAAAAMA1N7AQzHVdSVIQBMrn87p///6J4xYWFvT69et+lgYAAAAAAIBrZmAhmOd5GhsbU6VS0WeffXbquGKxKM/zerLmd99915N5AAAAAAAAMFwGFoKZpqnl5WXNzMz0bc1sNtu3tQAAAAAAABAeAwvBLMuSZVl9XbNXHWUAAAAAAAAYLgMLwRYWFrSxsdG39d68eUMIBgAAAAAAcEP9eFALp1IpZbNZ7ezsKJVKybIsjY+Pnzi2UqlcumvM9315nqcvvviim3IBAAAAAAAwxAYWgo2Ojmpzc1Pz8/OqVCpnji0UCioUCl2tFwSBDMPoag4AAAAAAAAMp4Fth5SkRCKhzc1NBUFw6kPSmT/v9AEAAAAAAICba6AhmHQQhNXrdS0uLso0zUGXAwAAAAAAgGtoYNshDxsdHVU+n1c+n9fOzo5c11WtVlMQBHr48KGSyaRmZ2cvNff79+/leZ5KpVKPqwYAAAAAAMCwCEUIdtj09LSmp6dbzx8+fKh4PK7PPvusq3kdx9EvfvGLbssDAAAAAADAEBr4dsh+sW27LVwDAAAAAADAzXFjQjBJsixr0CUAAAAAAABgAEK3HfKoer2u0dHRnsxVLBZ7Mg8AAAAAAACGS+g7wXoVgPV6LgAAAAAAAAyP0HeCnaTRaMhxHJXLZdVqNXmep/HxcVmWpUgkokQioY8++mjQZQIAAAAAACAkhioE293dVTabValUavt+EAQyDKP1PJvNyrIsPXnyRL/+9a/7XSYAAAAAAABCJvTbIZvW19cViURUKpUUBEHrIaktAJMOQrFqtapUKqV//ud/1l//+tdBlAwAAAAAAICQGIoQ7Msvv9TDhw/bQq9m8HU4EDscjDV/tr29rUgkoj//+c8DqR0AAAAAAACDF/rtkC9evFA2m20FX82QKxqNanZ2VpFIRKZpyrIsjY+Py/M81Wo1VatVlUoleZ6n/f19zc3NaXt7m7PCAAAAAAAAbqDQh2DNACwIApmmqVwup/n5+VPv9DgzM9P6+unTp3rz5o2++OILvXjxQg8fPtQf//jHfpUOAAAAAACAkAj1dsgXL17I8zwFQaB0Oq1arabFxcVTA7CTzMzMqFgs6unTpyqXy/rmm2+usGIAAAAAAACEUahDsI2NDRmGodXVVf3+97/vaq5MJqO5uTltbm72qDoAAAAAAAAMi1Bvh3RdV9FoVL/97W97Ml86ndaTJ096MhfCb29vT1NTU2eOWVpa0tLSUp8qAgAAAADgeltbW9Pa2tqZY/b29vpUTbtQh2Ce56lQKPRsPtM05Xlez+ZDuO3v7+vdu3dnjmk0Gn2qBgAAAACA66/RaJz7WXxQQh2CSZJlWT2biwDsZrl165YmJibOHDMyMtKnagAAAAAAuP5GRkY0OTl55pi9vT3t7+/3qaJ/CHUIZlmWPM/T/fv3ezJfPp/vaaiGcJuYmNDbt28HXQYAAAAAADdGJ8cOTU1NDaRbLNQH40ejURWLxZ7M9eTJk9YZYwAAAAAAALhZQh2Czc/Pq1wu6/PPP7/0HI1GQwsLC1pdXZVhGEqn0z2sEAAAAAAAAMMg1CFYIpHQ9PS0crmc/vN//s/a3d3t+NrXr19rYWFBY2NjKpVKMgxD0Wi0Z1srAQAAAAAAMDxCfSaYdHCO18cff6x8Pq98Pi/bthWNRhWJRFrne/m+r1qtpkqlou3tbbmu27o+CAJJkmEYWl9fH8hrAAAAAAAAwGCFPgSzbVvPnj3Tw4cPZRiGHMeR4zinjm+GXtJB8GUYhoIg0Obmpu7evduHigEAAAAAABA2od4O2ZRKpbS5uanR0dG2kCsIgmOPZvDVDL9GR0dVqVT04MGDAb4CAAAAAAAADNJQhGDSwflgOzs7evz4cSvwOknzZ6Ojo8rlcqrVapqZmelztQAAAAAAAAiT0G+HPKwZbOVyOW1tbcl1XVWrVdVqNUnS+Pi4IpGIbNsm+AIAAAAAAEDLUIVgh83NzWlubm7QZQAAAAAAAGAIDM12SAAAAAAAAOCyCMEAAAAAAABw7RGCAQAAAAAA4NojBAMAAAAAAMC1RwgGAAAAAACAa48QDAAAAAAAANceIRgAAAAAAACuPUIwAAAAAAAAXHuEYAAAAAAAALj2CMEAAAAAAABw7RGCAQAAAAAA4NoLdQjWaDT06NEj/eIXv9BXX3016HIAAAAAAAAwpH486ALOkkgktLW1pSAI5DiOpqen9cknnwy6LAAAAAAAAAyZUHeCOY7T9tw0zcEUAgAAAAAAgKEW6hDMsixJkmEYSiQSun///oArAgAAAAAAwDAKdQiWSqUUBIEkaWNjo+v5Hj161PUcGB57e3uampo687G2tjboMgEAAAAAuDbW1tbO/Sy+t7c3kNpCfSZYJpNRuVzW69ev9de//lU//elPu5rv6PZKXG/7+/t69+7dmWMajUafqgEAAAAA4PprNBrnfhYflFCHYJJULpeVTCaVSCT0+vVr/dM//dOl5tnZ2ZHneT2uDmF269YtTUxMnDlmZGSkT9UAAAAAAHD9jYyMaHJy8swxe3t72t/f71NF/xD6EEySvv76a21sbCgajerJkydKJpMdhRfNLp/t7W1lMpmrLhMhMzExobdv3w66DAAAAAAAboylpSUtLS2dOWZqamog3WKhDsF+9rOfaWdnp/U8CAKlUimlUqkLzxUEgQzD6GV5AAAAAAAAGBJDcTB+82EYRtvzizwAAAAAAABwc4U6BEun05IkwzBaAdhl0AEGAAAAAABws4V6O+To6KgePHigFy9eSJJs25Zpmheex/M8ua7b4+oAAAAAAAAwLEIdgkkH3WAvX75UpVLR3bt3Lz1PoVDQo0ePelcYAAAAAAAAhkaot0NKB91fo6OjXQVg0j/OFwMAAAAAAMDNE/oQTJKWl5fVaDS6nucyd5UEAAAAAADA8Av9dkhJevz4cU/mefbsWU/mAQAAAAAAwHAZik6wi1peXtZf//rXQZcBAAAAAACAkBi6EOzly5d69OiR7t27p5cvX544JhaLaWZmRp9++ilhGAAAAAAAAIYnBPvd736n27dvK5lMqlAoyHVd1Wq1E8cmEgl5nqe//OUvsixLf/jDH/pcLQAAAAAAAMIk9CHYhw8fdOfOHWWzWdXrdQVB0NFdHk3TVKVS0d27d5VIJPT1119faZ2rq6uKx+MaGxuTYRiKRCJKJpNyHOdK1+3H2p7nKR6Pq1QqhbpOAAAAAACA04Q+BEsmk6pWq5IkwzBkGMaFrt/a2lIQBEqlUvrmm296Xp/jOBobG1M2m5UkFYtFVatV5XI5ua6reDyueDwu3/eHbm3f95VMJhWJROQ4zqmdd4OuEwAAAAAA4DyhDsG2trbkOI4Mw2h1gI2Ojsq27Y7nME1Tjx8/VhAESqfTPa3PcZxWeJNKpVQul2XbtizLUiKRULVaVTQaleM4isViPQ15rnJt3/eVzWY1NjbWdffXIN8jAAAAAACAplCHYPl8XpJanVzValW1Wk2vXr3qaEtk06effipJqlarPdsW2eySkiTLslq1HlUsFiUdbClsjg/z2qurq4rFYnJdN9R1AgAAAAAAXESoQ7BmF1ihUNCzZ880PT19qXksy2p9/erVq57UlkwmW11LzW1+p62dSCQkHbyeQqEQ2rVd15Vt26pWqyqXy6eGVoOuEwAAAAAA4KJCHYL5vi/LsvTZZ591Nc/hs6x60eHkeV7bYe7z8/Nnjl9YWGh9fVYYNOi1o9GootFo6/ns7OwlqxzsewQAAAAAAHBUqEMw0zTbQpnLagZfQRDI87yu58vlcq2vbduWaZpnjm92OUkHwV4352z1c+3z5j7LIN8jAAAAAACAo0IdglmW1ZOD0ldWVlpfdxPsNB3ertdpSHd4S+bGxsZQrn0Rw1InAAAAAAC4GUIdgs3NzWl7e7urOb788ku5rivDMCS1By2XcXQ75b179zq67nAQdNkup0GufRHDUicAAAAAALg5Qh2CLS8vq16v66uvvrr09U+ePJFhGAqCQIZhtJ09dRmHz7mSOg/Vjo67zNlkg1z7IoalTgAAAAAAcHOEOgQzTVOPHz9WJpPR559/rkajce41jUZDz58/1507d7S6uqogCNp+nkqluqrp22+/PVZjJ27fvt32/DIdboNc+yKGpU4AAAAAAHBz/HjQBZwnl8vJdV09ffpUuVxO8Xhctm1LkiqVisbHx1Wr1VStVuU4Ttsh+JJa2yAl6dmzZxoZGemqnqMH61+2y6larQ7V2hcxLHUCAAAAAICbI/QhmCSVy2Wl02mtr6+rXC6rXC7LMAwVCoW2A9il4+FX83k+n9fi4mLXtfTi7pKSLnXg/yDXvohhqRMAAAAAANwcQxGCSQchVjqdVjab1dbW1rGfN0Ov5vlfzfDLtm3l83lNT0/3pI7LBjNHtwTWarWhWvsiwlLn3t6epqamuppDkpaWlrS0tNT1PAAAAAAADLO1tTWtra11Pc/e3l4Pqrm4oQnBpIO7B5bLZe3s7MhxHJXLZXmeJ9/3VavVND4+LtM0ZVmW4vG45ufnNTo6OuiyTzTILqdh6bDqts79/X29e/eu6zo6OYsOAAAAAIDrrtFo9ORz9qAMVQjWND09rcXFxZ5sb7wo0zR7EiJ1elh8WNa+6PxhqPPWrVuamJjouo5uz5EDAAAAAOA6GBkZ0eTkZNfz7O3taX9/vwcVXcxQhmCDND4+3pOAZ3x8fKjWvuj8YahzYmJCb9++7boOAAAAAADQu+OCpqamBtJRNpQh2O7urhzHUaVSaZ0bNT4+rkgkItu2dffu3Stb+7LdSUdDoct2gg1q7YsYljoBAAAAAMDNMVQh2PPnz5XL5Tq6+2A6nVYmk9FHH33U0xpmZ2flum7rue/7HYU1Rw95j0QiQ7X2RQxLnQAAAAAA4Oa4NegCOrG7u6s7d+4onU6rWq227v7YvAPkYc3v5/N5RSIRffXVVz2tJRaLtT3vJJCTpGq12vbctu2hWvsihqVOAAAAAABwc4Q+BHvz5o1isVgr/DIMo/WQ1BaIHQ7Fms8zmYx++ctf9qye2dnZtuedBjyHt/o172A5TGtfxLDUCQAAAAAAbo7Qb4dMJpOq1+ttoZckWZYl27YViURagcn4+Lg8z5PneapWq9rc3JTv+yqXy/rlL3+pP/7xj13XE41G2+5++O233yqRSJx73fb2duvroyHRMKx9EcNSJwAAAAAAuDlCHYKtr6/L87y2AMy2beVyOc3MzJx4zeHvP3v2TKVSSSsrKyqXy/rqq6/0m9/8puu65ufnVSgUJKnt7KuzHB6XzWaHcu2LGJY6AQAAAADAzRDq7ZD5fF7SP7q/8vm8Xr16dWoAdpJEIqFKpaL79+8rk8mo0Wh0XVc6nW597TjOueMPj2l2sA3j2hcxLHUCAAAAAICbIdQhWLMLzDAMZTIZLS4uXnquYrGoIAhULBa7risajbaFNKVS6dy1m87rcCoUCspms6eeo3WVax91+Iyui+pnnQAAAAAAAOcJdQjm+36rC2x5ebmruUzTVCqV0ubmZi9Ka3WpSdLKysqp43zfb20LtG1bqVTq1LHxeFzpdFqrq6uKRCKnhlBXsfZJjgZxFw3F+lUnAAAAAADAeUIdgkWjUUkH2+NGRka6ni8SiXR8p8LzWJbV6l5yXVerq6snjpubm5N0EMKd14V2dNvgaYHdVax9lO/7xzqyNjY2LjRHP+oEAAAAAADoRKhDsGY4UqvVejZnr0Iw6eC8sXK5LNM0lc1mlUwm5bqufN+X4ziKxWJyXVfRaFQ7OzsyTfPM+Y7+3LKsvq0tHQRfyWRS8XhcY2Njx94r13VlGIbi8XhrvfNcRZ0AAAAAAAAXFeoQ7PPPP5d0EM7s7u52PV+1Wu15yGLbtur1unK5nDzP09zcnMbGxpRMJjU+Pq5isahKpdLRusViUZZlyTRNZTKZcw+H7+Xa0j86scrlsoIgOPVRLpdVLBZbnXrn6XWdAAAAAAAAF2UEzUO3QqpUKml+fl7z8/P6t3/7t67mGh8f1+3bt/WXv/ylR9UhjKampvTu3TtNTk7q7du3gy4HAHAFnNx/GXQJLf+fj6b1k4V/GXQZAAAAQ2NQn9tD3QkmHWyny+fzevXqlf7zf/7Pl57nyZMn8n2/4+4lAAAAAAAAXB8/HsSiDx8+VKVSudA14+PjyufzyufzFw6yfN+X53mt86wAAAAAAABwswwkBDNNU5VKRYZhqJPdmIZhSFJr7EUDtMPzzM/PX+paAACAk/y/uzva/uZ11/M8+fn9HlQDAACA0wxkO2Q6nW59bRjGuY+LjD3rkUqlNDIyMoiXDAAAAAAAgAEaSAg2PT0ty7Ik6cy7EPbyMTMzo1wuN4iXCwAAAAAAgAEbyHZISZqbm9Pz58/lOI7u36f9HwAADK/ZP/0/3U/CdkgAAIArNbC7Q87PzysajRKAAQAAAAAA4MoNLASbm5vT9PR0X9fc3d3t63oAAAAAAAAIh4GFYJK0ubnZ1/UOH8gPAAAAAACAm2OgIVi/bW9vD7oEAAAAAAAADMDADsbvxu7urnzf73i853nK5/MXugYAAAAAAADXx1CEYLu7u8rlcnIcR57nXWqOIAhkGEaPKwMAAAAAAMAwCH0Itry8rNXVVUkHQRbQqb29PU1NTZ05ZmlpSUtLS32qCAAAAACA621tbU1ra2tnjtnb2+tTNe1CHYK9ePFCuVxOkmQYhgzDIAhDx/b39/Xu3bszxzQajT5VAwAAAADA9ddoNM79LD4ooQ7BVlZWJKkVflmWpWg0KsuyJEm3b98+d47379/L931tbm7qw4cPV1ovwuXWrVuamJg4c8zIyEifqgEAAAAA4PobGRnR5OTkmWP29va0v7/fp4r+wQhC3Fp169at1jler1690tzc3KXn8jxPd+7c0Q8//NCr8hBSU1NTevfunSYnJ/X27dtBlwMAuAJO7r8MuoSes7P/ZdAlAAAA9MWgPrff6ttKl2CapiQpk8l0FYBJkmVZmp6e7kFVAAAAAAAAGDahDsGa2x7v3bvXk/ny+XxP5gEAAAAAAMBwCXUI1uz+qtVqPZ0PAAAAAAAAN0uoQ7DPP/9cQRDIdd2ezPf8+fOezAMAAAAAAIDhEuoQbHR0VE+fPtXGxob+9re/dT0f2yEBAAAAAABuplCHYNLBofjRaFTJZLKreXZ2dnrWUQYAAAAAAIDh8uNBF9CJcrms2dlZ3blzR9lsVuPj4x1dV6vV5Pu+qtWqNjc3r7hKAAAAAAAAhNVQhGCvX7+WJFWrVaXT6UvNEQSBDMPoZVkAAAAAAAAYEqEPwR49eqRCoSBJMgxDQRBceA7CLwAAAAAAgJst1GeCra+vK5/Pt4KvywRg3VwHAAAAAACA6yHUnWDNuzk2O8Bs21Y8Hpdpmhc+F+zZs2fa3d29wmoBAAAAAAAQVqEOwVzXlWEYMk1T29vb+v+1dz+9jaX5feh/KrSdvr62hqqZxRVKiykqs46bqg4QYBLALspvwGIVsppNSkK2QkZ0Z+XVlKkk2tpSe+NVUk3Z2Zus8YU9QABXiZ4XELI6cNXVvYZdYmvG9owT69xFhWzqH0VSh/+OPh+AaLF0zvM8FH99SH75nOc8fPhw5LaePXsW3/zmN1McHQAAAADzYqZPh8zlchER8dlnn90qAOu09cknn6QwKgAAAADmzUyHYGtraxERkc/nU2nv888/T6UdAAAAAObLTIdgW1tbkSRJtFqtVNozEwwAAADgbprpEGxjYyM++eSTePHiRSrt/dEf/VEq7QAAAAAwX2Y6BIuIqFarcXR0FP/1v/7XW7f1/PnzFEYEAAAAwLyZ+RAsn8/H7/3e78W/+Tf/5lbtfPXVV9FoNFIaFQAAAADz5KNpD6CfzumL3/rWt2JpaSm+853vxMbGxtDttNvt+OKLL9IeHgAAAABzYqZDsB/84AfxF3/xF937SZLE7u7uSG0lSRILCwtpDQ0AAACAOTLTp0M+efIkkiSJJEkiIoRYAAAAAIxkpkOwra2tiPgQfnXCsFFvAAAAANxdM3065De+8Y0oFArxF3/xF1GpVKJQKMT9+/eHbqfVasUPfvCD+PGPf5z+IAEAAACYeTMdgkVEPH36NFZXV+P73//+yG188skn8Zu/+ZsjBWgAAAAAzL+ZD8GKxWK8evUqlbYePXqUSjvMh+Pj41hZWem7zfb2dmxvb09oRAAAAJBte3t7sbe313eb4+PjCY3mvJkPwT755JOoVCqptJVWO8yHs7OzePfuXd9tTk9PJzQaAAAAyL7T09MbP4tPy8yHYBERDx8+vHUbX375ZXzyyScpjIZ5ce/evVheXu67zeLi4oRGAwAAANm3uLgYDx486LvN8fFxnJ2dTWhEX5uLEOy2/vAP/zCePHkSjUYj/tk/+2fTHg4Tsry8HG/fvp32MAAAAODOGGTZoZWVlanMFrs38R6n4NWrV5EkSfyX//Jfpj0UAAAAAKZg5meC/f7v//7I+7bb7Wg2m3FwcBALCwtRr9fj+fPnKY4OAAAAgHkw8yHY5uZmLCws3KqNJEkiIqLRaMSXX34Z3/72t1MYGQAAAADzYm5Oh+wEWcPukyRJLCwsdIO0g4ODtIcGAAAAwIybmxAs4utQa9BbRMTCwsK5f6tWq1N+FAAAAABM2syfDhkR8fDhwyiXy5HP54far9lsxu7ubqytrcXnn38ei4uLYxohAAAAALNsLkKwer0+0jpejx8/js3Nzfin//SfxubmpqtDAgAAANxRM386ZC6Xu/VC9r/3e78XX3zxRfyn//Sf0hkUAAAAAHNl5kOwSqVy6zaKxWLk8/nY2dmJL7/88vaDAgAAAGCuzHwI9uzZs1TaKRQKkSRJ7O7uptIeAAAAAPNj5kOwtL169WraQwAAAABgwu5ECPbVV19FvV6PiIhGozHl0QAAAAAwaZkPwX784x/Ho0eP4quvvoqIiHw+P+URAQAAADBpH017ADf5zne+M/K+rVYrIiKSJImIiIWFhSgWi6mMCwAAAID5MfMhWLPZjIWFhW6QNYre/dO42iQAAAAA82VuTodcWFgY6RbxYSZYLpeLP/7jP47FxcUpPxIAAAAAJm3mZ4JFfH06Yy6Xi/v37w+8Xy6Xi3w+H59++ml8//vfH9fwAAAAAJhxcxGC7e7uxr/7d/9u2sMAAAAAYE7N/OmQ+XxeAAYAAADArcx8CFYul6c9BAAAAADm3FRDsB//+Mc3bvPs2bPxDwQAAACATJtqCLa2tjbN7gEAAAC4I6YagiVJEv/jf/yPaQ4BAAAAgDtg6muCVSqVaQ8BAAAAgIz7aNoD2N/fj1arFZubm1EoFOL+/fsREbG4uDjlkTHvjo+PY2Vlpe8229vbsb29PaERAQAAQLbt7e3F3t5e322Oj48nNJrzph6CRUTUarWo1WoT6+8f//EfJ9YX03N2dhbv3r3ru83p6emERgMAAADZd3p6euNn8WmZiRAsSZLuz7lcLiKiOyNsWO/fv492u33l7/L5/ETDNqbr3r17sby83HcbMw4BAAAgPYuLi/HgwYO+2xwfH8fZ2dmERvS1mQjBKpVKbGxsxMOHD2/VzsuXL6NUKsXCwsK5f0+SJEqlUrx48eJW7TNflpeX4+3bt9MeBgAAANwZgyw7tLKyMpXZYlNfGH9/fz++//3v3zoA+4//8T/Gb/zGb8RXX33VnVmWJEkkSRKVSkUABgAAAHCHTXUm2MLCQjx58uTW7fzGb/xGvHz5sht+LSwsRJIkkcvl4uXLl/HJJ5/cug8AAAAA5tdUQ7BvfOMbt1qT6csvv4z19fVotVqRJEn3NMgkSaJQKMTLly/jG9/4RlrDBQAAAGBOTfV0yDdv3oy87x/+4R/G6urqlQHY1tZWvH79WgAGAAAAQERMOQQbNaT67LPP4smTJ5dOf0ySJPb39+N3f/d30xwmAAAAAHNuJq4OOajT09MolUpRr9cvzf6y/hcAAAAA15n61SEH9eMf/zgePnx4ZQBWLBbjzZs3AjAAAAAArjQXIdjnn38ea2trcXJycikAK5fL8cd//MfW/wIAAADgWjN/OuS//bf/Ng4ODi6FXxER1Wo1fvM3f3OawwMASMXPXvxBKu18/PR7qbQDAJA1MxuCnZ6exuPHj6PRaFwKwPL5fNRqtXj48OGURwkAAADAPJjJ0yE7639dFYCVSqX47//9vwvAAAAAABjYzIVgV63/lSRJJEkSlUolXrx4Me0hAgAAADBnZup0yKdPn8bh4eGl2V+5XC6q1Wo8fvx4yiMEAAAAYB7NxEywL7/8Mr7zne9cGYAVCoV48+ZNKgHYd77znVu3AQAAAMD8mXoI9sMf/jDW1tai2WxeCsC2trbi9evX8Y1vfCOVvprNZirtAAAAADBfphqC/Yf/8B9ifX09Tk5OYmFh4dz6X/v7+/G7v/u7qfX1+eefdwM2AAAAAO6Wqa4JVi6Xu+FXxIfZX0tLS/Hy5cv41V/91dT6+f3f//3Y2toSggEAM+tHX765dRvf/barZwMAXGemFsZfWFiI+/fvx7Nnz1Jpr91uR6vVSqUtAAAAAObXzIRgSZJEhHW7AAAAAEjfTIRgDx8+jGq1GrlcLpX22u129+fXr1/H/v5+NBqNVNoGAAAAYP5MPQTL5/OpXgHyok8++SSePXsWpVIp/uiP/mgsfQAAAAAw26Z6dciIiGq1OrYArFelUhl7HwAAAADMpqmGYLlcLtWrQPaTz+cnErYBAAAAMHumGoJNenaW2WAAAAAAd9NU1wR79uxZpvtjuo6Pj2NlZaXvNtvb27G9vT2hEQEAAEC27e3txd7eXt9tjo+PJzSa86a+MD6My9nZWbx7967vNqenpxMaDQAAAGTf6enpjZ/Fp0UIRmbdu3cvlpeX+26zuLg4odEAAABA9i0uLsaDBw/6bnN8fBxnZ2cTGtHXhGBk1vLycrx9+3bawwAAAIA7Y5Blh1ZWVqYyW2yqC+MDAAAAwCQIwQAAAADIPCEYAAAAAJknBAMAAAAg84RgAAAAAGSeEAwAAACAzBOCAQAAAJB5QjAAAAAAMk8IBgAAAEDmCcEAAAAAyDwhGAAAAACZJwRLye7ubqyvr8fS0lIsLCzE6upqlEqlqNfrc9n3tB5Pq9WK9fX1sfYBAAAA3D1CsFuq1+uxtLQU5XI5IiKq1Wo0m82oVCrRaDRifX091tfXo91uz0Xf43o87XY7FhYWbrytrq5GPp8fqm0AAACAm3w07QHMs3q93p21tLm5Gfv7+93f5fP52NjYiLW1tajX67G2thZHR0eRy+Vmtu9xPp6Dg4OBH1sngAMAAABIi5lgI2q321EqlSLiQ0DUGxj1qlarEfHhNL/O9rPY97gfz/PnzwfarlgsmgkGAAAApE4INqJSqdQ9JbDfzKXODKqIDzOthpkRNcm+x/l4Dg4Oot1ux87OTtRqtb63TsgGAAAAkKaFJEmSaQ9i3rRarVhdXe3ePzk56Xta4OHhYXfWVC6Xi5OTk5nqe9yPp9N2s9nsu11aVlZW4t27d/HgwYN4+/btRPoEYLLqld+e9hBm0ne//TA+fvq9aQ8DAKCvaX1uNxNsBJVKpftzsVi8cV2szsypiA+nHR4eHs5U3+N8PIeHh9FqtazzBQAAAEyVEGwEvacAFgqFgfbpXefqxYsXM9X3OB/P8+fPI5fLxZMnTwZqFwAAAGAchGBDajQa5+5/+umnA+3XGy6NOhNsHH2P8/E0Go1oNBrRbrdjaWkpVldXY2tr61Yz4QAAAABGIQQbUr1eP3d/0CsZXtzuYvg0rb7H+XgungLZarXi4OAgSqVSLCwsRKlUGunvAAAAADAsIdiQXr16de7+TetndXzzm988d//169cz0fe4Hk+r1boUsF10eHgYa2trsbW1NVCfAAAAAKP6aNoDmDetVuvc/VFnTo1ypcRx9D2ux5PP52N/fz/a7XY0m82o1+uX+uo4ODiI169fx9HR0UB9AwAAAAxLCDak64KcYbXb7Znoe5yPZ3Nz89I2BwcH8fz580vbNxqNWF9fj1qtlsp4AAAAAHoJwYY0SngVcfk0w/fv389E35N8PLlcLnZ2dmJnZycODw/j2bNn5/qv1+uxu7sbOzs7I43pouPj41hZWbl1O9vb27G9vZ3CiAAAAGB+7e3txd7e3q3bOT4+TmE0wxOCTcmo4dOs9j1smxsbG1EsFuPx48fnFsd//vx5aiHY2dlZvHv37tbtnJ6epjAaAAAAmG+np6epfM6eFiHYkHK5XCoh0qAL0I+772k/nqOjo1hbW+sGYe12O+r1ehSLxVuP6d69e7G8vHzrdhYXF2/dBgAAAMy7xcXFePDgwa3bOT4+jrOzsxRGNBwh2JDu37+fSmh0//79meh7mo+n4/PPP4+1tbXu/VqtlkoItry8HG/fvr11OwAAAEB6ywWtrKxMZUbZvYn3OOdGmfEUcfl0wVFnTqXd9zQfT0ehUDgXeqW1WD8AAABAhxBsSI8ePTp3f9BZVBcXjl9dXZ2Jvqf5eHqtr6/fan8AAACAfoRgQ+o9bS9i8FlLzWbz3P1RTvcbR9/TfDy98vl89+fbnFoJAAAAcBUh2JAuzpwaNDTqnWGVy+XOhT7T7Huaj6dX7/63ObUSAAAA4CpCsCEVCoVzIc2rV68G2u/169fdny8GT9Pse5qP57r2nBoJAAAApE0INoInT550f240GgPt07tduVyeqb6n+Xg6ek+vTOPKkAAAAAC9Ppr2AObR1tZWHBwcREREvV6/cfvebfL5/K1CnnH0Pc3H03F4eBgRETs7O7duCwDusp+9+INU2vn46fdSaQcAYFaYCTaCQqFwLvjpBDjXqVar3Z9vmjV1cHAQ5XL52rW5xtH3OB/PIA4PD6PVakUul4vPPvvs1u0BAAAAXLSQJEky7UHMo1arFaurqxHxIUQ6Ojq6crt2ux1LS0sR8eE0v1qtdm2b6+vr52ZZnZycXLlI/Dj6TrPNer0epVIp2u12FIvFqFQqUSgUru13bW0t2u12HB0dXbvdMFZWVuLdu3fx4MGDePv27a3bA2D21Cu/Pe0hzKTvfvtham2ZCQYAjMu0PrebCTaifD7fnRHVaDRid3f3yu0eP34cER+ueNg7g+oqF09F/OKLLybWd5ptVqvV7tUj6/V6rK2txdbW1qXtOr+7f/9+NJvNVAIwAAAAgKsIwW5hY2MjarVa5HK5KJfLUSqVotFoRLvd7gY8jUYjCoVCvHnz5spZXb0u/j6fz0+s7zTbLJVKl/7t4OAglpaWolQqxdbWVqytrcX6+npsbm7G0dFR38cKAAAAcFtCsFsqFotxcnISlUolWq1WPH78uBv23L9/P6rVahwdHQ0UQlWr1cjn85HL5WJnZ+fGBefT7DvNNovFYjSbzdjc3Ow+no5GoxHv37+Pzz77rNvPMOMDAAAAGIU1wcgca4IBZJ81wcbru99+aE0wAGBsrAkGAAAAAGMiBAMAAAAg84RgAAAAAGSeEAwAAACAzBOCAQAAAJB5QjAAAAAAMk8IBgAAAEDmCcEAAAAAyDwhGAAAAACZJwQDAAAAIPOEYAAAAABk3kfTHgCMy/HxcaysrPTdZnt7O7a3tyc0IgAAAMi2vb292Nvb67vN8fHxhEZznhCMzDo7O4t379713eb09HRCowEAAIDsOz09vfGz+LQIwcise/fuxfLyct9tFhcXJzQaAAAAyL7FxcV48OBB322Oj4/j7OxsQiP6mhCMzFpeXo63b99OexgAAABwZwyy7NDKyspUZotZGB8AAACAzBOCAQAAAJB5QjAAAAAAMk8IBgAAAEDmCcEAAAAAyDwhGAAAAACZJwQDAAAAIPOEYAAAAABknhAMAAAAgMwTggEAAACQeUIwAAAAADJPCAYAAABA5gnBAAAAAMi8j6Y9AAAAZs/PXvzBrdv4+On3UhgJAEA6zAQDAAAAIPOEYAAAAABknhAMAAAAgMyzJhgAAOf86Ms3t27ju99+mMJIAADSYyYYAAAAAJknBAMAAAAg84RgAAAAAGSeEAwAAACAzBOCAQAAAJB5QjAAAAAAMk8IBgAAAEDmfTTtAcC4HB8fx8rKSt9ttre3Y3t7e0IjAgAAgGzb29uLvb29vtscHx9PaDTnCcHIrLOzs3j37l3fbU5PTyc0GgAAAMi+09PTGz+LT4sQjMy6d+9eLC8v991mcXFxQqMBoON3/uSHt27jUQrjAAAgfYuLi/HgwYO+2xwfH8fZ2dmERvQ1IRiZtby8HG/fvp32MAAAAODOGGTZoZWVlanMFrMwPgAAAACZJwQDAAAAIPOEYAAAAABknhAMAAAAgMwTggEAAACQeUIwAAAAADJPCAYAAABA5n007QEAAJBNP3vxB6m08/HT76XSDgBwtwnBAABI3Y++fJNKO9/99sNU2gEAcDokAAAAAJknBAMAAAAg84RgAAAAAGSeEAwAAACAzBOCAQAAAJB5QjAAAAAAMu+jaQ8AALhbHv35n057CAAA3EFmggEAAACQeUIwAAAAADJPCAYAAABA5gnBAAAAAMg8IRgAAAAAmScEAwAAACDzPpr2AAAA4Do/+vJNvP6TH96qjd/6tV9PaTQAwDwTggEAMNMe/fmf3mr/n/3VX8bHT7+X0mgAgHklBCOzjo+PY2Vlpe8229vbsb29PaERAQAAQLbt7e3F3t5e322Oj48nNJrzhGBk1tnZWbx7967vNqenpxMaDQAAAGTf6enpjZ/Fp0UIRmbdu3cvlpeX+26zuLg4odEAAABA9i0uLsaDBw/6bnN8fBxnZ2cTGtHXhGBk1vLycrx9+3bawwAAAIA7Y5Blh1ZWVqYyW+zexHsEAAAAgAkTggEAAACQeUIwAAAAADJPCAYAAABA5gnBAAAAAMg8IRgAAAAAmffRtAcAAADj9KMv38TrP/nhrdv5rV/79RRGAwBMi5lgAAAAAGSemWAAAGTeoz//01u38bO/+sv4+On3UhgNADANZoIBAAAAkHlCMAAAAAAyTwgGAAAAQOYJwQAAAADIPCEYAAAAAJnn6pAAwEB+509+mEo7j1JpBQAAhmMmGAAAAACZZyYYAAAM4EdfvonXt5wR+Vu/9uspjQYAGJaZYAAAAABknplgAAAwoEd//qe32v9nf/WXERHx8dPvpTEcAGAIZoIBAAAAkHlCMAAAAAAyTwgGAAAAQOYJwQAAAADIPAvjAwDAhPzoyzcREfH6T354q3Z+69d+PY3hAMCdIgQjs46Pj2NlZaXvNtvb27G9vT2hEQEAAEC27e3txd7eXt9tjo+PJzSa84RgZNbZ2Vm8e/eu7zanp6cTGg0AAABk3+np6Y2fxadFCEZm3bt3L5aXl/tus7i4OKHRAAB87dGf/+mt9v/ZX/1lfPz0eymNBgDSs7i4GA8ePOi7zfHxcZydnU1oRF8TgpFZy8vL8fbt22kPAwAAAO6MQZYdWllZmcpsMVeHBAAAACDzzAQDgDvgd255JTpgtvzoyzeuMAkAQxKCAQADue0aRgAAME1CMAAAmENpLK4fERbYB+DOsCYYAAAAAJlnJhgAANxBP/ryTUSEtcUAuDOEYMBc2tvbi9PT01hcXLzx8rugXhjG4Z/9t/i7n/08funjfxIb//JfTHs4zDj1wqC8FjEM9cIw1MvgFpIkSaY9CEjTyspKvHv3Lh48eBBv376d9nAYE88zw1Av6Vwd8q4sjP+vf7AXf336k/jW4q/Ef/733kjSXxbq5fU//1e32t9MsMF4LWIY6oVhzGO9TGvMZoIBAMAdZoF9AO4KIRgAADCyNNYWM5sMgEkQggHADEvjNEYAAEAIlprd3d2o1Wrx+vXraLfbkc/no1AoxNbWVhSLxbnre17aBABgNtzmtEqnVAIwCUKwW6rX61EqlaLdbkexWIxqtRr5fD4ajUaUy+VYX1/v/nsul5v5vuelTQAAsiONUyojnFYJQH9CsFuo1+uxvr4eERGbm5uxv7/f/V0+n4+NjY1YW1uLer0ea2trcXR0lFrIM46+56VNAIZ3V67sCAAA1xGCjajdbkepVIqID2FOb7jTq1qtxurqarRarSiVSlGr1Way73lpE2CeWM8LAABmhxBsRJ3T+yIiyuXytdt1ZjsdHh5GvV6Pg4OD2NzcnLm+56XNNO3t7cXp6WksLi7G9va2/uasv0nL+t8z6/1NWufxvfqr/y/+5f/+MmCc/qxajZ//7d/FP/k/f2ki/R3+2X+Lv/vZz+OXPv4nsfEv/0Xm+pu0rP89s97fJGX9b3n4Z/8t/q72f9+qv2HWFrsrr0VZfW3Pen+TlvW/Z9b7m7R5fnwLSZIk0x7EvGm1WrG6utq9f3Jy0vcUvsPDw+6MqFwuFycnJzPV97y0OaiVlZV49+5dPHjwIN6+fXvr7dKiP/3p7+71t/itb8VnX7y4VVuDnMb4r3+wF399+pP41uKvxH/+9+N/I6I//elvOv1l+bGl3d/rf/6vbtzm+ZOncfrXf33pWD2udcXuymuf/vSnP/1Nqo1RmAk2gkql0v25WCzeuIbVxsZG9+d2ux2Hh4fn/m3afc9LmwCTctvTGH/y85+nNBIARjHIFwi/+A8/7/63d/vObLIIV6sEyBoh2AgODg66PxcKhYH2yefz0Wq1IiLixYsXIwc84+h7XtoEGMRVAVYnlPrJz39unS4A+upcqTIiIiq/PXI73/32w4gQpAHMEiHYkBqNxrn7n3766UD7FQqFbsBzeHg4M33PS5sAADBPOmHa6//95csoX8iM69RMgLtKCDaker1+7n4+nx9ov4vbNRqNgWdIjbPveWkTYB5dPMUGgLun8zpw3emX/dR7thtknbNeTs0HuEwINqRXr16du3/TWlcd3/zmN8/df/369dABzzj6npc2gdk27CmGs3564m2Dq84HHQBIy7CvTZ3Xop//5DTq//u0zmGDtF5mpQFZIAQbUud0vY5RZzk1m82Z6Hte2gQYxHUfEEb59h0AsuY2r4H1G/b9+U9Ou/+tX7OWWmedtA7rpQGTJgQb0sWAZ1Ttdnsm+p6XNoHx+J1brFOSJsEUAGTfuYsORIx84YHvfvthJH//d7cfEHDnLCRJkkx7EPNkYWHh3P1B/3z1ej3W19e79zc2NqJarU6973lpcxi/+Iu/GP/zf/7PiIi4d+/etdudnZ11f+633a/8yq/EL//yLw89jouOj4/j7Ows7t27F8vLy7duT393t7/Om75/+F//K7X+3v/kp3GWJHFvYSHu/8rt611/+tOf/vQ3333pT3/6G6y/X/xoPPNK/t+Tdre//2spN1IbC//HLw287Sy919XfbPf305/+NL766qvu/X6fpfvpfB7/hV/4hfiHf/iHVMY2CDPBpmSas5zG0fcstfmP//iP3Z97g65++m331Vdfnfuf/LbOzs7i3bt3qbWnP/2l2l+SxF+f/kR/+tOf/vQ3w/1l+bHpT3/6u9zf//P+ZMS9h98v8+919TeWPm+j9/P7JAjBhpTL5VIJfAZdLH7cfc9Lm8P4+OOP4+///u8jSZKRU+leac0EAwAAgHn205/+NH7yk9sHwWdnZ7GwsBAff/xxCqManBBsSPfv308l4Ll///5M9D0vbQ7jb//2b2/dNwAAAJAtt58mc8eMOjvpYig06kywtPuelzYBAAAAbkMINqRHjx6duz/ojKf379+fu7+6ujoTfc9LmwAAAAC3IQQb0tra2rn7rVZroP2azea5+8VicSb6npc2AQAAAG5DCDaki7OcBg14emdD5XK5yOfzM9H3vLQJAAAAcBtCsCEVCoVza1W9evVqoP1ev37d/fliSDTNvuelTQAAAIDbEIKN4MmTJ92fG43GQPv0blcul2eq73lpEwAAAGBUC0mSJNMexLxpNBrn1r266U9Yr9djfX09IiLy+fylta+m3fe8tAkAAAAwKjPBRlAoFM4t2n54eNh3+2q12v35phlOBwcHUS6Xr11Haxx9z0ubAAAAAKMyE2xErVYrVldXI+JD4HN0dHTldu12O5aWliLiw9UOa7XatW2ur69HvV7v3j85OTm3ttY4+56XNgEAAABGYSbYiPL5fHf2UqPRiN3d3Su3e/z4cUR8uNph72ynq/QGYBERX3zxxcT6npc2AQAAAEYhBLuFjY2NqNVqkcvlolwuR6lUikajEe12O+r1eqytrUWj0YhCoRBv3ry5clZXr4u/z+fzE+t7ntoEAAAAGJYQ7JaKxWKcnJxEpVKJVqsVjx8/jqWlpSiVSnH//v2oVqtxdHQ0ULhTrVYjn89HLpeLnZ2dc2tqjbvveWuT2dZqtboXOhh135vWkbvJ7u5urK+vx9LSUiwsLMTq6mqUSqVLMy6n3eZdN0ytNBqN2NraitXV1VhYWOg+B+VyOdrt9shjUCvzY5h6abVa5+plaWkp1tbWYmtr69p1NwehXubHbV6LenVqaJTXJfUyP9Kql9u0qV7mR9r10mg04vDwMHZ3dwd+btTLfBjHsWVYauWCBGBAJycnSUQMdNvc3By67Y2Nje7++/v7I42xVqsluVwuiYikWCwmtVotaTabSbVaTfL5fPffT05Optpm1qVZKxdr47rbsDWjVmZH2seWSqVyYzuVSmWoMaqX2THO16KLdnZ2um1Vq9WB91Mvs2Mc9ZJ2m+pldkzq+HJycpJUKpWkUCgkEZHkcrlkZ2cnqdVqNz4n6mU2pFUrnb/7KLebalCtXE0IBgxskA+WnVuz2RyozZOTk3MfMkYNNJLkw0H5pheFzpuNfD4/0MF5HG3eBWnVysnJSfcFNc03pGpltqR5bCkWi90PFBsbG8nOzk6ysbFxZR0NGmqol9kyjteiq/Q+R+plfo2jXtJsU73MlnEfX05OTpLNzc1uG4VCIanVagPvr15mRxq1Uq1WB27jqlu/1yW1cj0hGDCwQb+pKBaLA7VXqVSSfD7f/dDaexs2BDs5OemOL5/PX7tds9kceJzjaPOuSKtWOrVRKBSSarWaNJvN7rdNV4Wng3xQVSuzJ6166dTEdbO8rnrDehP1MnvSfi26Su9zNOix5eJ+6mU2jKNe0mpTvcyecR5f9vf3z7Xvve58S6NWrvoMNMztOmqlPyEYMJD9/f0kIrpTtfvdBkn9j46OkqOjo0vtj/rGoPdF5KZ9Bz3tchxt3gVp1UpvO9dpNpvdb5w6t1wu13d8amW2pFUvnTddN32j3vsNfEScOw5dRb3MlrRfi67TmT3Y+yFnkBBMvcyWcdRLmm2ql9kyzuNL7xd3+Xx+pFlk6mV2pFErnfct+Xw+2d/fT5rNZnJycnLjrfeUw+uolf6EYMBA8vl839T/to6OjkYOwXq/cYiIG9+Y9E49vi4wGUebd0VatdKZJXiTi89VvyBErcyetOplY2NjoHW+Lq7h0W8f9TJ7xv1alCRff7g5OjoaKgRTL7NnHPWSVpvqZfaM6/jSGwjkcrmRAnr1MlvSqJWdnZ2hTxnsfc6u+6ykVm4mBANu1DmQjTPJv3hwHaav3pkdg0677e3rqg8242jzLkirVjqh6KBvDC6e5nZdsKFWZkuax5Zhptz3rg/Wr2/1Mlsm+VrUmYE6TAimXmbLOOolzTbVy2wZ1/Hl4uluo65TqF5mR1q1ksvlbpyNflHv+93r3iOrlZsJwYAbFQqFkb+5GtRtQrDe/fqdOter90PwxsbGRNq8C9KqlZ2dnaGuunRxJuF1z5lamS2TOLZcpTfY6PcGVL3MlknUS6FQSAqFQvf+MCGYepkt46iXNNtUL7NlHPVy26U+eqmX2ZFWrQxzQYTevm8KotTKze4FQB+NRiMajUa02+1YWlqK1dXV2NraisPDw2kPLSI+jK/Xp59+OtB+hUKh+/PFxzKONu+CNGvl6dOnUalUBt6+928fEbG6unrl+Hqplema1rGl3W5Hu92OiIhisXipdnrH10u9TNck6qVcLkej0YhqtTrS+Hqpl+kaR72k2aZ6mS3jqJdWqxVbW1vd+4VCITY3N0ceXy/1Mj1p1kqxWBxq+3a73X3eSqXStePrpVauJgQD+iqXy+fut1qtODg4iFKpFAsLC1EqlS4dHCepXq+fu5/P5wfa7+J2vY9hHG3eBWnWSqFQiFwuN3DfnVCj46rnTK3MlmkdW7744ouI+PAc9As71MtsGXe9NBqN2N3djf39/YGfl17qZbaMo17SbFO9zJZx1MvFkOKzzz4beXzqZXZM83PRwcFB9+cnT55cuY1aGYwQDLhWq9W6dOC76PDwMNbW1s592zVJr169Ond/0ODkm9/85rn7r1+/HmubWTftWmm1WufuX/XtmlqZHdOql3a7HVtbW1EoFKJWq/V9vtTL7JhEvTx+/Dg2NjZGnqmhXmbHOOol7TbVy+wYV730fuDP5XKxsbEx8hjVy2yY9nvdFy9eRET/L4rVymA+mvYAgNmVz+djf38/2u12NJvNqNfrl8KGjoODg3j9+nUcHR1NdIwXxzPqtxPNZnOsbWbdtGul94X1ug+xamV2TKNeWq1WrK+vRy6Xi5cvX974Jk69zI5x10tnxsbnn38+8hjVy+wYR72k3aZ6mR3jqJf9/f1z9ztfzB0eHsaLFy+i0WhEq9WKXC4X+Xw+nj59Gpubm9e+LqmX2TDN97q9p0I+ffr02u3UymCEYEBfFwOFdrsdBwcH8fz580unoDUajVhfX49arTax8V334jOs3scyjjbvgmnWSu8bzotT1TvUymyZZL0cHh6eOzVlaWkpKpVK7OzsXLuPepkt46qXw8PDODw8vHFm4E3Uy2wZR72k2aZ6mS1p10vvaWsREffv34+1tbVLp4N1go1GoxHlcjmq1eqVM8bUy+yY1nvdzlIOEdF3VqFaGYzTIYGh5HK52NnZiZOTk6hWq5c+NNTr9djd3Z3YeEY9oF4c9/v378fa5l00qVrpPe2gUqlc+w2VWpltaddLu92O3d3dWF1dvXIB2XK5fO3Csp39R6FeJiONemm321EqlWJzc3PoBYqvamsU6mUyxvF6dJs21ctsu81z22q1Lj0XX3zxRWxtbcXJyUkkSRJJkkSz2bwUqJRKpSsXEFcvs2tS73U7X/YWCoW+M7HUymCEYMDINjY24s2bN5eurvb8+fMpjWh04/h2Ypa+8Zi2cdZK5yqS+Xy+78yetKiV8UujXur1ejSbzSgWi9cGHIeHh2MP7dXL+I1aL48fP+6e3jIr1Mv4jeP1aFrvh9TL+A373F6cNZPL5eLNmzeXTnfsHHsuHn+ePXs2tudAvYzXuI4Dg54Kmaas14oQDLiVXC4XR0dH5w747Xb7xoUj0+w/7XbG0SbjqZVGoxEHBweRy+VunG6uVubLbetlY2Oj+wGjVqtFkiSxv79/6W9dLpevfGOmXubLsPWyu7sbjUaj7xVCh+0/7XbUy/iM4/VomDbVy3wZ5rm9GIL1W+ur8/veGWHtdvtSaKJe5sc4ji2DngrZ6T8NWa8VIRiQiosLCk9qXbD79++n3s442uRradbKs2fPIiLi5cuXNy7UqVbmU5r1srm5GUdHR5feiF1cvyVCvcyrQeqls/5OpVK59I39qNTLfBrHe5dB2lQv82mQ5/bi4t+ffvrpje1eXMv04gxl9TJ/0jy2dGYL5vN573VTIgQDUlEoFM6dcpTWIoo3GfVbhYszP9L4xqNfm3wtrVrZ2trqzuQY5IOsWplPaR9b8vl8vHz58ty/Xbz8d4R6mVeD1EupVIpCoZDq6dPqZT6N473LIG2ql/k0yHM7yt8zn89feh/Tu4i+epk/aR1bek+FvGkWWIRaGZQQDEjN+vr6xPt89OjRufuDnm9+cXHG1dXVsbbJebetlYODgzg4OIj9/f2B3hREqJV5lvaxpVAonKubq96cqpf51a9ednd3o9Vqxf3796NUKt14632Onj9/fu53vQtYq5f5NY73Lje1qV7m103P7ah/v4vPX+/rknqZT2kcW3pPhRxkPTC1MpiPpj0AIDt6p+hOasrr2traufutVmugWUEXp6v3flszjjY57za1Uq/XY2trK/b39y9dWakftTK/xnFsefr0aTfEuOoNnXqZX/3q5W/+5m8iIkZan6XRaJybnZHP57thqnqZX+M4vtzUpnqZXzc9txdnuwwaGFwMCHoDBPUyn9I4tnTWrczlcgM9P2plMGaCAanpPdhPasprv2/O+ul9U5LL5c6NfRxtct6otdJoNGJ9fT0qlcpQAViEWpln4zi29L6Bu6pN9TK/vBZd3yaXjaNebmpTvcyvcT23F9vqDU3Uy3y67bGld0H9Qd/zqpXBCMGA1Lx+/br786ROjSwUCudeWK5a2+cqvWO9eHAfR5ucN0qttFqtePz4cezs7Iy0lo9amV/jPrZc9Ryol/nVr14qlUokSTLwrfdNe7VaPfe7SqXS/Z16mV/jOL7c1KZ6mV+DPLe9Ls6GGVTvsUe9zKfbHluGPRUyQq0MSggGpKb3hX6SU16fPHnS/bn3VJV+ere7eFWecbXJ14atlVarFWtra7G5uXnug+dN+1y8wpJamU/jOLb0fpN53ZtT9TKfvBapl2GMo14GaVO9zKdBntvefx/01OuLp01eDNPUy/y57bFl2FMhO9TKABKAlOTz+SQikp2dnaH3bTabSUR0b/v7+wPve3R0dG7fm9Rqte62+Xx+Ym3ytWFq5eTkJMnn88nm5uZQfRQKheTo6Ojcv6mV+XSbY8t1KpVKEhFJLpe7dhv1Mp/SrJdOWxGRVKvVvtuql/k0juPLIG2ql/k0yHPb+3eNiOTk5OTGdjc3N7vbF4vFS79XL/PnNseWk5OT7t962Pe/auVmQjAgFdVqtfuBcpAX+4suHlyHCcGSJEmKxeLAH1R632j062ccbTJcrXQCsGKxmDSbzYFutVotKRQKSaFQuLJNtTJfbntsuU4ulxvo+VIv8yXtehkmBEsS9TJvxnF8GaZN9TJfhnlue48dg4Qgvdtf/AKvQ73Mj9seW/b397t/61qtNvT+aqU/IRhwpVqt1v2QWCwWr31BTpIPs7g62/bbrp/Oi0XnVqlUhtq/dybZdeFHkpz/ZuWqb9rG3WYWjbNWCoXCuboY5nbdi65ama5x1UulUkkKhUKys7Nz4xvOnZ2dgT+YqJfpmvRr0UXDhmDqZbrGUS/jrEH1Ml3jfG4vfrnbbDb7jqOzXb9ZP+pleib9WtQJnPrNVu9HrfQnBAOu1Jvg93th7rwo5PP5vi/w/XRm+/T21e/gep3eIO26EK0Tqgz6zcw42syacdXKbQKwiP4vb2plesZRL71vuDq36wKujY2Nvs/RVdTL9Ezytegqw4ZgSaJepmkc9TLuGlQv0zPu57Z3Nk8+n7/y79z7HniQ977qZTom/bmo08fGxsbIY1Yr1xOCAVe6uJ5B55bL5ZKNjY1kc3Oze5AbZObFRScnJ8nGxsa5qbVX3YrFYrKxsTHwNym939R09js5OemeItd5kzHMeMfRZpaMo1Y6QcWot0HWT1Ar0zGuY8vFIL23zZ2dnaRYLHbvj/LGVL1Mx7hfi24ySgjWGbd6mbxx1MskalC9TMekn9tcLpdUKpXk6OgoOTo6SiqVSvd3w6z7pF4mb5KvRbc9FfLiuNXKZUIw4FrNZjPZ3NxM8vn8uRfwfD6fbGxsJNVqdWYPcJ1To3rHXSwWh/oQM4k2s0KtjL/NLBlHvZycnCQ7OzuX/u6dNvf391OpQfUyeY4v428zS8ZRL5OqQfUyeZN6bvf397tfxnT66JzCP+qMIfUyWZOqld4JAmlRK+ctJEmSBAAAAABk2L1pDwAAAAAAxk0IBgAAAEDmCcEAAAAAyDwhGAAAAACZJwQDAAAAIPOEYAAAAABknhAMAAAAgMwTggEAAACQeUIwAAAAADJPCAYAAABA5gnBAAAAAMg8IRgAAAAAmScEAwAAACDzhGAAAAAAZJ4QDAAAAIDME4IBAAAAkHlCMAAAAAAyTwgGAAAAQOYJwQAAAADIPCEYAAAAAJn30bQHAAAAAHBXlMvlaLVaA2//6aefxs7OzhhHdHcsJEmSTHsQAAAAAFnXbrdjaWlpqH1qtVoUi8UxjehucTokAAAAwATU6/Whtt/f3xeApUgIBgAAADABtVot8vl81Gq1SJLk2luhUIidnZ3Y3Nyc9pAzxemQAAAAABOwurraDcKuUyqVIiKiWq1Oalh3hoXxAQAAACagXC73DcB2d3ej1WrF0dHRBEd1d5gJBgAAADBl9Xo9tra24ujoKHK53LSHk0lCMAAAAIAparVasba2FkdHR31ninE7FsYHAAAAmJJ2ux3r6+tRrVYFYGNmJhgAAADAlKyvr0epVHIlyAkQggEAAABMwdbWVuRyuahUKtMeyp3gdEgAAACACTs4OIj3798PFYA1Go04ODiIra2tWF1djcPDw3O/W19fj6WlpSiVSpf2LZfLsbS0FKurq9FoNPr202q1YmtrqztLrVQqdU/bXFpainq9fu2+9Xo91tfXY21trXvrt/0kCcEAAAAAJqjRaMT+/n5Uq9WB96nX6/HixYsol8txcHAQrVYrisViRHwI1EqlUrx//z7a7XYcHh52g65Wq9UNvtrtdrRarSiXy9f2s7u7G6urq7G6uhq1Wi2q1WpUKpUolUpRr9ej3W53+72oE5ytr6/H0dFRd6H/9fX12N3d7Y5hWoRgAAAAABPSarXi2bNn8fLly6H2KxaLUalUugFUoVCIXC4Xh4eHUavVotlsXmqz3W5HqVSKarUatVqtu+/79++v7KNUKkW5XI5qtRo7Ozvdf8/n8919rgvASqVSHBwcxObm5rl9nz59GhEfZqKtra31DeDG7aOp9QwAAABwx3RCqVwuN9L+nVMLi8ViNBqN7mytiIjXr193tysUCpeuOtn5/VVB1tbWVhweHsbm5mZsbGxc+n1nBtf6+vql3x0cHHRPzbx4emehUOj+3Gw2p3oFTDPBAAAAACZgfX09Pvvss5GDoFardS6Mev78eezv73d/X6vVIuJD8FQul6NcLnf7urhvr8PDwzg4OIhcLneuvYt9R1wdoHVCuI2NjUvhXme/iz9PgxAMAAAAYMzK5XLU6/UolUqxvr4+0mLxvfvUarX4/PPPr/x9J/jqDax6970YZD179iwiIj777LO+/eZyuXMzuy7+/tNPP730u04wFxHx6NGjK9ufFCEYAAAAwBgdHh7G7u5u937nCorDro/VCZRyuVysrq6em3XVbrfPLYZ/8bTEzr4XA7Dd3d3uDLHNzc0r++3M9LouxLru1M52u9193Ds7OyOfApoWIRgAAADAmDQajSiVSlf+bnd391w41rG2thZLS0txcHBw7t87M67u379/KbDqnel11Yyuzu8vngr5/PnziLj6VMaID0FWZxxXrQcWEd0ZaS9evDi339raWkR8CMAuhnLTIAQDAAAAGJNyuRz7+/tRq9WiUqlcOp2wc5pkr3a7He12O7a2trr/1mg0ujO2rppB1jtL7OLC9r3rgfXOBOtt87qAqxOSXdy318bGRhwdHUWr1Yq1tbVYX1+Px48fR6FQiGazORMBWISrQwIAAACMTe+aWMViMXZ2dqJer0e5XO6evlgqleLNmzfdmVjFYjEODg7OLaDfG5Q9efLkUj+d3/f73cU1vXoXqr/qVMdWq3Wu36vWA+t4/vx5PHr06NzjnTVmggEAAABMULFYjKOjo9jf349cLtc9dfDi1RM7a3FFfH2qYbFYvHTaYrvd7u7bO3us4+J6YJ21um66WmO5XI6nT59e2vfw8PDcdqVSKQ4PD/uGZLNACAYAAAAwBZubm3FychL7+/uRz+djbW0tVldX4/3799FsNs+FSp1ZY1eFXF988UVE3Hz1xs4pj6VSKTY3N8/NNLu4ntf6+npUKpV49epVRHyYBdZut+PZs2eXTovstL+7uxtra2uX1jKbFQtJkiTTHgQAAAAAVzs8POwurn9ycnJpJlhnJtbGxsa52WMdCwsLEfFhNtf79+/j888/74ZaDx8+PHd1yPfv30ej0YhardYN5hqNRuTz+cjlclGtVs+FZxERBwcHV4Zzm5ubsb+/n8JfIB1mggEAAADMsPfv30exWIzNzc0rr+AY8SHg6py6eFHnyo+dEKszWyyXy8XLly+797/44ou4f/9+HB0ddYOuTpv5fP7KAOzw8DCq1Wo0m82oVqvnZokdHBzE6urqrR57mswEAwAAAGBou7u78eLFizg6Ojr3761WK8rlcnftsFmZESYEAwAAAGAonVM0j46Orl0Qv1wux+7ubuTz+Wg2mxMe4WVCMAAAAACGsr6+HvV6PW6KlRYWFqJQKFyaLTYN1gQDAAAAYCidtck6i+pfpfO7i1eTnBYhGAAAAABD6SyY//z582u3KZfLkc/n47PPPpvUsPoSggEAAAAwlI2NjahUKrG7uxtbW1vRaDQi4sPsr3q9Huvr6/H+/fs4Ojq69oqWk2ZNMAAAAABG0m634+DgIJrNZrx//z7y+Xysrq5GsViMfD4/7eGdIwQDAAAAIPOcDgkAAABA5gnBAAAAAMg8IRgAAAAAmScEAwAAACDzhGAAAAAAZJ4QDAAAAIDME4IBAAAAkHlCMAAAAAAyTwgGAAAAQOYJwQAAAADIPCEYAAAAAJknBAMAAAAg84RgAAAAAGSeEAwAAACAzBOCAQAAAJB5QjAAAAAAMk8IBgAAAEDmCcEAAAAAyDwhGAAAAACZJwQDAAAAIPOEYAAAAABknhAMAAAAgMwTggEAAACQeUIwAAAAADJPCAYAAABA5gnBAAAAAMg8IRgAAAAAmScEAwAAACDzhGAAAAAAZN7/DzBDUscFR6ilAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(\n", + " zmag,\n", + " bins=50,\n", + " alpha=0.5,\n", + " density=True,\n", + " color=\"#107E7D\",\n", + " label=\"True\",\n", + ")\n", + "plt.hist(\n", + " z_mag_xEndT,\n", + " bins=50,\n", + " alpha=0.5,\n", + " density=True,\n", + " color=\"#F05342\",\n", + " label=\"Predicted\",\n", + ")\n", + "plt.xlabel(r\"$z_{mag}$\")\n", + "plt.ylabel(\"Number of tracks (normalised)\")\n", + "mplhep.lhcb.text(\"Simulation\", loc=0)\n", + "plt.legend(loc=\"upper right\")\n", + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/thesis/zmag_new_parameterisation.pdf\", format=\"PDF\"\n", + "# )\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weird = zmag < 5200\n", + "True in weird" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMAAAAOWCAYAAAAJOu7yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2sUlEQVR4nOz9UWyjaXofej5U10zaGYND1QAGBHKBDJWDnQDnYpqsWSx8ruKiYuwez7GRkaqz9s4M9iQljQ0jCzCB5IZxkAQLuyLB4c0C4xE7ydkzPrNAW0p2fDwHMEZsXy/QJbZzscAAjti+EEEgC1exCTvutafJvahIllQSRUkUP/Lj7wcII5Yevnw43W+zvr/e9/0yg8FgEAAAAACQUgtJNwAAAAAA90kABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACp9iCpF/7DP/zD2N3djb/39/5e/MN/+A+TaoMJ+9znPheffPJJvPHGG/FTP/VTSbcDAAAAXPCf/tN/ik8//TTefPPN+PM///Ok2xmLzGAwGEz6RT/88MMol8uRyWQiIuLo6Cj+1t/6W5NugwS88cYb0e/3k24DAAAAuMbCwkJ8+umnSbcxFomsANva2oqIiMFgEJlMJlqtlgBsTpwEYAsLC7G0tHSnsTqdztjGSsKs9x8x++9h1vuPmP33MOv9R8z+e5j1/iNm/z3oP3mz/h5mvf+I2X8Ps95/xOy/h1nvP2L238Os9x8x++9hnP2fjPXGG2+MqbvkJRKANRqNyGQyMRgMYn19PX7mZ37m0rrf+q3fikqlEl/+8pcn2yD35qd+6qei3W7H0tJSHB8f32msQqEwtrGSMOv9R8z+e5j1/iNm/z3Mev8Rs/8eZr3/iNl/D/pP3qy/h1nvP2L238Os9x8x++9h1vuPmP33MOv9R8z+exhn/ydjpenookQPwd/d3Y3f/u3fvvLnm5ub8fz58wl2BAAAAEDaJBaA7e7uxtOnTyf2er1eb2KvBQAAAMD0SCQAKxaL8ejRo4m+5tra2kRfDwAAAIDpkMgZYKVSKd5///2Jnu1lK+V06XQ6USgUhtZUq9WoVqsT6ggAAADSr1arRa1WG1rT6XQm1M3kJBKAra+vx9/7e38v/vRP/zTW19eH3gHy448/vtP2xVarFZubm9Htdm89BuPX7/ej3W4PrbFtFQAAAMar1+tdez2eRokEYJVKJVZXV2N7ezu2t7eH1m5ubsbm5uadXm8wGEQmk7nTGIzXKLdlzWazE+oGAAAA5kM2m418Pj+0ptPpRL/fn1BHk5FIAPbxxx9Hs9mMwWBwbe0oNcyeWb2tLAAAAMyyUY4bKhQKqVsllkgA9uzZs2i1Wqersj7/+c/f2xbFTCYjRGMqVavV6PV6M73Sbdbfw6z3H5GO9zDrZv2fwaz3HzH772HW+0+DWf9nMOv9R8z+e5j1/tMgDf8MZv09zHr/Eel4D1wtM0ggHXr06FF8+OGHMRgMolwuxwcffBAff/xxNBqN+OCDDyIiotvtRr1ej1KpFMVi8dav1Wq1otlsRiaTiU8//XRcb4FbOkmR8/n8nVeAjXMsIBnmMcw+8xjSwVyG2ed6e7hEVoC1Wq2IiNjY2Ijf/u3fjohXq8C+9rWvxde+9rXTunq9Ht/61rfiH/2jf3Sn12s0GvGzP/uzdxoDAAAAgNm0kMSLdrvdWF9fPw2/7lulUom33nprIq8FAAAAwHRJJACLeLX6K82vBwAAAMB0SCwA+/KXvzzR13v69OlEXw8AAACA6ZBIAFYsFuM//If/MNHX7PV6E309AAAAAKZDIgHY6upq/OZv/uZEX3NtbW2irwcAAADAdEgkAFtfX4+9vb34N//m30zsNZ8/fz6x1wIAAABgejxI4kWLxWJ87WtfOw3CVldXo1KpxMOHDyObzZ6r/fjjj2+9ffHFixfR7XZjc3Mzut3uGDpnmlSr1ej1eq/9OwPMDvMYZp95DOlgLsPsM4+HywwGg0FSL14ul+PDDz+MTCZz6c8Hg8GVP7uJk3E+/fTTO4/F3RQKhWi325HP5+P4+DjpdgAAAIAL0njtnthdICMi/vAP/zC+9rWvxWAwuPQrIq782U2+AAAAAJhfiQZgn//852Nvby9++MMfxuPHj+/lNcaxggwAAACA2ZXIGWAXVSqVqFQq8fHHH0ej0YhWqxVHR0dRr9ejVCrFo0ePbjzmixcvIiKi1WpFs9kcd8sAAAAAzIhEzwC7zsLCQtTr9fhH/+gf3WmcZrMZX/nKV5wBNgVO9hEvLCzE0tLS0NpqtRrVanVCnQEAAED61Wq1qNVqQ2s6nU70+/1UnQE2FSvA7lupVIq33nor6TY4o9/vR7vdHlpz27t/AgAAAJfr9XrXXo+n0VQHYKurq1EsFscy1sbGxljGYTxGWQHm1q0AAAAwXtlsNvL5/NCakxVgaTLVWyBJnzTeShUAAADSJI3X7oneBXKS/uRP/iTpFgAAAABIwNwEYGtra0m3MLNarVasrKwk3QYAAADArcxNANZqtZJuYep0u93IZDLXfi0vL4/tLDYAAIBRDAYRn/aHfznQBxjVVB+CPw69Xi82Nzej2+0m3crUqdfrI9dubW3dYyfAfRsMIvrX/AVxIRORyUymHwCA6/QHEQ9+fXjNj38j4g1/fwFGkEgA9tFHH8WTJ0+i1WrFxsZG/OZv/uZrNY8ePYqPPvroTq9zEnoNBoPIuKp7zbNnz0aqq1QqVoDBjPMXSAAAYJ4lEoCtra1Fs9mMiIjt7e149OhR/P2///fP1ZTL5dMaxq9er0e3243Nzc1rz/d69OjRhLoCkvS9DyO+UU66CwAAgPFLJABrNpuRyWRi8F82bF92Pte3vvWtePfdd19buTUYcZP32eeN+px5sr29HcViMba3t5NuBZiA7314fc039yPeWIj4pbfuvx8AAIBJSiQAe/r0abz77runj1dXV1+reeuttyKXy8XHH38cg8EgcrlcPHz4MHK53Eiv0e1248WLF87+usT+/n60Wq3Y3d1NuhVgAj7+JOJXfm+02m99P+Krfyci++a9tgQAMBZWsAOjSiQA293djZWVlXj+/HlsbGzE3/pbf+vSuqdPn8Zv/dZvRbPZjC9/+cu3fr2tra34rd/6rVs/P22ePXsWuVwunjx5knQrwAT8TjPiz/9qtNo/+8uI7zYjfvWn77cnAIDrWMEOjFNmMMX7Az/88MN48uRJ/PEf//Gdx3r48GG8ePFiDF3NtmazGeXyX/+KpFgsRqVSiZWVlUtX4o1boVCIdrsd+Xw+jo+P7/31gIif/bcRP7zBf0Z/9r+K+IP//v76AQC4zsefROR/c7Rf4v3kZyPa71jBDuOUxmv3haQbGOatt96Kz3/+82MZy10MX9na2jr3uNVqRb1ej7W1tchkMuduUACkw8u/uN96AIBxu80KdoBhpjoAi4h4//33xzLO2TPH5lWr1YpGozG0Zn9/P8rlcmxsbEyoK+C+Lf7E/dYDAIzb7//oZvU/uGE9MH+mPgAbxwqwX/7lX4633rIpvFgsxu7ubmxvb8f6+vrQVXH1ev3cVklgdn31Szer/7kb1gMAjJsV7MC4TX0ANg71ej3+5E/+JOk2psL6+npsbm7G7u5uHB0dxcuXL2N7e/vSu2s2m81YWVmZfJPAWH29FPG5z4xW+5OfjfhG6X77AQC4jhXswLglchfISXr//fdjMBjEv/t3/y7+yT/5J0m3M3VyuVxsbm7G5uZm7O/vx9OnT6Pb7Z7+vNFoxM7OTmxubo71dTudThQKhTuPU61Wo1qtjqEjSK/Pvxnx7Z9/dZek63znFxwgCwAk76tfutlNfKxgh1dqtVrUarU7j9PpdMbQzXSZ+F0gv/Wtb8VHH31076/z4sWL6Ha70Wq1YjAYxPLy8ljuJpl23W43Hj9+fO4g/FwuFy9fvhzL+Cd3khiXf/bP/ln883/+z8c2HqTVp/2IB78+vOa7qxFft/MZAJgC7gIJt/PP//k/j3/xL/7F2MZL010gJ74CLJfLxcHBQWQymXt9nYu5XqvVij/6oz+KL3/5y/f6urMul8vF4eFhlMvl0xCs2+1Go9GISqUyttdZWFiIpaWlO4+TzWbH0A2kz2AQ0T/zn8FP+9c/5xcdlQgATAkr2OF2stls5PP5O4/T6XSi3x/hImKGTHwF2IcffhjlcnnkAGwwGNw5LDsZY2trK37zN3/zTmPNi2azee4Q/M3Nzdje3r7zuCcrwNKUIsM0GmXF1//v/xbxxpmTIBcyEff8uwkAmAoXf1F0GZ+LybOCHZKTxmv3ia8Ae+utt6JYLMZHH3302iqty2QymZHqhj0/4lUItre3JwAbUalUikqlEo1GIyJeraAD0q0/iIj/8p9bf+kHIM36g+uDlR//RsQbPgunnhXswKgSuQvk48ePI+LVAev9fv/Kr+3t7RgMBlEqleLg4CBevnw5tP7i1/Pnz+OLX/xibGxsRL/fdwbYDbkDJKTb3/gfXv3l/7Kv634rDgAAMEsSuQvkkydPotlsxs/8zM9cWfPRRx/Fr/3ar8XGxkb89m//9q1ep1QqxQ9/+MP423/7b0cmk4lvf/vbt215LhWLxdPvHz58mGAnwE1978OkOwAAAJgeiQRgjx8/jsXFxaE129vbUSwWbx1+nSgWi/H06dPY3d2NtbW1+Lt/9+/eabx5cjYAy+VyyTUC3MjHn0T8yu/dbYzvfRjxDedpADDHfBYmbyHzaivqdTUAo0hkC2RExA9/+MOhP3/+/HlsbGyM5bUePXoUg8Egdnd3xzLevHj+/Pnp97ZDwuz4neZotwwf5pv7VpEBkF6jfMb5LExeJvPqhj3DvpxZCowqsQDsOs1mM0ql0ljGOtm+d3BwMJbx5sXR0dHp95VKJcFOgJv4/R+NZ5xvfT+i98l4xgKAaXGTldI+CwHSY2oDsFwuFx999NFYxjoJvrrd7ljGmxf7+/sREbG5uZlwJ8BNvPyL8YzzZ38Z8d3meMYCgGlxk5XSPgsB0mNqA7BHjx7Fd77znTuP8/HHH0e9Xo8I51jdxP7+frRarcjlcvHOO+8k3Q5wA4s/Mb6xfjCm1WQAMC1uulLaZyFAOkxtALa+vh6Hh4fxr/7Vv7r1GL1e73TrXiaTOXeo+7xpNBqxuLgYmUwmVlZWotm8+ldZrVYrnj59GhER77//vuAQZsxXvzS+sca1mgwApsVNP9t8FgKkw9QGYKurq/HFL34xNjc34x/8g38Qf/Inf3Kj5//7f//v44tf/OK5oOftt98ec5ezY29v73QLaKPRiHK5fOlNBk5+9vDhwzg6OhrbOWzA5Hy9FPG5z4xnrHGuJgOAaXDTzzafhQDpMLUBWMSrs7sGg0Hs7e3F8vJyfOUrX4l//a//dfzhH/7huUDsT/7kT+KP/uiP4t//+38fv/zLvxxf+MIXYm1tLV6+fHlak8vl4p/+03+awLuYDmtra6/9Wb1ej8XFxVhbW4uNjY0ol8uxsrJyuvpunlfMwSz7/JsR3/758Yz1c2NcTQYA0+CmK6V9FgKkQ2YwGAySbmKYZrMZjx49iohX2xhHcfKWztYfHBzEz/zMz4y/wRnSarVie3s7Go1GvHjxIrrdbuRyuXj48GGUSqV4++23o1Kp3OuWx0KhEO12O/L5fBwfH9/b68C8+7Qf8eDX7zbGT342ov1ORPbN8fQEANPg408i8r852kH4PguBeZXGa/cHSTdwnVKpFP/xP/7HWFtbiw8//HCk55wEXydB2N7e3tyHXxERxWIxdnd3k24DmBHf+QV/4QcgfU5WSn9z//pan4UA6TH1AVjEq+Dm8PAw9vf341/+y3/52gHuFwOvk/9dXV2Nd999Nz7/+c9PtmGAhC1kIn78G5f/7NN+xN/4H4Y//7urEb/01vj7AoBp8EtvXR+A+SwESJep3wJ5mY8++igajUYcHh5Gq9WKFy9eRETEw4cPo1gsxsrKSlQqFcHXFDpZRrmwsBBLS0tDa6vValSr1Ql1BvNjMIjoD15tAfmfP4z4X3/06g5Xiz8R8d9+KeLrb0XkfiJixF3nADBzRjkq4Me/EfHGVJ+YDHA7tVotarXa0JpOpxP9ft8WyKR98YtfjKdPn8bTp0+TboVb6vf70W63h9b0er0JdQPzJZOJeCMT8fBvRvzj/+bVFwAAMB96vd611+NpNJMBGLNvlBVg2Wx2Qt0AJ6vChlnIWBUGAACzLpvNRj6fH1pzsgIsTWZyCySzK413koA0sBUEgHniFz8Aw6Xx2t0KMAAAmFGCnNs5OQ4AgPkhAANgJN/7MOIb5aS7AOCs/mDEFbzCHgDmnM0sAMT3Pry+5pv7o9UBAABMGwEYwJz7+JOIX/m90Wq/9f2I3if32g4AAMysweDV+brDvpzEngxbIAHm3O80I/78r0ar/bO/jPhuM+JXf/p+ewJgfGxhB5gcW9OnlxVgAHPu9390s/of3LAegPtjCzsAjEYABjCjxrW8+uVf3Ox1b1oPwP2whR0ARmcLJMCMGtfy6sWfuNnr3rQegPthCzvAbLI1PRlWgAHMua9+6Wb1P3fDegDuhy3sANPH1vTpJQADSLFRPli/Xor43GdGG+8nPxvxjdLdegJgPGxhB5gutqZPNwEYwIwa12+XPv9mxLd/frTX/PZ/F/G5z7qFM8A0sIUdYLrcZms6kyMAA5hB4/7t0i+9NdpY39h/de7YyVdfAAaQGFvYAaaLrenTTQAGMIOm5bdLzi4ASI4t7ADTxdb06SYAA5hB4/7t0kLm1R0jz379j1+7flwHeAIk5yZb2L/zCxHZN++1HYC5Z2v6dHuQdAPMp06nE4VCYWhNtVqNarU6oY5gtoz7t0uZTMQbmb9+/PEnEb/6v4w29re+H/HVv+PCCiAJv/TWq19GDPPd1dG3ugNwe1/9UsQP/3j0+qS2ptdqtajVakNrOp3OhLqZHAEYiej3+9Fut4fW9Hq9CXUDs+e+f7t0my2Wv/rTN3sNACbjF4VfABPx9VLEr/3BaH+PTnJreq/Xu/Z6PI0EYCRiYWEhlpaWhtZks9kJdQOz575/u3SbLZYCMAAA5tnJ1vTrVuZGJLs1PZvNRj6fH1rT6XSi3+9PqKPJEICRiKWlpTg+Pk66DZhZ9/3bJQd4ArNqMLj+DrULmVdbvwFg3GZha/ooxw0VCoXUrRITgAHMoPv+7dJNt0zm3oz49MwviFxcAknpDyIe/Prwmh//xvlzD2fZyU1MrqsBYHrYmp4Md4EEmFGj/Nbotr9d+uoNt0z+8D++uuA8+bpu9QUA45HJRLyxMPzLLyQAQAAGkGq3/e3S10sRn/vM7V/3ex/e/rkAAADjZgskwIy6z20vN9lieZlv7r9adZDk2QYAV/nehxHfKCfdBQAwSQIwgBmVydzvGTajHOA5zLe+H/HVv5Pc3W2A+TTKClQhPQD3xdmM08sWSADuxZ/9ZcR3m0l3AcyTjz+J+JXfG632W9+P6H1yr+0AMIeczTi9BGAAXOrkt1dnv1b+9s3G+MGP7qc3gMv8TjPiz/9qtFohPQDMFwEYAJe67LdX3Ruulnj5F/fTG8Blfv+GobuQHgDmhwAMgJEt/sT91gPcxU1DdyE9AMwPARgAI/vql25W/3M3rAe4CyE9AHAVARgAI/t6KeJznxmt9ic/G/GN0v32A3CWkB4AuIoADICRff7NiG///Gi13/7vIj732YhP++e/BoP77RGYX0J6AOAqAjAAbuSX3hqt7hv7EQ9+/fWvvgAMuCc3Cem/8wsR2TfvtR0AYIoIwACYqO99mHQHwDCDwesrN2dpJecoIf13V0cP8wGAdHiQdAPMp06nE4VCYWhNtVqNarU6oY6AUS1kIn78G5f/7HeaEf+Xfzf8+d/cj3hjwcUnTKv+4NVqzWF+/BsRb2Qm0899+EX//QFgjtVqtajVakNrOp3OhLqZHAEYiej3+9Fut4fW9Hq9CXUD3EQmc/mF78efRPzq/zLaGN/6fsRX/47tRwAAMGm9Xu/a6/E0EoCRiIWFhVhaWhpak81mJ9QNMA6/04z4878arfbP/jLiu82IX/3p++0JAAA4L5vNRj6fH1rT6XSi3+9PqKPJyAwG03yKA2lTKBSi3W5HPp+P4+PjpNsBxuhn/23ED//4BvX/VcQf/Pf31w9wO5/2R9wCOaUnyQ4G199sYyHzajUrAHC5NF67T+lfXQCYNS//4mb1L/7zbB2sDfy1ab6ZRSbzKpwb9iX8AoD5YwskAGOx+BM3q/+g/foqk1k/WBvSYJRwy80sAIBZYwUYAGPx1S8l3QFwVx9/EvErvzda7be+H9H75F7bAQAYGwEYAGPx9VLE5z5ztzGmeVsVzIPb3MwCAGAWCMAAGIvPvxnx7Z+/2xjf3BeCQZJ+/0c3q//BDesBAJIiAANgbMZxHpBtVcyDweD1m0BMw00hbnozi5vWAwAkxSH4AEyVk21Vv/rTSXcC96c/eP0mEBclcVOIm97M4qb1AABJEYABMDYLmVcX7Rf9H/7HiIP/OPo4P/iRAAyS8NUvRfzwj0ev/zk3vwAAZoQtkACMTSYT8cbC61/dG25ptK0KknGTm1n85GcjvlG6334AAMZFAAbAvbOtCm4uiRtC3ORmFt/5hYjsm/faDgDA2AjAALh3X73hNqn/4/92ug4Gh3EbJdxK6q6oo9zM4rur47npBQDApDgDDGDKDAavDsgeZiHzarvhrPh6KeLX/iDiz/9qtPr/6w9efV0miYPBYZw+/iTiV35vtNpvfT/iq39n+lZa/aLwCwCYMQIwgCkzrXeHu4uTbVXf3E+6E0je7zRHD4PdFRUAYDxsgQRgIkbZLvX/+Nr1NUlsCYNx+v0f3az+BzesBwDgdVaAkYhOpxOFQmFoTbVajWq1OqGOgGkwyvFe39x/tQX0//Tl4XWztk2U+XHTu5xO+q6oC5lXq0yvqwEAZlOtVotarTa0ptPpTKibyRGAkYh+vx/tdntoTa/Xm1A3MHu+92HEN8pJd3Ez111Uf/xJxP/m2Whjfev7EV/fG14za9tEmR/TflfUTMbcAYA06/V6116Pp5EAjEQsLCzE0tLS0JpsNjuhbmC6jHp3uDcWZusubNddVP8//yjiP/94tLFGPT8JptFXvxTxwz8evf7nbngXVQCAYbLZbOTz+aE1nU4n+v3+hDqajMxg4IbyTE6hUIh2ux35fD6Oj4+TbgemzsefROR/c7SA5yc/G9F+Z/ruDndbP/tvbxYKXOd/Wp29VXLzatJ3Pk36TqvzPM8BgNmQxmt3K8AApsg83x1u3OcczeIquXk16TufJn2n1ZvcFfU7vyD8AgAYB3eBJHZ2dmJlZSUWFxcjk8nE8vJyrK2tRaPRSLo1mDvzfHe4+zjn6Fvfj+h9Mv5x4a5GCWa/uyrABQAYFwHYHGs0GrG4uBhbW1sREbG3txdHR0exvb0dzWYzVlZWYmVlJbrdbrKNwhyZ9rvD3aev3sM5R3/2lxH/02HEp/3hXw4DYBr9ovALAGBsbIGcU41GI1ZWViIiYn19PXZ3d09/ViwWY3V1NcrlcjQajSiXy3F4eBi5XC6hbmF+TPvd4e7T10sRv/YH4z/g/gc/ivjHPxhe446R02/Sdz6979e77q6oJzUAAIyHFWBzqNvtxtraWkS8CrvOhl9n7e3tRUREq9U6rQfu101XQaXp7nAn5yKNW5pWyaXVqHc+HaVuGl/vMpnMqzPqhn3d1yH8AADzSAA2h9bW1k63NZ5sf7zMyUqwiFcrxur1+iTag7n29VLE5z4zWu1PfjbiG6X77WfSRjnv6L/+qZuNOcoqubNBx2Bgy+QkffxJxK/83mi14zjTbdKvBwDAdBCAzZlWq3XucPsnT54MrX/77bdPvx8WlgHjcZNVUPN6d7in/7ub1f/UT15fc3a1z8kdAod99QVgY3ObO5/O0usBADAdBGBzZnt7+/T7SqVy7bleJyvAIl5tndzfH+Ge7cCduDvccP/nt0ZfJfe5z0T8v/4/o9XedbXPNK0cm6ZerjPpO5/O851WAQDmmUPw58zZbYyl0mh7p4rFYrRarYiIeO+9986FYkAy0np3uFEPBv/2z79atXWdr/3XEd8d8Rynk9U+v/y/v772sgPST1aODXPdYfuDwfWryxYy158NNY5eJmXSdz6d5zutAgDMMwHYHGk2z+/j+MpXvjLS80ql0mkAZgUY3L95vjtcJjNaKPNLb10fgH13NeJ//g83e/0f/Cgi+zeur/vm/qtDyse9Cm+ag6txhXMXTfrOp/N8p1UAgHkmAJsjZ8/+ini1smsUF+uazebIq8eAmxs1BGK4X3wr4v/+/77Zc/6/f36zA9K/+ndm9xy2y1axDXNf4dxXvxTxwz8evf6udz6d9OsBADAdnAE2Rz744INzj687/+vEF77whXOPnz9/Pq6WAG7lZJXcsK+FzM1X7/znv7rfA9K/N+J2zLuOMUrN2YP/kzTpO5/O+51WAQDmlQBsjpxsYzxx2xVgR0dHY+sJ4DYymVdbEId9ZTKvVvvcp7MHpI8jdBrHGB9/crNVbHc5+H8cJn3nU3daBQCYTwKwOXIxALutbrc7lnEA7ttNV/v8zRFrT5wckD6O0GlcwdXvNO93Fdswt11RNuk7n7rTKgDA/HEG2By5bXB1cavkixcv7txLp9OJQqFw53Gq1WpUq9U7jwOk08lqn1HuGPmdXxj9jpEnTrZY3iZ0+tWfPv/n4xgjIuL3f/T6nw3zgx9dPs5Fo65Ou4+bA0RM/s6nab3TKgCQbrVaLWq12p3H6XQ6Y+hmugjAuLFxrADr9/vRbrfvPE6v17vzGEC6jXrHyF9669WKrtsckD6O0GlcwdXJqrRRjVJ/09VpN705wDzf+RQAYJx6vd5YrrXTSAA2R3K53FjCq1EPzx9mYWEhlpaW7jxONpu98xgAJ6t9vl6K+LU/GG0l1tkD0scROo0ruLrpwf+j1I9rddpV3PkUAGA8stls5PP5O4/T6XSi3++PoaPpIQCbIw8fPhxLAPbw4cM7j7G0tBTHx8d3HgdgnG66ZfJkldM4QqdxBVdf/dLtVrENc1/bKpNixRkAkFbjOiaoUCikbiWZAGyO3Hbl1sXQbBwrwAAm5aZhx022TJ4YR+g0ruDqtqvYhrmPbZVJsuIMAGD+uAvkHHn06NG5x6OuBrt46P3y8vK4WgK4d5nMq4PZh31lbhiGXDwg/aZ3m7wsdBrHGBF/vYptFGdXsQ1zH9sqAQBgkqwAmyPlcvnc41arFaXS9b/6Pzo6Ove4UqmMtS+AaXKb7XG33To57jFO3GYV2zD3sa0SAAAmyQqwOXJxBVir1RrpeWdXiuVyuSgWi+NsC2Cq3HbF2Chh0nWh0zjGGNXFVWzDjGt1GgAAJMUKsDlSKpXO3Qnygw8+iNXV1Wuf9/z589PvL4ZoAIzuutDpZPXZx59E/M8fRvyvP3p1ntbiT0T8t1+K+PpbEbkRtheO+5D3ca5OAwCAJAjA5syTJ0+iXq9HRESz2RzpOWfrtra27qUvAP76cPaHfzPiH/83r77uMs44jXtbJQAATJIAbM5sbGycBmCNRuPa+rM1xWLR+V8AVxj3qqtZdJNtlQAAMEnOAJszpVLpXIi1vz/81/l7e3un31v9BXC1+7jbJAAAMB6ZwWAwSLoJJqvVasXy8nJEvArEDg8PL63rdruxuLgYEa/u/HhwcHDn1y4UCtFutyOfz8fx8fGdxwNgMgaDiP41f2NYyAj5AADSII3X7laAzaFisXi6sqvZbMbOzs6ldY8fP46IV3d+PLsSDID5Y4UbAACzTAA2p1ZXV+Pg4CByuVxsbW3F2tpaNJvN6Ha70Wg0olwuR7PZjFKpFB999FHkcrmkWwYAAAC4FQHYHKtUKvHy5cvY3t6OVqsVjx8/jsXFxVhbW4uHDx/G3t5eHB4eCr8AAACAmeYMMCYqjfuIAQAAIE3SeO1uBRgAAAAAqfYg6QaYT51OJwqFwtCaarUa1Wp1Qh0BAABA+tVqtajVakNrOp3OhLqZHAEYiej3+9Fut4fW9Hq9CXUDAAAA86HX6117PZ5GAjASsbCwEEtLS0NrstnshLoBAACA+ZDNZiOfzw+t6XQ60e/3J9TRZDgEn4lK40F6AAAAkCZpvHZ3CD4AAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUu1B0g0wnzqdThQKhaE11Wo1qtXqhDqCuxkMIvqD4TULmYhMZjL9AAAAXKZWq0WtVhta0+l0JtTN5AjASES/3492uz20ptfrTagbuLv+IOLBrw+v+fFvRLwhAAMAABLU6/WuvR5PIwEYiVhYWIilpaWhNdlsdkLdAAAAwHzIZrORz+eH1nQ6nej3+xPqaDIyg8Hgmk07MD6FQiHa7Xbk8/k4Pj5Ouh0Ym0/7I64Ac/IiAAAw5dJ47e5SDAAAAIBUE4ABAAAAkGoCMIAJ+d6HSXcAAAAwnwRgAGMwSrj1zX0hGAAAQBIEYAB39PEnEb/ye6PVfuv7Eb1P7rUdAAAALhCAAdzR7zQj/vyvRqv9s7+M+G7zfvsBAADgPAEYwB39/o9uVv+DG9YDAABwNwIwgDt6+Rf3Ww8AAMDdCMAA7mjxJ+63HgAAgLsRgAHc0Ve/dLP6n7thPQAAAHcjAAO4o6+XIj73mdFqf/KzEd8o3W8/AAAAnCcAA7ijz78Z8e2fH632O78QkX3zXtsBAADgAgEYwBj80lvX13x3dbQ6AAAAxksABjAhvyj8AgAASMSDpBtgPnU6nSgUCkNrqtVqVKvVCXUEAAAA6Ver1aJWqw2t6XQ6E+pmcgRgJKLf70e73R5a0+v1JtQNAAAAzIder3ft9XgaCcBIxMLCQiwtLQ2tyWazE+oGAAAA5kM2m418Pj+0ptPpRL/fn1BHk5EZDAaDpJtgfhQKhWi325HP5+P4+DjpdmBsBoOI/jX/NV3IRGQyk+kHAADgttJ47W4FGMAYZDIRbwi3AAAAppK7QAIAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKn2IOkGmE+dTicKhcLQmmq1GtVqdUIdAQAAQPrVarWo1WpDazqdzoS6mRwBGIno9/vRbreH1vR6vQl1AwAAAPOh1+tdez2eRgIwErGwsBBLS0tDa7LZ7IS6AQAAgPmQzWYjn88Prel0OtHv9yfU0WRkBoPBIOkmmB+FQiHa7Xbk8/k4Pj5Ouh0AAADggjReuzsEHwAAAIBUE4AxVKvVipWVlaTbAAAAALg1Adic6na7kclkrv1aXl6OYrGYdLsAAAAAtyYAm1P1en3k2q2trXvsBAAAAOB+CcDm1LNnz0aqq1QqVoABAAAAM+1B0g0wefV6Pbrdbmxubl57vtejR48m1BUAAADA/RCAzaHt7e0oFouxvb2ddCsAAAAA904ANmf29/ej1WrF7u5u0q0AAAAATIQzwObMs2fPIpfLxZMnT5JuBQAAAGAiBGBzpNlsRrPZjG63G4uLi7G8vBwbGxuxv7+fdGsAAAAA90YANke2trbOPW61WlGv12NtbS0ymUysra1Fs9lMqDsAAACA+yEAmxOtVisajcbQmv39/SiXy7GxsTGhrgAAAADun0Pw50SxWIzd3d3odrtxdHQUjUYjWq3WpbX1ej2eP38eh4eHE+4SAAAAYPwEYHNkfX393ONutxv1ej2ePXsW3W733M+azWasrKzEwcHBBDsEAAAAGL/MYDAYJN0Eydvf34+nT5++FoRtb2/H5ubm2F6nUChEu92OhYWFWFpauvN41Wo1qtXqGDoDAACA2Var1aJWq915nE6nE/1+P/L5fBwfH4+hs+RZAUZERKyurkalUonHjx+fOwj/2bNnYw3ATvT7/Wi323cep9frjaEbAAAAmH29Xm8s19ppJADjVC6Xi8PDwyiXy6chWLfbjUajEZVKZayvNa4VYNlsdgzdAAAAwOzLZrORz+fvPM7JCrA0sQUyYfV6fex3XSyVSnc6wL7ZbEa5XD59vLm5Gdvb2+No7XQLZJqWUQIAAECapPHafSHpBpg+pVLp3Iqvq+4WCQAAADALbIFMWKVSib29vbGOmcvl7jzGyspKNBqNuzcDAAAAkDABWMKKxWIUi8Wk23jN2Z4ePnyYYCcAAAAAd2MLJJc6G4CNY0UZAAAAQFIEYFzq+fPnp9+vrKwk2AkAAADA3QjAuNTR0dHp92cPxAcAAACYNQIwLrW/vx8REZubmwl3AgAAAHA3AjBes7+/H61WK3K5XLzzzjtJtwMAAABwJwKwOdBoNGJxcTEymUysrKxEs9m8srbVasXTp08jIuL99993AD4AAAAw8wRgc2Bvby+63W5EvArDyuVybGxsvFZ38rOHDx/G0dFRlEqlCXcKAAAAMH4CsDmwtrb22p/V6/VYXFyMtbW12NjYiHK5HCsrK7G+vh6Hh4dRLBYT6BQAAABg/ARgc6BSqcTR0VGsr69HsVg8t62x2WzGixcv4p133omXL1/G9va2bY8AAABAqjxIugEmo1gsxu7ubtJtAAAAAEycFWAAAAAApJoADAAAAIBUswWSRHQ6nSgUCkNrqtVqVKvVCXUEAAAA6Ver1aJWqw2t6XQ6E+pmcgRgJKLf70e73R5a0+v1JtQNAAAAzIder3ft9XgaCcBIxMLCQiwtLQ2tyWazE+oGAAAA5kM2m418Pj+0ptPpRL/fn1BHk5EZDAaDpJtgfhQKhWi325HP5+P4+DjpdgAAAIAL0njt7hB8AAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKTag6QbYD51Op0oFApDa6rValSr1Ql1BAAAAOlXq9WiVqsNrel0OhPqZnIEYCSi3+9Hu90eWtPr9SbUDQAAAMyHXq937fV4GgnASMTCwkIsLS0NrclmsxPqBgAAAOZDNpuNfD4/tKbT6US/359QR5ORGQwGg6SbYH4UCoVot9uRz+fj+Pg46XYAAACAC9J47e4QfAAAAABSTQAGAAAAQKoJwAAAAABINYfgA1NtMIjoX3NS4UImIpOZTD8AAADMHgEYMNX6g4gHvz685se/EfGGAAwAAIAr2AIJAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAATPvex8m3QEAAADTTAAGTLVRwq1v7gvBAAAAuJoADJhaH38S8Su/N1rtt74f0fvkXtsBAABgRj1IugHmU6fTiUKhMLSmWq1GtVqdUEdMo99pRvz5X41W+2d/GfHdZsSv/vT99gQAADDLarVa1Gq1oTWdTmdC3UyOAIxE9Pv9aLfbQ2t6vd6EumFa/f6Pblb/gx8JwAAAAIbp9XrXXo+nkQCMRCwsLMTS0tLQmmw2O6FumFYv/+J+6wEAAOZNNpuNfD4/tKbT6US/359QR5MhACMRS0tLcXx8nHQbTLnFn7jfegAAgHkzynFDhUIhdavEHIIPTK2vfulm9T93w3oAAADmgwAMmFpfL0V87jOj1f7kZyO+UbrffgAAAJhNAjBgan3+zYhv//xotd/5hYjsm/faDgAAADNKAAZMtV966/qa766OVgcAAMB8EoABM+8XhV8AAAAMIQADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEi1B0k3ADDMQibix79xfQ0AAABcRQAGTLVMJuINARcAAAB3IAAjEZ1OJwqFwtCaarUa1Wp1Qh0BAABA+tVqtajVakNrOp3OhLqZHAEYiej3+9Fut4fW9Hq9CXUDAAAA86HX6117PZ5GAjASsbCwEEtLS0NrstnshLoBAACA+ZDNZiOfzw+t6XQ60e/3J9TRZGQGg8Eg6SaYH4VCIdrtduTz+Tg+Pk66HQAAAOCCNF67LyTdADfXarViZWUl9vf37zTOzs5OrKysxOLiYmQymVheXo61tbVoNBpj6hQAAAAgeQKwGdLtdmNtbS2Wl5ej0WjEixcvbjVOo9GIxcXF2NraioiIvb29ODo6iu3t7Wg2m7GyshIrKyvR7XbH2D0AAABAMpwBNgO63W48e/YsdnZ27jxWo9GIlZWViIhYX1+P3d3d058Vi8VYXV2NcrkcjUYjyuVyHB4eRi6Xu/PrAgAAACTFCrApt7OzE+VyOZrN5p3HOllBFvEq7Dobfp21t7cXEa+2Wp7UAwAAAMwqAdgUazabUalU4ujoKA4ODq4MrEa1trZ2uq3xZPvjZU5WgkW8WjFWr9fv9LoAAAAASRKATbFSqRSlUun08aNHj249VqvVOne4/ZMnT4bWv/3226ffDwvLAAAAAKadAGyG3OUsru3t7dPvK5XKtWOdrACLeLV18q53nAQAAABIigBsTpzdxnh2VdkwxWLx9Pv33ntv7D0BAAAATIIAbA5cPED/K1/5ykjPOxuUWQEGAAAAzCoB2Bw4e/ZXxPmVXcNcrBvHnSgBAAAAJk0ANgc++OCDc49HPUvsC1/4wrnHz58/H1dLAAAAABMjAJsDrVbr3OPbrgA7OjoaW08AAAAAkyIAmwMXA7Db6na7YxkHAAAAYJIEYHPgtsHVxa2SL168uHszAAAAABP2IOkGmB3jXAHW6XSiUCjceZxqtRrVanUMHQEAAMBsq9VqUavV7jxOp9MZQzfTRQA2B3K53FjCq1EPzx9Fv9+Pdrt953F6vd4YugEAAIDZ1+v1xnKtnUYCsBuo1+uxsbEx1jFLpVIcHh6OdcyLHj58OJYA7OHDh3dv5r9YWFiIpaWlO4+TzWbH0A0AAADMvmw2G/l8/s7jdDqd6Pf7Y+hoegjA5sBtV25dDM3GuQJsaWkpjo+PxzYeAAAAzLtxHRNUKBRSt5JMAHYDlUol9vb2xjrmOEOlqzx69Ciazebp4263O9LrXjz0fnl5edytAQAAANw7AdgNFIvFKBaLSbdxY+Vy+dzjVqsVpVLp2ucdHR2de1ypVMbaFwAAAMAkLCTdAPfv0aNH5x63Wq2Rnnd2C2Qul5vJ8A8AAABAADYHSqXSuS2PH3zwwUjPe/78+en3F0M0AAAAgFkhAJsTT548Of3+7Hlgw5yt29raGntPAAAAAJMgAJsTGxsbp983Go1r68/WFItF538BAAAAM0sANkPOnsl1U6VS6VyItb+/P7T+7N0urf4CAAAAZpkAbIZcPLz+poHY7u7u6ffPnj27sq7b7Ua9Xo+IV3d+XF9fv9HrAAAAAEwTAdiM6Ha7r63Eeu+99240RrFYPF3Z1Ww2Y2dn59K6x48fR8SrOz+eXQkGAAAAMIsEYFOs2+3G2tparKysxOLi4msrwJrNZmQymVhZWYm1tbWRDrdfXV2Ng4ODyOVysbW1dfq8brcbjUYjyuVyNJvNKJVK8dFHH527eyQAAADALHqQdANc7b5WYFUqlXj58mXs7OzEe++9F48fP45utxu5XC4ePXoUe3t7sbq6OvbXBQAAAEhCZjAYDJJugvlRKBSi3W5HPp+P4+PjpNsBAAAALkjjtbstkAAAAACkmgAMAAAAgFRzBhiJ6HQ6USgUhtZUq9WoVqsT6ggAAADSr1arRa1WG1rT6XQm1M3kCMBIRL/fj3a7PbSm1+tNqBsAAACYD71e79rr8TQSgJGIhYWFWFpaGlqTzWYn1A0AAADMh2w2G/l8fmhNp9OJfr8/oY4mw10gmag03kkCAAAA0iSN1+4OwQcAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqj1IugHmU6fTiUKhMLSmWq1GtVqdUEcAAACQfrVaLWq12tCaTqczoW4mRwBGIvr9frTb7aE1vV5vQt0AAADAfOj1etdej6eRAIxELCwsxNLS0tCabDY7oW4AAABgPmSz2cjn80NrOp1O9Pv9CXU0GZnBYDBIugnmR6FQiHa7Hfl8Po6Pj5NuBwAAALggjdfuDsEHAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKo9SLoB5lOn04lCoTC0plqtRrVanVBHAAAAkH61Wi1qtdrQmk6nM6FuJkcARiL6/X602+2hNb1eb0LdAAAAwHzo9XrXXo+nkQCMRCwsLMTS0tLQmmw2O6FuAAAAYD5ks9nI5/NDazqdTvT7/Ql1NBmZwWAwSLoJ5kehUIh2ux35fD6Oj4+TbgcAAAC4II3X7g7BBwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqPUi6AeZTp9OJQqEwtKZarUa1Wp1QRwAAAJB+tVotarXa0JpOpzOhbiZHAEYi+v1+tNvtoTW9Xm9C3QAAAMB86PV6116Pp5EAjEQsLCzE0tLS0JpsNjuhbgAAAGA+ZLPZyOfzQ2s6nU70+/0JdTQZmcFgMEi6CeZHoVCIdrsd+Xw+jo+Pk24HAAAAuCCN1+4OwZ9BrVYrVlZWYn9/f2KvBQAAADCrBGAzpNvtxtraWiwvL0ej0YgXL17caaxMJnPt1/LychSLxTG+CwAAAIDJEoDNgG63G1tbW7G4uDi2VV/1en3k2q2trbG8JgAAAEASBGBTbmdnJ8rlcjSbzbGO++zZs5HqKpWKFWAAAADATHMXyCnWbDajUqnE5uZmRLxatbWxsXHncev1enS73djc3Lz2fK9Hjx7d+fUAAAAAkiQAm2KlUunc43GFUdvb21EsFmN7e3ss4wEAAABMMwHYDMnlcnceY39/P1qtVuzu7t69IQAAAIAZ4AywOfPs2bPI5XLx5MmTpFsBAAAAmAgB2BxpNpvRbDaj2+3G4uJiLC8vx8bGxtjuLAkAAAAwjQRgc2Rra+vc41arFfV6PdbW1iKTycTa2trY7zYJAAAAkDQB2JxotVrRaDSG1uzv70e5XB7LnSYBAAAApoVD8OdEsViM3d3d6Ha7cXR0FI1GI1qt1qW19Xo9nj9/HoeHhxPuEgAAAGD8BGBzZH19/dzjbrcb9Xo9nj17Ft1u99zPms1mrKysxMHBwQQ7BAAAABg/WyDnWC6Xi83NzXj58mXs7e1FLpc79/NGoxE7OzvJNAcAAAAwJlaAERERq6urUalU4vHjx+cOwn/27Flsbm6O/fU6nU4UCoU7j1OtVqNarY6hIwAAAJhttVotarXancfpdDpj6Ga6CMA4lcvl4vDwMMrl8mkI1u12o9FoRKVSGetr9fv9aLfbdx6n1+uNoRsAAACYfb1ebyzX2mkkALuBer0+9jsklkqlqTts/t13341yuXz6+ODgYOwB2MLCQiwtLd15nGw2O4ZuAAAAYPZls9nI5/N3HqfT6US/3x9DR9NDAMZrSqVSVCqVaDQaERFX3i3yLpaWluL4+Hjs4wIAAMC8GtcxQYVCIXUryQRgN1CpVGJvb2+sY148eH5arKysnAZgAAAAALNMAHYDxWIxisVi0m1MxNn3+fDhwwQ7AQAAALibhaQbYDqdDcCmdZUaAAAAwCgEYFzq+fPnp9+vrKwk2AkAAADA3QjAuNTR0dHp9+O+AyQAAADAJAnAuNT+/n5ERGxubibcCQAAAMDdCMBmSLfbncjr7O/vR6vVilwuF++8885EXhMAAADgvgjAZkir1Tr3eNRArNFoxOLiYmQymVhZWYlmszn0NZ4+fRoREe+//74D8AEAAICZJwCbEd1uN7a2ts792XvvvTfSc/f29k7DskajEeVyOTY2Nl6rO/nZw4cP4+joKEql0p37BgAAAEiaAGyKdbvdWFtbi5WVlVhcXHxtBViz2Txd1bW2tnblyq61tbXX/qxer8fi4mKsra3FxsZGlMvlWFlZifX19Tg8PIxisXgv7wkAAABg0h4k3QBXy+Vysbe3d+dxKpVKHB0dxfb2djQajXjx4sXpirBmsxmlUineeeedqFQqtjwCAAAAqSMAmxPFYjF2d3eTbgMAAABg4myBBAAAACDVBGAAAAAApJotkCSi0+lEoVAYWlOtVqNarU6oIwAAAEi/Wq0WtVptaE2n05lQN5MjACMR/X4/2u320JperzehbgAAAGA+9Hq9a6/H00gARiIWFhZiaWlpaE02m51QNwAAADAfstls5PP5oTWdTif6/f6EOpqMzGAwGCTdBPOjUChEu92OfD4fx8fHSbcDAAAAXJDGa3eH4AMAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1R4k3QDzqdPpRKFQGFpTrVajWq1OqCMAAABIv1qtFrVabWhNp9OZUDeTIwAjEf1+P9rt9tCaXq83oW4AAABgPvR6vWuvx9NIAEYiFhYWYmlpaWhNNpudUDcAAAAwH7LZbOTz+aE1nU4n+v3+hDqajMxgMBgk3QTzo1AoRLvdjnw+H8fHx0m3AwAAAFyQxmt3h+ADAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUeJN0A86nT6UShUBhaU61Wo1qtTqgjAAAASL9arRa1Wm1oTafTmVA3kyMAIxH9fj/a7fbQml6vN6FuAAAAYD70er1rr8fTSABGIhYWFmJpaWloTTabnVA3AAAAMB+y2Wzk8/mhNZ1OJ/r9/oQ6mozMYDAYJN0E86NQKES73Y58Ph/Hx8dJtwMAAABckMZrd4fgAwAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVHiTdAPOp0+lEoVAYWlOtVqNarU6oIwAAAEi/Wq0WtVptaE2n05lQN5MjACMR/X4/2u320JperzehbgAAAGA+9Hq9a6/H00gARiIWFhZiaWlpaE02m51QNwAAADAfstls5PP5oTWdTif6/f6EOpqMzGAwGCTdBPOjUChEu92OfD4fx8fHSbcDAAAAXJDGa3eH4AMAAACQagKwGdBsNmNjYyOWl5cjk8lEJpOJ5eXl2Nraim63e+txd3Z2YmVlJRYXF0/HXFtbi0ajMb7mAQAAABImAJti3W431tbWolwuR71ej1ardfqzVqsVOzs7sbi4GPV6/UbjNhqNWFxcjK2trYiI2Nvbi6Ojo9je3o5msxkrKyuxsrJyp3ANAAAAYFo4BH9KdbvdKJfL50Kvq2xsbMTh4WHs7u5eW9toNGJlZSUiItbX1889p1gsxurqapTL5Wg0GlEul+Pw8DByudyt3wcAAABA0qwAm1Jra2vRarWiVCqdrtA6OjqKvb292NzcfK2+Xq/H/v7+0DFPVpRFvAq7rgrM9vb2IuLVKrOTegAAAIBZJQCbQvV6PRqNRmxubsbh4WGsrq5GsVg8XaG1vb0dR0dHUSqVzj3v6dOnQ8ddW1s73dZ4sv3xMievE/FqxdhNt1gCAAAATJPMYDAYJN0E5y0vL0exWIyDg4Ohda1WK5aXl8/92cHBQVQqlWtrX758OXRr4/7+/unqr1wuFy9fvrzBO7haGm+lCgAAAGmSxmt3K8CmTLPZjFardboNcZhisRjb29uvPf8yZ+sqlcq153qdrACLeLV18rrtlQAAAADTSgA2Zd57771YX18f+eD5i6u9/vRP//TSurPbGC9unbxKsVg81xcAAADALHIXyCnz9ttvnwuernMxzLq4JTLi9VVhX/nKV0Ye++QulFaAAQAAALPKCrApUyqVRl79FRGnh9qfuCw8azQa19Zc5mLdVdsrAQAAAKaZAGzGnazQOnHZAfgffPDBucejBmxf+MIXzj1+/vz5zZoDAAAAmAICsBl3NpRaX1+/tOZiSHbbFWBHR0c37A4AAAAgeQKwGbe7u3v6/dbW1qU1FwOw27q43RIAAABgFjgEf4a1Wq3Tc7m2t7evXNl12+Dq4lbJFy9e3Gqcy3Q6nSgUCncep1qtRrVaHUNHAAAAMNtqtVrUarU7j9PpdMbQzXQRgM2w7e3tiHi1VXFzc/PeX2+cK8D6/X602+07j9Pr9cbQDQAAAMy+Xq83lmvtNBKAzahmsxn1ej1yuVwcHBwMrc3lcmMJr25yd8rrLCwsxNLS0p3HyWazY+gGAAAAZl82m418Pn/ncTqdTvT7/TF0ND0EYDdQr9djY2NjrGOWSqU4PDy88fOePn0aERHvv//+tYfaP3z4cCwB2MOHD+88xomlpaU4Pj4e23gAAAAw78Z1TFChUEjdSjKH4M+gjY2NaDabsbe3F6VS6dr6267cuhiajXMFGAAAAMCkWAF2A5VKJfb29sY65k1DpXq9HvV6PXZ3d2N1dXWk5zx69Oj0sPyIV8HWKK978dD75eXlG/UKAAAAMA0EYDdQLBav3W54nxqNRmxsbMTu7m6sr6+P/LxyuXzucavVGmnl2NHR0bnHlUpl5NcEAAAAmBa2QM6IZrMZKysrsb29faPwK+LVCrCzWq3WSM87uwUyl8slGv4BAAAA3JYAbAa0Wq14/PhxbG5uxubm5o2fXyqVzm15/OCDD0Z63vPnz0+/vxiiAQAAAMwKAdiUa7VaUS6XY319Pba3t0d+zs7Ozrk/e/Lkyen3Z88DG+Zs3dbW1kjPAQAAAJg2ArAp1u12Y2VlJZ48eTJy+BURsba29tp5XRsbG6ffNxqNa8c4W1MsFp3/BQAAAMwsh+BPqW63G+VyOYrFYmxtbY10bler1TpdqXXxkPtSqRSVSuU02Nrf3x96F8mzd7u0+gsAAACYZZnBYDBIugleVy6XR96qeNFVd4lstVqxvLwcEa8CscPDw0uf3+12Y3FxMSJe3fnx4ODgVn1cplAoRLvdjnw+H8fHx2MbFwAAABiPNF672wI5he4SfkXElXeJLBaLpyu7ms3ma+eEnXj8+HFEvLrz49mVYAAAAACzSAA2ZdbW1u4l/DqxuroaBwcHkcvlYmtr6/T1ut1uNBqN0/CtVCrFRx99dO7ukQAAAACzyBlgU2YSK64qlUq8fPkydnZ24r333ovHjx9Ht9uNXC4Xjx49ir29vaHngwEAAADMEmeAMVFp3EcMAAAAaZLGa3dbIAEAAABINVsgSUSn04lCoTC0plqtRrVanVBHAAAAkH61Wi1qtdrQmk6nM6FuJkcARiL6/X602+2hNb1eb0LdAAAAwHzo9XrXXo+nkQCMRCwsLMTS0tLQmmw2O6FuAAAAYD5ks9nI5/NDazqdTvT7/Ql1NBkOwWei0niQHgAAAKRJGq/dHYIPAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFR7kHQDzKdOpxOFQmFoTbVajWq1OqGOAAAAIP1qtVrUarWhNZ1OZ0LdTI4AjET0+/1ot9tDa3q93oS6AQAAgPnQ6/WuvR5PIwEYiVhYWIilpaWhNdlsdkLdAAAAwHzIZrORz+eH1nQ6nej3+xPqaDIyg8FgkHQTzI9CoRDtdjvy+XwcHx8n3Q4AAABwQRqv3R2CDwAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUe5B0A8ynTqcThUJhaE21Wo1qtTqhjgAAACD9arVa1Gq1oTWdTmdC3UyOAIxE9Pv9aLfbQ2t6vd6EugEAAID50Ov1rr0eTyMBGIlYWFiIpaWloTXZbHZC3QAAAMB8yGazkc/nh9Z0Op3o9/sT6mgyMoPBYJB0E8yPQqEQ7XY78vl8HB8fJ90OAAAAcEEar90dgg8AAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVHuQdAPMp06nE4VCYWhNtVqNarU6oY4AAAAg/Wq1WtRqtaE1nU5nQt1MjgCMRPT7/Wi320Nrer3ehLoBAACA+dDr9a69Hk8jARiJWFhYiKWlpaE12Wx2Qt0AAADAfMhms5HP54fWdDqd6Pf7E+poMjKDwWCQdBPMj0KhEO12O/L5fBwfHyfdDgAAAHBBGq/dHYIPAAAAQKoJwGZAs9mMjY2NWF5ejkwmE5lMJpaXl2Nrayu63e69vnar1YqVlZV7fQ0AAACA+yQAm2LdbjfW1taiXC5HvV6PVqt1+rNWqxU7OzuxuLgY9Xr9VmOfhGnDvpaXl6NYLI7zbQEAAABMlABsSnW73SiXy7G/v39t7cbGRmxsbNxo/JuEZltbWzcaGwAAAGCaCMCm1NraWrRarSiVSrG3txdHR0dxdHQUe3t7sbm5+Vp9vV4fKSw78ezZs5HqKpWKFWAAAADATHuQdAO8rl6vR6PRiM3Nzdje3j73s2KxGKurq7GxsRFra2vRbDZPf/b06dNYXV0dafxutxubm5vXnu/16NGj270JAAAAgCmRGQwGg6Sb4LyTc7cODg6G1rVarVheXj73ZwcHB1GpVK4dPyLi6Ojobo3eQhpvpQoAAABpksZrd1sgp0yz2YxWqxV7e3vX1haLxddWiJ1dEXaZ/f39aLVazvUCAAAA5oYAbMq89957sb6+HrlcbqT6i6u9/vRP/3Ro/bNnzyKXy8WTJ09u2yIAAADATHEG2JR5++23b3TofKlUOvf44pbIs5rN5ukKscXFxSgWi1GpVGJlZWWks8MAAAAAZpEVYFOmVCqNvPorIqLb7Z57PCw8u7jtsdVqRb1ej7W1tchkMq8dqg8AAACQBgKwGddqtc49vuoA/FarFY1GY+hY+/v7US6XY2NjY2z9AQAAACTNFsgZ9/z589Pv19fXr6wrFouxu7sb3W43jo6OotFovBaenajX6/H8+fM4PDwce78AAAAAkyYAm3G7u7un3193Z8eLAVm32416vR7Pnj17bStls9mMlZWVODg4GFuvAAAAAEnIDAaDQdJNcDutVuv00Pvt7e3Y3Ny89Vj7+/vx9OnT14Kwu457UaFQiHa7HQsLC7G0tHTn8arValSr1TF0BgAAALOtVqtFrVa78zidTif6/X7k8/k4Pj4eQ2fJswJshm1vb0fEq+2Ndw2pVldXo1KpxOPHj88dhP/s2bOxBmAn+v1+tNvtO4/T6/XG0A0AAADMvl6vN5Zr7TQSgM2oZrMZ9Xo9crnc2LYp5nK5ODw8jHK5fBqCdbvdaDQaVx6uf1vjWgGWzWbH0A0AAADMvmw2G/l8/s7jnKwASxNbIG+gXq+P/Q6JpVLpVofNn4RUh4eHUSqVxtpTs9mMcrl8+nhzc/N0tdldnWyBTNMySgAAAEiTNF67LyTdADe3sbERzWYz9vb2xh5+RbwK5c6u+LrqbpEAAAAAs8AWyBuoVCqxt7c31jFzudyN6uv1etTr9djd3Y3V1dWx9nLWyspKNBqNexsfAAAAYFIEYDdQLBajWCwm9vqNRiM2NjZid3c31tfX7/W1zr7Phw8f3utrAQAAANwnWyBnRLPZjJWVldje3r738CvifAB201VqAAAAANNEADYDWq1WPH78ODY3N2Nzc3Mir/n8+fPT71dWVibymgAAAAD3QQA25VqtVpTL5VhfXx/5ToytVit2dnbu9LpHR0en3589EB8AAABg1gjApli3242VlZV48uTJyOFXRMTa2tqdQ6v9/f2IiImtOAMAAAC4Lw7Bn1LdbjfK5XIUi8XY2tqKVqt17XNarVZsbW1FRESpVLr1a+/v70er1YpcLhfvvPPOrccBAAAAmAYCsCn1+PHjaLVa0Wq1Ynl5+UbP3d3dPfe40WjE2tpadLvdqFQqsb29fWVA1mq14unTpxER8f777zsAHwAAAJh5tkBOoXK5HM1m89bPv3iXyL29veh2uxHxKgwrl8uxsbHx2vNOfvbw4cM4Ojq60yoyAAAAgGkhAJsya2trYw2/Tsa8qF6vx+LiYqytrcXGxkaUy+VYWVmJ9fX1ODw8jGKxeOseAAAAAKaJLZBTZm9vb+xjViqVODo6iu3t7Wg0GvHixYvTFWHNZjNKpVK88847UalUbHkEAAAAUkcANieKxeJrZ4MBAAAAzANbIAEAAABINSvASESn04lCoTC0plqtRrVanVBHAAAAkH61Wi1qtdrQmk6nM6FuJkcARiL6/X602+2hNb1eb0LdAAAAwHzo9XrXXo+nkQCMRCwsLMTS0tLQmmw2O6FuAAAAYD5ks9nI5/NDazqdTvT7/Ql1NBmZwWAwSLoJ5kehUIh2ux35fD6Oj4+TbgcAAAC4II3X7g7BBwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqPUi6AeZTp9OJQqEwtKZarUa1Wp1QRwAAAJB+tVotarXa0JpOpzOhbiZHAEYi+v1+tNvtoTW9Xm9C3QAAAMB86PV6116Pp5EAjEQsLCzE0tLS0JpsNjuhbgAAAGA+ZLPZyOfzQ2s6nU70+/0JdTQZmcFgMEi6CeZHoVCIdrsd+Xw+jo+Pk24HAAAAuCCN1+4OwQcAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqj1IugHmU6fTiUKhMLSmWq1GtVqdUEcAAACQfrVaLWq12tCaTqczoW4mRwBGIvr9frTb7aE1vV5vQt0AAADAfOj1etdej6eRAIxELCwsxNLS0tCabDY7oW4AAABgPmSz2cjn80NrOp1O9Pv9CXU0GZnBYDBIugnmR6FQiHa7Hfl8Po6Pj5NuBwAAALggjdfuDsEHAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABItQdJN8B86nQ6USgUhtZUq9WoVqsT6ggAAADSr1arRa1WG1rT6XQm1M3kCMBIRL/fj3a7PbSm1+tNqBsAAACYD71e79rr8TQSgJGIhYWFWFpaGlqTzWYn1A0AAADMh2w2G/l8fmhNp9OJfr8/oY4mIzMYDAZJN8H8KBQK0W63I5/Px/HxcdLtAAAAABek8drdIfgzoNVqxcbGRiwvL0cmk4nFxcUol8uxsbERrVbr1uPu7OzEyspKLC4uRiaTieXl5VhbW4tGozHG7gEAAACSJQCbcjs7O7G8vBz1ev007Op2u9FsNqNer8fy8nLs7OzcaMxGoxGLi4uxtbUVERF7e3txdHQU29vb0Ww2Y2VlJVZWVqLb7Y777QAAAABMnDPAptjKyko0Go3I5XJRqVSiWCxGq9WKZrN5buXX1tZWFIvFWF1dvXbMRqMRKysrERGxvr4eu7u7pz87GaNcLkej0YhyuRyHh4eRy+XG/t4AAAAAJsUZYFNqa2srdnZ2Ynt7OzY3N1/7+c7OzukKrhPX/aPsdrvxxS9+MbrdbhSLxTg6Orq0rtVqxfLyckREVCqVODg4uOW7eF0a9xEDAABAmqTx2t0WyCnUarViZ2cnDg4OLg2/IiI2NzdjfX393J81m82h466trZ1ua7wYnp11djVZo9GIer1+g+4BAAAAposAbAptbW3F9vZ2VCqVoXXb29vnHg87vL7Vap37+ZMnT4aO/fbbb5/rBwAAAGBWCcCmULfbvXLl11m5XC6KxeK5x1c5G5ZVKpVrz/U6e55Yt9uN/f39a/sBAAAAmEYCsCl0kzO3Xrx4cfr9o0ePrqw7u42xVCqNNPbZcO29994buScAAACAaSIAm2Hdbvf0TK9KpXJlsHXxbLCvfOUrI41/djwrwAAAAIBZJQCbYb/7u78bEa9Wau3t7V1Zd/FssLMru4a5WHfdIfsAAAAA00gANqO63W5sbGxEqVSKg4ODoWd6ffDBB+ceX3f+14kvfOEL5x4/f/78pm0CAAAAJE4ANoNarVaUy+XI5XLx/vvvX7uiq9VqnXt82xVgR0dHN2sUAAAAYAoIwGbM/v5+LC8vR6vVim63G4uLi7GzszP0ORcDsNs6OW8MAAAAYJYIwGZAt9uNnZ2dWF5ejrW1tdd+vrW1demfn33+bVzcKnn2jpMAAAAAs+JB0g1wvUajEUdHR1GpVKLVar12qH3Eq5VhOzs7sbm5eW99jHMFWKfTiUKhcOdxqtVqVKvVMXQEAAAAs61Wq0WtVrvzOJ1OZwzdTBcB2AxYXV2N1dXVc39Wr9dja2vrXCi1tbUV6+vrr63cyuVyYwmvRj08fxT9fj/a7fadx+n1emPoBgAAAGZfr9cby7V2GgnAbqBer8fGxsZYxyyVSnF4eHjj562vr0elUolyuXwu3KrX66+tAnv48OFYArCHDx/eeYwTCwsLsbS0dOdxstnsGLoBAACA2ZfNZiOfz995nE6nE/1+fwwdTQ8B2AwrFovx/vvvR7lcPv2zDz744LW6267cuhiajXMF2NLSUhwfH49tPAAAAJh34zomqFAopG4lmQDsBiqVSuzt7Y11zLuGSqVSKVZXV2N/fz8iLr/j46NHj6LZbJ4+7na7I73uxUPvl5eX79QrAAAAQBIEYDdQLBajWCwm3cZr3n777dMA7LKtjmdXiEW8CslKpdK14x4dHZ17XKlUbt8kAAAAQEIWkm6AuzsbZl22suvRo0fnHl+2SuwyZ8O0XC43leEfAAAAwHUEYClzMeyKeBWQnQ3GLjsn7DLPnz8fOi4AAADALBCApcDZFV0rKyuX1jx58uT0+7PngQ1ztm5ra+uW3c2mwSDi0/7wr8Eg6S4BAACAUTgDLAVOgqpcLherq6uX1mxsbES9Xo+IiEajce2YZ2uKxeLcnf/VH0Q8+PXhNT/+jYg3MpPpBwAAALg9K8BS4NmzZxER8e67715ZUyqVzoVYJ4fmX+Xs3S7nbfUXAAAAkC4CsCm0s7MT5XI5tra2Lr2r41knNZubm1eu/jqxu7t7+v1JaHaZbrd7ulqsUqnE+vr66M0DAAAATBkB2JTpdruxtbUVzWYzdnZ2YnFx8coVWGtra7GzsxPb29uxvb197djFYvF0ZdfJ+Jd5/PhxRLzaUnl2JRgAAADALBKATZlcLhfFYvHcn50EYWtra7G1tRUrKyuxuLgYERFHR0exubk58virq6txcHAQuVwutra2Ym1tLZrNZnS73Wg0GlEul6PZbEapVIqPPvro3N0jAQAAAGaRAGwKHR4exubmZpRKpXMBVLPZjFarFWtra/HRRx/F3t7ea2HZKCqVSrx8+TK2t7ej1WrF48ePTwO2hw8fxt7eXhweHgq/AAAAgFTIDAaDQdJNMD8KhUK02+3I5/NxfHycdDtX+rQ/4l0gRcgAAACkzKxcu9+Ey3cAAAAAUk0ABgAAAECqPUi6AeZTp9OJQqEwtKZarUa1Wp1QRwAAAJB+tVotarXa0JpOpzOhbiZHAEYi+v1+tNvtoTW9Xm9C3QAAAMB86PV6116Pp5EAjEQsLCzE0tLS0JpsNjuhbgAAAGA+ZLPZyOfzQ2s6nU70+/0JdTQZ7gLJRM3KnSTcBRIAAIB5NSvX7jfh8h0AAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgCDW/reh0l3AAAAAIxCAAaXGCXc+ua+EAwAAABmgQAMLvj4k4hf+b3Rar/1/YjeJ/faDgAAAHBHAjC44HeaEX/+V6PV/tlfRny3eb/9AAAAAHcjAIMLfv9HN6v/wQ3rAQAAgMkSgMEFL//ifusBAACAyRKAwQWLP3G/9QAAAMBkCcDggq9+6Wb1P3fDegAAAGCyHiTdAPOp0+lEoVAYWlOtVqNarU6oo7/29VLEr/3BaAfh/+RnI75Ruv+eAAAAYBxqtVrUarWhNZ1OZ0LdTI4AjET0+/1ot9tDa3q93oS6Oe/zb0Z8++cjvrl/fe13fiEi++a9twQAAABj0ev1rr0eTyMBGIlYWFiIpaWloTXZbHZC3bzul966PgD77uqrOgAAAJgV2Ww28vn80JpOpxP9fn9CHU1GZjAYDJJugvlRKBSi3W5HPp+P4+PjpNu50qf9iAe/Przmx78R8YZT9AAAAEiZWbl2vwmX7wAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAQKoJwAAAAABItQdJN8B86nQ6USgUhtZUq9WoVqsT6ggAAADSr1arRa1WG1rT6XQm1M3kCMBIRL/fj3a7PbSm1+tNqBsAAACYD71e79rr8TQSgJGIhYWFWFpaGlqTzWYn1A0AAADMh2w2G/l8fmhNp9OJfr8/oY4mIzMYDAZJN8H8KBQK0W63I5/Px/HxcdLtXGkwiOhfMzMWMhGZzGT6AQAAgEmZlWv3m7ACDC6RyUS8IdwCAACAVHAXSAAAAABSTQAGAAAAQKoJwAAAAABINQEYAAAAAKkmAAMAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqPUi6AbitWq0WvV4vstlsVKvVpNsBbsE8htlnHkM6mMsw+8zj4TKDwWCQdBPMj0KhEO12O/L5fBwfH0/NWEAyzGOYfeYxpIO5DLPP9fZwtkACAAAAkGq2QJKITqcThUJhaE21WrVsEwAAAMaoVqtFrVYbWtPpdCbUzeQIwEhEv9+Pdrs9tKbX602oGwAAAJgPvV7v2uvxNBKAkYiFhYVYWloaWpPNZifUDQAAAMyHbDYb+Xx+aE2n04l+vz+hjiZDAEYilpaWUnOQHgAAAMyKUY4bOjkEP00cgg8AAABAqgnAAAAAAEg1WyAhIbVaLXq9XmSz2Zm92+Wsv4dZ7z8iHe9h1s36P4NZ7z9i9t/DrPefBrP+z2DW+4+Y/fcw6/2nQRr+Gcz6e5j1/iPS8R64WmYwGAySboL5cbKPOJ/P3/kMsHGOlYRZ7z9i9t/DrPcfMfvvYdb7j5j99zDr/UfM/nvQf/Jm/T3Mev8Rs/8eZr3/iNl/D7Pef8Tsv4dZ7z9i9t+D6+3hbIEEAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEi1zGAwGCTdBPPjs5/9bPzVX/1VLCwsxNLS0p3G6nQ60e/3xzJWEma9/4jZfw+z3n/E7L+HWe8/Yvbfw6z3HzH770H/yZv19zDr/UfM/nuY9f4jZv89zHr/EbP/Hma9/4jZfw/j7P9krM985jPxl3/5l2PqMFkCMCbqjTfeiH6/n3QbAAAAwDUWFhbi008/TbqNsXiQdAPMlzfffDM++eSTeOONN+Knfuqnkm4HAAAAuOA//af/FJ9++mm8+eabSbcyNlaAAQAAAJBqDsEHAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4Axdq1WK1ZWVkaqbTabsbGxEcvLy5HJZCKTycTy8nJsbW1Ft9udmj4jInZ2dmJlZSUWFxdP+1xbW4tGo3GPXUJybjJHWq3Wubm8uLgY5XI5NjY2otVq3bqH+5h35jLzZBrm8bj7jDCPmS83nR9XOZnb+/v7N36uz2O4m2mYx6NI/efxAEb08uXLQUSM9LW+vn7tWKurq9eOs7u7m2ifg8FgcHBwMMjlcoOIGFQqlcHBwcHg6OhosLe3NygWi6d//vLlyxv3CkkY9xzZ3t6+dpzt7e0b9Xgf885cJk1mYR7fR5/mMWky7vkxzObm5ulYe3t7Iz/P5zEMNwvz+D76nNV5LABjZKP85fjk6+jo6MpxXr58eTop7uM/FOPqczB4NbGv66NUKg0iYlAsFqdugsNlxjlHKpXKICIGuVxusLq6Otjc3Bysrq5eOsdH/aC+j3lnLpM20z6P76NP85i0Gef8GObs3PF5DOM17fP4Pvqc5XksAGNkJwnvdV+VSmXoOCd/0S6VSoO9vb3B0dHRaVp8NtW+7QQfV58vX748HatYLF5Zd3R0NPKYMA3GNUdO5utVq0Iu+6C9zn3MO3OZNJrmeXwffZrHpNG45scwZ+fOTf5e7fMYRjPN8/g++pz1efwgYAT1ej263W5sbm5euyf40aNHQ8dpNBqxubkZ29vb535WLBZjdXU1NjY2Ym1tLZrN5unPnj59GqurqxPrMyJibW3t9Byyra2tK+tO+t7f349GoxH1ej3W19ev7RWSMK450mq1YmdnJw4ODqJSqVxas7m5GUdHR1Gv10//rNlsRqlUunLc+5h35jJpM+3zeNx9RpjHpM8458cwT58+jYcPH0ZE3Oh8XZ/HcL1pn8cnfB6fkXQCx2woFotDE96bjDNKAnw2MT75Ojg4mFifF1//umWbe3t7p7W5XO7Orw/3ZVxzZHV1daTzgC6eNzDsOfcx78xl0mia5/FZPpPhauOaH8Ps7u4OImJweHh4bvXHdStHfB7DaKZ5Hp/l8/ivuQsk19rf349WqzU04R1Fs9mMVqsVe3t719YWi8XXVoidXRF2n31GxLnXrlQqkcvlhtafXZ3W7Xbv7a4ccBfjnCMnv0W6Ti6Xi2KxeO7xVe5j3pnLpM20z+MTPpPhauOcH1c5uavr5ubmSCs2z/J5DNeb9nl8wufxBUkncEy/Uqk0yOVydz68bnNz80YH2h8eHp5LmDc3NyfS52AwuNHrnjh7WPDq6uqde4BxG+ccuYmzv606PDy8su4+5p25TNpM+zw+4TMZrjaJeVwqlQalUun08U1Wjvg8hutN+zw+O4bP479mBRhDNZvNaDab0e12Y3FxMZaXl2NjY+NW6e3bb7/92qquYS6m3MvLyxPp8+JKs6985Ss37ncq0m04Y5xz5Ca63e7pOQGVSuXK317dx7wzl0mbaZ/H99GneUzaTGIeb21tRbPZHGnXxWX9neXzGF437fP4PvpMyzwWgDHUxaWSrVYr6vV6rK2tRSaTee2w+mFKpdJI2yZOXDzg7+z2i/vss9FojPy6w+pGfT2YhHHOkZv43d/93Yh4NT+GfYDfx7wzl0mbaZ/H99GneUza3Pc8bjabsbOzE7u7uyPPl7N8HsP1pn0e30efaZnHAjCu1Gq1XvsX/aL9/f0ol8uxsbFxL69/1lV3qBp3nx988MG5x6OGdl/4whfOPX7+/PlIz4P7ltRc7na7sbGxEaVSKQ4ODobOpfuYd+YyaTIL8/g++jSPSZNJzOPHjx/H6urqre+25vMYhpuFeRzh8/gqDxJ9daZasViM3d3d6Ha7cXR0FI1G47VQ6kS9Xo/nz5/H4eHh2F7/7OQYNvnH3efF59423T46OhrpeXDfkpjLrVYrVlZWIpfLxfvvvz/SRfPFnkcxbN6Zy6TJLMzj++jTPCZN7nser62tRUTEu+++e+sefR7DcLMwj++jz9TM46QPIWO2vHz5crC9vX3uAL6zX5VKZWyvVSqVTsc9OjqaWJ8XnzOqs7d5jYgbHfgPk3afc/niXIiIwfb29tDn3Me8M5dJu2mbx/fRp3lM2o1rHp/8O39wcHDpz0c9PNvnMdzctM3j++gzLfNYAMat7e3tXTp5bvsX5LOOjo7GNt5N+7xYN6qDg4Nzz5uGu1zAKMYxl08+UM/e6eXi17A5cR/zzlxmnkzDPL6PPs1j5slt5/HLly+vvbAc9cLZ5zHczTTM4/voMy3z2Blg3Nrq6mp89NFHr90N6tmzZ3ce++RukcViMTY3N+801n32OczFQ/xhWo1jjjQajTg6OopKpXLleX37+/uxs7Nzp16vcx/zzlxmFszKPPaZDFe77fx4/Pjx6XanaeHzmHk1K/N4Xj+PBWDcSS6Xi8PDw3MTp9vtXnvg3jDNZjPq9Xrkcrk4ODgYR5s36vMmd6q87jVhVtx1Lq+ursbu7m7s7u7GwcFBDAaD2N3dfW0ebG1tXfrBdx/zzlxm3iQ9j++jT/OYeXPTebyzsxPNZnOkO7SO+vrjHsc8Zt4kPY9HNY+fxwIwxuLiIX13Ca6ePn0aERHvv//+nW77eplR+nz48OFYXmtc48AkjXMur6+vx+Hh4WsfdPV6/bXa+5h35jLzKql5fFM+k+Fqo8yPZrMZW1tbsb29/doqjtvyeQzjk9Q8vql5+jwWgDEWpVLp3HaJq+4wcZ2NjY3T9Ps+/gMwSp+3TaUv/jY86XQbbmNcc/lEsViM999//9yfXbyNcsT9zDtzmXmV1Dy+KZ/JcLVR5sfa2lqUSqU7Hxdyls9jGJ+k5vFNzdPn8YNEX51UWVlZudPWx3q9HvV6PXZ3d2N1dXWMnZ13XZ+PHj2KZrN5+rjb7Y40UV+8eHHu8fLy8q17hCTddS5fVCqVYnV1Nfb39yPi8g/V+5h35jLzLIl5fBs+k+Fqw+bHzs5OtFqtqFQqsba2du1YZy9Cnz17Fu+9997p47fffvv0794+j2G8kpjH4+4zIj3zWADG2JzdrnjTpY2NRiM2NjZid3c31tfXx93aOdf1WS6Xzz1utVojrUY7Ojo69/iqA4Rh2t1lLl/l7bffPr1wvuzsoPuYd+Yy8yyJeXwbPpPhasPmx5/+6Z9GRNwq6G42m+cuZIvF4umFs89jGK8k5vFtzMvnsS2QjM3ZSXOTpY3NZjNWVlZie3v73sOviOv7fPTo0bnHo/6W++zFQC6XG/v5ZTApt53Lw5z9gJzUvDOXmWdJzOPb8JkMV7uPeXwdn8cwXknM49uYl89jARhj8/z589PvV1ZWRnpOq9WKx48fx+bm5sT2PV/XZ6lUOjfpRz3n5Oy4F/8DAbPkNnP5Ji6bH/cx78xl5lkS8/g2fCbD1YbNj+3t7RgMBiN/nb3o3NvbO/ez7e3t05/5PIbxSmIej7vPiPTMYwEYY3N2eeMoSxtbrVaUy+VYX18fecK2Wq3Y2dm5dY8Ro/X55MmT0+/PLi0d5mzd1tbWLbuD5N10Lo/i7G+JrroYv495Zy4zr5KaxzflMxmudh/zeBQ+j2F8kprHNzU3n8cDGJNisTiIiMHm5ua1tS9fvhwUi8XB+vr6jV6jVCoNDg8Pb9viYDAYrc/Dw8NBRJx+Xefg4OC0tlgs3qk/SNpN5vKotre3BxExyOVyV9bcx7wzl5lXSc3jm/KZDFcb5zw+GSsiBnt7e0NrfR7D+CQ1j287dto/j60AYyz29/ej1WpFLpeLd955Z2htt9uNcrkcxWIxtra2otVqXfvVaDROD94b5bC9u/Z58VawJ4f+XmVvb+/0+6lItuGWbjKXb+LZs2cREfHuu+9eWXMf885cZh4lOY9vwmcyXO2+5vEofB7DeCQ5j29irj6Pk07gmE4HBweDXC43iIhBpVIZuurq6OjotHaU1VmlUulccnyTr93d3Yn1eXR0dPq6pVLpyrqXL1+e1lUqlWvHhUm6rzmyvb09KJVKg83NzcHLly+H1m5ubo78m6/7mHfmMrNuVuaxz2S42n3Oj1HcdOWIz2N43azMY5/HVxOAcan19fXXwqfLtiueTK5isTg4Ojq6dty7hF+X5bX31eeJvb2903G3t7eHvqdcLnftBQRM2n3MkbMfaCdfV10Ur66uDp0/l7mPeWcuM8tmZR77TIar3ff8uM5ttk75PIbzZmUe+zy+mgCMS53dr3v2K5fLDVZXVwfr6+un/1KP8pvjweCv/wJ926+rJu24+7zsNU5S8dXV1cHh4eHg5cuXg4ODg9OxS6XSVE1sOHFfc+TsB/DFMTc3NweVSuX08W0++O9j3pnLzKpZmcc+k+Fqk5gfw9z27CCfx/DXZmUe+zy+mgCMKx0dHQ3W19cHxWLx9F/uk4R4dXV1sLe3NxX/Qk+qz5OtImdfo1KpjP0AQhi3+5gjL1++HGxubr42J07G3N3dndp5Zy4zi2ZlHvtMhqvNyt+tL+PzGF6ZlXns8/hymcFgMAgAAAAASCl3gQQAAAAg1QRgAAAAAKSaAAwAAACAVBOAAQAAAJBqAjAAAAAAUk0ABgAAAECqCcAAAAAASDUBGAAAAACpJgADAAAAINUEYAAAAACkmgAMAAAAgFQTgAEAAACQagIwAAAAAFJNAAYAAABAqgnAAAAAAEg1ARgAAAAAqSYAAwAAACDVBGAAAAAApJoADAAAAIBUE4ABAAAAkGoCMAAAAABSTQAGAAAAzI1utxs7OztRLpdjf3//3M/29/djZWUlFhcXI5PJRLlcjnq9fuU4W1tbUS6Xz9VfHPM6+/v7sba2FuVyOTKZTGQymVheXo6NjY1oNpu3eo+NRiPW1tZO+1pcXIyVlZXY2dmJVqt1qzFnnQAMAAAAuBdbW1unoc5Nv8rl8tj6aDabp6HX4uJibG1tnQuXWq1WlMvlWFtbi0ajEd1u9/R5GxsbsbGxcW68nZ2dWFxcjJ2dnWg2m+fq19bWYmtr69qe9vf3Y3FxMdbW1qJYLMbe3l68fPkyDg4OIiKiXq9HuVyOnZ2dG73XjY2NWFlZiVarFdvb27G3txfFYjEajUZsbW3F8vJyrK2t3Tpcm1WZwWAwSLoJAAAAIH02NjaiXq9HsViMjY2NKBaLl9Z98MEHrwU9BwcHUalU7txDq9U6DaQurs7a29uLFy9exMbGRpRKpXj77bejWCxGq9WKZ8+enQZbZ/tZWVmJ58+fx5MnT6JcLsfDhw8v7f/o6OjK93uy6isiYnt7OzY3N1+rWVxcPH39vb29WF1dvfa9lsvlaDabUalUToO0iz+7SqlUisPDw2tfY1YJwAAAAIB7sbGxEb/7u78bL1++HFp3MZxZX1+P3d3dsfezs7NzbnVWsViMFy9exLvvvvtawNRqtWJ5efn0calUioiIhw8fxt7eXuRyuXP1jUYjVlZWrn0P3W43FhcXTx9fFZRtbW2dhmqXBVrD6g8PD0/7Pft+yuXyuVCvVCrFw4cPI+LV/xf38f/5tHiQdAMAAABAer3zzjtDf36yjfBELpe7tyDmYigUEVeGc8ViMSqVSjQajYh4tb2xWCxeuUqqUqmcrh6LiNPnXfS7v/u75x63Wq1LA7Cz4dtVY5042eIZ8er/v8veZ7FYjPX19XMr1d55552RVpalgTPAAAAAgHvx4sWLS8OYE2e3J57Y29u7t35OVjuduC78ObuiKyKuPdvr7Hu96rD5syuwhrkYig07vP5sYHjVtsuIeO0sszSv+LpIAAYAAADci+3t7aHneJ2cg3VifX19LOd+jcvFbY4XA7SLRgmt1tfXT8ctlUojv99hwdl1K8TO9ne2x3m6I6QADAAAALgXw1Yj1ev117Y+bm9vT6KtkV0XeF3nstAql8vFy5cv4/DwcOih8xef++LFiytrz/7sulDr7Cq1YWOmjQAMAAAAmKhWq/XadrzLDpafNV/4whdGrr1qa+jJ/zcXV8cNczaou26L5dlQ8q4B3ywRgAEAAAATdTH8Wl1dnaqtj0k4uYvk8vJy1Ov1G4WBF1fajbolctj5bGkjAAMAAAAmpl6vnwtocrlcvPvuuwl2lKz9/f0ol8uxsrISjUYj1tfX4+jo6EY3A7h4OP+wraRnt0hed4fONBGAAQAAABPR7XZfC2vefffdmd/6eButVitWVlZibW0tms1mrK+vx8uXL2N3d3fo2WmXqVQqsb6+fvq40WhEvV6/9DX39/cjImJzc9MKMAAAAIBxW1tbO3dG1erqaqyuribXUEIajUYsLy+froQ7PDyM3d3dOwWBu7u751Z+bWxsxNbW1un/341GI8rlckS8WiE2bTccuG8CMAAAAODe7e/v2/oYf73y6//f3h0dp43EARz+M3MFiJRgOkCUIDowdgWgDmBcQQY6MC3YHUAJmA4sVxBQB7mHDBxg5ww5fAnr73sCgaSFx9+sdjceHh7ONhNrOBzu7Sw5mUyi2WxGo9GIsizj5uYm1ut1DIfDs9zvkvz1uwcAAAAApK2u6+j3+3vHPuujj7sbALTb7bPOgNv8z+PxeBu56rr+lP/zITPAAAAAgA/V7/dPfvRxMpm8uY7VJavrem8WXKfTOeu18zyP29vbvRle4tcPAhgAAADwYebz+Xbh9YjjH32czWbx5cuXjxzayVar1X86f7FYHP3d3WB4jDzPo6qqT/l44zEEMAAAAODD9Hq9vffHPPq4mSl16m6I53YYvN6LUt++fTvp+ruzwQ7NZrOjrzMajaKqqlev+YcABgAAAHyIsiz3olFRFEetebVZL+zcAewwDL0XtA4/f35+Pun7h/c7/D1VVcVkMnl1rCzLV49/LpfLn95n97PJZBKtVisajUY0Go1oNpvRbDaj1WpFnufR7Xaj1+vFdDr9VKGs8f379++/exAAAABAWubz+d5uhxER9/f3b0atuq5jtVrF8/NzPD4+bsPMuZNFnud7sSjLsnh5eXlzRtpmTa3dSJRlWTw9Pb35G6qqijzPXwW/w5lch2OI+LEYfqfTicViEcvlMoqiiPF4HHme79375uYmFovF9vON6XS6t7j+KYbD4d61UiWAAQAAAGf3Vug5RZZlsV6v9441Go1fulZRFLFYLH4646vdbsfd3V1cX1/HcrmMfr//r2Nvt9tRlmUMBoOYz+dRluVPZ1NlWRadTmcb/94KZbt2d3BstVqvrttut+Pp6enVee+N4998hggmgAEAAAD8j+q63ka2qqri6uoqrq+v4+7ubm822m6My7IsBoPBT0PVJoBtZpxVVRVVVUVd19u1yTbRbbVaRVVVe5FvvV4nvWOkAAYAAABwwSaTSYxGo5jNZlEUxUnnjkajmEwmv3TuJbEIPgAAAMCF2sSv6+vrXwpY4/E4six7d0OASyeAAQAAAFyg5XIZo9EoIiJub29/+Tp1XUe73T7XsP5IAhgAAADABbq/v9++Ptxt8lij0SiKonhzZ8uUCGAAAAAAF2h3x8fpdBqPj49Hn1vXdZRlGdPpNB4eHj5ieH8UAQwAAADgAvV6vVfvu91uTKfTWC6Xe+t6bXZ9nE6n0e12o9lsxmKxiJeXl6R3f9ywCyQAAADAhdosgn+q8Xgcw+HwA0b0ZxLAAAAAAC7YcrmMr1+/vvsIZLvdjrIsYzAY/E8j+3MIYAAAAAAJqOs6FotF1HW9XR8sy7K4urqKoih+8+h+LwEMAAAAgKRZBB8AAACApAlgAAAAACRNAAMAAAAgaQIYAAAAAEkTwAAAAABImgAGAAAAQNIEMAAAAACSJoABAAAAkDQBDAAAAICkCWAAAAAAJE0AAwAAACBpAhgAAAAASRPAAAAAAEiaAAYAAABA0gQwAAAAAJImgAEAAACQNAEMAAAAgKQJYAAAAAAkTQADAAAAIGkCGAAAAABJE8AAAAAASJoABgAAAEDSBDAAAAAAkiaAAQAAAJA0AQwAAACApAlgAAAAACRNAAMAAAAgaQIYAAAAAEkTwAAAAABI2t+eIhDlPgEp2wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "array = {\"z_mag\": zmag, \"z_mag_pred\": z_mag_xEndT, \"diff\": zmag - z_mag_xEndT}\n", + "df = pd.DataFrame(array)\n", + "sns.regplot(data=df, x=\"z_mag\", y=\"diff\", x_bins=30, fit_reg=False)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tuner", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/thesis/TMVA_stuff.ipynb b/thesis/TMVA_stuff.ipynb index d7a6800..50979d8 100644 --- a/thesis/TMVA_stuff.ipynb +++ b/thesis/TMVA_stuff.ipynb @@ -161,9 +161,7 @@ " label=\"training sample, wrong pairs\",\n", ")\n", "axes[1, 0].set_xlabel(r\"$D_{x}$ [mm]\")\n", - "axes[1, 0].set_ylabel(\"Number of tracks (normalised)\",\n", - " va=\"bottom\",\n", - " ha=\"center\")\n", + "axes[1, 0].set_ylabel(\"Number of tracks (normalised)\", va=\"bottom\", ha=\"center\")\n", "# 0,1\n", "axes[0, 1].hist(\n", " train_sig.teta2,\n", @@ -251,8 +249,8 @@ ")\n", "axes[2, 1].set_xlabel(r\"$|\\Delta t_{y}^{\\mathrm{match}}|$\")\n", "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/thesis/filtered_NN_elec_variables.pdf\",\n", - " format=\"PDF\")\n", + " \"/work/cetin/LHCb/reco_tuner/thesis/filtered_NN_elec_variables.pdf\", format=\"PDF\"\n", + ")\n", "# plt.show()" ] }, @@ -340,9 +338,7 @@ " label=\"training sample, wrong pairs\",\n", ")\n", "axes[0, 2].set_xlabel(r\"$D_{x}$ [mm]\")\n", - "axes[0, 0].set_ylabel(\"Number of tracks (normalised)\",\n", - " va=\"bottom\",\n", - " ha=\"center\")\n", + "axes[0, 0].set_ylabel(\"Number of tracks (normalised)\", va=\"bottom\", ha=\"center\")\n", "# 1,0\n", "axes[1, 0].hist(\n", " train_sig.distY,\n",