From 1aeb8873c104f3e4f6a7d4ab1764c8c2cc4717b7 Mon Sep 17 00:00:00 2001 From: cetin Date: Wed, 27 Mar 2024 09:23:35 +0100 Subject: [PATCH] perf selection and eff data --- .../logs/calo_effs_testJpsi_NewParams.log | 485 ----------- ...olutions_and_effs_BJpsi_default_thesis.log | 785 ------------------ .../resolutions_and_effs_B_default_thesis.log | 769 ----------------- .../logs/best_effs_BJpsi_Selection.log | 433 ++++++++++ .../logs/best_effs_testJpsi_EDef.log} | 296 +++---- .../logs/best_effs_testJpsi_Selection.log | 330 ++++++++ .../logs/best_effs_testJpsi_TSelection.log | 334 ++++++++ .../logs/best_effs_testJpsi_VeloSelection.log | 330 ++++++++ .../logs/best_effs_testJpsi_optTSelection.log | 209 +++-- .../best_effs_testJpsi_optVeloSelection.log | 292 +++---- .../electrons/logs/calo_effs_BJpsi_Ecal.log | 560 +++++++++++++ .../logs/calo_effs_BJpsi_EcalSelection.log | 507 +++++++++++ .../calo_effs_BJpsi_VeloEcalSelection.log | 482 +++++++++++ .../logs/calo_effs_testJpsi_EcalSelection.log | 271 +++--- .../logs/match_effs_BJpsi_EDef.log} | 309 +++---- .../logs/match_effs_testJpsi_EDef.log | 198 ++--- .../best_effs_BJpsi_baseline_Selection.log | 433 ++++++++++ ...oCut.log => best_effs_testJpsi_NewSel.log} | 296 +++---- efficiencies/logs/effs_BJpsi_baseline.log | 26 +- .../logs/effs_testJpsi_EDef_yCorrCut.log | 448 ---------- electron_main.py | 11 +- ...get_best_seed_data.py => get_best_data.py} | 37 +- moore_options/get_calo_data.py | 33 +- moore_options/get_ghost_data.py | 8 +- moore_options/get_match_eff_data.py | 19 +- moore_options/get_parameterisation_data.py | 4 +- ...reproduce.py => get_selected_calo_data.py} | 125 ++- .../notebooks/magnet_kink_position.ipynb | 140 ++-- .../train_matching_ghost_mlps_electron.py | 11 +- scripts/CompareEfficiency.py | 39 +- thesis/TMVA_stuff.ipynb | 100 ++- 31 files changed, 4578 insertions(+), 3742 deletions(-) delete mode 100644 data_matching/logs/calo_effs_testJpsi_NewParams.log delete mode 100644 data_matching/logs/resolutions_and_effs_BJpsi_default_thesis.log delete mode 100644 data_matching/logs/resolutions_and_effs_B_default_thesis.log create mode 100644 efficiencies/electrons/logs/best_effs_BJpsi_Selection.log rename efficiencies/{logs/match_effs_testJpsi_EDef_yCorrCut.log => electrons/logs/best_effs_testJpsi_EDef.log} (59%) create mode 100644 efficiencies/electrons/logs/best_effs_testJpsi_Selection.log create mode 100644 efficiencies/electrons/logs/best_effs_testJpsi_TSelection.log create mode 100644 efficiencies/electrons/logs/best_effs_testJpsi_VeloSelection.log rename data_matching/logs/best_seed_effs_testJpsi_NewParams.log => efficiencies/electrons/logs/best_effs_testJpsi_optTSelection.log (72%) rename data_matching/logs/match_effs_testJpsi_NewParams_EFilter.log => efficiencies/electrons/logs/best_effs_testJpsi_optVeloSelection.log (58%) create mode 100644 efficiencies/electrons/logs/calo_effs_BJpsi_Ecal.log create mode 100644 efficiencies/electrons/logs/calo_effs_BJpsi_EcalSelection.log create mode 100644 efficiencies/electrons/logs/calo_effs_BJpsi_VeloEcalSelection.log rename data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp6.log => efficiencies/electrons/logs/calo_effs_testJpsi_EcalSelection.log (64%) rename efficiencies/{logs/effs_BJpsi_EDef.log => electrons/logs/match_effs_BJpsi_EDef.log} (72%) rename data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp5.log => efficiencies/electrons/logs/match_effs_testJpsi_EDef.log (80%) create mode 100644 efficiencies/logs/best_effs_BJpsi_baseline_Selection.log rename efficiencies/logs/{match_effs_testJpsi_EDef_yCorrNoCut.log => best_effs_testJpsi_NewSel.log} (59%) delete mode 100644 efficiencies/logs/effs_testJpsi_EDef_yCorrCut.log rename moore_options/{get_best_seed_data.py => get_best_data.py} (83%) rename moore_options/{get_calo_data_reproduce.py => get_selected_calo_data.py} (58%) diff --git a/data_matching/logs/calo_effs_testJpsi_NewParams.log b/data_matching/logs/calo_effs_testJpsi_NewParams.log deleted file mode 100644 index 96e564e..0000000 --- a/data_matching/logs/calo_effs_testJpsi_NewParams.log +++ /dev/null @@ -1,485 +0,0 @@ -# setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' -/***** User ApplicationOptions/ApplicationOptions ************************************************** -|-append_decoding_keys_to_output_manifest = True (default: True) -|-auditors = [] (default: []) -|-buffer_events = 20000 (default: 20000) -|-conddb_tag = 'sim-20210617-vc-md100' (default: '') -|-conditions_version = '' (default: '') -|-control_flow_file = '' (default: '') -|-data_flow_file = '' (default: '') -|-data_type = 'Upgrade' (default: 'Upgrade') -|-dddb_tag = 'dddb-20210617' (default: '') -|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') -|-evt_max = -1 (default: -1) -|-first_evt = 0 (default: 0) -|-geometry_version = '' (default: '') -|-histo_file = '' (default: '') -|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] -| (default: []) -|-input_manifest_file = '' (default: '') -|-input_process = '' (default: '') -|-input_raw_format = 0.5 (default: 0.5) -|-input_type = 'ROOT' (default: '') -|-lines_maker = None -|-memory_pool_size = 10485760 (default: 10485760) -|-monitoring_file = '' (default: '') -|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') -|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') -|-n_event_slots = 1 (default: -1) -|-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/NewParams/calo_data_testJpsi_NewParams.root' -| (default: '') -|-output_file = '' (default: '') -|-output_level = 3 (default: 3) -|-output_manifest_file = '' (default: '') -|-output_type = '' (default: '') -|-persistreco_version = 1.0 (default: 1.0) -|-phoenix_filename = '' (default: '') -|-preamble_algs = [] (default: []) -|-print_freq = 10000 (default: 10000) -|-python_logging_level = 20 (default: 20) -|-require_specific_decoding_keys = [] (default: []) -|-scheduler_legacy_mode = True (default: True) -|-simulation = True (default: None) -|-use_iosvc = False (default: False) -|-velo_motion_system_yaml = '' (default: '') -|-write_decoding_keys_to_git = True (default: True) -\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- -# Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' -ApplicationMgr SUCCESS -==================================================================================================================================== - Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 12:24:51 2024 -==================================================================================================================================== -ApplicationMgr INFO Application Manager Configured successfully -ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' -ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 -ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' -ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf -DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc -DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml -EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 -EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf -MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/NewParams/calo_data_testJpsi_NewParams.root as FILE1 -HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/NewParams/calo_data_testJpsi_NewParams.root -HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc -DeFTDetector INFO Current FT geometry version = 64 -CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root -HLTControlFlowMgr INFO Concurrency level information: -HLTControlFlowMgr INFO o Number of events slots: 1 -HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 29405 ms -ApplicationMgr INFO Application Manager Initialized successfully -FunctorFactory INFO Reusing functor library: "/tmp/FunctorJitLib_0xc5b1c410f2cf976c_0xc808b52dd7b87121.so" -ApplicationMgr INFO Application Manager Started successfully -EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc -EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) -HLTControlFlowMgr INFO Starting loop on events -EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 -FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. -FTRawBankDecoder INFO Building the readout map with version 0 -CaloFutureClusterCovarianceAlg_1... INFO == Parameters for covariance estimation == -CaloFutureClusterCovarianceAlg_1... INFO Stochastic : [0.21, 0.14, 0.14] Sqrt(GeV) -CaloFutureClusterCovarianceAlg_1... INFO GainError : [0.045, 0.025, 0.025] -CaloFutureClusterCovarianceAlg_1... INFO IncoherentNoise : [2.2, 2.2, 2.2] ADC -CaloFutureClusterCovarianceAlg_1... INFO CoherentNoise : [1.3, 1.3, 1.3] ADC -CaloFutureClusterCovarianceAlg_1... INFO ConstantE : [0, 0, 0] MeV -CaloFutureClusterCovarianceAlg_1... INFO ConstantX : [9, 2, 0.5] mm -CaloFutureClusterCovarianceAlg_1... INFO ConstantY : [9, 2, 0.5] mm -CaloFutureClusterCovarianceAlg_1... INFO Energy mask : (from DB) -CaloFutureClusterCovarianceAlg_1... INFO Position mask : (from DB) -HLTControlFlowMgr INFO Timing started at: 12:25:50 -EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1804.18, timed 2945 Events: 206959 ms, Evts/s = 14.2299 -CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#total tracks" | 2289 | 284763 | 124.40 | 43.203 | 7.0000 | 248.00 | - | "#tracks in acceptance" | 2289 | 233690 | 102.09 | 35.860 | 7.0000 | 212.00 | -CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# clusters" | 460619 | -CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Corrected Clusters: # cells " | 42592 | 185661 | 4.3591 | 1.3800 | 2.0000 | 14.000 | - | "Corrected Clusters: ET" | 42592 |1.217924e+07 | 285.95 | 492.01 | 0.60000 | 19198. | - | "Corrected Clusters: size ratio" | 42592 | 21653.6 | 0.50840 | 0.45223 | -1.1017e-15 | 7.0882 | -CaloSelectiveElectronMatchAlg_Tt... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#links in table" | 2289 | 196473 | 85.834 | 32.359 | 4.0000 | 186.00 | - | "average chi2" | 196473 | 28600.87 | 0.14557 | 0.18097 | 2.5694e-07 | 8.8763 | -CaloSelectiveTrackMatchAlg_Ttrac... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#links in table" | 2289 | 197985 | 86.494 | 32.486 | 4.0000 | 186.00 | - | "average chi2" | 197985 | 5063.975 | 0.025578 | 0.045867 | 7.4238e-08 | 3.6636 | -CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "average DLL" | 233690 | -5899.35 | -0.025244 | 0.042736 | -1.6606 | 0.49540 | - | "average E/p" | 233690 | 950.3228 | 0.0040666 | 0.0046573 | 0.0000 | 0.20127 | -ClassifyPhotonElectronAlg_3be601a8 INFO Number of counters : 14 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Electron Delta(E)" | 164102 |-6.43632e+07 | -392.21 | 527.89 | -12989. | 9687.1 | - | "Electron Delta(X)" | 164102 | -52538.47 | -0.32016 | 12.236 | -102.44 | 73.909 | - | "Electron Delta(Y)" | 164102 | -42581.65 | -0.25948 | 12.219 | -90.385 | 90.646 | - | "Electron Delta(Z)" | 164102 |1.085137e+07 | 66.126 | 14.233 | -9.9102 | 134.58 | - | "Electron corrected energy" | 164102 |1.07999e+09 | 6581.2 | 8795.1 | 20.865 | 6.0331e+05 | - | "Electrons pT-rejected after correction" | 1176 | - | "Photon Delta(E)" | 297172 |-6.845382e+07 | -230.35 | 398.21 | -8742.9 | 8635.4 | - | "Photon Delta(X)" | 297172 | -88809.13 | -0.29885 | 12.805 | -92.061 | 86.241 | - | "Photon Delta(Y)" | 297172 | -100248.4 | -0.33734 | 12.794 | -92.484 | 73.654 | - | "Photon Delta(Z)" | 297172 |1.657882e+07 | 55.789 | 13.183 | -10.359 | 128.42 | - | "Photon corrected energy" | 297172 |1.041506e+09 | 3504.7 | 6206.4 | 20.198 | 3.5395e+05 | - | "Photons pT-rejected after correction" | 5064 | - | "electronHypos" | 2289 | 162926 | 71.178 | 23.775 | 4.0000 | 140.00 | - | "photonHypos" | 2289 | 292108 | 127.61 | 35.793 | 11.000 | 214.00 | -ClassifyPhotonElectronAlg_3be601... INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | " Inner" | 126684 | 125993.2 | 0.99455 | 0.019853 | 0.96422 | 1.2194 | - | " Middle" | 123144 | 123893 | 1.0061 | 0.020270 | 0.97669 | 1.2090 | - | " Outer" | 210566 | 210420.9 | 0.99931 | 0.016327 | 0.97360 | 1.1546 | - | "Pileup offset" | 460394 |1.64556e+08 | 357.42 | 422.51 | -4249.0 | 4724.6 | - | "Pileup scale" | 461274 | 2574610 | 5.5815 | 1.7679 | 1.0000 | 14.000 | - | "Pileup subtracted ratio" | 460394 | 406791.8 | 0.88357 | 0.12017 | 6.7550e-05 | 1.6696 | - | "Skip negative energy correction" | 880 | -DefaultGECFilter INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb Events Processed" | 2955 | - | "Nb events removed" | 666 | -ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 4 | -GraphClustering_72971694 INFO Number of counters : 4 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# clusters" | 2289 | 460619 | 201.23 | 56.959 | 14.000 | 333.00 | - | "Cluster energy" | 460619 |2.244434e+09 | 4872.6 | 7606.7 | 3.6000 | 5.9362e+05 | - | "Cluster size" | 460619 | 4680898 | 10.162 | 2.4013 | 4.0000 | 28.000 | - | "Negative energy clusters" | 25 | 26 | 1.0400 | 0.19596 | 1.0000 | 2.0000 | -HLTControlFlowMgr INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Processed events" | 2955 | -LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Tracks" | 2289 | 284763 | 124.40 | -MatchTrackChecker_ac9fdd0b.LoKi:... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_69ac963b.LoKi... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 4 | -PrFilterTracks2CaloClusters_cae3... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Cut selection efficiency" | 284763 | 186532 |( 65.50430 +- 0.08907906)% | -PrFilterTracks2ElectronMatch_426... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Cut selection efficiency" | 284763 | 144590 |( 50.77556 +- 0.09368628)% | -PrFilterTracks2ElectronShower_72... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Cut selection efficiency" | 284763 | 173169 |( 60.81162 +- 0.09148084)% | -PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 2289 | 363254 | 158.70 | - | "Created long tracks" | 2289 | 181236 | 79.177 | - | "Input tracks" | 2289 | 380749 | 166.34 | - | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | - | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | - | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | - | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | - | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | - | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | - | "Removed duplicates" | 2289 | 9647 | 4.2145 | -PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 166072 | 673152 | 4.0534 | - | "#tracks with hits added" | 166072 | -PrHybridSeeding_4d0337cc INFO Number of counters : 21 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | - | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | - | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | - | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | - | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | - | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | - | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | - | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | - | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | - | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | - | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | - | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | - | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | - | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | - | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | - | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | - | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | - | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | -PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNNv3_92e0e3ea INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 6351575 | 2774.8 | - | "#MatchingMLP" | 152302 | 132224.7 | 0.86817 | - | "#MatchingTracks" | 2289 | 152302 | 66.536 | -PrMatchNNv3_92e0e3ea.PrAddUTHits... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 128503 | 500109 | 3.8918 | - | "#tracks with hits added" | 128503 | -PrStorePrUTHits_df75b912 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 2289 | 494424 | 216.00 | -PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | - | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | - | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | - | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | - | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | - | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | - | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | - | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | - | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | - | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | - | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | - | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | - | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | - | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | - | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | - | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | - | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | - | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | - | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | - | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | - | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | - | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | - | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | - | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | - | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | -PrStoreUTHit_6220b56a INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 2289 | 494424 | 216.00 | -PrTrackAssociator_16ad4612 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | - | "MC particles per track" | 279294 | 279304 | 1.0000 | -PrTrackAssociator_3adf94fb INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | - | "MC particles per track" | 155077 | 181813 | 1.1724 | -PrTrackAssociator_924c9da5 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 152302 | 82999 |( 54.49633 +- 0.1276010)% | - | "MC particles per track" | 82999 | 95416 | 1.1496 | -SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -TrackBeamLineVertexFinderSoA_f85... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb PVs" | 2289 | 12075 | 5.2752 | -VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | - | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | -fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_8e5d998e INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 152302 | 66.536 | -fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | -fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | -fromV3TrackV1Track_99589441 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Tracks" | 2289 | 173169 | 75.653 | -ApplicationMgr INFO Application Manager Stopped successfully -ForwardTrackChecker_482fda95 INFO Results -ForwardTrackChecker_482fda95 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** -ForwardTrackChecker_482fda95 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % -ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % -ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % -ForwardTrackChecker_482fda95 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % -ForwardTrackChecker_482fda95 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % -ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % -ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % -ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % -ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO -ForwardUTHitsChecker_fe9d9ac2 INFO Results -ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 26159 ghost, 2.61 UT per track -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :134215 tr 3.91 from 4.07 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :132800 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV : 92174 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT : 90908 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4919 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO -GraphClustering_72971694 INFO Built <201.232> graph calo clustering clusters/event -MatchTrackChecker_ac9fdd0b INFO Results -MatchTrackChecker_ac9fdd0b INFO **** Match 152302 tracks including 69303 ghosts [45.50 %], Event average 42.09 % **** -MatchTrackChecker_ac9fdd0b INFO 01_long : 66226 from 152279 [ 43.49 %] 427 clones [ 0.64 %], purity: 99.27 %, hitEff: 98.40 % -MatchTrackChecker_ac9fdd0b INFO 02_long_P>5GeV : 41782 from 98421 [ 42.45 %] 211 clones [ 0.50 %], purity: 99.43 %, hitEff: 99.27 % -MatchTrackChecker_ac9fdd0b INFO 03_long_strange : 3361 from 8121 [ 41.39 %] 19 clones [ 0.56 %], purity: 98.92 %, hitEff: 97.84 % -MatchTrackChecker_ac9fdd0b INFO 04_long_strange_P>5GeV : 1614 from 3856 [ 41.86 %] 8 clones [ 0.49 %], purity: 99.20 %, hitEff: 99.28 % -MatchTrackChecker_ac9fdd0b INFO 05_long_fromB : 3243 from 7959 [ 40.75 %] 25 clones [ 0.76 %], purity: 99.39 %, hitEff: 98.65 % -MatchTrackChecker_ac9fdd0b INFO 05_long_fromD : 1768 from 4226 [ 41.84 %] 11 clones [ 0.62 %], purity: 99.29 %, hitEff: 98.43 % -MatchTrackChecker_ac9fdd0b INFO 06_long_fromB_P>5GeV : 2368 from 5983 [ 39.58 %] 11 clones [ 0.46 %], purity: 99.55 %, hitEff: 99.28 % -MatchTrackChecker_ac9fdd0b INFO 06_long_fromD_P>5GeV : 1150 from 2894 [ 39.74 %] 5 clones [ 0.43 %], purity: 99.51 %, hitEff: 99.21 % -MatchTrackChecker_ac9fdd0b INFO 07_long_electrons : 11446 from 15125 [ 75.68 %] 175 clones [ 1.51 %], purity: 97.79 %, hitEff: 98.19 % -MatchTrackChecker_ac9fdd0b INFO 07_long_electrons_pairprod : 7675 from 10831 [ 70.86 %] 138 clones [ 1.77 %], purity: 97.16 %, hitEff: 97.89 % -MatchTrackChecker_ac9fdd0b INFO 08_long_fromB_electrons : 3605 from 4210 [ 85.63 %] 41 clones [ 1.12 %], purity: 99.06 %, hitEff: 98.90 % -MatchTrackChecker_ac9fdd0b INFO 09_long_fromB_electrons_P>5GeV : 3386 from 3850 [ 87.95 %] 38 clones [ 1.11 %], purity: 99.16 %, hitEff: 99.02 % -MatchTrackChecker_ac9fdd0b INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 2060 from 5182 [ 39.75 %] 13 clones [ 0.63 %], purity: 99.63 %, hitEff: 99.17 % -MatchTrackChecker_ac9fdd0b INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3268 from 3659 [ 89.31 %] 35 clones [ 1.06 %], purity: 99.23 %, hitEff: 99.02 % -MatchTrackChecker_ac9fdd0b INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 937 from 2343 [ 39.99 %] 6 clones [ 0.64 %], purity: 99.63 %, hitEff: 99.06 % -MatchTrackChecker_ac9fdd0b INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 842 from 2010 [ 41.89 %] 2 clones [ 0.24 %], purity: 99.54 %, hitEff: 99.16 % -MatchTrackChecker_ac9fdd0b INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 2050 from 5164 [ 39.70 %] 13 clones [ 0.63 %], purity: 99.63 %, hitEff: 99.19 % -MatchTrackChecker_ac9fdd0b INFO -MatchUTHitsChecker_69ac963b INFO Results -MatchUTHitsChecker_69ac963b INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_8e5d998e/OutputTracksLocation **** 69303 ghost, 2.56 UT per track -MatchUTHitsChecker_69ac963b INFO 01_long : 66653 tr 3.87 from 4.08 mcUT [ 94.8 %] 0.14 ghost hits on real tracks [ 3.6 %] -MatchUTHitsChecker_69ac963b INFO 01_long >3UT : 65906 tr 3.91 from 4.11 mcUT [ 95.1 %] 0.14 ghost hits on real tracks [ 3.4 %] -MatchUTHitsChecker_69ac963b INFO 02_long_P>5GeV : 41993 tr 3.94 from 4.09 mcUT [ 96.5 %] 0.10 ghost hits on real tracks [ 2.5 %] -MatchUTHitsChecker_69ac963b INFO 02_long_P>5GeV >3UT : 41375 tr 4.00 from 4.12 mcUT [ 96.9 %] 0.10 ghost hits on real tracks [ 2.3 %] -MatchUTHitsChecker_69ac963b INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 2073 tr 3.98 from 4.08 mcUT [ 97.7 %] 0.05 ghost hits on real tracks [ 1.3 %] -MatchUTHitsChecker_69ac963b INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 2059 tr 4.01 from 4.09 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.3 %] -MatchUTHitsChecker_69ac963b INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 2063 tr 4.00 from 4.09 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.3 %] -MatchUTHitsChecker_69ac963b INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 2059 tr 4.01 from 4.09 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.3 %] -MatchUTHitsChecker_69ac963b INFO -SeedTrackChecker_ad9abe4e INFO Results -SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** -SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % -SeedTrackChecker_ad9abe4e INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % -SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % -SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % -SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % -SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % -SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % -SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % -SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % -SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % -SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % -SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % -SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % -SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % -SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % -SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % -SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % -SeedTrackChecker_ad9abe4e INFO -HLTControlFlowMgr INFO Memory pool: used 4.78838 +/- 0.0475562 MiB (min: 0, max: 6) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 705.46 +/- 6.98485 (min: 4, max: 1064) requests were served -HLTControlFlowMgr INFO Timing table: -HLTControlFlowMgr INFO - | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 203.111 | 68734.534 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 107.901 | 36514.637 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 18.371 | 8025.917 | - | "ForwardTrackChecker_482fda95" | 2289 | 16.913 | 7388.852 | - | "MatchTrackChecker_ac9fdd0b" | 2289 | 14.268 | 6233.267 | - | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 6.511 | 2844.470 | - | "MatchUTHitsChecker_69ac963b" | 2289 | 6.289 | 2747.290 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 5.682 | 2482.425 | - | "PrHybridSeeding_4d0337cc" | 2289 | 4.314 | 1884.622 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 3.526 | 1540.320 | - | "Unpack__Event_MC_Vertices" | 2289 | 2.959 | 1292.608 | - | "Unpack__Event_MC_Particles" | 2289 | 2.814 | 1229.233 | - | "GraphClustering_72971694" | 2289 | 2.210 | 965.374 | - | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 2289 | 1.252 | 547.112 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 1.031 | 450.248 | - | "ClassifyPhotonElectronAlg_3be601a8" | 2289 | 0.810 | 353.804 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.792 | 345.858 | - | "VPClusFull_38754d8c" | 2289 | 0.787 | 344.035 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.771 | 336.698 | - | "PrMatchNNv3_92e0e3ea" | 2289 | 0.722 | 315.285 | - | "FutureEcalZSup" | 2289 | 0.648 | 283.301 | - | "CaloFutureClusterCovarianceAlg_1a2d4ea3" | 2289 | 0.564 | 246.356 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.529 | 231.104 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.502 | 219.239 | - | "PrTrackAssociator_924c9da5" | 2289 | 0.353 | 154.003 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.351 | 153.480 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.271 | 118.489 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.193 | 84.506 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.189 | 82.409 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.187 | 81.848 | - | "fromPrMatchTracksV1Tracks_8e5d998e" | 2289 | 0.184 | 80.172 | - | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 2289 | 0.171 | 74.858 | - | "fromV3TrackV1Track_99589441" | 2289 | 0.155 | 67.575 | - | "CaloSelectiveTrackMatchAlg_Ttrack_bd1b5be2" | 2289 | 0.132 | 57.534 | - | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 2289 | 0.107 | 46.940 | - | "TrackBeamLineVertexFinderSoA_f85e7c3b" | 2289 | 0.105 | 45.808 | - | "FTRawBankDecoder" | 2289 | 0.091 | 39.805 | - | "CaloSelectiveElectronMatchAlg_Ttrack_7febcd2c" | 2289 | 0.089 | 39.081 | - | "PrFilterTracks2CaloClusters_cae3b638" | 2289 | 0.062 | 27.252 | - | "PrFilterTracks2ElectronMatch_4265680d" | 2289 | 0.060 | 26.305 | - | "PrFilterTracks2ElectronShower_72362ae8" | 2289 | 0.059 | 25.967 | - | "UnpackRawEvent_UT" | 2955 | 0.039 | 13.103 | - | "reserveIOV" | 2289 | 0.032 | 13.915 | - | "Decode_ODIN" | 2289 | 0.014 | 5.992 | - | "CaloMergeTrackMatchTables_2ce8beb5" | 2289 | 0.013 | 5.499 | - | "UniqueIDGeneratorAlg_26e527e9" | 2289 | 0.012 | 5.144 | - | "DefaultGECFilter" | 2955 | 0.011 | 3.652 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.009 | 3.739 | - | "DummyEventTime" | 2289 | 0.007 | 3.122 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.007 | 2.321 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.006 | 2.715 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.006 | 2.633 | - | "UnpackRawEvent_VP" | 2289 | 0.005 | 2.376 | - | "UnpackRawEvent_EcalPackedError" | 2289 | 0.005 | 2.210 | - | "UnpackRawEvent_ODIN" | 2289 | 0.005 | 2.209 | - | "UnpackRawEvent_EcalPacked" | 2289 | 0.005 | 2.062 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.004 | 1.651 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.004 | 1.587 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.547 | - -HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrMatchNNv3/PrMatchNNv3_92e0e3ea #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrFilterTracks2CaloClusters/PrFilterTracks2CaloClusters_cae3b638 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrFilterTracks2ElectronMatch/PrFilterTracks2ElectronMatch_4265680d #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrFilterTracks2ElectronShower/PrFilterTracks2ElectronShower_72362ae8 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_ac9fdd0b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_69ac963b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - -HLTControlFlowMgr INFO Histograms converted successfully according to request. -ToolSvc INFO Removing all tools created by ToolSvc -SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_69ac963b.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -MatchTrackChecker_ac9fdd0b.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] -RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] -RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] -ApplicationMgr INFO Application Manager Finalized successfully -ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/logs/resolutions_and_effs_BJpsi_default_thesis.log b/data_matching/logs/resolutions_and_effs_BJpsi_default_thesis.log deleted file mode 100644 index 5b7b236..0000000 --- a/data_matching/logs/resolutions_and_effs_BJpsi_default_thesis.log +++ /dev/null @@ -1,785 +0,0 @@ -# setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data2.py' -/***** User ApplicationOptions/ApplicationOptions ************************************************** -|-append_decoding_keys_to_output_manifest = True (default: True) -|-auditors = [] (default: []) -|-buffer_events = 20000 (default: 20000) -|-conddb_tag = 'sim-20210617-vc-md100' (default: '') -|-conditions_version = '' (default: '') -|-control_flow_file = '' (default: '') -|-data_flow_file = '' (default: '') -|-data_type = 'Upgrade' (default: 'Upgrade') -|-dddb_tag = 'dddb-20210617' (default: '') -|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') -|-evt_max = -1 (default: -1) -|-first_evt = 0 (default: 0) -|-geometry_version = '' (default: '') -|-histo_file = '' (default: '') -|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] -| (default: []) -|-input_manifest_file = '' (default: '') -|-input_process = '' (default: '') -|-input_raw_format = 0.5 (default: 0.5) -|-input_type = 'ROOT' (default: '') -|-lines_maker = None -|-memory_pool_size = 10485760 (default: 10485760) -|-monitoring_file = '' (default: '') -|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') -|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') -|-n_event_slots = 1 (default: -1) -|-n_threads = 1 (default: 1) -|-ntuple_file = 'data/resolutions_and_effs_BJpsi_default_thesis.root' (default: '') -|-output_file = '' (default: '') -|-output_level = 3 (default: 3) -|-output_manifest_file = '' (default: '') -|-output_type = '' (default: '') -|-persistreco_version = 1.0 (default: 1.0) -|-phoenix_filename = '' (default: '') -|-preamble_algs = [] (default: []) -|-print_freq = 10000 (default: 10000) -|-python_logging_level = 20 (default: 20) -|-require_specific_decoding_keys = [] (default: []) -|-scheduler_legacy_mode = True (default: True) -|-simulation = True (default: None) -|-use_iosvc = False (default: False) -|-velo_motion_system_yaml = '' (default: '') -|-write_decoding_keys_to_git = True (default: True) -\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- -# Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data2.py' -ApplicationMgr SUCCESS -==================================================================================================================================== - Welcome to Moore version 55.1 - running on lhcba2 on Tue Feb 20 15:20:24 2024 -==================================================================================================================================== -ApplicationMgr INFO Application Manager Configured successfully -ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' -ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 -ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' -ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf -DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc -DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml -EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 -EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf -MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:data/resolutions_and_effs_BJpsi_default_thesis.root as FILE1 -HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: data/resolutions_and_effs_BJpsi_default_thesis.root -HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc -DeFTDetector INFO Current FT geometry version = 64 -TrackResCheckerForward.Selector.... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerForward.Selector.... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerForward.Selector.... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -TrackResCheckerBestLong.Selector... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerBestLong.Selector... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerBestLong.Selector... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -TrackResCheckerBestForward.Selec... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerBestForward.Selec... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerBestForward.Selec... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -TrackResCheckerSeed.Selector.Sel... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerSeed.Selector.Sel... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerSeed.Selector.Sel... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -HLTControlFlowMgr INFO Concurrency level information: -HLTControlFlowMgr INFO o Number of events slots: 1 -HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 82719 ms -ApplicationMgr INFO Application Manager Initialized successfully -ApplicationMgr INFO Application Manager Started successfully -EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc -EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) -HLTControlFlowMgr INFO Starting loop on events -EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 -FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. -FTRawBankDecoder INFO Building the readout map with version 0 -TransportSvc INFO Initialize the static pointer to DetDesc::IGeometryErrorSvc -TransportSvc INFO Recovery of geometry errors is ENABLED -HLTControlFlowMgr INFO Timing started at: 15:22:14 -EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] -RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] -RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] -RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] -RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] -RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] -RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] -RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] -RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] -EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 -EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] -RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] -RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] -RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] -RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] -RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] -RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] -RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] -RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] -RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] -RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] -EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 -EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] -RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] -RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] -RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] -RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] -RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] -RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] -RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] -RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] -RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] -RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] -EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 -EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] -RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] -RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] -RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] -RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] -RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] -HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1415.47, timed 35313 Events: 10180567 ms, Evts/s = 3.46867 -BestLongTrackChecker_3a419357.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -CloneKillerMatch_cd10262b INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "nTracksInput" | 35323 | 3629060 | 102.74 | - | "nTracksSelected" | 35323 | 871131 | 24.662 | -ForwardTrackChecker_22e49d0c.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -HLTControlFlowMgr INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Processed events" | 35323 | -MatchTrackChecker_8319528f.LoKi:... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -PrForwardTrackingVelo_9b95c79c INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 35323 | 6797481 | 192.44 | - | "Created long tracks" | 35323 | 3660113 | 103.62 | - | "Input tracks" | 35323 | 7115007 | 201.43 | - | "Number of candidate bins per track" | 6797481 |1.03704e+08 | 15.256 | 22.819 | 0.0000 | 276.00 | - | "Number of complete candidates/track 1st Loop" | 6098013 | 4129543 | 0.67719 | 0.73194 | 0.0000 | 15.000 | - | "Number of complete candidates/track 2nd Loop" | 3129876 | 328452 | 0.10494 | 0.33800 | 0.0000 | 12.000 | - | "Number of x candidates per track 1st Loop" | 6098013 |1.731958e+07 | 2.8402 | 3.8436 | - | "Number of x candidates per track 2nd Loop" | 3129876 |2.519809e+07 | 8.0508 | 13.134 | - | "Percentage second loop execution" | 6098013 | 3129876 | 0.51326 | - | "Removed duplicates" | 35323 | 228526 | 6.4696 | -PrForwardTrackingVelo_9b95c79c.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 3229725 |1.297506e+07 | 4.0174 | - | "#tracks with hits added" | 3229725 | -PrHybridSeeding_4d0337cc INFO Number of counters : 21 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Created T2x1 three-hit combinations in case 0" | 119679124 |7.671455e+07 | 0.64100 | 0.64790 | 0.0000 | 7.0000 | - | "Created T2x1 three-hit combinations in case 1" | 151207948 |1.059665e+08 | 0.70080 | 0.78616 | 0.0000 | 12.000 | - | "Created T2x1 three-hit combinations in case 2" | 227117595 |2.073536e+08 | 0.91298 | 1.1067 | 0.0000 | 25.000 | - | "Created XZ tracks (part 0)" | 105969 |1.325106e+07 | 125.05 | 239.70 | 0.0000 | 6424.0 | - | "Created XZ tracks (part 1)" | 105969 |1.349818e+07 | 127.38 | 259.09 | 0.0000 | 11466. | - | "Created XZ tracks in case 0" | 70646 | 8146812 | 115.32 | 172.73 | 0.0000 | 11282. | - | "Created XZ tracks in case 1" | 70646 | 9372361 | 132.67 | 248.05 | 0.0000 | 7519.0 | - | "Created XZ tracks in case 2" | 70646 | 9230073 | 130.65 | 308.76 | 0.0000 | 11466. | - | "Created full hit combinations in case 0" | 15163122 |1.516312e+07 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 1" | 11668330 |1.166833e+07 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 2" | 15008628 |1.500863e+07 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created seed tracks" | 70646 | 5792115 | 81.988 | 56.525 | 2.0000 | 2668.0 | - | "Created seed tracks (part 0)" | 35323 | 3234774 | 91.577 | 60.270 | 3.0000 | 1470.0 | - | "Created seed tracks (part 1)" | 35323 | 3251624 | 92.054 | 65.331 | 2.0000 | 2784.0 | - | "Created seed tracks in case 0" | 70646 | 3013889 | 42.662 | 30.059 | 0.0000 | 1958.0 | - | "Created seed tracks in case 1" | 70646 | 5423404 | 76.769 | 49.925 | 2.0000 | 2420.0 | - | "Created seed tracks in case 2" | 70646 | 6176184 | 87.424 | 61.365 | 2.0000 | 2782.0 | - | "Created seed tracks in recovery step" | 35323 | 310214 | 8.7822 | 5.5284 | 0.0000 | 37.000 | - | "Created two-hit combinations in case 0" | 12555772 |3.699112e+08 | 29.461 | 21.559 | 0.0000 | 363.00 | - | "Created two-hit combinations in case 1" | 10977311 | 4.2857e+08 | 39.041 | 25.887 | 0.0000 | 338.00 | - | "Created two-hit combinations in case 2" | 8593203 |5.031821e+08 | 58.556 | 40.056 | 0.0000 | 403.00 | -PrKalmanFilterForward_897feb56 INFO Number of counters : 8 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 7 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 141662 | - | "Transport failed" | 1 | 0 | 0.0000 | - | "chi2 cut" | 481122 | - | "nIterations" | 3660113 | 8577457 | 2.3435 | - | "nOutlierIterations" | 3518450 | 2648586 | 0.75277 | - | "nTracksInput" | 35323 | 3660113 | 103.62 | - | "nTracksOutput" | 35323 | 3037321 | 85.987 | -PrKalmanFilterForward_897feb56.T... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 1 | -PrKalmanFilterMatch_3a755db2 INFO Number of counters : 8 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 4 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 106344 | - | "Transport failed" | 3 | 0 | 0.0000 | - | "chi2 cut" | 496380 | - | "nIterations" | 871131 | 2253573 | 2.5870 | - | "nOutlierIterations" | 764784 | 953398 | 1.2466 | - | "nTracksInput" | 35323 | 871131 | 24.662 | - | "nTracksOutput" | 35323 | 268400 | 7.5984 | -PrKalmanFilterMatch_3a755db2.Tra... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 3 | -PrKalmanFilter_98e48b7e INFO Number of counters : 8 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 7 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 141662 | - | "Transport failed" | 1 | 0 | 0.0000 | - | "chi2 cut" | 481122 | - | "nIterations" | 3660113 | 8577457 | 2.3435 | - | "nOutlierIterations" | 3518450 | 2648586 | 0.75277 | - | "nTracksInput" | 35323 | 3660113 | 103.62 | - | "nTracksOutput" | 35323 | 3037321 | 85.987 | -PrKalmanFilter_98e48b7e.TrackMas... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 1 | -PrLHCbID2MCParticle_4591dde6 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#removed null MCParticles" | 308929194 | 0 | 0.0000 | -PrMatchNN_41c22d41 INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 35323 |7.088902e+07 | 2006.9 | - | "#MatchingMLP" | 3629060 | 3026347 | 0.83392 | - | "#MatchingTracks" | 35323 | 3629060 | 102.74 | -PrMatchNN_41c22d41.PrAddUTHitsTool INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 3182980 |1.278131e+07 | 4.0155 | - | "#tracks with hits added" | 3182980 | -PrStorePrUTHits_c5eaf5a1 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 35323 | 7629768 | 216.00 | -PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Average X in T1U" | 12823033 |-4.446897e+08 | -34.679 | 1128.4 | -2656.4 | 2656.3 | - | "Average X in T1V" | 13016164 |-3.308395e+08 | -25.418 | 1118.0 | -2656.4 | 2656.3 | - | "Average X in T1X1" | 12555772 |-5.877831e+08 | -46.814 | 1146.6 | -2646.2 | 2646.2 | - | "Average X in T1X2" | 13193071 |-1.892879e+08 | -14.348 | 1111.7 | -2646.2 | 2646.2 | - | "Average X in T2U" | 12586374 |-2.955082e+08 | -23.478 | 1132.6 | -2656.4 | 2656.3 | - | "Average X in T2V" | 12978071 |-2.548338e+08 | -19.636 | 1126.8 | -2656.4 | 2656.3 | - | "Average X in T2X1" | 12033609 |-3.100936e+08 | -25.769 | 1136.1 | -2646.2 | 2646.2 | - | "Average X in T2X2" | 13376850 |-2.007483e+08 | -15.007 | 1122.4 | -2646.2 | 2646.2 | - | "Average X in T3U" | 13638542 |-1.713332e+08 | -12.562 | 1332.0 | -3188.4 | 3188.4 | - | "Average X in T3V" | 14066244 |-2.250641e+08 | -16.000 | 1326.2 | -3188.4 | 3188.4 | - | "Average X in T3X1" | 13106884 |-1.373536e+08 | -10.479 | 1331.5 | -3176.2 | 3176.2 | - | "Average X in T3X2" | 14584477 |-2.901746e+08 | -19.896 | 1316.9 | -3176.2 | 3176.2 | - | "Hits in T1U" | 141292 |1.282303e+07 | 90.756 | 39.496 | 4.0000 | 394.00 | - | "Hits in T1V" | 141292 |1.301616e+07 | 92.122 | 40.033 | 3.0000 | 390.00 | - | "Hits in T1X1" | 141292 |1.255577e+07 | 88.864 | 38.535 | 4.0000 | 385.00 | - | "Hits in T1X2" | 141292 |1.319307e+07 | 93.375 | 40.429 | 4.0000 | 428.00 | - | "Hits in T2U" | 141292 |1.258637e+07 | 89.081 | 38.828 | 3.0000 | 406.00 | - | "Hits in T2V" | 141292 |1.297807e+07 | 91.853 | 39.875 | 4.0000 | 381.00 | - | "Hits in T2X1" | 141292 |1.203361e+07 | 85.168 | 37.213 | 2.0000 | 415.00 | - | "Hits in T2X2" | 141292 |1.337685e+07 | 94.675 | 40.740 | 3.0000 | 356.00 | - | "Hits in T3U" | 141292 |1.363854e+07 | 96.527 | 41.091 | 2.0000 | 551.00 | - | "Hits in T3V" | 141292 |1.406624e+07 | 99.554 | 42.317 | 4.0000 | 400.00 | - | "Hits in T3X1" | 141292 |1.310688e+07 | 92.765 | 39.497 | 3.0000 | 460.00 | - | "Hits in T3X2" | 141292 |1.458448e+07 | 103.22 | 43.677 | 2.0000 | 403.00 | - | "Total number of hits" | 35323 |1.579591e+08 | 4471.8 | 1763.1 | 418.00 | 14041. | -PrStoreUTHit_7a6d8dc6 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 35323 | 7629768 | 216.00 | -PrTrackAssociator_2c3ce84d INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 3296425 | 2882812 |( 87.45268 +- 0.01824486)% | - | "MC particles per track" | 2882812 | 3368002 | 1.1683 | -PrTrackAssociator_42066100 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 3660113 | 2883484 |( 78.78128 +- 0.02137095)% | - | "MC particles per track" | 2883484 | 3383247 | 1.1733 | -PrTrackAssociator_8c23390c INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 5792115 | 5206376 |( 89.88730 +- 0.01252749)% | - | "MC particles per track" | 5206376 | 5206524 | 1.0000 | -PrTrackAssociator_99c0cc76 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 3629060 | 2837056 |( 78.17606 +- 0.02168235)% | - | "MC particles per track" | 2837056 | 3320656 | 1.1705 | -PrTrackAssociator_f74b0b6e INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 3037321 | 2734287 |( 90.02298 +- 0.01719617)% | - | "MC particles per track" | 2734287 | 3183033 | 1.1641 | -PrVPHitsToVPLightClusters_599554c8 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 35323 |9.842278e+07 | 2786.4 | -SeedTrackChecker_e067be5b.LoKi::... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -TBTCMatch_1959fd43 INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 267667 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 267667 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 267667 | -TBTC_Forward_8890084f INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 3028758 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 3028758 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 3028758 | -TrackResCheckerSeed.TrackMasterE... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 1 | -Unpack__Event_MC_FT_Hits INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# UnPackedData" | 35323 |1.588256e+08 | 4496.4 | 2002.3 | 166.00 | 15992. | -Unpack__Event_MC_UT_Hits INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# UnPackedData" | 35323 |5.586524e+07 | 1581.6 | 698.76 | 87.000 | 5629.0 | -Unpack__Event_MC_VP_Hits INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# UnPackedData" | 35323 |1.015782e+08 | 2875.7 | 1215.8 | 176.00 | 9349.0 | -VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 35323 |9.842278e+07 | 2786.4 | - | "Nb of Produced Tracks" | 35323 |1.102936e+07 | 312.24 | -fromPrForwardTracksV1Tracks_3c57... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 35323 | 3660113 | 103.62 | -fromPrMatchTracksV1Tracks_af178645 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 35323 | 3629060 | 102.74 | -fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 35323 | 5792115 | 163.98 | -fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 35323 |1.102936e+07 | 312.24 | -ApplicationMgr INFO Application Manager Stopped successfully -BestLongTrackChecker_3a419357 INFO Results -BestLongTrackChecker_3a419357 INFO **** BestLong 3296425 tracks including 413613 ghosts [12.55 %], Event average 10.94 % **** -BestLongTrackChecker_3a419357 INFO 01_long : 2513603 from 2862750 [ 87.80 %] 7255 clones [ 0.29 %], purity: 99.25 %, hitEff: 97.21 % -BestLongTrackChecker_3a419357 INFO 02_long_P>5GeV : 1702991 from 1858902 [ 91.61 %] 3864 clones [ 0.23 %], purity: 99.37 %, hitEff: 97.75 % -BestLongTrackChecker_3a419357 INFO 03_long_strange : 124617 from 156062 [ 79.85 %] 239 clones [ 0.19 %], purity: 98.98 %, hitEff: 96.78 % -BestLongTrackChecker_3a419357 INFO 04_long_strange_P>5GeV : 64255 from 74355 [ 86.42 %] 80 clones [ 0.12 %], purity: 99.18 %, hitEff: 97.69 % -BestLongTrackChecker_3a419357 INFO 05_long_fromB : 113417 from 125169 [ 90.61 %] 311 clones [ 0.27 %], purity: 99.45 %, hitEff: 97.63 % -BestLongTrackChecker_3a419357 INFO 05_long_fromD : 65702 from 73704 [ 89.14 %] 189 clones [ 0.29 %], purity: 99.33 %, hitEff: 97.37 % -BestLongTrackChecker_3a419357 INFO 06_long_fromB_P>5GeV : 88176 from 94174 [ 93.63 %] 207 clones [ 0.23 %], purity: 99.54 %, hitEff: 98.00 % -BestLongTrackChecker_3a419357 INFO 06_long_fromD_P>5GeV : 47038 from 50679 [ 92.82 %] 120 clones [ 0.25 %], purity: 99.45 %, hitEff: 97.86 % -BestLongTrackChecker_3a419357 INFO 07_long_electrons : 180215 from 278507 [ 64.71 %] 619 clones [ 0.34 %], purity: 98.25 %, hitEff: 95.81 % -BestLongTrackChecker_3a419357 INFO 07_long_electrons_pairprod : 123751 from 209566 [ 59.05 %] 419 clones [ 0.34 %], purity: 97.84 %, hitEff: 95.10 % -BestLongTrackChecker_3a419357 INFO 08_long_fromB_electrons : 52294 from 64216 [ 81.43 %] 187 clones [ 0.36 %], purity: 99.18 %, hitEff: 97.44 % -BestLongTrackChecker_3a419357 INFO 09_long_fromB_electrons_P>5GeV : 48981 from 58572 [ 83.63 %] 177 clones [ 0.36 %], purity: 99.25 %, hitEff: 97.61 % -BestLongTrackChecker_3a419357 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 77126 from 81871 [ 94.20 %] 188 clones [ 0.24 %], purity: 99.59 %, hitEff: 98.03 % -BestLongTrackChecker_3a419357 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 47693 from 55998 [ 85.17 %] 169 clones [ 0.35 %], purity: 99.29 %, hitEff: 97.64 % -BestLongTrackChecker_3a419357 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 38250 from 40813 [ 93.72 %] 97 clones [ 0.25 %], purity: 99.54 %, hitEff: 97.91 % -BestLongTrackChecker_3a419357 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 33572 from 38611 [ 86.95 %] 35 clones [ 0.10 %], purity: 99.39 %, hitEff: 97.90 % -BestLongTrackChecker_3a419357 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 76951 from 81639 [ 94.26 %] 188 clones [ 0.24 %], purity: 99.60 %, hitEff: 98.05 % -BestLongTrackChecker_3a419357 INFO -ForwardTrackChecker_22e49d0c INFO Results -ForwardTrackChecker_22e49d0c INFO **** Forward 3660113 tracks including 776629 ghosts [21.22 %], Event average 16.52 % **** -ForwardTrackChecker_22e49d0c INFO 01_long : 2492522 from 2862750 [ 87.07 %] 9245 clones [ 0.37 %], purity: 99.02 %, hitEff: 98.00 % -ForwardTrackChecker_22e49d0c INFO 02_long_P>5GeV : 1721897 from 1858902 [ 92.63 %] 5358 clones [ 0.31 %], purity: 99.19 %, hitEff: 98.41 % -ForwardTrackChecker_22e49d0c INFO 03_long_strange : 124009 from 156062 [ 79.46 %] 365 clones [ 0.29 %], purity: 98.61 %, hitEff: 97.76 % -ForwardTrackChecker_22e49d0c INFO 04_long_strange_P>5GeV : 65567 from 74355 [ 88.18 %] 139 clones [ 0.21 %], purity: 98.91 %, hitEff: 98.39 % -ForwardTrackChecker_22e49d0c INFO 05_long_fromB : 113016 from 125169 [ 90.29 %] 397 clones [ 0.35 %], purity: 99.30 %, hitEff: 98.44 % -ForwardTrackChecker_22e49d0c INFO 05_long_fromD : 65158 from 73704 [ 88.40 %] 230 clones [ 0.35 %], purity: 99.13 %, hitEff: 98.23 % -ForwardTrackChecker_22e49d0c INFO 06_long_fromB_P>5GeV : 89040 from 94174 [ 94.55 %] 283 clones [ 0.32 %], purity: 99.43 %, hitEff: 98.73 % -ForwardTrackChecker_22e49d0c INFO 06_long_fromD_P>5GeV : 47464 from 50679 [ 93.66 %] 154 clones [ 0.32 %], purity: 99.30 %, hitEff: 98.60 % -ForwardTrackChecker_22e49d0c INFO 07_long_electrons : 188428 from 278507 [ 67.66 %] 2088 clones [ 1.10 %], purity: 97.56 %, hitEff: 97.89 % -ForwardTrackChecker_22e49d0c INFO 07_long_electrons_pairprod : 130298 from 209566 [ 62.18 %] 1549 clones [ 1.17 %], purity: 96.96 %, hitEff: 97.66 % -ForwardTrackChecker_22e49d0c INFO 08_long_fromB_electrons : 54103 from 64216 [ 84.25 %] 530 clones [ 0.97 %], purity: 98.93 %, hitEff: 98.50 % -ForwardTrackChecker_22e49d0c INFO 09_long_fromB_electrons_P>5GeV : 50859 from 58572 [ 86.83 %] 505 clones [ 0.98 %], purity: 99.03 %, hitEff: 98.61 % -ForwardTrackChecker_22e49d0c INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 77468 from 81871 [ 94.62 %] 256 clones [ 0.33 %], purity: 99.53 %, hitEff: 98.71 % -ForwardTrackChecker_22e49d0c INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 49316 from 55998 [ 88.07 %] 479 clones [ 0.96 %], purity: 99.10 %, hitEff: 98.58 % -ForwardTrackChecker_22e49d0c INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 38286 from 40813 [ 93.81 %] 125 clones [ 0.33 %], purity: 99.45 %, hitEff: 98.56 % -ForwardTrackChecker_22e49d0c INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 34029 from 38611 [ 88.13 %] 72 clones [ 0.21 %], purity: 99.26 %, hitEff: 98.30 % -ForwardTrackChecker_22e49d0c INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 77297 from 81639 [ 94.68 %] 256 clones [ 0.33 %], purity: 99.53 %, hitEff: 98.71 % -ForwardTrackChecker_22e49d0c INFO -MatchTrackChecker_8319528f INFO Results -MatchTrackChecker_8319528f INFO **** Match 3629060 tracks including 792004 ghosts [21.82 %], Event average 18.65 % **** -MatchTrackChecker_8319528f INFO 01_long : 2466249 from 2862750 [ 86.15 %] 12528 clones [ 0.51 %], purity: 99.22 %, hitEff: 98.23 % -MatchTrackChecker_8319528f INFO 02_long_P>5GeV : 1705385 from 1858902 [ 91.74 %] 7510 clones [ 0.44 %], purity: 99.34 %, hitEff: 98.81 % -MatchTrackChecker_8319528f INFO 03_long_strange : 122026 from 156062 [ 78.19 %] 503 clones [ 0.41 %], purity: 98.84 %, hitEff: 97.88 % -MatchTrackChecker_8319528f INFO 04_long_strange_P>5GeV : 64996 from 74355 [ 87.41 %] 221 clones [ 0.34 %], purity: 99.08 %, hitEff: 98.82 % -MatchTrackChecker_8319528f INFO 05_long_fromB : 112130 from 125169 [ 89.58 %] 600 clones [ 0.53 %], purity: 99.45 %, hitEff: 98.62 % -MatchTrackChecker_8319528f INFO 05_long_fromD : 64626 from 73704 [ 87.68 %] 328 clones [ 0.50 %], purity: 99.31 %, hitEff: 98.41 % -MatchTrackChecker_8319528f INFO 06_long_fromB_P>5GeV : 88218 from 94174 [ 93.68 %] 434 clones [ 0.49 %], purity: 99.55 %, hitEff: 99.01 % -MatchTrackChecker_8319528f INFO 06_long_fromD_P>5GeV : 47057 from 50679 [ 92.85 %] 223 clones [ 0.47 %], purity: 99.44 %, hitEff: 98.93 % -MatchTrackChecker_8319528f INFO 07_long_electrons : 172501 from 278507 [ 61.94 %] 2707 clones [ 1.55 %], purity: 97.97 %, hitEff: 98.16 % -MatchTrackChecker_8319528f INFO 07_long_electrons_pairprod : 115689 from 209566 [ 55.20 %] 1970 clones [ 1.67 %], purity: 97.42 %, hitEff: 97.95 % -MatchTrackChecker_8319528f INFO 08_long_fromB_electrons : 53012 from 64216 [ 82.55 %] 737 clones [ 1.37 %], purity: 99.11 %, hitEff: 98.70 % -MatchTrackChecker_8319528f INFO 09_long_fromB_electrons_P>5GeV : 50015 from 58572 [ 85.39 %] 706 clones [ 1.39 %], purity: 99.17 %, hitEff: 98.82 % -MatchTrackChecker_8319528f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 76826 from 81871 [ 93.84 %] 385 clones [ 0.50 %], purity: 99.65 %, hitEff: 98.91 % -MatchTrackChecker_8319528f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 48665 from 55998 [ 86.90 %] 676 clones [ 1.37 %], purity: 99.24 %, hitEff: 98.79 % -MatchTrackChecker_8319528f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 38014 from 40813 [ 93.14 %] 182 clones [ 0.48 %], purity: 99.60 %, hitEff: 98.80 % -MatchTrackChecker_8319528f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 33687 from 38611 [ 87.25 %] 111 clones [ 0.33 %], purity: 99.45 %, hitEff: 98.61 % -MatchTrackChecker_8319528f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 76687 from 81639 [ 93.93 %] 385 clones [ 0.50 %], purity: 99.65 %, hitEff: 98.91 % -MatchTrackChecker_8319528f INFO -SeedTrackChecker_e067be5b INFO Results -SeedTrackChecker_e067be5b INFO **** Seed 5792115 tracks including 585739 ghosts [10.11 %], Event average 4.91 % **** -SeedTrackChecker_e067be5b INFO 01_hasT : 3701936 from 4459116 [ 83.02 %] 292 clones [ 0.01 %], purity: 99.48 %, hitEff: 97.45 % -SeedTrackChecker_e067be5b INFO 02_long : 2671211 from 2862750 [ 93.31 %] 141 clones [ 0.01 %], purity: 99.61 %, hitEff: 98.08 % -SeedTrackChecker_e067be5b INFO 03_long_P>5GeV : 1796154 from 1858902 [ 96.62 %] 104 clones [ 0.01 %], purity: 99.59 %, hitEff: 98.74 % -SeedTrackChecker_e067be5b INFO 04_long_fromB : 118867 from 125169 [ 94.97 %] 6 clones [ 0.01 %], purity: 99.70 %, hitEff: 98.51 % -SeedTrackChecker_e067be5b INFO 05_long_fromB_P>5GeV : 91354 from 94174 [ 97.01 %] 6 clones [ 0.01 %], purity: 99.69 %, hitEff: 98.96 % -SeedTrackChecker_e067be5b INFO 06_UT+T_strange : 307685 from 335379 [ 91.74 %] 19 clones [ 0.01 %], purity: 99.64 %, hitEff: 97.66 % -SeedTrackChecker_e067be5b INFO 07_UT+T_strange_P>5GeV : 162615 from 168480 [ 96.52 %] 9 clones [ 0.01 %], purity: 99.60 %, hitEff: 98.72 % -SeedTrackChecker_e067be5b INFO 08_noVelo+UT+T_strange : 166096 from 181320 [ 91.60 %] 9 clones [ 0.01 %], purity: 99.62 %, hitEff: 97.67 % -SeedTrackChecker_e067be5b INFO 09_noVelo+UT+T_strange_P>5GeV : 91944 from 95402 [ 96.38 %] 4 clones [ 0.00 %], purity: 99.60 %, hitEff: 98.70 % -SeedTrackChecker_e067be5b INFO 10_UT+T_SfromDB : 18582 from 20209 [ 91.95 %] 1 clones [ 0.01 %], purity: 99.70 %, hitEff: 97.87 % -SeedTrackChecker_e067be5b INFO 11_UT+T_SfromDB_P>5GeV : 10410 from 10775 [ 96.61 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 98.87 % -SeedTrackChecker_e067be5b INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 6645 from 6893 [ 96.40 %] 0 clones [ 0.00 %], purity: 99.67 %, hitEff: 98.82 % -SeedTrackChecker_e067be5b INFO 13_hasT_electrons : 758791 from 1427957 [ 53.14 %] 64 clones [ 0.01 %], purity: 99.57 %, hitEff: 96.79 % -SeedTrackChecker_e067be5b INFO 14_long_electrons : 242358 from 278507 [ 87.02 %] 15 clones [ 0.01 %], purity: 99.70 %, hitEff: 97.44 % -SeedTrackChecker_e067be5b INFO 15_long_fromB_electrons : 59162 from 64216 [ 92.13 %] 4 clones [ 0.01 %], purity: 99.71 %, hitEff: 98.47 % -SeedTrackChecker_e067be5b INFO 16_long_electrons_P>5GeV : 153480 from 168971 [ 90.83 %] 11 clones [ 0.01 %], purity: 99.68 %, hitEff: 98.34 % -SeedTrackChecker_e067be5b INFO 17_long_fromB_electrons_P>5GeV : 54634 from 58572 [ 93.28 %] 4 clones [ 0.01 %], purity: 99.71 %, hitEff: 98.67 % -SeedTrackChecker_e067be5b INFO -TrackResCheckerBestForward INFO ************************************ -TrackResCheckerBestForward INFO ALL/x pull : mean = -0.001 +/- 0.001, RMS = 1.212 +/- 0.001 -TrackResCheckerBestForward INFO ALL/y pull : mean = 0.002 +/- 0.001, RMS = 1.215 +/- 0.001 -TrackResCheckerBestForward INFO ALL/tx pull : mean = 0.001 +/- 0.001, RMS = 1.162 +/- 0.001 -TrackResCheckerBestForward INFO ALL/ty pull : mean = -0.001 +/- 0.001, RMS = 1.164 +/- 0.001 -TrackResCheckerBestForward INFO ALL/p pull : mean = -0.055 +/- 0.001, RMS = 1.327 +/- 0.001 -TrackResCheckerBestForward INFO ALL/probChi2 : mean = 0.341 +/- 0.000, RMS = 0.303 +/- 0.000 -TrackResCheckerBestForward INFO ALL/x resolution / mm: RMS = 65.939 +/- 0.058 micron -TrackResCheckerBestForward INFO ALL/y resolution / mm: RMS = 66.825 +/- 0.060 micron -TrackResCheckerBestForward INFO ALL/dp/p: mean = 0.0004 +/- 0.0000, RMS = 0.0060 +/- 0.0000 -TrackResCheckerBestLong INFO ************************************ -TrackResCheckerBestLong INFO ALL/x pull : mean = -0.001 +/- 0.001, RMS = 1.212 +/- 0.001 -TrackResCheckerBestLong INFO ALL/y pull : mean = 0.002 +/- 0.001, RMS = 1.214 +/- 0.001 -TrackResCheckerBestLong INFO ALL/tx pull : mean = 0.001 +/- 0.001, RMS = 1.160 +/- 0.001 -TrackResCheckerBestLong INFO ALL/ty pull : mean = -0.001 +/- 0.001, RMS = 1.161 +/- 0.001 -TrackResCheckerBestLong INFO ALL/p pull : mean = -0.058 +/- 0.001, RMS = 1.341 +/- 0.001 -TrackResCheckerBestLong INFO ALL/probChi2 : mean = 0.335 +/- 0.000, RMS = 0.303 +/- 0.000 -TrackResCheckerBestLong INFO ALL/x resolution / mm: RMS = 66.470 +/- 0.057 micron -TrackResCheckerBestLong INFO ALL/y resolution / mm: RMS = 67.290 +/- 0.058 micron -TrackResCheckerBestLong INFO ALL/dp/p: mean = 0.0004 +/- 0.0000, RMS = 0.0061 +/- 0.0000 -TrackResCheckerForward INFO ************************************ -TrackResCheckerForward INFO ALL/x pull : mean = -0.002 +/- 0.001, RMS = 1.302 +/- 0.001 -TrackResCheckerForward INFO ALL/y pull : mean = 0.003 +/- 0.001, RMS = 1.279 +/- 0.001 -TrackResCheckerForward INFO ALL/tx pull : mean = 0.001 +/- 0.001, RMS = 1.379 +/- 0.001 -TrackResCheckerForward INFO ALL/ty pull : mean = -0.002 +/- 0.001, RMS = 1.337 +/- 0.001 -TrackResCheckerForward INFO ALL/p pull : mean = 0.126 +/- 0.000, RMS = 0.475 +/- 0.001 -TrackResCheckerForward INFO ALL/probChi2 : mean = 0.000 +/- 0.000, RMS = 0.000 +/- 0.000 -TrackResCheckerForward INFO ALL/x resolution / mm: RMS = 74.286 +/- 0.061 micron -TrackResCheckerForward INFO ALL/y resolution / mm: RMS = 71.360 +/- 0.061 micron -TrackResCheckerForward INFO ALL/dp/p: mean = 0.0062 +/- 0.0000, RMS = 0.0091 +/- 0.0000 -TrackResCheckerSeed INFO ************************************ -TrackResCheckerSeed INFO ALL/x pull : mean = -0.012 +/- 0.000, RMS = 0.480 +/- 0.001 -TrackResCheckerSeed INFO ALL/y pull : mean = 0.001 +/- 0.000, RMS = 0.352 +/- 0.000 -TrackResCheckerSeed INFO ALL/tx pull : mean = 0.012 +/- 0.000, RMS = 0.547 +/- 0.001 -TrackResCheckerSeed INFO ALL/ty pull : mean = -0.001 +/- 0.000, RMS = 0.462 +/- 0.001 -TrackResCheckerSeed INFO ALL/p pull : mean = 0.045 +/- 0.000, RMS = 0.933 +/- 0.001 -TrackResCheckerSeed INFO ALL/probChi2 : mean = 0.000 +/- 0.000, RMS = 0.000 +/- 0.000 -TrackResCheckerSeed INFO ALL/x resolution / mm: RMS = 223.391 +/- 0.271 micron -TrackResCheckerSeed INFO ALL/y resolution / mm: RMS = 231.151 +/- 0.242 micron -TrackResCheckerSeed INFO ALL/dp/p: mean = -0.0061 +/- 0.0000, RMS = 0.0154 +/- 0.0000 -HLTControlFlowMgr INFO Memory pool: used 4.99907 +/- 0.000395494 MiB (min: 4, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 447.069 +/- 0.0619101 (min: 397, max: 502) requests were served -HLTControlFlowMgr INFO Timing table: -HLTControlFlowMgr INFO - | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 35323 | 10085.202 | 285513.737 | - | "TrackResCheckerSeed" | 35323 | 3670.513 | 103912.834 | - | "Fetch__Event_pSim_MCVertices" | 35323 | 1668.052 | 47222.823 | - | "TrackResCheckerForward" | 35323 | 866.407 | 24528.126 | - | "TrackResCheckerBestLong" | 35323 | 830.090 | 23499.972 | - | "TrackResCheckerBestForward" | 35323 | 783.640 | 22184.979 | - | "SeedTrackChecker_e067be5b" | 35323 | 278.634 | 7888.176 | - | "ForwardTrackChecker_22e49d0c" | 35323 | 272.741 | 7721.329 | - | "MatchTrackChecker_8319528f" | 35323 | 232.438 | 6580.365 | - | "BestLongTrackChecker_3a419357" | 35323 | 230.166 | 6516.043 | - | "PrKalmanFilterForward_897feb56" | 35323 | 225.199 | 6375.408 | - | "PrKalmanFilter_98e48b7e" | 35323 | 214.960 | 6085.555 | - | "PrForwardTrackingVelo_9b95c79c" | 35323 | 177.027 | 5011.677 | - | "PrHybridSeeding_4d0337cc" | 35323 | 114.136 | 3231.215 | - | "MCParticle2MCHitAlg_b530dcde" | 35323 | 106.377 | 3011.552 | - | "PrLHCbID2MCParticle_4591dde6" | 35323 | 53.032 | 1501.354 | - | "PrKalmanFilterMatch_3a755db2" | 35323 | 52.639 | 1490.208 | - | "Unpack__Event_MC_Vertices" | 35323 | 44.695 | 1265.311 | - | "MCParticle2MCHitAlg_b04be519" | 35323 | 41.428 | 1172.839 | - | "Unpack__Event_MC_Particles" | 35323 | 40.808 | 1155.281 | - | "VeloClusterTrackingSIMD_87c18651" | 35323 | 16.376 | 463.595 | - | "MCParticle2MCHitAlg_4a41c125" | 35323 | 15.964 | 451.957 | - | "PrStorePrUTHits_c5eaf5a1" | 35323 | 14.244 | 403.248 | - | "VPFullCluster2MCParticleLinker_17386552" | 35323 | 11.608 | 328.629 | - | "VPClusFull_38754d8c" | 35323 | 10.946 | 309.887 | - | "CloneKillerMatch_cd10262b" | 35323 | 10.702 | 302.972 | - | "TBTC_Forward_8890084f" | 35323 | 10.533 | 298.202 | - | "PrMatchNN_41c22d41" | 35323 | 8.771 | 248.300 | - | "PrTrackAssociator_42066100" | 35323 | 8.656 | 245.043 | - | "PrTrackAssociator_99c0cc76" | 35323 | 7.472 | 211.530 | - | "PrTrackAssociator_2c3ce84d" | 35323 | 7.286 | 206.258 | - | "Unpack__Event_MC_FT_Hits" | 35323 | 7.215 | 204.263 | - | "PrTrackAssociator_f74b0b6e" | 35323 | 6.274 | 177.603 | - | "PrTrackAssociator_8c23390c" | 35323 | 5.785 | 163.776 | - | "PrStoreUTHit_7a6d8dc6" | 35323 | 5.629 | 159.356 | - | "Unpack__Event_MC_VP_Hits" | 35323 | 4.850 | 137.317 | - | "fromPrMatchTracksV1Tracks_af178645" | 35323 | 4.339 | 122.825 | - | "PrVPHitsToVPLightClusters_599554c8" | 35323 | 4.288 | 121.398 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 35323 | 4.172 | 118.099 | - | "fromPrForwardTracksV1Tracks_3c57fef9" | 35323 | 2.855 | 80.838 | - | "PrStoreSciFiHits_fb0eba02" | 35323 | 2.831 | 80.132 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 35323 | 2.650 | 75.017 | - | "Unpack__Event_MC_UT_Hits" | 35323 | 2.605 | 73.737 | - | "FTRawBankDecoder" | 35323 | 1.518 | 42.969 | - | "TrackContainersMerger_3427d321" | 35323 | 1.393 | 39.433 | - | "TBTCMatch_1959fd43" | 35323 | 0.719 | 20.361 | - | "UnpackRawEvent_VP" | 35323 | 0.509 | 14.416 | - | "Decode_ODIN" | 35323 | 0.292 | 8.275 | - | "UniqueIDGeneratorAlg_26e527e9" | 35323 | 0.270 | 7.634 | - | "reserveIOV" | 35323 | 0.200 | 5.673 | - | "DummyEventTime" | 35323 | 0.181 | 5.117 | - | "Fetch__Event_pSim_MCParticles" | 35323 | 0.125 | 3.552 | - | "Fetch__Event_Link_Raw_VP_Digits" | 35323 | 0.117 | 3.321 | - | "Fetch__Event_DAQ_RawEvent" | 35323 | 0.107 | 3.033 | - | "UnpackRawEvent_UT" | 35323 | 0.098 | 2.762 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 35323 | 0.093 | 2.623 | - | "Fetch__Event_MC_Header" | 35323 | 0.090 | 2.540 | - | "UnpackRawEvent_FTCluster" | 35323 | 0.078 | 2.215 | - | "Fetch__Event_pSim_UT_Hits" | 35323 | 0.072 | 2.043 | - | "Fetch__Event_pSim_FT_Hits" | 35323 | 0.071 | 2.016 | - | "UnpackRawEvent_ODIN" | 35323 | 0.069 | 1.944 | - | "Fetch__Event_MC_TrackInfo" | 35323 | 0.060 | 1.702 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 35323 | 0.058 | 1.642 | - | "Fetch__Event_pSim_VP_Hits" | 35323 | 0.050 | 1.407 | - -HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: run_tracking_debug_decision #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - NONLAZY_OR: run_tracking_debug_data #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerForward #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerBestLong #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerBestForward #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerSeed #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_22e49d0c #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_8319528f #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/BestLongTrackChecker_3a419357 #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_e067be5b #=35323 Sum=35323 Eff=|( 100.0000 +- 0.00000 )%| - -HLTControlFlowMgr INFO Histograms converted successfully according to request. -TransportSvc SUCCESS GEOMETRY ERRORS: 'Skip' map has the size 14 - | Logical Volume | | # mean RMS min max | - | AfterMagnetRegion/T/FT/CFrames/lvCFramePair | mm | 3 -1.4840766 1.9485456 -4.2397363 -0.10624 | - | AfterMagnetRegion/T/FT/CFrames/lvCFramePair | X0 | 3 -0.0043415316 0.0055946582 -0.012253573 -0.000385510 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | mm | 19 -3.0716743 2.3287879 -8.5160583 -0.200566 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | X0 | 19 -0.0086050274 0.0080722039 -0.026562877 -4.7695016e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | mm | 75 -3.8658349 2.4448289 -8.771396 -0.108480 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | X0 | 75 -0.011374566 0.0082359221 -0.027359314 -8.8829677e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | mm | 27 -2.8259056 2.5068332 -8.9578428 -0.0846012 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | X0 | 27 -0.007355048 0.0087993116 -0.02794087 -6.5077898e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | mm | 93 -3.190711 2.5114106 -8.4326567 -0.0918965 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | X0 | 93 -0.0091418041 0.0084054874 -0.026302735 -1.0028465e- | - | BeforeMagnetRegion/Rich1/lvRich1Master | mm | 48074 -311.2103 170.59125 -512.43491 -0.0111121 | - | BeforeMagnetRegion/Rich1/lvRich1Master | X0 | 48074 -3.8738015 2.1511763 -6.4011336 -1.6014299e- | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | mm | 23882 -26.892359 16.727001 -136.53891 -0.00170384 | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | X0 | 23882 -0.031357486 0.046945413 -0.39603479 -1.3057368e- | - | BeforeMagnetRegion/UT/Staves/lvCableM | mm | 2 -0.019901641 0.019901641 -0.039803281 | - | BeforeMagnetRegion/UT/Staves/lvCableM | X0 | 2 -0.00021245129 0.00021245129 -0.00042490258 | - | BeforeMagnetRegion/VP/Supports/lvSupport | mm | 12 -0.05816662 0.068793464 -0.24351478 -0.0149385 | - | BeforeMagnetRegion/VP/Supports/lvSupport | X0 | 12 -0.0033777263 0.0039948255 -0.014140864 -0.000867479 | - | BeforeMagnetRegion/VP/lvVP | mm | 141 -0.031665055 0.021994236 -0.083998134 -0.00128143 | - | BeforeMagnetRegion/VP/lvVP | X0 | 141 -0.0022005683 0.0015383678 -0.0058511339 -3.1502022e- | - | BeforeMagnetRegion/lvBeforeMagnetRegion | mm | 1192 -463.76732 137.1788 -644.08367 -1.67377 | - | BeforeMagnetRegion/lvBeforeMagnetRegion | X0 | 1192 -1.3484317 0.41620382 -5.3410715 -5.7935634e- | - | LHCb/lvLHCb | mm | 4282 -237.8783 2.606351 -282.83861 -228.267 | - | LHCb/lvLHCb | X0 | 4282 -0.73831198 0.11964033 -2.8293074 -0.658688 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | mm | 2944 -8.7786545 1.4439817 -14.800995 -0.000677641 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | X0 | 2944 -0.03335942 0.022374515 -0.17048131 -2.0834471e- | - | MagnetRegion/lvMagnetRegion | mm | 51 -2.8214677 0.91944706 -5.4482267 -0.0535007 | - | MagnetRegion/lvMagnetRegion | X0 | 51 -0.0086747609 0.0028268916 -0.016750879 -0.000164491 | - -TransportSvc SUCCESS GEOMETRY ERRORS: 'Recover' map has the size 60 - | Logical Volume | | # mean RMS min max | - | AfterMagnetRegion/T/FT/CFrames/lvCFramePair | mm | 30 6.0132755 5.7788078 0.14099992 21.7349 | - | AfterMagnetRegion/T/FT/CFrames/lvCFramePair | X0 | 30 0.017382672 0.016494625 0.00039666808 0.0611458 | - | AfterMagnetRegion/T/FT/Layers/lvLayer5U | mm | 7 6.048864e-11 4.0059487e-11 1.0728154e-11 1.1503796e- | - | AfterMagnetRegion/T/FT/Layers/lvLayer5U | X0 | 7 0 0 0 | - | AfterMagnetRegion/T/FT/Layers/lvLayer5V | mm | 5 4.6702423e-11 4.8797316e-11 1.7515518e-11 1.4415996e- | - | AfterMagnetRegion/T/FT/Layers/lvLayer5V | X0 | 5 0 0 0 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleFull | mm | 35 2.0045154e-13 9.8088234e-14 5.2998783e-14 5.0820718e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleFull | X0 | 35 5.7918872e-16 3.3402522e-16 0 1.5460824e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | mm | 156 6.4662346 5.4889376 4.0274692e-13 24.0165 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | X0 | 156 0.019650036 0.016721853 0 0.0730637 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | mm | 497 7.1164065 5.5500614 1.8053713e-12 30.1544 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | X0 | 497 0.021608515 0.016928094 5.4923519e-15 0.0917365 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | mm | 273 6.9343783 5.6656007 1.2188523e-13 23.6037 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | X0 | 273 0.021073293 0.017262022 0 0.0718079 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | mm | 551 6.9490331 5.6183389 4.343217e-13 30.4206 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | X0 | 551 0.021099938 0.017132893 1.3213059e-15 0.0925465 | - | AfterMagnetRegion/T/FT/Quarters/lvQuarter5UNeg | mm | 1 0.20427624 5.6837308e-10 0.20427624 0.204276 | - | AfterMagnetRegion/T/FT/Quarters/lvQuarter5UNeg | X0 | 1 0.00062145499 0 0.00062145499 0.000621454 | - | AfterMagnetRegion/T/FT/lvFT | mm | 29 5.8309166 3.8489099 0.55941266 11.9333 | - | AfterMagnetRegion/T/FT/lvFT | X0 | 29 0.013843279 0.015062637 4.1199229e-05 0.0371829 | - | AfterMagnetRegion/T/lvT | mm | 59 6.6011834 3.6048072 0.15810832 17.3847 | - | AfterMagnetRegion/T/lvT | X0 | 59 0.012111391 0.014040834 0 0.0361070 | - | AfterMagnetRegion/lvAfterMagnetRegion | mm | 56 6.5751091 3.7642457 0.3345219 17.1994 | - | AfterMagnetRegion/lvAfterMagnetRegion | X0 | 56 0.00843709 0.01096379 0 0.0270844 | - | eMagnetRegion/Rich1/PipeInRich1/lvUX851InRich1AfterSubM | mm | 2 4.6215621e-14 2.741839e-17 4.6188203e-14 4.6243039e- | - | eMagnetRegion/Rich1/PipeInRich1/lvUX851InRich1AfterSubM | X0 | 2 0 0 0 | - | BeforeMagnetRegion/Rich1/lvRich1Master | mm | 177039 230.57214 328.54939 0.0077819787 1048.05 | - | BeforeMagnetRegion/Rich1/lvRich1Master | X0 | 177039 2.8109568 4.1103162 0 13.0556 | - | BeforeMagnetRegion/Rich1/lvRich1Mirror1Master | mm | 14956 2.865909 1.8876358 0.00023904831 8.5109 | - | BeforeMagnetRegion/Rich1/lvRich1Mirror1Master | X0 | 14956 0.00018782106 0.00032311564 0 0.000919995 | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | mm | 302506 31.099999 46.911813 0.0009014202 315.52 | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | X0 | 302506 0.082780795 0.13400394 0 6.00357 | - | BeforeMagnetRegion/UT/Staves/lvCableL | mm | 45 0.16605663 0.0014880679 0.16316496 0.168522 | - | BeforeMagnetRegion/UT/Staves/lvCableL | X0 | 45 0.00060902227 5.4575749e-06 0.00059841688 0.000618065 | - | BeforeMagnetRegion/UT/Staves/lvCableM | mm | 195 0.16992549 0.0085955953 0.14596577 0.252087 | - | BeforeMagnetRegion/UT/Staves/lvCableM | X0 | 195 0.00062321153 3.1524841e-05 0.00053533788 0.000924545 | - | BeforeMagnetRegion/UT/Staves/lvCableS | mm | 152 0.16941583 0.012252716 0.028341083 0.184736 | - | BeforeMagnetRegion/UT/Staves/lvCableS | X0 | 152 0.0006213423 4.4937544e-05 0.00010394255 0.000677532 | - | BeforeMagnetRegion/VP/PipeSections/lvVeloDownStreamPipe | mm | 530 2.7368517e-14 3.9052603e-15 1.7762883e-15 2.9302635e- | - | BeforeMagnetRegion/VP/PipeSections/lvVeloDownStreamPipe | X0 | 530 2.7330781e-16 1.09551e-16 0 3.3045093e- | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxLeft | mm | 63 0.50569765 0.49805343 0.031505992 1.75601 | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxLeft | X0 | 63 0 0 0 | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxRight | mm | 70 0.40559641 0.48883752 0.028290404 1.75574 | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxRight | X0 | 70 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilCompTnTUnit | mm | 5588540 0.016318901 0.072096524 4.2877282e-13 5.03124 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilCompTnTUnit | X0 | 5588540 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter10 | mm | 190 0.20933541 0.25844941 0.0014566722 0.983630 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter10 | X0 | 190 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter11 | mm | 205 0.22735346 0.28557802 0.00099469999 0.992585 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter11 | X0 | 205 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter12 | mm | 221 0.24464238 0.28958017 0.00024415368 0.984804 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter12 | X0 | 221 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter13 | mm | 216 0.21438108 0.24383607 0.0024727626 0.991583 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter13 | X0 | 216 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter14 | mm | 155 0.24332585 0.28332915 0.0017553511 0.982340 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter14 | X0 | 155 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter15 | mm | 146 0.28825365 0.31393007 0.002599869 0.986215 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter15 | X0 | 146 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter16 | mm | 152 0.26022701 0.28708492 0.0022468651 0.98143 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter16 | X0 | 152 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter17 | mm | 127 0.31049386 0.31878324 0.0057249268 0.983535 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter17 | X0 | 127 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter18 | mm | 2777 0.48530748 1.4103017 7.5691634e-05 25.9809 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter18 | X0 | 2777 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter19 | mm | 4532 0.56364499 1.7429887 6.5636478e-05 50.9801 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter19 | X0 | 4532 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter20 | mm | 5512 0.58019389 1.5455708 6.4684727e-05 52.471 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter20 | X0 | 5512 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter21 | mm | 4497 0.66813868 1.8857582 8.8306701e-06 36.6732 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter21 | X0 | 4497 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter22 | mm | 1230 0.73747265 1.9233704 0.00022869746 22.0024 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter22 | X0 | 1230 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter23 | mm | 1028 0.82088509 2.0941455 0.00025405816 25.9849 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter23 | X0 | 1028 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter24 | mm | 935 0.93847464 2.4449553 8.5834471e-05 25.9836 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter24 | X0 | 935 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter3 | mm | 58 0.26490136 0.44901387 0.0065904011 3.29515 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter3 | X0 | 58 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter4 | mm | 862 0.32303251 1.128302 2.419299e-05 16.6422 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter4 | X0 | 862 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter5 | mm | 67 0.25856241 0.28290419 0.00016699612 0.980541 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter5 | X0 | 67 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter6 | mm | 74 0.18276706 0.22401055 0.0014125339 0.98070 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter6 | X0 | 74 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter7 | mm | 106 0.21898435 0.25796971 0.0072709706 0.981679 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter7 | X0 | 106 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter8 | mm | 170 0.19065195 0.24924635 0.00061664626 0.981690 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter8 | X0 | 170 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter9 | mm | 195 0.19912759 0.22602312 0.0013270591 0.987404 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter9 | X0 | 195 0 0 0 | - | BeforeMagnetRegion/VP/Supports/lvSupport | mm | 5305 0.19047583 0.20490787 7.7077321e-05 7.46498 | - | BeforeMagnetRegion/VP/Supports/lvSupport | X0 | 5305 0.00038019112 0.0014150002 5.5190185e-07 0.0534520 | - | BeforeMagnetRegion/VP/lvVP | mm | 7662 0.26481921 3.0708713 4.8361506e-05 146.659 | - | BeforeMagnetRegion/VP/lvVP | X0 | 7662 0.0060593411 0.004053306 0 0.0155232 | - | BeforeMagnetRegion/lvBeforeMagnetRegion | mm | 4002368 3.374067 23.583751 0.0015572711 533.029 | - | BeforeMagnetRegion/lvBeforeMagnetRegion | X0 | 4002368 0.014076222 0.1907762 0 6.14545 | - | DownstreamRegion/NeutronShielding/lvNeutronShielding | mm | 3 0.00032915912 3.6977651e-09 0.0003291565 0.000329164 | - | DownstreamRegion/NeutronShielding/lvNeutronShielding | X0 | 3 2.9572704e-06 3.3221926e-11 2.957247e-06 2.9573174e- | - | LHCb/lvLHCb | mm | 8620 236.86563 232.99472 0.037155421 564.131 | - | LHCb/lvLHCb | X0 | 8620 0.73352461 0.74135995 0 5.4952 | - | MagnetRegion/BcmDown/lvBcmDownMount | mm | 6 8.7786836 6.3365542 1.4510609 15.0560 | - | MagnetRegion/BcmDown/lvBcmDownMount | X0 | 6 0 0 0 | - | etRegion/PipeInMagnet/Compensator/lvUX85Compensator2800 | mm | 8 1.50264e-14 6.7572847e-15 3.5518506e-15 1.9543908e- | - | etRegion/PipeInMagnet/Compensator/lvUX85Compensator2800 | X0 | 8 0 0 0 | - | MagnetRegion/PipeInMagnet/lvUX85InMagnet | mm | 52 8.8859801e-15 9.8822772e-18 8.8764191e-15 8.9424377e- | - | MagnetRegion/PipeInMagnet/lvUX85InMagnet | X0 | 52 0 0 0 | - | egion/PipeSupportsInMagnet/lvUX852CollarForkAttachProng | mm | 3008 0.14696979 0.21271701 0.0093931069 5.4126 | - | egion/PipeSupportsInMagnet/lvUX852CollarForkAttachProng | X0 | 3008 0 0 0 | - | MagnetRegion/PipeSupportsInMagnet/lvUX852FixCollar | mm | 14 6.4723958e-13 9.8063827e-13 4.3777228e-14 3.2594128e- | - | MagnetRegion/PipeSupportsInMagnet/lvUX852FixCollar | X0 | 14 0 0 0 | - | Region/PipeSupportsInMagnet/lvUX852FutureFibreCableHead | mm | 95 1.205133 2.3404299 0.0016926739 7.38803 | - | Region/PipeSupportsInMagnet/lvUX852FutureFibreCableHead | X0 | 95 0.0014376329 0.0030617115 0 0.00991473 | - | eSupportsInMagnet/lvUX852FutureFibreCableHeadWithoutPin | mm | 99 0.46672027 1.853525 0.0028107745 16.3080 | - | eSupportsInMagnet/lvUX852FutureFibreCableHeadWithoutPin | X0 | 99 0.0003998656 0.0012564696 0 0.00700899 | - | MagnetRegion/PipeSupportsInMagnet/lvUX853FixCollar | mm | 23 11.640681 8.4907391 0.4959471 25.3132 | - | MagnetRegion/PipeSupportsInMagnet/lvUX853FixCollar | X0 | 23 0 0 0 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | mm | 174690 6.4445723 9.7441832 7.9563051e-14 37.8860 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | X0 | 174690 0.0016384735 0.012577399 0 0.328955 | - | MagnetRegion/lvMagnetRegion | mm | 181748 0.23847589 0.96635562 3.7913669e-13 12.965 | - | MagnetRegion/lvMagnetRegion | X0 | 181748 4.7528806e-05 0.00022953297 0 0.0174820 | - -TransportSvc SUCCESS GEOMETRY ERRORS: 'Codes' map has the size 0 - -TransportSvc INFO Reset the static pointer to DetDesc::IGeometyrErrorSvc -ToolSvc INFO Removing all tools created by ToolSvc -TrackResCheckerSeed.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -TrackResCheckerBestForward.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -TrackResCheckerBestLong.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -TrackResCheckerForward.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -SeedTrackChecker_e067be5b.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -BestLongTrackChecker_3a419357.Pr... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchTrackChecker_8319528f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardTrackChecker_22e49d0c.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] -RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] -RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] -ChronoStatSvc.finalize() INFO Service finalized successfully -ApplicationMgr INFO Application Manager Finalized successfully -ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/logs/resolutions_and_effs_B_default_thesis.log b/data_matching/logs/resolutions_and_effs_B_default_thesis.log deleted file mode 100644 index ed533bb..0000000 --- a/data_matching/logs/resolutions_and_effs_B_default_thesis.log +++ /dev/null @@ -1,769 +0,0 @@ -# setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' -/***** User ApplicationOptions/ApplicationOptions ************************************************** -|-append_decoding_keys_to_output_manifest = True (default: True) -|-auditors = [] (default: []) -|-buffer_events = 20000 (default: 20000) -|-conddb_tag = 'sim-20210617-vc-md100' (default: '') -|-conditions_version = '' (default: '') -|-control_flow_file = '' (default: '') -|-data_flow_file = '' (default: '') -|-data_type = 'Upgrade' (default: 'Upgrade') -|-dddb_tag = 'dddb-20210617' (default: '') -|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') -|-evt_max = -1 (default: -1) -|-first_evt = 0 (default: 0) -|-geometry_version = '' (default: '') -|-histo_file = '' (default: '') -|-input_files = ['/auto/data/guenther/Bd_Kstee/00151673_00000098_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000078_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000114_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000115_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000090_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000096_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000127_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000137_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000049_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000019_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000111_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000077_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000027_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000058_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000159_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000072_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000129_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000126_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000017_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000093_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000124_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000089_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000018_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000148_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000176_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000068_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000135_1.xdigi', '/auto/data/guenther/Bd_Kstee/00151673_00000071_1.xdigi'] -| (default: []) -|-input_manifest_file = '' (default: '') -|-input_process = '' (default: '') -|-input_raw_format = 0.5 (default: 0.5) -|-input_type = 'ROOT' (default: '') -|-lines_maker = None -|-memory_pool_size = 10485760 (default: 10485760) -|-monitoring_file = '' (default: '') -|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') -|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') -|-n_event_slots = 1 (default: -1) -|-n_threads = 1 (default: 1) -|-ntuple_file = 'data/resolutions_and_effs_B_thesis.root' (default: '') -|-output_file = '' (default: '') -|-output_level = 3 (default: 3) -|-output_manifest_file = '' (default: '') -|-output_type = '' (default: '') -|-persistreco_version = 1.0 (default: 1.0) -|-phoenix_filename = '' (default: '') -|-preamble_algs = [] (default: []) -|-print_freq = 10000 (default: 10000) -|-python_logging_level = 20 (default: 20) -|-require_specific_decoding_keys = [] (default: []) -|-scheduler_legacy_mode = True (default: True) -|-simulation = True (default: None) -|-use_iosvc = False (default: False) -|-velo_motion_system_yaml = '' (default: '') -|-write_decoding_keys_to_git = True (default: True) -\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- -# Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' -ApplicationMgr SUCCESS -==================================================================================================================================== - Welcome to Moore version 55.0 - running on lhcba2 on Fri Feb 9 11:45:18 2024 -==================================================================================================================================== -ApplicationMgr INFO Application Manager Configured successfully -ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' -ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 -ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' -ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf -DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc -DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml -EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 -EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf -MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:data/resolutions_and_effs_B_thesis.root as FILE1 -HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: data/resolutions_and_effs_B_thesis.root -HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc -DeFTDetector INFO Current FT geometry version = 64 -TrackResCheckerForward.Selector.... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerForward.Selector.... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerForward.Selector.... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -TrackResCheckerBestLong.Selector... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerBestLong.Selector... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerBestLong.Selector... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -TrackResCheckerBestForward.Selec... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerBestForward.Selec... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerBestForward.Selec... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -TrackResCheckerSeed.Selector.Sel... INFO MCParticle Momentum cut : 0 GeV/c < P < 1.79769e+305 GeV/c -TrackResCheckerSeed.Selector.Sel... INFO Beta * gamma cut : 0 < beta*gamma -TrackResCheckerSeed.Selector.Sel... INFO Eta cut : -1.79769e+308 < P < 1.79769e+308 -HLTControlFlowMgr INFO Concurrency level information: -HLTControlFlowMgr INFO o Number of events slots: 1 -HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 21395 ms -ApplicationMgr INFO Application Manager Initialized successfully -ApplicationMgr INFO Application Manager Started successfully -EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc -EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000098_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) -HLTControlFlowMgr INFO Starting loop on events -EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 -FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. -FTRawBankDecoder INFO Building the readout map with version 0 -TransportSvc INFO Initialize the static pointer to DetDesc::IGeometryErrorSvc -TransportSvc INFO Recovery of geometry errors is ENABLED -HLTControlFlowMgr INFO Timing started at: 11:46:02 -EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000114_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000115_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000098_1.xdigi [8D5E10AA-5DE5-11EC-900E-48FD8EE739FD] -RootCnvSvc INFO Removed disconnected IO stream:8D5E10AA-5DE5-11EC-900E-48FD8EE739FD [/auto/data/guenther/Bd_Kstee/00151673_00000098_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000090_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000078_1.xdigi [016CE698-5DE0-11EC-AA65-F02FA78BD289] -RootCnvSvc INFO Removed disconnected IO stream:016CE698-5DE0-11EC-AA65-F02FA78BD289 [/auto/data/guenther/Bd_Kstee/00151673_00000078_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000114_1.xdigi [96F78B2E-5DEE-11EC-A774-3CECEF0DB336] -RootCnvSvc INFO Removed disconnected IO stream:96F78B2E-5DEE-11EC-A774-3CECEF0DB336 [/auto/data/guenther/Bd_Kstee/00151673_00000114_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000127_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000115_1.xdigi [E90D9CE0-5DEF-11EC-9A8E-D85ED3091D9F] -RootCnvSvc INFO Removed disconnected IO stream:E90D9CE0-5DEF-11EC-9A8E-D85ED3091D9F [/auto/data/guenther/Bd_Kstee/00151673_00000115_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000137_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000090_1.xdigi [2F87F326-5DDE-11EC-BE06-6CC21739CEE0] -RootCnvSvc INFO Removed disconnected IO stream:2F87F326-5DDE-11EC-BE06-6CC21739CEE0 [/auto/data/guenther/Bd_Kstee/00151673_00000090_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000049_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000096_1.xdigi [FB24F114-5DE3-11EC-A481-C4346BC8E730] -RootCnvSvc INFO Removed disconnected IO stream:FB24F114-5DE3-11EC-A481-C4346BC8E730 [/auto/data/guenther/Bd_Kstee/00151673_00000096_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000019_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000127_1.xdigi [B810C602-5DFA-11EC-9B02-3CECEF0DB326] -RootCnvSvc INFO Removed disconnected IO stream:B810C602-5DFA-11EC-9B02-3CECEF0DB326 [/auto/data/guenther/Bd_Kstee/00151673_00000127_1.xdigi] -EventSelector SUCCESS Reading Event record 10001. Record number within stream 10: 829 -EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000111_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000137_1.xdigi [2895F650-5E04-11EC-9D63-BC97E1CA35E0] -RootCnvSvc INFO Removed disconnected IO stream:2895F650-5E04-11EC-9D63-BC97E1CA35E0 [/auto/data/guenther/Bd_Kstee/00151673_00000137_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000077_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000049_1.xdigi [E3AB1D28-5DB2-11EC-986D-F02FA768CDD0] -RootCnvSvc INFO Removed disconnected IO stream:E3AB1D28-5DB2-11EC-986D-F02FA768CDD0 [/auto/data/guenther/Bd_Kstee/00151673_00000049_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000027_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000019_1.xdigi [03088410-5DA1-11EC-9AFE-A4BF010F110E] -RootCnvSvc INFO Removed disconnected IO stream:03088410-5DA1-11EC-9AFE-A4BF010F110E [/auto/data/guenther/Bd_Kstee/00151673_00000019_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000111_1.xdigi [FC11F736-5DEB-11EC-97D4-B42E99AB00C4] -RootCnvSvc INFO Removed disconnected IO stream:FC11F736-5DEB-11EC-97D4-B42E99AB00C4 [/auto/data/guenther/Bd_Kstee/00151673_00000111_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000159_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000077_1.xdigi [2B0AD454-5DD8-11EC-ADC9-0242AC1C0534] -RootCnvSvc INFO Removed disconnected IO stream:2B0AD454-5DD8-11EC-ADC9-0242AC1C0534 [/auto/data/guenther/Bd_Kstee/00151673_00000077_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000072_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000027_1.xdigi [76253C8E-5DA8-11EC-B7C8-0242AC1C0539] -RootCnvSvc INFO Removed disconnected IO stream:76253C8E-5DA8-11EC-B7C8-0242AC1C0539 [/auto/data/guenther/Bd_Kstee/00151673_00000027_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000129_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000058_1.xdigi [3231FD90-5DD6-11EC-B2FD-A4BF010F1246] -RootCnvSvc INFO Removed disconnected IO stream:3231FD90-5DD6-11EC-B2FD-A4BF010F1246 [/auto/data/guenther/Bd_Kstee/00151673_00000058_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000126_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000159_1.xdigi [5BC2B228-5E1A-11EC-BA37-0242AC1C052C] -RootCnvSvc INFO Removed disconnected IO stream:5BC2B228-5E1A-11EC-BA37-0242AC1C052C [/auto/data/guenther/Bd_Kstee/00151673_00000159_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000017_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000072_1.xdigi [69B0AE80-5DDE-11EC-BDE6-A4C64F4163F6] -RootCnvSvc INFO Removed disconnected IO stream:69B0AE80-5DDE-11EC-BDE6-A4C64F4163F6 [/auto/data/guenther/Bd_Kstee/00151673_00000072_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000093_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000129_1.xdigi [9B23AA88-5DFE-11EC-A56D-F02FA78BD09F] -RootCnvSvc INFO Removed disconnected IO stream:9B23AA88-5DFE-11EC-A56D-F02FA78BD09F [/auto/data/guenther/Bd_Kstee/00151673_00000129_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000124_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000126_1.xdigi [1D28E18E-5DF9-11EC-9195-0242AC1C050D] -RootCnvSvc INFO Removed disconnected IO stream:1D28E18E-5DF9-11EC-9195-0242AC1C050D [/auto/data/guenther/Bd_Kstee/00151673_00000126_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000089_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000017_1.xdigi [A9F30DC8-5DA0-11EC-A530-80D4A5B16D11] -RootCnvSvc INFO Removed disconnected IO stream:A9F30DC8-5DA0-11EC-A530-80D4A5B16D11 [/auto/data/guenther/Bd_Kstee/00151673_00000017_1.xdigi] -EventSelector SUCCESS Reading Event record 20001. Record number within stream 22: 144 -EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000018_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000093_1.xdigi [A9ADB61C-5DDF-11EC-B270-18C04D0AD672] -RootCnvSvc INFO Removed disconnected IO stream:A9ADB61C-5DDF-11EC-B270-18C04D0AD672 [/auto/data/guenther/Bd_Kstee/00151673_00000093_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000124_1.xdigi [609AEFF4-5DF7-11EC-A950-A4BF0112D64C] -RootCnvSvc INFO Removed disconnected IO stream:609AEFF4-5DF7-11EC-A950-A4BF0112D64C [/auto/data/guenther/Bd_Kstee/00151673_00000124_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000148_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000089_1.xdigi [97630F54-5DDD-11EC-B8C0-A4BF0112BC72] -RootCnvSvc INFO Removed disconnected IO stream:97630F54-5DDD-11EC-B8C0-A4BF0112BC72 [/auto/data/guenther/Bd_Kstee/00151673_00000089_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000176_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000018_1.xdigi [01D7F180-5DA0-11EC-9E4C-B42E99AB00C0] -RootCnvSvc INFO Removed disconnected IO stream:01D7F180-5DA0-11EC-9E4C-B42E99AB00C0 [/auto/data/guenther/Bd_Kstee/00151673_00000018_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000068_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi [38264BD6-5B59-11EC-B4D7-0800383D3666] -RootCnvSvc INFO Removed disconnected IO stream:38264BD6-5B59-11EC-B4D7-0800383D3666 [/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000135_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000148_1.xdigi [2DD034A4-5E0F-11EC-AE5B-0242AC1C0558] -RootCnvSvc INFO Removed disconnected IO stream:2DD034A4-5E0F-11EC-AE5B-0242AC1C0558 [/auto/data/guenther/Bd_Kstee/00151673_00000148_1.xdigi] -EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_Kstee/00151673_00000071_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_Kstee/00151673_00000176_1.xdigi [CD8DF0F6-5E2A-11EC-A006-EC0D9A8DE50E] -RootCnvSvc INFO Removed disconnected IO stream:CD8DF0F6-5E2A-11EC-A006-EC0D9A8DE50E [/auto/data/guenther/Bd_Kstee/00151673_00000176_1.xdigi] -HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 27892 Events Finished - WSS 1483.27, timed 27882 Events: 8486657 ms, Evts/s = 3.28539 -BestLongTrackChecker_3a419357.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -CloneKillerMatch_cd10262b INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "nTracksInput" | 27892 | 2851824 | 102.25 | - | "nTracksSelected" | 27892 | 678986 | 24.343 | -ForwardTrackChecker_22e49d0c.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -HLTControlFlowMgr INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Processed events" | 27892 | -MatchTrackChecker_8319528f.LoKi:... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -PrForwardTrackingVelo_9b95c79c INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 27892 | 5324563 | 190.90 | - | "Created long tracks" | 27892 | 2870712 | 102.92 | - | "Input tracks" | 27892 | 5562373 | 199.43 | - | "Number of candidate bins per track" | 5324563 |7.956693e+07 | 14.943 | 21.748 | 0.0000 | 250.00 | - | "Number of complete candidates/track 1st Loop" | 4778607 | 3231977 | 0.67634 | 0.72549 | 0.0000 | 12.000 | - | "Number of complete candidates/track 2nd Loop" | 2444312 | 251667 | 0.10296 | 0.33038 | 0.0000 | 8.0000 | - | "Number of x candidates per track 1st Loop" | 4778607 |1.329624e+07 | 2.7825 | 3.6139 | - | "Number of x candidates per track 2nd Loop" | 2444312 |1.913445e+07 | 7.8282 | 12.228 | - | "Percentage second loop execution" | 4778607 | 2444312 | 0.51151 | - | "Removed duplicates" | 27892 | 177375 | 6.3594 | -PrForwardTrackingVelo_9b95c79c.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 2540329 |1.020741e+07 | 4.0181 | - | "#tracks with hits added" | 2540329 | -PrHybridSeeding_4d0337cc INFO Number of counters : 21 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Created T2x1 three-hit combinations in case 0" | 93538219 |5.987451e+07 | 0.64011 | 0.64716 | 0.0000 | 7.0000 | - | "Created T2x1 three-hit combinations in case 1" | 117985244 |8.248533e+07 | 0.69912 | 0.78456 | 0.0000 | 13.000 | - | "Created T2x1 three-hit combinations in case 2" | 177482175 |1.615384e+08 | 0.91017 | 1.1046 | 0.0000 | 25.000 | - | "Created XZ tracks (part 0)" | 83676 |1.023488e+07 | 122.32 | 223.79 | 0.0000 | 6243.0 | - | "Created XZ tracks (part 1)" | 83676 |1.040511e+07 | 124.35 | 233.32 | 0.0000 | 6153.0 | - | "Created XZ tracks in case 0" | 55784 | 6318684 | 113.27 | 154.38 | 1.0000 | 3299.0 | - | "Created XZ tracks in case 1" | 55784 | 7222950 | 129.48 | 223.32 | 0.0000 | 5203.0 | - | "Created XZ tracks in case 2" | 55784 | 7098352 | 127.25 | 287.96 | 0.0000 | 6243.0 | - | "Created full hit combinations in case 0" | 11715892 |1.171589e+07 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 1" | 8977689 | 8977689 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 2" | 11530318 |1.153032e+07 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created seed tracks" | 55784 | 4531052 | 81.225 | 51.313 | 2.0000 | 1093.0 | - | "Created seed tracks (part 0)" | 27892 | 2536447 | 90.938 | 57.345 | 2.0000 | 1170.0 | - | "Created seed tracks (part 1)" | 27892 | 2540636 | 91.088 | 57.876 | 2.0000 | 1082.0 | - | "Created seed tracks in case 0" | 55784 | 2359153 | 42.291 | 27.085 | 1.0000 | 693.00 | - | "Created seed tracks in case 1" | 55784 | 4247531 | 76.142 | 45.370 | 2.0000 | 959.00 | - | "Created seed tracks in case 2" | 55784 | 4833518 | 86.647 | 56.014 | 2.0000 | 1166.0 | - | "Created seed tracks in recovery step" | 27892 | 243565 | 8.7324 | 5.4742 | 0.0000 | 42.000 | - | "Created two-hit combinations in case 0" | 9880093 |2.900854e+08 | 29.361 | 21.416 | 0.0000 | 245.00 | - | "Created two-hit combinations in case 1" | 8636545 |3.356417e+08 | 38.863 | 25.654 | 0.0000 | 363.00 | - | "Created two-hit combinations in case 2" | 6760916 |3.941952e+08 | 58.305 | 39.750 | 0.0000 | 415.00 | -PrKalmanFilterForward_897feb56 INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 2 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 109133 | - | "chi2 cut" | 372430 | - | "nIterations" | 2870711 | 6728618 | 2.3439 | - | "nOutlierIterations" | 2761578 | 2045007 | 0.74052 | - | "nTracksInput" | 27892 | 2870712 | 102.92 | - | "nTracksOutput" | 27892 | 2389146 | 85.657 | -PrKalmanFilterForward_897feb56.T... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 1 | -PrKalmanFilterMatch_3a755db2 INFO Number of counters : 8 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 2 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 81395 | - | "Transport failed" | 2 | 0 | 0.0000 | - | "chi2 cut" | 388503 | - | "nIterations" | 678986 | 1757604 | 2.5886 | - | "nOutlierIterations" | 597589 | 739266 | 1.2371 | - | "nTracksInput" | 27892 | 678986 | 24.343 | - | "nTracksOutput" | 27892 | 209084 | 7.4962 | -PrKalmanFilterMatch_3a755db2.Tra... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 2 | -PrKalmanFilter_98e48b7e INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 2 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 109133 | - | "chi2 cut" | 372430 | - | "nIterations" | 2870711 | 6728618 | 2.3439 | - | "nOutlierIterations" | 2761578 | 2045007 | 0.74052 | - | "nTracksInput" | 27892 | 2870712 | 102.92 | - | "nTracksOutput" | 27892 | 2389146 | 85.657 | -PrKalmanFilter_98e48b7e.TrackMas... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 1 | -PrLHCbID2MCParticle_4591dde6 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#removed null MCParticles" | 239542220 | 0 | 0.0000 | -PrMatchNN_41c22d41 INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 27892 |5.507225e+07 | 1974.5 | - | "#MatchingMLP" | 2851824 | 2381994 | 0.83525 | - | "#MatchingTracks" | 27892 | 2851824 | 102.25 | -PrMatchNN_41c22d41.PrAddUTHitsTool INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 2505774 |1.006356e+07 | 4.0161 | - | "#tracks with hits added" | 2505774 | -PrStorePrUTHits_c5eaf5a1 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 27892 | 6024672 | 216.00 | -PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Average X in T1U" | 10088209 |-3.419735e+08 | -33.898 | 1129.4 | -2656.4 | 2656.3 | - | "Average X in T1V" | 10243376 |-2.575024e+08 | -25.138 | 1119.0 | -2656.4 | 2656.3 | - | "Average X in T1X1" | 9880093 |-4.497282e+08 | -45.519 | 1147.2 | -2646.2 | 2646.2 | - | "Average X in T1X2" | 10380592 |-1.424772e+08 | -13.725 | 1112.4 | -2646.2 | 2646.2 | - | "Average X in T2U" | 9903508 |-2.357181e+08 | -23.801 | 1132.7 | -2656.4 | 2656.3 | - | "Average X in T2V" | 10219888 |-2.122879e+08 | -20.772 | 1126.4 | -2656.4 | 2656.3 | - | "Average X in T2X1" | 9477696 |-2.345171e+08 | -24.744 | 1137.1 | -2646.2 | 2646.2 | - | "Average X in T2X2" | 10525890 |-1.666995e+08 | -15.837 | 1121.8 | -2646.2 | 2646.2 | - | "Average X in T3U" | 10732268 |-1.430358e+08 | -13.328 | 1330.8 | -3188.4 | 3188.4 | - | "Average X in T3V" | 11071258 |-1.809314e+08 | -16.342 | 1326.1 | -3188.4 | 3188.4 | - | "Average X in T3X1" | 10309994 |-1.156406e+08 | -11.216 | 1331.0 | -3176.2 | 3176.2 | - | "Average X in T3X2" | 11484760 |-2.348821e+08 | -20.452 | 1317.7 | -3176.2 | 3176.2 | - | "Hits in T1U" | 111568 |1.008821e+07 | 90.422 | 39.221 | 0.0000 | 354.00 | - | "Hits in T1V" | 111568 |1.024338e+07 | 91.813 | 39.872 | 2.0000 | 464.00 | - | "Hits in T1X1" | 111568 | 9880093 | 88.557 | 38.261 | 1.0000 | 330.00 | - | "Hits in T1X2" | 111568 |1.038059e+07 | 93.043 | 40.170 | 1.0000 | 326.00 | - | "Hits in T2U" | 111568 | 9903508 | 88.767 | 38.648 | 0.0000 | 366.00 | - | "Hits in T2V" | 111568 |1.021989e+07 | 91.602 | 39.698 | 2.0000 | 497.00 | - | "Hits in T2X1" | 111568 | 9477696 | 84.950 | 37.062 | 2.0000 | 330.00 | - | "Hits in T2X2" | 111568 |1.052589e+07 | 94.345 | 40.600 | 2.0000 | 386.00 | - | "Hits in T3U" | 111568 |1.073227e+07 | 96.195 | 40.909 | 2.0000 | 360.00 | - | "Hits in T3V" | 111568 |1.107126e+07 | 99.233 | 42.165 | 1.0000 | 487.00 | - | "Hits in T3X1" | 111568 |1.030999e+07 | 92.410 | 39.415 | 1.0000 | 464.00 | - | "Hits in T3X2" | 111568 |1.148476e+07 | 102.94 | 43.561 | 2.0000 | 417.00 | - | "Total number of hits" | 27892 |1.243175e+08 | 4457.1 | 1755.5 | 250.00 | 13587. | -PrStoreUTHit_7a6d8dc6 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 27892 | 6024672 | 216.00 | -PrTrackAssociator_2c3ce84d INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 2590908 | 2271760 |( 87.68200 +- 0.02041735)% | - | "MC particles per track" | 2271760 | 2653709 | 1.1681 | -PrTrackAssociator_42066100 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 2870712 | 2271679 |( 79.13295 +- 0.02398360)% | - | "MC particles per track" | 2271679 | 2664730 | 1.1730 | -PrTrackAssociator_8c23390c INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 4531052 | 4098989 |( 90.46440 +- 0.01379791)% | - | "MC particles per track" | 4098989 | 4099100 | 1.0000 | -PrTrackAssociator_99c0cc76 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 2851824 | 2235681 |( 78.39477 +- 0.02437034)% | - | "MC particles per track" | 2235681 | 2616493 | 1.1703 | -PrTrackAssociator_f74b0b6e INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 2389146 | 2155106 |( 90.20403 +- 0.01923160)% | - | "MC particles per track" | 2155106 | 2508355 | 1.1639 | -PrVPHitsToVPLightClusters_599554c8 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 27892 |7.376784e+07 | 2644.8 | -SeedTrackChecker_e067be5b.LoKi::... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -TBTCMatch_1959fd43 INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 208497 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 208497 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 208497 | -TBTC_Forward_8890084f INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 2382411 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 2382411 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 2382411 | -TrackResCheckerSeed.TrackMasterE... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "RungeKuttaExtrapolator failed with code: RK: Curling"| 1 | -Unpack__Event_MC_FT_Hits INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# UnPackedData" | 27892 |1.250436e+08 | 4483.1 | 1991.3 | 196.00 | 15308. | -Unpack__Event_MC_UT_Hits INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# UnPackedData" | 27892 |4.407483e+07 | 1580.2 | 695.60 | 57.000 | 5468.0 | -Unpack__Event_MC_VP_Hits INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# UnPackedData" | 27892 |8.009476e+07 | 2871.6 | 1212.5 | 93.000 | 10072. | -VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 27892 |7.376784e+07 | 2644.8 | - | "Nb of Produced Tracks" | 27892 | 8521770 | 305.53 | -fromPrForwardTracksV1Tracks_3c57... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 27892 | 2870712 | 102.92 | -fromPrMatchTracksV1Tracks_af178645 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 27892 | 2851824 | 102.25 | -fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 27892 | 4531052 | 162.45 | -fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 27892 | 8521770 | 305.53 | -ApplicationMgr INFO Application Manager Stopped successfully -BestLongTrackChecker_3a419357 INFO Results -BestLongTrackChecker_3a419357 INFO **** BestLong 2590908 tracks including 319148 ghosts [12.32 %], Event average 10.80 % **** -BestLongTrackChecker_3a419357 INFO 01_long : 1984949 from 2255928 [ 87.99 %] 5263 clones [ 0.26 %], purity: 99.27 %, hitEff: 97.26 % -BestLongTrackChecker_3a419357 INFO 02_long_P>5GeV : 1345857 from 1465944 [ 91.81 %] 2744 clones [ 0.20 %], purity: 99.39 %, hitEff: 97.81 % -BestLongTrackChecker_3a419357 INFO 03_long_strange : 98287 from 122654 [ 80.13 %] 210 clones [ 0.21 %], purity: 99.00 %, hitEff: 96.78 % -BestLongTrackChecker_3a419357 INFO 04_long_strange_P>5GeV : 50847 from 58583 [ 86.79 %] 77 clones [ 0.15 %], purity: 99.21 %, hitEff: 97.72 % -BestLongTrackChecker_3a419357 INFO 05_long_fromB : 90018 from 99007 [ 90.92 %] 255 clones [ 0.28 %], purity: 99.46 %, hitEff: 97.67 % -BestLongTrackChecker_3a419357 INFO 05_long_fromD : 51604 from 57792 [ 89.29 %] 146 clones [ 0.28 %], purity: 99.33 %, hitEff: 97.39 % -BestLongTrackChecker_3a419357 INFO 06_long_fromB_P>5GeV : 70347 from 75001 [ 93.79 %] 179 clones [ 0.25 %], purity: 99.55 %, hitEff: 98.05 % -BestLongTrackChecker_3a419357 INFO 06_long_fromD_P>5GeV : 36898 from 39756 [ 92.81 %] 93 clones [ 0.25 %], purity: 99.45 %, hitEff: 97.88 % -BestLongTrackChecker_3a419357 INFO 07_long_electrons : 139296 from 215405 [ 64.67 %] 499 clones [ 0.36 %], purity: 98.20 %, hitEff: 95.72 % -BestLongTrackChecker_3a419357 INFO 07_long_electrons_pairprod : 97654 from 163484 [ 59.73 %] 348 clones [ 0.36 %], purity: 97.87 %, hitEff: 95.12 % -BestLongTrackChecker_3a419357 INFO 08_long_fromB_electrons : 38619 from 48290 [ 79.97 %] 137 clones [ 0.35 %], purity: 98.95 %, hitEff: 97.13 % -BestLongTrackChecker_3a419357 INFO 09_long_fromB_electrons_P>5GeV : 35585 from 43175 [ 82.42 %] 129 clones [ 0.36 %], purity: 99.02 %, hitEff: 97.31 % -BestLongTrackChecker_3a419357 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 61897 from 65597 [ 94.36 %] 164 clones [ 0.26 %], purity: 99.62 %, hitEff: 98.08 % -BestLongTrackChecker_3a419357 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 34054 from 40429 [ 84.23 %] 118 clones [ 0.35 %], purity: 99.07 %, hitEff: 97.36 % -BestLongTrackChecker_3a419357 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 30011 from 32068 [ 93.59 %] 84 clones [ 0.28 %], purity: 99.55 %, hitEff: 97.94 % -BestLongTrackChecker_3a419357 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 26594 from 30474 [ 87.27 %] 39 clones [ 0.15 %], purity: 99.43 %, hitEff: 97.91 % -BestLongTrackChecker_3a419357 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 61746 from 65403 [ 94.41 %] 164 clones [ 0.26 %], purity: 99.63 %, hitEff: 98.10 % -BestLongTrackChecker_3a419357 INFO -ForwardTrackChecker_22e49d0c INFO Results -ForwardTrackChecker_22e49d0c INFO **** Forward 2870712 tracks including 599033 ghosts [20.87 %], Event average 16.42 % **** -ForwardTrackChecker_22e49d0c INFO 01_long : 1967822 from 2255928 [ 87.23 %] 6946 clones [ 0.35 %], purity: 99.04 %, hitEff: 98.02 % -ForwardTrackChecker_22e49d0c INFO 02_long_P>5GeV : 1359643 from 1465944 [ 92.75 %] 3947 clones [ 0.29 %], purity: 99.21 %, hitEff: 98.44 % -ForwardTrackChecker_22e49d0c INFO 03_long_strange : 98002 from 122654 [ 79.90 %] 314 clones [ 0.32 %], purity: 98.60 %, hitEff: 97.76 % -ForwardTrackChecker_22e49d0c INFO 04_long_strange_P>5GeV : 51892 from 58583 [ 88.58 %] 122 clones [ 0.23 %], purity: 98.93 %, hitEff: 98.42 % -ForwardTrackChecker_22e49d0c INFO 05_long_fromB : 89684 from 99007 [ 90.58 %] 316 clones [ 0.35 %], purity: 99.32 %, hitEff: 98.45 % -ForwardTrackChecker_22e49d0c INFO 05_long_fromD : 51223 from 57792 [ 88.63 %] 187 clones [ 0.36 %], purity: 99.14 %, hitEff: 98.20 % -ForwardTrackChecker_22e49d0c INFO 06_long_fromB_P>5GeV : 70969 from 75001 [ 94.62 %] 231 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.74 % -ForwardTrackChecker_22e49d0c INFO 06_long_fromD_P>5GeV : 37246 from 39756 [ 93.69 %] 126 clones [ 0.34 %], purity: 99.31 %, hitEff: 98.55 % -ForwardTrackChecker_22e49d0c INFO 07_long_electrons : 145478 from 215405 [ 67.54 %] 1822 clones [ 1.24 %], purity: 97.49 %, hitEff: 97.84 % -ForwardTrackChecker_22e49d0c INFO 07_long_electrons_pairprod : 102405 from 163484 [ 62.64 %] 1220 clones [ 1.18 %], purity: 97.02 %, hitEff: 97.61 % -ForwardTrackChecker_22e49d0c INFO 08_long_fromB_electrons : 39977 from 48290 [ 82.79 %] 598 clones [ 1.47 %], purity: 98.61 %, hitEff: 98.49 % -ForwardTrackChecker_22e49d0c INFO 09_long_fromB_electrons_P>5GeV : 36999 from 43175 [ 85.70 %] 577 clones [ 1.54 %], purity: 98.71 %, hitEff: 98.61 % -ForwardTrackChecker_22e49d0c INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 62107 from 65597 [ 94.68 %] 208 clones [ 0.33 %], purity: 99.56 %, hitEff: 98.72 % -ForwardTrackChecker_22e49d0c INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 35297 from 40429 [ 87.31 %] 549 clones [ 1.53 %], purity: 98.79 %, hitEff: 98.59 % -ForwardTrackChecker_22e49d0c INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 30068 from 32068 [ 93.76 %] 110 clones [ 0.36 %], purity: 99.46 %, hitEff: 98.52 % -ForwardTrackChecker_22e49d0c INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 26941 from 30474 [ 88.41 %] 70 clones [ 0.26 %], purity: 99.29 %, hitEff: 98.37 % -ForwardTrackChecker_22e49d0c INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 61961 from 65403 [ 94.74 %] 208 clones [ 0.33 %], purity: 99.56 %, hitEff: 98.72 % -ForwardTrackChecker_22e49d0c INFO -MatchTrackChecker_8319528f INFO Results -MatchTrackChecker_8319528f INFO **** Match 2851824 tracks including 616143 ghosts [21.61 %], Event average 18.55 % **** -MatchTrackChecker_8319528f INFO 01_long : 1946861 from 2255928 [ 86.30 %] 9586 clones [ 0.49 %], purity: 99.24 %, hitEff: 98.23 % -MatchTrackChecker_8319528f INFO 02_long_P>5GeV : 1346996 from 1465944 [ 91.89 %] 5782 clones [ 0.43 %], purity: 99.35 %, hitEff: 98.82 % -MatchTrackChecker_8319528f INFO 03_long_strange : 96187 from 122654 [ 78.42 %] 442 clones [ 0.46 %], purity: 98.85 %, hitEff: 97.89 % -MatchTrackChecker_8319528f INFO 04_long_strange_P>5GeV : 51428 from 58583 [ 87.79 %] 193 clones [ 0.37 %], purity: 99.11 %, hitEff: 98.88 % -MatchTrackChecker_8319528f INFO 05_long_fromB : 88962 from 99007 [ 89.85 %] 444 clones [ 0.50 %], purity: 99.47 %, hitEff: 98.62 % -MatchTrackChecker_8319528f INFO 05_long_fromD : 50749 from 57792 [ 87.81 %] 262 clones [ 0.51 %], purity: 99.31 %, hitEff: 98.39 % -MatchTrackChecker_8319528f INFO 06_long_fromB_P>5GeV : 70324 from 75001 [ 93.76 %] 322 clones [ 0.46 %], purity: 99.56 %, hitEff: 98.99 % -MatchTrackChecker_8319528f INFO 06_long_fromD_P>5GeV : 36886 from 39756 [ 92.78 %] 173 clones [ 0.47 %], purity: 99.44 %, hitEff: 98.90 % -MatchTrackChecker_8319528f INFO 07_long_electrons : 133155 from 215405 [ 61.82 %] 2344 clones [ 1.73 %], purity: 97.91 %, hitEff: 98.15 % -MatchTrackChecker_8319528f INFO 07_long_electrons_pairprod : 91156 from 163484 [ 55.76 %] 1564 clones [ 1.69 %], purity: 97.48 %, hitEff: 97.94 % -MatchTrackChecker_8319528f INFO 08_long_fromB_electrons : 39206 from 48290 [ 81.19 %] 778 clones [ 1.95 %], purity: 98.82 %, hitEff: 98.68 % -MatchTrackChecker_8319528f INFO 09_long_fromB_electrons_P>5GeV : 36460 from 43175 [ 84.45 %] 746 clones [ 2.01 %], purity: 98.87 %, hitEff: 98.83 % -MatchTrackChecker_8319528f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 61630 from 65597 [ 93.95 %] 295 clones [ 0.48 %], purity: 99.67 %, hitEff: 98.90 % -MatchTrackChecker_8319528f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 34907 from 40429 [ 86.34 %] 712 clones [ 2.00 %], purity: 98.95 %, hitEff: 98.79 % -MatchTrackChecker_8319528f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 29796 from 32068 [ 92.92 %] 148 clones [ 0.49 %], purity: 99.60 %, hitEff: 98.75 % -MatchTrackChecker_8319528f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 26694 from 30474 [ 87.60 %] 112 clones [ 0.42 %], purity: 99.47 %, hitEff: 98.66 % -MatchTrackChecker_8319528f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 61511 from 65403 [ 94.05 %] 295 clones [ 0.48 %], purity: 99.67 %, hitEff: 98.90 % -MatchTrackChecker_8319528f INFO -SeedTrackChecker_e067be5b INFO Results -SeedTrackChecker_e067be5b INFO **** Seed 4531052 tracks including 432063 ghosts [ 9.54 %], Event average 4.84 % **** -SeedTrackChecker_e067be5b INFO 01_hasT : 2918449 from 3515434 [ 83.02 %] 220 clones [ 0.01 %], purity: 99.48 %, hitEff: 97.46 % -SeedTrackChecker_e067be5b INFO 02_long : 2105554 from 2255928 [ 93.33 %] 102 clones [ 0.00 %], purity: 99.62 %, hitEff: 98.08 % -SeedTrackChecker_e067be5b INFO 03_long_P>5GeV : 1416897 from 1465944 [ 96.65 %] 74 clones [ 0.01 %], purity: 99.59 %, hitEff: 98.75 % -SeedTrackChecker_e067be5b INFO 04_long_fromB : 94090 from 99007 [ 95.03 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 98.51 % -SeedTrackChecker_e067be5b INFO 05_long_fromB_P>5GeV : 72775 from 75001 [ 97.03 %] 2 clones [ 0.00 %], purity: 99.68 %, hitEff: 98.95 % -SeedTrackChecker_e067be5b INFO 06_UT+T_strange : 242645 from 264501 [ 91.74 %] 12 clones [ 0.00 %], purity: 99.64 %, hitEff: 97.68 % -SeedTrackChecker_e067be5b INFO 07_UT+T_strange_P>5GeV : 128860 from 133353 [ 96.63 %] 4 clones [ 0.00 %], purity: 99.62 %, hitEff: 98.74 % -SeedTrackChecker_e067be5b INFO 08_noVelo+UT+T_strange : 131367 from 143408 [ 91.60 %] 6 clones [ 0.00 %], purity: 99.63 %, hitEff: 97.71 % -SeedTrackChecker_e067be5b INFO 09_noVelo+UT+T_strange_P>5GeV : 73048 from 75759 [ 96.42 %] 2 clones [ 0.00 %], purity: 99.61 %, hitEff: 98.70 % -SeedTrackChecker_e067be5b INFO 10_UT+T_SfromDB : 14953 from 16142 [ 92.63 %] 2 clones [ 0.01 %], purity: 99.65 %, hitEff: 97.88 % -SeedTrackChecker_e067be5b INFO 11_UT+T_SfromDB_P>5GeV : 8486 from 8765 [ 96.82 %] 2 clones [ 0.02 %], purity: 99.63 %, hitEff: 98.85 % -SeedTrackChecker_e067be5b INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 5345 from 5529 [ 96.67 %] 1 clones [ 0.02 %], purity: 99.62 %, hitEff: 98.79 % -SeedTrackChecker_e067be5b INFO 13_hasT_electrons : 593879 from 1118547 [ 53.09 %] 45 clones [ 0.01 %], purity: 99.57 %, hitEff: 96.80 % -SeedTrackChecker_e067be5b INFO 14_long_electrons : 187378 from 215405 [ 86.99 %] 10 clones [ 0.01 %], purity: 99.69 %, hitEff: 97.42 % -SeedTrackChecker_e067be5b INFO 15_long_fromB_electrons : 44332 from 48290 [ 91.80 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % -SeedTrackChecker_e067be5b INFO 16_long_electrons_P>5GeV : 117067 from 128966 [ 90.77 %] 5 clones [ 0.00 %], purity: 99.67 %, hitEff: 98.33 % -SeedTrackChecker_e067be5b INFO 17_long_fromB_electrons_P>5GeV : 40231 from 43175 [ 93.18 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.66 % -SeedTrackChecker_e067be5b INFO -TrackResCheckerBestForward INFO ************************************ -TrackResCheckerBestForward INFO ALL/x pull : mean = 0.000 +/- 0.001, RMS = 1.276 +/- 0.001 -TrackResCheckerBestForward INFO ALL/y pull : mean = 0.002 +/- 0.001, RMS = 1.280 +/- 0.001 -TrackResCheckerBestForward INFO ALL/tx pull : mean = 0.001 +/- 0.001, RMS = 1.252 +/- 0.001 -TrackResCheckerBestForward INFO ALL/ty pull : mean = -0.002 +/- 0.001, RMS = 1.255 +/- 0.001 -TrackResCheckerBestForward INFO ALL/p pull : mean = -0.043 +/- 0.001, RMS = 1.325 +/- 0.001 -TrackResCheckerBestForward INFO ALL/probChi2 : mean = 0.348 +/- 0.000, RMS = 0.304 +/- 0.000 -TrackResCheckerBestForward INFO ALL/x resolution / mm: RMS = 74.624 +/- 0.067 micron -TrackResCheckerBestForward INFO ALL/y resolution / mm: RMS = 75.620 +/- 0.068 micron -TrackResCheckerBestForward INFO ALL/dp/p: mean = 0.0004 +/- 0.0000, RMS = 0.0060 +/- 0.0000 -TrackResCheckerBestLong INFO ************************************ -TrackResCheckerBestLong INFO ALL/x pull : mean = 0.001 +/- 0.001, RMS = 1.275 +/- 0.001 -TrackResCheckerBestLong INFO ALL/y pull : mean = 0.002 +/- 0.001, RMS = 1.277 +/- 0.001 -TrackResCheckerBestLong INFO ALL/tx pull : mean = 0.000 +/- 0.001, RMS = 1.250 +/- 0.001 -TrackResCheckerBestLong INFO ALL/ty pull : mean = -0.002 +/- 0.001, RMS = 1.252 +/- 0.001 -TrackResCheckerBestLong INFO ALL/p pull : mean = -0.046 +/- 0.001, RMS = 1.340 +/- 0.001 -TrackResCheckerBestLong INFO ALL/probChi2 : mean = 0.341 +/- 0.000, RMS = 0.304 +/- 0.000 -TrackResCheckerBestLong INFO ALL/x resolution / mm: RMS = 75.066 +/- 0.065 micron -TrackResCheckerBestLong INFO ALL/y resolution / mm: RMS = 76.002 +/- 0.067 micron -TrackResCheckerBestLong INFO ALL/dp/p: mean = 0.0004 +/- 0.0000, RMS = 0.0061 +/- 0.0000 -TrackResCheckerForward INFO ************************************ -TrackResCheckerForward INFO ALL/x pull : mean = -0.002 +/- 0.001, RMS = 1.362 +/- 0.001 -TrackResCheckerForward INFO ALL/y pull : mean = 0.003 +/- 0.001, RMS = 1.339 +/- 0.001 -TrackResCheckerForward INFO ALL/tx pull : mean = 0.003 +/- 0.001, RMS = 1.454 +/- 0.001 -TrackResCheckerForward INFO ALL/ty pull : mean = -0.003 +/- 0.001, RMS = 1.413 +/- 0.001 -TrackResCheckerForward INFO ALL/p pull : mean = 0.124 +/- 0.000, RMS = 0.467 +/- 0.001 -TrackResCheckerForward INFO ALL/probChi2 : mean = 0.000 +/- 0.000, RMS = 0.000 +/- 0.000 -TrackResCheckerForward INFO ALL/x resolution / mm: RMS = 82.111 +/- 0.068 micron -TrackResCheckerForward INFO ALL/y resolution / mm: RMS = 79.247 +/- 0.068 micron -TrackResCheckerForward INFO ALL/dp/p: mean = 0.0061 +/- 0.0000, RMS = 0.0090 +/- 0.0000 -TrackResCheckerSeed INFO ************************************ -TrackResCheckerSeed INFO ALL/x pull : mean = -0.013 +/- 0.000, RMS = 0.480 +/- 0.001 -TrackResCheckerSeed INFO ALL/y pull : mean = 0.001 +/- 0.000, RMS = 0.352 +/- 0.001 -TrackResCheckerSeed INFO ALL/tx pull : mean = 0.013 +/- 0.000, RMS = 0.548 +/- 0.001 -TrackResCheckerSeed INFO ALL/ty pull : mean = -0.001 +/- 0.000, RMS = 0.462 +/- 0.001 -TrackResCheckerSeed INFO ALL/p pull : mean = 0.044 +/- 0.000, RMS = 0.931 +/- 0.001 -TrackResCheckerSeed INFO ALL/probChi2 : mean = 0.000 +/- 0.000, RMS = 0.000 +/- 0.000 -TrackResCheckerSeed INFO ALL/x resolution / mm: RMS = 223.025 +/- 0.306 micron -TrackResCheckerSeed INFO ALL/y resolution / mm: RMS = 230.467 +/- 0.273 micron -TrackResCheckerSeed INFO ALL/dp/p: mean = -0.0061 +/- 0.0000, RMS = 0.0154 +/- 0.0000 -HLTControlFlowMgr INFO Memory pool: used 4.97949 +/- 0.00042823 MiB (min: 4, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 442.888 +/- 0.0676078 (min: 396, max: 494) requests were served -HLTControlFlowMgr INFO Timing table: -HLTControlFlowMgr INFO - | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 27892 | 8414.615 | 301685.616 | - | "TrackResCheckerSeed" | 27892 | 3105.637 | 111345.065 | - | "Fetch__Event_pSim_MCVertices" | 27892 | 1398.654 | 50145.359 | - | "TrackResCheckerForward" | 27892 | 719.822 | 25807.455 | - | "TrackResCheckerBestLong" | 27892 | 689.310 | 24713.524 | - | "TrackResCheckerBestForward" | 27892 | 651.350 | 23352.588 | - | "SeedTrackChecker_e067be5b" | 27892 | 234.183 | 8396.051 | - | "ForwardTrackChecker_22e49d0c" | 27892 | 228.705 | 8199.655 | - | "MatchTrackChecker_8319528f" | 27892 | 194.877 | 6986.843 | - | "BestLongTrackChecker_3a419357" | 27892 | 192.723 | 6909.611 | - | "PrKalmanFilterForward_897feb56" | 27892 | 178.923 | 6414.847 | - | "PrKalmanFilter_98e48b7e" | 27892 | 173.592 | 6223.707 | - | "PrForwardTrackingVelo_9b95c79c" | 27892 | 140.864 | 5050.323 | - | "PrHybridSeeding_4d0337cc" | 27892 | 90.372 | 3240.060 | - | "MCParticle2MCHitAlg_b530dcde" | 27892 | 87.400 | 3133.517 | - | "PrLHCbID2MCParticle_4591dde6" | 27892 | 42.783 | 1533.877 | - | "PrKalmanFilterMatch_3a755db2" | 27892 | 42.223 | 1513.800 | - | "Unpack__Event_MC_Vertices" | 27892 | 35.905 | 1287.282 | - | "MCParticle2MCHitAlg_b04be519" | 27892 | 33.445 | 1199.078 | - | "Unpack__Event_MC_Particles" | 27892 | 32.928 | 1180.564 | - | "MCParticle2MCHitAlg_4a41c125" | 27892 | 12.935 | 463.757 | - | "VeloClusterTrackingSIMD_87c18651" | 27892 | 11.826 | 423.981 | - | "PrStorePrUTHits_c5eaf5a1" | 27892 | 9.307 | 333.684 | - | "VPFullCluster2MCParticleLinker_17386552" | 27892 | 9.137 | 327.596 | - | "CloneKillerMatch_cd10262b" | 27892 | 8.477 | 303.927 | - | "VPClusFull_38754d8c" | 27892 | 8.328 | 298.582 | - | "TBTC_Forward_8890084f" | 27892 | 7.946 | 284.876 | - | "PrTrackAssociator_42066100" | 27892 | 7.013 | 251.450 | - | "PrMatchNN_41c22d41" | 27892 | 6.957 | 249.410 | - | "PrTrackAssociator_99c0cc76" | 27892 | 5.992 | 214.838 | - | "PrTrackAssociator_2c3ce84d" | 27892 | 5.787 | 207.465 | - | "Unpack__Event_MC_FT_Hits" | 27892 | 5.720 | 205.076 | - | "PrStoreUTHit_7a6d8dc6" | 27892 | 5.259 | 188.547 | - | "PrTrackAssociator_f74b0b6e" | 27892 | 5.043 | 180.789 | - | "PrTrackAssociator_8c23390c" | 27892 | 4.694 | 168.275 | - | "Unpack__Event_MC_VP_Hits" | 27892 | 3.830 | 137.309 | - | "PrVPHitsToVPLightClusters_599554c8" | 27892 | 3.283 | 117.698 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27892 | 3.208 | 115.022 | - | "fromPrMatchTracksV1Tracks_af178645" | 27892 | 3.187 | 114.261 | - | "fromPrForwardTracksV1Tracks_3c57fef9" | 27892 | 2.143 | 76.831 | - | "Unpack__Event_MC_UT_Hits" | 27892 | 2.072 | 74.298 | - | "PrStoreSciFiHits_fb0eba02" | 27892 | 2.066 | 74.086 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27892 | 2.033 | 72.898 | - | "TrackContainersMerger_3427d321" | 27892 | 1.107 | 39.678 | - | "FTRawBankDecoder" | 27892 | 1.088 | 38.991 | - | "TBTCMatch_1959fd43" | 27892 | 0.583 | 20.892 | - | "UnpackRawEvent_VP" | 27892 | 0.374 | 13.417 | - | "UniqueIDGeneratorAlg_26e527e9" | 27892 | 0.258 | 9.248 | - | "Decode_ODIN" | 27892 | 0.170 | 6.104 | - | "reserveIOV" | 27892 | 0.133 | 4.753 | - | "DummyEventTime" | 27892 | 0.113 | 4.051 | - | "Fetch__Event_pSim_MCParticles" | 27892 | 0.104 | 3.719 | - | "Fetch__Event_Link_Raw_VP_Digits" | 27892 | 0.091 | 3.259 | - | "Fetch__Event_DAQ_RawEvent" | 27892 | 0.081 | 2.891 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 27892 | 0.078 | 2.784 | - | "Fetch__Event_MC_Header" | 27892 | 0.074 | 2.669 | - | "UnpackRawEvent_UT" | 27892 | 0.067 | 2.406 | - | "Fetch__Event_pSim_UT_Hits" | 27892 | 0.060 | 2.153 | - | "Fetch__Event_pSim_FT_Hits" | 27892 | 0.057 | 2.061 | - | "UnpackRawEvent_FTCluster" | 27892 | 0.056 | 1.994 | - | "UnpackRawEvent_ODIN" | 27892 | 0.054 | 1.933 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27892 | 0.048 | 1.715 | - | "Fetch__Event_MC_TrackInfo" | 27892 | 0.045 | 1.620 | - | "Fetch__Event_pSim_VP_Hits" | 27892 | 0.039 | 1.386 | - -HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: run_tracking_debug_decision #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - NONLAZY_OR: run_tracking_debug_data #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerForward #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerBestLong #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerBestForward #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - TrackResChecker/TrackResCheckerSeed #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_22e49d0c #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_8319528f #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/BestLongTrackChecker_3a419357 #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_e067be5b #=27892 Sum=27892 Eff=|( 100.0000 +- 0.00000 )%| - -HLTControlFlowMgr INFO Histograms converted successfully according to request. -TransportSvc SUCCESS GEOMETRY ERRORS: 'Skip' map has the size 13 - | Logical Volume | | # mean RMS min max | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | mm | 14 -3.7792487 3.0248426 -8.6210566 -0.619362 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | X0 | 14 -0.010799607 0.010387479 -0.026890382 -4.7643259e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | mm | 65 -3.7940666 2.8645128 -11.220861 -0.138275 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | X0 | 65 -0.0094526801 0.0090807808 -0.026939593 -2.2463078e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | mm | 24 -2.6942195 2.2286503 -8.2295611 -0.101122 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | X0 | 24 -0.0048710104 0.0075389056 -0.025669248 -7.7786628e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | mm | 73 -3.9308739 2.747799 -9.1522173 -0.135365 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | X0 | 73 -0.011260383 0.0090926475 -0.028547153 -4.7512419e- | - | BeforeMagnetRegion/Rich1/lvRich1Master | mm | 37837 -312.41016 170.0855 -508.93953 -0.0465357 | - | BeforeMagnetRegion/Rich1/lvRich1Master | X0 | 37837 -3.8890691 2.1445869 -6.3574707 -9.5599948e- | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | mm | 18426 -26.7944 16.698001 -126.89778 -0.00473145 | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | X0 | 18426 -0.031566002 0.046593293 -0.36807044 -1.8869109e- | - | BeforeMagnetRegion/UT/Staves/lvCableM | mm | 1 0 0 0 | - | BeforeMagnetRegion/UT/Staves/lvCableM | X0 | 1 0 0 0 | - | BeforeMagnetRegion/VP/Supports/lvSupport | mm | 12 -0.054177349 0.05654016 -0.23738858 -0.0231990 | - | BeforeMagnetRegion/VP/Supports/lvSupport | X0 | 12 -0.00314607 0.0032832781 -0.013785117 -0.00134716 | - | BeforeMagnetRegion/VP/lvVP | mm | 114 -0.032343673 0.0230965 -0.080038227 -0.000149512 | - | BeforeMagnetRegion/VP/lvVP | X0 | 114 -0.0022529924 0.0016088538 -0.0055752951 -1.0414726e- | - | BeforeMagnetRegion/lvBeforeMagnetRegion | mm | 999 -467.5961 134.90302 -542.60626 -0.90334 | - | BeforeMagnetRegion/lvBeforeMagnetRegion | X0 | 999 -1.3559742 0.3923521 -1.5738441 -0.00158121 | - | LHCb/lvLHCb | mm | 3398 -237.952 2.7879693 -286.90902 -229.232 | - | LHCb/lvLHCb | X0 | 3398 -0.73693824 0.10654044 -3.051839 -0.657201 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | mm | 2409 -8.8048208 1.4775773 -14.883258 -0.0183763 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | X0 | 2409 -0.033623049 0.022655552 -0.17142884 -5.6499011e- | - | MagnetRegion/lvMagnetRegion | mm | 34 -3.2752028 1.6798584 -10.814248 -1.03359 | - | MagnetRegion/lvMagnetRegion | X0 | 34 -0.010064012 0.0051723064 -0.033249013 -0.00317783 | - -TransportSvc SUCCESS GEOMETRY ERRORS: 'Recover' map has the size 65 - | Logical Volume | | # mean RMS min max | - | AfterMagnetRegion/T/FT/CFrames/lvCFramePair | mm | 18 5.7671325 5.7755976 0.52223911 21.499 | - | AfterMagnetRegion/T/FT/CFrames/lvCFramePair | X0 | 18 0.016405857 0.016507952 0.0014691893 0.0604843 | - | AfterMagnetRegion/T/FT/Layers/lvLayer5U | mm | 9 9.9696582e-11 1.2100197e-10 2.7038493e-12 2.8343395e- | - | AfterMagnetRegion/T/FT/Layers/lvLayer5U | X0 | 9 0 0 0 | - | AfterMagnetRegion/T/FT/Layers/lvLayer5V | mm | 1 3.4364509e-12 1.3109815e-20 3.4364509e-12 3.4364509e- | - | AfterMagnetRegion/T/FT/Layers/lvLayer5V | X0 | 1 0 0 0 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleFull | mm | 19 2.1216117e-13 9.7873409e-14 4.8501396e-14 3.5600165e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleFull | X0 | 19 5.2605837e-16 3.3926567e-16 0 1.0830384e- | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | mm | 120 7.0970666 5.8603973 2.5965017e-13 21.4671 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftU | X0 | 120 0.021589397 0.017830478 7.8991514e-16 0.0653079 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | mm | 417 7.7346414 6.2214299 4.1846319e-13 40.9872 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleLeftX | X0 | 417 0.023309173 0.01908222 1.2730606e-15 0.124692 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | mm | 198 7.4459808 6.4910358 2.5415391e-13 30.553 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightU | X0 | 198 0.022458426 0.019924897 7.7319428e-16 0.092950 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | mm | 411 7.052735 5.8433878 7.9537112e-13 31.2597 | - | AfterMagnetRegion/T/FT/Modules/lvFTModuleHoleRightX | X0 | 411 0.021359389 0.017858604 2.4197007e-15 0.095099 | - | AfterMagnetRegion/T/FT/Quarters/lvQuarter5UNeg | mm | 1 0.50823506 2.6759615e-09 0.50823506 0.508235 | - | AfterMagnetRegion/T/FT/Quarters/lvQuarter5UNeg | X0 | 1 0.0015461672 0 0.0015461672 0.00154616 | - | AfterMagnetRegion/T/FT/Quarters/lvQuarter5XPos | mm | 2 0.65019475 0 0.65019475 0.650194 | - | AfterMagnetRegion/T/FT/Quarters/lvQuarter5XPos | X0 | 2 0.0010369056 0.00098902051 4.7885085e-05 0.00202592 | - | AfterMagnetRegion/T/FT/lvFT | mm | 36 6.8002625 3.7784422 0.095252613 11.1437 | - | AfterMagnetRegion/T/FT/lvFT | X0 | 36 0.015824503 0.016029953 7.0150973e-06 0.034722 | - | AfterMagnetRegion/T/lvT | mm | 64 6.657603 4.0652495 0.16258558 16.2468 | - | AfterMagnetRegion/T/lvT | X0 | 64 0.011069758 0.013462288 0 0.0343961 | - | AfterMagnetRegion/lvAfterMagnetRegion | mm | 58 6.9269808 3.3280518 0.031073975 16.1011 | - | AfterMagnetRegion/lvAfterMagnetRegion | X0 | 58 0.009630328 0.011665208 0 0.0253115 | - | eMagnetRegion/Rich1/PipeInRich1/lvUX851InRich1AfterSubM | mm | 2 4.6209344e-14 5.9845133e-18 4.6203359e-14 4.6215329e- | - | eMagnetRegion/Rich1/PipeInRich1/lvUX851InRich1AfterSubM | X0 | 2 0 0 0 | - | BeforeMagnetRegion/Rich1/lvRich1Master | mm | 139109 231.53108 329.07527 0.00046742038 1020.19 | - | BeforeMagnetRegion/Rich1/lvRich1Master | X0 | 139109 2.8215869 4.1165214 0 12.7085 | - | BeforeMagnetRegion/Rich1/lvRich1Mirror1Master | mm | 11892 2.8763705 1.8826035 0.00018851125 8.60407 | - | BeforeMagnetRegion/Rich1/lvRich1Mirror1Master | X0 | 11892 0.00019055752 0.00032538083 0 0.000913915 | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | mm | 237631 30.920816 46.956389 0.0018562725 315.355 | - | BeforeMagnetRegion/Rich1/lvRich1SubMaster | X0 | 237631 0.082509816 0.13572856 0 7.6814 | - | BeforeMagnetRegion/UT/Staves/lvCableL | mm | 11 0.16593355 0.0016562807 0.16278305 0.168443 | - | BeforeMagnetRegion/UT/Staves/lvCableL | X0 | 11 0.00060857085 6.074505e-06 0.0005970162 0.000617776 | - | BeforeMagnetRegion/UT/Staves/lvCableM | mm | 127 0.17142615 0.015862076 0.13315313 0.331732 | - | BeforeMagnetRegion/UT/Staves/lvCableM | X0 | 127 0.00062871527 5.8175078e-05 0.00048834679 0.00121664 | - | BeforeMagnetRegion/UT/Staves/lvCableS | mm | 112 0.17071342 0.0057668163 0.16278305 0.210293 | - | BeforeMagnetRegion/UT/Staves/lvCableS | X0 | 112 0.00062610129 2.1150131e-05 0.0005970162 0.000771264 | - | BeforeMagnetRegion/VP/PipeSections/lvVeloDownStreamPipe | mm | 431 2.6666235e-14 5.4500226e-15 1.7754475e-15 2.8848311e- | - | BeforeMagnetRegion/VP/PipeSections/lvVeloDownStreamPipe | X0 | 431 2.5699344e-16 1.225843e-16 0 3.2532743e- | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxLeft | mm | 55 0.50972109 0.53793944 0.034287989 1.75796 | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxLeft | X0 | 55 0 0 0 | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxRight | mm | 44 0.4678467 0.50597694 0.027378903 1.75760 | - | BeforeMagnetRegion/VP/RFBox/lvRFBoxRight | X0 | 44 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilCompTnTUnit | mm | 4398279 0.016328411 0.071705589 6.2996915e-13 5.02769 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilCompTnTUnit | X0 | 4398279 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter10 | mm | 150 0.18621202 0.22890217 0.00019080113 0.981920 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter10 | X0 | 150 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter11 | mm | 193 0.18065241 0.24057904 0.00074558993 0.984250 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter11 | X0 | 193 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter12 | mm | 146 0.26692063 0.30237735 0.0013192214 0.987600 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter12 | X0 | 146 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter13 | mm | 153 0.21107838 0.25148966 0.0015799506 0.98479 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter13 | X0 | 153 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter14 | mm | 146 0.24165017 0.23959617 0.0053556045 0.986154 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter14 | X0 | 146 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter15 | mm | 152 0.22847937 0.23616131 0.0067703181 0.983873 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter15 | X0 | 152 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter16 | mm | 120 0.26668912 0.28255696 0.0016554006 0.986222 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter16 | X0 | 120 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter17 | mm | 128 0.30963164 0.32691033 0.0033048353 0.983065 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter17 | X0 | 128 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter18 | mm | 2124 0.45298759 1.1352414 9.727334e-05 18.9754 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter18 | X0 | 2124 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter19 | mm | 3530 0.55969331 1.8526416 7.3830461e-06 50.9822 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter19 | X0 | 3530 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter20 | mm | 4292 0.6295278 2.0148429 3.3497502e-05 42.6581 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter20 | X0 | 4292 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter21 | mm | 3634 0.63752254 1.758473 5.4157466e-05 30.7006 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter21 | X0 | 3634 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter22 | mm | 1007 0.71349382 1.6308787 0.00026601559 18.7227 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter22 | X0 | 1007 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter23 | mm | 800 0.72116284 1.9400682 0.00085605665 25.9802 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter23 | X0 | 800 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter24 | mm | 717 0.94366909 2.3627566 0.0002906313 24.6840 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter24 | X0 | 717 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter3 | mm | 50 0.26624466 0.36836841 0.0013428796 1.89242 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter3 | X0 | 50 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter4 | mm | 681 0.38517666 1.1912257 0.00016492315 16.4816 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter4 | X0 | 681 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter5 | mm | 44 0.20166343 0.24513387 0.0022114222 0.981331 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter5 | X0 | 44 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter6 | mm | 74 0.20973606 0.24733937 0.002897563 0.981476 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter6 | X0 | 74 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter7 | mm | 90 0.22209208 0.22959904 0.0021505578 0.983388 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter7 | X0 | 90 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter8 | mm | 128 0.2495295 0.3017273 0.006151537 0.98541 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter8 | X0 | 128 0 0 0 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter9 | mm | 171 0.19300402 0.24985965 0.000283708 0.984083 | - | BeforeMagnetRegion/VP/RFFoil/lvRFFoilInter9 | X0 | 171 0 0 0 | - | BeforeMagnetRegion/VP/Supports/lvSupport | mm | 4163 0.18870253 0.14931324 0.00069991236 8.0611 | - | BeforeMagnetRegion/VP/Supports/lvSupport | X0 | 4163 0.00034962438 0.00096603794 6.5094364e-07 0.0577207 | - | BeforeMagnetRegion/VP/VacTank/lvVacTank | mm | 1 99.482914 0 99.482914 99.4829 | - | BeforeMagnetRegion/VP/VacTank/lvVacTank | X0 | 1 0 0 0 | - | BeforeMagnetRegion/VP/lvVP | mm | 5995 0.21977407 2.2137858 1.6599453e-05 57.2945 | - | BeforeMagnetRegion/VP/lvVP | X0 | 5995 0.0060962123 0.0041211517 0 0.0154964 | - | BeforeMagnetRegion/lvBeforeMagnetRegion | mm | 3152383 3.3805664 23.637539 0.00029760146 494.062 | - | BeforeMagnetRegion/lvBeforeMagnetRegion | X0 | 3152383 0.01402796 0.18987055 0 6.17001 | - | DownstreamRegion/NeutronShielding/lvNeutronShielding | mm | 4 0.00016954604 1.662216e-06 0.00016788382 0.000171208 | - | DownstreamRegion/NeutronShielding/lvNeutronShielding | X0 | 4 1.5232556e-06 1.4933879e-08 1.5083218e-06 1.5381895e- | - | LHCb/lvLHCb | mm | 6854 236.44078 232.95899 0.0045939449 557.53 | - | LHCb/lvLHCb | X0 | 6854 0.73060333 0.73572753 0 5.89395 | - | MagnetRegion/BcmDown/lvBcmDownMount | mm | 5 3.9787074 5.5250371 0.83333119 15.015 | - | MagnetRegion/BcmDown/lvBcmDownMount | X0 | 5 0 0 0 | - | gnetRegion/PipeInMagnet/Compensator/lvUX85C2800BellowCR | mm | 1 7.1079402e-15 0 7.1079402e-15 7.1079402e- | - | gnetRegion/PipeInMagnet/Compensator/lvUX85C2800BellowCR | X0 | 1 0 0 0 | - | etRegion/PipeInMagnet/Compensator/lvUX85Compensator2800 | mm | 18 2.6276657e-14 1.3406572e-14 3.5485979e-15 4.4690785e- | - | etRegion/PipeInMagnet/Compensator/lvUX85Compensator2800 | X0 | 18 0 0 0 | - | MagnetRegion/PipeInMagnet/UX852/lvUX852 | mm | 1 2.2774432e-13 0 2.2774432e-13 2.2774432e- | - | MagnetRegion/PipeInMagnet/UX852/lvUX852 | X0 | 1 0 0 0 | - | MagnetRegion/PipeInMagnet/UX852/lvUX852Cone04 | mm | 1 8.5114167e-14 4.5337209e-22 8.5114167e-14 8.5114167e- | - | MagnetRegion/PipeInMagnet/UX852/lvUX852Cone04 | X0 | 1 0 0 0 | - | MagnetRegion/PipeInMagnet/lvUX85InMagnet | mm | 48 8.8886614e-15 2.1856775e-17 8.8806451e-15 9.0274817e- | - | MagnetRegion/PipeInMagnet/lvUX85InMagnet | X0 | 48 0 0 0 | - | egion/PipeSupportsInMagnet/lvUX852CollarForkAttachProng | mm | 2382 0.15640774 0.30337461 0.0084146378 5.47857 | - | egion/PipeSupportsInMagnet/lvUX852CollarForkAttachProng | X0 | 2382 0 0 0 | - | MagnetRegion/PipeSupportsInMagnet/lvUX852FixCollar | mm | 6 1.9168144e-13 1.2416185e-13 4.3978917e-14 3.837863e- | - | MagnetRegion/PipeSupportsInMagnet/lvUX852FixCollar | X0 | 6 0 0 0 | - | Region/PipeSupportsInMagnet/lvUX852FutureFibreCableHead | mm | 80 1.4693521 2.3368257 0.00041035063 6.97121 | - | Region/PipeSupportsInMagnet/lvUX852FutureFibreCableHead | X0 | 80 0.0012429064 0.0027170939 0 0.00935536 | - | eSupportsInMagnet/lvUX852FutureFibreCableHeadWithoutPin | mm | 60 0.32338766 0.87616873 0.0013624547 4.30592 | - | eSupportsInMagnet/lvUX852FutureFibreCableHeadWithoutPin | X0 | 60 0.00043398594 0.0011758176 1.828413e-06 0.00577855 | - | MagnetRegion/PipeSupportsInMagnet/lvUX853FixCollar | mm | 25 11.478989 8.1996683 0.32584053 26.9125 | - | MagnetRegion/PipeSupportsInMagnet/lvUX853FixCollar | X0 | 25 0 0 0 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | mm | 138527 6.428563 9.7366212 6.7500947e-14 38.0942 | - | agnetRegion/PipeSupportsInMagnet/lvUX85SupportsInMagnet | X0 | 138527 0.0016437917 0.012788584 0 0.330763 | - | MagnetRegion/lvMagnetRegion | mm | 142274 0.24328236 0.98852982 8.0025351e-14 12.6701 | - | MagnetRegion/lvMagnetRegion | X0 | 142274 4.9283278e-05 0.00030696061 0 0.0743525 | - -TransportSvc SUCCESS GEOMETRY ERRORS: 'Codes' map has the size 0 - -TransportSvc INFO Reset the static pointer to DetDesc::IGeometyrErrorSvc -ToolSvc INFO Removing all tools created by ToolSvc -TrackResCheckerSeed.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -TrackResCheckerBestForward.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -TrackResCheckerBestLong.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -TrackResCheckerForward.ALL SUCCESS Booked 23 Histogram(s) : 1D=19 2D=4 -SeedTrackChecker_e067be5b.PrChec... SUCCESS Booked 925 Histogram(s) : 1D=682 2D=243 -BestLongTrackChecker_3a419357.Pr... SUCCESS Booked 925 Histogram(s) : 1D=682 2D=243 -MatchTrackChecker_8319528f.PrChe... SUCCESS Booked 925 Histogram(s) : 1D=682 2D=243 -ForwardTrackChecker_22e49d0c.PrC... SUCCESS Booked 925 Histogram(s) : 1D=682 2D=243 -RootCnvSvc INFO Disconnected data IO:0ACB343E-5E02-11EC-9FD8-0C42A132CBA6 [/auto/data/guenther/Bd_Kstee/00151673_00000135_1.xdigi] -RootCnvSvc INFO Disconnected data IO:50B932A6-5DDB-11EC-A1F2-A4BF010F119E [/auto/data/guenther/Bd_Kstee/00151673_00000068_1.xdigi] -RootCnvSvc INFO Disconnected data IO:5CF12ABE-5DD7-11EC-B196-0CC47A50D2CA [/auto/data/guenther/Bd_Kstee/00151673_00000071_1.xdigi] -ChronoStatSvc.finalize() INFO Service finalized successfully -ApplicationMgr INFO Application Manager Finalized successfully -ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/electrons/logs/best_effs_BJpsi_Selection.log b/efficiencies/electrons/logs/best_effs_BJpsi_Selection.log new file mode 100644 index 0000000..6dd101f --- /dev/null +++ b/efficiencies/electrons/logs/best_effs_BJpsi_Selection.log @@ -0,0 +1,433 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/electrons/best_effs_BJpsi_Selection.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Mon Mar 25 10:23:49 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/electrons/best_effs_BJpsi_Selection.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/electrons/best_effs_BJpsi_Selection.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 21493 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 10:24:30 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1794.43, timed 35313 Events: 1944418 ms, Evts/s = 18.1612 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +MatchTrackChecker_48c3b3ec.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_ef6cdb55.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNN_56b83177 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |5.860898e+07 | 2168.9 | + | "#MatchingMLP" | 173559 | 157490.2 | 0.90742 | + | "#MatchingTracks" | 27023 | 173559 | 6.4226 | +PrMatchNN_56b83177.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 168247 | 673174 | 4.0011 | + | "#tracks with hits added" | 168247 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_6f11a32a INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 173559 | 149335 |( 86.04279 +- 0.08318270)% | + | "MC particles per track" | 149335 | 168235 | 1.1266 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 7059265 | 6885105 |( 97.53289 +- 0.005838352)% | + | "MC particles per track" | 6885105 | 6916103 | 1.0045 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_6009a27e INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 173559 | 6.4226 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +ApplicationMgr INFO Application Manager Stopped successfully +MatchTrackChecker_48c3b3ec INFO Results +MatchTrackChecker_48c3b3ec INFO **** Match 173559 tracks including 24224 ghosts [13.96 %], Event average 10.18 % **** +MatchTrackChecker_48c3b3ec INFO 01_long : 0 from 1811265 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 02_long_P>5GeV : 0 from 1172326 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 03_long_strange : 0 from 98994 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 04_long_strange_P>5GeV : 0 from 46918 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 05_long_fromB : 0 from 94402 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 05_long_fromD : 0 from 50932 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 06_long_fromB_P>5GeV : 0 from 71030 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 06_long_fromD_P>5GeV : 0 from 35044 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 07_long_electrons : 141943 from 181213 [ 78.33 %] 2331 clones [ 1.62 %], purity: 97.66 %, hitEff: 98.06 % +MatchTrackChecker_48c3b3ec INFO 07_long_electrons_pairprod : 96344 from 130212 [ 73.99 %] 1663 clones [ 1.70 %], purity: 97.04 %, hitEff: 97.74 % +MatchTrackChecker_48c3b3ec INFO 08_long_fromB_electrons : 42999 from 48919 [ 87.90 %] 646 clones [ 1.48 %], purity: 98.97 %, hitEff: 98.85 % +MatchTrackChecker_48c3b3ec INFO 09_long_fromB_electrons_P>5GeV : 40248 from 44696 [ 90.05 %] 622 clones [ 1.52 %], purity: 99.06 %, hitEff: 99.00 % +MatchTrackChecker_48c3b3ec INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 61675 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38921 from 42838 [ 90.86 %] 589 clones [ 1.49 %], purity: 99.15 %, hitEff: 98.98 % +MatchTrackChecker_48c3b3ec INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 28214 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 24129 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 61506 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO +MatchUTHitsChecker_ef6cdb55 INFO Results +MatchUTHitsChecker_ef6cdb55 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_6009a27e/OutputTracksLocation **** 24224 ghost, 3.71 UT per track +MatchUTHitsChecker_ef6cdb55 INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_ad9abe4e INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_ad9abe4e INFO +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 7059265 tracks including 174160 ghosts [ 2.47 %], Event average 2.56 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 3088200 from 3153550 [ 97.93 %] 47327 clones [ 1.51 %], purity: 99.62 %, hitEff: 95.63 %, hitEffFirst3: 95.51 %, hitEffLast: 95.34 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 1796773 from 1811265 [ 99.20 %] 18312 clones [ 1.01 %], purity: 99.71 %, hitEff: 96.60 %, hitEffFirst3: 96.49 %, hitEffLast: 96.44 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 1166697 from 1172326 [ 99.52 %] 9016 clones [ 0.77 %], purity: 99.71 %, hitEff: 97.01 %, hitEffFirst3: 96.86 %, hitEffLast: 96.95 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 95149 from 98994 [ 96.12 %] 902 clones [ 0.94 %], purity: 99.18 %, hitEff: 96.15 %, hitEffFirst3: 96.25 %, hitEffLast: 95.18 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 45287 from 46918 [ 96.52 %] 289 clones [ 0.63 %], purity: 99.03 %, hitEff: 96.85 %, hitEffFirst3: 96.96 %, hitEffLast: 96.05 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 93725 from 94402 [ 99.28 %] 855 clones [ 0.90 %], purity: 99.69 %, hitEff: 96.64 %, hitEffFirst3: 96.53 %, hitEffLast: 96.48 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 50520 from 50932 [ 99.19 %] 523 clones [ 1.02 %], purity: 99.67 %, hitEff: 96.54 %, hitEffFirst3: 96.41 %, hitEffLast: 96.37 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 70725 from 71030 [ 99.57 %] 496 clones [ 0.70 %], purity: 99.70 %, hitEff: 96.97 %, hitEffFirst3: 96.87 %, hitEffLast: 96.84 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 34866 from 35044 [ 99.49 %] 267 clones [ 0.76 %], purity: 99.68 %, hitEff: 96.93 %, hitEffFirst3: 96.82 %, hitEffLast: 96.80 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 174045 from 181213 [ 96.04 %] 3111 clones [ 1.76 %], purity: 98.10 %, hitEff: 94.64 %, hitEffFirst3: 93.13 %, hitEffLast: 94.83 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 47652 from 48919 [ 97.41 %] 765 clones [ 1.58 %], purity: 99.20 %, hitEff: 96.20 %, hitEffFirst3: 95.93 %, hitEffLast: 96.12 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 43877 from 44696 [ 98.17 %] 720 clones [ 1.61 %], purity: 99.30 %, hitEff: 96.30 %, hitEffFirst3: 96.15 %, hitEffLast: 96.17 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 61365 from 61675 [ 99.50 %] 372 clones [ 0.60 %], purity: 99.72 %, hitEff: 96.98 %, hitEffFirst3: 96.88 %, hitEffLast: 96.84 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 42320 from 42838 [ 98.79 %] 676 clones [ 1.57 %], purity: 99.38 %, hitEff: 96.39 %, hitEffFirst3: 96.31 %, hitEffLast: 96.22 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 28057 from 28214 [ 99.44 %] 178 clones [ 0.63 %], purity: 99.68 %, hitEff: 96.94 %, hitEffFirst3: 96.85 %, hitEffLast: 96.77 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 22890 from 24129 [ 94.87 %] 122 clones [ 0.53 %], purity: 98.78 %, hitEff: 96.86 %, hitEffFirst3: 96.60 %, hitEffLast: 96.63 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 61198 from 61506 [ 99.50 %] 372 clones [ 0.60 %], purity: 99.71 %, hitEff: 96.98 %, hitEffFirst3: 96.88 %, hitEffLast: 96.84 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.84443 +/- 0.0113277 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 269.457 +/- 0.78357 (min: 4, max: 396) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 1897.605 | 53721.516 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1149.091 | 32530.946 | + | "SeedTrackChecker_ad9abe4e" | 27023 | 167.320 | 6191.757 | + | "VeloTrackChecker_e83d0cf5" | 27023 | 165.589 | 6127.687 | + | "MatchTrackChecker_48c3b3ec" | 27023 | 133.699 | 4947.608 | + | "MatchUTHitsChecker_ef6cdb55" | 27023 | 56.869 | 2104.481 | + | "PrMatchNN_56b83177" | 27023 | 50.967 | 1886.066 | + | "PrHybridSeeding_4d0337cc" | 27023 | 42.042 | 1555.791 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 32.373 | 1197.966 | + | "Unpack__Event_MC_Vertices" | 27023 | 26.130 | 966.961 | + | "Unpack__Event_MC_Particles" | 27023 | 24.689 | 913.612 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.386 | 347.338 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.368 | 272.651 | + | "VPClusFull_38754d8c" | 27023 | 6.954 | 257.333 | + | "PrStoreUTHit_6220b56a" | 27023 | 6.168 | 228.240 | + | "PrStorePrUTHits_df75b912" | 27023 | 4.402 | 162.893 | + | "PrTrackAssociator_d68377ee" | 27023 | 3.329 | 123.201 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.138 | 116.138 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.404 | 88.970 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.511 | 55.909 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.423 | 52.672 | + | "FTRawBankDecoder" | 27023 | 0.768 | 28.411 | + | "PrTrackAssociator_6f11a32a" | 27023 | 0.557 | 20.617 | + | "fromPrMatchTracksV1Tracks_6009a27e" | 27023 | 0.354 | 13.107 | + | "UnpackRawEvent_UT" | 35323 | 0.344 | 9.745 | + | "Decode_ODIN" | 27023 | 0.091 | 3.356 | + | "reserveIOV" | 27023 | 0.080 | 2.975 | + | "DefaultGECFilter" | 35323 | 0.080 | 2.263 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.063 | 2.339 | + | "UnpackRawEvent_VP" | 27023 | 0.060 | 2.234 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.056 | 1.576 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.056 | 2.055 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.049 | 1.797 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.047 | 1.736 | + | "DummyEventTime" | 27023 | 0.047 | 1.732 | + | "UnpackRawEvent_ODIN" | 27023 | 0.045 | 1.651 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.030 | 1.102 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.027 | 1.007 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_48c3b3ec #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_ef6cdb55 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_ef6cdb55.PrCh... SUCCESS Booked 28 Histogram(s) : 1D=24 2D=4 +MatchTrackChecker_48c3b3ec.PrChe... SUCCESS Booked 545 Histogram(s) : 1D=386 2D=159 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/logs/match_effs_testJpsi_EDef_yCorrCut.log b/efficiencies/electrons/logs/best_effs_testJpsi_EDef.log similarity index 59% rename from efficiencies/logs/match_effs_testJpsi_EDef_yCorrCut.log rename to efficiencies/electrons/logs/best_effs_testJpsi_EDef.log index 39e7c2a..919b765 100644 --- a/efficiencies/logs/match_effs_testJpsi_EDef_yCorrCut.log +++ b/efficiencies/electrons/logs/best_effs_testJpsi_EDef.log @@ -1,5 +1,5 @@ # setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' /***** User ApplicationOptions/ApplicationOptions ************************************************** |-append_decoding_keys_to_output_manifest = True (default: True) |-auditors = [] (default: []) @@ -28,8 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef_yCorrCut.root' -| (default: '') +|-ntuple_file = 'data/best_effs_testJpsi.root' (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) |-output_manifest_file = '' (default: '') @@ -47,11 +46,11 @@ |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- # Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 06:55:28 2024 + running on lhcba2 on Mon Mar 25 06:09:52 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,15 +66,15 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef_yCorrCut.root as FILE1 +NTupleSvc INFO Added stream file:data/best_effs_testJpsi.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef_yCorrCut.root +RootHistSvc INFO Writing ROOT histograms to: data/best_effs_testJpsi.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 19554 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 19458 ms ApplicationMgr INFO Application Manager Initialized successfully ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc @@ -85,46 +84,24 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 06:56:06 +HLTControlFlowMgr INFO Timing started at: 06:10:30 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1793.25, timed 2945 Events: 156287 ms, Evts/s = 18.8435 +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1781.05, timed 2945 Events: 150713 ms, Evts/s = 19.5405 DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 2955 | | "Nb events removed" | 666 | -ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 4 | HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 2955 | -MatchTrackChecker_386d067b.LoKi:... INFO Number of counters : 1 +MatchTrackChecker_34346db5.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_a4d04726.LoKi... INFO Number of counters : 1 +MatchUTHitsChecker_f9e695a5.LoKi... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 4 | -PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 2289 | 363254 | 158.70 | - | "Created long tracks" | 2289 | 181236 | 79.177 | - | "Input tracks" | 2289 | 380749 | 166.34 | - | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | - | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | - | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | - | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | - | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | - | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | - | "Removed duplicates" | 2289 | 9647 | 4.2145 | -PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 166072 | 673152 | 4.0534 | - | "#tracks with hits added" | 166072 | PrHybridSeeding_4d0337cc INFO Number of counters : 21 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | @@ -151,15 +128,15 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_d80b5038 INFO Number of counters : 3 +PrMatchNN_7913ac48 INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8439531 | 3687.0 | - | "#MatchingMLP" | 212505 | 194680.2 | 0.91612 | - | "#MatchingTracks" | 2289 | 212505 | 92.837 | -PrMatchNN_d80b5038.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 2289 | 4892713 | 2137.5 | + | "#MatchingMLP" | 235461 | 201770.7 | 0.85692 | + | "#MatchingTracks" | 2289 | 235461 | 102.87 | +PrMatchNN_7913ac48.PrAddUTHitsTool INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 186132 | 741761 | 3.9851 | - | "#tracks with hits added" | 186132 | + | "#UT hits added" | 201139 | 796105 | 3.9580 | + | "#tracks with hits added" | 201139 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | @@ -197,14 +174,14 @@ PrTrackAssociator_16ad4612 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | | "MC particles per track" | 279294 | 279304 | 1.0000 | -PrTrackAssociator_3adf94fb INFO Number of counters : 2 +PrTrackAssociator_d68377ee INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | - | "MC particles per track" | 155077 | 181813 | 1.1724 | -PrTrackAssociator_8c8024ec INFO Number of counters : 2 + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | +PrTrackAssociator_f40ef39f INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 212505 | 149408 |( 70.30799 +- 0.09911458)% | - | "MC particles per track" | 149408 | 174321 | 1.1667 | + |*"Efficiency" | 235461 | 156155 |( 66.31884 +- 0.09739855)% | + | "MC particles per track" | 156155 | 182926 | 1.1714 | SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | @@ -212,12 +189,12 @@ VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | -fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_aaf8b514 INFO Number of counters : 1 + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_2bb3fcb5 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 212505 | 92.837 | + | "Nb of converted Tracks" | 2289 | 235461 | 102.87 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | @@ -225,68 +202,37 @@ fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | ApplicationMgr INFO Application Manager Stopped successfully -ForwardTrackChecker_482fda95 INFO Results -ForwardTrackChecker_482fda95 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** -ForwardTrackChecker_482fda95 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % -ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % -ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % -ForwardTrackChecker_482fda95 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % -ForwardTrackChecker_482fda95 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % -ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % -ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % -ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % -ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO -ForwardUTHitsChecker_fe9d9ac2 INFO Results -ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 26159 ghost, 2.61 UT per track -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :134215 tr 3.91 from 4.07 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :132800 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV : 92174 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT : 90908 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4919 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO -MatchTrackChecker_386d067b INFO Results -MatchTrackChecker_386d067b INFO **** Match 212505 tracks including 63097 ghosts [29.69 %], Event average 27.13 % **** -MatchTrackChecker_386d067b INFO 01_long : 128320 from 152279 [ 84.27 %] 760 clones [ 0.59 %], purity: 99.35 %, hitEff: 98.72 % -MatchTrackChecker_386d067b INFO 02_long_P>5GeV : 89484 from 98421 [ 90.92 %] 445 clones [ 0.49 %], purity: 99.46 %, hitEff: 99.26 % -MatchTrackChecker_386d067b INFO 03_long_strange : 6037 from 8121 [ 74.34 %] 28 clones [ 0.46 %], purity: 99.00 %, hitEff: 98.34 % -MatchTrackChecker_386d067b INFO 04_long_strange_P>5GeV : 3399 from 3856 [ 88.15 %] 12 clones [ 0.35 %], purity: 99.18 %, hitEff: 99.23 % -MatchTrackChecker_386d067b INFO 05_long_fromB : 7016 from 7959 [ 88.15 %] 48 clones [ 0.68 %], purity: 99.46 %, hitEff: 98.89 % -MatchTrackChecker_386d067b INFO 05_long_fromD : 3661 from 4226 [ 86.63 %] 17 clones [ 0.46 %], purity: 99.39 %, hitEff: 98.78 % -MatchTrackChecker_386d067b INFO 06_long_fromB_P>5GeV : 5573 from 5983 [ 93.15 %] 28 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.25 % -MatchTrackChecker_386d067b INFO 06_long_fromD_P>5GeV : 2679 from 2894 [ 92.57 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.24 % -MatchTrackChecker_386d067b INFO 07_long_electrons : 11295 from 15125 [ 74.68 %] 166 clones [ 1.45 %], purity: 97.81 %, hitEff: 98.20 % -MatchTrackChecker_386d067b INFO 07_long_electrons_pairprod : 7537 from 10831 [ 69.59 %] 131 clones [ 1.71 %], purity: 97.18 %, hitEff: 97.90 % -MatchTrackChecker_386d067b INFO 08_long_fromB_electrons : 3591 from 4210 [ 85.30 %] 38 clones [ 1.05 %], purity: 99.09 %, hitEff: 98.91 % -MatchTrackChecker_386d067b INFO 09_long_fromB_electrons_P>5GeV : 3376 from 3850 [ 87.69 %] 36 clones [ 1.06 %], purity: 99.17 %, hitEff: 99.03 % -MatchTrackChecker_386d067b INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4829 from 5182 [ 93.19 %] 27 clones [ 0.56 %], purity: 99.65 %, hitEff: 99.14 % -MatchTrackChecker_386d067b INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3258 from 3659 [ 89.04 %] 33 clones [ 1.00 %], purity: 99.25 %, hitEff: 99.03 % -MatchTrackChecker_386d067b INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2178 from 2343 [ 92.96 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.13 % -MatchTrackChecker_386d067b INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1768 from 2010 [ 87.96 %] 6 clones [ 0.34 %], purity: 99.51 %, hitEff: 99.00 % -MatchTrackChecker_386d067b INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4817 from 5164 [ 93.28 %] 27 clones [ 0.56 %], purity: 99.65 %, hitEff: 99.14 % -MatchTrackChecker_386d067b INFO -MatchUTHitsChecker_a4d04726 INFO Results -MatchUTHitsChecker_a4d04726 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_aaf8b514/OutputTracksLocation **** 63097 ghost, 2.51 UT per track -MatchUTHitsChecker_a4d04726 INFO 01_long :129080 tr 3.90 from 4.08 mcUT [ 95.6 %] 0.13 ghost hits on real tracks [ 3.1 %] -MatchUTHitsChecker_a4d04726 INFO 01_long >3UT :127762 tr 3.93 from 4.10 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] -MatchUTHitsChecker_a4d04726 INFO 02_long_P>5GeV : 89929 tr 3.95 from 4.08 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.4 %] -MatchUTHitsChecker_a4d04726 INFO 02_long_P>5GeV >3UT : 88789 tr 3.99 from 4.11 mcUT [ 97.1 %] 0.09 ghost hits on real tracks [ 2.2 %] -MatchUTHitsChecker_a4d04726 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4856 tr 3.99 from 4.07 mcUT [ 98.1 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4834 tr 4.01 from 4.08 mcUT [ 98.2 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4844 tr 4.00 from 4.08 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4834 tr 4.01 from 4.08 mcUT [ 98.2 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO +MatchTrackChecker_34346db5 INFO Results +MatchTrackChecker_34346db5 INFO **** Match 235461 tracks including 79306 ghosts [33.68 %], Event average 31.10 % **** +MatchTrackChecker_34346db5 INFO 01_long : 133014 from 152279 [ 87.35 %] 839 clones [ 0.63 %], purity: 99.33 %, hitEff: 98.64 % +MatchTrackChecker_34346db5 INFO 02_long_P>5GeV : 90892 from 98421 [ 92.35 %] 476 clones [ 0.52 %], purity: 99.45 %, hitEff: 99.23 % +MatchTrackChecker_34346db5 INFO 03_long_strange : 6439 from 8121 [ 79.29 %] 34 clones [ 0.53 %], purity: 98.98 %, hitEff: 98.25 % +MatchTrackChecker_34346db5 INFO 04_long_strange_P>5GeV : 3459 from 3856 [ 89.70 %] 14 clones [ 0.40 %], purity: 99.18 %, hitEff: 99.22 % +MatchTrackChecker_34346db5 INFO 05_long_fromB : 7182 from 7959 [ 90.24 %] 50 clones [ 0.69 %], purity: 99.45 %, hitEff: 98.87 % +MatchTrackChecker_34346db5 INFO 05_long_fromD : 3776 from 4226 [ 89.35 %] 19 clones [ 0.50 %], purity: 99.38 %, hitEff: 98.75 % +MatchTrackChecker_34346db5 INFO 06_long_fromB_P>5GeV : 5623 from 5983 [ 93.98 %] 28 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.25 % +MatchTrackChecker_34346db5 INFO 06_long_fromD_P>5GeV : 2714 from 2894 [ 93.78 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.23 % +MatchTrackChecker_34346db5 INFO 07_long_electrons : 11596 from 15125 [ 76.67 %] 176 clones [ 1.50 %], purity: 97.78 %, hitEff: 98.15 % +MatchTrackChecker_34346db5 INFO 07_long_electrons_pairprod : 7778 from 10831 [ 71.81 %] 137 clones [ 1.73 %], purity: 97.15 %, hitEff: 97.85 % +MatchTrackChecker_34346db5 INFO 08_long_fromB_electrons : 3636 from 4210 [ 86.37 %] 43 clones [ 1.17 %], purity: 99.08 %, hitEff: 98.89 % +MatchTrackChecker_34346db5 INFO 09_long_fromB_electrons_P>5GeV : 3413 from 3850 [ 88.65 %] 40 clones [ 1.16 %], purity: 99.17 %, hitEff: 99.00 % +MatchTrackChecker_34346db5 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4881 from 5182 [ 94.19 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.13 % +MatchTrackChecker_34346db5 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3294 from 3659 [ 90.02 %] 37 clones [ 1.11 %], purity: 99.25 %, hitEff: 99.00 % +MatchTrackChecker_34346db5 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2211 from 2343 [ 94.37 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.12 % +MatchTrackChecker_34346db5 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1804 from 2010 [ 89.75 %] 6 clones [ 0.33 %], purity: 99.52 %, hitEff: 98.98 % +MatchTrackChecker_34346db5 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4869 from 5164 [ 94.29 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.13 % +MatchTrackChecker_34346db5 INFO +MatchUTHitsChecker_f9e695a5 INFO Results +MatchUTHitsChecker_f9e695a5 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_2bb3fcb5/OutputTracksLocation **** 79306 ghost, 2.40 UT per track +MatchUTHitsChecker_f9e695a5 INFO 01_long :133853 tr 3.88 from 4.08 mcUT [ 95.2 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_f9e695a5 INFO 01_long >3UT :132459 tr 3.92 from 4.10 mcUT [ 95.5 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_f9e695a5 INFO 02_long_P>5GeV : 91368 tr 3.93 from 4.08 mcUT [ 96.4 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_f9e695a5 INFO 02_long_P>5GeV >3UT : 90167 tr 3.98 from 4.11 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_f9e695a5 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4908 tr 3.98 from 4.07 mcUT [ 97.7 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_f9e695a5 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4886 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_f9e695a5 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4896 tr 3.99 from 4.08 mcUT [ 97.8 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_f9e695a5 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4886 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_f9e695a5 INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % @@ -307,70 +253,84 @@ SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % SeedTrackChecker_ad9abe4e INFO -HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.039102 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 347.612 +/- 3.41441 (min: 4, max: 489) requests were served +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 153.574 | 51970.798 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 89.274 | 30211.268 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 12.942 | 5653.928 | - | "ForwardTrackChecker_482fda95" | 2289 | 12.018 | 5250.359 | - | "MatchTrackChecker_386d067b" | 2289 | 10.759 | 4700.275 | - | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 4.756 | 2077.710 | - | "MatchUTHitsChecker_a4d04726" | 2289 | 4.721 | 2062.669 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.378 | 1912.819 | - | "PrHybridSeeding_4d0337cc" | 2289 | 3.278 | 1432.022 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.506 | 1094.586 | - | "Unpack__Event_MC_Vertices" | 2289 | 1.996 | 872.057 | - | "Unpack__Event_MC_Particles" | 2289 | 1.915 | 836.722 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.728 | 318.014 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.572 | 250.069 | - | "VPClusFull_38754d8c" | 2289 | 0.544 | 237.763 | - | "PrMatchNN_d80b5038" | 2289 | 0.471 | 205.633 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.467 | 204.202 | - | "PrTrackAssociator_8c8024ec" | 2289 | 0.374 | 163.572 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.373 | 162.935 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.344 | 150.391 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.254 | 111.073 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.194 | 84.790 | - | "fromPrMatchTracksV1Tracks_aaf8b514" | 2289 | 0.182 | 79.321 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.136 | 59.378 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.121 | 52.924 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.113 | 49.523 | - | "FTRawBankDecoder" | 2289 | 0.060 | 26.183 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.024 | 8.211 | - | "reserveIOV" | 2289 | 0.021 | 9.147 | - | "Decode_ODIN" | 2289 | 0.006 | 2.807 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.006 | 2.481 | - | "DefaultGECFilter" | 2955 | 0.006 | 1.918 | - | "UnpackRawEvent_UT" | 2955 | 0.004 | 1.473 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.836 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.004 | 1.737 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.674 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.660 | - | "DummyEventTime" | 2289 | 0.004 | 1.606 | - | "UnpackRawEvent_VP" | 2289 | 0.003 | 1.453 | - | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.339 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 0.966 | + | Sum of all Algorithms | 2955 | 148.062 | 50105.564 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 90.325 | 30566.909 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 13.139 | 5740.172 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 12.925 | 5646.524 | + | "MatchTrackChecker_34346db5" | 2289 | 12.260 | 5356.010 | + | "MatchUTHitsChecker_f9e695a5" | 2289 | 4.946 | 2160.915 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.256 | 1422.593 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.505 | 1094.544 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.002 | 874.701 | + | "Unpack__Event_MC_Particles" | 2289 | 1.897 | 828.763 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.717 | 313.423 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.570 | 249.195 | + | "VPClusFull_38754d8c" | 2289 | 0.536 | 234.253 | + | "PrMatchNN_7913ac48" | 2289 | 0.488 | 213.407 | + | "PrTrackAssociator_f40ef39f" | 2289 | 0.459 | 200.429 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.444 | 194.094 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.329 | 143.623 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.263 | 115.009 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.242 | 105.941 | + | "fromPrMatchTracksV1Tracks_2bb3fcb5" | 2289 | 0.201 | 87.707 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.182 | 79.435 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.111 | 48.623 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.110 | 47.930 | + | "FTRawBankDecoder" | 2289 | 0.059 | 25.802 | + | "UnpackRawEvent_UT" | 2955 | 0.025 | 8.303 | + | "reserveIOV" | 2289 | 0.021 | 9.010 | + | "Decode_ODIN" | 2289 | 0.006 | 2.566 | + | "DefaultGECFilter" | 2955 | 0.005 | 1.852 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.005 | 2.098 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.904 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.004 | 1.407 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.004 | 1.758 | + | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.745 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.587 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.003 | 1.519 | + | "DummyEventTime" | 2289 | 0.003 | 1.403 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.002 | 0.985 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.002 | 0.950 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: hlt2_matching_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - NONLAZY_OR: hlt2_matching_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrMatchNN/PrMatchNN_d80b5038 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_386d067b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_a4d04726 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_34346db5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_f9e695a5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_a4d04726.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -MatchTrackChecker_386d067b.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_f9e695a5.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_34346db5.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] diff --git a/efficiencies/electrons/logs/best_effs_testJpsi_Selection.log b/efficiencies/electrons/logs/best_effs_testJpsi_Selection.log new file mode 100644 index 0000000..c6c0491 --- /dev/null +++ b/efficiencies/electrons/logs/best_effs_testJpsi_Selection.log @@ -0,0 +1,330 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = 'data/best_effs_testJpsi.root' (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Mon Mar 25 10:26:55 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:data/best_effs_testJpsi.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: data/best_effs_testJpsi.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 23615 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 10:27:40 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1787.86, timed 2945 Events: 174185 ms, Evts/s = 16.9073 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 2955 | + | "Nb events removed" | 666 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 2955 | +MatchTrackChecker_48c3b3ec.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_ef6cdb55.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | + | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | + | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | + | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | + | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | + | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | + | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | + | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | + | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | + | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | + | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | + | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | + | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | + | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | +PrMatchNN_56b83177 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 2289 | 4892713 | 2137.5 | + | "#MatchingMLP" | 14545 | 13222.72 | 0.90909 | + | "#MatchingTracks" | 2289 | 14545 | 6.3543 | +PrMatchNN_56b83177.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 14106 | 56624 | 4.0142 | + | "#tracks with hits added" | 14106 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | + | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | + | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | + | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | + | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | + | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | + | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | + | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | + | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | + | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | + | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | + | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | + | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | + | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | + | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | + | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | + | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | + | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | + | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | + | "MC particles per track" | 279294 | 279304 | 1.0000 | +PrTrackAssociator_6f11a32a INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 14545 | 12509 |( 86.00206 +- 0.2876932)% | + | "MC particles per track" | 12509 | 14080 | 1.1256 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | + | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_6009a27e INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 14545 | 6.3543 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | +ApplicationMgr INFO Application Manager Stopped successfully +MatchTrackChecker_48c3b3ec INFO Results +MatchTrackChecker_48c3b3ec INFO **** Match 14545 tracks including 2036 ghosts [14.00 %], Event average 10.31 % **** +MatchTrackChecker_48c3b3ec INFO 01_long : 0 from 152279 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 02_long_P>5GeV : 0 from 98421 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 03_long_strange : 0 from 8121 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 04_long_strange_P>5GeV : 0 from 3856 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 05_long_fromB : 0 from 7959 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 05_long_fromD : 0 from 4226 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 06_long_fromB_P>5GeV : 0 from 5983 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 06_long_fromD_P>5GeV : 0 from 2894 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 07_long_electrons : 11911 from 15125 [ 78.75 %] 192 clones [ 1.59 %], purity: 97.67 %, hitEff: 98.11 % +MatchTrackChecker_48c3b3ec INFO 07_long_electrons_pairprod : 8023 from 10831 [ 74.07 %] 147 clones [ 1.80 %], purity: 97.03 %, hitEff: 97.81 % +MatchTrackChecker_48c3b3ec INFO 08_long_fromB_electrons : 3693 from 4210 [ 87.72 %] 46 clones [ 1.23 %], purity: 99.04 %, hitEff: 98.86 % +MatchTrackChecker_48c3b3ec INFO 09_long_fromB_electrons_P>5GeV : 3467 from 3850 [ 90.05 %] 43 clones [ 1.23 %], purity: 99.13 %, hitEff: 98.98 % +MatchTrackChecker_48c3b3ec INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5182 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3341 from 3659 [ 91.31 %] 40 clones [ 1.18 %], purity: 99.21 %, hitEff: 98.98 % +MatchTrackChecker_48c3b3ec INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 2343 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 2010 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5164 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_48c3b3ec INFO +MatchUTHitsChecker_ef6cdb55 INFO Results +MatchUTHitsChecker_ef6cdb55 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_6009a27e/OutputTracksLocation **** 2036 ghost, 3.74 UT per track +MatchUTHitsChecker_ef6cdb55 INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % +SeedTrackChecker_ad9abe4e INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % +SeedTrackChecker_ad9abe4e INFO +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 2955 | 171.030 | 57878.151 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 100.999 | 34179.047 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 15.672 | 6846.566 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 15.553 | 6794.470 | + | "MatchTrackChecker_48c3b3ec" | 2289 | 12.537 | 5477.168 | + | "MatchUTHitsChecker_ef6cdb55" | 2289 | 5.336 | 2331.183 | + | "PrMatchNN_56b83177" | 2289 | 4.665 | 2037.877 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.918 | 1711.638 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 3.037 | 1326.937 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.436 | 1064.142 | + | "Unpack__Event_MC_Particles" | 2289 | 2.305 | 1006.903 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.877 | 383.128 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.692 | 302.428 | + | "VPClusFull_38754d8c" | 2289 | 0.653 | 285.372 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.572 | 250.069 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.404 | 176.388 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.312 | 136.088 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.293 | 127.967 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.223 | 97.564 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.140 | 61.157 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.132 | 57.817 | + | "FTRawBankDecoder" | 2289 | 0.072 | 31.408 | + | "PrTrackAssociator_6f11a32a" | 2289 | 0.053 | 22.959 | + | "fromPrMatchTracksV1Tracks_6009a27e" | 2289 | 0.032 | 14.110 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.032 | 10.770 | + | "reserveIOV" | 2289 | 0.025 | 11.126 | + | "Decode_ODIN" | 2289 | 0.007 | 3.168 | + | "DefaultGECFilter" | 2955 | 0.007 | 2.342 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.006 | 2.707 | + | "UnpackRawEvent_VP" | 2289 | 0.006 | 2.462 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.005 | 2.377 | + | "UnpackRawEvent_UT" | 2955 | 0.005 | 1.781 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.005 | 2.202 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.005 | 2.118 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.698 | + | "DummyEventTime" | 2289 | 0.004 | 1.637 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.003 | 1.247 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.003 | 1.198 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_48c3b3ec #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_ef6cdb55 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_ef6cdb55.PrCh... SUCCESS Booked 28 Histogram(s) : 1D=24 2D=4 +MatchTrackChecker_48c3b3ec.PrChe... SUCCESS Booked 545 Histogram(s) : 1D=386 2D=159 +RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/electrons/logs/best_effs_testJpsi_TSelection.log b/efficiencies/electrons/logs/best_effs_testJpsi_TSelection.log new file mode 100644 index 0000000..658b1e0 --- /dev/null +++ b/efficiencies/electrons/logs/best_effs_testJpsi_TSelection.log @@ -0,0 +1,334 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = 'data/best_effs_testJpsi.root' (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Mon Mar 25 06:42:26 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:data/best_effs_testJpsi.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: data/best_effs_testJpsi.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 18794 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 06:43:02 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1782.73, timed 2945 Events: 149518 ms, Evts/s = 19.6966 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 2955 | + | "Nb events removed" | 666 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 2955 | +MatchTrackChecker_6ac1c49b.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_cfd79599.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | + | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | + | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | + | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | + | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | + | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | + | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | + | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | + | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | + | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | + | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | + | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | + | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | + | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | +PrMatchNN_aa5e43f9 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 2289 | 4892713 | 2137.5 | + | "#MatchingMLP" | 30577 | 23618.56 | 0.77243 | + | "#MatchingTracks" | 2289 | 30577 | 13.358 | +PrMatchNN_aa5e43f9.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 27485 | 105193 | 3.8273 | + | "#tracks with hits added" | 27485 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | + | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | + | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | + | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | + | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | + | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | + | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | + | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | + | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | + | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | + | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | + | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | + | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | + | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | + | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | + | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | + | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | + | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | + | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | + | "MC particles per track" | 279294 | 279304 | 1.0000 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | +PrTrackAssociator_eb439d03 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 30577 | 12510 |( 40.91310 +- 0.2811767)% | + | "MC particles per track" | 12510 | 14081 | 1.1256 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | + | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_115c6f8e INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 30577 | 13.358 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | +ApplicationMgr INFO Application Manager Stopped successfully +MatchTrackChecker_6ac1c49b INFO Results +MatchTrackChecker_6ac1c49b INFO **** Match 30577 tracks including 18067 ghosts [59.09 %], Event average 49.00 % **** +MatchTrackChecker_6ac1c49b INFO 01_long : 1 from 152279 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % +MatchTrackChecker_6ac1c49b INFO 02_long_P>5GeV : 1 from 98421 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % +MatchTrackChecker_6ac1c49b INFO 03_long_strange : 0 from 8121 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 04_long_strange_P>5GeV : 0 from 3856 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 05_long_fromB : 0 from 7959 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 05_long_fromD : 0 from 4226 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 06_long_fromB_P>5GeV : 0 from 5983 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 06_long_fromD_P>5GeV : 0 from 2894 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 07_long_electrons : 11911 from 15125 [ 78.75 %] 192 clones [ 1.59 %], purity: 97.67 %, hitEff: 98.11 % +MatchTrackChecker_6ac1c49b INFO 07_long_electrons_pairprod : 8023 from 10831 [ 74.07 %] 147 clones [ 1.80 %], purity: 97.03 %, hitEff: 97.81 % +MatchTrackChecker_6ac1c49b INFO 08_long_fromB_electrons : 3693 from 4210 [ 87.72 %] 46 clones [ 1.23 %], purity: 99.04 %, hitEff: 98.86 % +MatchTrackChecker_6ac1c49b INFO 09_long_fromB_electrons_P>5GeV : 3467 from 3850 [ 90.05 %] 43 clones [ 1.23 %], purity: 99.13 %, hitEff: 98.98 % +MatchTrackChecker_6ac1c49b INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5182 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3341 from 3659 [ 91.31 %] 40 clones [ 1.18 %], purity: 99.21 %, hitEff: 98.98 % +MatchTrackChecker_6ac1c49b INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 2343 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 2010 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5164 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_6ac1c49b INFO +MatchUTHitsChecker_cfd79599 INFO Results +MatchUTHitsChecker_cfd79599 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_115c6f8e/OutputTracksLocation **** 18067 ghost, 3.11 UT per track +MatchUTHitsChecker_cfd79599 INFO 01_long : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_cfd79599 INFO 01_long >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_cfd79599 INFO 02_long_P>5GeV : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_cfd79599 INFO 02_long_P>5GeV >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_cfd79599 INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % +SeedTrackChecker_ad9abe4e INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % +SeedTrackChecker_ad9abe4e INFO +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 2955 | 146.957 | 49731.616 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 90.516 | 30631.439 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 13.004 | 5680.952 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 12.866 | 5620.885 | + | "MatchTrackChecker_6ac1c49b" | 2289 | 10.478 | 4577.361 | + | "MatchUTHitsChecker_cfd79599" | 2289 | 4.477 | 1955.863 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.266 | 1426.669 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.503 | 1093.527 | + | "PrMatchNN_aa5e43f9" | 2289 | 2.185 | 954.761 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.010 | 878.221 | + | "Unpack__Event_MC_Particles" | 2289 | 1.903 | 831.435 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.718 | 313.683 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.570 | 249.043 | + | "VPClusFull_38754d8c" | 2289 | 0.538 | 235.004 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.438 | 191.278 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.322 | 140.605 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.257 | 112.354 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.245 | 106.893 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.183 | 80.047 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.109 | 47.612 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.109 | 47.501 | + | "PrTrackAssociator_eb439d03" | 2289 | 0.065 | 28.562 | + | "FTRawBankDecoder" | 2289 | 0.059 | 25.564 | + | "fromPrMatchTracksV1Tracks_115c6f8e" | 2289 | 0.040 | 17.402 | + | "UnpackRawEvent_UT" | 2955 | 0.026 | 8.751 | + | "reserveIOV" | 2289 | 0.021 | 9.167 | + | "Decode_ODIN" | 2289 | 0.006 | 2.630 | + | "DefaultGECFilter" | 2955 | 0.006 | 1.967 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.923 | + | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.887 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.004 | 1.870 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.004 | 1.424 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.649 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.623 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.529 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.003 | 1.490 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.003 | 1.476 | + | "DummyEventTime" | 2289 | 0.003 | 1.352 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_6ac1c49b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_cfd79599 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_cfd79599.PrCh... SUCCESS Booked 36 Histogram(s) : 1D=32 2D=4 +MatchTrackChecker_6ac1c49b.PrChe... SUCCESS Booked 589 Histogram(s) : 1D=420 2D=169 +RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/electrons/logs/best_effs_testJpsi_VeloSelection.log b/efficiencies/electrons/logs/best_effs_testJpsi_VeloSelection.log new file mode 100644 index 0000000..4f82b57 --- /dev/null +++ b/efficiencies/electrons/logs/best_effs_testJpsi_VeloSelection.log @@ -0,0 +1,330 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = 'data/best_effs_testJpsi.root' (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Mon Mar 25 07:46:36 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:data/best_effs_testJpsi.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: data/best_effs_testJpsi.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 20422 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 07:47:16 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1794.88, timed 2945 Events: 154082 ms, Evts/s = 19.1132 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 2955 | + | "Nb events removed" | 666 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 2955 | +MatchTrackChecker_e0c5338a.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_3088b619.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | + | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | + | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | + | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | + | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | + | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | + | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | + | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | + | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | + | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | + | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | + | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | + | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | + | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | +PrMatchNN_1012431e INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 2289 | 4892713 | 2137.5 | + | "#MatchingMLP" | 17111 | 15468.27 | 0.90400 | + | "#MatchingTracks" | 2289 | 17111 | 7.4753 | +PrMatchNN_1012431e.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 16143 | 64302 | 3.9833 | + | "#tracks with hits added" | 16143 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | + | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | + | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | + | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | + | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | + | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | + | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | + | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | + | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | + | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | + | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | + | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | + | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | + | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | + | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | + | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | + | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | + | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | + | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | + | "MC particles per track" | 279294 | 279304 | 1.0000 | +PrTrackAssociator_8eb854d6 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 17111 | 12139 |( 70.94267 +- 0.3470915)% | + | "MC particles per track" | 12139 | 13676 | 1.1266 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | + | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_d898f1fa INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 17111 | 7.4753 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | +ApplicationMgr INFO Application Manager Stopped successfully +MatchTrackChecker_e0c5338a INFO Results +MatchTrackChecker_e0c5338a INFO **** Match 17111 tracks including 4972 ghosts [29.06 %], Event average 24.22 % **** +MatchTrackChecker_e0c5338a INFO 01_long : 0 from 152279 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 02_long_P>5GeV : 0 from 98421 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 03_long_strange : 0 from 8121 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 04_long_strange_P>5GeV : 0 from 3856 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 05_long_fromB : 0 from 7959 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 05_long_fromD : 0 from 4226 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 06_long_fromB_P>5GeV : 0 from 5983 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 06_long_fromD_P>5GeV : 0 from 2894 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 07_long_electrons : 11596 from 15125 [ 76.67 %] 176 clones [ 1.50 %], purity: 97.78 %, hitEff: 98.15 % +MatchTrackChecker_e0c5338a INFO 07_long_electrons_pairprod : 7778 from 10831 [ 71.81 %] 137 clones [ 1.73 %], purity: 97.15 %, hitEff: 97.85 % +MatchTrackChecker_e0c5338a INFO 08_long_fromB_electrons : 3636 from 4210 [ 86.37 %] 43 clones [ 1.17 %], purity: 99.08 %, hitEff: 98.89 % +MatchTrackChecker_e0c5338a INFO 09_long_fromB_electrons_P>5GeV : 3413 from 3850 [ 88.65 %] 40 clones [ 1.16 %], purity: 99.17 %, hitEff: 99.00 % +MatchTrackChecker_e0c5338a INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5182 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3294 from 3659 [ 90.02 %] 37 clones [ 1.11 %], purity: 99.25 %, hitEff: 99.00 % +MatchTrackChecker_e0c5338a INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 2343 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 2010 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5164 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e0c5338a INFO +MatchUTHitsChecker_3088b619 INFO Results +MatchUTHitsChecker_3088b619 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_d898f1fa/OutputTracksLocation **** 4972 ghost, 3.33 UT per track +MatchUTHitsChecker_3088b619 INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % +SeedTrackChecker_ad9abe4e INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % +SeedTrackChecker_ad9abe4e INFO +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 2955 | 151.330 | 51211.625 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 92.150 | 31184.415 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 13.808 | 6032.194 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 13.606 | 5943.882 | + | "MatchTrackChecker_e0c5338a" | 2289 | 11.007 | 4808.848 | + | "MatchUTHitsChecker_3088b619" | 2289 | 4.673 | 2041.589 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.403 | 1486.579 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.620 | 1144.802 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.105 | 919.494 | + | "PrMatchNN_1012431e" | 2289 | 2.055 | 897.934 | + | "Unpack__Event_MC_Particles" | 2289 | 1.989 | 868.941 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.760 | 331.811 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.602 | 263.066 | + | "VPClusFull_38754d8c" | 2289 | 0.561 | 245.183 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.474 | 206.894 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.339 | 147.942 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.269 | 117.625 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.255 | 111.203 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.185 | 80.843 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.118 | 51.366 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.111 | 48.698 | + | "FTRawBankDecoder" | 2289 | 0.062 | 27.150 | + | "PrTrackAssociator_8eb854d6" | 2289 | 0.049 | 21.329 | + | "fromPrMatchTracksV1Tracks_d898f1fa" | 2289 | 0.029 | 12.842 | + | "UnpackRawEvent_UT" | 2955 | 0.025 | 8.404 | + | "reserveIOV" | 2289 | 0.023 | 10.063 | + | "Decode_ODIN" | 2289 | 0.006 | 2.786 | + | "DefaultGECFilter" | 2955 | 0.006 | 2.015 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.005 | 2.168 | + | "UnpackRawEvent_VP" | 2289 | 0.005 | 2.043 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.005 | 1.535 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.004 | 1.900 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.896 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.892 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.877 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.004 | 1.691 | + | "DummyEventTime" | 2289 | 0.003 | 1.305 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.002 | 0.981 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_e0c5338a #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_3088b619 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_3088b619.PrCh... SUCCESS Booked 28 Histogram(s) : 1D=24 2D=4 +MatchTrackChecker_e0c5338a.PrChe... SUCCESS Booked 545 Histogram(s) : 1D=386 2D=159 +RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/logs/best_seed_effs_testJpsi_NewParams.log b/efficiencies/electrons/logs/best_effs_testJpsi_optTSelection.log similarity index 72% rename from data_matching/logs/best_seed_effs_testJpsi_NewParams.log rename to efficiencies/electrons/logs/best_effs_testJpsi_optTSelection.log index 153a903..71a96bf 100644 --- a/data_matching/logs/best_seed_effs_testJpsi_NewParams.log +++ b/efficiencies/electrons/logs/best_effs_testJpsi_optTSelection.log @@ -1,5 +1,5 @@ # setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_seed_data.py' +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' /***** User ApplicationOptions/ApplicationOptions ************************************************** |-append_decoding_keys_to_output_manifest = True (default: True) |-auditors = [] (default: []) @@ -28,8 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/NewParams/best_seed_effs_testJpsi_NewParams.root' -| (default: '') +|-ntuple_file = 'data/best_effs_testJpsi.root' (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) |-output_manifest_file = '' (default: '') @@ -47,11 +46,11 @@ |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- # Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_seed_data.py' +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 12:34:15 2024 + running on lhcba2 on Mon Mar 25 07:39:53 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,15 +66,15 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/NewParams/best_seed_effs_testJpsi_NewParams.root as FILE1 +NTupleSvc INFO Added stream file:data/best_effs_testJpsi.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/NewParams/best_seed_effs_testJpsi_NewParams.root +RootHistSvc INFO Writing ROOT histograms to: data/best_effs_testJpsi.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 28548 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 19951 ms ApplicationMgr INFO Application Manager Initialized successfully ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc @@ -85,11 +84,11 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 12:35:17 +HLTControlFlowMgr INFO Timing started at: 07:40:32 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1756.6, timed 2945 Events: 183344 ms, Evts/s = 16.0627 +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1800.45, timed 2945 Events: 157208 ms, Evts/s = 18.7331 DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 2955 | @@ -97,10 +96,10 @@ DefaultGECFilter INFO Number of counters : 2 HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 2955 | -MatchTrackChecker_23e28c5b.LoKi:... INFO Number of counters : 1 +MatchTrackChecker_f77e07d8.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_5891c098.LoKi... INFO Number of counters : 1 +MatchUTHitsChecker_6715ef5c.LoKi... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 4 | PrHybridSeeding_4d0337cc INFO Number of counters : 21 @@ -129,15 +128,15 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_fd9a8305 INFO Number of counters : 3 +PrMatchNN_e9bbd5e6 INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8439531 | 3687.0 | - | "#MatchingMLP" | 26443 | 22595.62 | 0.85450 | - | "#MatchingTracks" | 2289 | 26443 | 11.552 | -PrMatchNN_fd9a8305.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 2289 | 4892713 | 2137.5 | + | "#MatchingMLP" | 25153 | 21610.93 | 0.85918 | + | "#MatchingTracks" | 2289 | 25153 | 10.989 | +PrMatchNN_e9bbd5e6.PrAddUTHitsTool INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 24019 | 92930 | 3.8690 | - | "#tracks with hits added" | 24019 | + | "#UT hits added" | 23187 | 89990 | 3.8811 | + | "#tracks with hits added" | 23187 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | @@ -175,10 +174,10 @@ PrTrackAssociator_16ad4612 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | | "MC particles per track" | 279294 | 279304 | 1.0000 | -PrTrackAssociator_b8868774 INFO Number of counters : 2 +PrTrackAssociator_52a8c9f1 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 26443 | 12200 |( 46.13697 +- 0.3065593)% | - | "MC particles per track" | 12200 | 13727 | 1.1252 | + |*"Efficiency" | 25153 | 12190 |( 48.46340 +- 0.3151156)% | + | "MC particles per track" | 12190 | 13722 | 1.1257 | PrTrackAssociator_d68377ee INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | @@ -190,9 +189,12 @@ VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | -fromPrMatchTracksV1Tracks_b22bdfde INFO Number of counters : 1 +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 26443 | 11.552 | + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_af006df6 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 2289 | 25153 | 10.989 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | @@ -200,33 +202,33 @@ fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | ApplicationMgr INFO Application Manager Stopped successfully -MatchTrackChecker_23e28c5b INFO Results -MatchTrackChecker_23e28c5b INFO **** Match 26443 tracks including 14243 ghosts [53.86 %], Event average 43.78 % **** -MatchTrackChecker_23e28c5b INFO 01_long : 1 from 152279 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % -MatchTrackChecker_23e28c5b INFO 02_long_P>5GeV : 1 from 98421 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % -MatchTrackChecker_23e28c5b INFO 03_long_strange : 0 from 8121 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 04_long_strange_P>5GeV : 0 from 3856 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 05_long_fromB : 0 from 7959 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 05_long_fromD : 0 from 4226 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 06_long_fromB_P>5GeV : 0 from 5983 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 06_long_fromD_P>5GeV : 0 from 2894 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 07_long_electrons : 11648 from 15125 [ 77.01 %] 183 clones [ 1.55 %], purity: 97.73 %, hitEff: 98.15 % -MatchTrackChecker_23e28c5b INFO 07_long_electrons_pairprod : 7822 from 10831 [ 72.22 %] 143 clones [ 1.80 %], purity: 97.10 %, hitEff: 97.86 % -MatchTrackChecker_23e28c5b INFO 08_long_fromB_electrons : 3649 from 4210 [ 86.67 %] 43 clones [ 1.16 %], purity: 99.05 %, hitEff: 98.87 % -MatchTrackChecker_23e28c5b INFO 09_long_fromB_electrons_P>5GeV : 3427 from 3850 [ 89.01 %] 40 clones [ 1.15 %], purity: 99.15 %, hitEff: 98.99 % -MatchTrackChecker_23e28c5b INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5182 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3306 from 3659 [ 90.35 %] 37 clones [ 1.11 %], purity: 99.22 %, hitEff: 98.99 % -MatchTrackChecker_23e28c5b INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 2343 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 2010 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5164 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % -MatchTrackChecker_23e28c5b INFO -MatchUTHitsChecker_5891c098 INFO Results -MatchUTHitsChecker_5891c098 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_b22bdfde/OutputTracksLocation **** 14243 ghost, 3.16 UT per track -MatchUTHitsChecker_5891c098 INFO 01_long : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] -MatchUTHitsChecker_5891c098 INFO 01_long >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] -MatchUTHitsChecker_5891c098 INFO 02_long_P>5GeV : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] -MatchUTHitsChecker_5891c098 INFO 02_long_P>5GeV >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] -MatchUTHitsChecker_5891c098 INFO +MatchTrackChecker_f77e07d8 INFO Results +MatchTrackChecker_f77e07d8 INFO **** Match 25153 tracks including 12963 ghosts [51.54 %], Event average 42.17 % **** +MatchTrackChecker_f77e07d8 INFO 01_long : 1 from 152279 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % +MatchTrackChecker_f77e07d8 INFO 02_long_P>5GeV : 1 from 98421 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % +MatchTrackChecker_f77e07d8 INFO 03_long_strange : 0 from 8121 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 04_long_strange_P>5GeV : 0 from 3856 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 05_long_fromB : 0 from 7959 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 05_long_fromD : 0 from 4226 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 06_long_fromB_P>5GeV : 0 from 5983 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 06_long_fromD_P>5GeV : 0 from 2894 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 07_long_electrons : 11639 from 15125 [ 76.95 %] 180 clones [ 1.52 %], purity: 97.74 %, hitEff: 98.16 % +MatchTrackChecker_f77e07d8 INFO 07_long_electrons_pairprod : 7814 from 10831 [ 72.14 %] 140 clones [ 1.76 %], purity: 97.09 %, hitEff: 97.87 % +MatchTrackChecker_f77e07d8 INFO 08_long_fromB_electrons : 3645 from 4210 [ 86.58 %] 42 clones [ 1.14 %], purity: 99.07 %, hitEff: 98.90 % +MatchTrackChecker_f77e07d8 INFO 09_long_fromB_electrons_P>5GeV : 3421 from 3850 [ 88.86 %] 39 clones [ 1.13 %], purity: 99.16 %, hitEff: 99.01 % +MatchTrackChecker_f77e07d8 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5182 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3302 from 3659 [ 90.24 %] 36 clones [ 1.08 %], purity: 99.24 %, hitEff: 99.02 % +MatchTrackChecker_f77e07d8 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 2343 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 2010 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5164 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_f77e07d8 INFO +MatchUTHitsChecker_6715ef5c INFO Results +MatchUTHitsChecker_6715ef5c INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_af006df6/OutputTracksLocation **** 12963 ghost, 3.24 UT per track +MatchUTHitsChecker_6715ef5c INFO 01_long : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_6715ef5c INFO 01_long >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_6715ef5c INFO 02_long_P>5GeV : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_6715ef5c INFO 02_long_P>5GeV >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_6715ef5c INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % @@ -247,61 +249,84 @@ SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % SeedTrackChecker_ad9abe4e INFO +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 179.266 | 60665.279 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 111.075 | 37588.778 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 20.177 | 8814.972 | - | "MatchTrackChecker_23e28c5b" | 2289 | 15.929 | 6958.724 | - | "MatchUTHitsChecker_5891c098" | 2289 | 6.544 | 2859.090 | - | "PrMatchNN_fd9a8305" | 2289 | 4.969 | 2170.605 | - | "PrHybridSeeding_4d0337cc" | 2289 | 4.394 | 1919.529 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 3.884 | 1696.797 | - | "Unpack__Event_MC_Vertices" | 2289 | 3.363 | 1469.397 | - | "Unpack__Event_MC_Particles" | 2289 | 3.282 | 1433.793 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 1.035 | 452.058 | - | "VPClusFull_38754d8c" | 2289 | 0.870 | 380.105 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.858 | 374.976 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.615 | 268.789 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.485 | 211.746 | - | "PrTrackAssociator_d68377ee" | 2289 | 0.379 | 165.393 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.337 | 147.050 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.313 | 136.753 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.200 | 87.553 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.193 | 84.501 | - | "FTRawBankDecoder" | 2289 | 0.085 | 37.293 | - | "PrTrackAssociator_b8868774" | 2289 | 0.084 | 36.894 | - | "fromPrMatchTracksV1Tracks_b22bdfde" | 2289 | 0.055 | 24.218 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.033 | 11.272 | - | "reserveIOV" | 2289 | 0.032 | 13.994 | - | "DefaultGECFilter" | 2955 | 0.008 | 2.754 | - | "Decode_ODIN" | 2289 | 0.008 | 3.496 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.007 | 3.209 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.007 | 2.891 | - | "UnpackRawEvent_VP" | 2289 | 0.006 | 2.766 | - | "UnpackRawEvent_UT" | 2955 | 0.006 | 2.121 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.006 | 2.675 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.006 | 2.556 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.006 | 2.429 | - | "UnpackRawEvent_ODIN" | 2289 | 0.005 | 2.160 | - | "DummyEventTime" | 2289 | 0.004 | 1.899 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.004 | 1.598 | + | Sum of all Algorithms | 2955 | 154.370 | 52240.385 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 94.223 | 31886.059 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 13.836 | 6044.542 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 13.827 | 6040.430 | + | "MatchTrackChecker_f77e07d8" | 2289 | 11.131 | 4862.869 | + | "MatchUTHitsChecker_6715ef5c" | 2289 | 4.741 | 2071.225 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.461 | 1512.094 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.665 | 1164.124 | + | "PrMatchNN_e9bbd5e6" | 2289 | 2.327 | 1016.573 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.154 | 940.834 | + | "Unpack__Event_MC_Particles" | 2289 | 2.032 | 887.813 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.760 | 331.823 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.606 | 264.647 | + | "VPClusFull_38754d8c" | 2289 | 0.570 | 248.954 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.463 | 202.230 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.349 | 152.644 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.275 | 120.287 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.262 | 114.659 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.194 | 84.884 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.116 | 50.723 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.116 | 50.530 | + | "FTRawBankDecoder" | 2289 | 0.062 | 27.141 | + | "PrTrackAssociator_52a8c9f1" | 2289 | 0.062 | 27.120 | + | "fromPrMatchTracksV1Tracks_af006df6" | 2289 | 0.038 | 16.535 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.026 | 8.865 | + | "reserveIOV" | 2289 | 0.022 | 9.823 | + | "DefaultGECFilter" | 2955 | 0.006 | 2.005 | + | "Decode_ODIN" | 2289 | 0.006 | 2.483 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.005 | 2.376 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.005 | 1.987 | + | "UnpackRawEvent_UT" | 2955 | 0.005 | 1.534 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.005 | 1.971 | + | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.948 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.778 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.004 | 1.664 | + | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.457 | + | "DummyEventTime" | 2289 | 0.003 | 1.366 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.002 | 0.996 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_23e28c5b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_5891c098 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_f77e07d8 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_6715ef5c #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_5891c098.PrCh... SUCCESS Booked 36 Histogram(s) : 1D=32 2D=4 -MatchTrackChecker_23e28c5b.PrChe... SUCCESS Booked 589 Histogram(s) : 1D=420 2D=169 +MatchUTHitsChecker_6715ef5c.PrCh... SUCCESS Booked 36 Histogram(s) : 1D=32 2D=4 +MatchTrackChecker_f77e07d8.PrChe... SUCCESS Booked 589 Histogram(s) : 1D=420 2D=169 RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] diff --git a/data_matching/logs/match_effs_testJpsi_NewParams_EFilter.log b/efficiencies/electrons/logs/best_effs_testJpsi_optVeloSelection.log similarity index 58% rename from data_matching/logs/match_effs_testJpsi_NewParams_EFilter.log rename to efficiencies/electrons/logs/best_effs_testJpsi_optVeloSelection.log index 7a22173..6a4089b 100644 --- a/data_matching/logs/match_effs_testJpsi_NewParams_EFilter.log +++ b/efficiencies/electrons/logs/best_effs_testJpsi_optVeloSelection.log @@ -1,5 +1,5 @@ # setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' /***** User ApplicationOptions/ApplicationOptions ************************************************** |-append_decoding_keys_to_output_manifest = True (default: True) |-auditors = [] (default: []) @@ -28,8 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_NewParams_EFilter.root' -| (default: '') +|-ntuple_file = 'data/best_effs_testJpsi.root' (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) |-output_manifest_file = '' (default: '') @@ -47,11 +46,11 @@ |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- # Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' ApplicationMgr SUCCESS ==================================================================================================================================== - Welcome to Moore version 55.1 - running on lhcba2 on Wed Feb 28 14:10:35 2024 + Welcome to Moore version 55.2 + running on lhcba2 on Mon Mar 25 10:19:14 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,15 +66,15 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_NewParams_EFilter.root as FILE1 +NTupleSvc INFO Added stream file:data/best_effs_testJpsi.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_NewParams_EFilter.root +RootHistSvc INFO Writing ROOT histograms to: data/best_effs_testJpsi.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 120110 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 21347 ms ApplicationMgr INFO Application Manager Initialized successfully ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc @@ -85,46 +84,24 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 14:12:59 +HLTControlFlowMgr INFO Timing started at: 10:19:55 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1752.66, timed 2945 Events: 184867 ms, Evts/s = 15.9304 +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1390.8, timed 2945 Events: 154290 ms, Evts/s = 19.0874 DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 2955 | | "Nb events removed" | 666 | -ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 4 | HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 2955 | -MatchTrackChecker_637fd38f.LoKi:... INFO Number of counters : 1 +MatchTrackChecker_5d51f948.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_c7a5ed44.LoKi... INFO Number of counters : 1 +MatchUTHitsChecker_71f09aae.LoKi... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 4 | -PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 2289 | 363254 | 158.70 | - | "Created long tracks" | 2289 | 181236 | 79.177 | - | "Input tracks" | 2289 | 380749 | 166.34 | - | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | - | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | - | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | - | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | - | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | - | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | - | "Removed duplicates" | 2289 | 9647 | 4.2145 | -PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 166072 | 673152 | 4.0534 | - | "#tracks with hits added" | 166072 | PrHybridSeeding_4d0337cc INFO Number of counters : 21 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | @@ -151,15 +128,15 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_fe76ef5a INFO Number of counters : 3 +PrMatchNN_596be190 INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8809473 | 3848.6 | - | "#MatchingMLP" | 280261 | 233932.9 | 0.83470 | - | "#MatchingTracks" | 2289 | 280261 | 122.44 | -PrMatchNN_fe76ef5a.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 2289 | 4892713 | 2137.5 | + | "#MatchingMLP" | 16596 | 15270.18 | 0.92011 | + | "#MatchingTracks" | 2289 | 16596 | 7.2503 | +PrMatchNN_596be190.PrAddUTHitsTool INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 218643 | 859311 | 3.9302 | - | "#tracks with hits added" | 218643 | + | "#UT hits added" | 15727 | 62775 | 3.9915 | + | "#tracks with hits added" | 15727 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | @@ -193,18 +170,18 @@ PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 PrStoreUTHit_6220b56a INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_11d1ff61 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 16596 | 11929 |( 71.87877 +- 0.3489922)% | + | "MC particles per track" | 11929 | 13435 | 1.1262 | PrTrackAssociator_16ad4612 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | | "MC particles per track" | 279294 | 279304 | 1.0000 | -PrTrackAssociator_2fb28deb INFO Number of counters : 2 +PrTrackAssociator_d68377ee INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 280261 | 159482 |( 56.90481 +- 0.09354219)% | - | "MC particles per track" | 159482 | 187805 | 1.1776 | -PrTrackAssociator_3adf94fb INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | - | "MC particles per track" | 155077 | 181813 | 1.1724 | + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | @@ -212,12 +189,12 @@ VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | -fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_2472c8a1 INFO Number of counters : 1 + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_57acd74f INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 280261 | 122.44 | + | "Nb of converted Tracks" | 2289 | 16596 | 7.2503 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | @@ -225,68 +202,29 @@ fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | ApplicationMgr INFO Application Manager Stopped successfully -ForwardTrackChecker_482fda95 INFO Results -ForwardTrackChecker_482fda95 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** -ForwardTrackChecker_482fda95 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % -ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % -ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % -ForwardTrackChecker_482fda95 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % -ForwardTrackChecker_482fda95 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % -ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % -ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % -ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % -ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO -ForwardUTHitsChecker_fe9d9ac2 INFO Results -ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 26159 ghost, 2.61 UT per track -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :134215 tr 3.91 from 4.07 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :132800 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV : 92174 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT : 90908 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4919 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO -MatchTrackChecker_637fd38f INFO Results -MatchTrackChecker_637fd38f INFO **** Match 280261 tracks including 120779 ghosts [43.10 %], Event average 40.16 % **** -MatchTrackChecker_637fd38f INFO 01_long : 134983 from 152279 [ 88.64 %] 855 clones [ 0.63 %], purity: 99.32 %, hitEff: 98.57 % -MatchTrackChecker_637fd38f INFO 02_long_P>5GeV : 92116 from 98421 [ 93.59 %] 492 clones [ 0.53 %], purity: 99.43 %, hitEff: 99.19 % -MatchTrackChecker_637fd38f INFO 03_long_strange : 6503 from 8121 [ 80.08 %] 35 clones [ 0.54 %], purity: 98.99 %, hitEff: 98.17 % -MatchTrackChecker_637fd38f INFO 04_long_strange_P>5GeV : 3498 from 3856 [ 90.72 %] 15 clones [ 0.43 %], purity: 99.18 %, hitEff: 99.19 % -MatchTrackChecker_637fd38f INFO 05_long_fromB : 7247 from 7959 [ 91.05 %] 52 clones [ 0.71 %], purity: 99.44 %, hitEff: 98.78 % -MatchTrackChecker_637fd38f INFO 05_long_fromD : 3810 from 4226 [ 90.16 %] 20 clones [ 0.52 %], purity: 99.38 %, hitEff: 98.68 % -MatchTrackChecker_637fd38f INFO 06_long_fromB_P>5GeV : 5660 from 5983 [ 94.60 %] 28 clones [ 0.49 %], purity: 99.56 %, hitEff: 99.22 % -MatchTrackChecker_637fd38f INFO 06_long_fromD_P>5GeV : 2737 from 2894 [ 94.57 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.20 % -MatchTrackChecker_637fd38f INFO 07_long_electrons : 11620 from 15125 [ 76.83 %] 175 clones [ 1.48 %], purity: 97.81 %, hitEff: 98.11 % -MatchTrackChecker_637fd38f INFO 07_long_electrons_pairprod : 7764 from 10831 [ 71.68 %] 135 clones [ 1.71 %], purity: 97.19 %, hitEff: 97.81 % -MatchTrackChecker_637fd38f INFO 08_long_fromB_electrons : 3676 from 4210 [ 87.32 %] 43 clones [ 1.16 %], purity: 99.08 %, hitEff: 98.82 % -MatchTrackChecker_637fd38f INFO 09_long_fromB_electrons_P>5GeV : 3454 from 3850 [ 89.71 %] 42 clones [ 1.20 %], purity: 99.14 %, hitEff: 98.94 % -MatchTrackChecker_637fd38f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4910 from 5182 [ 94.75 %] 27 clones [ 0.55 %], purity: 99.65 %, hitEff: 99.10 % -MatchTrackChecker_637fd38f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3336 from 3659 [ 91.17 %] 39 clones [ 1.16 %], purity: 99.22 %, hitEff: 98.94 % -MatchTrackChecker_637fd38f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2226 from 2343 [ 95.01 %] 9 clones [ 0.40 %], purity: 99.64 %, hitEff: 99.09 % -MatchTrackChecker_637fd38f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1831 from 2010 [ 91.09 %] 6 clones [ 0.33 %], purity: 99.51 %, hitEff: 98.98 % -MatchTrackChecker_637fd38f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4898 from 5164 [ 94.85 %] 27 clones [ 0.55 %], purity: 99.65 %, hitEff: 99.11 % -MatchTrackChecker_637fd38f INFO -MatchUTHitsChecker_c7a5ed44 INFO Results -MatchUTHitsChecker_c7a5ed44 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_2472c8a1/OutputTracksLocation **** 120779 ghost, 2.02 UT per track -MatchUTHitsChecker_c7a5ed44 INFO 01_long :135838 tr 3.87 from 4.08 mcUT [ 94.9 %] 0.13 ghost hits on real tracks [ 3.2 %] -MatchUTHitsChecker_c7a5ed44 INFO 01_long >3UT :134355 tr 3.90 from 4.10 mcUT [ 95.2 %] 0.12 ghost hits on real tracks [ 3.0 %] -MatchUTHitsChecker_c7a5ed44 INFO 02_long_P>5GeV : 92608 tr 3.92 from 4.08 mcUT [ 96.1 %] 0.10 ghost hits on real tracks [ 2.5 %] -MatchUTHitsChecker_c7a5ed44 INFO 02_long_P>5GeV >3UT : 91336 tr 3.96 from 4.11 mcUT [ 96.5 %] 0.09 ghost hits on real tracks [ 2.3 %] -MatchUTHitsChecker_c7a5ed44 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4937 tr 3.97 from 4.07 mcUT [ 97.5 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_c7a5ed44 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4915 tr 3.98 from 4.08 mcUT [ 97.6 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_c7a5ed44 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4925 tr 3.98 from 4.08 mcUT [ 97.6 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_c7a5ed44 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4915 tr 3.98 from 4.08 mcUT [ 97.6 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_c7a5ed44 INFO +MatchTrackChecker_5d51f948 INFO Results +MatchTrackChecker_5d51f948 INFO **** Match 16596 tracks including 4667 ghosts [28.12 %], Event average 23.09 % **** +MatchTrackChecker_5d51f948 INFO 01_long : 0 from 152279 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 02_long_P>5GeV : 0 from 98421 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 03_long_strange : 0 from 8121 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 04_long_strange_P>5GeV : 0 from 3856 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 05_long_fromB : 0 from 7959 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 05_long_fromD : 0 from 4226 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 06_long_fromB_P>5GeV : 0 from 5983 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 06_long_fromD_P>5GeV : 0 from 2894 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 07_long_electrons : 11411 from 15125 [ 75.44 %] 168 clones [ 1.45 %], purity: 97.81 %, hitEff: 98.20 % +MatchTrackChecker_5d51f948 INFO 07_long_electrons_pairprod : 7638 from 10831 [ 70.52 %] 133 clones [ 1.71 %], purity: 97.18 %, hitEff: 97.90 % +MatchTrackChecker_5d51f948 INFO 08_long_fromB_electrons : 3601 from 4210 [ 85.53 %] 39 clones [ 1.07 %], purity: 99.10 %, hitEff: 98.92 % +MatchTrackChecker_5d51f948 INFO 09_long_fromB_electrons_P>5GeV : 3380 from 3850 [ 87.79 %] 36 clones [ 1.05 %], purity: 99.19 %, hitEff: 99.04 % +MatchTrackChecker_5d51f948 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5182 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3265 from 3659 [ 89.23 %] 33 clones [ 1.00 %], purity: 99.26 %, hitEff: 99.03 % +MatchTrackChecker_5d51f948 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 2343 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 2010 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 5164 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_5d51f948 INFO +MatchUTHitsChecker_71f09aae INFO Results +MatchUTHitsChecker_71f09aae INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_57acd74f/OutputTracksLocation **** 4667 ghost, 3.38 UT per track +MatchUTHitsChecker_71f09aae INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % @@ -307,70 +245,84 @@ SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % SeedTrackChecker_ad9abe4e INFO -HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.039102 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 347.612 +/- 3.41441 (min: 4, max: 489) requests were served +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 182.056 | 61609.405 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 103.854 | 35145.048 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 15.542 | 6789.851 | - | "ForwardTrackChecker_482fda95" | 2289 | 14.884 | 6502.203 | - | "MatchTrackChecker_637fd38f" | 2289 | 13.203 | 5768.095 | - | "MatchUTHitsChecker_c7a5ed44" | 2289 | 5.688 | 2484.985 | - | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 5.661 | 2473.124 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 5.215 | 2278.091 | - | "PrHybridSeeding_4d0337cc" | 2289 | 3.946 | 1723.912 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 3.008 | 1314.076 | - | "Unpack__Event_MC_Vertices" | 2289 | 2.373 | 1036.859 | - | "Unpack__Event_MC_Particles" | 2289 | 2.283 | 997.172 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.864 | 377.637 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.679 | 296.449 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.651 | 284.581 | - | "VPClusFull_38754d8c" | 2289 | 0.651 | 284.306 | - | "PrMatchNN_fe76ef5a" | 2289 | 0.645 | 281.599 | - | "PrTrackAssociator_2fb28deb" | 2289 | 0.565 | 247.036 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.452 | 197.403 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.427 | 186.564 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.304 | 132.928 | - | "fromPrMatchTracksV1Tracks_2472c8a1" | 2289 | 0.273 | 119.307 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.231 | 101.047 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.159 | 69.507 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.147 | 64.076 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.138 | 60.406 | - | "FTRawBankDecoder" | 2289 | 0.073 | 31.732 | - | "reserveIOV" | 2289 | 0.044 | 19.247 | - | "UnpackRawEvent_UT" | 2955 | 0.033 | 11.141 | - | "Decode_ODIN" | 2289 | 0.009 | 4.123 | - | "DefaultGECFilter" | 2955 | 0.007 | 2.492 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.007 | 3.012 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.006 | 1.970 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.005 | 2.136 | - | "DummyEventTime" | 2289 | 0.005 | 2.082 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.005 | 2.059 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.005 | 2.000 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.945 | - | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.797 | - | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.699 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.003 | 1.138 | + | Sum of all Algorithms | 2955 | 151.446 | 51250.824 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 91.695 | 31030.365 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 13.856 | 6053.253 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 13.635 | 5956.815 | + | "MatchTrackChecker_5d51f948" | 2289 | 11.169 | 4879.279 | + | "MatchUTHitsChecker_71f09aae" | 2289 | 4.702 | 2054.205 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.432 | 1499.328 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.648 | 1156.796 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.138 | 934.219 | + | "PrMatchNN_596be190" | 2289 | 2.036 | 889.281 | + | "Unpack__Event_MC_Particles" | 2289 | 2.028 | 885.902 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.786 | 343.485 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.602 | 262.960 | + | "VPClusFull_38754d8c" | 2289 | 0.572 | 250.044 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.561 | 245.248 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.363 | 158.386 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.271 | 118.176 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.257 | 112.304 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.190 | 82.899 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.126 | 54.918 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.123 | 53.570 | + | "FTRawBankDecoder" | 2289 | 0.065 | 28.541 | + | "PrTrackAssociator_11d1ff61" | 2289 | 0.050 | 21.869 | + | "fromPrMatchTracksV1Tracks_57acd74f" | 2289 | 0.031 | 13.605 | + | "UnpackRawEvent_UT" | 2955 | 0.030 | 10.054 | + | "reserveIOV" | 2289 | 0.022 | 9.488 | + | "Decode_ODIN" | 2289 | 0.008 | 3.631 | + | "DefaultGECFilter" | 2955 | 0.007 | 2.200 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.005 | 2.297 | + | "UnpackRawEvent_VP" | 2289 | 0.005 | 2.248 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.005 | 1.708 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.005 | 2.181 | + | "UnpackRawEvent_ODIN" | 2289 | 0.005 | 2.017 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.950 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.808 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.004 | 1.720 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.004 | 1.675 | + | "DummyEventTime" | 2289 | 0.004 | 1.606 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: hlt2_matching_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - NONLAZY_OR: hlt2_matching_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrMatchNN/PrMatchNN_fe76ef5a #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_637fd38f #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_c7a5ed44 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_5d51f948 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_71f09aae #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_c7a5ed44.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -MatchTrackChecker_637fd38f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_71f09aae.PrCh... SUCCESS Booked 28 Histogram(s) : 1D=24 2D=4 +MatchTrackChecker_5d51f948.PrChe... SUCCESS Booked 545 Histogram(s) : 1D=386 2D=159 RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] diff --git a/efficiencies/electrons/logs/calo_effs_BJpsi_Ecal.log b/efficiencies/electrons/logs/calo_effs_BJpsi_Ecal.log new file mode 100644 index 0000000..d5586b7 --- /dev/null +++ b/efficiencies/electrons/logs/calo_effs_BJpsi_Ecal.log @@ -0,0 +1,560 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_BJpsi.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Mon Mar 25 13:49:15 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_BJpsi.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_BJpsi.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 20980 ms +ApplicationMgr INFO Application Manager Initialized successfully +FunctorFactory INFO New functor library will be created: "/tmp/FunctorJitLib_0xeb028f51fa71f3bd_0x8ed07265aaa81adc.so" +FunctorFactory INFO Writing cpp files for 3 functors split in 4 files +FunctorFactory INFO Compilation will use 4 jobs. +FunctorFactory INFO Compilation of functor library took 14 seconds +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +CaloFutureClusterCovarianceAlg_1... INFO == Parameters for covariance estimation == +CaloFutureClusterCovarianceAlg_1... INFO Stochastic : [0.21, 0.14, 0.14] Sqrt(GeV) +CaloFutureClusterCovarianceAlg_1... INFO GainError : [0.045, 0.025, 0.025] +CaloFutureClusterCovarianceAlg_1... INFO IncoherentNoise : [2.2, 2.2, 2.2] ADC +CaloFutureClusterCovarianceAlg_1... INFO CoherentNoise : [1.3, 1.3, 1.3] ADC +CaloFutureClusterCovarianceAlg_1... INFO ConstantE : [0, 0, 0] MeV +CaloFutureClusterCovarianceAlg_1... INFO ConstantX : [9, 2, 0.5] mm +CaloFutureClusterCovarianceAlg_1... INFO ConstantY : [9, 2, 0.5] mm +CaloFutureClusterCovarianceAlg_1... INFO Energy mask : (from DB) +CaloFutureClusterCovarianceAlg_1... INFO Position mask : (from DB) +HLTControlFlowMgr INFO Timing started at: 13:50:10 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1440.78, timed 35313 Events: 1996108 ms, Evts/s = 17.6909 +CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#total tracks" | 27023 | 3390744 | 125.48 | 43.466 | 7.0000 | 248.00 | + | "#tracks in acceptance" | 27023 | 2778273 | 102.81 | 35.894 | 6.0000 | 212.00 | +CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# clusters" | 5468229 | +CaloFutureClusterCovarianceAlg_1... INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Corrected Clusters: # cells " | 506145 | 2202788 | 4.3521 | 1.3681 | 2.0000 | 14.000 | + | "Corrected Clusters: ET" | 506145 |1.427525e+08 | 282.04 | 485.19 | 0.20000 | 48407. | + | "Corrected Clusters: size ratio" | 506145 | 256599.4 | 0.50697 | 0.44574 | -1.4689e-15 | 7.0882 | +CaloSelectiveElectronMatchAlg_Tt... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#links in table" | 27023 | 2333436 | 86.350 | 32.195 | 4.0000 | 190.00 | + | "average chi2" | 2333436 | 337993.2 | 0.14485 | 0.17721 | 1.8316e-09 | 8.8763 | +CaloSelectiveTrackMatchAlg_Ttrac... INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#above threshold" | 1 | 1 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "#links in table" | 27023 | 2351155 | 87.006 | 32.313 | 4.0000 | 190.00 | + | "average chi2" | 2351155 | 60090.14 | 0.025558 | 0.054299 | 1.0142e-08 | 38.942 | +CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "average DLL" | 2778273 | -69619.55 | -0.025059 | 0.041791 | -1.6606 | 0.67251 | + | "average E/p" | 2778273 | 11217.89 | 0.0040377 | 0.0046318 | 0.0000 | 0.41566 | +ClassifyPhotonElectronAlg_3be601a8 INFO Number of counters : 14 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Electron Delta(E)" | 1947852 |-7.619496e+08 | -391.17 | 529.53 | -17870. | 18170. | + | "Electron Delta(X)" | 1947852 | -605566.4 | -0.31089 | 12.267 | -102.44 | 125.88 | + | "Electron Delta(Y)" | 1947852 | -477649.9 | -0.24522 | 12.239 | -125.61 | 103.95 | + | "Electron Delta(Z)" | 1947852 |1.288819e+08 | 66.166 | 14.242 | -10.741 | 145.13 | + | "Electron corrected energy" | 1947852 |1.291287e+10 | 6629.3 | 8992.0 | 19.838 | 7.5158e+05 | + | "Electrons pT-rejected after correction" | 13818 | + | "Photon Delta(E)" | 3530700 |-8.048871e+08 | -227.97 | 397.90 | -15163. | 71165. | + | "Photon Delta(X)" | 3530700 | -1180549 | -0.33437 | 12.797 | -210.93 | 240.51 | + | "Photon Delta(Y)" | 3530700 | -1052002 | -0.29796 | 12.789 | -125.38 | 178.24 | + | "Photon Delta(Z)" | 3530700 |1.970481e+08 | 55.810 | 13.194 | -11.014 | 134.35 | + | "Photon corrected energy" | 3530700 |1.24712e+10 | 3532.2 | 6372.1 | 19.585 | 8.3650e+05 | + | "Photons pT-rejected after correction" | 60209 | + | "electronHypos" | 27023 | 1934034 | 71.570 | 23.703 | 4.0000 | 144.00 | + | "photonHypos" | 27023 | 3470491 | 128.43 | 36.021 | 9.0000 | 237.00 | +ClassifyPhotonElectronAlg_3be601... INFO Number of counters : 7 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | " Inner" | 1504331 | 1496015 | 0.99447 | 0.019783 | 0.96422 | 1.2521 | + | " Middle" | 1462071 | 1470993 | 1.0061 | 0.020231 | 0.97664 | 1.4334 | + | " Outer" | 2502223 | 2500479 | 0.99930 | 0.016294 | 0.97356 | 1.3093 | + | "Pileup offset" | 5468625 |1.94304e+09 | 355.31 | 420.26 | -31783. | 5246.5 | + | "Pileup scale" | 5478552 |3.044617e+07 | 5.5573 | 1.7606 | 1.0000 | 14.000 | + | "Pileup subtracted ratio" | 5468625 | 4834973 | 0.88413 | 0.11987 | 8.5081e-06 | 2.2284 | + | "Skip negative energy correction" | 9927 | +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +GraphClustering_72971694 INFO Number of counters : 4 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# clusters" | 27023 | 5468229 | 202.35 | 57.096 | 14.000 | 354.00 | + | "Cluster energy" | 5468229 |2.68272e+10 | 4906.0 | 7778.0 | 0.80003 | 8.1052e+05 | + | "Cluster size" | 5468229 |5.558464e+07 | 10.165 | 2.4041 | 4.0000 | 28.000 | + | "Negative energy clusters" | 317 | 338 | 1.0662 | 0.26109 | 1.0000 | 3.0000 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 3390744 | 125.48 | +MatchTrackChecker_31749988.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_2c53aed6.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrFilterTracks2CaloClusters_cae3... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 2215176 |( 65.33009 +- 0.02584553)% | +PrFilterTracks2ElectronMatch_426... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 1714975 |( 50.57813 +- 0.02715148)% | +PrFilterTracks2ElectronShower_ab... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 1783861 |( 52.60972 +- 0.02711628)% | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNNv3_47039c3b INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.55738e+07 | 1316.4 | + | "#MatchingMLP" | 1794815 | 1414668 | 0.78820 | + | "#MatchingTracks" | 27023 | 1794815 | 66.418 | +PrMatchNNv3_47039c3b.PrAddUTHits... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1496799 | 5735183 | 3.8316 | + | "#tracks with hits added" | 1496799 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +PrTrackAssociator_5c7b8d11 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 1794815 | 846874 |( 47.18447 +- 0.03726237)% | + | "MC particles per track" | 846874 | 976939 | 1.1536 | +TrackBeamLineVertexFinderSoA_f85... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb PVs" | 27023 | 141928 | 5.2521 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_4160b51b INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 1794815 | 66.418 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +fromV3TrackV1Track_217dc8d1 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 1783861 | 66.013 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_482fda95 INFO Results +ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_482fda95 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_482fda95 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_482fda95 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_482fda95 INFO +ForwardUTHitsChecker_fe9d9ac2 INFO Results +ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO +GraphClustering_72971694 INFO Built <202.355> graph calo clustering clusters/event +MatchTrackChecker_31749988 INFO Results +MatchTrackChecker_31749988 INFO **** Match 1794815 tracks including 947941 ghosts [52.82 %], Event average 49.29 % **** +MatchTrackChecker_31749988 INFO 01_long : 649781 from 1811265 [ 35.87 %] 4257 clones [ 0.65 %], purity: 99.23 %, hitEff: 98.21 % +MatchTrackChecker_31749988 INFO 02_long_P>5GeV : 385988 from 1172326 [ 32.92 %] 1743 clones [ 0.45 %], purity: 99.41 %, hitEff: 99.23 % +MatchTrackChecker_31749988 INFO 03_long_strange : 34275 from 98994 [ 34.62 %] 214 clones [ 0.62 %], purity: 98.86 %, hitEff: 97.50 % +MatchTrackChecker_31749988 INFO 04_long_strange_P>5GeV : 14522 from 46918 [ 30.95 %] 63 clones [ 0.43 %], purity: 99.20 %, hitEff: 99.23 % +MatchTrackChecker_31749988 INFO 05_long_fromB : 30835 from 94402 [ 32.66 %] 202 clones [ 0.65 %], purity: 99.38 %, hitEff: 98.54 % +MatchTrackChecker_31749988 INFO 05_long_fromD : 17326 from 50932 [ 34.02 %] 121 clones [ 0.69 %], purity: 99.23 %, hitEff: 98.30 % +MatchTrackChecker_31749988 INFO 06_long_fromB_P>5GeV : 21376 from 71030 [ 30.09 %] 110 clones [ 0.51 %], purity: 99.54 %, hitEff: 99.26 % +MatchTrackChecker_31749988 INFO 06_long_fromD_P>5GeV : 10866 from 35044 [ 31.01 %] 55 clones [ 0.50 %], purity: 99.47 %, hitEff: 99.22 % +MatchTrackChecker_31749988 INFO 07_long_electrons : 138190 from 181213 [ 76.26 %] 2253 clones [ 1.60 %], purity: 97.74 %, hitEff: 98.11 % +MatchTrackChecker_31749988 INFO 07_long_electrons_pairprod : 93596 from 130212 [ 71.88 %] 1613 clones [ 1.69 %], purity: 97.13 %, hitEff: 97.79 % +MatchTrackChecker_31749988 INFO 08_long_fromB_electrons : 42110 from 48919 [ 86.08 %] 624 clones [ 1.46 %], purity: 99.02 %, hitEff: 98.91 % +MatchTrackChecker_31749988 INFO 09_long_fromB_electrons_P>5GeV : 39435 from 44696 [ 88.23 %] 602 clones [ 1.50 %], purity: 99.11 %, hitEff: 99.06 % +MatchTrackChecker_31749988 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 18972 from 61675 [ 30.76 %] 89 clones [ 0.47 %], purity: 99.64 %, hitEff: 99.16 % +MatchTrackChecker_31749988 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38145 from 42838 [ 89.04 %] 568 clones [ 1.47 %], purity: 99.19 %, hitEff: 99.03 % +MatchTrackChecker_31749988 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 9036 from 28214 [ 32.03 %] 42 clones [ 0.46 %], purity: 99.59 %, hitEff: 99.09 % +MatchTrackChecker_31749988 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 7753 from 24129 [ 32.13 %] 31 clones [ 0.40 %], purity: 99.54 %, hitEff: 99.01 % +MatchTrackChecker_31749988 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 18890 from 61506 [ 30.71 %] 89 clones [ 0.47 %], purity: 99.64 %, hitEff: 99.17 % +MatchTrackChecker_31749988 INFO +MatchUTHitsChecker_2c53aed6 INFO Results +MatchUTHitsChecker_2c53aed6 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_4160b51b/OutputTracksLocation **** 947941 ghost, 2.60 UT per track +MatchUTHitsChecker_2c53aed6 INFO 01_long :654038 tr 3.84 from 4.08 mcUT [ 94.2 %] 0.15 ghost hits on real tracks [ 3.8 %] +MatchUTHitsChecker_2c53aed6 INFO 01_long >3UT :646604 tr 3.88 from 4.11 mcUT [ 94.6 %] 0.14 ghost hits on real tracks [ 3.6 %] +MatchUTHitsChecker_2c53aed6 INFO 02_long_P>5GeV :387731 tr 3.93 from 4.09 mcUT [ 96.2 %] 0.10 ghost hits on real tracks [ 2.5 %] +MatchUTHitsChecker_2c53aed6 INFO 02_long_P>5GeV >3UT :381473 tr 3.99 from 4.12 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_2c53aed6 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 19061 tr 3.98 from 4.09 mcUT [ 97.2 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_2c53aed6 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 18952 tr 4.00 from 4.11 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_2c53aed6 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 18979 tr 4.00 from 4.10 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_2c53aed6 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 18948 tr 4.00 from 4.11 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_2c53aed6 INFO +HLTControlFlowMgr INFO Memory pool: used 4.72932 +/- 0.0139567 MiB (min: 0, max: 6) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 696.413 +/- 2.04844 (min: 4, max: 1064) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 1943.979 | 55034.371 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1198.153 | 33919.910 | + | "ForwardTrackChecker_482fda95" | 27023 | 164.650 | 6092.968 | + | "MatchTrackChecker_31749988" | 27023 | 137.623 | 5092.816 | + | "ForwardUTHitsChecker_fe9d9ac2" | 27023 | 65.057 | 2407.466 | + | "MatchUTHitsChecker_2c53aed6" | 27023 | 62.202 | 2301.798 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 59.987 | 2219.851 | + | "PrHybridSeeding_4d0337cc" | 27023 | 44.892 | 1661.263 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 34.244 | 1267.227 | + | "Unpack__Event_MC_Vertices" | 27023 | 27.242 | 1008.116 | + | "Unpack__Event_MC_Particles" | 27023 | 25.762 | 953.340 | + | "GraphClustering_72971694" | 27023 | 21.696 | 802.867 | + | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 27023 | 12.212 | 451.914 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.733 | 360.173 | + | "ClassifyPhotonElectronAlg_3be601a8" | 27023 | 7.945 | 294.019 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.710 | 285.306 | + | "VPClusFull_38754d8c" | 27023 | 7.377 | 272.993 | + | "PrStorePrUTHits_df75b912" | 27023 | 6.652 | 246.156 | + | "PrMatchNNv3_47039c3b" | 27023 | 6.466 | 239.270 | + | "FutureEcalZSup" | 27023 | 5.751 | 212.816 | + | "CaloFutureClusterCovarianceAlg_1a2d4ea3" | 27023 | 5.634 | 208.497 | + | "PrStoreUTHit_6220b56a" | 27023 | 5.222 | 193.245 | + | "PrTrackAssociator_3adf94fb" | 27023 | 5.170 | 191.304 | + | "PrTrackAssociator_5c7b8d11" | 27023 | 3.565 | 131.925 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.414 | 89.324 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.699 | 62.872 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.692 | 62.595 | + | "fromPrMatchTracksV1Tracks_4160b51b" | 27023 | 1.656 | 61.273 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.552 | 57.419 | + | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 27023 | 1.426 | 52.782 | + | "CaloSelectiveTrackMatchAlg_Ttrack_bd1b5be2" | 27023 | 1.305 | 48.282 | + | "fromV3TrackV1Track_217dc8d1" | 27023 | 1.211 | 44.820 | + | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 27023 | 0.918 | 33.954 | + | "CaloSelectiveElectronMatchAlg_Ttrack_7febcd2c" | 27023 | 0.852 | 31.515 | + | "TrackBeamLineVertexFinderSoA_f85e7c3b" | 27023 | 0.819 | 30.307 | + | "FTRawBankDecoder" | 27023 | 0.816 | 30.193 | + | "PrFilterTracks2CaloClusters_cae3b638" | 27023 | 0.449 | 16.610 | + | "PrFilterTracks2ElectronMatch_4265680d" | 27023 | 0.416 | 15.376 | + | "PrFilterTracks2ElectronShower_ab07420b" | 27023 | 0.388 | 14.368 | + | "UnpackRawEvent_UT" | 35323 | 0.349 | 9.879 | + | "UniqueIDGeneratorAlg_26e527e9" | 27023 | 0.128 | 4.735 | + | "CaloMergeTrackMatchTables_2ce8beb5" | 27023 | 0.119 | 4.402 | + | "Decode_ODIN" | 27023 | 0.083 | 3.085 | + | "reserveIOV" | 27023 | 0.082 | 3.016 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.080 | 2.954 | + | "DefaultGECFilter" | 35323 | 0.079 | 2.228 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.067 | 1.902 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.053 | 1.971 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.052 | 1.930 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.052 | 1.914 | + | "UnpackRawEvent_ODIN" | 27023 | 0.047 | 1.730 | + | "DummyEventTime" | 27023 | 0.047 | 1.727 | + | "UnpackRawEvent_VP" | 27023 | 0.041 | 1.530 | + | "UnpackRawEvent_EcalPackedError" | 27023 | 0.041 | 1.523 | + | "UnpackRawEvent_EcalPacked" | 27023 | 0.039 | 1.443 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.035 | 1.288 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.029 | 1.069 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNNv3/PrMatchNNv3_47039c3b #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2CaloClusters/PrFilterTracks2CaloClusters_cae3b638 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2ElectronMatch/PrFilterTracks2ElectronMatch_4265680d #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrFilterTracks2ElectronShower/PrFilterTracks2ElectronShower_ab07420b #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_482fda95 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_31749988 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_2c53aed6 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +MatchUTHitsChecker_2c53aed6.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_31749988.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/electrons/logs/calo_effs_BJpsi_EcalSelection.log b/efficiencies/electrons/logs/calo_effs_BJpsi_EcalSelection.log new file mode 100644 index 0000000..9c493e5 --- /dev/null +++ b/efficiencies/electrons/logs/calo_effs_BJpsi_EcalSelection.log @@ -0,0 +1,507 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_BJpsi_EcalSelection.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_calo_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Tue Mar 26 12:01:50 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_BJpsi_EcalSelection.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_BJpsi_EcalSelection.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 39771 ms +ApplicationMgr INFO Application Manager Initialized successfully +FunctorFactory INFO Reusing functor library: "/tmp/FunctorJitLib_0xeb028f51fa71f3bd_0x581d2968e9eda09c.so" +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 12:02:55 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1442.89, timed 35313 Events: 2170265 ms, Evts/s = 16.2713 +CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#total tracks" | 27023 | 3390744 | 125.48 | 43.466 | 7.0000 | 248.00 | + | "#tracks in acceptance" | 27023 | 2778273 | 102.81 | 35.894 | 6.0000 | 212.00 | +CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "average DLL" | 2778273 | -69619.55 | -0.025059 | 0.041791 | -1.6606 | 0.67251 | + | "average E/p" | 2778273 | 11217.89 | 0.0040377 | 0.0046318 | 0.0000 | 0.41566 | +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 3390744 | 125.48 | +MatchTrackChecker_bab601b8.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_f8e9b24c.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrFilterTracks2ElectronShower_de... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 1810605 |( 53.39846 +- 0.02709050)% | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNNv3_25c2aac3 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.613404e+07 | 1337.2 | + | "#MatchingMLP" | 1814450 | 1432248 | 0.78936 | + | "#MatchingTracks" | 27023 | 1814450 | 67.145 | +PrMatchNNv3_25c2aac3.PrAddUTHits... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1514161 | 5804722 | 3.8336 | + | "#tracks with hits added" | 1514161 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +PrTrackAssociator_a524c471 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 1814450 | 862240 |( 47.52074 +- 0.03707345)% | + | "MC particles per track" | 862240 | 994828 | 1.1538 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_53bd913f INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 1814450 | 67.145 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +fromV3TrackV1Track_f7e35ed6 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 1810605 | 67.002 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_482fda95 INFO Results +ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_482fda95 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_482fda95 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_482fda95 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_482fda95 INFO +ForwardUTHitsChecker_fe9d9ac2 INFO Results +ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO +MatchTrackChecker_bab601b8 INFO Results +MatchTrackChecker_bab601b8 INFO **** Match 1814450 tracks including 952210 ghosts [52.48 %], Event average 48.99 % **** +MatchTrackChecker_bab601b8 INFO 01_long : 663648 from 1811265 [ 36.64 %] 4346 clones [ 0.65 %], purity: 99.23 %, hitEff: 98.21 % +MatchTrackChecker_bab601b8 INFO 02_long_P>5GeV : 392810 from 1172326 [ 33.51 %] 1775 clones [ 0.45 %], purity: 99.41 %, hitEff: 99.23 % +MatchTrackChecker_bab601b8 INFO 03_long_strange : 35083 from 98994 [ 35.44 %] 215 clones [ 0.61 %], purity: 98.85 %, hitEff: 97.53 % +MatchTrackChecker_bab601b8 INFO 04_long_strange_P>5GeV : 14834 from 46918 [ 31.62 %] 63 clones [ 0.42 %], purity: 99.19 %, hitEff: 99.23 % +MatchTrackChecker_bab601b8 INFO 05_long_fromB : 31419 from 94402 [ 33.28 %] 203 clones [ 0.64 %], purity: 99.37 %, hitEff: 98.55 % +MatchTrackChecker_bab601b8 INFO 05_long_fromD : 17693 from 50932 [ 34.74 %] 122 clones [ 0.68 %], purity: 99.23 %, hitEff: 98.31 % +MatchTrackChecker_bab601b8 INFO 06_long_fromB_P>5GeV : 21721 from 71030 [ 30.58 %] 111 clones [ 0.51 %], purity: 99.54 %, hitEff: 99.26 % +MatchTrackChecker_bab601b8 INFO 06_long_fromD_P>5GeV : 11057 from 35044 [ 31.55 %] 55 clones [ 0.49 %], purity: 99.47 %, hitEff: 99.22 % +MatchTrackChecker_bab601b8 INFO 07_long_electrons : 138466 from 181213 [ 76.41 %] 2259 clones [ 1.61 %], purity: 97.74 %, hitEff: 98.11 % +MatchTrackChecker_bab601b8 INFO 07_long_electrons_pairprod : 93716 from 130212 [ 71.97 %] 1618 clones [ 1.70 %], purity: 97.13 %, hitEff: 97.78 % +MatchTrackChecker_bab601b8 INFO 08_long_fromB_electrons : 42264 from 48919 [ 86.40 %] 626 clones [ 1.46 %], purity: 99.02 %, hitEff: 98.90 % +MatchTrackChecker_bab601b8 INFO 09_long_fromB_electrons_P>5GeV : 39579 from 44696 [ 88.55 %] 603 clones [ 1.50 %], purity: 99.11 %, hitEff: 99.05 % +MatchTrackChecker_bab601b8 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 19265 from 61675 [ 31.24 %] 90 clones [ 0.46 %], purity: 99.64 %, hitEff: 99.16 % +MatchTrackChecker_bab601b8 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38292 from 42838 [ 89.39 %] 570 clones [ 1.47 %], purity: 99.19 %, hitEff: 99.02 % +MatchTrackChecker_bab601b8 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 9186 from 28214 [ 32.56 %] 42 clones [ 0.46 %], purity: 99.60 %, hitEff: 99.08 % +MatchTrackChecker_bab601b8 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 7910 from 24129 [ 32.78 %] 31 clones [ 0.39 %], purity: 99.54 %, hitEff: 99.00 % +MatchTrackChecker_bab601b8 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 19183 from 61506 [ 31.19 %] 90 clones [ 0.47 %], purity: 99.65 %, hitEff: 99.16 % +MatchTrackChecker_bab601b8 INFO +MatchUTHitsChecker_f8e9b24c INFO Results +MatchUTHitsChecker_f8e9b24c INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_53bd913f/OutputTracksLocation **** 952210 ghost, 2.60 UT per track +MatchUTHitsChecker_f8e9b24c INFO 01_long :667994 tr 3.84 from 4.08 mcUT [ 94.2 %] 0.15 ghost hits on real tracks [ 3.8 %] +MatchUTHitsChecker_f8e9b24c INFO 01_long >3UT :660440 tr 3.88 from 4.10 mcUT [ 94.5 %] 0.15 ghost hits on real tracks [ 3.6 %] +MatchUTHitsChecker_f8e9b24c INFO 02_long_P>5GeV :394585 tr 3.93 from 4.09 mcUT [ 96.2 %] 0.10 ghost hits on real tracks [ 2.5 %] +MatchUTHitsChecker_f8e9b24c INFO 02_long_P>5GeV >3UT :388249 tr 3.99 from 4.12 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_f8e9b24c INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 19355 tr 3.98 from 4.09 mcUT [ 97.2 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_f8e9b24c INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 19246 tr 4.00 from 4.11 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_f8e9b24c INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 19273 tr 4.00 from 4.10 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_f8e9b24c INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 19242 tr 4.00 from 4.11 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.2 %] +MatchUTHitsChecker_f8e9b24c INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_ad9abe4e INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_ad9abe4e INFO +HLTControlFlowMgr INFO Memory pool: used 3.89454 +/- 0.0114766 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 344.101 +/- 1.00421 (min: 4, max: 506) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 2112.152 | 59795.374 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1287.462 | 36448.258 | + | "SeedTrackChecker_ad9abe4e" | 27023 | 163.094 | 6035.366 | + | "ForwardTrackChecker_482fda95" | 27023 | 153.947 | 5696.889 | + | "MatchTrackChecker_bab601b8" | 27023 | 127.991 | 4736.372 | + | "ForwardUTHitsChecker_fe9d9ac2" | 27023 | 59.702 | 2209.286 | + | "MatchUTHitsChecker_f8e9b24c" | 27023 | 57.923 | 2143.484 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 55.446 | 2051.823 | + | "PrHybridSeeding_4d0337cc" | 27023 | 41.391 | 1531.681 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 31.409 | 1162.310 | + | "Unpack__Event_MC_Vertices" | 27023 | 25.541 | 945.144 | + | "Unpack__Event_MC_Particles" | 27023 | 24.009 | 888.483 | + | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 27023 | 11.397 | 421.742 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.357 | 346.273 | + | "PrStorePrUTHits_df75b912" | 27023 | 7.193 | 266.185 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.189 | 266.014 | + | "VPClusFull_38754d8c" | 27023 | 6.806 | 251.862 | + | "PrMatchNNv3_25c2aac3" | 27023 | 6.044 | 223.656 | + | "FutureEcalZSup" | 27023 | 5.985 | 221.477 | + | "PrTrackAssociator_3adf94fb" | 27023 | 4.668 | 172.743 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.147 | 153.455 | + | "PrTrackAssociator_a524c471" | 27023 | 3.377 | 124.973 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.213 | 118.894 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.357 | 87.224 | + | "fromPrMatchTracksV1Tracks_53bd913f" | 27023 | 1.609 | 59.527 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.582 | 58.526 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.558 | 57.658 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.455 | 53.825 | + | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 27023 | 1.370 | 50.709 | + | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 27023 | 1.220 | 45.139 | + | "fromV3TrackV1Track_f7e35ed6" | 27023 | 1.018 | 37.654 | + | "FTRawBankDecoder" | 27023 | 0.817 | 30.246 | + | "PrFilterTracks2ElectronShower_def0b8dd" | 27023 | 0.488 | 18.049 | + | "UnpackRawEvent_UT" | 35323 | 0.353 | 9.992 | + | "UniqueIDGeneratorAlg_26e527e9" | 27023 | 0.111 | 4.092 | + | "reserveIOV" | 27023 | 0.100 | 3.707 | + | "Decode_ODIN" | 27023 | 0.096 | 3.534 | + | "UnpackRawEvent_EcalPacked" | 27023 | 0.090 | 3.339 | + | "DefaultGECFilter" | 35323 | 0.085 | 2.416 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.067 | 2.464 | + | "UnpackRawEvent_VP" | 27023 | 0.062 | 2.299 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.059 | 1.682 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.059 | 2.181 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.051 | 1.903 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.050 | 1.833 | + | "DummyEventTime" | 27023 | 0.049 | 1.828 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.047 | 1.732 | + | "UnpackRawEvent_ODIN" | 27023 | 0.046 | 1.712 | + | "UnpackRawEvent_EcalPackedError" | 27023 | 0.034 | 1.267 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.029 | 1.083 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_482fda95 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_bab601b8 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_f8e9b24c #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_f8e9b24c.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_bab601b8.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/electrons/logs/calo_effs_BJpsi_VeloEcalSelection.log b/efficiencies/electrons/logs/calo_effs_BJpsi_VeloEcalSelection.log new file mode 100644 index 0000000..0a9690f --- /dev/null +++ b/efficiencies/electrons/logs/calo_effs_BJpsi_VeloEcalSelection.log @@ -0,0 +1,482 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_selected_calo_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_selected_effs_BJpsi_VeloEcalSelection.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_selected_calo_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.2 + running on lhcba2 on Tue Mar 26 11:06:28 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_selected_effs_BJpsi_VeloEcalSelection.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_selected_effs_BJpsi_VeloEcalSelection.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 25176 ms +ApplicationMgr INFO Application Manager Initialized successfully +FunctorFactory INFO Reusing functor library: "/tmp/FunctorJitLib_0xeb028f51fa71f3bd_0x581d2968e9eda09c.so" +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 11:07:15 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1840.89, timed 35313 Events: 2420041 ms, Evts/s = 14.5919 +CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#total tracks" | 27023 | 3390744 | 125.48 | 43.466 | 7.0000 | 248.00 | + | "#tracks in acceptance" | 27023 | 2778273 | 102.81 | 35.894 | 6.0000 | 212.00 | +CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "average DLL" | 2778273 | -69619.55 | -0.025059 | 0.041791 | -1.6606 | 0.67251 | + | "average E/p" | 2778273 | 11217.89 | 0.0040377 | 0.0046318 | 0.0000 | 0.41566 | +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 3390744 | 125.48 | +MatchTrackChecker_e8f63d0c.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_c1993ef1.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrFilterTracks2ElectronShower_de... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 3390744 | 1810605 |( 53.39846 +- 0.02709050)% | +PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Accepted input tracks" | 27023 | 4322823 | 159.97 | + | "Created long tracks" | 27023 | 2155350 | 79.760 | + | "Input tracks" | 27023 | 4529074 | 167.60 | + | "Number of candidate bins per track" | 4322823 |2.042276e+07 | 4.7244 | 5.1650 | 0.0000 | 58.000 | + | "Number of complete candidates/track 1st Loop" | 3639547 | 2320691 | 0.63763 | 0.64847 | 0.0000 | 7.0000 | + | "Number of complete candidates/track 2nd Loop" | 1776672 | 156795 | 0.088252 | 0.29462 | 0.0000 | 5.0000 | + | "Number of x candidates per track 1st Loop" | 3639547 | 5142402 | 1.4129 | 1.3643 | + | "Number of x candidates per track 2nd Loop" | 1776672 | 4267839 | 2.4022 | 2.6608 | + | "Percentage second loop execution" | 3639547 | 1776672 | 0.48816 | + | "Removed duplicates" | 27023 | 116306 | 4.3040 | +PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 1974692 | 7997020 | 4.0498 | + | "#tracks with hits added" | 1974692 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNNv3_3738428b INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.613404e+07 | 1337.2 | + | "#MatchingMLP" | 197324 | 178166.3 | 0.90291 | + | "#MatchingTracks" | 27023 | 197324 | 7.3021 | +PrMatchNNv3_3738428b.PrAddUTHits... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 188055 | 746788 | 3.9711 | + | "#tracks with hits added" | 188055 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_3adf94fb INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | + | "MC particles per track" | 1844072 | 2163436 | 1.1732 | +PrTrackAssociator_bae3b057 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 1810605 | 1790546 |( 98.89214 +- 0.007778786)% | + | "MC particles per track" | 1790546 | 1790595 | 1.0000 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 7059265 | 6885105 |( 97.53289 +- 0.005838352)% | + | "MC particles per track" | 6885105 | 6916103 | 1.0045 | +PrTrackAssociator_f0985411 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 197324 | 145295 |( 73.63271 +- 0.09919236)% | + | "MC particles per track" | 145295 | 163687 | 1.1266 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | +fromPrMatchTracksV1Tracks_fc8c934b INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 197324 | 7.3021 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +fromV3TrackV1Track_f7e35ed6 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 27023 | 1810605 | 67.002 | +ApplicationMgr INFO Application Manager Stopped successfully +ForwardTrackChecker_482fda95 INFO Results +ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** +ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % +ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 1093695 from 1172326 [ 93.29 %] 3358 clones [ 0.31 %], purity: 99.32 %, hitEff: 98.82 % +ForwardTrackChecker_482fda95 INFO 03_long_strange : 79529 from 98994 [ 80.34 %] 216 clones [ 0.27 %], purity: 98.86 %, hitEff: 98.18 % +ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 41749 from 46918 [ 88.98 %] 84 clones [ 0.20 %], purity: 99.10 %, hitEff: 98.81 % +ForwardTrackChecker_482fda95 INFO 05_long_fromB : 85595 from 94402 [ 90.67 %] 303 clones [ 0.35 %], purity: 99.38 %, hitEff: 98.71 % +ForwardTrackChecker_482fda95 INFO 05_long_fromD : 45356 from 50932 [ 89.05 %] 165 clones [ 0.36 %], purity: 99.25 %, hitEff: 98.57 % +ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 67394 from 71030 [ 94.88 %] 217 clones [ 0.32 %], purity: 99.48 %, hitEff: 98.98 % +ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 33032 from 35044 [ 94.26 %] 110 clones [ 0.33 %], purity: 99.39 %, hitEff: 98.93 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons : 125946 from 181213 [ 69.50 %] 1382 clones [ 1.09 %], purity: 97.93 %, hitEff: 98.26 % +ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 82370 from 130212 [ 63.26 %] 988 clones [ 1.19 %], purity: 97.36 %, hitEff: 98.03 % +ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 41503 from 48919 [ 84.84 %] 400 clones [ 0.95 %], purity: 99.00 %, hitEff: 98.76 % +ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 39040 from 44696 [ 87.35 %] 383 clones [ 0.97 %], purity: 99.07 %, hitEff: 98.87 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58515 from 61675 [ 94.88 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.96 % +ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37907 from 42838 [ 88.49 %] 359 clones [ 0.94 %], purity: 99.14 %, hitEff: 98.84 % +ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % +ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % +ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % +ForwardTrackChecker_482fda95 INFO +ForwardUTHitsChecker_fe9d9ac2 INFO Results +ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO +MatchTrackChecker_e8f63d0c INFO Results +MatchTrackChecker_e8f63d0c INFO **** Match 197324 tracks including 52029 ghosts [26.37 %], Event average 21.60 % **** +MatchTrackChecker_e8f63d0c INFO 01_long : 1 from 1811265 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % +MatchTrackChecker_e8f63d0c INFO 02_long_P>5GeV : 1 from 1172326 [ 0.00 %] 0 clones [ 0.00 %], purity:100.00 %, hitEff:100.00 % +MatchTrackChecker_e8f63d0c INFO 03_long_strange : 0 from 98994 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 04_long_strange_P>5GeV : 0 from 46918 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 05_long_fromB : 0 from 94402 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 05_long_fromD : 0 from 50932 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 06_long_fromB_P>5GeV : 0 from 71030 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 06_long_fromD_P>5GeV : 0 from 35044 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 07_long_electrons : 138464 from 181213 [ 76.41 %] 2259 clones [ 1.61 %], purity: 97.74 %, hitEff: 98.11 % +MatchTrackChecker_e8f63d0c INFO 07_long_electrons_pairprod : 93716 from 130212 [ 71.97 %] 1618 clones [ 1.70 %], purity: 97.13 %, hitEff: 97.78 % +MatchTrackChecker_e8f63d0c INFO 08_long_fromB_electrons : 42264 from 48919 [ 86.40 %] 626 clones [ 1.46 %], purity: 99.02 %, hitEff: 98.90 % +MatchTrackChecker_e8f63d0c INFO 09_long_fromB_electrons_P>5GeV : 39579 from 44696 [ 88.55 %] 603 clones [ 1.50 %], purity: 99.11 %, hitEff: 99.05 % +MatchTrackChecker_e8f63d0c INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 61675 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38292 from 42838 [ 89.39 %] 570 clones [ 1.47 %], purity: 99.19 %, hitEff: 99.02 % +MatchTrackChecker_e8f63d0c INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 28214 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 24129 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 61506 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_e8f63d0c INFO +MatchUTHitsChecker_c1993ef1 INFO Results +MatchUTHitsChecker_c1993ef1 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_fc8c934b/OutputTracksLocation **** 52029 ghost, 3.42 UT per track +MatchUTHitsChecker_c1993ef1 INFO 01_long : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_c1993ef1 INFO 01_long >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_c1993ef1 INFO 02_long_P>5GeV : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_c1993ef1 INFO 02_long_P>5GeV >3UT : 1 tr 4.00 from 4.00 mcUT [100.0 %] 0.00 ghost hits on real tracks [ 0.0 %] +MatchUTHitsChecker_c1993ef1 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89454 +/- 0.0114766 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 344.101 +/- 1.00421 (min: 4, max: 506) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 2360.196 | 66817.530 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1652.030 | 46769.234 | + | "ForwardTrackChecker_482fda95" | 27023 | 165.100 | 6109.604 | + | "MatchTrackChecker_e8f63d0c" | 27023 | 125.313 | 4637.269 | + | "ForwardUTHitsChecker_fe9d9ac2" | 27023 | 64.925 | 2402.571 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 60.628 | 2243.578 | + | "MatchUTHitsChecker_c1993ef1" | 27023 | 59.767 | 2211.705 | + | "PrHybridSeeding_4d0337cc" | 27023 | 45.056 | 1667.307 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 34.436 | 1274.323 | + | "Unpack__Event_MC_Vertices" | 27023 | 27.796 | 1028.589 | + | "Unpack__Event_MC_Particles" | 27023 | 26.138 | 967.261 | + | "PrMatchNNv3_3738428b" | 27023 | 18.620 | 689.040 | + | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 27023 | 12.324 | 456.063 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 9.865 | 365.072 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 7.888 | 291.894 | + | "VPClusFull_38754d8c" | 27023 | 7.390 | 273.468 | + | "PrStorePrUTHits_df75b912" | 27023 | 6.767 | 250.398 | + | "FutureEcalZSup" | 27023 | 5.959 | 220.532 | + | "PrTrackAssociator_3adf94fb" | 27023 | 5.149 | 190.541 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.835 | 178.939 | + | "PrTrackAssociator_d68377ee" | 27023 | 3.765 | 139.316 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.530 | 93.630 | + | "PrTrackAssociator_bae3b057" | 27023 | 1.906 | 70.540 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.714 | 63.422 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.594 | 58.970 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.588 | 58.754 | + | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 27023 | 1.386 | 51.305 | + | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 27023 | 1.162 | 43.002 | + | "fromV3TrackV1Track_f7e35ed6" | 27023 | 1.055 | 39.047 | + | "FTRawBankDecoder" | 27023 | 0.813 | 30.071 | + | "PrTrackAssociator_f0985411" | 27023 | 0.530 | 19.624 | + | "PrFilterTracks2ElectronShower_def0b8dd" | 27023 | 0.417 | 15.442 | + | "UnpackRawEvent_UT" | 35323 | 0.362 | 10.255 | + | "fromPrMatchTracksV1Tracks_fc8c934b" | 27023 | 0.338 | 12.512 | + | "UniqueIDGeneratorAlg_26e527e9" | 27023 | 0.127 | 4.689 | + | "UnpackRawEvent_EcalPacked" | 27023 | 0.090 | 3.340 | + | "Decode_ODIN" | 27023 | 0.084 | 3.125 | + | "reserveIOV" | 27023 | 0.081 | 2.981 | + | "DefaultGECFilter" | 35323 | 0.078 | 2.220 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.071 | 2.640 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.069 | 1.957 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.063 | 2.348 | + | "UnpackRawEvent_VP" | 27023 | 0.062 | 2.291 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.056 | 2.058 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.055 | 2.025 | + | "DummyEventTime" | 27023 | 0.053 | 1.956 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.051 | 1.898 | + | "UnpackRawEvent_ODIN" | 27023 | 0.044 | 1.613 | + | "UnpackRawEvent_EcalPackedError" | 27023 | 0.033 | 1.219 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.032 | 1.183 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/ForwardTrackChecker_482fda95 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_e8f63d0c #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_c1993ef1 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +MatchUTHitsChecker_c1993ef1.PrCh... SUCCESS Booked 36 Histogram(s) : 1D=32 2D=4 +MatchTrackChecker_e8f63d0c.PrChe... SUCCESS Booked 589 Histogram(s) : 1D=420 2D=169 +ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp6.log b/efficiencies/electrons/logs/calo_effs_testJpsi_EcalSelection.log similarity index 64% rename from data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp6.log rename to efficiencies/electrons/logs/calo_effs_testJpsi_EcalSelection.log index e2780c9..aa072e5 100644 --- a/data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp6.log +++ b/efficiencies/electrons/logs/calo_effs_testJpsi_EcalSelection.log @@ -1,5 +1,5 @@ # setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_selected_calo_data.py' /***** User ApplicationOptions/ApplicationOptions ************************************************** |-append_decoding_keys_to_output_manifest = True (default: True) |-auditors = [] (default: []) @@ -28,8 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef7_yCorrCut.root' -| (default: '') +|-ntuple_file = 'data/calo_selected_effs_testJpsi.root' (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) |-output_manifest_file = '' (default: '') @@ -47,11 +46,11 @@ |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- # Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_selected_calo_data.py' ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 09:56:29 2024 + running on lhcba2 on Mon Mar 25 13:43:10 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,16 +66,18 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef7_yCorrCut.root as FILE1 +NTupleSvc INFO Added stream file:data/calo_selected_effs_testJpsi.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef7_yCorrCut.root +RootHistSvc INFO Writing ROOT histograms to: data/calo_selected_effs_testJpsi.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 +CaloTrackBasedElectronShowerAlg_... INFO getting parametrization histograms from paramfile://data/CaloPID/eshower_trackbased_parametrization.root HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 21518 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 21594 ms ApplicationMgr INFO Application Manager Initialized successfully +FunctorFactory INFO Reusing functor library: "/tmp/FunctorJitLib_0xeb028f51fa71f3bd_0xd876c902dc8c768c.so" ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' @@ -85,11 +86,19 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 09:57:09 +HLTControlFlowMgr INFO Timing started at: 13:43:51 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1796.18, timed 2945 Events: 159439 ms, Evts/s = 18.471 +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1776.3, timed 2945 Events: 154937 ms, Evts/s = 19.0077 +CaloAcceptanceEcalAlg_Ttrack_1ad... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#total tracks" | 2289 | 284763 | 124.40 | 43.203 | 7.0000 | 248.00 | + | "#tracks in acceptance" | 2289 | 233690 | 102.09 | 35.860 | 7.0000 | 212.00 | +CaloTrackBasedElectronShowerAlg_... INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "average DLL" | 233690 | -5899.35 | -0.025244 | 0.042736 | -1.6606 | 0.49540 | + | "average E/p" | 233690 | 950.3228 | 0.0040666 | 0.0046573 | 0.0000 | 0.20127 | DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 2955 | @@ -103,12 +112,18 @@ ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 2955 | -MatchTrackChecker_386d067b.LoKi:... INFO Number of counters : 1 +LHCb__Converters__Track__SOA__fr... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 2289 | 284763 | 124.40 | +MatchTrackChecker_d71eea68.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_a4d04726.LoKi... INFO Number of counters : 1 +MatchUTHitsChecker_5e3d4232.LoKi... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 4 | +PrFilterTracks2ElectronShower_ab... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Cut selection efficiency" | 284763 | 149822 |( 52.61287 +- 0.09356952)% | PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Accepted input tracks" | 2289 | 363254 | 158.70 | @@ -151,15 +166,15 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_d80b5038 INFO Number of counters : 3 +PrMatchNNv3_a8923b16 INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8439531 | 3687.0 | - | "#MatchingMLP" | 208603 | 194112.3 | 0.93053 | - | "#MatchingTracks" | 2289 | 208603 | 91.133 | -PrMatchNN_d80b5038.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 2289 | 2972204 | 1298.5 | + | "#MatchingMLP" | 150241 | 118613.6 | 0.78949 | + | "#MatchingTracks" | 2289 | 150241 | 65.636 | +PrMatchNNv3_a8923b16.PrAddUTHits... INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 186550 | 745719 | 3.9974 | - | "#tracks with hits added" | 186550 | + | "#UT hits added" | 125141 | 480294 | 3.8380 | + | "#tracks with hits added" | 125141 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | @@ -193,21 +208,22 @@ PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 PrStoreUTHit_6220b56a INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | -PrTrackAssociator_16ad4612 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | - | "MC particles per track" | 279294 | 279304 | 1.0000 | PrTrackAssociator_3adf94fb INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | | "MC particles per track" | 155077 | 181813 | 1.1724 | -PrTrackAssociator_8c8024ec INFO Number of counters : 2 +PrTrackAssociator_41497608 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 208603 | 153948 |( 73.79951 +- 0.09627669)% | - | "MC particles per track" | 153948 | 179619 | 1.1668 | -SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + |*"Efficiency" | 149822 | 148264 |( 98.96010 +- 0.02620826)% | + | "MC particles per track" | 148264 | 148269 | 1.0000 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | +PrTrackAssociator_f8d276a7 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 150241 | 71143 |( 47.35259 +- 0.1288149)% | + | "MC particles per track" | 71143 | 82050 | 1.1533 | VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | @@ -215,15 +231,18 @@ VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_aaf8b514 INFO Number of counters : 1 +fromPrMatchTracksV1Tracks_ca57aeb5 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 208603 | 91.133 | + | "Nb of converted Tracks" | 2289 | 150241 | 65.636 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | +fromV3TrackV1Track_217dc8d1 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Tracks" | 2289 | 149822 | 65.453 | ApplicationMgr INFO Application Manager Stopped successfully ForwardTrackChecker_482fda95 INFO Results ForwardTrackChecker_482fda95 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** @@ -256,119 +275,105 @@ ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] ForwardUTHitsChecker_fe9d9ac2 INFO -MatchTrackChecker_386d067b INFO Results -MatchTrackChecker_386d067b INFO **** Match 208603 tracks including 54655 ghosts [26.20 %], Event average 23.95 % **** -MatchTrackChecker_386d067b INFO 01_long : 131508 from 152279 [ 86.36 %] 783 clones [ 0.59 %], purity: 99.34 %, hitEff: 98.65 % -MatchTrackChecker_386d067b INFO 02_long_P>5GeV : 89497 from 98421 [ 90.93 %] 440 clones [ 0.49 %], purity: 99.46 %, hitEff: 99.27 % -MatchTrackChecker_386d067b INFO 03_long_strange : 6459 from 8121 [ 79.53 %] 30 clones [ 0.46 %], purity: 98.96 %, hitEff: 98.25 % -MatchTrackChecker_386d067b INFO 04_long_strange_P>5GeV : 3407 from 3856 [ 88.36 %] 12 clones [ 0.35 %], purity: 99.19 %, hitEff: 99.25 % -MatchTrackChecker_386d067b INFO 05_long_fromB : 7110 from 7959 [ 89.33 %] 48 clones [ 0.67 %], purity: 99.45 %, hitEff: 98.85 % -MatchTrackChecker_386d067b INFO 05_long_fromD : 3746 from 4226 [ 88.64 %] 16 clones [ 0.43 %], purity: 99.37 %, hitEff: 98.70 % -MatchTrackChecker_386d067b INFO 06_long_fromB_P>5GeV : 5560 from 5983 [ 92.93 %] 27 clones [ 0.48 %], purity: 99.57 %, hitEff: 99.26 % -MatchTrackChecker_386d067b INFO 06_long_fromD_P>5GeV : 2673 from 2894 [ 92.36 %] 8 clones [ 0.30 %], purity: 99.53 %, hitEff: 99.24 % -MatchTrackChecker_386d067b INFO 07_long_electrons : 11645 from 15125 [ 76.99 %] 177 clones [ 1.50 %], purity: 97.74 %, hitEff: 98.13 % -MatchTrackChecker_386d067b INFO 07_long_electrons_pairprod : 7883 from 10831 [ 72.78 %] 141 clones [ 1.76 %], purity: 97.10 %, hitEff: 97.80 % -MatchTrackChecker_386d067b INFO 08_long_fromB_electrons : 3595 from 4210 [ 85.39 %] 41 clones [ 1.13 %], purity: 99.08 %, hitEff: 98.93 % -MatchTrackChecker_386d067b INFO 09_long_fromB_electrons_P>5GeV : 3361 from 3850 [ 87.30 %] 37 clones [ 1.09 %], purity: 99.19 %, hitEff: 99.08 % -MatchTrackChecker_386d067b INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4832 from 5182 [ 93.25 %] 26 clones [ 0.54 %], purity: 99.66 %, hitEff: 99.14 % -MatchTrackChecker_386d067b INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3243 from 3659 [ 88.63 %] 34 clones [ 1.04 %], purity: 99.27 %, hitEff: 99.07 % -MatchTrackChecker_386d067b INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2183 from 2343 [ 93.17 %] 8 clones [ 0.37 %], purity: 99.66 %, hitEff: 99.12 % -MatchTrackChecker_386d067b INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1774 from 2010 [ 88.26 %] 6 clones [ 0.34 %], purity: 99.52 %, hitEff: 99.00 % -MatchTrackChecker_386d067b INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4820 from 5164 [ 93.34 %] 26 clones [ 0.54 %], purity: 99.66 %, hitEff: 99.14 % -MatchTrackChecker_386d067b INFO -MatchUTHitsChecker_a4d04726 INFO Results -MatchUTHitsChecker_a4d04726 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_aaf8b514/OutputTracksLocation **** 54655 ghost, 2.67 UT per track -MatchUTHitsChecker_a4d04726 INFO 01_long :132291 tr 3.90 from 4.08 mcUT [ 95.5 %] 0.13 ghost hits on real tracks [ 3.2 %] -MatchUTHitsChecker_a4d04726 INFO 01_long >3UT :130954 tr 3.93 from 4.10 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] -MatchUTHitsChecker_a4d04726 INFO 02_long_P>5GeV : 89937 tr 3.95 from 4.08 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] -MatchUTHitsChecker_a4d04726 INFO 02_long_P>5GeV >3UT : 88789 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] -MatchUTHitsChecker_a4d04726 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4858 tr 4.00 from 4.07 mcUT [ 98.1 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4836 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4846 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4836 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO -SeedTrackChecker_ad9abe4e INFO Results -SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** -SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % -SeedTrackChecker_ad9abe4e INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % -SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % -SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % -SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % -SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % -SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % -SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % -SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % -SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % -SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % -SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % -SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % -SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % -SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % -SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % -SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % -SeedTrackChecker_ad9abe4e INFO -HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.039102 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 347.612 +/- 3.41441 (min: 4, max: 489) requests were served +MatchTrackChecker_d71eea68 INFO Results +MatchTrackChecker_d71eea68 INFO **** Match 150241 tracks including 79098 ghosts [52.65 %], Event average 49.21 % **** +MatchTrackChecker_d71eea68 INFO 01_long : 54609 from 152279 [ 35.86 %] 379 clones [ 0.69 %], purity: 99.25 %, hitEff: 98.22 % +MatchTrackChecker_d71eea68 INFO 02_long_P>5GeV : 32476 from 98421 [ 33.00 %] 174 clones [ 0.53 %], purity: 99.43 %, hitEff: 99.25 % +MatchTrackChecker_d71eea68 INFO 03_long_strange : 2854 from 8121 [ 35.14 %] 19 clones [ 0.66 %], purity: 98.92 %, hitEff: 97.50 % +MatchTrackChecker_d71eea68 INFO 04_long_strange_P>5GeV : 1219 from 3856 [ 31.61 %] 7 clones [ 0.57 %], purity: 99.22 %, hitEff: 99.21 % +MatchTrackChecker_d71eea68 INFO 05_long_fromB : 2589 from 7959 [ 32.53 %] 18 clones [ 0.69 %], purity: 99.38 %, hitEff: 98.53 % +MatchTrackChecker_d71eea68 INFO 05_long_fromD : 1436 from 4226 [ 33.98 %] 7 clones [ 0.49 %], purity: 99.31 %, hitEff: 98.29 % +MatchTrackChecker_d71eea68 INFO 06_long_fromB_P>5GeV : 1806 from 5983 [ 30.19 %] 8 clones [ 0.44 %], purity: 99.55 %, hitEff: 99.26 % +MatchTrackChecker_d71eea68 INFO 06_long_fromD_P>5GeV : 885 from 2894 [ 30.58 %] 3 clones [ 0.34 %], purity: 99.54 %, hitEff: 99.16 % +MatchTrackChecker_d71eea68 INFO 07_long_electrons : 11609 from 15125 [ 76.75 %] 179 clones [ 1.52 %], purity: 97.76 %, hitEff: 98.16 % +MatchTrackChecker_d71eea68 INFO 07_long_electrons_pairprod : 7819 from 10831 [ 72.19 %] 139 clones [ 1.75 %], purity: 97.13 %, hitEff: 97.84 % +MatchTrackChecker_d71eea68 INFO 08_long_fromB_electrons : 3612 from 4210 [ 85.80 %] 43 clones [ 1.18 %], purity: 99.07 %, hitEff: 98.92 % +MatchTrackChecker_d71eea68 INFO 09_long_fromB_electrons_P>5GeV : 3389 from 3850 [ 88.03 %] 40 clones [ 1.17 %], purity: 99.16 %, hitEff: 99.03 % +MatchTrackChecker_d71eea68 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 1593 from 5182 [ 30.74 %] 10 clones [ 0.62 %], purity: 99.63 %, hitEff: 99.15 % +MatchTrackChecker_d71eea68 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3269 from 3659 [ 89.34 %] 37 clones [ 1.12 %], purity: 99.25 %, hitEff: 99.04 % +MatchTrackChecker_d71eea68 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 733 from 2343 [ 31.28 %] 4 clones [ 0.54 %], purity: 99.64 %, hitEff: 99.05 % +MatchTrackChecker_d71eea68 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 670 from 2010 [ 33.33 %] 2 clones [ 0.30 %], purity: 99.52 %, hitEff: 99.15 % +MatchTrackChecker_d71eea68 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 1583 from 5164 [ 30.65 %] 10 clones [ 0.63 %], purity: 99.63 %, hitEff: 99.17 % +MatchTrackChecker_d71eea68 INFO +MatchUTHitsChecker_5e3d4232 INFO Results +MatchUTHitsChecker_5e3d4232 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_ca57aeb5/OutputTracksLocation **** 79098 ghost, 2.59 UT per track +MatchUTHitsChecker_5e3d4232 INFO 01_long : 54988 tr 3.85 from 4.08 mcUT [ 94.2 %] 0.15 ghost hits on real tracks [ 3.7 %] +MatchUTHitsChecker_5e3d4232 INFO 01_long >3UT : 54353 tr 3.89 from 4.11 mcUT [ 94.5 %] 0.14 ghost hits on real tracks [ 3.6 %] +MatchUTHitsChecker_5e3d4232 INFO 02_long_P>5GeV : 32650 tr 3.94 from 4.09 mcUT [ 96.1 %] 0.10 ghost hits on real tracks [ 2.5 %] +MatchUTHitsChecker_5e3d4232 INFO 02_long_P>5GeV >3UT : 32130 tr 3.99 from 4.13 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_5e3d4232 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 1603 tr 3.97 from 4.08 mcUT [ 97.3 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_5e3d4232 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 1590 tr 4.00 from 4.10 mcUT [ 97.6 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_5e3d4232 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 1593 tr 4.00 from 4.09 mcUT [ 97.6 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_5e3d4232 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 1590 tr 4.00 from 4.10 mcUT [ 97.6 %] 0.05 ghost hits on real tracks [ 1.3 %] +MatchUTHitsChecker_5e3d4232 INFO +HLTControlFlowMgr INFO Memory pool: used 3.94331 +/- 0.0391039 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 348.386 +/- 3.42209 (min: 4, max: 490) requests were served HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO - | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 156.797 | 53061.598 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 92.551 | 31320.086 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 12.958 | 5660.968 | - | "ForwardTrackChecker_482fda95" | 2289 | 12.000 | 5242.621 | - | "MatchTrackChecker_386d067b" | 2289 | 10.783 | 4710.787 | - | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 4.777 | 2086.871 | - | "MatchUTHitsChecker_a4d04726" | 2289 | 4.718 | 2061.173 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.377 | 1912.147 | - | "PrHybridSeeding_4d0337cc" | 2289 | 3.264 | 1425.786 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.506 | 1094.590 | - | "Unpack__Event_MC_Vertices" | 2289 | 1.990 | 869.550 | - | "Unpack__Event_MC_Particles" | 2289 | 1.895 | 827.684 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.720 | 314.395 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.565 | 246.955 | - | "VPClusFull_38754d8c" | 2289 | 0.542 | 236.569 | - | "PrMatchNN_d80b5038" | 2289 | 0.469 | 204.856 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.468 | 204.573 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.371 | 162.237 | - | "PrTrackAssociator_8c8024ec" | 2289 | 0.364 | 159.203 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.338 | 147.867 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.253 | 110.341 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.191 | 83.556 | - | "fromPrMatchTracksV1Tracks_aaf8b514" | 2289 | 0.176 | 76.676 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.134 | 58.409 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.121 | 52.778 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.112 | 48.776 | - | "FTRawBankDecoder" | 2289 | 0.059 | 25.806 | - | "UnpackRawEvent_UT" | 2955 | 0.026 | 8.646 | - | "reserveIOV" | 2289 | 0.022 | 9.692 | - | "Decode_ODIN" | 2289 | 0.007 | 3.021 | - | "DefaultGECFilter" | 2955 | 0.006 | 1.961 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.006 | 2.421 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.004 | 1.429 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.795 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.004 | 1.659 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.578 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.549 | - | "DummyEventTime" | 2289 | 0.003 | 1.462 | - | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.336 | - | "UnpackRawEvent_VP" | 2289 | 0.003 | 1.232 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 0.879 | + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 2955 | 151.933 | 51415.634 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 94.611 | 32017.370 | + | "ForwardTrackChecker_482fda95" | 2289 | 13.255 | 5790.771 | + | "MatchTrackChecker_d71eea68" | 2289 | 11.100 | 4849.095 | + | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 5.221 | 2281.012 | + | "MatchUTHitsChecker_5e3d4232" | 2289 | 5.070 | 2214.742 | + | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.817 | 2104.359 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.583 | 1565.477 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.768 | 1209.192 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.208 | 964.509 | + | "Unpack__Event_MC_Particles" | 2289 | 2.093 | 914.417 | + | "CaloTrackBasedElectronShowerAlg_Ttrack_6c238bce" | 2289 | 0.982 | 429.012 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.787 | 344.012 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.633 | 276.594 | + | "VPClusFull_38754d8c" | 2289 | 0.593 | 259.003 | + | "PrMatchNNv3_a8923b16" | 2289 | 0.513 | 223.911 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.501 | 218.886 | + | "FutureEcalZSup" | 2289 | 0.454 | 198.501 | + | "PrTrackAssociator_3adf94fb" | 2289 | 0.411 | 179.587 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.377 | 164.664 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.299 | 130.638 | + | "PrTrackAssociator_f8d276a7" | 2289 | 0.282 | 123.407 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.203 | 88.846 | + | "PrTrackAssociator_41497608" | 2289 | 0.150 | 65.520 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.139 | 60.751 | + | "fromPrMatchTracksV1Tracks_ca57aeb5" | 2289 | 0.136 | 59.326 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.128 | 55.788 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.124 | 53.956 | + | "LHCb__Converters__Track__SOA__fromV1Track_854f0d04" | 2289 | 0.107 | 46.680 | + | "CaloAcceptanceEcalAlg_Ttrack_1ad7ead8" | 2289 | 0.086 | 37.419 | + | "fromV3TrackV1Track_217dc8d1" | 2289 | 0.083 | 36.061 | + | "FTRawBankDecoder" | 2289 | 0.067 | 29.080 | + | "PrFilterTracks2ElectronShower_ab07420b" | 2289 | 0.027 | 11.869 | + | "UnpackRawEvent_UT" | 2955 | 0.027 | 9.185 | + | "reserveIOV" | 2289 | 0.024 | 10.536 | + | "UniqueIDGeneratorAlg_26e527e9" | 2289 | 0.010 | 4.434 | + | "Decode_ODIN" | 2289 | 0.007 | 3.140 | + | "UnpackRawEvent_EcalPacked" | 2289 | 0.007 | 2.890 | + | "DefaultGECFilter" | 2955 | 0.006 | 2.109 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.006 | 2.444 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.005 | 2.122 | + | "UnpackRawEvent_VP" | 2289 | 0.005 | 2.033 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.005 | 1.568 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.005 | 2.021 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.895 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.823 | + | "DummyEventTime" | 2289 | 0.004 | 1.707 | + | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.470 | + | "UnpackRawEvent_EcalPackedError" | 2289 | 0.003 | 1.108 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 0.995 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: hlt2_matching_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - NONLAZY_OR: hlt2_matching_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrMatchNN/PrMatchNN_d80b5038 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_386d067b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_a4d04726 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_d71eea68 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_5e3d4232 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc -SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_a4d04726.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -MatchTrackChecker_386d067b.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_5e3d4232.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_d71eea68.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] diff --git a/efficiencies/logs/effs_BJpsi_EDef.log b/efficiencies/electrons/logs/match_effs_BJpsi_EDef.log similarity index 72% rename from efficiencies/logs/effs_BJpsi_EDef.log rename to efficiencies/electrons/logs/match_effs_BJpsi_EDef.log index cf5c999..00a7eb9 100644 --- a/efficiencies/logs/effs_BJpsi_EDef.log +++ b/efficiencies/electrons/logs/match_effs_BJpsi_EDef.log @@ -1,5 +1,5 @@ # setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' /***** User ApplicationOptions/ApplicationOptions ************************************************** |-append_decoding_keys_to_output_manifest = True (default: True) |-auditors = [] (default: []) @@ -28,7 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/effs_BJpsi_EDef.root' +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_BJpsi_EDef.root' | (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) @@ -47,11 +47,11 @@ |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- # Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 - running on lhcba2 on Sun Mar 10 19:06:10 2024 + running on lhcba2 on Mon Mar 25 06:41:29 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,15 +67,15 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/effs_BJpsi_EDef.root as FILE1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_BJpsi_EDef.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/effs_BJpsi_EDef.root +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_BJpsi_EDef.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 112590 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 20387 ms ApplicationMgr INFO Application Manager Initialized successfully ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc @@ -85,7 +85,7 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 19:08:23 +HLTControlFlowMgr INFO Timing started at: 06:42:08 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' @@ -191,14 +191,7 @@ EventSelector INFO Stream:EventSelector.DataStreamTool_ IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1849.87, timed 35313 Events: 2658468 ms, Evts/s = 13.2832 -BestLongTrackChecker_8a93d154.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -CloneKillerMatch_c1af047d INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "nTracksInput" | 27023 | 3007547 | 111.30 | - | "nTracksSelected" | 27023 | 1219629 | 45.133 | +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1816.76, timed 35313 Events: 2071916 ms, Evts/s = 17.0436 DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 35323 | @@ -206,12 +199,18 @@ DefaultGECFilter INFO Number of counters : 2 ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | +ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 35323 | -MatchTrackChecker_8a39005f.LoKi:... INFO Number of counters : 1 +MatchTrackChecker_3dd32705.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_4aca5e93.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Accepted input tracks" | 27023 | 4322823 | 159.97 | @@ -251,36 +250,18 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | -PrKalmanFilterForward_a6e62848 INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 5 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 36393 | - | "chi2 cut" | 204409 | - | "nIterations" | 2155350 | 4886810 | 2.2673 | - | "nOutlierIterations" | 2118957 | 1329607 | 0.62748 | - | "nTracksInput" | 27023 | 2155350 | 79.760 | - | "nTracksOutput" | 27023 | 1914543 | 70.849 | -PrKalmanFilterMatch_e1944f26 INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 2 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 338811 | - | "chi2 cut" | 606434 | - | "nIterations" | 1219629 | 3274545 | 2.6849 | - | "nOutlierIterations" | 880818 | 1009475 | 1.1461 | - | "nTracksInput" | 27023 | 1219629 | 45.133 | - | "nTracksOutput" | 27023 | 274382 | 10.154 | PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | -PrMatchNN_3856ae45 INFO Number of counters : 3 +PrMatchNN_d9a0a35b INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 27023 |1.012465e+08 | 3746.7 | - | "#MatchingMLP" | 3007547 | 2506987 | 0.83357 | - | "#MatchingTracks" | 27023 | 3007547 | 111.30 | -PrMatchNN_3856ae45.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 27023 |5.860898e+07 | 2168.9 | + | "#MatchingMLP" | 2804193 | 2401982 | 0.85657 | + | "#MatchingTracks" | 27023 | 2804193 | 103.77 | +PrMatchNN_d9a0a35b.PrAddUTHitsTool INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 2493400 | 9811039 | 3.9348 | - | "#tracks with hits added" | 2493400 | + | "#UT hits added" | 2396511 | 9475827 | 3.9540 | + | "#tracks with hits added" | 2396511 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 27023 | 5836968 | 216.00 | @@ -318,51 +299,27 @@ PrTrackAssociator_16ad4612 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | | "MC particles per track" | 3322103 | 3322179 | 1.0000 | -PrTrackAssociator_24d3bad6 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 3007547 | 1859622 |( 61.83185 +- 0.02801241)% | - | "MC particles per track" | 1859622 | 2182592 | 1.1737 | PrTrackAssociator_3adf94fb INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 2155350 | 1844072 |( 85.55789 +- 0.02394343)% | | "MC particles per track" | 1844072 | 2163436 | 1.1732 | -PrTrackAssociator_cbe8f3ce INFO Number of counters : 2 +PrTrackAssociator_d2d44f05 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 2182277 | 1859055 |( 85.18877 +- 0.02404539)% | - | "MC particles per track" | 1859055 | 2172260 | 1.1685 | -PrTrackAssociator_d68377ee INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 7059265 | 6885105 |( 97.53289 +- 0.005838352)% | - | "MC particles per track" | 6885105 | 6916103 | 1.0045 | -PrVPHitsToVPLightClusters_599554c8 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + |*"Efficiency" | 2804193 | 1858198 |( 66.26498 +- 0.02823440)% | + | "MC particles per track" | 1858198 | 2179405 | 1.1729 | SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -TBTCMatch_4755c68a INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 273313 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 273313 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 273313 | -TBTC_Forward_3523b81b INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 1908964 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 1908964 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 1908964 | VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | -VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 27023 | 2155350 | 79.760 | -fromPrMatchTracksV1Tracks_67f41548 INFO Number of counters : 1 +fromPrMatchTracksV1Tracks_16ab8c06 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 27023 | 3007547 | 111.30 | + | "Nb of converted Tracks" | 27023 | 2804193 | 103.77 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | @@ -370,26 +327,6 @@ fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | ApplicationMgr INFO Application Manager Stopped successfully -BestLongTrackChecker_8a93d154 INFO Results -BestLongTrackChecker_8a93d154 INFO **** BestLong 2182277 tracks including 323222 ghosts [14.81 %], Event average 13.80 % **** -BestLongTrackChecker_8a93d154 INFO 01_long : 1608317 from 1811265 [ 88.80 %] 4950 clones [ 0.31 %], purity: 99.36 %, hitEff: 97.48 % -BestLongTrackChecker_8a93d154 INFO 02_long_P>5GeV : 1082174 from 1172326 [ 92.31 %] 2403 clones [ 0.22 %], purity: 99.45 %, hitEff: 98.01 % -BestLongTrackChecker_8a93d154 INFO 03_long_strange : 80436 from 98994 [ 81.25 %] 175 clones [ 0.22 %], purity: 99.13 %, hitEff: 97.12 % -BestLongTrackChecker_8a93d154 INFO 04_long_strange_P>5GeV : 41036 from 46918 [ 87.46 %] 52 clones [ 0.13 %], purity: 99.29 %, hitEff: 98.01 % -BestLongTrackChecker_8a93d154 INFO 05_long_fromB : 86117 from 94402 [ 91.22 %] 255 clones [ 0.30 %], purity: 99.49 %, hitEff: 97.79 % -BestLongTrackChecker_8a93d154 INFO 05_long_fromD : 45844 from 50932 [ 90.01 %] 151 clones [ 0.33 %], purity: 99.40 %, hitEff: 97.59 % -BestLongTrackChecker_8a93d154 INFO 06_long_fromB_P>5GeV : 66778 from 71030 [ 94.01 %] 156 clones [ 0.23 %], purity: 99.56 %, hitEff: 98.15 % -BestLongTrackChecker_8a93d154 INFO 06_long_fromD_P>5GeV : 32729 from 35044 [ 93.39 %] 90 clones [ 0.27 %], purity: 99.50 %, hitEff: 98.07 % -BestLongTrackChecker_8a93d154 INFO 07_long_electrons : 128580 from 181213 [ 70.96 %] 470 clones [ 0.36 %], purity: 98.35 %, hitEff: 96.00 % -BestLongTrackChecker_8a93d154 INFO 07_long_electrons_pairprod : 85645 from 130212 [ 65.77 %] 317 clones [ 0.37 %], purity: 97.94 %, hitEff: 95.24 % -BestLongTrackChecker_8a93d154 INFO 08_long_fromB_electrons : 40559 from 48919 [ 82.91 %] 136 clones [ 0.33 %], purity: 99.17 %, hitEff: 97.60 % -BestLongTrackChecker_8a93d154 INFO 09_long_fromB_electrons_P>5GeV : 37884 from 44696 [ 84.76 %] 130 clones [ 0.34 %], purity: 99.24 %, hitEff: 97.77 % -BestLongTrackChecker_8a93d154 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58233 from 61675 [ 94.42 %] 140 clones [ 0.24 %], purity: 99.62 %, hitEff: 98.19 % -BestLongTrackChecker_8a93d154 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 36851 from 42838 [ 86.02 %] 124 clones [ 0.34 %], purity: 99.29 %, hitEff: 97.80 % -BestLongTrackChecker_8a93d154 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26550 from 28214 [ 94.10 %] 72 clones [ 0.27 %], purity: 99.58 %, hitEff: 98.13 % -BestLongTrackChecker_8a93d154 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21108 from 24129 [ 87.48 %] 22 clones [ 0.10 %], purity: 99.48 %, hitEff: 98.20 % -BestLongTrackChecker_8a93d154 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58102 from 61506 [ 94.47 %] 140 clones [ 0.24 %], purity: 99.62 %, hitEff: 98.21 % -BestLongTrackChecker_8a93d154 INFO ForwardTrackChecker_482fda95 INFO Results ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % @@ -410,26 +347,48 @@ ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % ForwardTrackChecker_482fda95 INFO -MatchTrackChecker_8a39005f INFO Results -MatchTrackChecker_8a39005f INFO **** Match 3007547 tracks including 1147925 ghosts [38.17 %], Event average 35.40 % **** -MatchTrackChecker_8a39005f INFO 01_long : 1584238 from 1811265 [ 87.47 %] 9510 clones [ 0.60 %], purity: 99.33 %, hitEff: 98.62 % -MatchTrackChecker_8a39005f INFO 02_long_P>5GeV : 1084211 from 1172326 [ 92.48 %] 5207 clones [ 0.48 %], purity: 99.45 %, hitEff: 99.22 % -MatchTrackChecker_8a39005f INFO 03_long_strange : 77791 from 98994 [ 78.58 %] 405 clones [ 0.52 %], purity: 98.99 %, hitEff: 98.24 % -MatchTrackChecker_8a39005f INFO 04_long_strange_P>5GeV : 41578 from 46918 [ 88.62 %] 171 clones [ 0.41 %], purity: 99.24 %, hitEff: 99.21 % -MatchTrackChecker_8a39005f INFO 05_long_fromB : 85553 from 94402 [ 90.63 %] 529 clones [ 0.61 %], purity: 99.47 %, hitEff: 98.87 % -MatchTrackChecker_8a39005f INFO 05_long_fromD : 45317 from 50932 [ 88.98 %] 297 clones [ 0.65 %], purity: 99.36 %, hitEff: 98.72 % -MatchTrackChecker_8a39005f INFO 06_long_fromB_P>5GeV : 67010 from 71030 [ 94.34 %] 346 clones [ 0.51 %], purity: 99.58 %, hitEff: 99.25 % -MatchTrackChecker_8a39005f INFO 06_long_fromD_P>5GeV : 32786 from 35044 [ 93.56 %] 176 clones [ 0.53 %], purity: 99.51 %, hitEff: 99.25 % -MatchTrackChecker_8a39005f INFO 07_long_electrons : 138327 from 181213 [ 76.33 %] 2233 clones [ 1.59 %], purity: 97.75 %, hitEff: 98.09 % -MatchTrackChecker_8a39005f INFO 07_long_electrons_pairprod : 93382 from 130212 [ 71.72 %] 1592 clones [ 1.68 %], purity: 97.15 %, hitEff: 97.77 % -MatchTrackChecker_8a39005f INFO 08_long_fromB_electrons : 42442 from 48919 [ 86.76 %] 628 clones [ 1.46 %], purity: 99.02 %, hitEff: 98.87 % -MatchTrackChecker_8a39005f INFO 09_long_fromB_electrons_P>5GeV : 39740 from 44696 [ 88.91 %] 605 clones [ 1.50 %], purity: 99.11 %, hitEff: 99.02 % -MatchTrackChecker_8a39005f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58270 from 61675 [ 94.48 %] 305 clones [ 0.52 %], purity: 99.67 %, hitEff: 99.16 % -MatchTrackChecker_8a39005f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38479 from 42838 [ 89.82 %] 572 clones [ 1.46 %], purity: 99.19 %, hitEff: 99.00 % -MatchTrackChecker_8a39005f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26503 from 28214 [ 93.94 %] 140 clones [ 0.53 %], purity: 99.64 %, hitEff: 99.12 % -MatchTrackChecker_8a39005f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21386 from 24129 [ 88.63 %] 91 clones [ 0.42 %], purity: 99.53 %, hitEff: 98.98 % -MatchTrackChecker_8a39005f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58164 from 61506 [ 94.57 %] 305 clones [ 0.52 %], purity: 99.68 %, hitEff: 99.16 % -MatchTrackChecker_8a39005f INFO +ForwardUTHitsChecker_fe9d9ac2 INFO Results +ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 311278 ghost, 2.61 UT per track +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :1595169 tr 3.90 from 4.07 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :1578520 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV :1097053 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT :1081981 tr 3.99 from 4.10 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58710 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58515 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58582 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58504 tr 4.00 from 4.09 mcUT [ 98.0 %] 0.04 ghost hits on real tracks [ 1.1 %] +ForwardUTHitsChecker_fe9d9ac2 INFO +MatchTrackChecker_3dd32705 INFO Results +MatchTrackChecker_3dd32705 INFO **** Match 2804193 tracks including 945995 ghosts [33.74 %], Event average 31.18 % **** +MatchTrackChecker_3dd32705 INFO 01_long : 1582653 from 1811265 [ 87.38 %] 9450 clones [ 0.59 %], purity: 99.33 %, hitEff: 98.63 % +MatchTrackChecker_3dd32705 INFO 02_long_P>5GeV : 1082979 from 1172326 [ 92.38 %] 5191 clones [ 0.48 %], purity: 99.45 %, hitEff: 99.22 % +MatchTrackChecker_3dd32705 INFO 03_long_strange : 77721 from 98994 [ 78.51 %] 390 clones [ 0.50 %], purity: 99.00 %, hitEff: 98.26 % +MatchTrackChecker_3dd32705 INFO 04_long_strange_P>5GeV : 41563 from 46918 [ 88.59 %] 166 clones [ 0.40 %], purity: 99.24 %, hitEff: 99.21 % +MatchTrackChecker_3dd32705 INFO 05_long_fromB : 85472 from 94402 [ 90.54 %] 517 clones [ 0.60 %], purity: 99.48 %, hitEff: 98.88 % +MatchTrackChecker_3dd32705 INFO 05_long_fromD : 45245 from 50932 [ 88.83 %] 292 clones [ 0.64 %], purity: 99.36 %, hitEff: 98.74 % +MatchTrackChecker_3dd32705 INFO 06_long_fromB_P>5GeV : 66934 from 71030 [ 94.23 %] 343 clones [ 0.51 %], purity: 99.59 %, hitEff: 99.26 % +MatchTrackChecker_3dd32705 INFO 06_long_fromD_P>5GeV : 32738 from 35044 [ 93.42 %] 175 clones [ 0.53 %], purity: 99.52 %, hitEff: 99.26 % +MatchTrackChecker_3dd32705 INFO 07_long_electrons : 138032 from 181213 [ 76.17 %] 2236 clones [ 1.59 %], purity: 97.76 %, hitEff: 98.11 % +MatchTrackChecker_3dd32705 INFO 07_long_electrons_pairprod : 93202 from 130212 [ 71.58 %] 1597 clones [ 1.68 %], purity: 97.16 %, hitEff: 97.78 % +MatchTrackChecker_3dd32705 INFO 08_long_fromB_electrons : 42366 from 48919 [ 86.60 %] 627 clones [ 1.46 %], purity: 99.02 %, hitEff: 98.90 % +MatchTrackChecker_3dd32705 INFO 09_long_fromB_electrons_P>5GeV : 39679 from 44696 [ 88.78 %] 604 clones [ 1.50 %], purity: 99.11 %, hitEff: 99.04 % +MatchTrackChecker_3dd32705 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 58234 from 61675 [ 94.42 %] 304 clones [ 0.52 %], purity: 99.68 %, hitEff: 99.17 % +MatchTrackChecker_3dd32705 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 38416 from 42838 [ 89.68 %] 572 clones [ 1.47 %], purity: 99.19 %, hitEff: 99.02 % +MatchTrackChecker_3dd32705 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26475 from 28214 [ 93.84 %] 140 clones [ 0.53 %], purity: 99.65 %, hitEff: 99.13 % +MatchTrackChecker_3dd32705 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21385 from 24129 [ 88.63 %] 87 clones [ 0.41 %], purity: 99.54 %, hitEff: 98.98 % +MatchTrackChecker_3dd32705 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58129 from 61506 [ 94.51 %] 304 clones [ 0.52 %], purity: 99.68 %, hitEff: 99.17 % +MatchTrackChecker_3dd32705 INFO +MatchUTHitsChecker_4aca5e93 INFO Results +MatchUTHitsChecker_4aca5e93 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_16ab8c06/OutputTracksLocation **** 945995 ghost, 2.41 UT per track +MatchUTHitsChecker_4aca5e93 INFO 01_long :1592103 tr 3.88 from 4.07 mcUT [ 95.2 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_4aca5e93 INFO 01_long >3UT :1575551 tr 3.91 from 4.10 mcUT [ 95.5 %] 0.12 ghost hits on real tracks [ 3.1 %] +MatchUTHitsChecker_4aca5e93 INFO 02_long_P>5GeV :1088170 tr 3.93 from 4.08 mcUT [ 96.4 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_4aca5e93 INFO 02_long_P>5GeV >3UT :1073723 tr 3.98 from 4.11 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.2 %] +MatchUTHitsChecker_4aca5e93 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 58538 tr 3.98 from 4.08 mcUT [ 97.4 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_4aca5e93 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58363 tr 3.99 from 4.09 mcUT [ 97.5 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_4aca5e93 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58433 tr 3.98 from 4.09 mcUT [ 97.5 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_4aca5e93 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 58356 tr 3.99 from 4.09 mcUT [ 97.5 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_4aca5e93 INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % @@ -450,98 +409,68 @@ SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % SeedTrackChecker_ad9abe4e INFO -VeloTrackChecker_e83d0cf5 INFO Results -VeloTrackChecker_e83d0cf5 INFO **** Velo 7059265 tracks including 174160 ghosts [ 2.47 %], Event average 2.56 % **** -VeloTrackChecker_e83d0cf5 INFO 01_velo : 3088200 from 3153550 [ 97.93 %] 47327 clones [ 1.51 %], purity: 99.62 %, hitEff: 95.63 %, hitEffFirst3: 95.51 %, hitEffLast: 95.34 % -VeloTrackChecker_e83d0cf5 INFO 02_long : 1796773 from 1811265 [ 99.20 %] 18312 clones [ 1.01 %], purity: 99.71 %, hitEff: 96.60 %, hitEffFirst3: 96.49 %, hitEffLast: 96.44 % -VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 1166697 from 1172326 [ 99.52 %] 9016 clones [ 0.77 %], purity: 99.71 %, hitEff: 97.01 %, hitEffFirst3: 96.86 %, hitEffLast: 96.95 % -VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 95149 from 98994 [ 96.12 %] 902 clones [ 0.94 %], purity: 99.18 %, hitEff: 96.15 %, hitEffFirst3: 96.25 %, hitEffLast: 95.18 % -VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 45287 from 46918 [ 96.52 %] 289 clones [ 0.63 %], purity: 99.03 %, hitEff: 96.85 %, hitEffFirst3: 96.96 %, hitEffLast: 96.05 % -VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 93725 from 94402 [ 99.28 %] 855 clones [ 0.90 %], purity: 99.69 %, hitEff: 96.64 %, hitEffFirst3: 96.53 %, hitEffLast: 96.48 % -VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 50520 from 50932 [ 99.19 %] 523 clones [ 1.02 %], purity: 99.67 %, hitEff: 96.54 %, hitEffFirst3: 96.41 %, hitEffLast: 96.37 % -VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 70725 from 71030 [ 99.57 %] 496 clones [ 0.70 %], purity: 99.70 %, hitEff: 96.97 %, hitEffFirst3: 96.87 %, hitEffLast: 96.84 % -VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 34866 from 35044 [ 99.49 %] 267 clones [ 0.76 %], purity: 99.68 %, hitEff: 96.93 %, hitEffFirst3: 96.82 %, hitEffLast: 96.80 % -VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 174045 from 181213 [ 96.04 %] 3111 clones [ 1.76 %], purity: 98.10 %, hitEff: 94.64 %, hitEffFirst3: 93.13 %, hitEffLast: 94.83 % -VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 47652 from 48919 [ 97.41 %] 765 clones [ 1.58 %], purity: 99.20 %, hitEff: 96.20 %, hitEffFirst3: 95.93 %, hitEffLast: 96.12 % -VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 43877 from 44696 [ 98.17 %] 720 clones [ 1.61 %], purity: 99.30 %, hitEff: 96.30 %, hitEffFirst3: 96.15 %, hitEffLast: 96.17 % -VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 61365 from 61675 [ 99.50 %] 372 clones [ 0.60 %], purity: 99.72 %, hitEff: 96.98 %, hitEffFirst3: 96.88 %, hitEffLast: 96.84 % -VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 42320 from 42838 [ 98.79 %] 676 clones [ 1.57 %], purity: 99.38 %, hitEff: 96.39 %, hitEffFirst3: 96.31 %, hitEffLast: 96.22 % -VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 28057 from 28214 [ 99.44 %] 178 clones [ 0.63 %], purity: 99.68 %, hitEff: 96.94 %, hitEffFirst3: 96.85 %, hitEffLast: 96.77 % -VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 22890 from 24129 [ 94.87 %] 122 clones [ 0.53 %], purity: 98.78 %, hitEff: 96.86 %, hitEffFirst3: 96.60 %, hitEffLast: 96.63 % -VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 61198 from 61506 [ 99.50 %] 372 clones [ 0.60 %], purity: 99.71 %, hitEff: 96.98 %, hitEffFirst3: 96.88 %, hitEffLast: 96.84 % -VeloTrackChecker_e83d0cf5 INFO HLTControlFlowMgr INFO Memory pool: used 3.89435 +/- 0.011476 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 343.336 +/- 1.00196 (min: 4, max: 505) requests were served HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 35323 | 2608.974 | 73860.490 | - | "Fetch__Event_DAQ_RawEvent" | 35323 | 1440.099 | 40769.436 | - | "SeedTrackChecker_ad9abe4e" | 27023 | 157.356 | 5823.028 | - | "VeloTrackChecker_e83d0cf5" | 27023 | 155.874 | 5768.205 | - | "ForwardTrackChecker_482fda95" | 27023 | 145.953 | 5401.078 | - | "MatchTrackChecker_8a39005f" | 27023 | 133.069 | 4924.269 | - | "BestLongTrackChecker_8a93d154" | 27023 | 130.609 | 4833.249 | - | "PrKalmanFilterForward_a6e62848" | 27023 | 123.471 | 4569.110 | - | "PrKalmanFilterMatch_e1944f26" | 27023 | 66.971 | 2478.286 | - | "PrForwardTrackingVelo_6024f9ec" | 27023 | 53.104 | 1965.157 | - | "PrHybridSeeding_4d0337cc" | 27023 | 39.394 | 1457.777 | - | "PrLHCbID2MCParticle_a906d17d" | 27023 | 30.012 | 1110.627 | - | "Unpack__Event_MC_Vertices" | 27023 | 24.222 | 896.330 | - | "Unpack__Event_MC_Particles" | 27023 | 22.738 | 841.439 | - | "VeloClusterTrackingSIMD_87c18651" | 27023 | 8.650 | 320.096 | - | "CloneKillerMatch_c1af047d" | 27023 | 7.126 | 263.690 | - | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 6.872 | 254.313 | - | "PrStorePrUTHits_df75b912" | 27023 | 6.530 | 241.636 | - | "VPClusFull_38754d8c" | 27023 | 6.440 | 238.302 | - | "PrMatchNN_3856ae45" | 27023 | 6.129 | 226.797 | - | "PrTrackAssociator_24d3bad6" | 27023 | 5.187 | 191.935 | - | "TBTC_Forward_3523b81b" | 27023 | 5.099 | 188.707 | - | "PrTrackAssociator_3adf94fb" | 27023 | 4.475 | 165.609 | - | "PrStoreUTHit_6220b56a" | 27023 | 4.316 | 159.706 | - | "PrTrackAssociator_cbe8f3ce" | 27023 | 4.021 | 148.783 | - | "PrTrackAssociator_d68377ee" | 27023 | 3.313 | 122.602 | - | "PrTrackAssociator_16ad4612" | 27023 | 3.058 | 113.156 | - | "fromPrMatchTracksV1Tracks_67f41548" | 27023 | 2.552 | 94.451 | - | "PrVPHitsToVPLightClusters_599554c8" | 27023 | 2.518 | 93.172 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.221 | 82.205 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.521 | 56.283 | - | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.422 | 52.608 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.373 | 50.812 | - | "FTRawBankDecoder" | 27023 | 0.780 | 28.866 | - | "TrackContainersMerger_511ac736" | 27023 | 0.745 | 27.567 | - | "TBTCMatch_4755c68a" | 27023 | 0.541 | 20.019 | - | "UnpackRawEvent_UT" | 35323 | 0.320 | 9.069 | - | "UniqueIDGeneratorAlg_26e527e9" | 27023 | 0.169 | 6.246 | - | "reserveIOV" | 27023 | 0.098 | 3.622 | - | "Decode_ODIN" | 27023 | 0.078 | 2.868 | - | "DefaultGECFilter" | 35323 | 0.077 | 2.183 | - | "UnpackRawEvent_FTCluster" | 35323 | 0.060 | 1.709 | - | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.057 | 2.114 | - | "UnpackRawEvent_VP" | 27023 | 0.053 | 1.963 | - | "Fetch__Event_pSim_MCVertices" | 27023 | 0.052 | 1.924 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.052 | 1.918 | - | "Fetch__Event_pSim_MCParticles" | 27023 | 0.048 | 1.761 | - | "Fetch__Event_MC_TrackInfo" | 27023 | 0.044 | 1.624 | - | "DummyEventTime" | 27023 | 0.043 | 1.594 | - | "UnpackRawEvent_ODIN" | 27023 | 0.036 | 1.341 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.028 | 1.024 | + | Sum of all Algorithms | 35323 | 2026.999 | 57384.671 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1255.367 | 35539.658 | + | "SeedTrackChecker_ad9abe4e" | 27023 | 155.026 | 5736.831 | + | "ForwardTrackChecker_482fda95" | 27023 | 144.231 | 5337.331 | + | "MatchTrackChecker_3dd32705" | 27023 | 129.844 | 4804.958 | + | "MatchUTHitsChecker_4aca5e93" | 27023 | 56.991 | 2108.982 | + | "ForwardUTHitsChecker_fe9d9ac2" | 27023 | 56.445 | 2088.772 | + | "PrForwardTrackingVelo_6024f9ec" | 27023 | 52.799 | 1953.869 | + | "PrHybridSeeding_4d0337cc" | 27023 | 39.412 | 1458.465 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 29.969 | 1109.035 | + | "Unpack__Event_MC_Vertices" | 27023 | 24.185 | 894.996 | + | "Unpack__Event_MC_Particles" | 27023 | 22.721 | 840.788 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 8.556 | 316.632 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 6.836 | 252.956 | + | "VPClusFull_38754d8c" | 27023 | 6.420 | 237.585 | + | "PrMatchNN_d9a0a35b" | 27023 | 5.738 | 212.349 | + | "PrStorePrUTHits_df75b912" | 27023 | 5.628 | 208.272 | + | "PrTrackAssociator_d2d44f05" | 27023 | 4.902 | 181.395 | + | "PrTrackAssociator_3adf94fb" | 27023 | 4.463 | 165.153 | + | "PrStoreUTHit_6220b56a" | 27023 | 4.011 | 148.435 | + | "PrTrackAssociator_16ad4612" | 27023 | 3.050 | 112.873 | + | "fromPrMatchTracksV1Tracks_16ab8c06" | 27023 | 2.347 | 86.842 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.189 | 80.989 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 27023 | 1.486 | 54.973 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.367 | 50.579 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 1.344 | 49.719 | + | "FTRawBankDecoder" | 27023 | 0.704 | 26.033 | + | "UnpackRawEvent_UT" | 35323 | 0.301 | 8.513 | + | "Decode_ODIN" | 27023 | 0.074 | 2.722 | + | "DefaultGECFilter" | 35323 | 0.067 | 1.906 | + | "reserveIOV" | 27023 | 0.063 | 2.323 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.061 | 2.260 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.053 | 1.973 | + | "UnpackRawEvent_VP" | 27023 | 0.052 | 1.920 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.052 | 1.911 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.050 | 1.421 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.046 | 1.718 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.045 | 1.677 | + | "DummyEventTime" | 27023 | 0.043 | 1.587 | + | "UnpackRawEvent_ODIN" | 27023 | 0.034 | 1.254 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.026 | 0.963 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: run_tracking_debug_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| +LAZY_AND: hlt2_matching_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| - NONLAZY_OR: run_tracking_debug_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + NONLAZY_OR: hlt2_matching_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| PrTrackChecker/ForwardTrackChecker_482fda95 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_8a39005f #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/BestLongTrackChecker_8a93d154 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_3dd32705 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_4aca5e93 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| PrTrackChecker/SeedTrackChecker_ad9abe4e #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/VeloTrackChecker_e83d0cf5 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc -VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -BestLongTrackChecker_8a93d154.Pr... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchTrackChecker_8a39005f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_4aca5e93.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_3dd32705.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] diff --git a/data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp5.log b/efficiencies/electrons/logs/match_effs_testJpsi_EDef.log similarity index 80% rename from data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp5.log rename to efficiencies/electrons/logs/match_effs_testJpsi_EDef.log index a0c18a4..04f92d8 100644 --- a/data_matching/logs/match_effs_testJpsi_EDef7_yCorrCut_mlp5.log +++ b/efficiencies/electrons/logs/match_effs_testJpsi_EDef.log @@ -28,7 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef7_yCorrCut_mlp5.root' +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_testJpsi_EDef.root' | (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) @@ -51,7 +51,7 @@ ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 10:02:04 2024 + running on lhcba2 on Fri Mar 22 10:42:24 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,15 +67,15 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef7_yCorrCut_mlp5.root as FILE1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_testJpsi_EDef.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef7_yCorrCut_mlp5.root +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_testJpsi_EDef.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 63801 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 108428 ms ApplicationMgr INFO Application Manager Initialized successfully ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc @@ -85,11 +85,11 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 10:03:31 +HLTControlFlowMgr INFO Timing started at: 10:44:40 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1793.88, timed 2945 Events: 163767 ms, Evts/s = 17.9829 +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1736.49, timed 2945 Events: 194427 ms, Evts/s = 15.1471 DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 2955 | @@ -103,10 +103,10 @@ ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 2955 | -MatchTrackChecker_eb7a9e21.LoKi:... INFO Number of counters : 1 +MatchTrackChecker_74fc87ef.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_eda3b901.LoKi... INFO Number of counters : 1 +MatchUTHitsChecker_2344d17d.LoKi... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 4 | PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 @@ -151,15 +151,15 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_e3e0ccb5 INFO Number of counters : 3 +PrMatchNN_7a116638 INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8439531 | 3687.0 | - | "#MatchingMLP" | 215755 | 198052.3 | 0.91795 | - | "#MatchingTracks" | 2289 | 215755 | 94.257 | -PrMatchNN_e3e0ccb5.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 2289 | 5449120 | 2380.6 | + | "#MatchingMLP" | 238174 | 203639.2 | 0.85500 | + | "#MatchingTracks" | 2289 | 238174 | 104.05 | +PrMatchNN_7a116638.PrAddUTHitsTool INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 190959 | 761644 | 3.9885 | - | "#tracks with hits added" | 190959 | + | "#UT hits added" | 202840 | 801853 | 3.9531 | + | "#tracks with hits added" | 202840 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | @@ -193,6 +193,10 @@ PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 PrStoreUTHit_6220b56a INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | +PrTrackAssociator_14d5445b INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 238174 | 156220 |( 65.59070 +- 0.09734460)% | + | "MC particles per track" | 156220 | 182994 | 1.1714 | PrTrackAssociator_16ad4612 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | @@ -201,10 +205,6 @@ PrTrackAssociator_3adf94fb INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | | "MC particles per track" | 155077 | 181813 | 1.1724 | -PrTrackAssociator_43e58d3b INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 215755 | 155547 |( 72.09427 +- 0.09656430)% | - | "MC particles per track" | 155547 | 181754 | 1.1685 | SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | @@ -215,9 +215,9 @@ VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_13de62af INFO Number of counters : 1 +fromPrMatchTracksV1Tracks_57998157 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 215755 | 94.257 | + | "Nb of converted Tracks" | 2289 | 238174 | 104.05 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | @@ -256,37 +256,37 @@ ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] ForwardUTHitsChecker_fe9d9ac2 INFO -MatchTrackChecker_eb7a9e21 INFO Results -MatchTrackChecker_eb7a9e21 INFO **** Match 215755 tracks including 60208 ghosts [27.91 %], Event average 25.57 % **** -MatchTrackChecker_eb7a9e21 INFO 01_long : 132596 from 152279 [ 87.07 %] 804 clones [ 0.60 %], purity: 99.33 %, hitEff: 98.63 % -MatchTrackChecker_eb7a9e21 INFO 02_long_P>5GeV : 90070 from 98421 [ 91.52 %] 449 clones [ 0.50 %], purity: 99.45 %, hitEff: 99.25 % -MatchTrackChecker_eb7a9e21 INFO 03_long_strange : 6520 from 8121 [ 80.29 %] 31 clones [ 0.47 %], purity: 98.95 %, hitEff: 98.21 % -MatchTrackChecker_eb7a9e21 INFO 04_long_strange_P>5GeV : 3430 from 3856 [ 88.95 %] 12 clones [ 0.35 %], purity: 99.18 %, hitEff: 99.23 % -MatchTrackChecker_eb7a9e21 INFO 05_long_fromB : 7169 from 7959 [ 90.07 %] 49 clones [ 0.68 %], purity: 99.44 %, hitEff: 98.82 % -MatchTrackChecker_eb7a9e21 INFO 05_long_fromD : 3773 from 4226 [ 89.28 %] 17 clones [ 0.45 %], purity: 99.36 %, hitEff: 98.67 % -MatchTrackChecker_eb7a9e21 INFO 06_long_fromB_P>5GeV : 5590 from 5983 [ 93.43 %] 28 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.24 % -MatchTrackChecker_eb7a9e21 INFO 06_long_fromD_P>5GeV : 2690 from 2894 [ 92.95 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.21 % -MatchTrackChecker_eb7a9e21 INFO 07_long_electrons : 11755 from 15125 [ 77.72 %] 178 clones [ 1.49 %], purity: 97.73 %, hitEff: 98.10 % -MatchTrackChecker_eb7a9e21 INFO 07_long_electrons_pairprod : 7967 from 10831 [ 73.56 %] 142 clones [ 1.75 %], purity: 97.09 %, hitEff: 97.77 % -MatchTrackChecker_eb7a9e21 INFO 08_long_fromB_electrons : 3622 from 4210 [ 86.03 %] 41 clones [ 1.12 %], purity: 99.07 %, hitEff: 98.91 % -MatchTrackChecker_eb7a9e21 INFO 09_long_fromB_electrons_P>5GeV : 3385 from 3850 [ 87.92 %] 37 clones [ 1.08 %], purity: 99.18 %, hitEff: 99.05 % -MatchTrackChecker_eb7a9e21 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4854 from 5182 [ 93.67 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.13 % -MatchTrackChecker_eb7a9e21 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3264 from 3659 [ 89.20 %] 34 clones [ 1.03 %], purity: 99.26 %, hitEff: 99.04 % -MatchTrackChecker_eb7a9e21 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2194 from 2343 [ 93.64 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.11 % -MatchTrackChecker_eb7a9e21 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1782 from 2010 [ 88.66 %] 6 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.99 % -MatchTrackChecker_eb7a9e21 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4842 from 5164 [ 93.76 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.13 % -MatchTrackChecker_eb7a9e21 INFO -MatchUTHitsChecker_eda3b901 INFO Results -MatchUTHitsChecker_eda3b901 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_13de62af/OutputTracksLocation **** 60208 ghost, 2.60 UT per track -MatchUTHitsChecker_eda3b901 INFO 01_long :133400 tr 3.89 from 4.08 mcUT [ 95.4 %] 0.13 ghost hits on real tracks [ 3.2 %] -MatchUTHitsChecker_eda3b901 INFO 01_long >3UT :132035 tr 3.93 from 4.10 mcUT [ 95.7 %] 0.12 ghost hits on real tracks [ 3.1 %] -MatchUTHitsChecker_eda3b901 INFO 02_long_P>5GeV : 90519 tr 3.94 from 4.08 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.4 %] -MatchUTHitsChecker_eda3b901 INFO 02_long_P>5GeV >3UT : 89346 tr 3.99 from 4.11 mcUT [ 97.1 %] 0.09 ghost hits on real tracks [ 2.3 %] -MatchUTHitsChecker_eda3b901 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4881 tr 3.99 from 4.07 mcUT [ 98.0 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_eda3b901 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4859 tr 4.01 from 4.08 mcUT [ 98.1 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_eda3b901 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4869 tr 4.00 from 4.08 mcUT [ 98.1 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_eda3b901 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4859 tr 4.01 from 4.08 mcUT [ 98.1 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_eda3b901 INFO +MatchTrackChecker_74fc87ef INFO Results +MatchTrackChecker_74fc87ef INFO **** Match 238174 tracks including 81954 ghosts [34.41 %], Event average 31.80 % **** +MatchTrackChecker_74fc87ef INFO 01_long : 133026 from 152279 [ 87.36 %] 838 clones [ 0.63 %], purity: 99.33 %, hitEff: 98.63 % +MatchTrackChecker_74fc87ef INFO 02_long_P>5GeV : 90859 from 98421 [ 92.32 %] 476 clones [ 0.52 %], purity: 99.45 %, hitEff: 99.23 % +MatchTrackChecker_74fc87ef INFO 03_long_strange : 6434 from 8121 [ 79.23 %] 34 clones [ 0.53 %], purity: 98.98 %, hitEff: 98.23 % +MatchTrackChecker_74fc87ef INFO 04_long_strange_P>5GeV : 3455 from 3856 [ 89.60 %] 14 clones [ 0.40 %], purity: 99.18 %, hitEff: 99.21 % +MatchTrackChecker_74fc87ef INFO 05_long_fromB : 7184 from 7959 [ 90.26 %] 50 clones [ 0.69 %], purity: 99.45 %, hitEff: 98.85 % +MatchTrackChecker_74fc87ef INFO 05_long_fromD : 3775 from 4226 [ 89.33 %] 19 clones [ 0.50 %], purity: 99.38 %, hitEff: 98.75 % +MatchTrackChecker_74fc87ef INFO 06_long_fromB_P>5GeV : 5620 from 5983 [ 93.93 %] 28 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.25 % +MatchTrackChecker_74fc87ef INFO 06_long_fromD_P>5GeV : 2712 from 2894 [ 93.71 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.23 % +MatchTrackChecker_74fc87ef INFO 07_long_electrons : 11602 from 15125 [ 76.71 %] 177 clones [ 1.50 %], purity: 97.78 %, hitEff: 98.13 % +MatchTrackChecker_74fc87ef INFO 07_long_electrons_pairprod : 7782 from 10831 [ 71.85 %] 138 clones [ 1.74 %], purity: 97.15 %, hitEff: 97.83 % +MatchTrackChecker_74fc87ef INFO 08_long_fromB_electrons : 3638 from 4210 [ 86.41 %] 43 clones [ 1.17 %], purity: 99.08 %, hitEff: 98.88 % +MatchTrackChecker_74fc87ef INFO 09_long_fromB_electrons_P>5GeV : 3414 from 3850 [ 88.68 %] 40 clones [ 1.16 %], purity: 99.17 %, hitEff: 99.00 % +MatchTrackChecker_74fc87ef INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4880 from 5182 [ 94.17 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.13 % +MatchTrackChecker_74fc87ef INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3295 from 3659 [ 90.05 %] 37 clones [ 1.11 %], purity: 99.25 %, hitEff: 98.99 % +MatchTrackChecker_74fc87ef INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2211 from 2343 [ 94.37 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.12 % +MatchTrackChecker_74fc87ef INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1803 from 2010 [ 89.70 %] 6 clones [ 0.33 %], purity: 99.52 %, hitEff: 98.98 % +MatchTrackChecker_74fc87ef INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4868 from 5164 [ 94.27 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.14 % +MatchTrackChecker_74fc87ef INFO +MatchUTHitsChecker_2344d17d INFO Results +MatchUTHitsChecker_2344d17d INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_57998157/OutputTracksLocation **** 81954 ghost, 2.39 UT per track +MatchUTHitsChecker_2344d17d INFO 01_long :133864 tr 3.88 from 4.08 mcUT [ 95.2 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_2344d17d INFO 01_long >3UT :132472 tr 3.92 from 4.10 mcUT [ 95.5 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_2344d17d INFO 02_long_P>5GeV : 91335 tr 3.93 from 4.08 mcUT [ 96.4 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_2344d17d INFO 02_long_P>5GeV >3UT : 90136 tr 3.98 from 4.11 mcUT [ 96.8 %] 0.09 ghost hits on real tracks [ 2.3 %] +MatchUTHitsChecker_2344d17d INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4907 tr 3.98 from 4.07 mcUT [ 97.7 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_2344d17d INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4885 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_2344d17d INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4895 tr 3.99 from 4.08 mcUT [ 97.8 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_2344d17d INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4885 tr 3.99 from 4.08 mcUT [ 97.9 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_2344d17d INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % @@ -311,64 +311,64 @@ HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.0391 HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 161.175 | 54543.310 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 94.901 | 32115.316 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 13.415 | 5860.453 | - | "ForwardTrackChecker_482fda95" | 2289 | 12.396 | 5415.600 | - | "MatchTrackChecker_eb7a9e21" | 2289 | 11.078 | 4839.744 | - | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 4.908 | 2144.118 | - | "MatchUTHitsChecker_eda3b901" | 2289 | 4.844 | 2116.304 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.487 | 1960.277 | - | "PrHybridSeeding_4d0337cc" | 2289 | 3.371 | 1472.604 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.582 | 1127.991 | - | "Unpack__Event_MC_Vertices" | 2289 | 2.056 | 898.377 | - | "Unpack__Event_MC_Particles" | 2289 | 1.963 | 857.610 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.738 | 322.613 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.586 | 255.962 | - | "VPClusFull_38754d8c" | 2289 | 0.555 | 242.478 | - | "PrMatchNN_e3e0ccb5" | 2289 | 0.506 | 221.098 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.471 | 205.950 | - | "PrTrackAssociator_43e58d3b" | 2289 | 0.388 | 169.589 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.385 | 168.183 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.360 | 157.252 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.261 | 114.091 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.197 | 86.197 | - | "fromPrMatchTracksV1Tracks_13de62af" | 2289 | 0.188 | 81.950 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.137 | 60.012 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.125 | 54.486 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.112 | 48.897 | - | "FTRawBankDecoder" | 2289 | 0.062 | 27.241 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.026 | 8.771 | - | "reserveIOV" | 2289 | 0.023 | 10.130 | - | "Decode_ODIN" | 2289 | 0.007 | 3.078 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.006 | 2.727 | - | "DefaultGECFilter" | 2955 | 0.006 | 1.983 | - | "UnpackRawEvent_UT" | 2955 | 0.005 | 1.558 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.894 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.004 | 1.788 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.775 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.680 | - | "DummyEventTime" | 2289 | 0.004 | 1.577 | - | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.503 | - | "UnpackRawEvent_VP" | 2289 | 0.003 | 1.414 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 1.023 | + | Sum of all Algorithms | 2955 | 190.827 | 64577.522 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 108.715 | 36790.310 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 16.666 | 7280.748 | + | "ForwardTrackChecker_482fda95" | 2289 | 15.309 | 6688.083 | + | "MatchTrackChecker_74fc87ef" | 2289 | 13.759 | 6010.803 | + | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 5.996 | 2619.595 | + | "MatchUTHitsChecker_2344d17d" | 2289 | 5.926 | 2588.866 | + | "PrForwardTrackingVelo_6024f9ec" | 2289 | 5.384 | 2351.965 | + | "PrHybridSeeding_4d0337cc" | 2289 | 4.027 | 1759.483 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 3.202 | 1398.962 | + | "Unpack__Event_MC_Particles" | 2289 | 2.721 | 1188.856 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.617 | 1143.281 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.900 | 393.369 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.717 | 313.079 | + | "VPClusFull_38754d8c" | 2289 | 0.714 | 311.822 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.630 | 275.377 | + | "PrMatchNN_7a116638" | 2289 | 0.615 | 268.753 | + | "PrTrackAssociator_14d5445b" | 2289 | 0.506 | 221.199 | + | "PrTrackAssociator_3adf94fb" | 2289 | 0.467 | 204.180 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.448 | 195.559 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.316 | 138.267 | + | "fromPrMatchTracksV1Tracks_57998157" | 2289 | 0.253 | 110.634 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.240 | 104.741 | + | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.162 | 70.737 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.158 | 68.862 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.155 | 67.500 | + | "FTRawBankDecoder" | 2289 | 0.077 | 33.856 | + | "reserveIOV" | 2289 | 0.049 | 21.580 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.032 | 10.857 | + | "Decode_ODIN" | 2289 | 0.009 | 3.949 | + | "DefaultGECFilter" | 2955 | 0.008 | 2.718 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.007 | 3.114 | + | "UnpackRawEvent_UT" | 2955 | 0.006 | 1.883 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.005 | 2.289 | + | "DummyEventTime" | 2289 | 0.005 | 2.164 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.005 | 2.109 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.005 | 2.049 | + | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.960 | + | "UnpackRawEvent_ODIN" | 2289 | 0.004 | 1.787 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.003 | 1.297 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.003 | 1.243 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed LAZY_AND: hlt2_matching_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| NONLAZY_OR: hlt2_matching_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrMatchNN/PrMatchNN_e3e0ccb5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNN/PrMatchNN_7a116638 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_eb7a9e21 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_eda3b901 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_74fc87ef #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_2344d17d #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_eda3b901.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -MatchTrackChecker_eb7a9e21.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_2344d17d.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_74fc87ef.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] diff --git a/efficiencies/logs/best_effs_BJpsi_baseline_Selection.log b/efficiencies/logs/best_effs_BJpsi_baseline_Selection.log new file mode 100644 index 0000000..22a692d --- /dev/null +++ b/efficiencies/logs/best_effs_BJpsi_baseline_Selection.log @@ -0,0 +1,433 @@ +# setting LC_ALL to "C" +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +/***** User ApplicationOptions/ApplicationOptions ************************************************** +|-append_decoding_keys_to_output_manifest = True (default: True) +|-auditors = [] (default: []) +|-buffer_events = 20000 (default: 20000) +|-conddb_tag = 'sim-20210617-vc-md100' (default: '') +|-conditions_version = '' (default: '') +|-control_flow_file = '' (default: '') +|-data_flow_file = '' (default: '') +|-data_type = 'Upgrade' (default: 'Upgrade') +|-dddb_tag = 'dddb-20210617' (default: '') +|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') +|-evt_max = -1 (default: -1) +|-first_evt = 0 (default: 0) +|-geometry_version = '' (default: '') +|-histo_file = '' (default: '') +|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi'] +| (default: []) +|-input_manifest_file = '' (default: '') +|-input_process = '' (default: '') +|-input_raw_format = 0.5 (default: 0.5) +|-input_type = 'ROOT' (default: '') +|-lines_maker = None +|-memory_pool_size = 10485760 (default: 10485760) +|-monitoring_file = '' (default: '') +|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') +|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') +|-n_event_slots = 1 (default: -1) +|-n_threads = 1 (default: 1) +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/effs_BJpsi_baseline_Selection.root' +| (default: '') +|-output_file = '' (default: '') +|-output_level = 3 (default: 3) +|-output_manifest_file = '' (default: '') +|-output_type = '' (default: '') +|-persistreco_version = 1.0 (default: 1.0) +|-phoenix_filename = '' (default: '') +|-preamble_algs = [] (default: []) +|-print_freq = 10000 (default: 10000) +|-python_logging_level = 20 (default: 20) +|-require_specific_decoding_keys = [] (default: []) +|-scheduler_legacy_mode = True (default: True) +|-simulation = True (default: None) +|-use_iosvc = False (default: False) +|-velo_motion_system_yaml = '' (default: '') +|-write_decoding_keys_to_git = True (default: True) +\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- +# Overrule specified for keys +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_data.py' +ApplicationMgr SUCCESS +==================================================================================================================================== + Welcome to Moore version 55.3 + running on lhcba2 on Tue Mar 26 07:42:21 2024 +==================================================================================================================================== +ApplicationMgr INFO Application Manager Configured successfully +ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' +ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 +ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' +ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf +DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc +DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml +EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 +EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf +MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf +MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/effs_BJpsi_baseline_Selection.root as FILE1 +HLTControlFlowMgr INFO Start initialization +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/effs_BJpsi_baseline_Selection.root +HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc +DeFTDetector INFO Current FT geometry version = 64 +HLTControlFlowMgr INFO Concurrency level information: +HLTControlFlowMgr INFO o Number of events slots: 1 +HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 +HLTControlFlowMgr INFO ---> End of Initialization. This took 20954 ms +ApplicationMgr INFO Application Manager Initialized successfully +ApplicationMgr INFO Application Manager Started successfully +EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc +EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) +HLTControlFlowMgr INFO Starting loop on events +EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 +FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. +FTRawBankDecoder INFO Building the readout map with version 0 +HLTControlFlowMgr INFO Timing started at: 07:43:05 +EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +EventSelector INFO Stream:EventSelector.DataStreamTool_4 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi [0B898020-FB50-11EB-8654-FA163E6857C2] +RootCnvSvc INFO Removed disconnected IO stream:0B898020-FB50-11EB-8654-FA163E6857C2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000036_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_5 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi [5DCC4124-FC68-11EB-BDA2-FA163E58303C] +RootCnvSvc INFO Removed disconnected IO stream:5DCC4124-FC68-11EB-BDA2-FA163E58303C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000074_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_6 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi [8EB58942-FC7E-11EB-A61E-FA163EE79BF6] +RootCnvSvc INFO Removed disconnected IO stream:8EB58942-FC7E-11EB-A61E-FA163EE79BF6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000084_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_7 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi [BECF3234-FE56-11EB-968E-FA163E94D94F] +RootCnvSvc INFO Removed disconnected IO stream:BECF3234-FE56-11EB-968E-FA163E94D94F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000096_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_8 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi [E516F964-FC84-11EB-B1AC-FA163E0712FF] +RootCnvSvc INFO Removed disconnected IO stream:E516F964-FC84-11EB-B1AC-FA163E0712FF [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000085_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_9 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi [C7B4B038-FB52-11EB-A14B-FA163EF0D557] +RootCnvSvc INFO Removed disconnected IO stream:C7B4B038-FB52-11EB-A14B-FA163EF0D557 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000039_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_10 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi [6D30047A-FB5A-11EB-BF88-FA163E3787B1] +RootCnvSvc INFO Removed disconnected IO stream:6D30047A-FB5A-11EB-BF88-FA163E3787B1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000047_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_11 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi [123C7EA8-FEE4-11EB-947C-FA163E5E0D5F] +RootCnvSvc INFO Removed disconnected IO stream:123C7EA8-FEE4-11EB-947C-FA163E5E0D5F [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000100_1.xdigi] +EventSelector SUCCESS Reading Event record 10001. Record number within stream 11: 648 +EventSelector INFO Stream:EventSelector.DataStreamTool_12 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi [1559743C-FB48-11EB-ABD6-FA163ECF2D71] +RootCnvSvc INFO Removed disconnected IO stream:1559743C-FB48-11EB-ABD6-FA163ECF2D71 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000029_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_13 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi [3C8722E6-FB7C-11EB-B214-FA163E7AC841] +RootCnvSvc INFO Removed disconnected IO stream:3C8722E6-FB7C-11EB-B214-FA163E7AC841 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000058_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_14 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi [971A74C4-FC71-11EB-9B7A-FA163EA1849A] +RootCnvSvc INFO Removed disconnected IO stream:971A74C4-FC71-11EB-9B7A-FA163EA1849A [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000078_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_15 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi [5FE45F74-FC53-11EB-AD8A-FA163E974EB1] +RootCnvSvc INFO Removed disconnected IO stream:5FE45F74-FC53-11EB-AD8A-FA163E974EB1 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000070_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_16 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi [A43AC110-FC79-11EB-BF3F-FA163E72700E] +RootCnvSvc INFO Removed disconnected IO stream:A43AC110-FC79-11EB-BF3F-FA163E72700E [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000082_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_17 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi [B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24] +RootCnvSvc INFO Removed disconnected IO stream:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_18 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi [91F55774-FE8E-11EB-9355-FA163E426AD6] +RootCnvSvc INFO Removed disconnected IO stream:91F55774-FE8E-11EB-9355-FA163E426AD6 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000099_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_19 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi [6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32] +RootCnvSvc INFO Removed disconnected IO stream:6EC8F9B2-FB56-11EB-8DB9-FA163E6BFC32 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000043_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_20 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi [AFCB9710-FB21-11EB-9E91-FA163ED3A4EB] +RootCnvSvc INFO Removed disconnected IO stream:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_21 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi [00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8] +RootCnvSvc INFO Removed disconnected IO stream:00D845C2-FB4A-11EB-85C8-3CFDFE9E1FB8 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000031_1.xdigi] +EventSelector SUCCESS Reading Event record 20001. Record number within stream 21: 613 +EventSelector INFO Stream:EventSelector.DataStreamTool_22 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi [1BE698B6-FC6F-11EB-A5EC-FA163E212E5B] +RootCnvSvc INFO Removed disconnected IO stream:1BE698B6-FC6F-11EB-A5EC-FA163E212E5B [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000076_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_23 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi [DE6396AC-FD6C-11EB-85E6-FA163EDC144C] +RootCnvSvc INFO Removed disconnected IO stream:DE6396AC-FD6C-11EB-85E6-FA163EDC144C [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000094_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_24 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi [CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0] +RootCnvSvc INFO Removed disconnected IO stream:CC17E46C-FB50-11EB-8CCD-3CECEF0DE5A0 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000037_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_25 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi [02C64118-FD5C-11EB-8618-FA163E8AF260] +RootCnvSvc INFO Removed disconnected IO stream:02C64118-FD5C-11EB-8618-FA163E8AF260 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000092_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_26 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi [22CD60BE-FBC6-11EB-BEED-FA163E1EE769] +RootCnvSvc INFO Removed disconnected IO stream:22CD60BE-FBC6-11EB-BEED-FA163E1EE769 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000064_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_27 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi [8FE2489A-FB67-11EB-9FC8-FA163E35CDB2] +RootCnvSvc INFO Removed disconnected IO stream:8FE2489A-FB67-11EB-9FC8-FA163E35CDB2 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000054_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_28 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi [E09CA29E-FC7A-11EB-9806-FA163E6E9F48] +RootCnvSvc INFO Removed disconnected IO stream:E09CA29E-FC7A-11EB-9806-FA163E6E9F48 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000083_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_29 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi [C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE] +RootCnvSvc INFO Removed disconnected IO stream:C0EA9202-FB6D-11EB-9EC2-3CECEF5D2AEE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000056_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_30 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi [9E3B8940-FB87-11EB-ADCA-FA163E643B60] +RootCnvSvc INFO Removed disconnected IO stream:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_31 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi [78850EB8-FB61-11EB-91C7-FA163E8B3E79] +RootCnvSvc INFO Removed disconnected IO stream:78850EB8-FB61-11EB-91C7-FA163E8B3E79 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000052_1.xdigi] +EventSelector SUCCESS Reading Event record 30001. Record number within stream 31: 516 +EventSelector INFO Stream:EventSelector.DataStreamTool_32 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi [D90EB734-FC74-11EB-B12A-FA163EF491BE] +RootCnvSvc INFO Removed disconnected IO stream:D90EB734-FC74-11EB-B12A-FA163EF491BE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000079_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_33 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi [E20E8376-FC30-11EB-AC14-000017009605] +RootCnvSvc INFO Removed disconnected IO stream:E20E8376-FC30-11EB-AC14-000017009605 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000066_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_34 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi [CF32C3CC-FB4D-11EB-B55F-FA163E3286CE] +RootCnvSvc INFO Removed disconnected IO stream:CF32C3CC-FB4D-11EB-B55F-FA163E3286CE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000033_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_35 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi [C97B8D2E-FB3E-11EB-9555-FA163E09F528] +RootCnvSvc INFO Removed disconnected IO stream:C97B8D2E-FB3E-11EB-9555-FA163E09F528 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000025_1.xdigi] +EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' +IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] +RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] +HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1371.03, timed 35313 Events: 2332951 ms, Evts/s = 15.1366 +DefaultGECFilter INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb Events Processed" | 35323 | + | "Nb events removed" | 8300 | +HLTControlFlowMgr INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Processed events" | 35323 | +MatchTrackChecker_d1383778.LoKi:... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +MatchUTHitsChecker_6a3fb3ad.LoKi... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 4 | +PrHybridSeeding_4d0337cc INFO Number of counters : 21 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Created T2x1 three-hit combinations in case 0" | 48341313 |2.955738e+07 | 0.61143 | 0.62121 | 0.0000 | 6.0000 | + | "Created T2x1 three-hit combinations in case 1" | 59736068 |3.890531e+07 | 0.65129 | 0.73914 | 0.0000 | 12.000 | + | "Created T2x1 three-hit combinations in case 2" | 92062305 |7.348832e+07 | 0.79825 | 1.0005 | 0.0000 | 25.000 | + | "Created XZ tracks (part 0)" | 81069 | 4362313 | 53.810 | 45.987 | 0.0000 | 1698.0 | + | "Created XZ tracks (part 1)" | 81069 | 4372824 | 53.940 | 46.383 | 0.0000 | 1257.0 | + | "Created XZ tracks in case 0" | 54046 | 3250382 | 60.141 | 38.259 | 0.0000 | 503.00 | + | "Created XZ tracks in case 1" | 54046 | 3226826 | 59.705 | 45.131 | 0.0000 | 1144.0 | + | "Created XZ tracks in case 2" | 54046 | 2257929 | 41.778 | 51.760 | 0.0000 | 1698.0 | + | "Created full hit combinations in case 0" | 4960359 | 4960359 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 1" | 3736423 | 3736423 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created full hit combinations in case 2" | 3395516 | 3395516 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | + | "Created seed tracks" | 54046 | 3390744 | 62.738 | 22.781 | 2.0000 | 186.00 | + | "Created seed tracks (part 0)" | 27023 | 1892022 | 70.015 | 25.958 | 3.0000 | 207.00 | + | "Created seed tracks (part 1)" | 27023 | 1889881 | 69.936 | 26.105 | 2.0000 | 215.00 | + | "Created seed tracks in case 0" | 54046 | 1770384 | 32.757 | 12.817 | 0.0000 | 96.000 | + | "Created seed tracks in case 1" | 54046 | 3221597 | 59.608 | 21.826 | 2.0000 | 166.00 | + | "Created seed tracks in case 2" | 54046 | 3598130 | 66.575 | 24.744 | 2.0000 | 205.00 | + | "Created seed tracks in recovery step" | 27023 | 183773 | 6.8006 | 3.9574 | 0.0000 | 30.000 | + | "Created two-hit combinations in case 0" | 8064491 |1.859307e+08 | 23.055 | 16.090 | 0.0000 | 278.00 | + | "Created two-hit combinations in case 1" | 6971955 |2.107604e+08 | 30.230 | 18.520 | 0.0000 | 262.00 | + | "Created two-hit combinations in case 2" | 5497566 |2.463124e+08 | 44.804 | 28.350 | 0.0000 | 333.00 | +PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#removed null MCParticles" | 198107424 | 0 | 0.0000 | +PrMatchNN_78b28c64 INFO Number of counters : 3 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#MatchingChi2" | 27023 |3.380926e+07 | 1251.1 | + | "#MatchingMLP" | 138322 | 112492.8 | 0.81327 | + | "#MatchingTracks" | 27023 | 138322 | 5.1187 | +PrMatchNN_78b28c64.PrAddUTHitsTool INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#UT hits added" | 135090 | 546494 | 4.0454 | + | "#tracks with hits added" | 135090 | +PrStorePrUTHits_df75b912 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Average X in T1U" | 8196488 |-2.970498e+08 | -36.241 | 1138.7 | -2656.4 | 2656.3 | + | "Average X in T1V" | 8302998 |-2.232378e+08 | -26.886 | 1127.1 | -2656.4 | 2656.3 | + | "Average X in T1X1" | 8064491 |-3.988098e+08 | -49.453 | 1159.2 | -2646.2 | 2646.2 | + | "Average X in T1X2" | 8414851 |-1.355164e+08 | -16.104 | 1119.5 | -2646.2 | 2646.2 | + | "Average X in T2U" | 7999640 |-1.870835e+08 | -23.386 | 1136.2 | -2656.4 | 2656.3 | + | "Average X in T2V" | 8247240 |-1.660776e+08 | -20.137 | 1130.6 | -2656.4 | 2656.3 | + | "Average X in T2X1" | 7652852 |-1.971999e+08 | -25.768 | 1140.3 | -2646.2 | 2646.2 | + | "Average X in T2X2" | 8508327 |-1.284413e+08 | -15.096 | 1126.2 | -2646.2 | 2646.2 | + | "Average X in T3U" | 8684086 |-1.041572e+08 | -11.994 | 1335.9 | -3188.4 | 3188.4 | + | "Average X in T3V" | 8961033 |-1.375357e+08 | -15.348 | 1330.5 | -3188.4 | 3188.4 | + | "Average X in T3X1" | 8348239 |-8.469251e+07 | -10.145 | 1336.3 | -3176.2 | 3176.2 | + | "Average X in T3X2" | 9294885 |-1.774036e+08 | -19.086 | 1321.1 | -3176.2 | 3176.2 | + | "Hits in T1U" | 108092 | 8196488 | 75.829 | 27.842 | 4.0000 | 327.00 | + | "Hits in T1V" | 108092 | 8302998 | 76.814 | 27.983 | 3.0000 | 375.00 | + | "Hits in T1X1" | 108092 | 8064491 | 74.608 | 27.731 | 4.0000 | 375.00 | + | "Hits in T1X2" | 108092 | 8414851 | 77.849 | 28.195 | 4.0000 | 428.00 | + | "Hits in T2U" | 108092 | 7999640 | 74.008 | 26.743 | 3.0000 | 341.00 | + | "Hits in T2V" | 108092 | 8247240 | 76.298 | 27.429 | 4.0000 | 381.00 | + | "Hits in T2X1" | 108092 | 7652852 | 70.799 | 25.759 | 2.0000 | 374.00 | + | "Hits in T2X2" | 108092 | 8508327 | 78.714 | 27.978 | 3.0000 | 356.00 | + | "Hits in T3U" | 108092 | 8684086 | 80.340 | 28.058 | 2.0000 | 331.00 | + | "Hits in T3V" | 108092 | 8961033 | 82.902 | 28.941 | 4.0000 | 399.00 | + | "Hits in T3X1" | 108092 | 8348239 | 77.233 | 27.004 | 3.0000 | 339.00 | + | "Hits in T3X2" | 108092 | 9294885 | 85.990 | 29.878 | 2.0000 | 355.00 | + | "Total number of hits" | 27023 |1.006751e+08 | 3725.5 | 1130.7 | 418.00 | 6405.0 | +PrStoreUTHit_6220b56a INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "#banks" | 27023 | 5836968 | 216.00 | +PrTrackAssociator_16ad4612 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 3390744 | 3322103 |( 97.97564 +- 0.007648140)% | + | "MC particles per track" | 3322103 | 3322179 | 1.0000 | +PrTrackAssociator_a62b8735 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 138322 | 123176 |( 89.05019 +- 0.08396052)% | + | "MC particles per track" | 123176 | 138666 | 1.1258 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + |*"Efficiency" | 7059265 | 6885105 |( 97.53289 +- 0.005838352)% | + | "MC particles per track" | 6885105 | 6916103 | 1.0045 | +SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of Produced Clusters" | 27023 |6.416351e+07 | 2374.4 | + | "Nb of Produced Tracks" | 27023 | 7059265 | 261.23 | +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_fe5d7687 INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 138322 | 5.1187 | +fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 3390744 | 125.48 | +fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 + | Counter | # | sum | mean/eff^* | rms/err^* | min | max | + | "Nb of converted Tracks" | 27023 | 7059265 | 261.23 | +ApplicationMgr INFO Application Manager Stopped successfully +MatchTrackChecker_d1383778 INFO Results +MatchTrackChecker_d1383778 INFO **** Match 138322 tracks including 15146 ghosts [10.95 %], Event average 8.13 % **** +MatchTrackChecker_d1383778 INFO 01_long : 0 from 1811265 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 02_long_P>5GeV : 0 from 1172326 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 03_long_strange : 0 from 98994 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 04_long_strange_P>5GeV : 0 from 46918 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 05_long_fromB : 0 from 94402 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 05_long_fromD : 0 from 50932 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 06_long_fromB_P>5GeV : 0 from 71030 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 06_long_fromD_P>5GeV : 0 from 35044 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 07_long_electrons : 118503 from 181213 [ 65.39 %] 1886 clones [ 1.57 %], purity: 98.19 %, hitEff: 98.44 % +MatchTrackChecker_d1383778 INFO 07_long_electrons_pairprod : 75064 from 130212 [ 57.65 %] 1305 clones [ 1.71 %], purity: 97.66 %, hitEff: 98.23 % +MatchTrackChecker_d1383778 INFO 08_long_fromB_electrons : 41314 from 48919 [ 84.45 %] 586 clones [ 1.40 %], purity: 99.10 %, hitEff: 98.89 % +MatchTrackChecker_d1383778 INFO 09_long_fromB_electrons_P>5GeV : 38971 from 44696 [ 87.19 %] 565 clones [ 1.43 %], purity: 99.14 %, hitEff: 99.01 % +MatchTrackChecker_d1383778 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 61675 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 37982 from 42838 [ 88.66 %] 539 clones [ 1.40 %], purity: 99.21 %, hitEff: 98.98 % +MatchTrackChecker_d1383778 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 0 from 28214 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 0 from 24129 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 0 from 61506 [ 0.00 %] 0 clones [ 0.00 %], purity: 0.00 %, hitEff: 0.00 % +MatchTrackChecker_d1383778 INFO +MatchUTHitsChecker_6a3fb3ad INFO Results +MatchUTHitsChecker_6a3fb3ad INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_fe5d7687/OutputTracksLocation **** 15146 ghost, 3.81 UT per track +MatchUTHitsChecker_6a3fb3ad INFO +SeedTrackChecker_ad9abe4e INFO Results +SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** +SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % +SeedTrackChecker_ad9abe4e INFO 02_long : 1707963 from 1811265 [ 94.30 %] 46 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.41 % +SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 1141970 from 1172326 [ 97.41 %] 33 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.08 % +SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 90231 from 94402 [ 95.58 %] 2 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.72 % +SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 69302 from 71030 [ 97.57 %] 2 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.17 % +SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 195676 from 211050 [ 92.72 %] 3 clones [ 0.00 %], purity: 99.73 %, hitEff: 98.00 % +SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 102766 from 105626 [ 97.29 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.07 % +SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 105019 from 113340 [ 92.66 %] 2 clones [ 0.00 %], purity: 99.72 %, hitEff: 98.02 % +SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 57865 from 59507 [ 97.24 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.04 % +SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 13279 from 14317 [ 92.75 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 98.13 % +SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 7443 from 7643 [ 97.38 %] 0 clones [ 0.00 %], purity: 99.76 %, hitEff: 99.15 % +SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 4731 from 4865 [ 97.25 %] 0 clones [ 0.00 %], purity: 99.75 %, hitEff: 99.12 % +SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 483995 from 890297 [ 54.36 %] 22 clones [ 0.00 %], purity: 99.67 %, hitEff: 97.17 % +SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 159229 from 181213 [ 87.87 %] 8 clones [ 0.01 %], purity: 99.78 %, hitEff: 97.81 % +SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % +SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % +SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % +SeedTrackChecker_ad9abe4e INFO +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 7059265 tracks including 174160 ghosts [ 2.47 %], Event average 2.56 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 3088200 from 3153550 [ 97.93 %] 47327 clones [ 1.51 %], purity: 99.62 %, hitEff: 95.63 %, hitEffFirst3: 95.51 %, hitEffLast: 95.34 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 1796773 from 1811265 [ 99.20 %] 18312 clones [ 1.01 %], purity: 99.71 %, hitEff: 96.60 %, hitEffFirst3: 96.49 %, hitEffLast: 96.44 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 1166697 from 1172326 [ 99.52 %] 9016 clones [ 0.77 %], purity: 99.71 %, hitEff: 97.01 %, hitEffFirst3: 96.86 %, hitEffLast: 96.95 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 95149 from 98994 [ 96.12 %] 902 clones [ 0.94 %], purity: 99.18 %, hitEff: 96.15 %, hitEffFirst3: 96.25 %, hitEffLast: 95.18 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 45287 from 46918 [ 96.52 %] 289 clones [ 0.63 %], purity: 99.03 %, hitEff: 96.85 %, hitEffFirst3: 96.96 %, hitEffLast: 96.05 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 93725 from 94402 [ 99.28 %] 855 clones [ 0.90 %], purity: 99.69 %, hitEff: 96.64 %, hitEffFirst3: 96.53 %, hitEffLast: 96.48 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 50520 from 50932 [ 99.19 %] 523 clones [ 1.02 %], purity: 99.67 %, hitEff: 96.54 %, hitEffFirst3: 96.41 %, hitEffLast: 96.37 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 70725 from 71030 [ 99.57 %] 496 clones [ 0.70 %], purity: 99.70 %, hitEff: 96.97 %, hitEffFirst3: 96.87 %, hitEffLast: 96.84 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 34866 from 35044 [ 99.49 %] 267 clones [ 0.76 %], purity: 99.68 %, hitEff: 96.93 %, hitEffFirst3: 96.82 %, hitEffLast: 96.80 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 174045 from 181213 [ 96.04 %] 3111 clones [ 1.76 %], purity: 98.10 %, hitEff: 94.64 %, hitEffFirst3: 93.13 %, hitEffLast: 94.83 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 47652 from 48919 [ 97.41 %] 765 clones [ 1.58 %], purity: 99.20 %, hitEff: 96.20 %, hitEffFirst3: 95.93 %, hitEffLast: 96.12 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 43877 from 44696 [ 98.17 %] 720 clones [ 1.61 %], purity: 99.30 %, hitEff: 96.30 %, hitEffFirst3: 96.15 %, hitEffLast: 96.17 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 61365 from 61675 [ 99.50 %] 372 clones [ 0.60 %], purity: 99.72 %, hitEff: 96.98 %, hitEffFirst3: 96.88 %, hitEffLast: 96.84 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 42320 from 42838 [ 98.79 %] 676 clones [ 1.57 %], purity: 99.38 %, hitEff: 96.39 %, hitEffFirst3: 96.31 %, hitEffLast: 96.22 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 28057 from 28214 [ 99.44 %] 178 clones [ 0.63 %], purity: 99.68 %, hitEff: 96.94 %, hitEffFirst3: 96.85 %, hitEffLast: 96.77 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 22890 from 24129 [ 94.87 %] 122 clones [ 0.53 %], purity: 98.78 %, hitEff: 96.86 %, hitEffFirst3: 96.60 %, hitEffLast: 96.63 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 61198 from 61506 [ 99.50 %] 372 clones [ 0.60 %], purity: 99.71 %, hitEff: 96.98 %, hitEffFirst3: 96.88 %, hitEffLast: 96.84 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.84443 +/- 0.0113277 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 269.457 +/- 0.78357 (min: 4, max: 396) requests were served +HLTControlFlowMgr INFO Timing table: +HLTControlFlowMgr INFO + | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | + | Sum of all Algorithms | 35323 | 2285.400 | 64700.059 | + | "Fetch__Event_DAQ_RawEvent" | 35323 | 1610.658 | 45597.993 | + | "SeedTrackChecker_ad9abe4e" | 27023 | 153.139 | 5666.970 | + | "VeloTrackChecker_e83d0cf5" | 27023 | 151.754 | 5615.743 | + | "MatchTrackChecker_d1383778" | 27023 | 122.025 | 4515.593 | + | "MatchUTHitsChecker_6a3fb3ad" | 27023 | 51.723 | 1914.029 | + | "PrHybridSeeding_4d0337cc" | 27023 | 39.429 | 1459.097 | + | "PrMatchNN_78b28c64" | 27023 | 32.060 | 1186.383 | + | "PrLHCbID2MCParticle_a906d17d" | 27023 | 29.608 | 1095.668 | + | "Unpack__Event_MC_Vertices" | 27023 | 24.126 | 892.804 | + | "Unpack__Event_MC_Particles" | 27023 | 23.007 | 851.386 | + | "VeloClusterTrackingSIMD_87c18651" | 27023 | 8.505 | 314.746 | + | "VPFullCluster2MCParticleLinker_17386552" | 27023 | 6.761 | 250.197 | + | "VPClusFull_38754d8c" | 27023 | 6.366 | 235.565 | + | "PrStoreSciFiHits_fb0eba02" | 27023 | 5.752 | 212.859 | + | "PrStoreUTHit_6220b56a" | 27023 | 5.139 | 190.177 | + | "PrStorePrUTHits_df75b912" | 27023 | 3.612 | 133.651 | + | "PrTrackAssociator_d68377ee" | 27023 | 3.140 | 116.187 | + | "PrTrackAssociator_16ad4612" | 27023 | 2.890 | 106.950 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 27023 | 2.067 | 76.491 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 27023 | 1.312 | 48.534 | + | "FTRawBankDecoder" | 27023 | 0.694 | 25.690 | + | "PrTrackAssociator_a62b8735" | 27023 | 0.444 | 16.448 | + | "UnpackRawEvent_UT" | 35323 | 0.290 | 8.209 | + | "fromPrMatchTracksV1Tracks_fe5d7687" | 27023 | 0.263 | 9.745 | + | "Decode_ODIN" | 27023 | 0.066 | 2.458 | + | "DefaultGECFilter" | 35323 | 0.062 | 1.742 | + | "reserveIOV" | 27023 | 0.061 | 2.271 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 27023 | 0.058 | 2.132 | + | "UnpackRawEvent_FTCluster" | 35323 | 0.052 | 1.461 | + | "UnpackRawEvent_VP" | 27023 | 0.049 | 1.818 | + | "Fetch__Event_pSim_MCVertices" | 27023 | 0.046 | 1.707 | + | "Fetch__Event_pSim_MCParticles" | 27023 | 0.043 | 1.583 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 27023 | 0.043 | 1.580 | + | "Fetch__Event_MC_TrackInfo" | 27023 | 0.042 | 1.544 | + | "UnpackRawEvent_ODIN" | 27023 | 0.040 | 1.481 | + | "Fetch__Event_Link_Raw_VP_Digits" | 27023 | 0.040 | 1.480 | + | "DummyEventTime" | 27023 | 0.035 | 1.283 | + +HLTControlFlowMgr INFO StateTree: CFNode #executed #passed +LAZY_AND: hlt2_reco_decision #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + PrGECFilter/DefaultGECFilter #=35323 Sum=27023 Eff=|( 76.50256 +- 0.225590)%| + NONLAZY_OR: hlt2_reco_data #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_d1383778 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_6a3fb3ad #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=27023 Sum=27023 Eff=|( 100.0000 +- 0.00000 )%| + +HLTControlFlowMgr INFO Histograms converted successfully according to request. +ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_6a3fb3ad.PrCh... SUCCESS Booked 28 Histogram(s) : 1D=24 2D=4 +MatchTrackChecker_d1383778.PrChe... SUCCESS Booked 545 Histogram(s) : 1D=386 2D=159 +RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] +RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] +RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] +ApplicationMgr INFO Application Manager Finalized successfully +ApplicationMgr INFO Application Manager Terminated successfully diff --git a/efficiencies/logs/match_effs_testJpsi_EDef_yCorrNoCut.log b/efficiencies/logs/best_effs_testJpsi_NewSel.log similarity index 59% rename from efficiencies/logs/match_effs_testJpsi_EDef_yCorrNoCut.log rename to efficiencies/logs/best_effs_testJpsi_NewSel.log index 30392f0..fa71a0c 100644 --- a/efficiencies/logs/match_effs_testJpsi_EDef_yCorrNoCut.log +++ b/efficiencies/logs/best_effs_testJpsi_NewSel.log @@ -1,5 +1,5 @@ # setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_seed_data.py' /***** User ApplicationOptions/ApplicationOptions ************************************************** |-append_decoding_keys_to_output_manifest = True (default: True) |-auditors = [] (default: []) @@ -28,7 +28,7 @@ |-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') |-n_event_slots = 1 (default: -1) |-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef_yCorrNoCut.root' +|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/best_effs_testJpsi_NewSel.root' | (default: '') |-output_file = '' (default: '') |-output_level = 3 (default: 3) @@ -47,11 +47,11 @@ |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- # Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_match_eff_data.py' +# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_best_seed_data.py' ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 07:16:42 2024 + running on lhcba2 on Tue Mar 19 13:04:18 2024 ==================================================================================================================================== ApplicationMgr INFO Application Manager Configured successfully ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' @@ -67,15 +67,15 @@ MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/l MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef_yCorrNoCut.root as FILE1 +NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/best_effs_testJpsi_NewSel.root as FILE1 HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/data_matching/match_effs_testJpsi_EDef_yCorrNoCut.root +RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/best_effs_testJpsi_NewSel.root HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc DeFTDetector INFO Current FT geometry version = 64 HLTControlFlowMgr INFO Concurrency level information: HLTControlFlowMgr INFO o Number of events slots: 1 HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 19653 ms +HLTControlFlowMgr INFO ---> End of Initialization. This took 25514 ms ApplicationMgr INFO Application Manager Initialized successfully ApplicationMgr INFO Application Manager Started successfully EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc @@ -85,46 +85,24 @@ HLTControlFlowMgr INFO Starting loop on events EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 07:17:20 +HLTControlFlowMgr INFO Timing started at: 13:05:07 EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1804.29, timed 2945 Events: 156936 ms, Evts/s = 18.7656 +HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1780.19, timed 2945 Events: 175499 ms, Evts/s = 16.7807 DefaultGECFilter INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb Events Processed" | 2955 | | "Nb events removed" | 666 | -ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -ForwardUTHitsChecker_fe9d9ac2.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 4 | HLTControlFlowMgr INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Processed events" | 2955 | -MatchTrackChecker_386d067b.LoKi:... INFO Number of counters : 1 +MatchTrackChecker_1354fc98.LoKi:... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | -MatchUTHitsChecker_a4d04726.LoKi... INFO Number of counters : 1 +MatchUTHitsChecker_16bcc990.LoKi... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 4 | -PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 2289 | 363254 | 158.70 | - | "Created long tracks" | 2289 | 181236 | 79.177 | - | "Input tracks" | 2289 | 380749 | 166.34 | - | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | - | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | - | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | - | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | - | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | - | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | - | "Removed duplicates" | 2289 | 9647 | 4.2145 | -PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 166072 | 673152 | 4.0534 | - | "#tracks with hits added" | 166072 | PrHybridSeeding_4d0337cc INFO Number of counters : 21 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | @@ -151,15 +129,15 @@ PrHybridSeeding_4d0337cc INFO Number of counters : 21 PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_d80b5038 INFO Number of counters : 3 +PrMatchNN_3d11fa6b INFO Number of counters : 3 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8809473 | 3848.6 | - | "#MatchingMLP" | 214837 | 196735.2 | 0.91574 | - | "#MatchingTracks" | 2289 | 214837 | 93.856 | -PrMatchNN_d80b5038.PrAddUTHitsTool INFO Number of counters : 2 + | "#MatchingChi2" | 2289 | 8325638 | 3637.2 | + | "#MatchingMLP" | 221796 | 199700.1 | 0.90038 | + | "#MatchingTracks" | 2289 | 221796 | 96.896 | +PrMatchNN_3d11fa6b.PrAddUTHitsTool INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 187439 | 746377 | 3.9820 | - | "#tracks with hits added" | 187439 | + | "#UT hits added" | 192301 | 764012 | 3.9730 | + | "#tracks with hits added" | 192301 | PrStorePrUTHits_df75b912 INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "#banks" | 2289 | 494424 | 216.00 | @@ -197,14 +175,14 @@ PrTrackAssociator_16ad4612 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | | "MC particles per track" | 279294 | 279304 | 1.0000 | -PrTrackAssociator_3adf94fb INFO Number of counters : 2 +PrTrackAssociator_b11a7383 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | - | "MC particles per track" | 155077 | 181813 | 1.1724 | -PrTrackAssociator_8c8024ec INFO Number of counters : 2 + |*"Efficiency" | 221796 | 152150 |( 68.59907 +- 0.09854929)% | + | "MC particles per track" | 152150 | 177733 | 1.1681 | +PrTrackAssociator_d68377ee INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 214837 | 149689 |( 69.67561 +- 0.09917036)% | - | "MC particles per track" | 149689 | 174616 | 1.1665 | + |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | + | "MC particles per track" | 578457 | 581059 | 1.0045 | SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "# loaded from PYTHON" | 17 | @@ -212,12 +190,12 @@ VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | -fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 +VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_aaf8b514 INFO Number of counters : 1 + | "# loaded from PYTHON" | 17 | +fromPrMatchTracksV1Tracks_a555ce5f INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 214837 | 93.856 | + | "Nb of converted Tracks" | 2289 | 221796 | 96.896 | fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | @@ -225,68 +203,37 @@ fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | ApplicationMgr INFO Application Manager Stopped successfully -ForwardTrackChecker_482fda95 INFO Results -ForwardTrackChecker_482fda95 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** -ForwardTrackChecker_482fda95 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % -ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % -ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % -ForwardTrackChecker_482fda95 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % -ForwardTrackChecker_482fda95 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % -ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % -ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % -ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % -ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO -ForwardUTHitsChecker_fe9d9ac2 INFO Results -ForwardUTHitsChecker_fe9d9ac2 INFO **** UT Efficiency for /Event/fromPrForwardTracksV1Tracks_f53f50a8/OutputTracksLocation **** 26159 ghost, 2.61 UT per track -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long :134215 tr 3.91 from 4.07 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 01_long >3UT :132800 tr 3.94 from 4.10 mcUT [ 96.2 %] 0.12 ghost hits on real tracks [ 2.9 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV : 92174 tr 3.94 from 4.07 mcUT [ 96.8 %] 0.10 ghost hits on real tracks [ 2.4 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 02_long_P>5GeV >3UT : 90908 tr 3.99 from 4.11 mcUT [ 97.2 %] 0.09 ghost hits on real tracks [ 2.2 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4919 tr 4.00 from 4.07 mcUT [ 98.2 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4906 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.05 ghost hits on real tracks [ 1.1 %] -ForwardUTHitsChecker_fe9d9ac2 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4897 tr 4.01 from 4.08 mcUT [ 98.3 %] 0.04 ghost hits on real tracks [ 1.0 %] -ForwardUTHitsChecker_fe9d9ac2 INFO -MatchTrackChecker_386d067b INFO Results -MatchTrackChecker_386d067b INFO **** Match 214837 tracks including 65148 ghosts [30.32 %], Event average 27.74 % **** -MatchTrackChecker_386d067b INFO 01_long : 128435 from 152279 [ 84.34 %] 764 clones [ 0.59 %], purity: 99.35 %, hitEff: 98.73 % -MatchTrackChecker_386d067b INFO 02_long_P>5GeV : 89386 from 98421 [ 90.82 %] 447 clones [ 0.50 %], purity: 99.46 %, hitEff: 99.27 % -MatchTrackChecker_386d067b INFO 03_long_strange : 6046 from 8121 [ 74.45 %] 29 clones [ 0.48 %], purity: 99.00 %, hitEff: 98.36 % -MatchTrackChecker_386d067b INFO 04_long_strange_P>5GeV : 3397 from 3856 [ 88.10 %] 12 clones [ 0.35 %], purity: 99.18 %, hitEff: 99.24 % -MatchTrackChecker_386d067b INFO 05_long_fromB : 7033 from 7959 [ 88.37 %] 48 clones [ 0.68 %], purity: 99.46 %, hitEff: 98.90 % -MatchTrackChecker_386d067b INFO 05_long_fromD : 3662 from 4226 [ 86.65 %] 17 clones [ 0.46 %], purity: 99.39 %, hitEff: 98.80 % -MatchTrackChecker_386d067b INFO 06_long_fromB_P>5GeV : 5572 from 5983 [ 93.13 %] 28 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.26 % -MatchTrackChecker_386d067b INFO 06_long_fromD_P>5GeV : 2680 from 2894 [ 92.61 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.24 % -MatchTrackChecker_386d067b INFO 07_long_electrons : 11296 from 15125 [ 74.68 %] 172 clones [ 1.50 %], purity: 97.80 %, hitEff: 98.22 % -MatchTrackChecker_386d067b INFO 07_long_electrons_pairprod : 7549 from 10831 [ 69.70 %] 134 clones [ 1.74 %], purity: 97.18 %, hitEff: 97.93 % -MatchTrackChecker_386d067b INFO 08_long_fromB_electrons : 3579 from 4210 [ 85.01 %] 40 clones [ 1.11 %], purity: 99.09 %, hitEff: 98.92 % -MatchTrackChecker_386d067b INFO 09_long_fromB_electrons_P>5GeV : 3364 from 3850 [ 87.38 %] 38 clones [ 1.12 %], purity: 99.17 %, hitEff: 99.05 % -MatchTrackChecker_386d067b INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4832 from 5182 [ 93.25 %] 27 clones [ 0.56 %], purity: 99.66 %, hitEff: 99.15 % -MatchTrackChecker_386d067b INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3246 from 3659 [ 88.71 %] 35 clones [ 1.07 %], purity: 99.24 %, hitEff: 99.05 % -MatchTrackChecker_386d067b INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2183 from 2343 [ 93.17 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.13 % -MatchTrackChecker_386d067b INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1769 from 2010 [ 88.01 %] 6 clones [ 0.34 %], purity: 99.52 %, hitEff: 99.01 % -MatchTrackChecker_386d067b INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4820 from 5164 [ 93.34 %] 27 clones [ 0.56 %], purity: 99.66 %, hitEff: 99.15 % -MatchTrackChecker_386d067b INFO -MatchUTHitsChecker_a4d04726 INFO Results -MatchUTHitsChecker_a4d04726 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_aaf8b514/OutputTracksLocation **** 65148 ghost, 2.49 UT per track -MatchUTHitsChecker_a4d04726 INFO 01_long :129199 tr 3.90 from 4.08 mcUT [ 95.6 %] 0.13 ghost hits on real tracks [ 3.2 %] -MatchUTHitsChecker_a4d04726 INFO 01_long >3UT :127872 tr 3.93 from 4.10 mcUT [ 95.9 %] 0.12 ghost hits on real tracks [ 3.0 %] -MatchUTHitsChecker_a4d04726 INFO 02_long_P>5GeV : 89833 tr 3.94 from 4.08 mcUT [ 96.7 %] 0.10 ghost hits on real tracks [ 2.4 %] -MatchUTHitsChecker_a4d04726 INFO 02_long_P>5GeV >3UT : 88692 tr 3.99 from 4.11 mcUT [ 97.1 %] 0.09 ghost hits on real tracks [ 2.2 %] -MatchUTHitsChecker_a4d04726 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4859 tr 3.99 from 4.07 mcUT [ 98.0 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4837 tr 4.01 from 4.08 mcUT [ 98.1 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4847 tr 4.00 from 4.08 mcUT [ 98.1 %] 0.05 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4837 tr 4.01 from 4.08 mcUT [ 98.1 %] 0.04 ghost hits on real tracks [ 1.1 %] -MatchUTHitsChecker_a4d04726 INFO +MatchTrackChecker_1354fc98 INFO Results +MatchTrackChecker_1354fc98 INFO **** Match 221796 tracks including 69646 ghosts [31.40 %], Event average 28.79 % **** +MatchTrackChecker_1354fc98 INFO 01_long : 130053 from 152279 [ 85.40 %] 784 clones [ 0.60 %], purity: 99.34 %, hitEff: 98.69 % +MatchTrackChecker_1354fc98 INFO 02_long_P>5GeV : 89823 from 98421 [ 91.26 %] 453 clones [ 0.50 %], purity: 99.46 %, hitEff: 99.26 % +MatchTrackChecker_1354fc98 INFO 03_long_strange : 6189 from 8121 [ 76.21 %] 31 clones [ 0.50 %], purity: 98.99 %, hitEff: 98.30 % +MatchTrackChecker_1354fc98 INFO 04_long_strange_P>5GeV : 3420 from 3856 [ 88.69 %] 13 clones [ 0.38 %], purity: 99.18 %, hitEff: 99.23 % +MatchTrackChecker_1354fc98 INFO 05_long_fromB : 7083 from 7959 [ 88.99 %] 48 clones [ 0.67 %], purity: 99.46 %, hitEff: 98.88 % +MatchTrackChecker_1354fc98 INFO 05_long_fromD : 3704 from 4226 [ 87.65 %] 18 clones [ 0.48 %], purity: 99.39 %, hitEff: 98.80 % +MatchTrackChecker_1354fc98 INFO 06_long_fromB_P>5GeV : 5581 from 5983 [ 93.28 %] 28 clones [ 0.50 %], purity: 99.57 %, hitEff: 99.26 % +MatchTrackChecker_1354fc98 INFO 06_long_fromD_P>5GeV : 2685 from 2894 [ 92.78 %] 9 clones [ 0.33 %], purity: 99.52 %, hitEff: 99.24 % +MatchTrackChecker_1354fc98 INFO 07_long_electrons : 11416 from 15125 [ 75.48 %] 168 clones [ 1.45 %], purity: 97.81 %, hitEff: 98.18 % +MatchTrackChecker_1354fc98 INFO 07_long_electrons_pairprod : 7642 from 10831 [ 70.56 %] 133 clones [ 1.71 %], purity: 97.18 %, hitEff: 97.88 % +MatchTrackChecker_1354fc98 INFO 08_long_fromB_electrons : 3603 from 4210 [ 85.58 %] 39 clones [ 1.07 %], purity: 99.10 %, hitEff: 98.91 % +MatchTrackChecker_1354fc98 INFO 09_long_fromB_electrons_P>5GeV : 3381 from 3850 [ 87.82 %] 36 clones [ 1.05 %], purity: 99.19 %, hitEff: 99.03 % +MatchTrackChecker_1354fc98 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4849 from 5182 [ 93.57 %] 27 clones [ 0.55 %], purity: 99.66 %, hitEff: 99.14 % +MatchTrackChecker_1354fc98 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3266 from 3659 [ 89.26 %] 33 clones [ 1.00 %], purity: 99.26 %, hitEff: 99.02 % +MatchTrackChecker_1354fc98 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2192 from 2343 [ 93.56 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.13 % +MatchTrackChecker_1354fc98 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1781 from 2010 [ 88.61 %] 6 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.99 % +MatchTrackChecker_1354fc98 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4837 from 5164 [ 93.67 %] 27 clones [ 0.56 %], purity: 99.66 %, hitEff: 99.14 % +MatchTrackChecker_1354fc98 INFO +MatchUTHitsChecker_16bcc990 INFO Results +MatchUTHitsChecker_16bcc990 INFO **** UT Efficiency for /Event/fromPrMatchTracksV1Tracks_a555ce5f/OutputTracksLocation **** 69646 ghost, 2.46 UT per track +MatchUTHitsChecker_16bcc990 INFO 01_long :130837 tr 3.89 from 4.08 mcUT [ 95.5 %] 0.13 ghost hits on real tracks [ 3.2 %] +MatchUTHitsChecker_16bcc990 INFO 01_long >3UT :129509 tr 3.93 from 4.10 mcUT [ 95.8 %] 0.12 ghost hits on real tracks [ 3.0 %] +MatchUTHitsChecker_16bcc990 INFO 02_long_P>5GeV : 90276 tr 3.94 from 4.08 mcUT [ 96.6 %] 0.10 ghost hits on real tracks [ 2.4 %] +MatchUTHitsChecker_16bcc990 INFO 02_long_P>5GeV >3UT : 89123 tr 3.99 from 4.11 mcUT [ 97.0 %] 0.09 ghost hits on real tracks [ 2.2 %] +MatchUTHitsChecker_16bcc990 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV : 4876 tr 3.99 from 4.07 mcUT [ 97.9 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_16bcc990 INFO 03_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4854 tr 4.00 from 4.08 mcUT [ 98.1 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_16bcc990 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4864 tr 4.00 from 4.08 mcUT [ 98.0 %] 0.05 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_16bcc990 INFO 04_UT_long_fromB_P>3GeV_Pt>0.5GeV >3UT : 4854 tr 4.00 from 4.08 mcUT [ 98.1 %] 0.04 ghost hits on real tracks [ 1.1 %] +MatchUTHitsChecker_16bcc990 INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % @@ -307,70 +254,85 @@ SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % SeedTrackChecker_ad9abe4e INFO -HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.039102 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 347.612 +/- 3.41441 (min: 4, max: 489) requests were served +VeloTrackChecker_e83d0cf5 INFO Results +VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** +VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % +VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % +VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % +VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % +VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % +VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % +VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % +VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % +VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % +VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % +VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % +VeloTrackChecker_e83d0cf5 INFO +HLTControlFlowMgr INFO Memory pool: used 3.89287 +/- 0.0385995 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 272.803 +/- 2.67012 (min: 4, max: 385) requests were served HLTControlFlowMgr INFO Timing table: HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 154.247 | 52198.537 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 89.765 | 30377.465 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 12.997 | 5677.876 | - | "ForwardTrackChecker_482fda95" | 2289 | 11.993 | 5239.299 | - | "MatchTrackChecker_386d067b" | 2289 | 10.823 | 4728.077 | - | "ForwardUTHitsChecker_fe9d9ac2" | 2289 | 4.796 | 2095.109 | - | "MatchUTHitsChecker_a4d04726" | 2289 | 4.748 | 2074.371 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.350 | 1900.303 | - | "PrHybridSeeding_4d0337cc" | 2289 | 3.270 | 1428.426 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.564 | 1120.332 | - | "Unpack__Event_MC_Vertices" | 2289 | 1.976 | 863.336 | - | "Unpack__Event_MC_Particles" | 2289 | 1.888 | 824.850 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.721 | 314.957 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.567 | 247.489 | - | "VPClusFull_38754d8c" | 2289 | 0.539 | 235.503 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.516 | 225.497 | - | "PrMatchNN_d80b5038" | 2289 | 0.472 | 206.094 | - | "PrTrackAssociator_8c8024ec" | 2289 | 0.377 | 164.802 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.371 | 162.280 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.356 | 155.433 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.253 | 110.646 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.193 | 84.417 | - | "fromPrMatchTracksV1Tracks_aaf8b514" | 2289 | 0.181 | 78.889 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.134 | 58.406 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.121 | 53.006 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.111 | 48.299 | - | "FTRawBankDecoder" | 2289 | 0.061 | 26.835 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.027 | 9.014 | - | "reserveIOV" | 2289 | 0.026 | 11.202 | - | "Decode_ODIN" | 2289 | 0.007 | 3.151 | - | "DefaultGECFilter" | 2955 | 0.007 | 2.307 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.006 | 2.482 | - | "UnpackRawEvent_UT" | 2955 | 0.005 | 1.614 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.004 | 1.778 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.747 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.588 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.004 | 1.573 | - | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.545 | - | "DummyEventTime" | 2289 | 0.003 | 1.410 | - | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.399 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 0.941 | + | Sum of all Algorithms | 2955 | 172.334 | 58319.519 | + | "Fetch__Event_DAQ_RawEvent" | 2955 | 104.311 | 35299.939 | + | "SeedTrackChecker_ad9abe4e" | 2289 | 15.488 | 6766.330 | + | "VeloTrackChecker_e83d0cf5" | 2289 | 15.263 | 6668.157 | + | "MatchTrackChecker_1354fc98" | 2289 | 14.351 | 6269.520 | + | "MatchUTHitsChecker_16bcc990" | 2289 | 5.727 | 2501.807 | + | "PrHybridSeeding_4d0337cc" | 2289 | 3.893 | 1700.676 | + | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.991 | 1306.543 | + | "Unpack__Event_MC_Vertices" | 2289 | 2.370 | 1035.518 | + | "Unpack__Event_MC_Particles" | 2289 | 2.265 | 989.442 | + | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.849 | 370.953 | + | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.681 | 297.459 | + | "VPClusFull_38754d8c" | 2289 | 0.642 | 280.579 | + | "PrMatchNN_3d11fa6b" | 2289 | 0.592 | 258.676 | + | "PrStorePrUTHits_df75b912" | 2289 | 0.521 | 227.716 | + | "PrTrackAssociator_b11a7383" | 2289 | 0.515 | 225.158 | + | "PrStoreUTHit_6220b56a" | 2289 | 0.380 | 165.950 | + | "PrTrackAssociator_d68377ee" | 2289 | 0.309 | 134.926 | + | "PrTrackAssociator_16ad4612" | 2289 | 0.291 | 126.978 | + | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.228 | 99.512 | + | "fromPrMatchTracksV1Tracks_a555ce5f" | 2289 | 0.224 | 98.072 | + | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.136 | 59.422 | + | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.126 | 55.225 | + | "FTRawBankDecoder" | 2289 | 0.069 | 29.931 | + | "UnpackRawEvent_UT" | 2955 | 0.029 | 9.744 | + | "reserveIOV" | 2289 | 0.026 | 11.194 | + | "Decode_ODIN" | 2289 | 0.007 | 3.103 | + | "DefaultGECFilter" | 2955 | 0.007 | 2.268 | + | "Fetch__Event_pSim_MCParticles" | 2289 | 0.006 | 2.690 | + | "UnpackRawEvent_FTCluster" | 2955 | 0.005 | 1.741 | + | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.005 | 2.058 | + | "Fetch__Event_MC_TrackInfo" | 2289 | 0.005 | 2.027 | + | "UnpackRawEvent_ODIN" | 2289 | 0.005 | 1.999 | + | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.955 | + | "DummyEventTime" | 2289 | 0.004 | 1.737 | + | "Fetch__Event_pSim_MCVertices" | 2289 | 0.004 | 1.564 | + | "UnpackRawEvent_VP" | 2289 | 0.003 | 1.507 | + | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.003 | 1.129 | HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: hlt2_matching_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - NONLAZY_OR: hlt2_matching_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrMatchNN/PrMatchNN_d80b5038 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/ForwardUTHitsChecker_fe9d9ac2 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_386d067b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrUTHitChecker/MatchUTHitsChecker_a4d04726 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| +LAZY_AND: hlt2_reco_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| + NONLAZY_OR: hlt2_reco_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrMatchNN/PrMatchNN_3d11fa6b #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/MatchTrackChecker_1354fc98 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrUTHitChecker/MatchUTHitsChecker_16bcc990 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| + PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc +VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchUTHitsChecker_a4d04726.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -MatchTrackChecker_386d067b.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardUTHitsChecker_fe9d9ac2.Pr... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 -ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchUTHitsChecker_16bcc990.PrCh... SUCCESS Booked 44 Histogram(s) : 1D=40 2D=4 +MatchTrackChecker_1354fc98.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] diff --git a/efficiencies/logs/effs_BJpsi_baseline.log b/efficiencies/logs/effs_BJpsi_baseline.log index 6358b55..6fb246f 100644 --- a/efficiencies/logs/effs_BJpsi_baseline.log +++ b/efficiencies/logs/effs_BJpsi_baseline.log @@ -46,9 +46,9 @@ |-velo_motion_system_yaml = '' (default: '') |-write_decoding_keys_to_git = True (default: True) \----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- -# Overrule specified for keys +# Overrule specified for keys # <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' -ApplicationMgr SUCCESS +ApplicationMgr SUCCESS ==================================================================================================================================== Welcome to Moore version 55.2 running on lhcba2 on Wed Mar 6 11:54:51 2024 @@ -190,7 +190,7 @@ RootCnvSvc INFO Removed disconnected IO stream:C97B EventSelector INFO Stream:EventSelector.DataStreamTool_36 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' IODataManager INFO Disconnect from dataset /auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi [97FD3520-FB63-11EB-9A46-FA163E714668] RootCnvSvc INFO Removed disconnected IO stream:97FD3520-FB63-11EB-9A46-FA163E714668 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000053_1.xdigi] -HLTControlFlowMgr INFO No more events in event selection +HLTControlFlowMgr INFO No more events in event selection HLTControlFlowMgr INFO ---> Loop over 35323 Events Finished - WSS 1438.36, timed 35313 Events: 2279737 ms, Evts/s = 15.4899 BestLongTrackChecker_8a93d154.Lo... INFO Number of counters : 1 | Counter | # | sum | mean/eff^* | rms/err^* | min | max | @@ -386,7 +386,7 @@ BestLongTrackChecker_8a93d154 INFO 10_long_fromB_electrons_P>3GeV_Pt> BestLongTrackChecker_8a93d154 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26577 from 28214 [ 94.20 %] 72 clones [ 0.27 %], purity: 99.58 %, hitEff: 98.13 % BestLongTrackChecker_8a93d154 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21132 from 24129 [ 87.58 %] 22 clones [ 0.10 %], purity: 99.48 %, hitEff: 98.20 % BestLongTrackChecker_8a93d154 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58137 from 61506 [ 94.52 %] 140 clones [ 0.24 %], purity: 99.62 %, hitEff: 98.21 % -BestLongTrackChecker_8a93d154 INFO +BestLongTrackChecker_8a93d154 INFO ForwardTrackChecker_482fda95 INFO Results ForwardTrackChecker_482fda95 INFO **** Forward 2155350 tracks including 311278 ghosts [14.44 %], Event average 13.14 % **** ForwardTrackChecker_482fda95 INFO 01_long : 1589453 from 1811265 [ 87.75 %] 5716 clones [ 0.36 %], purity: 99.20 %, hitEff: 98.42 % @@ -406,9 +406,9 @@ ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt> ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26624 from 28214 [ 94.36 %] 90 clones [ 0.34 %], purity: 99.52 %, hitEff: 98.90 % ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21422 from 24129 [ 88.78 %] 43 clones [ 0.20 %], purity: 99.39 %, hitEff: 98.73 % ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58387 from 61506 [ 94.93 %] 195 clones [ 0.33 %], purity: 99.57 %, hitEff: 98.97 % -ForwardTrackChecker_482fda95 INFO +ForwardTrackChecker_482fda95 INFO MatchTrackChecker_8a39005f INFO Results -MatchTrackChecker_8a39005f INFO **** Match 2215019 tracks including 386370 ghosts [17.44 %], Event average 15.99 % **** +MatchTrackChecker_8a39005f INFO **** Match 2_215_019 tracks including 386_370 ghosts [17.44 %], Event average 15.99 % **** MatchTrackChecker_8a39005f INFO 01_long : 1582663 from 1811265 [ 87.38 %] 8409 clones [ 0.53 %], purity: 99.35 %, hitEff: 98.55 % MatchTrackChecker_8a39005f INFO 02_long_P>5GeV : 1087125 from 1172326 [ 92.73 %] 4992 clones [ 0.46 %], purity: 99.43 %, hitEff: 99.13 % MatchTrackChecker_8a39005f INFO 03_long_strange : 78743 from 98994 [ 79.54 %] 342 clones [ 0.43 %], purity: 99.03 %, hitEff: 98.19 % @@ -426,7 +426,7 @@ MatchTrackChecker_8a39005f INFO 10_long_fromB_electrons_P>3GeV_Pt> MatchTrackChecker_8a39005f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 26544 from 28214 [ 94.08 %] 140 clones [ 0.52 %], purity: 99.63 %, hitEff: 99.07 % MatchTrackChecker_8a39005f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 21366 from 24129 [ 88.55 %] 79 clones [ 0.37 %], purity: 99.52 %, hitEff: 98.92 % MatchTrackChecker_8a39005f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 58201 from 61506 [ 94.63 %] 300 clones [ 0.51 %], purity: 99.66 %, hitEff: 99.11 % -MatchTrackChecker_8a39005f INFO +MatchTrackChecker_8a39005f INFO SeedTrackChecker_ad9abe4e INFO Results SeedTrackChecker_ad9abe4e INFO **** Seed 3390744 tracks including 68641 ghosts [ 2.02 %], Event average 1.63 % **** SeedTrackChecker_ad9abe4e INFO 01_hasT : 2362888 from 2795799 [ 84.52 %] 92 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.84 % @@ -446,10 +446,10 @@ SeedTrackChecker_ad9abe4e INFO 14_long_electrons : SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 45387 from 48919 [ 92.78 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.69 % SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 102808 from 112140 [ 91.68 %] 6 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.68 % SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 41974 from 44696 [ 93.91 %] 3 clones [ 0.01 %], purity: 99.77 %, hitEff: 98.88 % -SeedTrackChecker_ad9abe4e INFO +SeedTrackChecker_ad9abe4e INFO HLTControlFlowMgr INFO Memory pool: used 3.89435 +/- 0.011476 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 343.336 +/- 1.00196 (min: 4, max: 505) requests were served HLTControlFlowMgr INFO Timing table: -HLTControlFlowMgr INFO +HLTControlFlowMgr INFO | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | | Sum of all Algorithms | 35323 | 2231.688 | 63179.462 | | "Fetch__Event_DAQ_RawEvent" | 35323 | 1239.467 | 35089.517 | @@ -512,10 +512,10 @@ LAZY_AND: run_tracking_debug_decision #=35323 Sum=27023 Eff=|( HLTControlFlowMgr INFO Histograms converted successfully according to request. ToolSvc INFO Removing all tools created by ToolSvc -SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -BestLongTrackChecker_8a93d154.Pr... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchTrackChecker_8a39005f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +BestLongTrackChecker_8a93d154.Pr... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +MatchTrackChecker_8a39005f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 +ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 RootCnvSvc INFO Disconnected data IO:148972FE-FB5D-11EB-861A-FA163E8E4EFB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000048_1.xdigi] RootCnvSvc INFO Disconnected data IO:1665270C-FB54-11EB-A7EB-FA163E95EADE [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000040_1.xdigi] RootCnvSvc INFO Disconnected data IO:FACBF624-FB58-11EB-B4CE-FA163E92C5A4 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000045_1.xdigi] diff --git a/efficiencies/logs/effs_testJpsi_EDef_yCorrCut.log b/efficiencies/logs/effs_testJpsi_EDef_yCorrCut.log deleted file mode 100644 index 764046f..0000000 --- a/efficiencies/logs/effs_testJpsi_EDef_yCorrCut.log +++ /dev/null @@ -1,448 +0,0 @@ -# setting LC_ALL to "C" -# --> Including file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' -/***** User ApplicationOptions/ApplicationOptions ************************************************** -|-append_decoding_keys_to_output_manifest = True (default: True) -|-auditors = [] (default: []) -|-buffer_events = 20000 (default: 20000) -|-conddb_tag = 'sim-20210617-vc-md100' (default: '') -|-conditions_version = '' (default: '') -|-control_flow_file = '' (default: '') -|-data_flow_file = '' (default: '') -|-data_type = 'Upgrade' (default: 'Upgrade') -|-dddb_tag = 'dddb-20210617' (default: '') -|-event_store = 'HiveWhiteBoard' (default: 'HiveWhiteBoard') -|-evt_max = -1 (default: -1) -|-first_evt = 0 (default: 0) -|-geometry_version = '' (default: '') -|-histo_file = '' (default: '') -|-input_files = ['/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi', '/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi'] -| (default: []) -|-input_manifest_file = '' (default: '') -|-input_process = '' (default: '') -|-input_raw_format = 0.5 (default: 0.5) -|-input_type = 'ROOT' (default: '') -|-lines_maker = None -|-memory_pool_size = 10485760 (default: 10485760) -|-monitoring_file = '' (default: '') -|-msg_svc_format = '% F%35W%S %7W%R%T %0W%M' (default: '% F%35W%S %7W%R%T %0W%M') -|-msg_svc_time_format = '%Y-%m-%d %H:%M:%S UTC' (default: '%Y-%m-%d %H:%M:%S UTC') -|-n_event_slots = 1 (default: -1) -|-n_threads = 1 (default: 1) -|-ntuple_file = '/work/cetin/LHCb/reco_tuner/efficiencies/effs_testJpsi_EDef_yCorrCut.root' -| (default: '') -|-output_file = '' (default: '') -|-output_level = 3 (default: 3) -|-output_manifest_file = '' (default: '') -|-output_type = '' (default: '') -|-persistreco_version = 1.0 (default: 1.0) -|-phoenix_filename = '' (default: '') -|-preamble_algs = [] (default: []) -|-print_freq = 10000 (default: 10000) -|-python_logging_level = 20 (default: 20) -|-require_specific_decoding_keys = [] (default: []) -|-scheduler_legacy_mode = True (default: True) -|-simulation = True (default: None) -|-use_iosvc = False (default: False) -|-velo_motion_system_yaml = '' (default: '') -|-write_decoding_keys_to_git = True (default: True) -\----- (End of User ApplicationOptions/ApplicationOptions) ----------------------------------------- -# Overrule specified for keys -# <-- End of file '/auto/work/cetin/LHCb/reco_tuner/moore_options/get_resolution_and_eff_data.py' -ApplicationMgr SUCCESS -==================================================================================================================================== - Welcome to Moore version 55.2 - running on lhcba2 on Mon Mar 11 06:44:19 2024 -==================================================================================================================================== -ApplicationMgr INFO Application Manager Configured successfully -ToolSvc.GitDDDB INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/DDDB.git' -ToolSvc.GitDDDB INFO using commit 'upgrade/dddb-20210617' corresponding to 1871f1bb5c0d68c81dda62e84cf1eb3a45513521 -ToolSvc.GitSIMCOND INFO opening Git repository '/cvmfs/lhcb.cern.ch/lib/lhcb/git-conddb/SIMCOND.git' -ToolSvc.GitSIMCOND INFO using commit 'upgrade/sim-20210617-vc-md100' corresponding to 9aa116c7143d21760d1be07ce1ef22c0f8f07bdf -DetectorPersistencySvc INFO Added successfully Conversion service:XmlCnvSvc -DetectorDataSvc SUCCESS Detector description database: git:/lhcb.xml -EventClockSvc.FakeEventTime INFO Event times generated from 0 with steps of 0 -EventClockSvc.FakeEventTime INFO Run numbers generated from 0 every 0 events -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c1.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c2.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c3.down.cdf -MagneticFieldGridReader INFO Opened magnetic field file: /cvmfs/lhcb.cern.ch/lib/lhcb/DBASE/FieldMap/v5r7/cdf//field.v5r0.c4.down.cdf -MagneticFieldSvc INFO Map scaled by factor 1 with polarity internally used: -1 signed relative current: -1 -NTupleSvc INFO Added stream file:/work/cetin/LHCb/reco_tuner/efficiencies/effs_testJpsi_EDef_yCorrCut.root as FILE1 -HLTControlFlowMgr INFO Start initialization -RootHistSvc INFO Writing ROOT histograms to: /work/cetin/LHCb/reco_tuner/efficiencies/effs_testJpsi_EDef_yCorrCut.root -HistogramPersistencySvc INFO Added successfully Conversion service:RootHistSvc -DeFTDetector INFO Current FT geometry version = 64 -HLTControlFlowMgr INFO Concurrency level information: -HLTControlFlowMgr INFO o Number of events slots: 1 -HLTControlFlowMgr INFO o TBB thread pool size: 'ThreadPoolSize':1 -HLTControlFlowMgr INFO ---> End of Initialization. This took 85352 ms -ApplicationMgr INFO Application Manager Initialized successfully -ApplicationMgr INFO Application Manager Started successfully -EventPersistencySvc INFO Added successfully Conversion service:RootCnvSvc -EventSelector INFO Stream:EventSelector.DataStreamTool_1 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -HLTControlFlowMgr INFO Will measure time between events 10 and 2147483647 (stop might be some events later) -HLTControlFlowMgr INFO Starting loop on events -EventSelector SUCCESS Reading Event record 1. Record number within stream 1: 1 -FTRawBankDecoder INFO Conditions DB is compatible with FT bank version 4, 5, 6. -FTRawBankDecoder INFO Building the readout map with version 0 -HLTControlFlowMgr INFO Timing started at: 06:46:14 -EventSelector INFO Stream:EventSelector.DataStreamTool_2 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -EventSelector INFO Stream:EventSelector.DataStreamTool_3 Def:DATAFILE='/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi' SVC='Gaudi::RootEvtSelector' OPT='READ' IgnoreChecksum='YES' -HLTControlFlowMgr INFO No more events in event selection -HLTControlFlowMgr INFO ---> Loop over 2955 Events Finished - WSS 1872.34, timed 2945 Events: 191967 ms, Evts/s = 15.3412 -BestLongTrackChecker_8a93d154.Lo... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -CloneKillerMatch_c1af047d INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "nTracksInput" | 2289 | 252487 | 110.30 | - | "nTracksSelected" | 2289 | 101849 | 44.495 | -DefaultGECFilter INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb Events Processed" | 2955 | - | "Nb events removed" | 666 | -ForwardTrackChecker_482fda95.LoK... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -HLTControlFlowMgr INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Processed events" | 2955 | -MatchTrackChecker_8a39005f.LoKi:... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -PrForwardTrackingVelo_6024f9ec INFO Number of counters : 10 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Accepted input tracks" | 2289 | 363254 | 158.70 | - | "Created long tracks" | 2289 | 181236 | 79.177 | - | "Input tracks" | 2289 | 380749 | 166.34 | - | "Number of candidate bins per track" | 363254 | 1665217 | 4.5842 | 5.0318 | 0.0000 | 56.000 | - | "Number of complete candidates/track 1st Loop" | 305079 | 195005 | 0.63920 | 0.65005 | 0.0000 | 6.0000 | - | "Number of complete candidates/track 2nd Loop" | 148403 | 13248 | 0.089270 | 0.29669 | 0.0000 | 3.0000 | - | "Number of x candidates per track 1st Loop" | 305079 | 426093 | 1.3967 | 1.3487 | - | "Number of x candidates per track 2nd Loop" | 148403 | 347932 | 2.3445 | 2.6098 | - | "Percentage second loop execution" | 305079 | 148403 | 0.48644 | - | "Removed duplicates" | 2289 | 9647 | 4.2145 | -PrForwardTrackingVelo_6024f9ec.P... INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 166072 | 673152 | 4.0534 | - | "#tracks with hits added" | 166072 | -PrHybridSeeding_4d0337cc INFO Number of counters : 21 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Created T2x1 three-hit combinations in case 0" | 3981395 | 2438467 | 0.61247 | 0.62452 | 0.0000 | 6.0000 | - | "Created T2x1 three-hit combinations in case 1" | 4961664 | 3252259 | 0.65548 | 0.75200 | 0.0000 | 12.000 | - | "Created T2x1 three-hit combinations in case 2" | 7644512 | 6133331 | 0.80232 | 1.0193 | 0.0000 | 23.000 | - | "Created XZ tracks (part 0)" | 6867 | 363280 | 52.902 | 44.400 | 0.0000 | 844.00 | - | "Created XZ tracks (part 1)" | 6867 | 360418 | 52.486 | 47.084 | 0.0000 | 1257.0 | - | "Created XZ tracks in case 0" | 4578 | 269789 | 58.932 | 37.398 | 1.0000 | 363.00 | - | "Created XZ tracks in case 1" | 4578 | 267868 | 58.512 | 44.098 | 1.0000 | 709.00 | - | "Created XZ tracks in case 2" | 4578 | 186041 | 40.638 | 52.165 | 0.0000 | 1257.0 | - | "Created full hit combinations in case 0" | 407934 | 407934 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 1" | 310355 | 310355 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created full hit combinations in case 2" | 280325 | 280325 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | - | "Created seed tracks" | 4578 | 284763 | 62.202 | 22.650 | 3.0000 | 141.00 | - | "Created seed tracks (part 0)" | 2289 | 159664 | 69.753 | 25.912 | 4.0000 | 161.00 | - | "Created seed tracks (part 1)" | 2289 | 157869 | 68.969 | 25.854 | 3.0000 | 159.00 | - | "Created seed tracks in case 0" | 4578 | 148622 | 32.464 | 12.801 | 1.0000 | 86.000 | - | "Created seed tracks in case 1" | 4578 | 270703 | 59.131 | 21.736 | 2.0000 | 132.00 | - | "Created seed tracks in case 2" | 4578 | 302221 | 66.016 | 24.642 | 3.0000 | 153.00 | - | "Created seed tracks in recovery step" | 2289 | 15312 | 6.6894 | 3.8772 | 0.0000 | 26.000 | - | "Created two-hit combinations in case 0" | 677723 |1.546134e+07 | 22.814 | 15.827 | 0.0000 | 117.00 | - | "Created two-hit combinations in case 1" | 584001 |1.760625e+07 | 30.148 | 18.628 | 0.0000 | 262.00 | - | "Created two-hit combinations in case 2" | 461883 |2.056474e+07 | 44.524 | 28.512 | 0.0000 | 333.00 | -PrKalmanFilterForward_a6e62848 INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 1 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 3031 | - | "chi2 cut" | 16997 | - | "nIterations" | 181236 | 410655 | 2.2659 | - | "nOutlierIterations" | 178205 | 110979 | 0.62276 | - | "nTracksInput" | 2289 | 181236 | 79.177 | - | "nTracksOutput" | 2289 | 161207 | 70.427 | -PrKalmanFilterMatch_e1944f26 INFO Number of counters : 7 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Add states failed" | 1 | 0 | 0.0000 | - | "Pre outlier chi2 cut" | 28168 | - | "chi2 cut" | 50760 | - | "nIterations" | 101849 | 273302 | 2.6834 | - | "nOutlierIterations" | 73681 | 84103 | 1.1414 | - | "nTracksInput" | 2289 | 101849 | 44.495 | - | "nTracksOutput" | 2289 | 22920 | 10.013 | -PrLHCbID2MCParticle_a906d17d INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#removed null MCParticles" | 16672433 | 0 | 0.0000 | -PrMatchNN_3856ae45 INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#MatchingChi2" | 2289 | 8439531 | 3687.0 | - | "#MatchingMLP" | 252487 | 210561.2 | 0.83395 | - | "#MatchingTracks" | 2289 | 252487 | 110.30 | -PrMatchNN_3856ae45.PrAddUTHitsTool INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#UT hits added" | 209172 | 823901 | 3.9389 | - | "#tracks with hits added" | 209172 | -PrStorePrUTHits_df75b912 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 2289 | 494424 | 216.00 | -PrStoreSciFiHits_fb0eba02 INFO Number of counters : 25 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Average X in T1U" | 690489 |-2.482423e+07 | -35.952 | 1141.3 | -2656.4 | 2656.3 | - | "Average X in T1V" | 696122 |-2.060219e+07 | -29.596 | 1128.0 | -2656.4 | 2656.3 | - | "Average X in T1X1" | 677723 |-3.438883e+07 | -50.742 | 1162.3 | -2646.2 | 2646.2 | - | "Average X in T1X2" | 705312 |-1.014161e+07 | -14.379 | 1120.8 | -2646.2 | 2646.2 | - | "Average X in T2U" | 673541 |-1.658606e+07 | -24.625 | 1135.5 | -2656.4 | 2656.3 | - | "Average X in T2V" | 693923 |-1.479371e+07 | -21.319 | 1129.9 | -2656.4 | 2656.3 | - | "Average X in T2X1" | 645225 |-1.705455e+07 | -26.432 | 1138.8 | -2646.2 | 2646.2 | - | "Average X in T2X2" | 716059 | -9891920 | -13.814 | 1124.6 | -2646.2 | 2646.2 | - | "Average X in T3U" | 731421 |-1.225062e+07 | -16.749 | 1333.5 | -3188.4 | 3188.4 | - | "Average X in T3V" | 753478 |-1.409381e+07 | -18.705 | 1328.7 | -3188.4 | 3188.4 | - | "Average X in T3X1" | 704173 |-1.010873e+07 | -14.355 | 1334.4 | -3176.2 | 3176.2 | - | "Average X in T3X2" | 782214 |-1.938375e+07 | -24.781 | 1321.3 | -3176.2 | 3176.2 | - | "Hits in T1U" | 9156 | 690489 | 75.414 | 27.984 | 5.0000 | 232.00 | - | "Hits in T1V" | 9156 | 696122 | 76.029 | 27.670 | 3.0000 | 245.00 | - | "Hits in T1X1" | 9156 | 677723 | 74.020 | 27.325 | 4.0000 | 205.00 | - | "Hits in T1X2" | 9156 | 705312 | 77.033 | 28.024 | 6.0000 | 266.00 | - | "Hits in T2U" | 9156 | 673541 | 73.563 | 26.210 | 3.0000 | 198.00 | - | "Hits in T2V" | 9156 | 693923 | 75.789 | 27.194 | 6.0000 | 374.00 | - | "Hits in T2X1" | 9156 | 645225 | 70.470 | 25.869 | 3.0000 | 288.00 | - | "Hits in T2X2" | 9156 | 716059 | 78.207 | 27.736 | 6.0000 | 287.00 | - | "Hits in T3U" | 9156 | 731421 | 79.884 | 27.669 | 2.0000 | 239.00 | - | "Hits in T3V" | 9156 | 753478 | 82.293 | 28.471 | 6.0000 | 207.00 | - | "Hits in T3X1" | 9156 | 704173 | 76.908 | 27.098 | 5.0000 | 339.00 | - | "Hits in T3X2" | 9156 | 782214 | 85.432 | 29.532 | 6.0000 | 204.00 | - | "Total number of hits" | 2289 | 8469680 | 3700.2 | 1120.3 | 604.00 | 6365.0 | -PrStoreUTHit_6220b56a INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "#banks" | 2289 | 494424 | 216.00 | -PrTrackAssociator_16ad4612 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 284763 | 279294 |( 98.07946 +- 0.02571932)% | - | "MC particles per track" | 279294 | 279304 | 1.0000 | -PrTrackAssociator_24d3bad6 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 252487 | 156295 |( 61.90220 +- 0.09664591)% | - | "MC particles per track" | 156295 | 183173 | 1.1720 | -PrTrackAssociator_3adf94fb INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 181236 | 155077 |( 85.56633 +- 0.08255009)% | - | "MC particles per track" | 155077 | 181813 | 1.1724 | -PrTrackAssociator_cbe8f3ce INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 183550 | 156297 |( 85.15227 +- 0.08299480)% | - | "MC particles per track" | 156297 | 182435 | 1.1672 | -PrTrackAssociator_d68377ee INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"Efficiency" | 593239 | 578457 |( 97.50826 +- 0.02023753)% | - | "MC particles per track" | 578457 | 581059 | 1.0045 | -PrVPHitsToVPLightClusters_599554c8 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | -SeedTrackChecker_ad9abe4e.LoKi::... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -TBTCMatch_4755c68a INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 22826 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 22826 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 22826 | -TBTC_Forward_3523b81b INFO Number of counters : 3 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - |*"BadInput" | 160724 | 0 |( 0.000000 +- 0.000000)% | - |*"FitFailed" | 160724 | 0 |( 0.000000 +- 0.000000)% | - | "FittedBefore" | 160724 | -VeloClusterTrackingSIMD_87c18651 INFO Number of counters : 2 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of Produced Clusters" | 2289 | 5397790 | 2358.1 | - | "Nb of Produced Tracks" | 2289 | 593239 | 259.17 | -VeloTrackChecker_e83d0cf5.LoKi::... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "# loaded from PYTHON" | 17 | -fromPrForwardTracksV1Tracks_f53f... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 181236 | 79.177 | -fromPrMatchTracksV1Tracks_67f41548 INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 252487 | 110.30 | -fromPrSeedingTracksV1Tracks_84cd... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 284763 | 124.40 | -fromPrVeloTracksV1TracksMerger_f... INFO Number of counters : 1 - | Counter | # | sum | mean/eff^* | rms/err^* | min | max | - | "Nb of converted Tracks" | 2289 | 593239 | 259.17 | -ApplicationMgr INFO Application Manager Stopped successfully -BestLongTrackChecker_8a93d154 INFO Results -BestLongTrackChecker_8a93d154 INFO **** BestLong 183550 tracks including 27253 ghosts [14.85 %], Event average 13.82 % **** -BestLongTrackChecker_8a93d154 INFO 01_long : 135188 from 152279 [ 88.78 %] 421 clones [ 0.31 %], purity: 99.37 %, hitEff: 97.48 % -BestLongTrackChecker_8a93d154 INFO 02_long_P>5GeV : 90829 from 98421 [ 92.29 %] 215 clones [ 0.24 %], purity: 99.45 %, hitEff: 97.99 % -BestLongTrackChecker_8a93d154 INFO 03_long_strange : 6663 from 8121 [ 82.05 %] 14 clones [ 0.21 %], purity: 99.12 %, hitEff: 97.15 % -BestLongTrackChecker_8a93d154 INFO 04_long_strange_P>5GeV : 3417 from 3856 [ 88.62 %] 6 clones [ 0.18 %], purity: 99.26 %, hitEff: 97.97 % -BestLongTrackChecker_8a93d154 INFO 05_long_fromB : 7214 from 7959 [ 90.64 %] 23 clones [ 0.32 %], purity: 99.48 %, hitEff: 97.68 % -BestLongTrackChecker_8a93d154 INFO 05_long_fromD : 3809 from 4226 [ 90.13 %] 12 clones [ 0.31 %], purity: 99.42 %, hitEff: 97.58 % -BestLongTrackChecker_8a93d154 INFO 06_long_fromB_P>5GeV : 5583 from 5983 [ 93.31 %] 9 clones [ 0.16 %], purity: 99.55 %, hitEff: 98.12 % -BestLongTrackChecker_8a93d154 INFO 06_long_fromD_P>5GeV : 2700 from 2894 [ 93.30 %] 6 clones [ 0.22 %], purity: 99.48 %, hitEff: 98.06 % -BestLongTrackChecker_8a93d154 INFO 07_long_electrons : 10843 from 15125 [ 71.69 %] 31 clones [ 0.29 %], purity: 98.33 %, hitEff: 96.09 % -BestLongTrackChecker_8a93d154 INFO 07_long_electrons_pairprod : 7194 from 10831 [ 66.42 %] 24 clones [ 0.33 %], purity: 97.87 %, hitEff: 95.30 % -BestLongTrackChecker_8a93d154 INFO 08_long_fromB_electrons : 3478 from 4210 [ 82.61 %] 7 clones [ 0.20 %], purity: 99.24 %, hitEff: 97.72 % -BestLongTrackChecker_8a93d154 INFO 09_long_fromB_electrons_P>5GeV : 3250 from 3850 [ 84.42 %] 6 clones [ 0.18 %], purity: 99.31 %, hitEff: 97.90 % -BestLongTrackChecker_8a93d154 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4873 from 5182 [ 94.04 %] 10 clones [ 0.20 %], purity: 99.61 %, hitEff: 98.15 % -BestLongTrackChecker_8a93d154 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3142 from 3659 [ 85.87 %] 6 clones [ 0.19 %], purity: 99.36 %, hitEff: 97.93 % -BestLongTrackChecker_8a93d154 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2200 from 2343 [ 93.90 %] 6 clones [ 0.27 %], purity: 99.56 %, hitEff: 98.10 % -BestLongTrackChecker_8a93d154 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1790 from 2010 [ 89.05 %] 3 clones [ 0.17 %], purity: 99.46 %, hitEff: 98.14 % -BestLongTrackChecker_8a93d154 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4860 from 5164 [ 94.11 %] 10 clones [ 0.21 %], purity: 99.61 %, hitEff: 98.17 % -BestLongTrackChecker_8a93d154 INFO -ForwardTrackChecker_482fda95 INFO Results -ForwardTrackChecker_482fda95 INFO **** Forward 181236 tracks including 26159 ghosts [14.43 %], Event average 13.11 % **** -ForwardTrackChecker_482fda95 INFO 01_long : 133702 from 152279 [ 87.80 %] 513 clones [ 0.38 %], purity: 99.21 %, hitEff: 98.43 % -ForwardTrackChecker_482fda95 INFO 02_long_P>5GeV : 91867 from 98421 [ 93.34 %] 307 clones [ 0.33 %], purity: 99.32 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 03_long_strange : 6588 from 8121 [ 81.12 %] 20 clones [ 0.30 %], purity: 98.87 %, hitEff: 98.21 % -ForwardTrackChecker_482fda95 INFO 04_long_strange_P>5GeV : 3465 from 3856 [ 89.86 %] 8 clones [ 0.23 %], purity: 99.05 %, hitEff: 98.80 % -ForwardTrackChecker_482fda95 INFO 05_long_fromB : 7199 from 7959 [ 90.45 %] 26 clones [ 0.36 %], purity: 99.34 %, hitEff: 98.69 % -ForwardTrackChecker_482fda95 INFO 05_long_fromD : 3793 from 4226 [ 89.75 %] 10 clones [ 0.26 %], purity: 99.25 %, hitEff: 98.50 % -ForwardTrackChecker_482fda95 INFO 06_long_fromB_P>5GeV : 5664 from 5983 [ 94.67 %] 18 clones [ 0.32 %], purity: 99.45 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 06_long_fromD_P>5GeV : 2732 from 2894 [ 94.40 %] 7 clones [ 0.26 %], purity: 99.35 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons : 10559 from 15125 [ 69.81 %] 108 clones [ 1.01 %], purity: 97.96 %, hitEff: 98.31 % -ForwardTrackChecker_482fda95 INFO 07_long_electrons_pairprod : 6890 from 10831 [ 63.61 %] 86 clones [ 1.23 %], purity: 97.36 %, hitEff: 98.08 % -ForwardTrackChecker_482fda95 INFO 08_long_fromB_electrons : 3548 from 4210 [ 84.28 %] 22 clones [ 0.62 %], purity: 99.07 %, hitEff: 98.84 % -ForwardTrackChecker_482fda95 INFO 09_long_fromB_electrons_P>5GeV : 3333 from 3850 [ 86.57 %] 21 clones [ 0.63 %], purity: 99.15 %, hitEff: 98.96 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4902 from 5182 [ 94.60 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.93 % -ForwardTrackChecker_482fda95 INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3220 from 3659 [ 88.00 %] 19 clones [ 0.59 %], purity: 99.22 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2218 from 2343 [ 94.66 %] 6 clones [ 0.27 %], purity: 99.49 %, hitEff: 98.85 % -ForwardTrackChecker_482fda95 INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1801 from 2010 [ 89.60 %] 4 clones [ 0.22 %], purity: 99.36 %, hitEff: 98.68 % -ForwardTrackChecker_482fda95 INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4889 from 5164 [ 94.67 %] 17 clones [ 0.35 %], purity: 99.55 %, hitEff: 98.94 % -ForwardTrackChecker_482fda95 INFO -MatchTrackChecker_8a39005f INFO Results -MatchTrackChecker_8a39005f INFO **** Match 252487 tracks including 96192 ghosts [38.10 %], Event average 35.31 % **** -MatchTrackChecker_8a39005f INFO 01_long : 133127 from 152279 [ 87.42 %] 846 clones [ 0.63 %], purity: 99.33 %, hitEff: 98.62 % -MatchTrackChecker_8a39005f INFO 02_long_P>5GeV : 90983 from 98421 [ 92.44 %] 475 clones [ 0.52 %], purity: 99.45 %, hitEff: 99.22 % -MatchTrackChecker_8a39005f INFO 03_long_strange : 6441 from 8121 [ 79.31 %] 37 clones [ 0.57 %], purity: 98.98 %, hitEff: 98.22 % -MatchTrackChecker_8a39005f INFO 04_long_strange_P>5GeV : 3457 from 3856 [ 89.65 %] 15 clones [ 0.43 %], purity: 99.18 %, hitEff: 99.21 % -MatchTrackChecker_8a39005f INFO 05_long_fromB : 7192 from 7959 [ 90.36 %] 54 clones [ 0.75 %], purity: 99.45 %, hitEff: 98.83 % -MatchTrackChecker_8a39005f INFO 05_long_fromD : 3782 from 4226 [ 89.49 %] 21 clones [ 0.55 %], purity: 99.36 %, hitEff: 98.70 % -MatchTrackChecker_8a39005f INFO 06_long_fromB_P>5GeV : 5632 from 5983 [ 94.13 %] 28 clones [ 0.49 %], purity: 99.57 %, hitEff: 99.24 % -MatchTrackChecker_8a39005f INFO 06_long_fromD_P>5GeV : 2722 from 2894 [ 94.06 %] 9 clones [ 0.33 %], purity: 99.51 %, hitEff: 99.22 % -MatchTrackChecker_8a39005f INFO 07_long_electrons : 11647 from 15125 [ 77.00 %] 175 clones [ 1.48 %], purity: 97.76 %, hitEff: 98.14 % -MatchTrackChecker_8a39005f INFO 07_long_electrons_pairprod : 7809 from 10831 [ 72.10 %] 136 clones [ 1.71 %], purity: 97.13 %, hitEff: 97.84 % -MatchTrackChecker_8a39005f INFO 08_long_fromB_electrons : 3652 from 4210 [ 86.75 %] 42 clones [ 1.14 %], purity: 99.07 %, hitEff: 98.86 % -MatchTrackChecker_8a39005f INFO 09_long_fromB_electrons_P>5GeV : 3429 from 3850 [ 89.06 %] 40 clones [ 1.15 %], purity: 99.14 %, hitEff: 98.99 % -MatchTrackChecker_8a39005f INFO 10_long_fromB_P>3GeV_Pt>0.5GeV : 4885 from 5182 [ 94.27 %] 27 clones [ 0.55 %], purity: 99.65 %, hitEff: 99.12 % -MatchTrackChecker_8a39005f INFO 10_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3310 from 3659 [ 90.46 %] 37 clones [ 1.11 %], purity: 99.22 %, hitEff: 98.98 % -MatchTrackChecker_8a39005f INFO 10_long_fromD_P>3GeV_Pt>0.5GeV : 2213 from 2343 [ 94.45 %] 9 clones [ 0.41 %], purity: 99.65 %, hitEff: 99.11 % -MatchTrackChecker_8a39005f INFO 10_long_strange_P>3GeV_Pt>0.5GeV : 1805 from 2010 [ 89.80 %] 6 clones [ 0.33 %], purity: 99.51 %, hitEff: 98.98 % -MatchTrackChecker_8a39005f INFO 11_UT_long_fromB_P>3GeV_Pt>0.5GeV : 4873 from 5164 [ 94.36 %] 27 clones [ 0.55 %], purity: 99.65 %, hitEff: 99.13 % -MatchTrackChecker_8a39005f INFO -SeedTrackChecker_ad9abe4e INFO Results -SeedTrackChecker_ad9abe4e INFO **** Seed 284763 tracks including 5469 ghosts [ 1.92 %], Event average 1.56 % **** -SeedTrackChecker_ad9abe4e INFO 01_hasT : 198532 from 234618 [ 84.62 %] 7 clones [ 0.00 %], purity: 99.60 %, hitEff: 97.85 % -SeedTrackChecker_ad9abe4e INFO 02_long : 143630 from 152279 [ 94.32 %] 6 clones [ 0.00 %], purity: 99.71 %, hitEff: 98.42 % -SeedTrackChecker_ad9abe4e INFO 03_long_P>5GeV : 95859 from 98421 [ 97.40 %] 5 clones [ 0.01 %], purity: 99.69 %, hitEff: 99.09 % -SeedTrackChecker_ad9abe4e INFO 04_long_fromB : 7598 from 7959 [ 95.46 %] 1 clones [ 0.01 %], purity: 99.75 %, hitEff: 98.65 % -SeedTrackChecker_ad9abe4e INFO 05_long_fromB_P>5GeV : 5835 from 5983 [ 97.53 %] 1 clones [ 0.02 %], purity: 99.76 %, hitEff: 99.13 % -SeedTrackChecker_ad9abe4e INFO 06_UT+T_strange : 16417 from 17658 [ 92.97 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.00 % -SeedTrackChecker_ad9abe4e INFO 07_UT+T_strange_P>5GeV : 8615 from 8825 [ 97.62 %] 0 clones [ 0.00 %], purity: 99.71 %, hitEff: 99.05 % -SeedTrackChecker_ad9abe4e INFO 08_noVelo+UT+T_strange : 8949 from 9658 [ 92.66 %] 0 clones [ 0.00 %], purity: 99.74 %, hitEff: 98.03 % -SeedTrackChecker_ad9abe4e INFO 09_noVelo+UT+T_strange_P>5GeV : 4914 from 5043 [ 97.44 %] 0 clones [ 0.00 %], purity: 99.70 %, hitEff: 99.01 % -SeedTrackChecker_ad9abe4e INFO 10_UT+T_SfromDB : 1133 from 1220 [ 92.87 %] 0 clones [ 0.00 %], purity: 99.77 %, hitEff: 97.99 % -SeedTrackChecker_ad9abe4e INFO 11_UT+T_SfromDB_P>5GeV : 612 from 623 [ 98.23 %] 0 clones [ 0.00 %], purity: 99.72 %, hitEff: 99.22 % -SeedTrackChecker_ad9abe4e INFO 12_noVelo+UT+T_SfromDB_P>5GeV : 420 from 428 [ 98.13 %] 0 clones [ 0.00 %], purity: 99.69 %, hitEff: 99.12 % -SeedTrackChecker_ad9abe4e INFO 13_hasT_electrons : 40669 from 74476 [ 54.61 %] 2 clones [ 0.00 %], purity: 99.69 %, hitEff: 97.16 % -SeedTrackChecker_ad9abe4e INFO 14_long_electrons : 13360 from 15125 [ 88.33 %] 1 clones [ 0.01 %], purity: 99.81 %, hitEff: 97.85 % -SeedTrackChecker_ad9abe4e INFO 15_long_fromB_electrons : 3922 from 4210 [ 93.16 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.70 % -SeedTrackChecker_ad9abe4e INFO 16_long_electrons_P>5GeV : 8676 from 9420 [ 92.10 %] 0 clones [ 0.00 %], purity: 99.80 %, hitEff: 98.73 % -SeedTrackChecker_ad9abe4e INFO 17_long_fromB_electrons_P>5GeV : 3632 from 3850 [ 94.34 %] 0 clones [ 0.00 %], purity: 99.79 %, hitEff: 98.85 % -SeedTrackChecker_ad9abe4e INFO -VeloTrackChecker_e83d0cf5 INFO Results -VeloTrackChecker_e83d0cf5 INFO **** Velo 593239 tracks including 14782 ghosts [ 2.49 %], Event average 2.59 % **** -VeloTrackChecker_e83d0cf5 INFO 01_velo : 259695 from 265328 [ 97.88 %] 4074 clones [ 1.54 %], purity: 99.63 %, hitEff: 95.59 %, hitEffFirst3: 95.49 %, hitEffLast: 95.30 % -VeloTrackChecker_e83d0cf5 INFO 02_long : 151005 from 152279 [ 99.16 %] 1638 clones [ 1.07 %], purity: 99.71 %, hitEff: 96.54 %, hitEffFirst3: 96.42 %, hitEffLast: 96.40 % -VeloTrackChecker_e83d0cf5 INFO 03_long_P>5GeV : 97926 from 98421 [ 99.50 %] 841 clones [ 0.85 %], purity: 99.72 %, hitEff: 96.96 %, hitEffFirst3: 96.80 %, hitEffLast: 96.92 % -VeloTrackChecker_e83d0cf5 INFO 04_long_strange : 7805 from 8121 [ 96.11 %] 64 clones [ 0.81 %], purity: 99.18 %, hitEff: 96.27 %, hitEffFirst3: 96.28 %, hitEffLast: 95.54 % -VeloTrackChecker_e83d0cf5 INFO 05_long_strange_P>5GeV : 3719 from 3856 [ 96.45 %] 20 clones [ 0.53 %], purity: 99.06 %, hitEff: 97.00 %, hitEffFirst3: 97.04 %, hitEffLast: 96.45 % -VeloTrackChecker_e83d0cf5 INFO 06_long_fromB : 7894 from 7959 [ 99.18 %] 87 clones [ 1.09 %], purity: 99.65 %, hitEff: 96.46 %, hitEffFirst3: 96.28 %, hitEffLast: 96.34 % -VeloTrackChecker_e83d0cf5 INFO 06_long_fromD : 4188 from 4226 [ 99.10 %] 39 clones [ 0.92 %], purity: 99.64 %, hitEff: 96.54 %, hitEffFirst3: 96.28 %, hitEffLast: 96.50 % -VeloTrackChecker_e83d0cf5 INFO 07_long_fromB_P>5GeV : 5956 from 5983 [ 99.55 %] 48 clones [ 0.80 %], purity: 99.69 %, hitEff: 96.87 %, hitEffFirst3: 96.76 %, hitEffLast: 96.75 % -VeloTrackChecker_e83d0cf5 INFO 07_long_fromD_P>5GeV : 2879 from 2894 [ 99.48 %] 16 clones [ 0.55 %], purity: 99.66 %, hitEff: 97.02 %, hitEffFirst3: 96.80 %, hitEffLast: 97.04 % -VeloTrackChecker_e83d0cf5 INFO 08_long_electrons : 14476 from 15125 [ 95.71 %] 246 clones [ 1.67 %], purity: 98.08 %, hitEff: 94.76 %, hitEffFirst3: 93.30 %, hitEffLast: 94.93 % -VeloTrackChecker_e83d0cf5 INFO 09_long_fromB_electrons : 4080 from 4210 [ 96.91 %] 54 clones [ 1.31 %], purity: 99.31 %, hitEff: 96.44 %, hitEffFirst3: 96.02 %, hitEffLast: 96.34 % -VeloTrackChecker_e83d0cf5 INFO 10_long_fromB_electrons_P>5GeV : 3765 from 3850 [ 97.79 %] 49 clones [ 1.28 %], purity: 99.42 %, hitEff: 96.57 %, hitEffFirst3: 96.29 %, hitEffLast: 96.40 % -VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_P>3GeV_Pt>0.5GeV : 5157 from 5182 [ 99.52 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.86 %, hitEffLast: 96.67 % -VeloTrackChecker_e83d0cf5 INFO 11_long_fromB_electrons_P>3GeV_Pt>0.5GeV : 3608 from 3659 [ 98.61 %] 45 clones [ 1.23 %], purity: 99.50 %, hitEff: 96.69 %, hitEffFirst3: 96.40 %, hitEffLast: 96.56 % -VeloTrackChecker_e83d0cf5 INFO 11_long_fromD_P>3GeV_Pt>0.5GeV : 2329 from 2343 [ 99.40 %] 13 clones [ 0.56 %], purity: 99.68 %, hitEff: 96.92 %, hitEffFirst3: 96.74 %, hitEffLast: 96.89 % -VeloTrackChecker_e83d0cf5 INFO 11_long_strange_P>3GeV_Pt>0.5GeV : 1907 from 2010 [ 94.88 %] 11 clones [ 0.57 %], purity: 98.72 %, hitEff: 96.85 %, hitEffFirst3: 96.68 %, hitEffLast: 96.61 % -VeloTrackChecker_e83d0cf5 INFO 12_UT_long_fromB_P>3GeV_Pt>0.5GeV : 5141 from 5164 [ 99.55 %] 37 clones [ 0.71 %], purity: 99.71 %, hitEff: 96.87 %, hitEffFirst3: 96.85 %, hitEffLast: 96.66 % -VeloTrackChecker_e83d0cf5 INFO -HLTControlFlowMgr INFO Memory pool: used 3.94312 +/- 0.039102 MiB (min: 0, max: 5) in 1 +/- 0 blocks (allocated >once in 0 +/- 0% events). Allocated capacity was 10 +/- 0 MiB (min: 10, max: 10) and 347.612 +/- 3.41441 (min: 4, max: 489) requests were served -HLTControlFlowMgr INFO Timing table: -HLTControlFlowMgr INFO - | Name of Algorithm | Execution Count | Total Time / s | Avg. Time / us | - | Sum of all Algorithms | 2955 | 189.128 | 64002.599 | - | "Fetch__Event_DAQ_RawEvent" | 2955 | 91.211 | 30866.610 | - | "SeedTrackChecker_ad9abe4e" | 2289 | 13.192 | 5763.408 | - | "VeloTrackChecker_e83d0cf5" | 2289 | 13.025 | 5690.119 | - | "ForwardTrackChecker_482fda95" | 2289 | 12.217 | 5337.081 | - | "MatchTrackChecker_8a39005f" | 2289 | 11.139 | 4866.422 | - | "BestLongTrackChecker_8a93d154" | 2289 | 10.915 | 4768.442 | - | "PrKalmanFilterForward_a6e62848" | 2289 | 10.351 | 4521.930 | - | "PrKalmanFilterMatch_e1944f26" | 2289 | 5.591 | 2442.540 | - | "PrForwardTrackingVelo_6024f9ec" | 2289 | 4.406 | 1924.922 | - | "PrHybridSeeding_4d0337cc" | 2289 | 3.297 | 1440.275 | - | "PrLHCbID2MCParticle_a906d17d" | 2289 | 2.522 | 1101.835 | - | "Unpack__Event_MC_Vertices" | 2289 | 2.040 | 891.087 | - | "Unpack__Event_MC_Particles" | 2289 | 1.919 | 838.174 | - | "VeloClusterTrackingSIMD_87c18651" | 2289 | 0.766 | 334.809 | - | "CloneKillerMatch_c1af047d" | 2289 | 0.599 | 261.717 | - | "VPFullCluster2MCParticleLinker_17386552" | 2289 | 0.570 | 249.022 | - | "VPClusFull_38754d8c" | 2289 | 0.550 | 240.426 | - | "PrStoreUTHit_6220b56a" | 2289 | 0.550 | 240.079 | - | "PrMatchNN_3856ae45" | 2289 | 0.520 | 227.066 | - | "PrTrackAssociator_24d3bad6" | 2289 | 0.438 | 191.227 | - | "TBTC_Forward_3523b81b" | 2289 | 0.434 | 189.566 | - | "PrTrackAssociator_3adf94fb" | 2289 | 0.384 | 167.643 | - | "PrStorePrUTHits_df75b912" | 2289 | 0.370 | 161.675 | - | "PrTrackAssociator_cbe8f3ce" | 2289 | 0.338 | 147.617 | - | "PrTrackAssociator_d68377ee" | 2289 | 0.274 | 119.608 | - | "PrTrackAssociator_16ad4612" | 2289 | 0.256 | 111.679 | - | "PrVPHitsToVPLightClusters_599554c8" | 2289 | 0.217 | 95.016 | - | "fromPrMatchTracksV1Tracks_67f41548" | 2289 | 0.211 | 92.089 | - | "fromPrVeloTracksV1TracksMerger_fa66a5de" | 2289 | 0.184 | 80.349 | - | "fromPrForwardTracksV1Tracks_f53f50a8" | 2289 | 0.128 | 55.750 | - | "PrStoreSciFiHits_fb0eba02" | 2289 | 0.119 | 52.165 | - | "fromPrSeedingTracksV1Tracks_84cd46c2" | 2289 | 0.114 | 49.901 | - | "TrackContainersMerger_511ac736" | 2289 | 0.064 | 28.049 | - | "FTRawBankDecoder" | 2289 | 0.061 | 26.709 | - | "TBTCMatch_4755c68a" | 2289 | 0.045 | 19.740 | - | "UnpackRawEvent_UT" | 2955 | 0.027 | 9.109 | - | "reserveIOV" | 2289 | 0.022 | 9.575 | - | "UniqueIDGeneratorAlg_26e527e9" | 2289 | 0.010 | 4.577 | - | "Decode_ODIN" | 2289 | 0.009 | 3.812 | - | "DefaultGECFilter" | 2955 | 0.007 | 2.220 | - | "UnpackRawEvent_FTCluster" | 2955 | 0.005 | 1.747 | - | "Fetch__Event_MC_TrackInfo" | 2289 | 0.005 | 2.101 | - | "Fetch__Event_pSim_MCParticles" | 2289 | 0.004 | 1.910 | - | "Fetch__Event_Link_Raw_UT_Clusters" | 2289 | 0.004 | 1.883 | - | "UnpackRawEvent_VP" | 2289 | 0.004 | 1.731 | - | "Fetch__Event_Link_Raw_VP_Digits" | 2289 | 0.004 | 1.663 | - | "DummyEventTime" | 2289 | 0.003 | 1.438 | - | "UnpackRawEvent_ODIN" | 2289 | 0.003 | 1.328 | - | "Fetch__Event_Link_Raw_FT_LiteClusters" | 2289 | 0.002 | 1.040 | - | "Fetch__Event_pSim_MCVertices" | 2289 | 0.002 | 1.037 | - -HLTControlFlowMgr INFO StateTree: CFNode #executed #passed -LAZY_AND: run_tracking_debug_decision #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - PrGECFilter/DefaultGECFilter #=2955 Sum=2289 Eff=|( 77.46193 +- 0.768641)%| - NONLAZY_OR: run_tracking_debug_data #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/ForwardTrackChecker_482fda95 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/MatchTrackChecker_8a39005f #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/BestLongTrackChecker_8a93d154 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/SeedTrackChecker_ad9abe4e #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - PrTrackChecker/VeloTrackChecker_e83d0cf5 #=2289 Sum=2289 Eff=|( 100.0000 +- 0.00000 )%| - -HLTControlFlowMgr INFO Histograms converted successfully according to request. -ToolSvc INFO Removing all tools created by ToolSvc -VeloTrackChecker_e83d0cf5.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -SeedTrackChecker_ad9abe4e.PrChec... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -BestLongTrackChecker_8a93d154.Pr... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -MatchTrackChecker_8a39005f.PrChe... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -ForwardTrackChecker_482fda95.PrC... SUCCESS Booked 857 Histogram(s) : 1D=614 2D=243 -RootCnvSvc INFO Disconnected data IO:9E3B8940-FB87-11EB-ADCA-FA163E643B60 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi] -RootCnvSvc INFO Disconnected data IO:AFCB9710-FB21-11EB-9E91-FA163ED3A4EB [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi] -RootCnvSvc INFO Disconnected data IO:B9D7CC62-FB38-11EB-8B01-3CECEF5D2C24 [/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi] -ApplicationMgr INFO Application Manager Finalized successfully -ApplicationMgr INFO Application Manager Terminated successfully diff --git a/electron_main.py b/electron_main.py index 723657b..95dbcaf 100644 --- a/electron_main.py +++ b/electron_main.py @@ -58,16 +58,19 @@ if args.prepare_weights_data: subprocess.run(merge_cmd, check=True) -file_name = "newpars" +file_name = "new" tree_names = {} -tree_names["seed"] = "PrMatchNN_b60a058d.PrMCDebugMatchToolNN/MVAInputAndOutput" -tree_names["newpars"] = "PrMatchNN_b826666c.PrMCDebugMatchToolNN/MVAInputAndOutput" +tree_names["true"] = "PrMatchNN_b9ce4699.PrMCDebugMatchToolNN/MVAInputAndOutput" +tree_names["new"] = "PrMatchNN_410ce396.PrMCDebugMatchToolNN/MVAInputAndOutput" +tree_names["loose"] = "PrMatchNN_40474434.PrMCDebugMatchToolNN/MVAInputAndOutput" +tree_names["base"] = "PrMatchNN_c0bf8e8b.PrMCDebugMatchToolNN/MVAInputAndOutput" + if args.matching_weights: os.chdir(os.path.dirname(os.path.realpath(__file__))) train_matching_ghost_mlp( - input_file="data/ghost_data_B_NewParamsM.root", + input_file="data/ghost_data_B_EDef.root", tree_name=tree_names[file_name], exclude_electrons=False, only_electrons=True, diff --git a/moore_options/get_best_seed_data.py b/moore_options/get_best_data.py similarity index 83% rename from moore_options/get_best_seed_data.py rename to moore_options/get_best_data.py index c91a3f7..eddafd8 100644 --- a/moore_options/get_best_seed_data.py +++ b/moore_options/get_best_data.py @@ -3,7 +3,6 @@ from Moore import options, run_reconstruction from RecoConf.hlt2_tracking import ( make_hlt2_tracks, get_default_out_track_types_for_light_reco, - convert_tracks_to_v3_from_v1, get_global_ut_hits_tool, ) from RecoConf.hlt1_tracking import make_all_pvs @@ -17,23 +16,10 @@ from RecoConf.mc_checking import ( get_mc_categories, get_hit_type_mask, ) -from RecoConf.calorimeter_reconstruction import ( - make_photons_and_electrons, - make_clusters, - make_acceptance, - make_track_cluster_matching, - make_digits, - make_track_electron_and_brem_matching, - make_trackbased_eshower, -) from Moore.config import Reconstruction from PyConf.Algorithms import ( - PrFilterTracks2CaloClusters, PrMatchNN, - PrFilterTracks2ElectronMatch, - PrFilterTracks2ElectronShower, fromPrMatchTracksV1Tracks, - fromV3TrackV1Track, PrTrackAssociator, ) from PyConf.Tools import PrMCDebugForwardTool, PrMCDebugMatchToolNN @@ -44,11 +30,17 @@ import Functors as F import glob -decay = "testJpsi" +decay = "BJpsi" options.evt_max = -1 -options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/NewParams/best_seed_effs_{decay}_NewParams.root" # _dll_NegThree_mlp_NullSix.root" +# options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/efficiencies/electrons/best_effs_{decay}_Selection.root" + +# options.ntuple_file = f"data/best_effs_{decay}.root" + +options.ntuple_file = ( + f"/work/cetin/LHCb/reco_tuner/efficiencies/effs_{decay}_baseline_Selection.root" +) if decay == "B": @@ -64,7 +56,9 @@ elif decay == "testJpsi": "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi", ] elif decay == "test": - options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"] + options.input_files = [ + "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi" + ] options.input_type = "ROOT" @@ -92,8 +86,13 @@ def standalone_hlt2_fastest_reco(): ).OutputLocation matching_params = dict( - MinMatchNN=0.5, # NN response cut value + MaxdDist=0.1, + MinMatchNN=0.215, PerfectTSelection=1.0, + PerfectVeloSelection=1.0, + # MinZMag=5100, + # MaxZMag=5700, + matchDebugOutput=0.0, ) match_tracks = {} @@ -120,7 +119,7 @@ def standalone_hlt2_fastest_reco(): SeedTracksLocation=hlt2_tracks["Seed"]["v1"], ).OutputTracksLocation - data = [match_tracks["Pr"]] + data = [] # [match_tracks["Pr"]] # data = [] types_and_locations_for_checkers = { "Velo": hlt2_tracks["Velo"], diff --git a/moore_options/get_calo_data.py b/moore_options/get_calo_data.py index 6bdb1d3..22a657d 100644 --- a/moore_options/get_calo_data.py +++ b/moore_options/get_calo_data.py @@ -39,11 +39,15 @@ import Functors as F import glob -decay = "testJpsi" +decay = "BJpsi" options.evt_max = -1 -options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/NewParams/calo_data_{decay}_NewParams.root" # _dll_NegThree_mlp_NullSix.root" +# options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/NewParams/calo_data_{decay}_NewParams.root" # _dll_NegThree_mlp_NullSix.root" + +options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_effs_{decay}_EcalSelection.root" + +# options.ntuple_file = f"data/calo_effs_{decay}.root" if decay == "B": @@ -110,7 +114,9 @@ def standalone_hlt2_fastest_reco(): shower_matched_seeds = PrFilterTracks2ElectronShower( # Relation=eshower["Ttrack"], Cut=F.FILTER((F.GET(0) @ F.WEIGHT) > 0.7) Relation=eshower["Ttrack"], - Cut=F.FILTER(((F.GET(1) @ F.WEIGHT) > -3) | ((F.GET(0) @ F.WEIGHT) > 0.7)), + Cut=F.FILTER( + ((F.GET(0) @ F.WEIGHT) > 0.7) | ((F.GET(1) @ F.WEIGHT) > -2) + ), # | ((F.GET(0) @ F.WEIGHT) > 0.7)), ).Output matched_seeds = {} @@ -120,7 +126,10 @@ def standalone_hlt2_fastest_reco(): ).OutputTracks matching_params = dict( - MinMatchNN=0.5, # NN response cut value + MaxdDist=0.1, + MinMatchNN=0.25, # NN response cut value + MinZMag=5100, + MaxZMag=5700, ) calo_long = PrMatchNNv3( @@ -143,17 +152,17 @@ def standalone_hlt2_fastest_reco(): track_type: hlt2_tracks[track_type] for track_type in out_track_types["Best"] } - data = [ - calo_long, - calo_matched_seeds, - electron_matched_seeds, - shower_matched_seeds, - ] - # data = [shower_matched_seeds] + # data = [ + # calo_long, + # calo_matched_seeds, + # electron_matched_seeds, + # shower_matched_seeds, + # ] + data = [] types_and_locations_for_checkers = { "Forward": hlt2_tracks["Forward"], - "Seed": hlt2_tracks["Seed"], "Match": match_tracks, # hlt2_tracks["Match"], + "Seed": hlt2_tracks["Seed"], } data += get_track_checkers(types_and_locations_for_checkers) # data += get_fitted_tracks_checkers(best_tracks) diff --git a/moore_options/get_ghost_data.py b/moore_options/get_ghost_data.py index 268e8c6..f5b9ee5 100644 --- a/moore_options/get_ghost_data.py +++ b/moore_options/get_ghost_data.py @@ -38,7 +38,7 @@ options.evt_max = -1 decay = "B" # D, B options.ntuple_file = ( - f"/work/cetin/LHCb/reco_tuner/data/ghost_data_{decay}_NewParamsM.root" + f"/work/cetin/LHCb/reco_tuner/data/ghost_data_{decay}_Default.root" ) options.input_type = "ROOT" @@ -135,8 +135,10 @@ def run_tracking_debug(): MaxMatchChi2=30.0, # 30.0, MaxDistX=500, # 500, MaxDistY=500, # 500, - # MaxDSlope=1.5, - # MinMatchNN=0.215, # NN response cut value + MaxDSlope=3.0, + MaxDSlopeY=0.3, + MaxdDist=0.1, + MinMatchNN=0.25, # NN response cut value ) match_debug = PrMatchNN( diff --git a/moore_options/get_match_eff_data.py b/moore_options/get_match_eff_data.py index 41c1f4a..80f886c 100644 --- a/moore_options/get_match_eff_data.py +++ b/moore_options/get_match_eff_data.py @@ -43,12 +43,14 @@ from RecoConf.hlt1_tracking import ( ) import glob -decay = "testJpsi" +decay = "BJpsi" options.evt_max = -1 # options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/sample4_data/match_effs_{decay}_EFilter.root" -options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/match_effs_{decay}_EDef7_yCorrCut_mlp5.root" +options.ntuple_file = ( + f"/work/cetin/LHCb/reco_tuner/efficiencies/electrons/match_effs_{decay}_EDef.root" +) options.input_type = "ROOT" @@ -78,7 +80,10 @@ def run_tracking_debug(): tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True) matching_params = dict( - MinMatchNN=0.5, # NN response cut value + MinMatchNN=0.25, + MaxdDist=0.1, + MinZMag=5100, + MaxZMag=5700, ) match_long = PrMatchNN( @@ -102,11 +107,11 @@ def run_tracking_debug(): "Match": match_tracks, } - best_tracks = { - "BestLong": tracks["BestLong"], - } + # best_tracks = { + # "BestLong": tracks["BestLong"], + # } - data = [match_long] + data = [] data += get_track_checkers(types_and_locations_for_checkers) # data += get_fitted_tracks_checkers(best_tracks, fitted_track_types=["BestLong"]) diff --git a/moore_options/get_parameterisation_data.py b/moore_options/get_parameterisation_data.py index 63a42b2..850cc70 100644 --- a/moore_options/get_parameterisation_data.py +++ b/moore_options/get_parameterisation_data.py @@ -14,7 +14,9 @@ decay = "B" options.evt_max = -1 -options.ntuple_file = f"data/param_data_{decay}_default_thesis.root" +options.ntuple_file = ( + f"/work/cetin/LHCb/reco_tuner/data/param_data_{decay}_Default.root" +) if decay == "B": diff --git a/moore_options/get_calo_data_reproduce.py b/moore_options/get_selected_calo_data.py similarity index 58% rename from moore_options/get_calo_data_reproduce.py rename to moore_options/get_selected_calo_data.py index e6a80ce..9915980 100644 --- a/moore_options/get_calo_data_reproduce.py +++ b/moore_options/get_selected_calo_data.py @@ -34,16 +34,24 @@ from PyConf.Algorithms import ( PrFilterTracks2ElectronShower, fromPrMatchTracksV1Tracks, fromV3TrackV1Track, + PrTrackAssociator, ) +from PyConf.Tools import PrMCDebugForwardTool, PrMCDebugMatchToolNN +from PyConf.application import make_data_with_FetchDataFromFile +from RecoConf.data_from_file import mc_unpackers import Functors as F import glob -decay = "BJpsi" +decay = "testJpsi" options.evt_max = -1 -options.ntuple_file = f"data/calo_data_{decay}_filter_shower_dll.root" +# options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/data_matching/NewParams/calo_data_{decay}_NewParams.root" # _dll_NegThree_mlp_NullSix.root" + +# options.ntuple_file = f"/work/cetin/LHCb/reco_tuner/efficiencies/electrons/calo_selected_effs_{decay}_VeloEcalSelection.root" + +options.ntuple_file = f"data/calo_selected_effs_{decay}.root" if decay == "B": @@ -52,14 +60,16 @@ elif decay == "BJpsi": options.input_files = glob.glob("/auto/data/guenther/Bd_JpsiKst_ee/*.xdigi") elif decay == "D": options.input_files = glob.glob("/auto/data/guenther/Dst_D0ee/*.xdigi") -elif decay == "test2": +elif decay == "testJpsi": options.input_files = [ "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi", "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000059_1.xdigi", "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000020_1.xdigi", ] elif decay == "test": - options.input_files = ["/auto/data/guenther/Bd_Kstee/00151673_00000002_1.xdigi"] + options.input_files = [ + "/auto/data/guenther/Bd_JpsiKst_ee/00143565_00000009_1.xdigi" + ] options.input_type = "ROOT" @@ -69,100 +79,83 @@ options.simulation = True def standalone_hlt2_fastest_reco(): + links_to_hits = make_links_lhcbids_mcparticles_tracking_system() hlt2_tracks = make_hlt2_tracks(light_reco=True, fast_reco=False, use_pr_kf=True) digisEcal = make_digits(calo_raw_bank=False)["digitsEcal"] - ecalClusters = make_clusters(digisEcal) tracks_v3, trackrels = convert_tracks_to_v3_from_v1( hlt2_tracks["Seed"]["v1"], track_types=["Ttrack"], ) # track acceptances tracks_incalo = make_acceptance(tracks_v3) - tcmatches = make_track_cluster_matching(ecalClusters, tracks_incalo) - PhElOutput = make_photons_and_electrons( - ecalClusters, tcmatches["combined"], make_all_pvs()["v3"] - ) - photons = PhElOutput["photons"] - electrons = PhElOutput["electrons"] - eshower = make_trackbased_eshower(tracks_incalo, digisEcal) - tcmatches_e = make_track_electron_and_brem_matching( - tracks_incalo, tcmatches, digisEcal, electrons, photons - ) - - # filter with calo clusters - calo_matched_seeds = PrFilterTracks2CaloClusters( - Relation=tcmatches["Ttrack"], - Cut=F.FILTER((F.MIN_ELEMENT_NOTZERO @ F.FORWARDARG0 @ F.WEIGHT) < 20), - ).Output - - # corrections on track (bit better for elec?) - # Cut=F.FILTER(F.ALL) ).Output - electron_matched_seeds = PrFilterTracks2ElectronMatch( - Relation=tcmatches_e["Ttrack"]["ElectronMatch"], - Cut=F.FILTER(F.MIN_ELEMENT_NOTZERO @ F.FORWARDARG0 @ F.WEIGHT < 20), - ).Output - + matched_seeds = {} # should be best; shape of shower etc; E/p statt chi2; DLL even better? GET(1) # Cut=F.FILTER(F.ALL)).Output - shower_matched_seeds = PrFilterTracks2ElectronShower( - Relation=eshower["Ttrack"], Cut=F.FILTER((F.GET(1) @ F.WEIGHT) > 0.7) + matched_seeds["v3"] = PrFilterTracks2ElectronShower( + Relation=eshower["Ttrack"], + # Cut=F.FILTER(((F.GET(1) @ F.WEIGHT) > -3)), # | ((F.GET(0) @ F.WEIGHT) > 0.7)), + Cut=F.FILTER(((F.GET(0) @ F.WEIGHT) > 0.7) | ((F.GET(1) @ F.WEIGHT) > -2)), ).Output - matched_seeds = {} - matched_seeds["v3"] = shower_matched_seeds matched_seeds["v1"] = fromV3TrackV1Track( InputTracks=matched_seeds["v3"] ).OutputTracks - calo_long = PrMatchNNv3( + links_to_velo_tracks = PrTrackAssociator( + SingleContainer=hlt2_tracks["Velo"]["v1"], + LinkerLocationID=links_to_hits, + MCParticleLocation=mc_unpackers()["MCParticles"], + MCVerticesInput=mc_unpackers()["MCVertices"], + ).OutputLocation + + links_to_seed_tracks = PrTrackAssociator( + SingleContainer=matched_seeds["v1"], + LinkerLocationID=links_to_hits, + MCParticleLocation=mc_unpackers()["MCParticles"], + MCVerticesInput=mc_unpackers()["MCVertices"], + ).OutputLocation + + matching_params = dict( + MaxdDist=0.1, + MinMatchNN=0.25, + # PerfectTSelection=1.0, + PerfectVeloSelection=1.0, + MinZMag=5100, + MaxZMag=5700, + matchDebugOutput=0.0, + ) + match_tracks = {} + match_tracks["Pr"] = PrMatchNNv3( VeloInput=hlt2_tracks["Velo"]["Pr"], SeedInput=matched_seeds["v3"], + MatchDebugToolName=PrMCDebugMatchToolNN( + VeloTracks=hlt2_tracks["Velo"]["v1"], + SeedTracks=matched_seeds["v1"], + VeloTrackLinks=links_to_velo_tracks, + SeedTrackLinks=links_to_seed_tracks, + TrackInfo=make_data_with_FetchDataFromFile( + "/Event/MC/TrackInfo", "LHCb::MCProperty" + ), + MCParticles=mc_unpackers()["MCParticles"], + ), AddUTHitsToolName=get_global_ut_hits_tool(), + **matching_params, ).MatchOutput - match_tracks = {} - match_tracks["Pr"] = calo_long match_tracks["v1"] = fromPrMatchTracksV1Tracks( InputTracksLocation=match_tracks["Pr"], VeloTracksLocation=hlt2_tracks["Velo"]["v1"], SeedTracksLocation=matched_seeds["v1"], ).OutputTracksLocation - out_track_types = get_default_out_track_types_for_light_reco() - best_tracks = { - track_type: hlt2_tracks[track_type] for track_type in out_track_types["Best"] - } - - # links_to_lhcbids = make_links_lhcbids_mcparticles_tracking_system() - - # links_to_match = make_links_tracks_mcparticles( - # InputTracks=match_tracks, - # LinksToLHCbIDs=links_to_lhcbids, - # ) - # eff_checker_match = check_tracking_efficiency( - # "Match", - # match_tracks, - # links_to_match, - # links_to_lhcbids, - # get_mc_categories("Match"), - # get_hit_type_mask("Match"), - # ) - - data = [ - calo_long, - calo_matched_seeds, - electron_matched_seeds, - shower_matched_seeds, - # eff_checker_match, - ] - # data = [shower_matched_seeds] + data = [] types_and_locations_for_checkers = { "Forward": hlt2_tracks["Forward"], - "Seed": hlt2_tracks["Seed"], - "Match": match_tracks, # hlt2_tracks["Match"], + "Match": match_tracks, + # "Seed": hlt2_tracks["Seed"], } data += get_track_checkers(types_and_locations_for_checkers) # data += get_fitted_tracks_checkers(best_tracks) diff --git a/parameterisations/notebooks/magnet_kink_position.ipynb b/parameterisations/notebooks/magnet_kink_position.ipynb index d93e54e..162c3f2 100644 --- a/parameterisations/notebooks/magnet_kink_position.ipynb +++ b/parameterisations/notebooks/magnet_kink_position.ipynb @@ -2,9 +2,18 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "incomplete input (4052887367.py, line 38)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Cell \u001b[0;32mIn[16], line 38\u001b[0;36m\u001b[0m\n\u001b[0;31m # & (array[\"match_chi2\"] < 5)]\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m incomplete input\n" + ] + } + ], "source": [ "import uproot\n", "import awkward as ak\n", @@ -42,19 +51,18 @@ "array[\"z_mag_corr\"] = array[\"z_mag_xEndT\"] - array[\"match_zmag\"]\n", "\n", "sel_array = array[(array[\"z_mag_xEndT\"] < 5800)\n", - " & (array[\"z_mag_xEndT\"] > 5000)\n", - " # & (array[\"match_chi2\"] < 5)\n", - " ]" + " & (array[\"z_mag_xEndT\"] > 5000)]\n", + " # & (array[\"match_chi2\"] < 5)]" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxsElEQVR4nOz9T2wbd57n/79K3YcFFi1R8mAAQQI6KsZ7+OUwFiX3vS0y3deOSTnndETGcwrUbdHKZWcvtskk+uU0bVJOzmtRdq69JuW+j8Vy+pDLdFhSAAkEdmGpzMYCe4nqexDIFvWHosQiqyg+HwAxovSpz+ddlt0DvvL+fMpwXdcVAAAAAAAAcMUN+V0AAAAAAAAA0AsEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAgEYQAAAAAAABgIBGEAAAAAAAAYCARhAAAAAAAAGAg/97sAwGv/9b/+V/2///f/9LOf/Uz//M//7Hc5AAAAAADgiP/9v/+3fvrpJ/2X//Jf9H//7//t6dqG67puT1cEuuxnP/uZDg4O/C4DAAAAAAC0MDQ0pJ9++qmna9IRhiunHoQNDQ1pfHzc73KaVKvVwNbmpUG4z0G4R2kw7nMQ7lEajPschHuUuM+rZBDuURqM+xyEe5S4z6tkEO5RGoz77Nd7rNf9s5/9rOdr910Qtr29LcuytLe3J8dx9ObNG0nStWvXFAqFZJqmZmdnNTw87HOl8Ms///M/a3d3V+Pj49rZ2fG7nCaTk5OBrc1Lg3Cfg3CP0mDc5yDcozQY9zkI9yhxn1fJINyjNBj3OQj3KHGfV8kg3KM0GPfZr/dYr9uP44z6Igh7/vy5isWi1tbW5DhOW9eYpqloNKpEIqFbt251t0AAAAAAAAAEXqCDsCdPniiTyci2bUnS0ePMDMM49Zr6mEqlItu2lc/nZZqm7t+/r9///vfdLxoAAAAAAACBNOR3Aad5+fKlrl+/rlQqdWoIVn9/2uu0MbZtK5lM6r/9t/+mv/71rz27DwAAAAAAAARH4DrClpeXlc1mT4Ra0WhUkUhE165dk2maCoVCkqSxsTFJ0t7eniTJcRzZtq03b97Itm2VSqXGdsoffvhBkUhE6XRaDx486Nk9AQAAAAAAwH+BCcJqtZrm5uZULpclHQZfsVhM0WhU09PTHc399u1bPX36VPl8XpZlKZPJqFQqqVQqcag+AAAAAADAgAjE1sjvvvtOU1NTKpfLSiaTqlQqevHihe7du9dxCCZJIyMjSiaT2tzc1A8//KBbt25pc3NTs7Oz+vvf/+7BHQAAAAAAACDofA/CXr9+rUgkoqmpKVUqFT1+/FhTU1NdW880TRWLRb148UL/5//8H83MzKhWq3VtPQAAAAAAAASDr1sjt7a2NDc3p3g8rrW1tZ6uHY1GtbW1pZmZGc3Pz+vPf/5zT9cHrrLFxUXVarUrvfV4EO5RGpz7HASD8LschHuUBuc+B8Gg/C4H4T4H4R4HySD8PgfhHqXBuU9cjOEeP5W+h959911Fo1E9fvzYrxLkOI5mZ2d19+5d/eEPf/CtDnhncnJSu7u7mpiY0M7Ojt/lNAlybcCg4t8lEEz82wSCh3+XQPD0679LP+v2rSPs/v37Mk3T1xBMkkKhkDY3N2Wapubm5nTjxg1f6wEAAAAAAEB3+HZG2LVr11QoFPxavkkoFNLGxoZs2/a7FAAAAAAAAHSJbx1h9+7d82vpU01PT3vyhEoAAAAAAAAEk+9PjeyVu3fv+l0CAAAAAAAAfDQwQVg+n9f29rbfZQAAAAAAAMAnAxGEbWxsyHVdPXv2zO9SAAAAAAAA4BNfzgj75JNPtLW11fV19vb25DhO4xD8x48f6w9/+EPX1wUAAAAAAEDw+BKEhUIhFYtFGYbR1XVc1216b9u2vvvuO924caOr6yIYqtWqJicnW45ZXFzU4uJijyo6XK9Wq2l4eLhnawJojX+XQDDxbxMIHv5dAsETxH+XKysrWllZaTmmWq32qJqTDPd4WtQDr1+/1szMTNtBmOu6HYdm9TnS6bQePHjQ0VwItsnJSe3u7rY19r//9/+uf/u3f+tuQQAAAAAADIh/+7d/0//4H/+jrbETExPa2dnpckXNfOkIm56elmma2traOtG1dRrDMNoa1+p66TAMKxQKBGEDYmhoSOPj4y3HBCk1BwAAAACg3w0PD2tiYqLlmGq1qoODgx5V1MyXjjBJSqVSevLkiYrFom7dunXmuM8//1zpdFqRSESZTEazs7MaGRlpex3LsjQ/P69YLKY//elPXpSOgKt3hPmRLAMAAAAAgNb8/NzuS0eYJM3Pz8uyrJYh2NbWlu7fv69UKnXpECsSiejFixd69913ZRiG/v3f//2yJQMAAAAAAKCPDfm18NzcnEZHR1uOyWQyMk2z404u0zS1sLCgXC6nv/zlLx3NBQAAAAAAgP7kWxAmSS9evGj5883NTaVSKU/Wmp2dleu6yuVynswHAAAAAACA/uJrEHYey7IUiUQ8mWtsbEySVCwWPZkPAAAAAAAA/SXQQVgoFNLW1pYnc9UDMMdxPJkPAAAAAAAA/SXQQdjs7KweP37c8Txv375VPp+XdBiuAQAAAAAAYPAEOghLJpMql8v68ssvLz1HrVZTNBqVJBmGIdM0vSoPAAAAAAAAfSTQQVg8HtfU1JSWlpb04Ycfant7+0LXP3/+XFNTU7Isq/G9O3fueFwlAAAAAAAA+oHhuq7rdxGt2Latd999V4ZhSJIikYhSqZRM05RpmnrnnXckSdvb23IcR7Ztq1gsam1tTY7jyHVdGYYh13U1OjqqN2/e+Hg36IXJyUnt7u5qYmJCOzs7fpcDAAAAAACO8PNz+897utolmKapzc1Nzc7OSjp8kmQqlTr3unq+Vw/QDMNQoVDoXqEAAAAAAAAItEBvjayLRCL64YcfND09Ldd123oZhtHoBHNdV2tra7p165bftwIAAAAAAACf9EUQJh12hpXLZa2trSkSiZz4eT34qqsHYPF4XPv7+7p9+3YvywUAAAAAAEDABH5r5HHxeFzxeFxbW1sqlUoql8uybVt7e3uSpLGxMZmmqVgspmg0qpGREZ8rBgAAAAAAQBAE/rB84KI4LB9+chxHoVDI7zIAeOC9b746d8z3H33a9ToAAACuGg7LB4A+ZlmWnj59qnw+r2g0yoM5gIBrJ+ACAADA1XQlg7Dl5WV98skn+uUvf+l3KQB8Vg+pLMtqbKOud22ZpqmxsTFFIpHGdurjEomEbNtWuVxufM9xHJVKJT19+lSlUkmO4/TwjgAAAAAAl9U3h+XXPX/+XHfv3tXNmzf1/PnzU8fMzMxoenpaH374oX788cceVwh4K5/PNx4GcZHXzMyMJ+tfZu3R0dEz50skEpeas1QqtV2z4zhKp9ONP4dsNqtSqSTbthuhleM4sixLpVJJ2WxWsVisMT6dTiufzyuRSGh9ff3E/AsLC3r48KHW19cJwQAAAACgj/RNEPbFF1/o2rVrSiQSyufzsiyrcUD+cfF4XLZt629/+5tM09S3337b42oRBNVqVZOTky1fKysrfpd5rmQyqf39fZXLZcXj8ZZjo9GoisViY7wXXNdVpVJRLpdrefaVaZrK5XKqVCra398/c1yhUND+/r6KxeKpHVhHLS0tqVwua39//9yxdel0WqOjo8pms03fj8fjKhQKjfnq91UsFpVMJhv3ZlmWstmsUqlUIwQ7HnbV53FdV6ZptlUXAAAAAAyClZWVcz+LV6tV3+oL/NbIt2/fanZ2VrZt6+i5/oZhtLwuFAqpXC5rZmZG8Xhc+Xxev//977tdLgLk4OBAu7u7LcfUarUeVdOZUCikSCSiQqGgVCqlfD5/Ykw96OkG0zSVTCYVjUYVDodPHVMul9s+JD4UCikajSoajWpmZkaWZZ0Yk8vllEwm267Rtm3FYjHZtt30/WQyqVwud+o1pmnKNE1Fo1Hlcjlls1ml0+m215QOw8fTfh8AAAAAMIhqtdq5n8X9FPiOsEQioUqlIukfW7QuYmNjQ67rKplM6i9/+Us3SkRADQ0NaWJiouVreHjY7zIvLJVKXej7XjJNU5FI5MT34/H4pZ+UeFbdFwnBSqWSwuFwUwhWD8PPCsFOs7S0pEqlcuJezuo+ra8DAAAAADg0PDx87mfxoSH/4qhAd4RtbGyoVCrJMIxGN1goFNLs7Kw2NjbamiMUCunevXv6/PPPlUql9J//+Z/dLBkBMj4+3vPHsPbCWVvxerVFzzTNEx1cnax92rUXCZcsy1IsFjtx/cbGxqmhXTv1bG1taWpqquk8MQAAAADA+RYXF7W4uNhyzOTkpG9dY4HuCKt3ctQ7uiqVivb29vTixYumbZLn+fDDDyVJlUpFX3/9dVdqBXrlrJBobGyst4UEgG3bmpubO/H9QqFwqRCsrt5NdtWsr6+f2DqKf7jIAxkAAAAA9KdAB2H1brB8Pq/Hjx9ramrqUvMc7Th58eKFV+UBA+m0wO3atWueztduqJdIJE50a9XPMuuUaZpaWlrqeJ5esCxLqVRK4XC48dTOcDismZmZxpMv19fXtbCwcG7YUyqVGtdf9WDItm3l8/nGE0OPdxb6bZB+FwAAAECvBHprpOM4CofD+vjjjzua5+j5Pqcdyg2g/5RKpVP/PWcyGc/WWF5ebjx90nGcwJ0H5jiOFhYWGk+3NE2z8WRR27ZlWZYsy2r8vH5NK/Vw0XEcpVKpxhmNV4lt20okErJtO9DbXgfhdwEAAAD0WqA7wupPyutU/cOy67psCwKuiNMO2e/k0P7ThEKhCx3a32v1bi/pcCt5pVJRoVBQoVBQuVxWpVI50R13XpgyCFtsTdNUuVzW/v5+oLv+BuF3AQAAAPRaoIMw0zQ9+a/1Dx8+bHwdtI4OABdXKpVODbWXl5c9XyuRSEhq/eTIVkqlkhKJRNO2xVgspnw+31Fd2Wy2sV1uaWnp1MDONE0Vi8WmLrnz/mNALpeTaZoyTVOFQqGjGvtB0LZDHjVovwsAAACgFwIdhM3NzWlzc7OjOT7//HNZliXDMCT17sl6ALrnrFDAiw7S46LRqDKZzIW7cxzH0czMjGKxWNMh9Y7jqFQqNc70uux27aMB/2ndcUctLS01Op/OC/Si0agqlYoqlUpX/jyDxq+uq/N+Z9Lg/S4AAACAXgh0ELa8vKz9/X19+eWXl77+/v37MgxDruvKMAzduXPH4yoB9NppB4d7cUD+WZaWli7UTWrbtqamps4NuWzb1szMzIUPQr/M2VaZTEaRSITt4QGQz+c77ggEAAAAcDmBDsJCoZDu3bunpaUlffbZZ6rVaudeU6vV9OTJE12/fl3ZbFau6zb9PMjn/QA4n23bp4Y5QemYcRyncch5PB5XLpdTuVxWsVg88zyqWCx2oYDqeAjWbpC2vLwc6MPhB4Ft2211gwEAAADojkA/NVI67GKwLEuPHj1SJpNRLBZrdH6Uy2WNjY1pb29PlUql6Sly9QCsviVSkh4/fqzh4eHe3wQAz5wVGIXD4R5Xcrp6KFUsFk90qUWjUaVSqVODr0QioXK53NYax7d4p9Npzc/Pn9u1Vn+iZBCfgDkIHMcJ9JlkAAAAwCAIfBAmHX6gTKVSWl1dVbFYVLFYlGEYp24vOR6A1d/ncjktLCz0tnAAnjsrCAvSE/ZOC8Hq6gfYHw/uLMtSqVRqa4tnKBRSKBRqdHfVzyMrFovnnoN4vEsWveE4jubm5tiaCgAAAPgs0Fsjj8rlctrc3NStW7fkuu6JV93RAMx13cZhw4RgQPek02kZhnGp18zMzIXWOmtrX1A6nEKh0LlhlmmaTU9yrDvte2c5Pta2bYXDYU/OnrIsq3GYfyuO4yifz2tmZqZp3fr2v9HRURmGoXA4rGw2e+J627aVTqcbT9QMh8NKpVKn/o7r6xz/+3NcLBZrzHf05eWW0Hw+37TO6OioZmZmTr1H6fDP87Qz447Wd9afdbu/izrHcZTNZhWLxRp//vX60ul0W0GcbdvKZrMnHuZw9HcQDocbW4ABAACAftI3QZh0eAZQsVhUpVJRLpdTPB5XJBKRaZoaGRnR1NSUpqenG+fy7O/v68WLF5qamvK7dAAeqVQqfpfQ0uzsbFvjTjuA/yKH5ieTyVMDt1QqpZmZmQs/jbIeuNRDk3w+f+oTJutBy8zMjEZHR5VKpZrWqgdb+Xy+EZLUA6+jZ2PVx2Wz2UY4Y9t2I2w5HrAkk0mVy+Vzz3ms//+Ii4SK7VpfX5dhGI17qVQqcl1XGxsbchyncU/HazdNUxsbGydqKpfLjdfRJ6G2+7s4Lp/Pa3R0VOl0WrFYTBsbG6pUKlpdXZWkRriVSCROXHu0/nA43BSa1TsOj/6ubdvW+vq6pqam6HIDAABAX+mrIKxuampKCwsLWltb0+bmpn744Qft7e3phx9+0ObmptbW1rSwsKCRkRG/SwUGQj2kuMwrl8tdaK2zOr+C0plykc6004KsiwRYxWKxce7X8TlmZmba7tixbVtPnz5tu+soEomcOPC9XC43ArhCoaBKpaL9/f2mBwTk83lZlqVYLKZSqaRisaj9/X3t7++rWCw2/uxs29bDhw9PXfu0EOc0p/25dKJUKjXWXl5ebpo/Eok0gizbtk90IIdCIUUikRMPdKh/7+jPLvq7qKuHc6FQSJVKRUtLS43/UBSPx1Uulxs1r6+vnwjs9vb2ms7grNvc3NTU1FRjS2/9P0TVf1eO43D4PwAAAPpKX5wRBiDYwuFwz57aeO3atVO/307HTNDcuXNH6+vrTd/b3Ny80J9loVBQNptVOp0+8bP19XWtr68rl8u17KQ6vlXztLnqjm79zOVyjeAun8+fejZa/YEn9W63mZkZJZNJFYvFpnHRaFSrq6uNsCmfz3fU1eX1mXHnBbZHf2fHf6cXcZHfRV0+n29sy8xkMmeeE1coFBQOhxtPXk0kEo3fg2maMk1T0Wi0aZtrOp1WoVBo+r0mk0mNjY01flelUokHMAAAAKBv9GVH2Hm2t7f1/PlzvXz5UrVaze9yAHgo6B1hF3FaYHGZ+1haWtL+/v6ZXVD1J1W2M/d5h+0fdTRsOmurpqQTT0o8K1Q6Wr/jOIH9nZ71d/Do973YLtju76IeloVCoXO3jh4N1kql0qnbcY/ex+rq6qm/1+N/1zY3N9uqFQAAAPDblQrCtre3dfPmzcYZKPXDgn/1q1/pxx9/9Ls8AB44KxwI+tlhpzktUHnz5s2l5yoUCiqXy6d2lJVKJc3NzXkaLrXbAXT0d3aRrqEgnT21urqqTCajQqFwbtgk9S6YPXoWWzvBWTKZbPoddNJ1d3S9IP2uAAAAgFYCH4S9//77unnzpq5fv67r16/r2rVrunPnzolxr1+/bpxPc/yJkpubmwqHw/rLX/7iwx0A8NJZXUcXOWg+KE4LLs7a+tmuSCRy5tlrlmX58gTdy26ZC9J211AopKWlpTPPZLvowwm8cnSLabsdZEf/DfXjvxsAAACgE4EPwkKhkMrlst68eaNkMqnNzU09ffq0aczbt281Nzen/f19SYePpK9fG41GZZqmDg4O2j5kGUCwndbxZNt2YLfSXcRFtia2kkwmValUToRQ6+vrgQ4/+uWcqfoTLkul0qkH4feyjos6/nfsKvy7AQAAANoV+MPyLctSOp0+8wlikrSwsCDHcWQYhlzXlXS43ePevXuNMaVSSfPz8/rss8/04MGDrtcN/1WrVU1OTrYcs7i4qMXFxR5VBK/cuXPn1A6cUqnk+dMCuy0UCjUFEV4FYfW56k9zPLpGLpc7s7MOrdX/f1IkEuloW6FXjv5e2w3Fjj+Rcm9vr28CyCB675uvzh3z/Uefdr0OAACAoFhZWdHKykrLMdVqtUfVnBTojrDPP/9ckUikZQj27Nkzra+vN0IwwzBOhGDS4VaQR48eqVwud7tsBMTBwYF2d3dbvniYwkmWZQW+e/KsM5rOe7JfEB3vxjmvs6hUKmlmZqbt+U3T1OrqatP3/NrG1+9SqZRmZmZOPNnRT5c5oP/4EzW9DF8BAACAWq127mfxg4MD3+oLdEdYPp9XoVBoOWZhYaGxFdIwDEUikRMhWN2dO3e0vLzseZ0IpqGhIY2Pj7ccMzw83KNq+sfCwsKJD8pBEwqFFI/Htb6+3vT9Uqkky7J826Z2UcdDsHa6tEzTlGVZKpVKbXd1He+S42Dzi0ulUsrn85I6O2Dea/W/D9I/nrR5XnfX0bPXCMEAAADgteHhYU1MTLQcU61WfQvDAt0RVqlUdOPGjTN/fvfu3cYHyfqWyOOdD0eNjIw0xuHqGx8f187OTssX2yKb1YOkWCx25hivDzC/7HxnhRHpdLqTck7VrTOUNjc3m96nUqlzr6kHF+2MPUu/BIWd8PLvqWVZjRDMNM1AbSM8/vCYep2tHH3Car9tJQYAAEDwLS4unvtZ/LymlW4KdBBmmqa2t7dP/dnr16+Vy+WatkQmk8mWwdnr1681OzvbnWKBPuc4TmNL5EU/HL9588bTWtoJMc7anlYqlZTNZj2rxbZtzczMdBQ8neX4E//a/XM3TVO2bbcd+h3vADvtybv94ni34lkhpZddb0cfLtBqXj8OnY/H403BXDvbg4/eD13SAAAAGDSBD8JO+6/bb9++bTrDyDAMmaapP/3pTy3n29jY6Eq3CNBL3fiw7TiO5ubmGtuqLrpdyuua2p1vaWnp1O2B6XTakycjlkqlxsHi3dgOd3Rr50XON6v/frLZbFsdQEfnNk1TS0tLF6jybO3+no6OO++a835+vJvttPs/LST0skPs+JZc6WQn4mnrHf93dTxUu+y/o6Od0LZtt/y7b1lWYytlJpMJVHcbAAAA0AuBDsKSyaQePXqkzz77TLVaTbVaTc+fP9fs7Kxs2256SuR5Z4m9fv1aDx8+1NzcXC9KB7rmrI6Uy37Qrx++Xv9wPD8/f+H1OwkZOu3cKRaLp3ZSxWKxS3eGOY6jVCqlWCzWePJiu4FBu2FGPp9v3HsymbzQUxyPBiqpVEqpVOrMdfP5fNOfw9EutNMc/V360eF01FnrH/2zSqfTSqVSKpVKWl9fVyqVUjgcPhHytPvv5rQ1j4dviURC2Wy20X0YDodl23bT7yWXy6lUKimdTjfmPB6E1X9vtm03nUF2Wm2tfhfxeLwpqE0kEqeOdxxHCwsLkg7/zp0ViLb7ez/6Z+r33xUAAACgXYEOwuLxuObm5pTJZDQ6OqrR0VElEglVKpWmEOzx48ctt0Q+efLkQh8ygSA7q3MolUq1FSo5jtP4gB4OhxWLxZqua3U+mG3bpz5xcH19/dIfhM+6n3Y6neoKhcKpH+rT6bRmZmba7g5zHEfZbFZTU1PK5/OKRqMXCsGkk+d+naYefEiHoc5Fn3Z5/KmR+Xy+8b+P6XRa+Xy+EQgdXadSqZzb7Xe8ltO6n6R//D2qa3XfT58+PVHvaY7/ns4K7QqFQtPvJJ/PKxaLKZFIaG1tTcVi8cT/5qfTadm2feLv6fH7XVtbO7FeNBo9Ebam02nFYrFGEFcoFJrWXF9fb/zbOlrr0b+npVJJo6Ojja7D43+H2/1d1K+t/7k4jtP4O2zbtmzbVj6fbwTemUzmzL9z7f4O2h0HAAAABI4bcI7juPF43DUM48RrdHTUXV9fP/W6169fu/fv33ffffddd2hoyDUMwx0aGnKfP3/e4ztAr01MTLiS3ImJCb9L8VS5XHbj8bgrqauv/f39E2vv7++7uVzODYVCZ15nmqaby+VOvf6s+4lGoy1rWVpaciuVStt/RsVi0Y1EIqfOFQqF3Hg87uZyObdYLLrlctktFotuLpdzM5lM03WhUMgtFAptrVmpVE79sygWi6eOLxQKjT/HeDze9r0dv896jYVCwU0mk240GnUjkUjT76h+z2fVUlf/u3XW7zcSibiZTObcsaZpuvF4vPF3IJlMuqZpnjpnNBptzFksFs/8u2CapptMJk/UvL+/3zR/JBJxl5aWmsbUv3f879D+/v6593vamplMprGeaZru0tJS09/3/f39xn0c/TM7bmlpqanuo3/XLvK7OEsul3Oj0WhjjlAo1LjurH+frf49Hv0dVCqVluPOqy0o/n9f//97+gIAAEAzPz+3G67bH49R3NjYULFYlGVZCoVCunnzppLJpEZGRk6MXV1dPXOr5MzMjB4+fNjtcuGjyclJ7e7uamJiQjs7O36X07F6d08vRCIRlcvlpu8ZhnHheUKhkPb390/9WSKRaNnZcpbTunzOsr6+rocPH57avdaKaZpKpVJKJpMX6gKrn0l1/L5CoZBmZ2cbXTqbm5uNc9iOdxAB6J33vvmqp+t9/9GnPV0PAAAg6Pz83N43QRjQrqsWhOHy6tv3nj592tgWV98Gappm48EAN2/eVDwev/BDAs5br75mfZ3Z2VklEgkCMMBnBGEAAAD+IggDPEQQBgCDq9chVzsIwgAAAJr5+bk90Ifle217e9vvEgAAAAAAAOCTgQrCEomE3yUAAAAAAADAJwMVhNXPBgIAAAAAAMDgGYggrFar6ZNPPpHjOH6XAgAAAAAAAJ/83K+Ft7a2ND8/L9u2lUql9ODBgxNjZmdntbW11dE69fDLdV0ZhtHRXAAAAAAAAOhfvgVhiURClmVJkjKZjGZnZ/XBBx80jZmZmWmMAQAAAAAAADrh29ZIy7KaOrROO7/rk08+kSQZhtH0atdlrgEAAAAAAMDV5FtH2MLCglZXVxvv4/H4iTHT09MKhUJ6+/atXNdVKBTS2NiYQqFQW2s4jqO9vT3OBgMAAAAAAIB/QVgul1MsFtPm5qZSqZTeeeedU8ctLCzoiy++kGVZunHjxqXXS6fT+uKLLy59PQAAAAAAAPqbr0+NjMfjevTokaamps4c8+GHH8o0zY5CMOnwHLKRkZGO5gAAAAAAAED/8q0jrF3T09OeBVimaXoyD/pDtVrV5ORkyzGLi4taXFzsUUUAAAAAAFxtKysrWllZaTmmWq32qJqTAh+ESdLGxoYn8xw9kwxX38HBgXZ3d1uOqdVqPaoGAAAAAICrr1arnftZ3E99EYR51RHG0yMHy9DQkMbHx1uOGR4e7lE1AAAAAABcfcPDw5qYmGg5plqt6uDgoEcVNeuLIMwrCwsLevXqld9loEfGx8e1s7PjdxkAAAAAAAyMdo4gmpyc9K1rzNfD8nvNtm2/SwAAAAAAAIBPrnwQVqvVtL29rfn5eTmO43c5AAAAAAAA8IkvWyPfvn2rsbGxnq7pui5nhAEAAAAAAAwwXzrCRkZGdOPGDbmu27MXAAAAAAAABptvWyM//PBDSYdPcux2p1YvOsGy2axisZhGR0dlGIbC4bASiYRKpVJfru3H/ViWpfX1dWWz2Z78uQEAAAAAgMHi21Mjo9GopMMti6ZpyjRNhUIhz9dxHEe2bXftoPxSqaREIiHHcRSNRlUoFGSapizLUjqdViwWa3zf6/vrxtq9vB/HcZTP5/X06VNZlqVQKKRkMqlYLKbZ2dmO5gYAAAAAADjOcH3cNzg2NqZYLKanT592fa18Pq+7d+/qp59+8mzOUqmkWCwmSUomk8rlcifGzMzMyLIsmaapcrnsWRjWjbV7dT+O4yidTiufz0uSIpGIMplMIxztVP0xrBMTE9rZ2fFkTgBAf3jvm6/8LuGE7z/61O8SAAAAAsXPz+2+PjUyGo02gpduSyaTGhkZ8Ww+x3GUSCQkSaZpnhoaSVKhUJAk2bbdGB/EtXt1P/l8XlNTU40QLJfLqVwuexaCAQAAAAAAnMXXIKxXIVidl9vt6tsHJSmdTp85zjRNxeNxSYcdV/UAKGhr9+J+0um0UqmUHMeRaZqqVCpKJpNtXw8AAAAAANAJX7dGStLbt2897dTqBdu2FQ6HG+/39/dbbhFcX19vdE+FQiHt7+8Hau1e3E8ikdD6+nrjmq2tra6cCSexNRIABhlbIwEAAIJvYLdGSupJCPb27VstLy97Nl8mk2l8HY1Gzw106h1U0uEWxHogFJS1u30/sVisaYyXZ6UBAAAAAAC0y/cgrBdGRkZULBb1q1/9ypP5jm4HjEQibV1jmmbj604eDtCNtbt5P/l8XqVSqfE+l8s1XQsAAAAAANArAxGESYfng5XLZX322WcdzWNZVtP7mzdvtnXd0YDpsh1h3Vi7m/dj27ZSqVTTNZwJBgAAAAAA/PJzvwu4qO3tbTmOo729vbavsSxLhUJBrusql8vpwYMHl17/aHeTpLa7m46Psyyr7e6rbq7dzfs5/lRJL7enAgAAAAAAXFRfBGHPnz9XLpc7EdpcRv3JiJf16tWrpvftnnV17dq1pvebm5sXDsK6sXa37se27aZus1Ao1HS2GAAAAAAAQK8Ffmvk559/rkQioVKpJNd1L/2SJMMwLhw+HWfbdtP7y3ZQVSqVQKzdrfvJ5XJN76PRqKR/PHEyHA7LMAyNjo5qZmZG2Wy245ASAAAAAACglUB3hL1+/VrpdFqGYTTCrKPO+v5Z40zT1Orqakc1HQ+OLusyoU831u7W/Rw9gF+SxsbGNDMzc+JMMsdxZFmWLMtSOp1WoVCgcwwAAAAAAHRFoIOwelfRyMiIksmkwuFwoxNpf39f8/PzGh0d1dra2qnXO46jFy9e6MmTJ7IsSzdu3Oi4pst2LR3fcniRM866uXY35rRt+8S8a2trymQymp+fb1xr27YymUxTaJZIJDwLw6rVqiYnJzueZ3FxUYuLix3PAwAAAABAP1tZWdHKykrH81SrVQ+quZxAB2GlUknhcFh/+9vfTv35wsKCnjx5onA4rHfeeefUMbdv35Yk3b9/X3/+85+7VeqF+bkNsBtrt+oyC4VC2traOhGemaapXC6nmZmZpqdLLiwsKBqNtn1e2VkODg60u7vb0RySVKvVOp4DAAAAAIB+V6vVPPmc7adAB2G2bbc8IP/+/ftaXV1VNpvVv//7v585Lp1O691339WXX36pP/zhDx3VFAqFPAmSLhPydGPtbsx5PAhLJpMt7zeZTKpcLjc6wxzH0cOHD5XJZDqqaWhoSOPj4x3NIUnDw8MdzwEAAAAAQL8bHh7WxMREx/NUq1UdHBx4UNHFBToIk6TZ2dkzfzY1NaW5uTnlcjk9evTozMDCNE1NT09raWlJCwsLHQUbY2NjngRHY2NjgVi7G3MePzj/5s2b516fTqebtkhms9mOg7Dx8XHt7Ox0NAcAAAAAADjk1dFBk5OTvnWWBfqpkZFI5NyztNLptFzX1f3791uOu3nzplzX1aNHjzqq6bLb9Y6HTZftCPN67W7MeZl7NU3zxBM9jx+sDwAAAAAA0IlAB2GmaZ54+uBx0WhU09PTyuVy+utf/3rmuM3NTUlSoVDoqKbjHWrtdlMdD/TC4XAg1u7GnJe5t9Nq8eqJlgAA+Om9b7469wUAAIDeCHQQNj8/r0wmoy+//FLb29t6+fKlXr58eWLc8vKyXNdVJBLRt99+e+Lnn3/+eaO7qNNwZWZmpul9u/Md3y4YjUYDsXY35jzeAdZuuHY8QLvMkzUBAAAAAADOEugzwuLxuIaHh7W0tKSlpaXG92dmZvQf//EfTePm5ua0sbGheDyuSCTS6C4qlUpN4Y5pmh3VdFrX0vEtfac5GgaFQqFL1dGNtXs1ZzuOB2iXOUcNAAAAAADgLIHuCJOk1dVVua4rSXJdV67rqlwu67vvvmsal8vlGl9blqV8Pq98Pq9KpdK43jCMtkKeViKRSFNg8+rVq7auq2/NlFo/AKDXa3drzqOOd4+1q9PQEgAAAAAA4KjAB2HxeFxra2uNMEs67By6ceNG0zjTNPXixYumcdJh+GUYRuO61dXVjmuan59vfN3uge5Hx6XT6UCt3Y05j26VLJVKbc15fAtlp6ElAAAAAADAUYEPwqTDMGx/f1+5XE6ZTObMrXbRaFQ//PCDbt261egeq78ikYg2Nzc1PDzccT2pVKrxdTshz9Expmle6nywbq7djTmPhmO2bbd1TtjRzrFO/owAAAAAAABO0xdBmCSNjIxoYWFB9+7d08jIyJnjTNNUsVjU/v6+isWiisWiKpWKNjc3NTU15UktkUikKahZX19vOf7okyrP6wbL5/NKp9Nnhn3dWLsbc0aj0aatjQ8fPmw5p9QcsGUymXPHAwAAAAAAXIThHt9LeIVtb2/rnXfe8WQu27YbTzmMRCIql8unjnMcR6Ojo5IOw6FisXjmnLFYrCkM2t/fP3GAfLfW7saclmU1PZWyUqmcee5XqVRSLBaTJCWTyaYz3y5qcnJSu7u7mpiY0M7OzqXnAQD0n/e++crvEi7l+48+9bsEAACAnvHzc3vfdIR54egWwE6ZptnojLIsS9ls9tRxc3Nzkg7PJzvaSXWa49sS19bWerZ2N+aMRCJNgVYsFjt1i6TjOI3fzfFrAAAAAAAAvDJQQdjRJx16IR6Pq1gsKhQKKZ1OK5FIyLIsOY6jUqmkmZkZWZalSCSira2tU7u7jjr+81ZPTfR67W7NmUwmG3Patq2pqSlls1lZltUI3KampmTbtpLJ5JmdaAAAAAAAAJ3qy62R29vbbR2+XmfbtnK5nEqlkn766aeu1JTNZvX06dPGwfChUEizs7NKpVKKx+NtzVEqlZRKpbS3t6dkMtn2OVlerN2LOfP5vAqFgjY3Nxtz1g/bT6VSLYO/i2BrJAAMLrZGAgAABJ+fn9v7Igjb3t5WJpNRqVQ68xD587iuK8MwuhaEITgIwgBgcBGEAQAABJ+fn9t/3tPVLmF5eblxXlUfZHYAAAAAAAAIqECfEfbs2TNlMplGAGYYhs8VAQAAAAAAoF8FuiPs4cOHkg4DMNd1ZZqmIpFI4yypa9eunTvHmzdv5DiO1tbW9Pbt267WCwAAAAAAgOAKdBBmWVajC6xYLGpubu7Scy0tLen69etelQYAAAAAAIA+E+itkaFQSNJhiNVJCCZJpmlqamrKg6oAAAAAAADQjwLdEWaapl6/fq2bN296Ml8ul/NkHvSHarWqycnJlmMWFxe1uLjYo4oAAAAAALjaVlZWtLKy0nJMtVrtUTUnBToIm5ub0+vXr7W3t+fZfBgcBwcH2t3dbTmmVqv1qBoAAAAAAK6+Wq127mdxPwU6CPvss8/0+eefy7IsT+Z78uSJPv74Y0/mQvANDQ1pfHy85Zjh4eEeVQMAAAAAwNU3PDysiYmJlmOq1aoODg56VFEzw3Vd15eV25TNZpXJZLS9va1f/OIXHc118+ZNvXr1yqPKEFSTk5Pa3d3VxMSEdnZ2/C4HANBD733zld8lXMr3H33qdwkAAAA94+fn9kAfli8dHpQfiUSUSCQ6mmdra8uzzjIAAAAAAAD0n0BvjawrFouanZ3V9evXlU6nNTY21tZ1e3t7chxHlUpFa2trXa4SAAAAAAAAQdYXQdjLly8lSZVKRalU6lJzuK4rwzC8LAsAAAAAAAB9JPBB2N27d5XP5yVJhmHoMkeaEYABAAAAAAAg0GeEra6uKpfLNcKvy57rH/DnAQAAAAAAAKAHAt0RlsvlJP2jEywajSoWiykUCl34nLDHjx9re3u7i9UCAAAAAAAgyAIdhFmWJcMwFAqFtLm5qampqUvPtbCwoGvXrnlYHQAAAAAAAPpJoLdGhkIhSdLy8nJHIVh9runpaQ+qAgAAAAAAQD8KdBA2MzMjSTJN05P5VldXPZkHAAAAAAAA/SfQQVgqlZLrurJt25P56AgDAAAAAAAYXIEOwuLxuKanp/X06VNP5nv+/Lkn8wAAAAAAAKD/BDoIk6RCoaByuaxvv/2247kePnzoQUUAAAAAAADoR4F+aqR0eD7Y48eP9fHHH+t3v/vdped5+/atLMvysDIAANBL733zld8lAAAAoM8FOgirb2X8p3/6J42Ojur69euKx+MXnsdxHK2trXldHgAAAAAAAPpIoIOwBw8e6PXr1433rusqm81eai7XdWUYhlelAQAAAAAAoM8E+oyw+fl5ua4r13UliSALAAAAAAAAlxboICyVSkk6DMDqgdhlXwAAAAAAABhsgd4aOTIyokgkotevXyuTySgSiWhsbOzC89i2rQcPHui7777zvkgAAAAAAAD0hUAHYZJ0584dhcNh3bt379JzTE9P6/bt25cK0dC/qtWqJicnW45ZXFzU4uJijyoCAAAAAOBqW1lZ0crKSssx1Wq1R9WcFPggLBqN6tWrV57MNTs768k86A8HBwfa3d1tOaZWq/WoGgAAAAAArr5arXbuZ3E/BT4Im56eViaT8WQur+ZBfxgaGtL4+HjLMcPDwz2qBgAAAACAq294eFgTExMtx1SrVR0cHPSoomaBDsJqtZrS6bRs29b777+vP/zhDx3NNz097VFl6Afj4+Pa2dnxuwwAAAAAAAZGO0cQTU5O+tY1FuggLB6Pa2NjQ67rqlQqaWpqSh988IHfZQEAAAAAAKAPDfldQCulUqnpfSgU8qcQAAAAAAAA9L1AB2GmaUqSDMNQPB7XrVu3fK4IAAAAAAAA/SrQQVgymZTrupKkp0+fdjzf3bt3O54DAAAAAAAA/SnQQdjS0pLm5uYkST/++GPH8x3fagkAAAAAAIDBEeggTJKKxaI++OADxeNx/f3vf7/0PFtbW7Jt28PKAAAAAAAA0E8CH4RJ0tdff61kMqlIJKKvv/5atVqtretqtZpqtZpevnypRCLR5SoBAAAAAAAQZD/3u4BW3n33XW1tbTXeu66rZDKpZDJ54blc15VhGF6WBwAAAAAAgD4S6I6w+mH59ZdhGE3vL/ICAAAAAADAYAt0EJZKpSRJhmE0QrDLoBMMAAAAAAAAgd4aOTIyotu3b+vZs2eSpGg0qlAodOF5bNuWZVkeVwcAAAAAAIB+EuggTDrsCnv+/LnK5bJu3Lhx6Xny+bzu3r3rXWEAAAAAAADoK4HeGikddoGNjIx0FIJJ/zhvDAAAAAAAAIMp8EGYJC0vL6tWq3U8z2WeNgkAAAAAAICrIfBbIyXp3r17nszz+PFjT+YBAAAAAABA/+mLIOy4Wq2mUqmkYrGovb092batsbExmaapcDiseDyud955x+8yAQAAAAAAECB9FYRtb28rnU5rfX296fuu68owjMb7dDot0zR1//59/f73v+91mQAAAAAAAAigvjgjTJJWV1cVDoe1vr4u13UbL0lNIZh0GIxVKhUlk0n96le/0o8//uhHyQAAAAAAAAgQw+2DRyl+/vnnun///onOr3ZLHxoaUrlc1r/8y790q0QEyOTkpHZ3dzU0NKTx8fGWYxcXF7W4uNijygAAnXjvm6/8LsFX33/0qd8lAAAAnGtlZUUrKystx1SrVR0cHGhiYkI7Ozs9quxQ4LdGPnv2TOl0WoZhyDCMRvgViUQ0OzurcDisUCgk0zQ1NjYm27a1t7enSqWi9fV12batg4MDzc3NaXNzk7PDBsjBwYF2d3dbjvHiaaQAAAAAAOBQrVY797O4nwIfhNVDMNd1FQqFlMlkND8/r5GRkVPHT09PN75+9OiRXr9+rQcPHujZs2f65JNP9Oc//7lXpcNn7XSEDQ8P96gaAAAAAACuvuHhYU1MTLQcU+8I80Ogt0Y+e/ZMiURCkpRKpfSnP/3p0nNls1ktLy+rVCrp17/+tVclIoDqWyP9aLEEAHQPWyM/9bsEAAAAT/j5uT3Qh+U/ffpUhmEom812FIJJ0tLSkubm5rS2tuZRdQAAAAAAAOgngQ7CLMtSJBLRH//4R0/mS6VSKpVKnswFAAAAAACA/hLoM8Js21Y+n/dsvlAoJNu2PZsPAAAAAAAA/SPQHWGSZJqmZ3MRggEAAAAAAAyuQAdhpml6Gl7lcjlPgzUAAAAAAAD0j0AHYZFIRIVCwZO57t+/3zhzDAAAAAAAAIMn0EHY/Py8isWiPvvss0vPUavVdOfOHWWzWRmGoVQq5WGFAAAAAAAA6BeBDsLi8bimpqaUyWT0r//6r9re3m772pcvX+rOnTsaHR3V+vq6DMNQJBLRrVu3ulcwAAAAAAAAAivQT42UDs/1ev/995XL5ZTL5RSNRhWJRBQOhxvnfTmOo729PZXLZW1ubsqyrMb1rutKkgzD0Orqqi/3AAAAAAAAAP8FPgiLRqN6/PixPvnkExmGoVKppFKpdOb4evAlHYZfhmHIdV2tra3pxo0bPagYAAAAAAAAQRTorZF1yWRSa2trGhkZaQq6XNc98aqHX/UAbGRkROVyWbdv3/bxDgAAAAAAAOC3vgjCpMPzwra2tnTv3r1G6HWa+s9GRkaUyWS0t7en6enpHlcLAAAAAACAoAn81sij6uFWJpPRxsaGLMtSpVLR3t6eJGlsbEzhcFjRaJTwCwAAAAAAAE36Kgg7am5uTnNzc36XAQAAAAAAgD7RN1sjvfD8+XO/SwAAAAAAAIBPBioIS6fTfpcAAAAAAAAAnwxMEPbs2TPZtu13GQAAAAAAAPBJ35wR9t1336lUKqlSqVwo0Nrb25PjOIRgA6harWpycrLlmMXFRS0uLvaoIgAAAAAArraVlRWtrKy0HFOtVntUzUmBD8K2t7eVSqVUKpUudb3ruo2vDcPwqiz0gYODA+3u7rYcU6vVelQNAAAAAABXX61WO/ezuJ8CH4RFo1FtbW3Jdd1LBVn1a44GYhgMQ0NDGh8fbzlmeHi4R9UAAAAAAHD1DQ8Pa2JiouWYarWqg4ODHlXULNBB2CeffCLbtmUYhgzDIMzChYyPj2tnZ8fvMgAAAAAAGBjtHEE0OTnpW9dYoA/L39zcbHw9NTWlQqGg/f19HRwcXOhVLpd1+/ZtH+8EAAAAAAAAfgt0R5hlWTIMQ6FQSJZlXXob2/T0tAqFgsbGxjyuEAAAAAAAAP0i0B1hoVBIkjQ/P+/JWU7JZLLjOQAAAAAAANCfAh2EJRIJSVI4HPZkvkePHnkyDwAAAAAAAPpPoIOw+/fvy3XdprPCOlGr1TyZBwAAAAAAAP0n0EHY1NSUHj9+rEKhoL/+9a8dzzc3N+dBVafLZrOKxWIaHR2VYRgKh8NKJBIqlUpdW7Oba/t1P7ZtKxaLdXUNAAAAAAAwmAIdhEmH53p9/PHHisfj+vvf/97RXJZleVTVP5RKJY2OjiqdTkuSCoWCKpWKMpmMLMtSLBZTLBaT4zh9sXa37sdxHBmGce4rHA7LNM0LzQ0AAAAAANAOw3Vd1+8izlLfyvjmzRslEgkZhqFMJnOhpz/u7e3JcRzlcjmVSiX99NNPntVXKpUa3UvJZFK5XO7EmJmZGVmWJdM0VS6XGw8ACOLa3byfbDbbCNfOU6lUOgrDJicntbu7q4mJCe3s7Fx6HgBAsLz3zVd+l+Cr7z/61O8SAAAAPOHn5/ZAB2FjY2N6+/atJ3O5rivDMDwLwhzH0dTUlBzHkWmaqlQqp46zbbtx2H80GlWxWAzk2t2+n9HR0ba6yLz4MyIIA4CriSDsU79LAAAA8ISfn9sDvTVyYWFBrus2XpKa3l/k5bVEItEIdlp1OpmmqXg8Lumw4yqfzwdy7W7eTz6fl+M4WlpaUrFYbPkqFArnzgcAAAAAAHAZge4Ie/36tWZmZmQYhidhllcdYUe7oiRpf3+/5RbB9fV1JRIJSVIoFNL+/n6g1u72/dTnPqvLzGt0hAHA1URH2Kd+lwAAAOAJPz+3/7ynq13Q9PS0TNPU1taWotGoIpGIrl27dqE53rx5I8dxPOnEqstkMo2vo9Houedk1TuopMMtiOvr603f83vtbt7P+vq6bNs+9bwxAAAAAACAXgp0ECYdhi6vX7/W//pf/6ujeZaWlnT9+nVPajoaqkUikbauMU1Ttm1Lkp4+fXrpIKwba3fzfh4+fKhQKKT5+fm25gUAAAAAAOiWQJ8RJkl37tzRyMhIx/OYpqnp6emO57Esq+n9zZs327ruaMC0vr4emLW7eT+WZcmyLDmOo9HRUYXDYaVSqUvfPwAAAAAAQCcCH4RNT09reXnZk7m8OIi9VCo1vTdNs63rjo87HkD5tXY37+f4ofu2bSufzyuRSMgwDCUSiUv9OQAAAAAAAFxG4IMwSZ50cknS1NRUx3O8evWq6f1552nVHT/bbHNzMxBrd+t+bNs+EbIdt76+rpmZGaVSqbbWBAAAAAAA6IRvQdh3333n19KnqtVq2t7ePndc/Vysust2UF3mCYrdWLtb92OapnK5nDKZjJLJZMt58/m8ZmZm2loXAAAAAADgsnwLwh48eKDPPvvMr+VPSCQSbZ1ddTw4uizHcS58TTfW7ub9JJNJLS0tKZfLqVKpaH9/X5lM5tSuM8uyFIvFPKkFAAAAAADgNL49NTKfz8s0TYXDYf3+97/3qwxJ0t27d7W3t6c//vGP5469TIAlndxyuLe3d+E5urF2L+8nFAppaWlJS0tLWl9f18LCQtP6pVJJ2WxWS0tLl6rpuGq1qsnJyY7nWVxc1OLiogcVAQAAAADQv1ZWVrSystLxPNVq1YNqLse3ICwUCmltbU3vv/++JPkWht29e1dra2sql8s9XfeyAVRQ177onPF4XNFoVHNzc00H5j98+NCzIOzg4EC7u7sdz1Or1TyoBgAAAACA/lar1Tz5nO0n34IwSYpGo3r06JEWFhZUqVT04MGDnq1dq9W0sLCg9fV1lctlvfPOO21dFwqFPAmS2j2Uvttr+30/5XJZMzMzjTDMcRyVSiVFo9GOaxoaGtL4+HjH8wwPD3c8BwAAAAAA/W54eFgTExMdz1OtVnVwcOBBRRfnaxAmqdH9c//+fZVKJWUyGf3617/u6ppPnjxROp2W4zja3NzUjRs32r52bGzMk+BobGzsUtd4vbaf91O3urradFh+sVj0JAgbHx/Xzs5Ox/MAAAAAAADvjg6anJz0rbPM9yBMOgzDQqGQPvnkE0WjUc3MzGh5eVm/+93vPFvj5cuXKhaLyufzchxHU1NT2tzc1NTU1IXmuUznk3Ry6+BlO6i8XtvP+6mLRCKKRqMqlUqSvDvAHwCAq+S9b746d8z3H33a9ToAAAD6WSCCMOnwCYNjY2NaWFjQ5uam4vG4pH+EJDdv3pRpmjJNs+VWtVqtpr29Pdm2rWKxqFKp1HQGleu6isfjWltbu1Sds7OzTfM5jtNWCHT8MPlwOByItf28n6NisVgjCAMAAAAAAOiGwARh0uEB6rFYTPF4XBsbG5Iky7Kagprj2jnjynXdxtf5fF4ff/zxpWs8uoVPOuxeikQi515XqVSa3l9m61831vbzfo4yTbPxdSfbLAEAAAAAAM4y5HcBx42MjKhYLGptbU2RSESu6zaCrPrXR1/7+/unfv/oSzrcfrm/v99RCCYddlAd1e42vqNhXSgUagp+/Fzbz/s56uj1nWyzBAAAAAAAOEvggrC6eDyuzc1NFYtF3b59u6mrq84wjKbXcaZpNgKwR48eaWRkpOO6IpFIU1Dz6tWrtq7b3NxsfH08fPJzbT/v56z5YrFYx/MBAAAAAAAcF6itkaeZm5vT3NycJOn169cqlUp69eqVHMfR3t5eozOp3pU0NjamWCymaDTqSfB1mvn5eeXzeUlquW3zqKPj0ul0oNb2837qjm619OKJkQAAAAAAAMcZ7mmtVmjJsqyms7XO+yMslUqNLifTNE+cr+X32n7eT104HJZt21paWlImk+lorvpjWCcmJrSzs9NxbQCAYGjnqYmDjqdGAgCAfuDn5/bAbo0MsvqTLOvW19dbji8UCo2vz+ueyufzSqfTZ57V1Y21u3k/7VhfX5dt2wqFQlpeXu54PgAAAAAAgNPQEXZJtm0rHA5LOgySyuXyqeMcx9Ho6Kikwy1/xWLxzDljsZhKpVLj/f7+/qkHx3djbS/nLJVKSiQSchxH0WhUmUzmzCdR2ratmZkZOY6jcrnc1hMrz0NHGABcTXSEnY+OMAAA0A/oCOtDpmk2OqMsy1I2mz11XP18s1Ao1NRJdZqjIZgkra2t9WxtL+csFAqNs9tKpZJmZmaUSqVOjKv/bGxsTJVKxZMQDAAAAAAA4CwEYR2Ix+MqFosKhUJKp9NKJBKyLEuO4zRCHsuyFIlEtLW1dWp311HHf26aZs/W9nLORCJx4nv5fF6jo6NKJBJKpVKamZlRLBZTMplUuVxuea8AAAAAAABeIAjrUDQa1f7+vjKZjGzb1tzcXCPwGRsbU6FQULlcbiuIKhQKMk1ToVBIS0tL5z490cu1vZwzGo2qUqkomUw27qfOsizt7e1peXm5sc5F6gMAAAAAALgszgjDlcMZYQBwNXFG2Pk4IwwAAPQDzggDAAAAAAAAuowgDAAAAAAAAAOBIAwAAAAAAAADgSAMAAAAAAAAA4EgDAAAAAAAAAPh534XAHRLtVrV5ORkyzGLi4taXFzsUUUAAAAAAFxtKysrWllZaTmmWq32qJqTCMJwZR0cHGh3d7flmFqt1qNqAAAAAAC4+mq12rmfxf10JYOw7e1tWZalUCik2dlZDQ8P+10SfDA0NKTx8fGWY/i7AQDB8N43X/ldAgAAADwwPDysiYmJlmOq1aoODg56VFGzKxWEbW9vK5FIyLKspu/PzMyoUCjol7/8pU+VwQ/j4+Pa2dnxuwwAAAAAAAZGO0cQTU5O+tY1FvjD8t9//33dvHlT169f1/Xr13Xt2jXduXPnxLjXr19rZmZGlmXJdd2m1+bmpsLhsP7yl7/4cAcAAAAAAAAIgsAHYaFQSOVyWW/evFEymdTm5qaePn3aNObt27eam5vT/v6+JMkwjMa10WhUpmnq4OBAiUSi5/UDAAAAAAAgGAIfhFmWpXQ6rb29Pd27d09TU1MnxiwsLMhxHBmG0egCy2Qy2tvb04sXL/TDDz/oxYsXOjg40GeffebDXQAAAAAAAMBvgQ7CPv/8c0UiET18+PDMMc+ePdP6+nojBDMMQ5lMRvfu3WsaF41G9ejRI5XL5W6XDQAAAAAAgAAKdBCWz+fP7eBaWFhobIU0DEORSORECFZ3584dbW5uel4nAAAAAAAAgi/QQVilUtGNGzfO/Pndu3flOI4kyXVdSdLq6uqZ40dGRhrjAAAAAAAAMFgCHYSZpqnt7e1Tf/b69WvlcrmmLZHJZLJlcPb69WvNzs52p1gAAAAAAAAEWuCDsHw+f+L7b9++bXoCpGEYMk1Tf/rTn1rOt7GxoXQ67XmdAAAAAAAACL6f+11AK8lkUvPz85Kk+/fvS5JKpZLS6bRs227qBisUCi3nev36tR4+fKg3b950vW4AAAAAAAAET6A7wuLxuObm5pTJZDQ6OqrR0VElEglVKpVGCCZJjx8/brkl8smTJ4pGoz2qGgAAAAAAAEEU6CBMktbX1/XBBx/Idd3GSzo8HD8UCqlQKGhhYeHEdd99952Wl5d1/fp1pVIp7e/vy3Ecffvtt72+BQAAAAAAAARAoLdGSodPeiwUCtrY2FCxWJRlWQqFQrp586aSyaRGRkZOXLO6utrYKjk1NaWpqanGz/7jP/5Dv/vd73pWPwAAAAAAAIIh8EFY3dzcnObm5toau7CwcGqXGAAAAAAAAAZX4LdGeum7777zuwQAAAAAAAD4JPBB2Pb2tmdz0SUGAAAAAAAwuAIfhKVSKU/m2drakmVZnswFAAAAAACA/hP4IMy2bU/mSafTnswDAAAAAACA/tQXQdjf//73jub44osvtL6+7lFFAAAAAAAA6EeBf2qk67pKp9P693//90tdv7y8rGw263FV6AfValWTk5MtxywuLmpxcbFHFQEA0F3vffPVuWO+/+jTrtcBAAAG18rKilZWVlqOqVarParmpMAHYZKUy+WUSCT061//+kLX3blzR+vr63Jdt0uVIcgODg60u7vbckytVutRNQAAAAAAXH21Wu3cz+J+6osgzHVdJRIJbW1t6Re/+MW547e3txWLxWTbtlzXlWEYhGEDaGhoSOPj4y3HDA8P96gaAAAAAACuvuHhYU1MTLQcU61WdXBw0KOKmvVFEBaPx7W+vq65uTn9x3/8R8uxz5490/z8fON9PQSLx+N69uxZt0tFgIyPj2tnZ8fvMgAAAAAAGBjtHEE0OTnpW9dY4A/Lj0ajWltb0+bmpjY3N/Xhhx+eOXZ5eVnz8/ON7i/XdTUyMiLLsrS2tqbbt2/3qmwAAAAAAAAETOA7wiKRSOP/bm5uanZ2VqZp6sGDB40xtVpNc3NzsiyraStkNBpVoVDQyMiIpMOgDAAAAAAAAIMp8B1hjx49anwdiUS0tramR48e6euvv5YkvX79WlNTUydCsEwmoxcvXjRCMEmanp7uef0AAAAAAAAIhsAHYcfF43E9fvxYyWRSd+/e1ezsrPb39xs/HxkZUblc1r17905c+8UXX/SyVAAAAAAAAARI3wVhkpRMJvXHP/5RuVzuxFbIra2tMzu/isVijysFAAAAAABAUPRlECZJmUymcfi967rKZrMntkIet7m52avyAAAAAAAAEDC+HJb/9u1bbWxsdDzPhx9+qI2NDaVSKZmmqefPn586bm9vT7lcTo7jdLwmAAAAAAAA+pNvT42Mx+MyDMOTubLZ7Llj6lsoAQAAAAAAMJh82Ro5MjKiSCQi13U7fklqawwAAAAAAAAGm29nhEWjUUnquEurnaCLMAwAAAAAAAC+bY28c+dOY0vj0tKSwuGwxsbGPF9nb29PjuPo8ePH2t7e9nx+AAAAAAAA9AffgrDp6WmFQiFls1l9/PHHXV/v9u3bun79etfXAQAAAAAAQDD5tjVSOtweaZpmT9YyTVNTU1M9WQsAAAAAAADB42sQdufOna5shzxLPB7v2VoAAAAAAAAIFt+2RkqH2xV76dGjRz1dDwAAAAAAAMHha0cYAAAAAAAA0Ct9E4S9fPlSy8vLevLkybljnz17puvXr+vbb7/tQWUAAAAAAADoB75ujWzXnTt3tL6+3nj/9u1b/eEPfzhz/O3btzU1NaVoNKqHDx+qUCjol7/8ZS9KRYBUq1VNTk62HLO4uKjFxcUeVQQAAAAAwNW2srKilZWVlmOq1WqPqjkp8EHY3bt3VSgUGu8Nw9CLFy9aBmGSFIlEZNu2pqamNDMzo42NDf3Lv/xLt8tFgBwcHGh3d7flmFqt1qNqAAAAAAC4+mq12rmfxf0U6CDs7du3yuVyMgxDkuS6rlzXVSKRaOv6UCikcrmsd999VzMzMyqXy4RhA2RoaEjj4+MtxwwPD/eoGgAAAAAArr7h4WFNTEy0HFOtVnVwcNCjipoFOgh7+PChpMMALBQKaX5+Xul0WlNTU23PYZqmFhYWtLq6qkQiof/8z//sVrkImPHxce3s7PhdBgAAAAAAA6OdI4gmJyd96xoL9GH5pVJJo6OjKhaL2tvb0+PHjy8UgtW9//77kqRKpaKvv/7a6zIBAAAAAADQBwIdhNm2reXlZc3NzXU0j2maja/X1tY6LQsAAAAAAAB9KNBBmOM4TSHWZe3t7Uk63GK5ubnZ8XwAAAAAAADoP4EOwkzTbIRYnSgWi42vHcfpeD4AAAAAAAD0n0AHYZFIRIVCoeN58vl848mToVCo4/kAAAAAAADQfwIdhCWTSZVKJf3lL3+59Bx37txpdIEZhqHZ2VmPqgMAAAAAAEA/CXQQFo1GdePGDUWj0QuHYbVaTXfu3FGhUJBhGHJdV5KUSCS6USoAAAAAAAACLtBBmCStrq7KdV1Fo1H99re/PTcQq9Vqunv3rkZHR7W+vt74vmEYMk1TH3/8cbdLBgAAAAAAQAD93O8CzhOJRLS2tqb5+XkVi0UVi0WFQiGZptl4SZJt27IsS7ZtS1KjA6zeDWYYhifnjQEAAAAAAKA/BT4Ik6R4PK7NzU3Nzc3p7du3chxHlmXJsqymcfXwS1LjcHzXdRUKhbSxsaEbN270smwAAAAAAAAESOC3RtZFIhFtb2/r3r17cl33xEs6DL+OBmCu6yqZTGpra0vT09N+lg8AAAAAAACf9UVHWN3IyIgymYwymYw2NjZULBZlWZb29vZk27bGxsYUCoU0OzurWCymaDSqkZERv8sGAAAAAABAAPRVEHbU3Nyc5ubm/C4DAAAAAAAAfaJvtkZ24u3bt1peXva7DAAAAAAAAPhoIIKwkZERFYtF/epXv/K7FAAAAAAAAPikb7dGXtTs7KxWV1f12Wef6cGDB36XAwAA4Iv3vvmqrXHff/RpV+sAAADwQ98FYdvb23IcR3t7e21fY1mWCoWCXNdVLpcjCAMAAAAAABhAfRGEPX/+XLlcTqVSqeO5HMfpvCAAAAAAAAD0ncAHYZ9//rnu378vSXJd99LzGIYhwzAUiUS8Kg0BV61WNTk52XLM4uKiFhcXe1QRAAAAAABX28rKilZWVlqOqVarParmpEAHYa9fv1Y6nZZhGKeGYGd9/6xxpmlqdXW1G6UigA4ODrS7u9tyTK1W61E1AAAAAABcfbVa7dzP4n4KdBCWy+UkHT71MZlMKhwOyzRNSdL+/r7m5+c1OjqqtbW1U693HEcvXrzQkydPZFmWbty40avSEQBDQ0MaHx9vOWZ4eLhH1QAAAAAAcPUNDw9rYmKi5ZhqtaqDg4MeVdTMcDvZb9hl7777rgzD0N/+9rdTf55KpfTkyRNVKhW98847Z86TSqX0448/6s9//nOXKkWQTE5Oand3VxMTE9rZ2fG7HABAG9p9kiF6h6dGAgCAbvHzc/tQT1e7INu2G11hp7l//75c11U2m205Tzqd1osXL/Tll196XSIAAAAAAAD6RKCDMEmanZ0982dTU1Oam5tTLpdredaTaZqanp7W0tISZ0IBAAAAAAAMqEAHYZFIRHt7ey3HpNNpua7beLLkWW7evCnXdfXo0SMvSwQAAAAAAECfCHQQZpqm8vl8yzHRaFTT09PK5XL661//eua4zc1NSVKhUPC0RgAAAAAAAPSHQAdh8/PzymQy+vLLL7W9va2XL1/q5cuXJ8YtLy/LdV1FIhF9++23J37++eefy7IsSYfnjnVDNptVLBbT6OioDMNQOBxWIpFQqVTqynrdXruX9xMOh2UYhtbX1z2fGwAAAAAAoC7QQVg8Htfw8LCWlpYUDocVi8UUi8X0q1/96sS4ubk5ua6reDyumzdv6u7du7p7966uX7/etG3SNE1PayyVShodHVU6nZZ02HFWqVSUyWRkWVajZsdxPF23W2v3+n7S6XTXwkkAAAAAAICjDNd1Xb+LaGV9fV3z8/MyDEP1Ug3DULlc1o0bNxrjbNvWu+++K8Mwmq4/enuGYSgej+vp06ee1FYqlRSLxSRJyWTy1CdczszMyLIsmaapcrmsUCgU2LV7fT9H15MOQ7d4PH7p+er8fAwrAOBy3vvmK79LwDHff/Sp3yUAAIArys/P7YHuCJMOu73W1taaAq1QKNQUgkmHnV4vXrzQ8VzPMIxGOBYKhbS6uupJXY7jKJFINNY+LTSS/nEmmW3bjfFBXLvX93N0PQAAAAAAgF4IfBAmHYZh+/v7yuVyymQyZ26li0aj+uGHH3Tr1i25rtv0ikQi2tzc1PDwsCc1JRKJxvbA+jbC05im2ehyKpVK5x7+79favb6fhYUFjY2NedYhBwAAAAAAcJ7Ab428rLdv3zaeFGmapqampjyb27ZthcPhxvv9/f2Wgc76+nqj+ykUCml/fz9Qa/f6fvL5vFKplMrlsubm5hoBHFsjAWBwsTUyeNgaCQAAuoWtkV0wMjKiubk5zc3NeRqCSVImk2l8HY1Gz+1qOhruOI7T0dMRu7F2L+/Htm2lUiktLS0pEom0fR0AAAAAAECnAh2E1Wo13b17V7/5zW/05Zdf+l1Ow9HtgO2GOUefVtnJYf3dWLuX95NIJBSJRJrCNwAAAAAAgF74ud8FtBKPx7WxsSHXdVUqlTQ1NaUPPvjA15osy2p6f/Pmzbaui0QijbPNLtsR1o21e3k/6XRalmWpUqm0NR4AAAAAAMBLge4IK5VKTe+DcLD68ZqOdka1cnzc8QDKr7V7dT+WZSmbzSqXy7W9BgAAAAAAgJcCHYTVAxPDMBSPx3Xr1i2fK5JevXrV9L7dcO7atWtN7+sH+fu9dq/uZ25uTvF4XMlksq35AQAAAAAAvBboICyZTKr+UMtOztWqu3v3bsdz1LcD1l22g+oy2wO7sXYv7qf+hMnV1dW25gYAAAAAAOiGQAdhS0tLmpubkyT9+OOPHc93fBvgZRwPji7LcZxArN3t+1lfX9f6+roKhUIgtrYCAAAAAIDBFeggTJKKxaI++OADxeNx/f3vf7/0PFtbW56EPpcJsKSTWw739vYCsXY378dxHCUSCSWTSUWj0UutAwAAAAAA4JVAPzWy7uuvv9bTp08ViUR0//59JRIJDQ8Pn3tdrVaTdHh+1dLSUrfLvJDLBlBBXfu0Oefm5mSapnK5nOfrtaNarWpycrLjeRYXF7W4uOhBRQAAAAAA9K+VlRWtrKx0PE+1WvWgmssJdBD27rvvamtrq/HedV0lk8lLHbjuuq4Mw+i4plAo5EmQdJltgt1Yu1v3k81mZVmWyuVyx3Nf1sHBgXZ3dzuepx6oAgAAAAAwyGq1miefs/0U6CAsmUzq/v37jfeGYTQOz/fL2NiYJ8HR2NhYINbuxpyWZSmdTiuTySgSiXQ892UNDQ1pfHy843na6T4EAAAAAOCqGx4e1sTERMfzVKtVHRwceFDRxQU6CEulUrp//36jk+uyIZiXAdplD3w/HjZdtiPM67W7MWcikVAkEvF9O+r4+Lh2dnZ8rQEAAAAAgKvCq6ODJicnfessC3QQNjIyotu3b+vZs2eSpGg0eqngxrZtWZblSU2zs7NNczmO01ZNxw+TD4fDgVjb6zmz2axs21Y0GlUikTh3nqOB2sOHD/X06dPG+zt37igej587BwAAAAAAQDsCHYRJh11hz58/V7lc1o0bNy49Tz6f1927dzuuZ2Zmpum9bdttbf+rVCpN7y/zFMVurO31nG/evJEklUqlc+c4zrKsplDONE2CMAAAAAAA4Jkhvwuoq9VqqtVq2t7e1vb2duOA8mg0qpGRkY5CMOnwvDEvtkfOzs42vbdtu63rjnY+hUIhmaYZiLX9vB8AAAAAAIBe8jUI+9nPftZ4jY6OanR0VOFwWOFwWGtra41xy8vLnjy57zJPmzwuEok0bR189epVW9dtbm42vj4ePvm5ttdzZjIZua7b9utogFYoFJp+lslk2qoFAAAAAACgHb5ujTzeoRWNRpVKpRpdYHX37t3zZL3Hjx97Ms/8/Lzy+bwktX322NFx6XQ6UGv7eT8AACCY3vvmq3PHfP/Rp12vAwAAwEu+b400DEOGYahUKunFixe6fft2UwgWRKlUqvF1O2dhHR1jmualzgfr5tp+3g8AAAAAAECv+B6ESYfb6W7duuV3GW2LRCJN4c/6+nrL8YVCofH1ed1T+Xxe6XT6zLO6urF2N+8HAAAAAAAgKAzXixPkL2loaEiGYahSqeidd97xq4xLsW1b4XBY0mGQVC6XTx3nOI5GR0clHW79LBaLZ84Zi8Wauq329/ebzu/q5trdmLMd4XC4EfoVCgVPnhI5OTmp3d1dTUxMaGdnp+P5AADd1842PAQPWyMBAMBl+Pm5PRAdYf0WgkmHWwLrnVGWZSmbzZ46bm5uTtLhkxWPdlKd5vi2xKMPDOj22t2YEwAAAAAAIEh8D8JO63jqluvXr3s6XzweV7FYVCgUUjqdViKRkGVZchxHpVJJMzMzsixLkUhEW1tb597r8Z8ffaJit9fu1pwAAAAAAABB4XsQNjY21rO1KpWK53NGo1Ht7+8rk8nItm3Nzc1pdHRUiURCY2NjKhQKKpfLbYVGhUJBpmkqFAppaWnp3EPovVy7m3O2UqlU5LquXNf1ZFskAAAAAADAWXw/IywcDutvf/tb19d6/fq1Zmdn9dNPP3V9LfiLM8IAoP9wRlh/4owwAABwGQN/Rli31Wo1nm4IAAAAAAAw4H7udwG2bes3v/lNV+be29uT4ziybVuu68owjK6sAwAAAAAAgODzPQiTTj4t0Ss+7voEAAAAAABAwAQiCOuWox1ghGIAAAAAAACDLRBBWDdDKrZDAgAAAAAAQApIEBaJRLo2d/2MMAAAAAAAAAw234Mw0zS1ubnZ1TVs21YikdB3333X1XUQLNVqVZOTky3HLC4uanFxsUcVAQAAAABwta2srGhlZaXlmGq12qNqTvI9COsF0zS1urqqmzdv+l0Keujg4EC7u7stx9RqtR5VAwAAAADA1Ver1c79LO6ngQjCpO5uv0QwDQ0NaXx8vOWY4eHhHlUDAAAAAMDVNzw8rImJiZZjqtWqDg4OelRRM9+DsL29vZ6tNT093bO14L/x8XHt7Oz4XQYAAAAAAAOjnSOIJicnfesaG/Jl1SMcx+nZWt0+iwwAAAAAAADB5XsQJolD7AEAAAAAANB1gQjC8vm83yUAAAAAAADgigtEEJbL5fTtt9/6XQYAAAAAAACusEAEYZIUj8f129/+Vt9++61qtZrf5QAAAAAAAOCK8T0Ic1238Xrx4oVu376t0dFRPXnyxO/SAAAAAAAAcIX83M/FDw4OJElv376VJO3t7Uk6fJKkaZq+1QUAAAAAAICrx9cgrG5kZKTp/wIAAAAAAABe831rJAAAAAAAANALBGEAAAAAAAAYCARhAAAAAAAAGAiBOCMMAAAA/ee9b746d8z3H33a9ToAAADaRUcYAAAAAAAABgJBGAAAAAAAAAYCQRgAAAAAAAAGAkEYAAAAAAAABoKvQdiTJ090/fp1ffjhh36WAQAAAAAAgAHg21MjX79+rWQyKUmybVvz8/P64IMP/CoHV1C1WtXk5GTLMYuLi1pcXOxRRQAAAAAAXG0rKytaWVlpOaZarfaompN8C8IePnwoSTIMQ5IUCoX8KgVX1MHBgXZ3d1uOqdVqPaoGAAAAAICrr1arnftZ3E++BWGWZUmSXNdVPp/XrVu3Th13584dpVKpM38OnGVoaEjj4+MtxwwPD/eoGgAYXO9985XfJQAAAKBHhoeHNTEx0XJMtVrVwcFBjypq5lsQZtu2RkdHVSqVND09fea4QqGgWCzmSRD23Xff6caNGx3Pg/4wPj6unZ0dv8sAAAAAAGBgtHME0eTkpG9dY74dlh8KhbS8vNwyBPNaOp3u2VoAAAAAAAAIFt+CMNM0ZZpmT9e0bbun6wEAAAAAACA4fAvC7ty5o6dPn/ZsvdevXxOEAQAAAAAADDDfzghLJpNKp9Pa2tpSMpmUaZoaGxs7dWy5XL5095jjOLJtWw8ePOikXAAAAAAAAPQ534KwkZERra2taX5+XuVyueXYfD6vfD7f0Xqu68owjI7mAAAAAAAAQP/ybWukJMXjca2trcl13TNfklr+vN0XAAAAAAAABpuvQZh0GIbt7+9rYWFBoVDI73IAAAAAAABwRfm2NfKokZER5XI55XI5bW1tybIs7e3tyXVdffLJJ0okEpqdnb3U3G/evJFt21pfX/e4agAAAAAAAPSTQARhR01NTWlqaqrx/pNPPlEsFtPHH3/c0bylUkm/+c1vOi0PAAAAAAAAfcr3rZG9Eo1GmwI2AAAAAAAADJaBCcIkyTRNv0sAAAAAAACATwK3NfK4/f19jYyMeDJXoVDwZB4AAAAAAAD0n8B3hHkVgnk9FwAAAAAAAPpL4DvCTlOr1VQqlVQsFrW3tyfbtjU2NibTNBUOhxWPx/XOO+/4XSYAAAAAAAACpK+CsO3tbaXTaa2vrzd933VdGYbReJ9Op2Wapu7fv6/f//73vS4TAAAAAAAAART4rZF1q6urCofDWl9fl+u6jZekphBMOgzGKpWKksmkfvWrX+nHH3/0o2QAAAAAAAAESF8EYZ9//rk++eSTpuCrHn4dDcWOhmP1n21ubiocDuuvf/2rL7UDAAAAAAAgGAK/NfLZs2dKp9ON8KsedEUiEc3OziocDisUCsk0TY2Njcm2be3t7alSqWh9fV22bevg4EBzc3Pa3Nzk7DAAAAAAAIABFfggrB6Cua6rUCikTCaj+fn5M58AOT093fj60aNHev36tR48eKBnz57pk08+0Z///OdelQ6fVatVTU5OthyzuLioxcXFHlUEAAAAAMDVtrKyopWVlZZjqtVqj6o5KdBB2LNnz2TbtiQplUrpT3/604XnmJ6eVqFQUDab1fLysv7yl7/o17/+tdelIoAODg60u7vbckytVutRNQAAAAAAXH21Wu3cz+J+CnQQ9vTpUxmGoUwmoz/+8Y8dzbW0tKRSqaS1tTWCsAExNDSk8fHxlmOGh4d7VA0AAAAAAFff8PCwJiYmWo6pVqs6ODjoUUXNDPfo6fIB8+6772p0dFSvXr3yZL5nz57p/v37+tvf/ubJfAimyclJ7e7uamJiQjs7O36XAwAD771vvvK7BPjo+48+9bsEAAAQMH5+bg90R5ht28rn857NFwqFGlstAQAAAAAAMFgCHYRJkmmans1FCAYAANBb7XQE0jUGAAB6ZcjvAloxTdPT8CqXy3karAEAAAAAAKB/BDoIi0QiKhQKnsx1//59WZalSCTiyXwAAAAAAADoL4EOwubn51UsFvXZZ59deo5araY7d+4om83KMAylUikPKwQAAAAAAEC/CHQQFo/HNTU1pUwmo3/913/V9vZ229e+fPlSd+7c0ejoqNbX12UYhiKRiG7dutW9ggEAAAAAABBYgT8sP5fL6f3331cul1Mul1M0GlUkElE4HG6c9+U4jvb29lQul7W5uSnLshrXu64rSTIMQ6urq77cAwAAAAAAAPwX+CAsGo3q8ePH+uSTT2QYhkqlkkql0pnj68GXdBh+GYYh13W1tramGzdu9KBiAAAAAAAABFGgt0bWJZNJra2taWRkpCnocl33xKseftUDsJGREZXLZd2+fdvHOwAAAAAAAIDf+iIIkw7PC9va2tK9e/caoddp6j8bGRlRJpPR3t6epqene1wtAAAAAAAAgibwWyOPqodbmUxGGxsbsixLlUpFe3t7kqSxsTGFw2FFo1HCLwAAAAAAADTpqyDsqLm5Oc3NzfldBgAAAAAAAPpE32yNBAAAAAAAADpBEAYAAAAAAICBQBAGAAAAAACAgUAQBgAAAAAAgIFAEAYAAAAAAICBQBAGAAAAAACAgfBzvwsAuqVarWpycrLlmMXFRS0uLvaoIgAAAAAArraVlRWtrKy0HFOtVntUzUkEYbiyDg4OtLu723JMrVbrUTUAAAAAAFx9tVrt3M/ifiIIw5U1NDSk8fHxlmOGh4d7VA0AAAAAAFff8PCwJiYmWo6pVqs6ODjoUUXNCMJwZY2Pj2tnZ8fvMgAAAAAAGBjtHEE0OTnpW9cYh+UDAAAAAABgIAQ6CKvVarp7965+85vf6Msvv/S7HAAAAAAAAPSxQG+NjMfj2tjYkOu6KpVKmpqa0gcffOB3WQAAAAAAAOhDge4IK5VKTe9DoZA/hQAAAAAAAKDvBToIM01TkmQYhuLxuG7duuVzRWfLZrOKxWIaHR2VYRgKh8NKJBInwrx+WdvrOW3bViqVUjgclmEYGh0d1czMjFKplGzbvnSdAAAAAAAA7Qp0EJZMJuW6riTp6dOnHc939+7djuc4rlQqaXR0VOl0WpJUKBRUqVSUyWRkWZZisZhisZgcx+mLtbsxZzabVTgcVj6fb4RejuPIsizl83mFw2Fls9m25wMAAAAAALgMw60nTQEVi8X08uVL2batX/7ylx3Ndf36df3tb3/zqLLD0CgWi0k6DO1yudyJMTMzM7IsS6Zpqlwue7a9sxtrd2POWCymUqmkUCikaDQq0zRl27YsyzrRCVYoFBSPx1vO1476Y1gnJia0s7PT8XwAgM68981XfpeAK+D7jz71uwQAAOARPz+3Bz4Ik6REIqHt7W29fPlSv/jFLy41x9bWlt5991399NNPntTkOI6mpqbkOI5M01SlUjl1nG3bCofDkqRoNKpisRjItbsxZzqdVjabVSaT0dLS0omfZ7PZRudZnRd/HQnCACBYCMLgBYIwAACuDj8/twd6a2Td119/rWQyqUgkoq+//lq1Wq2t62q1mmq1ml6+fKlEIuFpTYlEorE98HiYc5Rpmo0up1KppHw+H8i1vZ7Ttm1ls1kVi8VTQzBJWlpaUjKZbPqeZVlnrg0AAAAAANCJQHeEvfvuu9ra2mq8d11XhmFcaq76tV50hB3tipKk/f39llsE19fXG0FcKBTS/v5+oNbuxpyJREI3b948MwSrcxxHo6OjjfdndY9dBB1hABAsdITBC3SEAQBwddARdob6Yfn1l2EYTe8v8vJSJpNpfB2NRs89J+vouVeO42h9fT1Qa3djTsdx2gq0QqFQ4+mg9fcAAAAAAADdEOggLJVKSZIMw2iEYJdx2S6ysxzdDhiJRNq65mjY08kTMLuxdjfmvMhZaHt7e42vZ2dn274OAAAAAADgIn7udwGtjIyM6Pbt23r27Jmk9rqVTlN/SqEXjs9z8+bNtq6LRCKNpyRetiOsG2v7eT/SYedY/WyyaDTadhAHAAAAAABwUYEOwqTDrrDnz5+rXC7rxo0bl54nn8/r7t27HddTKpWa3h/tjGrl+DjLsi4c+nRjbT/vR5LW1tYa8xUKhQtfDwAAAAAA0K5Ab42UDruERkZGOgrBpH+cN9apV69eNb1vt0Pt2rVrTe83NzcDsbaf9+M4jlKplCKRiIrFIueDAQAAAACArgp8ECZJy8vLqtVqHc+TTCY7nqO+HbDush1UlUolEGv7dT+2bWtmZkahUEgbGxttrwsAAAAAAHBZfRGE3bt3T8PDwx3P8/jx447nOB4cXVb9XCy/1/bjftbX1xUOh2XbthzH0ejoqLLZrCd1AAAAAAAAnKUvgrCLWl5e1o8//tiVuS8TYEkntxwefVKin2v36n4cx1E2m1U4HFYikTjx83Q6fer3AQAAAAAAvBL4w/KPe/78uYrFojY3N7W8vKwPPvjgxJiZmRlNT0/r/fffVyaT0S9/+UsfKm3tsgFUUNc+b85SqaRKpaJoNCrbtk8c0i8ddopls1ktLS15UlO1WtXk5GTH8ywuLmpxcdGDigAAAAAA6F8rKytaWVnpeJ5qtepBNZfTN0HYF198oYcPHzYFLmd1IcXjcUWjUc3Nzck0Ta2vr+t3v/udJ3WEQiFPgqTLHAzfjbV7dT/xeFzxeLzpe/l8Xul0umn9dDqtZDLpycH5BwcH2t3d7XgeL86nAwAAAACg39VqNU8+Z/sp8EHY27dvNTs7K9u2m576aBhGy+tCoZDK5bJmZmYUj8eVz+f1+9//vuN6xsbGPAmOxsbGArG2n/eTTCYVjUY1MzPTVEM+n/ekK2xoaEjj4+Mdz+PF+XQAAAAAAPS74eFhTUxMdDxPtVrVwcGBBxVdXOCDsEQioUqlIsMwGuHX0UDsPBsbGxobG1MymZRpmvr1r3/dUT2X7VQ6HjZdtiPM67X9vB/p8OmTGxsbmpmZaXzv1atXl5rruPHxce3s7HgyFwAAAAAAg86ro4MmJyd96ywL9GH5GxsbKpVKMgxDruvKdV2NjIwoGo22PUcoFNK9e/fkuq5SqVTHNc3Ozja9b7eb6vg2znA4HIi1/byfukgk0rRt0qsnWQIAAAAAABwV6CAsl8tJOuwASyaTqlQq2tvb04sXLy7UFfbhhx9KkiqVir7++uuOajrauSS1H9pUKpWm9xcJ87q5tp/3c9SdO3caX/v5IAEAAAAAAHB1BXprZL0bLJfL6eOPP770PKZpNr5+8eJFR2eFHe+gsm1bkUjk3OuOhjuhUKipJj/X9vN+jjq6phcH5QMAgKvlvW++OnfM9x992vU6AABAfwt0R5jjODJNs6MQTGrexmdZVkdzRSKRpqCm3fOsNjc3G18fD5/8XNvP+zmL1/MBAAAAAABIAQ/CQqFQW91J56mHX67renL+1Pz8/Im5261BktLpdKDW9vN+6o7+XmKxWMfzAQAAAAAAHBfoIMw0TU/Oi3r48GHjay+23R09dL9UKp07/ugY0zQ7Ok+rG2v7eT919WAtFAo1HZwPAAAAAADglUAHYXNzc01b8C7j888/l2VZMgxDkjo+y0o63E54NPxZX19vOb5QKDS+Pq97Kp/PK51On9m51o21u3k/7aqHlaurq57MBwAAAAAAcFygg7Dl5WXt7+/ryy+/vPT19+/fl2EYcl1XhmE0PZ2wE/UnWkrNHWfHOY6jfD4v6fDJislk8syxsVhMqVRK2WxW4XD4zG64bqzt9ZzZbFYzMzNKp9PndvXVxywtLdENBgAAAAAAuibQQVgoFNK9e/e0tLSkzz77TLVa7dxrarWanjx5ouvXryubzcp13aaftwqDLsI0zUZnlGVZymazp46bm5uTdHgvRzupTnN8W+La2lrP1vZyTsdxlE6nG/OMjo6e2TmWSCSUzWaVyWSUyWRa1ggAAAAAANCJQAdhkpTJZHTr1i09evRIo6Oj+u1vf6svvvhCklQul/X8+XM9efJEy8vLunnzpkZHR5VKpVSpVBpdYHWPHz/W8PCwZ7XF43EVi0WFQiGl02klEglZliXHcVQqlTQzMyPLshSJRLS1tXXu+WTHf95qG6fXa3s5ZygUOlF7PRBLJBJKp9OKxWIaHR2VJFUqFS0tLZ1bHwAAAAAAQCcM93jLVEClUimtrq42BVunqd9OfVz9fS6X08LCQtfqy2azevr0qWzbluM4CoVCmp2dVSqVanu7X6lUUiqV0t7enpLJZNsdUl6s7fWcjuPo4cOHKpVKTXOMjY0pEokoFotpfn7ek4cXHDc5Oand3V1NTExoZ2fH8/kBABfz3jdf+V0CBsT3H33qdwkAAKANfn5u75sgTDrcspdOp7WxsXHiZ0cDsqO3FI1GlcvlNDU11ZMa4T+CMAAIFoIw9ApBGAAA/cHPz+0/7+lqHYpEIioWi9ra2lKpVFKxWGx0G+3t7WlsbKyxLa/ecTQyMuJ32QAAAAAAAAiAvgrC6qamprSwsNDVrY4AAAAAAAC4WgJ/WD4AAAAAAADghb7sCNve3lapVFK5XNbe3p4kaWxsTOFwWNFoVDdu3PC3QAAAAAAAAAROXwVhT548USaTkW3b545NpVJaWlrSO++80/3CAAAAAAAAEHh9EYRtb28rFovJtm0df8jl0adFSv94YmQul1Mul1M2m9Uf/vCHntWK4KhWq5qcnGw5ZnFxUYuLiz2qCAAAAACAq21lZUUrKystx1Sr1R5Vc1Lgg7DXr18rGo1qf39fUnPw5bruiWDs6M8kaWlpScViUX/+85+7XywC5eDgQLu7uy3H1Gq1HlUDAAAAAMDVV6vVzv0s7qfAB2GJREL7+/uNAKwecJmmqWg0qnA4rFAoJNM0NTY2Jtu2Zdu2KpWK1tbW5DiOisWifvvb3xKGDZihoSGNj4+3HDM8PNyjagAAAAAAuPqGh4c1MTHRcky1WtXBwUGPKmpmuGe1VAXA6uqqUqlUUwgWjUaVyWQ0PT3d1hzr6+t6+PChvvvuO7ZJDojJyUnt7u5qYmJCOzs7fpcDAAPvvW++8rsEDIjvP/rU7xIAAEAb/PzcPtTT1S4ol8tJaj7368WLF22HYJIUj8dVLpd169YtLS0tsRUOAAAAAABgQAV6a6Rt241usKWlJS0sLFx6rkKhoLGxMRUKBf3+97/3qkQAAAAERDvdh3SNAQAw2ALdEeY4TqMbbHl5uaO5QqGQksmk1tbWvCgNAAAAAAAAfSbQQVgkEpF0eDC+F4eah8Nh2bbd8TwAAAAAAADoP4EOwubm5iRJe3t7ns1JEAYAAAAAADCYAh2EffbZZ5IOt0hub293PF+lUlEoFOp4HgAAAAAAAPSfQAdhIyMjWltbk+u6un//fsfzra2taWxszIPKAAAAAAAA0G8CHYRJUjweVy6X04sXL/Sv//qvl57n/v37chynce4YAAAAAAAABsvP/Vj0k08+UblcvtA1Y2NjyuVyyuVyFw6zHMeRbdsyDEOxWOxC1wIAAAAAAOBq8CUIC4VCKpfLMgxDruueO94wDElqjL1oiHZ0nvn5+UtdCwAAAAAAgP7my9bIVCrV+NowjHNfFxnb6pVMJjU8POzHLQMAAAAAAMBnvgRhU1NTMk1T0mGXVy9e09PTymQyftwuAAAAAAAAAsC3w/Ln5uYkSaVSSQcHB11/bW5u0g0GAAAAAAAwwHwLwubn5xWJRHTr1i2/SgAAAAAAAMAA8bUjbGpqqqdrbm9v93Q9AAAAAAAABIdvQZgkra2t9XS9o4f0AwAAAAAAYLD4GoT12ubmpt8lAAAAAAAAwCc/97uAy9je3pbjOG2Pt21buVzuQtcAAAAAAADgaumLIGx7e1uZTEalUkm2bV9qDtd1ZRiGx5UhyKrVqiYnJ1uOWVxc1OLiYo8qAgAAAADgaltZWdHKykrLMdVqtUfVnBT4IGx5eVnZbFbSYZgFtOvg4EC7u7stx9RqtR5VAwAAAADA1Ver1c79LO6nQAdhz549UyaTkSQZhiHDMAjD0LahoSGNj4+3HDM8PNyjagDganrvm6/8LgEAAAABMjw8rImJiZZjqtWqDg4OelRRs0AHYQ8fPpSkRgBmmqYikYhM05QkXbt27dw53rx5I8dxtLa2prdv33a1XgTL+Pi4dnZ2/C4DAAAAAICB0c4RRJOTk751jQU6CLMsq3GuV7FY1Nzc3KXnWlpa0vXr170qDQAAAAAAAH1myO8CWgmFQpIOQ6xOQjBJMk1TU1NTHlQFAAAAAACAfhToIKy+BfLmzZuezJfL5TyZBwAAAAAAAP0n0EFYvQtsb2/P0/kAAAAAAAAweAIdhH322WdyXVeWZXky35MnTzyZBwAAAAAAAP0n0EHYyMiIHj16pKdPn+rvf/97x/OxNRIAAAAAAGBwBfqpkdLhQfnFYlGJREJ//vOfLz3P1taWZ51lAAAA6E/vffNVW+O+/+jTrtYBAAD8EfggTJKKxaJmZ2d1/fp1pdNpjY2NtXXd3t6eHMdRpVLR2tpal6sEAAAAAABAkPVFEPby5UtJUqVSUSqVutQcruvKMAwvywIAAAAAAEAfCXwQdvfuXeXzeUmSYRhyXffCcxCAAQAAAAAAINCH5a+uriqXyzXCr8uEYJ1cBwAAAAAAgKsj0B1h9ac81jvBotGoYrGYQqHQhc8Je/z4sba3t7tYLQAAAAAAAIIs0EGYZVkyDEOhUEibm5uampq69FwLCwu6du2ah9UBAAAAAACgnwQ6CAuFQnr79q2Wl5c7CsHqc01PT3tUGQAAAK6y97756twx33/0adfrAAAA3gr0GWEzMzOSJNM0PZlvdXXVk3kAAAAAAADQfwIdhKVSKbmuK9u2PZmPjjAAAAAAAIDBFeggLB6Pa3p6Wk+fPvVkvufPn3syDwAAAAAAAPpPoIMwSSoUCiqXy/r22287nuvhw4ceVAQAAAAAAIB+FOjD8qXD88EeP36sjz/+WL/73e8uPc/bt29lWZaHlSHoqtWqJicnW45ZXFzU4uJijyoCAAAAAOBqW1lZ0crKSssx1Wq1R9WcFOggrL6V8Z/+6Z80Ojqq69evKx6PX3gex3G0trbmdXkIuIODA+3u7rYcU6vVelQNAAAAAABXX61WO/ezuJ8CHYQ9ePBAr1+/brx3XVfZbPZSc7muK8MwvCoNfWBoaEjj4+MtxwwPD/eoGgAAAAAArr7h4WFNTEy0HFOtVnVwcNCjipoFOgibn59vbGc0DIMgCxcyPj6unZ0dv8sAAAAAAGBgtHME0eTkpG9dY4E+LD+VSkk6DMFc1+3oBQAAAAAAgMEW6I6wkZERRSIRvX79WplMRpFIRGNjYxeex7ZtPXjwQN999533RQIAAAAAAKAvBDoIk6Q7d+4oHA7r3r17l55jenpat2/fvlSIBgAAAAAAgKsh0FsjJSkajXq2tXF2dtaTeQAAAAAAANB/Ah+ETU9PK5PJeDKXV/MAAAAAAACg/wQ+CJOkqampjufY3t7W9PS0B9UAAAAAAACgH/VFENapZ8+eKRwO669//avfpQAAAAAAAMAnAxGEvXr1Sq7r6n/+z//pdykAAAAAAADwSeCfGvnkyZNLX+s4jiqVivL5vAzDUKlU0sOHDz2sDgAAAAAAAP0i8EFYMpmUYRgdzVF/6qRlWdre3tY777zjQWUAAAAAAADoJ32zNbIeZl30Gtd1ZRhGI0zL5/NelwYAAAAAAIA+0DdBmPSPYKvdlyQZhtH0vUKh4PNdAAAAAAAAwA+B3xopSVNTU0qn0zJN80LXVSoVZbNZzczMaHV1VcPDw12qEAAAAIPmvW++OnfM9x992vU6AABA+/oiCCuVSpc612tubk7JZFLvvvuukskkT40EAAAAAAAYYIHfGhkKhTo+3P7x48daW1vTl19+6U1RAAAAAAAA6DuBD8IymUzHc0SjUZmmqaWlJW1vb3deFAAAAAAAAPpO4IOwhYUFT+aJRCJyXVfZbNaT+QAAAAAAANBfAh+Eee3Vq1d+lwAAAAAAAAAf9MVh+Z16+/atSqWSJMmyLJ+rQa9Uq1VNTk62HLO4uKjFxcUeVQQAAAAAwNW2srKilZWVlmOq1WqPqjnpygdh3333nRKJhN6+fStJMk3T54rQKwcHB9rd3W05plar9agaAAAAAACuvlqtdu5ncT8FPgi7fv36pa+1bVuS5LquJMkwDEWjUU/qQvANDQ1pfHy85Zjh4eEeVQMAAAAAwNU3PDysiYmJlmOq1aoODg56VFEzw62nRAE1NDQkwzDUSZn16w3D0P7+PuHHFTc5Oand3V1NTExoZ2fH73IA4Ep775uv/C4BCLTvP/rU7xIAAAgcPz+3981h+YZhXOolHXaEhUIhvXjxghAMAAAAAABgQAV+a6T0j62NoVBIY2NjbV8XCoVkmqZu3rype/fudas8AAAAAAAA9IG+CMKy2az++Mc/+l0GAAAAAAAA+ljgt0aapkkIBgAAAAAAgI4FPghLp9N+l9CWbDarWCym0dFRGYahcDisRCKhUqnUl2t7PadlWUqlUgqHw43z28LhsNLptBzHuXSdAAAAAAAA7fI1CPvuu+/OHbOwsND9QjpQKpU0OjraCOwKhYIqlYoymYwsy1IsFlMsFutK2NONtb2e03EcJRIJzczMKJ/Py7btxs9s21Y2m9Xo6Kjy+XzbNQIAAAAAAFyG4dZPovfBz372M/30009+Ld+xUqmkWCwmSUomk8rlcifGzMzMyLIsmaapcrmsUCgU2LW9ntNxHM3MzDSFX62cteZF+fkYVgAYNO9985XfJQCB9v1Hn/pdAgAAgePn53ZfO8Jc19WPP/7oZwmXVu90kg7PMTsrwCkUCpIOu5/q44O4djfmTCQSsm1bkUik0VlWqVRUKBS0tLR0Ynw+n9f6+nrLOQEAAAAAAC7L9zPCMpmM3yVcSiKRaGwPbHWOmWmaisfjkg47rrzYAtiNtb2eM5/Pq1QqaWlpSeVyWfF4XKZpNq7PZDKqVCqKRCJN1wV9KywAAAAAAOhfvm6NHBoakmEYisViSiaTikQiGhsbkyQNDw/7Vda5bNtWOBxuvN/f32+5RXB9fb3RPRUKhbS/vx+otbsxZzgclmmaKhaLF7ofSSoWi4pGoy2va4WtkQDQO2yNBFpjayQAACcN7NbIumKxqEQioXA4rNHRUY2OjupnP/tZ116dOtrFFo1Gzz17q95BJR1uQexk+1831vZ6TsuyZNt2YxtlK6ZpnugKtCzr3OsAAAAAAAAu6ud+FyAdnhVWVw9h6p1hF7W3t3fmEw3b6VBqx9HtgMe39p3FNM3GofFPnz5tCpP8XtvrOZ8+fapkMtn2gwGOd3+9efOmresAAACCrp2uSbrGAADonUAEYZlMRvF4XFNTUx3Ns7GxoUQiIcMwmr7vuq4SiYSePn3a0fzSyW6lmzdvtnVdJBJpBEeX7QjrxtrdmPPOnTsyTbOteepzHXV8qyQAAAAAAIAXfN8amcvldO/evY5DsC+++ELvv/++3r592+gwc11Xrusqk8l4EoJJhwfEH9Vu4HN83GW2/3Vj7W7MGYlE2u4Gk3Sig+8iIRoAAAAAAEC7fA3CDMPQ/Px8x/O8//77SqfTjeDLMAy5rqtQKKRyuax79+55UO2hV69eNb1vN/C5du1a0/vNzc1ArO3n/dTVO8vqOjkoHwAAAAAA4Cy+bo0cGRnp6OmQ29vbisVism27EYDp/2vv/n3bzNZ70T/ymQQbF4k2pSkuBKvZFFJNk1Ce/gAmcbo0ET39AKaSbiAgEuYvMMgAwnQB6WB6mUqAlAeig/S2iDRTipPChnCLsbiV5CZIssVb+JCXpCSKpPj7/XwAYUhpca31jvWI5JfrXW98XgmWyWTi7du38etf/3pS042I26HNuCuoLi4uFmLseR5PW3eIVigUxu4HAAAAYJC5rgj7+eefx37s3/7t38bOzs6dIdj+/n68f/9+4iFYxO3gaFz3beg/67HneTxt5XK5c/vo6GgCswEAAAC4be4rwsbx/fffR6lU6gRg7VMhIz6HKi9fvpzkNHuMG/j0n3L46dOnhRh7nscT8TmIa+8vViwWJ7o/2OXlZWxvbz+6n4ODgzg4OJjAjAAAAGB5HR8fx/Hx8aP7uby8nMBsxrMQV40c1vX1deTz+ajVardWgaVSqXj79m38yZ/8yZxnOZzHrKBaxLHH7bNYLEbE51MtDw8PJzijiJubm/j48eOj+7m+vp7AbAAAAGC5XV9fT+R99jwtTRD2T//0T/H8+fNoNpu3QrBsNhvVanUqp0L2S6VSEwmSRrmq4jTHnufx1Ov1qFQqkUql4uzs7NFz6PfkyZPY2tp6dD+P2ccOAAAAVsX6+no8ffr00f1cXl7Gzc3NBGY0uqUIwl6/fh1//ud/3jn9sTsEOzo6ilevXs1sLpubmxMJjjY3Nxdi7HkeT/sU1rdv3070lMi2ra2t+PDhw8T7BQAAgCSa1NZB29vbc1tZtvBB2F/8xV9EpVK5tQosIqJarcaf/dmfzXQ+46x8irh96uC4K8ImPfa8jmd/fz/q9XpUq9XIZDJjzQEAAABgFHO9auQg19fX8fXXX98ZgqXT6bi4uJh5CBYR8ezZs577w66m6t9MfmdnZyHGnsfxVCqVqFQqUS6XY29vb+jHAQAAADzGQq4IG7QfWD6fj5OTk7nNbXd3t+d+o9EYakXTxcVFz/1sNrsQY8/6eGq1Wuzv70e5XI5CoTDUYwAAVtlXP/7wYJufvv1u6vMAgCRYuBVhr1+/jt3d3bi6uuqEYK1WK1qtVhSLxbmGYBG3V1A1Go2hHte90iqVSo21J9Y0xp7l8dTr9cjlclEsFoVgAAAAwMwtVBD2zTffdDbFX1tb64Rg7asK/uVf/uW8pxiZTKZnP6x3794N9bj37993bveHT/Mce1bH02g04vnz53F4eBiHh4dDjQEAAAAwSQsRhP3zP/9z/NEf/VGcnp7eOhUyk8nEzz//HM+fP3/0OH/0R3/06D4iIl68eNG5Xa/Xh3pMd7ujo6OFGnvax9NoNGJ3dzcKhUIUi8Wh+m80GlEqlYZqCwAAADCMuQdh//AP/xC7u7txcXFxKwTb39+P9+/fx69//euJjNW/r9W49vf3O7drtdqD7bvbpNPpsfYHm+bY0zyeZrMZuVwuXrx4MXQIFhGRz+cf9f8JAAAAoN9cg7C/+qu/ilwuF1dXVz2nQrZarSiXy/HXf/3XExvr9evXnZDtsTKZTE9Ic3p6OrB9tVrt3H5o9VSlUomjo6N79+qaxtjTOp5msxm7u7uRTqc7x/TQV61W62zgP8ym/QAAAADDWmu1Wq15Df7kyZOecKrVasXGxka8ffs2/viP/3hi4/zN3/xNFAqFWFtbi9/97ncT6bPRaMTOzk5EfA5szs/P72zXbDZjY2MjIj5fWfHs7OzePnO5XM9qq6urq579u6Y59jT63N3dHfpUy36Puark9vZ2fPz4MZ4+fRofPnwYqw8AhjPM1e6Ax3PVSABWyTzfty9UEBbx+VS7u8KfcTSbzc7KqvZpl5MKwiI+r5zK5/MREVEsFu/cBL4dBqVSqfj5558HHlv//4tBYdCkx550n48JwSI+/3uNSxAGMDuCMJgNQRgAq0QQFo8LPoY16SAs4vN+Wfl8PprNZuzt7cX3338f6XQ63r9/H0dHR1Gv1yOTycTbt28fDKI2Njai2Wx27p+dnQ3cJ2uSY0+yz3w+/+DplYMUCoUol8tjP14QBjAZQi5YLsIyAJbFPN+3fzHT0e7xm9/8JqrV6kRXgrW9f/8+yuXyo1YnDZLNZuPq6ipKpVKcnJzE8+fPo9lsRiqVimfPnkW1Wo29vb2h+qpWq7G/vx+fPn2KQqHw4Gbxkxx7kn127yEGAAAAsCjmviJsZ2dnoleGvE8+n4+/+7u/m/iKMBaPFWEAk2FFGCwXK8IAWBbzfN8+16tGRnxePTTtECzi855XAAAAACTXXIOwVCo10atDDpJOp2cSuAEAAACwmOYahM16lZZVYQAAAADJNdcg7OXLlys9HgAAAACLY+57hAEAAADALHwx7wnAtFxeXsb29vbANgcHB3FwcDCjGQEAAMBqOz4+juPj44FtLi8vZzSb2wRhrKybm5v4+PHjwDbX19czmg0AAACsvuvr6wffi8+TIIyV9eTJk9ja2hrYZn19fUazAQAAgNW3vr4eT58+Hdjm8vIybm5uZjSjXoIwVtbW1lZ8+PBh3tMAAACAxBhmC6Lt7e25rRqzWT4AAAAAiWBFGAAArICvfvzhwTY/ffvd1OcBAIvMijAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARvpj3BAAAgNn46scfhmr307ffTXUeADAvVoQBAAAAkAiCMAAAAAASwamRrKzLy8vY3t4e2Obg4CAODg5mNCMAAABYbcfHx3F8fDywzeXl5Yxmc5sgjJV1c3MTHz9+HNjm+vp6RrMBAACA1Xd9ff3ge/F5EoSxsp48eRJbW1sD26yvr89oNgAAALD61tfX4+nTpwPbXF5exs3NzYxm1EsQxsra2tqKDx8+zHsaAAAAkBjDbEG0vb09t1VjNssHAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEiEL+Y9AQAAYLF89eMPD7b56dvvpj4PAJg0K8IAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgERw1UgAAGBkriwJwDKyIgwAAACARBCEAQAAAJAIgjAAAAAAEsEeYaysy8vL2N7eHtjm4OAgDg4OZjQjAAAAWG3Hx8dxfHw8sM3l5eWMZnObIIyVdXNzEx8/fhzY5vr6ekazAQAAgNV3fX394HvxeRKEsbKePHkSW1tbA9usr6/PaDYAAACw+tbX1+Pp06cD21xeXsbNzc2MZtRLEMbK2traig8fPsx7GgAAAJAYw2xBtL29PbdVYzbLBwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAInwxbwnAAAArKavfvzhwTY/ffvd1OcBAG1WhAEAAACQCFaEAUDCDLNCAwAAVpEVYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAifDFvCcA03J5eRnb29sD2xwcHMTBwcGMZgQAQL+vfvzhwTY/ffvd1OcBwGQcHx/H8fHxwDaXl5czms1tgjBW1s3NTXz8+HFgm+vr6xnNBgAAAFbf9fX1g+/F50kQxsp68uRJbG1tDWyzvr4+o9kAAADA6ltfX4+nT58ObHN5eRk3NzczmlEvQRgra2trKz58+DDvaQAAAEBiDLMF0fb29txWjdksHwAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwiakVCpFLpeLjY2NWFtbi52dncjn81Gr1ZZy7GkfT6PRiFwuF6enpxPpDwAAAOAhgrBHqtVqsbGxEUdHRxERUa1W4+LiIorFYtTr9cjlcpHL5aLZbC7F2NM+nmazGfl8PnZ2dqJWq8WnT5/G6gcAAABgVGutVqs170ksq1qtFrlcLiIiCoVClMvlW212d3ejXq9HOp2O8/PzSKVSCzv2NI+n2WzGq1evolQq9Xy/XC5HoVAYqo9htS/D+vTp0/jw4cNE+wZYBV/9+MO8pwAwcT99+928pwDAkOb5vt2KsDG1VzZFRKTT6TtDo4jPK6oiPp8K2G6/iGNP83hKpVInQAMAAACYF0HYmPL5fOf0wPZphHdJp9Oxt7cXEZ9XXFUqlYUce1rHU6/XI5vNxsXFRZydnd0bsAEAAABMmyBsDI1Go2fT+BcvXgxs/80333RuDwqZ5jX2NI8nk8lEJpPp3H/27NnA9gAAAADTIggbQ7FY7NzOZrMP7pPVXkEV8fkUxMdcKXEaY8/yeCa1RxoAAADAqARhY+g+HbB7tdMg6XS6c/vk5GShxp7n8QAAAADMiiBsRP0bvn/99ddDPa47YBp3Rdg0xp7n8QAAAADMkiBsRN17aUX0rowapL/dOFdQnMbY8zweAAAAgFkShI3o3bt3PfeH3fPqyy+/7Ln//v37hRh7nscDAAAAMEuCsBE1Go2e++OuoLq4uFiIsed5PAAAAACzJAgbUX9wNK5ms7kQY8/zeAAAAABmSRA2onEDn/5TDj99+rQQY8/zeAAAAABm6Yt5TyCp5rmCahpjL+KKsMvLy9je3n50PwcHB3FwcDCBGQEAAMDyOj4+juPj40f3c3l5OYHZjEcQNqJUKjWR0GfYTemnPfY8j2fabm5u4uPHj4/u5/r6egKzAQBgmr768YcH2/z07XdTnwfAKru+vp7I++x5EoSNaHNzcyLB0ebm5kKMPc/jmbYnT57E1tbWo/tZX1+fwGwAAABgua2vr8fTp08f3c/l5WXc3NxMYEajE4SNaNyVT/1h07grwiY99jyPZ9q2trbiw4cP854GAAAArIRJbR20vb09t5VlNssf0bNnz3ruD7uaqn8z+Z2dnYUYe57HAwAAADBLgrAR7e7u9txvNBpDPe7i4qLnfjabXYix53k8AAAAALMkCBtR/wqqYYOj7pVWqVQq0un0Qow9z+MBAAAAmCVB2IgymUzPfljv3r0b6nHv37/v3O4Pn+Y59jyPBwAAAGCWBGFjePHiRed2vV4f6jHd7Y6OjhZq7HkeDwAAAMCsCMLGsL+/37ldq9UebN/dJp1OP2o/rWmMPc/jAQAAAJgVQdgYMplMT/hzeno6sH21Wu3cfmj1VKVSiaOjo3v36prG2NM8nn7DXpUSAAAAYNIEYWMql8ud269evbq3XbPZjEqlEhGfr6xYKBTubZvL5WJ/fz9KpVLs7OzcGxpNY+xp9HmX/oBPMAYAAADMiiBsTOl0urMyql6vR6lUurPd8+fPI+LzlRW7V1Ldpf+0xDdv3sxs7Gn02a/ZbN5aQXZycjJSHwAAAADjWmu1Wq15T2KZ1Wq1yOfz0Ww2Y29vL77//vtIp9Px/v37ODo6inq9HplMJt6+fdtzdca7bGxs9KyQOjs7G7j/1iTHnlafzWYzXr58Gc1mc+D+Y9lsNlKpVHz//feRyWSGmut9tre34+PHj/H06dP48OHDo/oCWDZf/fjDvKcAsLB++va7eU8BgJjv+3ZB2ISUSqU4OTmJRqMRzWYzUqlUPHv2LPb392Nvb2+oPmq1Wuzv78enT5+iUChEsVic2diz6HNWBGFAkgnCAB5PYAYwXYIwmCBBGJBkgjCAxxOEAUzXPN+32yMMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAifDFvCcA03J5eRnb29sD2xwcHMTBwcGMZgQAAACr7fj4OI6Pjwe2uby8nNFsbhOEsbJubm7i48ePA9tcX1/PaDYAAACw+q6vrx98Lz5PgjBW1pMnT2Jra2tgm/X19RnNBgAAAFbf+vp6PH36dGCby8vLuLm5mdGMegnCWFlbW1vx4cOHeU8DAAAAEmOYLYi2t7fntmrMZvkAAAAAJIIVYQAAAF2++vGHB9v89O13U58HAJNnRRgAAAAAiSAIAwAAACARBGEAAAAAJII9wgAAAEZkHzGA5WRFGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgESwWT4ALIlhNmYGAADuZ0UYAAAAAIkgCAMAAAAgEQRhAAAAACSCPcIAAACmYJi9HX/69rupzwOA/58VYQAAAAAkgiAMAAAAgERwaiQr6/LyMra3twe2OTg4iIODgxnNCAAAAFbb8fFxHB8fD2xzeXk5o9ncJghjZd3c3MTHjx8Htrm+vp7RbAAAAGD1XV9fP/hefJ4EYaysJ0+exNbW1sA26+vrM5oNAAAArL719fV4+vTpwDaXl5dxc3Mzoxn1EoSxsra2tuLDhw/zngYAAAAkxjBbEG1vb89t1ZjN8gEAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCzfIBAADm5Ksff3iwzU/ffjf1eQAkhRVhAAAAACSCIAwAAACARHBqJAAsgGFOjQEAAB7HijAAAAAAEkEQBgAAAEAiCMIAAAAASAR7hAEAACywYfaR/Onb76Y+D4BVYEUYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARLBZPgAAwJKzoT7AcKwIAwAAACARrAhjZV1eXsb29vbANgcHB3FwcDCjGQEAAMBqOz4+juPj44FtLi8vZzSb2wRhrKybm5v4+PHjwDbX19czmg0AAACsvuvr6wffi8+TIIyV9eTJk9ja2hrYZn19fUazAZJsmH1bAABgFayvr8fTp08Htrm8vIybm5sZzaiXIIyVtbW1FR8+fJj3NAAAACAxhtmCaHt7e26rxgRhAAAACTDsCmVXlwRWmatGAgAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASASb5QMAANAxzKb6NtQHlpUVYQAAAAAkgiAMAAAAgERwaiQAAAAjcfoksKysCAMAAAAgEawIA4BHGOYTcQAAYDFYEQYAAABAIgjCAAAAAEgEQRgAAAAAiWCPMAAAACZuUvtouvokMEmCMAC4h43wAQBgtTg1EgAAAIBEsCIMAACAhTXMCm2nTwLDEoSxsi4vL2N7e3tgm4ODgzg4OJjRjAAAAGC1HR8fx/Hx8cA2l5eXM5rNbYIwVtbNzU18/PhxYJvr6+sZzQZYJPb+AgCA6bi+vn7wvfg8CcJYWU+ePImtra2BbdbX12c0GwAAAFh96+vr8fTp04FtLi8v4+bmZkYz6iUIY2VtbW3Fhw8f5j0NAAAASIxhtiDa3t6e26oxQRjM0PHxcVxfX8f6+rq9yWBB/PK//zF+9x//Ef/jV7+KL//X/5z3dID/Q23C4lGXsHi8xxydIAxm6Pj4OD5+/BhPnz71RwoWxC9n/xj/ffXb+GLj117UwwJRm7B4FrkuXVmSpPIec3RP5j0BAAAAAJgFK8IAWCmuCAkA3GXY1whWjsFqE4RNSKlUirOzs3j//n00m81Ip9ORyWRif38/stns0o29LH0CAABMktMsYbU5NfKRarVabGxsxNHRUUREVKvVuLi4iGKxGPV6PXK5XORyuWg2m0sx9rL0CQAAADAqK8IeoVarRS6Xi4iIQqEQ5XK587N0Oh17e3uxu7sbtVotdnd34/z8PFKp1MKOvSx9AsnltEcAAOAxBGFjajabkc/nI+JzoNMd8HSrVquxs7MTjUYj8vl8nJ2dLeTYy9InAADAvDl9EpaXUyPHlM/nO6fytU/5u0t71VPE59VRlUplIcdelj4BAACWwVc//vDgFzB7VoSNodFoRK1W69x/8eLFwPbffPNNnJ6eRsTnQKhQKCzU2MvSJ8vj+Pg4rq+vY319PQ4ODuY9nalIwjFGzPY4vRicrl/+9z/G7/7jP+J//OpX8eX/+p/zns5UJOEYI5JznEmQlH/LJBxnEo4xSZLw7+m1LEkmCBtDsVjs3M5msw/uadVe7RTx+XTB09PTnu/Ne+xl6ZPlcXx8HB8/foynT5+u7BNOEo4xIjnHmQS/nP1j/PfVb+OLjV+v7Iv6JBxjRHKOMwmS8m+ZhONMwjEmSRL+PZPyGi8px8loBGFj6D51L5PJDPWYdDodjUYjIiJOTk7GDnmmMfay9AksL6u9AABus9cYzJ4gbET1er3n/tdffz3U4zKZTCfkaZ8CuAhjL0ufwOIScgEATI+wDCZLEDai7n2vIj6vYhpGf7t6vT70Sqlpjr0sfQIAAHA3YRkMTxA2onfv3vXcf2jvq7Yvv/yy5/779+9HDnmmMfay9AkAAMD4usOy/+f//dfOf8dZ3S9UY5kJwkbUPnWvbdzVThcXFwsx9rL0CczHY18kAQCwemb5ulDoxqQJwkbUH/KMq9lsLsTYy9InMFlCLQAAlsFjXrd2f6gLbYKwEY0bzvSfHvjp06eFGHtZ+gQ+E2ABAMDolvV1tBVxk7fWarVa857EMllbW+u5P+z/vlqtFrlcrnM/m83G2dnZ3Mdelj5H8fu///vxX//1XxER8eTJk5Ef3+8P//AP4w/+4A8e3U9ExOXlZdzc3MSTJ09ia2vr1s+H+aTi//6/Hp7LpPoZVv94/928jmi1ItbW4ovU+sTGWSRJOMaIZBxnEo4xIhnHmYRjjHCcqyQJxxiRjONMwjFGOM5VkoRjjEjGcbaP8b73mJP2r//6r/Ev//Ivj+7n5uYmIiJ+7/d+L/7zP//z0f2NwoqwEaVSqYmcsjfsBvLTHntZ+hzF7373u87tdnE9xm9/+9v47W9/++h+ut3c3MTHjx/HeuzHq8nMZVL9DNRqxX/PYpx5SsIxRiTjOJNwjBHJOM4kHGOE41wlSTjGiGQcZxKOMcJxrpIkHGNEIo7zMe8x56n7/fusCMJGtLm5OZGQZ3NzcyHGXpY+R/GrX/0q/v3f/z1a/ycVf6xJrggDAACAZTXJFWFra2vxq1/9agKzGo0gbETjrlLqD4bGXRE26bGXpc9R/Nu//dtYjwMAAABW2+OXyyTMs2fPeu4Pu/Kpf+P3nZ2dhRh7WfoEAAAAeCxB2Ih2d3d77jcajaEed3Fx0XM/m80uxNjL0icAAADAYwnCRtS/2mnYkKd7VVQqlYp0Or0QYy9LnwAAAACPJQgbUSaT6dm76t27d0M97v37953b/UHRPMdelj4BAAAAHksQNoYXL150btfr9aEe093u6OhoocZelj4BAAAAHmOt1Wq15j2JZVOv13v2wXrof2GtVotcLhcREel0+tZeWPMee1n6BAAAAHgMK8LGkMlkejZyPz09Hdi+Wq12bj+00qlSqcTR0dG9+2pNY+xl6RMAAADgMawIG1Oj0YidnZ2I+Bz6nJ+f39mu2WzGxsZGRHy+CuLZ2dm9feZyuajVap37V1dXPXttTXPsZekTAAAAYFxWhI0pnU53VjHV6/UolUp3tnv+/HlEfL4KYveqp7t0h2AREW/evJnZ2MvSJwAAAMC4BGGPsLe3F2dnZ5FKpeLo6Cjy+XzU6/VoNptRq9Vid3c36vV6ZDKZ+Pnnn+9c3dWt/+fpdHpmYy9TnwAAAADjEIQ9UjabjaurqygWi9FoNOL58+exsbER+Xw+Njc3o1qtxvn5+VABT7VajXQ6HalUKg4PD3v22Jr22MvW56Q1Go3OZv3DKJVKkcvlYmNjI9bW1mJnZyfy+fytVX2jWJY+YZZGqc16vR77+/uxs7MTa2trnd/5o6OjaDabY89BbUKvUZ8z79Ou1Yf2Eb2LuoRek6rLtnq9Hqenp1EqlYauAXUJt41Sm81mM46OjiKXy3WeI9u/85VKZew5qM07tGCFXV1dtSJiqK9CofBgf2dnZ61UKtWKiFY2m22dnZ21Li4uWtVqtZVOpzvfv7q6GnqOy9InTNIka/Pq6qq1t7f3YD/lcnmkOapNkmbSz5mDHB4edvqqVqtDP05dkjSzqsurq6tWsVhsZTKZVkS0UqlU6/DwsHV2dvbg7766JIkmXZvFYrFTe8VisXV2dtY6Pz9vlcvlTl2m0+nW2dnZ0HNUm/cThLHS2n9Qhvm6uLgY2NfZ2dmDf8y6/0gNU/zL0idM2qRq8+rqqvOkO8k3CWqTJJrkc+Yg3bUwShCmLkmiadfl1dVVq1AodPrIZDIjv9FWlyTRJGuz/YFuJpO5t013nZ6fnz84P7U5mCCMldZOqx/6ymazA/u5urrq9JVOp+9td3FxsXJ9wjRMqjaz2WznhUO1Wm1dXFx0PpXqXnEyyptutUlSTaouB+muhVGCMHVJUk2zLsvlck//o66cVpck2aRqsztQeyg4an/4m0qlBrZTmw8ThLGyyuVyKyI6y7oHfT30R6f9ZnuYFwndp2gNarssfcKkTao2u/u5z8XFReeTqfbXQy8e1CZJNMnnzEH29vZa6XS65w3EMEGYuiSJplmX3R8WpdPpsVaTqUuSapK12f4dHrQarG3YbQXU5sMEYaysdDo9MK0eVneqPUxSX61WH3zDvSx9wjRMqjbT6fRQnzT110ZE3Hvah9okqSZVl4O03zicn5+PFISpS5JqWnXZ/SY1lUqNFW6rS5JsUrXZfarh3t7eg+27f+fv+yBYbQ5HEMZKahffJBLo7vOxh13e2f2H4q4X+MvSJ0zapGrz/Px8qCfitv59HIrF4p3t1CZJNMnnzPu0X0S3X7iPEoSpS5JoWnXZvaojYvz9/tQlSTXJ2mx/QBQx+HTD/rG9ln28JwEr6NWrV5FKpeLFixeP7qv7UrWZTGaox6TT6c7tk5OTpe0TJm1StXlychKFQiFSqdRQ7bPZbM/9X3755c52apMkmuRz5n3y+XxkMpkoFosjP1ZdkkTTqMtKpRK1Wq1zv1wu9/xej9pXm7okSSZZm5ubm53bjUYjGo3GwPbv3r3r3L6vdtXmcARhrJx6vR71ej2azWZsbGzEzs5O7O/vx+np6Vh9dfv666+Helz3H4j+cZelT5i0SdbmN998M9Ib6v4n7Z2dnTvn101tkgSTrMv7HB0dRb1ej2q1Otb8uqlLkmAaddloNGJ/f79zP5PJRKFQGHt+3dQlSTHp2uwPs7pr9C7tcVKpVOzt7d05v25q836CMFbO0dFRz/1GoxGVSiXy+Xysra1FPp+/VdD36f7ULOL+5L1ff7vu8ZalT5i0SdZmJpMZejVYRESz2ey5f1eNqE2SaJJ1eZd6vR6lUmnslSfqkiSaRl3m8/me+99///3Y81OXJNWkazOTyfQERrVa7VattlUqlc6Ksfs+DFabwxOEsVIajcatYu13enoau7u7DybuEb3LTyNi6DfeX375Zc/99+/fL12fMEmTrs1xxu/Wf6pkhNokeWZRl8+fP4+9vb2xV56oS5JmGnXZaDR63oTet5pkWOqSJJrWc+br169v9dEfhtVqtU6f5XL53udUtTm8L+Y9AZikdDod5XI5ms1mXFxcRK1Wu/dc60qlEu/fv4/z8/N7++t/7LgJ+MXFxdL1CZM06docVfeT730vHtQmSTPtumy/kO9/kT8KdUnSTKMuy+Vyz/32h0Gnp6dxcnIS9Xo9Go1GpFKpSKfT8c033wzch1NdkkTTes7MZDJRrVZ7wq/T09PY2dmJarUatVotjo6OOuPf9WFum9ocniCMldP/JrfZbEalUolXr17dOj2qXq9HLpeLs7OzO/t6aMPCYXWPuyx9wqRNsjZH1f0moH9Ze5vaJImmVZenp6dxenoaZ2dnI53G3E9dkkSTrsvuja4jPm/Qvbu7e+tUpWaz2dkD6ejoKKrV6p0rx9QlSTWt58y9vb0ol8s9K8kajUbs7u5GRMTh4eFQe+OqzeE5NZKVl0ql4vDwMK6urqJard56QV6r1aJUKt352HELtn+MT58+LV2fMG2Pqc1RdJ8SUiwW7/0kS23CZOqy2WxGPp+PQqEw8JPrYahLeFxdNhqNW7/zb968if39/bi6uopWqxWtVisuLi5uvcnP5/N3bnKtLuGzSb6WLRQKt1ZvdvczTI2ozeEJwkiUvb29+Pnnn29dQe7Vq1dTHXcaCfiy9AnDmGZttj9BS6fTcXh4+Oj+HqI2WRXj1uXz5887p3AsCnXJqhi1LvtXc6RSqfj5559vnfrYrtn+un358uXUftfVJatkEq9lC4XCnVt41Ov1+M1vfjOzDeeTUJuCMBInlUrF+fl5zx+pZrN55+aHjzmd475+lqVPmLVRanNY9Xo9KpVKpFKpB5emq024bdS6LJVKUa/Xo1qtTmz8SfejLll2o9RlfxA2aO+v9s+734g3m81bb+TVJdztsa9l9/f3o1KpRKFQuHUGQ7PZjN3d3YF9qc3hCcJIrP7Ne+96k7y5uTmRsbr7WZY+YV6Gqc1hvXz5MiIi3r59++DmnmoT7jdMXbb3FSoWi7c+ER+XuoT7DVOX/RtUf/311w/227+XZv+pXeoSBhvntWwul4tKpRKHh4dRLpfvPF253e6+MExtDk8QRmJlMpmevUvu2ghw3OS6f+nnJFL1WfcJ8zJMbQ5jf3+/szJlmDflahPuN0xd5vP5yGQyEz0FWV3C/Yapy3F+b9Pp9K3nze5TstQlDDbqa9n2Sq9sNtuzKX65XL5zhXU+n7/zVEO1OTxBGImWy+UG/vzZs2c994c9t7l/M8CdnZ2l6xPm6aHafEilUolKpRLlcvnOK17dRW3CYIPqslQqRaPRiM3Nzcjn8w9+ddfCq1even7WvTm3uoTBHnq+HPf3tL9Out/Iq0t42LCvZfP5fCdovmtvzb29vTg/P+8JkprN5p1XQVebw/ti3hOAeeo+Vequ5ZrtS9a2NRqNoVaW9C9D7/5EYFn6hHl6qDYHqdVqsb+/H+Vy+c4l5fdRmzDYoLr85ZdfIiLG2tOvXq/3rDZJp9OdAFtdwmAPPV/2r8IY9k1s/5vW7je16hIeNsxr2Uaj0fnwJ5PJ3LuNRyaTifPz8566rFQqUSwWe2pcbQ7PijASrfuPzV3LNQd9GjZI94uMVCrVM86y9Anz9FBt3qder0cul4tisThSCBahNuEh49blY6hLGGxar2X7++p+I68u4WHDPGd2rwDrr4G7+utfMfb+/fue+2pzeIIwEq37j8ddy1czmUzPH653796N3G//H49l6RPm6aHavEuj0Yjnz5/H4eHhWHsUqU0YbFBdFovFaLVaQ391vyCuVqs9P+veH0VdwmDDvJbt1r9KY1jdNasu4WHDvJbtDouGOXWw/0Pe/lBKbQ5PEEaidb8YuG+55osXLzq3u0/dGKS73V3nby9LnzAvw9Rmt0ajEbu7u1EoFHreRD/0mP4rYalNuN+odTkp6hLuN0xddn9/2NOX+0+h7A/U1CUMNkxtdp9yPGxI/dBpiWpzSC1IsHQ63YqI1uHh4b1tzs/PWxHR+XrI2dlZp206nV7qPmFehqnNtqurq1Y6nW4VCoWRxshkMq3z8/Oe76lNuN8odTlsXxHRqlarA9uqS7jfMHXZ/fsbEa2rq6sH+y0UCp322Wz21s/VJQw2TG0eHh4OrLO7ZDKZzmPOzs5u/VxtDkcQRmJVq9VWRLRSqdSDLwiy2ezQL9i7XziUy+Wl7xNmbZTabIdg2Wy2dXFxMdTX2dlZK5PJtDKZzJ19qk24bZS6HMYoQVirpS7hLqPUZXfNDRNmd7fv/9CoTV3C3Yatze6Aadjn11Qq9WAgpTYfJghjZZydnXX+MGSz2XuftFutVuvi4qLTdlC77vbtYr7vzXOr9flN+bCp/rL0CY81zdrs/lRs1K/7npjVJkkwzbocxqhBmLokCaZZl/0rOi4uLgbOo91u0GprdUlSTLM2uwOmh0Lq7tosFosD56A2BxOEsTK6k+dBT97tP2TpdHrgi4B+7WR/0B+e9pvyYRP9ZekTHmNatfmYEGzQp2itltpk9U37OfMhowZhrZa6ZPVNuy7L5XKn33Q6fefvc3ul9UNvdtvUJUkwzdq8urrqWeU16IPa7jDuIWpzMEEYK6N//4P2VyqVau3t7bUKhUKnMA8PD8cqzO5PA/b29lrn5+etq6urzqlW7RcNo/S9LH3CuKZRm3t7e48KwYbZT0xtsspm8Zw5yDhBWHve6pJVNevXsqlUqlUsFlvn5+et8/PzVrFY7PxslH031SWrbtq1eXV1dWtfvnK53Do/P2+dnZ317CU2aCXYXfNWm3cThLFSLi4uWoVCoZVOp3ue5NPpdGtvb69VrVYnUpTFYrGVyWR6xshmsyO9mF/WPmEcs6rNaVCbrCp1Of0+YVSzqstyudzKZrM9Y2Qymdbh4eHYqz/VJatsFrV5fn7eGaN79ebe3t6jPpRSm7ettVqtVgAAAADAinsy7wkAAAAAwCwIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACJ02w2Y21t7cGver0+76kurFKp9OD/v52dnXlPs8daq9VqzXsSAAAAALPUbDZjY2Ojcz+TycTr168jnU73tEulUjOe2XJpNpud258+fYparRb7+/ud76XT6bi4uJjDzO4mCAMAAAASpz8Iq1arsbe3N8cZrY58Ph+np6cRsXhBmFMjAQAAgMSz8mty+lfVLRJBGAAAAJB4m5ub854CMyAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAjKjZbEapVIrd3d3OFRLbTk9PI5fLxcbGRqytrcXu7m5UKpV7+zk6Oord3d2e9v19Lvo8lsUX854AAAAAEHF0dBSlUmmsx2YymTg/P5/wjOhXr9ejVqvFyclJ1Ov1Wz9vNBqRz+dv/axer8f+/n6cn59HuVzufL9UKsXR0dGd4+Tz+Tg8PIxisbiw81hGgjAAAABYAM1mMyIi0ul07O/vRzqdvrPdu3fvbgVmqxJSLLJGoxGvXr2KiLgzfKpUKrG/vx+ZTCaKxWKk0+nOY9r/tpVKJfL5fGSz2cjlcvH+/fsoFAqxu7sbm5ubt/5tS6XSrd+FRZnHslprtVqteU8CAAAAkm5/fz/evHkTV1dXA9vt7u72BCCFQqFndQ/DaTabsbGx0bl/fn4emUxmqMf2r6BKp9Px6dOneP36dezt7fW0bTQasbOz07nfHmNzczOq1WqkUqme9rVaLXK5XOf+oH/fRZlHv+7Vjel0Oi4uLoZ63CzYIwwAAAAWxPfffz/w56VSqScES6VSQrA5uCswu7q6uhU+RXwOgrLZbOd+vV6PZrMZZ2dnt8KniIhsNtuz8qpWqy38PJaJIAwAAAAWwKdPnwauSGo0Grf2capWq9OeFnfY3NzsuX9X8NSte2VVRNy5H1e37t+DRqOx8PNYJoIwAAAAWADFYrFnxU6/fD7fc79QKAxsz+LoX3HVH2D169+La1Ih1KLMY54EYQAAALAABm1EXqlUbp0SOcoG+aVSKXK5XKytrXW+dnd3R5pfqVTqefzGxkbs7++P1EdSPRQ4PaS9yf2qzGOeBGEAAACwwBqNxq3A6a7NzQc5PDyMs7OznlPnRlndU6/Xe06jS6VS8fPPP9ufbEq+/PLLeU8hIhZnHpMkCAMAAIAF1h+C7e3tjX1KZHf4Ncrqnv7TMl+8eDFSEAeLQhAGAAAAC6pSqfRcrS+VSsXr16/H6qvZbEa9Xu8JsIZZFXZ0dBSfPn3qOXWzPxiDZSEIAwAAgAXUbDZvXdXv9evXY6/EagdqL1686HzvoSCsXq9HqVSK169f97S1ST/LShAGAAAACyifz/ecvri3t9ezx9eoTk5OYm9vL3Z2djrfe+j0yHw+H4VCoed7QjCWmSAMAAAAFszp6enETolsq9Vqkcvlek5xHLQirL03WblcjpOTk873c7ncUOO1N/nP5XKRz+c7wV4ul4uNjY2e47tvrru7u52vQe1hWIIwAAAAWCDNZjNevnzZ873HnBIZ8fkUx2azGdlsticIu7i4uLN9rVaLSqUS1Wq1c79tmFVppVIpdnZ2YmdnJ87OzqJarUaxWIx8Ph+1Wq0zl7u0w7NcLhfn5+dxfn4e6XQ6crlclEqlzrHAOARhAAAAsEBevnw58imRpVIpKpXKvT8/OTmJdDrd+Wq7a0VYs9mMfD4fh4eHkclkotFodOaTSqV6Hn+XfD4fR0dHUa1W4/DwsPP9dDodnz59ioj7T6/M5/NRqVSiUCj0PPabb76JiM8b9+/u7t7aOw2GJQgDAACABVGr1eL09LRzf9hTIs/OzmJzc3Ngv+3w6aGrRr58+TI2NzejWCxGRPTMp3uj/bvs7+/H6elpFAqFO8O7dqB21+mVlUqlM1Z77LZMJtO5fXFxEeVyeeA8Fl07EJy3RZnHLAnCAAAAYEHk8/me+8OcEtlsNqNWq927UqvZbEa9Xu/pu91nfxByenoap6ennVMiIz6HbG2D9gc7PT2NSqUSqVTq3qCqHbzdtSKsPebe3t6tY+4O7B660uUi6v///NCpnb/88stKz2OeBGEAAACwAPb393uCiWw2O9R+XO39xO4Lwtr7e3WHT+223eO1T4ksFos9K7CG3R+sPY/vv/9+4DxSqVRP//0///rrr2/9rDuMe/bs2b1zmJX+MO6hQKn/5/ftzXZf+/vCv0WZxzIRhAEAAMCctTen79beWL7/q73y6ujoKHZ2djqnE963cuzk5ORW8HTXPmH5fD4ymUzP3lzdIdhd4VVbqVTqhCaFQuHONu0VX/cFWffNv9lsRqlUioiIw8PDR100YFJevXrVc//Nmzf3hlDNZvPWCrk3b94MDLfevHnT8737VtgtyjyWSgsAAACYq0wm04qIsb9SqdS9fadSqVaxWOz53uHhYeexZ2dnrWKx2IqI1sXFRU+7QqHQadffR/8YEdHa29u78+dXV1cP9lOtVlsR0cpkMj2PS6fTrYhoHR4e3jv+OLrnFBGt8/Pzge3Pz89b2Wy2c6x3fWUymVa1Wu20f+jfNZPJtMrlcqvVarXOzs46x3rfv3E2m239/d///ULMo/93pVv371c6nZ7EP9fEfPG4GA0AAAB4rPPz86n0W6/Xo9ls3tqTa2dnp3P77OwsSqVSFIvFW6dXdq8Iu+9Kj+0xIu7fQ6x75dJ9/ezt7cX5+Xk8f/48dnd3Y3NzMz59+hSZTCbOzs4evFrltLXnMUr7Uf5ds9nsg6cqtv3pn/7pQsxjGQnCAAAAYEWdnJzcuSdX9xUmS6XSrVMiIz6fStc+be6+fb0ieveNuuu0x0ajMfQplq9evYpnz56NFDjBKOwRBgAAACvq9PT0zhVY/auruq8S2da9P9R9q7giHt5A/ejoKL755puefprNZmdvs7Z8Ph+np6cDgzJ4LEEYAAAArKB6vR6NRuPOqzB2B2HlcvnO0w67w7H7Tnns7+vk5KRzu9lsRi6Xi2KxGO/evYuIz6vBms1mvHz58la41l41ViqVYnd399bFA6bt06dPMx2P+RCEAQAAwAo6Ojq692ftKy9ms9k7r/LYvkLlMLLZbKe/UqkU+/v7kc/nY3d3txOytVeNnZ6exvPnz6NYLN66+mOxWOzcrtfrsb+/H2tra7G/vz/UPB7roZVtDO++K1cuAkEYAAAArJBarRa7u7udIOvo6Cjy+fytYCuTydw6JbJSqUQul7u1Aqwdbt21SiuVSsXbt287pzS+efMmNjc34/z8vLNarH1qZDqdjmq1emsF2unpaVSr1bi4uIhqtdqzWqxSqfRs7j8tR0dHUavVotls9nwxWP//r1qtNvPVfKNYa7VarXlPAgAAAEimUqkUJycnt65s2Gg04ujoqLOXWKFQiHK5PLFxm81mbGxsPNju/PzcvmX3KJVKA1ceRnwOPxfpKpSCMAAAAGAuTk9PI5/PDwybjo6OolQqLVygwnIShAEAAABzkcvlolarxUPRxNraWmQymVurxmBU9ggDAAAA5qK9Yf6gvbjaP+u/yiSMQxAGAAAAzEV7E/1Xr17d2+bo6CjS6XR8//33s5oWK0wQBgAAAMzF3t5eFIvFKJVKsb+/H/V6PSKic/XBXC4Xnz59ivPz887qMXgMe4QBAAAAc9VsNqNSqcTFxUV8+vQp0ul07OzsRDabjXQ6Pe/psUIEYQAAAAAkglMjAQAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBE+P8AUfwk5hRyeUAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2MklEQVR4nOz9T2wbd57n/79KyWGBxUgleTCAIAEdFeM9/HJYi5L7vhaZ7uvEpJxzOiLtOQWatmjlvrYpd/TLaduknJzHIu1ce0zKua9FOn3IKWFJDUggsLuRymwssJewvgeBHFF/KIr/qig+HwAxovTh+/MuUZ4ZvvL5fMpwXdcVAAAAAAAAcMWNeN0AAAAAAAAA0A8EYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGAoEYQAAAAAAABgKBGEAAAAAAAAYCgRhAAAAAAAAGArve90A0G3/+T//Z/2///f/9N577+mf/umfvG4HAAAAAAAc87/+1//Sr7/+qv/0n/6T/u///b99ndtwXdft64xAj7333nuqVqtetwEAAAAAAJoYGRnRr7/+2tc5WRGGK6cWhI2MjGhyctLrdhqUy2Xf9tZNw3Cdw3CN0nBc5zBcozQc1zkM1yhxnVfJMFyjNBzXOQzXKHGdV8kwXKM0HNc5qNdY6/u9997r+9wDF4Tt7u6qWCzq4OBAjuPol19+kSRdu3ZNpmnKsizNz89rdHS0r32tra0pl8tpe3tbjuPIsiwFg0HF43GFQqGBm9vL6+nUP/3TP2l/f1+Tk5Pa29vzup0G09PTvu2tm4bhOofhGqXhuM5huEZpOK5zGK5R4jqvkmG4Rmk4rnMYrlHiOq+SYbhGaTiuc1Cvsda3F8cZDUQQ9vLlS+VyOW1ubspxnJZeY1mWQqGQotGobt261bPe8vm8otGoHMdRKBRSJpORZVkqFotKJBIKh8P175um6fu5u1lzfHy85ffrpFgsplQq1dZrAQAAAAAAzuLrIOzZs2dKJpOybVuSdPw4M8MwznxNbUypVJJt20qn07IsSw8ePNAf/vCHrvaXz+cVDoclnQ5uLMtSJBLR3Nyc8vm85ubmVCgUuhaG9WLubtbMZrNth2CS6n0AAAAAAAB0y4jXDZzl9evXun79uuLx+JkhWO35WY+zxti2rVgspv/yX/6L/vrXv3alR8dxFI1GJR2FROetXspkMpIk27br4/04d7drdrqaKxKJdPR6AAAAAACAk3y3Imx1dVVra2unQq1QKKRgMKhr167Jsqz6SqSJiQlJ0sHBgaSjQMe2bf3yyy+ybVv5fL6+Munnn39WMBhUIpHQw4cPO+qztn1QkhKJxLnjaiupstms8vm80um0YrGY7+buZs3a792yLCUSCYVCofr71Mzc3Jxs2/b9GWQAAAAAAGAw+SYIq1QqWlhYUKFQkHQUfNXOo5qdne2o9rt37/T8+XOl02kVi0Ulk0nl83nl8/m2DtWvBT01i4uLTcffuXNH2WxW0lHI1EkQ1ou5u10zlUrJsqxLbQW1bbu++q9bK+cAAAAAAACO88XWyB9++EEzMzMqFAqKxWIqlUp69eqV7t+/33EIJkljY2OKxWLa3t7Wzz//rFu3bml7e1vz8/P6+9//ful6yWSy/nUoFLow7Dm+zc9xnHqI1I5ezN3tmul0+tI3Bzhe46IgDgAAAAAAoB2eB2Fv375VMBjUzMyMSqWSnj59qpmZmZ7NZ1mWcrmcXr16pf/9v/+35ubmVKlULlUjnU7Xvw4Ggy3PW/P8+fNLzdfrubtdM5PJtFznZI1WgjgAAAAAAIB2eLo1cmdnRwsLC4pEItrc3Ozr3KFQSDs7O5qbm9Pi4qL+8pe/tPS6YrHY8PzmzZstvS4YDNa3/rW7IqwXc/ei5mXP+HIcp94H2yKvhuXlZVUqlba2Hg+KYbhGaXiucxgMw3s5DNcoDc91DoNheS+H4TqH4RqHyTC8n8NwjdLwXCcux9MgLBwOa3FxUU+fPvVkftM0VSgUND8/r6+++kr/+q//euFrjp+lJTWujGrm5LhisXjpVVO9mNvL66k5viKNbZFXw/Lystct9NwwXKM0PNc5DIbhvRyGa5SG5zqHwbC8l8NwncNwjcNkGN7PYbhGaXiuE5fj2dbIBw8eyLIsz0KwGtM0tb29rf/+3/+7fvjhhwvHv3nz5tTrW3Ht2rWG59vb26222NO5vbyemtq2yGAwyLZIAAAAAADQM54FYdeuXVMmk/Fq+gamaWpra6u+1a+Zk2PaXUFVKpVab7CHc3t5PVLjtsg7d+60VQMAAAAAAKAVnm2NvH//vldTn2l2dralO1S2Epa1wnGcS7+mF3N7eT2SGs6GO343SgAAAAAAgG7z9Iywfrp3757+/Oc/d1yn3cDn5Ja/g4MDX8zt5fVIUiqVknS0LbLV1WitKpfLmp6e7rjO8vIye8sBAAAAAENvfX1d6+vrHdcpl8td6KY9QxOEpdNpJRIJffDBB163Iqn9AMqvc7dTs9fbIqvVqvb39zuuU6lUutANAAAAAACDrVKpdOVztpeGIgjb2tqS67p68eJFS3eGbMY0za4ESe0cCt+Lub28nl5vixwZGdHk5GTHdbjVLgAAAAAAR5+Pp6amOq5TLpdVrVa70NHleRKE3b17Vzs7Oz2f5+DgQI7j1M/Bevr0acdB2MTERFeCo4mJCV/M7eX11LZFWpbV9W2RkjQ5Oam9vb2u1wUAAAAAYBh16+ig6elpz1aWeRKEmaapXC4nwzB6Oo/rug3PbdvWDz/8oBs3brRds52VT9LprYPtrgjr9txeXc/xbZHDdEj+8vKyKpUKq8wAH+HfJeBP/NsE/Id/l4D/8O/y8jwJwu7cuaO1tbWWx7uu21Zodvw1tVBsc3OzoyBsfn6+HuBIR4FOKyHQycPkA4GAL+b26nqOb4vsxflgfsWh+4D/8O8S8Cf+bQL+w79LwH/4d3l5I15MOjs7W98K57ruhQ/DMFoad96jxnVdZTKZjnqfm5treF7bdnmRUqnU8DwUCvlibq+up/Y+mKapYDB4qdcCAAAAAAC0w5MgTJIWFhYkSfl8XtVq9dxHMpmU67oKBoPK5XI6PDxsOv7kY3t7WzMzM4rH46pWq/rpp5866nt+fr7heavB0fGthKZptnUmVi/m9uJ6HMdRPp+XJMVisZZfBwAAAAAA0AnPgrDFxUUFg0HdunXr3DE7Ozt68OCB4vG4tre3tbCwoLGxsUvNEwwG9erVK6VSKf3Lv/xLp20rGAw2bB188+ZNS6/b3t6uf30yfPJybi+uZ1i3RQIAAAAAAG95uiJsfHy86ZhkMinLsvTnP/+5o7ksy9LS0pJSqZS+//77jmpJRyFezfHztZo5Pi6RSPhq7n5fD9siAQAAAACAFzwLwiTp1atXTX++vb2teDzelbnm5+fluq5SqVTHtY73VNvi18zxMZZltXU+WC/n7uf1HN8WeTyAAwAAAAAA6DVPg7CLFIvFrq0YmpiYkCTlcrmOawWDwYbwJ5vNNh1//ID+i1ZPpdNpJRKJc8/q6sXcvbyek45vi4xGo5d6LQAAAAAAQCcM9/htFX1mYmJCT5480R/+8IeOa929e1fpdFqGYejXX3/tuJ5t2woEApKOgqRCoXDmOMdx6ltAQ6FQ0yAuHA43rLY6PDxsOL+rl3P3ouZZatdomqYODw8v9dpWTU9Pa39/X1NTU9rb2+vJHAAAAAAAoD1efm739Yqw+fl5PX36tOM67969UzqdlqQzg6V2WJZVXxlVLBa1trZ25rja3TFN02xYSXWWk9sSj6+e6vXcvah50vFtkZ1sDwUAAAAAAGiHr4OwWCymQqGgr776qu0alUqlHroYhiHLsrrVniKRiHK5nEzTVCKRUDQaVbFYrAc+c3Nz9e2dOzs7F4ZwJ3/erNduz92rmscdD/a6dfYbAAAAAABAq3wdhEUiEc3MzGhlZUWffvqpdnd3L/X6ly9famZmpuEOh3fu3Olqj6FQSIeHh0omk7Jtu343zGg0qomJCWUyGRUKhZZCo0wmI8uyZJqmVlZWLlw11c25e1nz+PUdnwcAAAAAAKCffH1GmHR0dtWHH34owzAkHZ1fFY/HZVmWLMvSBx98IEna3d2V4ziybVu5XE6bm5tyHEeu68owDLmuq/Hxcf3yyy8eXg36gTPCAAAAAADwLy8/t7/f19naYFmWtre3NT8/L+no/KpWttXV8r1agGYYxqXPtAIAAAAAAMDV4eutkTXBYFA///yzZmdn5bpuSw/DMOorwVzX1ebmpm7duuX1pQAAAAAAAMAjAxGESUcrwwqFgjY3NxUMBk/9vBZ81dQCsEgkosPDQ92+fbuf7QIAAAAAAMBnfL818qRIJKJIJKKdnR3l83kVCgXZtq2DgwNJ0sTEhCzLUjgcVigU0tjYmMcdAwAAAAAAwA98f1g+cFm1Q/dGRkY0OTnZdOzy8rKWl5f71BmGgeM4bd1VFYD/fPTt1xeO+fGzL3reBwAAwCBZX1/X+vp60zHlclnVapXD8oFuqlar2t/fbzqmUqn0qRtcZcViUc+fP1c6nVYoFOLGHIDPtRJwAQAAoD2VSuXCz+JeupJB2Orqqu7evavf/OY3XrcCD7WyImx0dLRP3cArtZCqWCzWt1HXVm1ZlqWJiQkFg8H6duqTotGobNtWoVCof89xHOXzeT1//lz5fF6O4/TxigAAAADAv0ZHRzU1NdV0TG1FmBcGLgh7+fKlcrmctre3tbq6qk8++eTUmLm5Oc3Ozurjjz9WMpkkEBtSk5OTfV9i2QvpdFrxePzSrwsGgw3hTbuO34SiVaZp6vDw8MyfRaNRZbPZS9fM5XJnBlVncRxHjx490traWtMxxWJRkpTP5+tjg8GgQqGQAoGAcrmcstnsqRt0LC0tybbt+usBAAAAAEdaOYKodqSRFwbmrpF/+tOfdO3aNUWjUaXTaRWLxfoB+SdFIhHZtq2ffvpJlmXpu+++63O3QPfEYjEdHh6qUCgoEok0HRsKhZTL5erju8F1XZVKJaVSqaZnX1mWpVQqpVKpdG4IJkmZTEaHh4ctBVsrKysqFAo6PDxsOQRLJBIaHx8/FYJFIhFlMpl6vdp15XI5xWKx+rUVi0Wtra0pHo/XA7uTK75qdVzXlWVZLfUFAAAAAPCe74Owd+/e6fr160okEvUPr62c72+apgqFgm7cuKFIJKJvvvmmD90CvWGapoLBoDKZjGKx2JljIpFIPVzq9mHtlmUpFos1DdcKhYJisVhLwZBpmvXQ7uRqq5pUKqVkMqlgMNjS9di2rUAgcCoAi8Vicl1XmUxGkUikoZ5lWQqFQkqlUjo8PFQymbxwnpNaDegAAAAAAN7zfRAWjUZVKpUkHW3Ruuw2ra2tLbmuq1gspu+//74XLQJ9dd42yXa2T16WZVlnBleRSKTt8O28vs8L/M6Sz+cVCARk23b9e7UwPJVKtVxnZWVFpVLp1LWct/q0Ng8AAAAAYDD4Ogjb2tpSPp+XYRj1lWBjY2OXWoFhmqbu378v13X7EhQAvXbeiqt+bdE7a55O5j7rtZcJl4rFosLh8KnXb21tnbva7KJ+dnZ2GnrgMHwAAAAAuBp8HYTVVnLUVnSVSiUdHBzo1atXLW2PrPn0008lSaVSiS2SGHjnhUQTExP9bcQHbNvWwsLCqe9nMpm2QrCa2mqyqyabzTasmkOjfD7vdQsAAAAAeszXQVhtNVg6ndbTp081MzPTVp3jK05evXrVrfaAoXRW4Hbt2rWu1ms11ItGo6dWa8Visa6c22VZllZWVjqu0w/FYlHxeFyBQECGYWh8fFyBQEBzc3P1u3Rms1ktLS1dGPbk8/n66696MGTbttLptMLhsAzDOLWy0GvD9F4AAAAA/fK+1w004ziOAoGAPv/8847qHD/fp1gsdtoWAB/I5/Nn/ntu58D786yurtYP33ccx3fngTmOo6WlpfrdLS3Lqt9Z1LZtFYtFFYvF+s9rr2mmFi46jqN4PF4/o/EqsW1b0WhUtm37etvrMLwXAAAAQL/5ekVY7U55nap9WHZdl21BwBVx1pl/nRzafxbTNC91aH+/1VZ7SUdbyUulkjKZjDKZjAqFgkql0qnVcReFKcOwxdayLBUKBR0eHvp61d8wvBcAAABAv/k6CLMsqyv/tf7Ro0f1r/22ogPA5eXz+TND7dXV1a7PFY1GJTW/c2Qz+Xxe0Wi0YdtiOBxWOp3uqK+1tbX6drmVlZUzAzvLspTL5RpWyV30HwNSqZQsy5JlWcpkMh31OAj8th3yuGF7LwAAAIB+8HUQtrCwoO3t7Y5qPHnyRMViUYZhSOrfnfUA9M55oUA3VpCeFAqFlEwmL706x3Eczc3NKRwONxxS7ziO8vl8/UyvdrdrHw/4L7oj7srKSn3l00WBXigUUqlUUqlU6snv02+8WnXVyl2Mh+29AAAAAPrB10HY6uqqDg8P9dVXX7X9+gcPHsgwDLmuK8MwdOfOnS53CaDfzjo4vBsH5J9nZWXlUqtJbdvWzMzMhSGXbduam5u79EHo7ZxtlUwmFQwG2R7uA+l0uuMVgQAAAADa4+sgzDRN3b9/XysrK/ryyy9VqVQufE2lUtGzZ890/fp1ra2tyXXdhp/7+bwfABezbfvMMMcvK2Ycx6kfch6JRJRKpVQoFJTL5c49jyocDl8qoDoZgrUapK2urvr6cPhhYNt2S6vBAAAAAPSGr+8aKR2tYigWi3r8+LGSyaTC4XB95UehUNDExIQODg5UKpUa7iJXC8BqWyIl6enTpxodHe3/RQDomvMCo0Ag0OdOzlYLpXK53KlVaqFQSPF4/MzgKxqNqlAotDTHyS3eiURCi4uLF65aq91R0o93wBwGjuP4+kwyAAAAYBj4PgiTjj5QxuNxbWxsKJfLKZfLyTCMM7eXnAzAas9TqZSWlpb62ziArjsvCPPTHfbOCsFqagfYnwzuisWi8vl8S1s8TdOUaZr11V2188hyudyF5yCeXCWL/nAcRwsLC2xNBQAAADzm662Rx6VSKW1vb+vWrVtyXffUo+Z4AOa6bv2wYUIwoHcSiYQMw2jrMTc3d6m5ztva55cVTqZpXhhmWZbVcCfHmrO+d56TY23bViAQ6MrZU8VisX6YfzOO4yidTmtubq5h3tr2v/HxcRmGoUAgoLW1tVOvt21biUSifkfNQCCgeDx+5ntcm+fk389J4XC4Xu/4o5tbQtPpdMM84+PjmpubO/MapaPf51lnxh3v77zfdavvRY3jOFpbW1M4HK7//mv9JRKJloI427a1trZ26mYOx9+DQCBQ3wIMAAAADJKBCcKkozOAcrmcSqWSUqmUIpGIgsGgLMvS2NiYZmZmNDs7Wz+X5/DwUK9evdLMzIzXrQPoklKp5HULTc3Pz7c07qwD+C9zaH4sFjszcIvH45qbm7v03ShrgUstNEmn02feYbIWtMzNzWl8fFzxeLxhrlqwlU6n6yFJLfA6fjZWbdza2lo9nLFtux62nAxYYrGYCoXChec81v5vxGVCxVZls1kZhlG/llKpJNd1tbW1Jcdx6td0snfLsrS1tXWqp0KhUH8cvxNqq+/FSel0WuPj40okEgqHw9ra2lKpVNLGxoYk1cOtaDR66rXH+w8EAg2hWW3F4fH32rZtZbNZzczMsMoNAAAAA2WggrCamZkZLS0taXNzU9vb2/r55591cHCgn3/+Wdvb29rc3NTS0pLGxsa8bhUYCrWQop1HKpW61Fznrfzyy8qUy6xMOyvIukyAlcvl6ud+nawxNzfX8ood27b1/PnzllcdBYPBUwe+FwqFegCXyWRUKpV0eHjYcIOAdDqtYrGocDisfD6vXC6nw8NDHR4eKpfL1X93tm3r0aNHZ859VohzlrN+L53I5/P1uVdXVxvqB4PBepBl2/apFcimaSoYDJ66oUPte8d/dtn3oqYWzpmmqVKppJWVlfp/KIpEIioUCvWes9nsqcDu4OCg4QzOmu3tbc3MzNS39Nb+Q1TtvXIch8P/AQAAMFAG4owwAP4WCAT6dtfGa9eunfn9VlbM+M2dO3eUzWYbvre9vX2p32Umk9Ha2poSicSpn2WzWWWzWaVSqaYrqU5u1TyrVs3xrZ+pVKoe3KXT6TPPRqvd8KS22m1ubk6xWEy5XK5hXCgU0sbGRj1sSqfTHa3q6vaZcRcFtsffs5Pv6WVc5r2oSafT9W2ZyWTy3HPiMpmMAoFA/c6r0Wi0/j5YliXLshQKhRq2uSYSCWUymYb3NRaLaWJiov5e5fN5bsAAAACAgTGQK8Iusru7q5cvX+r169eqVCpetwOPlMtlTU9PN32sr6973SYuye8rwi7jrMCinetYWVnR4eHhuauganeqbKX2RYftH3c8bDpvq6akU3dKPC9UOt6/4zi+fU/P+xs8/v1ubBds9b2ohWWmaV64dfR4sJbP58/cjnv8OjY2Ns58X0/+rW1vb7fUKwAAAK6+9fX1Cz+Ll8tlz/q7UivCdnd3FY1GT20tmpubUyaT0W9+8xuPOoMXqtWq9vf3m44hKB0854UDfj877CxnBSq//PJL27UymYyKxaKWlpZO/e/BfD6vhYUFbW1tdW3lTqt1jr9nl5nbtu2+rTS8yMbGhm7evFnfaniRfoV4x89iayU4i8ViSiQS9dckk8mW7lR6FsuyGs53AwAAAKSjz9kXfRb3ku+DsI8//liHh4f1/6f94OBAoVBIz58/bxj39u1bhUIhOY7TcBdJ6ei/VAcCAeVyOf23//bf+tU6PDYyMqLJycmmY0ZHR/vUDbrlvA/tlzlo3i/OCi7O2/rZqmAwqEKhoHQ6fersplpIdvxg9n5oN3jz03ZX0zQbzjs77rI3Juim41tMW11BFgqF6ts3B/HfDQAAAPxtdHRUU1NTTceUy2VVq9U+ddTI90GYaZrK5/MyTbN+QPHJu0C+e/dOCwsLchynfit613Vlmqbm5+cbzkP5P//n/3h0Jei3yclJ7e3ted0GeiAYDJ4KH2zbvhLnFF1ma2Izta2KJ+/AmM1mlc/n214F1Gumafp2S+Rxtm0rn8/Xz9Xyso/LOvk3dhX+3QAAAMA/lpeXtby83HTM9PS0Z6vGfH9GWLFYVCKR0MHBge7fv38qBJOkpaWlegjmuq5c11UymdTBwYFevXqln3/+Wa9evVK1WtWXX37pwVUA6KY7d+6c+f1BXN1yMoDoVhBWq1UoFE7Ncdk7deI/1O56WbsBgdeB4vHQsNVQ7OQdKf208g4AAADoNV8HYU+ePFEwGNSjR4/OHfPixQtls9l6CGYYhpLJpO7fv98wLhQK6fHjxyoUCr1uGxhoxWKxfjc4vzrvQPBBDHhOrn666EysfD6vubm5lutblqWNjY2G73m5lW+QxeNxzc3Nnbqzo5faOaD/5B01uxm+DqOPvv36wgcAAAD8w9dBWDqdvnAF19LSkgzDkCQZhqFgMHgqBKu5c+cOd7YCLlBbYelnpmmeeWB5Pp8fqJDn5O+5ldVFlmWpWCxeavXbyd8VB5tfXjweVzqdliTfhGBSY4jV6p02j68AIwQDAADAsPF1EFYqlXTjxo1zf37v3r36/9NfOyD/5MqH48bGxk4dpA/gP9SCpHA4fO6Ybm+jarfeeWFEIpHopJ0z9SoYPBnMnzzc/iy14KKVsefxy50Ye6mbf6fFYrEeglmW5avztE5uE6712czxO6y2cgdMAAAA4CrxdRBmWZZ2d3fP/Nnbt2+VSqUatkTGYrGmwdnbt281Pz/fm2aBAec4Tn1L5GU/HP/yyy9d7aWVEOO87Wn5fF5ra2td68W2bc3NzXUUPJ3n5B3/Wv29W5Yl27ZbDv1OrgA774y1QXByW995IWU3V70dX33XrK4XKykjkUhDMNfK9uDj17O6utqLtgAAAADf8n0QdtZ/3X737l3DGUaGYciyLP35z39uWm9ra6snq0WAfurFh23Hcep3XjVN89LbpbrdU6v1VlZWztxOmEgkunJwfj6frx8s3ovtcNlstv71Zc43q70/a2trLa0AOl7bsiytrKxcosvztfo+HR930Wsu+vnJ1WxnXf9ZIWE3V4gdf99qWpnv5L+rk6Fau/+Ojq+Ert3N8jzFYrG+fTiZTPpqdRsAAADQD74OwmKxmB4/fqwvv/xSlUpFlUpFL1++1Pz8vGzbrq8Gk6RMJtO01tu3b/Xo0SMtLCz0o3WgZ85bkdLuB/3a4eu1D8eLi4uXnr+TkKHTlTu5XO7MlVThcLjtlWGO4ygejyscDp9758Vmr21FOp2uX/tl7z54PFCJx+OKx+PnzptOpxt+D8dXoZ3l+Hvp9Vlx581//HeVSCQUj8eVz+eVzWYVj8cVCAROhTyt/rs5a86T4Vs0GtXa2lp99WEgEJBt2w3vSyqVUj6fVyKRqNc8GYTV3jfbthvOIDurt2bvRSQSaQhqo9HomeMdx9HS0pKko7+58wLRVt/3479Tr/9WAAAAgFb5OgiLRCJaWFhQMpnU+Pi4xsfHFY1GVSqVGkKwp0+fNt0S+ezZM89vcQ90y3krh+LxeEuhkuM49Q/ogUBA4XC44XXNzgezbfvMw+iz2WzbH4TPu55WVjrVZDKZMz/UJxIJzc3Ntbw6zHEcra2taWZmRul0WqFQ6FIhmHT63K+z1IIP6SjUuezdLk/eNTKdTtf/92MikVA6na4HQsfnKZVKF672O9nLWaufpP/4O6ppdt3Pnz8/1e9ZTr5P54V2mUym4T1Jp9MKh8OKRqPa3NxULpc79b/zE4mEbNs+9Xd68no3NzdPzRcKhU6FrYlEQuFwuB7EZTKZhjmz2Wz939bxXo//nebzeY2Pj9dXHZ78G271vai9tvZ7cRyn/jds27Zs21Y6na4H3slk8ty/uVbfg1bHAQAAAL7j+pzjOG4kEnENwzj1GB8fd7PZ7Jmve/v2rfvgwQP3ww8/dEdGRlzDMNyRkRH35cuXfb4C9NvU1JQryZ2amvK6la4qFApuJBJxJfX0cXh4eGruw8NDN5VKuaZpnvs6y7LcVCp15uvPu55QKNS0l5WVFbdUKrX8O8rlcm4wGDyzlmmabiQScVOplJvL5dxCoeDmcjk3lUq5yWSy4XWmabqZTKalOUul0pm/i1wud+b4TCZT/z1GIpGWr+3kddZ6zGQybiwWc0OhkBsMBhveo9o1n9dLTe1v67z3NxgMuslk8sKxlmW5kUik/jcQi8Vcy7LOrBkKheo1c7ncuX8LlmW5sVjsVM+Hh4cN9YPBoLuystIwpva9k39Dh4eHF17vWXMmk8n6fJZluSsrKw1/74eHh/XrOP47O2llZaWh7+N/a5d5L86TSqXcUChUr2GaZv115/37bPbv8fh7UCqVmo67qDe/+P998//v6wMAAACNvPzcbrjuYNxGcWtrS7lcTsViUaZp6ubNm4rFYhobGzs1dmNj49ytknNzc3r06FGv24WHpqentb+/r6mpKe3t7XndTsdqq3v6IRgMqlAoNHzPMIxL1zFNU4eHh2f+LBqNNl3Zcp6zVvmcJ5vN6tGjR2euXmvGsizF43HFYrFLrQKrnUl18rpM09T8/Hx9lc729nb9HLaTK4gA9M9H337d1/l+/OyLvs4HAADgd15+bh+YIAxo1VULwtC+2va958+f17fF1baBWpZVvzHAzZs3FYlELn2TgIvmq81Zm2d+fl7RaJQADPAYQRgAAIC3CMKALiIIA4Dh1e+QqxUEYQAAAI28/Nzu68Pyu213d9frFgAAAAAAAOCRoQrCotGo1y0AAAAAAADAI0MVhNXOBgIAAAAAAMDwGYogrFKp6O7du3Icx+tWAAAAAAAA4JH3vZp4Z2dHi4uLsm1b8XhcDx8+PDVmfn5eOzs7Hc1TC79c15VhGB3VAgAAAAAAwODyLAiLRqMqFouSpGQyqfn5eX3yyScNY+bm5upjgMsql8uanp5uOmZ5eVnLy8t96ggAAAAAgKttfX1d6+vrTceUy+U+dXOaZ0FYsViUYRhyXVfS2ed33b17VxsbG6dWctVec5Hjr2v1Nbg6qtWq9vf3m46pVCp96gYAAAAAgKuvUqlc+FncS54FYUtLS9rY2Kg/j0Qip8bMzs7KNE29e/dOruvKNE1NTEzINM2W5nAcRwcHB5wNNqRGRkY0OTnZdMzo6GifugEAAAAA4OobHR3V1NRU0zHlclnVarVPHTUyXA+XSmWzWW1vbysej2tmZubMMYlEQn/6059UKBR048aNtueq1fn111/broHBMD09rf39fU1NTWlvb8/rdgAAffTRt1973cIpP372hdctAAAA+IqXn9s9vWtkJBLR48ePzw3BJOnTTz+VZVkdhWDS0TlkY2NjHdUAAAAAAADA4PI0CGvF7Oxs1wIsy7K6UgcAAAAAAACDx/dBmCRtbW11pc7xM8kAAAAAAAAwXAYiCOvWirCTd58EAAAAAADA8BiIIKxblpaWvG4BAAAAAAAAHhmqIMy2ba9bAAAAAAAAgEeufBBWqVS0u7urxcVFOY7jdTsAAAAAAADwyPteTPru3TtNTEz0dU7XdTkjDAAAAAAAYIh5siJsbGxMN27ckOu6fXsAAAAAAABguHm2NfLTTz+VdHQnx16v1GIlGAAAAAAAADzZGilJoVBI0tGWRcuyZFmWTNPs+jyO48i2bQ7KBwAAAAAAGHKeBWGzs7MyTVPhcFjPnz/v+XzpdFr37t3r+TwAAAAAAADwJ0/vGhkKhRQOh/syVywW09jYWF/mAgAAAAAAgP94GoT1KwSrmZ+f7+t8AAAAAAAA8A/PtkZK0tLSkt69e9e3+V69etW3uQAAAAAAAOAvnq4Ik9SX7Yrv3r3T6upqz+cBAAAAAACAf3kehPXD2NiYcrmcfvvb33rdCgAAAAAAADzi6dbIfpqfn9fGxoa+/PJLPXz40Ot20AflclnT09NNxywvL2t5eblPHQEAAAAAcLWtr69rfX296Zhyudynbk4buCBsd3dXjuPo4OCg5dcUi0VlMhm5rqtUKkUQNiSq1ar29/ebjqlUKn3qBgAAAACAq69SqVz4WdxLAxGEvXz5UqlUSvl8vuNajuN03hAGwsjIiCYnJ5uOGR0d7VM3AAAAAABcfaOjo5qammo6plwuq1qt9qmjRr4Pwp48eaIHDx5IklzXbbuOYRgyDEPBYLBbrcHnJicntbe353UbAAAAAAAMjVaOIJqenvZs1ZivD8t/+/atEomEpLNDMMMwWqpjGIZc19XMzIw2Nja62iMAAAAAAAAGg69XhKVSKUlHd32MxWIKBAKyLEuSdHh4qMXFRY2Pj2tzc/PM1zuOo1evXunZs2cqFou6ceNGv1oHAAAAAACAz/g6CMvn8woEAvrpp5/O/PnS0pKePXumQCCgDz744Mwxt2/fliQ9ePBAf/nLX3rVKgAAAAAAAHzO11sjbduurwo7y4MHD+S6rtbW1prWSSQSevXqlb766qtutwgAAAAAAIAB4esgTJLm5+fP/dnMzIwWFhaUSqVUqVTOHWdZlmZnZ7WystJ0XCfW1tYUDoc1Pj4uwzAUCAQUjUa7cqdLL+b24nqKxaKy2azW1tb68nsDAAAAAADDxddBWDAY1MHBQdMxiURCruvW7yx5nps3b8p1XT1+/LibLSqfz2t8fLx+qH8mk1GpVFIymVSxWFQ4HFY4HJbjOF2dt1dz9/N6HMfR2tqa5ubmZBiGFhYW9ObNGwWDwaYBKAAAAAAAQDsM96zbMfrE4uKiPvzwQz18+LDpuLm5Of3www8qFov6r//1v545Zn5+XsVisemZY5eVz+cVDoclSbFY7MxtnHNzcyoWi7IsS4VCQaZp+nbufl2P4zhKJBJKp9OSjgLPZDKpUCh06Vpnqd2GdWpqSnt7e12pCQAYDB99+7XXLZzy42dfeN0CAACAr3j5ud3XQVg2m9WdO3e0tram27dvy7ZtSdKtW7dOjVtcXJRhGMpms/rnf/7nhp8/efKkvsLJMAz9+uuvHffmOI5mZmbkOI4sy1KpVDpznG3bCgQCkqRQKKRcLufLuft1Pel0WolEor6iLJVKKRaLXarGRQjCAGB4+TEIawVhGQAAGCZefm739dbISCSi0dFRraysKBAI1Lfl/fa3vz01bmFhQa7rKhKJ6ObNm7p3757u3bun69evN2ybtCyrK71Fo9F6mFML2c5iWZYikYikoxVXtVVQfpu7H9eTSCQUj8cbwrZuh2AAAAAAAADn8fWKMKlxtVetVcMwVCgUdOPGjfo427b14YcfyjCMhtcfvzzDMBSJRPT8+fOOejq+KkqSDg8Pm24RzGazikajkiTTNHV4eOiruftxPdFoVNlstv6anZ2drm0TPYkVYQAwvFgRBgAA4H+sCGsiEoloc3OzIdAyTbMhBJOOViq9evVKJ3M9wzDq4ZhpmtrY2Oi4p2QyWf86FApdGOjUVlBJR1sQa4GQX+bu9fWEw+GGMd08Kw0AAAAAAKBVvg/CpKPg5fDwUKlUSslksn5W2EmhUEg///yzbt26Jdd1Gx7BYFDb29saHR3tuJ/j2wGDwWBLrzm+JbOTFWm9mLuX15NOp5XP5+vPU6lU17anAgAAAAAAXMb7XjfQqrGxMS0tLV04zrIs5XI5vXv3Ttvb2/XvzczMdKWPYrHY8PzmzZstvS4YDNYDvHZXhPVi7l5ej23bisfjDa/hTDAAAAAAAOCVgVgR1o6xsTEtLCxoYWGhHoLt7u52XPf46iap9cP3T447GUB5NXcvr6d2jljN6upqS7UBAAAAAAB64coGYWc5vjqpXW/evGl43upZV9euXWt4Xlut5vXcvboe27YbwjHTNBvOFgMAAAAAAOi3oQrC2gmfTjp5Plm7K6hKpZIv5u7V9aRSqYbnoVBI0n/ccTIQCMgwDI2Pj2tubk5ra2tyHKeluQEAAAAAANoxMGeEHbe7u3up0MS2baVSqa4ELecd1H9Z7fTSi7l7dT3HD+CXpImJCc3NzZ3aQuk4jorFoorFohKJhDKZDCvHAAAAAABATwxEELa7u6tkMql8Pt92cOO6rgzD6LiXdsO0k1sODw4OfDF3L2ratn2q7ubmppLJpBYXF+uvtW1byWSyITSLRqNdC8PK5bKmp6c7rrO8vKzl5eWO6wAAAAAAMMjW19e1vr7ecZ1yudyFbtrj+yBsdXVVa2trko7CrKvCy22AvZi72Soz0zS1s7NzKjyzLEupVEpzc3MN57ctLS0pFAq1fF7ZearVqvb39zuqIUmVSqXjGgAAAAAADLpKpdKVz9le8nUQ9uLFCyWTSUmSYRgyDMPzMMw0za4ESe2EPL2Yuxc1TwZhsVis6fXGYjEVCoX6yjDHcfTo0aP6e9+ukZERTU5OdlRDkkZHRzuuAQAAAADAoBsdHdXU1FTHdcrlsqrVahc6ujxfB2GPHj2SpHoAZlmWgsFg/aD2k3cuPMsvv/wix3G0ubmpd+/eddzTxMREV4KjiYkJX8zdi5onD86/efPmha9PJBINWyTX1tY6DsImJye1t7fXUQ0AAAAAAHCkW0cHTU9Pe7ayzNdBWLFYrJ/rlcvltLCw0HatlZUVXb9+veOe2t2udzJsandFWLfn7kXNdq61FnIeP0y/WCwqGAy21R8AAAAAAMBJI1430EwtQFlZWekoBJOOgpaZmZmOe5qfn2943upqqpOH4wcCAV/M3Yua7VzbWb10646WAAAAAAAAks+DsNoWyFa21rUilUp1XGNubq7heathzcntgqFQyBdz96LmyRVgrYZrJwO0du6sCQAAAAAAcB5fB2G1VWDdCkQ6XVUmtb9q6XgYZJpmPeTzem4/1TwZoLVzjhoAAAAAAMB5fB2Effnll3Jdt+HcqE48e/as4xrBYLAhsHnz5k1Lr9ve3q5/fTIo8nLuXtU87uTqsVa1ExYCAAAAAACcx9dB2NjYmB4/fqznz5/r73//e8f1urE1UpIWFxfrX7ca0h0fl0gkfDV3L2oe3yqZz+dbqnlyCyUH5QMAAAAAgG7ydRAmHR2UHwwGFY1GO6qzs7PTtZVl8Xi8/nUrIc/xMZZltXU+WC/n7kXN4+GYbdstnRN2fOVYJ78jAAAAAACAs7zvdQOtyOVymp+f1/Xr15VIJFo+O+rg4ECO46hUKmlzc7Nr/QSDQYVCoXoglM1mFYlEzh2fyWTqX1+0GiydTqtUKikej5+5NbAXc/eiZigUkmVZ9fPBHj16pGQyeW5NqTFgu2gsAAAAAADAZRmu67peN3GR169fa2VlRcViUYZhtFXDdV0ZhqFff/21Kz3Ztl2/y2EwGFShUDhznOM4Gh8fl3QUDuVyuXNrhsPhhjDo8PDw1AHyvZq7FzWLxWLDXSlLpdK5537l83mFw2FJUiwW62gb6/T0tPb39zU1NaW9vb226wAABs9H337tdQtt+fGzL7xuAQAAoG+8/Nzu+62R9+7dUzgc1tu3b2UYhlzXvfSjFyzLqq+MKhaLWltbO3Nc7U6Vpmk2rKQ6y8ltieetYuvF3L2oGQwGGwKtcDh85hZJx3Hq2zNPvgYAAAAAAKBbfB2EbWxsKJVK1cOsdkOtXoVhkUhEuVxOpmkqkUgoGo2qWCzKcRzl83nNzc2pWCwqGAxqZ2fnzNVdx538ebO7JnZ77l7VjMVi9Zq2bWtmZkZra2sqFov1wG1mZka2bSsWi527Eg0AAAAAAKBTvt4aOT8/X98O6bquQqGQwuGwTNO89DlhT58+1e7ubte2Rp60tram58+f1w+GN01T8/PzisfjTc/bOi6fzysej+vg4ECxWKzlc7K6MXc/aqbTaWUyGW1vb9dr1g7bP+9MtHawNRIAhhdbIwEAAPzPy8/tvg7CRkZGZBiGTNPU9va2ZmZm2q7lOI6uXbvWsyAM/kEQBgDDiyAMAADA/zgj7By1rXerq6sdhWC1WrOzs13oCgAAAAAAAIPI10FY7Y6D3doyt7Gx0ZU6AAAAAAAAGDy+DsLi8bhc15Vt212px4owAAAAAACA4eXrICwSiWh2dlbPnz/vSr2XL192pQ4AAAAAAAAGz/teN3CRTCajDz/8UN99953++Z//uaNajx490ieffNKlzuB35XJZ09PTTccsLy9reXm5Tx0BADoxqAfhAwAADJP19XWtr683HVMul/vUzWm+D8Isy9LTp0/1+eefdxSEvXv3TsVisYudwe+q1ar29/ebjqlUKn3qBgAAAACAq69SqVz4WdxLvg7CalsZ//Ef/1Hj4+O6fv26IpHIpes4jqPNzc1utwefGxkZ0eTkZNMxo6OjfeoGAAAAAICrb3R0VFNTU03HlMtlVavVPnXUyHBd1/Vk5hbMz8/r7du39eeu68owjLZq1V7766+/dqs9+NT09LT29/c1NTWlvb09r9sBAHTJVd4a+eNnX3jdAgAAQN94+bnd14flLy4uynVd1bK6dkMwAAAAAAAAwNdBWDwel3QUgNUCsXYfAAAAAAAAGG6+PiNsbGxMwWBQb9++VTKZVDAY1MTExKXr2Lathw8f6ocffuh+kwAAAAAAABgIvg7CJOnOnTsKBAK6f/9+2zVmZ2d1+/bttkI0AAAAAAAAXA2+3hopSaFQqGtbG+fn57tSBwAAAAAAAIPH90HY7OyskslkV2p1qw4AAAAAAAAGj6+DsEqlonv37unu3bv66quvOq43Ozvbha4AAAAAAAAwiHx9RlgkEtHW1pZc11U+n9fMzIw++eQTr9sCAAAAAADAAPL1irB8Pt/w3DRNbxoBAAAAAADAwPN1EGZZliTJMAxFIhHdunXL444AAAAAAAAwqHwdhMVisfodI58/f95xvXv37nVcAwAAAAAAAIPJ10HYysqKFhYWJEl/+9vfOq53cqslAAAAAAAAhoevgzBJyuVy+uSTTxSJRPT3v/+97To7OzuybbuLnQEAAAAAAGCQ+D4Ik6RvvvlGsVhMwWBQ33zzjSqVSkuvq1QqqlQqev36taLRaI+7BAAAAAAAgJ+973UDzXz44Yfa2dmpP3ddV7FYTLFY7NK1XNeVYRjdbA8AAAAAAAADxNcrwmqH5dcehmE0PL/MAwAAAAAAAMPN10FYPB6XJBmGUQ/B2sFKMAAAAAAAAPh6a+TY2Jhu376tFy9eSJJCoZBM07x0Hdu2VSwWu9wdAAAAAAAABomvgzDpaFXYy5cvVSgUdOPGjbbrpNNp3bt3r3uNwffK5bKmp6ebjlleXtby8nKfOgIAAAAA4GpbX1/X+vp60zHlcrlP3Zzm+yAsFAppbGysoxBMOjpv7O7du91pCgOhWq1qf3+/6ZhW70AKAAAAAAAuVqlULvws7iXfB2GStLq6qkqlotHR0Y7qtHO3SQyukZERTU5ONh3T6d8UAAAAAAD4D6Ojo5qammo6plwuq1qt9qmjRobLLRVxxUxPT2t/f19TU1Pa29vzuh0AQJd89O3XXrfQMz9+9oXXLQAAAPSNl5/bB2JF2EmVSkX5fF65XE4HBweybVsTExOyLEuBQECRSEQffPCB120CAAAAAADARwYqCNvd3VUikVA2m234vuu6Mgyj/jyRSMiyLD148EB/+MMf+t0mAAAAAAAAfGjE6wZatbGxoUAgoGw2K9d16w9JDSGYdBSMlUolxWIx/fa3v9Xf/vY3L1oGAAAAAACAjwxEEPbkyRPdvXu3IfiqhV/HQ7Hj4VjtZ9vb2woEAvrrX//qSe8AAAAAAADwB99vjXzx4oUSiUQ9/KoFXcFgUPPz8woEAjJNU5ZlaWJiQrZt6+DgQKVSSdlsVrZtq1qtamFhQdvb25wdBgAAAAAAMKR8f9fIDz/8UDs7O3JdV6ZpKplManFxUWNjYy29/u3bt3r48KFevHihjz/+WH/5y1963DG8xl0jAeBqusp3jWwFd5YEAABXhZef2329NfLFixeybVuu6yoej+vg4EBLS0sth2CSNDs7q0wmo8ePHyuXy+n777/vYccAAAAAAADwK18HYc+fP5dhGFpbW9Of//znjmqtrKxoYWFBm5ubXeoOAAAAAAAAg8TXQVixWFQwGNQf//jHrtSLx+PK5/NdqQUAAAAAAIDB4uvD8m3bVjqd7lo90zRl23bX6gEAAAAAAGBw+HpFmCRZltW1WoRgAAAAAAAAw8vXQZhlWV0Nr1KpVFeDNQAAAAAAAAwOXwdhwWBQmUymK7UePHhQP3MMAAAAAAAAw8fXQdji4qJyuZy+/PLLtmtUKhXduXNHa2trMgxD8Xi8ix0CAAAAAABgUPg6CItEIpqZmVEymdS//Mu/aHd3t+XXvn79Wnfu3NH4+Liy2awMw1AwGNStW7d61zAAAAAAAAB8y9d3jZSOzvX6+OOPlUqllEqlFAqFFAwGFQgE6ud9OY6jg4MDFQoFbW9vq1gs1l/vuq4kyTAMbWxseHINAAAAAAAA8J7vg7BQKKSnT5/q7t27MgxD+Xxe+Xz+3PG14Es6Cr8Mw5Drutrc3NSNGzf60DEAAAAAAAD8yPdBmCTFYjFNTEwoFovJcRwZhiGpMfSqqf2s9nPTNLW1taXZ2dm+9Qt/KJfLmp6ebjpmeXlZy8vLfeoIAAAAAICrbX19Xevr603HlMvlPnVz2kAEYdLReWHhcFgPHz7UkydPzh1XC8dM09Tq6qru37/frxbhM9VqVfv7+03HVCqVPnUDAAAAAMDVV6lULvws7qWBCcIkaWxsTMlkUslkUltbWyoWiyqVSjo4OJAkTUxMKBAIKBQKsQIMGhkZ0eTkZNMxo6OjfeoGAAAAAICrb3R0VFNTU03HlMtlVavVPnXUyHDP2l8IDLDp6Wnt7+9rampKe3t7XrcDAOiSj7792usWPPXjZ1943QIAAEBXePm5faSvs3ns5cuXXrcAAAAAAAAAjwxVEJZIJLxuAQAAAAAAAB4ZmiDsxYsXsm3b6zYAAAAAAADgkYE5LP+HH35QPp9XqVS6VKB1cHAgx3EIwQAAAAAAAIac74Ow3d1dxeNx5fP5tl5//F4AhmF0qy0AAAAAAAAMGN8HYaFQSDs7O3Jdt60gq/Yabo4JAAAAAAAw3HwdhN29e1e2bcswDBmGQZgFAAAAAACAtvn6sPzt7e361zMzM8pkMjo8PFS1Wr3Uo1Ao6Pbt2x5eCQAAAAAAALzm6xVhxWJRhmHINE0Vi0WNjo62VWd2dlaZTEYTExNd7hAAAAAAAACDwtcrwkzTlCQtLi62HYIdF4vFOq4BAAAAAACAweTrICwajUqSAoFAV+o9fvy4K3UAAAAAAAAweHwdhD148ECu6zacFdaJSqXSlToAAAAAAAAYPL4OwmZmZvT06VNlMhn99a9/7bjewsJCF7oCAAAAAADAIPJ1ECYdnev1+eefKxKJ6O9//3tHtYrFYpe6AgAAAAAAwKDx9V0ja1sZHzx4oEKhoFu3bimZTF7q7o8HBwdyHEepVKpXbQIAAAAAAGAA+DoI++CDD/Tu3buG74XD4bZqua4rwzC60RYAAAAAAAAGkK+3Ri4tLcl13fpDUsPzyzwAAAAAAAAw3Hy9IuzTTz/VkydPZBgGgRYurVwua3p6uumY5eVlLS8v96kjAAAAAACutvX1da2vrzcdUy6X+9TNab4OwmZnZ2VZlnZ2dhQKhRQMBnXt2rVL1fjll1/kOI7S6XSPuoRfVatV7e/vNx1TO4cOAAAAAAB0rlKpXPhZ3Eu+DsIkKRKJ6O3bt/r3f//3juqsrKzo+vXrXeoKg2BkZESTk5NNx4yOjvapGwAAAAAArr7R0VFNTU01HVMul1WtVvvUUSPfB2F37tyRbdsd17EsS7Ozs13oCINicnJSe3t7XrcBAAAAAMDQaOUIounpac9Wjfn6sHzpaHvk6upqV2plMpmu1AEAAAAAAMDg8X0QJqlrK7lmZma6UgcAAAAAAACDx7Mg7IcffvBq6jNVKhXt7u563QYAAAAAAAB6xLMg7OHDh/ryyy+9mv6UaDSqbDbrdRsAAAAAAADoEc+CsHQ6radPn+qbb77xqoW6e/fu6eDgQH/84x/brrG2tqZwOKzx8XEZhqFAIKBoNKp8Pt/FTvs3t1fXY9u2wuFwT+cAAAAAAADDybMgzDRNbW5uamlpydMw7N69e9rc3Gz7IP18Pq/x8XElEglJRwfyl0olJZNJFYtFhcNhhcNhOY7Txa57N3evrsdxHBmGceEjEAjIsqxL1QYAAAAAAGjF+15OHgqF9PjxYy0tLalUKunhw4d9m7tSqWhpaUnZbFaFQkEffPDBpWvk8/n66qVYLKZUKlX/mWVZikQimpubUz6f19zcnAqFgkzT7Er/vZi7l9eTTqdbvrZaCAcAAAAAANBNnt81cmVlRY8fP9bjx4/129/+Vt9//33P53z27JlmZmaUzWa1vb2tGzduXLqG4ziKRqOSjkKi46HRcbWVZrZt18d3qhdz9/p6Hj161NK4UCjEijAAAAAAANATngdh0lEY9vTpU21vbysUCum3v/2tvvvuu67O8fr1a62ururatWuKx+MaHx/Xzz//rNnZ2bbqRaPR+vbAZiuYaiuppKMVV5dZGdXPuXt5Pel0Wo7jaGVlRblcrumj3S2qAAAAAAAAFzFc13W9bqImm81qaWlJ7969k2EYkqRgMKhQKKSbN2/KsixZlqXR0dFza1QqFR0cHMi2beVyOeXzeRWLxfrPXddVJBLR5uZm233atq1AIFB/fnh42HSLYDabra+eMk1Th4eHvpq719dTq10qlZqO65bp6Wnt7+9rampKe3t7fZkTANB7H337tdcteOrHz77wugUAAICu8PJzu6dnhJ0UiUQUDocViUS0tbUlSSoWiw1B1kmmaV54cPvxrC+dTuvzzz/vqM9kMln/OhQKXXhOVm0FlXS0BTGbzTZ8z+u5e3k92WxWtm2fu9USAAAAAACgX3wVhEnS2NiYcrmcstmsHj9+XA/BDMPQWYvXWl1dtbKyotXVVY2NjXXc4/HtgMFgsKXXWJYl27YlSc+fP287COvF3L28nkePHsk0TS0uLrZUFwAAnK2VFXGsGgMAAGjOF2eEnSUSiWh7e1u5XE63b98+MwQzDKPhcZJlWVpZWdHh4aEeP37clRDs5Oq0mzdvtvS64wFTNpv1zdy9vJ7aaj7HcTQ+Pq5AIKB4PN729QMAAAAAAHTCdyvCTlpYWNDCwoIk6e3bt8rn83rz5o0cx9HBwUF9W6RpmrIsSxMTEwqHwwqFQl0Jvk7K5/MNz1u9w+HJccViseXVV72cu5fXc/LQfdu2lU6n6yvQIpGIVldXL/17AAAAAAAAaIfvg7DjZmdn277LY7e8efOm4flF52nVXLt2reH59vb2pQOgXszdq+uxbftUyHZSNptVNptVLBbjDDEAAAAAANBzAxWE+UHtXKyadldQtXMHxV7M3avrsSxLqVRKjuOoVCopn8+fmqsmnU5re3tbhUKhpbkBAAAAAADaQRB2SeeFOZd10Z0u+zV3L68nFoudGpNOp/Xo0aNT44vFosLhsHK5XFf6AQAAAAAAOIkg7JLaCbCk01sODw4OfDF3P6/HNE2trKxoZWVF2WxWS0tLDfPn83mtra1pZWWlrZ5OKpfLmp6e7rjO8vKylpeXu9ARAAAAAACDa319Xevr6x3XKZfLXeimPQRhHmk3gPLr3JetGYlEFAqFtLCw0HDnykePHnUtCKtWq9rf3++4TqVS6UI3AAAAAAAMtkql0pXP2V4iCLsk0zS7EiS1eih9r+f2+noKhYLm5ubqYZjjOMrn8wqFQh33NDIyosnJyY7rjI6OdlwDAAAAAIBBNzo6qqmpqY7rlMtlVavVLnR0eQRhlzQxMdGV4GhiYsIXc3t5PTUbGxuam5urP8/lcl0JwiYnJ7W3t9dxHQAAAAAA0L2jg6anpz1bWTbiyawDrJ2VT9LprYPtrqDq9txeXk9NMBhsCL66dYA/AAAAAADAcQRhlzQ/P9/wvNXVVCcPkw8EAr6Y28vrOS4cDnf0egAAAAAAgIsQhF3S8S18Uuurl0qlUsPzdrb+9WJuL6/nOMuy6l93ss0SAAAAAADgPARhl3RyBVWrwdHxlVamaTYEP17O7eX1HHf89Z1sswQAAAAAADgPQdglBYPBhqDmzZs3Lb1ue3u7/vXJ8MnLub28nvPqsU0SAAAAAAD0AkFYGxYXF+tfF4vFll5zfFwikfDV3F5eT83xrZbduGMkAAAAAADASe973cAgisfjSqfTkqR8Pn/h+ONjLMvqKOjpxdxeXk9NNpuVJK2srHRcCwAweD769muvWwAAAMAQuJIrwnZ3d/Xy5Uu9fv1alUql6/WDwWBD+FMLcc6TyWTqX1+0eiqdTiuRSJx7Vlcv5u7l9bQim83Ktm2ZpqnV1dWO6wEAAAAAAJzFcF3X9bqJbtnd3VU0Gj21vW9ubk6ZTEa/+c1vujaXbdsKBAKSjoKkQqFw5jjHcTQ+Pi7paMtfLpc7t2Y4HG5YbXV4eHjmwfG9mLubNfP5vKLRqBzHUSgUUjKZVDAYPHfeubk5OY6jQqFw7rjLmJ6e1v7+vqamprS3t9dxPQBA77EirDt+/OwLr1sAAAC4kJef232/Iuzjjz/WzZs3df36dV2/fl3Xrl3TnTt3To17+/at5ubmVCwW5bpuw2N7e1uBQEDff/991/qyLKu+MqpYLGptbe3McQsLC5KO7oR4fCXVWU5uS9zc3Ozb3N2smclk6neVzOfzmpubUzwePzWu9rOJiQmVSqWuhGAAAAAAAADn8X0QZpqmCoWCfvnlF8ViMW1vb+v58+cNY969e6eFhQUdHh5KkgzDqL82FArJsixVq1VFo9Gu9haJRJTL5WSaphKJRH01muM49ZCnWCwqGAxqZ2fnzNVdJ6/1OMuy+jZ3N2ue9XtOp9MaHx9XNBpVPB7X3NycwuGwYrGYCoVC02sFAAAAAADoBt8HYcViUYlEQgcHB7p//75mZmZOjVlaWpLjODIMo74KLJlM6uDgQK9evdLPP/+sV69eqVqt6ssvv+xqf6FQSIeHh0omk7JtWwsLC/XAZ2JiQplMRoVCoaUgKpPJyLIsmaaplZWVCw+h7+bc3awZCoVUKpUUi8Xq11NTLBZ1cHCg1dXV+jyX6Q8AAAAAAKBdvj4j7MmTJ3rz5s25WwQl6cWLF4pGo/UQzDAMPX78WPfv3z81Np1O68WLF/r3f//3XrYNj3FGGAAMHs4I6w7OCAMAAIOAM8LOkU6nL1zBtbS0VN8KaRiGgsHgmSGYJN25c0fb29td7xMAAAAAAAD+5+sgrFQq6caNG+f+/N69e/VD2WsL2zY2Ns4dPzY2Jh8vgAMAAAAAAEAP+ToIsyxLu7u7Z/7s7du3SqVSDVsiY7FY0+Ds7du3mp+f702zAAAAAAAA8DXfB2HpdPrU99+9e9dwZ0LDMGRZlv785z83rbe1taVEItH1PgEAAAAAAOB/73vdQDOxWEyLi4uSpAcPHkiS8vm8EomEbNtuWA2WyWSa1nr79q0ePXqkX375ped9wx/K5bKmp6ebjlleXtby8nKfOgIAAAAA4GpbX1/X+vp60zHlcrlP3Zzm6yAsEoloYWFByWRSyWSy/v1a+FU77+vp06dNt0Q+e/aMlWBDqFqtan9/v+mYSqXSp24AAAAAALj6KpXKhZ/FveTrIEySstmsPv/8c7148aLh+67ryjRNbWxs6Pbt26de98MPP+j58+fKZrOybbsenn333Xf653/+5361Dw+NjIxocnKy6ZjR0dE+dQMAAAAAwNU3OjqqqamppmPK5bKq1WqfOmpkuANyG8WtrS3lcjkVi0WZpqmbN28qFotpbGzs1NiNjY1zt0rOzc3p0aNHvW4XHpqentb+/r6mpqa0t7fndTsAgBZ89O3XXrdwJfz42RdetwAAAHAhLz+3+35FWM3CwoIWFhZaGru0tKSlpaUedwQAAAAAAIBB4uu7RnbbDz/84HULAAAAAAAA8Ijvg7Dd3d2u1WKVGAAAAAAAwPDyfRAWj8e7UmdnZ0fFYrErtQAAAAAAADB4fB+E2bbdlTqJRKIrdQAAAAAAADCYBiII+/vf/95RjT/96U/KZrNd6ggAAAAAAACDyPdBmOu6Ha3mWl1dZTUYAAAAAAAA/B+ESVIqldL3339/6dfduXNHa2trcl23B10BAAAAAABgkAxEEOa6rqLRaMtbJHd3d3X9+nVls1m5rivDMHrcIQAAAAAAAPxuIIKwSCSig4MDLSwsXDj2xYsXCgQC9UP2DcOQ67qKRCK9bhMAAAAAAAA+5vsgLBQKaXNzU9vb29re3tann3567tjV1VUtLi7Wt0K6rquxsTEVi0Vtbm7q9u3b/WobAAAAAAAAPvO+1w1cJBgM1v/n9va25ufnZVmWHj58WB9TqVS0sLCgYrFY3wrpuq5CoZAymYzGxsYkHQVlAAAAV9VH33594ZgfP/ui530AAAD4le9XhD1+/Lj+dTAY1Obmph4/fqxvvvlGkvT27VvNzMycCsGSyaRevXpVD8EkaXZ2tu/9AwAAAAAAwB98H4SdFIlE9PTpU8ViMd27d0/z8/M6PDys/3xsbEyFQkH3798/9do//elP/WwVAAAAAAAAPjJwQZgkxWIx/fGPf1QqlTq1FXJnZ+fclV+5XK7PnQIAAAAAAMAvBjIIk6RkMlk//N51Xa2trZ3aCnnS9vZ2v9oDAAAAAACAz3hyWP67d++0tbXVcZ1PP/1UW1tbisfjsixLL1++PHPcwcGBUqmUHMfpeE4AAAAAAAAMJs/uGhmJRGQYRldqra2tXTimtoUSAAAAAAAAw8mTIGxsbEzBYFDFYrHjWrXzwS4ag+FTLpc1PT3ddMzy8rKWl5f71BEAAAAAAFfb+vq61tfXm44pl8t96uY0z1aEhUIhFYvFloKsZlp5bSf1Mbiq1ar29/ebjqlUKn3qBgAAAACAq69SqVz4WdxLngVhd+7cqW9pXFlZUSAQ0MTERNfnOTg4kOM4evr0qXZ3d7teH/41MjKiycnJpmNGR0f71A0AAAAAAFff6Oiopqammo4pl8uqVqt96qiR4Xq4XGpiYkJra2v6/PPPez6Xbdu6fv26fv31157PBW9NT09rf39fU1NT2tvb87odAEALPvr2a69bGBo/fvaF1y0AAIAh5+Xn9pG+znZCKBSSZVl9mcuyLM3MzPRlLgAAAAAAAPiPp0HYnTt3erId8jyRSKRvcwEAAAAAAMBfPDsjTJJu377d1/keP37c1/kAAAAAAADgH56uCAMAAAAAAAD6ZWCCsNevX2t1dVXPnj27cOyLFy90/fp1fffdd33oDAAAAAAAAIPA062Rrbpz546y2Wz9+bt37/Sv//qv546/ffu2ZmZmFAqF9OjRI2UyGf3mN7/pR6sAAAAAAADwKd+vCLt3754ymYxc15XrupKkV69eXfi6YDAo27b1008/aW5uTn/961973SoAAAAAAAB8zNdB2Lt375RKpWQYhgzDkCS5rqtoNNrS603TVKFQ0MHBAWEYAAAAAADAkPN1EPbo0SNJR+HX2NiYYrGYSqWSPv/885ZrWJalpaUlVavVlgM0AAAAAAAAXD2+DsLy+bzGx8eVy+V0cHCgp0+famZm5tJ1Pv74Y0lSqVTSN9980+02AQAAAAAAMAB8HYTZtq3V1VUtLCx0VMeyrPrXm5ubnbYFAAAAAACAAeTrIMxxnIYQq10HBweSjrZYbm9vd1wPAAAAAAAAg8fXQZhlWfUQqxO5XK7+teM4HdcDAAAAAADA4PF1EBYMBpXJZDquk06n63edNE2z43oAAAAAAAAYPL4OwmKxmPL5vL7//vu2a9y5c6e+CswwDM3Pz3epOwAAAAAAAAwSXwdhoVBIN27cUCgUunQYVqlUdOfOHWUyGRmGIdd1JUnRaLQXrQIAAAAAAMDnfB2ESdLGxoZc11UoFNLvf//7CwOxSqWie/fuaXx8XNlstv59wzBkWZY+//zzXrcMAAAAAAAAH3rf6wYuEgwGtbm5qcXFReVyOeVyOZmmKcuy6g9Jsm1bxWJRtm1LUn0FWG01mGEYXTlvDIOjXC5renq66Zjl5WUtLy/3qSMAAAAAAK629fV1ra+vNx1TLpf71M1pvg/CJCkSiWh7e1sLCwt69+6dHMdRsVhUsVhsGFcLvyTVD8d3XVemaWpra0s3btzoZ9vwWLVa1f7+ftMxlUqlT90AAAAAAHD1VSqVCz+Le2kggjDpaGXY7u6uHj58qCdPnpz6uWEYDeFXLRSLxWJKJpMaGxvra7/w3sjIiCYnJ5uOGR0d7VM3AAAAAABcfaOjo5qammo6plwuq1qt9qmjRoZ7fBnVANna2lIul1OxWNTBwYFs29bExIRM09T8/LzC4bBCoRAB2BCanp7W/v6+pqamtLe353U7AIAWfPTt1163MDR+/OwLr1sAAABDzsvP7QOzIuykhYUFLSwseN0GAAAAAAAABoTv7xrZDe/evdPq6qrXbQAAAAAAAMBDQxGEjY2NKZfL6be//a3XrQAAAAAAAMAjQxGESdL8/LwKhYK+/PJLr1sBAAAAAACABwbujLDd3V05jqODg4OWX1MsFpXJZOS6rlKplB4+fNjDDgEAAAAAAOBHAxGEvXz5UqlUSvl8vuNajuN03hAAAAAAAAAGju+DsCdPnujBgweSJNd1265jGIYMw1AwGOxWawAAAAAAABggvg7C3r59q0QiIcMwzgzBzvv+eeMsy9LGxkYvWgUAABgIH337dUvjfvzsi572AQAA4AVfB2GpVErS0V0fY7GYAoGALMuSJB0eHmpxcVHj4+Pa3Nw88/WO4+jVq1d69uyZisWibty40a/WAQAAAAAA4DO+DsLy+bwCgYB++umnM3++tLSkZ8+eKRAI6IMPPjhzzO3btyVJDx480F/+8pdetQoAAAAAAACfG/G6gWZs266vCjvLgwcP5Lqu1tbWmtZJJBJ69eqVvvrqq263CAAAAAAAgAHh6yBMkubn58/92czMjBYWFpRKpVSpVM4dZ1mWZmdntbKy0nQcAAAAAAAAri5fB2HBYFAHBwdNxyQSCbmuW7+z5Hlu3rwp13X1+PHjbrYIAAAAAACAAeHrIMyyLKXT6aZjQqGQZmdnlUql9Ne//vXccdvb25KkTCbT1R4BAAAAAAAwGHwdhC0uLiqZTOqrr77S7u6uXr9+rdevX58at7q6Ktd1FQwG9d133536+ZMnT1QsFiUdnTsGAAAAAACA4WO4rut63UQz4+Pjp871mpub0//8n/+z4XvhcFhbW1syDEPBYLB+tlg+n5dt26pdZrO7UOJqmJ6e1v7+vqamprS3t+d1OwCAFnz07ddet4ATfvzsC69bAAAAV5SXn9vf7+tsbdjY2NDi4qIMw6iHWYVCQT/88INu3LhRH5dKpfThhx9KkorFYn0F2PGcrxaSAQAAAAAAYPj4PgiLRCLa3NzU4uJi/XumaTaEYNLReWKvXr3Sxx9/LMMw6t+vfe26rkzT1MbGRl/6hvfK5bKmp6ebjlleXtby8nKfOgIAAAAA4GpbX1/X+vp60zHlcrlP3Zzm+yBMOgrDDg8Ptbm5KcdxFIvFzhwXCoX0888/Kx6Pa2trq+FnwWBQmUxGo6Oj/WgZPlCtVrW/v990zMlttwAAAAAAoH2VSuXCz+JeGoggTJLGxsa0tLR04TjLspTL5fTu3bv6nSIty9LMzEyvW4TPjIyMaHJysukYglEAAAAAALpndHRUU1NTTceUy2VVq9U+ddTI94flA5fFYfkAMHg4LN9/OCwfAAD0ipef20f6OtslVSoV3bt3T7/73e/01Vdfed0OAAAAAAAABpivt0ZGIhFtbW3JdV3l83nNzMzok08+8botAAAAAAAADCBfrwjL5/MNz03T9KYRAAAAAAAADDxfB2GWZUmSDMNQJBLRrVu3PO4IAAAAAAAAg8rXQVgsFlPtLP/nz593XO/evXsd1zjP2tqawuGwxsfHZRiGAoGAotHoqVVtgzJ3P68nEAjIMAxls9mu1wYAAAAAAKjxdRC2srKihYUFSdLf/va3juv1IsTJ5/MaHx9XIpGQJGUyGZVKJSWTSRWLRYXDYYXDYTmOMxBz9/t6EomEbNvuSi0AAAAAAIBmDLe25MrHotGodnd39fr1a/3DP/xDWzV2dnb04Ycf6tdff+1aX/l8XuFwWNLR6rVUKnVqzNzcnIrFoizLUqFQ6No5Z72Yu9/Xc3w+6Sh0i0Qibder8fI2rACA9nz07ddet4ATfvzsC69bAAAAV5SXn9t9vSKs5ptvvlEsFlMwGNQ333yjSqXS0usqlYoqlYpev36taDTa1Z4cx6nXtCzrzNBIOgp3JMm27a710Iu5+309x+cDAAAAAADoB18HYR9++KHee+89jY+P6+7duyqVSorFYhofH9d777134WN8fFzj4+MKh8MqFotd7S0ajda3B9a2EZ7Fsqz6Kqd8Pq90Ou3Luft9PUtLS5qYmOBOoAAAAAAAoG98HYTVDsuvPQzDaHh+mUc32bbdcN7Y4uJi0/F37typf90sZPJq7n5fTzqdVjabra8uAwAAAAAA6AdfB2HxeFySZBhGPQRrh2EY3WxLyWSy/nUoFLpwVdPxc68cx+no7oi9mLuf12PbtuLxuFZWVhQMBlt+HQAAAAAAQKfe97qBZsbGxnT79m29ePFCUmshzVls2+7q1sjj2wFbDXMsy6rfHfH58+dtHwrfi7n7eT3RaFTBYLAhfAMAAAAAAOgHXwdh0tGqsJcvX6pQKOjGjRtt10mn07p3717H/ZwM1G7evNnS64LBYD04andFWC/m7uf1JBIJFYtFlUqllsYDAAAAAAB0k2+2Rtbu8Li7u6vd3d36nSFDoZDGxsY6CsGk/zhvrFPHz9KSjlZGteLkuHZWqPVi7n5dT7FY1NramlKpVMtzAAAAAAAAdJOnQdhZd3gMBAIKBALa3Nysj1tdXa0HY52IxWId13jz5k3D81a3al67dq3h+fb2ti/m7tf1LCwsKBKJdOU9AAAAAAAAaIenWyNPrtAKhUKKx+P1VWA19+/f78p8T58+7bhGbTtgTbsrqNrZHtiLuftxPdFoVJK0sbHRUm0AAAAAAIBe8PyMsNodHXO5nG7duuVxNxc7GRy1y3EcX8zd6+vJZrPKZrPK5XJt3egAAAAAAACgWzwPwiQpmUwORAgmtRdgSae3HB4cHPhi7l5ej+M4ikajisViCoVCbc3TiXK5rOnp6Y7rLC8va3l5uQsdAQAAAAAwuNbX17W+vt5xnXK53IVu2uOLICwSiXjdQt+1G0D5de6zai4sLMiyLKVSqa7P14pqtar9/f2O63TjfDoAAAAAAAZdpVLpyudsL/kiCPvggw+8bqFlpml2JUhqZ5tgL+bu1fWsra2pWCyqUCh0XLtdIyMjmpyc7LjO6OhoF7oBAAAAAGCwjY6OampqquM65XJZ1Wq1Cx1dnudBWD/Pjbp+/bp++umnjmpMTEx0JTiamJjwxdy9qFksFpVIJJRMJhUMBjuu3a7JyUnt7e15Nj8AAAAAAFdJt44Omp6e9mxlmedBWDuBULvauVPjSe0GdyfDpnZXhHV77l7UjEajCgaDWllZaas2AADw3kfffn3hmB8/+6LnfQAAAHST50FYv7x9+7Z+h8pOzM/Pq1gs1p87jtNSmHTyMPlAIOCLubtdc21tTbZtKxQKKRqNXljneKD26NEjPX/+vP78zp07Q3l+HAAAAAAA6I2hCMIqlYoSiURXas3NzTU8t227pe1/J1ejtXMXxV7M3e2av/zyiyQpn89fWOOkYrHYEMpZlkUQBgAAAAAAusbzIMy2bf3ud7/rSe2DgwM5jiPbtuW6btdWhB3XanB0fOWTaZqyLMsXc3t5PQAAAAAAAP3keRAmtbd6qBWu63a9ZjAYbLjT4ps3b1patbS9vV3/+mT45OXc3a6ZTCaVTCYvfH1NIBCQbduSpEwmwwowAAAAAADQMyNeN9BLhmHUH920uLhY//r4Vr5mjo/rZJtmL+b28noAAAAAAAD6xRdBmOu6PXv0Qjwer3/dymq242Msy2rrfLBezu3l9QAAAAAAAPSLL7ZGtnImVbtqZ4R1UzAYVCgUqgdC2Wy26Za+TCZT//qi1VPpdFqlUknxePzMc7d6MXcvrwcAAAAAAMAvDLdXy6ZaMDIyokAgoJ9++qmn89i2rWg0qh9++EG//vpr12oGAgFJR0FSoVA4c5zjOBofH5d0dGfFXC53bs1wONyw2urw8FCmafZl7l7UbEUvzgibnp7W/v6+pqamtLe313E9AEDvffTt1163gDb8+NkXXrcAAAAGkJef232xNbLXLMvSxsZG12vWVkYVi0Wtra2dOW5hYUHS0Z0Vj6+kOsvJbYmbm5t9m7sXNQEAAAAAAPxkKIIwqTfbLyORiHK5nEzTVCKRUDQaVbFYlOM4yufzmpubU7FYVDAY1M7Ozpmru447+fOztkb2au5e1QQAAAAAAPALz4Owg4ODvs01Ozvb9ZqhUEiHh4dKJpOybVsLCwsaHx9XNBrVxMSEMpmMCoVCS6FRJpORZVkyTVMrKysXHkLfzbl7WbOZUqlUv7FBN7ZFAgAAAAAAnMfzM8IMw+jauV2AxBlhADCIOCNsMHFGGAAAaMfQnxH2ww8/eN0CAAAAAAAArjhfBGHpdNrrFgAAAAAAAHDF+SIIS6VS+u6777xuAwAAAAAAAFeYL4Iw6eiOhb///e/13XffqVKpeN0OAAAAAAAArhjPg7DaHQNd19WrV690+/ZtjY+P69mzZ163BgAAAAAAgCvkfS8nr1arkqR3795Jkg4ODiRJjuPIsizP+sLVUC6XNT093XTM8vKylpeX+9QRAAAAAABX2/r6utbX15uOKZfLfermNE+DsJqxsbGG/wl0Q7Va1f7+ftMxbMMFAAAAAKB7KpXKhZ/FveSLIAzohZGREU1OTjYdMzo62qduAAAAAAC4+kZHRzU1NdV0TLlcru8S7DeCMFxZk5OT2tvb87oNAAAAAACGRitHEE1PT3u2aszzw/IBAAAAAACAfiAIAwAAAAAAwFAgCAMAAAAAAMBQIAgDAAAAAADAUCAIAwAAAAAAwFAgCAMAAAAAAMBQ8DQIe/bsma5fv65PP/3UyzYAAAAAAAAwBN73auK3b98qFotJkmzb1uLioj755BOv2gEAAMAlffTt1xeO+fGzL3reBwAAQKs8C8IePXokSTIMQ5JkmqZXrQAAgB5qJSwBAAAA+sGzrZHFYlGS5LquUqmUbt26dea4O3fu6PXr1/1sDQAAAAAAAFeQZ0GYbdsaHx9XoVDQ559/fu64TCYj27a7MucPP/zQlToAAAAAAAAYPJ4FYaZpanV1VbOzs32bM5FI9G0uAAAAAAAA+ItnQZhlWbIsq69zdmtlGQAAAAAAAAaPZ0HYnTt39Pz5877N9/btW4IwAAAAAACAIebZXSNjsZgSiYR2dnYUi8VkWZYmJibOHFsoFNpePeY4jmzb1sOHDztpFwAAAAAAAAPOsyBsbGxMm5ubWlxcVKFQaDo2nU4rnU53NJ/rujIMo6MaAAAAAAAAGFyebY2UpEgkos3NTbmue+5DUtOft/oAAAAAAADAcPNsRVhNJBLR4eGhVlZWlMlk5DiO1y3hiiiXy5qenm46Znl5WcvLy33qCAAAAACAq219fV3r6+tNx5TL5T51c5rnQZh0tE0ylUoplUppZ2dHxWJRBwcHcl1Xd+/eVTQa1fz8fFu1f/nlF9m2rWw22+Wu4XfValX7+/tNx1QqlT51AwAAAADA1VepVC78LO4lXwRhx83MzGhmZqb+/O7duwqHw/r88887qpvP5/W73/2u0/YwQEZGRjQ5Odl0zOjoaJ+6AQAAAADg6hsdHdXU1FTTMeVyWdVqtU8dNfJdENYroVCoIWDD1Tc5Oam9vT2v2wAAAAAAYGi0cgTR9PS0Z6vGPD0sv98sy/K6BQAAAAAAAHjE9yvCDg8PNTY21pVamUymK3UAAAAAAAAweHy/IqxbIVi3awEAAAAAAGCw+H5F2FkqlYry+bxyuZwODg5k27YmJiZkWZYCgYAikYg++OADr9sEAAAAAACAjwxUELa7u6tEIqFsNtvwfdd1ZRhG/XkikZBlWXrw4IH+8Ic/9LtNAAAAAAAA+JDvt0bWbGxsKBAIKJvNynXd+kNSQwgmHQVjpVJJsVhMv/3tb/W3v/3Ni5YBAAAAAADgIwMRhD158kR3795tCL5q4dfxUOx4OFb72fb2tgKBgP7617960jsAAAAAAAD8wfdbI1+8eKFEIlEPv2pBVzAY1Pz8vAKBgEzTlGVZmpiYkG3bOjg4UKlUUjablW3bqlarWlhY0Pb2NmeHAQAAAAAADCnfB2G1EMx1XZmmqWQyqcXFxXPvADk7O1v/+vHjx3r79q0ePnyoFy9e6O7du/rLX/7Sr9YBAAAAAADgI77eGvnixQvZti3XdRWPx3VwcKClpaVzQ7CzzM7OKpPJ6PHjx8rlcvr+++972DEAAAAAAAD8ytdB2PPnz2UYhtbW1vTnP/+5o1orKytaWFjQ5uZml7oDAAAAAADAIPF1EFYsFhUMBvXHP/6xK/Xi8bjy+XxXagEAAAAAAGCw+PqMMNu2lU6nu1bPNE3Ztt21egAAAAAAABgcvl4RJkmWZXWtFiEYAAAAAADA8PJ1EGZZVlfDq1Qq1dVgDQAAAAAAAIPD10FYMBhUJpPpSq0HDx7UzxwDAAAAAADA8PF1ELa4uKhcLqcvv/yy7RqVSkV37tzR2tqaDMNQPB7vYocAAAAAAAAYFL4+LD8SiWhmZkbJZFKO42hlZUUffPBBS699/fq1UqmUstmsJMkwDAWDQd26dauHHcNPyuWypqenm45ZXl7W8vJynzoCAAAAAOBqW19f1/r6etMx5XK5T92c5usgTDo61+vjjz9WKpVSKpVSKBRSMBhUIBCon/flOI4ODg5UKBS0vb2tYrFYf73rupKOgrCNjQ1PrgHeqFar2t/fbzqmUqn0qRsAAAAAAK6+SqVy4WdxL/k+CAuFQnr69Knu3r0rwzCUz+eVz+fPHV8LvqSj8MswDLmuq83NTd24caMPHcMvRkZGNDk52XTM6Ohon7oBAAAAAODqGx0d1dTUVNMx5XJZ1Wq1Tx01MtzjyZGPZbNZxWIxOY4jwzAkNYZeNbWf1X5umqa2trY0Ozvbt17hrenpae3v72tqakp7e3tetwMAQ++jb7/2ugX43I+ffeF1CwAAoI+8/Nzu68Pyj4tEItrZ2dH9+/fluu6ZIZik+s/GxsaUTCZ1cHBACAYAAAAAAAD/b408rhZuJZNJbW1tqVgsqlQq6eDgQJI0MTGhQCCgUChE+AUAAAAAAIAGAxWEHbewsKCFhQWv2wAAAAAAAMCAGJitkQAAAAAAAEAnCMIAAAAAAAAwFAjCAAAAAAAAMBQIwgAAAAAAADAUCMIAAAAAAAAwFAjCAAAAAAAAMBQIwgAAAAAAADAUCMIAAAAAAAAwFAjCAAAAAAAAMBQIwgAAAAAAADAUCMIAAAAAAAAwFHwdhFUqFd27d0+/+93v9NVXX3ndDgAAAAAAAAbY+1430EwkEtHW1pZc11U+n9fMzIw++eQTr9sCAAAAAADAAPL1irB8Pt/w3DRNbxoBAAAAAADAwPP1ijDLsrSzsyPDMBSJRHTr1i2vW8IAKZfLmp6ebjpmeXlZy8vLfeoIAAAAAICrbX19Xevr603HlMvlPnVzmq+DsFgspgcPHsgwDD1//rzjevfu3dOf//znLnSGQVCtVrW/v990TKVS6VM3AAAAAABcfZVK5cLP4l7ydRC2srKiXC6n169f629/+5t+85vfdFTv5FZLXG0jIyOanJxsOmZ0dLRP3QAAAAAAcPWNjo5qamqq6ZhyuaxqtdqnjhoZruu6nsx8CdFoVLu7u3r9+rX+4R/+oa0aOzs7+vDDD/Xrr792uTv4zfT0tPb39zU1NaW9vT2v2wGAoffRt1973QJ87sfPvvC6BQAA0Edefm739WH5Nd98841isZiCwaC++eablrezVSoVVSoVvX79WtFotMddAgAAAAAAwM98vTXyww8/1M7OTv2567qKxWKKxWKXruW6rgzD6GZ7AAAAAAAAGCC+XhEWi8Xkum79YRhGw/PLPAAAAAAAADDcfB2ExeNxSZJhGPUQrB2sBAMAAAAAAICvt0aOjY3p9u3bevHihSQpFArJNM1L17FtW8ViscvdNVpbW1Mul9P29rYcx5FlWQoGg4rH4wqFQgM3d7dr2ratZDKpfD4v27ZlmqYsy9L8/LwSiYQsy2qrTwAAAAAAgFb5/q6R+Xxev/vd71QoFHTjxo2266TTad27d6/rd43M5/OKRqNyHEehUKge6hSLRSUSCdm2rVAopEwm01aI1++5e1FzbW1NiUSi6ZhkMqmVlZWW6l2Eu0YCgL9w10h0A3eWBADg6vDyc7vvgzBJmpiY0MHBQcd1RkZGVK1Wu9DRkXw+r3A4LOnoPLNUKnVqzNzcnIrFoizLUqFQ6FoY1ou5e1EzHA4rn8/LNE2FQiFZllVfoWfbdsPYTCajSCTStF4rCMIAwF8IwtANBGEAAFwdXn5u9/UZYTWrq6uqVCod12nnbpPncRxH0WhUkmRZ1pmhkXQU7khHWwNr4/04dy9qJhIJ5fN5JZNJHR4eKpPJKJlMKpPJqFQqKZlMNozv1u8HAAAAAADgLAMRhN2/f1+jo6Md13n69GkXujlS2z4oqem2P8uy6quc8vm80um0L+fudk3btuvnjJ235XFlZeVUONnrs9wAAAAAAMDwGogg7LJWV1f1t7/9rWf1bdtWPp+vP19cXGw6/s6dO/WvLzory4u5e1EzkUgomUxeeLD+yVVhx/sAAAAAAADopoELwl6+fKl79+7p5s2bevny5Zlj5ubmNDs7q08//bQngdjx8KaVO1keP/fKcRxls1lfzd2Lmo7jtHT4fe3ukcefAwAAAAAA9MLABGF/+tOfdO3aNUWjUaXTaRWLxXMP0I9EIrJtWz/99JMsy9J3333X1V6ObwcMBoMtveZ42PP8+XNfzd2LmrlcrqU6khrex/n5+ZZfBwAAAAAAcBm+D8LevXun69evK5FI6PDwUK7rqpUbXZqmqUKhoBs3bigSieibb77pSj8nz7C6efNmS687HjC1uyKsF3N7eT3S0cqx2tlkoVCo5SAOAAAAAADgsnwfhEWjUZVKJUmSYRgyDONSr9/a2pLruorFYvr+++877ufkGVbHV0Y1c3JcO4fC92JuL69HkjY3N+v1anekBAAAAAAA6AVfB2FbW1vK5/MyDKO+EmxsbOzCA9iPM01T9+/fl+u6isfjHff05s2bU/Vbce3atYbn29vbvpjby+txHEfxeFzBYFC5XI7zwQAAAAAAQE/5OghLpVKSVF/RVSqVdHBwoFevXrW0PbLm008/lSSVSqWOt0jatt3wvN0VVLVVbl7P7dX12Latubk5maapra2tlucFAAAAAABol6+DsNpqsHQ6radPn2pmZqatOsdDllevXnXU08ngqF21c7G8ntuL68lmswoEArJtW47jaHx8XGtra13pAwAAAAAA4Dzve91AM47jKBAI6PPPP++ozvG7ErZ7ltXxntpxctvfeXe87Pfc/boex3GUTqeVSqXODN8SiYTevHnT1XPCyuWypqenO66zvLys5eXlLnQEAAAAAMDgWl9f1/r6esd1yuVyF7ppj6+DMNM0u3IXwVr45bpu11ZAdardAMqvc19UM5/Pq1QqKRQKybbtU4f0S0crxdbW1rSystKVnqrVqvb39zuuU6lUutANAAAAAACDrVKpdOVztpd8HYRZltWV0ObRo0f1rzs9kN00za701E4fvZi7X9cTiUQUiUQavpdOp5VIJBrmTyQSisViXTk4f2RkRJOTkx3XGR0d7bgGAAAAAACDbnR0VFNTUx3XKZfLqlarXejo8nwdhC0sLOjZs2cd1Xjy5ImKxWL9zpOdHso+MTHRleBoYmLCF3N7eT2xWEyhUEhzc3MNPaTT6a6sCpucnNTe3l7HdQAAAAAAQPeODpqenvZsZZmvD8tfXV3V4eGhvvrqq7Zf/+DBg3oIZhiG7ty501FP7a5UOhk2tbsirNtze3k90tGqv62trYbvvXnzpq1aAAAAAAAAzfg6CDNNU/fv39fKyoq+/PLLls5qqlQqevbsma5fv661tTW5rtvw81gs1lFP8/PzDc9bXU118jD5QCDgi7m9vJ6aYDDYsG3SL+e4AQAAAACAq8XXWyMlKZlMqlgs6vHjx0omkwqHwwqFQpKkQqGgiYkJHRwcqFQqKZ/PNxyML0mGYdRrPX36tOPznubm5hqe27bd0oH+pVKp4XntGrye28vrOe7OnTvKZrOSvL2RAAAAAAAAuLp8H4RJUi6XUzwe18bGhnK5nHK5nAzDUDqdVjqdbhh7MgCrPU+lUlpaWuq4l5MrqFoNjo6HO6ZptnVWWS/m9vJ6jjs+ZzcOygcAAFfLR99+feGYHz/7oud9AACAwebrrZHHpVIpbW9v69atW3Jd99Sj5ngA5rquQqGQSqVSV0Iw6SiwOR7UtHqe1fb2dv3rk+GTl3N7eT3n6XY9AAAAAAAAaYCCMOkotMnlciqVSkqlUopEIgoGg7IsS2NjY5qZmdHs7KwikYhSqZQODw/16tUrzczMdLWPxcXF+te1rZgXOT4ukUj4am4vr6fm+Llg4XC443oAAAAAAAAnGe7J0+RxoWKx2HC21kW/wnw+Xw93LMs6db6W13N7eT01a2trSiQSMk1Th4eHHdWq3YZ1ampKe3t7HfcGAOhMK1vagG5gayQAAIPBy8/tA7UizC+CwWDD4fC1Q97Pk8lk6l9ftHoqnU4rkUice+fEXszdy+tp1aNHjyRJGxsbXakHAAAAAABw0kCuCNvd3VU+n1ehUNDBwYEkaWJiQoFAQKFQSDdu3Oh5D7ZtKxAISDoKkgqFwpnjHMfR+Pi4pKM7K+ZyuXNrhsNh5fP5+vPDw8MzD47vxdzdrrm2tqbnz58rFAppdXW16QH4iURCa2trWllZUTKZPHdcq1gRBgD+woow9AsrwgAAGAysCGvRs2fPdP36dQUCAcXjcaXTaWWzWWWz2fpKqrm5Ob333nv6l3/5F+3u7vasF8uy6iujisWi1tbWzhy3sLAg6ehOiMdXUp3leAgmSZubm32bu5s1HcdRIpGo1xkfHz935Vg0GtXa2pqSyWRXQjAAAAAAAIDzDEQQtru7q+vXrysej6tUKp15t8ia2vdTqZQCgYC++uqrnvUViUSUy+VkmqYSiYSi0aiKxaIcx1E+n9fc3JyKxaKCwaB2dnaaroqSdOrnlmX1be5u1jRN81TvtUAsGo0qkUgoHA7XV5aVSiWtrKxc2B8AAAAAAEAnfB+EvX37VnNzc/UAzDCM+kNSQyh2PBirPV9ZWdHvf//7nvUXCoV0eHioZDIp27a1sLBQD3wmJiaUyWRUKBRaCqIymYwsy5JpmlpZWWk4t6vXc3e7ZqFQ0MrKioLBYMPYYrEo27YVjUa1s7NTv2YAAAAAAIBe8/0ZYR9++KFs224IvqSj1VKhUEiBQKC+AmliYkK2bcu2bZVKJW1ubspxHBmGoXA4rL/85S9eXgr6hDPCAMBfOCMM/cIZYQAADAYvP7e/39fZLmljY+NUCBYKhZRMJjU7O3vma45//+nTp8pms3r06JFyuZy++uor/eu//mtfegcAAAAAAIC/+HprZCqVkvQfq8BSqZRevXp1bgh2lkgkokKhoFu3bmllZUWVSqUnvQIAAAAAAMDffB2E1VaDGYahlZUVLS0ttV0rk8nIdd0L754IAAAAAACAq8nXQZjjOPXVYKurqx3VMk1TsVhMm5ub3WgNAAAAAAAAA8bXQVgwGJR0dDD+6Ohox/UCgYBs2+64DgAAAAAAAAaPrw/LX1hYULFY1MHBQddqEoQNj3K5rOnp6aZjlpeXtby83KeOAAAAAAC42tbX17W+vt50TLlc7lM3p/k6CPvyyy/15MkTOY6j3d1dffDBBx3VK5VKMk2zK73B/6rVqvb395uO4eYJAAAAAAB0T6VSufCzuJd8HYSNjY1pc3NTi4uLevDggf7t3/6to3qbm5u6du1al7qD342MjGhycrLpmG5suQUAAAAAAEdGR0c1NTXVdEy5XFa1Wu1TR418HYRJUiQSUSqVUiKR0L/8y7/of/yP/9FWnQcPHshxHIXD4S53CL+anJzU3t6e120AAAAAADA0WjmCaHp62rNVY54EYXfv3lWhULjUayYmJpRKpZRKpeqH6LfKcRzZti3DMAjCAAAAAAAAhpQnQZhpmioUCjIMQ67rXjjeMAxJqo+9bIh2vM7i4mJbrwUAAIC/ffTt1xeO+fGzL3reBwAA8K8RLyaNx+P1rw3DuPBxmbHNHrFYjDOhAAAAAAAAhpQnQdjMzIwsy5J0tMqrH4/Z2Vklk0kvLhcAAAAAAAA+4EkQJkkLCwuSpHw+r2q12vPH9vY2q8EAAAAAAACGmGdB2OLiooLBoG7duuVVCwAAAAAAABginq4Im5mZ6eucu7u7fZ0PAAAAAAAA/uFZECZJm5ubfZ3v+CH9AAAAAAAAGC6eBmH9tr297XULAAAAAAAA8Mj7XjfQjt3dXTmO0/J427aVSqUu9RoAAAAAAABcLQMRhO3u7iqZTCqfz8u27bZquK4rwzC63BkAAAAAAAAGhe+DsNXVVa2trUk6CrMAAIB/fPTt1163AAAAALTM12eEvXjxQslksh6AsaILAAAAAAAA7fL1irBHjx5JOgrAXNeVZVkKBoOyLEuSdO3atQtr/PLLL3IcR5ubm3r37l1P+wUAAAAAAIB/+ToIKxaL9VVguVxOCwsLbddaWVnR9evXu9UaAAAAAAAABoyvt0aapinpKMTqJASTJMuyNDMz04WuAAAAAAAAMIh8HYTVtkDevHmzK/VSqVRX6gAAAAAAAGDw+Hpr5MLCgt6+fauDg4Ou1cPwKJfLmp6ebjpmeXlZy8vLfeoIAAAAAICrbX19Xevr603HlMvlPnVzmq+DsC+//FJPnjxRsVjsSr1nz57p888/70ot+F+1WtX+/n7TMZVKpU/dAAAAAABw9VUqlQs/i3vJ10HY2NiYHj9+rGQyqWQyqX/4h3/oqF4qlSIIGyIjIyOanJxsOmZ0dLRP3QAAAAAAcPWNjo5qamqq6ZhyuaxqtdqnjhoZruu6nsx8CeFwWO+9957+8pe/tF1jZ2dHH374oX799dcudgY/mp6e1v7+vqamprS3t+d1OwBwpX307ddetwBcyo+ffeF1CwAADD0vP7f7ekVYTS6X0/z8vK5fv65EIqGJiYmWXndwcCDHcVQqlbS5udnjLgEAAAAAAOBnAxGEvX79WpJUKpUUj8fbquG6rgzD6GZbAAAAAAAAGCC+D8Lu3bundDotSTIMQ+3s5CQAAwAAAAAAwIjXDTSzsbGhVCpVD7/aPc5sAI5BAwAAAAAAQI/5ekVYKpWS9B8rwUKhkMLhsEzTvPQ5YU+fPtXu7m4PuwUAAAAAAICf+ToIKxaLMgxDpmlqe3tbMzMzbddaWlrStWvXutgdAAAAAAAABomvt0aapilJWl1d7SgEq9WanZ3tQlcAAAAAAAAYRL4Owubm5iRJlmV1pd7GxkZX6gAAAAAAAGDw+DoIi8fjcl1Xtm13pR4rwgAAAAAAAIaX4fr8lopzc3MaGRnRmzdvOq718uVLffLJJ13oCn42PT2t/f19TU1NaW9vz+t2AOBK++jbr71uAeiJHz/7wusWAAC4srz83O7rFWGSlMlkVCgU9N1333Vc69GjR13oCAAAAAAAAIPI90GYZVl6+vSpPv/8847qvHv3TsVisUtdAQAAAAAAYNC873UDzbx8+VKS9I//+I8aHx/X9evXFYlELl3HcRxtbm52uz0AAAAAAAAMEF8HYQ8fPtTbt2/rz13X1draWlu1XNeVYRjdag0AAAAAAAADxtdB2OLiYn07o2EYBFkAAADoi1ZuBMGB+gAADB5fnxEWj8clHYVgrut29AAAAAAAAMBw8/WKsLGxMQWDQb19+1bJZFLBYFATExOXrmPbth4+fKgffvih+00CAAAAAABgIPg6CJOkO3fuKBAI6P79+23XmJ2d1e3bt9sK0TC4yuWypqenm45ZXl7W8vJynzoCAAAAAOBqW19f1/r6etMx5XK5T92c5vsgLBQK6c2bN12pNT8/35U6GAzValX7+/tNx1QqlT51AwAAAADA1VepVC78LO4l3wdhs7OzSiaTXanVrToYDCMjI5qcnGw6ZnR0tE/dAAAAAABw9Y2OjmpqaqrpmHK5rGq12qeOGvk+CJOkmZmZjmvs7u5qdna2C91gUExOTmpvb8/rNgAAAAAAGBqtHEE0PT3t2aoxX981sltevHihQCCgv/71r163AgAAAAAAAI8MRRD25s0bua6rf/u3f/O6FQAAAAAAAHjE91sjnz171vZrHcdRqVRSOp2WYRjK5/N69OhRF7sDAAAAAADAoPB9EBaLxWQYRkc1XNeVJBWLRe3u7uqDDz7oQmcAAAAAAAAYJAOzNbIWZl32Na7ryjCMepiWTqe73RoAAAAAAAAGwMAEYdJ/BFutPiTJMIyG72UyGY+vAgAAAAAAAF7w/dZISZqZmVEikZBlWZd6XalU0tramubm5rSxsaHR0dEedQgAAAAAAAC/G4ggLJ/Pt3Wu18LCgmKxmD788EPFYjHuGgkAAAAAADDEfL810jTNjg+3f/r0qTY3N/XVV191pykAAAAAAAAMHN8HYclksuMaoVBIlmVpZWVFu7u7nTcFAAAAAACAgeP7IGxpaakrdYLBoFzX1draWlfqAQAAAAAAYLD4Pgjrtjdv3njdAgAAAAAAADwwFEHYu3fvlM/nJUnFYtHjbgAAAAAAAOCFKx+E/fDDD5qfn9e7d+8kSZZledwRAAAAAAAAvPC+1w1c5Pr1622/1rZtSZLrupIkwzAUCoW60hcAAACG20fffn3hmB8/+6LnfQAAgNb5PggrlUoyDKMeZrXj+Ou7cRdKAAAAAAAADJ6B2RppGEZbD+loRZhpmnr16pVGR0c9vhIAAAAAAAB4wfcrwqT/2NpomqYmJiZafp1pmrIsSzdv3tT9+/d71R58qlwua3p6uumY5eVlLS8v96kjAAAAAACutvX1da2vrzcdUy6X+9TNaQMRhK2tremPf/yj121gwFSrVe3v7zcdU6lU+tQNAAAAAABXX6VSufCzuJd8H4RZlkUIhraMjIxocnKy6Ri2ygIAAAAA0D2jo6OamppqOqZcLqtarfapo0a+D8ISiYTXLWBATU5Oam9vz+s2AAAAAAAYGq0cQTQ9Pe3ZqjFPD8v/4YcfLhyztLTU+0YAAAAAAABw5XkahM3NzXk5PQAAAAAAAIaIp0GY67r629/+5mULAAAAAAAAGBKeBmGSlEwmvW4BAAAAAAAAQ8DzICyVSun3v/+9Xr58qd3dXVUqFVUqFa/burS1tTWFw2GNj4/LMAwFAgFFo1Hl8/mBnLvbNYvFouLxuAKBgAzDqNdMJBJyHKftPgEAAAAAAFrleRAmSblcTtFoVIFAQOPj4xofH9d7773Xs0c35fN5jY+P1+9umclkVCqVlPz/2rt/2DazPj/0P3knwYuLRC+tKQLBaobCe5tpsqSnD2Byt0sT0dMPYCnpBsJdCdOlc8gshOkWpIPpZSoBUgbkBNvbJLaZ5gKit7Ah3GIkjrK5WST7irdwyEtSEkVKpPjn+XwAYUjp4TnnGesnkl+ec55iMZrNZuTz+cjn8zMJe2bR97TbbLfbUSgUIpvNRqVSiVar1ftZq9WKUqkUT58+jUqlMvYYAQAAAO5jrdPpdObV+ZMnT2JtbS36h5BKpSIiYmNj415tnp+f3xrSpNPpqNVq8dVXX92r7WH1ej3y+XxEROzu7ka5XL52TDabjWazGel0OhqNRu/8FrHvabfZbrcjm80OhF+j3NbnpLqXYX327Fl8/Pjxwe0BcLuvf/px3kOAhfbLd9/PewgAsHDm+b59IYKwf/fv/l3s7Ow8OKD6+eefo1AoxG+//Tbw/U6nE4VCIY6Pjx/Ufr92ux1fffVVtNvtSKfTcXp6euNxrVYrtre3IyIil8tFrVZbyL5n0WY+n496vR6ZTCZ++OGHyGQyEfF5meS7d++iVCpde0y1Wo2dnZ1b2xyHIAzg8QjCYDRBGABcN8/37XNfGlkul+Mv/uIvHhyC/eVf/mX82Z/9Wfz222+9GWadTic6nU4Ui8WphmAREYVCoTfzrLuM8CbpdLoX7NTr9aksAZxF39Nus1KpRL1ej4ODg2g0GrGzsxPpdLr3+GKxGKenp71wrOvVq1e39g0AAADwEHOdEfYnf/IncXFxEevr6w9q58/+7M/i559/7gVg3eWWqVQqfv755/jTP/3TaQy3p39WVETExcXFyCWCJycnUSgUIuLz0s+Li4uF6nsWbW5vb/eWok5yPhGf94zL5XIjHzeKGWEAj8eMMBjNjDAAuC6xM8J+//vfPygE+9u//dv4wx/+0AvBulcj7HQ6kclk4sOHD1MPwSIiisVi73Yul7tz763+pX7tdjtOTk4Wqu9pt9lsNqPVakW1Wh3ZTsTnGWb9/XcfDwAAADBtcw3CPnz4cO/H/sf/+B9je3s7Wq1WLwSL+Lwccm9vL96/fx+///3vpzXUAf3LAYeX9t0mnU73bj9kmeYs+p52m8fHx7G7uzv2hQGGZ3/9+uuvYz0OAAAAYBJznxF2Hz/88EO8fPny2lLITqcT5XI5/uqv/mqawxwwPFvpm2++Getx/QHTfWeEzaLvWbT57bffXpvlNW5bEXFtqSQAAADANMx9s/xJXF5exp//+Z9HqVS6NgsslUpFo9GY+Wbr9Xp94H7/zKhRho+7z/K/WfQ9izYzmczYs8EiordJ/6RjAAAAAJjE0gRhf/M3fxNfffVV1Ov1ayFYLpeb2X5gw969ezdwf9zA58svvxy4//79+4Xoe57n09VqtQbuP2SjfAAAAIDbfDHvAYzjzZs38a//9b8eWAoZ8TkEOzw8jNevXz/aWIZDm/vOoDo9PV2Ivud5Pl39Idru7u692wEAWDTjXFnVlSUB4PEsfBD2b/7Nv4lKpXJtFlhERLVajX/1r/7Vo45nODi6r+HlgPPqe57n01Uul3u3Dw8PpzAaAAAAgOsWNgi7vLyMFy9eRLPZvBaCpdPpqNVq8dVXXz36uO4b+AwvOTw/P1+Ivud5PhGfg7ju/mLFYnGq+4OdnZ3F1tbWg9vZ39+P/f39KYwIAAAAltfR0VEcHR09uJ2zs7MpjOZ+FjII+5u/+Zt48eJFtNvtayFYoVCI4+PjOY/w4R4yg2oR+75vm92rS6bT6Tg4OJjiiCKurq7i06dPD27n8vJyCqMBAACA5XZ5eTmV99nztHBB2E37gXVvF4vF+Iu/+It5Di9SqdRUgqRJrqo4y77neT7NZjMqlUqkUqmo1WoPHsOwJ0+exObm5oPbWV9fn8JoAAAAYLmtr6/Hs2fPHtzO2dlZXF1dTWFEk1uoIOzbb7+Nk5OTa7PAUqlUVKvVePHixZxHGLGxsTGV4GhjY2Mh+p7n+bx69SoiIn7++eepLons2tzcjI8fP069XQAAAEiiaW0dtLW1NbeZZU/m0uuQv/3bv40//OEPN4ZgmUwmPnz4MJUQ7A9/+MOD27jPzKeI60sH7zsjbNp9z+t89vb2otlsRrVajUwmc68xAAAAAExi7kHYf/2v/zWy2Wycnp5eC8H29vbi/fv38fvf/34qfZ2enj64jefPnw/cH3c21fBm8tvb2wvR9zzOp1KpRKVSiXK5HDs7O2M/DgAAAOAh5hqE/ft//+8jn8/HxcVFrK2t9fYD63Q6US6X46/+6q+m1tebN296IdtDZLPZgfutVmusxw2HcLlcbiH6fuzzqdfrsbe3F+VyOXZ3d8d6DAAAAMA0zDUIOzw8jIgYmAX29OnTaDabvf2jpuE//If/EHt7e1Npa3gG1bjBUf9Mq1Qqda89sWbR92OeT7PZjHw+H8ViUQgGAAAAPLqF2ix/bW0tNjY2phaCtdvtsYOdcWUymYErLb57926s5X3v37/v3R4On+bZ92OdT6vVihcvXsTBwUEcHBzceTwAAADAtC1MENbpdCJiOvt4zdrLly+jUqlExOdZTuPoP647E25R+p71+bRarchms7G7uxvFYnGs9lutVpycnAjNAObo659+nPcQAABgqtY63QRqDp48eRJra2vx1VdfRbVavfcVDIf1L9t7//59lMvlaDabsba2Fn/84x8f3H6z2RzYW+uu/4X1ej3y+XxERKTT6QeFfbPoe5bn0263I5vNRi6Xi3K5PLLdftlsNt68eXOvK0p2L8P67Nmz+Pjx48SPB+AzQRgsjl+++37eQwCAqZnn+/a5zwhLp9NTvTLksD/90z+NV69eRaFQiP/0n/7TVNrMZDKRy+WiXq9HRMTJycnI5YTVarV3+67ZU5VKJU5PT2Nvb+/Gfbdm0feszqcbgqXT6Tg8PBxrmWqr1eq1eZ8QDAAAAOA2c58R1mw245//838+875arVb84Q9/mMqMsG5729vbEfE5sGk0Gjce12634+nTpxHx+cqKtVrt1jbz+XwvjIqIuLi4uHGW3Cz6nkWb2Wx27KWWwx5yVUkzwgCmw4wwWBxmhAGwSub5vn2uV41MpVKPEoJFfJ55Ns1ZZ+l0ujczqtlsRqlUuvG4Fy9eRMTnc+2fSXWT/hAsIuLt27eP1ve023xICBYRrioJAAAATN1cg7BxN05f1P52dnaiVqtFKpWKw8PDKBQK0Ww2o91uR71e74VBmUwmPnz4cOceaMM/v2lp5Kz6nmab3cfdlxAMAAAAmIW5Lo1cJaVSKY6Pj6PVakW73Y5UKhXPnz+Pvb29kftt9avX67G3txfn5+cTXWFxGn0/RpuPxdJIgOmwNBIWh6WRAKySeb5vF4SxcgRhANMhCIPFIQgDYJUkdo8wAAAAAHgsgjAAAAAAEuGLeQ8AAAAYbZylypZPAsDdzAgDAAAAIBEEYQAAAAAkgqWRrKyzs7PY2toaecz+/n7s7+8/0ogAAABgtR0dHcXR0dHIY87Ozh5pNNcJwlhZV1dX8enTp5HHXF5ePtJoAAAAYPVdXl7e+V58ngRhrKwnT57E5ubmyGPW19cfaTQAAACw+tbX1+PZs2cjjzk7O4urq6tHGtEgQRgra3NzMz5+/DjvYQAAAEBijLMF0dbW1txmjdksHwAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAInwxbwHAAAAPNzXP/145zG/fPf9zMcBAIvMjDAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAInwx7wHArJydncXW1tbIY/b392N/f/+RRgQAAACr7ejoKI6OjkYec3Z29kijuU4Qxsq6urqKT58+jTzm8vLykUYDAAAAq+/y8vLO9+LzJAhjZT158iQ2NzdHHrO+vv5IowEAAIDVt76+Hs+ePRt5zNnZWVxdXT3SiAYJwlhZm5ub8fHjx3kPAwAAABJjnC2Itra25jZrzGb5AAAAACSCGWEAAJAQX//041jH/fLd9zMdBwDMixlhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCF/MewAAAMBi+fqnH+885pfvvp/5OABg2swIAwAAACARBGEAAAAAJIIgDAAAAIBEsEcYK+vs7Cy2trZGHrO/vx/7+/uPNCIAAABYbUdHR3F0dDTymLOzs0cazXWCMFbW1dVVfPr0aeQxl5eXjzQaAAAAWH2Xl5d3vhefJ0EYK+vJkyexubk58pj19fVHGg0AAACsvvX19Xj27NnIY87OzuLq6uqRRjRordPpdObSM8zI1tZWfPr0KZ49exYfP36c93AAltbXP/047yEAS+6X776f9xAAWEDzfN9us3wAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkwhfzHgAA8Li+/unHeQ8BAADmwowwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCJ8Me8BwKycnZ3F1tbWyGP29/djf3//kUYEAJAsX//0453H/PLd9zMfBwCP5+joKI6OjkYec3Z29kijuU4Qxsq6urqKT58+jTzm8vLykUYDAAAAq+/y8vLO9+LzJAhjZT158iQ2NzdHHrO+vv5IowEAAIDVt76+Hs+ePRt5zNnZWVxdXT3SiAYJwlhZm5ub8fHjx3kPAwAAABJjnC2Itra25jZrzGb5AAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQNiWlUiny+Xw8ffo01tbWYnt7OwqFQtTr9aXse9bn02q1Ip/Px8nJyVTaAwAAALiLIOyB6vV6PH36NA4PDyMiolqtxunpaRSLxWg2m5HP5yOfz0e73V6Kvmd9Pu12OwqFQmxvb0e9Xo/z8/N7tQMAAAAwqS/mPYBlVq/XI5/PR0TE7u5ulMvl3s/S6XTs7OxENpuNer0e2Ww2Go1GpFKphe17lufTbrfj9evXUSqVJjtRAAAAgCkxI+yeujObIj6HRP2hUb9qtRoRn5cCdo9fxL5neT6lUimy2Ww0m82xjgcAAACYBUHYPRUKhd7ywO4ywpt0Z1JFfJ5xValUFrLvWZ1Ps9mMXC4Xp6enUavVbg3YAAAAAGZNEHYPrVZrYNP4ly9fjjz+22+/7d0eFTLNq+9Znk8mk4lMJtO7//z585HHAwAAAMyKIOweisVi73Yul7tzn6zuDKqIz0sQH3KlxFn0/ZjnM6090gAAAAAmZbP8e+hfDtg/22mUdDodrVYrIiKOj48HwqR59z3P8wEAINm+/unHO4/55bvvZz4OAJLBjLAJDW/4/s0334z1uP6A6b4zwmbR9zzPBwAAAOAxCcIm1L+XVsTnmVHjGD7uPldQnEXf8zwfAAAAgMckCJvQu3fvBu6Pu+fVl19+OXD//fv3C9H3PM8HAAAA4DEJwibU3Rer674zqE5PTxei73meDwAAAMBjEoRNaDg4uq92u70Qfc/zfAAAAAAekyBsQvcNfIaXHJ6fny9E3/M8HwAAAIDH9MW8B5BU85xBNYu+F3FG2NnZWWxtbT24nf39/djf35/CiAAAAGB5HR0dxdHR0YPbOTs7m8Jo7kcQNqFUKjWV0GfcTeln3fc8z2fWrq6u4tOnTw9u5/LycgqjAQAAgOV2eXk5lffZ8yQIm9DGxsZUgqONjY2F6Hue5zNrT548ic3NzQe3s76+PoXRAAAAwHJbX1+PZ8+ePbids7OzuLq6msKIJicIm9B9Zz4Nh033nRE27b7neT6ztrm5GR8/fpz3MAAAAGAlTGvroK2trbnNLLNZ/oSeP38+cH/c2VTDm8lvb28vRN/zPB8AAACAxyQIm1A2mx2432q1xnrc6enpwP1cLrcQfc/zfAAAAAAek6WRExqeQdVqtSKTydz5uP6ZVqlUKtLp9EL0Pc/zAQCAcXz90493HvPLd9/PfBwALD8zwiaUyWQG9sN69+7dWI97//597/Zw+DTPvud5PgAAAACPSRB2Dy9fvuzdbjabYz2m/7jDw8OF6nue5wMAAADwWARh97C3t9e7Xa/X7zy+/5h0Ov2g/bRm0fc8zwcAAADgsdgj7B4ymUzkcrleIHRychI7Ozu3Hl+tVnu375o9ValU4vT0NPb29m7cd2sWfc/yfIaNe1VKAO5nnH10AAAgqcwIu6dyudy7/fr161uPa7fbUalUIuLzlRV3d3dvPTafz8fe3l6USqXY3t6+NTSaRd+zaPMmw1elFIwBAAAAj0UQdk/pdLo3M6rZbEapVLrxuBcvXkTE5ysr9s+kusnwssS3b98+Wt+zaHNYu92+NoPs+Ph4ojYAAAAA7ksQ9gA7OztRq9UilUrF4eFhFAqFaDab0W63o16vRzabjWazGZlMJj58+DBwdcabDP/8pqWRs+p7Vm222+0oFAqRz+fj6dOn12aENZvNWFtbi3w+3+sPAAAAYBbsEfZAuVwuLi4uolQqxfHxcbx48SLa7XakUql4/vx5VKvVkftt9atWq7G3txfn5+exu7t75yb00+x7Vm3eZ+YYAAAAwCysdTqdzrwHAdO0tbUVnz59imfPnsXHjx/nPRyAR2WzfCCpfvnu+3kPAYAxzfN9uxlhAADA0hvngwBhGQD2CAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAINstnZZ2dncXW1tbIY/b392N/f/+RRgQAAACr7ejoKI6OjkYec3Z29kijuU4Qxsq6urqKT58+jTzm8vLykUYDAAAAq+/y8vLO9+LzJAhjZT158iQ2NzdHHrO+vv5IowEAAIDVt76+Hs+ePRt5zNnZWVxdXT3SiAYJwlhZm5ub8fHjx3kPAwAAABJjnC2Itra25jZrTBAGAAAkwtc//TjWcb989/1MxwHA/LhqJAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAInwx7wEAAOP5+qcf5z0EAABYamaEAQAAAJAIZoQBAAD0GWcG7i/ffT/zcQAwfWaEAQAAAJAIgjAAAAAAEsHSSAAAgAlZPgmwnMwIAwAAACARBGEAAAAAJIIgDAAAAIBEsEcYK+vs7Cy2trZGHrO/vx/7+/uPNCIAAABYbUdHR3F0dDTymLOzs0cazXWCMFbW1dVVfPr0aeQxl5eXjzQaAAAAWH2Xl5d3vhefJ0EYK+vJkyexubk58pj19fVHGg0AAACsvvX19Xj27NnIY87OzuLq6uqRRjRIEMbK2tzcjI8fP857GAAAAJAY42xBtLW1NbdZY4IwAACAGfj6px/vPOaX776f+TgA+P+5aiQAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEsFk+ACyAcTZUBgAAHsaMMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIlgs3wAAIA5GediKb989/3MxwGQFGaEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASASb5QMAACwwG+oDTI8ZYQAAAAAkghlhrKyzs7PY2toaecz+/n7s7+8/0ogAAABgtR0dHcXR0dHIY87Ozh5pNNcJwlhZV1dX8enTp5HHXF5ePtJogCQbZ0kLAACsgsvLyzvfi8+TIIyV9eTJk9jc3Bx5zPr6+iONBgAAAFbf+vp6PHv2bOQxZ2dncXV19UgjGiQIY2Vtbm7Gx48f5z0MAAAASIxxtiDa2tqa26wxQRgAAMCSc2VJgPG4aiQAAAAAiSAIAwAAACARLI0EAABIgHGvYmwJJbDKzAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABLBVSMB4AHGvQIXACyLcZ7bXFkSWFZmhAEAAACQCIIwAAAAABLB0kgAAAAmYvkksKzMCAMAAAAgEQRhAAAAACSCpZEAcAtXhAQAgNViRhgAAAAAiWBGGCvr7Owstra2Rh6zv78f+/v7jzQiAABIjmnNrLbpPiyXo6OjODo6GnnM2dnZI43mOkEYK+vq6io+ffo08pjLy8tHGg0AAACsvsvLyzvfi8+TIIyV9eTJk9jc3Bx5zPr6+iONBlgk9v4CAIDZWF9fj2fPno085uzsLK6urh5pRIPWOp1OZy49w4xsbW3Fp0+f4tmzZ/Hx48d5DwdYQIIwAFgtlk/Ccpnn+3YzwuARHR0dxeXlZayvr9ubDBbEr//lr+OPf//38Se/+118+ef/Yt7DAf43tQmLR13C4vEec3KCMHhER0dHvdTbHylYDL/W/jr+4eK3+OLp772ohwWiNmHxqEtYPN5jTu7JvAcAAAAAAI/BjDAAVor9vwAAgNsIwqakVCpFrVaL9+/fR7vdjnQ6HZlMJvb29iKXyy1d38vSJgAAwDgfhNlQH4gQhD1YvV6PQqEQ7XY7crlcVKvVSKfT0Ww24/DwMPL5fO/7qVRq4fteljYBAAAmMe6scYEZrDZB2APU6/XI5/MREbG7uxvlcrn3s3Q6HTs7O5HNZqNer0c2m41GozG1oGcWfS9Lm0ByWfYIAAA8hCDsntrtdhQKhYj4HOj0Bzz9qtVqbG9vR6vVikKhELVabSH7XpY2AQAAZskyS1htrhp5T92lfhERh4eHtx7XnfUU8Xl2VKVSWci+l6VNAAAAgPta63Q6nXkPYtm0Wq3Y3t7u3b+4uBi5nO/k5KQ3MyqVSsXFxcVC9b0sbY5ra2srPn36FM+ePYuPHz/eu51ZWOSxTdPR0VFcXl7G+vp67O/vz3s4M5GEc4xYvPOcxdLI//v/+rfxDxe/xRdPfx//51/+26m3vyh+/S9/HX/8+7+PP/nd7+LLP/8X8x7OTCThHCOSc55JqM2k/Fsm4TyTcI4RyajLiOn9ey7yrLFFe403K0k4z2V9jznPcVsaeQ/FYrF3O5fL3bmnVXe2U8Tn5YInJycD35t338vSJsvj6Oio90dtVZ9wknCOEY97nvb/mq1fa3/de/Oyqm/SknCOEck5zyRIyr9lEs4zCeeYJNP691zkJZZey5JkgrB76F+6l8lkxnpMOp2OVqsVERHHx8f3Dnlm0feytAksLyEXAACwCARhE2o2mwP3v/nmm7Eel8lkeiHPycnJwvS9LG0CAACsmkWeNQarShA2oXq9PnA/nU6P9bjh45rN5tgzpWbZ97K0CSwus70AAGZHWAbTJQib0Lt37wbu37X3VdeXX345cP/9+/cThzyz6HtZ2gQAAOBmwjIYnyBsQt2le133ne10enq6EH0vS5vAfPw//+/f9f5r5hcAwPLqfy330Nd4QjWWmSBsQsMhz3212+2F6HtZ2gSmS6gFAMB9LdprScEckxCETei+4czw8sDz8/OF6HtZ2gQ+W7QXHQAAMG+3vUae1eqGaQVvlrTOx1qn0+nMexDLZG1tbeD+uP/76vV65PP53v1cLhe1Wm3ufS9Lm5P4x//4H8f/+l//KyIinjx5MvHjh/3Tf/pP45/8k3/y4HYiIs7OzuLq6iqePHkSm5ub137e/UM9yj/7P+4ey7Taua+bznOcMS2Tf2hfRnQ6EWtr8UVqfd7DmZkknGcSzjEiGeeZhHOMcJ6rJAnnGJGM80zCOUY4z1WShHOMSMZ5ds/xtveY0/Z3f/d38d/+2397cDtXV1cREfGP/tE/iv/5P//ng9ubhBlhE0qlUlNZsjfuBvKz7ntZ2pzEH//4x97tbnE9xG+//Ra//fbbg9vpd3V1FZ8+fbrXYz9dTGcs02pnlIec59LodOIfHuH/5dwl4TyTcI4RyTjPJJxjhPNcJUk4x4hknGcSzjHCea6SJJxjRCLOc1nfe/W/f38sgrAJbWxsTCXk2djYWIi+l6XNSfzud7+L//E//kd0/ncq/lDTnBEGAAAAy2qaM8LW1tbid7/73RRGNRlB2ITuO0tpOBi674ywafe9LG1O4r//9/9+r8cBAAAAq+3h02US5vnz5wP3x535NLzx+/b29kL0vSxtAgAAADyUIGxC2Wx24H6r1RrrcaenpwP3c7ncQvS9LG0CAAAAPJQgbELDs53GDXn6Z0WlUqlIp9ML0feytAkAAADwUIKwCWUymYG9q969ezfW496/f9+7PRwUzbPvZWkTAAAA4KEEYffw8uXL3u1msznWY/qPOzw8XKi+l6VNAAAAgIdY63Q6nXkPYtk0m82BfbDu+l9Yr9cjn89HREQ6nb62F9a8+16WNgEAAAAewoywe8hkMgMbuZ+cnIw8vlqt9m7fNdOpUqnE4eHhrftqzaLvZWkTAAAA4CHMCLunVqsV29vbEfE59Gk0Gjce12634+nTpxHx+SqItVrt1jbz+XzU6/Xe/YuLi4G9tmbZ97K0CQAAAHBfZoTdUzqd7s1iajabUSqVbjzuxYsXEfH5Koj9s55u0h+CRUS8ffv20fpeljYBAAAA7ksQ9gA7OztRq9UilUrF4eFhFAqFaDab0W63o16vRzabjWazGZlMJj58+HDj7K5+wz9Pp9OP1vcytQkAAABwH4KwB8rlcnFxcRHFYjFarVa8ePEinj59GoVCITY2NqJarUaj0Rgr4KlWq5FOpyOVSsXBwcHAHluz7nvZ2py2VqvV26x/HKVSKfL5fDx9+jTW1tZie3s7CoXCtVl9k1iWNuExTVKbzWYz9vb2Ynt7O9bW1nq/84eHh9Fut+89BrUJgyZ9zrxNt1bv2kf0JuoSBk2rLruazWacnJxEqVQauwbUJVw3SW222+04PDyMfD7fe47s/s5XKpV7j0Ft3qADK+zi4qITEWN97e7u3tlerVbrpFKpTkR0crlcp1ardU5PTzvVarWTTqd737+4uBh7jMvSJkzTNGvz4uKis7Ozc2c75XJ5ojGqTZJm2s+ZoxwcHPTaqlarYz9OXZI0j1WXFxcXnWKx2MlkMp2I6KRSqc7BwUGnVqvd+buvLkmiaddmsVjs1V6xWOzUarVOo9HolMvlXl2m0+lOrVYbe4xq83aCMFZa9w/KOF+np6cj26rVanf+Mev/IzVO8S9LmzBt06rNi4uL3pPuNN8kqE2SaJrPmaP018IkQZi6JIlmXZcXFxed3d3dXhuZTGbiN9rqkiSaZm12P9DNZDK3HtNfp41G487xqc3RBGGstG5afddXLpcb2c7FxUWvrXQ6fetxp6enK9cmzMK0ajOXy/VeOFSr1c7p6WnvU6n+GSeTvOlWmyTVtOpylP5amCQIU5ck1SzrslwuD7Q/6cxpdUmSTas2+wO1u4Kj7oe/qVRq5HFq826CMFZWuVzuRERvWveor7v+6HTfbI/zIqF/idaoY5elTZi2adVmfzu3OT097X0y1f2668WD2iSJpvmcOcrOzk4nnU4PvIEYJwhTlyTRLOuy/8OidDp9r9lk6pKkmmZtdn+HR80G6xp3WwG1eTdBGCsrnU6PTKvH1Z9qj5PUV6vVO99wL0ubMAvTqs10Oj3WJ03DtRERty77UJsk1bTqcpTuG4dGozFREKYuSapZ1WX/m9RUKnWvcFtdkmTTqs3+pYY7Ozt3Ht//O3/bB8FqczyCMFZSt/imkUD3r8ced3pn/x+Km17gL0ubMG3Tqs1GozHWE3HX8D4OxWLxxuPUJkk0zefM23RfRHdfuE8ShKlLkmhWddk/qyPi/vv9qUuSapq12f2AKGL0csPhvr2WfbgnASvo9evXkUql4uXLlw9uq/9StZlMZqzHpNPp3u3j4+OlbROmbVq1eXx8HLu7u5FKpcY6PpfLDdz/9ddfbzxObZJE03zOvE2hUIhMJhPFYnHix6pLkmgWdVmpVKJer/ful8vlgd/rSdvqUpckyTRrc2Njo3e71WpFq9Uaefy7d+96t2+rXbU5HkEYK6fZbEaz2Yx2ux1Pnz6N7e3t2Nvbi5OTk3u11e+bb74Z63H9fyCG+12WNmHaplmb33777URvqIeftLe3t28cXz+1SRJMsy5vc3h4GM1mM6rV6r3G109dkgSzqMtWqxV7e3u9+5lMJnZ3d+89vn7qkqSYdm0Oh1n9NXqTbj+pVCp2dnZuHF8/tXk7QRgr5/DwcOB+q9WKSqUShUIh1tbWolAoXCvo2/R/ahZxe/I+bPi4/v6WpU2YtmnWZiaTGXs2WEREu90euH9TjahNkmiadXmTZrMZpVLp3jNP1CVJNIu6LBQKA/d/+OGHe49PXZJU067NTCYzEBjV6/VrtdpVqVR6M8Zu+zBYbY5PEMZKabVa14p12MnJSWSz2TsT94jB6acRMfYb7y+//HLg/vv375euTZimadfmffrvN7xUMkJtkjyPUZcvXryInZ2de888UZckzSzqstVqDbwJvW02ybjUJUk0q+fMN2/eXGtjOAyr1+u9Nsvl8q3PqWpzfF/MewAwTel0OsrlcrTb7Tg9PY16vX7rWutKpRLv37+PRqNxa3vDj71vAn56erp0bcI0Tbs2J9X/5Hvbiwe1SdLMui67L+SHX+RPQl2SNLOoy3K5PHC/+2HQyclJHB8fR7PZjFarFalUKtLpdHz77bcj9+FUlyTRrJ4zM5lMVKvVgfDr5OQktre3o1qtRr1ej8PDw17/N32Y26U2xycIY+UMv8ltt9tRqVTi9evX15ZHNZvNyOfzUavVbmzrrg0Lx9Xf77K0CdM2zdqcVP+bgOFp7V1qkySaVV2enJzEyclJ1Gq1iZYxD1OXJNG067J/o+uIzxt0Z7PZa0uV2u12bw+kw8PDqFarN84cU5ck1ayeM3d2dqJcLg/MJGu1WpHNZiMi4uDgYKy9cdXm+CyNZOWlUqk4ODiIi4uLqFar116Q1+v1KJVKNz72vgU73Mf5+fnStQmz9pDanET/kpBisXjrJ1lqE6ZTl+12OwqFQuzu7o785Hoc6hIeVpetVuva7/zbt29jb28vLi4uotPpRKfTidPT02tv8guFwo2bXKtL+Gyar2V3d3evzd7sb2ecGlGb4xOEkSg7Ozvx4cOHa1eQe/369Uz7nUUCvixtwjhmWZvdT9DS6XQcHBw8uL27qE1WxX3r8sWLF70lHItCXbIqJq3L4dkcqVQqPnz4cG3pY7dmh+v21atXM/tdV5eskmm8lt3d3b1xC49msxlfffXVo204n4TaFISROKlUKhqNxsAfqXa7fePmhw9ZznFbO8vSJjy2SWpzXM1mMyqVSqRSqTunpqtNuG7SuiyVStFsNqNarU6t/2m3oy5ZdpPU5XAQNmrvr+7P+9+It9vta2/k1SXc7KGvZff29qJSqcTu7u61FQztdjuy2ezIttTm+ARhJNbw5r03vUne2NiYSl/97SxLmzAv49TmuF69ehURET///POdm3uqTbjdOHXZ3VeoWCxe+0T8vtQl3G6cuhzeoPqbb765s93hvTSHl3apSxjtPq9l8/l8VCqVODg4iHK5fONy5e5xt4VhanN8gjASK5PJDOxdctNGgPdNroenfk4jVX/sNmFexqnNcezt7fVmpozzplxtwu3GqctCoRCZTGaqS5DVJdxunLq8z+9tOp2+9rzZvyRLXcJok76W7c70yuVyA5vil8vlG2dYFwqFG5caqs3xCcJItHw+P/Lnz58/H7g/7trm4c0At7e3l65NmKe7avMulUolKpVKlMvlG694dRO1CaONqstSqRStVis2NjaiUCjc+dVfC69fvx74Wf/m3OoSRrvr+fK+v6fDddL/Rl5dwt3GfS1bKBR6QfNNe2vu7OxEo9EYCJLa7faNV0FXm+P7Yt4DgHnqXyp103TN7iVru1qt1lgzS4anofd/IrAsbcI83VWbo9Tr9djb24tyuXzjlPLbqE0YbVRd/vrrrxER99rTr9lsDsw2SafTvQBbXcJodz1fDs/CGPdN7PCb1v43teoS7jbOa9lWq9X78CeTydy6jUcmk4lGozFQl5VKJYrF4kCNq83xmRFGovX/sblpuuaoT8NG6X+RkUqlBvpZljZhnu6qzds0m83I5/NRLBYnCsEi1Cbc5b51+RDqEkab1WvZ4bb638irS7jbOM+Z/TPAhmvgpvaGZ4y9f/9+4L7aHJ8gjETr/+Nx0/TVTCYz8Ifr3bt3E7c7/MdjWdqEebqrNm/SarXixYsXcXBwcK89itQmjDaqLovFYnQ6nbG/+l8QV6vVgZ/174+iLmG0cV7L9huepTGu/ppVl3C3cV7L9odF4ywdHP6QdziUUpvjE4SRaP0vBm6brvny5cve7f6lG6P0H3fT+u1laRPmZZza7NdqtSKbzcbu7u7Am+i7HjN8JSy1CbebtC6nRV3C7capy/7vj7t8eXgJ5XCgpi5htHFqs3/J8bgh9V3LEtXmmDqQYOl0uhMRnYODg1uPaTQanYjofd2lVqv1jk2n00vdJszLOLXZdXFx0Umn053d3d2J+shkMp1GozHwPbUJt5ukLsdtKyI61Wp15LHqEm43Tl32//5GROfi4uLOdnd3d3vH53K5az9XlzDaOLV5cHAwss5ukslkeo+p1WrXfq42xyMII7Gq1WonIjqpVOrOFwS5XG7sF+z9LxzK5fLStwmPbZLa7IZguVyuc3p6OtZXrVbrZDKZTiaTubFNtQnXTVKX45gkCOt01CXcZJK67K+5ccLs/uOHPzTqUpdws3Frsz9gGvf5NZVK3RlIqc27CcJYGbVarfeHIZfL3fqk3el0Oqenp71jRx3Xf3y3mG9789zpfH5TPm6qvyxtwkPNsjb7PxWb9Ou2J2a1SRLMsi7HMWkQpi5JglnW5fCMjtPT05Hj6B43ara1uiQpZlmb/QHTXSF1f20Wi8WRY1CbownCWBn9yfOoJ+/uH7J0Oj3yRcCwbrI/6g9P9035uIn+srQJDzGr2nxICDbqU7ROR22y+mb9nHmXSYOwTkddsvpmXZflcrnXbjqdvvH3uTvT+q43u13qkiSYZW1eXFwMzPIa9UFtfxh3F7U5miCMlTG8/0H3K5VKdXZ2djq7u7u9wjw4OLhXYfZ/GrCzs9NpNBqdi4uL3lKr7ouGSdpeljbhvmZRmzs7Ow8KwcbZT0xtssoe4zlzlPsEYd1xq0tW1WO/lk2lUp1isdhpNBqdRqPRKRaLvZ9Nsu+mumTVzbo2Ly4uru3LVy6XO41Go1Or1Qb2Ehs1E+ymcavNmwnCWCmnp6ed3d3dTjqdHniST6fTnZ2dnU61Wp1KURaLxU4mkxnoI5fLTfRiflnbhPt4rNqcBbXJqlKXs28TJvVYdVkulzu5XG6gj0wm0zk4OLj37E91ySp7jNpsNBq9Pvpnb+7s7DzoQym1ed1ap9PpBAAAAACsuCfzHgAAAAAAPAZBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAACBx2u12rK2t3fnVbDbnPdSFVSqV7vz/t729Pe9hDljrdDqdeQ8CAAAA4DG12+14+vRp734mk4k3b95EOp0eOC6VSj3yyJZLu93u3T4/P496vR57e3u976XT6Tg9PZ3DyG4mCAMAAAASZzgIq1arsbOzM8cRrY5CoRAnJycRsXhBmKWRAAAAQOKZ+TU9w7PqFokgDAAAAEi8jY2NeQ+BRyAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAATKjdbkepVIpsNtu7QmLXyclJ5PP5ePr0aaytrUU2m41KpXJrO4eHh5HNZgeOH25z0cexLL6Y9wAAAACAiMPDwyiVSvd6bCaTiUajMeURMazZbEa9Xo/j4+NoNpvXft5qtaJQKFz7WbPZjL29vWg0GlEul3vfL5VKcXh4eGM/hUIhDg4OolgsLuw4lpEgDAAAABZAu92OiIh0Oh17e3uRTqdvPO7du3fXArNVCSkWWavVitevX0dE3Bg+VSqV2Nvbi0wmE8ViMdLpdO8x3X/bSqUShUIhcrlc5PP5eP/+fezu7kY2m42NjY1r/7alUuna78KijGNZrXU6nc68BwEAAABJt7e3F2/fvo2Li4uRx2Wz2YEAZHd3d2B2D+Npt9vx9OnT3v1GoxGZTGasxw7PoEqn03F+fh5v3ryJnZ2dgWNbrVZsb2/37nf72NjYiGq1GqlUauD4er0e+Xy+d3/Uv++ijGNY/+zGdDodp6enYz3uMdgjDAAAABbEDz/8MPLnpVJpIARLpVJCsDm4KTC7uLi4Fj5FfA6Ccrlc736z2Yx2ux21Wu1a+BQRkcvlBmZe1ev1hR/HMhGEAQAAwAI4Pz8fOSOp1Wpd28epWq3OeljcYGNjY+D+TcFTv/6ZVRFx435c/fp/D1qt1sKPY5kIwgAAAGABFIvFgRk7wwqFwsD93d3dkcezOIZnXA0HWMOG9+KaVgi1KOOYJ0EYAAAALIBRG5FXKpVrSyIn2SC/VCpFPp+PtbW13lc2m51ofKVSaeDxT58+jb29vYnaSKq7Aqe7dDe5X5VxzJMgDAAAABZYq9W6FjjdtLn5KAcHB1Gr1QaWzk0yu6fZbA4so0ulUvHhwwf7k83Il19+Oe8hRMTijGOaBGEAAACwwIZDsJ2dnXsviewPvyaZ3TO8LPPly5cTBXGwKARhAAAAsKAqlcrA1fpSqVS8efPmXm212+1oNpsDAdY4s8IODw/j/Px8YOnmcDAGy0IQBgAAAAuo3W5fu6rfmzdv7j0TqxuovXz5sve9u4KwZrMZpVIp3rx5M3CsTfpZVoIwAAAAWECFQmFg+eLOzs7AHl+TOj4+jp2dndje3u59767lkYVCIXZ3dwe+JwRjmQnCAAAAYMGcnJxMbUlkV71ej3w+P7DEcdSMsO7eZOVyOY6Pj3vfz+fzY/XX3eQ/n89HoVDoBXv5fD6ePn06cH63jTWbzfa+Rh0P4xKEAQAAwAJpt9vx6tWrge89ZElkxOclju12O3K53EAQdnp6euPx9Xo9KpVKVKvV3v2ucWallUql2N7eju3t7ajValGtVqNYLEahUIh6vd4by0264Vk+n49GoxGNRiPS6XTk8/kolUq9c4H7EIQBAADAAnn16tXESyJLpVJUKpVbf358fBzpdLr31XXTjLB2ux2FQiEODg4ik8lEq9XqjSeVSg08/iaFQiEODw+jWq3GwcFB7/vpdDrOz88j4vbllYVCISqVSuzu7g489ttvv42Izxv3Z7PZa3unwbgEYQAAALAg6vV6nJyc9O6PuySyVqvFxsbGyHa74dNdV4189epVbGxsRLFYjIgYGE//Rvs32dvbi5OTk9jd3b0xvOsGajctr6xUKr2+un13ZTKZ3u3T09Mol8sjx7HouoHgvC3KOB6TIAwAAAAWRKFQGLg/zpLIdrsd9Xr91pla7XY7ms3mQNvdNoeDkJOTkzg5OektiYz4HLJ1jdof7OTkJCqVSqRSqVuDqm7wdtOMsG6fOzs71865P7C760qXi2j4//NdSzt//fXXlR7HPAnCAAAAYAHs7e0NBBO5XG6s/bi6+4ndFoR19/fqD5+6x/b3110SWSwWB2Zgjbs/WHccP/zww8hxpFKpgfaHf/7NN99c+1l/GPf8+fNbx/BYhsO4uwKl4Z/ftjfbbcffFv4tyjiWiSAMAAAA5qy7OX2/7sbyw1/dmVeHh4exvb3dW05428yx4+Pja8HTTfuEFQqFyGQyA3tz9YdgN4VXXaVSqRea7O7u3nhMd8bXbUHWbeNvt9tRKpUiIuLg4OBBFw2YltevXw/cf/v27a0hVLvdvjZD7u3btyPDrbdv3w5877YZdosyjqXSAQAAAOYqk8l0IuLeX6lU6ta2U6lUp1gsDnzv4OCg99hardYpFoudiOicnp4OHLe7u9s7briN4T4iorOzs3Pjzy8uLu5sp1qtdiKik8lkBh6XTqc7EdE5ODi4tf/76B9TRHQajcbI4xuNRieXy/XO9aavTCbTqVarvePv+nfNZDKdcrnc6XQ6nVqt1jvX2/6Nc7lc5z//5/+8EOMY/l3p1//7lU6np/HPNTVfPCxGAwAAAB6q0WjMpN1msxntdvvanlzb29u927VaLUqlUhSLxWvLK/tnhN12pcduHxG37yHWP3PptnZ2dnai0WjEixcvIpvNxsbGRpyfn0cmk4larXbn1SpnrTuOSY6f5N81l8vduVSx61/+y3+5EONYRoIwAAAAWFHHx8c37snVf4XJUql0bUlkxOeldN1lc7ft6xUxuG/UTcseW63W2EssX79+Hc+fP58ocIJJ2CMMAAAAVtTJycmNM7CGZ1f1XyWyq39/qNtmcUXcvYH64eFhfPvttwPttNvt3t5mXYVCIU5OTkYGZfBQgjAAAABYQc1mM1qt1o1XYewPwsrl8o3LDvvDsduWPA63dXx83Lvdbrcjn89HsViMd+/eRcTn2WDtdjtevXp1LVzrzhorlUqRzWavXTxg1s7Pzx+1P+ZDEAYAAAAr6PDw8Nafda+8mMvlbrzKY/cKlePI5XK99kqlUuzt7UWhUIhsNtsL2bqzxk5OTuLFixdRLBavXf2xWCz2bjebzdjb24u1tbXY29sbaxwPddfMNsZ325UrF4EgDAAAAFZIvV6PbDbbC7IODw+jUChcC7Yymcy1JZGVSiXy+fy1GWDdcOumWVqpVCp+/vnn3pLGt2/fxsbGRjQajd5sse7SyHQ6HdVq9doMtJOTk6hWq3F6ehrVanVgtlilUhnY3H9WDg8Po16vR7vdHvhitOH/X/V6/dFn801irdPpdOY9CAAAACCZSqVSHB8fX7uyYavVisPDw95eYru7u1Eul6fWb7vdjqdPn955XKPRsG/ZLUql0siZhxGfw89FugqlIAwAAACYi5OTkygUCiPDpsPDwyiVSgsXqLCcBGEAAADAXOTz+ajX63FXNLG2thaZTObarDGYlD3CAAAAgLnobpg/ai+u7s+GrzIJ9yEIAwAAAOaiu4n+69evbz3m8PAw0ul0/PDDD481LFaYIAwAAACYi52dnSgWi1EqlWJvby+azWZERO/qg/l8Ps7Pz6PRaPRmj8FD2CMMAAAAmKt2ux2VSiVOT0/j/Pw80ul0bG9vRy6Xi3Q6Pe/hsUIEYQAAAAAkgqWRAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAi/H+w32YzjYIBXAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -84,12 +92,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcKklEQVR4nOz9T4xb953ne39YUgwF8VBkuTEAUQS6RbYHzmpapHQXvesWOdnYSGZMSoMYtjcp0u2n7yw4HTIVr+0KK2lu+j6BSLkXj3INjETG7cBZdKeozO4Cd1RFpXfGJDxygCoQGIxVR+wYMRKbfBbVZMj6Qx6Sh+eQPO8XQKD+fOt3vqfIKul86vf7HV+32+0KAAAAAAAAWHFrbjcAAAAAAAAAOIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJ1x0uwFgWl/5ylf02Wef6cKFC/q3//bfut0OAAAAAACw4H/9r/+lL774QpcuXdKnn37q6LF93W636+gRAZtcuHBBnU7H7TYAAAAAAMAU1tbW9MUXXzh6TGaEYWn1grC1tTWFQqH+x1ut1pkfnwenjsVxFv9Yq3YcJ4+1asdx8lgcZ/GPtWrHcfJYHGfxj7Vqx3HyWKt2HCePxXEW/1irdhwnj+Wl4/Q+d+HChbkd/1xdYEltbGx0JXU3NjYsfdzJHjjOYhzHyWOt2nGcPNaqHcfJY3GcxT/Wqh3HyWNxnMU/1qodx8ljrdpxnDwWx1n8Y63acZw8lpeO4+Tzd5KrM8Kef/55Nw8/xOfz6X/+z//pdhsAAAAAAACYE1eDsGazKZ/Pp66L25T1ju/z+VzrAQAAAAAAAPO35nYDbnMzhAMAAAAAAIBzXN8sv9vtKpVKKRKJuHJ80zRVqVRcOTYAAAAAAACc43oQVqlU9K1vfcvVHlKplL72ta+52gMAAAAAAADmy/WlkYlEwu0WdP36dbdbAAAAAAAAwJy5HoStr6+73QIAAAAAAAA8wNWlkdypEfOQy+XUbrfl9/tX5lirdhwnrdr3bhVf305Zxe/dqh3HSav2vVvF17dTeI4W/zhOWrXv3Sq+7pzCc7T4x3HSqn3vVu04k/J1Xbxt4tramkzTdP2b8vTpUwWDQXU6HVf7wGTC4bAODw+1sbGhg4MDt9vBBHjuMIjXA3p4LWAQrwf08FrAIF4P6OG1sNzcfP5cnRFWLBZdD8Ek6fLlyyoWi263gSm1Wi2Fw+GRNblcTrlczqGOAAAAAADwplKppFKpNLKm1Wo51M1prgZh3/72tx093scff6w/+ZM/WYheYJ9Op6PDw8ORNe1226FuAAAAAADwrna7PfYa3U2uBmFOy2az+qd/+ie324DN1tbWFAqFRtYswsxDAAAAAABWnd/v18bGxsiaVqvl2vZUngrC9vb23G4BcxAKhVgTDgAAAADAArCyNVFvjzA3LGUQ9vHHH8s0Tcv1hmGoXC5P9DUAAAAAAABYLUsRhH388ccqFouq1+syDGOqMbrdrnw+n82dAQAAAAAAYFksfBC2tbWlnZ0dScdhFgAAAAAAADCNhQ7CfvzjH6tYLEqSfD6ffD4fYRiwAnK5nNrtNjcxgCReD/gDXgsYxOsBPbwWMIjXA3p4LWBavu4CJ0vXrl1To9HoB2CRSESxWEyRSESS9Nxzz40d45NPPpFpmrp//76ePn2qL774Yt5twyG9zfU2NjbYLB8AAAAAgCXh5vX8Qs8I64VgkrS7u6sbN25MPVY+n9fzzz9vV2sAAAAAAABYMmtuNzBKIBCQdBxizRKCSVIkEtGVK1ds6AoAAAAAAADLaKGDsN4SyOvXr9syXrlctmUcAAAAAAAALJ+FDsJ6s8CePHli63gAAAAAAADwnoUOwr773e+q2+2q0WjYMt67775ryzgAAAAAAABYPgsdhF2+fFnf+973dO/ePf3Lv/zLzOOxNBIAAAAAAMC7FjoIk443yo/FYkqn0zON8/jxY9tmlgEAAAAAAGD5XHS7ASt2d3d17do1Pf/88yoUClpfX7f0dU+ePJFpmmo2m7p///6cuwQAAAAAAMAiW4og7Oc//7kkqdlsKpvNTjVGt9uVz+ezsy0AAAAAAAAskYUPwv7qr/5KlUpFkuTz+dTtdicegwAMAACsim5X6oz579CaT+K/P4uB5wsAgMWy0EHYnTt3+hvcTxuCSZr66wAAABZNpytdfGt0zedvSxcIVhYCzxcAAItloYOwkyFYIpFQMplUIBCYeJ+w27dv6+OPP55jt3BLq9VSOBweWZPL5ZTL5RzqCAAAAAAAbyqVSiqVSiNrWq2WQ92cttBBWKPRkM/nUyAQ0N7enq5cuTL1WJubm3ruueds7A6LotPp6PDwcGRNu912qBsAAAAAALyr3W6PvUZ300IHYYFAQE+fPtXW1tZMIVhvrKtXr9rUGRbJ2tqaQqHQyBq/3+9QNwAAAJN575H0WtztLgAAsIff79fGxsbImlarpU6n41BHwxY6CIvH4/r5z3+uSCRiy3h37tyxZRwsllAopIODA7fbAABgYRCsLI73Ho2veb0mXViTXuFvtgCAFWBla6JwOOzarLE1V45qUTabVbfblWEYtozHjDAAdjBN0+0WAHiY1WDFSh3m6+ln0ps/sVb7xgdS+7PZjtftSl90Rj+4hxQAwOsWOghLpVK6evWq7t27Z8t477//vi3jAPCeRqOhQqGgYDCozc1Nt9sB4FFOByuYzY8a0qe/t1b7m99JdxuzHa93h8pRjw5BGADA4xY6CJOkarWq/f19/cM//MPMY21vb9vQEYBF0wupksmkotGogsGgfD6fgsGg4vG4ksmkCoWC6vX6mV+fTqcVjw+vITJNU7VaTel0uj/Ozs4Os8EAuMrpYAWz+fCjyep/OmE9AACY3MIHYZFIRLdv39a3vvWtmcZ5+vSpGo3F+d+gYRhKJpOWa7PZrKLR6NDFfTabtW3ZqJMmOXevqFQq8vl8Ez9OhjfTmubYwWDw3PHS6fRUY54XVJ3FNE0VCoX+92FnZ0f1el2GYfTDKtM01Wg0VK/XtbOzo2Qy2a8vFAqqVCpKp9Oq1Wqnxt/c3NT29rZqtRrhF4CFQbCyXI5+O996AAAwuYXeLL+3lPGP/uiPFAwG9fzzzyuVSk08jmmaun//vt3tnXusUQHBoEwmM7ZmZ2dHhULh1DEajYYajYYqlYqKxaLy+fzYsYLB4NQX9JlMRuVyeWSN3efuJZlMRjdv3pRhGP3w5TyJREKFQkHXrl1TIBCw5fi9vfjq9boKhcK5r5NIJKJCoaBEIjHyJhbValWmaWpvb0/FYnFkwJXP53Xr1i1FIhHL51MoFLSzs3Pq46lUqj9WbzzDMGQYhqrVqu7fvz/08zPo5DlXq9X+29FodClDZwCrh2BluQS/PN96AAAwuYUOwt555x09evSHnV673e6ZF79WdLtd+Xw+u1o7V6VSsVx7MuA6KZlMql6vKxAI9IMHwzDUaDSGLsoLhYIikcjIkHDWWS1WZnDZee5eFAgEFIvFVK1Wlc1mz/x+plKpoYDGTpFIRJlMRolEQtFo9Mya/f19y2FV73WbSCQUj8fPnJFZLpcnCkV7swlPhlKjgtpeKJZIJFQul88Ml8dJJBITvb4BYF4IVpbLSy9IP/ul9foXX5hfLwAA4NhCL428efOmut2uuv96exsngqxZWd2HbNyMmt5+RsViUUdHR6pWqyoWi6pWq2o2myoWi0P16XR65PHGzeYax8pMPLvOHcd3TJ3k43aKRCKKxWKnPp5KpaaegXZe35OEYPV6/dTMrEAgoP39/Yle3/l8Xs1m89S5PHny5NyvsWvmHQDM6qUJgxKCFXe9GpO+8iVrtc8+I712+p9fAABgs4WeEZbNZvWd73xHPp+vH4YtskqlItM0lc/nx86gunbt2rmfMwxDOzs72t3dVSKROLOmdzE/OEul0WicGWD0lrwNLmtbX18fez7xeFyGYZzbwyC7zh3HzgsKnQoQI5HIqRlcsxz7rK+dJFxqNBqnXleBQEAPHjw48zVvpZ/Hjx/rypUrQ/uJAcCiezUmfecfrW2YT7DivsuXpB9+XXr9/B0P+m5/Q/JfmntLeu+R9Jo9W4wCALCUFjoIu3z5smKxmB49eqRisahYLGYpwDnJMAy98847+sUvfmF/kwOKxaIikcip2VqTKhQKKhaLYwOoYrE4FITV6/UzQ4FyuaxIJDLRsrbevkrS+NlmvV7sOHccO+95mub1v+wMw9CNGzdOfbxarU4VgvX0ZpOdtwx0mdVqNcViMWZenqNer1sK+IFFtIjBCkZ75er45+tu6rhuVu89Gl/zek26sGbP8QAAWEYLHYRJ0q1btxSNRvXtb3976jGuXr2ql19+ea4hQq1Wk2EYMy9BlNSfWTVOIBDo7xvWe/8slUpFDx48mGgGzuBm7Tdv3hxba9e5YzGc9bPy3HPP2Tqe1Z/HdDp9arZWby+zWUUiEeXz+an3HnRao9FQuVzu3x0zEAhofX29/7vg1q1bko7veFksFkcuPa3X60qn01pfX1e5XF7pYKg3K7ZarfZv3LBIs4y99Fyssm5X6ox5Wa35JDt2eXAyWIEzvmnDc/X0M+nNn1irfeMD6aWvEpQCALxp4YOwRCKhhw8f2jLWPJfkbW9vKxAIjA2NrNjd3bVcO7iv0XnnN83MmXv37kk6/v6PC9DsPHdgUL1eP3OTfTtnHm5tbfWDMNM0F3I/MNM0tbm52Q+oB2+O0buBRqPRGAqwxy317AWMpmkqm82q2WzOrX+3GIahdDotwzAWeumrF54LL+h0pYtvja75/G3pgkPbndoRrEjOBnxOWsXz+lHD2pJZSfrN76S7Demv/3y+PQEAsIgWPgi7evWqbRe9/+W//BdbxjmpdxEqScFgsH+HumQyaWmT+Wn1Lpyk48DqvLBr0tkFpmn2z2fcski3zh3ecNYm+7Ns2n+WQCCgTCaz0HeFTKfT/ZlMZ91p0zAMZbPZfo2ksWHK+vr6QodDdugtCZeOl5wv6sw/LzwXWF6LFvDZZRXP68OPJqv/6UcEYQAAb1rou0b2XLlyxZZx/u7v/s6WcU4qFApD7xuGoUqlonQ6LZ/Pp3Q6feasllndv39f0vHFXrVatW3cwUBg3Cwvt84dq6+3/O+kra0t24/VC3xH3TlylN7Stmg0Kp/Pp2AwqGQyaUu4trOz0w+48vn8mcsdI5GIdnd3h/5ocNb3blBv70C7f38sqnE38XCT154LzG7NdxzSjHqsLVGAs+qcer6OfjvfegAAVsVSBGF22dvbs33M3t4zo9RqNcXj8TNnt0yrt4QmFotpd3fX1hkyvWWRsVhs5LhunTu84bxAYJYN8s+TSCRULBYn3kfQNE3F43Elk8n+Xnm9j9frdWWzWUWj0ZnC4O3t7f7b436O8vl8f3/BcaFeIpFQs9lUs9mcy/d00bh1owkrv/u89lxgdj7f8Wbnox5OLumzskG7Fd2u9EVn9MPJ7f3sOi+nnq/gl+dbDwDAqlj4pZFn+fjjjydaRtLbyH0eS08ikUh/7Gazee4sFul4ptXe3l5/qc60DMNQMplUIBCYeBP8cQaXRfY23j6PG+cO7zgrZJ3nJuJWblAxyDAMxePxsb9XenW7u7sT9z/N3lbFYnHkzyKcU6lUVKlUuJEIlpqTdyF0crniKt5d8aUXpJ/90nr9iy/MrxcAABbZUgRhH3/88cwXd91uV745/Xn05FIl0zRVqVS0vb196iK20WgomUxOtCH+oFqtNrRvVzAYVLFYnPgi/jy95ZaSLO3x5eS5wzsMwzjzZ31RZsuYptnf4DyVSimZTOratWt68uSJdnd3z9yLKplMqtlsKhKJTHScQfV6feSdIHu2trbG7u+H+ert2wYMeu+R9Frc7S6sW8S7ENrxPVzE87LDqzHpO/9obcP8Z5+RXluMf1IBAHDcwi+N3NraUjQaVaVSUbPZVLfbnerhpEAgoHw+r6OjI1Wr1VMztur1+kSbNpumqZ2dHUWj0TMvbguFgm0Xvb2ZC7FYbKIL9h67zx3edF7gHY1GHe7kbL27We7u7qparSqTySgWi/WXWJ4XeE36c3pyjEKhYGmGWC/EZgN2d5imudB7kmE+rM4wsmu5nROmuQvhLJz6Hjp9Xk65fEn64det1d7+xnKEewAAzMNCB2E//vGPVSwW+0HWvGZ0zVMqldLjx49PzWQZ3PdnnHq9rmazqUQice7SqlqtNnPANMmySCvsOHcrWq2WwuHwzI9SqWRrX5jeeUGYW/s8nWXUUsfe5vUnNRqNsfvqDQoEAkNhcm9PMiszY7vdrq3LpmGNaZq6ceMGS1M9ZtIZRu3P5tqObaa5C+G0nPweOnleTrOyjPNuanmWewIAFk+pVLLl+rvVarl2Dgu9NLIXmPh8PnW7XUUikaGZSs8999zYMT755BOZpqn79+/r6dOnc+33PIFAQPv7+4rH4/2gqbeZtpU9g1Kp1KllipVK5dTskEKhoEwmM/XF76TLIq2Y9dyt6HQ6Ojw8nHmcdrttQzerq1AonLpL6LycN5NpUYKdQCAw9vUbiURULBZPfc+KxeJEr/1isTi0xM4wDEWjUZXLZUvLJEdpNBoql8v9sP08vd+h5XJZ2Wy2f1zDMFQsFnX//n2ZpqlIJKJsNntqqXZvn8beDQUikUh/9tzJ57S3p9bJGwycnNmbTCbPXEJ7dHRk2+ukUqmoWq32jxMIBBSJRHTr1q0zl6M3Gg3duHHj1Ot38I84kUjkzO+11eeip7cMfXd3V3t7ezJNs99fIpFQNpsdO6vXMAzVajWVy2VVq9X+Hy0Gn4Pev7t37txZmJ+/RTTNDKO//vP59mQHJ+9C6OT30Ot3V/wmIRgAYAbtdtuW6283LXQQ1mg0+hcQu7u7unHjxtRj5fN5Pf/883a1NpU7d+4oHv/DxhbTbJ7dk8lklEgkTm3WXalUpt4vrLcsMhKJTLUschQ7z/2ktbU1hUKhmcfx+/02dAM7WAkC3HTt2jVLdfl8/tR+eZPMCJOOf9ar1eqpr8tmsyqXy7pz585Ee6f1ApdeeCWdHTD2gpZ79+6dedfLQqFwahaqYRgqFApqNpv93yfn1VUqFdXrde3v7w8dP5PJKJPJKJvNqlKpnHsevRl3Ozs7tge0vb0YA4GA7ty50//DQKPRUDqdVqFQULlcPtV7JBLRgwcPVK/Xh3o67yYhVp+LkyqVSj8cLRaL/UCx0Whoe3tbOzs72tnZUSqVOnX3VdM0tb29PXSX08HP3bhxY+j57oWAvefK7n8bVsU0M4yWIQhz8i6ETn4PubsiAADT8/v92tjYmHmcVqulTqdjQ0eTW+ggLBAI6OnTp8rn8zOFYNLxBcqVK1ds6mw6vT2Eehe0sy6d6V10DQZMDx8+nGqswWWRds0GG2T3uQ8KhUI6ODiwbTycrRdOTGNvb2+irz0vDFiUPa8mmRmTSCRUq9WGPtZoNCYKr3Z3d5VOp88cJx6PK5VKWZqxYxiG7t27Z3mvtVgspkAgMPTc9WZ4rq+v92cRra+v9wMY6Q9BTaFQ6N9AoBce7u3t9W80YBiGtre3VSwWTx07nU6PDMJ6UqmUrUFYvV7v7+W2tbU19PswFoupWq32l6dubm4OBU2BQECxWExPnjwZGvOs53rS56KnFyz2ZtsOBlORSESpVKr/WqnVaopGo0OB3ZMnT5RMJvtBZ8/e3p5u3LjRn6kXiUT6gZ5pmjJNU9lslpudnGNVZxg5eRdCJ7+H3F0RAIDp5XI55XK5mccJh8OuzSxb6CAsEono0aNHun79ui3jLcIt7JPJ5MQzQkaJxWJKpVL9C+RpA6bBZZF27A92FrvPHc6KRqOO3bXxvGXPJwOGZXDr1q1TAdbe3t7E38tqtXru7Kde6DFuuWRvuWbPqABpcPnn4FLF3nK8kzM6i8Xi0B5o8XhcmUzmVHCSSCR0586dfthUqVTODMKssnvfuHH/Tgw+byef10lM8lz0VCqVftjYC6vOUq1WFY1G+7O50ul0/3nozfhNJBJDQVihUFC1Wh16XjOZjNbX1/vPVb1e7y/BxLBVnWHk5F0InfwecndFAAC8baE3y+/NArPr4nfWWWV2GLxwsesCbjC4mnbGTG9WQ29GwzzM49yxmhZ9Rtgkzgorpj2P3h1Zz5u1mc1m+7N9punrPIM/r71l2Wc5eafE80Klwf57s40W0Xmvw8GP2zG71epz0QvLAoHA2P3hBoO1er1+5h8hBs/jzp07Zz6vJ19re3t7lnr1mpcmnDG0LDOMnLwLoZPfQ+6uCACAty10EPbd735X3W73zP1ppvHuu+/aMs4sBi947Pqr+mBwNc2Yvc3rJc28+fYo8zh3rKbzgoFF3zvsLGe91j/55JOZxqtWq9rf3z8ztK7X62du2D4Lqz+v0/6ML9IdFu/cuaNisahqtWrp96FTIV6lUukfy0pwdvLGKbPMuhs83iI9V4vk1Zj0lS9Zq122GUZO3YXQ6e/hqt5dcc0nff726Mfa8t2EHQAAWy10EHb58mV973vf07179/Qv//IvM4+3CEsjB/+afnL2hB2sbuI9yIllkdL8zx2r47wZR8u4tPas0MLKHW/HicVi2t/fP/P3WqPR0Obm5szHmNS0AfciLXkNBALK5/NnzrprNBq2/WFmUoNLTK3OIBv8OVrGn51l4vUZRnbchXARv4fLeHdFn0+6sDb64SMIAwB43ELvESYdLwXqbRT9j//4j1OP8/jxY9cuYAYNzmix666Jg3+hnyZgcmJZpDSfc8fqisVip35mDcNYiT2K7Lzz3nl3kK3VaqrX6wv7sxYIBBZ2SeSg3h0Te/tqudnHpE6+zlbhZ2eRvXJVen3MtnHLPMNoXI0dnPweOnleAABgsSx8ECapf8ex559/XoVCwfL+Uk+ePJFpmmo2m0OzntzU21w5n8/bNmYvLAgEAhPf8XFwWeTNmzdt6+ks8zh3rK5bt26dGV7X6/W53Nl0nk6GPnYGYb3xendzHDxOuVxe2CBs0TUaDRUKBcVisZmWFdpl8Hm1GoqdvCPlkydPCMJctrQzjBYoELLre7ho5wUAAJyzFEHYz3/+c0nHM4qy2exUY3S7Xflcngteq9VkGIYCgYC2trZsG3d7e1vS8d42kxoMCHt3BpuHeZ07ptNoNLS9vd2fDbiIMpnMmXfSK5fLSxeEnZz5ZGXmZb1eV6FQ0P7+vqVjRCKRobsxSlqIWbDLKJvNqlKpKJPJLEQIJk23Qf/JPxrZHcACdmOWFgAAcMJC7xEmSX/1V3+lZDKpR48eyefzqdvtTvyYl3q9rmAwKJ/Pp2QyOfKi0zCM/p49Dx48GPlX+Z2dHcXjcRUKhbFLh3o15+1pM87gsshJZo7M69zhjM3NzYVflnbeDMd6vb5UAc/J77PVn7NIJKJGozHR3k4nv19sbD65XggmzbbBvN0GQyyrd9oc3HuNEAzLgP2tAACAExY6CLtz547K5XI/zJo21JpXGFatVvsXI/V6XfF4/MwZa73Pra+vq9lsjpwNYpqmCoWCGo2GdnZ2FAwGz5wVIx3P4NrZ2VGxWJzqgm1wWeSky6fmce5wRi9IGrWfnN2bl0873nmv6/N+JmYxr2Bw8CYRkizPau0FF9POgpWszTxbdna+VhuNRj8Ei0QiCxXan7yRSa/PUQb3ZVy2WZQAAADAvCz00sje3dB6M8ESiYSSyaQCgcDE+4Tdvn1bH3/8sa39pdPpUxcjlUpF9+/fVyKR0Pr6uvb29tRoNJTP57W1tTX2wioQCCgSiQzN5NjZ2VGlUlEikejPEtnb21MikVCz2Zz6L/2DyyInvdiex7lj/kzT7C+dm/TC+JNPPrG1FysBRiQSUbFYPBV81et17ezs2LbfnGEYSiaTSiQStt9d9uTd/ib5vvd+FxQKBUth98kZYPO8C+y8nfwdf95G73bOehucfTdqXDdmU6ZSqaG95srl8tjX/+D5sCQdAAAAOLbQQVij0ZDP51MgENDe3p6uXLky9Vibm5t67rnnbOxO/SCqWCyqXq/3QzfpuPdYLKatrS0lEomJQqD9/X1tb2+rXq/375LXG1M6DqGq1erMwdLg/lCTzgib17nj2DwutE3T1I0bN/qBwqQBqt09WR2vd+fYk0sEexuZz7oZfL1eVzKZ7IduduvdJELSxCFbLwjb2dlRNBpVJpMZWT84fiQSsS0otPpcDdaN+5pxnz85m61SqZw6n15IOMjODeFrtdqp4PKs45108mfLMIxTSxun6XFwD7je3SzPe/03Go3+vxnFYpHfww5gfysAAIDlsNBBWCAQ0NOnT7W1tTVTCNYb6+pV+2/XFIlEbJ9BEggEHNmbZnCmyjTmce44dt5slGkv8uv1urLZbH/ccXcIPev4syxBm3XWzu7urtLp9FCoJEnJZFLFYnGqwKe3DLlSqfTvumj1e2s1GKpUKv1zz2QyE4d2g+FJNpvV/v7+uaFGpVLRzs5O//1xP9+Dz6fb+8Wdd/xEItEPQAuFgprNptLptEzT1O7uriqVSv+10RvjZOjUc/L1e1YYdTJ8S6fTKhaLisViajQaKpfLisViQ7N2e78Dd3d3+zNfTx4/m82qWq3qyZMnKhaLikajQ69Zq89FKpUamiGZTqf1+PHjU+dhmmZ/X8ZMJnPuz4fV533w59ft18oi4y6EAAAAS6K7wBKJRHdtba374x//2JbxGo2GLeNgMWxsbHQldTc2NtxuxXaZTKYr6dQjkUh0m83m2K8/Ojrq7u7udvP5fDcSiZwap1qtnvu1zWbzzGNL6h4dHU11PrFY7MzxyuXyROPk8/kzx4nFYt3d3V1LYxwdHXWLxWI3EAj0v6fjzuvkcQOBwNjjDH4fE4mEpd5OKpfLZ55vKpXq5vP5brlc7mYymaHn2Opr5ORzct5r4ujo6NT3+jypVMrS87u7uztUl8lkzj1273k6+QgEAv3nfLAmFot1m83mqefUam8n6wYfxWKx2+2e/fOZSqWGxjnvtXrWuVp9Lnqq1Wr/nAOBQLdcLnebzWa32Wx2y+Vy//XQ6/csVp+Dk3XTvpYBAACAQW5ezy90EFatVrs+n6/7/e9/3+1WsIBWMQjb398feSFu1+Os4Ofo6KhbLpfPDR4kdSORSLdcLlsOxPb397uJRGJkL/l83lJw07O7u3tusBYIBLqpVKpbLpe7u7u73f39/e7u7m63XC53i8Xi0NcFAoGxgUPPWeFgJBI5N3wbDCpOBiST2N3d7fdZrVa7mUymm0gkurFYbOh56p33uDCw9/o67zmOxWL98GRUbSQS6aZSqf7r4GQYdzI46Y25u7t77ushEomcGcYcHR0NjR+Lxbr5fH6opvexk6+jo6Ojsed71jGLxWL/eJFIpJvP54de80dHR/3zGPyenTQYRMdisaHX2yTPxXnK5XI3kUgMhWK9rzvvZ3TUz+Tgc9BsNkfWjesNAAAAGMXN63lftzunWyraJB6Pa21tTQ8fPpx5rPfff1//6T/9Jxu6wiIIh8M6PDzUxsaGDg4O3G5nJpVKZaa7A04iFotpf39/6GO+Ke5HHwgEdHR0dObnzlrGaMXu7q7l5YO1Wk3b29v9fZCsikQiymazymQyEy0z7e1HdfK8AoGArl271t/IfG9vr7/srlqtzryHGQAAi6jblTpjriLWfMfLhgEAOMnN6/mFD8IMw9Cf/umf6sc//rH+43/8jzONdf36dVsCNSyGVQrCMD3TNFWv13Xv3r3+zSV6expFIpH+nk3Xr19XKpWa+i6r5x2vd8zeca5du6Z0Ok0ABiwALtSB+fmiI118a3TN529LF9ac6QcAsFwIwsaoVCra2trSJ598MvUYT58+1fr6ur744gsbO4Obej84a2trCoVCI2tzuZxyuZxDnQEAFgEX6sD88PMFADhPqVRSqVQaWdNqtdTpdFwJwhb6rpHvv/++JOmP/uiPFAwG9fzzz5+6lb0Vpmnq/v37dreHBdHpdHR4eDiypt1uO9QNAAAAAADe1W63x16ju2mhg7B33nlHjx496r/f7Xa1s7Mz1VjdbneqfZCw+KzMCPP7/Q51AwAAAACAd/n9fm1sbIys6c0Ic8NCB2E3b97sb4Tt8/kIsnCmUCjEHmEAAAAAACwAK1sT9bY6csNCr9rv3UXP5/Op2+3O9AAAAAAAAIC3LfSMsMuXLysWi+nRo0cqFouKxWJaX1+feBzDMPTOO+/oF7/4hf1NAgAAAAAAYCksdBAmSbdu3VI0GtW3v/3tqce4evWqXn755alCNAAAAAAAAKyGhV4aKUmJRMK2pY3Xrl2zZRwAAAAAAAAsn4UPwq5evapisWjLWHaNAwAAAGC09x6NrwEAwGkLH4RJ0pUrV2wZ5+rVq7aMAwAAVgMX6sB0rPzsvF7jZwwAsHhcDcIWafP6ReoFAADMjgt1YD6efia9+RNrtW98ILU/m2s7AABMxNUgLB6Pq91uu9mCJOnp06eKx+NutwEAAGzChTowPz9qSJ/+3lrtb34n3W3Mtx8AACbhahBm1yb4dlikXgAAwGy4UAfm58OPJqv/6YT1AADMk6tBmM/nc/PwQxapFwAAMBsu1IH5OfrtfOsBAJgnZoQBAICVw4U6MD/BL8+3HgCAeXL9rpGPHz92uwXt7e253QIAALARF+rA/Lz0wmT1L05YDwDAPF10u4HNzU195zvfUSAQ0Pr6uqPHfvLkiQzDUD6fd/S4AABgvl56QfrZL63Xc6EOWPdqTPrOP1rbh+/ZZ6TXYvPvCQAAq1wPwvb395VOp13todvtskcYAAArhAt1YH4uX5J++HXp9dr42tvfkPyX5t4SAACWub40sqfb7bryAAAAq6d3oW4FF+rA5F65Or7mbspaHQAATnI9CHM7kCIMAwBgNXGhDrjrm/xsAQAWkKtLI4+Ojtw8PAAA8Dgu1AEAALzF1SDs8uXLbh4eK6LVaikcDo+syeVyyuVyDnUEAAAAAIA3lUollUqlkTWtVsuhbk5zfbN8YFadTkeHh4cja9rttkPdAAAAAADgXe12e+w1upsIwrD01tbWFAqFRtb4/X6HugEAAAAAwLv8fr82NjZG1rRaLXU6HYc6GkYQhqUXCoV0cHDgdhsAAAAAAHiela2JwuGwa7PGXL9rJAAAAAAAAOAEgjAAAAAAAAB4AksjAQDASlrzSZ+/Pb4GwOT4+QIALCuCMAAAsJJ8PukCF+LAXPDzBQBYVgRhAAAAABZWtyt1uqNr1nzH4RwAAOMQhAEAAABYWJ2udPGt0TWfv80MNQCANWyWDwAAAAAAAE8gCAMAAAAAAIAnsDQSAAA4hr1+AAAA4CaCMAAA4Bj2+gEAAICbWBoJAAAAAAAAT1jJIOzp06fa2tqa6Gva7bZ+8YtfzKchAAAAAAAAuG4lgzDDMLSzs2O5/vvf/76CwaA2Nzd1/fr1iUM0AAAAAAAALL6VDMJ6fv3rX+sHP/iBtra29P7776vdbp+qefTokQqFgmKxmB4+fKiHDx8qEono1q1bLnQMAAAAAACAeVnJzfLr9bq63a4ikcjQx6PRqHZ3d/XHf/zH/Y/du3dPkpRIJPof29zcVLVa1T//8z/r3//7f+9M0wAAAAAAAJirlZsR1pvh5fP51O12+48rV67oV7/6lZLJ5FB9o9GQz+fTc889N/TxdDqtb33rW062DgAAAAAAgDlauSCsXC5LkrrdrjKZjJrNpjqdjn71q1+p0+noz/7sz/Tuu+/26588eSJJCgQCQ+MkEgnt7++zgf4SaLVaCofDIx+lUsntNgEAAAAAWHmlUmnsNXqr1XKtv5VbGrm3t6dYLKZqtaorV66c+vydO3eUyWTGzvZaX1+XdLzM8s/+7M/m0Sps0ul0dHh4OLLmrP3hAAAAsBreeyS9Fne7CwCAdHz9Pe4a3U0rF4Q9fvxYjx8/lt/vP7em2Wz23zZNU9Ifgq+ey5cvS5IePnxof5Ow1dramkKh0MiaUa8HAAAALK73Ho2veb0mXViTXrk6/34AAKP5/X5tbGyMrGm1Wup0Og51NGzlgrBgMCifz3fu5+/cuaNoNNp//7ylkU+fPpX0h6AMiysUCung4MDtNgAAAGCzp59Jb/7EWu0bH0gvfVXyX5prSwCAMXK5nHK53MiacDjs2qyxldsj7OWXX1YqldKvf/3rU5/7wQ9+oEKhoEaj0f9YL+g6eYdJwzAknQ7IAAAAADjjRw3p099bq/3N76S7jfF1AABvW7kZYcViUdFoVJFIpP8wDKMfbEnS9773Pf3VX/3V0B0kezPAesrlsnw+36klkwAAAACc8eFHk9X/9CPpr/98Pr0AAFbDygVhkrS7u6t0Oq1Hjx4N7QcmSZVKRS+//LK63a5SqZR8Pp9u3Lihb3/72/ra176mzc1N1et1VSoV+Xw+pdNpl84CAABvYtNrAD1Hv51vPQDAe1YyCItEItrf31etVtP9+/fVaDQUiUSUzWb18ssvS5JSqZTu37+v+/fv691331Wn09G1a9eUz+eHxvnLv/xLt04DAICVw6bXACYR/PJ86wEA3uPrdrtdt5tYFKZpKp1O68GDB4pEItrd3dWVK1fcbgvn6G2ut7GxwWb5ALAEnn4mbbxjbb+fZ5+RDrfY9Brwuv/r/5H+zw+t1//dSyyNBIBl4Ob1/Mptlj+LQCCg3d1dHR0d6Ve/+hUhGAAANmLTawCTejUmfeVL1mqffUZ6LTbffgAAy8/TQdjTp0+1tbV16uOXL192oRsAAFbbNJteA/C2y5ekH37dWu3tbzCLFAAwnqeDsMuXL6tarepv//Zv3W4FAICVx6bXAKZhZb/Auyn2FQQAWLOSm+VLUrvd1t7enkzT1JMnT86saTabMgxDt2/f1n/9r//V4Q4BAPAWNr0GMC/fJAQDAFi0kkHY1taWdnZ2LNefF5QBAAD7vPSC9LNfWq9/8YX59QIAAABvWrmlkT/+8Y9VLBbV7XYtPSSpWCy63DUAAKuPTa8BAADgtpULwsrlshKJhPb399VsNnV0dKRisaijo6P+o9lsam9vT7FYTIZh6Fvf+pbbbQMA4IpuV/qiM/rxr383mhmbXgMAAMBtK7c00jAM/epXvxr6WCAQGLoT5OXLl3XlyhVVKhWl02k9fPjQ6TYBAFgIna508a3RNZ+/LV3w2XO8V65Kr9dG17DpNQAAAOZl5WaERSKRUx+7efOm3n333VMfj8Viajab+vu//3snWgMAABaw6TUAAADmZeWCsKOjo1Mfu3z5svb29tRut099bn19Xd/73vecaA0AAAAAAAAuWrkgLB6P69atW3r//ff1/vvv9z+eyWQUj8f161//uv+xH/zgBzIMQ4ZhuNEqAAAAAAAAHLRye4QVCgVFo1HVascbkBSLRf3N3/yNYrGY/uRP/kSRSESBQECmafa/5qzllFgerVZL4XB4ZE0ul1Mul3OoIwAAAAAAvKlUKqlUKo2sabVaDnVz2soFYVeuXNH9+/d18+ZNSccb5fdUq1VduXLl1PLJQqHgZIuwWafT0eHh4cias5bFAgAAYPGt+Y5v2jGuBgCwGNrt9thrdDetXBAmSalUSp1OR48fP9aVK1f6Hw8EAvr444+Vz+e1v7+v9fV1ZbNZvfzyyy52i1mtra0pFAqNrPH7/Q51AwAAADv5fPbduXacbvf4brqjrPmOewIAnM3v92tjY2NkTavVUqfTcaijYb5utzvmVz2wmMLhsA4PD7WxsaGDgwO32wGApfRFR7r41uiaz9+WLti0q6jTxwOASfA7CgCc4eb1PL/CAQAAAAAA4AlLGYT94Ac/WOjxAAAAAAAAsHiWco+we/fu6W/+5m8WdjwAAHA2Nr0GAACAm5ZyRtj+/r7+9m//duY7Abbbbd25c0eNRsOmzqwzDEPJZNJybTabVTQalc/nUzAYVDweVzablWEYC9OnJO3s7CiZTCoYDMrn8ykajSqdTqter8+xSwDAsvD5jvfWGfVgE2oAAADMy1IGYZKUz+cVDAZ14cKFqR/BYFBvvPGGrX2Zpimfzzf2EY1GFYlExo63s7OjaDSqSqXSD71M01Sj0VClUlE0GtXOzo7rfdbrdQWDQRUKBUlStVpVs9lUsVhUo9FQMplUMpmUaZoT9woAAAAAAGCHpVwa2WPXDS99Nv7puVKpWK7thUbnSSaTqtfrCgQCSiQSikQiMgxDjUZjaCZYoVBQJBJRKpVypc96vd6fNZbJZFQul/uf6/UVj8dVr9cVj8e1v7+vQCBg+fgAAAAAAAB2WNoZYZK9AZZdtre3LdX1gq3zFAoF1et1FYtFHR0dqVqtqlgsDs20GpROp13p0zTN/rEjkchQCDaoWq1KOl5qOWmvAAAAAAAAdljKGWEvv/yyfvzjH0s6njVVKBQUj8cnGuPJkycyTVP/7b/9N9vuGlmpVGSapvL5/Nh9ta5du3bu5wzD0M7OjnZ3d5VIJM6syefzajabQzO7Go2GYrGYY31KxwFcb7njqJljvZlhtVpN9XpdlUpFmUxmbK8AAAAAAAB28XXtWl/osKdPn+qdd97RnTt39PTp034g9hd/8RcTj/Wnf/qn+tWvfjVzT9FoVJLUbDZnGiedTuv69evK5/Mj60zTVDAY7L9fLBbHfo2dfRqG0R9Lko6OjkYueazVav3ZYIFAQEdHRzMdPxwO6/DwUBsbGzo4OJhpLADwqi860sW3Rtf8/1LSa5P9vQkAlpKV34mfv318Yw8AwPTcvJ5f2l/hly9fVrFY1JMnT3Tv3j397//9v3Xjxg09//zz+vu///uJxjpv1tUkarWaDMMYu5+WFb3ZWuMEAoGhZYtW9t2ys8/B5ZmJRGLs8Qf3MDNNU7VabeYeAACzee/R+JrXa9bqAAAAgEW3tEHYoFQqpb29Pe3t7enP/uzPtLm5qeeee07f/e531W63x3797du3Z+5he3tbgUBAN2/enHms3d1dy7VPnjzpvz1uGaNkb5+DyzKtLMmUNBTc3bt3b+YeAADTe/qZ9OZPrNW+8YHU/myu7QAAAABztxJBWE8sFlO1WtXR0ZEKhYJu376tYDCo//yf/7P++Z//eW7HbTQaajQa/aWK0WhU2Wx27jOeTNPs78+VSCTGhlF29tloNIbev379uqWvG+yRGWEA4K4fNaRPf2+t9je/k+42xtcBAAAAi2ylgrCey5cvK5/P95dN/upXv1IsFtP169f1D//wD7Yf7+QyQ8MwVKlUlE6n5fP5lE6nTwVHdrh//76k41lWvbsyOtVnvV4fen/UnSVH1c3j+wIAsObDjyar/+mE9QAAAMCiWckgbFBv2eTDhw/1J3/yJ3r55Zf13HPP6W//9m8tLZscxzCMU6HQSbVaTfF4XNlsdubj9ZimqWw2q1gspt3d3bH7c9nd58OHD4fet7I/mSQ999xzQ+/v7e1Z+joAgP2OfjvfegAAAGDRrHwQ1hOLxfTuu+8qk8no6OhI+XxewWBQb775pj7++OOpx41EIiqXyyoWi8pkMiNnRlUqFcXjs992yzAMxeNxBQIBPXjwwNJsLLv7NAzj1PhWnKyb9c6VAIDpBb8833oAAABg0Vx0uwEnfPzxxyoWi/3N3X0+nySp2+3q9u3bajab+qd/+qepx89kMkPvm6apSqWi7e3t/h5ePY1GQ8lkcqIN8QfVajWl0+n++8FgUMVi0dJdJu3s82QQNq2TxwUAOOelF6Sf/dJ6/YsvzK8XAAAAwAkrPSPsF7/4hb72ta8pGo2qUqmo2+1KOg7Aut2uMpnMzCHYWQKBgPL5vI6OjlStVk8tG6zX69rZ2bE8nmma2tnZUTQaHQrBegqFwpkfn2ef0wZYJ48xeNdLAICzXo1JX/mStdpnn5Fes3aDYABYae89crsDAMAsfN1eOrRC3n//fW1vb/c3Yh88xUAgoEwmo62tLV2+fNmRfkzT1I0bN4Y2hg8EAjo6OrL09bVarT8za9ReX1ZnhtnRZ29WXY/Vl1G9Xlcymey/n0gkpp4dFw6HdXh4qLW1NYVCoanGGJTL5ZTL5WYeBwCWyd196XULN/H9v29Kr1ydfz8A4CZ+JwLAaKVSSaVSaeZxWq2WOp2ONjY2dHBwYENn1q3M0sh2u31qmd9gOBOJRFQoFLS5uel4b4FAQPv7+4rH4/2QyTRN1et1JRKJsV+fSqWUSqWGPlapVFQoFIZmZhUKBWUyGcsb18/SZyAQsGVZ47S9Dup0Ojo8PJx5HDtungAAy+aVq+Mv+u6muOADsPqefia9+RNrtW98IL30Vcl/aa4tAcDCabfbtlx/u2npg7CT+391u135fL5+CJZIJFQoFHTjxg0325Qk3blzZ2gT+t3dXUtB2FkymYwSiYTi8fhQIFWpVGaaFWa1z/X1dVuCsPX19ZnHsGtGmN/vn3kMAFhF3yQEA+ABP2pIn/7eWu1vfifdbUh//efz7QkAFo3f79fGxsbM4/RmhLlhaYOwX/ziF9re3latdvxn7F4A1ns7k8moUCjoypUrY8d699139a1vfWuu/UrHd65MJBL9pY2zbjgfiUT04MGDodDq4cOHM40pWetz2plcJ8MzO2aEhUIhx6dSAgAAYLV8+NFk9T/9iCAMgPfYtaVQb6sjNyzlZvnXr19XPB5XrVbrb3wvSZcvX+5v/n779m1LIZgklcvlebY7ZHB/LDvEYrGhZZN23c1xXJ/Xrl0bet/q7LCTm+NHo9GJ+gIAAADm4ei3860HACyGpQzC9vf3+wGYz+fr3xXyyZMn+t73vjfRJvh37twZ2hx+3iKRSP9tO5YFStKtW7f6b9uxXFEa3+fgLDTJegDXbDaH3p92aSgAAABgp+CX51sPAFgMS7s0cnAfsEgkomq1qmq1avnrnzx5IsMwbAuOrBoMmOxYFigdzwqze8xxfZ6cEWYYxlAf5xn8fgcCgaHjAAAAAG556QXpZ7+0Xv/iC/PrBQAwP0sbhHW7XSUSCQUCgYlnVj158kTdbldXrlxRo9Ho7y3mhL29vf7bdi+TlE4HVNMa12csFhu6c+TDhw9P3dly3Lh29QoAAADM6tWY9J1/tLZh/rPPSK+N/xswAGABLW0QZpqmLXf5q9fr+trXvmZDR9YMLg20a1ng4LJEu8I1K33evHmzf7dOq8tLB+sKhcIMHQIAAAD2uXxJ+uHXpddr42tvf0PyX5p7SwCAOVjKPcISiYQtIVhvrKtXnbsvfO8ul/l83rYxe+FSIBCwNCvLCit9ZrPZ/tu9O0yOMlgTiUTYHwwAAAAL5RULlwV3U9bqAACLaSmDsMEAZhHHO0+tVpNhGAoEAtra2rJt3O3tbUnHG//bwWqfsVhsKMzqhWfnGdzDjdlgAAAAWEbfJAQDgKW2FEHYD37wA/385z/vv//yyy/bOv7m5uZUX1ev1xUMBuXz+ZRMJkcuDzQMo3+cBw8ejNzUfmdnR/F4XIVCYexm/r2afD5/7mywefUpSeVyuf92L5A7i2ma/WWUiURCmUxm5LgAAAAAAAB2W4og7H/8j/+hZDKpv//7v59pnDt37ujChQv6d//u3+mf//mfZ+6rWq32g6p6va54PH7m7LLe59bX19VsNkfeXdE0TRUKBTUaDe3s7CgYDJ47eyqdTmtnZ0fFYlHFYtHRPnt6d+yU1O/5LDdu3JB0vHxzkrt7AgAAAAAA2GUpgjDp+C6RmUxG3/3ud6ceo1AoqNvt6le/+pVisZg+/vjjmXpKp9OnPlapVBQMBpVOp5XNZhWPx5VMJpXJZLS/v69IJDJyzEAgcKqmF4il02kVCgUlk0kFg0FJx5vaj9tvbB59DkqlUtrd3VUgEFChUFA6nVaj0ZBpmv1wrdFoKBaL6fHjx2NnmQEAAAAAAMzD0gRhPT/72c9069atqb72ypUrikQiymQy2tzcnHmfqkQioWazqUwmo0gkMhTwNBoNPXnyRFtbWzo6OlKxWLQcAO3v7yufzysWi50a0zAMpdNpPX78WNVq1VJgNa8+Tx6j9/WGYejGjRv9oG19fV3ValX7+/uEYAAAAAAAwDW+brfbdbuJcW7evKlarSafz6cvvvhC6XRaH3/8sX7+85/r3/ybfzP1uM8//7x++ctf2tgpnBQOh3V4eKiNjQ0dHBy43Q4ALKUvOtLFt0bXfP62dGHp/nQGAJPjdyIAOMPN6/ml/BVerVaVTqcVi8X061//eqoxHj9+rCdPntjcGQAAAAAAABbVRbcbmFZv6WAsFlOtVtNf/MVfWP7ap0+fKplM6tq1a3PsEACAxbfmO57dMK4GAAAAWAVLOSOsJ5FI6OHDh9rc3LR8R8mf//znikQievz48ZmbyAMA4LZu93h5zqiHXRsb+HzHS3xGPXwEYQAAAFgRSzsjrCcSiWhvb083b95Us9nUO++8c27t97//fX3nO99Rt9tVMBjUt771LQc7BQDAmk7X4h41BFQAAADARJY+CJOkQCCgn/3sZ3rjjTd069Yt3bt371TN1taWdnZ21O125fP5VCwWXegU89BqtRQOh0fW5HI55XI5hzoCAAAAAMCbSqWSSqXSyJpWq+VQN6etRBDWc/v2bVUqFV2/fn3ojpIPHjxQsViUz+eTz+dTLBZjNtgK6XQ6Ojw8HFnTbrcd6gYAAAAAAO9qt9tjr9HdtHRB2H//7/995Mb4mUxG165d01/+5V+qVqvpj//4j/uzv5gNtprW1tYUCoVG1vj9foe6AQAAAADAu/x+vzY2NkbWtFotdTodhzoathRB2JUrVyQdB1mZTEb1el1//Md/fG59LBbTvXv39PLLL+u73/2u6vW6fD6fut2uYrGY/vIv/9Kp1uGAUCikg4MDt9sAAAAAAMDzrGxNFA6HXZs1thRBWLFY7Adau7u7SiQSKhQKI5c39jbR/w//4T/0P+bz+XTr1i0nWgYAAACwZNZ8xzcjGVcDAFheSxGESdLly5f18ssv6+WXX57o6372s5+pUCjo+9//fn9/MAAAAAA4yefjjrwAsOrW3G7ACcViUffv31e329Xjx4/dbgcAAAAAAAAu8EQQJkmpVEp7e3u6d++e260AAAAAAADABZ4JwqTjTfR/9rOfud0GAAAAAAAAXOCpIAwAAAAAAADeRRAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAEvovUdudwAAAAAsH4IwAAAWjJWQ6/UaYRgAAAAwKYIwAAAWyNPPpDd/Yq32jQ+k9mdzbQcAAABYKQRhAAAskB81pE9/b632N7+T7jbm2w8AAACwSgjCAABYIB9+NFn9TyesBwAAALzsotsNALNqtVoKh8Mja3K5nHK5nEMdAcD0jn4733oAAABgnkqlkkql0siaVqvlUDenEYRh6XU6HR0eHo6sabfbDnUDALMJfnm+9QCAxdDtSp3u6Jo1n+TzOdMPANil3W6PvUZ3E0EYlt7a2ppCodDIGr/f71A3ADCbl16QfvZL6/UvvjC/XgAA89PpShffGl3z+dvSBYIwAEvG7/drY2NjZE2r1VKn03Goo2G+brc75u8QwGIKh8M6PDzUxsaGDg4O3G4HAGzx9DNp4x1rG+Y/+4x0uCX5L82/LwCAvb7oWAzC2NUZwApy83qeX6sAACyQy5ekH37dWu3tbxCCAQAAAJMgCAMAYMG8cnV8zd2UtToAAAAAf0AQBgDAEvomIRgAAAAwMYIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAL6L1HbncAAKvnotsNAACwDLpdqdMdXbPmk3w+Z/oBACw3KyHX6zXpwpr0ytXZjsW/YQDwBwRhWHqtVkvhcHhkTS6XUy6Xc6gjAKuo05UuvjW65vO3pQtcRAAAxnj6mfTmT6zVvvGB9NJXJf+l6Y/Hv2EAnFQqlVQqlUbWtFoth7o5jSAMS6/T6ejw8HBkTbvddqgbAAAAYLQfNaRPf2+t9je/k+42pL/+8/n2BAB2abfbY6/R3UQQhqW3tramUCg0ssbv9zvUDQDMbs13/Jf5cTUAgOX04UeT1f/0I4IwAMvD7/drY2NjZE2r1VKn03Goo2EEYVh6oVBIBwcHbrcBALbx+VieAgCr7Oi3860HADdZ2ZooHA67NmuMu0YCAAAAgIOCX55vPQDgfARhAAAAAOCgl16YrP7FCesBAOcjCAMAAAAAB70ak77yJWu1zz4jvRabbz8A4CUEYQAAAADgoMuXpB9+3Vrt7W9I/ktzbQcAPIUgDAAAAAAc9srV8TV3U9bqAADWEYQBAAAAwAL6JiEYANiOIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnXHS7AWBWrVZL4XB4ZE0ul1Mul3OoIwBe9d4j6bW4210AAAAA7imVSiqVSiNrWq2WQ92cRhCGpdfpdHR4eDiypt1uO9QNgFX13qPxNa/XpAtr0itX598PAAAAsIja7fbYa3Q3EYRh6a2trSkUCo2s8fv9DnUDYBU9/Ux68yfWat/4QHrpq5L/0lxbAgDAVsxqBmAXv9+vjY2NkTWtVkudTsehjoYRhGHphUIhHRwcuN0GgBX2o4b06e+t1f7md9LdhvTXfz7fngAAsIpZzQCcZGVronA47NqsMTbLBwBgjA8/mqz+pxPWAwAwL5POam5/Ntd2AMB1zAgDAGCMo9/Otx4A4D1rPunzt8fXzIpZzQAwjBlhLjEMQ8lk0nJtNptVNBqVz+dTMBhUPB5XNpuVYRhTHb/RaAyN6fP5FI1GVSgUZJrmVGNaNcm5A8AiCH55vvUAAO/x+Y6XIo56+GwIwpjVDADDCMJsZppmP1ga9YhGo4pEImPH29nZUTQaVaVS6Ydepmmq0WioUqkoGo1qZ2dnov7S6bTi8fjQmNJxQLWzs6NgMKhKpeL6uQPAonjphcnqX5ywHgCAeWFWMwAMY2mkzSYJkAqFwsjPJ5NJ1et1BQIBJRIJRSIRGYahRqMxFGAVCgVFIhGlUqmR45mmqXg8bmkWWTab1f7+vsrlsrWTkb3nDgCL5NWY9J1/tLa05NlnpNdi8+8JAAArmNUMAMOYEWaz7e1tS3W9YOs8hUJB9XpdxWJRR0dHqlarKhaLqlarajabKhaLQ/XpdHrsMdPptAzDUCwW64/TbDZVrVaVz+dP1VcqFdVqNUvnI9l37gCwaC5fkn74dWu1t78h+S/NtR0AACxjVjMADPN1u92u202sikqlomw2q3w+P3YPrGvXrikQCJz5OcMwFI1Gtbu7q0Qice4Y2Wx2aBbW/v6+YrGzpyEM9nYyRBs8bjqdVqPR6H8sEAjo6Oho5LmcHH+Wc59E73arGxsbOjg4mHk8ABjli4508a3RNXdT0qtxZ/oBAMCKp59JG+9Yn9V8uMUfdADMn5vX8wRhNopGo5KkZrM50zjpdFrXr18/c5bWINM0FQwG++8Xi8Vzv6a3L9fu7u7IMXsh3KBxgVxvfGn2c58EQRgAJ1kJwj5/+3hzYwAAFsndfel1Cws9/u+b0itX598PALh5Pc9/121Sq9VkGIYte1+Zpjk2BJOOZ2sNLjE8b5ZVb0+xarU6dsxIJHJqxtjgDLGz2HnuAAAAAOxlJdy6myIEA+ANBGE22d7eViAQ0M2bN2cea9ysrUFPnjzpv33t2rUza+7du6dMJmN5OeLJ2V+ffPLJyHo7zx0AAACA875JCAbAI7hrpA0ajUZ/1lQwGFQkElEikVAymRx7J8dZmKYp0zQlHYdX5+0PduvWrYk2pz85zsmlkoPcOncAAAAAAIBJMSPMBieXBBqGoUqlonQ6LZ/Pd2oDervcv39f0vFyxlHLHmOx2ESb0/fCtZ5xd7cc5NS5AwAAAAAATIogbEaGYaher4+sqdVqisfjymazth3XNE1ls1nFYjHt7u7achfGHsMwht4/b6N8t84dAAAAAABgGiyNnFEkElG5XJZpmmo2m6rX66eCpJ5KpaK9vT3t7+/PdEzDMJRMJhUIBPTgwQNbQzBJ2tvb67+dyWTOrXPj3AEAAAAAAKZFEGaDk2GRaZqqVCra3t4+tcyw0WgomUxOtCH+oFqtpnQ63X8/GAyqWCxausukVeVyuf/2uDtBOnnuAAAAAAAAs2Bp5BwEAgHl83kdHR2pWq2emrFVr9e1s7NjeTzTNLWzs6NoNDoUgvUUCoUzPz4NwzD6e3oVi8WJNtmX7D93AAAAAAAAu/i63W7X7SZWnWmaunHjxtCm8YFAQEdHR5a+vlar9WdRjdqXy46ZYdlsVpVKRZFIRM1mc6axpNnPfZRwOKzDw0Otra0pFArNPF4ul1Mul5t5HACr6YuOdPGt0TWfvy1d4E9MAIAFw79hAOxSKpVUKpVmHqfVaqnT6WhjY0MHBwc2dGYdSyMdEAgEtL+/r3g83g+ETNNUvV4/dyP6QalUSqlUauhjlUpFhUJhaPlhoVBQJpOZes+wRqOhSqWiQCBg2/LFWc/dik6no8PDw5nHabfbNnQDAAAAeFe3K3XGTLVY80k+nzP9ALBXu9225frbTQRhDrpz547i8Xj//d3d3anDoEwmo0QioXg8PhSGVSqVqWeFbW5uSpIePHgw8ZLIcew895PsmhHm9/tt6AYAAADwrk7X4uwzgjBgKfn9fm1sbMw8Tm9GmBsIwhwUi8WUSCT6SxvPu8OiVZFIRA8ePBgKmB4+fDjVWNlsVo1GQ9VqVbFYbKa+zmL3uQ8KhUKOT6UEAAAAAMBr7NpSqLfVkRtYBe6wZDJp63ixWGxo2eQ0AVOlUlGlUlG5XD61BNNOdp87AAAAAADAJAjCHDa45HB9fd2WMW/dutV/e3CZpBX1el3ZbFblclmZTMaWfs4zj3MHAAAAAACwiqWRDhsMg6bd1P6kwaWMk4zZaDSUTCZVLBbnHoJJ8zl3AN7GhrwAAAAAJkEQ5rC9vb3+2/NYKnjt2jVLdYZh6MaNG8rn81Nvrj+peZ87AO9hQ14AAAAAk2BppMOazWb/bbvumji4L5iVgMkwDMXjcWUyGRWLRcvH2NnZmbpHaT7nDgAAAAAAYBVBmMNqtZok2ToLq9FoSDpebjhus3vTNJVMJnXz5k3LIZgkpdPpmcOreZw7AAAAAACAVSyNdFCtVpNhGAoEAtra2rJt3O3tbUnSnTt3RtaZpql4PK5IJKJCoWDpDpOGYahQKEga3otsUvM6dwBwyprveJnluBoAAAAAi4sZYTOo1+sKBoPy+XxKJpP9mVlnMQxDm5ubkqQHDx6M3Cx+Z2dH8XhchUJh7F0gezX5fH7sbLAbN27IMAzV63VFo1FLj955ZbNZR84dABaVzyddWBv9YFN+AAAAYLERhM2gWq32g6p6va54PH4qMBr83Pr6uprN5siZVaZpqlAoqNFoaGdnR8FgsD8j66R0Oq2dnR0Vi8Wxyxzj8fjIsGqck3eVnMe5AwAAALBfb1bzqAezmgF4BUHYDNLp9KmPVSoVBYNBpdNpZbNZxeNxJZNJZTIZ7e/vKxKJjBwzEAicqukFYul0WoVCQclkUsFgUNLxBvTj9txKp9O2hmC9MU+a9dwBAAAA2I9ZzQDwB+wRNoNEIqFms6lisah6va4nT570Z0k1Gg3FYjFtbW0pkUhMtBxwf39f29vbqtfrMgxjaEzpOISqVquWx6xWqxOclTXzOncAAAAAAIB58XW73a7bTQDTCIfDOjw81MbGhg4ODtxuB4ALvuhIF98aXfP528d/6QYAAPPHv80ArHDzep5fPwAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ7AXSOx9FqtlsLh8MiaXC6nXC7nUEcAAAAAAHhTqVRSqVQaWdNqtRzq5jSCMCy9Tqejw8PDkTXtdtuhbgAAAAAA8K52uz32Gt1NBGFYemtrawqFQiNr/H6/Q90AAAAAAOBdfr9fGxsbI2tarZY6nY5DHQ0jCMPSC4VCOjg4cLsNAAAAAAA8z8rWROFw2LVZYwRhAABbdbtSpzu6Zs0n+XzO9AMAAAAAPQRhAABbdbrSxbdG13z+tnSBIAwAAACAw9bcbgAAAAAAAABwAkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAADjmvUdudwDAywjCAAAAAAC2sBJyvV4jDAPgHoIwAMBK4z/aAAA44+ln0ps/sVb7xgdS+7O5tgMAZyIIAwAsLf7qDADA4vhRQ/r099Zqf/M76W5jvv0AwFkIwgAAS4m/OgMAsFg+/Giy+p9OWA8AdiAIAwAsJf7qDADAYjn67XzrAcAOBGEAgKXEX50BAFgswS/Ptx4A7EAQBgBYSvzVGQCAxfLSC5PVvzhhPQDYgSAMALCU+KszAACL5dWY9JUvWat99hnptdh8+wGAsxCEAQCWEn91BgBgsVy+JP3w69Zqb39D8l+aazsAcCaCMADAUuKvzgAALJ5Xro6vuZuyVgcA83DR7QaAWbVaLYXD4ZE1uVxOuVzOoY4AOKH3V+fXa+Nr+aszAACL45uEYMBKK5VKKpVKI2tarZZD3ZxGEIal1+l0dHh4OLKm3W471A0AJ71ydXwQxl+dAQAAAOe02+2x1+huIgjD0ltbW1MoFBpZ4/f7HeoGwKLhr84AAACAc/x+vzY2NkbWtFotdTodhzoaRhCGpRcKhXRwcOB2GwAAAAAAeJ6VrYnC4bBrs8bYLB8AAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBABz33iO3OwAAAADgRQRhAABbWQm5Xq8RhgEAAABwHkEYAMA2Tz+T3vyJtdo3PpDan821HQAAAAAYQhAGALDNjxrSp7+3Vvub30l3G/PtBwAAAAAGEYQBAGzz4UeT1f90wnoAAAAAmMVFtxsAZtVqtRQOh0fW5HI55XI5hzoCvOvot/OtBwAAALDYSqWSSqXSyJpWq+VQN6cRhGHpdTodHR4ejqxpt9sOdQN4W/DL860HAAAAsNja7fbYa3Q3EYRh6a2trSkUCo2s8fv9DnUDeNtLL0g/+6X1+hdfmF8vAAAAAJzn9/u1sbExsqbVaqnT6TjU0TBft9vtunJkYEbhcFiHh4fa2NjQwcGB2+0A0PFdIzfesbZh/rPPSIdbkv/S9MfrdqXOmH/F1nySzzf9MQAAgHVfdKSLb42u+fxt6QK7VQOe5ub1PDPCAAC2uXxJ+uHXpddr42tvf2O2EEw6DrguEHIBALAw1nzHQde4GgBwCzk8AMBWr1wdX3M3Za0OAAAsF5/veLbXqAcztQG4iSAMAOC4bxKCAQAAAHABQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkX3W4AAAAAAIBpdLtSpzu6Zs0n+XzO9ANg8RGEAQAAAACWUqcrXXxrdM3nb0sXCMIA/CuWRgIAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnnDR7QaAWbVaLYXD4ZE1uVxOuVzOoY4AAAAAAPCmUqmkUqk0sqbVajnUzWkEYVh6nU5Hh4eHI2va7bZD3QAAAAAA4F3tdnvsNbqbCMKw9NbW1hQKhUbW+P1+h7oBAAAAAMC7/H6/NjY2Rta0Wi11Oh2HOhpGEIalFwqFdHBw4HYbAAAAAAB4npWticLhsGuzxtgsHwAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEucQwDCWTScu12WxW0WhUPp9PwWBQ8Xhc2WxWhmFM3cPOzo6SyaSCwaB8Pp+i0ajS6bTq9fpCjQkAAAAAAGAHgjCbmaYpn8839hGNRhWJRMaOt7Ozo2g0qkql0g+9TNNUo9FQpVJRNBrVzs7ORD3W63UFg0EVCgVJUrVaVbPZVLFYVKPRUDKZVDKZlGmaro4JAAAAAABgJ+4aabNKpWK5thcanSeZTKperysQCCiRSCgSicgwDDUajaGZYIVCQZFIRKlUauwx6/V6fyZaJpNRuVzuf643RjweV71eVzwe1/7+vgKBgONjAgAAAAAA2I0ZYTbb3t62VNcLts5TKBRUr9dVLBZ1dHSkarWqYrE4NNNqUDqdHntM0zT7dZFIZCiwGlStViUdL8kcN+48xgQAAAAAAJgHZoTZqFKpyDRN5fP5sft/Xbt27dzPGYahnZ0d7e7uKpFInFmTz+fVbDaHZqA1Gg3FYrFzx02n0/2liaNmo/VmcdVqNdXrdVUqFWUyGcfGBAAAAAAAmAdft9vtut3EqohGo5KkZrM50zjpdFrXr19XPp8fWWeapoLBYP/9YrF47tcYhtHvT5KOjo5GLk+s1Wr9mVuBQEBHR0eOjDmJcDisw8NDbWxs6ODgYKaxADd0u1JnzG/gNZ/k8znTj12+6EgX3xpd8/nb0gXmJAMAgBnx/w5gObl5Pc+MMJvUajUZhnHu0sBJ9GaVjRMIBPr7hvXeP8/gUspEIjF2j67B/cZM01StVju1B9k8xgS8pNO1+B+3JQvCAAAAAGBREYTZZHt7W4FAQDdv3px5rN3dXcu1T5486b89arnl4BLKUcsnBw2GbPfu3TsVWs1jTADLb813HOCNqwEAAAAApzFB1AaNRkONRqO/VDEajSqbzapWq831uKZp9vfnSiQS54ZRjUZj6P3r169bGn9wvJPnMo8xAawGn+94+cGox7It9wQAAACwGgjCbHByk3jDMFSpVJROp+Xz+ZROp08FR3a4f/++pONZVr27Mp6lXq8PvT/qbpWj6gbPYR5jAgAAAAAAzBNB2IwMwzgVCp1Uq9UUj8eVzWZtO65pmspms4rFYtrd3R25P9fDhw+H3h+3l1fPc889N/T+3t7eXMcEAAAAAACYJ/YIm1EkElG5XJZpmmo2m6rX6/09sE6qVCra29vT/v7+TMc0DEPJZFKBQEAPHjwYG0Kd7Gfa2VuDd8Ocx5gAAAAAYLf3Hkmvxd3uAsCiYEaYDTKZjPL5vMrlsprNpo6OjlQsFs8MqBqNhpLJ5NTHqtVqikajMgyjvyfZzs7OyK85L5ibVG8/snmNCQAAAACTeO/R+JrXa9bqAHgDM8LmIBAIKJ/PK5/Pq1araXNzcyjwqdfr2tnZUT6ftzSeaZqqVCoql8tnBlCFQkEPHz48d5+wacOmk0He4B0q5zHmtFqtlsLh8Mzj5HI55XK5mccBAAAAMH9PP5Pe/Im12jc+kF76quS/NNeWgJVXKpVUKpVmHqfVatnQzXQIwuYslUopkUjoxo0bQxvDb29vWw7C6vW6ms2mEonEuXuS1Wq1icK1acxj9pYdY3Y6HR0eHs48TrvdnnkMAAAAAM74UUP69PfWan/zO+luQ/rrP59vT8Cqa7fbtlx/u4kgzAGBQED7+/uKx+P9MMw0TdXrdSUSibFfn0qllEqlhj5WqVRUKBSGgqRCoaBMJnNq1lUgELAlcBocdx5jTmttbU2hUGjmcfx+/8xjAAAAAHDGhx9NVv/TjwjCgFn5/X5tbGzMPE6r1VKn07Gho8kRhDnozp07isf/sEvj7u6upSDsLJlMRolEQvF4fCiQqlQqp2aFra+v2xJara+vz3XMaYVCIR0cHMw8DgAAAIDlcfTb+dYDOM2uLYXC4bBrM8vYLN9BsVhsKPiadcP5SCSiBw8eDH3s4cOHp+qmnXV1Mug6OSPM7jEBAAAAwKrgl+db76ZuV/qiM/rR7brdJbCcCMIcNssdI88Si8WGlk2eFa5du3Zt6H2rM7lObmQfjUbnOiYAAAAAWPXSC5PVvzhhvZs6XeniW6MfHYIwYCoEYQ6LRCL9t+1YFihJt27d6r99ViA1uBxTsj4TrdlsDr0/OJttHmMCAAAAgFWvxqSvfMla7bPPSK/FZjses7SA1cAeYQ4bDMLsWhYYi/3hN/pZY56cvWUYxtDXnGcwVAsEAkO9z2NMAAAAALDq8iXph1+XXq+Nr739Dcl/abbj9WZpjfL529IF32zHATBfzAhz2N7eXv9tu5dJSqcDKuk4KBsMyM7aR+wsg72eHHceYwIAAADAJF65Or7mbspaHQBvIAhz2ODSQLuWBQ4uSzwvXLt582b/7UajYWncwbpCoeDImAAAAABgp28SggEYQBDmsFrteN5uPp+3bcxeuBQIBIY2zh+UzWb7b9fr9bFjDtZEIpEzQ7t5jAkAAAAAADAvBGEOqtVqMgxDgUBAW1tbto27vb0tSbpz5865NbFYbCh46gVy56lWq/23z5u5NY8xAQAAAAAA5oUgbAb1el3BYFA+n0/JZHLk8kDDMLS5uSlJevDgwciN8nd2dhSPx1UoFM68C+SgXk0+nz93NlhPuVzuv90Lz85imqYqlYqk4+WbmUzG0TEBAAAAAADmgSBsBtVqtR9U1et1xePxoeWCPb3Pra+vq9lsjry7ommaKhQKajQa2tnZUTAYPHf2VDqd1s7OjorFoorF4th+I5FIf1ZWb/yz3LhxQ9LxUsvBWVxOjQkAAAAAADAPBGEzSKfTpz5WqVQUDAaVTqeVzWYVj8eVTCaVyWS0v7+vSCQycsxAIHCqpheIpdNpFQoFJZNJBYNBSceb70+y31gqldLu7q4CgYAKhYLS6bQajYZM0+wHdo1GQ7FYTI8fPx45c22eYwIAAAAAANiNIGwGiURCzWZTmUxGkUhkKOBpNBp68uSJtra2dHR0pGKxaDkA2t/fVz6fVywWOzWmYRhKp9N6/PixqtXq2GDtvL57PRmGoRs3bvSDtvX1dVWrVe3v708UWM1jTAAAAAAAADv5ut1u1+0mgGmEw2EdHh5qY2NDBwcHbrcDTOyLjnTxrdE1n78tXeBPFgAAAGdy8v9Tq3oswA1uXs/zYwMAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJF91uAJhVq9VSOBweWZPL5ZTL5RzqCAAAAAAAbyqVSiqVSiNrWq2WQ92cRhCGpdfpdHR4eDiypt1uO9QNsJi6Xakz5h7Baz7J53OmHwAAAACrqd1uj71GdxNBGJbe2tqaQqHQyBq/3+9QN8Bi6nQt3oKbIAwAAADADPx+vzY2NkbWtFotdTodhzoaRhCGpRcKhXRwcOB2GwAAAAAAeJ6VrYnC4bBrs8YIwgBgAEsIAQAAAGB1EYQBwACWEAIAAADA6lpzuwEAAAAAAADACQRhAAAAAAAA8ASCMAAAAAAAAHgCe4QBWHhsYA8AAAAAsANBGICF5+UN7N97JL0Wd7sLAAAAAFgNLI0EAJe892h8zes1a3UAAAAAgPGYEQYALnj6mfTmT6zVvvGB9NJXJf+lubYEAACwdNZ8xysDxtUAQA8zwgDABT9qSJ/+3lrtb34n3W3Mtx8AAIBl5PNJF9ZGP9hHFsAggjAAcMGHH01W/9MJ6wEAAAAApxGEAYALjn4733oAAAAAwGkEYQDgguCX51sPAAAAADiNIAwAXPDSC5PVvzhhPQAAAJzH3b6BxUcQBgAueDUmfeVL1mqffUZ6LTbffgAAADCalZDr9RphGLDoCMIAwAWXL0k//Lq12tvfkPyX5toOAAAARnj6mfTmT6zVvvGB1P5sru0AmMFFtxsAZtVqtRQOh0fW5HI55XI5hzoCrHnl6vFfDUe5mzquAwAAgHt+1JA+/b212t/8TrrbkP76z+fbE7CoSqWSSqXSyJpWq+VQN6cRhGHpdTodHR4ejqxpt9sOdQPY65uEYAAAAK778KPJ6n/6EUEYvKvdbo+9RncTQRiW3tramkKh0Mgav9/vUDcAAAAAVs3Rb+dbD6wSv9+vjY2NkTWtVkudTsehjoYRhGHphUIhHRwcuN0GAAAAgBUV/PJ864FVYmVronA47NqsMTbLBwAAAABghJdemKz+xQnrATiHIAwAAAAAgBFejUlf+ZK12mefkV6LzbcfSXrv0fyPAawigjAAAAAAAEa4fEn64det1d7+huS/NNvxrIRcr9cIw4BpEIQBAAAAADDGKxbu5n03Za1ulKefSW/+xFrtGx9I7c9mOx7gNQRhAAAAAADY4JszhmCS9KOG9OnvrdX+5nfS3cbsxwS8hCAMAAAAAIAF8eFHk9X/dMJ6wOsIwgAAkthjAgAAYBEc/Xa+9YDXEYQBgAew4SoAAMByCH55vvWA1xGEAcCKY8NVAACA5fHSC5PVvzhhPeB1BGEAsOLYcBUAAGB5vBqTvvIla7XPPiO9FptvP8CqIQgDgBXHhqsAAADL4/Il6Ydft1Z7+xuS/9Jc2wFWDkEYAKw4NlwFAABYLq9cHV9zN2WtDsAwgjAAWHFsuAoAALB6vkkIBkyFIAwAVhwbrgIAAADAMYIwAFhxbLgKAAAAAMcIwgBgxbHhKgAAAAAcu+h2A8CsWq2WwuHwyJpcLqdcLudQR8DieeWq9HptdA0brgIAAACYValUUqlUGlnTarUc6uY0gjAsvU6no8PDw5E17XbboW6A5cWGqwAAAABm1W63x16ju4kgDEtvbW1NoVBoZI3f73eoGwAAAAAAvMvv92tjY2NkTavVUqfTcaijYQRhWHqhUEgHBwdutwEAAAAAgOdZ2ZooHA67NmuMzfIBAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5w0e0GAMCr1nzS52+PrwEAAID7+L8bsBoIwgDAJT6fdIH/LAEAACwF/u8GrAaWRgIAAAAAAMATCMIAAAAAAADgCSyNxNJrtVoKh8Mja3K5nHK5nEMdYdW990h6Le52FwAAAACweEqlkkql0siaVqvlUDenEYRh6XU6HR0eHo6sabfbDnWDZffeo/E1r9ekC2vSK1fn3w8AAAAALJN2uz32Gt1NBGFYemtrawqFQiNr/H6/Q91gmT39THrzJ9Zq3/hAeumrkv/SXFsCAAAAgKXi9/u1sbExsqbVaqnT6TjU0TCCMCy9UCikg4MDt9vACvhRQ/r099Zqf/M76W5D+us/n29PAAAAALBMrGxNFA6HXZs1xmb5APCvPvxosvqfTlgPAAAAAHAXQRgA/Kuj3863HgAAAADgLoIwAPhXwS/Ptx4AAAAA4C6CMJcYhqFkMmmpttFoKJvNKhqNyufzyefzKRqNqlAoyDTN+TY6B5OcO2CVlbs9jvPSC5PVvzhhvZvWfNLnb49+rPnc7hIAAAAA5osgzGamafbDqlGPaDSqSCQydqx0Oq14PK5KpSLDMPqfMwxDOzs7CgaDqlQqlnoLBoOWejvrkc1mHT13YJCVkOv12uxh2Ksx6Stfslb77DPSa7HZjuckn0+6sDb64SMIAwAAALDiCMJsZjWUkqRCoXDu50zTVDweV61WGztONpsdG1TVarWZZo9ZmcFl17kDg55+Jr35E2u1b3wgtT+b/liXL0k//Lq12tvfkPyXpj8WAAAAAMB5vm6323W7iVUSDAYtBU6JREK7u7vnfj6ZTKperysWi2lra0ux2PHUk0ajoYcPH2pnZ+fU11SrVaVSqZHjTcvKy8Suc7eqd7vVjY0NHRwczDweFtP/9f9I/+eH1uv/7iXpr/98+uN90ZEuvjW65m5KejU+/TEAAACAUbpdqTPmEmzNx4x+LC83r+cvOnq0FVepVGSapvL5/NgZVNeuXRs5Tr1eVz6fV7FYHPpcJBJRKpVSNptVOp1Wo9Hof25zc/PMIMwwDNXrdUUiERUKBSUSCa2vr489n3g8LsMwlEgkxtbade7ASR9+NFn9Tz+aLQiz4ptX5zs+AAAAvM3nky4QcgFzwYwwG0WjUUlSs9mceZxIJDJ21pRhGP1j9uzu7p4KrgqFgmq1mvb39xUIBCz1MDh2uVxWJpMZ27M0+7lPghlh3vB//H+lhxM8vf9HWPp//z/TH8/KjLDP3z7eUwsAAAAAMDk3r+e5lLNJrVaTYRgz733VaDRkGIaq1erY2kgkcmrG2OAMsZ5KpaJqtWo5BJM0tDfZzZs3x9bace7AWYJfnm89AAAAAMA7CMJssr29rUAgMDY0GufevXvKZDKWQ6uTs78++eSTUzXVarW/x9gkffTGH9eLXecOnOWlFyarf3HCegAAAACAdxCE2aDRaKjRaMg0TQWDQUWjUWWzWUt3fDzp1q1bp2Z5jXIy4Dq5VFI6HZaNY5pmf2ZZOp0eWWvnuQNneTUmfeVL1mqffUZ6bbLMFwAAAADgIQRhNji5JNAwDFUqFaXTafl8vlOb2o8Si8UmWsJ48i6NkUjE8teep1Kp9N8eN8vLznMHznL5kvTDr1urvf0NyX9pru0AAAAAAJYYQdiMendkHKVWqykejyubzc7l+IMmnf11lt6yyHGhnNvnDu94xcJdGu+mrNUBAAAAALzrotsNLLtIJKJyuSzTNNVsNlWv10+FUz2VSkV7e3va39+37fh7e3v9t8fd2dGKwWWRt27dGlnr9rkDg75JCAYAAADgX3W7Uqc7umbNJ/l8zvSDxUEQZoOTAZRpmqpUKtre3j61dLHRaCiZTGp3d9eWY5fL5f7bdty18f79+/23U6nU2Ho3zx0AAAAAgLN0utLFt0bXfP62dIEgzHN83W53TEaKWdRqNW1ubp4KhYrFovL5/ExjG4bR3xzfjvEkKR6Pq9FoKBaLzTx7a57nLknhcFiHh4daW1tTKBSaebxcLqdcLjfzOF7h5F9YvuhY/EfMhsXeTh4LAAAAwHzw//r5KJVKKpVKM4/TarXU6XS0sbGhg4MDGzqzjhlhc5ZKpZRIJHTjxo2hTeO3t7dnDoN6d5eMRCK2BEuTLIu0Yp7nPqjT6ejw8HDmcdrttg3deAd/YQEAAAAAb2m327Zcf7uJIMwBgUBA+/v7/dlW0nHoVK/Xp97cvtFoqFKpKBAI2LbUcNJlkVbM49xPsmtGmN/vt6EbAAAAAMBZ2Ldr+fn9fm1sbMw8Tm9GmBsIwhx0584dxePx/vu7u7tTh0Gbm5uSpAcPHigSidjSX2+/sUgkYtuYPXae+0mhUMjxqZQAAAAAgMmwqmT52bWlUG+rIzewGtZBsVhsKPw57w6L42SzWTUaDVWrVcViMVt6G1wWaddssEF2nTsAAAAAAMC0CMIclkwmZ/r6SqWiSqWicrlsa2A1uCzSjv3BzjLruQMAAAAAAMyCpZEOG1xyuL6+PtHX1ut1ZbNZlctlZTIZW/uqVquSjvf0smuW2UmznDsAAAAAwH7s2wWvIQhz2GAYFAgELH9do9FQMplUsVi0PQTrbV4vyfaxB0177gAAAACA+WDfLngNSyMdtre313/b6lJBwzB048YN5fN55fN523tyYlmkNN25AwAAAAAA2IUgzGHNZrP/tpW7JhqGoXg8rkwmo2KxaOkYhmFoZ2fHck9OLIuUJj93AAAAAAAAOxGEOaxWq0mSpZldpmkqmUzq5s2blkMwSUqn05aDpsFlkTdv3rR8jGlMcu4AAAAAAAB2Y48wB9VqNRmGoUAgoK2trZG1pmkqHo8rEomoUCjIMIyx4xuGoUKhIEmWZ3YNLotMp9OWvmYak5w7AAAAAADAPBCEzaBeryudTss0TSUSCRWLxXMDKMMwtLm5KUl68ODB2M3ib9y4IcMwZBiGotHoRH2Vy2XLtYPLIidZrjjPcwcAAAAAAJgHlkbOoFqtyjRNScfBUDweVzabPVXX+9z6+rqazebY2VrxeFyNRmPqvqze+XFwWeSke3bN69wBAAAAAADmhSBsBmctJaxUKgoGg0qn08pms4rH40omk8pkMtrf31ckEhk7phMhmDS8LPKsEGuUeZw7AAAAAADAPLE0cgaJRELNZlPFYlH1el1Pnjzpz5JqNBqKxWLa2tpSIpGwvBywt1TRCYPHmnRG2DzOHQAAAAAAYJ4IwmYUiUQm2pNrkezu7s709ct87gAAAAAAwHtYGgkAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJbJaPpddqtRQOh0fW5HI55XI5hzoCAAAAAMCbSqWSSqXSyJpWq+VQN6cRhGHpdTodHR4ejqxpt9sOdQMAAAAAgHe12+2x1+huIgjD0ltbW1MoFBpZ4/f7HeoGAAAAAADv8vv92tjYGFnTarXU6XQc6mgYQRiWXigU0sHBgdttAAAAAADgeVa2JgqHw67NGmOzfAAAAAAAAHgCM8IAAAAAAACm1O1Kne7omjWf5PM50w9GIwgDAAAAAACYUqcrXXxrdM3nb0sXCMIWAksjAQAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ7AXSOBFcJtewEAAAAAOB9BGLBCuG0vAAAAAADnY2kkAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJF91uAJhVq9VSOBweWZPL5ZTL5RzqCMtszSd9/vb4GgAAAADAaaVSSaVSaWRNq9VyqJvTCMKw9Dqdjg4PD0fWtNtth7rBsvP5pAsEXQAAAAAwlXa7PfYa3U0EYVh6a2trCoVCI2v8fr9D3QAAAAAA4F1+v18bGxsja1qtljqdjkMdDSMIw9ILhUI6ODhwuw0AAAAAADzPytZE4XDYtVljbJYPAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAcK73HrndAWAfgjAAAAAAADzKSsj1eo0wDKvjotsNAMA4az7p87fH1wAAAACw7uln0ps/sVb7xgfSS1+V/Jfm2hIwd8wIA7DwfD7pwtroh48gDAAAAJjIjxrSp7+3Vvub30l3G/PtB3ACQRgAAAAAAB704UeT1f90wnpgERGEAQAAAADgQUe/nW89sIgIwgAAAAAA8KDgl+dbDywigjAAAAAAADzopRcmq39xwnpgERGEAQAAAADgQa/GpK98yVrts89Ir8Xm2w/gBIIwAAAAAAA86PIl6Ydft1Z7+xuS/9Jc24EF3a70RWf0o9t1u8vFdtHtBgAAAAAAgDteuSq9Xhtdczd1XAf3dbrSxbdG13z+tnTB50w/y4gZYQAAAAAA4FzfJATDCmFGGJZeq9VSOBweWZPL5ZTL5RzqCAAAAAAAbyqVSiqVSiNrWq2WQ92cRhCGpdfpdHR4eDiypt1uO9QNAAAAAADe1W63x16ju4kgDEtvbW1NoVBoZI3f73eoGwAAAAAAvMvv92tjY2NkTavVUqfTcaijYQRhWHqhUEgHBwdut4EzvPdIei3udhcAAAAAAKdY2ZooHA67NmuMzfIBTOW9R+NrXq9ZqwMAAAAAwAkEYQAm9vQz6c2fWKt94wOp/dlc2wEAAACwIvhDOuaNIAzAxH7UkD79vbXa3/xOutuYbz8AAAAAFh+rSrAICMIATOzDjyar/+mE9QAAAABWC6tKsCgIwgBM7Oi3860HAAAAsFpYVYJFQRAGYGLBL8+3HgAAAMBqYVUJFgVBGICJvfTCZPUvTlgPAAAAYLUs4qoS9iLzJoIwABN7NSZ95UvWap99RnotNt9+AAAAACw2p1eVsDE/zkMQBmBily9JP/y6tdrb35D8l+baDgAAAIAF5+SqEjbmxygEYQCm8srV8TV3U9bqAAAAAKw2J1eVsDE/RiEIAzA33yQEAwAAACBnV5WwMT9GIQgDAAAAAABz59SqkkXcmB+LgyAMAAAAAAAsBDtWlTi9MT+WC0EYAAAAAABYGU5uzI/lQxAGAAAAAABWhpMb82P5EIQBAAAAAICV4eTG/Fg+F91uAJhVq9VSOBweWZPL5ZTL5RzqCAAAAADgpleuSq/XRtfYsTE/TiuVSiqVSiNrWq2WQ92cRhCGpdfpdHR4eDiypt1uO9QNAAAAAGAZ2LExP05rt9tjr9HdRBCGpbe2tqZQKDSyxu/3O9QNAAAAAADe5ff7tbGxMbKm1Wqp0+k41NEwgjAsvVAopIODA7fbAAAAAADA86xsTRQOh12bNcZm+QAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgzCWGYSiZTFqqbTQaymazikaj8vl88vl8ikajKhQKMk1zYfqUpJ2dHSWTSQWDwX6f6XRa9Xp9jl0CAAAAAACMRxBmM9M0+2HVqEc0GlUkEhk7VjqdVjweV6VSkWEY/c8ZhqGdnR0Fg0FVKhVX+5Sker2uYDCoQqEgSapWq2o2myoWi2o0Gkomk0omk3MP7gAAAAAAAM7DXSNtNkko1QuNzmKapuLx+FD4dZ5sNqv9/X2Vy2XLx7arT+k4BOvNGstkMkN9RCIRpVIpxeNx1et1xeNx7e/vKxAIWD4+AAAAAACAHZgRZrPt7W1LdYlEYuRMq3Q6LcMwFIvF+rOrms2mqtWq8vn8qfpKpaJareZ4n71Za9Jx6HVeGFetViUdz2Tr1QMAAAAAADiJGWE2qlQqMk1T+Xx+7L5a165dGzlOvV5XPp9XsVgc+lxvhlU2m1U6nVaj0eh/bnNzU6lUyrE+pePArrfccdTMsV7ftVpN9XpdlUpFmUxmbK8AAAAAAAB28XW73a7bTayKaDQqSWo2mzOPE4lEtLu7O7LOMIz+MXt2d3eVSCQc6fPk8Y+OjkYueazVav3ZYIFAQEdHRzMdPxwO6/DwUBsbGzo4OJhprFXxRUe6+Nboms/fli7YMBfUyWMBAAAAmI9VvYbgWLMfa57cvJ5f8G/N8qjVajIMY+x+WuM0Gg0ZhtFfSjhKJBI5NWNscIbYPPuUNHTsRCIxdt+vwdlqpmlOtJQTAAAAAABgVgRhNtne3lYgENDNmzdnGufevXvKZDKWN5M/Ofvrk08+GVlvV5/S8Ib7sVjM0tcM7jd27969mXsAAAAAAACwij3CbNBoNPozsYLBoCKRiBKJhJLJpKU9uwbdunVr5Ob0J50MoE4ulZxXnydnnl2/ft1yv707YTIjDAAAAAAAOIkZYTY4uczQMAxVKhWl02n5fL5Tm9qPEovFLM8Gk9TfqL5nVIhmZ5/1et3ycUfVWT0eAAAAAADArAjCZmQYxqlQ6KRaraZ4PK5sNjuX4w86b6N8u/t8+PDh0PtWw7vnnntu6P29vT1LXwcAAAAAADArlkbOKBKJqFwuyzRNNZtN1ev1U+FUT6VS0d7envb39207/mCQlMlkHOvz5NdOOyNs1jtXAgAAAACmt+Y7vsvguBpgVRCE2eBkAGWapiqVira3t08tXWw0Gkomk9rd3bXl2OVyuf/2uDtB2tnneSHapE4eFwAAAADgHJ9PukDQBQ8hCJuDQCCgfD6vfD6vWq2mzc3NocCnXq9rZ2dH+Xx+puMYhtHfY6tYLE60yf6sfU4bYJ1cQvnkyZOpxhnUarUUDodnHieXyymXy808DgAAAAAAq6hUKqlUKs08TqvVsqGb6RCEzVkqlVIikdCNGzeGNobf3t6eOQgrFouSjpcbzjrWPPscxY4ZYZ1OR4eHhzOP0263Zx4DAAAAAIBV1W63bbn+dhNBmAMCgYD29/cVj8f7IZNpmqrX6+dubj9Oo9FQpVJRIBCwbZnlJH0GAgFbQqxJ7pB5nrW1NYVCoZnH8fv9M48BAAAAAMCq8vv92tjYmHmcVqulTqdjQ0eTIwhz0J07dxSPx/vv7+7uTh2EbW5uSpIePHgw8ZLIcaz0ub6+bksQtr6+PvMYoVBIBwcHM48DAAAAAADOZ9eWQuFw2LWZZWuuHNWjYrHYUKA07Ybz2WxWjUZD1WpVsVjMrvb6rPQ57Uyuk+GZHTPCFl23K33RGf3odt3uEgAAAACA1ceMMIclk0nV6/Wpv75SqahSqahcLiuVStnY2bBxfV67dm1oLzHTNC2FWic3x49Go1P3uCw6XeniW6NrPn/buTu1vPdIei0+vg4AAAAAgFXDjDCHDS5jnHRZYL1eVzabVblcViaTsbu1IeP6HFw6KVmf3dZsNofen3ZpKM723qPxNa/XrNUBAAAAALBqCMIcNhgwTbIssNFoKJlMqlgszj0Ek8b3ee3ataH3rQZhg0sjA4GA7fubednTz6Q3f2Kt9o0PpPZnc20HAAAAAICFQxDmsL29vf7byWTS0tcYhqEbN24on88rn8/Pq7Uh4/qMxWJDAdnDhw8nHvdkmIbZ/Kghffp7a7W/+Z10tzG+DgAAAACAVUIQ5rDBpYFWlgUahqF4PK5MJqNisWjpGIZhaGdnZ+oeJWt93rx5s//24H5howzWFQqFKbvDWT78aLL6n05YDwAAAACYDtvTLA6CMIfVajVJsjSzyzRNJZNJ3bx503IIJknpdHrmvbes9JnNZvtvW7kBwGBNJBJhfzCbHf12vvUAAAAAgNPYq3m5cNdIB9VqNRmGoUAgoK2trZG1pmkqHo8rEomoUChY2oPLMIz+LKtYLDb3PmOxmBKJRD/gqtVqI+9kWa1W+28zG8x+wS/Ptx4AAAAAMGzSvZpf+qrkvzTXljAGM8JmUK/XFQwG5fP5lEwmRy4PNAxDm5ubkqQHDx6M3Sj/xo0bMgxD9Xpd0WjU0qPXw+BMrXn3WS6X+29vb2+fW2eapiqViqTjpZZObPjvNS+9MFn9ixPWAwAAAACGsVfz8iEIm0G1Wu3fBbFerysej58KoQY/t76+rmazOXa2Vjwet7zn1llOhkzz6lM6XuLYm+nVaDTO3Zvsxo0bko7vFDk4Mwz2eTUmfeVL1mqffUZ6bfpJgwAAAAAAsVfzMiIIm0E6nT71sUqlomAwqHQ6rWw2q3g8rmQyqUwmo/39fUUikbFj2hmCzavPQalUSru7uwoEAioUCv1zME2zH641Gg3FYjE9fvx47CwzTOfyJemHX7dWe/sbTMcFAAAAgFmxV/PyIQibQSKRULPZVCaTUSQSGQp4Go2Gnjx5oq2tLR0dHalYLFoKgKrVqrrd7tSPwaWK8+zzrGP0vt4wDN24caMftK2vr6tarWp/f58QbM5euTq+5m7KWh0AAAAAYDT2al4+bJY/o0gkcmb4tGic6jOfz1u6Iybc801CMAAAAACwxUsvSD/7pfV69mp2HzPCAAAAAAAApsBezcuHIAwAAAAAAGAK7NW8fAjCAAAAAAAApsRezcuFIAwAAAAAAGCO2Kt5cbBZPpZeq9VSOBweWZPL5ZTL5RzqCAAAAAAAbyqVSiqVSiNrWq2WQ92cRhCGpdfpdHR4eDiypt1uO9QNAAAAAADe1W63x16ju4kgDEtvbW1NoVBoZI3f73eoGwAAAAAAvMvv92tjY2NkTavVUqfTcaijYQRhWHqhUEgHBwdutwEAAAAAgOdZ2ZooHA67NmuMzfIBAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPCEi243AGA5rfmkz98eXwMAAAAAEtcQWAwEYQCm4vNJF/hHCgAAAIBFXENgEbA0EgAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBPYLB9Lr9VqKRwOj6zJ5XLK5XIOdQQAAAAAgDeVSiWVSqWRNa1Wy6FuTiMIw9LrdDo6PDwcWdNutx3qBgAAAAAA72q322Ov0d1EEIalt7a2plAoNLLG7/c71A0AAAAAAN7l9/u1sbExsqbVaqnT6TjU0TCCMCy9UCikg4MDt9sAAAAAACyINZ/0+dvja2A/K1sThcNh12aNEYQBAAAAAICV4vNJFwi6cAbuGgkAAAAAALAi3nvkdgeLjSAMAAAAAABgCVgJuV6vEYaNQhAGAAAAAACw4J5+Jr35E2u1b3wgtT+baztLiyAMAAAAAABgwf2oIX36e2u1v/mddLcx336WFUEYAAAAAADAgvvwo8nqfzphvVcQhAEAAAAAACy4o9/Ot94rCMIAAAAAAAAWXPDL8633CoIwAAAAAACABffSC5PVvzhhvVcQhAEAAAAAACy4V2PSV75krfbZZ6TXYvPtZ1kRhAEAAAAAACy4y5ekH37dWu3tb0j+S3NtZ2kRhAEAAAAAACyBV66Or7mbslbnVQRhAAAAAAAAK+KbhGAjEYQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4wkW3GwBm1Wq1FA6HR9bkcjnlcjmHOgIAAAAAwJtKpZJKpdLImlar5VA3pxGEYel1Oh0dHh6OrGm32w51AwAAAACAd7Xb7bHX6G4iCMPSW1tbUygUGlnj9/sd6gYAAAAAAO/y+/3a2NgYWdNqtdTpdBzqaBhBGJZeKBTSwcGB220AAAAAAOB5VrYmCofDrs0aY7N8AAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPCEi243AMyq1WopHA6PrMnlcsrlcg51BAAAAACAN5VKJZVKpZE1rVbLoW5OIwjD0ut0Ojo8PBxZ0263HerGXWs+6fO3x9cAAAAAADAP7XZ77DW6mwjC/v/t3TFvI1uWGOAj9dvBM2AIVC+wgCBFVOLUZO8vaDKzM+k1YAPe6EmGQwUUHjYeN6hAuTjZ2g7eSIENOyP7F0yLmzphRS0IWGCaXMGGBzPzRAcNcih1S6LEIqvI+j6AACld3ntL91B161TVJUtvfX09tra2Hi2zsbGxoN5ka20t4pVEFwAAABnZ2NiI7e3tR8tcX1/H7e3tgnp0l0QYS29rays+ffqUdTdm8t/+MeI/VLPuBQAAAMxmmqWJdnZ2MrtqzGL5MGf/7R+fLvN3F9OVAwAAAF5OIgzm6J//EPGf/sd0Zf/jf4+4+cNcuwMAAACFJhEGc/RfuhH/90/Tlf0/f4z4h+58+wMAAABFJhGWkSRJol6vT1W22+3G4eFh7O7uxtraWqytrcXu7m4cHx/HYDB4UfvzqHNaz9n2Zfc///fzyv+vZ5YHAAAApicRlrLBYDBOLD322N3djXK5/GRd+/v7Ua1Wo9VqRZIk498lSRInJyexubkZrVbrWf1Lu855bPuq6P+/+ZYHAAAApicRlrLnJJCOj48f/N1gMIhqtRoXFxdP1nN4eBiHh4dPlptHnZPS2vZVsvkv5lseAAAAmJ5EWMrev38/VblarfboVVH7+/uRJElUKpU4Pz+PXq8XvV4vzs/Po9FofFW+1Wo9meCaR52T0tr2VfJv/9Xzyv+bZ5YHAAAAprc2HA6HWXdiVbRarTg8PIxGo/HkGlhv3ryJUqn0ZD3NZvObZZIkif39/eh2/7K6eqlUin6/v7A6H6p/lm1/jp2dnbi6uort7e349OnTzPXNwz//IWL7P0+3YP6//FXE1U8RG9/Pv18AAACk45fbiO/+/vEyf/51xKsULkVaZFvzlOXxvERYinZ3dyMiotfrzVxPuVyOdrv9aLkkScZtjrTb7ajVagup8379EbNv+3MsQyIsIuIfLiP+booL6/7rDxH//l/Pvz8AAACkRyLs+bI8ns/5n2Z5XFxcRJIkM6991e12I0mSOD8/f7JsuVz+6uquyau55lnnpLS2fVVNk9z6hz1JMAAAgGW0vvYl+fTYY30t614y8l3WHVgV79+/j1KpFD/88MNM9fz8889xcHAw9a2D96/U+v3vf7+QOielte1F9u8kwQAAAJbS2lrEK4mupSERloJutzu+ampzczPK5XLUarWo1+uxt7f3rLrevXv3rIXkK5XKndf3b2ucV50jaW47AAAAwDy5NTIF928JTJIkWq1W7O/vx9ra2lcL0D+mUqk8ayH5wWBw5/W3El7zqHMkzW0HAAAAmCeJsBklSRKdTufRMhcXF1GtVuPw8HAu7U96alH7NOvMetsBAAAAnsOtkTMql8txdnYWg8Eger1edDqdrxJJI61WKz5+/BiXl5eptf/x48fx84ODg4XWmfW2AwAAADzH2nA4HGbdiVUzGAyi1WrF+/fvv7rNMOLLFVbtdjuVtqrV6vjWw16v96y1wOZR5yK3PcuvW32OVfl6WwAAALK1KseXWR7P5/xPs5xKpVI0Go3o9/txfn7+1fpcnU4nTk5OZm4nSZJxwqrZbKaSBJu1zkVtOwAAAMBzuSJsAQaDQbx9+/bOovGlUin6/f5M9R4eHkar1YpyuRy9Xm/Wbs6lznlte8RfMsjr6+uxtbU1c31HR0dxdHQ0cz33rUrGHgAAgGxlfXx5enoap6enM9dzfX0dt7e3mVwRZo2wBSiVSnF5eXnnlsPBYBCdTufFi9t3u91otVpRKpVSu9VwHnXOY9vvu729jaurq5nrubm5SaE3AAAAsJpubm5SOf7OkkTYAv3mN7+JarU6ft1ut1+cDPrxxx8jIuLDhw+p3BI5rzpH0tz2+9K6ImxjYyOF3gAAAMBq2tjYiO3t7ZnrGV0RlgWJsAWqVCpRq9Wi0+lERDz4DYtPOTw8jG63G+fn51GpVFLp2zzqnJTWtn/L1tZWrhfLBwAAgFWQ1pJCo6WOsmBVogWr1+szvb/VakWr1Yqzs7PY29tLpU/zqPNbZt12AAAAgFlIhC3Y5C2Hr1+/ftZ7O51OHB4extnZWRwcHKTSn3nU+ZBZth0AAABgVhJhCzaZDCqVSlO/r9vtRr1ej2azmVrCah51Pual2w4AAACQBomwBfv48eP4+bS3CiZJEm/fvo1GoxGNRiOVfsyjzqe8ZNsBAAAA0iIRtmC9Xm/8fJpvTUySJKrVahwcHESz2ZyqjSRJ4uTkZKF1TuO52w4AAACQJomwBbu4uIiImOoqrMFgEPV6PX744YepE1YREfv7+w8mmuZR57Ses+0AAAAAafsu6w4UycXFRSRJEqVSKX766adHyw4Gg6hWq1Eul+P4+DiSJHmy/iRJ4vj4OCIiKpXKQuqc1nO2HQAAAGAeJMJm0Ol0Yn9/PwaDQdRqtWg2mw8mi5IkiR9//DEiIj58+PDkYvFv376NJEkiSZLY3d19Vr/Ozs7mXuc8tx0AAABgHtwaOYPz8/MYDAYR8SUxVK1W4/Dw8Ktyo9+9fv06er3ek1dWVavV6Ha7L+7Xt74BMu0657XtAAAAAPMiETaD/f39r37WarVic3Mz9vf34/DwMKrVatTr9Tg4OIjLy8sol8tP1pl2Emxedd4367YDAAAAzNPacDgcZt2JZZYkSTSbzeh0OvH58+cYDAZRKpXi9evXUalU4t27d1Gr1VbydsCst31nZyeurq5ie3s7Pn36NJc20vDLbcR3f/94mT//OuKVtDQAAACPWJXjyyyP560RNqNyufzgmlyrrsjbDgAAACyfnOcIAQAAACAdEmEAAAAAFIJEGAAAAACFIBEGAAAAQCFYLJ+ld319HTs7O4+WOTo6iqOjowX1CAAAAIrp9PQ0Tk9PHy1zfX29oN58TSKMpXd7extXV1ePlrm5uVlQbwAAAKC4bm5unjxGz5JEGEtvfX09tra2Hi2zsbGxoN4AAABAcW1sbMT29vajZa6vr+P29nZBPbpLIoylt7W1FZ8+fcq6GwAAAFB40yxNtLOzk9lVYxbLBwAAAKAQJMIAAAAAKASJMAAAAAAKQSIMAAAAgEKQCAMAAACgECTCAAAAACgEiTAAAAAACkEiDAAAAIBCkAgDAAAAoBAkwgAAAAAoBIkwAAAAAApBIgwAAACAQpAIAwAAAKAQJMIAAAAAKASJMAAAAAAKQSIMAAAAgEL4LusOwKyur69jZ2fn0TJHR0dxdHS0oB4BAABAMZ2ensbp6emjZa6vrxfUm69JhLH0bm9v4+rq6tEyNzc3C+oNAAAAFNfNzc2Tx+hZkghj6a2vr8fW1tajZTY2NhbUGwAAACiujY2N2N7efrTM9fV13N7eLqhHd0mEsfS2trbi06dPWXcDAAAACm+apYl2dnYyu2rMYvkAAAAAFIIrwgAAAACWwPpaxJ9//XQZHiYRBgAAALAE1tYiXkl0zcStkQAAAAAUgkQYAAAAAIUgEQYAAABAIUiEAQAAAFAIEmEAAAAAFIJEGAAAAACFIBEGAAAAQCFIhAEAAABQCBJhAAAAABSCRBgAAAAAhSARBgAAAEAhSIQBAAAAUAgSYQAAAAAUgkQYAAAAAIXwXdYdgFldX1/Hzs7Oo2WOjo7i6OhoQT0CAACAYjo9PY3T09NHy1xfXy+oN1+TCGPp3d7extXV1aNlbm5uFtQbAAAAKK6bm5snj9GzJBHG0ltfX4+tra1Hy2xsbCyoNwAAAFBcGxsbsb29/WiZ6+vruL29XVCP7lobDofDTFqGGe3s7MTV1VVsb2/Hp0+fsu7Og365jfju7x8v8+dfR7yyYh8AAAAFkOXxvCvCYM7W174kup4qAwAAAMyXRBjM2dpaxCuJLgAAAMicm7EAAAAAKASJMAAAAAAKQSIMAAAAgEKQCAMAAACgECTCAAAAACgEiTAAAAAACkEiDAAAAIBCkAgDAAAAoBAkwgAAAAAoBIkwAAAAAArhu6w7ABTP6elp3NzcxMbGRhwdHWXdHTImHhgRC0wSD4yIBSaJB0bEAi+1NhwOh1l3Al5iZ2cnrq6uYnt7Oz59+pR1d3gGY8ck8cCIWGCSeGBELDBJPDAiFpZbluPn1kgAAAAACkEiDAAAAIBCsEYYS+/6+jp2dnYeLXN0dOS+cQAAAJiz09PTOD09fbTM9fX1gnrzNYkwlt7t7W1cXV09Wubm5mZBvQEAAIDiurm5efIYPUsSYSy99fX12NraerTMxsbGgnoDAAAAxbWxsRHb29uPlrm+vo7b29sF9eguiTCW3tbWlm8JAQAAgByYZmmi0bdGZsFi+QAAAAAUgivCWDmnp6dxc3MTGxsbc18gf1FtrVo7i7Rqf7tVjO9FWcW/3aq1s0ir9rdbxfheFGOU/3YWadX+dqsYd4tijPLfziKt2t9u1dp5tiEsqe3t7WFEDLe3t6f6+SL7oJ18tLPItlatnUW2tWrtLLIt7eS/rVVrZ5FtaSf/ba1aO4tsa9XaWWRb2sl/W6vWziLbKlI7ixy/+9waCQAAAEAhSIQBAAAAUAgSYQAAAAAUgkQYAAAAAIUgEQYAAABAIUiEAQAAAFAIEmEAAAAAFMLacDgcZt0JeIlf/epX8ac//SnW19dja2tr/PPr6+u4vb396ufzsKi2tJP/tlatnUW2tWrtLLIt7eS/rVVrZ5FtaSf/ba1aO4tsa9XaWWRb2sl/W6vWziLbKlI7o9/91V/9Vfzxj3+cWx++RSKMpfXq1au4vb3NuhsAAADAC6yvr8cvv/yy0Da/W2hrkKLvv/8+/vCHP8SrV6/ib/7mb7LuDgAAADCFf/qnf4pffvklvv/++4W37YowAAAAAArBYvkAAAAAFIJEGAAAAACFIBEGAAAAQCFIhAEAAABQCBJhAAAAABSCRBgAAAAAhSARBgAAAEAhSIQBAAAAUAgSYQAAAAAUgkQYAAAAAIUgEQYAAABAIUiEAXNxcnIS9Xo9Njc3Y21tLXZ3d2N/fz86nc5c202SJA4PD2N3dzfW1tZic3MzqtVqHB4eRpIkc22bh2UVD91u9048jNo+Pj6OwWAw17b5tqxi4b4kSaJer8fFxcVC2y2CLMc4L/HFF3kZD5/3fDAXYMRxApkbAqSo3W4PS6XSMCKGtVpt2G63h71eb3h+fj4sl8vjn/f7/dTbbjabw4h49NFsNlNvl4dlFQ/9fn+4t7f3ZDycnZ2l2i4Py/J/w6T7sSEG0pPlGOclvvgiL+Ph854P5gKMOE4gLyTCgNS02+3xjuTg4OCbZSqVyjAihuVyOdWdXK1WG0bEsFQqDff29oaNRmO4t7c33qlOPs7Pz1Nrl4dlFQ/9fv+b4/7Q46G+kZ4s/zeM9Pv9YaPRcAA0J1mOcR7ii7/Iw3j4vOeHuQAjjhPIE4kwIBX9fn98hqdcLj9YrtfrjXc0tVotlbZHk92HzuJ86wwQ85VlPIwmO5VKZXh+fj7s9Xrjs43fOjAy6ZmvLGNhpNlsDsvl8jg2HBinK8sxzkN88Rd5GA+f9/wwF2DEcQJ5Y5SBVExOOJ+aaKZ5m8Joh9lutx8td3BwcGcHd3l5OVO7PC6reDg7OxtGxLDRaDxYptfrjc84jh6lUmmmdnlYVrEwcnl5eefzPooRB8bpyXKMs44v7sp6PHze88VcgBHHCeSNRBgws8mzNxHx5KXM5+fnqU069vb2prqfv9/v3+mjNQDmJ8t4GF0F8Nw+TjNJ4vmyjIWHXF5eOjBOUZZjnMf4KrI8jofPe3bMBRhxnEAe+dZIYGbNZnP8vFarRalUerT83t7e+PlgMJjpW5wGg0E0Go0ny5VKpSiXy3deMx9ZxUO3240kSeL8/PzJsuVy+U4/R+8nXVn+b3iIz366shzjPMZXkeVxPHzes2MuwIjjBPJIIgyYWavVGj+vVCpTvWdyZ/Pzzz+/uO12uz112c+fP4+fv3nz5sVt8ris4uHnn3+Og4ODqScvtVrtzuvf//73L2qXh2X5v4HFyHKMxVe+GA8mmQsw4jiBPJIIA2Zy/8zZ3/7t3071vskd4SLOyg8GgxgMBhHxZdIz7Y6Y58kyHt69e/fVmd1p24yI2N3dfVG7fNuy/G/g5bIcY/GVL8aDSeYCjCzL/wbHCcUjEQbMpNPp3Hk9eQbnMffLzftS9N/+9rfjdqe5XJ6XyTIeKpXKsy5lH014HuoDs1mW/w28XJZjLL7yxXgwyVyAkWX53+A4oXgkwoCZ/O53v7vzetrJx1//9V/fef3x48e0uvSVwWAQh4eHUalUot1uu+9/jpYhHkaSJLnz+v7tEcxmmWKBl8lyjMVXvhgPJi1TPJgLzNcyxILjhGKSCANmcn8C8dIzPb1eL7U+TUqSJKrVapRKpfjw4YMzfXOW93iYNDmpOjg4mHt7RbNMscDLZDnG4itfjAeTlikezAXmK++x4DihuCTCgJnc38G91P1L09NwcXERu7u7kSRJDAaD2NzcjJOTk9Tb4S/yHA/3nZ2djZ8fHx/Pvb2iWaZY4GWyHGPxlS/Gg0nLFA/mAvOV51hwnFBsEmHATF66Y7p/2fHkN7XMYjAYxMnJSezu7sb+/v5Xvz8+Pv7mz0lH3uLhIUmSjNebaDabzgDOwbLEAi+X5RiLr3wxHkxalngwF5i/vMWC4wRGJMKAXEjrTE+n04lerxe1Wu3BdR4uLi6c8cm5eZ8FHn2jVLlcjkajMde2mI0rRFZflmMsvvLFeDDJXIARxwmkTSIMmElaC0qmVc/e3l6cnZ3F2dlZtNvtGA6HcXZ29lX9x8fHJtxzkLd4+JZutxutVitKpVK02+25tVN0yxALzCbLMRZf+WI8mLQM8WAusBh5iwXHCYxIhMEKa7Vasba2luqjWq3eaeP169ep9DWter7l4OAgLi8vv9rJtVqtubWZR+Lhix9//DEiotCLoooF0pDlGIuvfDEeTFqGeDAXWIxliAXHCcUkEQbM5KVnaO6fZZn3WeByuRwfPny487P7X+nM7PIeD4eHh9HtduP8/Dwqlcpc2uCLvMcCs8tyjMVXvhgPJuU9HswFFifvsTDiOKF4vsu6A8D81Gq1OD8/T7XO+zuiN2/ejBcajfiy45pmZ3V/0cvd3d00uveoSqUSe3t7cXFxERHpfZPNsih6PLRarWi1WnF2dhZ7e3up179Mih4LpCPLMRZf+WI8mJTneDAXWKw8x8J9RT9OKBqJMFhh5XJ57pd7378dKkmSqc6u9Xq9O68fWrAybe/evRvv4Ip273+R46HT6cTh4WGcnZ3FwcFBqnUvoyLHAunJcozFV74YDyblNR7MBRYvr7HwkCIfJxSNWyOBmbx58+bO62nPnkzuXEql0sLWZ5jc+boFI315jIdutxv1ej2azaaJ7wLlMRZIV5ZjLL7yxXgwKY/xYC6QjTzGwmMcJxSHRBgwk0qlcmdHMe399B8/fhw/v7+TXJSs2l1leYuHJEni7du30Wg0fDX6guUtFkhflmMsvvLFeDApb/FgLpCdvMXCc/iftNokwoCZ/fDDD+Pnk+sAPGay3PHxcep9esjkmah6vb6wdoskL/GQJElUq9U4ODiIZrM59XtOTk5SaZ/8xALzk+UYi698MR5Myks8mAtkLy+xMA3HCQUyBJjR5eXlMCLGj6e02+1x2XK5vIAe/kWz2RxGxLBUKi203SLJQzz0+/1huVweHhwcPOt9lUpleHl5mUofyEcs3Nfr9e706ezsbC7tFEWWY5zH+CqyPI6Hz3t28hAP5gL5kIdYmJbjhOJwRRgws0qlcmcRy9Eikw+Z/La6p87ytFqtOD4+Tu2bW96/fx8REb/5zW9SqY+vZR0Pg8EgqtVqlMvlcdmnHp1OZ7ygq69ST0/WsfAtFr9NV5ZjPM+2eT6fdyZlHQ/mAvmRdSw8h+OEAsk6EweshsmzrpVK5cFy/X5/XK5Wqz1aZ61Wu3MGqd/vf1Wm2WwOK5XKsNFofPP3kxqNxjAiho1GY5pNYgZZxcNw+OVM7mS55zxcLZC+LGPhW87Pz++8t9lsTv1evi3LMZ5H27yczzuTzAUYcZxA3kiEAamZnHA+NNkcTUxKpdKTO6SnJiaTO8vR46Gd197enknwgi06Hibre+mD+cgiFr5ldJvM5Hsfm5AzvSzHOO22mY3PO5PMBRhxnECe+KQDqWq328NSqTSMiOHe3t7w8vJy2O/3h+12e7xzq1QqUx2IjOoZPdrt9ldl7k9yRzvPvb29YaPRGNZqtfHrXq83hy3mMYuMh9Ek5qWP564hwvMs+n/DSL/fH+7t7X115vj+o1arjfvFy2Q1xmm3zex83plkLsCI4wTyQiIMmIvRpcijnVSpVBrWarXh+fn51HW02+1huVwelkqlB8/g9Pv9YaPR+Kqtcrk83NvbG56dnTnwyYFFxQP5JxZWX5ZjnEbbpMfnnUnigRHHCWRtbTgcDgMAAAAAVpxvjQQAAACgECTCAAAAACgEiTAAAAAACkEiDAAAAIBCkAgDAAAAoBAkwgAAAAAoBIkwAAAAAApBIgwAAACAQpAIAwAAAKAQJMIAAAAAKASJMAAAAAAKQSIMAAAAgEKQCAMAAACgECTCAAAAACgEiTAAAAAACkEiDAAAAIBCkAgDAAAAoBAkwgAAAAAoBIkwAAAAAApBIgwAAACARw0Gg2i1Wll3Y2YSYQAAAAA8aDAYRLVajXa7nXVXZiYRBgAAAMA3DQaDePv2bSRJEvV6PevuzGxtOBwOs+4EAAAAAPlTrVaj2+1GRES/349SqZRth2bkijAAAAAA7uh2u7G7uztOgpXL5aVPgkVEfJd1BwAAAADIh263G+/fv4+Li4s7Py+VSncWyz84OFh011Lh1kgAAAAA4uLiIvb3958sVyqVot/vL6BH6ZMIAwAAAOCOTqdzZ3H8VUkfWSMMAAAAgDvOz8/HzyuVSoY9SZdEGAAAAAB3dDqd8fN3795l2JN0SYQBAAAAMDYYDCJJkvHrWq2WYW/SJREGAAAAwNjk1WARbo0EAAAAYEW12+3x81W6GixCIgwAAACACb/97W/Hz/f39zPsSfokwgAAAACIiIgkSWIwGIxfuyIMAAAAgJU0uT5YqVSKcrmcYW/SJxEGAAAAQES8bH2wJEni5OQk6vV6bG5uRr1ev/P7wWAQ+/v7sbm5GScnJ6n297kkwgAAAACIiLtXhL17927q99RqtajX6zEYDKLT6US3242IL0mwarUa3W43BoPBnURbFtaGw+Ew0x4AAAAAkLkkSWJ3d3f8ut/vR6lUelYda2trERHRbDaj0WhEvV6PZrMZlUolkiTJ/FZLV4QBAAAAEBcXF+Pn5XL5ThKs1WpNVcfodsp2ux0nJyexv78flUplXGfWvsu6AwAAAABk76H1wU5OTqa+Mqxer0en0xnfYpn1rZD3SYQBAAAAcGd9sNGC9xcXF9Fut6dOaE0m0JrNZrodTIFEGAAAAEDBjRa3H/nd734Xnz9/jrOzs/jw4cPU9Yxug4yI+Pz5c2r9S4tEGAAAAEDBJUly5/XJyUmUy+W4vLx81oL5k/W02+07V4jlgcXyAQAAAApub28vDg4OolQqRblcjkajEb1e79nfGrm/vz9Ofk3eapkXa8PhcJh1JwAAAABYboeHh1GtVqNcLo/XGMtb2skVYQAAAADMpNPpxOfPn+Pg4CDevHkz/vnk2mOtViuLrt0hEQYAAADAswwGg/Gtj0mSRLPZjPPz84iIKJVK40Xzz87OIuLL1WKTCbKsSIQBAAAA8Cz7+/tRr9djc3Mz6vX6OAk2MlonrNVqxe7ublSr1TvfKJkViTAAAAAAnmV/fz9KpVK8fv062u32V4vq//TTT1Eul6NUKsXh4WEcHBxk09F7LJYPAAAAQCG4IgwAAACAQpAIAwAAAKAQJMIAAAAAKASJMAAAAAAKQSIMAAAAgEKQCAMAAACgECTCAAAAACgEiTAAAAAACkEiDAAAAIBCkAgDAAAAoBAkwgAAAAAoBIkwAAAAAApBIgwAAACAQpAIAwAAAKAQJMIAAAAAKASJMAAAAAAKQSIMAAAAgEKQCAMAAACgECTCAAAAACgEiTAAAAAACkEiDAAAAIBCkAgDAAAAoBAkwgAAAAAoBIkwAAAAAApBIgwAAACAQpAIAwAAAKAQJMIAAAAAKASJMAAAAAAKQSIMAAAAgEKQCAMAAACgECTCAAAAACgEiTAAAAAACuH/AxAvf/MNBBzUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjlElEQVR4nOz9T4xj953fe39Y3RZajxU2WRoEIIrATJOjQLPKNNk9C99VpsjHGwl2RmR3YD2SgIyLlBXfLJiYdFm4GM9CLrPsIXCRG6PJ1gR42leLbtIeCdLCUbGd3QWSrmJ7dkJsHmmAKhAIoqrTHAluyBJ5FxXSZP0hD8nDc/jn/QII159v/c73FKus5qd+fzztdrstAAAAAAAAYMGtuN0AAAAAAAAA4ASCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALIWLbjcAjOvLX/6yHj9+rAsXLuif/tN/6nY7AAAAAADAgv/xP/6HvvjiC126dEmffvqpo9f2tNvttqNXBGxy4cIFtVott9sAAAAAAABjWFlZ0RdffOHoNZkRhrnVCcJWVlYUCAS6H280Gmd+fBqcuhbXmf1rLdp1nLzWol3HyWtxndm/1qJdx8lrcZ3Zv9aiXcfJay3adZy8FteZ/Wst2nWcvNYyXafzuQsXLkzt+udqA3NqbW2tLam9trZm6eNO9sB1ZuM6Tl5r0a7j5LUW7TpOXovrzP61Fu06Tl6L68z+tRbtOk5ea9Gu4+S1uM7sX2vRruPktZbpOk4+fye5OiPsmWeecfPyfTwej/77f//vbrcBAAAAAACAKXE1CKvX6/J4PGq7uE1Z5/oej8e1HgAAAAAAADB9K2434DY3QzgAAAAAAAA4x/XN8tvtthKJhEKhkCvXN01TpVLJlWsDAAAAAADAOa4HYaVSSd/85jdd7SGRSOirX/2qqz0AAAAAAABgulxfGhmLxdxuQdevX3e7BQAAAAAAAEyZ60HY6uqq2y0AAAAAAABgCbi6NJKTGjENmUxGzWZTXq93Ya61aNdx0qJ97xbx59spi/i9W7TrOGnRvneL+PPtFJ6j2b+Okxbte7eIP3dO4Tma/es4adG+d4t2nVF52i4em7iysiLTNF3/pjx69Eh+v1+tVsvVPjCaYDCog4MDra2taX9/3+12MAKeO/Ti5wEd/CygFz8P6OBnAb34eUAHPwvzzc3nz9Wlkfl83vUQTJIuX76sfD7vdhsAAAAAAACYIleDsO985zuOXu+jjz4693NO9wIAAAAAAABnub5ZvpPS6bTbLQAAAAAAAMAlSxWE7e7uut0CAAAAAAAAXOLqqZHj+uijj2SapuV6wzBULBZH+hoAAAAAAAAslrkIwj766CPl83lVq1UZhjHWGO12Wx6Px+bOAAAAAAAAMC9mPgjb3NzU9va2pOMwCwAAAAAAABjHTAdhP/vZz5TP5yVJHo9HHo+HMAynNBoNBYPBgTWZTEaZTMahjjBMJpNRs9mU1+t1uxXMAH4e0MHPAnrx84AOfhbQi58HdPCzMLsKhYIKhcLAmkaj4VA3p3naM5wsXbt2TbVarRuAhUIhRSIRhUIhSdLTTz89dIyPP/5Ypmnq3r17evTokb744otptw2HBINBHRwcWKr9q7/6K33/+9+fbkMAAAAAACy573//+/rrv/5rS7Vra2va39+fckf9ZnpGWCcEk6SdnR2tr6+PPVY2m9UzzzxjV2uYISsrKwoEAgNr+CsBAAAAAADT5/V6tba2NrCm0Wio1Wo51FG/mZ4Rtrq6qkePHimbzWpra2vi8f74j/9Yv/nNb2zoDLOgMyPMjQQZAAAAAACMx83X8yuOXm1EnSWQ169ft2W8YrFoyzgAAAAAAACYPzMdhHWWQh4eHto6HgAAAAAAAJbPTAdh3/ve99Rut1Wr1WwZ780337RlHAAAAAAAAMyfmQ7CLl++rB/+8Ie6e/eu/vEf/3Hi8WZpaaRhGIrH45Zr0+m0wuGwPB6P/H6/otGo0um0DMOYcqf2G+XeAQAAAAAA7DLTQZh0fNpjJBJRMpmcaJwPP/zQtpllg5imKY/HM/QRDoe7e6ANsr29rXA4rFKp1A29TNNUrVZTqVRSOBzW9va2pd78fr+l3s56pNNpx+8dAAAAAADAThfdbsCKnZ0dXbt2Tc8884xyuZxWV1ctfd3h4aFM01S9Xte9e/em3OWxUqlkuTaXyw38fDweV7Valc/nUywWUygUkmEYqtVqfTPBcrmcQqGQEonEuWNVKhWZpmm5t7N6GcbOewcAAAAAALDbXARhv/zlLyVJ9Xrd0syks7TbbXk8HjvbOtPW1paluk6wdZ5cLqdqtap8Pq9sNnvq89vb231hUjKZVLvdPne8SZeFDgrZOuy6dwAAAAAAgGmY+SDsW9/6VnemkcfjGRj2nMeJAEw6nhFlmqay2ezQGVTXrl0793OGYWh7e1s7OzuKxWJn1mSzWdXr9b5ZWLVaTZFI5MzxqtWqQqGQcrmcYrGYpVl10WhUhmGc20Mvu+4dAABgkbTbUmvIP19XPJJD/1wFAGDpedrjJEsOuX37dncG2LghWC+Px6MvvvjCjtbOFA6HJR3PXJtEMpnU9evXz5wJ1ss0Tfn9/u77580ey+VyqlQq2tvbk8/ns9SDYRjd+ykWi0qlUgPr7br3UQSDQR0cHGhtbU37+/uOXRcAADcRrMyXL1rSxdcH13z+hnRh5nfuBQDAPm6+np/pGWGd5XydECwWiykej8vn8428T9itW7f00UcfTa3XSqUiwzBsOZmyM7NqGJ/P1903rPP+WUqlku7fv285BJOO76fjxo0bQ2vtuncAADBYq20xWCEIAwAAOGWmg7BarSaPxyOfz6fd3V1duXJl7LE2Njb09NNP29hdv62tLfl8vqGhkRU7OzuWaw8PD7tvn7fksFwun7lkcpC7d+9KOt7Pa1iAZue9AwAAYDzMFgQAYLiZDsJ8Pp8ePXqkzc3NiUKwzlhXr161qbN+tVpNtVpNkuT3+xUKhbqz16xsMj8u0zS7J0HGYrFzwy4re3ydHLdzP8lkcmCtW/cOAACwKN56KL0cnXwcZgsCADDcTO9GEI0e/4vArhMGb9++bcs4J/We3igd769VKpWUTCbl8XiUTCa7YZGd7t27J+n4+1Mul20bt3cD/mGzvNy6dwAAcL63HrrdATqsPBevVHjOAABwykwHYel0Wu12u7sH1qSmMSOscyLjIJVKRdFotLvxvx1M01Q6nVYkEtHOzs5I+38N01kWGYlEBo7r1r0DbuvMxAQANxCszI9Hj6XX3rFW++rbUvPxVNsBAACa8SAskUjo6tWr3WBmUj//+c9tGadXKBRSsVhUPp9XKpUaOHutVCp1Z7lNwjAMRaNR+Xw+3b9/37YZc1L/ssibN28OrHXj3gG31Go15XI5+f1+bWxsuN0OgCVFsDJfflqTPv2dtdpPPpPuMIkeAICpm+kgTDre6H1vb09/93d/N/FYW1tbNnR0WiqVUjabVbFYVL1e19HRkfL5/JmzqWq1muLx+NjXqlQqCofDMgxDpmnK7/dre3t7gu77dZZbSrK0x5eT9w6cpxNSxeNxhcNh+f1+eTwe+f1+RaNRxeNx5XK5c2cwJpPJU0GtaZqqVCpKJpPdcba3t5kNBsBVBCvz5d0PRqt/b8R6AAAwOk+73R5ytoz7SqWSNjc39fHHH489xqNHj7S6uqovvvjCxs6Gq1Qq2tjYOPXiOZ/PK5vNWhrDNE2VSiUVi8Vzl4kmEglb9gmLRqOq1WqKRCLa29ubaCw77n2QYDCog4MDraysKBAITDxeJpNRJpOZeJxxlEqlsZaP2vE8SZJnjOOjfD6fjo6OzvxcMplUpVIZecydnR3LhzuYpqmtra2xguBIJKJYLKZwOKydnR1VKpVT38tkMinDMM7c486u3zcAGNVX/5P0/q9HqH9G+sW/nl4/GOzP/qP0YH+E+qD0X//N+Nf7ojV8s/z/f8KejfkBAMupUCioUChMPE6j0VCr1dLa2pr290f4j6UNZvrUyM5Sxj/4gz+Q3+/XM888M9ZJhKZp9s10clIikVAsFtP6+nrfC+qtrS3LYVC1WlW9XlcsFjt3X65KpaLt7e2JAqZRlkVaYce9W9FqtXRwcDDxOM1m04ZuxpNKpXTjxg0ZhqGtra2BIVIsFlMul9O1a9ds2xuusxdftVpVLpc7d9ZTKBRSLpdTLBYbuBS2XC7LNE3t7u4qn88P3Esum83q5s2bCoVClu8nl8udGYAlEonuWJ3xDMOQYRgql8u6d+9e9+f8ZMB18p57g67OLEwAcNvRb6dbD3v5n5xu/UlW94+7sCK9OJ3D1AEAC67ZbNry+ttNMz0j7Nq1a3r48Pf/RW+322PNXOn9WqdnhPXqzLbqGGX2y0mlUunMwOLo6GjscKR3VlK9Xrd17zE7771jkWaEnZROp/tO7+xwYiaSYRgKh8Nnfm7cn6+Tz39HsVhUKpUaqbd4PH4qlEqlUioWi5bG2N7ePnXaqXQc8tXr9TO/5uTzwYwwAG5hRth8+b/+H+l/f9d6/X94Xvr2V8a71qPH0toPrC2dfeoJ6WBT8l4a71oAgOW1CDPCZnqPsBs3bqjdbquT1Y0bgs2K27dv972/s7Mz9lipVEp7e3unQomzwhOrOkFCZzaNney895MCgYD29/cnfsxKCCbp3GWSTpy+GQqFFIlETn08kUiMHbKe1/coIVi1Wj01M8vn82lvb89yCCYdz0Cr1+un7uXw8PDcr7HzVFYAmMTzz45W/9yI9bDXSxHpy1+yVvvUE9LLp//zaxn7xwEAnJDJZGx5/W3HZJZxzXQQ1nnx7PF4uoHYuI9Z0NmXqGPSpVahUEj379/v+9iDBw/GGqt3WeQ4y0+HsfveF915QaTdAeUo15/k2md97Sjh0lkHLXROTT0rtLPSz4cfftjXA5vgA5hEu328P9Oghx3/HHEyWMHkLl+SfvI1a7W3vj7ZDC025gcAwJqZ3iPs8uXLikQievjwofL5vCKRiFZXV0cexzAM/eAHP9CvfvUr+5scUTweH7hf0qgikYgSiUR3T6lxA6bePdTs2B/sLHbf+yI7LyQa5+d/3hmGofX19VMfL5fLY4VgHZ3ZZOctA51nnc3/nQpO5021Wp14aTZwUqs9fJPyz9+QLkw4ub0TrLxi4TySSYMV2OPFq8OfrzuJyffsYv84AACsmekgTDoOZcLhsL7zne+MPcbVq1f1wgsvzESI0PvC1K5+bt682Q3Cxp3V0tnvyOfzTRQuDDKNe8d0nPX8PP3007aOZ/VnIJlMnvq5TqVStgQZoVBI2Wx2rJMn3VCr1VQsFlWtVmUYhnw+n1ZXV+Xz+RQKhboh9sbGhvL5/MClp9VqVclkUqurqyoWiwsdDHUOgiiXy90wflZmCkvL9VzAHk4FK3DON2x4rpzemB8AgHk180FYLBYbe7nfSdeuXbNlnEn0hkF27TvUG1yNM6Zpmt0Xh6Ps2TSqadw7Flu1Wj1zk/18Pm/bNTY3N7tBmGmaM/mzaZqmNjY2uoF3KBTqLmE2DKN7CmbvaaPDQvFOwGiaptLp9LkHBcwzwzCUTCZlGMZML31dhucCzrMjWJGOl3O2huTGKx5p3rZxXcT7ev7Z0Q5SYP84AMCymvkg7OrVq7a96P23//bf2jLOJHZ3d7tvn9zzyA7jhH1OLIuUpn/vWDxnbbI/yab9Z/H5fEqlUhMdNDFtyWSyG1afddKmYRhKp9N9S4+HhSmrq6szHQ7ZIRQKaW9vT5KUy+VmdubfMjwXmF9OLfl02iLe10sR6bu/sH5qJPvHAQCW1Uxvlt9x5coVW8b5D//hP9gyziR6X5zatfyld1+wcQImJ5ZFStO5dyyuzvK/kzY3N22/VjKZlDT45MhBOkvbwuGwPB6P/H6/4vG4LeHa9vZ2N+DKZrNnztoMhULa2dnp+6PBsP0Ci8Vi94TYzv8HLLJZDt+X7bnA5FY8xyHNoMfKHAU4i86p58vJjfkBAJhncxGE2aV3RpJbOkuXstmsbWN2lo75fL6RT3zsXRZ548YN23o6yzTuHYvrvEBgGmFtLBZTPp8fee860zQVjUYVj8dVqVS64VPn9yqdTiscDp+5vNOqra2t7ttnzZDrlc1mu79fw0K9WCymer2uer0+1QB8Vri1L+Gw50xavucCk/N4pAsrgx9OLul766Fz13KSXffl5PNlZV849o8DACy7mV8aeZaPPvpopGUkhmGoWCy6vvSk80LZ5/PZOqul80L59u3bI39t77LIzqyYaZjWvWNxnXXC6DRnEo4a0BqGoWg0OvT/Vzp1Ozs7I/c/zt5W+Xz+3Nl0cFapVFKpVFKxWHS7FcyItx5KL0fd7mI0VsKgVyrHYc6k4YqT+3Y5eV+zxq794wAAmFdzEYR99NFHE7+4a7fb8tj859HOcijTNLszSs77a75hGNrY2JAk3b9/f+AeR9vb27p7965isZg2NzcH1uZyOZmmqWw2O/JsMKl/WeQoL9Knde+AdPwzc9bv+qzMljFNs/vzn0gkFI/Hde3aNR0eHmpnZ+fMvaji8bjq9XrfoRFWrtOrWq1aOtBic3NzqsE2huvs24blsYjByqPH0mvvWKt99W3p+T+ZbLmdU/t2OX1fAABgtsz80sjNzU2Fw2GVSiXV63W12+2xHtNQLpe7L1Sr1aqi0eiZL3w6n1tdXR269MU0TeVyOdVqNW1vb8vv9yuXy51Zm0wmtb29rXw+P9aBAr3LIkedqTKNewc6zgu8w+Gww52crXOa5c7OjsrlslKplCKRSDcUPi/wGjWcOjlGJ/gephOKuz0LdlmZpjnTe5LBfqMGK83HU23HNj+tWdt4XZI++Uy6M/4qcEct6n0BAABrZjoI+9nPfqZ8Pt8Nsuye0TWps17Ulkol+f1+JZNJpdPp7v5BqVRKe3t7Q2eD+Hy+UzWdQCyZTCqXyykej8vv90s63oB+3D23epdFjjpzYRr3DnScF4S5tc/TWQYtdexsXn9SrVY7c8nneXw+X98Mys6eZFZmxrbbbWZfusA0Ta2vr7M0dcksarDy7gej1b83Yv047Ni3axbvCwAAOGemg7DO3lcej0ftdltXrlxRIpHobgjdmQk16NE5ZW0aLwg7GxynUimFQqG+a9RqNR0eHmpzc1NHR0fK5/OWe9jb21M2m1UkEjk1pmEYSiaT+vDDD1UulycKl3o3Ix91Rti07h2zK5fLyePxjPWIRkfbFOe8mUyz8nNkZSlxKBQ6c6bmqLM3T9YbhtGdJTupWq3W3dB/ENM0VSqVFI1G+67bWf7n9/vl8XgUDofPXBZqGIZyuVz3VM1wOKx0On3m89y5zsmfoZPi8Xh3vN6HnbPgSqVS33X8fr+i0eiZ9ygdfz+vXLly6nCE3v7O+15bfS46TNPU9vZ29w8jvf3lcjlLQZxhGNre3j51oEPvcxAOh7vLgHG+RQ1Wjn473fqTrC4vnTQMc/q+AADAbPG0p7Vu0AYrKyvdF0Dvv/++1tfXxx7LMAw988wz+uKLL+xqDy4LBoM6ODjQ2tqa9vf33W7Hdme9+D86OnIkDEqn07YELYOEQiHV6/WRrj/OhvN2yOVyfeFHLBY7c8bXWfx+/6kQYdT/243H42fOJItEIrp9+/ZIS45rtZqKxaLu3bvX7cvn8+no6KivrhN+3b17ty8kKRaLSqVSp74nvVKpVHeD+EF1oVBIe3t7Z/5Mn/wZOO97tr293bd8/LzfkVqt1hfIDnoOKpWKksmkfD6fbt++3V1qWqvVlEwmZRjGmb2bpinDMFStVvt62tvb6xu/83xZfS5OKpVK3Vm8+XxesVhMPp9PtVpNW1tb3ecrkUicOn3VNE1tbW31nXLa6TEUCml9ff3MU059Ph8zewf4s/8oPRjhP0N/FpT+67+ZXj92+ep/kt7/9Qj1z0i/+NfjXevRY2ntB9Zm1j31hHSwOf6+XU7el9OcPHAAAIBJuPl6fqZnhHVeYGSz2YlCMOn4BdeVK1ds6ApYTp0lruM8Rj0177ywb1ZmpYwSRp4V3J0VNAyys7Nz5mEYnXDH6owdwzB09+5dy7OOIpHIqWXTe3t7ikajqtVqKpfLqtfrOjo66luiXSqVVKvVugHezs6Ojo6OdHR0pJ2dne73zzCM7szfk6zupzbOISGDdA4CkY73qOwdPxKJdIOl3kNAOnw+nyKRyKlgsvOx3s+N+lx05HI5pdNp+Xy+7tL4SCSiUCikRCKhvb29bs+VSkXhcLjvZ+Pw8FDxePzUz+Xu7q6uXLnSXdZbr9dVLBa7z5Vpmmz+P4D/yenWu+X5Z0erf27E+l5OLi918r6c5vEcH8gw6EEIBgBYdjN9amQoFNLDhw91/fp1W8bjCHtgfOFw2LHDDp5++ukzP354eOjI9e108+ZNVSqVvo/t7u6O/L0sl8unZj91VCoVVSqV7myt85xcrnneQRxS//LPYrHYDe9KpdKZM/Py+XzfHmjRaFSpVOrUzLlYLKbbt293w6ZSqTTWYR8ddu8bN+y/E73P28nndRSjPBcdpVKpO7sun8+fOzurXC4rHA53T19NJpPd5yEUCikUCikWi/XNuMvlciqXy33PayqV0urqave5qlarMk1zZpYoz5Lnnx1thtG8BCsvRaTv/sL6LK2XJ/hPxDjLS7/9lfGu5eR9AQCA2TPTM8I6s8DsevE76awyAM6Y9RlhozgrrBj3PrLZrI6Ojs6dBZVOpxWPxy2NP8oSt96wKZVKnbs89eRJieeFSr39m6Y5s8/reT+HvR+3Y1N8q89FJyzz+XwDA8/eWuk4wDpraW3vfdy+ffvM5/Xkz9ru7q6lXpfNSxHpy1+yVjtPwcrlS9JPvmat9tbXx1+qKDm7b5eT9wUAAGbPTAdh3/ve99Rut0deRnSeN99805ZxMFsajYaCweDAR6FQcLtNjOC8YOC8PcVm2VlhyscffzzReOVyWXt7e2fOKqtWq1pfX7c1XLI6A6j3eRtl1tAsnbB4+/Zt5fN5lcvloWGT5Fw4WyqVuteyEpydPCRmkll3vdebpedqlixysPLi1eE1dxLW6gZxenmpU/cFAMAyKhQKQ1+jNxoN1/qb6SDs8uXL+uEPf6i7d+/qH//xHycej6WRi6nVaung4GDgo9lsut0mRnDejKOzZrXMurNCi/OWfo4iEomcu/9arVY7tX+VE8ZdMjdLS159Pp+y2ey5e7LZ9YeZUfUuMbU6g6z392gef3fmzTIHK9+w4Z5mcd8uO+4LAIBl1Gw2h75Gb7VarvU303uEScdLgXZ2dpRMJvWLX/xi7HE+/PBD117AYLpWVlYUCAQG1ni9Xoe6gV0ikcip31nDMBZijyI7T97rLFWMRqN9s5MqlYqq1aorp2xa4fP5ZnZJZK/OKZCdfbXc7GNUJ3/OFuF3Z97NY7Cy4pE+f2N4zaSc3rfLqfsCAGAZeb1era2tDaxpNBquhWEzH4RJx38Jv3btmp555hnlcjnLmyMfHh7KNE3V63Xdu3dvyl3CLYFAwPHjVjF9N2/ePDO8rlartp8UOG0nQx87g7DOeJ3THHuvUywWZzYIm3W1Wk25XE6RSGSiZYV26X1erYZiJ0+kPDw8JAjDyDwe6YIDgVBneekrFs6gsGN5qVP3BQDAMspkMspkMgNrgsGgDg4OHOqo31wEYb/85S8lHe8PNO7x7e12Wx7OiwYkHb/I39raUrlcdruVc6VSqTNP0isWi3MXhJ2c+WTlxMhqtapcLqe9vT1L1wiFQn2nMUpiFuyY0um0SqWSUqnUTIRg0ngb9J/8o5HdASxgtxevDg/CFnV5KQAAcM5M7xEmSd/61rcUj8f18OFDeTwetdvtkR8A+m1sbMz8sjSfz3dm4FWtVucq4Dn5fbY6QysUCqlWq420t9PJ7xcbm4+uE4JJk20wb7feEMvqSZu9e68RgmEedJYrfvx/SP/nc9L/94+l62vH//t/Picd/h/S/29OTtwEAACza6ZnhN2+fbu7EXQnBBsHYRjwe50gadCLfLs3Lx93vHw+r0rl9PSAXC7Xt3m4Haa1f9Lu7m7f+1ZntXaCi3Q6PfZpmVZmns07O39Wa7VaNwQLhUIztYzw5s2bfb8LpVJJ2Wx24Nf0/tzM2yzKecSeU5PrLFdc/f9I//Z/O34AAADYbaaDsJMhWCwWUzwel8/nG3mfsFu3bumjjz6aYrfA7DNNs7t0btQXxh9//LGtvVgJMEKhkPL5/KklktVqVdvb20ODAKsMw1A8HlcsFrP9dNmTp/2N8n0PhUIyDEO5XM7S7KSTM8Bu3rxpvdEZc/L/488LKu2c9dY7+27QuG7MpkwkEn17zRWLxaE//733s7m5Oc32IPacAgAAmBczHYTVajV5PB75fD7t7u7qypUrY4+1sbGhp59+2sbugOmZxgtt0zS1vr7eDRRGXSpld09Wx+ucHHtyiWBnI/NJN4OvVquKx+Pd0M1uvbN4Rg3ZOkHY9va2wuGwUqnUwPre8UOhkG1BodXnqrdu2NcM+/zJ2WxnzYDqhIS97NwQvlKpnAouz7reSSd/twzDOLW0cZwee/eA65xmed7Pf61W6y4hzufzMzW7zUntttQaMil8xXMcYgEAAGA5zPQeYZ1/uG9ubk4UgnXGunqV3VUxH86bjTLuMrBqtapoNNp9YXzjxo2Rrz/JErRJZ+3s7OycOZMqHo9re3t7rDFN01Q6ne6GYHt7e5bDAqvBUKlU6t57KpUaObTrDU/S6bTS6fS51y6VSn3fi2FLR3ufT7f3izvv+r3fr1wup3Q6rWq1qkqlonQ6rXA4fCrksfq7c9Y1T4ZvyWRS29vb3RmI4XD4VKhVLBa7Bxt0xjwZhHWeN8Mw+vYgO6u3Qc9FIpHoC2uTyeSZ9aZpamNjQ9Lxz915gajV5733e+r2z8qoWm3p4uuDH8OCMgBna7elL1qDH+xOAgCYSe0ZFovF2isrK+2f/exntoxXq9VsGQezYW1trS2pvba25nYrtkulUm1Jpx6xWKxdr9eHfv3R0VF7Z2ennc1m26FQ6NQ45XL53K+t1+tnXltS++joaKz7iUQiZ45XLBZHGiebzZ45TiQSae/s7Fga4+joqJ3P59s+n6/7PR12Xyev6/P5hl6n9/sYi8Us9XZSsVg8834TiUQ7m822i8ViO5VK9T3HVn9GTj4n5/1MHB0dnfpenyeRSFh6fnd2dvrqUqnUudfuPE8nHz6fr/uc99ZEIpF2vV4/9Zxa7e1kXe8jn8+32+2zfz8TiUTfOOf9rJ51r1afi45yudy9Z5/P1y4Wi+16vd6u1+vtYrHY/Xno9HsWq8/Bybpxf5bd8vkX7ba+O/jx+RdudwnMJ36/AACTcPP1/EwHYeVyue3xeNo/+tGP3G4FM2gRg7C9vb2BL8TtepwV/BwdHbWLxeK5wYOkdigUaheLRcuB2N7eXjsWiw3sJZvNWgpuOnZ2ds4N1nw+XzuRSLSLxWJ7Z2envbe3197Z2WkXi8V2Pp/v+zqfzzc0cOg4KxwMhULnhm+9QcXJgGQUOzs73T7L5XI7lUq1Y7FYOxKJ9D1PnfseFgZ2fr7Oe44jkUg3PBlUGwqF2olEovtzcDKMOxmcdMbc2dk59+chFAqdGcYcHR31jR+JRNrZbLavpvOxkz9HR0dHQ+/3rGvm8/nu9UKhUDubzfb9zB8dHXXvo/d7dlJvEB2JRPp+3kZ5Ls5TLBbbsVisLxTrfN15v6ODfid7n4N6vT6wblhvs4IX6sD08PsFAJiEm6/nPe32bE9ajkajWllZ0YMHDyYe6+c//7n+4i/+woauMAuCwaAODg60tram/f19t9uZSKlUsnya4KQikYj29vb6PuYZY4Mcn8+no6OjMz+XTCbPPO1xmJ2dHcvLByuVira2trrLPa0KhUJKp9NKpVIj7ZvU2Y/q5H35fD5du3atu5H57u5udw+ocrk88R5mAMb3Ret4+eMgn78hXZjpjSKA2cTvFwBgEm6+np/5IMwwDP3xH/+xfvazn+lf/st/OdFY169ftyVQw2xYpCAM4zNNU9VqVXfv3pVhGN29mKTj0KtzMMD169eVSCRGPiRg2PU61+xc59q1a0omkwRgwAzghTowPfx+AQAmQRA2RKlU0ubmpj7++OOxx3j06JFWV1f1xRdf2NgZ3EQQBgAYhBfqwPTw+wUAmISbr+cvOnq1Ef385z+XJP3BH/yB/H6/nnnmmTNPjhvGNE3du3fP7vYAAAAAAAAwR2Y6CPvBD36ghw8fdt9vt9va3t4ea6x2uz3WPkgAAAAAAABYDDM9WfnGjRtqH59sKWm8Db0BAADO89bD4TUAAABYHDMdhHVO0fN4PN1AbNwHAABYLlZCrlcqhGHAtPC7BQCYRTO9NPLy5cuKRCJ6+PCh8vm8IpGIVldXRx7HMAz94Ac/0K9+9Sv7mwQAADPn0WPptXes1b76tvT8n0jeS1NtCVgoVoPmCyvSi1en3w8AAFbNdBAmSTdv3lQ4HNZ3vvOdsce4evWqXnjhhbFCNAAAMH9+WpM+/Z212k8+k+7UpG9/Zbo9AYuCoBkAMM9mPgiLxWJ68OCBLWNdu3bNlnEwWxqNhoLB4MCaTCajTCbjUEcAALe9+8Fo9e99QBAGWEXQDAAYpFAoqFAoDKxpNBoOdXPazAdhV69eVT6ft2Usu8bBbGm1Wjo4OBhY02w2HeoGADALjn473XpgmRE0AwAGaTabQ1+ju2nmgzBJunLlii3jXL3KBgWLaGVlRYFAYGCN1+t1qBsAwCzwPzndemCZETQDAAbxer1aW1sbWNNoNNRqtRzqqJ+rQdivfvUr/emf/qmbLXTNUi8YTSAQ0P7+vtttAABmyPPPSu//2nr9c89Orxdg0RA0AwAGsbI1UTAYdG3W2IorV/1fotHoTCxZe/TokaLRqNttAAAAm7wUkb78JWu1Tz0hvRyZbj/AInl+xOCYoBkAMEtcDcLa7babl+8zS70AAIDJXL4k/eRr1mpvfZ0T7YBREDQDAOaZq0GYx+Nx8/J9ZqkXAAAwuRctbA16J2GtDsDvETQDAOYZM8IAAMDS+gYhGDAWgmYAwLxyNQiTpA8//NDtFrS7u+t2CwAAAMBCIWgGAMwiV0+NlKSNjQ1997vflc/n0+rqqqPXPjw8lGEYymazjl4XAAAAAAAAznM9CNvb21MymXS1h3a7zR5hAAAAAAAAC871IKzDrf3CCMAAAAAAAACWg+tBmNsb5rt9fQAAAAAAADjD1SDs6OjIzcsDAAAAAABgibgahF2+fNnNywMAAAAAAGCJuL40EgAAYBpWPNLnbwyvATA6fr8AAPOKIAwAACwkj0e6wAtxYCr4/QIAzCuCMAAAAAAzq92WWkPOt1rxHIdzAAAMQxAGAAAAYGa12tLF1wfXfP4GM9QAANasuN0AAAAAAAAA4ARmhGHuNRoNBYPBgTWZTEaZTMahjgAAAAAAWE6FQkGFQmFgTaPRcKib0wjCMPdarZYODg4G1jSbTYe6AQAMwl4/AAAAi63ZbA59je4mgjDMvZWVFQUCgYE1Xq/XoW4AAIOw1w8AAMBi83q9WltbG1jTaDTUarUc6qgfQRjmXiAQ0P7+vtttAAAAAACw9KxsTRQMBl2bNcZm+QAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgsZhD169Eibm5sjfU2z2dSvfvWr6TQEAAAAYGreeuh2BwCAebGQQZhhGNre3rZc/6Mf/Uh+v18bGxu6fv36yCEaAAAAgOmwEnK9UiEMAwBYs5BBWMc//MM/6Mc//rE2Nzf185//XM1m81TNw4cPlcvlFIlE9ODBAz148EChUEg3b950oWMAAAAAHY8eS6+9Y6321bel5uOptgMAWAAX3W5gGqrVqtrttkKhUN/Hw+GwdnZ29Id/+Ifdj929e1eSFIvFuh/b2NhQuVzW3//93+uf//N/7kzTAAAAAPr8tCZ9+jtrtZ98Jt2pSd/+ynR7AgDMt4WbEdaZ4eXxeNRut7uPK1eu6De/+Y3i8Xhffa1Wk8fj0dNPP9338WQyqW9+85tOtg4AAACgx7sfjFb/3oj1AIDls3BBWLFYlCS1222lUinV63W1Wi395je/UavV0p/+6Z/qzTff7NYfHh5Kknw+X984sVhMe3t7bKAPAIDD2OcHQMfRb6dbDwBYPgsXhO3u7ioSiaher+vWrVu6cuVK3+dv376tnZ2doeOsrq5KOl5mCQAA7MGm1wBG4X9yuvUAgOWzcEHYhx9+qF/+8penArBe9Xq9+7ZpmpJ+H3x1XL58WZL04MED+5sEAGAJsek1gFE9/+xo9c+NWA8AWD4LF4T5/X55PJ5zP3/79m2Fw+Hu++ctjXz06JGk3wdlAABgMuNseg1gub0Ukb78JWu1Tz0hvRyZbj8AgPm3cEHYCy+8oEQioX/4h3849bkf//jHyuVyqtV+/y/rTtB18oRJwzAknQ7IAADAeNj0GsCoLl+SfvI1a7W3vi55L021HQDAArjodgN2y+fzCofDCoVC3YdhGN1gS5J++MMf6lvf+lbfCZKdGWAdxWJRHo/n1JJJAAAwHja9BjCOF68e7x04yJ3EcR0AAMMsXBAmSTs7O0omk3r48GHffmCSVCqV9MILL6jdbiuRSMjj8Wh9fV3f+c539NWvflUbGxuqVqsqlUryeDxKJpMu3QWsajQaCgaDA2symYwymYxDHQEAzsKm1wCm5RuEYAAwMwqFggqFwsCaRqPhUDenLWQQFgqFtLe3p0qlonv37qlWqykUCimdTuuFF16QJCUSCd27d0/37t3Tm2++qVarpWvXrimbzfaN8+d//udu3QYsarVaOjg4GFjTbDYd6gYAcJ7nn5Xe/7X1eja9BgAAmD/NZnPoa3Q3LWQQ1pFIJJRIJCx/fnd3V8lkUvfv31coFNL777/vRJuY0MrKigKBwMAar9frUDcAgPO8FJG++wtrG+az6TUAAMB88nq9WltbG1jTaDTUarUc6qifp91ut1258gx79OiRLl++7HYbGCIYDOrg4EBra2va3993ux0AmEvtttQa8i+BFY804EDmkdzZG77XjyT93zfY7wfAsS9a0sXXB9d8/oZ0YeGOAQOAxeXm6/mFnhE2zKNHj/TDH/5QW1tbfR8nBAMALItW2+ILTJuCMDa9BgAAgJuW+u8mly9fVrlc1t/8zd+43QoAAPhf2PQaAAAA07KwM8KazaZ2d3dlmqYODw/PrKnX6zIMQ7du3dK/+3f/zuEOAQAAAAAA4KSFDMI2Nze1vb1tuf68oGyaDMNQOp3Wzs6Opdp8Pq9qtSrDMOTz+RQKhXTt2jXlcjmFQqGZ6FOStre3tbOz0w0hQ6GQIpGI0um0YrHY1PoEAAAAAAAYZuGWRv7sZz9TPp9Xu9229JCkfD5v2/VN05TH4xn6CIfDlgKs7e1thcNhlUolGYbRvUatVlOpVFI4HB4p9JtWn9VqVX6/X7lcTpJULpdVr9eVz+dVq9UUj8cVj8dlmubIvQIAAAAAANhh4WaEFYtFxWIx5fN5+Xw+ra6uqlQqKZVKdWsODw91dHSkVCqlSqWiP/qjP7Lt+qVSyXJtJzQ6TzweV7Valc/nUywWUygUkmEYqtVq3VCsM04oFFIikXClz2q1qng8LklKpVIqFovdz3X6ikajqlarikaj2tvbk8/ns3x9AAAAAAAAOyxcEGYYhn7zm9/0fczn8/WdBHn58mVduXJFpVJJyWRSDx48sO36J0+gPE8n2DpPLpdTtVpVPp9XNps99fnt7e2+gCqZTHZnuDnZp2maSiaTko5Dr94QrFe5XFY4HJZhGEomk5aXWgIAAGC5rXiOT68dVgMAgBULF4SdFdrcuHFDb775pr75zW/2fTwSiaher+tv//Zv9Zd/+ZcTX7tUKsk0TWWz2e4MqfNcu3bt3M8ZhtHda+u8fbWy2azq9XrfzK5araZIJOJYn9JxANdZ7jho5lhnZlilUlG1Wj01Sw8AAAA4i8cjXSDoAgDYxNMeZRrRHLh+/fqZM7xeffVVbW9vy+v19n38j//4j+XxePTrX/964muHw2FJx6dRTiKZTOr69etnzgTrZZqm/H5/9/3zZo9Nq0/DMLpjSdLR0dHAJY+VSqU7e8zn8+no6Gii6weDQR0cHGhtbU37+/sTjQUAy+qLlnTx9cE1n78hXbBpV1GnrwcAo2i3pdaQV0crnuNwDgAwPjdfzy/cjLBoNKqbN2/q5s2bkqS/+Iu/kHS8d1Vnn6o//MM/lCT9+Mc/lmEY8tjwX7JKpSLDMM5dGjiKzmytYTqnR3b2C7Oy75adffYeMhCLxYZev3cPM9M0ValURtrXDAAAAJimVttiWE8QBgBza+GCsFwup3A4rEqlIuk4rPn3//7fKxKJ6I/+6I8UCoXk8/n6Ti+0ciriMFtbW/L5fLpx48bEY42yf9bh4WH37WHLGCV7++xdlmllSaakvuDu7t27BGEAAAAAAMAxCxeEXblyRffu3esGPb2zlMrlsq5cuXJqSd6wUxGHqdVqqtVqkiS/369QKKRYLKZ4PD7VoMc0zW6gF4vFhoZRdvbZGafj+vXrlr4uEol0g7BOWAkAWB5seg0AAAA3LeQOHIlEQq1WS/V6vW+DfJ/Pp48++kgbGxuKRCKKxWIql8unNtEf1ckgzTCM7omUHo9HyWTyVHBkh3v37kk6nmVVLpcd7bNarfa9b3VW3cm6aXxfAACzy+M53v9r0IO9dwAAADAtCxmEdVy5cuXUxy5fvqxisajd3V29//77euGFFya6hmEYp0KhkyqViqLRqNLp9ETX6mWaptLptCKRiHZ2dobuz2V3nycPJLCyP5kkPf30033v7+7uWvo6AAAAAACASS3c0kinhUIhFYtFmaaper2uarXaXfp3UqlU0u7urvb29ia6pmEYisfj8vl8un//vqUQyu4+T37tuDPCJj25EgAAAAAAwKq5nBH24x//eKbGS6VSymazKhaLqtfrOjo6Uj6fPzOgqtVqisfjY1+rUqkoHA7LMAyZpim/36/t7W3H+zwvRBtV76EFAIDZ9NZDtzsAAAAA7OFpt9ttt5sY1fXr108tzZul8XpVKhVtbGycCnzy+byy2aylMUzTVKlUUrFYPDeASiQSlvYJs6tPz4kNXKz+GFWr1b6AbZK+g8GgDg4OtLKyokAgMNYYvTKZjDKZzMTjAMA8ubMnvWLh7JL/+4b04tXp9wMAbvqiJV18fXDN528c72cIAMuoUCioUChMPE6j0VCr1dLa2pr29/dt6My6uVwaube3p7/5m7/RxsaGvF7v2OM0m03dvXt3qhu2JxIJxWIxra+v911na2vLchBWrVZVr9cVi8XO3eurUqloe3vb8pjT6HMcdswIa7VaOjg4mHicZrM58RgAME8ePZZee8da7atvS8//ieS9NNWWAAAAMMOazaYtr7/dNJdBmCRls9mpBjR28vl82tvbUzQa7YZMpmmqWq0qFosN/fpEIqFEItH3sVKppFwu1xck5XI5pVIpyxvXT9Knz+ezJcQat9deds0ImyRUBYB59NOa9OnvrNV+8pl0pyZ9+yvT7QkAAACzy+v1am1tbeJxOjPC3DC3QZhkfTneMCeX+U3L7du3FY1Gu+/v7OxYCsLOkkqlFIvFFI1G+wKpUqk0cUBopc/V1VVbgrDV1dWJxwgEAo5PpQSARfDuB6PVv/cBQRgAAMAys2tLoc5WR26Y69XtTgVYdolEIn2B0qQbzodCId2/f7/vY3bsdWalz3Fncp0Mz+yYEQYAGM/Rb6dbDwAAAMyauQzCXnjhBbXbbbXbbcXjcVWrVR0dHY30qNfr2tvb03e+8x1He5/kxMizRCKRvmWTdp3mOKzPa9eu9b1vdXbY4eFh3/vhcHikvgAA9vE/Od16AAAAYNbMZRBWLpd1dHSk73znO3rw4IHi8bhu3rypWq2my5cvW3pcuXJFV69eVT6f15UrVxzrPRQKdd+2Y1mgJN28ebP7th3LFaXhffYunZSsB3D1er3v/XGXhgIAJvf8s6PVPzdiPQAAADBr5jIIk6TLly8rn8/r8PBQd+/e1f/8n/9T6+vreuaZZ/S3f/u3I43lZBjTGzDZtSwwEonYPuawPk/OCLMahPUGdT6fr+86AABnvRSRvvwla7VPPSG9HBleBwAAAMyyuQ3CeiUSCe3u7mp3d1d/+qd/qo2NDT399NP63ve+p2azOfTrb9265UCXx3Z3d7tv271MUjodUI1rWJ+RSKQvILO6N1nvuHb1CgAYz+VL0k++Zq321tcl76WptgMAc+Gth253AACYxEIEYR2RSKS7bDKXy+nWrVvy+/36V//qX+nv//7v3W5PUv/SQLtmovXOxrIrXLPS540bN7pv12o1S+P21uVyuTG7AwDY5cWrw2vuJKzVAcC8sxJyvVIhDAOAebZQQVjH5cuXlc1mu8smf/Ob3ygSiej69ev6u7/7O1d7q1QqkqRsNmvbmJ1wyefz9W2cPwkrfabT6e7b1Wp16Ji9NaFQiP3BAGBOfIMQDMASePRYeu0da7Wvvi01H0+1HQDAlCxkENars2zywYMH+qM/+iO98MILevrpp/U3f/M3lpZN2qlSqcgwDPl8Pm1ubto27tbWliTp9u3btoxntc9IJNIXZnXCs/OUy+Xu28wGAwAAwCz5aU369HfWaj/5TLpjbUEEAGDGLHwQ1hGJRPTmm28qlUrp6OhI2WxWfr9fr732mj766KOxxqxWq/L7/fJ4PIrH4wOXBxqGoY2NDUnS/fv3B25qv729rWg0qlwuN/QUyE5NNps9dzbYtPqUpGKx2H27E8idxTRNlUolScdLLVOp1MBxAQAAACe9+8Fo9e+NWA8AmA1LEYR99NFH+ta3vqXV1VXdvn1bHo9HktRut3Xr1q2+JX6jKJfL3aCqWq0qGo2eOVbnc6urq6rX632nPJ5kmqZyuZxqtZq2t7fl9/vPnT2VTCa1vb2tfD6vfD7vaJ8doVCoO9Or0/NZ1tfXJR0v3+ydGQYAAADMgqPfTrceADAbFjoI+9WvfqWvfvWrCofDKpVKarfbko4DsHa7rVQqpXq9rv/8n//zWOMnk8lTHyuVSvL7/Uomk0qn04pGo4rH40qlUtrb21MoFBo4ps/nO1XTCcSSyaRyuZzi8bj8fr+k403th+03No0+eyUSCe3s7Mjn8ymXyymZTKpWq8k0zW64VqvVFIlE9OGHHw6dZQYAAAA4zf/kdOsBALNhIYOwn//857p+/bqi0aiq1Wo3+JJ+v5H+0dGRbt26pStXrox9nVgspnq9rlQqpVAo1Bfw1Go1HR4eanNzU0dHR8rn85YDoL29PWWzWUUikVNjGoahZDKpDz/8UOVy2VJgNa0+T16j8/WGYWh9fb0btK2urqpcLmtvb48QDAAAADPp+WdHq39uxHoAwGzwtDsJ0ZxrNpsqlUra2trqLgPsvbVQKKRcLtfd/wrzLxgM6uDgQGtra9rf33e7HQCYS1+0pIuvD675/A3pwkL+6QwAfu/RY2ntB9Y2zH/qCelgU/Jemn5fALCI3Hw9P/f/rO3s/9XZS+vo6EjS70OwWCymnZ0d/eY3vyEEAwAAAHCmy5ekn3zNWu2trxOCAcC8mtsg7Fe/+pVu3rx5av8vSX37f73//vvdjdrP8+abb067XQAAAAAz7sWrw2vuJKzVAQBm00W3GxjH9evXVavVJPUvf7x8+bJSqZQ2Nzd1+fJly+MVi0V985vftL1PAAAAAIvlG4RgADDX5jII29vb677t8Xi6+3+NE2bdvn27G6phPjUaDQWDwYE1mUxGmUzGoY4AAAAAAFhOhUJBhUJhYE2j0XCom9PmMgiTjgOwzmywUCikcrmscrls+esPDw9lGEZ3Y33Mr1arpYODg4E1zWbToW4AAAAAAFhezWZz6Gt0N81tENZutxWLxeTz+bS6ujrS1x4eHqrdbuvKlSuq1WryeDxT6hJOWFlZUSAQGFjj9Xod6gYAAAAAgOXl9Xq1trY2sKbRaKjVajnUUb+5DcJM07Ql3KhWq/rqV79qQ0dwSyAQcPy4VQAAAAAAcJqVrYmCwaBrs8bmMgiLxWK2zfCJxWK6epUdLwEAy2nFI33+xvAaAAAAYBHMZRCWTqdnejwAAOaFxyNdIOgCAADAklhxuwErfvzjH+uXv/xl9/0XXnjB1vE3NjZsHQ8AAAAAAACzZy6CsP/23/6b4vG4/vZv/3aicW7fvq0LFy7on/2zf6a///u/t6k7AAAAAAAAzIO5CMKk41MiU6mUvve97409Ri6XU7vd1m9+8xtFIhF99NFH9jUIAAAAAACAmTZ3e4S9//77qtfrunv37shfe+XKFT169EixWEzScTA2zjgAAExTuy212oNrVjzH+3sBAAAAsG7ugrDd3V0lk0ldv35dv/zlL/VP/sk/sfy1e3t7fe8/88wzdrcHAMDEWm3p4uuDaz5/g03uAQAAgFHNzdLIXuVyWclkUpFIRP/wD/8w1hgffvihDg8Pbe4MAAAAAAAAs2ruZoR1ZLNZRSIRRSIRVSoV/Yt/8S8sf+2jR48Uj8d17dq1KXYIAAAAYJ6seI5n3A6rAQDMr7mcEdYRi8X04MEDbWxsWD5R8pe//KVCoZA+/PBDJZPJKXcIAAAAYF54PNKFlcEP9mcEgPk210GYJIVCIe3u7uru3btDT5T80Y9+pHg8rqOjI/l8Pn3zm990qEsAAAAAAAC4be6DMEny+Xx6//33dXh4qJs3b55Zs7m5qe9+97tqt9vyeDzK5/MOdwkAAAAAAAA3LUQQ1nHr1i2tr6/r+vXr+sd//Mfux+/fv98NvjwejyKRCLPBAAAAAAAAlszcBWH/5b/8l4GfT6VSKhaL+vM///PuiZKdEKzdbve9DwAAAAAAgOUxF0HYlStXJB0HWalUqhtwnScSieju3bt64YUX9POf/1zValWe/7WrZSQS0Z//+Z9PvWcAAAAAAADMlrkIwvL5vI6OjlQul7W+vq5YLKY333xz4Nd0NtG/detW92Mej+fcPcQAAAAAAACw2C663YBVly9f1gsvvKAXXnhhpK97//33lcvl9KMf/ai7PxgAAAAAAACWz9wEYZPI5/O6fv26bty4oQ8//NDtdmCzRqOhYDA4sCaTySiTyTjUEQAAAAAAy6lQKKhQKAysaTQaDnVz2lIEYZKUSCS0u7ur7373u/rLv/xLt9uBjVqtlg4ODgbWNJtNh7oBAAAAAGB5NZvNoa/R3bQ0QZh0vFH++++/73YbsNnKyooCgcDAGq/X61A3AAAAAAAsL6/Xq7W1tYE1jUZDrVbLoY76edrtdtuVKwMTCgaDOjg40Nramvb3991uBwBs80VLuvj64JrP35AuzMWRNwAAAEA/N1/P809oAAAAAAAALAWCMAAA5tBbD93uAAAAAJg/BGEAAMwYKyHXKxXCMAAAAGBUBGEAAMyQR4+l196xVvvq21Lz8VTbAQBMSbt9vCfkoAe7OQOA/Zbq1EgAAGbdT2vSp7+zVvvJZ9KdmvTtr0y3JwCA/VptiwejeJzpBwCWBTPCAACYIe9+MFr9eyPWAwAAAMuMIAwAgBly9Nvp1gMAAADLjCAMAIAZ4n9yuvUAAADAMiMIAwBghjz/7Gj1z41YDwAAACwzgjAAAGbISxHpy1+yVvvUE9LLken2AwAAACwSgjAAAGbI5UvST75mrfbW1yXvpam2AwAAACwUgjAAAGbMi1eH19xJWKsDAAAA8HsEYQAAzKFvEIIBAAAAIyMIAwAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUrjodgPApBqNhoLB4MCaTCajTCbjUEcAAAAAACynQqGgQqEwsKbRaDjUzWkEYZh7rVZLBwcHA2uazaZD3QAAAAAAsLyazebQ1+huIgjD3FtZWVEgEBhY4/V6HeoGAAAAAIDl5fV6tba2NrCm0Wio1Wo51FE/gjDMvUAgoP39fbfbAAAAAABg6VnZmigYDLo2a4zN8gEAAAAAALAUCMIAAAAAAACwFAjCAACwoN2WvmgNfrTbbncJAFgkbz20Zxz+GwYAv8ceYQAAWNBqSxdfH1zz+RvSBY8z/QAA5puVkOuVinRhRXrx6mTX4r9hAPB7zAgDAAAAAAc9eiy99o612lfflpqPp9oOACwVgjAAAAAAcNBPa9Knv7NW+8ln0p3adPsBgGVCEAYAAAAADnr3g9Hq3xuxHgBwPvYIAwBgxqx4jvdqGVYDAJhPR7+dbj0A4HwEYQAAzBiPhw2LAWCR+Z+cbj0A4HwsjQQAAAAABz3/7Gj1z41YDwA4H0EYAAAAADjopYj05S9Zq33qCenlyHT7AYBlQhAGAAAAAA66fEn6ydes1d76uuS9NNV2AGCpEIQBAAAAgMNevDq85k7CWh0AwDqCMAAAAACYQd8gBAMA2xGEAQAAAAAAYCkQhAEAAAAAAGApXHS7AWBSjUZDwWBwYE0mk1Emk3GoIwAAAAAAllOhUFChUBhY02g0HOrmNIIwzL1Wq6WDg4OBNc1m06FuAAAAAABYXs1mc+hrdDcRhGHuraysKBAIDKzxer0OdQMAAAAAwPLyer1aW1sbWNNoNNRqtRzqqB9BGOZeIBDQ/v6+220AAAAAALD0rGxNFAwGXZs1xmb5AAAAAAAAWAoEYQAAAAAAAFgKBGEAANjkrYdudwAAAABgEIIwlxiGoXg8brk2nU4rHA7L4/HI7/crGo0qnU7LMIyxrl+r1frG9Hg8CofDyuVyMk1zrDGtGuXeAWBWWAm5XqkQhgEAAACzjCDMZqZpdoOlQY9wOKxQKDR0vO3tbYXDYZVKpW7oZZqmarWaSqWSwuGwtre3R+ovmUwqGo32jSkdB1Tb29vy+/0qlUqu3zsAzIpHj6XX3rFW++rbUvPxVNsBAMB2/CEHwLLg1EibjRIg5XK5gZ+Px+OqVqvy+XyKxWIKhUIyDEO1Wq0vwMrlcgqFQkokEgPHM01T0WjU0iyydDqtvb09FYtFazcje+8dAGbJT2vSp7+zVvvJZ9KdmvTtr0y3JwAArLI6q/nCivTi1en3AwBuYkaYzba2tizVdYKt8+RyOVWrVeXzeR0dHalcLiufz6tcLqteryufz/fVJ5PJoddMJpMyDEORSKQ7Tr1eV7lcVjabPVVfKpVUqVQs3Y9k370DwKx594PR6t8bsR4AgGlhVjMA9GNGmI1KpZJM01Q2mx26B9a1a9fO/VxnieLOzo5isdiZNdlsVvV6vW8WVq1WUyQSObe3arWqbDZ7KkTrzCZLp9NKJpOq1Wrdz21sbAydadYZ3457B4BZdPTb6dYDADAtzGoGgH6edrvddruJRREOhyVJ9Xp9onGSyaSuX79+5iytXqZpyu/3d9/P5/Pnfk1nX66dnZ2BYxqG0b2PjkGBXO/40uT3PopgMKiDgwOtra1pf3/fsesCWD5f/U/S+78eof4Z6Rf/enr9AADm3xct6eLrg2s+f+N4ueIk+G8YgFnk5ut5ZoTZpFKpyDCMkfbUOk9nZtUwPp+vu29Y5/2zdPYU29vbGzpmKBRSPp/v28OrVqsNDMLsvHcAmEXPPzvai4jnnp1eLwCAxbDiOQ66htVMilnNANCPPcJssrW1JZ/Ppxs3bkw81rBZW70ODw+7b5+35PDu3btKpVLnBmUnnQy9Pv7444H1dt47AMyilyLSl79krfapJ6SXz16lDgBAl8dzPNtr0MNjQxDmf3K69QAwbwjCbFCr1VSr1bpLFcPhsNLp9EgbzY/DNE2ZpinpOLw6b3+wmzdvntoXbJCT45xcKtnLrXsHACddviT95GvWam99XfJemmo7AABY9vyIs5SZ1Qxg0RGE2aB3GaF0vM9WqVRSMpmUx+M5tQG9Xe7duyfpeDljuVw+ty4SiVieDSapG651DDvdspdT9w4ATrNynPydBMfOAwBmC7OaAaAfQdiEDMNQtVodWFOpVBSNRpVOp227rmmaSqfTikQi2tnZGSnoGqaz51jHefuDuXXvADCrvkEIBgCYMcxqBoB+bJY/oVAopGKxKNM0Va/XVa1WTwVJHaVSSbu7u5Y2rR/EMAzF43H5fD7dv3/f1hBMknZ3d7tvp1Kpc+vcuHcAAAAAo3nxqvTKkJ1LmNUMYFl42u122+0mFo1pmiqVStra2jq1zFA6nmE1yob4vSqVipLJZN/H8vm8pVMmrYpGo93ljPV6feDSyJOmee8nuXncKoDl49Qx9wAA2I3/hgGYNW6+nicIm7JKpaKNjY1TodAo4VUnXCoWi+fOuEokEgP3CbPKMIzu5viTBmx23PsgnV+clZUVBQKBicfLZDLKZDITjwNgMfEiAgAwr/hvGAC7FAoFFQqFicdpNBpqtVoEYYvKNE2tr6/3bRrv8/l0dHRk6esrlUp3FtWgfbnsCJjS6bRKpZJCoZDq9fpEY0mT3/sgnSDMLn/1V3+l73//+7aNB2Cx8CICADCv+G8YALt8//vf11//9V/bNp4bQRh7hDnA5/Npb2+vb8mhaZqqVqvnbkTfK5FIKJFI9H2sVCopl8v1zbbK5XJKpVJj7xlWq9VUKpXk8/lsW7446b1bYdeMMK/Xa0M3AAAAAAAsJq/Xq7W1tYnH6cwIcwNBmINu376taDTafX9nZ2fsMCiVSikWiykajfaFYaVSaexZYRsbG5Kk+/fvj7QvmBV23vtJgUCAPcIAAAAAAJgyu7YUsnuF1yiY/OqgSCTSF/6ct9+XVaFQSPfv3+/72IMHD8YaK51Oq1arqVwuKxKJTNTXWey+dwAAAAAAgFERhDksHo/bOl4kEulbNjlOwFQqlbqb8Z9cgmknu+8dAAAAAABgFARhDutdcri6umrLmDdv3uy+ffKExmGq1arS6bSKxaJSqZQt/ZxnGvcOAAAAAABgFUGYw3rDoHE3tT+pdynjKGPWajXF43Hl8/mph2DSdO4dAAAAAADAKoIwh+3u7nbfnsZSwWvXrlmqMwxD6+vrymazY2+uP6pp3zsAAAAAAMAgBGEOq9fr3bftOjWxd18wKwGTYRiKRqNKpVLK5/OWr7G9vT12j9J07h0AAAAAAMAqgjCHVSoVSbJ1FlatVpN0vNxw2Gb3pmkqHo/rxo0blkMwSUomkxOHV9O4dwAAAAAAAKsuut3AMqlUKjIMQz6fT5ubm7aNu7W1JUm6ffv2wDrTNBWNRhUKhZTL5SydMGkYhnK5nKT+vchGNa17BwAAADA72m2p1R5cs+KRPB5n+gGAkwjCJlCtVpVMJmWapmKxmPL5/LlhkWEY2tjYkCTdv39/4Gbx29vbunv3rmKxmDY3NwfW5nI5maapbDY7dDbY+vq6DMOQYRgKh8ND769XsVjse39a9w4AAABgfrXa0sXXB9d8/oZ0gSAMgEtYGjmBcrks0zQlHQdD0WhU6XT6VF3nc6urq6rX6wNnVpmmqVwup1qtpu3tbfn9/u6MrJOSyaS2t7eVz+eHLnOMRqPdJZTjOHmq5DTuHQAAAAAAYJoIwiaQTCZPfaxUKsnv9yuZTCqdTisajSoejyuVSmlvb0+hUGjgmD6f71RNJxBLJpPK5XKKx+Py+/2SjjegH7bnVjKZtDUE64x50qT3DgCjarelL1qDH+0hyzMAAAAALA+WRk4gFoupXq8rn8+rWq3q8PCwO0uqVqspEoloc3NTsVhspOWAe3t72traUrValWEYfWNKxyFUuVy2PGa5XB7hrqyZ1r0DwChYfgEAAABgFARhEwqFQqf2z5qUz+cb6URHt0zj3gFgVq14jkO1YTUAAAAAZhdBGAAAFng8zCwDAAAA5h1BGAAAAAAsMGY1A8DvEYQBAAAAwAJjVjMA/B5BGOZeo9FQMBgcWJPJZJTJZBzqCAAAAACA5VQoFFQoFAbWNBoNh7o5jSAMc6/Vaung4GBgTbPZdKgbAAAAAACWV7PZHPoa3U0EYZh7KysrCgQCA2u8Xq9D3QAAAAAAsLy8Xq/W1tYG1jQaDbVaLYc66kcQhrkXCAS0v7/vdhsAAAAAACw9K1sTBYNB12aNrbhyVQAAAAAAAMBhBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoX3W4AALBY2m2p1R5cs+KRPB5n+gEAAACADoIwAICtWm3p4uuDaz5/Q7pAEAYAAADAYSyNBAAAAAA45q2HbncAYJkRhAEAAAAAbGEl5HqlQhgGwD0EYQAAAACAiT16LL32jrXaV9+Wmo+n2g4AnIkgDACw0PiLMwAAzvhpTfr0d9ZqP/lMulObbj8AcBaCMADA3GL5BQAAs+PdD0arf2/EegCwA6dGYu41Gg0Fg8GBNZlMRplMxqGOADhh1OUXz/+J5L001ZYAAFhqR7+dbj2A+VAoFFQoFAbWNBoNh7o5jSAMc6/Vaung4GBgTbPZdKgbAE4ZZ/nFt78y3Z4AAFhm/ienWw9gPjSbzaGv0d1EEIa5t7KyokAgMLDG6/U61A0Ap4yz/IIgDACA6Xn+Wen9X1uvf+7Z6fUCwD1er1dra2sDaxqNhlqtlkMd9SMIw9wLBALa3993uw0ADmP5BQAAs+WliPTdX1ibsf3UE9LLken3BMB5VrYmCgaDrs0aY7N8AMBcYvkFAACz5fIl6Sdfs1Z76+vs3QnAHQRhAIC59PyIyylYfgEAwPS9eHV4zZ2EtToAmAaCMADAXHopIn35S9ZqWX4BAMDs+AYhGAAXEYQBAOYSyy8AAAAAjIogDAAwt1h+AQAAAGAUBGEAgIXG8gsAAAAAHQRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKF91uAJhUo9FQMBgcWJPJZJTJZBzqCAAAAACA5VQoFFQoFAbWNBoNh7o5jSAMc6/Vaung4GBgTbPZdKgbAAAAAACWV7PZHPoa3U0EYZh7KysrCgQCA2u8Xq9D3QCw4q2H0stRt7sAAAAAYDev16u1tbWBNY1GQ61Wy6GO+hGEYe4FAgHt7++73QaA/+Wth8NrXqlIF1akF69Ovx8AAAAAzrGyNVEwGHRt1hib5QMAbPPosfTaO9ZqX31baj6eajsAAAAA0IcgDABgm5/WpE9/Z632k8+kO7Xp9gMAAAAAvQjCAAC2efeD0erfG7EeAAAAACZBEAYAsM3Rb6dbDwAAAACTIAgDANjG/+R06wEAAABgEpwaCQCwzfPPSu//2nr9c89OrxcAAOC8FY/0+RvDa+zSbkut9vDreWy8JoD5RhAGALDNSxHpu7+wtmH+U09IL0cmu57T/9gGAACDeTzSBQf/29tqSxdfH1zz+RvO9gRgtrE0EgBgm8uXpJ98zVrtra9L3kuTXc/jkS6sDH7wF2AAAAAAHQRhAABbvXh1eM2dhLU6AAAAALATQRgAwHHfIAQDAAAA4AKCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALIWLbjcATKrRaCgYDA6syWQyymQyDnUEAAAAAMByKhQKKhQKA2sajYZD3ZxGEIa512q1dHBwMLCm2Ww61A0AAAAAAMur2WwOfY3uJoIwzL2VlRUFAoGBNV6v16FuAAAAAABYXl6vV2trawNrGo2GWq2WQx31IwjD3AsEAtrf33e7DQAAAAAAlp6VrYmCwaBrs8bYLB8AAAAAAABLgSAMAAAAAAAAS4EgDAAAAAAAAEuBIMwlhmEoHo9brk2n0wqHw/J4PPL7/YpGo0qn0zIMY+wetre3FY/H5ff75fF4FA6HlUwmVa1WZ2pMAAAAAAAAOxCE2cw0TXk8nqGPcDisUCg0dLzt7W2Fw2GVSqVu6GWapmq1mkqlksLhsLa3t0fqsVqtyu/3K5fLSZLK5bLq9bry+bxqtZri8bji8bhM03R1TAAAAAAAADtxaqTNSqWS5dpOaHSeeDyuarUqn8+nWCymUCgkwzBUq9X6ZoLlcjmFQiElEomh16xWq92ZaKlUSsVisfu5zhjRaFTValXRaFR7e3vy+XyOjwkAAAAAAGA3ZoTZbGtry1JdJ9g6Ty6XU7VaVT6f19HRkcrlsvL5fN9Mq17JZHLoNU3T7NaFQqG+wKpXuVyWdLwkc9i40xgTAAAAAABgGpgRZqNSqSTTNJXNZofu/3Xt2rVzP2cYhra3t7Wzs6NYLHZmTTabVb1e75uBVqvVFIlEzh03mUx2lyYOmo3WmcVVqVRUrVZVKpWUSqUcGxMAAAAAAGAaPO12u+12E4siHA5Lkur1+kTjJJNJXb9+XdlsdmCdaZry+/3d9/P5/LlfYxhGtz9JOjo6Grg8sVKpdGdu+Xw+HR0dOTLmKILBoA4ODrS2tqb9/f2JxgJgny9a0sXXB9d8/oZ0gTnJAABgQvy7A5hPbr6e5/8ObFKpVGQYxtB9v6zozCobxufz9S2vHBRC9S6ljMViQ/fo6t1vzDRNVSoVR8YEAAAAAACYFoIwm2xtbcnn8+nGjRsTj7Wzs2O59vDwsPv2oOWWvUsoBy2f7NUbst29e9eRMQEAAAAAAKaFIMwGtVpNtVqtu1QxHA4rnU5PfcaTaZrd/blisdi5YVStVut7//r165bG7x3v5L1MY0wAAAAAAIBpIgizwcnlkIZhqFQqKZlMyuPxKJlMngqO7HDv3j1Jx7OsOqcynqVarfa9P+i0ykF1vfcwjTEBAAAAAACmiSBsQoZhnAqFTqpUKopGo0qn07Zd1zRNpdNpRSIR7ezsDNyf68GDB33vD9vLq+Ppp5/ue393d3eqYwIAAACA3d566HYHAGbJRbcbmHehUEjFYlGmaaper6tarcowjDNrS6WSdnd3tbe3N9E1DcNQPB6Xz+fT/fv3h4ZQJ/sZd/ZW72mY0xgTAAAAAEZhJeR6pXJ8auSLV6ffD4DZRxBmg1Qq1fe+aZoqlUra2trq7uHVUavVFI/HR9oQv1elUlEymey+7/f7lc/nB54yeV4wN6ree5nGmAAWw4rn+JjyYTUAAACTePRYeu0da7Wvvi09/yeS99JUWwIwBwjCpsDn8ymbzSqbzapSqWhjY6Mv8KlWq9re3h4YXvXqBGvFYvHMACqXy+nBgwfn7hM2bth0cqZZ7wmV0xhzXI1GQ8FgcOJxMpmMMpnMxOMAy87jkS4QdAEAgCn7aU369HfWaj/5TLpTk779len2BCy6QqGgQqEw8TiNRsOGbsZDEDZliURCsVhM6+vrfRvDb21tWQ7CqtWq6vW6YrHYuXuSVSqVkcK1cUxj9pYdY7ZaLR0cHEw8TrPZnHgMAAAAAM5494PR6t/7gCAMmFSz2bTl9bebCMIc4PP5tLe3p2g02g3DTNNUtVpVLBYb+vWJREKJRKLvY6VSSblcri9IyuVySqVSp2Zd+Xw+WwKn3nGnMea4VlZWFAgEJh7H6/VOPAYAAAAAZxz9drr1AE7zer1aW1ubeJxGo6FWq2VDR6MjCHPQ7du3FY1Gu+/v7OxYCsLOkkqlFIvFFI1G+wKpUql0albY6uqqLaHV6urqVMccVyAQ0P7+/sTjAAAAAJgf/ienWw/gNLu2FAoGg67NLFtx5apLKhKJ9AVfk244HwqFdP/+/b6PPXjw4FTduLOuTgZdJ2eE2T0mAAAAAFj1/LOj1T83Yj2AxUQQ5rB4PG7reJFIpG/Z5Fnh2rVr1/retzqT6+RG9uFweKpjAgAAAIBVL0WkL3/JWu1TT0gvR6bbD4D5QBDmsFAo1H3bjmWBknTz5s3u22cFUr3LMSXrM9Hq9Xrf+72z2aYxJgAAAABYdfmS9JOvWau99XXJe2mq7QCYEwRhDusNwuxaFhiJ/P5PG2eNeXL2ltXQqjdU8/l8fb1PY0wAAAAAGMWLV4fX3ElYqwOwHAjCHLa7u9t92+5lktLpgEo6Dsp6A7Kz9hE7S2+vJ8edxpgAAAAAYLdvEIIB6EEQ5rDepYF2LQvsnY11Xrh248aN7tu1Ws3SuL11uVzOkTEBAAAAAACmhSDMYZVKRZKUzWZtG7MTLvl8vr6N83ul0+nu29VqdeiYvTWhUOjM0G4aYwIAAAAAAEwLQZiDKpWKDMOQz+fT5uambeNubW1Jkm7fvn1uTSQS6QueOoHcecrlcvft82ZuTWNMAAAAAACAaSEIm0C1WpXf75fH41E8Hh+4PNAwDG1sbEiS7t+/P3Cj/O3tbUWjUeVyuTNPgezVqclms+fOBusoFovdtzvh2VlM01SpVJJ0vHwzlUo5OiawLNpt6YvW4Ee77XaXAAAAALA4CMImUC6Xu0FVtVpVNBrtWy7Y0fnc6uqq6vV63ymPJ5mmqVwup1qtpu3tbfn9/nNnTyWTSW1vbyufzyufzw/tNxQKdWdldcY/y/r6uqTjpZa9s7icGhNYFq22dPH1wY8WQRgAAMBM4I+YwGIgCJtAMpk89bFSqSS/369kMql0Oq1oNKp4PK5UKqW9vT2FQqGBY/p8vlM1nUAsmUwql8spHo/L7/dLOt58f5T9xhKJhHZ2duTz+ZTL5ZRMJlWr1WSaZjewq9VqikQi+vDDDwfOXJvmmAAAAAAwS/gjJrAYCMImEIvFVK/XlUqlFAqF+gKeWq2mw8NDbW5u6ujoSPl83nIAtLe3p2w2q0gkcmpMwzCUTCb14YcfqlwuDw3Wzuu705NhGFpfX+8GbaurqyqXy9rb2xspsJrGmAAAAAAAAHbytNtM3sR8CgaDOjg40Nramvb3991uBxjZF63jvxwO8vkb0gX+ZAEAAHAmJ/89xb/dAPu4+XqeX1EAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACyFi243AEyq0WgoGAwOrMlkMspkMg51BAAAAADAcioUCioUCgNrGo2GQ92cRhCGuddqtXRwcDCwptlsOtQNAAAAAADLq9lsDn2N7iaCMMy9lZUVBQKBgTVer9ehbgAAAAAAWF5er1dra2sDaxqNhlqtlkMd9SMIw9wLBAKOH7cKAAAAAABOs7I1UTAYdG3WGEEYAAAAAAAzpN2WWu3BNSseyeNxph9gkRCEAQAAAAAwQ1pt6eLrg2s+f0O6QBAGjGzF7QYAAAAAAAAAJxCEAQAAAAAAYCkQhAEAAAAAAGApEIQBAAAAAABgKRCEAQAAAAAAYCkQhAEAAAAAAGApEIQBAAAAAABgKVx0uwEAmCXtttRqD65Z8UgejzP9AAAA4HwrHunzN4bXAEAHQRgA9Gi1pYuvD675/A3pwpz9g4qADwAALCKPZ/7+XQbAXQRhALAEFjXgAwAAAIBREIQBmHnMZgIAAAAA2IEgDMDMYzYTAAAAAMAOnBoJAAAAAACApUAQBgAAAAAAgKXA0kjMvUajoWAwOLAmk8kok8k41BEAAAAAAMupUCioUCgMrGk0Gg51cxpBGOZeq9XSwcHBwJpms+lQNwAAAAAALK9mszn0NbqbCMIw91ZWVhQIBAbWeL1eh7oBAAAAAGB5eb1era2tDaxpNBpqtVoOddSPIAxzLxAIaH9/3+02AAAAAABYela2JgoGg67NGmOzfAAAAAAAACwFgjAAAAAAAGzw1kO3OwAwDEEYAAAAAABDWAm5XqkQhgGzjiAMAAAAAIABHj2WXnvHWu2rb0vNx1NtB8AECMIAAAAAABjgpzXp099Zq/3kM+lObbr9ABgfQRgAzDCm1gMAALjv3Q9Gq39vxHoAziEIAwCXsM8EAADAfDj67XTrATiHIAwAXMA+EwAAAPPD/+R06wE4hyAMAFzAPhMAAADz4/lnR6t/bsR6AM4hCAMAF7DPBAAAwPx4KSJ9+UvWap96Qno5Mt1+AIyPIAwAXMA+EwAAAPPj8iXpJ1+zVnvr65L30lTbATABgjAAcAH7TAAAAMyXF68Or7mTsFYHwD0EYQDgAvaZAAAAWDzfIAQDZh5BGAC4gH0mAAAAAMB5BGEA4AL2mQAAAAAA5xGEAYBL2GcCAAAAAJxFEAYAM4x9JgAAAADAPhfdbgCYVKPRUDAYHFiTyWSUyWQc6giYT289lF6Out0FAAAAgHlWKBRUKBQG1jQaDYe6OY0gDHOv1Wrp4OBgYE2z2XSoG2A2vfVweM0rFenCCksxAQAA5gF/xMSsajabQ1+ju4kgDHNvZWVFgUBgYI3X63WoG2D2PHosvfaOtdpX35ae/xM25wcAAHATf8TEPPN6vVpbWxtY02g01Gq1HOqoH0EY5l4gEND+/r7bbQAz66c16dPfWav95DPpTk369lem2xMAAADOxh8xMe+sbE0UDAZdmzXGZvkAsODe/WC0+vdGrAcAAIB9xvkjJgDrCMIAYMEd/Xa69QAAALAPf8QEposgDAAWnP/J6dYDAADAPvwRE5gugjAAWHDPPzta/XMj1gMAAMA+/BETmC6CMABYcC9FpC9/yVrtU09IL0em2w8AAADOxx8xgekiCAOABXf5kvSTr1mrvfV1Th0CAABwE3/EBKaLIAwAlsCLV4fX3ElYqwMAAMD08EdMYLoIwgAAkqRvEIIBAADMBP6ICUwPQRgAAAAAAHOGP2IC4yEIAwAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUiAIAwAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUiAIAwAAAAAAwFK46HYDwKQajYaCweDAmkwmo0wm41BHAAAAAAAsp0KhoEKhMLCm0Wg41M1pBGGYe61WSwcHBwNrms2mQ90AAAAAALC8ms3m0NfobiIIw9xbWVlRIBAYWOP1eh3qBgAAAACA5eX1erW2tjawptFoqNVqOdRRP4IwzL1AIKD9/X232wAAAACwwFY80udvDK8Blp2VrYmCwaBrs8YIwgAAAAAAGMLjkS4QdAFzj1MjAQAAAAAAsBQIwlxiGIbi8bil2lqtpnQ6rXA4LI/HI4/Ho3A4rFwuJ9M0p9voFIxy78Aseuuh2x0AAAAAAMZBEGYz0zS7YdWgRzgcVigUGjpWMplUNBpVqVSSYRjdzxmGoe3tbfn9fpVKJUu9+f1+S72d9Uin047eO+AWKyHXKxXCMAAAAACYRwRhNrMaSklSLpc793OmaSoajapSqQwdJ51ODw2qKpXKRLPHrMzgsuveAbc8eiy99o612lfflpqPp9oOAAAAAMBmBGE229raslQXi8UGzopKJpMyDEORSETlcln1el31el3lclnZbPZUfalUGhiaFYtFS32dJ5FIDK2x694Bt/y0Jn36O2u1n3wm3alNtx8AAAAAgL04NdJGpVJJpmkqm80OnUF17dq1geNUq1Vls1nl8/m+z4VCISUSCaXTaSWTSdVqv38lvrGxcWZgZRiGqtWqQqGQcrmcYrGYVldXh95PNBqVYRiKxWJDa+26d8BN734wWv17H0jf/sp0egEAAAAA2I8gzEb5fF6hUOhUeDXOOLFYbOA4oVBI5XJZ4XC4+zHTNFWtVk8FV8ViUaFQSHt7e/L5fJZ6MAyjuydZMpm01LMd9w646ei3060HAAAAALiLpZE2qVQqMgxj4r2varWaDMNQuVweWntW8NQ7Q6yjVCqpXC5bDsEk9S2zvHHjxtBaO+4dcJv/yenWAwAAAADcxYwwm2xtbcnn8w0NjYa5e/euUqmU5dDq5Oyvjz/++FRNuVxWJBIZuY/O+MN6sevegUm89VB6OTrZGM8/K73/a+v1zz072fVWPNLnbwyvAQAAAADYgxlhNqjVaqrVajJNU36/X+FwWOl02tKJjyfdvHlzpOWFJwOu3qWSHVb2+OplmmZ3ZtmwZZF23jtwnrceDq95pWKtbpCXItKXv2St9qknpJdHy5dP8XikCyuDHx6CMAAAAACwDUGYDU4uCTQMQ6VSSclkUh6P59Sm9oNEIpGRljCaptn3vh2nMZZKpe7bw2Z52XnvwFkePZZee8da7atvS83H41/r8iXpJ1+zVnvr65L30vjXAgAAAAA4jyBsQp0TGQepVCqKRqNKp9NTuX6vUWd/naWzLHJYKOf2vWM5/LQmffo7a7WffCbdmTB3ffHq8Jo7CWt1s6SzDHPQg2WYAAAAABYde4RNKBQKqVgsyjRN1et1VavVU+FUR6lU0u7urvb29my7/u7ubvftVCo18Xi9yyJv3rw5sNbte8dyePeD0erf+0D69lem00vHN+YsBJP+1zJMgi4AAAAAS44gzAYnAyjTNFUqlbS1tXVq6WKtVlM8HtfOzo4t1y4Wi9237Ti18d69e923E4nE0Ho37x3L4ei3060HAAAAACwPlkZOgc/nUzab1dHRkcrl8qnlhdVqVdvb2xNfxzCM7uytfD5vy/5gnWAtEomMNZ5T947l4X9yuvUAAAAAgOXhabfbbbebWHSmaWp9fb1v03ifz6ejo6OJxk2n0yqVSgqFQqrX65O22T35UToO1rLZrC1jTuPeJSkYDOrg4EArKysKBAITj5fJZJTJZCYeB/b6v/4f6X9/13r9f3h+sqWRX7Ski68Prvn8jeMTHQEAAIBp4N+kmFWFQkGFQmHicRqNhlqtltbW1rS/v29DZ9axNNIBPp9Pe3t7ikaj3UDINE1Vq9WxN7ev1WoqlUry+Xy2LTUcdVmkFdO495NarZYODg4mHqfZbNrQDez2UkT67i+sbZj/1BPSy5Hp9wQAAAAAy6jZbNry+ttNBGEOun37tqLRaPf9nZ2dscOgjY0NSdL9+/dtWRIp/X5ZZCgUsm3MDjvv/SS7ZoR5vV4buoHdLl+SfvI16ZXK8NpbX5e8l6beEgAAAAAsJa/Xq7W1tYnH6cwIcwNBmIMikYhisZiq1aoknXvC4jDpdFq1Wk3lclmRiD3TX3pPi7RrNlgvu+79LIFAwPGplHDWi1eHB2F3Esd1AAAAAIDpsGtLoc5WR24gCHNYPB7vhkHjKJVKKpVKKhaLtgZWvcsib968adu4vSa9d2CQbxCCAQAAYEGseI73ABtWA2B0BGEO611yuLq6OtLXVqtVpdNpFYtFpVIpW/sql8uSjvf0smuW2UmT3DsAAAAALAuPR7pA0AVMBWdMOKw3DPL5fJa/rlarKR6PK5/P2x6CdTavl2T72L3GvXcAAAAAAAA7EIQ5bHd3t/t2PB639DWGYWh9fV3ZbFbZbNb2npxYFimNd+8AAAAAAAB2IQhzWL1e775t5dREwzAUjUaVSqWUz+ctXcMwDG1vb1vuyYllkdLo9w4AAAAAAGAngjCHVSrHR99Zmdllmqbi8bhu3LhhOQSTpGQyaTlo6l0WeePGDcvXGMco9w4AAAAAAGA3Nst3UKVSkWEY8vl82tzcHFhrmqai0ahCoZByuZwMwxg6vmEYyuVykmR5ZlfvsshkMmnpa8Yxyr0DAAAAAABMA0HYBKrVqpLJpEzTVCwWUz6fPzeAMgxDGxsbkqT79+8P3Sx+fX1dhmHIMAyFw+GR+ioWi5Zre5dFjrJccZr3DgAAAAAAMA0sjZxAuVyWaZqSjoOhaDSqdDp9qq7zudXVVdXr9aGztaLRqGq12th9WT35sXdZ5Kh7dk3r3gEAAAAAAKaFIGwCZy0lLJVK8vv9SiaTSqfTikajisfjSqVS2tvbUygUGjqmEyGY1L8s8qwQa5Bp3DsAAAAAAMA0sTRyArFYTPV6Xfl8XtVqVYeHh91ZUrVaTZFIRJubm4rFYpaXA3aWKjqh91qjzgibxr0DAAAAAABME0HYhEKh0Eh7cs2SnZ2dib5+nu8dAAAAAAAsH4IwAAAAAACWVLsttdqDa1Y8ksfjTD/AtBGEAQAAAACwpFpt6eLrg2s+f0O6QBCGBUEQBgAAAAAAFgoz3XAegjAAAAAAALBQmOmG8xCEYe41Gg0Fg8GBNZlMRplMxqGOAAAAAABYToVCQYVCYWBNo9FwqJvTCMIw91qtlg4ODgbWNJtNh7oBAAAAAGB5NZvNoa/R3UQQhrm3srKiQCAwsMbr9TrUDQAAAAAAy8vr9WptbW1gTaPRUKvVcqijfgRhmHuBQED7+/tutwEAAAAAwNKzsjVRMBh0bdbYiitXBQAAAAAAABxGEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVw0e0GAAAAAAAA5lW7LbXag2tWPJLH40w/GIwgDAAAAAAAYEyttnTx9cE1n78hXSAImwksjQQAAAAAAMBSYEYY5l6j0VAwGBxYk8lklMlkHOoIAAAAAHASSwiXQ6FQUKFQGFjTaDQc6uY0gjDMvVarpYODg4E1zWbToW4AAAAAAGdhCeFyaDabQ1+ju4kgDHNvZWVFgUBgYI3X63WoGwAAAAAAlpfX69Xa2trAmkajoVar5VBH/QjCMPcCgYD29/fdbgMAAAAAgKVnZWuiYDDo2qwxgjAAY2F9PwAAAABg3hCEARgL6/sBAAAAAPOGIAwAeqx4jgO8YTUAAAAAgPlDEAYAPTweZrEBAAAAwKJacbsBAAAAAAAAwAkEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYChfdbgAAhlnxSJ+/MbwGAAAAAIBBCMIAzDyPR7pA0AUAAAAAmBBLIwEAAAAAALAUmBGGuddoNBQMBgfWZDIZZTIZhzoCAAAAAGA5FQoFFQqFgTWNRsOhbk4jCMPca7VaOjg4GFjTbDYd6sZd7bbUag+uWfEcLzUEAAAAAMBuzWZz6Gt0NxGEYe6trKwoEAgMrPF6vQ51465WW7r4+uCaz99gvy0AAAAAwHR4vV6tra0NrGk0Gmq1Wg511I8gDHMvEAhof3/f7TYAAAAAYCG99VB6Oep2F5gXVrYmCgaDrs0aY7N8AAAAAACW1FsPh9e8UrFWB8wDgjAAAAAAAJbQo8fSa+9Yq331ban5eKrtAI4gCAMAAAAAYAn9tCZ9+jtrtZ98Jt2pTbcfwAkEYQAAAAAALKF3Pxit/r0R64FZRBAGAAAAAMASOvrtdOuBWUQQBgAAAADAEvI/Od16YBYRhAEAAAAAsISef3a0+udGrAdmEUEYAAAAAABL6KWI9OUvWat96gnp5ch0+wGcQBAGAAAAAMASunxJ+snXrNXe+rrkvTTVdgBHEIQBAAAAALCkXrw6vOZOwlodMA8IwgAAAAAAwLm+QQiGBUIQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApXDR7QaASTUaDQWDwYE1mUxGmUzGoY4AAAAAAFhOhUJBhUJhYE2j0XCom9MIwjD3Wq2WDg4OBtY0m02HugEAAAAAYHk1m82hr9HdRBCGubeysqJAIDCwxuv1OtQNAAAAAADLy+v1am1tbWBNo9FQq9VyqKN+BGGYe4FAQPv7+263AQAAAADA0rOyNVEwGHRt1hib5QMAAAAAAGApEIQBAAAAAABgKRCEucQwDMXjcUu1tVpN6XRa4XBYHo9HHo9H4XBYuVxOpmnOTJ+StL29rXg8Lr/f3+0zmUyqWq1OsUsAAAAAAEbz1kO3O4AbCMJsZppmN6wa9AiHwwqFQkPHSiaTikajKpVKMgyj+znDMLS9vS2/369SqeRqn5JUrVbl9/uVy+UkSeVyWfV6Xfl8XrVaTfF4XPF4fOrBHQAAAAAAVkKuVyqEYcuIzfJtNkoo1QmNzmKapqLRaF/4dZ50Oq29vT0Vi0XL17arT+k4BOvMGkulUn19hEIhJRIJRaNRVatVRaNR7e3tyefzWb4+AAAAAABWPXosvfaOtdpX35ae/xPJe2mqLdmm3ZZa7cE1Kx7J43Gmn3nEjDCbbW1tWaqLxWIDZ1olk0kZhqFIJNKdXVWv11Uul5XNZk/Vl0olVSoVx/vszFqTjkOv88K4crks6XgmW6ceAAAAAAC7/bQmffo7a7WffCbdqU23Hzu12tLF1wc/hgVly44ZYTYqlUoyTVPZbHbovlrXrl0bOE61WlU2m1U+n+/7XGeGVTqdVjKZVK32+9/YjY0NJRIJx/qUjgO7znLHQTPHOn1XKhVVq1WVSiWlUqmhvQIAAAAAMIp3Pxit/r0PpG9/ZTq9YPZ42u02WaFNwuGwJKler088TigU0s7OzsA6wzC61+zY2dlRLBZzpM+T1z86Ohq45LFSqXRng/l8Ph0dHU10/WAwqIODA62trWl/f3+isRbFF63jvwAM8vkb0gUb5oI6eS0AAAAA07GIryH+7D9KD0Z4ifhnQem//pvxr7eI38Npc/P1/Ix/a+ZHpVKRYRhD99MaplaryTCM7lLCQUKh0KkZY70zxKbZp6S+a8disaH7fvXOVjNNc6SlnAAAAAAAWOF/crr1mG8EYTbZ2tqSz+fTjRs3Jhrn7t27SqVSljeTPzn76+OPPx5Yb1efUv+G+5FIxNLX9O43dvfu3Yl7AAAAAACg1/PPjlb/3Ij1mG8EYTao1Wqq1WoyTVN+v1/hcFjpdHqsGU83b948NctrkJMB1MmlktPq8+TMs+vXr4/cLzPCAAAAAAB2eykifflL1mqfekJ62dq8DiwIgjAbnFxmaBiGSqWSksmkPB7PqU3tB4lEIpZng0nqblTfMeiERzv7rFarlq87qM7q9QAAAAAAsOLyJeknX7NWe+vrkvfSVNvBjCEIm5BhGKdCoZMqlYqi0ajS6fRUrt/rvI3y7e7zwYMHfe9bDe+efvrpvvd3d3ctfR0AAAAAAFa9eHV4zZ2EtToslotuNzDvQqGQisWiTNNUvV5XtVo9FU51lEol7e7uam9vz7br9wZJqVTKsT5Pfu24M8ImPbkSs+2th9LLUbe7AAAAAIDTvkEItpQIwmxwMoAyTVOlUklbW1unli7WajXF43Ht7OzYcu1isdh9e9hJkHb2eV6INqqT18X8eOvh8JpXKsfH9vJXFgAAAADALGBp5BT4fD5ls1kdHR2pXC6fWjZYrVa1vb098XUMw+jusZXP5y3PyrKjz3EDrJPXODw8HGscuOvRY+m1d6zVvvq21Hw81XYAAAAALAgrf3AHJsGMsClLJBKKxWJaX1/v2xh+a2tL2Wx2orE7p0uGQqGJx5pmn4PYMSOs0WgoGAxOPE4mk1Emk5l4nGXw05r06e+s1X7ymXSnJn37K9PtCQAAAMBsY1XJ/CsUCioUChOP02g0bOhmPARhDvD5fNrb21M0Gu2GTKZpqlqtnru5/TC1Wk2lUkk+n8+2ZZaj9Onz+WwJsUY5IfM8rVZLBwcHE4/TbDYnHmNZvPvBaPXvfUAQBgAAACyzUVeVPP8nnOY4i5rNpi2vv91EEOag27dvKxr9/c7hOzs7YwdhGxsbkqT79++PvCRyGCt9rq6u2hKEra6uTjzGysqKAoHAxON4vd6Jx1gWR7+dbj0AAACAxcKqksXg9Xq1trY28TiNRkOtVsuGjkZHEOagSCSiWCymarUqafwN59PptGq1msrlsiKRiJ0tSrLW57gzuU6GZ3bMCAsEAtrf3594HFjnf3K69QAAAAAWC6tKFoNdWwoFg0HXZpaxWb7D4vH4RF9fKpVUKpVULBaVSCRs6uq0YX1eu3at732rs8NObo4fDodH6guz4flnR6t/bsR6AAAAAIuFVSWYFQRhDutdxjjqssBqtap0Oq1isahUKmV3a32G9dm7dFKyPrutXq/3vT/u0lC466WI9OUvWat96gnpZfsnLgIAAACYI6wqwawgCHNYb8A0yrLAWq2meDyufD4/9RBMGt7nyRlhVoOw3pljPp/P9v3N4IzLl6SffM1a7a2vs8klAAAAsOxYVYJZQRDmsN3d3e7bVpdJGoah9fV1ZbNZZbPZabXWZ1ifkUikLyB78ODByOOeDNMwX6wcZ3wnwbHHAAAAAFhVgtlBEOaw3qWBVpYFGoahaDSqVCqlfD5v6RqGYWh7e3vsHiVrfd64caP7dq1WszRub10ulxuzO8yLbxCCAQAAABCrSjA7CMIcVqlUJMnSzC7TNBWPx3Xjxg3LIZgkJZPJiffestJnOp3uvt05YXKQ3ppQKMT+YAAAAACwRFhVgllw0e0GlkmlUpFhGPL5fNrc3BxYa5qmotGoQqGQcrmcpT24DMPozrKKRMafR2q1z0gkolgs1g24KpXKwJMsy+Vy921mgwEAAAAATmJVCaaNGWETqFar8vv98ng8isfjA5cHGoahjY0NSdL9+/eHbpS/vr4uwzBUrVYVDoctPTo99M7UmnafxWKx+/bW1ta5daZpqlQqSTpeaunEhv8AAAAAAAC9CMImUC6Xu6cgVqtVRaPRUyFU7+dWV1dVr9eHztaKRqOW99w6y8mQaVp9SsdLHDszvWq12rl7k62vr0s6Pimyd2YYAAAAAMA9Kx7p8zcGP1Y8bncJ2IcgbALJZPLUx0qlkvx+v5LJpNLptKLRqOLxuFKplPb29hQKhYaOaWcINq0+eyUSCe3s7Mjn8ymXy3XvwTTNbrhWq9UUiUT04YcfDp1lBgAAAABwhscjXVgZ/PAQhGGBEIRNIBaLqV6vK5VKKRQK9QU8tVpNh4eH2tzc1NHRkfL5vKUAqFwuq91uj/3oXao4zT7Pukbn6w3D0Pr6ejdoW11dVblc1t7eHiEYAAAAAGDpvPXQ7Q7QwWb5EwqFQmeGT7PGqT6z2aylEzEBAAAAAFgEVkKuVyrHs+s4EdN9zAgDAAAAAAAYw6PH0mvvWKt99W2p+Xiq7cACgjAAAAAAAIAx/LQmffo7a7WffCbdGX9LcNiEIAwAAAAAAGAM734wWv17I9bDfgRhAAAAAAAAYzj67XTrYT82y8fcazQaCgaDA2symYwymYxDHQEAAAAAloH/yenWz6NCoaBCoTCwptFoONTNaQRhmHutVksHBwcDa5rNpkPdAAAAAACWxfPPSu//2nr9c89Or5dZ0Ww2h75GdxNBGObeysqKAoHAwBqv1+tQNwAAAACAZfFSRPruL6xtmP/UE9LLken35Dav16u1tbWBNY1GQ61Wy6GO+hGEYe4FAgHt7++73QYAAAAAYMlcviT95GvSK5Xhtbe+LnkvTb0l11nZmigYDLo2a4zN8gEAAAAAAMb04tXhNXcS1uowfQRhAAAAAAAAU/QNQrCZQRAGAAAAAACApcAeYcCUtdtSqz24ZsUjeTzO9AMAAAAAwLIiCAOmrNWWLr4+uObzN6QLBGEAAAAAAEwVSyMBAAAAAACwFAjCAAAAAAAAsBQIwgAAAAAAALAUCMKAJfPWQ7c7AAAAAADAHQRhwAKxEnK9UiEMAwAAAAAsJ4IwYEE8eiy99o612lfflpqPp9oOAAAAAAAzhyAMWBA/rUmf/s5a7SefSXdq0+0HAAAAAIBZQxAGLIh3Pxit/r0R6wEAAAAAmHcEYcCCOPrtdOsBAAAAAJh3BGHAgvA/Od16AAAAAADmHUEYsCCef3a0+udGrAcAAAAAYN5ddLsBYFKNRkPBYHBgTSaTUSaTcagjd7wUkb77C2sb5j/1hPRyZPo9AQAAAACWS6FQUKFQGFjTaDQc6uY0gjDMvVarpYODg4E1zWbToW7cc/mS9JOvSa9Uhtfe+rrkvTT1lgAAAAAAS6bZbA59je4mgjDMvZWVFQUCgYE1Xq/XoW7c9eLV4UHYncRxHQAAAAAAdvN6vVpbWxtY02g01Gq1HOqoH0EY5l4gEND+/r7bbcyNbxCCAQAAAACmxMrWRMFg0LVZY2yWDwAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApXDR7QYAAAAAAADstOKRPn9jeA2WD0EY5l6j0VAwGBxYk8lklMlkHOoIAAAAAOAmj0e6QNDlikKhoEKhMLCm0Wg41M1pBGGYe61WSwcHBwNrms2mQ90sD/7CAgAAAAA4qdlsDn2N7iaCMMy9lZUVBQKBgTVer9ehbpYHf2EBAAAAAJzk9Xq1trY2sKbRaKjVajnUUT+CMMy9QCCg/f19t9sAAAAAAAzAqpLlYGVromAw6NqsMYIwAAAAAAAwdawqwSxYcbsBAAAAAAAAwAkEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoX3W4AmFSj0VAwGBxYk8lklMlkHOoIAAAAAAB3vPVQejnq3vULhYIKhcLAmkaj4VA3pxGEYe61Wi0dHBwMrGk2mw51AwAAAADAdLz1cHjNKxXpwor04tXp93OWZrM59DW6mwjCMPdWVlYUCAQG1ni9Xoe6AQAAAADAfo8eS6+9Y6321bel5/9E8l6aaktn8nq9WltbG1jTaDTUarUc6qgfQRjmXiAQ0P7+vtttAAAAAAAwNT+tSZ/+zlrtJ59Jd2rSt78y3Z7OYmVromAw6NqsMTbLBwAAAAAAmHHvfjBa/Xsj1i8LgjAAAAAAAIAZd/Tb6dYvC4IwlxiGoXg8bqm2VqspnU4rHA7L4/HI4/EoHA4rl8vJNM2xrj+NMa0a5d4BAAAAAIDkf3K69cuCIMxmpml2g6VBj3A4rFAoNHSsZDKpaDSqUqkkwzC6nzMMQ9vb2/L7/SqVSiP1Z/eY07h3AAAAAADwe88/O1r9cyPWLwuCMJuNEiDlcrlzP2eapqLRqCqVytBx0um00un00LppjNnLrnsH/t/27p+3jXXPE/xPPqcvzmIHGsoXaECQkqaSTZv0fQUmsxnMBKQNbGO6I1OLDR1Qe9DxhUEFCgdDnqwHE/hSwS52gwVIv4JjcdJJWJ3YENDAsWqEXexF9z3iBgZ5KcmSKPFPUarPByBASg+f56HqoVj15VNPAQAAcNl/KEX8j38xW9l/9ZuIvy0ttz+PlSBswd69ezdTuUqlcuusqHq9HkmSRKlUim63G8PhMIbDYXS73Wg2m9fKdzqdOwOuZdQ5bVGvHQAAALjsX/8Q8R//3Wxl/9O/j9j8YandebS+z7oDT0mn04k0TaPZbN65BtaLFy9uraff70ez2YxWq3Xpd8ViMWq1Wuzv70e9Xo/BYDD53Zs3b6JWq62szqv1L+K1AwAAAN/2N38d8Xd3zFf5h9rXcnzbxmg0GmXdiadib28vIiKGw+Hc9RSLxej1ereWS5Jk0uZYr9eLSqWykjqv1h8x/2u/j93d3fj8+XPs7OzEp0+fVtbuff16EfH9399e5k+/j/huAfMzV9kWAAAAjvkeIsvj+TX/0zwex8fHkSTJ3GtfDQaDSJIkut3unWWLxeK12V3Ts7mWWee0Rb12AAAAgGUShC3Iu3fvolAoxKtXr+aq5/3799FoNKJQKMxU/upMrV9++WUldU5b1GsHAAAAWCZrhC3AYDCYzJra2tqKYrEYlUolqtXqTOtrTXv9+vW9FpIvlS5fBuLqaY3LqnNska8dAAAAYJnMCFuAq6cEJkkSnU4n6vV6bGxsXFuA/jalUmnmmVsREWmaXnr8rcBrGXWOLfK1AwAAACyTIGxOSZJEv9+/tczx8XGUy+XY399fSvvT7lrUfpF1Zv3aAQAAAO7DqZFzKhaL0W63I03TGA6H0e/3rwVJY51OJz5+/BgnJycLa//jx4+T+41GY6V1Zv3aAQAAIGvPNr5eqfGuMqwHQdgCXA2L0jSNTqcT7969u3aa4WAwiGq1Gr1ebyFtt9vtyf1FXbXxPnVm+doBAAAgaxsbEd8Juh4Np0YuQaFQiGazGWdnZ9Htdq+tz9Xv9+Pw8HDudpIkmay/1Wq17rUg/rLqXNVrBwAAALivjdFoNMq6E09dmqbx8uXLS4vGFwqFODs7m6ve/f396HQ6USwWYzgcztvNpdS5rNceEbG7uxufP3+OZ8+exfb29tz1vX37Nt6+fTt3PVf9ehHx/d/fXuZPv4/4bgGx9CrbAgAAYLWyPuY7OjqKo6Ojues5PT2Ni4uL2NnZiU+fPi2gZ7NzauQKFAqFODk5iXK5PAmE0jSNfr//4MXtB4NBdDqdKBQKCzvVcBl1LuO1X3VxcRGfP3+eu57z8/MF9AYAAACepvPz84Ucf2dJELZCP/30U5TL5cnjXq/34DDozZs3ERHx4cOHhZwSuaw6xxb52q9a1Iywzc3NBfTmYf7Lf4342/Ld5QAAACArm5ubsbOzM3c94xlhWRCErVCpVIpKpRL9fj8i4sYrLN5lf38/BoNBdLvdKJVKC+nbMuqctqjX/i3b29srn0p5H//lv95d5u+Ov05d/Zu/Xn5/AAAA4CEWtaTQeKmjLFgpaMWq1epcz+90OtHpdKLdbketVltIn5ZR57fM+9ofo//+x4j/9f+Yrez/8r9HnP9xqd0BAACAXBOErdj0KYfPnz+/13P7/X7s7+9Hu92ORqOxkP4so86bzPPaH6v/PIj4f/9ltrL/zz9H/MPg7nIAAADAwwjCVmw6DCoUCjM/bzAYRLVajVartbDAahl13uahr/0x+z//2/3K/1/3LA8AAADMThC2Yh8/fpzcn/VUwSRJ4uXLl9FsNqPZbC6kH8uo8y4Pee2P3dn/t9zyAAAAwOwslr9iw+Fwcn+WqyYmSRLlcjkajUa0Wq2Z2kiSJI6Pj28MuJZR5yzu+9qfgq3/Ybnlr3q2EfGn399dBgAAAPLIjLAVOz4+joiYKVBK0zSq1Wq8evVq5sAqIqJer98YNC2jzlnd57U/Ff/2f7pf+X9zz/JXbWx8vfrkbbcNQRgAAAA5ZUbYCh0fH0eSJFEoFOLHH3+8tWyaplEul6NYLMbBwUEkSXJn/UmSxMHBQURElEqlldQ5q/u89qfkP5Qi/rf/e7YF8//VbyL+9uF/YgAAAOAOgrA59Pv9qNfrkaZpVCqVaLVaN4ZFSZLEmzdvIiLiw4cPdy4W//Lly0iSJJIkib29vXv1q91uL73OZb72p+Rf/xDxH/9dxN8d3132P/37iM0flt4lAAAAyC2nRs6h2+1GmqYR8TUYKpfLsb+/f63c+HfPnz+P4XB458yqcrkcg8Hgwf361hUgF13nsl77U/Q3f313mX+ozVYOAAAAeDhB2Bzq9fq1n3U6ndja2op6vR77+/tRLpejWq1Go9GIk5OTKBaLd9a56BBsWXVeNe9rz7P/WQgGAAAAS7cxGo1GWXfiMUuSJFqtVvT7/fjy5UukaRqFQiGeP38epVIpXr9+HZVK5UmeDpj1a9/d3Y3Pnz/Hzs5OfPr0aSltLMKvFxHf//3tZf70+68L2QMAAMBNnsrxZZbH89YIm1OxWLxxTa6nLs+vHQAAAHh81jwjBAAAAIDFEIQBAAAAkAuCMAAAAAByQRAGAAAAQC5YLJ9H7/T0NHZ3d28t8/bt23j79u2KegQAAAD5dHR0FEdHR7eWOT09XVFvrhOE8ehdXFzE58+fby1zfn6+ot4AAABAfp2fn995jJ4lQRiP3rNnz2J7e/vWMpubmyvqDQAAAOTX5uZm7Ozs3Frm9PQ0Li4uVtSjywRhPHrb29vx6dOnrLsBAAAAuTfL0kS7u7uZzRqzWD4AAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyIXvs+4AzOv09DR2d3dvLfP27dt4+/btinoEAAAA+XR0dBRHR0e3ljk9PV1Rb64ThPHoXVxcxOfPn28tc35+vqLeAAAAQH6dn5/feYyeJUEYj96zZ89ie3v71jKbm5sr6g0AAADk1+bmZuzs7Nxa5vT0NC4uLlbUo8sEYTx629vb8enTp6y7AQAAALk3y9JEu7u7mc0as1g+AAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMiF77PuAMzr9PQ0dnd3by3z9u3bePv27Yp6BAAAAPl0dHQUR0dHt5Y5PT1dUW+uE4Tx6F1cXMTnz59vLXN+fr6i3gAAAEB+nZ+f33mMniVBGI/es2fPYnt7+9Yym5ubK+oNAAAA5Nfm5mbs7OzcWub09DQuLi5W1KPLBGE8etvb2/Hp06esuwEAAAC5N8vSRLu7u5nNGrNYPgAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMiF77PuAAAAAAB3e7YR8aff312GmwnCAAAAAB6BjY2I7wRdc3FqJAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHLh+6w7APM6PT2N3d3dW8u8ffs23r59u6IeAQAAQD4dHR3F0dHRrWVOT09X1JvrBGE8ehcXF/H58+dby5yfn6+oNwAAAJBf5+fndx6jZ0kQxqP37Nmz2N7evrXM5ubminoDAAAA+bW5uRk7Ozu3ljk9PY2Li4sV9eiyjdFoNMqkZZjT7u5ufP78OXZ2duLTp09Zd+dGv15EfP/3t5f50+8jvrNiHwAAADmQ5fG8Q28AAAAAckEQBgAAAEAuWCMMluzZxtdTH+8qAwAAACyXGWEZSZIkqtXqTGUHg0Hs7+/H3t5ebGxsxMbGRuzt7cXBwUGkafrgPhweHka1Wo2tra1JnfV6Pfr9/lrV+dhtbHxd/+u224YgDAAAAJZOELZgaZpOwqrbbnt7e1EsFu+sq16vR7lcjk6nE0mSTH6XJEkcHh7G1tZWdDqde/Wx3+/H1tZWHBwcREREt9uN4XAYrVYrBoNBVKvVqFar9wrZllEnAAAAwCK5auSCHR4eTsKguwyHwxvDsDRNo1wuXwq/btNoNKLdbt9Zrt/vT2ai3fSccrkcg8EgisVinJycRKFQWHmds3gsV40EAAAA/izL43lB2IJtbW3NNOupUqlEr9e78ffVajX6/X6USqX48ccfo1QqRcTX0yR//vnnODw8vPacbrcbtVrtxjrTNI2/+qu/ijRNo1gsxnA4/Ga5JElib29vpn4uo85ZCcIAAADg8cnyeN5i+QvU6XQiTdNoNpt3rv/14sWLW+vp9/vRbDaj1Wpd+l2xWIxarRb7+/tRr9djMBhMfvfmzZtbg7B6vT4J6W6btTZu4/j4OPr9fnQ6nWg0GiurEwAAAGAZzAhboPGMp5tmRd2nnmKxeOesqelZVmO9Xi8qlcqdZc/Ozm49PfH4+Djq9XpERBQKhTg7O1tJnfdhRhgAAAA8Plkez1ssf0GOj48jSZKZ1we7yWAwiCRJotvt3lm2WCxemzE2PUNs2nS5SqVy5xpd0zPL0jSN4+PjldQJAAAAsCyCsAV59+5dFAqFePXq1Vz1vH//PhqNxsyLyV+d/fXLL798s9z0lSXH643dZXoh//fv36+kTgAAAIBlEYQtwGAwiMFgEGmaxtbWVuzt7cX+/v6DZjy9fv362iyv21wNoK6eKjnu37Tf/e5396776mtZRp0AAAAAyyQIW4Crp0MmSRKdTifq9XpsbGxcW9T+NqVSaebZYBFx7QqV0zOuxvr9/p1lvuVquenXsIw6AQAAAJZJEDanJEmuhUJXHR8fR7lcjv39/aW0P+1bC+X//PPPlx7PGrT99re/vfT448ePS60TAAAAYJm+z7oDj12xWIx2ux1pmsZwOIx+v38tnBrrdDrx8ePHODk5WVj700FSo9H4Zpmr/Xno7K3pq2Euo07y4+joKM7Pz2NzczPevn2bdXfImPHAmLHANOOBMWOBacYDY8YCD7UxGo1GWXfiqUnTNDqdTrx79+7aqYsRX2dt9Xq9hbRVLpcnpxcOh8NvBlJbW1uX+jHrJj8+Po56vT553Gg0ot1uL63O+8rycqvMx7ZjmvHAmLHANOOBMWOBacYDY8bC45bl9nNq5BIUCoVoNptxdnYW3W732mmD/X4/Dg8P524nSZJJCNZqtW6clfWtMG4WV/v95cuXpdYJAAAAsExOjVyyWq0WlUolXr58eWlh+Hfv3kWz2Zyr7vHVJYvF4tx1zeKh4dey6zw9PY3d3d2563n79q0ptQAAAHCDo6OjODo6mrue09PTBfTmYQRhK1AoFOLk5OTSaYxpmka/3//m4vazGAwG0el0olAo3HmaZaFQWEjgND2baxl1PtTFxUV8/vx57nrOz8/nrgMAAACeqvPz84Ucf2dJELZCP/30U5TL5cnjXq/34CDszZs3ERHx4cOHOxeqf/78+UJCq+fPny+1zod69uxZbG9vz13P5ubm3HUAAADAU7W5uRk7Oztz13N6ehoXFxcL6NH9CcJWqFQqRaVSiX6/HxHXr7w4q/39/RgMBtHtdqNUKt1Z/qGzrq4GXVdnhC26zofa3t62OCIAAAAs2aKWFBovlp8Fi+WvWLVanev5nU4nOp1OtNvtqNVqMz3nxYsXlx7POpPr6kL2e3t7S60TAAAAYJkEYSs2fRrjfU8L7Pf7sb+/H+12OxqNxszPmz4dM2L2mWjD4fDS4+nTOJdRJwAAAMAyOTVyxaaDsPucFjgYDKJarUar1bpXCBZxffZWkiQznVI5PcurUChc6vsy6lyUo6OjOD8/j83NzaVfBXJVbT21dlbpqf3tnuL4XpWn+Ld7au2s0lP72z3F8b0qttH6t7NKT+1v9xTH3arYRuvfzio9tb/dU2vn3kasVLvdHkXEKCJGvV5vpucMh8NRoVAYNZvNB7dbKBQm7c5aT6lUmjynUqmspM772NnZGUXEaGdnZ6afL8Oq2tLO+rf11NpZZVtPrZ1VtqWd9W/rqbWzyra0s/5tPbV2VtnWU2tnlW1pZ/3bemrtrLKtPLWzyu13lVMjV2z61MBZTgtMkiTK5XI0Go1otVoztZEkSRweHl762atXryb3B4PBTPVMlzs4OLj2+2XUCQAAALAsgrAVOz4+joiIZrN5Z9k0TaNarcarV69mDsEiIur1+rWQbX9/f3J/fNXK20yXKRaL3wztllEnAAAAwLIIwlbo+Pg4kiSJQqEQP/74461l0zSNcrkcxWIxDg4OIkmSO2/9fn+yiP3V9bpKpdKl4GkcyN2k2+1O7t80c2sZdQIAAAAsi8Xy59Dv96Ner0eaplGpVKLVat24YHySJPHmzZuIiPjw4cOdC+W/fPlyEnDt7e3dq1/tdvvGn4/revfuXdRqtW+WS9M0Op1ORHw9ffO2xfmXUScAAADAMpgRNodutzu5CuJ4Ntb06YJj4989f/48hsPhnVdXLJfLM6+59S03hUzFYnEyK2swGFxbR2zs5cuXEfH1qo7Ts7hWVScAAADAMgjC5lCv16/9rNPpxNbWVtTr9djf349yuRzVajUajUacnJxEsVi8s85lhGBjtVoter1eFAqFODg4mLSXpukksBsMBlEqleIf//Ef75y5tqw6AQAAABbNqZFzqFQqMRwOo9VqRb/fjy9fvkxmiI2Dnx9//DEqlcrM4c8qZktVKpU4OzuLw8PDeP/+fbx8+TLSNI1CoRAvXryIbrd74ymOq6wTAAAAYJE2RqPRKOtOwEP85je/iX/5l3+JZ8+exfb29uTnp6encXFxce3ny7CqtrSz/m09tXZW2dZTa2eVbWln/dt6au2ssi3trH9bT62dVbb11NpZZVvaWf+2nlo7q2wrT+2Mf/cXf/EX8c///M9L68O3CMJ4tL777ru4uLjIuhsAAADAAzx79ix+/fXXlbbp1EgerR9++CH++Mc/xnfffRd/+Zd/mXV3AAAAgBn80z/9U/z666/xww8/rLxtM8IAAAAAyAVXjQQAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAFLcXh4GNVqNba2tmJjYyP29vaiXq9Hv99fartJksT+/n7s7e3FxsZGbG1tRblcjv39/UiSZKltc7OsxsNgMLg0HsZtHxwcRJqmS22bb8tqLFyVJElUq9U4Pj5eabt5kOU2XpfxxVfrsj2839eDfQHGHCeQuRHAAvV6vVGhUBhFxKhSqYx6vd5oOByOut3uqFgsTn5+dna28LZbrdYoIm69tVqthbfLzbIaD2dnZ6NarXbneGi32wttl5tl+b9h2tWxYQwsTpbbeF3GF1+ty/bwfl8P9gUYc5zAuhCEAQvT6/UmHySNRuObZUql0igiRsVicaEfcpVKZRQRo0KhMKrVaqNmszmq1WqTD9XpW7fbXVi73Cyr8XB2dvbN7X7T7aa+sThZ/m8YOzs7GzWbTQdAS5LlNl6H8cWfrcP28H5fH/YFGHOcwDoRhAELcXZ2NvmGp1gs3lhuOBxOPmgqlcpC2h7v7N70Lc63vgFiubIcD+OdnVKpNOp2u6PhcDj5tvFbB0Z2epYry7Ew1mq1RsVicTI2HBgvVpbbeB3GF3+2DtvD+3192BdgzHEC68ZWBhZieofzrh3NRZ6mMP7A7PV6t5ZrNBqXPuBOTk7mapfbZTUe2u32KCJGzWbzxjLD4XDyjeP4VigU5mqXm2U1FsZOTk4uvd/HY8SB8eJkuY2zHl9clvX28H5fL/YFGHOcwLoRhAFzm/72JiLunMrc7XYXttNRq9VmOp//7OzsUh+tAbA8WY6H8SyA+/Zxlp0k7i/LsXCTk5MTB8YLlOU2XsfxlWfruD2837NjX4AxxwmsI1eNBObWarUm9yuVShQKhVvL12q1yf00Tee6ilOaptFsNu8sVygUolgsXnrMcmQ1HgaDQSRJEt1u986yxWLxUj/Hz2exsvzfcBPv/cXKchuv4/jKs3XcHt7v2bEvwJjjBNaRIAyYW6fTmdwvlUozPWf6w+b9+/cPbrvX681c9suXL5P7L168eHCb3C6r8fD+/ftoNBoz77xUKpVLj3/55ZcHtcvNsvzfwGpkuY2Nr/ViezDNvgBjjhNYR4IwYC5Xvzn73e9+N9Pzpj8IV/GtfJqmkaZpRHzd6Zn1g5j7yXI8vH79+to3u7O2GRGxt7f3oHb5tsfyv4GHy3IbG1/rxfZgmn0Bxh7L/wbHCfkjCAPm0u/3Lz2e/gbnNlfLLXsq+h/+8IdJu7NMl+dhshwPpVLpXlPZxzs8N/WB+TyW/w08XJbb2PhaL7YH0+wLMPZY/jc4TsgfQRgwl59//vnS41l3Pn77299eevzx48dFdemaNE1jf38/SqVS9Ho95/0v0WMYD2NJklx6fPX0CObzmMYCD5PlNja+1ovtwbTHNB7sCyzXYxgLjhPySRAGzOXqDsRDv+kZDocL69O0JEmiXC5HoVCIDx8++KZvydZ9PEyb3qlqNBpLby9vHtNY4GGy3MbG13qxPZj2mMaDfYHlWvex4DghvwRhwFyufsA91NWp6YtwfHwce3t7kSRJpGkaW1tbcXh4uPB2+LN1Hg9Xtdvtyf2Dg4Olt5c3j2ks8DBZbmPja73YHkx7TOPBvsByrfNYcJyQb4IwYC4P/WC6Ou14+kot80jTNA4PD2Nvby/q9fq13x8cHHzz5yzGuo2HmyRJMllvotVq+QZwCR7LWODhstzGxtd6sT2Y9ljGg32B5Vu3seA4gTFBGLAWFvVNT7/fj+FwGJVK5cZ1Ho6Pj33js+aW/S3w+IpSxWIxms3mUttiPmaIPH1ZbmPja73YHkyzL8CY4wQWTRAGzGVRC0ouqp5arRbtdjva7Xb0er0YjUbRbrev1X9wcGCHewnWbTx8y2AwiE6nE4VCIXq93tLaybvHMBaYT5bb2PhaL7YH0x7DeLAvsBrrNhYcJzAmCIMnrNPpxMbGxkJv5XL5UhvPnz9fSF8XVc+3NBqNODk5ufYh1+l0ltbmOjIevnrz5k1ERK4XRTUWWIQst7HxtV5sD6Y9hvFgX2A1HsNYcJyQT4IwYC4P/Ybm6rcsy/4WuFgsxocPHy797OolnZnfuo+H/f39GAwG0e12o1QqLaUNvlr3scD8stzGxtd6sT2Ytu7jwb7A6qz7WBhznJA/32fdAWB5KpVKdLvdhdZ59YPoxYsXk4VGI75+cM3yYXV10cu9vb1FdO9WpVIparVaHB8fR8TirmTzWOR9PHQ6neh0OtFut6NWqy28/sck72OBxchyGxtf68X2YNo6jwf7Aqu1zmPhqrwfJ+SNIAyesGKxuPTp3ldPh0qSZKZv14bD4aXHNy1YuWivX7+efMDl7dz/PI+Hfr8f+/v70W63o9FoLLTuxyjPY4HFyXIbG1/rxfZg2rqOB/sCq7euY+EmeT5OyBunRgJzefHixaXHs357Mv3hUigUVrY+w/SHr1MwFm8dx8NgMIhqtRqtVsuO7wqt41hgsbLcxsbXerE9mLaO48G+QDbWcSzcxnFCfgjCgLmUSqVLHxSznk//8ePHyf2rH5KrklW7T9m6jYckSeLly5fRbDZdGn3F1m0ssHhZbmPja73YHkxbt/FgXyA76zYW7sP/pKdNEAbM7dWrV5P70+sA3Ga63MHBwcL7dJPpb6Kq1erK2s2TdRkPSZJEuVyORqMRrVZr5uccHh4upH3WZyywPFluY+NrvdgeTFuX8WBfIHvrMhZm4TghR0YAczo5ORlFxOR2l16vNylbLBZX0MM/a7Vao4gYFQqFlbabJ+swHs7OzkbFYnHUaDTu9bxSqTQ6OTlZSB9Yj7Fw1XA4vNSndru9lHbyIsttvI7jK8/WcXt4v2dnHcaDfYH1sA5jYVaOE/LDjDBgbqVS6dIiluNFJm8yfbW6u77l6XQ6cXBwsLArt7x79y4iIn766aeF1Md1WY+HNE2jXC5HsViclL3r1u/3Jwu6upT64mQ9Fr7F4reLleU2Xmbb3J/3O9OyHg/2BdZH1mPhPhwn5EjWSRzwNEx/61oqlW4sd3Z2NilXqVRurbNSqVz6Buns7OxamVarNSqVSqNms/nN309rNpujiBg1m81ZXhJzyGo8jEZfv8mdLnefm9kCi5flWPiWbrd76bmtVmvm5/JtWW7jZbTNw3m/M82+AGOOE1g3gjBgYaZ3OG/a2RzvmBQKhTs/kO7aMZn+sBzfbvrwqtVqdoJXbNXjYbq+h95YjizGwreMT5OZfu5tO+TMLsttvOi2mY/3O9PsCzDmOIF14p0OLFSv1xsVCoVRRIxqtdro5ORkdHZ2Nur1epMPt1KpNNOByLie8a3X610rc3Und/zhWavVRs1mc1SpVCaPh8PhEl4xt1nleBjvxDz0dt81RLifVf9vGDs7OxvVarVr3xxfvVUqlUm/eJistvGi22Z+3u9Msy/AmOME1oUgDFiK8VTk8YdUoVAYVSqVUbfbnbmOXq83KhaLo0KhcOM3OGdnZ6Nms3mtrWKxOKrVaqN2u+3AZw2sajyw/oyFpy/LbbyItlkc73emGQ+MOU4gaxuj0WgUAAAAAPDEuWokAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBbpWkanU4n627MTRAGAAAAwI3SNI1yuRy9Xi/rrsxNEAYAAADAN6VpGi9fvowkSaJarWbdnbltjEajUdadAAAAAGD9lMvlGAwGERFxdnYWhUIh2w7NyYwwAAAAAC4ZDAaxt7c3CcGKxeKjD8EiIr7PugMAAAAArIfBYBDv3r2L4+PjSz8vFAqXFstvNBqr7tpCODUSAAAAgDg+Po56vX5nuUKhEGdnZyvo0eIJwgAAAAC4pN/vX1oc/6nER9YIAwAAAOCSbrc7uV8qlTLsyWIJwgAAAAC4pN/vT+6/fv06w54sliAMAAAAgIk0TSNJksnjSqWSYW8WSxAGAAAAwMT0bLAIp0YCAAAA8ET1er3J/ac0GyxCEAYAAADAlD/84Q+T+/V6PcOeLJ4gDAAAAICIiEiSJNI0nTw2IwwAAACAJ2l6fbBCoRDFYjHD3iyeIAwAAACAiHjY+mBJksTh4WFUq9XY2tqKarV66fdpmka9Xo+tra04PDxcaH/vSxAGAAAAQERcnhH2+vXrmZ9TqVSiWq1GmqbR7/djMBhExNcQrFwux2AwiDRNLwVtWdgYjUajTHsAAAAAQOaSJIm9vb3J47OzsygUCveqY2NjIyIiWq1WNJvNqFar0Wq1olQqRZIkmZ9qaUYYAAAAAHF8fDy5XywWL4VgnU5npjrGp1P2er04PDyMer0epVJpUmfWvs+6AwAAAABk76b1wQ4PD2eeGVatVqPf709Oscz6VMirBGEAAAAAXFofbLzg/fHxcfR6vZkDrekArdVqLbaDCyAIAwAAAMi58eL2Yz///HN8+fIl2u12fPjwYeZ6xqdBRkR8+fJlYf1bFEEYAAAAQM4lSXLp8eHhYRSLxTg5ObnXgvnT9fR6vUszxNaBxfIBAAAAcq5Wq0Wj0YhCoRDFYjGazWYMh8N7XzWyXq9Pwq/pUy3XxcZoNBpl3QkAAAAAHrf9/f0ol8tRLBYna4ytW+xkRhgAAAAAc+n3+/Hly5doNBrx4sWLyc+n1x7rdDpZdO0SQRgAAAAA95Km6eTUxyRJotVqRbfbjYiIQqEwWTS/3W5HxNfZYtMBWVYEYQAAAADcS71ej2q1GltbW1GtVich2Nh4nbBOpxN7e3tRLpcvXVEyK4IwAAAAAO6lXq9HoVCI58+fR6/Xu7ao/o8//hjFYjEKhULs7+9Ho9HIpqNXWCwfAAAAgFwwIwwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkwv8PYqfH6pLdtLgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -111,21 +119,21 @@ "plt.xlabel(\"$t_x$\")\n", "plt.ylabel(r\"$z_{\\mathrm{Mag}}$ [mm]\")\n", "mplhep.lhcb.text(\"Simulation\")\n", - "# plt.show()\n", - "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_tx_dist.pdf\",\n", - " format=\"PDF\",\n", - ")" + "plt.show()\n", + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_tx_dist.pdf\",\n", + "# format=\"PDF\",\n", + "# )" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmxElEQVR4nOz9T2wj6X3v+3+ongQTOFEXNUEAQQLsLmYCZ5VfF9V3kd2xSHiTQf4M2Q3EsL24FunxLzgLnWPS7aw9Mmlbm+AmQ8pZXAcGTjdpnwTJwmdYPVndxT0t1kx2xklYPQEkEDjASNVyggwSj/hb6EealPinSBb/qd4vQIAoPnzqK1E9I374PN8n0mq1WgIAAAAAAABuubVFFwAAAAAAAADMA0EYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQeGXRBQCT+NSnPqWPP/5Yd+7c0W/8xm8suhwAAAAAAODT//7f/1uffPKJXn31Vf3rv/7rXK8dabVarbleEQjAnTt3dHl5uegyAAAAAADAhNbW1vTJJ5/M9ZqsCMNKGicI+7Vf+zWtr69Pdb1ms6nLy0utra1pc3NzqrmCQk2rV49ETX5Rkz/LVtOy1SNRk1/U5M+y1bRs9UjU5Bc1rV49EjX5RU3+LFtNQdZzcXGhn/3sZ77G3rlzZ6prTYIgDCvpN37jN3R6eurrH+n+/r729/enut729rZOT0+1ubmpk5OTqeYKCjWtXj0SNflFTf4sW03LVo9ETX5Rkz/LVtOy1SNRk1/UtHr1SNTkFzX5s2w1BVnP4eGhDg8Ph45pB2+LaHVEEIaVtiz/0QAAAAAAAP4Wo7SDt0VYaBD2+uuvL/LyPSKRiP7X//pfiy4DAAAAAAAAM7LQIKzRaCgSiWiR/frb149EIgurAQAAAAAAALO3tugCFo1DMwEAAAAAAMJh4T3CWq2WUqmUTNNcyPU9z1O5XF7ItQEAAAAAADA/Cw/CyuWyvvKVryy0hlQqpc9//vMLrQEAAAAAAACztfCtkYlEYtEl6MGDB4suAQAAAAAAADO28BVhGxsbiy4BGGl/f18XFxdaX19fdCkd1LSalvFnRE3+LGNNy2YZf0bU5M8y1rSMlu3ntGz1SNS0ypbt57Rs9UjUtMqW8ee0bDUtWz2zFGktsFv8nTt3dH5+vvAf9MuXL7WxsaFPPvlkoXXAv+3tbZ2enmpra0snJyeLLgdLit8T3Hb8juM24/cbtxm/37jN+P2GH4v8PVno1shlOrFxmWoBAAAAAABA8BYahBUKhYWvBpOku3fvqlAoLLoMAAAAAAAAzNBCg7Cvf/3rc73ehx9+OPC+edcCAAAAAACA+Vr4qZHzlM1mF10CAAAAAAAAFiRUQdjx8fGiSwAAAAAAAMCCvLLoAibx4YcfyvM83+Nd11WpVBrrMbPkuq6y2axqtdpU88RiMbmuq0qlolQq5ftxjuOoVCrJtm25ritJMk1TqVRKjx8/lmEYE9VTLBZVq9V0fHwsz/NkmqYsy1I2m1UikZhoTgAAAAAAgKCsRBD24YcfqlAo9AQ342q1WopEIgFX1svzPEWjUV9jM5nMVNfK5/Nj/yw8z9Pe3p6q1eqN+1zXVbFYVLFYVKlUGqs+27aVTqfleZ4SiYQqlYpM05TjOMrn80omk52vTxqyAQAAAAAATGvpg7DHjx+rWCxKugqzllm5XPY9Np/PT3wd27Y7PxO/PM9TPB73FZ5ls1nV63WVSiVftSSTSUlX4V73Y9qrzOLxuGzbVjweV71eJwzD3Ozv7+vi4mIpTqcFZoHfcdxm/H7jNuP3G7cZv99YdpHWEqdLP/rRj5ROpyWps5prmnIjkYg++eSTQGrrJxqN+tp+mUgkJt4W6Xme7t2713MdP1sjk8mkbNuWZVl6/PixLMuSdLVN8vnz532DtVHzdtdimqYajUbfca7rKhaLSZrue++2vb2t09NTbW1t6eTkZOr5AAAAAADAfCzyNf1Srwg7ODiQdBVgtVqtTs8p0zQlSa+99trIOT766CN5nqenT5/q5cuXM6u1XC7L8zzlcrnOCqlBdnZ2Jr7O3t6eNjY2JMl3z7NyuSzbtpXL5VQoFHrua6/aymazSqfTchyn51rDgrD2dkhp+Aq39jWq1aps21a5XJ56aygAAAAAAMC4lnpF2NraWmcl2Lvvvqvd3d2J53JdV6+//vrMVoS1VzwNWhUVhHK53Nm2uLu72wmhRq3cisViMk1z5Eqs7pVbbbVarW+j++tjz8/Ph255rFarndV9hmHo/Px8aC2jsCIMAAAAAIDVtMjX9GtzvdqY2sFKLpebKgSTrlYl3bt3L4CqbqpWq3Jdd6q+X6O0T5rM5XKdbY1+OI7TOVlyFNM0b6wY614h1q17XCKRGNn3qzuo8zyvb8N+AAAAAACAWVrqIKy9BfLBgweBzOen+fskDg4OZBiGHj58OJP5pattiJZl3QiqRnny5IkymYzvBvXXV3999NFHfcd1HwzgN5hrP5/tugAAAAAAAOZpqXuE7e7u6v3339fZ2Vlg8wXNcZzOqqloNCrTNJVIJJRMJkc2sPcrn8/LcZyJtl0+evSoJ4Aa5XqodX2rpHRzlZjfoNKyrM6plawIAwAAAAAA87bUK8K++c1vqtVqDdyeN67vf//7gczT7fp2SNd1VS6XlU6nFYlEbjSgH5fjOCoWiyqVSmMFWm2WZfleDSbdbMDf75q2bY8c08/1cUE9rwAAAAAAAH4sdRB29+5dffvb39aTJ0/0s5/9bOr5gt4a6brujVDoumq1qng8rmw2O9E1dnd3lUql5nbKYnvFVlu/RvnPnz/vue03aLt+yufx8fF4xQEAAAAAAExhqYMwSZ3m8O0TByf14sWLwFcgmaapUqmkQqGgTCYzdGVUuVxWPB4fa/7293x0dDRVnePoDqcGhW/Xw7JJV4TN8oRNAAAAAACA65a6R1hbrVbTzs6OXn/9deXzeW1sbPh63NnZmTzPU6PR0NOnT2dS2/WwyPM8lctlHRwc3Nhm6DiOksmkarXayHmr1aqq1apqtdpYWxun1b1qbtApmNeDsEld//kAAAAAAADM0koEYe+9956kqxVEk24xbLVaikQiQZbVl2EYyuVyyuVyqlar2tvb6wl8bNtWsVhULpcbOIfneUqn08pkMn23Js6K67qdVXOFQmHgSq9JA6zrgV4QhyA0m01tb29PPc/+/r729/ennue6Vku6bA0fsxaR5vCrCQAAAADAVA4PD3V4eDj1PM1mM4BqJrP0Qdhbb72lcrksSYpEImq1RqQKfcwjAOsnlUopkUhod3e3Z1vmwcHB0CBsd3e3s+1yngqFgqSrLYzD6gtKECvCLi8vdXp6OvU8FxcXU8/Rz2VLeuVPh4/5+bekOwRhAAAAAIAld3FxEchr8EVa6iDs6OioEwZNGoJJmvhxQTAMQ/V6XfF4vBOGeZ4n27b7rvYqFotyHEf1en2udTqOo3K5LMMwRm7dNAwjkBAriC2fa2tr2tzcnHqe9fX1qecAAAAAAOA2W19f19bW1tTzNJtNXV5eBlDR+JY6CLsegiUSCSWTSRmGMXafsHfeeUcffvjhDKsd7ujoqKdZfq1WuxGEOY6jfD6vQqEgy7LmWt/e3p4k6dmzZyOb329sbAQShPl9DofZ3NzUycnJ1PMAAAAAAIDhgmortL29vbCVZUsdhDmOo0gkIsMwdHx8rHv37k08197enl577bUAqxuPZVlKJBKybVtS/4bz6XRalmXNZVtit2w2K8dxVKlUfAVwk67kuh6ezfMQgGX2w/elL413oCgAAAAAAJjAUgdhhmHo5cuXevz48VQhWHuu+/fvB1TZZJLJZCcIu65YLMp1XSUSCaXT6ZFzdYdKBwcHevLkSef2o0ePlEqlfNVULpdVLpdVKpV8P2ZnZ6en55nneb5CrevN8WOxmK/rrbIfvj96zJer0p016QuL/fUEAAAAAODWW+ogLB6P67333hu5Vc+vo6OjQOaZVPf3cX1b4EcffSRJA4OyYRzH6QmmTNP0FWrZtq1sNqtSqaRMJuP7et1bPKWr1W1+VpI1Go2e2/M8EXMRXn4sfe1v/I396l9Lb/y2tP7qTEtCQPyGvwAAAACA5bK26AKGyWazarVafbcRTmLRK8K6g7BFv4h2HEfJZFKFQmGsEEy6WhHWze/z072KzTCMwALOZfVXjvSv/+Fv7L/8u/QDZ/Q4LE67h180Gu301AMAAAAArJalDsJSqZTu37/fs+1vGj/+8Y8DmWdSx8fHnc+TyWTPfYVCQa1Wy/dHd4hUqVR67isUCkPrcF1Xu7u7yuVyE/UjsyyrJ8h7/vy5r8d1f//Xw7Tb6G9/Ot74vxtzPH6hHVIlk0nFYjFFo1FFIhFFo1HF43Elk0nl8/mBKy7T6fSNlY6e56larSqdTnfmKRaLgRwUAQAAAABYjKUOwqSrkKder+u///f/PvVcBwcHAVQ0ue6tgYvaFui6ruLxuDKZzMjArPsxxWKx52sPHz7sfN69LXOY7nH5fN7XY1bZ+b+NMfiDsv7H/xlRJDLex/XwZlLjXrcdMg2STqcnmnOcrcGe5ymfz3d+DsViUbZty3XdTljleZ4cx5Ft2yoWi0omk53x+Xxe5XJZ6XRa1Wr1xvx7e3s6ODhQtVol/AIAAACAW2LpgzDTNPXOO+/oK1/5ylTzvHz50ndgMyvtF9vzPhWyzfM8JZNJPXz40HcIJl2FGteDu2w22/ncT3jRPcY0zVvfH0ySor8yxuD/T0af+7Nz1ev1kf3dEomEarWazs+vxgeh1Wqp0WioVCoN3bZrmqZKpZIajYbOz88HjqtUKjo/P1etVhv5XOdyOdXrdZ2fn/v+vWhvUbwe0KZSqU54fn5+3vm+arWaMplM53tzHEfFYlHZbLbz7/J62NWe5/oKTAAAAADA6lrqZvntrYy//uu/rmg0qtdff933yYbdPM/T06dPgy5vLNVqVa7ryjAMPX78eO7X9zxP8Xhcpmkqn8/76uvlum5n5db1ZviWZSmRSHQCrmq1OvS5qVQqnc/DsBpMkt74rPTuP/of/4eWIcuyVKlUlM1mVS6Xb4xpBz2zYJqmMpmMEonEwBM96/W67/52hmEokUgokUgoHo/3DaLHPajBdV0lk8kbv7+ZTEalUqnvY0zT7ISvpVJJxWJx7N/BRCLR9/kAAAAAAKyWpQ7C3n77bb3//vud261W68YKEL9arZYikUhQpcm2baXTaXmep0QioUKhMPDkRNd1O821nz17tpBG+bu7u3JdV67rDgw5BhkUMJRKpc5cBwcHA4Mwz/M6IUIikRi7Of+q+qIlfeMn/hrm/+ovS1/q+vUZFIR1r8SbFdM0ZVnWjeAqlUpN/LubzWb71j7O74Jt2zd66xmGoWfPnvk6tbQtl8splUopHo/3rAI7Ozsb+JhFH24BAAAAAAjGUm+NfPjwYacBvKRAg6xpVSqVzoto27YVj8f7vtBv37exsaFGozHWC/agDFqN49egsMI0zc7qpPZWs352d3clXYUJs1rNtIzuvir9+e/7G/vOH0jrr/7i9qCtePPaotfvOtNcu99jxwmX2qecXn/8uCFYdz0vXrzoqYE+YAAAAABw+y11ENYOliKRyFgnKvb7CFo6nb7xtXK5rGg0qnQ6rWw22zmtLpPJqF6vL6TPUDqdnkkI1pZKpVSr1WQYhvL5fOd6nud1QkDHcWRZ1o3gIQy+cH/0mB+kbo4b9HPa2NiYvqgV0z7l9LpKpTJVsGwYRmA91pZJexs2+hvnQAYAAAAAt89Sb428e/euLMvS+++/39l6OEkQ4Lqu3n77bX3wwQeB1ZZIJNRoNFQoFGTbts7OzjorStrBz+PHj5VIJGYS/nSfQDnMPFZgJRIJnZ+fq1gs6smTJ9rd3ZXneTIMQzs7O6pUKhP1dguLP/YRls1bv39nr732WqDz+f233N6C3K3dy2xapmkql8tNvOV6nhzHUalU6pyMaRiGNjY2ZBiGTNPUo0ePJF2ddlkoFIaG2O2t3RsbGyqVSrf68ArXdWXbtiqVSicEm8WbI5MK03MBAAAALIOlDsIk6dGjR4rFYvr6178+8Rz379/Xm2++GfhqmvYJeriSy+UWdiLmslqLSD//1ugx6M+27b4rGsc59XSUx48fd4KwdoC7TDzP097eXud0S9M0O8Gy67pyHEeO43Tubz9mmHa46Hmestms72B9lbiuq3Q6Ldd1l3rbaxieCwAAAASn1ZIuR7yvuxaRlqiz1NJZ+iAskUjo+fPngcy1s7MTyDyAX5GIdIf/AE2sX9+9aZr292MYhjKZzNKeCplOpzsrmfqdsum6rrLZbM+Wv1FhysbGxlKHQ0EwTbOz9TWfzy/tqr8wPBcAAAAIzmVLeuVPh4/5+bd4HTrMUvcIk65WcwW1+uM//+f/HMg8AGavvQXwusePHwd+rXbPv2EnRw7T3t4Wi8UUiUQUjUaVTCanDteKxWIn4Mrlcn23O5qmqVqt1vPfyVE9wkqlkkzT7Dnw4ja7ftDCMgnbcwEAAAAs2tIHYZJ07969QOb5sz/7s0DmATB7g0KBWZy8mkgkVCgUxt4+7Xle51CM7ib17cMistmsYrHYxAdWHBwcdD7vtzquW/fW5FGBXrvH4aJOsp23RR0yMeo5k8L3XAAAAACLthJBWFCOj48XXQIAn/qd7jfLRuK5XG6sLZeu6+revXsjQy7XdRWPx8c+rXCS3lbtQ0U4NXLxyuXy0m63BQAAwO32w/cXXcFyW/oeYf18+OGHY71AdF1XpVKJPizAinBdt2+YsywrZjzP6zQ5T6VSSiaT2tnZ0dnZmWq1Wt9+VMlkUo1GQ6Zp+r5GN9u2h54E2fb48ePOVk8sRrtvGwAAABA0PyHXl6vSnTXpC/dnX88qWokg7MMPP1ShUBjYM8iPVqulCMcmACth0L/zWCw250r6a6/uqtVqN1apJRIJZbNZJZPJG99HOp3uNHAf5Xpgls/n9fDhw5Gr1tonSi7jCZhh4HneUvckAwAAwOp6+bH0tb/xN/arfy298dvS+qszLWklLf3WyMePHysWi6lcLqvRaKjVak30AWB1DArCFtXrqZ9+IVhbu4H9dY7j+N4iaRhGT5DV7kfm582AVqtFCLYAnudpd3eXrakAAACYib9ypH/9D39j/+XfpR9M1qr41lvqIOxHP/qRCoVCJ8hiRRewOPl8XpFIZKKPeDw+1rUGbWNelnDHMIyR/cpM0+x74u04p+BeH+u6bueNgWk5jtNp5j+M53kql8uKx+M9121v/4tGo4pEIorFYn23hLquq3w+3zlRMxaLKZvN9n2O29e5/vtzXTKZ7MzX/RHk9vdyudxznWg0qng83vd7lK5+nv16xnXXN+hn7fe5aPM8T8ViUclksvPzb9eXz+d9BXGu66pYLN44zKH7OYjFYp0twAAAAFi8v/3peOP/bszxYbHUWyPbJ6ZFIhG1Wi2ZpinLsjpbhl577bWRc3z00UfyPE9Pnz7Vy5cvZ1ovgGA0Go1FlzDUzs6Or3G5XE4HBwc9QcI4TfMzmYwqlcqNx2SzWZVKJR0dHY3VN81xHJVKJT19+rRTU79wsR1+PXnypO9hAPl8/kYg1A68Go2GSqXS0HHlclm2bater/dcP5PJKJPJKJvNDg372qvtisWi8vm8n2/dt2q1qnQ6LcMwdHR01Nlq6jiO0um08vm8SqXSjdpN09SzZ89k23ZPTYO2wvp9Lq4rl8ud/mOFQkGFQkGGYchxHB0cHKhYLKpYLCqVSt04edXzPB0cHPSccNp93+7ubs/z3e7V136u/Pa3AwAAwGyc/9tsx4fFUgdhjuN0VgPUajXt7u5OPFcul9Prr78eVGlA6LQDikkcHx+P9dhBgcCyrEwZZ2VaIpFQtVrt+ZrjOL4DrFqtpnQ63XeOeDyuVCqlo6OjkTW5rqsnT574XnVkWZYMw+h53ur1uuLxuDY2NlSpVGRZljY2NjoBjPSLoCafz3cOD2gHh8fHx50VRq7r6uDgoO8KuXQ67WvVWyqVCjQIs227c9DA48ePOyGYdPXzqFQqne2pe3t7PUGTYRiyLEtnZ2c9c/Z7nsd9LtrawaJhGDeCKdM0lUqlOr8r1WpVsVisJ7A7OztTMpnsBJ1tx8fH2t3dVSKRUKFQkGmanUDP8zx5nqdsNtt3uy8AAADmJ/orsx0fGq0lFo1GW2tra61vfOMbgcwXi8UCmQeLt7W11ZLU2traWnQpMyPpxsf5+flcrp3JZG5cu1AoTDxfvV6/MZ9pmgPHFwqFvt9/qVSauIZp5HK5njpSqZTvx1YqlUC+j0E/k0nm7J7LMIyhYy3L6rlOrVbrOy6RSPSMy2Qyfcd1/zwGXbtWq/XMNcj5+bmvfx/Xf/8GSaVSI3/fR83jt/Y2v89FqVTy/VybptkZm0gkRn4fhmH0fV6v/+7O678/AAAA6O/P/p9WS9/w//Fn/8+iKx5ska/pl7pHWPvd7gcPHgQyX3u7DoDltuwrwsbRbzvZJN9HLpfT+fl5zyqlbu2TKv3MPc4Wt+4DCjKZzMDeaNdPShz039vu+turjZbRoN/B7q8H0RTf73PRXvlmGIYymYyvsdLVKrd+23G7v4+jo6O+z+v137Xj42NftQIAAGA2vmhJn/olf2N/9ZelL/nvohIqSx2EtbdCXt9qMu18AJbboHBg2XuH9dMvUPnoo48mnqtSqaher/fdcmfbtnZ3dwMNl/xuA+1+zsbZOrpMJyweHR2pUCioUqmMDJuk+QWz5XK5cy0/wVkmk+l5DsY5oOG67ust03MFAAAQRndflf789/2NfecPpPVXZ1rOylrqIOyb3/ymWq1W32bNk/j+978fyDxYHs1mU9vb20M/Dg8PF10mxjRo1dE4jeaXRb/gws9BH8NYlqV6vd531ZXjONrb25tq/klMeqJnUG90BMEwDOVyub6r7hzHCez/RePq7s3ldwVZ97+hVfx3AwAAgP6+cH/0mB+k/I2blcPDw5Gv05vN5sLqW+og7O7du/r2t7+tJ0+e6Gc/+9nU87E18va5vLzU6enp0I+Li4tFl4kJDGoyvqxb6cYR1Ol7mUxGjUbjRghVrVaXOvyYNDSbt+4TLi3LGuuEzqDrGNf137Hb8O8GAAAA/vzxAkMwSbq4uBj5Ov3y8nJh9S31qZHSVV+c9qlpP/nJTyae58WLFwt7Nx+zs7a2ps3NzaFj1tfX51QNgvTo0aO+/2Zt2x7YJ2tZGYbRE0QEFYS152qf5th9jVKpNHBlHYZzHEf5fF6WZU21rTAo3c+r31Ds+omUZ2dnKxNAAgAAYLWtr69ra2tr6Jhms7mwMGzpgzDpalvIzs6OXn/9deXz+Z7mzcOcnZ3J8zw1Gg09ffp0xlViETY3N3VycrLoMlaO4zg6ODhQpVJZdCkDZTKZnqbfbaVSaeWCsOurcUatLLJtW/l8XvV63df8pmnq6OhI6XS68zWC/8lks1mVy2VlMpmlCMGkyRr0X///ZJDhKwAAABZnLSL9/FujxyzS/v6+9vf3h47Z3t7W6enpnCrqtRJB2HvvvSfpqlF2NpudaI5Wq6VIZMG/DcCS2Nvb8x0oL4phGEqlUqpWqz1ft21bjuMsbJvauK6HYH5WaZmmKcdxZNu271Vd18NBGpuPrx2CSdM1mA9a+/dB+sVJm6NWd3X3XiMEAwAAuD0iEekO0cZUlrpHmCS99dZbSiaTev/99xWJRNRqtcb+APAL7SApmUwOHBN0A/NJ5xsURvRbKTatWfVQOj4+7rntJ8xvBxeTBv/S6FVnt0GQv6eO43RCMNM0l2ob4aNHj3put+scpvuE1VVbQQkAAADM0lIHYUdHRyqVSp0wa9JQizAMuOJ5Xmf73Lgvjj/66KNAa/ETYpim2TcMs21bxWIxsFpc11U8Hp8qeBrk+ol/fn/upmnKdV3fod/1FWDXw5NVcn214qCQMshVb92HCwybdxFN51OpVE8w5+fgl+7v5/Hjx7MoCwAAAFhJS701sv3HfnslWCKRUDKZlGEYY/cJe+edd/Thhx/OsFogOLN4se15nnZ3dzvbqsbdLhV0TX7nax+Ycf0UxHYz82kbwtu2rWQyOTB0m1b31s5xTq5tB2HFYlGxWEyZTGbo+O65TdNULpcbv9g+/D5P3eNGPWbU/ddXs5XL5RvfT7+QMMiG8NVq9UZo2e96113/d+W6bs/X/Gxr7Ke7B5zrukO3zTqO09lKWSgUlmp1GwAAALBoSx2EOY6jSCQiwzB0fHyse/fuTTzX3t6eXnvttQCrA2Zn0IqUSV/o27atbDbbmffhw4djX3+abWjTrtxpnxx7vV9YMplUoVCYKPTxPE/5fF7lcrlz8qLfn63fcKhcLne+90wmM1Zo1x2eZLNZ1ev1gaFGuVzuWSHXvQqtn+7nchErnLoNun4ikeiEn/l8Xo1GQ+l0Wp7nqVarqVwud34v2nNcD53arv/u9gujrodv6XRahUJBlmXJcRyVSiVZltUJKKVfhI+1Wk2PHz/uGzBns1lVKhWdnZ2pUCgoFov1/L76fS5SqZQKhUInjEun03rx4sWN78PzPO3t7Um6+p0b9G/D7/Pe/W930b8rAAAAQCBaSywajbbW1tZa3/nOdwKZLx6PBzIPFm9ra6slqbW1tbXoUmYik8m0JN34SCQSrUajMfLx5+fnrVqt1srlci3TNG/MU6lUBj620Wj0vbak1vn5+UTfj2VZfecrlUpjzZPL5frOY1lWq1ar+Zrj/Py8VSgUWoZhdH6mo76v69c1DGPkdbp/jolEwldt3UqlUt/vNZVKtXK5XKtUKrUymUzP8+v39+P68zHo9+H8/PzGz3mQVCrl67mt1Wo94zKZzMBrt5+j6x+GYXSe7+4xlmW1Go3GjefTb23Xx3V/FAqFVqvV/99mKpXqmWfQ72m/79Xvc9FWqVQ637NhGK1SqdRqNBqtRqPRKpVKnd+Hdr39+H0Oro+b5PcYAAAA6GeRr+mXOghLJBKttbW11o9+9KNA5nMcJ5B5sHi3NQir1+tDX4wH9dEv+Dk/P2+VSqWB4YOklmmarVKp5DsQq9frrUQiMbSWXC7nK7xpq9VqA4M1wzBaqVSqVSqVWrVarVWv11u1Wq1VKpVahUKh53GGYYwMHdr6hYOmaQ4M37rDiushyTjfZ7vGSqXSymQyrUQi0bIsq+c5an/Po4LA9u/WoOfXsqxOeDJsrGmarVQq1fkduB7GXQ9O2nPWarWBvwumafYNY87Pz3vmtyyrlcvlesa0v3b9d+j8/Hzk99vvmoVCoXM90zRbuVyu5/f9/Py88310/8yu6w6hLcvq+V0b57kYpFQqtRKJRE8o1n7coH+fw/49dj8HjUZj6LhRtQEAAACjLPI1faTVWt5O8tVqVQ8fPlSxWNR//a//ddHlYIlsb2/r9PRUW1tbOjk5WXQ5UyuXyzNp1N6PZVmq1+s9X4tExj9/1zAMnZ+f972v3zZGP2q1mu/tg9VqVQcHB51eSH6ZpqlsNqtMJjPWNtN2T6rr35dhGNrZ2ZFhGPI8T8fHx52td5VKZeoeZgAAAABw2yzyNf1SB2GSFI/Htba2pufPn089149//GP90R/9UQBVYdFuWxCGyXmeJ9u29eTJE7muK8/zOn2NTNPs9G168OCBUqnU2IcEjLpe+5rt6+zs7CidThOAAQAAAMAABGFDuK6r3/zN39SPfvQj/eEf/uFUcz148CCQQA2LRxAGAAAAAMBqWuRr+rW5Xm0CpmnqnXfe0Ve+8pWp5nn58uXYW6gAAAAAAABwe7yy6AKG+fGPfyxJ+vVf/3VFo1G9/vrrSqVSY8/jeZ6ePn0adHkAAAAAAABYIUsdhL399tt6//33O7dbrZaKxeJEc7VarYkaggMAAAAAAOB2WOqtkQ8fPlSr1VK7jRlBFgAAAAAAACa11EFYNpuVdBWAtQOxST8AAAAAAAAQbku9NfLu3buyLEvvv/++CoWCLMvSxsbG2PO4rqu3335bH3zwQfBFAgAAAAAAYCUsdRAmSY8ePVIsFtPXv/71iee4f/++3nzzzYlCNAAAAAAAANwOS701UpISiURgWxt3dnYCmQcAAAAAAACrZ+mDsPv376tQKAQyV1DzAAAAAAAAYPUsfRAmSffu3Qtknvv37wcyDwAAAAAAAFbPQoOwZWpev0y1AAAAAAAAIHgLDcLi8bguLi4WWYIk6eXLl4rH44suAwAAAAAAADO00CAsqCb4QVimWgAAAAAAABC8hQZhkUhkkZfvsUy1AAAAAAAAIHisCAMAAAAAAEAovLLoAl68eKHf+Z3fWWgNx8fHC70+JtdsNrW9vT10zP7+vvb39+dUEQAAAAAA4XV4eKjDw8OhY5rN5pyquWnhQdje3p6+8Y1vyDAMbWxszPXaZ2dncl1XuVxurtdFcC4vL3V6ejp0zDIcyAAAAAAAQBhcXFyMfJ2+SAsPwur1utLp9EJraLVa9AhbUWtra9rc3Bw6Zn19fU7VAAAAAAAQbuvr69ra2ho6ptls6vLyck4V9Yq0Ftioa21trRNALaqMSCTSCcI++eSThdSA8W1vb+v09FRbW1s6OTlZdDkAAAAAAMCnRb6mX/iKsEU3zF/09QEAAAAAADAfCw3Czs/PF3l5AAAAAAAAhMhCg7C7d+8u8vIAAAAAAAAIkbVFFwAAAAAAAADMA0EYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUbmUQ9vLlS7311luLLgMAAAAAAABL5FYGYa7rqlwu65//+Z/13nvv6eLiYtElAQAAAAAAYMFuZRBm27ZarZZM01QymVQ0GtU3v/nNRZcFAAAAAACABbp1QdizZ8+Uz+clSa1Wq/NRKBSGhmFvvfWWXn/9dT148EDf/OY3WUUGAAAAAABwy0RarVZr0UUEaWdnR6Zp6tGjR7IsS67r6t1339V3vvMdRSIRua6rT3/60z2Pef311+W6rrp/FLFYTPV6Xevr6/P+FuDD9va2Tk9PtbW1pZOTk0WXAwAAAAAAfFrka/pbtyJMkp4+fao333xT9+7d0+7urgqFgs7OzvSZz3yms1qs7a233lKj0ZAk5fN5XV5e6uzsTJ/73Oe0t7e3iPIBAAAAAAAwA7cuCItEIn2/bhiG6vV6J/RqK5VKikQiSqVSOjg46IwtlUo6Pz/Xhx9+OOuSAQAAAAAAMAe3LgiLRqP63ve+1/c+wzAUjUY7t4+OjjqfFwqFG+Pz+bxs2w6+SAAAAAAAAMzdrQvCcrmcvv71r+trX/ta34b35+fnnc/bq8ESiYQ+85nP3Bi7s7NzYwUZAAAAAAAAVtMriy4gaIlEQnt7e3rnnXdUKpWUSqX04MEDSdKTJ0/UaDT0+c9/XpZlyXEcRSIRZbPZvnPdvXtXruvOs3yMqdlsant7e+iY/f197e/vz6kiAAAAAADC6/DwUIeHh0PHNJvNOVVz060LwqSrlV5nZ2f60Y9+pGq1qmq12rnv+PhYb7/9ds9WSMuy+s7z/vvva2NjY+b1YnKXl5c6PT0dOqbfykAAAAAAABC8i4uLka/TF+lWBmGSVKlUVC6XVa1WZdu2DMPQ0dGR7t+/r0qlonQ6rWfPnqlQKCibzep//I//cWOOcrmsWCy2gOrh19ramjY3N4eOWV9fn1M1AAAAAACE2/r6ura2toaOaTabury8nFNFvSKtVqu1kCsvkWq1qkKhoO9///v6nd/5HV1cXOjtt9/Wd77zHZ2fnxOkLKHt7W2dnp5qa2tLJycniy4HAAAAAAD4tMjX9Ld2Rdg4UqmUXNfV/fv3FYlEOl//9re/TQgGAAAAAABwSxCE/f/lcjmZpqlyuSzDMPTo0SO9+eabiy4LAAAAAAAAAbl1Qdh7772nz33ucyPH/fjHP1YikehZ8ZVKpZRKpWZZHgAAAAAAABZkbdEFBC2VSunOnTv6/Oc/r+9+97v64IMP+o7b3d3VV77yFX344YdzrQ8AAAAAAACLceuCsHg8rlarJdu2lc/nFY/H9dprr90Ixu7evaujoyOl02n98z//82KLBgAAAAAAwMzduq2R1WpV6XRaZ2dn8jxPruvq/PxctVpNtm13xiWTSd2/f1/n5+fKZrP6yU9+ssCqAQAAAAAAMGu3LgjLZDIql8v6zGc+0/nas2fP9PTpUx0dHXW+9u6776pWq6nVaunFixcLqBQAAAAAAADzdOuCsFar1ROCSVf9wHZ3d1UsFvX222/r2bNnevTokZ4/fy7XdfXo0aPFFAsAAAAAAIC5uXVB2MuXLwfed/fuXRUKBb148UL5fF7FYvFGaAYAAAAAAIDb6dY1y793756+973vjRzz9OlTZTIZGuUDAAAAAACExK1bEZbL5fSbv/mbMk1Tf/iHfzh07NOnT/XgwQPV63Wtr6/PqUIAAAAAAAAswq1bEWaapr797W8rlUrpa1/72tCxhmHo/v37+sY3vjGn6gAAAAAAALAoty4Ik65Whf3RH/2R3nnnHf36r/+6vve97+ni4qLv2I2NDT158mSu9bmuq2QyOfU8sVhMkUhE1Wp17McWi0Ulk0lFo1FFIhHFYjGl02nZtj1xPbOYEwAAAAAAICi3MgiTpEqlor29PZ2dnSmXyykajerRo0f6/ve/rw8++EAffPCBHj9+rHK5LM/zArmm53mKRCIjP2KxmEzTnOpa+XxeruuO/TjbthWNRpXP5yVd/ZwajYYKhYIcx1EymVQymRzrZzKLOQEAAAAAAIIWabVarUUXMUvValV7e3t6+fKlIpHIjftbrZbi8bieP38+9bWKxWInDBql0WhMHIbZtt2zoqxSqSiVSo31uEwmo1KpdGNMPB6X4zgyTVP1el2GYcx9Tj+2t7d1enqqra0tnZycTD0fAAAAAACYj0W+pr+1K8LaUqmUzs/P9e1vf1t3795Vq9Xq+TAMQ0dHR4Fc6+DgwNe4RCIxcQjmeZ7S6fRUjzNNs29gJV2FatLV9s1R15nFnAAAAAAAALNy606NHCSXyymXy+n999+X67pyXVemaSqRSOju3btTz9/eYpnL5Ub2/9rZ2Zn4Ont7e9rY2JCksbYaptPpzvhhq9ZM01QqlVK1WpVt2yqXy8pkMnObEwAAAAAAYFZWdmvkW2+9pb/4i79YdBkdsVhM0tWWx1kpl8vKZrOq1+va3d3thFCjtka6rtupT5LOz8+Hbk+sVqudlVuGYej8/Hwuc46DrZEAAAAAAKwmtkZO4OnTp/rZz3626DIkXYU8ruv67g82Cdd1lc1mlcvlZFnWWI8tFAqdzxOJxMgeXd2hmud5fU+lnMWcAAAAAAAAs7SyQdj5+bk+85nP6K233tJ777230FoODg5kGIYePnw4s2uk02lZltUTQPlVLpc7n/sN0bp7mD158mQucwIAAAAAAMzSygZh0tXKonK5rGQyqTt37ujzn/+8vvvd7+rDDz+cWw2O48hxHHmep2g0qlgspmw2G+iKp3w+L8dxOk3nx62v24MHD3w9rjvcuv69zGJOAAAAAACAWVvpIExSzwmQtm0rn88rFovptdde01tvvaUf//jHI+f4/ve/P/H1r2+HdF1X5XJZ6XRakUhE6XT6RnA0DsdxVCwWVSqVJjpp0rbtntt+57g+rvt7mMWcAAAAAAAAs7ayQdi3v/1ttVotRSKRTtP27lDs/Py8E0jduXNHDx480He/+1198MEHN+aq1WoT1eC67o1Q6Lpqtap4PK5sNjvRNXZ3d5VKpSY+ZfH58+c9t0f18mp77bXXem4fHx/PdE4AAAAAAIBZe2XRBUwql8spkUgonU7r7OxM1WpVrVZL/+2//Tc9e/ZMnuep+0DM9hZG6Sq4SSQSSiaTkibfpmeapkqlkjzPU6PRkG3bcl2379hyuazj42PV63Xf87dPWTw6OpqoPkk36pl09Vb3aZizmBMAAAAAAGDWVjYIk656TjUaDeXzeaXTaWWz2U4frRcvXqharapWq8m27Z5Q7Pz8XNVqNZA+VddXarX7lh0cHMjzvJ77HMdRMpn0tQKtXV+tVvO94qqfQcHcuLq/l1nMCQAAAAAAMGsruzWyW6FQ0PPnz/Xuu+/qt37rt/QP//APunfvnr7+9a/r3Xff1eXlpWq1mjKZTGdVUvc2yiAZhqFcLqfz83NVKpUbIZZt2yoWi0Pn8DxP6XRamUxGiURiqnomDZuu1312djbTOQEAAAAAAGZtpVeEdbMsS//0T/+kbDYry7KUz+f19ttvd+7f3d3V7u6uJOnly5d6+vSpKpXKyB5f00ilUkokEtrd3e1pDH9wcKBcLjfwcbu7u51tl8tiFqu3gpiz2Wxqe3t76nn29/e1v78/9TwAAAAAANxWh4eHOjw8nHqeZrMZQDWTuTVBWFupVFI6ndbDhw9VrVZVqVT0O7/zOz1j7t69q729Pe3t7cm2bX3+85+fWT2GYaherysej3fCMM/zZNt239VexWJRjuOM1Uts1PWDCJy6V3PNYs5JXV5e6vT0dOp5Li4upp4DAAAAAIDb7OLiIpDX4It064IwSUokEnJdV3t7e7IsS8ViUf/lv/yXgWPbK8Vm6ejoSPF4vHO7VqvdCMIcx1E+n1ehUJBlWYFcd2NjI5DQamNjY6ZzTmptbU2bm5tTz7O+vj71HAAAAAAA3Gbr6+va2tqaep5ms6nLy8sAKhrfrQzCpKvVRpVKRdVqVQ8fPtSTJ09UqVT06U9/+sbY9umMs2RZlhKJRGcrZr+G8+l0WpZlDd02Oa5JV11dD7qurwgLes5JbW5u6uTkZOp5AAAAAADAcEG1Fdre3l7YyrJbG4S1pVIpnZ2dKZ1OyzTNvqvD9vb25lJLMpkc2JOsWCzKdV0lEglfwVx3qHRwcKAnT550bj969EipVEqStLOz09OfzPM8XwHU9Ub2sVis8/ks5gQAAAAAAJi1Wx+ESVcrj2q1morFor7+9a8PXR02S+0TK6Wb2wI/+ugjSZqoeb/jOD3BlGmanSCsezumdLUSzc+2y0aj0XO7exvnLOYEAAAAAACYtbVFFzAvH374oXZ2dpTL5XR8fCzTNPWXf/mXc62hOwgLYlugHzs7Oz23+23J7Kd7xZlhGD21z2JOAAAAAACAWbsVK8I+/PBDua4rz/Pkuq4ajYZc15Xrujo7O7vRmyoSiajVaimTyahSqahSqejXfu3XZl7n8fFx5/NkMtlzX6FQUKFQ8D1XLBbrBFCVSqWzAuw6y7J6Tnl8/vz5wLGDar0efM1iTgAAAAAAgFlb2SDswYMHnfBrmFarNfS+d999V5/73Of0/PnzgCu8qXtr4Dy3BT58+FDlclmSerZQDtM9Lp/Pz2VOAAAAAACAWVrZIKxer3dWdg3T3oLX/ojFYtrY2Ojcvnv37pwqlqrVqiQFeiqkH9lsthNa+elB1j3GNM2+od0s5gQAAAAAAJillQ3CukWjUT18+LAn8Jp3yDVKtVqV67oyDEOPHz+e67Uty1IikeiEUdVqdehWxkql0vl80MqtWcwJAAAAAAAwSyvdLP/NN9+UZVk6Pz9XuVzW8fGxzs/PFY1GZx6C2bataDSqSCSiZDI5dHug67ra29uTJD179mxujfK7lUqlzucHBwcDx3me11nplUgklMlk5jonAAAAAADArKxsEJZIJPT06dNO+PXkyRO1Wi3lcjnFYjG9/vrreuutt/T3f//3I+d67733xr5+pVLp9CezbVvxeFzZbPbGuPZ9GxsbajQasixr7GsFwTTNzqosx3FULBb7jtvd3ZV0taW0exXXvOYEAAAAAACYlZUNwrpPXbx7965SqZSePn2qs7MzPX/+XH/0R3+k58+fa3d3V3fu3NGDBw/0ve99Tx988MGNubpXNvmVTqdvfK1cLisajSqdTiubzSoejyuZTCqTyaher8s0zbGvE6RUKqVarSbDMJTP55VOp+U4jjzP6wR2juPIsiy9ePHC18q1WcwJAAAAAAAwC5HWqG7zK+7ly5eq1Wp6+vSpbNvWy5cvZRiGEomEHjx4IOmqZ9Unn3wy9tyu66pQKMi2bZ2dncnzPBmGoY2NDVmWpUePHimRSCxl+FMsFvXkyZPOyZuGYWhnZ0fZbHZor695zznI9va2Tk9PtbW1pZOTk0DnBgAAAAAAs7PI1/S3Pgi7znEcPXnyRD/60Y/kuq4ikYgkTRSEYXEIwgAAAAAAWE2LfE2/slsjJ2VZlgqFgv7pn/5Jx8fH+tznPrfokgAAAAAAADAHoQvCulmWpVqtpvv37y+6FAAAAAAAAMxYqIOwtkKhsOgSAAAAAAAAMGMEYZJ2d3cXXQIAAAAAAABmbCWCsO9+97t67733Fl0GAAAAAAAAVthKBGH/83/+TyWTSf3lX/7lVPMcHR3pzp07+q3f+i39wz/8Q0DVAQAAAAAAYBWsRBAmSa1WS5lMRt/85jcnniOfz6vVaumf/umfZFmWPvzww+AKBAAAAAAAwFJ7ZdEFjOvdd99Vo9HQkydPxn7svXv39PLlSyUSCUlXwdgk8wAAAAAAAGD1rFwQdnx8rHQ6rQcPHui9997Tr/3ar/l+bL1e77n9+uuvB10eAAAAAAAAltTKbI3sVqlUlE6nZVmW/vmf/3miOV68eKGzs7OAKwMAAAAAAMCyWskgTJJyuZz+4i/+QpZl6e///u/HeuzLly+VTCa1s7Mzo+oAAAAAAACwbFY2CJOkRCKh58+fa29vz/eJku+9955M09SLFy+UTqdnXCEAAAAAAACWxUoHYZJkmqaOj4/15MmTkSdKfuc731EymdT5+bkMw9BXvvKVOVUJAAAAAACARVu5Zvn9GIahd999V1/96lf16NGjvidBPn78WMViUa1WS5FIRIVCYQGVImjNZlPb29tDx+zv72t/f39OFQEAAAAAEF6Hh4c6PDwcOqbZbM6pmptuRRDW9s4776hcLt84UfLZs2cqFAqKRCKKRCKyLIvVYLfE5eWlTk9Ph465uLiYUzUAAAAAAITbxcXFyNfpi7RyQdjf//3f6z/9p/808P5MJqOdnR197nOfU7Va1ac//enO6i9Wg90+a2tr2tzcHDpmfX19TtUAAAAAABBu6+vr2traGjqm2Wzq8vJyThX1irRardZCrjyGfD6v73znO5KkWCwm27b16U9/euhjXNfVw4cP9c1vflOpVEqRSEStVkvxeFzPnz+fR9mYoe3tbZ2enmpra0snJyeLLgcAAAAAAPi0yNf0K9Esv1Ao6Pz8XJVKRbu7u0okEvr+978/9DHtJvrvvPNO52uRSESPHj2adbkAAAAAAABYQiuzNfLu3bt688039eabb471uHfffbezoqzdHwwAAAAAAADhsxIrwqZVKBT09OlTtVotvXjxYtHlAAAAAAAAYAFCEYRJUiqV0vHxsZ48ebLoUgAAAAAAALAAoQnCJMmyLL377ruLLgMAAAAAAAALEKogDAAAAAAAAOFFEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAqvLLoAYBrNZlPb29tDx+zv72t/f39OFQEAAAAAEF6Hh4c6PDwcOqbZbM6pmpsIwrDSLi8vdXp6OnTMxcXFnKoBAAAAACDcLi4uRr5OXySCMKy0tbU1bW5uDh2zvr4+p2oAAAAAAAi39fV1bW1tDR3TbDZ1eXk5p4p6RVqtVmshVwamsL29rdPTU21tbenk5GTR5QAAAAAAAJ8W+ZqeZvkAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhMIriy4AmEaz2dT29vbQMfv7+9rf359TRQAAAAAAhNfh4aEODw+Hjmk2m3Oq5iaCMKy0y8tLnZ6eDh1zcXExp2oAAAAAAAi3i4uLka/TF4kgDCttbW1Nm5ubQ8esr6/PqRoAAAAAAMJtfX1dW1tbQ8c0m01dXl7OqaJekVar1VrIlYEpbG9v6/T0VFtbWzo5OVl0OQAAAAAAwKdFvqanWT4AAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCELYDrukomk77HZrNZxWIxRSIRRaNRxeNxZbNZua470fU9z1M+n1cymezMG4vFlE6nVS6XJ5pTkorFopLJpKLRaM+ctm1PPCcAAAAAAEBQCMIC5HmeIpHIyI9YLCbTNEfOVywWFYvFVC6XO6GX53lyHEflclmxWEzFYnGsGovFoqLRqMrlspLJpEqlkur1uvL5fE/oNk54Zdu2otGo8vm8JKlSqajRaKhQKMhxHCWTSSWTSXmeN1atAAAAAAAAQYq0Wq3Woou4LYrFYicMGqXRaAwNw5LJpGzblmEYSiQSMk1TruvKcZwbK8EqlYpSqdTIa6bTaVWrVVmWpXq93ndMNpvtrAqr1+uyLGvonLZtd1a3ZTIZlUqlG2Pi8bgcx5FpmqrX6zIMY2Sto2xvb+v09FRbW1s6OTmZej4AAAAAADAfi3xNTxAWoGg06mvVUyKRUK1WG3h/Pp9XsVhUoVBQLpe7cX+/wG3U09j9mPPz86FhVCwWk+u6MgxD5+fnA8d5nqd79+7J8zyZpqlGo9F3nOu6isVikkZ/734RhAEAAAAAsJoW+Zr+lble7RYrl8vyPE+5XG5k/6+dnZ2B97muq2KxqFqtpkQi0XdMLpdTo9Ho6eflOM7Q1VvtEMyyrJErslKplIrFojzPU7VaHbjaLJ1Od4K/YSvhTNNUKpVStVqVbdsql8vKZDJDawAAAAAAAAgaQVhACoWCTNNUoVCYap58Pq9CoTAwBOu+XncQZtv2wCCsu9+Xn95kDx486Hz+/PnzvkGY67o98z58+HDonI8ePVK1WpV09T0ShAEAAAAAgHmjWX4AqtWqXNf13R9smPaqslEMw+gJtYat8uruKeY4zlj1vPbaa32/3h34JRIJX6vM2torzQAAAAAAAOaJICwABwcHMgxj5KooP8bpn3V2dtb5fNh2y42Njc7nruveaLZ/3fPnzzufD1pB1r0abVRD/X5zPXnyxNdjAAAAAAAAgkIQNiXHceQ4jjzPUzQaVSwWUzabnfmKJ8/zOv25EonE0DDqepiVzWaHzt2u3TCMvtsir68q695KOUx3jawIAwAAAAAA80YQNqXr2yFd11W5XFY6nVYkElE6nR57O6IfT58+lXQVclUqlaFjLcvqCaFs21Y6ne47tlwud1aMDep31t0brF2DH9fHzeLnAgAAAAAAMAhB2BSuN4zvp1qtKh6Pj1yFNQ7P85TNZmVZlmq12sj+XJJ0dHR0o67rYZht2506S6XSwIb23VsnpeH9ybpd7zd2fHzs63EAAAAAAABBIAibgmmaKpVKKhQKymQyQ1dGlctlxePxqa/puq7i8bgMw9CzZ898r8ayLOvGyrFqtapYLCbHcVQsFpVMJmWapmq12tBTHa/3GJt0RVij0fD1OAAAAAAAgCAQhE0pk8kol8upVCqp0Wjo/PxchUKh7yopx3GUTCYnvlY7uHJdt9OTrFgs+n58KpVSqVTq+Vo7WMvn88rlcmo0GkokEkPnGdVs3692jzMAAAAAAIB5iLRardaii7itqtWq9vb2bgQ+hUJBuVzO1xye56lcLqtUKg0MoFKp1Mg+Yd3K5XLfrZqWZenZs2cjtzpGIpGe235/hWzb7gkCx6272/b2tk5PT7W2tqbNzc2J5ui2v7+v/f39qecBAAAAAOC2Ojw81OHh4dTzNJtNXV5eamtrSycnJwFU5t8rc71ayKRSKSUSCe3u7vY0hj84OPAdhNm23VmlNagnWbVaVbFY9D1nJpNRvV5XuVzu+brjOLp3756ePXs29BTKoASxIuzy8lKnp6dTz3NxcTH1HAAAAAAA3GYXFxeBvAZfJIKwGTMMQ/V6XfF4vBOGeZ4n27ZHbkGUrsK0VCrV87Vyuax8Pt8TJOXzeWUyGV+N67PZrMrlsjKZjGzb7llp5nme4vG4arXawPoMwwgkxPLbZH+YoFaEra+vTz0HAAAAAAC32fr6ura2tqaep70ibBEIwubk6Oiop1n+sKBplEwmo0QioXg83hNIlcvlkavCksmkbNtWLpdToVCQ9Itg7Pq4QTVubGwEEoRtbGxMPcfm5ubcl1ECAAAAABBGQbUVarc7WgSa5c+JZVk9odK0DedN09SzZ896vvb8+fOhj4nH452VaO0QTJJKpVLfXl3pdLpv4DXpSq7rcwWxIgwAAAAAAMAvgrA5mubEyH4sy+rZNjksXEun052tmddPjpSutmDW6/WecMrzPOXz+Rtjd3Z2em77XR12dnbWczsWi/l6HAAAAAAAQBAIwubINM3O50FsC5SkR48edT4fFEi5rqtqtSrpKjzrrqObZVmq1+s9XyuXyzfm7d7i2Z7fj0aj0XN70q2hAAAAAAAAkyAIm6PuACqobYHdpzsOmrN7Bdj11VzXmaZ5Y8XY8fFxz+3rc/gNwroDNcMwBgZyAAAAAAAAs0AQNkfdgVLQ2ySlwSFXdwDlZztiJpPpuX096LIsqyd0G9WbrK37+x8VyAEAAAAAAASNIGyOurcGBrUtsDukGhSudffmur49cZDulWb9PHz4sPN5u/fYKN3j+vUeAwAAAAAAmCWCsDlq9+nK5XKBzdkOlwzD6Gmc3617C+Ikp1X228KYzWY7n9u2PXKO7jGmadIfDAAAAAAAzB1B2JxUq1W5rivDMPT48ePA5j04OJAkHR0dDRzT3VD/+PjY1ymP3YFZv9DKsqyer7dDvkEqlUrnc1aDAQAAAACARSAIm5Bt24pGo4pEIkomk0O3B7quq729PUnSs2fPhjbKLxaLisfjyufzIwOr9phcLjdwNZjUG1p5ntcJzwaxbbtz7UKhMHBcd1P9YXN6nqdyuSzpKlS73oMMAAAAAABgHgjCJlSpVDphkW3bisfjPdsF29r3bWxsqNFoDO295Xme8vm8HMdRsVhUNBoduHoqnU6rWCyqUCgMDau6620HcMVisRNMXee6rtLptKSr0GrYNk7TNDsrvdo197O7uyvpavtm98owAAAAAACAeSIIm1A7LOpWLpcVjUaVTqeVzWYVj8eVTCaVyWRUr9f79trqZhjGjTHtQCydTiufzyuZTCoajUq6anzvt9+YYRh68eJFZzVWNptVMplUuVyW4ziybVv5fF6xWEye56lQKKhWq42cN5VKqVaryTAM5fN5pdNpOY4jz/M6IaDjOLIsSy9evBi6Gg4AAAAAAGCWIq1Wq7XoIlaV67oqFAqybVtnZ2fyPE+GYWhjY0OWZenRo0dKJBJjhT/trYu2bct13RtzJpNJPXz4cKpAyXEclUqlzjWkq9VdlmXJNE09fvx4ovmLxaKePHnSU/fOzo6y2ezQrZuT2N7e1unpqba2tnRychLo3AAAAAAAYHYW+ZqeIAwriSAMAAAAAIDVtMjX9GyNBAAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEwiuLLgCYRrPZ1Pb29tAx+/v72t/fn1NFAAAAAACE1+HhoQ4PD4eOaTabc6rmJoIwrLTLy0udnp4OHXNxcTGnagAAAAAACLeLi4uRr9MXiSAMK21tbU2bm5tDx6yvr8+pGgAAAAAAwm19fV1bW1tDxzSbTV1eXs6pol6RVqvVWsiVgSlsb2/r9PRUW1tbOjk5WXQ5AAAAAADAp0W+pqdZPgAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAACh8MqiCwCm0Ww2tb29PXTM/v6+9vf351QRAAAAAADhdXh4qMPDw6Fjms3mnKq5iSAMK+3y8lKnp6dDx1xcXMypGgAAAAAAwu3i4mLk6/RFIgjDSltbW9Pm5ubQMevr63OqBgAAAACAcFtfX9fW1tbQMc1mU5eXl3OqqFek1Wq1FnJlYArb29s6PT3V1taWTk5OFl0OAAAAAADwaZGv6WmWDwAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFB4ZdEFANNoNpva3t4eOmZ/f1/7+/tzqggAAAAAgPA6PDzU4eHh0DHNZnNO1dxEEIaVdnl5qdPT06FjLi4u5lQNAAAAAADhdnFxMfJ1+iIRhGGlra2taXNzc+iY9fX1OVUDAAAAAEC4ra+va2tra+iYZrOpy8vLOVXUK9JqtVoLuTIwhe3tbZ2enmpra0snJyeLLgcAAAAAAPi0yNf0NMsHAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQdgCuK6rZDLpe2w2m1UsFlMkElE0GlU8Hlc2m5XrujOr0XEcVatVFYtF2bbt6zHFYlHJZFLRaFSRSESxWEzpdNr34wEAAAAAAGaJICxAnucpEomM/IjFYjJNc+R8xWJRsVhM5XK5E3p5nifHcVQulxWLxVQsFgOrvVgsKh6PKxKJaHd3V8+fP5dlWdrZ2Rn6WNu2FY1Glc/nJUmVSkWNRkOFQkGO4yiZTCqZTMrzvEBqBQAAAAAAmMQriy7gNimXy77HtkOjQZLJpGzblmEYSiQSMk1TruvKcZyelWD5fF6maSqVSk1Us+d5yufzndoty1KtVlMikfD1eNu2O6vbMpmMSqVS5752XfF4XLZtKx6Pq16vyzCMiWoFAAAAAACYRqTVarUWXcRtEY1Gfa16SiQSqtVqA+/P5/MqFosqFArK5XI37i8WizeCtEmexnK5rHw+36m5VCopk8n4frznebp37548z5Npmmo0Gn3Hua6rWCwmafT37tf29rZOT0+1tbWlk5OTqecDAAAAAADzscjX9KwIC0i5XJbnecrlciP7fw3baui6rorF4tBVWblcTo1Go2cFmuM4sizLd73tsE26WrlVq9V8bdfslk6nOyHasBVu7ZVh1WpVtm2rXC6PFbgBAAAAAAAEgRVhAWmveBq0KsqvdDqtBw8e9F0J1s3zPEWj0c7tQavHBl2jWq1KkgzD0IsXL8berti9ykuSzs/Ph85RrVaVTqc71zw/Px/retexIgwAAAAAgNW0yNf0NMsPQLValeu6I/t++dFeVTaKYRg9K7j8BlnJZLITgkmauGdXoVDofJ5IJEbO0d3DzPO8nhoAAAAAAADmgSAsAAcHBzIMQw8fPpx6rnH6Z52dnXU+H3Wyo3S1fdO27c7tUqk09nbI7rna/G7J7L7WkydPJrouAAAAAADApAjCpuQ4jhzH6WxVjMViymazM1/x5Hlepz9XIpEYGUa5rqtsNtu5bVnWxH26HMfpuf3gwQNfj+uukRVhAAAAAABg3gjCpnR9O6TruiqXy0qn04pEIkqn0zeCoyA8ffpU0tUqq0qlMnJ8uz9X2+PHjye+dveqsnYNflwfN4ufCwAAAAAAwCAEYVNwXfdGKHRdtVpVPB7vWY01Lc/zlM1mZVmWarXayP5cruv2hE6GYfT07BrX8+fPe2777TH22muv9dw+Pj6euAYAAAAAAIBxEYRNwTRNlUolFQoFZTKZoSujyuWy4vH41Nd0XVfxeFyGYejZs2e+VmOVSqWe24lEQtIvTnKMxWKKRCKKRqOKx+MqFoudbZeDaug26YqwaU/YBAAAAAAAGAdB2JQymYxyuZxKpZIajYbOz89VKBT6rpJyHEfJZHLia1WrVcViMbmu2+lJViwWRz6uu7G9JG1sbCgejyudTndOvJSuVpo5jqN8Pq9oNDqwj9f1IGxSw8I2AAAAAACAoEVarVZr0UXcVtVqVXt7ezcCn0KhoFwu52sOz/NULpdVKpUGBlCpVGpgnzDXdRWLxXq+ZhiGCoWCHj582AnsXNdVoVC4EZpVKpUb2ygjkUjPbb+/QrZt9wSBw+oeZXt7W6enp1pbW9Pm5uZEc3Tb39/X/v7+1PMAAAAAAHBbHR4e6vDwcOp5ms2mLi8vtbW1pZOTkwAq8++VuV4tZFKplBKJhHZ3d3t6dB0cHPgOwmzbVqPRUCKRGNiTrFqtqlgs9p3zenhmGIZevHhxY8Vae5vn9X5me3t7SiQSvvuAjSOIFWGXl5c6PT2dep6Li4up5wAAAAAA4Da7uLgI5DX4IhGEzZhhGKrX64rH450wzPM82bbd6dU1TCqVurEiq1wuK5/P9wRJ+XxemUzmRmB1PQjrN+b6/fV6vbMyzPM8HRwcqFAo9HxPQYRYQYRrQa0IW19fn3oOAAAAAABus/X1dW1tbU09T3tF2CIQhM3J0dFRT7P8Wq3mKwjrJ5PJKJFIKB6P9wRS5XL5xqqw6w3pHzx4MHL+fD7fs0WyWCz2BGEbGxuBBGEbGxtTz7G5uTn3ZZQAAAAAAIRRUG2F2u2OFoFm+XNiWVZP8DVtw3nTNPXs2bOerz1//vzGuOuBlZ9VWKZpyrKsnq91b+2cdCXXJLUAAAAAAAAEhSBsjqY5MbIfy7J6tk32C9euN8r3a2dnp+d299zX7/O7Ouzs7CyQ2gAAAAAAACZBEDZHpml2Pg9iW6AkPXr0qPN5v0Dq+qorv6HV9ZCqO8Tq3uIp+V/ddn2b5qRbQwEAAAAAACZBEDZH3UFYUNsCu7cw9ptz2MquYa7P1R3cTTpndwhnGEbPzwMAAAAAAGDWCMLm6Pj4uPN50NskpZsBlaQbvb6ur8ryqzu0siyrJyjr15usn+7vv1+tAAAAAAAAs0QQNkfdIVRQ2wK7V2MNCte6r2Xbtq95r2+hvB6oPXz4sPN5dyP9YbrH5fN5X48BAAAAAAAICkHYHFWrVUlSLpcLbM52uGQYRk/j/G7doZPrur76hI0K7bLZbOdzP+Fa9xjTNOkPBgAAAAAA5o4gbE6q1apc15VhGHr8+HFg8x4cHEiSjo6OBo5JJBI9WxvbjxmmO7gqFAo37rcsqyfMaod8g1Qqlc7nrAYDAAAAAACLQBA2Idu2FY1GFYlElEwmh24PdF1Xe3t7kqRnz54NbZRfLBYVj8eVz+dHrtxqj8nlcgNXg7V1B1HFYnFog3vbtjv3ZzKZG9si20qlUufzYeGa53kql8uSrkK5TCYztFYAAAAAAIBZIAibUKVS6QRVtm0rHo/3bBdsa9+3sbGhRqMxMFSSrgKjfD4vx3FULBYVjUYHrp5Kp9MqFosqFAp9V2xdZ1lWT3CVTCb7Bm2e53W+j+uPuc40zU7A1q65n93dXUlX2ze7AzkAAAAAAIB5IgibUDqdvvG1crmsaDSqdDqtbDareDyuZDKpTCajer3esz2xH8MwboxpB2LpdFr5fF7JZFLRaFTSVR+vcfqNZTIZ1Wo1GYYh13V17949FYtFOY7TCbLu3bsn13U7NY+SSqU6c+bzeaXTaTmOI8/zOiGg4ziyLEsvXrwYuhoOAAAAAABgliKtVqu16CJWleu6KhQKsm1bZ2dn8jxPhmFoY2NDlmXp0aNHSiQSY4U/nufp4OCgsz3x+pzJZFIPHz6cOlAql8uqVCo6Pj7uXKPdxD6bzY4M7fopFot68uRJT907OzvKZrMjt26Oa3t7W6enp9ra2tLJyUmgcwMAAAAAgNlZ5Gt6gjCsJIIwAAAAAABW0yJf07M1EgAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCq8sugBgGs1mU9vb20PH7O/va39/f04VAQAAAAAQXoeHhzo8PBw6ptlszqmamwjCsNIuLy91eno6dMzFxcWcqgEAAAAAINwuLi5Gvk5fJIIwrLS1tTVtbm4OHbO+vj6nagAAAAAACLf19XVtbW0NHdNsNnV5eTmninpFWq1WayFXBqawvb2t09NTbW1t6eTkZNHlAAAAAAAAnxb5mp5m+QAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEwiuLLgCYRrPZ1Pb29tAx+/v72t/fn1NFAAAAAACE1+HhoQ4PD4eOaTabc6rmJoIwrLTLy0udnp4OHXNxcTGnagAAAAAACLeLi4uRr9MXiSAMK21tbU2bm5tDx6yvr8+pGgAAAAAAwm19fV1bW1tDxzSbTV1eXs6pol6RVqvVWsiVgSlsb2/r9PRUW1tbOjk5WXQ5AAAAAADAp0W+pqdZPgAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAELhlUUXAEyj2Wxqe3t76Jj9/X3t7+/PqSIAAAAAAMLr8PBQh4eHQ8c0m805VXMTQRhW2uXlpU5PT4eOubi4mFM1AAAAAACE28XFxcjX6YtEEIaVtra2ps3NzaFj1tfX51QNAAAAAADhtr6+rq2traFjms2mLi8v51RRr0ir1Wot5MrAFLa3t3V6eqqtrS2dnJwsuhwAAAAAAODTIl/T0ywfAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQeGXRBQDwp9WSLlvDx6xFpEhkPvUAAAAAALBqCMKAFXHZkl750+Fjfv4t6Q5BGAAAAAAAfbE1cgFc11UymfQ9NpvNKhaLKRKJKBqNKh6PK5vNynXdwGtrX6darY792GKxqGQyqWg0qkgkolgspnQ6Ldu2A68TAAAAAABgXARhAfI8T5FIZORHLBaTaZoj5ysWi4rFYiqXy53Qy/M8OY6jcrmsWCymYrEYWP35fH6icM22bUWjUeXzeUlSpVJRo9FQoVCQ4zhKJpNKJpPyPC+wWgEAAAAAAMbF1sgAlctl32PbodEgyWRStm3LMAwlEgmZpinXdeU4Tk9Ylc/nZZqmUqnUxHVLV2HWJKGabdud1W2ZTEalUqlzX7uueDwu27YVj8dVr9dlGMZUtQIAAAAAAEyCFWEBOjg48DWuHWwNks/nZdu2CoWCzs/PValUVCgUelZadUun01PV7XneRHN0P840zZ4QrFulUpF0tc1z2loBAAAAAAAmxYqwgJTLZXmep1wuN7L/187OzsD7XNdVsVhUrVZTIpHoOyaXy6nRaPSsQHMcR5ZlTVT73t6eNjY2JGms7YvpdLozftgKt/bKsGq1Ktu2VS6XlclkJqoVAAAAAABgUpFWq9VadBG3QSwWkyQ1Go2p5kmn03rw4IFyudzQcZ7nKRqNdm4XCoWRj+mnXC4rm82qXq9rd3e3E2xVKpWh2y1d1+18z5J0fn4+dMtjtVrtrAYzDEPn5+dj19pte3tbp6en2tra0snJyVRzrYpPLn2eGsk6TwAAAADAElvka3peMgegWq3Kdd2Rfb/8aK8qG8UwjJ7tlZP03WqfSJnL5cZeTda9PTORSIy8fneo5nneRKdSAgAAAAAATIMgLAAHBwcyDEMPHz6ceq5areZ77NnZWefzYdstB0mn07Is60bPMT+6t2X6DdG6g7snT56MfU0AAAAAAIBpEIRNyXEcOY7T2aoYi8WUzWZnvuLJ87zONsZEIjH2iq58Pi/HcTqN7MfhOE7P7QcPHvh6XHeNrAgDAAAAAADzRhA2pevbIV3XVblcVjqdViQSUTqdvhEcBeHp06eSrlZZjRtmOY6jYrGoUqk09PTKQWzb7rntd47r42bxcwm7H76/6AoAAAAAAFheBGFTcF33Rih0XbVaVTweVzabDey6nucpm83KsizVarWx+4Pt7u4qlUpNfHLj8+fPe277vf5rr73Wc/v4+Hii64eVn5Dry1XCMAAAAAAABnll0QWsMtM0VSqV5HmeGo2GbNuW67p9x5bLZR0fH6ter091Tdd1lUwmZRiGnj17NnYI1j658ejoaKoauk26ImzaEzbD5OXH0tf+xt/Yr/619MZvS+uvzrQkAAAAAABWDivCppTJZJTL5VQqldRoNHR+fq5CodA3oHIcR8lkcuJrVatVxWIxua7b6UlWLBbHeny1WlWlUpnolMm2QWHfuNo9zjDaXznSv/6Hv7H/8u/SD9h1CgAAAADADQRhATMMQ7lcTufn530DJ9u2xwqvPM9TsVhULBbrrObqls/n+3693zzpdFqZTEaJRML39QfNNYnrP4vuUy8x3N/+dLzxfzfmeAAAAADAL7Ra0ieXwz9arUVXiUmwNXKGUqmUEomEdnd3exrDHxwcKJfL+ZrDtm01Gg0lEomBPcmq1aqKxeLQOXd3dztbOZdFECvCms2mtre3p55nf39f+/v7U88zK+f/NtvxAAAAAIBfuGxJr/zp8DE//5Z0JzKfepbF4eGhDg8Pp56n2WwGUM1kCMJmzDAM1et1xePxThjmeZ5s2/a1MiuVSimVSvV8rVwuK5/P9wRJ+XxemUym75bHYrEox3Gm7k/WZhhGICHWNNsz2y4vL3V6ejr1PBcXF1PPMUvRX5nteAAAAAAARrm4uAjkNfgiEYTNydHRkeLxeOd2rVabeItie3tjPB7vCaTK5fKNVWGO4yifz6tQKMiyrImud93GxkYgQdjGxsbUc6ytrWlzc3PqedbX16eeY5be+Kz07j/6H/97n51dLQAAAAAA/1qtqxVmw6xFpMgKrC5bX1/X1tbW1PM0m01dXl4GUNH4CMLmxLIsJRKJztbGaRvOm6apZ8+e9YRrz58/vzEunU7LsizfWzH9mHQl1/XwLIgVYZubmzo5OZl6nmX3RUv6xk/8Ncz/1V+WvhRM5gkAAAAAmNJt2mYZVFuh7e3tha0sIwibo2Qy2bfH16Qsy1IqlVK1WpV0M1wrFotyXVeJRMJ3Q/22g4MDPXnypHP70aNHnS2aOzs7PT3PPM/zFWpdb44fi8VGPgZX7r4q/fnvS1+ujh77zh9I668OH3Ob3pEAAAAAAMAvgrA5Mk2z83kQ2wKlq4CqHYRdX3H10UcfSdJE4ZvjOD1hl2manSCsexWadBXA+dl22Wg0em5Pe3pl2Hzh/ugg7Aepq3Gj3KZ3JAAAAAAA8Gtt0QWESXcQFsS2QEk9AVRQc46ys7PTc9vvNs/uoM4wjJ6fB4Lxxz5CMAAAAAAAwoogbI6Oj487nyeTycDnvx5QFQoFtVot3x/dwVSlUum5r1AodO6zLKsndOvXm6yf7u//eq0AAAAAAACzRhA2R91bA4PaFti9GmsW4dogDx8+7HzevYVymO5x+Xw+8JoAAAAAAACGIQibo3YvryBPcGyHS4ZhdHp4zUM2m+187qcHWfcY0zTpDwYAAAAAAOaOIGxOqtWqXNeVYRh6/PhxYPMeHBxIko6OjgKb0w/LsnrCrHbIN0ilUul8zmowAAAAAMCq++H7i64AkyAIm5Bt24pGo4pEIkomk0O3B7quq729PUnSs2fPhja1LxaLisfjyufzN06BvK49JpfLzXU1WFupVOp83g7k+vE8T+VyWdLVltBMJjPz2gAAAAAAmJSfkOvLVcKwVUQQNqFKpdIJqmzbVjwe79ku2Na+b2NjQ41Go+eUx+s8z1M+n5fjOCoWi4pGowNXT6XTaRWLRRUKhZ5G9vNkmmZnpVe75n52d3clXW3f7F4ZBgAAAADAsnn5sfS1v/E39qt/LV18PNNyEDCCsAml0+kbXyuXy4pGo0qn08pms4rH40omk8pkMqrX6z2nMvZjGMaNMe1ALJ1OK5/PK5lMKhqNSrpqvh9kv7FJpFIp1Wo1GYahfD6vdDotx3HkeV4nBHQcR5Zl6cWLF0NXwwEAAAAAsGh/5Uj/+h/+xv7Lv0s/8Hd+3FCsLJsfgrAJJRIJNRoNZTIZmabZE/A4jqOzszM9fvxY5+fnKhQKvgOger2uXC4ny7JuzOm6rtLptF68eKFKpTIyWBtXo9FQq9VSq9Uaa6tlIpHofJ+u62p3d7cT3m1sbKhSqaherxOCAQAAAACW3t/+dLzxfzdiPNssl0uk1Wq1Fl0EMK7t7W2dnp5qa2tLJycniy5nLj65lF750+Fjfv4t6Y6PeNvPXP93SvpS3H99AAAAAHAb/B//l/R8jJeZ/8e29P/+f/vf9/JjaettfyvMfvWXpdPH0vqr/q+9qhb5mv6VuV4NwMTWIldB16gxfvh9R+LOmvSF+8PHtVrS5Yg4fS0iRXzWBgAAAACLFP2V4MZPss3yT353vOtjPARhwIqIRKQ7AYRJ4zZ+fOO3h78jcdnyuVKNIAwAAADACnjjs9K7/+h//O99dvB9k2yzJAibLXqEASGziMaPAAAAALAqvmhJn/olf2N/9ZelL1mD7z//t/GuPe54jI8gDAiZoBs/AgAAAMBtcvdV6c9/39/Yd/5g+A6aILdZIhgEYUDI8I4EAAAAAAw3qleyJP0gNXrcG0O2TfYzbJslgkEQBoQM70gAAAAAwPT+2EdYFuQ2SwSDIAwIGd6RAAAAAHBbtVrSJ5fDP1ojTr0PUpDbLBEMTo0EQuaLlvSNn/hrmM87EgAAAABWyTKeav+F+9KXq8PH+NlmiWCwIgwImWV+R2LZ3r0BAAAAgHnws80SwWBFGBBCy/qOxDK+ewMAAAAAuD1YEQagryDfkfjh+8HNBQAAAADApAjCAEzFT8j15SphGAAAAABg8QjCAEzs5cfS1/7G39iv/rV08fFMywEAAAAAYCiCMAAT+yvH3+mTkvQv/y79wJltPQAAAAAADEOzfKy0ZrOp7e3toWP29/e1v78/p4rC5W9/Ot74v/up9Ce/O5taAAAAAACLd3h4qMPDw6Fjms3mnKq5iSAMK+3y8lKnp6dDx1xcXMypmvA5/7fZjgcAAACARViLXJ1YP2oMbrq4uBj5On2RCMKw0tbW1rS5uTl0zPr6+pyqCZ/or8x2PAAAAAAsQiQi3Qko6ApbqLa+vq6tra2hY5rNpi4vL+dUUS+CMKy0zc1NnZycLLqM0Hrjs9K7/+h//O99dna1AAAAAMAyCjJUWwV+2hNtb28vbNUYzfIBTOyLlvSpX/I39ld/WfqSNdt6AAAAAGCUH76/6AqwSKwIA0IoqKW5d1+V/vz3pS9XR4995w+k9Vd9lQcAAAAAE/ETcn25Kt1Zk75wf/b1YPmwIgwIoUjk6j/8wz4iPpfu+vmfxw9Swf1PhndvAAAAAPTz8mPpa3/jb+xX/1q6+Him5WBJEYQBmLk/9hmC+X33hjAMAAAAuD1aLemTy+Efrdboef7Kkf71P/xd81/+XfqBM13dWE1sjQSwFMZ99+aN32arJQAAAHAbXLakV/50+Jiff2t0w/m//el41/27n0p/8rvjPQarjxVhAJYC794AAAAAmMb5v812PG4HgjAAS2GSd28AAAAAoC36K7Mdj9uBIAzAUuDdGwAAAADTeOOz443/vTHH43YgCAOwFHj3BgAAAFgdQTW4D9IXLelTv+Rv7K/+svQla7b1YDnRLB/AUnjjs9K7/+h/PO/eAAAAAIsTVIP7IN19Vfrz3786aX6Ud/6Aw7fCihVhAJYC794AAAAAmNYX7o8e84OUv3G4nQjCACyF9rs3fvDuDQAAAIBJ/TEhWKixNRLAVNYiV0ueR43x4wv3Ry9j5t0bAAAAAMCkCMIATCUSme++fz/v3rRaVz0LhlmLXNUOAAAAAAgPgjAAt84yNu4EAAAAACwePcIAAAAAAMBS++H7i64AtwVBGAAAAAAAWBg/IdeXq4RhCAZBGAAAAAAAWIiXH0tf+xt/Y7/619LFxzMtByFAEAYAAAAAAALnZwXXXznSv/6Hv/n+5d+lHzjT1QQQhAEAAAAAgLEEtZ3xb3863nX/bszxwHWcGgkAAAAAAHwbdzvjG78trb/a//7zfxvv2qPGr0WuTogfNQbhRRAGYGnwPy0AAABg+U2ynfFPfrf//dFfGe/ao8ZHItIdXjNgCLZGAlgakYh0Z234R4T/qQEAAAALFeR2xjc+O95cvzfmeOA6gjAAAAAAAOBbkNsZv2hJn/olf/P86i9LX7LGuzZwHUEYAAAAAADwLcjtjHdflf789/3N884fDO41BvhFjzCstGazqe3t7aFj9vf3tb+/P6eKsCp++L70pfiiqwAAAABWzxufld79R//jR21n/ML9qxMmh/lB6moclt/h4aEODw+Hjmk2m3Oq5iaCMKy0y8tLnZ6eDh1zcXExp2qwLPwe5XxnbfT/TFst6bI1fMxahN5lAAAAWH5B/W37RUv6xk/8NcwPajvjHxOCrYyLi4uRr9MXiSAMK21tbU2bm5tDx6yvr8+pGiyDII9ylq7+UHjlT4fP8/NvcTINAAAAll9Qf9u2tzOOWsUlsZ0xjNbX17W1tTV0TLPZ1OXl5Zwq6kUQhpW2ubmpk5OTRZeBJRLkUc5BY3UZAAAAbgu2M2IQP+2Jtre3F7ZqjCAMwK0yyVHO8wrCWF0GAACAMGE7I5YRp0YCuFWCPMoZAAAAAHC7EIQBuFWCPMoZAAAAAHC7EIQBuFXeGHE083WjjnIGAAAAANweBGEAbpUvWtKnfsnf2KCOcl6EVkv65HL4R2tEY34AAAAACBua5QO4VcJylDON9wEAAABgfKwIA3Dr+DmimaOcAQAAsArYCQAEixVhAEKJo5wBAACwCsKwE2AtcvU9jBoDBIEVYQAwpR++v+gKAAAAgGAs4m/bSES6szb8I0IQhoCwIgwAhvDzh8CXq1f/cw5iq+UP35e+FJ9+HgAAAOC6IP+2ZRUXVhUrwgBggJcfS1/7G39jv/rX0sXHw8f4/cODFWYAAACrb9l6ewX9ty2ruLCqWBEGAAP8lSP963/4G/sv/y79wJH+5Hf73z/uHx5v/PbqnmgJAACA5evtFeTftsAqY0UYAAzwtz8db/zfDRk/yR8eAAAAQFCC/NsWWGUEYQAwwPm/BTeePzwAAACwSEH+bQusMoIwABgg+ivBjV/EHx70GgMAAEBbkH/bAquMIAwABnjjs+ON/70h44P+w4PG+wAAABhHkH/bAquMZvkAbp2gjnL+oiV94yf+env96i9LX7IG3//GZ6V3/3H0PG3D/vCg8T4AAADGFeTftsAqY0UYgFsnqKOc774q/fnv+7vmO38wPGz6oiV96pf8zTXqD4+gG+8v29HeAAAAGI+fXQBB/m0LrDJWhAHAEF+4f7XFcJgfpK7GDdP+w2PUXNLoPzwmabw/7OjrZTvaGwAAAL/gtyXGnbXRf5MG9bctsMpYEQYAU/pjn38o+PmDws8fHpz4AwAAEA7jtsS4+Hj6a/r92xZYVQRhALBE/PzhwYk/AAAA4RB0SwwABGEAsHI48QcAACAcJmmJAWA4gjAAWDFBNt4HAADA4ozq/0VLDCB4BGEAsGI48QcAAOAXgjwBO8i5/Da5HzaOlhhA8Dg1EgBWECf+AAAAXAnyBOyg5hq3yf0bv93/zcs3Piu9+4/+5pFoiQH4wYowALil5n3iT5DvoAIAAKyyoJrc0xIDCB4rwrDSms2mtre3h47Z39/X/v7+nCoCwivId2Nbrav5hlmLSBEfcwEAAMzbJE3u/+R3b3693RJj1E4AiZYYWB6Hh4c6PDwcOqbZbM6pmpsIwrDSLi8vdXp6OnTMxcXFnKoBEJQgQzUAAIB5C7LJfZAtMdYiV39DjRoDTOPi4mLk6/RFIgjDSltbW9Pm5ubQMevr63OqBrcRfyxc+eH70pfii64CAABgNcy7yb3flhiRCG8kYvbW19e1tbU1dEyz2dTl5eWcKupFEIaVtrm5qZOTk0WXgVssyD8WljVU83ui0Z01mu8DAIBg3PY2CDS5R5j5aU+0vb29sFVjBGEAMCfL+A5cUCcaAQAAjOO2t0H4oiV94yf+GubT5B6YL06NBIAQC+pEIwAAAPxCu8m9HzS5B+aLIAwAQmySE40AAAAwmp+WEn6b3AMIDlsjASDEgjzRaFnd9h4kAABgdfltcg8gOARhALCCgmq8P+8TjRbhtvcgAQAAowV5AjanaQOrja2RALCCIpGrUxyHffhZ4fTGmCcUcaIRAABYNn5PwPYzLsi5ACwngjAACLEvWtKnfsnfWE40AgAAy2bcE7AvPp7PXACWF0EYAITYvE804t1TAABWW6slfXI5/KM1ojdnkII8AZvTtIFwoEcYAITcF+5fLfEfxs+JRn63EtxZC+Z0JPpzAAAwf8vWe3OSE7D/5HdnP1eQguoNC+AKK8IAACONOtEo6K0Ey9qfY9neBQcAIOyCPAF7WU/TDqo3LIArrAgDAExtkq0Eg95BHTdUe+O3p9+y6deyvQsOAMBt5mf1d5AnYIfhNG0ArAgDAARgkq0Eg9CfAwCA2y+o1d9BnoDNadpAOBCELYDrukomk77HZrNZxWIxRSIRRaNRxeNxZbNZua470fUdx+mZMxKJKBaLKZ/Py/O8ieaUpGKxqGQyqWg02pkznU7Ltu2J5wSwGoLcShBkqAYAAJZPkC0VgjwBO+jTtNu9vYZ90NsLmD+CsAB5ntcJloZ9xGIxmaY5cr5isahYLKZyudwJvTzPk+M4KpfLisViKhaLY9WXTqcVj8d75pSuArdisahoNKpyuTzW923btqLRqPL5vCSpUqmo0WioUCjIcRwlk0klk8mpQjYAyy3IrQTL2p8DAAAEI8jV30GegB30adr09gKWE0FYgMYJkNqh0SDJZFL5fF6GYSiVSimXyymVSt0I0PL5vKrVEce96SoEi8fjvsZms1lls9mR46SrEKwdcmUyGdVqNSUSCZmmqVQqpUajIcuyZNu24vE4YRhwSwW5lWAR/Tnm3XQfAIAwC3r1t5/TqP2cgB30XACWE0FYgA4ODnyNawdFg+Tzedm2rUKhoPPzc1UqFRUKhZ6VVt3S6fTIa6bTabmuK8uyOvM0Gg1VKhXlcrkb48vl8sjQrL3CTJJM01SpVOo7rlKpSLpadeanVgCrJ8itBEH351jWEygBAAirRaz+HnUC9qLmAjB/nBoZkHK5LM/zlMvlRvb/2tnZGXhfe4tie2VVP7lcTo1Go2cFmuM4sqz+ryzL5bJs21Yul7sRorVXbmWzWaXTaTnOL9Yd7+3tKZVKDaw1nU53VngNW+HWvka1WpVt2yqXy8pkMgPHA1g97a0EXx696HTkVoIvWtI3fuJvy8SoUG2ZT6AEACCsOJ0RwCKxIiwghUJBpmmqUCgokUgM/TAMY+A8+Xy+M8eo63Ub1pC+Pd/1x3QzTbOzcqvN87yB87qu23Pfw4cPh9b76NGjzuejtoUCWE1BbSUIsj8HJ1ACALB8OJ0RwCIRhAWgWq3Kdd1AAp72qrJRDMPo2V45KFxzHEeu694IufppB3nXH99P97hR4Z6knpVlnuf56lUGYD7meaKR360EQYVqnEAJAMD8jWo3EPTpjAAwDoKwABwcHMgwjJGrovyo1Wq+x56dnXU+H7Td8smTJ8pkMiODqrbrK9E++uijvuO6t2UO2pJ5XXdw9+TJE1+PATB7q3qikZ9QjRMoAQAIVhC9N4M+nREAxkEQNiXHceQ4jjzPUzQaVSwWUzabnfmKJ8/zOv25EonEwDDq0aNHQ7dEXnd9nlgsdmPM9VViDx48GHtuVoQBmIcw9CBptaRPLod/tFqLrhIAcBuM23vz4uPB93M6I4BFIQib0vXtkK7rqlwuK51OKxKJ3GhAH5SnT59K6t/bq5tlWb5Xg0nqhGtt/U63vN43bNgJmMPGzeLnAgDdFtGDZN6nT162pFf+dPjHJUEYACAA8+69yemMAGaBIGwK1xvG91OtVhWPx5XNZgO7rud5ymazsixLtVptrKBrFNd1e273a9r//Pnzntt+r//aa6/13D4+Ph6vOAAYU9A9SILYDgIAwKqi9yaA24AgbAqmaapUKqlQKCiTyQxdGVUulxWPx6e+puu6isfjMgxDz549870ay6/ucCqTyQysodukK8IajcaY1QHAeILsQRLkdhC2MwIARlnG/1fQexPAbfDKogtYddfDIs/zVC6XdXBwcGOboeM4SiaTYzXE71atVpVOpzu3o9GoCoWCr1Mm/SqVSp3PB52CeT0Im9T1nw8AzMIX7l+t0hrGTw+SSbaD/Mnv9r+/vZ1xmJ9/S7qzhIcUAADmI8j/V7Rao7fJr0VGH44Tht6b7dO0R40BsLoIwgJmGIZyuZxyuZyq1ar29vZ6Ah/btlUsFn2HV+1grVQq9Q2g8vm8nj9/PrRPmF+u63b6dhUKhYErvSYNsK5voew+9RIAFslPD5JJtoMMCsIAAJinoEK1Nz4rvfuP/q8bRO9NP4IMryIR3ogCbjuCsBlKpVJKJBLa3d3taQx/cHDgOwizbVuNRkOJRGJgT7JqtTpWuDZI+3RJ0zQDXWU2SBArwprNpra3t6eeZ39/X/v7+1PPA+D2YjsIACDsvmhJ3/iJvxXSfnpvBoXwCpifw8NDHR4eTj1Ps9kMoJrJEITNmGEYqtfrisfjnTDM8zzZtt23Ef11qVRKqVSq52vlcln5fL4nSMrn88pkMhM3znccR+VyWYZhjNy6aRhGICFWEE3+Ly8vdXp6OvU8FxcXU88BhF2Q78Yu47aEMGwHAQBgmHbvzVEtB6TRvTcBrKaLi4tAXoMvEkHYnBwdHfU0y6/Var6CsH4ymYwSiYTi8XhPIFUulydeybW3tydJvhrwb2xsBBKEbWxsTD3H2tqaNjc3p55nfX196jmAsAvy3dhlfGd3WbeDAAAwT0H13gSwmtbX17W1tTX1PM1mU5eXlwFUND6CsDmxLEuJRKKztXHahvOmaerZs2c94drz588nmiubzcpxHFUqFVnW6PXLk67kuh6eBbEibHNzUycnJ1PPAwCjLOt2EAAAlo2f3psAVlNQbYW2t7cXtrKMIGyOkslk3x5fk7IsS6lUStXq1Vsyk4Rr5XK504z/+hbMQXZ2dnp6nnme5yvUut4cPxaLjVUrACwS20EAAKMEdTpjGCxjGwQA4UAQNkfdWw6D2BYoSY8ePeoEYeNuV7RtW9lsVqVSSZlMxvfjulehSVcBnJ+VZI1Go+f2pFtDAWBRbvt2EF7AAcB0gjqdMQyWsQ0CgHAgCJuj7iAsiG2BknoCqHHmdBxHyWRShUJhrBBMuloR1s1vENYd1BmGMbIXGQCsomXcDvLD96UvxUeP4wUcAAAAbru1RRcQJsfHx53Pk8lk4PNfD6gGcV1Xu7u7yuVyEzXXtyyrJ3Tz25us+/v3WysAYLgfvj96zJer/sYBAAAAtx1B2Bx1bw0Maltgd18wP+Ga67qKx+PKZDIqFAq+r1EsFnu+9vDhw87n3f3Chukel8/nfT0GADDYy4+lr/2Nv7Ff/Wvp4uOZlgMAAAAsPbZGzlG7l9ckq7AGaYdLhmGMbHbveZ6SyaQePnzoOwSTpHQ6raOjo56vZbNZlctlSfJ1AED3GNM06Q8GYG5WtRmvn+2Mf+X4O8VSkv7l36UfONKf/O70tQEAAACrihVhc1KtVuW6rgzD0OPHjwOb9+DgQJJuBFXXeZ6neDwu0zSVz+fluu7ID9u2O43xr/cAsyyrJ8xqh3yDVCqVzuesBgMwT5GIdGdt+Me8m78HtZ3xb3863nX/bszxAIDlFuS2d7bQAwgLgrAJ2bataDSqSCSiZDI5dHug67ra29uTJD179mxoU/tisah4PK58Pj/yFMj2mFwuN3I12O7ubifcisVivj7a31c2m+07Z6lU6nzeDuT68Tyvs3oskUiM3ZwfAG6TILcznv/beNcedzwAYHGC7AFJP0kA+AWCsAlVKpVOUNVeOdUvMGrft7GxoUajMfR0Rc/zlM/n5TiOisWiotHowNVT6XRaxWJRhUJh5DbHeDzuu49XP4OCK9M0Oyu92jX3s7u7K+lq+2b3yjAACKNJtjMOEv2V8a497vhptFrSJ5fDP1qt+dUDAKskyDdNgu4n2W45MOxjGVsOAEAbQdiE0un0ja+Vy2VFo1Gl02lls1nF43Elk0llMhnV63WZpjl0TsMwboxpB2LpdFr5fF7JZFLRaFTSVfP9Uf3G0un0TEKwtlQqpVqtJsMwlM/nO9fzPK8TAjqOI8uy9OLFi6Gr4QAgDILczvjGZ8eb6/fGHD+Ny5b0yp8O/7gkCAOAvoJ80yTIuaTlbDkAAOMgCJtQIpFQo9FQJpORaZo9AY/jODo7O9Pjx491fn6uQqHgOwCq1+vK5XKyLOvGnK7rKp1O68WLF6pUKiODNelq5Vqr1Zr4o3v747CfRfv7dF1Xu7u7nfBuY2NDlUpF9XqdEAwAFOx2xi9a0qd+yd88v/rL0pcGL0oGACyRIN80oZ8kAPTi1MgpmKbpKygah2EYY53ouExyuVygJ2ICwLIJ4gTKILcz3n1V+vPfv+rrMso7fyCtvzretZdFqzV69dhahBUIAG6PIN80oZ8kAPQiCAMAwKdIRLozZdjyxmeld//R//hR2xm/cH90EPaD1NW4VdXeZjnMz781/XMDAPPww/elL8WHjwnyTZNl7icJAIvA1kgAAOZoEdsZ//j/1979+7aVpXcDf+SZXUyQwKE8QADDbvaymZShPE1aU10GSSF6gASzW1kMglQupF2kDgZi4TIIOd0GW3jEIkFSLJb0X2CL2y6wEKcZQ0CAtRgjLzLYzYpv4Zd8Sf0gr6RL8pL8fAABonV07qF8KFJfPuecJQ7BgMVz+EV6WZ3OmOUekHneTxJgEQRhADBHg+WMaeRxOWOaP/KA1eLwi3SyPJ0xyzdN7CcJME4QBgBzlmaZ4iKWM2ZVyQCwjrI8nTHLN02W/Q0YgKwJwgAgh+a9nDHLSgaAdZT16YxZvmmS1zdgABZBEAYAZFrJALCOFnE6Y5ZvmthPElgXgjAAIPNKBoB143RGgOUgCAMAFlLJALBKnM4IsBwEYQCASgZg6fT7Eb8/m/zRn+Nplk5nBFgOHy56AADA4n32ScQvfp2+fRaVDD/7ZcQPt27fD7A8+v2Isynh1J2NiI2N6X2d9SM+/IfJbf73HyM+mNJXVmManM74o+bkdhFOZwRYJEEYABBflCJ+/PN0G+anqWT42S+n9/OjZsQHd+Z3SlmWf4ADN5NVeJWlLMf0N382PQhzOiPAYgnCAIBMKxn+67uIv/u3dNf923+N+OxP51MZkcc/wIH143RGgMUShAHAEruz8T68mdYmjawqGf6lk66yLCLiv38b8dNOxN//ebr2V7HMEgCANARhLLWTk5N4+PDhxDbPnj2LZ8+ezWlEAPO1sTHfCqY0lQz//qvr9fkfv5ochOVxmSUAAJd7/vx5PH/+fGKbk5OTOY3mIkEYS+3s7CzevHkzsc27d+/mNBqAdLKs4sqj0//Jrn1el1kCLJNVf94B8uXdu3dT/05fJEEYS+3OnTtx//79iW3u3r07p9EApDPvKq552/yD7NovYpklcH2WJ2cvy/Bq1Z93gHy5e/duPHjwYGKbk5OTODs7m9OIxgnCWGr379+Pb7/9dtHDAGDEZ59E/OLX6dv/xSdXfy3rZZawLrI8JdXy5MUQXgHLKs32RA8fPlxY1ZggDADI1BeliB//PF0l1x99P+KHpau/nuUyS1gnWZ2SankyAKvmzqIHAACslj/+KOKf/jJd23/+q8l/NGe5zBK4vpssTwaAPBOEAQCZS7M86qc709t9NmHZ5GUmLbPMUr8f8fuzyR/9KcvSYBncZHlynqRZ1gnAerE0EgBYiL9OEZZlucwyS1ktO4O8y/PyZHuXAXATgjAAILcGyyx/1Jzedtoyy3WQ5QbpEJHf5cnz3rss7amYWZ70CMBsCMIAgFz7mz+bHoSlWWa5DlSqkbUsT4FNK03odJO9y646UTbLyjInPQLknyAMAIiI5a5kSLPMEri+rJcnZxU63WTvssuCMKdiAqwfm+UDABHx/yoZ7kz+WPUldYvYWNvG++RZlqfAXjd0evfd1V/Pau8yp2ICrB8VYQDAWsjrxtqWM5J3WS1PznI5Y1Z7l2VVWQbA8lARBgCsvCwrUeA8VX3pliffJHS6ymfX3Ivsqr3L8nwqJgCzoSIMAFh5WVaiwHmq+tLJMnTKau+yvJ6KCcDsqAgDAFZelpUowM1kGTpltXdZVpVlACwPQRgAsPIsf4LFyzp0SrOX37S9y74oRfzh99KNJ82pmADknyAMAFh5lj/B4i0idJq2d1mWp2ICsBzsEQYAZO7Oxvs9kaa1mZfPPon4xa/Tt7f8iXXws19G/HBrftcbhE7TTqCMmG/olNWpmAAsBxVhAEDmNjYiPrgz+WNjjkGY5U+sm5/9cnqbHzXTtctSFssZFyHNqZgALAdBGACw8ix/Yp3813cRf/dv6dr+7b9GvPtupsO5NqETALMkCAMA1sK8K1HmXWkDA//Sifg/v0vX9r9/G/HTzmzHAwB5Yo8wACDX5rnfWNpKlLTLzj64k78lXqy+f//V9dr/x68i/v7PZzMWAMgbFWEAQK7lbb+xZV92plJt9Z3+z2zbA8AyE4QBAFxDnped5XWDdOZr8w9m2x4AlpmlkQAA15DXZWfXrVT77E8dCrCqPvsk4he/Tt/+Lz6Z/PV5Lk8GgFlTEQYAcA15XXaW50o15uuLUsQffi9d2z/6fsQPS5Pb5G15MgDchoowAIBrWMSys5/9MuKHW5Pb5LVSLUv9fsRZf3KbOxtCmT/+KOKf/vL9Mthp/vmvlrcyUKUaADchCAMAuIasl51ldQJlXivVsgyvzvoRH/7D5Db/+48RHyxp+JHlz+pv/mx6EPbTneU+1XRjY3n/rwFYHEEYAMA1fFGK+PHP0y1DnLbsLMt9vfK6Qfqqh1dZmvfP6q+XOATLksoygPUiCGOpnZycxMOHDye2efbsWTx79mxOIwJg1WW57Owm+3pdtZwx60o1spVmeSuLobIMIFvPnz+P58+fT2xzcnIyp9FcJAhjqZ2dncWbN28mtnn37t2cRgPAushq2VmW+3plWanG9WS1vHUdqL4CWH3v3r2b+nf6IgnCWGp37tyJ+/fvT2xz9+7dOY0GAP6/NMvOstzXa102SM+bLJe3rgPVVwCr7+7du/HgwYOJbU5OTuLs7GxOIxonCGOp3b9/P7799ttFDwMAbiTrfb3WYYP0vMlyeSsArII02xM9fPhwYVVjdxZyVQAA4rNr7tOVxb5eNkjP1k2WtwIAi6MiDABYC3ncmyjP+3r1++9PMZzkzsb7pW7rLMvlrQDA7AnCAIC1kMe9ifK8r9dZP+LDf5jc5n//MX8/07SyCvqyXt4KAMyWIAwAYIHs67UYWQV9n30S8Ytfp79uFstbAYCbs0cYAEDO2dcrv74oRfzh99K1nffyVgDgIkEYAADc0GB5axrzXt4KAFwkCAMAgFtIs2zV8lYAyAd7hAEAwIzNe3lrHk9JBYA8EIQBAMCKyeMpqQCQB5ZGAgDAkvjZLxc9AgBYbirCAACuybKzbP3slxE/3MpfX/OWJuT6UTPigzv2GwOAm1IRBgBwTRsb78OISR8bgrCISB/upGmXZV9581/fRfzdv6Vr+7f/GvHuu5kOBwBWloowAIAVkbdKteuGO5/9acTdj2bfVx79Syfi//wuXdv//m3ETzsRf//nsx0TAKwiFWEAACsib5VqNwl35tFXHv37r67X/j+u2R4AeE8QBgDATGQZ7qx6UHT6P7NtDwC8JwgDAOBGpu3FlWW4s+pB0eYfzLY9APCeIAwAgAuy2Jg+y3Bn1YOizz65Xvu/uGZ7AOA9m+UDACxQ3ja4j8huY/rPPon4xa/TX3dSuJNlX3n0RSnixz9Ptw/aH30/4oel2Y8JAFaRijAAgAXK2wb3EdltTP9FKeIPv5eun2nhTpZ95dEffxTxT3+Zru0//9VynYgJAHkiCAMAYExWG9NnGe6sQ1D0N382vc1Pd9K1AwAuJwgDAGBMlhvTZxnuzDsoSrNP2rz9tRAMAG5FEAYAwJh5b0yfZbiTtq8sDgMAAJaPzfIBABiz6hvTZ3UYwEAeDzwAAC6nIgwAgDGrvjF9VocBDOTxwAMA4HKCMAAAxqz6xvRZHQYAACwfQRgAABes8gmGWR4GAAAsF3uEsdROTk7i4cOHE9s8e/Ysnj17NqcRAcD6WNYTDOd9GAAArJPnz5/H8+fPJ7Y5OTmZ02guEoSx1M7OzuLNmzcT27x7925OowEAlsGqHwYAAIv07t27qX+nL5IgjKV2586duH///sQ2d+/endNoAIBl8EUp4sc/T7dh/jIeBgAAi3T37t148ODBxDYnJydxdnY2pxGNE4Sx1O7fvx/ffvvtoocBACyRwWEAP2pOb7uMhwEAwCKl2Z7o4cOHC6sas1k+AABrZ5UPAwAAriYIAwCASyzrYQAAwNUEYQAAAACsBXuEAQAwM3c2Iv73H6e3mXdfebTq9w8A8kAQBgDAzGxsRHyQUXiTZV95tOr3DwDywNJIAAAAANaCIAwAAACAtSAIAwAAAGAtCMIAAAAAWAs2ywcA4AInGAIAq0gQBgDABU4wBABWkaWRAAAAAKwFQdgCdLvd2N7eTt22Wq1GsViMjY2N2NzcjK2trahWq9Htdm88hlqtFtvb27G5uRkbGxtRLBajUqlEu93OVZ8AAAAAWRGEZajX68XGxsbUj2KxGEmSTO2vVqtFsViMRqMxDL16vV50Op1oNBpRLBajVqtda4ztdjs2Nzdjf38/IiIODw/j+Pg4Dg4OotPpxPb2dmxvb0ev11tonwAAAABZ2+j3+/1FD2JV1Gq1YRg0zfHx8cQwbHt7O9rtdhQKhSiXy5EkSXS73eh0OhcqwQ4PD2NnZ2fqNdvt9rASbXd3N+r1+oU2W1tb0el0IkmSODo6ikKhMPc+03j48GG8efMmHjx4EN9+++2t+wMA1ku/H3E25VXwnY33e6UBANla5N/0grAMbW5upqp6KpfL0Wq1rvz6/v5+1Gq1ODg4iL29vQtfvyxwm/bf2Ov14gc/+EH0er1IkiSOj48vbdftdqNYLKYa5yz6TEsQBgAAAMtpkX/TOzUyI41GI3q9Xuzt7U3d/+vRo0dXfq3b7UatVotWqxXlcvnSNnt7e3F8fByNRmP4b51OJ0ql0pX9ViqVYUg3qWotSZLY2dmJZrMZ7XY7Go1G7O7uzq1PAAAAgFlREZaRQcXTVVVRaVUqlfj0008vrQQb1ev1YnNzc3j7quqxiPGKrIiI09PTicsTm81mVCqViIgoFApxeno6lz6vQ0UYAAAALKdF/k1vs/wMNJvN6Ha7qfcHm2RQVTZNoVAY22NsUgh1cHAw/LxcLk/do2t0v7FerxfNZnMufQIAAADMkiAsA19++WUUCoV48uTJrfu6zv5Zb9++HX4+abnl6BLKScsnR42GbC9evJhLnwAAAACzJAi7pU6nE51OZ7hUsVgsRrVanXnFU6/XG+7PVS6XrwyjOp3O2O1PP/00Vf+j/Z2/L7PoEwAAAGDWBGG3dH45ZLfbjUajEZVKJTY2NqJSqVwIjrLw9ddfR8T7KqvDw8Mr27Xb7bHbo1VZk5xvN3ofZtEnAAAAwKwJwm6h2+1eCIXOazabsbW1FdVqNbPr9nq9qFarUSqVotVqTdyf69WrV2O3p+3lNfDxxx+P3X79+vVM+wQAAACYtQ8XPYBlliRJ1Ov16PV6cXx8HO12O7rd7qVtG41GvH79Oo6Ojm51zW63G9vb21EoFOLly5dTQ6jz47lp9dboaZiz6BMAAABg1lSE3dLu7m7s7e1FvV6P4+PjOD09jYODg0sDqk6nE9vb2ze+VrPZjGKxGN1ud7gnWa1Wm/g9VwVz1zXYj2xWfQIAAADMmoqwjBUKhdjb24u9vb1oNpvx9OnTscCn3W5HrVaLvb29VP31er1oNBpRr9cvDaD29/fj1atXV+4TdtOw6XyQN3pC5Sz6vKmTk5N4+PDhrft59uxZPHv27Nb9AAAAwKp6/vx5PH/+/Nb9nJycZDCamxGEzdDOzk6Uy+V4/Pjx2MbwX375ZeogrN1ux/HxcZTL5Sv3JGs2m9cK125iFtVbWfR5dnYWb968uXU/7969u3Uf5M/z58/j3bt3cffuXUEnK8kcZ5WZ36wy85tVZn6vtnfv3mXyN/gibfT7/f6iB7EOtra2xsKwVqsV5XL5Rn01Go3Y39+/ECSdnp5eqLra3Nwca5f2v7vdbo8t49zZ2RlWnc2iz+t6+PBhvHnzJu7cuRP379+/UR+jVIStpsE8efDgQXz77beLHg5kzhxnlZnfrDLzm1Vmfq+2LCvCzs7OFjJPVITNyVdffRVbW1vD27cJwnZ3d6NcLsfW1tZYINVoNC5Uhd27dy+Tyqt79+7NtM+bun//vl+uAAAAMAdZFZEMAtNFsFn+nJRKpbHg67YbzidJEi9fvhz7t1evXl1oN+1UyaucD7pG+5lFnwAAAACzJgibo9ucGHmZUqkUOzs7w9uXhWuPHj0au522kuv8RvbFYnGmfQIAAADMmiBsjpIkGX6exbLAiIjPP/98+PllgdTocsyI9JVox8fHY7dHq9lm0ScAAADArAnC5mg0CMtqWWCpVJrY5/nqrbSh1WioVigUxsY+iz4BAAAAZk0QNkevX78efp71MsmIiwFVxPugbDQgu2wfscuMjvV8v7PoEwAAAGDWBGFzNLo0MKtlgaPVWFeFa0+ePBl+3ul0UvU72m5/f38ufQIAAADM0oeLHsA6aTabERGxt7eXWZ+DcKlQKIxtnD+qWq1Go9GIiIh2uz21z9E2SZJcGtrNos88e/78ebx79y7u3r2byVGxWTCm5ZTHn5ExpZPHMeVNHn9GxpROHseUR3n7OeVtPBHGtMzy9nPK23gijGmZ5fHnlLcx5W08M9VnLg4PD/sR0S8UCv3T09PM+i0UCv2I6B8eHk5sVy6X+xGRqu3u7u6wbb1en2ufaT148KAfEf0HDx7cuq88Xi8NY5oub+Pp940pLWNKJ29jytt4+n1jSsuY0snbmPI2nn7fmNIypunyNp5+35jSMqZ08jamdfob29LIG2q327G5uRkbGxuxvb09cXlgt9uNp0+fRkTEy5cvJ26UX6vVYmtrK/b39y89BXLUoM3e3t6V1WAD9Xp9+PmXX355Zbterzes9CqXy7G7uzvXPgEAAABmRRB2Q4eHh8Ogqt1ux9bWVlSr1QvtBl+7d+9eHB8fj53yeF6v14v9/f3odDpRq9Vic3Pzyr20KpVK1Gq1ODg4iIODg6njTZIkDg8PIyKG/V/m8ePHEfF+qeWg/Tz7BAAAAJgVQdgNVSqVC//WaDRic3MzKpVKVKvV2Nraiu3t7djd3Y2jo6NIkmRin4VC4UKbQSBWqVRif38/tre3Y3NzMyLeb75/nf3GdnZ2otVqRaFQiP39/ahUKtHpdKLX6w0Du06nE6VSKb755puJlWuz7BMAAABgFgRhN1Qul+P4+Dh2d3cjSZKxgKfT6cTbt2/jJz/5SZyensbBwUHqAOjo6Cj29vaiVCpd6LPb7UalUolvvvkmDg8PpwZrV417MKZutxuPHz8eBm337t2Lw8PDODo6ulZgNYs+AQAAALLm1MhbSJJkbJ+sLBQKhVRLHW9rb28v09MrZ9UnAAAAQFZUhAEAAACwFgRhAAAAAKyFjX6/31/0IOC6vv/978fvfve7uHPnTty/f3/m1zs5OYmzs7O5XS8NY1q+8UQYU1rGlE7expS38UQYU1rGlE7expS38UQYU1rGtHzjiTCmtIwpnbyNad7jGVzve9/7Xvz2t7+d+fVGCcJYSh988EGcnZ0tehgAAADADd25cyd+//vfz/WaNstnKX300Ufx3XffxQcffBB/8id/sujhAAAAACn953/+Z/z+97+Pjz76aO7XVhEGAAAAwFqwWT4AAAAAa0EQBgAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhwFKr1Wqxvb0dm5ubsbGxEcViMSqVSrTb7Zlet9PpRLVajWKxGBsbG8Nr7+/vR6/Xm+m1WR+Lmt/ndbvd2N7ejmazOdfrspwWOW/z8phhdeVljvm9zCx4Xc3a6AMsoVar1S8UCv2I6JfL5X6r1eofHx/3Dw8P+0mSDP/99PQ00+uenp72d3Z2+hEx8aNer2d6XdbLoub3eefnu3nNJIuct3l5zLC68jLH/F5mFryuZt0IwoCl02q1hk+Mu7u7l7YplUr9iOgnSZLZk/bp6enwxUCaj6vGBpMsan6POj097e/t7XkhSmqLnLd5eMyw2vIwx/xeZla8rmYdCcKApXJ6ejp8xypJkivbHR8fD584y+VyJtcul8v9iOiXSqX+4eFh//j4ePhu2WUvTiOif3h4mMm1WQ+LnN8DBwcH/SRJhvPdH1xMs8h5m4fHDKstD3PM72Vmxetq1pUgDFgqoy8Cp734y3LpQL1e70dEf29v78o2x8fHw3fMBh+FQuFW12W9LGp+DxwdHfWPjo6Gtwfz3h9cTLLIebvoxwyrb9FzzO9lZsnratbVRr/f7wfAEuh2u1EsFoe3T09Po1AoXNm+2WxGpVKJiIhCoRCnp6c3vnaxWIwkSaLVal1rjBERrVYryuXyja/Neljk/L5Kp9OJra2t4e16vR67u7uZX4fltch5m8fHDKslj3PM72Wy4nU168ypkcDSODg4GH5eLpcnPllHROzs7Aw/7/V6Nz5ZqdPpRLfbjcPDw6ltkyQZG+fg+2GaRc3vSaaNARY5b/P4mGG15HGO+b1MVryuZp0JwoCl0Wg0hp+XSqVU35MkyfDzFy9e3Oi6L168iN3d3dQvPs+/S/Wb3/zmRtdlvSxqfsNtLHLeeswwa+YYq8zrataZIAxYCuff/fn0009Tfd/oE/tN37n6/PPPL7wblfaaEXGhpBvOW+T8hpta5Lz1mGHWzDFWmdfVrDtBGLAU2u322O3Rd6QmOd/uJuXUpVLpWksRer3exDHAeYuc33BTi5y3HjPMmjnGKvO6mnUnCAOWwqtXr8Zup30C/fjjj8duv379OqshXanb7Y7dtqEn0yzT/IaBRc5bjxlmzRxjlS3T/Pa6mlkQhAFL4fyT4E3fuTo+Ps5sTFcZfVHgJCfSWKb5DQOLnLceM8yaOcYqW6b57XU1syAIA5bC+SfsmzpfXj0L9Xp9+Pn+/v7Mr8fyW6b5DQOLnLceM8yaOcYqW6b57XU1syAIA5bCTZ9oz5d6v3379vaDmaDb7Q73Szg4OLCPAaksy/yGUYuctx4zzJo5xipblvntdTWzIggD1sqs37kanIKTJEns7e3N9FpwnsoDltEi563HDLNmjrHKvK5mWQnCgKVwndNl5tHPZTqdTjQajSgUCtFqtWZ2HVbPMsxvOG+R89Zjhlkzx1hlyzC/va5mlgRhwK01Go3Y2NjI9GNra2vsGvfu3ctkrFn1c5mnT59GRMTLly+Vbq8Q8xsut8h56zHDrJljrLJlmN9eVzNLgjBgKdz0HafzJduzeueqWq1Gp9OJw8PDKJVKM7kGqyvv8xsus8h56zHDrJljrLK8z2+vq5m1Dxc9AGD5lcvlODw8zLTP80+sjx49Gm6WGfH+iTjNk+/5TTyLxWIWwxvTaDSi0WhEvV6PnZ2dzPtnsdZ9fsNVFjlvPWaYNXOMVZbn+e11NfMgCANuLUmSmZcsn19K1u12U71DdHx8PHa7XC5nOq52ux3VajXq9Xrs7u5m2jf5sM7zGyZZ5Lz1mGHWzDFWWV7nt9fVzIulkcBSePTo0djtbreb6vtGS7gLhUKmgUan04nt7e04ODjwZM2t5HF+wzSLnLceM8yaOcYqy+P89rqaeRKEAUuhVCqNlWy/evUq1fe9fv16+Pn5J/3b6Ha78fjx49jb23OcM7eWt/kNaSxy3nrMMGvmGKssb/Pb62rmTRAGLI0nT54MPx/d12CS0Xb7+/uZjKPb7cbW1lbs7u7GwcFB6u+p1WqZXJ/VlJf5DdexyHnrMcOsmWOssrzMb6+rWQRBGLA0qtXq8PN2uz21/WibJEky2ceg1+vF9vZ2PHnyJPWTdUREpVKxTwgT5WF+w3Utct56zDBr5hirLA/z2+tqFkUQBiyNUqk09qTXbDYnth896W/au1aNRiP29/cn7pHQ6/Via2srkiQZtp320W63hxuSOv6ZSRY9vy9z/ph0OG+R83aW14YIv5dZbYue315Xs1B9gCVyfHzcj4h+RPRLpdKV7U5PT4ftyuXyxD7L5fKwbUT0T09PL21XKpXG2l3no16v3+ZusyYWOb8vc3h4OPa9BwcHqb+X9bHIeTuLa8Mov5dZZV5Xs64EYcDSGX0ReNULwMGTa6FQmPoCM82T622erL3nwHUsYn5f5vT0tJ8kydj3TnqRzHpb5LzN+tpwnt/LrDKvq1lHZhGwlFqtVr9QKPQjor+zs9M/Ojrqn56e9lut1vDJtVQqpfqDZ9DP4KPVao19fWdn51ZP1ru7uzP6KbCq5jm/R52envZ3dnYuvJt7/qNcLg/HBQOLmrdZXxsu4/cyq8zrataNIAxYagcHB/1SqTR80i0UCv1yudw/PDxM3Uer1eonSdIvFAr9vb29GY4Wrsf8Zhktct5mcW2YxO9lVpn5zbrY6Pf7/QAAAACAFefUSAAAAADWgiAMAAAAgLUgCAMAAABgLQjCAAAAAFgLgjAAAAAA1oIgDAAAAIC1IAgDAAAAYC0IwgAAAABYC4IwAAAAANaCIAwAAACAtSAIAwAAAGAtfLjoAQAAAADLr9PpxIsXL6LX60W9Xl/0cDK36vdvXagIAwAAAG6k3W5HtVqNYrEYW1tbUavVotvtLnpYYzY3N2NjYyPa7fa1vzfv96/X60WlUolOp7OQ69dqtdjf31/ItW9KRRgAAABwbdvb2/H27duFhTBptNvt6PV6ERFRLpev9b15v3/tdjsqlUrs7u5GqVQa/vvGxsbMr93v9yMiYnd3NyqVShSLxWi1WpEkycyvfVsqwgAAAIBra7VacXR0FK1Wa9FDudLh4WFEROzs7Fz7e/N8/2q1Wmxvb8fBwUEcHByk+p5CoRBJkgw/LjP69UKhkKrPVqsV5XI5tra2chsajhKEAQAAADd23Uqrefr6668jIuLzzz+/cR95u3+D5Yj1ej12d3fHvjaofhvY3d2No6Oj6Pf7cXp6GsfHx8OP0SqyiPf3c/Trp6en0e/34/j4eGrYVq/XlyYME4QBAAAAK6fT6dx4WWReNRqN2N/fj729vQsh2HmHh4dRr9cvBF7XlSRJ7O3tjVXGnQ/cBtcrlUrx+PHjS7+eF4IwAAAAYOUMTnYsl8uplvnlXbPZjGq1GqVS6coKrbdv30bE+/t8k+Wgk5TL5amB4uHhYfR6vXj8+HGm186SIAwAAABYOYNlkZVKZcEjub1erxdPnz6NiEi1J1i1Wp3JOAb9DgK385Ikid3d3eh0Ork9TVIQBgAAAKyU0WWRT548WexgMlCpVKLX60WpVJpYlTXrpaBp+h0EYLVaLdrt9kzGcRuCMAAAAGClvHjxIiIiSqXS0i+LbDabw0DpJz/5ycS2SZJEvV6f2X0uFApRr9fj3r17E8cwCMxmVZl2G4IwAAAAYKJmsxnb29uxubkZGxsbsbW1FdVqNbrd7qKHdqlmsxkR6U+LzPP9+/LLL4efT9v3q1AoTN1E/7Z2d3enBm3b29sREdHtdqPRaMx0PNclCAMAAAAu1e12o1gsRqVSibdv38bBwUG0Wq34/PPPo91uR7FYjFqtNrWfSqUyDJku+9ja2hqGTtVq9dK2xWIx1WmE3W532Ne04Cir+xfxfkngVfdv2sfW1talfbbb7eh0OhERtz79cZ5Gl1Cm2dNsnj5c9AAAAACA/Ol0OsOA5uDgIPb29oZfK5fLsbe3F9VqNdWm6IeHhxHxPuQ6XyF0vu96vR7VanV47VKpFC9fvky93G9QDZYkSSRJMpf7F/H/9+dKkiSq1eqV13716tWFcO2qsGhw8uVgTMtiNLTrdrvRbDYzP8XypgRhAAAAwJhutzsMiXZ2dsZColH1ej1ev349rFqapl6vR7fbHdtE/fj4+EK7169fR8T78KfVal1r7IP9wSYFL7O6f4VC4dL7M2p0qWPE+6WGV4Vcg1AvIuLTTz9NNYa8KJfLw//nVquVmyDM0kgAAABgTKVSGX4+bWnbdZe+DarDBhqNxtiSx16vF/v7+1EoFC60nabX6w1Dq0n7g83q/k3bzL5Wq42FaoPN5y9zPnybVN2WR6NVYV9//fUCRzJOEAYAAAAMNZvNsX2ppgUwjx49ulb/l4U/T58+Hfu81+vF4eHhtU8/HAQuhULhyj21ZnX/3r59O3Efr263e2GZ5aSgb7RqLmL5grCPP/54+Hmv18vFwQMRgjAAAABgxOjSvWq1OrX9dcOqiIvLAZvNZrTb7Wg0GtFsNicuF5xkECw9efLkyjazun8HBwcTxzxahRYxeUlkxPu9xG4yjrw4H9ylXV46a/YIAwAAACLifdXSaGAxyyqker0exWJxeHsQFCVJcuVywWkGVVTnQ6eBWd6/SX01Go0LSyKnLblMc0Jmnp0P7t6+fbuYgZyjIgwAAACIiPkux0uSZCwM6vV6wyWRNzHYWL5QKFxZabWI5YbdbvdC5VmaZZ95CY6ykpdgTxAGAAAARETE0dHR2O1ZB0V7e3sT99W6jsFpkZOWG877/kVcXH65s7OTatnnaHC0bMsiIyLu3bs3dvs3v/nNgkYyThAGAAAAREQsZEPz8xVgVy1rnGZQETbptMh5379GozFWhVYoFOKrr766dj95qaZaBYIwAAAAICIuLsebR3B0fj+wy05XnGY0bNrZ2bmy3TzvX6/Xu3A/vvrqq9TVXctYBTbq/M969BTJRRKEAQAAAJeadSVSp9OJWq12Ibyq1WrXOmVwUFU2KQS7zCzvX6VSGet/Z2fnWuObx7LNecpLsCcIAwAAACLi4r5Os64Iq1Qqw+WC5yvDrrNE8uuvv46IycsiI+Z3/5rN5q2XRJ4f67Itjzw/3rwEe4IwAAAAICIuhhWtVmtm16pWq9HtdofLBXd3d8c2zu92u1Gr1ab20263h6HLtE3o53H/er1ePH36dOzfrrMkcmB7e3vs9rKdInk+ZHz06NGCRjJOEAYAAABExMXwZVBplbV2ux2NRiPK5fLYcsHzG+fv7+9PrdoafE+5XJ4aNs3j/j19+vTaSyJrtVo0Go2xfzsf6i3iIIPbGD0lMkkSSyMBAACAfDkfvvR6veFpjGmlqVwaLHs8H3wlSRIHBweXtr3KIMxKs5Ry1vev3W6P9Zd2SWSr1bqwFLJQKIxVsM2yOi8i+4qz0eBuWqXePAnCAAAAgIh4H76cr146X+F03vlN7aftZTXYRL5er19aJbS3tzcWAA021L/q2oPrPXnyZOJ1I2Z//86HcWmWRPZ6vWi325fuoTU61tE9x7Jw/n5kvQfZ6Hivs9/brAnCAAAAgKHzFUy9Xi8eP358aVDS7XYvhBzdbvfK0KbZbEaz2YwkSWJ3d/fKMVy2RPKyUyRfvHgRERGlUin10rtZ3b9qtTrWx/lln1cZ7Cd2WRD2k5/8ZPj5dU7RnKbb7V5YatntdjMLw3q93rCvJElUhAEAAAD5VCgULgRRnU4nNjc3o1qtRrPZjEajEdVqNYrF4qUhx/b2dmxsbES1Wh3+W7vdHoZK0wKiy0Khx48fXwiDBssQp50WOWoW92+w59moSqUS7Xb7wseg//39/SgWi8P7cFmQVygUYm9vb3g7i6qwTqdzZYVWpVLJJHAb3Xttf3//1v1laaPf7/cXPQgAAAAgXwbB1aQqod3d3ajX67GxsTH8tyRJolqtxs7OTiRJMqyqOh+wlMvlODw8vBAA1Wq1qNfrV24OXyqVhkFWsViMiIjj4+NLw7N53L+IiK2trVsFSIVCIU5PTy/9Wq/Xi83NzYh4v2z0/B5qaV13jEmSxPHx8a2udZs+ZkUQBgAAAFypVqvFixcvhkvnCoVClMvlqFarw2qpYrEYOzs78fnnn0epVJrbuPb3928dtuT1/o0aVKhNCszyotvtDgPKo6Ojhfy8JhGEAQAAAEtnUHV0myqpZVKpVKLZbEa9Xp+4v9qibW9vR7vdzu3/iyAMAAAAWCqjywXzWHU0K8ViMd6+fRvffPNN6sMB5qndbsf29naUSqU4Ojpa9HAuZbN8AAAAYKkMNmMvFAprE4JFRLRarej1esOTJvOk1+tFpVKJJEni5cuXix7OlQRhAAAAwFIZbJb/5MmTBY9kvpIkiaOjo2g2m2Mnci5ar9eLra2tuHfvXhwdHeWyWm1AEAYAAAAsjV6vF+12OyLe75u1bgbLDr/++utchGGDEGwQ0uU5BIsQhAEAAABLZBCCDU53XEeDMOz169exvb0dvV5vIePodDrxgx/8IKrVarRardyHYBE2ywcAAACWyGjoswzBy6zVarXY2dmJJEnmfu1msxlJkizVPm2CMAAAAADWgqWRAAAAAKwFQRgAAAAAa0EQBgAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKwFQRgAAAAAa0EQBgAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKwFQRgAAAAAa0EQBgAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWvi/YIsUo2TktlsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOVCAYAAACLW0xhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACnRklEQVR4nOz9T2wj+X3n/7+omQQOkqiLmmABQQLiLmYC7ynponoPufwQi1xfYuTPkN2LGLYvFukxgj1oM+S0c4hzsGXSsS4LOEPKuTg/A6sm7U2QHLLD6tn7tliT3Ixds3oMSCCwwIjVcoIYiUf1PWhJkxL/FMniH4nPB0BAEj/81JuSekZ88fN5fyK+7/sCAAAAAAAA7ri1RRcAAAAAAAAAzANBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQdgCuK6rZDI59TyxWEyRSETVanWsxzmOo2w223l8JBJRLBZTPp+X53kT11MsFpVMJhWNRjtzptNp2bY98ZwAAAAAAABhIQgLked5nWBp2C0Wi8k0zamulc/n5bru2PWl02nF43GVy+Wex7uuq2KxqGg0qnK5PNa8tm0rGo0qn89LkiqVihqNhgqFghzHUTKZVDKZnCpkAwAAAAAAmNariy7gLhknQGqHRpOwbVvFYnGsx3iep3g8Hig8y2azqtfrKpVKgWppr27LZDI9jzFNU6lUSvF4XLZtKx6Pq16vyzCMsWrv5xd/8Rf1k5/8RK+88or+3b/7d1PPBwAAAAAA5uP//t//q48++kgf+9jH9M///M9zvXbE931/rle8w6LRaKBVT4lEQrVabaJreJ6n+/fv91ynUqkolUoNfVwymZRt27IsS0+ePJFlWZKutkk+f/68b7A2at7uWkzTVKPR6DvOdV3FYjFJ0z33bq+88oouLy+nngcAAAAAACzG2tqaPvroo7lekxVhISmXy/I8T7lcbmT/r52dnYmvs7e3p42NDUkKvNWwXC7Ltm3lcjkVCoWe+9qrtrLZrNLptBzH6bnWsCAsnU53ahi2wq19jWq1Ktu2VS6XlclkAtU+SDsIW1tb0+bm5lRzBdFsNud6vSCo6fbVI1FTUNQUzLLVtGz1SNQUFDUFs2w1LVs9EjUFRU23rx6JmoKipmCWraZ519O+3iuvvDLza93gIxSmafqmac70GqVSyZfk1+t13zAMX5Ivya9UKiNrSyQSI+dvNBqdOdu3Wq0WaGyr1Ro6d6VS6Yw1DGNkLaNsbW35kvytra2p51rG6wVBTaMtWz2+T01BUVMwy1bTstXj+9QUFDUFs2w1LVs9vk9NQVHTaMtWj+9TU1DUFMyy1bRKr7Fplh+CarUq13Wn6vs1iuu6ymazyuVynW2NQTiOI9d1ValURo41TfPGirHuFWLdusclEomRfb+6V5Z5njf2SZcAAAAAAADTWujWyNdff32Rl+8RiUT0v//3/57osQcHBzIMQ48ePQq5qp9Jp9OyLOtGUDXK8fGxMplM4Ab1iUSi5/MPP/yw77jugwGCBnOmaXaa9R8fH4/sawYAAAAAABCmhQZhjUZDkUhE/gL79bevH4lEJnq84zidVVPRaFSmaSqRSCiZTIYW9OTzeTmOM7AZ/TCPHz+WaZqBx18PtdpN7rtdXyX28OHDwHO3gzBWhAEAAAAAgHlb+a2R04Zw17dDuq6rcrmsdDqtSCRyowH9uBzHUbFYVKlUGivQarMsK/BqMOlmA/5+17Rte+SYfq6Pm+b7AgAAAAAAMK6Fnxrp+75SqdREIU8YPM/r2eY3Dtd1b4RC11WrVVWrVWUyGZVKpbGvsbu7q1QqNfUpi0G1V2y1Xd8qKUnPnz/v+Txo0Pbaa6/1fH5ycjJWvzMAAAAAAIBpLDwIK5fL+sIXvrDQGlKplD71qU+N/TjTNFUqleR5nhqNhmzbvhEktZXLZZ2cnKherweeP51OS5KOjo7Grm1SJycnnY8HhW/Xn+OkK8Im2eoJAAAAAAAwqYUHYf1WHM1b0B5X/VwPi9orzA4ODm5sM3QcR8lkUrVabeS87ZVktVptrK2N0+petTboFMxBYd+4rn9/AAAAAAAAZmnhQdjGxsaiSwiVYRjK5XLK5XKqVqva29vrCXxs21axWFQulxs4h+d5SqfTymQycw0KXdft9O0qFAoDV3pNGmBdD/TOz88nmqdbs9nU9vb21PPs7+9rf39/6P0XFxdaX1+f+lphoabbaRm/R9QUzDLWtGyW8XtETcEsY03LaNm+T8tWj0RNt9myfZ+WrR6Jmm6zZfw+LVtNQes5PDzU4eHh1NdrNptTzzGpiL/AIxtfeeUVtVqthf/gX758qY2NDX300Uehz+15nnZ3d3sawxuGoVarNfAx8Xi8s91ykGg02gmkKpVKKCdUZrNZlctlmaY59NrXT9gM+itk27aSyWTn80QiEWh1XD/b29s6Ozub6LH9/Omf/qm+8pWvhDYflkP792Rra0unp6eLLgcIHb/juMv4/cZdxu837jJ+v++2r3zlK/qzP/uz0OZbxO/JQleELTCDu2FWtRiGoXq9rng83gnDPM+Tbdt9V3sVi0U5jjNWL7EwOI6jcrkswzBGhlOGYYSyrTGMLZ9ra2va3Nycep5Fh7EAAAAAACy79fV1bW1tTT1Ps9nU5eVlCBWNb6FBWKFQWIoA4t69eyoUCjO9xtHRkeLxeOfzWq12IwhzHEf5fF6FQmHupynu7e1Jkp49ezay+f3GxkYoQVgY22I3Nzd5lwEAAAAAgDkY1VYoqLB3eY1jbSFX/X/eeuutuV7vgw8+GHjfrGuxLKsn+OrXcD6dTsuyrKH9w2Yhm83KcRxVKpVAAdykK7muh2fzPAQAAAAAAABg4c3y5ymbzep//I//sbDrJ5NJ2bbd975isSjXdZVIJJROp0fO1R0qHRwc6Pj4uPP548ePA/cMK5fLKpfLKpVKgR+zs7PT0/PM87xAodb15vixWCzQ9QAAAAAAAMKwUkHYycnJQq/fveXw+rbADz/8UJIGBmXDOI7TE0yZphko1LJtW9lsVqVSSZlMJvD1urd4Sler24KsJLvegH+eJ2ICAAAAAADcyiDsgw8+GKtHleu6KpVKofS1mkZ3ELbobYGO4yiZTKpQKIwVgklXK8K6BQ3Cur//hmGM7EUGAAAAAAAQplsRhH3wwQcqFAqybbtvb60gfN9XJBIJubLxdK9ISyaTPfcVCoWxGvbHYrHO96JSqQTe1ihdBVe7u7vK5XIT9SOzLKvn5Mjnz58Hun73878epgEAAAAAAMza0gdhT548UbFYlHQVZt1m3VsDF7Ut0HVdxeNxZTKZwMGb67qqVqs9odmjR49ULpclqWdb5jDd4/L5/BhVA5PZ39/XxcXFUpxOC8wCv+O4y/j9xl3G7zfuMn6/sewi/hKnS9/73vc6jePbq7mmKTcSieijjz4KpbZJtFdx5XK5sVZ/DZtLCr4izPM8xeNxJRIJlUqlwNeKx+M6Ojrq2f7oOE5Pr7BRPxfbtjur4EzTvNEvbFzto1a3trZ0eno61VwAAAAAAGB+FvmafqlXhB0cHEi6CrB835dpmrIsq9Nb6rXXXhs5x4cffijP8/T06VO9fPlypvUOU61W5bquDMPQkydP5n79dghmmqby+XygLaau63ZWbl3vAWZZlhKJRKe5f7VaHRrGVSqVzsesBgMAAAAAAIuw1EGY4zidlWC1Wk27u7sTz5XL5fT666+HVZps21Y6nZbneUokEioUCgMbxruuq729PUnSs2fPFtIof3d3V67rynVdxWKxsR47aPVYqVTqzHVwcDAwCPM8r7ONMpFIjN2cHwAAAAAAIAxriy5gmHZglMvlpgrBpKvtePfv3w+hqiuVSqXTLN62bcXjcWWz2Rvj2vdtbGyo0WgEOl0xbPF4PHAfr34GBVemaXZWejmO0+nldl37Z2cYRs/KMAAAAAAAgHla6iCsvQXy4cOHocw3Tl+sUdq9y7qVy2VFo1Gl02lls1nF43Elk0llMhnV6/XO85mndDo9kxCsLZVKqVaryTAM5fP5zvU8z+uEgI7jyLIsvXjxYiGr4QAAAAAAAKQl3xq5u7ur999/X+fn56HNF5ZEIqFGo6FCoSDbtnV+ft5ZIdYOfp48eaJEIjGT8Cdos/l5rMBKJBJqtVoqFos6Pj7W7u6uPM+TYRja2dkJ3MwfAAAAAABglpb61MiXL18qGo3qi1/8or71rW9NPd+3v/1tfeELXwihMiwap0YCAAAAAHA7LfI1/VJvjbx3756+/vWv6/j4WD/+8Y+nni/MrZEAAAAAAAC4XZY6CJOuGuVbltW3J9c4Xrx4MVWvLAAAAAAAANxuS90jrK1Wq2lnZ0evv/668vm8NjY2Aj2u3ber0Wjo6dOnM64SAAAAAAAAy+xWBGHvvfeepKsG8dlsdqI5fN9XJBIJsyxgJN+XLkd04VuLSPxqAgAAAAAwe0sfhL355psql8uSpEgkokl6+xOAYVEufenVPxk+5qdflV7hVxQAAAAAgJlb6h5hR0dHKpVKnfBr0gMul/hgTAAAAAAAAMzJUq8Ia5/y2F4JlkgklEwmZRjG2H3C3nnnHX3wwQczrBaYzHfflz4XX3QVAAAAAADcfUsdhDmOo0gkIsMwdHJyovv37088197enl577bUQqwNG++77o8d8viq9siZ95sHs6wEAAAAAYJUt9dZIwzAkSU+ePJkqBGvP9eABSQPm5+VPpC/9TbCxX/xr6eInMy0HAAAAAICVt9RBWDx+tV/MNM1Q5js6OgplHiCIv3Kkf/63YGP/6V+l7zizrQfh8Txv0SUAAAAAACaw1EFYNpuV7/tyXTeU+VgRhnn62x+MN/7vxhyP+XIcR/l8XtFoVHt7e4suBwAAAAAwgaXuEZZKpfTgwQMdHx/rj//4j6ee7/vf/77+4A/+IITKgNFa/zLb8fgZx3F0fHwsx3Hkum7nkAzDMGSapjY2NmRZlpLJpBKJxI3Hp9Npua6rer3e+ZrnebJtW8fHx7Jtm1VgAAAAAHAHLHUQJkmVSkW/9mu/pv/+3/+7fv/3f3+quQ4ODgjCMDfRXxhj8D+U9b++nlXkj8a7hmVZPeHNpCKRyNiPMQxDrVar733pdFrVanXsOWu1Wt+gqh/P83RwcKBisTh0jONc7Tm1bbsz1rIsJRIJxWIx1Wo1VatVWZbV89i9vT25rtt5PAAAAADg9lvqrZHSVX+wd955R1/4whemmufly5e8oL2Dms2mtre3h94ODw8XUtunPzHG4N/MqPD3LdXrdaVSqaFDE4mEarWaWq1WKCGYJPm+r0ajoVKp1Dmkoh/TNFUqldRoNAaGYNJVgN1qtQIFW7lcTvV6Xa1WK3AI1t6ieD0ES6VSqlQqnfnaz6tWqymTyXSem+M4KhaLymazncDu+oqv9jy+74fWpxAAAAAA7rrDw8ORr9ObzebC6lvqFWHf//73JUm/8iu/omg0qtdff31kSNCP53l6+vRp2OVhCVxeXurs7GzomIuLizlV0+uzlvT23wdrmP9LPy998f9naP1jliqVirLZrMrl8o1x7aBnFkzTVCaT6ayU6qderw8NyroZhqFEIqFEIqF4PN43iC6VSspkMoFrdF1XyWTyRt/ATCajUqnU9zGmaco0TSUSCZVKJRWLReXz+cDXlK7Cx34/DwAAAABAr4uLi5Gv0xdpqYOwr33ta3r//fc7n/u+P3Qb1DC+70+0/QvLbW1tTZubm0PHrK+vz6maXvc+Jn3rd6XPB9gh+M7vSesf+9nng4KwbDYbXoEDmKYpy7JuBFepVCpwCHZdNpvtW/s4IZht20omkz1fMwxDz549u7GtcZhcLqdUKqV4PN6zCuz8/HzgYyZ93gAAAACwatbX17W1tTV0TLPZ1OXl5Zwq6rXUQdijR486L8YjkQhBFm7Y3NzU6enpossY6DMPRgdh30ldjes2aCvevLbomaZ5Iwib5tr9HjtOuOQ4TighWHc9L1680P379zthGM3wAQAAAGB6+/v72t/fHzpme3t7YavGlrpHWHsFSSQSke/7U92AZfWHD25+bVBItLGxMdtilpDrutrd3b3x9UqlMlEI1mYYRmg91pZJtVq9sXUUP2Pb9qJLAAAAALBAS70i7N69e7IsS++//74KhYIsy5ooCHBdV1/72tf0D//wD+EXCdxB/f6dvfbaa6HOF/TfcjqdvrFaq93LbFqmaSqXy0285XqeHMdRqVSSbdtyXVeGYWhjY0OGYcg0TT1+/FjS1WmXhUJh6LZT27aVTqe1sbGhUqkUyvdyWbmuK9u2ValUOiHYMr05sko/CwAAAGAZLHUQJkmPHz9WLBbTW2+9NfEcDx480BtvvLGSq2mwWGsR6adfHT0G/dm23bfJfqFQCO0aT5486QRhnuctXT8wz/O0t7fXOd3SNM3OoSGu68pxHDmO07m//Zhh2uGi53nKZrNqNBozq39RXNdVOp2W67pLve11FX4WAAAAwDJZ6q2R0tVpbWG9e7+zsxPKPEBQkYj0ytrwG63vBuvXYH+apv39GIYxVtP+eUun052Qq1QqqdFoqFKpqFKpqF6vq9Fo3FhFNCpMWYU3BUzTVL1eV6vVUi6XW3Q5A63CzwIAAADh8X3po8vhtyXaALGUlj4Ie/DgQWirP/7zf/7PocwDYPbaWwCve/LkSejXSqfTkoafHDlMe3tbLBZTJBJRNBpVMpnse/LnOIrFYmc7Xy6X6xvYmaapWq3W89/JUT3CSqWSTNOUaZqqVCpT1XgbXD9oYZms2s8CAAAA07n0pVf/ZPjtkiBsqKUPwiTp/v37oczzX//rfw1lHgCzNygUmKZB/iCJREKFQmHs1Tme5ykejyuZTPY0qfc8T7ZtK5vNKhaL9d3eGcTBwUHn436r47rlcrnOyqdRgV4ikVCj0VCj0ZjJ93PZLGrV1aifmbR6PwsAAABg0W5FEBaWk5OTRZcAIKB+p/vNspF4Lpcba8ul67q6f//+yJDLdV3F4/GxTyucpLdV+1ARTo1cvHK5PPWKQAAAAADhW/pm+f188MEHY71AdF1XpVJpqRsmA/gZ13X7hjnLsmLG87xOk/NUKqVkMqmdnR2dn5+rVqv1PYUymUyq0WjINM3A1+hm23agXmZPnjzpbPXEYriuG2g1GAAAADAL331f+lx80VUsr1sRhH3wwQcqFAoDewYF4fu+InQlB26FQf/OY7HYnCvpr726q1ar3VillkgklM1mlUwmbzyPdDqter0e6BrXA7N8Pq9Hjx6NXLXWPlFyGU/AXAWe5y11TzIAAADcbt99f/SYz1evDmb7zIPZ13MbLf3WyCdPnigWi6lcLqvRaMj3/YluAG6PQUHYMp2w1y8Ea2s3sL/OcZzAWyQNw+gJstr9yIK8GeD7PiHYAniep93dXbamAgAAYCZe/kT60t8EG/vFv5YufjLTcm6tpQ7Cvve976lQKHSCLFZ0AYuTz+cViUQmusXj463LHbSNeVnCHcMwRvYrM02z74m345yCe32s67qdNwam5ThOp5n/MJ7nqVwuKx6P91y3vf0vGo0qEokoFov13RLquq7y+XznRM1YLKZsNtv3Z9y+zvXfn+uSyWRnvu5bmNvfy+Vyz3Wi0aji8Xjf5yhdfT/79Yzrrm/Q9zroz6LN8zwVi0Ulk8nO979dXz6fDxTEua6rYrF44zCH7p9BLBbrbAEGAADA4v2VI/3zvwUb+0//Kn1nsjO77ryl3hrZPjEtEonI932ZpinLsjpbhl577bWRc3z44YfyPE9Pnz7Vy5cvZ1ovgHA0Go1FlzDUzs5OoHG5XE4HBwc9QcI4TfMzmYwqlcqNx2SzWZVKJR0dHY3VN81xHJVKJT19+rRTU79wsR1+HR8f9z0MIJ/P3wiE2oFXo9FQqVQaOq5cLsu2bdXr9Z7rZzIZZTIZZbPZoWFfe7VdsVhUPp8P8tQDq1arSqfTMgxDR0dHna2mjuMonU4rn8+rVCrdqN00TT179ky2bffUNGgrbNCfxXXlcrnTf6xQKKhQKMgwDDmOo4ODAxWLRRWLRaVSqRsnr3qep4ODg54TTrvv293d7fl5t3v1tX9WQfvbAQAAYDb+9gfjjf+7H0h/9FuzqeU2W+ogzHGczmqAWq2m3d3diefK5XJ6/fXXwyoNWDntgGISJycnYz12UCCwLCtTxlmZlkgkVK1We77mOE7gAKtWqymdTvedIx6PK5VK6ejoaGRNruvq+Pg48Kojy7JkGEbPz61erysej2tjY0OVSkWWZWljY6MTwEg/C2ry+Xzn8IB2cHhyctJZYeS6rg4ODvqukEun04FWvaVSqVCDMNu2OwcNPHnypBOCSVffj0ql0tmeure31xM0GYYhy7J0fn7eM2e/n/O4P4u2drBoGMaNYMo0TaVSqc7vSrVaVSwW6wnszs/PlUwmO0Fn28nJiXZ3d5VIJFQoFGSaZifQ8zxPnucpm8323e4LAACA+Wn9y2zHrwx/iUWjUX9tbc1/++23Q5kvFouFMg8Wb2try5fkb21tLbqUmZF049ZqteZy7Uwmc+PahUJh4vnq9fqN+UzTHDi+UCj0ff6lUmniGqaRy+V66kilUoEfW6lUQnkeg74nk8zZPZdhGEPHWpbVc51ardZ3XCKR6BmXyWT6juv+fgy6dq1W65lrkFarFejfx/Xfv0FSqdTI3/dR8wStvS3oz6JUKgX+WZum2RmbSCRGPg/DMPr+XK//7s7rvz8AAADo7z/+pe/r7eC3T/3loisebJGv6Ze6R1j73e6HDx+GMl97uw6A5bbsK8LG0W872STPI5fLqdVq9axS6tY+qTLI3ONsces+oCCTyQzsjXb9pMRB/73trr+92mgZDfod7P56GE3xg/4s2ivfDMNQJpMJNFa6WuXWbztu9/M4Ojrq+3O9/rt2cnISqFYAAADMxqc/Md743xlz/KpY6iCsvRXy+laTaecDsNwGhQPL3jusn36ByocffjjxXJVKRfV6ve+WO9u2tbu7G2q4FHQbaPfPbJyto8t0wuLR0ZEKhYIqlcrIsEmaXzBbLpc71woSnGUymZ6fwTgHNFzXfb1l+lkBAACsos9a0i/+XLCxv/Tz0ueCtxNeKUsdhH35y1+W7/t9mzVP4tvf/nYo8wCYrUGrjsZpNL8s+gUXQQ76GMayLNXr9b6rrhzH0d7e3lTzT2LSEz3DeqMjDIZhKJfL9V115zhOaP8vGld3b66gK8i6/w3dxn83AAAAuOnex6Rv/W6wse/8nrT+sZmWc2stdRB27949ff3rX9fx8bF+/OMfTz0fWyOB22NQk/Fl3Uo3jrBO38tkMmo0GjdCqGq1utThx6Sh2bx1n3BpWdZYJ3SGXce4rv+O3YV/NwAAAJA+82D0mO+kgo1bVUsdhElXfXEsy+qc5DWpFy9eLOzdfADje/z4cd+vL3PAM8j14CesIKw9V/fJgG0E/5NzHEfJZFKlUmloX7R56Q6xgoZi10+kXKaVdwAAAJitPyQEG+rVRRcQRK1W087Ojl5//XXl8/me5s3DnJ+fy/M8NRoNPX36dMZVAreH4zg6ODhQpVJZdCkDZTKZnqbfbaVSaWDD+GV1fTXOqJVFtm0rn8+rXq8Hmt80TR0dHfW8YUDwP5lsNqtyuaxMJjNVb60wTdKg//r/J8MMXwEAAIDb7FYEYe+9956kq0bZ2Wx2ojl831ckEgmzLODW2tvbCxwoL4phGEqlUqpWqz1ft21bjuMsbJvauK6HYEFWF5mmKcdxZNt24NVI18NBGpuPrx2CSdM1mA9b+/dB+tlJm6O2l3avACMEAwAAuDvWItJPvzp6DAZb+q2Rb775ppLJpN5//31FIhH5vj/2DcDPtIOkZDI5cEzY26gmnW9QGNFvpdi0ZtVD6eTkpOfzIGF+O7iYNPiXRq86uwvC/D11HKcTgpmmuVR9zK5vE27XOUz3Cau3bQUlAAAABotEpFfWht9YAzTcUgdhR0dHKpVKnTBr0lCLMAy44nleZ/vcuC+OP/zww1BrCRJimKbZNwyzbVvFYjG0WlzXVTwenyp4GuT6iX9Bv++macp13cCh3/UVYIN6rN0G11crDgopw1z11t17bti8i2g6n0qleoK5IP3fup/PkydPZlEWAAAAcCst9dbI9h/77ZVgiURCyWRShmGM3SfsnXfe0QcffDDDaoHwzOLFtud52t3d7WyrGne7VNg1BZ0vl8upVqvdaJKfz+dlWdbUjcxt21YymRwYuk2re2vnOA3s20FYsVhULBZTJpMZOr57btM0lcvlxi+2j6A/p+5xox4z6v7rq9nK5fKN59MvJDw/Pw9tJVe1Wr0RWva73nXX/125rtvztSDbGvvp7gHnuu7QbbOO43S2UhYKhaVa3QYAAAAs2lIHYY7jKBKJyDAMnZyc6P79+xPPtbe3p9deey3E6oDZGbQiZdIX+rZtK5vNduZ99OjR2NefZhvatCt3arWa0un0jX5hyWRShUJhotDH8zzl83mVy+WBJy8Oe2wQ5XK589zHPX2wOzzJZrOq1+sDQ41yudyzQq57FVo/3T/LRaxw6jbo+olEohN+5vN5NRoNpdNpeZ6nWq2mcrnc+b1oz3E9dGq7/rvbL4y6Hr6l02kVCgVZliXHcVQqlWRZVieglH4WPtZqNT158qRvwJzNZlWpVHR+fq5CoaBYLNbz+xr0Z5FKpVQoFDphXDqd1osXL248D8/ztLe3J+nqd27Qv42gP/fuf7uL/l0BAAAAQuEvsWg06q+trfnf+MY3QpkvHo+HMg8Wb2try5fkb21tLbqUmchkMr6kG7dEIuE3Go2Rj2+1Wn6tVvNzuZxvmuaNeSqVysDHNhqNvteW5LdarYmej2VZfecrlUpjzZPL5frOY1mWX6vVAs3RarX8QqHgG4bR+Z6Oel7Xr2sYxsjrdH8fE4lEoNq6lUqlvs81lUr5uVzOL5VKfiaT6fn5Bv39uP7zGPT70Gq1bnyfB0mlUoF+trVarWdcJpMZeO32z+j6zTCMzs+7e4xlWX6j0bjx8wxa2/Vx3bdCoeD7fv9/m6lUqmeeQb+n/Z5r0J9FW6VS6TxnwzD8UqnkNxoNv9Fo+KVSqfP70K63n6A/g+vjJvk9BgAAAPpZ5Gv6pQ7CEomEv7a25n/ve98LZT7HcUKZB4vX/keztrbmb21tDb1985vfXHS5gdXr9aEvxsO69Qt+Wq2WXyqVBoYPknzTNP1SqRQ4EKvX634ikRhaSy6XCxTetNVqtYHBmmEYfiqV8kulkl+r1fx6ve7XajW/VCr5hUKh53GGYYwMHdr6hYOmaQ4M37rDiushyTjPs11jpVLxM5mMn0gkfMuyen5G7ec8Kghs/24N+vlaltUJT4aNNU3TT6VSnd+B62Hc9eCkPWetVhv4u2CaZt8wptVq9cxvWZafy+V6xrS/dv13qNVqjXy+/a5ZKBQ61zNN08/lcj2/761Wq/M8ur9n13WH0JZl9fyujfOzGKRUKvmJRKInFGs/btC/z2H/Hrt/Bo1GY+i4UbUBAABgtX3zm98c+Tp9bW1tYUFYxPeXt5N8tVrVo0ePVCwW9cd//MeLLgdLZHt7W2dnZ4HG/umf/qm+8pWvzLagKZXL5Zk0au/HsizV6/Wer0UmOFbEMAy1Wq2+9/XbxhhErVYLvH2wWq3q4OCg0wspKNM0lc1mlclkxtpm2u5Jdf15GYahnZ0dGYYhz/N0cnLS2XpXqVSm7mEGAAAAALfJV77yFf3Zn/1ZoLFbW1s6PT2dcUW9ljoIk6R4PK61tTU9f/586rm+//3v6w/+4A9CqAqL1g7C1tbWtLm5OXTs/v6+9vf351QZ5s3zPNm2rePjY7muK8/zOn2NTNPs9G16+PChUqnU2IcEjLpe+5rt6+zs7CidThOAAQAAAFhJh4eHOjw8HDqm2Wzq8vKSIKwf13X1a7/2a/re976n3//9359qrocPH4YSqGHx2kHYIv7RAAAAAACAyS3yNf3aXK82AdM09c477+gLX/jCVPO8fPly7C1UAAAAAAAAuDteXXQBw3z/+9+XJP3Kr/yKotGoXn/9daVSqbHn8TxPT58+Dbs8AAAAAAAA3CJLHYR97Wtf0/vvv9/53Pd9FYvFiebyfX+ihuAAAAAAAAC4G5Z6a+SjR4/k+77abcwIsgAAAAAAADCppQ7CstmspKsArB2ITXoDAAAAAADAalvqrZH37t2TZVl6//33VSgUZFmWNjY2xp7HdV197Wtf0z/8wz+EXyQAAAAAAABuhaUOwiTp8ePHisVieuuttyae48GDB3rjjTcmCtEAAAAAAABwNyz11khJSiQSoW1t3NnZCWUeAAAAAAAA3D5LH4Q9ePBAhUIhlLnCmgcAAAAAAAC3z9IHYZJ0//79UOZ58OBBKPMAAAAAAADg9lloELZMzeuXqRYAAAAAAACEb6FBWDwe18XFxSJLkCS9fPlS8Xh80WUAAAAAAABghhYahIXVBD8My1QLAAAAAAAAwrfQICwSiSzy8j2WqRYAAAAAAACEjxVhAAAAAAAAWAkLPzXyxYsXiy5BJycniy4BAAAAAAAAM/bqogvY29vT22+/LcMwtLGxMddrn5+fy3Vd5XK5uV4XAAAAAAAA87fwIKxeryudTi+0Bt/36REGAAAAAABwxy08CGtbVL8wAjAAAAAAAIDVsPAgbNEN8xd9fQAAAAAAAMzHQoOwVqu1yMsDAAAAAABghSw0CLt3794iLw8AAAAAAIAVsrboAgAAAAAAAIB5IAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKWGizfGBazWZT29vbQ8fs7+9rf39/ThUBAAAAALC6Dg8PdXh4OHRMs9mcUzU3EYThVru8vNTZ2dnQMRcXF3OqBgAAAACA1XZxcTHydfoiEYThVltbW9Pm5ubQMevr63OqBgAAAACA1ba+vq6tra2hY5rNpi4vL+dUUa+I7/v+Qq4MTGF7e1tnZ2fa2trS6enpossBAAAAAAABLfI1Pc3yAQAAAAAAsBIIwgAAAAAAALASCMIAAAAAAACwEgjCAAAAAAAAsBIIwgAAAAAAALASCMIAAAAAAACwEu5kEPby5Uu9+eabiy4DAAAAAAAAS+ROBmGu66pcLutHP/qR3nvvPV1cXCy6JAAAAAAAACzYnQzCbNuW7/syTVPJZFLRaFRf/vKXF10WAAAAAAAAFujOBWHPnj1TPp+XJPm+37kVCoWhYdibb76p119/XQ8fPtSXv/xlVpEBAAAAAADcMRHf9/1FFxGmnZ0dmaapx48fy7Isua6rd999V9/4xjcUiUTkuq5+9Vd/tecxr7/+ulzXVfe3IhaLqV6va319fd5PAQFsb2/r7OxMW1tbOj09XXQ5AAAAAAAgoEW+pr9zK8Ik6enTp3rjjTd0//597e7uqlAo6Pz8XB//+Mc7q8Xa3nzzTTUaDUlSPp/X5eWlzs/P9clPflJ7e3uLKB8AAAAAAAAzcOeCsEgk0vfrhmGoXq93Qq+2UqmkSCSiVCqlg4ODzthSqaRWq6UPPvhg1iUDAAAAAABgDu5cEBaNRvXNb36z732GYSgajXY+Pzo66nxcKBRujM/n87JtO/QaXddVMpmcep5YLKZIJKJqtTr2Y4vFYucggUgkolgspnQ6PdXzncWcAAAAAAAAYblzQVgul9Nbb72lL33pS30b3rdarc7H7dVgiURCH//4x2+M3dnZubGCbBjP8xSJREbeYrGYTNOc6Pm15fN5ua479uNs21Y0Gu1sEa1UKmo0GioUCnIcR8lkUslkUp7nLXROAAAAAACAsL266ALClkgktLe3p3feeUelUkmpVEoPHz6UJB0fH6vRaOhTn/qULMuS4ziKRCLKZrN957p3795YYVO5XA489nqvsnHYtq1isTjR49or0TKZjEqlUuc+0zSVSqUUj8dl27bi8bjq9boMw5j7nAAAAAAAALNw506NbEun0/re9753o2fYycmJvva1r+l73/uepKueYo1Go++KsPfff1/lcll/8Rd/Eeia0Wg00KqnRCKhWq0WaM7rPM/T/fv3e65TqVSUSqUCP840zYEr3VzXVSwWC1TnLOYMilMjAQAAAAC4nTg1cgYqlYreeecd7e7uyvd93bt3T0+fPtWDBw9UqVT0xhtvyDAMvfPOOwNXhJXL5U6AM0q5XJbnecrlcqrVakNvlUpl4ue1t7enjY2NsVdVpdPpTng2bDVaexWXdLXaa9gqt1nMCQAAAAAAMCt3dkXYOKrVqgqFgr797W/rN37jN3RxcaGvfe1r+sY3vqFWq6X19fWRc7QDs3F6io2rXC4rm82qXq9rd3e3E0KNWhHWvSJLuuqTNixIq1arSqfTkq4OGOjuqzbLOcfBijAAAAAAAG6nRb6mv3M9wiaRSqXkuq4ePHjQs5Xy61//eqAQrFqtynXdnv5YYXNdV9lsVrlcTpZljfXY7hMxE4nEyNVk3aGa53mqVqs3grZZzAkAAAAAADBLd3Zr5LhyuZyePn2q3d1dvfHGG3r69KneeuutQI89ODiQYRh69OjRzOpLp9OyLKsngAqqeyti0BCt+1TL4+PjucwJAAAAAAAwS3cuCHvvvfcCjfv+97+vi4uLnq+lUim9++67evr0qd54441A8ziOI8dx5HmeotGoYrGYstmsqtXq2LUPks/n5TjORL3FHMfp+bx9guYo3eHW9ecyizkBAAAAAABm7c4FYalUSq+88oo+9alP6c///M/1D//wD33H7e7u6gtf+II++OCDqa53vUm867oql8tKp9OKRCJKp9M3gqNxOI6jYrGoUqnUs6IqKNu2ez4POsf1cd3PYRZzAgAAAAAAzNqdC8Li8bh835dt28rn84rH43rttdduBGP37t3T0dGR0um0fvSjH010Ldd1b4RC11WrVcXj8YEnU46yu7urVCqlTCYz0eOfP3/e83nQ0yZfe+21ns9PTk5mOicAAAAAAMCs3blm+e3TCc/Pz+V5nlzXVavVUq1W6wmtksmkHjx4oFarpWw2q7//+78f+1qmaapUKsnzPDUaDdm2Ldd1+44tl8s6OTlRvV4PPH/7lMWjo6Oxa2u7Xs+kq7e6T8OcxZwAAAAAAACzdueCsEwmo3K5rI9//OOdrz179kxPnz7tCZTeffdd1Wo1+b6vFy9eTHW9bp7nqVwu6+DgQJ7n9dznOI6SyaRqtdrIeavVqqrVqmq1WuAVV/0MCubG1f1cZjEnAAAAAADArN25rZG+7/eEYNLV9sJSqaRWq6W33nqrc/riG2+8Icuy9PWvfz206xuGoVwup1arpUqlciPEsm1bxWJx6Bye5ymdTiuTySiRSExVz6Rh0/W6z8/PZzonAAAAAADArN25FWEvX74ceN+9e/dUKBT04sUL5fN5FYvFG6FZmFKplBKJhHZ3d3sawx8cHCiXyw183O7ubmfb5bKYxeqtMOZsNpva3t6eep79/X3t7+9PPQ8AAAAAAHfV4eGhDg8Pp56n2WyGUM1k7lwQdv/+fX3zm9/Uf/kv/2XomKdPn+o//sf/qKOjI/3qr/7qzOoxDEP1el3xeLwThnmeJ9u2+672KhaLchxnrF5io64fRuDUvZprFnNO6vLyUmdnZ1PPc3FxMfUcAAAAAADcZRcXF6G8Bl+kOxeE5XI5/dqv/ZpM09Tv//7vDx379OlTPXz4UPV6Xevr6zOt6+joSPF4vPN5rVa7EYQ5jqN8Pq9CoSDLskK57sbGRiih1cbGxkznnNTa2po2NzennmfWP38AAAAAAG679fV1bW1tTT1Ps9nU5eVlCBWN784FYaZp6utf/7pSqZSy2ay+9a1vDRxrGIYePHigt99+e+i4MFiWpUQi0Tm5sl/D+XQ6Lcuyhm6bHNekq66uB13XV4SFPeekNjc3dXp6OvU8AAAAAABguLDaCm1vby9sZdmdC8Kkq1Vhz58/1zvvvKOnT5/qyZMn2tvb67vqZ2NjQ8fHxzMPwiQpmUx2grDrisWiXNdVIpFQOp0eOVd3qHRwcKDj4+PO548fP1YqlZIk7ezs9PQn8zwvUAB1vZF9LBbrfDyLOQEAAAAAAGbtTgZhklSpVJTNZnV0dKRcLqdcLqdUKqVkMqmdnR1J0vHxscrlsiKRyFxqMk2z8/H1bYEffvihJA0MyoZxHKcnmDJNsxOEdW/HlK5WogXZdtloNHo+797GOYs5AQAAAAAAZu3OBmGSVCqVlEwmtbe3p5cvX6parapard4YF1Y/rlG6g7AwtgUG0Q792oKGVt0rzgzD6Kl9FnMCAAAAAADM2tqiC5i1VCqlVqulr3/967p375583++5GYaho6OjudRycnLS+TiZTPbcVygUbtQ27NYdIlUqlZ77CoVC5z7LsnpCt+fPn49d6/XgaxZzAgAAAAAAzNqdD8Lacrmczs/PVa/XValUVCgUVKlU9OLFC/3mb/7mXGro3ho4z22Bjx496nzcvYVymO5x+Xx+LnMCAAAAAADM0q0Nwt58882JHvfgwQO98cYbeuutt/TGG2/o3r17IVc2WHtbZpinQgaRzWY7HwfpQdY9xjTNvqHdLOYEAAAAAACYpVsbhD19+lQ//vGPF11GYNVqVa7ryjAMPXnyZK7XtiyrJ3jq1yetW6VS6Xw8aOXWLOYEAAAAAACYpVsbhLVaLX384x/Xm2++qffee2/u17dtW9FoVJFIRMlkcuj2QNd1tbe3J0l69uzZ3BrldyuVSp2PDw4OBo7zPE/lclnS1fbNTCYz1zkBAAAAAABm5dYGYdLPApZkMqlXXnlFn/rUp/Tnf/7n+uCDD2Z+7Uql0jkF0bZtxePxnu2Cbe37NjY21Gg05nZC5XWmaXZWZTmOo2Kx2Hfc7u6upKtTHbtXcc1rTgAAAAAAgFm51UGYpJ7TEm3bVj6fVywW02uvvaY333xT3//+90fO8e1vf3vs66bT6RtfK5fLikajSqfTymazisfjSiaTymQyqtfrPSc9LkIqlVKtVpNhGMrn80qn03IcR57ndQI7x3FkWZZevHgRaOXaLOYEAAAAAACYhYjv+/6ii5hEsVjU22+/rUgkItM0e05kbItEIp2PLcvS48ePlUgkbpwS+fjxYx0fH49dg+u6KhQKsm1b5+fn8jxPhmFoY2Oj53rLGP4Ui0UdHx/Ldd1O3Ts7O8pms0qlUksz5yDb29s6OzvT1taWTk9PQ50bAAAAAADMziJf09/aIEy62o6XTqfleZ6Ojo7k+77+23/7b3r27Fln22JbdyhmGIYSiYSSyaSkqxMQP/roo3mWjikRhAEAAAAAcDst8jX9q3O9Wsgsy1Kj0ehsyctms50eVC9evFC1WlWtVpNt2+rO+1qtlqrV6siTDgEAAAAAAHB33OoVYd0cx9GjR4+0tramSqWi3/iN3+i5/9mzZ6pUKrJtW67r9twXiURYEXbLsCIMAAAAAIDbaZGv6W99s/w2y7L0wx/+UL/9278ty7L05S9/uef+3d1dvfPOO/rhD3+oVqulUqmkRCKxoGoBAAAAAAAwb3cmCGsrlUr6H//jf+idd97Rr//6r+sf//Efb4y5d++e9vb29O677+rdd99dQJUAAAAAAACYtzsXhElSIpGQ67r6jd/4DVmWpW9+85tDx+7u7s6xOgAAAAAAACzCnQzCpKuTISuVio6Pj/XWW2/pP/yH/6Af/ehHfcem0+k5VwcAAAAAAIB5u7NBWFsqldL5+bnu3bsn0zT7rg7b29tbQGUAAAAAAACYpzsfhElXq8NqtZoODg5Grg4DAAAAAADA3bQSQZgkffDBB9rZ2VEul9PJyYlM09Rf/uVfLrosAAAAAAAAzMmriy4gDB988IFc15XneXJdV41GQ67rynVdnZ+fy/O8nvGRSES+7yuTyahSqahSqeiXf/mXF1M8AAAAAAAA5uLWBmEPHz7shF/D+L4/9L53331Xn/zkJ/X8+fOQKwQAAAAAAMAyubVBWL1e76zsGsYwDJmm2bnFYjFtbGx0Pr93796cKgYAAAAAAMAi3dogrFs0GtWjR496Ai9CLgAAAAAAAHS71c3y33jjDVmWpVarpXK5rJOTE7VaLUWjUUIwAAAAAAAA9Li1K8ISiYSePn0qSXr58qVqtZqePn2qXC6nly9fyjRNJRIJPXr0SL/92789dK733ntPn/zkJ+dRNkLWbDa1vb09dMz+/r729/fnVBEAAAAAAKvr8PBQh4eHQ8c0m805VXPTrQ3Ckslk5+N79+4plUoplUpJkhzH0fHxsZ49e6ZSqaRIJCLLsvSf/tN/0u7urn7zN3+zZ65SqUQQdktdXl7q7Oxs6JiLi4s5VQMAAAAAwGq7uLgY+Tp9kW5tEPbWW28NvM+yLFmWJal3tdhXv/pV5XI5GYahRCKhhw8fSpKq1epcakb41tbWtLm5OXTM+vr6nKoBAAAAAGC1ra+va2tra+iYZrOpy8vLOVXUK+KPOnbxjmmvFvve974n13UViUQkSR999NGCK8M4tre3dXZ2pq2tLZ2eni66HAAAAAAAENAiX9Pf6mb5k7AsS4VCQT/84Q91cnLClkgAAAAAAIAVsXJBWDfLslSr1fTgwYNFlwIAAAAAAIAZW+kgrK1QKCy6BAAAAAAAAMwYQZik3d3dRZcAAAAAAACAGbsVQdif//mf67333lt0GQAAAAAAALjFbkUQ9r/+1/9SMpnUX/7lX041z9HRkV555RX9+q//uv7xH/8xpOoAAAAAAABwG9yKIEySfN9XJpPRl7/85YnnyOfz8n1fP/zhD2VZlj744IPwCgQAAAAAAMBSe3XRBYzr3XffVaPR0PHx8diPvX//vl6+fKlEIiHpKhibZB4AAAAAAADcPrcuCDs5OVE6ndbDhw/13nvv6Zd/+ZcDP7Zer/d8/vrrr4ddHgAAAAAAAJbUrdka2a1SqSidTsuyLP3oRz+aaI4XL17o/Pw85MoAAAAAAACwrG5lECZJuVxOf/EXfyHLsvQ//+f/HOuxL1++VDKZ1M7OzoyqAwAAAAAAwLK5tUGYJCUSCT1//lx7e3uBT5R87733ZJqmXrx4oXQ6PeMKAQAAAAAAsCxudRAmSaZp6uTkRMfHxyNPlPzGN76hZDKpVqslwzD0hS98YU5VAgAAAAAAYNFufRAmSYZh6N1339X5+bkeP37cd8yTJ0/09ttvy/d9RSIRFQqFOVcJAAAAAACARboTQVjbO++8o93dXT18+FA//vGPO19/9uxZJ/iKRCKyLIvVYAAAAAAAACvm1gVhoxrjZzIZlUolffKTn+ycKNkOwXzf7/kcAAAAAAAAq+NWBGH379+XdBVkZTKZTsA1iGVZOj4+1htvvKHvf//7sm1bkUikc98nP/nJmdcMAAAAAACA5XIrgrBCoaBWq6VKpaLd3V0lEgl9+9vfHvqYdhP9d955p/O1SCQysIcYAAAAAAAA7rZXF11AUPfu3dMbb7yhN954Y6zHvfvuu8rn8/rGN77R6Q8GAAAAAACA1XMrVoRNq1Ao6OnTp/J9Xy9evFh0OQAAAAAAAFiAlQjCJCmVSunk5ETHx8eLLgUAAAAAAAALsDJBmHTVKP/dd99ddBkAAAAAAABYgJUKwgAAAAAAALC6CMIAAAAAAACwEgjCAAAAAAAAsBIIwgAAAAAAALASXl10AcA0ms2mtre3h47Z39/X/v7+nCoCAAAAAGB1HR4e6vDwcOiYZrM5p2puIgjDrXZ5eamzs7OhYy4uLuZUDQAAAAAAq+3i4mLk6/RFIgjDrba2tqbNzc2hY9bX1+dUDQAAAAAAq219fV1bW1tDxzSbTV1eXs6pol4R3/f9hVwZmML29rbOzs60tbWl09PTRZcDAAAAAAACWuRreprlAwAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlvLroAoBpNJtNbW9vDx2zv7+v/f39OVUEAAAAAMDqOjw81OHh4dAxzWZzTtXcRBCGW+3y8lJnZ2dDx1xcXMypGgAAAAAAVtvFxcXI1+mLRBCGW21tbU2bm5tDx6yvr8+pGgAAAAAAVtv6+rq2traGjmk2m7q8vJxTRb0ivu/7C7kyMIXt7W2dnZ1pa2tLp6eniy4HAAAAAAAEtMjX9DTLBwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCFsA13WVTCYDj81ms4rFYopEIopGo4rH48pms3Jdd6Lre56nfD6vZDLZmTcWiymdTqtcLk80pyQVi0Ulk0lFo9GeOW3bnnhOAAAAAACAsBCEhcjzPEUikZG3WCwm0zRHzlcsFhWLxVQulzuhl+d5chxH5XJZsVhMxWJxrBqLxaKi0ajK5bKSyaRKpZLq9bry+XxP6DZOeGXbtqLRqPL5vCSpUqmo0WioUCjIcRwlk0klk0l5njdWrQAAAAAAAGGK+L7vL7qIu6JYLHbCoFEajcbQMCyZTMq2bRmGoUQiIdM05bquHMe5sRKsUqkolUqNvGY6nVa1WpVlWarX633HZLPZzqqwer0uy7KGzmnbdmd1WyaTUalUujEmHo/LcRyZpql6vS7DMEbWOsr29rbOzs60tbWl09PTqecDAAAAAADzscjX9ARhIYpGo4FWPSUSCdVqtYH35/N5FYtFFQoF5XK5G/f3C9xG/Ri7H9NqtYaGUbFYTK7ryjAMtVqtgeM8z9P9+/fleZ5M01Sj0eg7znVdxWIxSaOfe1AEYQAAAAAA3E6LfE3/6lyvdoeVy2V5nqdcLjey/9fOzs7A+1zXVbFYVK1WUyKR6Dsml8up0Wj09PNyHGfo6q12CGZZ1sgVWalUSsViUZ7nqVqtDlxtlk6nO8HfsJVwpmkqlUqpWq3Ktm2Vy2VlMpmhNQAAAAAAAISNICwkhUJBpmmqUChMNU8+n1ehUBgYgnVfrzsIs217YBDW3e8rSG+yhw8fdj5+/vx53yDMdd2eeR89ejR0zsePH6tarUq6eo4EYQAAAAAAYN5olh+CarUq13UD9wcbpr2qbBTDMHpCrWGrvLp7ijmOM1Y9r732Wt+vdwd+iUQi0CqztvZKMwAAAAAAgHkiCAvBwcGBDMMYuSoqiHH6Z52fn3c+HrbdcmNjo/Ox67o3mu1f9/z5887Hg1aQda9GG9VQv99cx8fHgR4DAAAAAAAQFoKwKTmOI8dx5HmeotGoYrGYstnszFc8eZ7X6c+VSCSGhlHXw6xsNjt07nbthmH03RZ5fVVZ91bKYbprZEUYAAAAAACYN4KwKV3fDum6rsrlstLptCKRiNLp9NjbEYN4+vSppKuQq1KpDB1rWVZPCGXbttLpdN+x5XK5s2JsUL+z7t5g7RqCuD5uFt8XAAAAAACAQQjCpnC9YXw/1WpV8Xh85CqscXiep2w2K8uyVKvVRvbnkqSjo6MbdV0Pw2zb7tRZKpUGNrTv3jopDe9P1u16v7GTk5NAjwMAAAAAAAgDQdgUTNNUqVRSoVBQJpMZujKqXC4rHo9PfU3XdRWPx2UYhp49exZ4NZZlWTdWjlWrVcViMTmOo2KxqGQyKdM0VavVhp7qeL3H2KQrwhqNRqDHAQAAAAAAhIEgbEqZTEa5XE6lUkmNRkOtVkuFQqHvKinHcZRMJie+Vju4cl2305OsWCwGfnwqlVKpVOr5WjtYy+fzyuVyajQaSiQSQ+cZ1Ww/qHaPMwAAAAAAgHmI+L7vL7qIu6parWpvb+9G4FMoFJTL5QLN4XmeyuWySqXSwAAqlUqN7BPWrVwu992qaVmWnj17NnKrYyQS6fk86K+Qbds9QeC4dXfb3t7W2dmZ1tbWtLm5OdEc3fb397W/vz/1PAAAAAAA3FWHh4c6PDycep5ms6nLy0ttbW3p9PQ0hMqCe3WuV1sxqVRKiURCu7u7PY3hDw4OAgdhtm13VmkN6klWrVZVLBYDz5nJZFSv11Uul3u+7jiO7t+/r2fPng09hTIsYawIu7y81NnZ2dTzXFxcTD0HAAAAAAB32cXFRSivwReJIGzGDMNQvV5XPB7vhGGe58m27ZFbEKWrMC2VSvV8rVwuK5/P9wRJ+XxemUwmUOP6bDarcrmsTCYj27Z7Vpp5nqd4PK5arTawPsMwQgmxgjbZHyasFWHr6+tTzwEAAAAAwF22vr6ura2tqedprwhbBIKwOTk6Oupplj8saBolk8kokUgoHo/3BFLlcnnkqrBkMinbtpXL5VQoFCT9LBi7Pm5QjRsbG6EEYRsbG1PPsbm5OfdllAAAAAAArKKw2gq12x0tAs3y58SyrJ5QadqG86Zp6tmzZz1fe/78+dDHxOPxzkq0dggmSaVSqW+vrnQ63TfwmnQl1/W5wlgRBgAAAAAAEBRB2BxNc2JkP5Zl9WybHBaupdPpztbM6ydHSldbMOv1ek845Xme8vn8jbE7Ozs9nwddHXZ+ft7zeSwWC/Q4AAAAAACAMBCEzZFpmp2Pw9gWKEmPHz/ufDwokHJdV9VqVdJVeNZdRzfLslSv13u+Vi6Xb8zbvcWzPX8QjUaj5/NJt4YCAAAAAABMgiBsjroDqLC2BXaf7jhozu4VYNdXc11nmuaNFWMnJyc9n1+fI2gQ1h2oGYYxMJADAAAAAACYBYKwOeoOlMLeJikNDrm6A6gg2xEzmUzP59eDLsuyekK3Ub3J2rqf/6hADgAAAAAAIGwEYXPUvTUwrG2B3SHVoHCtuzfX9e2Jg3SvNOvn0aNHnY/bvcdG6R7Xr/cYAAAAAADALBGEzVG7T1culwttzna4ZBhGT+P8bt1bECc5rbLfFsZsNtv52LbtkXN0jzFNk/5gAAAAAABg7gjC5qRarcp1XRmGoSdPnoQ278HBgSTp6Oho4JjuhvonJyeBTnnsDsz6hVaWZfV8vR3yDVKpVDofsxoMAAAAAAAsAkHYhGzbVjQaVSQSUTKZHLo90HVd7e3tSZKePXs2tFF+sVhUPB5XPp8fGVi1x+RyuYGrwaTe0MrzvE54Noht251rFwqFgeO6m+oPm9PzPJXLZUlXodr1HmQAAAAAAADzQBA2oUql0gmLbNtWPB7v2S7Y1r5vY2NDjUZjaO8tz/OUz+flOI6KxaKi0ejA1VPpdFrFYlGFQmFoWNVdbzuAKxaLnWDqOtd1lU6nJV2FVsO2cZqm2Vnp1a65n93dXUlX2ze7V4YBAAAAAADME0HYhNphUbdyuaxoNKp0Oq1sNqt4PK5kMqlMJqN6vd6311Y3wzBujGkHYul0Wvl8XslkUtFoVNJV4/ug/cYMw9CLFy86q7Gy2aySyaTK5bIcx5Ft28rn84rFYvI8T4VCQbVabeS8qVRKtVpNhmEon88rnU7LcRx5ntcJAR3HkWVZevHixdDVcAAAAAAAALMU8X3fX3QRt5XruioUCrJtW+fn5/I8T4ZhaGNjQ5Zl6fHjx0okEmOFP+2ti7Zty3XdG3Mmk0k9evRoqkDJcRyVSqXONaSr1V2WZck0TT158mSi+YvFoo6Pj3vq3tnZUTabHbp1cxLb29s6OzvT1taWTk9PQ50bAAAAAADMziJf0xOE4VYiCAMAAAAA4HZa5Gt6tkYCAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJby66AKAaTSbTW1vbw8ds7+/r/39/TlVBAAAAADA6jo8PNTh4eHQMc1mc07V3EQQhlvt8vJSZ2dnQ8dcXFzMqRoAAAAAAFbbxcXFyNfpi0QQhlttbW1Nm5ubQ8esr6/PqRoAAAAAAFbb+vq6tra2ho5pNpu6vLycU0W9Ir7v+wu5MjCF7e1tnZ2daWtrS6enp4suBwAAAAAABLTI1/Q0ywcAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEp4ddEFANNoNpva3t4eOmZ/f1/7+/tzqggAAAAAgNV1eHiow8PDoWOazeacqrmJIAy32uXlpc7OzoaOubi4mFM1AAAAAACstouLi5Gv0xeJIAy32tramjY3N4eOWV9fn1M1AAAAAACstvX1dW1tbQ0d02w2dXl5OaeKekV83/cXcmVgCtvb2zo7O9PW1pZOT08XXQ4AAAAAAAhoka/paZYPAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlUAQBgAAAAAAgJXw6qILAKbRbDa1vb09dMz+/r729/fnVBEAAAAAAKvr8PBQh4eHQ8c0m805VXMTQRhutcvLS52dnQ0dc3FxMadqAAAAAABYbRcXFyNfpy8SQRhutbW1NW1ubg4ds76+PqdqAAAAAABYbevr69ra2ho6ptls6vLyck4V9Yr4vu8v5MrAFLa3t3V2dqatrS2dnp4uuhwAAAAAABDQIl/T0ywfAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSBsAVzXVTKZDDw2m80qFospEokoGo0qHo8rm83Kdd2Z1eg4jqrVqorFomzbDvSYYrGoZDKpaDSqSCSiWCymdDod+PEAAAAAAACzRBAWIs/zFIlERt5isZhM0xw5X7FYVCwWU7lc7oRenufJcRyVy2XFYjEVi8XQai8Wi4rH44pEItrd3dXz589lWZZ2dnaGPta2bUWjUeXzeUlSpVJRo9FQoVCQ4zhKJpNKJpPyPC+UWgEAAAAAACbx6qILuEvK5XLgse3QaJBkMinbtmUYhhKJhEzTlOu6chynZyVYPp+XaZpKpVIT1ex5nvL5fKd2y7JUq9WUSCQCPd627c7qtkwmo1Kp1LmvXVc8Hpdt24rH46rX6zIMY6JaAQAAAAAAphHxfd9fdBF3RTQaDbTqKZFIqFarDbw/n8+rWCyqUCgol8vduL9YLN4I0ib5MZbLZeXz+U7NpVJJmUwm8OM9z9P9+/fleZ5M01Sj0eg7znVdxWIxSaOfe1Db29s6OzvT1taWTk9Pp54PAAAAAADMxyJf07MiLCTlclme5ymXy43s/zVsq6HruioWi0NXZeVyOTUajZ4VaI7jyLKswPW2wzbpauVWrVYLtF2zWzqd7oRow1a4tVeGVatV2batcrk8VuAGAAAAAAAQBlaEhaS94mnQqqig0um0Hj582HclWDfP8xSNRjufD1o9Nuga1WpVkmQYhl68eDH2dsXuVV6S1Gq1hs5RrVaVTqc712y1WmNd7zpWhAEAAAAAcDst8jU9zfJDUK1W5bruyL5fQbRXlY1iGEbPCq6gQVYymeyEYJIm7tlVKBQ6HycSiZFzdPcw8zyvpwYAAAAAAIB5IAgLwcHBgQzD0KNHj6aea5z+Wefn552PR53sKF1t37Rtu/N5qVQaeztk91xtQbdkdl/r+Ph4ousCAAAAAABMiiBsSo7jyHGczlbFWCymbDY78xVPnud1+nMlEomRYZTruspms53PLcuauE+X4zg9nz98+DDQ47prZEUYAAAAAACYN4KwKV3fDum6rsrlstLptCKRiNLp9I3gKAxPnz6VdLXKqlKpjBzf7s/V9uTJk4mv3b2qrF1DENfHzeL7AgAAAAAAMAhB2BRc170RCl1XrVYVj8d7VmNNy/M8ZbNZWZalWq02sj+X67o9oZNhGD09u8b1/Pnzns+D9hh77bXXej4/OTmZuAYAAAAAAIBxEYRNwTRNlUolFQoFZTKZoSujyuWy4vH41Nd0XVfxeFyGYejZs2eBVmOVSqWezxOJhKSfneQYi8UUiUQUjUYVj8dVLBY72y4H1dBt0hVh056wCQAAAAAAMA6CsCllMhnlcjmVSiU1Gg21Wi0VCoW+q6Qcx1EymZz4WtVqVbFYTK7rdnqSFYvFkY/rbmwvSRsbG4rH40qn050TL6WrlWaO4yifzysajQ7s43U9CJvUsLANAAAAAAAgbARhITMMQ7lcTq1WS5VK5UYgZtt2oPCqzfM8FYtFxWKxG32+pKseZf2+3tYOzbo9ffpU2WxWrVZLvu/L9301Go0bzfPbQVm/miZx/XvRfeolAAAAAADArEV83/cXXcRd5nmednd3b/ToarVagR5frVZVq9UkDe9JVigUlMvlbnzdtu2eVWiGYejFixcD+3qVy+Wefmb9xkcikZ7HBP0Vul5LIpHoPLdxbW9v6+zsTGtra9rc3Jxojm77+/va39+feh4AAAAAAO6qw8NDHR4eTj1Ps9nU5eWltra2dHp6GkJlwb0616utIMMwVK/XFY/HO2GY53mybbvTq2uYVCp1o7F9uVxWPp/vWZmVz+eVyWRuBFzXtzH2G3P9/nq93tlO6XmeDg4OVCgUep5TGNsagzbZH+by8lJnZ2dTz3NxcTH1HAAAAAAA3GUXFxehvAZfJIKwOTk6Ouppll+r1QIFYf1kMhklEgnF4/GeQKpcLt9YFXa9If3Dhw9Hzp/P53v6ihWLxZ4gbGNjI5QgbGNjY+o5wloRtr6+PvUcAAAAAADcZevr69ra2pp6nvaKsEUgCJsTy7KUSCQ6WxunbThvmqaePXvWE649f/78xrjrgVWQVVimacqyrJ7tnI7jyLKswHP0M0kto2xubs59GSUAAAAAAKsorLZC7XZHi0Cz/Dma5sTIfizL6tk22S9ci8ViE829s7PT83n33NfvC7o67Hpz/ElrAwAAAAAAmARB2ByZptn5OIxtgZL0+PHjzsf9Aqnrq66ChlbXQ6ruEKt7FZoUfHXb9W2ak24NBQAAAAAAmARB2Bx1B2FhbAuU1NmuOGjOYSu7hrk+V3dwN+mc3SGcYRg93w8AAAAAAIBZIwibo5OTk87HYW+TlG4GVFJvUCbdXJUVVHdoZVlWT1DWrzdZP93Pv1+tAAAAAAAAs0QQNkfdIVRY2wK7V2MNCte6r9Vu1j/K9S2U1wO1R48edT7ubqo/TPe4fD4f6DEAAAAAAABhIQibo2q1KknK5XKhzdkOlwzD6Gmc3607dHJdN1CfsFGhXTab7XwcJFzrHmOaJv3BAAAAAADA3BGEzUm1WpXrujIMQ0+ePAlt3oODA0nS0dHRwDGJRKJna2P7McN0B1eFQuHG/ZZl9YRZ7ZBvkEql0vmY1WAAAAAAAGARCMImZNu2otGoIpGIksnk0O2Brutqb29PkvTs2bOhjfKLxaLi8bjy+fzIlVvtMblcbuBqsLbuIKpYLA5tcG/bduf+TCZzY1tkW6lU6nw8LFzzPE/lclnSVSiXyWSG1goAAAAAADALBGETqlQqnaDKtm3F4/Ge7YJt7fs2NjbUaDQGhkrSVWCUz+flOI6KxaKi0ejA1VPpdFrFYlGFQqHviq3rLMvqCa6SyWTfoM3zvM7zuP6Y60zT7ARs7Zr72d3dlXS1fbM7kAMAAAAAAJgngrAJpdPpG18rl8uKRqNKp9PKZrOKx+NKJpPKZDKq1+s92xP7MQzjxph2IJZOp5XP55VMJhWNRiVd9fEap99YJpNRrVaTYRhyXVf3799XsViU4zidIOv+/ftyXbdT8yipVKozZz6fVzqdluM48jyvEwI6jiPLsvTixYuhq+EAAAAAAABmKeL7vr/oIm4r13VVKBRk27bOz8/leZ4Mw9DGxoYsy9Ljx4+VSCTGCn88z9PBwUFne+L1OZPJpB49ejR1oFQul1WpVHRyctK5RruJfTabHRna9VMsFnV8fNxT987OjrLZ7Mitm+Pa3t7W2dmZtra2dHp6GurcAAAAAABgdhb5mp4gDLcSQRgAAAAAALfTIl/TszUSAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACvh1UUXAEyj2Wxqe3t76Jj9/X3t7+/PqSIAAAAAAFbX4eGhDg8Ph45pNptzquYmgjDcapeXlzo7Oxs65uLiYk7VAAAAAACw2i4uLka+Tl8kgjDcamtra9rc3Bw6Zn19fU7VAAAAAACw2tbX17W1tTV0TLPZ1OXl5Zwq6hXxfd9fyJWBKWxvb+vs7ExbW1s6PT1ddDkAAAAAACCgRb6mp1k+AAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFbCq4suAJhGs9nU9vb20DH7+/va39+fU0UAAAAAAKyuw8NDHR4eDh3TbDbnVM1NBGG41S4vL3V2djZ0zMXFxZyqAQAAAABgtV1cXIx8nb5IBGG41dbW1rS5uTl0zPr6+pyqAQAAAABgta2vr2tra2vomGazqcvLyzlV1Cvi+76/kCsDU9je3tbZ2Zm2trZ0enq66HIAAAAAAEBAi3xNT7N8AAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKyEVxddADCNZrOp7e3toWP29/e1v78/p4oAAAAAAFhdh4eHOjw8HDqm2WzOqZqbCMJwq11eXurs7GzomIuLizlVAwAAAADAaru4uBj5On2RCMJwq62trWlzc3PomPX19TlVAwAAAADAaltfX9fW1tbQMc1mU5eXl3OqqFfE931/IVcGprC9va2zszNtbW3p9PR00eUAAAAAAICAFvmanmb5AAAAAAAAWAkEYQAAAAAAAFgJBGEAAAAAAABYCQRhAAAAAAAAWAkEYQAAAAAAAFgJBGEAAAAAAABYCQRhAAAAAAAAWAkEYQAAAAAAAFgJBGEAAAAAAABYCQRhAAAAAAAAWAkEYQAAAAAAAFgJBGEAAAAAAABYCQRhAAAAAAAAWAkEYQvguq6SyWTgsdlsVrFYTJFIRNFoVPF4XNlsVq7rhl5b+zrVanXsxxaLRSWTSUWjUUUiEcViMaXTadm2HXqdAAAAAAAA4yIIC5HneYpEIiNvsVhMpmmOnK9YLCoWi6lcLndCL8/z5DiOyuWyYrGYisViaPXn8/mJwjXbthWNRpXP5yVJlUpFjUZDhUJBjuMomUwqmUzK87zQagUAAAAAABjXq4su4C4pl8uBx7ZDo0GSyaRs25ZhGEokEjJNU67rynGcnrAqn8/LNE2lUqmJ65auwqxJQjXbtjur2zKZjEqlUue+dl3xeFy2bSsej6ter8swjKlqBQAAAAAAmAQrwkJ0cHAQaFw72Bokn8/Ltm0VCgW1Wi1VKhUVCoWelVbd0un0VHV7njfRHN2PM02zJwTrVqlUJF1t85y2VgAAAAAAgEmxIiwk5XJZnucpl8uN7P+1s7Mz8D7XdVUsFlWr1ZRIJPqOyeVyajQaPSvQHMeRZVkT1b63t6eNjQ1JGmv7Yjqd7owftsKtvTKsWq3Ktm2Vy2VlMpmJagUAAAAAAJhUxPd9f9FF3AWxWEyS1Gg0pponnU7r4cOHyuVyQ8d5nqdoNNr5vFAojHxMP+VyWdlsVvV6Xbu7u51gq1KpDN1u6bpu5zlLUqvVGrrlsVqtdlaDGYahVqs1dq3dtre3dXZ2pq2tLZ2enk41FwAAAAAAmJ9FvqZna2QIqtWqXNcd2fcriPaqslEMw+jZXjlJ3632iZS5XG7s1WTd2zMTicTI63eHap7nTXQqJQAAAAAAwDQIwkJwcHAgwzD06NGjqeeq1WqBx56fn3c+HrbdcpB0Oi3Lsm70HAuie1tm0BCtO7g7Pj4e+5oAAAAAAADTIAibkuM4chyns1UxFospm83OfMWT53mdbYyJRGLsFV35fF6O43Qa2Y/DcZyezx8+fBjocd01siIMAAAAAADMG0HYlK5vh3RdV+VyWel0WpFIROl0+kZwFIanT59KulplNW6Y5TiOisWiSqXS0NMrB7Ftu+fzoHNcHzeL78td5vvSR5fDb3T8AwAAAABgME6NnILrujdCoeuq1aqq1aoymYxKpVIo1/U8T9lsVpZlqVKpjN0fbHd3V6lUauKTG58/f97zedDrv/baaz2fn5ycTHzS5Sq69KVX/2T4mJ9+VXolMp96AAAAAAC4bQjCpmCapkqlkjzPU6PRkG3bcl2379hyuayTkxPV6/Wprum6rpLJpAzD0LNnz8YOwdonNx4dHU1VQ7dJV4RNe8ImAAAAAADAONgaOaVMJqNcLqdSqaRGo6FWq6VCodA3oHIcR8lkcuJrVatVxWIxua7b6UlWLBbHeny1Wp1oFVm3QWHfuNo9zgAAAAAAAOaBFWEhMwxDuVxOuVxO1WpVe3t7PYGPbdsqFovK5XKB5vM8T+VyWaVSqW8Alc/n9fz585F9wjzPUzqdViaTUSKRGOs59ZtrEtfDt+5TLyfVbDa1vb099Tz7+/va39+feh4AAAAAAO6qw8NDHR4eTj1Ps9kMoZrJEITNUCqVUiKR0O7ubk9j+IODg8BBmG3bajQaSiQSA3uSVavVkeHa7u5uZyvnsghjRdjl5aXOzs6mnufi4mLqOQAAAAAAuMsuLi5CeQ2+SARhM2YYhur1uuLxeCcM8zxPtm0HWpmVSqWUSqV6vlYul5XP53uCpHw+r0wm03fLY7FYlOM4U/cnazMMI5QQa5rtmW1ra2va3Nycep719fWp5wAAAAAA4C5bX1/X1tbW1PM0m01dXl6GUNH4CMLm5OjoSPF4vPN5rVabeItie3tjPB7vCaTK5fKNVWGO4yifz6tQKIR2QuPGxkYoQdjGxsbUc2xubur09HTqeQAAAAAAwHBhtRXa3t5e2MoymuXPiWVZPcHXtA3nTdPUs2fPer72/PnzG+PS6bQsywq8FTOISVdyXQ/PwlgRBgAAAAAAEBQrwuYomUz27fE1KcuylEqlVK1WJd0M14rFolzXVSKRUDqdHjlfd1B1cHCg4+PjzuePHz/ubNHc2dnp6XnmeV6gUOt6c/xYLDbyMQAAAAAAAGEhCJsj0zQ7H4exLVC6CqjaQdj1FVcffvihJE0UvjmO0xN2mabZCcK6t3hKVwFckG2XjUaj5/NpT68EAAAAAAAYB1sj56g7CAtrW2B3ADWvrYY7Ozs9nwfd5tkd1BmG0fP9QDi++/6iKwAAAAAAYHkRhM3RyclJ5+NkMhn6/NcDqkKhIN/3A9+6g6lKpdJzX6FQ6NxnWVZP6NavN1k/3c//eq0YLUjI9fkqYRgAAAAAAIMQhM1R99bAsLYFdq/GmkW4NsijR486H3dvoRyme1w+nw+9prvs5U+kL/1NsLFf/Gvp4iczLQcAAAAA7jTflz66HH7z/UVXiUnQI2yO2r28wjzBsR0uGYbR6eE1D9lsVuVyWVKwHmTdY0zTpD/YmP7Kkf7534KN/ad/lb7jSH/0W7OtCQAAAADuqktfevVPho/56VelVyKj5/L9q/mGWYtIkQBzYXoEYXNSrVbluq4Mw9CTJ09Cm/fg4ECSdHR0FNqcQViWpUQi0Qm4qtXq0CCuUql0PmY12Pj+9gfjjf+7HxCEAQAAAMAyCDNUw/TYGjkh27YVjUYViUSUTCaHbg90XVd7e3uSpGfPng1tal8sFhWPx5XP52+cAnlde0wul5vrarC2UqnU+bgdyPXjeV5n9VgikVAmk5l5bXdN619mOx4AAAAAgFVAEDahSqXSCaps21Y8Hlc2m70xrn3fxsaGGo1GzymP13mep3w+L8dxVCwWFY1GB66eSqfTKhaLKhQKPY3s58k0zc5Kr3bN/ezu7kq62r7ZvTIMwUV/YbbjAQAAAABYBQRhE0qn0ze+Vi6XFY1GlU6nlc1mFY/HlUwmlclkVK/Xe05l7McwjBtj2oFYOp1WPp9XMplUNBqVdNV8P8x+Y5NIpVKq1WoyDEP5fF7pdFqO48jzvE4I6DiOLMvSixcvhq6Gw2Cf/sR4439nzPEAAAAAAKwCgrAJJRIJNRoNZTIZmabZE/A4jqPz83M9efJErVZLhUIhcABUr9eVy+VkWdaNOV3XVTqd1osXL1SpVEYGa+NqNBryfV++74+11TKRSHSep+u62t3d7YR3GxsbqlQqqtfrhGBT+Kwl/eLPBRv7Sz8vfW7wwkMAAAAAAFZWxPc58BO3z/b2ts7OzrS1taXT09NFlzMX36lLn6+OHvf/fyR95sHwMZxaAgAAAACDfXQZsMF9gOVFYc51VyzyNT2nRgK3xGcejA7CvpMaHYJJnFoCAAAAAFhNK5Q3AnffHwYIwQAAAAAAWFUEYQAAAAAAAFgJBGEAAAAAAABj+u77i64AkyAIAwAAAAAA6BIk5Pp8NbwwjFBtfgjCAAAAAAAA/p+XP5G+9DfBxn7xr6WLnwwfM+9QDcMRhAEAAAAAAPw/f+VI//xvwcb+079K33EG3x92qIbpEYQBmIrvSx9dDr/5/qKrBAAAAIBg/vYH443/uyHjwwzVEI5XF10AgNvt0pde/ZPhY376VemVyHzqAQAAAIBptP4lvPGThGp/9FvjPQbjYUUYAAAAAADA/xP9hfDGhxmqIRysCANuibXI1cqqUWPC8t33pc/Fw5sPAAAAAG6DT39Cevf/BB//O58YfF+YoRrCwYow4JaIRKRX1obfIgGDME4tAQAAAID+PmtJv/hzwcb+0s9Ln7MG3//pISFZP8NCNYSDIAxYMZxaAgAAAACD3fuY9K3fDTb2nd+T1j82+P4wQzWEgyAMWDGcWgIAAAAAw33mwegx30mNHhdmqIZw0CMMt1qz2dT29vbQMfv7+9rf359TRcuPU0sAAAAAYHp/GCAsk67Css9Xh48JEqrdFoeHhzo8PBw6ptlszqmamwjCcKtdXl7q7Oxs6JiLi4s5VXM7cGoJAAAAACyXoKHabXBxcTHydfoiEYThVltbW9Pm5ubQMevr63Oq5nbg1BIAAAAAwKysr69ra2tr6Jhms6nLy8s5VdSLIAy32ubmpk5PTxddxq0S5lHAYfN96dIfPmYtEvx0TAAAAADAfAVpT7S9vb2wVWMEYcCK+awlvf33wRrmh3VqyXfflz4XHz3u0pde/ZPhY376VekVgjAAAAAAffDmOkYhCANWTPvUklHNGqVgp5Z89/3R83y+Kr2ydneaPwIAAABYTry5jlHWFl0AgPkL6yjglz+RvvQ3wa75xb+WLn4SbCwAAAAAALNAEAagryCnlvyVE2yLpST9079K33GmqwkAAAAAgGkQhAGY2N/+YLzxfzfmeAAAAAAAwkSPMAATa/3LbMcDAAAAwG23FrnqSzZqDOaDIAzAxKK/MNvxAAAAALAIYYZXkQjN+ZcJWyMBTOzTnxhv/O+MOR4AAAAAFiESkV5ZG36LEG7dSgRhACb2WUv6xZ8LNvaXfl76nDXbegAAAAAAGIYgDMDE7n1M+tbvBhv7zu9J6x+baTkAAAAAAAxFEAZgKp95MHrMd1LBxgEAAAAAMEsEYQBm7g9DDMG++354cwEAAABYPbymWG2cGgmsoGU9vjfI/5A+X71qTMkKMwAAAADX8ZoCo7AiDFhBy3gCysufSF/6m2Bjv/jX0sVPZloOAAAAgFuG1xQIgiAMwFL4K0f6538LNvaf/lX6jjPbegAAAAAM5vvSR5fDb74/35p4TYEg2BoJYCn87Q/GG/93P5D+6LdmUwsAAACA4S596dU/GT7mp1+VXpnjThNeUyAIgjAAS6H1L7MdDwAAAGA5+f5VsDbMWmR0+xZeUyAIgjAASyH6C7MdDwAAAGA5hbW6jNcUCIIeYQCWwqc/Md743xlzPAAAAIC7jdcUCIIVYQCmsha5endm1JhRPmtJb/99sOaWv/Tz0uesYPUBAAAAWA28pkAQrAgDMJVIRHplbfht1F5+Sbr3Melbvxvsmu/8nrT+sanKBgAAAHDH8JoCQRCEAVgan3kwesx3UqPHLeNRzgAAAABmL6zXFLi72BoJ4Fb5wwD/w1rGo5wBAAAALIcgrylwd7EiDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAACE7rvvL7oC4CZ6hOFWazab2t7eHjpmf39f+/v7c6oIAAAAAO6+ICHX56tXp8iH0Zj+u+9Ln4tPPw9m7/DwUIeHh0PHNJvNOVVzE0EYbrXLy0udnZ0NHXNxcTGnagAAAADg7nv5E+lLfxNs7Bf/Wvr0v5fWPzZ4zLxDNczWxcXFyNfpi0QQhlttbW1Nm5ubQ8esr6/PqRoAAAAAuPv+ypH++d+Cjf2nf5W+40h/9Fv97w87VMPira+va2tra+iYZrOpy8vLOVXUiyAMt9rm5qZOT08XXQYAAAAArIy//cF44//uB4ODsDBDNSyHIO2Jtre3F7ZqjCAMwNJYi0g//eroMQAAAAAWp/Uv4Y0PM1STeE2B0QjCACyNSER6hf8pAQAAAEst+gvhjQ8zVJN4TYHR1hZdAAAsAkc5AwAAAJP59CfGG/87Q8aHGaoBQRCEAbhzgp46E2Sc70sfXQ6/+f70NQMAAACzFtbftp+1pF/8uWDX/KWflz5nDb4/zFANCIKtkQDulLBPnbn0pVf/ZPg8P/0qy68BAACw/ML62/bex6Rv/e7Vm8ujvPN7w//e/qwlvf33wRrmjwrVgCBYEQbgTpnk1BkAAAAA4/nMg9FjvpMaPa4dqgUxKlQDgiAIA3CnTHLqzLywzRIAAACr5A8DhGVSeKEaEARbIwHcKWGfOhMmtlkCAAAAkwkaqgGjsCIMwJ3CqTMAAAAAgEEIwgDcKZw6AwAAAAAYhCAMwJ0S5lHOAAAAAIC7hSAMwJ3CqTMAAAAAgEEIwgDcOZw6AwAAAADohyAMwEq67afO+L700eXwm+8vukoAAADcNt99f9EVALP16qILAIDb7rvvS5+Lz/eal7706p8MH/PTr0qvROZTDwAAAJZfkJDr81XplTV2T+DuIggDgCH4YwEAAACL5PtXb4IOsxaRIiPeAH35E+lLfxPsml/8a+nT/354P921yNUbr6PqApYNQRgADBD2HwtBLGJ1GQAAAJZXWDsB/sqR/vnfgl3zn/5V+o4j/dFvDR4TibD7ALcTPcIAYIBJ/lgYJujqMvoyAAAAIGx/+4Pxxv/dmOOB24IVYQAwwCR/LAx612wRq8sAAACAtta/zHb8NNhmiXliRRgADBDmHwthry4DAAAAxhH9hdmOn0YkctVzd9htVA80ICiCMAAYIMw/FliKDgAAgEX69CfGG/87Y44HbguCMAAYIMw/FpZ5KToAAADuvs9a0i/+XLCxv/Tz0ues2dYDLAo9wgDcOWH1GPisJb3998G2NI76Y2GZl6IDAAAgfL5/deLjMGuR+W35u/cx6Vu/e3U40yjv/B79anF3EYQBuHPCOso5zD8WPv0J6d3/E/zaLEUHAAC43S596dU/GT7mp18N5+/WoD7zYPTftt9JXY0D7iq2RgLAEEH+CAjyxwJL0QEAAHAb/CEhGO44gjAAmFKQPxbaq8uCCGsp+nffDzbO96WPLoff/BHL+gEAAADgNmBrJG61ZrOp7e3toWP29/e1v78/p4qAwcJcih4k5Pp89eqo6VHzLeOyfQAAAAT33felz8UXXQVw5fDwUIeHh0PHNJvNOVVzE0EYbrXLy0udnZ0NHXNxcTGnaoDpBVld9vIn0pf+Jth8X/xr6dP/nmanAAAAt1WYb4AC83BxcTHydfoiEYThVltbW9Pm5ubQMevr63OqBpiPv3KCnWQpSf/0r9J3HOmPfmu2NQEAACB8vAGK22h9fV1bW1tDxzSbTV1eXs6pol4EYbjVNjc3dXp6uugygLn62x+MN/7vfkAQBgAAcBvxBihuoyDtiba3txe2aoxm+QBwy7T+ZbbjAQAAsBwmeQMUwHCsCAOAWyb6C7MdDwAAcJv4/tXhP8OsRaTILTz4hzdAgfARhAHALfPpT0jv/p/g43/nE7OrBQAAYNHCPAF73qHaqNMeeQMUCB9BGADcMp+1pLf/Pli/iF/6eelz1uxrAgAAuAvCDNXCOO0x7DdA1yJX9Y8aA9xlBGEAMMQy/rFw72PSt3736g+nUd75vfmdHHSXtyUAAACMI6zTHsN+AzQSCRbiAXcZQRgADLGsfyx85sHoIOw7qcHvLs5CmO+gAgAA3GZhnfa4rG+AArcZQRgAzMm8V5f9YYgh2Kj+FWFjdRkAALjNJjntsV8QJi3nG6DAbUYQBgBzsqyry8LoXxE2VpcBAIDbbN6nPYb5Bihw160tugAAwOKM27/i4iczLQcAAOBO4LRHYHkRhAHACpukfwUAAACG+/SI0xuvG3XaI4DwEIQBwAqbpH8FAADAtHxf+uhy+M0f0S90mX3Wkn7x54KNDXLaI4Dw0CMMAFbYvPtXAAAASHe/HyinPQLLixVhALDCVqF/xV1/xxkAAIwW5HCgsAU5ZIjTHoH5IwhbANd1lUwmA4/NZrOKxWKKRCKKRqOKx+PKZrNyXXei6zuO0zNnJBJRLBZTPp+X53kTzSlJxWJRyWRS0Wi0M2c6nZZt2xPPCWC2VqF/Rfsd52G3S4IwAABuraAnYIcVhoUZqnHaIzB/BGEh8jyvEywNu8ViMZmmOXK+YrGoWCymcrncCb08z5PjOCqXy4rFYioWi2PVl06nFY/He+aUrgK3YrGoaDSqcrk81vO2bVvRaFT5fF6SVKlU1Gg0VCgU5DiOksmkksnkVCEbgF5rkavtAsNuawG2EtC/AgAAjGPZVlqHfQL2vEM1APNHj7AQjRMgtUOjQZLJpGzblmEYSiQSMk1TruvKcZyeACufz8s0TaVSqaHzeZ6neDweaBVZNptVvV5XqVQaOda27c7qtkwm0/OYdl3xeFy2bSsej6ter8swjJHzAhguEgmnZ8a8+1d8933pc/Hp5gAAAIuzbL29JjkB+49+q//944Zqn/738+nt1X4DdNQYAMGwIixEBwcHgca1g61B8vm8bNtWoVBQq9VSpVJRoVDoWWnVLZ1Oj7xmOp2W67qyLKszT6PRUKVSUS6XuzG+XC6rWh3+yri9wky6Cr0GBWeVSkXS1aqzILUCmK+w+lfwDioAAJi3ME/AniRUm4dIRHplbfgtQhAGBMaKsJCUy2V5nqdcLjey/9fOzs7A+9pbFGu1mhKJRN8xuVxOjUajZwWa4ziyrP57lsrlsmzbVi6XuxGitVdtZbNZpdNpOc7P/mu+t7c3dKVZOp3ubHcctsKtfY1qtSrbtlUul5XJZAaOB7B8RvWvWMQ7qItYXeb7o/uJrUX4YxQAgHkJ8wTsSUK1QavLACwvgrCQFAoFmaZ5I2gaVz6fV6FQGBiCdV+vOwizbXtgENaeb1htpmmqUqkoFot1vuZ5nmzb7luL67o9TfAfPXo0tN7Hjx93Vpjl83mCMOCOCXNbghR8ddkra/M9aWnZtoMAALDqwjwBO8xQDcDyYmtkCKrVqlzXHdn3K4j2qrJRDMPo2V45qO9Wu6dYe3viMP2CvO4VYt26xyUSiZF9v7pXlnmeN3LbJYDbJcxtCWE3vQUAAHdXmCdghxmqAVheBGEhODg4kGEYI1dFBVGr1QKPPT8/73w8aLvl8fGxMplM4Ab111d/ffjhh33Hda9GG7QS7bru4O74+DjQYwDcDmG+g7qs/TkAAMB8BVkhHuYJ2GGGagCWF0HYlBzHkeM48jxP0WhUsVhM2Wx25iuePM/r9OdKJBIDw6jHjx+PtV3z+jzdWyXbrq8Se/jw4dhzsyIMuFvCfAc1zNVlAABgOYV1yE77BOwgRp2AHWaoBmB5EYRN6fp2SNd1VS6XlU6nFYlEbjSgD8vTp08l/ay31yCWZQVeDSapE6619Tvdsrs32KAx/VwfN4vvC4DFCPMdVPpzAABwt4XdBiGsE7DDDNUALC+CsClcbxjfT7VaVTweVzabDe26nucpm83KsizVarWxgq5RXNft+bxfo/znz5/3fB70+q+99lrP5ycnJ+MVB2BphfkO6iL6cwR5VxoAAIRjEW0QRp2A3RZWqCZdnST9068Ov61xwA4wdwRhUzBNU6VSSYVCQZlMZujKqHK5rHg8PvU1XddVPB6XYRh69uxZ4NVYQXWHU4NOdrwelk26IqzRaIxZHYBlFeY7qGH35whr6wUAAAhm1P9Tb3sbhKChWiRydcL1sFuEIAyYO4KwKWUyGeVyOZVKJTUaDbVaLRUKhb6rpBzHUTKZnPha1WpVsVhMrut2epIVi8Upqr+pVCp1Ph50Cub1IGxS17dhArjdwnoHNczVZZxACQBAuMJ4g4k2CAAW6dVFF3DXGIahXC6nXC6narWqvb29nsDHtm0Vi0XlcrlA83mep3K5rFKp1DeAyufzev78+dA+YUG5rtvp21UoFAau9Jo0wLoeDnafejmpZrOp7e3tqefZ39/X/v7+1PMAt1F72f6oMWEI8g5qe3XZ5wOcqTFqddkkWy/+6LeCjV8Wvi9d+sPHrEV4xxkAML1x32D69L/v///pRbRBABCOw8NDHR4eTj1Ps9kMoZrJEITNUCqVUiKR0O7ubk9j+IODg8BBmG3bajQaSiQSA3uSVavVscK1QdqnS5qmOfVcQYSxIuzy8lJnZ2dTz3NxcTH1HMBtFYlIryxZSPKZB6ODsCCryybZenHbgrBLX3r1T4aP+elXl+9nDAC4fcJ6g+nTn5De/T/BrzuqDQKA+bm4uAjlNfgiEYTNmGEYqtfrisfjnTDM8zzZtt23Ef11qVRKqVSq52vlcln5fL4nSMrn88pkMhM3znccR+VyWYZhqFarDR1rGEYoIVYYTf7X1ta0ubk59Tzr6+tTzwFgvoKsLlvE1ovvvi99bvqWkAAALJ2w3mD6rCW9/ffBQrVRbRAAzNf6+rq2tramnqfZbOry8jKEisZHEDYnR0dHPc3ya7VaoCCsn0wmo0QioXg83hNIlcvliVdy7e3tSVKgBvwbGxuhBGEbGxtTz7G5uanT09Op5wFwN4W99SJoX5RX1oL1TAMA4DYJ6w2mMNsgAJivsNoKbW9vL2xlGc3y58SyrJ7ga9qG86Zp6tmzZz1fe/78+URzZbNZOY6jSqUiyxr9dsukK7muh2dhrAgDgGHCPIEyzMb7vi99dDn85o/o+wUAwLyF+QZTWIfsAMC4CMLmaJoTI/uxLKtn2+Qk4Vq5XO4047++BXOQnZ2dns+Drg673hw/FosFehwATCrMEygn6YsySLuv17DbqAb4AIC7bRnfNAnzDaYggrRBAIBxsTVyjrq3HIaxLVCSHj9+rGr1ak3xuNsVbdtWNptVqVRSJpMJ/LjuLZ7SVQAXZCVZo9Ho+XzSraEAEFSYWy9WofE+AGB5hHkYSlgnDC9rb68wT8Ce52naABaDIGyOuoOwsLYFdgdQ48zpOI6SyaQKhcJYIZh0c0VY0CCsO6gzDGNkLzIACENYJ1AuovE+AABhCCtUW9beXmGegL2Mp2kDCBdB2BydnJx0Pg57m6R0M6AaxHVd7e7uKpfLTdRc37KsnpMjnz9/HmhbZffzD1orgNvjNr+DGmTrRdiN9wEAuI3CeoMJABaFIGyOurcGhrUtsLsvWJBwzXVdxeNxZTIZFQqFwNeoVqs9odmjR49ULpclXa0uC6J7XD6fD/QYALdHmO+gLmOo9ulPSO/+n+Djp+2LAgDAbUVvLwDLjGb5c9Tu5TXJKqxB2uGSYRgjV2V5nqdkMqlHjx4FDsEkKZ1O3wjustls52PbtkfO0T3GNE36gwEYKhKRXlkbfhvVxyRsYTbeBwDcTcvY4B4A0IsVYXNSrVbluq4Mw9CTJ09Cm/fg4ECSdHR0NHSc53mKx+MyTVP5fD7QCZOu63ZWbl3vAWZZlhKJRCfgqlarQ4O4SqXS+ZjVYABuo2XtiwIAWB5hNrgHAMwGK8ImZNu2otGoIpGIksnk0O2Brutqb29PkvTs2bOhTe2LxaLi8bjy+fzIUyDbY3K53MjVYLu7u3JdV7ZtKxaLBbq1n1f36q9upVKp83E7kOvH87zONspEIjF2c34AWBZB+p0sY1+U776/6AoAAACA5UAQNqFKpdIJqmzbVjwe7xsYte/b2NhQo9EYerqi53nK5/NyHEfFYlHRaHTg6ql0Oq1isahCoTBym2M8Hg/cx6ufQcGVaZqdlV7tmvvZ3d2VdLV9s3tlGADcRfPuixIk5Pp8lTAMAAAAkAjCJpZOp298rVwuKxqNKp1OK5vNKh6PK5lMKpPJqF6vyzTNoXMahnFjTDsQS6fTyufzSiaTikajkq6a74/qN5ZOp2cSgrWlUinVajUZhqF8Pt+5nud5nRDQcRxZlqUXL14MXQ0HABjPy59IX/qbYGO/+NfSxU9mWg4AAIG1D8YZdlvW06YB3G70CJtQIpFQo9FQoVCQbds6Pz/vrBBrBz9PnjxRIpEYK/yp1+s6ODiQbdtyXbdnTukq2KpUKoHnnMcKrEQioVarpWKxqOPjY+3u7srzPBmGoZ2dHVUqlZFbNwEA4/srR/rnfws29p/+VfqOI/3Rb822JgAAggjztGkAGAdB2BRM0+zpkxUGwzDGOtFxmeRyuVBPxAQADPe3Pxhv/N/9YHgQ5vtXjZ6HWYsEO7EzzLkAAACAsBCEAQDutPbWi1Fjls1335c+Fx8+pvUv4805anyYp51xchoAzF6Q/1cAAHoRhAHA/9fe/fu2mZ35An/omQlmkYWX8gALGHYTsknKUJ4mraluB7uF6AE2mKSyeHGRyoWUwdbBQCxcLpacLhcpPGJxL+4WQUj/BWMx7QKBmGYMAQvE4jXuxR1kM+ItvOQV9YN8Jb3k+5L8fAACknV03vPahyb11TnPYaXlcetF0gL3792ZfgLlxl9d77rXbQ9AdtJ6rbjO9ZKEasv6CyaAEcXyAWCB0ixw/8kPr3ftv7tmewCykfZhKGmeMFwovAvfpj1sewfyTBAGAAt0kwL3V/msEvH9D5L19dffi/hZJVlbALKV5muFE4YBJgnCAGCBblLg/ip/82HEP/99sn7+5R8i7n54vWvnxXAY8d3p9MdwRmF+gGWS5mtFmqEawCpQIwwAFijtAvc//fG77SzT/Ho7nfoxWVF4H7LlFNh0LfowlLRPGAZYdoIwAEgojQLBWRS4/8clDsGA7Amjk8vjYShp/wIGYNnZGgkACaVRIFiBe4DVlNfDUJwwDDBJEAYAC6TAPcBqyuthKH4BAzBJEAYAC7QuBe4B1k1eD0PxCxiASYIwAFiwJIXrl73APcBlVvkU2HkchjJLktcKv4ABmKRYPgDkUF4L3Cc57QzgKqtceD/Ph6GswwnDAElZEQYARETy086StEvregDLYtlrceX1FzAAabMijKV2fHwcDx8+nNrm2bNn8ezZswWNCGA5Xfe0s09+NH37TNJQ7b07ViAAq+GzSsQvf5usYL5aXMAqe/78eTx//nxqm+Pj4wWN5iJBGEvt9PQ0Xr9+PbXN27dvFzQagOV1k9POfvGTy7+edqgGsAxGtbhmbUGMUIsLWG1v376d+XN6lgRhLLU7d+7E/fv3p7a5e/fugkYDsLxuctrZVUFYmqEawLwNh+9ql01zpxBRSFC3TC0ugHc/gz948GBqm+Pj4zg9PV3QiCYJwlhq9+/fj2+++SbrYQBk5k7hXWHpWW1mSfO0szRDNYCrpBVgLbqAv1pcwKpLUp7o4cOHma0aE4QBwBIrFNL54SzN087SDNWSSnKaZZqrPoDsrfIJlADMjyAMAIhPfhjxuz8kbz/ttLM0Q7WI9Arv+6EZAIA7WQ8AAMjeZ5WI73+QrO2s084+mRKSXWZaqHbdwvtvv73etYF0JAmsASAPrAgDAFI97eyzSsQvf5usYP6sUE3hfcheWqsyuZ60akACMEkQBgALltcfbtI67SzNUC2vhffVGyPv0pqj112V+cmPpj+nSS6tGpAR+X3dAciCIAwAFizNH24WLelpZ2mFalkU3k9CvTHyLq05alXmaljm1x2AtKkRBgBkIkmolnbhfeB6brIqEwDyTBAGAORWmoX318FwGPHd6fTHcMZ2OTgri1WZCu8DME+2RgIAuZVm4f11YMsmaUt7VabC+wBkTRAGAORWmoX3gev75IcRv/tD8vbTVmWuQ+F9RekB8s/WSAAg15KsCklSeB+4vs8qEd//IFnbWasyb1J4Py+SbtcsFN6tZpv2cJosQLYEYQDA0kt6miVwPaNVmUnMWpWZReH9JAFW0u2aapcBrAZBGAAAcKW0VmWmXXg/jQDruts1336brC0A+SUIAwAAbiXJqsw0C++nFWAt83ZNAG5GEAYA8J9sfeImhsOI706nP4bDrEeZvU+mFNK/zLTC+2kFWFls1wQgW06NBAAiYvVPO0u6jeq9Owrvcz2nw4j3/2l6m7/8KuK9JX7+pOGzSsQvf5sswJpVeP8mAdYvfnLxz9PerglA/gnCAICI+M/TzlL6QT1vodp1t1F98qPpRb+B6xsV3v95e3bbWYX30wqw0tyuCcBysDUSAEhdofBuZdW0R2GBQVie6wDZVsc6SavwfloBVprbNQFYDlaEAQArL61tVPNgWx1Z+c3vI362mfUoLkpSeP+TH0b87g/J+7wqwEpzuyYAy8GKMABg5WVRB0jhfbKUtCbess7TzyoR3/8gWdtpAdZou2YSs7ZrArAcBGEAwMpLuw7QqocMLLfr1sR7++1chzMXaQZYaW3XBGA5CMIAgJWXZh2gdQgZWG55romXpkUGWEm2awKwHARhAMDKS2sbVcT6hAwsr5vUxFtVAiwAzhOEAQArL81tVEIG8i6LmngAsCycGgkA5NqdwrtTE2e1meWnP35Xt2uaJNuolj1kyOtJgaQn7Zp4ALBKrAgDAHKtUIh47870RyFBEJZEkm1UeQ4ZFPEnIt2aeACwaqwIY6kdHx/Hw4cPp7Z59uxZPHv2bEEjAmDVffLDiN/9IXn7RYUM1y3i/8mPpm8BZXl9Von45W+T1bKbVRMPAK7r+fPn8fz586ltjo+PFzSaiwRhLLXT09N4/fr11DZv375d0GgAWAd5DRluUsT/Fz+Z75jIxqgm3qytwBGza+JFpLc9GYD18Pbt25k/p2dJEMZSu3PnTty/f39qm7t37y5oNACsg7RDhrTcpIj/IoKw4TDidDi9zZ1Csu2tafaVR2neX1o18SL+c3vykv6dArB4d+/ejQcPHkxtc3x8HKenpwsa0SRBGEvt/v378c0332Q9DADWTJohQ1ryWsT/dBjx/j9Nb/OXXyULWtLsK48WfX9JauKlzeoygNWXpDzRw4cPM1s1plg+AMAcLDpkyHMRfxxQMLLIwy8A4DJWhAEArIC8FvFfB0lP63zvzmJXCZKMVWoA60UQBgCQc7/5fcTPNqe3yWsR/1XntM7spBVgqYEGsF5sjQQAyFDS1USz2o2K+CexyCL+q+4mp3WSDtssAbgJQRgAQEauu5ro7bfT2yTZdrfoIv6r7iandQIA2RGEAQBkJIvVREmL+A+HEd+dTn8Mh7cfz7LL62mdAMDl1AgDANZCHgti32Q10S9+Mp+xnHc6jHj/n6a3+cuv1FZyWicALBcrwgCAtZDHekJWEy2/T655+qbTOgEgW4IwAICMWE20/D6rRHz/g2RtndYJANkThAEAZMRqouXntE4AWC6CMACAjFhNtBqc1gkAy0OxfACAa0qr8P5oNdHP27PbWk2UruHw3YEA09wppFc3LulpnQDAfAnCAACuqVBI77TEn/54dhBmNVH6Vv1UzDyekgoAeWBrJABAzq36aqLf/D6ffeVR0vvL4ympAJAHgjAAAOYmSXDz83aydmn2lUerfn8AkAeCMAAA5uJ/fRvxX/9Hsrb/5b9HvP12MX3l0arfHwDkhSAMAIC5+G+9iP/zH8na/u8/R/y6t5i+8mjV7w8A8kIQBgDAXPzPf7te+3+d0j7NvvJo1e8PAPJCEAYAwFyc/N/02qfZVx6t+v0BQF68n/UAAABIx51CxF9+NbtNWn7z+4ifbV799Y2/ul5/09qn2Vcerfr9AUBeWBEGALAiCoWI9+5MfxQSBmFpnGD4yQ+TXWvk76a0T7OvPFr1+wOAvBCEAQAwIa0TDD+rRHz/g2T9/PX3In5WufrrafaVR6t+fwCQF4IwAAAmpHWC4d98GPHPf5+sn3/5h4i7H1799TT7yqNVvz8AyAtBGAAAE9I8wfCnP579/b/eTtYuzb7yaNXvDwDyQBAGAMCERZ9g+I8pBjtp9pVHq35/ADBvTo0EAMjQok96TMIJhgDAqhKEAQBkqFCIeG/BQdcsn/ww4nd/SN5+3U8wzGOYCQBcThDGUjs+Po6HDx9ObfPs2bN49uzZgkYEAMvvs0rEL3+brGD+Kp9g+JvfR/xsc3a7PIaZAJCV58+fx/Pnz6e2OT4+XtBoLhKEsdROT0/j9evXU9u8fft2QaMBgNUwOsHw5+3ZbZf1BMPf/H52m5+3I967ozg9AFzH27dvZ/6cniVBGEvtzp07cf/+/alt7t69u6DRAMDq+OmPZwdhy3qC4f/6NuK//o9kbf/Lf4/45EfLGfYBQBbu3r0bDx48mNrm+Pg4Tk9PFzSiSYIwltr9+/fjm2++yXoYALCWlvUEw//WS7btMyLif/854te9iF/8ZL5jAoBVkaQ80cOHDzNbNXYnk6sCAEBG/ue/Xa/9v16zPQCQX4IwAADWysn/nW97ACC/BGEAAKyVjb+ab3sAIL8EYQAArJVPfni99n93zfYAQH4JwgAAWCufVSK+/0Gytn/9vYifVeY7HgBgcQRhAACslb/5MOKf/z5Z23/5h4i7H851OADAAr2f9QAAAFhddwoRf/nV7DaL9tMfR/y8Pb3Nr7fftQMAVocgDACAuSkUIt7LIOhKwz8uOATLa2gIAKtEEAYAwFJY9aBomUNDAFgWgjAAAJaCoAgAuC3F8gEAAABYC1aEAQBwwapvQwQA1pMVYRno9/uxtbWVuG29Xo9yuRyFQiE2NjZic3Mz6vV69Pv9G4+h0WjE1tZWbGxsRKFQiHK5HLVaLbrdbq76BACyUShEvHdn+qMgCAMAlowgLEWDwSAKhcLMR7lcjlKpNLO/RqMR5XI5Wq3WOPQaDAbR6/Wi1WpFuVyORqNxrTF2u93Y2NiIvb29iIg4ODiIo6Oj2N/fj16vF1tbW7G1tRWDwSDTPgEAAADSZmtkilqtVuK2o9DoKltbW9HtdqNYLEa1Wo1SqRT9fj96vd7ESrC9vb0olUqxvb0985rdbne8Em1nZyeazeb4a6M+Njc3o9vtxubmZhweHkaxWFx4nwAAAADzUBgOh8OsB7EqNjY2Eq16qlar0el0rvz63t5eNBqN2N/fj93d3QtfbzQaF4K0Wf+Mg8EgfvCDH8RgMIhSqRRHR0eXtuv3+1EulxONcx59JvXw4cN4/fp1PHjwIL755ptb9wcArJfvTiPe/6fpbf7yq3dbQAGAdGX5M70VYSlptVoxGAxid3d3Zv2vR48eXfm1fr8fjUYjOp1OVKvVS9vs7u7G0dHRxAq0Xq8XlUrlyn5rtdo4pJu2Gm20iqvdbke3241WqxU7OzsL6xMAAABgXqwIS8loxdNVq6KSqtVq8fHHH1+6EuyswWAQGxsb48+vWj0WMbkiKyLi5ORk6vbEdrsdtVotIiKKxWKcnJwspM/rsCIMALgNK8IAIDtZ/kzvpT0F7XY7+v3+zLpfSYxWlc1SLBYnCu5PC6H29/fHH1er1Zk1us7WGxsMBtFutxfSJwAAAMA8CcJS8MUXX0SxWIwnT57cuq/r1M968+bN+ONp2y3PbqGctn3yrLMh24sXLxbSJwAAAMA8qRF2S71eL3q9XkS8K5ZfKpWiWq3G1tZWopMcb2owGIzrc1Wr1SvDqNHYRj7++ONE/VcqlfHplOdXb82jTwCARbpTeLf1cVYbAGC1WBF2S+e3Q/b7/Wi1WlGr1aJQKEStVrsQHKXhq6++ioh3q6wODg6ubNftdic+P7sqa5rz7c7ewzz6BABYpELhXf2vaY+CIAwAVo4g7Bb6/f6FUOi8drsdm5ubUa/XU7vuYDCIer0elUolOp3O1PpcX3/99cTns2p5jXz00UcTn7969WqufQIAAADMm62Rt1AqlaLZbMZgMIijo6PodrvjrX/ntVqtePXqVRweHt7qmv1+P7a2tqJYLMbLly9nhlDnx3PT1VtnT8OcR58AAAAA82ZF2C3t7OzE7u5uNJvNODo6ipOTk9jf3780oOr1erG1tXXja7Xb7SiXy9Hv92MwGMTGxkY0Go2p33NVMHddo3pk8+oTAAAAYN4EYSkrFouxu7sbJycncXBwcCEQ63a7M8OrswaDQTQajSiXy1Gr1S58fW9v79I/P/v9N3F+3GdPqJxHnwAAAADzZmvkHG1vb0e1Wo3Hjx9PFIb/4osvYnd3N1Ef3W43jo6OolqtXlmTrN1uR6PRSNznTcxj9VYafR4fH8fDhw9v3c+zZ8/i2bNnt+4HAAAAVtXz58/j+fPnt+7n+Pg4hdHcjCBszorFYhweHsbm5uY4DBsMBtHtdqNarc78/u3t7dje3p74s1arFXt7exNB0t7eXuzs7FxYdVUsFlMJnM72O48+b+r09DRev359637evn176z4AAABglb19+zaVn8GzJAhbkC+//DI2NzfHn3c6nURB2GV2dnaiWq3G5ubmRCDVarUurAq7d+9eKqHVvXv35trnTd25cyfu379/637u3r176z4AAABgld29ezcePHhw636Oj4/j9PQ0hRFdnyBsQSqVSlSr1fHWxtsWnC+VSvHy5cuJcO3rr7++0O6mq67OB13nV4Sl3edN3b9/P7755ptb9wMAAABMl1ZZoYcPH2a2skyx/AW6zYmRl6lUKhPbJi8L1x49ejTxedKVXOcL2ZfL5bn2CQAAADBvVoQtUKlUGn+cxrbAiIhPP/002u12RFweSJ1dMRbxLiyrVCoz+z06Opr4/Ow2znn0CfPw/PnzePv2bdy9e9dhCKwkc5xVZn6zysxvVpn5Td4JwhbobBCWxrbAiJgIoC7r8/zqraSh1dlQrVgsTox9Hn3CPDx//jxev34dDx488CLMSjLHWWXmN6vM/GaVmd/kna2RC/Tq1avxx2lvk4y4GFBFvAvKzgZkl9URu8zZsZ7vdx59AgAAAMybIGyBzm4NTGtb4Nm6YFeFa0+ePBl/3Ov1EvV7tt3e3t5C+gQAAACYJ0HYAo1qee3u7qbW5yhcKhaLE4Xzz6rX6+OPR6dWTnO2TalUujS0m0efAAAAAPMkCFuQdrsd/X4/isVifP7556n1+8UXX0RExJdffnllm0qlMhE8jQK5qxwcHIw/vmrl1jz6BAAAAJgnQdgNdbvd2NjYiEKhEFtbW1O3B/b7/Xj69GlERLx8+XJqofxGoxGbm5uxt7d36SmQZ43a7O7uXrkabKTZbI4/HoVnlxkMBtFqtSLi3fbNnZ2dhfYJAAAAMC+CsBs6ODgYB1Xdbjc2NzcntguOjL527969ODo6mnq64mAwiL29vej1etFoNGJjY+PK1VO1Wi0ajUbs7+/H/v7+zPGWSqXxqqxR/5d5/PhxRLzbanl2Fdei+gQAAACYF0HYDdVqtQt/1mq1YmNjI2q1WtTr9djc3Iytra3Y2dmJw8PDKJVKU/ssFosX2owCsVqtFnt7e7G1tRUbGxsR8a74/nXqjW1vb0en04lisRh7e3tRq9Wi1+vFYDAYB3a9Xi8qlUr88Y9/nLpybZ59AgAAAMzD+1kPYFlVq9U4OjqK/f396Ha78ebNm/EKsVHw8/nnn0e1Wr1W+HN4eBhffPFFdLvd6Pf7E31GvAvgDg4ObhwoVavVODk5iUajES9evIjHjx/HYDCIYrEYjx49ioODg5nbLBfRZ948f/483r59G3fv3o1nz55lPZyIMKZllce/I2NKJo9jyps8/h0ZUzJ5HFMe5e3vKW/jiTCmZZa3v6e8jSfCmJZZHv+e8jamvI1nroawhB48eDCMiOGDBw9W8npJGNNseRvPcGhMSRlTMnkbU97GMxwaU1LGlEzexpS38QyHxpSUMc2Wt/EMh8aUlDElk7cxrdPP2LZGAgAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKwFQRgAAAAAa6EwHA6HWQ8Crut73/te/Md//EfcuXMn7t+/P/frHR8fx+np6cKul4QxLd94IowpKWNKJm9jytt4IowpKWNKJm9jytt4IowpKWNavvFEGFNSxpRM3sa06PGMrvfBBx/En//857lf7yxBGEvpvffei9PT06yHAQAAANzQnTt34rvvvlvoNd9f6NUgJR9++GF8++238d5778Xf/u3fZj0cAAAAIKF///d/j++++y4+/PDDhV/bijAAAAAA1oJi+QAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKwFQRgAAAAAa0EQBgAAAMBaEIQBS63RaMTW1lZsbGxEoVCIcrkctVotut3uXK/b6/WiXq9HuVyOQqEwvvbe3l4MBoO5Xpv1kdX8Pq/f78fW1la02+2FXpfllOW8zctzhtWVlznm/2Xmwftq1sYQYAl1Op1hsVgcRsSwWq0OO53O8OjoaHhwcDAslUrjPz85OUn1uicnJ8Pt7e1hREx9NJvNVK/Leslqfp93fr6b10yT5bzNy3OG1ZWXOeb/ZebB+2rWjSAMWDqdTmf8wrizs3Npm0qlMoyIYalUSu1F++TkZPxmIMnjqrHBNFnN77NOTk6Gu7u73oiSWJbzNg/PGVZbHuaY/5eZF++rWUeCMGCpnJycjH9jVSqVrmx3dHQ0fuGsVqupXLtarQ4jYlipVIYHBwfDo6Oj8W/LLntzGhHDg4ODVK7Neshyfo/s7+8PS6XSeL77gYtZspy3eXjOsNryMMf8v8y8eF/NuhKEAUvl7JvAWW/+0tw60Gw2hxEx3N3dvbLN0dHR+Ddmo0exWLzVdVkvWc3vkcPDw+Hh4eH489G89wMX02Q5b7N+zrD6sp5j/l9mnryvZl0VhsPhMACWQL/fj3K5PP785OQkisXile3b7XbUarWIiCgWi3FycnLja5fL5SiVStHpdK41xoiITqcT1Wr1xtdmPWQ5v6/S6/Vic3Nz/Hmz2YydnZ3Ur8PyynLe5vE5w2rJ4xzz/zJp8b6adebUSGBp7O/vjz+uVqtTX6wjIra3t8cfDwaDG5+s1Ov1ot/vx8HBwcy2pVJpYpyj74dZsprf08waA2Q5b/P4nGG15HGO+X+ZtHhfzToThAFLo9VqjT+uVCqJvqdUKo0/fvHixY2u++LFi9jZ2Un85vP8b6n+9Kc/3ei6rJes5jfcRpbz1nOGeTPHWGXeV7POBGHAUjj/25+PP/440fedfWG/6W+uPv300wu/jUp6zYi4sKQbzstyfsNNZTlvPWeYN3OMVeZ9NetOEAYshW63O/H52d9ITXO+3U2WU1cqlWttRRgMBlPHAOdlOb/hprKct54zzJs5xirzvpp1JwgDlsLXX3898XnSF9CPPvpo4vNXr16lNaQr9fv9ic8V9GSWZZrfMJLlvPWcYd7MMVbZMs1v76uZB0EYsBTOvwje9DdXR0dHqY3pKmffFDjJiSSWaX7DSJbz1nOGeTPHWGXLNL+9r2YeBGHAUjj/gn1T55dXz0Oz2Rx/vLe3N/frsfyWaX7DSJbz1nOGeTPHWGXLNL+9r2YeBGHAUrjpC+35pd5v3ry5/WCm6Pf743oJ+/v76hiQyLLMbzgry3nrOcO8mWOssmWZ395XMy+CMGCtzPs3V6NTcEqlUuzu7s71WnCelQcsoyznrecM82aOscq8r2ZZCcKApXCd02UW0c9ler1etFqtKBaL0el05nYdVs8yzG84L8t56znDvJljrLJlmN/eVzNPgjDg1lqtVhQKhVQfm5ubE9e4d+9eKmNNq5/LPH36NCIiXr58aen2CjG/4XJZzlvPGebNHGOVLcP89r6aeRKEAUvhpr9xOr9ke16/uarX69Hr9eLg4CAqlcpcrsHqyvv8hstkOW89Z5g3c4xVlvf57X018/Z+1gMAll+1Wo2Dg4NU+zz/wvro0aNxscyIdy/ESV58zxfxLJfLaQxvQqvVilarFc1mM7a3t1Pvn2yt+/yGq2Q5bz1nmDdzjFWW5/ntfTWLIAgDbq1UKs19yfL5rWT9fj/Rb4iOjo4mPq9Wq6mOq9vtRr1ej2azGTs7O6n2TT6s8/yGabKct54zzJs5xirL6/z2vppFsTUSWAqPHj2a+Lzf7yf6vrNLuIvFYqqBRq/Xi62trdjf3/diza3kcX7DLFnOW88Z5s0cY5XlcX57X80iCcKApVCpVCaWbH/99deJvu/Vq1fjj8+/6N9Gv9+Px48fx+7uruOcubW8zW9IIst56znDvJljrLK8zW/vq1k0QRiwNJ48eTL++Gxdg2nOttvb20tlHP1+PzY3N2NnZyf29/cTf0+j0Ujl+qymvMxvuI4s563nDPNmjrHK8jK/va8mC4IwYGnU6/Xxx91ud2b7s21KpVIqdQwGg0FsbW3FkydPEr9YR0TUajV1QpgqD/MbrivLees5w7yZY6yyPMxv76vJiiAMWBqVSmXiRa/dbk9tf/akv1m/tWq1WrG3tze1RsJgMIjNzc0olUrjtrMe3W53XJDU8c9Mk/X8vsz5Y9LhvCzn7TyvDRH+X2a1ZT2/va8mU0OAJXJ0dDSMiGFEDCuVypXtTk5Oxu2q1erUPqvV6rhtRAxPTk4ubVepVCbaXefRbDZvc9usiSzn92UODg4mvnd/fz/x97I+spy387g2nOX/ZVaZ99WsK0EYsHTOvgm86g3g6MW1WCzOfIOZ5MX1Ni/WfufAdWQxvy9zcnIyLJVKE9877U0y6y3LeZv2teE8/y+zyryvZh2ZRcBS6nQ6w2KxOIyI4fb29vDw8HB4cnIy7HQ64xfXSqWS6AeeUT+jR6fTmfj69vb2rV6sd3Z25vS3wKpa5Pw+6+TkZLi9vX3ht7nnH9VqdTwuGMlq3qZ9bbiM/5dZZd5Xs24EYcBS29/fH1YqlfGLbrFYHFar1eHBwUHiPjqdzrBUKg2LxeJwd3d3jqOF6zG/WUZZzts0rg3T+H+ZVWZ+sy4Kw+FwGAAAAACw4pwaCQAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKyF97MeAAAAALD8er1evHjxIgaDQTSbzayHk7pVv791YUUYAAAAcCPdbjfq9XqUy+XY3NyMRqMR/X4/62FN2NjYiEKhEN1u99rfm/f7GwwGUavVotfrZXL9RqMRe3t7mVz7pqwIAwAAAK5ta2sr3rx5k1kIk0S3243BYBAREdVq9Vrfm/f763a7UavVYmdnJyqVyvjPC4XC3K89HA4jImJnZydqtVqUy+XodDpRKpXmfu3bsiIMAAAAuLZOpxOHh4fR6XSyHsqVDg4OIiJie3v72t+b5/trNBqxtbUV+/v7sb+/n+h7isVilEql8eMyZ79eLBYT9dnpdKJarcbm5mZuQ8OzBGEAAADAjV13pdUiffXVVxER8emnn964j7zd32g7YrPZjJ2dnYmvjVa/jezs7MTh4WEMh8M4OTmJo6Oj8ePsKrKId/d59usnJycxHA7j6OhoZtjWbDaXJgwThAEAAAArp9fr3XhbZF61Wq3Y29uL3d3dCyHYeQcHB9FsNi8EXtdVKpVid3d3YmXc+cBtdL1KpRKPHz++9Ot5IQgDAAAAVs7oZMdqtZpom1/etdvtqNfrUalUrlyh9ebNm4h4d8832Q46TbVanRkoHhwcxGAwiMePH6d67TQJwgAAAICVM9oWWavVMh7J7Q0Gg3j69GlERKKaYPV6fS7jGPU7CtzOK5VKsbOzE71eL7enSQrCAAAAgJVydlvkkydPsh1MCmq1WgwGg6hUKlNXZc17K2iSfkcBWKPRiG63O5dx3IYgDAAAAFgpL168iIiISqWy9Nsi2+32OFD6/PPPp7YtlUrRbDbnds/FYjGazWbcu3dv6hhGgdm8VqbdhiAMAAAAmKrdbsfW1lZsbGxEoVCIzc3NqNfr0e/3sx7apdrtdkQkPy0yz/f3xRdfjD+eVferWCzOLKJ/Wzs7OzODtq2trYiI6Pf70Wq15jqe6xKEAQAAAJfq9/tRLpejVqvFmzdvYn9/PzqdTnz66afR7XajXC5Ho9GY2U+tVhuHTJc9Njc3x6FTvV6/tG25XE50GmG/3x/3NSs4Suv+It5tCbzq/mY9Njc3L+2z2+1Gr9eLiLj16Y+LdHYLZZKaZov0ftYDAAAAAPKn1+uNA5r9/f3Y3d0df61arcbu7m7U6/VERdEPDg4i4l3IdX6F0Pm+m81m1Ov18bUrlUq8fPky8Xa/0WqwUqkUpVJpIfcX8f/rc5VKpajX61de++uvv74Qrl0VFo1OvhyNaVmcDe36/X602+3UT7G8KUEYAAAAMKHf749Dou3t7YmQ6KxmsxmvXr0ar1qapdlsRr/fnyiifnR0dKHdq1evIuJd+NPpdK419lF9sGnBy7zur1gsXno/Z53d6hjxbqvhVSHXKNSLiPj4448TjSEvqtXq+N+50+nkJgizNRIAAACYUKvVxh/P2tp23a1vo9VhI61Wa2LL42AwiL29vSgWixfazjIYDMah1bT6YPO6v1nF7BuNxkSoNio+f5nz4du01W15dHZV2FdffZXhSCYJwgAAAICxdrs9UZdqVgDz6NGja/V/Wfjz9OnTiY8Hg0EcHBxc+/TDUeBSLBavrKk1r/t78+bN1Dpe/X7/wjbLaUHf2VVzEcsXhH300UfjjweDQS4OHogQhAEAAABnnN26V6/XZ7a/blgVcXE7YLvdjm63G61WK9rt9tTtgtOMgqUnT55c2WZe97e/vz91zGdXoUVM3xIZ8a6W2E3GkRfng7uk20vnTY0wAAAAICLerVo6G1jMcxVSs9mMcrk8/nwUFJVKpSu3C84yWkV1PnQamef9Teur1Wpd2BI5a8tlkhMy8+x8cPfmzZtsBnKOFWEAAABARCx2O16pVJoIgwaDwXhL5E2MCssXi8UrV1plsd2w3+9fWHmWZNtnXoKjtOQl2BOEAQAAABERcXh4OPH5vIOi3d3dqXW1rmN0WuS07YaLvr+Ii9svt7e3E237PBscLdu2yIiIe/fuTXz+pz/9KaORTBKEAQAAABERmRQ0P78C7KptjbOMVoRNOy1y0ffXarUmVqEVi8X48ssvr91PXlZTrQJBGAAAABARF7fjLSI4Ol8P7LLTFWc5GzZtb29f2W6R9zcYDC7cx5dffpl4ddcyrgI76/zf9dlTJLMkCAMAAAAuNe+VSL1eLxqNxoXwqtFoXOuUwdGqsmkh2GXmeX+1Wm2i/+3t7WuNbxHbNhcpL8GeIAwAAACIiIt1nea9IqxWq423C55fGXadLZJfffVVREzfFhmxuPtrt9u33hJ5fqzLtj3y/HjzEuwJwgAAAICIuBhWdDqduV2rXq9Hv98fbxfc2dmZKJzf7/ej0WjM7Kfb7Y5Dl1lF6Bdxf4PBIJ4+fTrxZ9fZEjmytbU18fmynSJ5PmR89OhRRiOZJAgDAAAAIuJi+DJaaZW2brcbrVYrqtXqxHbB84Xz9/b2Zq7aGn1PtVqdGTYt4v6ePn167S2RjUYjWq3WxJ+dD/WyOMjgNs6eElkqlWyNBAAAAPLlfPgyGAzGpzEmlWTl0mjb4/ngq1Qqxf7+/qVtrzIKs5JspZz3/XW73Yn+km6J7HQ6F7ZCFovFiRVs81ydF5H+irOzwd2slXqLJAgDAAAAIuJd+HJ+9dL5FU7nnS9qP6uW1aiIfLPZvHSV0O7u7kQANCqof9W1R9d78uTJ1OtGzP/+zodxSbZEDgaD6Ha7l9bQOjvWszXH0nD+PtKuQXZ2vNep9zZvgjAAAABg7PwKpsFgEI8fP740KOn3+xdCjn6/f2Vo0263o91uR6lUip2dnSvHcNkWyctOkXzx4kVERFQqlcRb7+Z1f/V6faKP89s+rzKqJ3ZZEPb555+PP77OKZqz9Pv9C1st+/1+amHYYDAY91UqlawIAwAAAPKpWCxeCKJ6vV5sbGxEvV6PdrsdrVYr6vV6lMvlS0OOra2tKBQKUa/Xx3/W7XbHodKsgOiyUOjx48cXwqDRNsRZp0WeNY/7G9U8O6tWq0W3273wGPW/t7cX5XJ5fA+XBXnFYjF2d3fHn6exKqzX6125QqtWq6USuJ2tvba3t3fr/tJUGA6Hw6wHAQAAAOTLKLiatkpoZ2cnms1mFAqF8Z+VSqWo1+uxvb0dpVJpvKrqfMBSrVbj4ODgQgDUaDSi2WxeWRy+UqmMg6xyuRwREUdHR5eGZ4u4v4iIzc3NWwVIxWIxTk5OLv3aYDCIjY2NiHi3bfR8DbWkrjvGUqkUR0dHt7rWbfqYF0EYAAAAcKVGoxEvXrwYb50rFotRrVajXq+PV0uVy+XY3t6OTz/9NCqVysLGtbe3d+uwJa/3d9Zohdq0wCwv+v3+OKA8PDzM5O9rGkEYAAAAsHRGq45us0pqmdRqtWi329FsNqfWV8va1tZWdLvd3P67CMIAAACApXJ2u2AeVx3NS7lcjjdv3sQf//jHxIcDLFK3242tra2oVCpxeHiY9XAupVg+AAAAsFRGxdiLxeLahGAREZ1OJwaDwfikyTwZDAZRq9WiVCrFy5cvsx7OlQRhAAAAwFIZFct/8uRJxiNZrFKpFIeHh9FutydO5MzaYDCIzc3NuHfvXhweHuZytdqIIAwAAABYGoPBILrdbkS8q5u1bkbbDr/66qtchGGjEGwU0uU5BIsQhAEAAABLZBSCjU53XEejMOzVq1extbUVg8Egk3H0er34wQ9+EPV6PTqdTu5DsAjF8gEAAIAlcjb0WYbgZd4ajUZsb29HqVRa+LXb7XaUSqWlqtMmCAMAAABgLdgaCQAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKwFQRgAAAAAa0EQBgAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArAVBGAAAAABrQRAGAAAAwFoQhAEAAACwFgRhAAAAAKwFQRgAAAAAa0EQBgAAAMBaEIQBAAAAsBYEYQAAAACsBUEYAAAAAGtBEAYAAADAWhCEAQAAALAWBGEAAAAArIX/B+RGcOcApM4nAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -153,12 +161,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACphElEQVR4nOz9TYxid57n+38gs6y0ykNCuNVSCKTpBHnkXnUnpO+idt0JXRtbdo8hc2TLtnSnElz+150FMwWO8tqOIrqaTd9rJaTrSp1uL9JQ7irZixoHWbO6V/pPBmT1zuoqTrqlCCGNpjJO0raccjk5dxEDBfEABzhwIHi/JKR4+MbvfE8E+cAnfg8ey7IsAQAAAAAAAKec1+0GAAAAAAAAgHkgCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEo463YDwKS+/e1v6+HDhzpz5oz++I//2O12AAAAAACADf/jf/wPPXr0SOfOndOXX34512t7LMuy5npFwCFnzpxRp9Nxuw0AAAAAADABr9erR48ezfWazAjD0uoGYV6vV+vr6zO9VqvVmtu17KIne+hp+fqR6Mkuelq+fiR6souelq8fiZ7soid7Fq2nRetHoie76Gnx+ule78yZMzO/1mEEYVhaf/zHf6y9vT1btdlsVtlsduJrhUIh7e3taX19Xbu7uxOP4yR6soeelq8fiZ7soqfl60eiJ7voafn6kejJLnqyZ9F6WrR+JHqyi57m20+xWFSxWLRV68Y2R64GYU899ZSblx/g8Xj0z//8z263gQl0Op2RgVi73Z5TNwAAAAAArK52u2170oobXA3Cms2mPB6P3NymrHt9j8fjWg+Yjp2pmz6fb07dAAAAAACwunw+n4LB4NCa7tJIN6z80kjOClh+izKVFAAAAACAVWdna6LuUkw3uB6EWZalZDKpcDjsyvVN01S5XHbl2gAAAAAAAJgf14Owcrms733ve672kEwm9d3vftfVHgAAAAAAADBbXrcbiMfjbregZ555xu0WAAAAAAAAMGOuB2Fra2tutwAAAAAAAIAV4OrSSE5qxLLIZrNqt9sLdfokPS2vRfs+LVo/Ej0ts0X7Pi1aPxI9LbNF+z4tWj8SPS2zRfw+LVpPi9aPtJg9LaJF/D4tWk+L1s8seSwXj030er0yTdP1b/SDBw8UCARcO7oTk+meMhEMBjk1EifieYLTjOc3TjOe3zjNeH7jNOP5DTvcfJ64ujSyUCi4HoJJ0vnz51UoFNxuAwAAAAAAADPkahD2wx/+cK7X+/zzz0/83Lx7AQAAAAAAwHy5vln+PGUyGbdbAAAAAAAAgEtWKgjb2dlxuwUAAAAAAAC4xNVTIyf1+eefyzRN2/WGYahUKo31NQAAAAAAADhdliII+/zzz1UoFFSr1WQYxkRjWJYlj8fjcGcAAAAAAABYFgsfhG1sbGhra0vSQZgFAAAAAAAATGKhg7Cf/exnKhQKkiSPxyOPx0MYBmAs2WxW7XZbPp/P7VYAx/H8xmnG8xunGc9vnGY8v7HoPNYCJ0uXLl1So9HoBWDhcFjRaFThcFiS9OSTT44c43e/+51M09SHH36oBw8e6NGjR7NuG3MSCoW0t7enYDCo3d1dt9sBAAAAAAA2uPl6fqGDMK/X29vX69NPP9Xly5cnHsswDD311FMEYadI9w+O1+vV+vr60NpsNqtsNjunzgAAAAAAWE3FYlHFYnFoTavVUqfTcSUIW+ilkX6/Xw8ePFAul5sqBJOkcDisCxcuONQZFkmn09He3t7Qmna7PaduAAAAAABYXe12e+RrdDctdBAWDod19+5dPfPMM46MVyqVHBkHi8XOjDDWpwMAAAAAMHs+n0/BYHBoTXdGmBsWOgi7fPmy7t69q/v37zs2Hk6f9fV19ggDAAAAAGAB2NmaqLvVkRu8rlzVph/96EeyLEuNRsOR8d577z1HxgEAAAAAAMDyWegg7Pz58/rxj3+sW7du6V//9V+nHo+lkQAAAAAAAKtroYMwScrlcopGo0qlUlONc+/ePcdmlgEAAAAAAGD5LPQeYV3b29u6dOmSnnrqKeXzea2trdn6uvv378s0TTWbTX344Ycz7hIAAAAAAACLbCmCsF/96leSpGazqUwmM9EYlmXJ4/E42RYAAAAAAACWyMIHYd///vdVLpclSR6PR5ZljT0GARgAAMDysyypM+K/gl6PxH/9AADASRY6CLtx40Zvg/tJQzBJE38dAAAApuNkeNWxpLNvDa/55m3pDEEYAAA4wUIHYYdDsHg8rkQiIb/fP/Y+YdevX9fnn38+w24BAABwGOEVAABYJAsdhDUaDXk8Hvn9fu3s7OjChQsTj3Xt2jU9+eSTDnYHAAAAAACAZeJ1u4Fh/H6/JGljY2OqEKw71sWLFx3oCgAAAIvqg7tudwAAABbZQgdhsVhMkhQOhx0Z78aNG46MAwAAgPmzE3K9ViUMAwAAJ1voICyTyciyLBmG4ch4zAgD4ATTNN1uAQBOFTvB1YOH0hu/sDfe6z+X2g+nagkAAJxSCx2EJZNJXbx4Ubdu3XJkvI8++siRcQCsnkajoXw+r0AgoGvXrrndDgAsDadmcb3fkL78vb1rfvG1dLNhrxYAAKyWhQ7CJKlSqaher+sf//Efpx5rc3PTgY4ALJpuSJVIJBSJRBQIBOTxeBQIBBSLxZRIJJTP51Wr1Y79+lQq1VuK3WWapqrVqlKpVG+cra0tZoMBwBicnMX18WfjXfuTMesBAMBqWOhTI6WD/cGuX7+u733ve/rrv/7ricd58OCBGg1+NYjFVC6Xlclkxv66aDSqer0+9fU9nvHPrPf7/drf3z/2c6lUStVqdewxt7e3FY/HbdWapqnNzU1tbW0Nren+ua/Var3aaDSqeDyuSCSi7e1tVatVRaPRga+9du2aDMPg7w0AmMIks7h+8J3jP7//1XjXHrceAACshoUOwrpLGf/oj/5IgUBATz31lJLJ5NjjmKapDz/80On2sCBarZZCodDQmmw2q2w2O6eOxpdOp3XlyhUZhqHNzc2hIVI8Hlc+n9elS5d6J6tOq7sXX61WUz6fP3HWUzgcVj6fVzweH3qIRaVSkWma2tnZUaFQOHEmliTlcjldvXpV4XDY9v3k8/ljA7BkMtkbqzueYRgyDEOVSkUffvhhLxw7HHAdvudKpdJ7OxKJOLZXIQCskklmcZ0UhAUeH2+scesBAIAzisWiisXi0JpWqzWnbo5a6CDsnXfe0d27f9gwwrKsobM/hrEsa6JZL1h8nU5He3t7Q2va7facupmc3+9XNBpVpVJRJpNRuVw+UpNMJgcCGieFw2Gl0+neTKnj1Ot122GV3+9XPB5XPB5XLBY7dmZVqVRSOp223aNhGEokEkdCqXQ6rVKpdOzXdEOxeDyuUqmkra0t5fN529eUDsLH434eAIDhnJzF9dzT0qe/sT/Ws0+Pd20AAOCMdrs98jW6mxZ6j7ArV67IsixZliVpsuVbOP28Xq+CweDQh8/nc7vNsZy0THKS5ZPjCofDR5YJSgch3KQz0E7qe5wQrFarHZmZ5ff7Va/XTwzBjpPL5dRsNo/cy/3790/8Gqdm3gHAqnFyFtcrUenb37I3zhOPSa8e/acMAADMgc/nG/ka3et1L45a6BlhmUxGb775pjweTy8MAw5bX1/X7u6u22046qRlh8OWIzp9/cMzuKa59nFfO0641Gg0lEgkjnz97du3jw3t7PRz7949Xbhwobckkk3wAcB5Ts7iOn9Oevf5gxMmR7n+guQ7Z/+6AADAOXa2JgqFQq7NGlvoIOz8+fOKRqO6e/euCoWCotGo1tbWxh7HMAy98847+vWvf+18k8AMnBQSTfL8X3aGYejy5ctHPl6pVCYKwbq6s8lOWga6zLqb/88rOF02tVrN9qEMAKbzSlR685f2Nsy3M4vr5Yujg7CbyYM6AACA4yx0ECZJV69eVSQS0Q9/+MOJx7h48aJefPHFlQwRgEkc92flySefdHQ8u38eU6nUkdla3b3MphUOh5XL5Sbee3DeGo2GSqWSarWaDMOQ3+/X2tqa/H6/wuGwrl69KungxMtCoTB06WmtVlMqldLa2ppKpdKpDoa6B0FUKpXewQ2LNMt4lX4WWD1uzOJ6iRAMAAAMsfBBWDwe1507dxwZ69KlS46MA2A+arXasZvsFwoFx66xsbHRC8JM01zI/cBM09S1a9d6p4mGw+HeCbqGYfROwew/bXTUUs9uwGiapjKZjJrN5sz6d4thGEqlUjIMY6GXvq7CzwKrjVlcAABgkSx8EHbx4kXHXvT+p//0nxwZB8B8HLfJ/jSb9h/H7/crnU4v9KmQqVSqN5PpuJM2DcNQJpPp1UgaGaasra0tdDjkhHA4rHq9LknK5/MLO/NvFX4WwCh2Z3F5PdI3b4+uAQAAOMlCnxrZdeHCBUfG+bu/+ztHxgEwe93lf4dtbGw4fq1UKiVp+MmRw3SXtkUiEXk8HgUCASUSCUfCta2trV7Alcvljl3uGA6Htb29PfBLg+O+d/1KpZLC4bDC4bAqlcrUfS66w4ctLJJV+1kA0/B4pDPe4Q8OGQcAAMMs/IwwJ+3s7LjdAgCbTgoEptkg/yTxeFyFQmHsfQRN09Tly5ePLN80TVO1Wk21Wk2FQmGqjf03Nzd7bx83Q65fLpfT7373O21tbY0M9eLx+EotwXNrj8hMJqNSqTS0ZtV+Flg9zOICAACLZCmDsM8//3ysZSSGYahUKrH0BFgi/cv8uma5iXgulxur3jAMxWKxkX+vdOu2t7fH7n+Sva0KhcKJs+kwX+VyWeVyeWQQBpx2Ho90hqALAAAsiKUIwj7//POpX9xZliUPc+WBpWAYxrF/1mcxG2wSpmn2NjhPJpNKJBK6dOmS7t+/r+3t7WP3okokEmo2mwqHw2Ndp1+tVht6EmTXxsZGb7kn3NHdtw0AAADAYln4IKz/RLdFOu4ewOycFHhHIpE5d3K87my142Z5xeNxZTIZJRKJI/eRSqV6m7fbcTg0y+fzunLlysjDAronSi7qKZinnWmaC70nGQAAALDKFnqz/J/97GcqFAq9AIwZXcBqOCkIc2ufp+MMW+rY3bz+sEajceySz5P4/f6BIMs0TcViMVszYy3LIgRzQXffOJamAgAAAItpoYOw7ibRHo9HlmXpwoULSiaTyuVyyuVyKhQKIx/dU9Z4QQhMJ5/Py+PxTPSIxWJjXeukfbEW5c+x3+8fud9XOBweOMWx67iPDXO43jAMRSIRR06kbDQaymQyI2famaapcrmsWCw2cN3u8r9AICCPx6NIJHLsslDDMJTP53unakYiEWUymWN/zt3rHH4OHZZIJHrj9T+c3AuyXC4PXCcQCCgWix17j9LB9/PChQtHDk/o7++k77Xdn0WXaZra2tpSIpHoff+7/eXzeVtBnGEY2traUiQSGei5/2cQiUR6y4ABAACAU8FaYB6Px/J6vZbX67VqtdpUYzWbTcvr9TrUGRZBMBi0JFnBYNDtVmZC0pHH/v7+XK6dTqePvb6Tj3A4PPb1t7e353L/h+VyuYE+4vG47a/1+/1H7mNc8Xj82O9HNBq16vX6WGPV63UrnU4P9OX3+4/U7e/vW4VCwYpGowPXLJVKlmUd/Z70P9LpdG+cYXXhcPjE5/Th58BJCoWCrT8j9Xrd9s+gUqn0vi+VSmVgjHA4fGLv+/v7Vr1eP9JTvV4fePSPZ+dncVipVOrVFwoFq16vW81m06pUKgM/r2QyeeRr9/f3rVwu17uP/h739/eP/Lz7+2o2myN7AwAAAOxw8/X8Qs8I687+yOVyunz58lRjhcNhXbhwwYGugNWUTqdVr9cneox7at5JM78WZVbKODPTjps5dnjG0Cjb29u9fb8OjxOLxWzP2DEMQ7du3bI96ygajR7Z8L1erysWi6nRaKhSqajZbGp/f3/g1M1yuaxGo6FEIqFarabt7W3t7+9rf39f29vbve+fYRi9mb+H2d3s/7jvyzRqtVrv2hsbGwPjR6NRVSoVSQe9X7t2beBr/X6/otHokUMduh/r/9y4P4uufD6vTCYjv9+vZrOpXC6naDSqcDisZDKper3e67larSoSiQw8N+7fv69EInHkebmzs6MLFy70lvU2m02VSqXez8o0TTb/BwAAwOkw9+htDLFYzPJ6vdbPfvYzR8abdlYZFgszwmbnuBlZhUJh4vEOz8bRiBlhh2fUdB/d2UjzdnhW03EzbU7SnV3kxH2c9H2ZZNz+sUbNQjo8S+ikmXmHZ671zwzr1/89Oena29vbtmZw7e/vOzojLJlMjnzOjxrHbu9ddn8W/TPBRv2s+2d8nTSDsb9Hv99/7M/18PN3Xn8HAQAA4HRjRtgJurPA7t+/7+h4ABbbos8IG8fhkx+lye8jl8tpf3//xFlQ3dMq7Yx/XF8n6T+kIJ1On7g/2uGTEk+aCdjfv2maC/tzPel52P9xJzbFt/uzyOfzveun02lbtdLBLLfjDmnov48bN24c+3M9/Fzb2dmx1SsAAACwqBY6CPvRj34ky7LGXkZ0kvfee8+RcbBYWq2WQqHQ0EexWHS7TYzhpGCg2WzOuZPpHRem/O53v5tqvEqlonq9fmQJnnQQely+fNnRcMnuUtD+n9s4y0cX6YTFGzduqFAoqFKpjAybpPmFs+VyuXctO8HZ4UNixj2koV//9RbpZwUAAIDFVCwWR75Gb7VarvW30EHY+fPn9eMf/1i3bt3Sv/7rv0493rj7FGE5dDod7e3tDX20222328QYTppxdNyslkV3XGjx5JNPTj1uNBo9cf+1RqNxZP+qeZj0VE+nZv06we/3K5fLnbgnm1O/mBnX9vZ27227M8j6/xwt458dAAAALKd2uz3yNXqn03Gtv7OuXdmmXC6n7e1tpVIp/fKXv5x4nHv37rn2Agaz5fV6tb6+PrTG5/PNqRs4JRqNHvkzaxiGTNOcOHBZFOMsSxylu1QxFosNzE6qVquq1Wonhopu8/v9C7sksp9hGKrVagqHw65+LyeZiXX4eXYa/uycVpYldazhNV6P5PHMpx8AAIBp+Hw+BYPBoTWtVsu1MGzhgzDp4Dfhly5d0lNPPaV8Pj+wX80w9+/fl2maajab+vDDD2fcJdyyvr6u3d1dt9uAw65evXpseF2r1Rw/KXDWDoc+TgZh3fG6pzn2X6dUKi1sELboGo2G8vm8otHoVMsKndL/c7Ubih0+kfL+/fsEYQuqY0ln3xpe883b0hmCMAAAsASy2ayy2ezQmlAopL29vTl1NGgpgrBf/epXkg72B5r0+HbLsuThV6mApIMX+Zubm6pUKm63cqJ0Oj2w4XdXqVRauiDs8Myn4/b2OqxWqymfz6ter9u6Rjgc1o0bN5RKpXofYxbsZDKZjMrlstLp9EKEYNJkG/Qf/qWR0wEsTj9mqgEAgNNoofcIk6Tvf//7SiQSunv3rjwejyzLGvuxiAzDOHLC2rDaTCajSCQij8ejQCCgWCymTCazlBsXj3PvmI1r164t/LI0v99/bOBVq9WWKuA5/H22O0MrHA6r0WiMtbfT4e/XMv794LZuCCZNt8G80/pDLLsnbfbvvUYIhkl0Z6oNe4wKyuAey5IedYY/7P432cmxAABw20IHYTdu3FCpVOqFWZOGWvMMw0zTlMfjGfmIRCK2XphsbW0pEomoXC73XtSapqlGo6FyuaxIJKKtrS1bvQUCAVu9HfewMxPP6XvHbHSDpGFhpNObl0863klBxHEzxaY1q2BwZ2dn4H27s1q7f0YmnQUr2Zt5tuycfK52/16VDr7/i7SM8OrVqwPvd/scpv+U1WWbRbkMCAaw6JwMMglFAQCnyUIvjeyehtadCRaPx5VIJOT3+8feJ+z69ev6/PPPZ9jtATsvTrpGvZhPJBKq1Wry+/2Kx+MKh8MyDEONRmNgpkc+n1c4HB76QqdarU71Qt/ODC4n7x2zYZpmb+ncuC+Mf/e73znai50AIxwOq1AoHHm+1Go1bW1tKZfLOdJLd5ZiPB53/HTZw6f9jfN97/6Zz+fztmYnHZ4Bdjg8WSaH/44/aaN3J2e99c++GzauG7Mpk8nkwF5zpVJp5PO//342NjZm2d5Kmve+Xh/clV6NOTOWkxa1LztY+gkAwGpa6CCs0WjI4/HI7/drZ2dHFy5cmHisa9eu6cknn3Swu+Ntbm7aqusGWyfJ5/Oq1WoqFArHvtjZ2toaCAdSqdTQmW/Tvri38+LdqXvHbF5om6apy5cv9wKFcX8GTvdkd7zuybGHlwh2NzKfdjP4Wq2mRCLRC92cVq1We2+P++ewG4R1Z4am0+mh9f3jh8Nhx4JCuz+r/rpRXzPq84dns5XL5SP30w0J+zm5IXy1Wj3yd99x1zvs8J8twzCOLG2cpMf+PeC6p1me9PxvNBq9JcSFQmGhZrfhqA/ujq55rSqd8UovX5x9P12L2pdTFvWQAgI6AABma6GDML/frwcPHmhjY2OqEKw71sWLs/1fWrlclmmayuVyI2dQXbp06cTPdV/4bm9vn/giJ5fLqdlsDszCajQaxy6F6r5gCofDyufzisfjtmbUxWIxGYZhK2hw6t5x4KTZKJO+yK/VagN7yl25cmXs60+zBG3aWTvb29tKpVIDoZJ0MFPxpLB4FNM0lc/nVS6Xe6cu2v3e2g2G+pc0p9PpsUO7/vAkk8moXq+fGGqUy+WBZdL9M9GO0//zdHu/uJOuH4/HewFoPp9Xs9lUKpWSaZra3t5WuVzuPTe6YxwOnboOP3+PC6MO//2ZSqVUKBQUjUbVaDRUKpUUjUZ7AaX0h/Bxe3tbGxsbx4bMmUxGlUpF9+/fV6FQUCQSGXjO2v1ZJJPJgRmSqVRK9+7dO3Ifpmnq2rVrkg6edyf9+bD7c+//8+v2c+U0evBQeuMX9mpf/7n03J9KvnMzbUnS4va1ChY1oAMA4NSwFlg8Hre8Xq/1s5/9zJHxGo2GI+OcJBwOW+FweOpxksmkVSgURtbt7+9bknqPk74ml8tZ4XDY2t/ft91Ds9nsjVsqlUbWO3Xv4wgGg5YkKxgMzvW685BOpwd+tt1HPB63ms3myK/f39+3tre3ez/7w+NUKpUTv7b/Z3/4Mc5zqF80Gj12PDvPrX65XO7YcaLRqLW9vW1rjP39fatQKFh+v7/3PR11X4ev6/f7R16n//sYj8dt9XZYqVQ69n6TyaSVy+WsUqlkpdPpgZ+x3efI4Z/JSc+Jw3/PRKPRE8dMJpO2fr7b29sDdel0+sRrd39Ohx9+v7/3M++viUajVrPZPPIztdvb4brj/o497s9nMpkcGOek5+px92r3Z9FVqVR69+z3+61SqWQ1m02r2WxapVKp93wY9u+I3Z/B4bpJn8uLpNOxrG8eDX90OqPH+eaRZenN4Y9vHo0e5+/+n9Hj9D/+7v+Z/ntgx6L25SQ7P8O/31nMvuw8t5wax+mxAACwLHdfzy90EFapVCyPx2P9zd/8jdutjFSpVCZ6YX+ccV5o9L8APunafr/fqtfrY/VQKBRshx9O3vs4TmMQVq/Xh74Qd+px3M90f3/fKpVKJwYPkqxwOGyVSiXbgVi9Xrfi8fjQXnK5nK3gpmt7e/vEYM3v91vJZNIqlUrW9va2Va/Xre3tbatUKlmFQmHg6/x+/8jAoeu4cDAcDp8YvvUHFYcDknFsb2/3+qxUKlY6nbbi8bgVjUYHfk7d+x4VBnafXyf9jKPRaC88GVYbDoetZDLZex4cDuMOByfdMbe3t098PoTD4WPDmP39/YHxo9GolcvlBmq6Hzv8PNrf3x95v8dds1Ao9K4XDoetXC438Jzf39/v3Uf/9+yw/iA6Go0OPN/G+VmcpFQqWfF4fCAU637dSX9Gh/2Z7P8ZNJvNoXV2flmzqBYtZPirn44XOH33p9N/D+xY1L6c9Pc79u7tH2b7e9Qj5vkctRv0EYQBAJzm5ut5j2VZlhZYLBaT1+vVnTt3ph7ro48+0r//9//ega6O6i4jPG6ZyiwFAoHeUpV6vX7s0shh+8icJBaLqdFoKB6Pj1xi5da9h0Ih7e3tKRgMand3d27XnYVyuTzV6YDjiEajqtfrAx/zTLDRiN/v1/7+/rGfO24Zox3DlgMfVq1Wtbm52dsHya5wOKxMJqN0Oj3W87W7H9Xh+/L7/bp06VJvI/OdnZ3esrtKpTL1HmYAnPWoY3PZ2Yhzte2M8/fJ0RvJ/2//l3RnjH/C/reQ9P///9mvn9Si9uWUBw+l4DvSl78fXfvEY9LexvyWfjr1HL1ZP9jDbZR/uDJ6jzenegIAoMvN1/ML/89VpVJRvV7XP/7jP049lt3N3MfV3ZTYNE0FAgFFIhFlMpmJgoBxmKbZC8Hi8fixIVj3c+OO2w0Xuhszn8Stez9t0um0rIMZmjN/HA7BJE00zkkhmHTw53aSMcd5riaTSdXrde3v76tSqSiZTPb2b+oKh8OKRqO9vZWazaaazaZyudzYoW04HFalUjlyPekgbK7Varp//76uXLmi7e1t7e/vE4IBp5jdjeRH1QUeH++649ZPalH7csr7DXshmCR98bV0c7zfuczcqOfVuHu8tR9O3ZKtPxMAACyChd4sXzp48Xn9+nV973vf01//9V9PPM6DBw/Gnjli1+FTxAzDULlc7m1kn0wmtbGxcWJQNakPP/xQ0h9eoDulfwP+UZuqu3XvQJff71cymbR1sukyXg/A4nFyI/nnnpY+/Y39az/79PDPW5YzJw463dei+fiz8eo/+Uz6wXdm08thTpzWOUnQN+z+TvsJogCA1bLQQdhHH30kSfqjP/ojBQIBPfXUUxO9+DRNsxcaOa17IuMw1WpV1WpV6XS6d8LYtEzTVCaTUTQaVaVScXRJ4q1btyQdLKEbNq5b9w4AgJucDBleiUpv/tL+Er1XR/xeyakTB53ua9HsfzXb+kk5FbI6GfRxgigA4LRZ6CDsnXfe0d27f/gVlGVZ2trammgsy7Im2gdplHA4rFKpJNM01Ww2VavVBo6a71cul7Wzs3Ps0rRxGIahRCIhv9+v27dvOxqC9S+LvHr16tBaN+4dAAC3ORkynD8nvfu8vb2crr8wv4BhUftyyqIu/XQqZHUy6HN6dhkAAG5b6D3Crly50ts7SJpsQ+95SKfTyuVyKpVKajab2t/fV6FQODagajQaSiQSE1+rWq0qEonIMIzevlyThoPH6Z85Z2f23TzvHQCAeRi1DMzp2UR2lpLdTM5/ydmi9uWE58ZcymlnSeqjzvCHneOpJglZj+Nk0OdUTwAALIqFDsK6p+h5PJ6pNwifJ7/fr1wu19tU+3AoVKvVxgqvTNPU1taWIpHIsZvX5/P5kZva29Vdvnh403G7nL53AACc5MQm927MJnppQcOmRe1rlFei0re/Za92nCWpwx6j9m6TnAtZnQz6FnUZKQAAk1ropZHnz59XNBrV3bt3VSgUFI1Gtba2NvY4hmHonXfe0a9//WvnmxwhmUwqHo/r8uXLA5v1b25uKpfL2RqjVqup2WwqHo+fuC9XtVrV1taW7TGPM86ySDucuHc7Wq2WQqHQ1ONks1lls1kHOgIAOMmpDeCd2uto2TeS/+Cu9GrM7S7ctahLP50KWZ3c421Rl5ECANxRLBZVLBanHqfVajnQzWQWOgiTDgKZSCSiH/7whxOPcfHiRb344osThWhO8Pv9qtfrisVivUDINE3VajXF4/GRX3/cCXXlcln5fF6mafY+ls/nlU6nJ94zbNxlkXZMe+92dDod7e3tTT1Ou912oBsAgNOc2gDeqb2OFnkjeSdP9/N6Dr6vo2qW1csXRwdh81766VTI6mTQt+zBLwDAWe1225HX325a+CAsHo/rzp07jox16dIlR8aZ1I0bNxSL/eFXsNvb2xOHQel0WvF4XLFYbCAMK5fLE8+26i6LDIfDEy2LHMbJez/M6/VqfX196nF8Pp8D3QAAFpVTm9w7PZvIqcDJ6dP9PJ7R4eJp5+TSTzsz8ZwMWZ0K+pwOfp2a4QkAcIfP51MwGJx6nFarpU6n40BH41v4IOzixYsqFAqOjOXUOJOKRqOKx+O9pY0nnbBoVzgc1u3btwcCpklDw/5lkU7NBuvn9L33W19f1+7urmPjAQBOJyf3OnJyNpFTgROn+7nHqZl4816yaSfoc7onp2Z4AgDc4dSWQqFQyLWZZQu9WX7XhQsXHBnn4kX3d3R1+tTEaDQ6EFxNGjD1L4t0Yn+w43BiJADATfPe62jeG8lzut94ujPxhj1mMROv/XB4zSKe1rmIPQEAMClXgzA3Nq8/ybx66V9y6NSeZf3BVf8yyXFUKhVJB3t6RaOz2cxkFvcOAFhMliU96gx/zPlQZ0dP0ltEnO43Ho/nYIbWsIed5XmTzMSb1iKe1rmIPQEAcBxXl0bGYjHt7++7vjfTgwcPFIvF9OjRo5lfqz8MmnRT+8P6g6tJxuxuXi8d7D02K7O4dwDAYlrE5U+LvMm9Ezjdzx1O7T0HAADmw9UgzJr3r4KHmFcvOzs7vbdnsVRwkgMB5rEsUpr9vQMAMMy891+aN073c8eizsQ77ad+AgAwKVeDMM8CHQczr16azWbvbadOTezfF2ySgGkeyyKl2dw7AMA5q3Cam1Ob3C9iyHDaZ7wtKqdn4jn13OLUTwAAjseMsDmrVg/+953L5Rwbs3vao9/vH/vEx/5lkVeuXHGsp+PM4t4BAM5ZxOWMdn1wV3o1NrrODjt7HS1iyHDaZ7wtKqdn4i3icwsAgNPE1SBMku7du6c/+7M/c7WH/iV7s1StVmUYhvx+vzY2Nhwbd3NzU5J048aNsb+2f1lkKpVyrKfDZnXvAIDT74O7o2teqx5sbr7qp9Y5NeMN9q3CTLxFnAEJAMCkXA/Crl27pjfffFN+v3/uJwnev39fhmFMPEOpVqsplUrJNE3F43EVCoUTlxYahqFr165Jkm7fvj10s/itrS3dunVL8XhcGxsbQ2vz+bxM01Qulxt7Npg0uCxynOWKs7p3AAD6PXgovfELe7Wv/1x67k+Z6TQKp/s5axVm4s17lpqTMzwBADjM9SCsXq/PdCaSHZZlTbRHWKVSkWmakg6CoVgspnQ6rVKpNFDXDY3W1tZUr9cHTk88zDRN5fN5SQdLHre2tpTL5VQoFI7UplIpVatVFQqFicK8/mWR4+7ZNYt7BwDgsPcb9mbaSNIXX0s3G6t9Ih8zd9zBTDz7mOEJAHCb1+0GuizLcuUxjeMCvHK5rEAgoFQqpUwmo1gspkQioXQ6bSsI8vv9R2q2trZ6Y+bzeSUSCQUCAUkHG9BPOqOtf1lkJpMZ62tnce8AABz28Wfj1X8yZv1p4/EcBAjDHst82MEyYybe+DM82w+H11iW9Kgz/LGCWxIDAEZwfUaY2xvmT3P9eDyuZrOpQqGgWq2m+/fv92ZJNRoNRaNRbWxsKB6Pj7UcsF6va3NzU7VaTYZhDIwpHYRQlUpl6iWG3WWR3XsZx6zuHQCAfvtfzbYewPw4PcNzmQ/4AAC4x9UgbH9/383LOyIcDh9ZDjgtv99/7FJIp21vb0/19bO4dwAA+gUed7aepYOYBZ5X9kwyw3OVlzoDAGbD1SDs/Pnzbl4eAAC4yM6G2M89LX36G/tjPvv08M/Pe9NvrAaeV/YwwxMAsAgWZo8wAABwetjdEHtU3StR6dvfsnfNJx6TXj3+AGMAC8DpGZ4AAEyCIAwAADjKyQ2xz5+T3n3e3ljXX5B85+zVApi/50bM2Dxs1AxPAAAm4fpm+cC0Wq2WQqHQ0JpsNqtsNjunjgBgtTm9IfbLFw9mjw1zM3lQB2BxvRKV3vylvb8fmOEJAMurWCyqWCwOrWm1WnPq5iiCMCy9Tqejvb29oTXtdntO3QDA6WZnXy83NsR+iRAMWHjdGZ6jgm2JGZ4AsMza7fbI1+huIgjD0vN6vVpfXx9a4/P55tQNACwvu/t6nfEOn33FhtgATsIMTwA4/Xw+n4LB4NCaVqulTqczp44GEYRh6a2vr2t3d9ftNgBgqY27r9dzf3rybA02xAYwDSdneNqZxQoAcJadrYlCoZBrs8bYLB8AAEy0r9dJ2BAbwDw4dTotAGC1EIQBAICJ9vU6yStR6dvfsjcOG2IDmISTp9MCAFYLQRgAAHB0X6/uhth2sCE2gEk4OYsVALBaCMIAAIDj+3rZ2eiaDbEBTMrJWawAgNXCZvkAAEDPPS19+hv79U7s62V3Q2yvR/rm7dE1AFYHp9MCACbFjDAAALDQ+3p5PNIZ7/CHhyAMWCmcTgsAmBQzwgAAQG9fr9eqo2vZ1wvApJya4enGLFYAwOnAjDAAACCJfb0AzJ5TMzwXeRYrAGCxncog7MGDB9rY2Bjra9rttn7961/PpiEAAE4Ju/t6AcAsOX06rWVJjzrDH5Y1ddsAgAVwKpdGGoahra0tbW5u2qr/m7/5G7355puKRg9+VRSPx21/LQAAAID5e/ni6OXcdmexdizp7FvDa755WzrDfoQAsPRO5Yywrn/5l3/RT37yE21sbOijjz5Su90+UnP37l3l83lFo1HduXNHd+7cUTgc1tWrV13oGAAAAIBTmMUKADjsVM4Iq9VqsixL4XB44OORSETb29v6t//23/Y+duvWLUkHs8C6rl27pkqlon/6p3/Sn/3Zn82naQAAAAAAAMzUqQvCujO8PB6PrL6F/OFwWL/97W+VSCT0z//8z72PNxoNeTwePfnkkwPjpFIpfe9739OdO3fm1jsAAKeFUyfDAQAAAE46dUsjS6WSJMmyLKXTaTWbTXU6Hf32t79Vp9PRn//5n+u9997r1d+/f1+S5Pf7B8aJx+Oq1+tsoA8AwAScOhkOAAAAcNKpC8J2dnYUjUbVbDZ1/fp1XbhwYeDzN27c0Pb29shx1tbWJB0sswQAAAAAAMDyO3VLI+/du6d79+7J5/OdWNNsNntvm6Yp6Q/BV9f58+cliaWRS6DVaikUCg2tyWazymazc+oIAAAAAIDVVCwWVSwWh9a0Wq05dXPUqQvCAoGAPEPWWty4cUORSKT3/klLIx88eCDpD0EZFlen09He3t7QmuNODAUAAAAAAM5qt9sjX6O76dQFYS+++KKSyaTK5fLA6ZCS9JOf/ET5fH7gNEnTNOXxeI6cMGkYhqSjARkWj9fr1fr6+tCaYTMEAQAAAACAM3w+n4LB4NCaVqulTqczp44GnbogrFAoKBKJKBwO9x6GYfSCLUn68Y9/rO9///tKJBK9j3VngHWVSiV5PJ4jSyaxeNbX17W7u+t2GwCw9DjpEQAAANOyszVRKBRybdbYqQvCJGl7e1upVEp3794d2A9Mksrlsl588UVZlqVkMimPx6PLly/rhz/8ob773e/q2rVrqtVqKpfL8ng8SqVSLt0FAADz5fFIZwi6ACyJeYf3H9yVXo05Nx4AwB0ey7Ist5uYlWq1qg8//FCNRkPhcFiZTEYvvvjikc+/99576nQ6unTpku7duydJsixLkUhEv/nNb9xqHyN0E+RgMMiMMAAAAEzsZl16rTq67h+uSC9fnH0/AHDaufl6/lQHYeMyTVOpVEq3b99WOBzW9va2Lly44HZbOAFBGAAAAKb14KEUfEf68veja594TNrbkHznjv+8ZUmdEa+uvJ6DGbgAsMrcfD1/KpdGTsrv92t7e1sPHjzQ+fPn3W4HAAAAwIy937AXgknSF19LNxvSD75z/Oc7lnT2reFjfPM2y9ABwE1etxtw04MHD7SxsXHk44RgAAAAwGr4+LPx6j8Zsx4AsFhWOgg7f/68KpWK/vZv/9btVgAAAAC4YP+r2dYDABbLqV0a2W63tbOzI9M0df/+/WNrms2mDMPQ9evX9Z//83+ec4cAAAAA3BZ4fLb1AIDFciqDsI2NDW1tbdmuPykoAwAAAHC6Pfe09OkYB8U/+/TsegEAzN6pWxr5s5/9TIVCQZZl2XpIUqFQcLlrAAAAAG54JSp9+1v2ap94THo1Ott+AACzdeqCsFKppHg8rnq9rmazqf39fRUKBe3v7/cezWZTOzs7ikajMgxD3/ve99xuGwAAAIALzp+T3n3eXu31FyTfuZm2AwCYsVO3NNIwDP32t78d+Jjf7x84CfL8+fO6cOGCyuWyUqmU7ty5M+82AQAAACyIly9Kr1WH19xMHtQBAJbbqZsRFg6Hj3zsypUreu+99458PBqNqtls6qc//ek8WgMAAACwpF4iBAOAU+HUBWH7+/tHPnb+/Hnt7Oyo3W4f+dza2pp+/OMfz6M1AAAAAAAAuOjUBWGxWExXr17VRx99pI8++qj38XQ6rVgspn/5l3/pfewnP/mJDMOQYRhutAoAAAAAAIA5OnV7hOXzeUUiEVWrB4v8C4WC/st/+S+KRqP6kz/5E4XDYfn9fpmm2fua45ZTAgAwS5YldazhNV6P5PHMZxwAAABgFZy6IOzChQv68MMPdeXKFUkHG+V3VSoVXbhw4cjyyXw+P88W4bBWq6VQKDS0JpvNKpvNzqkjABitY0ln3xpe883b0pkRAZZT4wAA5uODu9KrMbe7AIDZKRaLKhaLQ2tardacujnq1AVhkpRMJtXpdHTv3j1duHCh93G/36/PP/9cuVxO9Xpda2trymQyevHFF13sFtPqdDra29sbWnPc/nAAAACAkz64O7rmtap0xssJlABOr3a7PfI1uptOZRDW1R+CdZ0/f16lUsmFbjArXq9X6+vrQ2t8Pt+cugEAAMAqevBQeuMX9mpf/7n03J9KvnMzbQkAXOHz+RQMBofWtFotdTqdOXU06FQHYVgN6+vr2t3ddbsNAAAArLD3G9KXv7dX+8XX0s2G9IPvzLYnAHCDna2JQqGQa7PGlvLUyJ/85CcLPR4AAACA1fLxZ+PVfzJmPQDAGUsZhN26dWuhxwMAAACwWva/mm09AMAZSxmE1et1/e3f/u3UG6C3223duHFDjUbDoc4AAAAArKLA47OtBwA4Y2n3CMvlcsrlcm63AQAAAGDJeT3SN2+PrhnmuaelT39j/5rPPm2/FgDgnKWcEdZlWZYjDwAAAACry+ORzniHPzwjgrBXotK3v2Xvek88Jr0anb5vAMD4ljoI84z61wgAAAAA5uD8Oend5+3VXn9B8p2baTsAgBMsZRD24osv9mZzJRIJ1Wo17e/vj/VoNpuq1+v64Q9/6PbtAAAAADgFXr44uuZm0l4dAGA2lnKPsEqlogcPHuidd97RjRs3lEgklEgklM/n9Rd/8Re2xjh//rwk6eLFi/rZz342y3YBAHDVB3elV2NudwEAkKSXCMEAwFVLOSNMOgiyCoWC7t+/r1u3bul//s//qcuXL+upp57ST3/607HGisfjM+oSAIDJfXDXmZrXqvbqAAAAgNNuaYOwfslkUjs7O9rZ2dGf//mf69q1a3ryySf1ox/9SO12e+TXX79+fQ5dAgDwB04EWA8eSm/8wt71Xv+51H5orxYAAAA4rU5FENYVjUZVqVS0v7+vfD6v69evKxAI6D/8h/+gf/qnf3K7PQAAJDkXYL3fkL78vb1xvvhautmwVwsAcJ9lSY86wx+W5XaXALB8TlUQ1nX+/Hnlcrnessnf/va3ikajeuaZZ/SP//iPbrcHAFhxTgVYH3823nU/GbMeAOCejiWdfWv4o0MQBgBjO5VBWL/ussk7d+7oT/7kT/Tiiy/qySef1N/+7d/aWjYJAIDTnAqw9r8ab5xx6wEAAIDT5tQHYV3RaFTvvfee0um09vf3lcvlFAgE9MYbb+jzzz93uz0AwApxKsAKPD7eOOPWAwAAAKfNSgRhn3/+ub7//e9rbW1NN27ckMfjkSRZlqXr168rk8m43CEAYJU4FWA99/R44zw7Zj0AAABw2px1u4FZ+vWvf618Pq9arSbpIPjyeDyy/teukul0Wvl8XhcuXHCzTUyp1WopFAoNrclms8pms3PqCACGe+5p6dPf2K8/KcB6JSq9+Ut7+4098Zj0atT+NQEAAIBJFItFFYvFoTWtVmtO3Rx1KoOwjz76SJubm2o0DnYXtvqOUzl//rzS6bQ2NjZ0/vx5t1qEgzqdjvb29obWsB8cgEXiVIB1/pz07vPSa9XR41x/QfKdG6tNAAAAYGztdnvka3Q3nZogrN1uq1wua3NzU6ZpShoMwMLhsPL5vK5du+ZSh5gVr9er9fX1oTU+n29O3QDAaE4GWC9fHD3OzeRBHQBgtrwe6Zu3R9cAwGnm8/kUDAaH1rRaLXU6nTl1NMhj9adFS+jzzz9XoVBQuVyWdHT5YzweVz6f1+XLl91sEzMQCoW0t7enYDCo3d1dt9sBgLE86khn3xpeczMpvRKbfpxv3pbOrMSuoABwevD3O4DTzM3X80v71+avf/1rXb16VZFIROVyeWD2l2VZSqfTajab+vTTT0eGYO+9996s2wUAYGwvMYsLAAAAcNRSBmHPPPOMYrGYqtWqLMvqhWDnz59XLpfT/v6+rl+/bnsT/FKpNMt2j2UYhhKJhO3aTCajSCQij8ejQCCgWCymTCYjwzAWpk9J2traUiKRUCAQkMfjUSQSUSqV6h1YAAAAAGC+LOtghtmwx3KvEwIA+5Zyj7B6vd572+Px9Pb/+t73vjf2WDdu3Ohtqu8E0zQVCARs1abT6ZE1W1tbyufzR67RaDTUaDRULpdVKBSUy+Vc7bNWqymVSsk0TcXjcVUqFYXDYTUaDeXzeSUSid7H/X7/WL0CAAAAmFzHsrnMkv3LAKyApQzCJA3sAxYOh1WpVFSpVGx//f3792UYRm9jfad09yqz43DAdVgikVCtVpPf71c8Hlc4HJZhGGo0GgMzwfL5vMLhsJLJpCt91mq13qyxdDo9MMOu21csFlOtVlMsFlO9XicMAwAAAAAAc7e0QZhlWYrH4/L7/VpbWxvra+/fvy/LsnThwgU1Gg15PM796mNzc9NWXTfYOkk+n1etVjtxttfhmWKpVErjnHvgVJ+maSqVSkk6CL1OWmZaqVQUiURkGIZSqZS2t7dt9woAAAAAAOCEpQ3CTNOUz+ebepxarabvfve7DnR0MMvKNE3lcrmR+2pdunTpxM8ZhqGtrS1tb28rHo8fW5PL5dRsNgdmdjUaDUWj0bn1Kam3HFIaPnOsOzOsWq2qVqupXC7bWnIJAIvEsg6Wlwzj9UgO/n4FAAAAgIM81jjTiBbEX/3VX+nTTz91bLxLly5pZ2dn6nEikYgkqdlsTjVOKpXSM888M3Lfr8P7fNndK8ypPg3D6I0lSfv7+0OXPFar1d7sMb/fr/39/amu7+ZxqwBWk5NH2Ts1lpM9AQAWh52/3/8+Kb0ac2Ys/q0AME9uvp5fyr/qMpnMwo1XrVZlGMbI/bTs6M7WGsXv9w8sW7Sz75aTfRYKhd7b3WWqw/TvYWaapqrV6tQ9AAAAAKfRB3dH17xWtVcHAPiDpQjCfvKTn+hXv/pV7/0XX3zR0fGvXbs29Ribm5vy+/26cuXK1GONs3/W/fv3e2+PWsYoOdtn/7JMO0syJQ0Ed7du3Zq6BwAAAOC0efBQeuMX9mpf/7nUfjjTdgDgVFmKIOy///f/rkQioZ/+9KdTjXPjxg2dOXNG/+7f/Tv90z/9k0PdHezN1Wg0eksVI5GIMpnMzGc8mabZ258rHo+PDKOc7LPRaAy8/8wzz9j6uv4emREGAAAAHPV+Q/ry9/Zqv/hautkYXQcAOLAUQZh0cEpkOp3Wj370o4nHyOfzsixLv/3tbxWNRvX555870tvhZYaGYahcLiuVSsnj8SiVSh0Jjpzw4YcfSjqYZVWpVObaZ61WG3h/2MmSw+pm8X0BgFXi9Rzs6zLs4WXzfgBYKh9/Nl79J2PWA8AqW5ogrOvTTz/V1atXJ/raCxcuKBwOK51O69q1a47sk2UYxpFQ6LBqtapYLObo3mamaSqTySgajWp7e3vk/lxO93nnzp2B9+3sTyZJTz755MD7ThxSAACrzOM52Nx42INTLAFguex/Ndt6AFhlZ91uYFw7Ozu9UxV/9atf6d/8m39j+2vr9frA+0899dTU/YTDYZVKJZmmqWazqVqtJsMwjq0tl8va2dk50se4DMNQIpGQ3+/X7du3bYVQTvd5+GsnnRE27cmVALCsujO5RtUAAFZP4PHZ1gPAKlu6GWGSVKlUlEqlFI1G9S//8i8TjXHv3r2BjeankU6nlcvlVCqV1Gw2tb+/r0KhcGxA1Wg0lEgkJr5WtVpVJBKRYRi9vb62trbm3udJIdq4unucAcCqYSYXAOAkzz09Xv2zY9YDwCrzWJZlud3EKFeuXFG1WpXH49GjR496H6/Varp69aqq1ar+4i/+wvZ4Dx48UCwWUyQS0X/9r/91Fi33VKtVXbt27UjgUygUlMvlbI1hmqbK5bJKpdKJAVQymbS1T5hTfXoOvTqz+zSq1WoDAds0fYdCIe3t7cnr9Wp9fX2iMfpls1lls9mpxwFwej3qSGffGl7zzdsHIRYAAJN68FAKvmNvw/wnHpP2NiTfuZNr+PcLgFOKxaKKxeLU47RaLXU6HQWDQe3u7jrQmX1LtzSyXzwe1507d/RXf/VX2tjY0H/8j/9x5Nf86le/UiqVkmmaevPNN2feYzKZVDwe1+XLlwc2ht/c3LQdhNVqNTWbTcXj8RP3+qpWq9ra2rI95iz6nIQTM8I6nY729vamHqfdbk89BgAAADCt8+ekd5+XXrNxyPr1F4aHYADgpHa77cjrbzctdRAmHew5tbOzoytXrqjZbOqdd945sfZv/uZv9Oabb8qyLAUCAX3ve9+bS49+v1/1el2xWKwXMpmmqVqtpng8PvLrk8mkksnkwMfK5bLy+fxAkJTP55VOp21vXD9Nn36/35EQa9Je+zk1I8zn8009BgAAAOCEly+ODsJuJg/qnPDBXenVmDNjATi9fD6fgsHg1ON0Z4S5YemDMOkgTPn000/1+uuv6+rVq7p169aRmo2NDW1tbcmyLHk8HhUKhbn3eePGDcVif/jXZXt721YQdpx0Oq14PK5YLDYQSJXL5alncNnpc21tzZEgbG1tbeox1tfX5z6VEgAAAHDbSzZDsA/ujq55rXqwNNKpYA3A6eTUlkLdrY7ccKpWgV+/fl2XL1/WM888o3/913/tffz27du94Mvj8Sgajc5tNli/aDQ6EChNu+F8OBzW7du3Bz52586dqcaU7PU56Uyuw+GZEzPCAAAAABzvwUPpjV/Yq33951L74UzbAQDXLV0Q9t/+238b+vl0Oq1SqaS//Mu/7J0o2Q3Buhu6uzEbrGuaEyOPE41GB5ZNOnWa46g+L126NPC+3dlhh0/qjEQiY/UFAIvOzm/dAQCYl/cb9jbdl6QvvpZuNkbXAcAyW4og7MKFC5IOgqx0Ot0LuE4SjUZ169Ytvfjii/roo49Uq9V6pxxGo1H95V/+5cx7Pkk4HO697cSyQEm6evVq720nlitKo/vsXzop2Q/gms3mwPuTLg0FADfYXVpCGAYAWBQffzZe/Sdj1gPAslmKIKxQKGh/f1+VSkWXL19WPB7Xe++9N/RrupvoX79+vfcxj8czEBq5oT9gcmpZYDQadXzMUX0enhFmNwjrD+r8fv/AdQBgkbG0BACwjPa/mm09ACybpQjCJOn8+fN68cUXdf36df3mN7+xvcfXp59+qh/+8Ie9ZZH9oZEbdnZ2em87vUxSOhpQTWpUn9FodCAgs7s3Wf+4TvUKAPPA0hIAwDIKPD7begBYNksThE2jUCjoww8/lGVZunfvnqu99C8NdGpZYP9sLKfCNTt9Xrlypfd2o2HvFV9/XT6fn7A7AJg/lpYAAJbRc0+PV//smPUAsGxWIgiTpGQyqZ2dHd26dcvVPqrVqiQpl8s5NmY3XPL7/QMb50/DTp+ZTKb3dq1WGzlmf004HGZ/MABLhaUlAIBl9EpU+va37NU+8Zj0qrsLaABg5lYmCJMOlvN9+umnrl2/Wq3KMAz5/X5tbGw4Nu7m5qYk6caNG46MZ7fPaDQ6EGZ1w7OTVCqV3tvMBgOwbFhaAgBYRufPSe8+b6/2+guS79xM2wEA161UEOa0Wq2mQCAgj8ejRCIxdHmgYRi6du2aJOn27dtDN7Xf2tpSLBZTPp8feQpktyaXy504G2xWfUpSqVTqvd0N5I5jmqbK5bKkg6WW6XR66LgAsGhYWgIAWFYvXxxdczNpr86ypEed4Y//tT0zACwkgrApVCqVXlBVq9UUi8UGlgt2dT+3tramZrM5dMN+0zSVz+fVaDS0tbWlQCBw4uypVCqlra0tFQoFFQqFufbZFQ6HezO9uj0f5/Lly5IOlm/2zwwDgGXB0hIAwGn2ko0QTJI6lnT2reGPDkEYgAVGEDaFVCp15GPlclmBQECpVEqZTEaxWEyJRELpdFr1el3hcHjomH6//0hNNxBLpVLK5/NKJBIKBAKSDja1H7Xf2Cz67JdMJrW9vS2/3698Pq9UKqVGoyHTNHvhWqPRUDQa1b1790bOMgOARcTSEgAAAGD5EYRNIR6Pq9lsKp1OKxwODwQ8jUZD9+/f18bGhvb391UoFGwHQPV6XblcTtFo9MiYhmEolUrp3r17qlQqtgKrWfV5+BrdrzcMQ5cvX+4FbWtra6pUKqrX64RgAJaak0tLAAAAAMyfx7JYwY3lFAqFtLe3p2AwqN3dXbfbAbACHnUOlnwM883b0hl+zQQAmJJljV5i6PVIHs/osZz894t/CwE4wc3X82fnejUAAAAAwEgej3TGRsgFABgPQRgA4FRz8jfqAAAAAJYbQRiWXqvVUigUGlqTzWaVzWbn1BGARdI93WqYb97mt+4AAACAE4rFoorF4tCaVqs1p26OIgjD0ut0Otrb2xta026359QNAAAAAACrq91uj3yN7iaCMCw9r9er9fX1oTU+n29O3QAAAAAAsLp8Pp+CweDQmlarpU6nM6eOBhGEYemtr69zaiQAAAAAAAvAztZE3VMj3cChtgAAAAAAAFgJBGEAAAAAAABYCQRhAAAAAAAAWAkEYQAAAAAAAFgJbJYPAAAAAKeY1yN98/boGqd8cFd6NebceADgJIIwAAAAADjFPB7pjENB1wd3R9e8VpXOeKWXLzpzTQBwEksjAQAAAAAjPXgovfELe7Wv/1xqP5xpOwAwEWaEAQBg07yXlgAAsEjeb0hf/t5e7RdfSzcb0g++M9ueAGBczAgDAMAmj+dgqcewh4cgDABwSn382Xj1n4xZDwDzQBAGAAAAABhp/6vZ1gPAPBCEAQAAAABGCjw+23oAmAeCMADAyrNzAhYAAKvuuafHq392zHoAmAeCMADAqWb3mHfCMAAAhnslKn37W/Zqn3hMejU6234AYBIEYQCAU4tj3gEAcM75c9K7z9urvf6C5Ds303YAYCIEYQCAU2uSY94BAMDJXr44uuZm0l4dALjhrNsNANNqtVoKhUJDa7LZrLLZ7Jw6ArAoJjnm/QffmU0vAACsipcIwYCVViwWVSwWh9a0Wq05dXMUQRiWXqfT0d7e3tCadrs9p24ALBKOeQcAAADmq91uj3yN7iaCMCw9r9er9fX1oTU+n29O3QBYJBzzDgAAAMyXz+dTMBgcWtNqtdTpdObU0SCCMCy99fV17e7uut0GgAX03NPSp7+xX88x7wAAAMB07GxNFAqFXJs1xmb5AICFY1nSo87wh2WNHodj3gEAAAD0Y0YYAGDhdCzp7FvDa755WzrjGV7TPeb9teroa3LMOwAAAHD6MSMMAHCqccw7AAAAgC6CMADAyuOYdwAAAGA1EIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlnHW7AQAAAADAcvB6pG/eHl0DAIuKIAwAAAAAYIvHI50h6AKwxFgaCQAAAAAAgJVAEAYAAAAAAICVQBAGAAAAAACAlcAeYVh6rVZLoVBoaE02m1U2m51TRwAAAAAArKZisahisTi0ptVqzambowjCsPQ6nY729vaG1rTb7Tl1AwAAAADA6mq32yNfo7uJIAxLz+v1an19fWiNz+ebUzcA5uWDu9KrMbe7AAAAANDP5/MpGAwOrWm1Wup0OnPqaJDHsizLlSsDUwqFQtrb21MwGNTu7q7b7QBw0M269Fp1dN0/XJFevji8xrKkzoh/6byeg+PgAQAAAMyem6/n2SwfALBQHjyU3viFvdrXfy61Hw6v8XikM97hD0IwAAAAYDUQhAEAFsr7DenL39ur/eJr6WZjtv0AAAAAOD0IwgAAC+Xjz8ar/2TMegAAAACri83yAQALZf+r2dYDAAD3sYcnALcQhAEAFkrg8dnWAwAA93Us6exbw2u+eVs6QxAGwGEsjQQALJTnnh6v/tkx6wEAAACsLoIwAMBCeSUqfftb9mqfeEx6NTrbfgAAAACcHgRhAICFcv6c9O7z9mqvvyD5zs20HQAAAACnCEEYAGDhvHxxdM3NpL06AAAAAOgiCAMALKWXCMEAAAAAjIkgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAAr4azbDQDTarVaCoVCQ2uy2ayy2eycOgIAAAAAYDUVi0UVi8WhNa1Wa07dHEUQhqXX6XS0t7c3tKbdbs+pGwAAAAAAVle73R75Gt1NBGFYel6vV+vr60NrfD7fnLoBVptlSR1reI3XI3k88+kHAAAAwHz5fD4Fg8GhNa1WS51OZ04dDSIIw9JbX1/X7u6u220A0EEIdvat4TXfvC2dIQgDAAAATiU7WxOFQiHXZo2xWT4AAAAAAABWAkEYAAAAAGDhfHDX7Q4AnEYEYS4xDEOJRMJ2bSaTUSQSkcfjUSAQUCwWUyaTkWEYE12/0WgMjOnxeBSJRJTP52Wa5kRj2jXOvQMAAAA4feyEXK9VCcMAOI8gzGGmafaCpWGPSCSicDg8crytrS1FIhGVy+Ve6GWaphqNhsrlsiKRiLa2tsbqL5VKKRaLDYwpHQRUW1tbCgQCKpfLrt87AAAAgNPnwUPpjV/Yq33951L74UzbAbBi2CzfYeMESPl8fujnE4mEarWa/H6/4vG4wuGwDMNQo9EYCLDy+bzC4bCSyeTQ8UzTVCwWszWLLJPJqF6vq1Qq2bsZOXvvAFab13Owqf6oGgAAsHzeb0hf/t5e7RdfSzcb0g++M9ueAKwOZoQ5bHNz01ZdN9g6ST6fV61WU6FQ0P7+viqVigqFgiqViprNpgqFwkB9KpUaec1UKiXDMBSNRnvjNJtNVSoV5XK5I/XlclnVatXW/UjO3TsAeDzSGe/wh4cgDACApfTxZ+PVfzJmPQAMw4wwB5XLZZmmqVwuN3IPrEuXLp34ue4Sxe3tbcXj8WNrcrmcms3mwCysRqOhaDR6Ym+1Wk25XO5IiNadTZbJZJRKpdRoNHqfu3bt2siZZt3xnbh3AAAAAKfb/lezrQeAYTyWZVluN3FaRCIRSVKz2ZxqnFQqpWeeeebYWVr9TNNUIBDovV8oFE78mu6+XNvb20PHNAyjdx9dwwK5/vGl6e99HKFQSHt7ewoGg9rd3Z3bdQGc7FFHOvvW8Jpv3j6Y0QUAAFbTd/9v6dPfjFH/lPTL/312/QCYPzdfz/NSxCHValWGYTiy91V3ZtUofr9/YImh3+8/tq67p1ilUhk5ZjgcPjJjrH+G2HGcvHcAAAAAp9tzT49X/+yY9QAwDEGYQzY3N+X3+3XlypWpxxo1a6vf/fv3e2+ftOTw1q1bSqfTJwZlhx2e/fW73/1uaL2T9w4AAADgdHslKn37W/Zqn3hMevX43V96LOtgVvqwB+ugAHSxR5gDGo1Gb9ZUIBBQOBxWPB5XIpGwtb/WpEzTlGmakg7Cq5P2B7t69epYm9MfHufwUsl+bt07AAAAgOV0/pz07vPSazbO5br+guQ7N7ymY9ncmoGDdgCIGWGOOLwk0DAMlctlpVIpeTyeIxvQO+XDDz+UdLCccdiyx2g0ans2mKReuNY16nTLfvO6dwAAAADL6+WLo2tuJu3VAcA4CMKmZBiGarXa0JpqtapYLKZMJuPYdU3TVCaTUTQa1fb29lhB1yiGYQy8f9JG+W7dOwAAAIDT7yVCMAAzwNLIKYXDYZVKJZmmqWazqVqtdiRI6iqXy9rZ2VG9Xp/qmoZhKJFIyO/36/bt246GYJK0s7PTezudTp9Y58a9AwAAAAAATIogzAGHwyLTNFUul7W5uXlkmWGj0VAikRhrQ/x+1WpVqVSq934gEFChULB1yqRdpVKp9/aokyDnee8AAAAAAADT8FgW52fMUrVa1bVr146EQuOEV91wqVQqnTjjKplMDt0nzC7DMHqb408bsDlx78OEQiHt7e3J6/VqfX196vGy2ayy2ezU4wCr7FHH5ma1LMwHAGClOfl/Bv7/AcxPsVhUsVicepxWq6VOp6NgMKjd3V0HOrOPGWEzlkwmFY/Hdfny5YFN4zc3N22HQbVaTc1mU/F4/MR9uarVqra2tqYOmAqFgqSDZY/TjuXEvdvR6XS0t7c39TjtdtuBbgAAAAAAOJ3a7bYjr7/dRBA2B36/X/V6XbFYrBcImaapWq124kb0/ZLJpJLJ5MDHyuWy8vn8wGyrfD6vdDo98Z5hjUZD5XJZfr/fseWL0967HU7NCPP5fA50A2CUD+5Kr8bc7gIAAADAuHw+n4LB4NTjdGeEuYEgbI5u3LihWOwPr/62t7cnDoPS6bTi8bhisdhAGFYulyeebXXt2jVJ0u3btxUOhyca4yRO3vth6+vrc59KCeB4H9wdXfNa9WBpAsehAwAAAMvFqS2FulsduYFV0nMUjUYHwp+T9vuyKxwO6/bt2wMfu3PnzkRjZTIZNRoNVSoVRaPRqfo6jtP3DmDxPHgovfELe7Wv/1xqP5xpOwAAAABwBEHYnCUSCUfHi0ajA8smJwmYyuVybzP+w0swneT0vQNYLO83pC9/b6/2i6+lm43RdQAAAADgJIKwOetfcri2tubImFevXu29ffiExlFqtZoymYxKpZLS6bQj/ZxkFvcOYHF8/Nl49Z+MWQ8AAAAA0yIIm7P+MGjSTe0P61/KOM6YjUZDiURChUJh5iGYNJt7B7A49r+abT0AAAAATIsgbM52dnZ6b89iqeClS5ds1RmGocuXLyuXy028uf64Zn3vANwVeHy29QAAAAAwLYKwOWs2m723nTo1sX9fMDsBk2EYisViSqfTKhQKtq+xtbU1cY/SbO4dwOJ47unx6p8dsx4AAAAApkUQNmfValWSHJ2F1Wgc7Djt9/tHbnZvmqYSiYSuXLliOwSTpFQqNXV4NYt7B7A4XolK3/6WvdonHpNedf6AWgAAAAAY6qzbDaySarUqwzDk9/u1sbHh2Libm5uSpBs3bgytM01TsVhM4XBY+Xze1gmThmEon89LGtyLbFyzuncAi+P8Oend56XXqqNrr78g+c7NvCUAAAAAGEAQNoVaraZUKiXTNBWPx1UoFE4MiwzD0LVr1yRJt2/fHrpZ/NbWlm7duqV4PK6NjY2htfl8XqZpKpfLjZwNdvnyZRmGIcMwFIlERt5fv1KpNPD+rO4dwHJ7+eLoIOxm8qAOAACsLq9H+ubt0TVO+eCu9GrMufEALC+WRk6hUqnINE1JB8FQLBZTJpM5Utf93NramprN5tCZVaZpKp/Pq9FoaGtrS4FAoDcj67BUKqWtrS0VCoWRyxxjsVhvCeUkDp8qOYt7B7AaXiIEAwBg5Xk80hnv8IfHZhD2wd3RNa9V7dUBOP0IwqaQSqWOfKxcLisQCCiVSimTySgWiymRSCidTqteryscDg8d0+/3H6npBmKpVEr5fF6JREKBQEDSwQb0o/bcSqVSjoZg3TEPm/beAQAAAGAcDx5Kb/zCXu3rP5faD2faDoAlwNLIKcTjcTWbTRUKBdVqNd2/f783S6rRaCgajWpjY0PxeHys5YD1el2bm5uq1WoyDGNgTOkghKpUKrbHrFQqY9yVPbO6dwAAAACw6/2G9OXv7dV+8bV0syH94Duz7QnAYvNYlmW53QQwiVAopL29PQWDQe3u7rrdDrC0LEvqjPiXwOuxtzzhUUc6+9bwmm/ePljuAAAAMK3v/t/Sp78Zo/4p6Zf/++z6AWCPm6/nmREGACuuY9kMrxzcsBYAAMAJ+1/Nth7A6cPv5AEAAAAASynw+GzrAZw+zAjD0mu1WgqFQkNrstmsstnsnDoCAAAAMA/PPT3e0shnn55dLwAOFItFFYvFoTWtVmtO3RxFEIal1+l0tLe3N7Sm3W7PqRsAAAAA8/JKVHrzl/Y2zH/iMenV6Ox7AlZdu90e+RrdTQRhWHper1fr6+tDa3w+35y6AQAAADAv589J7z4vvVYdXXv9Bcl3buYtASvP5/MpGAwOrWm1Wup0OnPqaBBBGJbe+vo6p0YCAAAAK+rli6ODsJvJgzoAs2dna6LuqZFuYLN8AAAAAMCp9hIhGID/hSAMAAAAAAAAK4EgDAAAAAAAACuBIAwAAAAAAAArgSAMAAAAAAAAK4FTIwEAjvF6pG/eHl0DAAAAAG4gCAMAOMbjkc4QdAEAAABYUCyNBAAAAAAAwEogCAMAAAAAAMBKYGkkAAAAAACSLEvqWMNrvJ6D7SAALCeCMAAAAAAAdBCCnX1reM03b7MnKrDMWBoJABjpg7tudwAAAAAA0yMIA4AVZyfkeq1KGAYAAABg+RGEAcAKe/BQeuMX9mpf/7nUfjjTdgAAAABgpgjCAGCFvd+Qvvy9vdovvpZuNmbbDwAAAADMEpvlY+m1Wi2FQqGhNdlsVtlsdk4dAcvj48/Gq//kM+kH35lNLwAAAACWX7FYVLFYHFrTarXm1M1RBGFYep1OR3t7e0Nr2u32nLoBlsv+V7OtBwAAmDWv5+Akx1E1AOaj3W6PfI3uJoIwLD2v16v19fWhNT6fb07dAMsl8Phs6wEAAGbN45HOEHQBC8Pn8ykYDA6tabVa6nQ6c+poEEEYlt76+rp2d3fdbgNYSs89LX36G/v1zz49u14AAAAALD87WxOFQiHXZo2xWT4ArLBXotK3v2Wv9onHpFejs+0HAAAAAGaJIAwAVtj5c9K7z9urvf6C5Ds303YAAAAAYKYIwgBgxb18cXTNzaS9OgAAAABYZARhAICRXiIEAwAAAHAKEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAAGAlEIQBAAAAAABgJRCEAQAAAAAAYCUQhAEAAAAAYNMHd93uAMA0CMIAAAAAAJC9kOu1KmEYsMwIwgAAAAAAK+/BQ+mNX9irff3nUvvhTNsBMCMEYQAAAACAlfd+Q/ry9/Zqv/hautmYbT8AZoMgDAAAAACw8j7+bLz6T8asB7AYCMIAAAAAACtv/6vZ1gNYDGfdbgCYVqvVUigUGlqTzWaVzWbn1BEAAACAZRN4fLb1wKooFosqFotDa1qt1py6OYogDEuv0+lob29vaE273Z5TNwAAAACW0XNPS5/+xn79s0/PrhdgmbXb7ZGv0d1EEIal5/V6tb6+PrTG5/PNqRsAAAAAy+iVqPTmL+1tmP/EY9Kr0dn3BCwjn8+nYDA4tKbVaqnT6cypo0Eey7IsV64MTCkUCmlvb0/BYFC7u7tutwMsrUcd6exbw2u+eVs6w66SAADglLtZl16rjq77hyvSyxdn3w9wWrn5ep4ZYQCw4ryeg6BrVA0AAMBp9/LF0UHYzSQhGLDMCMIAYMV5PNIZgi4AAABbXiIEA5YaQRgALCHLkjojFrZ7PQchFwAAAADgAEEYACyhjmVzXy+CMAAAAADoYetjAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBPYIAwAAAADAYRxuBCwmgjAAAAAAABzG4UbAYmJpJAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVsJZtxsAptVqtRQKhYbWZLNZZbPZOXUEAAAAAMBqKhaLKhaLQ2tardacujmKIAxLr9PpaG9vb2hNu92eUzcAAAAAAKyudrs98jW6mwjCsPS8Xq/W19eH1vh8vjl1AwAAAADA6vL5fAoGg0NrWq2WOp3OnDoaRBCGpbe+vq7d3V232wAAAACw5Lwe6Zu3R9cAOJmdrYlCoZBrs8YIwgAAAAAAkOTxSGcIuoBTjVMjXWIYhhKJhO3aTCajSCQij8ejQCCgWCymTCYjwzAm7mFra0uJREKBQEAej0eRSESpVEq1Wm2hxgQAAAAAAHACQZjDTNOUx+MZ+YhEIgqHwyPH29raUiQSUblc7oVepmmq0WioXC4rEoloa2trrB5rtZoCgYDy+bwkqVKpqNlsqlAoqNFoKJFIKJFIyDRNV8cEAAAAAABwEksjHVYul23XdkOjkyQSCdVqNfn9fsXjcYXDYRmGoUajMTATLJ/PKxwOK5lMjrxmrVbrzURLp9MqlUq9z3XHiMViqtVqisViqtfr8vv9cx8TwPQ+uCu9GnO7CwAAAABYHB7Lsiy3mzhNAoGArVlP8Xhc29vbJ34+n89ra2tLhUJBuVzuyOe3traOBGmjfpSmaerChQsyTVPhcFjNZvPYOsMwFIlEbPU5izHt6m6uFwwG2SwfK+dmXXqtOrruH65IL1+cfT8AAAAY9KgjnX1reM03b0tnWKeFFeTm63lmhDmoXC7LNE3lcrmR+39dunTpxM8ZhqGtrS1tb28rHo8fW5PL5dRsNgdmoDUaDUWj0RPHTaVSvZBu2Gy07iyuarWqWq2mcrmsdDo9tzEBDPfgofTGL+zVvv5z6bk/lXznZtoSAAAAACwFZoQ5qDvj6aRZUXalUik988wzx84E62eapgKBQO/9k2aPSYMzsiRpf39/6PLEarWqVColSfL7/drf35/LmONgRhhW1f/5/0r/x8f26//uOekH35ldPwAAADjKzoywv0+ylQVWk5uv55mE6ZBqtSrDMEbu+2VHd1bZKH6/f2DD/WEhVKFQ6L0dj8dH7tHVv9+YaZqqVo+uwZrFmABG+/iz8eo/GbMeAAAA0/vg7uia16r26gA4hyDMIZubm/L7/bpy5crUY42zf9b9+/d7bw9bbtm/hHLY8sl+/SHbrVu35jImgNH2v5ptPQAAAKYz7lYW7YczbQdAH4IwBzQaDTUajd5SxUgkokwmM/MZT6Zp9vbnisfjJ4ZRjUZj4P1nnnnG1vj94x2+l1mMCcCewOOzrQcAAMB03m9IX/7eXu0XX0s3G6PrADiDIMwBh5dDGoahcrmsVColj8ejVCp1JDhywocffijpYJZVpVI5sa5Wqw283z8ra5jDdf33MIsxAdjz3NPj1T87Zj0AAACmw1YWwOIiCJuSYRhHQqHDqtWqYrGYMpmMY9c1TVOZTEbRaFTb29tD9+e6c+fOwPuj9vLqevLJJwfe39nZmemYAOx5JSp9+1v2ap94THrV3splAAAAOIStLIDFRRA2pXA4rFKppEKhoHQ6PXRmVLlcViw2/ZEghmEoFovJ7/fr9u3bI2djGYZxpGc7Dtf1n4Y5izEB2HP+nPTu8/Zqr78g+c7NtB0AAAAcwlYWwOIiCHNAOp1WLpdTqVRSs9nU/v6+CoXCsbOkGo2GEonExNeqVquKRCIyDKO3J9nW1tbQrzkcWk2qux/ZrMYEYN/LF0fX3EzaqwMAAICz2MoCWFwEYTPg9/uVy+W0v7+vSqVyJBCr1Wojw6t+pmlqa2tLkUhEqVTqyOfz+fyxH+//+kkc7rv/hMpZjAnAWS8RggEAALiCrSyAxXXW7QZOu2QyqXg8rsuXLw9sDL+5ualcLmdrjFqtpmazqXg8fuKeZNVqVVtbW7bHnMQsZm85MWar1VIoFJp6nGw2q2w2O/U4AAAAAFZbdyuL16qja9nKAsukWCyqWCxOPU6r1XKgm8kQhM2B3+9XvV5XLBbrhWGmaapWqykej4/8+mQyqWQyOfCxcrmsfD4/ECTl83ml0+kjs678fr8jgVP/uLMYc1KdTkd7e3tTj9Nut6ceAwAAAACkgy0qRgVhbGWBZdNutx15/e0mgrA5unHjxsBm+dvb27aCsOOk02nF43HFYrGBQKpcLh+ZFba2tuZIaLW2tjbTMSfl9Xq1vr4+9Tg+n2/qMQAAAADALrtbWViW1LGG13g9ksczfU/AMD6fT8FgcOpxWq2WOp2OAx2NjyBsjqLRqOLxeG9p47QbzofDYd2+fXsgXLtz586RuklnXR0Oug7PCHN6zEmtr69rd3d36nEAAAAAYBF1LOnsW8NrvnlbOkMQhhlzakuhUCjk2swyNsufs2lOjDxONBodWDZ5XLh26dKlgfftzuQ6vJF9JBKZ6ZgAAAAAAACzRBA2Z+FwuPe2E8sCJenq1au9t48LpPpnjEn2Z6I1m82B9/uXcc5iTAAAAAAAgFkiCJuz/iDMiWWB0sGssGFjHp69ZTe06g/V/H7/QO+zGBMAAAAAAGCWCMLmbGdnp/e208skpaMBlXQQlPUHZMftI3ac/l4PjzuLMQEAAAAAAGaJIGzO+pcGOrUssH821knh2pUrV3pvNxoNW+P21+Xz+bmMCQAAAAAAMCsEYXNWrVYlSblczrExu+GS3+8f2Di/XyaT6b3dPbVymP6acDh8bGg3izEBAAAAAABmhSBsjqrVqgzDkN/v18bGhmPjbm5uSpJu3LhxYk00Gh0InrqB3EkqlUrv7ZNmbs1iTAAAAAAAgFkhCJtCrVZTIBCQx+NRIpEYujzQMAxdu3ZNknT79u2hG+VvbW0pFospn88fewpkv25NLpc7cTZYV6lU6r3dDc+OY5qmyuWypIPlm+l0eq5jAqeVZUmPOsMfluV2lwAAAABwehGETaFSqfSCqlqtplgsNrBcsKv7ubW1NTWbzYFTHg8zTVP5fF6NRkNbW1sKBAInzp5KpVLa2tpSoVBQoVAY2W84HO7NyuqOf5zLly9LOlhq2T+La15jAqdVx5LOvjX80SEIAwAAAICZIQibQiqVOvKxcrmsQCCgVCqlTCajWCymRCKhdDqter2ucDg8dEy/33+kphuIpVIp5fN5JRIJBQIBSQeb74+z31gymdT29rb8fr/y+bxSqZQajYZM0+wFdo1GQ9FoVPfu3Rs6c22WYwIAAAAAADiNIGwK8XhczWZT6XRa4XB4IOBpNBq6f/++NjY2tL+/r0KhYDsAqtfryuVyikajR8Y0DEOpVEr37t1TpVIZGayd1He3J8MwdPny5V7Qtra2pkqlonq9PlZgNYsxAQAAAAAAnOSxLHakwXIKhULa29tTMBjU7u6u2+0AIz3qHCx/HOabt6UzNn5F4eRYAAAAcB7/9wNO5ubr+bNzvRoAwBFez8F/dkbVAAAAAAD+gCAMAJaQxyOdIegCAAAAgLEQhAEAAAAA4DBm8AOLiSAMS6/VaikUCg2tyWazymazc+oIAAAAwKpjBj9WVbFYVLFYHFrTarXm1M1RBGFYep1OR3t7e0Nr2u32nLoBAAAAAGB1tdvtka/R3UQQhqXn9Xq1vr4+tMbn882pGwAAAAAAVpfP51MwGBxa02q11Ol05tTRIIIwLL319fW5H7cKAAAAAACOsrM1USgUcm3WmNeVqwIAAAAAAMd8cNftDoDlQBAGAAAAAMACsxNyvVYlDAPsIAgDAAAAAGBBPXgovfELe7Wv/1xqP5xpO8DSIwgDAAAAAGBBvd+Qvvy9vdovvpZuNmbbD7DsCMIAAAAAAFhQH382Xv0nY9YDq4YgDAAAAACABbX/1WzrgVVDEAYAC4QNTgEAANAv8Phs64FVQxAGAHPCaT8AAAAY13NPj1f/7Jj1wKohCAOAOeC0HwAAAEzilaj07W/Zq33iMenV6Gz7AZYdQRgAzAGn/QAAAGAS589J7z5vr/b6C5Lv3EzbAZYeQRgAzAGn/QAAAGBSL18cXXMzaa8OWHUEYQAwB5z2AwAAgFl6iRAMsIUgDADmgNN+AAAAAMB9BGEAMAec9gMAAAAA7iMIA4A54LQfAAAAAHDfWbcbAKbVarUUCoWG1mSzWWWz2Tl1BBzVPe3nteroWk77AQAAALCsisWiisXi0JpWqzWnbo4iCMPS63Q62tvbG1rTbrfn1A1wspcvjg7COO0HAAAAwDJrt9sjX6O7iSAMS8/r9Wp9fX1ojc/nm1M3wHQ47QcAAADAMvP5fAoGg0NrWq2WOp3OnDoaRBCGpbe+vq7d3V232wAAAAAAYOXZ2ZooFAq5NmuMzfIBAAAAAACwEgjCAAAAAAAAsBIIwgAAAAAAALASCMIAAAAAAACwEgjCAAAAAAAAsBIIwgAAAAAAALASCMIAAAAAAACwEgjCAAAAAAAAsBIIwgAAAAAAALASCMIAAAAAAACwEgjCAAAAAAAAsBLOut0AAAAAAAA4mdcjffP26BoAoxGEAQAAAACwwDwe6QxBF+AIlkYCAAAAAABgJRCEAQAAAAAAYCWwNBJLr9VqKRQKDa3JZrPKZrNz6gg4Hns7AAAAADjtisWiisXi0JpWqzWnbo4iCMPS63Q62tvbG1rTbrfn1A1OG8uSOtbwGq/nYN+GUdjbAQAAAMBp1263R75GdxNBGJae1+vV+vr60BqfzzenbnDadCzp7FvDa755m4ALAAAAAKSD19/BYHBoTavVUqfTmVNHgzyWZY2Y6wAsplAopL29PQWDQe3u7rrdDk6pRx2bQRg7LgIAAACALW6+nuelGwAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVsJZtxsAptVqtRQKhYbWZLNZZbPZOXUEAAAAAMBqKhaLKhaLQ2tardacujmKIAxLr9PpaG9vb2hNu92eUzcAAAAAAKyudrs98jW6mwjCsPS8Xq/W19eH1vh8vjl1AwAAAADA6vL5fAoGg0NrWq2WOp3OnDoa5LEsy3LlysCUQqGQ9vb2FAwGtbu763Y7OKUedaSzbw2v+fuk9GpsPv0AAAAAwLJz8/U8m+UDwBAf3B1d81rVXh0AAAAAwF0EYS4xDEOJRMJWbaPRUCaTUSQSkcfjkcfjUSQSUT6fl2mas210Bsa5d8BNDx5Kb/zCXu3rP5faD2faDgAAAABgSgRhDjNNsxdWDXtEIhGFw+GRY6VSKcViMZXLZRmG0fucYRja2tpSIBBQuVy21VsgELDV23GPTCYz13sHFsH7DenL39ur/eJr6WZjtv0AAAAAAKZDEOYwu6GUJOXz+RM/Z5qmYrGYqtXqyHEymczIoKparU41e8zODC6n7h1YFB9/Nl79J2PWAwAAAADmiyDMYZubm7bq4vH40FlRqVRKhmEoGo2qUqmo2Wyq2WyqUqkol8sdqS+Xy0NDs1KpZKuvkySTyZE1Tt07sCj2v5ptPQAAADBPlnVwGNSwB8fp4bQ763YDp0m5XJZpmsrlciNnUF26dGnoOLVaTblcToVCYeBz4XBYyWRSmUxGqVRKjcYf1mJdu3bt2MDKMAzVajWFw2Hl83nF43Gtra2NvJ9YLCbDMBSPx0fWOnXvwCIJPD7begAAAGCeOtboE9G/eVs645lPP4AbPJZF3uuUSCQiSWo2m1OPEw6Htb29PbTOMIzeNbu2t7ePBFf5fF7ValX1el1+v99WD/1jl0olpdPpkT1L09/7ONw8bhWr4f/8f6X/42P79X/3nPSD78yuHwAAAGAajzo2gzDWjmHG3Hw9z9PbIdVqVYZhTL33VaPRkGEYqlQqI2vD4fCRGWP9M8S6yuWyKpWK7RBM0sAyyytXroysdeLegUXzSlT69rfs1T7xmPRqdLb9AAAAAACmQxDmkM3NTfn9/pGh0Si3bt1SOp22HVodnv31u9/97khNpVJRNDreK/Rbt271xh/Vi1P3Diya8+ekd5+3V3v9Bcl3bqbtAAAAAACmRBDmgEajoUajIdM0FQgEFIlElMlkbJ34eNjVq1ePzPIa5nDAdXippHQ0LBvFNM3ezLJUKjW01sl7BxbRyxdH19xM2qsDAAAAALiLIMwBh5cEGoahcrmsVColj8dzZFP7YaLR6FhLGE3THHjfidMYy+Vy7+1Rs7ycvHdgWb1ECAYAAAAAS4EgbErdExmHqVarisViymQyM7l+v3Fnfx2nuyxyVCjn9r0DAAAAAACM46zbDSy7cDisUqkk0zTVbDZVq9WOhFNd5XJZOzs7qtfrjl1/Z2en9/aokx3t6F8WefXq1aG1bt87AAAAAADAOAjCHHA4gDJNU+VyWZubm0eWLjYaDSUSCW1vbzty7VKp1HvbiVMbP/zww97byWRyZL2b9w4AAAAAADAOlkbOgN/vVy6X0/7+viqVypHlhbVaTVtbW1NfxzCM3uytQqHgyP5g3WAtGo1ONN687h0AAAAAAGBcHsuyLLebOO1M09Tly5cHNo33+/3a39+fatxMJqNyuaxwOKxmszltm72TH6WDYC2Xyzky5izuXZJCoZD29vbk9Xq1vr4+9XjZbFbZbHbqcXC6POpIZ98aXvPN29IZfq0AAACABcf/bTGtYrGoYrE49TitVkudTkfBYFC7u7sOdGYfSyPnwO/3q16vKxaL9QIh0zRVq9Um3ty+0WioXC7L7/c7ttRw3GWRdszi3g/rdDra29ubepx2u+1ANwAAAAAAnE7tdtuR199uIgiboxs3bigWi/Xe397enjgMunbtmiTp9u3bjiyJlP6wLDIcDjs2ZpeT936YUzPCfD6fA90AAAAAAHA6+Xw+BYPBqcfpzghzA0HYHEWjUcXjcdVqNUk68YTFUTKZjBqNhiqViqLRqCO99Z8W6dRssH5O3ftx1tfX5z6VEgAAAACAVePUlkLdrY7cwMrfOUskElN9fblcVrlcVqlUcjSw6l8WefXqVcfG7TftvQMAAAAAAEyDIGzO+pccrq2tjfW1tVpNmUxGpVJJ6XTa0b4qlYqkgz29nJpldtg09w4AAAAAADAtgrA56w+D/H6/7a9rNBpKJBIqFAqOh2DdzeslOT52v0nvHQAAAAAAwAkEYXO2s7PTe9vuUkHDMHT58mXlcjnlcjnHe5rHskhpsnsHAAAAAMzPB3fd7gCYLYKwOWs2m7237ZyaaBiGYrGY0um0CoWCrWsYhqGtrS3bPc1jWaQ0/r0DAAAAAJxjJ+R6rUoYhtONIGzOqtWqJNma2WWaphKJhK5cuWI7BJOkVCplO2jqXxZ55coV29eYxDj3DkzLsqRHneEPy3K7SwAAAGA+HjyU3viFvdrXfy61H860HcA1Z91uYJVUq1UZhiG/36+NjY2htaZpKhaLKRwOK5/PyzCMkeMbhqF8Pi9Jtmd29S+LTKVStr5mEuPcO+CEjiWdfWt4zTdvS2c88+kHAAAAcNP7DenL39ur/eJr6WZD+sF3ZtsT4AaCsCnUajWlUimZpql4PK5CoXBiAGUYhq5duyZJun379sjN4i9fvizDMGQYhiKRyFh9lUol27X9yyLHWa44y3sHAAAAADjr48/Gq//kM4IwnE4sjZxCpVKRaZqSDoKhWCymTCZzpK77ubW1NTWbzZGztWKxmBqNxsR92T35sX9Z5Lh7ds3q3gEAAAAAztv/arb1wLJgRtgUUqmUyuXywMfK5bI+/PBDxeNxra2taWdnR41GQ7lcThsbGyNnQ6VSqbmEYNLgssjjQqxhZnHvwCLyeg6WUI6qAQAAABZZ4PHZ1gPLgiBsCvF4XM1mU4VCQbVaTffv3+/Nkmo0GopGo9rY2FA8HrcdAnWXKs5D/7XGnRE2i3sHFpHHwz5iAAAAWH7PPS19+hv79c8+PbteADd5LItz07CcQqGQ9vb2FAwGtbu763Y7WDCPOjY3y2eBOAAAAFbAg4dS8B17G+Y/8Zi0tyH5zs2+L6wmN1/P8xIQAAAAAIBT7vw56d3n7dVef4EQDKcXQRgAAAAAACvg5Yuja24m7dUBy4o9wrD0Wq2WQqHQ0JpsNqtsNjunjgAAAABgOb1ECIYpFYtFFYvFoTWtVmtO3RxFEIal1+l0tLe3N7Sm3W7PqRsAAAAAOP0sS+qM2HHc6zk4fAqrpd1uj3yN7iaCMCw9r9er9fX1oTU+n29O3QAAAADA6dexbB5ORRC2cnw+n4LB4NCaVqulTqczp44GEYRh6a2vr3NqJAAAAAAAC8DO1kTdUyPdwGb5AAAAAAAAWAkEYQAAAAAAAFgJBGEAAAAAAABYCQRhAAAAAAAAWAkEYQAAAAAAAFgJBGEAAAAAAABYCQRhAFbWB3fd7gAAAAAAME8EYQBOJTsh12tVwjAAAAAAWCUEYQBOnQcPpTd+Ya/29Z9L7YczbQcAAAAAsCAIwgCcOu83pC9/b6/2i6+lm43Z9gMAAAAAWAwEYQBOnY8/G6/+kzHrAQAAAADLiSAMwKmz/9Vs6wEAAAAAy4kgDMCpE3h8tvUAAAAAgOVEEAZgYViW9Kgz/GFZo8d57unxrvvsmPUAAAAAgOV01u0GAKCrY0ln3xpe883b0hnP8JpXotKbv7S3Yf4Tj0mvRu33CAAAACwrr+fg/9OjaoDTjCAMS6/VaikUCg2tyWazymazc+oIbjt/Tnr3eem16uja6y9IvnMzbwkAAABwnccz+pfKwLSKxaKKxeLQmlarNadujiIIw9LrdDra29sbWtNut+fUDRbFyxdHB2E3kwd1AAAAAABntNvtka/R3UQQhqXn9Xq1vr4+tMbn882pGyyTlwjBAAAAgJn54K70asztLjBvPp9PwWBwaE2r1VKn05lTR4MIwrD01tfXtbu763YbAAAAALAyPrg7uua1qnTGyyqMVWNna6JQKOTarDFOjQQAAAAAALY9eCi98Qt7ta//XGo/nGk7wFgIwgAAAAAAgG3vN+yd0C5JX3wt3WzMth9gHARhAAAAAADAto8/G6/+kzHrgVkiCAMAAAAAALbtfzXbemCWCMIAAAAAAIBtgcdnWw/MEkEYAAAAAACw7bmnx6t/dsx6YJYIwgAAAAAAgG2vRKVvf8te7ROPSa9GZ9sPMA6CMAAAAAAAYNv5c9K7z9urvf6C5Ds303aAsRCEAQAAAACAsbx8cXTNzaS9OmCeCMIAAAAAAIDjXiIEwwIiCAMAAAAAAMBKIAgDAAAAAADASiAIAwAAAAAAwEogCAMAAAAAAMBKIAgDAAAAAADASjjrdgPAtFqtlkKh0NCabDarbDY7p46wCLwe6Zu3R9cAAAAAAJxTLBZVLBaH1rRarTl1cxRBGJZep9PR3t7e0Jp2uz2nbjBrH9yVXo2NrvN4pDMEXQAAAAAwV+12e+RrdDcRhGHpeb1era+vD63x+Xxz6gbT+ODu6JrXqtIZr/Tyxdn3AwAAAAAYj8/nUzAYHFrTarXU6XTm1NEgj2VZlitXBqYUCoW0t7enYDCo3d1dt9vBlB48lILvSF/+fnTtE49JexuS79zs+wIAAABw1KOOdPat4TXfvH3wS2zgMDdfz/OUBLAQ3m/YC8Ek6YuvpZuN2fYDAAAAADh9CMIALISPPxuv/pMx6wEAAAAAIAgDsBD2v5ptPQAAAAAAbJYPYCEEHp9tPQAAAIDFZFlSZ8Tu5V7PwcnwwLQIwgAshOeelj79jf36Z5+eXS8AAAAA5qdj2dx4nyAMDmBpJICF8EpU+va37NU+8Zj0anS2/QAAAAAATh+CMAAL4fw56d3n7dVef0HynZtpOwAAAACAU4ilkQAWxssXpdeqw2tuJg/qAAAAALjH6zlYrjiqBlg0BGEAlspLhGAAAACA6zwe9uzCcmJpJAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVgJBGAAAAAAAAFYCQRgAAAAAAABWAkEYAAAAAAAAVsJZtxsAptVqtRQKhYbWZLNZZbPZOXUEAAAAAMBqKhaLKhaLQ2tardacujmKIAxLr9PpaG9vb2hNu92eUzcAAAAAAKyudrs98jW6mwjCsPS8Xq/W19eH1vh8vjl1AwAAAADA6vL5fAoGg0NrWq2WOp3OnDoaRBCGpbe+vq7d3V232wAAAAAAYOXZ2ZooFAq5NmuMzfIBAAAAAACwEgjCAAAAAAAAsBIIwlxiGIYSiYSt2kajoUwmo0gkIo/HI4/Ho0gkonw+L9M0F6ZPSdra2lIikVAgEOj1mUqlVKvVZtglAAAAAADAaARhDjNNsxdWDXtEIhGFw+GRY6VSKcViMZXLZRmG0fucYRja2tpSIBBQuVx2tU9JqtVqCgQCyufzkqRKpaJms6lCoaBGo6FEIqFEIjHz4A4AAAAAAOAkbJbvsHFCqW5odBzTNBWLxQbCr5NkMhnV63WVSiXb13aqT+kgBOvOGkun0wN9hMNhJZNJxWIx1Wo1xWIx1et1+f1+29cHAAAAAABwAjPCHLa5uWmrLh6PD51plUqlZBiGotFob3ZVs9lUpVJRLpc7Ul8ul1WtVufeZ3fWmnQQep0UxlUqFUkHM9m69QAAAAAAAPPEjDAHlctlmaapXC43cl+tS5cuDR2nVqspl8upUCgMfK47wyqTySiVSqnRaPQ+d+3aNSWTybn1KR0Edt3ljsNmjnX7rlarqtVqKpfLSqfTI3vFavF6pG/eHl0DAAAAAMAkPJZlWW43cVpEIhFJUrPZnHqccDis7e3toXWGYfSu2bW9va14PD6XPg9ff39/f+iSx2q12psN5vf7tb+/P9X1Q6GQ9vb2FAwGtbu7O9VYAAAAAAB3POpIZ98aXvP3SenV2Hz6wey5+XqepZEOqVarMgxj5H5aozQaDRmG0VtKOEw4HD4yY6x/htgs+5Q0cO14PD5y36/+2WqmaY61lBMAAAAAcDp9cHd0zWtVe3XAKARhDtnc3JTf79eVK1emGufWrVtKp9O2N5M/PPvrd7/73dB6p/qUBjfcj0ajtr6mf7+xW7duTd0DAAAAAGB5PXgovfELe7Wv/1xqP5xpO1gBBGEOaDQaajQaMk1TgUBAkUhEmUxmohlPV69ePTLLa5jDAdThpZKz6vPwzLNnnnlm7H6ZEQYAAAAAq+39hvTl7+3VfvG1dHP4IihgJIIwBxxeZmgYhsrlslKplDwez5FN7YeJRqO2Z4NJ6m1U3zXshEcn+6zVaravO6zO7vWwuCzrYE3/sAc7EQIAAAA4zsefjVf/yZj1wGEEYVMyDONIKHRYtVpVLBZTJpOZyfX7nbRRvtN93rlzZ+B9u+Hdk08+OfD+zs6Ora/D4upYBxtbDnt0CMIAAAAAHGP/q9nWA4eddbuBZRcOh1UqlWSapprNpmq12pFwqqtcLmtnZ0f1et2x6/cHSel0em59Hv7aSWeETXtyJQAAAABgeQUen209cBhBmAMOB1CmaapcLmtzc/PI0sVGo6FEIqHt7W1Hrl0qlXpvjzoJ0sk+TwrRxnX4ugAAAACA1fHc09Knv7Ff/+zTs+sFq8FjWezeM0vValXXrl07EvgUCgXlcrmpxjYMo7c5/rTjjdunx+MZeN/u06hWqymRSPTeTyaTqlQq4zcsKRQKaW9vT16vV+vr6xON0S+bzSqbzU49zqp51DlY/jjMN29LZ1iIDQAAAOCQBw+l4Dv2Nsx/4jFpb0PynZt9XzhesVhUsVicepxWq6VOp6NgMKjd3V0HOrOPGWEzlkwmFY/Hdfny5YGN4Tc3N6cOwrqnS4bD4anHmmWfwzgxI6zT6Whvb2/qcdrt9tRjAAAAAADsO39Oevd56bXq6NrrLxCCua3dbjvy+ttNBGFz4Pf7Va/XFYvFeiGTaZqq1Wonbm4/SqPRULlclt/vd2yZ5Th9+v1+R0KscU7IPIlTM8J8Pt/UYwAAAAAAxvPyxdFB2M3kQR3c5fP5FAwGpx6nOyPMDQRhc3Tjxg3FYrHe+9vb2xMHYdeuXZMk3b592/ZG9XbZ6XNtbc2RIGxtbW3qMdbX1+c+lRIAAAAAMD8vEYItBKe2FOpudeQGdu2Zo2g0OhAoTbrhfCaTUaPRUKVSUTQadaq9Hjt9TjqT63B45sSMMAAAAAAAADsIwuasf6P4SZTLZZXLZZVKJSWTSYe6OmpUn5cuXRp43+7ssPv37w+8393sHwAAAAAAYNYIwuasfxnjuMsCa7WaMpmMSqWS0um0060NGNVn/9JJyf7stmazOfD+pEtDAQAAAAAAxkUQNmf9AdM4ywIbjYYSiYQKhcLMQzBpdJ+HZ4TZDcL6Z475/X7H9zcDAAAAAAA4CUHYnO3s7PTetrtM0jAMXb58WblcTrlcblatDRjVZzQaHQjI7ty5M/a4h8M0AAAAAACAWSIIm7P+pYF2lgUahqFYLKZ0Oq1CoWDrGoZhaGtra+IeJXt9Xrlypfd2o9GwNW5/XT6fn7A7AAAAAACA8RGEzVm1WpUkWzO7TNNUIpHQlStXbIdgkpRKpabee8tOn5lMpvd2rVYbOWZ/TTgcZn8wAAAAAAAwV2fdbmCVVKtVGYYhv9+vjY2NobWmaSoWiykcDiufz9vag8swjN4sq2g0OvM+o9Go4vF4L+CqVqtDT7KsVCq9t5kNBgAAAAAA5o0ZYVOo1WoKBALyeDxKJBJDlwcahqFr165Jkm7fvj1yo/zLly/LMAzVajVFIhFbj24P/TO1Zt1nqVTqvb25uXlinWmaKpfLkg6WWs5jw38AAAAAAIB+BGFTqFQqvVMQa7WaYrHYkRCq/3Nra2tqNpsjZ2vFYjHbe24d53DINKs+pYMljt2ZXo1G48S9yS5fvizp4KTI/plhAAAAAAAA80IQNoVUKnXkY+VyWYFAQKlUSplMRrFYTIlEQul0WvV6XeFweOSYToZgs+qzXzKZ1Pb2tvx+v/L5fO8eTNPshWuNRkPRaFT37t0bOcsMAAAAAABgFjyWZVluN7HMDMNQoVBQrVbT/fv3ZZqm/H6/1tbWFI1GdfXqVcXjcdfDn3n1ubW1pVu3bskwjN41Ll26pEwmM3T/sEmEQiHt7e0pGAxqd3fX0bFh36OOdPat4TXfvC2dIXYHAAAAcAxeU6weN1/PE4RhaRGELQb+0QIAAAAwDV5TrB43X8/zNAIwcx/cdbsDAAAAAAAIwgBMyU7I9VqVMAwAAAAA4L6zbjcATKvVaikUCg2tyWazymazc+podTx4KL3xC3u1r/9ceu5PJd+5mbYEAAAAAHBRsVhUsVgcWtNqtebUzVEEYVh6nU5He3t7Q2va7faculkt7zekL39vr/aLr6WbDekH35ltTwAAAACWi9dzsAfYqBosh3a7PfI1upsIwrD0vF6v1tfXh9b4fL45dbNaPv5svPpPPiMIAwAAADDI45HOEHSdGj6fT8FgcGhNq9VSp9OZU0eDCMKw9NbX1zk10iX7X822HgAAAACwXOxsTdQ9NdINbJYPYGKBx2dbDwAAAACAkwjCAEzsuafHq392zHoAAAAAAJxEEAZgYq9EpW9/y17tE49Jr0Zn2w8AAAAAAMMQhAGY2Plz0rvP26u9/oLkOzfTdgAAAAAAGIogDMBUXr44uuZm0l4dAAAAAACzRBAGYOZeIgQDAAAAACwAgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKwEgjAAAAAAAACsBIIwAAAAAAAArASCMAAAAAAAAKyEs243AEyr1WopFAoNrclms8pms3PqCAAAAACA1VQsFlUsFofWtFqtOXVzFEEYll6n09He3t7Qmna7PaduAAAAAABYXe12e+RrdDcRhGHpeb1era+vD63x+Xxz6gYAAAAAgNXl8/kUDAaH1rRaLXU6nTl1NMhjWZblypWBKYVCIe3t7SkYDGp3d9ftdlbWo4509q3hNd+8LZ1hR0IAAAAAgNx9Pc+MMAAAAAAAcCpYltQZMd3H+/+1d/++baV3vvg/1EyCCZJVaAdYQJAqqsktQ3qabU11CZJCtIEESSqTi8VWKqQ7SD1fQypUBhGnmyCFlyp2kRQXl/RfYItpA1zwbGODwAJjMdoEGSQz4reYiKufJCXx8OfrBQigRh8+50PPQ/Hozec8zERkMuPph+kjCAMAAADmwml3yCtWBGELy8VKAAAAACwEQRgAAAAAC0EQBgAAAMBCEIQBAAAAsBBslg/cy1Lmq80mB9UAAADApAnCgHvJZHziCgAAALPBpZEAAAAALARBGAAAAAALwaWRAAAAADOg24047favWcp8tYUN1xOEAQAAAMyA027E+7/oX/PFx/Zx7selkQAAAAAsBEEYAAAAAAvBpZGQMtdwAwAAwHQQhDHz2u12rK2t9a3Z2tqKra2tMXV0kWu4AQAAWBT7+/uxv7/ft6bdbo+pm6sEYcy809PTePv2bd+ak5OTMXUDAAAAi+vk5GTg3+iTJAhj5i0tLcXKykrfmuXl5TF1AwAAAItreXk5VldX+9a02+04PT0dU0cXCcKYeSsrK/HmzZtJtwEAAAALb5itidbW1ia2asynRgIAAAAL4ze/n3QHTJIgDAAAAJgLw4RcPz8Uhi0yQRgAAAAw8/74ecS//Mdwtf/87xEnn6faDlNKEAYAAADMvF83I/78t+Fq//TXiE+b6fbDdBKEAQAAADPvt3+4Xf3vblnPfBCEAQAAADPv+C/p1jMfBGEAAADAzHvwjXTrmQ+CMAAAAGDm/eC7t6v//i3rmQ+CMAAAAGDm/TQf8c2vDVf7ra9H/Cyfbj9MJ0EYAAAAMPO+/UHEL384XO2vfhSx/EGq7TClBGEAAADAXPjJ9wbXfLo5XB3zSRAGAAAALIwfC8EWmiAMAAAAgIUgCAMAAABgIbw/6QaA8et2I067/WuWMhGZzHj6AQAAgHEQhDHz2u12rK2t9a3Z2tqKra2tMXU0/U67Ee//on/NFx9HvCcIAwAA4Bb29/djf3+/b0273R5TN1cJwph5p6en8fbt2741JycnY+oGAAAAFtfJycnAv9EnSRDGzFtaWoqVlZW+NcvLy2PqBgAAABbX8vJyrK6u9q1pt9txeno6po4uEoQx81ZWVuLNmzeTbgMAAAAW3jBbE62trU1s1ZhPjQQAAABgIQjCJiRJktjY2BiqttlsRqVSifX19chkMpHJZGJ9fT12dnai0+nc6fhpjDms2zx2AAAAgFERhI1Yp9PpBUv9vtbX1yOXyw0cq1QqRaFQiGq1GkmS9H6WJEns7e3FgwcPolqt3qq/UY+ZxmMHAAAAGDVB2IjdJkDa2dm58WedTicKhUIcHh4OHKdSqUSlUhlYl8aY543qsQMAAACkQRA2Ys+fPx+qrlgs9l0VVSqVIkmSyOfzUavVotVqRavVilqtFtvb21fqq9XqwIArjTHPG9VjBwAAAEiDT40coWq1Gp1OJ7a3twfugfXo0aO+4zQajdje3o7d3d0LP8vlcrG5uRmVSiVKpVI0m83ez549exabm5tjG/Py+KN47AAAAABpyXS73e6km5gX6+vrERHRarXuPU4ul4t6vd63LkmS3jHP1Ov1KBaLYxnz8vgR93/st3H2caurq6vx5s2bsR33tr48jXj/F/1rvvg44r0xrs+cxp4AAADua97/1pmXxzfJv+en/J9mdhweHkaSJPfe+6rZbEaSJFGr1QbW5nK5K6u7zq/mSnPM80b12AEAAADS5NLIEXn+/Hlks9l48uTJvcZ58eJFlMvlyGazQ9VfXqn12WefjWXM80b12AEAAOA+ljJfrYgaVMPiEoSNQLPZ7K2aevDgQeRyuSgWi7GxsTHU/lrnPX369FYbyefz+QvfX76sMa0xz4zysQMAAMB9ZDIR7wm66MOlkSNw+ZLAJEmiWq1GqVSKTCZzZQP6fvL5/NArtyIiOp3Ohe+vC7zSGPPMKB87AAAAQJoEYfeUJEk0Go2+NYeHh1EoFKJSqaRy/PMGbWo/yjEn/dgBAAAAbsOlkfeUy+Xi4OAgOp1OtFqtaDQaV4KkM9VqNV6/fh1HR0cjO/7r1697t8vl8ljHnPRjBwAAALgNQdgIXA6LOp1OVKvVeP78+ZXLDJvNZmxsbES9Xh/JsQ8ODnq3R/WpjbcZc5KPnXT95vcRPytMugsAAAAYHZdGpiCbzcb29nYcHx9HrVa7sj9Xo9GIvb29ex8nSZLe/lu7u7u32hA/rTHH9di5n9/8fnDNzw+HqwMAAIBZkel2u91JNzHvOp1OPH78+MKm8dlsNo6Pj+81bqVSiWq1GrlcLlqt1n3bTGXMtB57RMTa2lq8ffs2lpaWYmVl5d7jbW1txdbW1r3HuezL04j3f9G/5ouPI94bUyz9x88jVv+/iD//bXDtt74e8fajiOUP0u8LAACA/ib99+X+/n7s7+/fe5x2ux2np6exuroab968GUFnw3Np5Bhks9k4OjqKQqHQC4Q6nU40Go07b27fbDajWq1GNpsd2aWGaYyZxmO/7PT0NN6+fXvvcU5OTkbQzfT7dXO4ECwi4k9/jfi0GfGv/5RuTwAAAEy/k5OTkfz9PUmCsDH65JNPolD4n02X6vX6ncOgZ8+eRUTEy5cvR3JJZFpjnhnlY79sVCvClpeXR9DN9PvtH25X/7s/CMIAAAD46u/m1dXVe49ztiJsEgRhY5TP56NYLEaj0YiIuPETFgepVCrRbDajVqtFPp8fSW9pjHneqB77dVZWVsa+lHKWHf8l3XoAAADm06i2FDrb6mgSbJY/ZhsbG/e6f7VajWq1GgcHB7G5uTmSntIY8zr3feyMxoNvpFsPAAAA00oQNmbnLzl8+PDhre7baDSiUqnEwcFBlMvlkfSTxpg3uc9jZ3R+8N3b1X//lvUAAAAwrQRhY3Y+DMpms0Pfr9lsxsbGRuzu7o4ssEpjzH7u+tgZrZ/mI775teFqv/X1iJ+N/kpZAAAAmAhB2Ji9fv26d3vYSwWTJInHjx/H9vZ2bG9vj6SPNMYc5C6PndH79gcRv/zhcLW/+lHE8geptgMAAABjIwgbs1ar1bs9zKcmJkkShUIhyuVy7O7uDnWMJElib29vrGMO47aPnfT85HuDaz7dHK4OAAAAZoUgbMwODw8jIoZahdXpdGJjYyOePHkydGAVEVEqlW4MmtIYc1i3eeyL5je/n3QHV/1YCAYAAMCceX/SDSySw8PDSJIkstlsfPTRR31rO51OFAqFyOVysbOzE0mSDBw/SZLY2dmJiIh8/urGTmmMOazbPPZ5M0zI9fPDiPeWrMACAACANAnC7qHRaESpVIpOpxPFYjF2d3dvDIuSJIlnz55FRMTLly8Hbhb/+PHjSJIkkiSJ9fX1W/V1cHCQ+phpPvZ58sfPI/7lP4ar/ed/j/jB/7InFwAAAKTFpZH3UKvVotPpRMRXwVChUIhKpXKl7uxnDx8+jFarNXBlVaFQiGazeee+rvsEyFGPmdZjnze/bkb8+W/D1f7prxGf3v1/EQAAADCAIOweSqXSlf9WrVbjwYMHUSqVolKpRKFQiI2NjSiXy3F0dBS5XG7gmKMOwdIa87L7PvZ59Ns/3K7+d7esBwAAYLp1uxFfnvb/6nZHd7xp3IN6mrg08h6KxWK0Wq3Y3d2NRqMR7969662Sajabkc/n46OPPopisTj05YC1Wm3kfaYxZhqPfR4d/yXdegAAAKbbaTfi/V/0r/ni44j3MoPHsgf1/QnC7imXy924J9e8W+THPqwH30i3HgAAgNHrdr8KsPpZykRkhgivRsUe1KMhCIMU/eC7Ef/3/w1f//3vptcLAAAAwxnlKq5Rucse1P/6T+n2NIvsEQYp+mk+4ptfG672W1+P+NlifZYAAAAAQ7IH9WgIwiBF3/4g4pc/HK72Vz+ybBUAAIDr2YN6NFwaycxrt9uxtrbWt2Zrayu2trbG1NFFP/neV5sV9vPppo0MAQAAuNms7EG9v78f+/v7fWva7faYurlKEMbMOz09jbdv3/atOTk5GVM3d/NjIRgAAAB9zMoe1CcnJwP/Rp8kQRgzb2lpKVZWVvrWLC8vj6kbAAAAGL2f5iP+9/8ZbsP8Se5Bvby8HKurq31r2u12nJ6ejqmjiwRhzLyVlZV48+bNpNsAAACA1JztQT1o652Iye5BPczWRGtraxNbNSYIgxnS7X71Mb79LGUiMgM+wncp89VH/Q6qAQAAYHrYg/r+BGEwQ067Ee//on/NFx9HvDcgxMpkBtcAAAAwe+xB3d/SpBsAAAAAgHEQhAEAAACwEARhAAAAACwEQRgAAAAAC0EQBgAAAMBCEIQBAAAAsBAEYQAAAAAsBEEYAAAAAAtBEAYAAADAQhCEAQAAALAQBGEAAAAAt/Sb30+6A+5CEAYAAABwzjAh188PhWGzSBAGAAAA8Hd//DziX/5juNp//veIk89TbYcRe3/SDcB9tdvtWFtb61uztbUVW1tbY+oIAACAWfXrZsSf/zZc7Z/+GvFpM+Jf/yndnmbJ/v5+7O/v961pt9tj6uYqQRgz7/T0NN6+fdu35uTkZEzdAAAAMMt++4fb1f/uD4Kw805OTgb+jT5JgjBm3tLSUqysrPStWV5eHlM3AAAAzLLjv6RbP++Wl5djdXW1b0273Y7T09MxdXSRIIyZt7KyEm/evJl0GwAAAMyBB99It37eDbM10dra2sRWjdksHwAAAODvfvDd29V//5b1TJYgDAAAAODvfpqP+ObXhqv91tcjfpZPtx9GSxAGAAAA8Hff/iDilz8crvZXP4pY/iDVdhgxQRgAAADAOT/53uCaTzeHqxvGb34/mnEYTBAGAAAAcEs/HjIEGybk+vmhMGxcBGEwZ/zyBAAAmA5//DziX/5juNp//veIk89TbYcQhMFM8U4CAADA7Ph1M+LPfxuu9k9/jfi0mW4/CMJgZngnAQAAYLb89g+3q//dLeu5PUEYzAjvJAAAAMyW47+kW8/tCcJgRngnAQAAYLY8+Ea69dyeIAxmhHcSAAAAZssPvnu7+u/fsp7bE4TBjPBOAgAAwGz5aT7im18brvZbX4/4WT7dfhCEwczwTgIAAMBs+fYHEb/84XC1v/pRxPIHqbZDCMJgZngnAQAAYPb85HuDaz7dHK6O+xOEwYzwTgIAAMB8+rEQbGzen3QDcF/tdjvW1tb61mxtbcXW1taYOkrPT74X8fPD/jXeSQAAAGBS9vf3Y39/v29Nu90eUzdXCcKYeaenp/H27du+NScnJ2PqZvK8kwAAAMCknJycDPwbfZIEYcy8paWlWFlZ6VuzvLw8pm4AAABgcS0vL8fq6mrfmna7Haenp2Pq6CJBGDNvZWUl3rx5M+k2AAAAYOENszXR2traxFaN2SwfAAAAgIVgRRgAAADAOUuZiC8+HlzD7BGEAQAAAJyTyUS8J+iaS4IwSJl3EgAAAGA6CMIgZd5JAAAAgOlgs3wAAAAAFoIgDAAAAICFIAgDAAAAYCEIwgAAAABYCIIwAAAAABaCIAwAAACAhSAIAwAAAGAhvD/pBgAAAAAYbCkT8cXHg2u4mSAMAAAAYAZkMhHvCbruxaWRAAAAACwEK8KYee12O9bW1vrWbG1txdbW1pg6AgAAgMW0v78f+/v7fWva7faYurlKEMbMOz09jbdv3/atOTk5GVM3AAAAsLhOTk4G/o0+SYIwZt7S0lKsrKz0rVleXh5TNwAAALC4lpeXY3V1tW9Nu92O09PTMXV0kSCMmbeyshJv3ryZdBsAAACw8IbZmmhtbW1iq8Zslg8AAADAQhCETUiSJLGxsTFUbbPZjEqlEuvr65HJZCKTycT6+nrs7OxEp9O5cw97e3uxsbERDx486I1ZKpWi0WhM1Zj8j6VMxBcf9/9a8lG6AAAAcC1B2Ih1Op1eWNXva319PXK53MCxSqVSFAqFqFarkSRJ72dJksTe3l48ePAgqtXqrXpsNBrx4MGD2NnZiYiIWq0WrVYrdnd3o9lsxsbGRmxsbNwqZEtjTK7KZCLeW+r/lRGEAQAAwLXsETZitwmlzkKj63Q6nSgUChfCr5tUKpU4OjqKg4ODgbWNRqO3Eq1cLl+4Ty6Xi83NzSgUCtFoNKJQKMTR0VFks9mxjwkAAAAwalaEjdjz58+HqisWi31XhJVKpUiSJPL5fG91VavVilqtFtvb21fqq9VqHB4e9j3m2QqziK8CqpuCs1qtFhFfrTo7qx/nmAAAAABpsCJshKrVanQ6ndje3h64/9ejR4/6jtNoNGJ7ezt2d3cv/OxshVWlUolSqRTNZrP3s2fPnsXm5uaN45ZKpd6lif1Wo50d4/DwMBqNRlSr1SiXy2MbEwAAAObF2V7Pg2oYj0y32+1Ouol5sb6+HhERrVbr3uPkcrmo1+t965Ik6R3zTL1ej2KxOLD2+Pi47+WJh4eHvZVb2Ww2jo+PxzLmbZx93Orq6mq8efPmXmMBAAAA4zHJv+ddGjkih4eHkSRJ31VRw2g2m5EkSe9Swn5yudyVFWPnV4idd76uWCwO3KPr/MqyTqdz7WWXaYwJAAAAkBZB2Ig8f/48stlsPHny5F7jvHjxIsrl8tCbyV9e/fXZZ59dW3d+E/98Pj/U2Of3MHvx4sVYxgQAAABIiyBsBJrNZjSbzeh0OvHgwYNYX1+PSqVypxVPT58+vbLKq5/LAdTlSyXP+jvvww8/vPXYlx9LGmMCAAAApEkQNgKXL4dMkiSq1WqUSqXIZDJXNrXvJ5/PD70aLCJ6G9Wfue6TKBuNxsCa61yuO/8Y0hgTAAAAIE2CsHtKkuRKKHTZ4eFhFAqFqFQqqRz/vOs2yn/16tWF74cN2r7zne9c+P7169epjgkAAACQpvcn3cCsy+VycXBwEJ1OJ1qtVjQajSvh1JlqtRqvX7+Oo6OjkR3/fJBULpevrbncz11Xb53/NMw0xgQAAABIkyBsBC4HUJ1OJ6rVajx//vzKpYvNZjM2NjaiXq+P5NgHBwe92zd9YuVNwdxtnX8saYwJAAAAkCaXRqYgm83G9vZ2HB8fR61Wu3LZYKPRiL29vXsfJ0mS3h5bu7u7N67KumvYdLnvd+/epTomAAAAQJqsCEvZ5uZmFIvFePz48YWN4Z8/fx7b29v3Gvvs0yVzudy9xxpGGqu3RjFmu92OtbW1e4+ztbUVW1tb9x4HAAAA5tH+/n7s7+/fe5x2uz2Cbu5GEDYG2Ww2jo6OolAo9MKwTqcTjUbj2s3th9FsNqNarUY2mx14mWU2mx1J4HR+NVcaY97V6elpvH379t7jnJyc3HsMAAAAmFcnJycj+ft7kgRhY/TJJ59EoVDofV+v1+8chD179iwiIl6+fDlwo/qHDx+OJLR6+PBhqmPe1dLSUqysrNx7nOXl5XuPwfTZ39+Pk5OTWF5etuKPuWN+M8/Mb+aZ+c08M7/n2/Lycqyurt57nHa7HaenpyPo6PYEYWOUz+ejWCxGo9GIiLtvOF+pVKLZbEatVot8Pj+w/q6rri4HXZdXhI16zLtaWVmJN2/e3Hsc5tP+/n68ffs2VldXvRAzd8xv5pn5zTwzv5ln5vd8G9WWQmtraxNbWWaz/DHb2Ni41/2r1WpUq9U4ODiIzc3Noe7z6NGjC98Pu5Lr8kb26+vrqY4JAAAAkCZB2Jidv4zxtpcFNhqNqFQqcXBwEOVyeej7nb8cM2L4lWitVuvC9+cv40xjTAAAAIA0CcLG7HwQdpvLApvNZmxsbMTu7u6tQrCIq6u3hg2tzq/yymazF3pPY0wAAACANAnCxuz169e928NeJpkkSTx+/Di2t7dje3v71sfM5/MXQrdXr14Ndb/zvV4OvtIYEwAAACBNgrAxO39p4DCXBSZJEoVCIcrlcuzu7g51jCRJYm9v78J/e/LkSe92s9kcapzzdTs7O1d+nsaYAAAAAGkRhI3Z4eFhRMRQK7s6nU5sbGzEkydPhg7BIiJKpdKVkK1SqfRun31qZT/na3K53LWhXRpjAgAAAKRFEDZGh4eHkSRJZLPZ+Oijj/rWdjqdKBQKkcvlYmdnJ5IkGfjVaDR6m9jn8/kL4+Xz+QvB01kgd5Narda7fdPKrTTGBAAAAEjL+5NuYJY1Go0olUrR6XSiWCzG7u7ulQDqTJIk8ezZs4iIePny5cCN8h8/ftwLuNbX12/V18HBwY3//Wys58+fx+bm5rV1nU4nqtVqRHx1+Wa/zfnTGHMa7e/vx8nJSSwvL8fW1tak24kIPc2yaft3mrZ+IvQ0y6bt32na+onQ0yybtn+naesnQk+zbBr/naatp2nrJ2I6e5pG0/jvNG09TVs/qepyZ+VyuRsRF77K5fKVunq93s1ms91cLtdttVoDx83n81fGvc1XP7VarVe3u7vb9/jZbLZ7fHw8sN80xhzG6upqNyK6q6urIxlvWo41LD0NR0+DTVs/3a6ehqWnwaatn25XT8PS02DT1k+3q6dh6Wk409bTtPXT7eppWHoabNz9TPLxuzTyHkql0pX/Vq1W48GDB1EqlaJSqUShUIiNjY0ol8txdHQUuVxu4JjDbjx/nUErrTY3N6Ner0c2m42dnZ3e8TqdTu/SymazGfl8Pv7zP/9z4Mq1tMYEAAAAGDWXRt5DsViMVqsVu7u70Wg04t27d9HpdCIiesHPRx99FMVicejw5/w+WmkpFotxfHwce3t78eLFi3j8+HF0Op3IZrPx6NGjqNVqN17iOM4xAQAAAEZJEHZPuVzuxj25pt329vZQn1456TEBAAAARsGlkQAAAAAsBEEYAAAAAAtBEAYAAADAQrBHGDOv3W7H2tpa35qtra3Y2toaU0cAAACwmPb392N/f79vTbvdHlM3V2W63W53YkeHe/j6178ef/vb34aq/Yd/+IdYXl6+87Ha7Xacnp7G0tJSrKys3HmcUdLTcPQ0e/1E6GlYepq9fiL0NCw9zV4/EXoalp6GM209TVs/EXoalp7G28/JyUn893//91C1X/va1+Kvf/3rvY53W4IwZtZ7770Xp6enk24DAAAAuIOlpaX48ssvx3pMl0Yysz744IP4/PPP47333ot//Md/nHQ7AAAAwBD+67/+K7788sv44IMPxn5sK8IAAAAAWAg+NRIAAACAhSAIAwAAAGAhCMIAAAAAWAiCMAAAAAAWgiAMAAAAgIUgCAMAAABgIQjCAAAAAFgIgjAAAAAAFoIgDAAAAICFIAgDAAAAYCEIwgAAAABYCIIwYObt7e3FxsZGPHjwIDKZTKyvr0epVIpGo5HqcZvNZlQqlVhfX49MJtM79s7OTnQ6nVSPzeKY1Py+LEmS2NjYiMPDw7Eel9kzyTk7Lc8X5te0zDG/k0mDc2oWRhdgRtXr9W42m+1GRLdYLHbr9Xq31Wp1a7VaN5fL9f778fHxSI97fHzc3dzc7EZE36+Dg4ORHpfFMqn5fdnl+W5ec5NJztlpeb4wv6ZljvmdTBqcU7NoBGHATKrX670Xx3K5fG1NPp/vRkQ3l8uN7IX7+Pi4d0IwzNdNvUE/k5rf5x0fH3e3t7edjDKUSc7ZaXi+MN+mYY75nUxanFOziARhwMw5Pj7uvWuVy+VurGu1Wr0Xz2KxOJJjF4vFbkR08/l8t1ardVutVu8ds+tOUCOiW6vVRnJsFsMk5/eZ3d3dbi6X6813f3TRzyTn7DQ8X5hv0zDH/E4mLc6pWVSCMGDmnD8RHHQCOMrLBw4ODroR0d3e3r6xptVq9d41O/vKZrP3Oi6LZVLz+8zR0VH36Oio9/3ZvPdHFzeZ5Jyd9POF+TfpOeZ3MmlyTs2iynS73W4AzIgkSWJ9fb33/fHxcWSz2RvrDw8Po1QqRURENpuN4+PjOx97fX09crlc1Ov1W/UYEVGv16NYLN752CyGSc7vmzSbzSgUCr3vDw4Oolwuj/w4zKZJztlpfL4wX6ZxjvmdzKg4p2aR+dRIYKbs7u72bheLxb4v2BERm5ubvdudTufOn67UbDYjSZKo1WoDa3O53IU+z+4Pg0xqfvczqAcW2yTn7DQ+X5gv0zjH/E5mVJxTs8gEYcBMqVarvdv5fH6o++Ryud7tFy9e3Om4L168iHK5PPQJ6OV3qj777LM7HZfFMqn5DXc1yTnr+ULazDHmmXNqFpkgDJgZl98B+vDDD4e63/kX97u+e/X06dMr70gNe8yIuLKsGy6b5PyGu5jknPV8IW3mGPPMOTWLThAGzIxGo3Hh+/PvSvVzue4uS6rz+fytLkfodDp9e4DLJjm/4S4mOWc9X0ibOcY8c07NohOEATPj1atXF74f9kX0O9/5zoXvX79+PaqWbpQkyYXvberJILM0vyFisnPW84W0mWPMs1ma386pSYMgDJgZl18I7/ruVavVGllPNzl/YuDTnBjGLM1viJjsnPV8IW3mGPNslua3c2rSIAgDZsblF+27urzEOg0HBwe92zs7O6kfj9k3S/MbIiY7Zz1fSJs5xjybpfntnJo0CMKAmXHXF9vLy73fvXt3/2b6SJKkt2fC7u6uvQwYyqzMbzgzyTnr+ULazDHm2azMb+fUpEUQBiyctN+9OvsknFwuF9vb26keCy6z+oBZM8k56/lC2swx5plzamaVIAyYGbf5hJlxjHOdZrMZ1Wo1stls1Ov11I7D/JmF+Q3nTXLOer6QNnOMeTYL89s5NWkShAEjUa1WI5PJjPSrUChcOMbDhw9H0uuoxrnOs2fPIiLi5cuXlm/PEfMbrprknPV8IW3mGPNsFua3c2rSJAgDZsZd33W6vGw7rXevKpVKNJvNqNVqkc/nUzkG82va5zdcNsk56/lC2swx5tm0z2/n1KTt/Uk3AMyHYrEYtVptpGNefnF99OhRb8PMiK9ejId5Ab68kef6+voo2rugWq1GtVqNg4OD2NzcHPn4TNaiz2+4ziTnrOcLaTPHmGfTPL+dUzMOgjBgJHK5XOrLli9fSpYkyVDvErVarQvfF4vFkfbVaDSiUqnEwcFBlMvlkY7NdFjk+Q03meSc9XwhbeYY82xa57dzasbFpZHAzHj06NGF75MkGep+55dxZ7PZkQYazWYzNjY2Ynd31ws29zKN8xv6meSc9XwhbeYY82wa57dzasZJEAbMjHw+f2HZ9qtXr4a63+vXr3u3L7/w30eSJPH48ePY3t72kc7c27TNbxhkknPW84W0mWPMs2mb386pGTdBGDBTnjx50rt9fm+Dfs7X7ezsjKSPJEmiUChEuVyO3d3doe+zt7c3kuMzn6ZlfsOwJjlnPV9ImznGPJuW+e2cmkkQhAEzpVKp9G43Go2B9edrcrncSPYy6HQ6sbGxEU+ePBn6BTsiolQq2SuEvqZhfsNtTHLOer6QNnOMeTYN89s5NZMiCANmSj6fv/DCd3h42Lf+/Cf9DXrnqlqtxs7OTt99EjqdThQKhcjlcr3aQV+NRqO3KamPgKafSc/v61z+qHQ4b5JzNs1jQ4Tfycy3Sc9v59RMVBdgxrRarW5EdCOim8/nb6w7Pj7u1RWLxb5jFovFXm1EdI+Pj6+ty+fzF+pu83VwcHCfh82CmOT8vk6tVrtw393d3aHvy2KY5JxN49hwnt/JzDPn1CwqQRgwk86fCN50Enj2ApvNZgeeZA7zAnufF2zvO3Abk5jf1zk+Pu7mcrkL9+13oszimuScHfWx4TK/k5lnzqlZRGYRMLPq9Xo3m812I6K7ubnZPTo66h4fH3fr9XrvBTafzw/1R8/ZOGdf9Xr9ws83Nzfv9YJdLpdT+ldgXo1zfp93fHzc3dzcvPKO7uWvYrHY6wu63cnN2VEfG67jdzLzzDk1i0YQBsy83d3dbj6f773wZrPZbrFY7NZqtaHHqNfr3Vwu181ms93t7e0Uu4XbMb+ZNZOcs6M4NvTjdzLzzPxmUWS63W43AAAAAGDO+dRIAAAAABaCIAwAAACAhSAIAwAAAGAhCMIAAAAAWAiCMAAAAAAWgiAMAAAAgIUgCAMAAABgIQjCAAAAAFgIgjAAAAAAFoIgDAAAAICFIAgDAAAAYCEIwgAAAABYCIIwAAAAABaCIAwAAACAhSAIAwAAAGAhCMIAAAAAGEqn04lqtTrpNu5MEAYAAADAQJ1OJwqFQtTr9Um3cmeCMAAAAAD66nQ68fjx40iSJDY2Nibdzp1lut1ud9JNAAAAADC9CoVCNJvNiIg4Pj6ObDY72YbuyIowAAAAAK7VbDZjfX29F4LlcrmZDcEiIt6fdAMAAAAATJdmsxnPnz+Pw8PDC/89m81e2Cy/XC6Pu7V7cWkkAAAAAD2Hh4dRKpUG1mWz2Tg+Ph5DR6MjCAMAAADgWo1G48Lm+LMeI9kjDAAAAIBr1Wq13u18Pj/BTkZDEAYAAADAtRqNRu/206dPJ9jJaAjCAAAAALii0+lEkiS974vF4gS7GQ1BGAAAAABXnF8NFuHSSAAAAADmVL1e792eh9VgEYIwAAAAAK7xb//2b73bpVJpgp2MjiAMAAAAgAuSJIlOp9P73oowAAAAAObS+f3Bstls5HK5CXYzOoIwAAAAAC4YZn+wJElib28vSqVSFAqFyGQy0Ww2r9RVq9V48OBBVCqV1PodliAMAAAAgAvOrwh7+vTpjXXFYjE+/PDDXgD2/PnzKzVHR0fR6XSiWq1GkiSjb/YWMt1utzvRDgAAAACYGkmSxPr6eu/74+PjyGazfe+zt7cXOzs7N9aXSqU4PDwcaqw0WREGAAAAQM/h4WHvdi6XuxBcVavVa+9TLpd7t89/2uSZTz755MpYkyAIAwAAAKDnpv3B9vb2brxPNpvt1dZqtSs/f/36dWxubo6wy7sRhAEAAADQc35/sI2NjYj4apVYvV6/sPLrslKpdOX+Zw4ODuKjjz4acae39/6kGwAAAABgOlz+1MdXr17Fu3fv4uDgIF6+fNn3vudXjzWbzcjn8xER0el04uHDhxO/LDJCEAYAAADA313+VMe9vb3I5XJxdHQ0MMjK5XKRy+UiSZJoNBq9IGxnZ6e3kf6kuTQSAAAAgIiI2NzcjHK5HNlsNnK5XGxvb0er1Rp6NddZ+PXq1auI+J9gLZfLpdLvbWW63W530k0AAAAAMPuq1WpUKpXI5XLRarWiVCrFJ598MhWXRUZYEQYAAADAiJztE3Z2eeSHH344NSFYhBVhAAAAAIxQJpOJiK8ukzw6OppwNxdZEQYAAADAyJztE7a7uzvhTq4ShAEAAAAwMg8fPozNzc3eZZLT5P1JNwAAAADAfOh0OvHu3buo1+uTbuVaVoQBAAAAMBLPnj2LTz75ZNJt3EgQBgAAAMC97e3txcbGRm+PsGkkCAMAAADgVjqdTuzt7UWn04mIiMPDw4iIKJfLE+xqsEy32+1OugkAAAAAZkepVOqFX/l8Pp4+fRrb29sT7mowQRgAAAAAt9JoNKJUKsXDhw/j4OBgKj8h8jqCMAAAAAAWgj3CAAAAAFgIgjAAAAAAFoIgDAAAAICFIAgDAAAAYCEIwgAAAABYCIIwAAAAABaCIAwAAACAhSAIAwAAAGAhCMIAAAAAWAiCMAAAAAAWgiAMAAAAgIUgCAMAAABgIQjCAAAAAFgIgjAAAAAAFoIgDAAAAICFIAgDAAAAYCEIwgAAAABYCIIwAAAAABaCIAwAAACAhSAIAwAAAGAhCMIAAAAAWAiCMAAAAAAWgiAMAAAAgIUgCAMAAABgIQjCAAAAAFgIgjAAAAAAFoIgDAAAAICFIAgDAAAAYCEIwgAAAABYCIIwAAAAABbC/w+DV7zmTNq8nQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACpLklEQVR4nOz9X4xad57n/7/A7shRshgqo5FQIc0YlFX6atpg70XfzRi2b2IlswF7lSiJtNsFmXx79oLdhrhz7a6mpoebmW/kwpmVfo4irQ2dSZRc9KZwX470XVfhnrtouzlOS1VCWm1XHTOJYiUO/C5qoKH+HA7FgcOf50Mqqf6863Pep/7ZvPj88bTb7bYAAAAAAACAOed1uwEAAAAAAABgEgjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEE673QBwUk899ZQePXqkU6dO6Y//+I/dbgcAAAAAANjwf/7P/9G3336rM2fO6Msvv5zotT3tdrs90SsCDjl16pRarZbbbQAAAAAAgBPwer369ttvJ3pNZoRhZnWCMK/Xq2AwONZrNRqNiV3LLnqyh55mrx+Jnuyip9nrR6Inu+hp9vqR6MkuerJn2nqatn4kerKLnqavn871Tp06NfZrHUQQhpn1x3/8x9rZ2VEwGNT29vZYrxUKhSZ2LbvoyR56mr1+JHqyi55mrx+Jnuyip9nrR6Inu+jJnmnradr6kejJLnqavn4613NjmyNXg7Bnn33Wzcv38Xg8+t//+3+73QYAAAAAAADGxNUgrF6vy+PxyM1tyjrX93g8rvUAAAAAAACA8fO63YDbOCsAAAAAAABgMbi+R1i73VYymVQ4HHbl+qZpqlQquXJtAAAAAAAATI7rQVipVNIPf/hDV3tIJpP6wQ9+4GoPOLlGo6FQKGRZk81mlc1mJ9QRAAAAAACLqVgsqlgsWtY0Go0JdXOY60FYPB53uwVdvHjR7RYwglarpZ2dHcuaZrM5oW4AAAAAAFhczWZz4GN0N7kehC0tLbndAmac1+tVMBi0rPH5fBPqBgAAAACAxeXz+bS8vGxZ02g01Gq1JtRRP1eDME5qhBOCwaC2t7fHeo1sNqtmszlVgRo9za5p+zpNWz8SPc2yafs6TVs/Ej3Nsmn7Ok1bPxI9zbJp/DpNW0/T1o80nT1No2n8Ok1bT072Y2drolAo5NqsMU/bxWMTvV6vTNN0/Rv/8OFDBQIB19JInEznF2d5eXnsQRhmFz8nmGf8fGOe8fONecbPN+YZP9+ww82fE+9Er3ZAoVBwPQSTpLNnz6pQKLjdBgAAAAAAAMbI1SDsxz/+8USv9/nnnx/7sUn3AgAAAAAAgMlyNQibtEwm43YLAAAAAAAAcMlCBWGbm5tutwAAAAAAAACXuHpq5El9/vnnMk3Tdr1hGFpfXx/qcwAAAAAAADBfZiII+/zzz1UoFFStVmUYxonGaLfb8ng8DncGAAAAAACAWTH1Qdi1a9e0trYmaT/MAgAAAAAAAE5iqoOwX/ziFyoUCpIkj8cjj8dDGAZgKNlsVs1mUz6fz+1WAMfx8415xs835hk/35hn/Hxj2nnaU5wsXbhwQbVarRuAhcNhRaNRhcNhSdIzzzwzcIzf//73Mk1Td+7c0cOHD/Xtt9+Ou21MSCgU0s7OjpaXl7W9ve12OwAAAAAAwAY3H89P9YywTggmSRsbG7p06dKJx8rlcnr22Wedag0AAAAAAAAzxut2A1b8fr+k/RBrlBBMksLhsM6dO+dAVwAAAAAAAJhFUx2EdZZAXrx40ZHx1tfXHRkHAAAAAAAAs2eqg7DOLLDd3V1HxwMAAAAAAMDimeog7Cc/+Yna7bZqtZoj47377ruOjAMAAAAAAIDZM9WnRkrS2tqaCoWCPv/8c/2bf/NvRhrr4sWLunfvnkOdwW2dUya8Xq+CwaBlbTabVTabnVBnAAAAAAAspmKxqGKxaFnTaDTUarU4NfIouVxOGxsbSqVS+uUvf3nicR48eODYzDJMl1arpZ2dHcuaZrM5oW4AAAAAAFhczWZz4GN0N019ECZJGxsbunDhgp599lnl83ktLS3Z+rzd3V2Zpql6va47d+6MuUu4xc6MMJ/PN6FuAAAAAABYXD6fT8vLy5Y1nRlhbpj6pZGS9Ktf/Uq5XE61Wk0ej+dEY7TbbXk8Hn377bcOdwe3dJZGujGVEgAAAAAAnIybj+enfkbYX/3VX6lUKkmSPB6PTpLbnTQ8AwAAwPRot6XWgP8Kej0S//UDAADHmeog7ObNm1pfX5d08hBM0ok/DwAAANOj1ZZOv21d8/i6dIogDAAAHGOqg7CDIVg8HlcikZDf7x96n7AbN27o888/H2O3AAAAOIhZXAAAYJpMdRDW2RPM7/drc3NT586dO/FYKysreuaZZxzsDgAAAIMwiwsAAEwTr9sNWPH7/ZKka9eujRSCdcY6f/68A10BAABgWr1/3+0OAADANJvqICwWi0mSwuGwI+PdvHnTkXEAAAAweXZCrtcrhGEAAOB4Ux2EZTIZtdttGYbhyHjMCAPgBNM03W4BAOaKneDq4SPpzY/sjffGh1Lz0UgtAQCAOTXVQVgymdT58+d1+/ZtR8b74IMPHBkHwOKp1WrK5/MKBAJaWVlxux0AmBlOzeJ6ryZ9+Y29a37xtXSrZq8WAAAslqkOwiSpXC5ra2tL//iP/zjyWKurqw50BGDadEKqRCKhSCSiQCAgj8ejQCCgWCymRCKhfD6varV65OenUqnuUuwO0zRVqVSUSqW646ytrTEbDACG4OQsro8/G+7anwxZDwAAFsNUnxop7e8PduPGDf3whz/UX/7lX554nIcPH6pW46lBTKdSqaRMJjP050WjUW1tbY18fc8Jzqz3+/3a29s78mOpVEqVSmXoMTc2NhSPx23Vmqap1dVVra2tWdZ0fu+r1Wq3NhqNKh6PKxKJaGNjQ5VKRdFotO9zV1ZWZBgGfzcAYAQnmcX1o+8f/fG9r4a79rD1AABgMUx1ENZZyvhHf/RHCgQCevbZZ5VMJocexzRN3blzx+n2AMek02lduXJFhmFodXXVMkSKx+PK5/O6cOFC92TVUXX24qtWq8rn88fOegqHw8rn84rH45aHWJTLZZmmqc3NTRUKhWNnYklSLpfT1atXFQ6Hbd9PPp8/MgBLJpPdsTrjGYYhwzBULpd1586dbjh2MOA6eM/lcrn7eiQScWyvQgBYJCeZxXVcEBZ4crixhq0HAACLwdNut9tuN3GcCxcu6P79P2wY0W63TzRzpfdzv/32W6fag8tCoZB2dna0vLys7e1tt9txVCaTUalUOvT+ZDLZF9CMg2EYikQiR35sb2/vROFbLBY7cmbV+vq60un0UL0lEolDoVQ6ndb6+rqtMdbW1pTP5w+9PxwOq16vH/k5B78fk/g+AMA8+Hf/r3RviH+i/11I+v/+n6M/9vf/JP31x/bH+rvLx4dqAADAXW4+np/qPcKuXLmidrutTlZ30hAMmDXHLZM8yfLJYYXD4UPLBKX98OekM9CO63uYEKxarR6ameX3+7W1tWU7BJP2Z6DV6/VD97K7u3vs5zg18w4AFo2Ts7hejUpPfcfeOE8/Ib12+J8yAACA6Q7COg+ePR5PNxA76QswS45bdmi1HHHc1x/l2kd97jDhUq1WUyKROPT5d+/ePTK0s9PPgwcP+npgE3wAcN7l54arf96i/uwZ6Z0X7I1z40XJd2a4awMAgMUw1XuEnT17VtFoVPfv31ehUFA0GtXS0tLQ4xiGoZ/+9Kf69a9/7XyTwBgcFxKd5Od/1hmGoUuXLh16f7lcPlEI1tGZTXbcMtBZ1tn8f1LB6aypVqu2D2UAMJpXo9Jbv7S3Yb6dWVyvnJdeH3AWy63kfh0AAMBRpjoIk6SrV68qEonoxz/+8YnHOH/+vF566aWFDBGAkzjqd+WZZ55xdDy7v4+pVOrQbK10Ou1IkBEOh5XL5SxPnpwmtVpN6+vrqlarMgxDfr9fS0tL8vv9CofDunr1qqT9Ey8LhYLl0tNqtapUKqWlpSWtr6/PdTDUOQiiXC53D26YppnCi/S9wOLpzOIaFF5Jzs3iepkQDAAAWJj6ICwej+vevXuOjHXhwgVHxsF0aTQaCoVCljXZbFbZbHZCHcEp1Wr1yE32C4WCY9e4du1aNwgzTXMq9wMzTVMrKyvd00TD4XD3BF3DMLqnYPaeNjpoqWcnYDRNU5lM5tiDAmaZYRhKpVIyDGOql74uwvcCi41ZXAAALJZisahisWhZ02g0JtTNYVMfhJ0/f96xB73/5b/8F0fGwXRptVra2dmxrGk2mxPqBk46apP9UTbtP4rf71c6nT7ylM5pkUqlujOZjjpp0zAMZTKZbo2kgWHK0tLSVIdDTgiHw9ra2pIk5fP5qZ35twjfC2AQu7O4vB7p8fXBNQAAwD3NZnPgY3Q3TfVm+R3nzp1zZJy/+7u/c2QcTBev16vl5WXLF5/P53abGFJn+d9B165dc/xaqVRKkvXJkVY6S9sikYg8Ho8CgYASiYQj4dra2lo34MrlckcudwyHw9rY2Oh70uCor12v9fV1hcNhhcNhlcvlkfucdgcPW5gmi/a9AEbh8UinvNYvHDIOAIC7fD7fwMfoXq97cdTUzwhz0ubmptstYAyCwaC2t7fdbgMOOy4QGGWD/OPE43EVCoWh9xE0TVOXLl06tHzTNE1Vq1VVq1UVCoWRNvZfXV3tvn7UDLleuVxOv//977W2tjYw1IvH4wu1BM+tPSIzmYzW19ctaxbtewEAAID5ZmdrolAo5NqssZkMwj7//POhlpEYhqH19XWWngAzpHeZX8c4NxHP5XJD1RuGoVgsNvDvSqduY2Nj6P5PsrdVoVA4djYdJqtUKqlUKg0MwoB5x3JGAAAwTWYiCPv8889HfnDXbrflmaK58p09fTY2NmzV9t5/54S4CxcuKJ/PKxwOT6Bj5wxz71hMhmEc+bs+jtlgJ2GaZneD82QyqUQioQsXLmh3d1cbGxtH7kWVSCRUr9eH+n09GIJVq1XLkyA7rl271l3uCXd0/s4B+NfljNPzXzAAALDgpn6PsGvXrikSiahUKqler6vdbp/oZVJM05TH4xn4EolEbD0gXltb695/JxgwTVO1Wk2lUkmRSMT2BtCBQMBWb0e92HlA5/S9Y3EdF3hHIpEJd3K0zmmWGxsbKpfLSqfTikaj3SWWxwVew4ZTB8fI5/O2Zoh1TpRkFqw7TNOc6j3JAAAAgEU21UHYL37xCxUKhW6QNU0zuo4zzObY+Xze8uOJREL5fF5+v1/JZFK5XE7JZPLIB8eVivW55JVKZaQHxXYe1Dl571hsxwVhbu3zdBSrpY6dzesPqtVqRy75PI7f7+87IdM0TcViMVszY9vttqOna8Kezr5xLE0FAAAAptNUB2GdTaI9Ho/a7bbOnTvXDYRyuZwKhcLAl84pa5N6QNi7sbWVeDxuOSsqn893N9re29tTuVzubrpdr9f7ToeTBs80GXWPms4MEytO3TumUz6fP/GMwlgsNtS1jgttpyXY8fv9A/f7CofDh35PJR35PisH6w3D6M4SHVWtVlMmkxk40840TZVKJcVisb7rdpb/dWabHjdD1TAM5fP57qmakUhEmUzmyO9z5zoHf4YOSiQS3fF6X5ycBVcqlfquEwgEFIvFjp2FW6vVdO7cuUOHJxycEXvc59r5XnSYpqm1tTUlEonu17/TXz6ftxXEGYbRnXXc23Pv9yASiXSXAQMAAABzoT3FPB5P2+v1tr1eb7tarY40Vr1eb3u9Xoc6O9r6+npbUjuXy7U3NjYsX/b29ix7ldTe2NiwvF46nW5L6r5sbW1ZjhcOh9vr6+vter3e3tvbG/gSDofbktrxeHxi9z6M5eXltqT28vKyI+NNm97vbefFqa/dIAd/tsbxEg6Hh77+oN+Jccnlcn192Pmd6PD7/YfuY1jxePzIr0c0Gj329/44W1tb7XQ63deX3+8/VLe3t9cuFArtaDTad8319fV2u334a9L7kk6nu+NY1YXD4WN/pg/+DBynUCjY+h3Z2tqy/T0ol8vdr0u5XO4bo/N38aje9/b22ltbW4d62tra6nvpHc/O9+Kgzt9bSe1CodDe2tpq1+v1drlc7vt+JZPJQ5+7t7fXzuVy3fvo7XFvb+/Q97u3r3q9PrA3AAAAwA43H89PdRAWCATaXq+3/dZbbzkyXiQScWSc44TDYcsH93Ylk8l2oVAYWLe3t9f3QOW4z+k86BkmROmEZ70PfK04de/DIAgbn6OCqHQ6fegBvd2X3gfudoKw48KT3lBikg72c1TAcJxkMnnoPoYNr44bp7cfOz8b9Xq9ncvl2oVCwVYQtrGxceh7l06n29FotB2Px9vlcrkbrB/8Gm1tbbXj8Xg7Go12A/DOmL3XzuVyR/a6sbFhK7jq/VvlRBDWe92j/qb2jnPcz4Gd3of5XvTqfJ2tgqnen5WDf/vr9Xp7Y2Pj0O/4+vp62+/3t5PJZHtjY6Ndr9e77ztJAAwAAABYIQg7RiwWa3u93vYvfvELR8YbdVaZlc4MAjuh0SDDPNjofVb/uGv7/f6hH3j3zmgY9ADbyXsfBkHY+BwVhNkJZ49zMIQYFIQdnFEzTCg7DqMEYZ3fDyfu47ivy0nG7R1rUPhycJbQcTPzDs5c650Z1qv3a3Lcte0GYQefEBg1COsNkY77mR80jt3eO+x+L3pDyUHf695/G477N6W3R7/ff+T39eDP76T+BgEAAGC+ufl4fqr3CLt06ZIkaXd319HxxmF1dVV+v19XrlwZeayjNtk+Tu/X5sKFC0fWlMtlRaPRoXq4ffu2pP39vAbty+TkvQPS8XuBzeI+RUfth3fS+8jlctrb2zt2z75MJqNEImFr/GH26es9pCCdTh+7P9rBQzWO25uwt3/TNKf2+3rcz2Hv+53YFN/u96JzyIjf71c6nbZVK+2fcnrUIQ2993Hz5s0jv68Hf9Y2Nzdt9QoAAABMq6kOwn7yk5+o3W4f2nj4pN59911HxjmoVqupVqvJNE0FAoHuRtCDTnIcVe8DyHg8fmzYNWhT76PG7XzNB23C79a9Y74dFwzU6/UJdzK6o8KU3//+9yONVy6XtbW1deTvfLVa1aVLlxwNl+weUtD7fRvmYINpOmHx5s2b3YNJBoVN0uTC2VKp1L2WneDs4CExwx7S0Kv3etP0vZon7bb0bcv65V8P0AYAAMCIpjoIO3v2rH72s5/p9u3b+pd/+ZeRxxv15MTj9D7zLu0/UCiVSkqlUvJ4PEqlUo6Feb3u3Lkjaf9BSrlcdmzc3lPhBs3ycuveMd+OC2+PmtUy7Y4KLZ555pmRx41Go9ra2jry71qtVtPKysrI1xjWSU/1dGrWrxP8fr9yudyRs+46wb8bemcK251B1vt7NIu/O4uk1ZZOv2390iIIAwAAcMRUB2HS/lKgaDQ6cGbSIA8ePBjLAxjDMAY+wKhUKorFYspkMo5d1zRNZTIZRaNRbWxsnPgB6FE6yyKj0ajluG7dOxbDUbOdDMOY2mV0wxhmWeIg6XRa9Xr90O9qpVKZ6vDDyb9Z49QJ96vVqqLR6NDLzJ3sY1gHf87m4XcHgH3MNAQA4Gin3W7Ajo2NDV24cEHPPvus8vl83341VnZ3d2Wapur1enf2lNPC4bDW19e716lWq8c+YCmVStrc3NTW1tZI1zQMQ4lEQn6/X3fv3nX0AWXvssirV69a1rpx71gcV69ePTK8rlarx+6RNa38fn9fCOFkENYZb2trS7FYrO866+vrQy+Nxr5araZ8Pq9oNDrSskKn9H5f7YZikUik7+3d3d2ZCSAxHdrtwTPRvB7J45lMPxhOZ6ahlcfXpVN8/wAAC2YmgrBf/epXkvb3BzrpzKJ2uy3PmP6ndnAfGdM0VSqVtLq6eugZ+FqtpkQiMdSG+L0qlUrf7LhAIKBCoaBcLnei8Q7qDQzthA2TvHc4p1araXV11dEltU5Lp9OHlt5K++HOrAVhB38X7MwqqlaryufztsPjcDismzdv9v19YFnyyWQyGZVKJaXT6akIwaSTbdB/8EkjpwNYzD+CFAAAMI+mfmnkX/3VXymRSOj+/fvyeDxqt9tDv0xaZ4+Zvb09lcvlQ8/AV6tVra2t2R7PNE2tra0pEokcuUQ0n8+PvHS0o7PfUDQaPdGDJqfvHeOxsrIy9cuk/H7/kYFXtVqdqYDn4NfZ7gytcDisWq021PLGg18vNjYfXicEk0bbYN5pvX+P7Z602bv3GiHY7Hv/vtsdYFKmcUnjNPYEAMBJTfWMsJs3b3aDmU4IdhJuhGEdyWRS8Xhcly5d6nvwvrq6ansWV7VaVb1eVzweP3ZfrkqlorW1tZFmhg2zLNIOJ+7djkajoVAoNPI42WxW2WzWgY6mWydIsnqQ7/Tm5Scdr1AoHHkCaT6fd3xmoWmaY1k2trm52fe23VmtneAik8mc+LRMt/azmiQnf1ZrtVo3BAuHw1O1jPDq1at9vwulUmng39Hen5tZm0U5C5xcNmgn5Hq9Ip3ySq+ct9ffpLx/X3ot5nYXJzOtSz+ncSbeNPYEAHBHsVhUsVgceZxGo+FANycz1UHYwRAsHo9398Yadp+wGzdu6PPPPx9jt8fz+/3d/Xs6gZBpmqpWq7ZmhySTyUMPYkqlkvL5fN+sgHw+r3Q6feIHb8Mui7Rj1Hu3o9VqaWdnZ+Rxms2mA91MN9M0u7MHh/0e//73v3e0FzsBRjgcVqFQOLREsjOz0KlAtbPvXjwed/x02YOn/Q3zdQ+HwzIMQ/l83tbspIMzwJwItN1y8G/8cUGlk7Peep9ksBrXjdmUyWSyb6+59fX1gT//vfdz7dq1cba3kJwKBh4+kt78yN413/hQuvxdyXfGXv2oZjmgs4NwBwCA4TWbTUcef7tpqoOwWq0mj8cjv9+vzc1NnTt37sRjrays6JlnnnGwu+HdvHlTsdgfnjbd2Ng4cRiUTqcVj8cPbY5tZ5bAcToBQDgcdnwZjZP3fpDX61UwGBx5HJ/P50A3zhjHA23TNHXp0qVuoDDs99jpnuyOl8vltLGxcWgmZGcj81F/jqrVqhKJRDd0c1rvLJ5hQ7ZOENZZGn1wT76DescPh8OOBYV2v1e9dYM+Z9DHD85mO+pvWyck7OXkhvCVSuVQcHnU9Q46+LtlGMahpY0n6bF3D7jO7ODjfv5rtVr3yYdCoTBVs9vQ772a9OU39mq/+Fq6VZN+9P3x9iRNd0AHAADc4/P5tLy8PPI4jUZDrVbLgY6GN9V7hHX+437t2rWRQrDOWOfPu/t05cEH7aPOZAiHw7p7927f++7du3eisXqXRY5jCY3T994rGAxqe3t75JdpWhZ53NfnpMvAqtVq36y8K1euDH39UZagjfr93tjYOPLnMpFInHjPOdM0lclkuiHY1taW7bDAbjBUKpW6994Jr4fRG55kMhllMpljr10qlfq+FoOWjvZ+P93eL+646/d+vfL5vDKZjKrVqiqVijKZjCKRyKGQx+7vzlHXPBi+pVIpra2tdWcgRiKRQ6HW+vp692CDzpgHg7DO980wjL49yI7qzep7kUwm+8LaVCp1ZL1pmlpZWZG0/3N3XCBq9/ve+zV1+2dlHn382XD1nwxZf1InCegwe9h7DgAwrGw268jjbycms5zUVAdhnRlETs1OunnzpiPjjCKRSDg6XjQa7QsITho49C6LHNdyKqfvfZ4dN3Mok8nY+h53lp/m83lFIhElEom+z7P6XhiGceRm9JVK5cQPgo+7n4OBgJVyuXzkA/p8Pq9YLGZ7U/nO4RPnzp1TqVRSPB4fKgSTDu/7dZRO6CHpxEsue2dRSvtfr0AgoFQqpXw+r1Kp1A2Eeq9Vr9cH/t082M9Re7FJf/hZ6rC699u3bx/q9ygHv1fHhXYHD9wolUpKJBJKpVK6c+fOkTNL8/m8DMM49LN68H57/+Z1xOPxI2eAJRKJbhBXLpf7rlmpVLq/X7299v6sVqtVBQIBRSKRQx87qrfjvhedz+18XUzT7P4cG4YhwzBUKpW6oXehUDj2587u98Bu3SyZtk2/974ab/1JTWtAN2nTGhTZ6cvu0tZpvUcAAMZlqoOwTCajdrvt2Owht2eESf2hnt19zgbpDa5OGlSUy2VJ+zPnxrXB9jjufd7UajWlUinLACESicjj8Vi+BAKB7mypo35/jpqZZJpm90H0cWKxmEqlku2fs1qtpkQicewpj5lMphtc2FEoFLSxsXHoZ7RznU5IVCqVuocCVKvV7mypWCymQCDQXd5WLpe1sbExMAQ7uMG9aZqKRCLHhm+VSqX7dUwmkycODzobtpfLZZXL5e6ssk7g0ZldtLu7273OxsbGsSFY5+crEAgc+p6kUinFYrHurLJO7cHZuLVarXuCbefnoBPGHQxwOjPuOmN2lqEeDGJLpVJfmNfh9/v14MEDpdPp7j1Fo9HuybSdn+POMtB6va6tra3u162zJ14gEDiyt1gsduia5XJZhUKhe73O2Ht7e90Aq1AodK8djUZVKBS6f0M7CoWCcrlcX9/lcrkbTA3zvTgomUxqb29P6+vrunDhQjfwjsViWl9fVyaT6eu3V+d3ZdD3oLNv3sG6zt+gWT79t7MvlNXLoA3UnRR40tl6p4K+aQ3onDStQZETfQ27tLX5yF4tAADzwNN280hFG2KxmLxe74mX/PX64IMP9B/+w39woKuTq9Vq3QfIuVzOkT2JDMPozjSIRqPa2toa6vNN01QgEHC0p6M4fe+hUEg7OztaXl7W9va2Ey26phNqTMJRPyOeExyJ5ff7tbe3d+THUqmU5ayW4wyzd1ylUtHq6uqxIdtxwuGwMpnM0AdLdPajOnhffr9fFy5c6AYvm5ub3T2gDs4eAuC+b1s2N0gf8FShnXH+f8nBJyr+/T9Jf/2xdU2vv7tsvUeYU/f3g/8uffob+3394Fnpl//Jfr3bHj6Sln9qb/nn009IO9cmsweaU31N688VAAAdbj6en/p/rsrlsra2tvSP//iPI4+1urrqQEej6V1WNI6lghcuXBj6cyaxLFIa/73PsnQ6rXa7PZGXo4LSk4xzXAgm7f/enmTMYUKjZDKpra0t7e3tqVwuK5lMKhqN9s2GCofD3eXDhUJB9Xpd9XpduVxu6M3Dw+GwyuXyoetJ+7NkqtWqdnd3deXKFW1sbPTNWAIwf5yaTfRqVHrqO/au+fQT0mvjmbR9yOXnhqt/fsh6t03rHmhO9eXG0laWWAIAZsVUnxop7T/4vHHjhn74wx/qL//yL088zsOHD4eeOTIO9Xq9+7pTD5Lt7v10nEksi5TGc++A3+9XMpkcyyEP03A9ANPHyRMVz56R3nlhPzQb5MaLkzuZ8dWo9NYv7c9MmlRA55STBEVWM6ba7cFLar0eadAEbKf6cnppq93g95RXesX9nUgAALA01UHYBx98IEn6oz/6IwUCAT377LMnevBpmuaRGyO7obOs6rhTvE6iE/B1HqAPo3cj7EEnCY5qHPcOAMCknWTWjlWI8sr5wUHYreRkA4ZpDeic4nRQ1Nl7zsrj69KpAUGYU305ufeck8EvAADTYKqDsJ/+9Ke6f/8PT0G12+0Tb9DbbrdPtA+SkyqVSvdksWvXrjk2bmfJ50lOxewNCFOplGM9HTSuewcAYNKcnk1kx8sOhmDv3x+8d5k0nQGdU5w+pMApTvV1+bnh9nizWtrqdPALAIDbpnqPsCtXrnT3DpJOtqH3OFWrVQUCAXk8HsuT8aT95YsrKyuSpLt371ruT9Q53S6fzw88na9Tk8vlTjRbrndZ5DDLFcd17wAATLtpPlFx0ichOhnQTdK07oHmVF9O7j3nxn5jAACM01QHYZ1T9Dwez8gbhI9DuVzuBlXValWxWOzIk/86H1taWlK9Xrfch8s0TeXzedVqNa2trSkQCCifzx9Zm0qltLa2pkKhcKITGHuXRQ67Z9c47h0AgGkwKCSa1tlEwy5haz4aaztTzY1DCuyEj0711Vnaasegpa3THPwCAHASU7008uzZs4pGo7p//74KhYKi0aiWlpaGHscwDP30pz/Vr3/9a0f7S6VSKpVKfe8rlUq6c+eO4vG4lpaWtLm5qVqtplwup2vXrg2cDeX3+xUOh/s2wF9bW1OpVFI8Hlc4HFatVtPm5qbi8bjq9XrfKXnD6F0WeVSIZWUc9w4AwLg5sem3k8vOpP1N1B9fH1wziNNL2Jzqaxo5vQeaU5vJO9mXU0tbpzX4BQDgpDztcU2Xcsjf/M3faHNzU7dv3x55rKWlJe3u7jrQ1R8YhqFCoaBqtard3V2Zpim/36+lpSVFo1FdvXpV8Xh8qBDINE2trq6qWq3KMIxDYyYSCV25cmXkYCmRSHRnhJ3kx2Ac9z6MUCiknZ0dLS8va3t7eyzXAADMj4ePpOWf2j8Jcefa0UGDU+M47Qf/fbiA7gfPSr/8T+PrZ9p92xq8wf2tpPTqgP3UnP55cKovO+M8vr4fzln5+3+S/vpj65pef3eZPcIAAIO5+Xh+qmeESftL9u7du+fIWBcuXHBknF7hcFjr6+uOjun3+0+01HFYGxsbI33+OO4dAICD2u39U/mseD3SoK1EnZoxNa0nKrKEzXl29kBzYzP5Se7N9mpUeuuX9oO+QctInfp9BgDgpKY+CDt//rxjodAkwiUAAOCsVtvmzJYBD5ydPO1xGk9UZAnbcJxa+unGKaKT5HTw69TvMwAAJzXVm+V3nDt3zpFxzp+f0aONAADAyCY9Y2rSJypO60mI08rj2V8WaPViZ1bSIszEsxPoTjr4BQDgpFydEfbrX/9a3/ve99xsoWuaegEAAM6b9xlTTi9hgz3T+nM16cMOJh38AgBwUq4GYbFYTHt7e/L5fG62oYcPHyoWi+nbb791tQ+cTKPRUCgUsqzJZrPKZrMT6ggAMI2cPu1x2kzr3mXzblpPEfV4WF4IAHBHsVhUsVi0rGk0GhPq5jBXg7BpOrBymnrBcFqtlnZ2dixrms3mhLoBAEyrRZgxNY17l807p3+uCLAAALOu2WwOfIzuJleDMM8UHQczTb1gOF6vV8Fg0LLG7VmHAAD3MWNqH0vYnMXPFQAA/Xw+n5aXly1rGo2GWq3WhDrqx4wwzLxgMKjt7W232wAA9Gi390+Hs+L12NuM3ElOzZia9P5LmG7MxAMA4A/sbE0UCoVcmzXmahAmSQ8ePNCf/dmfudrD5uamq9cHAGDetNrS6betax5fd24J2Pv3pddizoxlZ8bUtC5fI6CbXrM8E4+fKwDAPHE9CFtZWdFbb70lv9+vpaWliV57d3dXhmEol8tN9LoAAMC+9+8Prnm9Ip3yMuNmWgM6zLZJ/1zZDbandeYpAGC6uR6EbW1tKZVKudpDu91mjzAAAKbQw0fSmx/Zq33jQ+nyd9mDCZPHjCn7nAy2Jz3zFAAwH7xuN9DRbrddeQEAAPvabenblvXLpP/pfK9m7zQ+Sfria+lWbbz9AEfxePaDG6sXnnMdPthuPhprOwCABeX6jDC3wyi3rw8AwLSYxtkVH382XP0nn0k/+v54egEwmpME2/w+AwCc5moQtre35+blAQDAlNv7ytl6lrAB7iHYBgBMA1eDsLNnz7p5eQAAMOUCTzpbz2bygHucDrYBADiJqdkjDAAA4KDLzw1X//yQ9QAmx+lgGwCAkyAIAwAAU+vVqPTUd+zVPv2E9Fp0vP0AODmCbQDANCAIAwAArnj//uCas2ekd16wN96NFyXfmZFaAjBGBNsAgGlAEAYAABxnJ+R6vWKv7pXzg2tuJe3VAXAPwTYAYBoQhAEAAEc9fCS9+ZG92jc+lJqPRr/my4RgwEwg2AYAuI0gDAAAOOq9mvTlN/Zqv/haulUbbz8AZouTwbadWacAgMVCEAYAABz18WfD1X8yZD0ASM4uwQYALA6CMAAA4Ki9r8ZbDwBuLMEGAMwHgjAAAGCbnZkVgSeHG3PYegBgCTYA4KROu90AMKpGo6FQKGRZk81mlc1mJ9QRAMwmu8uMTnmtN7K+/Jz06W/sX/f55+zXAoB0siXYP/r+eHoBAPQrFosqFouWNY1GY0LdHEYQhpnXarW0s7NjWdNsNifUDQDMpmGXGV3+ruQ7c/THX41Kb/3S3myNp5+QXovabhMAJLEEGwCmWbPZHPgY3U0EYZh5Xq9XwWDQssbn802oGwCYTSdZZnTc7IqzZ6R3XtifPTbIjRePD9Q6vB7p8fXBNQAWB0uwAWB6+Xw+LS8vW9Y0Gg21Wq0JddTP0263265cGRhRKBTSzs6OlpeXtb297XY7ADDTfvDfh1vO+INnpV/+p+M//m1LOv229Ri3ktKrMfvXBDD72m2pNeDRh9cjeQaE23//T9Jff2z/un93maWRADBN3Hw8z2b5AADAlWVGL1vsMwZgPnk8+/sMWr0MCsGk/SXYT33H3jVZgg0A6DWXQdjDhw917dq1oT6n2Wzq17/+9XgaAgBgyrHMCMAs6SzBtsPOEmwAwOKYyyDMMAytra3Zrv+bv/kbBQIBrays6OLFi0OHaAAAzLrLQ57cyEmPANxmdXptx62kvToAwOKYyyCs43e/+51+/vOf69q1a/rggw+OPDnw/v37yufzikajunfvnu7du6dwOKyrV6+60DEAAO5gmRGAeWR3CXa7vb+3odULOysDwHyYy1Mjq9Wq2u22wuFw3/sjkYg2Njb0J3/yJ9333b59W5IUj8e771tZWVG5XNY///M/68/+7M8m0zQAAC5y+qRHAJglrfbgAz4eX5dOcUItAMy8uZsR1pnh5fF41G63uy/nzp3Tb3/7WyUSib76Wq0mj8ejZ555pu/9qVRKP/zhDyfZOgAArmKZEQAAAObd3AVh6+vrkqR2u610Oq16va5Wq6Xf/va3arVa+t73vqd33323W7+7uytJ8vv9fePE43FtbW2xgT4AAD046REAAACzbO6WRm5ubioajapcLuvcuXOHPn7z5k2l0+mBs72WlpYk7S+z/N73vjeOVgEAmFtez/4yokE1AAAAwCTNXRD24MEDPXjwQD6f79iaer3efd00TUl/CL46zp49K0m6d++e800CADDnPB720gEAAMD0mbulkYFAQB7P8f/zvnnzpiKRSPft45ZGPnz4UNIfgjIAAAAAAADMtrkLwl566SUlk0n97ne/O/Sxn//858rn86rVat33dYKugydMGoYh6XBABgAAAAAAgNk0d0sjC4WCIpGIwuFw98UwjG6wJUk/+9nP9Fd/9Vd9J0h2ZoB1rK+vy+PxHFoyCQAAAAAAgNk0d0GYJG1sbCiVSun+/ft9+4FJUqlU0ksvvaR2u61kMimPx6NLly7pxz/+sX7wgx9oZWVF1WpVpVJJHo9HqVTKpbsAAAAAcBwO5QAAnMRcBmHhcFhbW1uqVCq6c+eOarWawuGwMpmMXnrpJUlSMpnUnTt3dOfOHb377rtqtVq6cOGCcrlc3zh/8Rd/4dZtAAAAADjGNB7K0W5LrbZ1jdez3zsAwB1zGYR1JJNJJZNJ2x/f3NxUKpXS3bt3FQ6H9emnn06iTQAAAABzoNWWTr9tXfP4+vQFeACwSOY6CBuW3+/XxsaGHj58qLNnz7rdDmxqNBoKhUKWNdlsVtlsdkIdAQAAYN68f196LeZ2FwAw/YrFoorFomVNo9GYUDeHLXQQ9vDhQ/3sZz/T6upq3/sJwWZLq9XSzs6OZU2z2ZxQNwAAAJg1798fXPN6RTrllV45P/5+AGCWNZvNgY/R3bTQQdjZs2dVLpf1R3/0R/qv//W/ut0OTsjr9SoYDFrW+Hy+CXUDALOLjacBLKKHj6Q3P7JX+8aH0uXvSr4zY20JAGaaz+fT8vKyZU2j0VCr1ZpQR/087XZ7wHaOs6nZbGpzc1OmaWp3d/fImnq9rkKhoEgkot/85jcT7hCjCoVC2tnZ0fLysra3t91uBwAAADPo7/9J+uuP7df/3WXpR98/+mPftmzuEea1fz0AmEduPp6fyxlh165d09ramu3644IyAAAAAPPt48+Gq//ks+ODMADA9Ju7IOwXv/iFCoXCUJ8zbD0AAACA+bD31XjrAQDTZe4m5a6vrysej2tra0v1el17e3sqFAra29vrvtTrdW1ubioajcowDP3whz90u20AAAAALgg8Od56AMB0mbsZYYZh6Le//W3f+/x+f99JkGfPntW5c+dUKpWUSqV07969SbcJAAAAYApcfk76dIjtgp9/bny9AADGb+5mhIXD4UPvu3Llit59991D749Go6rX6/qHf/iHSbQGAAAAYMq8GpWe+o692qefkF6LjrcfAMB4zV0Qtre3d+h9Z8+e1ebmpprN5qGPLS0t6Wc/+9kkWgMAAAAwZc6ekd55wV7tjRcl35mxtgMAGLO5C8JisZiuXr2qDz74QB988EH3/el0WrFYTL/73e+67/v5z38uwzBkGIYbrQIAAACYAq+cH1xzK2mvDgAw3eZuj7B8Pq9IJKJKpSJp/0TI//bf/pui0aj+9E//VOFwWH6/X6Zpdj/nqOWUAAAAANDxMiEYAMyFuZsRdu7cOd25c0ftdlvtdlt+v7/7sXK5LJ/Pp729ve7Hpf3wDAAAAADG7f37bncAAItt7maESVIymVSr1dKDBw907ty57vv9fr8+//xz5XI5bW1taWlpSZlMRi+99JKL3QIAAACYB3ZCrtcr0ikvyywBwC1zGYR19IZgHWfPntX6+roL3QAAAACYVw8fSW9+ZK/2jQ+ly99l430AcMPcLY0EAGCRtNvSty3rl3/dCQAAMEbv1aQvv7FX+8XX0q3aePsBABxtJoOwn//851M9HgAAk9JqS6fftn5pEYQBwNh9/Nlw9Z8MWQ8AcMZMBmG3b9+e6vEAAAAALJa9r8ZbDwBwxkwGYVtbW/rbv/1bNZvNkcZpNpu6efOmajXmJQMAJosljQAwXwJPjrceAOCMmd0sP5fLKZfLud0GpkCj0VAoFLKsyWazymazE+oIAAbrLGm08vi6dMozmX4AAKO5/Jz06W/s1z//3Ph6AQA3FYtFFYtFy5pGozGhbg6b2SBMktoOPVXu8fAoY5a1Wi3t7OxY1ow6exAAAACw8mpUeuuX9jbMf/oJ6bXo+HsCADc0m82Bj9HdNNNBmMfjcSwMw+zyer0KBoOWNT6fb0LdAAAAYNZ4PfuzcAfVWDl7RnrnBen1yuDr3XhR8p2x3R4AzBSfz6fl5WXLmkajoVarNaGO+s1kEPbSSy/pF7/4hSQpkUgon88rFosNNcbu7q5M09T/+B//g1MjZ1wwGNT29rbbbQAAAGBGeTzOLEV/5fzgIOxWcr8OAOaVna2JQqGQa7PGZjIIK5fLevjwoX7605/q5s2bSiQS3UDsz//8z22NcfbsWUnS+fPnu6EaAAAAAIzTy4RgAOCqmTw1UtoPsgqFgnZ3d3X79m393//7f3Xp0iU9++yz+od/+IehxorH42PqEgAAAAAAANNiZoOwXslkUpubm9rc3NT3vvc9rays6JlnntFPfvITW5uk37hxYwJd9jMMQ4lEwnZtJpNRJBKRx+NRIBBQLBZTJpORYRhT06ckra2tKZFIKBAIyOPxKBKJKJVKqVqtjrFLAAAAAACAweYiCOuIRqMql8va29tTPp/XjRs3FAgE9B//43/UP//zP0+kB9M05fF4Br5EIhGFw+GB462trSkSiahUKnVDL9M0VavVVCqVFIlEtLa25nqf1WpVgUBA+Xxe0v7y1Xq9rkKhoFqt1l2+aprm0L0CAAAAAAA4Ya6CsI6zZ88ql8t1l03+9re/VTQa1cWLF/WP//iPY712qVSyXdsJjY7T2ffM7/crmUwql8spmUweCqby+bwqFRvH04ypz2q12g250um0NjY2FI/HFQ6HlUwmVa/XFY1GVa1WFYvFCMMAAAAAAIAr5jII69VZNnnv3j396Z/+qV566SU988wz+tu//VtbyyaHtbq6aquuExQdJ5/Pq1qtqlAoaG9vT+VyWYVCoW+mVa9UKuVKn6Zpdq8dDoe1vr5+ZF25XJa0v9Ry2F4BAKN5/77bHQAAAADTYSZPjTyJaDSqd999V88884xKpZJyuZxyuZwymYxyuZz+9E//dORrlEolmaapXC43cF+tCxcuHPsxwzC0trbWnVl1lFwup3q93jezq1arKRqNTqxPaT+A68zwspo51pkdVqlUVK1WVSqVlE6nB/YKALBmJ+R6vSKd8kqvcFIZAAAAFpyn3W633W5i3D7//HMVCoVDywE7t55IJPQ//+f/HPk6kUhEklSv10caJ5VK6eLFi8rlcpZ1pmkqEAh03y4UCgM/x8k+DcPojiVJe3t78vv9x9ZXKpXubDC/36+9vb2Rrh8KhbSzs6Pl5WVtb2+PNBYATNq3Len029Y1j6/vB1jHefhIWv6p9OU3g6/39BPSzjXJd2a4PgEA9jnxtx0AFoGbj+fn+k/wr3/9a/3gBz/objbfCb7a7bba7bbS6bTq9bojIVilUpFhGAP307KjM1trEL/f37ds0SqE6nCyz97lmfF4fOD1k8lk93XTNIfe1wwAFs2g2V7v1eyFYJL0xdfSrdroPQEAAACzbC6DsA8++EAXL15ULBZTtVrtBl/SHzbS39vb040bN3Tu3DlHrrm6uiq/368rV66MPNbGxobt2t3d3e7rg5YxSs722TvDzs6STEl9wd3t27dH7gEAZpXdJY1WdR9/Ntw1PxmyHgAAAJg3cxOENZtN/fznP9czzzyjVCqlWq3WF4B1NnLf3d3Vz372M509e9axa9dqNdVqte5SxUgkokwmM/YZT6ZpdvfnisfjA8MoJ/us1fqnFVy8eNHW5/X2yIwwAIvq4SPpzY/s1b7xodR8dPTH9r4a7rrD1gMA3NNu7y+1tHqZ/01uAMB5M79Z/sH9v9rttjweTzcAi8fjyufzunTp0th6OLjM0DAMlUqlbk/JZFLXrl2zPWvKrjt37kjaD/k6pzJOqs9qtdr3ttXJklZ1djf4B4B5cpIljT/6/uGPBZ4c7rrD1gMAhuP17O8BNqjGjlbb5n5jNscDAOyb2Rlhv/71r3X16tVD+39J6tv/69NPPx0Ygr377rsn7sMwjEOh0EGVSkWxWEyZTObE1znINE1lMhlFo1FtbGwM3J/L6T7v3bvX97ad/ckk6Zlnnul7e3Nz09bnAcA8cWpJ4+Xnhhvn+SHrAQDD8Xj2N8K3evEQXAGAq2ZyRtjFixe7S/N6A7CzZ88qnU7r2rVrQy19XF9f1w9/+MMT9dJZcmmapur1uqrVqgzDOLK2VCppc3NTW1tbJ7pWh2EYSiQS8vv9unv3rq0Qyuk+D37uSWeEjXpyJQDMIqeWNL4ald76pf1TI19jAi4AAAAW3EwGYb0BjcfjUTgcVj6fP1GYdfPmzUP7XQ0rnU73vW2apkqlklZXV7t7eHXUajUlEomhNsTvValUlEqlum8HAgEVCgVbp0w62edxIdqwDl4XABaBU0saz56R3nlhf1P9QW68KPnODHddAAAAYN542u3Z22LR6/V29wHzeDyKx+NDj7G7uyvDMLpBzLfffutwl/sqlYpWVlYOBT52wyvpD4HV+vr6sQFUMpm0tU+YU316DszptvtjVK1WlUgkum+P0ncoFNLOzo68Xq+CweCJxuiVzWaVzWZHHgcABvn7f5L++mP79X93+eg9wqT9zZIH7SFzKym9GrN/PQCA++z8fX98fX+5JQBMSrFYVLFYHHmcRqOhVqul5eVlbW9vO9CZfTM5I0zaD17i8bj8fr+WlpaG+tzd3V21222dO3dOtVrtUKjjpGQyqXg8rkuXLvXNPFtdXbUdhFWrVdXrdcXj8WP3+qpUKlpbW7M95jj6PAknZoS1Wi3t7OyMPE6z2Rx5DADzrd3e37zYitczeP+XSS9pfPn8aJ8PAAAASPuPm514/O2mmQ3CTNOUz+cbeZxqtaof/OAHDnR0PL/fr62tLcVisW7IZJqmqtWqrdlsyWRSyWSy732lUkn5fL4vSMrn80qn07Y3rh+lT7/f70iIddJeezk1I8yJnycA882pE7xY0ggAAIBZ5PP5tLy8PPI4nRlhbpjJICwejzsWWsTjcZ0/P5mnym/evKlY7A9rUzY2Nk60rFPa3+8rHo8rFov1BVKlUmnkGVx2+lxaWnIkCBt2Nt9RgsHgxKdSAsCoXjk/OAi7ldyvAwAAAKaBU1sKdbY6csNMrijPZDJTPd5xotFoX6A06obz4XBYd+/e7XvfvXv3RhpTstfnSWdyHQzPnJgRBgDziiWNAAAntNv7e45ZvczeztEAcDIzEYT9/Oc/169+9avu2y+99JKj46+srDg6npXejeKdEI1G+5ZNOnWa46A+L1y40Pe23dlhu7u7fW9HIpGh+gIAAAAwnM7SfquXQXtgAsC8mIkg7H/9r/+lRCKhf/iHfxhpnJs3b+rUqVP6t//23+qf//mfHepuOOFwuPu6E8sCJenq1avd151YrigN7rN36aRkP4Cr1+t9b590aSgAAAAAAMCwZiIIk/ZPiUyn0/rJT35y4jHy+bza7bZ++9vfKhqN6vPPP3euQZt6AyanlgVGo384TsypMQf1eXBGmN0grDeo8/v9fdcBAAAAAAAYp5kJwjo+/fTTvhlQwzh37pzC4bDS6bRWVlaUz+cd7m6wzc3N7utOL5OUDgdUJzWoz2g02heQ2d2brHdcp3oFAAAAAACwY+aCsM3NTbVaLV28eFH/8i//MtTnbm1t6be//a1u3LihGzduqFarjanL4/UuDXRqWWDvbCynwjU7fV65cqX7ut2vZW+dG0EkAAAAMC/ev+92BwAwe2YuCJOkcrmsVCqlaDSq3/3udyca48GDB4c2bp+ESqUiScrlco6N2QmX/H5/38b5o7DTZ+9pm9VqdeCYvTXhcJj9wQAAAIBj2Am5Xq8QhgHAsE673cBJ5XI5RaNRRaNRVSoV/fmf/7ntz3348KESicTEl+ZVKhUZhiG/369r1645Nu7q6qqk/cMAnGC3z2g0qng83g24KpWKZRBXLpe7rzMbDACc4fVIj68PrgEAzI6Hj6Q3P7JX+8aH0uXvSr4zY20JAObGTM4I64jH47p3755WVlZsnyj5q1/9SuFwWA8ePFAqlRrp+tVqVYFAQB6PR4lEwnJ5oGEYWllZkSTdvXvXclP7tbU1xWIx5fP5gadAdmpyudyxIdS4+pSk9fX17uudQO4opmmqVCpJ2v++pdNpy3EBAPZ4PNIpr/WLhyAMAGbKezXpy2/s1X7xtXRr8ju+AMDMmukgTNpfYre5uanbt28PPFHyb/7mb5RIJLS3tye/368f/vCHI127XC53g6pqtapYLNa3XLCj87GlpSXV6/W+Ux4PMk1T+XxetVpNa2trCgQCx86eSqVSWltbU6FQUKFQmGifHeFwuDvTq9PzUS5duiRpf/lm78wwAAAAAP0+/my4+k+GrAeARTbzQZi0H658+umn2t3dPfZEyWvXrumtt95Su92Wx+OxDI7sOmpGWalUUiAQUCqVUiaTUSwWUyKRUDqd1tbWlsLh8MB7OVjTCcRSqZTy+bwSiYQCgYCk/U3tB+03No4+eyWTSW1sbMjv9yufzyuVSqlWq8k0zW64VqvVFI1G9eDBg4GzzAAAAIBFtvfVeOsBYJHNRRDWcePGDV26dOnQiZJ3797tBl8ej0fRaHTk2WDS/hK/er2udDqtcDjcF/DUajXt7u7q2rVr2tvbU6FQsB0AbW1tdfdAOzimYRhKpVJ68OCByuWyrcBqXH0evEbn8w3D0KVLl7pB29LSksrlsra2tgjBAAAAgAECT463HgAWmafdbrfdbmKQK1euqFKpyOPxqFqtDtwYv1arKZPJqFKp6E/+5E/07//9v+9u6O7xeLSxsaG/+Iu/mETrGKNQKKSdnR0tLy9re3vb7XYALIBvW9Lpt61rHl/f35drkHZbag34F9jrYX8vAFhEf/9P0l9/bL/+7y5LP/r+8R938t8vAHCCm4/nZ+JP3blz5yRJ7XZb6XRav/vd7yzro9Gobt++rZdeekkffPCBqtWqPP/6SCIajRKCAQBcxyb3AIDjvBqVnvqOvdqnn5BeG7y1LwDgX81EEFYoFLS3t6dyuaxLly4pHo/r3Xfftfyczib6N27c6L7P4/Ecu4cYAABOeP++2x0AAGbd2TPSOy/Yq73xouQ7M9Z2AGCuzEQQJklnz57VSy+9pBs3bug3v/mN7T2+Pv30U/34xz9WZwWonZMQAQA4ip2Q6/UKYRgAYHSvnB9ccytpr84O/u0CsChOu93AJBQKBV28eFFXrlzRgwcP3G4HDms0GgqFQpY12WxW2Wx2Qh0BmEcPH0lvfmSv9o0Ppcvf5Rl6AMB4vWwzBLP7RM4pr3PBGoDFVSwWVSwWLWsajcaEujlsIYIwSUomk9rc3NRbb72l//yf/7Pb7cBBrVZLOzs7ljXNZnNC3QCYV+/VpC+/sVf7xdfSrZr1xsUAAEwCT+QAmLRmsznwMbqbFiYIk/aXRX766adutwGHeb1eBYNByxqfzzehbgDMq48/G67+k88IwgAA7uOJHACT5vP5tLy8bFnTaDTUarUm1FG/hQrCMJ+CweDEj1sFsHj2vhpvPQAA48ATOQAmzc7WRKFQyLVZYzOzWT4AAG4KPDneegAAxoEncgCgH0EYAAA2XH5uuPrnh6wHAGAceCIHAPoRhAEAYMOrUemp79irffoJ6bXoePsBAMAOnsgBgH4EYQAA2HD2jPTOC/Zqb7zIiVsAgOnAEzkA0I8gDAAAm145P7jmVtJeHQAAk8ATOQDQjyAMAAAHvUwIBgCYMjyRAwB/cNrtBgAAGKd2W2q1rWu8HsnjmUw/AABMI57IAbAoCMIAAHOt1ZZOv21d8/i6dIogDAAwRbye/X+fBtUAAIZDEAYAAAAAU8bj4UkaABgH9ggDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCYI8wAAAAAIAtnMYMYNYRhAEAAAAAbOE0ZgCzjqWRAAAAAAAAWAjMCMPMazQaCoVCljXZbFbZbHZCHQEAAAAAsJiKxaKKxaJlTaPRmFA3hxGEYea1Wi3t7OxY1jSbzQl1AwAAAADA4mo2mwMfo7uJIAwzz+v1KhgMWtb4fL4JdQNgnnk9+/ueDKoBAAAAFpXP59Py8rJlTaPRUKvVmlBH/QjCMPOCwaC2t7fdbgPAAvB42PwXAAAAsGJna6JQKOTarDGCMAAAAACYY8xoBoA/IAgDAAAAgDnGjGYA+AOv2w0AAOC29++73QEAAACASSAIAwDMNTsh1+sVwjAAAABgERCEAQDm1sNH0psf2at940Op+Wis7QAAAABwGUEYAGBuvVeTvvzGXu0XX0u3auPtBwAAAIC7CMIAAHPr48+Gq/9kyHoAAAAAs4UgDAAwt/a+Gm89AAAAgNlCEAYAmFuBJ8dbDwAADuMAGgDTjCAMADC3Lj83XP3zQ9YDALBoOI0ZwKwjCAMAzK1Xo9JT37FX+/QT0mvR8fYDAMAs4zRmAPOAIAwAMLfOnpHeecFe7Y0XJd+ZsbYDAMBM4zRmAPOAIAwAMNdeOT+45lbSXh0AAIuM05gBzAOCMADAwnuZEAwAgIE4jRnAPCAIAwAAAAAMxGnMAObBabcbAEbVaDQUCoUsa7LZrLLZ7IQ6AjCqdltqta1rvB7J45lMPwAAYP805k9/Y7+e05iBxVQsFlUsFi1rGo3GhLo5jCAMM6/VamlnZ8eyptlsTqgbAE5otaXTb1vXPL4unSIIAwBgYl6NSm/90t6G+ZzGDCyuZrM58DG6mwjCMPO8Xq+CwaBljc/nm1A3AAAAwHzqnMb8emVwLacxA4vL5/NpeXnZsqbRaKjVak2oo34EYZh5wWBQ29vbbrcBAAAAzL1Xzg8OwjiNGVhsdrYmCoVCrs0aY7N8AAAAAIBjOI0ZwDQjCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQjjtdgMAAIyT1yM9vj64BgAAAMD8IwgDAMw1j0c6RdAFAAAAQCyNBAAAAAAAwIIgCAMAzKT377vdAQAAAIBZw9JIAMDUsRNyvV6RTnmlV86Pvx8AALCPvTcBzDpmhAEApsrDR9KbH9mrfeNDqflorO0AAIAeHs/+E1FWLx6CMABTjCAMADBV3qtJX35jr/aLr6VbtfH2AwAAAGB+sDQSM6/RaCgUClnWZLNZZbPZCXUEYBQffzZc/SefST/6/nh6AQAAADCcYrGoYrFoWdNoNCbUzWEEYZh5rVZLOzs7ljXNZnNC3QAY1d5X460HAAAAMD7NZnPgY3Q3EYRh5nm9XgWDQcsan883oW4AjCrw5HjrAQAAAIyPz+fT8vKyZU2j0VCr1ZpQR/0IwjDzgsGgtre33W4DgEMuPyd9+hv79c8/N75eAAAAAAzHztZEoVDItVljbJYPAJgqr0alp75jr/bpJ6TXouPtBwAAAMD8IAhziWEYSiQStmszmYwikYg8Ho8CgYBisZgymYwMwzjR9Wu1Wt+YHo9HkUhE+XxepmmeaEy7hrl3AIvn7BnpnRfs1d54UfKdGWs7AABgDNpt6duW9Uu77XaXAOaRp93mz4uTTNNUIBCwVZtOp7W+vm5Zs7a2pnw+b1lTKBSUy+Vs97eysqJKpWJZt76+rnQ6bWvM3rGdvPdBOlMpl5eXWRoJzJlvW9Lpt61rbiWlV2OT6QcAADjLzr/1j69Lp5i6AcwlNx/Ps0eYw0qlku3aQQFXIpFQtVqV3+9XPB5XOByWYRiq1Wp9M8Hy+bzC4bCSyaTleKZpKhaL2ZpFlslktLW1NVRY5eS9A8AgL593uwMAAAAAs4YgzGGrq6u26jrB1nHy+byq1eqxs70OzhRLpVIaNLkvlUrJMAxFo1Fdu3ZN0ej+xjq1Wk337t3T2tpaX32pVFIikRgYsHU4de8AAAAAAADjQBDmoFKpJNM0lcvlBu6BdeHChWM/ZhiG1tbWtLGxoXg8fmRNLpdTvV7vm4VVq9W64dZRvVWrVeVyORUKhb6PdWaTZTIZpVIp1Wq17sdWVlZsBWFO3TsAAAAAAMC4sEeYgyKRiCSpXq+PNE4qldLFixcH7vt1cE8uq73CIpGIwuGwNjY2LMc0DKN7Hx1WgVzv+NLo9z4M9ggD5hf7hgAAMN/4tx5YbG4+nufPikMqlYoMw3Bk76vOzKpB/H5/3xJDv99/ZF1nT7FyuTxwzHA4fGjGWO8MsaM4ee8AAAAAAADjQhDmkNXVVfn9fl25cmXksQbN2uq1u7vbff24JYe3b99WOp0+Nig76ODsr9///veW9U7eOwAAAAAAwLiwR5gDarVad9ZUIBBQOBxWPB4faqP5kzBNU6ZpStoPr47bH+zq1atDbU5/cJyDSyV7uXXvAAAAAAAAw2JGmAMOLgk0DEOlUkmpVEoej+fQBvROuXPnjqT95YxWyx6j0ajt2WCSuuFax6DTLXtN6t4BAAAAAACGRRA2IsMwVK1WLWsqlYpisZgymYxj1zVNU5lMRtFoVBsbG0MFXYMYhtH39nEb5bt17wAAAAAAACfB0sgRhcNhra+vyzRN1et1VavVQ0FSR6lU0ubmpra2tka6pmEYSiQS8vv9unv3rqMhmCRtbm52X0+n08fWuXHvAAAAAAAAJ0UQ5oCDYZFpmiqVSlpdXT20zLBWqymRSAy1IX6vSqWiVCrVfTsQCKhQKNg6ZdKu9fX17uuDToKc5L0DAAAAAACMgqWRY+D3+5XL5bS3t6dyuXxoxla1WtXa2prt8UzT1NramiKRSF8I1pHP5498/0kYhtHd06tQKAy1yb7k/L0DAAAAAAA4xdNut9tuNzHvTNPUpUuX+jaN9/v92tvbs/X5lUqlO4vKal8uJ2aGZTIZlUolhcNh1ev1kcaSRr93K6FQSDs7O/J6vQoGgyOPl81mlc1mRx4HwOi+bUmn37aueXxdOsXTOQAAzCT+rQdmU7FYVLFYHHmcRqOhVqul5eVlbW9vO9CZfSyNnAC/36+trS3FYrFuIGSapqrV6rEb0fdKJpNKJpN97yuVSsrn833LD/P5vNLp9In3DKvVaiqVSvL7/Y4tXxz13u1otVra2dkZeZxms+lAN8Bia7el1oCnV7weyeOZTD8AAAAAnNNsNh15/O0mgrAJunnzpmKxWPftjY2NE4dB6XRa8XhcsVisLwwrlUonnhW2srIiSbp79+7QSyIHcfLeD3JqRpjP53OgG2Cxtdo2n90lCAMAAABmjs/n0/Ly8sjjdGaEuYEgbIKi0aji8Xh3aeNxJyzaFQ6Hdffu3b6A6d69eycaK5PJqFarqVwuKxqNjtTXUZy+917BYHDiUykBjJfXsx+YDaoBAADz6/370muxwXUAJsepLYU6Wx25gRXXE5ZIJBwdLxqN9i2bPEnAVCqVVCqVtL6+fmgJppOcvncA88vj2d8TxOqF5ZUAAMyu9+8Prnm9Yq8OAIZBEDZhvUsOl5aWHBnz6tWr3dd7l0naUa1WlclktL6+rnQ67Ug/xxnHvQMAAACYLQ8fSW9+ZK/2jQ+l5qOxtgNgwRCETVhvGHTSTe0P6l3KOMyYtVpNiURChUJh7CGYNJ57BwAAADBb3qtJX35jr/aLr6VbtcF1AGAXQdiEbW5udl8fx1LBCxcu2KozDEOXLl1SLpc78eb6wxr3vQMAAACYfh9/Nlz9J0PWA4AVgrAJq9fr3dedOjWxd18wOwGTYRiKxWJKp9MqFAq2r7G2tnbiHqXx3DsAAACA2bL31XjrAcAKQdiEVSoVSXJ0Flattj9X2O/3D9zs3jRNJRIJXblyxXYIJkmpVGrk8Goc9w4AAABgtgSeHG89AFg57XYDi6RSqcgwDPn9fl27ds2xcVdXVyVJN2/etKwzTVOxWEzhcFj5fN7WCZOGYSifz0vq34tsWOO6dwAAAACz5fJz0qe/sV///HPWH2+3pVbbusbr4cRpAPsIwkZQrVaVSqVkmqbi8bgKhcKxYZFhGFpZWZEk3b1713Kz+LW1Nd2+fVvxeFzXrl2zrM3n8zJNU7lcbuBssEuXLskwDBmGoUgkMvD+eq2vr/e9Pa57BwAAADDfXo1Kb/3S3ob5Tz8hvTbg+fhWWzr9tnXN4+vSKYIwAGJp5EjK5bJM05S0HwzFYjFlMplDdZ2PLS0tqV6vW86sMk1T+XxetVpNa2trCgQC3RlZB6VSKa2tralQKAxc5hiLxbpLKE/i4KmS47h3AAAAAPPv7BnpnRfs1d54UfKdGWs7ABYMQdgIUqnUofeVSiUFAgGlUillMhnFYjElEgml02ltbW0pHA5bjun3+w/VdAKxVCqlfD6vRCKhQCAgaX8D+kF7bqVSKUdDsM6YB4167wAAAAAWwyvnB9fcStqrA4BhsDRyBPF4XPV6XYVCQdVqVbu7u91ZUrVaTdFoVNeuXVM8Hh9qOeDW1pZWV1dVrVZlGEbfmNJ+CFUul22PWS6Xh7gre8Z17wAAAAAgSS8TggEYA4KwEYXD4UP7Z43K7/cPdaKjW8Zx7wAAAAAAAOPC0kgAAAAAAAAsBIIwAAAAAAAALASCMAAAAAAAACwE9gjDzGs0GgqFQpY12WxW2Wx2Qh0BsPL+fem1mNtdAAAAABiHYrGoYrFoWdNoNCbUzWEEYZh5rVZLOzs7ljXNZnNC3QCL7f37g2ter0invByHDgAAAMyjZrM58DG6mwjCMPO8Xq+CwaBljc/nm1A3wOJ6+Eh68yN7tW98KF3+ruQ7M9aWAAAAAEyYz+fT8vKyZU2j0VCr1ZpQR/0IwjDzgsGgtre33W4DWHjv1aQvv7FX+8XX0q2a9KPvj7cnAAAAAJNlZ2uiUCjk2qwxNssHADji48+Gq/9kyHoAAAAAGBVBGADAEXtfjbceAAAAAEbF0kgAWHDtttRqW9d4PZLHY10TeHK46w5bDwAAAACjIggDgAXXakun37aueXxdOjUgCLv8nPTpb+xf9/nn7NcCAAAAgBNYGgkAcMSrUemp79irffoJ6bXoePsBAAAAgIMIwgAAjjh7RnrnBXu1N16UfGfG2g4AAEDX+/fd7gDAtGBpJADAMa+cl16vWNfcSu7XAQCAxeX17G+9MKjGDjsh1+sV6ZSX/4MAYEYYAGDCXuY/oAAALDyPZz+YsnoZdFCPJD18JL35kb1rvvGh1Hw0UtsA5gBBGAAAAABgJr1Xk778xl7tF19Lt2rj7QfA9CMIAwAAAADMpI8/G67+kyHrAcwfgjAAAAAAwEza+2q89QDmD0EYAAAAAGAmBZ4cbz2A+UMQBgAAAACYSZefG67++SHrAcwfgjAAAAAAwEx6NSo99R17tU8/Ib0WHW8/AKYfQRgAAAAAYCadPSO984K92hsvSr4zY20HwAw47XYDwKgajYZCoZBlTTabVTabnVBHAAAAACbllfPS6xXrmlvJ/ToA41csFlUsFi1rGo3GhLo5jCAMM6/VamlnZ8eyptlsTqgbAAAAANPmZUIwYGKazebAx+huIgjDzPN6vQoGg5Y1Pp9vQt0AAAAAALC4fD6flpeXLWsajYZardaEOupHEIaZFwwGtb297XYbAAAAAAAsPDtbE4VCIddmjbFZPgAAAAAAABYCQRgAYKD377vdAQAAwPi129K3LeuXdtvtLgGMgqWRALDg7IRcr1ekU15OWwIAAPOt1ZZOv21d8/i6dMozmX4AOI8ZYQCwwB4+kt78yF7tGx9KzUdjbQcAAAAAxooZYQCwwN6rSV9+Y6/2i6+lWzXpR98/vsbr2X+W1IqXZ1ABAAAAuIQZYQCwwD7+bLj6TwbUezz7SyitXjwEYQAAAABcQhAGAAts76vx1gMAAADANCEIA4AFFnhyvPUAAAAAME0IwgBggV1+brj654esBwAAAIBpQhAGAAvs1aj01Hfs1T79hPRadLz9AAAAAMA4EYQBwAI7e0Z65wV7tTdelHxnxtoOAAAAAIzVabcbAAC465Xz0usV65pbyf06AACAaeP1SI+vD64BAIkgDABgw8uEYAAAYEp5PNIpgi4ANrE0EgAAAAAAAAuBIAwAAAAAAAALgSAMAAAAAAAAC4E9wjDzGo2GQqGQZU02m1U2m51QRwAAAAAALKZisahisWhZ02g0JtTNYQRhmHmtVks7OzuWNc1mc0LdAAAAAACwuJrN5sDH6G4iCMPM83q9CgaDljU+n29C3QAAAAAAsLh8Pp+Wl5ctaxqNhlqt1oQ66kcQhpkXDAa1vb3tdhsAAAAAACw8O1sThUIh12aNsVk+AAAAAAAAFgJBGAAAAAAAABYCQRgAAAAAADa9f9/tDgCMgiAMAAAAAADZC7lerxCGAbOMIAwAAAAAsPAePpLe/Mhe7RsfSs1HY20HwJgQhAEAAAAAFt57NenLb+zVfvG1dKs23n4AjAdBGAAAAABg4X382XD1nwxZD2A6nHa7AQCAu7we6fH1wTUAAADzbO+r8dYDmA4EYQCw4Dwe6RRBFwAAWHCBJ8dbD2A6sDQSAAAAALDwLj83XP3zQ9YDmA4EYQAAAACAhfdqVHrqO/Zqn35Cei063n4AjAdBGAAAAABg4Z09I73zgr3aGy9KvjNjbQfAmBCEAQAAAAAg6ZXzg2tuJe3VAZhOBGEAAAAAANj0MiEYMNMIwgAAAAAAALAQTrvdADCqRqOhUChkWZPNZpXNZifUETB+7bbUalvXeD2SxzOZfgAAAABAkorFoorFomVNo9GYUDeHEYRh5rVaLe3s7FjWNJvNCXUDTEarLZ1+27rm8XXpFEEYAAAAgAlqNpsDH6O7iSAMM8/r9SoYDFrW+Hy+CXUDAAAAAMDi8vl8Wl5etqxpNBpqtVoT6qgfQRhmXjAY1Pb2ttttAAAAAEAXW1lgUdnZmigUCrk2a4wgDAAAAAAAh7GVBTCdODUSAAAAAAAAC4EgzCWGYSiRSNiuzWQyikQi8ng8CgQCisViymQyMgzjxD2sra0pkUgoEAjI4/EoEokolUqpWq1O1ZgAAAAAAABOIAhzmGma8ng8A18ikYjC4fDA8dbW1hSJRFQqlbqhl2maqtVqKpVKikQiWltbG6rHarWqQCCgfD4vSSqXy6rX6yoUCqrVakokEkokEjJN09UxAQAAAAAAnMQeYQ4rlUq2azuh0XESiYSq1ar8fr/i8bjC4bAMw1CtVuubCZbP5xUOh5VMJgdes1qtdmeipdNpra+vdz/WGSMWi6larSoWi2lra0t+v3/iYwIAAAAAADiNGWEOW11dtVXXCbaOk8/nVa1WVSgUtLe3p3K5rEKh0DfTqlcqlRp4TdM0u3XhcLgvsOpVLpcl7S/JHDTuOMYEAAAAAAAYB2aEOahUKsk0TeVyuYH7f124cOHYjxmGobW1NW1sbCgejx9Zk8vlVK/X+2ag1Wo1RaPRY8dNpVLdpYlWs9E6s7gqlYqq1apKpZLS6fTExgQAAAAAABgHT7vdbrvdxLyIRCKSpHq9PtI4qVRKFy9eVC6Xs6wzTVOBQKD7dqFQOPZzDMPo9idJe3t7lssTK5VKd+aW3+/X3t7eRMYcRigU0s7OjpaXl7W9vT3SWMCs+bZl8zhu5v0CAADY5uT/sfj/GnA8Nx/P8yvnkEqlIsMwBu77ZUdnVtkgfr+/b3mlVQjVu5QyHo8P3KOrd78x0zRVqVQmMiYAAAAAAMC4EIQ5ZHV1VX6/X1euXBl5rI2NDdu1u7u73detllv2LqG0Wj7Zqzdku3379kTGBAAAAAAAGBeCMAfUajXVarXuUsVIJKJMJjP2GU+maXb354rH48eGUbVare/tixcv2hq/d7yD9zKOMQEAAAAAAMaJzfIdcHA5pGEYKpVK3RlTyWRS165dsz1ryq47d+5I2p9l1TmV8SjVarXvbavTKq3qejfjH8eYAAAAAOAmr2d/365BNQBmFzPCRmQYxqFQ6KBKpaJYLKZMJuPYdU3TVCaTUTQa1cbGhuX+XPfu3et7e9BeXh3PPPNM39ubm5tjHRMAAAAA3OTx7G9eb/XiIQgDZhozwkYUDoe1vr4u0zRVr9dVrVZlGMaRtaVSSZubm9ra2hrpmoZhKJFIyO/36+7duwNDqIP9nHT2Vu9pmOMYEwAAAAAAYJyYEeaAdDqtXC6n9fV11et17e3tqVAoHBlQ1Wo1JRKJE1+rUqkoEonIMIzunmRra2uWn3NcMDeszn5k4xoTAAAAAABgnJgRNgZ+v1+5XE65XE6VSkUrKyt9gU+1WtXa2ppyuZyt8UzTVKlU0vr6+pEBVD6f1717947dJ+ykYdPBIK/3hMpxjHlSjUZDoVBo5HGy2ayy2ezI4wAAAAAAMI+KxaKKxeLI4zQaDQe6ORmCsDFLJpOKx+O6dOlS30mLq6urtoOwarWqer2ueDx+7J5klUplqHDtJMYxe8uJMVutlnZ2dkYep9lsjjwGME3evy+9FnO7CwAAAADzotlsOvL4200EYRPg9/u1tbWlWCzWDcNM01S1WlU8Hh/4+clkUslksu99pVJJ+Xy+L0jK5/NKp9OHZl35/X5HAqfecccx5kl5vV4Fg8GRx/H5fCOPAUzK+/cH17xe2d/Q9ZXz4+8HAAAAw+OJS8wan8+n5eXlkcdpNBpqtVoOdDQ8grAJunnzpmKxP/yV29jYsBWEHSWdTisejysWi/UFUqVS6dCssKWlJUdCq6WlpbGOeVLBYFDb29sjjwPMioePpDc/slf7xofS5e9KvjNjbQkAAAAH8MQl5pFTWwqFQiHXZpaxWf4ERaPRvuBr1A3nw+Gw7t692/e+e/fuHao76ayrg0HXwRlhTo8JwJ73atKX39ir/eJr6VZtcB0AAACcM+wTl81HY20HQA+CsAkb5cTIo0Sj0b5lk0eFaxcuXOh72+5MroMb2UcikbGOCcCejz8brv6TIesBAAAwGp64BKYXQdiEhcPh7utOLAuUpKtXr3ZfPyqQ6l2OKdmfiVav1/ve7p3NNo4xAdiz99V46wEAADAanrgEphdB2IT1BmFOLQuMRqOWYx6cvWU3tOoN1fx+f1/v4xgTgD2BJ8dbDwAAgNHwxCUwvQjCJmxzc7P7utPLJKXDAZW0H5T1BmRH7SN2lN5eD447jjEB2HP5ueHqnx+yHgAAAKPhiUtgehGETVjv0kCnlgX2zsY6Lly7cuVK9/Vazd4C9N66fD4/kTEBDPZqVHrqO/Zqn35Cei06uA4AAADO4YlLYHoRhE1YpVKRJOVyOcfG7IRLfr+/b+P8XplMpvt6tVodOGZvTTgcPjK0G8eYAAY7e0Z65wV7tTdelHxnxtoOAAAADuCJS2B6EYRNUKVSkWEY8vv9unbtmmPjrq6uSpJu3rx5bE00Gu0LnjqB3HHK5XL39eNmbo1jTAD2vHJ+cM2tpL06AAAAOIsnLoHpRRA2gmq1qkAgII/Ho0QiYbk80DAMraysSJLu3r1ruVH+2tqaYrGY8vn8kadA9urU5HK5Y2eDdayvr3df74RnRzFNU6VSSdL+8s10Oj3RMQE442VCMAAAANfwxCUwnQjCRlAul7tBVbVaVSwW61su2NH52NLSkur1et8pjweZpql8Pq9araa1tTUFAoFjZ0+lUimtra2pUCioUCgM7DccDndnZXXGP8qlS5ck7S+17J3FNakxAQAAAGAR8MQlMHkEYSNIpVKH3lcqlRQIBJRKpZTJZBSLxZRIJJROp7W1taVwOGw5pt/vP1TTCcRSqZTy+bwSiYQCgYCk/c33h9lvLJlMamNjQ36/X/l8XqlUSrVaTaZpdgO7Wq2maDSqBw8eWM5cG+eYAAAAAAAATiMIG0E8Hle9Xlc6nVY4HO4LeGq1mnZ3d3Xt2jXt7e2pUCjYDoC2traUy+UUjUYPjWkYhlKplB48eKByuTwwWDuu705PhmHo0qVL3aBtaWlJ5XJZW1tbQwVW4xgTAAAAAADASZ52u912uwngJEKhkHZ2drS8vKzt7W232wEm6tuWdPpt65rH16VTPN0BAADgCv6/BhzPzcfzpyd6NQBYYO221Brw1IPXI3k8k+kHAAAAABYNQRgATEirbfNZQYIwAAAAABgLJmECAAAAAABgITAjDDOv0WgoFApZ1mSzWWWz2Ql1BAAAAADAYioWiyoWi5Y1jUZjQt0cRhCGmddqtbSzs2NZ02w2J9QNAAAAAACLq9lsDnyM7iaCMMw8r9erYDBoWePz+SbUDQAAAAAAi8vn82l5edmyptFoqNVqTaijfgRhmHnBYHDix60CAAAAwKRw+jhmiZ2tiUKhkGuzxgjCAAAAAACYYpw+DjiHUyMBAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQ2CMMAGaQ17O/D8SgGgAAAADAHxCEAcAM8njYDBUAAGCa8cQlMJ0IwgAAAAAAcBhPXALTiT3CAAAAAAAAsBAIwgAAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQCMIAYIq8f9/tDgAAAABgfhGEAcCE2Am5Xq8QhgEAAADAuBCEAcAEPHwkvfmRvdo3PpSaj8baDgAAAAAspNNuNwCMqtFoKBQKWdZks1lls9kJdQQc9l5N+vIbe7VffC3dqkk/+v54ewIAAAAApxWLRRWLRcuaRqMxoW4OIwjDzGu1WtrZ2bGsaTabE+oGONrHnw1X/8lnBGEAAAAAZk+z2Rz4GN1NBGGYeV6vV8Fg0LLG5/NNqBvgaHtfjbceAAAAAKaBz+fT8vKyZU2j0VCr1ZpQR/0IwjDzgsGgtre33W4DsBR4crz1AAAAWGzv35dei7ndBWBva6JQKOTarDE2yweACbj83HD1zw9ZDwAAgPnF6eOAcwjCAGACXo1KT33HXu3TT0ivRcfbDwAAAGYDp48DziIIA4AJOHtGeucFe7U3XpR8Z8baDgAAAGbESU4fB3A8gjAAmJBXzg+uuZW0VwcAAIDFcJLTxwEcjyAMAKbIy4RgAAAA6MHp44CzCMIAAAAAAJhSnD4OOIsgDAAAAACAKcXp44CzCMIAAAAAAJhSnD4OOIsgDAAAAACAKcXp44CzCMIAAAAAAJhinD4OOIcgDAAAAACAGcfp44A9BGEAAAAAAABYCARhAAAAAAAAWAgEYQAAAAAAAFgIBGEAAAAAAABYCKfdbgAYVaPRUCgUsqzJZrPKZrMT6ggAAAAAgMVULBZVLBYtaxqNxoS6OYwgDDOv1WppZ2fHsqbZbE6oGwAAAAAAFlez2Rz4GN1NBGGYeV6vV8Fg0LLG5/NNqBsAAAAAABaXz+fT8vKyZU2j0VCr1ZpQR/0IwjDzgsGgtre33W4DAAAAAICFZ2drolAo5NqsMTbLBwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEJgs3wAmBCvR3p8fXANAAAAAGA8CMIAYEI8HukUQRcAAAAAuIalkQAAAAAAAFgIBGEAAAAAAABYCARhAAAAAAAAWAgEYQAAAAAAAFgIbJYPABbabanVtq7xevY3wgcAAAAATDeCMACw0GpLp9+2rnl8ndMgAQAAMD5ez/7/OQfVABiMIAwAAAAAgCnm8fDEK+AU9ggDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCYI8wzLxGo6FQKGRZk81mlc1mJ9QRAAAAAACLqVgsqlgsWtY0Go0JdXMYQRhmXqvV0s7OjmVNs9mcUDcAAAAAACyuZrM58DG6mwjCMPO8Xq+CwaBljc/nm1A3AAAAAAAsLp/Pp+XlZcuaRqOhVqs1oY76edrtdtuVKwMjCoVC2tnZ0fLysra3t91uB3Pq25Z0+m3rmsfXpVPsuAgAAAAAtrj5eJ6HbgAAAAAAAFgIBGEuMQxDiUTCVm2tVlMmk1EkEpHH45HH41EkElE+n5dpmuNtdAyGuXcAAAAAAACnEIQ5zDTNblhl9RKJRBQOhweOlUqlFIvFVCqVZBhG92OGYWhtbU2BQEClUslWb4FAwFZvR71kMpmJ3jsAAAAAAIDTCMIcZjeUkqR8Pn/sx0zTVCwWU6VSGThOJpMZGFRVKpWRZo/ZmcHl1L0DAAAAAACMA0GYw1ZXV23VxeNxy1lRqVRKhmEoGo2qXC6rXq+rXq+rXC4rl8sdqi+VSpah2fr6uq2+jpNMJgfWOHXvAAAAAAAA43Da7QbmSalUkmmayuVyA2dQXbhwwXKcarWqXC6nQqHQ97FwOKxkMqlMJqNUKqVardb92MrKypGBlWEYqlarCofDyufzisfjWlpaGng/sVhMhmEoHo8PrHXq3gEAAAAAAMbF02632243MS8ikYgkqV6vjzxOOBzWxsaGZZ1hGN1rdmxsbBwKrvL5vCqVira2tuT3+2310Dv2+vq60un0wJ6l0e99GG4et4rF8W1LOv22dc3j69Ip5tcCAAAAgC1uPp7noZtDKpWKDMMYee+rWq0mwzBULpcH1obD4UMzxnpniHWUSiWVy2XbIZikvmWWV65cGVjrxL0DAAAAAACME0GYQ1ZXV+X3+weGRoPcvn1b6XTadmh1cPbX73//+0M15XJZ0Wh06D464w/qxal7BwAAAAAAGCf2CHNArVbrzsQKBAIKh8OKx+NKJBK2NpnvdfXq1aE2kj8YcB1cKikdDssGMU2zez+pVMqy1sl7BwAAAAAAGCdmhDng4JJAwzBUKpWUSqXk8XgObWpvJRqNDrWE0TTNvredOI2xVCp1Xx80y8vJewdm1fv33e4AAAAAAGAHQdiIOicyWqlUKorFYspkMmO5fq9hZ38dpbMsclAo5/a9A5NgJ+R6vUIYBgAAAACzgKWRIwqHw1pfX5dpmqrX66pWq4fCqY5SqaTNzU1tbW05dv3Nzc3u64NOdrSjd1nk1atXLWvdvndg3B4+kt78yF7tGx9Kl78r+c6MtSUAAAAAwAgIwhxwMIAyTVOlUkmrq6uHli7WajUlEgltbGw4cu319fXu606c2njnzp3u63b2+HLz3oFxe68mffmNvdovvpZu1aQffX+8PQEAAAAATo6lkWPg9/uVy+W0t7encrl8aHlhtVrV2trayNcxDKM7e6tQKDiyP1gnWItGoycab1L3DkzCx58NV//JkPUAAAAAgMnytNvttttNzDvTNHXp0qW+TeP9fr/29vZGGjeTyahUKikcDqter4/apkzTVCAQkLQfrOVyOUfGHMe9S1IoFNLOzo68Xq+CweDI42WzWWWz2ZHHwfz4d/+vdG97iPqQ9P/9P+PrBwAAABhFuy21BiQAXo/k8UymH8yeYrGoYrE48jiNRkOtVkvLy8va3h7iQZcDWBo5AX6/X1tbW4rFYt1AyDRNVavVE29uX6vVVCqV5Pf7HVtqOOyySDvGce8HtVot7ezsjDxOs9l0oBvMk8CT460HAAAAJqnVlk6/bV3z+Lp0iiAMx2g2m448/nYTQdgE3bx5U7FYrPv2xsbGicOglZUVSdLdu3cdWRIp/WFZZDgcdmzMDifv/SCnZoT5fD4HusE8ufyc9Olv7Nc//9z4egEAAAAAt/l8Pi0vL488TmdGmBsIwiYoGo0qHo+rWq1K0rEnLA6SyWRUq9VULpcVjUYd6a33tEinZoP1curejxIMBic+lRKL4dWo9NYv7W2Y//QT0mvO/DoCAAAAwFRyakuhzlZHbmCz/AlLJBIjfX6pVFKpVNL6+rqjgVXvssirV686Nm6vUe8dmLSzZ6R3XrBXe+NFyXdmrO0AAAAAAEZEEDZhvUsOl5aWhvrcarWqTCaj9fV1pdNpR/sql8uS9vf0cmqW2UGj3DvgllfOD665lbRXBwAAAABwF0HYhPWGQX6/3/bn1Wo1JRIJFQoFx0Owzub1khwfu9dJ7x2Ydi8TggEAAADATCAIm7DNzc3u63aXChqGoUuXLimXyymXyzne0ySWRUonu3cAAAAAAACnEIRNWL1e775u59REwzAUi8WUTqdVKBRsXcMwDK2trdnuaRLLIqXh7x0AAAAAAMBJBGETVqlUJMnWzC7TNJVIJHTlyhXbIZgkpVIp20FT77LIK1eu2L7GSQxz7wAAAAAAAE477XYDi6RSqcgwDPn9fl27ds2y1jRNxWIxhcNh5fN5GYYxcHzDMJTP5yXJ9syu3mWRqVTK1uecxDD3DgAAAAAAMA4EYSOoVqtKpVIyTVPxeFyFQuHYAMowDK2srEiS7t69O3Cz+EuXLskwDBmGoUgkMlRf6+vrtmt7l0UOs1xxnPcOAAAAAAAwDiyNHEG5XJZpmpL2g6FYLKZMJnOorvOxpaUl1ev1gbO1YrGYarXaifuye/Jj77LIYffsGte9AwAAAAAAjAtB2AiOWkpYKpUUCASUSqWUyWQUi8WUSCSUTqe1tbWlcDg8cMxJhGBS/7LIo0IsK+O4dwAAAAAAgHFiaeQI4vG46vW6CoWCqtWqdnd3u7OkarWaotGorl27png8bns5YGep4iT0XmvYGWHjuHcAAAAAAIBxIggbUTgcHmpPrmmysbEx0ufP8r0DAAAAAIDFQxAGYC6121KrbV3j9Ugez2T6AQAAAAC4jyAMwFxqtaXTb1vXPL4unSIIAwAAAICFwWb5AAAAAABAkvT+fbc7AMaLGWGYeY1GQ6FQyLImm80qm81OqCMAAAAAmD52Qq7XK9Ipr/TK+fH3g/lULBZVLBYtaxqNxoS6OYwgDDOv1WppZ2fHsqbZbE6oGwAAAACYPg8fSW9+ZK/2jQ+ly9+VfGfG2hLmVLPZHPgY3U0EYZh5Xq9XwWDQssbn802oGwAAAACYPu/VpC+/sVf7xdfSrZr0o++PtyfMJ5/Pp+XlZcuaRqOhVqs1oY76EYRh5gWDQW1vb7vdBgAAAABMrY8/G67+k88IwnAydrYmCoVCrs0aIwgDAAtez/7pkoNqAAAAgGm299V464FZQRAGABY8HukUQRcAAABmXODJ8dYDs8LrdgMAAAAAAGC8Lj83XP3zQ9YDs4IgDAAAAACAOfdqVHrqO/Zqn35Cei063n4AtxCEAQAAAAAw586ekd55wV7tjRcl35mxtgO4hiAMAAAAAIAF8Mr5wTW3kvbqgFnFZvkAAAAAAECS9LLNEKzdllpt6xqvZ//wKWCaEIQBAAAAAIChtNrS6betax5f5wR2TB+WRgIAAAAAAGAhEIQBAAAAAABgIRCEAQAAAAAAYCEQhAEAAAAAAGAhEIQBAAAAAABgIRCEAVhY7993uwMAAAAAwCQRhAGYS3ZCrtcrhGEAAAAAsEhOu90AMKpGo6FQKGRZk81mlc1mJ9QR3PbwkfTmR/Zq3/hQuvxdyXdmrC0BAAAAwEIoFosqFouWNY1GY0LdHEYQhpnXarW0s7NjWdNsNifUDabBezXpy2/s1X7xtXSrJv3o++PtCQAAAAAWQbPZHPgY3U0EYZh5Xq9XwWDQssbn802oG0yDjz8brv6TzwjCAAAAAMAJPp9Py8vLljWNRkOtVmtCHfUjCMPMCwaD2t7edrsNTJG9r8ZbDwAAAAA4mp2tiUKhkGuzxtgsH8DcCTw53noAAAAAwGwiCAMwdy4/N1z980PWAwAAAABmE0EYgLnzalR66jv2ap9+QnotOt5+AAAAAADTgSAMwNw5e0Z65wV7tTdelHxnxtoOAAAAAGBKsFk+gLn0ynnp9Yp1za3kfh0AAACwCLwe6fH1wTXAPCMIAzA12m2p1bau8Xokj0P/OL9MCAYAAIAF4vFIpwi6sOAIwgBMjVZbOv22dc3j6/zjDQAAAAA4GfYIAwAAAAAAjnv/vtsdAIcRhAEAAAAAgKHYCblerxCGYfoQhAEAAAAAANsePpLe/Mhe7RsfSs1HY20HGApBGAAAAAAAsO29mvTlN/Zqv/haulUbbz/AMAjCAAAAAACAbR9/Nlz9J0PWA+NEEAYAAAAAAGzb+2q89cA4EYQBAAAAAADbAk+Otx4YJ4IwAAAAAABg2+Xnhqt/fsh6YJwIwgAAAAAAgG2vRqWnvmOv9uknpNei4+0HGMZptxsARtVoNBQKhSxrstmsstnshDoCAAAAgPl19oz0zgvS65XBtTdelHxnxt4SpkixWFSxWLSsaTQaE+rmMIIwzLxWq6WdnR3LmmazOaFuAAAAAGD+vXJ+cBB2K7lfh8XSbDYHPkZ3E0EYZp7X61UwGLSs8fl8E+oGAAAAACBJLxOCLSSfz6fl5WXLmkajoVarNaGO+hGEYeYFg0Ftb2+73QYAAAAAAAvPztZEoVDItVljbJYPAAAAAACAhcCMMABzyeuRHl8fXAMAAAAAWBwEYQDmkscjnSLoAgAAAAD0YGkkAAAAAAAAFgJBGAAAAAAAABYCQRgAAAAAAAAWAkEYgJny/n23OwAAAAAAzCo2ywcwNeyEXK9XpFNe6ZXz4+8HAAAAwPi121KrbV3j9ewfiAWMiiAMwFR4+Eh68yN7tW98KF3+ruQ7M9aWAAAAAExAqy2dftu65vF1ToWHM1gaCWAqvFeTvvzGXu0XX0u3auPtBwAAAAAwfwjCAEyFjz8brv6TIesBAAAAACAIAzAV9r4abz0AAAAAAARhAKZC4Mnx1gMAAAAAQBAGYCpcfm64+ueHrAcAAAAAgFMjAUyFV6PSW7+0t2H+009Ir0XH3xMAAACAo3k9+yc5DqoBpg1BGGZeo9FQKBSyrMlms8pmsxPqCCdx9oz0zgvS65XBtTdelHxnxt4SAAAAgGN4PNIpgi4coVgsqlgsWtY0Go0JdXMYQRhmXqvV0s7OjmVNs9mcUDcYxSvnBwdht5L7dQAAAACA6dNsNgc+RncTQRhmntfrVTAYtKzx+XwT6gbj9jIhGAAAAABMLZ/Pp+XlZcuaRqOhVqs1oY76EYRh5gWDQW1vb7vdBgAAAAAAC8/O1kShUMi1WWOcGgkAAAAAAICFQBAGAAAAAACAhUAQ5hLDMJRIJGzV1mo1ZTIZRSIReTweeTweRSIR5fN5maY5NX1K0tramhKJhAKBQLfPVCqlarU6xi4BAAAAAAAGIwhzmGma3bDK6iUSiSgcDg8cK5VKKRaLqVQqyTCM7scMw9Da2poCgYBKpZKrfUpStVpVIBBQPp+XJJXLZdXrdRUKBdVqNSUSCSUSibEHdwAAAAAAAMdhs3yHDRNKdUKjo5imqVgs1hd+HSeTyWhra0vr6+u2r+1Un9J+CNaZNZZOp/v6CIfDSiaTisViqlarisVi2trakt/vt319AAAAAAAAJzAjzGGrq6u26uLxuOVMq1QqJcMwFI1Gu7Or6vW6yuWycrncofpSqaRKpTLxPjuz1qT90Ou4MK5cLkvan8nWqQcAAAAAAJgkZoQ5qFQqyTRN5XK5gftqXbhwwXKcarWqXC6nQqHQ97HODKtMJqNUKqVardb92MrKipLJ5MT6lPYDu85yR6uZY52+K5WKqtWqSqWS0un0wF4BAAAAAACc4mm32223m5gXkUhEklSv10ceJxwOa2Njw7LOMIzuNTs2NjYUj8cn0ufB6+/t7VkueaxUKt3ZYH6/X3t7eyNdPxQKaWdnR8vLy9re3h5pLEyHb1vS6betax5fl04xlxUAAACYGzwOWDxuPp7nx8ghlUpFhmEM3E9rkFqtJsMwuksJrYTD4UMzxnpniI2zT0l9147H4wP3/eqdrWaa5lBLOQEAAAAAAEZFEOaQ1dVV+f1+XblyZaRxbt++rXQ6bXsz+YOzv37/+99b1jvVp9S/4X40GrX1Ob37jd2+fXvkHgAAAAAA8+/9+253gHnBHmEOqNVq3ZlYgUBA4XBY8XhciUTC1p5dva5evWq5Of1BBwOog0slx9XnwZlnFy9etN1v5yRMZoQBAAAAAOyEXK9X9pdGvnJ+/P1gvjEjzAEHlxkahqFSqaRUKiWPx3NoU3sr0WjU9mwwSd2N6jusQjQn+6xWq7ava1Vn93oAAAAAgPnz8JH05kf2at/4UGo+Gms7WAAEYSMyDONQKHRQpVJRLBZTJpMZy/V7HbdRvtN93rt3r+9tu+HdM8880/f25uamrc8DAAAAAMyf92rSl9/Yq/3ia+kWcykwIpZGjigcDmt9fV2maaper6tarR4KpzpKpZI2Nze1tbXl2PV7g6R0Oj2xPg9+7klnhI16ciUAAAAAYHZ9/Nlw9Z98Jv3o++PpBYuBIMwBBwMo0zRVKpW0urp6aOlirVZTIpHQxsaGI9deX1/vvj7oJEgn+zwuRBvWwesCAAAAABbH3lfjrQcOIggbA7/fr1wup1wup0qlopWVlb7Ap1qtam1tTblcbqTrGIbR3WOrUCgMtcn+qH2eNMA6uIRyd3f3ROP0ajQaCoVCI4+TzWaVzWZHHgcAAAAAYE/gyfHWw1nFYlHFYnHkcRqNhgPdnAxB2Jglk0nF43FdunSpb2P41dXVkYOwQqEgaX+54ahjjbNPK07MCGu1WtrZ2Rl5nGazOfIYGI3XIz2+PrgGAAAAwHy4/Jz06W/s1z//3Ph6wWDNZtORx99uIgibAL/fr62tLcVisW7IZJqmqtXqsZvbD1Kr1VQqleT3+x1bZjlMn36/35EQa5gTMo/j9XoVDAZHHsfn8408Bkbj8UinCLoAAACAhfFqVHrrl/Y2zH/6Cem16Ph7wvF8Pp+Wl5dHHqfRaKjVajnQ0fAIwibo5s2bisVi3bc3NjZOHIStrKxIku7evTv0kshB7PS5tLTkSBC2tLQ08hjBYFDb29sjjwMAAAAAmKyzZ6R3XpBerwyuvfGi5Dsz9pZgwakthUKhkGszy7yuXHVBRaPRvkDppBvOZzIZ1Wo1lctlRaPOx+F2+jzpTK6D4ZkTM8IAAAAAALPrlfODa24l7dUBgxCETVgikRjp80ulkkqlktbX15VMJh3q6rBBfV64cKHvbbuzww5ujh+JRIbqCwAAAACweF4mBINDCMImrHcZ47DLAqvVqjKZjNbX15VOp51urc+gPnuXTkr2Z7fV6/W+t0+6NBQAAAAAAGBYBGET1hswDbMssFarKZFIqFAojD0Ekwb3eXBGmN0grHfmmN/vd3x/MwAAAAAAgOMQhE3Y5uZm93W7yyQNw9ClS5eUy+WUy+XG1VqfQX1Go9G+gOzevXtDj3swTMNsarelb1vWL+22210CAAAAAMCpkRPXuzTQzrJAwzAUi8WUTqdVKBRsXcMwDFUqlZFCMzt9XrlyRaVSSdL+jDU7euvy+fyJ+8P0aLWl029b1zy+Lp3yTKYfAAAAAACOw4ywCatU9s+EtRNSmaapRCKhK1eu2A7BJCmVSo2895adPjOZTPf1arU6cMzemnA4zP5gAAAAAABgopgRNkGVSkWGYcjv9+vatWuWtaZpKhaLKRwOK5/P29qDyzCM7iyraDQ69j6j0aji8Xg34KpUKpYnWZbL5e7rzAYDAAAAAACTxoywEVSrVQUCAXk8HiUSCcvlgYZhaGVlRZJ09+7dgRvlX7p0SYZhqFqtKhKJ2Hrp9NA7U2vcfa6vr3dfX11dPbbONM3uMsp4PD6RDf8BAAAAAAB6EYSNoFwud09BrFarisVih0Ko3o8tLS2pXq8PnK0Vi8Vs77l1lIMh07j6lPaXOHZmetVqNa2trR1Zd+nSJUn7J0X2zgwDAAAAAACYFIKwEaRSqUPvK5VKCgQCSqVSymQyisViSiQSSqfT2traUjgcHjimkyHYuPrslUwmtbGxIb/fr3w+370H0zS74VqtVlM0GtWDBw8GzjIDAAAAAAAYB0+73W673cQsMwxDhUJB1WpVu7u7Mk1Tfr9fS0tLikajunr1quLxuOvhz6T6XFtb0+3bt2UYRvcaFy5cUCaTsdw/7CRCoZB2dna0vLys7e1tR8eGfd+2bJ4aSewOAAAA4Ag8plg8bj6eJwjDzCIImw78owUAAABgFDymWDxuPp7nxwgAAAAAAAALgSAMAAAAAAAAC4EgDAAAAAAAAAvhtNsNAKNqNBoKhUKWNdlsVtlsdkIdAQAAAACwmIrFoorFomVNo9GYUDeHEYRh5rVaLe3s7FjWNJvNCXUDAAAAAMDiajabAx+ju4kgDDPP6/UqGAxa1vh8vgl1AwAAAADA4vL5fFpeXrasaTQaarVaE+qoH0EYZl4wGJz4casAAAAAAOAwO1sThUIh12aNEYQBAAAAAADXeD3S4+uDawAnEIQBAAAAAADXeDzSKYIuTAhBGAAAAAAAwAxot6VW27rG69kPF3E0gjAAAAAAAIAZ0GpLp9+2rnl8nRl2VrxuNwAAAAAAAABMAkEYAAAAAAAAFgJBGICxe/++2x0AAAAAAEAQBmBEdkKu1yuEYQAAAAAA9xGEATixh4+kNz+yV/vGh1Lz0VjbAQAAAADAEkEYgBN7ryZ9+Y292i++lm7VxtsPAAAAAABWCMIAnNjHnw1X/8mQ9QAAAAAAOIkgDMCJ7X013noAAAAAAJxEEAbgxAJPjrceAAAAAAAnEYQBOLHLzw1X//yQ9QAAAAAAOIkgDMCJvRqVnvqOvdqnn5Bei463HwAAAAAArJx2uwFgVI1GQ6FQyLImm80qm81OqKPFcfaM9M4L0uuVwbU3XpR8Z8beEgAAAADARcViUcVi0bKm0WhMqJvDCMIw81qtlnZ2dixrms3mhLpZPK+cHxyE3Uru1wEAAAAA5luz2Rz4GN1NBGGYeV6vV8Fg0LLG5/NNqBsc5WVCMAAAAABYCD6fT8vLy5Y1jUZDrVZrQh31IwjDzAsGg9re3na7DQAAAAAAFp6drYlCoZBrs8bYLB8AAAAAAAALgSAMAAAAAAAAC4EgDAAAAAAAAAuBIAwAAAAAAAALgc3yAQAAAADAXGi3pVbbusbrkTyeyfSD6UMQBgAAAAAA5kKrLZ1+27rm8XXpFEHYwmJpJAAAAAAAABYCQRgAAAAAAAAWAkEYAAAAAAAAFgJBGAAAAAAAABYCm+UDY8apJQAAAAAATAeCMGDMOLUEAAAAAIDpwNJIAAAAAAAALASCMAAAAAAAACwEgjAAAAAAAAAsBPYIw8xrNBoKhUKWNdlsVtlsdkIdAQAAAACwmIrFoorFomVNo9GYUDeHEYRh5rVaLe3s7FjWNJvNCXUDAAAA4P/f3t37Npqe96O/qF0ba8RRqDEQQJCaUI1PaXK3+bVDdTaSQpwBYtiuhgyCX6VCyiC1z0AqVAYRt1sfFxuqSGAXwSH3L5gR3Ro44JNmBgICeEQrNrzwi3iKtfjTK0lJfPj2fD6AAHJ08X4u7t58++p+bgLZdXZ2NvQz+jQJwph7S0tLsbq6OrBmeXl5Qt1kz1Luq2+9HFYDAADA4lteXo61tbWBNScnJ3F+fj6hjq4ShDH3VldX4+3bt9NuI7NyuYgPBF0AAADEaFsTra+vT23VmM3yAQAAAMgEQRgAAAAAmSAIAwAAACATBGEAAABAZvz0F9PugGkShAEAAAALYZSQ60dHwrAsE4QBAAAAc+/XX0b843+MVvsP/x5x9mWq7TCjBGEAAADA3PtJO+K3fxit9je/j/isnW4/zCZBGAAAADD3fvbL+9X//J71LAZBGAAAADD3Tn+Xbj2LQRAGAAAAzL2Vb6Rbz2IQhAEAAABz73vfvl/9d+9Zz2IQhAEAAABz7wfFiL/42mi13/x6xA+L6fbDbBKEAQAAAHPvrz6K+Je/Ha32X/8uYvmjVNthRgnCAAAAgIXw/e8Mr/lsa7Q6FpMgDAAAAMiMvxeCZZogDAAAAIBM+HDaDcBjnZycxPr6+sCa7e3t2N7enlBHAAAAkE0HBwdxcHAwsObk5GRC3dwkCGPunZ+fx7t37wbWnJ2dTagbAAAAyK6zs7Ohn9GnSRDG3FtaWorV1dWBNcvLyxPqBgAAALJreXk51tbWBtacnJzE+fn5hDq6ShDG3FtdXY23b99Ouw0AAADIvFG2JlpfX5/aqjFBGGRQrxdx3htcs5SLyOUm0w8AAABMgm+NnJIkSWJzc3Ok2na7HbVaLTY2NiKXy0Uul4uNjY3Y3d2Nbrf7oOOnMeao7nPfScd5L+LDfx78MywoAwAAgHkjCBuzbrfbD5YG/WxsbEShUBg6VqVSiVKpFPV6PZIk6f8uSZLY39+PlZWVqNfr9+pv3GOmcd8BAAAAxk0QNmb3CZB2d3fv/F23241SqRRHR0dDx6nValGr1YbWpTHmZeO67wAAAABpEISN2atXr0aqK5fLA1dFVSqVSJIkisViNBqN6HQ60el0otFoxM7Ozo36er0+NOBKY8zLxnXfAQAAgIf56S+m3cFss1n+GNXr9eh2u7GzszN0D6yPP/544DitVit2dnZib2/vyu8KhUJsbW1FrVaLSqUS7Xa7/7sXL17E1tbWxMa8Pv447jsAAABwu1FCrh8dRXywFPH976TfzzzK9Xo9W2KPycbGRkREdDqdR49TKBSi2WwOrEuSpH/MC81mM8rl8kTGvD5+xOPv+31cfN3q2tpavH37dmLHva8/nX+1+fwgf/zxV09UkzKLPQEAADzWIn/W+fWXEWv/d8Rv/zC89ptfj3j3MmL5o/T7eohpfp6fw//1s+no6CiSJHn03lftdjuSJIlGozG0tlAo3FjddXk1V5pjXjau+w4AAADc7ift0UKwiIjf/D7is8Ef5TNLEDYmr169inw+H8+ePXvUOJ9//nlUq9XI5/Mj1V9fqfWrX/1qImNeNq77DgAAANzuZ7+8X/3P71mfFfYIG4N2u91fNbWyshKFQiHK5XJsbm6OtL/WZc+fP7/XRvLFYvHK9eunNaY15oVx3ncAAADgdqe/S7c+K6wIG4PrpwQmSRL1ej0qlUrkcrkbG9APUiwWR165FRHR7XavXL8t8EpjzAvjvO8AAADA7Va+kW59VgjCHilJkmi1WgNrjo6OolQqRa1WS+X4lw3b1H6cY077vgMAAEBWfO/b96v/7j3rs8KpkY9UKBTi8PAwut1udDqdaLVaN4KkC/V6Pd68eRPHx8djO/6bN2/6l6vV6kTHnPZ9BwAAgKz4QTHin/5z9G+N/GFxeF0W5Xq9Xm/aTSyabrcb9Xo9Xr16deM0w4ivVlg1m82xHKtUKvVPPex0OvfaCyyNMSd536f5dav3MYtf3zuLPQEAADxWrxdxPiTlWMpF5HKT6WfcPjuO+NHR8Lr/51nE97+Tfj8PNc3P8z7mpiCfz8fOzk6cnp5Go9G4sT9Xq9WK/f39Rx8nSZJ+YLW3tzeWEOyxY07qvgMAAMB1udxXf9Af9DOvIVjEaOHWZ1uzHYJNmxVhE9DtduPp06dXNo3P5/Nxenr6qHFrtVrU6/UoFArR6XQe22YqY6Z13yP+T4K8tLQUq6urjx5ve3s7tre3Hz3OdbO4+moWewIAAGCwaX+WOzg4iIODg0ePc3JyEufn51NZEWaPsAnI5/NxfHx85ZTDbrcbrVbrwZvbt9vtqNfrkc/nx3aqYRpjpnHfrzs/P4937949epyzs7MxdAMAAACL6ezsbCyfv6dJEDZBn376aZRKpf71ZrP54DDoxYsXERHxxRdfjOWUyLTGvDDO+37duFaELS8vj6GbxfHTX0T8sDS8DgAAgGxYXl6OtbW1R49zsSJsGgRhE1QsFqNcLker1YqIuPMbFoep1WrRbrej0WhEsTier4FIY8zLxnXfb7O6ujrTm+XPop/+YnjNj46+Wk7r3HIAAAAixrel0MVWR9NgB6AJ29zcfNTt6/V61Ov1ODw8jK2trbH0lMaYt3nsfWc8fv1lxD/+x2i1//DvEWdfptoOAAAATIwgbMIun3L45MmTe9221WpFrVaLw8PDqFarY+knjTHv8pj7vuhGWaE1Lj9pR/z2D6PV/ub3EZ+1h9cBAADAPBCETdjlMCifz498u3a7HZubm7G3tze2wCqNMQd56H2fd6OehjipMOxnv7xf/c/vWQ8AAACzShA2YW/evOlfHvVUwSRJ4unTp7GzsxM7Oztj6SONMYd5yH2fd7N4GuLp79KtBwAAgFklCJuwTqfTvzzKtyYmSRKlUimq1Wrs7e2NdIwkSWJ/f3+iY47ivvd9EcziaYgr30i3HgAAAGaVIGzCjo6OIiJGWoXV7XZjc3Mznj17NnJgFRFRqVTuDJrSGHNU97nvi2IWT0P83rfvV//de9YDAADArPpw2g1kydHRUSRJEvl8Pl6+fDmwttvtRqlUikKhELu7u5EkydDxkySJ3d3diIgoFosTGXNU97nvi2QWT0P8QTHin/5ztJVq3/x6xA8f/r8dAAAAZoog7BFarVZUKpXodrtRLpdjb2/vzrAoSZJ48eJFRER88cUXQzeLf/r0aSRJEkmSxMbGxr36Ojw8TH3MNO/7IpnF0xD/6qOIf/nbrzboH+Zf/y5i+aPUWwIAAICJcGrkIzQajeh2uxHxVTBUKpWiVqvdqLv43ZMnT6LT6QxdWVUqlaLdfvhmUbd9A+S4x0zrvi+aWT0N8fvfGV7z2dZodQAAADAvBGGPUKlUbvxbvV6PlZWVqFQqUavVolQqxebmZlSr1Tg+Po5CoTB0zHGHYGmNed1j7/si+kEx4i++NlrtrJ2G+PdCMAAAABaMUyMfoVwuR6fTib29vWi1WvH+/fv+Kql2ux3FYjFevnwZ5XJ55NMBG43G2PtMY8w07vsichoiAAAAzA5B2CMVCoU79+RadFm+7/fx/e8MD8KchggAAADpc2okzACnIQIAAED6rAgDAAAAuKTXizjvDa5ZykXkcpPph/ERhAEAAABcct6L+PCfB9f88ccRH4wQhAnVZosgjLl3cnIS6+vrA2u2t7dje3t7Qh0BAADAV8YZqs2Dg4ODODg4GFhzcnIyoW5uEoQx987Pz+Pdu3cDa87OzibUDQAAAGTX2dnZ0M/o0yQIY+4tLS3F6urqwJrl5eUJdQMAAADZtby8HGtrawNrTk5O4vz8fEIdXSUIY+6trq7G27dvp90GAAAAZN4oWxOtr69PbdXY0lSOCgAAAAATJggDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCb41EjJoKRfxxx8PrwEAAIBFIgiDOdLrRZz3Btcs5SJyQ0KsXC7iA0EXAAAAGSMIgzly3ov48J8H1/zxx0IuAAAAuI09wgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAANzTT38x7Q54CEEYAAAAwCWjhFw/OhKGzaMPp90APNbJyUmsr68PrNne3o7t7e0JdQQAAMC8+vWXEf/4H6PV/sO/R3zv/4pY/ijVlubKwcFBHBwcDKw5OTmZUDc3CcKYe+fn5/Hu3buBNWdnZxPqBgAAgHn2k3bEb/8wWu1vfh/xWTvif/+vdHuaJ2dnZ0M/o0+TIIy5t7S0FKurqwNrlpeXJ9QNAAAA8+xnv7xf/c9/KQi7bHl5OdbW1gbWnJycxPn5+YQ6ukoQxtxbXV2Nt2/fTrsNAAAAFsDp79KtX3SjbE20vr4+tVVjNssHAAAA+LOVb6Rbz3QJwgAAAAD+7Hvfvl/9d+9Zz3QJwgAAAAD+7AfFiL/42mi13/x6xA+L6fbDeAnCAAAAAP7srz6K+Je/Ha32X/8uYvmjVNthzARhAAAAAJd8/zvDaz7bGq2O2SIIAwAAALinvxeCzSVBGAAAAACZIAgDAAAAIBMEYQAAAABT9NNfTLuD7BCEwYLxBAoAADA7RvmM9qMjn+UmRRAGc8QTKAAAwPz49ZcR//gfo9X+w79HnH2ZajuEIAzmhidQAACA+fKTdsRv/zBa7W9+H/FZO91+iPhw2g0Ao3nIE+j//l/p9gQAAMDdfvbL+9X//JeDP8ct5SL++OPBYyzl7nfMrLEiDObEQ55AAQAAmJ7T3423PpeL+GBp8E9OEDaQIAzmxLifQAEAAEjXyjfSref+BGEwJzyBAgAAzJfvfft+9d+9Zz33Z48w5t7JyUmsr68PrNne3o7t7e0JdZSO73074v/9/0av9wQKAAAwXT8oRvzTf4623/M3vx7xw2L6PaXt4OAgDg4OBtacnJxMqJubBGHMvfPz83j37t3AmrOzswl1k54sPoECAADMs7/6KOJf/jbiR0fDa//17yKWP0q9pdSdnZ0N/Yw+TYIw5t7S0lKsrq4OrFleXp5QN+nJ4hMoAADAvPv+d4Z/jvts66u6RbC8vBxra2sDa05OTuL8/HxCHV0lCGPura6uxtu3b6fdxkRk7QkUAAAgC/5+gT7DjbI10fr6+tRWjdksHxbMIj2BAgAAwDgJwgAAAADIBEEYAAAAAJlgjzAAAACAS5ZyEX/88fAa5o8gDFLmCRQAAGC+5HIRH/ictpAEYZAyT6AAAAAwG+wRBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJnw47QbgsU5OTmJ9fX1gzfb2dmxvb0+oIwAAAMimg4ODODg4GFhzcnIyoW5uEoQx987Pz+Pdu3cDa87OzibUDQAAAGTX2dnZ0M/o0yQIY+4tLS3F6urqwJrl5eUJdQMAAADZtby8HGtrawNrTk5O4vz8fEIdXSUIY+6trq7G27dvp90GAAAAZN4oWxOtr69PbdWYzfIBAAAAyARBGAAAAACZIAibkiRJYnNzc6TadrsdtVotNjY2IpfLRS6Xi42Njdjd3Y1ut/vgHvb392NzczNWVlb6Y1YqlWi1WjM1JgAAAMA4CMLGrNvt9sOqQT8bGxtRKBSGjlWpVKJUKkW9Xo8kSfq/S5Ik9vf3Y2VlJer1+r16bLVasbKyEru7uxER0Wg0otPpxN7eXrTb7djc3IzNzc17hWxpjAkAAAAwTjbLH7P7hFIXodFtut1ulEqlK+HXXWq1WhwfH8fh4eHQ2lar1V+JVq1Wr9ymUCjE1tZWlEqlaLVaUSqV4vj4OPL5/MTHBAAAABi3XK/X6027iUWysrIy0qqncrkczWbzzt9vbm5Gq9WKYrEYL1++jGKxGBFfnSb5+vXr2N/fv3GbRqMRW1tbd47Z7Xbjb/7mb6Lb7UahUIhOp3NrXZIksbGxMVKfaYw5qotvmVhbW8vMt0b2ehHnQx6xS7mIXG4y/QAAADDYn84jPvznwTV//HHEBxk6Z2+an+etCBujer0e3W43dnZ2hu7/9fHHHw8cp9Vqxc7OTuzt7V353cUKq1qtFpVKJdrtdv93L168GBiEVSqVfkg3aDXaxTGOjo6i1WpFvV6ParU6sTG5Wy4X8YGQCwAAYG4s5b4KuobVMBlWhI3RxYqnu1ZF3WecQqEwdNXU5VVWF5rNZpTL5aG1p6enA09PPDo6ikqlEhER+Xw+Tk9PJzLmfWRxRRgAAADMu2l+ns/Qwrt0HR0dRZIkA1dFjaLdbkeSJNFoNIbWFgqFGyvGLq8Qu+xyXblcHrpH1+WVZd1uN46OjiYyJgAAAEBaBGFj8urVq8jn8/Hs2bNHjfP5559HtVodeTP566u/fvWrX91ad3kT/4v9xoa5/K2Wn3/++UTGBAAAAEiLIGwM2u12tNvt6Ha7sbKyEhsbG1Gr1R604un58+c3VnkNcj2Aun6q5EV/l33yySf3Hvv6fUljTAAAAIA0CcLG4PrpkEmSRL1ej0qlErlc7sam9oMUi8WRV4NFxI1vqLy84upCq9UaWnOb63WX70MaYwIAAACkSRD2SEmS3AiFrjs6OopSqRS1Wi2V419220b5r1+/vnJ91KDtW9/61pXrb968SXVMAAAAgDR9OO0G5l2hUIjDw8PodrvR6XSi1WrdCKcu1Ov1ePPmTRwfH4/t+JeDpGq1emvN9X4eunrr8rdhpjEmAAAAQJoEYWNwPYDqdrtRr9fj1atXN05dbLfbsbm5Gc1mcyzHPjw87F++6xsr7wrm7uvyfUljTAAAAIA0CcJSkM/nY2dnJ3Z2duLo6ChevHhxJfBptVqxv78fOzs7jzpOkiT9Pbb29vbuXJX10LDp+umO79+/T3XMhzo5OYn19fVHj7O9vR3b29uPHgcAAAAW0cHBQRwcHDx6nJOTkzF08zCCsJRtbW1FuVyOp0+fXtkY/tWrV48Owi6+XbJQKDx6rFGksXprHGOen5/Hu3fvHj3O2dnZo8cAAACARXV2djaWz9/TJAibgHw+H8fHx1EqlfphWLfbjVardevm9qNot9tRr9cjn88PPc0yn8+PJXC6vJorjTEfamlpKVZXVx89zvLy8qPHAAAAgEW1vLwca2trjx7n5OQkzs/Px9DR/QnCJujTTz+NUqnUv95sNh8chL148SIiIr744ouhG9U/efJkLKHVkydPUh3zoVZXV+Pt27ePHofFdHBwEGdnZ7G8vOzUVxaO+c0iM79ZZOY3i8z8Xmzj2lJofX19aivLBGETVCwWo1wuR6vVioiHbzhfq9Wi3W5Ho9GIYrE4tP6hq66uB13XV4SNe0xIw8HBQbx79y7W1ta8ELNwzG8WmfnNIjO/WWTmN7NuadoNZM3m5uajbl+v16Ner8fh4WFsbW2NdJuPP/74yvVRV3Jd38h+Y2Mj1TEBAAAA0iQIm7DLpzHe97TAVqsVtVotDg8Po1qtjny7y6djRoy+Eq3T6Vy5fvk0zjTGBAAAAEiTIGzCLgdh9zktsN1ux+bmZuzt7d0rBIu4uXpr1NDq8iqvfD5/pfc0xgQAAABIkyBswt68edO/POppkkmSxNOnT2NnZyd2dnbufcxisXgldHv9+vVIt7vc6/XgK40xAQAAANIkCJuwy6cGjnJaYJIkUSqVolqtxt7e3kjHSJIk9vf3r/zbs2fP+pfb7fZI41yu293dvfH7NMYEAAAASIsgbMKOjo4iIkZa2dXtdmNzczOePXs2cggWEVGpVG6EbLVarX/54lsrB7lcUygUbg3t0hgTAAAAIC2CsAk6OjqKJEkin8/Hy5cvB9Z2u90olUpRKBRid3c3kiQZ+tNqtfqb2BeLxSvjFYvFK8HTRSB3l0aj0b9818qtNMYEAAAASMuH025gnrVarahUKtHtdqNcLsfe3t6NAOpCkiTx4sWLiIj44osvhm6U//Tp037AtbGxca++Dg8P7/z3i7FevXoVW1tbt9Z1u92o1+sR8dXpm4M2509jzFl0cHAQZ2dnsby8HNvb29NuJyL0NM9m7b/TrPUToad5Nmv/nWatnwg9zbNZ++80a/1E6GmezeJ/p1nradb6iZjNnmbRLP53mrWeZq2fVPV4sGq12ouIKz/VavVGXbPZ7OXz+V6hUOh1Op2h4xaLxRvj3udnkEaj0a/b29sbePx8Pt87PT0d2m8aY45ibW2tFxG9tbW1sYw3K8calZ5Go6fhZq2fXk9Po9LTcLPWT6+np1HpabhZ66fX09Oo9DSaWetp1vrp9fQ0Kj0NN+l+pnn/nRr5CJVK5ca/1ev1WFlZiUqlErVaLUqlUmxubka1Wo3j4+MoFApDxxx14/nbDFtptbW1Fc1mM/L5fOzu7vaP1+12+6dWttvtKBaL8V//9V9DV66lNSYAAADAuDk18hHK5XJ0Op3Y29uLVqsV79+/j263GxHRD35evnwZ5XJ55PDn8j5aaSmXy3F6ehr7+/vx+eefx9OnT6Pb7UY+n4+PP/44Go3Gnac4TnJMAAAAgHEShD1SoVC4c0+uWbezszPSt1dOe0wAAACAcXBqJAAAAACZIAgDAAAAIBMEYQAAAABkgj3CmHsnJyexvr4+sGZ7ezu2t7cn1BEAAABk08HBQRwcHAysOTk5mVA3N+V6vV5vakeHR/j6178ef/jDH0aq/cu//MtYXl5+8LFOTk7i/Pw8lpaWYnV19cHjjJOeRqOn+esnQk+j0tP89ROhp1Hpaf76idDTqPQ0mlnradb6idDTqPQ02X7Ozs7if/7nf0aq/drXvha///3vH3W8+xKEMbc++OCDOD8/n3YbAAAAwAMsLS3Fn/70p4ke06mRzK2PPvoovvzyy/jggw/ir//6r6fdDgAAADCC//7v/44//elP8dFHH0382FaEAQAAAJAJvjUSAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGzL39/f3Y3NyMlZWVyOVysbGxEZVKJVqtVqrHbbfbUavVYmNjI3K5XP/Yu7u70e12Uz022TGt+X1dkiSxubkZR0dHEz0u82eac3ZWHi8srlmZY56TSYP31GRGD2BONZvNXj6f70VEr1wu95rNZq/T6fQajUavUCj0//309HSsxz09Pe1tbW31ImLgz+Hh4ViPS7ZMa35fd32+m9fcZZpzdlYeLyyuWZljnpNJg/fUZI0gDJhLzWaz/+JYrVZvrSkWi72I6BUKhbG9cJ+envbfEIzyc1dvMMi05vdlp6envZ2dHW9GGck05+wsPF5YbLMwxzwnkxbvqckiQRgwd05PT/t/tSoUCnfWdTqd/otnuVwey7HL5XIvInrFYrHXaDR6nU6n/xez296gRkSv0WiM5dhkwzTn94W9vb1eoVDoz3cfuhhkmnN2Fh4vLLZZmGOek0mL99RklSAMmDuX3wgOewM4ztMHDg8PexHR29nZubOm0+n0/2p28ZPP5x91XLJlWvP7wvHxce/4+Lh//WLe+9DFXaY5Z6f9eGHxTXuOeU4mTd5Tk1W5Xq/XC4A5kSRJbGxs9K+fnp5GPp+/s/7o6CgqlUpEROTz+Tg9PX3wsTc2NqJQKESz2bxXjxERzWYzyuXyg49NNkxzft+l3W5HqVTqXz88PIxqtTr24zCfpjlnZ/HxwmKZxTnmOZlx8Z6aLPOtkcBc2dvb618ul8sDX7AjIra2tvqXu93ug79dqd1uR5Ik0Wg0htYWCoUrfV7cHoaZ1vweZFgPZNs05+wsPl5YLLM4xzwnMy7eU5NlgjBgrtTr9f7lYrE40m0KhUL/8ueff/6g437++edRrVZHfgN6/S9Vv/rVrx50XLJlWvMbHmqac9bjhbSZYywy76nJMkEYMDeu/wXok08+Gel2l1/cH/rXq+fPn9/4i9Sox4yIG8u64bppzm94iGnOWY8X0maOsci8pybrBGHA3Gi1WleuX/6r1CDX6x6ypLpYLN7rdIRutzuwB7humvMbHmKac9bjhbSZYywy76nJOkEYMDdev3595fqoL6Lf+ta3rlx/8+bNuFq6U5IkV67b1JNh5ml+Q8R056zHC2kzx1hk8zS/vacmDYIwYG5cfyF86F+vOp3O2Hq6y+U3Br7NiVHM0/yGiOnOWY8X0maOscjmaX57T00aBGHA3Lj+ov1Q15dYp+Hw8LB/eXd3N/XjMf/maX5DxHTnrMcLaTPHWGTzNL+9pyYNgjBgbjz0xfb6cu/3798/vpkBkiTp75mwt7dnLwNGMi/zGy5Mc856vJA2c4xFNi/z23tq0iIIAzIn7b9eXXwTTqFQiJ2dnVSPBddZfcC8meac9XghbeYYi8x7auaVIAyYG/f5hplJjHObdrsd9Xo98vl8NJvN1I7D4pmH+Q2XTXPOeryQNnOMRTYP89t7atIkCAPGol6vRy6XG+tPqVS6cownT56MpddxjXObFy9eRETEF198Yfn2AjG/4aZpzlmPF9JmjrHI5mF+e09NmgRhwNx46F+dri/bTuuvV7VaLdrtdjQajSgWi6kcg8U16/MbrpvmnPV4IW3mGIts1ue399Sk7cNpNwAshnK5HI1GY6xjXn9x/fjjj/sbZkZ89WI8ygvw9Y08NzY2xtHeFfV6Per1ehweHsbW1tbYx2e6sj6/4TbTnLMeL6TNHGORzfL89p6aSRCEAWNRKBRSX7Z8/VSyJElG+itRp9O5cr1cLo+1r1arFbVaLQ4PD6NarY51bGZDluc33GWac9bjhbSZYyyyWZ3f3lMzKU6NBObGxx9/fOV6kiQj3e7yMu58Pj/WQKPdbsfm5mbs7e15weZRZnF+wyDTnLMeL6TNHGORzeL89p6aSRKEAXOjWCxeWbb9+vXrkW735s2b/uXrL/yPkSRJPH36NHZ2dnylM482a/MbhpnmnPV4IW3mGIts1ua399RMmiAMmCvPnj3rX768t8Egl+t2d3fH0keSJFEqlaJarcbe3t7It9nf3x/L8VlMszK/YVTTnLMeL6TNHGORzcr89p6aaRCEAXOlVqv1L7daraH1l2sKhcJY9jLodruxubkZz549G/kFOyKiUqnYK4SBZmF+w31Mc856vJA2c4xFNgvz23tqpkUQBsyVYrF45YXv6OhoYP3lb/ob9perer0eu7u7A/dJ6Ha7USqVolAo9GuH/bRarf6mpL4CmkGmPb9vc/2r0uGyac7ZNI8NEZ6TWWzTnt/eUzNVPYA50+l0ehHRi4hesVi8s+709LRfVy6XB45ZLpf7tRHROz09vbWuWCxeqbvPz+Hh4WPuNhkxzfl9m0ajceW2e3t7I9+WbJjmnE3j2HCZ52QWmffUZJUgDJhLl98I3vUm8OIFNp/PD32TOcoL7GNesP3dgfuYxvy+zenpaa9QKFy57aA3ymTXNOfsuI8N13lOZpF5T00WmUXA3Go2m718Pt+LiN7W1lbv+Pi4d3p62ms2m/0X2GKxONKHnotxLn6azeaV329tbT3qBbtarab0X4FFNcn5fdnp6Wlva2vrxl90r/+Uy+V+X9DrTW/OjvvYcBvPySwy76nJGkEYMPf29vZ6xWKx/8Kbz+d75XK512g0Rh6j2Wz2CoVCL5/P93Z2dlLsFu7H/GbeTHPOjuPYMIjnZBaZ+U1W5Hq9Xi8AAAAAYMH51kgAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAMJJutxv1en3abTyYIAwAAACAobrdbpRKpWg2m9Nu5cEEYQAAAAAM1O124+nTp5EkSWxubk67nQfL9Xq93rSbAAAAAGB2lUqlaLfbERFxenoa+Xx+ug09kBVhAAAAANyq3W7HxsZGPwQrFApzG4JFRHw47QYAAAAAmC3tdjtevXoVR0dHV/49n89f2Sy/Wq1OurVHcWokAAAAAH1HR0dRqVSG1uXz+Tg9PZ1AR+MjCAMAAADgVq1W68rm+PMeI9kjDAAAAIBbNRqN/uVisTjFTsZDEAYAAADArVqtVv/y8+fPp9jJeAjCAAAAALih2+1GkiT96+VyeYrdjIcgDAAAAIAbLq8Gi3BqJAAAAAALqtls9i8vwmqwCEEYAAAAALf4t3/7t/7lSqUyxU7GRxAGAAAAwBVJkkS32+1ftyIMAAAAgIV0eX+wfD4fhUJhit2MjyAMAAAAgCtG2R8sSZLY39+PSqUSpVIpcrlctNvtG3X1ej1WVlaiVqul1u+oBGEAAAAAXHF5Rdjz58/vrCuXy/HJJ5/0A7BXr17dqDk+Po5utxv1ej2SJBl/s/eQ6/V6val2AAAAAMDMSJIkNjY2+tdPT08jn88PvM3+/n7s7u7eWV+pVOLo6GiksdJkRRgAAAAAfUdHR/3LhULhSnBVr9dvvU21Wu1fvvxtkxc+/fTTG2NNgyAMAAAAgL679gfb39+/8zb5fL5f22g0bvz+zZs3sbW1NcYuH0YQBgAAAEDf5f3BNjc3I+KrVWLNZvPKyq/rKpXKjdtfODw8jJcvX4650/v7cNoNAAAAADAbrn/r4+vXr+P9+/dxeHgYX3zxxcDbXl491m63o1gsRkREt9uNJ0+eTP20yAhBGAAAAAB/dv1bHff396NQKMTx8fHQIKtQKEShUIgkSaLVavWDsN3d3f5G+tPm1EgAAAAAIiJia2srqtVq5PP5KBQKsbOzE51OZ+TVXBfh1+vXryPi/wRrhUIhlX7vK9fr9XrTbgIAAACA+Vev16NWq0WhUIhOpxOVSiU+/fTTmTgtMsKKMAAAAADG5GKfsIvTIz/55JOZCcEirAgDAAAAYIxyuVxEfHWa5PHx8ZS7ucqKMAAAAADG5mKfsL29vSl3cpMgDAAAAICxefLkSWxtbfVPk5wlH067AQAAAAAWQ7fbjffv30ez2Zx2K7eyIgwAAACAsXjx4kV8+umn027jToIwAAAAAB5tf38/Njc3+3uEzSJBGAAAAAD30u12Y39/P7rdbkREHB0dRUREtVqdYlfD5Xq9Xm/aTQAAAAAwPyqVSj/8KhaL8fz589jZ2ZlyV8MJwgAAAAC4l1arFZVKJZ48eRKHh4cz+Q2RtxGEAQAAAJAJ9ggDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJvz/64rCWqMd414AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -181,21 +189,21 @@ "plt.xlabel(\"$t_y$\")\n", "plt.ylabel(r\"$z_{\\mathrm{Mag}}$ [mm]\")\n", "mplhep.lhcb.text(\"Simulation\")\n", - "# plt.show()\n", - "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_ty_dist.pdf\",\n", - " format=\"PDF\",\n", - ")" + "plt.show()\n", + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_ty_dist.pdf\",\n", + "# format=\"PDF\",\n", + "# )" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcfUlEQVR4nOz9TWxbd57n+38O5QQOkqZIpzGAIAHToToN16oh0p5FLUskahMj6QppAzFsA4MSmeRfdxbCFBlXFr1yVFRVtJl70xZdPQunDbRNVk2CZJGx6PTuAv+xRFfvgqnWcQqQQGCAMilVghiJzXMXajKiHshD8hwePrxfAAHJ+vJ3vhIp2/zw92BYlmUJAAAAAAAAGHE+rxsAAAAAAAAA+oEgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY+GE1w0A3Xj++ef1+PFjTUxM6D/8h//gdTsAAAAAAMCm//N//o+ePn2qkydP6uuvv+7rtQ3Lsqy+XhFwwMTEhGq1mtdtAAAAAACALvl8Pj19+rSv12RGGIbS/iDM52u9wvcv/uIv9MILL/R0vXK5rFqtJp/Pp6mpqZ7Gcgo9DV8/Ej3ZRU/2DFpPg9aPRE920ZM9g9bToPUj0ZNd9DR8/Uj0ZBc92TNoPTnZz1dffaU///nPLWvqr+cnJiZ6ulZXLGAITU9PW5Js3f7+7//esetNT0/33rxD6Km9QevHsujJLnqyZ9B6GrR+LIue7KInewatp0Hrx7LoyS56am/Q+rEserKLnuwZtJ6c7Ofv//7vbb9e9+L7Z0YYhpqdtNrv9/epGwAAAAAAxpvf79f09HTLmvoMNC94GoS9/PLLXl6+iWEY+t//+3973QY6NDU1pa2tLa/bAAAAAAAAkhYXF7W4uNiyZmZmRtvb233qqJmnQdjm5qYMw5Dl4X799esbhuFZDwAAAAAAAHBf613Gx4CXIRwAAAAAAAD6x/M9wizLUjweVygU8uT61WpVuVzOk2sDAAAAAACgfzwPwnK5nH7605962kM8HtePf/xjT3sAAAAAAACAuzxfGhmNRr1uQWfPnvW6BQAAAAAAALjM8xlhp06d8roFoK3FxUXt7u7K7/d73UoDPQ2nQfwZ0ZM9g9jToBnEnxE92TOIPQ2iQfs5DVo/Ej0Ns0H7OQ1aPxI9DbNB/DkNWk+D1o+bDMvD3eInJiZUqVQ8/0Hv7Ozo1KlTevr0qad9wL76UavT09Pa2tryuh0MKJ4nGHU8xzHKeH5jlPH8xijj+Q07vHyeeLo0cpBObBykXgAAAAAAAOA8T4OwbDbr+WwwSZqcnFQ2m/W6DQAAAAAAALjI0yDs5z//eV+v9+WXXx77tX73AgAAAAAAgP7y/NTIfkqlUl63AAAAAAAAAI+MVRC2vr7udQsAAAAAAADwyAmvG+jGl19+qWq1arveNE2trq52dB8AAAAAAACMlqEIwr788ktls1kVi0WZptnVGJZlyTAMhzsDAAAAAADAsBj4IOzq1ataXl6WtBdmAYBdi4uL2t3dHYjTaQE38BzHKOP5jVHG8xujjOc3Bp1hDXC69Nvf/laJREKSGrO5emnXMAw9ffrUkd7grZmZGW1vb2t6elpbW1tetwMAAAAAAGzy8jX9QM8IW1pakrQXYFmWpVAopHA4rFAoJEl68cUX247xpz/9SdVqVXfu3NHOzo6r/dplmqZSqZTW1tZ6Gmd2dlamaSqfzysej3d03+XlZa2trWl9fV3VarXxs02lUopGo13148aYAAAAAAAAThnoIKxUKjVmgq2trWl+fr7rsdLptF5++WWnWjtStVpVMBi0VZtMJnu6ViaT6Wq/tGKxqEQioWq1qmg0qnw+r1AopFKppEwmo1gs1vjzQCDg2ZgAAAAAAABOG+ggLBAIaGdnR+l0uqcQTJJCoZBeeuklhzo7Wi6Xs12byWS6vk6xWGzsm9bp/WKxmKS9IG51dbXxtVAopHg8rkgkomKxqEgkoo2NjbbBlRtjAgAAAAAAuMHndQOt1JdAnj171pHx9oc0bqgv5WwnGo02vrdOVavVxr5p3d4vFAod+7PI5/OS9pZvtruOG2MCAAAAAAC4ZaBnhM3Pz+vBgwd69OiRY+O5JZfLqVqtKp1ON2ZIHefMmTNdX2dhYUGnTp2StBdE2VVfuii1no1Wn8VVKBRULBaVy+WOXcbpxpgAAAAAAABuGehTI3d2dhQMBvXmm2/qgw8+6Hm83/zmN/rpT3/qQGeHzc7OSpI2NzddGV/aC9tSqZQ2NjY0Pz/fCKHabZZvmmajP0mqVCotlycWCoXGzK1AIKBKpdKXMTvBqZEAAAAAAAwnL1/TD/TSyMnJSf3yl7/U7du39ec//7nn8dxaGlkoFGSaZk/7frVTP2kynU4rHA53dN9sNtv4OBqNtt2ja3+oVq1WVSgU+jImAAAAAACAmwY6CJPUCH563Vvq4cOHKpVKDnXVbGlpSYFAQOfPn3dlfGlvGWI4HG4KoOzav4m/3RBt/x5mt2/f7suYAAAAAAAAbhroPcLq1tbWdObMGb388svKZDKNPbLaefTokarVqjY3N3Xnzh1XeiuVSo2ALRgMKhQKKRqNKhaLtVyu2IlMJqNSqdTVssuD4Z/dgwfC4bBM05SkQ7O33BgTAAAAAADAbUMRhH3++eeS9vbfSqVSXY1hWZYMw3CyLUmHN4k3TVO5XK4xYyoej+vq1asdL2esK5VKWl5e1urqalcnTRaLxabP7Y5xsK5UKjW+BzfGBAAAaMeypFqb3W19huTCf/kAAMCIGPgg7K233mqESoZhqJu9/d0IwKS90OtgKHRQoVBQoVBQMpnsao+y+fl5xePxrk9ZvH//ftPn7fbyqnvxxRebPl9fX2+EVm6MCQAARpOT4VXNkk6827rmyTVpgiAMAAAcY6CDsBs3bjTCo25DMEld36+dUCik1dXVxvLLYrHYWPp3UC6X0/r6ujY2NmyPX98X7caNG133eLCfbmdv7V+W6caYAABgNBFeAQCAQTLQQdjBEKy+91YgEOh4n7Dr16/ryy+/dLzHgzO1qtWqcrmclpaWVK1Wm75WKpUUi8W0trbWdtz6TLK1tTXbM66Oclww16n934sbYwIAADjh1gPpcsTrLgAAwKAa6CCsVCrJMAwFAgGtr6/rpZde6nqshYWFQ0vz3BAIBJROp5VOp1UoFLSwsNAU+BSLRS0vLyudTh87RrVaVSKRUDKZVDQa7amfbsOmg+Hbo0ePXB2zW+VyWTMzMz2Ps7i4qMXFxZ7HAQAA7rn1oH3NlYI04ZMuzrnfDwAA42ZlZUUrKys9j1Mulx3opjsDHYQFAgHt7Ozo6tWrPYVg9bHm5vr7P6J4PK5oNKr5+fmmkxaXlpZaBmHz8/ONZZeDwo3ZW06MWavVtL293fM4u7u7PY8BAADcs/NYevtje7VvfiSd+4HkP+lqSwAAjJ3d3V1HXoN7aaCDsEgkos8//7yr0xKP0steW90KBALa2NhQJBJphGHValXFYvHI2V7Ly8sqlUod7SXW7vpOBE77Z3O5MWa3fD6fpqameh7H7/f3PAbGR7VadeT5CwDYY2c544cl6evv7I331bfSzZL0sx/23hsAAPie3+/X9PR0z+OUy2XVajUHOurcQAdhqVRK9+7dc2xPqn7PCNvvxo0bikS+/x/e2traoSCsVCopk8kom806dpriqVOnHAmt9u/J5saY3ZqamtLW1lbP4wDtlEol3b59W7lcTtFoVPl83uuWAGAoOLWc8ZMvOrvup18QhAEA4DSnthWamZnxbGaZz5Or2hSPxzU3N6fbt287Mt7vfvc7R8bpRjgcbgq+jgr3EomEwuFwy2WTnep21srBoOvgjDCnxwR6UQ+RY7GYZmdnFQwGZRiGgsGgIpGIYrGYMpmMisXikfdPJBJNQbW093wtFApKJBKNcZaXlznkAQA60Olyxt3Hx3+98k1n1+60HgAAjIeBnhEmSfl8Xn/913+t//E//of+7u/+rqexlpaW9JOf/MShzjoXi8WOfSG+vLws0zQVjUaVSCTajrX/xfjS0lJTWHjhwgXF43FJ0pkzZ5r2J7O7pOvgRvazs7ONj90Yc9zlcjmlUqmO7xcOhx1ZRmsYnZ9ZHwgEVKlUjvxaIpFQoVDoeMyjZkoep1qtamlpScvLyy1r6s/V+kEV0vfB9OzsrNbW1lQoFA7NwlxYWJBpmk3PdQBAZ5xczhh8rrNrd1oPAADGw8AHYaFQSNevX9dPf/rTnoKwnZ0dz1/Q7t/r7OCywD/96U+SdGxQ1kqpVGr63kKhUCMIOzjLxTRNW8suNzc3mz7fH064Mea4SyaTOn/+vEzT1NLSUssQKRqNKpPJ6MyZM47NqrMsS6ZpqlgsKpPJHDvrKRQKKZPJKBqNtty7L5/Pq1qtan19XdlstuXzOp1O68KFCwqFQra/n0wmc2QAFo/HG2PVxzNNU6ZpKp/P686dO41w7ODfBwe/5/1LH2dnZx1bog0A48TJ5YznTkt3/2B/rFdOd3ZtAAAwHgY6CKsvZfzLv/xLBYNBvfzyy42ApxPValV37txxur2O7Q8O+rUs8MyZM02f2w2t9ocCgUCgqXc3xsTezyQcDiufzyuVSimXyx2qicfjru1NFQqFlEwmGzOljrKxsWH7uRsIBBSNRhWNRpsOi9hvdXVVyWTSdo+maSoWix0KpZLJ5LGnrNZDsWg0qtXVVS0vLyuTydi+prQXPh71eAAAWnNyOeOlsPTOZ/ZmmL3wrHTZme1WAQDAiBnoIOy9997Tgwff77BqWVbLZVCtWJbV1fIvJ62vrzc+jsViTV/LZrPKZrO2x9o/QyWfzx8bEIbD4aZTHu/fv28rTNzf68Hgy40x0ey4IKyb5ZOdCoVCCofDh4KreDzedYCbSqWO7L2TEKxYLB76vQkEArp3715Hh0uk02nF43FFIpGmcPbg0t2D1wEAdM7J5YyTJ6UPXt3bWL+d669J/pOdXRsAAIyHgd4s//z587IsS5ZlSepuH6NBsn9pYD+XBZ4/f77xsd3lofvrjpo948aY+N5xs+X6NYvuqOv0cu2j7ttJuFQqlRwJwfb38/Dhw6Ye2AQfAJx3rsPlie2WM7Y6VbLuZtxeHQAAGE8DHYTVZ5AYhtEIxLq9DYL6vk9Ongppx/6ZOHb2INtfU19S1o8x8b3jQqKDe8uNA9M0NT8/f+jP8/l8VyFYXSAQcOSggUFTKBTYz6yFbvZhBNC9S2Hp+Wfs1Tq1nPENQjAAANDCQAdhk5OTjRe62WxWa2tr2tjY6PiWz+c1N+ft/4rqL04DgYCuXr3a12vXT8jb30sr+/egOm7mlhtjYnAcFbi9+OKLjo5nN9RLJBKHZmvV9zLrVSgU6nsw3a1SqaRUKqXZ2VkZhqFgMKjZ2VlFIpHGKZ2FQkELCwttw55isdi4/6gHQ6ZpKpfLKRaLyTCMQzMLvTZOjwXGU305ox0sZwQAAP0w0HuESdKFCxc0Ozurn//8512PMTc3p9dff93R2TTFYrHxAj0ajSqbzR47O8U0TS0sLEiS7t2758l+Q6urq40N0JeWlo7d06tarTb2popGoy33cHJjTGC/YrF45NLbTvbTa+fq1auNvQer1erA7QdWrVa1sLDQCJv3nwprmmbjBMz9YXS7ZZ71v7uq1apSqdShE11HgWmaSiQSMk1zoJe9jsNjAVyca7+vl93ljD5DenKtfQ0AAMBxBnpGmLQXnDi1tNHJDdrz+XzjxVWxWFQkEjlyM/D6106dOqXNzc2elnL1IhQKNWZllUqlYw8dqC9BCwQCbU8ndGNMYL+jfqd62bT/KIFAYKDD2fpsL2kvfN7c3FQ+n1c+n9fGxoY2NzcPzY5rF6aMwxLbUCikjY0NVSqVgZ71Nw6PBWCH3eWMhiFN+FrfhnxLWQAA4LKBD8Lm5uYcm/3xX/7Lf3FkHGnvxelBuVxOwWBQiURCqVRKkUhEsVhMyWRSGxsbfdvo/DjxeFxra2sKBALKZDJKJBIqlUqqVquNwK5UKikcDh/aSLyfYwLSXoh81F5Xbiwtrv8+tzo5spX6DNH9yxZjsdiRJ392Ynl5ubFcLp1OHxnYhUIhra2tNf092W6PsNXVVYVCoaYwe5QN2nLI/cbtscB4qs/ianVjFhcAAOiXgQ/CJOmll15yZJz/9t/+myPjSHsz1TY3N5VMJhUKhZoCnlKppEePHunq1auqVCrKZrOOB0Cbm5uNgwCOW5J4XN/1nuqbkNfDu1OnTjVmmXTSrxtjAseFAm7Mqqwvb+50dk61Wm0E3vs3qa8HwfU9veyerHrQ0tJS4+OjZsftl06nGzOf2gV69b+/vJyl2k9ezbpq95hJ4/dYYDwxiwsAAAySgd8jzEnr6+uOjhcKhbS6uuromP2y/0XzII+J8XXUxuFunjba6XPXNE1FIpG2+0/V69bW1jrqv5u9rbLZ7LEz6dBfuVxOuVxuaP+NAAAAAEbVUAZhX375ZUcvEE3T1Orq6kBvmAzge6ZpHhnmDMqMmWq12tjkPB6PKxaL6cyZM3r06JHW1taO3C8vFotpc3PT9hLpg39fFYtFW3uZXb169cil2+gf0zRtzQYDAAAA0H9DEYR9+eWXPc90sCxLBvPugaFw3O95/ZRSr9Vnqx01yysajSqVSikWix36PhKJhDY2Nmxd42BglslkdP78+bZLjOtLpQfxBMxxUK1WB3pPMgAAAGDcDfweYVevXtXs7KxyuVzTvlid3gAMj+OCsEE6Ya/VUsf6BvYHlUqlI5d8HiUQCDQFWfX9yOy8GWBZFiGYB6rVqubn51maCgAAAAywgQ7Cfvvb3yqbzTaCLGZ0Ad7JZDIyDKOrWyQS6ehaxy1jHpRwJxAItN3vKxQKHXnibSen4B6sNU2z8cZAr0qlUmMz/1aq1apyuZwikUjTdevL/4LBoAzD0Ozs7JFLQk3TVCaTaZyoOTs7q1QqdeRjXL/OwefPQbFYrDHe/puTy99zuVzTdYLBoCKRyJHfo7T383zppZcOHYywv7/jftZ2H4u6arWq5eVlxWKxxs+/3l8mk7EVxJmmqeXl5UOHOex/DGZnZxtLgAEAAIBRYVgDPF3qzJkzKpVKMgxDlmUpFAopHA43lgy9+OKLbcf405/+pGq1qjt37mhnZ0dPnz51u230wczMjLa3tzU9Pa2trS2v23HFUQFApVLpSxiUSqUcCVtaCYVC2tzc7Oj6nW4475RMJtMUgESj0SNnfB0lGAweChI6+Ws3FosdOYssHA7rxo0bHe2bViqVtLq6qjt37jR6CgQCqlQqTXX18Ov27dtNIcnq6qqSyeShn8d+yWSysUF8q7pQKHTsabIHH//jfl7Ly8vKZDKNz4/7/SiVSk1hbKuff6FQUCKRUCAQ0I0bNxpLTUulkhKJhEzTPLL3arUq0zRVLBabejq4FLb+eNl9LA7K5XKN/cey2ayi0agCgYBKpZKWlpYaj1c8Hj908mq1WtXS0lLTCaf1HkOhkObn54884TQQCDRqAAAAACd4+Zp+oPcIq4dg0t4L4Pn5+a7HSqfTevnll51qDRg7yWSy6w3A19fXO7rvcWHfoMxM6SSMjEajKhQKTX9WKpVsB1hra2tKJBJHjhGJRBSPx3Xjxo22PZmmqdu3b9uedRQOhxUIBJoet42NDUUiEZ06dUr5fF7hcFinTp3S0tJSI/CqBzWZTKZxeMCZM2ck7T0P6jOMTNPU0tLSkTPkEomErSA2Ho83hU69KhaLjYMGrl692gjBpL2fRz6fbyxPXVhYaAqaAoGAwuGwHj161DTmUY9zp49FXT1YPCqYCoVCisfjjedKoVDQ7OxsU2D36NEjxWKxRtBZt76+rvn5eUWjUWWzWYVCoUagV61WVa1WlUqlbIe/AAAAwECzBlgwGLR8Pp/1zjvvODLe7OysI+PAe9PT05Yka3p62utWXCPp0K1SqfTl2slk8tC1s9ls1+NtbGwcGi8UCh1bn81mj/z+V1dXu+6hF+l0uqmPeDxu+775fN6R7+O4n0k3Y+4fKxAItKwNh8NN11lbWzuyLhqNNtUlk8kj6/b/PI679traWtNYx6lUKrZ+Pw4+/44Tj8fbPt/bjWO39zq7j8Xq6qrtxzoUCjVqo9Fo2+8jEAgc+bgefO726+8fAAAAjD4vX9MP9B5h9Xe7z54968h49eU6AAbboM8I68RRy8m6+T7S6bQqlUrTLKX96idV2hm7kyVu+w8oSCaTxy5NPXhS4nF/3+7vvz7baBAd9xzc/+dObIpv97Goz3wLBAJKJpO2aqW9WW5HLa3d/33cuHHjyMf14HNtfX3dVq8AAADAIBvoIKy+FPLgUpNexwMw2I4LB47bU2yQHRWo/OlPf+p6rHw+r42NjSOX3BWLRc3PzzsaLtldBrr/Metk6eggnbB448YNZbNZ5fP5tmGT1L9gNpfLNa5lJzhLJpNNj0EnBzQctP96g/RYAQAAAN0a6CDsF7/4hSzLOnLz3m785je/cWQcAO46btbRUTNbBt1RwYWdgz5aCYfD2tjYOHLWValU0sLCQk/jd6PbQxyceqPDCYFAQOl0+shZd6VSybF/izq1f28uuzPI9v8ODePvDQAAAOCWgQ7CJicn9ctf/lK3b9/Wn//8557HY2kkMDyO22R8UJfSdcKp0/eSyaQ2NzcPhVCFQmGgw49+nHzqBNM0lcvlVCwWFQ6HOzqh0+k+OnXwOTYKvzcAAACAEwY6CJP29sUJh8ONk7y69fDhQ8/ezQfQuQsXLhz554Mc8BznYPDjVBBWH2v/yYB1BP/dK5VKisViWl1dbbkvWr/sD7HshmIHT6QcpJl3AAAAgJdOeN2AHWtrazpz5oxefvllZTKZps2bW3n06JGq1ao2Nzd1584dl7sEhkepVNLS0pLy+bzXrRwrmUw2bfpdt7q6euyG8YPq4GycdjOLisWiMpmMNjY2bI0fCoV048aNpjcMCP67k0qllMvllEwme9pby0ndbNB/8N9JJ8NXAAAAYJgNRRD2+eefS9rbKDuVSnU1hmVZMgzDybaAobWwsGA7UPZKIBBQPB5XoVBo+vNisahSqeTZMrVOHQzB7MwuCoVCKpVKKhaLtmcjHQwH2di8c/UQTOptg3mn1Z8P0vcnbbZbXrp/BhghGAAAAPC9gV8a+dZbbykWi+nBgwcyDEOWZXV8A/C9epAUi8WOrXF6GVW34x0XRhw1U6xXbu2htL6+3vS5nTC/Hlx0G/xL7WedjQInn6elUqkRgoVCoYHax+zgMuF6n63sP2F12GZQAgAAAG4a6CDsxo0bWl1dbYRZ3YZahGHAnmq12lg+1+mL4z/96U+O9mInxAiFQkeGYcViUcvLy471YpqmIpFIT8HTcQ6e+Gf35x4KhWSapu3Q7+AMsOP2WBsGB2crHhdSOjnrbf/ec63G9WLT+Xg83hTM2dn/bf/3c/XqVTfaAgAAAIbSQC+NrP9nvz4TLBqNKhaLKRAIdLxP2PXr1/Xll1+62C28UC6XNTMz07JmcXFRi4uLferIGW682K5Wq5qfn28sq+p0uZTTPdkdL51Oa21t7dAm+ZlMRuFwuOeNzIvFomKx2LGhW6/2L+3sZAP7ehC2vLys2dlZJZPJlvX7xw6FQkqn0503ewS7j9P+unb3aff1g7PZcrncoe/nqJDw0aNHjs3kKhQKh0LLo6530MHfK9M0m/7MzrLGo+zfA840zZbLZkulUmMpZTabHajZbQAAABh9KysrWllZaVlTLpf71M1hAx2ElUolGYahQCCg9fV1vfTSS12PtbCwoBdffNHB7jAIarWatre3W9bs7u72qRvnHDcjpdsX+sViUalUqjHu+fPnO75+L8vQep25s7a2pkQicWi/sFgspmw221XoU61WlclklMvljj15sdV97cjlco3vvdPTB/eHJ6lUShsbG8eGGrlcrmmG3P5ZaEfZ/1h6McNpv+OuH41GG+FnJpPR5uamEomEqtWq1tbWlMvlGs+L+hgHQ6e6g8/do8Kog+FbIpFQNptVOBxWqVTS6uqqwuFwI6CUvg8f19bWdPXq1SMD5lQqpXw+r0ePHimbzWp2drbp+Wr3sYjH48pms40wLpFI6OHDh4e+j2q1qoWFBUl7z7njfjfsPu77f3e9fq4AAABgOOzu7rZ9ne4pa4AFg0HL5/NZv/rVrxwZLxKJODIOvDc9PW1Jsnw+nzU9Pd3y9v7773vdbseSyaQl6dAtGo1am5ubbe9fqVSstbU1K51OW6FQ6NA4+Xz+2Ptubm4eeW1JVqVS6er7CYfDR463urra0TjpdPrIccLhsLW2tmZrjEqlYmWzWSsQCDR+pu2+r4PXDQQCba+z/+cYjUZt9bbf6urqkd9rPB630um0tbq6aiWTyabH1+7z4+DjcdzzoVKpHPo5Hycej9t6bNfW1prqksnksdeuP0YHb4FAoPF4768Jh8PW5ubmocfTbm8H6/bfstmsZVlH/27G4/GmcY57nh71vdp9LOry+Xzjew4EAtbq6qq1ublpbW5uWqurq43nQ73fo9h9DA7WdfM8BgAAwPh5//33275O9/l8liRrenq67/0NdBAWjUYtn89n/fa3v3VkvFKp5Mg48F49CPPil8ZNGxsbLV+MO3U7KvipVCrW6urqseGDJCsUClmrq6u2A7GNjQ0rGo227CWdTtsKb+rW1taODdYCgYAVj8et1dVVa21tzdrY2LDW1tas1dVVK5vNNt0vEAi0DR3qjgoHQ6HQseHb/rDiYEjSyfdZ7zGfz1vJZNKKRqNWOBxueozq33O7ILD+3Dru8Q2Hw43wpFVtKBSy4vF44zlwMIw7GJzUx1xbWzv2uRAKhY4MYyqVStP44XDYSqfTTTX1Pzv4HKpUKm2/36Oumc1mG9cLhUJWOp1uer5XKpXG97H/Z3bQ/hA6HA43Pdc6eSyOs7q6akWj0aZQrH6/434/W/0+7n8MNjc3W9a16w0AAABox8vX9IZlDe5O8oVCQefPn9fy8rL+63/9r163gwEyMzOj7e1tTU9Pa2try+t2epbL5VzZqP0o4XBYGxsbTX9mGEbH4wQCAVUqlSO/dtQyRjvW1tZsLx8sFApaWlpq7IVkVygUUiqVUjKZ7GiZaX1PqoPfVyAQ0JkzZxQIBFStVrW+vt5YepfP53vewwwAAAAARo2Xr+kHOgiTpEgkIp/Pp/v37/c81u9+9zv95Cc/caAreG3UgjB0r1qtqlgs6vbt2zJNU9VqtbGvUSgUauzbdPbsWcXj8Y4PCWh3vfo169c5c+aMEokEARgAAAAAHIMgrAXTNPXXf/3X+u1vf6u/+7u/62mss2fPOhKowXsEYQAAAAAADCcvX9P7+nq1LoRCIV2/fl0//elPexpnZ2en4yVUAAAAAAAAGB0nvG6gld/97neSpL/8y79UMBjUyy+/rHg83vE41WpVd+7ccbo9AAAAAAAADJGBDsLee+89PXjwoPG5ZVlaXl7uaizLsrraEBwAAAAAAACjYaCXRp4/f16WZam+jRlBFgAAAAAAALo10EFYKpWStBeA1QOxbm8AAAAAAAAYbwO9NHJyclLhcFgPHjxQNptVOBzWqVOnOh7HNE299957+v3vf+98kwAAAAAAABgKAx2ESdKFCxc0Ozurn//8512PMTc3p9dff72rEA0AAAAAAACjYaCXRkpSNBp1bGnjmTNnHBkHAAAAAAAAw2fgg7C5uTlls1lHxnJqHAAAAAAAAAyfgQ/CJOmll15yZJy5uTlHxgEAAAAAAMDw8TQIG6TN6wepFwAAAAAAADjP0yAsEolod3fXyxYkSTs7O4pEIl63AQAAAAAAABd5GoQ5tQm+EwapFwAAAAAAADjvhJcXNwzDy8s3GaReAAAAvGZZUq3N+4Q+Q+K/UAAAYJh4GoQxCwsAAGAw1SzpxLuta55ckyYIwgAAwBDx/NTIhw8fet2C1tfXvW4BAAAAAAAALvN0RpgkLSws6J133lEgENCpU6f6eu1Hjx7JNE2l0+m+XhcAAGAU3HogXea8IQAAMEQ8D8I2NjaUSCQ87cGyLPYIAwAA2OfWg/Y1VwrShE+6OOd+P05jDzQAAMaT50FYnVf7hRGAAQAANNt5LL39sb3aNz+Szv1A8p90tSXHsQcaAADjyfM9wizL8nTTfDbsBwAAaPZhSfr6O3u1X30r3Sy52w8AAIBTPJ0RVqlUvLw8AAAAjvDJF53Vf/qF9LMfutOLl9gDDQCA0eNpEDY5Oenl5QEAAHCEyjfu1g+CUd8DDQAAHM3zpZEAAAAYLMHn3K33Wqd7oO0+drUdAADQRwRhAAAAaHLudGf1r3RY7zX2QAMAYHwRhAEAAKDJpbD0/DP2al94Vrocdrcfp3WzBxoAABgNBGEAAABoMnlS+uBVe7XXX5P8J11tx3HjsAcaAAA4mqeb5QO9KpfLmpmZaVmzuLioxcXFPnUEAMBouDi3t1l8Kzfjw7mR/KjvgQYAgJdWVla0srLSsqZcLvepm8MIwjDUarWatre3W9bs7u72qRsAAMbLG0MYgkl7e6Dd/YP9+mHbAw0AAC/t7u62fZ3uJYIwDDWfz6epqamWNX6/v0/dAAAwOnyG9ORa+5phdCksvfOZvQ3zh3EPNAAAvOT3+zU9Pd2yplwuq1ar9amjZoZlWZYnVwZ6MDMzo+3tbU1PT2tra8vrdgAAwJC5udF+6ack/dP54Vz+CQDAIPPyNT2b5QMAAGDs2Am3hnUPNAAAcDyCMAAAAOAIw7oHGgAAOB57hAEAAGDsjPIeaAAA4HgEYQAAABg7hiFNEHQBADB2WBoJAAAAAACAscCMMAAAgBFhWVKtzXngPmNvNhQAAMA4GskgbGdnR++8847+4R/+wetWAAAA+qZmSSfebV3z5BpLAgEAwPgayaWRpmkql8vpj3/8oz7//HPt7u563RIAAAAAAAA8NpJBWLFYlGVZCoVCisViCgaD+sUvfuF1WwAAAAAAAPDQyAVh9+7dUyaTkSRZltW4ZbPZlmHYW2+9pZdffllnz57VL37xC2aRAQCAkXTrgdcdAAAAeMewLKvNlqrD5cyZMwqFQrpw4YLC4bBM09Tdu3f1q1/9SoZhyDRN/cf/+B+b7vPyyy/LNE3t/1HMzs5qY2NDfr+/398CbJiZmdH29ramp6e1tbXldTsAAAyEmxvSlUL7un86L12cc7+fccEhBQAAdMbL1/QjGYStr68f+vNqtapIJKKzZ8/qn//5nxt//tZbb2l1dVWGYSidTmtpaUnValWZTEbValW3b9/uZ/uwiSAMAIBmO4+l6fekr79rX/vCs9L2Vcl/0v2+xsHTms1DCkZuLQYAAN3x8jX9yP1zbBzzVlsgENDGxoY2Nzeb/rwegsXjcS0tLTVqV1dXValU9OWXX7rdMgAAQM8+LNkLwSTpq2+lmyV3+wEAABhEIxeEBYNBvf/++0d+LRAIKBgMNj6/ceNG4+NsNnuoPpPJqFgsOt8kAACAwz75orP6TzusBwAAGAUjF4Sl02n9/Oc/19tvv33khveVSqXxcX02WDQa1V/91V8dqj1z5syhGWQAAABOsqy9pXWtbnY2sqh809l1O61HbzikAACAwXDC6wacFo1GtbCwoOvXr2t1dVXxeFxnz56VJN2+fVubm5v68Y9/rHA4rFKpJMMwlEqljhxrcnJSpmn2s30AADBmapbN/aXabLQefK6z63Zaj+PZCbmuFPb2COOQAgAAvDVyQZi0N9Pr0aNH+u1vf6tCoaBC4fvjk9bX1/Xee+81LYUMh8NHjvPgwQOdOnXK9X4BAAB6de60dPcP9utfOe1eL+Nk57H09sf2at/8SDr3Aw4pAADASyO3NLIun8/r+vXrmp+fl2VZmpyc1J07dzQ3N6d8Pq/XX39dgUBA169fP3ZGWC6X0+zsbJ87BwAA6NylsPT8M/ZqX3hWunz0+4DoEIcUAAAwXEZyRlhdMplUMpk88mv5fL7xcTAY1NmzZ/Wb3/xGf/u3f6vd3V299957yuVyTXuKAQAAeOHWA+lypHXN5Enpg1f3luC1c/01ZiU5pZtDCn72Q3d6AQAA7Y10EGZXPB6XaZqam5uTYXy/Accvf/lL+f1+DzsDAACjzsn9pS7OtQ/CbsbZp8pJTh5SYFl7e8a14jMko81+cQAA4HgEYf8unU4rFAopl8spEAjowoULev31171uCwAAjDAv9pd6gxDMUU4eUuDUwQkAAOB4IxeEff755/rRj37Utu53v/udotFo04yveDyueDzuZnsAAAAN3ewv1WpZnc/YC0pa8RGiOIpDCgAAGC4jt1l+PB7XxMSEfvzjH+vXv/61fv/73x9ZNz8/r5/+9Kf68ssv+9ofAABAXTf7S7ViGHtLKFvdWFbnLA4pAABguIxcEBaJRGRZlorFojKZjCKRiF588cVDwdjk5KRu3LihRCKhP/7xj942DQAAxpKT+0vBG/VDCuxw4pACO3vKSXv7jT2ttb5ZbfYjAwBgFI3c0shCoaBEIqFHjx6pWq3KNE1VKhWtra2pWCw26mKxmObm5lSpVJRKpfTZZ5952DUAABhHTu4vBe84dUiBkwcnsN8YAABHG7kgLJlMKpfL6a/+6q8af3bv3j3duXNHN27caPzZ3bt3tba2Jsuy9PDhQw86BQAAw8qp0/3YX2p8tDukwIuDEwAAGEcjF4RZltUUgkl7+4HNz89reXlZ7733nu7du6cLFy7o/v37Mk1TFy5c8KZZAAAwlJyabXMpLL3zmb0N89lfanA5cUiB0wcnAACAo41cELazs3Ps1yYnJ5XNZvXw4UNlMhktLy8fCs0AAAD6pb6/VLtldZIz+0vBHYbR+xLDbg5OIAgDAKBzI7dZ/ksvvaT333+/bc2dO3eUTCbZKB8AAHiq3V5Pkr39pTDcvDg4we7G+wAAjJKRmxGWTqf113/91wqFQvq7v/u7lrV37tzR2bNntbGxIb/f36cO4aRyuayZmZmWNYuLi1pcXOxTRwAAOK/d/lIYfk4fnODkxvsAAHRiZWVFKysrLWvK5XKfujls5IKwUCikX/7yl4rH40qlUvrggw+OrQ0EApqbm9M777zTsg6Dq1araXt7u2XN7u5un7oBAOB7tx5IlyNed4Fh4eTBCWy8DwDw0u7ubtvX6V4auaWR0t6ssJ/85Ce6fv26/vIv/1Lvv//+sWHIqVOndPv27T53CKf4fD5NT0+3vDHbDwDgNLuzbVh6BrsuhaXnn7FX2+7ghG423gcAwCl+v7/t63Sfz7s4yrAsq83h38MrlUrpxo0bMv797PJ4PK5YLKYzZ85Ikm7fvq1sNivDMPT06VMvW0WHZmZmtL29renpaW1tbXndDgBgjOw8lqbfs3/S4/bV1rNtLGvvFMpWfMbehuwYbTc37B2c8E/nWy9n/PF/72x22Y9flj77z/brAQDolZev6UduaeR+q6urisViWlhY0M7OjgqFggqFw/+7CIc5ixwAANjTzWybVqf7OXHiIEbDxbn2QZidgxO82HgfAIBhMZJLI/eLx+OqVCr65S9/qcnJSVmW1XQLBAK6ceOG120CAIAh8ckXndV/2mE90IqdgxOc3ngfAIBRMtIzwvZLp9NKp9N68OCBTNOUaZoKhUKKRqOanJz0uj0AADAkmG2DQefkxvsAAIyaoQ3C3nrrLf3DP/xDx/ebm5vT3BxnRAMAgO4w2wZu8RnSk2vta9q5FJbe+cz+PnatNt4HAGDUDO3SyDt37ujPf/6z120AAIAxc67D2TPMtoFdhiFN+Frf7ByaMHlS+uBVe9e8/lrrwxwAABg1QxuEVSoV/dVf/ZXeeustff755163AwAAxsSlsPT8M/ZqmW0Dr7TbUF+yt/E+AACjZmiDMEmqVqvK5XKKxWKamJjQj3/8Y/3617/Wl19+6XVrAABgRDHbBqPCzsb7AACMmqEOwiQ1nQBZLBaVyWQ0OzurF198UW+99ZZ+97vftR3jN7/5TR86BQAAo4LZNgAAAMNpaIOwX/7yl7IsS4ZhaHZ2VlJzKFapVJTL5ZRIJDQxMaGzZ8/q17/+tX7/+98fGmttba3P3QMAgH6zLOlprfXNspy7HrNtAAAABs/QnhqZTqcVjUaVSCT06NEjFQoFWZalf/7nf9a9e/dUrVZl7fvfbKlUUqlUkiQFAgFFo1HFYjFJUqFQ8OR7AAAA/VOzpBPvtq55ck2asLEZOTDonDqBEgCAUTO0QZgkhcNhbW5uKpPJKJFIKJVKKZ/PS5IePnyoQqGgtbU1FYvFplCsUqmoUCgQgAEAAGAkGQahLgAARzEsy8lFAN4plUo6f/68fD6f8vm8/vZv/7bp6/fu3VM+n1exWJRpmk1fMwxDT58+7We76NHMzIy2t7c1PT2tra0tr9sBAAyBpzWbM8JsbBxhWXszzFrxGXthBDDseL4DAJzm5Wv6oZ4Rtl84HNa//du/KZVKKRwOK5PJ6L333mt8fX5+XvPz85KknZ0d3blzpxGMAQAAdILZNhgnLCsGAIySod0s/zirq6v6n//zf+r69ev6m7/5G/3rv/7roZrJyUktLCzo7t27unv3rgddAgAAAAAAoN9GLgiTpGg0KtM09bd/+7cKh8N6//33W9bWZ4oBAIDxduuB1x0AAADATSMZhEl7J0Pm83ndvn1bP//5z/Wf/tN/0h//+McjaxOJRJ+7AwAA/WYn5LpSIAwDAAAYZSMbhNXF43E9evRIk5OTCoVCR84OW1hY8KAzAADQLzuPpbc/tlf75kfS7mNX2wEAAIBHRj4Ik/Zmh62trWlpaant7DAAADB6PixJX39nr/arb6WbJXf7AUYNMykBAMNiLIIwSfryyy915swZpdNpra+vKxQK6R//8R+9bgsAAPTBJ190Vv9ph/XAKGNZMQBglJzwugEnfPnllzJNU9VqVaZpanNzU6ZpyjRNPXr0SNVqtaneMAxZlqVkMql8Pq98Pq+/+Iu/8KZ5AADguso37tYDo6rTZcXnfiD5T7raEgAAPRnaIOzs2bON8KsVy7Jafu3u3bv60Y9+pPv37zvcIQAAGBTB59ytB0ZVN8uKf/ZDd3sCAKAXQxuEbWxsNGZ2tRIIBBQKhRq32dlZnTp1qvH55ORknzoGAABeOXdauvsH+/WvnHavF2CYdLOsmCAMADDIhjYI2y8YDOr8+fNNgRchFwAAqLsUlt75zN7MlheelS6H3e8JGAYsKwYAjJqh3iz/9ddfVzgcVqVSUS6X0/r6uiqVioLBICEYAABomDwpffCqvdrrr7HHEVDHsmIAwKgZ2iAsGo3qzp07jfDr9u3bsixL6XRas7Ozevnll/XWW2/pX/7lX9qO9fnnn/ehYwAA4KWLc+1rbsbt1QHj4lyHy4RZVgwAGHRDG4TFYrHGx5OTk4rH47pz544ePXqk+/fv6yc/+Ynu37+v+fl5TUxM6OzZs3r//ff1+9///tBYq6urfewcAAAMqjcIwYAml8LS88/Yq2VZMQBgGBhWu93mh9zOzo7W1tZ0584dFYtF7ezsKBAIKBqN6uzZs5KkTCajp0+fetwpOjEzM6Pt7W1NT09ra2vL63YAAEPgaU068W7rmifXpImhfZsQcMfNDelKoX3dP51nRiUAwB4vX9OPxGb5rdRni8XjcUlSqVTS7du39dvf/lb5fF6GYXjcIQAAADC4Ls61D8JYVgwAGBYjH4QdFA6HFQ6Hlc1mVSqVlMlk2CMMAIABZllSrc38dZ8htXtvy2fszfhqVwOgcywrBgAMi7ELwvYLh8NaW1vTmTNnvG4FXSqXy5qZmWlZs7i4qMXFxT51BABwWs2yuaSxTYhlGO1rALjLqWAbADC4VlZWtLKy0rKmXC73qZvDxjoIq8tms163gC7VajVtb2+3rNnd3e1TNwAAAGjFqWAbADC4dnd3275O9xJBmKT5+XmvW0CXfD6fpqamWtb4/f4+dQMAAAAAwHjz+/2anp5uWVMul1Wr1frUUbOhCMJ+/etfKxwO60c/+pHXrWDATE1NcWokAACAi9hfDwDQCTvbE9VPjfTCUBwQ/r/+1/9SLBbTP/7jP/Y0zo0bNzQxMaG/+Zu/0b/+67861B0AAAAwugxDmvC1vrGnFwBgWAxFECZJlmUpmUzqF7/4RddjZDIZWZalf/u3f1M4HNaXX37pXIMAAAAAAAAYaEMThNXdvXtXFy5c6Oq+L730kkKhkJLJpBYWFpTJZBzuDgAAeOHWA687AOAUfp8BAG4aij3C9ltfX1cikdDZs2f1+eef6y/+4i9s33djY6Pp85dfftnp9gAAgMPsvCi+UthbnnVxzv1+AHSP32cAgNeGbkaYJOXzeSUSCYXDYf3xj3/saoyHDx/q0aNHDncGAACctPNYevtje7VvfiTtPna1HQA94PcZADAIhjIIk6R0Oq1/+Id/UDgc1r/8y790dN+dnR3FYjGdOXPGpe4AABhvliU9rbW+WVb7cT4sSV9/Z++aX30r3Sz11jcA9/D7DAAYBEMbhElSNBrV/fv3tbCwYPtEyc8//1yhUEgPHz5UIpFwuUMAAMZTzZJOvNv6VrMRhH3yRWfX/bTDegD9w+8zAGAQDHUQJkmhUEjr6+u6fft22xMlf/WrXykWi6lSqSgQCOinP/1pn7oEAADdqHzjbj2A/uH3GQAwCIY+CJOkQCCgu3fv6tGjR8eeKHn16lW98847sixLhmEom832uUsAANCp4HPu1gPoH36fAQCDYCSCsLrr169rfn5eZ8+e1Z///OfGn9+7d68RfBmGoXA4zGwwAACGwLnTndW/0mE9gP7h9xkAMAiGLghrtzF+MpnU6uqqfvSjHzVOlKyHYNa/78rLbDAAAIbDpbD0/DP2al94VrocdrcfAN3j9xkAMAiGIgh76aWXJO0FWclkshFwHSccDuv27dt6/fXX9bvf/U7FYlGGYTS+9qMf/cj1ngEAQO8mT0ofvGqv9vprkv+kq+0A6AG/zwCAQTAUQVg2m1WlUlE+n9f8/Lyi0ah+85vftLxPfRP969evN/7MMIxj9xADAAD9deuBvbqLc+1rbsbt1QHwFr/PAACvnfC6AbsmJyf1+uuv6/XXX+/ofnfv3lUmk9GvfvWrxv5gAADAXXZCrisFacLnzAveN3jRDIwMfp8BAG4aihlhvcpms7pz544sy9LDhw+9bgcAgJG281h6+2N7tW9+JO0+drUdAAAAoGEsgjBJisfjWl9f1+3bt71uRaZpKhaL2a5NpVKanZ2VYRgKBoOKRCJKpVIyTXNg+pSk5eVlxWIxBYNBGYah2dlZJRIJFYtFF7sEAAyaD0vS19/Zq/3qW+lmyd1+AAAAgLqxCcKkvY3y796969r41WpVhmG0vc3OzioUCrUdb3l5WbOzs8rlco3Qq1qtqlQqKZfLaXZ2VsvLy573WSwWFQwGlclkJEn5fF6bm5vKZrMqlUqKxWKKxWKqVqsd9woAGD6ffNFZ/acd1gMAAADdGpo9woZBLpezXVsPjY4Ti8VULBYVCAQUjUYVCoVkmqZKpVLTTLBMJqNQKKR4PO5Jn8VisTFrLJlManV1tfG1el+RSETFYlGRSEQbGxsKBAK2rw8AGD6Vb9ytBwBJsiypZrWu8RnSvx8eDwCAJMmwLKvNPx+wKxgM2pr1FI1Gtba2duzXM5mMlpeXlc1mlU6nD319eXn5UEDVycPoVJ/ValUvvfSSqtWqQqGQNjc3j6wzTVOzs7O2xrRrZmZG29vbmp6e1tbWVs/jAQCc8+P/Lt39Qwf1L0uf/efjv86LXWB0OPn7/LQmnXi3dc2Ta3uHcgAABouXr+mZEeaQXC6narWqdDrddl+tM2fOHPs10zS1vLystbU1RaPRI2vS6bQ2NzebZnaVSiVbJ2I61ackJRKJRqDWauZYfWZYoVBQsVhULpdTMpls2ysAYDidO91ZEPbK6dZfNwxpgpALGAn8PgMAvMaMMIfUZzwdNyvKrkQiobNnzx45E2y/arWqYDDY+Py42WNu9bl/lpckVSqVlkseC4WCEomEJCkQCKhSqfR0fWaEAcDg2nksTb9nb8P8F56Vtq9K/pPu9wVgtDAjDACGl5ev6flnwQGFQkGmabbdT8uO+mytdgKBQNNG9nb23XKyz2w22/g4Go22vf7+Pcyq1aoKhULPPQAABtPkSemDV+3VXn+NEAwAAAD9QxDmgKWlJQUCAZ0/f77nsTrZP+vRo0eNj9stY5Sc7XP/skw7SzIlNQV3t2/f7rkHAMDgujjXvuZm3F4dAAAA4BSCsB6VSiWVSqXGUsXZ2VmlUinXZzxVq9XG/lzRaLRtGOVkn6VSqenzs2fP2rrf/h6ZEQYAeIMQDAAAAH1GENajg8sMTdNULpdTIpGQYRhKJBKHgiMn3LlzR9LeLKt8Pt/XPovFYtPn+2d6tXKwzo2fCwAAAFB364HXHQAABg1BWA9M0zwUCh1UKBQUiUSUSqUcu261WlUqlVI4HNba2lrb/bmc7vP+/ftNn9vZn0ySXnzxxabP19fXbd0PAAAAOMhOyHWlQBgGAGh2wusGhlkoFNLq6qqq1ao2NzdVLBZlmuaRtblcTuvr69rY2OjpmqZpKhaLKRAI6N69e7ZCKKf7PHjfbmeE9XpyJQAAAMbTzmPp7Y/t1b75kXTuBxzMAQDYQxDWo2Qy2fR5tVpVLpfT0tJSYw+vulKppFgs1tGG+PsVCgUlEonG58FgUNls1tYpk072eVyI1qmD1wUAeMuypJrVusZnSIbRn34A4DgflqSvv7NX+9W30s2S9LMfutsTAGA4GJZltfkvL7pVKBS0sLBwKPCxG15J3wdWq6urxwZQ8Xjc1j5hTvVpHHgFZPcpVCwWFYvFGp/30vfMzIy2t7c1PT2tra2trsYAADR7WpNOvNu65sk1acLGxgqEagDc9OP/Lt39Qwf1L0uf/Wf3+gEAdMbL1/QEYS6rVquan59v2hg+EAioUqnYun+hUGjMzGq111cn4VqvfToVhEWj0a5nx9V/aXw+n6amproaY7/FxUUtLi72PA4ADDMngzAAcNN/+n+k+x28bvpPM9L////nXj8AMC5WVla0srLS8zjlclm1Ws2TIIylkS4LBALa2NhQJBJphEzValXFYlHRaLTt/ePxuOLxeNOf5XI5ZTKZphlcmUxGyWTS9sb1vfQZCAQcWdbYba/71Wo1bW9v9zzO7u5uz2MAAACgP4LPuVsPADja7u6uI6/BvUQQ1ic3btxQJBJpfL62tmYrCDtKMplUNBpVJBJpCqRyuVxPs8Ls9nnq1ClHgrBTp071PIZTM8L8fn/PYwAAAKA/zp3ubGnkK6fd6wUAxonf79f09HTP49RnhHmBIKxPwuGwotFoY2ljrxvOh0Ih3bt3rym0un//fk9jSvb67HYm18HwzIkZYVNTU+wRBgAAMGYuhaV3PrO3Yf4Lz0qXw+73BADjwKltherbHXmBXT76aP/+WE4Ih8NNyyadOs2xXZ9nzpxp+tzu7LBHjx41fT47O9tRXwAAAIAkTZ6UPnjVXu311yT/SVfbAQAMEYKwPgqFQo2PnVgWKEkXLlxofOzEckWpfZ/7Z6FJ9gO4zc3Nps+7XRoKAAAAXJxrX3Mzbq8OADA+CML6aH/A5MSyQGlvVpjTY7br8+CMMLtB2P6gLhAINF0HAAAAcNobhGAAgAMIwvpofX298bHTyySlwwFVt9r1GQ6HmwIyu3uT7R/XqV4BAP1164HXHQAAAADdIwjro/1LA51aFrh/NpZT4ZqdPs+fP9/4uFQq2Rp3f10mk+myOwCAW+yEXFcKhGEARotlSU9rrW+W5XWXAACncGpkHxUKBUlSOp12bMx6uBQIBJo2zu+FnT5TqZRyuZwkNU6YbGV/TSgUYn8wABgwO4+ltz+2V/vmR9K5H7D5NIDRULOkE++2rnlyTZow+tMPAMBdzAjrk0KhINM0FQgEdPXqVcfGXVpakiTduHHDkfHs9hkOh5vCrHp4dpx8Pt/4mNlgADB4PixJX39nr/arb6Wb9iYDAwAAAAOFIKxLxWJRwWBQhmEoFou1XB5omqYWFhYkSffu3Wu5qf3y8rIikYgymUzbUyDrNel0+tjZYG71KUmrq6uNj+uB3FGq1Wpj9lg0GlUymWw5LgCg/z75orP6TzusBwAAAAYBQViX8vl8I6gqFouKRCJKpVKH6upfO3XqlDY3N5tOeTyoWq0qk8moVCppeXlZwWDw2NlTiURCy8vLymazymazfe2zLhQKNWZ61Xs+yvz8vKS95Zv7Z4YBAAZH5Rt36wHAaT5jb8liq5uP5YwAgAMIwrqUSCQO/Vkul1MwGFQikVAqlVIkElEsFlMymdTGxoZCoVDLMQOBwKGaeiCWSCSUyWQUi8UUDAYl7W1q326/MTf63C8ej2ttbU2BQECZTEaJREKlUknVarURrpVKJYXDYT18+LDtLDMAgDeCz7lbDwBOMwxpwtf6ZhCEAQAOIAjrUjQa1ebmppLJpEKhUFPAUyqV9OjRI129elWVSkXZbNZ2ALSxsaF0Oq1wOHxoTNM0lUgk9PDhQ+XzeVuBlVt9HrxG/f6maWp+fr4RtJ06dUr5fF4bGxuEYAAwwM6d7qz+lQ7rAQAAgEFgWBaHAWP4zMzMaHt7W9PT09ra2vK6HQAYejuPpen37G2Y/8Kz0vZVTo0EMBqe1myeGskUAgBwjJev6fnrHAAAaPKk9MGr9mqvv0YIBgAAgOFEEAYAACRJF+fa19yM26sDAAAABhFBGAAAsO0NQjAAY+jWA687AAA4hSAMAAAAwNiyE3JdKRCGAcCoIAgDAAAAMJZ2Hktvf2yv9s2PpN3HrrYDAOgDgjAAAAAAY+nDkr3TciXpq2+lmyV3+wEAuI8gDAAAAMBY+uSLzuo/7bAeADB4CMIAAAAAjKXKN+7WAwAGD0EYAAAAgLEUfM7degDA4DnhdQMAAKB7liXVrNY1PkMyjPZj+QzpybX2NQAwKs6dlu7+wX79K6fd6wUA0B8EYQAADLGaJZ14t3XNk2vShI0AyzDs1QHAqLgUlt75zN6G+S88K10Ou98TAMBdLI0EAAAAMJYmT0ofvGqv9vprkv9k6xrLkp7WWt+sNrN4AQDuYkYYAAAAgLF1cU66UmhdczO+V9eOk7N0AQDuYEYYAAAAALTwho0QDAAwHAjCAAAAAAAAMBYIwgAAAAAAADAWCMIAAAAAAAAwFtgsH0OtXC5rZmamZc3i4qIWFxf71BEAAAAAAONrZWVFKysrLWvK5XKfujmMIAxDrVaraXt7u2XN7u5un7oBgMF064F0OeJ1FwAAABgHu7u7bV+ne4kgDEPN5/NpamqqZY3f7+9TNwDQf7cetK+5UpAmfNJFTj0DgEN8hvTkWvsap/DmBIBR5/f7NT093bKmXC6rVqv1qaNmhmVZlidXBnowMzOj7e1tTU9Pa2try+t2AMATO4+l6fekr79rX/vCs9L2Vcl/0v2+AGBc3dzYe/OhnX86z5sTAMabl6/p2SwfAIAh9WHJXggmSV99K90sudsPAIyzncfS2x/bq33zI2n3savtAACOQRAGAMCQ+uSLzuo/7bAeAGAfb04AwHAgCAMAYEhVvnG3HgBgH29OAMBwIAgDAGBIBZ9ztx4AYB9vTgDAcCAIAwCgzyxLelprfbNzlM25051d95UO6wEA9vHmBAAMhxNeNwAAwLipWdKJd1vXPLkmTRitay6FpXc+s39q5OWw/R4BAJ05d1q6+wf79bw5AQDeYEYYAABDavKk9MGr9mqvvyb5T7raDgCMtUth6fln7NXy5gQAeIcgDACAIXZxrn3Nzbi9OgBA93hzAgCGA0EYAAAj7g1CMADoC96cAIDBRxAGAAAAAH3CmxMA4C2CMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAAAAjAWCMAAABtCtB153AAAAAIwegjAAAPrMTsh1pUAYBgAAADjthNcNAAAwTnYeS29/bK/2zY+kcz+Q/CePr/EZ0pNrrcfxGbbbAwAAAEYaM8IAAOijD0vS19/Zq/3qW+lmqXWNYUgTvtY3gyAMAAAAkMSMMAAA+uqTLzqr//QL6Wc/dKcXAICzmKULAIOPIAwAgD6qfONuPQDAO4YhTRB0AcBAIwgDAKCPgs+5Ww8AGA2WJdWs1jU+g+XvANApgjAAAPro3Gnp7h/s179y2r1eAACDq2ZJJ95tXfPkGjPQAKBTbJYPAEAfXQpLzz9jr/aFZ6XLYXf7AQAAAMYJQRgAAH00eVL64FV7tddfk/wnXW0HAAAAGCsEYQAA9NnFufY1N+P26gAAAADYRxAGAMAAeoMQDAAAAHAcQRgAAAAAAADGAkEYAAAAAAAAxgJBGAAAAAAAAMbCCa8bAHpRLpc1MzPTsmZxcVGLi4t96ggAAAAAgPG1srKilZWVljXlcrlP3RxGEIahVqvVtL293bJmd3e3T90AAAAA/XPrgXQ54nUXANBsd3e37et0LxGEYaj5fD5NTU21rPH7/X3qBgAAAHDGrQfta64UpAmfdJGThgEMEL/fr+np6ZY15XJZtVqtTx01MyzLsjy5MtCDmZkZbW9va3p6WltbW163AwAdeVqTTrzbuubJtb0XNwCA8bPzWJp+T/r6u/a1LzwrbV+V/Cfd7wsAnOLla3pmhAEA0Gc+Yy/oalcDABhPH5bshWCS9NW30s2S9LMfutsTAIwK3msGAKDPDGNvtlerm0EQBgBj65MvOqv/tMN6ABhnBGEAAAAAMEAq37hbDwDjjCAMAAAAAAZI8Dl36wFgnBGEAQBgk2XtbXTf6sYRNACAXp073Vn9Kx3WA8A4Y7N8AABsqlk2T3tkfy8AQA8uhaV3PrN/auTlsPs9AcCoYEYYAAAAAAyQyZPSB6/aq73+muQ/2bqGGc0A8D1mhAEAAADAgLk4J10ptK65Gd+ra4cZzQDwPWaEAQAAAMAQesNGCAYAaEYQBgAAAAAAgLFAEAYAAAAAAICxQBAGAAAAAACAsUAQBgAAAAAAgLFAEAYAAAAAAICxQBAGAAAAAACAsUAQBgCAg2498LoDAAAAAMc54XUDAAAMCzsh15WCNOGTLs653w8AYHT5DOnJtfY1Trn1QLoccW48ABhUzAgDAMCGncfS2x/bq33zI2n3savtAABGnGHsvbHS6mbYDMLsvpHDrGYA44AgDAAAGz4sSV9/Z6/2q2+lmyV3+wEAwA7eyAGAZgRhAADY8MkXndV/2mE9AABu4I0cAGhGEAYAgA2Vb9ytBwDADbyRAwDNCMIAALAh+Jy79QAAuIE3cgCgGUEYAAA2nDvdWf0rHdYDAOAG3sgBgGYEYQAA2HApLD3/jL3aF56VLofd7QcAADt4IwcAmhGEAQBgw+RJ6YNX7dVef03yn3S1HQAAbOGNHABoRhAGAIBNF+fa19yM26sDAKAfeCMHAJoRhAEA4KA3CMEAAAOGN3IA4HsEYQAAAAAw5ngjB8C4IAgDAAAAAADAWDjhdQNAL8rlsmZmZlrWLC4uanFxsU8dAQAAAAAwvlZWVrSystKyplwu96mbwwjCMNRqtZq2t7db1uzu7vapGwAAAAAAxtvu7m7b1+leIgjDUPP5fJqammpZ4/f7+9QNAAAAAADjze/3a3p6umVNuVxWrVbrU0fNCMIw1KamprS1teV1GwAAAAAAQPa2J5qZmfFs1hib5QMAAAAAAGAsMCMMAACbfIb05Fr7GgAABgn/fgHA9wjCAAAjzbKkmtW6xmdIho0XAIYhTfBCAQAwZPj3CwC+RxAGABhpNUs68W7rmifXeIEAAAAAjAP2CAMAAAAAAMBYIAgDAAAAAADAWGBpJAAAAADAFif33gQALxCEAQAAAABsYe9NAMOOpZEAAAAAAAAYCwRhAAAAAAAAGAsEYQAAAAAAABgLBGEAAAAAAAAYCwRhAAAAAAAAGAsEYQCAsXfrgdcdAAAAAOgHgjAAwEizE3JdKRCGAQAAAOOAIAwAMLJ2Hktvf2yv9s2PpN3HrrYDAAAAwGMEYQCAkfVhSfr6O3u1X30r3Sy52w8AAAAAbxGEAQBG1idfdFb/aYf1AAAAAIYLQRgAYGRVvnG3HgAAHMa+mwAGGUEYAGBkBZ9ztx4AgHHDITQAhh1BGABgZJ073Vn9Kx3WAwAwTjiEBsAoIAgDAIysS2Hp+Wfs1b7wrHQ57G4/AAAMMw6hATAKCMIAACNr8qT0wav2aq+/JvlPutoOAABDjUNoAIwCgjAAwMCxLOlprfXNsuyNdXGufc3NuL06AADGGYfQABgFJ7xuAACAg2qWdOLd1jVPrkkThjPXe4MQDACAtjiEBsAoYEYYAAAAAKAtDqEBMAoIwgAAAAAAbXEIDYBRQBAGAAAAAGiLQ2gAjAKCMAAAAACALRxCA2DYsVk+hlq5XNbMzEzLmsXFRS0uLvapIwAAAGC8cQgNMN5WVla0srLSsqZcLvepm8MIwjDUarWatre3W9bs7u72qRsAAAAAAMbb7u5u29fpXiIIw1Dz+XyamppqWeP3+/vUDQAAAAAA483v92t6erplTblcVq1W61NHzQjCMNSmpqa0tbXldRsAAAAAOmBZUs1qXeMzJMPoTz8AnGNne6KZmRnPZo0RhAEARprPkJ5ca18DAAD6p2ZJJ95tXfPkmjTBv9EAHMapkQCAoXTrgb06w5AmfK1vvNsMAAAAjAeCMADAwLETcl0p2A/DAAAAAEAiCAMADJidx9LbH9urffMjafexq+0AAAAAGCHsEQYAGCgflqSvv7NX+9W30s2S9LMfutsTAADYw96bAIYdM8IAAAPlky86q/+0w3oAANA99t4EMOwIwgAAA6Xyjbv1AAAAAMYXQRgAYKAEn3O3HgAAAMD4IggDAAyUc6c7q3+lw3oAAAAA44sgDAAwUC6FpeefsVf7wrPS5bC7/QAAAAAYHQRhAICBMnlS+uBVe7XXX5P8J11tBwAAeOTWA687ADCKCMIAAAPn4lz7mptxe3UAAGDw2Am5rhQIwwA4jyAMADCU3iAEAwBgKO08lt7+2F7tmx9Ju49dbQfAmCEIAwAAAAD0zYcl6evv7NV+9a10s+RuPwDGC0EYAAAAAKBvPvmis/pPO6wHgFYIwjxgmqZisZjt2lQqpdnZWRmGoWAwqEgkolQqJdM0u+5heXlZsVhMwWBQhmFodnZWiURCxWJxoMYEAAAAMFoq37hbDwCtEIQ5qFqtyjCMtrfZ2VmFQqG24y0vL2t2dla5XK4RelWrVZVKJeVyOc3Ozmp5ebmjHovFooLBoDKZjCQpn89rc3NT2WxWpVJJsVhMsVhM1WrV0zEBAAAAjKbgc+7WA0ArJ7xuYJTkcjnbtfXQ6DixWEzFYlGBQEDRaFShUEimaapUKjXNBMtkMgqFQorH422vWSwWGzPRksmkVldXG1+rjxGJRFQsFhWJRLSxsaFAIND3MQEAAACMrnOnpbt/sF//ymn3egEwfgzLsiyvmxgVwWDQ1qynaDSqtbW1Y7+eyWS0vLysbDardDp96OvLy8uHgrR2D2O1WtVLL72karWqUCikzc3NI+tM09Ts7KytPt0Y066ZmRltb29renpaW1tbPY8HoHeWJdXa/IviMyTDaD/W05p04t3WNU+uSRPMawYAYOjsPJam37O3Yf4Lz0rbVyX/Sff7AtA/Xr6mZ0aYQ3K5nKrVqtLpdNv9v86cOXPs10zT1PLystbW1hSNRo+sSafT2tzcbJqBViqVFA6Hjx03kUg0QrpWs9Hqs7gKhYKKxaJyuZySyWTfxgQwvGqWzfDKRhAGAABG1+RJ6YNXpSuF9rXXXyMEA+AsZoQ5pD7j6bhZUXYlEgmdPXv2yJlg+1WrVQWDwcbnx80ek5pnZElSpVJpuTyxUCgokUhIkgKBgCqVSl/G7AQzwoDB4+QsLmaEAQAw2uz8W38zLl2K9KcfAP3FjLAhVygUZJpm0/5Y3arPKmsnEAg09g2rf36cbDbb+Dgajbbdo2v/fmPValWFQuHQHmRujAkAdT5jL+hqVwMAAEbXG3P26pzcngHA6CMIc8DS0pICgYDOnz/f81id7J/16NGjxsetllvuX0LZavnkfvtDttu3bx8KrdwYEwDqDIMllAAAwB62ZwDQCRaV9KhUKqlUKjWWKs7OziqVSqlQsLHgvQfVarWxP1c0Gj02jCqVSk2fnz171tb4+8c7+L24MSYAAAAAAIDbCMJ6dHCTeNM0lcvllEgkZBiGEonEoeDICXfu3JG0N8sqn88fW1csFps+D4VCtsY/WLf/e3BjTAAAAAAAALcRhPXANM1DodBBhUJBkUhEqVTKsetWq1WlUimFw2Gtra213J/r/v37TZ+328ur7sUXX2z6fH193dUxAQAAAAAA3MYeYT0IhUJaXV1VtVrV5uamisViYw+sg3K5nNbX17WxsdHTNU3TVCwWUyAQ0L1799qGUAf76Xb21v7TMN0YEwAAAAAAwG3MCOtRMplUOp3W6uqqNjc3ValUlM1mjwyoSqWSYrFY19cqFAqanZ2VaZqNPcmWl5db3ue4YK5T9f3I3BoTAAAAAADAbQRhDgsEAkqn06pUKsrn84cCsWKx2Da82q9arWp5eVmzs7NKJBKHvp7JZI788/3378bBvvefUOnGmAAAAAAAAG5jaaSL4vG4otGo5ufnmzaGX1paUjqdtjVGsVjU5uamotHosXuSFQoFLS8v2x6zG27M3nJizHK5rJmZmZ7HWVxc1OLiYs/jAAAAAAAwqlZWVrSystLzOOVy2YFuukMQ5rJAIKCNjQ1FIpFGGFatVlUsFhWNRtvePx6PKx6PN/1ZLpdTJpNpCpIymYySyeShWVeBQMCRwGn/uG6M2a1arabt7e2ex9nd3e15DAAAAAD2+AzpybX2NQAGy+7uriOvwb1EENYnN27cUCQSaXy+trZmKwg7SjKZVDQaVSQSaQqkcrncoVlhp06dciS0OnXqlKtjdsvn82lqaqrncfx+f89jAGjv1gPpcqR9HQAAGG2GIU0QdAFDx+/3a3p6uudxyuWyarWaAx11jiCsT8LhsKLRaGNpY68bzodCId27d68pXLt///6hum5nXR0Mug7OCHN6zG5NTU1pa2ur53EA9O7Wg/Y1VwrShE+6OOd+PwAAAACc5dS2QjMzM57NLGOz/D7q5cTIo4TD4aZlk0eFa2fOnGn63O5MroMb2c/Ozro6JoDhtvNYevtje7VvfiTtPna1HQAAgCZ23rADMB4IwvooFAo1PnZiWaAkXbhwofHxUYHU/hljkv2ZaJubm02f71/G6caYAIbbhyXp6+/s1X71rXSz1L4OAADADruz0gnDAEgEYX21PwhzYlmgtDcrrNWYB2dv2Q2t9odqgUCgqXc3xgQw3D75orP6TzusBwAAOAqz0gF0iiCsj9bX1xsfO71MUjocUEl7Qdn+gOyofcSOsr/Xg+O6MSaA4Vb5xt16AACAozArHUCnCML6aP/SQKeWBe6fjXVcuHb+/PnGx6WSvb/599dlMpm+jAlgeAWfc7ceAADgKMxKB9ApgrA+KhQKkqR0Ou3YmPVwKRAING2cv18qlWp8XD+1spX9NaFQ6MjQzo0xAQyvc6c7q3+lw3oAAICjMCsdQKcIwvqkUCjINE0FAgFdvXrVsXGXlpYkSTdu3Di2JhwONwVP9UDuOPl8vvHxcTO33BgTwPC6FJaef8Ze7QvPSpfD7esAAADaYVY6gE4RhHWpWCwqGAzKMAzFYrGWywNN09TCwoIk6d69ey03yl9eXlYkElEmkznyFMj96jXpdPrY2WB1q6urjY/r4dlRqtWqcrmcpL3lm8lksq9jAhhOkyelD161V3v9Ncl/0tV2AADAmGBWOoBOEYR1KZ/PN4KqYrGoSCTStFywrv61U6dOaXNzs+mUx4Oq1aoymYxKpZKWl5cVDAaPnT2VSCS0vLysbDarbDbbtt9QKNSYlVUf/yjz8/OS9pZa7p/F1a8xAQyvi3Pta27G7dUBAADYwax0AJ0iCOtSIpE49Ge5XE7BYFCJREKpVEqRSESxWEzJZFIbGxsKhUItxwwEAodq6oFYIpFQJpNRLBZTMBiUtLf5fif7jcXjca2trSkQCCiTySiRSKhUKqlarTYCu1KppHA4rIcPH7acuebmmAD6y7Kkp7XWN8ty5lpvEIIBAAAHMSsdQKcMy3Lq5c34MU1T2WxWxWJRjx49UrVaVSAQ0KlTpxQOh3XhwgVFo9GOwp9qtaqlpSUVi0WZpnlozFgspvPnz/ccKC0vL+v27dtN1zhz5oxSqVTbZZb9HPM4MzMz2t7e1vT0tLa2thwdGxg3T2vSiXdb1zy5Jk20eevEqXEAAAA6Yef/IDfj0qVIf/oB0J6Xr+kJwjCUCMIA5xCEAQCAYcb/QYDh4+Vrev4qAAAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFg44XUDAIDR4DOkJ9fa1wAAAACAVwjCAACOMAxpgqALAAAAwAAjCAMAAAAADC1mpQPoBHuEAQDauvXA6w4AAACOZhjShK/1zSAIA/DvCMIAYMzZCbmuFAjDAAAAAAw/gjAAGGM7j6W3P7ZX++ZH0u5jV9sBAAAAAFcRhAHAGPuwJH39nb3ar76Vbpbc7QcAAMBLliU9rbW+WZbXXQLoBZvlA8AY++SLzuo//UL62Q/d6QUAAMBrNUs68W7rmifXOCkbGGbMCAOAMVb5xt16AAAAABgkBGEAMMaCz7lbDwAAAACDhKWRGGrlclkzMzMtaxYXF7W4uNinjoDhcu60dPcP9utfOe1eLwAAAACG38rKilZWVlrWlMvlPnVzGEEYhlqtVtP29nbLmt3d3T51AwyfS2Hpnc/sbZj/wrPS5bD7PQEAAAAYXru7u21fp3uJIAxDzefzaWpqqmWN3+/vUzfA8Jk8KX3wqnSl0L72+muS/6TrLQEAAAAYYn6/X9PT0y1ryuWyarVanzpqZlgWh79i+MzMzGh7e1vT09Pa2tryuh1gqD2ttT8d6WZcuhTpTz8AAABesfP/oifXpAl22wZ64uVren59AQBtvTHndQcAAAAA0DuCMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAAAAjAWCMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAABsuvXA6w4A9IIgDAAAAAAA2Qu5rhQIw4BhRhAGAAAAABh7O4+ltz+2V/vmR9LuY1fbAeASgjAAAAAAwNj7sCR9/Z292q++lW6W3O0HgDsIwgBgCFmW9LTW+mZZXncJAAAwPD75orP6TzusBzAYTnjdAACgczVLOvFu65on16QJo/1YPmOvtl0NAADAKKt84249gMFAEAYAY84w7AVmAAAAoyz4nLv1AAYDSyMBAAAAAGPv3OnO6l/psB7AYCAIAwAAAACMvUth6fln7NW+8Kx0OexuPwDcQRAGAAAAABh7kyelD161V3v9Ncl/0tV2ALiEIAwAAAAAAEkX59rX3IzbqwMwmAjCAAAAAACw6Q1CMGCoEYQBAAAAAABgLBCEAQAAAAAAYCwQhAEAAAAAAGAsEIQBAAAAAABgLBCEAQAAAAAAYCwQhAHAiLr1wOsOAAAAAGCwEIQBwBCyE3JdKRCGAQAAAMB+BGEAMGR2Hktvf2yv9s2PpN3HrrYDAAAAAEODIAwAhsyHJenr7+zVfvWtdLPkbj8AAAAAMCwIwgBgyHzyRWf1n3ZYDwAAAACj6oTXDQAAOlP5xt16AACAceUzpCfX2tcAGF4EYRhq5XJZMzMzLWsWFxe1uLjYp44A9wWfc7ceAABgXBmGNEHQBfRkZWVFKysrLWvK5XKfujmMIAxDrVaraXt7u2XN7u5un7oB+uPcaenuH+zXv3LavV4AAAAAYL/d3d22r9O9RBCGoebz+TQ1NdWyxu/396kboD8uhaV3PrO3Yf4Lz0qXw+73BAAAAADS3mvw6enpljXlclm1Wq1PHTUzLMuyPLky0IOZmRltb29renpaW1tbXrcD9N3NDelKoX3dP52XLs653w8AAAAA2OXla3pOjQSAIWQn3LoZJwQDAAAAgP0IwgBgRL1BCAYAAAAATdgjDAAAAAAAh1mWVGuzEZHP2DupEkD/EIQBAAAAAOCwmiWdeLd1zZNr0gRBGNBXLI0EAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFg44XUDAIDO+QzpybX2NQAAAACA7xGEAcAQMgxpgqALAAAAADrC0kgAAAAAADxw64HXHQDjhyAMAAAAAACH2Qm5rhQIw4B+IwgDAAAAAMBBO4+ltz+2V/vmR9LuY1fbAbAPQRgAAAAAAA76sCR9/Z292q++lW6W3O0HwPcIwgAAAAAAcNAnX3RW/2mH9QC6RxAGAAAAAICDKt+4Ww+gewRhAAAAAAA4KPicu/UAukcQBgAAAACAg86d7qz+lQ7rAXSPIAwA+sSypKe11jfL8rpLAAAA9OpSWHr+GXu1LzwrXQ672w+A753wugEAGBc1SzrxbuuaJ9ekCaM//QAAAMAdkyelD16VrhTa115/TfKfdL0lAP+OGWEAAAAAADjs4lz7mptxe3UAnEMQBgAAAACAB94gBAP6jiAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgVMjMdTK5bJmZmZa1iwuLmpxcbFPHQEAAAAAML5WVla0srLSsqZcLvepm8MIwjDUarWatre3W9bs7u72qRsAAAAAAMbb7u5u29fpXiIIw1Dz+XyamppqWeP3+/vUDQAAAAAA483v92t6erplTblcVq1W61NHzQjCMNSmpqa0tbXldRsAAAAAAED2tieamZnxbNYYm+UDAAAAAABgLBCEAQAAAAAAYCwQhAHAALn1wOsOAAAAAGB0sUcYAPSJnZDrSkGa8EkX59zvBwAAAO7xGdKTa+1rAPQXM8IAoA92Hktvf2yv9s2PpN3HrrYDAAAAlxnG3hucrW4GQRjQdwRhANAHH5akr7+zV/vVt9LNkrv9AAAAAMA4IggDgD745IvO6j/tsB4AAAAA0B57hAFAH1S+cbceAAAAo8mypJrVusZnsMwSsIsgDAD6IPicu/UAAAAYTTVLOvFu65on16QJgjDAFpZGAkAfnDvdWf0rHdYDAAAAANojCAOAPrgUlp5/xl7tC89Kl8Pu9gMAAAAA44ggDAD6YPKk9MGr9mqvvyb5T7raDgAAAACMJYIwAOiTi3Pta27G7dUBAAAAADpHEAYAA+QNQjAAAAAAcA2nRgJACxxXDQAAAACjgyAMAFrguGoAAAAAGB0sjQQAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAGCI3XrgdQfA8CAIAwAAAABgQNkJua4UCMMAuwjCAAAAAAAYQDuPpbc/tlf75kfS7mNX2wFGAkEYAAAAAAAD6MOS9PV39mq/+la6WXK3H2AUnPC6AQAYFz5DenKtfQ0AAAAgSZ980Vn9p19IP/uhO70Ao4IgDAD6xDCkCYIuAAAA2FT5xt16YByxNBIAAAAAgAEUfM7demAcEYQBAAAAADCAzp3urP6VDuuBccTSSAy1crmsmZmZljWLi4taXFzsU0cYR7ceSJcjXncBAACAUXMpLL3zmb0N8194Vrocdr8noJ2VlRWtrKy0rCmXy33q5jCCMAy1Wq2m7e3tljW7u7t96gaj6NaD9jVXCtKET7o4534/AAAAGB+TJ6UPXt37/2Y711+T/Cddbwloa3d3t+3rdC8RhGGo+Xw+TU1Ntazx+/196gajZuex9PbH9mrf/Eg69wP+8wEAAABnXZxrH4TdjPOmLAaH3+/X9PR0y5pyuaxardanjpoZlmVZnlwZ6MHMzIy2t7c1PT2tra0tr9vBiPq//1/p//rEfv1/O8dx1QAAAHDW05p04t3WNU+u7a1QAIaFl6/p+VUBgGN88kVn9Z92WA8AAAAA6C+CMAA4RuUbd+sBAAAAAP1FEAYAxwg+5249AAAAAKC/CMIA4BjnTndW/0qH9QAAAACA/iIIA4BjXApLzz9jr/aFZ6XLYXf7AQAAAAD0hiAMAI4xeVL64FV7tddfk/wnXW0HAAAAANAjgjAAaOHiXPuam3F7dQAAAAAAbxGEAUCP3iAEAwAAAIChcMLrBgAAAAAAANCeZUk1q3WNz5AMoz/9DCOCMAAAAAAAgCFQs6QT77aueXJNmiAIOxZLIwEAAAAAADAWmBEGAAAAAMCA8hl7M3za1QCwhyAMAAAAAIABZRgscwOcRBAGAAAAAMAYYKN1gCAMAAAAAICxwEbrAJvlAwAAAAAAYEwQhHnANE3FYjFbtaVSSalUSrOzszIMQ4ZhaHZ2VplMRtVqdWD6lKTl5WXFYjEFg8FGn4lEQsVi0cUuAQAAAAAA7CEIc1C1Wm2EVa1us7OzCoVCbcdKJBKKRCLK5XIyTbPxNdM0tby8rGAwqFwu52mfklQsFhUMBpXJZCRJ+Xxem5ubymazKpVKisViisVirgd3AAAAAAAArbBHmIM6CaXqodFRqtWqIpFIU/h1nFQqpY2NDa2urtq+tlN9SnshWH3WWDKZbOojFAopHo8rEomoWCwqEoloY2NDgUDA9vUBAAAAAACcYliW1ebMCNgVDAZtzXqKRqNaW1s79uuxWEzFYlHhcFhXr15VOByWtLdM8v79+1peXj50n3w+r3g83tc+q9WqXnrpJVWrVYVCIW1ubh5ZZ5qmZmdnbY1p18zMjLa3tzU9Pa2tra2exwOOw8k6AAAAGBVPazY3y2ft2MAalcfQy9f0zAhzSC6XU7VaVTqdbruv1pkzZ1qOUywWlU6nlc1mm75Wn2GVSqWUSCRUKpUaX1tYWLAVhDnVpyQlEolGoNZq5li970KhoGKxqFwup2Qy2bZXYBAYBqfmAAAAAMCoYEaYQ+ozno6bFdXJOKFQqO2sqf2zrOrW1tYUjUb70ufB61cqlZZLHguFghKJhCQpEAioUqn0dH1mhAEAAABAZ0ZlNtE4G5XH0MvX9AP+oxkOhUJBpmm23U+rnVKpJNM0lc/n29aGQqFDM8b2zxBzs09JTdeORqNt9/3aP1utWq2qUCj03AMAAAAAAEAnCMIcsLS0pEAgoPPnz/c0zu3bt5VMJm1vJn9w9tef/vSnlvVO9Sk1b7hf38Osnf0nUN6+fbvnHgAAAAAAADrBHmE9KpVKjZlYwWBQoVBI0WhUsVjM9ub1dRcuXGgKi9o5GEAdXCrpVp8HZ56dPXvWdr/1kzCZEQYAAAAAAPqNGWE9OrjM0DRN5XI5JRIJGYZxaFP7VsLhsO3ZYJIOnfzYKkRzss9isWj7uq3q7F4PAAAAAADACQRhPTBN81AodFChUFAkElEqlXLl+vsdt1G+033ev3+/6XO74d2LL77Y9Pn6+rqt+wEAAAAAADiBpZE9CIVCWl1dVbVa1ebmporF4qFwqi6Xy2l9fV0bGxuOXX9/kJRMJvvW58H7djsjrNeTK4eBZUm1Nuey+gzJMPrTDwAAAAAA44wgrEcHA6hqtapcLqelpaVDSxdLpZJisZjW1tYcufbq6mrj43YnQTrZ53EhWqcOXncU1SybR9sShAEAAAAYALceSJcjXncBuIcgzGGBQEDpdFrpdFqFQkELCwtNgU+xWNTy8rLS6XRP1zFNs7HHVjab7WiT/V777DbAOriE8tGjR12Ns1+5XNbMzEzP4ywuLmpxcbHncQAAAABgUN160L7mSkGa8EkX59zvB8NnZWVFKysrPY9TLpcd6KY7BGEuisfjikajmp+fb9oYfmlpqecgLJvNStpbbtjrWG722YoTM8JqtZq2t7d7Hmd3d7fnMQAAAABgUO08lt7+2F7tmx9J534g+U+62hKG0O7uriOvwb1EEOayQCCgjY0NRSKRRshUrVZVLBaP3dy+nVKppFwup0Ag4Ngyy076DAQCjoRYnZyQeRyfz6epqamex/H7/T2PAQAAAACD6sOS9PV39mq/+la6WZJ+9kN3e8Lw8fv9mp6e7nmccrmsWq3mQEedIwjrkxs3bigS+X6h9draWtdB2MLCgiTp3r17HS+JbMdOn6dOnXIkCDt16lTPY0xNTWlra6vncTBaOKQAAAAAaPbJF53Vf/oFQRgOc2pboZmZGc9mlhGE9Uk4HFY0GlWxWJTU/YbzqVRKpVJJ+Xxe4XDYyRYl2euz25lcB8MzJ2aEAUfhkAIAAACgWeUbd+uBYeHzuoFxEovFerp/LpdTLpfT6uqq4vG4Q10d1q7PM2fONH1ud3bYwc3xZ2dnO+oLAAAAANCd4HPu1gPDgiCsj/YvY+x0WWCxWFQqldLq6qqSyaTTrTVp1+f+pZOS/dltm5ubTZ93uzQUAAAAANCZc6c7q3+lw3pgWBCE9dH+gKmTZYGlUkmxWEzZbNb1EExq3+fBGWF2g7D9M8cCgYDj+5sBAAAAAI52KSw9/4y92heelS47vxMPMBAIwvpofX298bHdZZKmaWp+fl7pdFrpdNqt1pq06zMcDjcFZPfv3+943INhGgAAAADAPZMnpQ9etVd7/TXJf9LVdgDPEIT10f6lgXaWBZqmqUgkomQyqWw2a+sapmlqeXm56x4le32eP3++8XGpVLI17v66TCbTZXcAAAAAgG5cnGtfczNurw4YVgRhfVQoFCTJ1syuarWqWCym8+fP2w7BJCmRSPS895adPlOpVOPj+gmTreyvCYVC7A8GAAAAAAPoDUIwjLgTXjcwLgqFgkzTVCAQ0NWrV1vWVqtVRSIRhUIhZTIZW3twmabZmGUVDne/mNtun+FwWNFotBFwFQqFlidZ5vP5xsfMBgMAAAAAAF5gRliXisWigsGgDMNQLBZruTzQNE0tLCxIku7du9d2o/z5+XmZpqlisajZ2Vlbt3oP+2dqud3n6upq4+OlpaVj66rVqnK5nKS9pZb92PAfAAAAAADgIIKwLuXz+cYpiMViUZFI5FAItf9rp06d0ubmZtvZWpFIxPaeW0c5GDK51ae0t8SxPtOrVCoduzfZ/Py8pL2TIvfPDAMAAAAAAOgngrAuJRKJQ3+Wy+UUDAaVSCSUSqUUiUQUi8WUTCa1sbGhUCjUdkwnQzC3+twvHo9rbW1NgUBAmUym8T1Uq9VGuFYqlRQOh/Xw4cO2s8wAAAAAAADcwh5hXYpGo9rc3FQ2m1WxWNSjR48aM6/qwc/Vq1cVjUZthz9uzJZyo8+jrlGpVLS8vKzbt29rfn5e1WpVgUBAZ86cUT6fb7l/GAAAAAAAQD8QhPUgFAo17ZM1qPrVZzqdtnUiJgAAAAAAgBdYGglgLN164HUHAAAAAIB+IwgDMHLshFxXCoRhAAAAADBuCMIAjJSdx9LbH9urffMjafexq+0AAAAAAAYIQRiAkfJhSfr6O3u1X30r3ez+oFYAAAAAwJBhs3wAI+WTLzqr//QL6Wc/dKcXAAAAYJD4DOnJtfY1dliWVLPaj2XYHA/oF4IwACOl8o279QAAAMCwMgxpwqFgqmZJJ95tXfPkmnPXA5zC0kgAIyX4nLv1AAAAAIDhRRAGYKScO91Z/Ssd1gMAAAAAhhdBGICRciksPf+MvdoXnpUuh93tBwAAAAAwOAjCAIyUyZPSB6/aq73+muQ/6Wo7AAAAAIABQhAGYORcnGtfczNurw4AAAAAMDoIwgCMpTcIwQAAAABg7BCEAQAAAAAAYCwQhAEAAAAAAGAsEIQBAAAAAABgLBCEAQAAAAAAYCyc8LoBoBflclkzMzMtaxYXF7W4uNinjgAAAAAAGF8rKytaWVlpWVMul/vUzWEEYRhqtVpN29vbLWt2d3f71A0AAAAAAONtd3e37et0LxGEYaj5fD5NTU21rPH7/X3qBgAAAABQd+uBdDnidRfoN7/fr+np6ZY15XJZtVqtTx01IwjDUJuamtLW1pbXbQAAAADAWLn1oH3NlYI04ZMuzrnfDwaHne2JZmZmPJs1xmb5AAAAAADAtp3H0tsf26t98yNp97Gr7QAdIQgDAAAAAAC2fViSvv7OXu1X30o3S+72A3SCpZEARo7PkJ5ca18DAAAAoHOffNFZ/adfSD/7oTu9AJ0iCAMwcgxDmiDoAgAAAFxR+cbdesBNLI0EAAAAAAC2BZ9ztx5wE0EYgIFhWdLTWuubZXndJQAAADDezp3urP6VDusBN7E0EsDAqFnSiXdb1zy5xrJHAAAAwEuXwtI7n9nbMP+FZ6XLYfd7AuxiRhgAAAAAALBt8qT0wav2aq+/JvlPutoO0BGCMAAAAAAA0JGLc+1rbsbt1QH9RBAGAAAAAAAc9wYhGAYQQRgAAAAAAADGAkEYAAAAAAAAxgJBGAAAAAAAAMYCQRgAAAAAAADGAkEYAAAAAAAAxgJBGAAAAAAAAMYCQRgAAAAAAADGAkEYAAAAAAAAxgJBGAAAAAAAAMYCQRgAAAAAAADGAkEYgKFy64HXHQAAAAAAhtUJrxsAgDo7IdeVgjThky7Oud8PAAAAgKP5DOnJtfY1wKBhRhiAgbDzWHr7Y3u1b34k7T52tR0AAAAALRjG3hvUrW4GQRgGEEEYgIHwYUn6+jt7tV99K90sudsPAAAAAGD0EIQBGAiffNFZ/acd1gMAAAAAQBAGYCBUvnG3HgAAAAAAgjAAAyH4nLv1AAAAAAAQhAEYCOdOd1b/Sof1AAAAAAAQhAEYCJfC0vPP2Kt94VnpctjdfgAAAADACZYlPa21vlmW112OjxNeNwD0olwua2ZmpmXN4uKiFhcX+9QRujV5UvrgVelKoX3t9dck/0nXWwIAAACAntUs6cS7rWueXJMmjP7047aVlRWtrKy0rCmXy33q5jCCMAy1Wq2m7e3tljW7u7t96ga9ujjXPgi7Gd+rAwAAAAAMnt3d3bav071EEIah5vP5NDU11bLG7/f3qRv0wxuEYAAAAAAwsPx+v6anp1vWlMtl1Wq1PnXUjCAMQ21qakpbW1tetwEAAAAAAGRve6KZmRnPZo2xWT4AAAAAAADGAjPCAAAAAACAZyxrb0P5VnyGZIzIZvLwFkEYAAAAAADwzLidqghvsTQSAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY+GE1w0AGG6WJdWs1jU+QzKM/vQDAAAAAMBxCMIA9KRmSSfebV3z5Jo0YSMI8xl7te1qAAAAAADoBkEYgIFhGPYCMwAAAAAAusEeYQAAAAAAABgLBGEAAAAAAAAj4tYDrzsYbARhAAAAAAAAQ8BOyHWlQBjWCkEYAAAAAAAYaAQ70s5j6e2P7dW++ZG0+9jVdoYWQRgAAAAAAPAMs5zs+bAkff2dvdqvvpVultztZ1gRhAEAAAAAAE8wy8m+T77orP7TDuvHBUEYAAAAAADwBLOc7Kt84279uCAIAwAAAAAAnmCWk33B59ytHxcEYQAAAAAAwBPMcrLv3OnO6l/psH5cEIQBHhv3DR8BAAAAjC9mOdl3KSw9/4y92heelS6H3e1nWBGEAS7i9BMAAAAAOB6znOybPCl98Kq92uuvSf6TrrYztAjCAJdw+gkAAAAAtMYsp85cnGtfczNur25cEYQBLuH0EwAAAABojVlOznuDEKwlgjDAJZx+8j2WfgIAAAA4DrOc0E8EYYBLxuX0E/ZBAwAAAOA2ZjnBKQRhgEvG4fQT9kEDAAAAAAyTE143APSiXC5rZmamZc3i4qIWFxf71NH3zp2W7v7Bfv0wnn7SzT5oP/uhuz0BAAAAALyzsrKilZWVljXlcrlP3RxGEIahVqvVtL293bJmd3e3T900uxSW3vnMXlA0rKefdLMPGkEYAAAAAIyu3d3dtq/TvUQQhqHm8/k0NTXVssbv9/epm2b100+uFNrXDuvpJ+OyDxoAAAAAwB6/36/p6emWNeVyWbVarU8dNSMIw1CbmprS1taW120c6+Jc+yBsmE8/GYd90AAAAAAA9tnZnmhmZsazWWNslg94bJhPPznX4b5mw7gPGgAAAABgdBCEAejapbD0/DP2aod1HzQAAAAAwOggCAPQtfo+aHYM6z5oAAAAAIDRQRAGoCd29jcb5n3QAAAAAACjgyAMgOuGeR80AAAAAMDoIAgDAAAAAADAWDjhdQMAAAAAAGB8+QzpybX2NYATCMKAMWRZUs1qXeMzJIN/bAAAAAC4zDCkCV57oE8IwoAxVLOkE++2rnlyjX+MAAAAAACjhSAMAAAAAACMBFa/oB2CMAAAAAAAMBJY/YJ2ODUSAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABj4YTXDQCwx7L2jgJuxWdIBscAAwAAAABwJIIwYEjULOnEu61rnlyTJvochPmMveu2qwEAAAAAwGsEYQB6Yhj9D98AAAAAAOgGe4QBAAAAAABgLBCEAQAAAAAAYCwQhAEAAAAAAHjo1gOvOxgfBGEAAAAAAAAusRNyXSkQhvULQRgAAAAAAIALdh5Lb39sr/bNj6Tdx662AxGEAQAAAAAAuOLDkvT1d/Zqv/pWullytx8QhAEAAAAAADSxLOlprfXNstqP88kXnV330w7r0bkTXjcAAAAAAAAwSGqWdOLd1jVPrkkTRuuayjedXbfTenSOGWEAAAAAAAAuCD7nbj06x4wwDLVyuayZmZmWNYuLi1pcXOxTRwAAAACAQXbrgXQ50p9rnTst3f2D/fpXTrvXS7+srKxoZWWlZU25XO5TN4cRhGGo1Wo1bW9vt6zZ3d3tUzcAAAAAAC/detC+5kpBmvBJF+fc7+dSWHrnM3sb5r/wrHQ57H5Pbtvd3W37Ot1LBGEYaj6fT1NTUy1r/H5/n7oZLf18lwQAAAAAerXzWHr7Y3u1b34knfuB5D/pakuaPCl98Ope+NbO9dfc76cf/H6/pqenW9aUy2XVarU+ddSMIAxDbWpqSltbW163MXQG7V0SAAAAAOjVhyV7M68k6atvpZsl6Wc/dLcnae81Vbsg7GZ8dF572dmeaGZmxrNZY2yWD4yZTt8l2X3sajsAAAAA4IhPvuis/tMO6930xoiEYMOAIAwYM928SwIAAAAAg67yjbv1GA0EYcCYGeZ3SQAAAADgOMHn3K3HaCAIA8YM75IAAAAAGEXnTndW/0qH9RgNBGHAmOFdEgAAAACj6FJYev4Ze7UvPCtdDrvbDwYTQRgwZniXBAAAAMAomjwpffCqvdrrr0n+k662gwFFEAaMGd4lAQAAADCqLto4ffFm3F4dRhNBGDBmeJcEAAAAwDh7gxBsrBGEAWOId0kAAAAAAOOIIAzAkXiXBAAAAAAwagjCAAAAAAAAMBYIwgAAAAAAADAWCMIAAAAAAAAwFgjCAAAAAAAAMBYIwgAAAAAAADAWCMI8YJqmYrGYrdpSqaRUKqXZ2VkZhiHDMDQ7O6tMJqNqtdp1D8vLy4rFYgoGg40xE4mEisXiQI0JAAAAAADgFIIwB1Wr1UZY1eo2OzurUCjUdqxEIqFIJKJcLifTNBtfM01Ty8vLCgaDyuVyHfVYLBYVDAaVyWQkSfl8Xpubm8pmsyqVSorFYorFYh2FbG6MCQAAAAAA4LQTXjcwSjoJpeqh0VGq1aoikUhT+HWcVCqljY0Nra6utq0tFouNmWjJZLLpPqFQSPF4XJFIRMViUZFIRBsbGwoEAn0fEwAAAACAQXfrgXQ54nUX6BQzwhy0tLRkqy4ajbacEZZIJGSapsLhcGN21ebmpvL5vNLp9KH6XC6nQqHQ8pr1GWbSXkB1XHCWz+cl7c06q9f3c0wAAAAAALx260H7misFe3UYLMwIc0gul1O1WlU6nW67/9eZM2dajlMsFpVOp5XNZpu+Vp9hlUqllEgkVCqVGl9bWFhQPB4/dtxEItFYmthqNlr9GoVCQcViUblcTslksm9jAgAAAADgpZ3H0tsf26t98yPp3A8k/0lXW4KDDMuyLK+bGAWzs7OSpM3NzZ7HCYVCWltba1lnmmbjmnVra2uKRqNtayuVSsvliYVCoTFzKxAIqFKp9GXMTszMzGh7e1vT09Pa2trqaSw3Pa1JJ95tXfPkmjRhY27moI4FAAAAAIPCidc6//f/K/1fn9i/5n87J/3sh+725MZYXvLyNf2A/2iGQ6FQkGmaLWdF2VEqlWSaZmMp4f/X3v37tpWudwJ/5Jl7MUECh/YAAQy7CdWkXcrTbCuqS5AUpAwkSLYyuVhs5YLCYOtgQBUug5DTZSsNVewiqZacv8AW6wALndvMwECAEbnGLnJxb665xYAMRUnUkcTDX+fzAQSI1sv3PEd+KR599b7vmadYLF6ZMTY9Q2zadLtyuXzrHl3TM8uGw+G1yy6z6BMAAAAe4tHOz0HQvI9HO/P7+Md/vtsx/+mO7VktQdgCfPPNN1EoFOLw8PBB/ZycnEStVku9mfzs7K+ffvrp2nbTm/iXSqVUfU/vYXZycrKUPgEAAOAhdnZ+ng0172PnliBs8K93O+Zd27NagrAH6vf70e/3YzgcxpMnT2J3dzfq9fq9Zjy9evXqyiyveWYDqNmlkuP6pn311Vd37nv2XLLoEwAAANbBk9/Ltj2rJQh7oNnlkEmSRLvdjmq1Gjs7O1c2tZ+nVCqlng0WEZON6seuuxNlr9e7tc11ZttNn0MWfQIAAMA6+LM/uVv7P71je1ZLEPYASZJcCYVmnZ6ext7eXtTr9UyOP+26jfLfvXt36XHaoO3LL7+89Pj9+/eZ9sliuHUvAADAw/x1KeL3f5Gu7R/8MuJv0u0WxJoQhD1AsViMVqsVzWYzarXa3JlR7XY79vb2Fnr86SCpVqtd22Y2LLvv7K3pu2Fm0Se3SxNy/adTYRgAAMBD/OEXEX/35+na/v1fRDz+ItNyWDBB2APVarVoNBrRarXi/Pw8BoNBNJvNa2dJ9fv9ODg4WNixW63W5POb7lg5G1rd1/QyzCz6ZL7/8+uI//I/07X9z/8j4uOvMy0HAABgq/3Vf7i9zT9U0rVjvQjCFqxQKESj0YjBYBCdTudKINbr9eL4+PjBx0mSZLLHVrPZvHFW1n3Dptm6Ly4uMu2T+f57P+L//TZd2//7m4h/sP0aAABApv5SCLaRPl91AdusUqlEuVyO/f39SxvDf/PNN9FoNB7U9/juksVi8cF9pZHF7K1F9Pnhw4d48eLFg/t58+ZNvHnz5sH9ZOUf//lu7f/pnyP+63+8+euPdiL+7W/n9/HollsKAwAAkC9v376Nt2/fPrifDx8+LKCa+xGEZaxQKMTZ2Vns7e1NwrDhcBi9Xu/aze3T6Pf70W63o1AoRLfbvfX4iwicpmdzZdHnfX369Cl+/PHHB/fz8ePHB/eRpcG/Lrb9zk7EZ4IuAAAA7uDjx48L+R18lQRhS/Ltt99e2iy/2+3eOwh7/fp1RER8//33t25U//Tp04WEVk+fPs20z/t69OhRPHv27MH9PH78+MF9ZOnJ72XbHgAAAG7z+PHjeP78+YP7+fDhQ3z69GkBFd2dIGxJSqVSlMvl6PV6EXH/Defr9Xr0+/3odDpRKt1+j9b7zrqaDbpmZ4Qtus/7evbsWfzwww8P7mfd/dmfRPyv/52+/Z/+SXa1AAAAkE+L2lboxYsXK5tZZrP8JXroHSPb7Xa02+1otVpRqVRSPefly5eXHqedyTW7kf3u7m6mfTLfX5cifv8X6dr+wS8j/ub2jBQAAAByRxC2RNPLGO+6LLDX60W9Xo9WqxW1Wi3186aXY0akn4l2fn5+6fH0Ms4s+mS+P/wi4u/+PF3bv/+LiMdfZFoOAAAAbCRB2BJNB2F3WRbY7/fj4OAgms3mnUKwiKuzt9KGVtOzvAqFwqXas+iT2/1Vilvz/kMlXTsAAADII0HYEr1//37yedplkkmSxP7+fjQajWg0Gnc+ZqlUuhS6vXv3LtXzpmudDb6y6JPF+EshGAAAANxIELZE00sD0ywLTJIk9vb2olarRbPZTHWMJEni+Pj40r8dHh5OPu/3+6n6mW53dHR05etZ9AkAAACQJUHYEp2enkZEpJrZNRwO4+DgIA4PD1OHYBER1Wr1SshWr9cnn4/vWjnPdJtisXhtaJdFnwAAAABZEoQtyenpaSRJEoVCIb7++uu5bYfDYezt7UWxWIyjo6NIkuTWj16vN9nEvlS6fMvAUql0KXgaB3I36XQ6k89vmrmVRZ8AAAAAWfp81QVsql6vF9VqNYbDYZTL5Wg2m1cCqLEkSeL169cREfH999/fulH+/v7+JODa3d29U12tVuvGfx/39c0330SlUrm23XA4jHa7HRE/L9+ctzl/Fn0CAAAAZMWMsHvqdDqTuyCOZ2NNLxccG3/t6dOncX5+fmNYNra3t5d6z63r3BQyFYvFyaysfr9/ZR+xsf39/Yj4+a6O07O4ltUnAAAAQFYEYfdUrVav/Fu73Y4nT55EtVqNer0ee3t7cXBwELVaLc7OzqJYLN7aZxYh2FilUolutxuFQiGOjo4mxxsOh5PArt/vR6lUil/96le3zlzLqk8AAACALFgaeU/lcjnOz8+j2WxGr9eLi4uLyQyxcfDz9ddfR7lcTh3+LGO2VLlcjsFgEMfHx3FychL7+/sxHA6jUCjEy5cvo9Pp3LjEcZl9AgAAACyaIOwBisXijXtyrbtGo5Hq7pWr7hMAAABgUSyNBAAAACAXBGEAAAAA5IIgDAAAAIBcsEcYZOjRTsS//e3tbQAAAFgffpfbXoIwyNDOTsRnfjgCAABsFL/LbS9BGAAAAEBGFjm7zEy1hxOEAQAAAGRkkbPLzFR7OJvlAwAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC5+vugB4iA8fPsSLFy/mtnnz5k28efNmSRUBAABAfr19+zbevn07t82HDx+WVM1VgjA22qdPn+LHH3+c2+bjx49LqgYAAADy7ePHj7f+nr5KgjA22qNHj+LZs2dz2zx+/HhJ1QAAAEC+PX78OJ4/fz63zYcPH+LTp09LquiyndFoNFrJkeEBXrx4ET/++GM8f/48fvjhh1WXsxS/+xTx+X+b3+bf/jbiMzv/AQAAsMZW+Tu9X5kBAAAAyAVBGAAAAAC5IAgDAAAAIBdslg8b4tHOz3uA3dYGAAAAuJ4gDDbEzk7EZ4IuAAAAuDdLIwEAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC58PmqCwDIytu3b+Pjx4/x+PHjePPmzarLgYUzxtlmxjfbzPhmmxnfrLud0Wg0WnURcFcvXryIH3/8MZ4/fx4//PDDqsthTRknbDtjnG1mfLPNjG+2mfFNGqscJ5ZGAgAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkwuerLgA2wdu3b+Pjx4/x+PHjePPmzarLiQg1bap1/B6pKZ11rGndrOP3SE3prGNN62jdvk/rVk+EmjbZun2f1q2eCDVtsnX8Pq1bTetWT6ZGsIGeP38+iojR8+fPt/J4aajpdutWz2ikprTUlM661bRu9YxGakpLTemsW03rVs9opKa01HS7datnNFJTWmpKZ91qytPv2JZGAgAAAJALgjAAAAAAckEQBgAAAEAu2Cyfjfbhw4d48eLF3DZv3rzZ/s3+AAAAYA28ffs23r59O7fNhw8fllTNVYIwNtqnT5/ixx9/nNvm48ePS6oGAAAA8u3jx4+3/p6+SoIwNtqjR4/i2bNnc9s8fvx4SdUAAABAvj1+/DieP38+t82HDx/i06dPS6roMkEYG+3Zs2fxww8/rLoMAAAAINJtT/TixYuVzRrbGY1Go5UcGR7gl7/8Zfz2t79NNSNsEcZp9bKOl4aaNq+eCDWlpaZ01q2mdasnQk1pqSmddatp3eqJUFNaatq8eiLUlJaa0lm3mpZdz/h4v/jFL+I3v/lN5sebJghjI3322Wcrm0YJAAAAPNyjR4/id7/73VKPaWkkG+mLL76IX//61/HZZ5/FH/3RH626HAAAACClf/mXf4nf/e538cUXXyz92GaEAQAAAJALj1ZdAAAAAAAsgyAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBG+34+DgODg7iyZMnsbOzE7u7u1GtVqPX62V63H6/H/V6PXZ3d2NnZ2dy7KOjoxgOh5kem/xY1fielSRJHBwcxOnp6VKPy2Za5bhdl9cM22tdxpify2TBdTW5MQLYQN1ud1QoFEYRMSqXy6Nutzs6Pz8fdTqdUbFYnPz7YDBY6HEHg8GoUqmMImLuR6vVWuhxyZdVje9Zs+PduGaeVY7bdXnNsL3WZYz5uUwWXFeTN4IwYON0u93JG2OtVru2TalUGkXEqFgsLuxNezAYTC4G0nzcVBvMs6rxPW0wGIwajYYLUVJb5bhdh9cM220dxpify2TFdTV5JAgDNspgMJj8xapYLN7Y7vz8fPLGWS6XF3Lscrk8iohRqVQadTqd0fn5+eSvZdddnEbEqNPpLOTY5MMqx/dYs9kcFYvFyXj3Cxe3WeW4XYfXDNttHcaYn8tkxXU1eSUIAzbK9EXgbRd/i1w60Gq1RhExajQaN7Y5Pz+f/MVs/FEoFB50XPJlVeN77OzsbHR2djZ5PB73fuFinlWO21W/Zth+qx5jfi6TJdfV5NXOaDQaBcAGSJIkdnd3J48Hg0EUCoUb25+enka1Wo2IiEKhEIPB4N7H3t3djWKxGN1u9041RkR0u90ol8v3Pjb5sMrxfZN+vx97e3uTx61WK2q12sKPw+Za5bhdx9cM22Udx5ifyyyK62ryzF0jgY3RbDYnn5fL5blv1hERlUpl8vlwOLz3nZX6/X4kSRKdTufWtsVi8VKd4+fDbVY1vue5rQZY5bhdx9cM22Udx5ifyyyK62ryTBAGbIx2uz35vFQqpXpOsVicfH5ycnKv456cnEStVkt98Tn7V6qffvrpXsclX1Y1vuEhVjluvWbImjHGNnNdTZ4JwoCNMPvXn6+++irV86bf2O/7l6tXr15d+WtU2mNGxJUp3TBrleMb7muV49ZrhqwZY2wz19XknSAM2Ai9Xu/S4+m/SM0z2+4+06lLpdKdliIMh8O5NcCsVY5vuK9VjluvGbJmjLHNXFeTd4IwYCO8e/fu0uO0b6Bffvnlpcfv379fVEk3SpLk0mMbenKbTRrfMLbKces1Q9aMMbbZJo1v19VkQRAGbITZN8H7/uXq/Px8YTXdZPqiwJ2cSGOTxjeMrXLces2QNWOMbbZJ49t1NVkQhAEbYfYN+75mp1dnodVqTT4/OjrK/Hhsvk0a3zC2ynHrNUPWjDG22SaNb9fVZEEQBmyE+77Rzk71vri4eHgxcyRJMtkvodls2seAVDZlfMO0VY5brxmyZoyxzTZlfLuuJiuCMCBXsv7L1fguOMViMRqNRqbHgllmHrCJVjluvWbImjHGNnNdzaYShAEb4S53l1lGP9fp9/vRbrejUChEt9vN7Dhsn00Y3zBrlePWa4asGWNss00Y366ryZIgDHiwdrsdOzs7C/3Y29u7dIynT58upNZF9XOd169fR0TE999/b+r2FjG+4XqrHLdeM2TNGGObbcL4dl1NlgRhwEa471+cZqdsZ/WXq3q9Hv1+PzqdTpRKpUyOwfZa9/EN11nluPWaIWvGGNts3ce362qy9vmqCwA2X7lcjk6ns9A+Z99YX758OdksM+LnN+I0b76zm3ju7u4uorxL2u12tNvtaLVaUalUFt4/q5X38Q03WeW49Zoha8YY22ydx7frapZBEAY8WLFYzHzK8uxSsiRJUv2F6Pz8/NLjcrm80Lp6vV7U6/VotVpRq9UW2jfrIc/jG+ZZ5bj1miFrxhjbbF3Ht+tqlsXSSGAjvHz58tLjJElSPW96CnehUFhooNHv9+Pg4CCazaY3ax5kHcc33GaV49ZrhqwZY2yzdRzfrqtZJkEYsBFKpdKlKdvv3r1L9bz3799PPp9903+IJElif38/Go2G2znzYOs2viGNVY5brxmyZoyxzdZtfLuuZtkEYcDGODw8nHw+va/BPNPtjo6OFlJHkiSxt7cXtVotms1m6uccHx8v5Phsp3UZ33AXqxy3XjNkzRhjm63L+HZdzSoIwoCNUa/XJ5/3er1b20+3KRaLC9nHYDgcxsHBQRweHqZ+s46IqFar9glhrnUY33BXqxy3XjNkzRhjm63D+HZdzaoIwoCNUSqVLr3pnZ6ezm0/fae/2/5q1W634+joaO4eCcPhMPb29qJYLE7a3vbR6/UmG5K6/TPzrHp8X2f2Nukwa5XjNstjQ4Sfy2y3VY9v19Ws1Ahgg5yfn48iYhQRo1KpdGO7wWAwaVcul+f2WS6XJ20jYjQYDK5tVyqVLrW7y0er1XrIaZMTqxzf1+l0Opee22w2Uz+X/FjluM3i2DDNz2W2metq8koQBmyc6YvAmy4Ax2+uhULh1gvMNG+uD3mz9jcH7mIV4/s6g8FgVCwWLz133kUy+bbKcbvoY8MsP5fZZq6rySOjCNhI3W53VCgURhExqlQqo7Ozs9FgMBh1u93Jm2upVEr1C8+4n/FHt9u99PVKpfKgN+tarZbRd4FttczxPW0wGIwqlcqVv+bOfpTL5UldMLaqcbvoY8N1/Fxmm7muJm8EYcBGazabo1KpNHnTLRQKo3K5POp0Oqn76Ha7o2KxOCoUCqNGo5FhtXA3xjebaJXjdhHHhnn8XGabGd/kxc5oNBoFAAAAAGw5d40EAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAufr7oAAAAAYPP1+/04OTmJ4XAYrVZr1eUs3LafX16YEQYAAADcS6/Xi3q9Hru7u7G3txfHx8eRJMmqy7rkyZMnsbOzE71e787PXffzGw6HUa1Wo9/vr+T4x8fHcXR0tJJj35cZYQAAAMCdHRwcxMXFxcpCmDR6vV4Mh8OIiCiXy3d67rqfX6/Xi2q1GrVaLUql0uTfd3Z2Mj/2aDSKiIharRbVajV2d3ej2+1GsVjM/NgPZUYYAAAAcGfdbjfOzs6i2+2uupQbdTqdiIioVCp3fu46n9/x8XEcHBxEs9mMZrOZ6jmFQiGKxeLk4zrTXy8UCqn67Ha7US6XY29vb21Dw2mCMAAAAODe7jrTapm+++67iIh49erVvftYt/MbL0dstVpRq9UufW08+22sVqvF2dlZjEajGAwGcX5+PvmYnkUW8fN5Tn99MBjEaDSK8/PzW8O2Vqu1MWGYIAwAAADYOv1+/97LItdVu92Oo6OjaDQaV0KwWZ1OJ1qt1pXA666KxWI0Go1LM+NmA7fx8UqlUuzv71/79XUhCAMAAAC2zvjOjuVyOdUyv3V3enoa9Xo9SqXSjTO0Li4uIuLnc77PctB5yuXyrYFip9OJ4XAY+/v7Cz32IgnCAAAAgK0zXhZZrVZXXMnDDYfDeP36dUREqj3B6vV6JnWM+x0HbrOKxWLUarXo9/trezdJQRgAAACwVaaXRR4eHq62mAWoVqsxHA6jVCrNnZWV9VLQNP2OA7Dj4+Po9XqZ1PEQgjAAAABgq5ycnERERKlU2vhlkaenp5NA6euvv57btlgsRqvVyuycC4VCtFqtePr06dwaxoFZVjPTHkIQBgAAAMx1enoaBwcH8eTJk9jZ2Ym9vb2o1+uRJMmqS7vW6elpRKS/W+Q6n98333wz+fy2fb8KhcKtm+g/VK1WuzVoOzg4iIiIJEmi3W5nWs9dCcIAAACAayVJEru7u1GtVuPi4iKazWZ0u9149epV9Hq92N3djePj47l99Hq9ScB03cfu7u6N+0lNh1PT7W+reRxg3RYcLeL8xo6Ojm48x9s+9vb2ru2z1+tFv9+PiHjw3R+XaXoJZZo9zZbp81UXAAAAAKyffr8/CWiazWY0Go3J18rlcjQajajX67duil4ul2MwGES9Xr8yO6jT6cwNq7rdbkREPHnyJIbDYTQajVuDlfFssGKxGMViMfPzGxvvz1UsFqNer9947Hfv3l0J1246p/GdL8c1bYrp0C5Jkjg9PV34XSzvSxAGAAAAXJIkySQkqlQql0Kiaa1WK96/fz+ZtTRPq9WK7777bhIY3cVwOIxCoZBqdtF4f7B5wUsW5xfx89LE8/PzuW2mlzpG/LzU8KaQaxzqRUR89dVXqWpYF+VyebK3WbfbXZsgzNJIAAAA4JJqtTr5/Lbw6S5L32Y3ex/P+JpnHAal2ftqOBxOQqt5+4Mt6/xmHR8fXwrVxpvPX2c2fJs3u20dTc8K++6771ZYyWWCMAAAAGDi9PT00r5UtwUwL1++TN337Myrdrt96wyxcVCU5g6E48ClUCjcuKdWVud3cXExdx+vJEmuLLPsdDo3th/PphrbtCDsyy+/nHw+HA7X4sYDEYIwAAAAYMr00r004dNtdxCcdV0YdpPhcBi9Xu/W/b7GxsHS4eHhjW2yOr9mszl3H6/pWWgR85dERvy8l9h96lgXs/9faZeXZk0QBgAAAETEz7OWpgOLLGYhzS4fnN0za9p4hlfaDevHs6hmQ6exLM9vXl/tdvvKksjbllzeZy+1dTIb3F1cXKymkBmCMAAAACAilrMcr1AoXNrvazgcXtoUflqaGV5j4z4KhcKNM61WsdwwSZIrM886nc6tM7zWJThalHUJ9gRhAAAAQEREnJ2dXXqcVVA0O8Pruhlf42WRlUol1bLA8d0i5y03XNb5TZsNwSqVytwax6aDo01bFhkR8fTp00uPf/rppxVVcpkgDAAAAIiIWNqG5sVi8VIYlCTJldla473D0uzjFfHvM8Lm3S1y2Ru2t9vtS+dVKBTi22+/vXM/6zKbahsIwgAAAICIuLocL8vgaHaPrNnHJycnc5c5TpsOmyqVyo3tlnl+w+Hwyky3b7/9NvXsrk2cBTZt9ns9fRfJVRKEAQAAANfKciZSqVSKUqk0edzr9SbB1HhT++m9xOYZ7yU2LwS7TpbnV61WL/VfqVTuVN8ylm0u07oEe4IwAAAAICKu7uuU9VLC2TtIjmdQjZc5pl0WOb675LxlkRHLO7/T09MHL4mcrXXTlkfO1rsuwZ4gDAAAAIiIq2FFt9vN9HiVSuXSMU9PT2M4HEar1YpisZgqPOn1epPQ5bZllMs4v+FwGK9fv770b3dZEjl2cHBw6fGm3UVyNmR8+fLliiq5TBAGAAAARMTV8GU80ypLs/toVavVSJLk2jtJXme8LLJcLt8aNi3j/F6/fn3nJZHHx8eTmwOMzYZ6y97o/6Gm7xJZLBYtjQQAAADWy2z4MhwOJ8sU07rrzKVarXZpptZ4SeHh4WGq54/DrGq1emvbrM+v1+td6i/tkshut3tlKWShULj0fcl6dt6iZ5xNB3dpbniwLIIwAAAAICJ+Dl9mZy/NznCa1e/3Lz2+z15Ws3eMrFQqqWYQ9fv9yfHSBGdZn99sGJdmSeRwOIxer3ftMtDpWqf3HFuE2fNY9B5k0/WmCSmXRRAGAAAATMzOYBoOh7G/v39tUJIkyZWQI0mSO4c2s3uFpd0k/+TkJCJ+vgNl2qV3WZ1fvV6/1Ee5XE51l8jxfmLXBWHTNxOYDeQeIkmSK0stkyRZWBg2HA4nfRWLRTPCAAAAgPVUKBQm+26N9fv9ePLkSdTr9Tg9PY12ux31ej12d3evDTkODg5iZ2cndaAV8e+znwqFQurgZLwM8ba7RU7L4vx6vd6VPb6q1Wr0er0rH+P+j46OYnd3d3IO1wV5hUIhGo3G5PEiZoX1+/0bZ2hVq9WFBG7Te6+l3ettWXZGo9Fo1UUAAAAA66XX60W1Wp07S6hWq0Wr1YqdnZ3JvxWLxajX61dmed1mHD41Go0rSyWvkyRJ7O7uRkTE+fn5nY4Vsdjz29vbe1CAVCgUYjAYXPu14XAYT548iYhI/b25zl1rLBaLcX5+/qBjPaSPrAjCAAAAgBsdHx/HycnJZOnceMZWvV6fzJba3d2NSqUSr169ilKpdK/jVKvVOD09jbOzs1R9HB8fx9HR0YPDlmWd30OMQ8J5gdm6mA4o0/5fLpMgDAAAAFi5nZ2dKJVKcXZ2lqr9eNbRQ2ZJbZJxUNhqtaJWq626nBsdHBxEr9db2/8XQRgAAACwUuMZT2lDnunlgus46ygru7u7cXFxEb/61a9S3xxgmXq9XhwcHNwp0Fw2QRgAAACwUuOAJ+2yv01aKrhI42WHlUrlyob/qzYcDuOP//iP4+nTp3F2draWQV2Eu0YCAAAAK3R8fBxJktxpud84BDo8PMyqrLVULBbj7OwsTk9P73RHzqwNh8PY29tb+xAswowwAAAAYAnq9XokSRKlUikODg7i5cuX8d13301mdqVd7je9LLLb7U42tM+Tfr8f+/v7cXh4GK1Wa6W1jEOwYrEYnU5nrUOwCEEYAAAAkLGjo6M4Pj6+8et32QD+9PQ0qtVq7pZFzkqSJKrVajx9+nRlAdQ4kPv666+j0Wgs/fj38fmqCwAAAAC223A4vPFrlUrlTssiy+VyrgOwsfEyyePj47i4uFhJEJYkSXz//fcbdbMCM8IAAACATPX7/djb27vy7+u46TvbTRAGAAAAZC5Jkmi1WpEkSTx9+jSq1Wou9/ditQRhAAAAAOTCo1UXAAAAAADLIAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC/8f0Q09l0LFPYkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdw0lEQVR4nOzdTWxbZ5rm/etQjuEgbopUGg0IEtAVctJwrXpM2rPIbkokahMjmQrpADFiAy/KZGKkZyFMyLiy6JWjUFWlTTcyJl39Aq/TBsYmqzpBsqix6PSuF2PpuHpnTDVpFyCBwAAlUuoEMRKb511oyNIneUjx8PDj/wMI6OPWc25JdGJefp77GJZlWQIAAAAAAABGnMftBgAAAAAAAIB+IAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYOOZ2A0A3XnjhBT158kQTExP6i7/4C7fbAQAAAAAANv2f//N/9OzZM504cULffPNNX69tWJZl9fWKQA9MTEyoXq+73QYAAAAAAOiSx+PRs2fP+npNdoRhKDWCMI/Ho+npacevV6lU+no9O+hp+PqR6MkuerJn0HoatH4kerKLnuwZtJ4GrR+Jnuyip+HrR6Inu+jJnkHrqd/9NK43MTHh+LX2IgjDUPqLv/gLra+va3p6Wmtra45fb3Z2tq/Xs4Oehq8fiZ7soid7Bq2nQetHoie76MmeQetp0PqR6Mkuehq+fiR6soue7Bm0nvrdT+N6bow6Ylg+AAAAAAAAxoKrO8JefvllNy+/i2EY+t//+3+73QYAAAAAAAAc4moQViqVZBiG3JzX37i+YRiu9QAAAAAAAADnjf3RSG6aCQAAAAAAMB5cH5ZvWZZisZgCgYAr16/Vasrlcq5cGwAAAAAAAP3jehCWy+X005/+1NUeYrGYfvzjH7vaAwAAAAAAAJzl+tHISCTidgs6e/ZsX69XLpcVjUaPvE4wGJRhGCoUCh1/7eLioqLRqPx+vwzDUDAYVDweV7FY7LofJ9YEAAAAAADoFdd3hE1NTbndQs/UajX5/X5btYlE4kjXSqfTKpfLHX9dsVhUPB5XrVZTJBJRPp9XIBCQaZpKp9OKRqPNj/t8PtfWHDTz8/Pa2tqS1+t1u5UmehpOg/gzoid7BrGnQTOIPyN6smcQexpEg/ZzGrR+JHoaZoP2cxq0fiR6GmaD+HMatJ4GrR8nGZaL0+InJiZUrVZd/0Fvbm5qampKz549O9I6i4uLSqfTtmpLpVLXc9GKxeKuHWX5fF6xWKyjr0skEspms/tqwuGwTNNUIBDQ6upq2+DKiTXtmJ2d1fr6umZmZrS2tnbk9TCaeJ5g1PEcxyjj+Y1RxvMbo4znN+xw83ni6tHIQbpjYy96WVhYsFUXiUS6DsFqtZri8fiRvi4QCBwYWEnboZq0fXyz3XWcWBMAAAAAAMAprh6NzGQyru8Gk6TJyUllMpkjrZHL5VSr1ZRKpdrO/zpz5kzX17l8+XLzOGmtVrP9dY2ji5Ja7loLBAKKxWIqFAoqFovK5XKHHuN0Yk0AAAAAAACnuHo0st8eP36sH/zgB46sHQwGJW0feXRKLpdTMpnU6uqq5ubmmiFUu6OR5XK52Z8kVavVlscTC4VCc+eWz+dTtVrty5qdYLst7OB5glHHcxyjjOc3RhnPb4wynt+wY2yPRvZbMpl0ZN1CoaByuWx7Plg3yuWyksmkUqmUQqFQR1+7c7dbJBJpO6NrZ6hWq9UOvCulE2sCAAAAAAA4aayCsJWVFUfWXVhYkM/n0/nz5x1ZX9o+hhgKhbo6wpnL5Zpv2w3Rds4wu337dl/WBAAAAAAAcJKrM8K69fjx447mY5XLZWWz2Y6+xi7TNGWapiTJ7/crEAgoEokoGo3aupOjHel0WqZpdnXsstFbw9mzZ219XSgUUrlclqR9u7ecWBMAAAAAAMBpQxGEPX78WJlMRsVisRmkdMqyLBmG0ePO9g+JL5fLyuVyzR1TsVhMV69e7fg4Y4NpmlpcXFQ2m+3qTpPFYnHX+3bX2Ftnmmbze3BiTQAAAAAAAKcNfBB29epVLS4uStoOswZJuVzeFwrtVSgUVCgUlEgklM1mO77G3NycYrFY13dZvH///q73283yanjxxRd3vb+ystIMrZxYE3DC/Py8tra2BuLutIATeI5jlPH8xijj+Y1RxvMbg26gg7Bf//rXzZlYhmHIMIyBCsMCgUDzyGWpVGq5Yy2Xy2llZUWrq6u212/cZfHGjRtd97i3n253b+08lunEmoAT5ufn3W4BcBTPcYwynt8YZTy/Mcp4fmPQDXQQtrCwIEnNACwQCCgUCjUDlb07jA7yxz/+UbVaTXfu3NHm5mbPe9y7U6tWqymXy2lhYWHfTDLTNBWNRrW8vNx23cZOsuXlZds7rg7S7VHSvXZ+L06sCQAAAAAA4LSBDsJM02zO9VpeXtbc3FzXa6VSKb388su9au1QPp9PqVRKqVRKhUJBly9f3hX4FItFLS4uKpVKHbpGrVZTPB5XIpFQJBI5Uj/dhk17w7eNjQ1H1+xWpVLR7OzskdeZn5/nXy4AAAAAAGhhaWlJS0tLR16nUqn0oJvuDHQQ5vP5tLm5qVQqdaQQTNo+lvfSSy/1qDN7YrGYIpGI5ubmdt1pcWFhoWUQNjc31zx2OSic2L3VizXr9brW19ePvM7W1taR1wAAAAAAYJRtbW315DW4mwY6CAsEAnrw4IHOnj3bk/XcCJZ8Pp9WV1cVDoebYVitVlOxWDxwt9fi4qJM0+xolli76/cicNq5m8uJNbvl8Xg0PT195HUY5AgAAAAAQGter1czMzNHXqdSqaher/ego84NdBA2NzenBw8e9OQIXWM9t9y4cUPhcLj5/vLy8r4gzDRNpdNpZTKZnt1NcWpqqieh1dTUlKNrdmt6elpra2tHXgcAAAAAALTWq7FCs7Ozru0s87hyVZt+9rOfybKsXccKj+JXv/pVT9bpRigU2hV8HTRwPh6PKxQKtTw22alud13tDbr27gjr9ZoAAAAAAABOG+gdYZOTk/r444+VyWSUyWT0Z3/2Z0daL5vN6qc//WmPuutcNBpVsVg88HOLi4sql8uKRCKKx+Nt19oZKi0sLOj27dvN9998803FYjFJ0pkzZ3YFibVazVYAtXcXXjAYbL7txJoAAAAAAABOG+ggTNq+2+Py8rLi8bh++9vfdr3Oo0ePerazrFuBQKD59t5jgX/84x8l6dCgrBXTNHd9b4FAoBmE7TyOKW3vRLNz7LJUKu16f+duNifWBAAAAAAAcNrAB2HS9jytM2fO6OWXX1Y6nbY9W2pjY0O1Wk2lUkl37txxuMv2dgZh/ToWeObMmV3v2w2tdu448/l8u3p3Yk0AAAAAAACnDUUQ9tVXX0na3lGUTCa7WsOyLBmG0cu2OraystJ8OxqN7vpc4/inXcFgsDlnLJ/PN3eA7RUKhXbd5fH+/fuH1h7W697gy4k1AQAA2rEsqW61rvEYkst/5QMAAANs4IOwd999V7lcTpJkGIYsq83ffg7gdgDWsPNoYD+PBZ4/f775M7R7PHRnXTqd7suaAAAArdQt6diHrWueXpMmBuOvfgAAYAAN9F0jb9y4oWw22wy/ugnBjvJ1vVYoFCSpp3eFtGPnLjo7M8h21gQCgQNDOyfWBAAAAAAAcNJA7wjLZrOS/rQTLBKJKBqNyufzdTwn7Pr163r8+LGD3bZWKBRULpfl8/l09erVvl47FAopEok0w6hCodDyKGM+n2++fdjOLSfWBAAAo4fjjAAAYJAY1qBslzqAx+ORYRjy+XxaWVnRSy+91PVatVpNL774op49e9aT3orFouLxuGq1miKRiDKZzKED48vlssLhsGq1mlZXV20Nlm/H7oywnT0Eg0FJ2yHW6urqgXW1Wk1+v1/S9vHN5eXlvq5p1+zsrNbX1zUzM6O1tbUjrwcAAJzxrG7zOKONcwp21vr/YtLFcOsaAADgLjdf0w/00cjGnRWvXr16pBCssdbp06d70NW2fD7fHBZfLBYVDocPHOTf+NzU1JRKpVJPQrBuBAKB5q4s0zS1uLh4YN3c3Jyk7Z/Xzl1c/VoTAADgMLcetK+5VLBXBwAAxtNAB2Hh8PY/5wUCgZ6sd+PGjZ6sI0nxeHzfx3K5nPx+v+LxuJLJpMLhsKLRqBKJhFZXV3v2fXQrFotpeXlZPp9P6XRa8XhcpmmqVqs1AzvTNBUKhfTo0aNmENnvNYFB1wjBAQD9s/lEuvK5vdp3PpO2njjaDgAAGFIDHYQlk0lZltU8AnhUvdwRFolEVCqVlEgkFAgEdgU8pmlqY2NDV69eVbVaVSaT6XkAVCqVZFmWLMtqeyxyb9+Nnsrlsubm5prh3dTUlPL5vFZXVzvq14k1gUFjmqbS6bT8fr8uX77sdjsAMFLs7OD61JS++d7eel9/J920d1NrAAAwZgZ6Rpi0vSvM4/Ho/v37R17rN7/5jX7yk5/0oCu4jRlh2Mk0Td2+fVumaapcLjdvkuHz+RQIBDQ1NaVQKKRoNHrgHUvj8bjK5fKuOXeNXY23b99WsVjctQssFotxzBcAbLq5un1csZ1/PC9daPFvlj/+f6W7v7d/3R+/LP32/7FfDwAA+ocZYS00dhP90z/905HXWlhY6EFHQO/lcjkZhtHxo3F8+Ki6uXbjBggHicfjXa3ZuAupHbVaTel0uvlzWFxcVLFYVLlcboZWtVpNpmmqWCxqcXFR0Wi0WZ9Op5XL5RSPx1Uo7H+FdvnyZS0sLKhQKHAUEgC61MvjjNVvO7t2p/UAAGA8DHwQFggEdP36df30pz890jqbm5syTfbIYzAlEglVq1Wtrq62PerauPNmo74XLMtSqVRSNptteYQ1EAgom82qVCqpWq0eWpfP51WtVrW8vHzgDqydUqmUVldXVa1W29Y2NI4o7r1BQ2OnVmO9xve1vLysRCLR/N4aN3dIJpPNEGxv2NVYx7Is1+f7AcCw6uVxRv/znV2703oAADAeBvpo5G9+85vm26lUSoZhdDQPq6FWq+nOnTuq1Wp69uxZL1uES0b9aGQymVQul9v38X4cySuXywoGgwd+rlqtdjXrrXHThL2y2awSiURHvUWj0X1zAxOJhLLZrK01FhcXlU6n9308EAioVCod+DV7fx8cjQQAe3p5nPHv/0X6my/sr/V356T3XrFfDwAA+sfN1/TH+nq1Dn300Ud68OBP01Mty9q3A8Quy7JkGEavWgMcdVgQlkwmHb92IBBQKBTaF1zFYrGub3iQTCYP7L2TEKxYLCoaje76mM/n07179xQKhWyvk0qlFIvFFA6Hd+0C29jYOPRruNEDAHSnl8cZ3w5JH/zW3g6zk8eli/b/1wAAAMbIQB+NPH/+fPPOiJIIsjA2DjuK168jegdd5yjXPuhrOwmXTNPsSQi2s59Hjx7t6oE5YADQe708zjh5QvrkNXvrXH9d8p7o7NoAAGA8DHQQ1thBYhhGMxDr9gEMk8NCoqmpqf42MgDK5bLm5ub2fTyfz3cVgjX4fL6ezVgbJIVCYd/RUfxJJzdkAHB05051Vv9qm/pWd5VsuBmzVwcAAMbTQB+NnJycVCgU0oMHD5TJZBQKhboKAsrlsj766CP97ne/632TwAg66M/Ziy++2NP17P5Zjsfj+3ZrJRIJ24P1WwkEAkqlUl0fue4n0zSVzWabd8b0+XyampqSz+dTIBDQm2++KWn7bpeZTKblsdNisah4PK6pqSlls9me/CwHVblcVrFYVD6fb4Zgg/SPI+P0u8B4cuM441uEYAAAoIWBDsIk6c0331QwGNT777/f9RqnT5/WG2+8MZa7aYBhViwWDxyyn8lkenaNq1evNoOwWq02cPPAarWaLl++3Ly7ZSAQaN40pFwuyzRNmabZ/Hzja1pphIu1Wk3JZPLQmwQMs3K5rHg8rnK5PNDHXsfhd4Hx1jjOeKnQvpbjjAAAoB8GPgiLRCK6f/9+T9Y6c+ZMT9YB0B8HDdg/ytD+g/h8PiUSiQNvTjAI4vF4cyfTQXfZLJfLSiaTu478tQtTpqamBjoc6oVAINA8+ppOpwd21984/C6AC6fbB2F2jzN6DOnptfY1AAAAhxnoGWHS9m6uXu3++K//9b/2ZB0AzmscAdzr6tWrPb9WPB6X1PrOka00jrcFg0EZhiG/369oNHrkcG1xcbEZcKVSqQOPOwYCAS0vL+/672S7GWHZbFaBQECBQED5fP5IPQ6DvTdaGCTj9rsADmP3OKNhSBOe1g/urQQAAFoZ+CBMkl566aWerPN3f/d3PVkHgPMOCwWOMiD/MJFIRJlMpuPj07VaTeFwWNFodNeQ+lqtpmKxqGQyqWAweODxTjsWFhaabx+0O26nVCqlVColqX2gF4lEVCqVVCqVHPl5Dhq3jsW3+51J4/e7AAAAANw28Ecje2llZcXtFgDYdNDd/ZwcJN4Ikewql8sKh8Ntj7U16paXlzvqv5vZVplM5tCddOivXC6nXC6nbDbrdiuA6zjOCAAABslQBmGPHz/u6AViuVxWNptlDgswJMrl8oFhzqDsmKnVas0h57FYTNFoVGfOnNHGxoaWl5cPnEcVjUZVKpUUCARsX2OnYrHY8k6QDVevXm0e9YQ7GnPbAGwzDGmCoAsAAAyIoQjCHj9+fOSdDpZlyWBoBDAUDvtzHgwG+9zJwRq71Q7a5RWJRJRMJhWNRvd9H/F4vDnAvZ29gVk6ndb58+fb3iigcUfJQbwD5jio1WoDPZMMAAAAGHcDPyPs6tWrCgaDyuVyKpVKsiyrqweA4XFYEObWrKeDtDrq2Bhgv5dpmgce+TyIz+fbFWQ15pHZ+ccAy7IIwVxQq9U0NzfH0VQAAABggA10EPbrX/9amUymGWSxowtwTzqdlmEYXT3C4XBH1zrsGPOghDs+n6/tvK9AIHDgHW87uQvu3tpyudz8h4GjMk2zOcy/lVqtplwup3A4vOu6jeN/fr9fhmEoGAweeCS0XC4rnU4376gZDAaVTCYP/B03rrP3+bNXNBptrrfz0cvj77lcbtd1/H6/wuHwgd+jtP3zfOmll/bdGGFnf4f9rO3+LhpqtZoWFxcVjUabP/9Gf+l02lYQVy6Xtbi4uO9mDjt/B8FgsHkEGAAAABgVhjXA26XOnDkj0zRlGIYsy1IgEFAoFGoeGXrxxRfbrvHHP/5RtVpNd+7c0ebmpp49e+Z02+iD2dlZra+va2ZmRmtra26344iDAoBqtdqXMCiZTPYkbGklEAioVCp1dP1OB873Sjqd3hWARCKRA3d8HcTv9+8LEjr5z240Gj1wF1koFNKNGzc6mptmmqay2azu3LnT7Mnn86lare6qa4Rft2/f3hWSZLNZJRKJfT+PnRKJRHNAfKu6QCCg1dXVA5/Pe3//h/28FhcXlU6nm+8f9ufDNM1dYWyrn3+hUFA8HpfP59ONGzeaR01N01Q8Hle5XD6w91qtpnK5rGKxuKunvUdhG78vu7+LvXK5XHP+WCaTUSQSkc/nk2maWlhYaP6+YrHYvjuv1mo1LSws7LrDaaPHQCCgubm5A+9w6vP5mjUAAABAL7j5mn6gZ4Q1QjBp+wXw3Nxc12ulUim9/PLLvWoNA6JSqWh2drZlzfz8vObn5/vU0ehKJBJdDwBfWVnp6GsPC/sGZWdKJ2FkJBJRoVDY9THTNG0HWMvLy4rH4weuEQ6HFYvFdOPGjbY9lctl3b592/auo1AoJJ/Pt+v3trq6qnA4rKmpKeXzeYVCIU1NTWlhYaEZeDWCmnQ63bx5wJkzZyRtPw8aO4zK5bIWFhYO3CEXj8dtBbGxWGxX6HRUxWKxeaOBq1evNkMwafvnkc/nm8dTL1++vCto8vl8CoVC2tjY2LXmQb/nTn8XDY1g8aBgKhAIKBaLNZ8rhUJBwWBwV2C3sbGhaDTaDDobVlZWNDc3p0gkokwmo0Ag0Az0arWaarWaksmk7fAXAAAA421paUlLS0stayqVSp+6OYA1wPx+v+XxeKwPPvigJ+sFg8GerAP3zczMWJJsPf72b//W7Xa7ctD3Uq1W+3LtRCKx79qZTKbr9VZXV/etFwgEDq3PZDIHfv/ZbLbrHo4ilUrt6iMWi9n+2nw+35Pv47CfSTdr7lzL5/O1rA2FQruus7y8fGBdJBLZVZdIJA6s2/nzOOzay8vLu9Y6TLVatfXnY+/z7zCxWKzt873dOnZ7b7D7u8hms7Z/14FAoFkbiUTafh8+n+/A3+ve526//vsDAACA4fa3f/u3tl+vz8zM9L2/gZ4R1vjX7rNnz/ZkvcZxHYwOj8ejmZmZlg+v1+t2m+jQoO8I68RBx8m6+T5SqZSq1equXUo7Ne5UaWftTo647bxBQSKROPRo6t47JR7239ud/Td2Gw2iw56DOz/ei6H4dn8XjZ1vPp9PiUTCVq20vcvtoKO1O7+PGzduHPh73ftcW1lZsdUrAAAAxpvX6237Ot3jcS+OGuijkXNzc3rw4MG+oyZHWQ+jZXp6emRnhI2zw8KBw2aKDbKDApU//vGPXa+Vz+dlmqYuX768b55TsVjU3Nyc7t2717NZcnbX2fk76+Ta5XK5ozlnTrpx44bOnj3bPGbYTr9CvFwu17yWneCsMcet8TWNWWLdCAQCzcCPu2ECAADADjvjiRozwtww0DvCfvazn8myrAOH93bjV7/6VU/WAeCsw160H7SzZdAdFFzYudFHK6FQSKurqwfuumqEZP3WbfDWq3/o6AWfz6dUKnVgCGaaZs/+X9SpnbO57O4g2/lnaBj/3AAAAABOGeggbHJyUh9//LFu376tf//3fz/yehyNBIbHYUPGB/UoXSd6dfe9RCKhUqm0L4QqFAoDHX70486nvVAul5XL5VQsFhUKhVzbudbNTqy9z7FR+HMDAAAA9MJAB2HS9lycUCjUvJNXtx49euTav+YD6Nybb7554McHOeA5zN7gp1dBWGOtnXcGbCD4755pmopGo8pmsy3novXLzhDLbii2946Ug7TzDgAAAHDTQM8Ia1heXtaZM2f08ssvK51O7xre3MrGxoZqtZpKpZLu3LnjcJfA8DBNUwsLC8rn8263cqjGnKO9stmsrflNg2Tvbpx2O4uKxaLS6bRWV1dtrR8IBHTjxo1d/2BA8N+dZDKpXC6nRCKhTCbjdjuSuhvQv/f/k70MXwEAAIBhNhRB2FdffSVpe1B2Mpnsag3LsmQYRi/bAobW5cuXbQfKbvH5fIrFYioUCrs+XiwWZZrmwAxYb2dvCGZnd1EgEJBpmioWi7Z3I+0NBxls3rlGCCZpYEIw6U/PB+lPd9psd7x05w4wQjAAAADgTwb+aOS7776raDSqBw8eyDAMWZbV8QPAnzSCpGg0emhNr49RdbveYWHEQTvFjsqpGUorKyu73rcT5jeCi26Df6n9rrNR0MvnqWmazRAsEAgM1ByzvceEG322svMOq8O2gxIAAABw0kAHYTdu3FA2m22GWd2GWoRhwLZardY8Ptfpi+M//vGPPe3FTogRCAQODMOKxaIWFxd71ku5XFY4HD5S8HSYvXf8s/tzDwQCKpfLtkO/vTvADpuxNgz27lY8LKTs5a63nbPnWq3rxtD5WCy2K5izM/9t5/dz9epVJ9oCAAAAhtJAH41s/GW/sRMsEokoGo3K5/N1PCfs+vXrevz4sYPdAr3jxIvtWq2mubm55rGqTo9L9bonu+ulUiktLy/vG5KfTqcVCoWOPMi8WCwqGo0eGrod1c6jnZ0MsG8EYYuLiwoGg0okEi3rd64dCASUSqU6b/YAdn9PO+vafU27z+/dzZbL5fZ9PweFhBsbGz3byVUoFPaFlgddb6+9f67K5fKuj9k51niQnTPgyuVyy2Ozpmk2j1JmMpmB2t0GAAAAuG2ggzDTNGUYhnw+n1ZWVvTSSy91vdbly5f14osv9rA7wDmH7Ujp9oV+sVhUMplsrnv+/PmOr3+UY2hH3bmzvLyseDy+b15YNBpVJpPpKvSp1WpKp9PK5XKH3nmx1dfakcvlmt97p3cf3BmeJJNJra6uHhpq5HK5XTvkdu5CO8jO36UbO5x2Ouz6kUikGX6m02mVSiXF43HVajUtLy8rl8s1nxeNNfaGTg17n7sHhVF7w7d4PK5MJqNQKCTTNJXNZhUKhZoBpfSn8HF5eVlXr149MGBOJpPK5/Pa2NhQJpNRMBjc9Xy1+7uIxWLKZDLNMC4ej+vRo0f7vo9arabLly9L2n7OHfZnw+7vfeefXbefKwAAAEBPWAPM7/dbHo/H+vnPf96T9cLhcE/WgftmZmYsSdbMzIzbrTgikUhYkvY9IpGIVSqV2n59tVq1lpeXrVQqZQUCgX3r5PP5Q7+2VCodeG1JVrVa7er7CYVCB66XzWY7WieVSh24TigUspaXl22tUa1WrUwmY/l8vubPtN33tfe6Pp+v7XV2/hwjkYit3nbKZrMHfq+xWMxKpVJWNpu1EonErt+v3efH3t/HYc+HarW67+d8mFgsZut3u7y8vKsukUgceu3G72jvw+fzNX/fO2tCoZBVKpX2/T7t9ra3bucjk8lYlnXwn81YLLZrncOepwd9r3Z/Fw35fL75Pft8PiubzVqlUskqlUpWNpttPh8a/R7E7u9gb103z2MAAADgIG6+ph/oICwSiVgej8f69a9/3ZP1TNPsyTpw36gGYaurqy1fjPfqcVDwU61WrWw2e2j4IMkKBAJWNpu1HYitrq5akUikZS+pVMpWeNOwvLx8aLDm8/msWCxmZbNZa3l52VpdXbWWl5etbDZrZTKZXV/n8/nahg4NB4WDgUDg0PBtZ1ixNyTp5Pts9JjP561EImFFIhErFArt+h01vud2QWDjuXXY7zcUCjXDk1a1gUDAisVizefA3jBub3DSWHN5efnQ50IgEDgwjKlWq7vWD4VCViqV2lXT+Nje51C1Wm37/R50zUwm07xeIBCwUqnUrud7tVptfh87f2Z77QyhQ6HQrudaJ7+Lw2SzWSsSiewKxRpfd9ifz1Z/Hnf+DkqlUsu6dr0BAAAA7bj5mt6wrMGdJF8oFHT+/HktLi7qv/23/+Z2Oxggs7OzWl9f18zMjNbW1txu58hyuZwjg9oPEgqFtLq6uutjhmF0vI7P51O1Wj3wcwcdY7RjeXnZ9vHBQqGghYWF5iwkuwKBgJLJpBKJREfHTBszqfZ+Xz6fT2fOnJHP51OtVtPKykrz6F0+nz/yDDMAAAAAGDVuvqYf6CBMksLhsDwej+7fv3/ktX7zm9/oJz/5SQ+6gttGLQhD92q1morFom7fvq1yuaxardacaxQIBJpzm86ePatYLNbxTQLaXa9xzcZ1zpw5o3g8TgAGAAAAAIcgCGuhXC7rP/yH/6Bf//rX+i//5b8caa2zZ8/2JFCD+wjCAAAAAAAYTm6+pvf09WpdCAQCun79un76058eaZ3Nzc2Oj1ABAAAAAABgdBxzu4FWfvOb30iS/vzP/1x+v18vv/yyYrFYx+vUajXduXOn1+0BAAAAAABgiAx0EPbRRx/pwYMHzfcty9Li4mJXa1mW1dVAcAAAAAAAAIyGgT4aef78eVmWpcYYM4IsAAAAAAAAdGugg7BkMilpOwBrBGLdPgAAAAAAADDeBvpo5OTkpEKhkB48eKBMJqNQKKSpqamO1ymXy/roo4/0u9/9rvdNAgAAAAAAYCgMdBAmSW+++aaCwaDef//9rtc4ffq03njjja5CNAAAAAAAAIyGgT4aKUmRSKRnRxvPnDnTk3UAAAAAAAAwfAY+CDt9+rQymUxP1urVOgAAAAAAABg+Ax+ESdJLL73Uk3VOnz7dk3UAAAAAAAAwfFwNwgZpeP0g9QIAAAAAAIDeczUIC4fD2tracrMFSdLm5qbC4bDbbQAAAAAAAMBBrgZhvRqC3wuD1AsAAAAAAAB675ibFzcMw83L7zJIvQAAALjNsqR6m38n9BgSf4UCAADDxNUgjF1YAAAAg6luScc+bF3z9Jo0QRAGAACGiKtBmCQ9evRIf/3Xf+1qDysrK65eH92rVCqanZ1tWTM/P6/5+fk+dQQAAAAAwPhaWlrS0tJSy5pKpdKnbvZzPQi7fPmyPvjgA/l8Pk1NTfX12hsbGyqXy0qlUn29LnqnXq9rfX29Zc0g3JABAIBRdOuBdHFI7zfE0U8AAJyxtbXV9nW6m1wPwlZXVxWPx13twbIsZoQNKY/Ho+np6ZY1Xq+3T90AADA6bj1oX3OpIE14pAunne+n1zj6CQCAM7xer2ZmZlrWVCoV1ev1PnW0m2G5OKjL4/E0Ayi32jAMoxmEPXv2zJUe0LnZ2Vmtr69rZmZGa2trbrcDAMBI2XwizXwkffN9+9qTx6X1q5L3hPN99dKzus0gzNV7rAMAMJrcfE3v+v/aLctydWg+A/sBAAB2+9S0F4JJ0tffSTdNZ/txi51dcQAAYLi4ejSyWq26eXkAAAAc4IuHndV/+VB67xVnenHKqB/9BAAAB3M1CJucnHTz8gAAADhA9Vtn6922+US68rm92nc+k879cPiOfgIAgIO5fjQSAAAAg8X/vLP1buPoJwAA44sgDAAAALucO9VZ/asd1rutm6OfAABgNBCEAQAAYJe3Q9ILz9mrPXlcuhhytp9eG/WjnwAA4HAEYQAAANhl8oT0yWv2aq+/Pnzzs0b96CcAADgcQRgAAAD2sXOnxJux4byj4qgf/QQAAIcjCAMAAEBX3hrCEEwa/aOfAADgcMfcbgAAAACDx2NIT6+1rxlGjaOflwrta4fx6CcAADgcO8IAAACwj2FIE57WD2NIgzBptI9+AgCAwxGEAQAAAAcY1qOfAADgcByNBAAAwNgZ5aOfAADgcARhAAAAGDuGIU0QdAEAMHY4GgkAAAAAAICxwI4wAACAEWFZUt1qXeMxhnvIPQAAwFEQhAEAAIyIuiUd+7B1zdNrHAkEAADjaySPRm5uburdd991uw0AAAAAAAAMkJEMwsrlsnK5nP7whz/oq6++0tbWltstAQAADIRbD9zuAAAAwD0jGYQVi0VZlqVAIKBoNCq/36+f/exnbrcFAADgKDsh16UCYRgAABhfIxeE3bt3T+l0WpJkWVbzkclkWoZh7777rl5++WWdPXtWP/vZz9hFBgAAhsrmE+nK5/Zq3/lM2nriaDtjxbKkZ/XWD6vNTQwAAEB/GJY1Wv9bPnPmjAKBgN58802FQiGVy2XdvXtXP//5z2UYhsrlsv7yL/9y19e8/PLLKpfL2vmjCAaDWl1dldfr7fe3ABtmZ2e1vr6umZkZra2tud0OAACu+/t/kf7mC/v1f3dOeu8V5/oZJ8/qNm9SMHL/BA0AQHfcfE0/kv87vnPnjt544w299NJLmpubUyaT0cbGhn7wgx80d4s1vPvuuyqVSpKkdDqter2ujY0N/ehHP9Lly5fdaB8AAKBjXzzsrP7LDusBAABGwcgFYYZx8P3AfT6fVldXm6FXQzablWEYisViWlhYaNZms1lVq1U9fvzY6ZYBAACOrPqts/UAAACjYOSCML/fr1/+8pcHfs7n88nv9zffv3HjRvPtTCazrz6dTqtYLPa+SQAAgB7zP+9sPY6GGxQAADAYRi4IS6VSev/993XlypUDB95Xq9Xm243dYJFIRD/4wQ/21Z45c2bfDjIAAIBe6tWg9XOnOrvuqx3W43DcrRMAgOFxzO0Gei0Siejy5cu6fv26stmsYrGYzp49K0m6ffu2SqWSfvzjHysUCsk0TRmGoWQyeeBak5OTKpfL/WwfAACMmbplc9D6wdMfmt4OSR/8Vvrm+/bXPHlcuhiy3yMO1+ndOs/9UPKecLQlAADQwsjtCJO2d3q98cYbsixLhUJB6XRa6XRapmnq3r178nq9u45ChkIH/03wwYMHmpqa6lfbAAAAXZs8IX3ymr3a668TxvTKp6a98FGSvv5Oumk62w8AAGhtJIMwScrn87p+/brm5uZkWZYmJyd1584dnT59Wvl8Xm+88YZ8Pp+uX79+6I6wXC6nYDDY584BAAC6c+F0+5qbMXt1sIe7dQIAMFxG7mjkTolEQolE4sDP5fP55tt+v19nz57Vr371K/31X/+1tra29NFHHymXy+2aKYbBU6lUNDs727Jmfn5e8/PzfeoIAIDeu/VAuhjuzVpvEYL1VC/v1mlZ20dlW/EY0iE3SQcAYCAsLS1paWmpZU2lUulTN/uNdBBmVywWU7lc1unTp2Xs+JvFxx9/LK/X62JnaKder2t9fb1lzUE3TQAAYFDYHbQ+4WEn1yDq5d06ezUvDgAAN21tbbV9ne4mgrD/K5VKKRAIKJfLyefz6c0339Qbb7zhdltow+PxaHp6umUNYSYAYFD1etC6x9gOSlrxEKL01LlT0t3f26/nbp0AgFHn9Xo1MzPTsqZSqaher/epo90My7JzQ+7h8dVXX+lHP/pR27rf/OY3ikQihCRDanZ2Vuvr65qZmdHa2prb7QAA0JW//xfpb76wX/9356T3XnGuH3Ru84k085H9u3WuXz08zHxWt7kjbGSn/AIAxoWbr+lH7n+jsVhMExMT+vGPf6xf/OIX+t3vfndg3dzcnH7605/q8ePHfe0PAACggUHrw4+7dQIAMFxGLggLh8OyLEvFYlHpdFrhcFgvvvjivmBscnJSN27cUDwe1x/+8Ad3mwYAAGOpl4PW4Z5+3q3Tzkw5aXvw/rN668donQsBAMCekZsRVigUFI/HtbGxoVqtpnK5rGq1quXlZRWLxWZdNBrV6dOnVa1WlUwm9dvf/tbFrgEAwDjq5aB1DDY7d+vs5Y0TGLwPAMDBRi4ISyQSyuVy+sEPftD82L1793Tnzh3duHGj+bG7d+9qeXlZlmXp0aNHLnQKAADGHYPWR0MvblLQ6xsnAACAg43c0UjLsnaFYNL2PLBsNqtqtar3339foVBImUxGb7zxhkKhkD7++GN3mgUAAEOpV8fO3g5JLzxn75onj0sXQ0frG84wjO1dWq0eRpsg7FPT3sB9Sfr6O+mmefS+AQAYRyO3I2xzc/PQz01OTiqTyejRo0dKp9NaXFzcF5oBAAC006tjZ41B65cK7a/JoPXR1s2NE456B9FbD6SL4aOtAQDAsBm5HWEvvfSSfvnLX7atuXPnjhKJBIPyAQCAq/o5aB2Dq9c3TrA7b8zu8H0AAEbFyAVhqVRK77//vv7pn/6pbe2dO3cUiUS0tbXVh84AAAC6Y2fQOoZbL2+c0Om8sa0nnV0bAIBhNnJBWCAQ0Mcff6xYLKYrV660rPX5fDp9+rQ++OCDPnUHAAAA7HeuwxshtLpxAvPGAAA43MgFYdL2rrCf/OQnun79uv78z/9cv/zlLw/d9TU1NaXbt2/3uUMAADDqOHKGTvTyxgndzBsDAGBcjNyw/IZ8Pq9kMqkbN24olUoplUopFospGo3qzJkzkqTbt28rl8vJaHcbHwAAgB3szl+a8LSf7eUxtgfrt6vBaOvljRN6PW8MAIBRMrJBmCRls1lFo1FdvnxZm5ubKhQKKhT2/+0iFOJe5AAAwJ5O5y+d+2Hr0MIw2t9dEuPhwun2QZidGyf0ct4YAACjZiSPRu4Ui8VUrVb18ccfa3JyUpZl7Xr4fD7duHHD7TYBAMCQYP4S3GTnxgm9nDcGAMCoGfkgrCGVSmljY0Orq6vK5/PKZDLK5/N69OiR/uN//I9utwcAAIYE85cw6Ho5bwwAgFEztEcj3333Xf33//7fO/6606dP6/Rp7kEOAAC6w/wlOKVX8+J6OW8MAIBRM7Q7wu7cuaN///d/d7sNAAAwZpi/BKcYxvYNFlo97N7jqd0cMcnevDEAAEbN0AZh1WpVP/jBD/Tuu+/qq6++crsdAAAwJpi/hFFhZ94YAACjZmiDMEmq1WrK5XKKRqOamJjQj3/8Y/3iF7/Q48eP3W4NAACMKOYvAQAADK+hDsIk7boDZLFYVDqdVjAY1Isvvqh3331Xv/nNb9qu8atf/aoPnQIAgFHQmL9kB/OXAAAABsvQBmEff/yxLMuSYRgKBoOSdodi1WpVuVxO8XhcExMTOnv2rH7xi1/od7/73b61lpeX+9w9AAAYZsxfAgAAGE5De9fIVCqlSCSieDyujY0NFQoFWZal//E//ofu3bunWq0my7Ka9aZpyjRNSZLP51MkElE0GpUkFQo2bqkDAACGmmVJdat1jcewP4y8HeYvwU29ugMlAACjZmiDMEkKhUIqlUpKp9OKx+NKJpPK5/OSpEePHqlQKGh5eVnFYnFXKFatVlUoFAjAAAAYI3VLOvZh65qn16QJwgGMAMPguQwAwEGG9mjkTplMRvfv39fdu3f1V3/1V/rXf/1XvfTSS3r//fd19+5d1et1LS8vK5FIKBAISNp9jBIAAADAwSxLelZv/eCv1ACAYTHUO8J2CoVC+rd/+zclk0mFQiGl02l99NFHzc/Pzc1pbm5OkrS5uak7d+4on8+rWCy61TIAABhSHDvDOGE3JQBglIzEjrCdstms/uf//J+6fv16c3fYXpOTk7p8+bLu3r2ru3fvutAlAAAYZoYhTXhaP3o1awwAAAC9M3JBmCRFIhGVy2X99V//tUKhkH75y1+2rG3sFAMAAAAAAMDoGskgTNq+M2Q+n9ft27f1/vvv6z/9p/+kP/zhDwfWxuPxPncHAAAG0a0HbncAAAAAJ41sENYQi8W0sbGhyclJBQKBA3eHXb582YXOAABAP9kJuS4VCMMAAABG2cgHYdL27rDl5WUtLCy03R0GAABGz+YT6crn9mrf+UzaeuJoO8DIIUAGAAyLsQjCJOnx48c6c+aMUqmUVlZWFAgE9A//8A9utwUAAPrgU1P65nt7tV9/J900ne0HGCbspgQAjBLDsizL7SaO6vHjxyqXy6rVaiqXyyqVSiqXyyqXy9rY2FCtVtv3NZZlyTAMRaNR5fN5/dmf/Vn/G0fXZmdntb6+Lo/Ho+np6Za18/Pzmp+f71NnAIBB9OP/V7r7+w7qX5Z++/841w8wLDafSDMf2QuSTx6X1q9K3hPO9wUAGFxLS0taWlpqWVOpVFSv1zUzM6O1tbU+dbbtWF+v1kNnz55thl+ttMr5LMvS3bt39aMf/Uj379/vcYfoh3q9rvX19ZY1W1tbfeoGADCoqt86Ww+Mqm52U773irM9AQAG29bWVtvX6W4a2iBsdXVVhmG0DLqk7flggUCg+QgGg5qammq+Pzk52aeO4QQ7O8K8Xm+fugEADCr/887WA6Pqi4ed1X/5kCAMAMad1+vVzMxMy5rGjjA3DG0QtpPf79f58+d3BV6EXONhenq679soAQDD59ypzo5GvnrKuV6AYcJuSgBAp+yMJ2qMO3LDUA/Lf+ONNxQKhVStVpXL5bSysqJqtSq/308IBgAAmt4OSS88Z6/25HHpYsjZfoBhwW5KAMCoGdogLBKJ6M6dO83w6/bt27IsS6lUSsFgUC+//LLeffdd/fM//3Pbtb766qs+dAwAANwyeUL65DV7tddfZ9g30HCuw92R7KYEAAy6oQ3CotFo8+3JyUnFYjHduXNHGxsbun//vn7yk5/o/v37mpub08TEhM6ePatf/vKX+t3vfrdvrWw228fOAQCAGy6cbl9zM2avDhgX7KYEAIwaw2o3bX7IbW5uanl5WXfu3FGxWNTm5qZ8Pp8ikYjOnj0rSUqn03r27JnLnaITjfPEbtxqFQAwnJ7VpWMftq55ek2aGNp/JgSccXNVulRoX/eP5wmSAQD2uPmafiSG5bfS2C0Wi8UkSaZp6vbt2/r1r3+tfD4vwzBc7hAAAAAYXBdOtw/C2E0JABgWY/dvnqFQSJlMRv/2b/+mlZUV/ehHP3K7JQAAAGCovUUIBgAYEmMXhO0UCoW0vLys06f5PzcAAAAAAMCoG/mjkXZkMhm3WwAAAIewLKneZqKpx5DaTTvwGNszwNrVAHBOr/48AwDQLYIwSXNzc263AAAADlG3bA65b/PC2TDa1wDYr5chcq/+PAMA0K2hOBr5i1/8Ql999ZXbbQAAAABjxzC276ba6sEOLgDAsBiKIOx//a//pWg0qn/4h3840jo3btzQxMSE/uqv/kr/+q//2qPuAAAAAAAAMAyGIgiTJMuylEgk9LOf/azrNdLptCzL0r/9278pFArp8ePHvWsQAAAAAAAAA23oZoTdvXtXpVJJt2/f7vhrX3rpJW1ubioSiUjaDsa6WQcAAAAAAADDZ+iCsJWVFcXjcZ09e1ZfffWV/uzP/sz2166uru56/+WXX+51ewAAwAW3HkgXw253AQAAgEE3NEcjd8rn84rH4wqFQvrDH/7Q1RqPHj3SxsZGjzsDAACSZFnSs3rrh2XZW+vWg/Y1lwr26gAMPv4sAwCcNHQ7whpSqZRCoZBCoZAKhYL+83/+z7a/dnNzU9FoVGfOnHGwQwAAxlfdko592Lrm6TVpos2d5jafSFc+t3fNdz6Tzv1Q8p6wVw+g/+wG2xMe6cJp5/sBAIyfodwR1hCJRHT//n1dvnzZ9h0lv/rqKwUCAT169EjxeNzhDg9WLpcVjUZt1yaTSQWDQRmGIb/fr3A4rGQyqXK5PDB9StLi4qKi0aj8fr8Mw1AwGFQ8HlexWHSwSwDAKPvUlL753l7t199JN01n+wHQvU6D7a0njrYDABhTQx2ESVIgENDKyopu377d9o6SP//5zxWNRlWtVuXz+fTTn/60p73UajUZhtH2EQwGFQgE2q63uLioYDCoXC7XDL1qtZpM01Qul1MwGNTi4qLrfRaLRfn9fqXTaUnbR1dLpZIymYxM01Q0GlU0GlWtVuu4VwDAePviYWf1X3ZYD6B/CLYBAINg6IMwSfL5fLp79642Njb05ptvHlhz9epVffDBB7IsS4ZhKJPJ9LyPXC5nu7YRGh0mGo0qnU7L5/MpFosplUopFovtC6bS6bQKhYJrfRaLxWbIlUgktLy8rEgkokAgoFgsplKppFAopGKxqHA4TBgGAOhI9Vtn6wH0D8E2AGAQjEQQ1nD9+nXNzc3p7Nmz+vd///fmx+/du9cMvgzDUCgU6vluMElaWFiwVdcIig6TTqdVLBaVyWRUrVaVz+eVyWR27bTaqdMjnr3qs1arNa8dCASUzWYPrMvn85K2j1q6dRwVADCc/M87Ww+gfwi2AQCDYOiG5f/zP/9zy8H4iURCZ86c0Y9+9CMVCgX95V/+ZTM4cno3WK1WUyqVajtXq9WQ/nK5rMXFxebOqoOkUimVSqVdO7tM01QoFOpbn9J2ANfY4dVq51hjd1ihUFCxWFQul1MikWjbKwAA505Jd39vv/7VU871AuBoCLYBAIPAsCy7Ny93Tzqd1s9//nNJUjAYVLFY1F/+5V+2/Jpyuazz58/rZz/7mWKxmAzDkGVZCofDun//fs97DAaDkqRSqXSkdeLxuM6ePatUKtWyrlarye/3N9/PZDJtv6aXfZbL5eZakppz1w5TKBSau8F8Pp+q1eqRrj87O6v19XXNzMxobW3tSGsBAHrvWd3mXSPb7E3ffCLNfGRvrtDJ49L6Ve4aCQyqv/8X6W++sF//d+ek915xrh8AgHvcfE0/FEcjdx4RnJubUyQS0a9+9auWX9MYon/9+vXmxwzDOHSG2FEUCgWVy+W287TsaOzWasfn8+06ttgqhGroZZ87d9VFIpG214/FYs23a7Vax3PNAACj59aD9jWTJ6RPXrO33vXXCcGAQfZ2SHrhOXu1J49LF9sfdgAAoGNDEYRJ0uTkpN544w1dv35dv//9723P+Lp7967ef/99NTa+2Tk+2KmFhQX5fD6dP3/+yGstLy/brt3Y2Gi+3e4Yo9TbPncey7T7M90Z3N2+ffvIPQAABpedkOtSwV7dhdPta27G7NUBcA/BNgBgEAxNEHYUmUxGd+7ckWVZevToUU/XNk1Tpmk2jyoGg0Elk0nHdzzVarXmfK5IJNI2jOpln6a5+17WZ8+etfV1O3tkRxgAjK7NJ9KVz+3VvvOZtPXk6Nd8ixAMGAoE2wAAt41FECZtH81bWVnp+U6kvccMy+Wycrmc4vG4DMNQPB7fFxz1wp07dyRt77Jq3JWxX30Wi8Vd77e6s2SrOid+LgAA931q2pvpJUlffyfd5H8HAHYg2AYAOGlsgjBpe0fS3bt3e7ZeuVzeFwrtVSgUFA6HlUwme3bdWq2mZDKpUCik5eXltvO5et3n3psN2JlPJkkvvvjirvdXVlZsfR0AYLh88bCz+i87rAcAAAC6dcztBoZZIBBQNptVrVZTqVRSsVhUuVw+sDaXy2llZUWrq6tHuma5XFY0GpXP59O9e/dshVC97nPv13a7I+yod64EAAym6rfO1gOAJFmWVLda13gMyTD60w8AYDgQhB1RIpHY9X6tVlMul9PCwkJzhleDaZqKRqMdDcTfqVAoKB6PN9/3+/3KZDK27jLZyz4PC9E6tfe6AIDR4H/e2XoAkLZDsGMftq55ek2aIAgDAOxgWI3bKaLnCoWCLl++vC/wsRteSX8KrLLZ7KEBVCwWszUnrFd9Gnv+Wc3uU6hYLCoajTbfP0rfs7OzWl9fl8fj0fT0dFdr7DQ/P6/5+fkjrwMAkP7+X6S/+cJ+/d+dk9575fDPs+sDGB3P6jbDKxsDXHq5FgDAnqWlJS0tLR15nUqlonq9rpmZGa2trfWgM/vYEeagWCymSCSiubm5XYPhFxYWbAdhxWJRpVJJkUjk0FlfhUJBi4uLttd0os9u9GJHWL1e1/r6+pHX2draOvIaAIBtb4ekD35rb2D+yePSxdY3PpZhsKMDGBUeYzucalcDABhMW1tbPXkN7iaCMIf5fD6trq4qHA43Q6ZaraZisahIJNL262OxmGKx2K6P5XI5pdPpXUFSOp1WIpGwPbj+KH36fL6ehFjd9rpTr3aEeb3eI68BANg2eUL65DXpUqF97fXXJe8Jx1sCMCAItgFguHm9Xs3MzBx5ncaOMDcQhPXJjRs3FA6Hm+8vLy/bCsIOkkgkFIlEFA6HdwVSuVzuyDu47PQ5NTXVkyBsamrqyGtMT0/3fRslAKC9C6fbB2E3Y9t1AAAAGA69GivUGHfkBk7M90koFNoVKB114HwgENC9e/d2fez+/ftHWlOy12e3O7n2hme92BEGABhebxGCAQAAoM8Iwvpo56D4XgiFQruOTfbqbo7t+jxz5syu9+3uDtvY2Nj1fjAY7KgvAAAAoBO3HrjdAQBg0BCE9VEgEGi+3YtjgZL05ptvNt/uxXFFqX2fO49OSvYDuFKptOv9bo+GAgAAAHZCrksFwjAAwG4EYX20M2Dq1bHAUOhPt9rq1Zrt+ty7I8xuELYzqPP5fLuuAwAAANi1+US68rm92nc+k7aeONoOAGCIEIT10crKSvPtXh+TlPYHVN1q12coFNoVkNmdTbZz3V71CgDoHcuSntVbPyzL7S4BQPrUlL753l7t199JN01n+wEADA/uGtlHO48G9upY4M7dWL0K1+z0ef78eeVyOUmSadr7m8XOunQ6fYQOAQBOqFvSsQ9b1zy9Jk0Y/ekHAA7zxcPO6r98KL33ijO9AACGC0FYHxUK2/eRT6VSPVuzES75fL5dg/OPwk6fyWSyGYQVi8W2a+6sCQQCzAcDgBHnMbZDs3Y1ANCN6rfO1gMARhdHI/ukUCioXC7L5/Pp6tWrPVt3YWFBknTjxo2erGe3z1AotCvMaoRnh8nn88232Q0GAKPPMKQJT+uHQRAGoEv+552tBwCMLoKwLhWLRfn9fhmGoWg02vJ4YLlc1uXLlyVJ9+7daznUfnFxUeFwWOl0uu1dIBs1qVTq0N1gTvUpSdlstvl2I5A7SK1Wa+4ei0QiSiQSLdcFAAAAWjl3qrP6VzusBwCMLoKwLuXz+WZQVSwWFQ6HlUwm99U1Pjc1NaVSqbTrLo971Wo1pdNpmaapxcVF+f3+Q3dPxeNxLS4uKpPJKJPJ9LXPhkAg0Nzp1ej5IHNzc5K2j2/u3BkGAAAAdOPtkPTCc/ZqTx6XLrb/qy0AYEwQhHUpHo/v+1gul5Pf71c8HlcymVQ4HFY0GlUikdDq6qoCgUDLNX0+376aRiAWj8eVTqcVjUbl9/slbQ+1bzdvzIk+d4rFYlpeXpbP51M6nVY8HpdpmqrVas1wzTRNhUIhPXr0qO0uMwAAAKCdyRPSJ6/Zq73+uuQ94Wg7AIAhQhDWpUgkolKppEQioUAgsCvgMU1TGxsbunr1qqrVqjKZjO0AaHV1ValUSqFQaN+a5XJZ8Xhcjx49Uj6ftxVYOdXn3ms0vr5cLmtubq4ZtE1NTSmfz2t1dZUQDAAAAD1z4XT7mpsxe3UAgPFhWJZlud0E0KnZ2Vmtr69rZmZGa2trbrcDACPhWV069mHrmqfXtgfdA4Db+G8WAAwvN1/T878FAABg260HbncAAAAAdI8gDAAASLIXcl0qEIYBAABgeBGEAQAAbT6Rrnxur/adz6StJ462AwAAADiCIAwAAOhTU/rme3u1X38n3TSd7QcAAABwwjG3GwAAAO774mFn9V8+lN57xZleAMAOj7E9DL9dDQAAOxGEAQAAVb91th4Aes0wpIkeBF2WJdWt1jUeY/t6AIDhRxAGAADkf97ZegAYVHVLOvZh65qn13oTugEA3MeMMAAAoHOnOqt/tcN6AAAAYBAQhAEAAL0dkl54zl7tyePSxZCz/QAAAABOIAgDAACaPCF98pq92uuvS94TjrYDAAAAOIIgDAAASJIunG5fczNmrw4AAAAYRARhAADAtrcIwQAAADDECMIAAAAAAAAwFgjCAAAAAKCFWw/c7gAA0CvH3G4AAAB0z7KkutW6xmNIhtGffgBg2NgJuS4VpAkPMxIBYBQQhAEAMMTqlnTsw9Y1T69JEwRhALDP5hPpyuf2at/5TDr3Q+6aCwDDjqORAAAAAMbSp6b0zff2ar/+TrppOtsPAMB57AjDUKtUKpqdnW1ZMz8/r/n5+T51BAAAgGHxxcPO6r98KL33ijO9AMCoWFpa0tLSUsuaSqXSp272IwjDUKvX61pfX29Zs7W11aduAGC4eYztY5TtagBgVFS/7W09cxsBYPs1eLvX6W4iCMNQ83g8mp6eblnj9Xr71A0ADDfDYJYYgPHif7639cxtBIDt1+AzMzMtayqViur1ep862o0gDENtenpaa2trbrcBAACAIXTulHT39/brXz3lXC8AMCrsjCeanZ11bdcYw/IBAAAAjKW3Q9ILz9mrPXlcuhhyth8AgPMIwgAAAACMpckT0iev2au9/rrkPeFoOwCAPiAIAwBgxN164HYHADC4LpxuX3MzZq8OADD4CMIAABhidkKuSwXCMAA4ircIwQBgZBCEAQAwpDafSFc+t1f7zmfS1hNH2wEAAAAGHkEYAABD6lNT+uZ7e7VffyfdNJ3tBwAAABh0BGEAAAypLx52Vv9lh/UAgN7jqDoAuIsgDACAIVX91tl6AEBnmNsIAIOPIAwAgCHlf97ZegCAfcxtBIDhcMztBgAAQHfOnZLu/t5+/aunnOsFAIaVx5CeXmtf0043cxvfe8VePQCgd9gRBgDAkHo7JL3wnL3ak8eliyFn+wGAYWQY0oSn9cOwEYQxtxEAhgNBGAAAQ2ryhPTJa/Zqr78ueU842g4AjDXmNgLAcCAIAwBgiF043b7mZsxeHQCge8xtBIDhQBAGAMCIe4sQDAAcd67DOYzMbQQAdxCEAQDQZ5YlPau3fliW210CADrB3EYAGA7cNRIAgD6rW9KxD1vXPL0mTdgYzgwAGAyNuY2XCu1rmdsIAO5hRxgAAAAA9ABzGwFg8BGEAQAAAECfMLcRANxFEAYAAAAAAICxQBAGAAAAAACAsUAQBgAAAAAAgLHAXSMBABhiHmP7DpPtagAAAAAQhAEAMNQMQ5og6AIAAABs4WgkAAAD6NYDtzsAAAAARg87wgAA6DM7IdelgjThkS6cdr4fAEBvcFwdAAYfO8IAAOijzSfSlc/t1b7zmbT1xNF2AAA9ZBjb/4jR6mEQhAGAqwjCAADoo09N6Zvv7dV+/Z1003S2HwAAAGCcEIQBANBHXzzsrP7LDusBAKPBsqRn9dYPy3K7SwAYPswIAwCgj6rfOlsPABgNdUs69mHrmqfXuHMwAHSKIAxDrVKpaHZ2tmXN/Py85ufn+9QRALTmf97ZegAAAMBNS0tLWlpaallTqVT61M1+BGEYavV6Xevr6y1rtra2+tQNALR37pR09/f261895VwvAAAAQK9tbW21fZ3uJoIwDDWPx6Pp6emWNV6vt0/dAEB7b4ekD35rb2D+yePSxZDzPQEAAAC94vV6NTMz07KmUqmoXq/3qaPdDMtixCKGz+zsrNbX1zUzM6O1tTW32wGAjtxclS4V2tf943npwmnn+wEADJ5ndZszwrj9GYAh5OZrev6zCQBAn9kJt27GCMEAAACAXiMIAwBgAL1FCAYAAAD0HEEYAAAAAAAAxgJBGAAAAAAMoVsP3O4AAIYPQRgAAAAADBg7IdelAmEYAHSKIAwAAAAABsjmE+nK5/Zq3/lM2nriaDsAMFIIwgAAAABggHxqSt98b6/26++km6az/QDAKCEIAwAAAIAB8sXDzuq/7LAeAMYZQRgAAAAADJDqt87WA8A4O+Z2AwAADAvLkupW6xqPIRlG+5qn19rXAADGk/95Z+sBYJwRhAEAYFPdko592Lrm6TVpok2IZRjtawAA4+vcKenu7+3Xv3rKuV4AYNRwNBIAAAAABsjbIemF5+zVnjwuXQw52w8AjBKCMAAAAAAYIJMnpE9es1d7/XXJe8LRdgBgpBCEAQAAAMCAuXC6fc3NmL06AMCfEIQBAAAAwBB6ixAMADpGEAYAAAAAAICxQBAGAAAAAACAsXDM7QYAAAAAAM6xLKluta7xGJJh9KcfAHATQRgAAAAAjLC6JR37sHXN02vSBEEYgDHA0UgAAAAAAACMBYIwAAB66NYDtzsAAAAAcBiCMAAAbLITcl0qEIYBAAAAg4oZYQAA2LD5RLryub3adz6Tzv1Q8p5wtCUAwAjzGNtzu9rVAAA6w44wAABs+NSUvvneXu3X30k3TWf7AQCMNsOQJjytH9zlEQA6RxAGAIANXzzsrP7LDusBAAAAOI8gDAAAG6rfOlsPAAAAwHkEYQAA2OB/3tl6AAAAAM4jCAMAwIZzpzqrf7XDegAA3MQdjwGMC4IwAABseDskvfCcvdqTx6WLIWf7AQDALjsh16UCYRiA8UAQBgCADZMnpE9es1d7/XXJe8LRdgAAsGXziXTlc3u173wmbT1xtB0AcN0xtxsAjqJSqWh2drZlzfz8vObn5/vUEYBRduH09r+Yt3Iztl0HAMAg+NSUvvneXu3X30k3Tem9V5ztCcBoW1pa0tLSUsuaSqXSp272IwjDUKvX61pfX29Zs7W11aduAEB6ixAMADBAvnjYWf2XDwnCABzN1tZW29fpbiIIw1DzeDyanp5uWeP1evvUDQAAADBYqt86Ww8Ae3m9Xs3MzLSsqVQqqtfrfepoN4IwDLXp6Wmtra253QYAAAAwkPzPO1sPAHvZGU80Ozvr2q4xhuUDAAAAwIg6d6qz+lc7rAeAYUMQBgAAAAAj6u2Q9MJz9mpPHpcuhpztBwDcRhAGAAAAACNq8oT0yWv2aq+/LnlPONoOALiOIAwAAAAARtgFG3c0vhmzVwcAw45h+QAA2OQxpKfX2tcAADBs3iIEAzAmCMIAALDJMKQJgi4AAABgaBGEAQBGmmVJdat1jcfYDrkAAAAAjDaCMADASKtb0rEPW9c8vcZOLwAAAGAcMCwfAAAAAAAAY4EgDAAAAAAAAGOBo5EAAAAAAFuYvQlg2BGEAQAAAMAI8xjb8zDb1djB7E0Aw44gDAAAAABGmGEQTAFAAzPCAAAAAAAAMBYIwgAAAAAAADAWCMIAAAAAAAAwFgjCAAAAAAAAMBYIwgAAAAAAADAWCMIAAGPv1gO3OwAAAADQDwRhAICRZifkulQgDAMAAADGAUEYAGBkbT6Rrnxur/adz6StJ462AwAAAMBlBGEAgJH1qSl987292q+/k26azvYDAMA4YJc1gEFGEAYAGFlfPOys/ssO6wEAGDeMHAAw7AjCAAAjq/qts/UAAIwTRg4AGAUEYQCAkeV/3tl6AADGCSMHAIwCgjAAwMg6d6qz+lc7rAcAYJwwcgDAKCAIAwCMrLdD0gvP2as9eVy6GHK2HwAAhhkjBwCMAoIwAMDAsSzpWb31w7LarzN5QvrkNXvXvP665D1xpLYBABhpjBwAMAqOud0AAAB71S3p2Ieta55ekyaM9mtdOL1996pWbsa26wAAwOHOnZLu/t5+PSMHAAwigjAMtUqlotnZ2ZY18/Pzmp+f71NHAIbRW4RgAAC09XZI+uC39gbmM3IAGF9LS0taWlpqWVOpVPrUzX4EYRhq9Xpd6+vrLWu2trb61A0AAAAwuhojB9rttJYYOQCMs62trbav091EEIah5vF4ND093bLG6/X2qRsAAABgtDFyAEA7Xq9XMzMzLWsqlYrq9XqfOtqNIAxDbXp6Wmtra263AQAAAOD/YuQAMN7sjCeanZ11bdcYd40EAAAAAADAWCAIAwAAAAAAwFjgaCQAAAAAoK8sS6pbrWs8hmQY/ekHwPggCAMAAAAA9FXdko592Lrm6TVpgiAMQI9xNBIAAAAAAABjgR1hAIChdOuBdDHcvs5jbP+LcrsaAAAAAKOPIAwAMHBuPWhfc6kgTXikC21u0W4YHKsAAAAAsI2jkQCAgbL5RLryub3adz6Ttp442g4AAACAEcKOMADAQPnUlL753l7t199JN03pvVec7QkAAGxj5ACAYceOMADAQPniYWf1X3ZYDwAAumcY26MJWj0MgjAAA4wgDAAwUKrfOlsPAAAAYHwRhAEABor/eWfrAQAAAIwvgjAAwEA5d6qz+lc7rAcAAAAwvgjCAAAD5e2Q9MJz9mpPHpcuhpztBwAAuOPWA7c7ADCKCMIAAANl8oT0yWv2aq+/LnlPONoOAABwgJ2Q61KBMAxA7xGEAQAGzoXT7WtuxuzVAQCAwbL5RLryub3adz6Ttp442g6AMUMQ5oJyuaxoNGq7NplMKhgMyjAM+f1+hcNhJZNJlcvlrntYXFxUNBqV3++XYRgKBoOKx+MqFosDtSYAHOYtQjAAAIbSp6b0zff2ar/+TrppOtsPgPFCENZDtVpNhmG0fQSDQQUCgbbrLS4uKhgMKpfLNUOvWq0m0zSVy+UUDAa1uLjYUY/FYlF+v1/pdFqSlM/nVSqVlMlkZJqmotGootGoarWaq2sCAAAAGE1fPOys/ssO6wGglWNuNzBKcrmc7dpGaHSYaDSqYrEon8+nSCSiQCCgcrks0zR37QRLp9MKBAKKxWJtr1ksFps70RKJhLLZbPNzjTXC4bCKxaLC4bBWV1fl8/n6viYAAACA0VX91tl6AGiFHWE9tLCwYKuuEWwdJp1Oq1gsKpPJqFqtKp/PK5PJ7NpptVM8Hm97zVqt1qwLBAK7Aqud8vm8pO0jme3WdWJNAAAAAKPN/7yz9QDQCjvCeiSXy6lWqymVSrWd/3XmzJlDP1cul7W4uKjl5WVFIpEDa1KplEql0q4daKZpKhQKHbpuPB5vHk1stRutsYurUCioWCwql8spkUj0bU0AAAAAo+3cKenu7+3Xv3rKuV4AjB/DsizL7SZGQTAYlCSVSqUjrROPx3X27FmlUqmWdbVaTX6/v/l+JpM59GvK5XKzP0mqVqstjycWCoXmzi2fz6dqtdqXNTsxOzur9fV1zczMaG1t7UhrARg8z+rSsQ9b1zy9Jk2wrxkAgKGz+USa+cjewPyTx6X1q5L3hPN9AegfN1/T8xKiBwqFgsrlctu5X3Y0dpW14/P5dh2vbBVC7TxKGYlE2s7o2jlvrFarqVAo9GVNAMPNsrYDrFYP/ukFAABMnpA+ec1e7fXXCcEA9BZBWA8sLCzI5/Pp/PnzR15reXnZdu3Gxkbz7VbHLXceoWx1fHKnnSHb7du3+7ImgOFWt7Z3cbV61AnCAACApAun29fcjNmrA4BOMCPsiEzTlGmakiS/369AIKBIJKJoNGrrTo7dqtVqzflckUjk0DCq0VvD2bNnba0fCoWad6fcu3vLiTUBYCePsX30sV0NAAAYXW/ZDMEsq/0/tnkMyeDvDgBEEHZke49Dlstl5XK55o6pWCymq1ev2t41ZdedO3ckbe+yatyV8SDFYnHX+63uVtmqbucwfifWBICdDEOa4C+rAADAhsau9FaeXuPvFgC2cTTyCMrl8r5QaK9CoaBwOKxkMtmz69ZqNSWTSYVCIS0vL7ecz3X//v1d77eb5dXw4osv7np/ZWXF0TUBAAAAAACcxo6wIwgEAspms6rVaiqVSioWi82jf3vlcjmtrKxodXX1SNcsl8uKRqPy+Xy6d+9e2xBqbz/d7t7aeTdMJ9YEAAAAAABwGjvCjiiRSCiVSimbzapUKqlarSqTyRwYUJmmqWg02vW1CoWCgsGgyuWyarWa/H6/FhcXW37NYcFcpxrzyJxaEwAAAAAAwGkEYT3m8/mUSqVUrVaVz+f3BWLFYrFteLVTrVbT4uKigsGg4vH4vs+n0+kDP77z67uxt++dd6h0Yk0AAAAAAACncTTSQbFYTJFIRHNzc7vutLiwsKBUKmVrjWKxqFKppEgkcuhMskKhoMXFRdtrdsOJ3Vu9WLNSqWh2dvbI68zPz2t+fv7I6wAAAAAAMKqWlpa0tLR05HUqlUoPuukOQZjDfD6fVldXFQ6Hm2FYrVZTsVhUJBJp+/WxWEyxWGzXx3K5nNLp9K4gKZ1OK5FI7Nt15fP5ehI47VzXiTW7Va/Xtb6+fuR1tra2jrwGAAAAAACjbGtrqyevwd1EENYnN27cUDgcbr6/vLxsKwg7SCKRUCQSUTgc3hVI5XK5fbvCpqamehJaTU1NObpmtzwej6anp4+8jtfrPfIaAAAAAACMMq/Xq5mZmSOvU6lUVK/Xe9BR5wjC+iQUCikSiTSPNh514HwgENC9e/d2hWv379/fV9ftrqu9QdfeHWG9XrNb09PTWltbO/I6AAAAAACgtV6NFZqdnXVtZxnD8vvoKHeMPEgoFNp1bPKgcO3MmTO73re7k2vvIPtgMOjomgDGw60HbncAAAAGgceQnl5r/fAYbncJYBQRhPVRIBBovt2LY4GS9OabbzbfPiiQ2rljTLK/E61UKu16f+cxTifWBDD87IRclwqEYQAAQDIMacLT+mEQhAFwAEFYH+0MwnpxLFDa3hXWas29u7fshlY7QzWfz7erdyfWBDDcNp9IVz63V/vOZ9LWE0fbAQAA2IV/iAPQQBDWRysrK823e31MUtofUEnbQdnOgOygOWIH2dnr3nWdWBPAcPvUlL753l7t199JN01n+wEAAOODXekAOkEQ1kc7jwb26ljgzt1Yh4Vr58+fb75tmvZefe6sS6fTfVkTwPD64mFn9V92WA8AAHAQdqUD6BRBWB8VCgVJUiqV6tmajXDJ5/PtGpy/UzKZbL7duGtlKztrAoHAgaGdE2sCGF7Vb52tBwAAOAi70gF0iiCsTwqFgsrlsnw+n65evdqzdRcWFiRJN27cOLQmFArtCp4agdxh8vl88+3Ddm45sSaA4eV/3tl6AACAg7ArHUCnCMK6VCwW5ff7ZRiGotFoy+OB5XJZly9fliTdu3ev5aD8xcVFhcNhpdPpA+8CuVOjJpVKHbobrCGbzTbfboRnB6nVasrlcpK2j28mEom+rglgOJ071Vn9qx3WAwAAHIRd6QA6RRDWpXw+3wyqisWiwuHwruOCDY3PTU1NqVQq7brL4161Wk3pdFqmaWpxcVF+v//Q3VPxeFyLi4vKZDLKZDJt+w0EAs1dWY31DzI3Nydp+6jlzl1c/VoTwHB6OyS98Jy92pPHpYuH/6cQAADANnalA+gUQViX4vH4vo/lcjn5/X7F43Elk0mFw2FFo1ElEgmtrq4qEAi0XNPn8+2raQRi8Xhc6XRa0WhUfr9f0vbw/U7mjcViMS0vL8vn8ymdTisej8s0TdVqtWZgZ5qmQqGQHj161HLnmpNrAhg+kyekT16zV3v9dcl7wtF2AADAmGBXOoBOGZZlWW43MazK5bIymYyKxaI2NjZUq9Xk8/k0NTWlUCikN998U5FIpKPwp1araWFhQcViUeVyed+a0WhU58+fP3KgtLi4qNu3b++6xpkzZ5RMJtses+znmoeZnZ3V+vq6ZmZmtLa21tO1AXTnWV069mHrmpsx6e1wf/oBAACjb/OJNPORvYH5J49L61f5BzlgELj5mp4gDEOJIAwYPHaCsKfXpAn2IgMAgB66uSpdan3vLknSP56XLpx2vh8A7bn5mp6XIwAAAACAoWUn3LoZIwQDsI0gDAAAAAAw0t4iBAPwfx1zuwEAgLssS6q3OSTvMSTD6E8/AAAAAOAUgjAAGHN1y+ZsL4IwAAAAAEOOo5EAAAAAAAAYCwRhAAAAAAAAGAsEYQAAAAAAABgLBGEAAAAAAAAYCwRhAAAAAAAAGAvcNRIA0BMeY/vuku1qAAAAAMAtBGEAgJ4wDGmCoAsAAADAACMIAwAAAAAMLXalA+gEQRgAAAAAYGixKx1AJxiWDwAAAAAAgLFAEAYAAAAAAICxQBAGAGjr1gO3OwAAAACAo2NGGACMOTsh16WCNOGRLpx2vh8AAAC3WJZUt1rXeIztuWQAhhNBGIZapVLR7Oxsy5r5+XnNz8/3qSNguGw+ka58bq/2nc+kcz+UvCccbQkAAMA1dUs69mHrmqfXGM4PtLK0tKSlpaWWNZVKpU/d7EcQhqFWr9e1vr7esmZra6tP3QDD51NT+uZ7e7VffyfdNKX3XnG2JwAAAADDa2trq+3rdDcRhGGoeTweTU9Pt6zxer196gYYPl887Kz+y4cEYQAAAAAO5/V6NTMz07KmUqmoXq/3qaPdCMIw1Kanp7W2tuZ2G8DQqn7rbD0AAACA8WJnPNHs7Kxru8a4ayQAjDH/887WAwAAAMAgIQgDgDF27lRn9a92WA8AAAAAg4QgDADG2Nsh6YXn7NWePC5dDDnbDwAAAAA4iSAMAMbY5Anpk9fs1V5/XfKecLQdAAAAAHAUQRgAjLkLp9vX3IzZqwMAAACAQUYQBgBo6y1CMAAAAAAjgCAMAAAAAAAAY4EgDAAAAAAAAGOBIAwAAAAAAABjgSAMAAAAAACbbj1wuwMAR3HM7QYAAJ2zLKluta7xGJJh9KcfAACAUWAn5LpUkCY83FEbGFYEYQAwhOqWdOzD1jVPr0kTBGEAAAC2bD6Rrnxur/adz6RzP5S8JxxtCYADOBoJAAAAABh7n5rSN9/bq/36O+mm6Ww/AJxBEAYAAAAAGHtfPOys/ssO6wEMBoIwAAAAAMDYq37rbD2AwUAQBgAAAAAYe/7nna0HMBgIwgAAAAAAY+/cqc7qX+2wHsBg4K6RADDmPMb2HSbb1QAAAIyyt0PSB7+1NzD/5HHpYsj5ngD0HjvCAGDMGYY04Wn9MAjCAADAiJs8IX3ymr3a669L3hOOtgPAIQRhAAAAAABIunC6fc3NmL06AIOJIAwAAAAAAJveIgQDhhpBGAAAAAAAAMYCQRgAAAAAAADGAkEYAIyoWw/c7gAAAAAABgtBGAAMITsh16UCYRgAAAAA7EQQBgBDZvOJdOVze7XvfCZtPXG0HQAAAAAYGgRhADBkPjWlb763V/v1d9JN09l+AAAAAGBYEIQBwJD54mFn9V92WA8AAAAAo4ogDACGTPVbZ+sBAAAAYFQdc7sB4CgqlYpmZ2db1szPz2t+fr5PHQHO8z/vbD0AAAAAdGtpaUlLS0stayqVSp+62Y8gDEOtXq9rfX29Zc3W1lafugH649wp6e7v7de/esq5XgAAAEaJx5CeXmtfA+BwW1tbbV+nu4kgDEPN4/Foenq6ZY3X6+1TN0B/vB2SPvitvYH5J49LF0PO9wQAADAKDEOaIOgCjsTr9WpmZqZlTaVSUb1e71NHuxmWZVmuXBk4gtnZWa2vr2tmZkZra2tutwP03c1V6VKhfd0/npcunHa+HwAAAACwy83X9AzLB4AhZCfcuhkjBAMAAACAnQjCAGBEvUUIBgAAAAC7EIQBAAAAAABgLBCEAQAAAAAAYCwQhAEAAAAAAGAsHHO7AQAAAAAARo1lSXWrdY3HkAyjP/0A2EYQBgAAAABAj9Ut6diHrWueXpMmCMKAvuJoJAAAAAAAAMYCQRgAAAAAAADGAkEYAAAAAAAAxgJBGAAAAAAAAMYCQRgAAAAAAADGAneNBIAh5DG27zLUrgYAAAAA8CcEYQAwhAyDW20DAAAAQKc4GgkAAAAAAICxQBAGAAAAAACAsUAQBgAAAACAC249cLsDYPwQhAEAAAAA0GN2Qq5LBcIwoN8IwgAAAAAA6KHNJ9KVz+3VvvOZtPXE0XYA7EAQBgAAAABAD31qSt98b6/26++km6az/QD4E4IwAAAAAAB66IuHndV/2WE9gO4RhAEAAAAA0EPVb52tB9A9gjAAAAAAAHrI/7yz9QC6RxAGAAAAAEAPnTvVWf2rHdYD6B5BGAAAAAAAPfR2SHrhOXu1J49LF0PO9gPgTwjCAKBPLEt6Vm/9sCy3uwQAAMBRTZ6QPnnNXu311yXvCUfbAbDDMbcbAIBxUbekYx+2rnl6TZow+tMPAAAAnHPhtHSp0LrmZmy7DkD/sCMMAAAAAAAXvEUIBvQdQRgAAAAAAADGAkEYAAAAAAAAxgIzwjDUKpWKZmdnW9bMz89rfn6+Tx0BAAAAADC+lpaWtLS01LKmUqn0qZv9CMIw1Or1utbX11vWbG1t9akbAAAAAADG29bWVtvX6W4iCMNQ83g8mp6eblnj9Xr71A0AAAAAAOPN6/VqZmamZU2lUlG9Xu9TR7sRhGGoTU9Pa21tze02AAAAAACA7I0nmp2ddW3XGMPyAQAAAAAAMBYIwgAAAAAAADAWCMIAAAAAAAAwFgjCAAAAAAAAMBYYlg8AA+TWA+li2O0uAAAAcFQeQ3p6rX0NgP4iCAOAPrn1oH3NpYI04ZEunHa+HwAAADjHMKQJgi5g4HA0EgD6YPOJdOVze7XvfCZtPXG0HQAAAAwJy5Ke1Vs/LMvtLoHhwY4wAOiDT03pm+/t1X79nXTTlN57xdmeAAAAMPjqlnTsw9Y1T6+x+wywix1hANAHXzzsrP7LDusBAAAAAO0RhAFAH1S/dbYeAAAAANAeQRgA9IH/eWfrAQAAAADtEYQBQB+cO9VZ/asd1gMAAAAA2iMIA4A+eDskvfCcvdqTx6WLIWf7AQAAAIBxRBAGAH0weUL65DV7tddfl7wnHG0HAAAAAMYSQRgA9MmF0+1rbsbs1QEAAAAAOnfM7QYAYJBZllS3Wtd4DMkwenO9twjBAAAAAMAxBGEA0ELdko592Lrm6TVpokdBGAAAAADAORyNBAAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAABgiN164HYHwPAgCAMAAAAAYEDZCbkuFQjDALsIwgAAAAAAGECbT6Qrn9urfeczaeuJo+0AI4EgDAAAAACAAfSpKX3zvb3ar7+TbprO9gOMAoIwAAAAAAAG0BcPO6v/ssN6YBwRhAEAAAAAMICq3zpbD4wjgjAAAAAAAAaQ/3ln64FxdMztBgBgXHgM6em19jUAAACAJJ07Jd39vf36V0851wswKtgRBgB9YhjShKf1wyAIAwAAwP/1dkh64Tl7tSePSxdDzvYDjAJ2hGGoVSoVzc7OtqyZn5/X/Px8nzrCOLr1QLoYdrsLAAAAjJrJE9Inr0mXCu1rr78ueU843hLQ1tLSkpaWllrWVCqVPnWzH0EYhlq9Xtf6+nrLmq2trT51g1F060H7mkuF7d1cF0473w8AAADGy4XT7YOwmzH+LorBsbW11fZ1upsIwjDUPB6PpqenW9Z4vd4+dYNRs/lEuvK5vdp3PpPO/ZB/hQMAAED/vUUIhgHi9Xo1MzPTsqZSqaher/epo90IwjDUpqentba25nYbGFGfmtI339ur/fo76aYpvfeKsz0BAAAAwCCzM55odnbWtV1jDMsHgEN88bCz+i87rAcAAAAA9BdBGAAcovqts/UAAAAAgP7iaCQAHML/vLP1AAAAANAJy5LqVusajyEZRn/6GUYEYQBwiHOnpLu/t1//6innegEAAACAuiUd+7B1zdNr0gRB2KE4GgkAh3g7JL3wnL3ak8eliyFn+wEAAAAAHA1BGAAcYvKE9Mlr9mqvvy55TzjaDgAAAADgiAjCAKCFC6fb19yM2asDAAAAALiLIAwAjugtQjAAAAAAGAoEYQAAAAAAABgL3DUSAAAAAIAB5TG27wLYrgaAPQRhAAAAAAAMKMOQJgi6gJ7haCQAAAAAAADGAjvCAAAAAAAYA5Yl1a3WNR5jexcaMKoIwgAAAAAAGAN1Szr2Yeuap9c4ionRxtFIAAAAAAAAjAWCMAAAAAAAAIwFgjAXlMtlRaNRW7WmaSqZTCoYDMowDBmGoWAwqHQ6rVqtNjB9StLi4qKi0aj8fn+zz3g8rmKx6GCXAAAAAAAA9hCE9VCtVmuGVa0ewWBQgUCg7VrxeFzhcFi5XE7lcrn5uXK5rMXFRfn9fuVyOVf7lKRisSi/3690Oi1JyufzKpVKymQyMk1T0WhU0WjU8eAOAAAAAACgFYbl91AnoVQjNDpIrVZTOBzeFX4dJplManV1Vdls1va1e9WntB2CNXaNJRKJXX0EAgHFYjGFw2EVi0WFw2Gtrq7K5/PZvj4AAAAAAECvGJZltbl5Kuzy+/22dj1FIhEtLy8f+vloNKpisahQKKSrV68qFApJ2j4mef/+fS0uLu77mnw+r1gs1tc+a7WaXnrpJdVqNQUCAZVKpQPryuWygsGgrTXtmp2d1fr6umZmZrS2tnbk9ZzC7YmHH79DAAAAjIpndZt3jeTs2MAald+hm6/p2RHWI7lcTrVaTalUqu1crTNnzrRcp1gsKpVKKZPJ7PpcY4dVMplUPB6XaZrNz12+fNlWENarPiUpHo83A7VWO8cafRcKBRWLReVyOSUSiba9jgJuTzz8DIPfDwAAAACMCnaE9Uhjx9Nhu6I6WScQCLTdNbVzl1XD8vKyIpFIX/rce/1qtdryyGOhUFA8Hpck+Xw+VavVI11/WHaEjUpaDwAAAGD48fpk+I3K79DN1/QD/qMZDoVCQeVyue08rXZM01S5XFY+n29bGwgE9u0Y27lDzMk+Je26diQSaTv3a+dutVqtpkKhcOQeAAAAAAAAOkEQ1gMLCwvy+Xw6f/78kda5ffu2EomE7WHye3d//fGPf2xZ36s+pd0D9xszzNrZeQfK27dvH7kHAAAAAACATjAj7IhM02zuxPL7/QoEAopEIopGo7aH1ze8+eabu8KidvYGUHuPSjrV596dZ2fPnrXdb+NOmOwIAwAAAAAA/caOsCPae8ywXC4rl8spHo/LMIx9Q+1bCYVCtneDSdp358dWIVov+ywWi7av26rO7vUAAAAAAAB6gSDsCMrl8r5QaK9CoaBwOKxkMunI9Xc6bFB+r/u8f//+rvfthncvvvjirvdXVlZsfR0AAAAAAEAvcDTyCAKBgLLZrGq1mkqlkorF4r5wqiGXy2llZUWrq6s9u/7OICmRSPStz71f2+2OsKPeuRIAAAAAAKATBGFHtDeAqtVqyuVyWlhY2Hd00TRNRaNRLS8v9+Ta2Wy2+Xa7O0H2ss/DQrRO7b0uAAAAAMBdtx5IF8NudwE4h6ORPebz+ZRKpVStVpXP5/cdGywWi1pcXDzydcrlcnPGViaT6WjI/lH77DbA2nuNjY2NrtYBAAAAAHTu1oP2NZcK9uqAYWVYlmW53cQoq9Vqmpub2zUY3ufzqVqtHmndZDKpXC6nQCDQkyOGnfRpGMau9+0+hYrFoqLRaPP9SCTS9e642dlZra+vy+PxaHp6uqs1dpqfn9f8/PyR19nrWV069mHrmqfXpAkiaQAAAAAO2nwizXwkffN9+9qTx6X1q5L3hPN9oTNuv8ZcWlrS0tLSkdepVCqq1+uamZnR2tpaDzqzj6ORDvP5fFpdXVU4HG6GTLVaTcVi8dDh9u2YpqlcLiefz9ezY5ad9Onz+XpyrLGTO2Qepl6va319/cjrbG1tHXkNAAAAABhUn5r2QjBJ+vo76aYpvfeKsz1h+GxtbfXkNbibCML65MaNGwqH/3TQenl5uesg7PLly5Kke/fudXwksh07fU5NTfUkCJuamjryGr3aEeb1eo+8BgaHZUn1NhsVPYa0Z3MjAAAAMLK+eNhZ/ZcPCcKwn9fr1czMzJHXaewIcwNBWJ+EQiFFIhEVi0VJ3Q+cTyaTMk1T+XxeoVColy1Kstdntzu59oZnvdgRNj093fdtlBh8dcvmdmGCMAAAAIyJ6rfO1mM89GqsUGPckRuYTNRHO+djdSOXyymXyymbzSoWi/Woq/3a9XnmzJld79vdHbZ3OH4wGOyoLwAAAABAd/zPO1sPDAuCsD7aeYyx02OBxWJRyWRS2WxWiUSi163t0q7PnUcnJfu72/YO9e/2aCgAAAAAoDPnTnVW/2qH9cCwIAjro50BUyfHAk3TVDQaVSaTcTwEk9r3uXdHmN0gbOfOMZ/P1/P5ZgAAAACAg70dkl54zl7tyePSxd5P4gEGAkFYH62srDTftntMslwua25uTqlUSqlUyqnWdmnXZygU2hWQ3b9/v+N194ZpAAAAAADnTJ6QPnnNXu311yXvCUfbAVxDENZHO48G2jkWWC6XFQ6HlUgklMlkbF2jXC5rcXGx6x4le32eP3+++bZpmrbW3VmXTqe77A4AAAAA0I0Lp9vX3IzZqwOGFUFYHxUKBUmytbOrVqspGo3q/PnztkMwSYrH40eevWWnz2Qy2Xy7cYfJVnbWBAIB5oMBAAAAwAB6ixAMI+6Y2w2Mi0KhoHK5LJ/Pp6tXr7asrdVqCofDCgQCSqfTtmZwlcvl5i6rUKj7w9x2+wyFQopEIs2Aq1AotLyTZT6fb77NbjAAAAAAAOAGdoR1qVgsyu/3yzAMRaPRlscDy+WyLl++LEm6d+9e20H5c3NzKpfLKhaLCgaDth6NHnbu1HK6z2w223x7YWHh0LparaZcLidp+6hlPwb+AwAAAAAA7EUQ1qV8Pt+8C2KxWFQ4HN4XQu383NTUlEqlUtvdWuFw2PbMrYPsDZmc6lPaPuLY2Ollmuahs8nm5uYkbd8pcufOMAAAAAAAgH4iCOtSPB7f97FcLie/3694PK5kMqlwOKxoNKpEIqHV1VUFAoG2a/YyBHOqz51isZiWl5fl8/mUTqeb30OtVmuGa6ZpKhQK6dGjR213mQEAAAAAADiFGWFdikQiKpVKymQyKhaL2tjYaO68agQ/V69eVSQSsR3+OLFbyok+D7pGtVrV4uKibt++rbm5OdVqNfl8Pp05c0b5fL7l/DAAAAAAAIB+IAg7gkAgsGtO1qDqV5+pVMrWHTGBQXDrgXQx7HYXAAAAAIB+4mgkgJFz60H7mksFe3UAAAAAgNFBEAZgpGw+ka58bq/2nc+krSeOtgMAAAAAGCAEYQBGyqem9M339mq//k662f39KQAAAAAAQ4YgDMBI+eJhZ/VfdlgPAAAAABheDMsHMFKq3zpbDwAAAECyLKluta7xGJJh9KcfwC6CMAAjxf+8s/UAAADAsPIY0tNr7WvsqFvSsQ9b1zy9Jk0QhGHAcDQSwEg5d6qz+lc7rAcAAACGlWFIE57WD3ZwYdQRhAEYKW+HpBees1d78rh0MeRsPwAAAACAwUEQBmCkTJ6QPnnNXu311yXvCUfbAQAAAAAMEIIwACPnwun2NTdj9uoAAAAAAKODIAzAWHqLEAwAAAAAxg5BGAAAAAAAAMYCQRgAAAAAAADGAkEYAAAAAAAAxgJBGAAAAAAAAMYCQRgAAAAAAADGAkEYAAAAAAAAxsIxtxsAjqJSqWh2drZlzfz8vObn5/vUEQAAAAAA42tpaUlLS0stayqVSp+62Y8gDEOtXq9rfX29Zc3W1lafugEAAAAANNx6IF0Mu90F+m1ra6vt63Q3EYRhqHk8Hk1PT7es8Xq9feoGAAAAAMbDrQftay4VpAmPdOG08/1gcHi9Xs3MzLSsqVQqqtfrfepoN4IwDLXp6Wmtra253QYAAAAAjI3NJ9KVz+3VvvOZdO6HkveEoy1hgNgZTzQ7O+varjGCMAAjx2NIT6+1rwEAAADQuU9N6Zvv7dV+/Z1005Tee8XZngC7uGskgJFjGNtbsFs9DIIwAAAAoCtfPOys/ssO6wEnEYQBAAAAAADbqt86Ww84iSAMAAAAAADY5n/e2XrASQRhAAaGZUnP6q0fluV2lwAAAMB4O3eqs/pXO6wHnMSwfAADo25Jxz5sXfP0mjTBfC8AAADANW+HpA9+a29g/snj0sWQ8z0BdrEjDAAAAAAA2DZ5QvrkNXu111+XvCccbQfoCEEYAAAAAADoyIXT7WtuxuzVAf1EEAYAAAAAAHruLUIwDCCCMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAAAAjAWCMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAAAAjAWCMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAAAAjAWCMAAAAAAAAIyFY243AACduPVAuhh2uwsAAABgvHkM6em19jXAoCEIAzAwbj1oX3OpIE14pAunne8HAAAAwMEMQ5og6MIQ4mgkgIGw+US68rm92nc+k7aeONoOAAAAAGAEEYQBGAifmtI339ur/fo76abpbD8AAAAAgNFDEAZgIHzxsLP6LzusBwAAAACAIAzAQKh+62w9AAAAAAAEYQAGgv95Z+sBAAAAACAIAzAQzp3qrP7VDusBAAAAACAIAzAQ3g5JLzxnr/bkceliyNl+AAAAAACjhyAMwECYPCF98pq92uuvS94TjrYDAAAAABhBBGEABsaF0+1rbsbs1QEAAAAAsNcxtxsAjqJSqWh2drZlzfz8vObn5/vUEZz2FiEYAAAAAAyspaUlLS0ttaypVCp96mY/gjAMtXq9rvX19ZY1W1tbfeoGAAAAAIDxtrW11fZ1upsIwjDUPB6PpqenW9Z4vd4+dQMAAAAAgLtuPZAuht27vtfr1czMTMuaSqWier3ep452IwjDUJuentba2prbbQAAAAAAumRZUt1qXeMxJMPoTz+D7NaD9jWXCtKEx73ZynbGE83Ozrq2a4wgDAAAAAAAuKZuScc+bF3z9Jo0MeZB2OYT6crn9mrf+Uw690PJe8LRloYSd40EAAAAAAAYcJ+a0jff26v9+jvppulsP8OKIAwAAAAAAGDAffGws/ovO6wfFwRhAAAAAAAAA676rbP144IgDAAAAAAAYMD5n3e2flwQhAEAAAAAAAy4c6c6q3+1w/pxQRAGAAAAAAAw4N4OSS88Z6/25HHpYsjZfoYVQRgAAAAAAMCAmzwhffKavdrrr0veE462M7QIwgAAAAAAABxiWdKzeuuHZdlb68Lp9jU3Y/bqxtUxtxsAgAaPIT291r4GAAAAAIZF3ZKOfdi65uk1aaJHr3XeIgRriSAMwMAwjN79xx8AAAAAgL04GgkAAAAAAICxQBAGAAAAAACAsUAQBrjs1gO3OziaXg5+BAAAAADAScwIAxxkJ+S6VJAmPMN7V49+D34EAAAAAKBb7AgDHLL5RLryub3adz6Ttp442g4AAAAADK1hP0mDwUEQBjjkU1P65nt7tV9/J900ne0HAAAAAAaR3ZM0hGHoBYIwwCFfPOys/ssO6wEAAABg2HGSBv1GEAY4pPqts/UAAAAAMOw4SYN+IwgDHOJ/3tl6AAAAABh2nKRBvxGEAQ45d6qz+lc7rAcAAACAYcdJGvQbQRjgkLdD0gvP2as9eVy6GHK2HwAAAAAYNJykQb8RhAEOmTwhffKavdrrr0veE462AwAAAAADh5M06DeCMMBBF063r7kZs1cHAAAAAKOGkzToN4IwwGVvEYIBAAAAGFOcpEG/EYQBAAAAAADXcJIG/UQQBgAAAAAABhonadArBGEAAAAAAAAYCwRhAAAAAAAAGAvH3G4AOIpKpaLZ2dmWNfPz85qfn+9TRzjIrQfSxbDbXQAAAAAAnLa0tKSlpaWWNZVKpU/d7EcQhqFWr9e1vr7esmZra6tP3YynWw/a11wqSBMehlsCAAAAwKjb2tpq+zrdTQRhGGoej0fT09Mta7xeb5+6GT+bT6Qrn9urfecz6dwPud0xAAAAAIwyr9ermZmZljWVSkX1er1PHe1GEIahNj09rbW1NbfbGFufmtI339ur/fo76aYpvfeKsz0BAAAAANxjZzzR7Oysa7vGGJYPoGtfPOys/ssO6wEAAAAA6CWCMABdq37rbD0AAAAAAL1EEAaga/7nna0HAAAAAKCXCMIAdO3cqc7qX+2wHgAAAAA6YVnSs3rrh2W53SXcxLB8AF17OyR98Ft7A/NPHpcuhpzvCQAAAMD4qlvSsQ9b1zy9Jk0Y/ekHg4cdYQC6NnlC+uQ1e7XXX5e8JxxtBwAAAACAltgRBuBILpyWLhVa19yMbdcBAAAAwF4eY3uXVrsaoBcIwgA47i1CMAAAAACHMAyOKqJ/OBoJAAAAAACAsUAQBgAAAAAAgLFAEAYAAAAAAICxQBAGAAAAAACAsUAQBgAAAAAAgLHAXSOBIWFZUt1qXeMxtu+40s+1AAAAAAAYFgRhwJCoW9KxD1vXPL1m77bDvVwLAAAAAIBhwdFIAAAAAAAAjAWCMAAAAAAAAIwFgjAAAAAAAACMBYIwAAAAAAAAjAWCMAAAAAAAAIwF7hoJ4Eg8xvYdJtvVAAAAAADgNoIwAEdiGNIEQRcAAAAAYAhwNBIAAAAAAMBFtx643cH4IAgDAAAAAABjo9+hk53rXSoQhvULQRgAAAAAABgJvQqdLEt6Vm/9sKz219p8Il353F7v73wmbT2xV4vuMSMMAAAAAAAMvU5Dp3M/lLwnDv583ZKOfdh6jafX2s9L/tSUvvneXk9ffyfdNKX3XrFXj+6wIwwAAAAAAAy9bkInp33xsLP6LzusR+cIwgAAAAAAwNAbxNCp+q2z9egcQRgAAAAAABh6gxg6+Z93th6dY0YYhlqlUtHs7GzLmvn5ec3Pz/epIwAAAACAGwYxdDp3Srr7e/v1r55yrpd+WVpa0tLSUsuaSqXSp272IwjDUKvX61pfX29Zs7W11aduAAAAAABuGcTQ6e2Q9MFv7c0uO3lcuhhyvienbW1ttX2d7iaCMAw1j8ej6enpljVer7dP3QAAAAAA3DKIodPkCemT16RLhfa1118//C6Ww8Tr9WpmZqZlTaVSUb1e71NHuxGEYahNT09rbW3N7TYAAAAAAC4b1NDpwun2Pd2MbdeNAjvjiWZnZ13bNcawfAAHuvXA7Q4AAAAAoDN2wqRBDJ3eGrB+RhlBGDCG7IRclwqEYQAAAABGD6HTeCMIA8bM5hPpyuf2at/5TNp64mg7AAAAAAD0DUEYMGY+Ne0Nj5Skr7+TbprO9gMAAAAAQL8QhAFj5ouHndV/2WE9AAAAAACDiiAMGDPVb52tBwAAAABgUBGEAWPG/7yz9QAAAAAADCqCMGDMnDvVWf2rHdYDAAAAADCoCMKAMfN2SHrhOXu1J49LF0PO9gMAAAAAQL8QhAFjZvKE9Mlr9mqvvy55TzjaDgAAAAAAfUMQBoyhC6fb19yM2asDAAAAAGBYEIQBONBbhGAAAAAAgBFDEAYAAAAAAICxQBAGAAAAAACAsUAQBgAAAAAA0KFbD9zuAN0gCAMAAAAAANjBTsh1qUAYNowIwlxQLpcVjUZt1ZqmqWQyqWAwKMMwZBiGgsGg0um0arVa1z0sLi4qGo3K7/c314zH4yoWiwO1JgAAAAAAdnkM6em11g+P0XqNzSfSlc/tXe+dz6StJ0duG31EENZDtVqtGVa1egSDQQUCgbZrxeNxhcNh5XI5lcvl5ufK5bIWFxfl9/uVy+U66rFYLMrv9yudTkuS8vm8SqWSMpmMTNNUNBpVNBrtKGRzYk0AAPD/t3f/sG1l+53Af/LMe5hgA4f2AAEGdhOqSRvS02xrqtsgKUgZSJCkMrlY7DYupB2kfjCkws0ugpDTvWALDVnsIikWS067jS1u+4CF7mtsGAgw4l0jQR7ee2NuYZChKImiJF7+0f18AAGidXju78qH4tVX55wLAFzX1lbEZ/dmf2xdEYT9XT/in38z3/H+6dcRP+/fvm6W5/NVF3CXXCeUGoVGF0nTNMrl8pnw6zKNRiOOj4+j2Wxe2bbX641notXr9TPPKRaLUa1Wo1wuR6/Xi3K5HMfHx1EoFJbeJwAAAKzK3//ieu3/4RcR//HfZlMLi2dG2AK9fPlyrnaVSmXmjLBarRZJkkSpVBrPrjo5OYl2ux17e3vn2rdareh0OjOPOZphFvEpoLosOGu32xHxadbZqP0y+wQAAIBVGvxLtu1ZLTPCFqTVakWaprG3t3fl/l9PnjyZ2U+v14u9vb04ODg487XRDKtGoxG1Wi36/X+df/n8+fOoVquX9lur1cZLE2fNRhsdo9PpRK/Xi1arFfV6fWl9AgAAwCo9+J1s27NaW8PhcLjqIu6C7e3tiIg4OTm5dT/FYjG63e7MdkmSjI850u12o1KpXNl2MBjMXJ7Y6XTGM7cKhUIMBoOl9Hkdjx8/jnfv3sWjR4/i7du3t+orSz9+jPj8r2e3+e3PPq1T39S+AAAA7pL/+r8j/tPfz9/+v/zx7KWRfpc7b5W/06/5t2YzdDqdSJJk5qyoefT7/UiSZLyUcJZisXhuxtjkDLFJk+0qlcqVe3RNzixL0/TCZZdZ9AkAAACr9heliH/zk/na/u5PI/6ylG09LJYgbAFevnwZhUIhdnd3b9XP0dFR1Ov1uTeTn5799cMPP1zYbnIT/1Jpvlfo5B5mR0dHS+kTAAAAVu33voj4mz+Zr+3f/mnE/S8yLYcFE4TdUr/fj36/H2maxoMHD2J7ezsajcaNZjw9e/bs3CyvWaYDqOmlkqP6Jn399dfX7nv6XLLok8X4b/9n1RUAAABsvj//o6vb/Lw6XzvWiyDslqaXQyZJEq1WK2q1WmxtbZ3b1H6WUqk092ywiBhvVD9y0Z0oe73elW0uMt1u8hyy6JOrzRNy/VVHGAYAALAMfyYE20iCsFtIkuRcKDSt0+lEuVyORqORyfEnXbRR/uvXr888njdo+/LLL888fvPmTaZ9Mtv/+1XEf/gf87X99/894sOvMi0HAAAANpIg7BaKxWI0m804ODiIer0+c2ZUq9WKcrm80ONPBkn1ev3CNtNh2U1nb03eDTOLPpnt7/oR//yb+dr+068jfm6yHQAAAJzz+aoL2HTTAVSaptFqteLly5fnli72+/3Y2dmJbre7kGM3m83x55fdsXI6tLqpyXPJok9m+/tfXK/9P/xi9u17AQAAII/MCFuwQqEQe3t7MRgMot1un1s22Ov14vDw8NbHSZJkvMfWwcHBpbOybho2Tdd9enqaaZ/MNviXbNsDAABAHpgRlqFqtRqVSiWePn16ZmP4ly9fxt7e3q36Ht1dslgs3rqveWQxe2sRfb5//z4eP358635evHgRL168uHU/WXnwO4ttf28r4rc/u7oNAAAAjLx69SpevXp1637ev3+/gGpuRhCWsUKhEMfHx1Eul8dhWJqm0ev1Ltzcfh79fj9arVYUCoUrl1kWCoWFBE6Ts7my6POmPn78GO/evbt1Px8+fLh1H1n64z+M+F//d/72/+4PZ399ayviM0EXAAAA1/Dhw4eF/A6+SoKwJfn222/PbJbf7XZvHIQ9f/48IiK+//77Kzeqf/jw4UJCq4cPH2ba503du3cvvvrqq1v3c//+/Vv3kaW/KEX85/8534b5v/vTiL8sZV8TAAAA+XL//v149OjRrft5//59fPz4cQEVXZ8gbElKpVJUKpXo9XoRcfMN5xuNRvT7/Wi321EqXZ123HTW1XTQNT0jbNF93tRXX30Vb9++vXU/6+73voj4mz+J+KvO1W3/9k8j7n+ReUkAAADkzKK2FXr8+PHKZpbZLH+JdnZ2bvX8VqsVrVYrms1mVKvVuZ7z5MmTM4/nnck1vZH99vZ2pn1ytT//o6vb/Lw6XzsAAADII0HYEk0uY7zussBerxeNRiOazWbU6/W5nze5HDNi/ploJycnZx5PLuPMok8W48+EYAAAAHApQdgSTQZh11kW2O/3Y2dnJw4ODq4VgkWcn701b2g1OcurUCicqT2LPgEAAACyJghbojdv3ow/n3eZZJIk8fTp09jb24u9vb1rH7NUKp0J3V6/fj3X8yZrnQ6+sugTAAAAIGs2y1+iyaWB8ywLTJIkyuVy1Ov1ODg4mOsYSZJEp9M5E5rt7u5Gq9WKiE+zy+Yx2W5/f//c17PoEwAAALjcva2I3/7s6jZczoywJep0Pt3yb56ZXWmaxs7OTuzu7s4dgkVE1Gq1cyFbo9EYfz66a+Usk22KxeKFoV0WfQIAAACX29qK+Oze7I8tQdhMgrAl6XQ6kSRJFAqF+Oabb2a2TdM0yuVyFIvF2N/fjyRJrvzo9XrjTexLpdKZ/kql0pngaRTIXabdbo8/v2zmVhZ9AgAAAGRpazgcDlddxCbq9XpRq9UiTdOoVCpxcHBwLoAaGS1xTNM0jo+PL203Ui6X515uOO2yu0omSRLb29sR8SnEOj4+vvD5aZrGgwcPIuLT8s1ut3vpsbLoc16PHz+Od+/exaNHj+Lt27e37i8rw2HExyteYfe25kvsf/wY8flfz27z2599+gsAAAAAN7fI37/8LnfeKn+nz9G3ebHa7fb4Loij2ViTywVHRl97+PBhnJycZBqCRcSld5UsFovjWVn9fj8ODw8vbPf06dOI+HRXx8lZXMvq864xbRUAAADWhyDshmq12rl/a7Va8eDBg6jVatFoNKJcLsfOzk7U6/U4Pj6OYrF4ZZ9ZhGAj1Wo1ut1uFAqF2N/fHx8vTdNxYNfv96NUKsUvf/nLM3eGXGafAAAAAFlw18gbqlQqcXJyEgcHB9Hr9eL09HQ8Q2wU/HzzzTdRqVTmDn+WMVuqUqnEYDCIw8PDODo6iqdPn0aaplEoFOLJkyfRbrejWq2uvE8AAACARbNHGBtpU/YIWyTrygEAAJZjkfs9L7Kvu2KVv9ObEQYAAAAwYWsr4rMFBVOL7IvbM3cEAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOTC56suAG7j/fv38fjx45ltXrx4ES9evFhSRQAAAJBfr169ilevXs1s8/79+yVVc54gjI328ePHePfu3cw2Hz58WFI1AAAAkG8fPny48vf0VRKEsdHu3bsXX3311cw29+/fX1I1AAAAkG/379+PR48ezWzz/v37+Pjx45IqOmtrOBwOV3JkuIXHjx/Hu3fv4tGjR/H27dtVl7MUP36M+PyvZ7f57c8iPrPzHwAAAGtslb/T+5UZAAAAgFwQhAEAAACQC4IwAAAAAHLBZvmwIe5tfdoD7Ko2AAAAwMUEYbAhtrYiPhN0AQAAwI1ZGgkAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIhc9XXQBAVl69ehUfPnyI+/fvx4sXL1ZdDiycMc5dZnxzlxnf3GXGN+tuazgcDlddBFzX48eP4927d/Ho0aN4+/btqsthTRkn3HXGOHeZ8c1dZnxzlxnfzGOV48TSSAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXPh81QXAJnj16lV8+PAh7t+/Hy9evFh1ORGhpk21jt8jNc1nHWtaN+v4PVLTfNaxpnW0bt+ndasnQk2bbN2+T+tWT4SaNtk6fp/WraZ1qydTQ9hAjx49GkbE8NGjR3fyePNQ09XWrZ7hUE3zUtN81q2mdatnOFTTvNQ0n3Wrad3qGQ7VNC81XW3d6hkO1TQvNc1n3WrK0+/YlkYCAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBXeNZKO9f/8+Hj9+PLPNixcv7v5dLwAAAGANvHr1Kl69ejWzzfv375dUzXmCMDbax48f4927dzPbfPjwYUnVAAAAQL59+PDhyt/TV0kQxka7d+9efPXVVzPb3L9/f0nVAAAAQL7dv38/Hj16NLPN+/fv4+PHj0uq6Kyt4XA4XMmR4RZ++tOfxm9+85u5grBFGL1Il3W8eahp8+qJUNO81DSfdatp3eqJUNO81DSfdatp3eqJUNO81LR59USoaV5qms+61bTsekbH+8lPfhK//vWvMz/eJEEYG+mzzz5bWXoMAAAA3N69e/fixx9/XOoxLY1kI33xxRfxq1/9Kj777LP4/d///VWXAwAAAMzpH//xH+PHH3+ML774YunHNiMMAAAAgFy4t+oCAAAAAGAZBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAzYaIeHh7GzsxMPHjyIra2t2N7ejlqtFr1eL9Pj9vv9aDQasb29HVtbW+Nj7+/vR5qmmR6b/FjV+J6WJEns7OxEp9NZ6nHZTKsct+vymuHuWpcx5ucyWXBdTW4MATZQt9sdFgqFYUQMK5XKsNvtDk9OTobtdntYLBbH/z4YDBZ63MFgMKxWq8OImPnRbDYXelzyZVXje9r0eDeumWWV43ZdXjPcXesyxvxcJguuq8kbQRiwcbrd7viNsV6vX9imVCoNI2JYLBYX9qY9GAzGFwPzfFxWG8yyqvE9aTAYDPf29lyIMrdVjtt1eM1wt63DGPNzmay4riaPBGHARhkMBuO/WBWLxUvbnZycjN84K5XKQo5dqVSGETEslUrDdrs9PDk5Gf+17KKL04gYttvthRybfFjl+B45ODgYFovF8Xj3CxdXWeW4XYfXDHfbOowxP5fJiutq8koQBmyUyYvAqy7+Frl0oNlsDiNiuLe3d2mbk5OT8V/MRh+FQuFWxyVfVjW+R46Pj4fHx8fjx6Nx7xcuZlnluF31a4a7b9VjzM9lsuS6mrzaGg6HwwDYAEmSxPb29vjxYDCIQqFwaftOpxO1Wi0iIgqFQgwGgxsfe3t7O4rFYnS73WvVGBHR7XajUqnc+NjkwyrH92X6/X6Uy+Xx42azGfV6feHHYXOtctyu42uGu2Udx5ifyyyK62ryzF0jgY1xcHAw/rxSqcx8s46IqFar48/TNL3xnZX6/X4kSRLtdvvKtsVi8Uydo+fDVVY1vme5qgZY5bhdx9cMd8s6jjE/l1kU19XkmSAM2BitVmv8ealUmus5xWJx/PnR0dGNjnt0dBT1en3ui8/pv1L98MMPNzou+bKq8Q23scpx6zVD1owx7jLX1eSZIAzYCNN//fn666/net7kG/tN/3L17Nmzc3+NmveYEXFuSjdMW+X4hpta5bj1miFrxhh3metq8k4QBmyEXq935vHkX6RmmW53k+nUpVLpWksR0jSdWQNMW+X4hpta5bj1miFrxhh3metq8k4QBmyE169fn3k87xvol19+eebxmzdvFlXSpZIkOfPYhp5cZZPGN4ysctx6zZA1Y4y7bJPGt+tqsiAIAzbC9JvgTf9ydXJysrCaLjN5UeBOTsxjk8Y3jKxy3HrNkDVjjLtsk8a362qyIAgDNsL0G/ZNTU+vzkKz2Rx/vr+/n/nx2HybNL5hZJXj1muGrBlj3GWbNL5dV5MFQRiwEW76Rjs91fv09PT2xcyQJMl4v4SDgwP7GDCXTRnfMGmV49ZrhqwZY9xlmzK+XVeTFUEYkCtZ/+VqdBecYrEYe3t7mR4Lppl5wCZa5bj1miFrxhh3metqNpUgDNgI17m7zDL6uUi/349WqxWFQiG63W5mx+Hu2YTxDdNWOW69ZsiaMcZdtgnj23U1WRKEAbfWarVia2troR/lcvnMMR4+fLiQWhfVz0WeP38eERHff/+9qdt3iPENF1vluPWaIWvGGHfZJoxv19VkSRAGbISb/sVpesp2Vn+5ajQa0e/3o91uR6lUyuQY3F3rPr7hIqsct14zZM0Y4y5b9/Htupqsfb7qAoDNV6lUot1uL7TP6TfWJ0+ejDfLjPj0RjzPm+/0Jp7b29uLKO+MVqsVrVYrms1mVKvVhffPauV9fMNlVjluvWbImjHGXbbO49t1NcsgCANurVgsZj5leXopWZIkc/2F6OTk5MzjSqWy0Lp6vV40Go1oNptRr9cX2jfrIc/jG2ZZ5bj1miFrxhh32bqOb9fVLIulkcBGePLkyZnHSZLM9bzJKdyFQmGhgUa/34+dnZ04ODjwZs2trOP4hqusctx6zZA1Y4y7bB3Ht+tqlkkQBmyEUql0Zsr269ev53remzdvxp9Pv+nfRpIk8fTp09jb23M7Z25t3cY3zGOV49ZrhqwZY9xl6za+XVezbIIwYGPs7u6OP5/c12CWyXb7+/sLqSNJkiiXy1Gv1+Pg4GDu5xweHi7k+NxN6zK+4TpWOW69ZsiaMcZdti7j23U1qyAIAzZGo9EYf97r9a5sP9mmWCwuZB+DNE1jZ2cndnd3536zjoio1Wr2CWGmdRjfcF2rHLdeM2TNGOMuW4fx7bqaVRGEARujVCqdedPrdDoz20/e6e+qv1q1Wq3Y39+fuUdCmqZRLpejWCyO21710ev1xhuSuv0zs6x6fF9k+jbpMG2V4zbLY0OEn8vcbase366rWakhwAY5OTkZRsQwIoalUunSdoPBYNyuUqnM7LNSqYzbRsRwMBhc2K5UKp1pd52PZrN5m9MmJ1Y5vi/SbrfPPPfg4GDu55Ifqxy3WRwbJvm5zF3mupq8EoQBG2fyIvCyC8DRm2uhULjyAnOeN9fbvFn7mwPXsYrxfZHBYDAsFotnnjvrIpl8W+W4XfSxYZqfy9xlrqvJI6MI2EjdbndYKBSGETGsVqvD4+Pj4WAwGHa73fGba6lUmusXnlE/o49ut3vm69Vq9VZv1vV6PaPvAnfVMsf3pMFgMKxWq+f+mjv9UalUxnXByKrG7aKPDRfxc5m7zHU1eSMIAzbawcHBsFQqjd90C4XCsFKpDNvt9tx9dLvdYbFYHBYKheHe3l6G1cL1GN9solWO20UcG2bxc5m7zPgmL7aGw+EwAAAAAOCOc9dIAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALnw+aoLAAAAADZfv9+Po6OjSNM0ms3mqstZuLt+fnlhRhgAAABwI71eLxqNRmxvb0e5XI7Dw8NIkmTVZZ3x4MGD2Nrail6vd+3nrvv5pWkatVot+v3+So5/eHgY+/v7Kzn2TZkRBgAAAFzbzs5OnJ6eriyEmUev14s0TSMiolKpXOu5635+vV4varVa1Ov1KJVK43/f2trK/NjD4TAiIur1etRqtdje3o5utxvFYjHzY9+WGWEAAADAtXW73Tg+Po5ut7vqUi7VbrcjIqJarV77uet8foeHh7GzsxMHBwdxcHAw13MKhUIUi8Xxx0Umv14oFObqs9vtRqVSiXK5vLah4SRBGAAAAHBj151ptUzfffddREQ8e/bsxn2s2/mNliM2m82o1+tnvjaa/TZSr9fj+Pg4hsNhDAaDODk5GX9MziKL+HSek18fDAYxHA7j5OTkyrCt2WxuTBgmCAMAAADunH6/f+Nlkeuq1WrF/v5+7O3tnQvBprXb7Wg2m+cCr+sqFouxt7d3ZmbcdOA2Ol6pVIqnT59e+PV1IQgDAAAA7pzRnR0rlcpcy/zWXafTiUajEaVS6dIZWqenpxHx6Zxvshx0lkqlcmWg2G63I03TePr06UKPvUiCMAAAAODOGS2LrNVqK67k9tI0jefPn0dEzLUnWKPRyKSOUb+jwG1asViMer0e/X5/be8mKQgDAAAA7pTJZZG7u7urLWYBarVapGkapVJp5qysrJeCztPvKAA7PDyMXq+XSR23IQgDAAAA7pSjo6OIiCiVShu/LLLT6YwDpW+++WZm22KxGM1mM7NzLhQK0Ww24+HDhzNrGAVmWc1Muw1BGAAAADBTp9OJnZ2dePDgQWxtbUW5XI5GoxFJkqy6tAt1Op2ImP9uket8fi9fvhx/ftW+X4VC4cpN9G+rXq9fGbTt7OxERESSJNFqtTKt57oEYQAAAMCFkiSJ7e3tqNVqcXp6GgcHB9HtduPZs2fR6/Vie3s7Dg8PZ/bR6/XGAdNFH9vb25fuJzUZTk22v6rmUYB1VXC0iPMb2d/fv/Qcr/ool8sX9tnr9aLf70dE3Pruj8s0uYRynj3NlunzVRcAAAAArJ9+vz8OaA4ODmJvb2/8tUqlEnt7e9FoNK7cFL1SqcRgMIhGo3FudlC73Z4ZVnW73YiIePDgQaRpGnt7e1cGK6PZYMViMYrFYubnNzLan6tYLEaj0bj02K9fvz4Xrl12TqM7X45q2hSToV2SJNHpdBZ+F8ubEoQBAAAAZyRJMg6JqtXqmZBoUrPZjDdv3oxnLc3SbDbju+++GwdG15GmaRQKhblmF432B5sVvGRxfhGfliaenJzMbDO51DHi01LDy0KuUagXEfH111/PVcO6qFQq473Nut3u2gRhlkYCAAAAZ9RqtfHnV4VP11n6Nr3Z+2jG1yyjMGieva/SNB2HVrP2B1vW+U07PDw8E6qNNp+/yHT4Nmt22zqanBX23XffrbCSswRhAAAAwFin0zmzL9VVAcyTJ0/m7nt65lWr1bpyhtgoKJrnDoSjwKVQKFy6p1ZW53d6ejpzH68kSc4ts2y325e2H82mGtm0IOzLL78cf56m6VrceCBCEAYAAABMmFy6N0/4dNUdBKddFIZdJk3T6PV6V+73NTIKlnZ3dy9tk9X5HRwczNzHa3IWWsTsJZERn/YSu0kd62L6/2ve5aVZE4QBAAAAEfFp1tJkYJHFLKTp5YPTe2ZNGs3wmnfD+tEsqunQaSTL85vVV6vVOrck8qollzfZS22dTAd3p6enqylkiiAMAAAAiIjlLMcrFApn9vtK0/TMpvCT5pnhNTLqo1AoXDrTahXLDZMkOTfzrN1uXznDa12Co0VZl2BPEAYAAABERMTx8fGZx1kFRdMzvC6a8TVaFlmtVudaFji6W+Ss5YbLOr9J0yFYtVqdWePIZHC0acsiIyIePnx45vEPP/ywokrOEoQBAAAAERFL29C8WCyeCYOSJDk3W2u0d9g8+3hF/OuMsFl3i1z2hu2tVuvMeRUKhfj222+v3c+6zKa6CwRhAAAAQEScX46XZXA0vUfW9OOjo6OZyxwnTYZN1Wr10nbLPL80Tc/NdPv222/nnt21ibPAJk1/ryfvIrlKgjAAAADgQlnORCqVSlEqlcaPe73eOJgabWo/uZfYLKO9xGaFYBfJ8vxqtdqZ/qvV6rXqW8ayzWVal2BPEAYAAABExPl9nbJeSjh9B8nRDKrRMsd5l0WO7i45a1lkxPLOr9Pp3HpJ5HStm7Y8crredQn2BGEAAABARJwPK7rdbqbHq1arZ47Z6XQiTdNoNptRLBbnCk96vd44dLlqGeUyzi9N03j+/PmZf7vOksiRnZ2dM4837S6S0yHjkydPVlTJWYIwAAAAICLOhy+jmVZZmt5Hq1arRZIkF95J8iKjZZGVSuXKsGkZ5/f8+fNrL4k8PDwc3xxgZDrUW/ZG/7c1eZfIYrFoaSQAAACwXqbDlzRNx8sU53XdmUv1ev3MTK3RksLd3d25nj8Ks2q12pVtsz6/Xq93pr95l0R2u91zSyELhcKZ70vWs/MWPeNsMrib54YHyyIIAwAAACLiU/gyPXtpeobTtH6/f+bxTfaymr5jZLVanWsGUb/fHx9vnuAs6/ObDuPmWRKZpmn0er0Ll4FO1jq559giTJ/Hovcgm6x3npByWQRhAAAAwNj0DKY0TePp06cXBiVJkpwLOZIkuXZoM71X2Lyb5B8dHUXEpztQzrv0LqvzazQaZ/qoVCpz3SVytJ/YRUHY5M0EpgO520iS5NxSyyRJFhaGpWk67qtYLJoRBgAAAKynQqEw3ndrpN/vx4MHD6LRaESn04lWqxWNRiO2t7cvDDl2dnZia2tr7kAr4l9nPxUKhbmDk9EyxKvuFjkpi/Pr9Xrn9viq1WrR6/XOfYz639/fj+3t7fE5XBTkFQqF2NvbGz9exKywfr9/6QytWq22kMBtcu+1efd6W5at4XA4XHURAAAAwHrp9XpRq9VmzhKq1+vRbDZja2tr/G/FYjEajca5WV5XGYVPe3t755ZKXiRJktje3o6IiJOTk2sdK2Kx51cul28VIBUKhRgMBhd+LU3TePDgQUTE3N+bi1y3xmKxGCcnJ7c61m36yIogDAAAALjU4eFhHB0djZfOjWZsNRqN8Wyp7e3tqFar8ezZsyiVSjc6Tq1Wi06nE8fHx3P1cXh4GPv7+7cOW5Z1frcxCglnBWbrYjKgnPf/cpkEYQAAAMDKbW1tRalUiuPj47naj2Yd3WaW1CYZBYXNZjPq9fqqy7nUzs5O9Hq9tf1/EYQBAAAAKzWa8TRvyDO5XHAdZx1lZXt7O05PT+OXv/zl3DcHWKZerxc7OzvXCjSXTRAGAAAArNQo4Jl32d8mLRVcpNGyw2q1em7D/1VL0zT+4A/+IB4+fBjHx8drGdRFuGskAAAAsEKHh4eRJMm1lvuNQqDd3d2sylpLxWIxjo+Po9PpXOuOnFlL0zTK5fLah2ARZoQBAAAAS9BoNCJJkiiVSrGzsxNPnjyJ7777bjyza97lfpPLIrvd7nhD+zzp9/vx9OnT2N3djWazudJaRiFYsViMdru91iFYhCAMAAAAyNj+/n4cHh5e+vXrbADf6XSiVqvlblnktCRJolarxcOHD1cWQI0CuW+++Sb29vaWfvyb+HzVBQAAAAB3W5qml36tWq1ea1lkpVLJdQA2MlomeXh4GKenpysJwpIkie+//36jblZgRhgAAACQqX6/H+Vy+dy/r+Om79xtgjAAAAAgc0mSRLPZjCRJ4uHDh1Gr1XK5vxerJQgDAAAAIBfurboAAAAAAFgGQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBcEIQBAAAAkAuCMAAAAAByQRAGAAAAQC4IwgAAAADIBUEYAAAAALkgCAMAAAAgFwRhAAAAAOSCIAwAAACAXBCEAQAAAJALgjAAAAAAckEQBgAAAEAuCMIAAAAAyAVBGAAAAAC5IAgDAAAAIBcEYQAAAADkgiAMAAAAgFwQhAEAAACQC4IwAAAAAHJBEAYAAABALgjCAAAAAMgFQRgAAAAAuSAIAwAAACAXBGEAAAAA5IIgDAAAAIBc+P/LFDhP9j+oywAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -223,12 +231,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOVCAYAAACLW0xhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbDElEQVR4nOz9TWxbd57v+X9IO4EzSdGUczeCBHSF7DRSq74m7buo2UVk1wUmRtId0gaSSQL8u0QmQaYXQoeMK2uXQlWXNj2TNunqWTgd4NpkpRMkA1RbdHp3F9cSXb0LbhVPUoAErkqi2QliJDbPf6FLNqkH8pA8h4fkeb8AInr46ne+FCnF/Oj34DNN0xQAAAAAAAAw4/xuNwAAAAAAAACMA0EYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5w0u0GgGE8/vjj+vbbb2Wapvz+3nnuD37wAz3xxBNj6gwAAAAAAO/6+uuv9e///u89a5rNpnw+nx577DF98803Y+psn880TXOsVwRscOLECTWbTbfbAAAAAAAAQ/L7/Xr48OFYr8mMMEylziBsmBlhtVpNzWZTfr9f8/PzjvV5kFvX9eq1vXifvXptL95nN6/txfvs5rW9eJ/dvLYX77Ob1/bifXbz2l68z169thfvs5vX9uJ97nVtqzPCpP3X9mNnAlNoYWHBlGQuLCy48vXDcuu6Xr22F++zV6/txfvs5rW9eJ/dvLYX77Ob1/bifXbz2l68z25e24v32avX9uJ9dvPaXrzPo17bzb7ZLB8AAAAAAACeQBAGAAAAAAAAT3B1j7Cnn37azct38fl8+p//83+63QYAAAAAAAAc4moQVq1W5fP5ZLp4cGXr+j6fz7UeAAAAAAAA4DzPL410M4QDAAAAAADA+Lg6I0zaD6ISiYRCoZAr16/X6yoUCq5cGwAAAAAAAOPjehBWKBT005/+1NUeEomEfvKTn7jaAwAAAAAAAJzlehAWi8XcbkHnz593uwWM2crKihqNhgKBgNutjI2b99mta3vxPruNx9o713aLF7/fXrzPbvLq99uLz283efH77dVru8Wr328v/my5aVrvt890cZMsv9+ver3u+jft3r17OnPmjB4+fOhqH7BucXFROzs7WlhY0Pb2ttvtWDatfWO68DyD03iOYRx4nsFpPMcwDjzP4LRpfY652berm+VzUiMAAAAAAADGxdUgbJJObJykXgAAAAAAAGA/V4OwXC7n+rJISTp9+rRyuZzbbQAAAAAAAMBBrgZhb7/99liv99VXXx37uXH3AgAAAAAAgPFyNQgbt3Q67XYLAAAAAAAAcImngrDNzU23WwAAAAAAAIBLTrrdwDC++uor1et1y/WGYSifzw/0NQAAAAAAAJgtUxGEffXVV8rlciqXyzIMY6gxTNOUz+ezuTNgMCsrK2o0GhNxSARmF88zOI3nGMaB5xmcxnMM48DzDE7jOTY4n2mapttN9HL58mWtra1J2g+zRuHz+fTw4UM72oLLFhcXtbOzo4WFBW1vb7vdDgAAAAAAsMjN1/QTvUfYr3/9a+VyuXYAxowuAAAAAAAADGuil0aurq5K2g/ATNNUKBRSJBJRKBSSJD355JN9x/jjH/+oer2umzdv6t69e472CwAAAAAAgMk10UFYpVJpzwLb2NjQ0tLS0GNlMhk9/fTTdrUGAAAAAACAKTPRSyODwaCk/RBrlBBMkkKhkJ566ikbugIAAAAAAMA0muggrLUE8vz587aMl8/nbRkHAAAAAAAA02eig7DWLLDd3V1bxwMAAAAAAID3THQQ9rOf/UymaapSqdgy3q9+9StbxgEAAAAAAMD0megg7PTp03rvvfd048YN/fu///vI47E0EgAAAAAAwLsmOgiT9jfKj0QiSiaTI43z5Zdf2jazDAAAAAAAANPnpNsNWLGxsaFz587p6aefVjab1ZkzZyx93e7urur1uqrVqm7evOlwlwAAAAAAYBaYptQ0e9f4fZLPN55+YJ+pCMI+//xzSVK1WlU6nR5qDNM05eMZOnNqtZoWFxd71qysrGhlZWVMHQEAAAAApl3TlE6+27vmwRXpBDHDIevr61pfX+9ZU6vVxtTNYRMfhL3xxhsqFAqSJJ/PJ9PsE8kegQBsdjWbTe3s7PSsaTQaY+oGAAAAAABvazQafV+nu2mig7Br1661N7gfNgSTNPTXYfL5/X7Nz8/3rAkEAmPqBgAAAAAAbwsEAlpYWOhZU6vV1Gw2x9RRN585wSnRuXPnVKlU2iFYLBZTPB5XMBgceJ+wq1ev6quvvtLDhw8d7hrjsLi4qJ2dHS0sLGh7e9vtdgAAAAAAM+Rh0+LSyIk/gnAyufmafqJnhLVCsGAwqM3NTT311FNDj7W8vKwnn3zSxu4AAAAAAAAwTSY6uwwGg5Kky5cvjxSCtcY6e/asDV0BAAAAAABgGk10EBaNRiVJoVDIlvGuXbtmyzgAvK1er7vdAgAAAABgCBMdhKXTaZmmKcMwbBmPGWEAhlWpVJTNZjU3N6fl5WW32wEAAAAADGGi9whLJBI6e/asbty4ob/9278debyPPvpIf/VXf2VDZwAmSaVS0Y0bN1SpVGQYRvuQjGAwqFAopDNnzigSiSgejysWix36+mQyKcMwtLW11f5YvV5XuVzWjRs3VC6XmQUGAAAAADNgooMwSSoWi/rTP/1T/fM//7P+8i//cqSxVldXCcIwkQqFgtLp9MBfF4lEusKbYfl8voG/JhgMam9v78jPJZNJlUqlgcfc2Ng4Mqg6Sr1e1+rqqtbW1nrWVCoVSVK5XG7XRiIRxWIxhcNhbWxsqFQqKRKJdH3t8vKyDMNofz0AAAAAYPpN9NJIaX9/sKtXr+qnP/3pSOPcu3ePF7SYWKlUSnt7e9ra2lIikehZG4vFtLGx0a63g2maqlaryufz7UMqjhIKhZTP51WtVo8NwaT9AHtvb89SsJXJZLS1taW9vT3LIVhrieLBECyRSKhYLLbHa92vjY0NpVKp9n2rVCpaW1tTOp1uB3YHZ3y1xjFN07Z9CgEAAAAA7vKZpmm63cRxPvroo/bbmUxGPp+vb0hwlHq9rps3b6per+vhw4d2tgiXLC4uamdnRwsLC9re3na7Hdul02kVCoVDH28FPU4yDEPhcPjIz+3t7fUMyo4TjUaPDKLz+bxSqdRAvcXj8UP7BqZSKeXzeUtjrK2tKZvNHvp4KBRStVo98msOPh7jeBwAAAAAuOdhUzr5bu+aB1ekExM/vWgyufmafqKXRv785z/X3bt32++bptlzGVQvpmkOtfwLcMNxQdgwyycHFQqFFIlEDgVXiURiqBBM2u/7qN4HCcHK5bLi8XjXx4LBoG7fvn1oWWMvmUxGiURC0Wi0axbY7u7usV8z7P0GAAAAAEyWic4uL168KNM01Zq0RpAFrzhuKd64lugddZ1Rrn3U1w4SLlUqFVtCsM5+vvzyy64e2AwfAAAAAGbfRAdhrRkkPp+vHYgNewOmyXEh0ZkzZ8bbyAQwDENLS0uHPl4sFocKwVqCwaBte6xNklKpdGjpKP5DuVx2uwUAAAAALpropZGnT59WJBLR3bt3lcvlFIlEhgoCDMPQz3/+c/32t7+1v0lgBh31c/bkk0/aOp7Vn+VkMnlotlYqlbK8sX4voVBImUxm6CXX41SpVJTP51Uul2UYhoLBoM6cOaNgMKhQKKRLly5J2j/tMpfL9Vx2Wi6XlUwmdebMGeXzeVu+l5PKMAyVy2UVi8V2CDZJfxzx0mMBAAAATIKJDsIk6dKlSwqHw3r77beHHuPs2bN68cUXPTmbBphm5XL5yE32c7mcbde4fPlyOwir1+sTtx9YvV7X8vJy+3TLUCjUPjTEMAxVKhVVKpX251tf00srXKzX60qn08ceEjDNDMNQMpmUYRgTvezVC48FAAAAMEkmemmkJMViMdv+en/u3DlbxgEwHkdtsD/Kpv1HCQaDA23aP27JZLIdcuXzeVWrVRWLRRWLRW1tbalarR6aRdQvTPHCHwVCoZC2tra0t7enTCbjdjvH8sJjAQAAAEySiQ/Czp49a9vsj7/5m7+xZRwAzmstATzo8uXLtl8rmUxK6n1yZC+t5W3hcFg+n09zc3OKx+NHnvw5iLW1tfZyvkwmc2RgFwqFtLGx0fV7st8eYfl8XqFQSKFQSMVicaQep8HBgxYmidceCwAAAMBtEx+ESdJTTz1lyzh///d/b8s4ozIMw5YXZq0X3Z1LoqxaW1tTPB7X3NycfD6fwuGwksnkSBtJOzEmvOu4UGCUDfKPE4vFlMvlBp6dU6/XFY1GFY/Huzapr9frKpfLSqfTCofDRy7vtGJ1dbX99lGz4zplMpn2zKd+gV4sFlO1WlW1WnXk+zlp3Jp11e8xk7z3WAAAAABum4ogzC6bm5uOjl+v1+Xz+frewuGwQqHQSNfKZrNDnQxXLpc1NzenbDYraT9sqFaryuVyqlQqisfjisfjA+2p48SYwFEBqpMbiWcymYGWXBqGoaeeeqpvyGUYhqLR6MCB8DB7W7UOFeHUSPcVCoWRZwQCAAAAsN/Eb5Z/lK+++mqgF4iGYSifzzsexAzyoqcVGg2jXC4PdcpduVxuz0RLpVLK5/Ptz7U24G69YI9Go9ra2uobDDgxJmAYxpFhzqTMmKnX6+1NzhOJhOLxuM6dO6fd3V1tbGwc+fMZj8dVrVYth+AHf1+Vy2VLe5ldvny5vdQT7jAMw9JsMAAAAADjNxVB2FdffaVcLnfsnkFWmKYpn89nc2fdOpcx9RKLxYaeEdZ6AT7K14VCoa7AqlOxWFQ4HG6fuLaxsTHWMQHp+D2uwuHwmDs5Wmt218bGxqFZarFYTOl0WvF4/ND9SCaT2trasnSNg78jstmsLl682DdIbp0oOYknYHpBvV6f6D3JAAAAAK+b+CDs8uXL7dkVdp0e6YRCoaB6va5MJtP3RdAop1cuLy+397sZZIZba/aK1Hs2WmsWV6lUUrlcVqFQOHYWihNjAtLxQdgknbB3VAjW0trA/mBwV6lUVC6XLS3xDAaDCgaD7Z+x1n5kGxsbfYP0Sf5dOcvq9bqWlpZYmgoAAABMsIneI+zXv/61crlc+0Wd0zO6RpHL5RQKhZTL5RSLxXrehp2lUSgUVCqVBj5ZzDCMrv2JLl682LP+0qVL7bePC7icGBOTLZvNWtoD76hbNBod6FrHhbyTMsMpGAz2DbNavw8OGuQU3IO1hmEoHA7bsvdUpVJpb+bfS71eV6FQUDQa7bpua/lf5+EYRy0JNQxD2Wy2fbhHOBxWOp0+8jFuXefg8+egeDzeHq/zZufy90Kh0HWdubk5RaPRY5elVyqVI/eMO7g/5HFfa+WxaKnX64cOJ2n1Z3X/SMMwtLa2dugwh87HoHXgCfs7AgAAYKaYEywajZo+n8/0+/2mz+czw+GwmUwmzWw2a2azWXNtba3vLZvNmul02pybmzP9fr8jfRaLRVOSmc/nHRnfNE2zWq2aksxMJmOapmkGg0FTkinJLBaLPb82lUq1a2OxmKXrteqPG9+JMQexsLBgSjIXFhZGGmeSdX6/Wre9vb2xXLvz8XXqFgqFBr7+xsbGWO7/QZlMpqsPq8950+z+WW3dBhGLxY78XkQiEXNra2ugsba2tsxUKtXVUzAYPFS3t7dn5nI5MxKJdF2z9Tvu4Pej85ZKpdrj9KoLhULHPp8PPv7HyeVyln4+tra2LH//W7/Pg8Fg1++pra0tMxQKHdv73t6eubW1dainra2trlvneFYei4Py+Xy7PpfLmVtbW2a1WjWLxWLX45VIJA597d7enpnJZNr3o7PHvb29Q493Z1/VarVvbwAAALPkwUPT1Du9bw8eut3l9HLzNf1EL42sVCrt2QAbGxtaWloaeqxMJqOnn37arta6rK6uKhgM9p0VNYpkMqlIJDLQbJKWzlkcVjcbD4VC7VkFN27caO875OSYmGypVGroDcA3NzcH+trjZn5NysyUQWamxWIxlUqlro9VKhXLPzcbGxtKJpNHjhGNRpVIJHTt2rW+PRmGoRs3bliedRSJRBQMBrset62tLUWjUZ05c0bFYlGRSERnzpzR6upqe6ZUoVBQOp1WNpttHx7QWg6+ubnZnmFkGIZWV1eP/J2WTCYtzXpLJBK2zjAtl8vtfQ8vX77c9TsqEomoWCwqGo3KMAwtLy93zc4NBoOKRCLa3d3tGvOox3nQx6Ilm81qbW1NwWBQW1tbXUtkW0vQW8+VUqmkcDjcdUDJ7u5u+wTfzu/v5uamlpaWFIvF2rOby+Wystms6vW66vW60uk0+zsCAABgNow9ehtAaxbXO++8Y8t44XDYlnE6HZxpEAqFzFQqNfKMp06tWRWdf5G3OiPsYH9W+0okEsfOoHBizEExI8xZR83IyuVyQ4938DnT+lk5zsFZNa2bk7Muezk4s+mo2TbHac0wGvV+HPc9GWbMzrH6zUI6OEvouFl5B2eudc4M69T5/Tju2hsbG5Z+V+zt7dk6I6zzd9Rxz/d+41jtvcXqY9E5E6zfY9054+u42YudPQaDwSMf14PP3XH9/gEAAJgEzAhzlpuv6Sd6j7DWX7vPnz9vy3jHnWo4ioOzEQzDUKFQUDKZlM/nUzKZPLRnzCAqlYrW1taUz+eHOmmycx8v6fBJdMc5WNd5H5wYE+g06TPCBnHUz8cw9yOTyWhvb+/YmZStkyqtjD3I75LOAwpSqdSxe6MdPCTkuN+3nf23ZhtNouOeg50ft2NTfKuPRev/NcFgsO9hI53/XyqXy4d+Z7fGabl27dqRj+vB59rm5qalXgEAAIBJNtFBWGsp5MGlJqOOZ5eDG8YfpVQqKRqNDr2kbGlpSYlEYuhTFu/cudP1vtUlXU8++WTX+50vgJwYE+h0XDhQrVbH3Mnojvr5+OMf/zj0WMViUVtbW0cuuSuXy1paWrI1XLL68935mA2ydHSSTli8du2acrmcisWipd+54wrxWqcSS9aCs1Qq1fUYDLOkvqXzepP0WAEAAADDmugg7Gc/+5lM07Rt5tCvfvUrW8ZpCYVCyufzyuVySqVSPV+gtE7iGkRrr5pr164N3ePBFy7Dzt7qDCCcGBPodNyso37B8yQ66ufjYCg8qEgkoq2trSNnXVUqFS0vL480/jCGPdHTrj902CEYDCqTyRw5665Sqbg2i7Vzby6rv287f4am8ecGAAAAcMpEb5Z/+vRpvffee8rlcsrlcvrBD34w0nj5fF4//elPbepu38FZA61NiFdXVw/NFqhUKorH45Y2HG5tdryxsTH0C0zJvr/gd94XJ8YcVq1W0+Li4sjjrKysaGVlZeRxYJ9IJHIoeDAMQ/V6faSfiUkwzDLno7SWKkaj0a6fp1KppHK5fGyg6LZgMDixSyI7tWb9hkIhV7+Xw/zOPfgcm4WfGwAAALhvfX1d6+vrI49Tq9Vs6GY4Ex2ESfv74rROTfvNb34z9DhffvnlWP6a35pRkMlkVCqVtLy83PWCr1wua21tTZlM5tgx6vW6kslkz/14rBr2xebBF0ydszacGHNYzWZTOzs7I4/TaDRGHgP2unTp0pE/s+VyeepOHD0Y/NgVhLXGap3m2HmNfD4/sUHYpKtUKspms0Of1Gu3Yf4QcfBEyt3dXYIwAAAAjKzRaNjyGtxNEx+ESfvLQs6dO6enn35a2Wy2a/PmXnZ3d1Wv11WtVnXz5k2HuzwskUgoFotpaWmp6wX96upqzyBsaWmpvexyUjgxe8OOMf1+v+bn50ceJxAIjDzGNKlUKlpdXVWxWHS7lWOlUqlDh1FI+wHPtAVhB5/rR+3v1alcLiubzWpra8vS+KFQSNeuXWsvp5Y4jGJY6XRahUJBqVRqIkIwabgN+g/+f9LO8BUAAADeFQgEtLCwMPI4tVpNzWbTho4GNxVB2Oeffy5pf0+pYTedN01TPp/PzrYsCQaD7dkarRem9Xr92GVLa2trqlQqll8AW7m+HYFT5wsxJ8Yc1vz8vLa3t0cex2uWl5ctB8puCQaDSiQSKpVKXR8vl8uqVCp9w6RJcfBnxcosrVAopEqlMtDyxoPhIBubD64VgkmjbTBvt9bzQfqPkzb7/f7snHFLCAYAAAC72LWt0OLiomszyyZ6s3xJeuONNxSPx3X37l35fD6ZpjnwbRIc3PD+qH3CWstxcrmcbS/y7Qo7OsdxYkyMTytIisfjx9bYvYH5sOMdF0YcNVNsVE7tWXXwdFQrYX4ruBg2+Jf6zzqbBXY+TyuVSjsEC4VCE7WM8NKlS13vt/rspfMwkmmbQQkAAAA4aaKDsGvXrimfz7fDrGFDrUkIwyKRSNfMjqNmaySTSUUikZ7LJgc17Iu5g6HAwRlhdo+J8WjtPycN/uL4j3/8o629WAkxQqHQkWFYa689uxiGoWg0OlLwdJyDJ/5Z/b6HQiEZhmE59Dv4O+VgeDJNDobkx4WUds566zxZsde4bmzyn0gkun5fWlk233l/Ll++7ERbAAAAwFSa6KWRrX/st2aCxWIxxeNxBYPBgfcJu3r1qr766isHu+0vHo8fe4z92tqaDMNQLBbr2ufnOJ0vxlZXV3Xjxo32+5cuXWq/2D537lzXXkFWTw47GFJ0brzsxJjo5tSebEtLS+3Ha9DlUnb3ZHW81oEZB392WpuZj7ohfLlcVjwePzZ0G1Xn0s5B9v1rBWFra2sKh8OHTqg9qHPsUChkW6Bu9XHqrOv3Nf0+f3A2W6FQOHR/jgoJ7dwQvlQqHQotj7reQQd/rgzD6PrYsKc3du4B1zrN8rjnfqVSaf+OzuVy/NEBAAAA6DDRQVilUpHP51MwGNTm5qaeeuqpocdaXl7Wk08+aWN3g+t8MXQwyGvNtjkuKOul80VP6zqtF3DRaLSr1jAMS0umOpfVSN37GjkxJrodNyNl2Bf65XJZ6XS6Pe7FixcHvv4oy9BGnbnTOjn24H5h8XhcuVxuqNCnXq8rm82qUCi0T160+r21Gg4VCoX2fR/0FNjO3xfpdFpbW1vHhhqFQqFrhtxRS6872XEKrF2Ou34sFmv/Psxms6pWq0omk6rX69rY2FChUGg/L1pjHAydWg4+d48Kow7+Dksmk+1l6pVKRfl8XpFIpB1QSv8RPm5sbOjy5ctHBszpdFrFYlG7u7vK5XIKh8Ndz1erj0UikVAul2uHcclkUl9++eWh+1Gv17W8vCxp/zl33M+G1ce982fX7ecKAAAAYAtzgs3NzZl+v9/8xS9+Yct40WjUlnGGtbW1ZUoyJZmZTKbrc5lMpv25UW+dY3deU5JZLBYt9ZpKpdpfEwwGj70fdo05qIWFBVOSubCwMNI4k6rze9V5i8ViZrVa7fv1e3t75sbGhpnJZMxQKHRonF6PWbVaPfa5tbe3N9T9iUQiR46Xz+cHGue4n5NIJGJubGxYGmNvb8/M5XJmMBhsf0/73a+D17Xy/O38PsZiMUu9dcrn80fe10QiYWYyGTOfz5upVKrr8bX6/Dj4eBz3fNjb2zv0fT5OIpGw9NhubGx01aVSqWOv3XqMDt6CwWD78e6siUQiZrVaPfR4Wu3tYF3nLZfLmaZ59M9mIpHoGue45+lR99XqY9FSLBbb9zkYDJr5fN6sVqtmtVo18/l8+/nQ6vcoVh+Dg3XDPI8BAACm1YOHpql3et8ePHS7y+nl5mv6iQ7CYrGY6ff7zV//+te2jFepVGwZZ1idL2ytvmg/TueL334vnDpfKB4M4I7T+eLsqBc/Tow5iFkNwra2tnq+GLfrdlTws7e3Z+bz+WPDB0lmKBQy8/m85UBsa2vLjMViPXvJZDKWwpuWjY2NY4O1YDBoJhIJM5/PmxsbG+bW1pa5sbFh5vN5M5fLdX1dMBi0HOIeFQ6GQqFjf447w4qDIckg97PVY7FYNFOplBmLxcxIJNL1GLXuc7/fKa3n1nGPbyQSaYcnvWpDoZCZSCTaz4GDYdzB4KQ15sbGxrHPhVAodGQYs7e31zV+JBI59Pum9bGDz6G9vb2+9/eoa+Zyufb1QqGQmclkup7ve3t77fvR+T07qDOEjkQiXc+1QR6L4+TzeTMWi3WFYq2vO+7ns9fPY+djUK1We9b16w0AAGAWEIQ5y83X9D7TnICd5I9RKpV08eJFra2t6W//9m/dbmdk2Wy2vXxp1G97OBxuL1kpFos9N+BOp9PtU8ZisVjfZVPS/r5sLRsbG4eWdDkx5iBaR60uLCxoe3t76HEmRaFQcGSj9qNEIhFtbW11fazzsbEqGAxqb2/vyM8dtYzRikGeF6VSSaurq13Lgq0IhUJKp9NKpVIDLTNt7Ul18H4Fg0GdO3dOwWBQ9Xpdm5ub7aV3xWKRJcAAAADAFHrYlE6+27vmwRXpxEQfQTi53HxNP9FBmLS/H5Xf79edO3dGHuujjz7SX/3VX9nQ1XBa4VUmkxl5U+5BgrBKpdK1r1e/h7y1ebi0Hxoc3NvLqTEHMWtBGIZXr9dVLpd148YNGYaher3e/tkIhULtfZvOnz+vRCIx8CEB/a7XumbrOufOnVMymSQAAwAAAKYYQZiz3HxNP9Gb5Uv7Ic+f/umf6p//+Z/1l3/5lyONtbq66loQViqVZBiGgsHg2I+yb52s19p4+qjT0DoVi8X22wdPSXNyTGAYwWBQiUSi5/Nvmq8HAAAAALDPxGeXoVBIV69e1U9/+tORxrl3797AS6h6KZfLmpubk8/nUzwe7zm2YRjtU7xu377tylH2rdPNpP1A8Dj1er1ryWMqlRrrmAAAAAAAAE6Z6BlhH330kSTpP/2n/6S5uTk9/fTTQ83CqNfrunnzpq29FYvF9lHy5XJZ0WhUqVSqKxxqfS6ZTOrMmTPa2toaeVnWsEKhkIrFopLJpCqVitbW1pTJZA7VLS0tSVJ7f6NxjwkAAAAAAOCUid4j7Ny5c7p79277fdM0h9rUu/NrHz58aEtvnXtedQoGg4rFYjpz5ow2NzdVqVSUyWR0+fJlW2eCDbJH2MG+k8mk6vW6EomELl++rFAopM3NTWWzWVUqFUUikYFmrjkxZj/sEQYAAAAAcAp7hDnLzdf0E/2QXbx4UaZptjdiHzYEc0IsFlO1WlUqlWpvyN1SqVS0u7ury5cva29vT7lczvblkNVqtf29GWSWXCwWa/dkGIaWlpY0NzfXnrVWLBa1tbU1UL9OjAkAAAAAAGC3iZ4Rdu/evfY+XHa0aeeMMLiLGWEAAAAAAKcwI8xZnBp5jNOnTysSieju3bvK5XKKRCI6c+bMwOMYhqGf//zn+u1vf2t/kwAAAAAAAJgKEx2ESdKlS5cUDof19ttvDz3G2bNn9eKLLw4VogEAAAAAAGA2TPwkvlgsZsuySGl/830AAAAAAAB408QHYWfPnlUul7NlLLvGAQAAAAAAwPSZ+CBMkp566ilbxjl79qwt4wAAAAAAAGD6uBqETdLm9ZPUCwAAAAAAAOznahAWjUbVaDTcbEGSdO/ePUWjUbfbAAAAAAAAgINcDcLs2gTfDpPUCwAAAAAAAOznahDm8/ncvHyXSeoFAAAAAAAA9mNGGAAAAAAAADzB9VMjv/zyS7db0ObmptstAAAAAAAAwGEn3W5geXlZ77zzjoLBoM6cOTPWa+/u7sowDGUymbFeFwAAAAAAAOPnehC2tbWlZDLpag+mabJHGAAAAAAAwIxzPQhrcWu/MAIwAAAAAAAAb3A9CHN7w3y3r4/R1Go1LS4u9qxZWVnRysrKmDoCAAAAAMC71tfXtb6+3rOmVquNqZvDXA3C9vb23Lw8ZkCz2dTOzk7PmkajMaZuAAAAAADwtkaj0fd1uptcDcJOnz7t5uUxA/x+v+bn53vWBAKBMXUDAAAAAIC3BQIBLSws9Kyp1WpqNptj6qibz2RtIKbQ4uKidnZ2tLCwoO3tbbfbAQAAAADMkIdN6eS7vWseXJFO+MfTz6xx8zU9DxkAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBNmMgi7d++e3njjDbfbAAAAAAAAwASZySDMMAwVCgX94Q9/0Oeff65Go+F2SwAAAAAAAHDZTAZh5XJZpmkqFAopHo9rbm5OP/vZz9xuCwAAAAAAAC6auSDs9u3bymazkiTTNNu3XC7XMwx744039PTTT+v8+fP62c9+xiwyAAAAAACAGeMzTdN0uwk7nTt3TqFQSJcuXVIkEpFhGLp165Z+8YtfyOfzyTAM/cmf/EnX1zz99NMyDEOd34pwOKytrS0FAoFx3wVYsLi4qJ2dHS0sLGh7e9vtdgAAAAAAM+RhUzr5bu+aB1ekEzM3vWg83HxNP5MP2c2bN/Xiiy/qqaee0tLSknK5nHZ3d/XDH/6wPVus5Y033lC1WpUkZbNZNZtN7e7u6tlnn9Xy8rIb7QMAAAAAAMABMxeE+Xy+Iz8eDAa1tbXVDr1a8vm8fD6fEomEVldX27X5fF57e3v66quvnG4ZAAAAAAAAYzBzQdjc3Jx++ctfHvm5YDCoubm59vvXrl1rv53L5Q7VZ7NZlctl+5sEAAAAAADA2M1cEJbJZPT222/rzTffPHLD+729vfbbrdlgsVhMP/zhDw/Vnjt37tAMMgAAAAAAAEynk243YLdYLKbl5WVdvXpV+XxeiURC58+flyTduHFD1WpVP/nJTxSJRFSpVOTz+ZROp48c6/Tp0zIMY5ztAwAAAAAAwCEzF4RJ+zO9dnd39etf/1qlUkmlUqn9uc3NTf385z/vWgoZiUSOHOfu3bs6c+aM4/0CAAAAAADAeTO3NLKlWCzq6tWrWlpakmmaOn36tG7evKmzZ8+qWCzqxRdfVDAY1NWrV4+dEVYoFBQOh8fcOQAAAAAAAJwwkzPCWlKplFKp1JGfKxaL7bfn5uZ0/vx5/epXv9Kf//mfq9Fo6Oc//7kKhULXnmIAAADAQaYpNc3eNX6fdMzh5gAAYIxmOgizKpFIyDAMnT17Vr6Of6G89957CgQCLnYGAABmnZ0hCoGMO5qmdPLd3jUPrkgn+nzfefwAAHAeQdj/kslkFAqFVCgUFAwGdenSJb344otut4U+arWaFhcXe9asrKxoZWVlTB0BADAYu0IUu8fC+PH4AQBmwfr6utbX13vW1Gq1MXVz2MwFYZ9//rmeffbZvnUfffSRYrFY14yvRCKhRCLhZHuwWbPZ1M7OTs+aRqMxpm4AAAAAAPC2RqPR93W6m2YuCEskErp3755isZji8bhisZj+83/+z4fqlpaW9NOf/lRra2v64Q9/OPY+YQ+/36/5+fmeNSxvBQAAbvvwrvRq1O0uAABwXiAQ0MLCQs+aWq2mZrM5po66zVwQFo1Gdfv2bZXLZZXLZUlSMBjUuXPnuoKx06dP69q1a4rFYiqVSvqTP/kTlzvHMObn57W9ve12GwAATA0CGft9eLd/zWsl6YRfevms8/0AAOAmK9sTLS4uujZrzO/KVR1UKpUUi8V09uxZPfXUUzJNU3t7e9rY2FA2m1U0GtWJEyf0X//rf9V7772nvb09pdNpt9sGAAA4lpWgxWrdayXr46G/e/elNz+xVvv6x1Lj/mjX47EDAGA0MxeEpVIpFQoFbW5u6ve//72azaY2Nja0vLws0zTbt1u3bmltbU2GYWhjY8PttgEAgEfZFV6NO5DBvg8q0jffW6v9+jvpeuX4zxNkAgDgvJkLwkzTPLTn19LSkvL5vPb29vT2228rEokol8vpxRdfVCQS0XvvvedOswAAwNPsDK/sDGRg3adfDFb/2TH1BJkAAIzHzAVh9+7dO/Zzp0+fVi6XU7FY1J07d7S2tqbNzU29/fbbY+wQAABgn53hlV2BDAaz96099QSZAACMx8wFYU899ZR++ctf9q25efOmUqmU/vCHP4ypMwAAgG52hld2BTIYzNxj9tQTZAIAMB4zF4RlMhm9/fbb+ud//ue+tTdv3lQsFlOj0RhDZwAAAN3sDK/sCmS8wjSlh83eN9PsP86FZwa77nPH1BNkAgAwHjMXhIVCIb333ntKJBJ68803e9YGg0GdPXtW77zzzpi6AwAA+A92hld2BTItdgVFdo1jt6YpnXy3961poa9XItLjj1i75hOPSq9Gjv4cQSYAAONx0u0GnJDJZHTnzh1dvXpVN2/e1OXLl7W8vKxAIHCo9syZM7px44bef/99FzoFAABeduEZ6dbvrNf3Cq9eiUjv/MbaPlO9ApmWVlDUy4Mr0gnfeMZxw4d3pVejvWtOn5Lef37/NMd+rr4gBU4d/Tk7nwsAAOB4MzcjrKVYLGp5eVm7u7vKZDKam5vTpUuX9Ktf/Uq//e1v9dvf/laXL19WoVBQvV53u10AAOBBds0mkv4jkLGiVyAziA/vjj7GIOPYObvMyjVfK1mre/ls/5rrid51dj4XpMmdiQcAgNtmckZYSz6fVzwe1/Lysu7du6dSqaRS6fCf6yKRPv+SAAAAcIBds4laXj7bf6x+gUyL1aDohL/3eHaNI9k3u+zefenNT/r3JUmvfyxd+NHoweFLfe6b3c+FaZ6JBwCAk2Z2RlhLIpHQ3t6e3nvvPZ0+fVqmaXbdgsGgrl275nabAADAo+yYTTSIfoGMNHhQ1Ljv7DiDsBK8fVCxtoRUkr7+TrpeGa0nq8b9XAAAwItmekZYp0wmo0wmo7t378owDBmGoVAopFgsptOnT7vdHgAAwLGshFd2GiYoeuvHzo3TYtfssk+/sNZTy2df9O7L79ufXdWL36aZV+N+LgAAMGumNgh744039A//8A8Df93Zs2d19iz/ggAAALPHrkDGrqDIzsDJzuWMe98O1le/ep+PJYYAAEyLqV0aefPmTf37v/+7220AAABMDJ9vfzZUr5vPQmBjV1BkZ+Bk53LGuccG62vQegAAMLmmdkbY3t6efvjDH+rixYtKJpN69tln3W4JAABgYONcVmeVXUGRnYGTnbPLLjwj3fqd9bGee2awaw9rEp8LAADMmqmdESZJ9XpdhUJB8XhcJ06c0E9+8hP93d/9nb766iu3WwMAALDErllcdrowYPBzXFBk1ziSvbPLXolIjz9ibZwnHpVeHdMB45P4XAAAYNZMdRAmqesEyHK5rGw2q3A4rCeffFJvvPGGPvroo75j/OpXvxpDpwAAANPBrqDIzsDJztllp09J7z9vbZyrLxy/19i0s3L4AAAAs2Zqg7D33ntPpmnK5/MpHA5L6g7F9vb2VCgUlEwmdeLECZ0/f15/93d/p9/+9reHxtrY2Bhz9wAAAJPLrqDIzsDJztllUu9TJVuuJ6zVTSKrJ2wShgEAvMZnmqbpdhPDqlQqSiaTqtfrunbtmkzT1H/7b/9Nt2/fVr1e76r1dcwjDwaDisViisfjkqR0Oq2HDx+Os3WMaHFxUTs7O1pYWND29rbb7QAAMHMeNqWT7/auuZ6QXomOZ5x796WFn1vbMP+JR6Wdy72DNSt9Pbiyvxxx2tj9vQIAL5rl/09MAjdf00/tZvmSFIlEVK1Wlc1mlUwmlU6nVSwWJUlffvmlSqWSNjY2VC6X1Zn37e3tqVQqqVQqudU6AACYYqYpNfv8KdHvm/39nF6yMFuqtQH8vfvSP92V/r8v9vfvmntM+j+ekV45KwUtLHtszS57zcI/36wsZ5zljemHOWHzuIMFAACYNVM9I6xTpVLRxYsX5ff7VSwW9ed//uddn799+7aKxaLK5bIMw+j6nM/nY0bYlGFGGADATV74K/Ekhn12zS6bdT/5fwc7FfMnT0u/+f851w8ATCMv/L/eTcwIs0EkEtHvf/97pdNpRSIRZbNZ/fznP29/fmlpSUtLS5Kke/fu6ebNm+1gDAAAAN18PunEhM2Ismt22ayz84RNAABmzcxll/l8Xv/yL/+iq1ev6s/+7M/0b//2b4dqTp8+reXlZd26dUu3bt1yoUsAAAAMyufb/8v7mf9N+pv/XfqXv5b+x1v7//2b/12a+99mfzmqFXaesAkAwKyZuSBMkmKxmAzD0J//+Z8rEonol7/8Zc/a1kwxAAAAYNrZfcImAACzZCaDMGn/ZMhisagbN27o7bff1n/5L/9Ff/jDH46sTSaTY+4OAAAAcMYrEenxR6zVPvGo9GrE2X4AAJgkMxuEtSQSCe3u7ur06dMKhUJHzg5bXl52oTMAADDLPrzrdgfwqtYJm1ZYOWETAIBZMvNBmLQ/O2xjY0Orq6t9Z4cBAAD0YyXkeq1EGAb3vHy2f831hLU6AABmiSeCMEn66quvdO7cOWUyGW1ubioUCukf//Ef3W4LAABMmXv3pTc/sVb7+sdS476j7QBDe8liCGaa0sNm75tpOtsrAAB2Oel2A3b46quvZBiG6vW6DMNQtVqVYRgyDEO7u7uq1+td9T6fT6ZpKpVKqVgsqlgs6gc/+IE7zWMktVpNi4uLPWtWVla0srIypo4AAJPKNKVmnxfrfl//Uwc/qEjffG/tml9/J12vSG/92Fo9MImapnTy3d41D65IJzixEwAgaX19Xevr6z1rarXamLo5bGqDsPPnz7fDr17MHn+eMk1Tt27d0rPPPqs7d+7Y3CHGodlsamdnp2dNo9EYUzcAgElm14v5T78Y7LqffUEQBgAAvKPRaPR9ne6mqQ3Ctra22jO7egkGgwqFQu1bOBzWmTNn2u+fPn16TB3DCX6/X/Pz8z1rAoHAmLoBAHjB3rfO1gMAAEyzQCCghYWFnjW1Wk3NZnNMHXWb2iCs09zcnC5evNgVeBFyecP8/Ly2t7fdbgMA4CFzjzlbDwAAMM2sbE+0uLjo2qyxqQ7CXnzxRRmGoUqlokKhoEQiobm5Oc3NzRGCAQAAR1x4Rrr1O+v1zz3jXC/Acfy+/aW+/WoAAPCaqT01MhaL6ebNm9rc3NTe3p5u3Lgh0zSVyWQUDof19NNP64033tC//uu/9h3r888/H0PHAABgFrwSkR5/xFrtE49Kr0ac7Qc4is8nnfD3vvU7GAIAgFk0tUFYPB5vv3369GklEgndvHlTu7u7unPnjv7qr/5Kd+7c0dLSkk6cOKHz58/rl7/8pX77298eGiufz4+xcwAAMM1On5Lef95a7dUXpMApR9sBAADAAKZ2aeTbb7997OcikYgikf0/v967d08bGxu6efOmrly5okwmo2AwqFgspvPnz0uSSqXSWHoGAACz4eWz0mt9/vlwPbFfBwAAgMkxtUGYVa3ZYolEQpJUqVR048YN/frXv1axWJSPOeEAAMABLxGCwUM+vCu9GnW7CwAA+pvapZHDikQiyuVy+v3vf6/NzU09++yzbrcEAAAATKwP7/avea1krQ4AALd5LgjrFIlEtLGxobNn+ZMtAAAAcNC9+9Kbn1irff1jqXHf0XYAABiZp4Owllwu53YLAABgAjCjBej2QUX65ntrtV9/J12vONsPAACjIgiTtLS05HYLmFGmKT1s9r6ZpttdAoA3sLwLGNynXwxW/9mA9QAAjNtUbJb/d3/3d4pEIuznhanTNKWT7/aueXBFOsGZDQDgqEGXd134kRQ4dXyN37f/+7sXP7/bMQP2vnW2HgCAcZuKGWH/43/8D8Xjcf3jP/7jSONcu3ZNJ06c0J/92Z/p3/7t32zqDgAATDq7l3f5fNIJf+8bB1NjFsw95mw9AADjNhVBmCSZpqlUKqWf/exnQ4+RzWZlmqZ+//vfKxKJ6KuvvrKvQQAAMLFY3gUM58Izg9U/N2A9AADjNjVBWMutW7d06dKlob72qaeeUigUUiqV0vLysrLZrM3dAQCAScTyLmA4r0Skxx+xVvvEo9KrEWf7AQBgVFOxR1inzc1NJZNJnT9/Xp9//rl+8IMfWP7ara2trveffvppu9sDAAATiOVdwHBOn5Lef37/IIl+rr7Qe289AAAmwdTNCJOkYrGoZDKpSCSiP/zhD0ON8eWXX2p3d9fmzgAAwCRieRcwvJfP9q+5nrBWBwCA26YyCJOkTCajf/iHf1AkEtG//uu/DvS19+7dUzwe17lz5xzqDgAA2MU0pYfN3jfT7D0Gy7sAZ71ECAYAmBJTtzSyUywW0507d/QXf/EXunz5sv76r/+679d8/vnnSiaTqtfreuedd8bQJQAAGEXTlE6+27vmwRXpRI9TGlneBQAAAGmKZ4S1hEIhbW5u6saNG31PlPzFL36heDyuvb09BYNB/fSnPx1TlwAAwG0s7wIAAMDUB2GSFAwGdevWLe3u7h57ouTly5f1zjvvyDRN+Xw+5XK5MXcJAAAmHcu7AGfZsdQZAIBRTPXSyIOuXr2qQqFw6ETJ27dvK5fLyefzyefzKRKJMBsMAAAAGDM7ljoDADCKqZsR1m9j/FQqpXw+r2effbZ9omRr9pf5v/68xGwwAAAAAAAA75mKIOypp56StB9kpVKpdsB1nEgkohs3bujFF1/URx99pHK5LJ/P1/7cs88+63jPAAAAAAAAmCxTsTQyl8vpZz/7mcrlsjY2NhSLxZTNZnsub2xtov8Xf/EX7Y/5fL5j9xADAAAAcJjft79csV8NAADTYCqCMEk6ffq0XnzxRb344osDfd2tW7eUzWb1i1/8or0/GAAAAABrfD727AIAzI6pWBo5qlwup5s3b8o0TX355ZdutwMAAAAAADAwTt8d3dTMCBtVIpHQ5uam3nnnHf31X/+12+0AAIAxY3kXAACYdpy+OzpPzAhriUQiunXrltttAAAAm314t3+Nzyed8Pe++fhHIwAAwEzzzIwwzKZarabFxcWeNSsrK1pZWRlTRwAAu1kJuV4r7QdZL591vh8AAAAcb319Xevr6z1rarXamLo5jCAMU63ZbGpnZ6dnTaPRGFM3AAC73bsvvfmJtdrXP5Yu/EgKnHK0JQAAAPTQaDT6vk53E0EYpprf79f8/HzPmkAgMKZuAAB2+6AiffO9tdqvv5OuV6S3fuxsTwCc9eFd6dWo210AAIYVCAS0sLDQs6ZWq6nZbI6po24EYZhq8/Pz2t7edrsNAIBDPv1isPrPviAIAyYZS50BYPZZ2Z5ocXHRtVljntosHwAATJe9b52tBzA+gy51btzvXWOa0sNm75tpjtw2AGDGMCMMAABMrLnHnK0HMD52L3VumtLJd3uP8+CKdILTYAEAHZgRBgAAJtaFZwarf27AegDjM8xSZwAA7EYQBgAAbGfXkqVXItLjj1i75hOPSq9GRusbgHNY6gwAmAQsjQQAALaza8nS6VPS+8/vb57dz9UXpMApyy0CGDOWOgMAJgEzwgAAwESzcnLc9QQnzAGTjqXOAIBJQBAGAACm3kuEYMDEY6kzAGASEIQBAAAAcFxrqbMVLHUGADiFIAwAAADAWLDUGQDgNoIwAAAAABODpc4AACcRhAEAAAAAAMATCMIAAAAAAADgCSfdbgAAAEwG05SaZu8av0/y+cbTDwAAAGA3gjAAACBpPwQ7+W7vmgdXpBMEYQCmxId3pVejbncBAJgkBGEAAGCi+X37AVy/GgDe8uHd/jWvlaQTfk6hBAD8B/YIc4FhGIrH45Zr0+m0wuGwfD6f5ubmFI1GlU6nZRjGxPQpSWtra4rH45qbm5PP51M4HFYymVS5XHawSwDArPP59l/I9rqxXBPwlnv3pTc/sVb7+sdS476j7QAApghBmI3q9bp8Pl/fWzgcVigU6jve2tqawuGwCoVCO/Sq1+uqVCoqFAoKh8NaW1tzvc9yuay5uTlls1lJUrFYVLVaVS6XU6VSUTweVzweV71eH7hXAAAA4KAPKtI331ur/fo76XrF2X4AANODpZE2KhQKlmtbodFx4vG4yuWygsGgYrGYQqGQDMNQpVLpmgmWzWYVCoWUSCRc6bNcLrdnjaVSKeXz+fbnWn1Fo1GVy2VFo1FtbW0pGAxavj4AAABw0KdfDFb/2RfSWz92phcAwHQhCLPR6uqqpbpWsHWcbDarcrmsXC6nTCZz6PNra2tdAVUymZRp9jnmy4E+6/W6ksmkpP3QqzME61QsFhUOh2UYhpLJpDY2Niz3CgAAgNlh155/e98Odt1B6wEAs4sgzCaFQkH1el2ZTKbvvlrnzp079nOGYWhtbU0bGxuKxWJH1mQyGVWr1a6ZXZVKRZFIZGx9SvsBXGu5Y6+ZY62ZYaVSSeVyWYVCQalUqm+vAIDZxmlugPf4fPacPDv3mLP1AIDZ5TMHmUqEY4XDYUlStVodaZxkMqnz588fOROsU71e19zcXPv942aPOdWnYRjtsSRpb2+v55LHUqnUnj0WDAa1t7c30vUXFxe1s7OjhYUFbW9vjzSWkx42pZPv9q55cGV/o2cAcJudv7Oub+2f1tbPP13kNDcAg/u//7v0f31qvf7vL7A0EsBgJvW13KT2NSg3X9NP+LdmOpRKJRmG0Xc/LStas7X6CQaDXcsWrey7ZWefuVyu/XYsFut7/c49zOr1ukolC6+OAABTidPcADjtlYj0+CPWap94VHq1/8IJAIBHEITZYHV1VcFgUBcvXhx5rEH2z9rd3W2/3W8Zo2Rvn53LMq0syZTUFdzduHFj5B4AAJOJ09wAOO30Ken9563VXn1BCpxytB0AwBQhCBtRpVJRpVJpL1UMh8NKp9OOz3iq1+vt/blisVjfMMrOPiuV7lcs58+ft/R1nT0yIwwAZtcwp7kBwKCsLKu+nmD5NQCgG0HYiA4uMzQMQ4VCQclkUj6fT8lk8lBwZIebN29K2p9lVSwWx9pnuVzuer/XyZK96pz4vgAA3MdpbgAmxUuEYACAAwjCRmAYxqFQ6KBSqaRoNKp0Om3bdev1utLptCKRiDY2Nvruz2V3n3fu3Ol638r+ZJL05JNPdr2/ublp6esAANOF09wAAAAwqU663cA0C4VCyufzqtfrqlarKpfLMgzjyNpCoaDNzU1tbW2NdE3DMBSPxxUMBnX79m1LIZTdfR782mFnhI16ciUAYDJdeEa69Tvr9c8941wvAAAAQCdmhI0olUopk8kon8+rWq1qb29PuVzuyICqUqkoHo8Pfa1SqaRwOCzDMNp7fa2trY29z+NCtEG19jgDAEyPD+/2r+E0NwAAAEwqgjCbBYNBZTIZ7e3tqVgsHgqayuWy5fBK2g+L1tbWFA6HlUwmD30+m80e+XEn+xw2wDp4jc5TL4dVq9W0uLg48m19fX3kXgBg2lkJuV4r9a/jNDcAAIDZtL6+bstr8Fqt5tp9YGmkgxKJhGKxmJaWlro2hl9dXVUmk7E0RrlcVrVaVSwWO3avr1KppLW1NctjOtHnMOyYEdZsNrWzszPyOI1GY+QxAGCa3bsvvfmJtdrXP5Yu/Kh3gPXy2f3QrBdOcwMAAJgujUbDltfgbiIIc1gwGNTW1pai0Wg7ZKrX6yqXy4rFYn2/PpFIKJFIdH2sUCgom812BUnZbFapVMryxvWj9BkMBm0JsYbttZPf79f8/PzI4wQCgZHHAIBp9kFF+uZ7a7Vffyddr0hv/Xi0a3KaGwAAwHQJBAJaWFgYeZxaraZms2lDR4MjCBuTa9euKRqNtt/f2NiwFIQdJZVKKRaLKRqNdgVShUJh5BlcVvo8c+aMLUHYmTNnRh5jfn5e29vbI48DAF736ReD1X/2xehBGAAAAKbLysqKVlZWRh5ncXHRtZll7BE2JpFIpCtQGnXD+VAopNu3b3d97M6dOyONKVnrc9iZXAfDMztmhAEA7LH3rbP1AAAAwCQgCBujUU6MPEokEulaNmnXaY79+jx37lzX+1Znhx3cHD8cDg/UFwDAOXOPOVsPAJPKNKWHzd4303S7SwCAXVgaOUahUKj9th3LAiXp0qVLKpX2dyO2Y7mi1L/PzqWT0n4AF4lE+o5brVa73h92aSgAwH4XnpFu/c56/XPPONcLAIxT05ROvtu75sEV6YRvPP0AAJxFEDZGnQGTXcsCOwMou8bs1+fBGWFWg7DOoC4YDHZdBwDgrlci0ju/sbZh/hOPSq/2/7UPAI7y+/YDqn41AAB0YmnkGG1ubrbftnuZpHQ4oBpWvz4jkUhXQGZ1b7LOce3qFQBgj9OnpPeft1Z79QUpcMrRdgCgL59POuHvffMRhAEADiAIG6POpYF2LQvs3BfMrnDNSp8XL15sv12pVCyN21mXzWaH7A4A4JSXz/avuZ6wVgcAAABMIoKwMWrt5ZXJZGwbsxUuBYPBro3zR2Glz3Q63X67XC73HbOzJhQKsT8YAEyplwjBAAAAMMUIwsakVCrJMAwFg0FdvnzZtnFXV1clSdeuXbNlPKt9RiKRrjCrFZ4dp1gstt9mNhgAAAAAAHADQdiQyuWy5ubm5PP5FI/Hey4PNAxDy8vLkqTbt2/33NR+bW1N0WhU2Wy27ymQrZpMJnPsbDCn+pSkfD7ffrsVyB2lXq+rUChI2l9qmUqleo4LAAAAAADgBIKwIRWLxXZQVS6XFY1Gu5YLtrQ+d+bMGVWr1Z6nK9brdWWzWVUqFa2trWlubu7Y2VPJZFJra2vK5XLK5XJj7bMlFAq1Z3q1ej7K0tKSpP3lm50zwwAAs6t1mluvG6e5AQAAYNwIwoaUTCYPfaxQKGhubk7JZFLpdFrRaFTxeFypVEpbW1sKhUI9xwwGg4dqWoFYMplUNptVPB7X3NycpP1N7fvtN+ZEn50SiYQ2NjYUDAaVzWaVTCZVqVRUr9fb4VqlUlEkEtGXX37Zd5YZAGA2cJobAAAAJhFB2JBisZiq1apSqZRCoVBXwFOpVLS7u6vLly9rb29PuVzOcgC0tbWlTCajSCRyaEzDMJRMJvXll1+qWCxaCqyc6vPgNVpfbxiGlpaW2kHbmTNnVCwWtbW1RQgGAAAAAABcddLtBqZZKBTq2ifLDsFgsOdSx2E40edRMpmMrSdiAgAAAAAA2IkZYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIE9wgAAGDPTlJpm7xq/j1MVAQAAALsRhAEAMGZNUzr5bu+aB1ekEwRhADARPrwrvRp1uwsAgB1YGgkAAADAsz6827/mtZK1OgDA5CMIAwAAAOBJ9+5Lb35irfb1j6XGfUfbAQCMAUsjAQCApP19yR5c6V8DALPig4r0zffWar/+Trpekd76sbM9AQCcxYwwAAAgaX9z/hP+3jc28AcwSz79YrD6zwasBwBMHoIwAAAAAJ60962z9QCAyUMQBgAAAMCT5h5zth4AMHkIwgAAAAB40oVnBqt/bsB6AMDkIQgDAAAA4EmvRKTHH7FW+8Sj0qsRZ/sBADiPIAwAAACAJ50+Jb3/vLXaqy9IgVOOtgMAGIOTbjcAjKJWq2lxcbFnzcrKilZWVsbUEQAAAKbJy2el10q9a64n9usAAP2tr69rfX29Z02tVhtTN4cRhGGqNZtN7ezs9KxpNBpj6gYAAACz6CVCMACwrNFo9H2d7iaCMEw1v9+v+fn5njWBQGBM3QAAAMDLTFNqmr1r/D7J5xtPPwDghkAgoIWFhZ41tVpNzWZzTB11IwjDVJufn9f29rbbbQCAa3jRBQCTo2lKJ9/tXfPginSC38kAZpiV7YkWFxddmzVGEAYAwBTjRRcAAABgHadGAgAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAgAn04V23OwAAAABmD0EYAABjZiXkeq1EGAYAAADYjSAMAIAxundfevMTa7Wvfyw17jvaDgAAAOApJ91uAAAAL/mgIn3zvbXar7+Trlekt37sbE8A4GV+n/TgSv8aAMBsYEYYAABj9OkXg9V/NmA9AGAwPp90wt/75iMIA4CZQRAGAMAY7X3rbD0AAACA4xGEAQAwRnOPOVsPAAAA4HgEYQAAjNGFZwarf27AegAAAADHIwgDAGCMXolIjz9irfaJR6VXI872AwAAAHgJQRgAAGN0+pT0/vPWaq++IAVOOdoOAGDMPrzrdgcA4G0EYQAAjNnLZ/vXXE9Yq7OCF10AMB5Wft++VuL3MgC4iSAMAIAJ9JLFEIwXXQAwGe7dl978xFrt6x9LjfuOtgMAOAZBGAAAU4oXXQAwOT6oSN98b6326++k6xVn+wEAHI0gDACAKcWLLgCYHJ9+MVj9Z33qTVN62Ox9M83h+wUArzrpdgMAAGA4w7zoeuvHzvQCAF6396299U1TOvlu75oHV6QTvsGuCwBex4wwAACmlN0vugAAw5t7zNl6AIA9CMIAAJhSvOgCgMlx4ZnB6p8bsB4AYA+CMAAAphQvugBgcrwSkR5/xFrtE49Kr0ac7QcAcDSCMAAAphQvugBgcpw+Jb3/vLXaqy9IgVOOtgMAOAZBGAAAU4oXXQAwWV4+27/mesJaHQDAGQRhAABMMV50AcB0eYnfxwDgKoIwAABmHC+6AAAAgH0n3W4AGEWtVtPi4mLPmpWVFa2srIypIwAAAAAAvGt9fV3r6+s9a2q12pi6OYwgDFOt2WxqZ2enZ02j0RhTNwAAAAAAeFuj0ej7Ot1NBGGYan6/X/Pz8z1rAoHAmLoBAAAAAMDbAoGAFhYWetbUajU1m80xddSNIAxTbX5+Xtvb2263AQAAAAAAZG17osXFRddmjbFZPgAAAAAAADyBIAwAAAAAAACewNJIAADGzO+THlzpXwMAAADAXgRhAACMmc8nnSDoAgAAAMaOpZEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBPcIAAAAAYIaZptQ0e9f4fft7WALArCMIAwAAAIAp9OFd6dVo/7qmKZ18t3fNgysc5ALAGwjCAACYYn7f/ouXfjUAgOny4d3+Na+VpBN+6eWzzvcDALOCPcIAAJhiPt/+i6BeN5a6AMB0uXdfevMTa7Wvfyw17jvaDgDMFGaEAQAAAIAN7Jql+0FF+uZ7a9f8+jvpekV668fW6gHA65gRBgAAAAA2sGuW7qdfDHbdzwasBwAvIwgDAAAAgAmy962z9QDgZQRhAAAAADBB5h5zth4AvIwgDAAAAAAmyIVnBqt/bsB6APAygjAAAAAAmCCvRKTHH7FW+8Sj0qsRZ/sBgFlCEAYAAAAAE+T0Ken9563VXn1BCpxytB0AmCkEYQAAAAAwYV4+27/mesJaHQDgPxCEAQAAAMAUeokQDAAGRhAGAAAAAAAATzjpdgMAAAAAgOlgmlLT7F3j90k+33j6AYBBEYQBAAAAACxpmtLJd3vXPLginSAIAzChWBoJAAAAAAAATyAIAwAAAAAAgCewNBIAAIvYFwUAAACYbgRhAABYxL4oAAAAwHQjCMNUq9VqWlxc7FmzsrKilZWVMXUEAAAAAIB3ra+va319vWdNrVYbUzeHEYRhqjWbTe3s7PSsaTQaY+oGAAAAAABvazQafV+nu4kgDFPN7/drfn6+Z00gEBhTNwAAAAAAeFsgENDCwkLPmlqtpmazOaaOuhGEYarNz89re3vb7TYAAAAAAICsbU+0uLjo2qwxvytXBQAAAABMjA/vut0BAIwHQRgAAAAAzDArIddrJcIwAN5AEAYAAAAAM+refenNT6zVvv6x1LjvaDsA4DqCMAAAAACYUR9UpG++t1b79XfS9Yqz/QCA2wjCAAAAAGBGffrFYPWfDVgPANOGIAwAAAAAZtTet87WA8C0IQgDAAAAgBk195iz9QAwbU663QAAAAAAoJvfJz240r+mnwvPSLd+Z/26zz1jvRYAphEzwgAAAABgwvh80gl/75vPQhD2SkR6/BFr13ziUenVyGh9A8CkIwgDAAAAgBl1+pT0/vPWaq++IAVOOdoOALiOIAwAAAAAZtjLZ/vXXE9YqwOAaUcQBgAAAAAe9xIhGACPIAgDAAAAAACAJ3BqJABgppmm1DR71/h91jYcBgAAADDdCMIAADOtaUon3+1d8+CKdMKmIOzDu9KrUXvGAgAAAGAvlkYCAGDRh3f717xWslYHAAAAYPwIwgAAsODefenNT6zVvv6x1LjvaDsAAEws/iAEYJIRhAEAJo5pSg+bvW9mn32/7PZBRfrme2u1X38nXa842w8AAG5gdjSAacceYQCAiTPufb2s+PSLweo/+0J668fO9AIAgBsGnR194UdS4JSjLQHAwJgRBgCABXvfOlsPAMCkY3Y0gFlAEAYAgAVzjzlbDwDApBtmdjQATBqCMAAALLjwzGD1zw1YDwDApGN2NIBZQBAGAIAFr0Skxx+xVvvEo9KrEWf7AQBg3JgdDWAWEIQBAGDB6VPS+89bq736ApsDAwBmD7OjAcwCgjAAACx6+Wz/musJa3UAAEwbZkcDmAUEYQAA2OglQjAAwIxidjSAWUAQBgAAAACwhNnRAKYdQRgAAAAAwDbMjgYwyU663QAwilqtpsXFxZ41KysrWllZGVNHAAAAAAB41/r6utbX13vW1Gq1MXVzGEEYplqz2dTOzk7PmkajMaZuAAAAAADwtkaj0fd1upsIwjDV/H6/5ufne9YEAoExdQMAAAAAgLcFAgEtLCz0rKnVamo2m2PqqBtBGKba/Py8tre33W4DAAAAmFh+n/TgSv8aALCDle2JFhcXXZs1RhAGAAAAADPM55NOEHQBgCSCMAAjMk2pafau8fv2/wEGAAAAAICbCMIAjKRpSiff7V3z4Ap/hQQAAAAAuM/vdgMAAAAAAADAOBCEAQA878O7bncAAAAAYBwIwgAAM81KyPVaiTAMAAAA8AKCMADAzLp3X3rzE2u1r38sNe472g4AAAAAlxGEAQBm1gcV6ZvvrdV+/Z10veJsPwAAAADcRRAGAJhZn34xWP1nA9YDAAAAmC4EYQCAmbX3rbP1AAAAAKbLSbcbAAC4yzSlptm7xu+TfL7x9GOnucecrQcAAAAwXQjCAMDjmqZ08t3eNQ+uSCemMAi78Ix063fW6597xrleAAAAALiPIAwAMLNeiUjv/MbahvlPPCq9Guld4/fth4L9agAAAABMJvYIAwDMrNOnpPeft1Z79QUpcKp3jc8nnfD3vk3jElIAAADAKwjCAAAz7eWz/WuuJ6zVAQAAAJhuBGEuMAxD8Xjccm06nVY4HJbP59Pc3Jyi0ajS6bQMwxi6h7W1NcXjcc3Nzcnn8ykcDiuZTKpcLk/UmABwnA/v2jfWS4RgAAAAgCcQhNmoXq/L5/P1vYXDYYVCob7jra2tKRwOq1AotEOver2uSqWiQqGgcDistbW1gXosl8uam5tTNpuVJBWLRVWrVeVyOVUqFcXjccXjcdXrdVfHBOBtVkKu10r2hmEAAAAAZh+b5duoUChYrm2FRseJx+Mql8sKBoOKxWIKhUIyDEOVSqVrJlg2m1UoFFIikeh7zXK53J6JlkqllM/n259rjRGNRlUulxWNRrW1taVgMDj2MQF427370pufWKt9/WPpwo/67+0FAAAAABIzwmy1urpqqa4VbB0nm82qXC4rl8tpb29PxWJRuVyua6ZVp2Qy2fea9Xq9XRcKhboCq07FYlHS/pLMfuM6MSYAfFCxdsqjJH39nXS94mw/AADAfqYpPWz2vpmm210CmEXMCLNJoVBQvV5XJpPpu//XuXPnjv2cYRhaW1vTxsaGYrHYkTWZTEbVarVrBlqlUlEkEjl23GQy2V6a2Gs2WmsWV6lUUrlcVqFQUCqVGtuYAPDpF4PVf/aF9NaPnekFAAA4o2lKJ9/tXfPginSC05gB2IwgzCa5XE6hUOjQbK1BZbNZ5XK5Y0Owzut1BmHlcvnYIMwwjK4N6y9evNhz7EuXLqlUKrX7OSq0cmJMAJCkvW+drQcAAMPz+/YDqn41ADCpWBppg1KpJMMw+u77ZUVrVlk/wWCwa3llr323OsO5WCzWd4+uzv3G6vV6O8Byekxg1rEEwJq5x5ytBwAAw/P5pBP+3jcfQRiACUYQZoPV1VUFg8G+s6Ks2NjYsFy7u7vbfrvXcsvOmWO9lk926gzZbty4MZYxgVnXWgLQ69YkCNOFZwarf27AegAAAADeRRA2okqlokqlonq9rrm5OYXDYaXTacdnPNXr9fb+XLFY7NgwqlLp3kX6/PnzlsbvHO/gfXFiTABoeSUiPf6ItdonHpVetZbFAwAAAABB2KgOLoc0DEOFQkHJZFI+n0/JZPJQcGSHmzdvStqfZdU6lfEonft4teqtOFjXeR+cGBMAWk6fkt5/3lrt1RekwClH2wEAAAAwQwjCRnBww/ijlEolRaNRpdNp265br9eVTqcViUS0sbHRc3+uO3fudL3fby+vlieffLLr/c3NTUfHBIBOL5/tX3M9Ya0OAAAAAFo4NXIEoVBI+Xxe9Xpd1WpV5XJZhmEcWVsoFLS5uamtra2RrmkYhuLxuILBoG7fvt03hDrYz7Czt6rVqqNjAph+ptl/jzO/z74NdF8iBAMAAAAwIIKwEaVSqa736/W6CoWCVldX23t4tVQqFcXj8YE2xO9UKpWUTCbb78/NzSmXy/U8ZfK4YG5QnffFiTGHVavVtLi4OPI4KysrWllZGXkcYFzGHTpZ0ToMoJcHV6QTnCQFAAAATKX19XWtr6+PPE6tVrOhm+EQhNksGAwqk8kok8moVCppeXm5K/Apl8taW1vrGV51agVr+Xz+yAAqm83qzp07x+4TNmzYdHCmWecJlU6MOaxms6mdnZ2Rx2k0GiOPAYwToRMAAACAcWs0Gra8BncTQZiDEomEYrGYlpaWujaGX11dtRyElctlVatVxWKxY/ckK5VKA4Vrw7Bj9pYTY/r9fs3Pz488TiAQGHkMAAAAAABmWSAQ0MLCwsjj1Go1NZtNGzoaHEGYw4LBoLa2thSNRtthWL1eV7lcViwW6/v1iURCiUSi62OFQkHZbLYrSMpms0qlUodmXQWDQVsCp85xnRhzWPPz89re3h55HAAAAAAA0Jtd2wotLi66NrOMUyPH5Nq1a13vD7tPmLS/L9nW1tahIKlQKByqPXPmzNDXOW4cJ8YEAAAAAABwGkHYmEQika4ZYKNuOB8KhXT79u2uj925c+dQ3bCzrg7O+Do4I8zuMb3sw7tudwAAAAAAgDcQhI1RPB63dbxIJNK1bPKocO3cuXNd71td0nhwI/twOOzomLPKSsj1WokwDAAAAACAcWCPsDEKhULtt+1aFnjp0iWVSiVJRwdS0Wi0633DMBSJRPqOW61Wu97vnM3mxJiz6N596c1PrNW+/rF04UdS4JSjLQGe5Pftn6DZrwYAAADA7GNG2Bh1BmF2LQvsDKCOGvPg7C2rSzI7Q7VgMNjVuxNjzqIPKtI331ur/fo76Xqlfx2Awfl80gl/75uPIAwAAADwBIKwMdrc3Gy/bfcySelwQCXtB2WdAdlR+4gdpbPXg+M6MeYs+vSLweo/G7AeAAAAgGSa0sNm75tput0lgEnB0sgx6lwaaNeywM7ZWMeFaxcvXmyfKFmpWJt21FmXzWbHMuas2fvW2XoAAAAAUtOUTr7bu+bBFekEM8ABiBlhY9XayyuTydg2ZitcCgaDXRvnd0qn0+23y+Vy3zE7a0Kh0JGhnRNjzpq5x5ytBwAAAAAAgyEIG5NSqSTDMBQMBnX58mXbxl1dXZUkXbt27diaSCTSFTy1ArnjFIvF9tvHzdxyYsxZc+GZweqfG7AeAAAAAAAMhiBsSOVyWXNzc/L5fIrH4z2XBxqGoeXlZUnS7du3e26Uv7a2pmg0qmw2e+QpkJ1aNZlM5tjZYC35fL79dis8O0q9Xm8veYzFYkqlUmMdc5a8EpEef8Ra7ROPSq/2P3gTAAAAAACMgCBsSMVisR1UlctlRaPRruWCLa3PnTlzRtVqteuUx4Pq9bqy2awqlYrW1tY0Nzd37OypZDKptbU15XI55XK5vv2GQqH2rKzW+EdZWlqStL/UsnMW17jGnCWnT0nvP2+t9uoLUuCUo+0AAAAAAOB5BGFDSiaThz5WKBQ0NzenZDKpdDqtaDSqeDyuVCqlra0thUKhnmMGg8FDNa1ALJlMKpvNKh6Pa25uTtL+5vuD7DeWSCS0sbGhYDCobDarZDKpSqWier3eDuwqlYoikYi+/PLLnjPXnBxzlrx8tn/N9YS1OriDU4gAAAAAYHZwauSQYrGYqtWqcrmcyuWydnd32zPEWsHP5cuXFYvFBgp/tra2tLq6qnK5LMMwusaU9gO4YrE4dKAUi8W0t7entbU13bhxQ0tLS6rX6woGgzp37pyKxWLfZZbjGNNLXiIEm2icQgQAAOCOD+9Kr0bd7gLArCEIG0EoFOraJ8sOwWDQ0lLHUWUyGVtPr3RqTACTgX+IAgAAO314t3/NayXphJ/VEwDsxdJIAPA4q/8QtVIHAADQz7370pufWKt9/WOpcd/RdgB4DEEYAHgY/xAFAADj9kFF+uZ7a7VffyddrzjbDwBvIQgDAA/jH6IAAGDcPv1isPrPBqwHgF4IwgDAw/iHKAAAGLe9b52tB4BeCMIAwMP4hygAABi3ucecrQeAXgjCAMDD+IcoAAAYtwvPDFb/3ID1gNdxyFVvJ91uAADgngvPSLd+Z71+XP8Q9fukB1f61wAAgOnzSkR65zfW9il94lHp1YjzPQHTwuqJ7yf80stnne9nGjEjDAA87JWI9Pgj1mrH+Q9Rn2//f969bj6CMAAAptLpU9L7z1urvfqCFDjlaDvA1ODEd3sQhAGAh/EPUQAA4AYrM1WuJ5jRAnTixHd7EIQBgMfxD1EAADCJXuLfHkAXTny3B0EYAKAvu/4hysadAAAAgzFN6WGz98003e4S48CJ7/Zgs3wAgC3YuBMAAMB+TVM6+W7vmgdXpBPsnzrzOPHdHswIAwCMjI07AQAAAGddGPAE93Gd+D5tCMIAACNj404AAADAWZN64vu0YWkkplqtVtPi4mLPmpWVFa2srIypI8Cbhtm4860fO9MLAAAAMItaJ76/Vupf6+aJ7+vr61pfX+9ZU6vVxtTNYQRhmGrNZlM7Ozs9axqNxpi6AbyLjTsBAAAA5718tn8Q5vaJ741Go+/rdDcRhGGq+f1+zc/P96wJBAJj6gbwLjbuBAAAACaDXSe+DysQCGhhYaFnTa1WU7PZHFNH3QjCMNXm5+e1vb3tdhuA5114Rrr1O+v1bNwJAAAAzCYr2xMtLi66NmuMzfIBACNj404AAAAA04AgDAAwstbGnVa4uXEnAAAAAG8jCAMA2MLKhpxub9wJAAC86cO7bncAYFIQhAEAxsbtjTsBAMDssRJyvVYiDAOwjyAMAAAAADCV7t2X3vzEWu3rH0uN+462A2AKEIQBHmSa0sNm75tput0lAAAA0NsHFemb763Vfv2ddL3ibD8AJt9JtxsAMH5NUzr5bu+aB1ekE77x9AMAAAAM49MvBqv/7AvprR870wuA6cCMMACYUeyDAQAAZt3et87Wj4JVGMBkYkYYAEwhq5vCnvBzSiMAAJhdc485Wz8KVmEAk4kZYQAwZdgUFgAAYN+FZwarf27AegCzhyAMAKYMm8ICAADseyUiPf6ItdonHpVejTjbD4DJRxAGAFNmmE1hAQAAZtHpU9L7z1urvfqCFDjlaDsApgBBGABMmUneFBYAAGDcrOyHej3BvqkA9rFZPgBMmUneFBYAAMAKv29/o/h+NXZ5iRAMwP/CjDAAmDJsCgsAAKadz7d/unWvm8+F0xRNU3rY7H0zzfH3hclk5SR3TB5mhAHAlHklIr3zG2sb5rMpLAAAgHVNUzr5bu+aB1ekEy6EdBgvKyHXa6X90JZlt9OFGWEAMEGs/A+XTWEBAAAA59y7L735ibXa1z+WGvcdbQc2IwgDgDGx+lclK3VsCgsAAAA444OKtdUXkvT1d9L1irP9wF4EYQAwBm78VYlNYQEAAIDBffrFYPWfDVgPdxGEAcAY8FclAAAAYDrsfetsPdxFEAYAY8BflQAAAIDpMPeYs/VwF6dGAsAYTPJflfy+/dOP+tUAAAAAXnDhGenW76zXP/eMc73AfswIA4AxmOS/Kvl8+8c+97r5CMIAAADgEa9EpMcfsVb7xKPSqxFn+4G9CMIAYAwuDPhXIv6qBAAAALjj9Cnp/eet1V59QQqccrQd2IwgDADGgL8qAQAAANPjZQsnsF9PWKvDZCEIA4Ax4K9KAAAAwGx5iRBsKhGEAcCY8FclAAAAAHAXp0ZiqtVqNS0uLvasWVlZ0crKypg6AkbDX5UAAAAATLP19XWtr6/3rKnVamPq5jCCMEy1ZrOpnZ2dnjWNRmNM3QDe5vdJD670rwEAAAAwuxqNRt/X6W4iCMNU8/v9mp+f71kTCATG1A3gbT6fdIKgCwAAAPC0QCCghYWFnjW1Wk3NZnNMHXUjCMNUm5+f1/b2ttttAAAAAAAAWdueaHFx0bVZY2yWDwAAAAAAAE9gRhgAAAAAAJgJpik1zd41ft/+th7wJoIwAAAAAAAwE5qmdPLd3jUPrrC3rZexNBIAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMAT2CwfAAAAADC1/L79zc/71QCARBAGAAAAAJhiPh8nAAKwjqWRAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAj+vCu2x0AAAAAAKwgCAOAHqyEXK+VCMMAAAC8ws5/9/FvSGD8CMIA4Bj37ktvfmKt9vWPpcZ9R9sBAACAw+z8Iyh/UAUmE0EYABzjg4r0zffWar/+TrpecbYfAAAAOMfOP4LyB1VgchGEAZgYpik9bPa+meb4+vn0i8HqPxuwHgAAAJPDzj+CjvsPqswqA6w76XYDANDSNKWT7/aueXBFOuEbTz973zpbDwAAgMkxzB9B3/qx82NZXWJ5wi+9fHaw6wJexIwwADjG3GPO1gMAAGBy2PlHULvGmuQllpO2mgOwihlhAHCMC89It35nvf65Z5zrBQAAAM6y84+gdo01zBLL42aW2W3SVnMAVjEjDACO8UpEevwRa7VPPCq9GnG2HwAAADjnwoB/1Oz1R1C7xmLPWsB+BGEAHDetm3eePiW9/7y12qsvSIFTjrYDAAAAB9n5R1C7xmLPWsB+BGEARmJ1885pDcOsbDh6PcHGpAAAANPOzj+C2jUWe9YC9mOPMABDG3Tzzgs/ms1ZUy+5EIL5fft7LvSrAQAAgHUvn93/I24vVv8IasdY7FkL2I8ZYQCGNszmnbCHz7d/RHavm48gDAAAwHZ2/hG031jsWQvYjyAMwNDYvBMAAABwDnvWAvYjCAMwNDbvBAAAAJzFnrWAvdgjDFOtVqtpcXGxZ83KyopWVlbG1JG3sHknAAAA4D439qwFjrO+vq719fWeNbVabUzdHEYQhqnWbDa1s7PTs6bRaIypG+9h804AAABgepim1DR71/h97DWL0TQajb6v091EEIap5vf7NT8/37MmEAiMqRvveSUivfMbaxvms3knAAAA4K6mKZ18t3fNgyvSCYIwjCAQCGhhYaFnTa1WU7PZHFNH3QjCMNXm5+e1vb3tdhue1dq8s9+x0BKbdwIAAACAF1jZnmhxcdG1WWNslg9gJGzeCQAAAACYFgRhABzH5p0AAAAAgElAEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeMJJtxsAAAAAAADeZZpS0+xd4/dJPt94+sFsIwgDAAAAAACuaZrSyXd71zy4Ip0gCIMNWBoJAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHjCSbcbAACv8Pv2j33uVwMAAAAAcAZBGACMic8nnSDoAgAAAADXsDQSAAAAAAAAnkAQBgAAAAAAAE9gaSQAAAAAAGJPV8ALCMIAAAAAABB7ugJewNJIAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACewB5hAGaOaUpNs3eN37e/BwQAAAAAwDsIwgDMnKYpnXy3d82DK2yECgAAAABeQxCGqVar1bS4uNizZmVlRSsrK2PqCAAAAAD2VyA8uNK/Bpg16+vrWl9f71lTq9XG1M1hBGGYas1mUzs7Oz1rGo3GmLoBAAAAgH0+HysQ4E2NRqPv63Q3EYRhqvn9fs3Pz/esCQQCY+oGAAAAAABvCwQCWlhY6FlTq9XUbDbH1FE3gjBMtfn5eW1vb7vdBgAAAAAAkLXtiRYXF12bNeZ35aoAAAAAAADAmBGEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHjCSbcbAIBJ5vdJD670rwEAAAAATD6CMADoweeTThB0AQAAAMBMYGmkCwzDUDwet1RbqVSUTqcVDofl8/nk8/kUDoeVzWZVr9cnpk9JWltbUzwe19zcXLvPZDKpcrnsYJcAAAAAMLtaKxR63VihAFhHEGajer3eDqt63cLhsEKhUN+xksmkotGoCoWCDMNof84wDK2trWlubk6FQsHVPiWpXC5rbm5O2WxWklQsFlWtVpXL5VSpVBSPxxWPxx0P7gAAAABg1vh80gl/75tvQoOwD++63QFwGEsjbTRIKNUKjY5Sr9cVjUa7wq/jpNNpbW1tKZ/PW762XX1K+yFYa9ZYKpXq6iMUCimRSCgajapcLisajWpra0vBYNDy9QEAAAAAk8dKyPVaaT+oe/ms8/0AVjEjzEarq6uW6mKxWM+ZVslkUoZhKBKJtGdXVatVFYtFZTKZQ/WFQkGlUmnsfbZmrUn7oddxYVyxWJS0P5OtVQ8AAAAAmDxWAq5796U3P7E23usfS437I7UE2IoZYTYpFAqq1+vKZDJ999U6d+5cz3HK5bIymYxyuVzX51ozrNLptJLJpCqVSvtzy8vLSiQSY+tT2g/sWssde80ca/VdKpVULpdVKBSUSqX69goAAAAAsI9ds7g+qEjffG/tml9/J12vSG/92Fo94DSCMJvkcjmFQqFD4dUw48RisZ7jhEIhFYtFhcPh9sfq9brK5bJisdhY+jQMo2sT/IsXL/asv3TpUnvWWjabJQgDAAAAgDEadBbXhR9JgVNHf/7TLwa79mdfEIRhcrA00galUkmGYfTdT6ufSqUiwzDaSwl7OSrM6pwh5mSfkrquHYvF+u771TlbrV6vD7SUE+5gY0sAAABgdgwzi+s4e98Odu1B6wEnEYTZYHV1VcFgsO+sqH5u3LihVCpleTP5g7O//vjHP/ast6tPqXvD/UgkYulrOvcbu3Hjxsg9YHhWp0QThgEAAACzYZhZXMeZe2ywsQatB5xEEDaiSqWiSqWier2uubk5hcNhpdPpoWY8Xbp0aaAliwcDqM6lkk72eXDm2fnz5wfulxlh7mFjSwAAAMB77JzFdeGZwcZ6bsB6wEkEYSM6uMzQMAwVCgUlk0n5fL5Dm9r3EolELM8Gk9TeqL6l1wmPdvbZuTdYv+v2qrN6PdjLzinRAAAAAKaDnbO4XolIjz9ibZwnHpVetbaICBgLgrARHNww/iilUknRaFTpdNqR63c6bqN8u/u8c+dO1/tWw7snn3yy6/3NzU1LXwd72Tkl2g0s1wQAAAAGZ+csrtOnpPeftzbO1ReO33QfcANB2AhCoZDy+bxyuZxSqVTPmVGFQkHRaNTW63cGSb1OYbS7z4MB3LAzwqrVqqWvg70meWNL9i4DAAAAnGH3LK6Xz/Yf53rCWh0wTifdbmDaHQyg6vW6CoWCVldXDy1drFQqisfj2tjYsOXa+Xy+/Xa/kyDt7PNgEDasg9cdRq1W0+Li4sjjrKysaGVlZeRxpsGkbmxp53HOAAAAALq1ZnG9ZmG7Zrtmcb1ECDZz1tfXtb6+PvI4tVrNhm6GQxBms2AwqEwmo0wmo1KppOXl5a7Ap1wua21tTZlMZqTrGIbR3mMrl8tZnpVlR5/DBlgHl1Du7u4ONU6nZrOpnZ2dkcdpNBojjzEtLjwj3fqd9fpxbWw5zN5lb/3Y2Z4AAACAWfLy2f5BGLO40Euj0bDlNbibCMIclEgkFIvFtLS01LUx/Orq6shBWOt0yVAoNPJYTvbZix0zwvx+v+bn50ceJxAIjDzGtHglIr3zG2uh0zg3thxm7zKCMAAAAMBezOJCL4FAQAsLCyOPU6vV1Gw2behocARhDgsGg9ra2lI0Gm2HTPV6XeVy+djN7fupVCoqFAoKBoO2LbMcpM9gMGhLiDXICZnHmZ+f1/b29sjjeIkbU6KtmOS9ywAAAADMjg/vSq/au4W3Z9i1rdDi4qJrM8vYLH9Mrl271vX+KAHW8vKyJOn27dsDL4nsx0qfZ86cseVado2DwU3ixpaTuncZAAAAgOnBAVzohyBsTCKRSNfMqmE3nE+n06pUKioWi4pE7F+zZqXPYWdyHZxFZseMMDhn3FOi7TzOGQAAAID3DHoAV+O+o+1gQhGEjVE8Hh/p6wuFggqFgvL5vBKJhE1dHdavz3PnznW9b3WZ5MHN8cPh8EB9YbbZfZwzAAAAAG8Z5gAueA9B2Bh1LmMcdFlguVxWOp1WPp9XKpWyu7Uu/fqMRrsXU1ud3VatVrveH3aPNMym1t5lVoxz7zIAAAAA02GYA7jgPQRhY9QZMA2yLLBSqSgejyuXyzkegkn9+zw4I8xqENY5cywYDNq+v5lX3Lsv/f1/l37y/0r/5f/Z/+///d/3Pz7tJnHvMgAAAADTgQO4YAVB2Bhtbm6237a6TNIwDC0tLSmTySiTyTjVWpd+fUYika6A7M6dOwOPezBMgzX/dFdaXJX+5lPp1u+kO9v7//2/Pt3/+D95YMNHjnMGAAAAcBQO4IIVBGFj1Lk00MqyQMMwFI1GlUqllMvlLF3DMAytra0N3aNkrc+LFy+2365UrC2s7qzLZrNDdudd/3RXeuXm/lr2o3z93f7nOf0EAAAAgBdxABesIAgbo1KpJEmWZnbV63XF43FdvHjRcggmSclkcuS9t6z0mU6n22+Xy+W+Y3bWhEIh9gcb0L370hsfW6vl9BMAAAAAXsQBXLCCIGxMSqWSDMNQMBjU5cuXe9bW63VFo1GFQiFls1kZhtH3Vi6X25vYRyLD/zRb7TMSiXSFWa3w7DjFYrH9NrPBBvdB5fiZYAdx+gkAAAAAL+IALlhBEDakcrmsubk5+Xw+xePxnssDDcPQ8vKyJOn27dt9N8pfWlpqh1vhcNjSrdVD50wtp/vM5/Ptt1dXV4+tq9frKhQKkvaXWo5jw/9Zw+knAAAAANAfB3ChH4KwIRWLxfYpiK3ZWAdDqM7PnTlzRtVqte9srWg0annPraMcDJmc6lPaX+LYmulVqVSO3ZtsaWlJ0v5JkZ0zw2Adp58AAAAAgD04gMvbCMKGlEwmD32sUChobm5OyWRS6XRa0WhU8XhcqVRKW1tbCoVCfce0MwRzqs9OiURCGxsbCgaDymaz7ftQr9fb4VqlUlEkEtGXX37Zd5YZjsbpJwAAAAAAjI4gbEixWEzValWpVEqhUKgr4KlUKtrd3dXly5e1t7enXC5nKQAqFosyTXPoW+dSRSf7POoara83DENLS0vtoO3MmTMqFova2toiBBsBp58AAAAAADC6k243MM1CodCR4dOkGVefmUzG0omYGNwrEenyv1jbMJ/TT6z58K70atTtLgAAAAAA48SMMGAKnD4l/cML1mo5/WQ/5OrntZK1OgAAAADA7CAIA6bE/3lW+qeL+zO+jvLEo/uf9/rpJ/fuS29+Yq329Y+lxn1H2wEAAAAATBCWRgJT5OWz0nM/kj6oSJ99sX865Nxj+3uCvRphJpi0/7355ntrtV9/J12vSG/92NmeAAAAAIyGrU1gF4IwYMqcPrUf3BDeHO3TLwar/+wLvpcAAACAm6xubXLCzwoYjI6lkQBmyt63ztYDAAAAsA9bm2DcmBEGYKbMPeZsPQAAAAD7eGlrk3v39/vv3ObmwjPSK5H9lT8YD4IwADPlwjPSrd9Zr3/uGed6AQAAANCbV7Y2+ae70hsf74d5nW79Trr8L9I/vLB/QBqcx9JIADPllYj0+CPWap94dP+QAQAAAADu8MLWJv90V3rl5uEQrOXr7/Y/b2WvNIyOIAzATDl9Snr/eWu1V1/gpE0AAADATbO+tcm9+/szwaxgD7TxIAgDMHOsnCRzPcGJMwAAAIDbLgy4Vcm0bW3yQeX4mWAHtfZAg7MIwgB40kuEYAAAAIDrZn1rk2H2QIOzCMIAAAAAAIArZn1rEy/sgTZtCMIAAAAAAIBrZnlrk1nfA20aEYQBAAAAAICJNq1bm8z6HmjT6KTbDQCjqNVqWlxc7FmzsrKilZWVMXUEAAAAAMC+VyLS5X+xtmH+NO6BdpT19XWtr6/3rKnVamPq5jCCMEy1ZrOpnZ2dnjWNRmNM3QAAAAAA8B9On5L+4QXplZv9a6dxD7SjNBqNvq/T3UQQhqnm9/s1Pz/fsyYQCIypGwAAAAAAuv2fZyWfpNc/Pnpm2BOP7odg07gH2lECgYAWFhZ61tRqNTWbzTF11I0gDFNtfn5e29vbbrcBAAAAAMCxXj4rPfcj6YOK9NkX+6dDzj22vyfYq5HZmAnWYmV7osXFRddmjRGEAQAAAAAAOOz0KemtH+/f4B5OjQQAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJJ91uAAAAAAAAOM/vkx5c6V8DzDKCMAAj4X+mAAAAwHTw+aQT/NscHkcQBjjICyER/zMFAAAAAEwLgjDAQYREAAAAAGaRF/7oj9lEEAYAAAAAAAbCH/0xrTg1EgAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATzjpdgPAKGq1mhYXF3vWrKysaGVlZUwdAQAAAADgXevr61pfX+9ZU6vVxtTNYQRhmGrNZlM7Ozs9axqNxpi6AQAAAADA2xqNRt/X6W4iCMNU8/v9mp+f71kTCATG1A0AAAAAAN4WCAS0sLDQs6ZWq6nZbI6po24EYZhq8/Pz2t7edrsNAAAAAAAga9sTLS4uujZrjM3yAQAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AnuEAQAAAAAATAG/T3pwpX8NjkcQBgAAAAAAMAV8PukEQddICMIAzBz+SgIAAAAAOApBGICJYVeAxV9JAAAAAABHIQgDMDEIsAAAAAAATuLUSAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCAAAAAAAA4AkEYQAAAAAAAPAEgjAAAAAAAAB4AkEYAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJJ91uAAAAAAAAwA5+n/TgSv8aeBdBGAAAAAAAmAk+n3SCoAs9EIQBAAAAAADXMIsL40QQBgAAAAAAXMMsLowTm+UDAAAAAADAE5gRhqlWq9W0uLjYs2ZlZUUrKytj6ggAAAAAAO9aX1/X+vp6z5parTambg4jCMNUazab2tnZ6VnTaDTG1A0AAAAAAN7WaDT6vk53E0EYpprf79f8/HzPmkAgMKZuAAAAAADwtkAgoIWFhZ41tVpNzWZzTB11IwjDVJufn9f29rbbbQAAAAAAAFnbnmhxcdG1WWNslg8AAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATTrrdAIDx8/ukB1f61wAAAAAAMEsIwgAP8vmkEwRdAAAAAACPYWkkAAAAAAAAPIEgDAAAAAAAAJ5AEAYAAAAAAABPIAgDAAAAAACAJxCEAQAAAAAAwBMIwgAAAAAAAOAJBGEAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCSfdbgAYRa1W0+LiYs+alZUVraysjKkjAAAAAAC8a319Xevr6z1rarXamLo5jCAMU63ZbGpnZ6dnTaPRGFM3AAAAAAB4W6PR6Ps63U0EYZhqfr9f8/PzPWsCgcCYugEAAAAAwNsCgYAWFhZ61tRqNTWbzTF11M1nmqbpypWBESwuLmpnZ0cLCwva3t52ux0AAAAAwAx52JROvtu75sEV6QQ7rw/Fzdf0PGQAAAAAAADwBIIwAAAAAAAAeAJBGAAAAAAAADyBIAwAAAAAAACeQBAGAAAAAAAATyAIAwAAAAAAgCcQhAEAAAAAAMATCMIAAAAAAADgCQRhAAAAAAAA8ASCMAAAAAAAAHgCQRgAAAAAAAA8gSAMAAAAAAAAnkAQBgAAAAAAAE8gCAMAAAAAAIAnEIQBAAAAAADAEwjCXGAYhuLxuKXaSqWidDqtcDgsn88nn8+ncDisbDarer0+dA9ra2uKx+Oam5trj5lMJlUulydqTAAAAAAAALsQhNmoXq+3w6pet3A4rFAo1HesZDKpaDSqQqEgwzDanzMMQ2tra5qbm1OhUBiox3K5rLm5OWWzWUlSsVhUtVpVLpdTpVJRPB5XPB4fKGRzYkwAAAAAAAC7nXS7gVkySCjVCo2OUq/XFY1Gu8Kv46TTaW1tbSmfz/etLZfL7ZloqVSq62tCoZASiYSi0ajK5bKi0ai2trYUDAbHPiYAAAAAAIATmBFmo9XVVUt1sVis54ywZDIpwzAUiUTas6uq1aqKxaIymcyh+kKhoFKp1POarRlm0n5AdVxwViwWJe3POmvVj3NMAAAAAAAApzAjzCaFQkH1el2ZTKbv/l/nzp3rOU65XFYmk1Eul+v6XGuGVTqdVjKZVKVSaX9ueXlZiUTi2HGTyWR7aWKv2Wita5RKJZXLZRUKBaVSqbGNCQAAAAAA4BSfaZqm203MgnA4LEmqVqsjjxMKhbSxsdGzzjCM9jVbNjY2FIvF+tbu7e31XJ5YKpXaM7eCwaD29vbGMuYgFhcXtbOzo4WFBW1vb480FgAAAAAAnR42pZPv9q55cEU6wTq7obj5mp6HzAalUkmGYfScFWVFpVKRYRjtpYS9hEKhQzPGOmeIdeqsi8Vifffo6pxZVq/Xj1x26cSYAAAAAAAATiIIs8Hq6qqCwaAuXrw40jg3btxQKpWyvJn8wdlff/zjH4+s69zEPxKJWBq7cw+zGzdujGVMAAAAAAAAJxGEjahSqahSqaher2tubk7hcFjpdHqoGU+XLl06NMurl4MB1MGlkq3+Op0/f37gsQ/eFyfGBAAAAAAAcBpB2IgOLoc0DEOFQkHJZFI+n+/Qpva9RCIRy7PBJLU3qm856iTKcrnct+YoB+s674MTYwIAAAAAADiNIGwEhmEcCoUOKpVKikajSqfTjly/01Eb5d+5c6frfatB25NPPtn1/ubmpqNjAgAAAAAAOO2k2w1Ms1AopHw+r3q9rmq1qnK5fCicaikUCtrc3NTW1pZt1+8MklKp1JE1B/sZdvZW52mYTowJAAAAAADgNIKwER0MoOr1ugqFglZXVw8tXaxUKorH49rY2LDl2vl8vv32cSdWHhfMDarzvjgxJgAAAAAAgNMIwmwWDAaVyWSUyWRUKpW0vLzcFfiUy2Wtra0pk8mMdB3DMNp7bOVyuWNnZQ0bNh1c7ri7u+vomMOq1WpaXFwceZyVlRWtrKyMPA4AAAAAALNqfX1d6+vrI49Tq9Vs6GY4BGEOSiQSisViWlpa6toYfnV1deQgrHW6ZCgUGnksK5yYvWXHmM1mUzs7OyOP02g0Rh4DAAAAAIBZ1mg0bHkN7iaCMIcFg0FtbW0pGo22w7B6va5yuXzk5vZWVCoVFQoFBYPBvsssg8GgLYFT52wuJ8Yclt/v1/z8/MjjBAKBkccAAAAAAGCWBQIBLSwsjDxOrVZTs9m0oaPBEYSNybVr1xSNRtvvb2xsDB2ELS8vS5Ju377dd6P6M2fO2BJanTlzxtExhzU/P6/t7e2RxwEAAAAAAL3Zta3Q4uKiazPL/K5c1YMikUhX8DXshvPpdFqVSkXFYlGRSKRv/bCzrg4GXQdnhNk9JgAAAAAAgNMIwsYoHo+P9PWFQkGFQkH5fF6JRMLS15w7d67rfaszuQ5uZB8Ohx0dEwAAAAAAwGkEYWPUuYxx0GWB5XJZ6XRa+XxeqVTK8td1LseUrM9Eq1arXe93zmZzYkwAAAAAAACnEYSNUWcQNsiywEqlong8rlwuN1AIJh2evWU1tOqc5RUMBrt6d2JMAAAAAAAApxGEjdHm5mb7bavLJA3D0NLSkjKZjDKZzMDXjEQiXaHbnTt3LH1dZ68Hgy8nxgQAAAAAAHAaQdgYdS4NtLIs0DAMRaNRpVIp5XI5S9cwDENra2tdH7t48WL77UqlYmmczrpsNnvo806MCQAAAAAA4CSCsDEqlUqSZGlm1/+/vfvZTSPL+wf8dXfPq1lFOCO9UivZdPkOcPoKgu8AT64gsM/CaPSuX0V4kT3uK+jAHUCuYAJ34OpNR5FGGlPK6tU7b4ffIj8QYLAxpvgz9TwSatspzjlFnS5XfXzOqSzL4uzsLP7617+uHIJFRJyfn98K2er1+uTrXq93bxnT2yRJsjC0y6NMAAAAgDwJwrak0+lEmqZRKpXib3/7253bZlkWp6enkSRJNBqNSNP03lev15ssYl8ul2fKK5fLM8HTOJBbpt1uT75eNnIrjzIBAAAA8nQ0Go1Gu27EIer1enF+fh5ZlkWlUolms3krgBobT3HMsiz6/f7S7cZOT09Xnm44b9lTJdM0jZOTk4j4FmL1+/2F78+yLI6PjyPi2/TNbre7tK48ylzV8+fP49OnT/Hs2bP4/fffH10eAAAAjP3xNeKH/7p7m//774jvDS9ayy7v6R2yNbXb7clTEMejsaanC46N/+3p06dxfX2dawgWEUufKpkkyWRU1mAwuLWO2NjLly8j4ttTHadHcW2rTAAAAIC8CMLWdH5+futnV1dXcXx8HOfn51Gv1+P09DTOzs6iVqtFv9+PJEnuLTOPEGysWq1Gt9uNUqkUjUZjUl+WZZPAbjAYRLlcjt9++23myZDbLBMAAAAgD6ZGPkKaptFsNqPX68XNzU1kWRalUimePn0a5XI5Xr16FZVKZS/Dn8vLy/j1118jTdNJu1+8eBH1ej2q1erelLmMqZEAAADkxdTIfO3ynl4QxkEShAEAAJAXQVi+rBEGAAAAADkThAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIXww64bAI/x+fPneP78+Z3bvHnzJt68ebOlFgEAAEBxvXv3Lt69e3fnNp8/f95Sa24ThHHQvn79Gp8+fbpzmy9fvmypNQAAAFBsX758ufc+fZcEYRy07777Ln788cc7t3ny5MmWWgMAAADF9uTJk3j27Nmd23z+/Dm+fv26pRbNOhqNRqOd1AyP8Pz58/j06VM8e/Ysfv/99103BwAAgH8jf3yN+OG/7t7m//474nsrr69ll/f0DhkAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBC8NRIAAAAgCnfHX1bDP++bTg8gjAAAACAKUdHEd8Luv4tmRoJAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKIQfdt0AKJJ3797Fly9f4smTJ/HmzZtdN4d/U/oZedPH2Ab9jLzpY2yDfkbe9LGHOxqNRqNdNwIe6vnz5/Hp06d49uxZ/P7777tuzsoOtd0cFv2MvOljbIN+Rt70MbZBPyNvh9rHdtluUyMBAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAArhh103AHbh3bt38eXLl3jy5Em8efNm183Zil3u867qLuI+75pjXZy6d6WIn3cR93mXivp5F7F/71IRP++i1r0rRf28i/j/1i4d7H6P4AA9e/ZsFBGjZ8+e7eT969pVvUWtu4j7XNS6i7jPu6y7iPu8y7qLuM+7rLuI+7zLuou4z7usu4j7XNS6i7jPu6y7iPv82Lp32W5TIwEAAAAoBFMjOWifP3+O58+f37nNmzdvDmuYJgAAAByod+/exbt37+7c5vPnz1tqzW2CMA7a169f49OnT3du8+XLly21BgAAAIrty5cv996n75IgjIP23XffxY8//njnNk+ePNlSawAAAKDYnjx5Es+ePbtzm8+fP8fXr1+31KJZgjAO2o8//hi///77rpsBAAAAxGrLEz1//nxno8Yslg8AAABAIQjCAAAAACiEo9FoNNp1I+Ch/uM//iP+9a9/rbRG2CLj+cjrvn9du6q3qHUXcZ+LWncR93mXdRdxn3dZdxH3eZd1F3Gfd1l3Efd5l3UXcZ+LWncR93mXdRdxnx9b9/i9f/rTn+J///d/c2rhYoIwDtL333+/s4X1AAAAgMf77rvv4o8//thqnRbL5yD9+c9/jv/5n/+J77//Pv7zP/9z180BAAAAVvSPf/wj/vjjj/jzn/+89bqNCAMAAACgECyWDwAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGGwpjRNo16vx8nJSRwdHcXx8XGcnp5GvV6PNE3XLvfy8jLOzs7i+Pg4jo6O4uTkJM7Pz6PX6+1VmWzHYDCY6Wfj49doNCLLsrXL1c9YJk3TODs7i06n86hy9DHW4RgzzfmIPLnGYhvcM+6pEfBgzWZzFBF3vprN5oPK7Ha7o1KpNIqIUaVSGXW73dH19fWo3W6PkiSZ/Hw4HO60TLZjOByOqtXqvf2s1Wo9qFz9jGXm+9xD+9aYPsY6HGOmOR+RJ9dYbIt7xv0lCIMHqlQqo4gYlUqlUbVaHV1cXIyq1erkJDH9arfbK5XZ7XYn76nVagu3KZfLo4gYJUmy0kkojzLZjuFwuLA/LXstO77z9DMWGQ6Ho4uLi0ffAIxG+hjrcYwZcz4ib66x2Bb3jPtNEAYPML44W5bcL0r97zMcDicJfJIkS7e7vr6elFmpVLZeJtsz/sVZLpdH7XZ7dH19PfmrzKIbhFV+gepnLNJsNkdJkkz63GNuPPUx1uEYM+Z8xDa4xmIb3DPuP0EYrGh8Auh2u3duV6vVZk5q/X7/zu2nL/juu9BbdZpAHmWyHa1WaxQRo4uLi6XbXF9fT/4yM36VSqU7y9XPmNfv92fOT+O+t+5x0sdYh2PMaOR8xHa4xmIb3DMeBkEYrKhara40h3s4HM6c1O56z3S6HhH3DjVtt9v3/lLOo0y2Z/zX8PvMH+e7fuHqZ6yi3++vfeOpj7EOx5hlnI/Ig2sstsE942EQhMGKHjIMdHru910Xb9N/CVi1/OkT1qKh2nmUyXaML/xXnXs/P6x62S9Q/YxVzF8QPeTGUx9jHY4xyzgfsWmusdgW94yH4bsAVtLtdlfe9ubmZvL1ixcvlm53dXU1+bpcLq9UdpIkk69//fXXrZTJdvz6669Rq9WiVCqttH2lUpn5/p///OfC7fQz8qaPsQ7HmDw4H7GIayy2xT3jYRCEwYZlWRZZlkXEt1+iy04sg8Fg5vuff/55pfKny+t0OrmXyfa8evUqms3mytvP962Tk5Nb2+hn5E0fYx2OMXlwPmIZ11jsG/eMuyUIgw17//59RHxLzNvt9tLter3ezPfTCftd5rebPpHlUSbbUy6XV/5LZURMfnmOLTre+hl508dYh2NMHpyPWMY1FvvGPeNuCcJgg7Isi3q9HuVyObrd7p2/cP/+97/PfL/qL+e//OUvM99//Pgx1zLZX2maznw/P4w/Qj8jf/oY63CMyYPzEZviGos8uWfcPUEYbEiapnF6ehqlUik+fPhwb7I+/wt23ST++vo61zLZX9O/fGq12sJt9DPypo+xDseYPDgfsSmusciLe8b9IAiDDeh0OnFychJpmkaWZXF8fByXl5d3vmf+BLSu6aHbeZTJ/mq1WpOvG43Gwm30M/Kmj7EOx5g8OB+xKa6xyIN7xv0hCIM1ZVkWl5eXcXJyEufn57f+vdFoLPz59PvXMT90dfppI3mUyX5K03QyL7/ZbC79S45+Rt70MdbhGJMH5yM2wTUWm+SecT8JwmBNvV4vrq+vo1KpLFw3IOJb6n9fyv9YeSTxh5zuF8X4yUdJksTFxUXu9eln5E0fYx2OMXlwPio211hsknvG/SQIgzVVq9VotVrRarWi2+3GaDSKVqt1KylvNBoLTxIPeXLNXabLyaNM9s9gMIirq6solUrR7Xbv3FY/I2/6GOtwjMmD8xGP5RqLTXPPuJ8EYRy8q6urODo62ujr9PR0rbbUarXo9/u3TgpXV1e3tn369OladdxVTh5l8s0+9bPXr19HRKy0wKZ+djj2qY89hD7GOhxj8uB8xGO5xmIb3DPuniAMNixJkvjw4cPMz+YfURuxfoI+/5eCTaT7d5XJfqnX6zEYDKLdbke5XL53e/2MvOljrMMxJg/ORzyGayy2yT3jbv2w6wbAY1UqlWi32xst87H/U5fL5ahWq9HpdCJi8ZM5Xrx4MVmIM+LbiWWVeucXJTw5Ocm1TL7Zh352dXUVV1dX0Wq1olqtrvQe/exw7EMfW4c+xjocY/LgfMS6XGOxC+4Zd0cQxsFLkuTeocu78OrVq8lJbdF87/kpS2marvTXp+vr65nvpxddzKNMvtl1P+v1elGv16PVakWtVlv5ffrZ4dh1H1uXPsY6HGPy4HzEOlxjsUvuGXfD1EjIyfTJZFHC/uLFi5nvF/0FYJHpE2SpVJq5cc6jTHZvMBjE2dlZNJvNB12gRehn5E8fYx2OMXlwPuKhXGOxa+4Zd0MQBlswf7KJ+HbSmz7ZLZoTvsjHjx+XlptHmexWmqbx8uXLuLi4WOsR3voZedPHWIdjTB6cj3gI11jsG/eM2yMIg5xMJ+tnZ2cLt/nrX/86+Xp6nvZdprdrNBpbKZPdSNM0Tk9Po1arRbPZXPk9l5eXMz/Tz8ibPsY6HGPy4HzEKlxjsS/cM+7ICMhFs9kcRcSoVCot3abf748iYvK6T7fbnWybJMnWymT7hsPhKEmSUa1We9D7yuXyqN/vz/xMP2MV19fXM8e01Wqt/F59jHU4xizjfESeXGOxT9wz7oYRYZCTt2/fRkTEL7/8snSbcrk8s8jgeKHEZaafKLcshc+jTLYry7I4PT2NJEmi0WhEmqb3vnq93mThy/nFLvUzVrFogdZV6WOswzFmGecj8uIai33jnnFHdp3EwaFoNpujcrk8uri4GA2Hwzu3vbi4GEXE6OLi4t5yp//qWS6Xl243HA4n21Uqla2XyfaUy+WZv9A85LXsr+b6Gfdpt9szfanZbD7o/foY63CMWcT5iLy4xiJv7hkPgyAMVjD9P//4teyEVa1WH3zRNn3Bt+x941/cpVLp3pNqXmWSv8dcoN33tw39jGXG00Sm+9JdF0TL6GOswzFmmvMReXGNRd7cMx4OQRisaP6ibHwyqFaro4uLi1GlUpl8f319/eDyu93uqFQqjSJiVK1WR/1+fzQcDkfdbndy8imXyw86+eRRJvkZ/0Jc97XKWhf6GWPD4XBUrVZHlUrlzn5VqVQmx3UV+hjrcIyLzfmIvLnGYlvcMx4GQRisaDgcji4uLkblcnlyoiiVSqMkSUbVanXUarU2cnIYD6edrqNSqYza7fZelclh08/Imz7GOhxj8uB8xDbpb8XmnvEwHI1Go1EAAAAAwL85T40EAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAGCjsiyL8/PzGAwGu24K/1+v14t6vR6np6dxcnISR0dHcXR0FCcnJ3F2dhaNRmOt43V5eRmNRiOHFudDEAYAAABsTK/Xi59++imSJIlyuTz52Th4ue91fHwcV1dX99YzGAzi+Pj4zrJOT08jIuLq6mrl+td5TXtoXcfHx5s/CFMuLy/j+Pg4zs7O4urqKgaDQZRKpahWq1GtVqNUKkWv14vLy8s4PT2N4+PjuLy8XLn8Wq0Wg8EgTk5OIk3THPdkM45Go9Fo140AAAAADt94dFCr1YparXbr3zudTrx+/TqyLLv1b7VaLVqt1oPrzLIsGo3GTHhWqVSi3W5HqVSa2XYwGESj0Yher3ernCRJIkmSW+8Z1xERcXNzE2ma3mr/omjlvrparVZUKpX7d3BN8591qVSKZrO58LhkWRZXV1fx9u3byfYPbWO9Xo/379/Hhw8fJgHoPhKEAQAAAI92Xwg21uv14uzs7NbP+/3+2gFKlmWTkVWlUil+++23hYHW2PHx8Uph1jJpms5M/RwOh0vrW1TXY/Z1FfPTFSuVSnS73XvfN57SOh3e3Xc8p52fn0en08l9/x7D1EgAAADgUa6urqLRaMTFxcW9oUmlUolqtXrr5x8/fly7/pubm8nXzWbzzhAsIuLFixcz39+3/bwkSeLDhw8rvW++rojINSRqNBprhWAR3z6HbrcbSZJMflav11eeKtlut6NcLsfLly8XjvrbB4IwAAAAYG2dTifq9XqUy+VoNpsrvWfRdutMixwbj8wqlUorjV56aPC1rIxV9ne+rk3Uvcx4ra/putrt9oPL6Xa7M+1cNsVzkXa7HVmWxcuXLx9c7zYIwgAAAIC1ZFkWr1+/jojF4dYySZLcGhU2GAzWfsrkOERbdQrf06dP16pn3irrZ22qrvuMpzVOW2V03CJJktz6LM/Pz1ca5TV+73iNtH0jCAMAAADWMg5HyuXygxd+XxScvX379sFtyLJsMlqpXq8/+P2PkSTJwkX5d6HRaNwKqlYNBhf529/+NvN9lmUrH59xAHZ5ebnySLJtEYQBAAAAD9bpdCYhx3xosookSW6FZ51O58FrS42fFlkul2fWttqWReudbdv4qY/THhOCRXybVjm/b6uuFTZ9bLcdTt5HEAYAAAA82PTooHXDoEVT5x46Kmw8LXKdMG5dWZbt1WLw8yFYRNyaJrmORU/3XFTXXe9N03Tl92yDIAwAAAAOwPn5eRwfH8fR0dHC1+npaaRpGhHfRuEs2vbk5GQjAU6v15us5/WYJyBWKpVbo7geEpr0er3JPm9zZNb8kxl37ddff731s0VPq3yoRdNdV118f/q9D1k/Lm+CMAAAADgA7XY7hsPhwilvzWYz+v3+JFRqtVrx4cOHyb+Xy+UYDodxfX29kfWspp/w+NC1webNB0qLpvnd147HTgN8qI8fP261vvvMP2SgVCpt5DgnSXKrnFXX/JoOSNM0jU6n8+j2bIIgDAAAAA5Iq9W6FT5dX1/f2m4c1lQqlej3+xtd0H061Pj5558fVVatVrvVtlVGEGVZNmnHNteheszTLfOwqC2bGA02tuipl+NRePeZ7qfdbndjbXoMQRgAAAAcmPnpaVdXVzNTHrMsi0ajEaVSaeWpbKuaD142sUD9/IiuNE3vHXk0vUj+Y6Znrmq81tXLly9zr+shFoVSmww9F5W1ahA2fVzev3+/qSY9iiAMAAAADkypVJqZnhgR8fr165mvsyyLdru90VAk4vbUuE0EYYsWur9vVNh4/zcxGizLsqVrr02vr1av1/dqkfyIiJubm1s/WzSKa12Lju+qn8Ff/vKXmfesGqDl6YddNwAAAAB4uFqtFu12exJMdTqdyeLxnU4narXao9fvWuTvf//7zPebCNpKpVLUarWZtcHG+7IoiBkMBpNQZVPrg90X6N3c3OxdCBaxOJTadPg5b1H4tsj8ZzoYDDYSnD6GIAwAAAAOVKvVipOTk8n35+fnEfEtgJgfMbYpeYVBjUbj1iL5zWZz4X68ffs2Ijb3pMhSqbRwnbV5g8EgXr9+vVdrhC0KvTZ5jBaVteqIs/m2rRqg5cnUSAAAADhQSZLMTCHMsmwyJTIveYUZSZLcGsE2v/ZZxOwi+YumVOapXC7n+tmuY1EotcljtKisdUec7cOIOkEYAAAAHLCLi4utLBY/Nh1mbHoKXqPRuPWz+VFi40XXkyTZ6n6PLQrsdukxa3itYtG6XqtOb5wP6f75z39upE2PIQgDAACAAzc/Smk8RTJvmx7hU6lUboUs42mQY+MRcJtYJH9d5XI593W4VrUoDNzkovSLjvGu1/l6DEEYAAAAHLj5dbTSNF04umoT8g6A5tudZdlkVFgei+Svo9ls3vtUy22aD8PSNN1ISLloLbSHjIabn1Y5/RTJXRGEAQAAwAEbDAZxeXl5a+H4y8vLXBZ1z3s0UK1WuxW2jUOn6UXy92VE1j5YFE6Nnyb6GIvKODs7W7u8fThmgjAAAAA4YOfn51EqleKXX365NTIsjymS8+s+5bEA+vxorzRNo9PpTBbJ3+W0yGU6nc7WFoNvNBozIeeihwZ0u91H17OojIeMxJv/PPZhSqUgDAAAAA5UvV6PNE3jl19+iVKpFLVabWaaXJqmcXl5udE650cE5fEUyUXBzjjU27fF6iO+jZw6Pz/P7Yma08YjAKdDpVKpdGtE4PxDBtYxPyLs4uLiQaO65tcqe/HixaPb9FiCMAAAADhAvV4vrq6uolKpzIQg8wvnNxqNjS6ePh9CbbLssXGot8g+jgar1+tRKpW2MuLp9evXkSTJ0umj0x4Ths0HqKVSaWFAeZfpp0QuavMuCMIAAADgAI1HSM0HX0mS3ApFNjlFcj7w2cQUvEWWLfa/iUXyNzlyaxw0Lhultum6BoPBrdFfEd+O+/zU2EajsdZ0zSzLbj2ts91uPzjImg5J92UUnyAMAAAADsz5+XlkWRatVmthOHFxcTETVo2n023KdBCziUXZF1k0BbJSqWxkVNGm1vK6vLycfK6vXr3Kta5GozGpa9mC9bVabSYozLJsrRD05cuXM+1uNptrBVnTfSOP9erWcTQajUa7bgQAAACwmk6nE+fn55EkSVxfXy/dbjAYxOnp6czP+v3+zBpi68qyLI6Pjyff5xUt9Hq9mdCn2+1uZGTR8fHxrYBqOByuHLJ1Op14+/btzIL1y96/qK5Vj0OaptHr9aLZbM6Mrrrv854OzSK+BZfjdeTuMg7OpgOsVqu11ii86T5yX1/dph923QAAAABgNeNF2SNi4fS4aYvWq3r58mV8+PDh0WFYqVSKi4uLSdjS6/VymfpWqVQiSZJI0zRKpdKj60jTNOr1+sJRWsfHx1Eul+Pp06cLA6MsyyJN04VropXL5Vvvuauu09PTyZpZ80/hvLm5iSzLJv+dt8pn0Gw24+eff47Xr19HlmWTJ27eFWpdXV3NTKUslUrRbrfX/szfv38/+XrZNNddMCIMAAAA9lyapnF+fj4zAiniWyiyaO2my8vLaLVaSxeyL5fL0W63H7W4+/SIn4uLi4WLtW/C1dVV1Ov1R9UxLiMv023Lu65msxkXFxcrb99oNOLq6momVBsHjOOwbXoE2HhR/IfUscjp6WkMBoO9Gg0WIQgDAAAA1jQOfUqlUgyHw9zqOT4+jn6/v5WnMv676vV60W634+PHj5PRbeMRaUmSRLlcjlevXm1k6myapnFychIRm5uOuymCMAAAAGBt5+fn9067o1jOzs6i1+vlOlJwXYIwAAAA4FFOTk7i5uYmfvvtt4081ZHDNX7AQblcjn6/v+vm3CIIAwAAAB5lPBWuWq1Gu93edXPYkSzL4qeffoqnT59Gv9/fy1D0u103AAAAADhsSZJEv9+PTqeT60Lx7K8sy+L09HSvQ7AIQRgAAACwAeOpcO/fvxeGFcw4BBsHovsagkUIwgAAAIANGYdhHz9+jLOzs8iybNdNImeDwSB++umnqNfr0e129zoEi4j4YdcNAAAAAP59jEcFXV5exs3Nzd4HIzxOmqbx4cOHKJfLu27KSiyWDwAAAEAhmBoJAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQvh/AlntKbJTaz0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdWElEQVR4nOz9TWxbd57n/34oO4Fzk6YppTeCBFSF7Axcq4JJexZ1V1MiuxY3RtIV0gaSSQL8OyKToO4sNB0yrqwdhaoqbeb/T5t0zSycDjA2WTUJkgvUWHR6N4uxRGd2wVTzOA1I4CoirUoQI2Xz3IWGLFEP5CF1Hkie9wsgoocvf+dLU47FD38PAdM0TQEAAAAAAAATbsrrBgAAAAAAAAA3EIQBAAAAAADAFwjCAAAAAAAA4AsEYQAAAAAAAPAFgjAAAAAAAAD4AkEYAAAAAAAAfIEgDAAAAAAAAL5AEAYAAAAAAABfIAgDAAAAAACALxCEAQAAAAAAwBcIwgAAAAAAAOALBGEAAAAAAADwBYIwAAAAAAAA+AJBGAAAAAAAAHyBIAwAAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC8QhAEAAAAAAMAXCMIAAAAAAADgCwRhAAAAAAAA8AWCMAAAAAAAAPgCQRgAAAAAAAB8gSAMAAAAAAAAvkAQBgAAAAAAAF8gCAMAAAAAAIAvEIQBAAAAAADAFwjCAAAAAAAA4AsEYQAAAAAAAPCFk143AAzjySef1HfffSfTNDU11TvP/au/+is99dRTLnUGAAAAAIB/ffPNN/rTn/7Us6bVaikQCOiJJ57Qt99+61JnuwKmaZquXhGwwYkTJ9RqtbxuAwAAAAAADGlqakqPHj1y9ZrMCMNY2huEDTMjrF6vq9VqaWpqSrOzs471uZ9X1/Xrtf34mP16bT8+Zi+v7cfH7OW1/fiYvby2Hx+zl9f242P28tp+fMx+vbYfH7OX1/bjY+51baszwqTd1/auM4ExNDc3Z0oy5+bmPLn/sLy6rl+v7cfH7Ndr+/Exe3ltPz5mL6/tx8fs5bX9+Ji9vLYfH7OX1/bjY/brtf34mL28th8f83Gv7WXfbJYPAAAAAAAAX/B0aeSzzz7r5eW7BAIB/e///b+9bgMAAAAAAAAO8TQIq9VqCgQCMj3cr799/UAg4FkPAAAAAAAAcJ7vl0Z6GcIBAAAAAADAPZ6fGmmappLJpMLhsCfXbzabKhaLnlwbAAAAAAAA7vE8CCsWi3r99dc97SGZTOpnP/uZpz0AAAAAAADAWZ4vjYzH4163oPPnz3vdAgAAAAAAABzm+YywmZkZr1uADy0tLWlnZ0fBYNDrVlzj5WP26tp+fMxe47n2z7W94sc/bz8+Zi/59c/bjz/fXvLjn7dfr+0Vv/55+/HvlpfG9XEHTA93iz9x4oQajYbnf2j379/XzMyMHj165GkfsG5+fl5bW1uam5vT5uam1+1YNq59Y7zwcwan8TMGN/BzBqfxMwY38HMGp43rz5iXfXu6NHKUTmwcpV4AAAAAAABgP0+DsHw+7/lsMEk6ffq08vm8120AAAAAAADAQZ4GYW+//bar1/vqq6+O/J7bvQAAAAAAAMBdnp8a6aZMJuN1CwAAAAAAAPCIr4Kw9fV1r1sAAAAAAACAR0563cAwvvrqKzWbTcv1hmGoUCgMdB8AAAAAAABMlrEIwr766ivl83lVKhUZhjHUGKZpKhAI2NwZAAAAAAAAxsXIB2GXL1/WysqKpN0wCxhnS0tL2tnZGYnTUjG5+DmD0/gZgxv4OYPT+BmDG/g5g9P4GRtcwBzhdOl3v/udUqmUJHVmcx2n3UAgoEePHtnSG7w1Pz+vra0tzc3NaXNz0+t2AAAAAACARV6+ph/pGWHLy8uSdgMs0zQVDocVjUYVDoclSU8//XTfMb7++ms1m03dvHlT9+/fd7RfAAAAAAAAjK6RDsKq1WpnJtja2poWFhaGHiubzerZZ5+1qzUAAAAAAACMmSmvG+glFApJ2g2xjhOCSVI4HNYzzzxjQ1cAAAAAAAAYRyMdhLWXQJ4/f96W8QqFgi3jAAAAAAAAYPyMdBDWngW2vb1t63gAAAAAAADwn5EOwn75y1/KNE1Vq1Vbxvvtb39ryzgAAAAAAAAYPyMdhJ0+fVrvv/++bty4oT/96U/HHo+lkQAAAAAAAP410kGYtLtRfjQaVSqVOtY49+7ds21mGQAAAAAAAMbPSa8bsGJtbU3nzp3Ts88+q1wup5mZGUv3297eVrPZVK1W082bNx3uEl6o1+uan5/vWbO0tKSlpSWXOgIAAAAAwL9WV1e1urras6Zer7vUzUFjEYR9/vnnkqRaraZMJjPUGKZpKhAI2NkWRkCr1dLW1lbPmp2dHZe6AQAAAABMAtOUWmbvmqmARMxw0M7OTt/X6V4a+SDszTffVLFYlCQFAgGZZp+fxEMQgE2uqakpzc7O9qwJBoMudQMAAAAAmAQtUzr5bu+ah1ekE8QNBwSDQc3NzfWsqdfrarVaLnXULWAOkyy55Nq1a50ZYMOGYHsFAgE9evTIjtbgsfn5eW1tbWlubk6bm5tetwMAAAAAmCCPWhaDsJHfeX00efmafqRnhLVPeWyHYPF4XIlEQqFQaOB9wq5evaqvvvrKwW4BAAAAAAAwykY6CKtWqwoEAgqFQlpfX9czzzwz9FiLi4t6+umnbewOAAAAAAAA42SkJ/GFQiFJ0uXLl48VgrXHOnv2rA1dAQAAAAAAYByNdBAWi8UkSeFw2Jbxrl27Zss4APyt2Wx63QIAAAAAYAgjHYRlMhmZpinDMGwZjxlhAIZVrVaVy+U0PT2txcVFr9sBAAAAAAxhpPcISyaTOnv2rG7cuKF/+Id/OPZ4v//97/Xzn//chs4AjJJqtaobN26oWq3KMIzOIRmhUEjhcFgzMzOKRqNKJBKKx+MH7p9KpWQYhjY2NjpfazabqlQqunHjhiqVCrPAAAAAAGACjHQQJkmlUkl/8zd/o//23/6b/u7v/u5YYy0vLxOEYSQVi0VlMpmB7xeNRrvCm2EFAoGB7xMKhdRoNA79XiqVUrlcHnjMtbW1Q4OqwzSbTS0vL2tlZaVnTbValSRVKpVObTQaVTweVyQS0dramsrlsqLRaNd9FxcXZRhG5/4AAAAAgPE30ksjpd39wa5evarXX3/9WOPcv3+fF7QYWel0Wo1GQxsbG0omkz1r4/G41tbWOvV2ME1TtVpNhUKhc0jFYcLhsAqFgmq12pEhmLQbYDcaDUvBVjab1cbGhhqNhuUQrL1EcX8IlkwmVSqVOuO1H9fa2prS6XTnsVWrVa2srCiTyXQCu/0zvtrjmKZp2z6FAAAAAABvBUzTNL1u4ii///3vOx9ns1kFAoG+IcFhms2mbt68qWazqUePHtnZIjwyPz+vra0tzc3NaXNz0+t2bJfJZFQsFg98vR30OMkwDEUikUO/12g0egZlR4nFYocG0YVCQel0eqDeEonEgX0D0+m0CoWCpTFWVlaUy+UOfD0cDqtWqx16n/3PhxvPAwAAAADvPGpJJ9/tXfPwinRi5KcXjSYvX9OP9NLI9957T3fv3u18bppmz2VQvZimOdTyL8ALRwVhwyyfHFQ4HFY0Gj0QXCWTyaFCMGm378N6HyQEq1QqSiQSXV8LhUK6ffv2gWWNvWSzWSWTScVisa5ZYNvb20feZ9jHDQAAAAAYLSOdXV68eFGmaao9aY0gC35x1FI8t5boHXad41z7sPsOEi5Vq1VbQrC9/dy7d6+rBzbDBwAAAIDJN9JBWHsGSSAQ6ARiw96AcXJUSDQzM+NuIyPAMAwtLCwc+HqpVBoqBGsLhUK27bE2Ssrl8oGlo/iLSqXidQsAAAAAPDTSSyNPnz6taDSqu3fvKp/PKxqNDhUEGIah9957T1988YX9TQIT6LC/Z08//bSt41n9u5xKpQ7M1kqn05Y31u8lHA4rm80OveTaTdVqVYVCQZVKRYZhKBQKaWZmRqFQSOFwWJcuXZK0e9plPp/vuey0UqkolUppZmZGhULBlj/LUWUYhiqVikqlUicEG6U3R/z0XAAAAACjYKSDMEm6dOmSIpGI3n777aHHOHv2rF588UVfzqYBxlmlUjl0k/18Pm/bNS5fvtwJwprN5sjtB9ZsNrW4uNg53TIcDncODTEMQ9VqVdVqtfP99n16aYeLzWZTmUzmyEMCxplhGEqlUjIMY6SXvfrhuQAAAABGyUgvjZSkeDxu27v3586ds2UcAO44bIP942zaf5hQKDTQpv1uS6VSnZCrUCioVqupVCqpVCppY2NDtVrtwCyifmGKH94UCIfD2tjYUKPRUDab9bqdI/nhuQAAAABGycgHYWfPnrVt9sd/+A//wZZxADivvQRwv8uXL9t+rVQqJan3yZG9tJe3RSIRBQIBTU9PK5FIHHry5yBWVlY6y/my2eyhgV04HNba2lrX/yf77RFWKBQUDocVDodVKpWO1eM42H/Qwijx23MBAAAAeG3kgzBJeuaZZ2wZ5z/9p/9kyzgAnHdUKHCcDfKPEo/Hlc/nB56d02w2FYvFlEgkujapbzabqlQqymQyikQihy7vtGJ5ebnz8WGz4/bKZrOdmU/9Ar14PK5araZarebIn+eo8WrWVb/nTPLfcwEAAAB4bSyCMLusr6973QIAiw473c/JjcSz2exASy4Nw9AzzzzTN+QyDEOxWGzg0wqH2duqfagIp0Z6r1gsHntGIAAAAAD7jfxm+Yf56quvBnqBaBiGCoXCSG+YDOAvDMM4NMwZlRkzzWazs8l5MplUIpHQuXPntL29rbW1tUNPoUwkEqrVagqHw5avsVelUrG0l9nly5c7Sz3hDcMwLM0GAwAAAOC+sQjCvvrqK+Xz+SP3DLLCNE0FAgGbOwPghKP+nkciEZc7OVx7dtfa2tqBWWrxeFyZTEaJROLA40ilUtrY2LB0jf2BWS6X08WLF/vOWmufKDmKJ2D6QbPZHOk9yQAAAAC/G/mlkZcvX1YkElGxWFStVpNpmkPdAIyPo4KwUTph77AQrK29gf1+1WrV8hLJUCjUFWS19yOz8maAaZqEYB5oNptaWFhgaSoAAAAwwkY6CPvd736nfD7fCbKY0QV4J5fLKRAIDHWLxWIDXeuoZcyjEu6EQqG++5WFw+FDT7wd5BTc/bWGYXTeGDiuarXa2cy/l2azqWKxqFgs1nXd9vK/6elpBQIBRSKRQ5eEGoahXC7XOVEzEokok8kc+hy3r7P/52e/RCLRGW/vzc7l78Vises609PTisVihz5GaffP87A94/b2d9SftdXnoq3ZbGplZUWJRKLz59/uL5fLWQriDMPQysrKgcMc9j4HkUikswQYAAAAmBQjvTSyfWJaIBCQaZoKh8OKRqOdJUNPP/103zG+/vprNZtN3bx5U/fv33e0XwD2qNVqXrfQ07lz5yzVZbNZLS8vdwUJg2yan06nVSqVDtwnk8moUCjo2rVrA+2bVq1WVSgUdPPmzU5Ph4WL7fDrxo0bhx4GkMvlDgRC7cCrVqupUCj0rCsWi6pUKtrY2Oi6fjqdVjqdViaT6Rn2tWfbraysKJfLWXnolpXLZaVSKYVCIV27dq2z1LRarSqVSimXy6lQKBzoPRwO6/bt26pUKl09HbUU1upzsV+xWOzsP5bP55XP5xUKhVStVrW8vKyVlRWtrKwomUweOHm12WxqeXm564TTvd9bWFjoer7be/W1nyur+9sBAAAAo2ykg7BqtdqZDbC2tqaFhYWhx8pms3r22Wftag3wnXZAMYz19fWB7ntUIDAqM1MGmZkWj8dVLpe7vlatVi0HWGtra0qlUoeOEYvFlEwmde3atb49GYahGzduWJ51FI1GFQqFup63jY0NxWIxzczMqFQqKRqNamZmphPASH8JanK5XOfwgHZwuL6+3plhZBiGlpeXD50hl0qlLM16SyaTtgZhlUqlc9DA5cuXOyGYtPvnUSqVOstTFxcXu4KmUCikaDSq7e3trjEPe54HfS7a2sFiKBQ6EEyFw2Elk8nOz0q5XFYkEukK7La3t5VIJDpBZ9v6+roWFhYUj8eVz+cVDoc7gV6z2VSz2VQmkzl0uS8AAAAwdswRNj09bU5NTZnvvPOOLeNFIhFbxoH35ubmTEnm3Nyc1604RtKBW6PRcOXa6XT6wLXz+fzQ421sbBwYLxwOH1mfz+cPffyFQmHoHo4jm8129ZFMJi3ft1Qq2fI4jvozGWbMvWOFQqGetdFotOs6a2trh9bF4/GuunQ6fWjd3j+Po669trbWNdZRGo2Gpb8f+3/+jpJMJvv+vPcbx2rvbVafi0KhYPm5DofDndp4PN73cYRCoUOf1/0/u279/wcAAGAUPHxkmnqn9+3hI6+7HF9evqYf6T3C2u92nz9/3pbx2st1AIy2UZ8RNojDlpMN8ziy2awajUbXLKW92idVWhl7kCVuew8oSKfTR+6Ntv+kxKP+f7u3//Zso1F01M/g3q/bsSm+1eeiPfMtFAopnU5bqpV2Z7kdthx37+O4du3aoc/r/p+19fV1S70CAAAAo2ykg7D2Usj9S02OOx4mR71e1/z8fM/b6uqq121iQEeFA6O+d9hhDgtUvv7666HHKpVK2tjYOHTJXaVS0cLCgq3hktVloHufs0GWjo7SCYvXrl1TPp9XqVTqGzZJ7gWzxWKxcy0rwVk6ne56DgY5oGG/vdcbpecKAAAAo2t1dbXv6/R6ve5ZfyO9R9gvf/lL/epXvzp0s+Zh/Pa3v9Xrr79uy1gYDa1WS1tbWz1rdnZ2XOoGdjlq1tEgG82PisOCCysHffQSjUa1sbHRtXF6W7VaPbB/lRuGPdHTrjc67BAKhZTNZg/9nl3/Dg1j795cVmeQ7d2bbhz/3gAAAGB87ezs9H2d7qWRnhF2+vRpvf/++7px44b+9Kc/HXs8lkZOnqmpKc3NzfW8BYNBr9vEEI7aZHxUl9INwq7T99LptGq12oEQqlwuj3T4MWxo5ra9J1xGo9GBTui0u49B7f8Zm4S/NwAAABgPwWCw7+v0qSnv4qiRnhEm7e6L0z417Q9/+MPQ49y7d8/Td/ThjNnZWW1ubnrdBhxw6dKlQ//OViqVI/fJGlWhUKgriLArCGuP1T7Nce81CoXCkTPr0Fu1WlUul1M0Gj3WskK77H1erYZi+0+k3N7eHpsAEgAAAONtaWlJS0tLPWvm5+c9mzU28kGYtLss5Ny5c3r22WeVy+W6Nm/uZXt7W81mU7VaTTdv3nS4S2B8VKtVLS8vu758bhDpdLpr0++2QqEwdkHY/tk4/WYWVSoV5XI5bWxsWBo/HA7r2rVrSqVSna8R/A8nk8moWCwqnU6PRAgmDbdB//5/J+0MXwEAAIBxNhZB2Oeffy5pd6Ps/fvhWGWapgKBgJ1tAWNrcXHRcqDslVAopGQy2dnnqK1SqaharXq2TG1Q+0MwK7O0wuGwqtWqKpWK5Vld+8NBNjYfXDsEk463wbzd2j8P0l9O2uw3u2vv3muEYAAAAMBfjPQeYZL05ptvKpFI6O7duwoEAjJNc+AbgL9oB0mJROLIGrs3MB92vKPCiMNmih2XU3sora+vd31uJcxvBxfDBv9S/1lnk8DOn9NqtdoJwcLh8EgtI7x06VLX5+0+e9l7wuq4zaAEAAAAnDTSQdi1a9dUKBQ6YdawoRZhGLCr2Wx2ls8N+uL466+/trUXKyFGOBw+NAyrVCpaWVmxrRfDMBSLxY4VPB1l/4l/Vv/cw+GwDMOwHPrtnwG2PzwZJ/tnKx4VUto5623v4QK9xvVi0/lkMtkVzFk5+GXv47l8+bITbQEAAABjaaSXRrZ/2W/PBIvH40okEgqFQgPvE3b16lV99dVXDnYL2MeJF9vNZlMLCwudZVWDLpeyuyer47UPzNh/CmJ7M/PjbghfqVSUSCSODN2Oa+/SzkFOrm0HYSsrK4pEIkqn0z3r944dDoeVzWYHb/YQVp+nvXX97tPv+/tnsxWLxQOP57CQ0M4N4cvl8oHQ8rDr7bf/75VhGF1fs7Ks8TB794AzDKPnstlqtdpZSpnP50dqdhsAAADgtZEOwqrVqgKBgEKhkNbX1/XMM88MPdbi4qKefvppG7sDnHPUjJRhX+hXKhVlMpnOuBcvXhz4+sdZhnbcmTvtk2P37xeWSCSUz+eHCn2azaZyuZyKxWLn5EWrf7ZWw6Fisdh57Ol0eqDQbm94kslktLGxcWSoUSwWu2bI7Z2Fdpi9z6UXM5z2Our68Xi8E37mcjnVajWlUik1m02tra2pWCx2fi7aY+wPndr2/+weFkbtD99SqZTy+byi0aiq1aoKhYKi0WgnoJT+Ej6ura3p8uXLhwbMmUxGpVJJ29vbyufzikQiXT+vVp+LZDKpfD7fCeNSqZTu3bt34HE0m00tLi5K2v2ZO+rvhtXnfe/fXa9/VgAAAABbmCNsenranJqaMn/1q1/ZMl4sFrNlHHhvbm7OlGTOzc153Yoj0um0KenALR6Pm7Vare/9G42Guba2ZmazWTMcDh8Yp1QqHXnfWq126LUlmY1GY6jHE41GDx2vUCgMNE42mz10nGg0aq6trVkao9FomPl83gyFQp0/036Pa/91Q6FQ3+vs/XOMx+OWeturUCgc+liTyaSZzWbNQqFgptPprufX6s/H/ufjqJ+HRqNx4M/5KMlk0tJzu7a21lWXTqePvHb7Odp/C4VCned7b000GjVrtdqB59Nqb/vr9t7y+bxpmof/3Uwmk13jHPVzethjtfpctJVKpc5jDoVCZqFQMGu1mlmr1cxCodD5eWj3exirz8H+umF+jgEAAMbVw0emqXd63x4+8rrL8eXla/qRDsLi8bg5NTVl/u53v7NlvGq1ass48N6kBmEbGxs9X4zbdTss+Gk0GmahUDgyfJBkhsNhs1AoWA7ENjY2zHg83rOXbDZrKbxpW1tbOzJYC4VCZjKZNAuFgrm2tmZubGyYa2trZqFQMPP5fNf9QqFQ39Ch7bBwMBwOHxm+7Q0r9ockgzzOdo+lUslMp9NmPB43o9Fo13PUfsz9gsD2z9ZRz280Gu2EJ71qw+GwmUwmOz8D+8O4/cFJe8y1tbUjfxbC4fChYUyj0egaPxqNmtlstqum/bX9P0ONRqPv4z3smvl8vnO9cDhsZrPZrp/3RqPReRx7/8z22xtCR6PRrp+1QZ6LoxQKBTMej3eFYu37HfX3s9ffx73PQa1W61nXrzcAAIBJQBDmLC9f0wdMc3R3ki+Xy7p48aJWVlb0D//wD163gxEyPz+vra0tzc3NaXNz0+t2jq1YLDqyUfthotGoNjY2ur4WCAQGHicUCqnRaBz6vcOWMVqxtrZmeflguVzW8vJyZy8kq8LhsDKZjNLp9EDLTNt7Uu1/XKFQSOfOnVMoFFKz2dT6+npn6V2pVDr2HmYAAAAA3PeoJZ18t3fNwyvSiZE+gnB0efmafqSDMEmKxWKamprSnTt3jj3W73//e/385z+3oSt4bdKCMAyv2WyqUqnoxo0bMgxDzWazs69ROBzu7Nt0/vx5JZPJgQ8J6He99jXb1zl37pxSqRQBGAAAADDGCMKcRRDWg2EY+pu/+Rv97ne/09/93d8da6zz58/bEqjBewRhAAAAAACnEIQ5y8vX9CP/lIXDYV29elWvv/76sca5f//+wEuoAAAAAAAAMDlOet1AL7///e8lSX/913+t6elpPfvss0omkwOP02w2dfPmTbvbAwAAAAAAwBgZ6SDsvffe0927dzufm6aplZWVocYyTXOoDcGdYBiGMpmM1tbWjjVOJBKRYRgqlUoDB4QrKytaW1vrbOwdDocVjUaVyWSG3tvIiTEBAAAAAADsMtJLIy9evCjTNNXexmxUgqyjNJtNBQKBvrdIJHLsDbtzuVxnQ/BBVCoVTU9PK5fLSZJKpZJqtZry+byq1aoSiYQSiYSazaanYwIAAAAAANhtpIOwTCYjaTcAawdiw97cUCwWLde2Q6NhVCqVoWbGVSqVTiCVTqe1trameDyucDisZDKpWq2maDSqSqWiWCxmKbhyYkwAAAAAAAAnjPypkefOndPdu3f1/vvvKxqNamZmZuAxDMPQe++9py+++EKPHj1yoMtd09PTloKeeDw+9LLIZrOpZ555pus6VpZG7r1fOBxWrVY7tM4wDEUiEUt9OjGmVZwaCQAAAABwCqdGOsvL1/QjvUeYJF26dEmRSERvv/320GOcPXtWL7744lAhmlXFYlHNZlPZbFaJRKJn7blz54a+zuLiYudxDDK7KpVKdep7zUZrz+Qql8uqVCoqFotKp9OujQkAAAAAAOCUkZ8RdvfuXS0vL9ty6uPf/u3f6tatWzZ0dVB7xtNRs6LsUCwWlclktLGxoYWFhU4I1W9G2N4ZWZLUaDQUCoWOrC+Xy0qlUpKkUCikRqPhypiDYEYYAAAAAMApzAhzlpev6Uf+KTt79qzy+bwtY9k1zn7lclmGYRxr369+2idNZrNZRaPRge6793HH4/GegZWkrlCt2WyqXC67MiYAAAAAAICTRj4Ik6RnnnnGlnHOnj1ryzj7LS8vKxQK6eLFi46ML+0uQ4xGo0OFeXs38bcaou091fLGjRuujAkAAAAAAOAkT4OwL774wsvLdxm2l2q1qmq1qmazqenpaUUiEWUyGVtnPOVyOVWrVZVKpaH62+v8+fOW7rc33Nr/WJwYEwAAAAAAwGmeBmGxWEw7OztetiBJun//vmKx2FD33b8c0jAMFYtFpVIpBQIBpVKpA8HRIKrVqlZWVlQoFLpmVFlVqVS6Prc6xv66vY/BiTEBAAAAAACc5mkQNkr79A/Ti2EYB0Kh/crlsmKxmDKZzFB9LSwsKJlMDn3K4p07d7o+77eXV9vTTz/d9fn6+rqjYwIAAAAAADjtpJcXDwQCXl6+yzC9hMNhFQoFNZtN1Wo1VSoVGYZxaG2xWNT6+ro2NjYsj98+ZfHatWsD99a2v59hZ2/tPQ3TiTEBAAAAAACc5mkQNkozwoa1f6ZWs9lUsVjU8vKyms1m1/eq1aoSiYTW1tb6jlsul1Uul7W2tmZ5xtVhjgrmBrX3sTgxJgAAAAAAgNM8DcIk6d69e/rxj3/saQ92LtELhULKZrPKZrMql8taXFzsCnwqlYpWVlaUzWaPHKPZbCqVSimdTisejx+rn2HDpv3h2/b2tqNjDqter2t+fv7Y4ywtLWlpaenY4wAAAAAAMKlWV1e1urp67HHq9boN3QzH8yBscXFR77zzjkKhkGZmZly99vb2tgzD6BlKHUcymVQ8HtfCwkLXxvDLy8s9r7mwsNBZdjkqnJi9ZceYrVZLW1tbxx5nFA5tAAAAAABglO3s7NjyGtxLngdhGxsbnb2wvGKapmP7lYVCIW1sbCgWi3XCsGazqUqlcuhsr5WVFVWr1YH2Eut3fTsCp72zuZwYc1hTU1OanZ099jjBYPDYYwAAAAAAMMmCwaDm5uaOPU69Xler1bKho8F5HoS1ebVfmFsb9l+7dk2xWKzz+dra2oEgrFqtKpfLKZ/PKxqN2nLdmZkZW0KrvbP1nBhzWLOzs9rc3Dz2OAAAAAAAoDe7thWan5/3bGbZlCdX3cM0TU83zXfr2tFotCv4OmzD+VQqpWg0autSzWFnXe0PuvbPCLN7TAAAAAAAAKd5OiOs0Wh4eXnXJRIJVSqVQ7+3srIiwzAUj8ctLRXdGyotLy/rxo0bnc8vXbqkZDIpSTp37lzX/mTNZtNSALV/I/tIJNL52IkxAQAAAAAAnOZpEHb69GkvL++6cDjc+Xj/ssCvv/5ako4MynqpVqtdwVQ4HO4EYXuXY0q7M9GsLLus1Wpdn++dzebEmAAAAAAAAE7zfGmkn+wNwtxaFnju3Lmuzw9bknmYvTPOQqFQV+9OjAkAAAAAAOA0gjAXra+vdz5OJBJd38vn85390qzc9oZIpVKp63v5fL7zvWg02hW63blzZ+Be9wdfTowJAAAAAADgNIIwF+1dGujmssCLFy92Pt67hLKXvXW5XM6VMQEAAAAAAJxEEOaicrksSbaeCmlFJpPpfGxlD7K9NeFw+NDQzokxAQAAAAAAnEQQ5pJyuSzDMBQKhXT58mVXrx2NRruCp3Ygd5RSqdT5+KiZW06MCQAAAAAA4CSCsCFVKhVNT08rEAgokUj0XB5oGIYWFxclSbdv33Zto/y9CoVC5+Pl5eUj65rNporFoqTd5ZvpdNrVMQEAAAAAAJxCEDakUqnUOQWxUqkoFot1LRdsa39vZmZGtVpN0WjU5U53hcPhzqysarWqlZWVQ+sWFhYk7Z7quHcWl1tjAgAAAAAAOIUgbEipVOrA14rFoqanp5VKpZTJZBSLxZRIJJROp7WxsdF10qMXksmk1tbWFAqFlMvllEqlVK1W1Ww2O4FdtVpVNBrVvXv3LM1cc2JMAAAAAAAAJwRM0zS9bmJcGYahfD6vSqWi7e1tNZtNhUIhzczMKBqN6tKlS4rH4yMZ/qysrOjGjRsyDKPT97lz55TJZJRMJkdmzKPMz89ra2tLc3Nz2tzctHVsAAAAAIC/PWpJJ9/tXfPwinSC6UVD8fI1PUEYxhJBGAAAAADAKQRhzvLyNT1PGQAAAAAAAHyBIAwAAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC9MZBB2//59vfnmm163AQAAAAAAgBEykUGYYRgqFov613/9V33++efa2dnxuiUAAAAAAAB4bCKDsEqlItM0FQ6HlUgkND09rV/+8pdetwUAAAAAAAAPTVwQdvv2beVyOUmSaZqdWz6f7xmGvfnmm3r22Wd1/vx5/fKXv2QWGQAAAAAAwIQJmKZpet2Enc6dO6dwOKxLly4pGo3KMAzdunVLv/rVrxQIBGQYhn7wgx903efZZ5+VYRja+0cRiUS0sbGhYDDo9kOABfPz89ra2tLc3Jw2Nze9bgcAAAAAMEEetaST7/aueXhFOjFx04vc4eVr+ol8ym7evKkXX3xRzzzzjBYWFpTP57W9va0f/vCHndlibW+++aZqtZokKZfLqdVqaXt7Wz/96U+1uLjoRfsAAAAAAABwwMQFYYFA4NCvh0IhbWxsdEKvtkKhoEAgoGQyqeXl5U5toVBQo9HQV1995XTLAAAAAAAAcMHEBWHT09P6zW9+c+j3QqGQpqenO59fu3at83E+nz9Qn8vlVKlU7G8SAAAAAAAArpu4ICybzertt9/WW2+9deiG941Go/NxezZYPB7XD3/4wwO1586dOzCDDAAAAAAAAOPppNcN2C0ej2txcVFXr15VoVBQMpnU+fPnJUk3btxQrVbTz372M0WjUVWrVQUCAWUymUPHOn36tAzDcLN9DKher2t+fr5nzdLSkpaWllzqCAAAAAAA/1pdXdXq6mrPmnq97lI3B01cECbtzvTa3t7W7373O5XLZZXL5c731tfX9d5773UthYxGo4eOc/fuXc3MzDjeL4bXarW0tbXVs+awmYEAAAAAAMB+Ozs7fV+ne2kigzBJKpVKKhaLKpfLqlQqCoVCunbtms6ePatSqaRUKqXbt28rn88rk8nov//3/35gjGKxqEgk4kH3sGpqakqzs7M9a4LBoEvdAAAAAADgb8FgUHNzcz1r6vW6Wq2WSx11C5imaXpy5RFSLpeVz+f129/+Vj/+8Y+1s7Oj9957T7/61a/UaDQIUkbQ/Py8tra2NDc3p83NTa/bAQAAAABMkEct6eS7vWseXpFOTNzO6+7w8jX9xM4IG0QymZRhGDp79qwCgUDn6++//z4hGAAAAAAAwIQgCPs/stmswuGwisWiQqGQLl26pBdffNHrtgAAAAAAAGCTiQvCPv/8c/30pz/tW/f73/9e8Xi8a8ZXMplUMpl0sj0AAAAAAAB4ZOJWsyaTSZ04cUI/+9nP9Otf/1pffPHFoXULCwt6/fXX9dVXX7naHwAAAAAAALwxcUFYLBaTaZqqVCrK5XKKxWJ6+umnDwRjp0+f1rVr15RKpfSv//qv3jYNAAAAAAAAx03c0shyuaxUKqXt7W01m00ZhqFGo6G1tTVVKpVOXSKR0NmzZ9VoNJTJZPSHP/zBw64BAAAAAADgtIkLwtLptIrFon74wx92vnb79m3dvHlT165d63zt1q1bWltbk2maunfvngedAgAAAAAAwE0TF4SZptkVgkm7+4EtLCxoZWVF7733nm7fvq1Lly7pzp07MgxDly5d8qZZAAAAAAAAuGbigrD79+8f+b3Tp08rn8/r3r17yuVyWllZORCaAQAAAAAAYDJN3Gb5zzzzjH7zm9/0rbl586bS6TQb5QMAAAAAAPjExM0Iy2az+pu/+RuFw2H93d/9Xc/amzdv6vz589rY2FAwGHSpQwAAAAAAAHhh4maEhcNhvf/++0omk3rrrbd61oZCIZ09e1bvvPOOS90BAAAAAADAKxMXhEm7s8J+/vOf6+rVq/rrv/5r/eY3v9HOzs6htTMzM7px44bLHQIAAAAAAMBtExmESVKpVNLi4qK2t7eVzWY1PT2tS5cu6be//a2++OILffHFF7p8+bKKxaKazabX7QIAAAAAAMBhE7dH2F6FQkGJREKLi4u6f/++yuWyyuXygbpoNOpBdwAAAAAAAHDTxM4Ia0smk2o0Gnr//fd1+vRpmabZdQuFQrp27ZrXbQIAAAAAAMBhEz0jbK9sNqtsNqu7d+/KMAwZhqFwOKx4PK7Tp0973R4AAAAAAAAcNrZB2Jtvvql//Md/HPh+Z8+e1dmzZx3oCAAAAAAAAKNsbJdG3rx5U3/605+8bgMAAAAAAABjYmyDsEajoR/+8Id688039fnnn3vdDgAAAAAAAEbc2AZhktRsNlUsFpVIJHTixAn97Gc/069//Wt99dVXXrcGAAAAAACAETPWQZikrhMgK5WKcrmcIpGInn76ab355pv6/e9/33eM3/72ty50CgAAAAAAAC+NbRD2/vvvyzRNBQIBRSIRSd2hWKPRULFYVCqV0okTJ3T+/Hn9+te/1hdffHFgrLW1NZe7BwAAAAAAgNvG9tTIbDareDyuVCql7e1tlctlmaap//pf/6tu376tZrMp0zQ79dVqVdVqVZIUCoUUj8eVSCQkSeVy2ZPHAAAAAAAAAPeMbRAmSdFoVLVaTblcTqlUSplMRqVSSZJ07949lctlra2tqVKpdIVijUZD5XKZAAwAAAAAAMBHxnZp5F75fF537tzRrVu39G/+zb/R//pf/0vPPPOM3n77bd26dUutVktra2tKp9MKh8OSupdRAgAAAAAAYPKN9YywvaLRqP7lX/5FmUxG0WhUuVxO7733Xuf7CwsLWlhYkCTdv39fN2/eVKlUUqVS8apl2KBer2t+fr5nzdLSkpaWllzqCAAAAAAA/1pdXdXq6mrPmnq97lI3B01MENZWKBSUSqV08eJFlctllUol/fjHP+6qOX36tBYXF7W4uKhKpaKf/exnHnWL42q1Wtra2upZs7Oz41I3AAAAAAD4287OTt/X6V6auCBMkuLxuAzD0OLioqLRqFZWVvQf/+N/PLK2PVMM42dqakqzs7M9a4LBoEvdAAAAAADgb8FgUHNzcz1r6vW6Wq2WSx11C5gTvklWuVzWxYsXde7cOZVKJf3gBz84UHPt2jUtLi560B2GNT8/r62tLc3NzWlzc9PrdgAAAAAAE+RRSzr5bu+ah1ekExOx87r7vHxNP/FPWTKZ1Pb2tk6fPq1wOKzf/OY3B2oIwQAAAAAAACbfxAdhkhQKhbS2tqbl5WW9/fbb+rf/9t/qX//1X71uCwAAAAAAAC7yRRAmSV999ZXOnTunbDar9fV1hcNh/ef//J+9bgsAAACQJJnm7lKcXrfJ3tQEAADnTcRm+V999ZUMw1Cz2ZRhGKrVajIMQ4ZhaHt7W81ms6s+EAjINE2l02mVSiWVSiX91V/9lTfNAwAAAJJapsX9aALu9AMAwCQa2yDs/PnznfCrl15nAZimqVu3bumnP/2p7ty5Y3OHAAAA/ZnmbgDSy1RAChB+jCyeQwAAxsfYBmEbGxudmV29hEIhhcPhzi0SiWhmZqbz+enTp13qGAAA4CA7ZwERyHiDmVwAAIyPsQ3C9pqentbFixe7Ai9CLgAA4DcEMgAAAL2N9Wb5L774oqLRqBqNhorFotbX19VoNDQ9PU0IBgAAgInz0V2vOwAAYLyNbRAWj8d18+bNTvh148YNmaapbDarSCSiZ599Vm+++ab++Z//ue9Yn3/+uQsdAwAAwK+sBFhWal4rE4YBAHAcYxuEJRKJzsenT59WMpnUzZs3tb29rTt37ujnP/+57ty5o4WFBZ04cULnz5/Xb37zG33xxRcHxioUCi52DgAAMBg7gw9CFPvZEWDdfyC99Ym1673xsbTzwFotAADoNrZ7hL399ttHfi8ajSoajUqS7t+/r7W1Nd28eVNXrlxRNptVKBRSPB7X+fPnJUnlctmVngEAAPazGqKcmJJePuveWLBm0ADrwo+k4KmD3/uwKn37Z2vjfPO9dL0q/eInltsEAAD/x9jOCLPqsNlir7/+ujY2NpTNZpXL5bxuEQAA+JSds4CYUeSNYQKsw3z65WDX/WzAegAAsGvig7D9otGo8vm8/uVf/kXr6+v66U9/6nVLAADAp+wKUeweC9bZFWA1vhtsnEHrAQDALt8FYXtFo1Gtra3p7FnWBgAAAPfZOQuIGUXesCvAmn5isHEGrQcAALt8HYS15fN5r1sAAAA+ZOcsIGYUDcY0pUet3jfT7D+OXQHWhTODjfPcgPUAAGDX2G6Wb6eFhQWvWwAAAD5k5ywgZhQNpmVKJ9/tXfPwinQi0Lvmwhnp1h+tX/eoAOuVqPTOH6wtb33qcenVqPVrAgCAvxiLGWG//vWv9fnnn3vdBgAAgK3snAVk94wiu2ZM2TXOqHolKj35mLXaXgHW6VPSB89bG+fqC4efPLnXpP+5AwAwrLGYEfY//+f/VC6XU7FY1N///d8PPc61a9f0xhtvKBKJqFQq6cc//rGNXQIAAAzGzllAds8osmvGlF3jeOGju9Krsd417QDrtXL/8foFWC+f7T/O9eRuXT/j/OcOAICTxmJGmCSZpql0Oq1f/vKXQ4+Ry+Vkmqb+5V/+RdFoVF999ZV9DQIAAAzIzllAds8osuKju8cfw85x7L7ma2VrdVaCKasBVj8vccYTAADHMjZBWNutW7d06dKloe77zDPPKBwOK51Oa3FxUblczubuAAAABmNniGLnWHYFRXYGTnYt97v/QHrrk/51kvTGx9LOA2u1vRBgAQAwGsZiaeRe6+vrSqVSOn/+vD7//HP91V/9leX7bmxsdH3+7LPP2t0eAACA7ewMUayMNWhQdOFHh88ws2ucNruW+31YtbaEVJK++V66XpV+8RNr9QAAYLSNXRAmSaVSSSsrK4pGo6pUKvrBD34w8Bj37t3T9va2A90BAAB4YyqwGwT1q+nHrqDIi8DJyr5en3452Jiffdm7L7v+3O0aBwAAHG3slka2ZbNZ/eM//qOi0aj++Z//eaD73r9/X4lEQufOnXOoOwAAAPcFAtKJqd63gIUgZZigyMlx2uxaZtn4znpPVurt+nO3axwAAHC0sZwR1haPx3Xnzh397d/+rS5fvmzpRMnPP/9cqVRKzWZT77zzjgtdAgAAHG0UZwHZFRTZGTjZucxy+onB+hq0flxYmT0HAMCkGdsZYW3hcFjr6+u6ceNG3xMlf/WrXymRSKjRaCgUCun11193qUsAAIDDjeIsILuCIjsDp2GWWR7lwpnB+npuwPpRYOchBQAATJKxD8IkKRQK6datW9re3j7yRMnLly/rnXfekWmaCgQCyufzLncJAAAmhV2nF44qu4IiOwMnO5dZvhKVnnzM2jhPPS69Gh3s2l7z4lRMAADGxVgvjdzv6tWrKhaLB06UvH37tvL5vAKBgAKBgKLRKLPBJkS9Xtf8/HzPmqWlJS0tLbnUEQDAD+w6vXBUvRKV3vmDtRlYvYIiu8aR7F1mefqU9MHzuzOi+rn6Qu+TLEcRp2ICALy0urqq1dXVnjX1et2lbg4auyDsn//5n/Xv/t2/O/L76XRa586d009/+lOVy2X94Ac/6Mz+YjbY5Gm1Wtra2upZs7Oz41I3AABMBruCIjsDJ7v39Xr5bP++rid368aN3adiAgAwiJ2dnb6v0700FkHYM888I2k3yEqn06pUKvrBD35wZH00GtWNGzf04osv6pe//KUqlYoCgYBM01Q0GtVPf/pTt1qHw6ampjQ7O9uzJhgMutQNAACTw66gyK5xLpyRbv2xd81e/fb1ah9ScP+B9E93pf/fl7uzyKafkP4/Z6RXzkqhMd0k3+5TMQEAGEQwGNTc3FzPmnq9rlar5VJH3QKmOR47WNy/f1+VSkVra2u6ffu2crmcpeWNf/u3f9sJwiQpn8/rH/7hH5xuFw6bn5/X1taW5ubmtLm56XU7AACfedSyuDRyjHdjNc3dJaD9gqJ+G/nbNc79B9Lce9aXWW5dHr8ljXb52X8ZLDT82bPSH/4v5/oBgHHkh3/rveTla/qxmBEmSadPn9aLL76oF198caD73bp1S7lcTr/61a86+4MBAACgt0Bgd4+zmf+X9B/+37s3L8eZ9H297GT37DkAACaJL7LLfD6vmzdvyjRN3bt3z+t2AAAAMAQr+3WN675edrL7VMxJPyUVAOAvYzMj7LiSyaTW19f1zjvv6O///u+9bgcAAEy4j+5Kr8a87mKyTPK+Xnaye/bcpJ+SCgDwF98EYdLuJvq3bt3yug0AAOCB9l5VvUwF+u9VJe2GXP28Vt7dN8Tvs5PsZNcySz+Y5FMxAQA4Dl8FYQAAwL/smtVy/4H01ifWrvnGx9KFH/l7vyqMrpcIwQAAPuSLPcIAAADs8mHV2smFkvTN99L1qrP9AAAAwDqCMAAAgAF8+uVg9Z8NWA8AAADnEIQBAAAMoPGds/UAAABwDkEYAADAAKYHPJVw0HoAAAA4h83yAQAABnDhjHTrj9brnzvjXC/AUaYCu4c/9KsBAMBvmBEGAAAwgFei0pOPWat96nHp1aiz/QCHCQSkE1O9bwEbg7CP7to3FgAATiIIAwAAGMDpU9IHz1urvfqCFDzlaDuA46yEXK+VCcMAAOOBIAwAAOD/sPpC/uWz/WuuJ63VAaPs/gPprU+s1b7xsbTzwNF2AAA4NoIwAADgC27PanmJEAwT4MOq9O2frdV+8710vepsPwAAHBdBGAAAmHjMagGG8+mXg9V/NmA9AABuIwgDAAATj1ktwHAa3zlbDwCA2wjCAADAxGNWCzCc6SecrQcAwG0nvW4AAADAaXbPapkKSA+v9K8Bxt2FM9KtP1qvf+6Mc70AAGAHZoQBAICJZ/eslkBAOjHV+xYgCMMEeCUqPfmYtdqnHpdejTrbDwAAx0UQBgAAJt6FAWepMKsF2HX6lPTB89Zqr74gBU852g4AAMdGEAYAACYes1qA4b18tn/N9aS1OgAAvEYQBgAAJh6zWgBnvUQIBgAYEwRhAABgpJmm9KjV+2aa/cdhVgsAAAA4NRIAAIy0limdfLd3zcMr0gkbNqdnVgsAAMBkY0YYAAAAAAAAfIEZYQAAAABcYZq7szx7mQpIARtmeAIAcBiCMIy1er2u+fn5njVLS0taWlpyqSMAAAAcxc2lzgAAb6yurmp1dbVnTb1ed6mbgwjCMNZarZa2trZ61uzs7LjUDQAAwOSZCuyGU/1qAACQdl+D93ud7iWCMIy1qakpzc7O9qwJBoMudQMAADB5AgFmaAEArAsGg5qbm+tZU6/X1Wq1XOqoG0EYxtrs7Kw2Nze9bgMAMAaY1QIAAOA8K9sTzc/PezZrjCAMAAD4ArNaAAAAMOV1AwAAAAAAAIAbCMIAAAAAAADgCwRhAABg7H101+sOAAAAMA4IwgAAwEizEnK9ViYMAwAAQH8EYQAAYGTdfyC99Ym12jc+lnYeONoOAAAAxhxBGAAAGFkfVqVv/2yt9pvvpetVZ/sB4DxmdwIAnEQQBgAARtanXw5W/9mA9QDcxVJnAIDXCMIAAMDIanznbD0A99i91Nk0pUet3jfTPHbbAIAJc9LrBgAAAI4y/YSz9QDcM8xS51/85OialimdfLf3OA+vSCcC1nsEAEw+ZoQBAICRdeHMYPXPDVgPwD0sdQYAjAKCMAAAMLJeiUpPPmat9qnHpVejzvYDYHgsdQYAjAKCMAAAYDu79u45fUr64Hlr17z6ghQ8day2ATiIpc4AgFFAEOYBwzCUSCQs12YyGUUiEQUCAU1PTysWiymTycgwjJHpU5JWVlaUSCQ0PT2tQCCgSCSiVCqlSqXiYJcAgFHU3run161lcRPrl8/2r7metFYHwDssdQYAjAKCMBs1m00FAoG+t0gkonA43He8lZUVRSIRFYvFTujVbDZVrVZVLBYViUS0srLieZ+VSkXT09PK5XKSpFKppFqtpnw+r2q1qkQioUQioWazOXCvAABY8RIhGDDyWOoMABgFnBppo2KxaLm2HRodJZFIqFKpKBQKKR6PKxwOyzAMVavVrplguVxO4XBYyWTSkz4rlUpn1lg6nVahUOh8r91XLBZTpVJRLBbTxsaGQqGQ5esDAABgMrSXOr9W7l/LUmcAgFOYEWaj5eVlS3XtYOsouVxOlUpF+XxejUZDpVJJ+Xy+a6bVXqlUypM+m81m59rhcLgrBNurVCpJ2l1qOWivAAD32LWvFwAchaXOAACvMSPMJsViUc1mU9lstu++WufOnTvye4ZhaGVlRWtra4rH44fWZLNZ1Wq1rpld1WpV0Wj/+eN29SntBnDt5Y69Zo61Z4aVy2VVKhUVi0Wl0+m+vQIA3NXe16uXh1ekEwF3+gHgTyx1BgA4KWCavLdrh0gkIkmq1WrHGieVSun8+fPKZrM965rNpqanpzuf5/P5vvexs0/DMDpjSVKj0ei55LFcLndmg4VCITUajWNdf35+XltbW5qbm9Pm5uaxxgIA7HrUshiEWZhPPqpjAfAW/28AMC74f4yzvHxNz1Nmg3K5LMMw+u6nZUV7tlY/oVCoa9milX237Oxz7/LMeDze9/p79zBrNpsqly1sDgEAAAAAAGAjgjAbLC8vKxQK6eLFi8cea21tzXLt9vZ25+N+yxgle/vcuyzTypJMSV3B3Y0bN47dAwAAANDLR3e97gAAMGoIwo6pWq2qWq12lipGIhFlMhnHZzw1m83O/lzxeLxvGGVnn9Vqtevz8+fPW7rf3h6ZEQYAAIDjsBJyvVYmDAMAdCMIO6b9ywwNw1CxWFQqlVIgEFAqlToQHNnh5s2bknZnWbVPZXSrz0ql0vV5r5Mle9U58ecCAJg8U4HdPTh63abYwB/wlfsPpLc+sVb7xsfSzgNH2wEAjBGCsGMwDONAKLRfuVxWLBZTJpOx7brNZlOZTEbRaFRra2t99+eyu887d+50fW5lfzJJevrpp7s+X19ft3Q/AIC/BQK7G9H2ugUIwgBf+bAqfftna7XffC9d5/1XAMD/QRB2DOFwWIVCQfl8Xul0uufMqGKxqFgsduxrGoahWCymUCik27dvW5qNZXefhmEcGN+K/XXHPbkSADDeWK4EYFiffjlY/WcD1gMAJtdJrxsYd+l0uuvzZrOpYrGo5eXlzh5ebdVqVYlEYqAN8fcql8tKpVKdz6enp5XP5y2dMmlnn/uDsGHtvy4AYHJY3bvnxJT08lnn+wEwGtpLnfvV9NP4brDrDloPAJhcAdM0Ta+bmFTlclmLi4sHAh+r4ZX0l8CqUCgcGUAlk0lL+4TZ1Wdg3/oTqz9ClUpFiUSi8/lx+p6fn9fW1pampqY0Ozs71Bh7LS0taWlp6djjAMA4e9SSTr7bu+bhld3wqpf7D6S596wtW3rqcWnrshQ8Zb1PAPjZf5Fu/XGA+melP/xfzvUDYPLY9XvRpFldXdXq6uqxx6nX62q1Wpqbm9Pm5qYNnVnHjDAHJZNJxeNxLSwsdG0Mv7y8bDkIq1QqqtVqisfjR+71VS6XtbKyYnlMJ/ochh0zwlqtlra2to49zs7OzrHHAADsGmbvnl/8xNmeAEyWC2cGC8KeO+NcLwDgJzs7O7a8BvcSQZjDQqGQNjY2FIvFOiFTs9lUpVJRPB7ve/9kMqlkMtn1tWKxqFwu1xUk5XI5pdNpyxvXH6fPUChkS4g1bK972TUjLBgMHnsMAMCuYfbuIQgDMIhXotI7f7A+8/TVqPM9AYAfBINBzc3NHXuc9owwLxCEueTatWtdm9Cvra1ZCsIOk06nFY/HFYvFugKpYrF47BlcVvqcmZmxJQibmZk59hizs7OuT6MEAPTG3j0AnHb6lPTB87t7DfZz9QWWXwOAXezaVqi93ZEXfLaa1TvRaLQrUDruhvPhcFi3b9/u+tqdO3eONaZkrc9hZ3LtD8/smBEGABg90084Ww8AkrWDNq4nOZADANCNIMxFezeKt0M0Gu1aNmnXaY79+jx37lzX51Znh21vb3d9HolEBuoLAOA9K6dBXhhwLx727gHglJcIwQAA+xCEuSgcDnc+tmNZoCRdunSp87EdyxWl/n3uXTopWQ/garVa1+fDLg0FADjDSsj1Wrl/3StR6cnHrF2TvXsAAADgJoIwF+0NmOxaFhiN/uXVg11j9utz/4wwq0HY3qAuFAp1XQcA4K37D6S3PrFW+8bH0s6Do7/f3rvHCvbuAQAAgJsIwly0vr7e+djuZZLSwYBqWP36jEajXQGZ1b3J9o5rV68AAHt8WLV2+pokffO9dL3au4a9ewAAADCKCMJctHdpoF3LAvfOxrIrXLPS58WLFzsfV6t9Xg0dUpfL5YbsDgDghE+/HKz+swHrD8PePQAAAHAbQZiLyuXd852z2axtY7bDpVAo1LVx/nFY6TOTyXQ+rlQqfcfcWxMOh9kfDABGTOM7Z+sBAACAUUAQ5pJyuSzDMBQKhXT58mXbxl1eXpYkXbt2zZbxrPYZjUa7wqx2eHaUUqnU+ZjZYAAweqafcLYeAEaVaUqPWr1vpul1lwAAuxCEDalSqWh6elqBQECJRKLn8kDDMLS4uChJun37ds9N7VdWVhSLxZTL5fqeAtmuyWazR84Gc6pPSSoUCp2P24HcYZrNporFoqTdpZbpdLrnuAAA9104M1j9cwPWA8CoapnSyXd731oEYQAwMQjChlQqlTpBVaVSUSwW61ou2Nb+3szMjGq1Wtcpj/s1m03lcjlVq1WtrKxoenr6yNlTqVRKKysryufzyufzrvbZFg6HOzO92j0fZmFhQdLu8s29M8MAAKPjlaj05GPWap96XHq1/z8TAAAAwMgJmCYTfYdRqVQO3Zw+FAopHo9rZmZG6+vrqlarymazunz5ct8ZVpIUiUS6NsDfO2Y4HFa1WtX6+rri8bjy+bzC4bAnfe6/RiqVUrPZVDKZ1OXLlxUOh7W+vt4J9qLRqKVZZlbNz89ra2tLc3Nz2tzctGVMAPC76xvSa71XukuS/uli/9MeH7V2Z1H08vCKdIK35AAMyTT7z9SaCkiBQO8a/n8F4DD8v8FZXr6m5ykbUjweV61WUzqdVjgc7gp4qtWqtre3dfnyZTUaDeXzecsB0MbGhrLZrKLR6IExDcNQKpXSvXv3VCqV+oZgTva5/xrt+xuGoYWFBU1PTyuVSmlmZkalUkkbGxu2hWAAAGf0C7ck6XrSWh0AOC0Q2H0B2uvWLwQDAPgPM8IwlpgRBgD2s/OdT95FBTAu+P8VgMPw/wZnefma/qSrVwN8xq4p+wAAAAAA4PgIwgAHtU8h6uXhFekEQRgAAAAAAI4jCAMAALabCuwG/f1qAAAAADcRhAEAANsFAsx2BQAAwOhhWzcAAAAAAAD4AkEYAAAAAAAAfIEgDAAAAAAAAL7AHmEAALjMNHdPle1lKrC7zxYAAAAA+xCEAQDgspYpnXy3d83DK2w2DwAAANiNpZEAAAAA0MNHd73uAABgF4IwAAAAAL5lJeR6rUwYBgCTgiAMAAAAgC/dfyC99Ym12jc+lnYeONoOAMAFBGEAAAAAfOnDqvTtn63VfvO9dL3qbD8AAOexWT4AAJC0e1Llwyv9awBgUnz65WD1n30p/eInzvQCAHAHQRjGWr1e1/z8fM+apaUlLS0tudQRAIyvQICTKgH4S+M7Z+sBwI9WV1e1urras6Zer7vUzUEEYRhrrVZLW1tbPWt2dnZc6gYAAADjZPoJZ+sBwI92dnb6vk73EkEYxtrU1JRmZ2d71gSDQZe6AQAAwDi5cEa69Ufr9c+dca4XAJgUwWBQc3NzPWvq9bparZZLHXUjCMNYm52d1ebmptdtAAAAYAy9EpXe+YO1DfOfelx6Nep8TwAw7qxsTzQ/P+/ZrDFOjQQAAADgS6dPSR88b6326gtS8JSj7QAAXEAQBgAAAMC3Xj7bv+Z60lodAGD0EYQBAAAAQA8vEYIBwMRgjzAAAAAAsIFpSi2zd81UQAoE3OkHAHAQQRgAAAAA2KBlSiff7V3z8Ip0giAMADzD0kgAAAAAAAD4AkEYAAAAAAAAfIGlkQAAjDH2owEAAACsIwgDAGAEfXRXejXWv479aAAAAADrWBoJAIDLPrrbv+a1srU6AAAAANYRhAEA4KL7D6S3PrFW+8bH0s4DR9sBAAAAfIUgDAAAF31Ylb79s7Xab76Xrled7QcAAADwE4IwAABc9OmXg9V/NmA9AAAAgKMRhAEA4KLGd87WAwAAADgap0YCAOCi6SecrQcADGYqsHu6br8aAMBkYEYYAAAuunBmsPrnBqwHAAwmEJBOTPW+BQjCAGBiEIQBAOCiV6LSk49Zq33qcenVqLP9AAAAAH5CEAYAgItOn5I+eN5a7dUXpOApR9sBAAAAfIUgDAAAl718tn/N9aS1OgAAAADWEYQBADCCXiIEAwAAAGxHEAYAAAAAAABfIAgDAAAAAJd8dNfrDgDA3wjCAAAAAMAGVkKu18qEYQDgJYIwAAAmHC+4AMB59x9Ib31irfaNj6WdB462AwA4AkEYAABjjNkHADAaPqxK3/7ZWu0330vXq872AwA4HEEYAABjitkHADA6Pv1ysPrPBqwHANjjpNcNAMdRr9c1Pz/fs2ZpaUlLS0sudQQA7hlm9sEvfuJsTwDgV43v7K03Tall9q6ZCkiBwGDXBQCnra6uanV1tWdNvV53qZuDCMIw1lqtlra2tnrW7OzsuNQNALhrmNkHBGEA4IzpJ+ytb5nSyXd71zy8Ip0gCAMwYnZ2dvq+TvcSQRjG2tTUlGZnZ3vWBINBl7oBAHfZPfsAADC8C2ekW3+0Xv/cGed6AQAvBYNBzc3N9ayp1+tqtVouddSNIAxjbXZ2Vpubm163AQCesHv2AQBgeK9EpXf+YG3J+lOPS69Gne8JALxgZXui+fl5z2aNsVk+AABj6sKAswmYfQAAzjl9SvrgeWu1V1+QgqccbQcAcASCMAAAxtQrUenJx6zVMvsAAJz38tn+NdeT1uoAAM4gCAMAYEwx+wAAxs9LhGAA4CmCMAAAxhizDwAAAADrCMIAAJhwzD4AAAAAdhGEAQAAAAAAwBdOet0AAAB+MxWQHl7pXwMAAADAXgRhAAC4LBCQThB0AQAAAK5jaSQAAAAAAAB8gSAMAAAAAAAAvkAQBgAAAAAAAF9gjzAAAAAAmGCmKbXM3jVTgd09LAFg0hGEAQAAAMAEa5nSyXd71zy8wkEuAPyBpZEAAAAAAADwBYIwAAAAABhDH931ugMAbjNN6VGr983ssxTa71gaCQAAAAAjxkrI9VpZOjElvXzW+X4AjAaWOh8fQRgAAGNsKrD7y06/GgCA8+z6f/L9B9Jbn1i75hsfSxd+JAVPWasHAL9jaSQAAGMsENidDdDrxilgAOAOu/6f/GFV+vbP1q75zffS9erx+gYAPyEIAwAAAIAR8umXg9V/NmA9APgZSyMBAAAAYIQ0vnO2/jhMc3ePol6mAsxGBjC6CMIAAAAAYIRMP+Fs/XGwUTeAccfSSAAAAAAYIRfODFb/3ID1AOBnBGEAAAAAMEJeiUpPPmat9qnHpVejzvYDAJOEIAwAAAAARsjpU9IHz1urvfqCFDzlaDsAMFEIwgAAAABgxLx8tn/N9aS1OgDAXxCEAQAAAMAYeokQDAAGxqmRGGv1el3z8/M9a5aWlrS0tORSRwAAAAAA+Nfq6qpWV1d71tTrdZe6OYggDGOt1Wppa2urZ83Ozo5L3QAAAAAA4G87Ozt9X6d7iSAMY21qakqzs7M9a4LBoEvdAAAAAADgb8FgUHNzcz1r6vW6Wq2WSx11IwjDWJudndXm5qbXbQAAAAAAAFnbnmh+ft6zWWNslg8AAAAAAABfIAgDAAAAAJ/76K7XHQCAO1gaCQCARaYptczeNVMBKRBwpx8AAKywEnK9VpZOTEkvn3W+HwDwEkEYAAAWtUzp5Lu9ax5ekU4QhAEARsT9B9Jbn1irfeNj6cKPpOApR1sCAE+xNBIAAAAAJtSHVenbP1ur/eZ76XrV2X4AwGsEYQAAAAAwoT79crD6zwasB4BxQxAGAAAAABOq8Z2z9QAwbgjCAAAAAGBCTT/hbD0AjBuCMAAAAACYUBfODFb/3ID1ADBuCMIAAAAAYEK9EpWefMxa7VOPS69Gne0HALxGEAYAAAAAE+r0KemD563VXn1BCp5ytB0A8BxBGAAAAABMsJfP9q+5nrRWBwDj7qTXDQAAAAAAuk0FpIdX+tfY5SVCMAA+QRAGAAAAACMmEJBO2Bh0AQB2sTQSAAAAAAAAvkAQBgAAAAAAAF8gCAMATDTTlB61et9M0+suAQCYHB/d9boDADgae4QBACZay5ROvtu75uEV9mEBAMAKKyHXa2XpxBSnUAIYTcwIAwAAAAD0df+B9NYn1mrf+FjaeeBoOwAwFIIwAAAAAEBfH1alb/9srfab76XrVWf7AYBhEIQBAAAAAPr69MvB6j8bsB4A3EAQBgAAAADoq/Gds/UA4AaCMAAAbMRJWQCASTX9hLP1AOAGgjAAwMgxTelRq/fNNN3vy+pJWYRhAIBJdOHMYPXPDVgPAG446XUDAADs1zKlk+/2rnl4RToRcKcfafCTsi78SAqecrQlAABc9UpUeucP1jbMf+px6dWo8z0BwKCYEQYAgAWclAUA8LvTp6QPnrdWe/UF3hACMJqYEYaxVq/XNT8/37NmaWlJS0tLLnUEYFINc1LWL37iTC8AAHjl5bO72wD0cj25WwfAn1ZXV7W6utqzpl6vu9TNQQRhGGutVktbW1s9a3Z2dlzqBsAk46QsAACseYkQDPC1nZ2dvq/TvUQQhrE2NTWl2dnZnjXBYNClbvzJNHf3c+plKiAFXNzLCXACJ2UBAAAA/QWDQc3NzfWsqdfrarVaLnXUjSAMY212dlabm5tet+Fro7ipOeCEC2ekW3+0Xs9JWQAAAPAjK9sTzc/PezZrjM3yAQCw4JWo9ORj1mo5KQsAAAAYTQRhAABYwElZAAAAwPhjaSQAABZxUhYAYBxNBXa3quhXAwB+QBAGAICNOCkLADBqAgH2awWANpZGAgAAAAAAwBcIwgAAAAAAAOALBGEAAAAAAADwBYIwAAAAAAAA+AJBGAAAAAAAAHyBIAwA4Hsf3fW6AwAAAABuIAgDAEw0KyHXa2XCMAAAAMAPCMIAABPr/gPprU+s1b7xsbTzwNF2AAAAAHiMIMwDhmEokUhYrs1kMopEIgoEApqenlYsFlMmk5FhGEP3sLKyokQioenpaQUCAUUiEaVSKVUqlZEaEwCO48Oq9O2frdV+8710vepsPwAAAAC8RRBmo2azqUAg0PcWiUQUDof7jreysqJIJKJisdgJvZrNpqrVqorFoiKRiFZWVgbqsVKpaHp6WrlcTpJUKpVUq9WUz+dVrVaVSCSUSCTUbDY9HRMA7PDpl4PVfzZgPQAAAIDxctLrBiZJsVi0XNsOjY6SSCRUqVQUCoUUj8cVDodlGIaq1WrXTLBcLqdwOKxkMtn3mpVKpTMTLZ1Oq1AodL7XHiMWi6lSqSgWi2ljY0OhUMj1MQHALo3vnK0HAAAAMF6YEWaj5eVlS3XtYOsouVxOlUpF+XxejUZDpVJJ+Xy+a6bVXqlUqu81m81mpy4cDncFVnuVSiVJu0sy+43rxJgAYKfpJ5ytBwAAADBemBFmk2KxqGazqWw223f/r3Pnzh35PcMwtLKyorW1NcXj8UNrstmsarVa1wy0arWqaDR65LipVKqzNLHXbLT2LK5yuaxKpaJisah0Ou3amABgpwtnpFt/tF7/3BnnegEAAADgvYBpmqbXTUyCSCQiSarVascaJ5VK6fz588pmsz3rms2mpqenO5/n8/kj72MYRqc/SWo0Gj2XJ5bL5c7MrVAopEaj4cqYg5ifn9fW1pbm5ua0ubl5rLGc9KglnXy3d83DK9KJMZ6b6YfHCPfZ9XN1/4E09561DfOfelzauiwFTznfFwAA44p/C+EXo/qzPqp9DcrL1/TMCLNBuVyWYRhHLg0cRHtWWT+hUKizb1j786PsXUoZj8f77tG1d7+xZrOpcrl8YA8yJ8YEALudPiV98Lz0Wrl/7dUXeodgAABAmgrsvsjuVwMAo2rEM8LxsLy8rFAopIsXLx57rLW1Ncu129vbnY97Lbfcu4Sy1/LJvfbuYXbjxg1XxgSAQXx011rdy2f711xPWqtr//Lf68Yv/wCASRYI7M406XUL8G8hgBFGEHZM1WpV1Wq1s1QxEokok8moXLYw/eAYms1mZ3+ueDx+ZBhVrVa7Pj9//ryl8feOt/+xODEmAO+Y5u4U6143txfRWwm5XitbD8P6eclCCCbxyz8AAAAw7gjCjmn/JvGGYahYLCqVSikQCCiVSh0Ijuxw8+ZNSbuzrNqnMh6mUql0fd7rtMpedXsfgxNjAvBOy9zdZ6DXreViEHb/gfTWJ9Zq3/hY2nngaDsAAAAAJghB2DEYhnEgFNqvXC4rFospk8nYdt1ms6lMJqNoNKq1tbWe+3PduXOn6/N+e3m1Pf30012fr6+vOzomALR9WLW2ub0kffO9dJ1MHQAAAIBFBGHHEA6HVSgUlM/nlU6ne86MKhaLisVix76mYRiKxWIKhUK6fft239lY7c309/Zsxf66vadhOjEmALR9+uVg9Z8NWA8AAADAvwjCjimdTiubzapQKKhWq6nRaCifzx86S6parSqRSAx9rXK5rEgkIsMwOnuSrays9LzP/tBqWO39yJwaEwDaGt85Ww8AALw3inuUAvAHgjCbhUIhZbNZNRoNlUqlA4FYpVLpG17t1Ww2tbKyokgkolQqdeD7uVzu0K/vvf8w9ve994RKJ8YEgLbpJ5ytBwAA3hu1PUoB+MdJrxuYZMlkUvF4XAsLC10bwy8vLyubzVoao1KpqFarKR6PH7knWblc1srKiuUxh+HE7C07xqzX65qfnz/2OEtLS1paWjr2OACO78IZ6dYfrdc/d8a5XgAAAAD8xerqqlZXV489Tr1et6Gb4RCEOSwUCmljY0OxWKwThjWbTVUqFcXj8b73TyaTSiaTXV8rFovK5XJdQVIul1M6nT4w6yoUCtkSOO0d14kxh9VqtbS1tXXscXZ2do49BgB7vBKV3vmDtQ3zn3pcejXqfE8AAAAAdl872/Ea3EsEYS65du1a12b5a2trloKww6TTacXjccVisa5AqlgsHpgVNjMzY0toNTMz4+iYw5qamtLs7OyxxwkGg8ceA4A9Tp+SPnheeq3cv/bqC1LwlOMtAQAAANDua+e5ubljj1Ov19VqtWzoaHAEYS6JRqOKx+OdpY3H3XA+HA7r9u3bXeHanTt3DtQNO+tqf9C1f0aY3WMOa3Z2Vpubm8ceB8DxmWb/vTymAlIg0H+sl8/2D8KuJ3frAAAAALjDrm2F5ufnPZtZxmb5LjrOiZGHiUajXcsmDwvXzp071/W51Zlc+zeyj0Qijo4JYPy5ventS4RgAAAAAAZEEOaicDjc+diOZYGSdOnSpc7HhwVSe2eMSdZnotVqta7P9y7jdGJMAAAAAAAApxGEuWhvEGbHskBpd1ZYrzH3z96yGlrtDdVCoVBX706MCQAAAAAA4DSCMBetr693PrZ7maR0MKCSdoOyvQHZYfuIHWZvr/vHdWJMAIMxTelRq/fNtHEZIgAAwKji9yIAg2CzfBftXRpo17LAvbOxjgrXLl68qGKxKEmqVquWxt1bl8vlXBkTgHXt/bh6eXhFOmFhY3oAAIBxxu9FAAbBjDAXlcu7R6Bls1nbxmyHS6FQqGvj/L0ymUzn4/aplb3srQmHw4eGdk6MCQAAAAAA4CSCMJeUy2UZhqFQKKTLly/bNu7y8rIk6dq1a0fWRKPRruCpHcgdpVQqdT4+auaWE2MCAAAAAAA4iSBsSJVKRdPT0woEAkokEj2XBxqGocXFRUnS7du3e26Uv7Kyolgsplwud+gpkHu1a7LZ7JGzwdoKhULn43Z4dphms9lZ8hiPx5VOp10dEwAAAAAAwCkEYUMqlUqdoKpSqSgWi3UtF2xrf29mZka1Wq3rlMf9ms2mcrmcqtWqVlZWND09feTsqVQqpZWVFeXzeeXz+b79hsPhzqys9viHWVhYkLS71HLvLC63xgQAu00FdvcF6XWbYs8QAAAAwBcIwoaUSqUOfK1YLGp6elqpVEqZTEaxWEyJRELpdFobGxsKh8M9xwyFQgdq2oFYKpVSLpdTIpHQ9PS0pN3N9wfZbyyZTGptbU2hUEi5XE6pVErValXNZrMT2FWrVUWjUd27d6/nzDUnxwQAOwUC0omp3rcAQRgAAADgCwRhQ4rH46rVakqn0wqHw10BT7Va1fb2ti5fvqxGo6F8Pm85ANrY2FA2m1U0Gj0wpmEYSqVSunfvnkqlUt9g7ai+2z0ZhqGFhYVO0DYzM6NSqaSNjY2BAisnxgQmEUd7AwAAAIC3TnrdwDgLh8Nd+2TZIRQKWVrqeFzZbNbW0yudGhOYJBztDQAAAADeYkYYAAAAAAAAfIEgDAAAAAAAAL5AEAYAAAAAAABfIAgDAAAAAACALxCEAQAAAAAAwBcIwgAAAAAAAOALBGEAAAAAgJHz0V2vOwAwiU563QAA95mm1DJ710wFpEDAnX4AAADgL1ZCrtfK0okp6eWzzvcDwD8IwgAfapnSyXd71zy8Ip0gCAMAAIDN7j+Q3vrEWu0bH0sXfiQFTznaEgAfIQgDAIycqcBuGNuvBgAAjJ8Pq9K3f7ZW+8330vWq9IufONsTAP9gjzAAwMgJBHaXQvS6sXQXAIDx9OmXg9V/NmA9APRCEAYAAAAAcE3jO2frAaAXgjAAgGs4/QkAAEw/4Ww9APRCEAYAPZim9KjV+2b2OYFzElgJsKye/kQYBgCAv104M1j9cwPWA0AvbJaPsVav1zU/P9+zZmlpSUtLSy51hEnjhxM27Ti+nNOfAACAVa9EpXf+YG3D/Kcel16NOt8TAPusrq5qdXW1Z029Xnepm4MIwjDWWq2Wtra2etbs7Oy41A0wfuwKsDj9CQAAWHX6lPTB87tvtPVz9QXePAPGzc7OTt/X6V4iCMNYm5qa0uzsbM+aYDDoUjfA+LErwBrm9CeCMAAA/Ovls/2DsOvJo2ejAxhdwWBQc3NzPWvq9bparZZLHXUjCMNYm52d1ebmptdtAGPLrgCL058AAIDdXiIEA8aSle2J5ufnPZs1xmb5AOBjdgVYnP4EAAAAYBwQhAGAj9kVYHH6EwAAGGWcWg2gjSAMAHzMrgDrlaj05GPWxuD0JwAAYCerJ2AThgGQCMIAwNfsCrDapz9ZwelPAADALoOegL3zwNF2AIwBgjAA8DE7Aywrpzpx+hMAALDTMCdgA/A3gjAA8Dk3AyxOfwIAAHYa5gRsAP520usGAACjjwALAACMIrtOwB5lpim1zN41UwEpEHCnH2DcEYQBAAAAAMaSXSdgj7KWKZ18t3fNwyvSCYIwwBKWRgIAAAAAxpJdJ2AD8A+CMAAAAADAWLLrBGwA/kEQBgAAAAAYS3aegA3AHwjCAAAAAABjy80TsAGMP4IwAAAAAMBE4wRsAG0EYQAAAAAAAPAFgjAAmFAf3fW6AwAAAGBy8fv2eDrpdQMAgMFZ+Uf3tbJ0Yor9MAAAAKwyTall9q6ZCkiBgDv9wDv8vj25CMIAYMzcfyC99Ym12jc+li78iBOSAAAArGiZ0sl3e9c8vCKdIAibaPy+PdlYGgkAY+bDqvTtn63VfvO9dL3qbD8AAADAJOH37clGEAYAY+bTLwer/2zAegAAAMDP+H17shGEAcCYaXznbD0AAADgZ/y+PdnYIwwAxsz0E87WAwAAOG0qsLvXVr+accbG++OL37cnG0EYAIyZC2ekW3+0Xv/cGed6AQAAGEYgMPkbzrPx/vji9+3JxtJIABgzr0SlJx+zVvvU49KrUWf7AQAAACYJv29PNoIwABgzp09JHzxvrfbqCxzlDAAAAAyC37cnG0EY4LGP7nrdAcbRy2f711xPWqsDAAAA0I3ftycXQRjgICsh12tlwjA44yX+UQYAAAAcw+/b44nN8jHW6vW65ufne9YsLS1paWnJpY7+4v4D6a1PrNW+8bF04UdMqQUAAAAAjLfV1VWtrq72rKnX6y51cxBBGMZaq9XS1tZWz5qdnR2Xuun2YVX69s/War/5XrpelX7xE2d7AgAAAADASTs7O31fp3uJIAxjbWpqSrOzsz1rgsGgS910+/TLweo/+5IgDAAAAAAw3oLBoObm5nrW1Ot1tVotlzrqRhCGsTY7O6vNzU2v2zhU4ztn64FRMxWQHl7pXwMAAABgclnZnmh+ft6zWWMEYYBDpp9wth4YNYGAdIKgCwAAAMAI49RIwCEXzgxW/9yA9QAAAAAAYDAEYYBDXolKTz5mrfapx6VXo872g/Hw0V2vOwAAAACAycXSSMAhp09JHzwvvVbuX3v1BSl4yvGW4DErIddrZenElPTyWef7aWNvLwAAAAB+wYwwwEFWwozrSXdDD3jj/gPprU+s1b7xsbTzwNF2ugQCu+Fbr1uAIAwAAADABCAIAzz2EiGYL3xYlb79s7Xab76Xrled7QcAAAAA/IilkQDggk+/HKz+sy+lX/zEmV4AAAAmCds8ABgEQRgAuKDxnbP1AAAAfhUISCcIuvB/mKbUMnvXTAXY+sPPCMIAwAXTTzhbDwAAAGA3BDv5bu+ah1cIT/2MPcIAwAUXzgxW/9yA9QAAAACA/gjCAMAFr0SlJx+zVvvU49KrUWf7AQAAAAA/IggDABecPiV98Ly12qsvSMFTjrYDAAAAAL5EEAYALnn5bP+a60lrdQAAAACAwRGEAcAIeYkQDAAAAAAcQxAGAAAAAAAAXyAIAwAAAAAAgC8QhAEAAAAAYNFHd73uAMBxEIQBAAAAACBrIddrZcIwYJwRhAEAAAAAfO/+A+mtT6zVvvGxtPPA0XYAOIQgDAAAAADgex9WpW//bK32m++l61Vn+wHgDIIwAAAAAIDvffrlYPWfDVgPYDQQhAEAAAAAfK/xnbP1AEYDQRgAAAAAwPemn3C2HsBoIAgDAAAAAPjehTOD1T83YD2A0UAQBgDHxPHZAAAA4++VqPTkY9Zqn3pcejXqbD8AnEEQBgA9WAm5XisThgEAAIy706ekD563Vnv1BSl46vjX5HdIwH0nvW4AOI56va75+fmeNUtLS1paWnKpIxzmo7vSqzGvuxjc/QfSW59Yq33jY+nCj+z5hQgAAADeePns7pucvVxP7tb1Y/UN1RNT1sYDxsXq6qpWV1d71tTrdZe6OYggDGOt1Wppa2urZ83Ozo5L3fjTJP8D/2FV+vbP1mq/+V66XpV+8RNnewIAAIC3XrLwOy1vqMLPdnZ2+r5O9xJBGMba1NSUZmdne9YEg0GXuvGfSf8H/tMvB6v/7EuCMAAAALj/huq4rsDAZAoGg5qbm+tZU6/X1Wq1XOqoG0EYxtrs7Kw2Nze9bsO3Jn3GVOM7Z+sBAAAwmex8Q3WSV2BgMlnZnmh+ft6zWWNslg9gaMP8Az9Opp9wth4AAACTya43VAddgbHzYLDrAn5EEAZgaJM+Y+rCmcHqnxuwHgAAAJPJrjdUh1mB4RbTlB61et9M071+AKtYGglgaJM+Y+qVqPTOH6z98vHU49KrUed7apsKSA+v9K8BAACA+y6ckW790Xr9UW+ojvKetS1TOvlu75qHV6QT/E6KEcOMMABDm/QZU6dPSR88b6326gvuHgQQCOzuA9HrFuCXDgAAAE+8EpWefMxaba83VCd9BQbgBYIwAEOz6x/4UWZlw9HrSTYmBQAAwF/Y9YbqpK/AALxAEAZgaKM8Y8pNLxGCAQAAYB873lCd9BUYbew3BjexRxiAY3n57O5xzb0wYwoAAAA4qN8bqqO8Z62d2G8MbmJGGADHMWMKAAAAGBwrMAD7EYQBAAAAADCi2LMWsBdBGAAAAAAAY4wVGIB1BGEAAAAAAADwBYIwAAAAAAAA+AJBGAAAAAAAAHyBIAwAAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC8QhAEAAAAAAMAXCMIAAAAAAADgCwRhAAAAAAAA8AWCMAAAAAAAAPgCQRgAAAAAAAB8gSAMAAAAAAAAvnDS6wYAAAAAABgFUwHp4ZX+NcAo++iu9GrM6y5GF0EYAAAAAACSAgHpBEEXRthHd/vXvFaWTkxJL591vp9xxNJIAAAAAACAEXf/gfTWJ9Zq3/hY2nngaDtjiyAMAAAAAABgxH1Ylb79s7Xab76Xrled7WdcsTQSY61er2t+fr5nzdLSkpaWllzqCAAAAABGk2lKLbN3zVRgd4koRs+nXw5W/9mX0i9+4kwvvayurmp1dbVnTb1ed6mbgwjCMNZarZa2trZ61uzs7LjUDUbFqP4Dz+arAAAA8FLLlE6+27vm4RX2SRtVje+crbfLzs5O39fpXiIIw1ibmprS7Oxsz5pgMOhSNxgVo/oPPJuvAgAAABjW9BPO1tslGAxqbm6uZ029Xler1XKpo24EYRhrs7Oz2tzc9LoNAAAAAAAcdeGMdOuP1uufO+NcL71Y2Z5ofn7es1ljbJYPAAAAAAAw4l6JSk8+Zq32qcelV6PO9jOuCMIAjAzTlB61et/MPnt/AQAAAMAkOn1K+uB5a7VXX5CCpxxtZ2yxNBLAyBjVvb0AAAAAYBS8fFZ6rdy75npytw6HY0YYAAAAAADAhHiJEKwngjAAAAAAAAD4AkEYAAAAAAAAfIEgDAAAAAAAAL5AEAYAAAAAAABf4NRIAAAAAABsNhXYPfG8Xw0AdxGEAQAAAABgs0BAOkHQBYwclkYCAAAAAADAFwjCAAAAAAAA4AsEYR4wDEOJRMJSbbVaVSaTUSQSUSAQUCAQUCQSUS6XU7PZHJk+JWllZUWJRELT09OdPlOplCqVioNdAgAAAAAAWEMQZqNms9kJq3rdIpGIwuFw37FSqZRisZiKxaIMw+h8zzAMraysaHp6WsVi0dM+JalSqWh6elq5XE6SVCqVVKvVlM/nVa1WlUgklEgkHA/uAAAAAAAAemGzfBsNEkq1Q6PDNJtNxWKxrvDrKJlMRhsbGyoUCpavbVef0m4I1p41lk6nu/oIh8NKJpOKxWKqVCqKxWLa2NhQKBSyfH0AAAAAAAC7MCPMRsvLy5bq4vF4z5lWqVRKhmEoGo12ZlfVajWVSiVls9kD9cViUeVy2fU+27PWpN3Q66gwrlQqSdqdydauBwAAAAAAcBszwmxSLBbVbDaVzWb77qt17ty5nuNUKhVls1nl8/mu77VnWGUyGaVSKVWr1c73FhcXlUwmXetT2g3s2ssde80ca/ddLpdVqVRULBaVTqf79goAAAAAAGAngjCb5PN5hcPhA+HVMOPE4/Ge44TDYZVKJUUikc7Xms2mKpWK4vG4K30ahtG1Cf7Fixd71l+6dKkzay2XyxGEAQAAAAAA17E00gblclmGYfTdT6ufarUqwzA6Swl7OSzM2jtDzMk+JXVdOx6P9933a+9stWazOdBSTnjjo7tedwAAAAAAgL0IwmywvLysUCjUd1ZUPzdu3FA6nba8mfz+2V9ff/11z3q7+pS6N9yPRqOW7rN3v7EbN24cuwcMz0rI9VqZMAwAAAAAMFkIwo6pWq2qWq2q2WxqenpakUhEmUxmqBlPly5dGmjJ4v4Aau9SSSf73D/z7Pz58wP3y4ww79x/IL31ibXaNz6Wdh442g4AAAAAAK4hCDum/csMDcNQsVhUKpVSIBA4sKl9L9Fo1PJsMEmdjerbep3waGefe/cG63fdXnVWrwd7fViVvv2ztdpvvpeu8zQBAAAAACYEQdgx7N8w/jDlclmxWEyZTMaR6+911Eb5dvd5586drs+thndPP/101+fr6+uW7gd7ffrlYPWfDVgPAAAAAMCo4tTIYwiHwyoUCmo2m6rVaqpUKgfCqbZisaj19XVtbGzYdv29QVKvUxjt7nP/fYedEVar1SzdD/ZqfOds/aSZCkgPr/SvAQAAAACMPoKwY9ofQDWbTRWLRS0vLx9YulitVpVIJLS2tmbLtQuFQufjfidB2tnnUSHaoPZfF+6YfsLZ+kkTCEgnCLoAAAAAYCKwNNJmoVBI2WxWjUZDpVLpwLLBSqWilZWVY1/HMIzOHlv5fN7yrCw7+hw2wNp/je3t7aHGwfFcODNY/XMD1gMAAACAxCn0GE3MCHNQMplUPB7XwsJC18bwy8vLymazxxq7fbpkOBw+9lhO9tmLHTPC6vW65ufnjz3O0tKSlpaWjj3OOHglKr3zB2sb5j/1uPRqtH8dAAAAAGeM6lYdVkKu18rSiSnp5bPO9wN3rK6uanV19djj1Ot1G7oZDkGYw0KhkDY2NhSLxTohU7PZVKVSOXJz+36q1aqKxaJCoZBtyywH6TMUCtkSYg1yQuZRWq2Wtra2jj3Ozs7OsccYF6dPSR88v/uPUj9XX5CCpxxvCQAAAMARRnGrjvsPpLc+sVb7xsfShR/xumJS7Ozs2PIa3EsEYS65du2aYrFY5/O1tbWhg7DFxUVJ0u3btwdeEtmPlT5nZmZsCcJmZmaOPcbU1JRmZ2ePPU4wGDz2GOPk5bP9g7DrSd65AQAAAHDQh1VrK0wk6ZvvpetV6Rc/cbYnuCMYDGpubu7Y49TrdbVaLRs6GhxBmEui0aji8bgqlYqk4Tecz2QyqlarKpVKikbtX7Nmpc9hZ3LtD8/smBE2Ozurzc3NY4+Dg14iBAMAAABwiE+/HKz+sy8JwiaFXdsKzc/PezazjM3yXZRIJI51/2KxqGKxqEKhoGQyaVNXB/Xr89y5c12fW50dtn9z/EgkMlBfAAAAAADvNb5zth5wEkGYi/YuYxx0WWClUlEmk1GhUFA6nba7tS79+ty7dFKyPrutVqt1fT7s0lAAAAAAgHemn3C23mmcZulvBGEu2hswDbIssFqtKpFIKJ/POx6CSf373D8jzGoQtnfmWCgUsn1/MwAAAACA8y6cGaz+uQHrj8PqaZaEYf5FEOai9fX1zsdWl0kahqGFhQVls1lls1mnWuvSr89oNNoVkN25c2fgcfeHabDu/gPpP/0P6Wf/Rfq3/8/uf//v/7H7dQAAAABw2itR6cnHrNU+9bj0qv3bWx9q0NMsd3gN5UsEYS7auzTQyrJAwzAUi8WUTqeVz+ctXcMwDK2srAzdo2Stz4sXL3Y+rlarlsbdW5fL5Ybszt/+6a40vyz9h0+lW3+U7mzu/vf/++nu1/+JdzUAAAAAOOz0KemD563VXn1BCp5ytJ2OYU6zhP8QhLmoXC5LkqWZXc1mU4lEQhcvXrQcgklSKpU69t5bVvrMZDKdj9snTPaytyYcDrM/2BD+6a70ys3d/2Ef5pvvd7/PFF8AAAAATnvZwinz15PW6uwyzGmW8J+TXjfgF+VyWYZhKBQK6fLlyz1rm82mYrGYwuGwcrmcpT24DMPozLKKRoefd2q1z2g0qng83gm4yuVyz5MsS6VS52Nmgw3u/gPpzY+t1b7xsXThR+696wIAAAAAh3nJxRBM4jRLWMOMsCFVKhVNT08rEAgokUj0XB5oGIYWFxclSbdv3+67Uf7CwoIMw1ClUlEkErF0a/ewd6aW030WCoXOx8vLy0fWNZtNFYtFSbtLLd3Y8H/SfFg9eibYfkzxBQAAAOBH436aJdxBEDakUqnUOQWxUqkoFosdCKH2fm9mZka1Wq3vbK1YLGZ5z63D7A+ZnOpT2l3i2J7pVa1Wj9ybbGFhQdLuSZF7Z4bBOqb4AgAAAEBvo3yaJUYHQdiQUqnUga8Vi0VNT08rlUopk8koFospkUgonU5rY2ND4XC475h2hmBO9blXMpnU2tqaQqGQcrlc5zE0m81OuFatVhWNRnXv3r2+s8xwOKb4AgAAAEBvo3qaJUYLQdiQ4vG4arWa0um0wuFwV8BTrVa1vb2ty5cvq9FoKJ/PWwqASqWSTNMc+rZ3qaKTfR52jfb9DcPQwsJCJ2ibmZlRqVTSxsYGIdgxMMUXAAAAAHob1dMsMVrYLP8YwuHwoeHTqHGrz2w2a+lETAzuwhnp1h+t1zPFFwAAAIAfvXxWeq3cu8bt0ywxWpgRBoyBV6K7U3etYIovAAAAABzN7dMsMVoIwoAxcPqU9I8vWKtlii8AAAAAAIcjCAPGxL8/K/3TxaNnhj31+O73meILAAAAYNJ8dNfrDjAp2CMMGCMvn5We+5H0YVX67Mvd0yGnn9jdE+zVKDPBAAAAAIwfKyHXa2XpxBRv/OP4CMKAMXP6lPSLn+zeAAAAAGCc3X8gvfWJtdo3PpYu/IgJADgelkYC8CWmVgMAAADe+7Aqfftna7XffC9drzrbj5PuP5D+0/+QfvZfpH/7/+z+9//+H7tfh3uYEQZg4jC1GgAAABgPn345WP1nX47n6ph/uiu9+fFumLfXrT9Kl//77uFo/57XJq5gRhiAiTLo1Ood3n0BAAAAOtxeOdH4ztn6UfBPd6VXbh4Mwdq++X73+6xacQdBGICJ4qep1QAAAMAgrK6ccDOQmX7C2Xqv3X+wOxPMCt6odwdBGICJMszUagAAAGDSjerKiQtnBqt/bsB6r31YPXom2H68Ue8OgjAAE8UPU6sBAACAQY3qyolXotKTj1mrfepx6dWos/3YjTfqRw9BGICJMulTqwEAAIBhjGogc/qU9MHz1mqvviAFTznaju14o370EIQBmCiTPrUaAAAAGMYoBzJWTnK/nhzPE995o370EIQBmCiTPrUaAAAAGMa4BzIvjWEIJvFG/Sg66XUDwHHU63XNz8/3rFlaWtLS0pJLHcFr7anVr5X7147j1GoAAABgGBfOSLf+aL2eQMYer0Sly//d2ob5k/JG/erqqlZXV3vW1Ot1l7o5iCAMY63Vamlra6tnzc7OjkvdwA0f3ZVejfWuefls/yBsXKdWAwAAAMN4JSq98wdrG+ZPSiAzCk6fkv7xBemVm/1rJ+WN+p2dnb6v071EEIaxNjU1pdnZ2Z41wWDQpW5wXB/d7V/zWlk6MXX8EGtcp1YDAAAAw2DlhHf+/VkpIOmNjw+fGfbU47t/5pPyRn0wGNTc3FzPmnq9rlar5VJH3QjCMNZmZ2e1ubnpdRuwwf0H0lufWKt942Ppwo/4xxkAAAAYBCsnvPPyWem5H0kfVndP5Gx8t7sP23NndmffTdJrGyvbE83Pz3s2a4wgDMBI+LBqbZq2tPsuyvWq9IufONsTAAAA4DesnHDO6VO7r2F4HeMtTo0EMBI+/XKw+s8GrAcAAAAAgCAMwEhofOdsPQAAAAAABGEARsL0E87WAwAAAABAEAZgJFw4M1j9cwPWAwAAAABAEAZgJLwSlZ58zFrtU4/vnqwCAAAAAMAgCMIAjITTp6QPnrdWe/WFyTpeGAAAAADgDoIwACPjZQtHNV9PWqsDAAAAAGA/gjAAY+UlQjAAAAAAwJAIwgAAAAAAAOALBGEAAAAAAADwBYIwAAAAAAAA+AJBGAAAAAAAAHyBIAwAAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC8QhAEAAAAAAMAXCMIAAAAAAADgCwRhAAAAAAAA8AWCMAAAAAAAAPjCSa8bAAAAAAAA42UqID280r8GGDUEYQAAAAAAYCCBgHSCoAtjiKWRAAAAAAAA8AWCMAAAAAAAAPgCQRgAAAAAAAB8gSAMAAAAAAAAvsBm+Rhr9Xpd8/PzPWuWlpa0tLTkUkf+w2kxAAAAAIC21dVVra6u9qyp1+sudXMQQRjGWqvV0tbWVs+anZ0dl7rxJ06LAQAAAAC07ezs9H2d7iWCMIy1qakpzc7O9qwJBoMudQMAAAAAgL8Fg0HNzc31rKnX62q1Wi511I0gDGNtdnZWm5ubXrcBAAAAAABkbXui+fl5z2aNsVk+AAAAAAAAfIEgDAAAAAAAAL5AEAYAAAAAAABfIAgDAAAAAACALxCEAQAAAAAAwBcIwgAAAAAAAOALBGEAAAAAAADwBYIwAAAAAAAA+AJBGAAAAAAAAHzhpNcNAIDdpgLSwyv9awAAAAAA/kIQBmDiBALSCYIuAAAAAMA+LI0EAAAAAACALxCEAQAAAAAAwBcIwgAAAAAAAOALBGEAAAAAAADwBTbLBwAAAADABzhdHSAIAwAAAADAFzhdHWBpJAAAAAAAAHyCIAwAAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC8QhAEAAAAAAMAXCMIAAAAAAADgCwRhAAAAAAAA8IWTXjcAAAAAAAD8ayogPbzSvwawA0EY4CD+hw4AAAAAvQUC0gmbXhfxGgz9EIRhrNXrdc3Pz/esWVpa0tLSkksddbPzf+gAAAAAgN54Dea91dVVra6u9qyp1+sudXMQQRjGWqvV0tbWVs+anZ0dl7rBcfHuDQAAAACMt52dnb6v071EEIaxNjU1pdnZ2Z41wWDQpW5wXLx7AwAAAADjLRgMam5urmdNvV5Xq9VyqaNuBGEYa7Ozs9rc3PS6DQAAAAAAIGvbE83Pz3s2a2zKk6sCAAAAAAAALiMIAwAAAAAAgC8QhAEAAAAAAMAXCMIAAAAAAADgCwRhAAAAAAAA8AWCMAAAAAAAAPgCQRgAAAAAAAB8gSAMAAAAAAAAvkAQBgAAAAAAAF8gCAMAAAAAAIAvEIQBAAAAAADAFwjCAAAAAAAA4AsEYQAAAAAAAPAFgjAAAAAAAAD4AkEYAAAAAAAAfIEgDAAAAAAAAL5AEAYAAAAAAABfIAgDAAAAAACALxCEAQAAAAAAwBcIwgAAAAAAAOALBGEAAAAAAADwBYIwAAAAAAAA+AJBGAAAAAAAAHyBIAwAAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC+c9LoB4Djq9brm5+d71iwtLWlpacmljgAAAAAA8K/V1VWtrq72rKnX6y51cxBBGMZaq9XS1tZWz5qdnR2XugEAAAAAwN92dnb6vk73EkEYxtrU1JRmZ2d71gSDQZe6AQAAAADA34LBoObm5nrW1Ot1tVotlzrqRhCGsTY7O6vNzU2v2wAAAAAAALK2PdH8/Lxns8bYLB8AAAAAAAC+QBAGAAAAAAAAXyAIAwAAAAAAgC8QhAEAAAAAAMAXCMIAAAAAAADgCwRhAAAAAAAA8IWTXjcAwH1TAenhlf41AAAAAABMEoIwwIcCAekEQRcAAAAAwGdYGgkAAAAAAABfIAgDAAAAAACALxCEAQAAAAAAwBcIwgAAAAAAAOALBGEAAAAAAADwBYIwDxiGoUQiYam2Wq0qk8koEokoEAgoEAgoEokol8up2WwO3cPKyooSiYSmp6c7Y6ZSKVUqlZEaEwAAAAAAwC4EYTZqNpudsKrXLRKJKBwO9x0rlUopFoupWCzKMIzO9wzD0MrKiqanp1UsFgfqsVKpaHp6WrlcTpJUKpVUq9WUz+dVrVaVSCSUSCQGCtmcGBMAAAAAAHSbCkgPr/S+TQW87nK0nfS6gUkySCjVDo0O02w2FYvFusKvo2QyGW1sbKhQKPStrVQqnZlo6XS66z7hcFjJZFKxWEyVSkWxWEwbGxsKhUKujwkAAAAAAA4KBKQTBF3HwowwGy0vL1uqi8fjPWeEpVIpGYahaDTamV1Vq9VUKpWUzWYP1BeLRZXL5Z7XbM8wk3YDqqOCs1KpJGl31lm73s0xAQAAAAAAnMKMMJsUi0U1m01ls9m++3+dO3eu5ziVSkXZbFb5fL7re+0ZVplMRqlUStVqtfO9xcVFJZPJI8dNpVKdpYm9ZqO1r1Eul1WpVFQsFpVOp10bEwAAAAAAwCkB0zRNr5uYBJFIRJJUq9WOPU44HNba2lrPOsMwOtdsW1tbUzwe71vbaDR6Lk8sl8udmVuhUEiNRsOVMQcxPz+vra0tzc3NaXNz81hjAQAAAACw16OWdPLd3jUPr0gnWGc3FC9f0/OU2aBcLsswjJ6zoqyoVqsyDKOzlLCXcDh8YMbY3hlie+2ti8fjfffo2juzrNlsHrrs0okxAQAAAAAAnEQQZoPl5WWFQiFdvHjxWOPcuHFD6XTa8mby+2d/ff3114fW7d3EPxqNWhp77x5mN27ccGVMAAAAAAAAJxGEHVO1WlW1WlWz2dT09LQikYgymcxQM54uXbp0YJZXL/sDqP1LJdv97XX+/PmBx97/WJwYEwAAAAAAwGkEYce0fzmkYRgqFotKpVIKBAIHNrXvJRqNWp4NJqmzUX3bYSdRViqVvjWH2V+39zE4MSYAAAAAAIDTCMKOwTCMA6HQfuVyWbFYTJlMxpHr73XYRvl37tzp+txq0Pb00093fb7+/2/vDnbTyPb8gf+c7hndVVTOlUaKkk3jN8DpJwh+A9z9BIF9FqCrWY8ivMge+gk68AaQJ+jAG7h605GlK127lNVoZjr8F/mDAGMbAwV21+cjWW1Icc4p1+ly1dfnnPr0KdcyAQAAAPL2/b4b8JiVSqVot9uRZVmcn5/HYDC4Fk5NdDqd+PTpUwyHw63VPxsk1Wq1pdsstmfd0VuzT8PMo0wAAACAvAnCNrQYQGVZFp1OJ969e3dt6uJoNIqTk5Po9/tbqbvdbk+/v+mJlTcFc/c1uy95lAkAAACQN0HYliVJEo1GIxqNRvR6vXjz5s1c4DMYDOLs7CwajcZG9aRpOl1jq9Vq3Tgqa92waXG64+XlZa5lruvi4iJevny5cTlv376Nt2/fblwOAAAA/FW9f/8+3r9/v3E5FxcXW2jNegRhOapWq1GpVOL169dzC8O/e/du4yBs8nTJUqm0cVmryGP01jbK/Pr1a3z+/Hnjcr58+bJxGQAAAPBX9uXLl63cg++TICxnSZLEcDiM4+PjaRiWZVkMBoOli9uvYjQaRafTiSRJ7pxmmSTJVgKn2dFceZS5ridPnsTz5883Lufp06cblwEAAAB/ZU+fPo0XL15sXM7FxUV8/fp1Cy26P0HYjvzyyy9xfHw8fd3v99cOwt68eRMRER8/frxzofpnz55tJbR69uxZrmWu6/nz5/HHH39sXA4AAABwu20tK/Ty5cu9jSx7spdaC6hcLs8FX+suOF+v12M0GkW3241yuXzn9uuOuloMuhZHhG27TAAAAIC8CcJ26OTkZKPPdzqd6HQ60W63o1qtrvSZV69ezb1edSTX4kL2R0dHuZYJAAAAkDdB2A7NTmO877TAwWAQ9Xo92u121Gq1lT83Ox0zYvWRaOfn53OvZ0ez5VEmAAAAQN4EYTs0G4TdZ1rgaDSKk5OTaLVa9wrBIq6P3lo1tJod5ZUkyVzb8ygTAAAAIG+CsB369OnT9PtVp0mmaRqvX7+ORqMRjUbj3nWWy+W50O23335b6XOzbV0MvvIoEwAAACBvgrAdmp0auMq0wDRN4/j4OGq1WrRarZXqSNM0zs7O5t776aefpt+PRqOVypndrtlsXvv3PMoEAAAAyJMgbId6vV5ExEoju7Isi5OTk/jpp59WDsEiIk5PT6+FbPV6ffr9YDC4s4zZbUql0tLQLo8yAQAAAPIkCNuRXq8XaZpGkiTxj3/849ZtsyyL4+PjKJVK0Ww2I03TO78Gg8F0EftyuTxXXrlcngueJoHcTbrd7vT7m0Zu5VEmAAAAQJ4OxuPxeN+NeIwGg0Gcnp5GlmVRqVSi1WpdC6AmJlMcsyyL4XB443YTx8fHK083XHTTUyXTNI2jo6OI+BZiDYfDpZ/PsiwODw8j4tv0zX6/f2NdeZS5qpcvX8bnz5/jxYsX8ccff2xcHgAAAEz8+TXi+/+8fZv/+6+I7wwvWss+7+kdsjV1u93pUxAno7FmpwtOTP7t2bNncX5+nmsIFhE3PlWyVCpNR2WNRqNr64hNvH79OiK+PdVxdhTXrsoEAAAAyIsgbE2np6fX3ut0OnF4eBinp6dRr9fj+Pg4Tk5OolarxXA4jFKpdGeZeYRgE9VqNfr9fiRJEs1mc1pflmXTwG40GkW5XI7ff/997smQuywTAAAAIA+mRm4gTdNotVoxGAzi8vIysiyLJEni2bNnUS6X4+eff45KpfIgw5+zs7P49ddfI03TabtfvXoV9Xo9qtXqgynzJqZGAgAAkBdTI/O1z3t6QRiPkiAMAACAvAjC8mWNMAAAAADImSAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCF8v+8GwCYuLi7i5cuXt27z9u3bePv27Y5aBAAAAMX1/v37eP/+/a3bXFxc7Kg11wnCeNS+fv0anz9/vnWbL1++7Kg1AAAAUGxfvny58z59nwRhPGpPnjyJ58+f37rN06dPd9QaAAAAKLanT5/Gixcvbt3m4uIivn79uqMWzTsYj8fjvdQMG3j58mV8/vw5Xrx4EX/88ce+mwMAAMBfyJ9fI77/z9u3+b//ivjOyutr2ec9vUMGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAI3++7AQAAAAAPyZODiP/7r7u34fERhAEAAADMODiI+E7Q9ZdkaiQAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEL7fdwOgSN6/fx9fvnyJp0+fxtu3b/fdHP6i9DPypo+xC/oZedPH2AX9jLzpY/d3MB6Px/tuBNzXy5cv4/Pnz/HixYv4448/9t2clT3WdvO46GfkTR9jF/Qz8qaPsQv6GXl7rH1sn+02NRIAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKITv990A2MTFxUW8fPny1m3evn3rMbIAAACwA+/fv4/379/fus3FxcWOWnOdIIxH7evXr/H58+dbt/ny5cuOWgMAAADF9uXLlzvv0/dJEMaj9uTJk3j+/Pmt2zx9+vTae+/fv48vX77E06dPCzNabJ/7vK+6i7jP++ZYF6fufSniz7uI+7xPRf15F7F/71MRf95FrXtfivrzLuL/W/t0034/ffo0Xrx4cetnLy4u4uvXr3k3cbkxPEIvXrwYR8T4xYsXe/n8uvZVb1HrLuI+F7XuIu7zPusu4j7vs+4i7vM+6y7iPu+z7iLu8z7rLuI+F7XuIu7zPusu4j5vWvc+222xfAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQjgYj8fjfTcC7uvf//3f43//93/jyZMn8fz583t//uLiIr5+/br259e1r3qLWncR97modRdxn/dZdxH3eZ91F3Gf91l3Efd5n3UXcZ/3WXcR97modRdxn/dZdxH3edO6J5/9t3/7t/if//mfnFq4nCCMR+m7776Lr1+/7rsZAAAAwJqePHkSf/75507r/H6ntcGW/O1vf4v//u//ju+++y7+4z/+Y9/NAQAAAFb0z3/+M/7888/429/+tvO6jQgDAAAAoBAslg8AAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCIM1pWka9Xo9jo6O4uDgIA4PD+P4+Djq9Xqkabp2uWdnZ3FychKHh4dxcHAQR0dHcXp6GoPB4EGVyW6MRqO5fjY5fs1mM7IsW7tc/YybpGkaJycn0ev1NipHH2MdjjGznI/Ik2ssdsE94wM1Bu6t1WqNI+LWr1arda8y+/3+OEmScUSMK5XKuN/vj8/Pz8fdbndcKpWm719dXe21THbj6upqXK1W7+xn7Xb7XuXqZ9xksc/dt29N6GOswzFmlvMReXKNxa64Z3y4BGFwT5VKZRwR4yRJxtVqddxoNMbVanV6kpj96na7K5XZ7/enn6nVaku3KZfL44gYl0qllU5CeZTJblxdXS3tTzd93XR8F+lnLHN1dTVuNBob3wCMx/oY63GMmXA+Im+usdgV94wPmyAM7mFycXZTcr8s9b/L1dXVNIEvlUo3bnd+fj4ts1Kp7LxMdmfyi7NcLo+73e74/Px8+leZZTcIq/wC1c9YptVqjUul0rTPbXLjqY+xDseYCecjdsE1FrvgnvHhE4TBiiYngH6/f+t2tVpt7qQ2HA5v3X72gu+uC71VpwnkUSa70W63xxExbjQaN25zfn4+/cvM5CtJklvL1c9YNBwO585Pk7637nHSx1iHY8x47HzEbrjGYhfcMz4OgjBYUbVaXWkO99XV1dxJ7bbPzKbrEXHnUNNut3vnL+U8ymR3Jn8Nv8vicb7tF65+xiqGw+HaN576GOtwjLmJ8xF5cI3FLrhnfBwEYbCi+wwDnZ37fdvF2+xfAlYtf/aEtWyodh5lshuTC/9V594vDqu+6ReofsYqFi+I7nPjqY+xDseYmzgfsW2usdgV94yPw5MAVtLv91fe9vLycvr9q1evbtyu0+lMvy+XyyuVXSqVpt//+uuvOymT3fj111+jVqtFkiQrbV+pVOZe/+tf/1q6nX5G3vQx1uEYkwfnI5ZxjcWuuGd8HARhsGVZlkWWZRHx7ZfoTSeW0Wg09/rHH39cqfzZ8nq9Xu5lsjs///xztFqtlbdf7FtHR0fXttHPyJs+xjocY/LgfMRNXGPx0Lhn3C9BGGzZhw8fIuJbYt7tdm/cbjAYzL2eTdhvs7jd7IksjzLZnXK5vPJfKiNi+stzYtnx1s/Imz7GOhxj8uB8xE1cY/HQuGfcL0EYbFGWZVGv16NcLke/37/1F+5vv/0293rVX85///vf515/+vQp1zJ5uNI0nXu9OIw/Qj8jf/oY63CMyYPzEdviGos8uWfcP0EYbEmapnF8fBxJksTHjx/vTNYXf8Gum8Sfn5/nWiYP1+wvn1qttnQb/Yy86WOswzEmD85HbItrLPLinvFhEITBFvR6vTg6Ooo0TSPLsjg8PIyzs7NbP7N4AlrX7NDtPMrk4Wq329Pvm83m0m30M/Kmj7EOx5g8OB+xLa6xyIN7xodDEAZryrIszs7O4ujoKE5PT6/9e7PZXPr+7OfXsTh0dfZpI3mUycOUpul0Xn6r1brxLzn6GXnTx1iHY0wenI/YBtdYbJN7xodJEAZrGgwGcX5+HpVKZem6ARHfUv+7Uv5N5ZHEP+Z0vygmTz4qlUrRaDRyr08/I2/6GOtwjMmD81GxucZim9wzPkyCMFhTtVqNdrsd7XY7+v1+jMfjaLfb15LyZrO59CRxnyfX3Ga2nDzK5OEZjUbR6XQiSZLo9/u3bqufkTd9jHU4xuTB+YhNucZi29wzPkyCMB69TqcTBwcHW/06Pj5eqy21Wi2Gw+G1k0Kn07m27bNnz9aq47Zy8iiTbx5SP3vz5k1ExEoLbOpnj8dD6mP3oY+xDseYPDgfsSnXWOyCe8b9E4TBlpVKpfj48ePce4uPqI1YP0Ff/EvBNtL928rkYanX6zEajaLb7Ua5XL5ze/2MvOljrMMxJg/OR2zCNRa75J5xv77fdwNgU5VKJbrd7lbL3PR/6nK5HNVqNXq9XkQsfzLHq1evpgtxRnw7saxS7+KihEdHR7mWyTcPoZ91Op3odDrRbrejWq2u9Bn97PF4CH1sHfoY63CMyYPzEetyjcU+uGfcH0EYj16pVLpz6PI+/Pzzz9OT2rL53otTltI0XemvT+fn53OvZxddzKNMvtl3PxsMBlGv16PdbketVlv5c/rZ47HvPrYufYx1OMbkwfmIdbjGYp/cM+6HqZGQk9mTybKE/dWrV3Ovl/0FYJnZE2SSJHM3znmUyf6NRqM4OTmJVqt1rwu0CP2M/OljrMMxJg/OR9yXayz2zT3jfgjCYAcWTzYR3056sye7ZXPCl/n06dON5eZRJvuVpmm8fv06Go3GWo/w1s/Imz7GOhxj8uB8xH24xuKhcc+4O4IwyMlssn5ycrJ0m59++mn6/ew87dvMbtdsNndSJvuRpmkcHx9HrVaLVqu18mfOzs7m3tPPyJs+xjocY/LgfMQqXGPxULhn3JMxkItWqzWOiHGSJDduMxwOxxEx/bpLv9+fblsqlXZWJrt3dXU1LpVK41qtdq/Plcvl8XA4nHtPP2MV5+fnc8e03W6v/Fl9jHU4xtzE+Yg8ucbiIXHPuB9GhEFO3r17FxERv/zyy43blMvluUUGJwsl3mT2iXI3pfB5lMluZVkWx8fHUSqVotlsRpqmd34NBoPpwpeLi13qZ6xi2QKtq9LHWIdjzE2cj8iLayweGveMe7LvJA4ei1arNS6Xy+NGozG+urq6ddtGozGOiHGj0biz3Nm/epbL5Ru3u7q6mm5XqVR2Xia7Uy6X5/5Cc5+vm/5qrp9xl263O9eXWq3WvT6vj7EOx5hlnI/Ii2ss8uae8XEQhMEKZv/nn3zddMKqVqv3vmibveC76XOTX9xJktx5Us2rTPK3yQXaXX/b0M+4yWSayGxfuu2C6Cb6GOtwjJnlfEReXGORN/eMj4cgDFa0eFE2ORlUq9Vxo9EYVyqV6evz8/N7l9/v98dJkowjYlytVsfD4XB8dXU17vf705NPuVy+18knjzLJz+QX4rpfq6x1oZ8xcXV1Na5Wq+NKpXJrv6pUKtPjugp9jHU4xsXmfETeXGOxK+4ZHwdBGKzo6upq3Gg0xuVyeXqiSJJkXCqVxtVqddxut7dycpgMp52to1KpjLvd7oMqk8dNPyNv+hjrcIzJg/MRu6S/FZt7xsfhYDwejwMAAAAA/uI8NRIAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAgK3KsixOT09jNBrtuyn8f4PBIOr1ehwfH8fR0VEcHBzEwcFBHB0dxcnJSTSbzbWO19nZWTSbzRxanA9BGAAAALA1g8EgfvjhhyiVSlEul6fvTYKXu74ODw+j0+ncWc9oNIrDw8Nbyzo+Po6IiE6ns3L963zNum9dh4eH2z8IM87OzuLw8DBOTk6i0+nEaDSKJEmiWq1GtVqNJEliMBjE2dlZHB8fx+HhYZydna1cfq1Wi9FoFEdHR5GmaY57sh0H4/F4vO9GAAAAAI/fZHRQu92OWq127d97vV68efMmsiy79m+1Wi3a7fa968yyLJrN5lx4VqlUotvtRpIkc9uORqNoNpsxGAyulVMqlaJUKl37zKSOiIjLy8tI0/Ra+5dFK3fV1W63o1Kp3L2Da1r8WSdJEq1Wa+lxybIsOp1OvHv3brr9fdtYr9fjw4cP8fHjx2kA+hAJwgAAAICN3RWCTQwGgzg5Obn2/nA4XDtAybJsOrIqSZL4/ffflwZaE4eHhyuFWTdJ03Ru6ufV1dWN9S2ra5N9XcXidMVKpRL9fv/Oz02mtM6Gd3cdz1mnp6fR6/Vy379NmBoJAAAAbKTT6USz2YxGo3FnaFKpVKJarV57/9OnT2vXf3l5Of2+1WrdGoJFRLx69Wru9V3bLyqVSvHx48eVPrdYV0TkGhI1m821QrCIbz+Hfr8fpVJp+l69Xl95qmS3241yuRyvX79eOurvIRCEAQAAAGvr9XpRr9ejXC5Hq9Va6TPLtltnWuTEZGRWkiQrjV66b/B1Uxmr7O9iXduo+yaTtb5m6+p2u/cup9/vz7Xzpimey3S73ciyLF6/fn3vendBEAYAAACsJcuyePPmTUQsD7duUiqVro0KG41Gaz9lchKirTqF79mzZ2vVs2iV9bO2VdddJtMaZ60yOm6ZUql07Wd5enq60iivyWcna6Q9NIIwAAAAYC2TcKRcLt974fdlwdm7d+/u3YYsy6ajler1+r0/v4lSqbR0Uf59aDab14KqVYPBZf7xj3/Mvc6ybOXjMwnAzs7OVh5JtiuCMAAAAODeer3eNORYDE1WUSqVroVnvV7v3mtLTZ4WWS6X59a22pVl653t2uSpj7M2CcEivk2rXNy3VdcKmz22uw4n7yIIAwAAAO5tdnTQumHQsqlz9x0VNpkWuU4Yt64syx7UYvCLIVhEXJsmuY5lT/dcVtdtn03TdOXP7IIgDAAAAB6B09PTODw8jIODg6Vfx8fHkaZpRHwbhbNs26Ojo60EOIPBYLqe1yZPQKxUKtdGcd0nNBkMBtN93uXIrMUnM+7br7/+eu29ZU+rvK9l011XXXx/9rP3WT8ub4IwAAAAeAS63W5cXV0tnfLWarViOBxOQ6V2ux0fP36c/nu5XI6rq6s4Pz/fynpWs094vO/aYIsWA6Vl0/zuasem0wDv69OnTzut7y6LDxlIkmQrx7lUKl0rZ9U1v2YD0jRNo9frbdyebRCEAQAAwCPSbrevhU/n5+fXtpuENZVKJYbD4VYXdJ8NNX788ceNyqrVatfatsoIoizLpu3Y5TpUmzzdMg/L2rKN0WATy556ORmFd5fZftrv97fWpk0IwgAAAOCRWZye1ul05qY8ZlkWzWYzkiRZeSrbqhaDl20sUL84oitN0ztHHs0ukr/J9MxVTda6ev36de513ceyUGqboeeyslYNwmaPy4cPH7bVpI0IwgAAAOCRSZJkbnpiRMSbN2/mvs+yLLrd7lZDkYjrU+O2EYQtW+j+rlFhk/3fxmiwLMtuXHttdn21er3+oBbJj4i4vLy89t6yUVzrWnZ8V/0Z/P3vf5/7zKoBWp6+33cDAAAAgPur1WrR7XanwVSv15suHt/r9aJWq228ftcyv/3229zrbQRtSZJErVabWxtssi/LgpjRaDQNVba1Pthdgd7l5eWDC8EilodS2w4/Fy0L35ZZ/JmORqOtBKebEIQBAADAI9Vut+Po6Gj6+vT0NCK+BRCLI8a2Ja8wqNlsXlskv9VqLd2Pd+/eRcT2nhSZJMnSddYWjUajePPmzYNaI2xZ6LXNY7SsrFVHnC22bdUALU+mRgIAAMAjVSqV5qYQZlk2nRKZl7zCjFKpdG0E2+LaZxHzi+Qvm1KZp3K5nOvPdh3LQqltHqNlZa074uwhjKgThAEAAMAj1mg0drJY/MRsmLHtKXjNZvPae4ujxCaLrpdKpZ3u98SywG6fNlnDaxXL1vVadXrjYkj3r3/9aytt2oQgDAAAAB65xVFKkymSedv2CJ9KpXItZJlMg5yYjIDbxiL56yqXy7mvw7WqZWHgNhelX3aM973O1yYEYQAAAPDILa6jlabp0tFV25B3ALTY7izLpqPC8lgkfx2tVuvOp1ru0mIYlqbpVkLKZWuh3Wc03OK0ytmnSO6LIAwAAAAesdFoFGdnZ9cWjj87O8tlUfe8RwPVarVrYdskdJpdJP+hjMh6CJaFU5OniW5iWRknJydrl/cQjpkgDAAAAB6x09PTSJIkfvnll2sjw/KYIrm47lMeC6AvjvZK0zR6vd50kfx9Tou8Sa/X29li8M1mcy7kXPbQgH6/v3E9y8q4z0i8xZ/HQ5hSKQgDAACAR6per0eapvHLL79EkiRRq9XmpsmlaRpnZ2dbrXNxRFAeT5FcFuxMQr2Htlh9xLeRU6enp7k9UXPWZATgbKiUJMm1EYGLDxlYx+KIsEajca9RXYtrlb169WrjNm1KEAYAAACP0GAwiE6nE5VKZS4EWVw4v9lsbnXx9MUQaptlT0xCvWUe4miwer0eSZLsZMTTmzdvolQq3Th9dNYmYdhigJokydKA8jazT4lc1uZ9EIQBAADAIzQZIbUYfJVKpWuhyDanSC4GPtuYgrfMTYv9b2OR/G2O3JoEjTeNUtt2XaPR6Nror4hvx31xamyz2VxrumaWZdee1tntdu8dZM2GpA9lFJ8gDAAAAB6Z09PTyLIs2u320nCi0WjMhVWT6XTbMhvEbGNR9mWWTYGsVCpbGVW0rbW8zs7Opj/Xn3/+Ode6ms3mtK6bFqyv1WpzQWGWZWuFoK9fv55rd6vVWivImu0beaxXt46D8Xg83ncjAAAAgNX0er04PT2NUqkU5+fnN243Go3i+Ph47r3hcDi3hti6siyLw8PD6eu8ooXBYDAX+vT7/a2MLDo8PLwWUF1dXa0csvV6vXj37t3cgvU3fX5ZXasehzRNYzAYRKvVmhtdddfPezY0i/gWXE7WkbvNJDibDbDa7fZao/Bm+8hdfXWXvt93AwAAAIDVTBZlj4il0+NmLVuv6vXr1/Hx48eNw7AkSaLRaEzDlsFgkMvUt0qlEqVSKdI0jSRJNq4jTdOo1+tLR2kdHh5GuVyOZ8+eLQ2MsiyLNE2XrolWLpevfea2uo6Pj6drZi0+hfPy8jKyLJv+d9EqP4NWqxU//vhjvHnzJrIsmz5x87ZQq9PpzE2lTJIkut3u2j/zDx8+TL+/aZrrPhgRBgAAAA9cmqZxeno6NwIp4lsosmztprOzs2i32zcuZF8ul6Pb7W60uPvsiJ9Go7F0sfZt6HQ6Ua/XN6pjUkZeZtuWd12tVisajcbK2zebzeh0OnOh2iRgnIRtsyPAJovi36eOZY6Pj2M0Gj2o0WARgjAAAABgTZPQJ0mSuLq6yq2ew8PDGA6HO3kq41/VYDCIbrcbnz59mo5um4xIK5VKUS6X4+eff97K1Nk0TePo6Cgitjcdd1sEYQAAAMDaTk9P75x2R7GcnJzEYDDIdaTgugRhAAAAwEaOjo7i8vIyfv/996081ZHHa/KAg3K5HMPhcN/NuUYQBgAAAGxkMhWuWq1Gt9vdd3PYkyzL4ocffohnz57FcDh8kKHok303AAAAAHjcSqVSDIfD6PV6uS4Uz8OVZVkcHx8/6BAsQhAGAAAAbMFkKtyHDx+EYQUzCcEmgehDDcEiBGEAAADAlkzCsE+fPsXJyUlkWbbvJpGz0WgUP/zwQ9Tr9ej3+w86BIuI+H7fDQAAAAD+Oiajgs7OzuLy8vLBByNsJk3T+PjxY5TL5X03ZSUWywcAAACgEEyNBAAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAoBEEYAAAAAIUgCAMAAACgEARhAAAAABSCIAwAAACAQhCEAQAAAFAIgjAAAAAACkEQBgAAAEAhCMIAAAAAKARBGAAAAACFIAgDAAAAoBAEYQAAAAAUgiAMAAAAgEIQhAEAAABQCIIwAAAAAApBEAYAAABAIQjCAAAAACgEQRgAAAAAhSAIAwAAAKAQBGEAAAAAFIIgDAAAAIBCEIQBAAAAUAiCMAAAAAAKQRAGAAAAQCEIwgAAAAAohP8HEKFCuphSCl8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -254,12 +262,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOUCAYAAABAB5/EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACo3klEQVR4nOz9T2xjaZrf+f6oTBs98DTzUFkwIFBAVxx2Ar6rdhwqvLg7l0jXZoyZ7iQVwBhjA+MW6WxceMF2kRnlhduLThVZVdwYmE4yqu/Ccw1YQVb1vZhZNIpH2XuHdLK8G/gWT2QBIggYSPEEexrTsDt57iIu2aTEfyIpHknn+wEEkNLL9zz6E9nNXz3vcyK+7/sCAAAAAAAAHrmdoAsAAAAAAAAAtoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKLwfdAHAKv7W3/pb+su//Eu99957+tt/+28HXQ4AAAAAAFjSf/7P/1nffPONfu3Xfk1/8Rd/sdVrR3zf97d6Rch1XeXzebVaraXWlstl2bYt13VlGIZM09TBwYFKpZJM07z19T3P08nJiRzHkeu6cl1XpmnKsiyl02nlcrlVvi1VKhW1Wi2dn5/L87zRnvl8XqlUaqU9Z3nvvfc0GAw2uicAAAAAANienZ0dffPNN1u9JkHYBnmep1gsttTaXC6nWq02d02lUlGpVJq7plwuq1gsLl3jcE/DMPTixQtZlqXd3V2dn5+rVqvJcRyZpqlarbZ0eGXbtrLZrDzPUyqVGgV0juOoVCrJdV2lUik1Gg0ZhrF0rfP8zb/5N/Vf/+t/1c7Ojvb29jay5yzdbleDwWAr17pv1w/rtYO+flivHfT1uTa/87BcO+jrh/XaQV8/rNcO+vphvXbQ1w/rtYO+flivHfT1H+q1h6/9G3/jb+i//Jf/ckcVzuBjY8rlsi9pqY92uz13r1Qq5UvyDcPwM5mMXywW/Uwm45umeWOvRqOxVH2ZTMaX5FuWNXNNLpcb7XtxcbFwz1arNVqfy+WmrrEsy5fkm6bp93q9pWpdJB6P+5L8eDy+kf3uy7Xu2/XDeu2grx/Wawd9fa7N7zws1w76+mG9dtDXD+u1g75+WK8d9PXDeu2grx/Wawd9/Yd67SDrZlj+Bp2cnCy1LpVKzT3SWCqVZNu2yuWyer2eGo2GyuWyGo2G2u22yuXyxPpsNrvwmpVKRc1mU5J0dnY2c12tVhvVdnh4OHdPz/NG1x52kU3TaDQkvTvmuUytAAAAAAAAd4Fh+RtSr9fleZ6KxaLS6fTctQcHBzO/5rruaNbWrKOJxWJR7XZb9Xp99DnHcWRZ1sx9h0csLctaeDwxk8moUqnI8zw1m01lMpmp64bHIcf3n8Y0TWUyGTWbTdm2rXq9vvIcMgAAAAAAgFUFGoR99NFHQV5+QiQS0X/6T/9p5deXy2WZpnmjW+u2SqWSyuXywvlc5XJ5IgizbXtmEGbb9ujxMsP1nz17Nnr8+vXrqUGY67oT+x4dHc3d8/nz56OOtFKpRBAGAAAAAAC2LtAgrN1uKxKJyA9wXv/w+pFIZOU9ms2mXNddOPx+GcOuskWGd490XXf0fJbhGuld59htfPjhh1M/Px74pVKppbrMhhZ1mgEAAAAAANyF0M8I20QId3JyIsMwFnZFLaPVai299urqavR43nHL3d3d0WPXdSeCsWlev349ejyrg2y8G23ekcxx43udnp4u9RoAAAAAAIBNCXxGmO/7ymQySx3Zuwue502EOrflOM6oyyoWi8k0TaVSKaXT6TvtePI8bzSfK5VKzQ2jrv9s8/n83MBteITRMIyp38P1rrLxo5TzWJY1CuGG1wAAAAAAANiWwIOwer2u3/3d3w20hkwmo+9+97srvfb6kHjXdVWv10fhWiaT0YsXL5bumlrWq1evJL0LuYZ3ZZzFsixZljUKsGzbVjabnfq6er0+CqtmzTsbnw02rGEZ19ctGvAPAAAAAACwSYEHYYuGwm/Dsh1N110fGD9Ns9lUs9lULpfbyAwx6V03WD6fl2VZajQaC+dzSdLLly+VTCYn6roehtm2rXw+L0mq1WozB9qPH52U5s8nG3d93tj5+TlB2BIKhYL6/b6i0SjXDtH1gxL09x3Wv7mgf+5BCuvPPejfedDXD0rQ33dY/+aC/rkHKcw/9zB/70EK68896N950NcPykP9viN+gJPqd3Z25Hle4D+0t2/fand3V998882tX1uv1+V5ntrttmzbnjt/y7IsXVxcrFOqXNdVOp3W1dWV3rx5s3QIJf11+DVu2FFm27ZKpZJM01StVpsbUCaTyYnjkcv+CV2/frFYXPkum/v7++p0OorH47q8vFxpj/t4LUDibw7bxd8bto2/OWwbf3PYJv7esG0P9W8uyLoD7Qhb506N98X1rqnhzLGTk5PRDK8hx3GUTqdvNRB/3PUgKRaLqVwuL3WXSendMc1arTbq+pLeBWvDTrFlg6lFw/aXdf3ns4put6v9/f219ykUCioUCmvvAwAAAADAY1WtVlWtVtfep9vtbqCa1QQahAXYjHbDpmoxDEPFYlHFYlHNZlPHx8cTgY9t26pUKkuHV8NgrVarTQ2gSqWSXr9+vXBO2NAwuBsPw8Zr8zxvYZfZqgHW9X3H73q5qsFgoE6ns/Y+/X5/7T0AAAAAAHjM+v3+Rt6DBynQIKxcLgd+LFKSPvjgg5WP6M2TyWSUSqV0eHg4cZTw5ORk6SDMtm21222lUqmZM8mazeatwrVcLqeLi4sbd8t0HEdPnjzR2dnZVmZ3baIjbGdnR3t7e2vvcx/+DgEAAAAAuM+i0aji8fja+3S7XQ0Ggw1UdHuBBmHf+973tnq9r776St/+9re3WothGLq4uJiYq+V5nmzbXupGAZlMRplMZuJz9XpdpVJpIkgqlUrK5XJLzQzL5/Oq1+vK5XI35pp5nqdkMqlWqzWzPsMwNhJi3Wa+2Sx7e3sP6hw0AAAAAAAP1abGCg1nhAVhJ5CrBmTaccBtefny5cTzVeeESX/d0XU9SLre4TVNOp1WvV5XsVhUrVZTu92eenfIdDo9846Yu7u7K9V9V/sAAAAAAAAsI1RB2Pn5eWDXtixrosNq3YHzpmnq7Oxs4nOvX7+e+5pkMjnqRBs/Clqr1abOGMtms1M7v1bt5Lq+1yY6wgAAAAAAAJYV6NHIVX311Ve3Oprnuq5qtdpGjvOtY16X1Sosy1Imk1Gz2ZQ0P1zLZrOjo5m1Wu3G1zOZjC4uLnR4eDj6OXmep1KpdGP9wcHBxMyzZQbsSzeH4ycSiYWvAQAAAAAA2JQHEYR99dVXKpfLN+ZZ3Ybv+4pEIhuu7HZM0xw93tSxwOfPn4+CsFlBn+u6ozWWZU3UMc6yLF1cXEwEVPV6XeVyeSLoSiaTN/ZfZrh+u92eeL7MjLT7oFAoqN/vM1AfW8PfHLaJvzdsG39z2Db+5rBN/L1h2/ibu717H4S9ePFClUpF0rsw6yEbD6A2dSxwPICated4R9fBwcHc/UzTVK1Wm5indn5+PhFaXd9j2SBsPKgzDGNmIHffbGIQIHAb/M1hm/h7w7bxN4dt428O28TfG7aNv7nbu9czwn7605+qXC6PArCgO7rWNT6jLJ1Ob3z/WSHXeAC1zHHE68Pzr3fhWZY1Ebotmk02NP79LwrkAAAAAAAANu1ed4SdnJxIeheA+b4v0zQnjvZ9+OGHC/f4+uuv5XmeXr16pbdv395pvYuMHw3c1LHA8ZBqVrg2Ppvr+vHEWSzLmpgDdt3R0dHoLpXz1o0bX1cqlZZ6DQAAAAAAwKbc6yDMcZxRF1ir1dLh4eHKexWLRX300UebKm0lwzldxWJxY3sOwyXDMJTJZKauGT+CuMqMtWlHGPP5/CgIW+YGAONrTNN8MPPBAAAAAADA43Gvj0YOj98Vi8W1QjDpXfjy5MmTDVS1mmazKdd1ZRiGXrx4sbF9h11zL1++nLnm+fPno8fn5+dL3T1zPDCbFlpZljXx+WHIN0uj0Rg9phsMAAAAAAAE4V4HYcNOpGfPnm1kv/Gh8euybVuxWEyRSETpdHru8UDXdXV8fCxJOjs7mzsov1KpKJlMqlQqLQyshmuKxeLMbjBpMrTyPG8Uns1i2/bo2uVyeea68Z/nvD09zxt1j6VSqRszyAAAAAAAALbhXgdhwy6w8RlXm9hvExqNxigssm1byWRy4k6LQ8Ov7e7uqt1uz727oud5KpVKchxHlUpFsVhsZvdUNptVpVJRuVyeG1aN1zsM4CqVyiiYus51XWWzWUnvQqt5xzhN0xx1eg1rnmb4czcMY6IzDAAAAAAAYJvudRD2/e9/X77vLz2MfZGf/OQnG9lH0igsGlev1xWLxZTNZpXP55VMJpVOp5XL5XRxcTF11tY4wzBurBkGYtlsVqVSSel0WrFYTNK7wffLzhszDENv3rwZdWPl83ml02nV63U5jiPbtlUqlZRIJOR5nsrlslqt1sJ9M5mMWq2WDMNQqVRSNpuV4zjyPG8UAjqOI8uy9ObNm7ndcAAAAAAAAHcp4vu+H3QR8wy7nr766iv9+q//+lp7PXv2TK9fv95QZe+6p8rlsmzb1tXVlTzPk2EY2t3dlWVZev78uVKp1K3Cn+HRRdu25brujT3T6bSOjo7WCpQcx1GtVhtdQ9LEHTlfvHix0v6VSkWnp6cTdR8cHCifz889urmK/f19dTodxeNxXV5ebnRvAAAAAABwd4J8T3/vgzBJSqfTeu+99/Snf/qnK+/x5s0b/eZv/qa++eabDVaGoBCEAQAAAADCxvelwYIUZyciRSLbqWdVQb6nf3+rV1tRq9XSwcGBPvroI5VKJe3u7i71umGXVrvd1qtXr+64SgAAAAAAgLsz8KX3/+X8NX/1h9J79zwIC9KDCMK++OILSe9mYk0bSL8M3/cVue+RKAAAAAAAAO7MvQ/CPvnkk9EdDiORiFY5yUkA9nh1u13t7+/PXVMoFFQoFLZUEQAAAAAA4VWtVlWtVueu6Xa7W6rmpnsdhL18+VK1Wk3S6iGYpJVfh/tvMBio0+nMXdPv97dUDQAAAAAAwfp3X0r/OBnc9fv9/sL36UG610HY9RAslUopnU6P7qK4jOGcsM8//1xfffXVHVaLIOzs7Ghvb2/ummg0uqVqAAAAAAC4O//uy8Vr/klTem9H+kdP776eaaLRqOLx+Nw13W5Xg8FgSxVNutd3jdzZ2VEkEpFhGDo/P9eTJ09W3svzPH344YfcNfKR4K6RAAAAAIAwefuXUvwz6S/+6+K1/+3flDovpOiv3X1dqwjyPf3OVq92S4ZhSJJevHixVgg23Ovp04DiUACPiud5QZcAAAAAIGT+V2e5EEyS/s//Iv1b527reajudRCWTL471Gqa5kb2e/ny5Ub2ARA+juOoVCopFovp+Pg46HIAAAAAhMz/9n/cbv3/fsv1YXGvZ4Tl83mdnZ3Jdd2N7EdHGPA4OY6j09NTOY4j13VHswENw5Bpmtrd3ZVlWUqn00qlUjden81m5bquLi4uRp/zPE+2bev09FS2bdMFBgAAACBQvf/rbteHxb3uCMtkMnr69KlOT083st/PfvazjewDbFq9XlckErn1x7Brcl2rXDsWi83cL5vNrrSnbdtL1+x5nkql0ujnUKlUZNu2XNcdhVae58lxHNm2rUqlonQ6PVpfKpVUr9eVzWbVbDZv7H98fKyTkxM1m01CMAAAAACBi/03d7s+LO51ECZJjUZDFxcX+pM/+ZO19zo5OdlARcDm5XI59Xo9XVxcKJPJzF2bSqXUarVG6zfB9321223VarXRbL5pTNNUrVZTu91Wr9ebua7RaKjX66nVak3twBpXLBZ1cXGhXq+3cO3Q8IhipVKZ+Hwmkxn9N6PX642+r1arpVwuN/reHMdRpVJRPp8fhWDXw67hPr7vb+x4NgAAAACs6h/+ndut/+9uuT4s7vVdI4fq9bpevHihr7/+euU93r59q93dXe4a+Ug89rtG5vN51ev1G58fBj13yXVdJRKJqV/r9Xpzg7JZksmkHOfmpMZaraZcLner2tLp9I3j0rlcTrVabak9KpWKSqXSjc+bpql2uz31Ndd/H9v4PQAAAADAOO4auRn3ekbY8Cjjt771LcViMX300UcLu2Wm8TxPr1692nR5wJ2ZFYTl8/k7v7ZpmrIs60ZwlclkVgrBpHd1T6v9NiGYbdtKp9MTnzMMQ2dnZ7Isa+l9isWiMpmMksnkRBfY1dXVzNes+n0DAAAAwKZ88GvS//LfS//k5mSXGz7/H+5vCBa0ex2EffbZZ/ryyy9Hz33fv3EUalm+7ysSiWyqNOBOzTqKt60jeqZp3gjC1rn2tNfeJlxyHGcjIdh4PW/evNGTJ08m5okBAAAAwH32j54uDsL+bebdOkx3r2eEHR0dyfd9DU9vEmQhLGaFRLu7u9st5B5wXVeHh4c3Pt9oNFYKwYYMw9jYjDUAAAAAuC/+R0Kwue51EDY8ShWJREaB2KofAJY3LXD78MMPN7rfsqFeNpu90a2Vy+WWHqw/j2maKhaLa+9znzSbzRsz1PDXbnNnUgAAAOC+2YlIf/WH8z926CGa614fjfzggw9kWZa+/PJLlctlWZa1UkeM67r67LPP9Itf/GLzRQK4M7ZtTx2yXy6XN3aNFy9ejI5ce553b+eBOY6jWq0m27bluq4Mw9Du7q4Mw5Bpmnr+/Lkk6fj4WOVyee78Ndu2lc1mtbu7q1qttpFQ8b5yXVe2bavRaIxCsPv0P46E6XcBAACA9UUi0nsEXWu510GYJD1//lyJRELf+973Vt7j6dOn+vjjj0N5rAx4yKYN2F9naP80hmEol8tNvTnBfeB5no6Pj9VsvhsEYJrm6KYhruvKcRw5jjP6+vA18wy77DzPUz6fn3m3zIfMdV1ls1m5rnuv57+F4XcBAAAA3Cf3+mikJKVSqY39r/cHBwcb2QfA3Rt2Pl334sWLjV8rm81Kmn/nyHmGXT2JREKRSESxWEzpdHoj4Vo2mx2FXLVaTe12W41GQ41GQxcXF2q32ze6iBaFKWH4HwVM09TFxYV6vd69Pv4aht8FAAAAcJ/c+yDs6dOnGzsG9c//+T/fyD4A7l6j0Zj6+XUG5M+SSqVULpdvHUp4nqdkMql0Oj0xm8vzPNm2rXw+r0QiMfV45zIqlcroOF+xWJx63NE0TbVarYn/Ti6aEVar1WSapkzTnPlzfkyu33H0Pgnb7wIAAAAI2r0PwiTpyZMnG9nn3/ybf7ORfQDcvWlDze9yflKxWLzVkUvXdfXkyZOFIZfrukomkysNaT85ORk9nnZMdFyxWBx1Pi3qbEulUmq322q323cSLN43QXVdLfqdSeH7XQAAAABBexBB2Kacn58HXQKAJbiuO7Wr6b4EBZ7njWY7ZTIZ1Wo1XVxcqNVqzTyGl06nb3U3x1VmWw1vKsJdI4NXr9fv7dw5AAAAIMzu/bD8ab766qtbvUF0XVe1Wu1eD0zGarrdrvb39+euKRQKKhQKW6oImzAryEkkEluuZLphd1er1brRpZZKpZTP56cGX9lsVhcXF0td4/p/r2zbnnsnyKEXL16MZp4hGK7rLtUNBgAAADxG1WpV1Wp17pput7ulam56EEHYV199pXK5PHN49jJ831ckwj1GH5vBYKBOpzN3Tb/f31I12JRZ/87v02DxaSHY0HBu1/XgznEc2ba91BFP0zQnnpdKJR0dHS08vjm8o6TneRu9uyaW43nevZ5JBgAAANy1fr+/8H16kO59EPbixQtVKhVJ2tjdI/F47OzsaG9vb+6aaDS6pWoet1KppFKptJVrzerevC/BjmEYC8Ms0zRVLpdv/MzK5fJSQZhhGDIMY/SzGA7mb7VaN0Ky6/hvZTA8z9Ph4SFHUwEAABBq0WhU8Xh87pput6vBYLCliibd6xlhP/3pT1Uul0dv6ujownV7e3u6vLyc+8GxyIen3W4HXcJcBwcHS62bNoD/NkPzr98x13VdJRKJjcyechxndFfLeTzPU71eVzKZnLju8PhfLBZTJBJRIpEY/Y8W12sulUpKJBKjdfl8fmrYObxOJBKZ+LgunU6P9hv/2OTx93q9PnGdWCymZDI59XuU3v08p908Yby+WT/rZX8XQ57nqVKpKJ1Oj37+w/pKpdJSQZzruqpUKjfuajr+O0gkEqNZeAAAAMCyCoXCwvfpixpa7tK97ggb3jEtEonI932ZpinLskbdEB9++OHCPb7++mt5nqdXr17p7du3d1ov8JjlcrmV5x6dn5/f6rWzOr/uyxvy23SmpVIpNZvNic85jrPU4P9cLqdGo3EjPMvn86rVanr58uWtbiDgOI5qtZpevXo1+llO+16G4dfp6enUu2KWSqUbgdAw8Gq326rVanPX1et12bati4uLievncrnR39m8sK/VakmSKpXKxrsUm82mstmsDMPQy5cvR0dNHcdRNptVqVQa3RxhvHbTNHV2dibbtidqmjUTbtnfxXX1en30b6lcLqtcLsswDDmOo5OTE1UqFVUqFWUyGTUajYnXep6nk5MTNZvNG2HZsJtt/Pc9vGnF8He1qBMRAAAAeBD8eywSifg7Ozv+zs6Ob9v2Wnu1221/Z2dnQ5UhaPF43Jfkx+PxoEu5M5JufPR6va1cO5fL3bh2uVxeeb+Li4sb+5mmOXN9uVye+v3XarWVa1hHsVicqCOTySz92kajsfb3kclkpv48hrUs83fRbrf9YrHol8tl3zCM0esNw7ixttfr+a1Wy6/VahPXyuVyvmVZfiqV8huNht9ut/1er3fj53NxceGnUinfsiy/1Wr5vV5vtOf4tYvF4tRaW63WxH7zvqdl/n1c//ubZfy60/7ex/eZ9TewTO23+V2MG/6cDcPw2+321DXjfyumaU78TNrttt9qtW78+67Var5hGH4mk/FbrZbfbrdHnxuuSaVSc2sDAAAAbiPI9/T3OgiLxWL+zs6O/+mnn25kv0QisZF9EDyCsLsVdBB2PYDZRA3rWCcIm/a9r/J9zAoHVwnXxvdaFL5YljVxnVarNXVdKpW6EZpNMx4Mzrr2skFYr9fbaBA2HiLN+h0t2mfZ2oeW/V2M/5tY9Ls2TXNhgDVeo2EYU3+v10Pcbf33BwAAAI9fkO/p7/WMsOExjGfPnm1kv+FxHQD326wjWPd9dtg00467ff3117fep1gsqtfrjY7qXZfP55VOp5c6PnqbI27jd+rM5XIzB/1fv1PirP/ejtfved69Oe563axjiuOf38RQ/GV/F8PjloZhKJfLLbVWejeTbtpcuvHv4+XLl1N/r9f/1s7Pz5eqFQAAALjP7nUQdnh4KEm6urra6H4A7rdZYcttBs3fF9OCjmXmG05jGIYajYYuLi6mzgazbVuHh4cbDZeWnYc2/n3eZobafbrD4suXL1Uul9VoNBaGTdL2ZtbV6/XRtZYJznK53MTv4PpNF25j/Hr36XcFAAAArOpeB2Hf//735fv+1GHNq/jJT36ykX0A3L1pQY/ruve2g+g21h06blmWLi4upnZdOY6j4+PjtfZfxW3Cr3Gb+h86NsEwDBWLxaldd47jbOz/Ft3W8OYA0vJ/O+Nh8kMMkAEAAIC7cq+DsA8++EA/+MEPdHp6qj//8z9fez+ORgIPx/Pnz6d+/iG+qb8eEm3q7nu5XE7tdvvG/s1m817/nFYNzbZt/A6XlmXd6g6dm67jtq7/jT2GABkAAADYhHsdhEnv5uJYlqVsNrvWPm/evAnsf80H7hvHcdb+N3XXZh1Ne4iB9vUQYpOBimmauri4uBEuPcSf033hOI7S6bRqtdrcuWjbMv73s2wolkgkJp7fp847AAAAIEjvB13AMlqtlg4ODvTRRx+pVCpNDG+e5+rqSp7nqd1u69WrV3dcJfBwHB8fL/3vKCiGYSiTyajZbE583rZtOY4TWHfObV0PwZYJVWzbVqlU0sXFxVLXME1TL1++nAg3Cf5Xk8/nVa/Xlcvl1pqttUmrDOi//u97U12IAAAAwEP3IIKwL774QtK7O8bl8/mV9vB9X5FIZJNlAQ/SMEia9yZ/090jq+5XLpdvBGHSu7vijc9N2gTP8+7kyN71O+0t898w0zTlOI5s2166G+n6XCsGm9/eMAST1hswv2nDvwfpr++0uehvdfzfHCEYAAAA8Nfu/dHITz75ROl0Wl9++aUikYh837/1B4B3PM8bdQ1NGwg+z9dff73RWpYJx0zTnBpI2LatSqWysVpc11UymVw5aJ/n+qDzZX7uw+BinXoeSsfcOjYZ2DqOMwrBTNO8V3PMrs/LG9Y5T7vdHj2+7b91AAAA4DG710HYy5cvVavVRmHWqqEWYRgemrsYbO15ng4PD0fdJLftEtl0TcvuVywWp3ZFlUqljQyEt217NE/pLrqAxjvabjO3yzRNua6rUqm01PrrHWCzbjbwEFw/1jfrb2WTXW/jf0vz9g1i6Hwmk5kI5pb5Oxr/fl68eHEXZQEAAAAP0r0+Gjn8f/aHnWCpVErpdFqGYdx6Ttjnn3+ur7766g6rBTZn1hvxq6urlTpVbNtWPp8f7Xt0dHTr66/TfbNuYNFqtZTNZm8ck0yn0yqXyyoWi7fe0/M8lUol1ev1mQPn5712GfV6ffS933bo+jAIq1QqSiQSM28eMDQejpimudLPZJplv9fxdYtes+jr17vZ6vX6je9nWki46r+PaZrN5o1OqmnXu+56wOy67sTnVj2COz4DznXducdmHccZHaUsl8v3qrsNAAAACJx/j0UiEX9nZ8ff3d31Xddda69er+fv7OxsqDIELR6P+5L8eDwedCl3IpfL+ZJufKRSKb/dbi98fa/X81utll8sFn3TNG/s02g0Zr623W5PvbYkv9frrfT9WJY1db9arXarfYrF4tR9LMvyW63WUnv0ej2/XC77hmGMfqaLvq/r1zUMY+F1xn+OqVRqqdrGXf8byOVyM+us1WoTaxf9jVxfP08qlZqoYZZGo7H0nsv8LY5fd3jtVqvlNxqN0c+m1WqNfo/D59O0Wq2Ff8fX10jyy+Wy32q1/HK57Jum6WcymYl/T5lMZvTvbHzP6/9me72e3263/Vwu55fL5Ynr3uZ3US6XJ/4Gp30fvV5v9O9t3u9r2f8eXP95AAAAAJsQ5Hv6ex2ExWIxf2dnx//hD3+4kf2SyeRG9kHwHmsQdnFx4WcymZlB1KY+Zr2BrtVqE8HC9Q/TNP1arbZ0IHZxcXEj0Lj+USwWlwr3hlqt1sxgzTAMP5PJ+LVazW+1Wv7FxYXfarX8Wq3ml8vlidcZhjE3ABg3LRw0TXNm8NJoNEY/x0wms/T3Nu56QDIevhSLRb9Wq/m5XG4imFk2KL3+85v1c+j1ejcCx1mu/93OCjmvB06zwpperzfzb9EwjNHPfnyNZVl+u92+8fe5bG3z/u0NQ6BpIfX13/GswHba97rs72Jo/G/LMAy/Vqv57Xbbb7fbfq1WG/09zAutlv0dXF+3SqALAAAATEMQNkMqlfJ3dnb8n/70pxvZz3GcjeyD4D22IGxW6HEXH9PCjFX2mdcVtWqYt2xXl++/CwRmBWLzPkzT9Mvl8q2729rt9tTvyzAMP5VK+ZlMxk+lUhMhxW2+n+uG3U6NRmPUBZVKpXzLsibCn2H4t+haw5B1VrhkWdYoPJm3dtgZNfz5XQ/jrgcnwz1brdbMUNQ0zalhTK/Xm9jfsiy/WCxOrBl+7noA2Ov1Fn6/06457P4a1nW926vX642+j/Gf2XXj3ZiWZU0EXLf5XcxSq9Vu/L0NXzfrb3teMD3+O2i323PX0RkGAACAdQX5nj7i+/d3knyz2dTR0ZEqlYr+xb/4F0GXg3tkf39fnU5HOzs72tvbm7u2UCioUChsqTJsm+d5sm1bp6encl1XnueN5nIN7/5nmqaePXumTCZz65sELLre8JrD6xwcHCibzd5qHhgAAAAAPBbValXVanXumm63q8FgoHg8rsvLyy1V9s69DsIkKZlMamdnR69fv157r5/97Gf6nd/5nQ1UhaANg7Bl/Kt/9a/0B3/wB3dbEAAAAAAA0B/8wR/oX//rf73U2iCCsHt910hJajQa+s3f/E39yZ/8iX77t397rb1OTk4Iwh6ZZTrCotHolqoBAAAAACDcotGo4vH43DXDjrAg3PuOMEmq1+t68eKFvv7665X3ePv2rXZ3d/XNN99ssDIEZdgRFkR6DAAAAAAAVhfke/p73RH2s5/9TJL0rW99S7FYTB999JEymcyt9/E8T69evdp0eQAAAAAAAHhA7nUQ9tlnn+nLL78cPfd9X5VKZaW9fN9XJBLZVGkAAAAAAAB4YHaCLmCeo6Mj+b6v4elNgiwAAAAAAACs6l4HYfl8XtK7AGwYiK36AQAAAAAAgHC710cjP/jgA1mWpS+//FLlclmWZWl3d/fW+7iuq88++0y/+MUvNl8kAAAAAAAAHoR7HYRJ0vPnz5VIJPS9731v5T2ePn2qjz/+eKUQDQAAAAAAAI/DvT4aKUmpVGpjRxsPDg42sg8AAAAAAAAennsfhD19+lTlcnkje21qHwAAAAAAADw89z4Ik6QnT55sZJ+nT59uZB8AAAAAAAA8PIEGYfdpeP19qgUAAAAAAACbF2gQlkwm1e/3gyxBkvT27Vslk8mgywAAAAAAAMAdCjQI29QQ/E24T7UAAAAAAABg8wINwiKRSJCXn3CfagEAAAAAAMDm0REGAAAAAACAUAj8rpFv3rwJugSdn58HXQIAAAAAAADu2PtBF3B8fKxPP/1UhmFod3d3q9e+urqS67oqFotbvS42p9vtan9/f+6aQqGgQqGwpYoAAAAAAAivarWqarU6d023291SNTcFHoRdXFwom80GWoPv+8wIe6AGg4E6nc7cNffhzqQAAAAAAIRBv99f+D49SIEHYUNBzQsjAHvYdnZ2tLe3N3dNNBrdUjUAAAAAAIRbNBpVPB6fu6bb7WowGGypokkRP8CJ9Ts7gY8oG4lEIvrmm2+CLgNL2t/fV6fTUTwe1+XlZdDlAAAAAACAJQX5nj7QjrBerxfk5QEAAAAAABAigQZhH3zwQZCXBwAAAAAAQIjcn7OJAAAAAAAAwB0iCAuA67pKp9NLr83n80okEopEIorFYkomk8rn83Jd944rvZ1KpaJ0Oq1YLKZIJKJEIqFsNivbtoMuDQAAAAAAgCBskzzPUyQSWfiRSCRkmubC/SqVihKJhOr1+ij08jxPjuOoXq8rkUioUqksVdswnFrlI5/Pz93btm3FYjGVSiVJUqPRULvdVrlcluM4SqfTSqfT8jxvqVoBAAAAAADuQqAzwh6ber2+9NphaDRLOp2WbdsyDEOpVEqmacp1XTmOM9EJViqVZJqmMpnMzL2azeZaIdS87jXbtkdfz+VyqtVqo68N60omk7JtW8lkUhcXFzIMY+VaAAAAAAAAVhXxfd8PuojHIhaLLRU4pVIptVqtmV8vlUqqVCoql8sqFos3vl6pVG4EafN+jcNQbVWz9vY8T0+ePJHneTJNU+12e+o613WVSCQkLf7elxXkrVYBAAAAAMDqgnxPT0fYhtTrdXmep2KxuHD+18HBwcyvua6rSqWiVqulVCo1dU2xWFS73Z7oQHMcR5ZlTd3Ptm2ZpqlSqaRUKqXd3d2F308ymZTrujNrkKRsNjsK/uZ1uA07w5rNpmzbVr1eVy6XW1gDAAAAAADAJtERtiHDjqdZXVHLymazevbs2dROsHGe5ykWi42ez+oeK5VKajabtzqSON7BVavVpoZW42skqdfrzd2/2Wwqm81KkgzDUK/XW6qWWegIAwAAAADgYQryPT3D8jeg2WzKdd2Fc7+WMewqW8QwjImB+7NCqHq9rkajcau5XM1mc/T46Oho6ppyuTx6nEqlFu4/PsPM87yJawAAAAAAAGwDQdgGnJycyDCMmaHRbdxmftbV1dXo8azjlo1GY+qRyXlOT08lzQ+4xo9lLrv/eHA3vAYAAAAAAMC2EIStyXEcOY4zOqqYSCSUz+fvvOPJ87zRfK5UKjUzjJo342vWvo7jSNLoKON1w68PPXv2bKm9x2ukIwwAAAAAAGwbQdiarh+HdF1X9Xpd2WxWkUhE2Wz2RnC0Ca9evZL0rsuq0WhsbN/xTq9ZHW7X70A53uk1z/V1d/FzAQAAAAAAmIUgbA3DOzLO02w2lUwmlc/nN3Zdz/OUz+dlWZZardat5n8tMjyyaFnWzH1fv3498XzZ63/44YcTz8/Pz29dHwAAAAAAwKreD7qAh8w0TdVqNXmep3a7Ldu25bru1LX1el3n5+e6uLhY65qu6yqdTsswDJ2dnW00BBs/Fvn8+fO5NYxbtSNs3TtsAgAAAAAA3AYdYWvK5XIqFouq1Wpqt9vq9Xoql8tTAyrHcZROp1e+VrPZVCKRkOu6o5lklUpljeonDY9bSpN3ebxuVth3W8MZZwAAAAAAANsQ8X3fD7qITXv79q0+/fRT/dEf/VGgdTSbTR0fH98IfMrlsorF4lJ7eJ6ner2uWq02M4DKZDIbmROWTCblOI4sy5rbuRaJRCaeL/snZNv2RBC4Tt37+/vqdDra2dnR3t7eSnuMKxQKKhQKa+8DAAAAAMBjVa1WVa1W196n2+1qMBgoHo/r8vJyA5Ut71EejRwOrP/000/Vbrd1cHCgaDS69ToymYxSqZQODw8nBsOfnJwsHYTZtq12u61UKjVzJlmz2VSlUll6z2mWPRa5SZvoCBsMBup0Omvv0+/3194DAAAAAIDHrN/vb+Q9eJAeZRBm27Z835+YSVUqlfTZZ59tvRbDMHRxcTHqtpLeBUC2bSuVSi18fSaTuXFMsV6vq1QqTQRJpVJJuVxu5Zlhyx6LlN59T5sIsTYx32xTHWFBBKUAAAAAADwk0WhU8Xh87X2GHWFBeHRB2NnZmUqlkqTJI3vlclmSZoZhn3zyiWzblmEYSqfT+vTTTzcajrx8+VLJZHL0vNVqLRWETZPL5ZRKpZRMJicCqXq9vnJXWK1Wk/RuoP2i4fe7u7sbCcJ2d3fX3mNvb2/rbZQAAAAAAITRpsYKDccdBeHRDcsvlUqj2VPtdlutVkvf+9735Pu+yuWyfvWrX914zUcffaR6va52u62Liwv94Ac/UDKZ3OhxOcuyJoKvdQfOm6aps7Ozic+9fv16pb3Gj0Uu6gaTVu/kuh6ebfKOlwAAAAAAAIs8uiBMenfM7+OPP9aTJ090eHiocrmsq6srffvb3x51iw198sknarfbkt6FaIPBQFdXV/rOd76j4+Pjjda1zh0jp7EsayK4WjVcGz8Wucx8sIODg4nny3aHXV1dTTxPJBJLvQ4AAAAAAGATHl0Qdv2OhkPDWV3D0GuoVqspEokok8no5ORktLZWq6nX6+mrr77aWG3jRw43cSxQmgyuVj2uOLxzo2EYsixr4frxI57S8gHc9Z/9qkdDAQAAAAAAVvHogrBYLKYf//jHU79mGIZisdjo+cuXL0ePhzPExpVKpal3aVzVeBC2qWOB48HVKnsOB/dL72aPLeN6R9iyQdh4UGcYxsJZZAAAAAAAAJv06IKwYrGo733ve/q93/u9qTO+er3e6PGwGyyVSunb3/72jbUHBwc3upjWcX5+Pnq86WOS0s2Aahm3PRYpvQvfxkO3ZWeTjX//q9QKAAAAAACwjkd318hUKqXj42N9/vnnqtVqymQyevbsmSTp9PRU7XZb3/3ud2VZlhzHUSQSUT6fn7rXBx98sPZQ+3HjodqmjgWO17dKuHbbY5FDR0dHqtfrkjQatL/I+Lrrs9oAAAAAAADu2qPrCJPedXp9/PHH8n1fzWZTpVJJpVJJjuPo7OxM0Wh04ijkrADoyy+/3NgsL0lqNpuS3nWtbcowXDIMY6k7Po4bPxZ5dHR0q9eOh4fLHB8dX2OaJvPBAAAAAADA1j3KIEx61+n0+eef6/DwUL7v64MPPtCrV6/09OlTNRoNffzxxzIMQ59//vnMjrB6vb6xOxs2m025rivDMPTixYuN7ClpNOB/fN7ZssaPRWaz2Vu91rKsiTBrGPLNMuw8k+gGAwAAAAAAwXi0QZj0bvj7z3/+cw0GA11dXenjjz8efa3RaOjq6krHx8c6Pj7Ws2fP9B//43+UJPX7fX366aeq1+szB8jbtq1YLKZIJKJ0Oj33eKDrujo+PpYknZ2dzR1qX6lUlEwmVSqVFt4FcrimWCzeuhtMmjwWuUqHVq1WGz0eBnLTeJ43OkaZSqWWHsoPAAAAAACwSY86CFtWJpNRNpvV06dP9d577ykWi+mHP/yhfvCDHygajU59TaPRGAVVtm0rmUxO7Swbfm13d1ftdnvuHC7P80ZHOCuVimKx2MzuqWw2q0qlonK5PPWOl4uMH4tc9ZiiaZqjMG1Y8zSHh4eS3gVu451hAAAAAAAA20QQ9v9XLBb16tUrHR4e6uOPP9arV6/0ve99b+b6aUcJ6/W6YrGYstms8vm8ksmk0um0crmcLi4uZJrm3BoMw7ixZhiIZbNZlUolpdNpxWIxSe+G7686b2z8WOSso6HLyGQyarVaMgxDpVJJ2WxWjuOMgrZkMinHcWRZlt68eTO3Gw4AAAAAAOAuRXzf94MuYpO++OILfec731m47mc/+5lSqdTMjq9luK6rcrks27Z1dXUlz/NkGIZ2d3dlWZaeP3+uVCp1q/DH8zydnJzItm25rntjz3Q6raOjo7UDpXQ6PeoI29SfQKVS0enp6UTdBwcHyufzKx3dnGd/f1+dTkfxeFyXl5cb3RsAAAAAANydIN/TP7ogbHd3V2/fvlUqlVI6nVYqldLf/bt/98a6t2/f6vj4WJVKRd/+9re3XifWQxAGAAAAAMDDFOR7+kd3NDKZTMr3fdm2rVKppGQyqQ8//FDf/e539aMf/Ui/+MUvJEkffPCBXr58qWw2q1/96lfBFg0AAAAAAIA7937QBWxas9lUNpsdHVV0XVe9Xk+tVmt0FFB6dzTw6dOn6vV6yufz+tM//dMAqwYAAAAAAMBde3RBWC6XU71enzjueHZ2plevXunly5ejz/385z9Xq9WS7/t68+ZNAJUCAAAAAABgmx5dEOb7/o2ZX4eHhzo8PFSlUtFnn32ms7MzPX/+XK9fv5brunr+/HkwxWJt3W5X+/v7c9cUCgUVCoUtVQQAAAAAQHhVq1VVq9W5a7rd7paquenRBWFv376d+bUPPvhA5XJZb968UalUYlD+IzAYDNTpdOau6ff7W6oGAAAAAIBw6/f7C9+nB+nRBWFPnjzRj3/8Y/3+7//+3DWvXr3SP/gH/0AvX77Ub/zGb2yxQmzSzs6O9vb25q6JRqNbqgYAAAAAgHCLRqOKx+Nz13S7XQ0Ggy1VNCni+74fyJXviOu6+s3f/E399Kc/1W//9m/PXet5np49e6aLiwvCkgcmyFutAgAAAACA1QX5nn5nq1fbAtM09YMf/ECZTEa/93u/N3etYRh6+vSpPv300y1VBwAAAAAAgKA8uiBMkorFon7nd35Hn3/+ub71rW/pxz/+8cw5Ubu7uzo9Pd1yhQAAAAAAANi2R3c0clw+n9fLly8ViUQkSZlMRul0WgcHB5Kk09NTlctlRSIRffPNN0GWilviaCQAAAAAAA9TkO/pH92w/HG1Wk3pdFrHx8d6+/atms2mms3mjXWWZQVQHQAAAAAAALbpUR6NHJfJZNTr9fSDH/xAH3zwgXzfn/gwDEMvX74MukwAAAAAAADcsUd9NHKaL7/8Uq7rynVdmaapVCqlDz74IOiycEscjQQAAAAA4GHiaOQKPvnkE/3RH/3RrV/39OlTPX369A4qAgAAAAAAwH32YI9Gvnr1Sn/+538edBkAAAAAAAB4IB5sENbr9fTtb39bn3zyib744ougywEAAAAAAMA992CDMEnyPE/1el3pdFrvvfeevvvd7+pHP/qRvvrqq6BLAwAAAAAAwD3zoIMwSRN3gLRtW6VSSYlEQh9++KE++eQT/exnP1u4x09+8pMtVAoAAAAAAIAgPdgg7Ac/+IF831ckElEikZA0GYr1ej3V63Vls1m99957evbsmX70ox/pF7/4xY29Wq3WlqsHAAAAAADAtj3Yu0YWi0WlUills1ldXV2p2WzK9339+3//73V2dibP8+T7/mi94zhyHEeSZBiGUqmU0um0JKnZbAbyPQAAAAAAAGB7HmwQJkmWZandbqtUKimbzSqfz6vRaEiS3rx5o2azqVarJdu2J0KxXq+nZrNJAAYAAAAAABAiEX88IXrAHMfR0dGRdnZ21Gg09Fu/9VsTXz87O1Oj0ZBt23Jdd+JrkUhE33zzzTbLxZr29/fV6XQUj8d1eXkZdDkAAAAAAGBJQb6nf7Azwq6zLEu//OUv9ff//t+XZVn6/ve/P/H1w8NDff755/rlL3+pXq+nWq2mVCoVULUAAAAAAADYtkfTETbOtm0dHR3pW9/61tTusOtrv/vd79IR9sAM0+OdnR3t7e3NXVsoFFQoFLZUGQAAAAAA4VWtVlWtVueu6Xa7GgwGgXSEPegZYbOkUim5rqvj42NZlqVKpaLf//3fn7n28PBwyxViUwaDgTqdztw1/X5/S9UAAAAAABBu/X5/4fv0ID3KIEx6d2fIRqOhZrOpo6MjnZ6eqtFo6Dd+4zdurM1mswFUiE1YpiMsGo1uqRoAAAAAAMItGo0qHo/PXTPsCAvCozwaeZ3necpms/riiy/mdofh4WBYPgAAAAAADxPD8u+YYRhqtVo6OTnR9773Pf29v/f39Ktf/SrosgAAAAAAALBFoQjCJOmrr77SwcGBisWizs/PZZqm/viP/zjosgAAAAAAALAlj2JG2FdffSXXdeV5nlzXVbvdluu6cl1XV1dX8jxvYn0kEpHv+8rlcmo0Gmo0Gvr1X//1YIoHAAAAAADAVjzYIOzZs2ej8GueeSPQfN/Xz3/+c33nO9/R69evN1whAAAAAAAA7pMHG4RdXFyMOrvmMQxDpmmOPhKJhHZ3d0fPP/jggy1VDAAAAAAAgCA92CBsXCwW09HR0UTgRcgFAAAAAACAcQ96WP7HH38sy7LU6/VUr9d1fn6uXq+nWCxGCAYAAAAAAIAJDzYIS6VSevXq1Sj8Oj09le/7KhaLSiQS+uijj/TJJ5/oz/7szxbu9cUXX2yhYgAAAAAAAATpwQZh6XR69PiDDz5QJpPRq1evdHV1pdevX+t3fud39Pr1ax0eHuq9997Ts2fP9OMf/1i/+MUvbuxVq9W2WDkAAAAAAACCEPEXTZt/4N6+fatWq6VXr17Jtm29fftWhmEolUrp2bNnkqRSqaRvvvkm4EpxG/v7++p0OorH47q8vAy6HAAAAAAAsKQg39M/+iDsOsdxdHp6qp/+9KdyXVeRSESSCMIeGIIwAAAAAAAepiDf0z/Yo5GrsixL5XJZv/zlL3V+fq7vfOc7QZcEAAAAAACALQhdEDbOsiy1Wi09ffo06FIAAAAAAABwx0IdhA2Vy+WgSwAAAAAAAMAdIwiTdHh4GHQJAAAAAAAAuGPvB13AMn70ox/JsizmeeGGbrer/f39uWsKhYIKhcKWKgIAAAAAILyq1aqq1ercNd1ud0vV3PQggrD/8B/+g0qlkur1uv7pP/2nK+/z8uVL/bN/9s+USCTUaDT0W7/1WxusEkEYDAbqdDpz1/T7/S1VAwAAAABAuPX7/YXv04P0IIIwSfJ9X7lcTu12W5999tlKe5RKJfm+r1/+8peyLEvtdlvf/va3N1sotmpnZ0d7e3tz10Sj0S1VAwAAAABAuEWjUcXj8blrut2uBoPBliqaFPF93w/kyrdwdHSkZrOpSCSip0+fKpFI6PT09Nb7JJNJvX37VqlUSpLU6/VW2gfB29/fV6fTUTwe1+XlZdDlAAAAAACAJQX5nv7BdIQNnZ+fK5vN6tmzZ/riiy/067/+60u/9uLiYuL5Rx99tOnyAAAAAAAAcE89yLtGNhoNZbNZWZalX/3qVyvt8ebNG11dXW24MgAAAAAAANxXDzIIk6Risag/+qM/kmVZ+rM/+7Nbvfbt27dKp9M6ODi4o+oAAAAAAABw3zzYIEySUqmUXr9+rePjY/3xH//xUq/54osvZJqm3rx5o2w2e8cVAgAAAAAA4L540EGYJJmmqfPzc52enur73//+3LU//OEPlU6n1ev1ZBiGfvd3f3dLVQIAAAAAACBoDz4IkyTDMPTzn/9cV1dXev78+dQ1L1680Keffirf9xWJRFQul7dcJQAAAAAAAIL0KIKwoc8//1yHh4d69uyZ/vzP/3z0+bOzs1HwFYlEZFkW3WAAAAAAAAAh8+CCsEWD8XO5nGq1mr7zne+M7ig5DMF83594DgAAAAAAgPB4EEHYkydPJL0LsnK53CjgmsWyLJ2enurjjz/Wz372M9m2rUgkMvrad77znTuvGQAAAAAAAPfLgwjCyuWyer2eGo2GDg8PlUql9JOf/GTua4ZD9D///PPR5yKRyMwZYgAAAAAAAHjc3g+6gGV98MEH+vjjj/Xxxx/f6nU///nPVSqV9MMf/nA0HwwAAAAAAADh8yA6wtZVLpf16tUr+b6vN2/eBF0OAAAAAAAAAhCKIEySMpmMzs/PdXp6GnQpAAAAAAAACEBogjDp3aD8n//850GXAQAAAAAAgACEKggDAAAAAABAeBGEAQAAAAAAIBQezF0jgWm63a729/fnrikUCioUCluqCAAAAACA8KpWq6pWq3PXdLvdLVVzE0EYHrTBYKBOpzN3Tb/f31I1AAAAAACEW7/fX/g+PUgEYXjQdnZ2tLe3N3dNNBrdUjUAAAAAAIRbNBpVPB6fu6bb7WowGGypokkR3/f9QK4MrGF/f1+dTkfxeFyXl5dBlwMAAAAAAJYU5Ht6huUDAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgrAAuK6rdDq99Np8Pq9EIqFIJKJYLKZkMql8Pi/Xde+sRsdx1Gw2ValUZNv2Uq+pVCpKp9OKxWKKRCJKJBLKZrNLvx4AAAAAAOAuEYRtkOd5ikQiCz8SiYRM01y4X6VSUSKRUL1eH4VenufJcRzV63UlEglVKpWN1V6pVJRMJhWJRHR4eKjXr1/LsiwdHBzMfa1t24rFYiqVSpKkRqOhdrutcrksx3GUTqeVTqfled5GagUAAAAAAFjF+0EX8JjU6/Wl1w5Do1nS6bRs25ZhGEqlUjJNU67rynGciU6wUqkk0zSVyWRWqtnzPJVKpVHtlmWp1WoplUot9XrbtkfdbblcTrVabfS1YV3JZFK2bSuZTOri4kKGYaxUKwAAAAAAwDoivu/7QRfxWMRisaW6nlKplFqt1syvl0olVSoVlctlFYvFG1+vVCo3grRVfo31el2lUmlUc61WUy6XW/r1nufpyZMn8jxPpmmq3W5PXee6rhKJhKTF3/uygrzVKgAAAAAAWF2Q7+npCNuQer0uz/NULBYXzv+ad9TQdV1VKpW5XVnFYlHtdnuiA81xHFmWtXS9w7BNete51Wq1ljquOS6bzY5CtHkdbsPOsGazKdu2Va/XbxW4AQAAAAAAbAIdYRsy7Hia1RW1rGw2q2fPnk3tBBvneZ5isdjo+azusVnXaDabkiTDMPTmzZtbH1cc7/KSpF6vN3ePZrOpbDY7umav17vV9a6jIwwAAAAAgIcpyPf0DMvfgGazKdd1F879Wsawq2wRwzAmOriWDbLS6fQoBJO08syucrk8epxKpRbuMT7DzPO8iRoAAAAAAAC2gSBsA05OTmQYho6Ojtbe6zbzs66urkaPF93ZUXp3fNO27dHzWq126+OQ43sNLXskc/xap6enK10XAAAAAABgVQRha3IcR47jjI4qJhIJ5fP5O+948jxvNJ8rlUotDKNc11U+nx89tyxr5TldjuNMPH/27NlSrxuvkY4wAAAAAACwbQRha7p+HNJ1XdXrdWWzWUUiEWWz2RvB0Sa8evVK0rsuq0ajsXD9cD7X0IsXL1a+9nhX2bCGZVxfdxc/FwAAAAAAgFkIwtbguu6NUOi6ZrOpZDI50Y21Ls/zlM/nZVmWWq3WwvlcrutOhE6GYUzM7Lqt169fTzxfdsbYhx9+OPH8/Px85RoAAAAAAABuiyBsDaZpqlarqVwuK5fLze2MqtfrSiaTa1/TdV0lk0kZhqGzs7OlurFqtdrE81QqJemv7+SYSCQUiUQUi8WUTCZVqVRGxy5n1TBu1Y6wde+wCQAAAAAAcBsEYWvK5XIqFouq1Wpqt9vq9Xoql8tTu6Qcx1E6nV75Ws1mU4lEQq7rjmaSVSqVha8bH2wvSbu7u0omk8pms6M7XkrvOs0cx1GpVFIsFps5x+t6ELaqeWEbAAAAAADApkV83/eDLuKxajabOj4+vhH4lMtlFYvFpfbwPE/1el21Wm1mAJXJZGbOCXNdV4lEYuJzhmGoXC7r6OhoFNi5rqtyuXwjNGs0GjeOUUYikYnny/4J2bY9EQTOq3uR/f19dTod7ezsaG9vb6U9xhUKBRUKhbX3AQAAAADgsapWq6pWq2vv0+12NRgMFI/HdXl5uYHKlvf+Vq8WMplMRqlUSoeHhxMzuk5OTpYOwmzbVrvdViqVmjmTrNlsqlKpTN3zenhmGIbevHlzo2NteMzz+jyz4+NjpVKppeeA3cYmOsIGg4E6nc7a+/T7/bX3AAAAAADgMev3+xt5Dx4kgrA7ZhiGLi4ulEwmR2GY53mybXs0q2ueTCZzoyOrXq+rVCpNBEmlUkm5XO5GYHU9CJu25vrXLy4uRp1hnufp5ORE5XJ54nvaRIi1iXBtUx1h0Wh07T0AAAAAAHjMotGo4vH42vsMO8KCQBC2JS9fvpwYlt9qtZYKwqbJ5XJKpVJKJpMTgVS9Xr/RFXZ9IP2zZ88W7l8qlSaOSFYqlYkgbHd3dyNB2O7u7tp77O3tbb2NEgAAAACAMNrUWKHhuKMgMCx/SyzLmgi+1h04b5qmzs7OJj73+vXrG+uuB1bLdGGZpinLsiY+N360c9VOrlVqAQAAAAAA2BSCsC1a546R01iWNXFsclq4dn1Q/rIODg4mno/vff1ry3aHXV1dbaQ2AAAAAACAVRCEbZFpmqPHmzgWKEnPnz8fPZ4WSF3vulo2tLoeUo2HWONHPKXlu9uuH9Nc9WgoAAAAAADAKgjCtmg8CNvUscDxI4zT9pzX2TXP9b3Gg7tV9xwP4QzDmPh5AAAAAAAA3DWCsC06Pz8fPd70MUnpZkAl6casr+tdWcsaD60sy5oIyqbNJptm/PufVisAAAAAAMBdIgjbovEQalPHAse7sWaFa+PXsm17qX2vH6G8HqgdHR2NHo8P0p9nfF2pVFrqNQAAAAAAAJtCELZFzWZTklQsFje25zBcMgxjYnD+uPHQyXXdpeaELQrt8vn86PEy4dr4GtM0mQ8GAAAAAAC2jiBsS5rNplzXlWEYevHixcb2PTk5kSS9fPly5ppUKjVxtHH4mnnGg6tyuXzj65ZlTYRZw5BvlkajMXpMNxgAAAAAAAgCQdiKbNtWLBZTJBJROp2eezzQdV0dHx9Lks7OzuYOyq9UKkomkyqVSgs7t4ZrisXizG6wofEgqlKpzB1wb9v26Ou5XO7GscihWq02ejwvXPM8T/V6XdK7UC6Xy82tFQAAAAAA4C4QhK2o0WiMgirbtpVMJieOCw4Nv7a7u6t2uz0zVJLeBUalUkmO46hSqSgWi83snspms6pUKiqXy1M7tq6zLGsiuEqn01ODNs/zRt/H9ddcZ5rmKGAb1jzN4eGhpHfHN8cDOQAAAAAAgG0iCFtRNpu98bl6va5YLKZsNqt8Pq9kMql0Oq1cLqeLi4uJ44nTGIZxY80wEMtmsyqVSkqn04rFYpLezfG6zbyxXC6nVqslwzDkuq6ePHmiSqUix3FGQdaTJ0/kuu6o5kUymcxoz1KppGw2K8dx5HneKAR0HEeWZenNmzdzu+EAAAAAAADuUsT3fT/oIh4q13VVLpdl27aurq7keZ4Mw9Du7q4sy9Lz58+VSqVuFf54nqeTk5PR8cTre6bTaR0dHa0dKNXrdTUaDZ2fn4+uMRxin8/nF4Z201QqFZ2enk7UfXBwoHw+v/Do5m3t7++r0+koHo/r8vJyo3sDAAAAAIC7E+R7eoIwPEgEYQAAAAAAPExBvqfnaCQAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFB4P+gCgHV0u13t7+/PXVMoFFQoFLZUEQAAAAAA4VWtVlWtVueu6Xa7W6rmJoIwPGiDwUCdTmfumn6/v6VqAAAAAAAIt36/v/B9epAIwvCg7ezsaG9vb+6aaDS6pWoAAAAAAAi3aDSqeDw+d02329VgMNhSRZMivu/7gVwZWEOQt1oFAAAAAACrC/I9PcPyAQAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAU3g+6AGAd3W5X+/v7c9cUCgUVCoUtVQQAAAAAQHhVq1VVq9W5a7rd7paquYkgDA/aYDBQp9OZu6bf72+pGgAAAAAAwq3f7y98nx4kgjA8aDs7O9rb25u7JhqNbqkaAAAAAADCLRqNKh6Pz13T7XY1GAy2VNGkiO/7fiBXBtawv7+vTqejeDyuy8vLoMsBAAAAAABLCvI9PcPyAQAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCi8H3QBwDq63a729/fnrikUCioUCluqCAAAAACA8KpWq6pWq3PXdLvdLVVzE0EYHrTBYKBOpzN3Tb/f31I1AAAAAACEW7/fX/g+PUgEYXjQdnZ2tLe3N3dNNBrdUjUAAAAAAIRbNBpVPB6fu6bb7WowGGypokkR3/f9QK4MrGF/f1+dTkfxeFyXl5dBlwMAAAAAAJYU5Ht6huUDAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCi8H3QBwDq63a729/fnrikUCioUCluqCAAAAACA8KpWq6pWq3PXdLvdLVVzE0EYHrTBYKBOpzN3Tb/f31I1AAAAAACEW7/fX/g+PUgEYXjQdnZ2tLe3N3dNNBrdUjUAAAAAAIRbNBpVPB6fu6bb7WowGGypokkR3/f9QK4MrGF/f1+dTkfxeFyXl5dBlwMAAAAAAJYU5Ht6huUDAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgrAAuK6rdDq99Np8Pq9EIqFIJKJYLKZkMql8Pi/Xde9NnZJUqVSUTqcVi8UUiUSUSCSUzWZl2/YdVgkAAAAAALAcgrAN8jxPkUhk4UcikZBpmgv3q1QqSiQSqtfro9DL8zw5jqN6va5EIqFKpRJ4nbZtKxaLqVQqSZIajYba7bbK5bIcx1E6nVY6nZbnebeuFQAAAAAAYFPeD7qAx6Rery+9dhgazZJOp2XbtgzDUCqVkmmacl1XjuNMdIKVSiWZpqlMJhNInbZtj7rGcrmcarXa6GvDupLJpGzbVjKZ1MXFhQzDWPr6AAAAAAAAmxLxfd8PuojHIhaLLdX1lEql1Gq1Zn69VCqpUqmoXC6rWCze+HqlUrkRUN3m17ipOj3P05MnT+R5nkzTVLvdnrrOdV0lEoml9lxWkLdaBQAAAAAAqwvyPT0dYRtSr9fleZ6KxeLCuVoHBwczv+a6riqVilqtllKp1NQ1xWJR7XZ7orPLcRxZlrW1OiUpm82OArV5nWPDzrBmsynbtlWv15XL5RbWCgAAAAAAsEl0hG3IsONpVlfUsrLZrJ49eza1E2yc53mKxWKj57O6x+6qzvEuL0nq9Xpzjzw2m01ls1lJkmEY6vV6a12fjjAAAAAAAB6mIN/TMyx/A5rNplzXXThPaxnDbq1FDMOYGGS/zNytTdZZLpdHj1Op1MLrj88w8zxPzWZz7RoAAAAAAABugyBsA05OTmQYho6Ojtbe6zbzs66urkaPFx1jlDZb5/ixzGWOZEqaCO5OT0/XrgEAAAAAAOA2CMLW5DiOHMcZHVVMJBLK5/N33vHked5oPlcqlVoYRm2yTsdxJp4/e/ZsqdeN10hHGAAAAAAA2DaCsDVdP2bouq7q9bqy2awikYiy2eyN4GgTXr16Jeldl1Wj0dhqnbZtTzwf7/Sa5/q6u/i5AAAAAAAAzEIQtgbXdW+EQtc1m00lk0nl8/mNXdfzPOXzeVmWpVartXA+16brfP369cTzZeaTSdKHH3448fz8/Hyp1wEAAAAAAGzC+0EX8JCZpqlarSbP89Rut2XbtlzXnbq2Xq/r/PxcFxcXa13TdV2l02kZhqGzs7OlQqhN13n9tat2hK1750oAAAAAAIDbIAhbUy6Xm3jueZ7q9bpOTk5GM7yGHMdROp2+1UD8cc1mU9lsdvQ8FoupXC4vdZfJTdY5K0S7revXBQAAAAAAuEsR3/f9oIt4rJrNpo6Pj28EPsuGV9JfB1a1Wm1mAJXJZJaaE7apOiORyMTzZf+EbNtWOp0ePV+n7v39fXU6He3s7Ghvb2+lPcYVCgUVCoW19wEAAAAA4LGqVquqVqtr79PtdjUYDBSPx3V5ebmBypZHR9gdymQySqVSOjw8nBgMf3JysnQQZtu22u22UqnUzFlfzWZTlUpl6T3vos5VbKIjbDAYqNPprL1Pv99few8AAAAAAB6zfr+/kffgQSIIu2OGYeji4kLJZHIUMnmeJ9u2lUqlFr4+k8kok8lMfK5er6tUKk0ESaVSSblcbunB9evUaRjGRkKsVWsdt6mOsGg0uvYeAAAAAAA8ZtFoVPF4fO19hh1hQSAI25KXL18qmUyOnrdaraWCsGlyuZxSqZSSyeREIFWv19fu4Fqmzt3d3Y0EYbu7u2vvsbe3t/U2SgAAAAAAwmhTY4WG446CsBPIVUPIsqyJQGndgfOmaers7Gzic69fv15rT2m5Olft5Loenm2iIwwAAAAAAGBZBGFbND4ofhMsy5o4NrmpuzkuqvPg4GDi+bLdYVdXVxPPE4nEreoCAAAAAABYB0HYFpmmOXq8iWOBkvT8+fPR400cV5QW1zl+dFJaPoBrt9sTz1c9GgoAAAAAALAKgrAtGg+YNnUs0LKsje+5qM7rHWHLBmHjQZ1hGBPXAQAAAAAAuGsEYVt0fn4+erzpY5LSzYBqVYvqtCxrIiBbdjbZ+L6bqhUAAAAAAGBZBGFbNH40cFPHAse7sTYVri1T59HR0eix4zhL7Tu+rlQqrVgdAAAAAADAagjCtqjZbEqSisXixvYchkuGYUwMzl/HMnXm8/nRY9u2F+45vsY0TeaDAQAAAACArSMI25JmsynXdWUYhl68eLGxfU9OTiRJL1++3Mh+y9ZpWdZEmDUMz2ZpNBqjx3SDAQAAAACAIBCErci2bcViMUUiEaXT6bnHA13X1fHxsSTp7Oxs7lD7SqWiZDKpUqm08C6QwzXFYnFmN9hd1SlJtVpt9HgYyE3jeZ7q9bqkd0ctc7nc3H0BAAAAAADuAkHYihqNxiiosm1byWRy4rjg0PBru7u7arfbE3d5vM7zPJVKJTmOo0qlolgsNrN7KpvNqlKpqFwuq1wub7XOIdM0R51ew5qnOTw8lPTu+OZ4ZxgAAAAAAMA2RXzf94Mu4iGybXvqcHrDMJRKpbS7u6vz83M5jqNisagXL14s7LCSpEQiMTEAf3xP0zTlOI7Oz8+VSqVULpdlmmYgdV6/Rjabled5ymQyevHihUzT1Pn5+SjYsyxrqS6zZe3v76vT6Sgej+vy8nIjewIAAAAAgLsX5Ht6grA1uK6rcrks27Z1dXUlz/NkGIZ2d3dlWZaeP3+uVCp1q/DH8zydnJzItm25rntjz3Q6raOjo1vteRd1TlOpVHR6ejpR98HBgfL5/MYG+Q8RhAEAAAAA8DARhAG3RBAGAAAAAMDDFOR7emaEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIhfeDLgBYR7fb1f7+/tw1hUJBhUJhSxUBAAAAABBe1WpV1Wp17pput7ulam4iCMODNhgM1Ol05q7p9/tbqgYAAAAAgHDr9/sL36cHiSAMD9rOzo729vbmrolGo1uqBgAAAACAcItGo4rH43PXdLtdDQaDLVU0KeL7vh/IlYE1BHmrVQAAAAAAsLog39MzLB8AAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQuH9oAsA1tHtdrW/vz93TaFQUKFQ2FJFAAAAAACEV7VaVbVanbum2+1uqZqbCMLwoA0GA3U6nblr+v3+lqoBAAAAACDc+v3+wvfpQSIIw4O2s7Ojvb29uWui0eiWqgEAAAAAINyi0aji8fjcNd1uV4PBYEsVTYr4vu8HcmVgDfv7++p0OorH47q8vAy6HAAAAAAAsKQg39MzLB8AAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEwvtBFwCso9vtan9/f+6aQqGgQqGwpYoAAAAAAAivarWqarU6d023291SNTcRhOFBGwwG6nQ6c9f0+/0tVQMAAAAAQLj1+/2F79ODRBCGB21nZ0d7e3tz10Sj0S1VAwAAAABAuEWjUcXj8blrut2uBoPBliqaFPF93w/kysAa9vf31el0FI/HdXl5GXQ5AAAAAABgSUG+p2dYPgAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEwvtBFwCso9vtan9/f+6aQqGgQqGwpYoAAAAAAAivarWqarU6d023291SNTcRhOFBGwwG6nQ6c9f0+/0tVQMAAAAAQLj1+/2F79ODRBCGB21nZ0d7e3tz10Sj0S1VAwAAAABAuEWjUcXj8blrut2uBoPBliqaFPF93w/kysAa9vf31el0FI/HdXl5GXQ5AAAAAABgSUG+p2dYPgAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIC4Drukqn00uvzefzSiQSikQiisViSiaTyufzcl1347UNr9NsNm/92kqlonQ6rVgspkgkokQioWw2K9u2N14nAAAAAADAbRGEbZDneYpEIgs/EomETNNcuF+lUlEikVC9Xh+FXp7nyXEc1et1JRIJVSqVjdVfKpVWCtds21YsFlOpVJIkNRoNtdttlctlOY6jdDqtdDotz/M2VisAAAAAAMBtvR90AY9JvV5feu0wNJolnU7Ltm0ZhqFUKiXTNOW6rhzHmQirSqWSTNNUJpNZuW7pXZi1Sqhm2/aouy2Xy6lWq42+NqwrmUzKtm0lk0ldXFzIMIy1agUAAAAAAFgFHWEbdHJystS6YbA1S6lUkm3bKpfL6vV6ajQaKpfLE51W47LZ7Fp1e5630h7jrzNNcyIEG9doNCS9O+a5bq0AAAAAAACroiNsQ+r1ujzPU7FYXDj/6+DgYObXXNdVpVJRq9VSKpWauqZYLKrdbk90oDmOI8uyVqr9+PhYu7u7knSr44vZbHa0fl6H27AzrNlsyrZt1et15XK5lWoFAAAAAABYVcT3fT/oIh6DRCIhSWq322vtk81m9ezZMxWLxbnrPM9TLBYbPS+XywtfM029Xlc+n9fFxYUODw9HwVaj0Zh73NJ13dH3LEm9Xm/ukcdmsznqBjMMQ71e79a1jtvf31en01E8Htfl5eVaewEAAAAAgO0J8j09RyM3oNlsynXdhXO/ljHsKlvEMIyJ45WrzN0a3pGyWCzeupts/HhmKpVaeP3xUM3zvJXuSgkAAAAAALAOgrANODk5kWEYOjo6WnuvVqu19Nqrq6vR43nHLWfJZrOyLOvGzLFljB/LXDZEGw/uTk9Pb31NAAAAAACAdRCErclxHDmOMzqqmEgklM/n77zjyfO80THGVCp1646uUqkkx3FGg+xvw3GciefPnj1b6nXjNdIRBgAAAAAAto0gbE3Xj0O6rqt6va5sNqtIJKJsNnsjONqEV69eSXrXZXXbMMtxHFUqFdVqtbl3r5zFtu2J58vucX3dXfxcAAAAAAAAZiEIW4PrujdCoeuazaaSyaTy+fzGrut5nvL5vCzLUqvVuvV8sMPDQ2UymZXv3Pj69euJ58te/8MPP5x4fn5+vtL1AQAAAAAAVvF+0AU8ZKZpqlaryfM8tdtt2bYt13Wnrq3X6zo/P9fFxcVa13RdV+l0WoZh6Ozs7NYh2PDOjS9fvlyrhnGrdoSte4dNAAAAAACA26AjbE25XE7FYlG1Wk3tdlu9Xk/lcnlqQOU4jtLp9MrXajabSiQScl13NJOsUqnc6vXNZlONRmOlu0wOzQr7bms44wwAAAAAAGAb6AjbMMMwVCwWVSwW1Ww2dXx8PBH42LatSqWiYrG41H6e56ler6tWq00NoEqlkl6/fr1wTpjnecpms8rlckqlUrf6nqbttYrr4dv4XS9X1e12tb+/v/Y+hUJBhUJh7X0AAAAAAHisqtWqqtXq2vt0u90NVLMagrA7lMlklEqldHh4ODEY/uTkZOkgzLZttdttpVKpmTPJms3mwnDt8PBwdJTzvthER9hgMFCn01l7n36/v/YeAAAAAAA8Zv1+fyPvwYNEEHbHDMPQxcWFksnkKAzzPE+2bS/VmZXJZJTJZCY+V6/XVSqVJoKkUqmkXC439chjpVKR4zhrzycbMgxjIyHWOsczh3Z2drS3t7f2PtFodO09AAAAAAB4zKLRqOLx+Nr7dLtdDQaDDVR0ewRhW/Ly5Uslk8nR81artfIRxeHxxmQyORFI1ev1G11hjuOoVCqpXC7LsqyVrnfd7u7uRoKw3d3dtffY29vT5eXl2vsAAAAAAID5NjVWaH9/P7DOMoblb4llWRPB17oD503T1NnZ2cTnXr9+fWNdNpuVZVlLH8VcxqqdXNfDs010hAEAAAAAACyLjrAtSqfTU2d8rcqyLGUyGTWbTUk3w7VKpSLXdZVKpZTNZhfuNx5UnZyc6PT0dPT8+fPnoyOaBwcHEzPPPM9bKtS6Phw/kUgsfA0AAAAAAMCmEIRtkWmao8ebOBYovQuohkHY9Y6rr7/+WpJWCt8cx5kIu0zTHAVh40c8pXcB3DLHLtvt9sTzde9eCQAAAAAAcBscjdyi8SBsU8cCxwOobR01PDg4mHi+7DHP8aDOMIyJnwcAAAAAAMBdIwjbovPz89HjdDq98f2vB1Tlclm+7y/9MR5MNRqNia+Vy+XR1yzLmgjdps0mm2b8+79eKwAAAAAAwF0jCNui8aOBmzoWON6NdRfh2ixHR0ejx+NHKOcZX1cqlTZeEwAAAAAAwDwEYVs0nOW1yTs4DsMlwzBGM7y2IZ/Pjx4vM4NsfI1pmswHAwAAAAAAW0cQtiXNZlOu68owDL148WJj+56cnEiSXr58ubE9l2FZ1kSYNQz5Zmk0GqPHdIMBAAAAAIAgEIStyLZtxWIxRSIRpdPpuccDXdfV8fGxJOns7GzuUPtKpaJkMqlSqXTjLpDXDdcUi8WtdoMN1Wq10eNhIDeN53mq1+uS3h0JzeVyd14bAAAAAADAdQRhK2o0GqOgyrZtJZPJieOCQ8Ov7e7uqt1uT9zl8TrP81QqleQ4jiqVimKx2MzuqWw2q0qlonK5PDHIfptM0xx1eg1rnubw8FDSu+Ob451hAAAAAAAA20QQtqJsNnvjc/V6XbFYTNlsVvl8XslkUul0WrlcThcXFxN3ZZzGMIwba4aBWDabValUUjqdViwWk/Ru+P4m542tIpPJqNVqyTAMlUolZbNZOY4jz/NGIaDjOLIsS2/evJnbDQcAAAAAAHCXIr7v+0EX8VC5rqtyuSzbtnV1dSXP82QYhnZ3d2VZlp4/f65UKnWr8MfzPJ2cnMi2bbmue2PPdDqto6OjexkoVSoVnZ6eTtR9cHCgfD6/8aOb+/v76nQ6isfjury83OjeAAAAAADg7gT5np4gDA8SQRgAAAAAAA9TkO/pORoJAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAU3g+6AGAd3W5X+/v7c9cUCgUVCoUtVQQAAAAAQHhVq1VVq9W5a7rd7paquYkgDA/aYDBQp9OZu6bf72+pGgAAAAAAwq3f7y98nx4kgjA8aDs7O9rb25u7JhqNbqkaAAAAAADCLRqNKh6Pz13T7XY1GAy2VNGkiO/7fiBXBtYQ5K1WAQAAAADA6oJ8T8+wfAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIhfeDLgBYR7fb1f7+/tw1hUJBhUJhSxUBAAAAABBe1WpV1Wp17pput7ulam4iCMODNhgM1Ol05q7p9/tbqgYAAAAAgHDr9/sL36cHiSAMD9rOzo729vbmrolGo1uqBgAAAACAcItGo4rH43PXdLtdDQaDLVU0KeL7vh/IlYE17O/vq9PpKB6P6/LyMuhyAAAAAADAkoJ8T8+wfAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAK7wddALCObrer/f39uWsKhYIKhcKWKgIAAAAAILyq1aqq1ercNd1ud0vV3EQQhgdtMBio0+nMXdPv97dUDQAAAAAA4dbv9xe+Tw8SQRgetJ2dHe3t7c1dE41Gt1QNAAAAAADhFo1GFY/H567pdrsaDAZbqmhSxPd9P5ArA2vY399Xp9NRPB7X5eVl0OUAAAAAAIAlBfmenmH5AAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAoEIQBAAAAAAAgFAjCAAAAAAAAEAoEYQAAAAAAAAgFgjAAAAAAAACEAkEYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQIAgDAAAAAABAKBCEAQAAAAAAIBQIwgAAAAAAABAK7wddALCObrer/f39uWsKhYIKhcKWKgIAAAAAILyq1aqq1ercNd1ud0vV3EQQhgdtMBio0+nMXdPv97dUDQAAAAAA4dbv9xe+Tw8SQRgetJ2dHe3t7c1dE41Gt1QNAAAAAADhFo1GFY/H567pdrsaDAZbqmhSxPd9P5ArA2vY399Xp9NRPB7X5eVl0OUAAAAAAIAlBfmenmH5AAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAsAK7rKp1OL702n88rkUgoEokoFospmUwqn8/Ldd2Vr7/pPSWpUqkonU4rFospEokokUgom83Ktu2V9wQAAAAAANgUgrAN8jxPkUhk4UcikZBpmgv3q1QqSiQSqtfro4DK8zw5jqN6va5EIqFKpXKrGu9iT9u2FYvFVCqVJEmNRkPtdlvlclmO4yidTiudTsvzvFvtCwAAAAAAsEnvB13AY1Kv15deOwyNZkmn07JtW4ZhKJVKyTRNua4rx3EmurZKpZJM01Qmk1l4zbvY07btUXdbLpdTrVYbfW24RzKZlG3bSiaTuri4kGEYC/cFAAAAAADYtIjv+37QRTwWsVhsqa6nVCqlVqs18+ulUkmVSkXlclnFYvHG1yuVyo0gbdGv8S729DxPT548ked5Mk1T7XZ76jrXdZVIJCQt/t6XFeStVgEAAAAAwOqCfE9PR9iG1Ot1eZ6nYrG4cP7XwcHBzK+5rqtKpaJWq6VUKjV1TbFYVLvdnuhAcxxHlmVtbU9Jymazo+BvXofbsDOs2WzKtm3V63XlcrmZ6wEAAAAAAO4CHWEbMux4mtUVtaxsNqtnz55N7doa53meYrHY6PmsTq+72nO8y0uSer3e3COPzWZT2WxWkmQYhnq93txaFqEjDAAAAACAhynI9/QMy9+AZrMp13UXzv1axrCrbBHDMCYG7s8Loe5iz3K5PHqcSqUWzv0anzfmeZ6azebCegAAAAAAADaJIGwDTk5OZBiGjo6O1t7rNvOzrq6uRo/nHbe8iz3Hj1DOOz45bjxkOz09XbomAAAAAACATSAIW5PjOHIcZ3SsMJFIKJ/P33nHk+d5o/lcqVRq6TBqE3s6jjPx/NmzZ0vtP74fHWEAAAAAAGDbCMLWdP04pOu6qtfrymazikQiymazN4KjTXj16pWkd11WjUZjq3vatj3xfLzTa57r6+7i5wIAAAAAADALQdgaXNe9EQpd12w2lUwmlc/nN3Zdz/OUz+dlWZZardbC+Vyb3vP169cTz5e9/ocffjjx/Pz8/LZlAgAAAAAArOz9oAt4yEzTVK1Wk+d5arfbsm1brutOXVuv13V+fq6Li4u1rum6rtLptAzD0NnZ2UZCsNvuef17XLUjbN07bAIAAAAAANwGHWFryuVyKhaLqtVqarfb6vV6KpfLU8Mkx3GUTqdXvlaz2VQikZDruqOZZJVKZY3qV9tzVth3W8N5ZAAAAAAAANsQ8X3fD7qIx6rZbOr4+PhG4FMul1UsFpfaw/M81et11Wq1mQFUJpO51ZywdfeMRCITz5f9E7JteyIIvG3d4/b399XpdLSzs6O9vb2V9hhXKBRUKBTW3gcAAAAAgMeqWq2qWq2uvU+329VgMFA8Htfl5eUGKlseRyPvUCaTUSqV0uHh4cRg+JOTk6WDMNu21W63lUqlZs4kazabqlQqge65ik10hA0GA3U6nbX36ff7a+8BAAAAAMBj1u/3N/IePEh0hG1JMpmcCMNarZZSqdRKe9XrdZVKpRtBUq/XW3lm2G32jMViE+voCAMAAAAA4PGjIwxLe/nypZLJ5Oj5OkFYLpdTKpVSMpmcCKTq9frKHVy32XN3d3cj3Vy7u7tr77G3t7f1fzQAAAAAAITRpppIhs0tQWBY/pZYljURfK07cN40TZ2dnU187vXr11vZc9Wus+vh2SbueAkAAAAAALAsgrAtWueOkdNYlqVMJjN6vom7OS6z58HBwcTzZbvDrq6uJp4nEonbFwgAAAAAALAigrAtMk1z9HgTxwIl6fnz56PHmziuuMye40c8peUDuHa7PfF81aOhAAAAAAAAqyAI26LxIGxTxwIty9r6ntc7wpYNwsZDNcMwJn4eAAAAAAAAd40gbIvOz89Hjzd9TFK6GVDd1Z6WZU0EZMvOJhv//u+iVgAAAAAAgHkIwrZo/Gjgpo4FjndjbSpcW2bPo6Oj0WPHcZbad3xdqVRasToAAAAAAIDVEIRtUbPZlCQVi8WN7TkMlwzDmBhyf9d75vP50WPbthfuOb7GNE3mgwEAAAAAgK0jCNuSZrMp13VlGIZevHixsX1PTk4kSS9fvtzqnpZlTYRZw5BvlkajMXpMNxgAAAAAAAgCQdiKbNtWLBZTJBJROp2eezzQdV0dHx9Lks7OzuYOta9UKkomkyqVSgvvAjlcUywW53aD3cWeklSr1UaPh+HZNJ7nqV6vS3p3JDSXy83dFwAAAAAA4C4QhK2o0WiMQiXbtpVMJieOCw4Nv7a7u6t2uz1xR8brPM9TqVSS4ziqVCqKxWIzu6ey2awqlYrK5bLK5fJW9xwyTXPU6TXcf5rDw0NJ745ajneGAQAAAAAAbFPE930/6CIeItu2pw6SNwxDqVRKu7u7Oj8/l+M4KhaLevHixdxOsKFEIjExrH58T9M05TiOzs/PlUqlVC6XZZpmIHuOs21b2WxWnucpk8noxYsXMk1T5+fnoxDOsqyF3XC3sb+/r06no3g8rsvLy43sCQAAAAAA7l6Q7+kJwtbguq7K5bJs29bV1ZU8z5NhGNrd3ZVlWXr+/LlSqdStwh/P83RyciLbtuW67o090+m0jo6OAt9zmkqlotPT04lrHBwcKJ/Pb2yQ/xBBGAAAAAAADxNBGHBLBGEAAAAAADxMQb6nZ0YYAAAAAAAAQoEgDAAAAAAAAKFAEAYAAAAAAIBQeD/oAoB1dLtd7e/vz11TKBRUKBS2VBEAAAAAAOFVrVZVrVbnrul2u1uq5iaCMDxog8FAnU5n7pp+v7+lagAAAAAACLd+v7/wfXqQCMLwoO3s7Ghvb2/ummg0uqVqAAAAAAAIt2g0qng8PndNt9vVYDDYUkWTIr7v+4FcGVhDkLdaBQAAAAAAqwvyPT3D8gEAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAoUAQBgAAAAAAgFAgCAMAAAAAAEAovB90AcA6ut2u9vf3564pFAoqFApbqggAAAAAgPCqVquqVqtz13S73S1VcxNBGB60wWCgTqczd02/399SNQAAAAAAhFu/31/4Pj1IBGF40HZ2drS3tzd3TTQa3VI1AAAAAACEWzQaVTwen7um2+1qMBhsqaJJEd/3/UCuDKxhf39fnU5H8Xhcl5eXQZcDAAAAAACWFOR7eoblAwAAAAAAIBQIwgAAAAAAABAKBGEAAAAAAAAIBYIwAAAAAAAAhAJBGAAAAAAAAEKBIAwAAAAAAAChQBAGAAAAAACAUHg/6AIAAAAAAMDd8X1p4M9fsxORIpHt1AMEiSAMAAAAAIBHbOBL7//L+Wv+6g+l9wjCEAIcjQQAAAAAAEAoEIQBAAAAAAAgFDgaCQAAAAAAto7ZZQgCQRgAAAAAANg6ZpchCByNBAAAAAAAQCgQhAEAAAAAACAUOBoJAAAAAAAwhvlljxdBGB60brer/f39uWsKhYIKhcKWKgIAAAAAPHTML1tdtVpVtVqdu6bb7W6pmpsIwvCgDQYDdTqduWv6/f6WqgEAAAAAINz6/f7C9+lBIgjDg7azs6O9vb25a6LR6JaqAQAAAAAg3KLRqOLx+Nw13W5Xg8FgSxVNIgjDg7a3t6fLy8ugywAAAAAAAFpuPNH+/n5gXWPcNRIAAAAAAAChQBAGAAAAAACAUCAIAwAAAAAAQCgQhAEAAAAAACAUCMIAAAAAAAAQCgRhAAAAAAAACAWCMAAAAAAAAIQCQRgAAAAAAABCgSAMAAAAAAAAofB+0AUAAB4n35cG/vw1OxEpEtlOPQAAAABAEAYAuBMDX3r/X85f81d/KL1HEAYAAABgSzgaCQAAAAAAgFAgCAMAAAAAAEAocDQSAAAAwKPH7EoAgEQQBgAAACAEmF0JAJA4GgkAAAAAAICQoCMMD1q329X+/v7cNYVCQYVCYUsVAQAAAAAQXtVqVdVqde6abre7pWpuIgjDgzYYDNTpdOau6ff7W6oGAAAAAIBw6/f7C9+nB4kgDA/azs6O9vb25q6JRqNbqgYAAAAAgHCLRqOKx+Nz13S7XQ0Ggy1VNIkgDA/a3t6eLi8vgy4DAAAAAB60f/el9I+TQVeBx2CZ8UT7+/uBdY0xLB8AAAAAgEfs3325eM0/aS63btvuY0142AjCAAAAAAA3+L70zWD+h+8HXSUWefuX0u/9f5Zb+8/+31L/L++0nAkPOaDDw8XRSAB44HxfGiz4f0J3IlIksp16AADA4zDwpff/5fw1f/WH0nv8/xj32v/qSH/xX5db+3/+F+nfOtL/4/9+tzVJtw/o/uH/TYr+2p2WhJCgIywArusqnU4vvTafzyuRSCgSiSgWiymZTCqfz8t13ZWu7zjOxJ6RSESJREKlUkme5620pyRVKhWl02nFYrHRntlsVrZtr7wngMWG/0/qvI9FQRkAAAAep//t/7jd+v/9lutXtUpAB2wCQdgGeZ43CpbmfSQSCZmmuXC/SqWiRCKher0+Cr08z5PjOKrX60okEqpUKreqL5vNKplMTuwpvQvcKpWKYrGY6vX6rb5v27YVi8VUKpUkSY1GQ+12W+VyWY7jKJ1OK51OrxWyAQAAAABur/d/3e36Vd3XgO42OLL5MHE0coNuEyANQ6NZ0um0bNuWYRhKpVIyTVOu68pxnIkAq1QqyTRNZTKZuft5nqdkMrlUF1k+n9fFxYVqtdrCtbZtj7rbcrncxGuGdSWTSdm2rWQyqYuLCxmGsXBfALhLHCcFAABhEftv7nb9qu5rQDe07Pyy93akf/T07uvB5hCEbdDJyclS64bB1iylUkm2batcLqtYLN74eqVSmQjSstms/AVTKrPZrFzXlWVZevHihSzLkvTumOTr169vdJbV63Wl0+m5Aduww0x6F3rNCs4ajYYSiYRc11U2m1Wr1ZpbKwDcNWaeAACAsPiHf0f6+f93+fX/3d+5u1rG3deATmJ+2WNHELYh9XpdnuepWCwunP91cHAw82vDI4qtVkupVGrqmmKxqHa7PdGB5jjOKNyaVptt2yoWiyqXyxNfG3Zt5fN5ZbNZOc5fH7w+Pj6eG4Rls9nRccd5HW7DazSbTdm2rXq9rlwuN3M9AAAAAGAz/idL+vRPl5vH9d/+TekfT39buXH3NaCT7u8NBrAZEX9RKxGWkkgkJEntdnutfbLZrJ49eza1E2yc53mKxWKj57O6x4a1maa5sBPLdd3R9zE0K5C7vrbX68098thsNkfdY4ZhqNfrza1lkf39fXU6HcXjcV1eXq61F/DQfTNYsrtpy1Mh72td0v2uDQBwN/hv/+3xM7u9+zp+4d9evDvGt8j/62h7x/ze/qUU/2z5gK7zYntdV9/9f94upPvuR9Kf/s93V89jFOR7ev6TtQHNZlOu6y6c+7WMYVfZIoZhTByvnBVCDWeKNRqNhXuapnmjY2y8Q2zc+LpUKrVw7td4Z5nneWo2l/ivMAAAAAA8IPf1bt7LhFv/NrPdWVcf/Jr0v/z3y639/H/Y7tHD+z6/DOshCNuAk5MTGYaho6Ojtfe6zfysq6ur0eNZxy1PT0+Vy+WWHlB/vfvr66+/nrpu/FjmrCOZ140Hd6enp0u9BgAAAABw9/7HAAa+38eATrrf88uwPoKwNTmOI8dxRkcVE4mE8vn8nXc8eZ43ms+VSqVmhlHPnz+/0eU1z/V9rh+VlG52iT179uzWe9MRBgAAAABYJIiA7h/ech7ZNueXYX0EYWu6fhzSdV3V63Vls1lFIpEbA+g35dWrV5LedVnNO/ZoWdbS3WCSRuHa0LS7W9q2vXDNNNfX3cXPBQAAAACAdfxPlvS3/sZya7d5gwFsBkHYGlzXvREKXddsNpVMJpXP5zd2Xc/zlM/nZVmWWq3WrYKuRVzXnXg+bVD+69evJ54ve/0PP/xw4vn5+fntigMAAAAA4I7d5/llWB9B2BpM01StVlO5XFYul5vbGVWv15VMJte+puu6SiaTMgxDZ2dnS3djLWs8nMrlcjNrGLdqR9i6d9gEAAAAAOAu3Nf5ZVgfQdiacrmcisWiarWa2u22er2eyuXy1C4px3GUTqdXvlaz2VQikZDruqOZZJVKZY3qb6rVaqPHs+6CeT0IW9X1Y5gAAAAAADwUQcwvw/reD7qAx8YwDBWLRRWLRTWbTR0fH08EPrZtq1KpqFgsLrWf53mq1+uq1WpTA6hSqaTXr1/PnRO2LNd1R3O7yuXyzE6vVQOs6+Hg+F0vV9XtdrW/v7/2PoVCQYVCYe19AAAAAAB4rKrVqqrV6tr7dLvdDVSzGoKwO5TJZJRKpXR4eDgxGP7k5GTpIMy2bbXbbaVSqZkzyZrN5q3CtVmGd5c0TXPtvZaxiY6wwWCgTqez9j79fn/tPQAAAAAAeMz6/f5G3oMHiSDsjhmGoYuLCyWTyVEY5nmebNueOoj+ukwmo0wmM/G5er2uUqk0ESSVSiXlcrmVB+c7jqN6vS7DMNRqteauNQxjIyHWJob87+zsaG9vb+19otHo2nsAAAAAAPCYRaNRxePxtffpdrsaDAYbqOj2CMK25OXLlxPD8lut1lJB2DS5XE6pVErJZHIikKrX6yt3ch0fH0vSUgP4d3d3NxKE7e7urr3H3t6eLi8v194HAAAAAADMt6mxQvv7+4F1ljEsf0ssy5oIvtYdOG+aps7OziY+9/r165X2yufzchxHjUZDlmUtXL9qJ9f18GwTHWEAAAAAAADLIgjbonXuGDmNZVkTxyZXCdfq9fpoGP/1I5izHBwcTDxftjvs+nD8RCKx1OsAICx8X/pmMP/D94OuEgAAAHi4OBq5ReNHDjdxLFCSnj9/rmazKen2w+dt21Y+n1etVlMul1v6deNHPKV3AdwynWTtdnvi+apHQwHgsRr40vv/cv6av/pD6b3IduoBAAAAHhs6wrZoPAjb1LHA8QDqNns6jqN0Oq1yuXyrEEy62RG2bCfaeFBnGMbCWWQAAADAY0c3MABsFx1hW3R+fj56vOljktLNgGoW9//X3t37NpbddwP/SWMbGySQqTEQQBg1phq7NDVu0g7VZZEU0i4Qw3Y1kmGkUkFm8NSBQBUqDZPT2XCxQxYJkiKIOH/BSHRrICDdzEBAAI8YwYEXTiw+xYRcUiPxTXzV/XwAAqTm6N6z0tkj3i9/59xGI549exa5XG6szfUzmUzPnSPfvHkz1LLK7v/+YfsKAAAPmWpggNlSETZD3UsDJ7UssLsaa5hwrdFoxPb2duzv70ehUBj6HMfHxz1f++yzzzrPa7XaUMfpbpfP54f6HgAAAIBJEYTNUHsvr3GqsO7SDpdSqdTAqqxmsxk7Ozvx2WefDR2CRUTs7e19FNwdHBx0nler1YHH6G6TTqftDwYAwML51a/n3QOGYTkpcB+WRs5IpVKJRqMRqVQqXrx4MbHjHh0dRUTEy5cv+7ZrNpuxvb0d6XQ68vn8UPt6NRqNTuXWzc3wM5lMZLPZTsBVqVT6BnHlcrnzXDUYAMxHq/VhGVY/qysRK5Zg8QANE3L9uBLxaDXiB9+bfn8Yn+WkwH0IwsZUrVZjb28vms1mZLPZKBQKd945sdFoxPPnzyMi4vXr1303tT8+Po4vvvgistlsvHjxom/bfD4fzWYzcrncwGqwZ8+eRaPRiEajEVtbWwP/+7oVi8U7v94+1tHR0Z19aDabUSqVIuLDktBRN+cHACbDxSNJ9V9fRvz0n4dr+5N/ivj0uxFrn0y1SwDMiaWRYyqXy53N4qvVamxvb/csF2xr/9vjx4+jXq/fGZZFfAiM8vl81Gq1OD4+jvX19Turp/b29uL4+DgKhcLAZY7b29tD7+N1m7uCq3Q63an0avf5Ns+ePYuID8s3uyvDmK9FLSlf1H4xHZagADALv6xF/Pf/DNf293+M+MX4b50BWHAqwsa0t7fXqXJqK5VK8erVq8hms/H48eM4OzuLWq0WuVxuYHVXxIegKJ1O9yxbPD4+jlKpFNlsNtLpdNRqtTg7O4tsNhv1ej3S6fTAfk4jBGvb3d2N09PT2Nvbi3w+H2/evIkXL15EOp2Os7OzTrCXyWQGVsMxW4taFbCo/WJ0lqAAsCj+5Tejtf/X30T8/V9Npy8AzJcgbEztIKpQKES1Wo337993KsTawc+LFy8im82OFP6cn5/H0dFRVKvVaDQaPceM+BBslcvloY85iwqsbDYbl5eXnWWdz549i2azGalUKp4+fRrlcnng0k3gYbEEBYBFcvmH6bYHYHkIwu4hnU7fuX/WuFKp1Eh3dFwkuVxuonfEBJbXOEtQfPIOwLSs/9l02wOwPOwRBsDEjbMEBQCm5dPvjNb+r0dsn2T2+wSWjSAMgImzBAUguRbxxjc/zET8+deHa/sX34j40d33t0qUYff7FIYBy8TSSAAmzhIUgORaxBvffPOTiJ/9zYfQZpCf/619KyPs9wk8XIIwltrFxUVsbm72bXN4eBiHh4cz6hEQ8WEJyr//x/DtLUEBYNp+8L3BQdgvdt3JuM1+n8C4Tk5O4uTkpG+bi4uLGfXmY4Iwltr19XW8e/eub5urq6sZ9QZo+2Em4h/+bbg30JagALAo/k4I1jHOfp+CMCDiwzX4oOv0eRKEsdRWV1djY2Ojb5u1tbUZ9QZoswTlYWm1Pix16md1JWJlhsucAJgu+30C41pbW4snT570bXNxcRHX19cz6lEvQRhLbWNjI96+fTvvbgC3sATl4VjE/X4AmC77fT4sqysf/lYPasNX/MzGN8z2RJubm3OrGnPXSIAEWNS7OVmCAgCL6dMR9++03+fw5vG+bGUl4tFq/4fK7l5+Zg+XijCAJTfsrc0fraq+AgCGY7/P8XhfNhpVV8yDijCAJTbqrc2vvpxqdwCAB6K93+cw7Pf5gfdlo1N1xTwIwgCW2Di3NgcAGMYwFUv2+/yK92WwHARhAEtsnFubA7D8Wq2IP133f7QG3O0VJsF+n1/xvgyWgz3CAJaYW5sDJJO7ucLi8b4MloOKMIAl5tbmAACLwfsyWA6CMIAl5tbmJJ3lYQAsCu/LYDlYGgmwxNzanKSzPOzhaLU+/D77WV1x9zBgcXlfBstBEAawxNq3Nv9xZXBbtzYHFtmihpoCOmBY3pfBchCEASy5H3xv8BsutzYf3a9+HfGj7Xn3Api3RQ3ogMXkfRksPnuEASSAW5v3+tWvB7f5cWW4dgAAo/C+DOZLEAZAovzXlxE//efh2v7knyKuvpxqdwAAgBkShAEMwZ3pHo5f1obbxDYi4vd/jPhFbbr9AQAAZsceYQBDsEfMw/Evvxmt/b/+JuLv/2o6fQGAYdi3EmByBGEstYuLi9jc3Ozb5vDwMA4PD2fUI2DRXf5huu2nzcUQwMMy7L6Vj1ZtsA4sh5OTkzg5Oenb5uLiYka9+ZggjKV2fX0d796969vm6upqRr35mFuuw+JZ/7Pptr8PF0MAyTLqvpWffjdi7ZOpdgng3q6urgZep8+TIIyltrq6GhsbG33brK2tzag3H7OcDhbPp9+J+Pf/GL79X39nen3p5mIIIHnG2bfScv3hqKCG+VlbW4snT570bXNxcRHX19cz6lEvQRhLbWNjI96+fTvvbgBL5IeZiH/4t+EuPP7iGxE/yky/TxEuhgCSyL6V41FBDYttmO2JNjc351Y15q6RACTKNz+J+NnfDNf25387u6qrcS6GAFhuy75v5TyMWkF99eVUuwMsIUEYAIkzzKfDv9id7afILoYellYr4k/X/R+tAXtIAg/fIu9buajGqaAG6GZpJADc4u9mvJTCxdDDYo9IYBiLum/lIrOcFLgvFWEAsAA+HfHixsUQwPL7YSbiz78+XNtZ7lu5yFRQA/clCAOABeBiCCB5FnXfykWmghq4L0EYACwAF0MsimHuxgZMziLuW7nIVFAD92WPMABYED/43ofbvffjYoj7GCbk+nEl4tGqccbDs7ryYW++QW0W0az3rVxkP8xE/MO/Dbdhvgpq4DYqwoA7qQqAxeNiiHH915cRP/3n4dr+5J8irr6candg5lZWPoS8/R4rCxqE8RUV1MB9CcIgoYatChCGATwMv6wNV0EREfH7P0b8ojbd/pBs3l9wH5aTAvchCIMEWvaqAG+eAUb3L78Zrf2/jtge2nzYxiJQQQ3cRRAGCbTIVQHePANMx+UfptseIpb/wzYAHj5BGCTQolYFePMMy0s4vfjW/2y67SFisT9sA4AIQRgk0qJWBXjzDItJpebD8Ol3Rmv/1yO2h4jF/bANANq+Nu8OALO3qFUB47x5/vu/mk5fuL9lvk09Xxm1UvPT77pD16L6YSbiH/5tuA8c/uIbET/KTL9PPDyL+mEbALSpCIMEWtSqAG+eHxa3qX8YVGo+HN/8JOJnfzNc25//rUCT8Szqh20A0CYIgwT6YSbiz78+XNtZVgV48wyLxzKnh+UHQ9xF7Re7w7WD2yzqh20A0GZpJEvt4uIiNjc3+7Y5PDyMw8PDGfVoObSrAn5cGdx2llUBn34n4t//Y/j23jzD9KnUTJ6/E4JxD5bgAnBychInJyd921xcXMyoNx8ThLHUrq+v4927d33bXF1dzag3y+UH3xschM26KsCbZ1g8KjWBUSzqh22Mx36fwDiurq4GXqfPkyCMpba6uhobGxt926ytrc2oNw/PrKsCvHmGxaNSExjVIn7YxnhWViIeCbqAEa2trcWTJ0/6trm4uIjr6+sZ9aiXIIyltrGxEW/fvp13N5ggb55hsajUhOX1q19H/Gh73r24nSW4AA/XMNsTbW5uzq1qzGb5wNLx5hlmx50GYTH96teD2/y4Mlw7AEgSFWEAQF8qNVkUi1zhNEv/9WXET/95uLY/+aeIT78rpIZZsa8aLD4VYQDAvanU5L5UOA3vl7XhlitHRPz+jxG/qE23P8BXVlYiHq32f6wIwmCuBGEAAMzVqBVOV19OtTsL719+M1r7fx2xPQA8ZIIwAOBBU0G0+Ja9wmnWY+zyD9NtDwAPmSAMAFhaltM9DItc4bSIY2z9z6bbHgAeMpvlA0zIvDZxtikrSWXD8IdjUSucFnWMffqdiH//j+Hb//V3ptcXAFg2KsIAhrCIFQFtNmUlqZZ9OR1fWdQKp0UdYz/MRPz514dr+xffiPhRZrr9AYBlIggDGMAmzrCYFnk5HaP5dMSKpVlVOC3qGPvmJxE/+5vh2v78b1VCAkA3QRjAAItaEQBJt6jL6RjdolY4LfIY+8H3Brf5xe5w7QAgSQRhAAMsakUAJN2iLqdjdIta4bTsY+zvhGAA8BFBGMAAi1wRAEm2qMvpGM8iVjgZYwDw8AjCAAZY9ooAeKgWdTkd0zPrCidjDAAenq/NuwMAi85t6mExtZfT/bgyuK0NwxmHMcYsrK5E/O8/Dm4DwGSoCAMYQEUALK5FXE43rF/9et49YBjLPMZYDisrEY9W+z9WBGEAE6MiDObsV7+O+NH2vHtBPyoCYLnNY8PwYUKuH1c+XOAKUJafTelhtlTRAfchCGOpXVxcxObmZt82h4eHcXh4OKMe9XIh9HD84HuDgzAVAUBExH99GfHTfx6u7U/+KeLT7wrQAUaxshLxSNAFC+vk5CROTk76trm4uJhRbz4mCGOpXV9fx7t37/q2ubq6mlFverkQSh4VAUBExC9rEf/9P8O1/f0fI35Ri/j7v5punwAAZuXq6mrgdfo8CcJYaqurq7GxsdG3zdra2ox608uFEEAy/ctvRmv/r78x/wMAD8fa2lo8efKkb5uLi4u4vr6eUY96CcJYahsbG/H27dt5d+NWLoRgcdlbhGm6/MN02wMALLJhtifa3NycW9WYIAymxIUQLC57izBN63823fYAAIxvdd4dgIfKhRBAMn36ndHa//WI7QEAGJ8gDKbEhRBAMv0wE/HnXx+u7V98I+JHmen2BwCArwjC5qDRaMTOzs7QbQ8ODmJraytWVlZifX09tre34+DgIBqNxkT7U6lU7nWc4+Pj2NnZifX19VhZWYmtra3Y29uLarU6kX4uGxdCwKjae5f1e9i7bPF985OIn/3NcG1//rfuGAwAMEuCsAlqNpuxsrIy8LG1tRXpdHrg8Y6Pj2NraytKpVIn9Go2m1Gr1aJUKsXW1lYcHx/fq797e3uxtbUV1Wo13r9/P9ZxqtVqrK+vRz6fj4iIcrkc9Xo9CoVC1Gq12NnZiZ2dnWg2m2P3dRm5EAJGtbIS8Wi1/2NFELYUfvC9wW1+sTtcOwAAJsdm+RNUKpWGbtsOje6ys7MT1Wo1UqlUZLPZSKfT0Wg0olar9VSC5fP5SKfTsbu7O/S5m81mHB0d3StEa6tWq53qtv39/SgWi51/a/dre3s7qtVqbG9vx/n5eaRSqXufd1n84HsRPx5QaOdCCCCZ/s7czwPlzrwALDJB2AQdHR0N1a4dbN0ln89HtVqNQqEQuVzuo38/Pj7uCdL29vai1WoNde7j4+MoFotDVaQN0q4oi/gQenWHYN3K5XJsbW1Fo9GIvb29OD09vfe5HxIXQgDMioCCWXBnXgAWmSBsQkqlUjSbzcjlcgP3/3r69Omd/9ZoNOL4+DhOT08jm83e2iaXy0W9Xu+pQKvVapHJ9N9kqlarRTab7YRrpVIpDg4O+n5PP3t7e53ljv0q3NqVYZVKJarVapRKpdjf3x/7vADAeAQUAEDSCcImpFAoRDqdjkKhcK/j5PP5KBQKd4Zg3efrDsKq1erAIOzmv/cL5AZpNBo9m+B/9tlnfdt//vnnnc348/m8IAwAAACYOZvlT0ClUolGozFw369htKvKBkmlUj3LG8fZd+s+e3V1B37ZbHbgsbr3MGs2m/e+QyUAAADAqARhE3B0dBSpVGpgVdQwRtk/q/suj/ep7hpHdzXaoEq0tu7g7osvvph4nwAAAAD6sTTynmq1WtRqtYiIWF9fj3Q6HdlsNnZ2dka6k+Ooms1mZ3+ubDY7dBg1Ce3/3rbvf//7Q31fJpPp3PFSRdj82TAZAACApFERdk83l0M2Go0olUqxt7cXKysrsbe391FwNAmvXr2KiA9VVuVyeeLH76d7b7B2H4Zxs900fi4Mb2Ul4tFq/8eKIAwAAIAHREXYPdzcMP42lUolKpVK7O/vR7FYnMh5m81mHBwcRCaTiXK5fK+9vsbx5s2bntfDnv9b3/pWz+uzs7OZVrIBMB4VpAAAPBSCsHtIp9NRLBaj2WxGvV6ParXaWfp3U6lUirOzszg/P7/XORuNRuzs7EQqlYrXr1/PPARr96HbuBVh9Xp9Yn0CYHpWViIeCboAAHgABGH3tL+/3/O62WxGqVSKo6Ojzh5ebbVaLXZ2dkbaEL9bpVKJvb29zuv19fUoFApD3WVyku4K+0Z18+cDESpPAAAAmB5B2ISlUqnI5XKRy+WiUqnE8+fPewKfarUax8fHQ4dX7WCtWCzeGkDl8/l48+bNTPcJGzfAulm91n3Xy3FdXFzE5ubmvY9zeHgYh4eH9z4O96fyBAAAYDGdnJzEycnJvY9zcXExgd6MRxA2Rbu7u5HNZuPZs2c9G8MfHR0NHYRVq9Wo1+uRzWbv3JOsUqmMFK4tiklUhF1fX8e7d+/ufZyrq6t7HwMAAAAesqurq4lcg8+TIGzKUqlUnJ+fx/b2dicMazabUa1WI5vNDvz+3d3d2N3d7flaqVSKfD7fEyTl8/nY39+fyZ5hqVRqIiHWJPq6uroaGxsb9z7O2travY8BADArthIAYB7W1tbiyZMn9z7OxcVFXF9fT6BHoxOEzcjLly9je3u78/r09HSoIOw2+/v7kc1mY3t7uyeQKpVKM6kKe/z48USCsMePH9/7GBsbG/H27dt7HwcAYJnYSgCAeZjUtkKbm5tzqyxbnctZEyiTyfQEX/fdcD6dTsfr1697vvbmzZt7HXNY41Zy3QzP5nHHSwAAACC5VITN0M7Ozq17fI0rk8nE7u5uVCqViJjc3RwHefr0ac+eZ81mc6hQ6+bm+FtbW5PuGgCwpCz1AwBmQUXYDKXT6c7zSSwLjIj4/PPPO88nsVxxGN1LPCOGD+Dq9XrP63GXhgIAD8/KSsSj1f6PFUEYAHBPgrAZ6g7CJrUsMJPJTPyYgzx9+rTn9bBBWHdQl0qlen4eAAAAANMmCJuhs7OzzvOdnZ2JH/9mQDUtmUymJ3Qbdm+y7v/+WfUVAAAAoM0eYTPUvTRwUssCu6uxphGu3eWzzz6LUqkUEdGzX1g/3e3y+fxU+gVAsthXimkzxgDgYVERNkPtTe1zudzEjtkOl1KpVOzu7k7suIMcHBx0ng9zA4DuNul02v5gAEyEfaWYNmMMAB4WQdiMVCqVaDQakUql4sWLFxM77tHRUUREvHz5cuTvvc/m+plMpifMaod8dymXy53nqsEAAACAeRCEjalarcb6+nqsrKzEzs5O3+WBjUYjnj9/HhERr1+/7rup/fHxcWxvb0c+nx8YVLXb5HK5sarBbm5yP2owViwWO8/bgdxtms1mZxllNpuN/f39kc4DAAAAMAmCsDGVy+VOcFStVmN7e7tnuWBb+98eP34c9Xq95y6PNzWbzcjn81Gr1eL4+DjW19fvrJ7a29uL4+PjKBQKUSgURu5/+1zdvvjii5GOkU6nO5Ve7T7f5tmzZxHxYflmd2UYAAAAwCyttFqt1rw7sYyq1eqtm9OnUqnIZrPx+PHjODs7i1qtFrlcLl68eNG3Eqxta2vro0qt9jHT6XTUarU4OzuLbDYbhUIh0un00H1uNpvx/PnzaDabfff1ymaznSWc/YK7tmq1Gnt7e9FsNmN3dzdevHgR6XQ6zs7OOsFeJpMZWA03is3NzXj37l08efIk3r59O5FjTsOfriO+9v/6t/nff/ywvwiLrdWKuB4wW66u2CcG+MD8DwBwt3le07tr5Jiy2WzU6/UoFApRrVbj/fv3nQqxdvDz4sWLTqg0rPPz8zg6OopqtRqNRqPnmBEfKsHK5fJYgdK0KrKy2WxcXl7G8fFxfPHFF/Hs2bNoNpuRSqXi6dOnUS6XZ7qRP0zDykrEIyEXAADAUlMRxlJSEQbAIjP/AwDcbZ7X9N5+AQAAAJAIgjAAAAAAEsEeYQAAE7a68mHp46A2AADMliCMpXZxcRGbm5t92xweHsbh4eGMegQAbrABACTXyclJnJyc9G1zcXExo958TBDGUru+vo537971bXN1dTWj3gAAAECyXV1dDbxOnydBGEttdXU1NjY2+rZZW1ubUW8AAAAg2dbW1uLJkyd921xcXMT19fWMetRrpdVqteZyZriHed5qdRR/uo742v/r3+Z//zHikdtWAAAAkBDzvKZ3+Q0AAABAIlgaCVPkrmEAAACwOARhMEXuGgYAAACLw9JIAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAAS4Wvz7gAsupOTk7i6uoq1tbU4PDycd3dIAGOOWTLemDVjjlkz5pgl441ZM+ZGt9JqtVrz7gSManNzM969exdPnjyJt2/fPphzQYQxx2wZb8yaMcesGXPMkvHGrC3rmJtnvy2NBAAAACARLI1kqV1cXMTm5mbfNoeHh0pEAQAAYAZOTk7i5OSkb5uLi4sZ9eZjgjCW2vX1dbx7965vm6urqxn1BgAAAJLt6upq4HX6PAnCWGqrq6uxsbHRt83a2tqMegMAAADJtra2Fk+ePOnb5uLiIq6vr2fUo16CMJbaxsbGUm0ICAAAAA/ZMNsTtTfLnweb5QMAAACQCIIwAAAAABLB0khYcCcnJ3F1dRVra2szv/tlUs+9COefl3n/dyd1zM375z5PSf25z/t3Pu/zz8u8/7uTOubm/XOfpyT/3JP83z5PSf25z/t3Pu/zz8vS/ne3YAk9efKkFRGtJ0+ePKhzLdr5k3rueZ8/qeee9/md2+88Keee9/mTeu55nz+p5573+ZN67nmfP6nnnvf5k3rueZ9/Wc89z35bGgkAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAgrrVarNe9OwKi+8Y1vxP/8z//E6upqbGxsTPVcFxcXcX19PZNzLdr5k3rueZ8/qeee9/md2+88Keee9/mTeu55nz+p5573+ZN67nmfP6nnnvf5k3rueZ9/Wc/d/t6vf/3r8cc//nFKPbydIIyl9OjRo7i+vp53NwAAAIAxra6uxp/+9KeZnvNrMz0bTMgnn3wSX375ZTx69Cj+8i//ct7dAQAAAIb0n//5n/GnP/0pPvnkk5mfW0UYAAAAAIlgs3wAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRjc4fj4OHZ2dmJ9fT1WVlZia2sr9vb2olqtzrtrPCCNRiN2dnaGbm9cJk97jFQqlXsdZxpjx3h8mCY15kY517CMuYenVqvFwcFBbG1txcrKSuf3ms/no9lsjn1ccx63mdZ4G4b5LpkajUbPmFtfX4/t7e04ODiIRqMx9nHNcffUAnqcnp62UqlUKyJa2Wy2dXp62qrX661yudxKp9Odr19eXs67qyywy8vLVkQM9djf3x94POMyeS4vL1u7u7udcVIsFsc6zjTGjvH4ME1qzLWPZQ6kn5vj7a7HqOPQnMdtpjXe2sc233GbQqEwcEwUCoWRjmmOmwxBGHQ5PT0d+Icqk8m0IqKVTqcf1GTAZA3zh6/9qNfrfY9lXCbL5eVlK5fLTeTN+TTGjvH48ExyzLWZA+nn8vKyc3E1qfCg1TLncbtpjbc28x23yWazrYhopVKp1u7ubiuXy7V2d3dvHYvlcnmoY5rjJkcQBv/n8vKyk4Sn0+k729Xr9c5kkc1mZ9hDlkl7LA16DBpDxmWyFAqFVjqd7rx5uk8oMY2xYzw+PJMcc93MgfTTHm+ZTKZVLpdb9Xq9U31wWyg7zIWiOY+7TGO8dTPfcVN7XN1V7XVbeDqIOW6yBGHwf7ovAga9+Z/U0hEepmKx2IqIVi6Xa52envZ9DPpUxbhMjvPz89b5+XnndXscjfs7ncbYMR4flkmPuZvHMQdym+7xcZd6vd6pQGg/UqlU3+Oa87jNtMbbbcc339FqfRUanZ6e9m23v7/fM+a6/x7fxhw3WYIwaPWm3BEx8A9VuVwe+Q8lyZFOp/t+qjIs4zLZzs/Pxw4lpjF2jMeH7z5jrps5kH7aFYiD3Pz997uwNOdxl2mMt5vHN9/RbXd3d6h9v27uLdfve8xxk+eukRARhUKh8zybzUYqlerbfnd3t/O82WzO5M5aLIdKpRKNRiPy+fy9j2VcJtug33c/0xg7xuPDd58x12YOpJ9arRaNRiPK5fLAtul0umcMtL//NuY8bjOt8dZmvuM2zWYzcrncwHapVCrS6XTP67uY4yZPEAYRUSqVOs8zmcxQ39M9cX3xxRcT7xPL6ejoKFKpVHz22Wf3PpZxybimMXaMR4ZhDqSfL774Ivb394cOXbPZbM/r3/3ud7e2M+dxm2mNtzbzHbc5PT0duu379+87z58+fXpnO3Pc5AnCSLybn/Z8//vfH+r7uieMZU/EmYxarRa1Wi2azWasr6/H1tZWHBwcjDU+jEvGNY2xYzwyDHMgg3z++ecfVd30c/PibGtr66M25jzuMo3x1ma+476azWY0m82I+BDC3hVGmeOmQxBG4lWr1Z7X3Ul3PzfbDSqf5uG7WRrfaDSiVCrF3t5erKysxN7e3tDjxLhkXNMYO8YjwzAHMkgmkxlpCW77IrHttnFgzuMu0xhvbeY77uvVq1cR8eH32G/5rjluOgRhJN6bN296Xg/7B/Nb3/pWz+uzs7NJdYkl1Gg0PvqjclOlUont7e04ODgYeDzjknFNY+wYjwxiDmQaGo1Gz+ubS9cizHlMzjDjrd3OfMd9NJvNODg4iEwmE6enp31/5+a46fjavDsA83bzj964iXi9Xp9Yn1g+6XQ6isViNJvNqNfrUa1WPxpbbaVSKc7OzuL8/PzO4xmXjGsaY8d4ZBBzINPQfZG1v79/axtzHpMyzHiLMN9xP41GI3Z2diKVSsXr168HhlDmuOkQhJF4d/3hGtXNcmqS5+abpmazGaVSKY6Ojj4aH7VaLXZ2du7cUNO4ZFzTGDvGI8MwBzJpxWKx8/yuO/OZ85iUYcZbm/mOcVQqldjb2+u8Xl9fj0Kh0Pcuk+a46bA0ksQb93/gm+l9910/IOLDGMnlcnF5eRnlcvmjMVOtVuP4+PjW7zUuGdc0xo7xyDjMgdxHo9Ho7D9TKBTurFgw5zEJw463u5jvuEuz2Yzj4+PY2trqCcHa8vn8rV/v/v5xmOP6E4TBhCxzIs707e7uxm9/+9uP7ghzdHQ01fMal4xrGmPHeEwucyCjat/tL51O962WmBRzXrJNcryZ7+hWrVajXq9HNpu9c9+5SqVyZ1A6Kea4XoIwEm+Uu8nM4jg8XKlUKs7Pz3veGDWbzVs3XDUuGdc0xo7xyCSYAxlWrVaLUqkUqVTqzuVkbeY87muU8TYs8x1tu7u7USwWo1gsxunpabRarSgWix/9vvL5/K3BkjluOgRhJN7jx48X6jg8fC9fvux5fdubLuOScU1j7BiPTJI5kEGeP38eERGvX78euETNnMd9jTLeRmW+4zb7+/txfn7+UZBUKpU+amuOmw5BGIk3bpJ9M7Ff5kSc2cpkMj2l0bdtWGlcMq5pjB3jkUkyB9LPwcFB1Gq1KJfLHy0tu405j/sYdbyNynzHXdLpdLx+/brna2/evPmonTluOgRhJN7Tp097Xg+71vnm5oBbW1uT6hIJsLOz0/ffjUvGNY2xYzwyaeZAblMqlaJUKkWxWIzd3d2hvsecx7jGGW/jMN9xl0wm0zP2bgtKzXHTIQgj8ba3t3teD3s72Xq93vP6rs0P4Tbdpfe3lRUbl4xrGmPHeGTSzIHcVK1W4+DgIIrFYuzv7w/9feY8xjHueBuH+Y5+Pv/8887z2wIpc9x0CMJIvJuJ+LATQfdElUqlJr6nAA9b93i5razYuGRc0xg7xiOTZg6kW61Wi52dnSgUCiOHEuY8RnWf8TYO8x39dC/JndX4MOYEYRCZTKZn0rltbfZtzs7OOs9vTiYwSPf4ua1k3rhkXNMYO8Yjk2YOpK3RaMSzZ88il8tFLpcb+fvNeYzivuNtHOY7hnXb79EcNx2CMIiIzz77rPO8VqsN9T3d7fL5/MT7xMPWXVp8V1mxccm4pjF2jEcmyRxIxIdQYnt7O/b396NQKAz9PcfHxz1fM+cxjEmNt1GZ7+inuxrrrv3kzHFT0AJa5+fnrYjoPAY5PT3ttE2n0zPoIQ9NOp1uRUQrl8vd2ca4TLZ6vd7z+y8Wi0N/7zTGjvH48N1nzI3KHMjl5WUrnU639vf3R/q+TCbTOj8/7/maOY9BJjneRmW+o59CodCKiFYqlbqzjTlu8lSEQXx8a+NKpdK3fblc7jxf+jScmatUKtFoNCKVSsWLFy/ubGdcJtuwd/C5zTTGjvH48N1nzI3CHEiz2Yzt7e1Ip9ORz+ej0WgMfFSr1c4Gz9176rRfm/O4y6TH2yjMdwxydHQUEREvX768s405bgrmncTBouj+JDyTydzZ7vLystMum83OsIcsqtPT01YqleqMiX6fHNbr9U7bYT5hNC6Tq1wu93xSVygURvr+aYwd4/FhG3fMmQMZVSaT6RlrozzuqlQ053GXSY438x2DFAqFViaTaeVyudbl5WXftrlcbmC1YJs5brIEYdCl+yLgrguA9h/TVCo1cHIjGfb39z9643Rb6X37zVM6nW7V6/Whj29cJk97CUf3mOr3BuUu0xg7xuPDdJ8xZw5kFPcJJQZ9hm/O46ZJjzfzHf10B0btx10h1+7ubt/f823McZMjCIMbuj/p2d3dbZ2fn7cuLy9bp6ennUkgk8k8mEmA++teM9/9SKVSrd3d3db+/n5n7Azz6dBd5zAuH7bLy8vW7u5uK5vN9n1Tns1mO2NgGNMYO8bjwzCpMWcOZFjtC79xH8Ps72TOo20a4818xyA3P1TqHh+5XK6VzWY7r0cJSdvMcZMhCIM7tMta25NCKpVqZbPZVrlcnnfXWED1er21v7/fSqfTPWMmnU63dnd3W+VyeSJ/PIxLxjWNsWM80mYOZNGY85gW8x39XF5etnK53Ee/u/b4KBaLCzs+kjTmVlqtVisAAAAA4IFz10gAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAS6rZbMbe3l7UarW5nP/4+Djy+fxczj0OQRgAAADAEqpWq/Htb3870ul0ZDKZztdXVlam/mjb39+PWq0WW1tb0Wg05vFjGMlKq9VqzbsTAAAAAAyvXYlVLBZjf3+/59+6g6puqVQqHj9+3Hl9W3CVTqc7z9+/fx/NZvPWY92Mkw4ODuLVq1fx+vXrnlBu0agIAwAAAFgi/UKwm8HV/v5+nJ+fR6vVisvLy6jX653HzcAqm832/Pvl5WW0Wq2o1+tRKBT69qlYLEY2m43t7e25LdMchiAMAAAAYEmUSqXI5/ORy+U+CsFuKpfLUSwW712hlU6nI5fLxenpaedrt1WKlcvlyGQy8ezZszsryeZNEAYAAACwBCqVShwcHEQmk7mzQuv9+/cR8aG6a3d3d6Lnz2azkc1m+7Ypl8vRbDbj2bNnEz33pAjCAAAAABZcs9mM58+fR0QMXKYY8WHPrmloH7cduN2UTqc7G+gv4t0kBWEAAAAAC25vby+azWZkMpm+VVntJYmDKrfGNcxx2wHY8fFxVKvVqfRjXIIwAAAAgAVWqVQ6gdKLFy/6tk2n01EsFiOVSk2lL6lUKorFYs/dJ2/rQzswm1Zl2rgEYQAAAAAL7OjoqPN80L5fqVRq4Cb697W/vz8waNvZ2YmIiEajEaVSaar9GYUgDAAAAKDL3t5erK+vx8rKyq2P7e3taDQaEfGh4um2tltbWxO5c2K1Wo1arRYRce+7P85S9xLKYfY0mxVBGAAAAECXcrkcl5eXt1ZWFQqFOD8/j3Q6HRERxWIxXr9+3fn3TCYTl5eXUa/XJ7I8sVgsdp5Pa9+vaegO7RqNRlQqlTn25iuCMAAAAIBbFIvFj8Kner3+Ubuzs7OI+BBUnZ+fT3R/ru4A6fvf//7EjjsL3T+709PTOfbkK4IwAAAAgDuUy+We16VSqWfJY7PZjHw+H6lU6qO299VeEtnWrkJbFt1VYa9evZpjT74iCAMAAAC4Q/suid2eP3/e87zZbEa5XJ74nRrbd4psW7Yg7Fvf+lbnebPZ7OyrNk+CMAAAAIA+9vf3e5b5VSqVqFarUSqVolKpfPTvk/LmzZue15MO2qbtZnB3s8JtHr427w4AAAAALLpisRhbW1ud13t7exHxIey5WTE2KZO46+Q83Qzu3r9/P5+OdFERBgAAADBAOp2OQqHQed1sNjtLIqdlEYKjSVqEYE8QBgAAADCEXC7XswH8tHUHR8u2LDIi4vHjxz2vf/e7382pJ18RhAEAAAAM6WYFWHuJ5LQtQjXVQyAIAwAAABjSzf3AGo1G5PP5qZxrGavAut1c2tl9F8l5EYQBAAAADKFWq8Xx8XHs7u72fP34+Hgqd0S8edfFZbcIwZ4gDAAAAGAIe3t7kUql4uXLlx9Vhk1jieTNPbaWbXnkzf4uQrAnCAMAAAAY4ODgIBqNRrx8+TJSqVTs7+/3bJzfaDTi+Ph4oufc2dnpeb1sd5FsNBo9r58+fTqnnnxFEAYAAADQR7VajVKpFNlstmdZ5M2N8/P5/Efhz31ks9me15M89ix03yUynU5bGgkAAACw6NrLHm8GX+l0OgqFwq1tJyGVSvUsJzw9PZ3YsW8z6Yqz7uDuZqg3L4IwAAAAgDvs7e1Fs9mMYrF4a0VTLpfrCavaG+pPSncFWrVandhxIz7ew2vSe5B193cae6iNY6XVarXm3QkAAACARVOpVGJvby/S6XTU6/U729Vqtdje3u752vn5ec8eYuNqNpuxvr7eeT2pGKfRaMTW1tZHX7+8vJzIEsbufg/6+c2SijAAAACAG6rVaqeKqbsq6za33Q3x2bNnUavV7t2PVCoVuVyup1/3VavV7qzQ2tvbm0i/X7161Xmez+fvfbxJUREGAAAA8H8ajcatYVA2m41yufxRtdTx8XEUi8U7N7LPZDJRLpdvDcuG1V1dlcvlPtqXbFjb29sjhVz3qeRqn2uRqsEiBGEAAAAAC69UKsXBwUGkUqm4vLycd3f66l52OaklopNiaSQAAADAgtvf34/d3d1oNptRKpXm3Z2+Dg4OIuJD9doihWARKsIAAAAAlsbW1la8f/8+fvvb305kU/tJq1arsbOzE5lMJs7Pz+fdnY8IwgAAAACWRHvZ4e7ubpTL5Xl3p0ez2Yxvf/vb8fjx4zg/P1/IoM7SSAAAAIAlkU6n4/z8PCqVSmcJ4iJoNpuxvb290CFYhCAMAAAAYKm0lx2+evVqIcKwdgjWDukWNQSLEIQBAAAALJ12GHZ2dhY7OzvRbDbn0o9arRbf/va34+DgIE5PTxc6BIuI+Nq8OwAAAADA6NoVWMfHx/H+/fu5hFCNRiNev369cHeHvIvN8gEAAABIBEsjAQAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAj/H9l0woqSFW/bAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf1ElEQVR4nOz9T4wieX7n/7/I7rXGsk0F2dZKKZB2OnBbsye7IWsPe/MkrC+2dj0NVZIt24edAvdotQfkga7x2ZMD4+Gy0m5Djg+/8c/SZsGMbdkHf5uo9n0rkx7frF0T1SMlQlppMqMYWx7ZbuJ7qC8YMhMI/iQBGc+HlBJkfvjEmz9Z3fHK9+cTIdd1XQEAAAAAAAD33J7fBQAAAAAAAACbQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQ3vS7AGAZP/VTP6Uf//jHeuONN/Sv//W/9rscAAAAAADg0f/9v/9Xn332mT73uc/p7//+7zd67JDruu5GjwiswRtvvKHBYOB3GQAAAAAAYEl7e3v67LPPNnpMOsKwk4ZB2N7eng4ODu70WL1eb2PH2rbjB/XYfh8/qMf2+/gcm/c8KMf2+/hBPbbfxw/qsf0+flCP7ffxg3psv48f1GP7ffxdPfbwsW+88cYdVTeDC+ygaDTqSnKj0ei9Ota2HT+ox/b7+EE9tt/H59i850E5tt/HD+qx/T5+UI/t9/GDemy/jx/UY/t9/KAe2+/j7+qx/aybzfIBAAAAAAAQCL4ujXznnXf8PPyEUCik//2//7ffZQAAAAAAAOCO+BqEdTodhUIhuT7u1z88figU8q0GAAAAAAAA3L3AL430M4QDAAAAAADA5vh+1UjXdZXJZGSapi/HdxxH9Xrdl2MDAAAAAABgc3wPwur1ur785S/7WkMmk9Ev//Iv+1oDAAAAAAAA7pbvSyNTqZTfJejhw4d+lwAAAAAAAIA75ntH2P7+vt8lAFutUCio3+8rHA5z7AAd3y9+P++gfub8ft39FNTX3e/33O/j+8Xv5x3Uz5zfr7ufgvy6B/m5+ymor7vf77nfx/fLrj7vkOvjbvFvvPGGrq6ufH/RXr16pf39fX322We+1gHvYrGYut2uotGoLi4u7s2xAInPHDaLzxs2jc8cNo3PHDaJzxs2bVc/c37W7evSyG26YuM21QIAAAAAAID18zUIK5fLvneDSdKDBw9ULpf9LgMAAAAAAAB3yNcg7Ktf/epGj/fpp59O/dmmawEAAAAAAMBm+X7VyE3K5/N+lwAAAAAAAACfBCoIOzs787sEAAAAAAAA+ORNvwtYxqeffirHcTyPt21btVptoccAAAAAAADgftmJIOzTTz9VuVyWZVmybXupOVzXVSgUWnNl8Fuv11MsFps5plAoqFAobKgiAAAAAACCq1qtqlqtzhzT6/U2VM1NWx+EPX36VJVKRdLrMAsYNxgM1O12Z47p9/srHaNQKKjf72/FFU4RDHzmsEl83rBpfOawaXzmsEl83rBp2/iZ6/f7c8/T/RRytzhd+u53v6tsNitJo26uVcoNhUL67LPP1lIb/BWLxdTtdrW3t6eDg4OZY+kIAwAAAABgM7x2hA0GA0WjUV1cXGyoste2Ogg7PDxUu91WKBSS67oyTVOJREKmaUqS3nrrrblz/PCHP5TjOHr27JlevXpFEHZPDIMwP35pAAAAAADA8vw8p9/qpZHDEEySWq2Wjo6Olp6rWCzqnXfeWVdpAAAAAAAA2DF7fhcwi2EYkl6HWKuEYJJkmqbefvvtNVQFAAAAAACAXbTVQdhwCeTDhw/XMl+tVlvLPAAAAAAAANg9Wx2EDbvALi8v1zofAAAAAAAAgmerg7Cvfe1rcl1X7XZ7LfN9+9vfXss8AAAAAAAA2D1bHYQ9ePBA3/jGN3R6eqof/ehHK8/H0kgAAAAAAIDg2uogTHq9UX4ikVA2m11pnpcvX66tswwAAAAAAAC7502/C/Ci1Wrp8PBQ77zzjkqlkvb39z097vLyUo7jqNPp6NmzZ3dcJQAAAAAAALbZTgRhH3/8sSSp0+kon88vNYfrugqFQussCwAAAAAAYGNcVxq4s8fshSTij+m2Pgh7//33Va/XJUmhUEiuO+cdvwUBGAAAAAAA2HUDV3rz92aP+effl94gBplqq/cIOzk5Ua1WG4Vfy4RgqzwOAAAAAAAA98dWd4QNr/I47ARLpVJKp9MyDGPhfcI+/PBDffrpp3dYLQAAAAAAgL/++BPpt5J+V7G9tjoIa7fbCoVCMgxDZ2dnevvtt5ee68mTJ3rrrbfWWB0AAAAAAMDm/PEn88f8dlN6Y0/6jXfvvp5dtNVLIw3DkCQ9ffp0pRBsONe77/IpAAAAAAAAu+fVj6Wv/Jm3sb/zp1L/x3dazs7a6iAsmXzdy2ea5lrmOzk5Wcs8AILNcRy/SwAAAAAQMH/Ulv7+n7yN/bt/lL7Tvtt6dtVWB2H5fF6u68q27bXMR0cYgGW1222VSiVFIhE9efLE73IAAAAABMyf/81i4/9iwfFBsdV7hGUyGb377rs6PT3V7/7u76483/e+9z196UtfWkNlALZJu93W6emp2u22bNseXSTDMAyZpqn9/X0lEgml02mlUqkbj89ms7JtW+fn56PvOY4jy7J0enoqy7LoAgMAAADgq6t/uNvxQbHVQZgkNRoN/dzP/Zz+5E/+RL/2a7+20lzHx8cEYfdMr9dTLBabOaZQKKhQKGyoouXU63Xl8/mFH5dIJCbCm2WFQqGFH2MYhq6urm79WTabVbPZXHjOVqt1a1B1G8dxdHx8rEqlMnNMu/26H9iyrNHYRCKhVCqleDyuVqulZrOpRCIx8dgnT57Itu3R4wEAAADAT5GfvNvx61KtVlWtVmeO6fV6G6rmpq0PwkzT1Icffqgvf/nLKwVhr1694oT2HhoMBup2uzPH9Pv9DVWzvFwup0ePHsm2bR0fH88MkVKplEqlkg4PD0cXlFjVcAmyZVkqlUpTu59M01SpVFIqlZq5d1+j0ZDjODo7O1O5XJZlWVPHFotFPX78WKZpen4+pVLp1gAsk8mM5hrOZ9u2bNtWo9HQs2fPRuHY9X8Prj/nRqMxuh2Px9e2RBsAAAAAlvGrX5A++j/ex//KF+6ulln6/f7c83Q/bXUQ9r3vfU+S9LM/+7OKRCJ65513lMlkFp7HcRw9e/Zs3eVhC+zt7eng4GDmmHA4vKFqVmMYhhKJhBqNhvL5vOr1+o0xmUxmIqBZJ9M0lcvlRp1Stzk/P/ccVhmGoVQqpVQqpWQyeWsQXavVlMvlPNdo27bS6fSNUCqXy6lWq936mGEolkqlVKvVVKlUVCqVPB9Teh0+3vZ+AAAAAMCm/GZC+uAvvW2Y/9M/If1WYv64uxAOhxWNRmeO6fV6GgwGG6poUsh1XdeXI3tweHioTz75ZHTfdd2llnCNP/azzz5bV3nwUSwWU7fbVTQa1cXFhd/lrF273R5dNXXcIksHV3FbcLVKCDdt6eci//xYlqV0Oj3xPcMw9Pz58xvLGuexbVvJZHKiC2zWUs/rHWh3GUgCAAAAwDTfOZd+28MuNP//R9JvbPH1Av08p9/qq0Y+evRIruuOTpaXDcGAXTNt2eGs5Yh3ffxVjn3bYxdZ1tlut9cWgg3refny5UQNbIYPAAAAYNt5Cbe+k9nuEMxvWx2EDTtIQqHQKBBb9gvYJdNCov39/c0WsgVs29bR0dGN7zcajaVCsCHDMNZyoYFt02w22c9shln71QEAAAD3wa8Tgs201XuEPXjwQIlEQp988onK5bISicRSQYBt2/r617+u73//++svEriHbvs9e+utt9Y6n9ff5Ww2e6Nba7iX2apM01SxWJx55clt0W63VavVZFmWbNuWYRja39+XYRgyTVOPHz+W9Ppql+Vyeebea5ZlKZvNan9/X7VabSPLbf0yvAhEo9EYhWDb9MeRIL0XAAAAwDbY6iBMkh4/fqx4PK6vfvWrS8/x7rvv6r333gtkNw2wyyzLunWT/XK5vLZjPH36dBSEOY6ztitxrovjOHry5MnoSqKmaY4uGmLb9ugKmONXGp23zHMYLjqOo3w+r06nc2f1+8W2bWWzWdm2vdXLXoPwXgAAAGB99kLSP//+/DGYbquXRkqvr9a2rr/eHx4ermUeAJtx2wb7mUxmrWGVYRgLXbly07LZ7CjkqtVq6nQ6ajQaajQaOj8/V6fTudFFNC9MCcIfBUzT1Pn5ua6urlQsFv0uZ6ogvBcAAABYn1BIemNv9hfbq8+29UHYu+++u7buj//6X//rWuYBcPeGSwCve/r06dqPlc1mJUmXl5dLPX64vC0ejysUCikSiSidTqter69UV6VSGS3nKxaLtwZ2pmmq1WpN/Ds5b4+wWq0m0zRlmmYgrn55/UIL2yRo7wUAAADgt60PwiTp7bffXss8/+2//be1zAPg7k0LBVbZIH+aVCqlcrm8cHeO4zhKJpNKp9MTm9Q7jiPLspTP5xWPx29d3unF8fHx6PZt3XHjisXiqPNpXqCXSqXU6XTU6XTu5PXcNn51Xc17z6TgvRcAAACA33YiCFuXs7Mzv0sA4NFtV/e7y43Ei8XiQksubdvW22+/PTfksm1byWRy4asVLrO31fCiIlw10n/1en3ljkAAAAAA67f1m+Xf5tNPP13oBNG2bdVqta3eMBnAv7Bt+9YwZ1s6ZhzHGW1ynslklE6ndXh4qMvLS7VarVuvQplOp9XpdGSapudjjLMsy9NeZk+fPh0t9YQ/bNv21A0GAAAAYPN2Igj79NNPVS6Xp+4Z5IXrugqxYxywE6b9nsfj8Q1Xcrthd1er1brRpZZKpZTP55VOp288j2w2q/Pzc0/HuB6YlUolPXr0aG7X2vCKktt4BcwgcBxnq/ckAwAAAIJu65dGPn36VPF4XPV6XZ1OR67rLvUFYHdMC8K26Qp7t4VgQ8MN7K9rt9uel0gahjERZA33I/PyxwDXdQnBfOA4jo6OjliaCgAAAGyxrQ7Cvvvd76pcLo+CLDq6AP+USiWFQqGlvpLJ5ELHmraMeVvCHcMw5u5XZprmrVe8XeQquNfH2rY9+sPAqtrt9mgz/1kcx1G9XlcymZw47nD5XyQSUSgUUjwev3VJqG3bKpVKoytqxuNx5fP5W9/j4XGuf36uS6fTo/nGv9a5/L1er08cJxKJKJlM3vocpdev5217xo3XN+219vpeDDmOo0qlonQ6PXr9h/WVSiVPQZxt26pUKjcu5jD+HsTj8dESYAAAAOC+CLlb3C51eHiodrutUCgk13VlmqYSicRoydBbb701d44f/vCHchxHz54906tXr/TZZ5/dddnYgFgspm63q2g0qouLC7/LuRO3BQBXV1cbCYPy+fydb/RtmqY6nc5Cx5/VhXWXSqXSRACSSqVu7fi6TSQSuREkLPLPbjqdvrWLLJFI6OTkZKF909rttmq1mp49ezaqyTAMXV1dTYwbhl+np6cTIUmtVlMul7vxeozL5XKq1WqSbr5u40zT1Pn5+a2f5+vv/7TXq1KpqFQqje5P+/1ot9sTYeys17/ZbCqbzcowDJ2cnIyWmrbbbWWzWdm2fWvtjuPItm1ZljVR0/WlsMP3y+t7cV29Xh/tP1Yul5VKpWQYhtrtto6Pj0fvVyaTuXHlVcdxdHx8PHGF02GNpmnq6Ojo1os/GIYxGgMAAACsg5/n9Fu9R9gwBJNenwAfHR0tPVexWNQ777yzrtKAwMnlcktvAH52drbQY6eFfdvSmbJIGJlKpdRsNie+1263PQdYrVZL2Wz21jmSyaQymYxOTk7m1mTbtk5PTz13HSUSCRmGMfG+nZ+fK5lMan9/X41GQ4lEQvv7+zo+Ph4FXsOgplQqjS4ecHh4KOn152DYYWTbto6Pj2/tkMtms56C2EwmMxE6rcqyrNGFBp4+fToKwaTXr0ej0RgtT33y5MlE0GQYhhKJhC4vLyfmvO19XvS9GBoGi7cFU6ZpKpPJjD4rzWZT8Xh8IrC7vLxUOp0eBZ1DZ2dnOjo6UiqVUrlclmmao0DPcRw5jqN8Pu85/AUAAAC2mrvFIpGIu7e3537wwQdrmS8ej69lHvgvGo26ktxoNOp3KXdG0o2vq6urjRw7l8vdOHa5XF56vvPz8xvzmaY5dXy5XL71+ddqtaVrWEWxWJyoI5PJeH5so9FYy/OY9posM+f4XIZhzBybSCQmjtNqtW4dl0qlJsblcrlbx42/HtOO3Wq1Juaa5urqytPvx/XP3zSZTGbu533ePF5rH/L6XtRqNc/vtWmao7GpVGru8zAM49b39fpnd1P//gAAAOD+8/Ocfqv3CBv+tfvhw4drmW+4XAfAdtv2jrBF3LacbJnnUSwWdXV1NdGlNG54pUovcy+yxG38AgW5XG7q0tTrV0qc9u/teP3DbqNtNO0zOP79dWyK7/W9GHa+GYahXC7naaz0usvttqW148/j5OTk1vf1+mft7OzMU60AAADANtvqIGy4FPL6UpNV5wOw3aaFA9P2FNtmtwUqP/zhD5eeq9Fo6Pz8/NYld5Zl6ejoaK3hktdloOPv2SJLR7fpCosnJycql8tqNBpzwyZpc8FsvV4fHctLcJbL5Sbeg0Uu0HDd+PG26b0CAAAAlrXVQdjXvvY1ua576+a9y/j2t7+9lnmwPXq9nmKx2MyvarXqd5lY0LSuo9s6W7bdbcGFlwt9zJJIJHR+fn5r11W73daTJ09Wmn8Zy17EYV1/6FgHwzBULBZv7bprt9tr+2/Rosb35vLaQTb+O7SLvzcAAADYXdVqde55eq/X862+rQ7CHjx4oG984xs6PT3Vj370o5XnY2nk/TMYDNTtdmd+9ft9v8vEEqZtMr6tS+kWsa6r7+VyOXU6nRshVLPZ3OrwYxNXPl0H27ZVr9dlWZYSicRCV+hcdx2Luv4Zuw+/NwAAANgN/X5/7nn6YDDwrb6tvmqk9HpfnOFV0/7yL/9y6Xlevnzp21/zcXf29vZ0cHAwc0w4HN5QNVinx48f3/o7a1nW1H2ytpVhGBNBxLqCsOFcw6s5jh+jVqtN7azDbO12W6VSSYlEYqVlhesy/r56DcWuX5Hy8vJyZwJIAAAA7LZwOKxoNDpzTK/X8y0M2/ogTHq9LOTw8FDvvPOOSqXSxObNs1xeXspxHHU6HT179uyOq4QfDg4OdHFx4XcZO6fdbuv4+FiNRsPvUqbK5XITm34P1Wq1nQvCrnfjzOsssixLpVJJ5+fnnuY3TVMnJyfKZrOj7xH8Lyefz6teryuXy21FCCYtt0H/9f9OrjN8BQAAAGYpFAoqFAozx8RiMXW73Q1VNGkngrCPP/5Y0uuNsvP5/FJzuK6rUCi0zrKAnfXkyRPPgbJfDMNQJpNRs9mc+L5lWWq3274tU1vU9RDMS5eWaZpqt9uyLMtzV9f1cJCNzRc3DMGk1TaYX7fh50H6lyttzuvuGt97jRAMAAAA+BdbvUeYJL3//vtKp9P65JNPFAqF5Lruwl8A/sUwSEqn01PHrHsD82XnmxZG3NYptqq72kPp7Oxs4r6XMH8YXCwb/Evzu87ug3V+Ttvt9igEM01zq5YRPn78eOL+sM5Zxq+wumsdlAAAAMBd2uog7OTkRLVabRRmLRtqEYYBrzmOM1o+t+jJ8Q9/+MO11uIlxDBN89YwzLIsVSqVtdVi27aSyeRKwdM016/45/V1N01Ttm17Dv2ud4BdD092yfVuxWkh5Tq73sYvLjBrXj82nc9kMhPBnJcLv4w/n6dPn95FWQAAAMBO2uqlkcP/2R92gqVSKaXTaRmGsfA+YR9++KE+/fTTO6zWO9u2lc/nJ06QZ40tl8uyLEu2bcswDJmmqcPDQ5VKpa1a8lKpVNRqtXR2dibHcWSaphKJhPL5PJt2L+guTrYdx9HR0dFoWdWin5111+R1vuEFM65fBXG4mfmqny3LspROp6eGbqsaX9q5yJVrh0FYpVJRPB5XLpebOX58btM0VSwWFy/2Fl7fp/Fx8x4z7+fXu9nq9fqN53NbSLjODeGbzeaN0PK24113/ffKtu2J73lZ1nib8T3gbNueuWy23W6PllKWy+Wt6m4DAAAAfOdusVAo5O7t7bn7+/uubdsrzXV1deXu7e2tqbLpx5Dk6SuXy82dr1wuz52nXC57qs0wDM+1LVprq9UazZ9KpdxWq+V2Oh230Wi4pmmOvn91deWpVi+i0agryY1Go2ubc5ucn5/f+l50Op2l5mu1WqP3wst7mkgkbhw7k8ksdWzXdd1arXbr81lEJpNZ6XfguqurKzeXy7mSXNM0Z34+i8XixDFTqZSnY4w/by+/8+OGtY0/flqN11/feZ+T6+NnSaVSnp5Do9HwPOf4uEajMfe4w2O3Wi230WiMXpvxf3uG92/TarUm5rrtdbw+ZvjZarVabrlcdk3TdDOZzMTvUSaTcVutllssFifmvP5Zubq6cjudjpvL5W58Xhd5L8b/m2AYxq3P4+rqavT7O+v98vIeXB+37O8aAAAAcJ2f5/RbHYRFIhF3b2/P/eY3v7mW+ZLJ5FrmmcZLcOX1RHV4EmgYhpvJZNxisXjjJMzLSYzr3jxBXfRr1vzjJ4/TTrqGJ2XzwoZF3Pcg7HoIMn5S7SUMu7q6Gp2gL/qZ6XQ6Uz8Ly75/twVrktxarbbQPNcDqeFXIpGYGoJcd3V15ZbL5Ynwdt7zun5cwzDmHmf8dfQanI2bFh4O/z2o1WpuLpebeH+9fj6uvx/TPg/Xw/1EIjF1zutB5bT39nrgNO3fjaurq6kBvmEYo/d7fEwikXA7nc6N99NrbdPC1vEQ6Lbfzesh8bTP6W3P1et7MdRoNEbP2TAMt1aruZ1Ox+10Om6tVht9HmaFVl7fg+vjlvkcAwAAALchCJsilUq5e3t77ne/+921zNdut9cyzzReu67mnUwMT6KmncjcFrjNcr2zYtGvacZPVE3TnDpu1UDgNvc1CDs/P595Mr6ur2mdJLVabebn2DRNt1areQ7Ezs/P537+isXiQp1urVZrarA2DI5rtZrbarXc8/Nzt9VqubVazS2XyxOPMwxjbugwdFs4aJrm1PBtPKxYtpNu2O3UaDRGXVCpVMpNJBIT79HwOc8LAoefrWnvbyKRGP2bM2vssDNq+Bm4HsZd/7duOGer1Zr6WTBN89YwZti1N5w/kUi4xWJxYszwe9c/Q1dXV3Of723HHHZ/Deu63u11dXU1eh7jr9l14yF0IpGY+Kwt8l5MU6vV3FQqNRGKDR837fdz1u/j+HvQ6XRmjqMzDAAAAKvy85w+5Lrbu5N8s9nUo0ePVKlU9Lu/+7t+lzNTvV5XPp9XsViceTU+STo8PJy6Z4tt24rH42q1WjP3Psrn8xNXDjs/P7/1KnHD+UzTVKlUUiqV8rS/WjKZlG3bSqVSU/cyS6fTo32barXazD2MstnsaK+keWO9iMVi6na7ikajuri4WGmubTD8/GxCIpHQ+fn5xPdCodDC8xiGoaurq1t/Nv5+L2Le535cs9nU8fHxaC8kr0zTVD6fVy6XW2jvpOGeVNefl2EYo99px3FGe+QZhqFGo8H+eAAAAABwjZ/n9FsdhEmvA5m9vT29ePFi5bm+973v6Utf+tIaqropHo9Lmrxk/TKy2awePnw4d6Nrx3EUiURG98vl8q2PGZ64n5+fez7pH4Zn0vTQanyMJF1dXc2cv9lsjjZ6nhWgeHXfgjAsz3EcWZal09NT2bYtx3FGV/0zTXN0YYCHDx8qk8msfIGJ68cbHnP8QhbZbJYADAAAAACm8POcfquvGilJjUZDP/dzP6c/+ZM/0a/92q+tNNfx8fGdBGHNZlO2bS90RbhpHMfxdLW34Un38IR/WghVr9f1/PnzhTpfxjteHj16dOuY8avrpVKpufOPX33NcZxbr8gGLMMwDGUymY19njZ9PAAAAADA+uz5XcA8pmnqww8/1Je//OWV5nn16tXCS6i8Oj4+lmEYU0OjRUxbhniby8vL0e3Dw8NbxzQajVuXTM5yenoqaXbANb4s0+v84504w2MAAAAAAABsylZ3hH3ve9+TJP3sz/6sIpGI3nnnnaW6MBzH0bNnz9ZdniSp3W6PArZIJCLTNJVKpZROp++0Y8RxHDmOI+l1YDUtjFp0eZbjOKPnM1zKeN31QPHhw4ee5k4kEqMOtmX2jwIAAAAAAFjFVgdhX//61/XJJ5+M7ruuq0qlstRcrusutSH4PKVSaeK+bduq1+ujjqlMJqOnT58u3JU1zzDYM01TjUZjbfOOd3pN63AbbpA/5HXPpevj2u322l8XAAAAAACAabZ6aeSjR4/kuq6G+/nfRZC1Ctu2b4RC1zWbTSWTybVeEdBxHOXzeSUSCbVarYX2/5pnuGQxkUhMnff6hQu8Hv+tt96auH92drZwfQAAAAAAAMva6iBsGB6FQqFRILbs110wTVO1Wk3lclm5XG5mZ1S9XlcymVz5mLZtK5lMyjAMPX/+fOUr4I0bXxb5+PHjmTWMW7YjbNUrbAIAAAAAACxiq5dGPnjwQIlEQp988onK5bISiYT29/cXnse2bX3961/X97///bXXmMvlJu47jqN6va7j4+PRHl5D7XZb6XR6oQ3xxzWbzYl9uyKRiMrlsqerTHoxvo/arP3Nrgdhy7r++gAAAAAAANylkHtX7VJr8s1vflNnZ2drucrg/v7+xJUW71qz2dSTJ09uBD6LhFfDYK1Wq00NoDKZzFr2CUsmk6N9u87Pz6eOu75E1etHyLIspdPp0f1V6o7FYup2u4pGo7q4uFhqDgAAAAAAsHl+ntNvdUeY9Pqqh9f3pFrW4eHhWubxKpPJKJVK6ejoaOJKi8fHx56DMMuy1Ol0lEqlpu5J1mw2ValUVuoM87oscp3W0RHW6/UUi8VWnqdQKKhQKKw8DwAAAAAA91W1WlW1Wl15nl6vt4ZqlrP1Qdi7776rcrm8lrnWNc8iDMPQ+fn5qNtKeh0AWZalVCo19/GZTObGMsV6va5SqTQRJJVKJeVyuaU3zve6LFJ6/ZzWEWKtY5P/wWCgbre78jz9fn/lOQAAAAAAuM/6/f5azsH9tPVBmCS9/fbba5nn3XffXcs8yzg5OZnYLL/VankKwm6Ty+WUSqWUTCYnAql6vb50V1itVpP0ekP7eZvf7+/vryUIW2a/t+v29vZ0cHCw8jzhcHjlOQAAAAAAuM/C4bCi0ejK8/R6PQ0GgzVUtDhfg7Dvf//7+sVf/EU/Sxi561oSiYRSqdRoaeOqG86bpqnnz59PhGvLLiEdXxY5rxtMWr6T63p4to6OsIODA/YIAwAAAABgA9a1rdBwjzA/7Ply1P9PMpnciiVpr169mgiU7sr4RvHrkEgkJoKrZcO18WWRXvYHu77XmtfusOsXKojH454eBwAAAAAAsA6+BmHbdMHKTdQyvuRwHcsCpcngatnlisMrNxqGoUQiMXf89dDQawDX6XQm7i+7NBQAAAAAAGAZvgZhoVDIz8NP2EQt40HYOpYFSpoIrpaZc7hxv/R67zEvrneEeQ3CxoM6wzDm7kUGAAAAAACwTnSEbdDZ2dno9rqXSUo3AyovFl0WKb0O38ZDN697k40//2VqBQAAAAAAWIWvQZgkvXz50u8SJgKauzS+NHBdywLHu7GWCdcWXRY59OjRo9Ht4Ub784yPK5VKno8FAAAAAACwDr5eNVKSnjx5og8++ECGYaxt3yyvLi8vZdu2isXiRo7XbDYlaa3HG4ZLhmF4uuLjuPFlkePBlhf5fF71el2SRnPMMj7GNE32BwMAAAAAABvnexB2fn6ubDbraw2u6975HmHNZlO2bcswDD19+nRt8x4fH0uSTk5OFn7s+LLIRd+DRCKhVCo1CriazebMIG7YeSbRDQYAAAAAAPzh+9LIIdd1fflalmVZikQiCoVCSqfTM5cH2ratJ0+eSJKeP38+c1P7SqWiZDKpUqk09yqQwzHFYnHhbjBpclnkMh1atVptdHsYyN3GcZxR91gqlfK8KT8AAAAAAMA6+R6ErRpIreP4y2g0GqOgyrIsJZNJ5fP5G+OGP9vf31en05m5D5fjOCqVSmq326pUKopEIlO7p7LZrCqVisrlssrl8sL1jy+LXHaZommaozBtWPNtjo6OJL0O3MY7wwAAAAAAADYp5PqYQr169cqvQ9/qwYMHnsdalnXr5vTD7qr9/X2dnZ2p3W6rWCzq6dOnMzvBhuLx+MQG+ONzmqapdruts7MzpVIplctlmabpueZx9Xp9FNy1Wq2V9uyyLEvZbFaO4yiTyejp06cyTVNnZ2ejYC+RSMzthltELBZTt9tVNBrVxcXFWuYEAAAAAAB3z89zel+DsF1n27bK5bIsy9Ll5aUcxxlt+p9IJPT48WOlUqmFwh/HcXR8fCzLsmTb9o050+m0Hj16tHKglE6nRx1h6/oIVCoVnZ6eTtR9eHiofD6/1NLNWQjCAAAAAADYTQRhwIIIwgAAAAAA2E1+ntP7vkcYAAAAAAAAsAkEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIHwpt8FAKvo9XqKxWIzxxQKBRUKhQ1VBAAAAABAcFWrVVWr1Zljer3ehqq5iSAMO20wGKjb7c4c0+/3N1QNAAAAAADB1u/3556n+4kgDDttb29PBwcHM8eEw+ENVQMAAAAAQLCFw2FFo9GZY3q9ngaDwYYqmhRyXdf15cjACmKxmLrdrqLRqC4uLvwuBwAAAAAAeOTnOT2b5QMAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAATCvQzCXr16pffff9/vMgAAAAAAALBF7mUQZtu26vW6fvCDH+jjjz9Wv9/3uyQAAAAAAAD47F4GYZZlyXVdmaapdDqtSCSir33ta36XBQAAAAAAAB/duyDs+fPnKpVKkiTXdUdf5XJ5Zhj2/vvv65133tHDhw/1ta99jS4yAAAAAACAeybkuq7rdxHrdHh4KNM09fjxYyUSCdm2rY8++kjf/OY3FQqFZNu2/s2/+TcTj3nnnXdk27bGX4p4PK7z83OFw+FNPwV4EIvF1O12FY1GdXFx4Xc5AAAAAADAIz/P6e9dR5gkPXv2TO+9957efvttHR0dqVwu6/LyUp///OdH3WJD77//vjqdjiSpVCppMBjo8vJSX/ziF/XkyRM/ygcAAAAAAMAduHdBWCgUuvX7hmHo/Px8FHoN1Wo1hUIhZTIZHR8fj8bWajVdXV3p008/veuSAQAAAAAAsAH3LgiLRCL61re+devPDMNQJBIZ3T85ORndLpfLN8aXSiVZlrX+IgEAAAAAALBx9y4IKxaL+upXv6qvfOUrt254f3V1Nbo97AZLpVL6/Oc/f2Ps4eHhjQ4yAAAAAAAA7KY3/S5g3VKplJ48eaIPP/xQtVpNmUxGDx8+lCSdnp6q0+nol3/5l5VIJNRutxUKhZTP52+d68GDB7Jte5PlAwAAAAAA4I7cuyBMet3pdXl5qe9+97tqNptqNpujn52dnenrX//6xFLIRCJx6zyffPKJ9vf377xeAAAAAAAA3L17tzRyqNFo6MMPP9TR0ZFc19WDBw/07Nkzvfvuu2o0GnrvvfdkGIY+/PDDqR1h9Xpd8Xh8w5UDAAAAAADgLoRc13X9LsJvzWZT5XJZ3/72t/ULv/AL6vf7+vrXv65vfvOburq6Ujgc9rtEXBOLxdTtdrW3t6eDg4OZYwuFggqFwoYqAwAAAAAguKrVqqrV6swxvV5Pg8FA0WhUFxcXG6rstXu5NHJRmUxGtm3r3XffVSgUGn3/G9/4BiHYlhsMBup2uzPH3HbRBAAAAAAAsH79fn/uebqfCML+P8ViUaZpql6vyzAMPX78WO+9957fZWEOLx1hhJkAAAAAAGxGOBxWNBqdOWbYEeaHe7c08uOPP9YXv/jFueO+973vKZVKEZLsqOHSSD/aKAEAAAAAwPL8PKe/d5vlZzIZvfHGG/rlX/5l/cEf/IG+//3v3zru6OhIX/7yl/Xpp59utD4AAAAAAAD4494FYclkUq7ryrIslUolJZNJvfXWWzeCsQcPHujk5ETZbFY/+MEP/C0aAAAAAAAAd+7e7RHWbDaVzWZ1eXkpx3Fk27aurq7UarVkWdZoXDqd1rvvvqurqyvl83n95V/+pY9VAwAAAAAA4K7duyAsl8upXq/r85///Oh7z58/17Nnz3RycjL63kcffaRWqyXXdfXy5UsfKgUAAAAAAMAm3bsgzHXdiRBMer0f2NHRkSqVir7+9a/r+fPnevz4sV68eCHbtvX48WN/igUAAAAAAMDG3Lsg7NWrV1N/9uDBA5XLZb18+VKlUkmVSuVGaAYAAAAAAID76d5tlv/222/rW9/61twxz549Uy6XY6N8AAAAAACAgLh3HWHFYlE/93M/J9M09Wu/9mszxz579kwPHz7U+fm5wuHwhioEAAAAAACAH+5dR5hpmvrGN76hTCajr3zlKzPHGoahd999Vx988MGGqgMAAAAAAIBf7l0QJr3uCvvSl76kDz/8UD/7sz+rb33rW+r3+7eO3d/f1+np6YYrBAAAAAAAwKaFXNd1/S7iruTzeZ2cnCgUCkmSMpmM0um0Dg8PJUmnp6cql8sKhUL67LPP/CwVC4rFYup2u4pGo7q4uPC7HAAAAAAA4JGf5/T3bo+wcbVaTel0Wk+ePNGrV6/UbDbVbDZvjEskEj5UBwAAAAAAgE26l0sjx2UyGV1dXekb3/iGHjx4INd1J74Mw9DJyYnfZQIAAAAAAOCO3eulkbf55JNPZNu2bNuWaZpKpVJ68OCB32VhQSyNBAAAAABgN7E0cgnvv/++/sf/+B8LP+7dd9/Vu+++ewcVAQAAAAAAYJvt7NLIZ8+e6Uc/+pHfZQAAAAAAAGBH7GwQdnV1pc9//vN6//339fHHH/tdDgAAAAAAALbczu4Rtre3p1AoNPG9VCqldDqtTCajz3/+8/4Uho0Yrife29vTwcHBzLGFQkGFQmFDlQEAAAAAEFzValXVanXmmF6vp8FgwB5hyxjP8SzLkmVZKpVKMgxDjx49Ujqd1pe+9KWZc3z729/Wl7/85bsuFXdgMBio2+3OHNPv9zdUDQAAAAAAwdbv9+eep/tpZ4Owb3zjG/rggw8UCoVkmqY6nc5EKHZ1daV6va56vS5JSiQSevz4sVKplH7xF39xYq5Wq0UQtqO8dISFw+ENVQMAAAAAQLCFw2FFo9GZY4YdYX7Y2aWRktRut5XNZuU4jk5OTuS6rv7n//yfev78uRzHmRg7vozSMIzRMkpJyufz+uyzzzZZOlbk56VWAQAAAADA8vw8p9/ZjjDpdZdXp9NRqVRSNptVPp9Xo9GQJL18+VLNZlOtVkuWZd3oFms2m2o2m36VDgAAAAAAgA3b6Y6wce12W48ePdLe3p4ajYZ+4Rd+YeLnz58/V6PRkGVZsm174mehUIiOsB1DRxgAAAAAALvJz3P6vY0e7Q4lEgn97d/+rX7pl35JiURCX/va1yZ+fnR0pA8//FB/+7d/q6urK9VqNaVSKZ+qBQAAAAAAwKbdmyBsqFar6f/5f/4fffjhh/r5n/95/fVf//WNMQ8ePNCTJ0/00Ucf6aOPPvKhSgAAAAAAAGzavQvCJCmVSsm2bf3CL/yCEomEvvWtb80ce3R0tMHqAAAAAAAA4Id7GYRJr68M2Wg0dHp6qq9+9av6d//u3+kHP/jBrWOz2eyGqwMAAAAAAMCm3dsgbCiTyejy8lIPHjyQaZq3doc9efLEh8oAAAAAAACwSfc+CJNed4e1Wi0dHx/P7Q4DAAAAAADA/RSIIEySPv30Ux0eHqpYLOrs7EymaeoP//AP/S4LAAAAAAAAG/Km3wWsw6effirbtuU4jmzbVqfTkW3bsm1bl5eXchxnYnwoFJLrusrlcmo0Gmo0GvqZn/kZf4oHAAAAAADARuxsEPbw4cNR+DWL67ozf/bRRx/pi1/8ol68eLHmCgEAAAAAALBNdjYIOz8/H3V2zWIYhkzTHH3F43Ht7++P7j948GBDFQMAAAAAAMBPOxuEjYtEInr06NFE4EXIBQAAAAAAgHE7vVn+e++9p0QioaurK9XrdZ2dnenq6kqRSIQQDAAAAAAAABN2NghLpVJ69uzZKPw6PT2V67oqFouKx+N655139P777+uv/uqv5s718ccfb6BiAAAAAAAA+Glng7B0Oj26/eDBA2UyGT179kyXl5d68eKFvvSlL+nFixc6OjrSG2+8oYcPH+pb3/qWvv/979+Yq1arbbByAAAAAAAA+CHkztttfse9evVKrVZLz549k2VZevXqlQzDUCqV0sOHDyVJpVJJn332mc+VYhGxWEzdblfRaFQXFxd+lwMAAAAAADzy85z+3gdh17XbbZ2enuq73/2ubNtWKBSSJIKwHTP8pdnb29PBwcHMsYVCQYVCYUOVAQAAAAAQXNVqVdVqdeaYXq+nwWDgSxB2L64auYhEIqFEIqFyuax2u61SqcQeYTtsMBio2+3OHNPv9zdUDQAAAAAAwdbv9+eep/spcEHYuEQioVarpcPDQ79LwZK8dISFw+ENVQMAAAAAQLCFw2FFo9GZY4YdYX4I3NLI2zx//lxHR0d+l4EFsEcYAAAAAAC7yc9z+p29auQ6EYIBAAAAAADcfzsRhP3BH/wB+3gBAAAAAABgJTsRhP2v//W/lE6n9Yd/+IcrzXNycqI33nhDP//zP6+//uu/XlN1AAAAAAAA2AU7EYRJkuu6yuVy+trXvrb0HKVSSa7r6m//9m+VSCT06aefrq/ABdi2rXQ67XlsPp9XPB5XKBRSJBJRMplUPp+Xbdt3VmO73Vaz2VSlUpFlWZ4eU6lUlE6nFYlEFAqFFI/Hlc1mPT8eAAAAAADgLu1MEDb00Ucf6fHjx0s99u2335Zpmsrlcnry5IlKpdJaa3McR6FQaO5XPB6XaZpz56tUKorH46rX66PQy3Ectdtt1et1xeNxVSqVtdVeqVSUTCYVCoV0dHSkFy9eKJFIzL2qpmVZikQio9ez0Wio0+moXC6r3W4rnU4rnU7LcZy11AoAAAAAALCMN/0uYFFnZ2fKZrN6+PChPv74Y/3Mz/yM58een59P3H/nnXfWWlu9Xvc8dl4Il06nZVmWDMNQKpWSaZqybVvtdnuiE6xUKsk0TWUymaVqdhxHpVJpVHsikVCr1VIqlfL0eMuyRt1tuVxOtVpt9LNhXclkUpZlKZlM6vz8XIZhLFUrAAAAAADAKnauI0x63XGUzWaVSCT0gx/8YKk5Xr58qcvLy7XWdXx87GncMNiaplQqybIslctlXV1dqdFoqFwuT3Rajctms0vVW6/X9fbbb49CsFqtpvPzc88hmOM4o2ObpjkRgo1rNBqSXi/zXLZWAAAAAACAVe1cR9hQsVhUIpFQIpFQs9nUL/3SL3l+7KtXr5ROp+cu+VtEvV6X4zgqFotz9/+adVzbtlWpVGZ2ZRWLRXU6nYkOtHa7rUQi4bneUqk0WlZpmqZarZan5ZrjstnsaLnjrA63YWdYs9mUZVmq1+vK5XILHQsAAAAAAGBVIdd1Xb+LmOfRo0dqNpsKhUL67LPPJn5m27b+w3/4D3r69Kn+83/+z3Pn+vjjj0cBTq1W05e//OW11BiPxyVJnU5npXmGyz6LxeLMcY7jKBKJjO6Xy+W5jxk/RrPZlCQZhqGXL18uvFzRtu3Rc5akq6urmXM0m81RN5hhGLq6ulroeNfFYjF1u11Fo1FdXFysNBcAAAAAANgcP8/pd3Jp5DjTNHV2dqbT09O5V5T85je/qXQ6PQpt1hWCNZtN2ba9ls33h11l8xiGMdHB5TXISqfToxBM0tJ7do0vz0ylUnPnGN/DzHGciRoAAAAAAAA2YeeDMOl1CPTRRx/p8vJy6hUlnz59qg8++ECu6yoUCt3YZ2sVx8fHMgxDjx49WnmuVqvleez4HmdelnnW63VZljW6X6vVFl4OOT7XkNclmePHOj09Xeq4AAAAAAAAy7oXQdjQhx9+qKOjIz18+FA/+tGPRt9//vz5KPgKhUJKJBJr6wZrt9tqt9ujpYrxeFz5fP7OO54cxxntz5VKpeaGUbZtK5/Pj+4nEoml9+lqt9sT9x8+fOjpceM10hEGAAAAAAA2beeCsL/6q7+a+fNcLqdaraYvfvGLoytKDkOw4XZo6+wGu74c0rZt1et1ZbNZhUIhZbPZG8HROjx79kzS6y6r4VUZZ7l+tcanT58ufezxrrJhDV5cH3cXrwsAAAAAAMA0OxGEvf3225JeB1m5XG4UcE2TSCR0enqq9957T9/73vdkWZZCodDoZ1/84hfXUpdt2zdCoeuazaaSyeREN9aqHMdRPp9XIpFQq9Wauz+XbdsToZNhGBN7di3qxYsXE/e97jH21ltvTdw/OztbugYAAAAAAIBF7UQQVi6XdXV1pUajoaOjI6VSKX3729+e+ZjhJvoffvjh6HuhUGjqHmLLME1TtVpN5XJZuVxuZmdUvV5XMplc+Zi2bSuZTMowDD1//txTN1atVpu4n0qlJP3LlRzj8bhCoZAikYiSyaQqlcpo2eW0GsYt2xG26hU2AQAAAAAAFvGm3wV49eDBA7333nt67733FnrcRx99pFKppG9+85uj/cHW6fo+W47jqF6v6/j4+EaY1G63lU6nF9oQf9wwuBqKRCIql8tzrzI5vrG9JO3v7yuZTN5Ymug4zmjPs1KppEajcWvn2PUgbFmzwjYAAAAAAIB124mOsFWVy2U9e/ZMruvq5cuXd3oswzBULBZHHWzXlw1alqVKpeJ5PsdxVKlUFI/Hb+zzJb3eo+y27w/Ztn0jcHr27Jny+byurq7kuq5c11Wn07kR6mWz2Vs3tV82wLr+Woxf9RIAAAAAAOCuhdzhDvIB0G639cEHH+ijjz7a2DEdx9HR0dGNPbqurq48Pb7ZbI46yGbtSTatM8yyLKXT6Yljv3z5cuq+XvV6fWI/s9vGD/dbG/L6EbpeSyqVWro7LhaLqdvtam9vTwcHB0vNMa5QKKhQKKw8DwAAAAAA91W1WlW1Wl15nl6vp8FgoGg0qouLizVU5t3OLI1ch0QisdEQTHodJJ2fn08sRXQcR5ZljfbqmiWTydxYnliv11UqlSY6s0qlknK53I2A6/oyxtvGXP/5+fn5aDml4zg6Pj6euNKmYRhrWdbodZP9WQaDgbrd7srz9Pv9lecAAAAAAOA+6/f7azkH91OggjA/nZycTGyW32q1PAVht8nlckqlUkomkxOBVL1ev9EVdn1D+ocPH86dv1QqTewrVqlUJoKw/f39tQRh+/v7K8+xro6wcDi88hwAAAAAANxn4XBY0Wh05XmGHWF+IAjbkEQioVQqNVrauOqG86Zp6vnz5xPh2osXL26Mux5YeenCMk1TiURiYjlnu90eXWhg2U6uZWqZ5+DgYONtlAAAAAAABNG6thUabnfkh0Bslr8txvfHWodEIjGxbPK2cC0ejy819+Hh4cT98bmv/8xrd9j1zfGXrQ0AAAAAAGAZBGEbZJrm6PY6lgVK0uPHj0e3bwukrnddeQ2trodU4yHWeBea5L277foyzWWXhgIAAAAAACyDIGyDxoOwdSwLlDRarjhtzlmdXbNcn2s8uFt2zvEQzjCMidcDAAAAAADgrhGEbdDZ2dno9rqXSUo3AyppMiiTbnZleTUeWiUSiYmg7La9yW4z/vxvqxUAAAAAAOAuEYRt0HgIta5lgePdWNPCtfFjDTfrn+f6EsrrgdqjR49Gt8c31Z9lfFypVPL0GAAAAAAAgHUhCNugZrMpSSoWi2ubcxguGYYxsXH+uPHQybZtT/uEzQvt8vn86LaXcG18jGma7A8GAAAAAAA2jiBsQ5rNpmzblmEYevr06drmPT4+liSdnJxMHZNKpSaWNg4fM8t4cFUul2/8PJFITIRZw5BvmkajMbpNNxgAAAAAAPADQdiSLMtSJBJRKBRSOp2euTzQtm09efJEkvT8+fOZG+VXKhUlk0mVSqW5nVvDMcVicWo32NB4EFWpVGZucG9Z1ujnuVzuxrLIoVqtNro9K1xzHEf1el3S61Aul8vNrBUAAAAAAOAuEIQtqdFojIIqy7KUTCYnlgsODX+2v7+vTqczNVSSXgdGpVJJ7XZblUpFkUhkavdUNptVpVJRuVy+tWPrukQiMRFcpdPpW4M2x3FGz+P6Y64zTXMUsA1rvs3R0ZGk18s3xwM5AAAAAACATSIIW1I2m73xvXq9rkgkomw2q3w+r2QyqXQ6rVwup/Pz84nlibcxDOPGmGEgls1mVSqVlE6nFYlEJL3ex2uR/cZyuZxarZYMw5Bt23r77bdVqVTUbrdHQdbbb78t27ZHNc+TyWRGc5ZKJWWzWbXbbTmOMwoB2+22EomEXr58ObMbDgAAAAAA4C6FXNd1/S5iV9m2rXK5LMuydHl5KcdxZBiG9vf3lUgk9PjxY6VSqYXCH8dxdHx8PFqeeH3OdDqtR48erRwo1et1NRoNnZ2djY4x3MQ+n8/PDe1uU6lUdHp6OlH34eGh8vn83KWbi4rFYup2u4pGo7q4uFjr3AAAAAAA4O74eU5PEIadRBAGAAAAAMBu8vOcnqWRAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEB40+8CgFX0ej3FYrGZYwqFggqFwoYqAgAAAAAguKrVqqrV6swxvV5vQ9XcRBCGnTYYDNTtdmeO6ff7G6oGAAAAAIBg6/f7c8/T/UQQhp22t7eng4ODmWPC4fCGqgEAAAAAINjC4bCi0ejMMb1eT4PBYEMVTQq5ruv6cmRgBbFYTN1uV9FoVBcXF36XAwAAAAAAPPLznJ7N8gEAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAhv+l0AsIper6dYLDZzTKFQUKFQ2FBFAAAAAAAEV7VaVbVanTmm1+ttqJqbCMKw0waDgbrd7swx/X5/Q9UAAAAAABBs/X5/7nm6nwjCsNP29vZ0cHAwc0w4HN5QNQAAAAAABFs4HFY0Gp05ptfraTAYbKiiSSHXdV1fjgysIBaLqdvtKhqN6uLiwu9yAAAAAACAR36e07NZPgAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEwpt+FwCsotfrKRaLzRxTKBRUKBQ2VBEAAAAAAMFVrVZVrVZnjun1ehuq5iaCMOy0wWCgbrc7c0y/399QNQAAAAAABFu/3597nu4ngjDstL29PR0cHMwcEw6HN1QNAAAAAADBFg6HFY1GZ47p9XoaDAYbqmhSyHVd15cjAyuIxWLqdruKRqO6uLjwuxwAAAAAAOCRn+f0bJYPAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAeNPvAoBV9Ho9xWKxmWMKhYIKhcKGKgIAAAAAILiq1aqq1erMMb1eb0PV3EQQhp02GAzU7XZnjun3+xuqBgAAAACAYOv3+3PP0/1EEIadtre3p4ODg5ljwuHwhqoBAAAAACDYwuGwotHozDG9Xk+DwWBDFU0Kua7r+nJkYAWxWEzdblfRaFQXFxd+lwMAAAAAADzy85yezfIBAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSDMB7ZtK51Oex6bz+cVj8cVCoUUiUSUTCaVz+dl2/bW1ClJlUpF6XRakUhEoVBI8Xhc2WxWlmXdYZUAAAAAAADeEIStkeM4CoVCc7/i8bhM05w7X6VSUTweV71eH4VejuOo3W6rXq8rHo+rUqn4XqdlWYpEIiqVSpKkRqOhTqejcrmsdrutdDqtdDotx3EWrhUAAAAAAGBd3vS7gPukXq97HjsMjaZJp9OyLEuGYSiVSsk0Tdm2rXa7PdEJViqVZJqmMpmML3ValjXqGsvlcqrVaqOfDetKJpOyLEvJZFLn5+cyDMPz8QEAAAAAANYl5Lqu63cR90UkEvHU9ZRKpdRqtab+vFQqqVKpqFwuq1gs3vh5pVK5EVAt8jauq07HcfT222/LcRyZpqlOp3PrONu2FY/HPc3pVSwWU7fbVTQa1cXFxcrzAQAAAACAzfDznJ6OsDWp1+tyHEfFYnHuvlqHh4dTf2bbtiqVilqtllKp1K1jisWiOp3ORGdXu91WIpHYWJ2SlM1mR4HarM6xYWdYs9mUZVmq1+vK5XJzawUAAAAAAFgnOsLWZNjxNK0ryqtsNquHDx/e2gk2znEcRSKR0f1p3WN3Ved4l5ckXV1dzVzy2Gw2lc1mJUmGYejq6mql49MRBgAAAADAbvLznJ7N8teg2WzKtu25+2l5MezWmscwjImN7L3su7XOOsvl8uh2KpWae/zxPcwcx1Gz2Vy5BgAAAAAAgEUQhK3B8fGxDMPQo0ePVp5rkf2zLi8vR7fnLWOU1lvn+LJML0syJU0Ed6enpyvXAAAAAAAAsAiCsBW122212+3RUsV4PK58Pn/nHU+O44z250qlUnPDqHXW2W63J+4/fPjQ0+PGa6QjDAAAAAAAbBpB2IquLzO0bVv1el3ZbFahUEjZbPZGcLQOz549k/S6y6rRaGy0TsuyJu6Pd3rNcn3cXbwuAAAAAAAA0xCErcC27Ruh0HXNZlPJZFL5fH5tx3UcR/l8XolEQq1Wa+7+XOuu88WLFxP3vexPJklvvfXWxP2zszNPjwMAAAAAAFiHN/0uYJeZpqlarSbHcdTpdGRZlmzbvnVsvV7X2dmZzs/PVzqmbdtKp9MyDEPPnz/3FEKtu87rj122I2zVK1cCAAAAAAAsgiBsRblcbuK+4ziq1+s6Pj4e7eE11G63lU6nF9oQf1yz2VQ2mx3dj0QiKpfLnq4yuc46p4Voi7p+XAAAAAAAgLsUcl3X9buI+6rZbOrJkyc3Ah+v4ZX0L4FVrVabGkBlMhlP+4Stq85QKDRx3+tHyLIspdPp0f1V6o7FYup2u9rb29PBwcFSc4wrFAoqFAorzwMAAAAAwH1VrVZVrVZXnqfX62kwGCgajeri4mINlXlHR9gdymQySqVSOjo6mtgY/vj42HMQZlmWOp2OUqnU1L2+ms2mKpWK5znvos5lrKMjbDAYqNvtrjxPv99feQ4AAAAAAO6zfr+/lnNwPxGE3THDMHR+fq5kMjkKmRzHkWVZSqVScx+fyWSUyWQmvlev11UqlSaCpFKppFwu53nj+lXqNAxjLSHWsrWOW1dHWDgcXnkOAAAAAADus3A4rGg0uvI8w44wPxCEbcjJyYmSyeTofqvV8hSE3SaXyymVSimZTE4EUvV6feUOLi917u/vryUI29/fX3mOg4ODjbdRAgAAAAAQROvaVmi43ZEf9nw5agAlEomJQGnVDedN09Tz588nvvfixYuV5pS81blsJ9f18GwdHWEAAAAAAABeEYRt0PhG8euQSCQmlk2u62qO8+o8PDycuO+1O+zy8nLifjweX6guAAAAAACAVRCEbZBpmqPb61gWKEmPHz8e3V7HckVpfp3jSycl7wFcp9OZuL/s0lAAAAAAAIBlEIRt0HjAtK5lgYlEYu1zzqvzekeY1yBsPKgzDGPiOAAAAAAAAHeNIGyDzs7ORrfXvUxSuhlQLWtenYlEYiIg87o32fi866oVAAAAAADAK4KwDRpfGriuZYHj3VjrCte81Pno0aPR7Xa77Wne8XGlUmnJ6gAAAAAAAJZDELZBzWZTklQsFtc25zBcMgxjYuP8VXipM5/Pj25bljV3zvExpmmyPxgAAAAAANg4grANaTabsm1bhmHo6dOna5v3+PhYknRycrKW+bzWmUgkJsKsYXg2TaPRGN2mGwwAAAAAAPiBIGxJlmUpEokoFAopnU7PXB5o27aePHkiSXr+/PnMTe0rlYqSyaRKpdLcq0AOxxSLxandYHdVpyTVarXR7WEgdxvHcVSv1yW9XmqZy+VmzgsAAAAAAHAXCMKW1Gg0RkGVZVlKJpMTywWHhj/b399Xp9OZuMrjdY7jqFQqqd1uq1KpKBKJTO2eymazqlQqKpfLKpfLG61zyDTNUafXsObbHB0dSXq9fHO8MwwAAAAAAGCTQq7run4XsYssy7p1c3rDMJRKpbS/v6+zszO1220Vi0U9ffp0boeVJMXj8YkN8MfnNE1T7XZbZ2dnSqVSKpfLMk3TlzqvHyObzcpxHGUyGT19+lSmaers7GwU7CUSCU9dZl7FYjF1u11Fo1FdXFysZU4AAAAAAHD3/DynJwhbgW3bKpfLsixLl5eXchxHhmFof39fiURCjx8/ViqVWij8cRxHx8fHsixLtm3fmDOdTuvRo0cLzXkXdd6mUqno9PR0ou7Dw0Pl8/m1beQ/RBAGAAAAAMBuIggDFkQQBgAAAADAbvLznJ49wgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAALhTb8LAFbR6/UUi8VmjikUCioUChuqCAAAAACA4KpWq6pWqzPH9Hq9DVVzE0EYdtpgMFC32505pt/vb6gaAAAAAACCrd/vzz1P9xNBGHba3t6eDg4OZo4Jh8MbqgYAAAAAgGALh8OKRqMzx/R6PQ0Ggw1VNCnkuq7ry5GBFcRiMXW7XUWjUV1cXPhdDgAAAAAA8MjPc3o2ywcAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCC86XcBwCp6vZ5isdjMMYVCQYVCYUMVAQAAAAAQXNVqVdVqdeaYXq+3oWpuIgjDThsMBup2uzPH9Pv9DVUDAAAAAECw9fv9uefpfiIIw07b29vTwcHBzDHhcHhD1QAAAAAAEGzhcFjRaHTmmF6vp8FgsKGKJoVc13V9OTKwglgspm63q2g0qouLC7/LAQAAAAAAHvl5Ts9m+QAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACIQ3/S4AWEWv11MsFps5plAoqFAobKgiAAAAAACCq1qtqlqtzhzT6/U2VM1NBGHYaYPBQN1ud+aYfr+/oWoAAAAAAAi2fr8/9zzdTwRh2Gl7e3s6ODiYOSYcDm+oGgAAAAAAgi0cDisajc4c0+v1NBgMNlTRpJDruq4vRwZWEIvF1O12FY1GdXFx4Xc5AAAAAADAIz/P6dksHwAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAAC4U2/CwBW0ev1FIvFZo4pFAoqFAobqggAAAAAgOCqVquqVqszx/R6vQ1VcxNBGHbaYDBQt9udOabf72+oGgAAAAAAgq3f7889T/cTQRh22t7eng4ODmaOCYfDG6oGAAAAAIBgC4fDikajM8f0ej0NBoMNVTQp5Lqu68uRgRXEYjF1u11Fo1FdXFz4XQ4AAAAAAPDIz3N6NssHAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwH9i2rXQ67XlsPp9XPB5XKBRSJBJRMplUPp+Xbdtrr214nGazufBjK5WK0um0IpGIQqGQ4vG4stmsLMtae50AAAAAAACLIghbI8dxFAqF5n7F43GZpjl3vkqlong8rnq9Pgq9HMdRu91WvV5XPB5XpVJZW/2lUmmpcM2yLEUiEZVKJUlSo9FQp9NRuVxWu91WOp1WOp2W4zhrqxUAAAAAAGBRb/pdwH1Sr9c9jx2GRtOk02lZliXDMJRKpWSapmzbVrvdngirSqWSTNNUJpNZum7pdZi1TKhmWdaouy2Xy6lWq41+NqwrmUzKsiwlk0mdn5/LMIyVagUAAAAAAFgGHWFrdHx87GncMNiaplQqybIslctlXV1dqdFoqFwuT3RajctmsyvV7TjOUnOMP840zYkQbFyj0ZD0epnnqrUCAAAAAAAsi46wNanX63IcR8Vice7+X4eHh1N/Ztu2KpWKWq2WUqnUrWOKxaI6nc5EB1q73VYikViq9idPnmh/f1+SFlq+mM1mR+NndbgNO8OazaYsy1K9Xlcul1uqVgAAAAAAgGWFXNd1/S7iPojH45KkTqez0jzZbFYPHz5UsVicOc5xHEUikdH9crk89zG3qdfryufzOj8/19HR0SjYajQaM5db2rY9es6SdHV1NXPJY7PZHHWDGYahq6urhWsdF4vF1O12FY1GdXFxsdJcAAAAAABgc/w8p2dp5Bo0m03Ztj133y8vhl1l8xiGMbG8cpl9t4ZXpCwWiwt3k40vz0ylUnOPPx6qOY6z1FUpAQAAAAAAVkEQtgbHx8cyDEOPHj1aea5Wq+V57OXl5ej2rOWW02SzWSUSiRt7jnkxvizTa4g2Htydnp4ufEwAAAAAAIBVEIStqN1uq91uj5YqxuNx5fP5O+94chxntIwxlUot3NFVKpXUbrdHG9kvot1uT9x/+PChp8eN10hHGAAAAAAA2DSCsBVdXw5p27bq9bqy2axCoZCy2eyN4Ggdnj17Jul1l9WiYVa73ValUlGtVpt59cppLMuauO91juvj7uJ1AQAAAAAAmIYgbAW2bd8Iha5rNptKJpPK5/NrO67jOMrn80okEmq1WgvvD3Z0dKRMJrP0lRtfvHgxcd/r8d96662J+2dnZ0sdHwAAAAAAYBlv+l3ALjNNU7VaTY7jqNPpyLIs2bZ969h6va6zszOdn5+vdEzbtpVOp2UYhp4/f75wCDa8cuPJyclKNYxbtiNs1StsAgAAAAAALIKOsBXlcjkVi0XVajV1Oh1dXV2pXC7fGlC1222l0+mlj9VsNhWPx2Xb9mhPskqlstDjm82mGo3GUleZHJoW9i1quMcZAAAAAADAJtARtmaGYahYLKpYLKrZbOrJkycTgY9lWapUKioWi57mcxxH9XpdtVrt1gCqVCrpxYsXc/cJcxxH2WxWuVxOqVRqoed021zLuB6+jV/1clm9Xk+xWGzleQqFggqFwsrzAAAAAABwX1WrVVWr1ZXn6fV6a6hmOQRhdyiTySiVSuno6GhiY/jj42PPQZhlWep0OkqlUlP3JGs2m3PDtaOjo9FSzm2xjo6wwWCgbre78jz9fn/lOQAAAAAAuM/6/f5azsH9RBB2xwzD0Pn5uZLJ5CgMcxxHlmV56szKZDLKZDIT36vX6yqVShNBUqlUUi6Xu3XJY6VSUbvdXnl/siHDMNYSYq2yPHNob29PBwcHK88TDodXngMAAAAAgPssHA4rGo2uPE+v19NgMFhDRYsjCNuQk5MTJZPJ0f1Wq7X0EsXh8sZkMjkRSNXr9RtdYe12W6VSSeVyWYlEYqnjXbe/v7+WIGx/f3/lOQ4ODnRxcbHyPAAAAAAAYLZ1bSsUi8V86yxjs/wNSSQSE8HXqhvOm6ap58+fT3zvxYsXN8Zls1klEgnPSzG9WLaT63p4to6OMAAAAAAAAK/oCNugdDp96x5fy0okEspkMmo2m5JuhmuVSkW2bSuVSimbzc6dbzyoOj4+1unp6ej+48ePR0s0Dw8PJ/Y8cxzHU6h1fXP8eDw+9zEAAAAAAADrQhC2QaZpjm6vY1mg9DqgGgZh1zuufvjDH0rSUuFbu92eCLtM0xwFYeNLPKXXAZyXZZedTmfi/qpXrwQAAAAAAFgESyM3aDwIW9eywPEAalNLDQ8PDyfue13mOR7UGYYx8XoAAAAAAADcNYKwDTo7OxvdTqfTa5//ekBVLpfluq7nr/FgqtFoTPysXC6PfpZIJCZCt9v2JrvN+PO/XisAAAAAAMBdIwjboPGlgetaFjjejXUX4do0jx49Gt0eX0I5y/i4Uqm09poAAAAAAABmIQjboOFeXuu8guMwXDIMY7SH1ybk8/nRbS97kI2PMU2T/cEAAAAAAMDGEYRtSLPZlG3bMgxDT58+Xdu8x8fHkqSTk5O1zelFIpGYCLOGId80jUZjdJtuMAAAAAAA4AeCsCVZlqVIJKJQKKR0Oj1zeaBt23ry5Ikk6fnz5zM3ta9UKkomkyqVSjeuAnndcEyxWNxoN9hQrVYb3R4GcrdxHEf1el3S6yWhuVzuzmsDAAAAAAC4jiBsSY1GYxRUWZalZDI5sVxwaPiz/f19dTqdias8Xuc4jkqlktrttiqViiKRyNTuqWw2q0qlonK5PLGR/SaZpjnq9BrWfJujoyNJr5dvjneGAQAAAAAAbBJB2JKy2eyN79XrdUUiEWWzWeXzeSWTSaXTaeVyOZ2fn09clfE2hmHcGDMMxLLZrEqlktLptCKRiKTXm++vc7+xZWQyGbVaLRmGoVKppGw2q3a7LcdxRiFgu91WIpHQy5cvZ3bDAQAAAAAA3KWQ67qu30XsKtu2VS6XZVmWLi8v5TiODMPQ/v6+EomEHj9+rFQqtVD44ziOjo+PZVmWbNu+MWc6ndajR4+2MlCqVCo6PT2dqPvw8FD5fH7tSzdjsZi63a6i0aguLi7WOjcAAAAAALg7fp7TE4RhJxGEAQAAAACwm/w8p2dpJAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCC86XcBwCp6vZ5isdjMMYVCQYVCYUMVAQAAAAAQXNVqVdVqdeaYXq+3oWpuIgjDThsMBup2uzPH9Pv9DVUDAAAAAECw9fv9uefpfiIIw07b29vTwcHBzDHhcHhD1QAAAAAAEGzhcFjRaHTmmF6vp8FgsKGKJoVc13V9OTKwglgspm63q2g0qouLC7/LAQAAAAAAHvl5Ts9m+QAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACIQ3/S4AWEWv11MsFps5plAoqFAobKgiAAAAAACCq1qtqlqtzhzT6/U2VM1NBGHYaYPBQN1ud+aYfr+/oWoAAAAAAAi2fr8/9zzdTwRh2Gl7e3s6ODiYOSYcDm+oGgAAAAAAgi0cDisajc4c0+v1NBgMNlTRpJDruq4vRwZWEIvF1O12FY1GdXFx4Xc5AAAAAADAIz/P6dksHwAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgfCm3wUAq+j1eorFYjPHFAoFFQqFDVUEAAAAAEBwVatVVavVmWN6vd6GqrmJIAw7bTAYqNvtzhzT7/c3VA0AAAAAAMHW7/fnnqf7iSAMO21vb08HBwczx4TD4Q1VAwAAAABAsIXDYUWj0Zljer2eBoPBhiqaFHJd1/XlyMAKYrGYut2uotGoLi4u/C4HAAAAAAB45Oc5PZvlAwAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEN70uwBgFb1eT7FYbOaYQqGgQqGwoYoAAAAAAAiuarWqarU6c0yv19tQNTcRhGGnDQYDdbvdmWP6/f6GqgEAAAAAINj6/f7c83Q/EYRhp+3t7eng4GDmmHA4vKFqAAAAAAAItnA4rGg0OnNMr9fTYDDYUEWTQq7rur4cGVhBLBZTt9tVNBrVxcWF3+UAAAAAAACP/DynZ7N8AAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBDmA9u2lU6nPY/N5/OKx+MKhUKKRCJKJpPK5/OybXvp4697TkmqVCpKp9OKRCIKhUKKx+PKZrOyLGvpOQEAAAAAANaFIGyNHMdRKBSa+xWPx2Wa5tz5KpWK4vG46vX6KKByHEftdlv1el3xeFyVSmWhGu9iTsuyFIlEVCqVJEmNRkOdTkflclntdlvpdFrpdFqO4yw0LwAAAAAAwDq96XcB90m9Xvc8dhgaTZNOp2VZlgzDUCqVkmmasm1b7XZ7omurVCrJNE1lMpm5x7yLOS3LGnW35XI51Wq10c+GcySTSVmWpWQyqfPzcxmGMXdeAAAAAACAdQu5ruv6XcR9EYlEPHU9pVIptVqtqT8vlUqqVCoql8sqFos3fl6pVG4EafPexruY03Ecvf3223IcR6ZpqtPp3DrOtm3F43FJ85+7V35eahUAAAAAACzPz3N6OsLWpF6vy3EcFYvFuft/HR4eTv2ZbduqVCpqtVpKpVK3jikWi+p0OhMdaO12W4lEYmNzSlI2mx0Ff7M63IadYc1mU5ZlqV6vK5fLTR0PAAAAAABwF+gIW5Nhx9O0riivstmsHj58eGvX1jjHcRSJREb3p3V63dWc411eknR1dTVzyWOz2VQ2m5UkGYahq6urmbXMQ0cYAAAAAAC7yc9zejbLX4Nmsynbtufu++XFsKtsHsMwJjbcnxVC3cWc5XJ5dDuVSs3d92t8vzHHcdRsNufWAwAAAAAAsE4EYWtwfHwswzD06NGjledaZP+sy8vL0e1Zyy3vYs7xJZSzlk+OGw/ZTk9PPdcEAAAAAACwDgRhK2q322q326NlhfF4XPl8/s47nhzHGe3PlUqlPIdR65iz3W5P3H/48KGn+cfnoyMMAAAAAABsGkHYiq4vh7RtW/V6XdlsVqFQSNls9kZwtA7Pnj2T9LrLqtFobHROy7Im7o93es1yfdxdvC4AAAAAAADTEIStwLbtG6HQdc1mU8lkUvl8fm3HdRxH+XxeiURCrVZr7v5c657zxYsXE/e9Hv+tt96auH92drZomQAAAAAAAEt70+8CdplpmqrVanIcR51OR5ZlybbtW8fW63WdnZ3p/Px8pWPatq10Oi3DMPT8+fO1hGCLznn9OS7bEbbqFTYBAAAAAAAWQUfYinK5nIrFomq1mjqdjq6urlQul28Nk9rtttLp9NLHajabisfjsm17tCdZpVJZofrl5pwW9i1quB8ZAAAAAADAJoRc13X9LuK+ajabevLkyY3Ap1wuq1gseprDcRzV63XVarWpAVQmk1lon7BV5wyFQhP3vX6ELMuaCAIXrXtcLBZTt9vV3t6eDg4OlppjXKFQUKFQWHkeAAAAAADuq2q1qmq1uvI8vV5Pg8FA0WhUFxcXa6jMO5ZG3qFMJqNUKqWjo6OJjeGPj489B2GWZanT6SiVSk3dk6zZbKpSqfg65zLW0RE2GAzU7XZXnqff7688BwAAAAAA91m/31/LObif6AjbkGQyORGGtVotpVKppeaq1+sqlUo3gqSrq6ul9wxbZM5IJDIxjo4wAAAAAADuPzrC4NnJyYmSyeTo/ipBWC6XUyqVUjKZnAik6vX60h1ci8y5v7+/lm6u/f39lec4ODjY+C8NAAAAAABBtK4mkmFzix/YLH9DEonERPC16obzpmnq+fPnE9978eLFRuZctuvseni2jiteAgAAAAAAeEUQtkGrXDHyNolEQplMZnR/HVdz9DLn4eHhxH2v3WGXl5cT9+Px+OIFAgAAAAAALIkgbINM0xzdXseyQEl6/Pjx6PY6lit6mXN8iafkPYDrdDoT95ddGgoAAAAAALAMgrANGg/C1rUsMJFIbHzO6x1hXoOw8VDNMIyJ1wMAAAAAAOCuEYRt0NnZ2ej2updJSjcDqruaM5FITARkXvcmG3/+d1ErAAAAAADALARhGzS+NHBdywLHu7HWFa55mfPRo0ej2+1229O84+NKpdKS1QEAAAAAACyHIGyDms2mJKlYLK5tzmG4ZBjGxCb3dz1nPp8f3bYsa+6c42NM02R/MAAAAAAAsHEEYRvSbDZl27YMw9DTp0/XNu/x8bEk6eTkZKNzJhKJiTBrGPJN02g0RrfpBgMAAAAAAH4gCFuSZVmKRCIKhUJKp9Mzlwfatq0nT55Ikp4/fz5zU/tKpaJkMqlSqTT3KpDDMcVicWY32F3MKUm1Wm10exie3cZxHNXrdUmvl4TmcrmZ8wIAAAAAANwFgrAlNRqNUahkWZaSyeTEcsGh4c/29/fV6XQmrsh4neM4KpVKarfbqlQqikQiU7unstmsKpWKyuWyyuXyRuccMk1z1Ok1nP82R0dHkl4vtRzvDAMAAAAAANikkOu6rt9F7CLLsm7dSN4wDKVSKe3v7+vs7EztdlvFYlFPnz6d2Qk2FI/HJzarH5/TNE21222dnZ0plUqpXC7LNE1f5hxnWZay2awcx1Emk9HTp09lmqbOzs5GIVwikZjbDbeIWCymbreraDSqi4uLtcwJAAAAAADunp/n9ARhK7BtW+VyWZZl6fLyUo7jyDAM7e/vK5FI6PHjx0qlUguFP47j6Pj4WJZlybbtG3Om02k9evTI9zlvU6lUdHp6OnGMw8ND5fP5tW3kP0QQBgAAAADAbiIIAxZEEAYAAAAAwG7y85yePcIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAAC4U2/CwBW0ev1FIvFZo4pFAoqFAobqggAAAAAgOCqVquqVqszx/R6vQ1VcxNBGHbaYDBQt9udOabf72+oGgAAAAAAgq3f7889T/cTQRh22t7eng4ODmaOCYfDG6oGAAAAAIBgC4fDikajM8f0ej0NBoMNVTQp5Lqu68uRgRXEYjF1u11Fo1FdXFz4XQ4AAAAAAPDIz3N6NssHAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIBGEAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgUAQBgAAAAAAgEAgCAMAAAAAAEAgvOl3AcAqer2eYrHYzDGFQkGFQmFDFQEAAAAAEFzValXVanXmmF6vt6FqbiIIw04bDAbqdrszx/T7/Q1VAwAAAABAsPX7/bnn6X4iCMNO29vb08HBwcwx4XB4Q9UAAAAAABBs4XBY0Wh05pher6fBYLChiiaFXNd1fTkysIJYLKZut6toNKqLiwu/ywEAAAAAAB75eU7PZvkAAAAAAAAIBIIwAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBQBAGAAAAAACAQCAIAwAAAAAAQCAQhAEAAAAAACAQCMIAAAAAAAAQCARhAAAAAAAACASCMAAAAAAAAAQCQRgAAAAAAAACgSAMAAAAAAAAgfCm3wUAAAAAAIC747rSwJ09Zi8khUKbqQfwE0EYAAAAAAD32MCV3vy92WP++felNwjCEAAsjQQAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAjsEYad1uv1FIvFZo4pFAoqFAobqggAAAAAgOCqVquqVqszx/R6vQ1VcxNBGHbaYDBQt9udOabf72+oGgAAAAAAgq3f7889T/cTQRh22t7eng4ODmaOCYfDG6oGAAAAAIBgC4fDikajM8f0ej0NBoMNVTQp5Lqu68uRgRXEYjF1u11Fo1FdXFz4XQ4AAAAAbK3PBtKbvzd7zD//vvQGu4hjQ/w8p+djDgAAAAAAgEAgCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAAAAAAAEAgEYQAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgDAAAAAAAAIFAEAYAAAAAAIBAIAgDAAAAAABAIBCEAQAAAAAAIBAIwgAAAAAAABAIb/pdAAAAAAAAwDZxXWngzh6zF5JCoc3Ug/UhCAMAAAAAABgzcKU3f2/2mH/+fekNgrCdw9JIAAAAAAAABAJBGAAAAAAAAAKBIAwAAAAAAACBwB5h2Gm9Xk+xWGzmmEKhoEKhsKGKAAAAAABesCH9/VStVlWtVmeO6fV6G6rmJoIw7LTBYKButztzTL/f31A1AAAA2FaccAPbhw3p76d+vz/3PN1PBGHYaXt7ezo4OJg5JhwOb6gaAAAAbCtOuAFgM8LhsKLR6MwxvV5Pg8FgQxVNIgjDTjs4ONDFxYXfZQAAAAAAAHnbnigWi/nWNcZm+QAAAAAAAAgEgjAAAAAAAAAEAkEYAAAAAAAAAoEgzAe2bSudTnsem8/nFY/HFQqFFIlElEwmlc/nZdv2Usdvt9sTc4ZCIcXjcZVKJTmOs9ScklSpVJROpxWJREZzZrNZWZa19JwAAAAAAADrQhC2Ro7jjIKlWV/xeFymac6dr1KpKB6Pq16vj0Ivx3HUbrdVr9cVj8dVqVQWqi+bzSqZTE7MKb0O3CqViiKRiOr1+kLP27IsRSIRlUolSVKj0VCn01G5XFa73VY6nVY6nV4pZAOwe1xX+mww+8udcxl7AAAAAFgnrhq5RosESMPQaJp0Oi3LsmQYhlKplEzTlG3barfbEwFWqVSSaZrKZDIz53McR8lk0lMXWT6f1/n5uWq12tyxlmWNuttyudzEY4Z1JZNJWZalZDKp8/NzGYYxd14Au4/L1AMAAADYNnSErdHx8bGnccNga5pSqSTLslQul3V1daVGo6FyuTzRaTUum83OPWY2m5Vt20okEqN5Op2OGo2GisXijfH1el3NZnPmnMMOM+l16DUtOGs0GpJed515qRUAAAAAAOAu0BG2JvV6XY7jqFgszt3/6/DwcOrPhksUW62WUqnUrWOKxaI6nc5EB1q73VYikZham2VZKhaLN0K0YddWPp9XNptVu90e/ezJkyczO82y2exoueOsDrfhMZrNpizLUr1eVy6XmzoeAAAAAADgLoRclx1a1iEej0uSOp3OSvNks1k9fPjw1i6tcY7jKBKJjO6Xy+WpjxnuSdZqtWbOadv26HkMTQvkro+9urqaueSx2WyOusEMw9DV1dXMWuaJxWLqdruKRqO6uLhYaS4Ad+OzgcelkfQmAwA2gP8uIci8fP7/fxnpt5KbqWdom38vt7m2+8DPc3resjVoNpuybXvuvl9eDLvK5jEMY2J55bQQarin2HB54iymad7oGBvvEBs3Pi6VSs3d92u8s8xxnLnLLgEAAAAA6/HHn8wf89tNb+OAXUcQtgbHx8cyDEOPHj1aea55XVvjLi8vR7enLbc8PT1VLpfzvEH99e6vH/7wh7eOG1+WOW1J5nXjwd3p6amnxwAAAAAAlvfqx9JX/szb2N/5U6n/4zstB/AdQdiK2u222u32aKliPB5XPp+/844nx3FG+3OlUqmpYdTjx49vdHnNcn2e60slpZtdYg8fPlx4bjrCgPVx3det27O+WAQPAAAQTH/Ulv7+n7yN/bt/lL5z+6Ig4N5gs/wVXV8Oadu26vX6qGMqk8no6dOnnrumvHr27Jmk111Ws5Y9LnrcYbg2dNvVLS3LmjvmNtfHzdrgH4B3A9fj/gWhzdQDAACA7fHnf7PY+L/4G+m//Pu7qQXYBnSErcC27Ruh0HXNZlPJZFL5fH5tx3UcR/l8XolEQq1Wy/OyRy9s2564f9tG+S9evJi47/X4b7311sT9s7OzxYoDAAAAACzk6h/udjywa+gIW4FpmqrVanIcR51OR5Zl3QiShur1us7OznR+fr7SMW3bVjqdlmEYev78+VpDMGkynMrlclNrGLdsR9iqV9gEAAAAcHdc93Xn+Sx7ISlE1/lWi/zk3Y4Hdg1B2Iquh0WO46her+v4+PjGMsN2u610Or3Qhvjjms2mstns6H4kElG5XPZ0lUmvarXa6Pa0q2BOC/sWdf31AQAAALA92H7hfvjVL0gf/R/v43/lC3dXC7ANWBq5ZoZhqFgs6urqSo1G40bHlmVZqlQqnudzHEeVSkXxeHwiBBsqlUq3fn8Ztm2PNsIvl8tTO72WDbCuvxbjV70EAAAAAKzfbyakn/pX3sb+9E9Iv8U2zrjn6Ai7Q5lMRqlUSkdHRxNXWjw+PvbcxWVZljqdjlKp1NQ9yZrNpiqVysqdYcOrS5qmudYus2nW0RHW6/UUi8VWnqdQKKhQKKw8DwAAAABskwefk/77f5R+uzl/7If/SQp/7s5Lujf++BPpt5J+V7FZ1WpV1Wp15Xl6vd4aqlkOQdgdMwxD5+fnSiaTozDMcRxZlnXrRvTXZTIZZTKZie/V63WVSqWJIKlUKimXyy29Z1i73Va9XpdhGHOXbhqGsZYQax37mw0GA3W73ZXn6ff7K88BAAAAINi2dV+133h3fhD2nczrcXjtjz+ZP+a3m9Ibe8F63fr9/lrOwf1EELYhJycnSib/JSputVqegrDb5HI5pVIpJZPJiUCqXq8v3cn15MkTSdLz58/nbn6/v7+/liBsf39/5Tn29vZ0cHCw8jzhcHjlOQAAAAAE2y7vq/brAQpz5nn1Y+krf+Zt7O/8qfSr/zY4nXThcFjRaHTleXq9ngaDwRoqWhxB2IYkEgmlUqnR0sZVN5w3TVPPnz+fCNdevHix1Fz5fF7tdluNRkOJxPwF4ct2cl0Pz9bREXZwcKCLi4uV5wEAAAAAQJL+qC39/T95G/t3/yh9py39l39/tzVti3VtKxSLxXzrLGOz/A1Kp9NrnS+RSEwsm1wmXKvX66rX66rVajeWYE5zeHg4cd9rd9j1zfHj8binxwEAAAAAsCl//jeLjf+LBcfDXwRhGzS+5HAdywIl6fHjx6Pbiy5XtCxL+XxetVpNuVzO8+PGu9Ak7wFcp9OZuL/s0lAAAAAAAO7K1T/c7Xj4iyBsg8aDsHUsC5Q0sZRxkTnb7bbS6bTK5fJCIZh0syPMaxA2HtQZhjF3LzIAAAAAADYt8pN3Ox7+IgjboLOzs9HtdS+TlG4GVNPYtq2joyMVi8WlNtdPJBIToZvXvcnGn7/XWgEAAAAAweXl6o3r9qtfWGz8ryw4Hv4iCNug8aWB61oWON6N5SVcs21byWRSuVxO5XLZ8zEqlcrE9x49ejS63W63Pc0zPq5UKnl6DAAAAADgfvIScv12c/Nh2G8mpJ/6V97G/vRPSL81/5pz2CIEYRvUbDYlaakurGmG4ZJhGHM3u3ccR+l0Wo8ePfIcgklSNpu9Edzl8/nR7eGVMGcZH2OaJvuDAQAAAECAvfqx9JU/8zb2d/5U6v/4TsuZ8OBz0n//j97GfvifpPDn7rQcrBlB2IY0m03Zti3DMPT06dO1zXt8fCxJOjk5mTnOcRwlk0mZpqlSqSTbtud+WZY12hh/fC+y4f3xMGsY8k3TaDRGt+kGA4Dbua702WD2l+v6XSUAAMDq/qgt/f0/eRv7d/8ofcfbQqS1+Y1354/5TsbbOGyXN/0uYFdZlqVsNivHcZRKpVQul2+ERUO2bevJkyeSpOfPn8/c1L5Sqej09FSpVEpPnz6dObZUKslxHBWLxbndYEdHR6OAKx6Pz31+42q12tTvD+c6Pj6eWoPjOKrX65JeLwlddHN+AAiKgSu9+Xuzx/zz70tvhDZTDwAAwF35879ZbPxf/I30X/793dSyrF8nBNtJdIQtqdFojK6COOycGl8uODT82f7+vjqdztSwTHodGJVKJbXbbVUqFUUikandU9lsVpVKReVyee4yx2Qy6Xkfr9tMC65M0xx1eg1rvs3R0ZGk18s3xzvDAAAAAADBdPUPdzsemIYgbEnZbPbG9+r1uiKRiLLZrPL5vJLJpNLptHK5nM7Pz2Wa5sw5DcO4MWYYiGWzWZVKJaXTaUUiEUmvN9+ft99YNpu9kxBsKJPJqNVqyTAMlUql0fEcxxmFgO12W4lEQi9fvpzZ4QYAAAD4yY+r0wFBFfnJux0PTMPSyCWlUil1Oh2Vy2VZlqXLy8tRh9gw+Hn69KlSqdRC4c/5+bmOj49lWZZs256YU3odbDUaDc9zbqIDK5VK6erqarSs8+joSI7jyDAMHR4eqtFozF26CQAAANwlr1ene2OPPX+ATfjVL0gf/R/v43/lC3dXC4KFIGwFpmlO3T9rWYZhLHRFx21SLBbXekVMAAAAYB0WvTrdr/5brgK3zVz39b6as+yFpBB7am6130xIH/yltw3zf/onpN+avssQsBCCMAAAAAD32jJXp9u2TbnxL7i4zP3w4HPSf/+Przsx5/nwPxFOY33YIwzAVnFd6bPB7C93zl8AAQC3499YBNUyV6cDcPe8LEP+ToblylgvOsIAbBX+wgcAd4d/YxFU23x1Opb5AbP9OiEY1owgDAAAAMC9ts1XpyOgBoDNIgjDTuv1eorFYjPHFAoFFQqFDVUEAACAbcPV6QBgc6rVqqrV6swxvV5vQ9XcRBCGnTYYDNTtdmeO6ff7G6oGAAAA24ir0wHA5vT7/bnn6X4iCMNO29vb08HBwcwx4XB4Q9XsFvajAAAAQcHV6QBgc8LhsKLR6MwxvV5Pg8FgQxVNIgjDTjs4ONDFxYXfZewk9qNAkBEEA8Dd2dZ/Y3/j3flBGFenA4DVedmeKBaL+dY1RhAGAAgcgmAAuDu7/G8sV6cDgPtvz+8CAAAAAAAAgE0gCAMAAAAAAEAgEIQBAAAAAAAgEAjCAAC++eNP/K4AAAAAQJAQhAFAAPgROHk55m83CcMAANhl/HccwK4hCAOAHbeNgdOrH0tf+TNvY3/nT6X+j++0HAAAsIRt/H8MAFgVQRgA7LBtDZz+qC39/T95G/t3/yh9p3239QAAgMVs6/9jAMCqCMIAYIdta+D053+z2Pi/WHA8AAC4W9v6/xj3AR10gL/e9LsAAMDylgmc/su/v5taxl39w92OBwAAd2tb/x9j23ldTvrGnvQb7959PUN7Iemff3/+GCAI6AgDgB22rYFT5Cfvdjw2y3Wlzwazv1zX7yoBAOu0rf+Psc22eTlpKPQ6fJv1FSIIQ0DQEQYAO2xbA6df/YL00f/xPv5XvnB3tWB1A1d68/dmj/nn35fe4H+gAeDe2Nb/x9hmyywnpYsO2Dw6wgBgh/3qggHSpgKn30xIP/WvvI396Z+Qfitxt/UAAIDFbOv/Y2wz9kgFdgMdYQCww34zIX3wl97++rjJwOnB56T//h9f74Exz4f/SQp/7s5LAgAAC9jW/8fYZiwnvV/YV+3+oiMMAHbYMHDyYtOBk5cNYL+T2exGsQAAwJtt/n+MbcVy0vuFfdXuL4IwANhxuxw4/foW1gQAAF7b5f/H8APLSYHdQBAG3CGutIZtQeAEAADuAv+P8S/YIxXYDewRhp3W6/UUi8VmjikUCioUChuqaBJXWgMAwBvXff3fzVn2QixDGeL1ArYPe6QCr1WrVVWr1Zljer3ehqq5iSAMO20wGKjb7c4c0+/3N1QNAABYFn88WgyvF7CdfuPd+UEYy0lx3/X7/bnn6X4iCMNO29vb08HBwcwx4XB4Q9UAAAAAwGwsJ8V9Fw6HFY1GZ47p9XoaDAYbqmgSQRh22sHBgS4uLvwuAwHAEhQAAABgvfZCr7tX543BbvGyPVEsFvOta4wgDAA8YAkKAADA7vjjT6TfSvpdBeYJhfj/Z2weQRgAAAAwBR3BwPb540/mj/ntpvTGHntxAbiJIAwAgB3CX7iBzaIjGNgur34sfeXPvI39nT+VfvXfcnVGAJP2/C4AAAC85vUv3F7GAQBwH/1RW/r7f/I29u/+UfpO+27rAbB7CMIAANgCi/6Fu//jOy0HK3Jd6bPB7C93znI7ABjiDyD/4s//ZrHxf7HgeAD3H0sjAQDYAsv8hfu//Pu7rQnLYzkdAK/Y72oxV/9wt+MB3H90hAEAsAX4C/dy6LwCsMvoBl5c5CfvdjyA+4+OMAAAtgB/4V4OnVcAdhndwIv71S9IH/0f7+N/5Qt3VwuA3URHGAAAW4C/cANA8NANvLjfTEg/9a+8jf3pn5B+K3G39QDYPQRhAABsgV9d8C/W/IUbd4VNuYHNoRt4cQ8+J/33/+ht7If/SQp/7k7LAbCDWBoJAMAW+M2E9MFfelsiw1+4sSw25UaQ7YVeL5WeN2aT6AZezm+8+/rfqlm+k+HfMQC3oyMMAIAtwF+4cdfYlBtBFwq9DnlnfYU2HITRDXx3fp0QDMAUBGEAptrW5THbWhewKi9/ueYv3FjWMptyA7hb7HcFAJtHEAYElNflMZsOnba1LgTPtn7G+As3lsWm3Ngm2/pv7KbRDQwAm0cQBgTQti6P2da6cP8QuCKI2JQbm8K/sYuhGxgANosgDAigbV0es6114X4hcEVQsSn3/9ve3fM2mqX54b5VPTNoYw2ZqgYWKFQlTSXrcKmaxGmRmQd2QHYDXsxu1JRhOKqAdH8AQyADhYbJytbYoIsKbNiBYbE+QZW4qQGD7KQLAhaYEi34Dw9mPeI/qCWb1AvfX/VcF0CAlA6f55R415H44znnYR2MsathNjDA8gjCIIG2dXnMtvaLx0XgSlLZlJt1MMYCsO1+sekOwCIuLy/jxYsXY9u8fv06Xr9+vaYe7YZtXR6zrf3icZkncP23/2w1fYF1+m0m4t/99+lCCptyMy9jLACnp6dxeno6ts3l5eWaenOXIIyddnNzEx8/fhzb5vr6ek292R3bujxmW/vF4yJwJan6m3L/1dnktjblZl7GWACur68nvk/fJEEYO+3Jkyfx7NmzsW329/fX1Jvd8Zs/i/gf/2v69utaHrOt/eJxEbiSZH/x55ODMJtyswhjLAD7+/vx/PnzsW0uLy/j5uZmTT0aJQhjpz179ix++umnTXdj52zr8pht7RePi8B1Nf7mbyP+8mjTvWAZbMrNIoyxAEyzPdGLFy82NmvMZvmQQP3lMdNY5/KYbe0Xj8tvMxF/8svp2gpcP/ubv53c5q/OpmsHPG7GWAC2nSAMEmqaZS+bWB6zrf3i8RC4zuZ//z7i3/yX6dr+6/8ccf37lXYH2HLGWAC2nSAMeNC2Lo/Z1n6xOwSu0/tPremWK0dE/J8/RPx1a7X9AbafMRaAbSYIA4B7CFw/+6//c7b2/23G9kAyGWMB2BRBGADwoKv/u9r2AACwToIwAOBBB/9ote0BAGCdBGEAwIN+82eztf/nM7aHWbgyKQCwKEEYAPCg32Yi/uSX07X9x7+K+MvMavvD4zVNyPVXZ8KwWfhZAcBdv9h0BwCA7fVPvoz4D//icwAxyX/8lxH7X668SzxC//v3Ef/mv0zX9l//54jf/FO1Nm1w+MUTV2dkfk/2Iv7fv5/chp/5mcH2E4QBsBL+EHw8/uLPJwdhf533Zpv5/adWxP/399O1/T9/iPjrVsS//Wer7dM2ExyyLnt7EV/4XT0TPzPYfpZGArASe3ufZyKMu+35Q/HR+FdCMBbwX//nbO3/24ztH5t5gkMA4DMzwgB2nJlXwK67+r+rbf/YzBMcJnkGHQAME4QB7DhT8IFdd/CPVtv+sREcAsD8LI0EAGCjfvNns7X/5zO2X7V1X51RcAgA8xOEAQCwUb/NRPzJL6dr+49/FfGXmdX2Z9i0V2dcZxi268EhAGySIAw2bN2fIgPAtvknX0b8h38xXdv/+C/XdwXEWa/OeP37lXZnYJuDQwDYdoIwWKFt/BSZ1fE6AszvL6a48uhf56drtyzbenXGbQ0OAWAX2CyfnXZ5eRkvXrwY2+b169fx+vXrNfXoZ7N+ivybf+oP1W02baj5xZP1vkkDSJJ/tebxdZuvzvgXf/7598446w4OASAi4vT0NE5PT8e2uby8XFNv7hKEsdNubm7i48ePY9tcX1+vqTej5vkU2aXNt5NQEyCZdv3qjOsODmFdnuxF/L9/P7kNsBnX19cT36dvkiCMnfbkyZN49uzZ2Db7+/tr6s2obf4UmdkINWG3/c3fRvzl0aZ7cde29oufuTojbKe9vYgvBF2wtfb39+P58+dj21xeXsbNzc2aejRKEMZOe/bsWfz000+b7sa9dv1TZH4m1ITtta3Llre1X8zmN38W8T/+1/TtXZ0RAKbbnujFixcbmzVms3xYEZ8iPx5CTdhO23pFv23tF7NzdUYAeHwEYbAiv5nxU2GfIm8voSZsp229ot+29ovZuTojADw+lkbCivw2E/Hv/vt0b4Z8irzdLI2B7bSty5a3tV/Mx9UZWTUbvwOslxlhG9DpdCKXy03d9vj4OA4PD2Nvby8ODg7i6Ogojo+Po9PpLLU/Z2cT/sqboFqtRi6Xi4ODg9jb24vDw8MoFArRbDaX0s9d41Pkx8PSGNhO27pseVv7xeq4OiOL2Nv7vF/guNueIAxgaQRhS9TtdmNvb2/i7fDwMNLp9MTjVavVODw8jHq9Pgi9ut1utFqtqNfrcXh4GNVqdaH+FgqFODw8jGazGZ8+fZrrOM1mMw4ODqJcLkdERKPRiHa7HZVKJVqtVuRyucjlctHtdufu666a5tNhnyJvP6EmbKdtXba8rf0CAMDSyKWq1+tTt+2HRg/J5XLRbDYjlUpFNpuNdDodnU4nWq3WyEywcrkc6XQ68vn81OfudrtxcnKyUIjW12w2B7PbisVi1Gq1wff6/To6OopmsxlHR0dxcXERqVRq4fM+Jj5F3g2WxrAOlsfMZluXLW9rvwAAMCNsqU5OTqZq1w+2HlIul6PZbEalUomrq6toNBpRqVRGZloNKxQKU/exWq3G0dFRtFqL78zbn1EW8Tn0Gg7BhjUajYj4vARzlr7CrhFqsijLY2azrcuWt7VfAACYEbY09Xo9ut1ulEqlift/vXz58sHvdTqdqFarcX5+Htls9t42pVIp2u32yAy0VqsVmcz4v6RbrVZks9kolUqDPh8fH499zjiFQmGw3HHcDLf+zLCzs7NoNptRr9ejWCzOfV4AiPh52fKk2ZoR6122vK39AgBAELY0lUol0un0ndlasyqXy1GpVB4MwYbPNxyENZvNiUHY7e+PC+Qm6XQ6I5vgf/PNN2Pbf/vtt4PN+MvlsiAMgKXY1mXL29ovAICkszRyCc7OzqLT6Uzc92sa/Vllk6RSqZHllfPsu7XIXl3DgV82m514rOE9zLrd7sJXqASAaW3rsuVt7RcAwGMmCFuCk5OTSKVSE2dFTeP8/HzqtsNXeVxkdtc8hmejTZqJ1jcc3P3www9L7xMAAADAOJZGLqjVag02nj84OIh0Oh3ZbDZyudxMV3KcVbfbHezPlc1mpw6jluH2Rvu//vWvp3peJpMZXPHSjDAAgMfJFXAB2GZmhC3o9nLITqcT9Xo9CoVC7O3tRaFQWMoVGm97+/ZtRHyeZdW/KuO6DO8N1u/DNG63W8XPBQCAzXIFXAC2mSBsAbc3jL/P2dlZHB0dLXR1xtu63W4cHx9HJpOJ8/Pzhfb6msf79+9HHk97/q+++mrk8YcPH5bVJQAAAICJLI1cQDqdjlqtFt1uN9rtdjSbzcHSv9vq9Xp8+PAhLi4uFjpnp9OJXC4XqVQq3r17t/YQrN+HYfPOCGu320vrEwAwmSVrAEDSCcIWVCwWRx53u92o1+txcnIy2MOrr9VqRS6Xm2lD/GFnZ2dRKBQGjw8ODqJSqUx1lclleijsm9Xtnw/r5c0QQPLs7UV8YWwHABLM0sglS6VSUSqV4urqKhqNxp0ZW81mM6rV6tTH63a7Ua1W4/DwcCQE6yuXy/d+fZXmDbBu/yyGr3rJ+m3r/h39gG7cTUAHAADAPMwIW6F8Ph/ZbDZevXo1sjH8ycnJ1LO4ms1mtNvtyGazD+5JdnZ2FtVqde0zwxa1jBlhl5eX8eLFi4WP8/r163j9+vXCx2FxZiuwDmZEAgDA7E5PT+P09HTh41xeXi6hN/MRhK1YKpWKi4uLODo6GoRh3W43ms1mZLPZic/P5/ORz+dHvlav16NcLo8ESeVyOYrF4lr2DEulUksJsZbR15ubm/j48ePCx7m+vl74GMDuELgCAMDsrq+vl/IefJMEYWvy5s2bODo6Gjw+Pz+fKgi7T7FYjGw2G0dHRyOBVL1eX8ussKdPny4lCHv69OnCx3jy5Ek8e/Zs4ePs7+8vfAwAAAB4zPb39+P58+cLH+fy8jJubm6W0KPZCcLWJJPJRDabHSxtXHTD+XQ6He/evRsJ196/f7/QMac170yu2+HZMmaEPXv2LH766aeFjwMAAACMt6xthV68eLGxmWWCsDXK5XL37vE1r0wmE/l8Ps7OziJieVdznOTly5cje551u92pQq3bm+MfHh4uu2sArIA91QAAeCxcNXKN0un04P4ylgVGRHz77beD+8tYrjiN4VloEdMHcO12e+TxvEtDAVivbb3KLAAAzEoQtkbDQdiyNrXPZDJLP+YkL1++HHk8bRA2HNSlUqmRnwcAAADAqlkauUYfPnwY3M/lcks//u2AalUymczIlSPfv39/58qW9xn+96+rrwAAj5ElywAwHzPC1mh4aeCylgUOz8ZaRbj2kG+++WZwf3i/sHGG25XL5aX3CQAgKSxZBoD5CMLWqL+pfalUWtox++FSKpWaalbWshwfHw/uT3MBgOE26XTa/mAAAADA2gnC1uTs7Cw6nU6kUqn4/vvvl3bck5OTiIh48+bNzM9dZHP9TCYzEmb1Q76HNBqNwX2zwQAAAIBNEITNqdlsxsHBQezt7UUulxu7PLDT6cR3330XERHv3r0bu6l9tVqNo6OjKJfLE4OqfptSqTTXbLDbm9zPGozVarXB/X4gd59utxv1ej0iPi8JLRaLM50HAHj8+ntejbvZ8woAWJQgbE6NRmMQHDWbzTg6OhpZLtjX/97Tp0+j3W6PXOXxtm63G+VyOVqtVlSr1Tg4OHhw9lShUIhqtRqVSiUqlcrM/e+fa9gPP/ww0zHS6fRgple/z/d59epVRHxevjk8MwwAoM+eVwDAOgjC5lQoFO58rV6vx8HBQRQKhTg+Po6jo6PI5XJRLBbj4uIi0un02GOmUqk7bfqBWKFQiHK5HLlcLg4ODiLi8+b7s+w31u12o1AoDI5xe0ZYq9UazHArFApTbYKfz+fj/Pw8UqlUlMvlwfO63e4gBGy1WpHJZOLHH38cOxsOAAAAYJV+sekO7KpsNhvtdjsqlUo0m8349OnTYIZYP/j5/vvvI5vNzhT+XFxcxMnJSTSbzeh0OiPHjPgcwDUajbkCpVXNyMpms3F1dRXVajV++OGHePXqVXS73UilUvHy5ctoNBpr3cgfAAAA4D6CsAWk0+mRfbKWIZVKzbXUcRuUSqWlXhETAAAAYJksjQQAAAAgEcwIAwCAB/SvZjmpDQCwGwRhAADwgL29iC8EXQDwaFgaCQAAAEAiCMIAAAAASARLI9lpl5eX8eLFi7FtXr9+Ha9fv15TjwAAACC5Tk9P4/T0dGyby8vLNfXmLkEYO+3m5iY+fvw4ts319fWaegPAutnIHABgu1xfX098n75JgjB22pMnT+LZs2dj2+zv76+pNzxm3mzDdrKROQDAdtnf34/nz5+PbXN5eRk3Nzdr6tEoQRg77dmzZ/HTTz9tuhskgDfbAAAAk02zPdGLFy82NmtMEAYrZBYRQDIZ/wEAtpMgDFbILCKAZDL+AwBspyeb7gAAAAAArIMgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARPjFpjsA2+709DSur69jf38/Xr9+venukABqjnVSb6ybmmPd1BzrpN5YNzU3u71er9fbdCdgVi9evIiPHz/G8+fP46effno054IINcd6qTfWTc2xbmqOdVJvrNuu1twm+21pJAAAAACJIAgDAAAAIBHsEcZOu7y8jBcvXoxt8/r1a2ulAQAAYA1OT0/j9PR0bJvLy8s19eYuQRg77ebmJj5+/Di2zfX19Zp6AwAAAMl2fX098X36JgnC2GlPnjyJZ8+ejW2zv7+/pt4AAABAsu3v78fz58/Htrm8vIybm5s19WiUIIyd9uzZs526MgYAAAA8ZtNsT9S/auQm2CwfAAAAgEQwIwy23OnpaVxfX8f+/v7aN/1P6rm34fybsul/d1JrbtM/901K6s9906/5ps+/KZv+dye15jb9c9+kJP/ck/xv36Sk/tw3/Zpv+vybsrP/7h7soOfPn/ciovf8+fNHda5tO39Sz73p8yf13Js+v3N7zZNy7k2fP6nn3vT5k3ruTZ8/qefe9PmTeu5Nnz+p5970+Xf13Jvst6WRAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJsNfr9Xqb7gTM6le/+lX8/d//fTx58iSePXu20nNdXl7Gzc3NWs61bedP6rk3ff6knnvT53dur3lSzr3p8yf13Js+f1LPvenzJ/Xcmz5/Us+96fMn9dybPv+unrv/3F/+8pfxhz/8YUU9vJ8gjJ30xRdfxM3Nzaa7AQAAAMzpyZMn8cc//nGt5/zFWs8GS/Lll1/G73//+/jiiy/iT//0TzfdHQAAAGBKf/d3fxd//OMf48svv1z7uc0IAwAAACARbJYPAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAiDB1Sr1cjlcnFwcBB7e3txeHgYhUIhms3mprvGI9LpdCKXy03dXl0mT79Gzs7OFjrOKmpHPT5Oy6q5Wc41LTX3+LRarTg+Po7Dw8PY29sbvK7lcjm63e7cxzXmcZ9V1ds0jHfJ1Ol0Rmru4OAgjo6O4vj4ODqdztzHNcYtqAeMOD8/76VSqV5E9LLZbO/8/LzXbrd7jUajl06nB1+/urradFfZYldXV72ImOpWLBYnHk9dJs/V1VUvn88P6qRWq811nFXUjnp8nJZVc/1jGQMZ53a9PXSbtQ6NedxnVfXWP7bxjvtUKpWJNVGpVGY6pjFuOQRhMOT8/HziL6pMJtOLiF46nX5UgwHLNc0vvv6t3W6PPZa6TJarq6teqVRayh/nq6gd9fj4LLPm+oyBjHN1dTV4c7Ws8KDXM+Zxv1XVW5/xjvtks9leRPRSqVQvn8/3SqVSL5/P31uLjUZjqmMa45ZHEAb/4OrqapCEp9PpB9u12+3BYJHNZtfYQ3ZJv5Ym3SbVkLpMlkql0kun04M/nhYJJVZRO+rx8VlmzQ0zBjJOv94ymUyv0Wj02u32YPbBfaHsNG8UjXk8ZBX1Nsx4x239unpottd94ekkxrjlEoTBPxh+EzDpj/9lLR3hcarVar2I6JVKpd75+fnY26RPVdRlclxcXPQuLi4Gj/t1NO9ruoraUY+Py7Jr7vZxjIHcZ7g+HtJutwczEPq3VCo19rjGPO6zqnq77/jGO3q9n0Oj8/Pzse2KxeJIzQ3/Pr6PMW65BGHQG025I2LiL6pGozHzL0qSI51Oj/1UZVrqMtkuLi7mDiVWUTvq8fFbpOaGGQMZpz8DcZLbr/+4N5bGPB6yinq7fXzjHcPy+fxU+37d3ltu3HOMccvnqpEQEZVKZXA/m81GKpUa2z6fzw/ud7vdtVxZi91wdnYWnU4nyuXywsdSl8k26fUeZxW1ox4fv0Vqrs8YyDitVis6nU40Go2JbdPp9EgN9J9/H2Me91lVvfUZ77hPt9uNUqk0sV0qlYp0Oj3y+CHGuOUThEFE1Ov1wf1MJjPVc4YHrh9++GHpfWI3nZycRCqVim+++WbhY6lL5rWK2lGPTMMYyDg//PBDFIvFqUPXbDY78vh3v/vdve2MedxnVfXWZ7zjPufn51O3/fTp0+D+y5cvH2xnjFs+QRiJd/vTnl//+tdTPW94wNj1RJzlaLVa0Wq1otvtxsHBQRweHsbx8fFc9aEumdcqakc9Mg1jIJN8++23d2bdjHP7zdnh4eGdNsY8HrKKeusz3rGobrcb3W43Ij6HsA+FUca41RCEkXjNZnPk8XDSPc7tdpOmT/P43Z4a3+l0ol6vR6FQiL29vSgUClPXibpkXquoHfXINIyBTJLJZGZagtt/k9h3Xx0Y83jIKuqtz3jHot6+fRsRn1/Hcct3jXGrIQgj8d6/fz/yeNpfmF999dXI4w8fPiyrS+ygTqdz55fKbWdnZ3F0dBTHx8cTj6cumdcqakc9MokxkFXodDojj28vXYsw5rE809Rbv53xjkV0u904Pj6OTCYT5+fnY19zY9xq/GLTHYBNu/1Lb95EvN1uL61P7J50Oh21Wi263W602+1oNpt3aquvXq/Hhw8f4uLi4sHjqUvmtYraUY9MYgxkFYbfZBWLxXvbGPNYlmnqLcJ4x2I6nU7kcrlIpVLx7t27iSGUMW41BGEk3kO/uGZ1ezo1yXP7j6Zutxv1ej1OTk7u1Eer1YpcLvfghprqknmtonbUI9MwBrJstVptcP+hK/MZ81iWaeqtz3jHPM7OzqJQKAweHxwcRKVSGXuVSWPcalgaSeLN+x/4dno/fNUPiPhcI6VSKa6urqLRaNypmWazGdVq9d7nqkvmtYraUY/MwxjIIjqdzmD/mUql8uCMBWMeyzBtvT3EeMdDut1uVKvVODw8HAnB+srl8r1fH37+PIxx4wnCYEl2ORFn9fL5fPz44493rghzcnKy0vOqS+a1itpRj8llDGRW/av9pdPpsbMllsWYl2zLrDfjHcOazWa02+3IZrMP7jt3dnb2YFC6LMa4UYIwEm+Wq8ms4zg8XqlUKi4uLkb+MOp2u/duuKoumdcqakc9sgzGQKbVarWiXq9HKpV6cDlZnzGPRc1Sb9My3tGXz+ejVqtFrVaL8/Pz6PV6UavV7rxe5XL53mDJGLcagjAS7+nTp1t1HB6/N2/ejDy+748udcm8VlE76pFlMgYyyXfffRcREe/evZu4RM2Yx6JmqbdZGe+4T7FYjIuLiztBUr1ev9PWGLcagjASb94k+3Ziv8uJOOuVyWRGpkbft2GlumReq6gd9cgyGQMZ5/j4OFqtVjQajTtLy+5jzGMRs9bbrIx3PCSdTse7d+9Gvvb+/fs77YxxqyEII/Fevnw58njatc63Nwc8PDxcVpdIgFwuN/b76pJ5raJ21CPLZgzkPvV6Per1etRqtcjn81M9x5jHvOapt3kY73hIJpMZqb37glJj3GoIwki8o6OjkcfTXk623W6PPH5o80O4z/DU+/umFatL5rWK2lGPLJsxkNuazWYcHx9HrVaLYrE49fOMecxj3nqbh/GOcb799tvB/fsCKWPcagjCSLzbifi0A8HwQJVKpZa+pwCP23C93DetWF0yr1XUjnpk2YyBDGu1WpHL5aJSqcwcShjzmNUi9TYP4x3jDC/JXVd9qDlBGEQmkxkZdO5bm32fDx8+DO7fHkxgkuH6uW/KvLpkXquoHfXIshkD6et0OvHq1asolUpRKpVmfr4xj1ksWm/zMN4xrfteR2PcagjCICK++eabwf1WqzXVc4bblcvlpfeJx214avFD04rVJfNaRe2oR5bJGEjE51Di6OgoisViVCqVqZ9TrVZHvmbMYxrLqrdZGe8YZ3g21kP7yRnjVqAH9C4uLnoRMbhNcn5+PmibTqfX0EMem3Q63YuIXqlUerCNuky2drs98vrXarWpn7uK2lGPj98iNTcrYyBXV1e9dDrdKxaLMz0vk8n0Li4uRr5mzGOSZdbbrIx3jFOpVHoR0UulUg+2McYtnxlhEHcvbXx2dja2faPRGNzf+TSctTs7O4tOpxOpVCq+//77B9upy2Sb9go+91lF7ajHx2+RmpuFMZButxtHR0eRTqejXC5Hp9OZeGs2m4MNnof31Ok/NubxkGXX2yyMd0xycnISERFv3rx5sI0xbgU2ncTBthj+JDyTyTzY7urqatAum82usYdsq/Pz814qlRrUxLhPDtvt9qDtNJ8wqsvkajQaI5/UVSqVmZ6/itpRj4/bvDVnDGRWmUxmpNZmuT00U9GYx0OWWW/GOyapVCq9TCbTK5VKvaurq7FtS6XSxNmCfca45RKEwZDhNwEPvQHo/zJNpVITBzeSoVgs3vnD6b6p9/0/ntLpdK/dbk99fHWZPP0lHMM1Ne4PlIesonbU4+O0SM0ZA5nFIqHEpM/wjXnctux6M94xznBg1L89FHLl8/mxr/N9jHHLIwiDW4Y/6cnn872Li4ve1dVV7/z8fDAIZDKZRzMIsLjhNfPDt1Qq1cvn871isTionWk+HXroHOrycbu6uurl8/leNpsd+0d5Npsd1MA0VlE76vFxWFbNGQOZVv+N37y3afZ3MubRt4p6M94xye0PlYbro1Qq9bLZ7ODxLCFpnzFuOQRh8ID+tNb+oJBKpXrZbLbXaDQ23TW2ULvd7hWLxV46nR6pmXQ63cvn871Go7GUXx7qknmtonbUI33GQLaNMY9VMd4xztXVVa9UKt157fr1UavVtrY+klRze71erxcAAAAA8Mi5aiQAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAOyobrcbhUIhWq3WRs5frVajXC5v5NzzEIQBAAAA7KBmsxlff/11pNPpyGQyg6/v7e2t/NZXLBaj1WrF4eFhdDqdTfwYZrLX6/V6m+4EAAAAANPrz8Sq1WpRLBZHvjccVA1LpVLx9OnTweP7gqt0Oj24/+nTp+h2u/ce63acdHx8HG/fvo13796NhHLbxowwAAAAgB0yLgS7HVwVi8W4uLiIXq8XV1dX0W63B7fbgVU2mx35/tXVVfR6vWi321GpVMb2qVarRTabjaOjo40t05yGIAwAAABgR9Tr9SiXy1Eqle6EYLc1Go2o1WoLz9BKp9NRKpXi/Px88LX7Zoo1Go3IZDLx6tWrB2eSbZogDAAAAGAHnJ2dxfHxcWQymQdnaH369CkiPs/uyufzSz1/NpuNbDY7tk2j0YhutxuvXr1a6rmXRRAGAAAAsOW63W589913ERETlylGfN6zaxX6x+0Hbrel0+nBBvrbeDVJQRgAAADAlisUCtHtdiOTyYydldVfkjhp5ta8pjluPwCrVqvRbDZX0o95CcIAAAAAttjZ2dkgUPr+++/Htk2n01Gr1SKVSq2kL6lUKmq12sjVJ+/rQz8wW9XMtHkJwgAAAAC22MnJyeD+pH2/UqnUxE30F1UsFicGbblcLiIiOp1O1Ov1lfZnFoIwAAAAgCGFQiEODg5ib2/v3tvR0VF0Op2I+Dzj6b62h4eHS7lyYrPZjFarFRGx8NUf12l4CeU0e5qtiyAMAAAAYEij0Yirq6t7Z1ZVKpW4uLiIdDodERG1Wi3evXs3+H4mk4mrq6tot9tLWZ5Yq9UG91e179cqDId2nU4nzs7ONtibnwnCAAAAAO5Rq9XuhE/tdvtOuw8fPkTE56Dq4uJiqftzDQdIv/71r5d23HUY/tmdn59vsCc/E4QBAAAAPKDRaIw8rtfrI0seu91ulMvlSKVSd9ouqr8ksq8/C21XDM8Ke/v27QZ78jNBGAAAAMAD+ldJHPbdd9+N3O92u9FoNJZ+pcb+lSL7di0I++qrrwb3u93uYF+1TRKEAQAAAIxRLBZHlvmdnZ1Fs9mMer0eZ2dnd76/LO/fvx95vOygbdVuB3e3Z7htwi823QEAAACAbVer1eLw8HDwuFAoRMTnsOf2jLFlWcZVJzfpdnD36dOnzXRkiBlhAAAAABOk0+moVCqDx91ud7AkclW2IThapm0I9gRhAAAAAFMolUojG8Cv2nBwtGvLIiMinj59OvL4d7/73YZ68jNBGAAAAMCUbs8A6y+RXLVtmE31GAjCAAAAAKZ0ez+wTqcT5XJ5JefaxVlgw24v7Ry+iuSmCMIAAAAAptBqtaJarUY+nx/5erVaXckVEW9fdXHXbUOwJwgDAAAAmEKhUIhUKhVv3ry5MzNsFUskb++xtWvLI2/3dxuCPUEYAAAAwATHx8fR6XTizZs3kUqlolgsjmyc3+l0olqtLvWcuVxu5PGuXUWy0+mMPH758uWGevIzQRgAAADAGM1mM+r1emSz2ZFlkbc3zi+Xy3fCn0Vks9mRx8s89joMXyUynU5bGgkAAACw7frLHm8HX+l0OiqVyr1tlyGVSo0sJzw/P1/ase+z7Blnw8Hd7VBvUwRhAAAAAA8oFArR7XajVqvdO6OpVCqNhFX9DfWXZXgGWrPZXNpxI+7u4bXsPciG+7uKPdTmsdfr9Xqb7gQAAADAtjk7O4tCoRDpdDra7faD7VqtVhwdHY187eLiYmQPsXl1u904ODgYPF5WjNPpdOLw8PDO16+urpayhHG435N+futkRhgAAADALc1mczCLaXhW1n3uuxriq1evotVqLdyPVCoVpVJppF+LarVaD87QKhQKS+n327dvB/fL5fLCx1sWM8IAAAAA/kGn07k3DMpms9FoNO7MlqpWq1Gr1R7cyD6TyUSj0bg3LJvW8OyqUql0Z1+yaR0dHc0Uci0yk6t/rm2aDRYhCAMAAADYevV6PY6PjyOVSsXV1dWmuzPW8LLLZS0RXRZLIwEAAAC2XLFYjHw+H91uN+r1+qa7M9bx8XFEfJ69tk0hWIQZYQAAAAA74/DwMD59+hQ//vjjUja1X7Zmsxm5XC4ymUxcXFxsujt3CMIAAAAAdkR/2WE+n49Go7Hp7ozodrvx9ddfx9OnT+Pi4mIrgzpLIwEAAAB2RDqdjouLizg7OxssQdwG3W43jo6OtjoEixCEAQAAAOyU/rLDt2/fbkUY1g/B+iHdtoZgEYIwAAAAgJ3TD8M+fPgQuVwuut3uRvrRarXi66+/juPj4zg/P9/qECwi4heb7gAAAAAAs+vPwKpWq/Hp06eNhFCdTifevXu3dVeHfIjN8gEAAABIBEsjAQAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAAS4f8HDk58l8+2U2YAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -285,12 +293,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtxUlEQVR4nOz9X4xb953f/78OpRjyxktxxkWBAQlsxVkXDn7Ab1fkqBfZq12RzUXtX7JrUiri2gbaiHTcfPeCbYZWjC+6vXAmnKQEvui3qYbKFvjJ6wuZtNeG3R9SD529+wKtZqjsndGElAMMQaBoxCNuDAuJxfO7mCVDcmbIwz/nHHL4fABEODNvfs57/jrnpc8fw7IsSwAAAAAAAMAp5/O6AQAAAAAAAMANBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKBGEAAAAAAABYCgRhAAAAAAAAWAoEYQAAAAAAAFgKZ71uAJjUF7/4RT18+FBnzpzRP/yH/9DrdgAAAAAAgA3/63/9Lz169Ejnzp3Tp59+6uq1DcuyLFevCMyIz+cTP74AAAAAACwmwzDUbrddvSYzwrCwekOwYDDoYSfjaTQaarfb8vl8Wltb87od2+jbXfTtLvp2F327i77dRd/uom930be76Ntd9O2uer0uSZ5MbiEIw8Ly+XzdX/iDgwOv27EtFAqpXq9rbW2Nvl1A3+6ib3fRt7vo21307S76dhd9u4u+3UXf7lrUvs+cOdO9n3ebp0HYU0895eXl+xiGof/5P/+n120AAAAAAADAIZ4GYdVqVYZheLrPU+f6hmF41gMAAAAAAACc5/4ctDnDZusAAAAAAADLwfM9wizLUiKRUDgc9uT6pmmqUCh4cm0AAAAAAAC4x/MgrFAo6Bvf+IanPSQSCX3lK1/xtAcAAAAAAAA4y/OlkbFYzOsWdOnSJa9bAAAAAAAAgMM8nxG2urrqdQtYcO12W6FQaGhNJpNRJpNxqSMAAAAAAJZTPp9XPp8fWtNut13q5ihPgzBOasQ0fvd3f1cPHjyQJNXr9aG1rVbLjZZOtUwmo1arJb/f73UrY6Fvdy1q34tqUb/e9O2uRe17US3q15u+3bWofS+qRf1607e7FrXvedRqtUbeo3f87u/+rsPdHGVYHh6b6PP5ZJqm5z9oDx480MrKiqeJJMYXCoVUr9fl8/m0trY2tHaeZoR1+g4Ggzo4OPC6HQDi9xKYR/xeAvOH30tg/szj76WdGWGNRkPtdtuTvj2dEZbL5TwPwSTp/PnzyuVyXreBCa2trc3NLzwAAAAAAMvMzkSUToDnBU83y//2t7/t6vU++eSTEz/mdi8AAAAAAABwl+enRropnU573QIAAAAAAAA8slRB2N7entctAAAAAAAAwCOe7hE2qU8++USmadqur9Vq2tnZGes1AAAAAAAAOF0WIgj75JNPlMvlVC6XVavVJhrDsiwZhjHjzgAAAAAAALAo5j4Iu379ura3tyUdhlkAAAAAAADAJOY6CHv77beVy+UkSYZhyDAMwjAsvEwmo1arJb/f73UrAP4ev5fA/OH3Epg//F4C84ffy/EZ1hwnSxsbG6pUKt0ALBwOKxKJKBwOS5KefPLJkWP88pe/lGmaeuutt/TgwQM9evTI6bbhklAopHq9rmAwqIODA6/bAQAAAAAANnh5Pz/XM8I6IZgk7e7u6vLlyxOPtbm5qaeeempWrQEAAAAAAGDB+LxuYJhAICDpMMSaJgSTpHA4rAsXLsygKwAAAAAAACyiuQ7COksgL126NJPxdnZ2ZjIOAAAAAAAAFs9cB2GdWWD379+f6XgAAAAAAABYPnMdhH3nO9+RZVmqVCozGe9HP/rRTMYBAAAAAADA4pnrIOz8+fP63ve+p9u3b+vv/u7vph6PpZEAAAAAAADLa66DMOlwo/xIJKJkMjnVOPfu3ZvZzDIAAAAAAAAsnrNeN2DH7u6uNjY29NRTTymbzWp1ddXW6+7fvy/TNFWtVvXWW2853CW80mg0FAqFhtZkMhllMhmXOgIAAAAAYDnl83nl8/mhNY1Gw6VujlqIIOwnP/mJJKlarSqdTk80hmVZMgxjlm1hTrTbbdXr9aE1rVbLpW4AAAAAAFherVZr5D26l+Y+CPvmN7+pQqEgSTIMQ5ZljT0GAdjp5vP5tLa2NrTG7/e71M1RliW1R/zY+gyJH1MAAAAAwDCLcH/p9/sVDAaH1jQaDbXbbZc66mdYkyRLLrl582Z3BtikIVgvwzD06NGjWbSGORAKhVSv1xUMBnVwcOB1Oyd61JbOvja85vPXpTNzv2MfAAAAAMBLp+X+0sv7+bmeEdY55bETgsViMcXjcQUCgbH3Cbtx44Y++eQTB7sFAAAAAADAPJvrIKxSqcgwDAUCAe3t7enChQsTj3Xt2jU9+eSTM+wOAAAAAAAAi2SuJ8sFAgFJ0vXr16cKwTpjXbx4cQZdAQAAAAAAYBHNdRAWjUYlSeFweCbj3bx5cybjAAAAAAAAYPHMdRCWTqdlWZZqtdpMxmNGGIBZME3T6xYAAAAAABOY6yAskUjo4sWLun379kzGe+edd2YyDjBrb971ugOMUqlUlM1mtbKyomvXrnndDgAAAABgAnO9Wb4kFYtF/f7v/77++q//Wn/6p3861VhbW1v6sz/7sxl1BthjJ+R6qXR4vO3zTFqcSKVS0e3bt1WpVFSr1bqnxQYCAYXDYa2urioSiSgejysWix15fTKZVK1W0/7+fvd9pmmqXC7r9u3bKpfLzAIDAAAAsBDevCu9GPW6i/k190FYOBzWjRs39I1vfGOqIOzBgweqVCoz7AwY7cFD6ZX3bBT+tKB/8b20/sWY40cikb7wZlKGYYz9mkAgoGazeezHksmkSqXS2GPu7u4eG1QdxzRNbW1taXt7e2hN5/e+XC53ayORiGKxmNbX17W7u6tSqaRIJNL32mvXrqlWq/F3AwAAAMDcYKLF9OY6COssZfwH/+AfaGVlRU899ZQSicTY45imqbfeemvW7QEjvVGRPv2NjcI/TElPX9Hm/7um2v9va2iIFIvFlM1mtbGx0T1ZdVqdvfjK5bKy2eyJs5/C4bCy2axisdjQQyyKxaJM09Te3p5yuZzK5fKJtZubm7p69arC4bDtzyebzR4bgCUSie5YnfFqtZpqtZqKxaLeeuutbjg2GHANfs7FYrH7fH19fWZ7FQIAAADAJGxPtJD08rvSs1+S/OccbWkhGZZlWV43cZKNjQ3dvfvbuNOyrIlmrvS+9tGjR7NqDx4LhUKq1+sKBoM6ODjwup1jfeW/SB/+bIz6p6Qf/8vDgyIKhcKRjycSib6Axgm1Wk3r6+vHfqzZbE4UvkWj0WNnVu3s7CiVSo3VWzwePxJKpVIp7ezs2Bpje3tb2Wz2yPvD4bCq1eqxrxn8frjxfQAAAACAXv/3/yP9H+/br/+Pz0rf+rJz/UzDy/v5ud4s/8qVK7IsS52sbtIQDPBK87PJ6tPp9LEfP+n9sxQOh48sE5QOw59JZ6Cd1Pc4IVi5XD4yMysQCGh/f992CCYdzkCrVqtHPpf79++f+JpZzbwDAAAAgEm9//F49R+MWb8s5joI69w8G4bRDcQmfQBeWHl8svqTlh0OW444S8ddZ5prH/faccKlSqWieDx+5PUfffTRsaGdnX7u3bvX1wOb4QMAAACYZ5NOtEC/ud4j7Pz584pEIrp7965yuZwikYhWV1fHHqdWq+m73/2ufvrTn86+SWCIZ58eb2nkM08f/u9JIdEkP/+Lrlar6fLly0feXywWJwrBOjqzyU5aBrrIOpv/uxWcLppyuWz7UAYAAABgXkw60QL95joIk6SrV69qfX1d3/72tyce4+LFi3ruueeWMkSAt16ISK/+2N6G+U88Jr04ea4zU8f9rjz55JMzHc/u72MymTwyWyuVSs0kyAiHw9rc3Bx68uQ8qVQq2tnZUblcVq1WUyAQ0OrqqgKBgMLhsK5evSrp8MTLXC43dOlpuVxWMpnU6uqqdnZ2TnUw1DkIolgsdg9umKeZwsv0vQAAAMDkJp1ogX5zvTRSOjwhb1Y3LBsbGzMZB7Dr/Dnph1+1V3vja5zoMahcLh+7yX4ul5vZNa5fv959Pq/LI03TVDKZVDQa7W7an0gkFIvFFAgEVKlUVCqVlEwmu8HhqM+lU1er1VzZe84LtVpN0WhU0WhU6XR66OmlXlqG7wUAAACm90JE+uIX7NXO00SLeTP3QdjFixdndtP753/+5zMZB/Ol0WgoFAoNfeTzec/6e/7i6JpbCXt1y+a4UGCaTfuPEwgExtq03wvJZFKlUknS4Umb1WpVxWJRxWJR+/v7qlarR2YRnXQCZscyzJANh8Pa399Xs9nU5uam1+2caBm+FwAAAJjeoky0yOfzI+/RG42GN81pAYIwSbpw4cJMxvmP//E/zmQczJd2u616vT700Wq1vG5zqK8Tgh3RWf43qHcG16wkk0lJw0+OHKaztG19fV2GYWhlZUXxeLw7e2sa29vb3ZlMm5ubx4Z24XBYu7u7ff9ocNzXrtfOzo7C4bDC4bCKxeLUfc67wcMW5smyfS8AAAAwuUWYaNFqtUbeo7fbbc/6m/s9wmZpb2/P6xbgAJ/Pp7W1taE1fr/fpW4wKycFAtNskH+SWCymXC439swc0zR1+fLlI8s3TdNUuVxWuVxWLpebamP/ra2t7vNRy+Y2Nzf1y1/+Utvb2yNDvVgsNnLW2Gni1ayrdDqtnZ2doTXL9r0AAACAs7yeaOH3+xUMBofWNBoNz8KwhQzCPvnkk7H28qnVatrZ2Znb/X8wnbW1NR0cHHjdBmbsuP2cnNxEfNylc539p0b9XenU7e7ujt1/rVYb++9WLpc7cTYd3FUoFFQoFEYGYQAAAMBpkslklMlkhtaEQiHV63WXOuq3EEHYJ598MvXNnWVZMgxjxp0BcEKtVjv2d92J2WCT6Gxeb5qmEomE4vG4NjY2dP/+fe3u7h57CmU8Hle1WlU4HB7rOr3K5bKt/cyuX7/eXe4Jb7DxPQAAADCf5j4Iu379evemcp6OuwfgnJMC7/X1dZc7OV5nttpxs7xisZjS6bTi8fiRzyOZTGp/f9/2dQZDs2w2qytXrow8LCCRSEg6DNJmebAA7DFNc673JAMAAACW2VwHYW+//XZ382fDMGQYBmEYFo7PkD5/fXQNfuukIGyeTtcbttSxs3n9YHBXqVRULpdtL5EMBAIKBALdmWGmaXaXWY6aWcbfSm909o1jaSoAAAAwn+b61MjOJtGdAOzChQtKJBLa3NzU5uamcrncyEfnlDVmRcArhiGd8Q1/LMKq3Ww22w2kx31Eo9GxrnXSvljz8nscCARGhlnhcLjvFMeO4943zGB9rVbT+vr6TE6krFQqSqfTI2famaapQqGgaDTad93O8r+VlRUZhqH19fVjl4XWajVls9nuqZrr6+tKp9PHfp871xn8GRoUj8e74/U+ZrkXZKFQ6LvOysqKotHosZ+jdPj1vHDhwpHDE3r7O+lrbfd70WGapra3txWPx7tf/05/2WzWVhBXq9W0vb2t9fX1vp57vwfr6+vdZcAAAADwXmeixbAHEy1GsOaYYRiWz+ezfD6fVS6XpxqrWq1aPp9vRp1hHgSDQUuSFQwGvW7FEZKOPJrNpivXTqVSx15/lo9wODz29Xd3d135/Adtbm729RGLxWy/NhAIHPk8xhWLxY79ekQiEWt/f3+ssfb3961UKtXXVyAQOFLXbDatXC5nRSKRvmvu7OxYlnX0a9L7SKVS3XGG1YXD4RN/pgd/Bk6Sy+Vs/Y7s7+/b/h4Ui8Xu16VYLPaNEQ6HT+y92Wxa+/v7R3ra39/ve/SOZ+d7MWhnZ6dbn8vlrP39fatarVrFYrHv+5VIJI68ttlsWpubm93Po7fHZrN55Pvd21e1Wh3ZGwAAAGCHl/fzcz0jrDP7Y3NzU5cvX55qrHA4rAsXLsygK2A5pVIp7e/vT/QY99S8k2Z+zcuslHFmph03c2xwxtAou7u73X2/BseJRqO2Z+zUajXdvn3b9qyjSCRyZMP3/f19RaNRVSoVFYtFVatVNZvNvlM3C4WCKpWK4vG4yuWydnd31Ww21Ww2tbu72/361Wq17szfQXY3+z/u6zKNcrncvfb169f7xo9EIioWi5IOe7927VrfawOBgCKRyJFDHTrv6/3YuN+Ljmw2q3Q6rUAgoGq1qs3NTUUiEYXDYSUSCe3v73d7LpVKWl9f7/vZuH//vuLx+JGfy729PV24cKG7rLdarWpnZ6f7vTJNk83/AQAAcDq4Hr2NIRqNWj6fz3r77bdnMt60s8owX5gR5pzjZmTlcrmJxxucjaMRM8IGZ9R0Hp3ZSG4bnNV03Eybk3RmF83i8zjp6zLJuL1jjZqFNDhL6KSZeYMz13pnhvXq/ZqcdO3d3V1bM7iazeZMZ4QlEomRP/OjxrHbe4fd70XvTLBR3+veGV8nzWDs7TEQCBz7fR38+XXrbxAAAABON2aEnaAzC+z+/fszHQ/AfJv3GWHjOG5T+0k/j83NTTWbzRNnQXVOq7Qz/qjN9nv1HlKQSqVO3B9t8KTEk2YC9vZvmubcfl9P+jnsff8sNsW3+73IZrPd66dSKVu10uEst85Jp716P4+bN28e+30d/Fnb29uz1SsAAAAwr+Y6CPvOd74jy7LGXkZ0kh/96EczGQeAs04KBqrVqsudTO+4MOWXv/zlVOMVi0Xt7+8fWYInHYYely9fnmm4ZHcpaO/3bZzlo/N0wuLNmzeVy+VULBZHhk2Se+FsoVDoXstOcDZ4SMy4hzT06r3ePH2vAAAAgEnMdRB2/vx5fe9739Pt27f1d3/3d1OPN+4+RQC8cdKMo+Nmtcy740KLJ598cupxI5HIifuvVSqVI/tXuWHSUz1nNet3FgKBgDY3N0/ck21W/zAzrt3d3e5zuzPIen+PFvF3BwAAAHDCXAdhkrobAdvdOPkk9+7d8+wGBsD4jpvtVKvV5nYZ3TjGWZY4SiqVUrVaPRJClUqluQ4/Jg3N3Far1VQoFFQul4/dCN/NPsY1+HN2Gn53AAAAgGmd9boBO3Z3d7WxsaGnnnpK2Wy2b7+aYe7fvy/TNFWtVvXWW2853CWAWbp69eqx4XW5XJ75SYFOCwQCfSHELIOwznid0xx7r7Ozs3Pi7DoMV6lUlM1mFYlEplpWOCu931e7odjgiZT3799fmAASAAAAcMpCBGE/+clPJB3uDzTp8e2WZckwjFm2BSysSqWira0tFYtFr1s5USqV6tvwu2NnZ2fhgrDBmTh2ZhWVy2Vls1nt7+/bukY4HNbNmzf7Zs8yC3Yy6XRahUJBqVRqLkIwabIN+gf/0WjWASwAAACwiOZ+aeQ3v/lNxeNx3b17V4ZhyLKssR8A+l27dm3ul0kFAoFjA69yubxQAc/g19nuDK1wOKxKpTLW8sbBrxcbm4+vE4JJ020wP2u9IZbdkzZ7914jBAMAAAAOzXUQdvPmTe3s7HTDrElDLcIw4Lc6QVI8Hj+xZtabl0863klBxHEzxablVDC4t7fX97bdWa2d4GLSWbCSvZlni26WP6uVSqUbgoXD4blaRnj16tW+tzt9DtN7yuqizaIEAAAAnDLXSyM7p6F1ZoLFYjHF43EFAoGx9wm7ceOGPvnkEwe7hVcajYZCodDQmkwmo0wm41JH88s0ze7SuXFvjH/5y1/OtBc7AUY4HFYulzsSfJXLZW1vb2tzc3MmvdRqNcXjccVisZmfLjt42t84X/dwOKxaraZsNmtrdtLgDLDB8GSRDP6NN03z2GBqlrPeemffDRvXi9mUiUSib6+5nZ2dkT//vZ/P9evXnWwPAAAA6Mrn88rn80NrGo2GS90cNddBWKVSkWEYCgQC2tvb04ULFyYe69q1a3ryySdn2B3mRbvdVr1eH1rTarVc6mY2nLjRNk1Tly9f7gYK4y6VmnVPdsfb3NzU7u7ukSWCnY3Mp90MvlwuKx6Pd0O3WSuVSt3n44ZsnSBse3tb6+vrSqVSQ+t7xw+HwzMLCu1+r3rrRr1m1McHZ7MVCoUjn08nJOw1yw3hS6XSkeDyuOsNGvzdqtVqR5Y2TtJj7x5wtVpN5XL5xJ//SqXSXUKcy+XmanYbAAAATrdWqzXyHt1Lc700svN/3K9fvz5VCNYZ6+LFizPoCvPG5/MpGAwOffj9fq/bHMtJs1EmXQZWLpcVjUa7N8ZXrlwZ+/rTLEGbdtbO7u7usTOp4vG4tre3JxrTNE2l0+luCLa/v287LLAbDBUKhe7nnkqlxg7tesOTdDqtdDp94rULhULf16J3Jtpxer+fXu8Xd9L1e79e2WxW6XRa5XJZpVJJ6XRa6+vrR0Ieu787x11zMHxLJpPa3t7uzkBcX18/Emrt7Ox0DzbojDkYhHW+b7VarW8PsuN6G/a9SCQSfWFtMpk8tt40TV27dk3S4c/dSYGo3e9779fU658VAAAAzD+/3z/yHt3n8zCOsuZYLBazfD6f9fbbb89kvEqlMpNxMB+CwaAlyQoGg163MnOpVMqSdOQRi8WsarU68vXNZtPa3d21Njc3rXA4fGScYrF44mur1eqx15ZkNZvNiT6fSCRy7Hg7OztjjbO5uXnsOJFIxNrd3bU1RrPZtHK5nBUIBLpf01Gf1+B1A4HAyOv0fh1jsZit3gbt7Owc+/kmEglrc3PT2tnZsVKpVN/32O7PyOD35KSfiWazeeRrfZJEImHr+7u7u9tXl0qlTrx25/s0+AgEAt3veW9NJBKxqtXqke+p3d4G63ofuVzOsqzjfz8TiUTfOCf9rB73udr9XnQUi8Xu5xwIBKydnR2rWq1a1WrV2tnZ6f48dPo9jt3vwWDdpD/LAAAAQC8v7+fnOggrFouWYRjW97//fa9bwRw6jUHY/v7+0BvxWT2OC36azaa1s7NzYvAgyQqHw9bOzo7tQGx/f9+KxWJDe9nc3LQV3HTs7u6eGKwFAgErkUhYOzs71u7urrW/v2/t7u5aOzs7Vi6X63tdIBAYGTh0HBcOhsPhE8O33qBiMCAZx+7ubrfPYrFopVIpKxaLWZFIpO/71Pm8R4WBnZ+vk77HkUikG54Mqw2Hw1Yikej+HAyGcYPBSWfM3d3dE38ewuHwsWFMs9nsGz8SiVibm5t9NZ33Df4cNZvNkZ/vcdfM5XLd64XDYWtzc7PvZ77ZbHY/j96v2aDeIDoSifT9vI3zvTjJzs6OFYvF+kKxzutO+h0d9jvZ+z2oVqtD60b1BgAAAAzj5f28YVnzfaRiNBqVz+fTnTt3ph7rnXfe0Z/92Z/NoKvpdZbIjFq+ZFelUlGtVlOtVpvJvkkd4/a5vb2t3d1d7e3tyTRNhcNhRSIRpdPpmfXUEQqFVK/XFQwGdXBwMNOx3VYoFKY6HXAckUhE+/v7fe8zDGPscQKBgJrN5rEfSyaTfXtj2bW7u2v756RUKmlra6u73NOucDisdDqtVCo11r5Jnf2oBj+vQCCgjY2N7kbmnZ/9QCCgYrE48597AAAAAFh0Xt7Pz30QVqvV9Pu///t6++239ad/+qdTjXXp0qWZBGrDmKaplZUVW7WpVGriE+pM01ShUNDt27dVqVQUCASUSqUUj8e7N+Vu9lkul7v71cRiMWWzWYXDYVUqFWWzWdVqNcViMRWLxZlt2nyagjBMzjRNlctl3b59W7VarbsXk3QYenUOBrh06ZISicTYhwSMul7nmp3rbGxsKJlMEoABAAAAwAkIwkYoFAq6fv26fvnLX048xoMHD7S6uqpHjx7NsLOjtre3j5wqdpJqtTrRyX3ZbLa72XIkElEulxv7pnuWfXZO3ZNODs06G7WPuyn5MARhAAAAAAAsHoKwE7zzzjvd55ubmzIM49iT40YxTVNvvfWWTNN0PAhbWVmxdapWLBYbe1lkoVDoO5lsZ2dHqVRqgi5n16dpmrpw4UJ3GWS1Wj22rlaraX193daYdhGEAQAAAACweLy8nz/r6tXG9N3vfld3797tvm1Zlra3tycay7KsifZBGkehUJBpmtrc3OzOkDrJxsbGWGNns9nu5x4Oh7W7uzvxEq9Z9tlZDtnp8SThcFiJREKlUknlclmFQmHiEA8AAAAAAGAScz0jbHt7W6+++qqkyTbz7tUJwpycEdaZ8XTSrKhJ9W48HggEdO/evamWFs6qz95ZXpLUbDaH9lUqlZRMJiUN32jdLmaEAQAAAACweLy8n/e5erUxdU7RMwxDlmVN9XBaqVTqnio3S/F4vO+Uumn315pln7lcrvs8FouN7Kt3WatpmhOdKggAAAAAADCpuV4aef78eUUiEd29e1e5XE6RSESrq6tjj1Or1fTd735XP/3pT2ff5N/b2tpSIBDQlStXZjZmoVBQuVzuvr2zszP1iXez7LOzYb90uGm/HeFwuHui3+3btyfa8w0AAAAAAGAScx2ESdLVq1e1vr6ub3/72xOPcfHiRT333HMThWh2VCoVVSoVSYeb0IfDYcViMcXj8YmDnlqt1p0RJx0GTdPuqTXLPjvjdFy6dMnW6yKRSDcIY0YYAAAAAABw01wvjZQOl9zNamnjuBvU2zW4zLBWq6lQKCiZTMowDCWTySPB0SidvbQ6rl+/Pld99s5Uk2R7ptpg3bhfFwAAAAAAgEnNfRB28eLFvr2opjGrcXrVarUjodCgUqmkaDTaN8Nr1Ji9AVEgEJh6CeGs+7xz507f23b3LXvyySf73t7b27P1OgAAAAAAgGnNfRAmSRcuXJjJOBcvXpzJOL3C4bB2dnaUy+WUSqWGzowqFAqKRqMjx9zZ2el7OxaLSfrtqYvr6+syDEMrKyuKRqPa3t6WaZqu9tlZ3tg7vh2DdbM+YRMAAAAAAOAknu4R9tOf/lR/+Id/6GULXdP0Mrh3l2maKhQK2traOhJQVSoVxeNx7e7unjhe7yb0krS6uqpoNHpkGaFpmt19v7LZrIrF4tCZY7PsczAIm9SoAA8AAAAAAGBWPJ0RFo1G1Wq1vGxBkvTgwQNbM7XsCgQC2tzcVLPZVLFYPLJssFwua3t7+9jX1mq1I+HQW2+9pXQ6rWazKcuyZFmWqtXqkWArmUyOtQH9NH1OGmANXuP+/fsTjQMAAAAAADAuw5rVTvQT8Pl8Mk1Tfr/fqxYkHQZhKysrarfbjoxvmqYuX758ZN+vZrN5pLZcLisej/fV3bt378Q9uAqFQt+eXqPqZ9WnYRh9b9v9MRr8/GKx2NDZccOEQiHV63X5fD6tra1NNEavTCajTCYz9TgAAAAAAJxG+Xxe+Xx+6nEajYba7baCwaAODg5m0Jl9ni6NHAxTvORkL4FAQPv7+33LG03TVLlc7u7/1TG45DCVSg0NtVKplPb397vLKU3T1NbW1kQHA4zTZyAQmMmyxkkCu0Htdlv1en3qceZhdiIAAAAAAPOq1WrN5P7bS54GYR5ORvPEzZs3+5Zg7u7uHgmYBjePv3Tp0shxs9ls375i29vbU52QaafP1dXVmQRhq6urU48xqxlhXs9MBAAAAABgnvn9fgWDwanH6cwI84KnQZgk3bt3T3/wB3/gaQ97e3uuXCcSiSgWi6lcLks6fsP5wXDJzoypcDisSCTSt6SxUqkoEok41uekM7km+fxGWVtbc30qJQAAAAAAy2ZWWwp1tjrygudB2LVr1/Tqq68qEAjMZHbQOO7fv69arabNzU3XrhmPx7sB03HW19cnGndjY6MvCKvVahMHYdLoPgevZ5qmrVBrcHP8ST9fAAAAAACAcXkehO3v7yuZTHrag2VZru1XFg6Hu8+PC/4GwyS7yw8HA6VpT2Mc1efgKZt2g7fBpZ+DSy4BAAAAAACc4vO6gQ7Lsjx5uK03YDpuBtXGxkbf28ctSzzO4FjTzq5zqs/eYC8QCPRdBwAAAAAAwEmeB2FeBVK913dT735k8Xj8yMcHZ1UNzqCya9qAyU6fvQHZnTt3xh53MEwDAAAAAABwkqdLI5vNppeX90RvsHXSssDejeqH7dPVa3AJ5TT7g0n2+rxy5Ur3tMre/cKG6a3LZrNTdAgAAAAAADAeT4Ow8+fPe3l5T5RKJUkaukF/NpvtO7HRzkb0doKrWfeZTqe7QZidwK63JhwOsz8YAAAAAABwledLI5dJqVRSrVZTIBDQ9evXT6yLxWJ9Sxu3trZGjt0bMuVyOVf6jEQifWFWJzw7SbFY7D5nNhgAAAAAAHAbQdgUyuWyVlZWZBiG4vH40OWBtVpN165dkyR99NFHI2d49YZG29vbQzejL5fL3Y+nUqkjyyKd7HNnZ6f7fFhgZ5pmd/ZYLBZTKpUaOi4AAAAAAMCsEYRNoVgsdvfmKpfLikajSqfTR+o6H1tdXVW1WrW1f1ckEukLmeLx+JF9wKTDgKlzzcHXuNFnOBzuhnaVSkXb29vH1l2+fFnS4UmRvSEfAAAAAACAWwjCppBMJo+8r1AoaGVlRclkUul0WtFoVPF4XKlUSvv7+2Od5phKpbS7u6tAIKBaraYLFy5oe3tblUqlGzpduHBBtVqtO74XfSYSiW6f2WxWyWRSlUpFpml2w7VKpaJIJKJ79+6NnGUGAAAAAADgBMOyLMvrJhZZrVZTLpdTuVzW/fv3uxvbr66uKhKJ6OrVq4rFYlOHP4VCQcViUXt7e91rdDacT6fTI4Mrt/rc3t7W7du3+zb539jYUDqdViKRmGrsQaFQSPV6XcFgUAcHBzMdGwAAAAAAOMPL+3mCMCwsgjAAAAAAABaPl/fzLI0EAAAAAADAUiAIAwAAAAAAwFIgCAMAAAAAAMBSOOt1A8C0Go2GQqHQ0JpMJqNMJuNSRwAAAAAALKd8Pq98Pj+0ptFouNTNUQRhWHjtdlv1en1oTavVcqkbAAAAAACWV6vVGnmP7iWCMCw8n8+ntbW1oTV+v9+lbgAAAAAAWF5+v1/BYHBoTaPRULvddqmjfoZlWZYnVwam5OVxqwAAAAAAYDJe3s+zWT4AAAAAAACWwqkMwh48eKDr16+P9ZpWq6Wf/vSnzjQEAAAAAAAAz53KIKxWq2l7e9t2/fe//32trKzo2rVrunTp0tghGgAAAAAAAObfqQzCOn7xi1/oBz/4ga5fv6533nnn2JMD7969q2w2q0gkojt37ujOnTsKh8O6evWqBx0DAAAAAADAKafy1MhyuSzLshQOh/vev76+rt3dXf3e7/1e9323b9+WJMVise77rl27pmKxqL/927/VH/zBH7jTNAAAAAAAABx16maEdWZ4GYYhy7K6jwsXLujnP/+54vF4X32lUpFhGHryySf73p9MJvWNb3zDzdYBAAAAAADgoFMXhO3s7EiSLMtSKpVStVpVu93Wz3/+c7Xbbf3hH/6hfvSjH3Xr79+/L0kKBAJ948RiMe3v77OBPgAAAAAAwClx6oKwvb09RSIRVatV3bhxQxcuXOj7+M2bN7W7uztynNXVVUmHyywBAAAAAACw+E7dHmH37t3TvXv35Pf7T6ypVqvd56ZpSvpt8NVx/vx5SdKdO3dm3yQwAcuS2tbwGp8hGYY7/QAAAAAAsGhOXRC2srIiY0gScPPmTa2vr3ffPmlp5IMHDyT9NigDvNa2pLOvDa/5/HXpDEEYAAAAAADHOnVLI5977jklEgn94he/OPKxH/zgB8pms6pUKt33dYKuwRMma7WapKMBGQAAAAAAABbTqZsRlsvltL6+rnA43H3UarVusCVJ3/ve9/TNb36z7wTJzgywjp2dHRmGcWTJJAAAAAAAABbTqQvCJGl3d1fJZFJ3797t2w9MkgqFgp577jlZlqVEIiHDMHT58mV9+9vf1le+8hVdu3ZN5XJZhUJBhmEomUx69FkAAAAAAABglk5lEBYOh7W/v69SqaS33npLlUpF4XBY6XRazz33nCQpkUjorbfe0ltvvaUf/ehHarfb2tjY0ObmZt84f/Inf+LVpwEAAAAAAIAZMizLGnEO3fIwTVPJZFIfffSRwuGwdnd3deHCBa/bwglCoZDq9bp8Pp/W1taG1mYyGWUyGZc6c8ajts3N8k/dzn8AAAAAgEWRz+eVz+eH1jQaDbXbbQWDQR0cHLjU2aFTOSNsUoFAQLu7u3rw4IHOnz/vdTuwqd1uq16vD61ptVoudQMAAAAAwPJqtVoj79G9tNRB2IMHD/S9731PW1tbfe8nBFssdmaE+f1+l7oBAAAAAKCfZUntEevxfIZkGO704yS/369gMDi0pjMjzAtLvzTy93//9/XNb35T/+bf/BuvW8GYOksjvZhK6QU7SyP/vwnpxag7/QAAAAAA7GGrm35e3s+f2hlhrVZLe3t7Mk1T9+/fP7amWq2qVqvpxo0bBGGYe2/eHV3zUunwD+fzF53vBwAAAACARXMqg7Dr169re3vbdv1JQRkwLx48lF55z17ty+9Kz35J8p9ztCUAAAAAABbOqZt09/bbbyuXy8myLFsPScrlch53DQz3RkX69Df2an/1a+lWxdl+AAAAAABYRKcuCNvZ2VEsFtP+/r6q1aqazaZyuZyazWb3Ua1Wtbe3p0gkolqtpm984xtetw0M9f7H49V/MGY9AAAAAADL4NQtjazVavr5z3/e975AINB3EuT58+d14cIFFQoFJZNJ3blzx+02gbE0P3O2HgAAAACAZXDqZoSFw+Ej77ty5Yp+9KMfHXl/JBJRtVrVX/7lX7rRGjCxlcedrQcAAAAAYBmcuiCs2Wweed/58+e1t7enVqt15GOrq6v63ve+50ZrwMSefXq8+mfGrAcAAAAAYBmcuiAsGo3q6tWreuedd/TOO+90359KpRSNRvWLX/yi+74f/OAHqtVqqtVqXrQK2PZCRPriF+zVPvGY9GLE2X4AAAAAALP15l2vO1gOp26PsGw2q/X1dZVKJUmHJ0L+23/7bxWJRPSP/tE/UjgcViAQkGma3dcct5wSmCfnz0k//Kr0Uml07Y2vSf5zjrcEAAAAALDJTsj1Ukk645Oev+h8P8vs1M0Iu3Dhgt566y1ZliXLshQIBLofKxaL8vv9ajab3Y9Lh+EZMO/s/DG8leCPJgAAAADMkwcPpVfes1f78rtS66Gj7Sy9UzcjTJISiYTa7bbu3bunCxcudN8fCAT0ySefaHNzU/v7+1pdXVU6ndZzzz3nYbfA7HydEAwAAAAA5sobFenT39ir/dWvpVsV6VtfdranZXYqg7CO3hCs4/z589rZ2fGgGwAAAAAAsGze/3i8+g8+Jghz0qlbGgkAAAAAADAvmp85W4/xLGQQ9oMf/GCuxwMAAAAAAJCklcedrcd4FjIIu3379lyPBwAAAAAAIEnPPj1e/TNj1mM8C7lH2P7+vv7Df/gPunbtmvx+/8TjtFot3b59W5VKZYbdwW2NRkOhUGhoTSaTUSaTcakjAAAAAAAOvRCRXv2xvQ3zn3hMejHifE9OyufzyufzQ2sajYZL3Ry1kEGYJG1ubmpzc9PrNjAH2u226vX60JpWq+VSNwAAAAAA/Nb5c9IPvyq9VBpde+Nrkv+c4y05qtVqjbxH99LCBmGSZFnWTMYxDGMm48AbPp9Pa2trQ2ummTk4L3yG9Pnro2sAAAAAAPPl+Yujg7BbicO6Ref3+xUMBofWNBoNtdttlzrqZ1izSpNc5PP5uuHVLNo3DEOPHj2aehy4KxQKqV6vKxgM6uDgwOt2AAAAAAA41qO2dPa14TWfvy6dWcid3Mfn5f38Qn6Jn3vuOVmWJcuyFI/HVS6X1Ww2x3pUq1Xt7+/r29/+ttefDgAAAAAAAFywkEsji8WiHjx4oO9+97u6efOm4vG44vG4stms/viP/9jWGOfPn5ckXbx4UW+//baT7QIAAAAAAGAOLOSMMOkwyMrlcrp//75u376t//2//7cuX76sp556Sn/5l3851lixWMyhLoH5ZFmHU3OHPRZv0TQAAAAAAMMt5B5hJ6lUKtra2tLbb7+tlZUVpdNpvfrqq6dio3QcxR5hk2N9OgAAAAC4h3uwfuwRNiORSETFYlHNZlPZbFY3btzQysqK/vk//+f627/9W6/bAwAAAAAAgIdOVRDWcf78eW1ubnaXTf785z9XJBLRpUuX9Nd//ddetwcAAAAAAAAPLORm+eNIJBJKJBLdZZPPPfecVlZW9J3vfEfXrl1j2SQAAAAAAHCUzzhc+jiqBs47lTPCjhOJRPSjH/1IqVRKzWZTm5ubWllZ0SuvvKJPPvnE6/YAAAAAAMApZRiH+38NexgEYa5YiiDsk08+0Te/+U2trq7q5s2bMv7+p8uyLN24cUPpdNrjDgEAAAAAAOC0Ux2E/fSnP9VXvvIVra+vq1AoqHNApmVZsixLqVRK1WpV/+2//TePOwUAAAAAAPPEsg5Pexz2+PuYAQvkVO4R9s4772hra0uVSkWSugGYdLiRfiqV0vXr13X+/HmvWgTm3pt3pRejXncBAAAAAN5oW9LZ14bXfP66dIYljQvl1ARhrVZLhUJBW1tbMk1TUn8AFg6Hlc1mde3aNY86BObHm3dH17xUOlyn/vxF5/sBAAAAAMANCx+EffLJJ8rlcioUCpIOwy/DMLohWCwWUzab1eXLl71sE5gbDx5Kr7xnr/bld6VnvyT5zznaEgAAAAAArljYPcJ++tOf6urVq0f2/5LUt//Xhx9+ODIE+9GPfuR0u8DceKMiffobe7W/+rV0q+JsPwAAAAAAuGUhg7BLly4pGo2qVCp1N76XDvf/2tzcVLPZ1I0bN3ThwgVb4+3s7DjZLjBX3v94vPoPxqwHAAAAAGBeLeTSyP39/e5zwzC6+3994xvfGHusmzdvdjfVx2JqNBoKhUJDazKZjDKZjEsdzbfmZ87WAwAAAACWVz6fVz6fH1rTaDRc6uaohQzCJPXtAxYOh1UsFlUsFm2//v79+6rVat2N9bG42u226vX60JpWq+VSN/Nv5XFn6wEAAABgWbx5V3ox6nUX86XVao28R/fSwgZhlmUpFospEAhodXV1rNfev39flmXpwoULqlQqMgzOOl1kPp9Pa2trQ2v8fr9L3cy/Z5+WPvyZ/fpnnnauFwAAAACYV2/eHV3zUkk645Oev+h8P4vC7/crGAwOrWk0Gmq32y511M+weneZXxA+n0+mac4k3CiXy/rKV76iR48ezaAzuCkUCqlerysYDOrg4MDrdhbGg4dS8Lv2Nsx/4jGpfp1TIwEAAAAsF+6bnOXl/fxCbpYfi8VmNsMnFovp4kWiWyyP8+ekH37VXu2Nr/HHHAAAAMDyeaNiLwSTpF/9WrrF1uMLYyGDsHQ6Pdfj2VGr1RSPx2c2XqVSUalU0vb2tsrlsq3XbG9vKx6Pa2VlRYZhaH19Xclk0vbr3RoTs2dn2u6tBNN7AQAAACyn9z8er/6DMevhnYUIwn7wgx/oJz/5Sfft5557bqbjX7t2bWZjmaYpwzBGPtbX1xUOh6e6zvb2tqLRqAzD0OXLl3Xnzh1FIhFtbGwMfW25XNbKyoqy2awkqVgsqlqtKpfLqVKpKB6PKx6Pj3WQgBNjwltfJwQDAAAAsKSanzlbD+8sRBD2P/7H/1A8Htdf/uVfTjXOzZs3debMGf3jf/yP9bd/+7cz6q5foVCwXdsJjcZhmqbS6XRf6LS7u6tms6lcLtc9QOAk5XK5G0ilUint7u4qFospHA4rkUioWq0qEomoXC4rGo3aCq6cGBMAAAAAAK+sPO5sPbyzEEGYdHhKZCqV0ne+852Jx8hms7IsSz//+c8ViUT0ySefzK7Bv7e1tWWrrhMUjaNQKOjChQvdsG1nZ0f7+/uKxWK2Xm+appLJpCQpHA5rZ2fn2LpisSjpcPlmp97NMQEAAAAA8NKzT49X/8yY9fDOWa8bGNeHH36oarWq27dvj/3aCxcu6MGDB93gKJvNTjTOSQqFgkzT1Obm5sj9v0YtXxyUzWa1vb0t6TBw2t3dHTtISyaT3dlYw2ajdWZylUollctlFQoFpVIp18YEAAAAAMBLL0SkV39s/9TIFyPO94TZMCzLsrxuYpQrV66oVCrJMAw9evRIyWRSn3zyiX7yk5/od3/3dyce96mnntLPfvazmfW5vr4uSapWqzMbUzoMm0qlkiQpEAjo3r17Q5c/HqdWq3X7k6Rmszl0jFKp1J25FQgE1Gw2XRlzHF4et7roHrWls68Nr/n8denMwswZBQAAAIDZurUvvVQaXfdXVzhobFxe3s8v5G1usVhUMplUJBLRL37xi4nGuHfvnu7fvz+znkqlkmq12kT7fg0Tj8e7IZgk7e/vjx2CSVIul+s+H7WPmCQlEonuc9M0+3pwcky4w2ccBl3DHj7D6y4BAAAAwDt2wq1bCUKwRbOQQZgkbW5u6j//5/+sSCSiv/mbvxnrtQ8ePFA8Hh97eeIwW1tbCgQCunLlyszGLBQKKpfL3bd3dnYmPmmydxP/SMTenM3eax23hNSJMeEOwzic7TXsYRCEAQAAAMBQXycEWzgLG4RJh7OQ7ty5o2vXrtk+UfInP/mJwuGw7t27N7NN2yuViiqVikzT1MrKitbX15VOp6ea8VSr1ZROp7tvRyKRiffUqlQqfW9funTJ1ut6w63Bz8WJMQEAAAAAAJy00EGYdDjDaG9vT7dv3x55ouT3v/99xePx7l5W3/jGN2bSw+ByyFqtpkKhoGQyKcMwlEwmjwRHowyGdNevX5+4v95ZZZJszyobrOv9HJwYEwAAAAAAwEkLH4RJhxuvf/jhh7p//76uXr16bM3169f16quvyrIsGYbRt7/VNGq12pFQaFCpVFI0Gu2b4TVqzN6AKBAI9O2vNa47d+70vW13j7Enn3yy7+29vT1HxwQAAAAAAHDSqQjCOm7cuKHLly/r0qVL+ru/+7vu+z/66KNu8GUYhiKRyMxmg4XDYe3s7CiXyymVSg2dGVUoFBSNRkeOubOz0/d2LBaT9NtTF9fX12UYhlZWVhSNRrW9vS3TNE8cr1arHenZjsG63tMwnRgTAAAAAADASWe9bmBcf/M3f6M//uM/PvHjqVRKGxsb+pM/+ROVSiX93u/9XjcEm/VssN5r9jJNU4VCQVtbW0cCqkqlong8rt3d3RPH692EXpJWV1cVjUaPLCM0TbO7P1k2m1WxWDx25thgaDWp3s/FiTEBAAAAAJgXPkP6/PXRNVgsCzEj7MKFC5IOg6xUKqVf/OIXQ+sjkYhu376t5557Tu+8847K5bKMvz8CLxKJ6E/+5E8c7TcQCGhzc1PNZlPFYvHIssFyuazt7e1jX1ur1Y6EQ2+99ZbS6bSazaYsy5JlWapWq0cCuGQyeewG9JOGTYN9379/39ExAQAAAACYF4YhnfENfxgEYQtnIWaE5XI5fec731G5XNbu7q5isZiy2ezQ5Y2dTfT/6T/9p933GYZx4h5iTkkkEorFYrp8+XLfjK6trS1tbm4eqR+caRUIBHTv3r0jAVJnSebg3mPXrl1TLBazvWfXOJyYvTWLMRuNhkKh0NTjZDIZZTKZqccBAAAAAOA0yufzyufzU4/TaDRm0M1kFiIIk6Tz58/rueee03PPPTfW6z788ENls1l9//vf7+4P5rZAIKD9/f2+5Y2maapcLnf3/+oYDMJSqdTQUCuVSml/f7+7nNI0TW1tbfUt/wwEAjMJnHr7cGLMSbXbbdXr9anHabVaU48BAAAAAMBp1Wq1ZnL/7aWFCcKmkcvldOnSJV25ckX37t3zrI+bN2/2bZbfmd3Wa3Dz+EuXLo0cN5vN9u0rtr293ReEra6uziS0Wl1ddXTMSfl8Pq2trU09jt/vn3oMAAAAAABOK7/fr2AwOPU4jUZD7XZ7Bh2NbymCMOlwieLe3p5effVV/at/9a886SESiSgWi6lcLks6fsP5wXDJzoypcDisSCTSt/SyUql0Z79NOutqWC9OjDmptbU1HRwcTD0OAAAAAAA42ay2FAqFQp7NLFuIzfJnJRKJ6MMPP/S0h3g8PvTj6+vrE427sbHR93ZvyDb4MbszuQY3su/tzYkxsXgsS3rUHv6wLK+7BAAAAADg0NLMCJsX4XC4+/y4ZYGDM6TsBkyDgVJv4NS7HFM6DMns7JU2uEyzdxmnE2Ni8bQt6exrw2s+f106w0kqAAAAAIA5sFQzwuZBbxB23LLAYTO7hhkcqzdkm3TM3hAuEAj09e7EmAAAAAAAAE4iCHPZ3t5e9/lxyyQHZ1UNzqCyqzdgikQifUHZnTt3bI3R2+tg8OXEmAAAAAAAAE4iCHNZb7B10rLA3vd3NtYfZXAJ5WCgduXKle7z3k31h+mty2azRz7uxJgAAAAAAABOIQhzWalUkiRtbm6eWNMbENVqNVv7hI0K2NLpdPe5nXCttyYcDrs2JgAAAAAAgFMIwlxUKpVUq9UUCAR0/fr1E+tisVjf0satra2RY/eGTLlc7sjHI5FIX/DUCeROUiwWu89PmrnlxJg4fd6863UHAAAAAAAcIgibQrlc1srKigzDUDweH7o8sFar6dq1a5Kkjz766NiN8nv1hkbb29tDN6Mvl8vdj6dSqRNPb9zZ2ek+HxaumaapQqEg6TCUS6VSJ9Y6MSYWh52Q66USYRgAAAAAYD4QhE2hWCx2ly2Wy2VFo9G+5YIdnY+trq6qWq2eGFT1ikQifSFTPB4/domkaZrdaw6+ZlA4HO4GbJVKRdvb28fWXb58WdLhqY69gZxbY2IxPHgovfKevdqX35VaDx1tBwAAAACAkQjCppBMJo+8r1AoaGVlRclkUul0WtFoVPF4XKlUSvv7+31LHkdJpVLa3d1VIBBQrVbThQsXtL29rUql0g2dLly4oFqt1h1/lEQi0R0zm80qmUyqUqnINM1uYFepVBSJRHTv3r2RM9ecGhPz742K9Olv7NX+6tfSLXvnKQAAAADAVCxLetQe/rAsr7uEVwzL4ts/jVqtplwup3K5rPv378s0TQUCAa2urioSiejq1auKxWJThz+FQkHFYlF7e3vda3Q2nE+n02MFbB3b29u6fft2d0P+QCCgjY0NpdNpJRKJifp0YsyThEIh1et1BYNBHRwczHRsjPaV/yJ9+LMx6p+SfvwvnesHAAAAAKTDoOvsa8NrPn9dOsPUIM94eT9PEIaFRRDmrX/yn6Q7Y3zZ/0lI+u//2rl+AAAAAEAiCFsEXt7P820HMJGVx52tBwAAAABg1gjCAEzk2afHq39mzHoAAAAAAGaNIAzARF6ISF/8gr3aJx6TXhx9WCoAAAAAAI4663UDwLQajYZCodDQmkwmo0wm41JHy+H8OemHX5VeKo2uvfE1yX/O8ZYAAAAAwJY370ovRr3u4nTK5/PK5/NDaxqNhkvdHEUQhoXXbrdVr9eH1rRaLZe6WS7PXxwdhN1KHNYBAAAAgBvevDu65qXS4Wb53KvMXqvVGnmP7iWCMCw8n8+ntbW1oTV+v9+lbjDo6/yHBQAAAIBLHjyUXnnPXu3L70rPfonVK7Pm9/sVDAaH1jQaDbXbbZc66kcQhoW3trbm+nGrAAAAAID580ZF+vQ39mp/9WvpVkX61ped7WnZ2NmaKBQKeTZrjM3yAQAAAADAqfD+x+PVfzBmPRYfQRgAAAAAADgVmp85W4/FRxAGAAAAAABOhZXHna3H4mOPMAAT8xnS56+PrgEAAAAANzz7tPThz+zXP/O0c71gPjEjDMDEDOPwyOFhD4MgDAAAAIBLXohIX/yCvdonHpNejDjbD+YPQRgAAAAAADgVzp+TfvhVe7U3vib5zznaDuYQQRgAAAAAADg1nr84uuZWwl4dTh+CMAAAAAAAsFS+Tgi2tAjCAAAAAAAAsBQIwgAAAAAAALAUCMIAAAAAAACwFM563QAAAAAAAMCs+Azp89dH12A5EYQBAAAAAIBTwzCkMwRdOAFLIwEAAAAAALAUCMIAAAAAAACwFFgaiYXXaDQUCoWG1mQyGWUyGZc6AgAAAABgOeXzeeXz+aE1jUbDpW6OIgjDwmu326rX60NrWq2WS90AAAAAALC8Wq3WyHt0LxGEYeH5fD6tra0NrfH7/S51g0lYltS2htf4jMNNLwEAAAAA88vv9ysYDA6taTQaarfbLnXUz7Asa8TtJzCfQqGQ6vW6gsGgDg4OvG4HU3jUls6+Nrzm89elM+xqCAAAAAALz8v7eW4rAQAAAAAAsBQIwgAAAAAAALAUCMIAAAAAAACwFAjCACyEN+963QEAAAAAYNERhAHwnJ2Q66USYRgAAAAAYDoEYQA89eCh9Mp79mpffldqPXS0HQAAAADAKUYQBsBTb1SkT39jr/ZXv5ZuVZztBwAAAID7LEt61B7+sCyvu8RpcNbrBgAst/c/Hq/+g4+lb33ZmV4AAAAAeKNtSWdfG17z+evSGcOdfnB6MSMMgKeanzlbDwAAAABAB0EYAE+tPO5sPQAAAAAAHQRhADz17NPj1T8zZj0AAAAAAB0EYQA89UJE+uIX7NU+8Zj0YsTZfgAAAADMpzfvet0BTgOCMACeOn9O+uFX7dXe+JrkP+doOwAAAAA8YCfkeqlEGIbpEYQB8NzzF0fX3ErYqwMAAACwWB48lF55z17ty+9KrYeOtoNT7qzXDQDTajQaCoVCQ2symYwymYxLHcEJXycEAwAAAE6lNyrSp7+xV/urX0u3KtK3vuxsT5hcPp9XPp8fWtNoNFzq5iiCMCy8druter0+tKbVarnUDQAAAABgHO9/PF79Bx8ThM2zVqs18h7dSwRhWHg+n09ra2tDa/x+v0vdAAAAAADG0fzM2Xq4y+/3KxgMDq1pNBpqt9suddSPIAwLb21tTQcHB163gSn4DOnz10fXAAAAADh9Vh53th7usrM1USgU8mzWGJvlA/CcYUhnfMMfBkEYAAAAcCo9+/R49c+MWQ/0IggDAAAAAACeeSEiffEL9mqfeEx6MeJsPzjdCMIAAAAAAIBnzp+TfvhVe7U3vib5zznaDk45gjAAAAAAAOCp5y+OrrmVsFcHDEMQBgAAAAAA5t7XCcEwAwRhAAAAAAAAWAoEYQAAAAAAAFgKZ71uAAAAAAAALDefIX3++ugaYFoEYQAAAAAAwFOGIZ0h6IILWBoJAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClQBAGAAAAAACApUAQBgAAAAAAgKVAEAYAAAAAAIClcNbrBoBpNRoNhUKhoTWZTEaZTMaljgAAAAAAWE75fF75fH5oTaPRcKmbowjCsPDa7bbq9frQmlar5VI3AAAAAAAsr1arNfIe3UsEYVh4Pp9Pa2trQ2v8fr9L3QAAAAAAsLz8fr+CweDQmkajoXa77VJH/QzLsixPrgxMKRQKqV6vKxgM6uDgwOt2AAAAAACADV7ez7NZPgAAAAAAAJYCQRgAAAAAAACWAkGYR2q1muLx+Kkbc3t7W/F4XCsrKzIMQ+vr60omkyqXyzPtCziJZUmP2sMfLAgHAAAAgOXEZvkzZpqmVlZWbNWmUqlTM2a5XFYymZRpmorFYioWiwqHw6pUKspms4rH4933BwIBW9cFJtG2pLOvDa/5/HXpjOFOPwAAAACA+UEQNmOFQsF2bTabPRVjlsvl7qyxVCqlnZ2d7sfC4bASiYSi0ajK5bKi0aj29/cJwwAAAAAAgOtYGjljW1tbtupisZjC4fDCj2mappLJpKTD0Ks3BOtVLBYlHS617NQDAAAAAAC4iRlhM1QoFGSapjY3N0fuq7WxsXEqxuwsh5SGzxzrzAwrlUoql8sqFAq2l3ECs/bmXenFqNddAAAAAIvPsg63JxnGZ0gGW5NgThiWxbbRs7K+vi5JqlarSzFmrVbrjiVJzWZz6JLHUqnUnQ0WCATUbDanun4oFFK9XlcwGNTBwcFUY+H0uLUvvVQaXfdXV6TnLzrfDwAAAHCaPWrb3KOX9Wjo4eX9PD+KM1IqlVSr1Wzv0XUaxszlct3nsVhs5L5fiUSi+9w0TZVKNtIKYAwPHkqvvGev9uV3pdZDR9sBAAAAAMwZgrAZ2draUiAQ0JUrV5ZmzN4N9yORiK3X9O43dvv27al7AHq9UZE+/Y292l/9WrpVcbYfAAAAAMB8IQibgUqlokqlItM0tbKyovX1daXT6almPM37mJVKf4Jw6dIlW6/rDcyYEYZZe//j8eo/GLMeAAAAwPjevOt1B8BvEYTNwOAyw1qtpkKhoGQyKcMwlEwmjwRHiz5muVzue9vuaZWDdeN+DsAwzc+crQcAAADQz07I9VKJMAzzgyBsSrVa7UgoNKhUKikajSqdTp+aMe/cudP39qj9wTqefPLJvrf39vZsvQ6wY+VxZ+sBAAAA/BZ79GIRnfW6gUUXDoe1s7Mj0zRVrVZVLpdVq9WOrS0UCtrb29P+/v7Cjzn42klnhM3yNEzg2aelD39mv/6Zp53rBQAAADjtJtmj91tfdrYnYBSCsBlIpVJ9b5umqUKhoK2tLZmm2fexSqWieDyu3d3dhR7zpBBtXIPXBabxQkR69cf2/mP8xGPSi/bOeAAAAABwjEn26CUIg9cMy7Isr5s4zUqlkq5du3Yk8Mnlctrc3FzYMQ3D6Hvb7o9RuVxWPB7vvp1IJFQsFsdvWFIoFFK9XpfP59Pa2tpEY/TKZDLKZDJTjwNv3do/3INglL+6Ij1/0fl+AAAAgNPqn/wn6c7BGPUh6b//a+f6gfPy+bzy+fzU4zQaDbXbbQWDQR0cjPFDNAMEYS4wTVOXL1/u2xg+EAio2Wwu7JizCsJisdjImWwn6QRhs/Lv/t2/01/8xV/MbDx441FbOvva8JpbCemFqDv9AAAAAKfVV/7LeFuTfOUp6cf/0rl+4Ly/+Iu/0L//9/9+ZuN5EYSxNNIFgUBA+/v7ikaj3ZDJNE2Vy2XFYrGFHDMQCMxkWaPdTfaHmdWMML/fP/UYWAxfZyYYAAAAMDX26F0+fr9fwWBw6nE6M8K8QBDmops3byoa/e00lN3d3YlDK6/HXF1dnUkQtrq6OvUYa2trrifIAAAAALDs2KN3+cxqS6FZr/AaB0GYiyKRiGKxmMrlsqTZbDjv1ZiTzuQaDM9mMSMM6OUzpM9fH10DAAAAYDrnz0k//Kq9PXpvfE3yn3O8JWAkn9cNLJve/bEWecyNjY2+t+3ODrt//37f2+vr62P1BYxiGNIZ3/CHQRAGAAAAzISdA6huJTioCvODIMxl4XC4+3wWywK9GrN36aRkfyZatVrte3vaZZwAAAAAgPnGHr2YJwRhLusNmGa1LNCLMQdnhNkNwnpnjgUCgb7rAAAAAAAAOIk9wly2t7fXfT6rJY1ejBmJRPpOjrxz544SicRY4w6GaQAAAACAxcIevVg0zAhzWe/SwFktC/RqzCtXrnSfVyoVW+P21mWz2Qm7AwAAAADMA/boxaIhCHNZqXR4nMbm5ubCj5lOp7vPOydMDtNbEw6H2R8MAAAAAAC4iiDMRaVSSbVaTYFAQNevX1/4MSORSF+Y1QnPTlIsFrvPmQ0GAAAAAADcRhA2hXK5rJWVFRmGoXg8PnR5YK1W07Vr1yRJH3300Ymb2i/KmB07Ozvd51tbWyfWmaapQqEg6XCpZSqVGjouAAAAAADArBGETaFYLHY3iy+Xy4pGo33LBTs6H1tdXVW1WlUkEln4MTvC4XB3plelUtH29vaxdZcvX5Z0eFJk78wwAAAAAAAAtxiWZVleN7GoyuXysScqBgIBxWIxra6uam9vT5VKRZubm7p+/frIGVaLMuZx10gmkzJNU4lEQtevX1c4HNbe3p6y2awqlYoikYitWWZ2hUIh1et1BYNBHRwczGRMAAAAAADgLC/v5wnCplSr1ZTL5VQul3X//n2ZpqlAIKDV1VVFIhFdvXpVsVhsrPBnUcY8zvb2tm7fvq1arda9xsbGhtLptBKJxFRjDyIIAwAAAABg8RCEARMgCAMAAAAAYPF4eT/PHmEAAAAAAABYCgRhAAAAAAAAWApnvW4AmFaj0VAoFBpak8lklMlkXOoIAAAAAIDllM/nlc/nh9Y0Gg2XujmKIAwLr91uq16vD61ptVoudQMAAAAAwPJqtVoj79G9RBCGhefz+bS2tja0xu/3u9QNAAAAAADLy+/3KxgMDq1pNBpqt9suddSPUyOxsDg1Ek6yLKk94q+jz5AMw51+AAAAAOC08PJ+nhlhAHCMtiWdfW14zeevS2cIwgAAAABgYRCEAQAAAACwZFgBgWVFEAYAAAAAwJJhBQSWlc/rBgBgUb151+sOAAAAAADjIAgDgGPYCbleKhGGAQAAAMAiIQgDgAEPHkqvvGev9uV3pdZDR9sBAAAAPME/+uI0IggDgAFvVKRPf2Ov9le/lm5VnO0HAAAAmDVWQGBZEYQBwID3Px6v/oMx6wEAAAAvsQICy4wgDAAGND9zth4AAADwEisgsMwIwgBgwMrjztYDAAAAXmIFBJYZQRgADHj26fHqnxmzHgAAAPASKyCwzAjCAGDACxHpi1+wV/vEY9KLEWf7AQAAAGaJFRBYZgRhADDg/Dnph1+1V3vja5L/nKPtAAAAADPFCggsM4IwADjG8xdH19xK2KsDAAAA5gkrILDMCMIAYEJfJwQDAADAAmIFBJaZYVmW5XUTwCRCoZDq9bp8Pp/W1taG1mYyGWUyGZc6w2lgWVJ7xF9HnyEZhjv9AAAAALP0qC2dfW14za2E9ELUnX5weuTzeeXz+aE1jUZD7XZbwWBQBwcHLnV26KyrVwMc0G63Va/Xh9a0Wi2XusFpYRjSGUIuAAAALDFWQGASrVZr5D26lwjCsPDszAjz+/0udQMAAAAA889nSJ+/ProGGJff71cwGBxa05kR5gWWRmJhdZZGejGVEgAAAAAATMbL+3k2ywcAAAAAAMBSIAgDAAAAAADAUiAIAwAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUiAIAwAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUiAIAwAAAAAAwFIgCAMAAAAAAMBSOOt1AwBw2lmW1LaG1/gMyTDc6QcAAAAAlhVBGAA4rG1JZ18bXvP569IZgjAAAAAAcBRLIwEAAAAAALAUCMIAAAAAAACwFAjCAGAOvHnX6w4AAAAA4PRjjzAsvEajoVAoNLQmk8kok8m41BHQz07I9VJJOuOTnr/ofD8AAAAA4JR8Pq98Pj+0ptFouNTNUQRhWHjtdlv1en1oTavVcqkboN+Dh9Ir79mrffld6dkvSf5zjrYEAAAAAI5ptVoj79G9RBCGhefz+bS2tja0xu/3u9QN0O+NivTpb+zV/urX0q2K9K0vO9sTAAAAADjF7/crGAwOrWk0Gmq32y511M+wLMvy5MrAlEKhkOr1uoLBoA4ODrxuBzjWV/6L9OHPxqh/Svrxv3SuHwAAAADwmpf382yWDwAOan7mbD0AAAAAwD6WRgKAg1Yed7YeAAAAy8OypPaINV0+QzIMd/oBFhFBGAA46Nmnx1sa+czTzvUCAACAxda2pLOvDa/5/HXpDEEYcCKWRgKAg16ISF/8gr3aJx6TXow42w8AAAAALDOCMABw0Plz0g+/aq/2xtck/zlH2wEAAACApUYQBgAOe/7i6JpbCXt1AAAAwDBv3vW6A2C+EYQBwBz4OiEYAAAARrATcr1UIgwDhmGzfABwmM843LR0VA0AAABwkgcPpVfes1f78rvSs19i2w3gOMwIAwCHGYZ0xjf8wRHXAAAAGOaNivTpb+zV/urX0q2Ks/0Ai4ogDAAAAACAOff+x+PVfzBmPbAsCMIAAAAAAJhzzc+crQeWBUEYAAAAAABzbuVxZ+uBZUEQBgAAAADAnHv26fHqnxmzHlgWBGEAAAAAAMy5FyLSF79gr/aJx6QXI872AywqgjAAAAAAAObc+XPSD79qr/bG1yT/OUfbARbWWa8bAKbVaDQUCoWG1mQyGWUyGZc6AgAAAIDZe/6i9FJpeM2txGEd4JV8Pq98Pj+0ptFouNTNUQRhWHjtdlv1en1oTavVcqkbAAAAAPDO1wnB4LFWqzXyHt1LBGFYeD6fT2tra0Nr/H6/S90AAAAAgDN8hvT566NrAC/5/X4Fg8GhNY1GQ+1226WO+hmWZVmeXBmYUigUUr1eVzAY1MHBgdftAAAAAAAAG7y8n2ezfAAAAAAAACwFgjCP1Go1xeNxT8fc3t5WPB7XysqKDMPQ+vq6ksmkyuXyxD04MSYAAAAAAMAsEITNmGmaMgxj5GN9fV3hcNiTMcvlslZWVpTNZiVJxWJR1WpVuVxOlUpF8Xhc8Xhcpmna/rydGBMAAAAAAGCW2Cx/xgqFgu3aTmjk5pjlcrk7ayyVSmlnZ6f7sXA4rEQioWg0qnK5rGg0qv39fQUCAdfHBAAAAAAAmDU2y5+xlZUVW7OeYrGYdnd3XR3TNE1duHBBpmkqHA6rWq0eW1er1bS+vu7ZmHaxWT4AAAAAAIvHy/t5ZoTNUKFQkGma2tzcHLlX18bGhutjJpPJbqA2bOZYZxZXqVRSuVxWoVBQKpVybUwAAAAAAAAnMCNshjoznk6aFeXlmL0zsiSp2WwOXZ5YKpWUTCYlSYFAQM1m05Uxx8GMMAAAAAAAFo+X9/Nslj8jpVJJtVrN9r5fbo+Zy+W6z2Ox2Mg9uhKJRPe5aZoqlUqujAkAAAAAAOAUgrAZ2draUiAQ0JUrV+ZyzN4N9yORiK3X9J5Aefv2bVfGBAAAAAAAcApB2AxUKhVVKhWZpqmVlRWtr68rnU5PNeNplmNWKpW+ty9dumTrdb3h1uB1nRgTAAAAAADASQRhMzC4dLFWq6lQKCiZTMowDCWTySPBkZtjlsvlvrd7Z2UNM1jXez0nxgQwnGVJj9rDH+z6CAAAAAAnIwibUq1WOxIKDSqVSopGo0qn056MeefOnb63R+3l1fHkk0/2vb23t+fomACGa1vS2deGP9oEYQAAAABworNeN7DowuGwdnZ2ZJqmqtWqyuWyarXasbWFQkF7e3va3993dczB1046e6v35EonxgQAAAAAAHASQdgMpFKpvrdN01ShUNDW1pZM0+z7WKVSUTwe1+7urmtjnhSijav3uk6MCWB6b96VXox63QUAAAAAzCeCMAcEAgFtbm5qc3NTpVJJ165d6wt8yuWytre3tbm56cqYk4ZNg8sd79+/7+iYk2o0GgqFQlOPk8lklMlkph4HcMqbd0fXvFSSzvik5y863w8AAACA5ZLP55XP56cep9FozKCbyRCEOSyRSCgWi+ny5ct9G8NvbW2NFYQ5PaYdTszemsWY7XZb9Xp96nFardbUYwBOefBQeuU9e7Uvvys9+yXJf87RlgAAAAAsmVarNZP7by8RhLkgEAhof39f0Wi0G1yZpqlyuaxYLOb4mIFAYCaBU+9sLifGnJTP59Pa2trU4/j9/qnHAJzyRkX69Df2an/1a+lWRfrWl53tCQAAAPZY1uhDjXyGZBju9ANMyu/3KxgMTj1Oo9FQu92eQUfjIwhz0c2bNxWN/nbznt3d3YmDsHHGXF1dnUlotbq66uiYk1pbW9PBwcHU4wDz7P2Px6v/4GOCMAAAgHnROf17mM9fl84QhGHOzWpLoVAo5NnMMp8nV11SkUikL6SaxYbzdsacdNbVYNA1OCNs1mMCOFnzM2frAQAAAGAZEIS5LB6Puz7mxsZG39t2Z3INbmS/vr7u6JgATrbyuLP1AAAA8Jadg5EATI8gzGXhcLj7fBbLAu2M2bt0UrI/E61arfa93TvzzIkxAZzs2afHq39mzHoAAAA4x+7p34RhgPMIwlzWG1rNalngqDEHZ2/ZDa16Z3kFAoG+6zgxJoCTvRCRvvgFe7VPPCa9GHG2HwAAANgz7unfrYeOtgMsPYIwl+3t7XWfz2qZ5KgxI5FIX0B2586dsccdDL6cGBPAyc6fk374VXu1N74m+c852g4AAABsmuT0bwDOIQhzWe/SwFktC7Qz5pUrV7rPKxV7f1l767LZrCtjAjjZ8xdH19xK2KsDAACAOyY5/RuAcwjCXFYqlSRJm5ubro6ZTqe7z8vl8sgxe2vC4fCxAZsTYwKYztcJwQAAAOYKp38D84UgzEWlUkm1Wk2BQEDXr193dcxIJNIXPHXCs5MUi8Xu85NmbjkxJoCT+Qzp89eHP3yG110CAACgF6d/A/OFIGwK5XJZKysrMgxD8Xh86PLAWq2ma9euSZI++uijEzfKd2LMjp2dne7zra2tE+tM01ShUJB0uNQylUq5OiaA4xmGdMY3/GEQhAEAAMwVTv8G5gtB2BSKxWL3FMRyuaxoNNq3XLCj87HV1VVVq1VFIicf5+bEmB3hcLg7K6tSqWh7e/vYusuXL0s6PNWxdxaXW2MCAAAAwGnB6d/AfCEIm0IymTzyvkKhoJWVFSWTSaXTaUWjUcXjcaVSKe3v7yscDrs+Zq9EIqHd3V0FAgFls1klk0lVKhWZptkN1yqViiKRiO7duzdylplTYwIAAADAacDp38B8MSzLsrxuYpHVajXlcjmVy2Xdv39fpmkqEAhodXVVkUhEV69eVSwWGyv8cWLM42xvb+v27duq1Wrda2xsbCidTiuRSMzNmCcJhUKq1+sKBoM6ODiY6dgAAAAAMCuP2tLZ14bX3EpIL0Td6Qfwmpf38wRhWFgEYQAAAAAWgZ0g7PPXD/d8BZaBl/fz/JoBAAAAAABgKZz1ugEAAAAAAE4zn3E442tUDQDnEYRh4TUaDYVCoaE1mUxGmUzGpY4AAAAA4LcMQzpD0IUlkc/nlc/nh9Y0Gg2XujmKIAwLr91uq16vD61ptVoudQMAAAAAwPJqtVoj79G9RBCGhefz+bS2tja0xu/3u9QNAAAAAADLy+/3KxgMDq1pNBpqt9suddSPUyOxsDg1EgAAAACAxcOpkQAAAAAAAIDDCMIAAAAAAACwFAjCAAAAAAAAsBQIwgAAAAAAALAUCMIAAAAAAACwFAjCAAAAAAAAsBQIwgAAAAAAALAUznrdAADAXZYlta3hNT5DMgx3+gEAAAAAtxCEAcCSaVvS2deG13z+unSGIAwAAADAKcPSSAAAAAAAACwFgjAAwBFv3vW6AwAAAACYPZZGAsCSsRNyvVSSzvik5y863w8AAMA8Yl9V4HQiCAOAJfLgofTKe/ZqX35XevZLkv+coy0BAADMJfZVBU4nlkYCwBJ5oyJ9+ht7tb/6tXSr4mw/AAAAi4ztJIDFQxAGAEvk/Y/Hq/9gzHoAAIDTwu52EoRhwGJhaSQWXqPRUCgUGlqTyWSUyWRc6giYX83PnK0HAAA4DdhOAphcPp9XPp8fWtNoNFzq5iiCMCy8druter0+tKbVarnUDTDfVh53th4AAOA0mGQ7iW992dmegEXRarVG3qN7iSAMC8/n82ltbW1ojd/vd6kbYL49+7T04c/s1z/ztHO9AAAAzKtJtpMgCAMO+f1+BYPBoTWNRkPtdtuljvoZlmWNOBAWmE+hUEj1el3BYFAHBwdetwMshAcPpeB37f0L5xOPSfXrTPMHAADL55/8J+nOGLcY/yQk/fd/7Vw/wGnj5f08m+UDwBI5f0764Vft1d74GiEYAABYTmwnAZxeBGEAsGSevzi65lbCXh0AAMBp9OyY20OwnQSwOAjCAABHfJ0QDAAALLEXItIXv2Cv9onHpBcjzvYDYHbYLB8AlozPkD5/fXQNAADAsupsJ/FSaXQt20kAi4UZYQCwZAxDOuMb/jAIwgAAwJJjOwngdCIIAwAAAABgAmwnASwelkYCAAAAADCA7SSA04kgDAAAAACAAYYhnSHoAk4dlkYCAAAAAABgKRCEAQAAAAAAYCkQhAEAAAAAAGApEIQBAAAAAABgKRCEAQAAAAAAYCkQhAEAAAAAAGApEIQBAAAAAABgKZz1ugFgWo1GQ6FQaGhNJpNRJpNxqSMAAAAAAJZTPp9XPp8fWtNoNFzq5iiCMCy8druter0+tKbVarnUDQAAAAAAy6vVao28R/cSQRgWns/n09ra2tAav9/vUjcAAAAAACwvv9+vYDA4tKbRaKjdbrvUUT/DsizLkysDUwqFQqrX6woGgzo4OPC6HQAAAAAAYIOX9/PMCAMATMyypPaIf07xGZJhuNMPAAAAAAxDEAYAmFjbks6+Nrzm89elMwRhAAAAAOaAz+sGAAAAAAAAADcQhAEAHPXmXa87AAAAAIBDBGEAgInZCbleKhGGAQAAAJgPBGEAgIk8eCi98p692pfflVoPHW0HAABA0uFhPo/awx/WiMN+AJxebJYPAJjIGxXp09/Yq/3Vr6VbFelbX3a2JwAAAA7zATAMM8IAABN5/+Px6j8Ysx4AAAAAZo0gDAAwkeZnztYDAAA4hf1LgeVFEAYAmMjK487WAwAATILDfAAMQxAGAJjIs0+PV//MmPUAAADj4jAfAKMQhAEAJvJCRPriF+zVPvGY9GLE2X4AAAAmOcwHwHIhCAMATOT8OemHX7VXe+Nrkv+co+0AAABwmA+AkQjCAAATe/7i6JpbCXt1AAAA0+IwHwCjEIQBABz1dUIwAADgEg7zATDKWa8bAKbVaDQUCoWG1mQyGWUyGZc6ApaHz5A+f310DQAAgBuefVr68Gf26znMB5i9fD6vfD4/tKbRaLjUzVEEYVh47XZb9Xp9aE2r1XKpG2C5GIZ0hqALAADMiRci0qs/trdhPof5AM5otVoj79G9RBCGhefz+bS2tja0xu/3u9QNAAAAAK90DvN5qTS6lsN8AGf4/X4Fg8GhNY1GQ+1226WO+hmWZVmeXBmYUigUUr1eVzAY1MHBgdftAAAAAJgDj9rS2deG19xKSC9E3ekHwFFe3s+zWT4AAAAAYKlwmA+wvAjCPFKr1RSPx6ceZ319XYZhqFSyMfd3AuP2ub29rXg8rpWVFRmGofX1dSWTSZXLZUf6AwAAAIBencN8hj04zAdYXgRhM2aapgzDGPlYX19XOBye6lrZbFa1Wm0u+iyXy1pZWVE2m5UkFYtFVatV5XI5VSoVxeNxxeNxmaY5Ub8AAAAAYIdhSGd8wx8GQRiwtNgsf8YKhYLt2k5oNIlyuazt7e2JXz/LPsvlcnfWWCqV0s7OTvdj4XBYiURC0WhU5XJZ0WhU+/v7CgQCE/UNAAAAAAAwKWaEzdjW1patulgsNvGMMNM0lUwmJ3ptx6z67O0lHA73hWC9isWipMOlltP2DgAAAAAAMAlmhM1QoVCQaZra3Nwcua/WxsbGxNe5du2aVldXJWmipYaz7DOZTHZ7GDZzrDMzrFQqqVwuq1AoKJVKjd07AAAAAADApAzLsiyvmzgt1tfXJUnVatWxaxQKBaXTae3v7+vy5cvdEKpYLCqRSNgaY1Z91mq17liS1Gw2hy55LJVK3dlggUBAzWZzqut7edwqAAAAAACYjJf38yyNnJFSqaRarTbVvl+j1Go1pdNpbW5uKhKJTDTGLPvM5XLd57FYbOS+X71BnWmajp10CQAAAAAAcByCsBnZ2tpSIBDQlStXHLtGMplUJBLpC6DGNcs+ezfctxvM9e43dvv27al7AAAAAAAAsIsgbAYqlYoqlYpM09TKyorW19eVTqdnOuMpm82qUql0N533us9KpdL39qVLl2y9rjcwY0YYAAAAAABwE0HYDAwuM6zVaioUCkomkzIMQ8lk8khwNI5KpaLt7W3t7OxMfNLkrPssl8t9b9vta7Bumq8LAAAAAADAOAjCplSr1Y6EQoNKpZKi0ajS6fRE17h8+bISicRUpyzOus87d+70vT1qf7COJ598su/tvb09W68DcLpZlvSoPfzB0S4AAAAApnXW6wYWXTgc1s7OjkzTVLVaVblcVq1WO7a2UChob29P+/v7tsfvnLJ48+bNuepz8LWTzghz8oRNAIujbUlnXxte8/nr0hnDnX4AAAAAnE4EYTMwOFPLNE0VCgVtbW3JNM2+j1UqFcXjce3u7o4ct1QqqVQqaXd31/aMK7f6PClEG9fgdQEAAAAAAJzC0kgHBAIBbW5uqtlsqlgsHgmxyuWytre3h45hmqaSyaRSqZRisdjc9TlpgDV4jfv37080DoDl8+ZdrzsAAAAAsOgMy2LXFaeZpqnLly/3bQwfCATUbDZPfE00Gu0uYzzJyspKN5AqFotKJBKu9WkY/euT7P4YlctlxePx7tuxWMzW7LjjhEIh1et1+Xw+ra2tTTRGr0wmo0wmM/U4AMZ3a196ycZBsn91RXr+ovP9AAAAADgqn88rn89PPU6j0VC73VYwGNTBwcEMOrOPpZEuCAQC2t/fVzQa7YZMpmmqXC4fO9tre3tblUplrL3E3O4zEAjMZFnjLJZ8tttt1ev1qcdptVpTjwFgfA8eSq+8Z6/25XelZ78k+c852hIAAACAY7RarZncf3uJIMxFN2/eVDQa7b69u7t7JGCqVCrKZrPK5XKKRCJutyjJXp+rq6szCcJWV1enHmNWM8L8fv/UYwAY3xsV6dPf2Kv91a+lWxXpW192ticAAAAAR/n9fgWDwanH6cwI8wJBmIsikYhisZjK5bKk4zecTyaTikQi2tzcdLu9Ljt9TjqTazA8m8WMsLW1NdenUgKYnfc/Hq/+g48JwgAAOI0s6/Ak6WF8hmRwijTgmVltKdTZ6sgLBGEui8fj3YBp0Pb2tmq1mmKxmJLJ5MixekOlra0t3b59u/v21atXp9ozbFifkrSxsdG3l5hpmrZCrcHN8dfX1yfuEcDp0PzM2XoAALAY2pZ09rXhNZ+/Lp0hCAMwBYIwl4XD4e7zwWWBv/zlLyVpaAB1kkql0hdMhcPhqYKwYX1K6ls6KR3OGrOzlHNw83+nTsQEsDhWHne2HgAAAAA6fF43sGx6A6ZZLAt0yqg+NzY2+t4+bvnkcXpnsQUCgb7rAFhOzz49Xv0zY9YDAIDT4827XncAYNERhLlsb2+v+zwej/d9LJfLybIs24/eEKlYLPZ9LJfLOdandLiPWG9AdufOnbHHHQzTACynFyLSF79gr/aJx6QXvTlHBAAAOMxOyPVSiTAMwHQIwlzWuzRwnpcF2unzypUr3ee9yzKH6a3LZrMTdgfgNDl/TvrhV+3V3via5D/naDsAAMADDx5Kr7xnr/bld6XWQ0fbAXCKEYS5rFQqSZKnp0LaYafPdDrdfW5nX7PemnA4PNdBIAB3PX9xdM2thL06AACweN6oSJ/+xl7tr34t3bL37/AAcARBmItKpZJqtZoCgYCuX7/udTsnsttnJBLpC7M64dlJisVi9zmzwQD08hmHp0D98v+U/q9npH/6+9Kl4OH//l/PSPf/T+lfsCQSAIBT6/2Px6v/YMx6AOggCJtCuVzWysqKDMNQPB4fujywVqvp2rVrkqSPPvrI1Y3ynexzZ2en+3xra+vEOtM0VSgUJB0utUylUmN8BgBOO8OQzvik1d+R/vyPpP/2r6T/8a3D//3zP5JWfuewBgAAnE7Nz5ytB4AOgrApFIvF7imI5XJZ0Wi0b7lgR+djq6urqlarikTcndbgZJ/hcLg706tSqWh7e/vYusuXL0s6PCmyd2YYAAAAAKw87mw9AHQQhE0hmUweeV+hUNDKyoqSyaTS6bSi0aji8bhSqZT29/f7Tno8LX0mEgnt7u4qEAgom80qmUyqUqnINM1uuFapVBSJRHTv3j1XZ8MBAAAAmH/PPj1e/TNj1gNAh2FZluV1E4usVqspl8upXC7r/v37Mk1TgUBAq6urikQiunr1qmKxmOfhj1t9bm9v6/bt26rVat1rbGxsKJ1OK5FIzOaT+XuhUEj1el3BYFAHBwczHRsAAACAex48lILftbdh/hOPSfXrnCQNLDIv7+cJwrCwCMIAAACA0+PWvvTS8PO3JEl/dYWTpIFF5+X9PEsjAQAAAACesxNu3UoQggGYzlmvGwAAAAAAwGdIn79+uEzyr+5K//Xjw9MhVx6X/tnT0gsXpQCb5AOYEkEYAAAAAMBzhiGdMaTV35H+/I8OHwAwawRhWHiNRkOhUGhoTSaTUSaTcakjAAAAAACWUz6fVz6fH1rTaDRc6uYogjAsvHa7rXq9PrSm1Wq51A0AAAAAAMur1WqNvEf3EkEYFp7P59Pa2trQGr/f71I3AAAAAAAsL7/fr2AwOLSm0Wio3W671FE/w7Isy5MrA1Py8rhVAAAAAAAwGS/v532uXg0AAAAAAADwCEEYAAAAAAAAlgJBGAAAAAAAAJYCQRgAAAAAAACWAkEYAAAAAAAAlsJZrxsAAGCWLEtqjzgP2WdIhuFOPwAAAADmB0EYAOBUaVvS2deG13z+unSGIAwAAABYOiyNBAAsnTfvet0BAAAAAC8QhAEAThU7IddLJcIwAAAAYBkRhAEATo0HD6VX3rNX+/K7Uuuho+0AAAAAmDMEYQCAU+ONivTpb+zV/urX0q2Ks/0AAAAAmC8EYQCAU+P9j8er/2DMegAA0M+ypEft4Q9rxGnOAOAmTo0EAJwazc+crQcAAP04rRnAomFGGADg1Fh53Nl6AAAAAIuNGWFYeI1GQ6FQaGhNJpNRJpNxqSMAXnn2aenDn9mvf+Zp53oBAACH3rwrvRj1ugsAbsnn88rn80NrGo2GS90cRRCGhddut1Wv14fWtFotl7oB4KUXItKrP7a3Yf4Tj0kvRpzvCQCA0+zNu6NrXipJZ3zS8xed7weA91qt1sh7dC8RhGHh+Xw+ra2tDa3x+/0udQPAS+fPST/86uH/4R7lxtck/znHWwIA4NR68FB65T17tS+/Kz37Jf7bCywDv9+vYDA4tKbRaKjdbrvUUT/DsjjDA4spFAqpXq8rGAzq4ODA63YAzIlH7dGb9t5KSC+wRAMAgKn83/+P9H+8b7/+Pz4rfevLzvUDYHF4eT/PZvkAgKXzdZZmAAAwtfc/Hq/+gzHrAcAJLI0EAJwqPuPwmPZRNQAAYDrNz5ytBwAnEIQBAE4Vw5DOEHQBAOC4lcedrQcAJ7A0EgAAAAAwtmefHq/+mTHrAcAJBGEAAAAAgLG9EJG++AV7tU88Jr0YcbYfALCDIAwAAAAAMLbz56QfftVe7Y2vSf5zjrYDALYQhAEAAAAAJvK8jZOYbyXs1QGAG9gsHwAAAAAwkc5pzQ8eSn91V/qvHx+eDrnyuPTPnpZeuCgF2CQfwBwhCAMAAAAATKRzWvPq70h//keHDwCYZyyNBAAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUiAIAwAAAAAAwFIgCAMAAAAAAMBSIAgDAAAAAADAUjjrdQPAtBqNhkKh0NCaTCajTCbjUkcAAAAAACynfD6vfD4/tKbRaLjUzVEEYVh47XZb9Xp9aE2r1XKpGwAAAAAAller1Rp5j+4lgjAsPJ/Pp7W1taE1fr/fpW4AAAAAAFhefr9fwWBwaE2j0VC73Xapo36GZVmWJ1cGphQKhVSv1xUMBnVwcOB1OwBOGcuS2iP+C+kzJMNwpx8AAADgtPDyfp4ZYQAAHKNtSWdfG17z+evSGYIwAAAAYGFwaiQAABN6867XHQAAAAAYB0EYAADHsBNyvVQiDAMAAAAWCUEYAAADHjyUXnnPXu3L70qth462AwAAAGBGCMIAABjwRkX69Df2an/1a+lWxdl+AACYNcuSHrWHPzhWDcBpxGb5AAAMeP/j8eo/+Fj61ped6QUAACdwKAyAZcWMMAAABjQ/c7YeAIBFwD6YAE4jgjAAAAasPO5sPQAAXuNQGADLiiAMAIABzz49Xv0zY9YDAOAlDoUBsMwIwgAAGPBCRPriF+zVPvGY9GLE2X4AAJglDoUBsMwIwgAAGHD+nPTDr9qrvfE1yX/O0XYAAJipSQ6FAYDTgiAMAIBjPH9xdM2thL06AADmCYfCAFhmBGEAAEzo64RgAIAFxKEwAJbZWa8bAABgHvkM6fPXR9cAALBonn1a+vBn9us5FAbAacKMMAAAjmEY0hnf8IdBEAYAWEAcCgNgmTEjDAuv0WgoFAoNrclkMspkMi51BAAAAMyvzqEwL5VG13IoDIBx5fN55fP5oTWNRsOlbo4iCMPCa7fbqtfrQ2tarZZL3QAAAADz7/mLo4MwDoUBMIlWqzXyHt1LBGFYeD6fT2tra0Nr/H6/S90AAAAApwOHwgCYhN/vVzAYHFrTaDTUbrdd6qifYVmW5cmVgSmFQiHV63UFg0EdHBx43Q4AAACwMCxLao+4E/QZ7IcJwBle3s8zIwwAAAAAloxhSGcIuQAsIU6NBAAAAAAAwFIgCPNIrVZTPB6fepz19XUZhqFSycaRLwO2t7cVj8e1srIiwzC0vr6uZDKpcrk8cT9OjAkAAAAAADALBGEzZpqmDMMY+VhfX1c4HJ7qWtlsVrVabezXlctlraysKJvNSpKKxaKq1apyuZwqlYri8bji8bhM0/R0TAAAAAAAgFlij7AZKxQKtms7odEkyuWytre3J3pdZyZaKpXSzs5O92PhcFiJRELRaFTlclnRaFT7+/sKBAKujwkAAAAAADBrzAibsa2tLVt1sVhs4hlhpmkqmUxO9bpwONwXWPUqFouSDpdvjrqOE2MCAAAAAAA4gRlhM1QoFGSapjY3N0fu/7WxsTHxda5du6bV1VVJGmupYTKZ7NYPm43WmcVVKpVULpdVKBSUSqVcGxMAThOOpwcAAADmh2FZ1oj/ew671tfXJUnVatWxaxQKBaXTae3v7+vy5cvdEKpYLCqRSJz4ulqt1u1PkprN5tDliaVSqTtzKxAIqNlsujLmOEKhkOr1uoLBoA4ODqYaCwCc8qgtnX1teM3nr0tnmKMNAACAJeHl/Tz/t3tGSqWSarXaVPt+jVKr1ZROp7W5ualIJDLWa3O5XPd5LBYbuUdXb6hmmuaxp1I6MSYALKM373rdAQAAALAcCMJmZGtrS4FAQFeuXHHsGslkUpFIpC+Asqt3E3+7IVrvHma3b992ZUwAOG3shFwvlQjDAAAAADcQhM1ApVJRpVKRaZpaWVnR+vq60un0TGc8ZbNZVSqV7qbz4/bX69KlS7Ze1xtuDX4uTowJAKfNg4fSK+/Zq335Xan10NF2AAALzrIOl9wPe7DxDQAMRxA2A4PLIWu1mgqFgpLJpAzDUDKZPBIcjaNSqWh7e1s7OzsTnTRZLpf73rY7xmBd7+fgxJgAcNq8UZE+/Y292l/9WrrFn0QAwBBt63DfyWGPUQe0AMCyIwibUq1WOxIKDSqVSopGo0qn0xNd4/Lly0okEhOfsnjnzp2+t0ft5dXx5JNP9r29t7fn6JgAcNq8//F49R+MWQ8AwCCW2gPAcGe9bmDRhcNh7ezsyDRNVatVlctl1Wq1Y2sLhYL29va0v79ve/zOKYs3b96cuMfBfiadvdV7GqYTYwLAadP8zNl6AMBysbvv5Bmf9PxF5/sBgEVEEDYDgzO1TNNUoVDQ1taWTNPs+1ilUlE8Htfu7u7IcUulkkqlknZ3d23PuDrOScHcuHo/FyfGBIDTZuVxZ+sBAMtj3H0nn/2S5D/naEsAsJAIwhwQCAS0ubmpzc1NlUolXbt2rS/wKZfL2t7e1ubm5oljmKapZDKpVCqlWCw2VT+Thk2D4dv9+/cdHXNSjUZDoVBo6nEymYwymczU4wBAx7NPSx/+zH79M0871wsAYLFNsu/kt77sbE8Alk8+n1c+n596nEajMYNuJkMQ5rBEIqFYLKbLly/3bQy/tbU1NAi7fPlyd9nlvHBi9tYsxmy326rX61OP02q1ph4DAHq9EJFe/bG9G5cnHpNejIyuAwAsp0n2nSQIAzBrrVZrJvffXiIIc0EgEND+/r6i0Wg3DDNNU+Vy+djZXtvb26pUKmPtJTbq+rMInHpnczkx5qR8Pp/W1tamHsfv9089BgD0On9O+uFXD/drGeXG11jCAgA4GftOApgHfr9fwWBw6nEajYba7fYMOhofQZiLbt68qWg02n17d3f3SBBWqVSUzWaVy+UUicxmasDq6upMQqvV1VVHx5zU2tqaDg4Oph4HAJzw/MXRQditBJsaAwCGY99JAPNgVlsKhUIhz2aWEYS5KBKJKBaLqVwuSzp+w/lkMqlIJDJ02eS4Jp11NRh0Dc4Im/WYAHAa+Qzp89cPNzn+q7vSf/348F/pVx6X/tnT0gsXpQA3KwCAEdh3EgBmgyDMZfF4vBuEDdre3latVlMsFlMymRw5Vm+otLW1pdu3b3ffvnr1qhKJhCRpY2Ojb38y0zRtBVCDG9mvr693nzsxJgCcRoYhnTGk1d+R/vyPDh8AAIyLfScBYDYIwlwWDoe7zweXBf7yl7+UpBODsmEqlUpfMBUOh7tBWO9yTOlwJpqdZZfVarXv7d5lnE6MCQAAAOB47DsJALPh87qBZdMbhLm1LHBjY6Pv7eOWZB6nd8ZZIBDo692JMQEAAACczM5+kuw7CQDDEYS5bG9vr/s8Ho/3fSyXy8myLNuP3hCpWCz2fSyXy3U/FolE+kK3O3fujN3rYPDlxJgAAAAApvN1QjAAGIqlkS7rXRro5rLAK1euqFAoSFLfEspheuuy2awrYwIAAAA4XucAllE1AICTMSPMZaXS4aL+WZ4KaUc6ne4+t7MHWW9NOBw+NrRzYkwAAAAAxzMM6Yxv+MMgCAOAoQjCXFQqlVSr1RQIBHT9+nVXrx2JRPqCp04gd5Jisdh9ftLMLSfGBAAAAAAAcApB2BTK5bJWVlZkGIbi8fjQ5YG1Wk3Xrl2TJH300UeubZTfa2dnp/t8a2vrxDrTNLtLHmOxmFKplKtjAgAAAAAAOIEgbArFYrF7CmK5XFY0Gu1bLtjR+djq6qqq1aoikYjLnR4Kh8PdWVmVSkXb29vH1l2+fFnS4amOvbO43BoTAAAAAADACQRhU0gmk0feVygUtLKyomQyqXQ6rWg0qng8rlQqpf39/b6THr2QSCS0u7urQCCgbDarZDKpSqUi0zS7gV2lUlEkEtG9e/dszVxzYkwAAAAAAIBZMyzLsrxuYpHVajXlcjmVy2Xdv39fpmkqEAhodXVVkUhEV69eVSwWm8vwZ3t7W7dv31atVuv2vbGxoXQ6rUQiMTdjniQUCqlerysYDOrg4GCmYwMAAAAAAGd4eT9PEIaFRRAGAAAAAMDi8fJ+nqWRAAAAAAAAWAoEYQAAAAAAAFgKZ71uAJhWo9FQKBQaWpPJZJTJZFzqCAAAAACA5ZTP55XP54fWNBoNl7o5iiAMC6/dbqterw+tabVaLnUDAM6xLKk9YmdPnyEZhjv9AAAAAINardbIe3QvEYRh4fl8Pq2trQ2t8fv9LnUDAM5pW9LZ14bXfP66dIYgDADmCv+QAWCZ+P1+BYPBoTWNRkPtdtuljvpxaiQWFqdGAlg2j9o2gzB2AAWAucLfbwDox6mRAABgJt6863UHAIBJ8PcbANxBEAYAwIKwc5P0UombKQCYN/z9BoD5QRAGAMACePBQeuU9e7Uvvyu1HjraDgDAJv5+A8B8IQgDAGABvFGRPv2Nvdpf/Vq6VXG2HwCAPfz9BoD5QhAGAMACeP/j8eo/GLMeAOAM/n4DwHwhCAMAYAE0P3O2HgDgDP5+A8B8IQgDAGABrDzubD0AwBn8/QaA+UIQBgDAAnj26fHqnxmzHgDgDP5+A8B8IQgDAGABvBCRvvgFe7VPPCa9GHG2HwCAPfz9BoD5QhAGAMACOH9O+uFX7dXe+JrkP+doOwAAm/j7DQDzhSAMAIAF8fzF0TW3EvbqAADu4e83AMyPs143AAAA7PEZ0uevSw8eSn91V/qvHx+eLrbyuPTPnpZeuCgF2GQZAOYOf78BYH4YlmVZXjcBTCIUCqlerysYDOrg4MDrdgAAAAAAgA1e3s+zNBIAAAAAAABLgSAMAAAAAAAAS4E9wrDwGo2GQqHQ0JpMJqNMJuNSRwAAAAAALKd8Pq98Pj+0ptFouNTNUQRhWHjtdlv1en1oTavVcqkbAAAAAACWV6vVGnmP7iWCMCw8n8+ntbW1oTV+v9+lbgAAAAAAWF5+v1/BYHBoTaPRULvddqmjfpwaiYXFqZEAAAAAACweTo0EAAAAAAAAHEYQBgAAAAAAgKVAEAYAAAAAAIClwGb5AAAsGcuS2iN2CPUZkmG40w8AAADgFoIwAACWTNuSzr42vObz16UzBGEAAAA4ZQjCAAAAAOAYzKAFgNOHIAwAABzx5l3pxajXXQCAt5hBCwCnD5vlAwCwZN68O7rmpZK9OgBYdvytBIDFQhAGAMASefBQeuU9e7Uvvyu1HjraDgDMNf7hAABOH4IwAACWyBsV6dPf2Kv91a+lWxVn+wGAecU/HADA6UQQBgDAEnn/4/HqPxizHgBOC/7hAABOJ4IwAACWSPMzZ+sB4LTgHw4A4HQiCAMAYImsPO5sPQCcFvzDAQCcTgRhAAAskWefHq/+mTHrAeC04B8OAOB0IggDAGCJvBCRvvgFe7VPPCa9GHG2HwCYV/zDAQCcTme9bgCYVqPRUCgUGlqTyWSUyWRc6ggA5tf5c9IPvyq9VBpde+Nrkv+c4y0BwFx6ISK9+mN7G+bzDwcA8Fv5fF75fH5oTaPRcKmbowjCsPDa7bbq9frQmlar5VI3ADD/XohIhqRvvnf8Dd4Xv3AYgj1/0e3OAGB+8A8HADCZVqs18h7dSwRhWHg+n09ra2tDa/x+v0vdAMD8Mwzphaj0//l/SW9UDk86a352uL/NM08fzmrghg4ADv9BYFQQdivBPxwAQC+/369gMDi0ptFoqN1uu9RRP8OyLMuTKwNTCoVCqtfrCgaDOjg48LodAAAAnDKWJbUt6cFD6a/uSv+15x8O/tnT0gsXpcDjh//AAACwz8v7eWaEAQAAAMAxDEM6Y0irvyP9+R8dPgAAi41TIwEAAAAAALAUCMIAAAAAAACwFAjCAAAAAAAAsBQIwgAAAAAAALAUCMIAAAAAAACwFDg1EgAATMyypLY1vMZnHJ68BgAAAHiNIAwAAEysbUlnXxte8/nr0hmCMOD/397dhDh23vke/6nsBDsJlaMyDBRVmxzdgQ53Zam9iZd9dGcR+yYLqQ3X0zbMxVIIGQ/UQkoTZpkppEXBMENIyTAwflnY0iLBDmSi09tZTFcdbw0zOt50UTBwS8eFQ5q8lO5CSJHqRToqnVfp+4HCpaqnnvO3XY/U+vX/eQ4AAEgAtkYCAIBQffBp3BUAAAAAQwRhAADg1vyEXG92CMMAAACQDARhAADgVr54Kv3wl/7G/uAX0vnTUMsBAAAA5iIIAwAAt/KeI/32D/7Gfvl76V0n3HoAAACAeQjCAADArXz82WLjP1lwPADcxmAg/eli9sdgzt1uAQCri7tGAgCAW+n/LtzxAHAb3M0WADALQRhS7/T0VLu7uzPH7O3taW9vL6KKAGA9ZJ8PdzwAhOWDT6U3CnFXAQCr6eDgQAcHBzPHnJ6eRlTNVQRhSL2LiwudnJzMHHN+fh5RNQCwPl69I/3mP/2Pf+VOeLUAwIjfu9k+syG9/mL49QDAujk/P5/7Hj1OBGFIvY2NDW1vb88cs7m5GVE1ALA+HuSlH//a34H53/iq9EY+/JoArLdF72b76relzedCLQkA1s7m5qZ2dnZmjjk9PdXFxUVEFU3LDAYcFYl02t3d1cnJiXZ2dvTkyZO4ywGAtfTu8bCzYp7379N5ASB8//zv0t9+7H/8P70q/eg74dUDALhenO/nuWskAAC4NT/h1rslQjAA0eButgCAedgaCQAAbm0jM7z72hdPpfc/lX712fDukNnnpe/ekR68KBkckg8gItzNFgAwDx1hMXFdV8Vi0ffYarWqXC6nTCajbDarQqGgarUq13UTU6ckNZtNFYtFZbNZZTIZ5XI5lctl2bYdYpUAgLhkMsMDp7e+Jr39svRv/1f6jx8N//n2y1L2a8MxABAF7mYLAJiHICxgnucpk8nM/cjlcjJNc+58zWZTuVxOrVZrHHp5nifHcdRqtZTL5dRsNmOv07ZtZbNZ1et1SVK73Vav11Oj0ZDjOCoWiyoWi/I8b+FaAQAAAD9eXfDutNzNFgDWD1sjA9ZqtXyPHYVGNykWi7JtW4ZhyLIsmaYp13XlOM5UJ1i9XpdpmiqVSrHUadv2uGusUqno8PBw/L1RXYVCQbZtq1Ao6Pj4WIZh+L4+AAAA4Ad3swUAzMNdIwOWzWZ9dT1ZlqVut3vj9+v1uprNphqNhmq12pXvN5vNKwHVIv8rg6rT8zx961vfkud5Mk1TvV7v2nGu6yqXy/ma0y/uGgkAAIDLuJstACRfnO/n6QgLUKvVkud5qtVqc8/Vunv37o3fc11XzWZT3W5XlmVdO6ZWq6nX6011djmOo3x+/l9rBVWnJJXL5XGgNqtzbNQZ1ul0ZNu2Wq2WKpXK3FoBAACARbz+4vwgjLvZAsD6oiMsQKOOp5u6ovwql8t66aWXru0Em+R5nrLZ7PjxTd1jYdU52eUlSf1+f+aWx06no3K5LEkyDEP9fn+p69MRBgAAgMsGA+liMP9uttzIAwDiQ0fYCuh0OnJdd+p8rNsadWvNYxjG+Nyw0eN5gqyz0WiMP7csa+71J88w8zxPnU5noXPNAAAAgHkyGemZzJ/vZvv2y3FXBABIEu4aGZD9/X0ZhqH79+8vPdci52ednZ2NP5+3jVEKts7JbZl+tmRKmroD5Ycffrh0DQCA1TAYSH+6mP1BDzsAAACWRUdYABzHkeM4koaH0JumKcuyVCwWQ+148jxvfD6XZVlzw6gg6xzNM/LSSy/5+rl8Pj/uYOt0fJxiCgBYCxcD6dmfzB7zx58OuzwAAACA26IjLACXD4l3XVetVkvlclmZTEblcvlKcBSEjz76SNKwy6rdbkdap23bU48nO71muTwujP8uAIDV9MGncVcAAACAtCMIW5LruldCocs6nY4KhYKq1Wpg1/U8T9VqVfl8Xt1ud+75XEHX+fjx46nHfs4nk6QXXnhh6vHR0ZGvnwMArDY/IdebHcIwYJWxRRoAEAW2Ri7JNE0dHh7K8zz1ej3Ztj3e+ndZq9XS0dGRjo+Pl7qm67oqFosyDEOPHj3yFUIFXefln71tR9iyd64EAKTfF0+lH/7S39gf/EJ69dvS5nOhlgQgBmyRBgBEgY6wAFQqFdVqNR0eHqrX66nf76vRaFwbUDmOo2KxeOtrdTod5XI5ua4rz/OUzWbVbDYjr/OmEG1RozPOAADr6z1H+u0f/I398vfSu+yqB9YWXaEAgGVlBgMajMPU6XT01ltvXQl8Go2GarWarzk8z1Or1dLh4eGNAVSpVPJ1TlhQdWYy038V5/fXyLbtqYBtmbp3d3d1cnKijY0NbW9v32qOSXt7e9rb21t6HgDAYv7qX6Tf/OcC4/9S+vXfhFcPgHi8ezzcAj3P+/el118Mvx4AwFUHBwc6ODhYep7T01NdXFxoZ2dHT548CaAy/9gaGbJSqSTLsnTv3r2pg+H39/d9B2G2bavX68myrBvP+up0Omo2m77nDKPO2wiiI+zi4kInJydLz3N+fr70HACAxfV/F+54AMnHFmkASIfz8/NA3n/HiSAsAoZh6Pj4WIVCYRwyeZ4n27ZlWdbcny+VSiqVSlNfa7VaqtfrU0FSvV5XpVLxfXD9MnUahhFIiHXbWicF1RG2ubm59BwAgMVlnw93PIDku80W6R99J9yaAABXbW5uamdnZ+l5Rh1hcSAIi9A777yjQqEwftztdn0FYdepVCqyLEuFQmEqkGq1Wkt3cPmpc2trK5AgbGtra+k5tre3I2+lBAAE59U7i22NfOVOeLUAiMfHny02/pPPCMIAIA5BHSk0OuooDhyWH6F8Pj8VKC174Lxpmnr06NHU1x4/frzUnJK/Om/byXU5PAuiIwwAkG4P8tLXv+Jv7De+Kr2RD7ceANFjizQAICoEYRFb5o6R18nn81PbJoO6m+O8Ou/evTv12G932NnZ2dTjXC63UF0AgNXzzeekn33P39iff59zgYBVxBZpAEBUCMIiZprm+PMgtgVK0muvvTb+PIjtitL8Oie3Tkr+A7herzf1+LZbQwEAq8XPHeDeLXGnOGBVvbrglme2SAMAboszwiI2GTAFtS0wn//zHpGg5pxX5+WOMNd1p+q4yWRQZxjG1HUAAOtrIyP98afDO8e9/6n0q8+GW5+yz0vfvSM9eFEy6AABVtaDvPTjX/s7MJ8t0gCAZRCERezo6Gj8edDbJKWrAdVtzaszn89P3Tny8ePHV+5sOW/eoGoFAKRfJiM9k5G2via9/fLwA8D6GG2RfrMzfyxbpAEAy2BrZMQmtwYGtS1wcltiUOGanzrv378//txxHF/zTo6r1+u3rA4AAACrhi3SAIAo0BEWsU5n+NdctVotsDlH4ZJhGL66svzwU2e1WlWr1ZIk2bY9d87JMaZpcj4YAAAAxtgiDQCIAkFYhDqdjlzXlWEYevjwYWDz7u/vS5LeeeedQObzW2c+n5dlWeOAq9PpzAzi2u32+HO6wQAAADCJLdIAgCiwNXIJtm0rm80qk8moWCzO3B7ouq7eeustSdKjR49mHmrfbDZVKBRUr9fn3gVyNKZWq90YQoVVpyQdHh6OPx8FctfxPG/cPWZZliqVysx5AQAAAAAAgkYQtoR2uz0OqmzbVqFQULVavTJu9L2trS31er2Zd1f0PE/1el2O46jZbCqbzd7YPVUul9VsNtVoNNRoNCKtc8Q0zXGn16jm69y7d0/ScPvmZGcYAAAAAABAVDKDwWAQdxFpZdv2tYfTG4Yhy7K0tbWlo6MjOY6jWq2mhw8fzu2wkqRcLjd1AP7knKZpynEcHR0dybIsNRoNmaYZS52Xr1Eul+V5nkqlkh4+fCjTNHV0dDQO9vL5vK8uM792d3d1cnKinZ0dPXnyJJA5AQDpNhhIF3P+ZLORGW7BAgAAQDzifD9PELYk13XVaDRk27bOzs7keZ4Mw9DW1pby+bxee+01WZa1UPjjeZ729/dl27Zc170yZ7FY1P379xeaM4w6r9NsNvXhhx9O1X337l1Vq9XADvIfIQgDAFz2pwvp2Z/MHvPHn0rP0BMPAAAQG4Iw4BYIwgAAl/kJwv61JL1RiKYeAAAAXBXn+3nuGgkAAFbGB5/OH/NmZ9gR9vqL4dcDrDq2IwMA0oYgDAAArIQvnko//KW/sT/4hfTqt6XN50ItCVh5FwOf25EJwgAACUEQhtQ7PT3V7u7uzDF7e3va29uLqCIAQBzec6Tf/sHf2C9/L73rSD/6Trg1ARh2arIdGQDWx8HBgQ4ODmaOOT09jaiaqwjCkHoXFxc6OTmZOeb8/DyiagAAcfn4s8XGf/IZQRiwLLYjAwAuOz8/n/sePU4EYUi9jY0NbW9vzxyzubkZUTUAgLj0fxfueADT2I4MALjO5uamdnZ2Zo45PT3VxcVFRBVNIwhD6m1vb3PXSACAss+HOx7ANLYjAwCu4+dootFdI+OwEctVAQAAAvbqncXGv7LgeADTbrMdGQCAuBGEAQCAlfAgL339K/7GfuOr0hv5cOsBVh3bkQEAaUQQBgAAVsI3n5N+9j1/Y3/+fc4qApbFdmQAQBoRhAEAgJXh565075a4ex0QBLYjAwDSiMPyAQDAytjISH/86fBudu9/Kv3qs+F2rOzz0nfvSA9elAy6UoBAPMhLP/61vwPz2Y4MAEgKgjAAALAyMhnpmYy09TXp7ZeHHwDCMdqO/GZn/li2IwMAkoKtkQAAAABuhe3IAIC0oSMMAAAAwK2wHRkAkDYEYQAAANcYDKSLwewxG5nhdkxgXbEdGQCQNgRhAAAA17gYSM/+ZPaYP/50GAIAAAAgHQjCAAAAbumDT6U3CnFXASxu1PH4xVPpvUtbGl+5I/31i8PP6XgEAKwagjAAAIBrfPDp/DFvdqRnNjgIHOkzq+Ox+1/S330i/WuJoBcAsHq4ayQAAMAlXzyVfvhLf2N/8Avp/Gmo5QCB8xv0+hkHAECaEIQBAABc8p4j/fYP/sZ++XvpXSfceoAgEfQCANYZQRgAAMAlH3+22PhPFhwPxImgFwCwzjgjDKl3enqq3d3dmWP29va0t7cXUUUAgLTr/y7c8UCcbhP0/ug74dQCAFg9BwcHOjg4mDnm9PQ0omquIghD6l1cXOjk5GTmmPPz84iqAQCsguzz4Y4H4kTQCwAI0/n5+dz36HEiCEPqbWxsaHt7e+aYzc3NiKoBAKyCV+9Iv/lP/+NfuRNeLUDQCHoBAGHa3NzUzs7OzDGnp6e6uLiIqKJpmcFgMIjlysCSdnd3dXJyop2dHT158iTucgAAK+SLp9LOP/g7R+kbX5VOHkqbz4VfFxCEf/536W8/9j/+n15layQAIFhxvp/nsHwAAIBLvvmc9LPv+Rv78+8TgiFdHuSlr3/F39hvfFV6Ix9uPQAARIkgDAAA4BoP8tK7pZsDg69/RXqvLL3+YrR1Acsi6AUArDPOCAMAALhGJiM9KEj/+39K7znDO+f1fzc8L+mVO8MuGT8BwWAgXcw5iGIjM7weMEuQv0uvvyi92Zk95t0SQS8AYPUQhAEAAMzwzeeG5yPd9oyki4H07E9mj/njT6VnCMIwR5C/SxuZ4dgvnkrvfyr9aiLo/e4d6cGLksEh+QCAFUQQBgAAELMPPpXeKMRdBVaB39+lTGYYmG19TXr75eEHAADrgDPCAAAAQvTBp/PHvNnxNw7rjd8lAACWRxAGAAAQki+eSj/8pb+xP/iFdP401HKQYvwuAQAQDIIwAACAkLznSL/9g7+xX/5eetcJtx6kF79LAAAEgyAMAAAgJB9/ttj4TxYcj/XB7xIAAMEgCAMAAAhJ/3fhjsf64HcJAIBgEIQBAACEJPt8uOOxPvhdAgAgGARhAAAAIXn1zmLjX1lwPNYHv0sAAASDIAwAACAkD/LS17/ib+w3viq9kZ89ZjCQ/nQx+2MwWL5uJE/Qv0sAAKyrZ+MuAAAAYFV98znpZ9+T3uzMH/vz70ubz80eczGQnv3J7DF//Kn0TMZ3iUiJoH+XAABYV3SEAQAAhOj1F+ePebfkb5wfH3wazDwITlCdfFH/LgEAsIroCEPqnZ6eand3d+aYvb097e3tRVQRAAB/tpEZdml98VR6/1PpV58N7+iXfV767h3pwYuS4fNgcz8h15sd6ZkNwpAkCaqTL8jfJQAAwnJwcKCDg4OZY05PTyOq5iqCMKTexcWFTk5OZo45Pz+PqBoAAKZlMsOAY+tr0tsvDz9u44un0g9/6W/sD34hvfpttselyQefSm8UZo8J6ncJAIAwnZ+fz32PHieCMKTexsaGtre3Z47Z3NyMqBoAAMLxniP99g/+xn75e+ldR/rRd8KtaTAYdjvNspEZBjjrjE4+AMA62dzc1M7Ozswxp6enuri4iKiiaZnBgHsLIZ12d3d1cnKinZ0dPXnyJO5yAAAI1V/9i/Sb/1xg/F9Kv/6b8OqRhmdb+dryF+GptEkL5754Ku38g78Q8xtflU4e0skHAFh9cb6fpyMMAAAgBfq/C3d8WPxs+QtS0u6smcROPgAA1hl3jQQAAEiB7IKHoC86/jb8bvlL2p0so6zn488WG//JguMBAMBi6AgDAABIgVfvLLY18pU7N39vtH3wi6fSe5fuPvjKHemvXxx+Pmv7YFIP70/aeVxp7eQDAGBVEYQBAACkwIO89ONf+z9r6o38zd+ftX2w+1/S330i/Wtp9pbGJG75S2I4l8ROPgAA1hlbIwEAAFLgm89JP/uev7E///7sgCeILY1Bb/kbDIaH78/6mHeLp9uEc2HX9OqMzrzrzOrkAwAAy6MjDAAAICVef3EYUM3ybmn2lr+guqaC3vIXxCH3twnnZnWpBVFTkJ18AABgeXSEAQAApMRGZhi8/L+/l/7xFel//Q/ppZ3hP//xFens76W/nhOkBNU1lcQtf3GcxzWvuy7ITj4AALA8OsIAAABSIpMZdh9tfU16++Xhx6KC6poK8vD+oAQdzgV18H4QnXwAACAYdIQBAACskaC6ph7kpa9/xd8cQW35mxdMBXke16JbSM+f3vz9IDr5AABAMAjCAAAA1khQXVNBb/kL4gD/IMO5IA/ez2SGXWOjTr5/+7/Sf/xo+M+3X5ayXxuOAQAA4SMIAwAAWCNBdk352crnZ8tfUN1XQYZzQd8VEwAAJANBGAAAwBoJsmsqqC1/QXZfBRXOxXHwPgAACB+H5QMAAKyRUdfUvMPbpfldU0Ec3i8Fd4C/9Odw7oun0vufSr/6bBhSZZ+XvntHevCiZPjYHprEu2ICAIDlEYQBAACsmaTdxTDI7qugwrkk3hUTAAAsjyAMAABgzQTVNRWUJHZfPchLP/61vy2bQd0VEwAAhI8gDKl3enqq3d3dmWP29va0t7cXUUUAACRbUF1TQUli91WQW0gBAFgnBwcHOjg4mDnm9PQ0omquIghD6l1cXOjk5GTmmPPz84iqAQAAi0pq91XStpACAJAG5+fnc9+jx4kgDKm3sbGh7e3tmWM2NzcjqgYAACwqqd1XSdtCCgBAGmxubmpnZ2fmmNPTU11cXERU0bTMYDAYxHJlYEm7u7s6OTnRzs6Onjx5Enc5AABgCX+6kJ79yewx75akB4Vo6gEAAOGJ8/38RqRXAwAAAG7p/7AFEQAALIkgLCau66pYLPoeW61WlcvllMlklM1mVSgUVK1W5brurWtoNpsqFovKZrPKZDLK5XIql8uybTtRcwIAgNU32oY462MjE3eVAAAg7QjCAuZ5njKZzNyPXC4n0zTnztdsNpXL5dRqtcahl+d5chxHrVZLuVxOzWZzoRpt21Y2m1W9Xpcktdtt9Xo9NRoNOY6jYrGoYrEoz/NinRMAAKyPTEZ6ZmP2R4YgDAAALIkzwgLWbDbHYdA8vV5vZhhWLBZl27YMw5BlWTJNU67rynGcK51g7XZbpVJp7jVt2x53olUqFR0eHl4ZUygU5DiOTNPU8fGxDMOIfE4/OCMMAAAAAID0ifP9PEFYwLLZrK+uJ8uy1O12b/x+vV5Xs9lUo9FQrVa78v3rArd5/ys9z9O3vvUteZ4n0zTV6/WuHee6rnK5nK86w5jTL4IwAAAAAADSJ873889GerUV12q15HmearXa3PO/7t69e+P3XNdVs9lUt9uVZVnXjqnVaur1emq1WuOvOY6jfD5/47zlcnkc0s3qWjNNU6VSSZ1OR7Ztq9VqqVKpRDYnAAAAAABAGOgIC9Co4+mmrii/yuWyXnrppWs7wSZ5nqdsNjt+fFP3mDTdkSVJ/X5/5vbETqejcrksSTIMQ/1+P5I5F0FHGAAAAAAA6RPn+3kOyw9Ip9OR67q+zwebZdRVNo9hGFNnjM0KoRqNxvhzy7LmntE1ed6Y53nqdDqRzAkAAAAAABAWgrCA7O/vyzAM3b9/f+m5Fjk/6+zsbPz5rO2Wk1soZ22fnDQZsn344YeRzAkAAAAAABAWgrAAOI4jx3HGWxVzuZyq1WroHU+e543P57Is68YwynGcqccvvfSSr/kn57v87xLGnAAAAAAAAGEiCAvA5e2Qruuq1WqpXC4rk8moXC5fCY6C8NFHH0kadlm12+0bx9m2PfV4sitrlsvjJv8dwpgTAAAAAAAgTARhS3Jd90oodFmn01GhUFC1Wg3sup7nqVqtKp/Pq9vtzjyf6/Hjx1OP553lNfLCCy9MPT46Ogp1TgAAAAAAgDA9G3cBaWeapg4PD+V5nnq9nmzbluu6145ttVo6OjrS8fHxUtd0XVfFYlGGYejRo0dzQ6jL9dy2e2vybphhzAkAAAAAABAmgrAAVCqVqcee56nVaml/f398hteI4zgqFosLHYg/qdPpqFwujx9ns1k1Go2Zd5m8KZhb1OS/SxhzrouDgwOdn59rc3NTe3t7cZcDQKxLIIlYl0DysC6B5GFdLi4zGAwGcRexyjqdjt56660rgc+88GrSKFg7PDy8MYAqlUo3nhOWyWSmHvv9X27btorF4rXXCGPORe3u7urk5EQ7Ozt68uTJreaIQ1rrBlYZ6xJIHtYlkDysSyB50rou46ybjrCQlUolWZale/fuTR0Mv7+/7zsIs21bvV5PlmXdeCZZp9NRs9n0PedthNG9FcScp6en2t3dXXqevb09EnQAAAAAAG5wcHCgg4ODpec5PT0NoJrbIQiLgGEYOj4+VqFQGIdhnufJtm1ZljX350ulkkql0tTXWq2W6vX6VJBUr9dVqVSunBlmGEYggdPkvGHMeVsXFxc6OTlZep7z8/Ol5wAAAAAAYFWdn58H8v47TgRhEXrnnXdUKBTGj7vdrq8g7DqVSkWWZalQKEwFUq1W60pX2NbWViCh1dbWVqhz3tbGxoa2t7eXnmdzc3PpOQAAAAAAWFWbm5va2dlZep7T01NdXFwEUNHiCMIilM/nZVnWeGvjsgfOm6apR48eTYVrjx8/vjLutl1Xl4Ouyx1hQc95W9vb26naCw0AAAAAQBoFdaTQ6IywOGzEctU1NnlQfBDy+fzUtsnrwrW7d+9OPfbbyXV2djb1OJfLhTonAAAAAABAmAjCImaa5vjzILYFStJrr702/vy6QGqyY0zy34nW6/WmHk9u4wxjTgAAAAAAgDARhEVsMggLYlugNOwKmzXn5e4tv6HVZKhmGMZU7WHMCQAAAAAAECbOCIvY0dHR+POgt0lKVwMqaRiUTd7l8fHjx1fuQnmdyVovzxvGnIv68ssvp/6JcB0cHOj8/Fybm5uB7AmPCnVHK611p1Va/3tTd7TSWndapfW/N3VHK611p1Va/3tTd7TSWndaxfp+foBI1Wq1gaRBkP/pu93ueM52u33tmEqlMh5jWZaveUfjJQ263W4kcy5iY2NjIGmwsbGx1DxR29nZGUga7OzsxF3KQqg7WtQdLeqOFnVHi7qjRd3Rou5oUXe0qDta1B2tON/PszUyYp1OR5JUq9UCm9NxHEnDrYY3dWVVq9Xx56O7Vs4yOcY0zWvP8gpjTgAAAAAAgLAQhEWo0+nIdV0ZhqGHDx8GNu/+/r4k6Z133rlxTD6fnwqeRoHcTdrt9vjzer0e2ZwAAAAAAABhIQhbgm3bymazymQyKhaL486s67iuq7feekuS9OjRo5kH5TebTRUKBdXr9WvvAjlpNKZWq809o+vw8HD8+Sg8u47neWq1WpKGd3WsVCqRzgkAAAAAABAGgrAltNvtcVBl27YKhcLUdsGR0fe2trbU6/Wm7vJ4med5qtfrchxHzWZT2Wz2xu6pcrmsZrOpRqOhRqMxt17TNMddWaP5r3Pv3j1Jw62Wk11cUc0JAAAAAAAQBoKwJZTL5Stfa7VaymazKpfLqlarKhQKKhaLqlQqOj4+lmmaM+c0DOPKmFEgVi6XVa/XVSwWlc1mJUm9Xm+h88ZKpZK63a4Mw1C9Xle5XJbjOPI8bxzYOY6jfD6vzz//fGbnWphzAgAAAAAABI0gbAmWZanX66lSqcg0zamAx3EcnZ2d6eHDh+r3+2o0Gr4DoOPjY9VqNeXz+Stzuq6rcrmszz//XO12e26wdlPdo5pc19W9e/fGQdvW1pba7baOj48XCqzCmBMAAAAAACBIz8ZdQNqZpjl1TlYQDMPwtdVxWbVaLdC7V4Y1JwAAAAAAQBAyg8FgEHcRwG1kMpnx5zs7OzFWspjT01NdXFxoY2ND29vbcZfjG3VHi7qjRd3Rou5oUXe0qDta1B0t6o4WdUeLuqN1cnIy/jzqWIogDKm1sbER+YIBAAAAAADByGQyuri4iPSabI1Eaj3//PN6+vSpnnnmGf3FX/xF3OUAAAAAAAAf/vu//1t/+tOf9Nxzz0V+bTrCAAAAAAAAsBa4ayQAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGBAy13VVLBbV6XQiuV6z2VSxWFQ2m1Umk1Eul1O5XJZt25FcH0iqpK+N0XMFkHZxrrWkr3MgLklfG7wGYt3wHjFeBGFASDzPU7lcVi6Xk23bOjs7C/V6tm0rm82qXq9Lktrttnq9nhqNhhzHUbFYVLFYlOd5odYBJE3ca8PzPGUymbkfuVxOpmmGUgMQhTjXWtzrHEiquNcGr4HANN4jJsQAQKD6/f6gVqsNJE19HB4ehnbNbrc7vk6lUrl2TD6fH0gamKY56Pf7odUCJEkS1kaj0bjyfHDTR6/XC/z6QBTiXGtJWOdAEiVhbfAaCAzxHjFZCMKAADUajYFpmgPLsiJ7kuv3+wPDMMZPYDfp9XrjWizLCqUWIEmSsjZGNcz7YF0ireJca0lZ50DSJGVt8BoI8B4xidgaCQTEcRxZlqVer6dut6vDw8NIrlsul8etrKOW1+uYpqlSqSRp2CLbarWiKA+ITRLWRqvVkud5qtVq6na7Mz/a7XZg1wWiFOdaS8I6B5IoCWuD10CA94hJlRkMBoO4iwBWkeM4KhQK48eHh4eqVCqBXsN1XeVyufHjfr8vwzBuHN/pdFQulyVJhmGo3+8HWg+QFElZG6Maer1eIPMBSRPnWkvKOgeSJilrg9dA4CreIyYDHWFASGY92QSl0WiMP7csa+41R2m/NDyoMaq7lABRS8La6HQ6cl135t/CAWkX51pLwjoHkigJa4PXQOB6vEdMBoIwIMUmW1fz+byvn5m8I8+HH34YeE1AEiRhbezv78swDN2/f3/puYCkinOtJWGdA0mUhLXBayAQnyQ8ByQdQRiQUo7jTD1+6aWXfP3c5JPhOqT9WD9JWBuO48hxHHmep2w2q1wup2q1yprDSolzrSVhnQNJlIS1wWsgEJ8kPAekAUEYkFK2bU89nkzxZ7k87vKTJZB2SVgbl7eCuK6rVqulcrmsTCajcrnM2kPqxbnWkrDOgSRKwtrgNRCITxKeA9KAIAxIqcePH0899rvf/IUXXph6fHR0FFRJQCLEvTZc173yh5DLOp2OCoWCqtXqra4BJEGcay3udQ4kVdxrg9dAIF5xPwekxbNxFwDgdlzXnXp827SfO/lg1cS9NkzT1OHhoTzPU6/Xk23bV2oaabVaOjo60vHx8a2uBcQpzrUW9zoHkirutcFrIBCvuJ8D0oIgDEipm/5QsSjP8wKZB0iKJKyNy7fB9jxPrVZL+/v7V+Z1HEfFYlHdbvfW1wPiEOdaS8I6B5IoCWuD10AgPkl4DkgDtkYCKXXbJ6fL7bFnZ2fLFwMkSBLXhmEYqtVq6vf7arfbV65l27aazWZg1wOiEOdaS+I6B5IgiWuD10AgOkl8DkgigjBgza162g/cVlhro1Qq6fPPP79yO+v9/f1QrgckXZyvQ7wGAtfjNRBYb6v++kgQBqSU34MPo5oHSIo0rA3DMHR8fDz1RsDzvLkHDANJEudaS8M6B+KQhrXBayAQnjQ8ByQBQRhWVqvVUiaTCfSjUCjE/a81trW1lah5AD+iWJdpWhvvvPPO1GPOSEGaxLnW0rTOgSilaW3wGggEL03PAXEiCANS6rYp/eU211VP+7F+0rQ28vm8LMsaPw7qgFMgCnGutTStcyBKaVobvAYCwUvTc0CcuGskVpZlWWq324HOmaQnhLt378pxnPFjz/N81Xf54MNcLhd0acCNoliXaVsbxWKR7SBIpTjXWtrWORCVtK0NXgOBYKXtOSAuBGFYWaZpyjTNuMsIzeXtYK7rXjl49Dq9Xm/q8eTfxAFhi2Jdpm1tTP73WPU2dKyWONda2tY5EJW0rQ1eA4Fgpe05IC5sjQRS6u7du1OP/baTT7a9Goax0mEh1lPa1sbkdZLUdQrME+daS9s6B6KStrXBayAQrLQ9B8SFIAxIqXw+P/UHhsePH/v6uaOjo/Hnl58ogVWQtrUxed1isRjZdYFlxbnW0rbOgaikbW3wGggEK23PAXEhCANS7P79++PPJ/eCzzI5rl6vB14TkARpWhuTreir3oaO1RPnWkvTOgeilKa1wWsgELw0PQfEhSAMSLFqtTr+3M9Bo5NjTNPkDxxYWWlaG51OR5JUq9UiuyYQlDjXWprWORClNK0NXgOB4KXpOSAuBGFASC7fgvY2Wq2W6vX6jXu7L992evSHiZtM3q1vHZJ+rK8w18a8dbmITqcj13VlGIYePny49HxA1OJca7wGAtfjNRBILt4jJsQAQCja7fZA0vij0Wgs9POWZU39fL/fv3Zcr9cbj8nn8zfO1+/3x+Msy1qoFiCNwlgb89Zlt9sdGIYxnuv4+HhmfaOxs8YBSRfHWgvz2sAq4DUQSCbeIyYDQRgQgn6/PzBNc+pJatYT0HUmf1bS4PDw8Maxk0+oNz2Z5vP5gaSBYRg3PmECqybotTFvXVYqlStjKpXKlXlGbxZM0xz0er1b//sBSRH1Wgvz2sCq4DUQSBbeIyYHQRgQkH6/PyiVSldS+ssflmUNSqXS3L/9Gv0t2eij2+3OHD/5t3Cj+fv9/qDb7Y6f4PL5/Fo9wQGDQbBrY9667Ha71657wzAGpVJpUKlUxtes1WqsR6yUKNdamNcGVgmvgUC8eI+YTARhQEJ1u92BaZoDwzAGtVrN9881Go1BPp8fP+EZhjGwLGvQbrdDrBZIviDWhp912ev1BpVKZTxudC3TNAelUmnQbrfX7g8bWC9RrbWwrg2sIl4DgdXA62MwMoPBYCAAAAAAAABgxXHXSAAAAAAAAKwFgjAAAAAAAACsBYIwAAAAAAAArAWCMAAAAAAAAKwFgjAAAAAAAACsBYIwAAAAAAAArAWCMAAAAAAAAKwFgjAAAAAAAACsBYIwAAAAAAAArAWCMAAAAAAAAKwFgjAAAAAAAACsBYIwAAAAAAAArAWCMAAAAAAAgBWQzWblum7cZSQaQRgAAAAAAEDKNZtNeZ6nw8PDuEtJtMxgMBjEXQQAAAAAAABuL5fLyXVdGYahfr8fdzmJRUcYAAAAAABAinU6nfGWSM/z1Ol0Yq4ouegIAwAAAAAASLFCoSDHccaP8/m8jo+PY6wouegIAwAAAAAASCnHcaZCsJu+hiGCMAAAAAAAgJTa39+/9utBH5rveZ5arVagc8aBrZEAAAAAAAAp5HmestmsJKndbqtcLk99P6jIx/M8FQoF5fN5tdvtQOaMCx1hAAAAAAAAKTTqBqtUKiqVSjJNc+r7QXRweZ6ne/fuyXVdFYvFpeeLGx1hAAAAAAAAKZTNZuV5nnq9nkzTVKvVUrVaHX/fNE31er2lrjF5EH+/35dhGEvNFzc6wgAAAAAAAFKm1WrJ8zxZljXuBKtUKlNjXNeVbdu3mt9xHOVyuXEIZppm6kMwiSAMAAAAAAAgdRqNhiSpXq9Pff1yGLboofmO46hcLqtQKMh13fHXDcNQq9Uaf6QVWyMBAAAAAABSxLZtFYvFa7c+Oo6jQqEw9TW/Wxo7nc6VA/evYxiG+v3+QjUnBR1hAAAAAAAAKXJTN5gk5fN55fP5qa/57eAqlUoaDAYaDAbqdrtT3xt9fTAYpDYEkwjCAAAAAAAAUmN07pdhGFe2QY5MHpgv/fnukotot9vjzy8Ha2lGEAYAAAAAAJASo26wm0Kw0fcmt0J6nqdOp7PQdSYP2X/ttdcWKzLBOCMMAAAAAAAgBTzPUzablTT/3K9qtTq1JdKyrCvbHf1cR5KOj49XpiuMjjAAAAAAAIAUGAVbpVJp7uH3l88Ps2176i6Qs0x2g0lsjQQAAAAAAEDERmd9PXz4cO5Y0zSvBFijbZXzTHaOWZa1QIXJRxAGAAAAAACQcJ1OR57nXXtXyJtcDsz83j3yo48+Gn9eLpf9F5kCBGEAAAAAAAAJt0g32Mh1WyjnhWGu68rzvPFjOsIAAAAAAAAQGcdx5DiODMNQqVRa6Gcv313y8PBw5vjJ88EMw5BpmgtdL+kIwgAAAAAAABLsNt1gI9VqderxKFS7ySqfDyYRhAEAAAAAACSW53nqdDqSrnZ3+WGa5pVAaxSsXWeyI+y1117zdQ3XddVsNlUsFpXNZlUsFqe+73meyuWystmsms3mAtUHjyAMAAAAAAAgoUahVaVSuXLel1+Xu8JGB+9fdtvzwWzblmVZKhaL8jxPtm2Pu848z1OhUJDjOPI8b6rjLA4EYQAAAAAAAAk1Oty+Xq/feg6/h+aPOs+kYSfZ5M/MOmS/Uqkon8+rVquNvzbqLCuXy2q32+r1eur1egRhAAAAAAAAuKrVasnzPFmWtfSh9X4Ozb/pfLBFtjOOfq7b7arZbKpcLiufz0tSIg7eJwgDAAAAAABIoEajIWm5brCRywftu647dR6YNH0+2Oicr06no2636/t8stHP2ba90M9F5dm4CwAAAAAAAMA027bluq6kq2d8BaXRaIw7uC7fSfLx48c6OzvT4eGhHj165HvOyU6yUZCXJARhAAAAAAAACTMZIo0CsaCNwjbTNK9co9lsyjRNHR8fL3RI/2gbpCSdnZ0FVWpg2BoJAAAAAACQMN1uV4PBIPSP0bldpVJpfGdK0zRVq9XU6/UWvlPlZKAW98H418kMBoNB3EUAAAAAAAAg/QqFgra2tmTbtvL5vI6Pj+MuaQpBGAAAAAAAAJZWrVZVKBRkmub40PykxU5sjQQAAAAAAMBSbNvW2dmZKpWK7t69O/765CH8rVYrjtKmEIQBAAAAAABgIZ7nybZtScNzwRqNhtrttiTJMIzxofmHh4eSht1ikwFZXAjCAAAAAAAAsJByuaxisahsNqtisTgOwUYsy5I07ALL5XIqFApTd5SMC0EYAAAAAAAAFlIul2UYhra2ttTtdq/cXfLhw4cyTVOGYaharapSqcRT6CUclg8AAAAAAIC1QEcYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANYCQRgAAAAAAADWAkEYAAAAAAAA1gJBGAAAAAAAANbC/wdNVFdlwsH5oQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtMElEQVR4nOz9XWxj953m+z6LVTHKHTeLkhsDCCTQXVR74L453UWq9kX6qlvkzsXYcLpNVgHx2AZmUpTbJzsXnIloxRj0lSNTnRAYzD5GkeUe4JTbwC6TcduwZyOx6MzdBs6UxErfGZOQ5QAiCAzG0iq2DRf8wnUuNGRISiIX39biy/cDECGlH//rp5dy93r0fzEsy7IEAAAAAAAAzDmP2w0AAAAAAAAATiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQiAIAwAAAAAAwEIgCAMAAAAAAMBCIAgDAAAAAADAQjjvdgPAsL75zW/qwYMHOnfunP7Fv/gXbrcDAAAAAABs+B//43/o66+/1oULF/TZZ585em3DsizL0SsCY+LxeMSvLwAAAAAAs8kwDDUaDUevyYwwzKz2EMzv97vYyWBqtZoajYY8Ho9WVlbcbsc2+nYWfTuLvp1F386ib2fRt7Po21n07Sz6dhZ9O6tarUqSK5NbCMIwszweT+sf/MHBgdvt2BYIBFStVrWyskLfDqBvZ9G3s+jbWfTtLPp2Fn07i76dRd/Oom9nzWrf586da93PO83VIOyxxx5z8/IdDMPQf//v/93tNgAAAAAAADAhrgZh5XJZhmG4us9T8/qGYbjWAwAAAAAAACbP+TloU4bN1gEAAAAAABaD63uEWZalWCymYDDoyvVN01Qul3Pl2gAAAAAAAHCO60FYLpfT9773PVd7iMVi+va3v+1qDwAAAAAAAJgs15dGRiIRt1vQlStX3G4BAAAAAAAAE+Z6ELa8vOx2CwAAAAAAAFgAri6N5KRGjOL3f//3df/+ff3+7/++260shGQyqXq9Lq/X63YrA6FvZ81q37NqVr/f9O2sWe17Vs3q95u+nTWrfc+qWf1+07ezZrXvWeXm/bxhuXhsosfjkWmarv+i3b9/X0tLS2o0Gq72gcEEAgFVq1X5/X4dHBy43Y5ts9o3MM/4dwlMH/5dAtOHf5fA9JnVf5du9u3qjLB0Ou16CCZJFy9eVDqddrsNDKlWqykQCPSsSSaTSiaTDnUEAAAAAMBiymQyymQyPWtqtZpD3ZzkahD2wx/+0NHrffzxx/qjP/qjqegF49NoNFStVnvW1Ot1h7oBAAAAAGBx1ev1vvfobnI1CHPaxsaGfvGLX7jdBsbM4/FoZWWlZ800zDwEAAAAAGDeeb1e+f3+njW1Ws217akWKgjb29tzuwVMwMrKykythQYAAAAAYF7Z2ZqouUeYG2YyCPv4449lmqbt+kqlomw2O9B7AAAAAAAAMF9mIgj7+OOPlU6nVSwWValUhhrDsiwZhjHmzgAAAAAAADArpj4I29ra0s7OjqTjMAsAAAAAAAAYxlQHYT/72c+UTqclSYZhyDAMwjDMvGQyqXq9zgb+wBTh3yUwffh3CUwf/l0C04d/l4MzrClOltbW1lQqlVoBWDAYVCgUUjAYlCQ9+uijfcf45JNPZJqm3nrrLd2/f19ff/31pNuGQ5qb6/n9fjbLBwAAAABgRrh5Pz/VM8KaIZgk7e7uan19feixNjc39dhjj42rNQAAAAAAAMwYj9sN9OLz+SQdh1ijhGCSFAwGdenSpTF0BQAAAAAAgFk01UFYcwnklStXxjJeNpsdyzgAAAAAAACYPVMdhDVngR0eHo51PAAAAAAAACyeqQ7CfvSjH8myLJVKpbGM9/rrr49lHAAAAAAAAMyeqQ7CLl68qFdffVW3b9/WP//zP488HksjAQAAAAAAFtdUB2HS8Ub5oVBI8Xh8pHHu3bs3tpllAAAAAAAAmD3n3W7Ajt3dXa2tremxxx5TKpXS8vKyrfcdHh7KNE2Vy2W99dZbE+4SAAAAAAAA02wmgrBf/vKXkqRyuayNjY2hxrAsS4ZhjLMtAAAAAAAAzJCpD8L+5m/+RrlcTpJkGIYsyxp4DAKw+Var1RQIBHrWJJNJJZNJhzrqZFlSo8+vrceQ+DUFAAAAAMy6TCajTCbTs6ZWqznUzUlTHYTdvHmztcH9sCGYpKHfh9nQaDRUrVZ71tTrdYe6OalhSedf7l3z1SvSOYIwAAAAAMCMq9frfe/R3TTVQVh3CBaJRBSNRuXz+QbeJ+zGjRv6+OOPJ9gt3OLxeLSystKzxuv1OtQNAAAAAACLy+v1yu/396yp1WpqNBoOddTJsKZ4upTH45FhGPL5fNrb29OlS5eGHss0TT366KP6+uuvx9gh3BQIBFStVuX3+3VwcOB2O2f6umFzRtjUn+EKAAAAAMDo3Lyfn+pbb5/PJ0na2toaKQRrjnX58uUxdAUAAAAAAOA8yzqebNHrMb3TnabDVC+NDIfD+uUvf6lgMDiW8W7evDmWcQAAAAAAAJzGHtSjm+oZYRsbG7IsS5VKZSzjMSMMwDiYpul2CwAAAACAIUx1EBaLxXT58mXdvn17LOO9/fbbYxkHGLc377rdAfoplUpKpVJaWlrS9evX3W4HAAAAADCEqV4aKUn5fF5//Md/rH/8x3/UX/3VX4001vb2tv76r/96TJ0B9tgJuZ4vHG+W/wyTFodSKpV0+/ZtlUolVSqV1mmxPp9PwWBQy8vLCoVCikajikQiJ94fj8dVqVS0v7/f+phpmioWi7p9+7aKxSKzwAAAAABgDkx9EBYMBnXjxg1973vfGykIu3//vkql0hg7A/q7/0B68V0bhb/K6V+/uqF/PeD4oVCoI7wZlmEMvoDc5/Pp6Ojo1M/F43EVCoWBx9zd3T01qDqNaZra3t7Wzs5Oz5rmv/tisdiqDYVCikQiWl1d1e7urgqFgkKhUMd7r1+/rkqlwn83AAAAAGCOTHUQ1lzK+Ad/8AdaWlrSY489plgsNvA4pmnqrbfeGnd7QF9vlKTPvrRR+GcJ6fGr2vx/VVT5v7d7hkiRSESpVEpra2utk1VH1dyLr1gsKpVKnTn7KRgMKpVKKRKJ9DzEIp/PyzRN7e3tKZ1Oq1gsnlm7ubmpa9euKRgM2v56UqnUqQFYLBZrjdUcr1KpqFKpKJ/P66233mqFY90BV/fXnM/nW89XV1fHtlchAAAAAMA9hmVN78Gaa2trunv3d+vKLMsaauZK+3u//vrrcbUHlwUCAVWrVfn9fh0cHLjdzqm+/Z+lD349QP1j0s//zfFBEblc7sTnY7FYR0AzCZVKRaurq6d+7ujoaKjwLRwOnzqzKpvNKpFIDNRbNBo9EUolEglls1lbY+zs7CiVSp34eDAYVLlcPvU93T8PJ34OAAAAANDt64bNUyOnekd4d+/np/pbc/XqVVmWpWZWN2wIBrjl6PPh6jc2Nk79/FkfH6dgMHhimaB0HP4MOwPtrL4HCcGKxeKJmVk+n0/7+/u2QzDpeAZauVw+8bUcHh6e+Z5xzbwDAAAAgEnjMLbepjoIa948G4bRCsSGfQBuWHp4uPqzlh32Wo44TqddZ5Rrn/beQcKlUqmkaDR64v0ffvjhqaGdnX7u3bvX0QOb4QMAAACYdnYPYyMMO9tU7xF28eJFhUIh3b17V+l0WqFQSMvLywOPU6lU9OMf/1i/+tWvxt8k0MOTjw+2NPKJx4//96yQaJjf/1lXqVS0vr5+4uP5fH6oEKypOZvsrGWgs6y5+b9TwemsKRaLtg9lAAAAAKaF7cPYJL3wjvTkn0jeCxNtaSZNdRAmSdeuXdPq6qp++MMfDj3G5cuX9fTTTy9kiAB3PRuSXvq5vQ3zH3lIem74XGesTvu38uijj451PLv/HuPx+InZWolEYixBRjAY1ObmZs+TJ6dJqVRSNptVsVhUpVKRz+fT8vKyfD6fgsGgrl27Jun4xMt0Ot1z6WmxWFQ8Htfy8rKy2excB0PNgyDy+Xzr4IZpmim8SD8LAAAADM/2YWySPv1CulWSvv+tyfY0i6Y+CItEIrpz585YxlpbWxvLOIBdFy9Irz11PDW1nxvfIa3vViwWT91kP51Oj+0aW1tbrSDMNM2p3A/MNE1dv369dZpoMBhsnaBbqVRap2C2nzbab6lnM2A0TVMbGxtnHhQwyyqViuLxuCqVylQvfV2EnwUAAABG995Hg9W//xFB2Gmmeo8w6Xg217huen/wgx+MZRxgEM9c7l9zK2avbtGctsn+KJv2n8bn8w20ab8b4vF4K+TKZrMql8vK5/PK5/Pa399XuVw+MYuoX5iyCDNkg8Gg9vf3dXR0pM3NTbfbOdMi/CwAAAAwumEPY0OnqQ/CJOnSpUtjGec//af/NJZxgHH7LiHYCc3lf922trbGfq14PC6p98mRvTSXtq2ursowDC0tLSkajSqXy43c287OTms53+bm5qmhXTAY1O7ubscfDU773rXLZrMKBoMKBoPK5/Mj9zntug9bmCaL9rMAAADAcIY9jA2dpn5p5Djt7e253QImoFarKRAI9KxJJpNKJpMOdYRxOCsQGGWD/LNEIhGl0+mBZ+aYpqn19fUTyzdN01SxWFSxWFQ6nR5pY//t7e3W89NmyLXb3NzUJ598op2dnb6hXiQSWagleG7NutrY2FA2m+1Zs2g/CwAAAAxn2MPYnJbJZJTJZHrW1Go1h7o5aSaDsI8//nig/V4qlYqy2exU7xGD4TUaDVWr1Z419XrdoW4wLs1ZUO0muYn4oEvnKpWKwuFw3/+uNOt2d3cH7n+Yva3S6fSZs+ngrFwup1wu1zcIAwAAAOyYlcPY6vV633t0N81EEPbxxx+PfHNnWZYMwxhzZ5gGHo9HKysrPWu8Xq9D3WAcKpXKqf/WJzEbbBimabY2OI/FYopGo1pbW9Ph4aF2d3dPPYUyGo2qXC4rGAwOdJ12xWLR1n5mW1tbreWecEelUuk7gw8AAAAYxKwcxub1euX3+3vW1Go1NRoNhzrqNPVBWPuJbtN03D2mx8rKig4ODtxuA2N0VuC9urrqcCena85WO22WVyQS0cbGhqLR6ImvIx6Pa39/3/Z1ukOzVCqlq1ev9j0soHmi5LSegjnvTNOc6j3JAAAAMLueudw/CHP7MDY7WxMFAgHXZo1NdRD2s5/9rLX5s2EYMgyDMAwzx2NIX73Svwa/c1YQNk2n6/Va6tjcvL47uCuVSioWi7aXSPp8Pvl8vtbMMNM0W8ss+80s47+V7mjuG8fSVAAAALiFw9h6m+pTI5ubRDcDsEuXLikWi2lzc1Obm5tKp9N9H81T1pgVAbcYhnTO0/sxC6t2U6lUK5Ae9BEOhwe61ln7Yk3Lv2Ofz9c3zAoGgx2nODad9rFeuusrlYpWV1fHciJlqVTSxsZG35l2pmkql8spHA53XLe5/G9paUmGYWh1dfXUZaGVSkWpVKp1qubq6qo2NjZO/Tk3r9P9O9QtGo22xmt/jHMvyFwu13GdpaUlhcPhU79G6fj7eenSpROHJ7T3d9b32u7Posk0Te3s7Cgajba+/83+UqmUrSCuUqloZ2dHq6urHT23/wxWV1dby4ABAACAuWBNMcMwLI/HY3k8HqtYLI40Vrlctjwez5g6wzTw+/2WJMvv97vdykRIOvE4Ojpy5NqJROLU64/zEQwGB77+7u6uI19/t83NzY4+IpGI7ff6fL4TX8egIpHIqd+PUChk7e/vDzTW/v6+lUgkOvry+Xwn6o6Ojqx0Om2FQqGOa2azWcuyTn5P2h+JRKI1Tq+6YDB45u909+/AWdLptK1/I/v7+7Z/Bvl8vvV9yefzHWMEg8Ezez86OrL29/dP9LS/v9/xaB/Pzs+iWzabbdWn02lrf3/fKpfLVj6f7/h5xWKxE+89OjqyNjc3W19He49HR0cnft7tfZXL5b69AQAAYLK++tqy9FLvx1dfu91lf27ez0/1jLDm7I/NzU2tr6+PNFYwGNSlS5fG0BWwmBKJhPb394d6DHpq3lkzv6ZlVsogM9NOmznWPWOon93d3da+X93jhMNh2zN2KpWKbt++bXvWUSgUOrHh+/7+vsLhsEqlkvL5vMrlso6OjjpO3czlciqVSopGoyoWi9rd3dXR0ZGOjo60u7vb+v5VKpXWzN9udjf7P+37Mopisdi69tbWVsf4oVBI+Xxe0nHv169f73ivz+dTKBQ6cahD82Ptnxv0Z9GUSqW0sbEhn8+ncrmszc1NhUIhBYNBxWIx7e/vt3ouFApaXV3t+N04PDxUNBo98Xu5t7enS5cutZb1lstlZbPZ1s/KNE02/wcAAMB8cDx6G0A4HLY8Ho/1s5/9bCzjjTqrDNOFGWGTc9qMrHQ6PfR43bNx1GdGWPeMmuajORvJad2zmk6baXOW5uyicXwdZ31fhhm3fax+s5C6ZwmdNTOve+Za+8ywdu3fk7Ouvbu7a2sG19HR0VhnhMVisb6/8/3Gsdt7k92fRftMsH4/6/YZX2fNYGzv0efznfpz7f79deq/QQAAADgdM8JGN9UzwpqzwA4PD8c6HoDpNu0zwgZx2qb2w34dm5ubOjo6OnMWVPO0Sjvj99tsv137IQWJROLM/dG6T0o8ayZge/+maU7tz/Ws38P2j49jU3y7P4tUKtW6fiKRsFUrHc9ya5502q7967h58+apP9fu37W9vT1bvQIAAADTaqqDsB/96EeyLGvgZURnef3118cyDoDJOisYKJfLDncyutPClE8++WSk8fL5vPb3908swZOOQ4/19fWxhkt2l4K2/9wGWT46TScs3rx5U+l0Wvl8vm/YJDkXzuZyuda17ARn3YfEDHpIQ7v2603TzwoAAGAReQzpq1d6PzwzcBibm6Y6CLt48aJeffVV3b59W//8z/888niD7lMEwB1nzTg6bVbLtDsttHj00UdHHjcUCp25/1qpVDqxf5UThj3Vc1yzfsfB5/Npc3PzzD3ZxvWHmUHt7u62ntudQdb+72gW/+0AAADgJMOQznl6P045dB1tpjoIk9TaCNjuxslnuXfvnms3MAAGd9psp0qlMrXL6AYxyLLEfhKJhMrl8okQqlAoTHX4MWxo5rRKpaJcLqdisXjqRvhO9jGo7t+zefi3AwAAAIzqvNsN2LG7u6u1tTU99thjSqVSHfvV9HJ4eCjTNFUul/XWW29NuEsA43Tt2rVTw+tisTj2kwInzefzdYQQ4wzCmuM1T3Nsv042mz1zdh16K5VKSqVSCoVCIy0rHJf2n6vdUKz7RMrDw8OZCSABAACASZmJIOyXv/ylpOP9gYY9vt2yLBnMDwQkHd/kb29vK5/Pu93KmRKJRMeG303ZbHbmgrDumTh2ZhUVi0WlUint7+/bukYwGNTNmzc7Zs8yC3Y4GxsbyuVySiQSUxGCScNt0N/9R6NxB7AAAADALJr6pZF/8zd/o2g0qrt378owDFmWNfADQKfr169P/TIpn893auBVLBZnKuDp/j7bnaEVDAZVKpUGWt7Y/f1iY/PBNUMwabQN5setPcSye9Jm+95rhGAAAADAsakOwm7evKlsNtsKs4YNtQjDgN9pBknRaPTMmnFvXj7seGcFEafNFBvVpILBvb29jtd2Z7U2g4thZ8FK9maezbpx/q6WSqVWCBYMBqdqGeG1a9c6Xjf77KX9lNVZm0UJAAAATMpUL41snobWnAkWiUQUjUbl8/kG3ifsxo0b+vjjjyfYLTD9TNNsLZ0b9Mb4k08+GWsvdgKMYDCodDp9IvgqFova2dnR5ubmWHqpVCqKRqOKRCJjP122+7S/Qb7vwWBQlUpFqVTK1uyk7hlg3eHJLOn+b7xpmqcGU+Oc9dY++67XuG7MpozFYh17zWWz2b6//+1fz9bW1iTbAwAAAGbGVAdhpVJJhmHI5/Npb29Ply5dGnqs69ev69FHHx1jd8DkTOJG2zRNra+vtwKFQZdKjbsnu+Ntbm5qd3f3xBLB5kbmo24GXywWFY1GW6HbuBUKhdbzQUO2ZhC2s7Oj1dVVJRKJnvXt4weDwbEFhXZ/Vu11/d7T7/Pds9lyudyJr6cZErYb54bwhULhRHB52vW6df/bqlQqJ5Y2DtNj+x5wlUpFxWLxzN//UqnUWkKcTqenanYbAAAA4KapXhrZ/H/ct7a2RgrBmmNdvnx5DF1h2tRqNQUCgZ6PTCbjdpsDOWs2yrDLwIrFosLhcOvG+OrVqwNff5QlaKPO2tnd3T11JlU0GtXOzs5QY5qmqY2NjVYItr+/bzsssBsM5XK51teeSCQGDu3aw5ONjQ1tbGycee1cLtfxvWifiXaa9p+n2/vFnXX99u9XKpXSxsaGisWiCoWCNjY2tLq6eiLksftv57Rrdodv8XhcOzs7rRmIq6urJ0KtbDbbOtigOWZ3ENb8uVUqlY49yE7rrdfPIhaLdYS18Xj81HrTNHX9+nVJx793ZwWidn/u7d9Tt39XAAAAMP0ymUzfe/RareZeg9YUi0QilsfjsX72s5+NZbxSqTSWcTAd/H6/JcnW42//9m/dbncgiUTi1K8jEolY5XK57/uPjo6s3d1da3Nz0woGgyfGyefzZ763XC6f+X08Ojoa6usJhUKnjpfNZgcaZ3Nz89RxQqGQtbu7a2uMo6MjK51OWz6fr/U97fd1dV/X5/P1vU779zESidjqrVs2mz31643FYtbm5qaVzWatRCLR8TO2+zvS/TM563fi6OjoxPf6LLFYzNbPd3d3t6MukUicee3mz6n74fP5Wj/z9ppQKGSVy+UTP1O7vXXXtT/S6bRlWaf/+4zFYh3jnPW7etrXavdn0ZTP51tfs8/ns7LZrFUul61yuWxls9nW70Oz39PY/Rl01w37uwwAAIDF8bd/+7e279X9fr/j/U11EJbP5y3DMKy/+7u/c7sVTKFmEObxeCy/39/z8dOf/tTtdm3Z39/veSM+rsdpwc/R0ZGVzWbPDB4kWcFg0Mpms7YDsf39fSsSifTsZXNz01Zw07S7u3tmsObz+axYLGZls1lrd3fX2t/ft3Z3d61sNmul0+mO9/l8vr6BQ9Np4WAwGDwzfGsPKroDkkHs7u62+szn81YikbAikYgVCoU6fk7Nr7tfGNj8/TrrZxwKhVrhSa/aYDBoxWKx1u9BdxjXHZw0x9zd3T3z9yEYDJ4axhwdHXWMHwqFrM3NzY6a5se6f4+Ojo76fr2nXTOdTreuFwwGrc3NzY7f+aOjo9bX0f4969YeRIdCoY7ft0F+FmfJZrNWJBLpCMWa7zvr32ivf5PtP4Nyudyzrl9vAAAAWFw//elP+96jezwe14Iww7Km+0jFcDgsj8ejO3fujDzW22+/rb/+678eQ1eYBoFAQNVqVX6/XwcHB263M5JcLjfS6YCDCIVC2t/f7/iYYRgDj+Pz+XR0dHTq5+LxeMfeWHbt7u7aXj5YKBS0vb3dWu5pVzAY1MbGhhKJxED7JjX3o+r+unw+n9bW1lobme/t7bX2gMrn8yPvYQYAAAAA88bN+/mpD8IqlYr++I//WD/72c/0V3/1VyONdeXKlbEEapgO8xSEYXimaapYLOr27duqVCqtvZik49CreTDAlStXFIvFBj4koN/1mtdsXmdtbU3xeJwADAAAAADOQBDWRy6X09bWlj755JOhx7h//76Wl5f19ddfj7Gz4TU3Te63obVdpVKpdVM+jpP0mgbtc2dnR7u7u61ZMcFgUKFQSBsbG2MPBgjCAAAAAACYPW7ez5939GoDevvttyVJf/AHf6ClpSU99thjp54c149pmnrrrbfG3d6Z11paWrJVm0gkRrpOLpfT7du3VSqV5PP5lEgkFI1Gtba25nifxWKxdYJZJBJRPp9XMBhUqVRSKpVSNBptfXyQ5WgAAAAAAADjMtVB2I9//GPdvXu39dqyLO3s7Aw1lmVZQ+2DNKhcLme7NpVKDTy+aZpKpVKt64RCoYH2VWoaZ5/FYlHRaFTScWiWzWZbnwsGg4rFYgqHwyoWiwqHw9rf3ycMAwAAAAAAjvO43UAvV69elXV8sqWk4Tb0dtr29ratukgkMvBeRblcTpcuXWqFWNlsVvv7+0MtORxXn6ZpKh6PSzoOvdpDsHb5fF7S8VLLZj0AAAAAAICTpnpG2MbGhl566SUZhqEZ2MpMuVxOpmlqc3OzNUPqLHaWL7ZLpVKt2XDBYFC7u7tDb/o9zj6byyGbPZ6lOTOsUCioWCwql8uNtDQUAAAAAABgUFO/Wf7a2pru3r2rV199VaFQSMvLywOPUalU9OMf/1i/+tWvJrpZ/urqqiSpXC6Pddx4PK5CoSBJ8vl8unfv3khLC8fVZ6VSaY0lSUdHRz37KhQKrdlgPp9PR0dHI12fzfIBAAAAAJg9bJbfw7Vr17S6uqof/vCHQ49x+fJlPf3000OFaHYVCgVVKpUzlwYOKxqNqlgstl6Pur/WOPtMp9Ot55FIpG9f7QcdmKapQqEw1OEHAAAAAAAAw5jqPcKk44BlXJPWBl2OOIjt7W35fD5dvXp1bGPmcrmOECybzQ69HLJpnH22b7gfCoVsvae9/9u3b4/cAwAAAAAAgF1TH4Rdvny5Y+bRKMY1TrdSqaRSqSTTNLW0tKTV1VVtbGy0ljMOo1KpaGNjo/U6FAqNvKfWOPsslUodr69cuWLrfe2B2SjfHwAAAAAAgEFNfRAmSZcuXRrLOJcvXx7LON26N4mvVCrK5XKKx+MyDEPxePxEcNRP98mKW1tbU9Vn+0w1SbZnqnXXDfp9AQAAAAAAGJarQdivfvUrNy/fYdheKpXKiVCoW6FQUDgc7pjh1W/M9oDI5/ONvJfWuPu8c+dOx2u7+5Y9+uijHa/39vZsvQ8AAAAAAGBUrgZh4XBY9XrdzRYkSffv31c4HB7qvcFgUNlsVul0WolEoufMqFwuZ+s63RvZRyIRSb87dXF1dVWGYWhpaUnhcFg7OzsyTdPRPiuVyonx7eiuG/cJmwAAAAAAAGdx9dTIcW2CPw6j9NK9d5dpmsrlctre3j4RUJVKJUWjUe3u7p45Xvsm9JK0vLyscDh8YhmhaZqtfb9SqZTy+XzPmWPj7LM7CBtWvwAPAAAAAABgXFydEWYYhpuX7zDOXnw+nzY3N3V0dKR8Pn9i2WCxWNTOzs6p761UKifCobfeeksbGxs6OjqSZVmyLEvlcvlEsBWPxwfagH6UPocNsLqvcXh4ONQ4AAAAAAAAgzIsF6dleTwemaYpr9frVguSjpdGLi8v6+uvv57I+KZpan19/cS+X0dHRydqi8WiotFoR929e/fO3IMrl8t17OnVr35cfXYHh3Z/jbq/vkgk0nN2XC+BQEDValUej0crKytDjdEumUwqmUyOPA4AAAAAAPMok8kok8mMPE6tVlOj0ZDf79fBwcEYOrPP1aWRknTv3j396Z/+qas9THrDdp/Pp/39/Y7ljaZpqlgstvb/aupecphIJHqGWolEQvv7+63llKZpant7W+l0eqJ9+ny+sSxrHCaw69ZoNFStVkceZxr2qwMAAAAAYFrV6/Wx3H+7yfUg7Pr163rppZfk8/m0vLzs6LUPDw9VqVS0ubnpyPVu3rzZsQn97u7uiYCpe/P4K1eu9B03lUp17Cu2s7MzVBA2SJ/Ly8tjCcLG8TMf14wwt2cmAgAAAAAwzbxer/x+/8jjNGeEucH1IGx/f1/xeNzVHizLcmS/slAopEgkomKxKOn0Dee7wyU7M6aCwaBCoVDHksZSqaRQKDSxPoedyTXM19fPysqK41MpAQAAAABYNOPaUqi51ZEbXN0sv11zE3inH05r3x/rNKurq0ONu7a21vF61FMd+/XZfT27s8O6N8cf9usFAAAAAAAYlOtBmFuBVPv1nRQMBlvPT1sW2D1Dym7A1B0ojXoaY78+25dOSvaDt+6ln91LLgEAAAAAACbF1aWRp51GOO/aA6bTlgUOO7Ore6xR994apk87SzHbgz2fz9dxHQAAAAAAgElyNQi7ePGim5d3RfsJlactP+wOk7pnUNk1asBkp8/2kyPv3LmjWCw20LjdYRoAAAAAAMAkub40ctG0B1tnLQts/3hzw/p+updQDrtRfpOdPq9evdp63r5Rfy/tdalUasjuAAAAAAAABkcQ5rBCoSBJ2tzcPLOmPSCqVCq29gmzE1wNwk6fGxsbred2Arv2mmAwyP5gAAAAAADAUQRhDioUCqpUKvL5fNra2jqzLhKJdCxt3N7e7jt2e8iUTqcd6TMUCnWEWc3w7Cz5fL71nNlgAAAAAADAaQRhIygWi1paWpJhGIpGoz2XB1YqFV2/fl2S9OGHH566AX279tBoZ2en56b5xWKx9flEInFiWeQk+8xms63nvQI70zSVy+UkHQd9iUSi57gAAAAAAADjRhA2gnw+31q2WCwWFQ6HO5YLNjU/t7y8rHK5bGv/rlAo1BEyRaPRU5dImqbZumb3e5zoMxgMtkK7UqmknZ2dU+vW19clHZ8U2R7yAQAAAAAAOIUgbATxePzEx3K5nJaWlhSPx7WxsaFwOKxoNKpEIqH9/f2BTnNMJBLa3d2Vz+dTpVLRpUuXtLOzo1Kp1AqdLl26pEql0hrfjT5jsVirz1QqpXg8rlKpJNM0W+FaqVRSKBTSvXv3+s4yAwAAAAAAmATDsizL7SZmWaVSUTqdVrFY1OHhoUzTlM/n0/LyskKhkK5du6ZIJDJy+JPL5ZTP57W3t9e6RnPD+Y2Njb7BlVN97uzs6Pbt261N/n0+n9bW1rSxsaFYLDbS2N0CgYCq1ar8fr8ODg7GOjYAAAAAAJgMN+/nCcIwswjCAAAAAACYPW7ez7M0EgAAAAAAAAuBIAwAAAAAAAALgSAMAAAAAAAAC+G82w0Ao6rVagoEAj1rksmkksmkQx0BAAAAALCYMpmMMplMz5pareZQNycRhGHmNRoNVavVnjX1et2hbgAAAAAAWFz1er3vPbqbCMIw8zwej1ZWVnrWeL1eh7oBAAAAAGBxeb1e+f3+njW1Wk2NRsOhjjoZlmVZrlx5gu7fv69XX31V29vbtt9Tr9dVqVT0Z3/2Z5NrDGPl5nGrAAAAAABgOG7ez8/lZvmVSkU7Ozu26//u7/5OS0tLun79uq5cuaKtra0JdgcAAAAAAAA3zGUQ1vTb3/5WP/nJT7S1taW333771H2i7t69q1QqpVAopDt37ujOnTsKBoO6du2aCx0DAAAAAABgUuZyj7BisSjLshQMBjs+vrq6qt3dXf3hH/5h62O3b9+WJEUikdbHrl+/rnw+r3/6p3/Sn/7pnzrTNAAAAAAAACZq7maENWd4GYYhy7Jaj0uXLuk3v/mNotFoR32pVJJhGHr00Uc7Ph6Px/W9733PydYBAAAAAAAwQXMXhGWzWUmSZVlKJBIql8tqNBr6zW9+o0ajoT/7sz/T66+/3qo/PDyUJPl8vo5xIpGI9vf39atf/cqp1gEAAAAAADBBcxeE7e3tKRQKqVwu68aNG7p06VLH52/evKnd3d2+4ywvL0s6XmYJAAAAAACA2Td3e4Tdu3dP9+7dk9frPbOmXC63npumKel3wVfTxYsXJUl37twZf5MAAAAAAABw3NzNCFtaWpJhGGd+/ubNm1pdXW29Pmtp5P379yX9LigDAAAAAADAbJu7IOzpp59WLBbTb3/72xOf+8lPfqJUKqVSqdT6WDPo6j5hslKpSDoZkAEAAAAAAGA2zd3SyHQ6rdXVVQWDwdajUqm0gi1JevXVV/U3f/M3HSdINmeANWWzWRmGcWLJJAAAAAAAAGbT3AVhkrS7u6t4PK67d+927AcmSblcTk8//bQsy1IsFpNhGFpfX9cPf/hDffvb39b169dVLBaVy+VkGIbi8bhLXwUAAAAAAADGybAsy3K7iUkpFAp66623VCqVFAwGtbGxoaeffvrE519//XU1Gg2tra3p3r17kiTLsrS6uqpf//rXbrWPPgKBgKrVqvx+vw4ODtxuBwAAAAAA2ODm/fxcB2GDMk1T8XhcH374oYLBoHZ3d3Xp0iW328IZCMIAAAAAAJg9bt7Pz+XSyGH5fD7t7u7q/v37unjxotvtAB0sS2r0ia09htTj0FQAAAAAABbaQgdh9+/f16uvvqrt7e2OjxOCzZZaraZAINCzJplMKplMOtTRZDQs6fzLvWu+ekU6RxAGAAAAAHBJJpNRJpPpWVOr1Rzq5qSFDsIuXryofD6vP/iDP9C/+3f/zu12MKRGo6Fqtdqzpl6vO9QNAAAAAACLq16v971Hd9PcBmH1el17e3syTVOHh4en1pTLZVUqFd24cYMgbIZ5PB6trKz0rPF6vQ51AwAAAADA4vJ6vfL7/T1rarWaGo2GQx11msvN8re2trSzs2Or1rIsLS0t6ZNPPplwVxi3Rdss/+uGzaWRHmf6AQAAAADYw57Pndgsf4x+9rOfKZ1OD/SeQesBAAAAAADsYs/n6TF3c0ey2awikYj29/dVLpd1dHSkdDqto6Oj1qNcLmtvb0+hUEiVSkXf+9733G4bAAAAAAAAEzZ3M8IqlYp+85vfdHzM5/N1nAR58eJFXbp0SblcTvF4XHfu3HG6TQAAAAAAADhs7maEBYPBEx+7evWqXn/99RMfD4VCKpfL+vu//3snWgMAAAAAAICL5i4IOzo6OvGxixcvam9vT/V6/cTnlpeX9eqrrzrRGjBxb951uwMAAAAAAKbX3AVh4XBY165d09tvv62333679fFEIqFwOKzf/va3rY/95Cc/UaVSUaVScaNVYCB2Qq7nC4RhAAAAAACcZe72CEulUlpdXVWhUJB0fCLkv//3/16hUEh/9Ed/pGAwKJ/PJ9M0W+85bTklME3uP5BefNde7QvvSE/+ieS9MNGWAAAAAACYOXM3I+zSpUt66623ZFmWLMuSz+drfS6fz8vr9ero6Kj1eek4PAOm2Rsl6bMv7dV++oV0qzTZfgAAAAAA48XqHmfM3YwwSYrFYmo0Grp3754uXbrU+rjP59PHH3+szc1N7e/va3l5WRsbG3r66add7Bbo772PBqt//yPp+9+aTC8AAAAAgMHY3ermnEd65vLk+1lkcxmENbWHYE0XL15UNpt1oRtgeEefT7YeAAAAADAZbHUzXeZuaSQwj5Yenmw9AAAAAGAy2OpmusxkEPaTn/xkqscDxu3Jxwerf2LAegAAAADAZAyz1Q0mZyaDsNu3b0/1eMC4PRuSvvkNe7WPPCQ9F5psPwAAAAAAe9jqZrrMZBC2v7+vn/70p6rX6yONU6/XdfPmTZVKzDvEdLt4QXrtKXu1N77DenIAAAAAmBZsdTNdZjIIk6TNzU0tLS3p3LlzQz+Wlpb0wgsvuP2lALbYOTnkVowTRgAAAABgmrDVzXSZ6VMjLcsayziGYYxlHLijVqspEAj0rEkmk0omkw515J7vEoIBAAAAwFR5NiS99HN7G+bPw1Y3mUxGmUymZ02tVnOom5NmOggzDGNsYRhmV6PRULVa7Vkz6jJaAAAAAACG0dzq5vlC/9p52OqmXq/3vUd300wGYU8//bR+9rOfSZKi0ahSqZTC4fBAYxweHso0Tf1f/9f/xamRM87j8WhlZaVnjdfrdagbAAAAAAA6PXO5fxA2L1vdeL1e+f3+njW1Wk2NRsOhjjoZ1oxOqbp//75+/OMf6+bNm7p//34rEPuLv/iLgcf64z/+Y/3mN7+ZQJeYpEAgoGq1Kr/fr4ODA7fbmbivG9L5l3vXfPWKdG5md/4DAAAAgPnE/VwnN+/nZ/ZbfPHiRaXTaR0eHur27dv6n//zf2p9fV2PPfaY/v7v/36gsSKRyIS6BAAAAAAAwLSY2SCsXSwW097envb29vRnf/Znun79uh599FH96Ec/srU31I0bNxzoEgAAAAAAAG6ayT3CzhIKhZTP53X//n1ls1m9+uqrSqfTisfj2tra0p/+6Z+63SIwNI9xPFW2Xw0AAAAAADjdXMwI63bx4kVtbm62lk3+5je/USgU0pUrV/SP//iPbrcHDMUwjteL93oYBGEAAAAAAJxpLoOwds1lk3fu3NEf/dEf6emnn9ajjz6qn/70p7aWTQIAAAAAAGA+zH0Q1hQKhfT6668rkUjo6OhIm5ubWlpa0osvvqiPP/7Y7fYAAAAAAAAwYXO1R9hZPv74Y6XTaeVyOUmS8b/Wj1mWpRs3bqhcLusXv/iFmy0CjrIsqWH1rvEYLLUEAAAAgHFgz+fpMddB2K9+9SulUikVi0VJx8GXYRiyrOMEIJFIKJVK6dKlS262CTiuYUnnX+5d89Ur0jn+QwwAAAAAIzMM7q+mxVwGYW+//ba2t7dVKpUkqRV8Sccb6ScSCW1tbenixYtutQgAAAAAAACHzU0QVq/XlcvltL29LdM0JXUGYMFgUKlUStevX3epQwAAAAAAMCvYUmY+zXwQ1r3/V/fyx0gkolQqpfX1dTfbBAAAAAAAM4QtZebTzJ4a+atf/UrXrl3T6uqqcrlcx+wvy7KUSCRULpf1wQcf9A3BXn/99Um3CwAAAAAAAJfN5IywK1eujHX/r2w2q+9973tj7xMAAAAAAADTYyZnhO3v78uyrNYyyOassMPDQ7366qsDhWA3b95shWoAfufNu253AAAAAADAeM3kjDBJHfuABYNB5fN55fN52+8/PDxUpVJpbawPLBI7IdfzBemcR3rm8uT7AQAAAADACTMbhFmWpUgkIp/Pp+Xl5YHee3h4KMuydOnSJZVKJRkc8TDTarWaAoFAz5pkMqlkMulQR9Pt/gPpxXft1b7wjvTkn0jeCxNtCQAAAAAwJzKZjDKZTM+aWq3mUDcnzWwQZpqmvF7vyOMUi0V9+9vfHkNHcEuj0VC1Wu1ZU6/XHepm+r1Rkj770l7tp19It0rS97812Z4AAAAAYBa9eVd6Lux2F9OlXq/3vUd300wGYZFIZCwhWHOsy5dZ+zXLPB6PVlZWetaM6/dlHrz30WD1739EEAYAAABg8bClzHC8Xq/8fn/Pmlqtpkaj4VBHnWYyCNvY2Jjq8eCslZUVHRwcuN3GzDj6fLL1AAAAADDr2FJmeHa2JgoEAq7NGpuJUyN/8pOf6Je//GXr9dNPPz3W8a9fvz7W8YBptvTwZOsBAAAAYNYNs6UMZsNMBGH/7b/9N0WjUf393//9SOPcvHlT586d07/8l/9S//RP/zSm7oZTqVQUjUbHNl6pVFKhUNDOzo6KxaKt9+zs7CgajWppaUmGYWh1dVXxeNz2+50aE+P15OOD1T8xYD0AAAAAzLphtpTBbJiJIEw6PiUykUjoRz/60dBjpFIpWZal3/zmNwqFQvr444/H1+D/YpqmDMPo+1hdXVUwGBzpOjs7OwqHwzIMQ+vr67pz545CoZDW1tZ6vrdYLGppaUmpVEqSlM/nVS6XlU6nVSqVFI1GFY1GZZqm7X4mMSYm49mQ9M1v2Kt95CHpudBk+wEAAACAacOWMvNr5vYI++CDD1Qul3X79u2B33vp0iXdv39fkUhE0nEwNsw4veRyOdu1zdBoEKZpKpVKta4TCoW0u7vb+pr6KRaLrZloiURC2Wy29blgMKhYLKZwOKxisahwOKz9/X35fD7Hx8TkXLwgvfbU8aaO/dz4DuvcAQAAACwetpSZXzMzI6xpb29PjUZDV65c0T//8z8P9N79/X395je/0Y0bN3Tjxg2VSuNfxLu9vW2rLhKJDDwjLJfL6dKlS60QLJvNan9/33YIZpqm4vG4pOOAqj2wapfP5yUdL99s1js5JibPzokmt2KcfAIAAABgMbGlzPyauRlh0nGosrOzo1AopGKxqD/8wz8ceIx79+7p8PBwrH3lcjmZpqnNzc2++3/1W77YLZVKaWdnR9Jx4LS7uztwkBaPx1tLE3vNRmvO4ioUCioWi8rlckokEo6NienwXUIwAAAAAAvq2ZD00s/tbZjPljKzxbAsy3K7iX6uXr2qQqEgwzD09ddftz5eLBZ17do1FQoF/cVf/IXt8e7fv69wOKzV1VX94he/GFufq6urkqRyuTy2MaXjsKlQOF7H5vP5dO/evYGXFlYqlVZ/knR0dNRzjEKh0Jq55fP5dHR05MiYg2get+r3+3VwcDDSWIvm64Z0/uXeNV+9Ip2buTmjAAAAADAet/btbSnzD1dZTTMoN+/nZ/o2NxKJ6M6dO7p+/brtEyV/+ctfKhgM6t69e2NdolcoFFSpVIba96uXaDTaCsEkDb2/Vjqdbj2PRCJ9x4jFYq3npml29DDJMQEAAAAAmAZsKTOfZjoIk46X3O3t7en27dt9T5T8u7/7O0Wj0dbMpe9973tj62N7e1s+n09Xr14d25i5XE7FYrH1OpvNDn3SZPsm/qGQvTmb7dc67VCBSYwJAAAAAMCsYEuZ2TPzQZh0vMzugw8+0OHhoa5du3ZqzdbWll566SVZliXDMDpmM42qVCqpVCrJNE0tLS1pdXVVGxsbI814qlQq2tjYaL0OhUJD76nVfSjAlStXbL2vPdzq/lomMSYAAAAAAMAkzUUQ1nTjxg2tr6+fOFHyww8/bAVfhmEoFAqNdTZY93LISqWiXC6neDwuwzAUj8cHPqGye9nm1tbW0P21zyqTZHtWWXdd+9cwiTEBAAAAAAAmaeaCsP/6X/9rz88nEglls1n95V/+pX77299K+t1eVs1zAcY5G6xSqZwIhboVCgWFw+GOGV79xmwPiHw+X8f+WoO6c+dOx2u7e4w9+uijHa/39vYmOiac4zGON8Pv9fAYbncJAAAAAMB4zUQQdunSJUnHQVYikWgFXGcJhUK6ffu2nn76ab399tsqFosyDKP1ub/8y78cW2/BYFDZbFbpdFqJRKLnzKhcLqdwONx3zGw22/E6EolI+t2pi6urqzIMQ0tLSwqHw9rZ2ZFpmmeOV6lUTvRsR3dd+2mYkxgTzjGM4xMhez0MgjAAAAAAwJyZiSAsnU7r6OhI+Xxe6+vrikQiev3113u+p7mJ/o0bN1ofMwzjzD3ERpFIJLS5ualsNqtyuayjoyOl0+lTZ0mVSiVFo9Ge47VvQi9Jy8vLCofDisfjrdMppeOTF0ulklKplJaWls7cc6s7tBpWe9g2iTEBAAAAAAAmaSaCMEm6ePGinn76ad24cUO//vWvbe/x9cEHH+iHP/xha1mk3dMNR+Hz+bS5udkK77oDsWKxqJ2dnVPfW6lUToRDb731ljY2NnR0dCTLsmRZlsrl8onN85tBWbdhw6buvg8PDyc6JgAAAAAA04ItZebTebcbcEI6ndaVK1d09epV3bt3z9Frx2IxRSIRra+vd+z7tb29rc3NzRP13TOtfD6f7t27dyJAai7J7N577Pr164pEIrb37BrEJGZvjWPMWq2mQCAw8jjJZFLJZHLkcQAAAAAAs88wpHMEXR0ymYwymczI49RqtTF0M5yFCMKk40Bqb29PL730kv7tv/23jl7b5/Npf39f4XC4FYaZpqlisdja/6upOwhLJBI9Q61EIqH9/f3WckrTNLW9vd1xIIDP5xtL4NTexyTGHFaj0VC1Wh15nHq9PvIYAAAAAADMq3q9Ppb7bzctTBAmHS+L/OCDD1y7/s2bNzs2y9/d3T0RhHVvHn/lypW+46ZSqY59xXZ2djqCsOXl5bGEVsvLyxMdc1gej0crKysjj+P1ekceAwAAAACAeeX1euX3+0cep1arqdFojKGjwS1UEOa2UCikSCSiYrEo6fQN57vDJTszpoLBoEKhUMfSy1Kp1NoPbdhZV716mcSYw1pZWdHBwcHI4wAAAAAAgLONa0uhQCDg2syymdksf170OzFydXV1qHHX1tY6XreHbN2fszuTq3sj+/beJjEmZo9lSV83ej/+1zkVAAAAAAC4jhlhDgsGg63npy0L7J4hZTdg6g6U2gOn9uWY0nFIZuf0zO5lmu3LOCcxJmZPw5LOv9y75qtX2GASAAAAADAdmBHmsPYg7LRlgb1mdvXSPVZ7yDbsmO0hnM/n6+h9EmMCAAAAAABMEkGYw/b29lrPT1sm2T2rqnsGlV3tAVMoFOoIyu7cuWNrjPZeu4OvSYwJAAAAAAAwSQRhDmsPts5aFtj+8ebG+v10L6HsDtSuXr3aet6+qX4v7XWpVOrE5ycxJgAAAAAAwKQQhDmsUChIkjY3N8+saQ+IKpWKrX3C+gVsGxsbred2wrX2mmAw6NiYAAAAAAAAk0IQ5qBCoaBKpSKfz6etra0z6yKRSMfSxu3t7b5jt4dM6XT6xOdDoVBH8NQM5M6Sz+dbz8+auTWJMTF/3rzrdgcAAAAAABwjCBtBsVjU0tKSDMNQNBrtuTywUqno+vXrkqQPP/zw1I3y27WHRjs7Oz03oy8Wi63PJxKJM09vzGazree9wjXTNJXL5SQdh3KJROLM2kmMidlhJ+R6vkAYBgAAAACYDgRhI8jn861li8ViUeFwuGO5YFPzc8vLyyqXy2cGVe1CoVBHyBSNRk9dImmaZuua3e/pFgwGWwFbqVTSzs7OqXXr6+uSjk91bA/knBoTs+H+A+nFd+3VvvCOVH8w0XYAAAAAAOiLIGwE8Xj8xMdyuZyWlpYUj8e1sbGhcDisaDSqRCKh/f39jiWP/SQSCe3u7srn86lSqejSpUva2dlRqVRqhU6XLl1SpVJpjd9PLBZrjZlKpRSPx1UqlWSaZiuwK5VKCoVCunfvXt+Za5MaE9PvjZL02Zf2aj/9Qrpl7zwFAAAAAAAmxrAsy3K7iVlWqVSUTqdVLBZ1eHgo0zTl8/m0vLysUCika9euKRKJjBz+5HI55fN57e3tta7R3HB+Y2NjoICtaWdnR7dv325tyO/z+bS2tqaNjQ3FYrGh+pzEmGcJBAKqVqvy+/06ODgY69jo79v/Wfrg1wPUPyb9/N9Mrh8AAAAAwGxw836eIAwziyDMXf/b/0e6M8C3/X8LSP+///fk+gEAAAAAzAY37+dZGglgKEsPT7YeAAAAAIBxIwgDMJQnHx+s/okB6wEAAABgGJYlfd3o/WBt3OI673YDwKhqtZoCgUDPmmQyqWQy6VBHi+HZkPTSz+1tmP/IQ9Jz/Q9LBQAAAICRNSzp/Mu9a756RTpnONPPoslkMspkMj1rarWaQ92cRBCGmddoNFStVnvW1Ot1h7pZHBcvSK89JT1f6F974zuS98LEWwIAAAAAuKxer/e9R3cTQRhmnsfj0crKSs8ar9frUDeL5ZnL/YOwW7HjOgAAAADA/PN6vfL7/T1rarWaGo2GQx11IgjDzFtZWeHUyCn2XUIwAAAAAFgYdrYmap4a6QY2ywcAAAAAAAvlzbtudwC3EIQBAAAAAIC5YSfker5AGLaoWBoJYGge4/i0lX41AAAAAOCE+w+kF9+1V/vCO9KTf8LBXouGGWEAhmYY0jlP74dBEAYAAADAIW+UpM++tFf76RfSrdJk+8H0IQgDAAAAAABz4b2PBqt/f8B6zD6CMAAAAAAAMBeOPp9sPWYfQRgAAAAAAJgLSw9Pth6zjyAMAAAAAADMhScfH6z+iQHrMfsIwgAAAAAAwFx4NiR98xv2ah95SHouNNl+MH0IwgAAAAAAwFy4eEF67Sl7tTe+I3kvTLQdTCGCMAAAAAAAMDeeudy/5lbMXh3mD0EYAAAAAABYKN8lBFtYBGEAAAAAAABYCARhAAAAAAAAWAgEYQAAAAAAAFgI591uABhVrVZTIBDoWZNMJpVMJh3qCAAAAACAxZTJZJTJZHrW1Go1h7o5iSAMM6/RaKharfasqdfrDnUDAAAAAHCTx5C+eqV/DSajXq/3vUd3E0EYZp7H49HKykrPGq/X61A3AAAAAAA3GYZ0jqDLNV6vV36/v2dNrVZTo9FwqKNOhmVZlitXBkYUCARUrVbl9/t1cHDgdjsAAAAAAMAGN+/n2SwfAAAAAAAAC4GlkQBcZ1lSo8/cVI9xPMUZAAAAAIBhEYQBcF3Dks6/3Lvmq1dY5w8AAAAAGA1LIwEAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgDMhDfvut0BAAAAAGDWEYQBcJ2dkOv5AmEYAAAAAGA0BGEAXHX/gfTiu/ZqX3hHqj+YaDsAAAAAXGBZ0teN3g/LcrtLzIPzbjcAYLG9UZI++9Je7adfSLdK0ve/NdmeAAAAADirYUnnX+5d89Ur0jnDmX4wv5gRBsBV7300WP37A9YDAAAAANBEEAbAVUefT7YeAAAAAIAmgjAArlp6eLL1AAAAAAA0EYQBcNWTjw9W/8SA9QAAAADmA6fIYxwIwgC46tmQ9M1v2Kt95CHpudBk+wEAAADgPDsh1/MFwjCMjlMjMfNqtZoCgUDPmmQyqWQy6VBHGMTFC9JrTx3/H7V+bnxH8l6YeEsAAAAAHHT/gfTiu/ZqX3hHevJPuC+YZplMRplMpmdNrVZzqJuTCMIw8xqNhqrVas+aer3uUDcYxjOX+wdht2LHdQAAAADmyxsl6bMv7dV++oV0qyR9/1uT7QnDq9frfe/R3UQQhpnn8Xi0srLSs8br9TrUDSblu4RgAAAAwFx676PB6t//iCBsmnm9Xvn9/p41tVpNjUbDoY46EYRh5q2srOjg4MDtNgAAAAAAQzj6fLL1cJadrYkCgYBrs8bYLB8AAAAAALhm6eHJ1gPtmBEGwHUeQ/rqlf41AAAAAObPk49LH/zafv0Tj0+uF8w/ZoQBcJ1hSOc8vR8GQRgAAAAwl54NSd/8hr3aRx6SngtNth/MN4IwAAAAAADgmosXpNeesld74zuS98JE28GcIwgDAAAAAACuesbGKfG3YvbqgF4IwgAAAAAAwNT7LiEYxoAgDAAAAAAAAAuBIAwAAAAAAAALgSAMAAAAAAAAC+G82w0AAAAAAIDF5jGkr17pXwOMiiAMAAAAAAC4yjCkcwRdcABLIwEAAAAAALAQCMIAAAAAAACwEAjCAAAAAAAAsBAIwgAAAAAAALAQ2CwfM69WqykQCPSsSSaTSiaTDnUEAAAAAMBiymQyymQyPWtqtZpD3ZxEEIaZ12g0VK1We9bU63WHugEAAAAAYHHV6/W+9+huIgjDzPN4PFpZWelZ4/V6HeoGAAAAAIDF5fV65ff7e9bUajU1Gg2HOupkWJZluXJlYESBQEDValV+v18HBwdutwMAAAAAAGxw836ezfIBAAAAAACwEAjCXFKpVBSNRuduzJ2dHUWjUS0tLckwDK2urioej6tYLI61LwAAAAAAgEERhI2ZaZoyDKPvY3V1VcFgcG7GLBaLWlpaUiqVkiTl83mVy2Wl02mVSiVFo1FFo1GZpmmrPwAAAAAAgHFjs/wxy+VytmubodGsj1ksFluzxhKJhLLZbOtzwWBQsVhM4XBYxWJR4XBY+/v78vl8tq8PAAAAAAAwDmyWP2ZLS0u2Zj1FIhHt7u7O/JimaerSpUsyTVPBYFDlcvnUukqlotXV1YH77IXN8nEay5Iaff6r5jEkw3CmHwAAAABAJzfv55kRNka5XE6maWpzc7Pvvlpra2tzMWY8Hm8Far1mjjVnhhUKBRWLReVyOSUSCVv9AoNoWNL5l3vXfPWKdI4gDAAAAAAWDjPCxqg54+msWVHzNmb7LC9JOjo66rnksVAoKB6PS5J8Pp+Ojo5Guj4zwnCarxs2gzB2SAQAAAAAV7h5P8+t4JgUCgVVKhXbe3TNw5jpdLr1PBKJ9N33KxaLtZ6bpqlCoTByDwAAAAAA91jW8R+jez2YfoNpwtLIMdne3pbP59PVq1cXZsz2DfdDoZCt9wSDQVUqFUnS7du3O8IxwClv3pWeC7vdBQAAADD72JoEs4YZYWNQKpVUKpVkmqaWlpa0urqqjY2NkWY8TfuYpVKp4/WVK1dsva89MGNGGCbhzbv9a54v2KsDAAAAAMwXgrAx6F5mWKlUlMvlFI/HZRiG4vH4ieBo1scsFosdr4PBoK33ddcN+jUAvdx/IL34rr3aF96R6g8m2g4AAAAAYMoQhI2oUqmcCIW6FQoFhcNhbWxszM2Yd+7c6Xjdb3+wpkcffbTj9d7enq33AXa8UZI++9Je7adfSLfIYQEAAABgobBH2IiCwaCy2axM01S5XFaxWGztgdUtl8tpb29P+/v7Mz9m93uHnRE2ztMwgfc+Gqz+/Y+k739rMr0AAAAAOMYevZgmBGFjkEgkOl6bpqlcLqft7W2ZptnxuVKppGg0qt3d3Zke86wQbVDd1wVGcfT5ZOsBAAAAdLK7R+85j/TM5cn3A/TD0sgJ8Pl82tzc1NHRkfL5/Illg8ViUTs7OzM95rABVvc1Dg8PhxoHOM3Sw5OtBwAAAPA77NGLWWRYlmW53cS8M01T6+vrHRvD+3w+HR0dzeyYhtF59q3dX6NisahoNNp6HYlE+s5kO0sgEFC1WpXH49HKyspQY7RLJpNKJpMjjwP3/J//j/R/vGe//j89ydJIAAAAYFj8/9+LJ5PJKJPJjDxOrVZTo9GQ3+/XwcHBGDqzj6WRDvD5fNrf31c4HG6FTKZpqlgsKhKJzOSYPp9vLMsa7W6y30uj0VC1Wh15nHq9PvIYcNezIemln9vbMP+Rh6TnQpPvCQAAAJhX7NG7eOr1+ljuv91EEOagmzdvKhz+3Q6Bu7u7Q4dWbo+5vLw8liBseXl55DHGNSPM6/WOPAbcdfGC9NpTx3sQ9HPjO5L3wsRbAgAAAOYWe/QuHq/XK7/fP/I4zRlhbiAIc1AoFFIkElGxWJQ0ng3n3Rpz2Jlc3eHZOGaEraysOD6VEtPrmcv9g7BbMTbqBAAAAEbFHr2LZ1xbCjW3OnIDm+U7rH1/rFkec21treO13dlh3Zvjr66uDtQXMA7fJQQDAAAARvbk44PVPzFgPTAJBGEOCwaDrefjWBbo1pjtSycl+zPRyuVyx+tRl3ECAAAAANzxbEj65jfs1bJHL6YFSyMd1h4wjWNZoFtjds8Iq1QqCoX6/1etfeaYz+fruA4wDh5D+uqV/jUAAAAARsMevZhFzAhz2N7eXuv5uJY0ujFmKBTqCMju3Lkz8LjdYRowDoYhnfP0fhgEYQAAAMBY2Nl7lz16MU0IwhzWvjRwXMsC3Rrz6tWrreelUsnWuO11qVRqyO4AAAAAALOCPXoxTQjCHFYoHM8Z3dzcnPkxNzY2Ws+bJ0z20l4TDAbZHwwAAAAAADiKPcIcVCgUVKlU5PP5tLW1NfNjhkIhRSKRVsBVKBQUi8XOrM/n863nzAYDAAAAgNnHHr2YNcwIG0GxWNTS0pIMw1A0Gu25PLBSqej69euSpA8//PDMTe1nZcymbDbber69vX1mnWmayuVyko6XWiYSiZ7jAgAAAACmH3v0YtYQhI0gn8+3TkEsFosKh8MdywWbmp9bXl5WuVzuebrirIzZFAwGWzO9SqWSdnZ2Tq1bX1+XdHxSZPvMMAAAAAAAAKcYlmVZbjcxq4rF4qknKvp8PkUiES0vL2tvb0+lUkmbm5va2trqO8NqVsY87RrxeFymaSoWi2lra0vBYFB7e3tKpVIqlUoKhUK2ZpnZFQgEVK1W5ff7dXBwMJYxAQAAAADAZLl5P08QNqJKpaJ0Oq1isajDw0OZpimfz6fl5WWFQiFdu3ZNkUhkoPBnVsY8zc7Ojm7fvq1KpdK6xtramjY2NnruHzYMgjAAAAAAAGYPQRgwBIIwAAAAAABmj5v38+wRBgAAAAAAgIVAEAYAAAAAAICFcN7tBoBR1Wo1BQKBnjXJZFLJZNKhjgAAAAAAWEyZTEaZTKZnTa1Wc6ibkwjCMPMajYaq1WrPmnq97lA3AAAAAAAsrnq93vce3U0EYZh5Ho9HKysrPWu8Xq9D3QAAAAAAsLi8Xq/8fn/Pmlqtpkaj4VBHnTg1EjOLUyMBAAAAAJg9nBoJAAAAAAAATBhLIwHgFJYlNfrMl/UYkmE40w8AAAAAYHQEYQBwioYlnX+5d81Xr0jnCMIAAAAAYGawNBIAAAAAAAALgRlhAAAAAAAsGLYCwaIiCAOAIb15V3ou7HYXAAAAwODYCgSLiqWRAHCKN+/2r3m+YK8OAAAAADAdCMIAoMv9B9KL79qrfeEdqf5gou0AAAAAAMaEIAwAurxRkj770l7tp19It0qT7QcAAABwA6sfMI8IwgCgy3sfDVb//oD1AAAAgNvYCgSLiiAMALocfT7ZegAAAMBNbAWCRUYQBgBdlh6ebD0AAADgJrYCwSIjCAOALk8+Plj9EwPWAwAAAG5iKxAsMoIwAOjybEj65jfs1T7ykPRcaLL9AAAAAOPEViBYZARhANDl4gXptafs1d74juS9MNF2AAAAgLFiKxAssvNuNwCMqlarKRAI9KxJJpNKJpMOdYR58Mzl41NyerkVO64DAAAAZsmTj0sf/Np+PVuBYBCZTEaZTKZnTa1Wc6ibkwjCMPMajYaq1WrPmnq97lA3WCTfJQQDAADADHo2JL30c3sb5rMVCAZVr9f73qO7iSAMM8/j8WhlZaVnjdfrdagbzAuPIX31Sv8aAAAAYNY0twLptwJCYisQDM7r9crv9/esqdVqajQaDnXUybAsy3LlysCIAoGAqtWq/H6/Dg4O3G4HAAAAAGbG1w3p/Mu9a27FpGfDzvSDxeLm/Tyb5QMAAAAAgBPYCgTziKWRAAAAAAAsGLYCwaIiCAMAAAAAYMEYhnSOoAsLiKWRAAAAAAAAWAgEYQAAAAAAAFgIBGEAAAAAAABYCARhAAAAAAAAWAgEYQAAAAAAAFgIBGEAAAAAAABYCARhAAAAAAAAWAgEYQAAAAAAAFgIBGEAAAAAAABYCARhAAAAAAAAWAgEYQAAAAAAAFgI591uAADmnWVJDat3jceQDMOZfgAAAABgURGEYebVajUFAoGeNclkUslk0qGOgE4NSzr/cu+ar16RzhGEAQAAAJhxmUxGmUymZ02tVnOom5MIwjDzGo2GqtVqz5p6ve5QNwAAAAAALK56vd73Ht1NBGGYeR6PRysrKz1rvF6vQ90Aw3nzrvRc2O0uAAAAAGA0Xq9Xfr+/Z02tVlOj0XCoo06GZVl9dq4BplMgEFC1WpXf79fBwYHb7QBnurUvPV/oX/cPV6VnLk++HwAAAABwk5v385waCQATdP+B9OK79mpfeEeqP5hoOwAAAACw0AjCAGCC3ihJn31pr/bTL6Rbpcn2AwAAAACLjCAMACbovY8Gq39/wHoAAAAAgH0EYQAwQUefT7YeAAAAAGAfp0YCwAQtPTzZegAAACwOy5IafY678xiSYTjTDzCLCMIAYIKefFz64Nf26594fHK9AAAAYLY1LOn8y71rvnpFOkcQBpyJpZEAMEHPhqRvfsNe7SMPSc+FJtsPAAAAACwygjAAmKCLF6TXnrJXe+M7kvfCRNsBAADAnHvzrtsdANONIAwAJuyZy/1rbsXs1QEAAGBx2Qm5ni8QhgG9EIQBwBT4LiEYAAAAerj/QHrxXXu1L7wj1R9MtB1gZrFZPgBMmMc43rS0Xw0AAABwljdK0mdf2qv99AvpVkn6/rcm2xMwi5gRBgATZhjSOU/vB0dcAwAAoJf3Phqs/v0B64FFQRAGAAAAAMCUO/p8svXAoiAIAwAAAABgyi09PNl6YFEQhAEAAAAAMOWefHyw+icGrAcWBZvlY+bVajUFAoGeNclkUslk0qGOAAAAAGC8ng1JL/3c3ob5jzwkPReafE/AaTKZjDKZTM+aWq3mUDcnEYRh5jUaDVWr1Z419XrdoW4AAAAAYPwuXpBee0p6vtC/9sZ3JO+FibcEnKper/e9R3cTQRhmnsfj0crKSs8ar9frUDcAAAAAMBnPXO4fhN2KHdcBbvF6vfL7/T1rarWaGo2GQx11MizLsly5MjCiQCCgarUqv9+vg4MDt9sBAAAAgIn6uiGdf7l3zVevSOfYDRxTzs37ef55AAAAAAAAYCEQhLmkUqkoGo26OubOzo6i0aiWlpZkGIZWV1cVj8dVLBaH7mESYwIAAAAAJI9xPOOr18NjuN0lMN0IwsbMNE0ZhtH3sbq6qmAw6MqYxWJRS0tLSqVSkqR8Pq9yuax0Oq1SqaRoNKpoNCrTNG1/3ZMYEwAAAADwO4ZxvOyx18MgCAN6YrP8McvlcrZrm6GRk2MWi8XWrLFEIqFsNtv6XDAYVCwWUzgcVrFYVDgc1v7+vnw+n+NjAgAAAAAAjBub5Y/Z0tKSrVlPkUhEu7u7jo5pmqYuXbok0zQVDAZVLpdPratUKlpdXXVtTLvYLB8AAAAAgNnj5v08M8LGKJfLyTRNbW5u9t2ra21tzfEx4/F4K1DrNXOsOYurUCioWCwql8spkUg4NiYAAAAAAMAkMCNsjJozns6aFeXmmO0zsiTp6Oio5/LEQqGgeDwuSfL5fDo6OnJkzEEwIwwAAAAAgNnj5v08m+WPSaFQUKVSsb3vl9NjptPp1vNIJNJ3j65YLNZ6bpqmCoWCI2MCAAAAAABMCkHYmGxvb8vn8+nq1atTOWb7hvuhUMjWe9pPoLx9+7YjYwIAAAAAAEwKQdgYlEollUolmaappaUlra6uamNjY6QZT+Mcs1Qqdby+cuWKrfe1h1vd153EmAAAAAAAAJNEEDYG3UsXK5WKcrmc4vG4DMNQPB4/ERw5OWaxWOx43T4rq5fuuvbrTWJMAAAAAACASSIIG1GlUjkRCnUrFAoKh8Pa2NhwZcw7d+50vO63l1fTo48+2vF6b29vomMCAAAAAABM0nm3G5h1wWBQ2WxWpmmqXC6rWCyqUqmcWpvL5bS3t6f9/X1Hx+x+77Czt9pPrpzEmAB6syyp0eecX48hGYYz/QAAAADArCEIG4NEItHx2jRN5XI5bW9vyzTNjs+VSiVFo1Ht7u46NuZZIdqg2q87iTEB9NawpPMv96756hXpHEEYAAAAAJyKpZET4PP5tLm5qaOjI+Xz+RPLBovFonZ2dhwbc9iwqfsah4eHEx0TAAAAAABgkgzLsvostMGoTNPU+vp6x8bwPp9PR0dHjoxpdK2TsvsjLxaLikajrdeRSKQ162wSYw4qEAioWq3K4/FoZWVlqDHaJZNJJZPJkccBJuXrRv8ZYf/fmPRc2Jl+AAAAACyWTCajTCYz8ji1Wk2NRkN+v18HBwdj6Mw+lkY6wOfzaX9/X+FwuBVcmaapYrGoSCQy8TF9Pt9YliC2z+aaxJjDajQaqlarI49Tr9dHHgOYpDfv9q95viCd80jPXJ58PwAAAAAWS71eH8v9t5sIwhx08+ZNhcO/m6qxu7s7dBA2yJjLy8tjCa2Wl5cnOuawxjUjzOv1jjwGMCn3H0gvvmuv9oV3pCf/RPJemGhLAAAAABaM1+uV3+8feZzmjDA3EIQ5KBQKKRKJqFgsShrPhvN2xhx21lV30NU9I2zcYw5rZWXF8amUgNPeKEmffWmv9tMvpFsl6fvfmmxPAAAAABbLuLYUam515AY2y3dY+/5YTo25trbW8druTK7ujexXV1cnOiaAs7330WD17w9YDwAAgMmxrOP9Xns92L0bcAYzwhwWDAZbz8exLNDOmO1LJ6XjWWOhUKjvuOVyueN1+5LLSYwJ4GxHn0+2HgAAAJPTsPofevTVK9I5o3cNgNExI8xh7aHVOJYF2hmze/aW3SWZ7bO8fD5fx3UmMSaAsy09PNl6AAAAAFgEBGEO29vbaz0f1zLJfmOGQqGOgOzOnTsDj9sdfE1iTABne/LxweqfGLAeAAAA7rJzQjiA0RGEOax9aeC4lgXaGfPq1aut56VSyda47XWpVMqRMQGc7tmQ9M1v2Kt95CHpuf4rlQEAAOAQOyHX8wXCMMAJBGEOKxQKkqTNzU1Hx9zY2Gg9b54w2Ut7TTAYPDVgm8SYAE538YL02lP2am98R/JemGg7AAAAsOn+A+nFd+3VvvCOVH8w0XaAhUcQ5qBCoaBKpSKfz6etrS1HxwyFQh3BUzM8O0s+n289P2vm1iTGBHC2Zy73r7kVs1cHAAAAZ7xRkj770l7tp19It+wttgEwJIKwERSLRS0tLckwDEWj0Z7LAyuViq5fvy5J+vDDD8/cKH8SYzZls9nW8+3t7TPrTNNULpeTdLzUMpFIODomgOF9lxAMAABgqrz30WD17w9YD2AwBGEjyOfzrVMQi8WiwuFwx3LBpubnlpeXVS6XFQqdvXnPJMZsCgaDrVlZpVJJOzs7p9atr69LOj7VsX0Wl1NjAgAAAMC8OPp8svUABmNYlmW53cSsKhaLp57S6PP5FIlEtLy8rL29PZVKJW1ubmpra6vvrK1JjHnaNeLxuEzTVCwW09bWloLBoPb29pRKpVQqlRQKhWzNMpvkmP0EAgFVq1X5/X4dHByMZUxgmlmW1OjzX2yPIRmGM/0AAACgv2//Z+mDXw9Q/5j0838zuX6AaeDm/TwzwkYQiURULpeVSCQUDAY7Ap5SqaTDw0NtbW3p6OhI6XTaVgA0iTFPu0bz/ZVKRevr61paWlI8Htfy8rLy+bz29/cHGnsSYwLoZBjSOU/vByEYAADAdHny8cHqnxiwHsBgmBGGmcWMMAAAAADT7v4Dyf9jexvmP/KQVN3iBHDMP2aEAQAAAAAwhy5ekF57yl7tje8QggGTRhAGAAAAAMAEPWPjZO9bMXt1AEZz3u0GgFHVajUFAoGeNclkUslk0qGOAAAAAGAw3yUEw5zIZDLKZDI9a2q1mkPdnEQQhpnXaDRUrVZ71tTrdYe6AQAAAABgcdXr9b736G4iCMPM83g8WllZ6Vnj9Xod6gYAAAAAOnkM6atX+tcA88Dr9crv9/esqdVqajQaDnXUiVMjMbM4NRIAAAAAgNnDqZEAAAAAAADAhBGEAQAAAAAAYCEQhAEAAAAAAGAhEIQBAAAAAABgIRCEAQAAAAAAYCEQhAEAAAAAAGAhEIQBAAAAAABgIRCEAQAAAAAAYCEQhAEAAAAAAGAhEIQBAAAAAABgIZx3uwEAgLMsS2pYvWs8hmQYzvQDAAAAAE4hCAOABdOwpPMv96756hXpHEEYAAAAgDnD0kgAAAAAAAAsBIIwAMAJb951uwMAAAAAGD+WRgLAgrETcj1fkM55pGcuT74fAACAacS+qsB8IgjDzKvVagoEAj1rksmkksmkQx0B0+v+A+nFd+3VvvCO9OSfSN4LE20JAABgKrGvKjCcTCajTCbTs6ZWqznUzUkEYZh5jUZD1Wq1Z029XneoG2C6vVGSPvvSXu2nX0i3StL3vzXZngAAAADMj3q93vce3U0EYZh5Ho9HKysrPWu8Xq9D3QDT7b2PBqt//yOCMAAAgLO8eVd6Lux2F8B08Xq98vv9PWtqtZoajYZDHXUiCMPMW1lZ0cHBgdttADPh6PPJ1gMAAMwL9lUFhmNna6JAIODarDFOjQSABbL08GTrAQAA5sGg+6rWH0y0HQBjRBAGAAvkyccHq39iwHoAAIB5MMy+qgBmA0EYACyQZ0PSN79hr/aRh6TnQpPtBwAAYBoNs68qgNlAEAYAC+TiBem1p+zV3viO5L0w0XYAAACmEvuqAvOLIAwAFoydzVxvxdj0FQAALC72VQXmF0EYAOCE7xKCAQCABca+qsD8Ou92AwAAZ3kM6atX+tcAAAAsqmdD0ks/t7dhPvuqArOFGWEAsGAMQzrn6f0wCMIAAMACY19VYH4RhAEAAAAA0IV9VYH5RBAGAAAAAMAQ2FcVmD3sEQYAAAAAQBf2VQXmE0EYAAAAAABdDEM6R9AFzB2WRgIAAAAAAGAhEIQBAAAAAABgIRCEAQAAAAAAYCGwRxhmXq1WUyAQ6FmTTCaVTCYd6ggAAAAAgMWUyWSUyWR61tRqNYe6OYkgDDOv0WioWq32rKnX6w51AwAAAADA4qrX633v0d1EEIaZ5/F4tLKy0rPG6/U61A0AAAAAAIvL6/XK7/f3rKnVamo0Gg511MmwLMty5crAiAKBgKrVqvx+vw4ODtxuBwAAAAAA2ODm/Tyb5QMAAAAAAGAhEIQBAAAAAABgIRCEAQAAAAAAYCEQhAEAAAAAAGAhcGokAGBoliU1+hy54jEkw3CmHwAAAADohSAMADC0hiWdf7l3zVevSOcIwgAAAABMAZZGAgAm6s27bncAAAAAAMeYEQYAGJqdkOv5gnTOIz1zefL9AAAAsHUDgF4IwgAAQ7n/QHrxXXu1L7wjPfknkvfCRFsCAABg6wYAPbE0EgAwlDdK0mdf2qv99AvpVmmy/QAAAABAPwRhAIChvPfRYPXvD1gPAAAwKexhCiwugjAAwFCOPp9sPQAAwDDs7mFKGAYsJoIwAMBQlh6ebD0AAMCgBt3DtP5gou0AmEIEYQCAoTz5+GD1TwxYDwAAMCj2MAXQD0EYAGAoz4akb37DXu0jD0nPhSbbDwAAAHuYAujnvNsNAKOq1WoKBAI9a5LJpJLJpEMdAYvh4gXptaeO99jo58Z3JO+FibcEAAAWHHuYAu7LZDLKZDI9a2q1mkPdnEQQhpnXaDRUrVZ71tTrdYe6ARbLM5f7B2G3Ysd1AAAAk8YepoD76vV633t0NxGEYeZ5PB6trKz0rPF6vQ51A6DbdwnBAACAQ558XPrg1/br2cMUGD+v1yu/39+zplarqdFoONRRJ8OyLMuVKwMjCgQCqlar8vv9Ojg4cLsdYCFZltTo839FPIZkGM70AwAAFtv9B5L/x/Y2zH/kIam6xfYNgBvcvJ9ns3wAwNAMQzrn6f0gBAMAAE5p7mFqB3uYAouJIMwllUpF0Wh05HFWV1dlGIYKBRu7VQ9h0D53dnYUjUa1tLQkwzC0urqqeDyuYrE4kf4AAAAAoJ2dvUnZwxRYXARhY2aapgzD6PtYXV1VMBgc6VqpVEqVSmUq+iwWi1paWlIqlZIk5fN5lctlpdNplUolRaNRRaNRmaY5VL8AAAAAMC7sYQosLjbLH7NcLme7thkaDaNYLGpnZ2fo94+zz2Kx2Jo1lkgklM1mW58LBoOKxWIKh8MqFosKh8Pa39+Xz+cbqm8AAAAA6MVjSF+90r8GwGJiRtiYbW9v26qLRCJDzwgzTVPxeHyo9zaNq8/2XoLBYEcI1i6fz0s6Xmo5au8AAAAAcBb2MAXQCzPCxiiXy8k0TW1ubvbdV2ttbW3o61y/fl3Ly8uSNNRSw3H2GY/HWz30mjnWnBlWKBRULBaVy+WUSCQG7h0AAAAAAGBYhmVZfQ6+h12rq6uSpHK5PLFr5HI5bWxsaH9/X+vr660QKp/PKxaL2RpjXH1WKpXWWJJ0dHTUc8ljoVBozQbz+Xw6Ojoa6fpuHrcKAAAAAACG4+b9PEsjx6RQKKhSqYy071c/lUpFGxsb2tzcVCgUGmqMcfaZTqdbzyORSN99v9qDOtM0J3bSJQAAAAAAwGkIwsZke3tbPp9PV69endg14vG4QqFQRwA1qHH22b7hvt1grn2/sdu3b4/cAwAAAAAAgF0EYWNQKpVUKpVkmqaWlpa0urqqjY2Nsc54SqVSKpVKrU3n3e6zVCp1vL5y5Yqt97UHZswIAwAAAAAATiIIG4PuZYaVSkW5XE7xeFyGYSgej58IjgZRKpW0s7OjbDY79EmT4+6zWCx2vLbbV3fdKN8XAAAAAACAQRCEjahSqZwIhboVCgWFw2FtbGwMdY319XXFYrGRTlkcd5937tzpeN1vf7CmRx99tOP13t6erfcBAAAAAACM6rzbDcy6YDCobDYr0zRVLpdVLBZVqVROrc3lctrb29P+/r7t8ZunLN68eXOq+ux+77AzwiZ5wiYAAAAAAEA7grAx6J6pZZqmcrmctre3ZZpmx+dKpZKi0ah2d3f7jlsoFFQoFLS7u2t7xpVTfZ4Vog2q+7oAFpNlSQ2rd43HkAzDmX4AAAAAzCfDsqw+tx4YRaFQ0PXr108EPul0Wpubm2e+r7mhfSKRUDabPbVmaWmpNW4+n1csFnOsT6PrbtTur1GxWFQ0Gm29jsViQx8AEAgEVK1W5fF4tLKyMtQY7ZLJpJLJ5MjjABjc1w3p/Mu9a756RTrHgn4AAADANZlMRplMZuRxarWaGo2G/H6/Dg4OxtCZfcwIm7BYLKZIJKL19fWOjeG3t7d7BmHr6+ut5YxOGLbPUY1jRlij0VC1Wh15nHq9PvIYAAAAAADMq3q9Ppb7bzcRhDnA5/Npf39f4XC4FTKZpqlisahIJHKifmdnR6VSaaC9xJzu0+fzjSXEGseSz3HNCPN6vSOPAWBy3rwrPRd2uwsAAABgcXm9Xvn9/pHHac4IcwNBmINu3rypcPh3d3G7u7snAqZSqaRUKqV0Oq1QKOR0i5Ls9bm8vDyWIGx5eXnkMVZWVhyfSglgvN6827/m+cLx0shnLk++HwAAAAAnjWtLoeZWR25gtxUHhUKhjkDptA3n4/G4QqHQRJcj9mOnz2FncnWHZ+OYEQZgtt1/IL34rr3aF96R6g8m2g4AAACAOcaMMIdFo1EVi8VTP7ezs6NKpaJIJKJ4PN53rPZQaXt7W7dv3269vnbt2kib5/fqU5LW1tY69hIzTdNWqHV4eNjxenV1degeAcyHN0rSZ1/aq/30C+lWSfr+tybbEwAAAID5RBDmsGAw2HrevSzwk08+kaSeAdRZSqVSRzAVDAZHCsJ69SmpY+mkdDxrzM5SznK53PH6tD3SACyW9z4arP79jwjCAACYR5YlNfocRu8xpK4D7AFgIARhDmsPmKZ5WWC/PtfW1jpe2w3C2mex+Xy+jusAWExHn0+2HgAAzIaGJZ1/uXfNV69I5wjCAIyAPcIctre313oejUY7PpdOp2VZlu1He4iUz+c7PpdOpyfWp3S8j1h7QHbnzp2Bx+0O0wAspqWHJ1sPAAAAAE0EYQ5rXxo4zcsC7fR59erV1vP2ZZm9tNelUqkhuwMwT558fLD6JwasBwAA88POSdMA0AtBmMMKhYIkuXoqpB12+tzY2Gg9t7OvWXtNMBic6iAQgHOeDUnf/Ia92kcekp7rvwobAADMIDsh1/MFwjAAoyEIc1ChUFClUpHP59PW1pbb7ZzJbp+hUKgjzGqGZ2fJ5/Ot58wGA9B08YL02lP2am98R/JemGg7AADABfcfSC++a6/2hXek+oOJtgNgjhGEjaBYLGppaUmGYSgajfZcHlipVHT9+nVJ0ocffujoRvmT7DObzbaeb29vn1lnmqZyuZyk46WWiURigK8AwLx75nL/mlsxe3UAAGD2vFGSPvvSXu2nX0i37O3MAgAnEISNIJ/Pt05BLBaLCofDHcsFm5qfW15eVrlctnW64qz0GQwGWzO9SqWSdnZ2Tq1bX1+XdHxSZPvMMACQjo9C/+oV6ZP/IP3HJ6T//Y+lK/7j//2PT0iH/0H61yyJBABgbr330WD17w9YDwBNBGEjiMfjJz6Wy+W0tLSkeDyujY0NhcNhRaNRJRIJ7e/vd5z0OC99xmIx7e7uyufzKZVKKR6Pq1QqyTTNVrhWKpUUCoV07949R2fDAZgNhiGd80jLvyf94M+lX/xb6b99//h/f/Dn0tLvHdcAAID5dPT5ZOsBoIkgbASRSETlclmJRELBYLAj4CmVSjo8PNTW1paOjo6UTqfHHgCVy2VZliXLshSLxVztMxKJtN5fqVS0vr7eCtqWl5eVz+e1v79PCAYAAADghKWHJ1sPAE2GZVmW200AwwgEAqpWq/L7/To4OHC7HQAAAABD+j//H+n/eM9+/X96Uvr+tybXD4DJcvN+nhlhAAAAAABXPRuSvvkNe7WPPCQ9x96hAIZEEAYAAAAAcNXFC9JrT9mrvfEdyXthou0AmGPn3W4AGFWtVlMgEOhZk0wmlUwmHeoIAAAAwKCeuSw9X+hdcyt2XAdgemUyGWUymZ41tVrNoW5OIgjDzGs0GqpWqz1r6vW6Q90AAAAAGIbHkL56Rbr/QPqHu9J/+ej4dMilh6V/9bj07GXJxyb5wNSr1+t979HdRBCGmefxeLSystKzxuv1OtQNAAAAgGEYhnTOkJZ/T/rBnx8/AMwer9crv9/fs6ZWq6nRaDjUUSdOjcTM4tRIAAAAAABmD6dGAgAAAAAAABNGEAYAAAAAAICFQBAGAAAAAACAhUAQBgAAAAAAgIVAEAYAAAAAAICFQBAGAAAAAACAhUAQBgAAAAAAgIVAEAYAAAAAAICFQBAGAAAAAACAhUAQBgAAAAAAgIVw3u0GAAAYJ8uSGlbvGo8hGYYz/QAAAACYHgRhAIC50rCk8y/3rvnqFekcQRgAAACwcFgaCQBYOG/edbsDAAAAAG4gCAMAzBU7IdfzBcIwAAAAYBERhAEA5sb9B9KL79qrfeEdqf5gou0AAAAAmDLsEYaZV6vVFAgEetYkk0klk0mHOgLgljdK0mdf2qv99AvpVkn6/rcm2xMAAPOMQ2oAdMtkMspkMj1rarWaQ92cRBCGmddoNFStVnvW1Ot1h7oB4Kb3Phqs/v2PCMIAABgFh9QA6Fav1/veo7uJIAwzz+PxaGVlpWeN1+t1qBsAbjr6fLL1AAAAAHrzer3y+/09a2q1mhqNhkMddSIIw8xbWVnRwcGB220AmAJLD0+2HgAADO7Nu9JzYbe7AOAUO1sTBQIB12aNsVk+AGBuPPn4YPVPDFgPAAA6cVozgFlDEAYAmBvPhqRvfsNe7SMPSc+FJtsPAADzjNOaAcwigjAAwNy4eEF67Sl7tTe+I3kvTLQdAADm2jCnNQOA2wjCAABz5ZnL/WtuxezVAQCAsw1zWjMAuI3N8gEAc8VjHB/Tfv+B9A93pf/y0fHpkEsPS//qcenZy5KPTfIBABgZpzUDmEUEYQCAuWIY0jlDWv496Qd/fvwAAADjx2nNAGYRSyMBAAAAAAPjtGYAs4ggDAAAAAAwME5rBjCLCMIAAAAAAAPjtGYAs4ggDAAAAAAwFE5rBjBr2CwfAAAAADAUTmsGMGsIwgAAAAAAQ+G0ZgCzhqWRAAAAAAAAWAgEYQAAAAAAAFgIBGEAAAAAAABYCOwRhplXq9UUCAR61iSTSSWTSYc6AgAAAABgMWUyGWUymZ41tVrNoW5OIgjDzGs0GqpWqz1r6vW6Q90AAAAAALC46vV633t0NxGEYeZ5PB6trKz0rPF6vQ51AwAAAADA4vJ6vfL7/T1rarWaGo2GQx11MizLsly5MjCiQCCgarUqv9+vg4MDt9sBAAAAAAA2uHk/z2b5AAAAAAAAWAgsjQQA4BSWJTX6zJn2GJJhONMPAAAAgNERhAEAcIqGJZ1/uXfNV69I5wjCAAAAgJnB0kgAAAAAAAAsBIIwAACG9OZdtzsAAAAAMAiCMAAATmEn5Hq+QBgGAAAAzBKCMAAAutx/IL34rr3aF96R6g8m2g4AAACAMSEIAwCgyxsl6bMv7dV++oV0qzTZfgAAGDfLkr5u9H5YfU5PBoBZxKmRAAB0ee+jwerf/0j6/rcm0wsAAJPA6cgAFhUzwgAA6HL0+WTrAQCYBeyDCWAeEYQBANBl6eHJ1gMA4DYOhQGwqAjCAADo8uTjg9U/MWA9AABu4lAYAIuMIAwAgC7PhqRvfsNe7SMPSc+FJtsPAADjxKEwABYZQRgAAF0uXpBee8pe7Y3vSN4LE20HAICxGuZQGACYFwRhAACc4pnL/WtuxezVAQAwTTgUBsAiO+92A8CoarWaAoFAz5pkMqlkMulQRwDmgcc4Pjb+/gPpH+5K/+Wj4xuBpYelf/W49Oxlyccm+QCAGcShMAAmKZPJKJPJ9Kyp1WoOdXMSQRhmXqPRULVa7VlTr9cd6gbAvDAM6ZwhLf+e9IM/P34AADAPnnxc+uDX9us5FAbAIOr1et97dDcRhGHmeTwerays9Kzxer0OdQMAAABMt2dD0ks/t7dhPofCABiU1+uV3+/vWVOr1dRoNBzqqJNhWZblypWBEQUCAVWrVfn9fh0cHLjdDgAAADAzbu1Lzxf61/3DVfbDBDB+bt7Ps1k+AAAAACwYDoUBsKgIwlxSqVQUjUZHHmd1dVWGYahQsPHnnC47OzuKRqNaWlqSYRhaXV1VPB5XsVgcup9JjAkAAADAed8lBAMwh9gjbMxM09TS0pKt2kQiMdK1UqmUKpXKwO8rFouKx+MyTVORSET5fF7BYFClUkmpVErRaLT1cZ/P59qYAAAAACajeTpyvxoAmDcEYWOWy+Vs16ZSqaGvUywWtbOzM9T7mjPREomEstls63PBYFCxWEzhcFjFYlHhcFj7+/t9g6tJjAkAAABgcpqnIwPAomFp5Jhtb2/bqotEIgoGg0NdwzRNxePxkd4XDAY7Aqt2+Xxe0vHyzX7XmcSYAAAAAAAAk8CMsDHK5XIyTVObm5t99/9aW1sb+jrXr1/X8vKypOMgyq7m0kWp92y05iyuQqGgYrGoXC535jLOSYwJAAAAAAAwCYZlWZbbTcyL1dVVSVK5XJ7YNXK5nDY2NrS/v6/19fVWCJXP5xWLxc58X6VSafUnSUdHRz2XJxYKhdbMLZ/Pp6OjI0fGHISbx60CAAAAAIDhuHk/z9LIMSkUCqpUKiPt+9VPpVLRxsaGNjc3FQqFBnpvOp1uPY9EIn336GoP1UzTPPVUykmMCQDzxrKkrxu9H/xJCgAAAHAGSyPHZHt7Wz6fT1evXp3YNeLxuEKhUEcAZVf7Jv52Q7RgMNg6lfL27dsnZpxNYkwAmDcNSzr/cu+ar15hw2IAAADACcwIG4NSqaRSqSTTNLW0tKTV1VVtbGyMdcZTKpVSqVRqbTo/aH/trly5Yut97eFW99cyiTEBYFG9edftDgAAAIDFQBA2Bt3LISuVinK5nOLxuAzDUDwePxEcDaJUKmlnZ0fZbHaokyaLxWLHa7tjdNe1fw2TGBMA5pGdkOv5AmEYAAAA4ASCsBFVKpUToVC3QqGgcDisjY2Noa6xvr6uWCw29CmLd+7c6Xjdby+vpkcffbTj9d7e3kTHBIB5c/+B9OK79mpfeEeqP5hoOwAAAMDCIwgbUTAYVDabVTqdViKR6DkzKpfLKRwODzR+85TFmzdvDt1jc0+upmFnb7WfhjmJMQFg3rxRkj770l7tp19It5gkCwAAAEwUm+WPQfdMLdM0lcvltL29LdM0Oz5XKpUUjUa1u7vbd9xCoaBCoaDd3V3bM65O0x1aDav9a5nEmAAwb977aLD69z+Svv+tyfQCAJh9lnV8CEsvHkMyOIAFAM5EEDYBPp9Pm5ub2tzcVKFQ0PXr1zsCn2KxqJ2dHW1ubp45hmmaisfjSiQSikQiI/UzbNjUHb4dHh5OdMxh1Wo1BQKBkcdJJpNKJpMjjwMATUefT7YeALBYOIkYgNsymYwymczI49RqtTF0MxyCsAmLxWKKRCJaX1/v2Bh+e3u7ZxC2vr7eWnY5LSYxe2scYzYaDVWr1ZHHqdfrI48BAO2WHp5sPQAA3d68Kz032G4sAGBbvV4fy/23mwjCHODz+bS/v69wONwKw0zTVLFYPHW2187Ojkqlkvb398d2/XEETu2zuSYx5rA8Ho9WVlZGHsfr9Y48BgC0e/Jx6YNf269/4vHJ9QIAmH12TyI+55GeuTz5fgAsHq/XK7/fP/I4tVpNjUZjDB0NjiDMQTdv3uzYLH93d/dEEFYqlZRKpZROpxUKhcZy3eXl5bGEVsvLyxMdc1grKys6ODgYeRwAGLdnQ9JLP7e3Yf4jD0nPjec/+wCAOTToScRP/onkvTDRlgAsoHFtKRQIBFybWcapkQ4KhUIdwddpG87H43GFQqGeyyYHNeysq+6gq3tG2LjHBIB5c/GC9NpT9mpvfIcbFgDA2TiJGADGgxlhDotGoyoWi6d+bmdnR5VKRZFIRPF4vO9Y7aHS9va2bt++3Xp97do1xWIxSdLa2lrH/mSmadoKoLo3sl9dXW09n8SYADCPnrl8vEyll1sxlrAAAHrjJGIAGA+CMIcFg8HW8+5lgZ988okknRmU9VIqlTqCqWAw2ArC2pdjSscz0ewsuyyXyx2v22ezTWJMAFhU3yUEAwD0wUnEADAeBGEOaw/CnFoWuLa21vHabmjVPuPM5/N19D6JMQFgHnmM46Ps+9UAANALJxEDwHiwR5jD9vb2Ws+j0WjH59LptCzLsv1oD5Hy+XzH59LpdOtzoVCoI3S7c+fOwL12B1+TGBMA5pFhHJ/e1ethEIQBAPp4csCThTmJGABORxDmsPalgU4uC7x69WrrefsSyl7a61KplCNjAgAAADjp2ZD0zW/Yq+UkYgA4G0GYwwqF4x2Tx3kqpB0bGxut53b2IGuvCQaDp4Z2kxgTAAAAwEmcRAwA40EQ5qBCoaBKpSKfz6etrS1Hrx0KhTqCp2Ygd5Z8Pt96ftbMrUmMCQAAAOB0dk4Y5iRiAOiNIGwExWJRS0tLMgxD0Wi05/LASqWi69evS5I+/PBDxzbKb5fNZlvPt7e3z6wzTVO5XE7S8fLNRCLh6JgAAAAATmoewPLJf5D+4xPS//7H0hX/8f/+xyekw/8g/WuWRAJATwRhI8jn861TEIvFosLhcMdywabm55aXl1Uul22drjgJwWCwNSurVCppZ2fn1Lr19XVJx6c6ts/icmpMAAAAACc1D2BZ/j3pB38u/eLfSv/t+8f/+4M/l5Z+jwNYAKAfgrARxOPxEx/L5XJaWlpSPB7XxsaGwuGwotGoEomE9vf3O056dEMsFtPu7q58Pp9SqZTi8bhKpZJM02wFdqVSSaFQSPfu3bM1c20SYwIAAAAAAIybYVmW5XYTs6xSqSidTqtYLOrw8FCmacrn82l5eVmhUEjXrl1TJBKZyvBnZ2dHt2/fVqVSafW9tramjY0NxWKxqRnzLIFAQNVqVX6/XwcHB2MdGwAAAAAATIab9/MEYZhZBGEAAAAAAMweN+/nWRoJAAAAAACAhUAQBgAAAAAAgIVw3u0GgFHVajUFAoGeNclkUslk0qGOAAAAAABYTJlMRplMpmdNrVZzqJuTCMIw8xqNhqrVas+aer3uUDcAAAAAACyuer3e9x7dTQRhmHkej0crKys9a7xer0PdAAAAAACwuLxer/x+f8+aWq2mRqPhUEedODUSM4tTIwEAAAAAmD1u3s8zIwwAgBlhWVKjz5+vPIZkGM70AwAAAMwagjAAAGZEw5LOv9y75qtXpHMEYQAAAMCpCMIAAAAAYIKY0QsA04MgDACAOfLmXem5sNtdAADaMaMXAKaHx+0GAACAPW/e7V/zfMFeHQBguvDfbgBwBkEYAAAz4P4D6cV37dW+8I5UfzDRdgAAA+APGQAwPQjCAACYAW+UpM++tFf76RfSrdJk+wEA2MMfMgBguhCEAQAwA977aLD69wesBwBMBn/IAIDpQhAGAMAMOPp8svUAgMngDxkAMF0IwgAAmAFLD0+2HgAwGfwhAwCmC0EYAAAz4MnHB6t/YsB6AMBk8IcMAJguBGEAAMyAZ0PSN79hr/aRh6TnQpPtBwBgD3/IAIDpQhAGAMAMuHhBeu0pe7U3viN5L0y0HQCATfwhAwCmC0EYAAAz4pnL/WtuxezVAQCcwR8yAGC6nHe7AQAAYI/HkL56Rbr/QPqHu9J/+eh4U+Wlh6V/9bj07GXJx94yADB1nrksPV/oXcMfMgDAGYZlWZbbTQDDCAQCqlar8ng8WllZ6VmbTCaVTCYd6gwAAAD4HcuSGlb/P2QYhtudAsDoMpmMMplMz5paraZGoyG/36+DgwOHOjvGjDDMvEajoWq12rOmXq871A0AAADQyTCkc4a0/HvSD/78+AEA86per/e9R3cTQRhmnp0ZYV6v16FuAAAAAABYXF6vV36/v2dNc0aYG1gaiZnVXBrpxlRKAAAAAAAwHDfv5zk1EgAAAAAAAAuBIAwAAAAAAAALgSAMAAAAAAAAC4EgDAAAAAAAAAuBIAwAAAAAAAALgSAMAAAAAAAAC4EgDAAAAAAAAAvhvNsNAAAAZ1mW1LB613gMyTCc6QcAAABwCkEYAAALpmFJ51/uXfPVK9I5gjAAC44/HADA/CEIAwAAJ7x5V3ou7HYXAOAu/nAAAPOHPcIAAFgwb97tX/N8wV4dACw6/lsJALOFIAwAgAVy/4H04rv2al94R6o/mGg7ADDV+MMBAMwfgjAAABbIGyXpsy/t1X76hXSrNNl+AGBa8YcDAJhPBGEAACyQ9z4arP79AesBYF7whwMAmE8EYQAALJCjzydbDwDzgj8cAMB84tRIzLxaraZAINCzJplMKplMOtQRAEyvpYcnWw8A84I/HADAcDKZjDKZTM+aWq3mUDcnEYRh5jUaDVWr1Z419XrdoW4AYLo9+bj0wa/t1z/x+OR6AYBpxh8OAGA49Xq97z26mwjCMPM8Ho9WVlZ61ni9Xoe6AYDp9mxIeunn9va9eeQh6bnQ5HsCgGnEHw4AYDher1d+v79nTa1WU6PRcKijToZlWZYrVwZGFAgEVK1W5ff7dXBw4HY7ADAzbu1Lzxf61/3DVemZy5PvBwCm0f0Hkv/H9v9wUN2SvBcm3xcAzAM37+fZLB8AgAVjJ9y6FSMEA7DYLl6QXnvKXu2N7xCCAcCsYGkkAAALxmNIX71yPNvhH+5K/+Wj402elx6W/tXj0rOXJR973QCAnrncfwYtfzgAgNlCEAYAwIIxDOmcIS3/nvSDPz9+AABO4g8HADB/CMIAAAAA4BT84QAA5g97hAEAAAAAAGAhEIQBAAAAAABgIRCEAQAAAAAAYCEQhAEAAAAAAGAhEIQBAAAAAABgIXBqJAAAGJplSQ2rd43HOD55DQAAAHAbQRgAABhaw5LOv9y75qtXpHMEYQAAAJgCLI0EAAAT9eZdtzsAAAAAjhGEAQCAodkJuZ4vEIYBAABgOhCEAQCAodx/IL34rr3aF96R6g8m2g4AAADQF3uEYebVajUFAoGeNclkUslk0qGOAGAxvFGSPvvSXu2nX0i3StL3vzXZngAAAOCuTCajTCbTs6ZWqznUzUkEYZh5jUZD1Wq1Z029XneoGwBYHO99NFj9+x8RhAGYPE6zBQB31ev1vvfobiIIw8zzeDxaWVnpWeP1eh3qBgAWx9Hnk60HgGFwmi0AuOv/397dhDh23vke/6naNu0XKkdlGCiqNjmagQ6zaql7Ey9bmixiT7KQ2nCdtmEGSyEEz6UW0jQhTIaLU0iLglwuIaXmDkzbXtjSIiEOZEanl7OZrjreGmZ0vOmiYGBKx4Vz0yR26S6EFKlepKOq8yp9P1B0qeqp5/xt1yO1fv4/z1ldXdXGxsbUMYeHhzo5OQmpokkEYUi89fV1PXnyJOoyAGDppJ8PdjwABOWDT6Q3c1FXAQCLycvRRJubm5F1jXFYPgAAuJTXbsw3/tU5xwPAZXA3WwDANARhAADgUu5lpRef9Tb2peekN7PB1gMA3M0WADALQVhEHMdRoVDwPLZSqSiTySiVSimdTiuXy6lSqchxnNjUKUmNRkOFQkHpdFqpVEqZTEalUkmWZQVYJQAgCl+7Lv38O97G/uK70ur1QMsBgEvdzRYAsFwIwnzmuq5SqdTMj0wmI9M0Z87XaDSUyWTUbDZHoZfrurJtW81mU5lMRo1GI/I6LctSOp1WrVaTJLVaLXW7XdXrddm2rUKhoEKhINd1564VABBf97LSw+LFnWEvPiu9V5LeuBluXQCW02XuZgsAWC4clu+zZrPpeewwNLpIoVCQZVkyDEP5fF6macpxHNm2PdEJVqvVZJqmisViJHValjXqGiuXy9rd3R19b1hXLpeTZVnK5XLa39+XYRierw8AiK9USrqXk/76LwedGB9/Org7ZPr5wZlgb2bpBAMQHu5mCwCYJdXv9/tRF7FI0um0p66nfD6vTqdz4fdrtZoajYbq9bqq1eqZ7zcajTMB1Tz/Kf2q03Vdff3rX5frujJNU91u99xxjuMok8l4mtOr4V0mNjY2uGskAAAA9K1/kv71P+YY/xfSb/8muHoAAOeL8v08HWE+ajabcl1X1Wp15rlat27duvB7juOo0Wio0+kon8+fO6Zararb7U50dtm2rWx29knEftUpSaVSaRSoTescG3aGtdttWZalZrOpcrk8s1YAAADAq9duzBeEcTdbAFg+dIT5aNjxdFFXlFelUkm3b98+txNsnOu6SqfTo8cXdY8FVed4l5ck9Xq9qVse2+22SqWSJMkwDPV6vStdn44wAAAAjPv8qbTxU28H5r/0nHRwn+3bABCFKN/Pc1i+T9rtthzHmXmelhfDbq1ZDMOYOMjey7lbftZZr9dHn+fz+ZnXHz/DzHVdtdvtK9cAAAAADHE3WwDALARhPtne3pZhGLp79+6V55rn/Kyjo6PR57O2MUr+1jm+LdPLlkxJE8Hdhx9+eOUaAAAAgHFe7lL7sMjdbAFgWXFGmA9s25Zt25IGh9Cbpql8Pq9CoTDXnRzn5bru6HyufD4/M4zys87hPEO3b9/29HPZbHZ0x0s6wgAAAOC3lZT05buDbZLvfyL9Zuxutt++Id27KRnPR10lACAqdIT54PQ2Q8dx1Gw2VSqVlEqlVCqVzgRHfvjoo48kDbqsWq1WqHValjXxeLzTa5rT44L49wIAAIDllUpJ11aktRekd16R/uVvpX//4eDPd16R0i8MxgAAlhNB2BU5jnMmFDqt3W4rl8upUqn4dl3XdVWpVJTNZtXpdGaez+V3nY8fP5547OV8Mkl6+eWXJx7v7e15+jkAwGLr96WvTqZ/cHsfAAAAXBVbI6/INE3t7u7KdV11u11ZljXa+ndas9nU3t6e9vf3r3RNx3FUKBRkGIYePXrkKYTyu87TP3vZjrCr3rkSALAYTvrSMz+aPubLd6VrdHEAAADgCgjCfFAulyceu66rZrOp7e3t0RleQ7Ztq1AozHUg/rh2u61SqTR6nE6nVa/XPd1l0s86LwrR5nX6ugAAXOSDT6Q3c1FXAQAAgCRL9ftsNAhSu93W22+/fSbw8RpeSX8KrHZ3dy8MoIrFoqdzwvyqM3XqYAWvv0aWZalQKIweX6Xuzc1NHRwcaGVlRevr65eaY9zW1pa2trauPA8AYH4P96W3PNxD5f273OkNWFT9/qA79POn0nunDrl/9Yb0vZuDzznfCwCis7Ozo52dnSvPc3h4qJOTE21sbOjJkyc+VOYdQVgIXNfVnTt3Jg6GNwxDvV7P08+32+1RZ9a0s77mCdeuWqdfQVg+n790d9wwCPPLP/zDP+gnP/mJb/MBALz5/Km08VPpd3+cPfal56SD+9Lq9eDrAhCur05mb5H+5yKdoQAQpZ/85Cf6x3/8R9/miyIIY2tkCAzD0P7+vnK53Chkcl1XlmUpn8/P/PlisahisTjxtWazqVqtNtHBVavVVC6XPR9cf5U6DcPwZVvjZWsd51dH2Orq6pXnAADM7z3bWwgmSV/8QXpoSz/8ZrA1AQjfB5/MHvNWe3BHSDpDASAaq6ur2tjYuPI8w46wKBCEhejBgwfK5f70v7A6nY6nIOw85XJZ+XxeuVxuIpBqNptX6grzWufa2povQdja2tqV51hfXw89QQYA+OfXn843/uNPCcKARfP5U+kHv/I29vu/lF77Bp2hABAFv44U8nuH1zxWIrnqkspmsxOB0lUPnDdNU48ePZr42uPHj680p+Stzst2cp0Oz/zoCAMAJFvv98GOBxB/l+kMBQDgMgjCQjZ+PpYfstnsxLZJv+7mOKvOW7duTTz22h12dHQ08TiTycxVFwBg8aSfD3Y8gPi7TGcoAACXQRAWMtM0R5/7sS1Qkl5//fXR535sV5Rm1zm+dVLyHsB1u92Jx5fdGgoAWByv3Zhv/KtzjgcQf3SGAgDCQhAWsvGAya9tgdls1vc5Z9V5uiPMaxA2HtQZhjFxHQDAcrqXlV581tvYl56T3szOHgcgWegMBQCEhSAsZHt7e6PP/d4mKZ0NqC5rVp3ZbHYiIPN6Ntn4vH7VCgBItq9dl37+HW9jf/FdDsgGFhGdoQCAsBCEhWx8a6Bf2wLHu7H8Cte81Hn37t3R57bt7cTS8XG1Wu2S1QEAFs0bN2ePeVj0Ng5A8tAZCgAIC0FYyNrttiSpWq36NucwXDIMY+Lg/KvwUmelUhl9blnWzDnHx5imyflgAICRlZT05bvSf/9Y+tmr0l/9uXR7Y/Dnz16Vjn4sfY83vsDCojMUABAWgrAQtdttOY4jwzB0//593+bd3t6WJD148MCX+bzWmc1mJ8KsYXh2kVarNfqcbjAAwLhUSrq2Iq29IL3zivQvfyv9+w8Hf77zipR+YTAGwOKiMxQAEAaCsCuwLEvpdFqpVEqFQmHq9kDHcfT2229Lkh49ejT1UPtGo6FcLqdarTbzLpDDMdVq9cJusKDqlKTd3d3R58NA7jyu66rZbEoabLUsl8tT5wUAAMByoTMUABAGgrAraLVao6DKsizlcrmJ7YJDw++tra2p2+1O3OXxNNd1VavVZNu2Go2G0un0hd1TpVJJjUZD9Xpd9Xo91DqHTNMcdXoNaz7PnTt3JA22b453hgEAAAASnaEAgHCk+v1+P+oiksqyrHMPpzcMQ/l8Xmtra9rb25Nt26pWq7p///7MDitJymQyEwfgj89pmqZs29be3p7y+bzq9bpM04ykztPXKJVKcl1XxWJR9+/fl2ma2tvbGwV72WzWU5eZV5ubmzo4ONDGxoaePHniy5wAAAAAACBYUb6fJwi7IsdxVK/XZVmWjo6O5LquDMPQ2tqastmsXn/9deXz+bnCH9d1tb29Lcuy5DjOmTkLhYLu3r0715xB1HmeRqOhDz/8cKLuW7duqVKp+HaQ/xBBGAAAAAAAyUMQBlwCQRgA4LR+XzqZ8TeblRTbqwAAAKIU5fv5Z0K9GgAAQIBO+tIzP5o+5st3pWsEYQAAAEuJw/IBAMBS+eCTqCsAAABAVOgIQ+IdHh5qc3Nz6pitrS1tbW2FVBEAICpeQq632oM7071xM/h6gEXHdmQAwGk7Ozva2dmZOubw8DCkas4iCEPinZyc6ODgYOqY4+PjkKoBAETl86fSD37lbez3fym99g1p9XqgJQELj+3IAIDTjo+PZ75HjxJBGBJvZWVF6+vrU8esrq6GVA0AICrv2dLv/uht7Bd/kB7a0g+/GWxNAAadmm/moq4CABCW1dVVbWxsTB1zeHiok5OTkCqaxF0jkVjcNRIAMO5b/yT963/MMf4vpN/+TXD1AMvg4f5gu/Es799lOzIA4E+ifD/PYfkAAGAh9H4f7HgAk+bdjnz8NNByAADwhCAMAAAshPTzwY4HMOky25EBAIgaQRgAAFgIr92Yb/yrc44HMOnXn843/uM5xwMAEASCMAAAsBDuZaUXn/U29qXnpDezwdYDLDq2IwMAkoggDAAALISvXZd+/h1vY3/xXWn1eqDlAAuP7cgAgCQiCAMAAAvDy13pHha5ex3gB7YjAwCS6JmoCwAAAPDLSkr68t3B3eze/0T6zaeD7Vjp56Vv35Du3ZQMulIAX9zLSn//W28H5rMdGQAQFwRhAABgYaRS0rWUtPaC9M4rgw8AwRhuR36rPXss25EBAHHB1kgAAAAAl8J2ZABA0tARBgAAAOBS2I4MAEgagjAAAIBz9PvSSX/6mJXUYDsmsKzYjgwASBqCMAAAgHOc9KVnfjR9zJfvDkIAAAAAJANnhAEAAFzSB59EXQEAAADmQUcYAADAObyEXG+1pWsrHASO5Blu/f38qfTeqbO9Xr0hfe/m4HO2/gIAFg1BGAAAwCmfP5V+8CtvY7//S+m1b0ir1wMtCfDVtK2/nf+U/u5j6Z+L0pu5cOsCACBoBGFIvMPDQ21ubk4ds7W1pa2trZAqAgAk3Xu29Ls/ehv7xR+kh7b0w28GWxPgJzoeAQBB2dnZ0c7OztQxh4eHIVVzFkEYEu/k5EQHBwdTxxwfH4dUDQBgEfz60/nGf/wpQRiSg45HAECQjo+PZ75HjxJBGBJvZWVF6+vrU8esrq6GVA0AYBH0fh/seCBKdDwCAIK0urqqjY2NqWMODw91cnISUkWTCMKQeOvr63ry5EnUZQAAFkj6+WDHA1Gi4xEAECQvRxNtbm5G1jW2EslVAQAAYuy1G/ONf3XO8UCU6HgEACwzgjAAAIBT7mWlF5/1Nval56Q3s8HWA/iJjkcAwDIjCAMAADjla9eln3/H29hffJeDxJEsdDwCAJYZQRgAAMA57mWlh8WLO8NefFZ6ryS9cTPcuoCrouMRALDMOCwfAADgHKmUdC8n/fVfDu6y9/Gng7OS0s8POmTezHrrBOv3pZP+9DErqcH1gGn8+l0adjy+1Z59TToeAQCLhiAMAABgiq9dH9wx77J3zTvpS8/8aPqYL9+VrhGEYQY/f5feuDk7CHtYpOMRALB4CMIAAAAi9sEn0pu5qKvAIvD6u7SSGoRmnz+V3v9E+s1Yx+O3b0j3bkoGh+QDABYQQRgAAECAPvhk9pi32tK1FbpvMJ2fv0up1KBzbO0F6Z1XBh8AACwDDssHAAAIyOdPpR/8ytvY7/9SOn4aaDlIMH6XAADwB0EYAABAQN6zpd/90dvYL/4gPbSDrQfJxe8SAAD+IAgDAAAIyK8/nW/8x3OOx/LgdwkAAH8QhAEAAASk9/tgx2N58LsEAIA/CMIAAAACkp7zrnvzjsfy4HcJAAB/EIQBAAAE5LUb841/dc7xWB78LgEA4A+CMAAAgIDcy0ovPutt7EvPSW9mp4/p96WvTqZ/9PtXrxvx4/fvEgAAy+qZqAsArurw8FCbm5tTx2xtbWlrayukigAAGPjadenn35Heas8e+4vvSqvXp4856UvP/Gj6mC/fla6lPJeIhPD7dwkAgKDs7OxoZ2dn6pjDw8OQqjmLIAyJd3JyooODg6ljjo+PQ6oGAIBJb9ycHV48LA7G+eGDT6Q3c/7MBX/0+4MQ8/On0nufSL/5dHCYffr5wRbG790cfJ6aEWCG/bsEAMBlHB8fz3yPHiWCMCTeysqK1tfXp45ZXV0NqRoAACatpAZdWp8/ld4/FYJ8+4Z076ZkeDzY/INPZo95qy1dWyEMiZNpnXyd/5T+7mPpn4uzA0w/f5cAAAjK6uqqNjY2po45PDzUyclJSBVNSvX7nCSBZNrc3NTBwYE2Njb05MmTqMsBACBQnz+VNn4q/e6Ps8e+9Jx0cD/47XHDTqdpVlKzO538FMeaHu5729L4/l0CTADAcojy/TwdYQAAAAnwnu0tBJOkL/4gPbSlH34z2JrieGZZ3Gr6/Kn0g195G/v9X0qvfYPzvQAACBJ3jQQAAEiAX3863/iP5xwfFC/bOcMWZk2XCTABAEBwCMIAAAASoPf7YMdfhtczy8IMnuJWU1IDTAAAFhVBGAAAQAKk5zwEfdr4fl/66mT6x6xTZOfd8nf8dPqYONbkhzgGmAAALDPOCAMAAEiA125I//of3se/euPi7/lxjpbfZ5bFsSY/+BlgAgCAq6MjDAAAIAHuZaUXn/U29qXnpDezV7verK2DcdzyF8eaXpsSSJ5nWoAJAACujiAMAAAgAb52Xfr5d7yN/cV3p9950I9ztOK45c/vmobbNY/+n/Szf5P+6v9Kt//P4M///W+Dr8/arhl2gAkAAKYjCAMAAEiIN27OHvOwOH2cX+doRbHlb1aA53dNw+2aL/8v6X9+LHX+U9o7GPz5dx8Pvv7ejLs8+hlgAgCAqyMIAwAASIiV1OCcrP/+sfSzV6W/+nPp9sbgz5+9Kh39WPrejI6iy5yjdR6/t/z50aUWx5okfwJMAADgj1S/P6uhG4inzc1NHRwcaGNjQ0+ePIm6HAAAEuFb/zTfofvf+gvpt39z9uufP5U2fuotVHvpOeng/sXdTn7NFceapMH2yZP+YM73P5F+8+lgW2b6eenbN6R7NyXjeSk15UYAAAAskijfz9MRBgAAsET8OkfLzy1/fnWpxbEmaRBwXVuR1l6Q3nlF+pe/lf79h4M/33lFSr9ACAYAQFgIwgAAAJaIn+do+bXlz8+7PcaxJgAAEB/PRF0AAAAAwvPajfm2Rk47R2t4ZtmsLX+z+Hm3xzjWBAAA4oMgDAAAYIncy0p//1vvZ1+9OeXw/VRKupb605a/d165XE1+dqnFsSYAABAfBGFIvMPDQ21ubk4ds7W1pa2trZAqAgAgvobnaL3Vnj121jlafvGzS80vcawJAIAk2NnZ0c7OztQxh4eHIVVzFkEYEu/k5EQHBwdTxxwfH4dUDQAA8ffGzdlBmJdztPziZ5faItcEAEASHB8fz3yPHiWCMCTeysqK1tfXp45ZXV0NqRoAAOLPr3O0/BLHLrU41gQAQBKsrq5qY2Nj6pjDw0OdnJyEVNGkVL/f70dyZeCKNjc3dXBwoI2NDT158iTqcgAAwBV8dSI986PpYx4WpXu5cOqR4lkTAACLIMr383SEAQAAIBH+R0hbNYfi1jkHAACujiAMAAAAOIdfd6AEAADxsRJ1AcvKcRwVCgXPYyuVijKZjFKplNLptHK5nCqVihzHuXQNjUZDhUJB6XRaqVRKmUxGpVJJlmXFak4AALD4ht1X0z5WUlFXCQAAko4gzGeu6yqVSs38yGQyMk1z5nyNRkOZTEbNZnMUermuK9u21Ww2lclk1Gg05qrRsiyl02nVajVJUqvVUrfbVb1el23bKhQKKhQKcl030jkBAMDySKWkayvTP1IEYQAA4Io4LN9njUZjFAbN0u12p4ZhhUJBlmXJMAzl83mZpinHcWTb9plOsFarpWKxOPOalmWNOtHK5bJ2d3fPjMnlcrJtW6Zpan9/X4ZhhD6nFxyWDwAAAABA8kT5fp4gzGfpdNpT11M+n1en07nw+7VaTY1GQ/V6XdVq9cz3zwvcZv2ndF1XX//61+W6rkzTVLfbPXec4zjKZDKe6gxiTq8IwgAAAAAASB7uGrkgms2mXNdVtVqdef7XrVu3Lvye4zhqNBrqdDrK5/PnjqlWq+p2u2o2m6Ov2batbDZ74bylUmkU0k3rWjNNU8ViUe12W5ZlqdlsqlwuhzYnAAAAAABAEOgI89Gw4+miriivSqWSbt++fW4n2DjXdZVOp0ePL+oekyY7siSp1+tN3Z7YbrdVKpUkSYZhqNfrhTLnPOgIAwAAAAAgeaJ8P89h+T5pt9tyHMfz+WDTDLvKZjEMY+KMsWkhVL1eH32ez+dnntE1ft6Y67pqt9uhzAkAAAAAABAUgjCfbG9vyzAM3b1798pzzXN+1tHR0ejzadstx7dQTts+OW48ZPvwww9DmRMAAAAAACAoBGE+sG1btm2PtipmMhlVKpXAO55c1x2dz5XP5y8Mo2zbnnh8+/ZtT/OPz3f6nyWIOQEAAAAAAIJEEOaD09shHcdRs9lUqVRSKpVSqVQ6Exz54aOPPpI06LJqtVoXjrMsa+LxeFfWNKfHjf8zBDEnAAAAAABAkAjCrshxnDOh0Gntdlu5XE6VSsW367quq0qlomw2q06nM/V8rsePH088nnWW19DLL7888Xhvby/QOQEAAAAAAIL0TNQFJJ1pmtrd3ZXruup2u7IsS47jnDu22Wxqb29P+/v7V7qm4zgqFAoyDEOPHj2aGUKdruey3Vvjd8MMYk4AAAAAAIAgEYT5oFwuTzx2XVfNZlPb29ujM7yGbNtWoVCY60D8ce12W6VSafQ4nU6rXq9PvcvkRcHcvMb/WYKYc1ns7Ozo+PhYq6ur2trairocAGJdAnHEugTih3UJxA/rcn6pfr/fj7qIRdZut/X222+fCXxmhVfjhsHa7u7uhQFUsVi88JywVCo18djrf3LLslQoFM69RhBzzmtzc1MHBwdaWVnR+vr6peYYt7W1FcoTx7DujY0NPXnyJPDrAZiNdQnED+sSiB/WJRA/Ya/LnZ0d7ezsXHmew8NDnZycRPJ8QkdYwIrFovL5vO7cuTNxMPz29rbnIMyyLHW7XeXz+QvPJGu322o0Gp7nvIwgurf8mPPk5EQHBwdXnuf4+PjKcwAAAAAAsKiOj499ef8dJYKwEBiGof39feVyuVEY5rquLMtSPp+f+fPFYlHFYnHia81mU7VabSJIqtVqKpfLZ84MMwzDl8BpfN4g5rwsvzrCVldXrzwHAAAAAACLanV1VRsbG1eeZ9gRFgWCsBA9ePBAuVxu9LjT6XgKws5TLpeVz+eVy+UmAqlms3mmK2xtbc2X0GptbS3QOS9rfX2d1mwAAAAAAALm15FCwy2dUViJ5KpLKpvNTgRfVz1w3jRNPXr0aOJrjx8/PjPusl1Xp4Ou0x1hfs8JAAAAAAAQJIKwkI0fFO+HbDY7sW3yvHDt1q1bE4+9dnIdHR1NPM5kMoHOCQAAAAAAECSCsJCZpjn63I9tgZL0+uuvjz4/L5Aa344pee9E63a7E4/Hu9mCmBMAAAAAACBIBGEhGw/C/NoWmM1mp855unvLa2g1HqoZhjFRexBzAgAAAAAABInD8kO2t7c3+tzvbZLS2YBKGgRl43d5fPz48Zm7UJ5nvNbT8wYx57y++OKLiT8RrJ2dHR0fH2t1ddWXwxHDQt3hSmrdSZXUf9/UHa6k1p1USf33Td3hSmrdSZXUf9/UHa6k1p1Ukb6f7yNU1Wq1L6nv57/6TqczmrPVap07plwuj8bk83lP8w7HS+p3Op1Q5pzHyspKX1J/ZWXlSvOEbWNjoy+pv7GxEXUpc6HucFF3uKg7XNQdLuoOF3WHi7rDRd3hou5wUXe4onw/z9bIkLXbbUlStVr1bU7btiUNthpe1JVVqVRGn1uWNXPO8TGmaZ57llcQcwIAAAAAAASFICxE7XZbjuPIMAzdv3/ft3m3t7clSQ8ePLhwTDabnQiehoHcRVqt1ujzWq0W2pwAAAAAAABBIQi7AsuylE6nlUqlVCgURp1Z53EcR2+//bYk6dGjR1MPym80GsrlcqrVaufeBXLccEy1Wp15Rtfu7u7o82F4dh7XddVsNiUN7upYLpdDnRMAAAAAACAIBGFX0Gq1RkGVZVnK5XIT2wWHht9bW1tTt9uduMvjaa7rqlarybZtNRoNpdPpC7unSqWSGo2G6vW66vX6zHpN0xx1ZQ3nP8+dO3ckDbZajndxhTUnAAAAAABAEAjCrqBUKp35WrPZVDqdVqlUUqVSUS6XU6FQULlc1v7+vkzTnDqnYRhnxgwDsVKppFqtpkKhoHQ6LUnqdrtznTdWLBbV6XRkGIZqtZpKpZJs25bruqPAzrZtZbNZffbZZ1M714KcEwAAAAAAwG8EYVeQz+fV7XZVLpdlmuZEwGPbto6OjnT//n31ej3V63XPAdD+/r6q1aqy2eyZOR3HUalU0meffaZWqzUzWLuo7mFNjuPozp07o6BtbW1NrVZL+/v7cwVWQcwJAAAAAADgp2eiLiDpTNOcOCfLD4ZheNrqeFXVatXXu1cGNScAAAAAAIAfUv1+vx91EcBlpFKp0ecbGxsRVjKfw8NDnZycaGVlRevr61GX4xl1h4u6w0Xd4aLucFF3uKg7XNQdLuoOF3WHi7rDdXBwMPo87FiKIAyJtbKyEvqCAQAAAAAA/kilUjo5OQn1mmyNRGI9//zzevr0qa5du6Y/+7M/i7ocAAAAAADgwX/913/pq6++0vXr10O/Nh1hAAAAAAAAWArcNRIAAAAAAABLgSAMAAAAAAAAS4EgDAAAAAAAAEuBIAwAAAAAAABLgSAMAAAAAAAAS4EgDAAAAAAAAEuBIAwAAAAAAABLgSAMAAAAAAAAS4EgDAAAAAAAAEuBIAwAAAAAAABLgSAMAAAAAAAAS4EgDAiY4zgqFApqt9uhXK/RaKhQKCidTiuVSimTyahUKsmyrFCuD8RV3NfG8LkCSLoo11rc1zkQlbivDV4DsWx4jxgtgjAgIK7rqlQqKZPJyLIsHR0dBXo9y7KUTqdVq9UkSa1WS91uV/V6XbZtq1AoqFAoyHXdQOsA4ibqteG6rlKp1MyPTCYj0zQDqQEIQ5RrLep1DsRV1GuD10BgEu8RY6IPwFe9Xq9frVb7kiY+dnd3A7tmp9MZXadcLp87JpvN9iX1TdPs93q9wGoB4iQOa6Ner595Prjoo9vt+n59IAxRrrU4rHMgjuKwNngNBAZ4jxgvBGGAj+r1et80zX4+nw/tSa7X6/UNwxg9gV2k2+2Oasnn84HUAsRJXNbGsIZZH6xLJFWUay0u6xyIm7isDV4DAd4jxhFbIwGf2LatfD6vbrerTqej3d3dUK5bKpVGrazDltfzmKapYrEoadAi22w2wygPiEwc1kaz2ZTruqpWq+p0OlM/Wq2Wb9cFwhTlWovDOgfiKA5rg9dAgPeIcZXq9/v9qIsAFpFt28rlcqPHu7u7KpfLvl7DcRxlMpnR416vJ8MwLhzfbrdVKpUkSYZhqNfr+VoPEBdxWRvDGrrdri/zAXET5VqLyzoH4iYua4PXQOAs3iPGAx1hQECmPdn4pV6vjz7P5/MzrzlM+6XBQY1h3aUECFsc1ka73ZbjOFP/LxyQdFGutTiscyCO4rA2eA0Ezsd7xHggCAMSbLx1NZvNevqZ8TvyfPjhh77XBMRBHNbG9va2DMPQ3bt3rzwXEFdRrrU4rHMgjuKwNngNBKITh+eAuCMIAxLKtu2Jx7dv3/b0c+NPhsuQ9mP5xGFt2LYt27bluq7S6bQymYwqlQprDgslyrUWh3UOxFEc1gavgUB04vAckAQEYUBCWZY18Xg8xZ/m9LjTT5ZA0sVhbZzeCuI4jprNpkqlklKplEqlEmsPiRflWovDOgfiKA5rg9dAIDpxeA5IAoIwIKEeP3488djrfvOXX3554vHe3p5fJQGxEPXacBznzF9CTmu328rlcqpUKpe6BhAHUa61qNc5EFdRrw1eA4FoRf0ckBTPRF0AgMtxHGfi8WXTfu7kg0UT9dowTVO7u7tyXVfdbleWZZ2paajZbGpvb0/7+/uXuhYQpSjXWtTrHIirqNcGr4FAtKJ+DkgKgjAgoS76S8W8XNf1ZR4gLuKwNk7fBtt1XTWbTW1vb5+Z17ZtFQoFdTqdS18PiEKUay0O6xyIozisDV4DgejE4TkgCdgaCSTUZZ+cTrfHHh0dXb0YIEbiuDYMw1C1WlWv11Or1TpzLcuy1Gg0fLseEIYo11oc1zkQB3FcG7wGAuGJ43NAHBGEAUtu0dN+4LKCWhvFYlGfffbZmdtZb29vB3I9IO6ifB3iNRA4H6+BwHJb9NdHgjAgobwefBjWPEBcJGFtGIah/f39iTcCruvOPGAYiJMo11oS1jkQhSSsDV4DgeAk4TkgDgjCsLCazaZSqZSvH7lcLup/rJG1tbVYzQN4Eca6TNLaePDgwcRjzkhBkkS51pK0zoEwJWlt8BoI+C9JzwFRIggDEuqyKf3pNtdFT/uxfJK0NrLZrPL5/OixXwecAmGIcq0laZ0DYUrS2uA1EPBfkp4DosRdI7Gw8vm8Wq2Wr3PG6Qnh1q1bsm179Nh1XU/1nT74MJPJ+F0acKEw1mXS1kahUGA7CBIpyrWWtHUOhCVpa4PXQMBfSXsOiApBGBaWaZoyTTPqMgJzejuY4zhnDh49T7fbnXg8/n/igKCFsS6TtjbG/30sehs6FkuUay1p6xwIS9LWBq+BgL+S9hwQFbZGAgl169aticde28nH214Nw1josBDLKWlrY/w6ceo6BWaJcq0lbZ0DYUna2uA1EPBX0p4DokIQBiRUNpud+AvD48ePPf3c3t7e6PPTT5TAIkja2hi/bqFQCO26wFVFudaSts6BsCRtbfAaCPgrac8BUSEIAxLs7t27o8/H94JPMz6uVqv5XhMQB0laG+Ot6Iveho7FE+VaS9I6B8KUpLXBayDgvyQ9B0SFIAxIsEqlMvrcy0Gj42NM0+QvHFhYSVob7XZbklStVkO7JuCXKNdaktY5EKYkrQ1eAwH/Jek5ICoEYUBATt+C9jKazaZqtdqFe7tP33Z6+JeJi4zfrW8Zkn4sryDXxqx1OY92uy3HcWQYhu7fv3/l+YCwRbnWeA0EzsdrIBBfvEeMiT6AQLRarb6k0Ue9Xp/r5/P5/MTP93q9c8d1u93RmGw2e+F8vV5vNC6fz89VC5BEQayNWeuy0+n0DcMYzbW/vz+1vuHYaeOAuItirQV5bWAR8BoIxBPvEeOBIAwIQK/X65umOfEkNe0J6DzjPyupv7u7e+HY8SfUi55Ms9lsX1LfMIwLnzCBReP32pi1Lsvl8pkx5XL5zDzDNwumafa73e6l//mAuAh7rQV5bWBR8BoIxAvvEeODIAzwSa/X6xeLxTMp/emPfD7fLxaLM//v1/D/kg0/Op3O1PHj/xduOH+v1+t3Op3RE1w2m12qJzig3/d3bcxal51O59x1bxhGv1gs9svl8uia1WqV9YiFEuZaC/LawCLhNRCIFu8R44kgDIipTqfTN02zbxhGv1qtev65er3ez2azoyc8wzD6+Xy+32q1AqwWiD8/1oaXddntdvvlcnk0bngt0zT7xWKx32q1lu4vG1guYa21oK4NLCJeA4HFwOujP1L9fr8vAAAAAAAAYMFx10gAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAIAFkE6n5ThO1GXEGkEYAAAAAABAwjUaDbmuq93d3ahLibVUv9/vR10EAAAAAAAALi+TychxHBmGoV6vF3U5sUVHGAAAAAAAQIK12+3RlkjXddVutyOuKL7oCAMAAAAAAEiwXC4n27ZHj7PZrPb39yOsKL7oCAMAAAAAAEgo27YnQrCLvoYBgjAAAAAAAICE2t7ePvfrfh+a77qums2mr3NGga2RAAAAAAAACeS6rtLptCSp1WqpVCpNfN+vyMd1XeVyOWWzWbVaLV/mjAodYQAAAAAAAAk07AYrl8sqFosyTXPi+350cLmuqzt37shxHBUKhSvPFzU6wgAAAAAAABIonU7LdV11u12Zpqlms6lKpTL6vmma6na7V7rG+EH8vV5PhmFcab6o0REGAAAAAACQMM1mU67rKp/PjzrByuXyxBjHcWRZ1qXmt21bmUxmFIKZppn4EEwiCAMAAAAAAEicer0uSarVahNfPx2GzXtovm3bKpVKyuVychxn9HXDMNRsNkcfScXWSAAAAAAAgASxLEuFQuHcrY+2bSuXy018zeuWxna7febA/fMYhqFerzdXzXFBRxgAAAAAAECCXNQNJknZbFbZbHbia147uIrFovr9vvr9vjqdzsT3hl/v9/uJDcEkgjAAAAAAAIDEGJ77ZRjGmW2QQ+MH5kt/urvkPFqt1ujz08FakhGEAQAAAAAAJMSwG+yiEGz4vfGtkK7rqt1uz3Wd8UP2X3/99fmKjDHOCAMAAAAAAEgA13WVTqclzT73q1KpTGyJzOfzZ7Y7ermOJO3v7y9MVxgdYQAAAAAAAAkwDLaKxeLMw+9Pnx9mWdbEXSCnGe8Gk9gaCQAAAAAAgJANz/q6f//+zLGmaZ4JsIbbKmcZ7xzL5/NzVBh/BGEAAAAAAAAx12635bruuXeFvMjpwMzr3SM/+uij0eelUsl7kQlAEAYAAAAAABBz83SDDZ23hXJWGOY4jlzXHT2mIwwAAAAAAAChsW1btm3LMAwVi8W5fvb03SV3d3enjh8/H8wwDJmmOdf14o4gDAAAAAAAIMYu0w02VKlUJh4PQ7WLLPL5YBJBGAAAAAAAQGy5rqt2uy3pbHeXF6Zpngm0hsHaecY7wl5//XVP13AcR41GQ4VCQel0WoVCYeL7ruuqVCopnU6r0WjMUb3/CMIAAAAAAABiahhalcvlM+d9eXW6K2x48P5plz0fzLIs5fN5FQoFua4ry7JGXWeu6yqXy8m2bbmuO9FxFgWCMAAAAAAAgJgaHm5fq9UuPYfXQ/OHnWfSoJNs/GemHbJfLpeVzWZVrVZHXxt2lpVKJbVaLXW7XXW7XYIwAAAAAAAAnNVsNuW6rvL5/JUPrfdyaP5F54PNs51x+HOdTkeNRkOlUknZbFaSYnHwPkEYAAAAAABADNXrdUlX6wYbOn3QvuM4E+eBSZPngw3P+Wq32+p0Op7PJxv+nGVZc/1cWJ6JugAAAAAAAABMsixLjuNIOnvGl1/q9fqog+v0nSQfP36so6Mj7e7u6tGjR57nHO8kGwZ5cUIQBgAAAAAAEDPjIdIwEPPbMGwzTfPMNRqNhkzT1P7+/lyH9A+3QUrS0dGRX6X6hq2RAAAAAAAAMdPpdNTv9wP/GJ7bVSwWR3emNE1T1WpV3W537jtVjgdqUR+Mf55Uv9/vR10EAAAAAAAAki+Xy2ltbU2WZSmbzWp/fz/qkiYQhAEAAAAAAODKKpWKcrmcTNMcHZoft9iJrZEAAAAAAAC4EsuydHR0pHK5rFu3bo2+Pn4If7PZjKK0CQRhAAAAAAAAmIvrurIsS9LgXLB6va5WqyVJMgxjdGj+7u6upEG32HhAFhWCMAAAAAAAAMylVCqpUCgonU6rUCiMQrChfD4vadAFlslklMvlJu4oGRWCMAAAAAAAAMylVCrJMAytra2p0+mcubvk/fv3ZZqmDMNQpVJRuVyOptBTOCwfAAAAAAAAS4GOMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAsBYIwAAAAAAAALAWCMAAAAAAAACwFgjAAAAAAAAAshf8PHNrp4Aw2P8AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -311,21 +319,21 @@ "plt.xlabel(\"$\\Delta t_x$\")\n", "plt.ylabel(r\"$z_{\\mathrm{Mag}}$ [mm]\")\n", "mplhep.lhcb.text(\"Simulation\")\n", - "# plt.show()\n", - "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_deltatx_dist.pdf\",\n", - " format=\"PDF\",\n", - ")" + "plt.show()\n", + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_deltatx_dist.pdf\",\n", + "# format=\"PDF\",\n", + "# )" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMAAAAOWCAYAAAAJOu7yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCGklEQVR4nOz9X0yk6X0v+v6KblsT2aELZikSAimZIrPlpXMRddG9L3K3TbF9E5/8GWpGirftGzd4rJx1JPYyuO2LdWUzRWJu1lEyVHtdHOdY2t1g70TJkSJTM7k7F3ugxvvOWivUjCVQSUtyU01ixXJmqHPRmzLQUBRQf18+H6mkKvjV8/6AKuj328/zvKl6vV4PAAAAAEiooV43AAAAAACdJAADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgES73esG4Co+9alPxS9/+cu4detW/NZv/Vav2wEAAIAb67//9/8eH3/8cbz00kvxi1/8otftnClVr9frvW4CLuvWrVtxeHjY6zYAAACA/8vQ0FB8/PHHvW7jTGaAMZCOArChoaEYGxvr6LGq1WrXjtVug9x7xGD3r/feGeT+B7n3iMHuX++9M8j9D3LvEYPdv957Z5D7H+TeIwa7f733Trf6PzrOrVu3OnaM6xKAMZB+67d+K/b29mJsbCx2d3c7eqyJiYmuHavdBrn3iMHuX++9M8j9D3LvEYPdv957Z5D7H+TeIwa7f733ziD3P8i9Rwx2/3rvnW71f3Scft6iyCb4AAAAACRaT2eAvfrqq708/AmpVCr+63/9r71uAwAAAIA262kAtrOzE6lUKnq5D//R8VOpVM96AAAAAKBzbvwSSBfBBAAAAEi2nm+CX6/XY3Z2NjKZTE+OX6vVolgs9uTYAAAAAHRezwOwYrEYX/nKV3raw+zsbHzuc5/raQ8AAAAAdEbPl0DmcrletxD379/vdQsAAAAAdEjPZ4CNjo72ugVIrIWFhTg4OIjh4eFet3Ilg9y/3rmKQf/eD3L/eucqBv17P8j9652rGPTv/SD3r3f6Qarew13gb926Ffv7+z1/IT179ixGR0fj448/7mkftG5iYiL29vZifHw8dnd3E3Ms4Pq8Z2GweM/CYPGehcHSrffsIPxu6OkSyH66AmM/9QIAAABA+/Q0ACsUCj2f/RURcefOnSgUCr1uAwAAAIAO6GkA9vWvf72rx/vwww/P/Vy3ewEAAACgO3p+Fchump+f73ULAAAAAHTZjQrAtra2et0CAAAAAF12u9cNXMWHH34YtVqt5fpKpRJra2uXeg4AAAAAyTAQAdiHH34YhUIhSqVSVCqVK41Rr9cjlUq1uTMAAAAA+l3fB2APHz6MlZWViHgeYkG3LSwsxMHBQV9csRS4mPcsDBbvWRgs3rMwWLxnfy1V7+NU6Yc//GHk8/mIiMbsreu0m0ql4uOPP25Lb/TWxMRE7O3txfj4eOzu7va6HQAAALixBuEcva9ngC0vL0fE8+CqXq9HJpOJbDYbmUwmIiJefvnlC8f4+c9/HrVaLZ48eRLPnj3raL8AAAAA9J++DsDK5XJj5tfm5mZMT09feazFxcV49dVX29UaAAAAAANiqNcNNJNOpyPieXh1nfArIiKTycQrr7zShq4AAAAAGCR9HYAdLXW8f/9+W8ZbW1tryzgAAAAADI6+DsCOZn09ffq0reMBAAAAcHP0dQD2zW9+M+r1epTL5baM973vfa8t49A/qtVqTExMNL2trq72uk0AAAAYSKurqxeed1er1V63eaG+3gT/zp078dZbb0WhUIhCoRC/+Zu/ea3x1tbW4itf+UqbuqMfHB4ext7eXtOag4ODLnUDAAAAyXJwcHDhefcg6OsALOL5Bvibm5uRz+fjH/7hH648zgcffNC2mWT0j6GhoRgbG2taMzw83KVuAAAAIFmGh4djfHy8aU21Wo3Dw8MudXQ1qXq9Xu91E624d+9ePHv2LJaWlmJ0dLSl5zx9+jRqtVrs7OzEkydPolarxccff9zhTumGiYmJ2Nvbi/Hx8djd3e11O+eq1yMOL3iHDaUiUqnu9AMAAADtNgjn6H0/Aywi4t13342IiJ2dnZifn7/SGPV6PVJSBrrssB5x+1vNaz76dsQtL00AAADomL4PwN58880oFosREZFKpeIqE9YEXwAAAAA3V19fBfLRo0extrbWCL2uulpzQFZ5AgAAANABfT0DbG1tLSJ+PfMrl8vFzMxMpNPpS+8D9vbbb8eHH37YwW4BAAAA6Ed9HYCVy+VIpVKRTqdja2srXnnllSuP9eDBg3j55Zfb2B0AAAAAg6Cvl0Cm0+mIiHj48OG1wq+jse7evduGrgAAAAAYJH0dgE1NTUVERCaTact4jx49ass4wM1Vq9V63QIAAACX1NcB2Pz8fNTr9ahUKm0Zzwww4CrK5XIsLS3FyMhIPHjwoNftAAAAcEl9vQfY7Oxs3L17Nx4/fhz/8T/+x2uP96Mf/Sj+5E/+pA2dAf2iXC7H48ePo1wuR6VSaVz4Ip1ORyaTidHR0chmszEzMxO5XO6F5+fz+ahUKrG9vd34WK1Wi1KpFI8fP45SqWTWFwAAwIDr6wAsImJ9fT1+93d/N/73//1/jz/+4z++1ljLy8sCMPrOo2Ix3nxz/tLPy2azJ0Kbq0qlUpd+Tjqdjv39/TM/l8/nY2Nj49Jjbm5unhlQnaVWq8Xy8nKsrKw0rSmXyxERUSqVGrXZbDZyuVxMTk7G5uZmbGxsRDabPfHcBw8eRKVSaTwfAACAwdbXSyAjnu//9fbbb8dXvvKVa43z7NkzJ7P0pQdzc7G/vx/b29sxOzvbtDaXy8Xm5majvh3q9Xrs7OzE2tpa48ITZ8lkMrG2thY7Ozvnhl8Rz0Pr/f39lgKtxcXF2N7ejv39/ZbDr6OliKfDr9nZ2VhfX2+Md/R1bW5uxtzcXONrK5fLsbKyEvPz842g7vQMr6Nx6vV62/YgBAAAoHdS9Xq93usmzvOjH/2ocX9xcTFSqdSFAcFZarVaPHnyJGq1Wnz88cftbJEemZiYiL29vRgfH4/d3d1et3Oujw8jbn+rec1H3464dSyKnp+fj2Kx+ELdUcDTSZVKJSYnJ8/83P7+ftOA7DxTU1Nnhs9ra2sxNzd3qd5mZmZe2BNwbm4u1tbWWhpjZWUllpaWXvh4JpOJnZ2dM59z+ufRjZ8DAADAIBmEc/S+XgL5ne98J95///3G43q93nTJUzP1ev1KS72g284LwObnL79M8rIymUxks9kXAqvZ2dkrhV8Rz/s+q/fLhF+lUilmZmZOfCydTsc777zzwvLFZhYXF2N2djampqZOzPp6+vTpuc+56tcNAABA/+jrJZCvv/561Ov1OJqkJsDiJjhvyV23luKddZzrHPus514mVCqXy20Jv47388EHH5zowSb3AAAAydbXAdjRrJFUKtUIwq56g0FxXjg0Ojra3Ub6QKVSienp6Rc+vr6+fqXw60g6nW7bHmr9ZmNj44VlovxaqVTqdQsAAEAP9PUSyDt37kQ2m433338/CoVCZLPZK4UAlUolvvOd78RPfvKT9jcJCXPWe+zll19u63itvo/z+fwLs7Pm5uZa3jC/mUwmE4uLi1deVt1t5XI51tbWolQqRaVSiXQ6HaOjo5FOpyOTycQbb7wREc+vYFkoFJouMS2VSpHP52N0dDTW1tba8v3sV5VKJUqlUqyvrzfCr376T5Gb9LMAAIBe6usALCLijTfeiMnJyfj6179+5THu3r0br7322o2cQQODqlQqnbl5fqFQaNsxHj582AjAarVaX+73VavV4sGDB40rVmYymcbFQCqVSpTL5SiXy43PHz2nmaNgsVarxfz8/LkXABhklUol8vl8VCqVvl7iehN+FgAA0A/6eglkREQul2vb/9bfu3evLeMAnXfWxvnX2Yz/LOl0+lKb8fdCPp9vhFtra2uxs7MT6+vrsb6+Htvb27Gzs/PCrKGLQpSb8J8BmUwmtre3Y39/PxYXF3vdzrluws8CAAD6Qd8HYHfv3m3bjI//8B/+Q1vGATrraJnfaQ8fPmz7sfL5fEQ0vxJkM0dL2CYnJyOVSsXIyEjMzMyceSXPy1pZWWks21tcXDwzrMtkMrG5uXni9+RFe4Ctra1FJpOJTCYT6+vr1+6z352+iEI/uWk/CwAA6JW+D8AiIl555ZW2jPOf//N/bss4QGedFwRcZ+P78+RyuSgUCpeeiVOr1WJqaipmZmZObDxfq9WiVCrF/Px8TE5OnrmMs1XLy8uN+2fNiDtucXGxMdPpojAvl8vFzs5O7OzsdOR72m96Ncvqop9ZxM37WQAAQK8MRADWLltbW71uAWjBWVfq6+Tm4IuLi5daWlmpVOKVV165MNyqVCoxNTV1pSsPXmXvqqOLhbgKZO8Vi8W2zAIEAADao+83wT/Lhx9+eKkTw0qlEmtra329ETLwXKVSOTPA6ZfZMbVarbFx+ezsbMzMzMS9e/fi6dOnsbm5eeZVJWdmZmJnZycymcyljnNcqVRqab+yhw8fNpZ10huVSqWl2V8AAED3DEQA9uGHH0ahUDh3X6BW1Ov1SKVSbe4MaLfz3uOTk5Nd7uRsR7O5Njc3X5iVlsvlYn5+PmZmZl74OvL5fGxvb7d8nNNh2dLSUrz++usXzlQ7ukJkv17VMulqtVpf7zkGAAA3Vd8vgXz48GFMTk5GsViMnZ2dqNfrV7oBg+G8AKyfrpZ3Vvh15GhT+tPK5fKllkKm0+kTAdbRnmOt/CdAvV4XfvVArVaL6elpS1ABAKAP9XUA9sMf/jAKhUIjwDKDC3pjaWkpUqnUlW5TU1OXOtZ5S5X7JdBJp9MX7keWyWTOvHrtZa9oe7q+Uqk0/kPgusrlcmOj/mZqtVoUi8WYmpo6cdyjZX4jIyORSqVicnLyzOWflUollpaWGlfJnJycjPn5+TN/zkfHOf0aOm1mZqYx3vFbO5e5F4vFE8cZGRmJqampM7/GiOffz7P2hTve33nf61Z/FkdqtVqsrKzEzMxM4/t/1N/S0lJLAVylUomVlZUXLtRw/GcwOTnZWO4LAACDrq+XQB5dAS2VSkW9Xo9MJhPZbLaxNOjll1++cIyf//znUavV4smTJ/Hs2bOO9gtc387OTq9baOrevXst1S0uLsby8vKJ8OCym+HPzc3F+vr6C8+bn5+PtbW1ePTo0aX2RiuXy7G2thZPnjxp9HVWsHgUej1+/PjMjf6XlpZeCIKOgq6dnZ1YW1trWlcsFqNUKsX29vaJ48/NzcXc3FzMz883DfmOZtitrKzE0tJSK196yzY2NiKfz0c6nY5Hjx41lpSWy+XI5/OxtLQUa2trL/SeyWTinXfeiVKpdKKn85a9tvqzOK1YLDb2FysUClEoFCKdTke5XI7l5eVYWVmJlZWVmJ2dfeFqqrVaLZaXl09ctfT456anp0/8vI/24zv6WV1mDzsAAOg3fR2Alcvlxv/+b25uxvT09JXHWlxcjFdffbVdrdEnqtVqTExMNK1ZWFiIhYWFLnWUTEehxFVsbW1d6rnnhQD9MgvlMjPRcrlcbGxsnPhYuVy+VGi1ubkZ+Xz+zHGmpqZidnY2Hj16dGFflUolHj9+3PIso2w2G+l0+sTPbnt7O6ampmJ0dDTW19cjm83G6OhoI3iJ+HVAs7S01LgwwFFouLW11ZhRVKlUYnl5+cxZcfl8vqVZbrOzs20NwEqlUuMCAg8fPmyEXxHPvx/r6+uNZagPHjw4ETCl0+nIZrPx9OnTE2Oe9bO+7M/iyFGgmE6nXwikMplMzM7ONl4rGxsbMTk5eSKoe/r0aczMzDQCziNbW1sxPT0duVwuCoVCZDKZRpBXq9WiVqvF/Pz8mUt7AQBIvtXV1VhdXW1aU61Wu9TNNdT72MjISH1oaKj+jW98oy3jTU5OtmUcem98fLweES3d/tN/+k896/Ojj+v1+Ebz20cfv/i8s76O/f39rvQ8Nzf3wrELhcKVx9ve3n5hvEwmc259oVA48+tfW1u7cg/Xsbi4eKKP2dnZlp+7vr7etq/jvO/LVcY9PlY6nW5am81mTxxnc3PzzLpcLneibm5u7sy649+T8469ubl5Yqzz7O/vt/QeOf0aPM/s7OyFr/mLxmm19yOt/izW1tZa/llnMplGbS6Xu/DrSKfTZ/5cT79+u/U7CACA/vKf/tN/avn8e3x8vNftnquv9wA7+t/t+/fvt2W8o2U5JMfQ0FCMj483vQ0PD/e6TS6h32eAXcZZS8au+nUsLi7G/v7+iVlJxx1dfbKV8S+zlO34xQfm5ubO3f/s9JUPz/t9e7z/o9lF/ei81+Hxj7djs/tWfxZHM93S6XTMzc21VBvxfFbbWUtvj38djx49OvPnevq1trW11VKvAAAky/Dw8IXn3UNDfR0vRUSfL4Gcnp6O999//4UlJdcZj2QZGxuL3d3dXrdBG50XCPT73mBnOStE+fnPf36t8dbX16NcLseDBw9e2J+rVCrF9PR0vPPOO227aECr4xz/uV3m2JVK5VJLQjvp0aNHcf/+/cZywot0K7wrFouNY7USmM3NzTWWL0Y83yvsogs3nCeTyTSCPle3BAC4mVrZVmhiYiL29va61NHV9HVE981vfjPq9fqZmzBfxfe+9722jAN0znkn6pfdQL4fnBVWtHLxjotks9nY3t4+c5bVUTjWbVcN3Nr1HxztkE6nY3Fx8czwq1wut+1v0WUd33ur1Rljx99Hg/jeAQCAduvrAOzOnTvx1ltvxePHj+Of//mfrz2eJZAwGM7bOLxfl8tdRjuvpDc3Nxc7OzsvhE8bGxt9HXq0a3Zapx2/YmU2m+3ZTLWrzLw6/TpLwnsHAACuo68DsIjn+95ks9nGlbmu6oMPPujZ/94Dl/PGG2+c+fF+DnXOczrsaWcAdjTe8Sv9HRH4X125XI6ZmZlYW1truu9ZtxwPr1oNw05fYbKfZtoBAEAv9PUeYEc2Nzfj3r178eqrr8bS0tKJTZmbefr0adRqtdjZ2YknT550uEsYDOVyOZaXl2N9fb3XrZzraA+j09bW1lram6mfnJ5508osolKpFEtLS7G9vd3SMTKZTDx69OjEfxQI/K9mfn4+isVizM3NRaFQ6HU7EXG1jfdP/51sd/AKAACDZiACsHfffTcinm+CPT8/f6Ux6vV6pFKpdrYFA+nBgwcth8i9kk6nY3Z2NjY2Nk58vFQqRblc7ptN0y9yOvxqdSZRJpOJcrkcpVKp5eecDgZtWH55R+FXRPRN+BXx69dDxK+vnHnRMtLjM76EXwAAMABLIN98882YmZmJ999/P1KpVNTr9UvfgOeOAqSZmZlza9q9VOqq450XQJw1M+y6OrU/0tbW1onHrQb4R4HFVQP/iNZmmg26dr5Wy+VyI/zKZDJ9tU/Z6SXBR302c/yqqYM2axIAADqhrwOwR48exdraWiPEumqYJQSD5yHP0RK5y54Q//znP29rL60EF5lM5swQrFQqxcrKStt6qVQqMTU1da2w6Tynr953me97JpOJSqXScuB3esbXefuoDYLTMxTPCyjbOcvt+P5yzcbtxWbys7OzJwK5VvZ3O/71PHz4sBNtAQDAQOnrJZBH/8g/mvmVy+ViZmYm0un0pfcBe/vtt+PDDz/sYLfQHp04wa7VajE9Pd1YOnXZJVHt7qnV8RYXF2Nzc/OFze+XlpYim81ee3PyUqkUMzMz54Zt13V8CedlN6U/CsBWVlZicnIy5ubmmtYfHz+TycTi4uLlmj1Hqz+r43UXPeeiz5+evVYsFl/4es4KB58+fdq2mVsbGxsvBJZnHe+00++tSqVy4mOtLF88y/E93iqVStPlseVyubFkslAo9NVsNgAA6JW+DsDK5XKkUqlIp9OxtbUVr7zyypXHevDgQbz88stt7A4647zZJ1c9uS+VSjE/P98Y9/XXX7/08a+z1Oy6s3Q2Nzcjn8+/sB/YzMxMFAqFKwU9tVotlpaWolgsnnsVxWbPbUWxWGx87Ve5kuDx0GR+fj62t7fPDTOKxeKJWXHHZ56d5fjPsxczmo477/i5XK4RfC4tLcXOzk7k8/mo1WqxubkZxWKx8do4GuN02HTk9Ov3rBDqdOiWz+ejUChENpuNcrkca2trkc1mG8FkxK9Dx83NzXj48OGZ4fL8/Hysr6/H06dPo1AoxOTk5InXbKs/i9nZ2SgUCo0QLp/PxwcffPDC11Gr1eLBgwcR8fx1d977o9Wf+/H3b69fKwAAcC31PjYyMlIfGhqq//mf/3lbxpuammrLOPTe+Ph4PSLq4+PjvW6lqY8+rtfjG81vH3188jlzc3P1iHjhlsvl6js7Oxcec39/v765uVlfXFysZzKZF8ZZX18/97k7OztnHjsi6vv7+1f6HmSz2TPHW1tbu9Q4i4uLZ46TzWbrm5ubLY2xv79fLxQK9XQ63fieXvR1nT5uOp2+8DjHv4+5XK6l3k5bW1s78+udnZ2tLy4u1tfW1upzc3MnfsatvkZO/0zOe03s7++/8L0+z+zsbEs/383NzRN1c3Nz5x776Od0+pZOpxs/8+M12Wy2vrOz88LPtNXeTtcdvxUKhXq9fvb7c3Z29sQ4571Wz/paW/1ZHFlfX298zel0ur62tlbf2dmp7+zs1NfW1hqvh6N+z9Lqz+B03VVfywAAJN8gnKP3dQCWy+XqQ0ND9R/+8IdtGa9cLrdlHHpvEN5c9frlArDt7e2mJ+Dtup0V+Ozv79fX1tbODRwiop7JZOpra2stB2Hb29v1XC7XtJfFxcWWApsjm5ub5wZq6XS6Pjs7W19bW6tvbm7Wt7e365ubm/W1tbV6oVA48bx0On1h0HDkrFAwk8mcG7odDyhOByOXsbm52ehzfX29Pjc3V8/lcvVsNnvi53T0dV8UAh69vs77GWez2UZo0qw2k8nUZ2dnG6+D0yHc6cDkaMzNzc1zXw+ZTObMEGZ/f//E+Nlstr64uHii5uhjp19H+/v7F369Zx2zUCg0jpfJZOqLi4snXvP7+/uNr+P49+y04wF0Nps98Xq7zM/iPGtra/VcLnciDDt63nnv0WbvyeM/g52dnaZ1F/UGAMDNMwjn6Kl6vX93iN/Y2IjXX389VlZW4j/+x//Y63boIxMTE7G3txfj4+Oxu7vb63bO9fFhxO1vNa/5q98uxptvtn8D9rNks9nY3t4+8bFUKnXpcdLpdOzv75/5ubOWK7Zic3Oz5WWCGxsbsby83NjnqFWZTCbm5+djbm7uUstJj/abOv11pdPpuHfvXqTT6ajVarG1tdVYXre+vn7tPcoAAAAGwSCco/d1ABYRMTU1FUNDQ/Hee+9de6wf/ehH8Sd/8idt6IpeG4Q3V0RrAdhH34641dfXY+1ftVotSqVSPH78OCqVStRqtcaeRZlMprEn0/3792N2dvbSm/9fdLyjYx4d5969e5HP5wVfAADAjTII5+h9H4BVKpX43d/93fjhD38Yf/zHf3ytse7fv9+WII3eG4Q3V4QADAAAgOQbhHP0vj/tzmQy8fbbb8dXvvKVa43z7NmzSy+XAgAAAGDw3e51A8386Ec/ioiIf/fv/l2MjIzEq6++GrOzs5cep1arxZMnT9rdHgAAAAADoK8DsO985zvx/vvvNx7X6/VYWVm50lj1ev1Km30DAAAAMNj6egnk66+/HvV6PY62KRNgAQAAAHBZfR2Azc/PR8Tz4OsoCLvqDQAAAICbqa+XQN65cyey2Wy8//77USgUIpvNxujo6KXHqVQq8Z3vfCd+8pOftL9JAAAAAPpaXwdgERFvvPFGTE5Oxte//vUrj3H37t147bXXrhSeAQAAADDY+noJZERELpdr2xLGe/futWUcAAAAAAZH3wdgd+/ejUKh0Jax2jUOAAAAAIOj7wOwiIhXXnmlLePcvXu3LeMAAAAAMDh6GoD106b0/dQLAAAAcDPU6xEfHza/tWlnqButp5vgT01Nxf7+fgwPD/eyjXj27FlMTU3Fxx9/3NM+AAAAgJvlsB5x+1vNaz76dsStVHf6SaqezgBr1+b27dBPvQAAAADQPj2dAZZK9U982U+90LpqtRoTExNNaxYWFmJhYaFLHQEAAEByrK6uxurqatOaarXapW6urqcBmFlXXNfh4WHs7e01rTk4OOhSNwAAAJAsBwcHF553D4KeBmARER988EH83u/9Xk972Nra6unxubqhoaEYGxtrWtPrPeYAAABgUA0PD8f4+HjTmmq1GoeHh13q6Gp6HoA9ePAgvvGNb0Q6nY7R0dGuHvvp06dRqVRicXGxq8elfcbGxmJ3d7fXbQAAAEAitbKt0MTERN/PEut5ALa9vR35fL6nPdTrdXuAAQAAACRUzwOwI73aD0zwBQAAAJBsPQ/Aer0Rfq+PDwAAAEBn9TQA29/f7+XhAQAAALgBehqA3blzp5eHBwAAAOAGGOp1AwAAAADQSQIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0RIZgD179izefPPNXrcBAAAAQB9IZABWqVSiWCzGz372s3j33Xfj4OCg1y0BAAAA0COJDMBKpVLU6/XIZDIxMzMTIyMj8c1vfrPXbQEAAADQA4kLwN55551YWlqKiIh6vd64FQqFpiHYm2++Ga+++mrcv38/vvnNb5o1BgAAAJAQiQvAlpaWYnZ2NtbX12NnZyc2Nzfj61//eiME+9nPfvbCc1599dUoFouxs7MT29vb8dZbb8XU1JQQDAAAACABEheARUQ8efIkXnvttXjllVdieno6CoVCPH36NH7nd36nMTvsyJtvvhk7OzsR8Tw8Ozw8jKdPn8ZnP/vZePDgQS/aBwAAAKCNEheApVKpMz+eTqdje3u7EXYdWVtbi1QqFbOzs7G8vNyoXVtbi/39/fjwww873TIAAAAAHZS4AGxkZCS++93vnvm5dDodIyMjjcePHj1q3C8UCi/ULy0tRalUan+TtE21Wo2JiYmmt9XV1V63CQAAAANpdXX1wvPuarXa6zYvdLvXDbTb4uJi/M//8/8cOzs78dZbb8Xw8PCJz+/v7zfuH83+yuVy8Tu/8zsvjHXv3j0BWJ87PDyMvb29pjX2cgMAAICrOTg4uPC8exAkLgDL5XLx4MGDePvtt2NtbS1mZ2fj/v37ERHx+PHj2NnZic997nORzWajXC5HKpWK+fn5M8e6c+dOVCqVbrbPJQ0NDcXY2FjTmtMhKAAAANCa4eHhGB8fb1pTrVbj8PCwSx1dTeICsIjnM7uePn0aP/zhD2NjYyM2NjYan9va2orvfOc7J5Y8ZrPZM8d5//33Y3R0tOP9cnVjY2Oxu7vb6zYAAAAgkRYWFmJhYaFpzcTERN/PEkvcHmBH1tfX4+23347p6emo1+tx586dePLkSdy9ezfW19fjtddei3Q6HW+//fa5M8CKxWJMTk52uXMAAAAA2imRM8COzM3Nxdzc3JmfW19fb9wfGRmJ+/fvx/e+9734vd/7vTg4OIjvfOc7USwWT+wZBgAAAMDgSXQA1qrZ2dmoVCpx9+7dSKVSjY+ftYk+AAAAAINFAPZ/WVxcjEwmE8ViMdLpdLzxxhvx2muv9botAAAAAK4pcQHYu+++G5/97GcvrPvRj34UuVzuxAyv2dnZmJ2d7WR7AAAAAHRZ4jbBn52djVu3bsXnPve5+Iu/+Iv4yU9+cmbd9PR0fOUrX4kPP/ywq/0BAAAA0F2JC8CmpqaiXq9HqVSKpaWlmJqaipdffvmFQOzOnTvx6NGjyOfz8bOf/ay3TQMAAADQMYlbArmxsRH5fD6ePn0atVotKpVK7O/vx+bmZpRKpUbdzMxM3L17N/b392N+fj7+4R/+oYddc5P94P2IL031ugsAAABIrsQFYHNzc1EsFuN3fud3Gh9755134smTJ/Ho0aPGx3784x/H5uZm1Ov1+OCDD3rQKTfBD96/uObLGxG3hiK+cLfz/QAAAMBNlLglkPV6/UT4FfF8v6+1tbXY39+Pr3/965HNZqNQKMRrr70W2Ww23nrrrd40S6I9+2XE1/62tdqv/k3EwS872g4AAADcWImbAfbs2bNzP3fnzp0oFArxwQcfxNLSUqysrLwQlkG7/HU54hf/1lrtv/wq4vvliD/7/c72BAAAADdR4maAvfLKK/Hd7373wponT57E3NycDfDpmL/76eXq//6S9QAAAEBrEjcDbHFxMX73d383MplM/PEf/3HT2idPnsT9+/dje3s7hoeHu9QhN8X+v3a2HgAAAGhN4maAZTKZeOutt2J2dja+9rWvNa1Np9Nx9+7d+MY3vtGl7p6rVCoxMzOTuDFXVlZiZmYmRkZGIpVKxeTkZOTz+RNX37xJRn6js/UAAABAaxIXgEU8nwX2J3/yJ/H222/Hv/t3/y6++93vxsHBwZm1o6Oj8fjx47Yct1arRSqVuvA2OTkZmUwmMWOWSqUYGRmJpaWliIhYX1+PnZ2dKBQKUS6XY2ZmJmZmZqJWq7XUX1J8/jOXq/+DS9YDAAAArUlkABbxPIR58OBBPH36NBYXF2NkZCTeeOON+N73vhc/+clP4ic/+Uk8fPgwisVi24KZYrHYcu1RWDToY5ZKpUa4NTc3F5ubm5HL5SKTycTs7Gzs7OxENpuNUqkUU1NTNyoE+2I24lOfaK3205+M+FK2s/0AAADATZWq1+v1XjfRSRsbG/HgwYN49uxZpFKpFz5fr9djamoq3nvvvWsfa2RkpKWAJ5fLxebm5sCPWavV4pVXXolarRaZTCZ2dnbOrKtUKjE5OXnpPpuZmJiIvb29GB8fj93d3WuP1ynf34748sbFdf+f1yO+cLfz/QAAACRNvR5xeEGyMZSKOCMS6AsfH0bc/lbzmo++HXGrj6cwDcI5euI2wT9tdnY2ZmdnY2VlJd56660Xgp90Oh2PHj269nGOZpItLi5euG/WvXv3EjFmPp9vfD+bzRQ7mg22sbERpVIpisVizM3NtdTvoPvC3YsDsO/PCr8AAACu6rDeYoDUpwEY3ZH4GWCnvf/++1GpVKJSqUQmk4lcLhd37ty59rhHM5zOmwWVtDGPz+qKiNjf3490On1u/cbGRuTz+Yh4Hjru7+9f6/iDkC5HJCPJBwAA6GeDft416P1HDMY5+sDOAHvzzTfjr/7qry79vLt378bdu+2dbrOxsRGVSiXW1tZuzJiFQqFxP5fLNQ2/Ip7PxDtSq9ViY2PjxMcAAAAAOqWP88Pmnjx5Ev/8z//c6zYiImJ5eTnS6XS8/vrrN2bM4xvpZ7Ot7d5+/IqS7bryJgAAAMBFBjYA29/fj9/5nd+JN998M959992e9VEul6NcLketVouRkZGYnJyM+fn52NhoYefzAR2zXC6feHz//v2Wnnc8KLvO1wIAAABwGQMbgEU8X0pXLBZjZmYmbt26FZ/73OfiL/7iL+LDDz/sWg+nN3+vVCpRLBYjn89HKpWKfD7/QmA06GOWSqUTj4/P7GrmdN1lvwYAAACAqxjoACwiol6vN26lUimWlpZicnIyXn755XjzzTfjRz/60YVjfO9737vSsSuVygth0GkbGxsxNTUV8/PziRnzvffeO/H4ov2/jrz88ssnHm9tbbX0PAAAAIDrGNgA7K233op6vR6pVKpxNcLjYdj+/n5jhtOtW7fi/v378Rd/8Rfxk5/85IWxNjc3r9RDJpOJtbW1KBQKMTc313QmVLFYjKmpqUSMWalUXhi/Fafr2nl1SwAAAIDzDOxVIBcXFyOXy0U+n4+nT5/GxsZG1Ov1+N/+t/8t3nnnnajValGv1xv1R3tgRTyfsZTL5WJmZiYirrcf1dzc3InHR8syl5eXo1arnfhcuVyOmZmZCwO3fh/zdAB2VaePCwAAANAJAzsDLOL5puo7Ozvxla98JfL5fLzzzjuxvr4eT58+jZ2dnSgUCpHL5SLixdlhGxsbMT8/3/Iywlal0+lYXFyM/f39WF9ff2F5YKlUipWVlYEe86rB1eljPH369ErjAAAAAFxGqn58mtQAK5fL8frrr8fQ0FCsr6/H7/3e7534/FE4ViqVXpjBlEql4uOPP+5IX7VaLaanp09s+J5Op2N/f39gx0ylUicet/oSKpVKjVl3ERG5XO7Ky08nJiZib28vhoaGYmxs7EpjHLewsBALCwvXHue0jw8jbn+rec1H3464NdBRNAAAQO8M+nlXL/tfXV2N1dXVa49TrVbj8PAwxsfHY3d3tw2dtd/ALoE8LZvNxj/90z/F/Px8ZLPZWFpaiu985zuNz09PT8f09HRERDx79iyePHnSCMQ6KZ1Ox/b2dkxNTTXCpVqtFqVSqTE7bdDGTKfTbVm+2Orm+c0cHh7G3t7etcc5ODi49hgAAAAwSA4ODtpyTj0IEhOAHVlbW4t8Ph+vv/56bGxsnDkb7M6dO/HgwYN48OBBlEql+NznPtfxvh49enRic/nNzc0rh1W9HnN0dLQtAdjo6Oi1x2jXDLDh4eFrjwEAAACDZHh4OMbHx689ztEMsH6WuAAs4vnSukqlEg8ePIhsNhsrKyvxv/6v/+u5tUczwzopm81GLpdrzDhrx0byvRrzqjO3Todm7ZgBNjY21rfTKwEAAKCftWs7oKNtivpZn66Avb50Oh3r6+vx+PHj+PrXvx7/4//4P8bPfvazM2vz+XxXejq+/9Ugj3nv3r0Tj1udDXZ60/vJyclL9QUAAABwFYkNwI7Mzs7G06dP486dO5HJZOK73/3uCzUPHjzoSi+ZTKZxvx3L/3o15vElkhGtzzzb2dk58fi6yzXpvHr9+YaMzW7JuIwGAAAASZbIJZCnpdPp2NzcjJWVlfj6178ejx8/jvX19fjt3/7trvZxPFhqx/K/Xo15egZYpVKJbDZ74bjHZ4ql0+kTx6E/HdZbvBpJqnkNAAAA9FLiZ4Ad+fDDD+PevXuxuLgYW1tbkclk4r/8l//S1R62trYa99u1dLEXY2az2RPB2HvvvXfpcU+HaAAAAACdkogZYB9++GFUKpWo1WpRqVRiZ2cnKpVKVCqVePr06Qt7VKVSqajX6zE3Nxfr6+uxvr4ev/mbv9nxPo8vAWzX8r9ejfn6669HsViMiIhyudzSuMfrlpaWrtEhAAAAQOsGNgC7f/9+I/Rqpt5kg6J6vR4//vGP47Of/WzLs5iuY2NjIyIiFhcXB37M+fn5RgB2dMXIZo7XZDIZ+38BAAAAXTOwAdj29nZjJlczR3tNHd0mJydjdHS08fjOnTtd6XdjYyMqlUqk0+l4+PDhwI+ZzWYjl8s1gq2NjY2YnZ09t359fb1x3+wvAAAAoJsSsQfYyMhIzM/PR6FQiPX19dje3o79/f04PDyMp0+fxtbWVjx58iTeeuutePDgQbz22mtx9+7da4VfpVIpRkZGIpVKxczMTNNlgJVKpXGlyXfeeefczeoHZcwja2trjfvLy8vn1tVqtcZssVwuF3Nzc03HBQAAAGingQ7AXnvttchms7G/vx/FYjG2trZif38/RkZGOj6za319vbH8slQqxdTUVMzPz79Qd/S50dHR2NnZaXq1xEEZ80gmk2nM7CqXy7GysnJm3fT0dEQ8n413fCYYAAAAQDcMbACWy+XiyZMnjdDr8ePHUa/XY3FxMSYnJ+PVV1+NN998M/7xH//xwrHefffdSx8/n8+/8LFisRgjIyORz+djfn4+pqamYmZmJubm5mJ7ezsymUwixjxudnY2Njc3I51Ox9LSUuTz+SiXy1Gr1RqhWrlcjmw2Gx988MGFs8oAAAAA2m1gA7CZmZnG/Tt37sTs7Gw8efIknj59Gu+99178yZ/8Sbz33nsxPT0dt27divv378d3v/vd+MlPfvLCWMeX8rUql8vFzs5OzM3NRSaTORHslMvlePr0aTx8+DD29/ejUCi0FPwMyphnHePo+ZVKJaanpxsB2+joaGNZqvALAAAA6IVU/aJd5Afcs2fPYnNzM548eRKlUimePXsW6XQ6crlc3L9/PyKeb8r+8ccf97hTLmNiYiL29vZifHw8dnd3e93OuT4+jLj9reY1H3074lafRtGD3j8AAJB8g37eMuj9RwzGOfrAXgWyVUezw46uUFgul+Px48fxwx/+MNbX1yOVSvW4QwAAAAA6qY/zw87IZrNRKBTin/7pn2Jrays++9nP9rolAAAAADroxgVgx2Wz2djc3Iy7d+/2uhUAAAAAOuRGB2BHCoVCr1sAAAAAoEMEYBExPT3d6xYAAAAA6JCBCMD+4i/+It59991etwEAAADAABqIAOz/+D/+j5iZmYn/8l/+y7XGefToUdy6dSv+h//hf4j/8//8P9vUHQAAAAD9bCACsIiIer0ec3Nz8c1vfvPKYywtLUW9Xo9/+qd/imw2Gx9++GH7GgQAAACgL93udQOX9eMf/zh2dnbi8ePHl37uK6+8Es+ePYtcLhcRzwOxq4wDAAAAwOAYuABsa2sr8vl83L9/P9599934zd/8zZafu729feLxq6++2u72AAAAAOgzA7ME8rj19fXI5/ORzWbjZz/72ZXG+OCDD+Lp06dt7gwAAACAfjOQAVhExOLiYvzVX/1VZLPZ+Md//MdLPffZs2cxMzMT9+7d61B3AAAAAPSLgQ3AIiJyuVy899578eDBg5avEPnuu+9GJpOJDz74IPL5fIc7BAAAAKDXBjoAi4jIZDKxtbUVjx8/vvAKkX/+538eMzMzsb+/H+l0Or7yla90qUsAAAAAemXgNsE/Szqdjh//+Mfx1a9+Nd54440zr+z48OHDWFlZiXq9HqlUKgqFQg86pd2q1WpMTEw0rVlYWIiFhYUudQQAAADJsbq6Gqurq01rqtVql7q5ukQEYEfefvvtKBaLL1wh8p133olCoRCpVCpSqVRks1mzvxLi8PAw9vb2mtYcHBx0qRsAAABIloODgwvPuwfBwAVg//iP/xj/0//0P537+bm5ubh371589rOfjY2Njfjt3/7txmwvs7+SZ2hoKMbGxprWDA8Pd6kbAAAASJbh4eEYHx9vWlOtVuPw8LBLHV3NQARgr7zySkQ8D7Dm5uaiVCrFb//2b59bn81m4/Hjx/Haa6/FN7/5zSiVSpFKpaJer0c2m43Pfvaz3WqdDhsbG4vd3d1etwEAAACJ1Mq2QhMTE30/S2wgNsEvFAqxv78f6+vrMT09HblcLr73ve81fc7R5vhvv/1242OpVCreeOONTrcLAAAAQB8ZiBlgERF37tyJ1157LV577bVLPe/HP/5xLC0txZ//+Z839v8CAAAA4OYYiBlg11UoFOLJkydRr9fjgw8+6HU7AAAAAHTRjQjAIiJmZ2dja2srHj9+3OtWAAAAAOiiGxOARTzfHP/HP/5xr9sAAAAAoItuVAAGAAAAwM0jAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAAS7XavG4DrqFarMTEx0bRmYWEhFhYWutQRAAAAJMfq6mqsrq42ralWq13q5uoEYAy0w8PD2Nvba1pzcHDQpW4AAAAgWQ4ODi487x4EAjAG2tDQUIyNjTWtGR4e7lI3AAAAkCzDw8MxPj7etKZarcbh4WGXOroaARgDbWxsLHZ3d3vdBgAAACRSK9sKTUxM9P0sMZvgAwAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAAS7XavG4AkG0pFfPTti2sAAADonB+8H/GlqV53QS8JwKCDUqmIWwIuAACAjvnB+xfXfHkj4tZQxBfudr4f+pMlkAAAAMBAevbLiK/9bWu1X/2biINfdrQd+pgADAAAABhIf12O+MW/tVb7L7+K+H65s/10Siuz3GhOAAYAAAAMpL/76eXq//6S9d3Q6hJOIdj1CMAAAACAgbT/r52t7zRLOLtHAAYAAAAMpJHf6Gx9p92UJZz9QAAGAAAADKTPf+Zy9X9wyfpOS8ISzkFxu9cNwHVUq9WYmJhoWrOwsBALCwtd6ujm+cH7EV+a6nUXAADATfTFbMQ3/qG1WVSf/mTEl7Kd7+kyBmEJ5+rqaqyurjatqVarXerm6gRgDLTDw8PY29trWnNwcNClbpKn1c0Ybw1FfOFu5/sBAAA47s5LEX/5h8/PSy7y9h9FDL/U8ZYuZRCWcB4cHFx43j0IBGAMtKGhoRgbG2taMzw83KVukuWymzF+/t/33x8TAAAg+b5w9+IA7Puz/fmf9p//TMSP/1vr9b1Ywjk8PBzj4+NNa6rVahweHnapo6tJ1ev1eq+bgMuamJiIvb29GB8fj93d3V63k0j/r/9fxP/j71qv/8+fj/iz3+9cPwAAAGf5+DDi9rea13z07ecrV/rNs19GjH+n9SWcew/7c+LBIJyj9+GPH+gHNmMEAADorKMlnK3oxyWcg0QABpxpEDZjBAAAGHStLM3s1yWcg0QABpxpEDZjBAAAuAn+VPh1bQIw4Eyfv+Tmir3YjBEAAABaIQADzvTFbMSnPtFa7ac/GfGlbGf7AQAAgKsSgAFnshkjAAAASSEAA8416Jsx1uvPL4nc7Fav97pLAAAAOu12rxsABls/b8Z4WI+4/a3mNR99O+JWqjv9AAAA0BtmgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEu12rxuA66hWqzExMdG0ZmFhIRYWFrrUEQAAACTH6upqrK6uNq2pVqtd6ubqBGAMtMPDw9jb22tac3Bw0KVuAAAAIFkODg4uPO8eBAIwBtrQ0FCMjY01rRkeHu5SNwAAAJAsw8PDMT4+3rSmWq3G4eFhlzq6GgEYA21sbCx2d3d73QYAAAAkUivbCk1MTPT9LDGb4AMAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAOuBSqUSMzMzPR1zZWUlZmZmYmRkJFKpVExOTkY+n49SqXTlHjoxJgAAAMB1CcDaqFarRSqVuvA2OTkZmUymJ2OWSqUYGRmJpaWliIhYX1+PnZ2dKBQKUS6XY2ZmJmZmZqJWq7X8dXdiTAAAAIB2ud3rBpKkWCy2XHsUFnVzzFKp1JglNjc3F2tra43PZTKZmJ2djampqSiVSjE1NRXb29uRTqe7PiYAAABAO5kB1kbLy8st1eVyuZZngLVrzFqtFvl8PiKeB1PHg6rj1tfXI+L5ksqj+m6OCQAAANBuZoC1SbFYjFqtFouLixfuxXXv3r2uj5nP5xtLEJvNFDuatbWxsRGlUimKxWLMzc11bUwAAACAdkvV6/V6r5tIgsnJyYiI2NnZ6bsxK5VKY6yIiP39/abLEDc2NhoztdLpdOzv73dlzMuYmJiIvb29GB8fj93d3WuNxfk+Poy4/a3mNR99O+JWn84lHfT+AQCAiw36v/sHvf+IwThH7+Nv3+DY2NiISqXS8r5e3R6zUCg07udyuQv34JqdnW3cr9VqsbGx0ZUxAQAAADpBANYGy8vLkU6n4/XXX+/LMY9vpJ/NZlt6zvH9xB4/ftyVMQEAAAA6QQB2TeVyOcrlctRqtRgZGYnJycmYn5+/1gyndo5ZLpdPPL5//35Lzzseap0+bifGBAAAoDfq9efL8JrdbJ7EoBOAXdPpJYqVSiWKxWLk8/lIpVKRz+dfCIy6OWapVDrxuNWrT56uO368TowJAABAbxzWn+9B1ex2KABjwAnArqFSqbwQBp22sbERU1NTMT8/35Mx33vvvROPL9qr68jLL7984vHW1lZHxwQAAADolNu9bmCQZTKZWFtbi1qtFjs7O1EqlaJSqZxZWywWY2trK7a3t7s65unnXnW21vErUXZiTAAAAIBOEYBd09zc3InHtVotisViLC8vR61WO/G5crkcMzMzsbm52bUxzwvPLuv4cTsxJgAAAECnWALZZul0OhYXF2N/fz/W19dfWB5YKpViZWWla2NeNWQ6fYynT592dEwAAACATjEDrINmZ2cjl8vF9PT0iQ3fl5eXY3FxsW/GbEUnZmu1Y8xqtRoTExPXHmdhYSEWFhauPQ4AAAAMitXV1VhdXb32ONVqtQ3ddJYArMPS6XRsb2/H1NRUI7Cq1WpRKpUil8t1fMx0Ot2WoOn47K1OjHlVh4eHsbe3d+1xDg4Orj0GAABwM9XrF18lcSgVkUp1px9o1cHBQVvOqQeBAKxLHj16FFNTU43Hm5ubVw7ALjPm6OhoW8Kq0dHRjo55VUNDQzE2NnbtcYaHh689BgAAcDMd1iNuf6t5zUffjrglAKPPDA8Px/j4+LXHqVarcXh42IaOOkcA1iXZbDZyuVyUSqWIaM9G8q2MedVZVqcDrtMzwNo95lWNjY3F7u7utccBAACAm6Zd2wFNTEz0/Uwym+B30czMTNfHvHfv3onHrc7cOr1B/eTkZEfHBAAAAOgUAVgXZTKZxv12LP9rZczjSyQjWp95trOzc+Lx8aWVnRgTAAAAoFMEYF10PKxqx/K/VsY8PVur1bDq+KyudDp94jidGBMAAACgUwRgXbS1tdW4367lkBeNmc1mTwRj77333qXHPR14dWJMAAAAgE4RgHXR8SWA7Vr+18qYr7/+euN+uVxuadzjdUtLS10ZEwAAAKATBGBdtLGxERERi4uLXR1zfn6+cf/oipHNHK/JZDJnBmudGBMAAACgEwRgXbKxsRGVSiXS6XQ8fPiwq2Nms9kTgdNRaHae9fX1xv3zZmp1YkwAAACAThCAXVGpVIqRkZFIpVIxMzPTdBlgpVKJBw8eRETEO++8c+4G+J0Y88ja2lrj/vLy8rl1tVotisViRDxfUjk3N9fVMQEAAADaTQB2Revr642rGpZKpZiamjqxLPDI0edGR0djZ2cnstlsV8c8kslkGrOwyuVyrKysnFk3PT0dEc+v0nh81la3xgQAAABoNwHYFeXz+Rc+ViwWY2RkJPL5fMzPz8fU1FTMzMzE3NxcbG9vRyaT6fqYx83Ozsbm5mak0+lYWlqKfD4f5XI5arVaI1Qrl8uRzWbjgw8+uHBWWafGhG76wfu97gAAAIBOE4BdUS6Xi52dnZibm4tMJnMi2CmXy/H06dN4+PBh7O/vR6FQaCn46cSYZx3j6PmVSiWmp6cbAdvo6Gisr6/H9vb2pcbuxJjQDq2EW1/eEIIBAAAkXaper9d73QRc1sTEROzt7cX4+Hjs7u72up3E+vgw4va3mtd89O2IW30YpT/7ZcT4dyJ+8W8X1376kxF7DyOGX+p8XwAAJM8g/7s5Qv+9Nuj9RwzGOXoff/sAru6vy62FXxER//KriO+ff80JAAAABpwADEikv/vp5er//pL1AAAADA4BGJBI+//a2XoAAAAGhwAMSKSR3+hsPQAAAINDAAYk0uc/c7n6P7hkPQAAAINDAAYk0hezEZ/6RGu1n/5kxJeyne0HAACA3hGAAYl056WIv/zD1mrf/qOI4Zc62g4AAAA9JAADEusLdy+u+f5sa3UAAAAMLgEYcKP9qfALAAAg8QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECi3e51A3Ad1Wo1JiYmmtYsLCzEwsJClzoCAACA5FhdXY3V1dWmNdVqtUvdXJ0AjIF2eHgYe3t7TWsODg661A20V70ecVhvXjOUikilutMPAABw8xwcHFx43j0IBGAMtKGhoRgbG2taMzw83KVukmcoFfHRty+uoTMO6xG3v9W85qNvR9zyMwAA4AZz3tJZw8PDMT4+3rSmWq3G4eFhlzq6GgEYA21sbCx2d3d73UZipVLCFQAAoL85b+msVrYVmpiY6PtZYjbBBwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgES73esGAEieej3isN68ZigVkUp1px8AAOBmE4AB0HaH9Yjb32pe89G3I24JwACAG+IH70d8aarXXcDNZQkkAAAAXMMP3r+45ssbrdUBnSEAAwAAgCt69suIr/1ta7Vf/ZuIg192tB3gHAIwAAAAuKK/Lkf84t9aq/2XX0V8v9zZfjrF7DUGnQAMAAAArujvfnq5+r+/ZH03WMLJTSAAAwAAgCva/9fO1neaJZzcFAIwAAAAuKKR3+hsfafdlCWccLvXDcB1VKvVmJiYaFqzsLAQCwsLXeoIAAC4ST7/mYgf/7fW6//gM53r5SqusoTzz36/M73Qn1ZXV2N1dbVpTbVa7VI3VycAY6AdHh7G3t5e05qDg4MudQMAANw0X8xGfOMfWptF9elPRnwp2/meLmPQl3DSeQcHBxeedw8CARgDbWhoKMbGxprWDA8Pd6kbAADgprnzUsRf/uHzTeIv8vYfRQy/1PGWLmXQl3DSecPDwzE+Pt60plqtxuHhYZc6uhoBGANtbGwsdnd3e90GAABwg33h7sUB2Pdnn9f1m0FfwknntbKt0MTERN/PErMJPgAAAHTYn/Zh+BXxfAnnpz7RWm0/LuGEVgnAAAAA4IY6WsLZin5cwgmtEoABAADADdbK0sx+XcIJrRKAAQAAAE316xJOaJUADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKLd7nUDAAAAXE+9HnFYb14zlIpIpbrTD0C/EYABAAAMuMN6xO1vNa/56NsRtwRgwA1lCSQAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABItNu9bgAAAICbrV6POKw3rxlKRaRS3ekHSB4BGAAAAD11WI+4/a3mNR99O+KWAAy4IgEYACSM/0UHAICTBGAAA+wH70d8aarXXdBv/C86AACcZBN8gD71g/cvrvnyRmt1AAAAN5kADKAPPftlxNf+trXar/5NxMEvO9oOAADAQBOAAfShvy5H/OLfWqv9l19FfL/c2X4AAAAGmT3AgMQaSj3f5+iimn70dz+9XP3f/zTiz36/M710iv3LAACAbhGAMdCq1WpMTEw0rVlYWIiFhYUudUQ/SaUGd5Pv/X/tbH2ntbp/2a2hiC/c7Xw/AADA1ayursbq6mrTmmq12qVurk4AxkA7PDyMvb29pjUHBwdd6gbaZ+Q3OlvfSZfdv+zz/z5i+KWOtgQAAFzRwcHBhefdg0AAxkAbGhqKsbGxpjXDw8Nd6gba5/Ofifjxf2u9/g8+07leLusq+5cN2vJNAAC4KYaHh2N8fLxpTbVajcPDwy51dDUCMAba2NhY7O7u9roNaLsvZiO+8Q+tBUmf/mTEl7Kd76lVN2H/MgAAuCla2VZoYmKi72eJuQokQB+681LEX/5ha7Vv/1F/LSEc9P3LALiZ6vWIjw+b3+r1XncJwFWZAQbQp75w9/lG8c18f7b/NpEf5P3LALi5DusRt7/VvOajbw/uBXaA/jXIV68fJGaAAQywP+2z8Cvi+f5ll9FP+5cBAEC3pVLPr47e7JYSgF2bAAyAtvpiNuJTn2ittt/2LwMAAJJJAAZAWw3y/mUAAEAyCcAAaLtW9iXrx/3LAACAZBKAAdAT/bh/GQAAkEyuAgkA9JV6/fnV2JoZStkMFgCA1gnAAIC+cliPuP2t5jUffTvilgAMAIAWWQIJAAAAQKIJwAAAAABINAEYAADADfCD93vdAUDvCMAA4AZyEgSQLK38Xv/yht//wM0lAAOAhHESBHCzPPtlxNf+trXar/5NxMEvO9oOQF8SgAFAgjgJAnqlXo/4+LD5rV7vdZfJ9NfliF/8W2u1//KriO+XO9sPQD+63esGAID2ucpJ0J/9fmd7Am6Gw3rE7W81r/no2xG3Ut3p5yb5u59erv7vf+p3P3DzmAEGAAlylZMgAAbb/r92th4gCcwAA4BT6vXnMxmaGUpFpPpwFoOTIICbZ+Q3OlsPkAQCMAA4ZZCX8TgJArh5Pv+ZiB//t9br/+AznesFoF9ZAgkACfL5S57UOAkCGHxfzEZ86hOt1X76kxFfyna2H4B+JAADgARxEgRw89x5KeIv/7C12rf/KGL4pY62A9CXBGAAkCA35SToB+/3ugPgJurn3z1fuHtxzfdnW6sDSCIBGAAkzKCfBLVygvnljf4+EQUGz0343fOnffp7H6AbBGAAcAP160nQs19GfO1vW6v96t9EHPyyo+0AN4TfPQDJ5yqQAEDf+OtyxC/+rbXaf/lVxPfLEX/2+53tCUg+v3u4rqHU8ytEX1QD9I4ZYABA3/i7n16u/u8vWQ9wFr97uK5UKuLWUPNbSgAGPSUAAwD6xv6/drYe4Cx+9wAknyWQDLRqtRoTExNNaxYWFmJhYaFLHQFwHSO/0dl6gLP43QNwvtXV1VhdXW1aU61Wu9TN1QnAGGiHh4ext7fXtObg4KBL3QBwXZ//TMSP/1vr9X/wmc71ArTfD96P+NJUr7t4kd89g6FfXz+QdAcHBxeedw8CARgDbWhoKMbGxprWDA8Pd6kbAK7ri9mIb/xDa5tRf/qTEV/Kdr4noDU/eP/imi9vPN8L6Qt9diVav3t6b5BfP5B0w8PDMT4+3rSmWq3G4eFhlzq6GgEYA21sbCx2d3d73QYAbXLnpYi//MPnJzkXefuPIoZf6nhLQAue/TLia3/bWu1X/ybi8/++v96/fvf01qC/fiDpWtlWaGJiou9nidkEHwDoK638z/73Z80AgH7y1+XWZk9FRPzLryK+X+5sP1fhd0/vJOH1A/Q/ARgAMHD+1Ako9JW/++nl6v/+kvX9wu+ezrgprx+gtwRgAADAtez/a2frSTavH6AbBGAAAMC1jPxGZ+tJNq8foBsEYAAAwLV8/jOXq/+DS9aTbF4/QDcIwAAAgGv5YjbiU59orfbTn4z4Uraz/TBYvH6AbhCAAQAA13LnpYi//MPWat/+o4jhlzraDgPG6wfoBgEYAABwbV9o4QqJ359trY6bx+sH6DQBGAAA0BV/KrzgGrx+gOu43esGAEieoVTER9++uAYAAKAbBGAAtF0qFXFLwAUAAPQJSyABAAAASDQzwAAAAOAGs30FN4EArAcqlUrMz8/H5ubmtcaZnJyMSqUS6+vrMTs726bufu2yfa6srMTm5mZsbW1FrVaLTCYT2Ww25ufnI5fLtb0/AM426P+IHfT+AWDQ2L6Cm8ASyDaq1WqRSqUuvE1OTkYmk7nWsZaWlqJSqfRFn6VSKUZGRmJpaSkiItbX12NnZycKhUKUy+WYmZmJmZmZqNVqV+oXgMtJpSJuDTW/pfr4H7mD3j8AAP1HANZGxWKx5dqjsOgqSqVSrKysXPn57eyzVCo1wq25ubnY3NyMXC4XmUwmZmdnY2dnJ7LZbJRKpZiamhKCAYnxg/d73QEAANAqAVgbLS8vt1R3FBBdRa1Wi3w+f6XnHmlXn8d7yWQysba2dmbd+vp6RDxfUnnd3gG6oZVw68sbQjAAABgU9gBrk2KxGLVaLRYXF2NmZqZp7b179658nAcPHsTo6GhExJVmU7Wzz3w+3+ih2Uyxo9lgGxsbUSqVolgsxtzc3KV7B+iGZ7+M+Nrftlb71b+J+Py/jxh+qaMtMWDq9YjDevOaoZRlnAAA3SQAa5NCoRCZTCYKhULHjlEsFmNjYyO2t7djenr6SmO0q89KpRKlUqnx+PXXX29a/8Ybb8TGxkZEPA/LBGBAv/rrcsQv/q212n/5VcT3yxF/9vud7YnBcliPuP2t5jUffdtmwwAA3SQAa4ONjY2oVCrnLgFsh6MrMi4uLkY2m73SGO3s83iAlsvlIp1ON60/fpXKWq0WGxsbHblyJSSJK+H1xt/99HL1f/9TARjQPoM8g3DQ/24Nev8ANCcAa4Pl5eVIp9MXzoK6jnw+H9ls9lozt9rZ5/GN9FsN5DKZTOPKlY8fPxaAwQVcjro39v+1s/UAzQzyDMJB/7s16P0D0JwA7JrK5XKUy+WIiBgZGYlMJhO5XC5mZmbaFvAsLS1FuVyOnZ2dvujzaJwj9+/fb+l52Wy2EYAdLYcE6Dcjv9HZegDoBDPYAJpzFchrOr35e6VSiWKxGPl8PlKpVOTz+RcCo8sol8uxsrISa2trV75yZLv7PL73V0S03Nfpuut8XwA65fOfuVz9H1yyHgA6IZWKuDXU/NaPS2cBukUAdg2nN4I/y8bGRkxNTcX8/PyVjjE9PR2zs7PX2jS+3X2+9957Jx5ftP/XkZdffvnE462trZaeB9BNX8xGfOoTrdV++pMRX7ratowAAEAXWQJ5DZlMJtbW1qJWq8XOzk6USqXGEr/TisVibG1txfb2dsvj5/P5iIh49OhRX/V5+rlXnQF2nSWdAJ1y56WIv/zDiC+3sFL77T+KGH6p4y0BAADXJAC7ptMzs2q1WhSLxVheXo5arXbic+VyOWZmZmJzc/PCcTc2NmJjYyM2NzdbnmHVrT7PC88u6/RxAfrFF+5eHIB9f/Z5HVzFD96P+NJUr7sAALg5BGBtlk6nY3FxMRYXF2NjYyMePHhwIugplUqxsrISi4uL545Rq9Uin8/H3Nxc5HK5vuvzqsHV6SDv6dOnVxrnuGq1GhMTE9ceZ2FhIRYWFq49DnBz/Knwi3P84P2La7688Xw/HiEqVyFABaBdVldXY3V19drjVKvVNnTTWQKwDpqdnY1cLhfT09MnNnxfXl5uGoBNT083li12w1X7vK52zAA7PDyMvb29a49zcHBw7TEA4NkvI772t63VfvVvIj7/7y2j5SQBKgDddHBw0JZz6kEgAOuwdDod29vbMTU11QiXarValEqlM2d3raysRLlcvtReYd3uM51OtyW8asfSzqGhoRgbG7v2OMPDw9ceAwD+uhzxi39rrfZffhXx/XLEn/1+Z3ticAhQAei24eHhGB8fv/Y41Wo1Dg8P29BR5wjAuuTRo0cxNfXrueqbm5svBEvlcjmWlpaiUChENtuby4q10ufo6GhbArDR0dFrjzE2Nha7u7vXHgcA2uHvfnq5+r//qQCMXxOgAtBt7doOaGJiou9nkg31uoGbIpvNngiSztpIPp/PRzab7eiyw4u00udVZ26dDs3aMQMMAPrJ/r92tp5ku0qACgC0xgywLpqZmYlSqXTm51ZWVqJSqUQul4t8Pn/hWMfDpOXl5Xj8+HHj8RtvvBGzs7Md6TMi4t69eyf2CqvVai2FWac3vZ+cnLxyjwDQj0Z+o7P1JJsAFQA6RwDWRZlMpnH/9PK/n//85xERTYOn85TL5ROBVCaTuVYA1qzPiDixRDLi+SyxVpZs7uzsnHjcqStcAkCvfP4zET/+b63X/8FnOtcLg0eACgCdYwlkFx0Plvp5+d9Ffd67d+/E47OWSZ7l+Ky1dDp94jgAkARfzEZ86hOt1X76kxFf6s2Wn/Spz18yEBWgAkDrBGBdtLW11bg/MzNz4nOFQiHq9XrLt+Ph0fr6+onPFQqFjvUZ8XyfsOPB2HvvvXfpcU+HaACQBHdeivjLP2yt9u0/cgU/ThKgAkDnCMC66PgSwH5e/tdKn6+//nrj/vHll80cr1taWrpidwDQ375w9+Ka78+2VsfNIkAFgM4RgHXRxsZGRERPr/LYilb6nJ+fb9xvZd+y4zWZTKavA0AA6LQ/FX5xDgEqAHSGAKxLNjY2olKpRDqdjocPH/a6nXO12mc2mz0RYh2FZudZX19v3Df7CwDg6gSoAHB5ArArKpVKMTIyEqlUKmZmZpouA6xUKvHgwYOIiHjnnXe6ugF+J/tcW1tr3F9eXj63rlarRbFYjIjnSyrn5uYu8RUAAAAAXI8A7IrW19cbVzUslUoxNTV1YlngkaPPjY6Oxs7OTmSz3d2ttJN9ZjKZxsyucrkcKysrZ9ZNT09HxPMrPx6fCQYAAADQDQKwK8rn8y98rFgsxsjISOTz+Zifn4+pqamYmZmJubm52N7ePnHlxqT0OTs7G5ubm5FOp2NpaSny+XyUy+Wo1WqNUK1cLkc2m40PPvigq7PfAAAAACIibve6gUGVy+ViZ2cnCoVClEqlePr0aWOm1VHg8/Dhw8jlch0JfY5fqbHXfeZyudjf34+VlZV4/PhxTE9PR61Wi3Q6Hffu3Yv19fWYnZ290tgAMGiGUhEfffviGgAAuidVr9frvW4CLmtiYiL29vZifHw8dnd3e90OkDAfH0bc/lbzmo++HXHLPGqgzer1iMML/nU+lIpICVFJGH97YbANwjm6GWAAANAnUqmIW8ItAGg7+TkAAAAAiSYAAwAAACDRBGAAAAAAJJo9wAAAAOgpV9AFOk0ABgAAQE+5AATQaZZAAgAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJ5iqQAHCKS7EDAECyCMAA4BSXYgcAgGSxBBIAAACARDMDjIFWrVZjYmKiac3CwkIsLCx0qSMAAABIjtXV1VhdXW1aU61Wu9TN1QnAGGiHh4ext7fXtObg4KBL3QAAAECyHBwcXHjePQgEYAy0oaGhGBsba1ozPDzcpW4AAAAgWYaHh2N8fLxpTbVajcPDwy51dDWper1e73UTcFkTExOxt7cX4+Pjsbu72+t2AAAA4MYahHN0m+ADAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAAS7XavG4DrqFarMTEx0bRmYWEhFhYWutQRAAAAJMfq6mqsrq42ralWq13q5uoEYAy0w8PD2Nvba1pzcHDQpW4AAAAgWQ4ODi487x4EAjAG2tDQUIyNjTWtGR4e7lI3AAAAkCzDw8MxPj7etKZarcbh4WGXOrqaVL1er/e6CbisiYmJ2Nvbi/Hx8djd3e11OwAAAHBjDcI5uk3wAQAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRbve6AbiOarUaExMTTWsWFhZiYWGhSx0BAABAcqyursbq6mrTmmq12qVurk4AxkA7PDyMvb29pjUHBwdd6gYAAACS5eDg4MLz7kEgAGOgDQ0NxdjYWNOa4eHhLnUDAAAAyTI8PBzj4+NNa6rVahweHnapo6tJ1ev1eq+bgMuamJiIvb29GB8fj93d3V63AwAAADfWIJyj2wQfAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaLd73QBcR7VajYmJiaY1CwsLsbCw0KWOAAAAIDlWV1djdXW1aU21Wu1SN1cnAGOgHR4ext7eXtOag4ODLnUDAAAAyXJwcHDhefcgEIAx0IaGhmJsbKxpzfDwcJe6AQAAgGQZHh6O8fHxpjXVajUODw+71NHVpOr1er3XTcBlTUxMxN7eXoyPj8fu7m6v2wEAAIAbaxDO0W2CDwAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoArAcqlUrMzMxce5zJyclIpVKxsbFx6eeurKzEzMxMjIyMRCqVisnJycjn81Eqla7cTyfGBAAAALguAVgb1Wq1SKVSF94mJycjk8lc61hLS0tRqVQu/bxSqRQjIyOxtLQUERHr6+uxs7MThUIhyuVyzMzMxMzMTNRqtZ6OCQAAANAut3vdQJIUi8WWa4/CoqsolUqxsrJypecdzTybm5uLtbW1xucymUzMzs7G1NRUlEqlmJqaiu3t7Uin010fEwAAAKCdzABro+Xl5ZbqcrnclWeA1Wq1yOfz13peJpM5EVQdt76+HhHPl2ledJxOjAkAAADQbmaAtUmxWIxarRaLi4sX7u917969Kx/nwYMHMTo6GhFxqSWF+Xy+Ud9s9tnRrK2NjY0olUpRLBZjbm6ua2MCAAAAtFuqXq/Xe91EEkxOTkZExM7OTseOUSwWY35+Pra3t2N6eroRPq2vr8fs7Oy5z6tUKo3+IiL29/ebLkPc2NhozNRKp9Oxv7/flTEvY2JiIvb29mJ8fDx2d3evNRYAAABwdYNwjm4JZBtsbGxEpVK51r5eF6lUKjE/Px+Li4uRzWYv9dxCodC4n8vlLtyD63iYVqvVzrzKZCfGBAAAAOgEAVgbLC8vRzqdjtdff71jx8jn85HNZk8ET606vjl/q+HZ8T3KHj9+3JUxAQAAADpBAHZN5XI5yuVy1Gq1GBkZicnJyZifn2/rDKelpaUol8uNzeQv299x9+/fb+l5x0Ot019LJ8YEAAAA6BQB2DWdXvZYqVSiWCxGPp+PVCoV+Xz+hcDoMsrlcqysrMTa2tqVrhxZKpVOPG51jNN1x7+GTowJAAAA0CkCsGuoVCovhEGnbWxsxNTUVMzPz1/pGNPT0zE7O3vlqya+9957Jx5ftFfXkZdffvnE462trY6OCQAAANApt3vdwCDLZDKxtrYWtVotdnZ2olQqRaVSObO2WCzG1tZWbG9vtzz+0VUTHz16dOUeT/dz1dlax69u2YkxAQAAADpFAHZNp2dm1Wq1KBaLsby8HLVa7cTnyuVyzMzMxObm5oXjbmxsxMbGRmxubrY8w+os5wVyl3X8a+nEmAAAAACdYglkm6XT6VhcXIz9/f1YX19/IbwqlUqxsrLSdIxarRb5fD7m5uYil8tdq5+rhkyn+3769GlHxwQAAADoFDPAOmh2djZyuVxMT0+f2PB9eXk5FhcXz33e9PR0Y3llv+jEbK12jFmtVmNiYuLa4ywsLMTCwsK1xwEAAIBBsbq6Gqurq9cep1qttqGbzhKAdVg6nY7t7e2YmppqhGC1Wi1KpdKZs7tWVlaiXC5faq+wi47fjqDp+OytTox5VYeHh7G3t3ftcQ4ODq49BgAAAAySg4ODtpxTDwIBWJc8evQopqamGo83NzdfCMDK5XIsLS1FoVCIbDbbluOOjo62JawaHR3t6JhXNTQ0FGNjY9ceZ3h4+NpjAAAAwCAZHh6O8fHxa49TrVbj8PCwDR11jgCsS7LZbORyuSiVShFx9kby+Xw+stls0+WRl3XVWVanA67TM8DaPeZVjY2Nxe7u7rXHAQAAgJumXdsBTUxM9P1MMgFYF83MzDQCsNNWVlaiUqlELpeLfD5/4VjHw6Tl5eV4/Phx4/Ebb7wRs7OzERFx7969E/uP1Wq1loKn0xvUT05ONu53YkwAAACAThGAdVEmk2ncP7387+c//3lExLkBWTPlcvlEIJXJZBoB2PFllxHPZ561srxyZ2fnxOPjyzU7MSYAAABApwz1uoGb5HgA1o7lf624d+/eicdnLb08y/EZZul0+kTvnRgTAAAAoFMEYF20tbXVuD8zM3Pic4VCIer1esu34+HR+vr6ic8VCoXG57LZ7Imw7b333rt0r6cDr06MCQAAANApArAuOr4EsJvL/15//fXG/eNLJZs5Xre0tNSVMQEAAAA6QQDWRRsbGxERbb3KYyvm5+cb91vZY+x4TSaTOTOs68SYAAAAAJ0gAOuSjY2NqFQqkU6n4+HDh109djabPRE4HQVx51lfX2/cP2+mVifGBAAAAOgEAdgVlUqlGBkZiVQqFTMzM02XAVYqlXjw4EFERLzzzjtd2wD/uLW1tcb95eXlc+tqtVoUi8WIeL5Mc25urqtjAgAAALSbAOyK1tfXG1c1LJVKMTU1dWJZ4JGjz42OjsbOzk5ks9kud/pcJpNpzMIql8uxsrJyZt309HREPL9K4/FZW90aEwAAAKDdBGBXlM/nX/hYsViMkZGRyOfzMT8/H1NTUzEzMxNzc3Oxvb194sqNvTA7Oxubm5uRTqdjaWkp8vl8lMvlqNVqjaCuXC5HNpuNDz74oKWZap0YEwAAAKCdUvV6vd7rJgZVpVKJQqEQpVIpnj59GrVaLdLpdIyOjkY2m4033ngjcrlcX4Y+Kysr8fjx46hUKo2+7927F/Pz8zE7O9s3Y55nYmIi9vb2Ynx8PHZ3d9s6NgAAANC6QThHF4AxkAbhzQUAAAA3wSCco1sCCQAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEu93rBuA6qtVqTExMNK1ZWFiIhYWFLnUEAAAAybG6uhqrq6tNa6rVape6uToBGAPt8PAw9vb2mtYcHBx0qRsAAABIloODgwvPuweBAIyBNjQ0FGNjY01rhoeHu9QNAAAAJMvw8HCMj483ralWq3F4eNiljq4mVa/X671uAi5rYmIi9vb2Ynx8PHZ3d3vdDgAAANxYg3CObhN8AAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEi0271uAK6jWq3GxMRE05qFhYVYWFjoUkcAAACQHKurq7G6utq0plqtdqmbqxOAMdAODw9jb2+vac3BwUGXugEAAIBkOTg4uPC8exAIwBhoQ0NDMTY21rRmeHi4S90AAABAsgwPD8f4+HjTmmq1GoeHh13q6GpS9Xq93usm4LImJiZib28vxsfHY3d3t9ftAAAAwI01COfoNsEHAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKIJwAAAAABINAEYAAAAAIkmAAMAAAAg0QRgAAAAACSaAAwAAACARBOAAQAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAk2u1eNwDXUa1WY2JiomnNwsJCLCwsdKkjAAAASI7V1dVYXV1tWlOtVrvUzdUJwBhoh4eHsbe317Tm4OCgS90AAABAshwcHFx43j0IBGAMtKGhoRgbG2taMzw83KVuAAAAIFmGh4djfHy8aU21Wo3Dw8MudXQ1qXq9Xu91E3BZExMTsbe3F+Pj47G7u9vrdgAAAODGGoRzdJvgAwAAAJBoAjAAAAAAEk0ABgAAAECiCcAAAAAASDQBGAAAAACJJgADAAAAINEEYAAAAAAkmgAMAAAAgEQTgAEAAACQaAIwAAAAABJNAAYAAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEu93rBgAA6B/1esRhvXnNUCoilepOP5d11P+zX0b89fsR/9+fRuz/a8TIb0T8wWci/pe7z+/3a/8AQGcIwAAAaDisR9z+VvOaj74dcatPA6Rm/W/+U8T/8+8j/t+zEV+a6m5fAEBvWQIJAMCl/OD9XndwvlZ6+/JGf38NAED7CcAAAGgY5ADp2S8jvva3rdV+9W8iDn7Z0XYAgD4iAAMAICIGP0D663LEL/6ttdp/+VXE98ud7QcA6B8CMAAAImLwA6S/++nl6v/+kvUAwOASgAEAEBGDHyDt/2tn6wGAwSUAAwAgIgY/QBr5jc7WAwCDSwAGAEBEDH6A9PnPXK7+Dy5ZDwAMLgEYAAARMfgB0hezEZ/6RGu1n/5kxJeyne0HAOgfAjAAACJi8AOkOy9F/OUftlb79h9FDL/U0XYAgD5yu9cNwHVUq9WYmJhoWrOwsBALCwtd6ggABtdRgPTljYtr+zVA+mI2IhURb/7t2Ve0/NQnnvf+hbvd7gwABtPq6mqsrq42ralWq13q5uoEYAy0w8PD2Nvba1pzcHDQpW4AYPANeoCUSkV8cSri//5/i/jr8vMrVe7/6/P9yv7gM89nrfVjcAcA/erg4ODC8+5BIABjoA0NDcXY2FjTmuHh4S51AwCDLykB0p2XIv7s95/fAICrGx4ejvHx8aY11Wo1Dg8Pu9TR1aTq9Xq9103AZU1MTMTe3l6Mj4/H7u5ur9sBAACAG2sQztFtgg8AAABAognAAAAAAEg0ARgAAAAAiSYAAwAAACDRBGAAAAAAJJoADAAAAIBEE4ABAAAAkGgCMAAAAAASTQAGAAAAQKLd7nUD0O9WV1fj4OAghoeHY2FhodftABfwnoXB4j0Lg8V7FgaL9+yvper1er3XTcBlTUxMxN7eXoyPj8fu7m5ijgVcn/csDBbvWRgs3rMwWLr1nh2E3w2WQAIAAACQaAIwAAAAABJNANYDlUolZmZmWq6dn5+PycnJSKVSMTIyElNTUzE/Px+VSqVv+oyIWFlZiZmZmRgZGYlUKhWTk5ORz+ejVCp1sEsAAACA5gRgbVSr1SKVSl14m5ycjEwmc+F4KysrMTk5GcVisRF21Wq1KJfLUSwWY3JyMlZWVnreZ6lUipGRkVhaWoqIiPX19djZ2YlCoRDlcjlmZmZiZmYmarXapXsFAAAAuC5XgWyjYrHYcu1RWHSemZmZKJVKkU6nI5fLRSaTiUqlEuVy+cTMr6WlpchkMjE7O9uTPkulUmOW2NzcXKytrTU+d9TX1NRUlEqlmJqaiu3t7Uin0y0fHwAAAOC6zABro+Xl5ZbqjgKt8ywtLUWpVIpCoRD7+/uxvr4ehULhxMyq4/L5fE/6rNVqjWNnMpkT4ddx6+vrEfF8SeVlewUAAAC4LjPA2qRYLEatVovFxcUL9826d+/euZ+rVCqxsrISm5ubkcvlzqxZXFyMnZ2dEzO5yuVyZLPZrvUZ8Tx4O1rW2Gym2NFMsI2NjSiVSlEsFmNubu7CXgEAAADaIVWv1+u9biIJJicnIyJiZ2fnWuPk8/m4f/9+LC4uNq2r1WoxMjLSeFwoFC58Tjv7rFQqjbEiIvb395subdzY2GjM/kqn07G/v3+t409MTMTe3l6Mj4/H7u7utcbqp2O12+rqahwcHMTw8HAsLCz0up1LG+T+9d473rO9M8j96713vGd7Z5D713vveM/2ziD3r/fe6dZ7diB+N9S5tvX19XpE1NfW1q49Vi6Xa7k2k8nUI6LlY7ezz7m5ucaxW+35qD4i6uvr69c6/vj4eD0i6uPj49cap9+O1W6D3Hu9Ptj96713Brn/Qe69Xh/s/vXeO4Pc/yD3Xq8Pdv96751B7n+Qe6/XB7t/vfdOt/ofhO+TPcDaYHl5OdLpdLz++uvXHmtzc7Pl2qdPnzbuX7RcMaK9fR5fftnK0suIOLGf2OPHj6/dAwAAAEArBGDXVC6Xo1wuN5YkTk5Oxvz8fGxsbHT0uLVarbH/Vi6XuzCEamef5XL5xOP79++39LzjPXb6+wMAAABwRAB2Tac3f69UKlEsFiOfz0cqlYp8Pv9CYNQOT548iYjns6qOrrLYrT5LpdKJx82uFNmsrhPfFwAAAIDTBGDXUKlUXgiDTtvY2IipqamYn59v23FrtVrMz89HNpuNzc3NppvPd6LP995778Tji45/5OWXXz7xeGtrq6XnAQAAAFzH7V43MMgymUysra1FrVaLnZ2dKJVKUalUzqwtFouxtbUV29vb1zpmpVKJmZmZSKfT8c4777QUPrW7z9PPveoMsOteiRIAAACgFQKwa5qbmzvxuFarRbFYjOXl5cYeXUfK5XLMzMxcaqP74zY2NiKfzzcej4yMRKFQiMXFxa72eV54dlmnjwsAAADQCQKwNkun07G4uBiLi4uxsbERDx48OBH0lEqlWFlZaSm0ivh1ULW2tnZm8LS0tBTvvfdeS/uAtavPqwZXp2erHb+K5VVVq9WYmJi49jgLCwuxsLBw7XEAAABgUKyursbq6uq1x6lWq23oprNS9Xq93usmkqxWq8X09PSJDd/T6XTs7++39PyNjY3GTKxme3m1OhOsHX2mUqkTj1t9CZVKpZiZmWk8zuVyV54N98lPfjL+7d/+7UrPPctv/uZvxvDw8Jmfq1arcXh4GENDQzE2Nta2Y3bDIPceMdj96713Brn/Qe49YrD713vvDHL/g9x7xGD3r/feGeT+B7n3iMHuX++9c1H/BwcH8c///M9tO94nPvGJ+NWvftW28dpJANYlU1NTJ8Klzc3NyOVyVxqrWCzG0tLSCzOx9vf3W96Q/jyt9DkyMnLi2FcNwGZnZy89c+3IrVu34vDw8ErPBQAAANpvaGgoPv744163cSZLILvk0aNHMTU11Xh8nQBsbm4ucrlcTE1NnQiiisXitWaBtdrn6OhoW/bvGh0dvfJzX3rppfjlL38Zt27dit/6rd+6di8AAADA1fz3//7f4+OPP46XXnqp162cSwDWJdlsNnK5XGMJ43U3ks9kMvHOO++cCKvee++9a40Z0VqfV51ldjo0u85stV/84hdXfi4AAABwswz1uoGb5Pjyv3bIZrMxOzvbeNyuqzNe1Oe9e/dOPG51NtjpTe8nJycv1RcAAADAVQjAuiiTyTTuX2f533FvvPFG4347liVGXNzn8VlnEa0Hbzs7OyceX3UJKAAAAMBlCMC66HiwdN3N6o9ks9m2j3lRn6dngLUagB0P6NLp9InjAAAAAHSKAKyLtra2GvfbvRwy4sVg6qou6jObzZ4Ixlrde+z4uO3qFQAAAOAiArAuOr4EsF3L/47PvmpXqNZKn6+//nrjfrlcbmnc43VLS0tX7A4AAADgcgRgXbSxsREREYuLi20b8yhUSqfTJzbEv45W+pyfn2/cP7piZDPHazKZjP2/AAAAgK4RgHXJxsZGVCqVSKfT8fDhw7aNu7y8HBERjx49ast4rfaZzWZPhFhHodl51tfXG/fN/gIAAAC6SQB2RaVSKUZGRiKVSsXMzEzTZYCVSiUePHgQERHvvPNO083qV1ZWYmpqKpaWli68quNRzeLi4rmzvzrVZ0TE2tpa4/5REHeWWq0WxWIxIp4vqZybm2s6LgAAAEA7CcCuaH19vRFQlUqlmJqaOrEs8MjR50ZHR2NnZ+fEVRtPq9VqsbS0FOVyOVZWVmJkZOTc2VL5fD5WVlaiUChEoVDoap9HMplMY2bXUc9nmZ6ejojnyzSPzwQDAAAA6IZUvV6v97qJQVQqlc7cdD6dTkcul4vR0dHY2tqKcrkci4uL8fDhwwtnVEVETE5OntjY/viYmUwmyuVybG1tRS6Xi0KhEJlMpid9nj5GPp+PWq0Ws7Oz8fDhw8hkMrG1tdUI9LLZbEuzygAAAADazQywK8rlcrGzsxNzc3ORyWROBDvlcjmePn0aDx8+jP39/SgUCi0HP9vb27G4uBjZbPaFMSuVSuTz+fjggw9ifX39wvCrk32ePsbR8yuVSkxPT8fIyEjk8/kYHR2N9fX12N7e7nr4tbKyEjMzM40loJOTk5HP51vatL+dKpVKzMzMXLhP2kX65euBTunla7xXxz76/QD9ImnvQ387SbqkvWdb4W8ng6xf/i7d2HPUOiTM5uZmPZ1O1yOinsvl6pubm/WdnZ36+vp6PZPJND6+v7/f0T729/frs7Oz9YioR0R9bW3tSuP0y9cDndLL13injr2/v9947190m5uba/vXBZeVtPehv50kXdLes/W6v50kW7/8Xbrp56gCMBJlc3Pzwj+M2Wy2HhH1TCbTkTfk/v5+fXFx8YU/1Ff55dIPXw90Ui9f4508dqFQaPkf8Ts7O236iuBqkvY+9LeTpEvae/aIv50kVT/8XXKO+pwAjMTY399vpNCZTObcup2dncYbNpfLtbWHQqFQz2Qy9Vwud+1fLv3w9UAn9fI13uljH4190c17ll5L2vvQ306SLmnv2eP87SSJ+uHvknPUXxOAkRjH39AXvZHbMe3ztO3t7fr29nbj8dra2rV+ufT664FO6+VrvJPHPnrvLy4u1jc3N5ve+ul/xLiZkvY+9LeTpEvae/aIv50kVa//LjlHPUkARiIcT5gj4sI/jOvr643adDrdkZ62t7ev/MulH78eaKdevsY7fexMJtP0f8SgXyTtfehvJ0mXtPfscf52kkT9+Hfppp+jugokiVAoFBr3c7nchVecnJ2dbdyv1WrXvvrFWa5z1ct+/HqgnXr5Gu/ksTc2NqJSqcTS0tL/v727P0oka/sAfFv1BND6ZNBmgDMRLGYAMxEsZqA1EUxpBmIEO5ABbAQKGcBmMHQG/f6xLzx86Awo2M3xuqqsEmhOn7PFPUd+e/r0q/sH7yW1OjR3krrUanbO3Emq6jgvffTvqAIwktDtdhe/NxqNrd6T5/ni97/++mvvfXqL1MYD66r8jB/y3N+/f48sy+LLly+v7h+8l9Tq0NxJ6lKr2TlzJ6lKbV5KYTwCMI7eeDxeefz58+et3rdctHVIo+dSGw+sq/Izfshzj8fjGI/HURRFnJ6exvn5eVxdXalHaim1OjR3krrUana5bXMnKUptXkplPAIwjt5wOFx5vJwy/8r6cetFXZXUxgPrqvyMH/Lc65duTKfT6Ha70W634+TkJNrttrqkNlKrQ3MnqUutZufMnaQqtXkplfEIwDh6j4+PK4+3va75v//978rjp6enfXXpTVIbD6yr8jN+qHNPp9ONPwzW9fv9uLi4iKurq63OCYeUWh2aO0ldajUbYe4kbanNS6mM5z+Vnh32YDqdrjx+bRo9mUz21qe3SG08sK7Kz/ihzp3nedzf30dRFDGZTGI4HG6ca67b7cbT01OMRqMdeg77lVodmjtJXWo1O3/d3EmqUpuXUhmPAIyj99JEuauiKPbSzlulNh5YV+Vn/JDn7nQ6G8d0u934/v37xvHj8TguLy9jMBjspT+wq9Tq0NxJ6lKr2TlzJ6lKbV5KZTwugeTovbaI1pdt/vz58+2d2YPUxgPrqvyMv+e5syyL6+vrmM1m0ev1NtoYDodxd3f3qv7AW6VWh+ZOUpdazf7qPeZOUpDavJTKeARg8P+qTqP3LbXxwLoqP+O7nrvVasU///yzccvo79+/77FX8P6OqQ6rahPq5Jhq1twJ6c1LVY9HAMbR23YDvvdq561SGw+sq/IzXvW5R6PRyh/yRVH8dgNgOISqa2Hf5zZ3krrUanaX95g7OUapzUupjEcAxkF1u904OTnZ68/FxcXKOc7OzvbS132181apjYfjknrN1qG+Hh4eVh7by4QqpFaHdahtOKTUanZX5k6OTR3qZp9SGY8AjKP32hR5ffll1Wn0XGrjgXVVfsbrUF+NRiOazebi8b42FYVdpFaHdahtOKTUanZX5k6OTR3qZp9SGY+7QHJQzWYzer3eXttcL5pPnz7FeDxePC6KYqvCWt+A7/z8fB/de7PUxsNxSb1m61Jfl5eXLt+gUqnVYV1qGw4ltZp9DXMnx6QudbMvqYxHAMZB5XkeeZ4f9Bzrl1dNp9ONzTKfM5lMVh4v/1+lKqU2Ho5L6jVbl/pa/m9c9VJwPqbU6rAutQ2HklrNvoa5k2NSl7rZl1TG4xJIjt6nT59WHm+7JHp5OWaWZQf/0r+t1MYD66r8jNelvpbfX/VScD6m1OqwLrUNh5Jazb6GuZNjUpe62ZdUxiMA4+g1Go2VSfDx8XGr9z09PS1+Xy/oKqU2HlhX5We8LvW13N7l5eWb24NdpVaHdaltOJTUavY1zJ0ck7rUzb6kMh4BGEn48uXL4vfla5N/Zfm4m5ubvffpLVIbD6yr8jNeh/paXg5e9VJwPq7U6rAOtQ2HlFrN7srcybGpQ93sUxLjKSEBo9GojIjFz+8MBoPFsXmeH6RPk8lkpU/39/dbv7eO44F9qvIzXof6yvO8jIjy+vp6L+3Ba6RWh3WobTik1Gp2V+ZOjk0d6mbdR/+OagUYSVi/NXK/3//l8ct3uftdEt3tduPm5mbn2y2v3/J1F4ccD9RBlTVbdX31+/2YTqeRZVl8+/btze3Ba6VWh1XXNhxaajW7C3Mnx8h31BrOs1UncLAvy2l2o9F48bjZbLY4rtls/rLNZrO5knLPZrOt+9Pr9Vbee3t7u/V7y/Iw44E6qbJm93nuwWBQZlm2OGY0Gr3Y3mQyWRz7q+PgvaRSh4dsE+oklZo1d/JR+I5ar3lWAEZSlgv6pWJuNBplRJRZlv32H4vlfxxihyWis9lssUx7m38gXrLv8UDdVFmz+zp3p9PZOG+n09k4bv7Hfp7n5WQy+eU44D2lUIeHbhPqJIWaNXfykfiOOtv5HIciACM5y/9HqdVqlaPRqJzNZuVgMFgUYqPR2KoQ5+3MfwaDwYvHzmazstVqbSTy6z/NZnPRr/ceD9RRVTW7r3Mv72+w/JNlWdlqtcpOp7No6/r6Wq1SS8deh+/RJtTJsdesuZOPxnfUehCAkazb29uy0WgsCjPLsrLZbJa9Xm/rNgaDQZnneZllWeUbbu5jPFBnVdbsW889mUzKTqezOPe8jTzPy1arVfZ6vdr9AQDPOeY6fK82oU6OuWbNnXxEvqNW66QsyzIAAAAAIFHuAgkAAABA0gRgAAAAACRNAAYAAABA0gRgAAAAACRNAAYAAABA0gRgAAAAACRNAAYAAABA0gRgAAAAACRNAAYAAABA0gRgAAAAACRNAAYAAABA0gRgAAAAACRNAAYAAABQY6enpzGdTqvuxlETgAEAAADU1N3dXRRFEff391V35aidlGVZVt0JAAAAADadn5/HdDqNLMtiNptV3Z2jZQUYAAAAQA31+/3FpY9FUUS/36+4R8fLCjAAAACAGrq4uIjxeLx43Gg0YjQaVdij42UFGAAAAEDNjMfjlfDrpefYjgAMAAAAoGa+f//+7PP73gy/KIrodrt7bbOOXAIJAAAAUCNFUcTp6WlERPR6vWi32yuv7yvKKYoiLi4uotFoRK/X20ubdWUFGAAAAECNzFd/dTqdaLVakef5yuv7WLFVFEX88ccfMZ1O4/Ly8s3t1Z0VYAAAAAA1cnp6GkVRxGQyiTzPo9vtxtXV1eL1PM9jMpm86RzLG+zPZrPIsuxN7dWdFWAAAAAANdHtdqMoimg2m4uVX51OZ+WY6XQaw+HwVe2Px+M4Pz9fhF95nicffkUIwAAAAABq4/b2NiIibm5uVp5fD8F23Qx/PB5Hu92Oi4uLmE6ni+ezLItut7v4SZVLIAEAAABqYDgcxuXl5bOXOI7H47i4uFh5bttLF/v9/sZG+s/Jsixms9lOfT4WVoABAAAA1MBLq78iIhqNRjQajZXntl2x1Wq1oizLKMsyBoPBymvz58uyTDb8ihCAAQAAAFRuvq9XlmUblzvOLW+EH/G/u0XuotfrLX5fD9RSJgADAAAAqNh89ddL4df8teVLHouiiH6/v9N5ljfP//r1626dPGL2AAMAAACoUFEUcXp6GhG/39fr6upq5dLHZrO5cVnjNueJiBiNRh9mFZgVYAAAAAAVmgdarVbrt5var+8PNhwOV+7q+CvLq78iXAIJAAAAwDuZ7+X17du33x6b5/lGcDW/fPJ3lleKNZvNHXp4/ARgAAAAABXp9/tRFMWzd3l8yXpQtu3dIH/8+LH4vd1ub9/JBAjAAAAAACqyy+qvueculfxdCDadTqMoisVjK8AAAAAAOLjxeBzj8TiyLItWq7XTe9fvFnl/f//L45f3/8qyLPI83+l8x04ABgAAAFCB16z+mru6ulp5PA/TXvKR9/+KEIABAAAAvLuiKKLf70fE5mqubeR5vhFkzQO15yyvAPv69euzx0yn07i7u4t2ux0XFxdxcnLybKjW7Xbj9PR0I4SrMwEYAAAAwDubh1WdTmdjP69trQdQ8w311+2y/1ez2YzPnz8vgq/nQrXRaBRFUUS3243pdPqqvr83ARgAAADAO5tvWn9zc/PqNrbdDH++0izi35Vjy+9ZPj7P82g0GnF9fR23t7eL966Havf394s9y87Ozl7d//ckAAMAAAB4R91uN4qiiGaz+ebN6LfZDP+l/b/u7u62avfHjx8brz88PGyEaXUmAAMAAAB4R/PVVW9Z/TW3voH+dDpd2e8rYnX/r8vLy4j4d2XXYDB4cf+xLMsWYVmv19t4/enpaec7V1bpP1V3AAAAAOCjGA6Hi32zDrWJ/O3t7SK8Wt/E/vHxMX7+/Bn39/fx999//7Kddrsdw+FwI1CL+Hel2cPDw/46fWACMAAAAIB3Ml/9FREH20B+HrLleb5xjru7u8jzPEaj0W8vX1y+XHI8Hkej0YiIf+9geXZ2djSXP0a4BBIAAADg3QwGgyjL8uA/873FWq3W4k6TeZ7H9fV1TCaTrcKrPM8X7SyvAru5udnL5ZvvyQowAAAAgITd398/uzn+NhqNRkyn03h8fIyI/61ae+vm/e/NCjAAAAAAnjXfNH++l9jNzc3KZZzHQgAGAAAAwLPm+4DN7y75+fPno9r7a+6kLMuy6k4AAAAAUE8nJycR8e/lkKPRqOLevI4VYAAAAAC8aH73x2O89HFOAAYAAADAi87OzqLVai0uhzxG7gIJAAAAwLOKooifP3/GYDCouitvYgUYAAAAAM/6888/4+HhoepuvJkADAAAAIANd3d3cXl5udgD7JgJwAAAAAA+uKIo4u7uLoqiiIiIfr8fERGdTqfCXu3PSVmWZdWdAAAAAKA67XZ7EXo1Go34+vVrXF9fV9yr/RGAAQAAAHxww+Ew2u12nJ2dxf39/VHf8fE5AjAAAAAAkmYPMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGkCMAAAAACSJgADAAAAIGn/BzdDe6e7s5JaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLo0lEQVR4nOz9T2yj6X0n+v6oqgQOnFFR6sEAggRMmpoe+OAugqKqZpHdWOTxJr7JxGIVEF87G5eUzg3OBYSx5LLXbVlKrM3BzbRYnsV1YGCqRfskSC4w02L3rO+pErtnZ5xjsTuABAIHcImtxIiRdJN3UREjqSSKkvhH1Pv5AARI6eHv/VGkqvv96nmeN9VsNpsBAAAAADfcyKAbAAAAAIB+EIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCLcHnQDcBmf//zn45e//GXcunUr/tW/+leDbgcAAADo0P/1f/1f8dlnn8XnPve5+MUvftHXY6eazWazr0eELrh161Y0Go1BtwEAAABc0sjISHz22Wd9PaYZYQylwyBsZGQkJiYmul6/Vqv1tL5jDd9xHGu4jnUTX5NjDc9xHMuxBn0cxxquY93E1+RYw3McxxquY92k13RY/9atW12vfa4mDKHJyclmRDQnJyeHsr5jDd9xHGu4jnUTX5NjDc9xHMuxBn0cxxquY93E1+RYw3McxxquY92k19TP13KSzfIBAAAASISBLo184403Bnn4Y1KpVPwf/8f/Meg2AAAAAOiRgQZhOzs7kUqlojnA/foPj59KpQbWAwAAAAC9l/ilkYMM4QAAAADon4FfNbLZbMbc3FxkMpmBHL9er0exWBzIsQEAAADon4EHYcViMb7xjW8MtIe5ubn40pe+NNAeuJxarRZTU1NtxywuLsbi4mKfOgIAAIDkWl9fj/X19bZjarVan7p51cCDsFwuN+gW4v79+4NugUtqNBqxt7fXdszBwUGfugEAAIBkOzg4OPc8fZAGHoSNj48PugWG2MjISExMTLQdMzo6euG6i4uLcXBwcKnnOlZ/3dSf3009Vr/c1J/fTT1Wv9zUn99NPVY/9et13dT3yudiOI5zk4/VTz4Xw3OsfvK5OG50dDQmJyfbjqnVatFoNC7b3pWkmgPcLf7WrVuxv78/8F+CTz75JMbHx+Ozzz4baB90bmpqKvb29mJycjJ2d3cH3Q6n8B5xGp8LTuNzwWl8LjiNzwWn8bngND4X19sg35+BXjXyOl2x8Tr1AgAAAED3DTQIW11dHfhssIiIO3fuxOrq6qDbAAAAAKCHBhqEffOb3+zr8T7++OMzv9fvXgAAAADor4EGYf22sLAw6BYAAAAAGJBEBWHPnz8fdAsAAAAADMjtQTdwGR9//HHU6/WOx1er1djY2LjQcwAAAAC4WYYiCPv4449jdXU1yuVyVKvVS9VoNpuRSqW63BkAAAAAw+LaB2GPHz+OtbW1iHgZZgHDYXFxMQ4ODq7FlWG5PnwuOI3PBafxueA0PhecxueC0/hccJZU8xqnSz/+8Y+jUChERLRmc12l3VQqFZ999llXemOwpqamYm9vLyYnJ2N3d3fQ7QAAAAAdGuQ5/bWeEbayshIRLwOsZrMZmUwmstlsZDKZiIh47bXXzq3x85//POr1erzzzjvxySef9LRfAAAAAK6vax2EVSqV1kywra2tmJ2dvXStpaWleOONN7rVGgAAAABDZmTQDbSTTqcj4mWIdZUQLCIik8nE66+/3oWuAAAAABhG1zoIO1wCef/+/a7U29jY6EodAAAAAIbPtQ7CDmeBvXjxoqv1AAAAAEieax2Effvb345msxmVSqUr9X7wgx90pQ4AAAAAw+daB2F37tyJ733ve/H06dP427/92yvXszQSAAAAILmudRAW8XKj/Gw2G4VC4Up1Pvroo67NLAMAAABg+NwedAOd2Nrainv37sUbb7wRy8vLMT4+3tHzXrx4EfV6PXZ2duKdd97pcZcAAAAAvdNsRjSa7ceMpCJSqf70M4yGIgh7//33IyJiZ2cnFhYWLlWj2WxGyicBAAAAGFKNZsTt77Qf8+lbEbfEH2e69kHYm2++GcViMSIiUqlUNJvnRJ+nEIABAAAAcK33CHvy5ElsbGy0wq/LhGBXeR4AAAAAN8e1nhF2eJXHw5lguVwu8vl8pNPpC+8T9vbbb8fHH3/cw24BAAAAuM6udRBWqVQilUpFOp2O58+fx+uvv37pWo8ePYrXXnuti90BAAAAMEyu9dLIdDodERGPHz++Ugh2WOvu3btd6AoAAACAYXStZ4TNzMzE+++/H5lMpiv1njx50pU6XB+1Wi2mpqbajllcXIzFxcU+dUQS1Ov1VlAPAADAP1tfX4/19fW2Y2q1Wp+6edW1DsIWFhbivffei2q12pV6ZoTdPI1GI/b29tqOOTg46FM33GSVSiWePn0axWIxcrlcbG5uDrolAACAa+fg4ODc8/RButZB2NzcXNy9ezeePn0a//E//scr1/vJT34Sv/d7v9eFzrguRkZGYmJiou2Y0dHRPnXDoByGVJVKJarVausiGel0OjKZTIyPj0c2m418Ph+5XO6V5xcKhahWq7G9vd36Wr1ej3K5HE+fPo1yuRz1er2PrwgAAGA4jY6OxuTkZNsxtVotGo1Gnzo6LtVsNpsDOXKHqtVq/Jt/82/ixz/+cfyH//AfrlTr/v378ezZsy51xiBNTU3F3t5eTE5Oxu7u7qDbubJisRgLCwsXfl42mz0W3lxWKpW68HPS6XTs7++f+r1CoRClUunCNbe2tk4Nqk5Tr9djZWUl1tbWLnycbDYbuVwupqenY2trK0ql0is/y8NwrFKpvPL8ubk5M8IAAIC++6wRcfs77cd8+lbErWu9I/xgz+mv+Y8mIpPJxNtvvx3f+MY3rlTnk08+OfWEFq6D+fn52N/fj+3t7Zibm2s7NpfLxdbWVmt8NzSbzdjZ2YmNjY22e19lMpnY2NiInZ2dM0OwiIjNzc3Y39/vKNhaWlqK7e3t2N/f7zgEW15ejrGxsVdCsMOA6rDe4eva2tqK+fn51murVCqxtrYWCwsLrcDu5IyvwzrNZrNr+xQCAAAwWNd6RthPfvKT1v2lpaVIpVLnhgSnqdfr8c4770S9Xo/PPvusmy0yIDdtRthJCwsLUSwWX/l6P2YiVavVmJ6ePvV7+/v7l9okfmZm5tQgemNjI+bn5y/UWz6ff2XfwPn5+djY2OioxtraWiwvL7/y9UwmEzs7O6c+5+T7YUYYAAAwCGaEXd213iPsu9/9bnzwwQetx81m81LLoA6fe5nlXzAIZwVhl1k+eVGZTCay2ewrwdXc3Nylr5S4sLBwau8XCcHK5XLk8/ljX0un0/Hee+9FNpvtuM7S0lLMzc3FzMzMsVlgL168OPM5rhAJAABwM1zrjPDBgwfRbDbjcNKaIIukOGspXr+W6J12nKsc+7TnXiRcqlQqXQnBjvbz0UcfHevBZvgAAAA337UOwg5nkKRSqVYgdtkbDJOzQqLx8fH+NnINVKvVmJ2dfeXrm5ublwrBDqXT6a7tsXadlEqlV5aO8s/K5fKgWwAAAAboWi+NvHPnTmSz2fjggw9idXU1stnspYKAarUa3/3ud+PDDz/sfpNwA532e/baa691tV6nv8uFQuGV2Vrz8/Mdb6zfTiaTiaWlpUsvue6nSqUSGxsbUS6Xo1qtRjqdjvHx8Uin05HJZOLhw4cREfHo0aNYXV1tu+y0XC5HoVCI8fHx2NjY6MrP8rqqVqtRLpdjc3OzFYJdpz+OJOm9AACA6+BaB2EREQ8fPozp6en45je/eekad+/eja985SuJnE0Dw6xcLp+6yf7q6mrXjvH48eNWEFav16/dfmD1ej0ePXrUurplJpNpXTSkWq1GpVKJSqXS+v7hc9o5DBfr9XosLCyceZGAYVatVqNQKES1Wr3Wy16T8F4AAMB1cq2XRkZE5HK5rv31/t69e12pA/THaRvsX2XT/tOk0+kLbdrfb4VCoRVybWxsxM7OTmxubsbm5mZsb2/Hzs7OK7OIzgtTkvBHgUwmE9vb27G/vx9LS0uDbudMSXgvAADgOrn2Qdjdu3e7Nvvjf/lf/peu1AF673AJ4EmPHz/u+rEKhUJEtL9yZDuHy9ump6cjlUrF2NhY5PP5U6/8eRFra2ut5XxLS0unBnaZTCa2traO/Tt53h5hGxsbkclkIpPJxObm5pV6HAYnL7RwnSTtvQAAgEG79kFYRMTrr7/elTr/6//6v3alDtB7Z4UCV9kg/yy5XC5WV1cvPDunXq/HzMxM5PP5Y5vU1+v1KJfLsbCwENPT06cu7+zEyspK6/5ps+OOWlpaas18Oi/Qy+VysbOzEzs7Oz35eV43g5p1dd57FpG89wIAAAZtKIKwbnn+/PmgW4iIl7M1ujlD4XB/oKOzR86ztrYW+Xw+xsbGIpVKxfT0dBQKhStdUa0XNUmu0z43vdxIfGlp6UJLLqvVarz++uvnhlzVajVmZmYu/Htwmb2tDi8q4qqRg1csFq88IxAAAOi+oQzCPv744/jwww87vv3kJz+JL33pSz3fMLler0cqlTr3Nj09HZlM5krHWVtbi5mZmUilUjE7OxvPnj2LbDZ77j5o5XI5xsbGYnl5OSJezrrZ2dmJ1dXVqFQqkc/nI5/PX+hn1YuaJFu1Wj01zLkuM2bq9Xprk/O5ubnY2NiI7e3t2NraOnM/qnw+f6GA6uTvS6dB2uPHj/2uDVi1Wu1oNhgAANB/1/6qkREvg6/V1dUz9wzqRLPZjFQq1eXOjrvIX/8PQ6OLqNfrsby83DpONpuNra2tjmfJlMvl1ky0+fn52NjYaH3v8Ep0hzNXZmZmYnt7+9wZMr2oCWf9nk9PT/e5k9MdhlKn/f7lcrlYWFg4NfgqFAqxvb3d0TFOhuXLy8vx4MGDc39/Dq8oeR2vgJkE9Xr9Wu9JBgAASXftZ4Q9fvw4pqeno1gsxs7OTjSbzUvd+uHofj7t5HK5C88IKxaL8frrr7dCsMMZKJ2GYIczWCJenmAfDayOOtyXqVqttsb3syZEnB2EXacr7LULoQ83sD+pUql0PLMrnU4fC7IO9yPr5I8BzWZTCDYA9Xo9ZmdnLU0FAIBr7FoHYT/+8Y9jdXW1FWT1ekbXVRSLxajX67G0tBRbW1ttbxe9Mtjy8nIsLCxEvV6PTCYTOzs7p149rp3DZVyH9c5yOIsr4uWsl3az3HpRk+treXm5o6W/p91mZmYudKyzlvZdl3AnnU6fG0JnMplTr3h7kavgnhxbrVZbfxi4qkql0trMv516vR7FYjFmZmaOHfdw+d/RPQHX1tZeeX61Wo3l5eXWFTWnp6db/56ddHick5+fk/L5fKve0Vs3l4QWi8VjxxkbG4uZmZlTX2PEy5/naXvGnVwWf9ZzO3kvDh0ujz+6J+Nhf8vLyx0FcdVqNdbW1l65mMPR9+Bwn0dLbQEAuFGa19jMzEwzlUo1R0ZGmqlUqjk9Pd0sFArN5eXl5vLycnNtbe3c2/LycnNhYaE5NjbWHBkZ6VmvmUymmclkul53bm6uGRHNiGim0+nm/v7+hWvs7Oy0akTEuTU2NzePHbNfNS9icnKyGRHNycnJK9e6ro7+fDv9OXfL/Pz8qcfv5q3d78tZx9/a2urL6z9paWnpWB+5XK7j56bT6Vdex0XkcrlTfxbZbLa5vb19oVrb29vN+fn5Yz2d9vu4v7/fXF1dbWaz2WPH3NjYaDabr/48jt7m5+dbddqNy2QyZ36eT77/Z1ldXe3o92N7e7vjn//hv1XpdLq5ubl5rEYmkzmz9/39/eb29vYrPW1vbx+7Ha3XyXtx0sbGRmv86upqc3t7u7mzs9Pc3Nw89n7Nzc298tz9/f3m0tJS63Uc7XF/f/+V9/toXzs7O+f2BgBA7336WbMZ32p/+/SzQXd5vkGe01/rPcIqlUprNsDW1lbMzs5eutbS0lK88cYb3WrtmFKpFNVq9cylgZeVz+ePLaO67P5aR2eV5HK5jvcYing586BUKh37Wq9qcr3Nz89fegPw58+fX+i5Z32ersvMlIv8HuZyuSiVSse+VqlUOt74f2trKwqFwqk1ZmZmYm5uLp48eXJuT9VqNZ4+fdrxrKNsNhvpdPrY+7a9vR0zMzMxPj4em5ubkc1mY3x8PFZWVlozpYrFYiwsLMTy8nK8ePEitra2WhfxeP78eWuGUbVajZWVlVNnyBUKhY5mvc3NzV1qv8WzlMvl1vLtx48fH/s3KpvNxubmZmt56qNHj47N7k2n05HNZuPFixfHap72Pl/0vTi0vLwca2trkU6nY3t7+9gS+8OZt4eflVKpFNPT08f+u/HixYvWhUuO/nyfP38es7OzkcvlYnV1NTKZTJTL5VheXo56vR71ej0WFhZOXe4LAABDp+/R2wUczuL61re+1ZV609PTXalzUjabvfRsrbMc/at/HJmJcRlH6ywtLXX0nKMzBk6bWdCLmhdhRlhvnTYja3V19dL1Ts7IiXNmhJ2cVdON34OrODmz6SKf36OzIa/yOs76mVym5tFa581COjlL6KxZeSdnrh2dGXZUJ7NDt7a2OprBtb+/39UZYUdn4J71eT+vTqe9H+r0vTj634Tz3uuj/9aeNXvxaI/pdPrU9/XkZ7df//4AAHA2M8Ku7lrvEXb41+779+93pV63Z2xFvJyVUalUol6vx9jYWGv/m5OzNy7icO+dQ9ls9sJ7gh3t76hOf5ZHZzGcNhOl2zXhqOs+I+wiTrswxmVex9LSUuzv7585k/LwSpWd1L7IxTqOXqBgfn7+zL3RTl4p8ax/b0/ODr2u7+lZn8GjX+/GpvidvheHM9/S6fS5/z04OkuuXC6feoGGo6/jyZMnp76vJz9rz58/76hXAAC4zq51EHa4FPLkUpOr1uumk8tyqtVqFIvFKBQKkUqlolAovBIcnefklRUfP3586f5OngB1etJ1ctzR19CLmnDUWZ+pnZ2dPndydacFKj//+c8vXWtzczO2t7dPXXJXLpdjdna2q+FSp8tAj75nF1k6ep2usPjkyZNYXV2Nzc3Njv740K8Q7/BiLBGd/Xs7Pz9/7D24yAUaTjp6vOv0XgEAwGVd6yDs29/+djSbza4FJj/4wQ+6UudQtVo99S/tR5VKpZiZmel4f6RqtXrs9abT6SvtpfXs2bNjjzs9QX3ttdeOPT46E6AXNeGos2Ydnff7dh2dFlyc/F24qGw2G9vb26fOuqpUKvHo0aMr1b+My17Rs1t/6OiGdDodS0tLp/6bezj7dxCO7s3V6R8ejv4ODePvDQAA9Mq1DsLu3LkT3/ve9+Lp06fxt3/7t1eu1+2lkZlMJjY2NmJ1dTXm5+fbnqAcXpL+PCd7PDyZKZVKUSgUYnp6OlKpVIyNjcXMzEysra21nZVw8i/4l529dXQmTi9qwklnbTJ+XZfSXcRFlia2Mz8/Hzs7O6+EUKVS6VqHH5cNzfrtcIZvuVyObDbb8QUOetHHRZ38jN2E3xsAAOiGax2ERbzcFyebzb6yXPCiPvroo578NX9+fj6WlpZiY2MjdnZ2Yn9/P1ZXV0890atUKq/so3PSySuljY+Px8zMTOtKYIcnRPV6PSqVSiwvL8fY2NiZe251aynL0ZOoXtSEkx4+fHjq169zwHOWk/8edCsIO6x12hVle7EnYlIc/lu9sbHRdl+0frnMv78nr0h5nWbeAQDAIN0edAOd2Nrainv37sUbb7wRy8vLxzZvbufFixdRr9djZ2cn3nnnnR53+dLh0pqlpaUolUrx6NGjYycx5XI51tbWYmlp6ZXnnjbb5Z133onV1dV48OBB60S3Wq3G6urqsdCsUCjE5ubmK0t6Lhs2nTypPnoS1Yual1Wr1WJqaurKdRYXF2NxcfHKdYZFpVKJlZWV2NzcHHQrZ5qfn39lD76IlwHPVZYLD8LJ35nzZhaVy+VYXl6O7e3tjupnMpl48uTJsT8Y2IPvchYWFqJYLMb8/PyV9tbqpsts0H/yv5PdDF8BAEiu9fX1WF9fv3KdWq3WhW4uZyiCsPfffz8iXi6l63SvrZOazWakUqlutnWuubm5yOVyMTs7e+ykdGVl5cwg7Kh0Oh0fffTRqbNJNjY2Xtl77NGjR5HL5Xqy7KgXs7e6UbPRaMTe3t6V6xwcHFy5xjB59OhRx4HyoBzuj3dytmO5XI5KpTKwZWoXdfJz3snsokwmE5VKJcrlcsezkU6GgzY2v7jDECziahvMd9vh5yHin6+0ed6/80f/0CAEAwCgWw4ODrpyDj5I1z4Ie/PNN1snJqlUKprN5oVr9DsAOyqdTsf29nbMzMwcO5E57QT35InrySt/nTQ/Px/b29utn0+9Xo+VlZVjJ3DpdLorgdPRPnpR87JGRkZiYmLiynVGR0evXGNYHAZJ7U70u72M6rL1VldXT132u7y8fGwD8W7oJFy4jJMXhegkzD8MLhYWFi69l96wBIVX0c3PaaVSaf1bmslkrtU+Zg8fPjz2e1AsFk/9Y8pRRz83wzaDEgCA62t0dDQmJyevXKdWq0Wj0ehCRxd3rfcIe/LkSWxsbLTCr8uEYFd5Xjc9efLk2OPTTuJPnvDev3//3Lonl46tra0de9ytWT9H6/Si5mVNTEzE7u7ulW9JWRZZr9dby+cuenL885//vKu9dBJiZDKZUwO7wyXG3VKtVi90ddeLOHnFv05/7plMJqrV6qnLQ09zMkg/a4+1YXDy34azgvduzno7uvdcu7qD2Ntwbm7uWDDXyf5vR1/P48ePe9EWAAAJtLi42JVz8G5MaLmsaz0j7PB/9g9nguVyucjn85FOpy+8T9jbb78dH3/8cQ+7bS+bzUYul2udnJx2onXyBKuTGQmZTCay2eyxpZdHl41ddlZDu156UZPjerUUdXZ2tjXz6aLLpbrdU6f1lpaWYmtr65VN8peXl1u/V1dRLpcjn8+fGbpd1dGZPBfZwP4wCFtbW4vp6emYn59vO/5o7Uwmc+6MoU51+j4dHXfec877/snZbKfNgDotJHzx4kXX/l0plUqvhJanHe+kk79X1Wr12NcuO/Pw6B5w1Wq17bLZSqXS+m/CWRdvAQCApLrWQVilUolUKhXpdDqeP38er7/++qVrPXr0KF577bUudndx+Xy+7RXvTl7lq1P37t07FoRVq9XWieTJ73V6EnbyBO9ob72oyXFnzUi57Il+uVyOhYWFVt0HDx5c+PhXWYZ21Zk7W1tbrSunHpXP52N1dfVSoU+9Xo/l5eUoFotnXnmx3XM7USwWW6/9olcfPBqeLCwsxPb29pmhRrFYPDZD7rxlo924+EW3nHX8o384WF5ejp2dnSgUClGv12NrayuKxWLrc3FY42TodOjkZ/e0f7NOhm+FQiFWV1dbf2jY2NiIbDbbCigj/jl83NraisePH58aMC8sLMTm5ma8ePEiVldXY3p6+tjntdP3Ym5uLlZXV1thXKFQOHUPyXq9Ho8ePYqIf76q8Wk6fd+P/u4O+rMCAABd0bzGxsbGmiMjI80/+ZM/6Uq9mZmZrtS5rM3NzWZENCOiOT8//8r3NzY2Wt+PiObm5mZHdVdXV489b2Nj48ya29vbHdVcWlo69rydnZ2e1ryoycnJZkQ0JycnL13jOpufnz/2szq85XK5jn5u+/v7za2trebS0lIzk8m8UqfdZ2tnZ+fUY0dEc39//1KvJ5vNnlrv6Ge1Eyc/Q4e3bDbb3Nra6qjG/v5+c3V1tZlOp1s/0/Ne18njptPpc49z9OeYy+U66u2ok79nh7e5ubnm0tJSc2Njozk/P3/s/e3083Hy/Tjr87C/v//Kz/ksc3NzHb23W1tbx8ad9m/h4bEP36OTt3Q63Xq/j47JZrPNnZ2dV97PTns7Oe7obXV1tdlsnv67OTc3d6zOWZ/T015rp+/Foc3NzdZrTqfTzY2NjebOzk5zZ2enubGx0fo8HPZ7mk7fg5PjLvM5BgCguz79rNmMb7W/ffrZoLs83yDP6a91EJbL5ZojIyPNH//4x12pV6lUulLnsra3t1snFEtLS22/f96JzFHtArSTNTsN146e7J086e9FzYu6qUHY9vZ225Pxbt1OC3729/ebGxsbZ4YPEdHMZDLNjY2NjgOx7e3tZi6Xa9vL0tLShULRra2tM4O1dDrdnJuba25sbDS3traa29vbza2trebGxkZzdXX12PPS6XTHn93TwsFMJnNm+HY0rDgZklzkdR72uLm52Zyfn2/mcrlmNps99h4dvubzgsDDz9ZZ7282m239m9NubCaTac7NzbU+AyfDuJPByWHNra2tMz8LmUzm1DBmf3//WP1sNvvKv52HXzv5Gdrf3z/39Z52zNXV1dbxMplMc2lp6djnfX9/v/U6jv7MTjoaQmez2Vf+Xe70vTjLxsZGM5fLHQvFDp931u9nu9/Ho+/Bzs5O23Gd/rcJAIDuE4Rd3bUOwjY3N5upVKprM8IG7WhgddZJayd/pW9XN+LVGVpHT7ZOC+BOczQwOG0WQC9qXsRNC8LOmv3Ti9tps3ouU6ddmHnZMK/TWV3N5st/H84KxNrdDk/kLzq7bWdn59TXlU6nm7lcrjk3N/dKMHGR1wMAAHAeQdjVXeurRs7NzcXdu3fj6dOnXan3k5/8pCt1LuvoVSHP2ivo6Nfb7Sd21Ml9W07udXN0P6ije3u1c3TcaVet60XNJJufn4/my2C657ft7e1Xjn+ZOvv7+2e+ns3NzUvVvMgeWnNzc7G9vR37+/uxubkZc3NzrT2cDh1eTOJwf6WdnZ3Y2dmJpaWlC++1lslkYnNz85XjRbz8XS2Xy/HixYt48OBBbG1txf7+/pU38gcAAKC7Us1msznoJtqpVqvxb/7Nv4kf//jH8R/+w3+4Uq379+/Hs2fPutTZxU1PT0e1Wo2lpaUzr053eAW7Q/v7++eesC8sLESxWIyIl0HayY2yK5VKzMzMtB6f95Yf7SGTyRwL8HpZ8yKmpqZib28vJicnY3d390q1AAAAYBh81oi4/Z32Yz59K+LWtZ72NNhz+mv+o3kZmrz99tvxjW9840p1Pvnkk45nLvVCqVSKarUa6XQ6Hj9+fOa4XC53bEbLysrKubWPzhw7LWDLZrPHZqacvPLeSZubm637Z83c6kVNAAAAgF661jPCji5lXFpailQqFXNzcxeuU6/X45133ol6vR6fffZZV3orl8tRKBSiXq9HLpeL1dXVV5YkHqpWqzEzMxP1ej22t7fPHHfo5GyrnZ2dY+HYyT4OZ1rNz8/HxsbGmT1MT09HxMsQ67TlcREvf1ZjY2MRcfrssl7X7JQZYQAAACSNGWFXd62DsHv37sUHH3zQetxsNiOVSl2q1uFzuxWEHV2OeOi0IOowMBsfH4+tra0zA62TisViLCwsRMTLWXHb29uvLJGs1+sxMzMT1Wq1bRB1qFQqRaFQiIiXM8eWlpZeGTMzMxOVSiXS6XR89NFH5y7L7EXNTgjCAAAASBpB2NVd6x/NgwcPWptoR8SlQ7BeOAx/jioWizE2NhaFQiEWFhZiZmYm8vl8zM/Px/b2dschWMTLUG1rayvS6XRUq9V4/fXXY21tLSqVSlQqlVhbW4vXX389qtVqq/555ubmWjWXl5ejUChEpVKJer0e5XK5FVhls9mOA6te1AQAAADohWs9I+yTTz6JsbGxSKVS527G3oluzgiLeLk0cHV1tXW1uHq9Hul0OsbHxyObzcbDhw8jl8tdOfwpFouxubkZz58/bx0jk8lELpeLhYWFCwVsh9bW1uLp06dRrVZbNe/duxcLCwuXWn7aq5pnMSMMAACApDEj7OqudRAW8c/LI7/3ve9FNpuN8fHxC9eoVqvx3e9+Nz788MOuBmEMjiAMAACApBGEXd3tvh7tEh4+fBjT09PxzW9+89I17t69G1/5ylcuFaIBAAAAcDNc84zw5VUGuzVp7d69e12pAwAAAMDwufZB2N27d2N1dbUrtbpVBwAAAIDhc+2DsIiI119/vSt17t6925U6AAAAAAyfgQZhH3744SAPf8x16gUAAACA7htoEDYzMxMHBweDbCEiIj755JOYmZkZdBsAAAAA9NBAg7BubYLfDdepFwAAAAC6b6BBWCqVGuThj7lOvQAAAADQfWaEAQAAAJAIA79q5EcffTToFuL58+eDbgEAAACAHrs96AYePXoU3/rWtyKdTsf4+Hhfj/3ixYuoVquxtLTU1+PSPbVaLaamptqOWVxcjMXFxT51BAAAAMm1vr4e6+vrbcfUarU+dfOqgQdh29vbUSgUBtpDs9m0R9iQajQasbe313bMdbgyKQAAACTBwcHBuefpgzTwIOzQoPYLE4ANt5GRkZiYmGg7ZnR0tE/dAAAAQLKNjo7G5ORk2zG1Wi0ajUafOjou1RzgjvUjIwPfoqwllUrFZ599Nug26NDU1FTs7e3F5ORk7O7uDrodAAAA6LnPGhG3v9N+zKdvRdy6PnHLqQZ5Tj/QGWH7+/uDPDwAAAAACTLQIOzOnTuDPDwAAAAACXLNJ8sBAAAAQHcIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgES4kUHYJ598Em+++eag2wAAAADgGrmRQVi1Wo1isRh/8zd/E++//34cHBwMuiUAAAAABuxGBmHlcjmazWZkMpnI5/MxNjYW3/72twfdFgAAAAADdOOCsPfeey+Wl5cjIqLZbLZuq6urbcOwN998M9544424f/9+fPvb3zaLDAAAAOCGSTWbzeagm+ime/fuRSaTiYcPH0Y2m41qtRrvvvtu/Mmf/EmkUqmoVqvxr//1vz72nDfeeCOq1Woc/VFMT0/H9vZ2jI6O9vsl0IGpqanY29uLycnJ2N3dHXQ7AAAA0HOfNSJuf6f9mE/firh1zac9DfKc/pr/aC7nnXfeia985Svx+uuvx+zsbKyursaLFy/iN37jN1qzxQ69+eabsbOzExERy8vL0Wg04sWLF/HFL34xHj16NIj2AQAAAOiBGxeEpVKpU7+eTqdje3u7FXod2tjYiFQqFXNzc7GystIau7GxEfv7+/Hxxx/3umUAAAAA+uDGBWFjY2Px/e9//9TvpdPpGBsbaz1+8uRJ6/7q6uor45eXl6NcLne/SQAAAAD67vagG+i2paWl+J//5/85dnZ24nvf+94re3zt7++37h/OBsvlcvEbv/Ebr9S6d++eIOyaq9VqMTU11XbM4uJiLC4u9qkjAAAASK719fVYX19vO6ZWq/Wpm1fduCAsl8vFo0eP4u23346NjY2Ym5uL+/fvR0TE06dPY2dnJ770pS9FNpuNSqUSqVQqFhYWTq11586dqFar/WyfC2o0GrG3t9d2jCuAAgAAQH8cHByce54+SDcuCIt4OdPrxYsX8eMf/zhKpVKUSqXW954/fx7f/e53jy2FzGazp9b54IMPYnx8vOf9cnkjIyMxMTHRdowrfwIAAEB/jI6OxuTkZNsxtVotGo1Gnzo6LtVsNpsDOXIfFIvFKJVKUS6XI51Ox5MnT+IrX/lKREQUCoV47733YnV1NUqlUvy3//bfXnn+m2++GdPT0/Ef/+N/7HfrnGOQl1oFAACAQfisEXH7O+3HfPpWxK1rviP8IM/pb+SMsEPz8/MxPz9/6vc2Nzdb98fGxuL+/fvxgx/8IH7zN38zDg4O4rvf/W4Ui8Vje4oBAAAAMLxudBDWqbm5uahWq3H37t1IpVKtr5+22T4AAAAAw0kQ9k+WlpYik8lEsViMdDodDx8+bC2jBAAAAGD43bgg7P33348vfvGL5477yU9+Erlc7tiMr7m5uZibm+tlewAAAAAMyDXfPu3i5ubm4tatW/GlL30p/vRP/zQ+/PDDU8fNzs7GN77xjfj444/72h8AAAAAg3HjgrCZmZloNptRLpdjeXk5ZmZm4rXXXnslGLtz5048efIkCoVC/M3f/M1gmwYAAACg527c0shSqRSFQiFevHgR9Xo9qtVq7O/vx9bWVpTL5da4fD4fd+/ejf39/VhYWIj/+l//6wC7BgAAAKDXblwQNj8/H8ViMX7jN36j9bX33nsv3nnnnXjy5Enra++++25sbW1Fs9mMjz76aACdAgAAANBPNy4Iazabx0KwiJf7gc3Ozsba2lp897vfjffeey8ePnwYz549i2q1Gg8fPhxMswAAAAD0zY0Lwj755JMzv3fnzp1YXV2Njz76KJaXl2Ntbe2V0AwAAACAm+nGbZb/+uuvx/e///1zx7zzzjsxPz9vo3wAAACAhLhxQdjS0lJ885vfjP/tf/vfzh37zjvvRC6Xi4ODgz50BgAAANBbP/pg0B1cbzcuCMtkMvG9730v5ubm4o/+6I/ajk2n03H37t341re+1afuAAAAAC6nk5DrD0rCsHZuXBAW8XJW2O/93u/F22+/Hf/yX/7L+P73v3/mrK/x8fF4+vRpnzsEAAAA6Nwnv4z4o7/sbOwf/kXEwS972s7QupFBWETE5uZmPHr0KF68eBFLS0sxNjYWDx8+jB/84Afx4YcfxocffhiPHz+OYrEY9Xp90O0CAAAAnOnPKxG/+MfOxv7dP0T8sNLbfobVjbtq5FEbGxuRz+fj0aNH8cknn0SpVIpSqfTKuGw2O4DuAAAAADrzVz+92Pi//mnEH/9Wb3oZZjd2Rtihubm52N/fj+9973tx586daDabx27pdDqePHky6DYBAAAAzrT/970dnxQ3ekbYUUtLS7G0tBQffPBBVKvVqFarkclkIpfLxZ07dwbdHgAAAMCZxn6tt+OTYmiDsDfffDP+03/6Txd+3t27d+Pu3bs96AgAAACgN778hYh3/8/Ox//2F3rXyzAb2qWR77zzTvzt3/7toNsAAAAA6LmvZSM+/yudjf31X434uu3QTzW0Qdj+/n78xm/8Rrz55pvx/vvvD7odAAAAgJ6587mIP/udzsa+/bsRo5/raTtDa2iDsIiIer0exWIx8vl83Lp1K770pS/Fn/7pn8bHH3886NYAAAAAuuqrHez09MO5zsYl1VAHYRFx7AqQ5XI5lpeXY3p6Ol577bV488034yc/+cm5NX7wgx/0oVMAAACA3vp9IVhbQxuEfe9734tmsxmpVCqmp6cj4ngotr+/H8ViMQqFQty6dSvu378ff/qnfxoffvjhK7W2trb63D3dUqvVYmpqqu1tfX190G0CAABAIqyvr597nl6r1QbW39BeNXJpaSlyuVwUCoV48eJFlEqlaDab8V/+y3+J9957L+r1ejSbzdb4SqUSlUolIiLS6XTkcrnI5/MREVEqlQbyGri6RqMRe3t7bcccHBz0qRsAAABItoODg3PP0wdpaIOwiIhsNhs7OzuxvLwchUIhFhYWYnNzMyIiPvrooyiVSrG1tRXlcvlYKLa/vx+lUkkAdgOMjIzExMRE2zGjo6N96gYAAACSbXR0NCYnJ9uOqdVq0Wg0+tTRcanm0YRoiFUqlXjw4EGMjIzE5uZm/OZv/uax77/33nuxubkZ5XI5qtXqse+lUqn47LPP+tkuVzQ1NRV7e3sxOTkZu7u7g24HAAAAeu6zRsTt77Qf8+lbEbeu+UZYgzynv+Y/ms5ls9n42c9+Fv/+3//7yGaz8e1vf/vY92dnZ+Ptt9+On/3sZ7G/vx8bGxuRy+UG1C0AAAAA/XZjgrBDGxsb8d/+23+Lt99+O/7tv/238T/+x/94ZcydO3fi0aNH8e6778a77747gC4BAAAA6LcbF4RFRORyuahWq/Gbv/mbkc1m4/vf/37bsbOzs33sDgAAAIBBuJFBWMTLK0Nubm7G06dP45vf/Gb8u3/37+Jv/uZvTh1bKBT63B0AAAAA/XZjg7BDc3Nz8eLFi7hz505kMplTZ4c9evRoAJ0BAAAA0E83PgiLeDk7bGtrK1ZWVs6dHQYAAADAzZSIICwi4uOPP4579+7F0tJSPH/+PDKZTPzn//yfB90WN1yz+fLytu1uzeaguwQAAIBkuD3oBrrh448/jmq1GvV6ParVauzs7ES1Wo1qtRovXryIer1+bHwqlYpmsxnz8/OxubkZm5ub8S/+xb8YTPPcaI1mxO3vtB/z6VsRt1L96QcAAACSbGiDsPv377fCr3aababbNJvNePfdd+OLX/xiPHv2rMsdAgAAAHCdDG0Qtr293ZrZ1U46nY5MJtO6TU9Px/j4eOvxnTt3+tQxAAAAAIM0tEHYUWNjY/HgwYNjgZeQCwAAAICjhnqz/K985SuRzWZjf38/isViPH/+PPb392NsbEwIBgAAAMAxQxuE5XK5eOedd1rh19OnT6PZbMbS0lJMT0/HG2+8EW+++Wb89//+38+t9f777/ehYwAAAAAGaWiDsHw+37p/586dmJubi3feeSdevHgRz549i9/7vd+LZ8+exezsbNy6dSvu378f3//+9+PDDz98pdbGxkYfOwcAAABgEIZ2j7BvfvObZ34vm81GNpuNiIhPPvkktra24p133om33norlpaWIp1ORy6Xi/v370dERKlU6kvPAAAAAAzO0AZhnTqcLTY3NxcREZVKJZ4+fRo//vGPY3NzM1Kp1IA7BAAAAKAfhnZp5GVls9lYXV2Nn/3sZ/H8+fP44he/OOiWAAAAAOiDxAVhR2Wz2dja2oq7d+8OuhUAAAAAeizRQdih1dXVQbcAAAAAQI8JwiJidnZ20C0AAAAA0GNDEYT96Z/+abz//vuDbgMAAACAITYUQdj//r//75HP5+M//+f/fKU6T548iVu3bsW//bf/Nv7H//gfXeoOAAAAgGEwFEFYRESz2Yz5+fn49re/fekay8vL0Ww242c/+1lks9n4+OOPu9cgAAAAANfa7UE3cFHvvvtu7OzsxNOnTy/83Ndffz0++eSTyOVyEfEyGLtMHa6PWq0WU1NTbccsLi7G4uJinzoCAACA5FpfX4/19fW2Y2q1Wp+6edXQBWHPnz+PQqEQ9+/fj/fffz/+xb/4Fx0/d3t7+9jjN954o9vt0WeNRiP29vbajjk4OOhTNwAAAJBsBwcH556nD9LQBWEREZubm7G2thbZbDbK5XL863/9ry9c46OPPooXL170oDv6aWRkJCYmJtqOGR0d7VM3AAAAkGyjo6MxOTnZdkytVotGo9Gnjo4byiAsImJpaSmy2Wxks9kolUrx7//9v+/4uZ988knk8/m4d+9eDzukHyYmJmJ3d3fQbQAAAADR2fZEU1NTA5s1NjSb5Z8ml8vFs2fP4tGjRx1fUfL999+PTCYTH330URQKhR53CAAAAMB1MdRBWEREJpOJ58+fx9OnT8+9ouSf/MmfRD6fj/39/Uin0/GNb3yjT10CAAAAMGhDH4RFRKTT6Xj33XfjxYsX8fDhw1PHPH78OL71rW9Fs9mMVCoVq6urfe4SAAAAgEG6EUHYobfffjtmZ2fj/v378bd/+7etr7/33nut4CuVSkU2mzUbDAAAACBhhi4I++///b+3/f78/HxsbGzEF7/4xfibv/mbiIhWCNZsNo89BgAAACA5hiIIe/311yPiZZA1Pz/fCrjOks1m4+nTp/GVr3wlfvKTn0S5XI5UKtX63he/+MWe9wwAAADA9TIUQdjq6mrs7+/H5uZmzM7ORi6Xix/84Adtn3O4if7bb7/d+loqlTpzDzEAAAAAbrbbg26gU3fu3ImvfOUr8ZWvfOVCz3v33XdjeXk5/uRP/qS1PxgAAAAAyTMUM8KuanV1Nd55551oNpvx0UcfDbodAAAAAAYgEUFYRMTc3Fw8f/48nj59OuhWAAAAABiAxARhES83yn/33XcH3UZUq9XI5/M3ruba2lrk8/kYGxuLVCoV09PTUSgUolwud7UvAAAAgMtIVBDWa/V6PVKp1Lm36enpyGQyN6ZmuVyOsbGxWF5ejoiIzc3N2NnZidXV1ahUKpHP5yOfz0e9Xu+oPwAAAIBeGJrN8odBsVjseOxhaDTsNcvlcmvW2Pz8fGxsbLS+l8lkYm5uLmZmZqJcLsfMzExsb29HOp3u+PgAAAAA3WJGWBetrKx0NC6Xy3U8e+s616zX61EoFCLiZeh1NAQ7anNzMyJeLrU8HA8AAADQb2aEdUmxWIx6vR5LS0vn7qt17969G1GzUCi0lju2mzl2ODOsVCpFuVyOYrEY8/PzHfULAAAA0C2pZrPZHHQTN8H09HREROzs7CSiZrVabdWKiNjf32+75LFUKrVmg6XT6djf37/S8aempmJvby8mJydjd3f3SrV66bNGxO3vtB/z6VsRt8zNBAAA4Bw35RxzkOf01/xHMxxKpVJUq9WO9+i6CTVXV1db93O53Ln7fs3NzbXu1+v1KJVKV+4BAAAA4CIEYV2wsrIS6XQ6Hjx4kJiaRzfcz2azHT3n6H5jT58+vXIPAAAAABchCLuiSqUSlUol6vV6jI2NxfT0dCwsLFxpxtN1r1mpVI49vn//fkfPOxqYmREGAAAA9Jsg7IpOLjOsVqtRLBajUChEKpWKQqHwSnA07DXL5fKxx51erfLkuIu+BgAAAICrEIRdQbVafSUUOqlUKsXMzEwsLCzcmJrPnj079vi8/cEOvfbaa8ceP3/+vKPnAQAAAHTD7UE3MMwymUxsbGxEvV6PnZ2dKJfLUa1WTx1bLBbj+fPnsb29PfQ1Tz73sjPCunk1TAAAAIDzCMKuaH5+/tjjer0exWIxVlZWol6vH/tepVKJfD4fW1tbQ13zrBDtok4eFwAAAKCXLI3ssnQ6HUtLS7G/vx+bm5uvLBssl8uxtrY21DUvG2CdPMaLFy8uVQcAAADgMlLNZrM56CZusnq9HrOzs8c2hk+n07G/vz+0NVOp1LHHnX6EyuVy5PP51uNcLnfuTLazTE1Nxd7eXoyMjMTExMSlahy1uLgYi4uLV65z0meNiNvfaT/m07cibomkAQAAOMegzzHX19djfX39ynVqtVo0Go2YnJyM3d3dLnTWOUsjeyydTsf29nbMzMy0QqZ6vR7lcjlyudxQ1kyn011Z1tjpJvvtNBqN2Nvbu3Kdg4ODK9cAAACAm+zg4KAr5+CDJAjrkydPnsTMzEzr8dbW1qVDq0HXHB8f70oQNj4+fuUa3ZoRNjo6euUaAAAAcJONjo7G5OTklesczggbBEFYn2Sz2cjlclEulyOiOxvOD6rmZWdynQzPujEjbGJiou/TKAEAACCJurWt0OF2R4NgZ6I+Oro/1jDXvHfv3rHHnc4OO7k5/vT09IX6AgAAALgKQVgfZTKZ1v1uLAscVM2jSycjOp+JtrOzc+zxVZdxAgAAAFyEIKyPjgZM3VgWOKiaJ2eEdRqEHZ05lk6njx0HAAAAoNcEYX30/Pnz1v1uLWkcRM1sNnssIHv27NmF654M0wAAAAB6TRDWR0eXBnZrWeCgaj548KB1v1KpdFT36Ljl5eVLdgcAAABwOYKwPiqVShERsbS0NPQ1FxYWWvcPrzDZztExmUzG/mAAAABA3wnC+qRUKkW1Wo10Oh2PHz8e+prZbPZYmHUYnp1lc3Ozdd9sMAAAAGAQBGGXVC6XY2xsLFKpVOTz+bbLA6vVajx69CgiIt57770zN7UflpqHNjY2WvdXVlbOHFev16NYLEbEy6WW8/PzbesCAAAA9IIg7JI2NzdbV0Esl8sxMzNzbLngocPvjY+Px87OTmSz2aGveSiTybRmelUqlVhbWzt13OzsbES8vFLk0ZlhAAAAAP0kCLukQqHwyteKxWKMjY1FoVCIhYWFmJmZiXw+H/Pz87G9vR2ZTOZG1Dxqbm4utra2Ip1Ox/LychQKhahUKlGv11vhWqVSiWw2Gx999NG5s8wAAAAAekUQdkm5XC52dnZifn4+MpnMsYCnUqnEixcv4vHjx7G/vx+rq6sdBUDDUvO0Yxw+v1qtxuzsbCtoGx8fj83Nzdje3haCAQAAAAOVajabzUE3ARc1NTUVe3t7MTk5Gbu7u4Nu50yfNSJuf6f9mE/firglkgYAAOAcN+Ucc5Dn9Nf8RwMAAAAA3SEIAwAAACARBGEAAAAAJIIgDAAAAIBEuD3oBoDh1GxGNM651MZIKiKV6k8/AAAAcB5BGHApjWaHVysRhAEAAHBNWBoJAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCq0Yy1Gq1WkxNTbUds7i4GIuLi33qCAAAAJJrfX091tfX246p1Wp96uZVgjCGWqPRiL29vbZjDg4O+tQNAAAAJNvBwcG55+mDJAhjqI2MjMTExETbMaOjo33qBgAAAJJtdHQ0Jicn246p1WrRaDT61NFxgjCG2sTEROzu7g66DQAAACA6255oampqYLPGbJYPAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASITbg24AAAAAgPONpCI+fev8MZxNEAYAAAAwBFKpiFuCriuxNBIAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABLh9qAbgKuo1WoxNTXVdszi4mIsLi72qSMAAABIrvX19VhfX287plar9ambVwnCGGqNRiP29vbajjk4OOhTNwAAAJBsBwcH556nD5IgjKE2MjISExMTbceMjo72qRsAAABIttHR0ZicnGw7plarRaPR6FNHxwnCGGoTExOxu7s76Dau5EcfRHx9ZtBdAAAAwNV1sj3R1NTUwGaN2SwfeuhHH5w/5g9KnY0DAAAArkYQBj3yyS8j/ugvOxv7h38RcfDLnrYDAAAAiScIgx7580rEL/6xs7F/9w8RP6z0th8AAABIOkEY9Mhf/fRi4//6guMBAACAixGEQY/s/31vxwMAAAAXIwiDHhn7td6OBwAAAC5GEAY98uUvXGz8b19wPAAAAHAxgjDoka9lIz7/K52N/fVfjfh6trf9AAAAQNIJwqBH7nwu4s9+p7Oxb/9uxOjnetoOAAAAJJ4gDHroq3fPH/PDuc7GAQAAAFcjCIMB+30hGAAAAPSFIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEiE24NuAK6iVqvF1NRU2zGLi4uxuLjYp44AAAAgudbX12N9fb3tmFqt1qduXiUIY6g1Go3Y29trO+bg4KBP3QAAAECyHRwcnHuePkiCMIbayMhITExMtB0zOjrap24AAAAg2UZHR2NycrLtmFqtFo1Go08dHScIY6hNTEzE7u7uoNsAAAAAorPtiaampgY2a8xm+QAAAAAkgiAMAAAAgEQQhAEAAACQCIIwoGd+9MGgOwAAAIB/JggDLqWTkOsPSsIwAAAArg9BGHBhn/wy4o/+srOxf/gXEQe/7Gk7AAAA0BFBGHBhf16J+MU/djb27/4h4oeV3vYDAAAAnRCEARf2Vz+92Pi/vuB4AAAA6AVBGHBh+3/f2/EAAADQC4Iw4MLGfq234wEAAKAXBGHAhX35Cxcb/9sXHA8AAAC9IAgDLuxr2YjP/0pnY3/9VyO+nu1tPwAAANAJQRhwYXc+F/Fnv9PZ2Ld/N2L0cz1tBwAAADoiCAMu5at3zx/zw7nOxgEAAEA/CMKAnvl9IRgAAADXiCAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJMLtQTcAV1Gr1WJqaqrtmMXFxVhcXOxTRwAAAJBc6+vrsb6+3nZMrVbrUzevEoQx1BqNRuzt7bUdc3Bw0KduAAAAINkODg7OPU8fJEEYQ21kZCQmJibajhkdHe1TNwAAAJBso6OjMTk52XZMrVaLRqPRp46OE4Qx1CYmJmJ3d3fQbQAAAADR2fZEU1NTA5s1ZrN8AAAAABJBEAYAAABAIlgaCQAAANwozWZEo9l+zEgqIpXqTz9cH4IwAAAA4EZpNCNuf6f9mE/firglCEscQRgAAAAklJlTJI0gDAAAABLKzCmSxmb5AAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQNgDVajXy+fxAa66trUU+n4+xsbFIpVIxPT0dhUIhyuXypXvoRU0AAACAbhGEdVG9Xo9UKnXubXp6OjKZzEBqlsvlGBsbi+Xl5YiI2NzcjJ2dnVhdXY1KpRL5fD7y+XzU6/WOX3cvagIAAAB02+1BN3CTFIvFjscehkb9rFkul1uzxubn52NjY6P1vUwmE3NzczEzMxPlcjlmZmZie3s70ul032sCAAAA9IIZYV20srLS0bhcLtfxjLBu1azX61EoFCLiZUB1NLA6anNzMyJeLrU8HN/PmgAAAAC9YkZYlxSLxajX67G0tHTuXl337t3re81CodBamthu5tjhLK5SqRTlcjmKxWLMz8/3rSYAAABAr6SazWZz0E3cBNPT0xERsbOzc+1qVqvVVq2IiP39/bbLE0ulUmvmVjqdjv39/b7UvIipqanY29uLycnJ2N3dvVKtXvqsEXH7O+3HfPpWxK0hnJt5k18bAAAkxU39//qb+rpuikGe03vLu6BUKkW1Wu14369+11xdXW3dz+Vy5+7RNTc317pfr9ejVCr1pSYAAABALwnCumBlZSXS6XQ8ePDgWtY8uuF+Npvt6DlH9xt7+vRpX2oCAAAA9JIg7IoqlUpUKpWo1+sxNjYW09PTsbCwcKUZT92sWalUjj2+f/9+R887Gm6dPG4vasJ10Wy+nEbd7mZBOQAAwHAShF3RyaWL1Wo1isViFAqFSKVSUSgUXgmO+lmzXC4fe9zp1SpPjjt6vF7UhOui0Xy5l0C7W0MQBgAAMJQEYVdQrVZfCYVOKpVKMTMzEwsLCwOp+ezZs2OPz9vL69Brr7127PHz5897WhMAAACg124PuoFhlslkYmNjI+r1euzs7ES5XI5qtXrq2GKxGM+fP4/t7e2+1jz53MvO3jp65cpe1AQAAADoNUHYFc3Pzx97XK/Xo1gsxsrKStTr9WPfq1Qqkc/nY2trq281zwrRLurocXtREwAAAKDXBGFdlk6nY2lpKZaWlqJUKsWjR4+OBT7lcjnW1tZiaWmpLzUvGzadXO744sWLnta8rFqtFlNTU1eus7i4GIuLi1euAwAAADfV+vp6rK+vX7lOrVbrQjeXIwjrobm5ucjlcjE7O3tsY/iVlZULBWG9rtmJXsze6kbNRqMRe3t7V65zcHBw5RoAAABwkx0cHHTlHHyQBGE9lk6nY3t7O2ZmZlrBVb1ej3K5HLlcruc10+l0VwKno7O5elHzskZGRmJiYuLKdUZHR69cAwAAAG6y0dHRmJycvHKdWq0WjUajCx1dnCCsT548eRIzMzOtx1tbW5cOwi5Sc3x8vCuh1fj4eE9rXtbExETs7u5euQ4AAADQXre2FZqamhrYzLKRgRw1gbLZ7LGQqhsbzndS87Kzrk4GXSdnhHW7JgAAAECvCcL6KJ/P973mvXv3jj3udCbXyY3sp6ene1oTAAAAoNcEYX2UyWRa97uxLLCTmkeXTkZ0PhNtZ2fn2OOjM896URMAAACg1wRhfXQ0tOrWssDzap6cvdVpaHV0llc6nT52nF7UBAAAAOg1QVgfPX/+vHW/W8skz6uZzWaPBWTPnj27cN2TwVcvagIAAAD0miCsj44uDezWssBOaj548KB1v1KpdFT36Ljl5eW+1AQAAADoJUFYH5VKpYiIWFpa6mvNhYWF1v1yuXxuzaNjMpnMqQFbL2oCAAAA9JIgrE9KpVJUq9VIp9Px+PHjvtbMZrPHgqfD8Owsm5ubrftnzdzqRU0AAACAXhKEXVK5XI6xsbFIpVKRz+fbLg+sVqvx6NGjiIh47733ztwovxc1D21sbLTur6ysnDmuXq9HsViMiJdLLefn5/taEwAAAKBXBGGXtLm52boKYrlcjpmZmWPLBQ8dfm98fDx2dnYim832teahTCbTmpVVqVRibW3t1HGzs7MR8fKqjkdncfWrJgAAAECvCMIuqVAovPK1YrEYY2NjUSgUYmFhIWZmZiKfz8f8/Hxsb29HJpPpe82j5ubmYmtrK9LpdCwvL0ehUIhKpRL1er0VrlUqlchms/HRRx+dO8usVzUBAAAAekEQdkm5XC52dnZifn4+MpnMsYCnUqnEixcv4vHjx7G/vx+rq6sdBUC9qHnaMQ6fX61WY3Z2thW0jY+Px+bmZmxvb1+odi9qAgAAAHRbqtlsNgfdBFzU1NRU7O3txeTkZOzu7g66nTN91oi4/Z32Yz59K+LWEEbSN/W13dTXBQAAp7mp//97U1/XTTHIc3pvOQAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARbg+6AbiKWq0WU1NTbccsLi7G4uJinzoCAACA5FpfX4/19fW2Y2q1Wp+6eZUgjKHWaDRib2+v7ZiDg4M+dfOqkVTEp2+dPwYAAABugoODg3PP0wdJEMZQGxkZiYmJibZjRkdH+9TNq1KpiFuCLgAAABJidHQ0Jicn246p1WrRaDT61NFxgjCG2sTEROzu7g66DQAAgBvrRx9EfH1m0F0wLDrZnmhqampgs8Zslg8AAAAJ9aMPzh/zB6XOxsEwEIQBAABAAn3yy4g/+svOxv7hX0Qc/LKn7UBfWBoJXIoLAQAAwHD780rEL/6xs7F/9w8RP6xE/PFv9bYn6DUzwoBLSaUibo20v6UEYQAAcG391U8vNv6vLzgeriNBGAAAACTQ/t/3djxcR4IwAAAASKCxX+vteLiOBGEAAACQQF/+wsXG//YFx8N1JAgDAACABPpaNuLzv9LZ2F//1YivZ3vbD/SDIAwAAAAS6M7nIv7sdzob+/bvRox+rqftQF8IwgAAACChvnr3/DE/nOtsHAwDQRgAAABwpt8XgnGDCMIAAAAASARBGMAF/eiDQXcAAADAZQjCAI7oJOT6g5IwDAAAhp3/p08mQRjAP/nklxF/9Jedjf3Dv4g4+GVP2wEAAC7JH7g5iyAM4J/8eSXiF//Y2di/+4eIH1Z62083NZsRnzXa35rNQXcJAABX5w/ctHN70A0AXBd/9dOLjf/rn0b88W/1ppduazQjbn+n/ZhP34q4lepPPwAA0CuX+QP3sPx/PVdnRhjAP9n/+96OBwAAeu8yf+AmOQRhAP9k7Nd6Ox4AAOg9f+CmHUEYwD/58hcuNv63LzgeAADoPX/gph1BGMA/+Vo24vO/0tnYX//ViK9ne9sPAABwcf7ATTuCMIB/cudzEX/2O52Nfft3I0Y/19N2AACAS/AHbtoRhAEc8dW754/54Vxn4wAAgP7zB27aEYQBXNDvC8EAAOBa8wduznJ70A3AVdRqtZiammo7ZnFxMRYXF/vUEQAAAMPAH7h7Y319PdbX19uOqdVqfermVYIwhlqj0Yi9vb22Yw4ODvrUDQAAACTbwcHBuefpgyQIY6iNjIzExMRE2zGjo6N96gYAAACSbXR0NCYnJ9uOqdVq0Wg0+tTRcYIwhtrExETs7u4Oug0AAAAgOtueaGpqamCzxmyWDwAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEuD3oBgAAALgZms2IRrP9mJFURCrVn34AThKEAQAA0BWNZsTt77Qf8+lbEbcEYcCAWBoJAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAItwfdAFxFrVaLqamptmMWFxdjcXGxTx3B8PrRBxFfnxl0FwAAwDBbX1+P9fX1tmNqtVqfunmVIIyh1mg0Ym9vr+2Yg4ODPnUD19ePPjh/zB+UIm6NRHz1bu/7AQAAbqaDg4Nzz9MHSRDGUBsZGYmJiYm2Y0ZHR/vUDVxPn/wy4o/+srOxf/gXEV/+nyJGP9fTlgAAgBtqdHQ0Jicn246p1WrRaDT61NFxgjCG2sTEROzu7g66DbjW/rwS8Yt/7Gzs3/1DxA8rEX/8W73tCQAAuJk62Z5oampqYLPGbJYPcMP91U8vNv6vLzgeAABgWJgRBnDD7f99b8cDACRBsxnRaLYfM5KKSKX60w9wOYIwgBtu7Nd6Ox4AIAkazYjb32k/5tO3Im4JwuBaE4QB3HBf/kLEu/9n5+N/+wu96wUAgOtlJPUywDtvDNwU9ggDuOG+lo34/K90NvbXfzXi69ne9gMAwPWRSkXcGml/s9yTm0QQBnDD3flcxJ/9Tmdj3/7diNHP9bQdOtBsRnzWaH9rnrNHCQAA8CpLIwES4Kt3I/6g1H7MD+dejmPw7EECAAC9YUYYABER8ftCMAAA4IYThAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEV40EAADos2bz5VWC2xlJRaRcIRigqwRhAAAAfdZoRtz+Tvsxn74VcUsQBtBVlkYCAAAAkAhmhAEcMZJ6+dfX88YAAAAwfARhAEekUpYgQK/YDwcAgEEThAEAfWE/HAAABs0eYQAAAPTNjz4YdAdAkgnCAAAA6IpOQq4/KAnDgMERhAEAAHBln/wy4o/+srOxf/gXEQe/7Gk7AKcShAEAAHBlf16J+MU/djb27/4h4oeV3vYDcBpBGAAAAFf2Vz+92Pi/vuB4gG5w1UiGWq1Wi6mpqbZjFhcXY3FxsU8dAQBAMu3/fW/HA8NhfX091tfX246p1Wp96uZVgjCGWqPRiL29vbZjDg4O+tQNQP/86IOIr88MuguA3ms2IxrN9mNGUhGpVH/64Wxjv9bb8cBwODg4OPc8fZAEYQy1kZGRmJiYaDtmdHS0T90AdEenV9y6NRLx1bu97wdgkBrNiNvfaT/m07cibgnCBu7LX4h49//sfPxvf6F3vQCDMzo6GpOTk23H1Gq1aDQaferoOEEYQ21iYiJ2d3cH3QZA11z0iltf/p8iRj/X05YAoCNfy0Z86792tmH+r/9qxNezve8J6L9Otieampoa2Kwxm+UDwDXiilsADKs7n4v4s9/pbOzbv+sPOcBgCMIAGFrNZsRnjfa35jn7ylw3rrgFwDDrZMn+D+cs7QcGx9JIAIbWTdw3JulX3HIRAICb7/eFYPTBSOrl/weeN4bkEYQBwDVyk6+45SIAAEC/pFLD9cdQ+sfSSAC4Rr58wStoDcsVty56EYCDX/a0HQAAEkoQBgDXyNeyEZ//lc7GDtMVt1wEAODiOplJC8DFCMIA4Bq5qVfcchEAgOM6XS4uDAPoLkEYAFwzN/GKW0m/CADAUZaLAwyOIAwAhtCwXXHrJl8EAOCiLBcHGBxBGADQczf1IgAAl2G5OMDgCMIGoFqtRj6fv3Kd6enpSKVSUSqVutDVqy7a59raWuTz+RgbG4tUKhXT09NRKBSiXC73pD8AhsdNvQgAcD0M2z5alovfXMP2WYQkEoR1Ub1ej1Qqde5teno6MpnMlY61vLwc1Wr1WvRZLpdjbGwslpeXIyJic3MzdnZ2YnV1NSqVSuTz+cjn81Gv1y/VLwDD76ZeBADovZu4qbzl4sPpJn4WIYkEYV1ULBY7HnsYGl1GuVyOtbW1Sz+/m32Wy+VWyDU/Px9bW1uRy+Uik8nE3Nxc7OzsRDabjXK5HDMzM8IwgAS7iRcBAHrrpm4qb7n48Lmpn0VIotuDbuAmWVlZ6WjcYVB0GfV6PQqFwqWee6hbfR7tJZPJxMbGxqnjNjc3Y3p6OqrVahQKhdja2rp408CVjKQiPn3r/DEwaMN2EQCgty6zqfwf/1Zve+qGr2UjvvVfO3ttlotfDzf1swhJJAjrkmKxGPV6PZaWls7dV+vevXuXPs6jR49ifHw8IuJSs6u62WehUGj10G7m2OHssFKpFOVyOYrFYszPz1+4d+DyUqmIW4IuAIbMZTaVH4bw4XC5+B90sNWv5eLXw039LEISCcK6ZHV1NTKZTKyurvbsGMViMUqlUmxvb8fs7OylanSrz2q1emwT/AcPHrQd//Dhw9am/svLy4IwAADOdZM3lf/q3fODMMvFr4+b/FmEpLFHWBeUSqWoVqtX2vfrPNVqNRYWFmJpaSmy2cvNje5mn0eDtFwuF+l0uu34ubm51v16vd6zK10CAHBzJH1TecvFr4+kfxbhJhGEdcHKykqk0+lzZ0VdRaFQiGw2e6WZXN3s8+iG+50Gc0f3G3v69OmVewAA4GazqTzXhc8i3ByCsCuqVCpRqVSiXq/H2NhYTE9Px8LCQldnPC0vL0elUonNzc1r0WelUjn2+P79+x0972hgZkYYAADn+Vo24vO/0tlYm8rTSz6LcHMIwq7o5DLDarUaxWIxCoVCpFKpKBQKrwRHF1GpVGJtbS02NjYufaXJbvd5dG+wiOi4r5PjrvJzAQDg5jvcVL4TNpWnl3wW4eYQhF3ByQ3jT1MqlWJmZiYWFhYudYzZ2dmYm5u70uby3e7z2bNnxx6ftz/Yoddee+3Y4+fPn3f0PAAAkquTzeJtKk8/+CzCzeCqkVeQyWRiY2Mj6vV67OzsRLlcjmq1eurYYrEYz58/j+3t7Y7rFwqFiIh48uTJterz5HMvOyNsZ2eno+cBAEA7NpXnuvBZhOtPEHZFJ2dq1ev1KBaLsbKyEvV6/dj3KpVK5PP52NraOrduqVSKUqkUW1tbHc+46lefZ4VoF3XyuAAAAAC9ZGlkl6XT6VhaWor9/f3Y3Nx8JcQql8uxtrbWtka9Xo9CoRDz8/ORy+WuXZ+XDbBOHuPFixeXqgPAcBpJRXz6VvvbSGrQXQIAcJOZEdZDc3NzkcvlYnZ29tjG8CsrK7G0tHTm82ZnZ1vLGfvhsn1eVTdmhNVqtZiamrpyncXFxVhcXLxyHQDOlkpF3BJ0AQAMrfX19VhfX79ynVqt1oVuLkcQ1mPpdDq2t7djZmamFTLV6/Uol8unzvZaW1uLSqVyob3E+t1nOp3uSojVjSWfjUYj9vb2rlzn4ODgyjUAAADgJjs4OOjKOfggCcL65MmTJzEzM9N6vLW19UrAVKlUYnl5OVZXVyObzfa7xYjorM/x8fGuBGHj4+NXrjEyMhITExNXrjM6OnrlGgAkU7MZ0Wi2HzOSejkjDgBgmI2Ojsbk5OSV69RqtWg0Gl3o6OIEYX2SzWYjl8tFuVyOiNM3nC8UCpHNZnu6HPE8nfR52ZlcJ8OzbswIm5iYiN3d3SvXAbhODvfSOm8M10OjGXH7O+3HfPqWZaEAwPDr1rZCU1NTA5tZJgjro3w+3wqYTlpbW4tqtRq5XC4KhcK5tY6GSisrK/H06dPW44cPH8bc3FxP+oyIuHfv3rG9xOr1ekeh1snN8aenpy/dI0CnfvRBxNdnzh93ndhLC7gMsxMB4HyCsD7KZDKt+yeXBf785z+PiGgbQJ2lUqkcC6YymcyVgrB2fUbEsaWTES9njXWylHNnZ+fY415dERNIjh99cP6YPyhF3BqJ+Ord3vcDMEhmJ3IdmNUMXHcjg24gSY4GTN1YFtgr5/V57969Y49PWz55mqOz2NLp9LHjAFzUJ7+M+KO/7GzsH/5FxMEve9oOABD/NKt5pP3NrERgkARhffT8+fPW/Xw+f+x7q6ur0Ww2O74dDZE2NzePfW91dbVnfUa83EfsaED27NmzC9c9GaYBXNSfVyJ+8Y+djf27f4j4YeX8cdArncxeBACg9wRhfXR0aeB1XhbYSZ8PHjxo3T+6LLOdo+OWl5cv2R3AS3/104uN/+sLjodOdbpEVxgGADB4grA+KpVKEREDvSpkJzrpc2FhoXW/k33Njo7JZDLXOggEhsP+3/d2PHTCEl0AgOFis/w+KZVKUa1WI51Ox+PHjwfdzpk67TObzUYul2sFXKVSqe0G/Zubm637ZoMB3TD2a70dD524zBLdP/6t3vYE7QzjlXRtvg5AN5kRdknlcjnGxsYilUpFPp9vuzywWq3Go0ePIiLivffe6+tG+b3sc2Njo3V/ZWXlzHH1ej2KxWJEvFxqOT8/f4FXAHC6L3/hYuN/+4LjoROW6HKd3NRlujd18/XDgK/dTcAH0H2CsEva3NxsXQWxXC7HzMzMseWChw6/Nz4+Hjs7O5HNZm9Mn5lMpjXTq1KpxNra2qnjZmdnI+LllSKPzgwDuIqvZSM+/yudjf31X434en//+SUhLNHlurBMd/jc1IAP4LoThF1SoVB45WvFYjHGxsaiUCjEwsJCzMzMRD6fj/n5+dje3j52pceb0ufc3FxsbW1FOp2O5eXlKBQKUalUol6vt8K1SqUS2Ww2Pvroo77OhgNutjufi/iz3+ls7Nu/GzH6uZ62Q0JZost14Uq6ANAZQdgl5XK52NnZifn5+chkMscCnkqlEi9evIjHjx/H/v5+rK6udj0A2tnZiWazGc1ms+3eXP3oM5fLtZ5frVZjdna2FbSNj4/H5uZmbG9vC8GArvvq3fPH/HCus3FwGZbocl1YpgsAnUk1m83moJuAi5qamoq9vb2YnJyM3d3dQbcDDMhnjYjb32k/5tO3Xi4vgV745JcRk9/tbCbOr/9qxN5jsxPpjX/3/454doH/Jfp3UxH/v/9n7/qBm8j/d0D3DPKc3q8oAMAlWaLLdWGZLgB0RhAGAHAFluhyHVimCwCdEYQBAPTY7wvB6DFX0gWAzgjCAABgyFmmCwCdEYQBAMANYJkuAJxPEAYAAAlhmS4ASScIAwAAACARbg+6AQCAYTaSivj0rfPHAAAweIIwAIArSKUibgm6AACGgiAMAABuALMTAeB8gjAAALgBzE4EgPMJwhhqtVotpqam2o5ZXFyMxcXFPnUEAAAAybW+vh7r6+ttx9RqtT518ypBGEOt0WjE3t5e2zEHBwd96gYAAACS7eDg4Nzz9EEShDHURkZGYmJiou2Y0dHRPnUDAAAAyTY6OhqTk5Ntx9RqtWg0Gn3q6DhBGENtYmIidnd3B90GAAAAEJ1tTzQ1NTWwWWOCMAAAADiHK7PCzSAIAwAAgHO4MivcDCODbgAAAAAA+kEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCLcH3QAAXNZIKuLTt84fAwAAECEIA2CIpVIRtwRdAABAhyyNBAAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARLg96AbgKmq1WkxNTbUds7i4GIuLi33qCAAAAJJrfX091tfX246p1Wp96uZVgjCGWqPRiL29vbZjDg4O+tQNAAAAJNvBwcG55+mDJAhjqI2MjMTExETbMaOjo33qBgAAAJJtdHQ0Jicn246p1WrRaDT61NFxqWaz2RzIkeEKpqamYm9vLyYnJ2N3d3fQ7QAAAAAdGuQ5vc3yAQAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAItwedANwFbVaLaamptqOWVxcjMXFxT51BAAAAMm1vr4e6+vrbcfUarU+dfMqQRhDrdFoxN7eXtsxBwcHfeoGAAAAku3g4ODc8/RBEoQx1EZGRmJiYqLtmNHR0T51AwAAAMk2Ojoak5OTbcfUarVoNBp96ui4VLPZbA7kyHAFU1NTsbe3F5OTk7G7uzvodgAAAIAODfKc3mb5AAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIlwe9ANwFXUarWYmppqO2ZxcTEWFxf71BEAAAAk1/r6eqyvr7cdU6vV+tTNqwRhDLVGoxF7e3ttxxwcHPSpGwAAAEi2g4ODc8/TB0kQxlAbGRmJiYmJtmNGR0f71A0AAAAk2+joaExOTrYdU6vVotFo9Kmj41LNZrM5kCPDFUxNTcXe3l5MTk7G7u7uoNsBAAAAOjTIc3qb5QMAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRA2ANVqNfL5/JXrTE9PRyqVilKpdOHnrq2tRT6fj7GxsUilUjE9PR2FQiHK5fKl++lFTQAAAIBuEYR1Ub1ej1Qqde5teno6MpnMlY61vLwc1Wr1ws8rl8sxNjYWy8vLERGxubkZOzs7sbq6GpVKJfL5fOTz+ajX6wOtCQAAANBttwfdwE1SLBY7HnsYGl1GuVyOtbW1Sz3vcCba/Px8bGxstL6XyWRibm4uZmZmolwux8zMTGxvb0c6ne57TQAAAIBeMCOsi1ZWVjoal8vlLj0jrF6vR6FQuNLzMpnMscDqqM3NzYh4uXzzvOP0oiYAAABAr5gR1iXFYjHq9XosLS2du//XvXv3Ln2cR48exfj4eETEhZYaFgqF1vh2s9EOZ3GVSqUol8tRLBZjfn6+bzUBAAAAeiXVbDabg27iJpieno6IiJ2dnZ4do1gsxsLCQmxvb8fs7GwrhNrc3Iy5ubkzn1etVlv9RUTs7++3XZ5YKpVaM7fS6XTs7+/3peZFTE1Nxd7eXkxOTsbu7u6VagEAAAD9M8hzeksju6BUKkW1Wr3Svl/nqVarsbCwEEtLS5HNZi/03NXV1db9XC537h5dR0O1er1+6lUpe1ETAAAAoJcEYV2wsrIS6XQ6Hjx40LNjFAqFyGazxwKoTh3dxL/TEO3oHmZPnz7tS00AAACAXhKEXVGlUolKpRL1ej3GxsZieno6FhYWujrjaXl5OSqVSmvT+Yv2d9T9+/c7et7RcOvka+lFTQAAAIBeE4Rd0cnlkNVqNYrFYhQKhUilUlEoFF4Jji6iUqnE2tpabGxsXOpKk+Vy+djjTmucHHf0NfSiJgAAAECvCcKuoFqtvhIKnVQqlWJmZiYWFhYudYzZ2dmYm5u79FUWnz17duzxeXt5HXrttdeOPX7+/HlPawIAAAD02u1BNzDMMplMbGxsRL1ej52dnSiXy1GtVk8dWywW4/nz57G9vd1x/cOrLD558uTSPZ7s57Kzt45eDbMXNQEAAAB6TRB2RSdnatXr9SgWi7GyshL1ev3Y9yqVSuTz+dja2jq3bqlUilKpFFtbWx3PuDrNWcHcRR19Lb2oCQAAANBrgrAuS6fTsbS0FEtLS1EqleLRo0fHAp9yuRxra2uxtLR0Zo16vR6FQiHm5+cjl8tdqZ/Lhk0nw7cXL170tOZl1Wq1mJqaunKdxcXFWFxcvHIdAAAAuKnW19djfX39ynVqtVoXurkcQVgPzc3NRS6Xi9nZ2WMbw6+srLQNwmZnZ1vLLq+LXsze6kbNRqMRe3t7V65zcHBw5RoAAABwkx0cHHTlHHyQBGE9lk6nY3t7O2ZmZlphWL1ej3K5fOpsr7W1tahUKhfaS+y843cjcDo6m6sXNS9rZGQkJiYmrlxndHT0yjUAAADgJhsdHY3Jyckr16nVatFoNLrQ0cUJwvrkyZMnMTMz03q8tbX1ShBWqVRieXk5VldXI5vNduW44+PjXQmtxsfHe1rzsiYmJmJ3d/fKdQAAAID2urWt0NTU1MBmlo0M5KgJlM1mjwVfp204XygUIpvNtl02eVGXnXV1Mug6OSOs2zUBAAAAes2MsD7K5/NRLpdP/d7a2lpUq9XI5XJRKBTOrXU0VFpZWYmnT5+2Hj98+DDm5uYiIuLevXvH9ier1+sdBVAnN7Kfnp5u3e9FTQAAAIBeE4T1USaTad0/uSzw5z//eUTEmUFZO5VK5VgwlclkWkHY0eWYES9nonWy7HJnZ+fY46Oz2XpREwAAAKDXLI3so6NBWL+WBd67d+/Y49OWZJ7m6IyzdDp9rPde1AQAAADoNUFYHz1//rx1P5/PH/ve6upqNJvNjm9HQ6TNzc1j31tdXW19L5vNHgvdnj17duFeTwZfvagJAAAA0GuCsD46ujSwn8sCHzx40Lp/dAllO0fHLS8v96UmAAAAQC8JwvqoVCpFRHT1qpCdWFhYaN3vZA+yo2MymcypoV0vagIAAAD0kiCsT0qlUlSr1Uin0/H48eO+HjubzR4Lng4DubNsbm627p81c6sXNQEAAAB6SRB2SeVyOcbGxiKVSkU+n2+7PLBarcajR48iIuK9997r20b5R21sbLTur6ysnDmuXq9HsViMiJfLN+fn5/taEwAAAKBXBGGXtLm52boKYrlcjpmZmWPLBQ8dfm98fDx2dnYim832udOXMplMa1ZWpVKJtbW1U8fNzs5GxMurOh6dxdWvmgAAAAC9Igi7pEKh8MrXisVijI2NRaFQiIWFhZiZmYl8Ph/z8/Oxvb197EqPgzA3NxdbW1uRTqdjeXk5CoVCVCqVqNfrrcCuUqlENpuNjz76qKOZa72oCQAAANALqWaz2Rx0E8OqWq3G6upqlMvlePHiRdTr9Uin0zE+Ph7ZbDYePnwYuVzuWoY/a2tr8fTp06hWq62+7927FwsLCzE3N3dtap5lamoq9vb2YnJyMnZ3d7taGwAAAOidQZ7TC8IYSoIwAAAAGE6DPKe3NBIAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABLh9qAbgKuo1WoxNTXVdszi4mIsLi72qSMAAABIrvX19VhfX287plar9ambVwnCGGqNRiP29vbajjk4OOhTNwAAAJBsBwcH556nD5IgjKE2MjISExMTbceMjo72qRsAAABIttHR0ZicnGw7plarRaPR6FNHx6WazWZzIEeGK5iamoq9vb2YnJyM3d3dQbcDAAAAdGiQ5/Q2ywcAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIhNuDbgCuolarxdTUVNsxi4uLsbi42KeOAAAAILnW19djfX297Zhardanbl4lCGOoNRqN2Nvbazvm4OCgT90AAABAsh0cHJx7nj5IgjCG2sjISExMTLQdMzo62qduAAAAINlGR0djcnKy7ZharRaNRqNPHR2XajabzYEcGa5gamoq9vb2YnJyMnZ3dwfdDgAAANChQZ7T2ywfAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARBGEAAAAAJIIgDAAAAIBEEIQBAAAAkAiCMAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBFuD7oBuIparRZTU1NtxywuLsbi4mKfOgIAAIDkWl9fj/X19bZjarVan7p5lSCModZoNGJvb6/tmIODgz51AwAAAMl2cHBw7nn6IAnCGGojIyMxMTHRdszo6GifugEAAIBkGx0djcnJybZjarVaNBqNPnV0XKrZbDYHcmS4gqmpqdjb24vJycnY3d0ddDsAAABAhwZ5Tm+zfAAAAAASQRAGAAAAQCIIwgAAAABIBEEYAAAAAIkgCAMAAAAgEQRhAAAAACSCIAwAAACARBCEAQAAAJAIgjAAAAAAEkEQBgAAAEAiCMIAAAAASARBGAAAAACJIAgDAAAAIBEEYQAAAAAkgiAMAAAAgEQQhAEAAACQCIIwAAAAABJBEAYAAABAIgjCAAAAAEgEQRgAAAAAiSAIAwAAACARbg+6AQAA6KdmM6LRjPjklxF//kHE//enEft/HzH2axG//YWI/8fdl/dTqUF3CgB0myAMAIBT3dTAqNGMuP2d07+39bOI/9dfR/x/5iK+PtPfvgCA3hOEAQBwqpsaGP3og/PH/EEp4tZIxFfv9r4fAKB/BGEMtVqtFlNTU23HLC4uxuLiYp86AoCb4yYGRp/8MuKP/rKzsX/4FxFf/p8iRj/X05YA4EZZX1+P9fX1tmNqtVqfunmVIIyh1mg0Ym9vr+2Yg4ODPnUDADfHTQ2M/rwS8Yt/7Gzs3/1DxA8rEX/8W73tCQBukoODg3PP0wdJEMZQGxkZiYmJibZjRkdH+9QNANwcNzUw+qufXmz8X/90OF4XAFwXo6OjMTk52XZMrVaLRqPRp46OE4Qx1CYmJmJ3d3fQbQDAjXNTA6P9v+/teABIuk62J5qamhrYrLGRgRwVAIBr7aYGRmO/1tvxAMD1JggDAOAVNzUw+vIXLjb+ty84HgC43gRhAAC84qYGRl/LRnz+Vzob++u/GvH1bG/7AQD6SxAGAMArbmpgdOdzEX/2O52Nfft3h+NKmABA5wRhAAC84iYHRl/LRvxw7uyg7/O/EvHnhYiv3u1vXwBA77lqJAAAp/paNiIVEW/+ZcQv/vHV73/+V16GYMMWGKVSEV+bifi//98i/rzy8oqX+3//cp+z3/7Cy9ltwxTsAQCdE4QBAHCqmx4Y3flcxB//1ssbAJAMgjAAANoSGAEAN4U9wgAAAABIBEHYAFSr1cjn8x2PXVhYiOnp6UilUjE2NhYzMzOxsLAQ1Wr12vQZEbG2thb5fD7GxsYilUrF9PR0FAqFKJfLPewSAAAAoDOCsC6q1+uRSqXOvU1PT0cmkzm33traWkxPT0exWGyFXvV6PSqVShSLxZieno61tbWB91kul2NsbCyWl5cjImJzczN2dnZidXU1KpVK5PP5yOfzUa/XL9wrAAAAQLfYI6yLisVix2MPQ6Oz5PP5KJfLkU6nI5fLRSaTiWq1GpVK5dhMsOXl5chkMjE3NzeQPsvlcmvW2Pz8fGxsbLS+d9jXzMxMlMvlmJmZie3t7Uin0x0fHwAAAKBbUs1msznoJm6KsbGxjmY95XK52NraOvP7y8vLsba2Fqurq7G0tPTK99fW1l4JqC7yNnarz3q9Hq+//nrU6/XIZDKxs7Nz6rhqtRrT09Md1ezU1NRU7O3txeTkZOzu7l65HgAAANAfgzynNyOsS4rFYtTr9VhaWjp3X6179+6d+b1qtRpra2uxtbUVuVzu1DFLS0uxs7NzbGZXpVKJbDbbtz4jIgqFQitQazdz7HBmWKlUinK5HMViMebn58/tFQAAAKCbzAjrksMZT2fNiupUoVCI+/fvnzoT7Kh6vR5jY2Otx2fNHutVn0dneUVE7O/vt13yWCqVolAoREREOp2O/f39Kx3fjDAAAAAYToM8p7dZfheUSqWoVqvn7qfVicPZWudJp9PHNrLvZN+tbva5urraup/L5c49/tE9zOr1epRKpSv3AAAAAHARgrAuWFlZiXQ6HQ8ePLhyrYvsn/XixYvW/fOWMUZ0t8+jyzI7WZIZEceCu6dPn165BwAAAICLsEfYFVUqlahUKhHxchP6TCYTuVwu8vn8ha7keFH1er21P1culzs3jOpmn4d1Dt2/f7+j52Wz2dYVL80Iu/nW19fj4OAgRkdHY3FxcdDtcE34XHAanwtO43PBaXwuOI3PBafxueAs9gi7onw+H+Vy+czvz83NxePHjzueNdWpYrEYCwsLkclkYnt7+9ylid3s8+RVK7e3tzt63uHVMC/6vNPYI+z68x5xGp8LTuNzwWl8LjiNzwWn8bngND4X15s9woZUtVptGy5FvJz5NDMzEwsLC107br1ej4WFhchms7G1tXVuCNbtPp89e3bscSf7k0VEvPbaa8ceP3/+vKPnAQAAAHSDpZFXkMlkYmNjI+r1euzs7ES5XG4t/TupWCzG8+fPY3t7+0rHrFarkc/nI51Ox3vvvddRCNXtPk8+9+jeX+f1cdRVr1wJAAAAcBGCsCuan58/9rher0exWIyVlZXWHl6HKpVK5PP5C22If1SpVIpCodB6PDY2Fqurqx1dZbKbfZ4Vol3UyeMCAAAA9JKlkV2WTqdjaWkp9vf3Y3Nz85UZW+Vy+dg+Weep1+uxtrYW09PTx0KwQ8vLy6d+vZd9XjbAOnmMo1e9BAAAAOg1M8J6aG5uLnK5XMzOzh670uLKykpHs7giXgZSOzs7kcvlztzrq1QqxdraWsc1e9HnZXRjRlitVoupqakr11lcXHQlEQAAAGhjfX091tfXr1ynVqt1oZvLEYT1WDqdju3t7ZiZmWmFTPV6PcrlcuRyuXOfPzc3F3Nzc8e+ViwWY3l5+ViQtLy8HPPz8x1vXH+VPtPpdFdCrMv2elSj0Yi9vb0r1zk4OLhyDQAAALjJDg4OunIOPkiCsD558uRJzMzMtB5vbW11FISdZn5+PnK5XMzMzBwLpIrF4pVncHXS5/j4eFeCsPHx8SvXGBkZiYmJiSvXGR0dvXINAAAAuMlGR0djcnLyynVqtVo0Go0udHRxgrA+yWazkcvlWksbr7rhfCaTiffee+9YaPXs2bMr1YzorM/LzuQ6GZ51Y0bYxMRE7O7uXrnOSevr63FwcBCjo6M9XzJ5U4/VLzf153dTj9UvN/Xnd1OP1S839ed3U4/VT/16XTf1vfK5GI7j3ORj9ZPPxfAcq5+S9Lno1rZCU1NTg5tZ1qRvVldXmxHRjIjm3NxcV2rOzc21amaz2a7UPK/P+fn51vcjorm/v99R3Y2NjWPP29jYuHSPk5OTzYhoTk5OXrrGIOs71vAdx7GG61g38TU51vAcx7Eca9DHcazhOtZNfE2ONTzHcazhOtZNek39fC0nuWpkH2Uymdb9biwLjIh4+PBh6343litGnN/n0VloEZ3PbtvZ2Tn2+LJLQwEAAAAuQxDWR0cDpm4sC4x4uZSx2zXP6/PevXvHHncahB0N6tLp9LHjAAAAAPSaIKyPnj9/3rqfz+e7Xv9kQHVZ5/WZzWaPBWSd7k12tG63egUAAADolCCsj44uDezWssCjs7G6Fa510ueDBw9a9yuVSkd1j45bXl6+ZHcAAAAAlyMI66NSqRQREUtLS12reRgupdPpmJub60rNTvpcWFho3T+8wmQ7R8dkMhn7gwEAAAB9Jwjrk1KpFNVqNdLpdDx+/LhrdVdWViIi4smTJ12p12mf2Wz2WJh1GJ6dZXNzs3XfbDAAAABgEARhl1Qul2NsbCxSqVTk8/m2ywOr1Wo8evQoIiLe+/+3d3+5iSRnAMA/T/4oUl6wI0XKa/sGePYEi28AOydYfAOsnGBk3wDmBLv4BrAnmDE3gH2MlIehXyJFiZLOwwiC8T+wwXRX/35SS8aGqhrqm6L66+ril1+e3NT++vo6zs7O4vLy8tlvgVw8p9frPboabF/tjIjo9/vLnxcJuYfkeR6DwSAivt1q2e12nywXAAAAYB+OiqIoDt2IKrq4uFgmdxa63e6d5FDEt0RUp9OJk5OTGI1GT35TYp7ncXx8fOd3vV4vrq6u7j230+nEzc1NXF1dPXsL467buerm5iY6nU5ExKNtOTs7i8lkEo1GI3799dedfLvl73//+/j3v/8d7969i7/85S+vLm/d3/72t/jvf/+7t/LVVb161FWtulL8N6mrOvWoS12Hrkdd1aorxX+TuqpTj7qqVVdK/6ZF+b/73e/iX//6187Lf1LBi4xGoyIi7h2NRqNot9tFt9stms1mERFFr9cr5vP5RuVmWfZomb1er2i1WsvH0+n0YO1cr6PRaBQRUbTb7eL29raYz+fFaDRalt1sNl9U9mPevXv34L/L4XA4HA6Hw+FwOBwORzWOd+/e7SxPsCkrwl5hNpvF1dVVjMfj+Pr1a+R5Ho1GI05OTqLZbMaHDx+i1WpttQIqz/P4+PFjjMfjmM1m98o8Pz+PH374Yasy99HOh1xfX8dPP/10p93v37+Pi4uLnW3kv/DHP/4x/vnPf8ZvfvOb+POf/7zTsgEAAID9+fvf/x7/+c9/4g9/+EP84x//eNO6JcIAAAAAqAWb5QMAAABQCxJhAAAAANSCRBgAAAAAtSARBgAAAEAtSIQBAAAAUAsSYQAAAADUgkQYAAAAALUgEQYAAABALUiEAQAAAFALEmEAAAAA1IJEGNTE9fV1nJ+fx/HxcRwdHcXp6Wl0Op0Yj8dJ171rs9kszs/PD92MnaljXGzbhynF76ZSiovJZBIXFxdxenoaR0dHyzIvLy8jz/PdNn5NFcaLlPq6SmWWXUpxYQzYnZTiYlPmDM+rY1zsQ2rjRekVQNJGo1HRaDSKiCharVYxGo2K6XRaDIfDIsuy5e/n83mp616U85Kj2+0+W/58Pt9peWWXSlys2nUfHvI9OpSU4mI+nxftdvvZWOj3+1u3NYXxIqW+rlKZZZdSXBgDdieluFgwZ3i9VOLCOUY9SYRBwkaj0bMDa7PZLCKiyLJspx9Uu6x7OBy++AMqIorhcPhse6+urjYubzqdvvRtKYVU4mLdLvvwkO/RoaQUF/P5fDkR3sfEs+rjRUp9XaUyyy6luDAG7E5KcbHKnOF1UokL5xj1JREGiZrP58srHFmWPfq86XS6HHxbrVYp6261Wq/6kNrEpleDdvUeHUpKcbFuV314yPfoUFKLi8WY0Ww2i+FwWEyn0+WV4l6v9+LJ7EKVx4vU+roqZZZdanFhDNiN1OJilTnDy6UUF84x6ksiDBK1OrA/t+x/9daBl9wisM+6Fx9kWZYV/X6/mE6nxXw+f/ZYXRb9nH6/X0RE0ev1itFo9ORR9at4qcTFul324SHfo0NJKS5WY+Ex0+l0ebV4cTQajY3aW/XxIqW+rlKZZZdSXBgDdieluFhlzvA6qcSFc4x6kwiDBK1eBYmIZwfW1WXBm04E36ruXq+39ZLq1TZs8qGbZdmTV5VSkVJcrNtVHx7yPTqU1OIiy7KNJqfrdUdEMRqNnn1dlceL1Pq6KmWWXWpxYQzYjdTiYpU5w8ulFBfOMepNIgwS1O12l4P0pstsVz9Ytrk9YN91NxqN4vb2dqs2rN6Lv+mHZJWvzG0qpbhYtcs+POR7dCgpxcXt7e1G/+8X1vftuLq6evL5VR8vUurrKpVZdinFhTFgd1KKi1XmDK+TUlw4x6g3iTBI0Oqg/9StAatWN5Vtt9ulqXuTq7PrFrc7bPIh2Ww2i0ajUYvlyCnFxapd9uEh36NDSSkuer3eVpteL06aN21D1ceLlPq6SmWWXUpxYQzYnZTiYpU5w+ukFBfOMertXQBJmUwmdx5/9913G72u2Wwuf765uSlN3a1Wa6s25Hm+bEen03nyuZPJJCaTSeR5HsfHx3F6ehoXFxcv/veXWWpxsVr2rvrwkO/RoaQWFx8+fIirq6uN27BaVkTE6enpo8+t+niRWl9XpcyySy0ujAG7kVpcrJZtzvByqcWFc4x6kwiDxIzH4zuPsyzb6HXrz1v/wCl73QuDwWD58w8//PDkcy8vL+88ns1mMRgMotPpxNHRUXQ6nVe1pUxSjYtd9mEZ4vetpRYXzWYzGo3Gxm3I83zjNlR9vEitr6tSZtmlFhfGgN1ILS4WzBleJ9W42JRzjLRIhEFiPn/+fOfxphPCP/3pT3cef/nypVJ1L/z0008R8fxkeDab3ftQXXdzcxNnZ2dxcXHx4vaURYpxses+LEP8vrUU42Ibs9nszuPHrg6nMF6k1tdVKbPsUouLbdVpDNhGinFhzvB6KcbFNpxjpOW3h24AsFvrk7qXXjGZTqeVqjvi7pLlDx8+PFtnv9+PPM9jOp3GeDy+1/6FwWAQX758idvb2xe1qwxSjItd9+Gh4/cQUoyLbaxOiLvd7pN1Vn28SK2vq1Jm2aUWF9uq0xiwjRTjwpzh9VKMi005x0iPRBgk5rGBdlvrtwuUve6IiJ9//nn5c7vdfvb565PePM9jMBjEx48f77VhMpnE+fl5jEajF7Xt0FKNi1324aHj9xBSjYtN9fv95c/rtzGsq/p4kVpfV6XMskstLrZVpzFgG6nGhTnD66QaF5twjpEet0ZCYl46wK8v8f369Wul6o74/4S22WxufKVovR29Xi/m83kMh8N77RqPx3F9ff2ith1aXeLiNX146Pg9hLrExUNms9ny6u7V1dXWY0bVxovU+roqZZZdanGxjbqNAduoS1yYM2ynLnHxEOcY6ZEIAx50yCtUL6l7myXLm2i32/Hrr7/e+0apjx8/vrrsKqtSXByqD6t0dXdXqhQXC4tvlsuyLHq93qvaUKfxoop9nUKZZVfFuDAG7F+V4sKc4e1UKS4Wr3GOkR6JMEjMNt+WtOtyDln3tkuWN23H7e3tnQ+qPM+f3QCzjOoaF9v04SHbeSiH7ptD1T2ZTGIwGESj0djZrQhlHy9S6+uqlFl2qcXFpuo4BmyjrnFhzvC0Q/fNoep2jpEmiTB4Q4PBII6OjnZ6nJ2d3anj5ORkJ219STmHrHuxZDnLshctWX7Kp0+f7jze9T384mL/5WzSh2Vo5ypxsb9yfvzxx4iI+OWXXyo3XrxUan1dlTLLLrW42FQdx4Bt1DUuFqo4Z3gLdY2LKp9j8DiJMEjMS6+YrC8VfsurNa+te3XJ8q6u1KxqNpt3vlJ9Vxt2vqU6xsWqTfqwDO18a3WMi4uLi5hMJjEcDu/dlrALZR0vUuvrqpRZdqnFxSbqOgZso45xscqc4WF1jAvnGOnyrZHwhlqtVgyHw52WuT6gv3//fjlgR3wbwDcZ9Nc3jzw9Pd26LYeqe3XJ8i7u3X/I+fn53pYri4v91b3quT4sSzsXxMXu6x4MBjEYDKLf7+9lQruwz/HipVLr66qUWXapxcVz6jwGbKNucfGQqs0Z3kId46Lq5xg8TiIM3tA+ltSuW7/1aTabbXTFczqd3nm8enWi7HUvkgWNRmMvV3cj4k6/7XoZu7jYX92rnuvDsrRzQVzstu7xeBwXFxfR7/fvfa35ru1zvHip1Pq6KmWWXWpx8ZS6jwHbqFNcPKZqc4a3UMe4qPo5Bo9zayQk5v3793ceb7rEdnXpcKPReNEJ+CHqXt1Ycp8T29U2VWkZ+0Ld4uIhz/VhWdr5luoSF5PJJM7Pz+Pq6mrvJ8AR5RwvUuvrqpRZdqnFxWOMAdupS1w8xZzhvrrFhXOMtEmEQWKazeadQfTz588bve7Lly/Ln9c/bMpc91ssWY6428bz8/O91bMvdYuL58p7qA/L0s63VIe4mM1m8f3330ev14ter7d1O1+ijONFan1dlTLLLrW4eIgxYHt1iIttyjNn+KZuceEcI3EFkJxut1tERBERRavV2ug1i+dHRDEajSpTd6vVKiKiaDQaL2nuxnq93rKNVVWnuHjIJn1Yhna+tZTjYjqdFo1Go+j1ehu3aTqdFldXVxs//yFlHS9S6+uqlFl2qcXFKmPAy6UcF5swZ3hYneLCOUbavNuQoNvb2zsD/3NGo9HyuVmWVabu+Xy+fG23231pkzeSZVkREVtNpsumLnHxmE36sAztfGupxsV8Pi+yLNt6bGg2m8Xt7e1Wr1lX1vEitb6uSplll1pcLBgDXifVuNiUOcPD6hIXzjHSJxEGiVpcxYiIYjgcPvnc1Sss/X7/yef2+/2i1+sV0+n0zet+qC1vcVVtOBwurwjN5/O91fMW6hAXD9mmDw/ZzkNJLS4WJ8CtVquYTqcbHaPRqGg2m0Wz2XyyDc8p+3iRWl9XpcyySy0ujAG7kVpcbMqc4Wl1iAvnGOmTCINETafT5QD+1KRu9YrHc8uMVz98IuLRAXsfdT/Vnm2XLI9Go6LRaCzrferK7+K2ioh49RXiMkglLvbZh28Vv2WSSlwsNJvNO3Vvc6xPllMbL1Lr66qUWXapxYUxYDdSiQtzht1KJS42aY9zjHRJhEHCFlcZIuLR/S4Wk8VNrkQ8N1ncZ93rVj/g2u32Vq9dvUK0OB5a9rz4MMuy7MmrU1WTQlzsuw/3Hb9llEJcrD7vpce6FMeLVPq6amWWXSpxYQzYrRTiwpxh91KIi8c4x6gHiTBI3OqViXa7Xdze3hbz+Xx5C0DEtysqm3xILMpZHM8tFd5l3etes2R5dc+A1aPRaBTtdrvodrvL9vV6vSQmLOuqHhdv0Yf7jN+yqnpctNvtV50APzZZTXG8qHpfV7XMsqt6XBgD9qPqcWHOsB9Vj4vHOMeoB4kwqImrq6ui2WwuPzQajUbRarWevb9+1Wg0KrIs2/obmHZR97rVJdQvMZ1Oi263u/z3LNqVZVnRbreL4XBYiw+nKsfFW/XhPuK37KocF/uQ8niRWl9XpcyySy0uXivlMWAbVY4Lc4b9qXJcPMQ5Rj0cFUVRBAAAAAAk7t2hGwAAAAAAb0EiDAAAAIBakAgDAAAAoBYkwgAAAACoBYkwAAAAAGpBIgwAAACAWpAIAwAAAKAWJMIAAAAAqAWJMAAAAABqQSIMAAAAgFqQCAMAAACgFiTCAAAAAKgFiTAAAACARBwfH8dsNjt0M0pLIgwAAAAgAdfX15HnefT7/UM3pbSOiqIoDt0IAAAAAF7n9PQ0ZrNZNBqNmM/nh25OKVkRBgAAAFBxNzc3y1si8zyPm5ubA7eonKwIAwAAAKi4s7OzmEwmy8fNZjNub28P2KJysiIMAAAAoMImk8mdJNhjv0MiDAAAAKDSPn78+ODvd71pfp7nMRgMdlrmW3NrJAAAAEBF5Xkex8fHERExHA6j0+nc+fuu0j55nsfZ2Vk0m80YDoc7KfMQrAgDAAAAqKjFarButxvtdjuyLLvz912s4MrzPL7//vuYzWZxfn7+6vIOyYowAAAAgIo6Pj6OPM9jOp1GlmUxGAzi4uJi+fcsy2I6nb6qjtWN+OfzeTQajVeVd0hWhAEAAABU0GAwiDzPo9VqLVeCdbvdO8+ZzWYxHo9fVP5kMonT09NlEizLskonwSIkwgAAAAAq6erqKiIiLi8v7/x+PRm27ab5k8kkOp1OnJ2dxWw2W/6+0WjEYDBYHlXk1kgAAACAihmPx3F+fv7grY+TySTOzs7u/G7TWxpvbm7ubbj/kEajEfP5fKs2l4EVYQAAAAAV89hqsIiIZrMZzWbzzu82XcHVbrejKIooiiJGo9Gdvy1+XxRFJZNgERJhAAAAAJWy2Per0Wjcuw1yYXXD/Ij/f7vkNobD4fLn9cRaVUmEAQAAAFTIYjXYY0mwxd9Wb4XM8zxubm62qmd1k/0PHz5s18iSskcYAAAAQEXkeR7Hx8cR8fy+XxcXF3duiWy1Wvdud9yknoiI29vbJFaFWREGAAAAUBGLxFa73X528/v1/cPG4/Gdb4F8yupqsAi3RgIAAADwxhZ7ff31r3999rlZlt1LYC1uq3zO6sqxVqu1RQvLTSIMAAAAoAJubm4iz/MHvxXyMesJs02/PfLnn39e/tzpdDZvZMlJhAEAAABUwDarwRYeuoXyuWTYbDaLPM+Xj60IAwAAAODNTCaTmEwm0Wg0ot1ub/Xa9W+X7Pf7Tz5/dX+wRqMRWZZtVV+ZSYQBAAAAlNxLVoMtXFxc3Hm8SKo9JtX9wSIkwgAAAABKLc/zuLm5iYj7q7s2kWXZvYTWIrH2kNUVYR8+fHjwObPZLK6vr6PT6cTZ2VkcHR09mFwbDAZxfHx8Lxl3KBJhAAAAACW2SFp1u917+31taj0Rtdh4f902+4O1Wq347rvvlgmwh5Jrt7e3ked5DAaDmM1mL2r7LkmEAQAAAJTYYnP7y8vLF5ex6ab5i5VnEd9Wkq2+ZvX5WZZFs9mMXq8XV1dXy9euJ9f6/f5yT7OTk5MXt39XJMIAAAAASmowGESe59FqtV69af0mm+Y/tj/Y9fX1RuX+/PPP9/7+6dOne0m1Q5EIAwAAACipxWqr16wGW1jfaH82m93ZDyzi7v5g5+fnEfFtpddoNHp0f7JGo7FMmg2Hw3t///Lly9bfdLkvvz10AwAAAAC4bzweL/fV2tdm81dXV8sk1vpm958/f46vX79Gv9+PX3755clyOp1OjMfje4m1iG8rzz59+rS7Rr+CRBgAAABACS1Wg0XE3jaaXyTbsiy7V8f19XVkWRa3t7fP3ta4ehvlZDKJZrMZEd++8fLk5KQUt0VGuDUSAAAAoJRGo1EURbH3Y7H3WLvdXn4zZZZl0ev1YjqdbpTEyrJsWc7qqrDLy8ud3Na5K1aEAQAAABAR325jfGgT/U00m82YzWbx+fPniPj/KrbXbvK/S1aEAQAAAPBqi831F3uNXV5e3rm9swwkwgAAAAB4tcU+YYtvo/zuu+9KszfYwlFRFMWhGwEAAABA9R0dHUXEt9skb29vD9ya+6wIAwAAAGAnFt8WWbZbIhckwgAAAADYiZOTk2i328vbJMvGt0YCAAAA8Gp5nsfXr19jNBoduimPsiIMAAAAgFf78ccf49OnT4duxpMkwgAAAAB4levr6zg/P1/uEVZWEmEAAAAAbCzP87i+vo48zyMi4ubmJiIiut3uAVu1maOiKIpDNwIAAACAauh0OsvkV7PZjA8fPkSv1ztwqzYjEQYAAADAxsbjcXQ6nTg5OYl+v1/ab4h8iEQYAAAAALVgjzAAAAAAakEiDAAAAIBakAgDAAAAoBYkwgAAAACoBYkwAAAAAGpBIgwAAACAWpAIAwAAAKAWJMIAAAAAqAWJMAAAAABqQSIMAAAAgFqQCAMAAACgFiTCAAAAAKgFiTAAAAAAakEiDAAAAIBakAgDAAAAoBYkwgAAAACoBYkwAAAAAGpBIgwAAACAWpAIAwAAAKAWJMIAAAAAqAWJMAAAAABqQSIMAAAAgFqQCAMAAACgFiTCAAAAAKgFiTAAAAAAakEiDAAAAIBakAgDAAAAoBYkwgAAAACoBYkwAAAAAGpBIgwAAACAWvgfA7YobouB+DsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -358,17 +366,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "intercept= 5308.689740859701\n", - "coef= {'dSlope_xEndT_abs': 94.8390840129271, 'x_EndT_abs': 0.03952176022974936, 'ideal_state_770_tx^2': 70418.55504271125, 'ideal_state_770_tx dSlope_xEndT': 62087.4827671762, 'dSlope_xEndT^2': 13580.830615214854, 'x_EndT_abs^2': -0.000842287765099925, 'ideal_state_770_ty^2': -2237.8985443626666, 'ideal_state_770_tx^2 x_EndT_abs': -16.447718852307414, 'ideal_state_770_tx dSlope_xEndT x_EndT_abs': -13.929546692369508, 'dSlope_xEndT^2 x_EndT_abs': -3.2033475757333143, 'dSlope_xEndT_abs ideal_state_770_ty^2': 3364.6401097763382, 'x_EndT_abs^3': 1.936634587279551e-07}\n", - "r2 score= 0.8153420697863665\n", - "RMSE = 37.11860171392724\n" + "intercept= 5308.975458144673\n", + "coef= {'dSlope_xEndT_abs': 84.02382370039953, 'x_EndT_abs': 0.03552632399369171, 'ideal_state_770_tx^2': 68529.10928948055, 'ideal_state_770_tx dSlope_xEndT': 60538.43896560162, 'dSlope_xEndT^2': 13284.852569734045, 'x_EndT_abs^2': -0.0008174639168529617, 'ideal_state_770_ty^2': -2163.1533980289814, 'ideal_state_770_tx^2 x_EndT_abs': -15.687680488172175, 'ideal_state_770_tx dSlope_xEndT x_EndT_abs': -13.288664637206063, 'dSlope_xEndT^2 x_EndT_abs': -3.077894760025427, 'dSlope_xEndT_abs ideal_state_770_ty^2': 3221.0446732918413, 'x_EndT_abs^3': 1.8433768191744582e-07}\n", + "r2 score= 0.8143147645331705\n", + "RMSE = 36.0572267645116\n" ] } ], @@ -393,9 +401,10 @@ "\n", "data = np.column_stack([ak.to_numpy(sel_array[feat]) for feat in features])\n", "target = ak.to_numpy(sel_array[target_feat])\n", - "X_train, X_test, y_train, y_test = train_test_split(\n", - " data, target, test_size=0.2, random_state=42\n", - ")\n", + "X_train, X_test, y_train, y_test = train_test_split(data,\n", + " target,\n", + " test_size=0.2,\n", + " random_state=42)\n", "\n", "poly = PolynomialFeatures(degree=order, include_bias=True)\n", "X_train_model = poly.fit_transform(X_train)\n", @@ -441,10 +450,10 @@ "poly_features = np.delete(poly_features, remove)\n", "# print(poly_features)\n", "\n", - "lin_reg = LinearRegression()\n", + "lin_reg = LinearRegression(fit_intercept=True)\n", "# lin_reg = Lasso(alpha=0.00001)\n", "# lin_reg = LassoCV()\n", - "# lin_reg = ElasticNet(alpha=0.0001)\n", + "# lin_reg = ElasticNet()\n", "# lin_reg = Ridge(alpha=0)\n", "lin_reg.fit(X_train_model, y_train)\n", "y_pred_test = lin_reg.predict(X_test_model)\n", @@ -456,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -482,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -523,12 +532,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9T2xbebr/d34o9wwSzLR0JN+dC2jrsHyBWV3rULpAz64tsiqLBDO3TcqFGUyyKIu0b89k4S6TVt1FsrklU3Z585vuNinXJkGAn0TalSBZdJuUezcNtEnKtQtumUcqoLz7mTxiJ0iQXOvMQj+eJiVKovhf4vsFEM0/53y/zyGpNvjU832+Ptd1XQEAAAAAAAAX3MSwAwAAAAAAAAAGgUQYAAAAAAAAxgKJMAAAAAAAAIwFEmEAAAAAAAAYCyTCAAAAAAAAMBZIhAEAAAAAAGAskAgDAAAAAADAWCARBgAAAAAAgLFAIgwAAAAAAABjgUQYAAAAAAAAxgKJMAAAAAAAAIwFEmEAAAAAAAAYCyTCAAAAAAAAMBZIhAEAAAAAAGAskAgDAAAAAADAWCARBgAAAAAAgLFAIgwAAAAAAABjgUQYAAAAAAAAxgKJMAAAAAAAAIwFEmEAAAAAAAAYCyTCAAAAAAAAMBZIhAEAAAAAAGAskAgDAAAAAADAWCARBgAAAAAAgLFAIgwAAAAAAABjgUQYAAAAAAAAxgKJMAAAAAAAAIwFEmEALiTHcYYdAgAAAABgxJAIA3BhlEolJRIJTU9Pa3l5edjhAAAAAABGzE+GHQCA8VAqlbSxsaFSqSTbtlWpVOQ4jgzDkGmampmZkWVZCoVCCgaDR86PRCKybVvFYtF7znEc5fN5bWxsKJ/PUwUGAAAAADiRz3Vdd9hBAOdBOp1WLBY783mWZTUlbzrl8/nOfI5hGKpWqy1fi0QiymazZx4zl8u1TFS14jiOVldXtba2duZ5LMtSMBiU3+9XLpdTNps98l7Wk2OlUunI+eFwWJlM5szzAgAAAAAuLpZGAm2KRqOqVqsqFosKh8MnHhsMBpXL5bzje8F1XZXLZaVSKRmGcexxpmkqlUqpXC4fmwSTpEwmo2q12lZiKx6Pq1gsqlqttp0Eqy9RPJwEqyeo6uPVryuXyykajXrXViqVtLa2plgs5iXsDld81cdxXVemabYVFwAAAABgfFERBnQoFospnU4feX4QlUi2bcvv97d8rVqtnpgoO04gEGhZWZVKpRSNRs8UWygUkm3bTc9Ho1GlUqm2xlhbW1MikTjyvGmaKpfLLc85/HlQEQYAAAAAOIyKMKBDxy2T7GT55FmZpinLso48Hw6HO0qCScfHfZYkWD6fl9/vb0qCGYahYrHYdhJMOqhAK5fLR66lUqkce06n1w0AAAAAGB8kwoAOHbcUb1BL9FrN083crc49S3KpVCopFAodOX9ra6tl0q6deHZ2dppioBk+AAAAAKAbJMKADh2XJJqZmRlsICPAtm0tLi4eeT6TyXSUBKurV5NdRNls9sjyUfxVPp8fdggAAAAALiASYcA51Srhdvny5Z6O125SLxKJHKnWikajbTfWP4lpmorH412PMyilUkmxWEx+v18+n0/T09Py+/0KBALeTp3ZbFbLy8unJnvy+bx3/kVPDNm2rXQ6rVAoJJ/Pd6S6cNjG6bMAAAAALrKfDDsAAOdbPp9v2WQ/mUz2bI6VlRVv90nHcUayH5jjOFpeXvZ2uDRN09td1LZtlUollUol7/X6OSepJxgdx1EsFjt2o4DzzLZtRSIR2bY90ktfx+GzAAAAAMYBFWEAutKqyX43TftbMQzjTE37h6Fe7SUd7LRZLpeVyWSUyWRULBZVLpePVMidlkwZh2W2pmmqWCyqWq2OdOXfOHwWAAAAwDggEQagY/l8vmWfq5WVlZ7PFYlEJJ28c+RJ8vm8IpFI05LFUCikdDrddWxra2vecrl4PN4yaWeapnK5XFOl3Gk9wlKplEzTlGmaymQyXcc56kZtOWSjcfssAAAAgIuKpZEAOnZcQqCbBvnHCQaDSiaTZ67McRxHi4uLR5ZvOo6jfD6vfD6vZDLZVWP/1dVV736rCrlG8Xhc79+/19ra2qlJvWAwOFZL8IZVdRWLxZRKpU48Ztw+CwAAAOCioiIMQMdaNQ3vRYP848Tj8TMtubRtW7Ozsy17mB0+LhAIdNQEvZPeVslkUpZlsWvkCEin0z2pCgQAAABwPpAIA9AR27ZbJnL6UQ3WCcdxvAbn4XBYqVRKxWJRuVzu2F5UoVDozMmpw0mwdpNpKysrI90cfhzYtn1qBR8AAACAi4WlkQA6clzCyO/3DziS1uoJqVwud6RKLRgMKhaLtUx8RSIRFYvFtucxTbPpcSKR0NLS0qmVa/UdJUd1F8yLznGcke5JBgAAAKA/qAgD0JHjEmGjtLteqyRYXb15/WGlUulMSyQNw2hKZDmOo0Ag0FZlmeu6JMGGoN43jqWpAAAAwPghEQZcIIlEQj6fr6NbIBA401zHLesblcSOYRin9iszTbNpF8e6Vs+d5PDxtm3L7/f3pPdUqVRSLBY7tdLOcRyl02kFAoGmeevL/6anp+Xz+eT3+7W2tnbkfNu2lUgkvF01/X6/YrFYy8+5Ps/h79BhoVDIG6/x1ssloel0umme6elpBQKBltcoHbyfrfrGNcZ33Hvd7mdR5ziO1tbWFAqFvPe/Hl8ikWgrEWfbttbW1uT3+5tibvwM/H6/twwYAAAAwClcAB2TdORWrVYHMnc0Gm05fy9vpmmeef5cLjeQ6z8sHo83xREMBts+1zCMI9dxVsFgsOX7YVmWWywWzzRWsVh0o9FoU1yGYRw5rlqtuslk0rUsq2nOVCrluu7R96TxFo1GvXFOOs40zWO/04e/A8dJJpNt/Y0Ui8W2P4NMJuO9L5lMpmkM0zSPjb1arbrFYvFITMVisenWOF47n8VhqVTKOz6ZTLrFYtEtl8tuJpNp+rzC4fCRc6vVqhuPx73raIyxWq0e+bwb4yqXy6fGBgAAAIwzKsKACyQajapYLHZ0S6VSZ5rruMqvUalKOUtlWqvKsdN2mjwsl8t5fb8OjxMIBNqu2LFtWxsbG21XHVmWdaThe7FYVCAQUKlUUiaTUblcVrVabdokIJ1Oq1QqKRQKKZ/PK5fLqVqtqlqtKpfLee+fbdtaXV1tOXckEmkrxlbvSzfy+bw398rKStP4lmUpk8lIOoh9eXm56VzDMGRZ1pFNHerPNb521s+iLpFIKBaLyTAMlctlxeNxWZYl0zQVDodVLBa9mLPZrPx+f9N3o1KpKBQKHfleFgoFzc7Oest6y+WyUqmU91k5jkPzfwAAAOA0w87EAeeZRqwiLJlMdjze4WocnVIRdriipn6rVyMN2uGqplaVNsepVxf14jqOe186GbdxrNOqkA5XCR1XmXe4cq2xMqxR43ty3Ny5XK6tCq5qtdrTirBwOHzqd/60cdqNva7dz6KxEuy0z7qx4uu4CsbGGA3DaPm5Hv7+Dur/gwAAAIDziIowAB0Z9Yqwszi886PU+XXE43FVq9Vjq6Dqu1W2M36ruI7TuElBNBo9tj/a4Z0Sj6sEbIzfcZyR/VyP+x42Pt+LpvjtfhaJRMKbPxqNtnWsdFDl1mqThsbrWF9fb/m5Hv6uFQqFtmIFAAAAxhGJMAAdOS4xUC6XBxxJ91olU96/f9/VeJlMRsVi8cgSPOkg6bG4uNjT5FK7S0EbP7ezLB8dpR0W19fXlUwmlclkTk02SYNLzqbTaW+udhJn0Wi06TM46yYNjRrnG6XPCgAAABg1JMIAdOS4iqNWVS2jrlXS4vLly12Pa1nWsf3XSqXSkf5Vg9Dprp6VSqW3gXTBMAzF4/Fje7Kdtb9br+RyOe9+uxVkjX9H5/FvBwAAADhvSIQB6Firaifbtkd2Gd1ZnGVZ4mmi0ajK5fKRJFQ2mx3p5EenSbNBs21b6XRa+Xy+ZSP8QcZxVoe/ZxfhbwcAAAAYZSTCAHTs1q1bLZ8f5eTOcQ4nfXqZCKuPVywWj8xz1t068Vf1XS9TqdSJfdEGpTGJ1W5S7PCOlKNUeQcAAABcRCTCgBFVKpUUiUSGHcaJjuvPdB6TO4crcdqpKsrn8woEAm3PYZqm1tfXm54b1jK+8y4WiykQCMg0za56a/VSJw36Gzc5kHqfgAUAAADQjEQYMKKWl5dHfpmUYRgt+zTl8/lzleA5/D63W1lkmqZKpdKZKuAOv180Nj+7WCymdDotqbsG873WmMRqd6fNxgowkmAAAABA/5EIA0ZQPZEUCoWOPabXS6g6He+4REQikegmnJb6lRgsFApNj2OxWFvn1RMX7R7fyrD6WQ1SL7+rpVLJS4KZpjlSfcwOLxWux3mSxl1WWyWVAQAAAPQWiTBgxDiO4y2JPOsP4/fv3/c0lnYSGMctTcvn81pbW+tZLLZtKxAIdJV0Os7h3f7O8r6bpinbtttO/B2uADuuz9p5cHhZ33GJyl5WvTVW35007jCqKcPhcFNirp0lwo3Xs7Ky0o+wAAAAADQgEQZ0qB8/tB3H0eLiohzHkWEYZ14q1euY2h0vHo+3XE6YSCR60jg/n897TcX7sRQum81698/a36z+Ga2trbVVAdQ4vmmaisfjZ5rvOO1+Vo3HnXbOaa8frmZrdf2tkoS9rBBr/Ozq2pnv8N/W4aRap39LjT3gbNs+8ftfKpW8JcTJZHKkqtsAAACAi4pEGNCh46pROv2RX2+8Xv9hvLS0dOb5u0kwdFu1k8vlWlZShUKhjivDHMdRLBZTKBQ6dtfFk85tRzqd9q69k50HGxMqsVhMsVjs2LnT6XTTe9FYidZK4+c57H5xx83f+H4lEgnFYjHl83lls1nFYjH5/f4jSZ52/3ZazXk4+RaJRLS2tuZVIPr9ftm23fS5pFIp5fN5JRIJb8zDibD652bbdlMPslaxnfRZhMPhpmRtJBJpebzjOFpeXpZ08L07LiHa7ufe+J4O+7sCAAAAjDQXQEei0agr6cgtGAy65XL51POr1aqby+XceDzumqZ5ZJxMJnPsueVyueXcktxqtdrR9ViW1XK8VCp1pnHi8XjLcSzLcnO5XFtjVKtVN5lMuoZheO/padd1eF7DME6dp/F9DAaDbcV2WCqVanm94XDYjcfjbiqVcqPRaNNn3O535PBnctx3olqtHnmvjxMOh9v6fHO5XNNx0Wj02Lnrn9Phm2EY3mfeeIxlWW65XD7ymbYb2+HjGm/JZNJ13dZ/n+FwuGmc476rra613c+iLpPJeNdsGIabSqXccrnslstlN5VKed+HeryttPsZHD6u0+8yAAAAMA5IhAFnVCwWT/wh3qtbq8RPtVp1U6nUsYkHSa5pmm4qlWo7IVYsFt1gMHhiLPF4vK3ETV0ulzs2sWYYhhsOh91UKuXmcjm3WCy6uVzOTaVSbjKZbDrPMIxTEw51rZKDpmkem3xrTFQcTpCcRS6X8+LMZDJuNBp1g8Gga1lW0+dUv+7TkoH179dxn7FlWV7y5KRjTdN0w+Gw9z04nIw7nDipj5nL5Y79Ppim2TIZU61Wm8a3LMuNx+NNx9SfO/w9qlarp15vqzmTyaQ3n2mabjweb/rOV6tV7zoa37PDGhPRlmU1fd/O8lkcJ5VKucFgsCkpVj/vuL/Rk/4mGz+Dcrl84nGnxQYAAACMI5/ruq4AnCqdTvelUXsrlmWpWCw2Pefz+c48jmEYqlarLV+LRCIt+yudJpfLtb18MJvNanV11Vvu2S7TNBWLxRSNRs/UN6nej+rwdRmGofn5eRmGIcdxVCgUvD5smUzmzMshAQAAAADnE4kwAH3nOI7y+bw2NjZk27bXi0k6SHrVNwZYWFhQOBw+8yYBp81Xn7M+z/z8vCKRCAkwAAAAABgzJMIAAAAAAAAwFtg1EgAAAAAAAGOBRBgAAAAAAADGAokwAAAAAAAwEGtrawqFQpqenpbP55Pf71ckElE+nz+Xcw/zetAZEmEAAAAAAKCv8vm8pqenlUgkJEmZTEblclnJZFKlUkmhUEihUEiO45yLuXs5Zj2J1sktFot18paMNZrlAwAAAACAvsnn8wqFQpKkaDSqVCp15JhAIKBSqSTTNFUsFmUYxsjO3csxs9msIpHI2S6qQSaTUTgc7vj8cUQiDAAAAAAA9IXjOJqdnZXjODJNU+VyueVxtm3L7/dLkoLBoHK53EjO3esxQ6FQV8soSemcHUsjAQAAAABAX0QiEW95YH0ZYSumaXqVTfl8Xul0eiTn7uWYtm0rn8/LNE2lUimVy2VVq9VTb6ZpSjpIsOHsqAgDAAAAAAA911gVJUnVavXEZYeNywQNw1C1Wh2puXs9ZiKRUDabPdNS0MYYUqmUotFoW+fhr34y7ACA88Dn83n3JyYopAQAAABwse3v73v3O62fSSaT3v1gMHhqsqex15XjOMpmsx33v+rH3L0eM51Oa2tr60z90LLZrHd/aWmp7fPwVyTCgDNq/AcBAAAAANBa43JAy7LaOsc0Tdm2LUna2NjoOBHWj7l7PWYmk2l7nLqNjQ1J7SXi0BqJMOCMRqkirDEpN0pxDRPvyVG8J0fxnjTj/TiK9+Qo3pOjeE+O4j1pxvtxFO/JUaP6nnRbAFAqlZoeLywstHWeZVle4qix+mnYc/djzLP2+HIcx4ujm50mxx2JMKANExMT2t/f18TEhD58+DDscDwfffSR3r17pytXrujHH38cdjgjgffkKN6To3hPmvF+HMV7chTvyVG8J0fxnjTj/TiK9+SoUX1PLl265P0G6sThnRDrDd5Pc/i4Uql05qqpfsw9zOupa6xI6+eyyN3dXZVKJVUqFTmOo/fv30uSLl++LMMwZJqm5ufnNTk52bcY+olEGAAAAAAA6KnXr183PW53Gd/ly5ebHhcKhTMnjvox9zCvp66+LNKyrJ4vi3zx4oVyuZw2Nze9XTFPY5qmgsGgIpGIbty40dN4+olEGAAAAAAA6Kn6csC6TiuoyuXySMw9zOuRmpdF3rp1q6MxWnn27JmSyaR3fY0bIzRuGteofky5XJZt20qn0zJNUw8ePNDnn3/es9j6ZXQWIAMAAAAAgAvhcOKoU+1WJ/V77mFejyRtbm569zvdQKDRq1evdO3aNcVisZZJsPrjVrdWx9i2rWg0qr/927/Vd99913V8/URFGAAAAAAAF8STJ0/05MmTrsfptll+pwmfw0v+KpXKSMw9zOuRpFQqJelgWWS71WjHWVlZ0dra2pGkVjAYlGVZunz5skzT9GKfmZmR9NfYHceRbdt6//69bNtWPp/33p+3b9/KsiwlEgl99dVXXcXZL+cuEXbt2rVhh+Dx+Xz6l3/5l2GHAQAAAACAJKlWq+ndu3fDDqNnOk1AjercnYzZq2WRtVpNi4uLKhaLkg4SX6FQSMFgUHNzcx2PK0l7e3va2NhQOp1WqVRSMplUPp9XPp8fuab65y4RVi6X5fP5jmQuB6k+/3HrZQEAAAAAGIbJyUlduXKl63G6TaYZhtGTRFInTeH7Mfcwr6cXyyLfvHmjxcVFVatVRaNRJRIJzc7OdjRWK1NTU4pGo4pGo7JtW7FYTFtbW5qfn1exWNRPf/rTns3VrXOXCBsFw0zCAQAAAABwnHv37unevXtdj3Pp0qWulkfOzMz0JHFUX5Y37LmHeT31ZZGmaXa0LHJ7e1uBQECWZalQKPQ0AdaKaZrK5XLK5/OKRCIKBAIqFAojUxl2LhNhrusqHA53vS62U47jKJ1OD2VuDNf+/r4++uijE4/p1T887bh3755qtdrI/B8KRhPfk6N4T5rxfqAdfE+O4j05ivcEp+E7ctRFfU86qXySji4d7LQirNdzD+t6GpdFdlINtrOzo8XFRYXD4abKskEIBoPa2dlRIBDQ0tKSfv/73w90/uOcy0RYOp3W7du3hxpDOBzWp59+OtQYMBynlQjXarUBRaKBJdxwvvE9OYr3pBnvB9rB9+Qo3pOjeE9wGr4jR13U92R+ft5L4EgHCZ12kkCHm8n7/f6RmHtY19OYvOqkP1goFNLS0pKePn165nN7wTAMFYtFzc/P6+uvv9avf/3rocTR6FwmwoLB4LBD0MLCwrBDwJCctt7+ov2XHAAAAAA4q0Ag0PTYtm1ZlnXqeeVyuelxJ7//+zH3sK4nk8lIOkgotTNfowcPHsg0zaElweoMw1ChUJBpmlpcXNT169eHGs+5TIR1sqYW6IWJiQn9+OOPww4DAAAAAEba/Px80+N2E0eNSwkNw+ioJVI/5h7G9TiOo3w+L0mKRqNtn1d3+fJlL5E2bIZhaGtrS7ZtDz0RNjHU2TvATo0AAAAAAIw2y7Kalg6+fv26rfMKhYJ3/3DyaZhzD+N6ul0Wef/+fU1NTZ35vH6Zm5vTL3/5y2GHcf4SYaO0Y+MoxQIAAAAAwChZWlry7jf21zpJ43GJRGKk5h709XSzLHIY7t69O+wQ2nLuEmHJZHIkejBNTU0pmUwOOwwAAAAAAEZSLBbz7teX+J2k8RjTNLvqD96PuQd5PY3LIhsTcKMsnU5rd3d32GGc6twlwu7fvz/Q+U76EAcdCwAAAAAA54VlWU3Jn2w2e+Lxjf2sTqueSqfTSiQSsm17YHP383oOa1wWGYlEznTuMGxtbcl1XT1//nzYoZzK57K+70Sffvqp/vCHPww7DAzZpUuXtL+/r4mJCX348GHY4eAEH330kd69e6crV66wsQGAjvH/JQB6gf8vwXnWq99Atm3L7/dLOkgkFYvFlsc5jqPp6WlJBzsr5nK5Y8cMhUJN1VbVarWpf1c/5+7HmK3Ur9EwDFWr1TOdK0l37tzRzs7Omc87q0qlIsdxZNu2XNeV3+/X999/3/d5u3Eud40cpMbGdgBG371791Sr1UZiCTWA84v/LwHQC/x/CXCwJDCTySgSiahUKmltbU3xePzIcYuLi5IO+mGdttPh4WWJm5ubLXdV7Mfc/RjzsMZlkZ0uDzUMQ7lcru8bDh6urbJtW2/evBn6zpAnGZuKsN3d3aZtS09j27ZSqZTy+TwVQKAiDAAAAMBY6fVvoHw+r0gkIsdxFA6HtbKyItM0VSgUlEgkVCqVZFmWtra2WlZ3NZqenm76fZ/L5U5MGPVy7n6OWZdOp71+ZKdd23G2t7cVCATaToS5rtt10qw+RiKR0FdffdXVWP10YRNhu7u7SiaTyufzx64ZPk39QyTxARJhAAAAAMZJv34Dra2taWNjQ7Zty3EcGYah+fl5xWIxhcPhtsbI5/OKxWKqVCqKRqNtb2TXi7kHMWbj0s9uUjYff/yxdnZ22hrD5/N1NVfj+aO+PPJCJsJWVla0trYmqbsvjSQSYZBEIgwAAADAeOE30PkXi8X07Nkz5XI53bhx49jjHj16pEQiIcuylEwmNT8/r6mpqbbnKZVKWlpaUigU0u9+97tehN5XFy4R9vz5c29HhXpZX7dZTf7owT8CAAAAAMYJv4HOv62tLT148ECvX78+9pidnR19/PHHikajXSWxbNvWxx9/rDt37ui3v/1tx+MMwoVLhM3Pz6tUKnlleaZpyrIsmaYpSbp8+fKpY7x//16O42hzc1N7e3v80YN/BAAAAACMFX4DXQyffPKJXr58eezrd+7c0dbWVk+WMtYr0PL5vH7xi190PV6/XLhE2MTEhFcJ9vLlS2+nhk7Ytq1r167xRw/+EQAAAAAwVvgNNB7m5+f12Wef6Ysvvuh6rPX1dcViMS0tLenf/tt/24Po+uMnww6g1wzD0N7enuLxeFdJMOlgW9TZ2dkeRQYAAAAAwPA9efJET548OfGY/f39AUWDYSqVSl6P9W7NzMxIOtjpcpRduESYaZra3t7WwsJCT8ZLpVI9GQcAAAAAgFFQq9X07t27YYeBEWAYhnZ2dnoyVj0B5jhOT8brlwuXCFtcXNT29rYqlUrPxgMAAAAA4KKYnJzUlStXTjyGRNl4mJ+f19OnT/X55593Nc7e3p7S6bSkg+TaKJsYdgC99uWXX8p1XZVKpZ6M9+zZs56MAwAAAADAKLh3755+/PHHE28TExcuXYAWotGoisWivv76647HqNVqCgaDkiSfz+dtVjiqLtw3e2pqSg8fPtTGxob+8pe/dD0eSyMBAAAAAMBFFA6HNTs7q3g8rs8++0y7u7tnOv/FixeanZ1tKka6detWj6PsrQu3a2RdKBTSpUuX9Pvf/77jMXZ2dvTxxx+zQwbYMQUAAADAWOE30PiwbVsff/yxfD6fJMmyLMViMZmmKdM0dfXqVUnS7u6uHMeRbdvK5XLa3NyU4zhyXVc+n0+u62p6elrv378f4tWc7sImwqSDta57e3tKJBLe7gWnqVQqchxH5XLZ+1D5o0f9HwFJp66lv3fvnu7duzeIsAAAAACgL0iEjZdSqaT5+XlJ8hJip6mnkxqPz+VyunHjRu8D7KEL1yy/7tWrV5KkcrmsWCzW0Rj1rCbQ6LSmkbVabUCRAAAAAADQPcuy9PbtW0UiEW1vb7d1Tj1fUk+IZTKZkU+CSRc0EXb37l1vt4J6ed5ZkQDDcU6rCJucnBxQJABGyW9Kf+r43F9ZP+9hJAAAAMDZmaapYrGobDarhw8fHtmE8HDiq/6/4XBY6+vrmpqaGmzAHbpwSyPX19e9CrBOk2CNfD4fZaCgLBjAqUiEAQCAi4TfQNjZ2VE+n1exWJRt26pUKpKkmZkZmaapUCikYDB4bhJgdRcuETY/P69SqeQlwYLBoEKhkAzDOHOfsKdPn2p3d5c/evCPAIBTkQgDAAAXCb+BcFFduETYxMSEfD6fDMNQoVDQ7Oxsx2M5jqPLly/zRw/+EQDGRDfJrG6QCAMAAKOG30C4qCaGHUCvGYYhSVpZWekqCVYfa25urgdRAQAAAAAAXAwrKyv64Ycfhh1GRy5cIiwQCEg6aPLWC+vr6z0ZBwAAAAAAYNS9ePFCd+/e1cLCgl68eNHymEAgoLm5OX322WfnLiF24RJhsVhMruvKtu2ejDeOFWG2bSsUCimbzQ5srnatra0pFAppenpaPp9Pfr9fkUhE+Xy+j1ECAAAAAHCxPX78WJcvX1YkElE6nVapVPIa5B8WDodl27a+//57maapb7/9dsDRdu7CJcLC4bDm5ua0sbHRk/GOy35eRI7jKBKJyO/3K5/PH/uFb3csn8936s3v97dVvZfP5zU9Pa1EIiFJymQyKpfLSiaTKpVKCoVCCoVCchyn45gBAAAAABg3e3t7unbtmhKJhKrVqlzXVTvt5A3DULFY1PXr1xUOh/XNN98MINruXbhEmHSQJCkWiz3JSK6urvYgotHmOI4SiYSmp6d7VgWWTqfbPrae3DpOPp/3klzRaFS5XE7BYFCmaSocDqtcLsuyLOXzeQUCAZJhAAAAAAC0KRKJqFwuS5JXtHIWW1tbcl1X0WhUf/zjH/sRYk9dyESYaZp6+vSpbt++3dU4e3t7KpVKPYpqNK2trSkQCPT8OttNINYTWsepV6lJB59rKpVqeVwmk5F0sNSyfjwAAAAAADje1taW8vm8fD6fVwk2NTWlYDDY9hiGYej+/ftyXVexWKyP0fbGT4YdQK/VlzL+zd/8jaanp3Xt2jWFw+Ezj+M4jjY3N3sd3kgplUoKBoOKx+OSDqq4evGlTafTchxH8Xj81P5f8/PzJ74eiUS8Cq+TKsfq1WHZbFb5fF7pdFrRaPTMsQMAAAAAMC7qxSb1iq5EIqHZ2VlJ0sRE+7VTn332mR49eqRyuaxvvvlGn3/+eV/i7QWf287Cz3Nkfn5e29vb3mPXdc9c1nf43A8fPvQqvJFWKpW8XTelgz+ITpJJfr9fkrzSyk7Ztu2NJUnValWGYRx7fDab9arBDMNQtVrtav5Gly5d0v7+viYmJsbm+wCMo9+U/jSUeX9l/Xwo8wIAAByH30DjYWZmRnt7e0qlUkdW1U1MTCidTre12m5vb8/b1C4cDvesb3s/XLilkUtLS02N3TpNgo2jk5JM7cpms7Jt+9S+X+1IJpPe/WAweGp8jZV/juMMZNdLAAAAADhvnjx5oo8++ujE2/7+/rDDxAA4jiPTNLtuLdW42d6ot5i6cImw+tK+xvWtnd5wdqurqzIMQ0tLS12P1dhw37Ksts5p7Dc2yhloAAAAABiWWq2md+/enXjDeDAMo+3f2yepJ79c15Vt212P108XrkfY1NSULMvS9va2ksmkLMvSzMzMmcexbVtfffWV3rx50/sgL6hSqeR9+aenp2WapoLBoEKh0Jn7tB3OIC8sLLR1nmVZ3h8dFWEAAAAAcNTk5KSuXLly4jEkw8aDaZpeX+5uNG6Y14vVZv104RJhknTr1i35/X7dv3+/4zHm5uZ08+bNjpJo4+rwckjbtpVOp73KrnA4rJWVlbayzfl8vunxSTtLnnRcqVTqSXYbAAAAAC6Ke/fu6d69eyceU+8RhottcXFRz54962qMR48eqVQqeSvz2v39PiwXbmmkdNBPqldLG0/b1RAHbNs+krw6LJvNKhAItLUz5evXr5set5tRvnz5ctPjQqHQ1nkAAAAAAIyblZUVVatVff311x2f/+DBAy8J5vP5dOvWrR5H2VsXsiJsbm6uqdF6N/7z//w/78k4F51pmkqlUnIcR+VyWfl8/th1wel0WoVCQcVi8djxDp/baUVYtztXAgAAAABwURmGofv37ysej+v9+/d68OCBJicnTzynVqtpc3NTyWRStm17CbC6aDTa77C7ciETYZI0Ozvbk3H+zb/5N/qP/+P/uCdjXXSHv+yO4yidTmt1dfXImuNSqaRQKKRcLtdyrF411+vFWmcAAAAAAC6qZDKpUqmkhw8fKplMKhQKKRgMSpKKxaJmZmZUqVS8opfGxviSmpJgT58+PTWRNmwXcmlkL7G0rnOGYSgej6tarSqTyRxZ3pjP57W2ttby3E4TWIfnaNzCFQAAAAAAHJXL5bS8vCzXdZXL5ZRIJOTz+ZROpxWJRBSLxbS2tqZSqSTXdb0qsPqSSNd1lUqltLy8POxLOdWFrQg7bHd390zJFdu2vaV+6F44HFYwGNTi4mLTjpCrq6uKx+N9m7fXn9/+/r4++uijrsdppzklAAAAAACDkkqlFIvFlEgktLW1deT1euVXY/JLOujTnkqlerYyr98ubCJsd3dXyWTyxF5Vpzm8zhXdMQxDxWJRgUDAS4Y5jqN8Pu+VXTYe24skVj+2be3FNsK1Wq0HkQAAAAAA0DuWZSmXy2lnZ0f5fF65XE62bctxHFUqFc3MzMgwDJmmqVAopKWlJU1NTQ077DO5kImwlZUVb8ldr3aPRO+sr68rEAh4j3O53JFE2MzMTE8SYTMzM12PcdiVK1e6HmPU10wDAAAAAMbX7OyslpeXz8VSx7O6cImw58+feztGNq5XxeiwLEvBYFD5fF5S68b4nVZyHU6e9boibGJiQj/++GNPxwQAAAAAAINx4RJhq6urkv66ZtU0TVmWJdM0JUmXL18+dYz379/LcRxtbm5qb2+vr/GOq1Ao5CXCWpmfn2/qJeY4TltJrcPN8f1+f8cxAgAAAACAo3Z3d1UqlWQYhubn58/VqqcLlwgrlUpeX69cLqfFxcWOx4rH47p27VqvQkODemJSar18sXHppHRQNWZZ1qnjlsvlpseHl1wCAAAAAIDO7O7uKhKJNBWuSAe/4TOZjH72s58NKbL2TQw7gF6rVw3F4/GukmDSQbLmvOx6cN40JsJaVXrNz883PW53w4PGpZH1Bn4AAAAAAKC1Tz75RAsLC7p27ZquXbumy5cv69atW0eO297e9ja/q+8aWb8VCgX5/X798Y9/HMIVnM2FS4TVEx8LCws9GS+VSvVkHDQrFAre/VAodOR1y7KaEmSvX78+87iHk2kAAAAAAKCZYRgqFot6//69otGoCoWCNjY2mo7Z29vT4uKiqtWqJHkr8QzDUDAYlGma2t/fVyQSGXj8Z3XhEmH1KrDDvaK6HQ+91biE8bjli0tLS979w2WXx2k8LpFIdBgdAAAAAADjoVQqKZFIqFKp6P79+y1Xxi0vL8txHK8fu+u6SiaTqlQqevnypd6+fauXL19qf39fX3755RCuon0XLhH25ZdfynXdthMnp3n27FlPxkGzbDYr6WAJ63FisZh3/6TG+q2OMU2T/mAAAAAAAJzg0aNHsizL23iwlefPnyubzXpJMJ/Pp2Qyqfv37zcdFwwG9fDhQxWLxX6H3ZULlwibmprSw4cPtbGxob/85S9djzdOSyMb+2v1UzablW3bMgxDKysrxx5nWVZTMquePDtOJpPx7lMNBgAAAADAydLp9KkVXMvLy95SSJ/PJ8uyjiTB6m7dutXUsmgUXbhEmHRQZWRZVtdrU3d2dnpWWXYeHG5I325iLJ/Pa3p6Wj6fT6FQ6MT3zLZtLS8vS5K2trZaNspv1JiIPClD7TiO0um0pIMsdDQabSt2AAAAAADGVblc1vXr1499/e7du15uwHVdSdL6+vqxx09NTXnHjaqfDDuAfsnlcpqfn9e1a9eUSCQ0MzPT1nmVSkWO46hcLmtzc7PPUY4Ox3GOVFFtbGycuHSxLpPJeH8Y+XxegUBA0Wj0SDVdPp9XJBLRzMyMisViWzs6mqapTCbjbc+6trbWMqZ6LzfDMJoqwwAAAAAAQGumaWp3d1dXr1498tr29rZSqVTTkshoNHpi4mx7e3vkN67zuaOequvQq1evFI/HVSqVvBK+s6p/0B8+fOhxdKPBcRyv4d1JPbiCwaC3jNGyrCOv5/P5ljs/1nePmJmZUaFQUKlUUjwe18rKyqmVYK3miEQichxH4XBYKysrMk1ThUJBiURCpVJJlmW1VWXWiUuXLml/f18TExMX9vsAQPpN6U9DmfdX1s+HMi8AABhPT5480ZMnT0485t27d5LEb6AL7pNPPtH8/Ly++uqrpuf39vYUCARk27aXUzFNU99///2J4z1+/Fhzc3MjvfHghawIu3v3rrdMrp65PKtOk2fnSa+qp4LBoMrlspLJpPL5vFdVJ8lLUK2srHgJtU7nqFarWltb08bGhhYXF+U4jgzD0Pz8vDKZjMLhcNfXAgAAAAAXXa1W8xJdGG/RaFRLS0uSpAcPHkg6KERJJBJeEqxeJHRa/mB7e1urq6t6//593+PuxoWrCFtfX/d2G+w0CdboIleEoX1UhAHjgYowAAAwDqgIQ6NQKKRXr141PVdPftVzKqlUyuv33cqzZ8+8dkskwgZsfn7eWw7puq6CwaBCoZAMwzhzn7CnT59qd3eXP3qQCAPGBIkwAACAA/wGGh97e3u6ffu2nj9/fuQ1wzC0vr6umzdvHnntzZs32tjYUDablW3bXvIsm83qH/7hHwYRekcuXCJsYmJCPp9PhmGoUChodna247Ecx9Hly5f5owf/CABjgkQYAADAAX4DjZ+trS3lcjmVSiUZhqGFhQVFo1FNTU0dOXZ9ff3YpZKBQECrq6v9DrdjFy4RNjMzo729PSWTSX3xxRddjzc/P69CodCDyHCe8Y8AMB5IhAEAABzgNxAuqolhB9BrgUBA0sFuBr2wvr7ek3EAAAAAAAAwXBcuERaLxeS6rmzb7sl4c3NzPRkHAAAAAADgItvd3R12CKe6cImwcDisubk5bWxs9GS8Fy9e9GQcAAAAAACAiywSiQw7hFNduESYJGUyGRWLRX377bddjzXKDd4wePv7+/roo49OvJ22DTEAAAAAABdRr1bn9dNPhh1AP5imqadPn+r27dtdbdm5t7enUqnUw8hwEbx79+7E12u12oAiAQAAAABg+Gq1muLxuBzHGXYop7pwibD6Usa/+Zu/0fT0tK5du6ZwOHzmcRzH0ebmZq/DwwVw5cqVE1+fnJwcUCQAAAAAALS2s7OjpaUl2batWCymr7766sgx8/Pz2tnZ6WqeevLLdV35fL6uxhoEn+u67rCD6KX5+Xltb297j7v5IOrnslUs2DoYGA+/Kf1pKPP+yvr5UOYFAAA4Dr+Bzr/5+XlvlZvP51Mmk9Evf/nLpmNisZjW19d7Nud5yKFcuB5hS0tLcl1X9fzeechGAgAAAAAA9FKpVGrKibTq33Xnzh1JB7mTxlu7Ojln2C5cRdje3p6mp6fl8/nUi0s7D9lM9B//NQQYD1SEAQAAHOA30PnXWO3l8/lULpd19erVI8fNzMxob29PruvKMAzNzMzIMIy25nAcR5VKxVseeR5yKBeuR9jU1JQsy9L29raSyaQsy9LMzMyZx7FtW1999ZXevHnT+yABAAAAAAD6KJVKKRQKqVAoKBaLtUyCSdLy8rIeP36sUqmk69evdzxfIpHQ48ePOz5/UC5cRZgkPXr0SIVCQRsbG12PNTMzo0ql0oOocJ7xX0OA8UBFGAAAwAF+A42P7e1tLS0t6fvvv+96rPOQQ7lwPcIkKRgM9mRZpHTQXA4AAAAAAOAimpub09TUVE/GMk2zJ+P004VMhM3NzSmZTPZkrF6NAwAAAAAAMIq2trZ6Mk4vd6DslwuZCJOk2dnZnowzNzfXk3EAAAAAAABGUa8qws7D7pHnLhE2Ss3rRykWAAAAAADa8eTJE3300Ucn3vb394cdJs6h5eXlYYdwqnO3a2QgEFC1WtXk5ORQ49jb21MgEKBpIAAAAADgXKnVanr37t2ww8AFZNv2sEM41blLhI3SJpejFAsAAAAAAO2YnJzUlStXTjyGRBnaVavVVKlUFI/H5TjOsMM51blLhI3SetNRigUAAAAAgHbcu3dP9+7dO/GYS5cusTzyHNvb29PMzMxA53Rd91zkSc5djzCqsAAAAAAAAI43NTWl69evy3Xdgd3Oi3OXCJOknZ2dYYegQqEw7BAAAAAAAABa+uyzzyQdrGbrd6XWeagEqzt3SyOlg10IHjx4IMMwBl7qV6lUZNu24vH4QOcFAAAAAOC8W1tbUy6XU6FQkOM4Mk1TlmUpFospGAyeu7mHcT2lUkm2bcu2bVmWdew89edd15VpmjJNU4Zh9Dwex3G8eM4Dn3ue6tckTUxMjESmsb72lV0jx0N9ffzExASfOXCB/ab0p2GH0JFfWT8fdggAAOCC6fVvoHw+r0gkIsdxFAwGlUgkZJqmSqWSEomEbNtWMBhUJpPpebKmH3MP8nocx1E6ndbGxoZKpZIMw1A0GlUoFNL8/PyJ48/MzCgUCmljY6OrGNqRTqd19+7dkf/NfK4TYcMK3efzkQgbMyTCgPFAIgwAAOBAL38D5fN5hUIhSVI0GlUqlTpyTCAQUKlUkmmaKhaLPUuG9WPuQV2P4zhKJBJKp9OSJMuylEwmz1RptrS0pE8++US3b98+8/ydmJmZUaVSGchcnTqXPcKG3YjtnOUOAQAAAAAYCsdxFIlEJEmmabZMGklSJpORJNm27R0/inMP6nrS6bRmZ2e9JFgqlVKxWDzzcst6wm5Q5ufnBzpfJ85dj7BqtTrsEAAAAAAAQBvqywclKZFIHHucaZoKh8PKZrPK5/NKp9OKRqMjN/cgrieRSGhtbc0bJ5fLyTTNts49bHl5WXt7ex2d24mXL18ObK5OnbulkcAw1MuCJenKlSsnHnvv3j3du3dvEGEB6DGWRgIAABzoxdJI27bl9/u9x9Vq9cQlgtls1queMgyjq0KYfsw9iOuJRCLKZrPeOTs7O31pcN9re3t7evjwoVZXV4cdyqnO5dJIYJjevXt34q1Wqw07RAAAAAAYumQy6d0PBoOnJnTC4bB333EcLyE0KnP3+3pCoVDTMb3sldZvU1NTyuVy+vu///thh3IqEmHAGV25cuXE2+Tk5LBDBAAAAIChq/e3kg4avbejcQlgNzsd9mPufl5POp1WPp/3HqdSqY6XQw7L/Py8isWivvzyy2GHcqJz1yMMGKaJiQn9+OOPww4DAAAAAEZaqVRqerywsNDWeZZlybZtSeq4Iqwfc/fzemzbViwWazqn2/5o3djd3ZXjOGfa/bFUKimTych1XaVSKX311Vd9jLA7JMIAAAAAAEBPNVY3SWq7uunwcaVSqe3qq37O3c/rObyr5MrKSltj99KLFy+USqWOXGcn6psJjCqWRgIAAAAAgJ56/fp10+N2e11dvny56XGhUBiJuft1PbZtN1WbGYbR1FtsEB49eqRIJKJ8Pi/XdTu+SZLP5ztz4nLQSIQBAAAAAICeqi8HrOu0gqpcLo/E3P26nlQq1fQ4GAxK+uuOk36/Xz6fT9PT0woEAlpbW+tpxdX29rYSiYQkecmsRj6fr61xfD6fXNfV7Oys1tfXexZfP7A0EgAAAAAA9NThxFGnOkn69GPufl1PYwN+SZqZmVEgEDjSk8xxHJVKJZVKJSUSCWUymZ5UjtUTcVNTU4pGo/L7/V7yrlqtamlpSdPT09rc3Dz2el6+fKlnz56pVCrp+vXrXcfUbyTCAAAXym9Kfxp2CAAAAGOv06qlw0sOz9KwvZ9z92NM27aPjLu5ualkMqmlpSXvXNu2lUwmm5JmkUikJ8mwfD4vv9+v77//vuXry8vLevbsmfx+v65evdrymJs3b0qSHjx4oN///vddxTMIJMIAAAAAALggnjx5oidPnnQ9zv7+fg+i6d4wG6/3Y+6TqswMw9DOzs6R5JlpmkqlUgoEAk27Sy4vLysYDLbdr6wV27ZPbJD/4MEDra+va21tTb/97W+PPS6RSOjjjz/W119/rV//+tcdxzMI9AgDAAAAAOCCqNVqevfuXde3bnWTnOl2nH7M3Y8xDyfCotHoifNEo1FFo1HvseM4Wl1d7Tqm+fn5Y1+bnZ3V4uKiUqmUarXasceZpqm5uTnF4/ETjxsFJMIAAAAAALggJicndeXKla5v3ZqZmenB1XQ2Tj/m7seYhxvnLywsnHp+vbF93draWlfxWJZ16vLTRCIh13X14MGDE49bWFiQ67p6+PBhVzH1G4kwAAAAAAAuiHv37unHH3/s+jYx0V26oNMKqsPLEQdZEXbS3P0Ys5NrNU1TlmU1PXe4sf5ZmKZ5pGH/YcFgUHNzc0qlUvruu++OPa5QKEiSMplMx/EMAokwAAAAAADQU4eX27Xbb+twdZLf7x+JufsxZifX1iqWbna0XFpaUjKZ1Ndff63d3V29evVKr169OnLcysqKXNeVZVn69ttvj7z+6NEjLyHXqx02+4Vm+QAAAAAAoKcCgUDTY9u2j1QytXJ4uWAwGByJufsx5uEKsHaTa4cTaJ3srFkXDoc1OTmpeDyueDzuPR8IBPTnP/+56bjFxUVtbW0pHA7LsiwvIZfP55uSX6ZpdhzPIIxlRdju7u6wQwAAAAAA4MLqtGqpMRlkGEZHSZV+zD1KYx5OoHXbv2x9fV2u60qSXNeV67oqFot68+ZN03GpVMq7XyqVlE6nlU6nVS6XvfN9Pl9bCcJhGptE2O7urh4/fqxr167J7/fr0qVL+sd//MeWJX8AAAAAAKBzlmU1JWxev37d1nn1PlPSybsZDnrufo3Z6HD1WLu6rcAKh8Pa3Nz0klnSQbLt+vXrR+Z5+fJl03HSQfLL5/N5562vr3cVT79d6ERYrVbTs2fPtLCwIL/fr0Qi4WUqXddVKpVSKBTS5cuX9eWXX1IpBgAAAABAjywtLXn3223o3njc4R0Shz13P8ZsXCqZz+fbGvPwEspeVGCFw2FVq1WlUiklk8ljq9OCwaDevn2rGzdueLmV+s2yLBUKBU1OTnYdTz/53MOpvAvgxYsXSqVSTV8i13Xl8/maMpeNj+vZS9M0defOHS0vL4/8h4fBuXTpkvb39zUxMaEPHz4MOxwAJ/hN6U/DDmHgfmX9fNghAACAC6YXv4FKpVJTb63T0g/5fF6hUEjSwW/zTiuk+jV3P8ZsPEaSqtXqqbtHxmIxb6fHYDCoXC534vH9sre351W8maap2dnZocRxVhemIuzVq1e6e/euLl26pEgkonw+37TGtf6/lmUpmUwqHA4f+dK6rqtyuax4PK7p6WktLCzom2++Ua1WG/j1AAAAAABwnlmW1VTxlM1mTzw+k8l490+rBkun00okEsdWLvVj7n6MGQwGm5Y2rq6unjim1Fw5lkwmTz2+X6amprS4uKjFxUUvCXYeVtqd64qwN2/eaGNjQ+l02isNbFX5ZVmWbt26pWg0qqmpqaYxnj9/ro2NjaYvcP38epWYdFAmeOvWLf3yl7/s70VhJFERBpwfVIQBAAB0r1e/gWzb9nY5tCxLxWKx5XGO42h6elrS6VVOoVCoKRl0XBVVP+bux5iHK83K5fKxfb8aK8ii0WhTA/tR8Omnn+oPf/jDsMM40bmrCKvVal7T+0AgoLW1NVWrVUnNlV/BYFCpVErValWFQkH3798/kgSTpJs3b2pzc1P7+/vK5XJNybLGta7ZbFaRSMRrsn949wQAAAAAANDMNE2vMqpUKmltba3lcYuLi5IOmq03VlK1criX1ubm5sDm7seYlmU1JbRCodCRPmDSQXItFou1PGdUNG4OMKrORUVYrVbT5uamUqlUU6O5w6EHg0FFIhEtLS21THqdxdbWljKZjDY3N498ARt3Q4jFYopGo7p69WpX82G01f9riCRduXLlxGPv3bune/fuDSIsAC1QEQYAANC9Xq+KyefzikQichxH4XBYKysrMk1ThUJBiURCpVJJlmVpa2vr1B5Z09PTTb/Tc7lc05LFfs49qDENw9DKyop3Xfl8Xqurq3IcZyCVYLu7uy2Tccexbdvr1T7qq6hGOhH24sWLI8sWD4dbX7J48+bNvsWxvb3txXF4/TFN9sdDYyLsNP/Ff/Ff6L/8L//L/gYE4FgkwgAAALrXr/Ywa2tr2tjYkG3bXsJnfn5esVhM4XC4rTHy+bxisZgqlYqi0WjbfbJ6Mfcgxkyn08pkMioUCt6YpmkqGAwqFosdu2yyG7u7u0omk8rn88f2XTtNvcUUibAzevXqlTKZjLcDgjSc5NdxjkuKNfYTa6xMIyl2MVARBpwfJMIAAAC6R5/k8bGysuIt8ew2RUQirE27u7tKpVJHmt7XGYahpaUlRSIRb53tKNjZ2VE2m9XGxkbTkk2a7F88/CMAnB8kwgAAALrHb6Dx8Pz5c0UiEUl/zWV0kyYiEXaCWq2mdDqtVCrlVVadh+TXcU5LihmG4e1cef369SFFiU7xjwBwfpAIAwAA6B6/gcbD/Py8SqWSfD6fXNeVaZqyLMtbfnn58uVTx3j//r0cx9Hm5qb29vZG/vsylETY+vq67ty5I6k5+WWapldBNTc3N+iwemZvb0+bm5vKZDJNu1nUk2KBQEB//vOfhxUeOsA/AsD5QSIMAACge/wGGg8TExNeruLly5ddFSLZtq1r166N/PflJ8OY1HEcLwF2UZJfjaamprS8vKzl5eWWSbFqtTrkCAEAAAAAwLgzDEN7e3uKx+Ndr8YzTVOzs7M9iqx/hpIIM01TyWRS4XD4XLxJ3TicFMvn83r9+vWwwwIAAAAAjKknT57oyZMnJx5T3ywMF5tpmtre3tbCwkJPxkulUj0Zp5+Gkggbxm6Po2Bqako3b94c2+sHAAAAAAxfrVbTu3fvhh0GRsDi4qK2t7dVqVR6Nt6omxh2AAAAAAAAYHAmJyd15cqVE28YD19++aVc123a9K8bz54968k4/TS0XSOB84RGkcD5QbN8AACA7vEbaHysra0pmUxqd3dXP/3pT7saa2FhYeTbQVERdgZ7e3taWVk50zm1Wk1v3rzpT0AAAAAAAABdiMfjsixLkUikq3F2dnZ6VlnWT1SEncH29rbm5+fbzoY/evRIDx48kGVZkqRgMKjV1dV+hog+4b+GAOcHFWEAAADd4zfQ+Jmfn9fe3p4SiYRmZmbaOqdSqchxHJXLZW1ubspxnJH/vgylWX4v1Wo1TU5ODnTOH374QZlMRu/fv9fCwoKCweCRGLa3t5VIJBQIBLyywPX1dd26dUsbGxsDjRcAAAAAAOA4r169kiSVy2XFYrGOxnBdVz6fr5dh9cW5T4QtLy8PLLGUz+fluq5M02x63u/3K5fL6Wc/+5n3XD2mYDDYFGsmk9F3332nv/u7vxtIzAAAAAAAAMe5e/eu0um0JMnn86mThYPnIQFWN5REWK1W63qMSqWiXC6nbDbbg4hOV6/wOvylME1Tb9++VSgU0r/8y794z5dKJfl8Pl2+fLlpnEgkotu3b4988zgAAAAAAHCxra+vK5VKSeo8CSap4/OGYSiJsBs3bmh7e7tn43377bf6h3/4h56N10r9i+G6rqLRqBKJhGZnZ73Xl5aW9OzZM92+fVvSQaJOkgzDaBonGAwqFovpzZs3un79el9jBgAAAAAAOM7hJFgwGFQoFJJhGGfuE/b06VPt7u72MdreGEoiLBqN6s6dOz0b7+nTp31PhBUKBVmWpUwm05QAq1tfX1c0GvUSYcepf5Hy+TyJMAAAAAAAMDT11WyGYahQKLTMd7RreXn5yKq4UTSURNitW7d0584dhcNhLSwsHHl9dXVVMzMzCofDJ76Jq6urunXr1pGeXf2ws7OjnZ2dExvzl8tl777jOJJ0JIM6NTUlSSyNBAAAAAAAQ2UYhvb29rSystJVEqw+1tzcXI8i65+hJMKmpqZkWZY2NzePvPb8+XPNz8/r5cuXp45z8+ZNLSwsaGdnpx9hNpmenj6x+dv6+rr8fr/3+LilkXt7e5L+migDAAAAAAAYhkAgoFevXvWswGh9fb0n4/TTxLAmXllZafn8w4cPvd0KTmOapgKBgB48eNDL0Fq6efOmwuGwfvjhhyOvPX78WIlEQqVSyXuunug6/GWybVvS0QQZAAAAAADAIMViMbmu6+UqunUeKsKGlgi7efNmy+dt29bVq1fbHscwDG1sbPQoquMlk0m9fftWpmnq2rVr+vTTT3Xt2jVdunRJiURC0kES7+7du3rx4oV3Xr0CrC6VSsnn87XddA4AAAAAAKAfwuGw5ubmepZXacyHjCqfO2J7XM7MzGh3d/fEXlyHj9/b29OHDx/6HNlBki4SibTc8TKdTuv27dvKZrNaWlqSz+fT4uKiJOnTTz/V8vKy8vm8wuGwfD6fcrmcbty40feY0RuXLl3S/v6+JOnKlSsnHnvv3j3du3dvEGEBaOE3pT8NO4SB+5X182GHAAAALpj6b6CJiYmB/N7G8Ni2rY8//ljPnz/veiPChYWFke+JPpQeYScJBoN6+PChvvrqq1OPffTokRzHUSAQGEBkB8sci8WistmsNjc3VSqVZJqmYrGYV+EWDoe1ubmpzc1NPXv2TPv7+5qfn1c8Hm8ahyTY+fXu3bsTX6/VagOKBAAAAACA7pimqadPn+r27dtdJcL29vaaWkaNqpFLhD148EDz8/Pe/VaVYbVaTYlEQul0Wj6fzzt+UMLhsMLhcNuvFwoFRSIRbW1tyTTNtjYCwOg6rSKs3WpGAAAAAACGqb6U8W/+5m80PT2ta9eunZjvOI7jOC03RBxFI7c0UjpYZnjnzh35fD4Fg0GZpinDMGTbtmzb9jKMrutqenpaOzs75yL5sLe3p6mpqWGHgQ5QFgycH+O4NLIbLKsEAACt8BtoPMzPzze1f3JdVz6fr6Ox6ueO+vdl5CrCJCkajUqS7ty5o1wud+RDqOfuDMPQ5ubmyCXB9vb29PDhQ62urjY9TxIMAAAAAACMiqWlJa/YyOfzdZwEO0+GtmvkaaLRqKrVqpaXlzU1NSXXdb2baZqKRqPa2dnxGtKPkqmpKWUyGX399dfDDgUAAAAAgCZPnjzRRx99dOKtvlkYLrZYLCbpIAnWmHfp5HZejGRFWN3U1JRSqZRSqZT29vZUqVQ0Ozs71JhqtZoKhYIcx1GlUml5TLlclm3bevr0qX79618POEIAAAAAAI5Xq9VO3QQM42FqakqWZWl7e1vJZFKWZWlmZubM49i2ra+++kpv3rzpfZA9NtKJsEZTU1NDX1q4srKitbW1to8/LlEGAAAAAMCwTE5OnroJGImy8XHr1i35/X7dv3+/4zHm5uZ08+bNjpJogzaySyMl6c2bN3r8+HHTc9vb2/r000/13XffDTSW58+fK5lMnqkkMJlMDjTGXrFtW6FQSNlstqtx1tbWFAqFND09LZ/PJ7/fr0gkonw+P1JjAgAAAMA4uXfvnn788ccTbxMTI50uQA8Fg8GeLW2cn5/vyTj9NJLf7L29PS0sLCgQCCiRSDS9Njc3p42NDd28eVNffvnlwGJKpVIKBoMqFosql8uqVqtKJpOqVqverVwuq1AoyLIs2bat27dvDyy+XnAcR5FIRH6/X/l8vuOKtnw+r+npae+zy2QyKpfLSiaTKpVKCoVCCoVCchxnqGMCAAAAADDu5ubmelbIcx4KgkZyaeTi4qK2t7eP3bbTMAwVCgWZpinHcfTb3/627zHZtq23b98eiaNxuebU1JRmZ2eVTqcViUT0+vXrvsfVC47jaHV19UzLPo+Tz+cVCoUkHWx4kEqlvNdM01Q4HFYgEFA+n1cgEFCxWJRhGAMfEwAAAACAcVer1ZRIJGTbtj755JOu+5zPzc31KLL+GbmKsEePHqlUKsl1XVmWdexxhmHowYMHSqVSA1kmaZrmkeeWlpb07NmzI89blqVyuaxvvvmm73F1a21tTYFAwNsutRv1ijLp4P1qTFg1ymQykg6Si/XjBzkmAAAAAACQwuGw0um0crmc4vG4Xrx4MeyQ+m7kEmG5XE6macq2bRUKhROPDYVCcl1Xq6urfY+rWq0eeW5qakqFQkG1Wu3IazMzM3r48GHf4+pGqVRSMBhUuVxWLpc7NsnUrkgk4i1NPLyktVG9iks6qPZKp9MDHRMAAAAAAOhIv+1xWF01comwQqGgdDqtq1evnnps/QMqFov9DUpSIBDQrVu39OLFi6YMaTQaVSAQ0A8//OA99/jxY9m2Ldu2+x5XNyzLaqq666apnW3bTX9AS0tLJx5/69Yt7/5xCa5+jAkAAAAAAA7UV7/5fD6Fw2HduHFjyBH138glwmZmZlouQ2ylvpxvEAmnRCKhTCajSCSiSCTi7WZpWZauXr0q0zR1+fJlXbp0yUvCtHsdo6KbzG9jQ7xgMHjqWPXqLelg+WOrHSr7MSYAAAAAADgQjUa9HSM3Nja6Hu/u3btdj9FvI5cIsyyr7Z3/EomEfD7fib3EemV2dlabm5tyXVeu6zYlZTKZjCYnJ1WtVr3X6/GNi8aliO1+Ho2JwlZ/cP0YEwAAAAAAHIjH41pcXJSkppVunTq81HIUjVwiLBaLndrzq1ar6dNPP/UqwbpZ0ncW4XBY+/v7KpfLun37tve8YRja3d3V8vKyLMtSMBhUJpNpOuYiO9xof2Fhoa3zGpNbh6u3+jEmAAAAAABolsvl9Mtf/lLhcFh/+ctfOh5nZ2dn5FtESSOYCFtcXFS1WtVnn32mN2/eeM/XajW9evVKd+/e1fT0tJdlNAyjaQndIMzOzh55bmpqSqlUSoVCQS9fvtTNmzcHGtMwHc74trsk9PBxjcmvfowJAAAAAACO+uabbxSNRmVZlr755puWmwK2UqvVvHxNJBLpc5S98ZNhB9DK5uamAoGAAoGAJOnSpUtNr9eXHhqGoc3NTU1OTg48RvzV69evmx6322vs8uXLTY8LhYJX0dWPMQEAAAAAwF99/PHH2tnZ8R67rqtoNKpoNHrmsVzXlc/n62V4fTFyFWHSQdKjXC7riy++0NTUlNd3q7E/Vzwe187OjreWtRfqDfBHdbxRdbj0sdPqrXK53NcxAQAAAADAX9Wb5ddvPp/vSA6m3dt5MZKJsFevXqlWqymZTKpSqaharapYLKpcLmt/f1+VSkUPHz7U1NRUT+ftdXP1cWnW3qs1wI2bJPRjTAAAAAAA8FexWEyS5PP5vCRYJ85DJVjdyC2N/PTTT5XP5+X3+/Uv//Ivkg76b83NzfV97mKxqK+//lrLy8tdLbes1Wra2NgYm/5UnSabDi93rFQqfR0TAAAAAAD81dTUlG7evKnnz59LkoLBYNutiRrZtn1uciAjlwjL5XLy+Xw9r/ZqVzweVzweH8rc464f1Vu9HnN/f18fffRR1+Pcu3dP9+7d60FEAAAAAAB0LhaL6cWLFyoWi7p+/XrH46TTad29e7d3gfXJyCXCFhcX9erVK2UymbbPefXqlW7cuNGzGHq1tvU8lQZ2wzCMniScGrPO/RizV969e9f1GO3uwAEAAAAAQD8Fg0FNTU11lQSTDvqN3blzpzdB9dHIJcIymYzm5+e1t7d3pnN6mQjrZl3sOJqZmelJ0mpmZqavY/bKlStXuh6DnU4BAAAAAKNiZWVFtVqt69+qnew2OWgjlwgzDEPFYtHLJP7iF7848fjt7W1tbm7qd7/7XddzN66LDYVCSiQSCgQCZxqjUqnIcRz923/7b8dm18hOq64OJ7oOV4T1esxemJiY0I8//tjTMQEAAABgkJ48eaInT56ceMz+/v6AosEouH//fk/Gefr0aU/G6aeRS4R9/PHH2tnZkSRls9mBzp3JZLS3t6evvvpK6+vrCoVCXkLstIRcXb232dzcnJdUu+jm5+ebmuI5jtNWAupwI3u/39/XMQEAAAAAB61aetHyBRdXrVZTPp9XLpdTpVKRbduamZmRaZry+/0Kh8O6evXqsMPsyMSwAzgsGo16yxJd123r1ktTU1NKJpOqVCra2NjQv/t3/06Li4u6du2avvnmmzONFQwGexrbqDpcNWfbdlvnlcvlpseN71c/xgQAAAAAHLRquXLlyok3jKfd3V3dunVL09PTikQiSqfTymazKhaLyufzSqfTSiQS8vv9HeVJRsHIVYTFYjE9ePBAU1NTbSUxSqWSV0HWa+FwWOFwWKVSSaurq1peXlY8HvdiPG3t7HkoCeyF+fn5pse2bcuyrFPPa1zGaBiGTNPs65gAAAAAgPZ2sb906RLLI8fM+vq61+y+sejI5/Md2QzQdV2Vy2VFo1GlUillMhn97Gc/G2i8nRq5RNjU1JQsy1I2m227zO7jjz/ua0yWZXnLJlOplB4+fKhkMqlIJKKVlRX93d/9XV/nH3WWZTXt8vj69WuFw+FTzysUCt79w4mvfowJAAAAAACOevTokR48eCDXdZsSX6etxHNdV4VCQX6/X8Vi8VzkR0ZuaaR0UBV2lt3+YrFYH6P5q6mpKcXjcW/Z5Nu3b2VZlhYWFvTtt98OJIZRtbS05N1v7O11ksbjEonEQMYEAAAAAAB/9fz5c+/3s8/n85Jfc3NzikajSiaTSqVSyuVyKhaLymQySqVSisfj3iqs/f19LS4uand3d4hX0h6f2+smWz326tUr2batcrmsy5cvy7Is3bhxY9hheerLJp8/f67p6Wl9+eWXWl5e7nrL0WGwbbupuXwqlWp769NSqdTU1+u0r1U+n1coFJIkmaZ5pLdXv8bsVL0seGJiQh8+fOjZuAB67zelPw07hHPlV9bPhx0CAAAYQfwGGh/1TQtd15VhGEomk1paWvI2AzzN9va2vvrqKz1//lyffPKJfv/73/c54u6MZEWYJD1+/FiXL19WKBRSLBbT2tqaEomEQqGQ/uZv/mZkGrJZlqVnz54pGo2qWq0qHo9renpa//iP/3guMqGNGvtrnZVlWU093U7b8TOTyXj3j6vc6seYAAAAAADgwPPnz2XbtlzXVSwWU6VS0fLycttJMEmam5tTJpPRw4cPlcvl9Mc//rGPEXdvJBNhS0tLSiQSchyn5S6RlUpF0WhUf//3f69arTa0OHd3d3X37l3NzMxofX29aQ3t06dPB7Zks1cO78x41sRYKpXy7q+urh57nOM4SqfTkg52dTyp6qwfYwIAAAAAAGljY0M+n09ra2v63e9+19VY8Xhci4uL2tzc7FF0/TFyibD19XWv8sd1XQWDQWUyGRWLRZXLZW896o0bN1QoFJr6SA3Kmzdv9Omnn8rv9yudTntL9uqJumg0qnK5rD/84Q8Dj61TjuMcqaLa2Ng40ximaXpVWaVSSWtray2PW1xclHSwq2NjFdegxgQAAAAAAAe/sy3L0hdffNGT8WKxmPL5fE/G6peRS4TVkxiGYahcLuvly5e6efOm5ubmNDs7q7m5Od28eVO5XE6FQkEvX74c2DLJFy9eaGFhQYFAQPl8vmn3hHoj/Wq1qqdPn2p2dnYgMXXDcRxFIhGFQiFNT08fqQgrlUry+XwKhUKKRCJtNawPh8PK5XIyDEOJRMI7z3Ec5fN5BQIB7w9tZ2dHhmEMZUwAAAAAAMadbds9Xc1mGMaR3MKoGblm+RMTE/L5fMrlcm01xc9ms0omk3r9+nVf4qnVakqn01pdXfWWCja+ZaZpKpFIaHl5uS/zn2dra2va2NiQbdtyHEeGYWh+fl6xWEzhcHhkxmwHjSKB84Nm+WdDs3wAANAKv4HGw8TEhPL5fM82JVxfX9edO3dG+jszcomwmZkZ7e3ttf2m7e3taWZmpudv8u7urpLJpNd3ynVdbxtR6aAPVSKR8Jbk4WLjHwHg/CARdjYkwgAAQCv8BhoPH3/8sR48eKDbt2/3ZLz5+Xnt7e3p+++/78l4/TBySyMjkciZzzlpN4PHjx+faaw3b97o1q1bR/p/SWrq//Xy5ctTk2DPnj0709wAAAAAAACDYllWz/psP3jwwGtbNMpGLhGWTCY1NTXV9nabm5ubmp+fb/na3t6ecrlc23PX+39ls9me9P9q3PEQAAAAAABglCwtLSmXy+nLL7/seIxaraZbt25pbW1NPp+vpz3H+mHkEmGGYWhra0vxeFx/+ctfTjx2Z2dHa2tr3vLFw1ZXV880d7FY9BJgPp/PqwqrVCp6+PDhiZVnh62vr7fVXB4AAAAAAGAYwuGwZmdnlUwm9Y//+I/a3d1t+9xXr17p1q1bmp6eVjablc/nk2VZPes31i8j1yPs448/VrVa9RrTn7QD4EnH1F8LBoP6wx/+0Nbc9Ub99URYMBg8Q+QHKpWK18hdEmupLwjWxwPnBz3CzoYeYQAAoBV+A42PfD6vTz75RD6fT9JBHsWyLPn9fpmmKekgx1KpVFQsFlUoFJoKf+ppJZ/Pp2KxqOvXrw/8Gs7iJ8MO4LCbN2/q0aNHXkKqWq2ees5xx9Q/xLNwXVfBYFCGYWhmZuZM51YqFbmuq9nZWZVKpY7mBwAAAAAAGJRgMKinT5/qzp078vl8yufzyufzxx7fWE/l8/m8/M3m5ubIJ8GkEUyE3blzR48ePdLc3JxmZmZOrAg7Tr0a66QP7qRzJycnz3zeYfl8Xp9++mnX42C07O/v66OPPjrxmHv37unevXsDiggAAAAAgO5Eo1HNzMwoGo3KcRyvsKfVIsLGoh/Xdb0WV3NzcwOLtxsjlwibnZ1VPB7Xw4cPux4rm81qfX297eODwWBPkmD1sc7LlwBn8+7duxNfr9VqA4oEAAAAAIDeCIfDCoVC+uqrr/To0aNjj6snxwzD0MrKiu7fvz+oEHti5BJhkrSystKTccLhsDY3N9s+vtc7G4z6TgnozJUrV058vVfJVAAAAAAABmlqakrJZFLJZFJbW1sqlUoql8uqVCqSpJmZGfn9/nNd/DNyzfJ75fHjx+ditwKcDzSKBM4PmuWfDc3yAQAYP0+ePNGTJ09OPKa+EobfQLhoJoYdQL/8+c9/VigU0jfffNPVOOvr67p06ZL+9m//Vt99912PogMAAAAAYDhqtZrevXt34g3oxIsXL4YdwqlGcmlkr7iuq2g0qnK5rK+++qqjMRKJhFzX1du3b2VZlsrlsq5evdrbQAEAAAAAGJDJyclTW76QDEMnEomEfvnLXw47jBNd6ERY3cuXL1Uul7WxsXHmc2dnZ7W3t6dgMCjp4EPtZBwAAAAAAEZBOzvd19vDAO16/vy5bNsedhinGotEWKFQUCQS0cLCgl69eqWf/vSnbZ9bLBabHl+7dq3X4QEAAAAAAAzVmzdvlM/nVS6Xz5TQqlQqchznXCTBpDFJhElSJpPR2tqaLMtSPp/Xz372szOPsbOz4+2UAAAAAAAAcN7t7u4qFospn893dH7jHow+n69XYfXNhW2W30o8Htfvfvc7WZalP/7xj2c6d29vT6FQSPPz832KDgAAAACAi21tbU2hUEjT09Py+Xzy+/2KRCIdJ2GGPfewrse2bYVCoZ6MFQwGlc/nmxJaZ+Hz+c5FAqxurBJh0sEH/Pr1ay0vL7e9o+SrV69kmqZ2dnYUiUT6HCEAAAAAABdLPp/X9PS0EomEpINVW+VyWclkUqVSSaFQSKFQSI7jnIu5+3U9juN4iaWTbn6/X6ZpnmnsVu7cueMtafT5fHJdt+PbeTF2iTBJMk1ThUJBGxsb+vLLL0889tGjRwqFQqpWqzIMQ7dv3x5QlAAAAAAAnH/5fN5LCkWjUeVyOQWDQZmmqXA4rHK57LUxCgQCPU2G9WPufl5POp1u+9h6Eq4bhULBuz87O6tMJqNqtar9/f0z3YrFom7evNl1PIPgc89T2u4MlpaWlM1m5fP59OHDh2OPu3PnjqrVasudIFdWVrS2tibXdeXz+ZRKpUiEjan6jikTExMnfp8ADN9vSn8adgjnyq+snw87BAAAMIJ69RvIcRzNzs7KcRyZpqlyudzyONu25ff7JR2s5Mrlch3P2c+5+30909PTbSXOevUeTUxMyOfzyTAM7ezsaHJysqvxZmZmRr63+lhWhDV6+vSpFhcXtbCwoL/85S/e81tbW0omk5IOygMtyyIJBgAAAADAGUQiES+xc1IFU72aSjqouDpLZdQg5+7n9aTTaTmOo3g8rlwud+Itk8mcOl47DMOQdFBM1G0STJKi0WjXY/TbWFSE5fN5/eIXvzjx+FKppFgspmw2q5/97Gf65JNPvOZ2Pp9PuVxON27cGEToGEFUhAHnBxVhZ0NFGAAAaKUXv4Eaq6IkeS2HjpPNZr2+3IZhqFqtdjRvv+bu9/XUxz6uyqwfYrGYnj17pmQyqS+++GJg8w7Tha0Im52dlXSwjWc0GtUPP/xw4vGWZWljY0M3b97UixcvlM/nvV0PLMsiCQYAAAAAwBnUV1lJB0v5TkoaSfIqqKSDJYjZbHak5u7n9WSzWdm23ZO+X2fx4MEDua7b1CusG7VarSfj9NOFTYQlk0lVq1VlMhktLi4qGAzq2bNnJ55Tb6L/9OlT7zmfz6dbt271O1wAAAAAAC6UxuWAlmW1dU7jToitenkPc+5+Xs/q6qoMw9DS0lJb4/bK7Oysnj59qkwmo++++67r8RYXF3sQVX9d2ESYJE1NTenmzZt6+vSpvv/++7Z7fL18+VL379/3tv9s9wsOAAAAAAAO2g81WlhYaOu8xt/fnVaE9WPufl5PqVRSqVSS4zianp6W3+/3WjcNQjQa1e3btxUOh5t6p3fi8Ps0in4y7ABGVTKZ1MLCgpaWlrSzszPscAAAAAAAODfqPbfrGiujTnL4uFKpdObilH7M3c/rObwc0rZtpdNprwItHA5rZWWlL0U69aWMDx48ULFY1I0bN5RMJjUzM9P2GJVKRY7jKJVK9Ty+fiARdoJwOKxCoaAHDx7o888/H3Y4AAAAAACcC69fv256fFo/rbrLly83PS4UCmdOAPVj7n5dj23bR5Jsh2WzWWWzWUWj0Z4nm65evaq9vb2m50KhUEdjua7r9VofZRd6aWQvWJally9fDjsMAAAAAADODdu2mx53WkHVyQ6K/Zi7X9djmqZSqZSSyaSi0eiJ46bTaQUCgbbmbdfy8rJc1/Vukpoen+V2XpAIAwAAAAAAPXU4cdQpx3FGYu5+Xk80GlU8HlcqlVK5XFa1WlUymWxZdVYqlTqu2Grls88+kySvkus8JbQ6xdJI4Az29/f10UcfnXjMvXv3dO/evQFFBAAAAACjp5MElnR0yWGlUhmJuQd5PYZhKB6PKx6PK5vNanl5uWn+fD6vtbU1xePxjmJqNDc3J9M0tbOzo2AwKMuyjiznPM379+/lOE7TrpqjjEQYcEbv3r078fV6s0EAAAAAGLQnT57oyZMnXY+zv7/fg2i612kCalTnPuuY4XBYwWBQi4uLTTsyrq6u9iQRVp9je3tbf/jDH7oaJx6P69q1az2JqZ9IhAFndOXKlRNfn5ycHFAkAAAAANCsVqud+h/vB8EwjJ4kktptSt/vuYd9PcViUYFAwEuGOY6jfD6vYDDYdUy3bt3qydJP0zQ1NzfX9Tj9RiIMOIOJiQn9+OOPww4DAAAAAFqanJw89T/et6PbZNrMzExPEkczMzMjMfcwr6dufX29qVl+LpfrSSJsbm5OKysrXY8jSZlMpifj9BOJMAAAAAAALohe9Sy+dOlSV8sjO6l8ko4uHey0gqrXcw/zeuosy1IwGFQ+n5fUuwb+knpWyTU7O9uTcfqJXSMBAAAAAEBPzc/PNz1ut5rqcDN5v98/EnMP83oanWXHyDdv3nQ1V6/VajXt7u4OOwwSYQAAAAAAoLcal/BJ7VcvlcvlpsedLP3rx9zDvJ5Gpml6909bZvnVV1/pyy+/7Gq+XopEIspms8MOg6WRAACMs9+U/tTxub+yft7DSAAAwEVyuILKtm1ZlnXqeY2VVoZhNCV+hjn3MK+nUeP5py2zTKfTMk1Tfr9fn3/+eVfzduvu3buqVCr64osvhhqHREUYAAAAAADoMcuymhI1r1+/buu8QqHg3T+cfBrm3MO8nuPGO22ZpGEY2tzc1PLysr755puu5+7U3bt3tbm5OTKN9EmEAQAAAACAnltaWvLul0qlts5pPC6RSIzU3MO8nrrGpZbtLLMMBoN6+PChlpeXB75Mslar6datW0qn09ra2tLVq1cHOv9xxi4Rtru7q2fPnunZs2fDDgUAAAAAgAsrFot59+s7HZ6k8RjTNLvqp9WPuYd5PXX1HlvxeLztc+LxuB4+fKiHDx/q7//+7/XHP/6x6zhO8+zZM83OziqbzapQKOj69et9n7NdY5cIy2QyikajunPnzrBDAQAAAADgwrIsqyn5c1qj9Malc6dVT6XTaSUSiWOb1vdj7n5eTzuy2axs25ZhGFpZWTnTufF4XE+fPlWhUFAwGNTf//3f69tvv+06pkavXr3SysqKLl++rFgspunpab19+1Zzc3M9nadbPtd13WEHMUiPHj1SIpGQz+fThw8fhh0OzolLly5pf39fExMTfG+AEddN83ecDc3yAQC4uHr1G8i2bfn9fkkHiaRisdjyOMdxND09LelgOV8ulzt2zFAo1FRtVa1WWzaO78fcvRwzn88rEonIcRwFg0Elk8ljG/Dbtq1AICDHcVQsFttq1N9KNpvV8vKy9vb25PP5vOsIBoNaWFiQaZoyTVOTk5PHjlGr1VSpVGTbtnK5nPL5fNMSUNd1FQ6Htbm52VGM/TZ2FWEAAAAAAGAwTNP0KqNKpZLW1tZaHre4uCjpoMH7aU3VDy9LPC7h0o+5ezlmJpPxdpXM5/MKBAJNyy/r6q/NzMyoXC53nASTpHA4rN3dXS0uLsp1Xbmu611HJBJRIBDQ9PS0Ll265N0uX77c9Hh6elp+v1+hUEhra2sqlUreWK7rKp1Oj2wSTCIRBgAAAAAA+igcDiuXy8kwDCUSCUUiEZVKJTmO4yV5SqWSLMvSzs5Oy+quRodfN01zYHP3csxIJHLkuXQ6renpaUUiEcViMQUCAYVCIUWjURWLxROvtV1TU1PK5XLa3NyUZVleAktSU0KrfqtWqy2fb7xJB8svq9Wqbt++3XWM/UQiDAAAAAAwVlxX+rB/8m28mgj1XzAYVLVaVTKZlG3bWlxc9BI+MzMzymQyKhaLbSWiMpmMTNOUYRiKx+OnNqHv5dy9HDMYDKpcLisajXrXU1cqlVSpVLSysuLNc5b42hEOh1UoFJTL5XTz5k216pzl8/maboeZpuklwB4+fKipqamextgP9AgD2kCPMOD8oEfY4NAjDABwXn3Yl37yTycf86//LF0a49IRfgONp+3tbeXzeb1+/VqO46hSqXjLNw3DkGmampmZUSgUUjAYPBeJr8N+MuwAAAAAAAAAMHxzc3Mjt8tjr41xfhsAAAAAAADjhEQYAAAAAAAAxgJLIwEAI4c+XwAAAAD6gUQYAAAAAABj5MmTJ3ry5MmJx+zv7w8oGmCwSIQBZ7C/v6+PPvroxGPu3bune/fuDSgiAAAAADibWq2md+/eDTsMYChIhAFndNo/GLVabUCRAAAAAMDZTU5O6sqVKyceQ6IMFxWJMOCMTvsHY3JyckCRAAAAAMDZtbOK5dKlSyyPxIVEIgw4g4mJCf3444/DDgMAAAAAAHRgYtgBAAAAAAAAAINAIgwAAAAAAABjgUQYAAAAAAAAxgKJMAAAAAAAAIwFEmEAAAAAAAAYC+waCQAAAAAAgLbt7u6qVCrJMAzNz89rcnJy2CG1jUQYAAAAAAAATrW7u6tIJKJSqdT0fCAQUCaT0c9+9rMhRda+sUuERaNRWZY17DAAAAAAAACG7pNPPlG1WpXjOJKkSqWiYDCojY2NpuO2t7cVDAblOI5c1216rVAoyO/3K5fL6Re/+MWgQu/I2CXCpqamtLi4OOwwAAAAAAAAhs4wDOXzeRmGoZWVFYXDYc3OzjYds7e3p8XFRTmOI5/PJ5/PJ9d1vaWRtm3Ltm1FIhH9u3/374Z0Je2hWT4AAAAAAMCYKpVKSiQSqlQqun///pEkmCQtLy97STDXdeW6rpLJpCqVil6+fKm3b9/q5cuX2t/f15dffjmEq2gfiTAAAAAAAIAx9OjRI1mWpdXV1WOPef78ubLZrJcE8/l8SiaTun//ftNxwWBQDx8+VLFY7HfYXfG5hxd2Ajji0qVL2t/f18TEhD58+DDscIAL7zelPw07BLThV9bPhx0CAAAd+bAv/eSfTj7mX/9ZujTGpSP8BhoP165dUyaT0fXr1489ZmZmRnt7e95jy7L0+vXrlsfu7e3JNE29f/++16H2zBj/WQMAAAAAAIyvcrl8YhLs7t27XhP9eh3V+vr6scdPTU0daaQ/akiEAQAAAAAAjCHTNLW7u9vyte3tbaVSqaYlkdFo9MTE2fb2tubn5/sTbI+QCAMAAAAAABhDpmkqnU4feX5vb0+RSMR77PP5ZJqmfve735043tbWlhKJRM/j7KWfDDsAAAAAAAAwOE+ePNGTJ09OPGZ/f39A0WCYotGolpaWJEkPHjyQJOXzeSUSCdm23VQNlslkThxre3tbq6urI90fTCIRBgAAAADAWKnVanr37t2ww8AICIfDWlxcVDKZVDKZ9J6vJ7/q/b6ePn164pLIZ8+ejXwlWB2JMAAAAAAAxsjk5KSuXLly4jEkysZHNpvV7du39fz586bnXdeVYRhaX1/XzZs3j5z35s0bbWxsKJvNyrZtL3n27bff6h/+4R8GFf6Z+dxRb+cPjID61sGSTv0H4969e7p3794gwgIurN+U/jTsENCGX1k/H3YIAAB05MO+9JN/OvmYf/1n6dIYd9Wu/waamJjQhw8fhh0OBmBra0u5XE6lUkmGYWhhYUHRaFRTU1NHjl1fXz92qWQgENDq6mq/w+0YFWHAGZ32X0ZqtdqAIgEAAAAAoDcWFxe1uLjY1rHLy8taXl7uc0T9QSIMOKPTKsImJycHFAkAAAAAAKPjzZs3J/YSGwUkwv69vb09PXz48Ezle7VaTbZtj/yHjN6ZmJjQjz/+OOwwAAAAAADoid3dXV29erUnYy0vL+v169c9GatfxnjFczPbtrW2ttb28Y8ePdL09LSWl5e1sLCglZWVPkYHAAAAAADQe7FYrCfj7OzsqFQq9WSsfiIRdsgPP/ygx48fa2VlRS9evGjZ72l7e1uJREKWZen169d6/fq1TNPUrVu3hhAxAAAAAABAZ2zb7sk4iUSiJ+P0G0sj/718Pi/XdWWaZtPzfr9fuVxOP/vZz7znNjY2JEnBYNB7bnl5WZlMRt99953+7u/+bjBBAwAAAAAAdMG2bf3lL3/RT3/6047HePz4sbLZrHw+Xw8j6w8qwvTXCi+fzyfXdb3b7Oys3r59q1Ao1HR8qVSSz+fT5cuXm56PRCK6ffv2IEMHAAAAAADomOu6XVVzraysnJtqMIlEmCQplUpJOvjwo9GoyuWy9vf39fbtW+3v7+v69et69uyZd3ylUpEkGYbRNE4wGFSxWNSbN28GFToAAAAAAEBXUqmU/vjHP575vFu3bmltbU2u6/Yhqv4gESapUCjIsiyVy2U9ffpUs7OzTa+vr68rl8udOs7MzIykg2WWODvbto9U351kbW1NoVBI09PT8vl88vv9ikQivP8AAAAA+sZ1pQ/7J9/OUU4AkHRQGBSJRPSXv/ylreN3d3d17do1ZbNZua57LpZE1pEI08HOBq9evTqSAGtULpe9+47jSPpr4qtuampKkkZ+q9BBcxxHPp/v1Jvf7z/So62VfD6v6elpr/Qyk8moXC4rmUyqVCopFAopFAp5nxMAAAAA9Mq+K/3kn06+7ZMIwzkTDodVqVS0uLh46rHPnz+X3+/3muzX20yFw+F+h9kTJMIkr6LoOOvr6/L7/d7j45ZG7u3tSRIJmEPS6XTbx562rjifz3tJrmg0qlwup2AwKNM0FQ6HVS6XZVmW8vm8AoEAnwUAAAAAACcIBoPa3NxUoVBQoVDQZ599duyxKysrWlpa8pZCuq6rqakplUolbW5u6ubNm4MKu2MkwiTdvHlT4XBYP/zww5HXHj9+rEQioVKp5D1XT64crl6qZ0MPJ8jG3erqalvH1RNax3EcR5FIRNLBe1/v7XZYJpORdPB51I8HAAAAAABHWZbl/W+hUNDm5qa+/PLLpmNqtZoWFha8fmD1KrBgMKidnR1dv35d0kGibNT9ZNgBjIJkMukty6vfbNv2EluS9PDhQ929e7eph1W9AqwulUrJ5/MdWTI5ztLptBzHUTweP7X/1/z8/ImvRyIRLwl5UuVYvTosm80qn88rnU4rGo2eOXYAAAAAAC66hw8fevcty9Lm5qaWlpbk9/v1+eefa3t7W8FgUI7jNCXBksmk7t+/3zTW3NzcoMM/M597nlr791G9emh7e/vIa+l0Wrdv31Y2m9XS0pJ8Pp+3bvbTTz/V8vKy8vm8wuGwfD6fcrmcbty4MehLGEn1JaWNPdY6Ydt20/LUarV6YuVdNpv1qsEMw1C1Wu1q/kuXLml/f18TExP68OFDV2MBON1vSn8adghow6+snw87BAAAOvJh/6CX10n+9Z+lSy3WUHVz7nnCb6Dxlk6ndffuXUWjUaXT6aYEmGEY2traapn0evz4sb744oshRNy+c/6n2TumaapYLGpzc1PhcFimaSoYDCqTyej27duSDprH1de8ZrNZbW5u6ne/+52mp6ebluyRBDuQzWZl2/apfb/akUwmvfvBYPDU5aeNTfocx1E2m+06BgAAAAAAxkE0GtUXX3yhVCrVcinkcZVfuVxuwJGeHRVhXar3rdra2pJpmsrlcifuPjlOAoGAbNvWzs5O133TGjcziMfjTYmx4zTuYhEOh73eYZ3gv4YAg0VF2PlARRgA4LyiIux0/AaCdNCi6Pnz55KktbW1U6u9Ll++rPfv3w8itI7RI6xLhmEol8tpb29PU1NTww5nZJRKJW+Dgenpaa/CLhQKnXlL1caNCiRpYWGhrfMsy/ISYVSEAQAAAMCBJ0+e6MmTJyces7+/P6Bo0A97e3va2trqepzPPvtMW1tbisViMk1TL168aHlcpVJRKpXy+nqPMhJhZ7S3t6eHDx8e2QmRJFizw8shbdtWOp1WOp2WdFChtbKy4u1OcZJ8Pt/0+KSdJU86rlQqtTUfAAAAAFxktVpN7969G3YY6LN6H/NeWFtbO/WY+hLKUXfOizUHb2pqSplMRl9//fWwQxlZtm0fSV4dls1mFQgEFIvFTh3v9evXTY/bXWZ5+fLlpseFQqGt8wAAAAC0x3UPlgqedKMZz+iZnJzUlStXTrzhfJuampJlWXJdt+ubpLaOOS+oCGtQq9VUKBTkOI4qlUrLY8rlsmzb1tOnT/XrX/96wBGeD6ZpeiWR5XJZ+XzeW6J4WDqdVqFQULFYPHa8w+d2WhHW7c6VAAAAAJrtu232yxr9IpGxcu/ePd27d+/EY+o9wnB+BYNBlUolr9F9p9o59zwlw0iE/XsrKyttlfrVHZcow4FoNNr02HEcpdNpra6uHlkzXCqVFAqFjt1d4rgk2lmdh7XKAAAAAAD0wq1bt7w8Rzwel9/v18zMTM/nqVQqchxHT58+1e7ubs/H7zUSYZKeP3/e1i6Ejc56/LgzDEPxeFzxeFzZbFbLy8tNial8Pq+1tTXF4/Ej53aawDq8hLIXycv9/X199NFHXY/Tzn+BAQAAAHDxuO5BJd1JJnzSOWi1hBE3NzcnwzC0tram27dv932+mzdv6tq1a32fp1skwiSlUikFg0Elk0kZhqGZmRml0+mmqqZKpaJqtapoNKpsNqurV68OL+BzLhwOKxgManFxsWlHyNXV1ZaJsF7pVUVYL5pK1mq1HkQCAMP1m9KfOj73V9bPexgJAADnB8tJMUjBYLDt9kLdMk1Ts7OzA5mrGyTCdLD07u3bt03PGYbRtBPk1NSUZmdnlU6nFYlEjjRwx9kYhqFisahAIOAlwxzHUT6fVzAYPHJsL5JY7TbZP00vGkdOTk72IBIAAAAAAI5369atviyHPE44HB7YXJ0iEabWzdeXlpb07NmzI+WDlmWpXC7rm2++0eeffz6oEC+s9fV1BQIB73EulzuSCJuZmelJIqwXf/wTExP68ccfux4HAAAAAIB+u3nz5kDne/jw4UDn68TEsAMYBdVq9chzU1NTKhQKLZewzczMnIsP9zywLKsp8dWqMX6nlVyHk2e9qggDAAAAAADnE4kwSYFAQLdu3dKLFy/04sUL7/loNKpAIKAffvjBe+7x48eybbtnOxlCCoVCJ74+Pz/f9Ljd6rDDzfH9fv+Z4gIAAAAAYFy8evVKKysrevbs2anHPn/+XNeuXdO33347gMh6i6WRkhKJhPx+v7LZrKSDHSG/+OILWZalq1evyjTNI32qBtVsbhw0vpetli82Lp2UDqrGLMs6ddxyudz0+PCSSwAAAAAAcNBLrJ4TkaS9vT39+te/Pvb4mzdvanZ2VsFgUKurq8pkMvrZz342iFC7RkWYpNnZWW1ubsp1Xbmu27SELpPJaHJyUtVq1XtdOkieoTcaE2Gtli8erghrtxqvMXFpGAbJSwAAAAAADrl7964ymUxTzuPly5ennmdZlmzb1vfff69AIKDvvvuu36H2BImwfy8cDmt/f1/lcrmpQb5hGNrd3dXy8rLXzyqTyRxpoo/OFQoF736rZZKWZTUlyNrdsbNx3MPJNAAAAAAAxt3e3p5SqZR8Pp98Pp8kyXVdRSKRts43DEPFYlGVSuXcJMNIhB0yOzt75LmpqSmlUikVCgW9fPly4LsuXHSNSxiPW764tLTk3S+VSm2N23gcFXwAAAAAADRbXV2VdJD8mpqaUjQaPVIgdBrTNLW8vKz9/f22E2jDRCIMQ1dfhxyPx489JhaLeffz+fypYzYeY5om/cEAAAAAADgkn89renpauVxOlUpFT58+bVkgdJpPPvlE0kGhyzfffNPrMHtqbBJhjx8/HunxxlU2m5Vt2zIMQysrK8ceV1+W2njeSTKZjHefajAAAAAAAI6ybVsrKytaXFzsapzGntybm5vdhtVXY5MI29jYGOnxLop6Ntnn8ykUCp24jNG2bS0vL0uStra2WjbKb5RKpbz79fLNVhzHUTqdlnSw1DIajZ7hCgAAAAAAGA+O4/RkY7lKpSLpYIllY7/uUTQ2ibBisaivv/5atVqtq3FqtZrW19fb7lM1bjKZjLdbYz6fVyAQaFrWWFd/bWZmRuVyWZZlnTq2aZpepVepVNLa2lrL4+qZbMMwmirDAAAAAADAX5mm6SWxupHL5bz79ZzAqBqbRJh00INqenpaly5d6vg2PT2tO3fuDPtSRlarxnjpdFrT09OKRCKKxWIKBAIKhUKKRqMqFotnyj6Hw2HlcjkZhqFEIqFIJKJSqSTHcbzkWqlUkmVZ2tnZObXKDAAAAACAcWVZVk8KSNLptLfr5Kj/Dh+rRJh0UKbXixtaCwaDKpfLikajMk2z6Q+gVCqpUqloZWVF1WpVyWSyoz+QYDDonW/bthYXF71E28zMjDKZjIrF4sj/8QEAAAAAMEzRaFT5fF5//OMfOx7j1q1bXhWYz+fT/Px8j6Lrj58MO4BB8/l8JLL6zDTNpn5e/RKPx0/caRIAAAAAcNSTJ0/05MmTE4/Z398fUDQYpmAwqOvXrysYDCqfz+sXv/hF2+fWajUtLy8rk8l4uRafz9dypdgoGZuKsJs3b3rVXKFQSPl8XtVq9Uy3crmsYrGo+/fvD/tyAAAAAADoSK1W07t37068YXysr6/LdV0Fg0H9R//Rf3RqdVitVtPdu3c1PT2tbDbrPe/z+WSapm7fvt3vkLsyNhVhmUxGe3t7+uqrr7S+vq5QKKRQKKREItF2xnNqakqSNDc3p+fPn/czXAAAAAAA+mJyclJXrlw58RiSYePDsixtbm5qaWlJuVzO68ttmqZ3kyTbtlUqlWTbtiR5q+0aq8HOw4Z1PndM1wlms1k9fPhQpVJJfr9fDx480Oeff972+Xfu3NHTp0/7GCFGyaVLl7S/v6+JiQl9+PBh2OEAF95vSn8adgjos19ZPx92CACAHviwL/3kn04+5l//Wbo0YmuRuom722s+L+8Zv4HGT6lU0uLiovb29rzG94c1ppDqx7iuK8MwtLW1pbm5uYHE2o0R+7+jwQmHwyoUCioUCrp+/bqWl5d1+fJlffnll6rVaqeeTxIMAAAAAABcFJZlaXd3V/fv3z9200Cfz9eUAHNdV9FoVDs7O+ciCSaNcSKsrr5VaLVaVSKR0NOnTzU9Pa3PPvtM33333bDDAwAAAAAAGIipqSklk0nt7+8rl8spHo8rGAzKsixNTU1pdnZWc3NzikajXi7l6dOnXiup82DsE2F1U1NTisfjqlQq2tjY0Nu3b2VZlhYWFvTtt98OOzyMiP39fX300Ucn3k7bfQUAAAAAxtXa2ppCoZCmp6fl8/nk9/sViUSUz+fP5dyDvB6/3y+fz9fUoL6fFhcX9fDhQ718+VKFQkGVSkVv375VoVDQ06dPdfPmzXOVAKsjEdZCfdnk69evdfXqVd28eVOXL1/W119/3daySVxsp+2uwncEAAAAAJrl83lNT08rkUhIOtjQrlwuK5lMqlQqeRvaOY5zLuYe9PUkEgmvSf0o2tvb08rKyrDDaMvY7BrZCcuy9OzZM12+fFnpdFrxeFzxeFyxWEzxeFxXr14ddogYgtN2V5mcnBxQJAAAAAAw+vL5vEKhkCQpGo0qlUp5r5mmqXA4rEAgoHw+r0AgoGKxKMMwRnbuQV9PPp/X2tpax+cPwtTUlHK5nLa2tvTnP/952OGciIqwY+zu7uru3buamZnR+vp6UzO4p0+fKhaLDTlCDMPExIR+/PHHE2/37t0bdpgAAAAAMBIcx1EkEpF0kCRqTBo1ymQykiTbtr3jR3HuQV9P43yjbn5+XsViUV9++eWwQzkRFWGHvHnzRolEwlvP67qufD6ft0NCNBpVIpHQ7OzsMMMEAAAAAGDkRSIRb3lgfRlhK/VKqmw2q3w+r3Q6rWg0OnJzD/p6lpeXNTMzI0l9WTbayu7urhzHUaVSafucUqmkTCYj13WVSqX01Vdf9THC7vjceoZnzL148UKrq6sqlUqSpMa3xTAMRaNRraysnMtGcOjepUuXtL+/r4mJCX348GHY4QAX3m9Kfxp2COizX1k/H3YIAIAe+LAv/eSfTj7mX/9ZujRia5G6ibvbaz4v71kvfgPZti2/3+89rlarJy4RzGazXvWTYRiqVqsdzduvuQd9Pel0WrFYTMViUYuLi14iLJPJKBwOn2ms07x48UKpVKrrJv/1YqJR/t08Yv93NFi1Wk2PHz/W5cuXFYlEVCqV5LqulwSrlzlWKhU9fPiQJBgAAAAAAG1KJpPe/WAweGqfrMbkjuM4Xe2O2I+5B3k9tm17/ckty2r7vE48evTI2+mynhPp5CZJPp+v7/F2aywTYfX+X/UdHupZ2foHFwwGlcvl9PbtWy0vLw8zVAAAAAAAzqV0Ou3dbzc5Ypqmd39jY2Ok5h7k9UQiEVmW1ZR864ft7W1viWerBYP1fumnqbeUmp2d1fr6ek9j7LWx6hH25s0bra6uelnYesle/f5Z+n89e/ZMt2/f7mu8AAAAAACcR/W2Q3ULCwttnWdZlmzblqSOK8L6MfcgryeRSKhUKqlcLrd1fDfqzf6npqYUjUbl9/u95F21WtXS0pKmp6e1ubnZ8nzHcfTy5Us9e/ZMpVJJ169f73vM3RqbRNjCwkLL/l/1D/us/b9SqRSJMAAAAAAAWjjca6qxMuokh48rlUpnXmrXj7kHdT2lUklra2tKpVJtz9GNfD4vv9+v77//vuXry8vLevbsmfx+v65evdrymJs3b0qSHjx4oN///vf9CrVnxmZpZLFY9Nat+nw++f1+pdPpjvp/ra+vH8kGAwAAAACAA69fv256fFo/rbrLly83PS4UCiMx96CuZ3FxUeFwuOsdM9tl27ZXFdbKgwcP5Lqu1tbWThwnkUjo5cuX+vrrr3sdYs+NTUWY9Nc1q9JBVjaTySiTybR9fqVSkW3bA9uyFAAAAACA86i+HLCu0wqqTpYH9mPuQVxPfYfJQffYmp+fP/a12dlZLS4uKpVK6eHDh5qcnGx5nGmampubUzwe1/Ly8rHHjYKxSoS5ruvt7DAzM3OmcyuVitf4rVQqtd0wDgAAAACAcXM4cdSpTgpR+jF3v68nm80qm80ql8u1XW3WC5ZlqVKpnJi4SiQS2tra0oMHD/Tb3/722OMWFha0vb2thw8f6quvvupHuD0xVokwx3F6kpXM5/P69NNPexARAAAAAAAXT6crqQ4ngSqVykjM3c/rcRxHkUhE0WhUwWCwo3k6ZZqm0un0iYmrYDCoubk5pVIpxWIx/d3f/V3L4+rLPjOZDImwURAMBntWmlf/EgAAAAAAMEqePHmiJ0+edD3O/v5+D6Lp3jBbE/Vj7lZjLi4uyjTNE3t19cvS0pJu3bqly5cv6+bNm17l240bN5qOW1lZ0dLSkizLUjab1T/8wz80vf7o0SOvl3qvquf6ZWwSYbFYbKTHAwAAAACgW7VaTe/evRt2GDIMoyeJpE6WCfZj7n5dz9ramkqlkorFYtdjdyIcDmtyclLxeFzxeNx7PhAI6M9//nPTcYuLi9ra2lI4HJZlWV5vsXw+35T8GsRul924sImwx48fy7IsL4tZ386zV5aXl3s6HgAAAAAA3ZqcnNSVK1e6HqfbZNrMzExPEkdn7e/dr7n7MWapVFIikVAymZRlWV2P3an19XUtLS01bTBYLBb15s0bXb9+3TsulUrp448/lnQQe70CrH6OdLBJ4TCvpR0Tww6gX/785z8rFArpm2++6Wqc9fV1Xbp0SX/7t3+r7777rkfRAQAAAMDwua70Yf/kW8NvXJwD9+7d048//tj1bWKiu3RBpw3fDyebOq0I6/Xc/RgzEonIsqymSqxhCIfD2tzcbEpoGYbRlASTDiq9Xr582XScdJD8qm8oaBjGwHe9PKsLWxEmHWQlo9GoyuVyx43aEomEXNfV27dvZVmWyuWyrl692ttAAQAAAGAI9l3pJ/908jH/+s/SJd9g4sHFMT8/71UMSQcJoXaSSYebyfv9/pGYu9djrq2tybZtBYNBRSKRU8dpTKitrq5qY2PDe3zr1i2Fw+FTxzhJOBxWtVrV5uamHMdRNBpteVwwGNTbt28Vi8W0tbXV9JplWcpkMj3rz94vFzoRVvfy5UuVy+WmL0q7Zmdntbe35+3ckEgkOhoHAAAAOAvXPUhSnGTCJ/lIUAAYQYFAoOmxbdttLZkrl8tNjzvZRbEfc/d6zPfv30s66K91Vo3LEqWDSq1uE2GSNDU11VYbKNM0lcvltLe35+0UaZqmZmdnu45hEMYiEVYoFBSJRLSwsKBXr17ppz/9advnHm5Yd+3atV6HBwAAABxBpQ6A86zeSL2u3cRRY+WTYRgdNV7vx9zDvJ5RNTU1pcXFxWGHcWYXtkfYYZlMxlt/+8MPP3Q0xs7OzpGyRgAAAAAA0MyyrKalg69fv27rvHqFkXQ0+TTMuXs9ZjKZlOu6bd8aE2iZTKbptWQy2VYsrdRqNd29e1effvqpvv76647HOU/GJhEmSfF4XL/73e9kWZb++Mc/nuncvb09hUKhjv8QcTHs7+/ro48+OvH25MmTYYcJAAAAoEv/zfawIzj/lpaWvPuNS/lO0nhcIpEYqbmHeT39Eg6HlU6nlcvlFI/H9eLFi2GH1HdjlQiTDtbjvn79WsvLy23vKPnq1SuZpqmdnZ22mtjhYnv37t2Jt1qtNuwQAQAAcI6wc+PgtZPk+s+yJMO6FYvFvPvt9MJqPMY0zY76g/Vz7mFeT78cvo5Od8c8T8YuESYdfAELhYI2Njb05Zdfnnjso0ePFAqFVK1WZRiGbt++PaAoMaquXLly4m3Ud8gAAADAaKn3gzvpdtrGCWjf3v8q/eN/196xd/5bqfa/9jWcC82yrKbkTzabPfH4TCbj3T+teiqdTiuRSMi27YHN3c/rGZb6kkufz6dwOKwbN24MOaL+G8tEmHSQ5Xz58qUqlYpu3brV8piVlRU9ePBAruvK5/N1te4WF8PExIR+/PHHE2/37t0bdpgAAAAAjvFfl6T/+X9v79j/6X+T/qv2VsDhGKlUyru/urp67HGO4yidTks6WMkVjUaPPTYUCikWi2ltbU1+v7+pIX2/5+7HmMMUjUbl/vuS042Nja7Hu3v3btdj9NvYJsLqnj59qsXFRS0sLOgvf/mL9/zW1paX+PL5fLIsi2owAACAITivy8bOa9zARfff/49nO/5/OOPxaGaaplcZVSqVtLa21vK4+u6DhmE0VVK1cng53+bm5sDm7seYwxSPx71YO91YsFE7S0aHbSwSYac1xo9Go0qlUrpx44b3wdeTYPXMKNVgAAAAw3Fel42d17iBi676v/T3eBwVDoeVy+VkGIYSiYQikYhKpZIcx1E+n1cgEFCpVJJlWdrZ2Tm1T9Xh1xt3VOz33P0ac5hyuZx++ctfKhwONxUIndXOzs6xS1VHyYVNhM3Ozko6SGRFo9FTM5uWZWljY0M3b97UixcvlM/n5fP5vNfGYZ0sAAAAmlHVBVw80/9hf49Ha8FgUNVqVclkUrZta3FxUdPT04pEIpqZmVEmk1GxWGwraZTJZGSapgzDUDweP7UJfS/n7ueYJymXy3JdV67rKhwO92TMRt98842i0agsy9I333zT9iZwtVpNtVpNr169OjebC/pc9+L+0723t6d8Pq9cLqetrS0lEom2ljd+8sknTYmwZDKpL774ot/hYoRdunRJ+/v7mpiY0IcPH4YdDnDh/ab0p2GHgD77lfXzYYeAc+TD/kH11En+9Z+lS334T7zdzN1t3MO8bgzWef2O9+L8Yfj//v+k/89/3/7x/+Y/kf7f/9e/Ph6X94zfQOPh448/1s7Ojve43iO9E/VzR/37MkL/d9R7U1NTunnzpp4+farvv/++7R5fL1++1P37971lkZZl9TNMAACAgRjX6qaLfN3/zfawIwDOn/+XJf2f/g/tHft//j9K/yk/B3GB1Zvl128+n6/p8Vlu58VPhh3AqEomk1pYWNDS0lJTdhQAAHSvm6o/qsk6V+9ZdZJ//WfpUmf/IXhkndfrbifJ9Z9lD6pG/p9z/Y8HuCim/gPpt/+3g7+f0zz9v0uT/0HfQwKGJhaL6cGDB14VWKcJrXoC7TwgEXaCcDisQqGgBw8e6PPPPx92OAAAAEPjuqc3dp/wSR2upsAhe/+r9I//XXvH3vlvpf/k/8KPdYyfbv5/6f85d3oi7L8Kk2TGxVdfSff8+XNJB73POulrZtu2SqVSj6PrDxJhp7AsSy9fvhx2GAAAAENNRo16VdV/sy39p4HhzN0P/3VJ+p//9/aO/Z/+N+m/KjX3MAJGSb/+Pvv9/0v/D5JgGBOxWEwvXrxQsVjU9evXOx4nnU7r7t27vQusT4aSCKvVapqcnBzG1CNh3K8fAAB0ZtSTUSfpJok3jksE//v/8WzH/w//I4kwDMc4/n1eBE+ePNGTJ09OPGZ/f39A0WBQ6jtBVioVSdLMzIwmJycVDAY1NTXVVRJMOug3dufOnW7D7LuhJMJSqZQePnyoUCikaDSqGzduDCOMgdrd3VUqlVI2m5XP59O//Mu/DDskAACAI0atcuOiLxE87v2u/i9nG+fw8SxlxSBc9L/Pi6xWq+ndu3fDDgMDcOnSpWNfS6VS3qaCKysrPSnaiUajXZ0/CENbGlmtVpXJZJTJZCQd9OO6deuWfvnLXw4rpJ578+aNNjY2lM1mZdu2pIPGc36/f8iRAQCAYRlmguI8Vm6chyWCxyWzunm/p//Ds8Vw+PhuqwdJpKEd5+Hv87zq93Lvycn/f3t/GOPWed/7vj/OyIl82j3ijFIgvqOg0WIcuznYtkVK7XY3cIHtIZsCSU7ThpSK5iR50Yi04959cab10ErQV4U9IZ3MwcG9Tk3KfZOcAB2Rdt3dBkhNygX2i+vurRnKcYEgccIlFdXAeVHPLE9b2EkkrvuCIU1yOOQiuRYXOfx+AELk8FnP85ASl7j+83/+z4KWl5d7tiFQdjR0FrCPRqNKpVLNLLCGJ554wpXxnnvuOVf68ZIvgbB4PK7/+T//Z7MYmyQVi0UVi/VqhY1MsWg0OnVLCF977TXlcjlduXJFlmVJav+HFw6HlUqlfJodAADwm9fLGw+7eBpH5oYXF27jWiLodjBr1Pf7U/dLL//I2fGS9Mn7nbd1YpqX4WJ8WMI7nEn4pcTq6qpWV1d7tpmfn2d55BHR2BGyVCrNxIq8fub8GPT06dMqFAqq1Wq6cuWKotGobNtu3kqlkhKJhBYXF/Xxj39czz//fHMt6yR65ZVX9Nhjj+nkyZOKRCLK5/Pa29trvh7DMJTJZFStVrW1taWLFy/6PWUAADCFnF48dWs3TOaGW2OPYtQlgtLwcx80mLX/7nuPR32/PxeWfukuZ8f/8vukz4edtQXc5Mbnc9aMcl4BRpHJZAiC/YIvgbBW8XhcL7/8svb29vTcc88pHA63BcXK5bJSqdTEBcVeeeUVXbhwQSdPnlQsFlM+n5dlWc15B4NBJZNJbW9v68c//rGeeOIJnT592u9pAwCAKdAtcDPqxdMwmRtuje1Ut9c96hJBv4JZo7zfknTiuPSN33F27HOfpu7SJLBt6U6t983us9x02sYe9fM5i0YNkgPDisfjfk9hYvhWI6zTiRMnlEwmlUwmdePGDT333HN64YUXmrW1JKlcLjcDY+FwWBcuXFA8HteHP/zhsczxxRdfbNb8auhcbxuPx5VKpbSysjKWOQEAgPEatXbSsEtiRq3FM0rmhht1gIZ93aMuERxl7qMs+3IjU+azZ+rvSS/fjE9OPbdZ5+dyUr/G9nsJ7zRiOSn8Mq64yTTwPSOsm9OnTyuTyejHP/6xtre3dfHiRQWDwbZMsUqlonQ6rVAopHPnzulrX/uabt686eo89vf39eKLL+rjH/+45ufnlUgkVCwW2+Yh1YvNtS71JAgGAMDR1bjg7HU7LFA2SnbSqBlGo2RujDr2KK971CWCo8x9lGDWuDJl/oAgGHzEEt7BsZwUfggGg2Mb69577x3bWMOayEBYqzNnziiXy2l3d1elUkmf+cxnJOnQoNi9996rS5cu6bXXXhtqvP39fT3//PP6+Mc/rsXFRSUSCZXL5QPBr3A4rFwup729Pb388svNeQEAABxmlCUxo148fWrATIzWzI1Rxx7ldY+6RNCvYNYo7zcwLVjCOziWk8IPS0tLYxurWq2ObaxhTXwgrNXKysqBIvtSe1CsWq0qm80qEok4Doo1gl/nzp3T4uKiUqlU1+CXYRhaW1trK3rfut0oAACYDl7X0zlsGeAo2UmjXjyNkrkx6tijZpQ5Wfp32BJBv4JZZMpgVozy+ZxFBMlxlF2/fr25Q+Ukm6pAWKvWIvtf/epXFQ6/9+2hW1Ds5MmTeuyxx/TKK69Ikm7evKmvfe1rbcGvSqXSDHo1/uwsev/Vr36VovczrFar6dSpUz1vGxsbfk8TANDHKMsbR9k9cZTspFEvnkbJ3Bh17HEsBTpsiaBfwSwyZYD3sIT3PQTJcVTt7+8rnU77PQ1HJqZY/rBOnDihtbU1ra2tHVpk37Zt7e3tKZ/PK5/PH+jDtm0FAoG2IBhF73GYnZ2dns9Pwq6mAABvDFrr6lO/1h7gGCU76XNh6cnvOltieNjF07DF10cd28+lQKPMvRHM6veeSd2DWZNe7P7b16XPR/wZG5hVo55XgGGYpqmPf/zjnvS9u7sry7JkmmYztjLppj4Q1qpRZD+Tyej69et67rnnVCgUZFlWs03rLo+dwa9oNKpUKkW9L/S0vLzc8/mFhYUxzQQA4KVuQYJRd08cZYe1cV08dcvcGHVsP3eWm/RglleZMsPu0gnAe5MeJMfRVC6XPenXHqWWhE+mdmlkP92K7Hf+Bdm2TdF7DGRubk63bt3qeVtdXfV7mgAwE0ap8zXs8sZRa12NuiTGz1o8o4zt91Igr9+3SVv2NcounQAmw6SdV4DDBAKB5m1aHKmMsMOsrKw0lzgWi0Xl83mFw2GlUinqfQEAMKUadb56uf2UNN/xvWyU5Y2j1roaR1aXnxdPh4096uueC9T/LnuZG/H79yRedA77ukfNXAQAHD1eZm5NUxBMmpFAWKt4PK54PO73NAAAwBi4vbzRjVpXfi6JGUdA6TCjvO5A4GBAcxYM+7qHyVwcJhA2iTXGbPvwjS4a5gL19xYAZknrBoNua9QImxYzFwgDAABHw7A1kEYJEoyr1tVh2UmjBrJGCSjNalbWNHJjl85prTE2bKYoABxlhmFoa2vL0zFM01QikdBrr73m6ThuIBAGAACmjl/LG93YuXGUgJKfmVGzmpU1jUbNXBx1d1QAwOwxDEOXL1/WuXPn/J5KXwTCAADA1PFreaMbNb4IKE2XUQKXfi1FHTVzcdQaYyxPBIDZ5OXySzcRCAMAAFPHz+WNbHs/HD/rk/mVhedX0HPUzMVRa4yxPBEAJsvu7u7YxjpzZvK/ABEIAwAAvrBVzxz56W3pez+RfvQv0ju3pbuPSR/9gPTAB6Xjd0ndrpX9Xt7YD7WuDmJZ5/iMmrnoRo0xAJNtY2NDGxsbPdvUarUxzQZesyxrbGN5XYvMDQTCAACAL2xb+rNXuj9n7krffUP69MekB+85+Lyfyxv9zGwCnBolc9GN3VFHwdLK7iZxl05Mr/39fe3s7Pg9DYzRa6+9poceesjvaUwEAmEAAMAX//iT/m1e+n79YveBD7b/3M/ljbOWXYSj67DMxXHtjnqYWVxaOa27dGJ6LSwsaHl5uWcbAmVHSz6f1ze+8Q2/pzER5vyeAAAAmD3v3pa+80Nnbb/zg/ryyVafC0u/dJez47stb2xkdb31p9L/9Unptz4inVuu//l/fVLa/VPpf5+Oeq+A60b9fGEwg+7Suf+up9PpykmgDu0m/T1bXV3VrVu3et7m5ggXHCW5XE5/9Vd/5fc0JgL/sgEAwNi9/qb08zvO2v7sjvS9N9t/1lje6ES35Y2BQD2zYul/kf7rf5b+7g+l//lH9T//63+WFv+X2Vt2BTSM+vmaVrYt3an1vtl9lmwOY5hdOt3kNBtt0gM748R7hmkVj8f127/92/qrv/or7e/v+z0d3xAIAwAAY/fDtwZr/0aX9k6WB7F7IzCcWfx8NZZk9rr1q102jGF26XTLNGSjTRreM0wj27abt5dfflmf+cxntLi4qOeff97vqfmCGmEAAGDs3nWY/dDwTpf2jeWNb78r/d/X60so996pF+7+xP3S585IQZeLeAN4D7ujusPPXTqHyUb7o990b/xpxHuGadPY/fPtt9+WJO3u7kqq7yRpGIZv8/ITgTAAADB2xx3WH2q4u0v7RtH6xvLG//qf3ZkbAIyTn7t0DpONNutBHd4zTKsTJ060/TnLCIQBAICh2arXzPnpbel7P5F+9C/SO7elu49JH/1AfbfH43dJneW27jspmQMsj/zoSTdnDQD++PZ16fOR9p/5uUunn9lo04r3DJh+1AgDAABDs23pz16Rsv9d+rs3JHNXenO//ud336j//PU3Dx73wD3SXfPOxnjfvPTgPe7OG4C/jmIR8WELqPu5S6ef2WjTivcMmH5khAEAgKH940/6t3np+/VljA988L2fHT8mfeK++nP9fOJ+6f0t31ierbw6+ER/4fHww0MfC0yTRg29fm284DQgND93dIrtD1pA/VO/9t5um41dOr9Q7H+s27t0+pmNNq14z4DpR0YYAAAYyru3pe/80Fnb7/ygvnyy1X/8YPe2rT79sfYAGgBnAoF6oKnXLeBBIGwadtTzIhttmALqrfzapdPPbDSpnlV8p9b7ZnuwU+co/H7PAIyOjDBgALVaTadOnerZZnV1Vaurq2OaEQD45/U3pZ/fcdb2Z3ek770p/fqH3vtZICD96SP1ANnrP5He+Jd6cO14R30xANPD7x31/MpGG0cBdS926fQzG02SarZ07Cu929x+qr4xyqTw+z0DMDoCYcCAdnZ2ej6/v78/ppkAgL9+OECxe0l6462OQJjqwbC775J+40P1G4DpNq4d9boVnR9leeKoprmA+mfP9A/qeJGNNs14z4DpRiAMGNDy8nLP5xcWFsY0EwDw17sOsz4a3hmwPYDp40ZAaNisLj+z0aahgHq34KFTXmSjHXW8Z8DkIhAGDGBubk63bt3yexoAMBEGXbZ4N8scgSNv1IDQKFld48pG68bvAuqzuEEBAAyLYvkAAGAo950crP1HB2wPwD+NXSd73brtOvmpAQM8nQGhUYrO+7k80c8C6tOwQQEA/zz//PO699579fu///t+T2ViEAgDAGCG2aoXK37n59I//LP0retS/lr9z//xz/WfH7Zh1wP3SHfNOxvnffPSg/e4NWsAXht218lRA0LDZHU1+Lk8sVFA3Qm3C6iPumMlgKPr+vXrSiaTqlarKhQKevHFF/2e0kQgEAYAwAyzbenPXpGy/136uzckc1d6c7/+53ffqP/89Te7H3v8mPSJ+5yN84n7pfdTkAE48kYNCI2S1TVqNtqonCw59KKA+ijBQwBH2/r6uiQp8IvfXASDQR9nMzkIhAEAMMP+8Sf927z0fen1Q9o9cI/06Y8dnhl217z0ux+THvjg8HMEMF1GCQiNktXl5/JEp7wooD7NO1YC8FalUk8BtW1buVxOjzzySNd2Fy5c0CuvvDLOqfmK380CADCj3r0tfeeHztp+5wfSfR84mNUVUH3J432/Us8ce+Ot+nLKu++q1wR78B4ywQAcdFhAaJSi841stC8U+x/n9vJEP03DjpWYPBsbG9rY2OjZplarjWk28IppmlpcXFS5XNaZM4dH4guFgmKx2KGBskG89tpreuihh0bux0tkhGGqZbNZxWIxLS4uKhAIKBQKKZFIqFwu+z01AJh4r78p/fyOs7Y/uyN975AlklJ9meSvf0j63x+SLp6r//nrHyIIBmAwo2Z1+bU80U9+LwnFdNrf39fOzk7PG6ZfMBjUpUuXegbB3JZOp8c21rAIhGEqlctlLS4uNj9khUJB1WpVmUxGlUpFsVhMsVhMlmX5O1EAmGA/fGuw9m8M2B4ABjWOovNeLE/00zQsCcXkWVhY0PLycs8bpp9hGDIMY6xjmqY51vGGQSAMU6dcLjeDXMlkUqVSSdFoVIZhKB6Pq1qtKhwOq1wuKxKJEAwDgEO863CXsYZ3BmwPAMOY5Kyub18f/5j9+LljJabX6uqqbt261fM2N0e4YNpduHBBm5ubYxvv+vXrUxEIY8ECpoplWUokEpLq0e1cLte1XaFQUCgUkmmaSiQSKpVK45wmAEyF4w4zCBruHrA9AHjFi6wuJ0GuLxSl+bnJW1r52TP9a6MdtSWhAPpLJpNKp9O6ceOGksmkDMPQ0tJS17bb29tDZ49ZliXTNPX000+PMt2xIRCGqZJIJJoZXr3WHjeyw4rFosrlsvL5vJLJ5JhmCQDT4b6TkjnAcsePnvRuLgDgp7fflb70187aPvqS9Klfm77MqqO2JBRAfydOnNCVK1d0/vx5bW9v92ybz+eVz+dHGs+2bQUCgZH6GAdyHTE1TNNsK4J//vz5nu0vXLjQvD8NBfsAYFi2pJpdX7r4D/8sfeu6lL9W//N//HP953aX4x64R7pr3tkY75uv7wAJAEfRtyrSvztc/v1vP5O+WfF2PgDglng8ritXrsi27UNvkno+7/Q2LQiEYWpkMpnm/Wg0qmAw2LN9PB5v3rcsS8Wig720AWAK2bb0Z69I2f8u/d0bkrkrvblf//O7b9R//nqXHR+PH5M+cZ+zMT5xPztAAji6/uYHg7X/2wHbA4Cf4vG49vb2dPHixb7X0bOAr7SYGq1pmuGws+1uDMNoFuvb3NxsC44BwFHxjz/p3+al70uBgPTAB9t//h8/WH+ul09/7OBxAHCU7L3jbXsA8NuJEyeUy+WUy+V048YNVSoV7e7uyrZtPfroo0okEjp79uxQfb/11lsyTXNqkk8IhGEqVCrt+efnzp1zdFw4HG4GwqblQwkAg3j3tvSdHzpr+50fSPd9oD2zKxCQ/vQR6ae3pdd/Ir3xL/U+jx+TPvqBegBs0KL6AGbbXEC6/VT/NpNk8W5v2wPAJDl9+rROnz7dfPzoo48qFovpi1/84kj9lstlffzjHx91ep4jEIap0FobTJLj3Sw621UqFcfZZAAwDV5/U/r5HWdtf3ZH+t6b0q9/6L2fBVQPht19l/QbH6rfAGAUgYA0P2GBrn4+db/08o+ct//k/d7NBQCmVTQabQuwTSpqhGEqXLt2re2x03XNJ0+2b3G2tbXl1pQAYCL8cIBdHyXpjQHbA8As+FxY+iWH2a+//D7p8/xeFQC6cpq04icywjAVGssbG4bNCKtWq67NCQAmwbsOdzlreGfA9gAwC04cl77xO9IXHFTSeO7T0sJxz6cEAGOzt7enEydOuNJXoVBwpR8vkRGGqdAZCBuWZVmu9AMAk2LQ+l13U+8LALr67Jn+bb4Zd9YOAKaJW0Ewt/vyChlhmArDBrA6l1Du7u6ONI9araZTp06N1Ickra6uanV1deR+AOC+k5I5wHLHj57s3wYA/DRKsX2vC/X/AUEwADNif39f5XJZpVJJu7u7Mk1TS0tLMgxDoVBI8XhcH/7wh/2e5lAIhGGmuJERtrOzM3If+/v7I/cBAJL0wD1SueqsYP775qUH7/F+TgAwilGK7U9joX4AmCQ3b95UOp1Wsdi+Vty2bQUC751g0+m0DMPQk08+qT/8wz8c9zRHQiAMUyEYDLoSxHJaZL+X5eXlkftYWFgYuQ8AkKTjx6RP3Ce99P3+bT9xv/R+/ucHAABAF5cvX9ajjz4qqR74aggEAm1BsMbz1WpVyWRSuVxOhUJBv/qrvzrW+Q6Lr8OYCktLS64EwpaWlkY6fm5uTrdu3Rp5HgDgpgd+keX1nR92zwy7a1765H3SAx8c77wAAAAwHZ555hk9+eSTzcyvRuDLtu22oFgn27a1tbWlUCik7e1tPfjgg+Oa8tAIhGEqDJvJ1Rk8cyMjDIAzz1Ze9XsKMyOg+pLH+35Fev1N6Y236rtD3n1XvSbYg/eQCQYAk8zr2mZemvS5f/u69PmIf+MD0+CFF15QOp1uBsAaga9wOKyzZ88qFAopGAzKMAwtLS3JNE3t7u6qWq2qWCzKNE3VajWtrKxoa2tr4muH8bUYU+Hs2bOqVCrNx5ZlOQpqdRbHD4VCbk8NAEZmS7Jt6ae3pe/9RPrRv0jv3JbuPiZ99AP1TK7jd9UDXr0cPyb9+ofqNwDAeI0SEJrm2mZ+zv3b1/u3+UJRmp9jt0+gl0YQzLZtBYNBZTIZnT9//tAdIM+cee8D9dWvflXXr1/X008/rRdeeEGPPvqovvvd745r6kMhEIapEIm0/xrHNE2Fw+G+x1Wr1bbH0WjU1XkBgBtsW/qzV7o/Z+5K331D+vTHKHQPAJNsmoNZ0+jtd6Uv/bWzto++JH3q16SF455OaapsbGxoY2OjZ5tarTam2cBPL7zwgkzTlCSlUin9+Z//+cB9nDlzRoVCQdlsVpcuXdLf//3f67/8l//i9lRdQyAMU+Hs2bNtj50GwlqXRjZSOQFg0vzjT/q3een79Yss6nwBACB9qyL9+8+dtf23n0nfrEh/9Jvezmma7O/va2dnx+9pYAJsbm4qEAgok8noT/7kT0bqa21tTeVyWVeuXJnoQNic3xMAnAiHw21LIa9du+bouK2treb9zmAaAEyCd2/Xi9w78Z0f1JdPAgAwKw5b/vg3Pxisn78dsP1Rt7CwoOXl5Z43zIZKpaJwODxyEKwhlUqpXC670pdXCIRhapw/f755v7VeWC+t7dLptOtzAoBRvf5m950eu/nZHel7b3o7HwAAxsVpja9u7fbeGWysQdsfdaurq7p161bP29wc4YJZYJqmUqmUa/0Fg8HmUstJxb9sTI3WD6eTCHNrG8MwqA8GYCL98K3B2r8xYHsAACbRoDW+9t9t/9ni3YONN2h7YJa4WUJo0oNgEoEwTJFwONwWzCoWiz3bFwqF5n2ywQBMqncd1jdpeGfA9gAATKJhany1+tT9g433yQHbA7PCMAxXg1e5XG7ia3MTCMNUyeVyzfvr6+uHtrMsS/l8XlJ9p8hkMun53ABgGMfvGqz93QO2BwBgEo1a4+tzYemXHP6f+Mvvkz7ff58tYCaFw+G2JJJRPPnkk82aY5OMQBimimEYzQ9ppVJRNpvt2m5lZUVSfX2yWx9qAPDCfScHa//RAdsDANDLXEC6/VTv21zA/XFHrfF14rj0jd9xduxzn5YWjg82HryTzWYVi8W0uLioQCCgUCikRCIxlgLrXoztdp+Nml2hUEiBQECLi4uKRCJKpVKeLDs8f/68SqWSvvzlLw/dx/7+vi5cuKBsNqtAIOBqzTEvEAjD1InH4yqVSgoGg0qn00okEqpUKrIsS+VyWZFIpBmFvnHjRttukwAwaR64R7pr3lnb981LD97j7XwAALMlEJDm53rfAh4Ewtyo8fXZM/2P+2bcWTt4r1wua3FxsVm2plAoqFqtKpPJqFKpKBaLKRaLybKsqRjbiz6z2axCoZDy+Xwz6GVZliqVivL5vEKh0KHJIMOKx+M6ffq0MpmMvvSlL+nmzZuOj33llVd04cIFLS4uqlgsKhAIKBwO65FHHnF1jm4L2LZt+z0JYFjZbFabm5syTVOWZSkYDOrs2bNKpVKKx+OujTM/P69araa5uTndueNwezdgxj1bedXvKUyN770pvfT9/u1+93+VHvig9/M5yh4PP+z3FABMKNuWan2ujOYC3gSFRnWnJh37Su82t5+qB7Umxf/3/yf9v/7Gefv/z6ekP/rN9p+N8rr9OtaN48fFzWugcrmsWCwmSUomk20lbxoaCQ2GYWh7e9u1hAYvxvaiz1gspnK5rGAwqGg02qzdValUDmSCFQoFV693y+Wyfuu3fkuBX5zgotGowuGwQqFQs96XZVna3d3V9va2tra2VKm8V7ivEVYKBALa3t7WQw895NrcvEAgDHCAQBgwOAJhztmSXn9T+s4PpZ93OcXcNS998r569hhGQyAMwFE0jUG8t9+Vlp92VjD/l98n7Vw6uLxxWgNh0/L35dY1kGVZOn36tCzLkmEYqlarXduZpqlQKCSpHogplUpDj+nl2F70mU6nlc1mlclktLa2duD5bDZ7YAM4t0M5+Xxejz76aDMY1kvr2I32tm2rUCjoM5/5jKvz8sIxvycAAMBRYKv+xfant6Xv/UT60b9I79yW7j4mffQD9Uyu43dJ3b5aBFRf8njfr9QDYm+8Vd8d8u676jXBHrxHej//Y7tilAAtQTQAkyoQkOYnKMjlRKPG1xd6bwQv6ejV+JrGv69RJBKJ5vLAzmBOK8MwFI/HVSwWVS6Xlc/nR970zIux3e7TNE1ls1mVSiVFo9Gufa2tralarTY3hJPkelH6ZDKppaUlJZNJWZbVFuDq1Boss21bwWBQV69e1Zkz07EOmYwwwAEywoDBzVpGWM2W/uyV3m0+/TFqfE0zAmEA4C4nmVXfjEufiwx//CRmhE0LN66BWrOiJGlvb6/nEsFisahEIiGpvvHZ3t7eUON6NbYXfSYSCZ07d65rJlgry7K0uLjYfHxY9tio3n77bT399NN65pln+rYNBoO6dOmSnnjiCdfn4SV+vwwAgAv+8Sf927z0/fpvganzBQCAM38wHQkmOEQmk2nej0ajfetktda9sixLxWJx6FpYXoztRZ+WZTkKaAWDwWbdsMZjL5w4cUKZTEaZTEZXr15VpVJRtVrV7u6uJGlpaUmhUEjRaHRqMsA6EQgDAGBE796u1/dy4js/kO77AEsdAQDA0de6lM/pMr7WYM/m5ubQgTAvxvaiz0FqoTWCUZJ09uxZx8cNa2VlRSsrK56PM25TnqwJAID/Xn+ze5H7bn52p75LJAAAwFHWuqugJJ07d87Rca0BpmLRQRG5MY3t5+uR6pljjdpkjV0dMRwCYcAAarWaTp061fO2sbHh9zQBjNkP3xqs/RsDtgcAAJg25XK57bFhGI6O62zXGYDya2w/X48kXblypdlfoVAYqg/UsTADGNDOzk7P5/f398c0EwCT4l0HW7+3emfA9gAAANPm2rVrbY+d1rQ6efJk2+Otra2Bs5+8GNvP12NZllKplMLhsAqFgmf1wWYFgTBgQMvLyz2fX1hYGNNMAEyK43cN1v7uAdsDAABMm0ZdrIZhM6iq1epEjO3X6zFNU7FYTMFgUFevXiUI5gICYcAA5ubmdOvWLb+nAWDC3HdSMgdY7vjRk/3bAAAATLPOwNGwGnWx/B7bj9dTLBaVSCSajxcXF5XJZBztMonDUSMMAIARPXCPdNe8s7bvm5cevMfb+QAAAPhtmACWdHDJYetOiX6OPa7XY1mWstmsQqFQWxCsIZ1Od/05nCMjDACAER0/Jn3iPuml7/dv+4n7pffzvy8AAPDIxsaGKxt41Wo1F2YzumEDUJM6dr8+y+WyqtWqotGoTNM8UKRfqmeKZbNZMsOGxFdxAABc8MAvsry+80Pp53cOPn/XvPTJ+6QHPjjeeQEAgNmyv7/fd4OvcQgGg64EkoapieXF2ON6PfF4XPF4vO1n+Xxe6XS6bfx0Oq1kMknNsCEQCAMAwAUB1Zc83vcr0utvSm+8Vd8d8u676jXBHryHTDAAAOC9hYWFvht8OTFqMG1pacmVwNHS0tJEjO3n60kmk4pGo4pEIm1zyOfzZIUNga/kAAC46Pgx6dc/VL8BAACM2+rqqlZXV0fuZ35+fqTlkcNmKnUGm4bNCHN7bD9fj1TfffLq1auKRCLNn127dm2ovmYdxfIBAAAAAICrzp492/bYaTZVZzH5UCg0EWP7+XoawuFw27JJt3aynDUEwgAAkGRLqtn15Yz/8M/St65L+Wv1P//HP9d/bvs9SQAAgCnRmrkkOQ/aVKvVtsfRaHQixvbz9bS6cOFC874bSzX39/f12GOP6eMf/7i+/vWvj9zfNGBpJAAAkmxb+rNXuj9n7krffUP69Mfqtb4AAMB0mwtIt5/q3wbD68ygMk1T4XC473GtwZ1gMCjDMCZibD9fT6vWMd0olB+Px3X16lXZtq1yuazTp0/r937v90bud5KREQYAgKR//En/Ni99X3rdQTsAADDZAgFpfq73LUAgbCThcLgtUOO0ntXW1lbzfmfwyc+x/Xw9h3Gjv3K53PZ4FnahJCMMADDz3r0tfeeHztp+5wfSfR9gB8hZ9Gzl1aGPfTz8sIszAQBgOpw/f175fF6SVKlUHB3T2i6dTk/U2H6+nobWJZmxWGzk/gzD0I0bNxQIBBSPx/XII4+M3OekIyMMADDzXn9T+vkdZ21/dkf63pvezgcAAOAoSKVSzfudmUfdtLYxDGOkelpejO3n62loBNaCwWBb4fxhJZNJ2Xa9Eu7m5ubI/T322GMj9+E1AmEAgJn3w7cGa//GgO0BAABmUTgcbgv+FIvFnu0LhULzfr/sqXw+r3Q6fWjRei/G9vL1OLW+vi5Junz5siv9ra2taWVlRZL0T//0TyP35yRA6DcCYQCAmffuzwdr/86A7QEAAGZVLpdr3m8EcbqxLKu57DAajSqZTB7aNhaLKZVKKZvNKhQKHbp7ohdju91nNptVJBJROp3uuwtko83a2por2WANpVJJv/d7v6d4PK5//dd/HbqfGzduON5N008EwgAAM+/4XYO1v3vA9gAAALPKMIxmZlSlUlE2m+3arpGVFAwG2zKpuunMOrpy5crYxnazT8uylE6nm/0sLi4emjmWSCSUzWaVyWSUyWR6znEYf/EXf6FkMqlwOKy/+Iu/0P7+vqPj9vf3tb+/r1deeUWJRML1eXmBQBgAYObdd3Kw9h8dsD0AAMAsi8fjKpVKCgaDSqfTSiQSqlQqsixL5XJZkUhElUpF4XBYN27c6LtzYefzhmGMbWw3+wwGgwfm3giIJRIJpdNpxWIxLS4uSpKq1arW1tb6zm8QH/nIRzQ/P6/FxUU9+uijqlarSiaTWlxc1Pz8fN/b4uKiFhcXFYvFHG8g4DcCYQCAmffAPdJd887avm9eevAeb+cDAABw1ESjUe3t7SmTycg0Ta2srDQDPktLSyoUCtre3nYUiCoUCjIMQ8FgUGtra32L0Ls5ttt9bm9va21tTeFwuK1tpVKRaZpKJBK6ceNG8zW7rVEsv3ELBAJtjwe5TYuAPU2zBXwyPz+vWq2mubk53bnjcGs5YMY9W3nV7ykM5HtvSi99v3+73/1fpQc+6P18cLQ8Hn7Y7ykAwMS5U5OOfaV3m9tPSfOHpG+Mevyw/Bp33LgGmg1vv/22FhcXFQgEJGnogFYjgBYIBCb+38sxvycAAMAkeOAXWV7f+aH08y7/d981L33yPoJgAAAAODpOnDihz3zmM3rhhRck1TPdBsmMazBNc2qWRhIIAwZQq9V06tSpnm1WV1e1uro6phkBcEtA9SWP9/2K9Pqb0htv1XeHvPuuek2wB++R3s//mgAAADhiUqmUXnzxRW1vb+uhhx4aup98Pq/HHnvMvYl5hK/0wIB2dnZ6Pu90dw0Ak+n4MenXP1S/AQAA78wF6ksI+7UB4K1oNKoTJ06MFAST6vXGHn30UXcm5SECYcCAlpeXez6/sLAwppkAAAAA0ysQkOYJdAET4dKlS9rf3x/5ejaZTLo0I+8QCAMGMDc3p1u3bvk9DYyRbUu1PvUi5wL1L3Lwn63639lPb0vf+4n0o3+R3rkt3X1M+ugH6vW9jt9VXwYJAAAwqzY2NrSxsdGzTa1WG9NsMAmeeOIJV/p57rnnXOnHSwTCAKCHmu1wVyAiKxPBtqU/e6X7c+au9N03pE9/rF7vCwAAYFbt7+/3LfkC9HLp0iU9+uij+tVf/VW/pzKwKd/QFQCA9/zjT/q3een70usO2gEAABxVCwsLWl5e7nnD7HrxxRf12GOP6dy5c3rxxRe7tolEIjpz5ox+//d/X//0T/805hmOhowwAMCR8O5t6Ts/dNb2Oz+Q7vsAu0ACAIDZ5GSn+/n5eZZHzpivfe1rWl9fl2VZzZ/t7u52bRuPxxWNRrWysiLDMFQsFvW7v/u7Y5rpaMgIAwAcCa+/Kf38jrO2P7sjfe9Nb+cDAAAATIO3335b9957r9LptPb29mTbtmy7T6FkScFgUNvb23rooYcUj8f1F3/xF2OY7egIhAEAjoQfvjVY+zcGbA8AAAAcRYlEQtVqVZIUCAQUGHAnsKtXr8q2bSWTSf393/+9F1N0FYEwAMCR8O7PB2v/zoDtAQAAgKPm6tWrKpfLCgQCzUywEydOKBqNOu4jGAzqiSeekG3bSqVSHs7WHQTCAABHwvG7Bmt/94DtAQAAgKMml8tJUjOjq1qtand3Vy+//LKj5ZENv//7vy9JqlarE79EkkAYAOBIuO/kYO0/OmB7AAAA4KhpZIPl83k999xzOn369FD9GIbRvP/yyy+7NT1PsF8WAOBIeOAeqVx1VjD/ffPSg/d4PycAAHD0zAWk20/1bwNMA8uyFAqF9MUvfnGkflp3l6xUKqNOy1NkhAEAjoTjx6RP3Oes7Sful97Pr4IAAMAQAgFpfq73bcBa44BvgsGgwuHwyP00gl+2bcs0zZH78xKXAQCAI+OBX2R5feeH3TPD7pqXPnmf9MAHxzsvAAAAYBIZhiHLskbuZ319vXk/GAyO3J+XCIQBmHi2LdX61GmcC/j3m7dvX5c+H/Fn7KPIVv3v/Ke3pe/9RPrRv0jv3JbuPiZ99AP1INbxu6Ruf90B1Zc83vcr0utvSm+8Vd8d8u676jXBHryHTDAAAACgYWVlRc8///xIfTzzzDOqVCrNnSdb64VNIi4HAEy8mi0d+0rvNrefkuY9CIR9+3r/Nl8o1lPgP3vG/fFnkW1Lf/ZK9+fMXem7b0if/ljvGl/Hj0m//qH6DQAAAEB3ly5d0jPPPKOvf/3r+uM//uOhjs9ms80gWCAQ0IULFzyYqXuoEQYAh3j7XelLf+2s7aMvSfvvejqdmfGPP+nf5qXvS687aAcAAADgcMFgUE888YTW1tb05S9/Wfv7+32P2d/f1/PPP697771X2WxWtt2+fCeZTHo1XVeQEQYAh/hWRfr3nztr+28/k75Zkf7oN72d01H37u16fS8nvvMD6b4PsNQRAAAAGEUmk1GlUtFXv/pVZTIZxWIxRaNRSdL29raWlpa0u7urarWqcrncVhhfkgItNWqee+45LSwsjP9FDIDLBwA4xN/8YLD2f/sDAmGjev3N7kXuu/nZHel7b7L8EQAAABhVqVRSKpXS5cuXVSqVVCqVFAgElM/nlc/n29p2BsAaj3O5nC5evDjeiQ+BpZEAcIi9d7xtj4N++NZg7d8YsD0AAACA7nK5nLa2tvTII4/Itu0Dt4bWAJht24pGo6pWq1MRBJPICAOAQy3e7W17HPSuw6WoDe8M2B4AAADA4cLhsEqlkm7cuKFyuaxSqSTTNGVZlnZ3d7W0tKRgMCjDMBSLxXT+/HmdOHHC72kPhEAYMIBaraZTp071bLO6uqrV1dUxzQhe+tT90ss/ct7+k/d7N5dZcfyuwdrfPWB7AAAAAP2dPn1aFy9enJosr0EQCAMGtLOz0/N5J7tsYLxsW6rZvdvMBaSWGo+SpM+FpSe/66xg/i+/T/p82J1xZ9l9JyVzgOWOHz3p3VwAAACOqo2NDW1sbPRsU6vVxjQbYLwIhAEDWl5e7vn8pO+QMYtqtnTsK73b3H5Kmu8ISJ04Ln3jd6QvFPuP8dynpYXj7ow7yx64RypXnRXMf9+89OA93s8JcMOzlVdHOv7x8MMuzQQAgPov7/v9gh+z7ebNmyqXy9re3tbu7q4kaWlpSaFQSNFoVA899JC/ExwBgTBgAHNzc7p165bf08AYffZM/0DYN+P1dhjd8WPSJ+6TXvp+/7afuF96P/+LAQAADGxhYaHvL/gJlM2m559/XplMRqZp9m2bSqW0tramD3/4w95PzEXsGgkAI/oDgmCu+o8f7N/m0x+THnDQDgAAAAetrq7q1q1bPW9zc4QLZsnNmzd17733KpVKqVqtdt0tsqHx81wup1AopK9//es+zHh4/C4dADBRAgHpTx+Rfnpbev0n0hv/Ir17u54t9tEP1ANggxbVBwAAR89coF5mol8bAL1dv35d0WhUe3t7kqRASxHjw4JhjeckaW1tTaVSSd/97ne9n6wLCIQBAFzV2CSg10YBgYB02PfSwC+ev/su6Tc+VL8BAAB0CgSotQq4IZFIaG9vrxkAawS4DMNQNBpVKBRSMBiUYRhaWlqSaZoyTVPValVXrlyRZVkqlUr67d/+7akIhhEIAwC4qrFJwK8sHd7mTx9ht0wAAADAb5cvX5Zpmm1BsGg0qkwmozNnuteAaf35c889p2KxqPX1dZVKJX3961/XH//xH49l7sNi0S8AHEG2Ld2p9b4dkuE8Fv/4E//GBgAAAFCXy+UkvZcFlsvl9PLLLx8aBOsmHo9re3tbjzzyiNbW1rS/v+/JXN1CRhgAHEGNrKxebj/lzXKCb1/v3+al79czwih4DwAAAPinNRtsbW1NFy9eHLqvQqGgpaUlFQoF/eEf/qFbU3QdGWEAANe8/a70pb921vY7P6gXxAcAAADgD8uymtlgly5dGqmvYDCoZDKpK1euuDE1zxAIA3AkOMlCmkTTOu/DfKsi/fvPnbX92R3pe296Ox8AAAAAhwuHw5LqhfEXFhZG7i8UCsk0zZH78RKBMAATz0mw6AvFyQsqjTrvSa/z1c3f/GCw9m+85c08AAAAAPS3srIiSdrd3XWtz0kPhFEjDMBEG2Sp3aMvSZ/6NWnhuKdTcsSNeftZ58u26+P3Mhc4uPPj3juDjfOOw+wxAAAAAO778pe/rGeeeUaWZenmzZv68Ic/PFJ/1WpVwWDQlbl5hYwwABNtkKV2//Yz6ZsVb+fj1DTMu1fGWiMI1+vWLVC2ePdgc7j7rsHaAwAAAHDPiRMndOXKFdm2rSeffHLk/q5cuaKlpSUXZuYdAmEAJtqgS+3+dsD2/cwF6llXvW5zXTKy/J63X8tJP3X/YO0/etLd8QEAAAAMJh6PK5fL6eWXX9aXvvSloft58sknZVlWs+7YpGJpJICJNuhSu0HbN3z7uvT5yMGfBwLDLT0c17y7Gddy0m7v2efC0pPfdZYN97556cF7Bh8XAAAAQG+PPvqotre3BzpmaWlJuVxOuVxu4GCWZVkyTVOBQECxWGygY8eNQBiAiTboUrtu7Z1mR83PSZ89M9h4g8zDzfa9DLMs849+s/3nw75nJ45L3/id+nP9fOJ+6f38LwQAAAC4LhgMant7W4FAQLaDHbYCvyj+22g7aBCttZ/z588Pdey4cAkCYKJ96n7p5R85b//JjqV5fhXbH3XeTnXLyhpmWWZrIGzU9+yzZ/oHwj79MemBDw42T2CWPVt5dehjHw8/7OJMAADANEilUspms5LeC3I5MUjbbpLJpBYWFkbqw2vUCAMw0T4Xln7JYUH1X36f9PmODF6/itaPOm9p+Dpfoy7LHPU9a9RVW/t/Sr/9UclYkv4fC/U/f/uj9Z8/wJJIAAAAwDOnT5+WYRiS6lle47idOXNGmUzG51feH4EwABOtsdTOiec+fTCby6+i9aPOe9CsrP1333s86rLMUd+zQKC+ZPLuu6Tf+JD0uTPSxXP1P3/jQ/Wfj/Z7JgAAAAD9rKysSJLK5bJqtZrnt62trYnPBpMIhAGYAk7qdn0z3r2dn0XrR5n3KFlZg+7c2Lks08/3DAAAAN7b2NjQqVOnet5qtZrf08SIzp8/r3A4rEceecTvqUwUaoQBA6jVajp16lTPNqurq1pdXR3TjNDwB4cEnfwsWu/EYfMepc7XIDs3dluWOenvGQAAAEazv7+vnZ0dv6cBj62srOj06dNjHfPmzZv68Ic/PNYxB0UgDBhQv/8w9vf3xzQTODGuovVuGyUra5CdG7sty5zW9wwAAADOLCwsaHl5uWcbAmVHw5UrV8Y6XiqV0t/93d+NdcxBEQgDBtTvP4xpWBPtB9uWan127Z0L1OtLuWnU7Ci/jJqV5WTnxsOWZU7rewYAAABnnKximZ+fZ3kkBra1teX3FPoiEAYMYG5uTrdu3fJ7GlOpZkvHvtK7ze2npHmXA2GjZkf5ZRxZWYcty5zW9wwAAACAO27evCnLshy3N01TuVxuoGP8QiAMwJE3SnaUX/zOyprG9wwAAADAcG7evKlMJqNyuSzTNIfqw7ZtBdxe4uMBAmEAoMOzo/wyDVlZk/aeAQAAABjcpUuXlM1mJdWDWUfdnN8TAAB05yTbiqwsAAAAAMN64YUXlMlkmgGwacjoGhUZYQDgkblAve5ZvzajOCwra9SxxzF3AAAAAP5aX1+XVA+A2bYtwzAUDodlGIYk6eTJk337eOutt2RZlq5cuaK3337b0/m6gUAYJoJpmkqlUiqVSo7aZ7NZlUolbW1tybKs5oc1lUopGo16PFvAmUDA/eL/4xrbz7kDAAAAGI9KpdLMAiuVSlpZWRm6r7W1Nd17771uTc0zLI2EpyzLUiAQ6HsLhULNiHMv5XJZi4uLSqfTkqRCoaBqtapMJqNKpaJYLKZYLDYVO1UAAAAAAOCnYDAoqR7EGiUIJkmGYej06dMuzMpbBMLgqXw+77htI7h1mHK53AxyJZNJlUolRaNRGYaheDyuarWqcDiscrmsSCRCMAwAAAAAgB4aCSnnzp1zpb9cLudKP14iEAZPNdYb99MIaB3GsiwlEglJ9Q/qYR+uQqEgqb7UstEeAAAAAAAc1MgC293ddbW/SUaNMHgmn8/Lsiytra0pFov1bHv27NmezycSiWaGV6/MsUZ2WLFYVLlcVj6fVzKZHHjuwCSgYD0AAAAAL335y1/WM888o0ql4kp/zz//vL74xS+60pdXAnZjj0zAZaFQSJJUrVZH6sc0zWZfkrS3t9dcx9xNsVhsZoMFg0Ht7e2NNL4kzc/Pq1araW5uTnfu3Bm5v1l0pyYd+0rvNrefkua75KmOcqwbx2M4z1Ze9XsKACQ9Hn7Y7ykAAKYQ10CzI5vNKpPJ6ObNm/oP/+E/jNTXuXPndO3aNZdm5g0u++CJYrEo0zT71v1yIpPJNO9Ho9GeQTBJisfjzfuWZalYLI48BwAAAAAAjqK1tTWFw+GRywvduHHDtcwyL7E0Ep5YX19XMBjU+fPnR+6rteB+OBx2dIxhGDJNU5K0ubnZFhzD9GGJIAAAAAB4p1Qq6ezZs7r33nuVTqe1tLTk6Ljd3V1ZlqVqtaorV654PEt3EAiD6yqVSjMKvLi4KMMwFI1GFYvFBg5IdUaTne5kEQ6Hm4EwMsKmXyAgzRPoAgAAAABPvPLKK5LqpY1SqdRQfdi2rUBg8i/cWBoJ13UuhzRNU/l8XolEQoFAQIlEwnG6ZLlcbnvca2fJXu2mIT0TAAAAAIBxe+yxxxSLxXT9+nUFAgHZtj3wbZqQEQZXmaZ5IHjVqVgsqlgsKplMKpfL9WzbWWSvX32whpMnT7Y93tracrysEkcPSysBAAAA4KDLly83r8sbQbBhTFMwjEAYXGUYhnK5XHONcLlcbi5R7JTP57W1taXt7e1D++s8dtiMsFF3rsR0Y2klAAAA8J6NjQ1tbGz0bFOr1cY0G/ipMwjWKGsUDAYHrhP23HPP6ebNmx7O1h0EwuC6ZDLZ9tiyLOXzea2vr8uyrLbnKpWKYrGYSqVS174OC6INqnNcTKZvX5c+H/F7FgAAAMDRtr+/r52dHb+ngQlQqVQUCAQUDAa1tbWl06dPD93XxYsXD6zOmkTUCIPngsGg1tbWtLe3p0KhcGB5Y7lcVjab7XrssAGszjF2d3eH6gfu+fb1/m2+UHTWDgAAAMDwFhYWtLy83POG2dC4dr506dJIQbBGX2fOnHFhVt4K2NO0kBNHgmVZWllZaStgHwwGtbe3d6Bt544TTv+5lstlxWKx5uNoNHpo1pkT8/PzzdRgN/5TWF1d1erq6sj9TIu335WWn5b+/ef92/7y+6SdS9LCce/nBW89W3nV7ykAkPR4+GG/pwAAmEKNa6C5uTnduXPH7+nAI7FYTK+88ooKhYJ+7/d+b+T+rl+/PvHBMJZGYuyCwaC2t7cViUSawTDLslQulxWNRg+0dWNZo9Mi+064kUK8v7/vwkymx7cqzoJgkvRvP5O+WZH+6De9nRMAAAAAzLpUKqWrV6+6VpZo0oNgEksjZ0Y+n1cgEHD1FomMVszp8uXLbY+7ZWw5Lc7Xj1v9SOqbQuzktrCw4Np8psHf/GCw9n87YHsAAAAAwODi8bjOnDmjzc1NV/p78cUXXenHS2SEwTfhcFjRaFTlcllS98L4w2ZydWaRuZURNjc3p1u3brnS1yzZe8fb9gCAw42yTJlllQAAHH2FQkEf+chH9Fd/9Vf63d/93ZH6Wl9fd2WJpZcIhM2IaDSqQqHgap9uBJdisVgzENbN2bNn22qJWZblaNzO4vihUGjoOWJ0i3d72x4AAADAdMhmsyqVStra2pJlWTIMQ+FwWKlU6kCpnGkY2+0+K5WKcrmcyuVyM1nEMAzF43FdunTJ1bI/DYZh6LnnntMXv/jFkQJhb7/9dtv1+6QiEDYjDMOQYRh+T+OA1jl1W77YufzSNE2Fw+G+/Var1bbHXp9Q0dun7pde/pHz9p+837u5AAAAABi/crmsRCIhy7KaiRqGYahSqSidTisWizV/7nawx4ux3e7TsixdvHhRxWLxwHOmaSqbzSqbzSqXyymZTA74DhyusZTxAx/4gBYXF3XvvfcqHo8P3I9lWbpy5Ypr8/ISgTD4qjUQ1u3kcPbs2bbHTgNhrUsjg8HgRAYBZ8nnwtKT33W+a+Tn+/8VAwAAAJgS5XJZsVhMkpRMJpXL5ZrPNbKdIpGIyuWyIpGItre3XQuGeTG2231alqVIJOKoYH0qldL29nbbmKN4+umndf369eZj27aVzWaH6su2bQUCAVfm5SWK5cNXW1tbzfuNE0mrcDjcdsK4du3awP12BtMwfieOS9/4HWdtn/u0tHDc0+kAAAAAGBPLspRIJCTVg0SHBXAapXxM02y2n8SxvegzkUg0kz4KhYKq1aqq1aoKhYLW1tYOtM/n810zx4Zx/vx52bYt27YlaSoCWaMiEAZftS5hPGz54vnz55v3na43bm2XTqeHnB3c9FkHu+h+M+6sHQAAAIDp0Fg+KPW+NmtkUkn1jKt8Pj+RY7vdZz6fV7lc1tramra3txWPx5uljeLxuDKZjKrV6oGVURcvXjx07EGkUilJ9QBYIyA27G1aBOxpmi2OnFAoJNM0tba2pkwm07VNpVJpqxXW759sa5qqYRgH6oUNY35+XrVaTXNzc7pz587I/c2iOzXp2Fd6t7n9lDRPeP7IGGWnOgCTgV0jAWB2uXENZJpm28Zle3t7PZcIFovFZvZUMBjU3t7eUON6NbYXfYZCIRmGoVKpNNDrkaRSqeRKPeyzZ8/q+vXr+upXv6pwONy1fnc/pmnq6aef1muvvTbx18zUCINvisWiTNNUMBjUpUuXDm0XDocVjUabu0sWi8Wexftad8ckGwwAAAAA/NGa7BCNRvvW3mq9zrMsq++137jHdrvPSqUi0zS1vb3dsx+pnuSRyWTarnErlYorgbALFy4oFArpiSeeGLqPM2fO6DOf+cxQQbRxI/cCrimXy1pcXFQgEFAsFuu5jNE0zWYq59WrV/ueQFrXXa+vrx/azrKsZsppNBp1dTcNAAAAAIBzrcsBnWx6JrVvqLa5uTlRY7vd5+bmppLJpOONATqDXm+99Zaj45z069ZiwWmo0U0gDK4pFArNtdKN3TEa641bNZ5bWlrquta5G8MwmplelUrl0F0sVlZWJNXTTlszwwAAAAAA49OZGHHu3DlHx7VeHw5bEN6Lsb3o88KFC4eWCOrXl6QDSyWHdebMmYHm0Ytb/XiJQBhc020njHw+r8XFRSUSCaVSKUUiEcViMSWTSW1vb7dFx/uJx+MqlUoKBoNKp9NKJBKqVCqyLKsZXKtUKgqHw7px44Zr2+0CAAAAAAbTKG3T4PTar7Od0w3TvB7biz7D4fBA162NxJNB5+DE6dOnR+7j5s2bOnNm8nc/IxAG10SjUVWrVSWTSRmG0faBrlQq2t3d1aVLl7S3t6dMJjNUoCoajTaPN01TKysrzUDb0tKSCoWCtre3CYIBAAAAgI+uXbvW9tjpNdrJkyfbHm9tbU3E2H6+ngbTNNseu1EfzC0vvPCCQqGQvve97/k9lb4olg9XGYbRVs/LK2tra1pbW/N8HAAAAADA4DqDNsNmUFWr1YkY28/X09AaRJu0etjXrl2Tbdv6y7/8Sz344IN+T6cnAmEAAAAAAMBVnYGjYXUuB/RrbD9fT0Nr0knr7pGjev7554c+1rIsVatV5fN5BQIBlcvlnhvcTQICYQAAAAAAHBEbGxva2NgYuZ9arTbS8cMGfDqXHO7u7k7E2H6+HqkeiGvUF8tkMq7WB0smkwoEAiP10dh1slKp6ObNm/rwhz/swsy8QSAMAAAAAIAjYn9/Xzs7O35PwzWjZFBN4tjD9tnYjdEwDM/KBNm2PXBArBEAaz0un8/r6aefdnVubiIQBgAAAADAEbGwsKDl5eWR+xk1mBYMBl0JJA2zEZoXY/v5eiqVivL5vILBoEql0shz6KUR2BpEIBBoO65QKBAIAwAAAAAA3ltdXdXq6urI/czPz4+0PHJpacmVwNHS0tJEjO3n67l48aIk6erVq64uiWx1+vRppdPpgfuvVqvKZrOKRCK6fPmyFhYWPJmfmwiEAQAAAAAAVw2T+SQdXDo4bEaY22P79XpSqZQqlYoKhYLC4fBQc3CiXC4PVddrZWVFyWRSH/nIR5RMJvWXf/mX7k/OZXN+TwCYJrVaTadOnep5c6MwJQAAAABMs7Nnz7Y9dppN1VlMPhQKTcTYfryefD6vfD6vXC6neDzu+LhBBYPBkYvbP/fcc7py5Yq+/vWvuzMpDxEIAwa0s7PT87a/v+/3FAEAAADAV5FIpO2xaZqOjqtWq22Po9HoRIw97tdTLpeVSqWUy+WUTCYdHTOsRiH+UUSj0WYh/5s3b44+KQ8RCAMGtLy83PM2DWuiAQAAAMBLnRlUTgNHrZlWwWBwqJpYXow9ztdTqVQUi8WUyWQ8D4JJ79UgG1U4HJZt28pms6705xVqhAEDmJub061bt/yehi9sW6r12UBkLiANuNsuJtyzlVf9ngIAAACmUDgcbttp8dq1a46W921tbTXvdwaf/Bx7XK/HNE2trKxobW1Na2trfdtPomvXrvk9hZ4IhAFwpGZLx77Su83tp6T5QwJhc4H6873MEUQDAAAAjozz588rn89Lqmc5OdHaLp1OT9TYXr8e0zQViUSUTCYdL1c0TVPFYtH3oNnbb7+tcrksyfl745eAbdt9cjwANLYOnpub0507d/yeji/u1BwGwlhwfaSQEQZgWI+HH/Z7CgCAEbhxDVSpVNpqa/ULP5TLZcViMUmSYRgH6mv5PbaXr8eyLEUiEUWjUeVyuZ79topEIrp8+bKnO0r289prrymRSMg0Tdm2rVAopB/96Ee+zacfMsKAGcLyRgAAAADjEg6HFY1Gm5lCxWKx53LCQqHQvN8veyqfz6tarSqVSnWtu+XF2F69nkYQzDAMpdNpR/XHTNNs9jlqEOzee+8d+tjGXBtBwUAgMNQGB+NERhjgwFHJCBslq4uMsNlERhiAYZERBgDTza1rINM0FQqFJNUDNtvb213bWZalxcVFSfUdCEul0qF9xmKxZjBKkvb29hQMBscythd9RiKRoZcTurGr5NzcnAKBQN8Mt14axwcCAe3t7U30JnJcsgIAAAAAAE8YhtHMjKpUKofuKLiysiKpvrNiayZVN61BMEm6cuXK2MZ2u89RgmCSXN1VMhAIDHWT6hlhwWBQL7/88kQHwSQCYQAAAAAAwEPxeFylUknBYFDpdFqJREKVSkWWZalcLjeDQeFwWDdu3Oia3dWq8/luSyO9GtvNPhvHDcvNIJht27JtWydOnNDp06cd386cOaN4PK5MJqPd3d1mAHCSsTQScIClkSyNnFUsjQQwLJZGAsB08+oaKJvNanNzU6ZpyrIsBYNBnT17VqlUqme9rVblclmpVEq7u7sD7bDoxtjj6HPc5ubmlM1m9Sd/8id+T2UsCIQBDhAIIxA2qwiEARgWgTAAmG5H5RoI/X3kIx/Rj3/8Y7+nMTZcsgIAAAAAAMyofjt0HjUEwgAAAAAAAI6g1157rW+bixcvej+RCXLM7wkAAADg6BllaTXLKgEAcEckEmFpawcywgAAAAAAAI4g27b1T//0T35PY6KQEQYAAAAAwAzZ2NjQxsZGzza1Wm1Ms4HXMpmMvvGNb/g9jYlBIAwAAAAAgBmyv7+vnZ0dv6eBMcnlcjJNU8lkUuFwWEtLS5KkhYUFn2fmDwJhAAAAAADMkIWFBS0vL/dsQ6DsaCmVSiqVSmMbb5LrkhEIAwAAAABghqyurmp1dbVnm/n5eZZHHiG2bTfvB4NBSWpmhg1qd3dXlmV1fc4wjLEG3IZBIAwAAAAThR0nAQBwVyaTUTwe1+nTp0fq5+rVq0okEgoEAm0/t21biURCm5ubI/U/DuwaCQAAAAAAcETlcjk98cQTIwfBvva1r+m3fuu39PbbbzczzGzblm3bymQyUxEEk8gIAwZSq9V06tSpnm2cpBkDAAAAAOC1QCCg8+fPj9zPb/3Wb+nq1avNAFggEJBt2woGg7p69arOnDkz8hjjQiAMGFC/opH7+/tjmgkAAAAAAIc7ceLESLtD3rx5U7FYTKZpyrbt5pJI27YVDod19epVnThxwq3pjgWBMGBA/XZXmdUtaAEAAAAAk+XGjRtDH/vCCy80s8k6g2CpVEp//ud/7socx41AGDCAubk53bp1y+9pAAAAAADQ17DZWpcuXVI2m20GwBpLIaV6zbGLFy+6Oc2xIhAGAAAAAAAA7e/vK5FIqFwuH8gCm8Z6YN2wayQAAAAAAMCMe+2113T69OmuQbBoNKobN25MfRBMIhAGAAAAAAAw0y5fvqxIJKK9vb0DQbB0Oq2XX3556oriH4alkQAAAAAAADPqscceUz6fPxAAk6RCoaDPfOYzfk7PdQTCAAAAAAAAZsz+/r5WVlZUqVQOBMEMw1CpVNLp06d9nqX7WBoJwDXfvu73DAAAAAAA/TTqgXULgiUSCf34xz8+kkEwiUAYAIecBLm+UCQYBgAAAACTrFs9MNu2Zdu2MpmMNjc3/Z6ip1gaCaCvt9+VvvTXzto++pL0qV+TFo57OiUAAAAAwIAuXLigYrF4IAssGAyqUChoZWXF5xl6j4wwAH19qyL9+8+dtf23n0nfrHg7HwAAAACAczdv3tS9997bNQgWDod148YNV4Jg995778h9eI1AGIC+/uYHg7X/2wHbAwAAAAC88corrygSiaharR4IgqVSKW1tbenEiROujFWtVl3px0ssjQTQ19473rYHAAAAMD4bGxva2Njo2aZWq41pNvDSM888oyeffPJAAEyScrmcLl686NpYly9fbo4xyQiEAehr8W5v2wMAAAAYn/39fe3s7Pg9DYxBOp1WIBBoC4ItLi7q6tWreuihh1wb5/nnn1cqlSIQBuBo+NT90ss/ct7+k/d7NxcAAAAAo1lYWNDy8nLPNgTKjqZAIKClpSXXMsEsy5Jpmq70NS4Bu5ETB+BQ8/PzqtVqmpub0507d/yeztDu1KRjX+nd5vZT0nxH9cC335WWn3ZWMP+X3yftXGLXyKPi2cqrfk8BAAbyePhhv6cAAEfCUbkGmnVzc3MHlkR6KRAITPy/FzLCAPR14rj0jd+RvlDs3/a5TxMEAwAAAIBJcvr0aRUKBQWDQVf6syyreX9ra0u5XE6VSsWVvr1GIAxAm29flz4fOfjzz57pHwj7ZrzeDgAAAAAwGQzDcHVnyE5nzpzRxYsXlUgk9OKLL3oyhpvm+jcBcFR8+3r/Nl8oOmvXzR8QBAMAAACAiVIoFDwLgrXKZDKej+EGAmHAjHj7XelLf+2s7aMvSfvvejodAAAAAIDHgsGgq7tD9mIYxlgCbqNiaSQwgFqtplOnTvVss7q6qtXV1THNyLlvVZwVu5ekf/uZ9M2K9Ee/6e2cAAAAAADeGXeW1jRkhREIAwbUbxvh/f39Mc1kMH/zg8Ha/+0PCIQBAAAAwDS7ePHikR5vGATCgAEtLy/3fH5hYWFMMxnM3jvetgcAAAAAYNIRCAMGMDc3p1u3bvk9jaEs3u1tewAAAAAAJh3F8oEZ8an7B2v/yQHbAwAAAAAw6QiEATPic2Hpl+5y1vaX3yd9PuztfAAAAAAAGDeWRgIz4sRx6Ru/I32h2L/tc5+WFo57PiUAAFz3bOXVoY99PPywizMBAACTiIwwYIZ89kz/Nt+MO2sHAAAAAMC0IRAGoM0fEAQDAAAAABxRBMIAAAAAAAAwE6gRBkwR25Zqdu82cwEpEBjPfAAAAAAAmCYEwoApUrOlY1/p3eb2U9I8gTAAAAAAAA4gEAYAAAAAwAzZ2NjQxsZGzza1Wm1MswHGi0AYAAAAIOnZyqsjHf94+GGXZgIA3trf39fOzo7f0wB8QSAMAAAAAIAZsrCwoOXl5Z5tCJThqCIQBgAAAADADFldXdXq6mrPNvPz8yyPxJE05/cEAAAAAAAAgHEgEAYAAAAAAICZQCAMAAAAAAAAM4FAGAAAAAAAAGYCgTAAAAAAAADMBAJhAAAAAAAAmAnH/J4AME1qtZpOnTrVs42TrYgBAAAAAMD4EQgDBrSzs9Pz+f39/THNBAAAAAAADIJAGDCg5eXlns8vLCyMaSbjNReQbj/Vvw0AAAAAAJOKQBgwgLm5Od26dcvvafgiEJDmCXQBAAAAAKYYxfIBAAAAAAAwE8gIA4Aj7NnKq35PAQAAAAAmBhlhAAAAAAAAmAkEwgAAAAAAADATCIThUKZpKhaLqVgsjtRPNptVLBbT4uKiAoGAQqGQEomEyuXyRPUJAAAAAACONgJhOMCyLCUSCYVCIZXLZe3u7g7VT7lc1uLiotLptCSpUCioWq0qk8moUqkoFospFovJsixf+wQAAAAAALOBYvlosixL6+vrymazI/dVLpcVi8UkSclkUrlcrvmcYRiKx+OKRCIql8uKRCLa3t5WMBgce58AAAAAMGs2Nja0sbHRs02tVhvTbIDxIiMMkupLDSORiCqVysh9NTLKpHqAqjVg1apQKEiqL8FstB9nnwAAAAAwi/b397Wzs9PzBhxVZIRBlUpF0WhUa2trkqR8Pq9UKjV0f4lEork0sbGEsZtGFlexWFS5XFY+n1cymRxbnwAAAG56tvLq0Mc+Hn7YxZkAQG8LCwtaXl7u2YZgGI6qgG3btt+TwGSpVCqKRCLNx7lcznEwyTRNhUKh5uO9vb2eyxOLxWIzcysYDGpvb28sfQ5qfn5etVpNc3NzunPnzsj9DetOTTr2ld5tbj8lzR+S6znq8Zg+o1yUAQDGh0AYgEkzKddAgNu43MUBo9TVymQyzfvRaLRvX/F4vHnfsqyuO1R60ScAAAAAAJg9BMLgqnw+37wfDocdHWMYRvP+5ubmWPoEAAAAAACzh0AYXNNZaP/cuXOOjmsNbnVmb3nRJwAAAAAAmE0EwuCacrnc9rg1K6uXznatwS8v+gQAAAAA+CObzSoWi2lxcVGBQEChUEiJROLAtd+0jO316zFNU7FYjAQPFxEIg2uuXbvW9thprbGTJ0+2Pd7a2vK0TwAAAADAeJXLZS0uLiqdTkuSCoWCqtWqMpmMKpWKYrGYYrGYLMuairG9fj2WZSmRSCgUCqlcLmt3d3eofnDQMb8ngKPDNM22x8Nmb1WrVU/7nGVzgfqukP3aAAAAAIBbyuWyYrGYJCmZTCqXyzWfMwxD8XhckUhE5XJZkUhE29vbI23i5vXYXr4ey7K0vr6ubDY72AuFY2SEwTWdQathtUbMvehzlgUC0vxc71uAQBgAAAAAlzQym6R6kKg1aNSqUChIql8DNtpP4thevp5sNqtIJEJpH48RCINrhg02dUbGW1M+vejzqPv2db9nAAAAAAB1iUSieV3XWEbYTSOTSqpnXOXz+Ykc26vXU6lUFI1GVa1WVSqVDg2wYXQEwjBxvMjecqvPWq2mU6dOjXzb2NgYanwnQa4vFAmGAQAAAPCfaZptRePPnz/fs/2FCxea93sFmfwa28vXEw6HFQ6Hm4/Pnj3bsz2GR40wuCYYDLoScGrN5vKiz1Ht7OyM3Mf+/v7Ax7z9rvSlv3bW9tGXpE/9mrRwfOBhAAAAAMAVmUymeT8ajfa9LmtkUEn1ZIZisdj2M7/HHufrcfMaFu0IhE2gfD6vVCrlap/hcFjb29uu9tlpaWnJlaDV0tKSp32Oanl5eeQ+FhYWBj7mWxXp33/urO2//Uz6ZkX6o98ceBgAAOCDZyuvDn3s4+GHXZwJALindTlga7ZTL4ZhNGtFb25uDh0I82JsP18P3EMgDK4ZNmLdGejqzAhzu89RzM3N6datW670Nai/+cFg7f/2BwTCAAAAAPijs+D7uXPnHB0XDoebgaNisTgxY/v5euAuAmETKBqNNneYcMs40irPnj3bdnKwLMvRuJ2F7EOhkKd9Tqu9d7xtDwAAAABuaa2lJdUzo5zobFepVBxnX3k5tp+vB+4iEDaBDMNw/KGaJJFIpO2xaZqOPuDVarXtcTQa9bTPabV4t7ftAQAAAMAt165da3vsNDnj5MmTbY+3trYGDhx5MbafrwfuYtdIuKZzV4tG+mc/rcsYg8FgWxDQiz6n1afuH6z9JwdsDwAAAABu6bx2GzaDqjPJwa+x/Xw9cBeBMLgmHA63RcU7I+aH2draat7vDHx50ee0+lxY+qW7nLX95fdJn+eXDAAAAAB84jSJoZ9hNk/zYmw/Xw/cxdJIuOr8+fPNnTQ6iwkeprVdOp0eS5/T6MRx6Ru/I33BQX3F5z4tLRz3fEoAAAAAJszGxoY2NjZG7qdWq410/LABn84lh531n/0a28/XA3cRCIOrUqlUM2jVWUywm9Y2hmF0reXlRZ/T6rNn+gfCvhmvtwMAAAAwe/b397Wzs+P3NFzjZwaVF2OTEeY/AmE4YJQPZjgcVjQabQajisWi4vH4oe1bd8c8LHPLiz6Psj8gCAYAAADMrIWFBS0vL4/cz6jBtGAw6ErQx2lReq/H9vP1wF0EwnBA59rnQT/suVxOoVBIkrS+vn5o0MqyrGamVzQaVTKZHGufAAAAAHDUrK6uanV1deR+5ufnR1oeubS05ErgaGlpaSLG9vP1wF0Uy0cby7IOZFFtbm4O1IdhGM2srEqlomw227XdysqKpHpEvDWLa1x9AgAAAAC8MWzmU2ewadiMMLfH9vP1wF1khEGWZenixYuyLKtrDa5KpaJAIKBoNKpgMKhLly4pHO69JWE8HlepVFIikVA6nda1a9d06dIlGYahra0tpdNpVSoVhcNhXb161dHJwIs+AQAApt2zlVeHPvbx8MMuzgQA3nP27Nm2Tcwsy3J0jdZZTL6xMsjvsf18PXAXgTB4lj0VjUa1t7enbDarzc1NraysNE8WZ8+eVaFQ6Fnra1x9AgAAAADcFYlE2h6bptk3oUKSqtVq2+NhNj/zYmw/Xw/cRSAMnltbW9Pa2trE9wkAAAAAcMfZs2fbHjsNHLUuJQwGgzIMYyLG9vP1wF3UCAMAAAAAAK4Kh8NtSwevXbvm6Litra3m/c7gk59j+/l64C4CYQAAAAAAwHXnz59v3m+tr9VLa7vOjdz8HtvP1wP3EAgDAAAAAACuS6VSzfvdNmbr1NrGMIyR6ml5MbafrwfuIRAGAAAAAABcFw6H24I/xWKxZ/vWTdz6ZU/l83ml02mZpjm2sb18PZ1aa4vBXQHbtm2/JwFMuvn5edVqNc3NzenOnTu+zeNOTTr2ld5tbj8lzRPixi88W3nV7ykAACbY4+GH/Z4CgAnl1jWQaZoKhUKS6oGk7e3tru0sy9Li4qKk+s6KpVLp0D5jsVhbttXe3l5b/S4vx/aiz26KxaISiUTzcSaTYcM4l3C5DAygVqvp1KlTPW8bGxt+TxMAAAAAJoJhGM3MqEqlomw227XdysqKpPrOiq2ZVN10Lku8cuXK2Mb2os9OlmUdyCDb3NwcqA8cjkAYMKCdnZ2et/39fb+nCAAAAAATIx6Pq1QqKRgMKp1OK5FIqFKpyLIslctlRSIRVSoVhcNh3bhxo2t2V6vO5w3DGNvYXvVpWZYSiYRisZgWFxcPLPmsVCoKBAKKxWLN8TCcY35PAJg2y8vLPZ9fWFgY00wAAAAAYDpEo1Ht7e0pm81qc3NTKysrsixLwWBQZ8+eVaFQUDwed9RXoVBQKpXS7u6ukslk3yL0bo7tVZ/DZI5hONQIAxygRhimFTXCAAC9UCMMwGEm5RoIcBuXywAAAAAAAJgJBMIAAAAAAAAwEwiEAQAAAAAAYCZQLB8AAACYUaPUkqS+GABgGhEIAwAAAABghmxsbGhjY6Nnm1qtNqbZAONFIAwAAAAAgBmyv7+vnZ0dv6cB+IJAGAAAAAAAM2RhYUHLy8s92xAow1FFIAwAAAAAgBmyurqq1dXVnm3m5+dZHokjiV0jAQAAAAAAMBMIhAEAAAAAAGAmsDQSACbcKFvbAwAAAADeQ0YYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCdQIA6bIXEC6/VT/NgAAAAAA4CACYcAUCQSkeQJdAAAAAAAMhUAYAAAAgIGNsqvx4+GHXZwJAADOUSMMAAAAAAAAM4GMMGAAtVpNp06d6tlmdXVVq6urY5oRAAAAAABwikAYMKCdnZ2ez+/v749pJgAAAAAAYBAEwoABLS8v93x+YWFhTDMBAAAAAACDIBAGDGBubk63bt3yexoAAAAAAGAIFMsHAAAAAADATCAQBgAAAAAAgJnA0kgAAAAAAGbIxsaGNjY2erap1Wpjmg0wXgTCAAAAAACYIfv7+9rZ2fF7GoAvCIQBAAAAADBDFhYWtLy83LMNgTIcVQHbtm2/JwFMuvn5edVqNc3NzenOnTt+Twcz5tnKq35PAQCAifF4+GG/pwDMBK6BcFRRLB8AAAAAAAAzgUAYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCQTCAAAAAAAAMBMIhAEAAAAAAGAmHPN7AgAwC56tvOr3FAAAAABg5pERBgAAAAAAgJlARhgAAACAqTFKlvXj4YddnAkAYBqREQYAAAAAAICZQCAMAAAAAAAAM4FAGAAAAAAAAGYCNcKAAdRqNZ06dapnm9XVVa2uro5pRgAAAAAAwCkCYcCAdnZ2ej6/v78/ppkAAAAAAIBBEAgDBrS8vNzz+YWFhTHNBAAAAAAADIJAGDCAubk53bp1y+9pAAAAAACAIRAIAwAAAABghmxsbGhjY6Nnm1qtNqbZAONFIAwAAADATHi28upIxz8eftilmQD+2t/f71v7GDiqCIQBAAAAADBDFhYW+tY+JlCGoypg27bt9ySASTc/P69araa5uTnduXPH7+lgCo36G2gAAOA/MsIwS7gGwlE15/cEAAAAAAAAgHEgEAYAAAAAAICZQCAMAAAAAAAAM4Fi+QDgEHW+AAAAAGC6EQgDAAAAAAdG+aUYhfYBYDKwNBIAAAAAAAAzgUAYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCQTCAAAAAAAAMBMIhAEAAAAAAGAmHPN7AgAAAABw1D1beXXoYx8PP+ziTABgthEIAzBTRvkSCgAAAACYbiyNBAAAAAAAwEwgIwwYQK1W06lTp3q2WV1d1erq6phmBAAAgKOOZZUA4B4CYcCAdnZ2ej6/v78/ppkAAAAAAIBBEAgDBrS8vNzz+YWFhTHNBAAAAOiNbDJ0s7GxoY2NjZ5tarXamGYDjBeBMGAAc3NzunXrlt/TmHkUvAcAAACGt7+/33elC3BUEQgDcKS8+g//oJ/+9Kd6//vfr4f/03/yezoAphTnEgBu4FyCSbWwsNB3pQuBMhxVBMIAHCmvvvqq/nV/X/9hYYEvnACGxrkEgBs4l2BSOdnga35+nuWROJLm/J4AAAAAAAAAMA5khAEAAAAADqDQPoCjiIwwAAAAAAAAzAQCYTiUaZqKxWIqFotjG8upbDarWCymxcVFBQIBhUIhJRIJlctlD2cJAAAAABiFn9dyXow9LX3iPSyNxAGWZenixYvNAFgikRipr8XFRUdtk8lk3zblclmJREKWZSkajapQKMgwDFUqFaXTacVisebPg8Hg0PMGAAAAMDyWVaKTn9dyXow9LX3iIAJhaLIsS+vr68pms671mc/nHbdNp9M9ny+Xy82ssWQyqVwu13zOMAzF43FFIhGVy2VFIhFtb29zcphgo3w5AgAAADA9/LyW82LsaekT3bE0EpLqqZeRSESVSsXVftfX1x21i0ajMgzj0Octy2pmphmG0XZSaFUoFCTVl1qOkskGAAAAABidn9dyXow9LX3icGSEQZVKRdFoVGtra5LqWVypVGrkfvP5vCzL0traWt/6X2fPnu35fCM9VOqdOdaIlBeLRZXLZeXzeUdLLqfVxsaG9vf3tbCwoNXVVb+ngwn16j/8g37605/q/e9/vx7+T//J7+lMBN6TdrwfcIJ/JwfxnhzEe4J+nPwbmbVllUf9O72f13JejD0tfeJwAdu2bb8ngclSqVQUiUSaj3O53FAfrlAoJEmqVqsjzcc0zWZfkrS3t9czBbRYLDaj48FgUHt7eyONL0nz8/Oq1Wqam5vTnTt3Ru7PLadOndLOzo6Wl5d169Ytv6czEK+WRm78n/+n/nV/X/9hYUGr/8f/4ckY04b35CDek3a8HwfxnhzEe3IQ78lBvCfteD8O8vo9mcZA2KR+p3fjGsjPazkvxp6WPtEbSyNxgBvrjIvFokzT7Fv3y4lMJtO8H41G+84vHo8371uWNZZdLwEAAAAA7fy8lvNi7GnpE72xNBKeWF9fVzAY1Pnz50fuq7XgfjgcdnSMYRgyTVOStLm52XaygHsoeA8AAICjZNaWZXrNz2s5L8aelj7RG4EwuK5SqTSL7i8uLsowDEWjUcVisYE/oJ3F+8+dO+fouHA43DwxECE/HIEsAAAAHCV8v50cfl7LeTH2tPSJ/giEwXWdyyFN01Q+n29GuuPxuC5duuQo2l0ul9se99pZsle7SqXiOLoOAAAAAIMaNgj3/v/ym9L/XXB5Nv7z81rOi7GnpU/0RyAMrjJN88CHuVOxWFSxWFQymTx0W9iGa9eutT12Wr/s5MmTbY+3traO7InhV/63j+v9Cwv89gsAAADAxPDzWs6LsaelT/RHIAyuMgxDuVxOlmWpWq2qXC43UzY75fN5bW1taXt7+9D+Oo8dNkI+6s6VAAAAAADn/LyW82LsaekT/REIg+uSyWTbY8uylM/ntb6+Lsuy2p6rVCqKxWIqlUpd+zosiDaoznEBAAAAAN7x81rOi7GnpU/0RyAMngsGg1pbW9Pa2pqKxaIuXrzY9kEtl8vKZrNaW1s7cOywH+jOlNLd3d2h+mmo1WrNPwOBwEh9SVIgEHCln1qtprm3/kVvSfp/v/i3I/d3FNi/+LviPXkP78lBvCfteD8O4j05iPfkIN6Tg3hP2vF+HMR7clDjPdnZ2dH8/Pzo/dm2bNseuZ+GxrXQoPy8lvNi7GnpE/0RCMNYxeNxRaNRraystO2Qsb6+3jUQ5pZJi5C7+Z9T7d2futIPAAAAAH8NG3Q6yvy8lvNi7Gnp8ygjEIaxCwaD2t7eViQSaQbDLMtSuVxWNBo90NaND7XTooPj4lZGGAAAAAC0cjsjbFh+Xst5Mfa09In+CIRNoHw+r1Qq5Wqf4XC4Z1F6P1y+fFmRSKT5uFQqHQiELS0tuXJiWFpaGun4SfiPBAAAAACmhZ/Xcl6MPS19or85vyeA2RUOh9sCX90KBQ4b2e48mRAhBwAAAIDx8fNazouxp6VP9EdG2ASKRqMqFAqu9jmpH4xYLKZyuXzo82fPnm2rJWZZlqPX0lksMBQKDT1HAAAAAMBg/LyW82LsaekT/REIm0CGYcgwDL+nMRatr7NbOmfr0kmpnjUWDof79lutVtsedy65BAAAAAB4x89rOS/GnpY+0R9LI+Gr1kBYt8j32bNn2x53Wz7ZTWuqaDAYnJnAIgAAAABMAj+v5bwYe1r6RH8EwuCrra2t5v1YLHbg+XA43BYgu3bt2sD9dp5cAAAAAADe8vNazouxp6VP9EcgDL5qTek8LJ3z/Pnzzfut66d7aW2XTqeHnB0AAAAAYFh+Xst5Mfa09IneCITBV8ViUZK0trZ2aJtUKtW836uwfrc2hmGwXhoAAAAAfODntZwXY09Ln+iNQBgO6NyK1SvFYlGmaSoYDOrSpUuHtguHw20f7kbw7DCtO24SHQcAAAAAf3h5LZfP55VOpw+tq+XF2NPSJ3oL2LZt+z0JTJZisahEItF8nMlkemZsNZTLZSUSCVmWpWg0qkwmc+iOF6ZpKhKJyLIsbW9v990ZwzTN5paw4XBY29vbXdtZlqXFxUVJ9aWWpVKp77wBAAAAAN7w4louFou1ZUbt7e113XzNi7GnpU8cjowwtLEs60BUeXNz09GxhUKhmU1WLpcViUTa0jwbGs8tLS2pWq062h7WMIxm5LtSqSibzXZtt7KyIqm+c0ZrpBwAAAAAMH5eXMt1LiG8cuXK2Maelj7Rg42Zt7e3Z8fjcTsajdqSDr1Fo1E7Ho/b29vbXfsplUpdjwsGg3Y8HreTyaQdDodtSfba2pq9t7c38FxLpZIdDAZtSc257O3t2aVSqdl3OBweqm8AAAAAgDfcvJZr9NO4lUqlsY09bX3iIAJhcFW1WrWTyaRtGEbzAxwMBm3DMOx4PG4XCgVXPrSZTMYOh8NtY0SjUbtQKIz+IuCZarVqR6NRR223t7eb/5Ya/8EZhjF0ELUhk8nY0Wi0+W+n8W+z33+e4+4TwOEGOZf00ji/DPN/B+cSYPq5dS5p2N7etguFgp3JZBx/bjmXYBa5cS1XKpWa15xra2tjHXta+8R7CIQBGNne3l7PbMLWWzKZ7NtXPB7v208ulxtojq2/XYlGo3apVLKr1apdKBSaF8PRaHTo39i41Scwy9w8l/SztrbW7GvQL96cS4DJNq5zyd7eXvNitXGhura2ZpdKpb6fV84lAOAfAmEARpbJZBx/4axWq4f2s7e315YB5taX19Zlu4cd0/gSaxiGoy+IXvQJzDq3ziX9dC7ldxoI41wCTAevzyV7e3t2Mpls9hEOhwfKtuJcAgD+IhAGYGSda/QPu/VbftCoUxcOh+1CoWBXq9XmbzJbszcGuYDd29trWxpwmGq16nieXvQJwL1zSS+tn99BAmGcS4Dp4eW5JJfLtfU/aIY65xIA8N8xAcAI8vm8LMvS2tqaYrFYz7Znz57t2U+5XNba2poymUzbc4ZhKB6PK5VKKZFIqFKpNJ+7ePGi4vH4of0mEonmbqadO6J2G6NYLKpcLiufzyuZTI6tT2DWuXUu6efixYtaWlqSpObn2AnOJcB08PJckk6nmzu5GYahUqkkwzAG6oNzCQD4L2Dbtu33JABMr1AoJEmqVqsj99P4UtmLaZrNMRtKpZKi0Wjftnt7ewoGg4f2XSwWlUgkJNW3JN7b2xtLnwDcO5f0ks/nlUqltL29rZWVleaFY6FQ6BlQ51wCTA+vziWJRELFYlFS/TN448aNnp/ZbjiXAMBkmPN7AgCmV7FYlGmaPX/76ESlUpFpmioUCn3bGoZxIGOsNUOsVWu7aDTa9wtr64WwZVnNL7xe9wnMOrfOJb2YpqlUKqW1tTWFw+GBjuVcAkwHr84lsVis7TO3vb09cBBM4lwCAJOCQBiAoa2vrysYDOr8+fMj9bO5ualkMun4S2Vn9tdbb73VtV0+n2/ed3rh27rEYXNzcyx9ArPOrXNJL4lEQuFw+EAg3QnOJcB08OJc0ijd0JDL5QZeDtnaVwPnEgDwD4EwAEOpVCqqVCqyLEuLi4sKhUJKpVJD/WbxwoULA12cdn7R61wq2Zhfq3Pnzg3cd+dr8aJPYNa5eS45TDqdVqVScZR12m1+rTiXAJPJi3NJI5O0IRwOD11Ti3MJAEwOAmEAhtK57MA0TeXzeSUSCQUCgQNF7XsJh8MDLTHoLHDd7Tezrb+9PaxNN53tWl+DF30Cs87Nc0k3lUpF2Wx26CwOziXAdPDiXNKopdVw6dKloefHuQQAJgeBMAADM03zwJevTsViUZFIpO03qW6O36pbofxr1661PXYaaDt58mTb462tLU/7BGbZOM4lKysrisfjQ2dxcC4BJp8X5xLTNNsCRMFgsOemGv1wLgGAyXHM7wkAmD6GYSiXy8myLFWrVZXL5QPBqYZ8Pq+trS1tb2+7Nn7rF7bDLm475zPsb0lbd53yok9glnl9Lmlkc1y+fHnoOXIuASafF+eSXC7X9rjxS7disajNzc3mRj/BYFCGYejChQs9651yLgGAyUEgDMBQOgNQlmUpn89rfX39wNLFSqWiWCymUqnkytitX04P2xnqsC/Ag2p9LV70Ccw6r84lxWJRxWJRpVJpqN3dGjiXANPB7XNJaxF6SVpaWlIkEjmwjNCyrGZ9snQ6rUKh0DVzjHMJAEwOlkYCcEUwGNTa2pr29vZUKBQOXHiWy2Vls9mRx2ldqpDJZA797eewX+o65727u+tpnwDauXEusSxLiURCyWSy69LpQXAuAabTKOcS0zQPfE6vXLmiVCqlvb092bYt27ZVrVYPBOASiUTXAvScSwBgchAIA+C6eDyuGzduHNjdcX19feS+G7tLGoahtbW1kfvrx4vfkvKbV8CZYc8lKysrzaVSk4JzCeCfQc8lnZlWwWBQN27cOLD0sXGe6TzXXLx40bPPJ+cSABgdgTAAnggGg9re3m770mlZVt9itr1UKhXl83kFg8G+S6NGWQp1WD9e9Amgt0HPJdlsVpVKRYVCwbXx3e6HcwkwfoOcSzoDYb1qfzWeb80MsyzrQJCNcwkATA4CYQA81VmkepQ6YRcvXpQkXb16tW9B2KWlpaHHOawfL/oE4IyTc0mjRk8mkzmQ+TEsziXA0eLkXNJZPP7cuXN9++2sWdq57JJzCQBMDgJhADwVDofbavQMW9g1lUo1szycXOAO+9vNzuUBbvzmtVefAJxxci5JJBIKh8OuLpvmXAIcLU7OJcN81gzDOPD9pLWwPucSAJgc7BoJwHOxWGykJZH5fF75fF65XK7rTkzdnD17tu0LqGVZjr7odRaMDYVCnvYJwLle55JsNivTNBWNRpVIJPr21XohuL6+rs3NzebjCxcuNM81nEuAo6ff95JhP1udn23TNJvBMc4lADA5CIQB8FzrMsZB0+/L5bJSqZRyudyBnZl6iUQibY9bv4z20rkcovW3xl70CcC5XueSt956S5KGCrpXKpW2i0nDMJqBMM4lwNHT73tJZzDJaTH5zoBSa8CJcwkATA6WRgLwXOsXzkHS7yuVimKxmDKZzEBBMKn+W9JWTpdktn7ZDQaDbXP3ok8Azg17LhkF5xLg6Ol3Lhn2M9rZV2uQjXMJAEwOAmEAPLe1tdW8H4vFHB1jmqZWVla0trY2VL2fcDjc9oX02rVrjo5rnWvnF0wv+gTgXK9zSSaTkW3bjm+tF36FQqHtuUwm03yOcwlw9PT7XtKZVdWZQeVU63mGcwkATA4CYQA81/oF0kn6vWmaikQiSiaTbRek/Y7p3KHp/Pnzzfuty556aW3XuQOUV30CcGbQc4lbOJcAR4uTc0nrz50uue5cQtkZUONcAgCTgUAYAM8Vi0VJcpTZZVmWYrGYzp8/7zgIJtV3i+v8MptKpZr3nXyJbW1jGEbXL8de9AnAmUHOJW7iXAIcLU7OJa0BItM0HdUJ6xdg41wCAJOBQBgATxWLRZmmqWAwqEuXLvVsa1mWIpGIDMNQOp2WaZp9b+VyuVkstvM3r51bpDe++B6mUCg07x/2G1Iv+gTQ3yDnErdxLgGODqfnkmg02ra0cX19vW/frUGmbr/M41wCABPCBoABlEolOxgM2pLsaDRqb29vH9q2Wq022/Zq1xAOh21JQ91yudyhc2i0CYfDh469t7fXbBeNRnvO04s+gVnj5bnECcMwmp/PQqHQtz3nEmAyeXku2d7ebvuuUa1We86j0S6ZTPacA+cSAPAXgTAAA0kmkweCUN2+8DW+mBqG0fOLY8MoQbB+Mf1CodBsl8lkeo4fDAbtvb29vvP1ok9glnh1LnFq0ECYbXMuASaR1+eSXC7X7NcwjK6fwb29veY5pVcgqoFzCQD4i0AYgIG0/saz9RYMBu14PG4nk8nmF621tTVHX7Ti8fhIQbBev3ltnXfjt8DxeNze3t629/b27FKp1JxvOBwe6IuhF30Cs8KLc8kghgmENebNuQSYHOM4l7R+RoPBoJ3JZOzt7W17e3vbzmQyzeecfB/p1ifnEgAYr4Bt27YAYACmaSqTyahcLmt3d1eWZSkYDGppaUnhcFgXLlxQNBpt29J7UmSzWW1ubjYL3waDQZ09e1apVErxeHxi+gRmAecS7/sEZsG4ziX5fF6FQkFbW1vNMRoF51OpVFtNMac4lwDA+BEIAwAAAAAAwExg10gAAAAAAADMBAJhAAAAAAAAmAkEwgAAAAAAADATCIQBAAAAAABgJhAIAwAAAAAAwEwgEAYAAAAAAICZQCAMAAAAAAAAM4FAGAAAAAAAAGYCgTAAAAAAAADMBAJhAAAAAAAAmAkEwgAAAAAAADATCIQBAAAAAABgJhAIAwAAAAAAwEwgEAYAAAAAAICZQCAMAAAAADDRLMtSIBDoe6tUKn5PdWJls9m+718oFPJ7moDnArZt235PAgAAAACAw1iWpcXFxebjcDisy5cvyzCMtnbBYHDMM5sulmU17+/u7qpcLiuVSjV/ZhiGqtWqDzMDxodAGAAAAABgonUGwgqFguLxuI8zOjoSiYSKxaIkAmGYDSyNBAAAAABMFTK/3NOZVQccdQTCAAAAAABTZWlpye8pAJhSBMIAAAAAAAAwEwiEAQAAAAAAYCYQCAMAAAAAAMBMIBAGAAAAADjSLMtSNptVJBJp7pDYUCwWFYvFtLi4qEAgoEgkonw+f2g/6XRakUikrX1nn5M+D2CWHfN7AgAAAAAAuK1SqahcLmtzc1OVSuXA86ZpKpFIHHiuUqkolUppe3tbuVyu+fNsNqt0Ot11nEQiobW1NWUymYmdB4C6gG3btt+TAAAAAICjIp1OyzRNx+3PnTuntbU1D2c0/SzL0uLiYvPx9va2wuHwoe1N02wGizqzpAqFgnZ3d5VKpRQOh3XhwgUZhiHTNLW+vi7LspptS6WSotGoYrGYtra2dP78eUUiES0tLenatWvKZrNtfVerVRmGMXHz6CWdTjePNwxD1WrV0XHAtCIQBgAAAAAu6QzYONEIcuBwgwbCWnVmUBmGod3dXV2+fFnxeLytrWmaCoVCzceNMZaWllQoFBQMBtval8tlxWKx5uNkMtmWvTWJ8+hEIAyzhhphAAAAAOCScrk8UPtcLkcQzGPdAmZ7e3sHgk9SPRDU+vdRqVRkWZZKpdKB4JMkRaPRtsyrXn//kzIPYNYRCAMAAAAAl5RKJRmGoVKpJNu2D72Fw2Gtra0pmUz6PeUjb2lpqe1xt8BTq9bMKkld63G1ag1w9VoSOynzAGYdgTAAAAAAcEm5XO671DGRSMgwjLaC5o0dAwOBQNstEokMNY9EItG1r85aUjioM+OqM4DVqbMWl1tBqEmZB3DUsGskAAAAALgknU73LFKezWZlmqa2t7fbfh6PxxWPxw/UwqpUKqpUKo7rYUn1elqdhdkzmQwF+R3qF3Dqp7XI/VGYB3DUkBEGAAAAAC7ptdSxXC4rl8vp6tWrh7YJBoMHssnW19cHmkO39izB9M7Jkyf9noKkyZkHMOkIhAEAAACAx0zTVCKROLTYeavO54vF4kDL3PL5/IFgWr8xAWBWEAgDAAAAAA9ZlqVYLKZCodBz2WTD0tLSgV0AW+uJ9VIsFmVZVt/C6gAwqwiEAQAAAICHEomE0ul0zwL63bQGs/L5vKOaT+vr64pGozp79uyg0wSAmUAgDAAAAAA8kkqlFA6Hh6rRlUwm25Y05vP5nu0bhfXJBgOAwxEIAwAAAAAP5PN57e7uOl7W2E1rAK1f0fz19XUZhjFw5plpmkqlUopEIorFYgqFQorFYgd2njxMOp1WKBTS4uKiIpGIUqmUKpXKQHMAgHEhEAYAAAAALqtUKsrlcioUCiP1c+nSpeZ9y7IODU41nhs0G6xYLCoUCml3d1fb29sqlUqqVquS3lvSeRjTNBUKhVSpVLS9va0bN25IqgcAI5GIstlsM0vNybJOABgHAmEAAAAA4CLTNHXx4kVdvXp15L6CwaCjrLB8Pn+grROJREKSdOHChbafN7LYstnsoUGsRCIh0zSVy+UUDAYVDAbbAn/pdFqRSESRSKRvNhsAjAuBMAAAAABwUSKRUKFQaKvvNYrWrKxGhlWn9fX1gYNgpmke+lzr3Le2tg48XywWValUZBhG2+6WhmG0zaNarcq27ZGWh/ptd3fX7ylImpx5ANOOQBgAAAAAuCQWi+nSpUttwaFRddb96lyuWCwWZVlW2zJKp/3mcjllMhnF4/G255aWlpr3u2WEbW5uNvvo1Do/p3XGJklnwKnfss633nrrSM8DOGoIhAEAAACAC9LptMrlshKJhGKxmMrlsqt9N5TL5bZsrvX1dcXj8aEy0JLJpNbW1pqPLctSPp9v26GyWyZSIyutW1ZZa3BsEoIznXPsF1DqfL5RM81p+8My7SZlHsCsIxAGAAAAACMqFovKZrPNx+VyWbFYbODi9YeJRqNtAabGUsPGUslBs8E6VSoVpVIpXblyRclksu8yy8ZcDgu2NJ4/d+7cSPNyQ2d9sitXrhwahLIsS7lc7kD7XsGtK1eutP2s8/hJmwcw6wiEAQAAAMAIKpVKs+h8p2w22xYga4hEIlpcXGzLvOqnNaiWz+dlWZbW19cVDocVDocHn7jqAZdYLKZEIqFMJuO4zlgqlWre7/b6TNM8sKRznCqVimKxmBYXFw/UVLMsS4uLi4pEIs2lm5VKpfl30i1zKxQKKRKJNP++yuWyQqGQQqHQgWBWuVzW4uKiYrGY/tt/+28TMQ+yw4D3BGzbtv2eBAAAAABMq0YgyTAMVSoVbW5uHgh6lEqltqBQKBRqBic6L8lSqZRM01SpVDow1uLiYjPgkUwmlc/nVSgUDtT4agRZGrpd9lmWpdOnT8uyLFWr1baMs9bjc7lc1wBZPp9vBsRag2gXL15UpVJRqVRyrVZa5+vZ3t4eOviHdul0uhnMNAyj7xJMYNqREQYAAAAAIyiVSkomk4pGo1pbW9P29rZKpVJboCaRSLRl7DSCYt0CRb12B2wNSOXzeQWDwQNBMKfS6bQsy1IwGDwwDyc7FCaTSRUKBRmGoWvXrmllZUUXL15ULBY7EFgDgElxzO8JAAAAAMBRE41Gtb29rXw+3ww4RSKRA1lShULhwLGWZR0aiLp06VLbUsTDaoM5CWRtbW01x+s2h36KxaJKpRIZRACmChlhAAAAAOCRZDKpvb095XI5GYahKJH4sQAAA1ZJREFUSCSiUCik3d1dVavVrsv7dnd3D63pFAwG27LCDqvp1RnI6hbYWlpaat5vDa5VKhVdvHix+bgR6Grto1gsNnfH9IOTQB8AdEMgDAAAAAA8lkwmVSqVtLe3p2q12lxS2KlcLqtSqciyrEML6TeK5ieTSQWDwa5tNjc32x537igotRe8T6fTCoVCWlxc1MWLF9sy1bLZrEKhUNuuh43+E4mEAoGAFhcXm4XcI5FIc8fMzlppbqH4u3ucZP8BRwnF8gEAAADAZ/l8Xrlc7kDgKBwOK5VKHcj8isVizSyzVqlUSuVyuWugKBwO68KFC1pbW2sbN5PJNHd5TKfTzbEayzqXlpaUSqXajrMsS4lEQuVyue9ry2QybccOo7NYfjAYVKFQ0NmzZ9vaHRYYRF1n0Gtra6stq49i+ZgFBMIAAAAAAANpBMIymYyCwaBM02yrbWZZlt56661mhtve3t5IQarOQNhh2E3ycNlstplNeBgCYZgFBMIAAAAAAI41Cv93ZokdJhKJ6PLlywSoAEwEaoQBAAAAABxLJBIyTfPQQv3dEAQDMCkIhAEAAAAAHLEsq1kXzEl9sHw+r2g06vW0AMAxlkYCAAAAABwLhULNYvzJZFKpVEqGYSgYDDbrhJXLZRUKhWZRewCYFATCAAAAAACOmaapWCzWdWfKhnA4TF0wABOJQBgAAAAAYGCNrK/d3V1ZlqVgMKhz584pGo0SAAMwsQiEAQAAAAAAYCZQLB8AAAAAAAAzgUAYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCQTCAAAAAAAAMBMIhAEAAAAAAGAmEAgDAAAAAADATCAQBgAAAAAAgJlAIAwAAAAAAAAzgUAYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCQTCAAAAAAAAMBMIhAEAAAAAAGAmEAgDAAAAAADATCAQBgAAAAAAgJlAIAwAAAAAAAAzgUAYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCQTCAAAAAAAAMBMIhAEAAAAAAGAmEAgDAAAAAADATCAQBgAAAAAAgJlAIAwAAAAAAAAzgUAYAAAAAAAAZgKBMAAAAAAAAMwEAmEAAAAAAACYCQTCAAAAAAAAMBP+/497LXp0OzPhAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9T2wbeZ7neX8o17OYxbMlheS+2UClgunGPKe2glIDtbeyyMw5zGC3yqSceAY7e8gUaXct9qBKk5b70DWHtkzZ6cugukzKeZnFACORdu5i91Bl0q5jAWWSct4GncmQEkiftlMMsXaxg91OxR7UjCL1h+J/UuL7BRDNPxG/3zdIytX85O+Pz3VdVwAAAAAAAMAFNzHsAgAAAAAAAIBBIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCAMAAAAAAMBYIAgDAAAAAADAWCAIAwAAAAAAwFggCANwITmOM+wSAAAAAAAjhiAMwIVRKpWUSCQ0PT2t5eXlYZcDAAAAABgxPxh2AQDGQ6lU0ubmpkqlkmzb1t7enhzHkWEYMk1TMzMzsixLoVBIwWDw2PmRSES2batYLHrPOY6jfD6vzc1N5fN5RoEBAAAAAJryua7rDrsI4DxIp9OKxWJtn2dZVkN40ymfz9f2OYZhqFKpnPhaJBJRNpttu81cLndiUHUSx3G0tram9fX1tvuxLEvBYFB+v1+5XE7ZbPbYe1kLx0ql0rHzw+GwMplM2/0CAAAAAC4upkYCLYpGo6pUKioWiwqHw02PDQaDyuVy3vG94LquyuWyUqmUDMM49TjTNJVKpVQul08NwSQpk8moUqm0FGzF43EVi0VVKpWWQ7DaFMWjIVgtoKq1V7uuXC6naDTqXVupVNL6+rpisZgX2B0d8VVrx3VdmabZUl0AAAAAgPHFiDCgQ7FYTOl0+tjzgxiJZNu2/H7/ia9VKpWmQdlpAoHAiSOrUqmUotFoW7WFQiHZtt3wfDQaVSqVaqmN9fV1JRKJY8+bpqlyuXziOUc/D0aEAQAAAACOYkQY0KHTpkl2Mn2yXaZpyrKsY8+Hw+GOQjDp9LrbCcHy+bz8fn9DCGYYhorFYsshmHQ4Aq1cLh+7lr29vVPP6fS6AQAAAADjgyAM6NBpU/EGNUXvpH666fukc9sJl0qlkkKh0LHzX716dWJo10o9Ozs7DTWwGD4AAAAAoBsEYUCHTguJZmZmBlvICLBtW4uLi8eez2QyHYVgNbXRZBdRNps9Nn0Uf5LP54ddAgAAAIALiCAMOKdOCtwuX77c0/ZaDfUikcix0VrRaLTlhfWbMU1T8Xi863YGpVQqKRaLye/3y+fzaXp6Wn6/X4FAwNupM5vNanl5+cywJ5/Pe+df9GDItm2l02mFQiH5fL5jowuHbZw+CwAAAOAi+8GwCwBwvuXz+RMX2U8mkz3rY3V11dt90nGckVwPzHEcLS8veztcmqbp7S5q27ZKpZJKpZL3eu2cZmoBo+M4isVip24UcJ7Ztq1IJCLbtkd66us4fBYAAADAOGBEGICunLTIfjeL9p/EMIy2Fu0fhtpoL+lwp81yuaxMJqNMJqNisahyuXxshNxZYco4TLM1TVPFYlGVSmWkR/6Nw2cBAAAAjAOCMAAdy+fzJ65ztbq62vO+IpGIpOY7RzaTz+cViUQapiyGQiGl0+mua1tfX/emy8Xj8RNDO9M0lcvlGkbKnbVGWCqVkmmaMk1TmUym6zpH3ahNh6w3bp8FAAAAcFExNRJAx04LBLpZIP80wWBQyWSy7ZE5juNocXHx2PRNx3GUz+eVz+eVTCa7Wth/bW3Nu3/SCLl68Xhc3333ndbX188M9YLB4FhNwRvWqKtYLKZUKtX0mHH7LAAAAICLihFhADp20qLhvVgg/zTxeLytKZe2bWt2dvbENcyOHhcIBDpaBL2Tta2SyaQsy2LXyBGQTqd7MioQAAAAwPlAEAagI7Ztnxjk9GM0WCccx/EWOA+Hw0qlUioWi8rlcqeuRRUKhdoOp46GYK2GaaurqyO9OPw4sG37zBF8AAAAAC4WpkYC6MhpgZHf7x9wJSerBVK5XO7YKLVgMKhYLHZi8BWJRFQsFlvuxzTNhseJREJLS0tnjlyr7Sg5qrtgXnSO44z0mmQAAAAA+oMRYQA6cloQNkq7650UgtXUFq8/qlQqtTVF0jCMhiDLcRwFAoGWRpa5rksINgS1deOYmgoAAACMH4Iw4AJJJBLy+Xwd3QKBQFt9nTatb1SCHcMwzlyvzDTNhl0ca056rpmjx9u2Lb/f35O1p0qlkmKx2Jkj7RzHUTqdViAQaOi3Nv1venpaPp9Pfr9f6+vrx863bVuJRMLbVdPv9ysWi534Odf6OfodOioUCnnt1d96OSU0nU439DM9Pa1AIHDiNUqH7+dJ68bV13fae93qZ1HjOI7W19cVCoW8979WXyKRaCmIs21b6+vr8vv9DTXXfwZ+v9+bBgwAAADgDC6Ajkk6dqtUKgPpOxqNnth/L2+mabbdfy6XG8j1HxWPxxvqCAaDLZ9rGMax62hXMBg88f2wLMstFotttVUsFt1oNNpQl2EYx46rVCpuMpl0Lctq6DOVSrmue/w9qb9Fo1GvnWbHmaZ56nf66HfgNMlksqW/kWKx2PJnkMlkvPclk8k0tGGa5qm1VyoVt1gsHqupWCw23Orba+WzOCqVSnnHJ5NJt1gsuuVy2c1kMg2fVzgcPnZupVJx4/G4dx31NVYqlWOfd31d5XL5zNoAAACAccaIMOACiUajKhaLHd1SqVRbfZ028mtURqW0MzLtpJFjZ+00eVQul/PW/TraTiAQaHnEjm3b2tzcbHnUkWVZxxZ8LxaLCgQCKpVKymQyKpfLqlQqDZsEpNNplUolhUIh5fN55XI5VSoVVSoV5XI57/2zbVtra2sn9h2JRFqq8aT3pRv5fN7re3V1taF9y7KUyWQkHda+vLzccK5hGLIs69imDrXn6l9r97OoSSQSisViMgxD5XJZ8XhclmXJNE2Fw2EVi0Wv5mw2K7/f3/Dd2NvbUygUOva9LBQKmp2d9ab1lstlpVIp77NyHIfF/wEAAICzDDuJA84zjdiIsGQy2XF7R0fj6IwRYUdH1NRutdFIg3Z0VNNJI21OUxtd1IvrOO196aTd+rbOGoV0dJTQaSPzjo5cqx8ZVq/+PTmt71wu19IIrkql0tMRYeFw+Mzv/FnttFp7TaufRf1IsLM+6/oRX6eNYKyv0TCMEz/Xo9/fQf0bBAAAAJxHjAgD0JFRHxHWjqM7P0qdX0c8HlelUjl1FFRtt8pW2j+prtPUb1IQjUZPXR/t6E6Jp40ErK/fcZyR/VxP+x7WP9+LRfFb/SwSiYTXfzQabelY6XCU20mbNNRfx8bGxomf69HvWqFQaKlWAAAAYBwRhAHoyGnBQLlcHnAl3TspTPnuu++6ai+TyahYLB6bgicdhh6Li4s9DZdanQpa/7m1M310lHZY3NjYUDKZVCaTOTNskgYXzqbTaa+vVoKzaDTa8Bm0u0lDvfr+RumzAgAAAEYNQRiAjpw24uikUS2j7qTQ4vLly123a1nWqeuvlUqlY+tXDUKnu3ru7e31tpAuGIaheDx+6pps7a7v1iu5XM673+oIsvq/o/P4twMAAACcNwRhADp20mgn27ZHdhpdO9qZlniWaDSqcrl8LITKZrMjHX50GpoNmm3bSqfTyufzJy6EP8g62nX0e3YR/nYAAACAUUYQBqBjt27dOvH5UQ53TnM09OllEFZrr1gsHuun3d068Se1XS9TqVTTddEGpT7EajUUO7oj5SiNvAMAAAAuIoIwYESVSiVFIpFhl9HUaeszncdw5+hInFZGFeXzeQUCgZb7ME1TGxsbDc8NaxrfeReLxRQIBGSaZldra/VSJwv0129yIPU+gAUAAADQiCAMGFHLy8sjP03KMIwT12nK5/PnKuA5+j63OrLINE2VSqW2RsAdfb9Y2Lx9sVhM6XRaUncLzPdafYjV6k6b9SPACMEAAACA/iMIA0ZQLUgKhUKnHtPrKVSdtndaEJFIJLop50T9CgYLhULD41gs1tJ5teCi1eNPMqz1rAapl9/VUqnkhWCmaY7UOmZHpwrX6mymfpfVk0JlAAAAAL1FEAaMGMdxvCmR7f4w/u6773paSysBxmlT0/L5vNbX13tWi23bCgQCXYVOpzm6218777tpmrJtu+Xg7+gIsNPWWTsPjk7rOy2o7OWot/rRd83aHcZoynA43BDMtTJFuP56VldX+1EWAAAAgDoEYUCH+vFD23EcLS4uynEcGYbR9lSpXtfUanvxePzE6YSJRKInC+fn83lvUfF+TIXLZrPe/XbXN6t9Ruvr6y2NAKpv3zRNxePxtvo7TaufVf1xZ51z1utHR7OddP0nhYS9HCFW/9nVtNLf0b+to6Fap39L9WvA2bbd9PtfKpW8KcTJZHKkRrcBAAAAFxVBGNCh00ajdPojv7bweu2H8dLSUtv9dxMwdDtqJ5fLnTiSKhQKdTwyzHEcxWIxhUKhU3ddbHZuK9LptHftnew8WB+oxGIxxWKxU/tOp9MN70X9SLST1H+ew14v7rT+69+vRCKhWCymfD6vbDarWCwmv99/LORp9W/npD6Phm+RSETr6+veCES/3y/bths+l1QqpXw+r0Qi4bV5NAirfW62bTesQXZSbc0+i3A43BDWRiKRE493HEfLy8uSDr93pwWirX7u9e/psL8rAAAAwEhzAXQkGo26ko7dgsGgWy6Xzzy/Uqm4uVzOjcfjrmmax9rJZDKnnlsul0/sW5JbqVQ6uh7Lsk5sL5VKtdVOPB4/sR3LstxcLtdSG5VKxU0mk65hGN57etZ1He3XMIwz+6l/H4PBYEu1HZVKpU683nA47MbjcTeVSrnRaLThM271O3L0MzntO1GpVI6916cJh8Mtfb65XK7huGg0emrftc/p6M0wDO8zrz/Gsiy3XC4f+0xbre3ocfW3ZDLpuu7Jf5/hcLihndO+qydda6ufRU0mk/Gu2TAMN5VKueVy2S2Xy24qlfK+D7V6T9LqZ3D0uE6/ywAAAMA4IAgD2lQsFpv+EO/V7aTgp1KpuKlU6tTgQZJrmqabSqVaDsSKxaIbDAab1hKPx1sKbmpyudypwZphGG44HHZTqZSby+XcYrHo5nI5N5VKuclksuE8wzDODBxqTgoHTdM8NXyrDyqOBiTtyOVyXp2ZTMaNRqNuMBh0Lctq+Jxq131WGFj7fp32GVuW5YUnzY41TdMNh8Pe9+BoGHc0OKm1mcvlTv0+mKZ5YhhTqVQa2rcsy43H4w3H1J47+j2qVCpnXu9JfSaTSa8/0zTdeDze8J2vVCreddS/Z0fVB9GWZTV839r5LE6TSqXcYDDYEIrVzjvtb7TZ32T9Z1Aul5sed1ZtAAAAwDjyua7rCsCZ0ul0XxZqP4llWSoWiw3P+Xy+ttsxDEOVSuXE1yKRyInrK50ll8u1PH0wm81qbW3Nm+7ZKtM0FYvFFI1G21o3qbYe1dHrMgxD8/PzMgxDjuOoUCh467BlMpm2p0MCAAAAAM4ngjAAfec4jvL5vDY3N2XbtrcWk3QYetU2BlhYWFA4HG57k4Cz+qv1Wetnfn5ekUiEAAwAAAAAxgxBGAAAAAAAAMYCu0YCAAAAAABgLBCEAQAAAAAAYCwQhAEAAAAAAGAsEIQBAAAAAABgLBCEAQAAAAAAYCwQhAEAAAAAAGAsEIQBAAAAAABgLBCEAQAAAAAAYCz8YNgFAOeBz+fz7k9MkB8DAAAAuNgODg68+67rDrESoLcIwoA21f8PAgAAAAAAOD8IwoA2jdKIsPpQbpTqGibek+N4T47jPWnE+3Ec78lxvCfH8Z4cx3vSiPfjON6T44bxnriuyygvjC2CMKAFExMTOjg40MTEhL7//vthl+O5evWq3r17pytXrujbb78ddjkjgffkON6T43hPGvF+HMd7chzvyXG8J8fxnjTi/TiO9+S4Ybwnv/zlL/Vv/+2/belYAsvxs7u7q1KppL29PTmOo++++06SdPnyZRmGIdM0NT8/r8nJySFX2hmCMAAAAAAAxsjk5KSuXLnS9Jh3794NqBqMghcvXiiXy2lra0uO47R0jmmaCgaDikQiunHjRn8L7CGCMAAAAAAAxsjKyopWVlaaHnPp0iXWRx4Dz549UzKZlG3bkho3RqjfNK5e7ZhyuSzbtpVOp2Wapu7du6ePP/64/0V3iTGOAAAAAAAAY+T169e6du2aYrHYiSFY7fFJt5OOsW1b0WhUf/7nf64vv/xyYNfRCUaEAQAAAAAAjInV1VWtr68fC7WCwaAsy9Lly5dlmqYMw5AkzczMSJL29vYkSY7jyLZtfffdd7JtW/l83ptO+fXXX8uyLCUSCT148GBg19SOcxeEXbt2bdgleHw+n/7+7/9+2GUAAAAAAAA0Va1Wtbi4qGKxKOkw+AqFQgoGg5qbm+uq7f39fW1ubiqdTqtUKimZTCqfzyufz4/covrnLggrl8vy+XxD3eq11v9p82UBAAAAAMBx6+vryuVyKhQKchxHpmnKsizFYjEFg8Fz1/cwr6cdb9++1eLioiqViqLRqBKJhGZnZ3vW/tTUlKLRqKLRqGzbViwW06tXrzQ/P69isagf/vCHPeurW6wR1oFhhnAAAAAAAJw3+Xxe09PTSiQSkqRMJqNyuaxkMqlSqaRQKKRQKNTyjoXD7ruXbU5PT8vn83V0i8ViZ7a/vb0ty7I0Ozurcrmsp0+f9jQEO8o0TeVyOb18+VL/+//+vysQCKharfatv3aduxFh0mEQFQ6HZZrmUPp3HEfpdHoofWO4Dg4OdPXq1abHtLIDS6+srKyoWq2O3FBTjBa+J8fxnjTi/UAr+J4cx3tyHO8JzsJ35LhxeE/y+bxCoZAkKRqNKpVKea+ZpqlwOKxAIKB8Pq9AIKBiseitTzWKffeyzWw221X4V6vjNDs7O1pcXFQ4HNbW1lbH/XQiGAxqZ2dHgUBAS0tL+s1vfjPQ/k/jc8/Z8KaJiQml02l98sknQ60jn8/rww8/1Pfffz/UOjAY7Wwd/Dd/8zf65S9/2d+CcKqrV6/q3bt3unLlir799tthlwPgnOLfEgC9wL8lOM9qv4EmJia6+t3rOI5mZ2e9aYPlcvnE42zblt/vl3QYoORyuY777GffvW4zFAopn8+3c1kNzop03n//fQWDQT19+rTjPrrlOI7m5+d1584d/eIXvxhaHTXncmrkKMyzXVhYGHYJGJIrV640vV3k/5IDAAAAAO2IRCLeiKfaNMKT1EZSSYcDT3oxC6sfffeyzdqOi6ZpKpVKqVwuq1KpnHmrzY47Kxu5d++eTNMcaggmSYZhqFAo6G//9m/19u3bodYindMRYY7jDD1s2N/f18zMDCPCxkSv/msI+o//8gqgF/i3BEAv8G8JzrNe/AaqHxUlSZVKpem0w2w2q0gkIukwPKlUKh3126++e91mIpFQNpttaypofQ2pVErRaPTUYx89eqRoNKqpqamW2u637e1t7ezs6Gc/+9lQ6zh3I8LYqREAAAAAgNGXTCa9+8Fg8MywpzaCSjqcTpfNZkeq7163mU6nlclk2loPrb6NpaWlpsfevXt3ZEIwSZqbmxt6CCadwyBslAawjVItAAAAAACMkvrpgJZltXRO/aZ4m5ubI9V3r9vMZDItt3O0jVaCuEG7c+fOsEtoybkLwpLJ5NCnRUrS1NRUQxoMAAAAAAAOlUqlhsetrrNdHwx1OiKsH333o8121z93HMerozblcpSk02nt7u4Ou4wznbsg7O7duwPtr9mHOOhaAAAAAAA4D47uhFg/MqqZo8cdDaCG1fcwr6emfkTaWdMiB+3Vq1dyXVfPnz8fdiln+sGwCxh1sVhMv/3tb4ddBgAAAAAA58abN28aHrc6je/y5csNjwuFQtvTB/vR9zCvp6Y2LdKyrDP7v337tnZ2djrqpx17e3tyHEe2bUuSnj59ql/84hd977cbBGFnKBQKwy4BQBtWVlZUrVZHYgo1gPOLf0sA9AL/lmCc1YKRmk5HUJXL5ZHoe5jXIzVOi7x169aZxxuGoVwu1/cNB4+unW7btt6+favr16/3td9ujE0Qtru7K8dxWj7etm2lUqm2zgEwfCsrK8MuAcAFwL8lAHqBf0swzo4GR53q5Dd5P/oe5vVI0tbWlne/fjfK09y6dUvr6+stt++6bkehWf05tVBsa2uLIGwYdnd3lUwmlc/nO/7CdvpFAAAAAABgGJ48eaInT5503c7BwUFX53ca+Byd8re3tzcSfQ/zeiQplUpJOpwW2cpotLm5OZmmqZ2dnWOjtk7i8/laOq7Z+dJhjpLJZPTgwYOO2+q3CxmEra6ueslnNx8kAAAAAADnSbVa1bt374ZdRs8Mc5ZWP/rupM12p0XWLC4u6tmzZ8rn87px48apxz169EiJREKWZSmZTGp+fl5TU1Mt91MqlbS0tKRQKKRf//rXLZ83LBcuCHv+/LmSyaSkw0Sy21QTAAAAAIDzYnJyUleuXOm6nW7DNMMwehIktboofb/7Hub1tDstsmZpaUmlUqlpCLazs6N79+4pFot1HGJZlqWXL1/q/fffl8/n09/93d911M6gXLggbG1tTdKfhvWZptkwdPDojg0n+e677+Q4jra2trS/v9/XegEAAAAA6JWVlZWerE936dKlrqZHzszM9CQ4mpmZGYm+h3k9tWmRpmm2vEi/dDgibHp6uukxyWRSpml2PZLLNE0tLy8rlUopEonoJz/5SVft9dOFC8JKpZI3NzWXy2lxcbHjtuLxuK5du9ar0gAAAAAAGAudjHySjk8d7HREWK/7Htb11E+LbGc0WM3Lly+bvl4oFBSLxdpu9yTz8/Pa2NhQKpUa6SBsYtgF9FrtSxWPx7sKwaTDRHN2drYHVQEAAAAAMD7m5+cbHrc6muroYvJ+v38k+h7W9dRPi2xnfbBWlUolWZbVk7Zqo91yuVxP2uuXCxeE1YYJLiws9KS92hBEAAAAAADQmkAg0PDYtu2WziuXyw2Pg8HgSPQ9rOvJZDKSDgf99CqwqmcYhnZ2dnrSVi0AG+YGB624cEFYbRRYp1uSntYeAAAAAABozdERVK0GR/UhimEYba2J1c++h3E9juMon89LkqLRaMvntWN+fl5Pnz7tup39/X2l02lJnU8jHZQLF4Tdv39frut6c2i79ezZs560AwAAAADAuLAsqyEQefPmTUvnFQoF7/7R8GmYfQ/jevo9LVI6DNiKxaI+++yzjtuoVqveSDefz9dReDlIFy4Im5qa0sOHD7W5uak//vGPXbfH1EgAAAAAANq3tLTk3W91sEr9cYlEYqT6HvT19HtapHS4AP/s7Kzi8bg++ugj7e7utnX+ixcvNDs723Cd/QrtesXnuq477CL6IRQK6dKlS/rNb37TcRs7Ozt6//339f333/ewMpxHta2DJyYm+D4AAAAAuPB68RuoVCo1rK11VvyQz+cVCoUkHa7/fXR9rWH3PcjrcRxH09PTkg5HbfVzkI5t23r//ffl8/kkHY5+i8ViMk1TpmnqvffekyTt7u7KcRzZtq1cLqetrS05jiPXdeXz+eS6rqanp/Xdd9/1rdZe+MGwC+iXXC6n+fl5Xbt2TYlEwtu94Cx7e3tyHEflcrlhGCIgSQcHB7p69WrTY1ZWVrSysjKgigAAAABgNFmWpWAw6K1zlc1mFQ6HTz2+NgJKOnv0VDqdVrlc9gKbQfTdz+s5qj6PiEQibZ3bLtM0VSgUvKmbpVJJsVjszPNqQWAtQPP5fA3XPKou7Iiw169fKx6Pq1QqeR9Ku2qpJiOAUPuvIa34m7/5G/3yl7/sb0EAAAAA0Ee9mhVj27b8fr+kwyCpWCyeeFz9CKhgMOjtQHiSUCjkhVGSVKlUTlygvR9996PNk9Su0TAMVSqVts7tlG3bikQi2t7ebun4WtZSi5UymYxu3rzZt/p65UIGYXfu3PF2K5DOHq54ktqwPoIwSI1B2JUrV5oey4gw4Pz6Ven3HZ/7c+vHPawEAABguHq5PEw2m/VGNSWTScXj8WPHBAIBlUolGYahnZ2dpjsPHh3skkqlTt1Vsdd996vNevUhWjgcHvgoq2w2q4cPHx5bB+1o8FUTDoe1sbGhqampgdXYjQsXhG1sbHhD+GphVjcIwiCxRhgwLgjCAAAADvX6N1A+n1ckEpHjOAqHw1pdXfWm5CUSCZVKJVmWpVevXp0ZGk1PT8txHO9xLpfzdi3sd9/9bLMmnU57ucZZ19ZPOzs7yufzKhaLsm1be3t7kqSZmRmZpqlQKKRgMHhuArCaCxeEzc/Pe9MhXddVMBhUKBSSYRhtrxP29OlT7e7uEnyAIAwYEwRhAAAAh/r1G2h9fV2bm5uybVuO48gwDM3PzysWizVdb6tePp9XLBbT3t6eotGoksnkwPoeRJv1Uz8vWGQzEi5cEDYxMSGfzyfDMFQoFDQ7O9txW47j6PLlywQfIAgDxgRBGAAAwCF+A+Gimhh2Ab1WG3K4urraVQhWa2tubq4HVQEAAAAAAFwMq6ur+uabb4ZdRkcuXBAWCAQk6cTtUzuxsbHRk3YAAAAAAABG3YsXL3Tnzh0tLCzoxYsXJx4TCAQ0Nzenjz766NwFYhcuCIvFYnJdV7Zt96S9cRwRZtu2QqGQstnswPpq1fr6ukKhkKanp+Xz+eT3+xWJRBq2zgUAAAAAAO15/PixLl++rEgkonQ6rVKp5C2Qf1Q4HJZt2/rqq69kmqa++OKLAVfbuQsXhIXDYc3NzWlzc7Mn7Z2Wfl5EjuMoEonI7/crn8+f+oVvtS2fz3fmze/3tzR6L5/Pa3p6WolEQpKUyWRULpeVTCZVKpUUCoUUCoUadg4BAAAAABz35MkTXb16tent4OBg2GViQPb393Xt2jUlEglVKhW5rtvSIv2GYahYLOr69esKh8P6/PPPB1Bt934w7AL6IZPJ6P3339cXX3yhn/70p121tba2pp/97Gc9qmw0OY6jtbU1ra+v96zNdDrd8rG1cOs0+XzeGzUWjUaVSqW810zTVDgcViAQUD6fVyAQULFYbHt7WgAAAAAYF9VqVe/evRt2GRgRkUhE5XLZG7Aitbdb5atXrzQzM6NoNCrTNPWTn/ykX6X2xIUbESYdhiNPnz7VJ5980lU7+/v7KpVKPapqNK2vrysQCPT8OtfW1lo6LhgMNh0RVhulJh1+rvUhWL1MJiPpcKpl7XgAAAAAwHGTk5O6cuVK0xvGw6tXr5TP5+Xz+byRYFNTUwoGgy23YRiG7t69K9d1FYvF+lhtb1y4EWG1qYx/9md/punpaV27dk3hcLjtdhzH0dbWVq/LGymlUknBYFDxeFzS4SiuXnxp0+m0HMdRPB4/c/2v+fn5pq9HIhFvumOzkWO1kWHZbFb5fF7pdFrRaLTt2gGgU78q/b7jc39u/biHlQAAADS3srKilZWVpsdcunSJ6ZFjoDbYxHVdRaNRJRIJzc7OSpImJlofO/XRRx/p0aNHKpfL+vzzz/Xxxx/3pd5e8LntjHc7B+bn57W9ve09dl3XG9rXrtq533//fa/KG2mlUsnbdVM6/IPoJEzy+/2SpHK53FU9tm17bUlSpVJpOuUxm816o8EMw1ClUumq/3q1/xGYmJgYm+8DMI66CbO6QRAGAABGDb+BxsPMzIz29/eVSqWOzaqbmJhQOp1uabbd/v6+t6ldOBzu2brt/XDhpkYuLS01LOzWaQg2jnqxrlY2m5Vt22eu+9WKZDLp3Q8Gg2fWVz/yz3Gcgex6CQAAAADAeeU4jkzT7HppqfrN9kZ9iakLF4TVpvbVz2/t9Ib2ra2tyTAMLS0tdd1W/YL7lmW1dE79emOjnEADAAAAADBshmG0/Hu7mVr45bqubNvuur1+unBrhE1NTcmyLG1vbyuZTMqyLM3MzLTdjm3bevDggd6+fdv7Ii+oUqnkffmnp6dlmqaCwaBCoVDb67QdTZAXFhZaOs+yLO+PjhFhAAAAAACczjRNb13ubtRvmNeL2Wb9dOGCMEm6deuW/H6/7t6923Ebc3NzunnzZkch2rg6Oh3Stm2l02lvZFc4HNbq6mpLaXM+n2943GxnyWbHlUqlnqTbAAAAAABcNIuLi3r27FlXbTx69EilUsmbmdfq7/dhuXBTI6XD9aR6NbXxrF0Ncci27WPh1VHZbFaBQKClnSnfvHnT8LjVRPny5csNjwuFQkvnAQAAAAAwblZXV1WpVPTZZ591fP69e/e8EMzn8+nWrVs9rrK3LuSIsLm5uYaF1rvxP/6P/2NP2rnoTNNUKpWS4zgql8vK5/OnzgtOp9MqFAoqFountnf03E5HhHW7cyUAAAAAABeVYRi6e/eu4vG4vvvuO927d0+Tk5NNz6lWq9ra2lIymZRt214AVhONRvtddlcuZBAmSbOzsz1p59/9u3+nf/kv/2VP2rrojn7ZHcdROp3W2trasTnHpVJJoVBIuVzuxLZ6tbheL+Y6AwAAAABwUSWTSZVKJT18+FDJZFKhUEjBYFCSVCwWNTMzo729PW/QS/3C+JIaQrCnT5+eGaQN24WcGtlLTK3rnGEYisfjqlQqymQyx6Y35vN5ra+vn3hupwHW0T7qt3AFAAAAAADH5XI5LS8vy3Vd5XI5JRIJ+Xw+pdNpRSIRxWIxra+vq1QqyXVdbxRYbUqk67pKpVJaXl4e9qWc6cKOCDtqd3e3rXDFtm1vqh+6Fw6HFQwGtbi42LAj5NramuLxeN/67fXnd3BwoKtXr3bdzsrKilZWVnpQEQAAAAAA3UulUorFYkokEnr16tWx12sjv+rDL+lwnfZUKtWzmXn9dmGDsN3dXSWTyaZrVZ3l6DxXdMcwDBWLRQUCAS8McxxH+XzeG3ZZf2wvQqx+bNv67t27rtuoVqs9qAQAAAAAgN6xLEu5XE47OzvK5/PK5XKybVuO42hvb08zMzMyDEOmaSoUCmlpaUlTU1PDLrstFzIIW11d9abc9Wr3SPTOxsaGAoGA9ziXyx0LwmZmZnoShM3MzHTdxlFXrlzpuo1RnzMNAAAAABhfs7OzWl5ePhdTHdt14YKw58+feztG1s9XxeiwLEvBYFD5fF7SyQvjdzqS62h41usRYRMTE/r222972iYAAAAAABiMCxeEra2tSfrTnFXTNGVZlkzTlCRdvnz5zDa+++47OY6jra0t7e/v97XecRUKhbwg7CTz8/MNa4k5jtNSqHV0cXy/399xjQAAAAAA4Ljd3V2VSiUZhqH5+flzNevpwgVhpVLJW9crl8tpcXGx47bi8biuXbvWq9JQpxZMSidPX6yfOikdjhqzLOvMdsvlcsPjo1MuAQAAAABAZ3Z3dxWJRBoGrkiHv+EzmYx+9KMfDamy1k0Mu4Beq40aisfjXYVg0mFYc152PThv6oOwk0Z6zc/PNzxudcOD+qmRtQX8AAAAAADAyT744AMtLCzo2rVrunbtmi5fvqxbt24dO257e9vb/K62a2TtVigU5Pf79bvf/W4IV9CeCxeE1YKPhYWFnrSXSqV60g4aFQoF734oFDr2umVZDQHZmzdv2m73aJgGAAAAAJCePHmiq1evNr0dHBwMu0wMiGEYKhaL+u677xSNRlUoFLS5udlwzP7+vhYXF1WpVCTJm4lnGIaCwaBM09TBwYEikcjA62/XhQvCaqPAjq4V1W176K36KYynTV9cWlry7h8ddnma+uMSiUSH1QEAAADAxVWtVvXu3bumN4yPUqmkRCKhvb093b1798SZccvLy3Icx1uP3XVdJZNJ7e3t6eXLl/r666/18uVLHRwc6P79+0O4itZduCDs/v37cl235eDkLM+ePetJO2iUzWYlHU5hPU0sFvPuN1tY/6RjTNNkfTAAAAAAOMHk5KSuXLnS9Ibx8OjRI1mW5W08eJLnz58rm816IZjP51MymdTdu3cbjgsGg3r48KGKxWK/y+7KhQvCpqam9PDhQ21ubuqPf/xj1+2N09TI+vW1+imbzcq2bRmGodXV1VOPsyyrIcyqhWenyWQy3n1GgwEAAADAyVZWVvTtt982vU1MXLi4ACdIp9NnjuBaXl72pkL6fD5ZlnUsBKu5detWw5JFo+hCfrPj8bgsy+p6burOzk7PRpadB0cXpG81GMvn85qenpbP51MoFGr6ntm2reXlZUnSq1evTlwov159ENksoXYcR+l0WtJhCh2NRluqHQAAAACAcVUul3X9+vVTX79z546XDbiuK0na2Ng49fipqSnvuFH1g2EX0C+5XE7z8/O6du2aEomEZmZmWjpvb29PjuOoXC5ra2urz1WODsdxjo2i2tzcbDp1sSaTyXh/GPl8XoFAQNFo9Nhounw+r0gkopmZGRWLxZZ2dDRNU5lMxtuedX19/cSaamu5GYbRMDIMAAAAAACczDRN7e7u6r333jv22vb2tlKpVMOUyGg02jQ4297eHvmN63zuqEd1HXr9+rXi8bhKpZI3hK9dtQ/6+++/73F1o8FxHG/Bu2ZrcAWDQW8ao2VZx17P5/Mn7vxY2z1iZmZGhUJBpVJJ8Xhcq6urZ44EO6mPSCQix3EUDoe1uroq0zRVKBSUSCRUKpVkWVZLo8w6cenSJR0cHGhiYuLCfh8ASL8q/X4o/f7c+vFQ+gUAADgNv4HGwwcffKD5+Xk9ePCg4fn9/X0FAgHZtu1lKqZp6quvvmra3uPHjzU3NzfSGw9eyCDszp073jQ5SR0Ny6tPPPmjP5tt20omk8rn896oOsMwNDMzI8uydOvWLS9Q68b6+ro2Nzdl27bXx/z8vGKxmMLhcG8u5gT8jwAwHgjCAAAADvEbaDxks1ktLS3p3r17unfvnqTDgSiJRELlcrkhGykWi2eOBgsGg/ruu+8GVH1nLlwQtrGx4e02WPvAukEQBon/EQDGBUEYAADAIX4DjY9QKKTXr183PFcLv2qZSiqV8tb7PsmzZ8+85ZZGPQi7cGuE1dalqn1gwWBQoVDIG53UitqIpqdPn2p3d7eP1QIAAAAAAAxPNpvVJ598oufPnzc877quDMPQxsaGbt68eey8t2/fanNzU9lsVrZte+HZF198oZ/+9KeDKr9tF25E2MTEhHw+nwzDUKFQ0OzsbMdtOY6jy5cvk36D/xoCjAlGhAEAABziN9D4efXqlXK5nEqlkgzD0MLCgqLRqKampo4du7GxcepGdYFAQGtra/0ut2MXLgibmZnR/v6+ksmkPv30067bm5+fV6FQ6EFlOM/4HwFgPBCEAQAAHOI3EC6qiWEX0GuBQEDS4W4GvbCxsdGTdgAAAAAAADBcFy4Ii8Vicl1Xtm33pL25ubmetAMAAAAAAHCRnYd11i9cEBYOhzU3N6fNzc2etPfixYuetAMAAAAAAHCRRSKRYZdwpgsXhElSJpNRsVjUF1980XVbo7zAGwbv4OBAV69ebXp78uTJsMsEAAAAAGDgejU7r59+MOwC+sE0TT19+lSffPJJV1t27u/vq1Qq9bAyXATv3r1r+nq1Wh1QJQAAAAAADF+1WlU8HpfjOMMu5UwXLgirTWX8sz/7M01PT+vatWsKh8Ntt+M4jra2tnpdHi6AK1euNH19cnJyQJUAAAAAAHCynZ0dLS0tybZtxWIxPXjw4Ngx8/Pz2tnZ6aqfWvjluq58Pl9XbQ2Cz3Vdd9hF9NL8/Ly2t7e9x918ELVz2SoWbB0MjIdflX4/lH5/bv14KP0CAACcht9A59/8/Lw3y83n8ymTyehnP/tZwzGxWEwbGxs96/M8ZCgXbo2wpaUlua6rWr53HtJIAAAAAAAG5cmTJ2eufXxwcDDsMtGlUqnUkImctH7X7du3JR1mJ/W3VnVyzrBduKmRsVhM9+7dk8/n0wUb7AYAAAAAQNeq1eqZax/j/FteXm4Y7XXSslFzc3MyDEP7+/tyXVeGYWhmZkaGYbTUh+M42tvbOxdrg9VcuCBsampKlmVpe3tbyWRSlmVpZmam7XZs29aDBw/09u3b3hcJAAAAAMCQTE5Onrn2MUHZ+ZdKpRQKhVQoFBSLxfTee++deNzy8rIeP36sUqmk69evd9xfIpHQ48ePOz5/UC7cGmGS9OjRIxUKBW1ubnbd1szMjPb29npQFc4z5scD44E1wgAAAA7xG2h8bG9va2lpSV999VXXbZ2HDOXCrREmScFgsGfTIufn53vSDgAAAAAAwKiZm5vT1NRUT9oyTbMn7fTThQzC5ubmlEwme9JWr9oBAAAAAAAYRa9evepJO73cgbJfLmQQJkmzs7M9aWdubq4n7QAAAAAAAIyiXo0IOw+7R567NcLevn3b1eJtvTRKtaC/mB8PjIdhrRHWLdYYAwAAvcZvIHRiYWFBb968GXYZTZ27EWGBQEDVanXYZWh/f1+BQGDYZQAAAAAAAIwE27aHXcKZzl0QNkoD2EapFgAAAAAAgEGrVqva3d3V0tKSHMcZdjln+sGwC2jXKM03HaVaAAAAAAAApMNZbDMzMwPt03Xdc5GTMCIMAAAAAADgApmamtL169fluu7AbufFuQvCJGlnZ2fYJahQKAy7BAAAAAAAgBN99NFHkg5ns/V7pNZ5GAlWc+6mRkrS8vKy7t27J8MwBj7Ub29vT7ZtKx6PD7RfAAAAAACAVgWDQUmHM+tM05RpmjIMo+f9OI4j27bPxUL5kuRzz9P4NUkTExMjkTTW5r6yjex4YOtgYDz8qvT7YZfQkZ9bPx52CQAA4ILhN9DFMDMzo1AopM3Nzb73lU6ndefOnZH/vpzLqZE1g5zreh7nvQIAAAAAgPEVDAYVCoUG0lc0GtXU1NRA+urGuZwaOewwatj9AwAAAAAAnGVQIVjN/Pz8QPvrxLkLwiqVyrBLAAAAAAAAGHnLy8va398fWH8vX74cWF+dOndB2HkYZoeL6+DgQFevXm16zMrKilZWVgZUEQAAAAAApxtEjrK/v6+HDx9qbW2t731169wFYcCwvXv3runr1Wp1QJUAAAAAADB8U1NTyuVyevXqlf7whz8Mu5ymCMKANl25cqXp65OTkwOqBAAAAADa9+TJEz158qTpMQcHBwOqBhfF/Py8NjY2dP/+fT148GDY5ZyKIAxow8TEhL799tthlwEAAAAAHatWq2fOdMH42t3dleM42tvba/mcUqmkTCYj13WVSqUIwgAAAAAAwGiYnJw8c6YLQdl4efHihVKplPL5fNdtOY7TfUF95HNd1x12EcCou3Tpkg4ODjQxMaHvv/9+2OUA6JNflX4/7BI68nPrx8MuAQAAXDD8Bhofjx490r179yRJ3UREPp9PkmRZlt68edOT2vphYtgFAAAAAAAAYPC2t7eVSCQknRyC1cKts/h8Prmuq9nZWW1sbPS0xl5jaiQAAAAAAMAYSqVSkg53fYxGo/L7/TJNU5JUqVS0tLSk6elpbW1tnXi+4zh6+fKlnj17plKppOvXrw+q9I4RhAEAAAAAgIFYX19XLpdToVCQ4zgyTVOWZSkWiykYDJ67vodxPaVSSbZty7ZtWZbVVT/5fF5+v19fffXVia8vLy/r2bNn8vv9eu+990485ubNm5Kke/fu6Te/+U3HtQwKUyMBAAAAAEBf5fN5TU9Pe9PwMpmMyuWyksmkSqWSQqGQQqFQXxZa70ffg7wex3G0vr6uQCAgn8+nxcVFvXnzRpZlaX5+vqu2bdv2RoWd5N69e3JdV+vr603bSSQSevnypT777LOu6hkEFssHWsBCkcB4YLF8AACAQ738DZTP5xUKhSRJ0Wj0xOAlEAioVCrJNE0Vi0UZhtFVn/3se1DX4ziOEomE0um0pMNF6JPJZE9Hmk1MTMhxHE1OTp56TCgU0uvXr1WpVJoeFwgE9Pbt2zOPGzZGhAEAAAAAgL5wHEeRSESSZJrmqaOPMpmMpMMRSrXjR7HvQV1POp3W7OysF4KlUikVi8WeT7e0LEt7e3tNj0kkEnJd19tZ8jQLCwtyXVcPHz7sZYk9RxAGAAAAAAD6IhKJeNMDa9MIT2KapsLhsKTDEVe1AGjU+h7E9SQSCcViMW/NsXK5rGg02vL57TBN88zagsGg5ubmlEql9OWXX556XKFQkPSnEHBUMTUSaAFTI4HxwNRIAACAQ734DWTbtvx+v/e4Uqk0nSKYzWa90VOGYahSqXTUb7/6HsT1RCIRZbNZ75ydnZ2eTRM9rcZbt25pfX1dN2/elG3bkqQbN24cO25paUk+n0/ZbFY//elPG15/9OiRFwz6fL6R/t1MEAa0gCAMGA8EYQAAAId68RsoFot5o42CwaByudyZ5/h8Pu9+JpPxRlWNQt/9vp5QKKR8Pu89LpfLMk3zzD66NT09rWq12vBcIBDQH/7wh2P1vXr1Sj6fr2Gh/nw+L9u2VYuXmu1COQrGcmrk7u7usEsAAAAAAOBCq59yZ1lWS+fUBz+bm5sj1Xc/ryedTjeEYKlUaiAhmCRtbGx4IZbrunJdV8ViUW/fvm04rn49tFKppHQ6rXQ6rXK57J1fC8lG2dgEYbu7u3r8+LGuXbsmv9+vS5cu6a/+6q/0+vXrYZcGAAAAAMCFUiqVGh4vLCy0dF59iFKbIjgKfffzemzbViwWazinX2uCnSQcDmtra0v1EwYNw9D169cbjjNNUy9fvtTRiYU+n88b+WYYhjY2NvpeczcudBBWrVb17NkzLSwsyO/3K5FIeEml67pKpVIKhUK6fPmy7t+/z0gxAAAAAAB6oH50k6SWRzcdPe5oADWsvvt5PUd3lVxdXW2p7V4Kh8OqVCpKpVJKJpPeWmFHBYNBff3117px44aXrdRulmWpUChocnJywNW35wfDLqAfXrx4oVQq1fBFdV23YW5u/fOVSkXJZFLJZFKmaer27dtaXl4e+Q8PAAAAAIBR9ObNm4bHrS74fvny5YbHhUKh7al2/ei7X9dj23ZDOGYYRsfronVrampKy8vLZx5nmqZyuZz29/e9nSJN09Ts7Gy/S+yJCzMi7PXr17pz544uXbqkSCSifD7fMMe19n8ty1IymVQ4HD42nM91XZXLZcXjcU1PT2thYUGff/75sUXjAAAAAADA6Y6OKOp0BFW5XB6Jvvt1PfXrbkmHI66kP+046ff75fP5ND09rUAgoPX1dTmO01Lf/TY1NaXFxUUtLi56Idh5mGl3rkeEvX37Vpubm0qn094XoTby62j4devWLUWjUU1NTTW08fz5c21ubh6bq+u6rkqlkqLRqKLRqMLhsG7duqWf/exnA7k2AAAAAADOq9Om1rWrk9CnH33363rqF+CXpJmZGQUCgWNTKB3HUalUUqlUUiKR6GpHzX6KxWL67W9/O+wymjp3I8Kq1aq36H0tDa1UKpIaR34Fg0GlUilVKhUVCgXdvXv3WAgmSTdv3tTW1pYODg6Uy+UawrL6ua61NLa2yP7R3RMAAAAAAMChTkctHZ1yuLe3NxJ996NN27aPtbu1taVYLKZKpeLlEeVy+dji+ZFIpOPNBPqpNlVylJ2LEWHValVbW1tKpVINqWj91MZa+BWJRLS0tHRi6HWW2pC+p0+f6tWrV8pkMtra2pLjOA19pVIppVIpGYahWCymaDSq9957r6trxPlwcHCgq1evNj1mZWVFKysrA6oIAAAAAP7kyZMnevLkSdftHBwc9KCa7g1zGmA/+m42yswwDO3s7BwLz0zTVCqVUiAQaNhdcnl5WcFgsOX1ytqxu7vb1vXbtq1UKjUy0zabGekg7MWLF8emLR5d16s2ZfHmzZs97bs+FNve3vbqsG3bq4FF9sfTu3fvmr7OmnIAAAAAhqVarZ75m2UQDMPoSSjSScjTj7770ebRICwajTa93mg0qmKx6E2ndBxHa2trSiaTXde1u7urZDKpfD7f8TTQ0zYpHDUjF4S9fv1amUymYZ7soMKv08zNzWlubk4PHz48NRSzbVvxeFzxeLxhZBqh2MVz5cqVpq/zmQMAAAAYlsnJyTN/s7Si2zBtZmamJ8HRzMzMSPTdjzaPLpy/sLBw5vmJRKIhL1lfX+86CFtdXdX6+rqk4/nLRTQSQdju7q5SqdSxRe9rDMPQ0tKSIpGIFhcXh1TlofpQbGdnR9lsVpubmw1TNvP5vPL5vGKxGIvsXzATExP69ttvh10GgCZ+Vfr9sEsAAAAYml4t1XLp0qWupkd2Ol3vaNjU6YiwXvfdjzY7uVbTNGVZVkMGUSqVZFlWR/U9f/7cC9J8Pl/D5oMX1dCCsGq1qnQ6rVQq5Q27G9Xw6zSzs7O6e/eu7t69e2ools1mlc1mZRiGt3Pl9evXh1c0AAAAAAB9Nj8/3/Db2HGcloKeo4vj+/3+kei7H212cm0n1WLbdsdB2NramiR5AVgtaDNNU5J0+fLlM9v47rvv5DiOtra2tL+/31EdgzSUIGxjY0O3b9+W1Bh+mabpjaCam5sbRmkdqw/F9vf3tbW1pUwmo3w+L+lwPbHaIvuBQEB/+MMfhlwxAAAAAAD9EQgEGh63GtYcnS4YDAZHou9+tHk0SGt16uXRAK2TnTVrSqWSt65XLpfraiBSPB7XtWvXOj5/UCaG0WltF8Za2hiPx1UsFvX111/r4cOH5y4EO2pqakrLy8t6+fKlF4AFg0HvmiuVyrBLBAAAAACgb+bn5xset7oAe30YZBiGNzJp2H2PUptHA7RO1lE72lY8Hu96Np5pmpqdne2qjUEYShBmmqaSyaTK5fKFCb9OczQUy2QyA1vkHwAAAACAYbAsqyGwefPmTUvnFQoF7/7RoGiYfferzXpHR4+1qpOw8Oi5rSzU34pUKtWTdvppKEHYzZs3dffu3XORFPbS1NSUbt68qYcPHw67FAAAAAAA+mppacm7X7+mVTP1xyUSiZHqux9t1k+VrC2tdJajUyg7XR9MkjcKrJvplSe1N8qGEoQBAAAAAICLLRaLefdbCXnqjzFNs6P1wfrZdz/arA/HbNtuaZ2w+pFj3bxHknT//n25rttysHeWZ8+e9aSdfiIIAwAAAAAAPWdZVkNQk81mmx6fyWS8+2eNBkun00okEqeuq9WPvvvRZjAYbJjaWNvFsZn6gC2ZTJ55fDNTU1N6+PChNjc39cc//rGrtqTzMTXS59Zv24im9vf39fDhw5a+mDXValW2bev69ev9Kwx9d+nSJR0cHGhiYkLff//9sMsB0MSvSr8fdgkD93Prx8MuAQAAXDC9+g1k27a3y6FlWSoWiyce5ziOpqenJR2GQ7lc7tQ2Q6FQQxhUqVSOLSDfr7770WapVGrYlbJcLp+67lc+n1coFJIkRaPRngVPoVBIly5d0m9+85uO29jZ2dH7778/8r+ZCcLasL29rfn5+ZY/1EePHunevXvefN1gMNhWiIbRQRAGnB8EYQAAAN3r5W+gbDarSCQi6XAEUzweP3ZMIBBQqVSSYRja2dk5Mdiq8fl8DY9TqZSi0ehA+u5Xm+l02pt6aZqmisXisXMcx1EgEJBt201DuE7Nz89rf39fiUSi5Z0o9/b25DiOyuWytra25DjOyP9mPvdBWLVa1eTk5ED6qgVhtm0rk8nou+++08LCgoLB4LEatre3FQgEFAgEvN0kNjY2lM/ntbm5OZB60TsEYcD5QRAGAADQvV7/Bsrn84pEInIcR+FwWKurqzJNU4VCQYlEQqVSSZZl6dWrV2eGRtPT0w1raeVyuaZrZfWy70G1aRiGVldXvevK5/NaW1uT4zg9HQlW8/r1a8XjcZVKpWNBY6tc15XP5xv538znfo2w5eXlgfWVz+fluq5M01QikdD6+roikYjm5+f1zTffNBxbC7vq/xiXl5dVqVT05ZdfDqxmAAAAAACGLRgMqlKpKJlMyrZtLS4uanp6WpFIRDMzM8pkMieOgjpJJpORaZoyDEPxePzMBeN72fcg2kylUpqfn9fa2poCgYAWFxe1ubmpaDSqcrnc8xDszp07CoVC2t7els/nk+u6bd/Ok6GMCKtWq123sbe3p1wup9u3bw8kbayN8Kp9KWpM05Rt23r//ff193//997zH3zwgV69eqVkMqlPP/3Ue35jY0PpdNobJYbzgRFhwPnBiDAAAIDu8RtoPGxsbHhTMo/mHZ04DyPCfjCMTm/cuKHt7e2etffFF1/opz/9ac/aO0ktcXVdV9FoVIlEQrOzs97rS0tLevbsmT755BNJh0GdpGPpbzAYVCwW09u3b1lAHwAAAAAADE0t66iFYMFgUKFQSIZhtL1O2NOnT7W7u9vHantjKEFYNBrV7du3e9be06dP+x6EFQoFWZalTCbTEIDVbGxsKBqNekHYaWpfpHw+TxAGAAAAAACGprYmmGEYKhQKJ+YdrVpeXtbly5d7WF1/DCUIu3Xrlm7fvq1wOKyFhYVjr6+trWlmZkbhcLjpm7i2tqZbt26duq1oL+3s7GhnZ6fpwvzlctm7X1u472iCOjU1JUlMjQQAAAAAAENlGIb29/e1urraVQhWa2tubq5HlfXPUIKwqakpWZalra2tY689f/5c8/Pzevny5Znt3Lx5UwsLC9rZ2elHmQ2mp6eb7pywsbEhv9/vPT5tauT+/r4kNexwAQAAAAAAMGiBQECvX7/u2QCjjY2NnrTTT0PbNXJ1dfXE5x8+fKh0Ot1SG6ZpKhAI6N69e70s7UQ3b95UOBw+tjukJD1+/NjbHrWmFnQd/TLZti3peEAGAAAAAMAgPHnyRFevXm16Ozg4GHaZGIBYLCbXdb2soluMCGvi5s2bJz5v27bee++9ltsxDEObm5v6u7/7ux5VdrJkMim/3y/TNL2bbdsNX5aHDx96247W1EaA1aRSKfl8vpYXnQMAAAAAoJeq1arevXs37DIwAsLhsObm5rS5ualPP/206/ZevHihn/3sZz2orH+GFoSdxnVdVavVpmtx1cvn88fCpn7J5XKKRCLa3t5uWA9MktLptG7evCnXdRUOh+Xz+bS4uKi7d+/qww8/1PLysvL5vNLptHw+nyKRyEBqRm8dHBzo6tWrTY9ZWVnRysrKgCoCAAAAgPZMTk7qypUrTY8hKBsfmUxG77//vr744ouuNyJcW1sb+SDM57quO+wi6i0tLen999/XgwcPzjz20aNHSiQSCgQCA118PpvNamtrS6VSSaZpKhaLNYxwq73+7NkzHRwcaH5+3lvHzHVd+f1+ffXVVwOrF927dOlSy0OD/+Zv/ka//OUv+1sQgFP9qvT7YZcwcD+3fjzsEgAAwAVT+w00MTGh77//ftjloM/S6bRWV1f13XffddzG/v6+ZmZmRv77MnIjwu7du6f5+Xnv/kkjw6rVqhKJhDe6qnb8oITDYYXD4ZZfLxQKikQievXqlUzTbGkjAIyus/7LSaujGQEAAAAAGKYXL15Ikv7sz/5M09PTunbtWtO84zSO45y4IeIoGrkRYdJhEnn79m35fD4Fg0GZpinDMLw1uWqL0ruuq+npae3s7JyL8GF/f19TU1PDLgMd4L+GAOcHI8IAAAC6x2+g8TA/P6/t7W3vseu68vl8HbVVO3fUvy8jNyJMkqLRqCTp9u3byuVyxz6EWnZnGIa2trZGLgTb39/Xw4cPtba21vA8IRgAAAAAABgVS0tL3mAjn8/XcQh2nkwMu4DTRKNRVSoVLS8va2pqSq7rejfTNBWNRrWzs6PFxcVhl3rM1NSUMpmMPvvss2GXAgAAAAAAcKJYLCbpMASrz106uZ0XIzk18iT7+/va29vT7OzsUOuoVqsqFApyHEd7e3snHlMul5VMJlkU/wJhWDBwfjA1EgAAoHv8BhoftemRDx8+lGVZmpmZabsN27b14MEDvX37duS/LyM5NfIkU1NTQ59auLq6qvX19ZaPPy0oAwAAAAAAGAW3bt2S3+/X3bt3O25jbm5ON2/e7ChEG7SRnRopSW/fvtXjx48bntve3taHH36oL7/8cqC1PH/+XMlksq0hgclkcqA19opt2wqFQspms121s76+rlAopOnpafl8Pvn9fkUiEeXz+ZFqEwAAAACAcRUMBns2tXF+fr4n7fTTSAZh+/v7WlhYUCAQUCKRaHhtbm5Om5ubunnzpu7fvz+wmlKplILBoIrFosrlsiqVipLJpCqVincrl8sqFAqyLEu2beuTTz4ZWH294DiOIpGI/H6/8vl8xyPa8vm8pqenvc8uk8l400VLpZJCoZBCoZAcxxlqmwAAAAAAjLu5ubmeDeQ5DwOCRnJq5OLiora3t0/dttMwDBUKBZmmKcdx9Hd/93d9r8m2bX399dfH6qifrjk1NaXZ2Vml02lFIhG9efOm73X1guM4Wltba2va52ny+bxCoZCkww0PUqmU95ppmgqHwwoEAsrn8woEAioWizIMY+BtAgAAAAAw7qrVqhKJhGzb1gcffKBf/OIXXbU3NzfXo8r6Z+RGhD169EilUkmu68qyrFOPMwxD9+7dUyqVGsg0SdM0jz23tLSkZ8+eHXvesiyVy2V9/vnnfa+rW+vr6woEAt52qd2ojSiTDt+v+sCqXiaTkXQYLtaOH2SbAAAAAABACofDSqfTyuVyisfjevHixbBL6ruRC8JyuZxM05Rt2yoUCk2PDYVCcl1Xa2trfa+rUqkce25qakqFQkHVavXYazMzM3r48GHf6+pGqVRSMBhUuVxWLpc7NWRqVSQS8aYmHp3SWq82iks6HO2VTqcH2iYAAAAAANCx9bbHYXbVyAVhhUJB6XRa77333pnH1j6gYrHY36IkBQIB3bp1Sy9evGhISKPRqAKBgL755hvvucePH8u2bdm23fe6umFZVsOou24WtbNtu+EPaGlpqenxt27d8u6fFnD1o00AAAAAAHCoNvvN5/MpHA7rxo0bQ66o/0ZujbCZmZkTpyGepDadbxCBUyKRkN/v93ZSTCaT+vTTT2VZlt577z2ZpinDMBoWa2/1OkZFN8lv/YJ4wWDwzLZqo7ekw+mP2Wy24bl+tQkAF9GvSr/v+NyfWz/uYSUAAAA4T6LRqO7duyefz6fNzc2u27tz545+/etf96Cy/hm5EWGWZbW8818ikZDP52u6llivzM7OamtrS67rynXdhlAmk8locnJSlUrFe71W37ion4rY6udRHxSe9AfXjzYBAAAAAMCheDyuxcVFSWqY6dapo1MtR9HIBWGxWOzMNb+q1ao+/PBDbyRYN1P62hEOh3VwcKByuaxPPvnEe94wDO3u7mp5eVmWZSkYDCqTyTQcc5EdXWh/YWGhpfPqw63aSLt+tgkAAAAAABrlcjn97Gc/Uzgc1h//+MeO29nZ2Rn5JaKkEQzCFhcXValU9NFHH+nt27fe89VqVa9fv9adO3c0PT3tpYyGYTRMoRuE2dnZY89NTU0plUqpUCjo5cuXunnz5kBrGqajiW+rU0KPHlcffvWjTQAAAACA9OTJE129erXp7eDgYNhlYoA+//xzRaNRWZalzz///MRNAU9SrVa9vCYSifS5yt4YuTXCJGlra0uBQECBQECSdOnSpYbXa1MPDcPQ1taWJicnB14j/uTNmzcNj1tda+zy5csNjwuFgjeiqx9tAgAAAAAOw4t3794NuwyMgPfff187OzveY9d1FY1GFY1G227LdV35fL5eltcXIzciTDoMPcrlsj799FNNTU15627Vr88Vj8e1s7PjzWXthcePH/esrX60N6qODn3sdPRWuVzua5sAAAAAAGlyclJXrlxpesN4iEajDXmLz+c7lsG0ejsvRjIIe/36tarVqpLJpPb29lSpVFQsFlUul3VwcKC9vT09fPhQU1NTPe2314urj8ti7b2aA1y/SUI/2gQAAAAASCsrK/r222+b3iYmRjIuQI/FYjFJks/n80KwTpyHkWA1Izc18sMPP1Q+n5ff79ff//3fSzpcf2tubq7vfReLRX322WdaXl7uarpltVrV5ubm2KxP1WnYdHS6497eXl/bBAAAAAAAfzI1NaWbN2/q+fPnkqRgMNjy0kT1bNs+NxnIyAVhuVxOPp+v56O9WhWPxxWPx4fS97jrx+itXrd5cHCgq1evdt3OysqKVlZWelARAAAAAACdi8VievHihYrFoq5fv95xO+l0Wnfu3OldYX0yckHY4uKiXr9+rUwm0/I5r1+/1o0bN3pWQ6/mtp6noYHdMAyjJ4FTfercjzZ7pReLSra6AwcAAAAAAP0UDAY1NTXVVQgmHa43dvv27d4U1UcjF4RlMhnNz89rf3+/rXN6GYR1My92HM3MzPQktJqZmelrm73Si4Uj2ekUAAAAADAqVldXVa1Wu/6t2sluk4M2ckGYYRgqFotekviTn/yk6fHb29va2trSr3/96677rp8XGwqFlEgkFAgE2mpjb29PjuPoP/7H/zg2u0Z2OurqaNB1dERYr9vshYmJCX377bc9bRMAAAAAgGG6e/duT9p5+vRpT9rpp5ELwt5//33t7OxIkrLZ7ED7zmQy2t/f14MHD7SxsaFQKOQFYmcFcjW1tc3m5ua8UO2im5+fb1gUz3GclgKoowvZ+/3+vrYJAAAAAADOVq1Wlc/nlcvltLe3J9u2NTMzI9M05ff7FQ6H9d577w27zI6M3H6o0WjUm5boum5Lt16amppSMpnU3t6eNjc39Q//8A9aXFzUtWvX9Pnnn7fVVjAY7Glto+roqDnbtls6r1wuNzyuf7/60SYAAAAAADjd7u6ubt26penpaUUiEaXTaWWzWRWLReXzeaXTaSUSCfn9/o5yklEwckFYLBaTdBhIhcPhM2+mafatlnA4rEKhoEKhoOvXr2t5eVmXL1/W/fv3W1rs/DwMCeyF+fn5hsethlb10xgNw2j4LPvRJgAAAAAAONnGxob8fr+y2eyxwUdHNwN0XVflclnRaFR/+Zd/qW+++WYYJXdk5KZGTk1NybIsZbPZlofZvf/++32tybIsb9pkKpXSw4cPlUwmFYlEtLq6qr/4i7/oa/+jzrKshl0e37x5o3A4fOZ5hULBu380+OpHmwAAAAAA4LhHjx7p3r17cl1XPp/PC77Omonnuq4KhYL8fr+KxeK5yEdGbkSYdDgqrJ3d/mqjyPptampK8Xjcmzb59ddfy7IsLSws6IsvvhhIDaNqaWnJu1+/tlcz9cclEomBtAkAAAAAAP7k+fPn3u9nn8/nhV9zc3OKRqNKJpNKpVLK5XIqFovKZDJKpVKKx+PeLKyDgwMtLi5qd3d3iFfSGp/b60W2euz169eybVvlclmXL1+WZVm6cePGsMvylEolra2t6fnz55qentb9+/e1vLzc9Zajw2DbdsPi8qlUquWtT0ulUsO6Xmd9rfL5vEKhkCTJNM1ja3v1q81OXbp0SQcHB5qYmND333/fs3YB9N6vSr8fdgnnys+tHw+7BAAAMIL4DTQ+apsWuq4rwzCUTCa1tLTkbQZ4lu3tbT148EDPnz/XBx98oN/85jd9rrg7IzkiTJIeP36sy5cvKxQKKRaLaX19XYlEQqFQSH/2Z382MguyWZalZ8+eKRqNqlKpKB6Pa3p6Wn/1V391LpLQevXra7XLsqyGhenP2vEzk8l4908budWPNgEAAAAAwKHnz5/Ltm25rqtYLKa9vT0tLy+3HIJJ0tzcnDKZjB4+fKhcLqff/e53fay4eyMZhC0tLSmRSMhxnBN3idzb2/MWZGtl0fp+2d3d1Z07dzQzM6ONjY2GObRPnz4d2JTNXjm6IH27wVgqlfLur62tnXqc4zhKp9OSDnd1bDbqrB9tAgAAADj/XFf6/qD5bbTnPwHDt7m5KZ/Pp/X1df3617/uqq14PK7FxUVtbW31qLr+GLkgbGNjwxv547qugsGgMpmMisWiyuWyNx/1xo0bKhQKDetIDcrbt2/14Ycfyu/3K51Oe1P2akFdNBpVuVzWb3/724HX1inHcY6Notrc3GyrDdM0vVFZpVJJ6+vrJx63uLgo6XBXx/pRXINqEwAAAMD5d+BKP/jr5rcDgjCgqVKpJMuy9Omnn/akvVgspnw+35O2+mXkgrBaiGEYhsrlsl6+fKmbN29qbm5Os7Ozmpub082bN5XL5VQoFPTy5cuBTZN88eKFFhYWFAgElM/nG3ZPqC2kX6lU9PTpU83Ozg6kpm44jqNIJKJQKKTp6eljI8JKpZJ8Pp9CoZAikUhLC9aHw2HlcjkZhqFEIuGd5ziO8vm8AoGA94e2s7MjwzCG0iYAAAAAAOPOtu2ezmYzDONYtjBqfjDsAo7K5/Py+XzKZDJnhkmWZWlra0vJZFIff/xxX+qpVqtKp9NaW1vzpgrWL9pumqYSiYSWl5f70n8/9Wv0VDAYVKVS0fr6ujY3N7W4uCjHcWQYhubn55XJZBQOh4feJgAAAAAA466282MvjHoIJo3grpEzMzPa399veVeK/f19zczM9HwXi93dXSWTSW/dKdd1vW1EpcNgJpFIeFPycLGxYwpwfrBrZHvYNRIAcF59f3A4/bGZf/xb6dLIzYMavidPnujJkydNj3n37p0k8Rvognv//fd17949ffLJJz1pb35+Xvv7+/rqq6960l4/jNw/CZFIpO1zmu1m8Pjx47baevv2rW7dunVs/S9JDet/vXz58swQ7NmzZ231DQAAAABAv1WrVb17967pDePBsqyezRS7d++et2zRKBu5ICyZTGpqaqrl7Ta3trY0Pz9/4mv7+/vK5XIt911b/yubzfZk/a/6HQ8BAAAAABgFk5OTunLlStMbxsPS0pJyuZzu37/fcRvValW3bt3S+vq6fD5fT9cc64eRmxopSdvb24pGo3r9+rV++MMfnnrczs6OPvjgA+VyOb333nvHXr937562t7db3r1xYuJPuaDP5/PW/+pkiODGxoZu377NENILgqmRwPnB1Mj2MDUSAHBeMTWyv/gNND78fr92d3cVi8UUj8dPzFdO8vr1a6VSKWWzWe85y7L05s2bPlXaGyMXhL3//vuqVCrewvTNdgBsdkzttWAw2FYQVlsHzOfzKRgMtlH5ob29Pdm27fXPPxgXA/8jAJwfBGHtIQgDAJxXBGH9xW+g8ZHP5/XBBx/I5/NJOsxRLMuS3+/3FtJ3HEd7e3sqFosqFAoqlUre+bVYyefzqVgs6vr16wO/hnaM3K6RN2/e1KNHj7xAqlKpnHnOacfUPsR2uK6rYDAowzA0MzPT1rl7e3tyXVezs7MqlUod9Q8AAAAAADAowWBQT58+1e3bt+Xz+ZTP55XP5089vn48lc/n8/Kbra2tkQ/BpBEMwm7fvq1Hjx5pbm5OMzMzTUeEnaY2GqvZB9fs3MnJybbPOyqfz+vDDz/suh2MloODA129erXpMSsrK1pZWRlQRQAAAAAAdCcajWpmZkbRaFSO43gDe06aRFg/6Md1XRmGoVevXmlubm5g9XZj5IKw2dlZxeNxPXz4sOu2stmsNjY2Wj4+GAz2JASrtXVevgRoz1k7qFSr1QFVAgAAAABAb4TDYYVCIT148ECPHj069bhaOGYYhlZXV3X37t1BldgTIxeESdLq6mpP2gmHw9ra2mr5+F7vbDDqOyWgM2ftoNKrMBUAAAAAgEGamppSMplUMpnUq1evVCqVVC6Xtbe3J0mamZmR3+8/14N/Rm6x/F55/PixLMvSjRs3hl0KLgAWigTODxbLbw+L5QMAzisWy+8vfgPhorqw/yT84Q9/UCgU0ueff95VOxsbG7p06ZL+/M//XF9++WWPqgMAAAAAALhYXrx4MewSznRhgzDpcN5qNBrV/fv3O24jkUjIdV19/fXXsixLu7u7vSsQAAAAAADggkgkEsMu4UwjuUZYr718+VLlclmbm5ttnzs7O6v9/X0Fg0FJhx9qJ+0AAAAAAABcVM+fP5dt28Mu40xjEYQVCgVFIhEtLCzo9evX+uEPf9jyucViseHxtWvXel0eAAAAAADAUL19+1b5fF7lcrmtQGtvb0+O45yLEEwakyBMkjKZjNbX12VZlvL5vH70ox+13cbOzo63UwIAAAAAAMB5t7u7q1gspnw+39H59Xsw+ny+XpXVN2MThElSPB6XZVmyLEvZbFY/+clPWj53f39foVBI8/PzfawQAAAAAABgcILBoHZ2duS6bkdBVu2c+kBslF3oxfJPEgwG9ebNGy0vL7e8o+Tr169lmqZ2dnYUiUT6XCEAAAAAAED/3b5925vS6PP55Lpux7fzYuyCMEkyTVOFQkGbm5tn7ij56NEjhUIhVSoVGYahTz75ZEBVAgAAAAAA9E+hUPDuz87OKpPJqFKp6ODgoK1bsVjUzZs3h3glrRvLIEySDMPQy5cvtbe3p1u3bp14zOrqqu7du+cND0wmkwOuEgAAAAAAoD9KpZJ8Pp8Mw1CpVNLNmzc1NTXVdjtzc3PKZDIdnTtoYxuE1Tx9+lSLi4taWFjQH//4R+/5V69eecGXz+eTZVmMBgMAAAAAABeGYRiSpKWlJU1OTnbdXjQa7bqNfhuLIOx3v/td09ej0ahSqZRu3Lihb775RpK8EKw2z5XRYAAAAACAi+DJkye6evVq09vBwcGwy8QA1NZB9/v9PWnv4cOHPWmnny5sEDY7OyvpMMiKRqNewHUay7K0ubmpmzdv6sWLF8rn897OB5Zl6caNG32vGQAAAACAfqtWq3r37l3TG8ZDbTmo+rXCulGtVnvSTj9d2CAsmUyqUqkok8locXFRwWBQz549a3pObRH9p0+fes/5fL5T1xADAAAAAOC8mZyc1JUrV5reMB5mZ2f19OlTZTIZffnll123t7i42IOq+svnnqc9LgcokUjo0aNH8vl8yuVyjAgbc5cuXdLBwYEmJib0/fffD7scAE38qvT7YZdwrvzc+vGwSwAAoCPfH0g/+Ovmx/zj30qXLuzwj/7iN9B4icViev36tUqlkn74wx923M6lS5dG/vvyg2EXMKqSyaQWFha0tLSknZ2dYZcDAAAAAADQU7WpjPfu3VOxWNSNGzeUTCY1MzPTcht7e3tyHEepVKpfZfYUQVgT4XBYhUJB9+7d08cffzzscgAAAAAAAHrmvffe0/7+fsNzoVCoo7Zc1/XWWh9lDBI9g2VZevny5bDLAAAAAADg3FtfX1coFNL09LR8Pp/8fr8ikYjy+fy57HtY12PbdseBVb3l5WW5ruvdJDU8bud2XhCEAQAAAACAvsrn85qenlYikZAkZTIZlctlJZNJlUolhUIhhUIhOY5zLvru1/U4jiOfz3fmze/3yzTNtto+yUcffSRJ3kiu8xRodYrF8oEW1BaKlHTmDiorKytaWVkZRFkATsBi+e1hsXwAwHnFYvn91cvF8vP5vDd6KRqNnriWVCAQUKlUkmmaKhaLMgyjqz772Xc/r2d9fd0L185SLpd7Eoa9//772tnZ0eLioizL0uXLl9s6/7vvvpPjOEqn0/L5fCO/WD5BGNCC+iDsLH/zN3+jX/7yl/0tCMCpCMLaQxAGADivCML6q1dBmOM4mp2dleM4Mk1T5XL5xONs25bf75ckBYNB5XK5jvvsZ9/9vp7p6emWRpH16j2SDhfK397e1m9/+9uu2rFtW9euXRv5IIzF8oE2nTUibHJyckCVAAAAAMBoi0QiXrDTbKSTaZoKh8PKZrPK5/NKp9OKRqMj13c/ryedTstxHMXj8TPX/5qfn2/6ejtu3bol27a7bsc0Tc3NzfWgov5iRBjQgl4OCwbQX4wIaw8jwgAA5xUjwvqrF7+B6kdFSVKlUmk6RTCbzSoSiUiSDMNQpVLpqN9+9d3v66m1fdoos37a3t7uSYi1s7Oj2dnZHlTUP/yTAAAAAAAAei6ZTHr3g8HgmetkhcNh777jOMpmsyPVdz+vJ5vNyrbtltcH67VejeQa9RBMIggDAAAAAAB9kE6nvfuWZbV0Tv3i75ubmyPVdz+vZ21tTYZhaGlpqaV2W/H27duetdUL1WpVu7u7wy6DIAwAAAAAAPRWqVRqeLywsNDSefUBU6cjwvrRdz+vp1QqqVQqyXEcTU9Py+/3KxaLdTUiTpIePHig+/fvd9VGL0Uika6vqRcIwgAAAAAAQE/l8/mGx/Ujo5o5etzRAGpYfffzeo5Oh7RtW+l0WpFIRD6fT5FIpKP3IZ1O6+nTp/r888/bPrfX7ty5o729PX366afDLoVdIwEAGGfdbC7AQvsAAOA0b968aXh81npaNZcvX254XCgUWp6G2M+++3U9tm0fC9mOymazymazikajSqVSLfVbq3Fra0sffPCBJOnjjz9u+dxeunPnjra2tlQsFofS/1EEYQAAAAAAoKds22543OkIqk52UOxH3/26HtM0lUql5DiOyuWy8vn8sb5q0um0CoVCW4FSMBjUw4cPtby8rHK5rAcPHrR8breq1aqWl5eVzWZVLBb13nvvDazvZsYuCNvd3fXS1k8++WTI1QAAAAAAcPGcFua0y3Gckei7n9cTjUaPHZNOp7W2tnbs+FKppFAopFwu13Kf8XhcknTv3j3l83klk0n95Cc/abv2djx79kyJREKO46hQKOj69et97a8dY7dGWCaTUTQa1e3bt4ddCgAAAAAAF1InAZZ0fMrh3t7eSPQ9yOsxDEPxeFyVSkWZTOZYG/l8Xuvr623VEY/H9fTpUxUKBQWDQf3lX/6lvvjii7baOMvr16+1urqqy5cvKxaLaXp6Wl9//bXm5uZ62k+3xm5EWI3rusMuAQAAAACAnnry5ImePHnSdTsHBwc9qKZ7nQZQo9p3u22Gw2EFg0EtLi42LJi/trbmjfRqVTQa1czMjJaXl1UoFBQOhyUd7mwZDAa1sLAg0zRlmqYmJydPbadarWpvb0+2bSuXyymfzzfU5rquwuGwtra22qpvUMY2CAMAAAAA4KKpVqt69+7dsMuQYRg9CZJaXZS+330P+3qKxaICgYAXODmOo3w+r2Aw2FZb4XBYoVBI4XBYr169knQ43bLZrpStXHv9YKN0Oj3SS1ERhAEAAAAAcEFMTk7qypUrXbfTbZg2MzPTk+BoZmZmJPoe5vXUbGxsKBAIeI9zuVzbQZgkTU1NKZfLKZvN6uHDh14I5vP5Tpw9V6lUWmo3Ho9rdXVVU1NTbdc0SARhAAAAAABcECsrK1pZWem6nUuXLnU1PbKTkU/S8amDnY6g6nXfw7yemtoUxtoGgN0u4B8Oh72RYU+fPtXz58+PHePz+RoeHw3KTNNUOBw+FwFYDUEYAAAAAADoqfn5+Ybpdo7jtBQCHV1M3u/3j0Tfw7yeeqFQyAvCemVxcVGLi4uSpO3tbeXzeb1580aO42hvb88L8wzDkGmampmZUSgUUjAYPDfhVz2CMAAAAAAA0FP1U/ikw9FLlmWdeV65XG543MnUv370PczrqWeapne/m2mWp5mbmxu5XR57bWLYBQAAAAAAgItlfn6+4XGr0/jqpxLWRiCNQt/DvJ569ed3M81ynBGEAQAAAACAnrIsqyGoefPmTUvnFQoF7/7R8GmYfQ/zek5rLxQKdd3eOCIIAwAAAAAAPbe0tOTdr19fq5n64xKJxEj1PczrqamfatntNMtxRRAGAAAAAAB6LhaLefdbWeC9/hjTNLsKevrR9zCvpyabzUqS4vF4122NK4IwoA0HBwe6evVq09uTJ0+GXSYAAAAADJ1lWQ3hTy3EOU0mk/HunzV6Kp1OK5FInLpWVz/67uf1tCKbzcq2bRmGodXV1a7bG1cEYUCb3r171/RWrVaHXSIAAAAAjIRUKuXdX1tbO/U4x3GUTqclHU75i0ajpx4bCoUUi8W0vr4uv9/fsCB9v/vuZZv5fF7T09Py+XwKhUJNp1vatq3l5WVJ0qtXr1govwsEYUCbrly50vQ2OTk57BIBAAAANOG60vcHzW+uO+wqLwbTNL2RUaVSSevr6ycet7i4KOlwJ8T6kVQnOTotcWtra2B997LNTCbjhXj5fF6BQKBh+mVN7bWZmRmVy2VZltW0RjRHEAa0YWJiQt9++23T28rKyrDLBAAAANDEgSv94K+b3w4IwnomHA4rl8vJMAwlEglFIhGVSiU5juOFPKVSSZZlaWdn58zRTkdfN01zYH33ss1IJHLsuXQ6renpaUUiEcViMQUCAYVCIUWjURWLxabXitYQhAEAAAAAgL4KBoOqVCpKJpOybVuLi4te4DMzM6NMJqNisdhSEJXJZGSapgzDUDweP3MR+l723cs2g8GgyuWyotGodz01pVJJe3t7Wl1d9fphOmRv+Fx3vAZ8Pnr0SIlEQj6fT99///2wy8E5cenSJR0cHGhiYoLvDTDiflX6/bBLGBs/t3487BIAAGPs+4PDkVvN/OPfSpdOGP7Rzbnjgt9AuKjG+M8aAAAAAAAA44QgDAAAAAAAAGPhB8MuAACAo5jeCAAAAKAfCMIAAAAAABgjT5480ZMnT5oec3BwMKBqcB7t7u6qVCrJMAzNz89rcnJy2CW1jCAMAAAAAIAxUq1W9e7du2GXgXNod3dXkUhEpVKp4flAIKBMJqMf/ehHQ6qsdWMXhEWjUVmWNewyAAAAAAAYisnJSV25cqXpMQRl4+ODDz5QpVKR4ziSpL29PQWDQW1ubjYct729rWAwKMdx5Lpuw2uFQkF+v1+5XE4/+clPBlV6R8YuCJuamtLi4uKwywAAAAAAYChWVla0srLS9JhLly4xPXJMGIahfD4vwzC0urqqcDis2dnZhmP29/e1uLgox3Hk8/nk8/nkuq43NdK2bdm2rUgkon/4h38Y0pW0hl0jAQAAAAAAxlSpVFIikdDe3p7u3r17LASTpOXlZS8Ec11XrusqmUxqb29PL1++1Ndff62XL1/q4OBA9+/fH8JVtI4gDAAAAAAAYAw9evRIlmVpbW3t1GOeP3+ubDbrhWA+n0/JZFJ3795tOC4YDOrhw4cqFov9LrsrBGEAAAAAAABjKJ1OnzmCa3l5WT6fT5Lk8/lkWdaxEKzm1q1bKhQKPa+zlwjCAAAAAAAAxlC5XNb169dPff3OnTveIvq1BfI3NjZOPX5qaurYQvqjhiAMAAAAAABgDJmmqd3d3RNf297eViqVapgSGY1GmwZn29vbmp+f70+xPUIQBgAAAAAAMIZM01Q6nT72/P7+viKRiPfY5/PJNE39+te/btreq1evlEgkel5nL/1g2AUAAAAAAABg8KLRqJaWliRJ9+7dkyTl83klEgnZtt0wGiyTyTRta3t7W2tra/ruu+/6Xnc3GBEGAAAAAAAwhsLhsBYXF5VMJjU9Pa3p6WlFIhGVy2UvBJOkp0+fNp0S+ezZMwWDwQFV3R2CMAAAAAAAgDGVzWb1s5/9TK7rejfpcHF8wzCUyWS0vLx87Ly3b99qdXVV165dUywWU6VSkeM4+uKLLwZ9CW1haiTQhoODA129erXpMSsrK1pZWRlQRQAAAAAAdG5qakqZTEavXr1SLpdTqVSSYRhaWFhQNBrV1NTUsXM2Nja8qZKzs7OanZ31XvvDH/6gn/70pwOrv10EYUCb3r171/T1arU6oEoAAAAAAOiNxcVFLS4utnTs8vLyiaPEzgOCMKBNV65cafr65OTkgCoBAAAAAGB0vH37tulaYqOAIOyf7O/v6+HDh1pbW2v5nGq1Ktu2R/5DRu9MTEzo22+/HXYZAAAAAAD0xO7urt57772etLW8vKw3b970pK1+YbH8f2LbttbX11s+/tGjR5qentby8rIWFha0urrax+oAAAAAAAB6LxaL9aSdnZ0dlUqlnrTVTwRhR3zzzTd6/PixVldX9eLFixPXe9re3lYikZBlWXrz5o3evHkj0zR169atIVQMAAAAAADQGdu2e9JOIpHoSTv9xtTIf5LP5+W6rkzTbHje7/crl8vpRz/6kffc5uamJCkYDHrPLS8vK5PJ6Msvv9Rf/MVfDKZoAAAAAACALti2rT/+8Y/64Q9/2HEbjx8/Vjablc/n62Fl/cGIMP1phJfP55Prut5tdnZWX3/9tUKhUMPxpVJJPp9Ply9fbng+Eonok08+GWTpAAAAAAC05cmTJ7p69WrT28HBwbDLxIC4rtvVaK7V1dVzMxpMIgiTJKVSKUmHH340GlW5XNbBwYG+/vprHRwc6Pr163r27Jl3/N7eniTJMIyGdoLBoIrFot6+fTuo0gEAAAAAaEu1WtW7d++a3jBeUqmUfve737V93q1bt7S+vi7XdftQVX8QhEkqFAqyLEvlcllPnz7V7Oxsw+sbGxvK5XJntjMzMyPpcJol2mfb9rHRd82sr68rFAppenpaPp9Pfr9fkUiE9x8AAAAAmpicnNSVK1ea3jBeXNdVJBLRH//4x5aO393d1bVr15TNZuW67rmYEllDEKbDnQ1ev359LACrVy6XvfuO40j6U/BVMzU1JUkjv1XooDmOI5/Pd+bN7/cfW6PtJPl8XtPT097Qy0wmo3K5rGQyqVKppFAopFAo5H1OAAAAAIA/WVlZ0bffftv0NjFBXDBOwuGw9vb2tLi4eOaxz58/l9/v9xbZry0zFQ6H+11mT/DNlrwRRafZ2NiQ3+/3Hp82NXJ/f1+SCGCOSKfTLR971rzifD7vhVzRaFS5XE7BYFCmaSocDqtcLsuyLOXzeQUCAT4LAAAAAACaCAaD2traUqFQUKFQ0EcffXTqsaurq1paWvKmQrquq6mpKZVKJW1tbenmzZuDKrtjBGGSbt68qXA4rG+++ebYa48fP1YikVCpVPKeq4UrR0cv1dLQowHZuFtbW2vpuFqgdRrHcRSJRCQdvve1td2OymQykg4/j9rxAAAAAHrPdaXvD5rfztHSQcBYsizL+7+FQkFbW1u6f/9+wzHValULCwveemC1UWDBYFA7Ozu6fv26pMOgbNT9YNgFjIJkMulNy6vdbNv2gi1Jevjwoe7cudOwhlVtBFhNKpWSz+c7NmVynKXTaTmOo3g8fub6X/Pz801fj0QiXgjZbORYbXRYNptVPp9XOp1WNBptu3YAAAAAzR240g/+uvkx//i30qXzs3wQMHYePnzo3bcsS1tbW1paWpLf79fHH3+s7e1tBYNBOY7TEIIlk0ndvXu3oa25ublBl982n3uelvbvo9rooe3t7WOvpdNpffLJJ8pms1paWpLP5/PmzX744YdaXl5WPp9XOByWz+dTLpfTjRs3Bn0JI6k2pbR+jbVO2LbdMD21Uqk0HXmXzWa90WCGYahSqXTV/6VLl3RwcKCJiQl9//33XbUF4Gy/Kv1+2CWgBT+3fjzsEgAAQ/b9QYtBWB/mInXTdzfnuu5hANjMhE86R2uHn4jfQOMtnU7rzp07ikajSqfTDQGYYRh69erViaHX48eP9emnnw6h4tYxIuyfmKapYrGobDarra0tlUolmaapWCzmzXENh8Pa2trS1taWnj17poODA83Pzysejze0Qwh2KJvNyrbtU6cwtiOZTHr3g8HgmdNP6xfpcxxH2Wz23CzcBwAAAGB0MQoO4yAajapcLuvRo0eS1DAVMpPJeJsFHpXL5UY+CGONsCNqYdfXX3+tly9fHlvorfb65OSkDMNQoVDQjRs35LquTNPUy5cvh1T56FlbW5NhGFpaWuq6rfoF92vzl89Sv97Y5uZm1zUAAAAAADAuksmkl4m4rqv19XW9fPny1BBMkgqFwqDK6xgjwrpkGIZyuZz29/ebfhnGTalU8jYYmJ6elmmaCgaDCoVCbY/Mqt+oQJIWFhZaOs+yLG+dt2w221afAAAAAACcV/v7+3r16lXX7Xz00Ud69eqVYrGYTNPUixcvTjxub29PqVTKW9d7lBGEtWl/f18PHz48thMiIVijo4vZ27atdDrtjewKh8NaXV1taXRXPp9veNxsZ8lmx5VKpZZHkwEAAAAAcJ7V1jHvhfX19TOPqa0jNuqYGtmmqakpZTIZffbZZ8MuZWTZtn0svDoqm80qEAgoFoud2d6bN28aHp+1PljN5cuXGx6fhyGaAAAAAAB0a2pqSpZlyXXdrm+SWjrmvGBEWJ1qtapCoSDHcbS3t3fiMeVyWbZt6+nTp/rFL34x4ArPB9M0vSGR5XJZ+Xzem6J4VDqdVqFQULFYPLW9o+d2OiKs250rAQAAAAA4L4LBoEqlkrfQfadaOfc8hWEEYf9kdXW1paF+NacFZTgUjUYbHjuOo3Q6rbW1tWNzhkulkkKhkHK53IltnRaites8zFUGAAAA0Dv/YVv6N4FhVwEMx61bt7ycIx6Py+/3a2Zmpuf97O3tyXEcPX36VLu7uz1vv9cIwiQ9f/5cyWSyrXPaPX7cGYaheDyueDyubDar5eXlhmAqn89rfX1d8Xj82LmdBlhHp1D2Irw8ODjQ1atXu25nZWVFKysrXbcDAAAAjKv/sH32Mf99Vro0If3ruf7XA4yaubk5GYah9fV1ffLJJ33v7+bNm7p27Vrf++kWQZikVCqlYDCoZDIpwzA0MzOjdDrdMKppb29PlUpF0WhU2WxW77333vAKPufC4bCCwaAWFxcbdoRcW1s7MQjrlV6NCHv37l3XbVSr1R5UAgAAAIyn/f8s/dX/0tqxt/9n6V/9/6TJf9bXkoCRFAwGW15eqFumaWp2dnYgfXWDIEyHU+++/vrrhucMw2jYCXJqakqzs7NKp9OKRCLHFnBHewzDULFYVCAQ8MIwx3GUz+cVDAaPHduLEKvVRfbPcuXKla7bmJyc7EElAAAAwHj6n0rS//n/tHbs//F/S/++JP0P/3V/awJG0a1bt/oyHfI04XB4YH11iiBMJy++vrS0pGfPnh0bPmhZlsrlsj7//HN9/PHHgyrxwtrY2FAg8KdJ+7lc7lgQNjMz05MgrBd//BMTE/r222+7bgcAAABA5/7X/9Te8f/bfyIIw3i6efPmQPt7+PDhQPvrBEGYpEqlcuy5qakpFQoFLS0tHRu9MzMzo4cPHxKE9YBlWQoGg8rn85JOXhi/05FcR8OzXo0IAwAc+lXp9x2f+3Prxz2sBAAwbir/V3+PB3BxTQy7gFEQCAR069YtvXjxQi9evPCej0ajCgQC+uabb7znHj9+LNu2e7aTIaRQKNT09fn5+YbHrY4OO7o4vt/vb6suAAAAAKNp+r/s7/EX3ZMnT3T16tWmt4ODg2GXiQF7/fq1VldX9ezZszOPff78ua5du6YvvvhiAJX1FiPCJCUSCfn9fmWzWUmHO0J++umnsixL7733nkzTPLZO1aAWmxsH9e/lSdMX66dOSoejxizLOrPdcrnc8PjolEsAAAAA59O/+ufSy69aP/5f/vP+1XIeVavVnmwChovj1q1bXiYiSfv7+/rFL35x6vE3b97U7OysgsGg1tbWlMlk9KMf/WgQpXaNEWGSZmdntbW1Jdd15bpuwxS6TCajyclJVSoV73XpMDxDb9QHYSdNXzw6IqzV0Xj1waVhGISXAAAAwAXx31nS//f/09qx/9V/If2bs/87+liZnJzUlStXmt4wPu7cuaNMJtOQebx8+fLM8yzLkm3b+uqrrxQIBPTll1/2u9SeIAj7J+FwWAcHByqXyw0L5BuGod3dXS0vL3vrWWUymWOL6KNzhULBu3/SNEnLshoCslZ37Kxv92iYBgAAAOD8mvpn0t/9N60d+/S/lSb/WV/LOXdWVlb07bffNr1NTBAXjIP9/X2lUin5fD75fD5Jkuu6ikQiLZ1vGIaKxaL29vbOTRjGN/uI2dnZY89NTU0plUqpUCjo5cuXA9914aKrn8J42vTFpaUl736pVGqp3frjGMEHAAAAXCz/eu7sY/59uLXjgHG1trYm6TD8mpqaUjQaPTZA6CymaWp5eVkHBwctB2jDRBCGoavNQ47H46ceE4vFvPu1HSabqT/GNE3WBwMAAADG0P+fEAxoKp/Pa3p6WrlcTnt7e3r69OmJA4TO8sEHH0g6HOjy+eef97rMnhqbIOzx48cj3d64ymazsm1bhmFodXX11ONq01Lrz2smk8l49xkNBgAAAADAcbZta3V1VYuLi121U78m99bWVrdl9dXYBGGbm5sj3d5FUUuTfT6fQqFQ02mMtm1reXlZkvTq1asTF8qvl0qlvPu14ZsncRxH6XRa0uFUy2g02sYVAAAAAAAwHhzH6cnGcnt7e5IOp1jWr9c9isYmCCsWi/rss89UrVa7aqdarWpjY6PldarGTSaT8XZrzOfzCgQCDdMaa2qvzczMqFwuy7LO3sbFNE1vpFepVNL6+vqJx9WSbMMwGkaGAQAAAACAPzFN0wuxupHL5bz7tUxgVI1NECYdrkE1PT2tS5cudXybnp7W7du3h30pI+ukhfHS6bSmp6cViUQUi8UUCAQUCoUUjUZVLBbbSp/D4bByuZwMw1AikVAkElGpVJLjOF64ViqVZFmWdnZ2zhxlBgAAAADAuLIsqycDSNLptLfr5Kj/Dh+rIEw6HKbXixtOFgwGVS6XFY1GZZpmwx9AqVTS3t6eVldXValUlEwmO/oDCQaD3vm2bWtxcdEL2mZmZpTJZFQsFkf+jw8AAAAAgGGKRqPK5/P63e9+13Ebt27d8kaB+Xw+zc/P96i6/vjBsAsYNJ/PR5DVZ6ZpNqzn1S/xeLzpTpMAAAAAAOB0wWBQ169fVzAYVD6f109+8pOWz61Wq1peXlYmk/GyFp/Pd+JMsVEyNiPCbt686Y3mCoVCyufzqlQqbd3K5bKKxaLu3r077MsBAAAAAADo2sbGhlzXVTAY1L/4F//izNFh1WpVd+7c0fT0tLLZrPe8z+eTaZr65JNP+l1yV8ZmRFgmk9H+/r4ePHigjY0NhUIhhUIhJRKJlhPPqakpSdLc3JyeP3/ez3IBAAAAAAD6zrIsbW1taWlpSblczluX2zRN7yZJtm2rVCrJtm1J8mbb1Y8GOw8b1o3NiDDpMMhKJpPa29vT5uam/uEf/kGLi4u6du2aPv/887baCgaDfaoSAAAAAABgcMLhsAqFgiYnJ+W6rhzHUalUUjab1fr6utbX15XNZlUul73Zdj6fzwvBDMNQoVDQ9evXh30pZxqrIKxe7UOufVDLy8u6fPmy7t+/r2q1eub5T58+HUCVAAAAAAAA/WdZlnZ3d3X37t1TNw2shV/SnzYjjEaj2tnZ0dzc3DDLb9nYBmE1ta1CK5WKEomEnj59qunpaX300Uf68ssvh10eAAAAAOACcV3p+4PmN/Z3w7DUZtIdHBwol8spHo8rGAzKsixNTU1pdnZWc3NzikajXpby9OlTbymp82Bs1gg7y9TUlLcLYTab1cOHD2VZlizL0v379/XTn/502CViBBwcHOjq1atNj1lZWdHKysqAKgIAAABwnhy40g/+uvkx//i30iXfYOoBTrO4uKjFxcVhl9FzYz8i7CS1aZNv3rzRe++9p5s3b+ry5cv67LPPWpo2iYvt3bt3TW98RwAAAAAA42R/f1+rq6vDLqMlBGFNWJalZ8+eKRqNqlKpKB6Pa3p6Wn/1V3+l3d3dYZeHIbly5UrT2+Tk5LBLBAAAAABgYKamppTL5fSXf/mXwy7lTEyNPMXu7q6SyaTS6bQkNSwG9/TpU5XLZf32t78dZokYgomJCX377bfDLgMAAAAAOvbkyRM9efKk6TEHBwcDqgYXxfz8vDY2NnT//n09ePBg2OWciiDsiLdv3yqRSCifz0uStyVobYeEaDSqRCKh2dnZYZYJAAAAAEBHqtWq3r17N+wyMKJ2d3flOI729vZaPqdUKimTych1XaVSKYKw8+DFixdaW1tTqVSSJC/4kg6H+EWjUa2urp6rnRAAAAAAADhqcnJSV65caXoMQdl4efHihVKplDcoqBuO43RfUB+NdRBWrVaVTqe1trbmfVD1AZhpmkokElpeXh5ShQAAAAAA9FYrO91funSJ6ZFj4tGjR7p3756kxkykXT6fTz6fT5Zl9aq0vhjLIOzo+l9Hpz8Gg0ElEokLuU0oAAAAAACAJG1vbyuRSDRkIvVOe/6040zT1MbGRj9K7ZmxCsLevn2rtbU1ZbNZSX8KwGr321n/69mzZ/rkk0/6Wi8AAAAAAEC/pFIpSX9aEsrv98s0TUlSpVLR0tKSpqentbW1deL5juPo5cuXevbsmUqlkq5fvz6o0js2NkHYwsJCT9f/SqVSBGEAAAAAALRhfX1duVxOhUJBjuPINE1ZlqVYLKZgMHju+h7k9fj9ftm2rUwmo3A43JM28/m8/H6/vvrqqxNfX15e1rNnz+T3+/Xee++deMzNmzclSffu3dNvfvObntTVTxPDLmBQisWiXNf1RoH5/X6l02nt7e3p4cOHbYVgGxsbXqgGAAAAAACay+fzmp6eViKRkCRlMhmVy2Ulk0mVSiWFQiGFQqG+LLTej74HfT2JREK2bfekrXq2bXujwk5y7949ua6r9fX1pu0kEgm9fPlSn332Wa9L7Dmf281KaOfIxMSEN2fV5/N1lMzu7e3Jtm3vi/z999/3uEqMqtpCkRMTE3zuwAD8qvT7YZeAPvu59eNhlwAA6IHvD6Qf/HXzY/7xb6VLfRiC0U3fwzq3F+cPSi9/A+XzeYVCIUlSNBo9MXgJBAIqlUoyTVPFYlGGYXTVZz/7HvT11PcnqacjwiYmJuQ4jiYnJ089JhQK6fXr16pUKk2PCwQCevv27ZnHDdvYjAiTDqdEBoNB3bx5U7Ozs23dpqamND09rdnZ2a52UQAAAAAAYFw4jqNIJCJJMk3z1NFHmUxG0uEIpdrxo9j3oK+nvr9+sCxLe3t7TY9JJBJyXdfbWfI0CwsLcl1XDx8+7GWJPTc2a4RJOjPlbFU+n9eHH37Yg4oAAAAAALi4IpGIN6uqNo3wJKZpKhwOK5vNKp/PK51OKxqNjlzfg76e5eVlzczMSFJfpo2apql0Oq0HDx6cekwwGNTc3JxSqZRisZj+4i/+4sTjCoWCpMMQsFl7wzY2I8KCwWDPhubVvgQAAAAAAOBktm0rn897j5eWlpoef+vWLe9+s5BpWH0P+nrS6bSy2aw3uqwflpaWlEwm9dlnn2l3d1evX7/W69evjx23uroq13VlWZa++OKLY68/evTIW0u9H2uZ9dLYBGGxWGyk2wMAAAAA4CJJJpPe/WAweOY6WfXrXjmOo2w2O1J9D/J6bNtWLBZTPB6XZVktn9eucDisyclJxeNx+f1+b5H/v/zLvzx23OLiolzXVTgc1sLCgu7cuaM7d+7o2rVrDdMmTdPsW729cGGDsMePHzekmLXtPHtleXm5p+0BAAAAAHCRpNNp736rYU59iLK5uTlSfQ/yeiKRiCzLagjf+mVjY8NbC911Xbmuq2KxqLdv3zYcV78eWqlUUjqdVjqdVrlc9s73+Xx9De564cIGYX/4wx8UCoX0+eefd9XOxsaGLl26pD//8z/Xl19+2aPqAAAAAOCQ6x7uJNjsxn5dOG9q0+RqFhYWWjqvPkTpdERYP/oe5PUkEgmVSqW+TomsFw6HtbW11bAxoGEYun79esNxpmnq5cuXxzYQ9Pl88vl83nkbGxt9r7kbFzYIkw6TzGg0qvv373fcRm13hK+//lqWZWl3d7d3BQIAAAAYeweu9IO/bn47IAjDOVO/lpbU+nS5o8cdDaCG1fegrqdUKml9fV2pVGqgUwzD4bAqlYpSqZSSyeSp63wFg0F9/fXXunHjhjd6rHazLEuFQqFn67P3y1jsGvny5UuVy+WOhlXOzs5qf39fwWBQ0mEw1s3wTAAAAAAXj+ueHVZN+KR/GjQB8Z5ddG/evGl4fNZ6WjWXL19ueFwoFNqeatePvgd1PYuLiwqHw13vmNmJqamplpaBMk1TuVxO+/v73k6Rpmlqdna23yX2xFgEYYVCQZFIRAsLC3r9+rV++MMftnxusVhseHzt2rVelwcAAADgnKuN6mrmH/9WukSo4+E9u9iOjijqdARVuVweib4HcT2RSESSRn5qYc3U1JQWFxeHXUbbLvTUyHqZTMZbbO6bb77pqI2dnR3t7e31uDIAAIDRxxpGAIB2nDa1rl2O44xE3/2+nmw2q2w2q0wm0/Jos16oVqu6c+eOPvzwQ3322WcD63eYxmJEWE1t21HLspTNZvWTn/yk5XP39/cVCoU0Pz/fxwox6g4ODnT16tWmx6ysrGhlZWVAFQEAMBiM3ACA8+HJkyd68uRJ1+0cHBx0dX4nAZZ0fMphJ4NR+tF3P6/HcRxFIhFFo1FvWaZBCYfDevXqlVzXVT6f1+zsrH72s58NtIZBG6sgTDpc2O3Nmzf64IMPtLq6qo8//vjMc16/fq1IJCLHcXTv3r0BVIlR9u7du6avV6vVAVUCAMB4YB0hAGhdtVo98zfLedJpADWqfZ/U5uLiokzTVCqV6nl/Z8nn896Oj1Lra5+dZ2MXhEmHc3QLhYKWlpZULpf14MGDU4999OiR7t27J9d1NT09rU8++WSAlWIUXblypenro75DBgAA5023o9EI0oDh+g/b0r8JDLuK8TE5OXnmb5ZWdBumGYbRkyCpk2CmH33363rW19dVKpWOrU8+KKZpamdnRz6fT+FwWDdu3BhKHYM0lkGYdPjle/nypW7fvq1bt26duBPk6uqq1tfX5bqufD6fksnkECrFKJmYmNC333477DIAAEAbmNYJ9M9/2D77mP8+K12akP71XP/rQe+Warl06VJX0yNnZmZ6EhzNzMyMRN/9aLNUKimRSCiZTLa9M2avRKNR3bt3Tz6f78RcpF137tzRr3/96x5U1j9js1j+aZ4+farFxUUtLCzoj3/8o/f8q1evvODL5/PJsixGgwEAAADAP9n/z9Jf/S+tHXv7f5aq/7mv5WDEdDrF7mjY1OmIsF733Y82axv6xePxjtruhXg87u382OnGgvXy+XzXbfTbWIwI+93vftd0YfxoNKr5+XnduHFD2WxWP/rRj7wQjNFgAAAArbmI05+YVgmc7n8qSf/n/9Pasf/H/y39+5L0P/zX/a0Jo2N+fl6lUsl77DhOS2HS0cXk/X7/SPTd6zbX19dl27aCwaAikciZ7dQHamtraw2jt27duqVwOHxmG6fJ5XKKRCIKh8N6/fq1fvjDH3bUzs7OTs921+ynCxuEzc7OSjoMsqLRqPL5vH70ox+derxlWdrc3NTNmzd1//59b8E413VlWdZYzJMFAGBQflX6fcfn/tz6cQ8rQavGdfoT0yqB0/2v/6m94/+3/0QQNk4Cgcb/MmLbdkvT/8rlcsPjTnZR7EffvW7zu+++k9TZCKpSqdQQypmm2VUQJkmff/65Njc3ZVmW7t27p0gk0tL617XN4gqFwlBHtrXjwk6NTCaTqlQqymQyWlxcVDAY1LNnz5qeU1tE/+nTp95zPp9Pt27d6ne5AAAAI6sX059cV/r+oPnNPWPkVTOtBHUAeqvyf/X3eJxv8/PzDY9bHSlUP/LJMAyZpjkSfQ/zevrp/fff16VLlzQ9Pa3bt2+rXC4rGo1qenpaly5dOvM2PT2t6elphUKhhnBulF3YIEySpqamdPPmTT19+lRfffVVy2t8vXz5Unfv3pX7T//f2LAWrQMAABgFnUx/Oqo2sqrZ7bQpiK2ORiMMA9rXTUg9/V+211e7x+N8syyrYergmzdvWjqvUCh494+GT8Psu9dtJpNJua7b8q0+QMtkMg2vdbOUUzQabWirNjOuk9t5caGDsG4kk0ltbW3JdV3t7OwMuxwAAICh6WT6U6+wGDfQX92E1P/qn7fX179s83icf0tLS979VkcL1R+XSCRGqu9hXk+/xGIxSYez4WohWCd852ixzAu7RlgvhMNhFQoF3bt3Tx9//PGwywEAAGOu24XbOz1/mNOfBrUY90Vc6B/ot//Oku79prW/0f/qv5D+DRNtxk4sFlM6nZbU2lpY9ceYptnR+mD97HuY19MvtZl0z58/l3S4hlknO2Tatn1upkYShJ3Bsiy9fPly2GUAAAB0vXB7p+cPc/pTLxbjHteF/oF+m/pn0t/9N4d/P2d5+t9Kk/+s7yVhxFiWpWAw6AVC2Wy26aLumUzGu3/W6Kl0Oq1yuaxYLHbiulv96Luf1zNMsVhML168ULFY1PXr1ztuJ51O686dO70rrE+GMjWytqvAuBr36wcAAOfLMKc/dTsajamVQH+1Eh7/+zAh8zhLpVLe/bW1tVOPcxzHG20VDAYVjUZPPTYUCikWi2l9fV1+v79hQfp+992PNgelWq2qWq1qd/f/be//Yxu77zvf/0XJTuzbXQ2lSYF4NUEyh/GP5uLaGVLTXXcXX6AWmaRI/d00JmeK5qYFvvWQTt27X1ylFj0JihYoHIVMqsXFvWlNjvv9o90C1ZB2stsGNzU5XuD+cd27I51xEiBInPDMFJ2B80ctHWt3YSeZEb9/sKRJiiIPec7hIcXnAyCGFD/8nA81ozM8L70/n88N3bhxo5VNxONxnThxwlUIJr273tikCyQIKxQKOnnypH79139dr7zyShBDGLsbN27o4sWLuv/++0de8A8AAEy/adw98bNR6efudtbWzfSnXmN3W43mxUL/gxz1PXf7d+33vxVgXH6DEGymGYbRqowyTVP5fL5nu9XVVUmNnRXbK6l66Z6WePny5bEd248+/dRrh8dIJKJIJNLxfbt48aInRTuTEPgNEthi+Xt7eyqVSkokEpqfn9f58+f10ksvBTUcX7z22mut8CsSiSifz6tWq01FQgoAAPwx6bsn9nptc/qTE0dNfxp17G6r0dwu9O/me+7m79qL1wPApEgmk6pUKgqHw8pms0qlUjJNU7Ztq1qtKhaLyTRNRaNRXb9+feAaVd3P95oa6dex/erTL907O66urury5cva3d3Vk08+2Wr3zDPPaGFhwfXxnn/+edd9+C2QICyZTOqJJ57o+Msol8tKpVKan5/XJz7xCb300ktTOYXwtdde0+c+9zmdPHlSsVisI/yq1+uKRqNaX18PepgAAGDKeDHFz02o42b6k5uxu61GczO1kmmVAOCdeDyuvb095XI5WZal1dVVLS4uKpVKaWlpSaVSSTs7O45Co1KpJMMwFA6Htb6+PnARei+P7Wef/bTnCv3WJeuluSNktVrVyy+/rCeeeEInTpzwZFzTKJDF8k+fPt0qDSyXyyoWix2ljZVKRZVKRVLjH1cqldK5c+c8SSf98Morr6hUKuny5cutucntVV+GYSiTySiZTOr06dMBjRIAAEwzt7snDhvqPP4Lwy9sfdT0Jzdjd7sYt5uplePasRKTwe2urACcWV9fd10cEo/HVavVAjn2OPr0Qy6X02OPPRb0MCZCYFMjm5LJpF5++WXt7e3p+eefVzQa7agUq1arymQyWlxc1Mc//nG98MILE1Ep9sorr+j8+fM6efKkEomEisWibNtujTscDiudTmtnZ0c/+tGP9MwzzxCCAQAAR3pVZLmd4jeOtbKO4nbsbqrR3EytdDtuTBemogI4zoatIjvOAg/Cmk6cOKF0Oq3t7W3VajU988wzMgzjyFDs7Nmz+upXv6obN26MbYwvvfSSzp8/r/n5eSUSCZXLZe3t7XWMsTlXeHd3V88//7zOnGFlSAAA8K5Rpye63T0xyFDH7didOKoazc3UynGMGwCAcfjQhz4U9BAmxsQEYe1Onz6tXC6nH/3oR9rZ2dGFCxcUDoc7AifTNJXNZhWJRHwLxfb39/XSSy/p4x//uObn55VKpVQulzvGITXKMkulkg4ODnT58uXW7hAAAOD4cbOTn5s1p9zunhhkqON27G64Weg/yHEDAOCVcS7Wf//994/tWKMKZI2wYZw5c0aFQkGFQkFXrlzR888/rxdffLFjDS7TNFvBmGEYSiaTOn/+vD760Y8Ofbz9/X1dvnxZpVKpY92y7p0eo9GoMpmMzp07N9OLzAEAMI3crAXUnD7Vz+3npPker3Wz5tTjD0kv/9DZa6XDuye6DXXmQo331c/cEWsnuR27W585M3iNsV5TK4MeN+AU65v54y+vSb8ZC3oU/tjc3NTm5mbfNgcHB2MaDfy2tLQ0tmONsnbbuE18ENZudXW1VW3Vvsh+e0hVq9WUz+eVz+cdh2LN8KtQKMg0310Qozv8avaXyWRY7wsAgCnmJsxy4qiLp1GmJzaDsM9GpWe/5SxI67V7ottQJxQa/fvhduzj0Gtq5TjGfZwvtDE+fp/TjiOn09Tn55ytUzht9vf3devWraCHgWPm2rVrCk1B4j6RUyOdaF9k/8tf/rKi0Xc/eTSnLTZDsVgsppMnT+pzn/ucXnnlFUnSjRs39NWvflVnz57V4uKiMpmMTNNshV/NP7sXvf/yl79MCDbDDg4OdOrUqb63Qb9ZAQBMt1HX+JLcTU90M8VPcrdWlltuxx4Ut+N2828FgH/cTFM/LhYWFrS8vNz3Bgxjf39f2Ww26GE4MlUVYb2cOHGitV3p9evXW1MnLctqtanX69rb21OxWFSxWDzUR71eVygU6gjBmpVfrPeFboN+czIJu5oCANzrVakz7MXT47/g7ZpTo07xk94NdQa9XvInjHIzdjfTMt0addxu/60A8I+baerHxdramtbW1vq2mZ+fZ3rkMWFZlj7+8Y/70vfu7q5s25ZlWa1sZdJNfRDWrrnIfi6X07Vr1/T888+rVCrJtu1Wm/bpjt3hVzweVyaT0RNPPDHuoWOKDPrtyMLCwphGAgAY1ahTYtxePI1jzamjdk+U3IVR43DU2N1MyxyHXuMe14U2UyuB4bmZpg5Mq/Y10L3UvaTUNDhWQVi7oxbZb1ev11n0HkOZm5vTzZs3gx4GAECjLw7tplLH7cXTtK6VheF5caE9rWsYsXA7Jl2Qu+gCx017Bdi0hGLHNghr12uR/WYAxnpfAABMp1EXh3ZTqeP24snt9MQgpwhOsyC+b27/rbidWhlkGMXC7Uejgm8yuJ2mDkwjP0OqaZgO2W4mgrB2yWRSyWQy6GEAAIAx6HXR6aZSx4uLJzfTEyd9imA/QYZ4QXzf3P5bcTu1clbDqCADwGmt4JtF45imDkya9g0GvdZcI2xazFwQBgAAjodRLzrdVOqM6+LJr+mJsxZGBcntvxXWMBpNUAEgmyNMl2mYpg54yTAMbW9v+3oMy7KUSqX02muv+XocL8wFPQAAAIBhDXvRuf/Ou4/dVOp8Nir93N3OXnfUxVMzjOp38zWMmut/m7LZDRPL7b8V1jCaLqNU8CE4zWnqTvixiy5wHBmGoUuXLgU9DEcIwgAAwNRxc9H5+JBVWu2VOl5cPBFGTZdRg0u3/1ZYw2i6jFLBh2A5mZ4a5C66wDTyc/qllwjCAABAIOpqTGN6+2fS3/2D9BfXpOLVxp//zz80vn7UUj9uLjrdVupw8TRb3ASXbv6tuAlsMX5U8B1P7KKL42J3d3dsxzpzZvJ/cFgjDAAABKJel/7old7PWbvSt16XPvUR6ZH7Dj/v5qLT7c6NTnDxBKeO+rfCGkbThQo+AJPMtu2xHcvvtci8QEUYAAAIxHd/PLjNN74nfadHO7cXnW4qdYJc4wuzgzWMpss4KvicbBCCycHfFybNNCxiPy4EYQAAYOzeuS198wfO2n7z+9JPbnd+ze1FZzPMevP3pf/tV6WPfVg6u9z483/7VWn396X/+YgKG9b4wrgwDXd6uJ1y7XQXXMKVycDfF6ZRsVgMeggTgyAMAACM3XfekH52x1nbn96Rvv1G59fcXnQ2w6yl/0H6d/9a+tvflv7L7zb+/Hf/Wlr8HwizMB2YhjsZ3FTwudkFF+PH3xemVaFQ0Ne//vWghzERCMIAAMDY/eDN4dq/3tWeaWMAgtCvwmfUCj43u+Bi/Pj7wjRLJpP6xCc+oa9//eva398PejiBIQgDAABj947Di4imt3u0Z9oY4E6Q07YmccrYOKa79argc7MLLsaPvy9Mo3q93rq9/PLLeuKJJ7S4uKgXXngh6KEFgl0jAQDA2N3jcFpj07092jfX+XrrHek/XGusJbb3dmNh/E8+JH32jBRmZzbMKKehzvyc92FxkMce1bDT3R7/Be8qTd3sgovx4+8L0+bg4ECS9NZbb0mSdnd3JTV2kjQMI7BxBYkgDAAAjKwuqV5vLGb/7R9LP/xH6e3b0r13SQ+8T3r4/Y3Qq3u5rQdPStYQ0yMfOHn4a6GQNB96d52vf/ev3bwT4PgIMtQJ8thujDLd7Xd/yZtju90FF+PF3xem1YkTJzr+nGUEYQAAYGT1uvRHr/R+ztqVvvW69KmPSI/c1/ncw/dJ1ZqzBfPfM3/49cA0aFYtDmrjtSBDnSCP7cYo0928GvfjD0kv/9B5++5dcDFex+Xva3NzU5ubm33bNCuJgOOGNcIAAMDIvvvjwW2+8T3pO13t7rlL+uSDzo7xyYek9/KrO0yh5u6k/W5+7E4a5BpG07p+UpDT3dzugovxOi5/X/v7+7p161bfG3BcEYQBAICRvHNb+uYPnLX95vcb0yfb/U/vH/y6T32kMb0SgHNBhjrTun5SkNPd2AV3uhyXv6+FhQUtLy/3vQHHFb9fBQAAI/nOG86mNkrST+9I335D+sUPvPu1UEj6/ccaAdl3fiy9/o+NcO2ervXFgFk16tTKIEOdaVg/6S+vSb8Z6/xa0NPdPnOmsYFAP+yCOzmOw9/X2tqa1tbW+raZn59neiSOJYIwYAgHBwc6depU3zZO/lMBgOPgB0Msdi9Jr7/ZFYSpEYbde7f0Lz/QuAF4V3NDiGEFGeoEHSiNumPlZ6PSs99ytr5ZUNPdfmOCQxUcxt8XMLmYGgkMadBc+v39/aCHCABj8Y7DBbGb3h6yPYDRBLmGkRfHrtelOwf9b/X64dcNu2Pl/jvvPj4u090AAINREQYMadB8+YWFhTGNBACCNey0xXuZ5giMRTPUGTR1S/I+1PHi2Ad16a4v9n/t7ecOV8u53bHyOEx380uv6aTwF99zwD8EYcAQ5ubmdPPmzaCHAQCeqatRWfGT29K3fyz98B+lt29L93at09VrdtaDJyVriOmRD5z0atQABnEb6tTrjUCqn7lQ710vgwqURtmxsj0Ic+I4TncbdTrpuPQLhEZdRy9ok/49B447gjAAAGZYvS790Su9n7N2pW+93ti58ZH7Dj//8H1SteZswfz3zPfuA0Bw+oU6o1ZleXHsUU3rjpVBGnY66eO/4G0FodtAaNR19IIU9Pccs+eFF15QLpdTLBbTX/3VXwU9nInAGmEAAMyw7/54cJtvfK+xq2O3e+6SPvmgs+N88iHpvfz6DYCPpmHHykkzynRSr7hZ022aBfk9x+y5du2a0um0arWaSqWSXnrppaCHNBEIwgAAmFHv3Ja++QNnbb/5/cb0yW7/0/sHv/ZTH2lMsQQAPz0+5A6UXu9YOel6VV+NMp3UK7MaCAX5Pcfs2djYkCSF/mkeezgcDnA0k4MgDACAGfWdN5xNa5Skn96Rvv3G4a+HQtLvPyat/7+kTzwgGUvSv1ho/PmJBxpff5gpkQDGIMjdMoPmdIphd7sgp5POaiDEFF6Mk2k2EuR6va5CoaDHHnusZ7vz58/rlVeOWCvjGCIIAwBgRv1giIXuJen1Hu1DaixEfO/d0r/8gPTZM9KFs40//+UHGl+fsuVbAEyp5o6VTni9W2aQ3EwxDHI66awGQkzhxThZlqXFxUXt7OzoySefPLJdqVSSZVmeHPO1117zpB8/sVoHplo+n1elUtH29rZs25ZhGIpGo8pkMorH40EPDwAm2jsOp6Q0vT1ke798zXx15Nc+HX3Uw5EAmDRB7VgZpFGmGDZ3y3z8IenlHzo/lpfTSWc1EArye47ZEw6HdfHiRZ05M76TXjab1d/+7d+O7XijoCIMU6larWpxcVHZbFZSI8Gu1WrK5XIyTVOJREKJREK2bQc7UACYYPc4nELUdO+Q7QFgEvmxY2WQ3EwxDHI66ayu6TbLU3gxfoZhyDCMsR7Tq8oyPxGEYepUq9VWyJVOp1WpVBSPx2UYhpLJpGq1mqLRqKrVqmKxGGEYABzhwZPDtX9gyPYAAP+5mWIY5HTSWQ2EZnUKL4Jx/vx5bW1tje14165dm4ogjKmRmCq2bSuVSklqpNuFQqFnu1KppEgkIsuylEqlVKlUxjlMAJgKD98nVWvOFsx/z7z0CIveA2jzl9ek34wFPQq4nWIY1HTSZiA06NjS8QuEZnEKL4KRTqeVzWZ1/fp1pdNpGYahpaWlnm13dnZGrh6zbVuWZelLX/qSm+GODUEYpkoqlWpVeDWnRfbSrA4rl8uqVqsqFotKp9NjGiUAjFddUr3ev00odHjR+nvukj75oPSN7w0+xicfkt7LpwZgasyFpNvPDW5zFKe7EM7PcbEetHGsOeXXdFICoaMdtym8CMaJEyd0+fJlnTt3Tjs7O33bFotFFYtFV8er1+sKhSZ/mySmRmJqWJalarXaenzu3Lm+7c+fP9+63y80A4BpV69Lf/RK/9tRQdnD90mf+oh093zv5++el37tI9LD7/dv/AC8Fwo1Qqp+t6OuVdzsQjguToK6WXHcpxgSCAHuJJNJXb58WfV6/cibpL7PO71NC363i6mRy+Va9+PxuMLhcN/2yWSydd+2bZXL5Y6vAcAs+e6Pe09tDKnx9Qd/XvrOG9LrbzZ2h7z37saaYI/cRyUYMGvc7EIoUY02brM8xRCAM8lkUnt7e1pfX1epVJr5dbT5aIup0V6mGY06+1WWYRitxfq2trYIwgAcS9/98eA23/heo/rjqMque+6SfvEDjRuA2TbKLoTtQVgoJM2PODNm2Gq0x3+BYEdiiiGGt7m5qc3Nzb5tDg4OxjQajMOJEydUKBRUKBR0/fp1maap3d1d1et1PfXUU0qlUlpZWRmp7zfffFOWZalcdpDITwCCMEwF0zQ7Hp89e9bR66LRaCsIm5YfSgAYxju3pW/+wFnbb35fevB9VHgB6M/NLoRuua1Gw9GYYoh2+/v7unXrVtDDQEBOnz6t06dPtx4/9dRTSiQSevLJJ131W61W9fGPf9zt8HzHR2FMhfa1wSQ53s2iu51pmo6ryQBgGnznDWe7PkrST+9I336Dqi8A/bndhdANt9VoAJxZWFjQ8vJy3zYEZRhWPB7vCNgmFUEYpsLVq1c7Hg9aH6zp5MmTHY+3t7cJwgAcKz94c7j2r79JEAagv3HsQniUIKvR3K5tBkyTtbU1ra2t9W0zPz/P9EgMzWnRSpAIwjAVmtMbm0atCKvVap6NCQAmwTsOpxA1vT1kewCz57NR6dlvOZui6PUuhEFWo7lZ20wiSAMwvfb29nTixAlP+iqVSp704yeCMEyF7iBsVLO+OwaA4+eeu4drf++Q7QHMniB3IQyyGs0tt0HatCIABKafVyGY1335hSAMU2HUAKt7CuXu7q6rcRwcHOjUqVOu+pCclSIDgBMPnpSsIaZHPnBycBsACGoXwiCr0TCaWQ0AgeNuf39f1WpVlUpFu7u7sixLS0tLMgxDkUhEyWRSH/rQh4Ie5kgIwjBTvKgI82LRyP39fdd9AIAkPXyfVK05WzD/PfPSI/f5PyYAs8GPXQiDrEYDAEg3btxQNptVudx5Iq7X6wqF3k29s9msDMPQs88+q9/+7d8e9zBdIQjDVAiHw56EWE4X2e9n0O4qTiwsLLjuA8DxUZdUr0s/uS19+8fSD/9Revu2dO9d0gPvkx5+f2MKZK9fuN9zl/TJB6VvfG/wcT75kPRe/ucHMOHcVKMxTQ8ARnfp0iU99dRTkhrBV1MoFOoIwZrP12o1pdNpFQoFlUolffCDHxzreEfFx2FMhaWlJU+CsKWlJVevn5ub082bN12PAwDa1evSH73S+zlrV/rW69KnPnJ0NdfD//T1b/6gd2XY3fPSrz7YCNQA4Dg4qhqNaXoAMJqvfOUrevbZZ1uVX83gq16vd4Ri3er1ura3txWJRLSzs6NHHnlkXEMeGUEYpsKolVzd4ZkXFWEA4LXv/nhwm298r3GB1yvMCqkRkj3489J33pBef7OxO+S9dzfWBHvkPirBAAAA0NuLL76obDbbCsCawVc0GtXKyooikYjC4bAMw9DS0pIsy9Lu7q5qtZrK5bIsy9LBwYFWV1e1vb098WuH8bEYU2FlZUWmabYe27btKNTqXhw/Eol4PTQAcOWd241KLie++X3pwfcdHWrdc5f0ix9o3AAAAAAnmiFYvV5XOBxWLpfTuXPnjtwB8syZd8tyv/zlL+vatWv60pe+pBdffFFPPfWUvvWtb41r6COZC3oAgBOxWKzjsWVZjl5Xq9U6Hsfjcc/GBABe+M4bzha6l6Sf3pG+/Ya/4wEAAMDsePHFF2VZlur1ujKZjHZ3d3XhwoUjQ7Bezpw5o1KppC9/+cuqVCr6z//5P/s4YveoCMNUWFlZ6XhsWZai0cH7ZbdPjWyWcgLAJPnBm8O1f/1NKr4A+I9F5wFgNmxtbSkUCimXy+n3fu/3XPW1vr6uarWqy5cv65d/+Zc9GqH3qAjDVIhGox1TIa9everoddvb26373WEaAEyCd342XPu3h2wPAKMIhaT5uf63EEEYAEw90zQVjUZdh2BNmUxG1WrVk778QkUYpsa5c+dULBYlqWO9sH7a22WzWV/GBQBu3HP3cO3vHbI9AGDyUYEHICiWZbWus70QDocdL2UUFIIwTI1MJtP6AXWSMLe3MQyD9cEATKQHT0rWENMjHzjp31hmwdfMV0d+7dPRRz0cCQC8KxSS5gm6AATEyyWEJj0Ek5gaiSkSjUY7wqxyudy3falUat2nGgzApHr4PunueWdt3zMvPXKfv+MBAADA7DAMw9PwqlAoTPza3FSEYaoUCgVFIhFJ0sbGhpLJZM92tm23qsfi8bjS6fTYxggAw7jnLumTD0rf+N7gtp98SHov/3MDOOaYJggA4xONRlUqlfTkk0+67uvZZ5+VaZpKpVIejMw/VIRhqhiG0ar0Mk1T+Xy+Z7vV1VVJjfnJ7ZVhADCJHr5P+tRHjq4Mu3te+rWPSA+/f7zjAoAgsFA/4L/NzU2dOnWq7+3g4CDoYWIMzp07p0qloi984Qsj97G/v6/z588rn88rFAopk8l4OELv8XtlTJ1kMqlKpaJUKqVsNqurV6/q4sWLMgxD29vbymazrZ0vrly50rHbJABMopAaUx4f/HnpO29Ir7/Z2B3y3rsba4I9ch+VYAAAwDv7+/u6detW0MPABEgmkzp9+rRyuZxs29b6+ro+9KEPOXrtK6+8okKh0Fq2KBQKKRqN6rHHHvNxxO7xsRpTKR6Pa29vT/l8XltbW1pdXZVt2wqHw1pZWVGpVDpy2iQA+KEuqV6XfnJb+vaPpR/+o/T2beneu6QH3teo5rrn7kbodZR77pJ+8QONGwAAgF8WFha0vLzctw1B2ewoFAr62Mc+pkKhoEKhoHg8rmg0qkgk0lrvy7Zt7e7uamdnR9vb2zJNs/X6er0uqRGEXbp0KZD3MIxQvTliAEean5/XwcGB5ubmdOfOnaCHAxx7bnb2C8pBXfqjV/q3+dRHWOx+mrFrJIBJVa83/h/qZy7Ue0rpnQPpri/2f+3t5xpTUr02rcd2O+4g3/cwuAaaLcViUU899ZRCDuaet8dIzfb1el2lUklPPPGEb2P0CmuEAQDgge/+eHCbb3xP+o6DdgAADIN11QC4lU6ndfnyZZ04caIj6KrX64duoVCodavX6zpx4oR2dnamIgSTCMIAAHDtndvSN3/grO03v9+YPgkAAABMkmQyqevXr+uZZ55phV69NJ87ceKEcrmcdnd3debMmTGPdnSsEQYA8MU0Tm8c1XfekH7mcMbAT+9I336DdcAAAAAweZrhVi6X05UrV2Sapmq1mnZ3dyVJS0tLikQiisfjUxV+tSMIAwDApR+8OVz7198kCAMAALMpn8+rUqloe3tbtm3LMAxFo1FlMhnF4/GpO7bXfVqWpVwup2q1KsuyFA6HZRiGVlZWlM1mW4vXj8Pq6qpWV1fHdrxxYWokAAAuvfOz4dq/PWR7AACAaVetVrW4uKhsNitJKpVKqtVqyuVyMk1TiURCiURCtm1PxbH96DOfzysSiahYLMqyLEmN3RpN01SxWFQkElE+n3fcH3qjIgwYwsHBgU6dOtW3zdramtbW1sY0IgCT4J67h2t/75DtAQDwy1yosUPhoDaAG9VqVYlEQlJjUfZCodB6zjAMJZNJxWIxVatVxWIx7ezsKBwOT+yx/egzkUioWq0qHA4rHo/LMAxZliXTNFuhmKRWVVgymRzyO4EmKsKAId26davvbX9/P+ghAhizB08O1/6BIdsDAOAXdpyE32zbViqVktQIidpDo3alUklSY2pgs/0kHtuPPrPZrKrVqnK5nPb29lQqlZTL5TqqzNp59f2ZVQRhwJCWl5f73hYWFoIeIoAxe/g+6e55Z23fMy89cp+/4wEAAJgUqVSqNT2wOY2wl/Yqp2q1qmKxOJHH9rpPy7Ja64ytr6/3bLO+vq50Ot3xNdM0jzw2+gvVj9oPE0DL/Py8Dg4ONDc3pzt3HG4NB8y4Wdo1UmrsBPmN7w1u92v/o/Tw+/0fD7z3dPTRoIcAAMfKnQPpri/2b3P7uUZV2iQd2+24g3zfw/DiGsiyLEUikdbjvb29vlMEy+Vyq9opHA5rb29vpOP6dWw/+kylUjp79uyRIViTbdtaXFxsPc7lcgNfg96oCAMAwAMP3yd96iNHV4bdPS/92kcIwQAAwOxon9IXj8cHrpPVvu6Vbdsql8sTdWw/+rRt21Gg1dw9sv0xRkMQBgCAB0JqTHlc+zfSrzwgRU5K/2Kh8eevPCB9/t80wjIAAIBZ0T4dMBqNOnpNe9iztbU1Ucf2o89KpeKoH0na3d1t3V9ZWXH8OnRi10gAADx0z13SL36gcQMAAJhV3WtYnT171tHrotFoa5fEUSvC/Dh2kO9HalSONdcmi8fjjoM4HEZFGAAAAAAA8FS1Wu143F4Z1U93u1EWhffj2EG+H0m6fPlyq7/mjpQYDUEYAACS6pIO6tLbP5P+7h+kv7gmFa82/vx//qHxdXaXAQAAcObq1asdj52uaXXy5MmOx9vb2xNx7CDfj23bymQyikajqlQqrA/mElMjAQCQVK9Lf/RK7+esXelbrzcWw3+Edb4AAAAGak4HbBq1gqpWq03EsYN6P5ZlKZFIKBwO68qVK4RgHiAIAwBA0nd/PLjNN74nhULs/AgAgBfmQtLt5wa3wXTqDo5G1VwXK+hjB/F+yuWyUqlU6/Hi4qJyuZyjXSad2t/fVzablWVZ+tjHPqbPf/7znvU9qQjCAAAz753b0jd/4KztN78vPfg+6b38DwoAgCuhkDRP0OW5zc1NbW5uuu7n4ODA1etHCbCkw1MO23dKDPLY43o/tm2rWCyqUCj0DN+y2ayuXr3q2TphyWRSV65cUb1eV7Va1enTp/XpT3/ak74nFR/jAQAz7ztvSD+746ztT+9I336DXSEBAMBk2t/f161bt4IehmdGDaAm9diD+qxWq6rVaorH47Is69Ai/VKjUiyfz3tSGVatVhUKvZtIz8LUS4IwAMDM+8Gbw7V//U2CMAAAMJkWFha0vLzsuh+3YVo4HPYkSBolmPHj2ON6P8lkUslksuNrxWJR2Wy24/jZbFbpdNp1cGUYhq5fv65QKKRkMqnHHnvMVX/TgF0jAQAz752fDdf+7SHbAwAAjMva2ppu3rzp+jY35y4uWFpa8uT9jNKPH8cO8v2k02nt7OwcCr2KxaLr8aTTadXrjb3Rt7a2XPf3uc99znUffqMiDAAw8+65e7j29w7ZHsfD18xXR37t09FHPRwJAACTb9RKpe6qq1Erwrw+dpDvR2pUbl25ckWxWKz1tatXr47UV7v19XVVKhW98sor+vu//3t98IMfdNVfr6mck4aKMADAzHvw5HDtHxiyPQAAwKxZWVnpeOx0WmH3YvKRSGQijh3k+2mKRqMd0ya92smyUqno05/+tJLJpP7rf/2vI/dz/fp1z8bkJ4IwAMDMe/g+6e55Z23fMy89cp+/4wEAAJh27ZVLkvPQplardTyOx+MTcewg30+78+fPt+57uZj/n/3ZnymdTisajerP/uzPtL+/7+h1+/v72t/f1yuvvKJUKuXZePzE1EgAwMy75y7pkw9K3/je4LaffEh6L/97AgAA9NVdQWVZlqLR6MDXtYc74XBYhmFMxLGDfD/t2o/pxQ6PH/7wh3X9+vXW43q9rnQ6rXQ6PXRf9Xq9YwfKSUVFGAAAalSFfeojR1eG3T0v/dpHpIffP95xAQAA782FpNvP9b/NTf71/ESLRqMdQY3T9ay2t7db97vDpyCPHeT7OYoX/TUXy2/eQqFQx+NhbtOCIAwAAEkhNaY8rv0b6VcekCInpX+x0PjzVx6QPv9vGmEZAACYfqGQND/X/zYFhS0T79y5c637pmk6ek17u2w2O1HHDvL9NLVPyUwkEq77y2QykqRQKNQKwUYxDZVgTaH6NMV2QEDm5+d1cHCgubk53blzJ+jhAFPBzQ57wHHDrpEAcHzcOZDu+mL/Nrefa4Rpfrx+XLy4BjJNs2NtrUHxQ7VabYU7hmEcWl8r6GMH+X6a8vm8stmswuGw9vb2XPcnSalUSi+++KKkxhpmo0y5tCxLpmkqFApN/DUzq5wAQzg4ONCpU6f6tllbW9Pa2tqYRgSgXV3SoF/vhEKN6i8AAAD4KxqNKh6Pq1qtSpLK5XLHrofdSqVS6/6g6qlisaharaZMJtNz3S0/ju3n+3FqY2NDknTp0iVP+pMaVWEvvfSSdnZ29NGPfnTkforFoj73uc95Ni6/UBEGOND8bYgTf/AHf6A//MM/9HdAwBQIoiLsoC790Sv92/z+Y6z5gfGjIgwAjg8qwoZjWZYikYikRpC0s7PTs51t21pcXJTUqEqqVCpH9plIJFphlCTt7e31rGLy49he95nP57W1taV4PK6LFy/2rcbKZrPK5/NaX19XLpc7st0olpaWtLu767qfubk5x9fOQWGNMGBIy8vLfW8LCwtBDxFAH9/9cdAjAAAAmB2GYbQqo0zTVD6f79ludXVVUmMnxPZKql7aQzBJunz58tiO7WWftm0rm822+llcXDyyciyVSimfzyuXy3kegknSxYsXtb+/77qfUXabHDcqwgAHWCMMGF4QFWHffkP6xvcGt/u1/5HdHzFeVIQBwPFBRdhoqtWqUqmUbNtWMpnUxYsXZRiGtre3W2FQNBrVlStXBq5Rtbi4KNu2W48rlYri8fhYju11n5FIpGMBfKkRnsXjcRmGIdM0tb29rXg8rlwu13MaKIZDRRgA9FGvNz6s9Lvx64TJ8M5t6Zs/cNb2m9+XfnLb3/EAAADgXfF4XHt7e8rlcrIsS6urq1pcXFQqldLS0pJKpZJ2dnYcBVGlUkmGYSgcDmt9fb1vCOb1sb3uc2dnR+vr64pGox1tTdOUZVlKpVK6fv166z1PiosXL+rv//7vgx7GSKgIAxygImx2Tctv7CbRuCvC/ss/SP/n687b/8oD0i9+wL/xAO2oCAOA44OKMBx3L730kiqVira3t3Xx4kV9+tOfPtSmXC4rnU7rYx/7mHK5nD74wQ8GMNLRcOkGADgWfvDmcO1fH7I9AAAAcJx99atf1cmTJ5VKpVQsFmWa5pEL6CeTSVmWpR/+8IcyDENf//rXxzza0RGEAQCOhXd+Nlz7t4dsDwAAABxHb731lu6//35ls1nt7e2pXq/LyeTBcDisnZ0dffSjH1UymdSf/dmfjWG07t0V9AAAAPDCPXcP1/7eIdsDAAB4YS7UmPo4qA0wLqlUSrVaTaFQSKFQ4x/fMKtoXblyRUtLS0qn0zIMQ7/8y7/s11A9QRAGADgWHjwpWUNMd3zgpH9jAQAAx5fbICsUkuYDDro2Nze1ubnZt83BwcGYRoMgXblyRdVqVaFQqBV+hcNhrays6MqVK476CIfDeuaZZ/SVr3xFmUxGr78+xMK9AWBqJADgWHj4PunueWdt3zMvPXKfv+MBAADHUyjUWMi+3y004RVd+/v7unXrVt8bZkOhUJDUqABLp9Oq1Wra3d3Vyy+/PFRV2K//+q9Lkmq12sRPkaQiDABwLNxzl/TJB6VvfG9w208+JL2X/wEBAMCMWlhY0PLyct82hGGzoVkNVigU9OSTT47cj2EYrfsvv/yyfvu3f9uL4fmCywAAwLHx8D9VeX3zB9LPeuzyffe89KsPSg+/f7zjAgAAmCRra2taW1vr22Z+fp7pkTPAtm1FIhFXIZikjt0lTdN0OyxfEYQBOPbqdelgQFXvXGjyS9gxWEiNKY8P/rz0nTek199s7A55792NNcEeuY9KMAAAAKApHA4rGo267qcZftXrdVmW5bo/P3E5AODYO6hLd32xf5vbzwW/aCm8c89d0i9+oHEDAAAA0JthGLJt23U/GxsbrfvhcNh1f34iCAMATJS6GlV8P7ktffvH0g//UXr7tnTvXdID72tMa7zn7kb1FwAAAIDRra6u6oUXXnDVx1e+8hWZptnaebJ9vbBJxK6RAICJUq9Lf/SKlP+/pL99XbJ2pTf2G39+6/XG17/zRtCjBAAAAKbfxYsXtbe3pz/+4z8e+fXPPvtsKwQLhUI6f/68x6P0FkEYALj0l9d6f71el+4c9L8NsSPxzPjujwe3+cb3pO84aAcAAADgaOFwWM8884zW19f1hS98Qfv7+wNfs7+/rxdeeEH333+/8vm86l0XNel02q/heoKpkQDQx1EhV7vfKkvzc9JnznR+nbXJhvfO7caOj0588/vSg+9j8XsAAADAjVwuJ9M09eUvf1m5XE6JRELxeFyStLOzo6WlJe3u7qpWq6larXYsjC9JobZdx55//nktLCyM/00MIVTvju4AHNLcOnhubk537twJejgY0p0Dh4FUV43sW+9Iy1+S/vvPBh/jn71HunVRWrjH/XGPi6+Zrw79mv/yD9L/+brz9r/yAAviYzo8HX006CEAADAUroFmTyaT0aVLlzqCrV66A7Dm40KhoAsXLvg7SA8c08svAHDvL0xnIZgk/befSn9u+jueWfCDN4dr//qQ7QEAAAD0VigUtL29rccee0z1ev3Qrak9AKvX64rH46rValMRgklMjQSAI/3194dr/zffl373l/wZy6x4x2Hw2PT2kO0BAAAAHC0ajapSqej69euqVquqVCqyLEu2bWt3d1dLS0sKh8MyDEOJRELnzp3TiRMngh72UAjCgCEcHBzo1KlTfdusra1pbW1tTCOCn/be9rc9Drvn7uHa3ztkewAAAACDnT59WhcuXJiaKq9hEIQBQ7p161bf553ssoHpsHivv+1x2IMnJWuI6Y4PnPRvLAAAAACOH4IwYEjLy8t9n5/0HTLg3OMPSS//0Hn7X33Iv7HMiofvk6o16WcO1mN9z7z0yH3+jwkAAACYNTdu3FC1WtXOzo52d3clSUtLS4pEIorH4/roRz8a7ABdIAgDhjA3N6ebN28GPQyMyWej0rPfcr5r5G9G/R/TcXfPXdInH5S+8b3BbT/5kPRe/hcDAAAAPPPCCy8ol8vJsqyBbTOZjNbX1/WhD33I/4F5iF0jAeAIJ+6R/uTfOmv7/KekhXt8Hc7UqNelOwfSQf3oW73P6x++T/rUR6S753s/f/e89GsfkR5+vy/DBwAAAGbOjRs3dP/99yuTyahWq/XcLbKp+fVCoaBIJKI//uM/DmDEo+N36QDQx2fOSL9V7t/mz5ONdqP4y2vSb8ZGe+2kOqhLd31R+vmlo9v8/mPSP+26fEhIjSmPD/689J03pNffbOwOee/djTXBHrmPSjAAAADAK9euXVM8Htfe3p4kKdT2Qf2oMKz5nCStr6+rUqnoW9/6lv+D9QCXEgDGov5PlUD9zIWODkcm2W8cEYL95bXBr/2tsjQ/N3qQNq2+++PB63vdc5f0ix9o3AAAAAD4I5VKaW9vrxWANQMuwzAUj8cViUQUDodlGIaWlpZkWZYsy1KtVtPly5dl27YqlYo+8YlPTEUYRhAGYCyaVUL93H5Omp/CIKyXt96Rfuc/Omv71Dekx39hsqZWugkunQSA3/he47VMb8Ss+Jr5qqvXPx191KORAAAgbW5uanNzs2+bg4ODMY0GQbp06ZIsy+oIweLxuHK5nM6c6f3b+vavP//88yqXy9rY2FClUtEf//Ef6/Of//xYxj4qgjAAkPdTFP/CdLbIviT9t59Kf25Kv/tL3h3frVGDy2ECwG9+X3rwfUxzBAAAGLf9/X3dunUr6GFgAhQKBUmNACwUCqlQKOjChQtD9ZFMJpVMJpVIJLS+vq4LFy5oYWHBj+F6gsXyARx7TqcoOmnn1F9/f7j2f9OjfXPR+X63I6brB2aYAPCnd6Rvv+HveAAAAHDYwsKClpeX+94wG5rVYKFQqBVijapUKqler6tUKnk4Qu/xe3gAx1pQUxT33nbfftKnk/aqohs2AHz9TdYAAwAAGLe1tTWtra31bTM/P8/0yBlg27akxgL5Fy9edNVXOBxWOp3W5cuX9du//dsejM4fVIQBONZGmaLohcV7/W3vt1Gr6IYNAN92+HcDAAAAwHvRaFRSY2F8L6YzRiIRWZbluh8/EYQBONa8mKI4iscfGq79rw7Z3k/DVtHtv/Pu42EDvXvvHq49AAAAAO+srq5KknZ3dz3rkyAMAALkxRTFUXw2Kv2cw5Dnn71H+s2oN8dtcrO+mJsqumEDwAdODtceAAAAgHe+8IUvSGpMkbxx44br/mq1msLhsOt+/EQQBmDiuQl1gpqieOIe6U/+rbO2z3/Km3XJ2jXXF+t3Ozjie+amim6YAPA989Ij9w13LAAAAADeOXHihC5fvqx6va5nn33WdX+XL1/W0tKSByPzD0EYgInnJtQJcoriZ84MbvPnSWftxslNFd0wAeAnH5Ley5YtAAAAQKCSyaQKhYJefvll/c7v/M7I/Tz77LOybbu17tik4hIEwLH22aj07LecTfXzY4riIL/hMgTrtXOjW26r6D5zprGQfj+f+oj08PuHOw4AAAAAZ5566int7OwM9ZqlpSUVCgUVCoWhwyzbtmVZlkKhkBKJxFCvHTeCMADHWrNCaVAwI/kzRdENpzs3zs95W1X2+EPSyz903r67im4uJN1+Tvr3V6Xv/Fh6/R+ld25L99wlPfC+RgB2D4vkAwAAAL4Jh8Pa2dlRKBRS/ah1ZNqEQiFJarUdNkRr7+fcuXMjvXZcCMIAHHtOKpSOmqLYDHX6mQuNPrajDLtz4+O/MHyId1Q1mdsqulBImg81doT8lx9o3AAAAACMTyaTUT6fl/RuyOXEMG17SafTWlhYcNWH31gjDAB09BTFUKhRcdXv5vL/ip7c7NwoOa8m69Uu6IX+AQAAALhz+vRpGYYhqVHlNY7bmTNnlMvlAn7ngxGEAcAEcrNz47DVZPvvHP76tC70DwAAAKBhdXVVklStVnVwcOD7bXt7e+KrwSSCMACYSG52bnRbTeaU24X+AQAAAPjn3Llzikajeuyxx4IeykQhCAOGcHBwoFOnTvW9bW5uBj1MHANudm50U00GAAAA4HhYXV3V6dOnx3rMGzdujPV4o2CxfGBIt27d6vv8/v7+mEaC48zNzo1uqsmagtokAAAAAIB3Ll++PNbjZTIZ/e3f/u1YjzksgjBgSMvLy32fn4Y50ZPqqF0Mp5WbMMnNzo1uqsmamjs/AgAAAIBT29vbQQ9hIIIwYAhzc3O6efNm0MOYSk53MZyfOz4LsLsJk5o7N/5WeXDb7p0b3VSTAQAAAMCNGzdk27bj9pZlqVAoDPWaoBCEAfDdsLsYPv4LncHOrPrMmcFBWK+dG91UkwEAAOD429zcHLi28cHBwZhGg0lw48YN5XI5VatVWZY1Uh/1el2h0ORPKyEIA+C7UXYx/N1f8ndMx0WvnRvdVJMBAADg+Nvf3x+49jFmx8WLF5XP5yU1wqzjjl0jAfhuHLsYOpl6OUucTC/tVU0GAACA429hYUHLy8t9b5gNL774onK5XCsAm4aKLreoCAPgO7e7GM7i+mLj0KuaDAAAAMff2tqa1tbW+raZn59neuQM2NjYkNQIwOr1ugzDUDQalWEYkqSTJ08O7OPNN9+Ubdu6fPmy3nrrLV/H6wWCMEwEy7KUyWRUqVQctc/n86pUKtre3pZt260f1kwmo3g87vNoMSw3uxiyvhgASF8zXx35tU9HH/VwJAAA4DgxTbNVBVapVLS6ujpyX+vr67r//vu9GppvmBoJX9m2rVAoNPAWiURaiXM/1WpVi4uLymazkqRSqaRaraZcLifTNJVIJJRIJKZip4pZ8viQuxK272I4yvpiAAAAAIDBwuGwpEaI5SYEkyTDMHT69GkPRuUvKsLgq2Kx6LhtM9w6SrVaVSKRkCSl02kVCoXWc4ZhKJlMKhaLqVqtKhaLaWdnp/VDjWC52cVwlPXFuhfanwtJt5/r/7q5CZwKP63jBgAAADAdDMPQtWvXdPbsWU/6a79On1QEYfBVc77xIPF4vG9FmG3bSqVSkho/qEf9cJVKJUUiEVmWpVQq5XiqJfzlZhdDt+uLSVIoJM1PYWDkZtyEaAAAAAAGWV1d1bVr17S7u+tZf5OOIAy+KRaLsm1b6+vrrUquo6ysrPR9PpVKtaY79qsca1aGlctlVatVFYtFpdPpoccO733mzOAgrNcuhm7WF5tl0xr+AQAAABifL3zhC/rKV74i0/RmjZkXXnhBTz75pCd9+SVUb+6RCXgsEolIkmq1mqt+LMtq9SVJe3t7fac8lsvlVvVYOBzW3t6eq+NL7+6YMjc3pzt37rjubxbdOZDu+mL/Nrefa+z82O7/+L+l/+WvnR/nf3/88NRIBMPN4t4AvMNi+QCAUXANNDvy+bxyuZxu3Lihf/7P/7mrvs6ePaurV696NDJ/sFg+fFEul2VZ1sB1v5zI5XKt+/F4fOC6X8lksnXftm2Vyw7m42FifTYq/dzdztp2ry8GAAAAAOhvfX1d0Wi0VVAyquvXr3tWWeYnpkbCFxsbGwqHwzp37pzrvtoX3I9GnaUchmHIsixJ0tbWVkc4huniZn0xAAAAAMBglUpFKysruv/++5XNZrW0tOTodbu7u7JtW7VaTZcvX/Z5lN4gCIPnTNNspcCLi4syDEPxeFyJRGLoQKo7TXa6k0U0Gm0FYVSETb9R1xcDAAAAAAz2yiuvSGosbZTJZEbqo16vKxSa/IWKmRoJz3VPh7QsS8ViUalUSqFQSKlUynG5ZLVa7Xjcb2fJfu2moTwT7vwGIRgAAAAADO1zn/ucEomErl27plAopHq9PvRtmhCEwVOWZR0Kr7qVy2XFYjFHKXP3InuD1gdrOnnyZMfj7e1tR68DAAAAAGBWXLp0SYVCoRVmjRpqTVMYxtRIeMowDBUKhdYc4Wq12pqi2K1YLGp7e1s7OztH9tf92lErwtzuXAkAAAAAwHFTKBQkqVUJ1lzWKBwOD71O2PPPP68bN274OFpvEITBc+l0uuOxbdsqFova2NiQbdsdz5mmqUQioUql0rOvo0K0YXUfFwAAAACAWWeapkKhkMLhsLa3t3X69OmR+7pw4cKh2VmTiKmR8F04HNb6+rr29vZUKpUOTW+sVqvK5/M9XztqgNV9jN3d3ZH6OW7qdenOQf/bFFW0AgAAAABcaF47X7x40VUI1uzrzJnJX7yZijCMVTKZVDwe1+rqascC9hsbG1pfX/ftuF5VhB0cHOjUqVOu+1lbW9Pa2poHIxrOQV2664v929x+Tpqf/I0+AAAAAAAuxWIxvfLKK46XIRrk0qVLnvTjJ4IwjF04HNbOzo5isVgrDLNtW9VqVfF4/FBbL0Isp4vsO3Hr1i3Xfezv73swkvGq1xtBWj9zIWkKdssFAAAAAEjKZDK6cuWKZ8sSURGGiVEsFh3t0jiMaDTad6H7QS5duqRYLNZ6XKlUDgVhS0tLngRhThf5c2J5edl1HwsLCx6MZLyoJgMAAACOh83NTW1ubvZtc3BwMKbRIEjJZFJnzpzR1taWfu/3fs91fy+99JI+/elPezAy/xCEITDRaFTxeFzValVS74XxR63k6g7PvKoIm5ub082bNz3pCwAAAACCsL+/78lMFxwPpVJJH/7wh/X1r39dv/Zrv+aqr42NDYIwTIZ4PK5SqeRpn16ES4lEohWE9bKystKxlpht246O2704fiQSGXmMAAAAAHCcLCwsDJzpQlA2OwzD0PPPP68nn3zSVRD21ltvdVy/TyqCsBlhGIZni995qX1MvaYvtk+dlBpVY9FodGC/tVqt43H3lEsAAGbF18xXR37t09FHPRwJAGBSONm8a35+numRM+Cll16SJL3vfe/T4uKi7r//fiWTyaH7sW1bly9f9np4viAIQ6Dag7BelV4rKysdj50GYe1TI8Ph8ESGgAAAAAAABOlLX/qSrl271npcr9eVz+dH6qterys0BbunzQU9AMy27e3t1v1EInHo+Wg02hGQXb16deh+u8M0AAAAAAAgnTt3TvV6XfV6XZKmIshyiyAMgWqfwnjU9MVz58617judb9zeLpvNjjg6eGku1NhVst9t7ohzrpvXAgAAAJgc+XxeiURCi4uLCoVCikQiSqVSfdeOnuRje92naZrKZDKKRCIKhUKtPrPZ7KFN4byQyWQkNQKwZiA26m1aMDUSgSqXy5Kk9fX1I9tkMhkVi0VJcnQyaW9jGAbrg02IUEiaHzGscvNaAAAAAMGrVqtKpVKybbu1mZthGDJNU9lsVolEovV1LzZm8/vYXvdp27YuXLjQukZuZ1mW8vm88vm8CoWC0un0kN+Bo504cULRaFTXrl1TLpdTNBrtuX73IJZl6Utf+pJee+01z8bml1B9mmI7HCvlclmpVErhcFjXr1/ve3Jo312yVCr1XbyvPTjz6iTRXChybm5Od+7ccd1fUO4cSHd9sX+b289J8z1qRd28FtPLzSLbAKYfi+UDwOzy8hqoWq22lsJJp9MqFAqH2sRiMZmmKcMwtLOz41kY5sexve7Ttm3FYjFZluXoPR11zFF95Stf0fb2tra2tlz3tbS0pN3dXQ9G5R8uWeGZarXaKgdNJBJ9pzFalqULFy5Ikq5cuTLwRNP+Q76xsXFkO9u2WyFYPB73NCkHAAAAAAzHtm2lUilJjRk7RwU4pVJJUuNasdl+Eo/tR5+pVKq1MVypVFKtVlOtVlOpVOo5e6pYLPasHBtVPB73bGrjNKzRTRAGz5RKpdac5Wq1qlgs1ppv3K753NLSkmq1mqNdIA3DaJ1ITNM8cheL1dVVSY2dIpvtAQAAAADBaE4flPqv32wYRmvmT7VabRU4TNqxve6zWCyqWq1qfX1dOzs7SiaTMgyj9fpcLtfzurlZWOKFM2fOKJfLedKXV/34iamR8Ex7eWi7cDiseDyupaUlbW9vyzRNra+v6+LFi0OXu7bPw04mk7p48aIMw9D29ray2axM01Q0GnVUZTYMpkYyNXJWMTUSmG1MjQSA2eXFNZBlWYpEIq3He3t7fa/TmsvnSI3ryL29vZGO69ex/egzEonIMAxVKpWh3o8kVSqViVoT+8aNG/rQhz4U9DAG4pIVnonH46rVakqn0zIMo+OEYJqmdnd3dfHiRe3t7SmXy40UVMXj8dbrLcvS6uqqFhcXlUqltLS0pFKp5Ol8cgAAAADAaNqrg+Lx+MDrtPa1oG3bdjX9z49je92naZqyLMvRbCbDMA5VW/VbjmjcXnzxRUUiEX37298OeigDsWskPNVvjrSX1tfX++40CQAAAAAIVvt0QCdL4kiNa8rmovFbW1t9N0ob97G97nNra0vpdNpxIUd39debb77p6HXjcPXqVdXrdf3VX/2VHnnkkaCH0xdBGAAAAAAA8FR3tdLZs2cdvS4ajbaCo1Erwvw4th99nj9/XoZhOOqn2Ve77qmSo3rhhRdGfq1t26rVaioWiwqFQqpWq303uJsEBGEAAAAAAMBT1Wq147HTwKe7XXMd6KCP7Uefw76v5iL9w45hkHQ6rVAo5KqP5vLzpmlO/FphrBEGAAAAAAA8dfXq1Y7HTqf/nTx5suPx9vb2RBw7yPfT1Kwsa/J6ofxR9lKs1+uq1+sKhUKtMM2LHT/9RBAGAAAAAAA81R3ajFpBVavVJuLYQb6fpvYQLZ1Oj9xPP81gy+lNkkKhUMfXnCz+HySmRgIAAAAAAE91B0ej6p4OGNSxg3w/Te0b02WzWQ9G867Tp08rm80OPd2yVqspn88rFovp0qVLWlhY8HRcfiAIAwAAAAAAnho18Omecri7uzsRxw7y/UiNIK65YH8ul/NsfbCmarU60rpeq6urSqfT+vCHP6x0Oq2/+qu/8nRcfiAIA4ZwcHCgU6dO9W2ztramtbW1MY0IAAAAAN61ubmpzc1N1/0cHBx4MBr33FRQTeKxR+0zl8tJaky1XF9f93BEjbDO7eL2zz//vD72sY/p7Nmz+vznP+/NwHxCEAYM6datW32f39/fH9NIAAAAAKDT/v7+wGuWcQiHw54ESU4Xpff72EG+H9M0VSwWFQ6HValUXI+hWzNkcyMej7dCuieeeGKid40kCAOGtLy83Pf5aZgTDQAAAOB4WlhYGHjN4oTbMG1pacmT4GhpaWkijh3k+7lw4YIk6cqVK55PiWzv361oNCrLspTP5/Unf/InnvTpB4IwYAhzc3O6efNm0MMAAAAAgJ68Wqplfn7e1fTIUSqfpMNTB0etCPP62EG9n0wmI9M0VSqVFI1GRxrDuF29ejXoIfQ1F/QAAAAAAADA8bKystLx2Gk1Vfdi8pFIZCKOHcT7KRaLKhaLKhQKSiaTjl8XhLfeekvValWSWov6TyqCMACe+ctrQY8AAAAAwCSIxWIdjy3LcvS6Wq3W8Tgej0/Escf9fqrVqjKZjAqFgtLptKPXBOW1117TysqK3nrrLUnyZfqml5gaCcARJyHXb5Wl+TnpM2f8Hw8AAACAydVdQWVZlqOpfe2VVuFweKRQxY9jj/P9mKapRCKhXC43lhDs/vvvH/m1zUCwXq9LkkKh0Ejh5TgRhAEY6K13pN/5j87aPvUN6fFfkBbu8XVIAAAAACZYNBrt2Gnx6tWrjqb3bW9vt+53h09BHntc78eyLK2urmp9fV3r6+sD23uhVqspFAq1wqxRtL/ei10o/UQQBmCgvzCl//4zZ23/20+lPzel3/0lf8cEAPDf18xXR37t09FHPRwJAGAanTt3TsViUZLzdaPa22Wz2Yk6tt/vx7IsxWIxpdNpx2GSZVkql8uehGahUGik19XrddXrdYXDYZVKJS0sLLgei59CdTeRHzAjmjumzM3N6c6dO0EPZ2R3DqS7vti/ze3nGtMb2338/ye9/EPnx/n4/dK3/j/Djw+Tx81FMIDZRhAGANPNi2sg0zQ71tYaFD9Uq1UlEglJjXWmutfXCvrYfr4f27YVi8UUj8dVKBT69tsuFovp0qVLrnaUnJt79wIwHA5raWnJ8Wub0z3Pnj2rZ555ZuQxjBMVYQAG2nvb3/YAAAAAjp9oNKp4PN7aTbBcLvedTlgqlVr3B1VPFYtF1Wo1ZTKZnutu+XFsv95PMwQzDEPZbNbRQvyWZbX6dBOCNeXzef3e7/2e636mARVhgANUhFERNquoCAMQBKrJACB4Xl0DWZalSCQiqRHY7Ozs9Gxn27YWFxclNXZWrFQqR/aZSCRaYZQk7e3tKRwOj+XYfvQZi8UcT7Xs5sWukh/+8If1ox/9yFUf02RucBMAs6TX7pCPPzRcH786ZHsAAAAAx5NhGK3KKNM0lc/ne7ZbXV2VpNY6U/20h2CSdPny5bEd2+s+3YRgkjzZVdLNWmzTiCAMmCG9Qq5uv1U+3O6zUenn7nZ2jH/2Huk33VfmAgAAADgmksmkKpWKwuGwstmsUqmUTNOUbduqVqutMCgajer69es9q7vadT/fa2qkX8f2ss/m60blJAR77bXXBra5cOHCyGOYRkyNBBw4DlMj33pHWv6Ss90f/9l7pFsXpYV73v3an+80QrJB/sM56TNnRh8nJgtTIwEEgamRABA8v66B8vm8tra2ZFmWbNtWOBzWysqKMplM3/W22lWrVWUyGe3u7g61w6IXxx5Hn16an5+f2mtYvxCEAQ4chyDs//i/pf/lr523/98fl373l9597GR9sT9PSp+N9W+D6UIQBiAIBGEAELzjcA2Exo6Q169f1wc/+MGghzIxmBoJzIi//v5w7f9myPaS9BtUggEAAADARHFaMTcrCMKAGbH3tr/tAQAAAACTp1Ao6BOf+IReeukl3bhxQ/v7+9rf3w96WIG5K+gBABiPxXv9bQ8AAAAAmEyVSkWVSmVsx5vk6bQEYcCMePwh6eUfOm//qw/5NxYAAAAAwPi0Lw/f3MVyaWlppL52d3dl23bP5wzDGGvgNgqCMGBGfDYqPfst57tG/mbU/zEBAAAAGL/NzU1tbm72bXNwcDCm0WAccrmcksmkTp8+7aqfK1euKJVKKRQKdXy9Xq8rlUppa2vLVf/jQBAGzIgT90h/8m+l3yoPbvv8p6SFe3wfEgAAAIAA7O/v69atW0EPA2NSKBT05JNPuu7nq1/9qrLZrKRG8BUKhVqVZrlcTs8884zrY4wDQRgwhIODA506dapvm7W1Na2trY1pRMP5zJnBQdifJxvtAAAAABxPCwsLWl5e7tuGoOx4CIVCOnfunOt+Pvaxj+nKlSut4KsZgoXDYV25ckVnzkzPRSRBGDCkQf8hTPvuG78xPecvAAAAACNw8sv7+fl5pkceAydOnNDCwsLIr79x44YSiYQsy2pVgUmNirBoNKorV67oxIkTXg13LAjCgCEN+s2Jm5MMAAAAAABeuX79+sivffHFF1vVZN0hWCaT0Z/+6Z96MsZxIwgDhjA3N6ebN28GPQwAAAAAAAYatVrr4sWLyufzrQCsfT2wQqGgCxcueDnMsSIIAwAAAAAAgPb395VKpVStVg9VgU3jemC9zAU9AAAAAAAAAATrtdde0+nTp3uGYPF4XNevX5/6EEwiCAMAAAAAAJhply5dUiwW097e3qEQLJvN6uWXX566RfGPwtRIAAAAAACAGfW5z31OxWLxUAAmSaVSSU888USQw/McQRgAAAAAAMCM2d/f1+rqqkzTPBSCGYahSqWi06dPBzxK7zE1EgAAAAAAYIY01wPrFYKlUin96Ec/OpYhmEQQBgAAAAAAMDN6rQdWr9dVr9eVy+W0tbUV9BB9xdRIAAAAAACAGXD+/HmVy+VDVWDhcFilUkmrq6sBj9B/VIQBAAAAAAAcYzdu3ND999/fMwSLRqO6fv26JyHY/fff77oPv1ERBgAAgInyNfPVkV/7dPRRD0cCAMD0e+WVV5RKpbS3tydJHSFYJpPRn/7pn3p2rFqt5llffqEiDAAAAAAA4Bj6yle+okQiob29PYVCoY71wAqFgqch2KVLl1oh2ySjIgwAAAAAAOAYymazrQBMalSBLS4u6sqVK/roRz/q2XFeeOEFZTIZgjAAAAAAAABMhlAopKWlJV24cMGT/mzblmVZnvQ1LgRhAByZC0m3nxvcBgAAAMBk29zc1ObmZt82BwcHYxoNxqVer0uajnW8/EQQBsCRUEiaJ+gCAAAApt7+/r5u3boV9DAwRqdPn1apVFI4HPakP9u2W/e3t7dVKBRkmqYnffuNIAwAAAAAgBmysLCg5eXlvm0Iyo4PwzC0vb2tEydO+NL/mTNndOHCBaVSKb300ku+HMNLoXqzNg7Akebn53VwcKC5uTnduXMn6OGM7M6BdNcX+7e5/Zw0z36y+CdfM18NeggAMJSno48GPQQAOBaOyzXQrJubm5Npmp4ujH8Uy7J0//33T/y/Fy53AQAAAAAAjqFwODyWEExqVJ75VXXmJaZGAkM4ODjQqVOn+rZZW1vT2tramEYEAAAAAEBvuVzuWB9vFARhwJAGzZXf398f00gAAAAAADjahQsXjvXxRkEQBgxp0KKSCwsLYxoJAAAAAAAYBkEYMIS5uTndvHkz6GEAAAAAAIARsFg+AAAAAAAAZgJBGAAAAAAAAGYCQRgAAAAAAABmAmuEAQAA4Nj4mvnqyK99OvqohyMBAACTiIowAAAAAAAAzASCMAAAAAAAAMwEgjAAAAAAAADMBIIwAAAAAAAAzASCMAAAAAAAAMwEgjAAAAAAAADMhLuCHgAA5+p16aDev81cSAqFjn7u9nODXw8AAAAAwHFEEAZMkYO6dNcX+7e5/Zw0f0SYFQod/RwAAACA2bC5uanNzc2+bQ4ODsY0GmC8CMIAAAAAAJgh+/v7unXrVtDDAAJBEAYAAAAAwAxZWFjQ8vJy3zYEZTiuCMIAAAAAAJgha2trWltb69tmfn6e6ZE4ltg1EgAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4E1woAhHBwc6NSpU33bOJlvDwAAAAAAxo8gDBjSoN1T9vf3xzQSAADgpa+Zr7p6/dPRRz0aCQAA8AtBGDCkQdsMLywsjGkkAAAAAABgGARhwBDm5uZ08+bNoIcBAAAAAABGwGL5AAAAAAAAmAkEYQAAAAAAAJgJBGEAAAAAAACYCQRhAAAAAAAAmAkEYTiSZVlKJBIql8uu+snn80okElpcXFQoFFIkElEqlVK1Wp2oPgEAAAAAwPFGEIZDbNtWKpVSJBJRtVrV7u7uSP1Uq1UtLi4qm81Kkkqlkmq1mnK5nEzTVCKRUCKRkG3bgfYJAAAAAABmw11BDwCTw7ZtbWxsKJ/Pu+6rWq0qkUhIktLptAqFQus5wzCUTCYVi8VUrVYVi8W0s7OjcDg89j4BAAAAAMDsoCIMkhpTDWOxmEzTdN1Xs6JMagRU7YFVu1KpJKkxBbPZfpx9AgAAAACA2UJFGGSapuLxuNbX1yVJxWJRmUxm5P5SqVRramJzCmMvzSqucrmsarWqYrGodDo9tj6BWfA189WghwAAAAAAE4OKMCgajSoajbYer6ysjNyXZVkdC9afO3eub/vz58+37h8VcPnRJwAAAADMqs3NTZ06darv7eDgIOhhAr6gIgyHuFlXK5fLte7H4/GBfSWTydZ927ZVLpc7vuZXnwAAAAAwq/b393Xr1q2ghwEEgooweKpYLLbut1eZ9WMYRuv+1tbWWPoEAAAAgFm1sLCg5eXlvjfguKIiDJ7pXmj/7Nmzjl4XjUZlWZYkqVwu+94nAAAAAMyytbU1ra2t9W0zPz/P9EgcS1SEwTPt63hJnVVZ/XS3aw+//OgTAAAAAADMJoIweObq1asdj52uNXby5MmOx9vb2772CQAAAAAAZhNTI+GZ5lTEplGrt2q1mq99AgAA+OFr5qsjv/bp6KMejgQAJlc+n1elUtH29rZs25ZhGIpGo8pkMorH41N3bL/fj2VZymQyymQybALnESrC4Jnu0GpUtm372icAAAAAYLyq1aoWFxeVzWYlSaVSSbVaTblcTqZpKpFIKJFI+HLt5sex/X4/tm0rlUopEomoWq1qd3d3pH5wGBVh8MyoP+Dd0x3bf8D96PO4+8tr0m/Ggh4FAAAAADRUq1UlEglJUjqdVqFQaD1nGIaSyaRisZiq1apisZh2dnYcL4sTxLH9fD+2bWtjY0P5fH64NwrHqAjDxPHjNwBe9XlwcKBTp065vm1ubo50/L+8NrjNb5WdtQMAAAAAvzUrm6RGSNQeGrUrlUqSGrOCmu0n8dh+vp98Pq9YLMZmbz4jCINnvErs2/vxo0+3bt265fq2v78/9HHfekf6nf/orO1T35D23xn6EAAAAADgqVQq1SpMaE4j7KVZSSU1Kq6KxeJEHtuv92OapuLxuGq1miqVypEBG9wjCJtAxWJRoVDI01ss5v9cuaWlJc/78aNPt5aXl13fFhYWhj7uX5jSf/+Zs7b/7afSn/NLBAAAAAABsixL1Wq19fjcuXN9258/f751v1/IFNSx/Xw/0WhU0Wi09XhlZaVve4yONcLgmVGrrrqnLXpREdavTzfm5uZ08+ZNT/oa1l9/f7j2f/N96Xd/yZ+xAAAAAMAguVyudT8ejw+8LmvfFdG2bZXL5ZF3SvTj2ON8P17OakIngrAJFI/HW/OJvTKOH6KVlZWOucy2bTs6bvdC9pFIxNc+p9Xe2/62BwAAAAAvtU8HbK926scwDFmWJUna2toaOQjz49hBvh94hyBsAhmGIcMwgh7G0LqnX1qW5ejkUKvVOh7H43Ff+5xWi/f62x4AAAAAvNK94PvZs2cdvS4ajbaCo3K5PDHHDvL9wFusEQbPdM9hbv6wD9I+jTEcDneEgH70Oa0ef2i49r86ZHsAAAAA8Er7WlqSHF+TdbcbZQdFP44d5PuBtwjC4JloNNoxbfHq1auOXre9vd263x18+dHntPpsVPq5u521/WfvkX7TWaUuAAAAAHiu+9rN6XI9J0+e7Hjcfm0X5LGDfD/wFkEYPNW+a4bTpLu9Xa+dNPzocxqduEf6k3/rrO3zn5IW7vF1OAAAAABwpO7ZPKNWUHUvexPUsYN8P/AWQRg8lclkWve7S0d7aW9jGEbPtbz86HNafebM4DZ/nnTWDgAAAAD84nRZm0Hal70J8thBvh94iyAMh7j5wYxGox3B06DFANt3xzyqcsuPPo+z3yAEAwAAABCwUa8ru6cc7u7uTsSxg3w/8Ba7RuKQ7qR72B/4QqGgSCQiSdrY2Dhye1jbtlvbz8bjcaXT6bH2CQAAAADHzebmpjY3N133c3Bw4MFo3AuygsqPY1MRFjyCMHSwbftQFdXW1pbW19cd92EYhkqlklKplEzTVD6f7/n61dVVSY2EvL2Ka1x9AgAATIqvma+O/Nqno496OBIA025/f1+3bt0KehgKh8OehD5OF6X3+9hBvh94i6mRkG3bSqVSSiQSWlxcPFQRZpqmQqGQEolEK4gaJJlMqlKpKBwOK5vNtl5n27aq1apisZhM01Q0GtX169cdnQz86BMAAAAAjpOFhQUtLy+7vrm1tLTkwbsZrR8/jh3k+4G3qAiDb9VT8Xhce3t7yufz2tra0urqqmzbVjgc1srKikql0pFTHMfZJwAAAAAcF2tra1pbW3Pdz/z8vKvpkaMWJnRXXY1aEeb1sYN8P/AWQRh8t76+PtTUyqD6BAAAAAB4Y2VlpWM2UbOAYZDuxeSba0UHfewg3w+8xdRIAAAAAADgqVgs1vG4ewmeo9RqtY7H8Xh8Io4d5PuBtwjCAAAAAACAp1ZWVjoeOw2O2qcShsNhGYYxEccO8v3AWwRhAAAAAADAU9FotGPq4NWrVx29bnt7u3W/O3wK8thBvh94iyAMAAAAAAB47ty5c6377etr9dPeLpvNTtSxg3w/8A5BGAAAAAAA8Fwmk2ndr1arA9u3tzEMw9V6Wn4cO8j3A+8QhAFDODg40KlTp/reNjc3gx4mAAAAAAQuGo12hD/lcrlv+1Kp1Lo/qHqqWCwqm80euVaXH8f28/10a19bDN4K1ev1etCDACbd/Py8Dg4OHLX9gz/4A/3hH/6hL+O4cyDd9cX+bW4/J80TceOffM18NeghAAB89nT00aCHAOAYal4Dzc3N6c6dOyP3Y1mWIpGIpEaQtLOz07OdbdtaXFyU1NhZsVKpHNlnIpHoqLba29vrWL/Lz2P70Wcv5XJZqVSq9TiXy2l9fX2oPtAbl8vAkJaXl/veFhYWgh4iAAAAAEwEwzBalVGmaSqfz/dst7q6Kqmxs2J7JVUv3dMSL1++PLZj+9FnN9u2D1WQbW1tDdUHjkYQBgxhbm5ON2/e7HtbW1sLepgAAAAAMDGSyaQqlYrC4bCy2axSqZRM05Rt26pWq4rFYjJNU9FoVNevX+9Z3dWu+3nDMMZ2bL/6tG1bqVRKiURCi4uLh6Z8mqapUCikRCLROh5Gw9RIwAGvyoLdYmokhsXUSAA4/pgaCcAPfl0D5fN5bW1tybIs2batcDislZUVZTIZJZNJR31Uq1VlMhnt7u4qnU4rl8uN7djj6BP+IggDHCAIw7QiCAOA448gDIAfJuUaCPAal8sAAAAAAACYCQRhAAAAAAAAmAkEYQAAAAAAAJgJdwU9AAAAAAAAMD6bm5va3Nzs2+bg4GBMowHGiyAMACYcC94DAADAS/v7+7p161bQwwACQRAGAAAAAMAMWVhY0PLyct82BGU4rgjCAAAAAACYIWtra1pbW+vbZn5+numROJZYLB8AAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgcXyAQAAgCn2NfPVkV/7dPRRD0cCAMDkIwgDpshcSLr93OA2AAAAAADgMIIwYIqEQtI8QRcAAAAAACNhjTAAAAAAAADMBIIwAAAAAAAAzASmRgJDODg40KlTp/q2WVtb09ra2phGBAAAMDo3C+27wSL9AICgEIQBQ7p161bf5/f398c0EgAAAAAAMAyCMGBIy8vLfZ9fWFgY00gAAAAAAMAwCMKAIczNzenmzZtBDwMAAAAAAIyAxfIBAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATWCMMAAAAAIAZsrm5qc3Nzb5tDg4OxjQaYLwIwgAAAAAAmCH7+/u6detW0MMAAkEQBgAAAADADFlYWNDy8nLfNgRlOK5C9Xq9HvQggEk3Pz+vg4MDzc3N6c6dO0EPBzPma+arQQ8BAABPPR19NOghABiAayAcVyyWDwAAAAAAgJlAEAYAAAAAAICZQBAGAAAAAACAmUAQBgAAAAAAgJnArpEAMAYseA8AAAAAwaMiDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4E1wgAAAACMlZu1M5+OPurhSAAAs4aKMAAAAAAAAMwEgjAAAAAAAADMBKZGAkM4ODjQqVOn+rZZW1vT2tramEYEAAAAAACcIggDhnTr1q2+z+/v749pJAAAAAAAYBgEYcCQlpeX+z6/sLAwppEAAAAAAIBhEIQBQ5ibm9PNmzeDHgYAAAAAABgBi+UDAAAAAABgJlARBgAAAGBqfM18deTXPh191MORANNrc3NTm5ubfdscHByMaTTAeBGEAYBDbj54AwAAAJNif39/4CZgwHFFEAYAAAAAwAxZWFgYuAkYQRmOq1C9Xq8HPQhg0s3Pz+vg4EBzc3O6c+dO0MNBQKgIAwBgtjG1ErOEayAcVyyWDwAAAAAAgJlAEAYAAAAAAICZQBAGAAAAAACAmUAQBgAAAAAAgJlAEAYAAAAAAICZQBAGAAAAAACAmUAQBgAAAAAAgJlAEAYAAAAAAICZcFfQAwCAcfqa+WrQQwAAAAAABISKMAAAAAAAAMwEKsIAAAAAwAE3leVPRx/1cCQAgFFREQYAAAAAAICZQBAGAAAAAACAmcDUSGAIBwcHOnXqVN82a2trWltbG9OIAAAAMA2YVgkAk4EgDBjSrVu3+j6/v78/ppEAAAAAAIBhEIQBQ1peXu77/MLCwphGAgAAAAAAhkEQBgxhbm5ON2/eDHoYAAAAADCyzc1NbW5u9m1zcHAwptEA40UQBuBY2dzc1P7+vhYWFlirDcDIXv27v9NPfvITvfe979Wj/+pfBT0cAFPKq3MJ64vBa/v7+wOXfAGOK4IwAMfK5uambt26peXlZYIwACN79dVX9V/39/XPFxYIwgCMbBLOJYRo6GVhYWHgki8EZTiuCMIATJ1+H+je+8u/pJ/f39d7FxZcffADAAAAjisnO93Pz88zPRLH0lzQAwAAAAAAAADGgSAMAAAAAAAAM4GpkTiSZVnKZDLKZDJKJpNjOValUnHUPp/Pq1KpaHt7W7ZtyzAMRaNRZTIZxeNxX8cKAAAAzALWF4MfgryW8+PY09In3kVFGA6xbVupVEqRSETValW7u7uu+gqFQgNvkUhEhmEM7K9arWpxcVHZbFaSVCqVVKvVlMvlZJqmEomEEomEbNseecwAAAAAAG8FeS3nx7GnpU8cRkUYWmzb1sbGhvL5vGd9FotFx22bP+xHqVarSiQSkqR0Oq1CodB6zjAMJZNJxWIxVatVxWIx7ezsKBwOjzRuAAAAAIA3gryW8+PY09InegvV6/V60INA8PL5vAqFggzDULVa7XiuUCgonU6P1O/i4qKjtDoej/edFmnbtk6fPt0qC63Vaj3bWZalSCTiqM9hNHdMmZub0507dzzpE6PrV6a/+e//fWub8rX/9X8d46gAHCecSwB4gXPJaJhWORm8ugYK8lrOj2NPS584GhVhkGmaisfjWl9fl9So4spkMq77LRaLsm1b6+vrrWT7KCsrK32fT6VSrUCtX+VYMykvl8uqVqsqFosjh3jTYHNzU/v7+1pYWBi4/bEf3KwbgfF59e/+Tj/5yU/03ve+V4/+q38V9HAmAt+TTnw/4AT/Tg7je3IY3xMMwr+Rw4L+TO+3IK/l/Dj2tPSJo1ERhkNM01QsFms9HrUirJlUH5VmO9WeekvS3t5e3xLQcrmsVColSQqHw9rb23N1fGlyK8JOnTqlW7duaXl5WTdv3hz78ScxCOM3r4fxPTmM70knvh+H8T05jO/JYXxPDuN70onvx2FOviezVhEW9Gf6o3hxDRTktZwfx56WPtEfFWE4xIt5xuVyWZZldcxrHlUul2vdj8fjA8fXvsOlbdsql8u+73o5rSYxyAIAAMBsY7fK4yPIazk/jj0tfaI/do2ELzY2NhQOh3Xu3DnXfbUvuB+NRh29pn0Hyq2tLddjAAAAAAAMJ8hrOT+OPS19oj8qwuA50zRlmqakxmL5hmEoHo8rkUgMnVQ3+2k6e/aso9dFo1FZliWpUZ0GAAAA4PhzO+OBijLvBHkt58exp6VPDEZFGDzXvbifZVkqFotKpVIKhUJKpVKHfuCP0r2DZXvy3U93O6fHAwAAAAC4F+S1nB/HnpY+MRgVYfCUZVmHfpi7lctllctlpdPpgWuIXb16teOx0/XLTp482fF4e3vbcZnptPn5//fH9d6FBdb7AgAAAFxifTLvBHkt58exp6VPDEYQBk8ZhqFCoSDbtlWr1VStVlslm92KxaK2t7e1s7NzZH/drx01IXe7cyUAAAAA9DNqiPbeX/4l6T+UPB5N8IK8lvPj2NPSJwYjCIPn0ul0x2PbtlUsFrWxsSHbtjueM01TiURClUqlZ19HhWjD6j4uAAAAAMA/QV7L+XHsaekTgxGEwXfhcFjr6+taX19XuVzWhQsXOn5Qq9Wq8vm81tfXD7121B/o7pLS3d3dkfppOjg4aP0ZCoVc9SVJoVDIk34ODg409+Y/6k1J/9+X/sZ1f8dB/Z/+rvievIvvyWF8Tzrx/TiM78lhfE8O43tyGN+TTnw/DuN7cljze3Lr1i3Nz8+7769eV71ed91PU/NaaFhBXsv5cexp6RODEYRhrJLJpOLxuFZXVzsW9NvY2OgZhHll0hJyL/9zOnjnJ570AwAAACBYo4ZOx1mQ13J+HHta+jzOCMIwduFwWDs7O4rFYq0wzLZtVatVxePxQ229+KF2uujguHhVEQYAAAAA7byuCBtVkNdyfhx7WvrEYARhE6hYLCqTyXjaZzQa7bsofRAuXbqkWCzWelypVA4FYUtLS56cGJaWlly9fhL+IwEAAACAaRHktZwfx56WPjHYXNADwOyKRqMdwVevhQJHTba7TyYk5AAAAAAwPkFey/lx7GnpE4NRETaB4vG4SiVvt8+d1B+MRCKharV65PMrKysda4nZtu3ovXQvFhiJREYeIwAAAABgOEFey/lx7GnpE4MRhE0gwzBkGEbQwxiL9vfZq5yzfeqk1Kgai0ajA/ut1Wodj7unXAIAAAAA/BPktZwfx56WPjEYUyMRqPYgrFfyvbKy0vG41/TJXtpLRcPh8MwEiwAAAAAwCYK8lvPj2NPSJwYjCEOgtre3W/cTicSh56PRaEdAdvXq1aH77T65AAAAAAD8FeS1nB/HnpY+MRhBGALVXtJ5VDnnuXPnWvfb50/3094um82OODoAAAAAwKiCvJbz49jT0if6IwhDoMrlsiRpfX39yDaZTKZ1v9/C+r3aGIbBfGkAAAAACECQ13J+HHta+kR/BGE4pHsrVr+Uy2VZlqVwOKyLFy8e2S4ajXb8cDfDs6O077hJOg4AAAAAwfDzWq5YLCqbzR65rpYfx56WPtFfqF6v14MeBCZLuVxWKpVqPc7lcn0rtpqq1apSqZRs21Y8HlculztyxwvLshSLxWTbtnZ2dgbujGFZVmtL2Gg0qp2dnZ7tbNvW4uKipMZUy0qlMnDcAAAAAAB/+HEtl0gkOiqj9vb2em6+5sexp6VPHI2KMHSwbftQqry1teXotaVSqVVNVq1WFYvFOso8m5rPLS0tqVarOdoe1jCMVvJtmqby+XzPdqurq5IaO2e0J+UAAAAAgPHz41quewrh5cuXx3bsaekTfdQx8/b29urJZLIej8frko68xePxejKZrO/s7PTsp1Kp9HxdOByuJ5PJejqdrkej0bqk+vr6en1vb2/osVYqlXo4HK5Lao1lb2+vXqlUWn1Ho9GR+gYAAAAA+MPLa7lmP81bpVIZ27GnrU8cRhAGT9VqtXo6na4bhtH6AQ6Hw3XDMOrJZLJeKpU8+aHN5XL1aDTacYx4PF4vlUru3wR8U6vV6vF43FHbnZ2d1r+l5n9whmGMHKI25XK5ejweb/3baf7bHPSf57j7BHC0Yc4l/TTPL6P838G5BJh+Xp1LmnZ2duqlUqmey+Uc/9xyLsEs8uJarlKptK4519fXx3rsae0T7yIIA+Da3t5e32rC9ls6nR7YVzKZHNhPoVAYaoztv12Jx+P1SqVSr9Vq9VKp1LoYjsfjI//Gxqs+gVnm5blkkPX19VZfw37w5lwCTLZxnUv29vZaF6vNC9X19fV6pVIZ+PPKuQQAgkMQBsC1XC7n+ANnrVY7sp+9vb2OCjCvPry2T9s96jXND7GGYTj6gOhHn8Cs8+pcMkj3VH6nQRjnEmA6+H0u2dvbq6fT6VYf0Wh0qGorziUAECyCMACudc/RP+o2aPpBc526aDRaL5VK9Vqt1vpNZnv1xjAXsHt7ex1TA45Sq9Ucj9OPPgF4dy7pp/3nd5ggjHMJMD38PJcUCoWO/oetUOdcAgDBu0sA4EKxWJRt21pfX1cikejbdmVlpW8/1WpV6+vryuVyHc8ZhqFkMqlMJqNUKiXTNFvPXbhwQclk8sh+U6lUazfT7h1Rex2jXC6rWq2qWCwqnU6PrU9g1nl1LhnkwoULWlpakqTWz7ETnEuA6eDnuSSbzbZ2cjMMQ5VKRYZhDNUH5xIACF6oXq/Xgx4EgOkViUQkSbVazXU/zQ+V/ViW1TpmU6VSUTweH9h2b29P4XD4yL7L5bJSqZSkxpbEe3t7Y+kTgHfnkn6KxaIymYx2dna0urraunAslUp9A3XOJcD08OtckkqlVC6XJTV+Bq9fv973Z7YXziUAMBnmgh4AgOlVLpdlWVbf3z46YZqmLMtSqVQa2NYwjEMVY+0VYu3a28Xj8YEfWNsvhG3bbn3g9btPYNZ5dS7px7IsZTIZra+vKxqNDvVaziXAdPDrXJJIJDp+5nZ2doYOwSTOJQAwKQjCAIxsY2ND4XBY586dc9XP1taW0um04w+V3dVfb775Zs92xWKxdd/phW/7FIetra2x9AnMOq/OJf2kUilFo9FDQboTnEuA6eDHuaS5dENToVAYejpke19NnEsAIDgEYQBGYpqmTNOUbdtaXFxUJBJRJpMZ6TeL58+fH+ritPuDXvdUyeb42p09e3bovrvfix99ArPOy3PJUbLZrEzTdFR12mt87TiXAJPJj3NJs5K0KRqNjrymFucSAJgcBGEARtI97cCyLBWLRaVSKYVCoUOL2vcTjUaHmmLQvcB1r9/Mtv/29qg2vXS3a38PfvQJzDovzyW9mKapfD4/chUH5xJgOvhxLmmupdV08eLFkcfHuQQAJgdBGIChWZZ16MNXt3K5rFgs1vGbVC+P367XQvlXr17teOw0aDt58mTH4+3tbV/7BGbZOM4lq6urSiaTI1dxcC4BJp8f5xLLsjoConA43HdTjUE4lwDA5Lgr6AEAmD6GYahQKMi2bdVqNVWr1UPhVFOxWNT29rZ2dnY8O377B7ajLm67xzPqb0nbd53yo09glvl9LmlWc1y6dGnkMXIuASafH+eSQqHQ8bj5S7dyuaytra3WRj/hcFiGYej8+fN91zvlXAIAk4MgDMBIugMo27ZVLBa1sbFxaOqiaZpKJBKqVCqeHLv9w+lRO0Md9QF4WO3vxY8+gVnn17mkXC6rXC6rUqmMtLtbE+cSYDp4fS5pX4RekpaWlhSLxQ5NI7Rtu7U+WTabValU6lk5xrkEACYHUyMBeCIcDmt9fV17e3sqlUqHLjyr1ary+bzr47RPVcjlckf+9nPUD3Xd497d3fW1TwCdvDiX2LatVCqldDrdc+r0MDiXANPJzbnEsqxDP6eXL19WJpPR3t6e6vW66vW6arXaoQAulUr1XICecwkATA6CMACeSyaTun79+qHdHTc2Nlz33dxd0jAMra+vu+5vED9+S8pvXgFnRj2XrK6utqZKTQrOJUBwhj2XdFdahcNhXb9+/dDUx+Z5pvtcc+HCBd9+PjmXAIB7BGEAfBEOh7Wzs9PxodO27YGL2fZjmqaKxaLC4fDAqVFupkId1Y8ffQLob9hzST6fl2maKpVKnh3f6344lwDjN8y5pDsI67f2V/P59sow27YPhWycSwBgchCEAfBV9yLVbtYJu3DhgiTpypUrAxeEXVpaGvk4R/XjR58AnHFyLmmu0ZPL5Q5VfoyKcwlwvDg5l3QvHn/27NmB/XavWdo97ZJzCQBMDoIwAL6KRqMda/SMurBrJpNpVXk4ucAd9beb3dMDvPjNa78+ATjj5FySSqUUjUY9nTbNuQQ4XpycS0b5WTMM49Dnk/aF9TmXAMDkYNdIAL5LJBKupkQWi0UVi0UVCoWeOzH1srKy0vEB1LZtRx/0uheMjUQivvYJwLl+55J8Pi/LshSPx5VKpQb21X4huLGxoa2trdbj8+fPt841nEuA42fQ55JRf7a6f7Yty2qFY5xLAGByEIQB8F37NMZhy++r1aoymYwKhcKhnZn6icViHY/bP4z20z0dov23xn70CcC5fueSN998U5JGCt1N0+y4mDQMoxWEcS4Bjp9Bn0u6wySni8l3B0rtgRPnEgCYHEyNBOC79g+cw5Tfm6apRCKhXC43VAgmNX5L2s7plMz2D7vhcLhj7H70CcC5Uc8lbnAuAY6fQeeSUX9Gu/tqD9k4lwDA5CAIA+C77e3t1v1EIuHoNZZlaXV1Vevr6yOt9xONRjs+kF69etXR69rH2v0B048+ATjX71ySy+VUr9cd39ov/EqlUsdzuVyu9RznEuD4GfS5pLuqqruCyqn28wznEgCYHARhAHzX/gHSSfm9ZVmKxWJKp9MdF6SDXtO9Q9O5c+da99unPfXT3q57Byi/+gTgzLDnEq9wLgGOFyfnkvavO51y3T2FsjtQ41wCAJOBIAyA78rlsiQ5quyybVuJRELnzp1zHIJJjd3iuj/MZjKZ1n0nH2Lb2xiG0fPDsR99AnBmmHOJlziXAMeLk3NJe0BkWZajdcIGBWycSwBgMhCEAfBVuVyWZVkKh8O6ePFi37a2bSsWi8kwDGWzWVmWNfBWrVZbi8V2/+a1e4v05gffo5RKpdb9o35D6kefAAYb5lziNc4lwPHh9FwSj8c7pjZubGwM7Ls9ZOr1yzzOJQAwIeoAMIRKpVIPh8N1SfV4PF7f2dk5sm2tVmu17deuKRqN1iWNdCsUCkeOodkmGo0eeey9vb1Wu3g83necfvQJzBo/zyVOGIbR+vkslUoD23MuASaTn+eSnZ2djs8atVqt7zia7dLpdN8xcC4BgGARhAEYSjqdPhRC9frA1/xgahhG3w+OTW5CsEGZfqlUarXL5XJ9jx8Oh+t7e3sDx+tHn8As8etc4tSwQVi9zrkEmER+n0sKhUKrX8Mwev4M7u3ttc4p/YKoJs4lABAsgjAAQ2n/jWf7LRwO15PJZD2dTrc+aK2vrzv6oJVMJl2FYP1+89o+7uZvgZPJZH1nZ6e+t7dXr1QqrfFGo9GhPhj60ScwK/w4lwxjlCCsOW7OJcDkGMe5pP1nNBwO13O5XH1nZ6e+s7NTz+VyreecfB7p1SfnEgAYr1C9Xq8LAIZgWZZyuZyq1ap2d3dl27bC4bCWlpYUjUZ1/vx5xePxji29J0U+n9fW1lZr4dtwOKyVlRVlMhklk8mJ6ROYBZxL/O8TmAXjOpcUi0WVSiVtb2+3jtFccD6TyXSsKeYU5xIAGD+CMAAAAAAAAMwEdo0EAAAAAADATCAIAwAAAAAAwEwgCAMAAAAAAMBMIAgDAAAAAADATCAIAwAAAAAAwEwgCAMAAAAAAMBMIAgDAAAAAADATCAIAwAAAAAAwEwgCAMAAAAAAMBMIAgDAAAAAADATCAIAwAAAAAAwEwgCAMAAAAAAMBMIAgDAAAAAADATCAIAwAAAAAAwEwgCAMAAAAATDTbthUKhQbeTNMMeqgTK5/PD/z+RSKRoIcJ+C5Ur9frQQ8CAAAAAICj2LatxcXF1uNoNKpLly7JMIyOduFweMwjmy62bbfu7+7uqlqtKpPJtL5mGIZqtVoAIwPGhyAMAAAAADDRuoOwUqmkZDIZ4IiOj1QqpXK5LIkgDLOBqZEAAAAAgKlC5Zd3uqvqgOOOIAwAAAAAMFWWlpaCHgKAKUUQBgAAAAAAgJlAEAYAAAAAAICZQBAGAAAAAACAmUAQBgAAAAA41mzbVj6fVywWa+2Q2FQul5VIJLS4uKhQKKRYLKZisXhkP9lsVrFYrKN9d5+TPg5glt0V9AAAAAAAAPCaaZqqVqva2tqSaZqHnrcsS6lU6tBzpmkqk8loZ2dHhUKh9fV8Pq9sNtvzOKlUSuvr68rlchM7DgANoXq9Xg96EAAAAABwXGSzWVmW5bj92bNntb6+7uOIpp9t21pcXGw93tnZUTQaPbK9ZVmtsKi7SqpUKml3d1eZTEbRaFTnz5+XYRiyLEsbGxuybbvVtlKpKB6PK5FIaHt7W+fOnVMsFtPS0pKuXr2qfD7f0XetVpNhGBM3jn6y2Wzr9YZhqFarOXodMK0IwgAAAADAI92BjRPNkANHGzYIa9ddQWUYhnZ3d3Xp0iUlk8mOtpZlKRKJtB43j7G0tKRSqaRwONzRvlqtKpFItB6n0+mO6q1JHEc3gjDMGtYIAwAAAACPVKvVodoXCgVCMJ/1Csz29vYOhU9SIwhq//swTVO2batSqRwKnyQpHo93VF71+/uflHEAs44gDAAAAAA8UqlUZBiGKpWK6vX6kbdoNKr19XWl0+mgh3zsLS0tdTzuFTy1a6+sktRzPa527QFXvymxkzIOYNYRhAEAAACAR6rV6sCpjqlUSoZhdCxo3twxMBQKddxisdhI40ilUj376l5LCod1V1x1B1jdutfi8iqEmpRxAMcNu0YCAAAAgEey2WzfRcrz+bwsy9LOzk7H15PJpJLJ5KG1sEzTlGmajtfDkhrraXUvzJ7L5ViQ36FBgdMg7YvcH4dxAMcNFWEAAAAA4JF+Ux2r1aoKhYKuXLlyZJtwOHyommxjY2OoMfRqzxRM/5w8eTLoIUianHEAk44gDAAAAAB8ZlmWUqnUkYudt+t+vlwuDzXNrVgsHgrTBh0TAGYFQRgAAAAA+Mi2bSUSCZVKpb7TJpuWlpYO7QLYvp5YP+VyWbZtD1xYHQBmFUEYAAAAAPgolUopm832XUC/l/Ywq1gsOlrzaWNjQ/F4XCsrK8MOEwBmAkEYAAAAAPgkk8koGo2OtEZXOp3umNJYLBb7tm8urE81GAAcjSAMAAAAAHxQLBa1u7vreFpjL+0B2qBF8zc2NmQYxtCVZ5ZlKZPJKBaLKZFIKBKJKJFIHNp58ijZbFaRSESLi4uKxWLKZDIyTXOoMQDAuBCEAQAAAIDHTNNUoVBQqVRy1c/Fixdb923bPjKcaj43bDVYuVxWJBLR7u6udnZ2VKlUVKvVJL07pfMolmUpEonINE3t7Ozo+vXrkhoBYCwWUz6fb1WpOZnWCQDjQBAGAAAAAB6yLEsXLlzQlStXXPcVDocdVYUVi8VDbZ1IpVKSpPPnz3d8vVnFls/njwyxUqmULMtSoVBQOBxWOBzuCP6y2axisZhisdjAajYAGBeCMAAAAADwUCqVUqlU6ljfy432qqxmhVW3jY2NoUMwy7KOfK597Nvb24eeL5fLMk1ThmF07G5pGEbHOGq1mur1uqvpoUHb3d0NegiSJmccwLQjCAMAAAAAjyQSCV28eLEjHHKre92v7umK5XJZtm13TKN02m+hUFAul1Mymex4bmlpqXW/V0XY1tZWq49u7eNzus7YJOkOnAZN63zzzTeP9TiA44YgDAAAAAA8kM1mVa1WlUqllEgkVK1WPe27qVqtdlRzbWxsKJlMjlSBlk6ntb6+3nps27aKxWLHDpW9KpGaVWm9qsraw7FJCGe6xzgoUOp+vrlmmtP2R1XaTco4gFlHEAYAAAAALpXLZeXz+dbjarWqRCIx9OL1R4nH4x0BU3OqYXOq5LDVYN1M01Qmk9Hly5eVTqcHTrNsjuWosKX5/NmzZ12Nywvd65Ndvnz5yBDKtm0VCoVD7fuFW5cvX+74WvfrJ20cwKwjCAMAAAAAF0zTbC063y2fz3cEZE2xWEyLi4sdlVeDtIdqxWJRtm1rY2ND0WhU0Wh0+IGrEbgkEgmlUinlcjnH64xlMpnW/V7vz7KsQ1M6x8k0TSUSCS0uLh5aU822bS0uLioWi7Wmbpqm2fo76VW5FYlEFIvFWn9f1WpVkUhEkUjkUJhVrVa1uLioRCKh//Sf/tNEjIPqMOBdoXq9Xg96EAAAAAAwrZpBkmEYMk1TW1tbh0KPSqXSEQpFIpFWONF9SZbJZGRZliqVyqFjLS4utgKPdDqtYrGoUql0aI2vZsjS1Ouyz7ZtnT59WrZtq1ardVSctb++UCj0DMiKxWIrEGsP0S5cuCDTNFWpVDxbK637/ezs7Iwc/qFTNptthZmGYQycgglMOyrCAAAAAMCFSqWidDqteDyu9fV17ezsqFKpdAQ1qVSqo2KnGYr1Cor67Q7YHkgVi0WFw+FDIZhT2WxWtm0rHA4fGoeTHQrT6bRKpZIMw9DVq1e1urqqCxcuKJFIHArWAGBS3BX0AAAAAADguInH49rZ2VGxWGwFTrFY7FCVVKlUOvRa27aPDKIuXrzYMRXxqLXBnARZ29vbreP1GsMg5XJZlUqFCiIAU4WKMAAAAADwSTqd1t7engqFggzDUCwWUyQS0e7urmq1Ws/pfbu7u0eu6RQOhzuqwo5a06s7yOoVbC0tLbXut4drpmnqwoULrcfNoKu9j3K53NodMwhOrYAsKwAAAxFJREFUgj4A6IUgDAAAAAB8lk6nValUtLe3p1qt1ppS2K1arco0Tdm2feRC+s1F89PptMLhcM82W1tbHY+7dxSUOhe8z2azikQiWlxc1IULFzoq1fL5vCKRSMeuh83+U6mUQqGQFhcXWwu5x2Kx1o6Z3WuleYXF373jpPoPOE5YLB8AAAAAAlYsFlUoFA4FR9FoVJlM5lDlVyKRaFWZtctkMqpWqz2Domg0qvPnz2t9fb3juLlcrrXLYzabbR2rOa1zaWlJmUym43W2bSuVSqlarQ58b7lcruO1o+heLD8cDqtUKmllZaWj3VHBIBq6Q6/t7e2Oqj4Wy8csIAgDAAAAAAylGYTlcjmFw2FZltWxtplt23rzzTdbFW57e3uuQqruIOwo7CZ5tHw+36omPApBGGYBQRgAAAAAwLHmwv/dVWJHicViunTpEgEVgInAGmEAAAAAAMdSqZQsyzpyof5eCMEATAqCMAAAAACAI7Ztt9YFc7I+WLFYVDwe93tYAOAYUyMBAAAAAI5FIpHWYvzpdFqZTEaGYSgcDrfWCatWqyqVSq1F7QFgUhCEAQAAAAAcsyxLiUSi586UTdFolHXBAEwkgjAAAAAAwNCaVV+7u7uybVvhcFhnz55VPB4nAAMwsQjCAAAAAAAAMBNYLB8AAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBIAwAAAAAAAAzgSAMAAAAAAAAM+H/D5ZPPDJvfH9HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -564,21 +573,21 @@ ")\n", "ax2.set_ylabel(\"Number of Tracks (normalised)\")\n", "mplhep.lhcb.text(\"Simulation\", loc=0)\n", - "# plt.show()\n", - "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_regression_plot.pdf\",\n", - " format=\"PDF\",\n", - ")" + "plt.show()\n", + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_regression_plot.pdf\",\n", + "# format=\"PDF\",\n", + "# )" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9b2xb550v+n6XlPame1pxSe6Le2Ff1FqM52Tui1trUQrQ7leNyGQDJ0GbipSCyU4CTEzSbrvnAGpMSi4O9gYuYomyY2CfmbYi5Wxg0gkwEmmnRbuB1FxyX+1d7DG55NwLXORMwiUFiM85wB6Ti2znNLcTc90XGq6Q4r9FcvH/9wMQkciHz/MsUrLDr5/n9wiGYRggIiIiIiIiIiIacRP9ngAREREREREREVEvMAgjIiIiIiIiIqKxwCCMiIiIiIiIiIjGAoMwIiIiIiIiIiIaCwzCiIiIiIiIiIhoLDAIIyIiIiIiIiKiscAgjIiIiIiIiIiIxgKDMCIiIiIiIiIiGgsMwoiIiIiIiIiIaCwwCCMiIiIiIiIiorHAIIyIiIiIiIiIiMYCgzAiIiIiIiIiIhoLDMKIiIiIiIiIiGgsMAgjIiIiIiIiIqKxwCCMiIiIiIiIiIjGAoMwIiIiIiIiIiIaCwzCiIiIiIiIiIhoLDAIIyIiIiIiIiKiscAgjIiIiIiIiIiIxgKDMCIiIiIiIiIiGgsMwoiIiIiIiIiIaCwwCCMiIiIiIiIiorHAIIyIiIiIiIiIiMYCgzAiIiIiIiIiIhoLDMKIiIiIiIiIiGgsMAgjIiIiIiIiIqKxwCCMiIiIiIiIiIjGAoMwIhpJuq73ewpEREREREQ0YBiEEdHIUFUV4XAY09PT8Pv9/Z4OERERERERDZjH+j0BIhoPqqpid3cXqqpC0zRks1noug5RFCFJEmZmZiDLMjweD9xud9XzfT4fNE1DOp0279N1HYqiYHd3F4qicBUYERERERERNSQYhmH0exJEwyAWiyEYDLb8PFmWK8KbdgmC0PJzRFFELper+ZjP50MikWi5z2QyWTOoqkXXdWxsbGBra6vlcWRZhtvthtPpRDKZRCKRqHotS+GYqqpVz/d6vYjH4y2PS0RERERERKOLWyOJLAoEAsjlckin0/B6vQ3but1uJJNJs70dDMNAJpNBNBqFKIp120mShGg0ikwmUzcEA4B4PI5cLmcp2AqFQkin08jlcpZDsNIWxZMhWCmgKvVXuq5kMolAIGBem6qq2NraQjAYNAO7kyu+Sv0YhgFJkizNi4iIiIiIiMYXV4QRtSkYDCIWi1Xd34uVSJqmwel01nwsl8s1DMrqcblcNVdWRaNRBAKBlubm8XigaVrF/YFAANFo1FIfW1tbCIfDVfdLkoRMJlPzOSffD64IIyIiIiIiopO4IoyoTfW2SbazfbJVkiRBluWq+71eb1shGFB/3q2EYIqiwOl0VoRgoiginU5bDsGA4xVomUym6lqy2Wzd57R73URERERERDQ+GIQRtaneVrxebdGrNU4nY9d6bivhkqqq8Hg8Vc/f39+vGdpZmc/h4WHFHFgMn4iIiIiIiDrBIIyoTfVCopmZmd5OZABomobFxcWq++PxeFshWElpNdkoSiQSVdtH6XOKovR7CkRERERENIIYhBENqVqB26lTp2ztz2qo5/P5qlZrBQIBy4X1G5EkCaFQqON+ekVVVQSDQTidTgiCgOnpaTidTrhcLvOkzkQiAb/f3zTsURTFfP6oB0OapiEWi8Hj8UAQhKrVhf02Tu8FEREREdEoe6zfEyCi4aYoSs0i+5FIxLYx1tfXzdMndV0fyHpguq7D7/ebJ1xKkmSeLqppGlRVhaqq5uOl5zRSChh1XUcwGKx7UMAw0zQNPp8PmqYN9NbXcXgviIiIiIjGAVeEEVFHahXZ76Rofy2iKLZUtL8fSqu9gOOTNjOZDOLxOOLxONLpNDKZTNUKuWZhyjhss5UkCel0GrlcbqBX/o3De0FERERENA4YhBFR2xRFqVnnan193faxfD4fgMYnRzaiKAp8Pl/FlkWPx4NYLNbx3La2tsztcqFQqGZoJ0kSkslkxUq5ZjXCotEoJEmCJEmIx+Mdz3PQDdp2yHLj9l4QEREREY0qbo0korbVCwQ6KZBfj9vtRiQSaXlljq7rWFxcrNq+qes6FEWBoiiIRCIdFfbf2Ngwv661Qq5cKBTCw4cPsbW11TTUc7vdY7UFr1+rroLBIKLRaMM24/ZeEBERERGNKq4II6K21SoabkeB/HpCoVBLWy41TcPs7GzNGmYn27lcrraKoLdT2yoSiUCWZZ4aOQBisZgtqwKJiIiIiGg4MAgjorZomlYzyOnGarB26LpuFjj3er2IRqNIp9NIJpN1a1F5PJ6Ww6mTIZjVMG19fX2gi8OPA03Tmq7gIyIiIiKi0cKtkUTUlnqBkdPp7PFMaisFUslksmqVmtvtRjAYrBl8+Xw+pNNpy+NIklTxfTgcxvLyctOVa6UTJQf1FMxRp+v6QNckIyIiIiKi7uCKMCJqS70gbJBO16sVgpWUitefpKpqS1skRVGsCLJ0XYfL5bK0sswwDIZgfVCqG8etqURERERE44dBGNEICYfDEAShrZvL5WpprHrb+gYl2BFFsWm9MkmSKk5xLKl1XyMn22uaBqfTaUvtKVVVEQwGm66003UdsVgMLperYtzS9r/p6WkIggCn04mtra2q52uahnA4bJ6q6XQ6EQwGa77PpXFO/gyd5PF4zP7Kb3ZuCY3FYhXjTE9Pw+Vy1bxG4Pj1rFU3rnx+9V5rq+9Fia7r2NragsfjMV//0vzC4bClIE7TNGxtbcHpdFbMufw9cDqd5jZgIiIiIiJqwiCitgGouuVyuZ6MHQgEao5v502SpJbHTyaTPbn+k0KhUMU83G635eeKolh1Ha1yu901Xw9Zlo10Ot1SX+l02ggEAhXzEkWxql0ulzMikYghy3LFmNFo1DCM6tek/BYIBMx+GrWTJKnuz/TJn4F6IpGIpd+RdDpt+T2Ix+Pm6xKPxyv6kCSp7txzuZyRTqer5pROpytu5f1ZeS9OikajZvtIJGKk02kjk8kY8Xi84v3yer1Vz83lckYoFDKvo3yOuVyu6v0un1cmk2k6NyIiIiKiccYVYUQjJBAIIJ1Ot3WLRqMtjVVv5degrEppZWVarZVjzU6aPCmZTJp1v07243K5LK/Y0TQNu7u7llcdybJcVfA9nU7D5XJBVVXE43FkMhnkcrmKQwJisRhUVYXH44GiKEgmk8jlcsjlckgmk+brp2kaNjY2ao7t8/kszbHW69IJRVHMsdfX1yv6l2UZ8XgcwPHc/X5/xXNFUYQsy1WHOpTuK3+s1feiJBwOIxgMQhRFZDIZhEIhyLIMSZLg9XqRTqfNOScSCTidzoqfjWw2C4/HU/VzmUqlMDs7a27rzWQyiEaj5nul6zqL/xMRERERNdPvJI5omGHAVoRFIpG2+zu5GgdNVoSdXFFTupVWI/XayVVNtVba1FNaXWTHddR7Xdrpt7yvZquQTq4Sqrcy7+TKtfKVYeXKX5N6YyeTSUsruHK5nK0rwrxeb9Of+Wb9WJ17idX3onwlWLP3unzFV70VjOVzFEWx5vt68ue3V38GERERERENI64II6K2DPqKsFacPPkRaP86QqEQcrlc3VVQpdMqrfRfa171lB9SEAgE6tZHO3lSYr2VgOXz13V9YN/Xej+H5ffbURTf6nsRDofN8QOBgKW2wPEqt1qHNJRfx87OTs339eTPWiqVsjRXIiIiIqJxxCCMiNpSLxjIZDI9nknnaoUpDx8+7Ki/eDyOdDpdtQUPOA49FhcXbQ2XrG4FLX/fWtk+OkgnLO7s7CASiSAejzcNm4DehbOxWMwcy0pwFggEKt6DVg9pKFc+3iC9V0REREREg4ZBGBG1pd6Ko1qrWgZdrdDi1KlTHfcry3Ld+muqqlbVr+qFdk/1zGaz9k6kA6IoIhQK1a3J1mp9N7skk0nza6sryMp/j4bxd4eIiIiIaNgwCCOittVa7aRp2sBuo2tFK9sSmwkEAshkMlUhVCKRGOjwo93QrNc0TUMsFoOiKDUL4fdyHq06+XM2Cr87RERERESDjEEYEbVtZWWl5v2DHO7UczL0sTMIK/WXTqerxmn1tE76XOnUy2g02rAuWq+Uh1hWQ7GTJ1IO0so7IiIiIqJRxCCMaECpqgqfz9fvaTRUrz7TMIY7J1fiWFlVpCgKXC6X5TEkScLOzk7Fff3axjfsgsEgXC4XJEnqqLaWndop0F9+yAFgfwBLRERERESVGIQRDSi/3z/w26REUaxZp0lRlKEKeE6+zlZXFkmSBFVVW1oBd/L1YmHz1gWDQcRiMQCdFZi3W3mIZfWkzfIVYAzBiIiIiIi6j0EY0QAqBUkej6duG7u3ULXbX70gIhwOdzKdmroVDKZSqYrvg8GgpeeVggur7WvpVz2rXrLzZ1VVVTMEkyRpoOqYndwqXJpnI+WnrNYKlYmIiIiIyF4MwogGjK7r5pbIVj8YP3z40Na5WAkw6m1NUxQFW1tbts1F0zS4XK6OQqd6Tp7218rrLkkSNE2zHPydXAFWr87aMDi5ra9eUGnnqrfy1XeN+u3Hakqv11sRzFnZIlx+Pevr692YFhERERERlWEQRtSmbnzQ1nUdi4uL0HUdoii2vFXK7jlZ7S8UCtXcThgOh20pnK8oillUvBtb4RKJhPl1q/XNSu/R1taWpRVA5f1LkoRQKNTSePVYfa/K2zV7TrPHT65mq3X9tUJCO1eIlb93JVbGO/m7dTJUa/d3qbwGnKZpDX/+VVU1txBHIpGBWt1GRERERDSqGIQRtaneapR2P+SXCq+XPhgvLy+3PH4nAUOnq3aSyWTNlVQej6ftlWG6riMYDMLj8dQ9dbHRc62IxWLmtbdz8mB5oBIMBhEMBuuOHYvFKl6L8pVotZS/n/2uF1dv/PLXKxwOIxgMQlEUJBIJBINBOJ3OqpDH6u9OrTFPhm8+nw9bW1vmCkSn0wlN0yrel2g0CkVREA6HzT5PBmGl903TtIoaZLXm1ui98Hq9FWGtz+er2V7Xdfj9fgDHP3f1AlGr73v5a9rvnxUiIiIiooFmEFFbAoGAAaDq5na7jUwm0/T5uVzOSCaTRigUMiRJquonHo/XfW4mk6k5NgAjl8u1dT2yLNfsLxqNttRPKBSq2Y8sy0YymbTURy6XMyKRiCGKovmaNruuk+OKoth0nPLX0e12W5rbSdFotOb1er1eIxQKGdFo1AgEAhXvsdWfkZPvSb2fiVwuV/Va1+P1ei29v8lksqJdIBCoO3bpfTp5E0XRfM/L28iybGQymar31OrcTrYrv0UiEcMwav9+er3ein7q/azWular70VJPB43r1kURSMajRqZTMbIZDJGNBo1fx5K863F6ntwsl27P8tEREREROOAQRhRi9LpdMMP4nbdagU/uVzOiEajdYMHAIYkSUY0GrUciKXTacPtdjecSygUshTclCSTybrBmiiKhtfrNaLRqJFMJo10Om0kk0kjGo0akUik4nmiKDYNHEpqhYOSJNUN38qDipMBSSuSyaQ5z3g8bgQCAcPtdhuyLFe8T6XrbhYGln6+6r3Hsiyb4UmjtpIkGV6v1/w5OBnGnQxOSn0mk8m6Pw+SJNUMY3K5XEX/siwboVCook3pvpM/R7lcrun11hozEomY40mSZIRCoYqf+VwuZ15H+Wt2UnkQLctyxc9bK+9FPdFo1HC73RWhWOl59X5HG/1Olr8HmUymYbtmcyMiIiIiGkeCYRgGiKipWCzWlULttciyjHQ6XXGfIAgt9yOKInK5XM3HfD5fzfpKzSSTScvbBxOJBDY2NsztnlZJkoRgMIhAINBS3aRSPaqT1yWKIubn5yGKInRdRyqVMuuwxePxlrdDEhERERER0XBiEEZEXafrOhRFwe7uLjRNM2sxAcehV+lggIWFBXi93pYPCWg2XmnM0jjz8/Pw+XwMwIiIiIiIiMYMgzAiIiIiIiIiIhoLPDWSiIiIiIiIiIjGAoMwIiIiIiIiIiIaCwzCiIiIiIiIiIhoLDAIIyIiIiIiIiKiscAgjIiIiIiIiIiIxgKDMCIiIiIiIiIiGgsMwoiIiIiIiIiIaCwwCCMiIiIiIiIiorHwWL8nQDQMBEEwv56YYH5MRERERESjrVgsml8bhtHHmRDZi0EYUYvK/0IgIiIiIiIiouHBIIyoRYO0Iqw8lBukefUTX5NqfE2q8TWpxNejGl+TanxNqvE1qcTXoxpfk2p8TaoN6mvCBQA0qhiEEVkwMTGBYrGIiYkJPHr0qN/TMZ05cwYPHjzA6dOn8cknn/R7OgOBr0k1vibV+JpU4utRja9JNb4m1fiaVOLrUY2vSTW+JtUG9TWZnJw0PwPReDk6OoKqqshms9B1HQ8fPgQAnDp1CqIoQpIkzM/PY2pqqs8zbQ+DMCIiIiIiIiKiMXb79m0kk0ns7e1B13VLz5EkCW63Gz6fD08//XR3J2gjBmFERERERERERGPo5s2biEQi0DQNQOXBCOWHxpUrtclkMtA0DbFYDJIkYW1tDa+99lr3J90hrnEkIiIiIiIiIhojd+/exblz5xAMBmuGYKXva91qtdE0DYFAAH/6p3+K999/v2fX0Q6uCCMiIiIiIiIiGhPr6+vY2tqqCrXcbjdkWcapU6cgSRJEUQQAzMzMAACy2SwAQNd1aJqGhw8fQtM0KIpibqf86KOPIMsywuEwrl692rNrasXQBWHnzp3r9xRMgiDgH/7hH/o9DSIiIiIiIiKihgqFAhYXF5FOpwEcB18ejwdutxtzc3Md9Z3P57G7u4tYLAZVVRGJRKAoChRFGbii+kMXhGUyGQiCUJVc9lJp/Hr7ZYmIiIiIiIiIBsX9+/exuLiIXC6HQCCAcDiM2dlZ2/p3OBwIBAIIBALQNA3BYBD7+/uYn59HOp3GV77yFdvG6hRrhLWhnyEcEREREREREZFVBwcHkGUZs7OzyGQy2N7etjUEO0mSJCSTSdy5cwf//b//d7hcLhQKha6N16qhWxEGHAdRXq8XkiT1ZXxd1xGLxfoyNvVXsVjEmTNnGrZZXV3F6upqT+azurqKQqEwcEtNabDw56QaX5NKfD3ICv6cVONrUomvB1nBn5NqfE2omw4PD7G4uAiv14u9vb2eju12u3F4eAiXy4Xl5WW89957PR2/HsEYsuVNExMTiMViuHDhQl/noSgKnn32WTx69Kiv86DemJycRLFYtNT23//7f4//8B/+Q3cnRHWdOXMGDx48wOnTp/HJJ5/0ezpENKT4ZwkR2YF/ltAwK30GmpiY4OfeIfbEE0/A7XZje3u7b3PQdR3z8/O4dOkSfvjDH/ZtHiVDuSLM7Xb3ewpYWFjo9xSoT06fPt3wcf5LDhEREREREfXb2toaJEnqawgGAKIoIpVKQZIkLC4u4vz5832dz1AGYaWjO4l6bWJigv+aR0RERERERAPv1KlTiMfj/Z4GgOMwbH9/H5qmMQhrFU9qJCIiIiIiIiJq7PLly/2eQoW5uTnMzc31exrDd2rkIJU0G6S5EBERERERERH1y6VLl/o9BUuGLgiLRCIDUYPJ4XAgEon0expERERERERERH0Xi8VwdHTU72k0NXRBWK+X9jV6EwdtmSERERERERERUa/t7+/DMAzcunWr31NpauhqhPVaMBjEr3/9635Pg4iIiIiIiMgWN27cwI0bNxq2KRaLPZoNdcPFixdxeHjY9XGy2Sx0XYemaQCA7e1t/PCHP+z6uJ1gENZEKpXq9xSIqAWrq6soFAoDsYWaiIYX/ywhIjvwzxIaVIVCAQ8ePOj3NKiLRFFEMpns+oGDJ2una5qG+/fv9/1kyEYEY0wqvh8dHUHXdcvtNU1DNBqFoih49OhR9yZGQ2FychLFYhETExP8eSAiIiIioqFmZUVYKSjjZ6DhdHBwAJfLZTkIMwyj49Cs1Ec4HMbVq1c76qubRjYIOzo6QiQSgaIo5hK9VpXeRP7SE4MwIiIiIiIaJ/wMNPyeeOIJHB4eVq3aqkUQBEvtrDzf6XTiww8/bLuvbhu6YvlWrK+vw+l0IhaLIZPJwDCMtm5ERERERERERMNocXERAKAoCorFYt1bJBKBYRiQZRnJZBK5XK5h+5O3VCqF2dlZBINBFIvFgQ7BgBFcEXbr1i34fD4AMJf1dZpqMv0m/msIERERERGNE34GGn77+/tYW1vDvXv36rY5PDzEE088gUAggJ/+9Kdtj6VpGp544glcvHgRP/nJT9rupxdGLgibn5+HqqrmsjxJkiDLMiRJAgCcOnWqaR8PHz6EruvY29tDPp/nLz3xLwEiIiIiIhor/Aw0Gp555hncuXOn7uMXL17E/v6+Lau4gsEgbt68CUVR8K1vfavj/rpl5IKwiYkJcyXYnTt3zKWA7dA0DefOneMvPfEvASIiIiIiGiv8DDQe5ufn8eKLL+L111/vuK+dnR0Eg0EsLy/j7/7u72yYXXeMXI0wURQBAKFQqKMQDAAkScLs7KwNsyIiIiIiIiIiGiyqqkKWZVv6mpmZAQAkk0lb+uuWkQvCSlsgFxYWbOkvGo3a0g8RERERERER0SARRRGHh4e29FUKwHRdt6W/bhm5IKy0CiybzdraHxERERERERHRKJmfn8f29nbH/eTzecRiMQCf79QbVCMXhF25cgWGYUBVVVv6u3nzpi39EBERERERERENkkAggHQ6jTfffLPtPgqFAtxuNwBAEARzp96gGrkgzOFwYHNzE7u7u/jd737XcX/cGklEREREREREo8jr9WJ2dhahUAgvvvgijo6OWnr+7du3MTs7W7EYaWVlxeZZ2mvkTo0s8Xg8mJycxHvvvdd2H4eHh3jiiSd4QgbxxBQiIiIiIhor/Aw0PjRNwxNPPAFBEAAAsiwjGAxCkiRIkoSzZ88CAI6OjqDrOjRNQzKZxN7eHnRdh2EYEAQBhmFgenoaDx8+7OPVNDeyQRhwvNc1n88jHA6bpxc0k81moes6MpmM+abyl55KfwkAwOnTpxu2XV1dxerqai+mRURERERE1BUMwsaLqqqYn58HADMQa6YUJ5W3TyaTePrpp+2foI0e6/cEuuXu3bsAgEwmg2Aw2FYfpVSTqNyDBw8aPl4oFHo0EyIiIiIiIqLOybKMjz76CD6fDwcHB5aeU8pLSoFYPB4f+BAMGNEg7NKlS+ZpBaXlea1iAEb1NFsRNjU11aOZENEg+bH627af+335GzbOhIiIiIiodZIkIZ1OI5FIYHNzs+oQwpPBV+m/Xq8XOzs7cDgcvZ1wm0Zua+TOzo65AqzdEKycIAhcBkpcFkxETTEIIyIiolHCz0B0eHgIRVGQTqehaRqy2SwAYGZmBpIkwePxwO12D00AVjJyQdj8/DxUVTVDMLfbDY/HA1EUW64Ttr29jaOjI/7SE/8SIKKmGIQRERHRKOFnIBpVI7c1shSCiaKIVCqF2dnZtvvy+/04deqUjbMjIiIiIiIiIqJ+mej3BOwmiiIAYH19vaMQrNTX3NycDbMiIiIiIiIiIhoN6+vr+Pjjj/s9jbaMXBDmcrkAHBd5s8POzo4t/RARERERERENghs3buDMmTMNb8Visd/TpD65ffs2Ll26hIWFBdy+fbtmG5fLhbm5Obz44otDF4iN3NbIYDCI/f19aJpmS3/juCJM0zQEg0EEg0F4vd6ejJVMJi2139raQjKZRCqVgq7rkCQJsiwjGAzC7XZ3da5ENPo6qfNFRERENCwKhQIePHjQ72nQgLl+/To2Njag67p5X6lA/klerxdutxuLi4uQJAmJRAIvvPBCj2bamZFbEeb1ejE3N4fd3V1b+quXfo4iXdfh8/ngdDqhKErdH3irfQmC0PTmdDotrd5TFAXT09MIh8MAgHg8jkwmg0gkAlVV4fF44PF4Kn5hiYiIiIiIqNrU1BROnz7d8EbjI5/P49y5cwiHw8jlcjAMA1bOVRRFEel0GufPn4fX68Vbb73Vg9l2buSCMOA4JEmn03j33Xc77mtjY8OGGQ02XdcRDocxPT2NRCJhS5+xWMxy21K4VY+iKGbIFQgEkEwm4Xa7IUkSvF4vMpkMZFmGoihwuVwMw4iIiIiIiBpYXV3FJ5980vA2MTGScQHV4PP5kMlkAMBctNKK/f19GIaBQCCA3/zmN92Yoq1G8idbkiRsb2/jwoULHfWTz+ehqqpNsxpMW1tbcLlctl+n1QCxFGjVU1qlBhy/r9FotGa7eDwO4HirZak9EREREREREdW3v78PRVEgCIK5EszhcLRUekgURVy+fBmGYSAYDHZxtvYYuRphpa2MX/3qVzE9PY1z5861VedK13Xs7e3ZPb2Boqoq3G43QqEQgONVXHb80MZiMei6jlAoBI/H07Dt/Px8w8d9Pp+5wqvRyrHS6rBEIgFFURCLxRAIBFqeOxEREREREdG4KC02Ka3oCofDmJ2dBYCWVgW++OKLuHbtGjKZDN566y289tprXZmvHQTDysbPITI/P4+DgwPze8MwWl7Wd/K5jx49smt6A01VVfPUTeD4F6KdMMnpdAKAubSyXZqmmX0BQC6XgyiKddsnEglzNZgoisjlch2NX25ychLFYhETExNj8/NANI76VSz/+/I3+jIuERER9Z5hAMUmn8InBKDNj7G24Weg8TAzM4N8Po9oNFq1q25iYgKxWMzSbrt8Po/p6WkIggCv12tb3fZuGLkVYcvLy+Y2v3b2to6zRiGTVYlEApqm1d3C2IpIJGJ+7Xa7m86vfOWfrutIJBJdP/WSiIiIiIioFUUDeOxHjdt89gYwyY+y1AO6rsPpdHZcWqr8sL1BLzE1cjXCSlv7yve3tnuj1m1sbEAURSwvL3fcV3nBfVmWLT2nvN7YICfQRERERERERP0miqLlz9uNlMIvwzCgaVrH/XXTyK0IczgckGUZBwcHiEQikGUZMzMzLfejaRquXr2K+/fv2z/JEaWqqvnDPz09DUmS4Ha74fF4Wl6ZdTJBXlhYsPQ8WZbNXzq7TsAkIiIiIiIiGkWSJJl1uTtRfmCeHbvNumnkgjAAWFlZgdPpxOXLl9vuY25uDktLS22FaOPqZDF7TdMQi8XMlV1erxfr6+uW0mZFUSq+b3SyZKN2qqrakm4TERERERERjZrFxUXcvHmzoz6uXbsGVVXNnXlWP7/3y8htjQSO60nZtbWx2amGdEzTtKrw6qREIgGXy2XpZMp79+5VfG81UT516lTF96lUytLziIiIiIiIiMbN+vo6crkc3nzzzbafv7a2ZoZggiBgZWXF5lnaayRXhM3NzVUUWu/EX/7lX9rSz6iTJAnRaBS6riOTyUBRlLr7gmOxGFKpFNLpdN3+Tj633RVhnZ5cSURERERERDSqRFHE5cuXEQqF8PDhQ6ytrWFqaqrhcwqFAvb29hCJRKBpmhmAlQQCgW5PuyMjGYQBwOzsrC39/NVf/RWee+45W/oadSd/2HVdRywWw8bGRtWeY1VV4fF4kEwma/ZlV3E9O/Y6ExEREREREY2qSCQCVVWxubmJSCQCj8cDt9sNAEin05iZmUE2mzUXvZQXxgdQEYJtb283DdL6bSS3RtqJW+vaJ4oiQqEQcrkc4vF41fZGRVGwtbVV87ntBlgnxyg/wpWIiIiIiIiIqiWTSfj9fhiGgWQyiXA4DEEQEIvF4PP5EAwGsbW1BVVVYRiGuQqstCXSMAxEo1H4/f5+X0pTI7si7KSjo6OWwhVN08ytftQ5r9cLt9uNxcXFihMhNzY2EAqFujau3e9fsVjEmTNnOu5ndXUVq6urNsyIiIiIiIiIqHPRaBTBYBDhcBj7+/tVj5dWfpWHX8BxnfZoNGrbzrxuG9kg7OjoCJFIpGGtqmZO7nOlzoiiiHQ6DZfLZYZhuq5DURRz2WV5WztCrG4c2/rgwYOO+ygUCjbMhIiIiIiIiMg+siwjmUzi8PAQiqIgmUxC0zTouo5sNouZmRmIoghJkuDxeLC8vAyHw9HvabdkJIOw9fV1c8udXadHkn12dnbgcrnM75PJZFUQNjMzY0sQNjMz03EfJ50+fbrjPgZ9zzQRERERERGNr9nZWfj9/qHY6tiqkQvCbt26ZZ4YWb5flQaHLMtwu91QFAVA7cL47a7kOhme2b0ibGJiAp988omtfRIRERERERFRb4xcELaxsQHg8z2rkiRBlmVIkgQAOHXqVNM+Hj58CF3Xsbe3h3w+39X5jiuPx2MGYbXMz89X1BLTdd1SqHWyOL7T6Wx7jkRERERERERU7ejoCKqqQhRFzM/PD9Wup5ELwlRVNet6JZNJLC4utt1XKBTCuXPn7JoalSkFk0Dt7YvlWyeB41Vjsiw37TeTyVR8f3LLJRERERER0bi7ceMGbty40bBNsVjs0WxomBwdHcHn81UsXAGOP8PH43F87Wtf69PMrBu5IEwUReTzeYRCoY5CMOA4rBmWUw+GTXkQVmul1/z8fMX3VoOw8q2RpQJ+RERERERE9LlCoWDLIWA0Gp555hnkcjnz83Q2m4Xb7cbu7m5Fu4ODA7jdbui6XlWCKpVKwel0IplM4lvf+lavpt6WiX5PwG6l4GNhYcGW/qLRqC39UKVUKmV+7fF4qh6XZbkiILt3717L/Z4M04iIiIiIiOj48K7Tp083vNH4EEUR6XQaDx8+RCAQQCqVqgrB8vk8FhcXkcvlAMDciSeKItxuNyRJQrFYhM/n6/n8WzVyQVhpFdjJWlGd9kf2Kt/CWG/74vLysvn1yWWX9ZS3C4fDbc6OiIiIiIhodK2uruKTTz5peJuYGLm4gOpQVRXhcBjZbBaXL1+uuTPO7/dD13WzHrthGIhEIshms7hz5w4++ugj3LlzB8ViEVeuXOnDVVg3cj/ZV65cgWEYloOTZm7evGlLP1QpkUgAOK7DVk8wGDS/blRYv1YbSZJYH4yIiIiIiIiogWvXrkGWZfPgwVpu3bqFRCJhhmCCICASieDy5csV7dxuNzY3N5FOp7s97Y6MXBDmcDiwubmJ3d1d/O53v+u4v3HaGlleX6ubEokENE2DKIpYX1+v206W5YowqxSe1ROPx82vuRqMiIiIiIiIqLFYLNZ0BZff7ze3QgqCAFmWq0KwkpWVlYqSRYNo5IIw4HiVkSzLHe9NPTw8tG1l2TDQNK3ie6vBmKIomJ6ehiAI8Hg8DV8zTdPg9/sBAPv7+zUL5ZcrDyIbJdS6riMWiwE4TqEDgYCluRMRERERERGNq0wmg/Pnz9d9/NKlS2Y2UCqQv7OzU7e9w+GoKqQ/aEbu1MiSZDKJ+fl5nDt3DuFwGDMzM5ael81moes6MpkM9vb2ujzLwaHretUqqt3d3YZbF0vi8bj5i6EoClwuFwKBQNVqOkVR4PP5MDMzg3Q6belER0mSEI/HzeNZt7a2as6pVMtNFMWKlWFEREREREREVJskSTg6OsLZs2erHjs4OEA0Gq3YEhkIBBoGZwcHBwN/cJ1gDHpU16a7d+8iFApBVVVzCV+rSm/0o0ePbJ7dYNB13Sx416gGl9vtNrcxyrJc9biiKDVPfiydHjEzM4NUKgVVVREKhbC+vt50JVitMXw+H3Rdh9frxfr6OiRJQiqVQjgchqqqkGXZ0iqzdkxOTqJYLGJiYmJkfx6ICPix+tu+jPt9+Rt9GZeIiIh671EReOxHjdv8jRd4xdWb+dTDz0Dj4ZlnnsH8/DyuXr1acX8+n4fL5YKmaWamIkkSPvzww4b9Xb9+HXNzcwN98OBIBmGXLl0yt8kBaGtZXnniyV/65jRNQyQSgaIo5qo6URQxMzMDWZaxsrJiBmqd2Nrawu7uLjRNM8eYn59HMBiE1+u152Jq4F8CROOBQRgRERF129tp4NXG5Y8BAH+7DLw01/351MPPQOMhkUhgeXkZa2trWFtbA3C8ECUcDiOTyVRkI+l0uulqMLfbjYcPH/Zo9u0ZuSBsZ2fHPG2w9IZ1gkEYAfxLgGhcMAgjIiKibsp/Cpy+CvzTPzdv++UvAg/WganHuz+vWvgZaHx4PB7cvXu34r5S+FXKVKLRqFnvu5abN2+a5ZYGPQgbuRphpbpUpTfM7XbD4/GYq5OsKK1o2t7extHRURdnS0REREREROPiZ6q1EAwAfv9H4G0V+ME3uzsnokQigQsXLuDWrVsV9xuGAVEUsbOzg6Wlparn3b9/H7u7u0gkEtA0zQzP3n33Xbzwwgu9mn7LRm5F2MTEBARBgCiKSKVSmJ2dbbsvXddx6tQppt/Efw0hGhNcEUZERETd9Ox/Au40LrFU2f4c8N5fdG8+jfAz0PjZ399HMpmEqqoQRRELCwsIBAJwOBxVbXd2duoeVOdyubCxsdHt6bZt5FaEiaKIfD6P9fX1jkKwUl9zc33clE1EREREREQjI/eH7rYn6sTi4qLlIvd+v7/hVslBNtHvCdjN5To+WkOSJFv629nZsaUfIiIiIiIiGm/TX+pueyJqbuSCsGAwCMMwoGmaLf1xRRgREREREdFoMQzgUbHxrRtFhJ5/srX2z7XYnqjfhqHO+sjVCAOOV4VNTEzg3r17Hfd1+/ZtfPe737VhVjTMuD+eaDywRhgREdF4eFQEHvtR4zafvQFM2rx0hKdG0qhbWFiwJYvpppFbEQYA8Xgc6XQa7777bsd9DXKBN+q9YrGIM2fONLzduHGj39MkIiIiIqIB5Hgc+Mm3rbXd/k7/QjCidtm1O6+bRq5YPnBcH2x7exsXLlzo6MjOfD4PVVVtnBmNggcPHjR8vFAo9GgmREREREQ0bF6aA15NNG7ztve4HdGwKBQKCIVC0HW931NpauSCsNu3bwMAvvrVr2J6ehrnzp2D1+ttuR9d17G3t2f39GgEnD59uuHjU1NTPZoJERERERGNoj9nCEY2ODw8xPLyMjRNQzAYxNWrV6vazM/P4/DwsKNxSuGXYRgQBKGjvnph5IKwq1ev4uDgwPzeMAxsbW211dewvInUOxMTE/jkk0/6PQ0iIiIiIqK23bhxo2lJl2Kx2KPZULf4fD5zl1skEsH8/HxVDXSXyzV2O+FGLghbXl4230RBEBhkERHRwOukSD8L7RMREVGrCoVC05IvNPxUVYUgCCidkVirftfFixexs7NTlZ1YPVex/HnDchbjyAVhwWAQa2trFW82ERERERERER2bmppqWvKFQdnw8/v92NnZMb+vVTZqbm4Ooigin8/DMAyIooiZmRmIomhpDF3Xkc1mh6I2WMnIBWEOhwOyLOPg4ACRSASyLGNmZqblfjRNw9WrV3H//n37J0lERERERETUJ6urq1hdXW3YZnJyktsjh1w0GoXH40EqlUIwGMTZs2drtvP7/bh+/TpUVcX58+fbHi8cDuP69ettP79XBGMEl01du3YNqVQKu7u7Hfc1MzODbDZrw6xomJX+EpiYmMCjR4/6PR0i6pJOtij2C7dGEhERte5REXjsR43bfPYGMDkxWmO3gp+BxsfBwQGWl5fx4YcfdtzXMGQoff7V6g63223btsj5+Xlb+iEiIiIiIiIiGjRzc3NwOBy29CVJki39dNNIBmFzc3OIRCK29GVXP0REREREREREg2h/f9+Wfsprkg2qkQzCAGB2dtaWfubm5mzph4iIiIiIiGjcbW1twePxYHp6GoIgwOl0wufzQVGUoRy7H9ejqioSiQS2trZsG8euFWEnT58cREMXhA1S8fpBmgsRERERERHRoFIUBdPT0wiHwwCAeDyOTCaDSCQCVVXh8Xjg8Xi6cvpgN8bu5fXouo6trS24XC4IgoDFxUXcu3cPsiwPXDknv9/f7yk0NXTF8icnJ5HL5TA1NdXXeeTzeczMzLBo4JhgoUii8cBi+UREROOhk4L1hgEUm3yKnhCAegtjxrFYvqIo8Hg8AIBAIIBoNFrVxuVyQVVVSJKEdDoNURQ7GrObY/fqenRdRzgcRiwWAwDIsoxIJAK3291yX71y6tQpPHz4sN/TaGjogrCJiQnouj4QQdj09DSPkx0TDMKIxgODMCIiovHQSRjVaZA1bkGYruuYnZ2FruuQJAmZTKZmO03T4HQ6ARwfgJdMJtses5tj9+p6YrEYwuGwuaIsGo0iEAi01EevFAoFZLNZhEIh3Lp1a+A/Mw/d1shB2m86SHMhIiIiIiIiGjQ+n88Mc0rbCGuRJAlerxfA8Yqr0iqoQRu7F9cTDocRDAYrwrZWQ7B8Po/Jycme3Kanp+F0OpFIJFqaY78MXRA2ZAvYiIiIiIiIiMaSpmkVxdyXl5cbtl9ZWTG/bhQy9WvsXlyPz+fD1tYWAEAURaTTaUiSZOm55RwOB86fPw/DMHp2GxZDF4QBwOHhYb+ngFQq1e8pEBEREREREQ2sSCRifu12u5vWySqtoAKOtyB2ssKoG2N3+3o8Hk9Fm05rpb344osAjnezdXtH2zDtmHus3xNoh9/vx9raGkRRxMzMTE/Hzmaz0DQNoVCop+MSERERERERDZPy7YCyLFt6jiRJ0DQNALC7u1sRJvV77G5eTywWq1htFo1G21oJVq5UVN8wDEiSBEmSbDuEoJyu69A0zbzOQTeUQVg6nYbP5+vrHAzDGKrEk4iIiIiIiKhXVFWt+H5hYcHS82RZNgOVdleEdWPsbl6PpmkIBoMVz7GjMP7c3BxEUYTH48Hu7m7H/TUTi8Vw6dKlro/TqaHcGlnSy72uw7jvlYiIiIiIiKgfylc3AbC8uulku5MBVL/G7ub1nFzos76+bqlvK9xuNzwej239NRIIBOBwOHoyVieGMgjrdyDFMIyIiIiIiIiovnv37lV8b3VL3qlTpyq+b6c+dzfG7tb1aJpWEY6Jotj2dtBaehWClczPz/d0vHYM3dbIXC7X7ykQERERERERUQMn60W1u4Iqk8kMxNjdup5oNFrxfamuVyKRwO7uLlRVhaZpEEURkiRhZWUFgUDAchDn9/uRz+cttbXDnTt3ejZWu4YuCBuGZXY0uorFIs6cOdOwzerqKlZXV3s0IyIiIiIiGiYTAvDZG83bDDu7Cqfruj4QY3fresoL8APAzMwMXC5X1RZKXdehqipUVUU4HEY8Hre8cqwXOUo+n8fm5iY2Nja6PlanhnJrJFE/PXjwoOGtUCj0e4pERERERDSgBAGYnGh8G4Vz2doJsIDqLYfZbHYgxu5Gn5qmVfW7t7eHYDCIXC5nloXKZDJVxfN9Pl/bhwl0g8PhQDKZxFNPPdXvqTQ1dCvCiPrt9OnTDR+fmprq0UyIiIiIiIgq3bhxAzdu3Oi4n2KxaMNsOtduADWoYzdaZSaKIg4PD6vCM0mSEI1G4XK5Kk6X9Pv9cLvdlrdJdtv8/Dx2dnZw5coVXL16td/TqYtBGFELJiYm8Mknn/R7GkRERERERDUVCgU8ePCg39OAKIq2BEnthDzdGLsbfZ4MwprV/goEAkin0+Z2Sl3XsbGxgUgk0vG8yh0dHUHX9ZZW46mqing8DsMwEI1GGYQRERERERERUfdNTU013cViRadh2szMjC3B0czMzECM3Y0+TxbOX1hYaPr8cDhcUVdsa2vLliDs9u3biEajUBSl4776uYrPCgZhRERERERERCPCrsO7JicnO9oe2e52vZMhSrsrwuweuxt9tnOtkiRBluWKYvqqqkKW5bbmBwDXrl3D2toaAMAwjLb7EQQBgiB0NJdeYLF8IiIiIiIiIrLV/Px8xfdWVwmd3I7ndDoHYuxu9NnOtdWaSycnWh4cHCAcDgOoHYIJFk9uEAQBhmFgdnYWOzs7bc+nF7gijIiIiIiIiOiEdw6AV1z9nsXwcrkqXzxN0yytFDq5XdDtdg/E2N3o8+QKMKvh2skArZ2TNUui0SiA41MfA4EAnE4nJEkCAORyOSwvL2N6ehp7e3s1n6/rOu7cuYObN29CVVWcP3++7bn0CoMwIiIiIiIiGivvHDRv82oCmJwAXprr/nxGUa1VS1aCo/IwSBRFM5Tp99i96tOKkwFaO3XUShRFgdPpxIcffljzcb/fj5s3b8LpdOLs2bM12ywtLQEA1tbW8N5777U9l17h1kgiIiIiIiIaG/lPge/9wlrbiz8HCp92dTojS5blisDm3r17lp6XSqXMr08GRf0cu1t9lju5esyqdsLCEk3TzFVhtaytrcEwDGxtbTXsJxwO486dO3jzzTfbnkuvMAgjIiIiIiKisfEzFfinf7bW9vd/BN5Wm7ej2paXl82vy4u7N1LerlS7alDG7kaf5VslrZ7YeHILZafF6RsFjrOzs1hcXEQ0GkWhUKjbTpIkzM3NIRQKNWw3CBiEERERERER0dj45Qettf9Vi+3pc8Fg0PzaSshT3kaSpLbqg3Vz7G70WR6OaZpmqU5Y+cqxTl4j4DhEa1ZjLBwOwzAM82TJehYWFmAYBjY3NzuaU7cxCCMiIiIiIqKxkftDd9vT52RZrghqEolEw/bxeNz8utlqsFgshnA4XLeuVjfG7kafbre7YmvjxsZGwz6ByoAtEok0bd+IJEmIxWIN27jdbszNzSEajeL999+v2660DbT8ugeRYNQ6H5OIKkxOTqJYLGJiYgKPHj3q93SIqIEfq7/t9xR66vvyN/o9BSIioqHy7H8C7tSuC167/Tngvb/4/PtHReCxHzV+zmdvHBfaH2Z2fQbSNM085VCWZaTT6ZrtdF3H9PQ0gOPgJZlM1u3T4/FUhEG5XK6qgHy3xu5Gn6qqVpxKmclk6tb9UhQFHo8HABAIBBrW97IikUhgZWUFW1tbWFpaMoPFp59+uqrd8vIyBEFAIpHACy+8UPH4tWvXzLBPEISB/tw85L+aRERERERERNY9/2Rr7Z9rsT1VkiTJXCGkqmrdouuLi4sAjk9EbLai6OS2xL29vZ6N3Y0+ZVmuCLQ8Hk/NLZK6rpvbM08+p11erxdTU1MIhUJwOp3weDzweDx46qmnqtotLi7CMAx4vV4sLCzg0qVLuHTpEs6dO1exbbKT4v29MJZB2NHRUb+nQERERERERH3wsgz8yRestf3yF4FXOqtDTjgOUZLJJERRRDgchs/ng6qq0HUdiqLA5XJBVVXIsozDw8Oaq7vKnXy8UfBi99jd6jMQCJh9apqG2dlZbG1tQVVVM3CbnZ2FpmkIBAJ1V6K1Y2dnB6XNgoZhwDAMpNNp3L9/v6JdefCmqipisRhisRgymYz5fEEQOi7e321jszXy6OgIiUQC0WjUXOoXDAbh9XqrlvwRncStkUTDg1sjiYiIqJm308Crjcs7AQD+dhl4aa7yPm6N7MzW1hZ2d3fNwvCiKGJ+ft78fG6FoigIBoPIZrMIBAKW62TZMXYv+ozFYojH40ilUmafpWL7wWCwKyuuSlsfS6anp/Hw4cOqdoqi4JlnnoEgCFWPGYaB6elpHB4eYmpqyvY52mWkg7BCoYC9vT1Eo1HzyNLyyy29caIoIhgMIhAI4OzZs/2YKg04BmFEw4NBGBER0XgwDKDY5NPshADU+LxuKcx62wu87Kq+n0EYjap8Po+9vT3ouo5AIACHw1GznaZpCAaD2N/fr7hflmXE43HMzs72YrptG8kg7Pbt24hGoxX7hg3DgCAIVUFY+fI94HhJ5cWLF+H3+wc6waTe4l8CRMODQRgREdF46CSQ6tdzhwk/A1Ez+XzePClSkqSBD8BKhvxX83N3797FpUuXMDk5CZ/PB0VRKva4lv4ryzIikQi8Xi9OZoCGYSCTySAUCmF6ehoLCwt46623UCgUen49RERERERERESDyuFwYHFxEYuLi2YINgw12Yc6CLt//z7W19dx6tQpeDwexGKxhuFXLpdDKpXC5cuXsbe3h2KxiHg8XjcUU1UVgUAA09PTWFlZwe3bt3t+jUREREREREREw6B0quUge6zfE2hVoVBALBarKHp/ctujYRhwu93w+XxYXl6uu68VAJaWlrC0tAQA2N/fRzweN/fElodjiUQCicRxNcVSPbHz58936SqJiIiIiIhoWL1zALxSo74Y0agrbZUcZEMRhNUqeg9UFr5vJfyqp7Skb3t7u2EoFo1GEY1GWWR/DBWLRZw5c6Zhm9XVVayurvZoRkRERERE1EvvHDRv82riuEbYyRMnB8WNGzdw48aNhm2KxWKPZkOD6OjoCLquW26vaRqi0WhLz+mXgQ7Cbt++jd3dXXMlFoCqLYxerxcrKyvmqi67lIdiBwcH5jw0TTPnkMvlEIlEEIlEWGR/jDx48KDh46wpR0REREQ0mvKfAt/7hbW2F38OPP9nwNTjXZ1SWwqFQtPPNTRejo6OEIlEoCiKufuuVaXdeoNu4IKwu3fvIh6PIxaLmff1KvyqZ25uDnNzc9jc3KwbimmahlAohFAoVLEyjaHY6Dl9+nTDx/meExERERGNpp+pwD/9s7W2v/8j8LYK/OCb3Z1TO6amppp+rmFQNj7W19extbUFoDp/GUWCMQBXeXR0hGg0ilgsZi6jK5+WKIpYXl6Gz+fD4uJin2ZZ7fDwEIlEAru7uxVbNssT0FJo993vfrcfUySb8OhgouHxY/W3/Z5CT31f/ka/p0BERNQXj4rAYz9q3OazN463KNr13Gf/E3DnQ+tzfPYc8N5fWG8/SPgZaDzcunULPp8PwOdZRicxkSAIA//z0rcVYfWK3pcMavhVbnZ2FpcvX8bly5frhmKlIvuiKGJlZYVF9omIiIiIiIZU7g/dbU/UaxsbGwBgHkAoSRJkWYYkSQCAU6dONe3j4cOH0HUde3t7yOfzXZ2vHfqyImxnZwcXL14EUBl+SZJkrqCamxvQqoIW5PN57O3tIR6PQ1EU8/5SuupyufD3f//3/ZoetYH/GkI0PLgijIiIaDxwRVh38TPQeJiYmDCzijt37nS0EEnTNJw7d27gf176siKs/BTGUQm/yjkcDvj9fvj9/pqhWC6X6/MMiYiIiIiIqFXPP9laEPbck92bC5EdRFFEPp9HKBTqeDeeJEmYnZ21aWbd05cgTJIkRCIReL3eoXiROnEyFFMUBffu3ev3tIiIiIiIiKhFL8vA2nvWCuZ/+YvAK3L350TUCUmScHBwgIWFBVv6i0ajtvTTTX0Jwnp12uOgcTgcWFpaGtvrJyIiIiIiGmaOx4GffBt4NdG87fZ3gKnHuz4loo4sLi7i4OAA2WzWtv4GXY3d0kRERERERERUy0sWKvq87bXWjqjfrly5AsMwKg7968TNmzdt6aebGIQRERERERER2ejPGYLRkHA4HNjc3MTu7i5+97vfddzfMGyNZBDWgnw+j/X19ZaeUygUcP/+/e5MiIiIiIiIiIioA6FQCLIsw+fzddTP4eGhbSvLuqkvNcKGlaZp2NrawsbGhqX2165dw9raGmT5uEKi2+22/FwiIiIiIqJBZxhA0WjcZkIABKE38yGi9iSTSczPz+PcuXMIh8OYmZmx9LxsNgtd15HJZLC3t9flWdqDQVgbPv74Y8TjcTx8+BALCwtwu92YmpqqaHNwcIBwOAyXy2WeErmzs4OVlRXs7u72Y9pERERERES2KhrAYz9q3OazN4BJBmFEA+3u3bsAgEwmg2Aw2FYfhmFAGILUm0FYCxRFgWEYkCSp4n6n04lkMomvfe1r5n2lsMvtdpv3+f1+xONxvP/++/j617/em0kTEREREREREdVx6dIlxGIxAIAgCDCMJss8axiGAKyENcIsKq3wKv1QlG6zs7P46KOP4PF4KtqrqgpBEHDq1KmK+30+Hy5cuNDLqRMRERERERERVdnZ2UE0GjXDr3ZCsE6e1w9cEWZR6eQDwzAQCAQQDocxOztrPr68vIybN2+aIVc2mwUAiKJY0Y/b7UYwGMT9+/dx/vz5nsydiIiIiIiIiOikUtZRWvTjdrvh8XggimLLdcK2t7dxdHTUxdnag0GYRalUCrIsIx6PVwRgJTs7OwgEAk1Xe5V+kBRFYRBGRERERETURe8cAK+4+j0LosFV2s0miiJSqVTNvMMqv99ftStuEDEIs+jw8BCHh4dVRfHLZTIZ82td1wGgKkF1OBwAYBbQJyIiIiIiota9c9C8zasJYHICeGmu+/MhGkaiKCKfz2N9fb2jEKzU19zc4P+ysUaYRdPT0w2Lv+3s7MDpdJrf19samc/nAXwelBEREREREVFr8p8C3/uFtbYXfw4UPu3qdIiGlst1vGTy5KGA7drZ2bGln25iEGbR0tISvF4vPv7446rHrl+/jnA4DFVVzftKQdfJHyZN0wBUB2RERERERERkzc9U4J/+2Vrb3/8ReFtt3o5oHAWDQRiGYWYVnRqGFWHcGmlRJBKB0+mEJEnmTdO0ih+Wzc1NXLp0qeIEydIKsJJoNApBECwXnSMiIiIiIqJKv/ygtfa/+gD4wTe7M5dhdOPGDdy4caNhm2Kx2KPZUD95vV7Mzc1hd3cXr7/+esf93b59G9/97ndtmFn3MAhrQTKZhM/nw8HBQUU9MACIxWJYWlqCYRjwer0QBAGLi4u4fPkynn32Wfj9fiiKglgsBkEQ4PP5+nQV1IlisYgzZ840bLO6uorV1dUezYiIiIiIaPzk/tDd9qOuUCjgwYMH/Z4GDYh4PI4nnngC7777Ll544YWO+trY2GAQNkokSUI6nUYikcDe3h5UVYUkSQgGg1haWgJwnKbu7e1hb28PN2/eRLFYxPz8PEKhUEU/Tz/9dL8ugzrU7C+MQqHQo5kQEREREY2n6S91t/2om5qawunTpxu2YVA2PiRJwvb2Ni5cuNBREJbP5ytKRg0qBmFt8Hq98Hq9lh9PpVLw+XzY39+HJEm4c+dOL6ZJXdLsL4xGJ4sSEREREQ0SwwCKRuM2EwLQ4Nywvnj+SeDOh9bbP/dk5fcTAvDZG42fMzFg12wnK7tYJicnuT1yDNy+fRsA8NWvfhXT09M4d+5cw7yjHl3Xsbe3Z/f0ukIwDKPJH3tkl3w+D4fD0e9pUBtKfwlMTEzg0aNH/Z4OETXwY/W3/Z5CT31f/ka/p0BEREPsURF47EeN23z2BjBZ55i1Tp/frvynwOmr1grmf/mLwIN1YOpxe8bu1zX3Gj8DjYf5+XkcHByY3xuGAaHN5Lv03EH/eRnyX83BlM/nsb6+XnU/QzAiIiIiIqLOOR4HfvJta223v2NfCEY0apaXl2EYBkprpNoNwYYJg7AucDgciMfjePPNN/s9FSIiIiIiopH00lzzNm97rbUjGlfBYBDAcQBWCsTavQ2Lka4RVigUbK/XVCgUkEqloOs6stlszTaZTAaapmF7exs//OEPbR2fiIiIiIiIrPlzhmBEDTkcDsiyjIODA0QiEciyjJmZmZb70TQNV69exf379+2fpM1GOgjz+/3Y3d21rb/19XVsbW1Zbl8vKCMiIiIiIhp3w1qon2jUrKyswOl04vLly233MTc3h6WlpbZCtF4buCCsUCh03Ec2m0UymUQikbBhRsdu3bqFSCTS0nNabT8oNE1DMBhEMBhs67SIkq2tLSSTSXMFnSRJkGUZwWAQbrd7YPokIhpmnR4OwGL7RETUbe8cAK+4qu8vGhaLzjMII+oqt9uNe/fu2dLX/Py8Lf1008DVCHv66acxPT3d0c3pdOLixYsAgHfffdeWeUWjUbjdbqTTaWQyGeRyOUQiEeRyOfOWyWSQSqUgyzI0TcOFCxdsGbtXdF2Hz+eD0+mEoihtr2hTFAXT09MIh8MAgHg8jkwmg0gkAlVV4fF44PF4oOt6X/skIiIiIqLOvHPQvM2rCWvtiKg/5ubmbFvIMwwLggYuCAsEAh0XaCu/bW9v2zIvTdNw584dzM3NYXZ2Fg6HA6IowuFwmLfZ2VnIsoxYLAafz2fLuL2g6zrC4TCmp6c7XkWnKIoZSAUCASSTSbjdbkiSBK/Xi0wmA1mWoSgKXC6XpeCqG30SEREREVFn8p8C3/uFtbYXfw4UPu3qdIioDYVCAZcuXcLFixdtOfBvbm7wC/MN3NbIlZUVXLx4EV6vFwsLC1WPb2xsYGZmBl6vF6dOnarbz8bGBlZWViBJki3zqtXP8vIybt68WbXyS5ZlZDIZvPXWW3jttddsGb9btra2EI1GbXmdSivKgOPXKxqN1mwXj8fhdDqhaRp8Ph+SyWRP+yQiIiIios79TAX+6Z+ttf39H4G3VeAH3+zunIioNV6vF/v7+zAMA4qiYHZ2Ft/97nf7Pa2uGrggrHRiwd7eXtVjt27dwvz8PO7cudO0n6WlJSwsLODw8NCWeeVyuZpzTaVSWF5erjqdcmZmBpubmwMdhKmqCrfbjVAoBACIxWLm0ant8Pl85mqs0hbGWkoruRKJBBRFQSwWQyAQ6FmfRERERETUuV9+0Fr7X33AIIxo0CiKAqHsRApRFPs3mR4ZuK2RwPHpjLVsbm4iFotZ6kOSJLhcLqytrdkyJ5fLhZWVFdy+fRu3b9827w8EAnC5XPj444/N+65fvw5N06Bpmi1jd4ssy5Bl2fy+k6J2mqZBURTz++Xl5YbtV1ZWzK/rBVzd6JOIiIiIiOyR+0N32xNR95V2hwmCAK/Xi6effrrPM+q+gQzClpaWat6vaRrOnj1ruR9RFLG7u2vLnMLhMOLxOHw+H3w+H65fvw7gOEw6e/YsJEnCqVOnMDk5aYYwdm3L7JVOkt/ygnhut7tpX+WnUeq6XrM2WTf6JCIiIiIie0x/qbvtiaj7SnXaAdiSn1y6dKnjPrptIIOwegzDQKFQsNxeURTbCqfPzs5ib2/PLMJfHsrE43FMTU0hl8uZjwPjtSqpfKVe+SqzRsqDwlq/cN3ok4iIiIiI7PH8k621f67F9kTUfaFQCIuLiwBQsdOtXeW7ugbVwNUIa8TtdmNzcxNXr15t2vbatWvQdR0ul8u28b1eL4rFIg4PDzE7O2veL4oijo6OEAqFkE6nMTMzg2AwWHdl26hRVbXi+1qHHNQiy7K5ffTk6q1u9ElERERERPZ5WQbW3rNWMP/LXwResfZv2wNvQgA+e6N5G6JhkUwm4fP54PV6cffuXXzlK19pq5/Dw8OBLxEFDNmKsLW1NWxubuLKlSt1V4aVjv5cW1uDIAgd1b2qpzwEK3E4HIhGo0ilUrhz587YhGBAdeJrdUvoyXbl4Vc3+iQiIiIiota9c1D7fsfjwE++ba2P7e8AU4/bNqW+EgRgcqLxTWAQRkPmrbfeQiAQgCzLeOuttyzvxisUCigUCrh79y58Pl+XZ2mPoVoRJssytre3cfHiRUQiEbjdbkiSBFEUzeL0peDDMAxMT09X1Jmi7rh3717F91ZrjZ06dari+1QqZW6B7EafRERERESDyDCAotG4zYRQP1zp5Pn1Qq5yryaOw52X5qofe2nu+PFG3vbWfi4R9d8TTzyBw8ND83vDMBAIBBAIBFruyzCMihMoB9VQBWEAzDfj4sWLSCaTVS9yqT6XKIrY29vD1NSU5b6vX7+O119/3ba52t3foDq59LHd1VuZTKarfRIRERERDaKiATz2o8ZtPnsDmKzz+bLd5+c/Bb73C2tzvPhz4Pk/a29V158zBBs4N27cwI0bNxq2KRaLPZoN9VMgEMDa2pr5vSAIZq4yqoZqa2RJIBBALpeD3++Hw+EwC9QbhgFJkhAIBHB4eGgWfLPK7uLq41Ks3a49wOUHG3SjTyIiIiIi+tzPVGv1vQDg938E3mbVkZFRKBTw4MGDhjcaD8FgEMBxANZJCDYMK8FKhm5FWEmpJlc0GkU+n0c2m61Zu6sV6XQab775Jvx+f0sryU4qFArY3d0dm/pU7YZNJ7c7ZrPZrvZJRERERESf++UHrbX/1QfAD77ZnblQb01NTeH06dMN2zAMGw8OhwNLS0u4desWgONDCq2WJipXXqpq0A1tEFbO4XDA4XDY0lcoFEIoFLKlL2pNN1Zv2d1nsVjEmTNnOu5ndXUVq6urNsyIiIiIiKg9uT90tz0NLiufRyYnJ7k9ckwEg0Hcvn0b6XQa58+fb7ufWCyGS5cu2TexLhmJIKyRdup02bUfdpiWBnZCFEVbAqfy1LkbfdrFjn8ZsXoCBxERERFRt0x/qbvtu21COK591qwNETXmdrvhcDg6CsGA4zJWFy9etGdSXTTyQVgymWw5CBuH4nB2mpmZsSW0mpmZ6Wqfdmm2hNiKTrbeEhERERHZ4fkngTsfWm//3JPdm0s97xwAr7hqPyYI9Q8QIKLWrK+vo1AodPxZtZ3TJntt4IIwu5bRZbPZlveolu+L9Xg8CIfDcLnq/KnbYFxd1/F3f/d3uH79ekvPHVbtrro6GXSdXBFmd592mJiYwCeffGJrn0RERERE/fCyDKy9Z61g/pe/CLwi2zv+OwfN27yaACYngJd48iRRV12+fNmWfra3t23pp5sGLghLJpM4PDy0pS/DMFranhiPx5HP53H16lXs7OzA4/GYgdi3vvUtS32UapXNzc2Zodqom5+frwgcdV23FECdLGTvdDq72icRERERUbcYBlBssqlkQjhexTQoHI8DP/n2cdjUzPZ3gKnH7Rs7/ynwvV9Ya3vx58Dzf2bv+ETUWKFQgKIoSCaT5kKjmZkZSJIEp9MJr9eLs2fP9nuabZno9wRO8nq9MAzDlls7HA4HIpEIstksdnd38Y//+I9YXFzEuXPn8NZbb7XUl9vtbmsOw+bkqjlN0yw9L5PJVHxf/np1o08iIiIiom4pGsBjP2p8axaU9YOVlVZve+1fkfUz1dpKNAD4/R+Bt4fjMDqioXd0dISVlRVMT0/D5/MhFoshkUggnU5DURTEYjGEw2E4nc62cpJBMHBBmNvtxvT0NHRdR7FY7Oj20UcfdXSapNfrRSqVQiqVwvnz5+H3+3Hq1ClcuXLFUrHzYVgSaIf5+fmK762GVuXbGEVRhCRJXe2TiIiIiIha9+dd2Jb4yw9aa/+rFtsTUet2dnbgdDqRSCSqFhmd3G1nGAYymQwCgQCeeuopfPzxx/2YclsGMghbXFy0pZi4JElYXl7uuB9ZlhGPx5HL5RAOh7G9vY3p6Wm8+OKLeP/99zvuf9jJslyxbfHevXuWnpdKpcyvTwZf3eiTiIiIiGhYWamnNUxyf+hueyJqzbVr13Dx4sWK4KsUfjXagWcYBlKpFJxO59DkIwMXhAHHpxXYJRwO29aXw+FAKBQyt01+9NFHkGUZCwsLePfdd20bZxiVB45WDygob1frfepGn0REREREg8Zq0fhOwrBBC9Kmv9Td9kRk3a1bt8zPz4IgmGHX3NwcAoEAIpEIotEokskk0uk04vE4otEoQqGQuQurWCxicXERR0dHfbwSawauWD5wXGjeiqOjIyiKgkwmg1OnTkGSJHz3u9+taDM7O9uNKcLr9cLr9UJVVWxsbGBpaQnT09O4cuUK/H6/LSvahkkwGEQsFgMAKIrStH15G0mSatby6kafRERERESDxI6i8cN4+uLzTwJ3PrTe/rknuzcXonEXDofNAEwURUQiESwvL9ctNVWe2WxubuLg4ABXr17FrVu3cPHiRbz33nu9mnpbBnJFWDOFQgErKytwOp0IBoPY2tpCOByGz+fD5OQk3nzzzZ7NRZZl3Lx5E4FAALlcDqFQCNPT0/je9743FEloufL6Wq2SZbkieEokGh89E4/Hza/rrdzqRp9ERERERIOk06LxrQZphU9bml7XvCwDf/IFa22//EXgFbm78yEaV7du3YKmaTAMA8FgENlsFn6/v6V663Nzc4jH49jc3EQymcRvfvObLs64c0MXhB0eHmJ2draqeFv5LRQK4amnnrJU0L4TR0dHuHTpEmZmZrCzs1Oxf3Z7exvBYLCr49vtZEH6VoOxaDRqfr2xsVG3na7r5kovt9uNQCDQ0z6JiIiIiAZFp0Xjh/X0RcfjwE++ba3t9neqV8ERkT12d3chCAK2trbw05/+tKO+QqEQFhcXsbe3Z9PsumPogjCfz4dcLgfDMCDLMkKhkLlXtbRP9emnn0YqlepaGHL//n08++yzcDqdiMViZqG4UhAXCASQyWTw61//uivjd4Ou61WrqHZ3d1vqQ5Ikc1WWqqrY2tqq2W5xcRHA8amO5au4etUnEREREdGg6LRo/DCfvmhlm+bb3sHZzkk0ilRVhSzLeP31123pLxgMWipt1E8DWSOsnp2dHfNN2tnZqVtLzO/3Q9M0zM/P491338ULL7xgy/i3b9/GxsaGWZC9/KQEh8OBQCCA9fX1lpYQ9pOu6/D7/dB1veYPqqqqEAQBbrcboihifX0dstx4TbLX60UymYTP50M4HMa9e/ewvr4OSZKQSqUQDofN93B/f7/iZMhe9klERERENAg6LRrf79MXJwTgszeat2nXnzMEI+oqTdPM3VV2EEWxarfZoBmqICwajcLj8VhaaSVJEvb29nDt2rWOgrBCoYBYLIaNjQ1zq2B5ACZJEsLhMPx+f9tj9Eu3Vk+53W7kcjlsbW1hd3cXi4uL0HUdoihifn4e8XgcXq+3730SERERDTLDAIpG4zYTAiB0EDJQb71zALziqryv06Lx/T59URCASf4MEg210smPdhj0EAwABKM81RlwMzMzUFUVZ8+etfycc+fO4cMPW/ib5V8cHR0hEomYyahhGOYpCsBxMBMOh80teTTaJicnUSwWMTExgUePHvV7OkTUwI/V3/Z7CkPl+/I3+j0FIqrjURF47EeN23z2xvFJgHSsn+Hh2+njkxmb+dvlyq1++U+B01et1fn68heBB+uV9bL++r8C/+6X1uf5V88DP/jm59/38+eMP+ODjZ+BxsMTTzyBtbU1XLhwwZb+5ufnkc/n28phemWo/kgRBKGlEAwAstlsS+3v379vnkhZXv8LQEX9rzt37jQNwW7evNnS2ERERERE1L6icRysNLo1C8ra0cnJjZ0Wjefpi0TUCVmWbdsptra2ZpYtGmRDtTVyenoahUIBU1NTltrfunWrpf4XFhZsrf8VjUZtS1WJiIiIiKh7OllN1s7JjeWrsl6aa76arF7R+FKQZmU1Wq0grds1vohosC0vL2N5eRlXrlzB1atX2+qjUCjA7/cjHo9DEAQEg0GbZ2mvoQrCSkXyf/jDHzZtu7+/j+Xl5ZbqRqXTafNrQRDM+l/thFmlwv5ERERERL3G+mKtK60ma+SzN2rXw2rn5MbyIMyKRkXjOwnSWONrPN24cQM3btxo2KZYLPZoNtRPXq8Xs7OziEQi0HUdoVDI8k68u3fvIhqNIpE4/gNIEATIsoynn366izPu3FAFYWtra5ifn8fDhw/rJpUnT3aMRCItjVFeB0ySJMTj8ZaWCWazWWiaZhbWJyIiIiLqllrF14HOQh1qXb9PbrSCpy9SuUKhgAcPHvR7GjQgotEonnnmGUSjUUSjUbjdbsiyDKfTaRbS13Ud2WwW6XQaqVSqYuFPKUMRBAE7Ozt9uYZWDFUQJssyLl++jM3NTUQiEciyjJmZmZrhk2EY2NraarmmmGEYcLvdEEURMzMzLT03m83CMAzMzs5CVVUI/Cc2IiIiorHV6aqsdw6aj/Fq4riQeK2VPtQ7/T65kahVU1NTOH36dMM2DMrGh9vtxvb2Ni5evAhBEKAoChRFqdu+vJSUIAjmgqK9vT2cP3++BzPuzFAFYcDnK7yuXbuGdDpthk0nD7/c2trC66+/3nL/uq5brkHWiKIoePbZZzvuhwZLsVjEmTNnGrZZXV3F6upqj2ZEREREg6qTVVmtFl9//s+qaz9R7zz/JHCnhQPSnnuye3MhssLKZ5bSqZE0HgKBAGZmZhAIBKDret2sBUDFoh/DMCCKIvb39zE3Nxz/KjNUp0aWRCIRpNNpcy9r+Rvj9XqRyWTaCsHcbrctIVipr2H5IaDWPHjwoOGtUCj0e4pEREQ05Nopvk7WWFlp1yqe3EhEo8Dr9eLw8BCXL1+GYRg1QzAA5mMOhwORSATZbHao8o+hWxFWMjc3h729PfP7fD7f0omOtdh9ssGgn5RA7Wm2hNiuMJWIiIjGVy+Kr9erLzbM+rWdtNOTG4mIBkUp3IpEItjf34eqqshkMshmswCAmZkZOJ3OoV78M7RB2EknQ7Dr16+3fFrB0tKSrXPy+/229kf9NzExgU8++aTf0yAiIqIRUS+M6rT4ej/ri/XrxMp+byft5ORGonGytbWFZDKJVCoFXdchSRJkWUYwGITb7R66sft1PZqmIRgMIplMdm2MxcVFLC4udq3/fhnKrZFW/P3f/z08Hg/eeuutjvrZ2dnB5OQk/vRP/xTvv/++TbMjIiIiolFnNYyq1a6T4uutBkKFT1sbq5lSbbRGt2ZBWTt6sZ20022VPLmRxpmiKJienkY4HAYAxONxZDIZRCIRqKoKj8cDj8dTcQjeII/dresp1edqdis/0XGQ3L59u99TaGpkVoTVYhgGAoEAMpkMrl692lYf4XAYhmHgo48+gizLyGQyLZ9ESURERETjpdPVSZ0UX28nEGp1W+Ug6nQ7KU/p7L0J4fjAiGZtaPgpigKPxwPguCh7NBo1H5MkCV6vFy6XC4qiwOVyIZ1OQxTFgR27m9cTi8UsX1sphBsk4XAY3/3ud/s9jYZGdkVYuTt37mBlZaWt587OzkKSJAQCAfj9/oH8QSMiIiKiwdLp6qROiq+3EwgNEsMAHhUb32rVb+5kO2m/V9GVAqFGt1EMhAThOFhsdLN7Cy31nq7r8Pl8AI5DovLQqFw8HgdwvOWv1H4Qx+729WxsbFhq53a7B25F2K1bt6BpWr+n0dRIrwgrSaVS8Pl8WFhYwN27d/GVr3zF8nPT6XTF9+fOnbN7ekREREQ0YjpdndRJ8fVO64v1W2lrZSOfvQFMnghIOtlO2u9VdIJQfT2t4MoqGmQ+n8/cHthoYUlpJVUikYCiKIjFYggEAgM3djevJxaLQdd1hEIhc8VZPfPz8w0fb8f9+/ehKAoymUxLgVY2m4Wu60MRggGAYNQ7D3PILS8vI5FIQBAEPHr0CMBxEbudnR0oioKvfe1rLfd5eHiI+fl5PHz40O7p0oCbnJxEsVjExMSE+fNERIPpx+pv+z2FofJ9+Rv9ngLRSHrqx8C9Fs7XeeoM8N++X3nfo2LzQOhtL/DyiWL7z/6n1rZVPnsOeO8vKu/rpOC9lXn/jbf+iZVWnv/ZG8erhcr99X8F/t0vGz+v3F89/3mYZcdr1u68iQaVHZ+BNE2D0+k0v8/lcg23CCYSCXP1lCiKyOVybY3brbG7fT2lvjOZTMN2djs6OkIwGISiKG09vzxWKs9gBtVY/TEcCoXw05/+FLIs4ze/+U1Lz83n8/B4PF1JXYmIiIhoMLW7Ta+T1UmtqFV8/fknq+9r5Lka7TspeN/JIQGd6GQ76bCvoiMaVJFIxPza7XY3rZPl9XrNr3VdRyJhYVlsD8fu5vUkEglomtaXckxutxuKoqDddVKlAv7DYqyCMOD4Db537x78fr/lEyXv3r0LSZJweHho215lIiIiIhp87QZCdoRR7eokEOpUP2ttlbaTWnFyO6kdweW41vkiaqS88LssW/vDprzu1e7u7kCN3c3r2djYgCiKWF5ettSvXS5evGhuaRQEAYZhtH0bFmMXhAHHP4ipVAq7u7u4cuVKw7bXrl2Dx+MxlzxeuHChR7MkIiIiomHVzzCqk0CoU50eEtApK6c5vu2tbmdHcMnC70SVVLXyF3xhYcHS88oDpnZXhHVj7G5ej6qqUFUVuq5jenoaTqcTwWCwoxVxVqVSKfPr2dlZxONx5HI5FIvFlm7pdBpLS0tdn68dxjIIA4735965cwfZbLbuiZLr6+tYW1uDYRgQBKFiGSQRERERUT12hFGdrDBqNxDqVK9OrOxkW2Wt7aT9DC6JRtXJelNWTzg82e5kANWvsbt5PSe3Q2qahlgsBp/PB0EQ4PP52nodrFBVFYIgQBRFqKqKpaUlOByOlvuZm5tDPB5v67m9NrZBWMn29jYWFxexsLCA3/3ud+b9+/v7ZvAlCAJkWeZqMCIiIiKqUi+U6TSM6vYKo1qBUCtqXbcdtbb6UWOsn6voiEbVvXv3Kr5vVk+r5NSpUxXfl69Y6ufY3boeTdOaFqlPJBJwuVwIBoOWxmxF6TqWl5cxNTXVcX+dnvTZC2MRhDUrjB8IBBCNRvH000/j448/BvB5EbzSPleuBiMiIiIaP90OZToNo7ql3evutNZWP2uM9WsVHdGoKtWdKml3BVU7Jyh2Y+xuXY8kSYhGo4hEIggEAg37jcVicLnqHLnbplId9PLTMDuxublpSz/dNLJB2OzsLIDjICsQCJgBVz2yLGN3dxdLS0u4ffs2FEUxTz2QZRlPP/101+dMRERERIOjn6FMP3Vy3Z3W2up3jbFmBjW4JBpEJ4Ojdum6PhBjd/N6AoEAQqEQotEoMpkMcrkcIpFIzVVnqqrC4/HYMhcAZjmodlbe1VIoFGzpp5tGNgiLRCLI5XKIx+NYXFyE2+3GzZs3Gz6nVER/e3vbvE8QhLo1xIiIiIhodA16KNMtnVx3p7W2elVjjIi6r50AC6jecpjNZgdi7F5ejyiKCIVCZqZxsg9FUbC1tdXWfE6anZ3F9vY24vE43n///Y77W1xctGFW3fVYvyfQTQ6HA0tLSy2fXHDnzh2Ew2Fcu3bNrA9GRERERMPHMIBikxPdJ4TatbbaCWV+8M3Kfj97o/nY3dDJ2J1cd6nW1qsWDjqrVWur0xpj/XzNiQbFjRs3cOPGjY77KRaLNsymc+0GUIM6dqt9er1euN1uLC4uVhTM39jYQCgUsmVOgUAA6XQaXq8XqqriK1/5Stt9dauov51GOgjrRCQSwcLCApaXl3F4eNjv6RARERFRG4oG8NiPGrf57A1gskY40mkoIwi1++2FTsbu9LpfmmsehNWrtdVpjbF+vuZEg6JQKODBgwf9ngZEUbQlSLJalL7bY/f7etLpNFwulxk06boORVHgdrs7mk9pK+Pa2hrS6TSefvppRCIRzMzMWO4jm81C13VEo9GO5tIrDMIa8Hq9SKVSWFtbw2uvvdbv6RARERFRD3UaygyrXlx3vVpbzz8J3PnQej8na4wRETA1NYXTp0933E+nYdrMzIwtwVErgUw3x+7n9ZTs7OxUFMtPJpMdB2Fnz55FPp+vuK/dGmSGYZi11gcZg7AmZFnGnTt3+j0NIiIiIuqxcQ1l+nndL8vA2nvWapTVqjFGRMDq6ipWV1c77mdycrKj7ZHtrHwCqrcOtruCyu6x+3k9JbIsw+12Q1EUAPYU8Pf7/bh27Zr5vSAIMIwmNQWG3MgWyyciIiIisuKdg9r3d1r4fVj187pLNcasqFVjrBOl+mKNbqwvRmTd/Px8xfdWV1OdLCbvdDoHYux+Xk85O0+MBIAXX3wRAMyVXKMeggFcEUbUkmKxiDNnzjRsY9e/wBAREVHn6oVc5V5NAJMT1TWrOi38Pqz6fd2d1BjrBOuLEdmrfAsfcLx6ycpBdJlMpuL7drb+dWPsfl5POUmSzK872WZZMjc3B0mScHh4CLfbDVmWcerUqZb6ePjwIXRdRywW63g+vcAgjKhFzfbKl4oNEhERUX/lPwW+9wtrbS/+HHj+z6pDnX6FMv3WyXX34uTGejXGiGhwnFxBZTU4Kl9pJYpiRfDTz7H7eT3lyp/fyTbLcl6vFwcHB/j1r3/dUT+hUAjnzp2zZU7dxK2RRC06ffp0w9vU1FS/p0hEREQAfqZaqzUFAL//I/B2mye+j2soU++6BeF4hV2j2xDUUiaiDsmyXBHU3Lt3z9LzUqmU+fXJ8KmfY/fzeur1Z9c2yZWVFTgcjo77kSQJc3OD/5cigzCiFkxMTOCTTz5peOO2SCIiosHwyw9aa/+rFtsTEVFjy8vL5teqau1fG8rbhcPhgRq7n9dTUr7VstNtliVzc3NYX1+3pa94PG5LP93ErZFERERENNAMAyg2qd07IVSvMsr9obVxarXvxTY/IqJRFQwGzbpRpZMOGylvI0lSR0FPN8bu5/WUJBLH+9ZDoVDHfZWzayXX7OysLf10E4MwIiIiIhpoRQN47EeN23z2RnWh8+kvtTZOrfYsoN57DB+JRocsy3C73WYglEgk4PV667YvX03UbPVULBZDJpNBMBisWXerG2N383qsSCQS0DQNoihaWsF1//59nD9/vuNx7VIoFJDNZnH27Nm+zkMwxuFsTKIOTU5OolgsYmJiAo8ePer3dIiogR+rv+33FIbK9+Vv9HsKRE09KloMwk4U/fjr/wr8u19aH+evngd+8M3W5zeK2l2FR0Sjw67PQJqmwel0AjgOktLpdM12uq5jenoawPGWv2QyWbdPj8dTsdoql8vVLBzfjbHt7FNRFPh8Pui6DrfbjUgkUrcAv6ZpcLlc0HUd6XTaUqH+5eVlPPHEE7h69WrTtr3w7LPPwuPx4PXXX+/rPBiEEVnAIIxoeDAI6x2GaNQrVoKwv/ECr1SebI/8p8Dpq9YK5n/5i8CD9epTI4mIxpWdn4ESiQR8Ph8AIBKJ1NzW53K5oKoqRFHE4eFhwxMRhRMpfDQaRSAQ6MnYdvZZvtWyJBAIIBqNVtxXCsxmZmaQTCYtnzyp6zokScK1a9fw2muvWXpOt1y6dAmpVMryIQPdxGL5RERERDTQ3jlo3ubVRHU7x+PAT75tbYzt7zAEIyLqFq/Xi2QyCVEUEQ6H4fP5oKoqdF2HoihmaCTLsqUg6uTjjYIhu8e2s89SmFYuFothenoaPp8PwWAQLpcLHo8HgUAA6XTacggGHL9Oe3t78Pv9eOuttyw/z26XLl3C3t7ewBTSZxBGRERERAMr/ynwvV9Ya3vx50Dh08r7XrJQ+/dtr7V2RETUPrfbjVwuh0gkAk3TsLi4aAY+MzMziMfjSKfTloKoeDwOSZIgiiJCoVDTIvR2jm1nn263G5lMBoFAwLyeElVVkc1msb6+bo7TyvzKx9jc3ITf78eVK1dafn4nCoUCVlZWEIvFsL+/3/faYCVjtzXy6OjI3Et84cKFPs+GhgW3RhIND26N7B1ujaRe6LTOV7v1xYiIxh0/A42Wra0trK2tYX5+HpFIBN/61re6Ot7NmzcRDoeh6zpSqZRtp1LaYexOjYzH4wiHw5iYmGAQRkRERDTgfvlBa+1/9UFlEMYTCImIiIBQKARRFHHx4kW43W64XC6sr6/jhRdesG2Mu3fvIplMIhaLQdd1zM7OIpVKYXZ21rYx7DB2QVjJmC2EIyIiIuqrdk8hzP2htXFOthcEYJJBFxEREQKBAGZmZuD3+5FKpeD1egEcn37pdruxsLAASZIgSRKmpqbq9lMoFJDNZqFpGpLJJBRFgaqq5uOGYcDr9WJvb6/r19SOsQ3CiIiIiKh3iobFLYonQqvpL7U2TqvtiYiIxonX64XH44HX68X+/j6A43pk5UHWSaIoQtf1hv2WLzaKxWIDvQOP1RCIiIiIaGA9/2Rr7Z9rsT0REdG4cTgcSCaT2NvbgyzLMAzDDLJKX5ffcrlczfvLb8Dx9stcLjfQIRjAIIyIiIiIBsQ7B9X3vSwDf/IFa8//8heBV2R750RENIpu3LiBM2fONLwVi8V+T5O6zOv1IpVKIZlMYmlpqWYJKUEQKm4nSZJkBmCbm5twOBy9mHpHuDWSiIiIiLquVsh10quJ49MbXyo7WMrxOPCTbx8/1sz2d4Cpx9ueIhHR2CgUCnjw4EG/p0EDYnFxEYuLiwCAg4MDKIqCe/fuQdd1ZLNZc1ukKIqQJAkzMzPweDxwu91DEXydxCCMiIiIiLoq/ynwvV9Ya3vx58Dzf1YZaL001zwIe9tbGaAREVF9U1NTOH36dMM2DMrG09zcHObmRvsvVAZhRERERNRVP1OBf/pna21//0fgbRX4wTdbG+PPR/v/2YmIbLW6uorV1dWGbSYnJ7k9kkYSgzAiIiIi6qpfftBa+199UBmETQjHJ0o2MlFdtoSIiIioCoMwIiIiIuqq3B86ay8IwCSDLiIiIrIBgzAiIiIiasowgGL1YVIVJoTj0Oqk6S+1Nlar7YmIiIisYhBG1IJisYgzZ840bGNlvz0REdGwKRrAYz9q3OazN2qv3Hr+SeDOh9bHeu7J1uZGREREZBWDMKIWNTs9pVAo9GgmREREg+WdA+AVV/X9L8vA2nvWCuZ/+YvAK7L9cyMiIiICGIQRtazZMcNTU1M9mgkREVHvvHPQvM2rCWByAnjpxAmOjseBn3z7+PFmtr8DTD3e1hSJiIiImmIQRtSCiYkJfPLJJ/2eBtHI+7H6235PgYjK5D8FvvcLa20v/hx4/s+qw6yX5poHYW97q0M0IiIiIjtN9HsCRERERDTYfqZa29YIAL//I/C22t44f84QjIiIiLqMK8KIiIiIqKFfftBa+199APzgm5X3TQjHxfQbmahRaJ+IiIjITgzCiIiIiKih3B86by8ItU+UJCIiIuolBmFEREREY8IwgKLRuM2EcBxalZv+UmvjtNqeiIiIqFcYhBERERGNiaIBPPajxm0+e6N65dbzTwJ3PrQ+znNPtj43IiIiol5gsXwiIiIiMr1zUH3fyzLwJ1+w9vwvfxF4RbZ3TkRERDRYjo6OcPv2bdy9exeFQqHf02kJgzAiIiKiMVEr5Drp1UR1O8fjwE++bW2M7e8AU4+3PDUiIiIaAkdHR1hYWIDT6YTP54PH48H09DSeeuopfPzxx/2eniWCYRhNKkWMlnw+j1QqBQBYXFzs82xoWExOTqJYLGJiYgKPHj3q93SIRt6P1d/2ewpkwfflb/R7CtSC/KfA6avAP/1z87Zf/iLwYL0y0HpUbL6t8m0v8LKrs3kSEdFg4Geg8fHMM88gl8tB13UAQDabhdvtxu7ubkW7g4MDuN1u6LqOWlHSxMQEkskkvvWtb/Vi2m0buxVhDocDi4uLDMGIiIhorPxMtRaCAcDv/wi8rbY+xp/Ptf4cIiIi6i9RFJFOp/Hw4UMEAgGkUqmqECyfz2NxcRG5XA4AIPzLyTqiKMLtdkOSJBSLRfh8vp7Pv1Uslk9EREQ0Bn75QWvtf/UB8INvfv79hHBcSL+RCaHx40RERDR4VFVFOBzGxsZG3TZ+vx+6rkMQBHM1WCQSweXLl802iqJgeXkZV65cwdWrV7s+73YxCCMiIiIaA7k/dNZeEKpPkyQiouF048YN3Lhxo2GbYrHYo9lQP127dg2yLDcMwW7duoVEImGGYIIgYHNzsyIEAwC3243NzU3cunWr29PuCIMwIiIiojEw/aXuticiouFRKBTw4MGDfk+DBkAsFkM8Hm/Yxu/3m1shBUGALMtVIVjJysoK1tfXbZ+nnRiEEREREY2B558E7nxovf1zT3ZvLkRE1F9TU1M4ffp0wzYMysZDJpPB+fPn6z5+6dKlii2RgiBgZ2enbnuHw1GzkP4gYRBGRERENAZeloG196yfGvmK3P05ERFRf6yurmJ1dbVhm9KpkTTaJEnC0dERzp49W/XYwcEBotFoRQgWCAQaBmcHBweYn5/v3oRtMHanRhIRERENK8MAHhUb3+r9I6zjceAn37Y2zvZ3gKnHbZs2ERERDShJkhCLxaruz+fzFSdACoIASZLw05/+tGF/+/v7CIfDts/TTlwRRkRERDQkigbw2I8at/nsjfpF7V+aA15NNH7+297jdkRERDT6AoEAlpeXAQBra2sAjk9/DIfD0DStYjVYs1piBwcH2NjYwMOHD7s+704IxqBv3iQaAKVlwRMTE3j06FG/p0M08n6s/rbfUyALvi9/o99TGDuPis2DsL/xAq+4aj9mGMdhWv5T4G8PgP/8wfHpkNNfAv7HJ4GX5wDxS8cnRBIR0XjjZ6Dx4fF4cPfu3Yr7SuFXKTKKRqPw+/11+7h586a5EmzQgzCuCCMiIiIaEu8cNG/zagKYnKi9qksQjleLzfwr4C//9fGNiIiIxlsikcCFCxdw69ativsNw4AoitjZ2cHS0lLV8+7fv4/d3V0kEglommaGZ++++y5eeOGFXk2/ZVwRRmRBeaHIZqerWCk8SUSNcUXYcOCKsN7Kfwqcvmq92P2Dddb5IiKi9nFF2PjZ399HMpmEqqoQRRELCwsIBAJwOBxVbXd2dupulXS5XNjY2Oj2dNvGFWFELWp2jHChUOjRTIiIaJz8TLUWggHA7/8IvK0CP/hmd+dEREREo2NxcRGLi4uW2vr9/oZbJQcZgzCiFjVbETY1NdWjmRAR0Tj55Qettf/VBwzCiIiIqLfu37+P8+fP93saDTEI+xf5fB6bm5stLd8rFArQNG3g32Syz8TEBD755JN+T4OIiMZQ7g/dbU9ERETj6ejoCGfPnrWlL7/fj3v37tnSV7dM9HsCg0LTNGxtbVluf+3aNUxPT8Pv92NhYQHr6+tdnB0RERGNCsM4Pv2x0a1WBdfpL7U2TqvtiYiIaDwFg0Fb+jk8PISqqrb01U1cEXbCxx9/jHg8jocPH2JhYQFut7tqq9vBwQHC4TBcLpeZdO7s7GBlZQW7u7v9mDYRERENiaIBPPajxm0+e+P4dMdyzz8J3PnQ+jjPPdn63IiIiGj8aJpmSz/hcNiWfrqNQdi/UBQFhmFAkqSK+51OJ5LJJL72ta+Z95XCLrfbbd7n9/sRj8fx/vvv4+tf/3pvJk1EREQj6Z0D4BVX5X0vy8Dae9ZPjXxF7s7ciIiIaLRomobf/e53+MpXvtJ2H9evX0cikYAgCM0b9xm3RuLzFV6CIMAwDPM2OzuLjz76CB6Pp6K9qqoQBAGnTp2quN/n8+HChQu9nDoRERENmXcOmrd5NVHdzvE48JNvWxtj+zvA1OMtT42IiIjGkGEYHa3mWl9fH5rVYACDMABANBoFcPzmBwIBZDIZFItFfPTRRygWizh//jxu3rxpts9mswAAURQr+nG73Uin07h//36vpk5ERERDJP8p8L1fWGt78edA4dPK+16aa/68t73W2hERERGVRKNR/OY3v2n5eSsrK9ja2oJRq8DpgGIQBiCVSkGWZWQyGWxvb2N2drbi8Z2dHSSTyab9zMzMADjeZkmt0zStavVdI1tbW/B4PJienoYgCHA6nfD5fHz9iYhoYP1Mtba1EQB+/0fg7RP1ZieE4/phD/9n4D8+BzzzBLBw+vi///E5IPs/A/+WWyKJiIioRYZhwOfz4Xe/+52l9kdHRzh37hwSiQQMwxiKLZElDMJwfLLB3bt3qwKwcplMxvxa13UAnwdfJQ6HAwAG/qjQXtN1HYIgNL05nc6qGm21KIqC6elpc+llPB5HJpNBJBKBqqrweDzweDzm+0RERDQofvlBa+1/daK9IACTE8DMvwL+8l8Dv34N+PsfHP/3L/81MP2vjtsQERERtcLr9SKbzWJxcbFp21u3bsHpdJpF9ktlprxeb7enaQsGYYC5oqienZ0dOJ1O8/t6WyPz+TwAMIA5IRaLWW7bbF+xoihmyBUIBJBMJuF2uyFJErxeLzKZDGRZhqIocLlcfC+IiGig5P7Q3fZERERErXK73djb20MqlUIqlcKLL75Yt+36+jqWl5fNrZCGYcDhcEBVVezt7WFpaalX024bgzAAS0tL8Hq9+Pjjj6seu379OsLhMFT1870JpXDl5OqlUhp6MiAbdxsbG5balQKtenRdh8/nA3D82pdqu50Uj8cBHL8fpfZERESDYPpL3W1PRERkxY0bN3DmzJmGt2Kx2O9pUo/Ismz+N5VKYW9vD1euXKloUygUsLCwYNYDK60Cc7vdODw8xPnz5wEcB2WD7rF+T2AQRCIRc1te6aZpmhlsAcDm5iYuXbpUUcOqtAKsJBqNQhCEqi2T4ywWi0HXdYRCoab1v+bn5xs+7vP5zBCy0cqx0uqwRCIBRVEQi8UQCARanjsREVEthgEUm9SDnRBqb1F8/kngzofWx3ruydbmRkREZEWhUMCDBw/6PQ0aEJubm+bXsixjb28Py8vLcDqdeO2113BwcAC32w1d1ytCsEgkgsuXL1f0NTc3+Cf2CMYwlfbvotLqoYOD6jPNY7EYLly4gEQigeXlZQiCYO6bffbZZ+H3+6EoCrxeLwRBQDKZxNNPP93rSxhIpS2l5TXW2qFpWsX21Fwu13DlXSKRMFeDiaKIXC7X0fiTk5MoFouYmJjAo0ePOuqLiJr7sfrbfk+Buuz78jf6PYW2PSoCj/2ocZvP3jiu5XVS/lPg9FVrBfO//EXgwTow9Xh78yQiIqrnxo0buHHjRsM2paCMn4HGUywWw6VLlxAIBBCLxSoCMFEUsb+/XzP0un79Ol5//fU+zNg6BmEnJBIJ7O3tQVVVSJKEYDBYsce19PjNmzdRLBYxPz+Pw8NDAMd7Y51OJz78sIV/6h1hpTAqGo12vCIrGAyatcbcbrelUzzL677F4/GOCvcxCCPqLQZho2/Ug7C/8QKvuGo/9nYaeDXRfJy/XQZeGvx/VCUiohHFz0AUDodx7do1AKjYChmPx83DAk969tln8etf/7qX02wZg7AOlepW7e/vQ5IkJJPJhqdPjhOXywVN03B4eNhx3bTyUCsUCiESiTR9TvkpFl6v16wd1g7+JUDUWwzCRt8wB2GdBllWgrS3vcDLdYI0IiKiXuBnIAKOSxTdunULALC1tdV0tdepU6fw8OHDXkytbawR1iFRFJFMJpHP5+smouNIVVXzgIHp6WlIkgS32w2Px9PyyqzygwoAYGFhwdLzZFk2g7BEwsInFiIioibynwLf+4W1thd/Djz/Z9VbGyeE462T+U+Bvz0A/vMHx6dDTn8J+B+fBF6eA0QWySciIqIO5PN57O/vd9zPiy++iP39fQSDQUiShNu3b9dsl81mEY1Gzbreg4xBWIvy+Tw2NzerTkJkCFbpZDF7TdMQi8XM7Y1erxfr6+vm6RSNKIpS8X2jkyUbtVNV1dJ4RERE9fxMtVbfCwB+/0fgbRX4wTcr7xcEYFIAZv4V8Jf/+vhGREREZLdSHXM7bG1tNW1TqiM26GqUcaVGHA4H4vE43nzzzX5PZWBpmlYVXp2USCTgcrkQDAab9nfv3r2K761uszx16lTF96lUytLziIiI6vnlB621/1WL7YmIiIjs4HA4IMsyDMPo+AbAUpthwRVhZQqFAlKpFHRdRzabrdkmk8lA0zRsb2/jhz/8YY9nOBwkSTKXRGYyGSiKYm5RPCkWiyGVSiGdTtft7+Rz210R1unJlURERLk/dLc9ERERkV3cbjdUVTUL3bfLynOHKQxjEPYv1tfXLS31K6kXlNGxk6dE6rqOWCyGjY2Nqj3DqqrC4/HUPQmyXojWqmHYq0xERINtusXaXa22JyIiIrLLysqKmXOEQiE4nU7MzMzYPk42m4Wu69je3sbR0ZHt/duNQRiAW7duWTqFsFyr7cedKIoIhUIIhUJIJBLw+/0VwZSiKNja2kIoFKp6brsB1sktlHaEl8ViEWfOnOm4n9XVVayurnbcDxERtccwgKJxXLD+ZycK1j/3JPBv546/Plnm4vkngTsfWh/nuSftnTcRERGRVXNzcxBFEVtbW7hw4ULXx1taWsK5c+e6Pk6nGIQBiEajcLvdiEQiEEURMzMziMViFauastkscrkcAoEAEokEzp49278JDzmv1wu3243FxcWKEyE3NjZqBmF2sWtF2IMHDzruo1Ao2DATIiJqV9EAHvtR7ceSHwH/06+Av/ECr7gqH3tZBtbes1Yw/8tfBF7hGS1ERETUR26323J5oU5JkoTZ2dmejNUJBmE43nr30UcfVdwnimLFSZAOhwOzs7OIxWLw+XxVBdypNaIoIp1Ow+VymWGYrutQFAVut7uqrR0hltUi+82cPn264z6mpqZsmAkREbXrnYPmbV5NAJMTwEtzn9/neBz4ybePH2tm+zvA1ONtT5GIiIioYysrK13ZDlmP1+vt2VjtYhCG2sXXl5eXcfPmzarlg7IsI5PJ4K233sJrr73WqymOrJ2dHbhcn/9zezKZrArCZmZmbAnC7Pjln5iYwCeffNJxP0RE1D/5T4Hv/cJa24s/B57/s8pA62UZEABc+kXtlWF/8oXjEKw8QCMiIiLqh6WlpZ6Ot7m52dPx2jHR7wkMglwuV3Wfw+FAKpWquYVtZmZmKN7cYSDLckXwVaswfrsruU6GZ3atCCMiouH2M9Xa1kYA+P0fgbfVyvsEAXjZBTy4AvzV88Cz54Cnzhz/96+eB/63K8C/5ZZIIiIiooHEIAyAy+XCysoKbt++jdu3b5v3BwIBuFwufPzxx+Z9169fh6Zptp1kSIDH42n4+Pz8fMX3VleHnSyO73Q6W5oXERGNpl9+0Fr7X9Vp73gc+ME3gff+Avhv3z/+7w++ye2QRERENJzu3r2L9fV13Lx5s2nbW7du4dy5c3j33Xd7MDN7cWskgHA4DKfTiUTiuOBHJBLB66+/DlmWcfbsWUiSVFWnqlfF5sZB+WtZa/ti+dZJ4HjVmCw3/6f2TCZT8f3JLZdERDSecn/obnsiIiKiYbOysmJmIgCQz+fxwx/+sG77paUlzM7Owu12Y2NjA/F4HF/72td6MdWOcUUYgNnZWezt7cEwDBiGUbGFLh6PY2pqCrlcznwcOA7PyB7lQVit7YsnV4RZXY1XHlyKosjwkoiIAADTX+pueyIiIqJhcunSJcTj8YrM486dO02fJ8syNE3Dhx9+CJfLhffff7/bU7UFg7B/4fV6USwWkclkKgrki6KIo6Mj+P1+s55VPB6vKqJP7UulUubXtbZJyrJcEZBZPbGzvN+TYRoREQ03wwAeFYHs/wn8x/8CPPMWsPDXx//9X/7L8f3/8v9xVZ5/srWxnmuxPREREdGwyOfziEajEAQBgiAAAAzDgM/ns/R8URSRTqeRzWaHJgzj1sgTZmdnq+5zOByIRqN9mM14KN/CWG/74vLyMmKxGABAVdWabU4qb8cVfEREo6VoAI/9qPZjyY+A/+lXwN94gVdc1Y+/LANr71krmP/lLwKvsPA9ERERjaiNjQ0AMHfHLS8vIxwO18xG6pEkCX6/Hzs7O/D5fPiHf/iHbk3XFlwRRn1X2occCoXqtgkGg+bXiqI07bO8jSRJrA9GRDRi3jlo3ubVRO12jseBn3zb2jjb32HxeyIiIhpdiqJgenoayWQS2WwW29vbLYVgJc888wyA44Uub731lt3TtNXYBGHXr18f6P7GVSKRgKZpEEUR6+vrdduVtqWWP6+ReDxufs3VYEREoyX/KfC9X1hre/HnQOHT6vtfloG3vcCffKH28/7kC8DPfMBLc21Pk4iIaGDduHEDZ86caXgrFov9nib1gKZpWF9fx+LiYkf9lNfk3tvb63RaXTU2Qdju7u5A9zcqSmmyIAjweDwNtzFqmga/3w8A2N/fr1kov1z59tTS8s1adF03t1G63W4EAoEWroCIiAbdz1Rr2xoB4Pd/BN6u8VeRIAAvu4AHV4C/eh549hzw1Jnj//7V88D/dgX4t9wSSUREI6pQKODBgwcNbzQedF235WC5bDYL4HiLZXm97kE0NkFYOp3Gm2++iUKh0FE/hUIBOzs7lutUjZt4PG6e1qgoClwuV8W2xpLSYzMzM8hkMpDl5p82JEkyV3qpqoqtra2a7UpJtiiKFSvDiIhoNPzyg9ba/6pBe8fjwA++Cbz3F8B/+/7xf3/wTW6HJCKi0TY1NYXTp083vNF4kCTJDLE6kUwmza9LmcCgEgyj3plKo2ViYsI8AcEujx49srW/UaAoSs2TH0VRhNvtxszMDFKpFFRVRSgUwvr6etOVYLXG8Pl80HUdXq8X6+vrkCQJqVQK4XAYqqpClmVLq8ysmpycRLFYxMTEBN93oh74sfrbfk+Buuz78jfafu5TPwbufdJC+zPHIRcRERFZx89A42F5eRn5fB6//vWvO+pnZmYG+XwehmFgenoaDx8+tGmG9hubFWElhmHYcqPa3G43MpkMAoEAJEmqCKJUVUU2m8X6+jpyuRwikUhbQZXb7Tafr2kaFhcXMT09DZ/Ph5mZGcTjcaTTadtCMCIiGizTX+pueyIiIqJxEQgEoCgKfvOb37Tdx8rKirkKTBAEzM/P2zS77hjLFWF2XLIgCEzFxwj/NYSot7gibPR1siLsr/8r8O9+ab39Xz1/vN2RiIiIrONnoPHhcrlw//59KIqCb33rW5afVygU4Pf7EY/HIQgCDMOAIAiIRqO4cOFCF2fcmbFZEba0tGSu5vJ4PFAUBblcrqVbJpNBOp3G5cuX+305REREY+tluf5pjyd9+YvAKyx6T0RERFTXzs4ODMOA2+3Gv/k3/6bp6rBCoYBLly5henoaiUTCvF8QBEiSNNAhGDBGK8IAIJ/P4+rVq9jZ2UE+n4fH40E4HG4p8Sx54okn8NFHH3VhljSI+K8hRL3FFWGjr5MVYQDwdhp4NdG83d8uAy/NdTQUERHRWOrWZ6CtrS0kk0mkUinzxEJZlhEMBuF2u20bp1dj9/J6nE4nNE1DPB6H1+u1te9EIoHl5WVzJ50oipAkybwBgKZpUFUVmqYB+Hy3XflqsHQ6jfPnz9s6N7uNzYowAHA4HIhEIshms9jd3cU//uM/YnFxEefOncNbb73VUl/d/gUlIiIadYYBPCoC2f8T+I//BXjmLWDhr4//+7/8l+P76/1z3csy8La3/sqwP/kC8DMfQzAiIqJBoSgKpqenEQ6HAQDxeByZTAaRSASqqsLj8cDj8XTlxMFujN3r6wmHw2YA1Q1erxepVApTU1MwDAO6rkNVVSQSCWxtbWFrawuJRAKZTMbcbScIghmCiaKIVCo18CEYMGYrwmpRVRUbGxu4desWpqenEQwGsba2hqmpqX5PjQYIV4QR9RZXhI2+78vfwKMi8NiPGrf7Gy/wiqv+4/lPgZ+pwK8+AHJ/OC6M/9yTx9shpx63d85ERETjxM7PQIqiwOPxADguzh6NRqvauFwuqKoKSZJsPfysG2P3+nrKxwPQlRVhJaWddNeuXat6rLRaDKisvR4IBBCJROBwOLoyJ7uNfRBWks/nEY1Gsbm5iXw+D5/Ph/X1dXz961/v99RoADAII+otBmGj7/vyN7i9kYiIaIDZ9RlI13XMzs6a2wYzmUzNdpqmwel0AjjegZVMJtses5tj9/p6yscr6WYQVm5/fx/JZBKqqiKbzULTNMzMzEAURczPz8Pj8cDtdg9NAFYyVlsjG3E4HAiFQua2yY8++giyLGNhYQHvvvtuv6dHA6JYLOLMmTMNbzdu3Oj3NImIBl7+U+B7v7DW9uLPgcKnXZ0OERERdYnP5zNDnNI2wlokSTLDHUVREIvFBnLsXl+P3+83w6deW1xcxObmJu7cuYNUKoVsNouPPvoIqVQK29vbWFpaGroQDGAQVlNpb+y9e/dw9uxZLC0t4dSpU3jzzTdRKBT6PT3qswcPHjS88WeEiKi5n6nAP/2ztba//yPwttrd+RAREZH9NE2Doijm98vLyw3br6ysmF83Cpn6NXavrycWiyGRSCAej7f83F7L5/NYX1/v9zQsYRDWgCzLuHnzJgKBAHK5HEKhEKanp/G9730PR0dH/Z4e9cnp06cb3lhfjoiouV9+0Fr7X7XYnoiIiPovEomYX7vd7qarmsq3++m6jkTCQg2FHo7dy+vRNA3BYBChUAiyLFt+Xr84HA4kk0k89dRT/Z5KUwzC6jg6OsKlS5cwMzODnZ0dsyicYRjY3t5GMBjs8wypHyYmJvDJJ580vK2urvZ7mkREAy/3h+62JyIiov4r3w5oNcyRJMn8end3d6DG7uX1+Hw+yLJcEb4Nuvn5eaTTaVy5cqXfU2nosX5PYNDcv38f4XDYXO5YOhK0dKZAIBBAOBzG7OxsP6dJREQ01Ka/1N32RERE1F+qWlnXYGFhwdLzZFmGpmkA0PaKsG6M3cvrCYfDUFW1biH+bjs6OoKu68hms5afo6oq4vE4DMNANBrF1atXuzjDzjAI+xe3b9/GxsaG+cNdfpimw+FAIBDA+vr6UBaCIyIiGjTPPwnc+dB6++ee7N5ciIiIyH7ltbSAypVRjZxsp6pqy1sDuzF2r65HVVVsbW0hGo1aHsMOt2/fRjQarbrOdpSfcDmIxnprZKFQwPXr13Hq1Cn4fD6oqgrDMMwQTJIkRKNRZLNZbG5uMgQjIiKyycsy8CdfsNb2y18EXhn80hhERERU5t69exXfWz318NSpUxXfp1KpgRi7V9ezuLgIr9eLQCBgqX87XLt2DT6fD4qimJlIOzcAEARh4GuajeWKsKOjI0QiEXN/78ntj263G+FwGIuLi/2cJhER0cAzABgG8P/7DHj//wA+/EfgD58BX3oM+NOvAv/P/yvw+BcA4cTzHI8DP/k28KqFHQLb3wGmHu/C5ImIiKhrStsBS9pdQdXO9sBujN2L6/H5fACAnZ0dS33b4eDgAOFwuCITKVfv/nrtJEnq6fzbMVZB2P3797GxsWHuyy0FYKWvW6n/dfPmTVy4cKGr8yUiIhp0hgH8v+7WfkzLAu/9A/Cd/wfw9f9b9eMvzTUPwt72HrcjIiKi4XIyOGpXO9vsujF2t68nkUggkUggmUxaXm1mh2g0CuDzklBOp9MM73K5HJaXlzE9PY29vb2az9d1HXfu3MHNmzehqirOnz/fq6m3bWyCsIWFBVvrf0WjUQZhREQ09v4//0fzNj///wKCcLw6rNyEAHz2BpD/FPjbA+A/f3B8OuT0l4D/8Ung5TlAZJF8IiKilty4cQM3btzouJ9isdjR89utE3UyBGqlYHs3x+7m9ei6Dp/Ph0AgALfb3dY47VIUBU6nEx9+WLt4q9/vx82bN+F0OnH27NmabZaWlgAAa2treO+997o1VduMTRCWTqfNrwVBgCRJCIfDbYVZOzs7VSdGEBERjZtPPwP+8/9qre1//gD4H74K/F/K/s9DEIBJAZj5V8Bf/uvjGxEREXWmUCjgwYMH/Z6GbfpZeL0bY9fqc3Fx0axR3muapjUskL+2toadnR1sbW3hJz/5Sd124XAYTzzxBN5880388Ic/7MZUbTM2QRhQubdVkiTE43HE43HLz89ms9A0beBPQCAiIuqF//f/DvzzI2tt//gIeP9/B576v3d3TkRERONuamoKp0+f7rifTsM0URRt+ezczjbBbozdrevZ2tqCqqoVi3d6bX5+vu5js7OzWFxcRDQaxebmJqampmq2kyQJc3NzCIVC8Pv9ddsNgrEKwgzDgNvthiiKmJmZaem52WwWhmFgdnYWqqqatcWIiIjG1f/6sLX2//CQQRgREVG3ra6uYnV1teN+JicnO9oeOTMzY0tw1Opn926N3Y0+VVVFOBxGJBLp20mLsiwjm802DK7C4TD29/extrbWcFXYwsICDg4OsLm5iatXr3ZjurYYqyBM13VbUklFUfDss8/aMCMiIqLh9ek/t9b+Dy22JyIiouHVbsH3k2FTuyvC7B67G336fD7IsoxQKNRW33aQJAmxWKxhcOV2uzE3N4doNIpgMIivf/3rNdulUikAQDweZxA2CNxut21L80o/BEREROPs8S+01v5LLbYnIiKi4TU/P19RW1vXdUth0sli8k6ncyDGtrvPra0taJoGt9sNn8/XtJ/yQG1jYwO7u7vm9ysrK/B6vU37qGV5eRkrKys4deoUlpaWzNMxn3766Yp26+vrWF5ehizLSCQSeOGFFyoev3btmvn62HXCZreMTRAWDAYHuj8iIqJh8z+cArQWtkf+6anuzYWIiIgGi8vlqvhe0zRL2/8ymUzF9+2cotiNse3u8+HD4/+JalSovh5VVStCOUmS2g7CvF4vpqamEAqFKlamuVwu/P3f/31Fu8XFRezv78Pr/f+39/+xjd33ne//ImU747uthtJ0gXg1QTOH8Y/bAraH1ATr3v6zFpk2SHKb1KSmaDYJ8G2GtOPiXqyaiDPtH7vAIlHJNLp/JRlyki9wkw1QibSbbBJsanLcf76Aux3pjJMFCucHz0zQGaR/7EhntC08iT3k9w+WDElJ5CF5Dn8+HwBhUvzwc96UR0c8L31+xBQKhRpri5VKpZbwyzCMvmoZFv+oC/DKX/zFX+jVV19tPK5v5+mWCxcuuNofAACT5slHpAfnnLV9aE566hFv6wEAAOOjfQF2p6OEmkc+BQKBvkIVL449yvfjtStXrjQ2FqxWq6pWq9rd3dXrr7/e0q55V0vTNJXL5ZTL5VQulxuv9/l8I1vvzKmpDcL+7u/+TtFoVF/96lcH6ufKlSuam5vTY489pu9///suVQcAwOQ78YD0gcedtf3AE9I7ZmYcOgAACIVCLVMHr1275uh19XWmpM67GQ772G73mU6nG6GTk1tzgJbP51ueS6fTjmo5TiwW0/b2diPMkmqh3dNPP93SzjAMvfLKKy3tpFr4Vd9QMBAI6MqVKwPV47Wp/kharVaVSCRULpf7XqgtlUqpWq3qJz/5iUKhkMrlst797ne7WygAACNSlVStSj9/W/r+P0o//p/Sm29LDz8gPfZr0pPvrK0FdtxeyU/+yyiv7/5Qeuv+4ecfnJM++Hitn2ZfNF/ru+YXQ8/0/VoAADA8q6uryuVyktQyla+T5napVGqsjj3K9+O1WCym/f19bW9vy7ZtJRKJI9tFIhH95Cc/UTKZ1NWrV1ueC4VCyufzrq3P7hVftT3KmxKrq6sqFAry+Xw6e/asgsFgy2JyToXDYd29e7cxj3d/f7+vfjDZ6lsH+/1+3b9/xJUeAFcNEpKgN5Wq9J9f7dzmw7/RfVrjvbelH/xM+tGd2u6QDz9YWxPsqUfcHwlGEAYAgPfcuAYyTbNlba1u8UOpVFI0GpVUG33Uvr7WqI89yvcTDAYb0zHz+Xzfa4K56e7du40Rb4Zh6MyZMyOuyJmpnRrZbGdnR5VKRefOndP/+l//q6fX7u7u6ic/+YkuX76sy5cvO059AQCYBP/jH7u3+ebfSz/o0u7EA9J73yX9+6elC+dq/33vu5gOCQDALAuFQi0LzhcKhY7t8/l843630VO5XE6pVOrYtbq8OLaX72cSnTx5UisrK1pZWZmYEEyakSBMqv0DjMfjCoVC+ulPf9pXHzdu3Di09SkAAJPq3tu1KY1OfPeN2vRJAACAXjQvsL6xsXFsO9u2G9MOI5HIsVPzJCkajSqZTCqTySgYDLYsSO/1sb3oc5QODg70wgsv6Hd+53f0hS98YdTlDMXMBGGStL6+ri9/+csKhUL6m7/5m55ee/fuXUWj0b4X68N0qFQqOn36dMfb5ubmqMsEAEd+8LOj1/U6yi/uS9//mbf1AACA6WMYRmNklGmaymQyR7ZbWVmRVFtsvXkk1VFKpVLL4+3t7aEd24s+RykWiymXy6lYLGp9fV0vv/zyqEvy3EwFYVItib127ZouXLjgeEfJV199VYZh6MaNG4rH4x5XiHF3+/btjreDg4NRlwgAjvzwTm/tf9RjewAAAKkWthSLRQUCAaVSKcXjcZmmKdu2VSqVFA6HZZqmQqGQbty40bI741Han2/eUdHrY3vV56i0h4rjXKtbZnLlDsMwtLOzo9XV1a47Sn7+85/XxYsXVa1WtbCwoE9+8pNDrBTjaGlpqePz475DBgDU3Xurt/Zv9tgeAACgLhKJaH9/X5lMRltbW1pZWZFt2woEAlpeXu5pAfh8Pq9kMqm9vT0lEomWdbu8PraXfXYyyEL7ndQH/fh8PsViMT377LOeHGeczMSukZ12uHj++eeP3Qny0qVLymQyqlar8vl8ymazBGEzil0jgeFi18jh+PrrktXDKK/gqdoi+KPGrpEAAHiPa6DZkMlkdPHixa7ZiVMvvPCCvvzlL7tQmXdmbmpku8uXL2tlZeXQjpJXr15VOp2WJPl8PoVCIUIwAMBUefxUb+0f67E9AAAAxtv6+npjPbN+NxZs1j7VchzNRBDWbWH8RCKhbDarZ599tvE/vh6C1QfM1R8DADAtnnxEenDOWduH5qSnHvG2HgAAAAxfsVjU7//+7ysWi7UMEOrVjRs3ZFmWi5V5Y2qDsDNnzkiqBVmJRKJrshkKhbS1taXnnntOL7/8skqlknw+X+O5WZgnCwCYTFVJlWptDa+//Qfp69el3LXaf//7P9S+ftQ6CCcekD7wuLNjfOAJ6R0zubIoAADA9PvqV7+qRCKhUCikr371q443gTs4ONDBwYFeffXVidlccGrXCJOku3fvqlQqqVgs6urVq0qlUo6mN77vfe9rCcLS6bQ+/elPe10uxhjz44HhYo2w3lSq0n9+tXObD//G0SO6qpJ+8DPpuz+U3jri9PbgnPTBx2ujx8YFa4QBADCYzc1NbW5udmxz+/ZtSeIaaMq95z3v0Y0bNxqP62uk96P+2nH/9zLVf9s9efKknnvuOT333HM9ve6VV15RKpXS5z//+cb6YAAAjKv/8Y/d23zz7yWfT3ryna1f96kWkD3+r2uB2I/u1EaQPfxgbU2wpx5hJBgAANPm4OCgEXRhtiUSCV28eLHx2OfzaYrHS0ma8iBsEOl0WufOndPq6mpLOgoAwDi593ZtNJcT331DevzXjg62TjwgvfddtRsAAJhu8/PzWlpa6tiGoGw2JJPJxq6RkvoOwSYpQJvqqZFuME1TFy9e1CuvvDLqUjBCTI0Ehoupkc793T9I/+1Hztu//7HJD7uYGgkAgPe4Bpod8XhcL730kiQpEokoEAj03IdlWTJNk6mR0yAUChGCAQDG1g/v9Nb+R3cmPwgDAACAe5LJpF5++WXt7u7q6aef7rufXC6nF154wb3CPDKSXSOd7j4wrWb9/QMA3HPvrd7av9ljewAAAEyH+g6PN2/e1M2bNxvZRCQS0cmTJwcKwaTaemOTMOlwJEFYNpvVqVOn9Ad/8Ad69dUu21xNiZs3b+rSpUt69NFHtby8POpyAABT4sSDvbV/uMf2AAAAmFxzc3ON28LCghYWFhQMBhUMBrW9vd1od+nSJVcG7SQSiYH78NrIpkbu7+8rn88rn89LkmKxmM6fP6/f//3fH1VJrnv99de1tbWlQqEgy7Ik1RaeCwaDI64MADAtHj8lWT1Mj3zslHe1AAAAYLy0j9CKRCJKJpONUWB1n/nMZ1w53uXLl13px0sjCcJisZj+7u/+rrEYmyQVCgUVCgVJUjQaVSKRUCQS0fz8/ChK7Nvrr7+ubDar7e1t2bYtqfUfXigUUjKZHFF1AIBp8+QjUqksveVgTdKH5qSnHvG+JgAAAIyP+o6QxWJRzz777IirGb2R7xpZKBSUy+VUKpUaX6v/T5JqaWU8Htfq6urYhmKvvvqq8vn8seGXYRhKJpOKxWI6c+bMiKrEINgxBRgudo3szfd/Jn3z77u3+8hvSk++0/t6vMaukQAAeI9roOng9/vl8/mUTqf16U9/etTljIWRB2F1d+/e1dbWlnK5nEzTbHx9XEOxV199VdlsVqVSqRF+Sb8MwAKBgFZXV5VMJnX27NkRVQm38EsAGC6CsN5UJf3gZ9J3f3j0yLAH56QPPl4bPTYNCMIAAPAe10DToR6Elctlvfvd7x51OWNhbIKwZjdu3NDly5f10ksvNdbWklpDsVAopPPnzysWiw3tf+bLL7/cWPOrrv3bF4vFlEwmtbKyMpSaMBz8EgCGa9aCsKqkalX6+dvS9/9R+vH/lN58W3r4AemxX6uN4jrxoOTr0s+9t2uB2I/u1HaHfPjB2ppgTz0ivWNkq4K6jyAMAADvcQ00HepBGP8Pf2ksg7Bm169f1+XLl5XP51tGXg0jFDs4OFCpVGqM/Ko7brG55557zrVjY7zwSwAYrlkLwipV6T932UT5w7/B+l51BGEAAHiPa6Dp4Pf7tbCwoDt3ethdaQCPPvqofvzjHw/lWP0a+yCs2dWrVxsjxZo1h2KGYTR2oHz66ad7PsbBwYG2t7eVz+c7hl/1Re9XV1dbdlrAdOKXADBcsxaEzdoaX4MiCAMAwHtcA00Hv9+vYDA4tHDK7/erUqkM5Vj9mqggrNlRi+zX1YMxp6FYPfzKZrMt65O1f2vq/SWTSRa9nzH8EgCGa5aCsHtvS5v/P+e7Pq799nRNc+wHQRgAAN7jGmg6DDMIu379upaXl8f+38vEBmF1d+/eVTab1fb2dkuIVVcPxeqL18fjcT377LO6efOmCoWCtra2DoVfPp+PRe/Rov5LQJKWlpY6tl1bW9Pa2towygKm1iwFYX/3D9J/+5Hz9u9/THrvu7yrZxIQhAEA4D2CsOkwrCDs4OBAsVhMV69eHft/LxMfhDU7apH95lCreQpls/bwS2LRe7RqDsK6+Y//8T/qP/2n/+RtQcCUm6Ug7OuvS1YPSzYET0n//mmvqpkMBGEAAHiPIGw61BfLj0QinvS/t7cn27ZlWVYjWxn3fy9TNbnizJkzSqfTSqfTxy6y3xx2NYdf1WqVRe/hSLcRYfPz80OqBMA0uPdWb+3f7LE9AAAAcNSyUm6YxLFVUxWENTt79qyy2ayy2eyxi+xXq1UWvUdP/H6/bt26NeoyAEyREw/21v7hHtsDAAAAXmmeeTcpodjUBmHNVlZWGlMc64vs1wMwFr0HAIzS46d6mxr52CnvagEAAMB08jKkOm4ZqnE1E0FYs1gsplgsNuoyAACQJD35iFQqO9818qlHvK8JAAAA0yUUCnnWd32NsEkxc0EYAADj5MQD0gcel775993bfuAJ6R385gYAAAPa3NzU5uZmxzZONwvD+DMMQzs7O54ew7IsxeNxvf76654exw18nAYAYMSeekTy+aTvviH94oiRYQ/N1UKwJ985/NoAAMD0OTg40O3bt0ddBqaIYRi6cuWKzp07N+pSuiIIAwBgDDz5TumxX5N+8DPpR3dqu0M+/GBtTbCnHmEkGAAAcM/8/LyWlpY6tiEoQ6+8nH7pJl91Upb1B0Zobm5OlUpFfr9f9+87WMgHwEC+aL426hL6du9t6fv/Embde6u2K+Tjp2prgZ0gzHLFi6FnRl0CAABTj2ug6eD3+7WwsKA7d3rYnWkAy8vLnk/DHBQfyQEAcEFVtdFc3/3h4YXvrTu1BfE/8DiL3QMAAGC4bNse2rHGPQSTJP+oCwAAYBr84Ge1Be+P2/3xrfu153/wj8OtCwAAAJiEReyHhSAMAIAB3Xu7NhLMie++If38bW/rAQAAAJrlcrlRlzA2WCMMcID58cBwTdoaYX/3D9J/+5Hz9u9/THrvu7yrB8djfTEAAJzhGmg6+P1++Xw+SVKhUNBHPvKREVc0eowIAwBgQD/sce3RHw1nrVIAAACgIRaL6Xd/93f1V3/1Vzo4OBh1OSNDEAYAwIDuvdVb+zd7bA8AAAD0q1qtNm6vvPKKnnvuOS0sLOgrX/nKqEsbCXaNBABgQCce7K39wz22BwAAAPpRqVQkSXfv3pUk7e3tSartJGkYxsjqGiWCMAAABvT4KcnqYbrjY6e8qwUAAABod/LkyZb/zjKmRgIAMKAnH5EenHPW9qE56alHvK0HAAAAwNEIwgAAGNCJB6QPPO6s7QeekN7BeGwAAABgJPgoDgCAC578l1Fe3/2h9NYRO4w/OCd98HHpyXcOty4AAAAAv0QQBgCAC3yqTXl8/F9LP/iZ9KM7td0hH36wtibYU48wEgwAAAAYNT6SAz2oVCo6ffp0xzZra2taW1sbUkUAxs2JB6T3vqt2AwAAADBeCMKAHt2+fbvj8wcHB0OqBAAAAAAA9IIgDOjR0tJSx+fn5+eHVAkAAAAAAOgFQRjQA7/fr1u3bo26DAAeuve29P1/WePr3lvSiQelx0/VFsM/wW9NAAAAYKLxkR4AAElV1Ra5P2rXR+uOVCpLH3i8tug9AADAJNvc3NTm5mbHNpVKZUjVwEtf+cpXlE6nFQ6H9Zd/+ZejLmcsEIQBAKBaCPbNvz/++bfu1573+aQn3zm8ugAAANx2cHDQde1jTL7r168rkUhIkizL0urqqn7/939/xFWNHkEYAGDm3Xu7NhLMie++IT3+a9I7+A0KAAAm1Pz8fNe1jwnKJt/GxoYkyefzSZICgcAIqxkf/lEXAADAqP3gZ4enQx7nF/dra4gBAABMqrW1Nd26davjze8nLph0pmlKkqrVqrLZrJ599tkj250/f16vvvrqMEsbKf5lAwBm3g/v9Nb+Rz22BwAAAIbNsiwtLCxod3dXn/zkJ49tl8/nZVmWK8d8/fXXXenHSwRhmGiZTEbRaFQLCwvy+XwKBoOKx+MqlUqjLg3ABLn3Vm/t3+yxPQAAADBsgUBAly5d0tmzZ4d2zFQqNbRj9YsgDBOpVCppYWGh8UOWz+dVLpeVTqdlmqai0aii0ahs2x5toQAmwokHe2v/cI/tAQAAgGEzDEOGYQz1mG6NLPMSQRgmTqlUaoRciURCxWJRkUhEhmEoFoupXC4rFAqpVCopHA4ThgHo6vFTvbV/rMf2AAAAwLCdP39eW1tbQzve9evXJyIIY88rTBTbthWPxyXV0u1sNntku3w+r2AwKMuyFI/HVSwWh1kmgAnz5CNSqexswfyH5qSnHvG+JgAAAGAQiURCqVRKN27cUCKRkGEYWlxcPLLt7u5u36PHbNuWZVn63Oc+N0i5Q+OrVqvVURcBOBWNRhvrf2WzWSUSiWPbxuNxFQoFR227mZubU6VSkd/v1/37DreWA9C3L5qvDf2Y3/+Z9M2/797uI78pPflO7+uBN14MPTPqEgAAmAhcA02HQqGg1dVV+Xy+Y9tUq9WOzztV72fc/70wNRITw7KslkXwV1dXO7Y/f/584/4kLNgHYLSefET68G9ID84d/fyDc9JHfoMQDAAAAJMjFotpe3tb1Wr12Jukjs87vU0KgjBMjHQ63bgfiUQUCAQ6to/FYo37tm03RocBwFF8qk15XPtt6f2PScFT0r+Zr/33/Y9Jf/LbtbAMAAAAmCSxWEz7+/u6cOFC1+voWcDUSEyM5qGa6+vrLcHYcerrhEm1H/58Pt/XsRkWDAzXKKZGYjYwNRIAAGe4BppeN27ckGma2tvbU7Va1fPPP694PK7l5eW++rtz544sy1KhUJiIqZEslo+JYJpmy+Nz5845el0oFGoEYYwIAwAAAADMujNnzujMmTONx88//7yi0ag++clPDtRvqVTS7/zO7wxanueYGomJ0Lw2mCTHu1m0t2sP1AAAAAAAwOAikUhLwDauCMIwEa5du9by2Om85lOnTrU83tnZcaskAAAAAADQxOmglVFiaiQmQn16Y12/I8LK5bJrNQEAAAAAMOn29/d18uRJV/rqd13uYSIIw0RoD8L6Zdu2K/0AGG/33pa+/zPpR3eke29JJx6UHj9V2/XxBL/5AAAAgAa3QjC3+/IKlwOYCP0GWO1TKPf29gaqo1Kp6PTp0wP1IUlra2taW1sbuB8AraqSfvAz6bs/lN5q26zGuiOVytIHHpeeemQk5QEAAAAT4eDgQKVSScViUXt7e7IsS4uLizIMQ8FgULFYTO9+97tHXWZfCMIwU9wYEXb79u2B+zg4OBi4DwCH/eBn0jf//vjn37pfe97nk5585/DqAgAAACbBzZs3lUqlVCgUWr5erVbl8/kaj1OplAzD0MWLF/VHf/RHwy5zIARhmAiBQMCVEMvpIvudLC0tDdzH/Pz8wH0AaHXv7dpIMCe++4b0+K9J7+C3IAAAACBJunLlip5//nlJteCrzufztYRg9efL5bISiYSy2azy+bx+/dd/faj19otLAEyExcVFV4KwxcXFgV7v9/t169atgesA4L4f/OzwdMjj/OJ+bQ2x977L25oAAADG0ebmpjY3Nzu2qVQqQ6oG4+Dzn/+8Ll682Bj5VQ++qtVqSyjWrlqtamdnR8FgULu7u3rqqaeGVXLfCMIwEfodydUenrkxIgzAePrhnd7a/+gOQRgAAJhNBwcHriz5gunw0ksvKZVKNQKwevAVCoW0vLysYDCoQCAgwzC0uLgoy7K0t7encrmsQqEgy7JUqVS0srKinZ2dsV87jCAME2F5eVmmaTYe27btKNRqXxw/GAy6XRqAMXHvrd7av9ljewAAgGkxPz/fdckXgrLZUQ/BqtWqAoGA0um0VldXj90B8uzZs437f/7nf67r16/rc5/7nF566SU9//zz+t73vjes0vtCEIaJEA6HWx5blqVQKNT1deVyueVxJBJxtS4A4+PEg721f7jH9pgOXzRf6/u1L4aecbESAABGx8ku9nNzc0yPnAEvvfSSLMuSJCWTSX35y1/uuY+zZ88qn88rk8no0qVL+pu/+Rv9u3/379wu1TX+URcAOLG8vNzyuP6D2k3z1Mj6UE4A0+nxU721f6zH9gAAAMC02draks/nUyaT6SsEa7a+vq6VlRVtb2+7VJ03CMIwEUKhUMtUyGvXrjl63c7OTuN+e5gGYLo8+Yj04Jyztg/NSU894m09AAAAwLgzTVOhUEif/vSnXekvmUyqVCq50pdXmBqJibG6uqpcLidJLeuFddLcLpVKeVIXgKMNMgWtHycekD7wuPTNv+/e9gNPSO/gNyAAAABmnGVZjetsNwQCAcczuEaFEWGYGMlksnHfScLc3MYwDNYHA2bAk49IH/6N40eGPTgnfeQ3pCffOdy6AAAAUJPJZBSNRrWwsCCfz6dgMKh4PD6UUUReHNvtPi3LUjKZVDAYlM/n08LCgsLhsJLJpGcBk5tLCI17CCYRhGGChEKhljCrUCh0bJ/P5xv3GQ0GzAafalMe135bev9jUvCU9G/ma/99/2PSn/x2LSwDAADAcJVKJS0sLDSuzfL5vMrlstLptEzTVDQaVTQabVnneZyP7UWfmUxGwWBQuVyuESjZti3TNJXL5RQMBpXJZBz354RhGK6GV9lsduzX5vZVq9XqqIsAnLIsS8FgUFItGNvd3T2ynW3bWlhYkFTbKbJYLA503PqOKX6/X/fv3x+oL2BWDHtqJOA1do0EAMwSN6+BSqWSotGoJCmRSCibzR5qEw6HZZqmDMPQ7u5uyxrR43ZsL/qMRqMqlUoKBAKKRCKNgMo0zUNBVT6fVywW69ifU6urq7p7967++q//euC+Ll68qEwmo3g8rq2tLReq8wZBGCZOoVBQPB6XJKXTaa2vrx9qUz/pBAIB3bhxY+CTKEEY0DuCMEwbgjAAwCxx6xrItm2dOXNGtm3LMAyVy+Uj2zUPenBjMINXx/aiz1QqpUwmc+z1bSaTOTTLya0op1AoaHV1VRcvXtTnPve5vvo4ODjQhQsXlM/n5fP5VCwW9eyzz7pSnxeYGomJE4vFVCwWFQgElEqlFI/HZZqmbNtWqVRqhGChUMiVEAwAAAAA0J94PN6YHthpyRrDMBqjnEqlkisLuHtxbLf7tCxLmUxGxWLxyBBMktbX15VIJFq+5nQDuW5isZjOnDmjdDqtT33qU7p586bj17766qs6f/68FhYWVCgU5PP5FAqFxjoEkxgRhgmXyWS0tbUly7Jk27YCgYCWl5eVTCZdGyoqMSIM6AcjwjBtGBEGAJglblwDNY+KkqT9/f2OAxWaZ/8EAgHt7+/3dVyvju1Fn/F4XOfOnTs2BKtrXv5HOn52VD9KpZLe9773yefzSaqNYAuFQgoGg431vmzb1t7ennZ3d7Wzs9MSxNVjJZ/Pp93dXT399NOu1OUVNo/HRFtfX3fthx8AAAAA4J50Ot24H4lEus7WaR7MYNu2CoVC3wMcvDi2F33atu3omjYQCLQsbO/mzKdIJKLLly/r+eefl8/nU6lU6rjrZfN4Kp/PJ5/Pp2q1qu3t7bEPwSSmRgIAAAAAAA80TwcMhUKOXtO84+AgC657cWwv+uxlLbS9vb3G/eXlZcevcyKRSGh7e1snT55sCbqq1eqhWz38qgdgJ0+e1O7urp577jlXa/IKQRgAYGxUJVWq0ptvSX/7D9LXr0u5a7X//vd/qH2d+fwAAADjr30Nq3Pnzjl6XXPAVCgUxubYo3w/Um3kWH1tsvrURbfFYjHduHFDn/nMZxqh11Hqz508eVLpdFp7e3s6e/as6/V4hamRAICxUa1K//nVo5+z9qTv/Uj68G9ITz0y3LoAAADQm/apdc0jozppb1ffCG3Uxx7l+5Gk7e3tRn/5fL7n1ztVD7fS6bSuXr0q0zRVLpcbo9EWFxcVDAYViUQmKvxqRhAGABgb/+Mfu7f55t9LPp/05Du9rwcAAAD9uXbtWstjp2tanTp1quXxzs5Oz8GRF8ce5fuxbVvJZFKhUEj5fN7V9cE6WVlZ0crKylCONUxMjQQAjIV7b0vf/aGztt99Q/r5297WAwAAgP7VF3Wv63cEVblcHotjj+r9WJalcDisQCCgq1evOj4ujkcQBvSgUqno9OnTHW+bm5ujLhOYSD/4mfSWw525f3Ff+v7PvK0HAAAA/WsPjvpVXxdr1McexfspFAoKBoOyLEu2bWthYUGZTMaVOmYZUyOBHt2+fbvj8wcHB0OqBJguP7zTW/sf3ZHe+y5vagEAAJhUm5ubrvxxvlKpDPT6fgIs6fCUw+adEkd57GG9H9u2lcvllM1mjwzfUqmUrl275uk6YdOOIAzo0dLSUsfn5+fnh1QJMF3uvdVb+zd7bA8AADALDg4Ouv7xfpL0G0CN67G79VkqlVQulxWJRGRZ1qFF+qXaSLFMJqP19XXX65sFBGFAD/x+v27dujXqMoCpdOLB3to/3GN7AACAWTA/P9/1j/dODBqmBQIBV4KkfhaG9+LYw3o/sVhMsVis5Wu5XE6pVKrl+KlUSolEYmgL508TgjAAwFh4/JRk9TA98rFT3dsAAADMmrW1Na2trQ3cz9zc3EDTIxcXF10JjhYXF8fi2KN8P4lEQpFIROFwuKWGXC7HqLA+sFg+AGAsPPmI9OCcs7YPzUlPPeJtPQAAAOhfvyOV2sOmfkeEuX3sUb4fqbb75NWrV1u+du3atb76mnUEYQCAsXDiAekDjztr+4EnpHcwphkAAGBsLS8vtzx2OpqqfTH5YDA4Fsce5fupC4VCLdMm3drJctYQhAEAxsZTj0gf+c3aiK+jPDRXe/7Jdw63LgAAAPQmHA63PHYa2pTL5ZbHkUhkLI49yvfT7Pz58437o9xIYJIRhAEAxsqT75T+w29L739MCp6S/s187b/vf0xa+21CMAAAgEnQPoLKaXDUHO4EAgEZhjEWxx7l+2kWCoVa+kPvCMIAAGPnxAPSe98l/funpQvnav9977uYDgkAADApQqFQS1DjdD2rnZ2dxv328GmUxx7l+zmO2/3NCi4pAAAAHPii+Vrfr30x9IyLlQAAMBlWV1eVy+UkSaZpOnpNc7tUKjVWxx7l+6lrHokWjUYH7u/g4ECpVEqWZel973uf/uRP/mTgPscdI8IAAAAAAIDrkslk436pVOravrmNYRgDraflxbFH+X7q6sFaIBBoWTi/X7FYTLlcTsViUevr63r55ZcH7nPcEYQBAAAAAADXhUKhlvCnUCh0bJ/P5xv3u42eyuVyjZFMwzq2l+/HqY2NDUnSlStXXOmvPdCbhXXHfNVqtTrqIoBxNzc3p0qlIr/fr/v374+6HGAiDDKNDJg2TI0EAEwat66BLMtSMBiUVAuSdnd3j2xn27YWFhYk1XZWLBaLx/YZjUZbApz9/f0jAxwvju12n5lMRltbW4pEIrp06VLHICqVSimTyWh9fV3pdPrYdr14z3veoxs3bkiqjQ7b2tpypd9xxogwAAAAAADgCcMwGiOjTNNUJpM5st3Kyoqk2oik5pFUR2kfxbS9vT20Y7vZp23bSqVSjX4WFhaOHTkWj8eVyWSUTqddC8EkKZFIqD4+yo0Q7IUXXhi4D68RhAEAXFWtSvcr0ptvSX/7D9LXr0u5a7X//vd/qH2docgAAACzIxaLqVgsKhAIKJVKKR6PyzRN2batUqmkcDgs0zQVCoV048aNrtPz2p83DGNox3azz0AgcKj2eiAWj8eVSqUUjUYbI8vK5bLW19e71teL9fX1Rmj305/+dOD+nKydNmpMjQQcYGok4Nz9ivTAn0n/evH4qZEf/g3pqUeGWBQwYkyNBABMGq+ugepTAS3Lkm3bCgQCWl5eVjKZdLz4e6lUUjKZ1N7enhKJhOMRUm4c2+0+bdvWxsaGSqVSSx+Li4sKhUKKRqNaXV31fO2ueDyumzdv6tVXX9Wv/uqv9tXHjRs39J73vGfsr5kJwgAHCMIA5762K32i0DkIk6SP/Kb05DuHVBQwYgRhAIBJwzXQbDk4ONDW1pYymYwuXryoeDyu+fl5R6+TpJ2dHa2vr+v69etj/++FIAxwgF8CgDN370lLn5P++a3uQdhDc9Lab0vveGBIxQEjRBAGAJg0XAPNhubF8iWpWq3K5/P11Vf9teP+74U1wgAArvm6WQvBnPjFfen7P/O2HgAAAADHqy+WX7/5fL6Wx73cJgVBGADANd9+o7f2P7rjTR0AAAAAuksmk5Ikn8/XCMH60e8oslFgQgoAwDX7b/bW/k2Ho8cAAADgns3NTW1ubnZsU6lUhlQNRunkyZN67rnn9NJLL0mSIpFIXwvzW5Yl0zRdrs4bBGFADyqVik6fPt2xzdramtbW1oZUETBeFh7urf3DD3pTBwAAAI53cHCg27dvj7oMjIlkMqmXX35Zu7u7evrpp/vuJ5fL6YUXXnCvMI8QhAE96vYLo75rBjCLPvSE9MqPnbd/7JR3tQAAAOBo8/PzWlpa6tiGoGx2RCIRnTx5cqAQTKqtN/b888+7U5SHCMKAHnX7heFki1lgWn0sJF38nrMF8x+ak556xPuaAAAA0MrJLJb6rpGYDZcuXdLBwcHA17OJRMKlirzjq07S0v7AiLB1MODc103p43npXy++1rHdR35TevKdQyoKGLEXQ8+MugQAAHrCNRCmFbtGAgBc9bGQ9F9WayO+jvLQHCEYAAAAMMkuXbqkn/70p6Muoy8EYQAA1330rPQfflt6/2NS8JT0b+Zr/33/Y9LabxOCAQAAAOPq5Zdf1gsvvKBz587p5ZdfPrJNOBzW2bNn9Qd/8AcTF4ixRhgAwBMnHpDe+67aDQAAAMB4+4u/+AttbGzItu3G1/b29o5sG4vFFIlEtLKyIsMwVCgU9JGPfGRIlQ6GEWEAAAAAAAAz6u7du3r00UeVSqW0v7+varUqJ8vJBwIB7e7u6umnn1YsFtNXv/rVIVQ7OIIwAAAAAACAGRWPx1UulyVJPp9PPp+vp9dfvXpV1WpViURCf/M3f+NFia4iCAMAAAAAAJhBV69eValUks/na4wEO3nypCKRiOM+AoGAPvOZz6harSqZTHpYrTsIwgAAAAAAAGZQNpuVpMaIrnK5rL29Pb3yyiuOpkfW/cEf/IEkqVwuj/0USYIwAAAAAACAGVQfDZbL5XT58mWdOXOmr34Mw2jcf+WVV9wqzxPsGgkAOKRalSpV6e496evXpe++Ie2/KS08LH3wCenfn63d73H5AAAAAABjxLZtBYNBffKTnxyon+bdJU3THLQsTxGEAQAOqVSlB/7s6OeKP5H+7+9I/29M+nh4uHUBAAAAcE8gEFAoFBq4n3r4Va1WZVnWwP15iamRAIBDvnG9e5tPFJy1AwAAADCeDMOQbdsD97OxsdG4HwgEBu7PSwRhAIAWd+9Jn/qWs7bPf1M6uOdpOQAAAAA8srKyop2dnYH6+PznPy/TNOX7l3VTmtcLG0cEYQCAFl83pX9+y1nbf/qF9LXxXgIAAAAAwDEuXbqk/f19feELX+j79RcvXpTP51O1WpXP59P58+ddrtJdrBEGAGjx7Td6a/+dN6Q//i1vagGmxRfN1wZ6/YuhZ1yqBAAA4JcCgYA+85nPaH19XXfu3NHFixc1Pz/f8TUHBwfa3t5WOp2WZVmNAKwukUh4XfZACMIAAC323/S2PQAAAIDxkU6nZZqm/vzP/1zpdFrRaFSRSESStLu7q8XFRe3t7alcLqtUKrUsjC+pJQS7fPly1yBt1HzVeuUAjjU3N6dKpSK/36/79++PuhzAU7/z/5Ve+XEP7R+Vvvf/Ofz1QUfAAPglRoQBAIaNa6DZk0wmdeXKlZZg6yjtAVj9cTab1YULF7wt0gWsEQYAaPGhJ3pr/8Ee2wMAAGC0Njc3dfr06Y63SqUy6jIxZNlsVjs7O3r22WdVrVYP3eqaA7BqtapIJKJyuTwRIZjE1EgAQJuPhaSL33O2YP6vPCR9POR9TQAAAHDPwcGBbt++PeoyMIZCoZCKxaJu3LihUqmkYrEoy7Jk27b29va0uLioQCAgwzAUjUa1urqqkydPjrrsnhCEAT2oVCo6ffp0xzZra2taW1sbUkWA+06ekL70e9InCt3bXv6wNH/C85IAAADgovn5eS0tLXVsQ1A2286cOaMLFy5MzCivXhCEAT3q9gvh4OBgSJUA3vlYSPJJeuFbR48M+1cP1kKwj54ddmUAAAAYlJM/3tfXCAOmDUEY0KNufzkZ9x0yACd8PuljYen//E3p66b0nTdqu0MuPFxbE+zjIUaCAQAAANPq5s2bKpVK2t3d1d7eniRpcXFRwWBQkUhETz/99GgLHABBGNADv9+vW7dujboMYGhOnpD++LdqNwAAAADT7Stf+YrS6bQsy+raNplMan19Xe9+97u9L8xF7BoJAAAAAAAww27evKlHH31UyWRS5XL5yN0i6+pfz2azCgaD+sIXvjCCivtHEAYAAAAAADCjrl+/rnA43AjAfD5f4yapJRRrDsbqj9fX1/W7v/u7oyq/Z0yNBAAAAAAAmFHxeFz7+/stwZckGYahSCSiYDCoQCAgwzC0uLgoy7JkWZbK5bK2t7dl27aKxaJ+93d/V9/73vdG+VYcIQgDAAAAAACYQVeuXJFlWS0hWCQSUTqd1tmzR28R3/z1y5cvq1AoaGNjQ8ViUV/4whf0J3/yJ0OpvV++6lETPgG0qG8d7Pf7df/+/VGXA3RVrUqVLmd3v6+2O6RXvmi+5l3nwIx5MfTMqEsAAMwYroFmw/LyskzTlCT5fD5dvnxZFy5c6KuvaDSqV199Vfv7+5qfn3ezTFcxIgwAplClKj3wZ53bvP1Zac7DIAwAAADAeGseDba+vt53CCZJ+Xxei4uLyufz+qM/+iO3SnQdi+UDwIz6xvVRVwAAAABglGzbbqwJdunSpYH6CgQCSiQS2t7edqM0zxCEAcAUchJyfaJAGAYAAADMslAoJKm2ML4b0xmDwaAsyxq4Hy8RhAHAlLl7T/rUt5y1ff6b0sE9T8sBAAAAMKZWVlYkSXt7e671SRAGABiqr5vSP7/lrO0//UL6multPQAAAADG05/+6Z9Kqk2RvHnz5sD9lctlBQKBgfvxEkEYAEyZb7/RW/vv9NgeAAAAwHQ4efKktre3Va1WdfHixYH7297e1uLioguVeYcgDACmzP6b3rYHAAAAMD1isZiy2axeeeUVfepTn+q7n4sXL8q27ca6Y+PqgVEXAABw18LD3rYHAAAAMN6ef/557e7u9vSaxcVFZbNZZbPZnsMs27ZlWZZ8Pp+i0WhPrx02gjAAmDIfekJ65cfO23/wCe9qAeCOL5qv9f3aF0PPuFgJAACYBIFAQLu7u/L5fKpWq13b+3w+SWq07TVEa+5ndXW1r9cOC1MjAWDKfCwk/asHnbX9lYekj4/3yGUAAAC4bHNzU6dPn+54q1Qqoy4TA0gmk437Pp+v662Xtp1uiURC8/Pzo3jLjjEiDACmzMkT0pd+T/pEoXvbyx+W5k94XhIAAADGyMHBgW7fvj3qMuChM2fOyDAM3bhxw9GIMDeEQiGl0+mhHGsQBGEAMIU+erZ7EPa1WK0dAAAAZsv8/LyWlpY6tiEom3wrKyv6yle+olKppGeffXbU5YwNX3VY0SAwwebm5lSpVOT3+3X//v1RlwN0Va1Klap09570X65L332jtjvkwsPSB56QPnZWCjwsNY2Cdt0gaxoBcA9rhAEA+sE10OS7evWqLl68qGvXro26lLHCiDCgB5VKRadPn+7YZm1tTWtra0OqCDiazyfN+aTF/036v/6P2g0AAADA7FhZWdGZM2eGesybN2/q3e9+91CP2SuCMKBH3YYIHxwcDKkSAAAAAACOt729PdTjJZNJ/fVf//VQj9krgjCgR93m0o/7DhmYHPXpjZ34fd5ObwQAAAAAp3Z2dkZdQlcEYUAP/H6/bt26NeoyMCMqVemBP+vc5u3P1qZAAgAAAIBbbt68Kdu2Hbe3LEvZbLan14wKQRgAAAAAAMAMu3nzptLptEqlkizL6quParUq3wRMVyEIA4AJ9o3r0sfDo64CAAAAwKS6dOmSMpmMpFqYNe38oy4AAHC0b1zv3uYTBWftAAAAAKDdSy+9pHQ63QjAJmFE16AYEQYAY+juPelT33LW9vlvSh/636X5E56WBAAAAGDKbGxsSKoFYNVqVYZhKBQKyTAMSdKpU6e69nHnzh3Ztq3t7W3dvXvX03rdQBCGsWBZlpLJpIrFoqP2mUxGxWJROzs7sm278cOaTCYViUQ8rhbw3tdN6Z/fctb2n34hfc2U/vi3vK0JAAAAwHQxTbMxCqxYLGplZaXvvtbX1/Xoo4+6VZpnmBoJT9m2LZ/P1/UWDAYbiXMnpVJJCwsLSqVSkqR8Pq9yuax0Oi3TNBWNRhWNRidipwqgk2+/0Vv77/TYHgAAAAACgYCkWog1SAgmSYZh6MyZMy5U5S2CMHgql8s5blsPt45TKpUaIVcikVCxWFQkEpFhGIrFYiqXywqFQiqVSgqHw4RhmGj7b3rbHgAAAADqA1LOnTvnSn/ZbNaVfrxEEAZP1ecbd1MPtI5j27bi8bik2g/qcT9c+XxeUm2qZb09MIkWHva2PQAAAADUR4Ht7e252t84Y40weCaXy8m2ba2vrysajXZsu7y83PH5eDzeGOHVaeRYfXRYoVBQqVRSLpdTIpHouXZg1D70hPTKj523/+AT3tUCAAAAYDr96Z/+qT7/+c/LNE1X+vvKV76iT37yk6705RVftb5HJuCyYDAoSSqXywP1Y1lWoy9J2t/fb8xjPkqhUGiMBgsEAtrf3x/o+JI0NzenSqUiv9+v+/fvD9wf0M3de9LS55wtmP8rD0m3L43frpFfNF8bdQkAJL0YembUJQAAJhDXQLMjk8konU7r5s2b+tVf/dWB+jp37pyuXbvmUmXeYGokPFEoFGRZVtd1v5xIp9ON+5FIpGMIJkmxWKxx37ZtFQqFgWsAhu3kCelLv+es7eUPj18IBgAAAGAyrK+vKxQKDby80I0bN1wbWeYlpkbCExsbGwoEAlpdXR24r+YF90OhkKPXGIYhy7IkSVtbWy3hGDApPnpW+kSXHPdrsVo7AAAAAOhXsVjU8vKyHn30UaVSKS0uLjp63d7enmzbVrlc1vb2tsdVuoMgDK4zTbORAi8sLMgwDEUiEUWj0Z4DqfY02elOFqFQqBGEMSIMk8rvk97+bG2a5H+5Ln33jdrukAsPSx94QvrYWSnAIvkAuhhkmjLTKgEAmA2vvvqqpNrSRslksq8+qtWqfD6fm2V5giAMrmufDmlZlnK5XGNkVywW06VLlxyN7iqVSi2PO+0s2amdaZqOR5MB48Lnk+Z80uL/Jv1f/0ftBgAAAAxqc3NTm5ubHdtUKpUhVYNRe+GFFxrX6z6fT/0sJT8JAVgdQRhcZVnWofCqXaFQUKFQUCKRUDab7di2fZG9buuD1Z06darl8c7ODkEYhq5alSpdfof4fbXACwAAABiWg4MD3b59e9RlYAxcuXKlcV3ebwgmqe/XjQJBGFxlGIay2WxjjnCpVGpMUWyXy+W0s7Oj3d3dY/trf22/I8IG3bkS6EelKj3wZ53bvP3Z2qgvAAAAYFjm5+e1tLTUsQ1B2WxoD8HqyxoFAoGe1wm7fPmybt686WG17iAIg+sSiUTLY9u2lcvltLGxIdu2W54zTVPRaFTFYvHIvo4L0XrVflwAAAAAmFVra2taW1vr2GZubo7pkTPANE35fD4FAgHt7OzozJkzffd14cKFQ7OzxpF/1AVg+gUCAa2vr2t/f1/5fP7Q9MZSqaRMJnPka/sNsNqPsbe311c/AAAAAABMq/q186VLlwYKwep9nT07/lvaE4RhqGKxmG7cuHFova6NjQ1Pj+vWiLBKpaLTp08PfOu2MCVmxzeuj7oCAAAAALMqHA5Lcr4MUTdXrlxxpR8vMTUSQxcIBLS7u6twOCzTNCXVgqpSqaRIJHKorRshltNF9p1wY678wcGBC5Vg3DkJuT5RkOb80kfH/w8nAAAAAKZMMpnU1atXXVuWiBFhGBu5XE4+n8/VWz057ld7UnzUOmFOF+frxq1+JGlpaWng2/z8vGv1YDzdvSd96lvO2j7/TengnqflAAAAAGMhk8koGo1qYWFBPp9PwWBQ8XhcpVJpIo/tdp+maSqZTCoYDDauvYPBoFKplCdrX8diMZ09e1ZbW1uu9Pfyyy+70o+XCMIwMqFQqGUE2FEJdL8judpPEG6NCPP7/bp169bAt24LU2Lyfd2U/vktZ23/6RfS10xv6wEAAABGqVQqaWFhQalUSpKUz+dVLpeVTqcbm6hFo1FPwh4vju12n7ZtKx6PKxwOK5fLtVwfW5alTCajhYUF5XI5xzU6lc/ntbu7q7/6q78auC+vlz1yA1MjZ0QkElE+n3e1TzfCpWg02jEpX15ebkyflGonByfHbV8cPxgM9l0j0I9vv9Fb+++8If3xb3lTCwAAADBKpVJJ0WhUkpRIJJTNZhvPGYahWCymcDisUqmkcDis3d1d1wYzeHFst/u0bVvhcNjR9MRkMqnd3d2WYw7KMAxdvnxZn/zkJ/WRj3yk737u3r3bcv0+rgjCZoRhGK4tfuem5pqOmr7YPv3SsqxDC+0fpVwutzxuX3sMcKpalSrVzm38Psnna/3a/pu9HafX9gAAAMAkqI90kmrXf8cFOPl8XsFgUJZlKR6PH7l0zjgc24s+4/F441r30qVLjWte0zR17do1ZTKZlva5XE7RaFSxWOz4N+9QfSrjr/3ar2lhYUGPPvpoX/3atq3t7e2B6xkGgjCMVHMQdlRCvry83PLYaRDWPPw0EAiMZQiIyVCpSg/8Wec2b39WmmsLwhYe7u04vbYHAAAAJkE8Hm9cn9WnER6lPpKqUCioVCopl8spkUiM3bHd7jOXy6lUKml9fV3pdPrIPpLJpOLxeMtoqwsXLrgShH3uc5/T9eu/3OWrWq0eCt6cqlar8rWPEBhDrBGGkdrZ2Wncrw8tbRYKhVoCsmvXrvXcb3uYBgzDh57orf0He2wPAAAAjDvLslqWwlldXe3Y/vz58437nUKmUR3biz7T6bQikcihEKyZYRiHljqybduVDQZWV1dVrVZVrdamwUxCkDUogjCMVPMUxuOmLzafXJzON25uN+gJFOjHx0LSv3rQWdtfeUj6ePeBjgAAAMBEaQ53IpFI17W3mkc42batQqEwVsd2u0/TNGVZlqP1vA3DOBSWubEeVzKZlFQLwOqBWL+3ScHUSIxU/USwvr5+bJtkMtnYGcNJ4t3cxjAM1gfDSJw8IX3p96RPOPjdffnD0vwJz0sCAAAAhqp5h0MnS9xItWu4+qLxW1tbfU//8+LYbve5tbWlRCLheGOA9mvbO3fuOHpdJydPnlQoFNL169eVTqcVCoWOXL+7G8uy9LnPfU6vv/76wDV5jSAMI1MoFGRZlgKBgC5dunRsu1AopEgk0gi4CoVCx5Nhc5rOaDAMwzeuSx8PH/76R892D8K+Fqu1AwAAAKZJ+2ilc+fOOXpdKBRqBEf9jgjz4the9Hn+/Pme1rNuD9+CwaDj13Zy/vx5BYNBfeYzn+m7j7Nnz+q5557rK0QbNqZGwjWlUkkLCwvy+XyKRqMdh2lalqULFy5Ikq5evdo1AW/eiWNjY+PYdrZtN1L6SCQy8OKKwDeud2/ziYKzdkf5Q0IwAAAATKH22TxOA5/2dv1M//Pi2F702b4mdjfNm8L1UkM3kUjEtamNk7BGN0EYXJPP5xs/mKVSSeFwuDHfuFn9ucXFRZXLZUdDSpsXBzRN89hdLFZWViTVdop0Ms8a6OTuPelT33LW9vlvSgf3Wr/m99V2lOx080//WpQAAACYQe0bnTkNfE6dOtXyuHkjtFEee5Tvp64+sqzOrWWAzp4923Gx/l641Y+XCMLgmng8fuhruVxOCwsLisfjSiaTCofDikajSiQS2t3d7SnBjsViKhaLCgQCSqVSje1j67tlhMNhmaapUCikGzdu9JSsA0f5uin981vO2v7TL6Svtf2xyueT5vydbzOwKQsAAABmUHto0+8IquYN1kZ57FG+n7rmEM3t2U9nzpwZuI+bN2/q7Nnxn/JCEAbXRCIRlctlJRIJGYbREkSZpqm9vT1dunRJ+/v7SqfTfQVVkUik8XrLsrSystII2hYXF5XP57W7u0sIBld8+43e2n+nx/YAAADAtGoPjvrVPh1wVMce5fupa14yaNzWw37ppZcUDAb1/e9/f9SldMVi+XCVYRgtP5xeWV9f77jTJOCG/Te9bQ8AAAC4bXNzU5ubmwP3U6lUBnp9v4FP+6CGvb29sTj2KN+PVAvi6uuLpdNp19YHc8u1a9dUrVb1l3/5l3rqqadGXU5HBGEAcIyFh71tPwm+aL426hIAAADQg4ODA92+fXvUZbhmkBFU43jsfvusr71lGIbrg0K+8pWv9P1a27ZVLpeVy+Xk8/lUKpU6bnA3DgjCAOAYH3pCeuXHztt/8AnvagEAAACcmJ+f19LS0sD9DBqmBQIBV4Kkfpa98eLYo3w/pmkql8spEAioWCwOXEO7RCIh34CLF9d3nTRNUzdv3tS73/1uFyrzBkEYABzjYyHp4vecLZj/Kw9JH+++ASoAAADgqbW1Na2trQ3cz9zc3EDTIxcXF10JjhYXF8fi2KN8PxcuXJAkXb161dMpkdVqtedArB6ANb8ul8vpc5/7nKu1uYkgDACOcfKE9KXfkz5R6N728oel+ROelwQAQzXI9OgXQ8+4WAkAYNL0u4FZe9jU74gwt489qveTTCZlmqby+bxCIe//8l4Ptnrh8/laXpfP5wnCAGBSffRs9yDsa7FaOwAAAAA1y8vLjcXdpVog5CQEal9MPhgMjsWxR/F+crmccrmcstmsYrGY49f148yZM0qlUj2POCuXy8pkMgqHw7py5Yrm5+c9qtA9BGEAMKA/JAQDAAAAWoTD4ZbHlmU5GtFULpdbHkcikbE49rDfT6lUUjKZVDabVSKRcPSaQZRKpb7W9VpZWVEikdB73vMeJRIJ/eVf/qX7xbnMP+oCgElSqVR0+vTpjjc3tioGAAAAgEm2vLzc8tiyLEeva55KGAgE+loTy4tjD/P9mKapaDSqdDo9lBAsEAgMvLj95cuXtb29rS984QvuFOUhgjCgR7dv3+54Ozg4GHWJAAAAADBSoVCoZergtWvXHL1uZ2encb89fBrlsYf1fizL0srKitbX17W+vu7oGINKp9MD9xGJRGQYhtbX13Xz5s3Bi/IQQRjQo6WlpY63SZgTDef8Puntz3a++QfbaRgAAACYSqurq437zetrddLcLpVKjdWxvX4/lmUpHA4rkUg4Dqcsy1Imk3HU9jj1XSkHFQqFVK1WB67Ha75qP1sCADOmvnWw3+/X/fv3R10OelCtSpUuZzm/T+pxl+CZMciOcQBmG7tGAsBkc+MayDTNlrW1usUPpVJJ0WhUkmQYxqH1tUZ9bC/fj23bCofDikQiymazHfttVl+kfhg7SnazurqqQqGgcDjseMTcKLBYPoCpVqlKD/xZ5zZvf1aaIwgDAAAAXBUKhRSJRFQqlSRJhUKh4+6H+Xy+cb/b6KlcLqdyuaxkMnnkulteHNur91MPwQzDUCqVcrT+mGVZjT7HIQS7e/du4/vidLTcqDAiDHCAEWGT637FYRDGRPEjMSIMQL8YEQYAk82tayDLshQMBiXVApvd3d0j29m2rYWFBUm19aaKxeKxfUaj0UboIkn7+/st63d5eWwv+gyHw32HR8PaVbKT119/XfF4XJZlqVqtKhgM6sc//vFIa+qESz8AAAAAAOAJwzAaI6NM0zx2/aiVlRVJtR0Mm0dSHaU5BJOk7e3toR3b7T4HCcEkuRKCPfroo33f5ubmFA6HVS6XVa1W5fP5FIlEBq7JS4wIAxxgRNjkYkTYYBgRBmAUGE0GAKPn9jVQqVRSPB6XbduKxWK6dOmSDMPQzs6OUqmUTNNUKBTS1atXjxzd1WxhYUG2bTceF4vFjuGLm8d2s894PK5CoeDoeEdJJBI9rSd2HL/fL5/P13XNs07qr/f5fNrf3x/rTeQIwgAHCMImF0HYYAjCAIwCQRgAjJ5X10CZTEZbW1uyLEu2bSsQCGh5eVnJZLLjelvNSqWSksmk9vb2etph0Y1jD6PPYasHYf2qx0r10W/10XDjiiAMcIAgbHI5CcL+35j08XDnNrOKIAzAKBCEAcDocQ00O/z+X44KCAQCWlxcdPzaQCAgwzB07tw5feYzn/GiPNexaySAqfaN693bfKJQGxH20bPe1wMAAAAA4yaTyejTn/70qMsYCiYDAZhad+9Jn/qWs7bPf1M6uOdpOQAAAAAwdgzDmJkQTCIIAzDFvm5K//yWs7b/9Avpa/1v1gIAAAAAEymVSo26hKEiCAMw9qrV2lpfnW5HrXb47Td6O853emwPAAAAAOPs9ddf79rmwoUL3hcyRlgjDMDYq1Qd7vzYttHJ/pu9HafX9gAAAMAk2tzc1ObmZsc2lUplSNXAS+FwmM0O2hCEAZhaCw972x4AAACYRAcHB7p9+/aoy8AQVKtV/fSnP9Wv//qvj7qUsUEQBmBqfegJ6ZUfO2//wSe8qwUAAAAYF/Pz81paWurYhqBseqTTaX3pS18adRljw1etHrWyDoBmc3NzqlQq8vv9DCsdgfsVh1Mj21Y9vHtPWvqcswXzf+Uh6fYlaf5E/3VOoy+ar426BAAz6MXQM6MuAQBmHtdA08Hv98vn8ykajSqRSCgUCmlxcVFSLRCdRYwIAzC1Tp6QvvR70icK3dte/jAhGAAAAIDpVCwWVSwWh3a8cQ5PCcIATLWPnu0ehH0tVmsHAAAAANOoeTJgIBCQpMbIsF7t7e3Jtu0jnzMMY6iBWz8IwgDMvD8kBAMAAAAwxdLptGKxmM6cOTNQP1evXlU8HpfP52v5erVaVTwe19bW1kD9D4O/exMAGH/fuD7qCgAAAABg/GSzWX3mM58ZOAT7i7/4C73vfe/T3bt3GyPMqtWqqtWq0un0RIRgEiPCgJ5UKhWdPn26Y5u1tTWtra0NqaLZ4CTk+kShtlg+UxwBAAAAoMbn82l1dXXgft73vvfp6tWrjQDM5/OpWq0qEAjo6tWrOnt2ci7ECMKAHnXbRvjg4GBIlcyGu/ekT33LWdvnvyl96H9n0XsAAAAAkKSTJ08OtDvkzZs3FY1GZVmWqtVqY0pktVpVKBTS1atXdfLkSbfKHQqCMKBHS0tLHZ+f1S1ovfJ1U/rnt5y1/adfSF8zpT/+rV9+ze+T3v5s59f5fZ2fBwAAAIBJdOPGjb5f+9JLLzVGk7WHYMlkUl/+8pddqXHYCMKAHvj9ft26dWvUZcyUb7/RW/vvvNEahPl80hxBFwBMlC+ar/X92hdDz7hYCQAAk63f0VqXLl1SJpNpBGD1qZBSbc2xCxcuuFnmUBGEARhr+2962x4AAAAAUHNwcKB4PK5SqXRoFNgkrgd2FHaNBDDWFh72tj0AAAAAQHr99dd15syZI0OwSCSiGzduTHwIJhGEARhzH3qit/Yf7LE9AAAAAMy6K1euKBwOa39//1AIlkql9Morr0zcovjHIQgDMNY+FpL+1YPO2v7KQ9LHQ97WAwAAAADT5IUXXtDzzz9/aD2warWqfD6vjY2NUZfoKoIwAGPt5AnpS7/nrO3lD0vzJzwtBwAAAACmwsHBgc6dO6dcLndoFJhhGCqXy3ruuedGXKX7CMIAjL2POpiG/rWYs3YAAAAAMOvq64GZpnkoBIvH4/rJT36iM2fOjLhKbxCEAZgKf0gIBgAAAABdHbUeWH0qZDqd1tbW1qhL9NQDoy4AAAAAAAAA3jt//rwKhcKhUWCBQED5fF4rKysjrtB7BGEAAAAAAMyQzc1NbW5udmxTqVSGVA2G4ebNm4pGo7Is61AIFgqFdPXqVVd2hXz00Uf14x//eOB+vEQQBgAAAADADDk4ONDt27dHXQaG5NVXX1U8Htf+/r4ktYRgyWRSX/7yl107Vrlcdq0vrxCEAQAAAAAwQ+bn57W0tNSxDUHZdPj85z+vixcvHhoFJknZbFYXLlxw7VhXrlxpHGOc+ar17wCAY83NzalSqcjv9+v+/fujLmfm3K9ID/xZ5zZvf1aaY/sP133RfG3UJQBAT14MPTPqEgBgKnANNB38fn9LOFWtVrWwsKCrV6/q6aefdu04X/nKV5RIJOTz+cb+3wsjwgCMPb+vFnR1awMAAAAAOJ7P59Pi4qJrI8Fs25ZlWa70NSwEYQDGns8nzRF0AQAAAEDf6hMCJ2EdLy8RhAEYimpVqnSZiO331UIvAAAAAIB7zpw5o3w+r0Ag4Ep/tm037u/s7Cibzco0TVf69hpBGIChqFQdrvNFEAYAAAAArjEMQzs7Ozp58qQn/Z89e1YXLlxQPB7Xyy+/7Mkx3MRi+YAD07JQ5ChHZbHg/WRisXwAs4SF9gHgl6blGmjW+f1+mabp6sL4x7EsS48++ujY/3thRBgwQxiVBQAAAACzIxAIDCUEk2ojz7wadeYmgjCgB5VKRadPn+7YZm1tTWtra0OqCAAAAACAo6XT6ak+Xj8IwoAe3b59u+PzBwcHQ6oEAAAAAIDjXbhwYaqP1w+CMKBHS0tLHZ+fn58fUiUAAAAAAKAXBGFAD/x+v27dujXqMgAAAAAAQB8IwgA4MsodJwEAAAAAcANBGABHhrHj5DeuSx8P9/96AAAAAAA68Y+6AACz4RvXu7f5RMFZOwAAAAAA+kEQBsBzd+9Jn/qWs7bPf1M6uOdpOQAAAACAGUUQBsBzXzelf37LWdt/+oX0NdPbegAAAAAAs4k1wgB47ttv9Nb+O29If/xb3tQCAMBxvmi+1vdrXww942IlAADAKwRhADy3/6a37QEAAAA4t7m5qc3NzY5tKpXKkKoBhosgDIDnFh72tj0AAAAA5w4ODnT79u1RlwGMBEEYAM996AnplR87b//BJ7yrBQAAAJh18/PzWlpa6tiGoAzTiiAMgOc+FpIufs/Zgvm/8pD08ZD3NQEAAACzam1tTWtrax3bzM3NMT0SU4ldIwF47uQJ6Uu/56zt5Q9L8yc8LQcAAAAAMKMIwgC45hvXj3/uo2e7v/5rMWftAAAAAADoB0EYgBbHhVmdQq66TxSctTvOHxKCAQAAAAA8RBAGzJB+w6y796RPfcvZMZ7/pnRwr+fSAAAAAADwHEEYMCMGCbO+bjpb6F6S/ukX0tfMnssDAAAAAMBzBGHAjBgkzPr2G70d6zs9tgcAAAAAYBgIwoAZMUiYtf9mb6/ttT0AAAAAAMNAEAbMiEHCrIWHe3ttr+0BAAAAABiGB0ZdADBJKpWKTp8+3bHN2tqa1tbWhlSRc4OEWR96Qnrlx85f+8EnejsWAAAAAADDQBAG9Oj27dsdnz84OBhSJb0ZJMz6WEi6+D1na4z9ykPSx0OHv+73SW9/tvNr/T7n9QEAAAAA0CuCMKBHS0tLHZ+fn58fUiW9GSTMOnlC+tLvSZ8odH/t5Q9L8ycOf93nk+YIugAAAAAAI0QQBvTA7/fr1q1boy6jL4OGWR892/21X4vV2gEAAAAAMI5YLB+YIU5CqkHCrD8kBAMAAAAAjDFGhAFoQZgFAEDvvmi+NtDrXww941IlAACgE0aEAQAAAAAAYCYQhAEAAAAAAGAmEIThWJZlKRqNqlBwsLp6B5lMRtFoVAsLC/L5fAoGg4rH4yqVSmPVJwAAAAAAmG4EYTjEtm3F43EFg0GVSiXt7e311U+pVNLCwoJSqZQkKZ/Pq1wuK51OyzRNRaNRRaNR2bY90j4BAAAAYJZsbm7q9OnTHW+VSmXUZQKeYLF8NNi2rY2NDWUymYH7KpVKikajkqREIqFsNtt4zjAMxWIxhcNhlUolhcNh7e7uKhAIDL1PYNoNungzAAAAps/BwYFu37496jKAkWBEGCTVphqGw2GZpjlwX/URZVItoGoOrJrl83lJtSmY9fbD7BMAAAAAZtH8/LyWlpY63oBpRRAGmaapSCSicrmsYrF4bMjkVDweb0xNrE9hPEp9FJdUG+2Vy+WG2icAAAAAzKK1tTXdunWr483vJy7AdPJVq9XqqIvAeDFNU+FwuPE4m80qkUg4eq1lWQoGg43H+/v7HacnFgqFxsitQCCg/f39ofTZq7m5OVUqFfn9ft2/f3/g/kblfkV64M86t3n7s9LcEb/zqlWp0uVs4fdJPl//9cF9TI0EgMnwYuiZUZcAAC2m5RoIaEfEi0MGWVcrnU437kcika591UdvSbXpj0ftUOlFn+idz1cLyDrdCMEAAAAAAOOMIAyuap6KGAqFHL3GMIzG/a2traH0CQAAAAAAZg9BGFzTvtD+uXPnHL2uOdxqH73lRZ8AAAAAgNHIZDKKRqNaWFiQz+dTMBhUPB5XqVSayGN7/X4sy1I0GuW61kUEYXBN+w9686isTtrbNYdfXvQJAAAAABiuUqmkhYWFxuZn+Xxe5XJZ6XRapmkqGo0qGo02Nkkb92N7/X5s21Y8HlcwGFSpVNLe3l5f/eAwgjC45tq1ay2Pna41durUqZbHOzs7nvYJAAAAABieUqnUCIUSiYSKxaIikYgMw1AsFlO5XFYoFFKpVFI4HHY1DPPi2F6+H9u2lUqltLCwwCgwjxCEwTWWZbU87nf0Vrlc9rTPWeb31XaF7HTzs+A9AAAAAJfURzZJteu0bDZ7ZLt8Pi+pdg1Ybz+Ox/by/WQyGYXDYWY0eeyBUReA6dEeWvWrOS33os9Z5vNJcwRdAACMnS+ar/X92hdDz7hYCQC4Kx6PN67H6tMIj1IfTVUoFFQqlZTL5ZRIJMbu2F69H9M0FYlEtL6+Lqm2aVwymezyDtEPRoTBNf2GTe3THZvnPnvRJwAAAADAe5Zltaz7vLq62rH9+fPnG/c7hUyjOraX7ycUCrVs+ra8vNyxPfrHiDCMHS9Gb7nVZ6VS0enTpwfuZ21tTWtray5UBAAAAADjKZ1ON+5HIpGuaz7HYrHGfdu2VSgUWr426mMP8/04XR8bvSMIg2sCgYArgVPzD7wXfQ7q9u3bA/dxcHDgQiUAAAAAML5yuVzjfvNop04Mw2gskbO1tdV3EObFsUf5fuAegrAx5MVc4FAopN3dXVf7bLe4uOhKaLW4uOhpn4NaWloauI/5+XkXKgEAAACA8dS+4Pu5c+ccvS4UCjWCo353TfTi2KN8P3AXQRhc0++oq/agq31EmNt9DsLv9+vWrVuu9AUAAAAA06p5LS2pNjLKifZ2pmk6Hn3l5bFH+X7gLoKwMRSJRBpbrbplGPOLl5eXW1Jy27YdHbd9IftgMOhpnwAAAAAAb127dq3lsdNr0lOnTrU83tnZ6Tk48uLYo3w/cBdB2BgyDMNxujxOwuFwy2PLshz9gJfL5ZbHkUjE0z4BAAAAAN6qTwes63cEVfu13aiOPcr3A3f5R10Apkf79q7tJ4rjNE9jDAQCLScKL/oEAAAAAHjL6bVbN/2sGe3FsUf5fuAuRoTBNaFQqGWXx2vXrjnaEWNnZ6dxvz348qJPAAAAAJhWm5ub2tzcHLifSqUy0Ov7DXzapxy2L3szqmOP8v3AXQRhcNXq6mpjS9n2XTWO09wulUoNpU8AAAAAmEYHBwe6ffv2qMtwzShHUHlxbEaEjR5BGFyVTCYboVX7rhpHaW5jGMaRa3l50ScAAAAATKP5+XktLS0N3M+gYVrzzJ5B+xmHY4/y/cBdBGE4ZJAf7lAopEgk0gijCoVCx6mMzbtjHjdyy4s+AQAAAGAara2taW1tbeB+5ubmBpoeubi46EpwtLi4OBbHHuX7gbtYLB+HtC8C2OsPezabbdzf2Ng4tp1t242RXpFIRIlEYqh9AgAAAAC80e/Ip/brz35HhLl97FG+H7iLIAwtbNs+NIpqa2urpz4Mw2iMyjJNU5lM5sh2KysrkmonguZRXMPqEwAAAADgjfZNy5wOsGhfTD4YDI7FsUf5fuAupkZCtm3rwoULsm37yDW4TNOUz+dTJBJRIBDQpUuXFAqFOvYZi8VULBYVj8eVSqV07do1Xbp0SYZhaGdnR6lUSqZpKhQK6erVq45ScS/6BAAAmHRfNF/r+7Uvhp5xsRIA+KVwONzy2LKsrteRklQul1se97PmsxfHHuX7gbsIwuDZ6KlIJKL9/X1lMhltbW1pZWVFtm0rEAhoeXlZ+Xy+41pfw+oTAAAAAOCu9hFUToOj5pFWgUBAhmGMxbFH+X7gLqZGwnPr6+va3d3V/v6+qtWq9vf3VSwWBwqsvOgTAAAAAOCOUCjUMkvn2rVrjl63s7PTuN8ePo3y2KN8P3AXQRgAAAAAAHDd6upq475pmo5e09yuff3qUR97lO8H7iEIAwAAAAAArksmk437R61H3a65jWEYA62n5cWxR/l+4B6CMAAAAAAA4LpQKNQS/hQKhY7tm9eu7jZ6KpfLKZVKybKsoR3by/fTzumulOidr1qtVkddBDDu5ubmVKlU5Pf7df/+/VGXAzg2yE5iAIDpx66RAI7j1jWQZVkKBoOSakHS7u7uke1s29bCwoKk2iZpxWLx2D6j0WjLaKv9/f2W9bu8PLYXfR6lUCgoHo83HqfTaa2vr/fUB47GiDAAAAAAAOAJwzAaI6NM01Qmkzmy3crKiqTazorNI6mO0j4tcXt7e2jH9qLPdrZtHxpBtrW11VMfOB5BGNCDSqWi06dPd7xtbm6OukwAAAAAGBuxWEzFYlGBQECpVErxeFymacq2bZVKJYXDYZmmqVAopBs3bhw5uqtZ+/OGYQzt2F71adu24vG4otGoFhYWDk35NE1TPp9P0Wi0cTz054FRFwBMmtu3b3d8/uDgYEiVAAAAAMBkiEQi2t/fVyaT0dbWllZWVmTbtgKBgJaXl5XP5xWLxRz1lc/nlUwmtbe3p0Qi0XURejeP7VWf/YwcQ39YIwxwoD4/XpKWlpY6tl1bW9Pa2towygK6Yo0wAEAnrBEG4Disk4xpxYgwoAd+v1+3bt0adRkAAAAAAKAPrBEGAAAAAACAmUAQBgAAAAAAgJlAEAYAAAAAAICZwBphAAAAAADMkM3NTW1ubnZsU98sDJg2BGEAAAAAAMyQg4MD3b59e9RlACNBEAYAAADMqC+ar/X92hdDz7hYCYBhmp+f19LSUsc2BGWYVr5qtVoddRHAuJubm1OlUpHf79f9+/dHXQ7g2CAXOAAAdEIQBkw3roEwrVgsHwAAAAAAADOBIAwAAAAAAAAzgTXCAGDMMb0RAAAAANzBiDAAAAAAAADMBIIwAAAAAAAAzASCMAAAAAAAAMwE1ggDAAAA0LNB1rB8MfSMi5UAAOAcI8IAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwE1gsH+hBpVLR6dOnO7ZZW1vT2trakCoCAAAAAABOEYQBPbp9+3bH5w8ODoZUCQAAAAAA6AVBGNCjpaWljs/Pz88PqRIAAAAAANALgjCgB36/X7du3Rp1GQAAAAAAoA8slg8AAAAAAICZwIgwAAAAAABmyObmpjY3Nzu2qVQqQ6oGGC6CMAAAAAAAZsjBwUHXTcCAaUUQBgAAAADADJmfn++6CRhBGaaVr1qtVkddBDDu5ubmVKlU5Pf7df/+/VGXgxnzRfO1UZcAAMDYeDH0zKhLAGYC10CYViyWDwAAAAAAgJlAEAYAAAAAAICZQBAGAAAAAACAmcBi+cAEqValSpdV/fw+yecbTj0AAAAAAEwSgjBgglSq0gN/1rnN25+V5gjCAAAAAAA4hCAMAIaAnR8BAAAAYPRYIwwAAAAAAAAzgSAMAAAAAAAAM4EgDAAAAAAAADOBNcIAAAAATIxB1t18MfSMi5UAACYRI8IAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATWCMM6EGlUtHp06c7tllbW9Pa2tqQKgIAAAAAAE4RhAE9un37dsfnDw4OhlQJAAAAAADoBUEY0KOlpaWOz8/Pzw+pEgAAAAAA0AuCMKAHfr9ft27dGnUZAAAAANC3zc1NbW5udmxTqVSGVA0wXARhAAAAAGbCF83XBnr9i6FnXKoEGK2Dg4OuS74A04ogDJgy37gufTw86ioAAAAAjKv5+fmuS74QlGFa+arVanXURQDjbm5uTpVKRX6/X/fv3x9ZHV/blT5R6N7uv6xKHz3rfT1wbtC/QAMAgNFjRBhmybhcAwFu84+6AADO3L0nfepbzto+/03p4J6n5QAAAAAAMHEIwoAJ8XVT+ue3nLX9p19IXzO9rQcAAAAAgElDEAZMiG+/0Vv77/TYHgAAAACAacdi+cCE2H/T2/bojnW+AAAAAGCyEYQBE2LhYW/bAwAAoLNB/ijGQvsAMB6YGglMiA890Vv7D/bYHgAAAACAaUcQBkyIj4Wkf/Wgs7a/8pD08ZC39QAAAAAAMGkIwoAJcfKE9KXfc9b28oel+ROelgMAAAAAwMQhCAMmyEfPdm/ztZizdgAAAAAAzBoWywemzB8SggEAAIwdFtoHgPHAiDAAAAAAAADMBIIwAAAAAAAAzASCMAAAAAAAAMwE1ggDMFMGWZ8DAABgFFhfDADcw4gwAAAAAAAAzARGhAE9qFQqOn36dMc2a2trWltbG1JFAAAAAADAKYIwoEe3b9/u+PzBwcGQKgEAAAAAAL0gCAN6tLS01PH5+fn5IVUCAAAAdMb6YjjK5uamNjc3O7apVCpDqgYYLoIwoAd+v1+3bt0adRkAAAAA0LeDg4OuM12AaUUQBmDidPrL5mt/+7f6+c9/rne84x165t/+2yFWBWCacC4B4AbOJRhX8/PzXWe6EJRhWhGEAZgqr732mv7XwYF+dX6eD5wA+sa5BIAbOJdgXDnZ4Gtubo7pkZhK/lEXAAAAAAAAAAwDI8IAAAAAAIew0D6AaUQQBkwQv096+7Pd2wAAAAAAgMOYGoljWZalaDSqQqEwtGM5lclkFI1GtbCwIJ/Pp2AwqHg8rlKp5GGVo+fzSXP+zjcfQRgAAACAMTXKazkvjj0pfeKXGBGGQ2zb1oULFxoBWDweH6ivhYUFR20TiUTXNqVSSfF4XLZtKxKJKJ/PyzAMmaapVCqlaDTa+HogEOi7bgAAAAD9Y1ol2o3yWs6LY09KnziMIAwNtm1rY2NDmUzGtT5zuZzjtqlUquPzpVKpMWoskUgom802njMMQ7FYTOFwWKVSSeFwWLu7u5wcxtggH44AAAAATI5RXst5cexJ6RNH81Wr1eqoi8DoZTIZZbNZGYZxaLhlNpt1NFrrKAsLC7Jtu2u7SCSiYrF47PO2bevMmTOybVuGYahcLh/ZzrIsBYNBR332or51sN/v1/37913pc9Z5FYRt/j//T2Ob8rX/8B88OQaA6ce5BIAbOJcMH6PJ3OPWNdAor+W8OPak9InjMSIMMk1TkUhE6+vrkmqjuJLJ5MD95nI52bat9fX1rut/LS8vd3y+PjxU6jxyrJ6UFwoFlUol5XK5vkO8SbC5uamDgwPNz89rbW1t1OVgTL32t3+rn//853rHO96hZ/7tvx11OWOB70krvh9wgn8nh/E9acX3A07w7+Swaf9MP8prOS+OPSl94niMCMMhpmkqHA43Hvc7IqyeVB+XZjvVnHpL0v7+fschoIVCobGuWSAQ0P7+/kDHl8Z3RNjp06d1+/ZtLS0t6datW0M99rhObeQvr4fxPTmM70krvh+H8T05jO/JYXxPWvH9OIzvyWFef08mcUTYKD/Td+LGNdAor+W8OPak9InOGBGGQ9yYZ1woFGRZVsu85n6l0+nG/Ugk0rW+WCzWuG/btgqFQsvXAAAAAEynQf9YO4lB2jgb5bWcF8eelD7RmX/UBWA6bWxsKBAIaHV1deC+mhfcD4VCjl5jGEbj/tbW1sA1AAAAAAB6M8prOS+OPSl9ojNGhMF1pmnKNE1JtcXyDcNQJBJRNBrtOamu91N37tw5R68LhUKyLEtSbXQajjau0xsBAACAURjk8zGjyVqN8lrOi2NPSp/ojiAMrmtf3M+yLOVyuUbSHYvFdOnSJUdpd/sOls3Jdyft7UzTdJyuAwAAAECv+g3R3vHvfkv6L3mXqxm9UV7LeXHsSekT3RGEwVWWZR36YW5XKBRUKBSUSCS6riF27dq1lsdO1y87depUy+OdnZ2pPTH86//zd/SO+XlGdwEAAAAYG6O8lvPi2JPSJ7ojCIOrDMNQNpuVbdsql8sqlUqNIZvtcrmcdnZ2tLu7e2x/7a/tNyEfdOdKAAAAAIBzo7yW8+LYk9InuiMIg+sSiUTLY9u2lcvltLGxIdu2W54zTVPRaFTFYvHIvo4L0XrVflwAAAAAgHdGeS3nxbEnpU90RxAGzwUCAa2vr2t9fV2FQkEXLlxo+UEtlUrKZDJaX18/9Np+f6Dbh5Tu7e311U9dpVJp/Nfn8w3UlyT5fD5X+qlUKvLf+Z+6I+n/fvk7A/c3Dar/8v+K78kv8T05jO9JK74fh/E9OYzvyWF8T1rx/TiM78lhfE8Oq39Pbt++rbm5ucH7q1ZVrVYH7qeufi3Uq1Fey3lx7EnpE90RhGGoYrGYIpGIVlZWWnbI2NjYODIIc8u4JeRu/nKq3Pu5K/0AAAAAGK1+Q6dpNsprOS+OPSl9TjOCMAxdIBDQ7u6uwuFwIwyzbVulUkmRSORQWzd+qJ0uOjgsbo0IAwAAAIBmbo8I69cor+W8OPak9InuCMLGUC6XUzKZdLXPUCjUcVH6Ubhy5YrC4XDjcbFYPBSELS4uunJiWFxcHOj14/CLBAAAAAAmxSiv5bw49qT0ie78oy4AsysUCrUEX0ctFNhvst1+MiEhBwAAAIDhGeW1nBfHnpQ+0R0jwsZQJBJRPp93tc9x/cGIRqMqlUrHPr+8vNyylpht247eS/tigcFgsO8aAQAAAAC9GeW1nBfHnpQ+0R1B2BgyDEOGYYy6jKFofp9HDedsnjop1UaNhUKhrv2Wy+WWx+1TLgEAAAAA3hnltZwXx56UPtEdUyMxUs1B2FHJ9/Lycsvjo6ZPHqV5qGggEJiZYBEAAAAAxsEor+W8OPak9InuCMIwUjs7O4370Wj00POhUKglILt27VrP/bafXAAAAAAA3hrltZwXx56UPtEdQRhGqnlI53HDOVdXVxv3m+dPd9LcLpVK9VkdAAAAAKBfo7yW8+LYk9InOiMIw0gVCgVJ0vr6+rFtkslk436nhfWPamMYBvOlAQAAAGAERnkt58WxJ6VPdEYQhkPat2L1SqFQkGVZCgQCunTp0rHtQqFQyw93PTw7TvOOm6TjAAAAADAaXl7L5XI5pVKpY9fV8uLYk9InOvNVq9XqqIvAeCkUCorH443H6XS644itulKppHg8Ltu2FYlElE6nj93xwrIshcNh2bat3d3drjtjWJbV2BI2FAppd3f3yHa2bWthYUFSbaplsVjsWjcAAAAAwBteXMtFo9GWkVH7+/tHbr7mxbEnpU8cjxFhaGHb9qFUeWtry9Fr8/l8YzRZqVRSOBxuGeZZV39ucXFR5XLZ0fawhmE0km/TNJXJZI5st7KyIqm2c0ZzUg4AAAAAGD4vruXapxBub28P7diT0ic6qGLm7e/vV2OxWDUSiVQlHXuLRCLVWCxW3d3dPbKfYrF45OsCgUA1FotVE4lENRQKVSVV19fXq/v7+z3XWiwWq4FAoCqpUcv+/n61WCw2+g6FQn31DQAAAADwhpvXcvV+6rdisTi0Y09anziMIAyuKpfL1UQiUTUMo/EDHAgEqoZhVGOxWDWfz7vyQ5tOp6uhUKjlGJFIpJrP5wd/E/BEuVyuRiIRR213d3cb/47qv9wMw+g7QK1Lp9PVSCTS+HdT/3fZ7RfnsPsE0Fkv55NO6ueYfn53cD4BJp9b55K63d3daj6fr6bTacc/t5xLMIvcuJYrFouNa8719fWhHntS+8QvEYQBGMj+/n7HkYTNt0Qi0bWvWCzWtZ9sNttTjc1/WYlEItVisVgtl8vVfD7fuBCORCJ9/7XGrT6BWefm+aSb9fX1Rl+9fvDmfAKMt2GdS/b39xsXq/UL1fX19WqxWOz688q5BABGhyAMwEDS6bTjD5vlcvnYfvb391tGgLn1wbV5yu5xr6l/gDUMw9GHQy/6BODe+aSb9qn8ToMwzifAZPD6XLK/v19NJBKNPkKhUE+jrTiXAMBoEYQBGEj7/Pzjbt2mHtTXqAuFQtV8Pl8tl8uNv2I2j9zo5eJ1f3+/ZVrAccrlsuM6vegTQI1b55NOmn+GewnCOJ8Ak8PLc0k2m23pv9dR6pxLAGD0HhAA9CmXy8m2ba2vrysajXZsu7y83LGfUqmk9fV1pdPplucMw1AsFlMymVQ8Hpdpmo3nLly4oFgsdmy/8Xi8sZNp+26oRx2jUCioVCopl8spkUgMrU8A7p1Purlw4YIWFxclqfGz7ATnE2AyeHkuSaVSjZ3cDMNQsViUYRg99cG5BABGz1etVqujLgLAZAoGg5Kkcrk8cD/1D5SdWJbVOGZdsVhUJBLp2nZ/f1+BQODYvguFguLxuKTadsT7+/tD6RNAjVvnk05yuZySyaR2d3e1srLSuHDM5/MdQ3XOJ8Dk8OpcEo/HVSgUJNV+Bm/cuNHxZ/YonEsAYDz4R10AgMlUKBRkWVbHvzw6YZqmLMtSPp/v2tYwjEMjxppHiDVrbheJRLp+WG2+CLZtu/Fh1+s+Abh3PunEsiwlk0mtr68rFAr19FrOJ8Bk8OpcEo1GW37mdnd3ew7BJM4lADAuCMIA9GVjY0OBQECrq6sD9bO1taVEIuH4A2X76K87d+4c2S6XyzXuO73obZ7esLW1NZQ+Abh3PukkHo8rFAodCtOd4HwCTAYvziX15Rvqstlsz9Mhm/uq41wCAKNDEAagZ6ZpyjRN2bathYUFBYNBJZPJvv6qeP78+Z4uTNs/5LVPlazX1+zcuXM9993+XrzoE4C755PjpFIpmabpaOTpUfU143wCjCcvziX1kaR1oVCo7zW1OJcAwPggCAPQs/YpB5ZlKZfLKR6Py+fzHVrUvpNQKNTT9IL2xa2P+qts819uj2tzlPZ2ze/Biz4BuHs+OYppmspkMn2P4uB8AkwGL84l9bW06i5dutR3fZxLAGB8EIQB6IllWYc+eLUrFAoKh8Mtf0V18/jNjloo/9q1ay2PnQZtp06danm8s7PjaZ/ArBvG+WRlZUWxWKzvURycT4Dx58W5xLKsloAoEAh03FSjG84lADA+Hhh1AQAmi2EYymazsm1b5XJZpVLpUDhVl8vltLOzo93dXdeO3/xh7bgL2/Z6+v0LafOOU170Ccw6r88n9dEcV65c6btGzifA+PPiXJLNZlse1//wVigUtLW11djsJxAIyDAMnT9/vuOap5xLAGB8EIQB6Fl7AGXbtnK5nDY2Ng5NXTRNU9FoVMVi0ZVjN38wPW5XqOM+/Paq+b140ScA784nhUJBhUJBxWKxr93d6jifAJPB7XNJ8yL0krS4uKhwOHxoGqFt2431yVKplPL5/JEjxziXAMD4YGokgIEFAgGtr69rf39f+Xz+0EVnqVRSJpMZ+DjN0xTS6fSxf/ns9wNde917e3ue9gngMDfOJ7ZtKx6PK5FIHDl9uhecT4DJNMi5xLKsQz+n29vbSiaT2t/fV7VaVbVaVblcPhTAxePxIxeg51wCAOODIAyAq2KxmG7cuHFod8eNjY2B+67vLmkYhtbX1wfurxsv/kLKX10B5/o9n6ysrDSmSo0LzifA6PR6LmkfaRUIBHTjxo1DUx/r55n2c82FCxc8+/nkXAIAgyMIA+C6QCCg3d3dlg+ctm13Xci2E9M0lcvlFAgEuk6LGmQa1HH9eNEngO56PZ9kMhmZpql8Pu/a8d3uh/MJMHy9nEvag7BOa3/Vn28eGWbb9qGQjXMJAIwPgjAAnmlfoHqQdcIuXLggSbp69WrXxWAXFxf7Ps5x/XjRJwDnnJxP6mv0pNPpQyM/+sX5BJguTs4l7YvHnzt3rmu/7euWtk+75FwCAOODIAyAZ0KhUMv6PP0u6ppMJhsjPJxc3Pb7l832qQFu/NW1U58AnHNyPonH4wqFQq5OneZ8AkwXJ+eSfn7WDMM49BmleWF9ziUAMD7YNRKAp6LR6EBTInO5nHK5nLLZ7JG7MB1leXm55cOnbduOPuS1LxYbDAY97RNAbzqdTzKZjCzLUiQSUTwe79pX84XgxsaGtra2Go/Pnz/fON9wPgGmT7fPJv3+bLX/bFuW1QjHOJcAwPggCAPgqeZpjL0OvS+VSkomk8pms4d2ZeokHA63PG7+INpJ+1SI5r8Ye9EngN50Op/cuXNHkvoK3k3TbLmYNAyjEYRxPgGmT7fPJu1hktPF5NsDpebAiXMJAIwPpkYC8FTzh81eht6bpqloNKp0Ot1TCCbV/kLazOmUzOYPuoFAoKV2L/oE0Jt+zyeD4HwCTJ9u55J+f0bb+2oO2TiXAMD4IAgD4KmdnZ3G/Wg06ug1lmVpZWVF6+vrfa31EwqFWj6MXrt2zdHrmmtt/3DpRZ8AetPpfJJOp1WtVh3fmi/88vl8y3PpdLrxHOcTYPp0+2zSPqqqfQSVU83nGc4lADA+CMIAeKr5w6OTofeWZSkcDiuRSLRcjHZ7TfvuTKurq437zVOeOmlu1777k1d9AnCu1/OJWzifANPFybmk+etOp1y3T6FsD9Q4lwDAeCAIA+CpQqEgSY5Gdtm2rWg0qtXVVcchmFTbKa79g2wymWzcd/IBtrmNYRhHfjD2ok8AzvVyPnET5xNgujg5lzQHRJZlOVonrFvAxrkEAMYDQRgAzxQKBVmWpUAgoEuXLnVsa9u2wuGwDMNQKpWSZVldb6VSqbFQbPtfXdu3R69/6D1OPp9v3D/ur6Ne9AnAmV7OJ27jfAJMD6fnkkgk0jK1cWNjo2vfzSHTUX/Q41wCAGOiCgAOFYvFaiAQqEqqRiKR6u7u7rFty+Vyo22ndnWhUKgqqa9bNps9toZ6m1AodOyx9/f3G+0ikUjHOr3oE5hFXp5PnDAMo/Ezms/nu7bnfAKMJy/PJbu7uy2fN8rlcsc66u0SiUTHGjiXAMBoEYQBcCyRSBwKoY76sFf/UGoYRscPjXWDhGDd8vx8Pt9ol06nOx4/EAhU9/f3u9brRZ/ArPHqfOJUr0FYtcr5BBhHXp9Lstlso1/DMI78Gdzf32+cUzoFUXWcSwBgtAjCADjW/NfO5lsgEKjGYrFqIpFofMhaX1939CErFosNFIJ1+qtrc931vwDHYrHq7u5udX9/v1osFhv1hkKhnj4UetEnMEu8OJ/0op8grF435xNgfAzjXNL8MxoIBKrpdLq6u7tb3d3drabT6cZzTj6THNUn5xIAGC5ftVqtCgAcsixL6XRapVJJe3t7sm1bgUBAi4uLCoVCOn/+vCKRSMt23uMik8loa2ursehtIBDQ8vKyksmkYrHY2PQJzArOJ973CcyCYZ1Lcrmc8vm8dnZ2GseoLzifTCZb1hRzinMJAAwfQRgAAAAAAABmArtGAgAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAAAGAmEIQBAAAAAMaabdvy+Xxdb6ZpjrrUsZXJZLp+/4LB4KjLBDznq1ar1VEXAQAAAADAcWzb1sLCQuNxKBTSlStXZBhGS7tAIDDkyiaLbduN+3t7eyqVSkomk42vGYahcrk8gsqA4SEIAwAAAACMtfYgLJ/PKxaLjbCi6RGPx1UoFCQRhGE2MDUSAAAAADBRGPnlnvZRdcC0IwgDAAAAAEyUxcXFUZcAYEIRhAEAAAAAAGAmEIQBAAAAAABgJhCEAQAAAAAAYCYQhAEAAAAApppt28pkMgqHw40dEusKhYKi0agWFhbk8/kUDoeVy+WO7SeVSikcDre0b+9z3OsAZtkDoy4AAAAAAAC3maapUqmkra0tmaZ56HnLshSPxw89Z5qmksmkdnd3lc1mG1/PZDJKpVJHHicej2t9fV3pdHps6wBQ46tWq9VRFwEAAAAA0yKVSsmyLMftz507p/X1dQ8rmny2bWthYaHxeHd3V6FQ6Nj2lmU1wqL2UVL5fF57e3tKJpMKhUI6f/68DMOQZVna2NiQbduNtsViUZFIRNFoVDs7O1pdXVU4HNbi4qKuXbumTCbT0ne5XJZhGGNXRyepVKrxesMwVC6XHb0OmFQEYQAAAADgkvbAxol6yIHj9RqENWsfQWUYhvb29nTlyhXFYrGWtpZlKRgMNh7Xj7G4uKh8Pq9AINDSvlQqKRqNNh4nEomW0VvjWEc7gjDMGtYIAwAAAACXlEqlntpns1lCMI8dFZjt7+8fCp+kWhDU/P/DNE3Ztq1isXgofJKkSCTSMvKq0///cakDmHUEYQAAAADgkmKxKMMwVCwWVa1Wj72FQiGtr68rkUiMuuSpt7i42PL4qOCpWfPIKklHrsfVrDng6jQldlzqAGYdQRgAAAAAuKRUKnWd6hiPx2UYRsuC5vUdA30+X8stHA73VUc8Hj+yr/a1pHBY+4ir9gCrXftaXG6FUONSBzBt2DUSAAAAAFySSqU6LlKeyWRkWZZ2d3dbvh6LxRSLxQ6thWWapkzTdLwellRbT6t9YfZ0Os2C/A51C5y6aV7kfhrqAKYNI8IAAAAAwCWdpjqWSiVls1ldvXr12DaBQODQaLKNjY2eajiqPVMwvXPq1KlRlyBpfOoAxh1BGAAAAAB4zLIsxePxYxc7b9b+fKFQ6GmaWy6XOxSmdTsmAMwKgjAAAAAA8JBt24pGo8rn8x2nTdYtLi4e2gWweT2xTgqFgmzb7rqwOgDMKoIwAAAAAPBQPB5XKpXquID+UZrDrFwu52jNp42NDUUiES0vL/daJgDMBIIwAAAAAPBIMplUKBTqa42uRCLRMqUxl8t1bF9fWJ/RYABwPIIwAAAAAPBALpfT3t6e42mNR2kO0Lotmr+xsSHDMHoeeWZZlpLJpMLhsKLRqILBoKLR6KGdJ4+TSqUUDAa1sLCgcDisZDIp0zR7qgEAhoUgDAAAAABcZpqmstms8vn8QP1cunSpcd+27WPDqfpzvY4GKxQKCgaD2tvb0+7urorFosrlsqRfTuk8jmVZCgaDMk1Tu7u7unHjhqRaABgOh5XJZBqj1JxM6wSAYSAIAwAAAAAXWZalCxcu6OrVqwP3FQgEHI0Ky+Vyh9o6EY/HJUnnz59v+Xp9FFsmkzk2xIrH47IsS9lsVoFA9MSUkQAABrpJREFUQIFAoCX4S6VSCofDCofDXUezAcCwEIQBAAAAgIvi8bjy+XzL+l6DaB6VVR9h1W5jY6PnEMyyrGOfa659Z2fn0POFQkGmacowjJbdLQ3DaKmjXC6rWq0OND101Pb29kZdgqTxqQOYdARhAAAAAOCSaDSqS5cutYRDg2pf96t9umKhUJBt2y3TKJ32m81mlU6nFYvFWp5bXFxs3D9qRNjW1lajj3bN9TldZ2yctAdO3aZ13rlzZ6rrAKYNQRgAAAAAuCCVSqlUKikejysajapUKrnad12pVGoZzbWxsaFYLNbXCLREIqH19fXGY9u2lcvlWnaoPGokUn1U2lGjyprDsXEIZ9pr7BYotT9fXzPNafvjRtqNSx3ArCMIAwAAAIABFQoFZTKZxuNSqaRoNNrz4vXHiUQiLQFTfaphfapkr6PB2pmmqWQyqe3tbSUSia7TLOu1HBe21J8/d+7cQHW5oX19su3t7WNDKNu2lc1mD7XvFG5tb2+3fK399eNWBzDrCMIAAAAAYACmaTYWnW+XyWRaArK6cDishYWFlpFX3TSHarlcTrZta2NjQ6FQSKFQqPfCVQtcotGo4vG40um043XGkslk4/5R78+yrENTOofJNE1Fo1EtLCwcWlPNtm0tLCwoHA43pm6aptn4f3LUyK1gMKhwONz4/1UqlRQMBhUMBg+FWaVSSQsLC4pGo/qv//W/jkUdjA4DfslXrVaroy4CAAAAACZVPUgyDEOmaWpra+tQ6FEsFltCoWAw2Agn2i/JksmkLMtSsVg8dKyFhYVG4JFIJJTL5ZTP5w+t8VUPWeqOuuyzbVtnzpyRbdsql8stI86aX5/NZo8MyHK5XCMQaw7RLly4INM0VSwWXVsrrf397O7u9h3+oVUqlWqEmYZhdJ2CCUw6RoQBAAAAwACKxaISiYQikYjW19e1u7urYrHYEtTE4/GWETv1UOyooKjT7oDNgVQul1MgEDgUgjmVSqVk27YCgcChOpzsUJhIJJTP52UYhq5du6aVlRVduHBB0Wj0ULAGAOPigVEXAAAAAADTJhKJaHd3V7lcrhE4hcPhQ6Ok8vn8odfatn1sEHXp0qWWqYjHrQ3mJMja2dlpHO+oGropFAoqFouMIAIwURgRBgAAAAAeSSQS2t/fVzablWEYCofDCgaD2tvbU7lcPnJ6397e3rFrOgUCgZZRYcet6dUeZB0VbC0uLjbuN4drpmnqwoULjcf1oKu5j0Kh0NgdcxScBH0AcBSCMAAAAADwWCKRULFY1P7+vsrlcmNKYbtSqSTTNGXb9rEL6dcXzU8kEgoEAke22draanncvqOg1LrgfSqVUjAY1MLCgi5cuNAyUi2TySgYDLbseljvPx6Py+fzaWFhobGQezgcbuyY2b5WmltY/N09Tkb/AdOExfIBAAAAYMRyuZyy2eyh4CgUCimZTB4a+RWNRhujzJolk0mVSqUjg6JQKKTz589rfX295bjpdLqxy2MqlWocqz6tc3FxUclksuV1tm0rHo+rVCp1fW/pdLrltf1oXyw/EAgon89reXm5pd1xwSBq2kOvnZ2dllF9LJaPWUAQBgAAAADoST0IS6fTCgQCsiyrZW0z27Z1586dxgi3/f39gUKq9iDsOOwmebxMJtMYTXgcgjDMAoIwAAAAAIBj9YX/20eJHSccDuvKlSsEVADGAmuEAQAAAAAci8fjsizr2IX6j0IIBmBcEIQBAAAAAByxbbuxLpiT9cFyuZwikYjXZQGAY0yNBAAAAAA4FgwGG4vxJxIJJZNJGYahQCDQWCesVCopn883FrUHgHFBEAYAAAAAcMyyLEWj0SN3pqwLhUKsCwZgLBGEAQAAAAB6Vh/1tbe3J9u2FQgEdO7cOUUiEQIwAGOLIAwAAAAAAAAzgcXyAQAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADATCMIAAAAAAAAwEwjCAAAAAAAAMBMIwgAAAAAAADAT/v9WnBTmnu42VwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9b2wb6Z0ven4pdXI7J4lYoufFLuxFrGJ7tudeYGMVpQCZ8yqtYvdZnPROOialYDLdAW5bpJ3kzgJKTEodXJw5WMQSZbeBi9kkIuV+cToT4Eik3clNBtttltzvNntisuR+s+g7bZbUOPbdF2dMFpkEaSRt1r5QWM3/LJLF/98PQLREPfU8vyLpOPr59/weh2EYBoiIiIiIiIiIiMbc1KADICIiIiIiIiIi6gcmwoiIiIiIiIiIaCIwEUZERERERERERBOBiTAiIiIiIiIiIpoITIQREREREREREdFEYCKMiIiIiIiIiIgmAhNhREREREREREQ0EZgIIyIiIiIiIiKiicBEGBERERERERERTQQmwoiIiIiIiIiIaCIwEUZERERERERERBOBiTAiIiIiIiIiIpoITIQREREREREREdFEYCKMiIiIiIiIiIgmAhNhREREREREREQ0EZgIIyIiIiIiIiKiicBEGBERERERERERTQQmwoiIiIiIiIiIaCIwEUZERERERERERBOBiTAiIiIiIiIiIpoITIQREREREREREdFEYCKMiIiIiIiIiIgmAhNhREREREREREQ0EZgIIyIiIiIiIiKiicBEGBERERERERERTQQmwoiIiIiIiIiIaCIwEUZERERERERERBOBiTAiGku6rg86BCIiIiIiIhoyTIQR0dhQVRXhcBizs7NYXV0ddDhEREREREQ0ZJ4adABENBlUVcXe3h5UVYWmachms9B1HYIgQBRFuFwuSJIEr9cLWZZrrvf7/dA0Del02nxO13UoioK9vT0oisIqMCIiIiIiImrKYRiGMeggiEZBLBZDMBhs+zpJkiqSN51yOBxtXyMIAnK5XN2f+f1+JBKJtudMJpN1E1X16LqOzc1NbG9vt72OJEmQZRlutxvJZBKJRKLmtSwlx1RVrbne5/MhHo+3vS4RERERERGNL26NJLIoEAggl8shnU7D5/M1HSvLMpLJpDneDoZhIJPJIBqNQhCEhuNEUUQ0GkUmk2mYBAOAeDyOXC5nKbEVCoWQTqeRy+UsJ8FKWxSrk2ClBFVpvtJ9JZNJBAIB895UVcX29jaCwaCZsKuu+CrNYxgGRFG0FBcRERERERFNLlaEEXUoGAwiFovVPN+PSiRN0+B2u+v+LJfLNU2UNeLxeOpWVkWjUQQCgbZi83q90DSt4vlAIIBoNGppju3tbYTD4ZrnRVFEJpOpe031+8GKMCIiIiIiIqrGijCiDjXaJtnJ9sl2iaIISZJqnvf5fB0lwYDGcbeTBFMUBW63uyIJJggC0um05SQYcFKBlslkau4lm802vKbT+yYiIiIiIqLJwUQYUYcabcXr1xa9eut0s3a9a9tJLqmqCq/XW3P9wcFB3aSdlXiOjo4qYmAzfCIiIiIiIuoGE2FEHWqUJHK5XP0NZAhomoalpaWa5+PxeEdJsJJSNdk4SiQSNdtH6ROKogw6BCIiIiIiGkNMhBGNqHoJt1OnTtk6n9Wknt/vr6nWCgQClhvrNyOKIkKhUNfz9IuqqggGg3C73XA4HJidnYXb7YbH4zFP6kwkElhdXW2Z7FEUxbx+3BNDmqYhFovB6/XC4XDUVBcO2iS9F0RERERE4+ypQQdARKNNUZS6TfYjkYhta2xsbJinT+q6PpT9wHRdx+rqqnnCpSiK5umimqZBVVWoqmr+vHRNM6UEo67rCAaDDQ8KGGWapsHv90PTtKHe+joJ7wURERER0SRgRRgRdaVek/1umvbXIwhCW037B6FU7QWcnLSZyWQQj8cRj8eRTqeRyWRqKuRaJVMmYZutKIpIp9PI5XJDXfk3Ce8FEREREdEkYCKMiDqmKErdPlcbGxu2r+X3+wE0PzmyGUVR4Pf7K7Yser1exGKxrmPb3t42t8uFQqG6STtRFJFMJisq5Vr1CItGoxBFEaIoIh6Pdx3nsBu27ZDlJu29ICIiIiIaV9waSUQda5QQ6KZBfiOyLCMSibRdmaPrOpaWlmq2b+q6DkVRoCgKIpFIV439Nzc3za/rVciVC4VCePz4Mba3t1sm9WRZnqgteIOqugoGg4hGo03HTNp7QUREREQ0rlgRRkQdq9c03I4G+Y2EQqG2tlxqmoa5ubm6Pcyqx3k8no6aoHfS2yoSiUCSJJ4aOQRisZgtVYFERERERDQamAgjoo5omlY3kdOLarBO6LpuNjj3+XyIRqNIp9NIJpMNe1F5vd62k1PVSTCrybSNjY2hbg4/CTRNa1nBR0RERERE44VbI4moI40SRm63u8+R1FdKSCWTyZoqNVmWEQwG6ya+/H4/0um05XVEUaz4PhwOY3l5uWXlWulEyWE9BXPc6bo+1D3JiIiIiIioN1gRRkQdaZQIG6bT9eolwUpKzeurqara1hZJQRAqElm6rsPj8ViqLDMMg0mwASj1jePWVCIiIiKiycNEGNEYCYfDcDgcHT08Hk9bazXa1jcsiR1BEFr2KxNFseIUx5J6zzVTPV7TNLjdblt6T6mqimAw2LLSTtd1xGIxeDyeinVL2/9mZ2fhcDjgdruxvb1dc72maQiHw+apmm63G8FgsO77XFqn+jNUzev1mvOVP+zcEhqLxSrWmZ2dhcfjqXuPwMnrWa9vXHl8jV5rq+9Fia7r2N7ehtfrNV//UnzhcNhSIk7TNGxvb8PtdlfEXP4euN1ucxswERERERG1YBBRxwDUPHK5XF/WDgQCdde38yGKYtvrJ5PJvtx/tVAoVBGHLMuWrxUEoeY+2iXLct3XQ5IkI51OtzVXOp02AoFARVyCINSMy+VyRiQSMSRJqlgzGo0ahlH7mpQ/AoGAOU+zcaIoNvxMV38GGolEIpb+jKTTacvvQTweN1+XeDxeMYcoig1jz+VyRjqdrokpnU5XPMrns/JeVItGo+b4SCRipNNpI5PJGPF4vOL98vl8NdfmcjkjFAqZ91EeYy6Xq3m/y+PKZDItYyMiIiIimmSsCCMaI4FAAOl0uqNHNBpta61GlV/DUpXSTmVavcqxVidNVksmk2bfr+p5PB6P5YodTdOwt7dnuepIkqSahu/pdBoejweqqiIejyOTySCXy1UcEhCLxaCqKrxeLxRFQTKZRC6XQy6XQzKZNF8/TdOwublZd22/328pxnqvSzcURTHX3tjYqJhfkiTE43EAJ7Gvrq5WXCsIAiRJqjnUofRc+c/afS9KwuEwgsEgBEFAJpNBKBSCJEkQRRE+nw/pdNqMOZFIwO12V3w2stksvF5vzecylUphbm7O3NabyWQQjUbN90rXdTb/JyIiIiJqZdCZOKJRhiGrCItEIh3PV12NgxYVYdUVNaVHqRqp36qrmupV2jRSqi6y4z4avS6dzFs+V6sqpOoqoUaVedWVa+WVYeXKX5NGayeTSUsVXLlcztaKMJ/P1/Iz32oeq7GXWH0vyivBWr3X5RVfjSoYy2MUBKHu+1r9+e3X/wYREREREY0iVoQRUUeGvSKsHdUnPwKd30coFEIul2tYBVU6rdLK/PXiaqT8kIJAINCwP1r1SYmNKgHL49d1fWjf10afw/Ln7WiKb/W9CIfD5vqBQMDSWOCkyq3eIQ3l97G7u1v3fa3+rKVSKUuxEhERERFNIibCiKgjjRIDmUymz5F0r14y5fHjx13NF4/HkU6na7bgASdJj6WlJVuTS1a3gpa/b+1sHx2mExZ3d3cRiUQQj8dbJpuA/iVnY7GYuZaVxFkgEKh4D9o9pKFc+XrD9F4REREREQ0bJsKIqCONKo7qVbUMu3pJi1OnTnU9ryRJDfuvqapa07+qHzo91TObzdobSBcEQUAoFGrYk63d/m52SSaT5tdWK8jK/xyN4p8dIiIiIqJRw0QYEXWsXrWTpmlDu42uHe1sS2wlEAggk8nUJKESicRQJz86TZr1m6ZpiMViUBSlbiP8fsbRrurP2Tj82SEiIiIiGmZMhBFRx1ZWVuo+P8zJnUaqkz52JsJK86XT6Zp12j2tkz5ROvUyGo027YvWL+VJLKtJseoTKYep8o6IiIiIaBwxEUY0pFRVhd/vH3QYTTXqzzSKyZ3qShwrVUWKosDj8VheQxRF7O7uVjw3qG18oy4YDMLj8UAUxa56a9mpkwb95YccAPYnYImIiIiIqBITYURDanV1dei3SQmCULdPk6IoI5XgqX6drVYWiaIIVVXbqoCrfr3Y2Lx9wWAQsVgMQHcN5u1WnsSyetJmeQUYk2BERERERL3HRBjREColkrxeb8Mxdm+h6nS+RomIcDjcTTh19SoxmEqlKr4PBoOWrislLqyOr2dQ/az6yc7PqqqqZhJMFMWh6mNWvVW4FGcz5aes1ksqExERERGRvZgIIxoyuq6bWyLb/cX48ePHtsZiJYHRaGuaoijY3t62LRZN0+DxeLpKOjVSfdpfO6+7KIrQNM1y4q+6AqxRn7VRUL2tr1Gi0s6qt/Lqu2bzDqKa0ufzVSTmrGwRLr+fjY2NXoRFRERERERlmAgj6lAvftHWdR1LS0vQdR2CILS9VcrumKzOFwqF6m4nDIfDtjTOVxTFbCrei61wiUTC/Lrd/mal92h7e9tSBVD5/KIoIhQKtbVeI1bfq/Jxra5p9fPqarZ6918vSWhnhVj5e1diZb3qP1vVSbVO/yyV94DTNK3p519VVXMLcSQSGarqNiIiIiKiccVEGFGHGlWjdPpLfqnxeukX4+Xl5bbX7ybB0G3VTjKZrFtJ5fV6O64M03UdwWAQXq+34amLza61IhaLmffeycmD5QmVYDCIYDDYcO1YLFbxWpRXotVT/n4Oul9co/XLX69wOIxgMAhFUZBIJBAMBuF2u2uSPFb/7NRbszr55vf7sb29bVYgut1uaJpW8b5Eo1EoioJwOGzOWZ0IK71vmqZV9CCrF1uz98Ln81Uka/1+f93xuq5jdXUVwMnnrlFC1Or7Xv6aDvqzQkREREQ01Awi6kggEDAA1DxkWTYymUzL63O5nJFMJo1QKGSIolgzTzweb3htJpOpuzYAI5fLdXQ/kiTVnS8ajbY1TygUqjuPJElGMpm0NEculzMikYghCIL5mra6r+p1BUFouU756yjLsqXYqkWj0br36/P5jFAoZESjUSMQCFS8x1Y/I9XvSaPPRC6Xq3mtG/H5fJbe32QyWTEuEAg0XLv0PlU/BEEw3/PyMZIkGZlMpuY9tRpb9bjyRyQSMQyj/p9Pn89XMU+jz2q9e7X6XpTE43HzngVBMKLRqJHJZIxMJmNEo1Hz81CKtx6r70H1uE4/y0REREREk4CJMKI2pdPppr+I2/Wol/jJ5XJGNBptmHgAYIiiaESjUcsJsXQ6bciy3DSWUChkKXFTkkwmGybWBEEwfD6fEY1GjWQyaaTTaSOZTBrRaNSIRCIV1wmC0DLhUFIvOSiKYsPkW3miojpB0o5kMmnGGY/HjUAgYMiybEiSVPE+le67VTKw9Plq9B5LkmQmT5qNFUXR8Pl85uegOhlXnTgpzZlMJht+HkRRrJuMyeVyFfNLkmSEQqGKMaXnqj9HuVyu5f3WWzMSiZjriaJohEKhis98Lpcz76P8NatWnoiWJKni89bOe9FINBo1ZFmuSIqVrmv0Z7TZn8ny9yCTyTQd1yo2IiIiIqJJ5DAMwwARtRSLxXrSqL0eSZKQTqcrnnM4HG3PIwgCcrlc3Z/5/f66/ZVaSSaTlrcPJhIJbG5umts9rRJFEcFgEIFAoK2+SaV+VNX3JQgCFhYWIAgCdF1HKpUy+7DF4/G2t0MSERERERHRaGIijIh6Ttd1KIqCvb09aJpm9mICTpJepYMBFhcX4fP52j4koNV6pTVL6ywsLMDv9zMBRkRERERENGGYCCMiIiIiIiIioonAUyOJiIiIiIiIiGgiMBFGREREREREREQTgYkwIiIiIiIiIiKaCEyEERERERERERHRRGAijIiIiIiIiIiIJgITYURERERERERENBGYCCMiIiIiIiIioonARBgREREREREREU2EpwYdANEocDgc5tdTU8wfExERERHReCsWi+bXhmEMMBIiezERRtSm8r8QiIiIiIiIiGh0MBFG1KZhqggrT8oNU1yDxNekFl+TWnxNKvH1qMXXpBZfk1p8TSrx9ajF16QWX5Naw/qa9KoAYHt7G8lkEqlUCrquQxRFSJKEYDAIWZZ7smYv1x7k/VBnmAgjsmBqagrFYhFTU1N48uTJoMMxnTlzBo8ePcLp06fx8OHDQYczFPia1OJrUouvSSW+HrX4mtTia1KLr0klvh61+JrU4mtSa1hfk+npafN3IDsoigK/3w9d1yHLMuLxOERRhKqqCIfD8Hq95vOCINiyZi/XtnPO2dlZ6Lre0b0FAgFEo9GOrm3k+PgYqqoim81C13U8fvwYAHDq1CkIggBRFLGwsICZmRlb1+0XJsKIiIiIiIiIqGcURYHX6wVQm7gRRRE+nw8ejweKosDj8SCdTtuWDOvF2nbOmUgkOk6CATDj6Nbt27eRTCaxv79vOR5RFCHLMvx+P5577jlb4uiH4am7JCIiIiIiIqKxous6/H4/gJPESaPqpXg8DgDQNM0cP4xr2z1nt9VcPp+vq+tv3ryJc+fOwe/3IxaLIZfLwTCMpgcklH6eyWQQi8Xg9Xpx7tw5vPHGG13F0i9MhBERERERERFRT5S2DwJAOBxuOK5USQWcVFzFYrGhXNvOOTVNg6IoZkItk8kgl8u1fIiiCABd9SC7e/cuzp07h2AwCE3TANSeDlpKeFU/6o3RNA2BQAB/+Zd/iffee6/juPqBWyOJiIiIiIiIyHalRE/J8vJy0/ErKytIJBIATpJMgUBgqNa2e85oNApRFNvaCqppmpm46rRybmNjA9vb2zVJLVmWIUkSTp06BVEUzZhcLhcAIJvNAjipitM0DY8fPzZfk1Jy8MGDB5AkCeFwGFevXu0ovl4buUTYuXPnBh2CyeFw4F/+5V8GHQYRERERERHR0IlEIubXsiy3TPaUb/PTdR2JRKLjrX+9WNvuOWOxGA4ODtrqh1ZKrAGtE3HVCoUClpaWkE6nAZzcQ6mp//z8fFtzVcvn89jb20MsFoOqqohEIlAUBYqiDF1T/ZFLhGUyGTgcjqb7VXuttL7D4RhYDERERERERETDrHw7oCRJlq4RRdGseNrb2+s4EdaLte2eMx6PW56nZG9vD4C1RFy5+/fvY2lpCblcDoFAAOFwGHNzc22t3YzT6UQgEEAgEICmaQgGgzg4OMDCwgLS6TQ+//nP27ZWt9gjrAODTMIRERERERERDTtVVSu+X1xctHRdeWKovPpp0Gv3Ys52e3zpum7G0c62yMPDQ0iShLm5OWQyGezs7NiaBKsmiiKSySTu3LmD//bf/hs8Hg8KhULP1mvXyFWEASeJKJ/PZzaI6zdd121p3Eejp1gs4syZM03HrK2tYW1trS/xrK2toVAoDF2pKQ0Xfk5q8TWpxNeDrODnpBZfk0p8PcgKfk5qjetrUt5LC4Dl39+rx6mq2nbVVC/WHuT9lJTnIaxuizw6OsLS0hJ8Ph/29/c7WrdTsizj6OgIHo8Hy8vLePvtt/u6fiMjmQiLxWK4ePHiQGPw+Xx44YUXBhoDDcajR4+a/ryfme5+JdxotPFzUouvSSW+HmQFPye1+JpU4utBVvBzUmtcX5N79+5VfG91G9+pU6cqvk+lUm0njnqx9iDvp6S0LVKSJMvre71eLC8vY2dnp6M1uyUIAtLpNBYWFvD666/je9/73kDiKDeSibBujgi1i9UySBo/p0+fbvrzcfuXHCIiIiIionaV+mKVdFpBlclkhmLtQd4PULktcmVlxdI16+vrEEVxYEmwEkEQkEqlIIoilpaWcP78+YHGM5KJsNLRnUT9NjU1hYcPHw46DCIiIiIioqFWnTjqlK7rQ7H2IO8HQMW2RqsHCJw6dQrxeLyj9ewmCAIODg6gaRoTYe3iSY1EREREREREw63ThE/1lr9sNjsUaw/yfgAgGo0CONkWabUa7cqVKx2t1Svz8/OYn58fdBijlwgbphMbhykWIiIiIiIiohs3buDGjRtdz1MsFm2IpnudJqCGde1O5uxkW+QgXL58GT/5yU8GHUZLI5cIi0QiQ9GDyel0IhKJDDoMIiIiIiIiIlOhUGh5wFc/CIJgSyLJalP4Xq89yPvpZFvkIMRiMYTDYZw9e3bQoTQ1comwfpf2HR8fN3wTh63MkIiIiIiIiCbbzMxMywO+rOg2meZyuWxJHHXSI7wXaw/yfkrbIkVRtLwtst8ODg5gGAZu3bo1FCdDNjNyibB+CwaDeOeddwYdBhEREREREVFLa2trWFtb63qe6enprrZHdlL5BNRuHey0IszutQd1P+XbItupBrt06RKOjo7aWqsT2WwWuq6bhwns7OwwETbqUqnUoEMgojasra2hUCgMxRZqIhpd/N8SIrID/7eEJtnCwoKZwAFOEjpWkkDVzeTdbvdQrD2o+ynfFtlOfzBBEJBMJnt+4GB173RN03D//v2BnwzZzMQkwo6Pj9sqY9Q0DdFodKCN+YiofXb86xcREf+3hIjswP8toUnm8Xgqvtc0DZIktbwuk8lUfC/L8lCsPaj7icfjAE4SW1bWK1lZWcH29rbl8YZhdJQ0K7+mlBTb399nImwQjo+PEYlEoCiKWaLXrk4/CERERERERESTbGFhoeJ7q4mj8mIUQRA66onVi7UHcT+6rkNRFABAIBCwfB0AzM/PQxRFHB0d1VRt1eNwOCyNa3Y9cJJHicfjuHr1asdz9drUoAPohY2NDbjdbsRiMWQyGRiG0dGDiIiIiIiIiNonSVLF1sF79+5Zuq68PVF18mmQaw/ifjrdFlmytLQEAFAUBcViseEjEonAMAxIkoRkMolcLtd0fPUjlUphbm4OwWAQxWIRH3zwQdux9tPYJcJu3bplvokAWNFFRERERERENADLy8vm1+X9tZopHxcOh4dq7X7fT6fbIkuWl5chSRKee+65hmOOjo6wvr6OYDCIVCqFpaUlOJ3OttaRJAl37txBNBrFt7/97bbj7DeHMWalT6UGdqWyPlEUIUmSWX546tSplnM8fvwYuq5jf38f+XweT5486XXYNORKJ6ZMTU3x80BERERERGPPjt+BVFWt6K3VKv2gKAq8Xi8AQBTFmv5ag167n/ej6zpmZ2cBnGyLjEajlq8t9/zzz+POnTsNf37p0iUcHBzYUsUVDAZx8+ZNKIqCr3zlK13P1ytj1yOslAQDgGQyaZYCdiIUCuHcuXN2hUZEREREREQ0MSRJgizLZp+rRCIBn8/XcHypAgpoXT1VaoUUDAbr9t3qxdq9vJ9q5dsi/X5/W9eWa5YEA062bgaDwY7nL7ewsIDd3V1Eo9GhToSNXUWYy+VCPp9HKBTC5uZm1/M988wzePDggQ2R0ShjRRgREREREU0Su34H0jQNbrcbwEkiKZ1O1x1XXgElyzKSyWTDOb1er5mMAoBcLlfRv6uXa/diznpK9ygIAnK5XFvXtmNqagqKojTdPmnVrVu34Pf7MTs7i8ePH9sQXW+MXY+wUiZ4cXHRlvk6LT8kIiIiIiIimnSiKJqVUaqqYnt7u+640m4uQRAqKqnqKU+CAZXVU71euxdzVis/LVKW5baubZcgCDg6OrJlrlKyr/ykzGE0domw0octm83aOh8RERERERERtc/n8yGZTEIQBITDYfj9fqiqaiZ8PB4PVFWFJEk4OjqqW91Vrvrn9bZG9mrtXs1ZrjyxZ9e2xUYWFhaws7PT9Tz5fB6xWAxA7fszbMYuEfbaa6/BMAzLJzi0cvPmTVvmISIiIiIiIppUsiwjl8shEolA0zQsLS1hdnYWfr8fLpcL8Xgc6XTaUhIlHo9DFEUIgoBQKNSyasrOtXs5Z/n9la/TS4FAAOl0Gq+//nrHcxQKBTNOh8PRNDE5DMauRxgAbG9vIxKJ4Pj4GJ///Oe7mmtxcRH37t2zKTIaVewRRkREREREk4S/A00Ot9uN4+Nj+P1+bG1t4ezZs5avvX37NlZXV6HrOgzDgMPhQCQSwfe///3eBdylsUyEASeN5aanp/H22293PMfR0RGeeeYZ/qEn/iVAREREREQThb8DTQ5N0/DMM8/A4XAAODkEoHQapyiKZmLs+PgYuq5D0zQkk0ns7+9XJMAMwxj6RvnAGCfCgJO9rvl8HuFwGC6Xy9I12WwWuq4jk8mYbyr/0FPpLwEAOH36dNOxa2trWFtb60dYREREREREPcFE2GRRVRULCwsAYCbEWimlk8rHJ5NJW06g7KWnBh1Ar9y9excAkMlkOm4uV8pqEpV79OhR058XCoU+RUJERERERETUPUmS8ODBA/j9fhweHlq6ppQvKSXE4vH40CfBgDFNhF2+fNk8raBUntcuJsCokVYVYTMzM32KhIiGyY/UX3d87XekL9sYCRERERFR+0RRRDqdRiKRwNbWVs0hhNWJr9J/fT4fdnd34XQ6+xtwh8Zua+Tu7q5ZAdZpEqycw+FgGSixLJiIWmIijIiIiEbFjRs3cOPGjaZjSjth+DvQ5Do6OoKiKEin09A0DdlsFgDgcrkgiiK8Xi9kWR6ZBFjJ2FWERaNRAJ8kwWRZhtfrhSAIbfcJ29nZwfHxcQ+jJSIiIiIiIuqvQqHQsuUL0dzcHFZXV7G6ujroUGw1dokwVVXhcDggCAJSqRTm5uY6nmt1dRWnTp2yMToiIiIiIiKiwZqZmWnZ8oWJMhpXU4MOwG6CIAAANjY2ukqCleaan5+3ISoiIiIiIiKi4bC2toaHDx82fUxNjV26gGy0sbGBDz/8cNBhdGTsPtkejwfASZM3O+zu7toyDxERERERERHRsLt9+zYuX76MxcVF3L59u+4Yj8eD+fl5fOMb3xi5hNjYbY0MBoM4ODiApmm2zDeJFWGapiEYDCIYDMLn8/VlrWQyaWn89vY2kskkUqkUdF2HKIqQJAnBYBCyLPc0ViIaf900vCciIiIiGmXXr1/H5uYmdF03nys1yK/m8/kgyzKWlpYgiiISiQReeumlPkXanbGrCPP5fJifn8fe3p4t8zXKfo4jXdfh9/vhdruhKErDD7zVuRwOR8uH2+22VL2nKApmZ2cRDocBAPF4HJlMBpFIBKqqwuv1wuv1VvyBJSIiIiIiIqLm8vk8zp07h3A4jFwuB8MwYBhGy+sEQUA6ncb58+fh8/nwxhtv9CHa7o1dIgw4SZKk02m89dZbXc+1ublpQ0TDTdd1hMNhzM7OIpFI2DJnLBazPLaU3GpEURQzyRUIBJBMJiHLMkRRhM/nQyaTgSRJUBQFHo+HyTAiIiIiIiIii/x+PzKZDACYRSvtODg4gGEYCAQCePfdd3sRoq3GMhEmiiJ2dnZw8eLFrubJ5/NQVdWmqIbT9vY2PB6P7fdpNYFYSmg1UqpSA07e12g0WndcPB4HcLLVsjSeiIiIiIiIiBo7ODiAoihwOBxmJZjT6Wyr9ZAgCLhy5QoMw0AwGOxhtPYYux5hpa2Mf/EXf4HZ2VmcO3euoz5Xuq5jf3/f7vCGiqqqkGUZoVAIwEkVlx0f2lgsBl3XEQqF4PV6m45dWFho+nO/329WeDWrHCtVhyUSCSiKglgshkAg0HbsRERERERERJOiVGxSqugKh8OYm5sDgLZODv3GN76Ba9euIZPJ4I033sCrr77ak3jt4DCsbPwcIQsLCzg8PDS/Nwyj7bK+6mufPHliV3hDTVVV89RN4OQPRCfJJLfbDQBmaWWnNE0z5wKAXC4HQRAajk8kEmY1mCAIyOVyXa1fbnp6GsViEVNTUxPzeSCaRINqlv8d6csDWZeIiIioEf4ONBlcLhfy+Tyi0WjNrrqpqSnEYjFLu+3y+TxmZ2fhcDjg8/ls69veC2O3NXJ5ebmisVunSbBJ1CzJZFUikYCmaS37flkRiUTMr2VZbhlfeeWfruu29TsjIiIiIiIiGke6rkMUxa5bS5UftjfsLabGLhFW2tpXvr+10we1b3NzE4IgYHl5ueu5yhvuS5Jk6ZryfmPDnIEmIiIiIiIiGjRBECz/vt1MKfllGAY0Tet6vl4aux5hTqcTkiTh8PAQkUgEkiTB5XK1PY+mabh69Sru379vf5BjSlVV88M/OzsLURQhyzK8Xm/bfdqqM8iLi4uWrpMkyfxDx4owIiIiIiIiosZEUTT7cnej/MA8O3ab9dLYJcIAYGVlBW63G1euXOl4jvn5eVy4cKGjJNqkqt4OqWkaYrGYWdnl8/mwsbFhKdusKErF981Olmw2TlVVW7LbRERERERERONmaWkJN2/e7GqOa9euQVVVc2ee1d/fB2XstkYCJ/2k7Nra2OpUQzqhaVpN8qpaIpGAx+OxdDLlvXv3Kr63mlE+depUxfepVMrSdURERERERESTZmNjA7lcDq+//nrH16+vr5tJMIfDgZWVFZujtNdYVoTNz89XNFrvxt///d/bMs+4E0UR0WgUuq4jk8lAUZSG+4JjsRhSqRTS6XTD+aqv7bQirNuTK4mIiIiIiIjGlSAIuHLlCkKhEB4/foz19XXMzMw0vaZQKGB/fx+RSASappkJsJJAINDrsLsylokwAJibm7Nlnn/8x3/EV7/6VVvmGnfVH3Zd1xGLxbC5uVmz51hVVXi9XiSTybpz2dVcz469zkRERERERETjKhKJQFVVbG1tIRKJwOv1QpZlAEA6nYbL5UI2mzWLXsob4wOoSILt7Oy0TKQN2lhujbQTt9Z1ThAEhEIh5HI5xOPxmu2NiqJge3u77rWdJrCq1yg/wpWIiIiIiIiIaiWTSayursIwDCSTSYTDYTgcDsRiMfj9fgSDQWxvb0NVVRiGYVaBlbZEGoaBaDSK1dXVQd9KS2NbEVbt+Pi4reSKpmnmVj/qns/ngyzLWFpaqjgRcnNzE6FQqGfr2v3+FYtFnDlzput51tbWsLa2ZkNERERERERERN2LRqMIBoMIh8M4ODio+Xmp8qs8+QWc9GmPRqO27czrtbFNhB0fHyMSiTTtVdVK9T5X6o4gCEin0/B4PGYyTNd1KIpill2Wj7UjidWLY1sfPXrU9RyFQsGGSIiIiIiIiNp348YN3Lhxo+mYYrHYp2homEiShGQyiaOjIyiKgmQyCU3ToOs6stksXC4XBEGAKIrwer1YXl6G0+kcdNhtGctE2MbGhrnlzq7TI8k+u7u78Hg85vfJZLImEeZyuWxJhLlcrq7nqHb69Omu5xj2PdNERERERDS+CoWCLf/AT+Nrbm4Oq6urI7HVsV1jlwi7deuWeWJk+X5VGh6SJEGWZSiKAqB+Y/xOK7mqk2d2V4RNTU3h4cOHts5JRERERETUTzMzMy3/gZ+JMhpXY5cI29zcBPDJnlVRFCFJEkRRBACcOnWq5RyPHz+GruvY399HPp/vabyTyuv1momwehYWFip6iem6bimpVd0c3+12dxwjERERERHROLLSs3h6eprbI6mh4+NjqKoKQRCwsLAwUruexi4Rpqqq2dcrmUxiaWmp47lCoRDOnTtnV2hUppSYBOpvXyzfOgmcVI1JktRy3kwmU/F99ZZLIiIiIiIiIurM8fEx/H5/ReEKcPI7fDwexxe+8IUBRWbd1KADsFupaigUCnWVBANOkjWjcurBqClPhNWr9FpYWKj43uqBB+VbI0sN/IiIiIiIiIiovueffx6Li4s4d+4czp07h1OnTmFlZaVm3OHhoXn4XenUyNIjlUrB7Xbj3XffHcAdtGfsEmGlxMfi4qIt80WjUVvmoUqpVMr82uv11vxckqSKBNm9e/fanrc6mUZERERERERElQRBQDqdxuPHjxEIBJBKpbC3t1cxJp/PY2lpCblcDgDMnXiCIECWZYiiiGKxCL/f3/f42zV2ibBSFVh1r6hu5yN7lW9hbLR9cXl52fy6uuyykfJx4XC4w+iIiIiIiIiIJoOqqgiHw8hms7hy5UrdnXGrq6vQdd3sx24YBiKRCLLZLO7cuYMHDx7gzp07KBaLeO211wZwF9aNXSLstddeg2EYlhMnrdy8edOWeahSIpEAcLKFtZFgMGh+3ayxfr0xoiiyPxgRERERERFRE9euXYMkSebBg/XcunULiUTCTII5HA5EIhFcuXKlYpwsy9ja2kI6ne512F0Zu0SY0+nE1tYW9vb28Nvf/rbr+SZpa2R5f61eSiQS0DQNgiBgY2Oj4ThJkiqSWaXkWSPxeNz8mtVgRERERERERM3FYrGWFVyrq6vmVkiHwwFJkmqSYCUrKysVLYuG0dglwoCTKiNJkrrem3p0dGRbZdkoqG5IbzUxpigKZmdn4XA44PV6m75mmqZhdXUVAHBwcFC3UX658kRkswy1ruuIxWIATrLQgUDAUuxERERERET9ZBjAk2Lzh2EMOkqaFJlMBufPn2/488uXL5u5AePPH8zd3d2G451OpzluWD016AB6JZlMYmFhAefOnUM4HIbL5bJ0XTabha7ryGQy2N/f73GUw0PX9Zoqqr29vaZbF0vi8bj5B0NRFHg8HgQCgZpqOkVR4Pf74XK5kE6nLZ3oKIoi4vG4eTzr9vZ23ZhKvdwEQaioDCMiIiIiIhomRQN46gfNx3z8Q2Da0Z94aLKJoojj42OcPXu25meHh4eIRqMVWyIDgUDTxNnh4eHQH1znMIY9Vdehu3fvIhQKQVVVs4SvXaU3+smTJzZHNxx0XTcb3jXrwSXLsrmNUZKkmp8rilL35MfS6REulwupVAqqqiIUCmFjY6NlJVi9Nfx+P3Rdh8/nw8bGBkRRRCqVQjgchqqqkCTJUpVZJ6anp1EsFjE1NTW2nwciAn6k/nog635H+vJA1iUiIqL+e1K0mAgb8P4t/g40GZ5//nksLCzg6tWrFc/n83l4PB5ommbmVERRxAcffNB0vuvXr2N+fn6oDx4cy0TY5cuXzW1yADoqyyvPePIPfWuapiESiUBRFLOqThAEuFwuSJKElZUVM6HWje3tbezt7UHTNHONhYUFBINB+Hw+e26mDv4lQDQZmAgjIiKiXmMijIZJIpHA8vIy1tfXsb6+DuCkECUcDiOTyVTkRtLpdMtqMFmW8fjx4z5F35mxS4Tt7u6apw2W3rBuMBFGAP8SIJoUTIQRERFRrzERRsPG6/Xi7t27Fc+Vkl+lnEo0GjX7fddz8+ZNs93SsCfCxq5HWKkvVekNk2UZXq/XrE6yolTRtLOzg+Pj4x5GS0REREREREQ0OIlEAhcvXsStW7cqnjcMA4IgYHd3FxcuXKi57v79+9jb20MikYCmaWby7K233sJLL73Ur/DbNnYVYVNTU3A4HBAEAalUCnNzcx3Ppes6Tp06xew38V9DiCYEK8KIiIio11gRRsPq4OAAyWQSqqpCEAQsLi4iEAjA6XTWjN3d3W14UJ3H48Hm5mavw+3Y2FWECYKAfD6PjY2NrpJgpbnm5+dtioyIiIiIiIiIaDgtLS1ZbnK/urradKvkMBtwjtl+Ho8HwMlpBnbY3d21ZR4iIiIiIiIaDoZxUpnV7DFee6eIqGTsKsKCwSAODg6gaZot87EijIiIiIiIaLwUDYvbEx39iYdoXBwfH+Ps2bODDqOpsasI8/l8mJ+fx97eni3z3b5925Z5iIiIiIiIiIbBjRs3cObMmaaPYrE46DBpBPn9/kGH0NLYVYQBQDwexzPPPGPLSQWbm5v4+te/blNkNOqKxSLOnDnTdMza2hrW1tb6FBEREREREVF7CoUCHj16NOgwaAzZtTuvl8YyESaKInZ2dnDx4sWuEmH5fB6qqtoYGY2DVn9hFAqFPkVCRERERETUvpmZGZw+fbrpGCbKqB2FQgGhUAi6rg86lJbGLhFW2sr4F3/xF5idncW5c+fg8/nankfXdezv79sdHo2BVn9hzMzM9CkSIiIiIiKi9lnZxTI9Pc3tkSPu6OgIy8vL0DQNwWAQV69erRmzsLCAo6OjrtYpJb8Mw4DDMfyN9cYuEXb16lUcHh6a3xuGge3t7Y7mGpU3kfpnamoKDx8+HHQYRERERERERE35/X5zl1skEsHCwkJN6yePxzNxO+HGrln+8vIyDMOA8eezbpnIIiIiIiIiIqJJo6pqRU6kXv+uS5cuATjJnZQ/rOrkmkEbu4qwYDCI9fV1OBwOMxlGRERERERERDRJVldXsbu7a35fr23U/Pw8BEFAPp+HYRgQBAEulwuCIFhaQ9d1ZLPZkegNVjJ2iTCn0wlJknB4eIhIJAJJkuByudqeR9M0XL16Fffv37c/SCIiojI/Un/d8bXfkb5sYyRERERENC6i0Si8Xi9SqRSCwSDOnj1bd9zq6iquX78OVVVx/vz5jtcLh8O4fv16x9f3i8MYw7Kpa9euIZVKYW9vr+u5XC4XstmsDVHRKCs1ipyamsKTJ08GHQ4R9Ug3CalBYSKMiIiofU+KwFM/aD7m4x8C0z1oJjTItdvB34Emx+HhIZaXl/HBBx90Pdco5FDGrkcYAMiybNu2yIWFBVvmISIiIiIiIiIaNvPz83A6nbbMJYqiLfP00lgmwubn5xGJRGyZy655iIiIiIiIiIiG0cHBgS3zlPckG1ZjmQgDgLm5OVvmmZ+ft2UeIiIiIiIiIqJhZFdF2CicHjlyibBhal4/TLEQEREREREREQ3S6urqoENoaeQSYR6PB4VCYdBhIJ/Pw+PxDDoMIiIiIiIiIqKhoGnaoENoaeQSYcN0yOUwxUJERERERETj4WeHg46AyLpCoYDj42MsLy9D1/VBh9PSU4MOoF3DtN90mGIhIiIiIiKi4WclyfWtBDA9BXyTLaupQ/l8Hi6Xq69rGoYxEnkSVoQRERERERER9UH+I+Dbv7A29tLPgcJHPQ2HxpjT6cT58+dhGEbfHqNi5BJhAHB0dDToEJBKpQYdAhEREREREY2Qn6rA7/9kbezv/gi8qfY2Hhpv3/jGNwCc7GbrdaXWKFSClYzc1kjg5BSC9fV1CILQ91K/bDYLTdMQCoX6ui4RERERERGNtl++3974X70PfPevexMLjT9ZlgGc7KwTRRGiKEIQBNvX0XUdmqaNRKN8YEQTYel0Gn6/f6AxjMreVyIiIiIiIhoOuT/0djxRufn5eQiCAK/Xi729vZ6vF4vFcPny5Z6v062RTISVDGoPKhNgRERERERE1K7Zz/R2vFU3btzAjRs3mo4pFou9WZz6SpZleL3evqwVCASwvr7el7W6MZKJsEE3YRv0+kRERERERDR6XnwWuPOB9fFffbY3cRQKBTx69Kg3k9NQ6VcSrGRhYaGv63Vi5BJhuVxu0CEQERERERERte1lCVh/21rD/M99GnhF6k0cMzMzOH36dNMxTJSNh9XVVeTz+b6td+fOnb6t1SmHwfImopamp6fN0uBWf2Gsra1hbW2tH2ERkc1+pP560CG07TvSlwcdAhER0ch5UgSe+kHzMR//EJiesn/tN9PAtxKtx/3TMvDNefvXt6r0O9DU1BSePHkyuEBoJOTzeWxtbWFzc3PQobQ0chVhRIPW6l9GCoVCnyIhIiIiIqJR88351omwN32DTYIRtcvpdCKZTOLg4AC/+c1vBh1OU0yEEbWpVUXYzMxMnyIhIiIiIqJx9LdMgtEIWlhYwO7uLl577TVcvXp10OE0xEQYURumpqbw8OHDQYdBREREREQ0kra3t5FMJpFKpaDrOkRRhCRJCAaDkGV55NYexP2oqgpN06BpGiRJsn2d4+Nj6LqObDbbVkzxeByGYSAajTIRRkRERERERESTS1EU+P1+6LoOWZYRj8chiiJUVUU4HIbX6zWfFwRh6Nfu5/3ouo5YLIa9vT2oqgpBEBAIBOD1em07pfH27duIRqNQFKXruXRd7z6gHmKzfCIL2CiSaDKwWT4REdFkGGSz/EGu3Q47fwdSFAVerxcAEAgEEI1Ga8Z4PB6oqgpRFJFOp21LhvVi7X7dj67rCIfDiMViAABJkhCJRGyvALt27RrW19cBAN2kiBwOB4CTOO/du2dLbL3ARBiRBUyEEU0GJsKIiIgmAxNhrdn1O5Cu65ibmzO3DWYymbrjNE2D2+0GAMiyjGQy2fGavVy7X/cTi8UQDofN6qpoNIpAINDWHFYcHh7C4/HA4XDUTYI1er7ROFEUkUgkcP78edtjtQu3RhIRERERERFRT5S2DwJAOBxuOE4URfh8PiQSCSiKglgs1nXipxdr9+N+wuEwtre3zXmSySREUbR0bbtK1WxOpxOBQABut9tcK5fLYXl5GbOzs9jf3697va7ruHPnDm7evAlVVYc6AVbCijAiC1gRRjQZWBFGREQ0GVgR1podvwOVV0UBJ4mVZlsEE4kE/H4/AEAQBORyuY7W7dXa/bgfv9+PRCJhXnN0dGR7z7RyzzzzDBwOBz744IO6Pw8Gg7h58yYymQzOnj3bcJ5gMIgPP/wQb7/9do8itc+A/2gRERERERER0TiKRCLm17Ist0zo+Hw+82td182E0LCs3ev78Xq9FWPs7JXWiKZpdXuclayvr8MwDLNCrZFwOIw7d+7g9ddftztE2zERRkRERERERES2KzV5B04aqFtRvgVwb29vqNbu5f3EYrGKExuj0WjPtkNWa3by5NzcHJaWlhCNRlEoFBqOE0UR8/PzCIVCTccNAybCiIiIiIiIiMhWqqpWfL+4uGjpuvIEU6cVYb1Yu5f3o2kagsFgxTW9aIxfjyRJyGazTceEw2EYhmGeLNnI4uIiDMPA1taWnSHajokwIiIiIiIioio/Oxx0BKOtvLoJgOXqpupx1QmoQa3dy/sp9REr2djYsDS3HURRrKh0q0eWZczPzyMajeK9995rOC6VSgEA4vG4rTHajadGEhHRWBnFhvdERETUX1aSXN9KnDSs/+Z87+MZR/fu3av43mqvq1OnTlV8n0qlLG9D7OXavbofTdMqkmOCIFT0Fuu15eVlrKys4NSpU7hw4QI0TQMAPPfccxXjNjY2sLy8DEmSkEgk8NJLL1X8/Nq1a+Z9lOYYVkyEERERERER0cTIfwR8+xfWxl76OfDiXwEzT/c0pLFUnQzptIIqk8kMxdq9up/qRvWyLAM42Ua5t7cHVVWhaRoEQYAoilhZWUEgELCtib7P58PMzAxCoRBCoZD5vMfjwW9+85uKcUtLSzg4OIDP54MkSWZvMUVRKl6ffvU269REbo08Pj4edAhEREREREQ0AD9Vgd//ydrY3/0ReLP9nXkE+6qCdF0firV7dT/V2xJdLhc8Hg/8fj8SiYS5rq7rUFUV4XAYs7OzXZ2oWW13dxeGYQAADMOAYRhIp9O4f/9+xbjypJ2qqojFYojFYshkMub1Doej7Qq+fpuYRNjx8TGuX7+Oc+fOwe12Y3p6Gt/+9rdx9+7dQYdGREREREREffLL99sb/6s2x9OJThJYQO2Ww1aN3Pu1di/m1DStZt79/X0Eg0HkcjkzKZXJZGqa55cSZXbw+XzY3983k1mluM+fP18xThRF3Llzp2IccJL8cjgc5nW7u7u2xNUrY701slAoYH9/H9Fo1NyrWv6GRaNRRKNRCIKAYDCIQCCAs2fPDihaIiIiIiIi6rXcH7obbxhA0ag/tmTKAfw5L9B3N27cwI0bN7qep1gs2hBN9zpNQA3r2s2qzARBwNHRUU3yTBRFRKNReDyeitMlV1dXIcuyLdskfT4fcrkc9vf3oet6w1MrZVnGgwcPEAwGcXBwUPEzSZIQj8cxMzPTdTy9NJaJsNu3byMajVac6mAYhpmhLGcYBnK5HCKRCCKRCERRxKVLl7C6ujr0bx4RERERERG1Z/Yz3Y0vGsBTP2h+zcc/BKYHlAgrFAp49OjRYBYvIwiCLYmkTpI8vVi7F3NWJ8Ja9f4KBAJIp9Pmdkpd17G5uYlIJNJ1XADgdDqxurracpwoikgmk8jn8+ZJkaIoYm5uzpY4em1sEmF3795FPB6v2F9bSn6V73WVJAkrKyu4d+9eTRlhqeSw1CROkiRcunQJfr+fSTEiIiIiIqIx8OKzwJ0PrI//6rO9i6UXZmZmcPr06a7n6TaZ5nK5bEkcuVyuoVi7F3NWN85fXFxseX04HK7Ie2xvb9uWCGuX0+nE0tJSxXPHx8dDv9NupBNh9+/fx97eHmKxmPmBbJb8CgQCcDqdFXPcunULe3t7dZNiqqoiEAggEAjA5/NhZWUFX//61/tyb0RERERERGS/lyVg/W1rDfM/92ngleHu+11jbW0Na2trXc8zPT3d1fbITrfrVSebOq0Is3vtXszZyb2KoghJksz2T8BJ4/phaVAfDAbxzjvvDDqMpkauWX6hUDCb3ns8HmxvbyOXywFARfJLlmVEo1HkcjmkUilcuXKlJgkGABcuXMD+/j6KxSKSyWRFsqzUmM4wDCQSCfj9frPJfvXpCURERERERDT8nE8DP/4ba2N3vgbMPN3TcMbWwsJCxfdWq6mqm+O73e6hWLsXc3Zyb/VisetESzuUtkoOs5GoCKvX9B6obHxfSn75/X4sLy/XTXq1srS0hKWlJezs7ODg4ADxeNxsFMcm+wScNIw8c+ZM0zF2/QsMERERERH1xjfngW+1OHDvTd/JOOqMx+Op+F7TNEtVS9XbBWVZHoq1ezFndQWY1eRadQKtk5M1Wzk+Pm5rK6imaYhGowM93MCqoU6E3b59u2bbYvUxnaUtixcuXLB17fKk2OHhoRmHpmlmDGyyP5la7ZUvFAp9ioSIiIiIiHrlb5kE60q9qiUriaPyRIogCBBFcSjW7tecVlQn0Drpo1bt+PgYkUgEiqJ0XGHW6JDCYTN0WyPv3r2Ly5cvY3p6Gn6/H4lEomKLInCS/IrH4ygWi9jf37c9CVZtfn4eW1tbePDgAdLpNEKhkPnhLcWlaRpCoRBmZ2fxwgsv4ObNm0yIjKnTp083fTARSkREREREk06SpIqEzb179yxdV761rjpRNMi1ezVnuerqMas6SRaW29jYgNvtRiwWQyaTqcjBtPMYFUNREXZ8fIxoNFrT9L5EEAQsLy/D7/fXnEjQb/Pz82Zi7OjoCIlEAnt7exVbNhVFgaIoCAaDbLI/ZqampvDw4cNBh0FERERERCNqygF8/MPWY8bB8vKyecJh+e/MzZSPC4fDQ7V2L+aUZRmKogCA+d9WqrcfdtMo/9atW+apkw6Ho+LwwXHlMAZ0h4VCAbFYDNFo1Cy7G9bklxWNkmKlskBBEMyTK8+fPz+gKKlTpRNTpqam8OTJk0GHQ0RN/Ej99aBD6KvvSF8edAhEREQj50kReOoHzcd8/ENgus4eqm6uHSV2/A6kqmpFb61W6QdFUeD1egGcVDl1WiHVq7V7MWf5GOCkBVOr0yODwaCZkJNlGclksun4ZhYWFqCqqpkAK51KWaoyO3XqVMs5Hj9+DF3Xsb+/j3w+P/S/Mw+kImx3dxeXLl0CUPnBEUXRrKCanx+tDdlzc3O4cuUKrly5gnw+j/39fcTjcTOjm8vlzCb7Ho8Hv/nNbwYcMREREREREVHvSJJUUfGUSCTg8/kajo/H4+bXrarBStv4gsFg3a2BvVi7F3PKsgxRFM0Coc3NTbNCq5HyyrFWY1spJcEAIJlMdlWIFAqFcO7cua7i6YeBVIRdu3bN/BCMcvLLinpJMbfbjQ8++GDAkVE7WBFGNDpYEUZEREStsCKsNbt+B9I0zTzlUJIkpNPpuuN0Xcfs7CyA1lVOXq+3IhnUqIqqF2v3Ys7qSrNMJtOw71d5BVkgEEA0Gm04rxUulwv5fB6hUAibm5tdzQUAzzzzDB48eND1PL00kD+aoigiEokgk8ngwYMH2NraGsskGAA4nU6srq7izp07yOVyiMfjPW/uT0RERERERDQMRFE0K6NUVcX29nbdcaVKJEEQKiqp6qnupbW/v9+3tXsxpyRJFQktr9db0wcMOEmuBYPButd0qpRwW1xc7HouALbE1GsDSYRduHABV65cwdzc3CCWHxin04kLFy5ga2tr0KEQERERERER9YXP50MymYQgCAiHw/D7/VBVFbquQ1EUeDweqKoKSZJwdHTUskdW9c+bnZpo99q9mjMQCJhzapqGubk5bG9vQ1VVM+E2NzcHTdMQCAQaVqK1q5Swy2azts43zEa8WJOIiIiIiIiIhp0sy8jlcohEItA0DUtLS5idnYXf74fL5UI8Hkc6nbaUNIrH4xBFEYIgIBQKQZblvq3djzmj0SgWFhawubkJj8eDpaUl7O3tIRAIIJPJ2Fp19dprr8EwDMunYLZy8+ZNW+bppYGdGkk0StgjjGh0sEcYERERtcIeYa3xd6DJsb29jUgkguPjY3z+85/vaq7FxUXcu3fPpsh6Y8T/aPZXPp/HxsZGW9cUCgXcv3+/NwEREREREREREXUhFApBkiT4/f6u5jk6OrKtsqyXnhp0AKNE0zRsb29bPknh2rVrWF9fhyRJAE7KHO04hYGIiIiIiIiIyC7JZBILCws4d+4cwuEwXC6Xpeuy2Sx0XUcmk2l4aMGwYSKsAx9++CHi8TgeP36MxcVFyLKMmZmZijGHh4cIh8PweDxmWeDu7i5WVlawt7c3iLCJiIiIiIiIiGrcvXsXAJDJZMyTKdtlGAYcDoedYfUEE2FtUBQFhmHUnEjhdruRTCbxhS98wXyulOwqb9q3urqKeDyO9957D1/84hf7EzQRERERERFRmRs3buDGjRtNxxSLxT5FQ4N2+fJlxGIxAIDD4UAnreRHIQFWwkSYRaUKr+oPhSiKePDgAbxeL/7lX/7FfF5VVTgcDpw6dapiHr/fj4sXLw598zgiIiIiIiIaT4VCAY8ePRp0GDQEdnd3zVMoO02CAej4ukFgIsyi0gfDMAwEAgGEw2HMzc2ZP19eXsbNmzdx8eJFACf7ZAHUHJUqyzKCwSDu37+P8+fP9yV2IiIiIiIiopKZmRmcPn266RgmyiZDdRJMlmV4vV4IgtB2n7CdnR0cHx/3MFp7MBFmUSqVgiRJiMfjFQmwkt3dXQQCATMR1kjpg6QoChNhRERERERE1Hdra2tYW1trOmZ6eprbIydAaTebIAhIpVJ18x1Wra6u1uyKG0ZMhFl0dHSEo6Ojmqb45TKZjPm1rusAUJNBdTqdAMCtkUREREREREQ0UIIgIJ/PY2Njo6skWGmu+fl5myLrnalBBzAqZmdnmzZ/293dhdvtNr9vtDUyn88D+CRRRkRERERERO0zDOBJsfljhNoWEQ2Ex+MBgJpDATu1u7tryzy9xIowiy5cuACfz4dYLFZxOiQAXL9+HeFwuOKDo+s6HA5HzYdJ0zQAtQkyIiIiIiIisq5oAE/9oPmYj38ITI/OYXZEfRcMBnFwcGDmKrrFirAxEolE8ODBA4iiiHPnzuGFF17AuXPnMD09jXA4DADY2trC5cuXcfv2bfO6UgVYSTQahcPhsNx0joiIiIiIiIioF3w+H+bn57G3t2fLfOX5kGHFRFgbkskkzp8/j0wmg2QyiUwmA8MwYBgGotEoLly4gKWlJfh8PjgcDiwtLeHKlSt4/fXXUSgUcPv2bcRiMQCA3+8f8N1QJ4rFIs6cOdP0cePGjUGHSURERERERGRJPB5HOp3GW2+91fVcm5ubNkTUW9wa2QZRFJFOp5FIJLC/vw9VVSGKIoLBIC5cuADgJJu6v7+P/f193Lx5E8ViEQsLCwiFQhXzPPfcc4O6DepSq2OEC4VCnyIhIiIiIiIi6o4oitjZ2cHFixfx0ksvdTxPPp+Hqqo2RtYbTIR1wOfzwefzWf55KpWC3+/HwcEBRFHEnTt3+hEm9cjp06eb/rzZyaJEREREREREw6K0lfEv/uIvMDs7i3PnzjXNdzSi6zr29/ftDq8nmAjrA0EQkEwmkc/n4XQ6Bx0OdWFqagoPHz4cdBhEREREREREXbt69SoODw/N7w3DwPb2dkdzGYYBh2P4T6dgj7AeyOfz2NjYqHmeSTAiIiIiIiIiGhbLy8tm73MAI5HI6hYTYT3gdDoRj8fx+uuvDzoUIiIiIiKinjEM4Emx+ePPv19PlJ8dth5DNAyCwSCAkwRYKSHW6WNUjPXWyEKhYHu/pkKhgFQqBV3Xkc1m647JZDLQNA07Ozv43ve+Z+v6REREREREw6JoAE/9oPmYj38ITI9RkYmVJNe3EsD0FPDN+d7HQ9QNp9MJSZJweHiISCQCSZLgcrnankfTNFy9ehX379+3P0ibjXUibHV1FXt7e7bNt7Gx0dZe2UaJMiIiIiIiIho9+Y+Ab//C2thLPwde/Ctg5umehkTUtZWVFbjdbly5cqXjOebn53HhwoWOkmj9NnRbIwuFQteP4+Nj7O7uIpFI2BbXrVu3EIlE2ioJjEQitq3fT5qmwev1dv36bW9vw+v1YnZ2Fg6HA263G36/H4qiDNWcREREREREVvxUBX7/J2tjf/dH4E21t/EQ2UGWZdu2Ni4sLNgyTy8NXSLsueeew+zsbFcPt9uNS5cuAQDeeustW+KKRqOQZRnpdBqZTAa5XA6RSAS5XM58ZDIZpFIpSJIETdNw8eJFW9buF13X4ff74Xa7oShKxxVtiqJgdnYW4XAYABCPx5HJZBCJRKCqKrxeL7xeL3RdH+icRERERERE7fjl++2N/1Wb44kGYX5+3rZCnlEoCBq6rZGBQMBMYtlhZ2cHL730UtfzaJqGBw8eVDwnCELFSZBOpxNzc3OIxWLw+/24d+9e1+v2g67r2Nzc7PiI1HKKosDr9QI4eS+j0aj5M1EU4fP54PF4oCgKPB4P0uk0BEHo+5xERERERETtyv2ht+OJ+q1QKCAcDkPTNDz//PNd9zmfnx/+xnhDlwhbWVnBpUuX4PP5sLi4WPPzzc1NuFwu+Hw+nDp1quE8m5ubWFlZgSiKtsRVb57l5WXcvHmzpvJLkiRkMhm88cYbePXVV21Zv1e2t7cRjUZteZ1KFWXAyetVnrAqF4/H4Xa7oWka/H4/kslkX+ckIhonP1J/3dX135G+bFMkRERE42/2M70dT9RvPp8PBwcHMAwDiqJgbm4OX//61wcdVk8NXSKsdGLB/v5+zc9u3bqFhYUF3Llzp+U8Fy5cwOLiIo6OjmyJK5fL1Y01lUpheXm55nRKl8uFra2toU6EqaoKWZYRCoUAALFYzDw6tRN+v9/cmljawlhPqYorkUhAURTEYjEEAoG+zUlERERERJNtynFymmWrMdVefBa484H1db76bHtx9cuNGzdw48aNpmOKxWKfoqFBUhQFDscnH/ZJ2F01dD3CgJPTGevZ2tpCLBazNIcoivB4PFhfX7clJo/Hg5WVFdy+fRu3b982nw8EAvB4PPjwww/N565fvw5N06Bpmi1r94okSZAkyfy+m6Z2mqZVNKxfXl5uOn5lZcX8ulGCqxdzEhERERERORzA9FTzh6NOIuxlCfjsp6yt8blPA69IrccNQqFQwKNHj5o+aDKUdoc5HA74fD4899xzA46o94YyEXbhwoW6z2uahrNnz1qeRxAE7O3t2RJTOBxGPB6H3++H3+/H9evXAZwkk86ePQtRFHHq1ClMT0+bSRi7tmX2SzeZ3/KGeLIst5zL5/OZX+u6XveEyl7MSURERERE1Cnn08CP/8ba2J2vATNP9zScjs3MzOD06dNNHzQZAoGAeWKkHfmTy5cvdz1Hrw1lIqwRwzBQKBQsj1cUxbZTBOfm5rC/vw/DMGAYRkVSJh6PY2ZmBrlczvw5MFlVSeWVeuVVZs2UJwrr/YHrxZxERERERETd+KaFXuBv+qyNG5S1tTU8fPiw6WNqaqTSBdShUCiEpaUlAKjY6dap8l1dw2qkPtmyLGNra8vS2GvXrkHXdcsJFCt8Ph+KxSIymUxFg3xBEHB8fIzV1VVIkgRZlhGPx2ua6I8rVVUrvq93yEE95e9NdfVWL+YkIiIiIiLqh78d4iQYUbVkMomvf/3r8Pl8+O1vf9vxPEdHR0PfIgoYwmb5zayvr5t9rNbX12sa1AOfHP0Zi8XgcDi66nvVyNzcXM1zTqez4YmG464642t1S2j1OFVVzURWL+YkIiIiIiIiolpvvPEG9vb2IEkS1tfX4ff76+ZcqpV27aVSKfMgvmE3UokwSZKws7ODS5cuIRKJQJZliKIIQRDM5vSlSiLDMDA7O1vRZ4p64969exXfW+01durUqYrvU6mUmbTqxZxERERERFTJMICi0XzMlKN+43giGn3PPPMMjo6OzO8Nw0AgEEAgEGh7LsMwKk6gHFYjlQgDYL4Zly5dQjKZrHmRS/25BEHA/v6+pQxmyfXr1/H973/ftljtnm9YVZc+dlq9lclkejonERERERFVKhrAUz9oPubjHwLTw/+7LRF1IBAIYH193fze4XCYeZVxNVI9wkoCgQByuRxWV1fhdDrNBvWGYUAURQQCARwdHZkN36yyu7n6pDRrt2sPcPnBBr2Yk4iIiIiIiIg+EQwGAZwkwLpJgo1CJVjJyFWElZR6ckWjUeTzeWSz2bq9u9qRTqfx+uuvY3V1ta1KsmqFQgF7e3s1Dd/HVafJpurtjtlstqdzEhERERHRZPnZIfCKZ9BREA0vp9OJCxcu4NatWwBODim02pqoXHmrqmE3somwck6nE06n05a5QqHQyDR4Gze9qN6ye85isYgzZ850Pc/a2hrW1tZsiIiIiIiIaDL97LD1mG8lgOkp4Js8xZGooWAwiNu3byOdTuP8+fMdzxOLxXD58mX7AuuRsUiENdNJny679sOOUmlgNwRBsCXhVJ517sWcdnn06FHXc5RO1iAiIiIiGne9qMrKfwR8+xfWxl76OfDiXwEzT9sbA9G4kGUZTqezqyQYcNLG6tKlS/YE1UNjnwhLJpNtJ8ImoTmcnVwuly1JK5fL1dM57XL69Omu5+hm6y0RERER0bAYVFXWT1Xg93+yNvZ3fwTeVIHv/rV96xONm42NDRQKha5/V+3ktMl+G7pEmF1ldNlstu09quX7Yr1eL8LhMDye9v7pIpvNQtd1/Of//J9x/fr1tq4dVZ1WXVUnuqorwuye0w5TU1N4+PChrXMSEREREY2iQVZl/fL99sb/6n0mwoiauXLlii3z7Ozs2DJPLw1dIiyZTOLo6MiWuQzDaGt7YjweRz6fx9WrV7G7uwuv12smxL7yla9YmqPUq2x+ft5Mqo27hYWFioSjruuWElDVjezdbndP5yQiIiIiIvt0W5VlGECxxUacKQdQ71e63B+sx9nJeKJJVygUoCgKksmkWWjkcrkgiiLcbjd8Ph/Onj076DA7MjXoAKr5fD4YhmHLoxNOpxORSATZbBZ7e3v413/9VywtLeHcuXN444032ppLluWOYhg11VVzmqZZui6TyVR8X/569WJOIiIiIiKyTydVWeWKBvDUD5o/GiXKZj/T3trtjieaVMfHx1hZWcHs7Cz8fj9isRgSiQTS6TQURUEsFkM4HIbb7e4oTzIMhi4RJssyZmdnoes6isViV48HDx50dZqkz+dDKpVCKpXC+fPnsbq6ilOnTuG1116z1Ox8FEoC7bCwsFDxvdWkVfk2RkEQIIpiT+ckIiIiIhpGhgE8KTZ/DGML40FWZb34bHvjv9rmeKJJtLu7C7fbjUQiUVNkVL3bzjAMZDIZBAIBfOlLX8KHH344iJA7MpSJsKWlJVuaiYuiiOXl5a7nkSQJ8XgcuVwO4XAYOzs7mJ2dxTe+8Q289957Xc8/6iRJqti2eO/ePUvXpVIp8+vqxFcv5iQiIiIiGkbdVEYN0iCrsl6WgM9+ytrYz30aeEWyb22icXTt2jVcunSpIvFVSn4124FnGAZSqRTcbvfI5EeGLhEGnJxWYJdwOGzbXE6nE6FQyNw2+eDBA0iShMXFRbz11lu2rTOKyhOOVg8oKB9X733qxZxERERERGSPQVZlOZ8Gfvw31sbufM2+Jv1E4+jWrVvm788Oh8NMds3PzyMQCCASiSAajSKZTCKdTiMejyMajSIUCpm7sIrFIpaWlnB8fDzAO7HGYXTaTGsIHB8fQ1EUZDIZnDp1CqIo4utf/3pfY1BVFZubm7h16xZmZ2fx2muvYXV11ZaKtn7TNK2iuXw0GrV89KmqqhV9vVp9rBRFgdfrBXBSuVfd26tXc3ZqenoaxWIRU1NTePLkiW3zEpH9fqT+etAhjJTvSF8edAhERBPvSfGk6quZj38ITDcoY+im6Xw3a+c/Ak5ftdYw/3OfBh5tVCakur1vK9e/6QNe9jQf065u4x4V/B1ocjzzzDM4OjqCYRgQBAGRSATLy8uWW00dHh7i6tWruHXrFp5//nm8/fbbPY64OyP5R7NQKGBlZQVutxvBYBDb29sIh8Pw+/2Ynp7G66+/3rdYJEnCzZs3EQgEkMvlEAqFMDs7i29/+9sjkQktV95fq12SJFU0pk8kEk3Hx+Nx8+tGlVu9mJOIiIiIaNwMamvlKFRl/e18/9ccBTdu3MCZM2eaPorF4qDDpD64desWNE2DYRgIBoPIZrNYXV1tq9/6/Pw84vE4tra2kEwm8e677/Yw4u6NXCLs6OgIc3NzNc3byh+hUAhf+tKXLDW078bx8TEuX74Ml8uF3d3div2zOzs7CAaDPV3fbtUN6dtNjEWjUfPrzc3NhuN0XUcsFgNw0hOuWdVZL+YkIiIiIiJ7fNNCoulNn7Vx1D+FQgGPHj1q+qDJsLe3B4fDge3tbfzkJz/paq5QKISlpSXs7+/bFF1vjFwizO/3I5fLwTAMSJKEUChk7lUt7VN97rnnkEqlepYMuX//Pl544QW43W7EYjFzy14pERcIBJDJZPDOO+/0ZP1e0HW9popqb2+vrTlEUTSrslRVxfb2dt1xS0tLAE5OdSyv4urXnEREREREZN3PDru7nlVZw2dmZganT59u+qDJoKoqJEnC97//fVvmCwaDUBTFlrl65alBB9CO3d1d803a3d3F/Hz9/0VdXV2FpmlYWFjAW2+9hZdeesmW9W/fvo3NzU2zIXt5zyqn04lAIICNjY22SggHSdd1rK6uQtf1uh9UVVXhcDggyzIEQcDGxgYkqflxKz6fD8lkEn6/H+FwGPfu3cPGxgZEUUQqlUI4HDbfw4ODg4qTIfs5JxERERERWUtyfStx0u+KVV3jY21tDWtra03HlHqE0XjTNM3cXWUHQRBqdpsNm5FKhEWjUXi9XkuVVqIoYn9/H9euXesqEVYoFBCLxbC5uWluFSxPgImiiHA4jNXV1Y7XGJReVU/JsoxcLoft7W3s7e1haWkJuq5DEAQsLCwgHo/D5/MNfE4iIiIiokmW/wj49i+sjb30c+DFv+Lpi0TjqHTyox2GPQkGjFgiTNO0lg3Ty8myjMuXL3e01vHxMSKRiJkZNQzDPEa0NHc4HDa35FGtUCiEUCg09HMSEREREU2in6rWTnwEgN/9EXhTBb77172NiYj6SxRFaJqG5557zpb5otGorYm1XhipHmEOhwNnz55t65psNtvW+Pv375snUpb3/wJQ0f/rzp07LZNgN2/ebGttIiIiIiKifvnl++2N/1Wb44lo+EmSZNtOsfX1dbNt0TAbqUTY7OxsWydB3rp1q635FxcX4fF4Kk6kBE76f4VCIeRyOezs7GBubs7SfOUnHhIRERER0fgyDOBJsfmj7N/Y29Ztw/p6cn/o7XgiGn7Ly8tIJpN47bXXOp6jUChgZWUF29vbcDgcCAaDNkZov5HaGllqkv+9732v5diDgwMsLy+31TcqnU6bXzscDrP/18WLF9uOtdTYn4iIiIiIxl/RAJ76QfMxH/8QmHbUPj+ohvWzn+nteCIafj6fD3Nzc4hEItB1HaFQyPJOvLt37yIajZotrBwOByRJsm2bZa+MVCJsfX0dCwsLePz4Ma5evVp3TPXJjpFIpK01yvuAiaKIeDzeVplgNpuFpmlmY30iIiIiIqJGBtmw/sVngTsfWB//1WftWZeIhks0GsXzzz+PaDSKaDQKWZYhSRLcbrfZ70vXdWSzWaTTaaRSqYrCn1IOxeFwYHd3dyD30I6RSoRJkoQrV65ga2sLkUgEkiTB5XLVTT4ZhoHt7e22e4oZhgFZliEIAlwuV1vXZrNZGIaBubk5qKoKh6POP/cQERERERH92SAb1r8sAetvW1v/c58GXhnutj9E1CFZlrGzs4NLly7B4XBAURQoitJwfHkvdYfDYRYU7e/v4/z5832IuDsjlQgDPqnwunbtGtLptJlsMqo23G9vb+P73/9+2/Pruo6ZmZmu41QUBS+88ELX89BwKRaLOHPmTNMxa2trWFtb61NERERERDTKOmlY30ki7GeHwCueyuecTwM//puTbZet7HzNvkq0dtSLm4jsFwgE4HK5EAgEoOt6w1wLgIqiH8MwIAgCDg4OMD9v497tHhqpZvklkUgE6XTa3Mta/sb4fD5kMpmOkmCyLNuSBCvNNSofAmrPo0ePmj7aOdCBiIiIiCabHQ3rrfYYqzfOSs+xN3329iYr6SZuIrKfz+fD0dERrly5UnGAYLXSz5xOJyKRCLLZ7EjlP0auIqxkfn4e+/v75vf5fB5Op7OrOe0+2WDYT0qgzpw+fbrpz+1KphIRERHR+Ou2YX0/eoz9bQ9+vx1kbzQiaqyU3IpEIjg4OICqqshkMshmswAAl8sFt9s90sU/I5sIq1adBLt+/XrbpxVcuHDB1phWV1dtnY8Gb2pqCg8fPhx0GEREREQ0JrptWD/IHmPdGNW4iSbJ0tISlpaWBh2G7UZya6QVv/nNb+D1evHGG290Nc/u7i6mp6fxl3/5l3jvvfdsio6IiIiIiOikYf1nP2VtbL2G9Z30GBsGoxo3ETV3+/btQYfQ0thUhNVjGAYCgQAymQyuXr3a0RzhcBiGYeDBgweQJAmZTKbtkyiJiIiIiKj3DAMo1m9pY5pyAMN0uHu3Devt6DE2CKMaN3DyGfr4h63HEE2icDiMr3/964MOo6mxToSV3LlzB5lMBnt7e21fOzc3h3w+D1mWAZy8qZ3MQ0REREREvVU0gKd+0HzMxz8EpgeUpGh0AuI351snwho1rO+2x1i3Ok0K2RH3oBJSDsfgPkNEw+zWrVvQNG3QYbQ0EYmwVCoFv9+PxcVF3L17F5///OctX5tOpyu+P3funN3hERERERHRiLN6AuL0VGcnMDZqWN9tj7FudZoUsiNuJqSI7HX//n0oioJMJtNWQiubzULX9ZFIggETkggDgHg8ju3tbUiSBEVR8IUvfKHtOY6OjsyTEoiIiIiIiIDBnoD4sgSsv22t8Xy9HmODMqpxE42j4+NjBINBKIrS0fWG8cmedMcw7T1vYGyb5dcTCoXwk5/8BJIk4d13323r2nw+D6/Xi4WFhR5FR0REREREo6iTExDtUuoxZkW9HmODMqpxj4sbN27gzJkzTR/FYnHQYVKfyLIMRVEqElrtcDgcI5EAK5moRBhw8gbfu3cPq6urlk+UvHv3LkRRxNHREfx+f48jJCIiIiKifjMM4Emx+aPR74iDPgHRylbLRj3GBmlU4x4HhUIBjx49avqgyXDp0iVzS6PD4YBhGB0/RsXEbI0sJ4oiUqkUlpeXW54oee3aNayvr8MwDMzOzuLixYt9jJSIiIiIBmkUTyGkznTTaH8UTkBs1GNs2I1q3MNuZmYGp0+fbjqGybDJkEqlzK/n5uYQiUQgyzKcTmdb8xweHuLq1au4ffu23SHabiITYQAgCALu3LmDS5cuYWVlpe5JkBsbG9je3oZhGHA4HIhEIgOIlIiIiIgGpZvkCJNow6nRyY3dGPTJjUTtWltbw9raWtMx09PT3B45AVRVhcPhgCAIUFUVMzMzHc0zPz+PeDwOl8tlc4T2m9hEWMnOzg5isVjNiZIHBweIRCLmXldJklgNRkRERESWdZNEA0Y3kTbIuHt9cmMjgz65kYioU4IgIJ/PY3l5ueMkWLlAIGBDVL01EYmwd999F1/5ylca/jwQCGBhYQHPPfccEokEvvCFL5jVX6wGIyIiIqJB6DaRNiiDipsnN3ZmynHyfrQaQ0Tjye/34+bNm3C73bbMt7W1Zcs8vTS2zfLn5uYAnCSyAoEAPvzww6bjJUnC3t4eLly4gNu3b0NRFPPUA0mS8Nxzz/U8ZiIiIiIaPVaqkKj3eHJjZxyOkwq5Zo9hqzokIvuUeqKX9wrrRqFQsGWeXhrbRFgkEkEul0M8HsfS0hJkWcbNmzebXlNqor+zs2M+53A4sLKy0utwiYiIiGgIWd1q12kyrFdJtG5OQBy0TmMf5ZMbS1VZzR6syqJxsb29Da/Xi9nZWTgcDrjdbvj9fiiKMpJrD+p+NE2D1+vtep65uTns7OwgHo/jvffe63q+paWlrufotbHeGul0OnHhwgVcuHChrevu3LmDcDiMa9eumf3BiIiIiGiydLvVblD9qoDR3VYJdB77KJ/c6HAM53tBZCdFUeD3+6HrOmRZRjwehyiKUFUV4XAYXq/XfF4QhKFfu1f3o+s6ZmdnLY21qx9XIBBAOp2Gz+eDqqpm7/ROqKqN5bY9MtaJsG5EIhEsLi5ieXkZR0dHgw6HiIiIiDrQTeP2TrbaffevT77vV7+qXpyAOKp4ciPR8FIUxaxeCgQCiEaj5s9EUYTP54PH44GiKPB4PEin07Ylw3qxdi/vJxaLWb63cDhseWwjpa2M6+vrSKfTeO655xCJRNo6/TGbzULX9YrXYZgxEdaEz+dDKpXC+vo6Xn311UGHQ0RERERt6qYyqpOtdqVEWDdJtJJBVpT1Wi8SeP04uZGJR6L26boOv98P4CRJ1ChZEo/H4Xa7oWka/H4/ksnkUK7d6/vZ3Ny0NE6WZYiiaGlsM2fPnkU+n694rtMtl6XDBofd2PYIs4skSbhz586gwyAiIiKiPutmq123/ararSgrfNTeer3U675qjbwsAZ/9lLWx9U5uHFTcdmCPMRpmpe2DQPMKplIlFXBScdVOZVQ/1+7l/cRiMei6jlAohGQy2fQRj8dbzmfF6uoqDMMwHwAqvm/nMSqYCCMiIiIiqqObrXbd9qsa5AmI3RhkAq+bkxtHOfEI8ORHGl6aplU0jV9eXm46vvygum63/fVi7V7fTyQSgSiKiEQikGW56cOuraPf+MY3AMCs5BqlhFanuDWSqA3FYhFnzpxpOmZtbQ1ra2t9ioiIiIi61Wi7Wzdb7brtV9XNtkyrmm3z67S3mh1bQrvxzfmTqq1m6p3cOOi4icZVJBIxv7aSvClVUAEnWxATiUTFc4Neu5f3k0gkoGla3/tszc/PQxRFHB0dQZZlSJKEU6dOtTXH48ePoeu6LVV8/cBEGFGbHj161PTnpWaDRERENHjd9Nl6WQLW37aWIKneatdtv6puK8q67S/WaW+1fiTwgO56ddU7ubFfcRNNmvLEiCRJTUZ+QhRFaJoGANjb2+s4EdaLtXt5P5ubmxAEoWWVWS/4fD4cHh7inXfe6WqeUCiEc+fO2RRV73BrJFGbTp8+3fQxMzMz6BCJiIgI3W9362arXbf9qrqpKBvkNr9uE3jAYHp12RE3EVVS1co924uLi5auK08wJRItSjz7uHYv70dVVaiqCl3XMTs7C7fbjWAw2PH9t2tlZQVOp7PreURRxPz88J/ewoowojZMTU3h4cOHgw6DiIhoogxym16nW+1KSbRW1wK1STSgu4qyQW7z63ZLaLtJvBf/qva160S3cQOfNKxvhg3raZKU99ICYPmEw+pxqqparr7q5dq9vJ/q/mGapiEWi5kVaD6fDxsbG22/DlbNz89jY2PDlrnsauLfS6wIIyIiIqKhVtqm1+xRL1HW7cmNVtXbagfU33JYrV4SDeiuoqxf913Pi8+2HlOuekvooA4J6DZugA3rO8HTLsfbvXv3Kr632ty9uj9VKpUairV7dT/VDfjrSSQS8Hg8CAaDltbshF2VXHNzc7bM00tMhBERERHRWBqF7W6NkmjdbMvs133X25rY7ZbQQSXxuo2bOsPk4Xgr9cUq6bSCKpPJDMXavbofURQRjUYRiUQQCASazhuLxeDxWG+QeP/+fctj+6FQKOD4+HjQYXBrJBERERGNp1Hf7tbptkw77rvTZvvdbgntNonX6fvVbdxEVKs6cdQpXdeHYu1e3k8gEKgZE4vFsLm5WTNeVVV4vV4kk8mWa129ehXPPPMMrl692k3ItvH7/fB6vfj+978/0DhYEUZEREREI69e4mYStrvVqyjr9r67bbbfzZbQbpN43bxf3cRNNExu3LiBM2fOdP0oFotdxdFJAguo3XKYzWaHYu1+3o8gCAiFQsjlcojH4zVzKIqC7e3tlvPEYjHs7OzgjTfeaCfknrh8+TKy2ezAk2AAK8KIiIiIaMh1Wp30sgSsv22t51QvtrsNqpqs2/vuR7P9RltCuzkkoB8axU00TAqFAh49ejToMGzTaQJqWNdud06fzwdZlrG0tFRxcuXm5iZCoVDTawVBwP7+Pp5//nkAwKuvvtp2vHa4fPky9vf3kU6nB7J+NSbCiIiIiGhodXOK4KC3uzkcwHQXia5BbfPrpE+XXadODjp5STQOZmZmcPr06a7n6TaZJgiCLYkkq03pe732oO8nnU7D4/GYyTBd16EoCmRZbnqtLMvY2trC6uoqMplMX7dJFgoFrK6uIpFIIJ1O4+zZs31bu5mJ2xp5fHyMmzdv4ubNm4MOhYiIiIha6PYUwVHe7jaobX6DPGSgm0MCiOjE2toaHj582PVjaqq7dIHL5bLlfjqZpxdrD/J+SnZ3dyu+t9InDABCoRC2trawtbWFL33pS3j33Xc7jsGqmzdvYm5uDolEAqlUCufPn+/5mlZNXEVYPB5HOBzG1NQULl68OOhwiIiIBupH6q87vvY70pdtjITGnWEARaP5mClHbWKnH9VJk7rdrdF929FsvxudHhJARMOlk8onoHbrYKcVVHavPcj7KZEkCbIsQ1EUAO018A+FQhAEAZcuXYIsy/B4PNjY2MBLL73UcTzV7t69i2QyiVgsBl3XMTc3h1Qqhbm5OdvWsMPEJcJKDKPF/xMjIiIiItsUDeCpHzQf8/EPa7cSDrI6aVJ126erH73RJjV5STRKFhYWKnpa6bpuKQlU3Uze7XYPxdqDvJ9yXq/XTIS1KxAIwOVyYXV1FalUCj6fD8AnCbbFxUWIoghRFDEzM9NwnkKhgGw2C03TkEwmoShKxWtjGAZ8Ph/29/c7irPXJjYRRkRERETDr9vqpEE1rB+0bu672z5d3fZGG5RJ/awQ9YrH46n4XtM0SFLrxn6ZTKbi+1Y9sPq19iDvp5woiubXnWyz9Pl88Hq98Pl8ODg4AACoqlqRyKpmpT9aebFRLBYb6h14E9cjjIiIiIiGU73TIV9s81TA6uqkbvpsjbJu7ntS+3RN6meFqFcWFhYqvre6ja884SIIQkXiZ5BrD/J+ypVf3+k2S6fTiWQyif39fUiSBMMwzERW6evyRy6Xq/t8+QM42X6Zy+WGOgkGMBFGRERERH1QL8lV7VuJ2nEvS8BnP2VtDZ4iaJ9RPmSAiIaDJEkViZp79+5Zui6VSplfVyefBrn2IO+n0Xxer7eruXw+H1KpFJLJJC5cuFC3hZTD4ah4VBNF0UyAbW1twel0dhVTP3BrJBERERH1VP4j4Nu/sDb20s+BF//qkyqjUnVSq+bpwHhVJ42CXvXp4hZFovGxvLyMWCwGAE233pUrHxcOh4dq7UHeT0n5Vstut1mWLC0tYWlpCQBweHgIRVFw79496LqObDZrVrWVKtpcLhe8Xi9kWR6JxFc1JsKIiIiIqKd+qlrrNwUAv/sj8KZaefIjTxGcLKPaY4yIagWDQTNxZKXBe/kYURS7SvT0Yu1B3k9JInHyF2IoFOp6rnrm5+cxPz/ef6FyayQRERER9dQv329v/K/aHA/wFEEiomFUOo2wpJTEaSQej5tft6qeisViCIfDDXt19WLtXt6PFYlEApqmQRAEbGxsdD3fpHIY9TaBjrFr164hHA7D4XDgyZMngw6HRsT09DSKxSKmpqb4uSEacj9Sfz3oECbGd6QvDzoE6iPDAIot/l/jlKN+M/Ev/Qi499D6Wl86A/yX79izNnXmSRF46gfNx3z8w5MG8kQ0nuz6HUjTNLjdbgAniaR0Ol13nK7rmJ2dBXCy5S+ZTDac0+v1VlRb5XK5uo3je7G2nXMqigK/3w9d1yHLMiKRSMOTKDVNg8fjga7rSKfTlk6spPr4VxcRERERtVQ0ThIjzR6NklWzn2lvrerxPM2v/0p9upo92KeLiKwQRdGsjFJVFdvb23XHlXpUCYJQUUlVT/W2xP39/b6tbeec8Xjc7L+lKAo8Hg+CwWDNuNLPXC4XMpkMk2BdYiKMiIiIiHrqxWfbG//VNseT/Zh8JCI7+Xw+JJNJCIKAcDgMv98PVVWh67qZ5FFVFZIk4ejoqG51V7nqn4ui2Le17ZzT7/fXPBeLxTA7Owu/349gMAiPxwOv14tAIIB0Ot30XskaJsKI2lAsFnHmzJmmjxs3bgw6TCIiooH42WH951+WgM9+ytocn/s08Ar/oZuIaOzIsoxcLodIJAJN07C0tGQmfFwuF+LxONLptKVEVDwehyiKEAQBoVCoZRN6O9e2c05ZlpHJZBAIBMz7KVFVFdlsFhsbG+Y67cRHjbFHGJEFpf3xVvyH//Af8A//8A+9DYiIGmKPsP5hj7DJ8ma69cmNAPBPy/VPb+z2eiIi6i/2SaZx9dSgAyAaNadPn27685mZmT5FQjS+mMwiGi75j4Bv/8La2Es/B178K2Dm6crnvznfOhH2po9JMCIiIuotJsKI2jA1NYWHD9s49oqIiGgM/FQFfv8na2N/90fgTRX47l+3v87fMglGREREPcZEGBERERE19cv32xv/q/drE2GlUwib4SmERERE1GtMhBERERFNCMMAii26w045ak8DzP2hvXXqjXc4gGkmuoiIhsKNGzdaHvJltUcy0ahhIoyIiIhoQhQN4KkfNB/z8Q9rE1azn2lvnXbHExFRfxUKBTx69GjQYRANBBNhRERERNTUi88Cdz6wPv6rz/YuFiIi6t7MzEzLQ8CYKKNxNTXoAIiIiIhoePzssPa5lyXgs5+ydv3nPg28ItkbExER2WttbQ0PHz5s+piaYrqAxhM/2UREREQTol6Sq9q3ErXjnE8DP/4ba2vsfA2Yebrt0IiIiGiEHB8f4/bt27h79y4KhcKgw2kLE2FEREREEyD/EfDtX1gbe+nnQOGjyue+Od/6ujd91sYRERHRaDo+Psbi4iLcbjf8fj+8Xi9mZ2fxpS99CR9++OGgw7Nk4nqEBQIBSBLr9YmIiGiy/FQFfv8na2N/90fgTRX47l+3t8bfMglGREQ0cp5//nnkcjnoug4AyGazkGUZe3t7FeMODw8hyzJ0XYdhVB5DnUql4Ha7kUwm8ZWvfKVfoXdk4hJhTqcTS0tLgw6DiIiIqK9++X5743/1fmUibMpxcqJkM1OO5j8nIiKi4SMIAhRFgSAI2NjYgM/nw9zcXMWYfD6PpaUl6LoOh8MBh8MBwzAgCAIWFhagaRo0TYPf78e//uu/DuhOrOHWSCIiIqIJkPtDd+MdDmB6qvnDwUQYERHRyFFVFeFwGNlsFleuXKlJggHA6uqqmQQzDAOGYSASiSCbzeLOnTt48OAB7ty5g2KxiNdee20Ad2EdE2FEREREE2D2M70dT0RERKPn2rVrkCQJm5ubDcfcunULiUTCTII5HA5EIhFcuXKlYpwsy9ja2kI6ne512F1hIoyIiIhoArz4bHvjv9rmeCIiIho9sVisZQXX6uoqHH8u+3Y4HJAkqSYJVrKysoJUKmV7nHZiIoyIiIhoArwsAZ/9lLWxn/s08ArPFiIiIhp7mUwG58+fb/jzy5cvm030Sw3yd3d3G453Op01jfSHDRNhRERERCPCMIAnxeaPRv/f0/k08OO/sbbOzteAmadtC5uIiIiGlCiKOD4+rvuzw8NDRKPRii2RgUCgaeLs8PAQCwsLvQnWJhN3aiQRERHRqCoawFM/aD7m4x8C0w2a1n9zHvhWovn1b/pOxhEREdH4E0URsVgMV69erXg+n8/D7/eb3zscDoiiiJ/85CdN5zs4OEA4HO5JrHZhIoyIiIhojPzsEHjFU/9nU46TRFn+I+CfDoF/fv/kdMjZzwD//lng5XlAYJN8IiKiiREIBLC8vAwAWF9fBwAoioJwOAxN0yqqweLxeNO5Dg8Psbm5icePH/c87m44jGHfvEk0BKanp1EsFjE1NYUnT54MOhyisfcj9deDDoEs+I705UGHMHHeTLeu6AKAf1pmVRcREXWHvwNNDq/Xi7t371Y8V0p+lVJG0WgUq6urDee4efOmWQk27Ikw9ggjIiIiGgH5j4Bv/8La2Es/Bwof9TQcIiIiGhOJRAJf//rXYRiG+QBOkmGCICAej9dNgt2/fx8bGxs4d+4cgsEgcrkcdF3HW2+91e9baAu3RhK1oVgs4syZM03HrK2tYW1trU8RERHRpPipCvz+T9bG/u6PwJsq8N2/7m1MRERENPqcTifi8TgODg6QTCahqioEQcDi4iICgQCcTmfNNbu7u+ZWybm5OczNzZk/+81vfoOXXnqpb/G3i4kwojY9evSo6c8LhUKfIiEioknyy/fbG/+r95kIIyIiIuuWlpawtLRkaezq6mrTrZLDjIkwojadPn266c9nZmb6FAkREU2S3B96O56IiIioW/fv38f58+cHHUZTTIT9WT6fx9bWFjY3Ny1fUygUoGna0L/JZJ+pqSk8fPhw0GEQEdEIMwygaJz0/Ppp1cmNX30W+Lv5k68djsrrZts8zbHd8URENDlu3LiBGzduNB1TLBb7FA0N2vHxMc6ePWvLXKurq7h3754tc/UKE2F/pmkatre3LSfCrl27hvX1dUiSBACQZbmtJBoRERFNpqIBPPWD+j9LPgD+778C/pMPeMVT+bMXnwXufGB9na8+23mMREQ03gqFQsuWLzQ5gsEg3nnnna7nOTo6gqqqNkTUW0yEVfnwww8Rj8fx+PFjLC4uQpblmq1uh4eHCIfD8Hg8ZqZzd3cXKysr2NvbG0TYRERENCJ+dth6zLcSwPQU8M35T557WQLW37bWMP9znwZekTqPkYiIxtvMzEzLli9MlE0OTdNsmSccDtsyT68xEfZniqLAMAyIoljxvNvtRjKZxBe+8AXzuVKyS5Zl87nV1VXE43G89957+OIXv9ifoImIiGik5D8Cvv0La2Mv/Rx48a+AmadPvnc+Dfz4b06SZK3sfO2T64iIiKpZOel+enqa2yMnhKZp+O1vf4vPf/7zHc9x/fp1JBIJOKp7OwyhqUEHMAxKFV4OhwOGYZiPubk5PHjwAF6vt2K8qqpwOBw4depUxfN+vx8XL17sZ+hEREQ0Qn6qWqvoAoDf/RF4s2p3QXmFWCNv+qyNIyIiIgIAwzC6quba2NgYmWowgIkwAEA0GgVw8uYHAgFkMhkUi0U8ePAAxWIR58+fx82bN83x2WwWACAIQsU8siwjnU7j/v37/QqdiIiIRsgv329v/K+qxk85gI9/CDz+n4H/5avA888Ai6dP/vu/fBXI/s/A33FLJBEREbUpGo3i3Xffbfu6lZUVbG9vwzCMHkTVG0yEAUilUpAkCZlMBjs7O5ibm6v4+e7uLpLJZMt5XC4XgJNtltQ+TdNqqu+a2d7ehtfrxezsLBwOB9xuN/x+P19/IiIaWrk/dDfe4TjpHeb6N8Df/1vgnVeB33z35L9//2+B2X9Te9okERERUSuGYcDv9+O3v/2tpfHHx8c4d+4cEokEDMMYiS2RJUyE4eRkg7t379YkwMplMhnza13XAXyS+CpxOp0AMPRHhfabrutwOBwtH263u6ZHWz2KomB2dtYsvYzH48hkMohEIlBVFV6vF16v13yfiIiIhsXsZ3o7noiIiKgTPp8P2WwWS0tLLcfeunULbrfbbLJfajPl8/l6HaYtmAgDzIqiRnZ3d+F2u83vG22NzOfzAMAETJVYLGZ5bKt9xYqimEmuQCCAZDIJWZYhiiJ8Ph8ymQwkSYKiKPB4PHwviIhoqLz4bHvjv9rmeCIiIqJ2ybKM/f19pFIppFIpfOMb32g4dmNjA8vLy+ZWSMMw4HQ6oaoq9vf3ceHChX6F3TEmwgBcuHABPp8PH374Yc3Prl+/jnA4DFX9pFttKblSXb1UyoZWJ8gm3ebmpqVxpYRWI7quw+/3Azh57Uu93arF43EAJ+9HaTwREdEweFkCPvspa2M/92ngFfb7IiIioh6TJMn8byqVwv7+Pl577bWKMYVCAYuLi2Y/sFIVmCzLODo6wvnz5wGcJMqG3VODDmAYRCIRc1te6aFpmpnYAoCtrS1cvny5oodVqQKsJBqNwuFw1GyZnGSxWAy6riMUCrXs/7WwsND0536/30xCNqscK1WHJRIJKIqCWCyGQCDQduxERET1GAZQNID8R8BPD4F/fv+kl9fsZ04quP5u/uTresXmzqeBH/8N8K1E63V2vgbMPG17+EREREQVtra2zK8lScL+/j6Wl5fhdrvx6quv4vDwELIsQ9f1iiRYJBLBlStXKuaanx/+o6sdxii19u+hUvXQ4eFhzc9isRguXryIRCKB5eVlOBwOc9/sCy+8gNXVVSiKAp/PB4fDgWQyieeee67ftzCUSltKy3usdULTtIrtqblcrmnlXSKRMKvBBEFALpfrav3p6WkUi0VMTU3hyZMnXc1FRK39SP31oEMgC74jfXnQIQzEkyLw1A+aj/lPPuAVT+fXv+kDXm5wPRERUT/wd6DJFovFcPnyZQQCAcRisYoEmCAIODg4qJv0un79Or7//e8PIGLrWBH2Z6IoIp1OI5FIYH9/H6qqQhRFBINBc4+rz+fD/v4+9vf3cfPmTRSLRSwsLCAUClXMwyTYiUQiAU3TGm5hbEckEjG/lmW55fbT8iZ9uq4jkUiMTOM+IiIabj+r/TezGt9KnJzu+M06/yg65QA+/uFJRdk/VVWU/ftngZfnAYFN8omIiGiAAoEAMpkMrl27BgAVWyHj8bh5WGC1ZDI59IkwVoR1qdS36uDgAKIoIplMNj19cpJ4PB5omoajo6Ou+6aVH2YQCoUqEmONlJ9i4fP5zN5hneC/hhD1FyvCRsMkVoTlPwJOXwV+/6fWYz/3aeDRBrc3EhHRaOLvQASctCi6desWAGB7e7tlkuvUqVN4/PhxP0LrGCvCuiQIApLJJPL5fMOM6CRSVdU8YGB2dhaiKEKWZXi93rYrs8oPKgCAxcVFS9dJkmQmwhIJC81YiIioLd0kLEc1ifZT1VoSDAB+90fgTRX47l/3NiYiIiKiavl8HgcHB13P841vfAMHBwcIBoMQRRG3b9+uOy6bzSIajZp9vYcZE2Ftyufz2NraqjkJkUmwStXN7DVNQywWQywWA3BSobWxsWGeTtGMoigV3zc7WbLZOFVVLa1HRETUyC/fb2/8r95nIoyIiIgGo9TH3A7b29stx5T6iA27qUEHMGqcTifi8Thef/31QYcytDRNq0leVUskEvB4PAgGgy3nu3fvXsX3VrdZnjp1quL7VCpl6ToiIqJGcn/o7XgiIiIiOzidTkiSBMMwun4AsDRmVLAirEyhUEAqlYKu68hms3XHZDIZaJqGnZ0dfO973+tzhKNBFEWzJDKTyUBRFHOLYrVYLIZUKoV0Ot1wvuprO60I6/bkSiIiotk2m9i3O56IiIjILrIsQ1VVs9F9p6xcO0rJMCbC/mxjY8NSqV9Jo0QZnQgEAhXf67qOWCyGzc3Nmj3DqqrC6/UimUzWnatREq1do7BXmYiI+sMwgGKL/7825QCqq/tffBa484H1db76bPuxEREREdlhZWXFzHOEQiG43W64XC7b18lms9B1HTs7Ozg+PrZ9frsxEQbg1q1blk4hLNfu+EknCAJCoRBCoRASiQRWV1crElOKomB7exuhUKjm2k4TWNVbKO1IXhaLRZw5c6bredbW1rC2ttb1PERE1JmiATz1g+ZjPv4hMF2VCHtZAtbftn5q5CtsTUlEREQDMj8/D0EQsL29jYsXL/Z8vQsXLuDcuXM9X6dbTIQBiEajkGUZkUgEgiDA5XIhFotVVDVls1nkcjkEAgEkEgmcPXt2cAGPOJ/PB1mWsbS0VHEi5ObmZt1EmF3sqgh79OhR13MUCgUbIiEiol762SHwiqfyOefTwI//BviWhcOId74GzDzdk9CIiIi6cuPGDdy4caPpmGKx2KdoqJdkWbbcXqhboihibm6uL2t1g4kwnGy9e/DgQcVzgiBUnATpdDoxNzeHWCwGv99f08Cd2iMIAtLpNDwej5kM03UdiqJAluWasXYksaw22W/l9OnTXc8xMzNjQyRERNSpnx22HvOtBDA9BXxzvvL5b863ToS96au9joiIaFgUCgVb/oGfht/KykpPtkM24vP5+rZWp5gIQ/3m68vLy7h582ZN+aAkSchkMnjjjTfw6quv9ivEsbW7uwuP55N/bk8mkzWJMJfLZUsizI4//FNTU3j48GHX8xAR0eDkPwK+/QtrYy/9HHjxryoru6YcJ9sm8x8B/3QI/PP7J6dDzn4G+PfPAi/PAwKb5BMR0RCbmZlp+Q/8TJSNhwsXLvR1va2trb6u14mpQQcwDHK5XM1zTqcTqVSq7hY2l8s1Em/uKJAkqSLxVa8xfqeVXNXJM7sqwoiIaLT9VLXW4wsAfvdH4E218jmH46RSzPVvgL//t8A7rwK/+e7Jf//+3wKz/6a2yT4REdEwWVtbw8OHD5s+pqaYLqDxxE82AI/Hg5WVFdy+fRu3b982nw8EAvB4PPjwww/N565fvw5N02w7yZAAr9fb9OcLCwsV31utDqtuju92u9uKi4iIxtMv329v/K/aHE9EREQ0iu7evYuNjQ3cvHmz5dhbt27h3LlzeOutt/oQmb24NRJAOByG2+1GInHS8CMSieD73/8+JEnC2bNnIYpiTZ+qfjWbmwTlr2W97YvlWyeBk6oxSWp9DFcmk6n4vnrLJRERTabcH3o7noiIiGjUrKysmDkRAMjn8/je977XcPyFCxcwNzcHWZaxubmJeDyOL3zhC/0ItWusCAMwNzeH/f19GIYBwzAqttDF43HMzMwgl8uZPwdOkmdkj/JEWL3ti9UVYVar8coTl4IgMHlJRDRGDAN4Umz++PNf2TVm2+zf1e54IiIiolFy+fJlxOPxipzHnTt3Wl4nSRI0TcMHH3wAj8eD9957r9eh2oIVYX/m8/lQLBZxdHRUcdynIAg4Pj5GKBRCOp2Gy+VCMBjse8O5cZZKpcyv622TlCSpoiLv3r17lk6iKJ+3OplGRESjrWgAT/2g+ZiPfwhM1+nV9eKzwJ0PrK/11Wfbi42IiIhoVOTzeUSjUTj+3OC0lAzz+/2WrhcEAel0Gs888ww8Hg/S6TS++MUv9jLkrrEirEp5EqzE6XQiGo0ilUrhzp07TILZrHwLY6Pti8vLy+bXqqrWHVOtfBwr+IiIJs/PDus//7IEfPZT1ub43KeBV1rvxiciIiIaSZubmwBOEmBOpxOBQACZTAYXL160PIcoilhdXUWxWLScQBskJsJo4Er7kEOhUMMxwWDQ/FpRlJZzlo8RRZH9wYiIxkyjJFe5byXqj3M+Dfz4b6yts/M1YObptkIjIiIiGhmKomB2dhbJZBLZbBY7Ozt1C4Raef755wGcFLq88cYbdodpq4lJhF2/fn2o55tUiUQCmqZBEARsbGw0HCdJUkUyq7yJXz3xeNz8mtVgRETjJf8R8O1fWBt76edA4aPa51+WgDd9jSvDPvsp4Kd+4JvzHYdJRERENPQ0TcPGxgaWlpa6mqe8J/f+/n63YfXUxCTC9vb2hnq+cVHKJjscDni93qbbGDVNw+rqKgDg4OCgbqP8ctFo1Py6VL5Zj67riMViAE62WgYCgTbugIiIht1PVeD3f7I29nd/BN6s81eRwwG87AEevQb844vAC+eAL505+e8/vgj8768Bf8ctkURERDTmdF235WC5bDYL4GSLZXm/7mE0MYmwdDqN119/HYVCoat5CoUCdnd3LfepmjTxeNxsaq8oCjweT8W2xpLSz1wuFzKZDCSp9W8boiialV6qqmJ7e7vuuFImWxCEisowIiIaD798v73xv2oy3vk08N2/Bt7+H4H/8p2T/373r7kdkoiIiCaDKIpmEqsbyWTS/LqUExhWDsNodLj4eJmamjJPQbDLkydPbJ1vHCiKUvfkR0EQIMsyXC4XUqkUVFVFKBTCxsZGy0qwemv4/X7oug6fz4eNjQ2IoohUKoVwOAxVVSFJkqUqM6ump6dRLBYxNTXF952oD36k/nrQIVCPfUf6csfXfulHwL2HbYw/c5LkIiIiIuv4O9BkWF5eRj6fxzvvvNPVPC6XC/l8HoZhYHZ2Fo8fP7YpQvtNTEVYSeko0G4fVJ8sy8hkMggEAhBFsSIRpaoqstksNjY2kMvlEIlEOkpUybJsXq9pGpaWljA7Owu/3w+Xy4V4PI50Om1bEoyIiIbL7Gd6O56IiIhoUgQCASiKgnfffbfjOVZWVswqMIfDgYWFBZui642JrAiz45YdDgez4hOE/xpC1F+sCBt/3VSE/T//38D/9Evr4//xxZPtjkRERGQdfweaHB6PB/fv34eiKPjKV75i+bpCoYDV1VXE43E4HA4YhgGHw4FoNIqLFy/2MOLuTExF2IULF8xqLq/XC0VRkMvl2npkMhmk02lcuXJl0LdDREQ0sV6WGp/2WO1znwZeYdN7IiIiooZ2d3dhGAZkWca/+3f/rmV1WKFQwOXLlzE7O4tEImE+73A4IIriUCfBgAmqCAOAfD6Pq1evYnd3F/l8Hl6vF+FwuK2MZ8kzzzyDBw8e9CBKGkb81xCi/mJF2PjrpiIMAN5MA99KtB73T8vAN+e7WoqIiGgi8XegyZJIJLC8vGzupBMEAaIomg8A0DQNqqpC0zQAn+y2K68GS6fTOH/+/EDuwaqJSoSVSyQS2NragqqqcLvdWF9fx6uvvmr5+kuXLmFnZ6eHEdIw4V8CRP3FRNj4+470ZRgGUDSA/EfATw+Bf34fyP3hpKfXV58F/m7+5Ot6Z90YBvBPKnD5F8Dv/1T7889+Ctj5GvB3rAYjIiLqCH8HmjyqqmJpaQn5fL7hYYPlKaTy9lOCIODg4ADz88P/L5ATmwgrUVUVm5ubuHXrFmZnZxEMBrG+vo6ZmZlBh0ZDhH8JEPUXE2Hj7zvSl/GkCDz1g+bj/pMPeMXT+Of5j4CfqsCvqpJor0jAzNP2xkxERDRJ+DvQZCrtpLt27VrNz8qTY+WppEAggEgkAqfT2ZcYuzXxibCSfD6PaDSKra0t5PN5+P1+bGxs4Itf/OKgQ6MhwL8EiPqLibDx9x3py9zeSERENCA3btzAjRs3mo559OgRAPB3oAl2cHCAZDIJVVWRzWahaRpcLhcEQcDCwgK8Xi9kWR6ZBFgJE2F1lLZNHh4eQpIkvPbaa3jppZcGHRYNUCkRBgCnT59uOnZtbQ1ra2v9CItobDERNv7+7r//Mk5frb+tsdrnPg082mCFFxERkV3+4R/+Af/xP/5HS2OZCKNxMzGnRrbD5/MhlUrh3r17OHv2LC5cuIBTp07h9ddfR6FQGHR4NGCPHj1q+uBnhIiotZ+q1pJgAPC7PwJvqr2Nh4iIaJLMzMzg9OnTTR9E7cjn89jY2Bh0GJawIqyFfD6PcDiMWCxm7ocNBoMIhUI4e/bsYIOjvmFFGFF/sSJs/P2v97+MOx9YH//COeDt/7F38RAREVEltoehdi0sLGBqagq/+c1vBh1KU08NOoBhdXx8jEgkglgsBqDyNISdnR1kMhm88847gwyRBmBqagoPHz4cdBhERCMv94fejiciIiKi/lpYWMDu7i5ee+01XL16ddDhNMREWJX79+8jHA5DURQAJ4kvh8NhnogQCAQQDocxNzc3yDCJiIhG2uxnejueiIiIiDpzfHwMXdeRzWYtX6OqKuLxOAzDQDQaZSJsFNy+fRubm5tQ1ZMmJOU7Rp1OJwKBADY2NkbuNAQiIqJh9OKzaGtr5Fef7V0sRERE1D/b29tIJpNIpVLQdR2iKEKSJASDQciyPHJr9/N+3G43NE1DPB6Hz+ezde7bt28jGo2aRUHd0HW9+4B6aKKb5RcKBVy/fh2nTp2C3++HqqowDMNMgomiiGg0imw2i62tLSbBiIiIqhgAigbwhz8B/5//Cvz0EIjdO/nvf/mvJ8/Xa0b6sgR89lPW1vjcp4FXJDujJiIion5TFAWzs7MIh8MAgHg8jkwmg0gkAlVV4fV64fV6e5JE6cXa/b6fcDgMTdNsmavatWvX4Pf7oSiKmRPp5AGctJWSpOH+P24T2Sy/uv9X9fZHWZYRDoextLQ0yDBpiLBRJFF/sVn+6CgawP/jbvMxX/vvgS/+Hyuf+470ZbyZBr6VaL3GPy0D35zvPEYiIiJqn52/AymKAq/XC+Ck3VA0Gq0Z4/F4oKoqRFFEOp2GIAhdrdnLtft9P+XrAbC1Iuzw8BAej6ciJ1Ku0fONxomiiEQigfPnz9sSXy9MVCLs/v372NzcRCJx8v+6u+n/dfPmTVy8eLGn8dLwYCKMqL+YCBsd7/3/gJ//f1uPe+l/AP4v/4dPvv+O9GUYBvBPKnD5F8Dv/1R7zWc/Bex8Dfi74f5HRSIiorFk1+9Auq5jbm7O3DaYyWTqjtM0DW63G8BJcUoymex4zV6u3e/7KV+vxM5E2KVLlxCLxSAIAgKBANxuN0RRBADkcjksLy9jdnYW+/v7DeO7c+cObt68iXQ6PdQJsJKJ6RG2uLhoa/+vaDTKRBgREU20jz4G/vl/szb2n98H/s9/Afx3Zf/Pw+EAXvYA/7f/AfipCvzq/ZPTIWc/c9IT7BUJmHm6N7ETERFRf/j9fjOJU9pGWI8oivD5fEgkElAUBbFYDIFAYOjW7vf9rK6uwuVyAehN7y1FUeB2u/HBB/Wbt66uruLmzZtwu904e/Zs3TEXLlwAAKyvr+Ptt9+2PUa7TUxF2NTUJ+3QHA4HRFFEOBzuKJm1u7uLS5cusTJogrAijKi/WBE2Gn7zX4H/179YH/9//UvgS/+nk6+/I325N0ERERGRLez4Hai8Kgo4qTBqtkUwkUjA7/cDAARBQC6X62jdXq3d7/uJxWIIBoNIp9NYWloyE2F2VoRNTU1BURQ899xzdX9+dHQEt9uNS5cu4cc//nHDeTRNwzPPPINr167he9/7ni2x9crEVIQBlXtbRVFEPB5HPB63fH02m4WmaUN/AgIREVE//G+P2xv/L48/SYQRERHR+ItEIubXsiy37JNVntzRdR2JRKLjhE8v1u7n/WiahmAwiFAo1PPm8wsLCw1/Njc3h6WlJUSjUWxtbWFmZqbuOFEUMT8/j1AohNXV1YbjhsFEnRppGAZkWcaFCxcwNzfX1sPpdGJ2dhZzc3OWGsURERGNu4/q9PVq5g9tjiciIqLRVjqgDoDlZE6pPxUA7O3tDdXa/bwfv98PSZIqkm+9IEkSstls0zHhcBiGYWB9fb3puMXFRRiGga2tLTtDtN1EVYTpum5LVlJRFLzwwgs2RERERDS6nv5Ue+M/0+Z4IiIiGl2lHt0li4uLlq6TJAmapgGAedDdMKzdz/sJh8NQVbVhI347iaKIWCyGq1evNhwjyzLm5+cRjUYRDAb//+39f2xj933n/74o2c74ttVQmhaIV1M0cxjH3i1gew41wbp3/6lFJl0k2eYHqQmaTQJsPKSd9N4vVklET/pHu1gkCulW33+u0yEnWeCbbIBqSDvpNsGmJscFvlh83e1IZ5xc3MJxyjMTdLTuH9+RzqgN4sQe8f7BkiEpiTwkz+HP5wMgTIoffj5vyqMjnpc+n8/Ro48+emS7ra0tSdWlm+36G7apmREWiUQ8m5pX+0cAAMA0e+hUd+3f1WV7AAAwvkqlUtPjxplR7bS2aw2ghjX2oN6PZVnKZDLKZrOux+jHysqK0um0/uRP/kQ3b97USy+9pJdeeulQu4sXL6pSqcg0TX3rW9869Pyzzz5bf2+14G9UTU0QlkwmR7o/AADGzSMPSPfOumt736z06AP+1gMAAEbHtWvXmh532k+r5tSp5r+c1WYZDXvsQb2f5eVlxWKxvq+Y6VYsFtPc3JzW1tYUCoUUjUYVjUb17ne/+1C75eVlVSoVxWIxnTt3Tk8//bSefvppPfjgg03LJgcR4PVjYoOwP/7jP25KMWuX8/TKhQsXPO0PAIBxc+Ie6X0PuWv7voelt03VhgwAAEy31llBvc6g6mV5oB9jD+L91K4wefnyZVd9e+Xy5cv1vdArlYoqlYq2t7f1yiuvNLXLZrP1+5ZlKZfLKZfLqVwu118fCAR839y/XxMbhP3N3/yNotGovva1r/XVz+XLlzU7O6t3vetd+v73v+9RdQAATIZHHpA++K+Onxl276z0oX8lPfL2wdYFAACGy6vlcY7jjMTYfr+fQqGgQqGgfD7veraZV2KxmK5cudJ0YcBgMKjHHnusqZ1hGHrxxRcPXUAwEAgoEAjUXzfoIK9bE/232UqlokQioXK53PNGbbWrI/zd3/2dTNNUuVzWO97xDm8LBQBgSCqSKhXpZ29J3/8H6Uf/t/TTt6T775He9avVAOvEvVLgmNcHVF3y+NCvST94XXrtdvXqkPffW90T7NEHmAkGAMA06iXAkg4vOex0RcNBje3n+3EcR/F4XIlEQpFIpKdx+hWLxbS3t6crV67IcZxjl2ZGIhH93d/9nZLJpK5evdr0nGmayufznu3P7pep+Gj64osvqlwu93Tp1TNnzujOnTv1f4ypVKqvS7gCADBKKhXpPx/eD1WSZO9K33utOuOr0/5eJ+6R3v3r1RsAABiejY0NbWxs9N3PwcGBB9X0r9cAalTHPqrP5eVlGYbRtPRwGE6ePOlqGyjDMFQsFnXnzp36nmeGYejMmTN+l+iJqQjCtra2FI/Hde7cOb300kv6lV/5Fdev3d7ebnr84IMPel0eAABD8//9h85tvv23UiDA8kYAAMbB/v6+dnZ2hl2GgsGgJ0FSL8sE/Rjbr/eTyWRkWdah7GEcnDx5UsvLy8Muo2tTEYRJUj6fVyaTkWmaKpVK+o3f+I2u+7hx40ZP0zIBABhFb7wlffeH7tp+91XpoV9lmSMAAKNubm5Oi4uLfffTb5i2sLDgSXC0sLAwEmP70adlWUqlUkqn00PbYH5/f1+pVEq2bes973mPPvvZzw6ljkGaqo+za2trMk1TpmmqUCjot3/7t12/9s6dO4pGo1paWvKxQoy6g4MDnT59um2b1dVVra6uDqgiAOjdD16X3rzrru3P70rff52ljwAAjDqvzkdmZ2f7Wh7Z64bvrWFTrzPCvB7bjz7j8bhM09Ta2lpPfXshFovp6tWrqlQqKpVKOnPmjD784Q8PrZ5BmKogTKpu7Hbt2jW95z3v0cWLF/WpT32q42teeuklxeNxOY6jZ555ZgBVYpR1+svI/v7+gCoBgP788HZ37V+7TRAGAADcWVpakmVZ9ceO47gKk1pXYYVCoZEY2+s+M5mMbNtWJBJRPB7v2E9joLa+vt60d/n58+cVi8U69nGUUqlUv+Kj1HvgN06mLgiTqpu4bW1taWVlpeMVJZ999lk988wzqlQqmp+f15NPPjnASjGKOk0zHvUrZABAzRtvdtf+p122b+c56+WeX/sZ83HvCgEAAL4Ih8NNj23bdrX8r1wuNz3u5SqKfoztdZ+3b1f/IlkqlTr20cqyrKZQzjCMnoMwwzB048YNBQIBxWIxPfHEEz31M05mhl3AsASDQb344ova3d3V+fPnj2xz8eLFeggWCASUTqcHXCVGzczMjG7dutX2xrJIAOPixL3dtb+/y/YAAGB6tW4rZNu2q9c1znwKBoMyDGMkxh7m+/FTIpFQpVKRpKZZZr16+umn++7Db1MbhNVcunRJy8vLOnfunP7xH/+x/vWrV6/Wg69AICDTNJkNBgCYKA+d6q79u7psDwAAppdpmk3L7K5du+bqdVtbW/X7ve7R7cfYXveZTqdVqVRc3xoDtHw+3/RcP5N21tbW6ld+/PGPf9xzPzW9zHAbtKkIwv7qr/6q7fOJRELZbFZPPPFE/X987R9SLRllNhgAYNI88oB076y7tvfNSo8+4G89AABgsqysrNTvNy7la6exXSqVGqmxh/l+/FQsFvXhD39YsVisaYJQt27cuOF6ptwwTWwQdubMGUnVICuRSHRMNk3T1Obmpj7ykY/ohRdeaNowzjTNqVgnCwAYTxVJB5XqHl5//ffSN65LuWvV//7Pv69+vXLE607cI73vIXdjvO9h6W1TubMoAADoVTKZrN93M1OosY1hGD3tD+bn2MN8P3772te+pkQiIdM09bWvfc31ReD29/e1v79fv8jgOJjYICydTmtvb0/5fF7Ly8uKRCL66le/2vY1tU30L126VP9aIBA4dg8xAABGQaUi/eeXpMz/Kf3la5K9K72+X/3v916rfv0Hrx/92kcfkD70m9UZX0e5b7b6/CNv969+AAAwmUzTbAp/CoVC2/b5fL5+v9PsqVwup1QqdewMJD/G9vP9DMs73/lOzc7Oan5+Xk899ZTK5bISiYTm5+c1Ozvb8TY/P6/5+XlFo1HXs+SGLVCprf1Dk1QqpWeffVaBQEDFYpEZYVNudnZWBwcHmpmZ0d27d4ddDjDx+rmi4DT6/uvSt/+2c7t2gdYbb1XDstduV2eQ3X9vdU+wRx8YvZlgXDUSAAD/eXUOZNu2QqGQpGqQtL29fWQ7x3E0Pz8vqXplxWKxeGyf0Wi0abbV3t5e0/5dfo7tR59uhEKheuiXz+d7vkpkq0wmo2eeeab+OBAIqJ+YKBAIjPw588TOCOtXOp3WlStXVKlUdOPGjWGXAwDAkd54S/ruD921/e6r0s/eOvq5E/dI7/516d8/Jl04V/3vu3999EIwAAAwXgzDqM+MsixLmUzmyHa1DduDwWDTTKqjtC5LvHLlysDG9qPPYaot9wwEAn2FYLWtpcYBM8I6sCxLzzzzjF588cVhl4IhYkYYMFjMCHPvb/5e+u+vuW//b99VDbjGGTPCAADwn9fnQKVSSfF4XI7jKBaL6eLFi/XtiVKplCzLkmmaunr16pGzuxrNz8/LcZz642Kx2Hb/LS/H9rPPdvyaESZJ8Xhczz//vKTq7LVe6rVtW5ZljcWMMIIwwAWCMGCwCMLc+8Yrkn3bffvQqepsr3FGEAYAgP/8OgfKZDLa3NyUbdtyHEfBYFBLS0tKJpOuw51SqaRkMqnd3V0lEgml0+mBjT2IPgetVCrpve99r7a3t/XYY4/13E8ul9PTTz898ufMQwnC9vf3NTc3N+hhR8a0v/9xRBAGDBZBmHuXr0n/y91FfSRJ/2KuuvRxnBGEAQDgP86BJk/tSpC7u7uSpIWFhXo2sbCwUP96P2ZmZnRwcNB3P34ayh5h2WxWp06d0kc/+lG99NJLwyhh4G7evKmLFy/qwQcf1NLS0rDLAQBMiBP3dtf+/i7bAwAAYHwddYXHUCikUCjUtLfaxYsX60FZPxKJRN99+G1oW+Du7e0pn8/XN42LxWI6f/68PvzhDw+rJM+98sor2tzcVKFQqK/lrVQq9StMAADQr4dOdbc08l2n/KsFAAAAo6V1EWAkElEymVQkEtHJkyfrX//85z/vyXiXLl3ypB8/DSUIi8Vi+pu/+Zv6ZmySVCgUVCgUJFUvhZpIJBSJRMZuCeErr7yibDarK1eu1Dfva/yHZ5pm/aoMAAD065EHpFJZetPFioX7ZqVHH/C/JgAAAIyO2hUdi8WinnjiiSFXM3xD3yy/UCgol8s1Xf608bKbkUhE8XhcKysrIxuKvfTSS8rn88eGX4Zh1DfKO3PmzJCqRD9YHw8MFnuEdef7r0vf/tvO7T70m9Ijb/e/Hr+xRxgAAP7jHGgyzMzMKBAIKJ1O63Of+9ywyxkJQw/Cau7cuaPNzU3lcjlZllX/+qiGYi+99JKy2axKpVLTZVtr385gMKiVlRUlk0mdPXt2SFXCK/wSAAZrWoOwN96qhlqv3ZbeeLO6/9dDp6qzvk50mMP9g3+Qvvuq9PMjDlH3zUrve3gyQjCJIAwAgH5tbGxoY2OjbZudnR1J4hxozNWCsHK5rHe84x3DLmckjEwQ1ujGjRu6dOmSnn/++freWlJzKGaaps6fP69YLDaw/5kvvPBCfc+vmtZvXywWUzKZ1PLy8kBqwmAQhAGDNW1BWEXSD16XvvvDo5c43jsrve+hzssa33ir2s9rt6WfvlndGP9dp6qve9vQdgX1HkEYAAD9+aM/+iP9p//0n1y15RxovNWCMP4f/sJIBmGNrl+/rkuXLimfzzfNvBpEKLa/v69SqVSf+VVz3GZzH/nIRzwbG6OFIAwYrGkLwqZtaWO/CMIAAOgPM8Kmx8zMjObn53X7dhdXV+rDgw8+qB/96EcDGatXIx+ENbp69Wp9plijxlDMMIz6FSgfe+yxrsfY39/XlStXlM/n24ZftU3vV1ZWmq60gMlEEAYM1jQFYW+8JW38D/eb3a/+m8ma3dULgjAAAPzHOdBkmJmZUSgUGlg4NTMzo4ODg4GM1auxCsIaHbXJfk0tGHMbitXCr2w227Q/Weu3ptZfMplk0/spwy8BYLCmKQj7m7+X/vtr7tv/23dJ7/51/+oZBwRhAAD4j3OgyTDIIOz69etaWloa+X8vYxuE1dy5c0fZbFZXrlxpCrFqaqFYbfP6eDyuJ554Qjdv3lShUNDm5uah8CsQCLDpPZrUfglI0uLiYtu2q6urWl1dHURZwMSapiDsG69Idhcz1UOnpH//mF/VjAeCMAAA/EcQNhkGFYTt7+8rFovp6tWrI//vZeyDsEZHbbLfGGo1LqFs1Bp+SWx6j2aNQVgnf/iHf6g/+qM/8rcgYMJNUxB2+Zr0v/bdt/8Xc9KFc/7VMw4IwgAA8B9B2GSobZYfiUR86X93d1eO48i27Xq2Mur/XiZql5EzZ84onU4rnU4fu8l+Y9jVGH5VKhU2vYcrnWaEzc3NDagSAJPgxL3dtb+/y/YAAADAUdtKeWEc51ZN1Iyw4xy3yb7Epvdwh7+GAIM1TTPC2COse8wIAwDAf5wDTYbajLBBYEbYCFleXq4vcaxtsl8LwNj0HgAwTI88IJXK7q8a+egD/tcEAACAyeLnHKhBBW1emYogrFEsFlMsFht2GQAASJJO3CO97yHp23/bue37HpbeNnW/uQEAANAv0zR967u2R9i44OM0AABD9sg/z/L67g+Pnhl276z0/oekR94+2LoAAAAw/gzD0NbWlq9j2LateDyuV155xddxvEAQBgDAkAVUXfL40K9JP3hdeu229NM3qxvjv+tU9TlmggEAAGBUGYahy5cv69y50b+8OR+rAQAYESfuqW6EP+2b4QMAAGD8+Ln80ksEYQAAeOiNt6Tv//OsrjfelE7cKz10qrr88QS/dQEAADBgu7u7Axvr7NmzAxurV3wkBwDAAxVVlzUetc+Xfbt6Zcj3PcRVHwEAADBYjuMMbCy/9yLzwsywCwAAYBL84PXqlR+P2uxeqn79238r/eAfBlsXAAAAMA6b2A8KQRgAAH16463qTDA3vvuq9LO3/K0HAAAAaJTL5YZdwsggCAMAoE8/eP34mWCtfn63uocYAAAAMCjZbFbf+ta3hl3GSCAIAwCgTz+83V3717psDwAAAPQrFovpd37nd/Stb31L+/v7wy5naNgsHwCAPr3xZnftf9plewAAAC9tbGxoY2OjbZuDg4MBVQO/VSqV+v0XX3xRL774ogKBgLLZrJ588skhVjYcBGEAAPTpxL3dtb+/y/YAAABe2t/f187OzrDLwADUAs07d+5IknZ3dyVVryRpGMbQ6homgjAAAPr00CnJ7mK547tO+VcLAABAJ3Nzc1pcXGzbhqBsspw8ebLpv9MsUGmcIwfgSLOzszo4ONDMzIzu3nW5IzaAnj1nvTzsErryxlvSxv9wt2H+fbPS6r+R3safonr2GfPxYZcAAMDE4xwIk4qP4QAA9OnEPdL7HpK+/bed277vYUKwfvUTlBKiAQAATDc+igMA4IFHHqj+97s/PHpm2L2z0vsfkh55+2DrAgAAAPALBGEAAHggIOnRB6SHfk36wevSa7erV4e8/97qnmCPPsBMMAAAAGDY+EgOdOHg4ECnT59u22Z1dVWrq6sDqgjAqDlxj/TuX6/eAAAAAIwWgjCgS52unrK/vz+gSgAAAAAAQDcIwoAudbrM8Nzc3IAqAQAAAAAA3SAIA7owMzOjW7duDbsMAD564y3p+/+8x9cbb0on7pUeOlXdDP8EvzUBAACAsTYz7AIAABgFFVUDsI3/IX3vNcm+Lf2v/ep///tr1a9///VhVwkAAAC499WvflUPPvigPvrRjw67lJHB37YBAFD1So/f/tvjn3/zbvX5QEB65O2DqwsAAADoxfXr15VIJCRJtm1rZWVFH/7wh4dc1fAxIwwAMPXeeEv67g/dtf3uq9LP3vK3HgAAAKBf6+vrkqRAICBJCgaDQ6xmdBCEAQCm3g9er874cuPnd1kiCQAAgNFnWZYkqVKpKJvN6oknnjiy3fnz5/XSSy8NsrShIggDAEy9H97urv1rXbYHAAAABs22bc3Pz2t7e1tPPvnkse3y+bxs2/ZkzFdeecWTfvxEEIaxlslkFI1GNT8/r0AgoFAopHg8rlKpNOzSAIyRN97srv1Pu2wPAAAADFowGNTFixd19uzZgY2ZSqUGNlavCMIwlkqlkubn5+s/ZPl8XuVyWel0WpZlKRqNKhqNynGc4RYKYCycuLe79vd32R4AAAAYNMMwZBjGQMf0amaZnwjCMHZKpVI95EokEioWi4pEIjIMQ7FYTOVyWaZpqlQqKRwOE4YB6OihU921f1eX7QEAAIBBO3/+vDY3Nwc23vXr18ciCLtn2AUA3XAcR/F4XFI13c5ms0e2y+fzCoVCsm1b8XhcxWJxkGUCGDOPPCCVyu42zL9vVnr0Af9rAgAAAPqRSCSUSqV048YNJRIJGYahhYWFI9tub2/3PHvMcRzZtq0vfelL/ZQ7MIFKpVIZdhGAW9FotL7/VzabVSKROLZtPB5XoVBw1baT2dlZHRwcaGZmRnfvury0HICePWe9PPAxv/+69O2/7dzuQ78pPfJ2/+uBPz5jPj7sEgAAGLqNjQ1tbGy0bbOzsyNJnAONuUKhoJWVFQUCgWPbVCqVts+7Vetn1P+9sDQSY8O27aZN8FdWVtq2P3/+fP3+OGzYB2C4HnlA+uC/ku6dPfr5e2elD/0rQjAAADD+9vf3tbOz0/aGyRCLxXTlyhVVKpVjb5LaPu/2Ni5YGomxkU6n6/cjkYiCwWDb9rFYrH7fcRwVCoWmrwFAo4CqSx4f+jXpB69Lr92uXh3y/nure4I9+oD0Nn5rAgCACTA3N6fFxcW2bQjDJkcsFtPe3p7W1taUz+enfh9tlkZibDRO1VxbW2sKxo5T2ydMqv7w5/P5nsZmaSQwWMNYGonpwNJIAADc4Rxoct24cUOWZWl3d1eVSkVPPfWU4vG4lpaWeurv9u3bsm1bhUJhLJZG8rdtjAXLspoenzt3ztXrTNOsB2G1/cIAAAAAAJhWZ86c0ZkzZ+qPn3rqKUWjUT355JN99VsqlfTe97633/J8xx5hGAuNe4NJcn01i9Z2rYEaAAAAAADoXyQSaQrYRhVBGMbCtWvXmh532h+s5tSpU02Pt7a2vCoJAAAAAAA0cDtpZZhYGomxUFveWNPrjLByuexZTQAAAAAAjLu9vT2dPHnSk7563Zd7kAjCMBZag7BeTfvVMYBp8cZb0vf/+cqPb7wpnbhXeuiU9MgD0gl+8wEAAAB1XoVgXvflF04HMBZ6DbBal1Du7u72VcfBwYFOnz7dVx+StLq6qtXV1b77AXDYD/5B+u6r0s9bLlZj35aulqX3PSw98vbh1AYAAACMg/39fZVKJRWLRe3u7sq2bS0sLMgwDIVCIcViMb3jHe8Ydpk9IQjDVPFiRtjOzk7ffezv7/fdB4DDfvAP0rf+f8c///O7v3ieMAwAAABodvPmTaVSKRUKhaavVyoVBQKB+uNUKiXDMPTMM8/oU5/61KDL7AtBGMZCMBj0JMRyu8l+O4uLi333MTc313cfAJq98VZ1Jpgb331VeuhXpbfxWxAAAACQJF2+fFlPPfWUpGrwVRMIBJpCsNrz5XJZiURC2WxW+Xxev/EbvzHQenvFKQDGwsLCgidB2MLCQl+vn5mZ0a1bt/quA4D3fvD64eWQx/n53eoeYu/+dX9rAgAAAMbBs88+q2eeeaY+86sWfFUqlaZQrFWlUtHW1pZCoZC2t7f16KOPDqrknhGEYSz0OpOrNTzzYkYYgNH0w9vdtX/tNkEYAAAA8PzzzyuVStUDsFrwZZqmlpaWFAqFFAwGZRiGFhYWZNu2dnd3VS6XVSgUZNu2Dg4OtLy8rK2trZHfO4wgDGNhaWlJlmXVHzuO4yrUat0cPxQKeV0agBHxxpvdtf9pl+0BAACASVQLwSqVioLBoNLptFZWVo69AuTZs2fr97/85S/r+vXr+tKXvqTnn39eTz31lL73ve8NqvSezAy7AMCNcDjc9Ni2bVevK5fLTY8jkYhnNQEYLSfu7a79/V22BwAAACbN888/L9u2ValUlEwmtbu7qwsXLhwbgh3l7Nmzyufz+vKXv6xisai/+qu/8rHi/hGEYSwsLS01PXYbhDUujaxN5QQwmR461V37d3XZHgAAAJg0m5ubCgQCymQy+tM//dO++lpbW9Py8rKuXLniUXX+YGkkxoJpmk1Xjrx27ZpisVjH121tbdXvt4ZpAPz1nPXyQMd75AHpatndhvn3zUqPPuB/TQAAAMAosyxLpmnqc5/7nCf9JZNJPfPMM5705RdmhGFsrKys1O837hfWTmO7VCrleU0ARseJe6T3Peyu7fselt7Gn4IAAAAw5WzbVjKZ9Ky/YDDoegXXsHAagLGRTCaVy+UkSaVSqWP7xjaGYbA/GDAFHnl79b/fffXomWH3zVZDsFo7AACAabSxsaGNjY22bQ4ODgZUDYbNyy2ERj0EkwjCMEZM01QkEqkHXIVCoe3yyHw+X7/PbDBgejzyduldvyr94HXptdvVq0Pef291T7BHH2AmGAAAwP7+vnZ2doZdBkaAYRiybVtPPPGEJ/1ls9mR35s7UKlUKsMuAnDLtm2FQiFJ1WBse3v7yHaO42h+fl5S9UqRxWKxr3FnZ2d1cHCgmZkZ3b3rYgMiAAPfIwzw22fMx4ddAgAAnnAzI6wWlHEONNlWVlZ0584d/eVf/mXffT3zzDPKZDKKx+Pa3Nz0oDp/sEcYxophGPWZXpZlKZPJHNlueXlZUnV9cuPMMAAAAACYdqurq7p161bb28wMccE0WFlZUbFY1Be+8IWe+9jf39f58+eVyWQUCAQ83XPMD/zLxtiJxWIqFosKBoNKpVKKx+OyLEuO46hUKikcDtevfHHjxg0Fg8FhlwwAAAAAwMiJxWI6c+aM0um0Pv3pT+vmzZuuX/vSSy/p/Pnzmp+fV6FQUCAQkGmani2z9AtLIzHWMpmMNjc3Zdu2HMdRMBjU0tKSkslk2/3DusXSSKB7LI3EpGFpJABgmnAOND1KpZLe8573KBAISKpuL2SapkKhUH2/L8dxtLu7q+3tbW1tbcmyrPrra7FSIBDQ9va2HnvssYG/h24QhAEu8EsA6B5BGCYNQRgAYJpwDjRdcrmcnnrqqXoY1k5jjFRrX6lUlM/n9ZGPfMS3Gr3C0kgAAAAAADAQmUxG0WhU8/PzCgQCCoVCisfjKpVKYzm2133atq1kMqlQKKRAIKD5+XmFw2Elk0nZtt1znZ0kEglduXJFJ0+ebAq6KpXKoVsgEKjfKpWKTp48qe3t7bEIwSSCMADACKlIOqhIP31T+uu/l75xXcpdq/73f/599etMYwYAABg/pVJJ8/PzSqVSkqR8Pq9yuax0Oi3LshSNRhWNRuU4zliM7UefmUxGoVBIuVyuHno5jiPLspTL5RQKhY69YJwXYrGYbty4oc9//vP10OsotedOnjypdDqt3d1dnT171re6vMbSSMAFpgUD3etlaeRBRfrPL7Vv88F/JT36QI9FAX1gaSQAYJp4eQ5UKpUUjUYlVWceZbPZQ21qFz0zDEPb29ueXfTMj7H96DMajapUKikYDCoSicgwDNm2LcuyDs0Ey+fznu6JfZyrV6/KsiyVy2Xt7u5KkhYWFhQKhRSJRMYq/GpEEAa4QBAGdK+XIOz7r0vf/tvO7T70m9Ijb++hKKAPBGEAgGni1TmQ4zg6c+aMHMeRYRgql8tHtrNtW6FQSFJ1s/ZisdjzmH6O7UefqVRKmUxG6XRaa2trh57PZDL1mWc1RDm9Y2kkAGAkvPGW9N0fumv73Veln73lbz0AAADoXzwery8PbA1zGhmGUZ/lVCqVlMvlRnJsr/u0bVuZTEbFYvHIEEyS1tbWlEgkmr7WeNVGdIcZYYALtb+GSNLi4mLbtqurq1pdXR1EWcBI63ZG2N/8vfTfX3Pf/t++S3r3r3dZFNAHZoQBAKaJFzPCGmdFSdLe3l7bJYKFQkHxeFySFAwGtbe319O4fo3tR5/xeFznzp07NgSrcRxH8/Pz9cfHzR5DZ8wIA7q0s7PT9ra/vz/sEoGx9MPb3bV/rcv2AAAAGKx0Ol2/H4lEOu6T1bjvleM4KhQKIzW2H306juMq0AoGgzIMo+kxekMQBnRpcXGx7W1ubm7YJQJj6Y03u2v/0y7bAwAAYLAalwOapunqNY1hz+bm5kiN7Uef3eyFVtuwXpKWlpZcvw7N7hl2AcA4mZmZ0a1bt4ZdBjCRTtzbXfv7u2wPAACAwWndw+rcuXOuXmeaZv0qib3OCPNj7GG+H6k6c6y2N1kkEnEdxOEwZoQBAEbCQ6e6a/+uLtsDAABgcEqlUtPjxplR7bS262VTeD/GHub7kaQrV67U+8vn8z31gSqCMADASHjkAeneWXdt75uVHn3A33oAAADQu2vXrjU9drun1alTzX/t3NraGomxh/l+HMdRMpmUaZoqFovsD9YngjAAwEg4cY/0vofctX3fw9LbWNwPAAAwsmrLAWt6nUFVLpdHYuxhvR/bthUOhxUMBnX16lXX4+J4BGEAgJHx6APSh36zOuPrKPfNVp9/5O2DrQsAAADdaQ2OelXbF2vYYw/j/RQKBYVCIdm2LcdxND8/r0wm40kd04y/pwMARsojb5fe9avSD16XXrtdvTrk/fdW9wR79AFmggEAALSzsbGhjY2Nvvs5ODjo6/W9BFjS4SWHjVdKHObYg3o/juMol8spm80eGb6lUildu3aNfcL6wOkEAGDknLhHevevV28AAABwb39/Xzs7O8MuwzO9BlCjOnanPkulksrlsiKRiGzbPrRJv1SdKZbJZLS2tuZ5fdOAIAwAAAAAgAkxNzenxcXFvvvpN0wLBoOeBEm9bAzvx9iDej+xWEyxWKzpa7lcTqlUqmn8VCqlRCLR98b5+/v7SqVSsm1b73nPe/TZz362r/7GAUEYAAAAAAATYnV1Vaurq333Mzs729fyyIWFBU+Co4WFhZEYe5jvJ5FIKBKJKBwON9WQy+X6nhUWi8V09epVVSoVlUolnTlzRh/+8If76nPUsVk+AAAAAADwVK8zlVrDpl5nhHk99jDfj1S9+uTVq1ebvnbt2rWe+mrUuvSy3xlm44AgDAAAAAAAeGppaanpsdvZVK2byYdCoZEYe5jvp8Y0zaZlk15cydIwDElSIBBQLBbTE0880Xefo44gDAAAAAAAeCocDjc9dhvalMvlpseRSGQkxh7m+2l0/vz5+n0vlmomEglVKhVJ0ubmZt/9Pf3003334TeCMACApyoV6e6B9NM3pb/+e+kb16Xctep//+ffV79eGXaRAAAA8FXrDCq3wVFjuBMMBuszloY99jDfTyPTNJv669fa2pqWl5clST/+8Y/77u+oq1yOGoIwAICnDirSPX8gZf5P6S9fk+xd6fX96n+/91r16z94fdhVAgAAwE+maTYFNW73s9ra2qrfbw2fhjn2MN/Pcbzqr1gs6sMf/rBisZj+8R//sed+bty44clyTb9x1UgAgKe+eb1zm2//rRQISI+83f96AK88Z73c82s/Yz7uYSUAAIyHlZUV5XI5SZJlWa5e09gulUqN1NjDfD81jUFTNBrtu7+ar33ta9rc3JRpmnrmmWcUj8c1NzfX8XX7+/uSqoFfv1ewHJRApbYYFMCxapcOnpmZ0d27d4ddDjCy7rwhLX5J+smb0q8ttA8N7puVVv+N9Db+JIMpQBAGABg3XpwDWZbVtLdWp/ihVCrVwx3DMA7trzXssYf5fmoymYxSqZSCwaD29vb67u+d73ynbty4UX9cqVQUCAR66qv22lE/Z2ZpJADAM9+wqiGYGz+/K32fJZIAAAATyzTNps3hC4VC2/b5fL5+v9PsqVwup1QqdexSPD/G9vP9uLW+vi5Junz5sif91TbLr90CgUDT425u44IZYYALzAgD3Hnvf5Fe/FH1fqcZYZIUOiX9+8f8rQkYBcwIAwCMG6/OgWzbVigUklQNkra3t49s5ziO5ufnJVWvrFgsFo/tMxqNNm3Kvre3d+TG8X6M7XWfmUxGm5ubikQiunjxYtsN8FOplDKZjNbW1pROp49t1407d+5ofn6+Pgus14ioFqCNw4wwgjDABYIwwJ13Pyddu1W97yYI+xdz0oVzPhcFjACCMADAuPHyHKhQKCgej0uS0un0kXtJhcNhWZalYDCoGzdutA2EWpfuZbNZJRKJgYztZZ+NYVnNcSFXPB5XoVA4drx+xONxPf/885KqoV0vV6O0bVuWZRGEAZOi9ktAkhYXF9u2XV1d1erq6iDKAkYOM8KAoxGEAQDGjdeTAUqlkuLxuBzHUSwW08WLF2UYhra2tpRKpWRZlkzT1NWrVzsGMfPz83Icp/64WCw2LVn0c2yv+wyFQoeWdwaDQUUiERmGIcuytLW1pUgkonQ6LcMwXNXXjVKppPe+973a3t7WY4891nM/uVxOTz/9NEEYMAkag7BO/vAP/1B/9Ed/5G9BwIj6//xf0v/rL6r33QRh//Zd0rt/3eeigBFAEAYAGDd+rYqpLQW0bVuO4ygYDGppaUnJZFKxWMxVH6VSSclkUru7u0okEq6XCXoxttd9Oo6j9fV1lUqlpj4WFhZkmqai0ahWVlZ6mqXVjYWFBe3u7vbdz8zMjOtz52EhCANcYEYY4A5XjQSORhAGABg3bA8zXZ599lklk0nNzc311c9TTz2lS5cueVSVPwjCABf4JQC49w1L+kS+cxD2od+UHnn7gIoChowgDAAwbjgHwqSaGXYBAIDJ8nFT+q8r1RlfR7lvlhAMAAAAGGcXL17Uj3/842GX0ROCMACA5z52VvqP/6a6B1joVPXqkKFT1cer/4YQDAAAABhVL7zwgp5++mmdO3dOL7zwwpFtwuGwzp49q49+9KNjF4ixMwsAwBcn7qluhM9m+AAAAKNlY2NDGxsbbduM+obn8N4f//Efa319vemKnMdtoB+LxRSJRLS8vCzDMFQoFPShD31oQJX2hyAMAAAAAIApsr+/r52dnWGXgRFx584dLS0tybZtNW4jHwgE2r4uGAxqe3tb4XBYsVhMuVxOn/rUp/wut28EYQAAAAAATJG5uTktLi62bUNQNj3i8bjK5bICgUA9/OrmuopXr17VwsKCEomEDMPQb//2b/tVqifYIwwAAAAAgCmyurqqW7dutb3NzBAXTIOrV6+qVCopEAioUqmoUqno5MmTikQirvsIBoP6/Oc/r0qlomQy6WO13uBfNgAAAAAAwBTKZrOSqjPAEomEyuWydnd39eKLL3Y1K+yjH/2oJKlcLutrX/uaL7V6hSAMAAAAAABgCtVmg+VyOV26dElnzpzpqR/DMOr3X3zxRa/K8wV7hAEADqlUpIOKdOcN6RvXpe++Ku39VJq/X3r/w9K/P1u932H/TAAAAAAjzHEchUIhPfnkk33103h1Scuy+i3LVwRhAIBDDirSPX9w9HPFv5P+t+9I/0dM+kR4sHUBAAAA8E4wGJRpmn33Uwu/KpWKbNvuuz8/sTQSAHDIN693bvPJgrt2AAAAAEaTYRhyHKfvftbX1+v3g8Fg3/35iSAMANDkzhvSp//cXdunvi3tv+FrOQAAAAB8sry8rK2trb76ePbZZ2VZlgL/vG9K435ho4ggDADQ5BuW9JM33bX9p59LXx/tLQAAAAAAHOPixYva29vTn/zJn/T8+meeeUaBQECVSkWBQEDnz5/3uEpvEYQBAJr8xavdtf9Ol+0BAAAAjIZgMKjPf/7zWltb0xe+8AXt7+93fM3+/r6++tWv6sEHH1Qmk1GlUml6PpFI+FWuJ9gsHwDQZO+n/rYHAAAAMDrS6bQsy9KXv/xlpdNpRaNRRSIRSdL29rYWFha0u7urcrmsUqnUtDG+pPqSSEm6dOmS5ubmBv8muhCotEZ3AA6ZnZ3VwcGBZmZmdPfu3WGXA/jqvf9FevFHXbR/UPrefzj89eesl70rChhznzEfH3YJAAB0hXOg6ZNMJnX58uWmYOsorQFY7XE2m9WFCxf8LdIDLI0EADT5wMPdtX9/l+0BAAAAjJ5sNqutrS098cQTqlQqh241jQFYpVJRJBJRuVweixBMYkYY4Ap/DcE0ufOGtPgldxvm//J90s5Fae7E4eeYEQb8AjPCAADjhnOg6Xbjxg2VSiUVi0XZti3HcbS7u6uFhQUFg0EZhqFoNKqVlRWdPHly2OV2hSAMcKH2S0CSFhcX27ZdXV3V6urqIMoCfPP1bemThc7t/uuK9LGzRz9HEAb8AkEYAGDcEIRhUrFZPtClnZ2dts+7ucoGMOo+bkoBSU//+dEzw37pXunSB48PwQAAAABgFBGEAV3qNCNs1K+QAbgRCEgfD0v/7jelb1jSd16tXh1y/v7qnmCfMI9eDgngaP3OkGRGGQAAGKSbN2+qVCppe3tbu7u7kqSFhQWFQiFFIhE99thjwy2wDwRhQBdmZmZ069atYZcBDMzJE9Lv/1b1BgAAAGCyffWrX1U6nZZt2x3bJpNJra2t6R3veIf/hXmIPcIAF1gfD3SPPcIA7zAjDADgpY2NDW1sbLRtU9sShnOg6XDz5k1Fo1HZtq3WmKh2lcia2vO1r2cyGX32s58dTKEeYEYYAAAAAABTZH9/v+Pex5ge169fVyQS0d7enqTm4KtSqRwKxhqfk6S1tTUVi0V973vf879YDxCEAQAAAAAwRebm5jrufUxQNj3i8bj29vbqAVgt4DIMQ5FIRKFQSMFgUIZhaGFhQbZty7ZtlctlXblyRY7jqFgs6nd+53fGIgxjaSTgAksjge6xNBLwDksjAQCDxjnQdLh8+bKSyWRTCBaJRJROp3X2rLtLxBcKBa2vr+uVV14Zi2WSBGGAC/wSwLipVKSDDkf3mUD16pB+IQgDvEMQBgAYNM6BpsPS0pIsy5JUXRJ56dIlXbhwoae+otGoXnrpJe3t7Wlubs7LMj3F0kgAmEAHFemeP2jf5q0vSrM+BmEAAAAARptt2/XZYGtraz2HYJKUz+e1sLCgfD6vT33qU16V6LmZYRcAABiOb14fdgUAAAAAhslxnPqeYBcvXuyrr2AwqEQioStXrnhRmm8IwgBgArkJuT5ZIAwDAAAApplpmpKqG+N7sZwxFArJtu2++/ETQRgATJg7b0if/nN3bZ/6trT/hq/lAAAAABhRy8vLkqTd3V3P+iQIAwAM1Dcs6Sdvumv7Tz+Xvm75Ww8AAACA0fSFL3xBUnWJ5M2bN/vur1wuKxgM9t2PnwjCAGDC/MWr3bX/TpftAQAAAEyGkydP6sqVK6pUKnrmmWf67u/KlStaWFjwoDL/EIQBwITZ+6m/7QEAAABMjlgspmw2qxdffFGf/vSne+7nmWeekeM49X3HRtU9wy4AAOCt+fv9bQ8AAABgtD311FPa3t7u6jULCwvKZrPKZrNdh1mO48i2bQUCAUWj0a5eO2gEYQAwYT7wsPTij9y3f//D/tUCAAAAYPCCwaC2t7cVCARUqVQ6tg8EApJUb9ttiNbYz8rKSk+vHRSWRgLAhPm4Kf3Sve7a/vJ90idGe+YyAAAAgC4lk8n6/UAg0PHWTdt2t0Qiobm5uWG8ZdcIwgBgwpw8IX3ld921vfRBae6Er+UAAAAAGLAzZ87IMAxJ1Vleg7idPXtW6XR6yO+8M4IwAJhAHzelr8eOnxn2S/dK34hLHzs72LoAAAAADMby8rIkqVQq6eDgwPfb1tbWyM8Gk9gjDAAmUiAgfTws/bvflL5hSd95tXp1yPn7q3uCfcJkJhgAAAAwyVZWVmRZlp544olhlzJSCMKALhwcHOj06dNt26yurmp1dXVAFQHtnTwh/f5vVW8AAAAApsfy8rLOnDkz0DFv3rypd7zjHQMds1sEYUCXdnZ22j6/v78/oEoAAAAAADjelStXBjpeMpnUX/7lXw50zG4RhAFdWlxcbPv8OKyJxnioVKSDDlc6nglUl0ECAAAAbm1sbGhjY6Ntm4ODgwFVg0mytbU17BI6IggDujAzM6Nbt24NuwxMiYOKdM8ftG/z1helWYIwYOI9Z73c82s/Yz7uYSUAgEmwv7/fcaULptvNmzflOI7r9rZtK5vNdvWaYSEIAwAAAABgiszNzXVc6UJQNl1u3rypdDqtUqkk27Z76qNSqSgwBstVApVKpcPCGwCzs7M6ODjQzMyM7t69O+xyMCXuHnSeEfZ/xKRPhAdTT7f6mcECwDvMCAMA9IJzoOlx8eJFZTIZSdUwqx+BQGDk/73MDLsAAMDRvnm9c5tPFty1AwAAAIBWzz//vNLpdD0AG4cZXf1iaSQAjKA7b0if/nN3bZ/6tvSBfynNnfC1JAAAAAATZn19XVI1AKtUKjIMQ6ZpyjAMSdKpU6c69nH79m05jqMrV67ozp07vtbrBYIwjATbtpVMJlUsFl21z2QyKhaL2trakuM49R/WZDKpSCTic7WA/75hST95013bf/q59HVL+v3f8rcmAAAAAJPFsqz6LLBisajl5eWe+1pbW9ODDz7oVWm+YWkkfOU4jgKBQMdbKBSqJ87tlEolzc/PK5VKSZLy+bzK5bLS6bQsy1I0GlU0Gh2LK1UA7fzFq921/06X7QEAAAAgGAxKqoZY/YRgkmQYhs6cOeNBVf4iCIOvcrmc67a1cOs4pVKpHnIlEgkVi0VFIhEZhqFYLKZyuSzTNFUqlRQOhwnDMNb2fupvewAAAACoTUg5d+6cJ/1ls1lP+vETQRh8VVtv3Ekt0DqO4ziKx+OSqj+ox/1w5fN5SdWllrX2wDiav9/f9gAAAABQmwW2u7vraX+jjD3C4JtcLifHcbS2tqZoNNq27dLSUtvn4/F4fYZXu5ljtdlhhUJBpVJJuVxOiUSi69qBYfvAw9KLP3Lf/v0P+1cLAAAAgMn0hS98Qc8++6wsy/Kkv69+9at68sknPenLL4FK7RqZgMdCoZAkqVwu99WPbdv1viRpb2+vvo75KIVCoT4bLBgMam9vr6/xJWl2dlYHBweamZnR3bt3++4P6OTOG9Lil9xtmP/L90k7F0fvqpHPWS8PuwQAkj5jPj7sEgAAY4hzoOmRyWSUTqd18+ZN/cqv/EpffZ07d07Xrl3zqDJ/sDQSvigUCrJtu+O+X26k0+n6/Ugk0jYEk6RYLFa/7ziOCoVC3zUAg3byhPSV33XX9tIHRy8EAwAAADAe1tbWZJpm39sL3bhxw7OZZX5iaSR8sb6+rmAwqJWVlb77atxw3zRNV68xDEO2bUuSNjc3m8IxYFx87Kz0yQ457tdj1XYAAAAA0KtisailpSU9+OCDSqVSWlhYcPW63d1dOY6jcrmsK1eu+FylNwjC4DnLsuop8Pz8vAzDUCQSUTQa7TqQak2T3V7JwjTNehDGjDCMq5mA9NYXq8sk/+t16buvVq8OOX+/9L6HpY+flYJskg8AAACgTy+99JKk6tZGyWSypz4qlYoCgYCXZfmCIAyea10Oadu2crlcfWZXLBbTxYsXXc3uKpVKTY/bXVmyXTvLslzPJgO8UqlIBx12YZwJSMf9rggEpNmAtPD/kP7f/8/qDQAAAAC89PTTT9fP1wOBgHrZSn4cArAagjB4yrbtQ+FVq0KhoEKhoEQioWw227Zt6yZ7nfYHqzl16lTT462tLYIwDNxBRbrnD9q3eeuL1bALAAAAAAbt8uXL9fPyXkMwST2/bhgIwuApwzCUzWbra4RLpVJ9iWKrXC6nra0tbW9vH9tf62t7nRHW75UrAQAAAACYNK0hWG1bo2Aw2PU+YZcuXdLNmzd9rNYbBGHwXCKRaHrsOI5yuZzW19flOE7Tc5ZlKRqNqlgsHtnXcSFat1rHBQAAAABg2lmWpUAgoGAwqK2tLZ05c6bnvi5cuHBoddYomhl2AZh8wWBQa2tr2tvbUz6fP7S8sVQqKZPJHPnaXgOs1jF2d3d76gfw2zevD7sCAAAAANOqdu588eLFvkKwWl9nz47+Je2ZEYaBisViikQiWl5ebroi5Pr6utbW1nwb16sZYQcHBzp9+nTf/ayurmp1ddWDijDK3IRcnyxIszPSx0b/9wUAAAAmxMbGhjY2Ntq2OTg4GFA1GKZwOKyXXnrJ9TZEnVy+fNmTfvxEEIaBCwaD2t7eVjgcrodhjuOoVCopEokcautFiOV2k303dnZ2+u5jf3/fg0owyu68IX36z921ferb0gf+pTR3wteSAEyp56yXe37tZ8zHPawEADAq9vf3PTmvwfhLJpO6evWqZ9sSMSMMIyOXyymZTHrap2mabTe67+Ty5csKh8P1x8Vi8VAQtrCw4EkQ5naTPzcWFxf77mNubs6DSjDKvmFJP3nTXdt/+rn0dUv6/d/ytyYAAABAqp6PdDqvISibDrFYTGfPntXm5qY+97nP9d3fCy+8oA9/+MMeVOYfgjAMjWmaikQiKpVKko7eGL/XmVyt4ZlXM8JmZmZ069YtT/rCeKhUpIMOVwKeCUiBQPPX/uLV7sb5zqsEYQAAABgMN1u1zM7OsjxySuTzeb3zne/Ut771LX3oQx/qq6/19XWCMIyGSCSifD7vaZ9ehEvRaLQehB1laWmpaS8xx3Fcjdu6OX4oFOq5Rky3g4p0zx+0b/PWF6XZliBs76fdjdNtewAAAADwgmEYunTpkp588sm+grA7d+40nb+PKoKwKWEYhmeb33mpsaajli82Lp2UqrPGTNPs2G+5XG563LrkEvDb/P3+tgcAAACAfr3wwguSpF/91V/V/Py8HnzwQcVisa77cRxHV65c8bo8XxCEYagag7CjZnotLS01PXYbhDUujQwGgyMZAmKyfeBh6cUfuW///of9qwUAAAAAjvKlL31J16//4nL3lUpFmUymp74qlYoCrXvGjKCZYReA6ba1tVW/H41GDz1vmmZTQHbt2rWu+20N04BB+Lgp/dK97tr+8n3SJzrnuwAAAMDYy2Qyikajmp+fVyAQUCgUUjweb7tlziiP7XWflmUpmUwqFAopEAjU+0ylUp5cSK7VysqKKpWKKpXqxsjjEGT1iyAMQ9W4hPG45YsrKyv1+27XGze2S6VSPVYHuPPN64e/dvKE9JXfdff6Sx+U5k54WhIAAAAwUkqlkubn5+vnZ/l8XuVyWel0WpZlKRqNKhqN+hL2+DG21306jqN4PK5wOKxcLtd0MTnbtpXJZDQ/P69cLue6RjeSyaSkagBWC8R6vY2LQGWcqsXECYVCsm1ba2trSqfTR7axLKtpr7BO/2RLpVJ9dplhGIf2C+tF7YopMzMzunv3bt/9YXx8fVv6ZKFzu/+6In3sbPPX7h503mj/6zHp4+H2bcbVc9bLwy4BQJ8+Yz4+7BIAAEPi5TlQ4zlaIpFQNps91CYcDsuyLBmGoe3tbU8uzubX2F736TiOwuFwU/jVznFj9mppaUnXr1/Xl7/8ZZmmeeT+3Z3Ytq0vfelLeuWVV0b+nJkgDENTKBQUj8cVDAZ148aNtgeGxqtL5vP5tpv3JZPJekqezWaVSCT6rpUgbDrdeUNa/JL0kzc7t/3l+6Sdi80zu9wEYW99UZqd0Lm5BGHA+CMIA4Dp5dU5kOM4OnPmjBzHaTtRwbZthUIhSdXVQsVisecx/Rzbjz5r57umaerixYv1fbEty9K1a9eO3LOr03lxN5599lltbW1pc3Oz774WFha0u7vrQVX+mdDTLwxDbWpoIBBQNBptu4zRtm1duHBBknT16tWOiXtj2r2+vn5sO8dx6iFYJBLxJATD9PqG5S4Ek6R/+rn09ZZ/8jOBatDV7jYz+UvwAQAAMMXi8Xh9eWC7bWsMw6gHO6VSyZMlgH6M7XWfuVxOpVJJa2tr2t7eViwWk2EY9den02mVy+VDF42rnU97IRKJeLa0cRz26GZGGDzTOBOr5qgpm6VSSfF4XAsLCyoWi66v6FibQSZJ6XRaa2trh9rUpp+6mWXWDWaETaf3/pfurvz43gel7/0H/+oZN8wIA8YfM8IAYHp5cQ7UOCtKkvb29tqeozWe8wWDQe3t7fU0rl9j+9FnKBSSYRgdZ8C1ji1JxWLx2L22u3Xjxg2dOXOm736uX7+us2fPdm44RMwIg2dqP+CNcrmc5ufnFY/HlUwmFQ6HFY1GlUgktL297ToEk6RYLKZisahgMKhUKqV4PC7LsuQ4jkqlUj0EM03T0xAM02vvp/62BwAAACZZ4z7QkUik4zla41I/x3FUKLjYrHeAY3vdp2VZsm1b+Xy+bT9SdYZZ677abi8m54YXIdjNmzdHPgSTCMLgoUgkonK5rEQiIcMwmg4KlmVpd3dXFy9e1N7entLpdE9BVSQSqb/etm0tLy/Xg7aFhQXl83lPN1bEdJu/39/2AAAAwCRrXDHUurTvOI2TJfrZs8qPsb3uc3NzU4lEwvX5a+vsr9u3b7t63SA8//zzCoVC+v73vz/sUjq6Z9gFYLIYhuHp1SuOs7a2duTSSMBLH3i4u6WR73/Yv1oAAACAcdI6W+ncuXOuXmeaZv3qib3OCPNjbD/6PH/+fFerpFrDt9alksN07do1VSoV/dmf/ZkeffTRYZfTFkEYABzj46b0zPfcXzXyE+7+KDRW2OcLAAAAvSiVSk2P3QY+re1q298Me2w/+uz2fdU26e+2hk6++tWv9vxax3FULpeVy+UUCARUKpXaXuBuFBCEAcAxTp6QvvK70idd/CHq0geluRO+lwQAAACMhWvXrjU9drv879SpU02Pt7a2ug6M/Bh7mO+npjazrMarjfITiYQCgf4uZ1+7DqNlWbp586be8Y53eFCZP9gjDADa+JiLvR6/HnPXDgAAAJgWraFNrzOoyuXySIw9zPdTs7W1Vb+fSCR67uc4tTCr29dUKhUFAoF6mNa4l9ooIggDgD79HiEYAAAA0KQ1OOpV63LAYY09zPdT07gfdyqV8qCaw2rBltubJAUCgaavubkK5jCxNBIAAAAAgAmxsbGhjY2Nvvs5ODjo6/W9Bj6tSw53d3dHYuxhvh+pGsTVNuxPp9Oe7Q9Wc+bMGaVSqa77LZfLymQyCofDunz5subm5jytyw8EYQAAAAAATIj9/X3t7OwMuwzP9DODahTH7rXPdDotqbrUcm1tzcOKqkqlUk/7ei0vLyuRSOid73ynEomE/uzP/szz2rxGEAZ04eDgQKdPn27bZnV1VaurqwOqCH6bCUhvfbFzGwAAAGAUzM3NaXFxse9++g3TgsGgJ0GS203p/R57mO/HsizlcjkFg0EVi8W+aziqpn43t7906ZLe85736Ny5c/rsZz/rTWE+IQgDutTpF8L+/v6AKsEgBALSLEEXAAAAxoRXf5ifnZ3ta3nkwsKCJ8HRwsLCSIw9zPdz4cIFSdLVq1c9XxIp/WK2WT8ikUh9ttpHPvKRkb5qJEEY0KVOf10ZhzXR06RSkQ46XPxkJlANvAAAAAB4o5eZT9LhpYO9zgjzeuxhvZ9kMinLspTP52WaZk81dFIL2vplmqZs21Ymk9FXvvIVT/r0A0EY0IWZmRndunVr2GWgCwcV6Z4/aN/mrS8y6wsAAADw0tLSUn1zd6kaCLkJgVo3kw+FQiMx9jDeTy6XUy6XUzabVSwWc/26Ybt27dqwS2hrZtgFAAAAAACAyRIOh5se27bt6nXlcrnpcSQSGYmxB/1+SqWSksmkstmsEomEq9cM0507d1QqlSSpKTAcRQRhAAAAAADAU0tLS02P3QZHjUsJg8FgT3ti+TH2IN+PZVmKRqNKp9NjEYK98sorWlpa0p07dyTJl33MvMTSSAAAABzpOevlnl/7GfNxDysBAIwb0zSbrrR47do1V8v7tra26vdbw6dhjj2o92PbtpaXl7W2tqa1tbWO7b3w4IMP9vzaWiBYqVQ3Zg4EAj3N4hskgjAAAAAAAOC5lZUV5XI5Se6XyzW2S6VSIzW23+/Htm2Fw2ElEgnXV3K0bVuFQqGv0KxcLisQCNTDrF40vt6Lq1D6iaWRAKbeN68PuwIAAABg8iSTyfr92v5R7TS2MQyjr5lFfozt5/txHEfRaFQrKytdBUnxeNyzGViBQKCnm1SdERYMBvXiiy9qbm7Ok3r8wowwABPNTcj1yYI0OyN97Kz/9QAAAADTwjRNRSKReiBUKBTaLifM5/P1+51mT+VyOZXLZSWTySP3pPJjbL/ej+M4CofDMgxDqVTK1f5jtm3X+zRNs2P7TmqzuYLBoBYWFly/rrbv2blz5/T5z3++7zoGIVDpZ+4bMCVmZ2d1cHCgmZkZ3b17d9jlwKU7b0iLX5J+8mbntr98n7RzUZo74X9d46Sf/YEATDf2CAOA8ebVOZBt2wqFQpKqgc329vaR7RzH0fz8vKTqlRWLxeKxfUaj0abZVnt7ewoGgwMZ248+w+Fwz1da9OKqkjMzM8pkMvrc5z7XVz/jgqWRACbWNyx3IZgk/dPPpa+P9lV+AQAAgLFjGEZ9ZpRlWcpkMke2W15ellSdYdQ4k+oorcsSr1y5MrCxve6znxBMkidXlTQMY2pCMIkgDMAE+4tXu2v/nS7bAwAAAOgsFoupWCwqGAwqlUopHo/Lsiw5jqNSqVQPg0zT1I0bN46c3dWo9fmjlkb6NbaXfdZe1ysvQjCpv4sSjCOWRgIusDRyuCoV6aDDkWomIP3zPo11735OunbL/TjvPi39z890X98kY2kkgF6xNBIAxptf50CZTEabm5uybVuO4ygYDGppaUnJZLLtfluNSqWSksmkdnd3u7rCohdjD6JPL73yyit67LHHhl3GSCEIA1wgCBuuuwfSPX/Qvs1bX6xueN/ovf9FevFH7sd574PS9/5D9/VNMoIwAL0iCAOA8cY50GSYnZ3l/18LlkYCmFgfeLi79u/vsj0AAAAAjLJKpaIf//jHwy5jpBCEAZhYHzelX7rXXdtfvk/6RP9XHQYAAACAkeJ26ei0uGfYBQCAX06ekL7yu9InC53bXvqgNHfC95IAYGr0s7SaZZUAAHgnm83Ktm0lEgmZpqmFhQVJ0tzc3JArGw6CMAAT7WNnOwdhX49V2wEAAADTYGNjQxsbG23bHBwcDKgaDEKxWFSxWBzYeKO8LxlBGICp93uEYAAAAJgi+/v72tnZGXYZGKDG6yQGg0FJqs8M69bu7q4cxznyOcMwBhq49YIgDAAAAACAKTI3N6fFxcW2bQjKJks6nVYsFtOZM2f66ufq1auKx+MKBAJNX69UKorH49rc3Oyr/0EgCAMwEb55XfpEeNhVAAAAAKNvdXVVq6urbdvMzs6yPHJCZLNZPfnkk33388d//MdKpVKSqsFXIBCozzRLp9P6/Oc/3/cYg0AQBnTh4OBAp0+fbtvGzS8VdOeb1zu3+WRBmp1hry8AAAAAqAkEAlpZWem7n/e85z26evVqPfiqhWDBYFBXr17V2bPjcyJGEAZ0qdMU4f39/QFVMh3uvCF9+s/dtX3q29IH/mXz1R9nAtJbX2z/uplA++cBAAAAYBydPHmyr6tD3rx5U9FoVLZt12eBSdUZYaZp6urVqzp58qRX5Q4EQRjQpU5r6af1ErR++YYl/eRNd23/6efS1y3p93/rF18LBKRZgi4AAAAAU+jGjRs9v/b555+vzyZrDcGSyaT+9E//1JMaB40gDOjCzMyMbt26NewypspfvNpd+++82hyEAQAAAMC06nW21sWLF5XJZOoBWON+YNlsVhcuXPCyzIEiCAMw0vZ+6m97AAAAAEDV/v6+4vG4SqXSoVlg47gf2FFmhl0AALQzf7+/7QEAAAAA0iuvvKIzZ84cGYJFIhHduHFj7EMwiSAMwIj7wMPdtX9/l+0BAAAAYNpdvnxZ4XBYe3t7h0KwVCqlF198cew2xT8OQRiAkfZxU/qle921/eX7pE+Y/tYDAAAAAJPk6aef1lNPPXVoP7BKpaJ8Pq/19fVhl+gpgjAAI+3kCekrv+uu7aUPSnMnfC0HAAAAACbC/v6+zp07p1wud2gWmGEYKpfL+shHPjLkKr1HEAZg5H3MxTL0r8fctQMAAACAaVfbD8yyrEMhWDwe19/93d/pzJkzQ67SHwRhACbC7xGCAQAAAEBHR+0HVlsKmU6ntbm5OewSfXXPsAsAAAAAAACA/86fP69CoXBoFlgwGFQ+n9fy8vKQK/QfM8IAAAAAAAAm2M2bN/Xggw8eGYKZpqkbN254EoI9+OCDfffhN2aEAQAAYKQ8Z73c82s/Yz7uYSUAAIy/l156SfF4XHt7e5LUFIIlk0n96Z/+qWdjlctlz/ryCzPCAAAAAAAAJtCzzz6raDSqvb09BQKBpv3AstmspyHY5cuX6yHbKGNGGICRNxOQ3vpi5zYAAAAAgF9IpVL1AEyqzgKbn5/X1atX9dhjj3k2zle/+lUlk0mCMADwQiAgzY7+8RQAAAAYCxsbG9rY2Gjb5uDgYEDVYJACgYAWFhZ04cIFT/pzHEe2bXvS16AQhAEYiEpFOqi0bzMTqIZeAAAAAPyzv7+vnZ2dYZeBAatUqidk47CPl58IwgAMxEFFuucP2rd564vM/AIAAAD8Njc3p8XFxbZtCMomy5kzZ5TP5xUMBj3pz3Gc+v2trS1ls1lZluVJ334LVGqRIIBjzc7O6uDgQDMzM7p79+6wy+nZMGdl3T1wGYRxCY+R0s+V2wBgGLhqJAB4Y1LOgabdzMyMQqGQtra2dPLkSV/HisfjeuGFF0b+3wszwoApwqwsAAAAAJgu+Xze9xBMktLptF544QXfx+kXcy8AAAAAAAAmUDAY9PTqkO0YhjGQwK1fzAgDunBwcKDTp0+3bbO6uqrV1dUBVQQAAAAAwNHS6fREj9cLgjCgS502jdzf3x9QJQAAAAAAHO/ChQsTPV4vCMKALnW6usrc3NyAKhmsYW60DwAAAACAFwjCgC7MzMzo1q1bwy5jKNhoHwAAAAAw7tgsH8DI+Ob1YVcAAAAAAJhkBGEABsJNyPXJAmEYAAAAAMA/BGEAfHfnDenTf+6u7VPflvbf8LUcAAAAAMCUIggD4LtvWNJP3nTX9p9+Ln3d8rceAAAAAMB0IggD4Lu/eLW79t/psj0AAAAAAG5w1UgAvtv7qb/tAQCoec56uefXfsZ83MNKAADAKGJGGADfzd/vb3sAAAAAANwgCAPguw883F3793fZHgAAAAAANwjCAPju46b0S/e6a/vL90mfMP2tBwAAAAAwnQjCADT55nXv+zx5QvrK77pre+mD0twJ72sAAAAAAIDN8oEp4ibk+mRBmp2RPna2t/4/ET76uY+drfbdztdjvY0LAAAAwL2NjQ1tbGy0bXNwcDCgaoDBIggDpsSdN6RP/7m7tk99W/rAv2yemeV3iCZJv0cIBgAAAPhuf39fOzs7wy4DGAqCMGBKfMOSfvKmu7b/9HPp65b0+79VfdxviAYAAABgdMzNzWlxcbFtG4IyTCr2CAOmxF+82l377zS07yVEAwAAADCaVldXdevWrba3mRniAkwm/mUDU2Lvp7237ydEAwAAAABgVBCEAVNi/v7e2/cTogEAAAAAMCrYIwyYEh94WHrxR+7bv//hX9zvJ0QDAGBcPGe93PNrP2M+7mElAADAL8wIA6bEx03pl+511/aX75M+Yf7i8QcePr7tUd7fZXsAAAAAAAaBIAzowsHBgU6fPt32trGxMewyj3TyhPSV33XX9tIHm6/62E+IBgAAAADAqGBpJNClTpcR3t/fH1Al3fvYWemThfZtvh6rtmtUC9E6vVY6HKLVzASkt77Y/rUzgc79AwAAAADQK4IwoEuLi4ttn5+bmxtQJf74vbNHf73XEK0mEJBmCboAAAAAAENEEAZ0YWZmRrdu3Rp2GSPruBANAAAAAIBRwB5hAAAAAAAAmAoEYQAAAAAAAJgKBGEAAAAAAACYCgRhAAAAAAAAmAoEYTiWbduKRqMqFDpcKrCDTCajaDSq+fl5BQIBhUIhxeNxlUqlkeoTAAAAAABMNq4aiUMcx9GFCxfqAVg8Hu+pn1KppHg8LsdxFIlElM/nZRiGLMtSKpVSNBqtfz0YDA6tT2CSPWe9POwSAAAAAGBkEIShznEcra+vK5PJ9N1XqVRSNBqVJCUSCWWz2fpzhmEoFospHA6rVCopHA5re3u7Y3DlR58AAAAAAGB6sDQSkqpLDcPhsCzL6rsvx3Hqs8gMw2gKrBrl83lJ1SWYnWad+dEnAAAAAACYLgRhkGVZikQiKpfLKhaLx4ZMbtWWLkpSKpU6tl1tFpdUne2Vy+UG2icAAAAATKONjQ2dPn267e3g4GDYZQK+YGkkZJpm0+OlpaWe+7Jtu2nD+pWVlbbtz58/X9+LLJVKKZFIDKRPdG8mIL31xc5tAAAAAIy2/f197ezsDLsMYCgIwnBIP/tqpdPp+v1IJNKxr9rsLam6/LFQKDR9za8+0b1AQJol6AIAAADG3tzcnBYXF9u2ISjDpGJpJDzVuBSxdabZcQzDqN/f3NwcSJ8AAAAAMK1WV1d169attreZGeICTCZmhMEzrRvtnzt3ztXrTNOUbduSVF/S6Gef04zljQAAAACAaUbEC8807uMlNc/Kaqe1XWP45Uef0ywQkGZn2t8CBGEAAAAAgAlFEAbPXLt2remx273GTp061fR4a2vL1z4BAAAAAMORyWQUjUY1Pz+vQCCgUCikeDx+aBLEuIzt9/uxbVvRaJSVTh4iCINnaksRa3qdvVUul33tEwAAAAAwWKVSSfPz80qlUpKkfD6vcrmsdDoty7IUjUYVjUblOM5YjO33+3EcR/F4XKFQSKVSSbu7uz31g8PYIwyeaQ2tetV4oPCjTwAAAK89Z73c1+s/Yz7uUSUAMHpKpZKi0agkKZFIKJvN1p8zDEOxWEzhcFilUknhcFjb29uuVwMNY2w/34/jOFpfX1cmk+nujcI1ZoTBM72GTa0HhMak248+AQAAAACDUZvZJFVDosbQqFE+n5dUnQxRaz+KY/v5fjKZjMLhMHtc+4wgDCPHj9lbXvV5cHCg06dP933b2NjwpB4AAAAAGGXxeLx+PlZbRniU2kwqqTrjKpfLjeTYfr0fy7IUiURULpdVLBaPDdjQP4IweMarqauN/fjRZ792dnb6vu3v73tWDwAAAACMItu2mzaNX1lZadv+/Pnz9fvtQqZhje3n+zFNU6Zp1h8vLS21bY/esUfYCMrlckomk572aZqmtre3Pe2z1cLCgiczrxYWFnzts1+Li4t99zE3N+dBJQAAAAAwutLpdP1+JBLpOEGhNoNKqq7qKRQKTV8b9tiDfD9eTuZAM4IweKbXH9TWoMuLGWHt+uzHzMyMbt265UlfAAAAADDJGpcDNs52ascwjPpF0zY3N3sOwvwYe5jvB94hCBtBkUikvrGeVwaRJi8tLTVt6uc4jqtxWzeyD4VCvvYJAAAAAPBX64bv586dc/U60zTrwVGhUBiZsYf5fuAtgrARZBiGDMMYdhldC4fDTY9t23aVkpfL5abHkUjE1z4BAAAAAP5q3EtLkutz3NZ2lmW5nn3l59jDfD/wFpvlwzOtm/nVUu9OGpcxBoPBpgOFH30CAAAAAPx17dq1psduVymdOnWq6fHW1tZIjD3M9wNvEYTBM6ZpNh0MWg8Ux2k8ELQGX370CQAAAADwV+skhl5nULWu9hnW2MN8P/AWQRg81Xj52NY11MdpbHfUJWX96BMAAAAA4B+3q3k6ab0Q2rDGHub7gbcIwuCpZDJZv9+6hvoojW0MwzhyLy8/+gQAAAAA+KfXwKd1yWHrhdCGNfYw3w+8xWb5OKSfhNo0TUUikXoYVSgU2l4etvHqmMfN3PKjTwAAAACYRBsbG9rY2Oi7n4ODAw+q6d8wZ1D5MTYzwoaPIAyHtE757PYHNZvNKhQKSZLW19ePDa0cx1Eul5NUvapjIpEYaJ8AAAAAMGn29/e1s7Mz7DIUDAY9CX3cbkrv99jDfD/wFksj0cRxnEOzqDY3N7vqwzCM+qwsy7KUyWSObLe8vCypeiBonMU1qD4BAAAAYNLMzc1pcXGx71u/FhYWPHg3vfXjx9jDfD/wFkEY5DiO4vG4otGo5ufnD80IsyxLgUBA0WhU8Xjc1Yb1sVhMxWJRwWBQqVSq/jrHcVQqlRQOh2VZlkzT1I0bN1yl4n70CQAAAACTZHV1Vbdu3er7NjPTX1zQ6/lY66yrXmeEeT32MN8PvMXSSPg2eyoSiWhvb0+ZTEabm5taXl6W4zgKBoNaWlpSPp9vu9fXoPoEAAAAAHhraWmpaRJF7bytk9bN5Gtb5Ax77GG+H3iLIAy+W1tb09ra2sj3CQAAAADwRjgcbnps27ZM0+z4unK53PQ4EomMxNjDfD/wFkEYAAAAMGTPWS/3/NrPmI97WAkAeGNpaanpsdvgqHEpYTAYlGEYIzH2MN8PvMUeYQAAAAAAwFOmaTYtHbx27Zqr121tbdXvt4ZPwxx7mO8H3iIIAwAAAAAAnltZWanfd3PRtdZ2qVRqpMYe5vuBdwjCAAAAAACA55LJZP1+qVTq2L6xjWEYfe2n5cfYw3w/8A5BGAAAAAAA8Jxpmk3hT6FQaNs+n8/X73eaPZXL5ZRKpWTb9sDG9vP9tGrcWwzeClQqlcqwiwBG3ezsrA4ODiRJi4uLbduurq5qdXV1EGUBHfWz+TIAYDywWT4AP9TOgWZmZnT37t2e+7FtW6FQSFI1SNre3j6yneM4mp+fl1S9smKxWDy2z2g02jTbam9vr2n/Lj/H9qPPoxQKBcXj8frjdDqttbW1rvrA0ZgRBnRpZ2en7W1/f3/YJQIAAADASDAMoz4zyrIsZTKZI9stLy9Lql5ZsXEm1VFalyVeuXJlYGP70Wcrx3EOzSDb3Nzsqg8cjyAM6NLi4mLb29zc3LBLBAAAAICREYvFVCwWFQwGlUqlFI/HZVmWHMdRqVRSOByWZVkyTVM3btw4cnZXo9bnDcMY2Nh+9ek4juLxuKLRqObn5w8t+bQsS4FAQNFotD4eesPSSMAFr6YFA4PG0kgAmHwsjQTgB7/OgTKZjDY3N2XbthzHUTAY1NLSkpLJpGKxmKs+SqWSksmkdnd3lUgklE6nBzb2IPqEvwjCABcIwjCuCMIAYPIRhAHwA+dAmFQsjQQAAAAAAMBUIAgDAAAAAADAVCAIAwAAAAAAwFS4Z9gFAAAAAOhdP/tBsr8YAGDaEIQBAAAAADBFNjY2tLGx0bbNwcHBgKoBBosgDAAAAACAKbK/v6+dnZ1hlwEMBUEYAAAAAABTZG5uTouLi23bEJRhUgUqlUpl2EUAo252dlYHBweamZnR3bt3h10O4Fo/+8YAACYfe4QBOA7nQJhUzAgDgBFHmAUAAAAA3pgZdgEAAAAAAADAIBCEAQAAAAAAYCoQhAEAAAAAAGAqEIQBAAAAAABgKhCEAQAAAAAAYCoQhAEAAAAAAGAq3DPsAgAAAAAMx3PWyz2/9jPm4x5WAgDAYDAjDAAAAAAAAFOBGWFAFw4ODnT69Om2bVZXV7W6uurL+JWKdFBp32YmIAUCvgwPAAAAAMBYIwgDurSzs9P2+f39fd/GPqhI9/xB+zZvfVGaJQgDAAAAAOAQgjCgS4uLi22fn5ubG1AlAAAAAACgGwRhQBdmZmZ069atYZcBAAAAAAB6QBAGAAAAoGtccRIAMI64aiQAAAAAAACmAkEYAAAAAAAApgJLIwEAAAAAmCIbGxva2Nho2+bg4GBA1QCDRRAGAAAAAMAU2d/f187OzrDLAIaCIAwAAAAAgCkyNzenxcXFtm0IyjCpCMIAAAAAAJgiq6urWl1dbdtmdnaW5ZGYSGyWDwAAAAAAgKlAEAYAAAAAAICpQBAGAAAAAACAqcAeYQAwAM9ZLw+7BAAAAACYeswIAybMN68PuwIAAAAAAEYTM8KAMeIm5PpkQZqdkT521v96AAAAetHPTOnPmI97WAkAYNowIwwYE3fekD795+7aPvVtaf8NX8sBAAAAAGDsEIQBY+IblvSTN921/aefS1+3/K0HAAAAAIBxQxAGjIm/eLW79t/psj0AAAAAAJOOIAwYE3s/9bc9AAAAAACTjiAMGBPz9/vbHgAAAACAScdVI4EuHBwc6PTp023brK6uanV11fOxP/Cw9OKP3Ld//8OelwAAAAAAwFgjCAO6tLOz0/b5/f19X8b9uCk98z13G+b/8n3SJ0xfygAAAAAAYGwRhAFdWlxcbPv83NycL+OePCF95XelTxY6t730QWnuhC9lAAAADNVz1ss9v/Yz5uMeVgIAGEcEYUAXZmZmdOvWraGN/7GznYOwr8eq7QAAAAAAQDOCMGDC/B4hGAAAAIA2NjY2tLGx0bbNwcHBgKoBBosgDAAAAACAKbK/v99x72NgUhGEAQAAAAAwRebm5jrufUxQhklFEAYAAAAAwBRZXV3V6upq2zazs7Msj8REmhl2AQAAAAAAAMAgMCMMAAAAwFR4znq5r9d/xnzco0oAAMNCEAYALvX74RkAAAAAMFwsjQQAAAAAAMBUIAgDAAAAAADAVCAIAwAAAAAAwFQgCAMAAAAAAMBUYLN8AAAAAHChnwvncMVJABgNzAgDAAAAAADAVCAIAwAAAAAAwFRgaSQwRmYC0ltf7NwGAAAAAAAcRhAGjJFAQJol6AIAAAAAoCeBSqVSGXYRwKibnZ3VwcGBZmZmdPfu3WGXgz70s8ktAADAMLDRPoaBcyBMKvYIAwAAAAAAwFRgaSTQhYODA50+fbptm9XVVa2urg6oIgAAAAAA4BZBGNClnZ2dts/v7+8PqBIAAAAAANANgjCgS4uLi22fn5ubG1AlAAAAmAb97HHK/mI4ysbGhjY2Ntq2OTg4GFA1wGARhAFdmJmZ0a1bt4ZdBgAAAAD0bH9/v+NKF2BSEYQBGDvt/ir68l//tX72s5/pbW97mx7/1/96gFUBmCQcSwB4gWMJRtXc3FzHlS4EZZhUBGEAJsrLL7+sf9zf16/MzfGBE0DPOJYA8MIoHEtYVomjuLnA1+zsLMsjMZFmhl0AAAAAAAAAMAgEYQAAAAAAAJgKBGEAAAAAAACYCuwRhmPZtq1kMqlkMqlYLDaQsYrFoqv2mUxGxWJRW1tbchxHhmHINE0lk0lFIhFfawUAAACmAfuLwQ/DPJfzY+xx6RO/wIwwHOI4juLxuEKhkEqlknZ3d/vqKxAIdLyFQiEZhtGxv1KppPn5eaVSKUlSPp9XuVxWOp2WZVmKRqOKRqNyHKfnmgEAAAAA3hrmuZwfY49LnziMGWGocxxH6+vrymQynvWZy+Vct639sB+nVCopGo1KkhKJhLLZbP05wzAUi8UUDodVKpUUDoe1vb2tYDDYU93wXz9/YQQAAAAwPoZ5LufH2OPSJ44WqFQqlWEXgeHLZDLKZrMyDEOlUqnpuWw2q0Qi0VO/8/PzrtLqSCTSdlmk4zg6c+ZMfVpouVw+sp1t2wqFQq767Ebt0sEzMzO6e/euJ31OO7+CsI3//X+vX6Z89T/+R1/GADD5OJYA8ALHkt6wrHI0eHUONMxzOT/GHpc+cTxmhEGWZSkSiWhtbU1SdRZXMpnsu99cLifHcbS2tlZPto+ztLTU9vl4PF4P1NrNHKsl5YVCQaVSSblcrucQbxxsbGxof39fc3NzWl1dHXY5GFEv//Vf62c/+5ne9ra36fF//a+HXc5I4HvSjO8H3ODfyWF8T5rx/YAb/Ds5bNI/0w/zXM6PscelTxyPGWE4xLIshcPh+uNeZ4TVkurj0my3GlNvSdrb22s7BbRQKCgej0uSgsGg9vb2+hpfGt0ZYadPn9bOzo4WFxd169atgY49qksb+cvrYXxPDuN70ozvx2F8Tw7je3IY35NmfD8O43tymN/fk3GcTTbMz/TteHEONMxzOT/GHpc+0R6b5eMQL9YZFwoF2bbdcd8vN9LpdP1+JBLpWF/jFS4dx1GhUOi7BgAAAABAd4Z5LufH2OPSJ9pjaSR8sb6+rmAwqJWVlb77atxw3zRNV68xDEO2bUuSNjc3mw4WAAAAACZTv6sWxnFG2Sgb5rmcH2OPS59ojyAMnrMsS5ZlSapulm8YhiKRiKLRaNc/oLV+as6dO+fqdaZp1g8MJOTHG9XljQAAAADG2zDP5fwYe1z6RGcEYfBc63JI27aVy+XqSXcsFtPFixddpd2tV7A0DMNVDa3tLMtyna4DAAAAmE79/KGY2WTNhnku58fY49InOiMIg6ds2z70w9yqUCioUCgokUgom822bXvt2rWmx273Lzt16lTT462trYk9MPzav3uv3jY3x+wuAAAAYIh6/Tz+tt/+Lem/5j2uZviGeS7nx9jj0ic6IwiDpwzDUDableM4KpfLKpVK9SmbrXK5nLa2trS9vX1sf62v7TUh7/fKlQAAAAAA94Z5LufH2OPSJzojCIPnEolE02PHcZTL5bS+vi7HcZqesyxL0WhUxWLxyL6OC9G61TouAAAAAMA/wzyX82PscekTnRGEwXfBYFBra2taW1tToVDQhQsXmn5QS6WSMpmM1tbWDr221x/o1imlu7u7PfVTc3BwUP9vIBDoqy9JCgQCnvRzcHCgmdv/t25L+t9e+E7f/U2Cyj//v+J78gt8Tw7je9KM78dhfE8O43tyGN+TZnw/DuN7chjfk8Nq35OdnR3Nzs7231+lokql0nc/NbVzoW4N81zOj7HHpU90RhCGgYrFYopEIlpeXm66Qsb6+vqRQZhXRi0h9/KX08EbP/OkHwAAAADD1WvoNMmGeS7nx9jj0uckIwjDwAWDQW1vbyscDtfDMMdxVCqVFIlEDrX14ofa7aaDg+LVjDAAAAAAaOT1jLBeDfNczo+xx6VPdEYQNoJyuZySyaSnfZqm2XZT+mG4fPmywuFw/XGxWDwUhC0sLHhyYFhYWOjr9aPwiwQAAAAAxsUwz+X8GHtc+kRnM8MuANPLNM2m4OuojQJ7TbZbDyYk5AAAAAAwOMM8l/Nj7HHpE50xI2wERSIR5fN5T/sc1R+MaDSqUql07PNLS0tNe4k5juPqvbRuFhgKhXquEQAAAADQnWGey/kx9rj0ic4IwkaQYRgyDGPYZQxE4/s8ajpn49JJqTprzDTNjv2Wy+Wmx61LLgEAAAAA/hnmuZwfY49Ln+iMpZEYqsYg7Kjke2lpqenxUcsnj9I4VTQYDE5NsAgAAAAAo2CY53J+jD0ufaIzgjAM1dbWVv1+NBo99Lxpmk0B2bVr17rut/XgAgAAAADw1zDP5fwYe1z6RGcEYRiqximdx03nXFlZqd9vXD/dTmO7VCrVY3UAAAAAgF4N81zOj7HHpU+0RxCGoSoUCpKktbW1Y9skk8n6/XYb6x/VxjAM1ksDAAAAwBAM81zOj7HHpU+0RxCGQ1ovxeqXQqEg27YVDAZ18eLFY9uZptn0w10Lz47TeMVN0nEAAAAAGA4/z+VyuZxSqdSx+2r5Mfa49In2ApVKpTLsIjBaCoWC4vF4/XE6nW47Y6umVCopHo/LcRxFIhGl0+ljr3hh27bC4bAcx9H29nbHK2PYtl2/JKxpmtre3j6yneM4mp+fl1RdalksFjvWDQAAAADwhx/nctFotGlm1N7e3pEXX/Nj7HHpE8djRhiaOI5zKFXe3Nx09dp8Pl+fTVYqlRQOh5umedbUnltYWFC5XHZ1eVjDMOrJt2VZymQyR7ZbXl6WVL1yRmNSDgAAAAAYPD/O5VqXEF65cmVgY49Ln2ijgqm3t7dXicVilUgkUpF07C0SiVRisVhle3v7yH6KxeKRrwsGg5VYLFZJJBIV0zQrkipra2uVvb29rmstFouVYDBYkVSvZW9vr1IsFut9m6bZU98AAAAAAH94eS5X66d2KxaLAxt73PrEYQRh8FS5XK4kEomKYRj1H+BgMFgxDKMSi8Uq+Xzekx/adDpdMU2zaYxIJFLJ5/P9vwn4olwuVyKRiKu229vb9X9HtV9uhmH0HKDWpNPpSiQSqf+7qf277PSLc9B9Amivm+NJO7VjTC+/OzieAOPPq2NJzfb2diWfz1fS6bTrn1uOJZhGXpzLFYvF+jnn2traQMce1z7xCwRhAPqyt7fXdiZh4y2RSHTsKxaLdewnm812VWPjX1YikUilWCxWyuVyJZ/P10+EI5FIz3+t8apPYNp5eTzpZG1trd5Xtx+8OZ4Ao21Qx5K9vb36yWrtRHVtba1SLBY7/rxyLAGA4SEIA9CXdDrt+sNmuVw+tp+9vb2mGWBefXBtXLJ73GtqH2ANw3D14dCPPgF4dzzppHUpv9sgjOMJMB78Ppbs7e1VEolEvQ/TNLuabcWxBACGiyAMQF9a1+cfd+u09KC2R51pmpV8Pl8pl8v1v2I2ztzo5uR1b2+vaVnAccrlsus6/egTQJVXx5N2Gn+GuwnCOJ4A48PPY0k2m23qv9tZ6hxLAGD47hEA9CiXy8lxHK2trSkajbZtu7S01LafUqmktbU1pdPppucMw1AsFlMymVQ8HpdlWfXnLly4oFgsdmy/8Xi8fiXT1quhHjVGoVBQqVRSLpdTIpEYWJ8AvDuedHLhwgUtLCxIUv1n2Q2OJ8B48PNYkkql6ldyMwxDxWJRhmF01QfHEgAYvkClUqkMuwgA4ykUCkmSyuVy3/3UPlC2Y9t2fcyaYrGoSCTSse3e3p6CweCxfRcKBcXjcUnVyxHv7e0NpE8AVV4dT9rJ5XJKJpPa3t7W8vJy/cQxn8+3DdU5ngDjw69jSTweV6FQkFT9Gbxx40bbn9mjcCwBgNEwM+wCAIynQqEg27bb/uXRDcuyZNu28vl8x7aGYRyaMdY4Q6xRY7tIJNLxw2rjSbDjOPUPu373CcC740k7tm0rmUxqbW1Npml29VqOJ8B48OtYEo1Gm37mtre3uw7BJI4lADAqCMIA9GR9fV3BYFArKyt99bO5ualEIuH6A2Xr7K/bt28f2S6Xy9Xvuz3pbVzesLm5OZA+AXh3PGknHo/LNM1DYbobHE+A8eDHsaS2fUNNNpvtejlkY181HEsAYHgIwgB0zbIsWZYlx3E0Pz+vUCikZDLZ018Vz58/39WJaeuHvNalkrX6Gp07d67rvlvfix99AvD2eHKcVColy7JczTw9qr5GHE+A0eTHsaQ2k7TGNM2e99TiWAIAo4MgDEDXWpcc2LatXC6neDyuQCBwaFP7dkzT7Gp5Qevm1kf9VbbxL7fHtTlKa7vG9+BHnwC8PZ4cxbIsZTKZnmdxcDwBxoMfx5LaXlo1Fy9e7Lk+jiUAMDoIwgB0xbbtQx+8WhUKBYXD4aa/ono5fqOjNsq/du1a02O3QdupU6eaHm9tbfnaJzDtBnE8WV5eViwW63kWB8cTYPT5cSyxbbspIAoGg20vqtEJxxIAGB33DLsAAOPFMAxls1k5jqNyuaxSqXQonKrJ5XLa2trS9va2Z+M3flg77sS2tZ5e/0LaeMUpP/oEpp3fx5PabI7Lly/3XCPHE2D0+XEsyWazTY9rf3grFAra3NysX+wnGAzKMAydP3++7Z6nHEsAYHQQhAHoWmsA5TiOcrmc1tfXDy1dtCxL0WhUxWLRk7EbP5ged1Wo4z78dqvxvfjRJwD/jieFQkGFQkHFYrGnq7vVcDwBxoPXx5LGTeglaWFhQeFw+NAyQsdx6vuTpVIp5fP5I2eOcSwBgNHB0kgAfQsGg1pbW9Pe3p7y+fyhk85SqaRMJtP3OI3LFNLp9LF/+ez1A11r3bu7u772CeAwL44njuMoHo8rkUgcuXy6GxxPgPHUz7HEtu1DP6dXrlxRMpnU3t6eKpWKKpWKyuXyoQAuHo8fuQE9xxIAGB0EYQA8FYvFdOPGjUNXd1xfX++779rVJQ3D0NraWt/9deLHX0j5qyvgXq/Hk+Xl5fpSqVHB8QQYnm6PJa0zrYLBoG7cuHFo6WPtONN6rLlw4YJvP58cSwCgfwRhADwXDAa1vb3d9IHTcZyOG9m2Y1mWcrmcgsFgx2VR/SyDOq4fP/oE0Fm3x5NMJiPLspTP5z0b3+t+OJ4Ag9fNsaQ1CGu391ft+caZYY7jHArZOJYAwOggCAPgm9YNqvvZJ+zChQuSpKtXr3bcDHZhYaHncY7rx48+Abjn5nhS26MnnU4fmvnRK44nwGRxcyxp3Tz+3LlzHftt3be0ddklxxIAGB0EYQB8Y5pm0/48vW7qmkwm6zM83Jzc9vqXzdalAV781bVdnwDcc3M8icfjMk3T06XTHE+AyeLmWNLLz5phGIc+ozRurM+xBABGB1eNBOCraDTa15LIXC6nXC6nbDZ75FWYjrK0tNT04dNxHFcf8lo3iw2FQr72CaA77Y4nmUxGtm0rEokoHo937KvxRHB9fV2bm5v1x+fPn68fbzieAJOn02eTXn+2Wn+2bduuh2McSwBgdBCEAfBV4zLGbqfel0olJZNJZbPZQ1dlaiccDjc9bvwg2k7rUojGvxj70SeA7rQ7nty+fVuSegreLctqOpk0DKMehHE8ASZPp88mrWGS283kWwOlxsCJYwkAjA6WRgLwVeOHzW6m3luWpWg0qnQ63VUIJlX/QtrI7ZLMxg+6wWCwqXY/+gTQnV6PJ/3geAJMnk7Hkl5/Rlv7agzZOJYAwOggCAPgq62trfr9aDTq6jW2bWt5eVlra2s97fVjmmbTh9Fr1665el1jra0fLv3oE0B32h1P0um0KpWK61vjiV8+n296Lp1O15/jeAJMnk6fTVpnVbXOoHKr8TjDsQQARgdBGABfNX54dDP13rZthcNhJRKJppPRTq9pvTrTyspK/X7jkqd2Gtu1Xv3Jrz4BuNft8cQrHE+AyeLmWNL4dbdLrluXULYGahxLAGA0EIQB8FWhUJAkVzO7HMdRNBrVysqK6xBMql4prvWDbDKZrN938wG2sY1hGEd+MPajTwDudXM88RLHE2CyuDmWNAZEtm272iesU8DGsQQARgNBGADfFAoF2batYDCoixcvtm3rOI7C4bAMw1AqlZJt2x1vpVKpvlFs619dWy+PXvvQe5x8Pl+/f9xfR/3oE4A73RxPvMbxBJgcbo8lkUikaWnj+vp6x74bQ6aj/qDHsQQARkQFAFwqFouVYDBYkVSJRCKV7e3tY9uWy+V623btakzTrEjq6ZbNZo+todbGNM1jx97b26u3i0Qibev0o09gGvl5PHHDMIz6z2g+n+/YnuMJMJr8PJZsb283fd4ol8tt66i1SyQSbWvgWAIAw0UQBsC1RCJxKIQ66sNe7UOpYRhtPzTW9BOCdcrz8/l8vV06nW47fjAYrOzt7XWs148+gWnj1/HErW6DsEqF4wkwivw+lmSz2Xq/hmEc+TO4t7dXP6a0C6JqOJYAwHARhAFwrfGvnY23YDBYicVilUQiUf+Qtba25upDViwW6ysEa/dX18a6a38BjsVile3t7cre3l6lWCzW6zVNs6sPhX70CUwTP44n3eglCKvVzfEEGB2DOJY0/owGg8FKOp2ubG9vV7a3tyvpdLr+nJvPJEf1ybEEAAYrUKlUKgIAl2zbVjqdVqlU0u7urhzHUTAY1MLCgkzT1Pnz5xWJRJou5z0qMpmMNjc365veBoNBLS0tKZlMKhaLjUyfwLTgeOJ/n8A0GNSxJJfLKZ/Pa2trqz5GbcP5ZDLZtKeYWxxLAGDwCMIAAAAAAAAwFbhqJAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAAAApgJBGAAAAAAAAKYCQRgAAAAAAACmAkEYAAAAAGCkOY6jQCDQ8WZZ1rBLHVmZTKbj9y8UCg27TMB3gUqlUhl2EQAAAAAAHMdxHM3Pz9cfm6apy5cvyzCMpnbBYHDAlY0Xx3Hq93d3d1UqlZRMJutfMwxD5XJ5CJUBg0MQBgAAAAAYaa1BWD6fVywWG2JFkyMej6tQKEgiCMN0YGkkAAAAAGCsMPPLO62z6oBJRxAGAAAAABgrCwsLwy4BwJgiCAMAAAAAAMBUIAgDAAAAAADAVCAIAwAAAAAAwFQgCAMAAAAATDTHcZTJZBQOh+tXSKwpFAqKRqOan59XIBBQOBxWLpc7tp9UKqVwONzUvrXPUa8DmGb3DLsAAAAAAAC8ZlmWSqWSNjc3ZVnWoedt21Y8Hj/0nGVZSiaT2t7eVjabrX89k8kolUodOU48Htfa2prS6fTI1gGgKlCpVCrDLgIAAAAAJkUqlZJt267bnzt3Tmtraz5WNP4cx9H8/Hz98fb2tkzTPLa9bdv1sKh1llQ+n9fu7q6SyaRM09T58+dlGIZs29b6+rocx6m3LRaLikQiikaj2tra0srKisLhsBYWFnTt2jVlMpmmvsvlsgzDGLk62kmlUvXXG4ahcrns6nXAuCIIAwAAAACPtAY2btRCDhyv2yCsUesMKsMwtLu7q8uXLysWizW1tW1boVCo/rg2xsLCgvL5vILBYFP7UqmkaDRaf5xIJJpmb41iHa0IwjBt2CMMAAAAADxSKpW6ap/NZgnBfHZUYLa3t3cofJKqQVDj/w/LsuQ4jorF4qHwSZIikUjTzKt2//9HpQ5g2hGEAQAAAIBHisWiDMNQsVhUpVI59maaptbW1pRIJIZd8sRbWFhoenxU8NSocWaVpCP342rUGHC1WxI7KnUA044gDAAAAAA8UiqVOi51jMfjMgyjaUPz2hUDA4FA0y0cDvdURzweP7KvmyXKtgAACNJJREFU1r2kcFjrjKvWAKtV615cXoVQo1IHMGm4aiQAAAAAeCSVSrXdpDyTyci2bW1vbzd9PRaLKRaLHdoLy7IsWZblej8sqbqfVuvG7Ol0mg35XeoUOHXSuMn9JNQBTBpmhAEAAACAR9otdSyVSspms7p69eqxbYLB4KHZZOvr613VcFR7lmD659SpU8MuQdLo1AGMOoIwAAAAAPCZbduKx+PHbnbeqPX5QqHQ1TK3XC53KEzrNCYATAuCMAAAAADwkeM4ikajyufzbZdN1iwsLBy6CmDjfmLtFAoFOY7TcWN1AJhWBGEAAAAA4KN4PK5UKtV2A/2jNIZZuVzO1Z5P6+vrikQiWlpa6rZMAJgKBGEAAAAA4JNkMinTNHvaoyuRSDQtaczlcm3b1zbWZzYYAByPIAwAAAAAfJDL5bS7u+t6WeNRGgO0Tpvmr6+vyzCMrmee2batZDKpcDisaDSqUCikaDR66MqTx0mlUgqFQpqfn1c4HFYymZRlWV3VAACDQhAGAAAAAB6zLEvZbFb5fL6vfi5evFi/7zjOseFU7bluZ4MVCgWFQiHt7u5qe3tbxWJR5XJZ0i+WdB7Htm2FQiFZlqXt7W3duHFDUjUADIfDymQy9VlqbpZ1AsAgEIQBAAAAgIds29aFCxd09erVvvsKBoOuZoXlcrlDbd2Ix+OSpPPnzzd9vTaLLZPJHBtixeNx2batbDarYDCoYDDYFPylUimFw2GFw+GOs9kAYFAIwgAAAADAQ/F4XPl8vml/r340zsqqzbBqtb6+3nUIZtv2sc811r61tXXo+UKhIMuyZBhG09UtDcNoqqNcLqtSqfS1PHTYdnd3h12CpNGpAxh3BGEAAAAA4JFoNKqLFy82hUP9at33q3W5YqFQkOM4Tcso3fabzWaVTqcVi8WanltYWKjfP2pG2ObmZr2PVo31ud1nbJS0Bk6dlnXevn17ousAJg1BGAAAAAB4IJVKqVQqKR6PKxqNqlQqedp3TalUaprNtb6+rlgs1tMMtEQiobW1tfpjx3GUy+WarlB51Eyk2qy0o2aVNYZjoxDOtNbYKVBqfb62Z5rb9sfNtBuVOoBpRxAGAAAAAH0qFArKZDL1x6VSSdFotOvN648TiUSaAqbaUsPaUsluZ4O1sixLyWRSV65cUSKR6LjMslbLcWFL7flz5871VZcXWvcnu3LlyrEhlOM4ymazh9q3C7euXLnS9LXW149aHcC0IwgDAAAAgD5YllXfdL5VJpNpCshqwuGw5ufnm2ZeddIYquVyOTmOo/X1dZmmKdM0uy9c1cAlGo0qHo8rnU673mcsmUzW7x/1/mzbPrSkc5Asy1I0GtX8/PyhPdUcx9H8/LzC4XB96aZlWfX/J0fN3AqFQgqHw/X/X6VSSaFQSKFQ6FCYVSqVND8/r2g0qv/23/7bSNTB7DDgFwKVSqUy7CIAAAAAYFzVgiTDMGRZljY3Nw+FHsVisSkUCoVC9XCi9ZQsmUzKtm0Vi8VDY83Pz9cDj0QioVwup3w+f2iPr1rIUnPUaZ/jODpz5owcx1G5XG6acdb4+mw2e2RAlsvl6oFYY4h24cIFWZalYrHo2V5pre9ne3u75/APzVKpVD3MNAyj4xJMYNwxIwwAAAAA+lAsFpVIJBSJRLS2tqbt7W0Vi8WmoCYejzfN2KmFYkcFRe2uDtgYSOVyOQWDwUMhmFupVEqO4ygYDB6qw80VChOJhPL5vAzD0LVr17S8vKwLFy4oGo0eCtYAYFTcM+wCAAAAAGDSRCIRbW9vK5fL1QOncDh8aJZUPp8/9FrHcY4Noi5evNi0FPG4vcHcBFlbW1v18Y6qoZNCoaBiscgMIgBjhRlhAAAAAOCTRCKhvb09ZbNZGYahcDisUCik3d1dlcvlI5f37e7uHrunUzAYbJoVdtyeXq1B1lHB1sLCQv1+Y7hmWZYuXLhQf1wLuhr7KBQK9atjDoOboA8AjkIQBgAAAAA+SyQSKhaL2tvbU7lcri8pbFUqlWRZlhzHOXYj/dqm+YlEQsFg8Mg2m5ubTY9brygoNW94n0qlFAqFND8/rwsXLjTNVMtkMgqFQk1XPaz1H4/HFQgEND8/X9/IPRwO16+Y2bpXmlfY/N07bmb/AZOEzfIBAAAAYMhyuZyy2eyh4Mg0TSWTyUMzv6LRaH2WWaNkMqlSqXRkUGSaps6fP6+1tbWmcdPpdP0qj6lUqj5WbVnnwsKCkslk0+scx1E8HlepVOr43tLpdNNre9G6WX4wGFQ+n9fS0lJTu+OCQVS1hl5bW1tNs/rYLB/TgCAMAAAAANCVWhCWTqcVDAZl23bT3maO4+j27dv1GW57e3t9hVStQdhxuJrk8TKZTH024XEIwjANCMIAAAAAAK7VNv5vnSV2nHA4rMuXLxNQARgJ7BEGAAAAAHAtHo/Ltu1jN+o/CiEYgFFBEAYAAAAAcMVxnPq+YG72B8vlcopEIn6XBQCusTQSAAAAAOBaKBSqb8afSCSUTCZlGIaCwWB9n7BSqaR8Pl/f1B4ARgVBGAAAAADANdu2FY1Gj7wyZY1pmuwLBmAkEYQBAAAAALpWm/W1u7srx3EUDAZ17tw5RSIRAjAAI4sgDAAAAAAAAFOBzfIBAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBUIwgAAAAAAADAVCMIAAAAAAAAwFQjCAAAAAAAAMBX+/zUfOdAR+O3qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -591,7 +600,8 @@ "bins = np.linspace(5150, 5700, 50)\n", "ax = sns.regplot(\n", " x=ak.to_numpy(sel_array[\"z_mag_xEndT\"]),\n", - " y=ak.to_numpy(sel_array[\"z_mag_xEndT\"]) - ak.to_numpy(sel_array[\"match_zmag\"]),\n", + " y=ak.to_numpy(sel_array[\"z_mag_xEndT\"]) -\n", + " ak.to_numpy(sel_array[\"match_zmag\"]),\n", " x_bins=bins,\n", " fit_reg=None,\n", " x_estimator=np.mean,\n", @@ -614,11 +624,11 @@ ")\n", "ax2.set_ylabel(\"Number of Tracks (normalised)\")\n", "mplhep.lhcb.text(\"Simulation\", loc=0)\n", - "# plt.show()\n", - "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_old_regression_plot.pdf\",\n", - " format=\"PDF\",\n", - ")" + "plt.show()\n", + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/parameterisations/plots/magnet_kink_old_regression_plot.pdf\",\n", + "# format=\"PDF\",\n", + "# )" ] }, { diff --git a/parameterisations/train_matching_ghost_mlps_electron.py b/parameterisations/train_matching_ghost_mlps_electron.py index 5211ebd..5c1d7e9 100644 --- a/parameterisations/train_matching_ghost_mlps_electron.py +++ b/parameterisations/train_matching_ghost_mlps_electron.py @@ -54,7 +54,7 @@ def train_matching_ghost_mlp( if only_electrons: print("signal data: only electrons.") rdf_signal = rdf.Filter( - "quality == -1", # electron that is true match + "quality == -1", # && zMag_electron<5800 && zMag_electron>5000", # electron that is true match "Signal is defined as negative one label (only electrons)", ) else: @@ -63,7 +63,7 @@ def train_matching_ghost_mlp( "abs(quality) > 0", "Signal is defined as non-zero label", ) - bkg_selection = "quality >= 0" + bkg_selection = "(quality == 0) || (quality == 1 && chi2 > 1)" # && zMag_electron<5800 && zMag_electron>5000" if filter_velos: bkg_selection += " && velo_isElectron == 1" if filter_seeds: @@ -115,6 +115,8 @@ def train_matching_ghost_mlp( dataloader.AddVariable("dSlope", "F") dataloader.AddVariable("dSlopeY", "F") # dataloader.AddVariable("zMag_electron", "F") + # dataloader.AddVariable("yCorr_electron", "F") + # dataloader.AddVariable("std::abs(zMag_electron - zMag_default)", "F") # dataloader.AddVariable("eta", "F") # dataloader.AddVariable("dEta", "F") @@ -123,7 +125,8 @@ def train_matching_ghost_mlp( # these cuts are also applied in the algorithm preselectionCuts = ROOT.TCut( - "chi2<15 && distX<250 && distY<250 && dSlope<1.5 && dSlopeY<0.15", # && zMag_electron<6000 && zMag_electron>4500", + "chi2<15 && distX<300 && distY<300 && dSlope<2.0 && dSlopeY<0.15", + # "chi2<15 && distX<250 && distY<250 && dSlope<1.5 && dSlopeY<0.15", ) dataloader.PrepareTrainingAndTestTree( preselectionCuts, @@ -135,7 +138,7 @@ def train_matching_ghost_mlp( dataloader, TMVA.Types.kMLP, "matching_mlp", - "!H:V:TrainingMethod=BP:NeuronType=ReLU:EstimatorType=CE:VarTransform=Norm:NCycles=700:HiddenLayers=N+2,N:TestRate=50:Sampling=1.0:SamplingImportance=1.0:LearningRate=0.02:DecayRate=0.01:!UseRegulator", + "!H:V:TrainingMethod=BP:NeuronType=ReLU:EstimatorType=CE:VarTransform=Norm:NCycles=700:HiddenLayers=N+2,N:TestRate=50:Sampling=1.0:SamplingImportance=1.0:LearningRate=0.02:DecayRate=0.01:UseRegulator:!CreateMVAPdfs", ) factory.TrainAllMethods() factory.TestAllMethods() diff --git a/scripts/CompareEfficiency.py b/scripts/CompareEfficiency.py index 645154b..1a2256c 100644 --- a/scripts/CompareEfficiency.py +++ b/scripts/CompareEfficiency.py @@ -120,7 +120,7 @@ def getTrackNames(): def get_colors(): - return [kBlack, kAzure, kGreen + 2, kMagenta + 2, kRed, kCyan + 2, kGray + 1] + return [kBlack, kAzure, kGreen + 2, kMagenta + 2, kRed, kCyan + 2, kGray + 3] def get_elec_colors(): @@ -129,10 +129,10 @@ def get_elec_colors(): kBlue - 3, kRed + 1, kGreen + 1, - kViolet, + kBlue - 7, kTeal - 1, kOrange + 8, - kGray + 1, + kGray + 3, ] @@ -492,9 +492,7 @@ def PrCheckerEfficiency( and (histo == "p" or histo == "pt") ): mg.Add(eff_velo[lab]) - set_style( - eff_velo[lab], kMagenta + 1, markers[i], styles[i] - ) + set_style(eff_velo[lab], kBlue - 7, markers[i], styles[i]) mg.Draw("AP") mg.GetYaxis().SetRangeUser(0, 1.05) @@ -930,11 +928,11 @@ def PrCheckerEfficiency( histo == "phi" or histo == "eta" or histo == "nPV" ): set_style( - dist_hist_elec[lab], mygray, markers[i], styles[i] + dist_hist_elec[lab], myblue, markers[i], styles[i] ) - # gStyle.SetPalette(2, array("i", [mygray - 1, myblue + 1])) + # gStyle.SetPalette(2, array("i", [myblue - 1, myblue + 1])) # dist_hist_elec[lab].SetFillColor(myblue) - dist_hist_elec[lab].SetFillColorAlpha(mygray, 0.5) + dist_hist_elec[lab].SetFillColorAlpha(myblue, 0.5) dist_hist_elec[lab].Draw("HIST PLC SAME") if ( categories[dist_tracker][dist_cut]["plotEndVelo"] @@ -942,9 +940,9 @@ def PrCheckerEfficiency( and (histo == "p" or histo == "pt") ): set_style( - dist_hist_velo[lab], mygray, markers[i], styles[i] + dist_hist_velo[lab], myblue, markers[i], styles[i] ) - dist_hist_velo[lab].SetFillColorAlpha(mygray, 0.5) + dist_hist_velo[lab].SetFillColorAlpha(myblue, 0.5) dist_hist_velo[lab].Draw("HIST PLC SAME") # else: # print( @@ -965,15 +963,16 @@ def PrCheckerEfficiency( pos = [0.5, 0.25, 1.0, 0.45] else: pos = [0.35, 0.25, 0.85, 0.45] - legend = place_legend( - canvas, *pos, header="LHCb Simulation", option="LPE" - ) - for le in legend.GetListOfPrimitives(): - if "distribution" in le.GetLabel(): - le.SetOption("LF") - legend.SetTextFont(132) - legend.SetTextSize(0.04) - legend.Draw() + if histo == "p": + legend = place_legend( + canvas, *pos, header="LHCb Simulation", option="LPE" + ) + for le in legend.GetListOfPrimitives(): + if "distribution" in le.GetLabel(): + le.SetOption("LF") + legend.SetTextFont(132) + legend.SetTextSize(0.04) + legend.Draw() for lab in label: if not plot_electrons_only: # and not plot_velo_only: dist_eff[lab].Draw("P SAME") diff --git a/thesis/TMVA_stuff.ipynb b/thesis/TMVA_stuff.ipynb index 662ae4e..a51e325 100644 --- a/thesis/TMVA_stuff.ipynb +++ b/thesis/TMVA_stuff.ipynb @@ -10,6 +10,7 @@ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import mplhep\n", + "import awkward as ak\n", "\n", "mplhep.style.use([\"LHCbTex2\"])\n", "plt.rcParams[\"savefig.dpi\"] = 600\n", @@ -18,16 +19,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "train_tree = uproot.open({\n", - " \"/work/cetin/LHCb/reco_tuner/nn_electron_training/result_NewParams_EFilter/matching_ghost_mlp_training.root\":\n", + " \"/work/cetin/LHCb/reco_tuner/nn_electron_training/result_bestprecuts_NozMagCut/matching_ghost_mlp_training.root\":\n", " \"MatchNNDataSet/TrainTree\"\n", "})\n", "test_tree = uproot.open({\n", - " \"/work/cetin/LHCb/reco_tuner/nn_electron_training/result_NewParams_EFilter/matching_ghost_mlp_training.root\":\n", + " \"/work/cetin/LHCb/reco_tuner/nn_electron_training/result_bestprecuts_NozMagCut/matching_ghost_mlp_training.root\":\n", " \"MatchNNDataSet/TestTree\"\n", "})\n", "train_array = train_tree.arrays()\n", @@ -36,9 +37,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9b4wbeZ7feX6o6u7pcbulYGowZ20KmM5glYFdrG2JzOpHZ8BdSXZ7gQVuPUVKfYfBDXankyz50Z5milTW/hl44SmJWV1aP9oRmVW2BzvYGSlYVXfA4rYtMlWH9QG2u5Khas+DO281Q+qF5PR5p5KhbPd0TXdXxj3QRgz/J5OMZJCZ7xdASEn++IsvI34MMr78/Yl5nucJAAAAAAAAOOHORB0AAAAAAAAAMAskwgAAAAAAAHAqkAgDAAAAAADAqUAiDAAAAAAAAKcCiTAAAAAAAACcCiTCAAAAAAAAcCqQCAMAAAAAAMCpQCIMAAAAAAAApwKJMAAAAAAAAJwKJMIAAAAAAABwKpAIAwAAAAAAwKlAIgwAAAAAAACnAokwAAAAAAAAnAokwgAAAAAAAHAqkAgDAAAAAADAqUAiDAAAAAAAAKcCiTAAAAAAAACcCiTCAAAAAAAAcCqQCAMAAAAAAMCpQCIMAAAAAAAApwKJMAAAAAAAAJwKJMIAAAAAAABwKpAIAwAAAAAAwKlAIgwAAAAAAACnAokwAAAAAAAAnAokwgAAAAAAAHAqkAgDAAAAAADAqUAiDFhArutGHQIAAAAAAAuHRBiwIGzbVqlUUjwe1/r6etThAAAAAACwcL4QdQDASWDbtu7evSvbtuU4jvb29uS6rgzDkGmaWlpaUjKZVCaTUTqd7nt+LpeT4zhqNpvBfa7rqtFo6O7du2o0GvQCAwAAAABgSjHP87yog0D0qtWqCoXCkZ+XTCa7kjeTisViR36OYRhqt9sDH8vlcqrVakeus16vD0xUDeK6rm7evKnNzc0jbyeZTCqdTiuRSKher6tWq/XtSz85Ztt23/Oz2awsyzrydgEAAAAAOM0YGglJUj6fV7vdVrPZVDabHVk2nU6rXq8H5cPgeZ5arZYqlYoMwxhazjRNVSoVtVqtoUkwSbIsS+12e6zEVrFYVLPZVLvdHjsJ5g9R7E2C+Qkqvz7/ddXrdeXz+eC12batzc1NFQqFIGHX2+PLr8fzPJmmOVZcAAAAAABgOHqEYaBCoaBqtdp3/yx6IjmOo0QiMfCxdrs9MlE2TCqVGtizqlKpKJ/PHym2TCYjx3G67s/n86pUKmPVsbm5qVKp1He/aZpqtVoDn9N7POgRBgAAAADA0dEjDAMNGyY5yfDJozJNU8lksu/+bDY7URJMGh73UZJgjUZDiUSiKwlmGIaazebYSTDpeQ+0VqvV91r29vaGPmfS1w0AAAAAAP4CiTAMNGwo3qyG6A3azjTbHvTcoySXbNtWJpPpe/729vbApN048Tx69KgrBibDBwAAAADgeJEIw0DDkkRLS0uzDWQOOI6jtbW1vvsty5ooCebze5OdRLVarW/4KP5Co9GIOgQAAAAAOJVIhGEuDUq4nT9/PtT6xk3q5XK5vt5a+Xx+7In1RzFNU8Vicep6ZsW2bRUKBSUSCcViMcXjcSUSCaVSqWClzlqtpvX19UOTPY1GI3j+SU8MOY6jarWqTCajWCzW17swaqfpWAAAAAA43b4QdQDAPGs0GgMn2S+Xy6FtY2NjI1h90nXduZwPzHVdra+vBytcmqYZrC7qOI5s25Zt28Hj/nNG8ROMruuqUCgMXShgkTmOo1wuJ8dx5nro62k4FgAAAAAg0SMMGGnQJPvTTNo/iGEYR5q0Pwp+by/p+UqbrVZLlmXJsiw1m021Wq2+HnKHJVNOwzBb0zTVbDbVbrfnuuffaTgWAAAAACCRCAOGajQaA+e52tjYCH1buVxO0uiVI0dpNBrK5XJdQxYzmYyq1erUsW1ubgbD5YrF4sCknWmaqtfrXT3lDpsjrFKpyDRNmaYpy7KmjnPezdtwyE6n7VgAAAAAOL0YGgkMMSwhMM0E+cOk02mVy+Uj98xxXVdra2t9wzdd11Wj0VCj0VC5XJ5qYv+bN28G/x/UQ65TsVjUp59+qs3NzUOTeul0+lQNwYuq11WhUFClUhlZ5rQdCwAAAACnFz3CgCEGTRoexgT5wxSLxSMNuXQcRysrKwPnMOstl0qlJpoEfZK5rcrlspLJJKtGzoFqtRpKr0AAAAAAOClIhAEDOI4zMJFzHL3BJuG6bjDBeTabVaVSUbPZVL1eHzoXVSaTOXJyqjcJNm4ybWNjY64nhz8NHMc5tAcfAAAAAJw2DI0EBhiWMEokEjOOZDA/IVWv1/t6qaXTaRUKhYGJr1wup2azOfZ2TNPs+rtUKunKlSuH9lzzV5Sc11UwTzrXded6TjIAAAAAiAo9woABhiXC5ml1vUFJMJ8/eX0v27aPNETSMIyuRJbrukqlUmP1LPM8jyRYBPx54xiaCgAAAAD9SIRhYZRKJcVisYluqVTqSNsaNqxvXhI7hmEcOl+ZaZpdqzj6Bt03Sm95x3GUSCRCmXvKtm0VCoVDe9q5rqtqtapUKtW1XX/4XzweVywWUyKR0ObmZt/zHcdRqVQKVtVMJBIqFAoDj7O/nd421CuTyQT1dd7CHBJarVa7thOPx5VKpQa+Run5/hw0b1xnfMP29bjHwue6rjY3N5XJZIL978dXKpXGSsQ5jqPNzU0lEomumDuPQSKRCIYBAwAAAMDUPGAISX23drs9k23n8/mB2w/zZprmkbdfr9dn8vp7FYvFrjjS6fTYzzUMo+91HFU6nR64P5LJpNdsNo9UV7PZ9PL5fFdchmH0lWu32165XPaSyWTXNiuViud5/fuk85bP54N6RpUzTXNom+5tA8OUy+Wx3iPNZnPsY2BZVrBfLMvqqsM0zaGxt9ttr9ls9sXUbDa7bp31jXMselUqlaB8uVz2ms2m12q1PMuyuo5XNpvte2673faKxWLwOjpjbLfbfce7M65Wq3VobAAAAAAwCj3CsDDy+byazeZEt0qlcqRtDev5NS+9Uo7SM21Qz7HDVprsVa/Xg3m/eutJpVJj99hxHEd3794du9dRMpnsm/C92WwqlUrJtm1ZlqVWq6V2u921SEC1WpVt28pkMmo0GqrX62q322q326rX68H+cxxHN2/eHLjtXC43VoyD9ss0Go1GsO2NjY2u+pPJpCzLkvQ89vX19a7nGoahZDLZt6iDf1/nY0c9Fr5SqaRCoSDDMNRqtVQsFpVMJmWaprLZrJrNZhBzrVZTIpHoaht7e3vKZDJ97XJnZ0crKyvBsN5Wq6VKpRIcK9d1mfwfAAAAwPSizsRhfmnOeoSVy+WJ6+vtjaNDeoT19qjxb35vpFnr7dU0qKfNMH7vojBex7D9Mkm9nXUd1gupt5fQsJ55vT3XOnuGdercJ8O2Xa/Xx+rB1W63Q+0Rls1mD23zh9Uzbuy+cY9FZ0+ww451Z4+vYT0YO2M0DGPgce1tv7M6BwEAAAA4megRBgww7z3CjqJ35Udp8tdRLBbVbreH9oLyV6scp/5BcQ3TuUhBPp8fOj9a70qJw3oCdsbvuu7cHtdh7bDz/jAmxR/3WJRKpWD7+Xx+rLLS815ugxZp6HwdW1tbA49rb1vb2dkZK1YAAAAAGIREGDDAsMRAq9WacSTTG5RM+fTTT6eqz7IsNZvNviF40vOkx9raWqjJpXGHgnYet6MMH52nFRa3trZULpdlWdahySZpdsnZarUabGucxFk+n+86BkddpKFT5/bm6VgBAAAAWDwkwoABhvU4GtSrZd4NSlqcP39+6nqTyeTQ+dds2+6bv2oWJl3Vc29vL9xApmAYhorF4tA52Y46v1tY6vV68P9xe5B1vo8W8b0DAAAA4OQhEQYMMai3k+M4czuM7iiOMizxMPl8Xq1Wqy8JVavV5jr5MWnSbNYcx1G1WlWj0Rg4Ef4s4ziq3nZ2Et47AAAAABYbiTBgiKtXrw68f56TO8P0Jn3CTIT59TWbzb7tHHW1TvwFf9XLSqUycl60WelMYo2bFOtdkXKeet4BAAAAOJ1IhCEStm0rl8tFHcZIw+ZnWsTkTm9PnHF6FTUaDaVSqbG3YZqmtra2uu6LahjfoisUCkqlUjJNc6q5tcI0yQT9nYscSOEnYAEAAADgqEiEIRLr6+tzP0zKMIyB8zQ1Go2FSvD07udxexaZpinbto/UA653fzGx+dEVCgVVq1VJ000wH7bOJNa4K2129gAjCQYAAABgHpAIw8z5iaRMJjO0TNhDqCatb1giolQqTRPOQMeVGNzZ2en6u1AojPU8P3ExbvlBoprPapbCbKu2bQdJMNM052oes96hwn6co3SusjooqQwAAAAAs0YiDDPlum4wJPKoF8affvppqLGMk8AYNjSt0Whoc3MztFgcx1EqlZoq6TRM72p/R9nvpmnKcZyxE3+9PcCGzbO2CHqH9Q1LVIbZ662z992oeqPoTZnNZrsSc+MMEe58PRsbG8cRFgAAAAAcCYkwDHQcF9qu62ptbU2u68owjCMPlQo7pnHrKxaLA4cTlkqlUCbObzQawaTixzEUrlarBf8/6vxm/jHa3NwcqwdQZ/2maapYLB5pe8OMe6w6yx32nMMe7+3NNuj1D0oShtlDrPPY+cbZXu97qzepNul7qXMOOMdxRrZ/27aDIcTlcnmuercBAAAAOL1IhGGgYb1RJr3I9yde9y+Mr1y5cuTtT5NgmLbXTr1eH9iTKpPJTNwzzHVdFQoFZTKZoasujnruOKrVavDaJ1l5sDOhUigUVCgUhm67Wq127YvOnmiDdB7PqOeLG7b9zv1VKpVUKBTUaDRUq9VUKBSUSCT6kjzjvncGbbM3+ZbL5bS5uRn0QEwkEnIcp+u4VCoVNRoNlUqloM7eRJh/3BzH6ZqDbFBso45FNpvtStbmcrmB5V3X1fr6uqTn7W5YQnTc4965T6NuKwAAAAAWnAcMkM/nPUl9t3Q67bVarUOf3263vXq97hWLRc80zb56LMsa+txWqzVw25K8drs90etJJpMD66tUKkeqp1gsDqwnmUx69Xp9rDra7bZXLpc9wzCCfXrY6+rdrmEYh26ncz+m0+mxYutVqVQGvt5sNusVi0WvUql4+Xy+6xiP20Z6j8mwNtFut/v29TDZbHas41uv17vK5fP5odv2j1PvzTCM4Jh3lkkmk16r1eo7puPG1luu81Yulz3PG/z+zGazXfUMa6uDXuu4x8JnWVbwmg3D8CqVitdqtbxWq+VVKpWgPfjxDjLuMegtN2lbBgAAAADP8zwSYejSbDZHXoiHdRuU+Gm3216lUhmaeJDkmabpVSqVsRNizWbTS6fTI2MpFotjJW589Xp9aGLNMAwvm816lUrFq9frXrPZ9Or1ulepVLxyudz1PMMwDk04+AYlB03THJp860xU9CZIjqJerwdxWpbl5fN5L51Oe8lksus4+a/7sGSg376GHeNkMhkkT0aVNU3Ty2azQTvoTcb1Jk78Ouv1+tD2YJrmwGRMu93uqj+ZTHrFYrGrjH9fbztqt9uHvt5B2yyXy8H2TNP0isViV5tvt9vB6+jcZ706E9HJZLKrvR3lWAxTqVS8dDrdlRTznzfsPTrqPdl5DFqt1shyh8UGAAAAAIPEPM/zhFOvWq0ey0TtgySTSTWbza77YrHYkesxDEPtdnvgY7lcbuD8Soep1+tjDx+s1Wq6efNmMNxzXKZpqlAoKJ/PH2neJH8+qt7XZRiGVldXZRiGXNfVzs5OMA+bZVlHHg4JAAAAAMBJRSIMmJLrumo0Grp7964cxwnmYpKeJ738hQFefvllZbPZIy8ScNj2/G3621ldXVUulyMBBgAAAABADxJhAAAAAAAAOBVYNRIAAAAAAACnAokwAAAAAAAAnAokwgAAAAAAAHAqkAgDAAAAAADAqUAiDAAAAAAAAKcCiTAAAAAAAACcCiTCAAAAAAAAcCqQCAMAAAAAAMCp8IWoA0D0vvKVr+izzz7TCy+8oF/91V+NOhwAAAAAAHCC/dt/+2/1+eef68tf/rJ+8pOfzHTbMc/zvJluEXPnhRde0MHBQdRhAAAAAACAU+TMmTP6/PPPZ7pNeoQhSISdOXNGFy5ciDqcI9vd3V3o+KXFfw3EHy3ijxbxR4v4o0X80SL+6C36ayD+aBF/tIg/Wn78L7zwwsy3vXCJsMePH8u2be3t7cl1XX366aeSpPPnz8swDJmmqdXVVZ09ezbiSBfHr/7qr+rp06e6cOGCnjx5EnU4R3bx4sWFjl9a/NdA/NEi/mgRf7SIP1rEHy3ij96ivwbijxbxR4v4o+XHH8X0TAuRCHv//fdVr9d17949ua471nNM01Q6nVYul9Mrr7xyvAECAAAAAABg7s11Iuydd95RuVyW4ziSpM7pzGKx2MDn+GVarZYcx1G1WpVpmrpx44Z+67d+6/iDBgAAAAAAwFw6E3UAgzx48EAvvfSSCoXCwCSY//eg26AyjuMon8/rr/7Vv6of/OAHM3sdAAAAAAAAmB9z1yNsY2NDm5ubfUmtdDqtZDKp8+fPyzRNGYYhSVpaWpIk7e3tSZJc15XjOPr000/lOI4ajUYwnPKHP/yhksmkSqWS3nzzzZm9pkWxu7urixcvjixz/fp1Xb9+fUYRAQAAAACARXL79m3dvn17ZJnd3d0ZRdNvbhJh+/v7WltbU7PZlPQ88ZXJZJROp3X58uWp6n727Jnu3r2rarUq27ZVLpfVaDTUaDSYVL/DwcGBnj59OrLM/v7+jKIBAAAAAACLZn9//9DcQpTmIhH28ccfa21tTe12W/l8XqVSSSsrK6HVf+7cOeXzeeXzeTmOo0KhoO3tba2urqrZbOqrX/1qaNtaZOMsu0riEAAAAAAADHP27FktLy+PLLO7u6uDg4MZRdQt8kTYw4cPlUqllEwmtbOzE2oCbBDTNFWv19VoNJTL5ZRKpbSzs0OCR1rYZVcBAAAAAMB8GGdKpYsXL0bWayzSRNijR4+0trambDare/fuzXTb6XRajx49UiqV0pUrV/S9731vptsHOl2/fl37+/sLm5Alfkxj0fc/8WMai77/iR/TOAn7f9Ffw6LHv+gWff8TPxZVzOudlX6GXnzxRaXTad25cyeqEOS6rlZXV3Xt2jX99m//dmRxRMnPxC4vLy9kj7BFjx+YFu8BnGa0f5xmtH+cdrwHcJotevuPMv7IeoTduHFDpmlGmgSTJMMwtLOzI9M0tba2pkuXLkUaDwAAAAAAAI7Hmag2fP78eVmWFdXmuxiGoe3tbTmOE3UoAAAAAAAAOCaR9Qh7/fXXo9r0QJcvX9bly5ejDgMAAAAAAADHJLIeYbN27dq1qEMAAAAAAABAhE5NIqxarerx48dRhwEAAAAAAICInIpE2Pb2tjzP03vvvRd1KAAAAAAAAIhIJHOEvfbaa3r06NGxb2dvb0+u6waT4N+5c0e//du/fezbBQAAAAAAwPyJJBFmGIbq9bpisdixbsfzvK6/HcfRxx9/rEuXLh3rdjFb169f1/7+vs6ePRt1KEAkeA/gNKP94zSj/eO04z2A04z2P7mY15stmoGHDx8qlUqNnQjzPG/qpJlfR6lU0ptvvjlVXSfNxYsX9fTpUy0vL+vJkydRhwMAAAAAAE6wKPMQkcwRdvnyZZmmKel5guqwWywWG6vcsJvP8zxZlhXFSwYAAAAAAEDEIpssf21tTZLUaDR0cHAw9FYul+V5npLJpOr1utrt9sjyvbednR2trKyoUCjo4OBAn3zySVQvGQAAAAAAABGKZI4wSbpy5Yps29Yrr7wytMyjR49048YNFQoF/f7v//5E20kmk7p//75efPFFxWIx/Xf/3X83acgAAAAAAABYYJH2CIvH4yPLlMtlmaY5cRLMZ5qm1tfXValU9OGHH05VFwAAAAAAABZTZIkwSbp///7Ix3d2dlQoFELZ1urqqjzPU6VSCaU+AAAAAAAALJZIE2GHsW1byWQylLqWlpYkSfV6PZT6AAAAAAAAsFjmOhFmGIYePXoUSl1+Asx13VDqAwAAAAAAwGKZ60TY6uqq7ty5M3U9z549U7ValfQ8uQYAAAAAAIDTZ64TYfl8Xs1mU2+//fbEdezv7yudTkuSYrGYTNMMKzwAAAAAAAAskLlOhGWzWa2srKhYLOrb3/62Hj9+fKTnv//++1pZWZFt28F9V69eDTlKAAAAAAAALIKY53le1EGM4jiOXnzxRcViMUlSMplUoVCQaZoyTVNf+9rXJEmPHz+W67pyHEf1el337t2T67ryPE+xWEye5ykej+vTTz+N8NXMp4sXL+rp06daXl7WkydPog4HAAAAAACcYFHmIeY+ESY9Xz1ydXVVkoKE2GH8l9VZvl6v65VXXgk/wAXnN8AzZ87owoULI8tev35d169fn1Fk4fA+++nA+2Nf/uUZRwIAAAAAwMl2+/Zt3b59e2SZ3d1dHRwcRJII+8JMtzahZDKpH/7wh8rlcnr48OFYz/ETYH5CzLIskmCHODg40NOnT0eW2d/fn1E04dn/jf944P3natszjgQAAAAAgJNtf3//0NxClBYiESZJpmmq2WyqVqvp1q1bXfN+Sf2JL//fbDarra0tnTt3brYBL6BxeoSdPXt2RtEAAAAAAIBFc/bsWS0vL48s4/cIi8JCDI0c5NGjR2o0Gmo2m3IcR3t7e5KkpaUlmaapTCajdDpNAmwMJ32OMH9o5OePf6if/Jf/ub7y9/+BXvjaiwyNBAAAAAAgAlHmIRamR1ivlZUVra+va319PepQMOf8hFfsS78U/EsSDAAAAACA0+dM1AEAAAAAAAAAs3AiE2EbGxv60Y9+FHUYAAAAAAAAmCMLlwh7//33de3aNb388st6//33B5ZJpVK6fPmyvv3tb5MQAwAAAAAAgKQFSoR997vf1fnz55XL5VStVmXbdjBBfq9sNivHcfTJJ5/INE198MEHM44WAAAAAAAA82buE2HPnj3TSy+9pFKppHa7Lc/zNM5Cl4ZhqNls6tKlS8pms3r33XdnEC3mkffTP9Nnf/SP9JPf25Ak/eT3NvTZH/0jeT/9s4gjAwAAAAAAszT3ibBcLqdWqyVJisViisViR3r+9va2PM9TPp/Xhx9+eBwhYo55P/0z/bvfva4/f+8P5T1zn9/3zNWfv/eH+ne/e51kGAAAAAAAp8hcJ8K2t7fVaDQUi8WCnmDnzp1TOp0euw7DMPT666/L8zwVCoVjjBbz6M//73d14Hwy8LED5xP9+f/j7owjAgAAAAAAUZnrRFilUpGkoEdXq9XS3t6e7t+/P9bwSN+3v/1tSVKr1WKI5Cnzsw+/N/rxB6MfBwAAAAAAJ8dcJ8L83mDValV37tzRysrKRPWYphn8//79+2GFhznneZ68vT8dXWbvT4+UVAUAAAAAAItrrhNhruvKNE195zvfmaqeztUlbdueNiwsiFgsptjSr4wus/QrR553DgAAAAAALKa5ToQZhqFkMjl1PX7yy/M8OY4zdX1YHF/6xt8e/fgrox8HAAAAAAAnxxeiDmAU0zTluu7U9dy8eTP4v2EYU9eH+fPZ3T8YeL/3+eeKGUvy3L2+x2LGkrxffD7wuV+++puhxwgAAAAAAKI11z3C1tbWtLOzM1Udb731lmzbDoa/dc4XhpMv9sUv6ot/61t64d//69Ivffn5nb/0Zb3w7/91ffFvfUuxL34x2gABAAAAAMDMzHUibGNjQ+12W2+//fbEz79x44ZisZg8z1MsFtPVq1dDjhLzLvbFL+oL/+ElffFvrkmSvvg31/SF//ASSTAAAAAAAE6ZuU6EGYah119/XcViUW+88Yb29/cPfc7+/r7eeecdvfTSS9rc3OxbETCfzx9XuAAAAAAAAJhjcz1HmCSVy2XZtq1bt26pXC4rk8konU5LkprNppaWlrS3t6dWq6VGo9E1Mb6krhUB79y5o7Nnz87+RQAAAAAAACByc58Ik6R6va5CoaCtrS3V63XV63XFYjFVq1VVq9Wusr0JMP/vSqWi9fX12QaOueD94ufP//38F8G/3i9+rtgXGBoJAAAAAMBpshCJMOl5IqtQKKhUKml7e7vvcT/x5c8H5ifA0um0KpWKVlZWZhov5sfPPvijrr9/8eE/kST9Uu7/GkU4wNy49eGDqENYSDe+8UrUIQAIWaPRCEYcAACAk22u5wjrlUwmVa/X1Wq1VKlUlM1mlUwmZZqmzp07p5WVFV2+fFnZbFaVSkXtdlv3798nCQYAwAw1Gg3F43ElEgk1Go0Tv10sHsdxVK1WlclkFIvFlMlkog4JJxTnJQCYPzGvdzZ5nDoXL17U06dPtby8rCdPnkQdzkQ+u/sHQx/zh0b2GjU08stXf3PqmIB5R4+wydAj7HDxeFyu60qSTNNUq9U60dvF4nAcR7lcTo7jBG3Fx1diHAfOSwAwWJR5iIUZGonjt7u7q4sXL44sc/36dV2/fn1GEYWDucAAYLaWlpb6kgwnebtYHKZpqtlsSpJKpZI2NzcjjggnHeclAKfR7du3dfv27ZFldnd3ZxRNvxOZCHv8+LFs25ZhGFpdXWWlyDEdHBzo6dOnI8vs7+/PKBoAwKLy5/WUJMuyTvx2sZgymQyJMBw7zksATqP9/f1DcwtROlGJsMePHyuXy8m27a77U6mULMvSr/3ar0UU2WI4c+aMLly4MLIMSUUAmA+FQkGVSiXqMAZKp9ORDP+JartYTEtLS1GHEIp5PheA8xKA0+ns2bNaXl4eWWZ3d1cHBwcziqjb3M8R9s1vflPtdjvoUry3t6d0Oq27d+92lXv48KHS6bRc1x04x8OZM2dUr9f1jW98YxZhL5STPkfYJJgjDKcBc4RNZh7mCKtWqyoUCsxpBEzBtm2lUqng70V8P3EuAAAsqijzEHO/aqRhGGo2m/r000+Vz+e1s7PTlwR79uyZ1tbW1G63JUmxWCx4bjqdlmmaOjg4UC6Xm3n8AACEyXGcYJgNgNOLcwEAAJOZ+0SYbdsqlUra29vT66+/rpWVlb4y6+vrcl1XsVhMnufJ8zyVy2Xt7e3p/v37+uEPf6j79+/r4OBAb7zxRgSvAgCA6bmuq0wmE3UYACLGuQAAgMnNdSLsrbfeUjKZ1M2bN4eWee+991Sr1YIkWCwWU7lc1uuvv95VLp1O69atW8FKQQAALBLXdbW2tibHcaIOBUCEOBcAADCduU6EVavVQ3twra+vB0MhY7GYkslkXxLMd/XqVe3s7IQeJwAAx8m2ba2srPQtBhOLxYJbIpHoe57ruqpWq0qlUsFFs+M4ymQywXMajcbAbVarVWUyGSUSCcViMcXjcaVSqbFX2bNtW4VCYWBcnRzH0ebmphKJRNfr8+P248zlcsF8ofO43d7nx+PxoI5CoTB0P0+j0WgExygejwc3/75xYp30GHe2rWq1GtzvD9frfP2D6nMcR6VSKdi2v58O29eu6wbHrbNNd9bl74Pe90sYXNft2pYfe6lUCn1bgxz3uaCz/XfeenW2m87bOMfvuPffcbSRWZ0PJz1nT3suAIDTZq4nyz9z5szIVQSuXbumSqXS1Rus2Wzq0qVLQ5+ztLSkvb29Y4h2cTFZfj8my8dpwGT5k4lisnzXdeU4jhqNRtcFY28v52QyKdd11Wg0VKlUui6YWq1W0JOk82LVNM2uFc1qtZpyuZwMw9DW1pay2ayk5xdyuVxOjuPINE01m00ZhtG1fdu2ValUdO/evWAbhmEEc3h2vp6bN2+qVqt19WppNpsyTVNra2sDL1D9eUNN05yL7XZyHCdYubpcLiubzQYX336dhmHoypUrMgxD58+flyTl8/m+/TiOXC6nWq2mSqWifD4f3F8oFILEVLvdHlj3pMfYv0i/e/du137yYyiVSkMTA/l8PljZcFS5Qdut1WoyTbOv/bdarSDmYcrlsorF4sDHjjpZfrVaValUUjqd1ssvvyxJqtfrwfvMNE1ZlqVkMjmynmnM6lzQ2Y6k4ftmc3OzK45hbU463v13XG1kVufDac7Z05wLACBKTJY/hGmaevz48cDHHj582JcEy+fzI5NgDx8+1Orq6vEECwDAMTEMQ8lksu8C0b+v87F79+7po48+6vvRx0/U5PP54GLOr9vXaDSCC8aNjY2ucslkUpZlBXWtr6/31X/37t2xeh/s7e0pk8konU533b+zs6OVlRWZpql6va5Wq6VKpRLE6Lpu3+TgUW23l9+7xL+oNk1T6XRa29vbQQLNTyT5yQN/DtSj2tzcVK1WU7FY7LrwldR3MdxrmmPsl+ndF81mU6lUSrZty7IstVottdvtruRCtVqVbdvKZDJqNBqq1+tqt9tqt9uq1+vBvnYcp29KjGw2q2Qy2XfcKpWKcrmcstmsKpWKKpVK1+uRRifdjqJQKKhQKMiyLFmWpWKxqGKxqHq9rnK5HMTe2ZPnOMzqXDDuAlO9+3uY495/x9FGZnU+nOY4TXMuAIDTbK57hH3zm9/U6uqq3nzzza77nz17FnxQ+t21TdPUJ598MrK+7373u7p8+bLW1taOLeZFRI+wfvQIw2lAj7DJRNEjzOcPf/GN+gjv7e3iJ3n8pEytVlO9XlepVAru83sWSMN7SXQOkxqnl8igHhDD6jMMQ5Zl9V3M+r0yfMN6N0S13c6eF4P2Se9xa7VaI3uXHcYf8jXsGLmuq3g8PnA7YR1jP/Hlq9frfftPUpD48nX2DOvUua+HHTv/dfl627Svd39Lg4/duD3CqtWqCoWCisVikLTp1TkML51Oq16vDywXluM+F4xbf+8xGbSfZ7n/wmwjsz4fTnKcpjkXAEDU6BE2RD6f161bt/TGG29of39f+/v7ev/997W6uhokwfwPHf9XmWEePnyomzdvkgQDAJwKvRc9hUKh6z6/h8Swi6Nhw2g67x/Wc+MoF1yd9W1tbQ1MpvT24Bg232cU2/V7efXW2SmdTnfFNigRdBT+fr979+7Axw3DGKunzjTHeGlpKfh/Pp8fuP8k9SUbhr32znhd1x1rXjbLsgYe83Q63fe9cJo5qPznjuoV2Pn6G43GXE1kP+25YFpR7r+w2sgszoeTHKewzgUAcNrMdSIsm81qbW1N5XI5mPQxl8up1Wp1JcHu3LkzckjkO++8M/QL2rQ6J7/snfTzKJPrTsKfPBMAgF69F27jfA5ubW2pXC7LsqyxhtQc9+dcp0EXf/Ow3c7k2Kj90XkxOm38fkz+UMNB2y2XywMvwMM6xuPON9QZw1HmKBpnH42qL5vNdm170sWSqtVqsA9c15Vt2wNvvbEcx+IIk5rkXBCWqPffNG1k1ufDSY7TNOcCADjNvhB1AIep1Wr6zne+o/fee6/rfs/zgokrX3311b7nffzxx7p7924wIa4/j9gHH3ygv/N3/s7Ucbmuq/X19aDLdCd/JarNzc2Jxuf3dusehbH/AIBxjJOEMAxj5MTiOJzrugP3tT85uHS0nmuDlEqloHdNo9HQysqKyuVy13eCUT39ZnmMJ52gO4yFjQqFQtDLZ9LX1tlrqHPY2mF6J6+fJ7OcNH3e99+oNhL1+XCc4zTNuQAATrO5T4SdO3dOlmVpe3tb9Xo9+NXo5ZdfVj6f17lz5/qes7W1FXzwrqysaGVlJXjs+9///tSJMNd1x57Ms1AoqNlsHmkYROcqPYeZ1XLdAIDTx1+dzp/4Hf16F+GpVqtDL559nUmxSeTzedXr9eDHOH8y/3K5HKxYOa55OsaGYYTay7A3ATAsSTmK30somUzOdXJrXs37/jtKG5mn94ovzHMBAJwmc58I862trY09v9f6+vrAlY7C4i+XnEwmtbGxEazOY9u2Pvroo76VZ6rVqjKZzNgfRr2rJQ3TO+cIAABhsG1bpVJJyWRy6OTWeM4wDJXL5eCHqZs3byqfz/ddTPtz+CSTyVAuTi3L6pqEW/qLVebS6fShcz6dhmMcxnekzmF9OLp533/jtJF5f69Mey4AgNNorucIm0fValWNRkPFYlHNZjOYX8A0TWWzWZXLZbVarb5lrcdNzPlzKfhLSo+6HbZAAAAAR1UoFJRKpWSa5lxe9M2jztXw/F7j/hxHrutqc3NTtVpN2WxW29vboW633W73JdYajYYSicTQ4Vun9RhPMyTQcZy5TeYsgkXZf71tZFHeK5OeCwDgtDpVibDHjx9PXUe5XFY6nR75YWiaZl+SynXdsSb+9Ce09Lcz6jbLOR4AACdfoVAIhufP80XfPCoWi2q1WpKez2+Vy+UUi8WUSqX00UcfqdlsyrKs0D+7DcOQZVlqNpt9w7UG9aQ/Tce4cwqL3h8oJ3Hv3r2p6zjN5nH/jWoji/ZeOeq5AABOs1OVCMvlclM937ZtOY4zVk+sQb8cHfZrjD+xP/N+AQBmzbbt4KLPNE1+bJlAoVBQpVJRu91Wu92W53lqtVqyLCuURIxv0PeZZDKper3eNSep67pdi/qctmPcmeS4evXqRHV0JhSOkgwZdy7ZRXfYogbzvv+GtZFFea9Mei4AgNPuVCXCpv1AvXv37sB5P4bp/TXm008/HVn+5s2bMgxDV65cmTREAAAm0tlredTn5SIMb5o1fzhkJpOZyWrOoy5o8/l812T9nYmK03aM/XnZpMlX2e5MNDiOE6zQd9hzFn0e16Wlpa6/h7WJw75bz/v+G9ZGFuW9Mum5AABOu1ORCNvf39drr7029YfV1atXj/RrVu+vv4lEYmhZ27Zl27Zc11U8HlcikVChUODXGwBAoPfCsPcCrfNzrvcz76ifgYM+f3p7LHNh9Vwul5Nt26H2+jrMqBWmM5lM8P9Rq9tNc4zHbU+j2uSkdY5T3v9eJUmVSmXiHj35fL7rfVetVoNFk3o1Gg2lUinZtt33fdFxHKVSKcViMWUymal/nD3uc0FvWx7U3gaNYuhtL2Htv0mF1UZmcT6c9JwdxrkAAE6byBJhjx490ssvv6zz58/rjTfeGFhmdXVV58+fn+r2wgsvKB6Pj/yQGFcymTzSF6neD7BRv2z1fpg6jhN8WYjFYsGXbADA6dX7OVIoFOS6btDTYtRn3WEXab0XvrlcTpubm2o0Gtrc3FQikZDjOF0xVCoVNRoNlUqlrs+8zm2FlfzovHAe9pwotts5B2gmk1EqlVIul1OhUFCpVNLm5qaq1Wqw2E5YPUh693kn//tCb6+aMI/xcRtnW+vr6wPLOY4TzImUz+eH9gbrfU8M22bnEDPpeVIkkUgokUgok8kok8koHo8rk8nIdV01m82+OgqFQnBc/ITPNI7zXODrTJyUSiUVCgU1Gg3VajUVCgUlEgmVy+Wu78aDElxh7L9JTdpGojofdhr3OE1yLgCA0y6yRFgul1Oz2VS73Va5XNb777/fVyaVSgXzbEx68zxPnudF8Ar7vwwM+yXGcZxDJ9Kv1WpKpVJjdSkHAJxcnUNdGo1G0Iu497HeC+Hei9Fe6XS6b8WxUqmkTCYTXARbltX1WVar1YLeLZ0Xw4MufAfp/eyr1+tTlYtiu4ZhdL1227ZVq9VUrVa1ubkZ7LtCodB1wT9tjyDXdbWystL3Gmu1mkqlkpLJZN+cpmEd494FgHZ2dobG2Tn0TBree2XcY9IrHo8HPej9BE0qlZLruiqXyyPbfe9jwyZzT6fTajabfT+G+t/f/ATnsHLS4KTbtL3+j+tc4Otd3KFarSqTySiXy+nevXuq1+t9321LpVLfCpFh7L9pTNJGojgfTnqcJjkXAMBpF1kizLZtxWKx4O9BXwhfe+01SVIsFuu6jWuS54Sp84vhqLkpTNNUpVJRuVzu60Leq1qtTv0rIgBgcZXLZRWLxeCzwr/I8S+aSqWS4vF4X0/jWq2meDyuXC439McXy7KC1Yul559PxWJR7XY7uLD2VzX2t10ul2VZlmzbVi6XUzwe7+vBnMvllEqltLm5Ken5dwC/J0inarUaTA0gPf9uMKhco9FQIpHQ5uZmZNvtNGiVtlH8HkGT9rDKZrOqVCpaWloKeo4nEgnF43FVKhVVKpWhCYUwjvHKykpXnbZtK5FIKJfLBa/J7zHUe3HuJwT9fdhoNMY6JoP47d5xHK2vrwdtO5/Pq9VqdSWDfK7rBu1lUGzDfnRMJpPBPursLZRMJpXNZtVsNlWv14cmcba2tvrayLTJ0OM8F0jPk7yPHj3q+m6aTCaD9uK/Hr8NtVotNZvNgZPLT7v/JjVJG+l87izOh9Mcp2nOBQBwmsW8iLpLFQoFbW1tPQ8iFlOr1dLXvva1vnJLS0t69uyZPM+TYRhaWloa+2Tuuq729vaCL2WxWEyff/55SK/gcP48B5LUarWO1CXZdV1Vq1XdvHlz4BfldDo99q+lh7l48aKePn2q5eVlPXnyJJQ6Z+2zu38Qan1fvvqbodYHzKNbHz6IOoSFdOMbr0QdAuaM67paW1sLLpr9IWqd30E+/fTT4HuJ3wOmWCyGNhfSaeDPo+o76nereeG/Dsuy+nodYTonpY0AwGkQZR7iCzPdWodKpaJMJqOdnR0VCoWBSTDp+dj+7373u7JtW5cuXZp4e6VSSd/97ncnfv5ROY4TJME6f00al2EYKhaLKhaLqtVqfXMc+HMUjPolCwBGIaEDTM+2ba2trWljY6Orx89hE+f78y3h9PF7gjF5OQAA0YisR9i4Hj58qCtXruiTTz6Zuq6lpaWZrXDlT1RqmqZardbU9fm/Nnd2rzYMQ+12e+q6/UzsmTNndOHChanru379uq5fvz51PUdBjzAAwKz5KwG6rnvk+UgbjYbK5XJovbtPg5PS2yeVSunq1av8mHkMTkobAYB5dvv2bd2+fXvqenZ3d3VwcHC6eoSN6/Llyzp37lwodc3qg9C2bVWrVRmGEdoXXMMw1Gw2u4Zb+pPVhvWL4sHBgZ4+fTp1Pfv7+yFEAwDAfPNXa5tk/h3LspTL5cIPCnMtl8sFc00BALCI9vf3Q8kbRGnuE2GStL29HUo9/pxkx219fV3S87jDTr5tbW11TZY/aMWeSYXVI+zs2bMhRAMAwHzzhzb683qOWhinU6FQ0M7OztirwuFkSKVSSqfTzAsHAFhoZ8+e1fLy8tT1+D3CorAQibCweoTNYvXIQqEg27ZlWdah84NMIplMKp1OB1++p11xqNOFCxcWdrJ8AABmLZ1OBysPFgqFoJdXOp0OFvfxJ8h3HEeWZenevXtaXV1Vs9mMOPrF0zu9xaSrbkbFsiyG6R2zRW8jALAIwpoKyZ+iKQpnItlqRPyeWselWq2qWq2qUqkc6ypAvUuMAwCA2etd9a/RaKhQKCiRSCgejysWiykejyuRSCiTyejevXva2tpiXrAJ9fakunnzZkSRTIYk2PFb9DYCAJiNU5UIC7P3VC//y2+lUhl7aMSkOr9ILS0tHeu2AADAcJZlqV6vD/0BzDAMZbNZWZaldrt9rD+UnVSFQkHxeFzVarXr/lqtpng8rlQq1fcYThfaCADgKBZiaOQ09vf3tbe3p2KxeGzdo23bViaTUblcPvYkmNSdCJtkgl4AABCedDodzNfpD4WUFAyPxHQqlQrzqWEk2ggA4CgiSYQ9e/Zs5j2ZPM87ljnCHMfR2tqaisXizFYA2tnZCf7PMEkAAOaHYRgkvwAAAOZYJEMjz507p0uXLsnzvJndjoPjOEqlUsrn82OvAOQ4jjY3N6fabqvVCv4f1oqRAAAAAAAAJ11kc4R9+9vflvR8JcfjXs3xOOp3XVeZTEZXrlw50jLY/mpS0/BXqJpVDzQAAAAAAICTILI5wvxkkOd5Mk1Tpmkey1AC13XlOE6oE+W7rqtUKiXTNFUqlcaq23EclUolSVIymZx427VaTY7jyDAMbWxsTFwPAAAAAADAaRNZIuzy5csyDEOZTEZ379499u1Vq1Vdu3YtlLrW1taC5FoikTjSc3sn8mw0GsrlcnJdV+l0WuVyeWiizHEcra+vS5K2t7eZgwQAAAAAAOAIIhsaKT3vFTaryd7z+bzOnTs3dT2pVEq2bU8VRyfLsoLVLBuNhlKplAqFQt/z/MeWlpbUarWm6lUGAAAAAABwGkWaCJv1ioerq6tTPT+Xy4WaBPPr7FWtVhWPx5XL5VQoFJRKpZTJZJTP59VsNmWa5sQxAAAAAAAAnFYx77iWVBzTs2fPQumptcgcx1G5XFaj0dDe3p5c15VhGFpaWlIymdTVq1eVTqePbSjkxYsX9fTpUy0vL+vJkyfHso3j9tndPwi1vi9f/c1Q6wMAAPOr0WiwEjcAADMUZR4isjnCfLNIgj179ky3bt3SzZs3j31bkzBNs2/uMAA4bmEnkE8LEuWH8+e/XFpaUqVSmVmCIartYvE4jqNGoyHLstRoNCQ9X8AJOE04ZwI4rSLvETYrq6urOnPmjL7//e9HHcrcoUdYPy50cRqQCJsM54fDxePxYP5L0zTVarVO9HaxOBzHUS6Xk+M4QVvxnZKvxECAcyaAKEWZh4h0jrBZWl1dVbPZ1BtvvBF1KAAAnGhLS0unartYHKZpqtlsqt1uq1gsRh0OECnOmQBOq8iHRh7V48eP5bqu9vb2xn6ObduyLEue56lSqejNN988xggBADjdKpVKsAKyZVknfrtYTJlMRpubm1GHAUSGcyaA02ohEmHvv/++KpVKMIfDNHq7wQMAsIgKhcLczi+ZTqcjGWIT1XaxmOgNg9OOcyaA02ruh0a+9dZbyuVyajQa8jxv4pskxWIxJZPJiF8RAADTqVarqlarUYcBAAAALJy5ToQ9fPhQpVJJ0uAJTGOx2Fj1xGIxeZ6nlZUVbW1thRojAACz5DhOMJQFAAAAwNHM9dBIf8jHuXPnlM/nlUgkZJqmJKndbuvKlSuKx+O6d+/ewOe7rqv79+/rnXfekW3bunTp0qxCBwAgdK7rKpPJRB0GAAAAsLDmOhHWaDSUSCT0ySefDHx8fX1d77zzjhKJhL72ta8NLPPqq69Kkm7cuKHvfe97xxUqAADHynVdra2tyXGcqEMBAAAAFtZcD410HGfkRMA3btyQ53mHrvhTKpV0//59vf3222GHCADAsbNtWysrK7Jtu+v+WCwW3BKJRN/zXNdVtVpVKpUKEmiO4yiTyQTPGbYQTbVaVSaTUSKRUCwWUzweVyqVGnuVPdu2VSgUBsbVyXEcbW5uKpFIdL0+P24/zlwuN9aCN1Ftt/f58Xg8qKNQKISy4E+vRqMRHKN4PB7c/PvGiXXSY9zZtjrnq/OH7na+/kH1OY6jUqkUbNvfT4fta9d1g+PW2aY76/L3Qe/7JQyu63Zty4/dn8rjuLmu27Vt/xaPx7tiKBQKfWX8crlcrq/eXC7XVW5Qz9Npzif+cctkMkHb8NtbqVQaK8F/Et6zx9F+Z3WunvT4T3ueAoDjEPMGTb41J86cOSPXdXX27NmhZTKZjB48eKB2uz2yXCqV0scff3xoudPo4sWLevr0qc6cOaMLFy6MLHv9+nVdv359RpGN77O7fxBqfV+++puh1gfMo7DfN6dFFOcH13XlOI4ajUbXxW6z2ewql0wm5bquGo1G32rLrVYr6FXWeZFommbXqmG1Wk25XE6GYWhra0vZbFbS84ulXC4nx3FkmqaazaYMw+javm3bqlQqunfvXrANwzDUbrf7Xs/NmzdVq9W6LoCbzaZM09Ta2trAi0DDMIIy87DdTo7jKJfLybZtlctlZbPZ4ALXr9MwDF25ckWGYej8+fOSpHw+37cfx5HL5VSr1VSpVJTP54P7C4VCkJhqt9sD6570GPsXwnfv3u3aT34MpVJp6MV3Pp8PftwcVW7Qdmu1mkzT7Gv/rVYriHmYcrmsYrE48DHbtpVKpYK/D/tKXK1WVSqVlE6n9fLLL0uS6vV68D4zTVOWZc1kYabORIr0fF/0tk/HcZRKpYL3RO97vZffLpLJZHBumfZ8Ij3fb/68huVyWel0WoZhyLZt3bx5M2hL2WxWlmV1PfckvGePq/3O6lw9zfGf5jwFYLHdvn1bt2/fHllmd3dXBwcHWl5e1pMnT2YU2XNz3SMsmUxqb29vZJlSqSTP83Tjxo2R5V5++WV5nqdbt26FGeKJcnBwoKdPn4687e/vRx0mAJw6hmEomUz2XWD793U+du/ePX300Ud9n5/+RV8+nw8umPy6fY1GI7go29jY6CqXTCaDi1THcbS+vt5X/927d8f6hX9vb0+ZTEbpdLrr/p2dHa2srMg0TdXrdbVaLVUqlSBG13X7FgqIaru9/B4c/oWraZpKp9Pa3t4OLsb9RNLm5qZKpZJKpdKh33MG2dzcVK1WU7FY7Lq4lNR3wdlrmmPsl+ndF81mU6lUSrZty7IstVottdvtrgv4arUq27aVyWTUaDRUr9fVbrfVbrdVr9eDfe04jm7evNlVfzabVTKZ7DtulUpFuVxO2WxWlUpFlUql6/VIo5NuR1EoFFQoFGRZlizLUrFYVLFYVL1eV7lcDmLv7C1znPxtjmKapjY2Nqaqe5rzifR8/xcKBRmGoVarpWKxqGQyKdM0lc1m1Ww2g+fXajUlEomuxMpJeM8eR/ud1bl6muM/zXkKwOLb398/NLdwcHAQWXxz3SPsypUrevHFF/Xmm2+OLOf39rJtW3/jb/yNgWVWV1dl2/bIOcdOK3qE9aNHGE4DeoRNJsrzgz/ExDfqI7y3t4t/wehf4NVqNdXrdZVKpeA+/9d7aXhPhM4Vm4dt379olAb3MhhWn2EYsiyr74LR7/ngG9aDIKrtdvZuGLRPeo/boN47R+H3Bhp2jFzXVTweH7idsI6xn/jy1ev1vv0nKUh8+Tp7hnXq3NfDjp3/uny9bdrXu7+lwcdu3B5hfo+mYrE4NAHV2UMrnU6rXq8PLBemeDweJI0Oawu+UW3P7x01qNfYJOeTzp5ghyU+xtl/i/yelcJtv7M+V09y/Kc5TwFYfPQIm8KVK1dULpf19ttv6/Hjx3rw4IEePHjQV25jY0Oe5ymZTOqDDz7oe/ytt94KvqwxyfBwFy5c0JMnT0be5jEJBgDo13thUSgUuu7zeyEMuwAZNlSl8/5hn6lHuajprG9ra2tgMqW3l8TOzs7cbNfvMdJbZ6d0Ot0V26j5T8fh7/e7d+8OfNwwjL7Yh5U77P5hx3hpaSn4fz6fH7j/JPVd0A977Z3xuq471hxPlmUNPObpdLpviN00c3j5zx3Vw6jz9TcajZl83+zs7TVsv/a2hWGJPNd1VavVhr7GSc4nnQmWw3r/dB6fRqMxcK6pRX7PDhJW+53FuXqS4x/WeQrAYrp+/fqhuYXDOuEcp7lOhGWzWZ09e1bFYlGJREKZTEaZTEZf//rX+8qtra3J8zxls1m9/PLLunbtmq5du6aXXnqpa9gkvzgAAE6D3oujYYmKTltbWyqXy7Isa6xhK0eZkHpagy6w5mG7nRfao/ZH5wXftPH7MflDDQdtt1wuD/zOE9YxHndOn84YjjIP0Dj7aFR92Wy2a9vDkqeHqVarwT5wXVe2bQ+89cZyHBOt9+o8fv4cgoN0Ji07Fzbo5N8/rE0c9XzSud/G+e7dO+/WOEM/h5nH9+wg07TfWZ+rJ/k8meY8BQDHba4TYdLzE73fndfzPHmep2azqY8//rirXOcvNbZtq1qtqlqtqtVqBc+PxWIzmcAUAIB5M04SwjAMFYvFgb/S+xf8GG3YBac/ubo0/Y9yvb1nVlZW+hIco3r6zfIYTzoJ9iRzp/Xq7N006evq7JmTSqWG3nrncepdyOI49PaoGdRrqbP3k88fUtfp5s2bR5oE/rBynUMbx23vvb3qZmUW79lJjGq/UZ+rx2kn05ynAOC4zX0iLJvN6t69e11j2w3D0KVLl7rKmaap+/fv942B95eB9p+3tbV17DEDAHASOI6jarWqRqMxcLJ+PJ+DtNOwHjedOi+wJ9E7QbU/MXgikRiY5Bhlno5x2CvH9V5kT9Irxu+Jk0wmgx9kx7kdx1C6QTqHR9Zqtb7X6CcjOuPpXYzAf940w0d7TdKDKozjNY4o3rOTOMr+mKf3sS/M8xQAhG3uE2HS82RYu91WpVJRuVwe+uGaTqf1wx/+UK+88krfF5JkMqmdnR2dPXt2xtEDALBY/KEs/gTX4wyDOa0Mw+gaxnXz5s2BF6z+PDnJZDKUeXEsy+obPuav5JbJZA5NRJyGYxxGb5POYZHzqDfp0ZnU8XuD+av2+YlG27a72kelUumbE2tanftr3KRY7yqGYfQKHCSq9+xRjXM85v19PO15CgCOy0IkwiTp3LlzWl9f1+uvv65z584NLeevYuIvx+0vqewvswwAAIYrFApKpVIyTXOqeXpOk87VBF3XVSqVCoZ2ua6rzc1N1Wo1ZbNZbW9vh7rddrvdd5HeaDSUSCSGDo86rcd4mh5njuPMbTKscwjdoJ5ffq+xzrmk/OPuzy02aiGASYwzUXuvzrnMpOMdNhfVe3Yave13Ud7Hk56nAOA4LUwi7KjOnTuntbU1ra2tBQmwx48fRxsUAABzrFAoBD1K5vnCah4Vi0W1Wi1Jz3uy5HI5xWIxpVIpffTRR2o2m7IsK/Thf4ZhyLIsNZvNvt4ga2trfeVP0zHuTMCEMVTs3r17U9dxHDp7e/mJLT+ZUywWg8c6h1H6r6VcLh/L6n2dSaxxVwHt7AE2i7mjonrPjmtU+1209/FRz1MAcNxObCJskLB/7QIA4KTwF5qRnl+ERnXxt8gKhYIqlYra7bba7bY8z1Or1ZJlWaHO2ZPL5fruSyaTqtfrXT2CXNftmovntB3jzkTC1atXJ6qj86L9KAmHVCo102Ffnb29KpVKX28wqXtyfT9RVq1Wu8qEpXd/jzMPl5+UkjSzoYizes9OYlj7XZT38aTnKQCYhVOVCJt06WwAAE66zlXaRl3Az+vwsCj5Q6symUxXQuK4jLpozOfzKhaLwd+dvWxO2zH253iSNPFx6byYdxxnrB9Vc7lc6HNuHaYzrlqt1tcbbFA5f3L842iz2Wy2a9vjLB7Q2T6PIznXadbv2UkMa7+L8j6e9DwFALOwkImwx48f6+OPPx779v777+tb3/pW5B8IAABMo/fCuvciqPNzrvcz76ifgYMuYnpXlePi5blcLifbtmfag2RUD5tMJhP8f9Tk2dMc43Hb06g2OWmd45S3bTuYe6hSqUzcayafz3e976rVqnK53MAERKPRUCqVkm3bAycIT6VSisVixzJJuGmafcd6UDKpN0HXm7AaZpLzSedK7f6QzWE6j5c/XPM4RfGe7RVW+53FuXrSz5MwzlMAcBy+EHUA43j8+LHK5bIajcbEXxw8z1MsFgs5MgAAZqc3EVYoFGRZlvb29lQul5VIJLp+Ze902IVQ7wVhLpdTuVxWMpmUbduqVCpKJpMyTTP4LPZ7edTrdW1sbAQXa53bCiv50fn5P+w5UWzXdd3gAj+TyQT7aGlpSYZh6Pz588F+MU1Tq6uroVzkl0olXblyZWBd/gV0b9IjzGN83MY5Puvr69re3u6LyXGcYN6hfD4/tMdP73vCdd2Br69SqXRdtNdqNdVqNZmmGezfnZ0dua4r0zTVbDb76igUCsFx8RNm7Xb70Nd4FKVSKWiLnfOGDYrFT5RM2vNqnMRKNptVuVwOtpXL5fTo0aO+uFzX1fr6ehD3sHPYor9ne03afqM6V3caN7E2yXkKAGZh7nuEbWxsKJFIqFqtqtVqyfO8iW4AAJwEnReJjUZD8XhciUSi77HeX+IPG5qUTqf75uUplUrKZDIqlUpB0q3zl/tarRb0bhk1DGrYEJneHiL1en2qclFs1zCMrtdu27ZqtZqq1ao2NzeDfVcoFJTJZBSPx0PpEeS6rlZWVvpeY61WU6lUUjKZlGVZXY+FdYw7EwnS6KknOod3ScN7iIx7THrF43EVCoUgOeWvpOe6rsrl8sh23/vYsMnw0+m0ms3mwIRFo9EIJqcfVk4anHQLe16kzoTCqPnM/MRKMpkcu0fUUc8nvmKxGEw477fZarUqx3HkOI6q1WpXL7ph9Z6E9+wgk7TfKM7Vkx7/Sc5TADALc50Ie++991Qul4NEFj26AACnXblcVrFYDC54/QsJ/8KkVCopHo/3DY2p1WqKx+PK5XJDhyhZlqVyuRzUbZqmisWi2u12kGQrl8vBBVYymVS5XJZlWbJtW7lcTvF4PPil35fL5ZRKpbS5uSnp+YVnJpPp6mUjPb/YSiQSwTxGjuMMLNdoNJRIJLS5uRnZdjsNWgltFL9H0KRTNmSzWVUqFS0tLQUr3SUSCcXjcVUqFVUqlaEJmTCOsb8at8+2bSUSCeVyueA1FQoFJRKJvgtgP7ng78NGozHWMRnEb/eO42h9fT1o2/l8Xq1Wa2DPItd1g/YyKLZUKjVwm8lkMthHncmjZDKpbDarZrOper0+tOfQ1tZWXxs5jsSKf34Y1YPJMAzl8/mxJv+f5nziy2azarfbqlQqWl1dValUUiKRUCqVUqVSUaFQ6Gp/nU7Ke3aQSdpv53Nnca6e5vhPc54CgOMW8+a4u9Tq6qps21YsFpPneTJNM+jqK0nnz58/tI5PP/1Uruvq3r17evbsmT7//PPjDnvhXLx4UU+fPtXy8rKePHkSdTgT+ezuH4Ra35ev/mao9QHzKOz3zWnB+QG9XNfV2tpacGHquq4cx9He3l5w4ex/H9nb2wt6EBWLxSOtRHjaua6reDwe/N1qtRZySJX/OizLmtnqiOgWxXv2pLRfAAhLlHmIuZ4jzE+CSc+7Nvvj5SdRLBb10ksvhRUaACw8EjrA9Gzb1tramjY2Nrp6mBw25KxQKBzakwYnk98TjAnCo8F7FgAw10Mj/a6yxWJxqiSY9LzLcG9XfgAAgEn5k1r7PUWOIpfLaWlp6ZgiwzxbX1+fycqI6Md7FgAgzXkizO8u/PLLL4dS37gTOwIAABymVCoNXWnwMJZlKZfLhR8U5loulwvmc8Ls8Z4FAEhzngjze4GNu0TvuPUBAABMyx8m5bru0NUQBykUCtrZ2QlW78PpkEqlZJomq+RFiPcsAECa80TYG2+8Ic/z+lY0mdQ777wTSj0AAACd8wv5qyFWq1U5jhNMuO1Pwt1oNFQoFBSPx+U4jprNZkRRL67eH0bDXMFvFvyV/hCdKN+zi95+AeAkmetVIyVpc3NT5XJZjx8/1le/+tWp6nr55Zf10UcfhRTZycGqkf2YRBwAMI5cLqdarTZWWcMwtLW1xUqBEyoUCl29eLLZLL2rcGRRvWdpvwDQLco8xFz3CJOeT5SfTCanHpP/6NGj0HqWAQAASM97+dTr9aEXyoZhBBe87XabJNgE/F45vUPZarWa4vG4UqnUkYa54XSb9XuW9gsA82fue4T5VldX9ezZM5VKpbFXbNnb25Prumq1Wrp3755c19Xnn39+zJEuHnqE9aNHGABgEq7rBkOglpaWWBkQmHO8ZwEgGlHmIb4w061N6MGDB5KkVqulQqEwUR2e5ykWi4UZ1omzu7urixcvjixz/fp1Xb9+fUYRAThNfvKznw28/ytf+tKMIwEmZxgGF9LAAuE9CwDhu337tm7fvj2yzO7u7oyi6Tf3ibBr164F3YVjsZgm6cBGAmw8BwcHevr06cgy+/v7M4oGwGlz8ff+/sD723/vv5lxJAAAAAAmtb+/f2huIUpznQjb2tpSpVKRNHkSTNLEzzttzpw5owsXLowsc/bs2RlFAwAAAAAAFs3Zs2e1vLw8sszu7q4ODg5mFFG3uZ4jbHV1VbZtB0mwdDqtTCYjwzCOPE/YnTt39PjxY+YIG4A5wvoxRxgwe/7QyD/Z3dV/9A/f1f/0n/2W/tqFCwyNBAAAAE4Y5ggbwk+CGYahnZ0draysTFzX+vq6zp8/H2J0AIAw+QmvX/7iF4N/SYIBAAAACNOZqAMYxZ+4cmNjY6okmF/X5cuXQ4gKAAAAAAAAi2iuE2GpVEqSZJpmKPVtbW2FUg8AAAAAAAAWz1wnwgqFgjzPk+M4odRHjzAAAAAAAIDTa64TYdlsVpcvX9bdu3dDqe/9998PpR4AAAAAAAAsnrlOhEmSZVlqNpv64IMPpq7r5s2bIUQEAACw+BqNRtQhAAAAzNzcJ8JM09SdO3f0ne98Z6p6nj17Jtu2Q4oKAABgsTiOo2q1qkwmo1gspkwmE3VIOKEajYbi8bgSiQQJVwDA3PlC1AGM4g9l/JVf+RXF43G99NJLymazR67HdV3du3cv7PAAAADmnuM4yuVychxHrutGHQ5OgVwuJ9d15bquCoWCWq1W1CEBABCY60TYm2++qYcPHwZ/e56nzc3NieryPE+xWCys0AAAABaCaZpqNpuSpFKpNPF3KWBcS0tLJF0BAHNrrodGXrlyRZ7nyfM8SSKRBQAAMAWGQ2IWKpWKTNOUaZqyLCvqcAAA6DLXibBCoSDpeQLMT4hNegMA4CTxPyMXwSLFetItLS1FHUIoaFPzLZ1Oq9VqqdVqKZlMRh0OAABd5npo5Llz55RMJvXw4UOVy2Ulk8mJvsA5jqM333xTH3/8cfhBAgAwY9VqVdVqVZVKJepQDrVIsWIx0KYAAMA05joRJklXr15VIpHQ66+/PnEdly9f1quvvnpifgUFgJPqs5//XH/08fO5IX/2+ecRRzOfHMdZmN4wixQrFgNtCgAATGuuh0ZKz7tWhzW0cXV1NZR6AADH47+3bVX+xb+QJP0//7//n4ijmT+u6y7MHE+LFCsWA20KAACEYe4TYZcvX1a5XA6lrrDqAQCE77Of/1z/4P/9T4O///DhQ/35L34RYUTzxXVdra2tyXGcqEM51CLFisVAmwIAAGGZ60TY/v6+rl27ptdee01vv/321PVdvnw5hKgAAMfhv7dt/ev9/eDvP/3JT/Tf23aEEc0P27a1srIiu2d/xGKx4JZIJIY+33VdlUolJRKJrvKlUmms7TcaDWUyGSUSCcXj8eDm3xdmrGHGMki1Wg3KxmIxxeNxpVIpbW5uHvpc13VVrVaVSqVUrVaD+/3hevF4PHh9g+pzHKfrOCQSCRUKBbmue+h2Nzc3lUgkgkRQb13+Pujd72GYtv1Ma9I21Xm8OvdbJpMJntNoNIIynfUNWqm8s9103sY5fse9/46jjUzzXpGeH7dCoXDo+3Lc49Rr2nMBAOAU8+ZYJpPxzpw548ViMe/MmTPee++9F3VIJ9Ly8rInyVteXo46lIn99I//cag3ALP105/9zPsPvvuWZ/zX/1XX7T/47lveZz//edThRa7dbnvNZtMrl8uepODWbDa7boNUKhXPMAwvm8165XLZK5fLXjqdDuowTXPocz3P87LZrCfJq1QqXffn8/mgjna7HUqshzlqLJ0sy/IkeYZheJZlBfc3m03PNM1gX/Q+v91ue+Vy2Usmk12vx4+hWCx23d95y+fzQT2jyg3armVZA/djq9UKXsuwW7lcHroPm81mV9nDTNt+wnCUNtVutz3Lsrpi9Pdbs9n0DMPo2/e+znY0at/0xjGszXne8e6/42ojk75X/DL5fL5rPxuG0VdumuPkedOdCwAA8yHKPMRcJ8L8BJj/7/b2dtQhnUgkwkiEAVGr/vN/3pcE829b/+JfRB3e3KjX60dKYvgXhfV6ve+xQRfPw8oUi8WR9Q+64DxqrIcJK5ZBCYDO5FA2m+16rN1ue/V63atUKn1JrmQy6aXTac+yLK/Vanntdrsv4dVsNr10Ou0lk0mvXq977XY7qLPzYn/Y6+pNXPn1Z7NZr1KpeJVKJUgKjJPoOEoibNr2E7Zx2lSlUvGKxWJf4rJer3umaXrFYrFrfyWTySPV73me12q1xkqEzWr/hdlGpnmvtFotr1gseuVy+dBE2DTHaZpzAQBgfpAIGyKRSHhnzpzxzpw54125ciXqcE4sEmEkwoAoffbznw/sDUavsH5HSS75iZthF4ue5wW9OyR56XR66OPDkirtdnvoRXzYibBpYum8oB72/HFiHXTRPkhvL5fOnmGdOnvtDEoWdL6uzp4x4+zvYYmAcRNhYbSfsB2lTfW+zt79ZlmWl8/nu+4bt/7eYzJoP89y/4XZRsJ6r3Qm+oa1bc+b7DhNcy4AAMyPKPMQcz1HWD6fD1aMvHv37tT1Xbt2beo6AADh6p0brNe/3t/XHzJX2JH58w8VCoWhZdLpdPD/RqPRNxG5//ewz2DDMJTNZqcNdSxhxWIYxqH3D5uQfWlpKfh/Pp/v2n+delc2rFQqA8t1xuu67qFzTUmSZVkyTbPv/nQ6Lcuyuu6bZg6qMNpPlHr3UaFQ6Lovm82qUqkM3JdhiHL/hdVGpnmvjLtfJzlO83ReAgAspi9EHcAoxWJR9XpdDx480I9+9CP92q/92lT1DZpoEwAQnT//xS/03/7T//nQcrf/6f+s30gm9UtfmOuPrblRrVaDpIrrukMnx+690G00Gsrn88HfpmnKcRzZtq1MJiPLsvqeUy6Xjy2Z0GmaWLa2tvTyyy/LNM2xLpCHJaSGJQYGxXrU50jPL/CTyeTIMqPqy2azwX6SpJ2dnbG33Sms9hOl3tiGJS2PQ9T7b5o2EtZ7ZVyTHKd5Oi8BABbT3F9R1Ot15XI5ZbNZPXjwQF/96lcnqufRo0dz9UslAODw3mA+v1fYb3396zOIavF19vpIpVJjP6/ZbHb9XSqVgh4tjUZDKysrKpfLfcmyWZgmFsMwVCwWBz52HKssHiX51Wlvb2/qbRcKhaCXz6SvLaz2M08mPSaTmPf9N6qNzPq90muc4zRP5yUAwGKa66GRvnfffVf5fF7JZFLvvvuu9se4aJKk/f197e/v68GDB8rlcscc5eLb3d3VxYsXR95u374ddZgATohxe4P5bv/T/1l//otfHGNEJ4ffyyOZTMp7Ph/oWLfeIXz5fL5v+F6hUFAikVCtVpvpawozFsdxVK1W1Wg0lEwmD+2FdZzCTtD0JgAm6bETVvs5reZ9/x2ljczTe8U3T+clAMBgt2/fPjS3sLu7G1l8c50Ie/HFF/XCCy8oHo/rtddeU6vVUj6fVzwe1wsvvHDoLR6PKx6PK5PJzORXrEV3cHCgp0+fjryNm4QEgMOM2xvMx1xh4+scljUty7JULpe77nMcR7lcTplMZqa9raeNxR9KValURs7xtcjC6AkTZvs5jeZ9/43TRub9vTJP5yUAQL/9/f1DcwsHBweRxTfXQyPz+bxu3LgR/B2LxYLJ8xG+M2fO6MKFCyPLnD17dkbRADjpfuPyZf2fL13qu/9Pdnf1H/3Dd/U//We/pb/Wc056IRabUXQng+M4cl136l5HxWJR+Xxe6+vrXT0uGo2GEomEms3mzHqKTBpLoVBQtVpVPp/vu4A+yaY59mG1n9NqUfZfb3yL8l6Zp/MSAKDb2bNntby8PLLM7u5uZMmwue4R5o//j8ViUyXBYlw4jeXChQt68uTJyNv169ejDhPACfHlL35RX/nSl/puv/zFL0qSfnnA41/+3x/D+O7duxdKPYZhyLIsNZvNvt4ha2troWzjuGLxL+wlzfWFfRg6e8KEkQQIq/2cVvO4/0a1kUV7r8zTeQkA8BeuX79+aG7hsE44x2muE2Hnzp3Tq6++GsydkE6nlc1mj3y7fPly1C8FAICZ6bwgPMrFbCqV6rpIHjS/ZjKZVL1e75rPyHXdY5+bZ9JYbNsOLuxN05z73jnT6jx+V69enaiOsNrPSXXYogbzvv+GtZFFea/M03kJALCY5npopPT8l6n3339fzWZTlwYMoRlXtVrVtWvXwgsMAIA5lcvl1Gg0JD2/6C0UCodOxJ3L5ZROp7vmDxp1EZnP59VqtbS5uSkpnBUPR5k0Fn8/SBqZZJjX+ZyO6u7du8H/O1fRO4qw2s+iWVpa6vp72LDGw5JV877/hrWRRXmvzNN5CQCwmOa6R5j0/Fe1c+fOTZUEk55/MDK/GABgkfVeJPderPoXqPl8vqtstVpVLpcbeHHbaDSUSqVk2/bA3it+D5FBMplM8P/eYUnjxnoUk8bSadBFdKlU6vp72MXzuDF3ljvsOUfdD6PK27YdLA5UqVQm7tETVvtxHEepVEqxWCyUCcyP0qZ699M4+7l3mOCg9uY4zqHtJcz33yTCaiPTvFfGNclxksI5FwAATq+5T4RJ0sbGRiirFU76yygAAPOgNxFQKBTkum7Q66Tz4rC3B0qtVlMikVAikVAmk1EmkwlWVnZdV81mc+A2S6XS0ItT/4J6UE+Wo8Q6rkli6U1u5HI5bW5uqtFoaHNzU4lEQo7jdD2nUqmo0WiM3N5xGGdb6+vrA8s5jhPMiZTP54d+5+lNXAzbZhjtp1AoBMfFT/hMY5o2NW7CpjNxUiqVVCgU1Gg0VKvVVCgUlEgkVC6XuxJIgxJcYb3/JjFpGwnzvdK5v4/yHhr3OE16XgIAQJLk4dRbXl72JHnLy8tRhzKxn/7xPw71BiA6Hz996hn/9X/lffz0adShzKVisehJ6rvl8/m+ss1m0zMMY2B5/5ZOp712uz1wW34ZwzA8y7K6HrMsy5PkJZPJoc8/SqyHmSaWbDY79PWXy2XP8zwvn8/3PZbNZoM62u1212PJZHJorL3bq1QqA8vV6/VD98ug7fplLcvyLMvy8vl8cJz91zNtbJ43ffvxY+289R67oxq3TZXL5aHHcpR2uz30NRuG4dXrdc/zvK4yyWTSa7Vaffth2v03rjDbSBjvFc/rP/bDjvskx2na8xIAYD5EmYdYyETYs2fPvPfee8977bXXvCtXrnirq6veN7/5Te+1117z3nrrLe/Ro0dRh7hQSISRCAPmCYmwwxWLRc80zeCC77DkQrFY7LowTSaTXjab9ZrN5sjnZbNZr1KpBNuS5Jmm6RmG4aXT6ZFJlEljPa5YyuVy8FzTNL1isdh1odxut710Oh3E6V/0N5tNL5vNDkxomKbpZbPZoJ58Pt8VX2/Cw6+zXq8H2xpUZ2dSpzfJ0Wq1vEql4qXT6SAm//W0Wq2Br73dbg99Df7rHZWcnLT9NJvNvtd5WKJuHKPaVLFYHJnIymazQTJrmHa73XUsk8mkVywWu8r49w3b573xTrL/xhVGG+l0HO+V3rLTHKcwzksAgOhFmYeIed7iTJz1+PFjlUqlvjkLPM9TLBbrus80Td24cUO/9Vu/NcsQF9LFixf19OlTLS8v68mTJ1GHM5HP7v5BqPV9+epvhlofgPH94F//a/2tyh39vwqv6W/8e/9e1OEAkXJdV/F4PPi71Wot5HAv/3VYlqVsNht1OCfKSWkjAIDTJco8xELMESZJW1tbSiQSqtVq8p73ZAsmv+9Ngnmep1arpXw+r69//ev60Y9+FEXIAAAA0F/Mo8Xk5QAAIGoLkQh766239Nprr3UlvvzkV2dSrDM55j+2s7OjRCKhH/zgB5HEDgAAcNqtr6/3TTIPAAAQhS9EHcBh3nvvPZVKpSD55Se6ksmkVldXlUgkZBiGTNPU0tKSHMfR3t6eWq2WarWaHMfRwcGB1tbWtLOzo6997WvRviAAwEA/+dnPJEk//fnPg39/8rOf6Stf+lKUYQGYUi6Xk2maKhaLUYcCAAAw/4kwPwnmeZ4Mw1C5XNaVK1d07ty5geUvX74c/P/WrVt6+PCh3nzzTb333nt67bXX9L3vfW9WoQMAjuDi7/39rr//o3/4riSp/ff+myjCARCCVCqldDqtcrkcdSgAAACS5nxo5HvvvSfHceR5ngqFgvb29rS+vj40CTbI5cuXZVmWbt26pXq9rg8//PAYIwYAAAjP3t5e19+u60YTyIQsyyIJdswWvY0AADBrc90j7O7du4rFYiqXy/qd3/mdqeoqFotqNBq6d++evvGNb4QUIQAgLE/+i/8y6hCAudObRLp586Ysy4oomqNj9cLjt+htBACAWZvrHmG2bSuZTE6dBPMVCgU1Go1Q6gIAhOsrX/rSwBtwGhUKBcXjcVWr1a77a7Wa4vG4UqlU32M4XWgjAABMZq57hDmOE+oHuGEYwfLdAID54n3204H3x778yzOOBIhepVJRpVKJOgzMMdoIAACTmetEmBRul3qSYAAwv/Z/4z8eeP+52vaMIwEAAABwUs310EjTNENNXlUqFeaqAAAAAAAAOKXmOhGWTCZDm+zzxo0bwZxjAID5c/YP/0ed/cP/UV/5+/9AkvSVv/8PdPYP/8dogwIAAABwosx1IuzKlSuq1+t64403Jq5jf39fV69e1ebmpmKxmAqFQogRAgDCEvvyLz+/femXnv/9pV9ifjAAAAAAoZrrRFg2m9XKyorK5bL+7t/9u3r8+PHYz33w4IGuXr2qeDyuWq2mWCymZDKpV1555fgCBgAAAAAAwNya+8nyK5WKvvnNbwYr46TTaSWTSSUSiWC+L9d1tbe3p2azqZ2dHdm2HTzf8zxJUiwW09bWViSvAQAAAAAAANGb+0RYOp3WnTt39NprrykWi6nRaKjRaAwt7ye+pOfJr1gsJs/zdO/ePV26dGkGES+u3d1dXbx4cWSZ69ev6/r16zOKCAAAHJdGo6F0Oh11GAAA4IS5ffu2bt++PbLM7u7ujKLpN/eJMEnK5/NaWlpSPp+X67qKxWKSupNePv8x/3HDMLS9va3Lly/PLN5FdXBwoKdPn44ss7+/P6NoAABAmBzHUaPRkGVZwY+Kg75LASdZo9FQLpfT0tJSMNoEABCu/f39Q3MLUVqIRJj0fL6wTCajN998U2+99dbQcv4XOsMwtLGxoddff31WIS68M2fO6MKFCyPLnD17dkbRAACAMDiOo1wuJ8dx5Lpu1OEAkcrlcnJdV67rqlAoqNVqRR0SAJw4Z8+e1fLy8sgyu7u7Ojg4mFFE3WLegv4UuL29Ldu21Wq1tLe3J0laWlpSIpFQOp2mB9gRXLx4UU+fPtXy8rKePHkSdTgT+ezuH4Ra35ev/mao9QEY3+fO/6J/V7ymv7z5+3rB/KtRhwOcKKVSSZubm8HfC/o1EJhYIpGQ4ziSJNM0SYQBQESizEMsTI+wXmtra1pbW4s6DAAAgIWRyWS6EmHAaVOpVFQoFCRJlmVFHA0AIApnog5glt5///2oQwAAIBT+hdwiWKRYT7qlpaWoQwAilU6n1Wq11Gq1lEwmow4HABCBU5UIK5VKUYcAAMDUqtWqqtVq1GGMZZFiBQAAwMl3ahJh7733XjAfAAAAi8pxnIXpYbVIsQIAAOB0WJg5wj7++GM1Gg21Wq0jJbT29vbkui5JMADAwnNdV5lMJuowxrJIsQIAAOD0mPtE2OPHj1UoFNRoNCZ6fudqSLFYLKywAACYKdd1tba2thA/7CxSrAAAADhd5n5oZDqdVqPRmHh571gsRgIMABaA99M/02d/9I/0k9/bkCT95Pc29Nkf/SN5P/2ziCOLnm3bWllZkW3bXff7n3GxWEyJRGLo813XValUUiKR6Co/7tyZjUZDmUxGiURC8Xg8uPn3hRlrmLEMUq1Wg7KxWEzxeFypVGqslRRd11W1WlUqleqa98wfAhqPx4PXN6g+x3G6jkMikVChUJDruodud3NzU4lEIkgu9tbl74Pe/R6GadtPGNvv3LZ/i8fjXTEUCoW+Mn65XC7XV28ul+sqN6gHY+cx79z3mUwm2A/Dfqz1j1smkwnaht/eSqXSWIlix3GCY995bP2Y/Bhyudyh7aiT//zONjvND8+jHEf7neZ9LD0/TxUKhUPPGZMe/2nPUwCAY+bNsUKh4MViMe/MmTPemTNnvFgsNtXtzJkzUb+kubS8vOxJ8paXl6MOZWI//eN/HOoNwGwd/NlPvP3XC5776it9t/3XC97Bn/0k6hAj1W63vWaz6ZXLZU9ScGs2m123QSqVimcYhpfNZr1yueyVy2UvnU4HdZimOfS5nud52WzWk+RVKpWu+/P5fFBHu90OJdbDHDWWTpZleZI8wzA8y7KC+5vNpmeaZrAvep/fbre9crnsJZPJrtfjx1AsFrvu77zl8/mgnlHlBm3XsqyB+7HVagWvZditXC4P3YfNZrOr7GGmbT9h8o9T577o1Wq1PMMwuuIbxd+XyWQyuK/dbnuWZXW9Tn97zWazq/5h26hUKl3Ho9lsBseusy1ls9m+57bbba9YLPa93maz6bXb7b626N8Mwxi4T3r3j//8crnstVotr16vd9VpGIaXz+e9YrEYHPNh76tR+/U42u+k72O/TD6f7zp+hmH0lZv2+E9zngKA0yTKPMRcJ8JSqVSQwEokEl6tVvNc1z1yPbZte9ls9lgSYf6HaueXFdM0vWKxONWHnP9F0/+wNU3Ty2azXr1eDy/4/x2JMBJhQNR++j/8w4FJMP/20z/6h1GHOBfq9fqRkhj+hdegz45BF6jDyhSLxZH1D/q8O2qshwkrlkEX2Z3Jod7ERLvd9ur1eldiw09yJZNJL51Oe5Zlea1WK0hg9CYv0um0l0wmvXq97rXb7aDOzgvqYa+rN3Hl15/NZr1KpeJVKpXgwnucZMJREmHTtp+w9SZQhm2zM7ZxE2Gdr7FSqXjFYrEv4VSv14PveJ37vDOJ5nl/kfQclZjqfH5v4sZPTnUmTvzEip+UrNfrXqvVCu7zy6TT6ZGv1/++2ts+2u12X+ItjOMbZvud5n3carWCxN5hibBpjv805ykAOG1IhA3hJ8GWlpa8Z8+eTV1fPB4PIarn2u32wA/u3lvvr0GH6fxinE6ngy86lmUFX1DS6XSoH6AkwkiEAVF7tn5lZCLs2fqVqEOcC0dJLvmJm2EXZJ7X3cNm0AX0sItmX7vdHnqRHHYibJpYOj+vhz1/nFgHXRgP0tuTpLNnWKfOxM6gC/LO19WZNBlnfw+72B43ERZG+zkOnUmMw9rCOEmcbDY7NFnWu696971lWV4+n++6rzNheth3wHH2X+f2DcMY2OZ6E4TDviN2JtYG6W1DYSQ3w2y/Yb2POxOlw953njfZ8Z/mPAUAp02UeYi5niPMMAxJ0pUrV3T27Nmp68vn81PXIT2fLyCVSqlWqx1atlAojL10vD+fgOu6yufzqtfrSqfTMk1T2WxWrVZLyWRSjUZDqVTqSHNBAMC88jxP3t6fji6z96cTzxV5WvlzJ436DEqn08H/G41G35xF/t93794d+HzDMJTNZqcNdSxhxeJ/txh1/7C5m5aWloL/5/P5rv3XqXeuqUqlMrBcZ7yu6471uW5ZlkzT7Ls/nU7Lsqyu+6aZwyuM9nMcNjY2gv8P26+9baFcLg8s57quarXa0NfYu58LhULXfdlsVpVKpes+f78ZhnHo987O49NoNAbONdXZLre2tga2ud52v7Oz01fGn+uqt85O/ndO37D9O42w2u807+NB2x+n3DjHf57OmQCA4eY6EeZPbBrWpJK3bt0KpZ5cLifHcZRMJmVZllqtllqtlizLUrFY7CtfrVYPTZq5rhu8XtM0h3758L8kOI4zcOJXAFg0sVhMsaVfGV1m6VdY+OQIqtVqkFRxXVe2bQ+89V5M9l6I+xd4tm0HP9T0KpfLY19YTmOaWLa2tlQul2VZ1lg/ig1LSA27+B4W61GeIw2/cB83hmw227XtQQmRcYTVfo5D5/FzHGfoNjuTlp0LG3Ty7x/WJnpf37DEZ2d9/n4b5z2Rz+e7tjEsYTeOQcmYTp1tYVTCtTNJcxyJzWnab1jv43Ed9fhL83XOBAAMN9eJsBs3bsjzvIm/yPXa39+fuo5qtapGo6Fisahmsxl8aPu9tsrlctBzq9P6+vrIejtX+xn1C5i/Hen5F85hX+4AYJF86Rt/e/Tjr4x+HN06e1akUqmht94V1prNZtffvT1WVlZW+j53ZnVBN00shmGoWCwO7InhJ3XCdJTkV6e9vb2pt93Zu2nS1xVW+zkOvT1qBv1w2Nn7yTfoB8mbN2/2JaMO2/Yo9Xo9+P+474veXnWzMixJ9PLLLwf/jyJZM6r9zvp93GucdjJP50wAwHBznQhbWVnRnTt3ZFmWfvCDH0xd39ra2tR1lMtlpdPpkb/amabZ173bdd2hX3B6f9G8cuXKyBiuXr0a/H9WS5cDwHH6pf/kqs6YLw187Iz5kn7p/3R14GMYzP8BKZlMPh96OuatN6mQz+f7hu8VCgUlEomxpgcIU5ixOI4T/LCVTCb7fryapUmTZsP0XmRP0ismrPZzXDqHR9Zqtb7X6H836ozn5s2bXWX854X5PWqSHlRhHK9xrK6udv09zg+pnUmxWTnK/pin97Fvns6ZAIDh5joRJj3/QPnOd76jbDarH//4x1PVNe0vRbZty3GcviTXIKZp9iXLhm2/s1w6nT70S3HvBywfrAAWXeyX/5L+8t+7rV/K/oZi54zn950z9EvZ39Bf/nu3FfvlvxRtgAumc1jbtCzL6vs884fnZzKZmcwLFVYs/nClSqUyco6vRRZGb5Mw289x6E16dCZ1/N5gxWKxq7eX/x3OV6lU+ubEmlbn/hr3fdE7/UcYvQIHMQyj671z8+bNgcfXn9sqmUxGMpfVOMdj3t/H83TOBAAMNteJsP39fe3v7+vGjRs6d+6cXnnlFT148EAff/zx2LcHDx7o/fff17e+9a2p47l79+6RutD3fjB/+umnA8t1foEb99eszi8KwybkBIBFEvvlv6Qvf/s/1Vf+i+c9N77yX9zUl7/9n5IEm4LjOKEkM4rFotrtdt+FcaPRUCKROPYhSWHEUigUlEqlBv5QdZJN0+MsrPZzHDqH0A3q+eX3GuucS8o/7n5P/HEXMxrXOBO19+qcy0w63mFzxWIx2Af+wk/+iATXdbW5ualaraZsNqvt7e1ji+MoetvvoryP5+mcCQDoN9eJsK997WuKx+N68cUX9fDhw+AXoFHzVfTeMpmMcrlc17wNk7p69eqRPnR7k1qDJv3v/SActxt6Z930CAMADHPv3r1Q6jEMQ5Zlqdls9v3QE8bUA8cZS6FQCH50mueL5zB0JmDCGCoWVvsJW+cPk35iy0/mFIvF4LHOYZT+aymXy8eyel9nEmvcVUA7e4DNYu6oYrGoVqsVbDuXyykWiymVSumjjz5Ss9mUZVmhD9kd16j2u2jv43k6ZwIAus11Imx9fb1r7glJR5qrove500omk0f6YtD7BWjQF5xhK3QdprccvywBAHydF11HuWBMpVJdF6KDVidOJpOq1+tdvXBmMUx/0lhs2w4unk3TjOwCf1Y6j1/nnKJHEVb7OW6dvb0qlUpfbzCpe3J9P1FWrVa7yoSld3+PMw+Xn5SSNLOhiIVCQZVKRe12W+12W57nBaufRz3P1rD2uyjv43k6ZwIAhpvrRNi3v/1tSVIsFpOk0BJas9L7ZXDQHAYfffRR19/jfrCfP3++6++wVtYEACy+zosxx3HGGgKWy+X65kwadaGWz+dVLBaDv49rbqNpY+n8wWlUkmZehwAeVed0CZ2JoqMIq/0ct864arVaX2+wQeX8yfEn3TejZLPZrm2Ps3hAZ/s8juRcJ384ZCaTOZbXH4Zh7XdR3sfzdM4EAAw314mwy5cvB1+o0ul0MLfBUW7+ZKlR6ExODYuh98N80h5hnb8oAgBOpt5zf+9niH8RmM/nu8pWq1XlcrmBF5CNRkOpVEq2bQ/s/TOqV0smkwn+3/tjz7ixHsWksXQadKHau3LgsAvUcWPuLHfYc466H0aVt2076CFeqVQm7jUTVvtxHEepVEqxWOxYJgk3TbPvWA9KJvUm6HoTVsP07utxjtXW1lbw/95VwXt1Hi9/uOZxyuVysm070l5fYbXfad7H45rk+EvhnKcAAMfrC1EHcJhsNquHDx/qn/yTfzJVPcViUS+99FJIUY2n85fAYctzh/WlMOpfwAAAx683uVQoFGRZlvb29lQul5VIJIIeB5VKpeuiq1arqVaryTTNoJ6dnR25rivTNNVsNgdus1Qq6cqVKwMvSv2L1kE9gY4S67gmiaX3oj+Xy6lcLiuZTMq2bVUqFSWTSZmmGXwm+5/f9XpdGxsbMxuGNc5n+fr6ura3t/tichwnmHcon88P/QGuNznguu7A1xdG+ykUCsFx8RNm7Xb70Nd4FKVSKUg2jVrQqFAoBN/FJu15NU5iJZvNqlwuB9vK5XJ69OhRX1yu62p9fT2Ie9h7Ydzvd53fJwc9x3XdYD9lMpmgzS8tLckwDJ0/fz6I0TRNra6uHku7n7T9hvk+7jyOR/n+PG5ibdJzJgBghrw5Z9u2l8vlQqkrlUqFUs84Wq2WJ8mT5JXL5aHl/DL+bVz1er3redlsduJYl5eXPUnemTNnvOXl5alvb7/99sSxTOqnf/yPQ70BiM4vWv/Kc199xftF619FHcpcKhaLfZ8dkrx8Pt9XttlseoZhDCzv39LptNdutwduyy9jGIZnWVbXY5ZleZK8ZDI59PlHifUw08SSzWaHvn7/Mzqfz/c91vnZ2m63ux5LJpNDY+3dXqVSGViu97N80H4ZtF2/rGVZnmVZXj6fD47zqO8cR4nN86ZvP36snbfeYxcG0zQ9SUPj8Ly/2I+jjluvcrk88Xcty7KCfWcYhlepVLxWq+W1Wi2vUqkEMY86XuO0j0Hl0un0wHKHHctBx7bVao39mgcJs/2G8T72vP52OaxNTnL8pz1nAsAiePvtt0PJG5w5c8aT5C0vL8/8Ncx9IszznifDwuA4Tij1jMP/IDZNc2S5sBJhw770jMNPhIV1+93f/d2JY5kUiTDg5CARdrhisRhcSCeTyUOTC8ViseviL5lMetls1ms2myOfl81muy7a/c81wzC8dDo9MokyaazHFUu5XA6ea5qmVywWuy5G2+22l06ngzj9C+tms+lls9mBSQTTNL1sNhvUk8/nu+Lr/Zz266zX68G2BtXZmfDoTST4iZR0Oh3E5L+eYUmLdrs99DX4r3dUcnLS9tNsNvte52GJuklYluUVi8VDy+Xzea9erx9arlgsDt1XhmF42Wx2rHo8z+s7VoZhBO1rWDJk0H4b1D5ardbIcr37elT5YTfDMKZK2oTRfjsdx/u4t+w0xz+McyYAzLvf/d3fDTV/EEUiLOZ5CzYD/QKwbVupVEqGYajZbI7s+hyPx7u6ZY97OBqNRteQhWw2K8uyJor34sWLevr0qc6cOaMLFy5MVEen69ev6/r161PXcxSf3f2DUOv78tXfDLU+AOP73Plf9O+K1/SXN39fL5h/NepwgEi5rqt4PB783Wq1FnJIlf86LMua2eqI6Oa6rtbW1lQul2WaplzXleM42tvbC76Lfvrpp3JdV3t7e2o0GnJdN5ijd9JtnoT2CwD4C7dv39bt27enrmd3d1cHBwdaXl7WkydPQohsfJHNEfbxxx/r0qVLUW2+z/7+vvb29vS1r31t6rr8OR+2t7cP/bBfWloKZX6vpaWlqeu4cOHCzBsgAAA4+fx5m5ggPBq2bWttbU0bGxtdx+CwifMLhcLICf8BAKdPWB1f/A45UYhs1cg333xTb7zxRlSb75PL5UYueTwuf2JYy7LGWpVn0olIe5Nns5rIFwAA4KjW19dnsjIi+vkT0fu9u44il8uF8mMrAADzJLJEWLVa1Z07d/Tuu+9GFULg2rVr2tvb0+/8zu9MVU+1WlW1WlWlUhm72//q6mrX3+P2DutduSaRSIz1PAAAgFnK5XIyTfPISRiEo1QqDV0d9DCWZSmXy4UfFAAAEYosEWYYhu7du6f19fVIk2HXrl3TvXv3Jp5fy9doNFQoFFSpVIYuWT5IKpXq+rtz+etRWq1W198MNQAAAPMmlUrJNM2pv2dhcv7QRtd1Va1Wx35eoVDQzs7Okb7XAgCwCCJLhEnPkze3bt3S+vr6zIdJ7u/v6+rVq6pWq9re3p5qbjDbtpXJZFQul4/8ZaG3R9i4ibDOnmOGYTDxKICF53320+e3n/35879/9ufyPvtpxFEB0ertAR7GvKKzZFnWxBOtIxydP5YWCgVlMhlVq1U5jhO0J3/ifP+H3Xg8Lsdx1Gw2p9r2ordfAMDJFNlk+T6/m/yNGzfUaDRULpf1jW9841i3+c477wTdxHd2dqaatN+fd6FYLE7U5T+ZTMowjOCLwUcffTTWsMqdnZ3g/73JNABYRPu/8R93/f2T//I/lySdq21HEA0wH3qTSDdv3lyo3lX8UBc9f3ijPxduo9EYOQG+YRja2toKZXXPRW+/AICTKdIeYb5isag7d+5oZ2dH6XRaX//61/XBBx+Euo0HDx5oY2ND58+fD37p+uEPf6jLly9PXKfjOEqlUsrn82P/2uk4jjY3N7vuu3LlSvB/27bHqqezXKlUGus5AABgMfjfVXqHstVqNcXjcaVSqSMNc8PpZlmW6vX60OSWYRjKZrOyLEvtdnvqJBjtFwAwz2Ke53lRB+Gr1WpaX1/Xs2fPFIvFJD3vMZVOp/Xyyy/LNE2ZpqmzZ88OrWN/f197e3tyHEf1el2NRqMraeR5nrLZrO7duzdVrK7rKpVKKZ1Oq1KpjP28VCqlra2trhUlbdvumivssEPSaDSUyWQkPf+ltXe+sKPyly1dXl7WkydPpqorKp/d/YNQ6/vy1d8MtT4Ahxs2DDL25V+ecSQAcLK5rhsMW1xaWmI1TwDAzEWZh4h8aGSnbDarTCajbDar7e3nQ2Fs2x7ZS6pzWOEwnYmlarWq73znO1PF6SfBTNNUqVQaa14vx3GCnludSTD/73Q6HXRTr9VqI3+J6+xSTm8wACcFCS8AmA3DMEh+AQBOrbnqEdapVqvp1q1bQRIsFosd2lNqlGKxqI2NDZ07d27q2FKp1NhDGHsNW1XScRwlEglJzxNjwyYndV1X8Xhc0vPJT+v1+kRxdKJHWD96hAEAAAAAcDyizEPMxRxhg2SzWe3s7Kher+vVV18dmASLxWJdt16maapYLKrdbuvWrVuRJ8EkDV1VsnNpcdu2++YR862trUl6/ksek40CAAAAAACMb66GRg6ytrYWJH8ePnyoRqOhjz76KJjbwB8WaRiGTNPU0tKSMpmM0ul0KImvTrlc7liSYL5sNqt6va5cLqdSqaSPPvpIGxsbMk1TOzs7KpVKsm1byWRS29vbdGkHAAAAAAA4grlPhHW6fPnyVKs8TmsWPbDS6bTa7bY2Nzd19+5dra2tyXVdGYah1dVVWZYVynLWAAAAAAAAp81CJcJOk2KxqGKxGHUYAAAAAAAAJ8bczhEGAAAAAAAAhIlEGAAAAAAAAE4FEmEAAAAAAAA4FUiEAQAAAAAA4FQgEQYAAAAAAIBTgUQYAAAAAAAATgUSYQAAAAAAADgVSIQBAAAAAADgVCARBgAAAAAAgFPhC1EHgPmxu7urixcvjixz/fp1Xb9+fUYRAQAAAACARXL79m3dvn17ZJnd3d0ZRdOPRBgCBwcHevr06cgy+/v7M4oGAAAAAAAsmv39/UNzC1EiEYbAmTNndOHChZFlzp49O6NoAAAAAADAojl79qyWl5dHltnd3dXBwcGMIup2IhNhjx8/lm3bMgxDq6urJG/GdOHCBT158iTqMAAAAAAAwIIaZ0qlixcvRtZr7EQlwh4/fqxcLifbtrvuT6VSsixLv/ZrvxZRZAAAAAAAAIja3K8a+c1vflMvv/yyXnrpJb300ks6f/68rl692lfu4cOHSqVSsm1bnud13XZ2dpRIJPThhx9G8AoAAAAAAAAwD+Y+EWYYhprNpj799FPl83nt7Ozo7t27XWWePXumtbU1tdttSVIsFguem06nZZqmDg4OlMvlZh4/AAAAAAAA5sPcJ8Js21apVNLe3p5ef/11rays9JVZX1+X67qKxWJBL7Byuay9vT3dv39fP/zhD3X//n0dHBzojTfeiOBVAAAAAAAAIGpznQh76623lEwmdfPmzaFl3nvvPdVqtSAJFovFVC6X9frrr3eVS6fTunXrlprN5nGHDQAAAAAAgDk014mwarV6aA+u9fX1YChkLBZTMpnsS4L5rl69qp2dndDjBAAAAAAAwPyb60RYq9XSpUuXhj5+7do1ua4rSfI8T5K0tbU1tPy5c+eCcgAAAAAAADhd5joRZpqmHj9+PPCxhw8fqlKpdA2JzOfzIxNnDx8+1Orq6vEECwAAAAAAgLk294mwarXad/+zZ8+6VoCMxWIyTVO///u/P7K+7e1tlUql0OMEAAAAAADA/PtC1AGMks/ndeXKFUnSjRs3JEmNRkOlUkmO43T1BrMsa2RdDx8+1M2bN/Xpp58ee9wAAAAAAACYP3PdIyybzWptbU3lclnxeFzxeFy5XE6tVitIgknSnTt3Rg6JfOedd5ROp2cUNQAAAAAAAObRXCfCJKlWq+nXf/3X5XlecJOeT45vGIYsy9L6+nrf8z7++GNtbGzopZdeUqFQULvdluu6+uCDD2b9EgAAAAAAADAH5npopPR8pUfLsrS9va16vS7btmUYhl5++WXl83mdO3eu7zlbW1vBUMmVlRWtrKwEj33/+9/X3/k7f2dm8QMAAAAAAGA+zH0izLe2tqa1tbWxyq6vrw/sJQYAAAAAAIDTa+6HRobp448/jjoEAAAAAAAARGTuE2GPHz8OrS56iQEAAAAAAJxec58IKxQKodTz6NEj2bYdSl0AAAAAAABYPHOfCHMcJ5R6SqVSKPUAAAAAAABgMS1EIuzHP/7xVHV897vfVa1WCykiAAAAAAAALKK5T4R5njdVb66NjQ16gwEAAAAAAGD+E2GSVKlU9OGHHx75eVevXtXm5qY8zzuGqAAAAAAAALBIvhB1AOPwPE+5XE6PHj3SV7/61UPLP378WJlMRo7jyPM8xWIxkmFj2N3d1cWLF0eWuX79uq5fvz6jiAAAAAAAwCK5ffu2bt++PbLM7u7ujKLptxCJsGw2q1qtprW1NX3/+98fWfa9997TlStXgr/9JFg2m9V777133KEutIODAz19+nRkmf39/RlFAwAAAAAAFs3+/v6huYUozX0iLJ1O6969e7JtW6urq/r2t7+tP/7jPx5YdmNjIxgK6SfADMPQgwcPdOnSpa4EGfqdOXNGFy5cGFnm7NmzM4oGAAAAAAAsmrNnz2p5eXlkmd3dXR0cHMwoom5znwhLJpPBvzs7O1pdXZVpmnrzzTeDMvv7+1pbW5Nt211JsHQ6LcuydO7cOUnPE2UY7sKFC3ry5EnUYQAAAAAAgAU1zpRKFy9ejKzX2NxPln/r1q3g/8lkUvfu3dOtW7f07rvvSpIePnyolZWVviRYuVzW/fv3gySYJF2+fHnm8QMAAAAAAGA+zH0irFc2m9WdO3eUz+d17do1ra6uqt1uB4+fO3dOzWZTr7/+et9zv/vd784yVAAAAAAAAMyRhUuESVI+n9fv/M7vqFKp9A2FfPTo0dCeX/V6fcaRAgAAAAAAYF4sZCJMksrlsl599VVJkud52tzc7BsK2WtnZ2dW4QEAAAAAAGDORDJZ/rNnz7S9vT11Pd/+9re1vb2tQqEg0zT1/vvvDyy3t7enSqUi13Wn3iYAAAAAAAAWU2SrRmazWcVisVDq2tzcPLSMP4QSAAAAAAAAp1MkQyPPnTunZDIpz/OmvkkaqwwAAAAAAABOt8jmCEun05I0dS+tcRJdJMMAAAAAAAAQ2dDIq1evBkMai8WiEomElpaWQt/O3t6eXNfVnTt39Pjx49DrBwAAAAAAwGKILBF2+fJlGYahzc1Nfec73zn27b366qt66aWXjn07AAAAAAAAmE+RDY2Ung+PNE1zJtsyTVMrKysz2RYAAAAAAADmT6SJsKtXrx7LcMhhstnszLYFAAAAAACA+RLZ0Ejp+XDFWbp169ZMtwcAAAAAAID5EWmPMAAAAAAAAGBWFiYR9uDBA21sbOidd945tOx7772nl156SR988MEMIgMAAAAAAMAiiHRo5LiuXr2qWq0W/P3s2TP99m//9tDyr776qlZWVpROp3Xz5k1ZlqVf+7Vfm0WoAAAAAAAAmFNz3yPs2rVrsixLnufJ8zxJ0v379w99XjKZlOM4+uSTT5RKpfSDH/zguEMFAAAAAADAHJvrRNizZ89UqVQUi8UUi8UkSZ7nKZfLjfV8wzDUbDa1t7dHMgwAAAAAAOCUm+tE2M2bNyU9T36dO3dO+XxerVZL3/nOd8auwzRNra+v6+DgYOwEGgAAAAAAAE6euU6ENRoNxeNx1et17e3t6c6dO1pZWTlyPd/85jclSa1WS++++27YYQIAAAAAAGABzHUizHEcbWxsaG1tbap6TNMM/n/v3r1pwwIAAAAAAMACmutVI13X7UpiTWpvb0/S8yGWOzs7U9d3Uu3u7urixYsjy1y/fl3Xr1+fUUQAAAAAAGCR3L59W7dv3x5ZZnd3d0bR9JvrRJhpmkESaxr1ej34v+u6U9d3Uh0cHOjp06cjy+zv788oGgAAAAAAsGj29/cPzS1Eaa4TYclkUpZlHWly/EGq1apisZg8z5NhGOEEdwKdOXNGFy5cGFnm7NmzM4oGAAAAAAAsmrNnz2p5eXlkmd3dXR0cHMwoom5znQjL5/P61re+pQ8//FDf+MY3Jqrj6tWrcl1XsVhMsVhMq6urIUd5cly4cEFPnjyJOgwAAAAAALCgxplS6eLFi5H1GpvryfLT6bQuXbqkdDqtDz/88EjP3d/f19WrV2VZVtAbTJJyudxxhAoAAAAAAIA5N9eJMEna2tqS53lKp9P623/7bx+aENvf39e1a9cUj8dVq9WC+2OxmEzTnHqYJQAAAAAAABbTXA+NlJ7PE3bv3j1duXJF9Xpd9XpdhmHINM3gJkmO48i2bTmOI0lBDzC/N1gsFpNlWZG9DgAAAAAAAERr7hNhkpTNZrWzs6O1tTU9e/ZMruvKtm3Ztt1Vzk9+Sc8TYP59hmFoe3tbly5dmmXYAAAAAAAAmCNzPzTSl0wm9fjxY73++uvyPK/vJimYEF9ScH8+n9ejR490+fLlKMMHAAAAAABAxBaiR5jv3LlzKpfLKpfL2t7eVr1el23b2tvbk+M4WlpakmEYWl1dVSaTUTqd1rlz56IOGwAAAAAAAHNgoRJhndbW1rS2thZ1GAAAAAAAAFgQCzM0chrPnj3TxsZG1GEAAAAAAAAgQqciEXbu3DnV63V9/etfjzoUAAAAAAAARORUJMIkaXV1Vc1mU2+88UbUoQAAAAAAACACCzdH2OPHj+W6rvb29sZ+jm3bsixLnuepUqnozTffPMYIAQAAAAAAMI8WIhH2/vvvq1KpqNFoTF2X67rTBwQAAAAAAICFM/eJsLfeeks3btyQJHmeN3E9sVhMsVhMyWQyrNAAAAAAAACwQOZ6jrCHDx+qVCpJGpwEi8ViY9UTi8XkeZ5WVla0tbUVaowAAAAAAABYDHPdI6xSqUh6vupjPp9XIpGQaZqSpHa7rStXrigej+vevXsDn++6ru7fv6933nlHtm3r0qVLswodAAAAAAAAc2auE2GNRkOJREKffPLJwMfX19f1zjvvKJFI6Gtf+9rAMq+++qok6caNG/re9753XKECAAAAAABgzs310EjHcYJeYYPcuHFDnudpc3NzZD2lUkn379/X22+/HXaIAAAAAAAAWBBznQiTpNXV1aGPraysaG1tTZVKRfv7+0PLmaapy5cvq1gsjiwHAAAAAACAk2uuE2HJZFJ7e3sjy5RKJXmeF6wsOczLL78sz/N069atMEMEAAAAAADAgpjrRJhpmqpWqyPLpNNpXb58WZVKRT/4wQ+GltvZ2ZEkWZYVaowAAAAAAABYDHOdCLty5YrK5bLefvttPX78WA8ePNCDBw/6ym1sbMjzPCWTSX3wwQd9j7/11luybVvS83nHAAAAAAAAcPrEPM/zog5ilHg83jevVyqV0ve///2u+zKZjLa3txWLxZRMJoO5xRqNhhzHkf8yR61CeVpdvHhRT58+1fLysp48eRJ1OBP57O4fhFrfl6/+Zqj1AQAAAACA56LMQ3xhplubwNbWlq5cuaJYLBYks5rNpj7++GNdunQpKFepVPTiiy9KkmzbDnqAdeb5/CQZBtvd3dXFixdHlrl+/bquX78+o4gAAAAAADj5fvKznw28/ytf+tKMI5ne7du3dfv27ZFldnd3ZxRNv7lPhGWzWd27d09XrlwJ7jMMoysJJj2fT+z+/fv65je/qVgsFtzv/9/zPBmGoa2trZnEvYgODg709OnTkWVYdRMAAAAAgHBd/L2/P/D+9t/7b2YcyfT29/cPzS1Eae4TYdLzZFi73da9e/fkuq7y+fzAcul0Wj/84Q9VKBS0vb3d9VgymZRlWTp79uwsQl5IZ86c0YULF0aWYf8BAAAAAIBhzp49q+Xl5ZFldnd3dXBwMKOIus39HGGTevbsWbBSpGmaWllZiTii+cUcYf2YIwwAAAAAELZbH/YvAChJP/v8c0nS/+/HP9b/8PHH+r9cuqT/w1e/qi+98MLQum5845VjiXEWmCPsGJw7d05ra2tRhwEAAAAAADDSl154Qb/4/HP9q//tf5MknYnFRibBMLkzUQcwyv7+vq5du6Zvfetbevvtt6MOBwAAAAAA4Fj8y3/zb9T83+fW+uRP/zTiaE6uue4Rls1mtb29Lc/z1Gg0tLKyol//9V+POiwAAAAAAIDQ/OLzz/XPfvSj4O8/+Tf/Rv/HlRV94cxc919aSHO9RxuNRtffhmFEEwgAAAAAAMAx+Zf/5t/o3/3sZ8Hff/bzn+tf7u5GGNHJNdeJMNM0JUmxWEzZbFavvLK4E8EBAAAAAAD06u0N5vtnP/qRfhHRyoon2VwnwvL5vPxFLe/evTt1fdeuXZu6DgAAAAAAgLD09gbz/buf/YxeYcdgrhNhxWIxWPnxRwOyo0fVO9QSAAAAAAAgKr84OBjYG8z3z//X/5VeYSGb60SYJNXrdf36r/+6stmsfvzjH09cz6NHj+Q4ToiR/QXHcZTJZFSr1Y6l/kHbAgAAAAAAi+1f7u4O7A3m+/Gf/7n+hF5hoZr7RJgkvfvuu8rn80omk3r33Xe1v78/1vP29/e1v7+vBw8eKJfLhR6X67rK5XJKJBJqNBra29ubqq5YLHboLZFIBHOnAQAAAACAxXRYbzDfP6NXWKi+EHUAo7z44ot69OhR8Lfnecrn88rn80euy/M8xWKxUOJyXVc3b97U5uZmKPVJUrVaHbtsqVQKbbsAAAAAAGD2DusN5vN7hV1eXp5BVCffXPcI8yfL92+xWKzr76PcwrK5ualUKiXbtkOrU5Ju3rw5Vrl0Ok2PMAAAAAAAFti4vcF89AoLz1z3CCsUCrpx40bQk2vShJafQJuWbdtKp9MqFouSnvfiKhQKU9dbrVbluq6KxeKh83+trq5OvT0AAAAAABCdcXuD+egVFp65ToSdO3dOr776qt577z1Jz3tDGYZx5HocxwmlB1cymez6O6ykVLlclmmaKpfLodQHAAAAAADm11//K39F/+Ff+SvB3z///HNJ0r/98Y9170/+RFf+2l/Tr371q/riCy8EZeZ6SN8CmetEmPS8V9j777+vZrOpS5cuTVxPtVrVtWvXwgtMmigp16tWq8lxHFUqlekDAgAAAAAAc+8LHQkuSfpv/+k/7fr73p/8iSSp9Lf+1qxCOjXmJqHor/D4+PFjPX78OFgZMp1O69y5c1MlwaS/mG9s3ty8eVOGYejKlStRhwIAAAAAAHCiRdoj7IWeDGinSqWi73znO5KkjY0N7e/v6+zZs1Ntb5LVJo+TbdvBkM14PC7TNJVOp5XJZJTNZiOODgAAAAAAzML/7W/+zahDODUi7RHWu7Lj2tqa7t27p729vSAJJkmvv/761EkwSbpz587UdYSpVCp1/e04jqrVqnK5nGKxmHK5XOirUwIAAAAAgPnypRdeGHhD+CIfGhmLxRSLxdRoNHT//n29+uqrOnfuXNRhHTvHcdRoNEaWqdVqSqVSoaxMCQAAAAAAcNrNxWT55XJZr7zyStRhzJRpmqpUKnJdV61WS41GQ47jDCxbrVa1s7OjZrM54ygBAAAAAABOjrlIhJ3W+bB65yxzXVfValU3b96U67pdj9m2rUwmo3q9PsMIAQAAAAAATo7Ih0ZK0te+9rWoQ5gLhmGoWCyq3W7LsiwZhtH1eKPR0ObmZjTBAQAAAAAALLjIe4T1JnuO00svvaRPPvlkZtubRjabVTqd1traWteE+Tdv3lSxWDyWbe7u7urixYtT13P9+nVdv349hIgAAAAAAMC8uH37tm7fvj11Pbu7uyFEM5nIE2FLS0sz21ar1ZrZtsJgGIaazaZSqVSQDHNdV41GQ+l0OvTtHRwc6OnTp1PXs7+/H0I0AAAAAABgnuzv74eSN4hS5ImwWXn48KFisVjUYUxka2tLqVQq+Lterx9LIuzMmTO6cOHC1PWcPXs2hGgAAAAAAMA8OXv2rJaXl6euZ3d3VwcHByFEdHSnIhG2v7+vUqkUdRgTSyaTSqfTajQakjR0dclpXbhwQU+ePDmWugEAAAAAwGILayqkixcvRtazLPJEmOM4+ta3vnUsde/t7cl1XTmOI8/zFrZHmCRlMpkgEQYAAAAAAICjizwRJunYEjye5x1LvVEwTTP4/yznVQMAAAAAADgp5iIRdlw6e4AtelKsMxE2y5U2AQAAAAAAToq5SIQdZ5JqkYdDdtrZ2Qn+n8lkIowEAAAAAABgMc1FIiyZTB5b3f4cYYuu1WoF/z+OFSMBAAAAAABOusgTYaZpdvV2Og6O4yiXy+njjz8+1u0cp1qtJkkqFosRRwIAAAAAALCYzkQdwCyYpqmtra3Q63VdN/Q6B6nVanIcR4ZhaGNjYybbBAAAAAAAOGlORSJMOp7hl71DLsdNjDUaDcXjccViMWUyGdm2PXIb6+vrkqTt7W0mygcAAAAAAJhQ5Imwvb29mW3r8uXLodXluq5KpVLXfXfv3h3ruZZlBUmzRqOhVCqlQqHQV85/bGlpSa1W61jnUgMAAAAAADjpIk+EzWp4oaSp5yJzXVe5XE6ZTEbxeLyvR5ht20Evr1wuN7SnVy6X67uvWq0qHo8rl8upUCgolUopk8kon8+r2WzKNP//7f1/fBv3fef7vkGJ8m8KopxEjJitBUbrtHFcCZTTpqfZTSww8Tmn+7h7YkDKntOfmwh0sudxei9Tk1HSvZt0k8hgEqY5vZsYlN2brns3lkDbzW67dQxIbi23TmICduJkWzcBJLuS4TQWAUPWD4oU5v5BAwZA/BgAQ8yAeD0fDz4kAIPvfDAYkJw3P/MdT1u1AwAAAAAA9DrbJ8uXpGeffVa7du2yu4yG3G63IpFI2+P4fD4lk0mFQiHFYjEtLCwUA8FEIiGv16uDBw/K5/NxKiQAAAAAAIBFHBGEzc7O6mtf+5rdZXSUx+NROBy2uwwAAAAAAICeYfupkZIUDof1yCOP2F0GAAAAAAAA1jFHBGGS5Pf7dccdd+iRRx5RLpezuxwAAAAAAACsM7YHYYZhFL8ee+wx3XnnndqyZYvuu+8+u0sDAAAAAADAOmLrHGH5fF6S9Oqrr0qSFhYWJK1cnZGrJAIAAAAAAMBKjpgsf/PmzWX/AgAAAAAAAFaz/dRIAAAAAAAAoBMIwgAAAAAAANATCMIAAAAAAADQEwjCAAAAAAAA0BMcMVk+nCGdTmt4eLjuMhMTE5qYmOhQRQAAAAAAoJvMzMxoZmam7jLpdLpD1axGEIaifD6vM2fO1F0ml8t1qBoAAAAAANBtcrlcw2zBTgRhKOrr69PQ0FDdZQYGBjpUDQAAAAAA6DYDAwPavn173WXS6bTy+XyHKipHEIaioaEhnT592u4yAAAAAABAlzIzpdLw8LBtXWO2TpZ/3333aefOnfrwhz9sZxkAAAAAAADoAbYFYc8884yCwaCSyaQikYgefvhhu0oBAAAAAABAD7AtCDt06JAkyeVySZLcbrddpQAAAAAAAKAH2BaEJRIJSZJhGAqHw7r99turLrd//34dP368k6UBAAAAAABgHbItCEulUtqyZYvi8bg++tGP1lwuEokolUpZss5nn33WknEAAAAAAADQfWwLwtxutw4ePKjdu3d3bJ1TU1MdWxcAAAAAAACcxbYgzOPxyOPxdHSdVnWWAQAAAAAAoPvYFoTt379fR44c6dj6nnnmGYIwAAAAAACAHrbRrhUHg0FNTU3p5MmTCgaD8ng8GhwcrLpsPB5vuXssm80qlUrpC1/4QjvlAgAAAAAAoMvZFoRt3rxZR48e1b59+xSPx+suOzs7q9nZ2bbWZxiGXC5XW2MAAAAAAACge9l2aqQk+f1+HT16VIZh1PySVPdxs18AAAAAAADobbYGYdJKGJbJZHTgwAG53W67ywEAAAAAAMA6ZdupkaU2b96scDiscDiskydPKpFIaGFhQYZh6K677lIgENCePXtaGvvs2bNKpVKam5uzuGoAAAAAAAB0E0cEYaV27NihHTt2FG/fddddGhsb00c/+tG2xo3FYvrgBz/YbnkAAAAAAADoUrafGtkpPp+vLGADAAAAAABAb+mZIEySPB6P3SUAAAAAAADAJo47NbJSJpPR5s2bLRkrEolYMg4AAAAAAAC6j+M7wqwKwaweCwAAAAAAAN3F8R1h1eRyOcViMUWjUS0sLCiVSmlwcFAej0cjIyPy+/266aab7C4TAAAAAAAADtJVQdipU6c0NTWlubm5svsNw5DL5Srenpqaksfj0Sc/+Ul95CMf6XSZAAAAAAAAcCDHnxpZcPjwYY2MjGhubk6GYRS/JJWFYNJKMJZMJhUMBvXud79bL7zwgh0lAwAAAAAAwEG6Igj74he/qLvuuqss+CqEX6WhWGk4Vnhsfn5eIyMj+v73v29L7QAAAAAAAHAGx58a+dBDD2lqaqoYfhWCLq/Xqz179mhkZERut1sej0eDg4NKpVJaWFhQMpnU3NycUqmU8vm89u7dq/n5eeYOqyOdTmt4eLjuMhMTE5qYmOhQRQAAAAAAoJvMzMxoZmam7jLpdLpD1azm+CCsEIIZhiG3261QKKR9+/bVvALk7t27i/+/55579Mwzz+gLX/iCHnroId1111169NFHO1V618nn8zpz5kzdZXK5XIeqAQAAAAAA3SaXyzXMFuzk6CDsoYceUiqVkiSNj4/r61//etNj7N69W5FIRNPT0zp48KAef/xxvf/977e61HWhr69PQ0NDdZcZGBjoUDUAAAAAAKDbDAwMaPv27XWXSafTyufzHaqonKODsCNHjsjlcikUCun3fu/32hprcnJSsVhMR48eJQirYWhoSKdPn7a7DAAAAAAA0KXMTKk0PDxsW9eYoyfLTyQS8nq9bYdgBePj44rFYpaMBQAAAAAAgO7i6I6wVCql2dlZy8Zzu93FUy0BAAAAAADQWxzdESZJHo/HsrEIwQAAAAAAAHqXo4Mwj8djaXgVDoctDdYAAAAAAADQPRwdhHm9XkUiEUvG+uQnP1mccwwAAAAAAAC9x9FB2L59+xSNRvWpT32q5TFyuZz279+v6elpuVwujY+PW1ghAAAAAAAAuoWjgzC/368dO3YoFArp4x//uE6dOmX6ucePH9f+/fu1ZcsWzc3NyeVyyev16vbbb1+7ggEAAAAAAOBYjr5qpLQyr9cHPvABhcNhhcNh+Xw+eb1ejYyMFOf7ymazWlhYUDwe1/z8vBKJRPH5hmFIklwulw4fPmzLawAAAAAAAID9HB+E+Xw+3XvvvbrrrrvkcrkUi8UUi8VqLl8IvqSV8MvlcskwDB09elS7du3qQMUAAAAAAABwIkefGlkQDAZ19OhRbd68uSzoMgxj1Vch/CoEYJs3b1Y8Htedd95p4ysAAAAAAACA3boiCJNW5gs7efKk7r777mLoVU3hsc2bNysUCmlhYUG7d+/ucLUAAAAAAABwGsefGlmqEG6FQiEdO3ZMiURCyWRSCwsLkqTBwUGNjIzI5/MRfgEAAAAAAKBMVwVhpfbu3au9e/faXQYAAAAAAAC6RNecGgkAAAAAAAC0gyAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPWGj3QXAOdLptIaHh+suMzExoYmJiQ5VBAAAAAAAusnMzIxmZmbqLpNOpztUzWoEYSjK5/M6c+ZM3WVyuVyHqgEAAAAAAN0ml8s1zBbsRBCGor6+Pg0NDdVdZmBgoEPVAAAAAACAbjMwMKDt27fXXSadTiufz3eoonKODsJyuZympqaUSqX0gQ98QJ/4xCfsLmldGxoa0unTp+0uAwAAAAAAdCkzUyoNDw/b1jXm6CDM7/fr2LFjMgxDsVhMO3bs0Ic+9CG7ywIAAAAAAEAXcvRVI2OxWNltt9ttTyEAAAAAAADoeo4OwjwejyTJ5XLJ7/fr9ttvt7kiAAAAAAAAdCtHB2HBYFCGYUiSjhw50vZ4H/vYx9oeAwAAAAAAAN3J0UHY5OSk9u7dK0l64YUX2h6v8lRLAAAAAAAA9A5HB2GSFI1G9aEPfUh+v1/nzp1reZyTJ08qlUpZWBkAAAAAAAC6ieODMEm6//77FQwG5fV6df/99yuXy5l6Xi6XUy6X0/HjxxUIBNa4SgAAAAAAADjZRrsLqOftb3+7Tp48WbxtGIaCwaCCwWDTYxmGIZfLZWV5AAAAAAAA6CKO7ggrTJZf+HK5XGW3m/kCAAAAAABAb3N0EDY+Pi5JcrlcxRCsFXSCAQAAAAAAwNGnRm7evFl33nmnHnroIUmSz+eT2+1uepxUKqVEImFxdQAAAAAAAOgmjg7CpJWusIcffljxeFy7du1qeZzZ2Vl97GMfs64wAAAAAAAAdBVHnxoprXSBbd68ua0QTHpjvjEAAAAAAAD0JscHYZJ08OBB5XK5tsdp5WqTAAAAAAAAWB8cf2qkJN19992WjHPvvfdaMg4AAAAAAAC6T1d0hDXr4MGDeuGFF+wuAwAAAAAAAA7SdUHYww8/rI997GO67bbb9PDDD1ddZnR0VLt379aHP/xhAjEAAAAAAABI6qIg7Etf+pK2bt2qQCCg2dlZJRIJLSwsVF3W7/crlUrpxz/+sTwejx555JEOVwsAAAAAAACncXwQ9uqrr2rnzp2amppSJpORYRimrv7odrsVj8e1a9cu+f1+3X///R2oFgAAAAAAAE7l+CAsEAgomUxKklwul1wuV1PPP3bsmAzDUDAY1OOPP74WJQIAAAAAAKALODoIO3bsmGKxmFwuV7ETbPPmzfL5fKbHcLvduvvuu2UYhsbHx9ewWgAAAAAAADiZo4OwcDgsScWOrmQyqYWFBT322GOmTo8s+PCHPyxJSiaTnCJZRzqd1vDwcN2vmZkZu8sEAAAAAAAONTMz0zBbSKfTttW30bY1m1DoBguHw/roRz/a8jgej6f4/8cee0wf+chHrChv3cnn8zpz5kzdZXK5XIeqAQAAAAAA3SaXyzXMFuzk6CAsm81qZGSkrRBMUtnVJROJRLtlrVt9fX0aGhqqu8zAwECHqgEAAAAAAN1mYGBA27dvr7tMOp1WPp/vUEXlHB2Eud1ueb3etscphF+GYSiVSrU93no1NDSk06dP210GAAAAAADoUhMTE5qYmKi7zPDwsG1dY46eI8zj8SibzbY9zqFDh4r/d7vdbY8HAAAAAACA7uPoIGzv3r2an59va4wvfvGLSiQScrlcksrnCwMAAAAAAEDvcHQQdvDgQWUyGX35y19u+fmf/OQn5XK5ZBiGXC6X9u/fb3GVAAAAAAAA6AaODsLcbrfuvvtuTU5O6lOf+pSpKxbmcjndd9992rlzp6anp2UYRtnjwWBwrcoFAAAAAACAgzl6snxJCoVCSiQSuueeexQKhTQ2NiafzydJisfjGhwc1MLCgpLJpGKxWNnE+JKKp0RK0r333stVDwEAAAAAAHqU44MwSYpGoxofH9fhw4cVjUYVjUblcrk0Ozur2dnZsmUrA7DC7XA4rAMHDnS2cAAAAAAAADiGo0+NLBUOhzU/P6/bb79dhmGs+iooDcAMw5DP51MymSQEAwAAAAAA6HFd0RFW4PV6FY1GdfLkScViMUWjUaVSKWWzWS0sLGhwcFBut1sej0djY2Pat2+fNm/ebHfZAAAAAAAAcICuCsIKduzYoQMHDjimyyuVSml8fFzj4+Py+/0tjzM9Pa1oNKr5+Xlls1l5PB55vV6Nj48X50UDAAAAAABAa7rm1EgnymazCgQCGhkZUSwW08LCQkvjxGIxbdmyRVNTU5KkSCSiZDJZvFDA2NiYxsbGlM1mLaweAAAAAACgt3RlR9ipU6cUi8UUj8eL4dPg4KBGRkbk8/m0a9euNV1/NpvVoUOHND093fZYsVhMY2NjkqRgMKhwOFx8zOPxyO/3a3R0VLFYTKOjo4rH43K73W2vFwAAAAAAoNd0VRB23333KRQKKZVKNVx2fHxck5OTuummmyytYXp6WuFwWB6Pp+2xCh1l0kroVRqClYpEIhoZGVEqlVIgEFA0Gm173QAAAAAAAL2mK06NPHXqlHbu3Knx8XElk8mqV4ssKNwfDoc1MjKiL3/5y5bVkUgkilehjEajNYMrswKBQPF0x8JpkdUUOsOklQ6y2dnZttYLAAAAAADQixwfhD3zzDMaHR0tBmAul6v4JaksFCsNxgq3Jycndccdd1hSi9frldfrLd7es2dPy2OlUinFYrHi7X379tVdfv/+/cX/1wvNAAAAAAAAUJ3jT40MBALKZDJlwZe00iXl8/k0MjIit9stj8ejwcFBpVIppVIpJZNJHT16VNlsVtFoVHfccYceffRRS2trZ66uUChU/L/P52s4VunVKLPZrObm5tq6QiUAAAAAAECvcXQQdvjwYaVSqbIQzOfzKRQKaffu3VWfU3r/vffeq7m5OR06dEjRaFRf/vKX9YlPfKIjtTdSenpjaZdZPR6Ppzg/2pEjRwjCAAAAAAAAmuDoUyMLc3AVusDC4bAee+yxmiFYNX6/X/F4XLfffrsmJyeVy+XWpNZmJBKJstu33XabqeeVBmZzc3OW1gQAAAAAALDeOToIK3SDuVwuTU5O6sCBAy2PFYlEZBiGIpGIhRW2pnRuMEmmr0BZuVxloAYAAAAAAIDaHB2EZbPZYjfYwYMH2xrL7XYrGAzq6NGjVpTWlqeffrrsttm5xrZu3Vp2e35+3qqSAAAAAAAA1j1HB2GFUwE9Ho8GBgbaHm9kZKQ4x5adKmtotSMsmUxaVhMAAAAAAMB65+ggbO/evZKkhYUFy8Z0YhDWqmw2a8k4AAAAAAAAvcDRQdinPvUpSSuBz6lTp9oeL5lMmj4NcS21GmBV1m5lQAgAAAAAALDebbS7gHo2b96so0ePat++ffrkJz+pBx98sK3xjh49umqerW5mdUdYOp3W8PBw2+NMTExoYmLCgooAAAAAAIBTzMzMaGZmpu1x0um0BdW0xtFBmCT5/X6Fw2FNTU3p4x//uL72ta+1NM4nP/lJZbNZjY2NWVxh89xutyUhltXdbfl8XmfOnGl7nFwuZ0E1AAAAAADASXK5nCW5gZ1sCcLuuusuxePxpp4zODiocDiscDhcnETfrGw2q1QqJZfL5YggbHBw0JIgbHBwsP1iSvT19WloaKjtcay4sAEAAAAAAHCWgYEBbd++ve1x0um08vm8BRU1z5YgzO12Kx6Py+VyyTCMhsu7XC5JKi7bbIhWOs6+fftaeq6VWu3kqgzPrO4IGxoa0unTpy0dEwAAAAAArA9WTYU0PDxsW2eZLZPlj4+PF//vcrkafjWzbL2vYDDoiG6lPXv2lN022x1WOTn+yMiIVSUBAAAAAACse7YEYTt27JDH45G00uXVia/du3crFArZ8XJXGR0dLbudSqVMPS+ZTJbd9vl8ltUEAAAAAACw3tkShEnS3r17JUmxWEz5fH7Nv+bn5x3RDSat7ggzG4SVdo653e5imAgAAAAAAIDGbAvC9u3bJ6/Xq9tvv92uEmzj9XrL5vd6+umnTT1vfn6++P/KMA0AAAAAAAD12doRtmPHjo6u89SpUx1dXz2lk/YnEglTzyldbmpqyvKaAAAAAAAA1jPbgjBJOnr0aEfXVzpJv91Ka4nFYg2XL13G4/EwPxgAAAAAAECTbA3COq301EIrmL3aYzVer7cszJqbm6u7fCQSKf6fbjAAAAAAAIDmbbS7gFacOnWqqRAqlUopHA63FVzVGrdUs+OHw2GNjIxIkg4dOiS/3191uWw2q9nZWUkrV4oMBoPNFwsAAAAAANDjuiIIO3XqlEKhkGKxmOkrLFYyDEMul8uymrLZ7KrOrCNHjmhyctL0GB6PR5FIRIFAQIlEQtPT01WfX7jCptvtLusMAwAAAAAAgHmOPzXy4MGDGhkZ0ezsrJLJpAzDaOnLCtlsVoFAQGNjY9qyZcuqUC6RSMjlcmlsbKwYbjXi9/sVjUbldrs1NTVVfF42m1UsFtPo6KgSiYS8Xq9OnjxZdrVJAAAAAAAAmOfojrCHHnpIoVBIkuRyueRyuSwLtVqxVh1ZPp9PmUxG09PTOnLkiPbu3atsNiu32609e/YoEonUPG0SAAAAAAAA5jg6CDt06JAkFQMwj8cjr9crj8cjSdq6dWvDMc6ePatsNqujR4/q1VdfXdN62zU5OdnUqZUAAAAAAMAe5y9frnr/dZs2dbgSNMPRQVjhVENJikajxbmyWjE5OamdO3daVRoAAAAAAOhhw5//XNX7M5/9gw5XgmY4eo6wwnxYk5OTbYVg0srE9Dt27LCgKgAAAAAAAHQjRwdhhVMgb7vtNkvGC4fDlowDAAAAAAB62+lP/74+98E7irf/3Xveo9Of/n0bK4IZjg7CCl1gCwsLlo4HAAAAAADQjg0ul7721N8Wbx/5wQ+0sc/RMQvk8CDsU5/6lAzDUCKRsGS8++67z5JxAAAAAABAb3sgkdBLuVzx9ivnz+sBi/ILrB1HB2GbN2/WPffcoyNHjujcuXNtj8epkQAAAAAAoF2Xlpb0h0+eWHX/V048ocXlZRsqglmODsKklYnyvV6vAoFAW+OcPHnSss4yAAAAAADQuyq7wQpeyuXoCnO4jXYXYEY0GtWePXu0c+dOTU1NaXBw0NTzFhYWlM1mlUwmdfTo0TWuEgAAAAAArHeLy8tVu8EKvnLiCf2G16urNnZF5NJzuuJdOX78uCQpmUxqfHy8pTEMw5DL5bKyLAAAAAAA0GNqdYMVvJTL6U8TCX3k3e/uYFUwy/FB2Mc+9jHNzs5KklwulwzDaHoMAjBz0um0hoeH6y4zMTGhiYmJDlUEAAAAAIBzLC4v6ysnnmi43MyJJ/TrPdoVNjMzo5mZmbrLpNPpDlWzmqPfkcOHDxcnuG81BJPU8vN6TT6f15kzZ+ouk6uTegMAAAAAsJ416gYr6OWusFwu1zBbsJOjg7DKEMzn82lsbExut7vpecLuvfdenTp1ag2r7X59fX0aGhqqu8zAwECHqgEAAAAAwDnMdoMV9GpX2MDAgLZv3153mXQ6rXw+36GKyjn63UgkEnK5XHK73Zqfn9eOHTtaHuvAgQPaunWrhdWtP0NDQzp9+rTdZQAAAAAA4Dhmu8EKerUrzMyUSsPDw7Z1jTk6CHO73Xr11Vd18ODBtkKwwli7d++2qDIAAAAAALDe3fP48eL/l69c0f/rve8t3v7KiepXjixdJp17tWwM2M/RQdjo6KiOHz8uj8djyXiHDx+2ZBwAAAAAANBbNm7YUHa7NPAqtaliOThLn90F1DM+Pi7DMJRKpSwZj44wAAAAAABghU0bNlT9grM5Ogjz+/3avXu3jhw5Ysl4Dz/8sCXjAAAAAAAAoPs4OgiTpEgkong8rkceeaTtsQ4dOmRBRQAAAAAAAOhGjg/CPB6P7r33Xn30ox9ta5xXX31ViUTCoqoAAAAAAADQbRw9WX7hVMYbb7xRW7Zs0c6dO+X3+5seJ5vN6ujRo1aXBwAAAAAAgC7i6CDsC1/4gp555pnibcMwND093dJYhmHI5XJZVRoAAAAAAAC6jKNPjdy3b58Mw5BhGJJEkAUAAAAAAICWOToIGx8fl7QSgBUCsVa/AAAAAAAA0NscfWrk5s2b5fV69cwzzygUCsnr9WpwcLDpcVKplL7whS/o2Weftb5IAAAAAAAAdAVHB2GStH//fo2MjOjuu+9ueYzdu3frzjvvbClEAwAAAAAAwPrg6FMjJcnn81l2auOePXssGQcAAAAAAADdx/FB2O7duxUKhSwZy6pxAAAAAAAA0H0cH4RJ0o4dO9oe49SpU9q9e7cF1QAAAAAAAKAbdUUQ1q6HHnpIIyMj+v73v293KQAAAAAAALBJTwRhTz/9tAzD0IMPPmh3KQAAAAAAALCJ468aed9997X83Gw2q2QyqdnZWblcLsViMR06dMjC6gAAAAAAANAtHB+EBYNBuVyutsYoXHUykUjo1KlTuummmyyoDAAAAAAAAN2ka06NLIRZzT7HMAy5XK5imDY7O2t1aQAAAAAAAOgCXROESW8EW2a/JMnlcpXdF4lEbH4VAAAAAAAAsIPjT42UpB07dmhqakoej6ep5yWTSU1PT2t0dFSHDx/WwMDAGlW4PqTTaQ0PD9ddZmJiQhMTEx2qCAAAAAAAdJOZmRnNzMzUXSadTneomtW6IgiLxWItzeu1d+9eBYNBvf3tb1cwGOSqkQ3k83mdOXOm7jK5XK5D1QAAAAAAgG6Ty+UaZgt2cnwQ5na7257c/t5779UHPvAB3XbbbfrEJz5hTWHrUF9fn4aGhuouQ1cdAAAAAACoZWBgQNu3b6+7TDqdVj6f71BF5RwfhIVCobbH8Pl88ng8mpyc1J133slVI2sYGhrS6dOn7S4DAAAAAAB0KTNTKg0PD9vWNeb4yfIPHDhgyTher1eGYWh6etqS8QAAAAAAANBdHB+EWe3pp5+2uwQAAAAAAADYoCeCsFdffVWxWEySlEgkbK4GAAAAAAAAdlj3Qdizzz6rPXv26NVXX5UkeTwemysCAAAAAACAHRw/Wf7OnTtbfm4qlZIkGYYhSXK5XPL5fJbUBQAAAAAAgO7i+CAsmUzK5XIVw6xWlD7fiqtQAgAAAAAAoPt0zamRLperpS9ppSPM7Xbrscce08DAgM2vBAAAAAAAAHZwfEeY9MapjW63W4ODg6af53a75fF4dNttt+nuu+9eq/IAAAAAAADQBboiCJuentbv/d7v2V0GAAAAAAAAupjjT430eDyEYAAAAAAAAGib44Owqakpu0sAAAAAAADAOmBrEPbss882XObAgQNrXwgAAAAAAADWPVuDsNHRUTtXDwAAAAAAgB5iaxBmGIZeeOEFO0sAAAAAAABAj7B9jrBQKGR3CQAAAAAAAOgBtgdh4XBYd9xxhx5++GGdOnVKuVxOuVzO7rIAAAAAAACwzmy0uwBJikajikajHVvflStXOrYuAAAAAAAAOIMjgjDDMIr/d7vdkqTBwcGWxlpYWFA2m636mMfj6WjgBgAAAAAAAOdwRBAWCoXk9/u1Y8eOtsY5duyYAoGAXC5X2f2GYSgQCOjIkSNtjQ8AAAAAAIDu5Yg5wu6+++62Q7AvfelL+sAHPqBXX3212GFmGIYMw1AoFCIEAwAAAAAA6HG2doS5XC7t27ev7XE+8IEP6NixY8UAzOVyyTAMud1uHTt2TLt37257HQAAAAAAAOhutgZhmzdv1sDAQMvPP3XqlMbGxpRKpWQYRvGUSMMw5PV6dezYMW3evNmqcgEAAAAAANDFbA3CTp482fJzH3rooWI3WWUINj4+rq9//euW1NhL0um0hoeH6y4zMTGhiYmJDlUEAAAAAAC6yczMjGZmZuouk06nO1TNarZ3hLXi4MGDmp6eLgZghVMhpZU5xw4cOGBlmT0jn8/rzJkzdZfJ5XIdqgYAAAAAAHSbXC7XMFuwkyOuGmlWLpdTIBBQLBZb1QXGfGDt6+vr09DQUN1l2jmVFQAAAAAArG8DAwPavn173WXS6bTy+XyHKirXNUHYs88+q7179yqbza4KwXw+nyKRCPOBtWloaEinT5+2uwwAAAAAANClzEypNDw8bFvXWJ8ta23S4cOHNTo6qkwmsyoEm5qa0mOPPUYIBgAAAAAAgLoc3xH2sY99TLOzs6sCMEmKRCK688477SwPAAAAAAAAXcKxQVgul9PevXuVSCRWhWAej0fRaFQ7duywuUoAAAAAAAB0C0eeGvnss89qx44dVUOwQCCgn/zkJ4RgAAAAAAAAaIrjgrBq84EZhiHDMBQKhXTkyBG7SwQAAAAAAEAXctSpkfv379fc3NyqLjC3261IJKK9e/faXCEAAAAAAAC6lSM6wk6dOqWdO3dWDcG8Xq9OnjxpSQi2c+fOtscAAAAAAABAd7I9CDt+/LhGR0eVTCZXhWDj4+Oan5/X5s2bLVlXMpm0ZBwAAAAAAAB0H1uDsC9+8YsaGxtTJpORy+Uqmw8sHA7r61//umXrOnz4cDFkAwAAAAAAQO+xdY6wqampYgAmrXSBbdmyRceOHdOuXbssW899992n8fFxgjAAAAAAAIAe5qjJ8l0ulwYHB3XgwAFLxstms0qlUpaMBQAAAAAAgO7mmCDMMAxJzOMFAAAAAACAteGIIGzHjh2KRCJyu92WjJfNZov/n5+fVzgcViKRsGRsAAAAAAAAdCfbgzCPx2PplSEr7d69WwcOHFAgENDDDz+8JutA7zAuXax6v+vqazpcCQAAAAAAaJbtQVgkElmzEKxUKBQiCEPbcr/+a1Xv3zx3rMOVAAAAAACAZtkahLndbkuvDlmPx+PpSOCG9eHSkT+xbPmr9/9Wu+UAAAAAAAAL9Nm58lAotK7Xh/Wn/9f86rv5ndJVV63ccdVV6rv5nTKWluwtDAAAAAAANGRrR9iBAwfW9fqwvhhLS1p+8riM7MIbdy4uKv/8j7T007T63/dBufr77SsQAAAAAADUZWtHGNBNrjz/w/IQrISRXdCV53/U4YoAAAAAAEAzCMIAk66cSjZ4/CcdqgQAAAAAALSCIAwwwTAM6eKF+gtdvLCyHAAAAAAAcCRb5wiDs6TTaQ0PD9ddZmJiQhMTEx2qyDlcLpd0zbX1w7Brrl1ZDgAAAACAHjUzM6OZmZm6y6TT6Q5VsxpBGIry+bzOnDlTd5lcLtehapxnw00juvJ3z9V5/O0drAYAAAAAAOfJ5XINswU7EYShqK+vT0NDQ3WXGRgY6FA1zrPh5luUT5+Wkc2seszlHtSGm99pQ1UAAAAAADjHwMCAtm/fXneZdDqtfD7foYrKEYShaGhoSKdPn7a7DMdy9fdXDcEkqf99H5Srv7/DFQEAAAAA4CxmplQaHh62rWuMyfIBCxCCAQAAAADgfHSEAU3Y9L/9G7tLAAAAAAAALSIIA5rg2kjnFwAAAAAA3YpTIwEAAAAAANATCMIAAAAAAADQEwjCAAAAAAAA0BMIwgAAAAAAANATCMIAAAAAAADQEwjCulgqldLY2JjdZQAAAAAAAHQFgjAHymazcrlcDb9GRkbk8XjsLhcAAAAAAKArEIQ50OzsrOllp6am1rASAAAAAACA9YMgzIEOHTpkajmfz0dHGAAAAAAAgEkb7S4A5WZnZ5XNZjU5Odlw/q89e/Z0qCoAAAAAAIDuRxDmMKFQSB6PR6FQyO5SAAAAAAAA1hWCMAeZm5tTKpVSOBy2uxQAAAAAAIB1hznCHOTQoUNyu93at2+f3aUAAAAAAACsOwRhDpFIJJRIJJTNZrVlyxaNjIxofHxcc3NzdpcGAAAAAACwLhCEOcTU1FTZ7VQqpdnZWQUCAblcLgUCASUSCZuqAwAAAAAA6H4EYQ6QSqUUi8XqLjM3N6fR0VGNj493qCoAAAAAAID1hcnyHcDj8SgcDiubzSqZTCoWiymVSlVddnZ2VvPz84rH4x2uEgAAAAAAoLsRhDlEMBgsu53NZjU7O6tDhw4pm82WPZZIJDQ2NqZoNNrBCgEAAAAAALobQZhDud1uTU5OanJyUnNzczpw4EBZIBaLxTQ9Pa3JyUnL1plOpzU8PNz2OBMTE5qYmLCgIgAAAAAA4BQzMzOamZlpe5x0Om1BNa0hCOsCfr9fPp9Pe/fuLZsw/9ChQ5YGYfl8XmfOnGl7nFwuZ0E1AAAAAADASXK5nCW5gZ0IwrqE2+1WPB7X6OhoMQzLZrOKxWLy+XyWrKOvr09DQ0NtjzMwMGBBNQAAAAAAwEkGBga0ffv2tsdJp9PK5/MWVNQ8grAuc/jwYY2OjhZvR6NRy4KwoaEhnT592pKxAAAAAADA+mLVVEjDw8O2dZb12bJWtMzr9ZYFX7WuLgkAAAAAAIByBGFdaGxszO4SAAAAAAAAug6nRnYhj8dT/P/g4KCNlQAAAAAA0D3OX75c9f7rNm3qcCWwC0FYFyoNwtxut32FAAAAAADQRYY//7mq92c++wcdrgR24dTILjQ/P1/8P6dJAgAAAAAAmEMQ1oWSyWTx/1ZdMRIAAAAAgPXuJ1Of1LYbbije3nrttUpOfdLGitBpBGFdaG5uTpI0OTlpcyUAAAAAAHSPh597Ti+fO1e8ffbCBT38wx/aWBE6jTnCuszc3JxSqZTcbrcOHjxodzkAAAAAADjKPY8fr3r/8pUrCn/3u6vu/2z0Mb18LqeNffQK9QLeZZvFYjFt2bJFLpdLY2NjSiQSNZdNpVI6cOCAJOnYsWNMlA8AAAAAgEk/ePllvVblqpGvXb6sH6TTNlQEOxCE2SwSiSibzUpaCcVGR0c1Pj6+arnCY4ODg0omk/J6vR2uFAAAAACA7rScz+upF16o+fh3XnxRy/l8ByuCXQjCbBYIBFbdNzs7qy1btigQCGh8fFyjo6MaGxtTMBhUPB6Xx+OxoVIAAAAAALrTD9Lpqt1gBecWF/UcXWE9gSDMZj6fT8lkUsFgUB6Pp+x0x0QioYWFBR08eFCZTEahUIjTIQEAAAAAaEKjbrCCp+gK6wlMlu8AHo9H4XDY7jIAAAAAAFh3GnWDFRS6wnZv396BqmAXOsIAAAAAAMC6ZLYbrICusPWPIAwAAAAAAKxLZrvBCpgrbP3j1EgAAAAAALAu3bptm27Ztq2p59AxtL4RhAEAAAAAgHVp44YNdpcAhyHoBAAAAAAAQE8gCAMAAAAAAEBPIAgDAAAAAABATyAIAwAAAAAAQE8gCAMAAAAAAEBP4KqRKEqn0xoeHq67zMTEhCYmJjpUEQAAAAAA6CYzMzOamZmpu0w6ne5QNasRhKEon8/rzJkzdZfJ5XIdqgYAAAAAAHSbXC7XMFuwE0EYivr6+jQ0NFR3mYGBgQ5VAwAAAAAAus3AwIC2b99ed5l0Oq18Pt+hisoRhKFoaGhIp0+ftrsMAAAAAADQpcxMqTQ8PGxb1xiT5QMAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCdstLsAAAAAAACAas5fvqxLy8v646e/J0n6yG3v1lUbN+q6TZtsrgzdiiAMAAAAAAA40vDnP1d2+wvHj0uSMp/9AzvKwTrAqZEAAAAAAADoCQRhAAAAAADAkT73wTtW3ff5KvcBZhGEAQAAAAAAx7m0tKSvPfW3q+7/T0/9rRaXl22oCOsBQRgAAAAAAHCcBxIJvZTLrbr/pVxODyQSNlSE9YAgDAAAAAAAOMri8rL+8MkTNR//yokn6ApDSwjCAAAAAACAo9TqBit4KZfTn9IVhhYQhAEAAAAAAMdYXF7WV0480XC5GbrC0IKNdhcA50in0xoeHq67zMTEhCYmJjpUEQAAAACgF9zz+PHi/xNnztTtBit4KZfTbz74Te3evn0tS0OTZmZmNDMzU3eZdDrdoWpWIwhDUT6f15kzZ+oukzPxzQgAAAAAgFYs5/N66oUXTC//1Isv6l1DQ9rYxwlvTpHL5RpmC3YiCENRX1+fhoaG6i4zMDDQoWoAAAAAAL3mB+m0Xrt82fTy5xYX9Vw6TVeYgwwMDGh7g/cjnU4rn893qKJyBGEoGhoa0unTp+0uAwAAAADQo27dtk23bNvW1HPoBXMWM1MqDQ8P29Y1RhAGAAAAAAAcYeOGDXaXgHWO4BQAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9YaPdBQC9yrh08Y3/G4ZcLpckyXX1NXaVBAAAAADAukYQBtgk9+u/VvX+gQf+m1zXXNvhagAAAAAAWP84NRKwgXHxQs3HXvsPE3UfBwAAAACnu7S0pK8+eUJfffKEFpeX7S4HKKIjDLDB4p8dqflYPvVjLX7riK7+8O90sCIAAAAAsMb5y5f1jfl5fSYalST1923Qb+3Zo+s2bbK5MoCOMMAWlx9/tP7jx+s/DgAAAABONfz5z+n3v/3GMc2nv/2ohj//ORsrAt5AEAZ0mGEYMhZeqb/MwisyDKNDFQEAAAAA0BsIwoAOc7lccg3eWH+ZwRuLV5EEAAAAgG5xaWlJ2264YdX92264gbnC4AjMEQassUtH/mTVfX1vGdKVOl1hfW95a9XnXb3/tyytDQAAAACs9EAioZfPnVt1/8vnzumBREIfffe7bagKeAMdYYANNtx8S83HXO5Bbbj5nR2sBgAAAADat7i8rD988kTNx79y4gm6wmA7gjDABq7+fvX/ml99N79TuvqalTuvvkZ9N79T/e/7oFz9/fYWCAAAAABNeiCR0Eu5XM3HX8rl9KeJRAcrAlbj1EjAJn3XXKu+W0elW0dlGAZzggEAAADoKvc8frz4/+V8XuHvfKfhcz4biyp9LqeNffTlwB7seYADEIIBAAAA6GY/SKf12uXLDZc7t7io59LpDlQEVEcQBgAAAAAAWracz+upF14wvfxTL76o5Xx+DSsCauPUSBSl02kNDw/XXWZiYkITExMdqggAAAAA4HRmu8EKCl1hu7dvX8OqYJeZmRnNzMzUXSZtY1cgQRiK8vm8zpw5U3eZXJ2JDwEAAAAA3evS0pLC312Z5+uuX36PrtpoLjK4dds23bJtW1Pr4vS09SuXyzXMFuxEEIaivr4+DQ0N1V1mYGCgQ9UAAAAAADrl/OXL+sb8vD4TjUqS+vs26Lf27NF1mzY1fO7GDRvWujx0kYGBAW1v0O2XTqeVt+n0WIIwFA0NDen06dN2lwEAAAAA6LDhz3+u7Panv/2oPv3tR5X57B/YVBG6lZkplYaHh23rGqMbEQAAAAAAAD2BIAwAAAAAgB52aWlJ2264YdX92264QYvLyzZUBKwdgjAAAAAAAHrYA4mEXj53btX9L587pwcSCRsqAtYOQRiwThiXLha/8hcvFP8PAAAAALUsLi/rD588UfPxr5x4gq4wrCtMlg+sE7lf/7Wq9w888N/kuubaDlcDAAAAwInuefx42e3EmTN6KZerufxLuZx+88FvaneDqwAC3YKOMGAdMC5eqPnYa/9hou7jAAAAAHrTcj6vp154oeFyT734opbz+Q5UBKw9gjBgHVj8syM1H8unfqzFb9V+HAAAAEBv+kE6rdcuX2643LnFRT2XTnegImDtEYQB68Dlxx+t//jx+o8DAAAA6C1mu8EK6ArDekEQBnQ5wzBkLLxSf5mFV2QYRocqAgAAANApl5aW9NUnT+irT55oalJ7s91gBXSFYb1gsnygi1w68ifVH7jmWqnePGDXXKvFo/+57K6r9/+WhZUBAAAAsMMDiYQ+E41Kkq7bdJU++u53m3rerdu26ZZt25paF500WA/Yj4F1YMNNIw0ef3uHKgEAAADQKWcvXNDMiSeKt7/8xF9r4YK5C2Vt3LBBm5r82rhhw1q9FKBj6AgD1oENN9+ifPq0jGxm1WMu96A23PxOG6oCAAAAUM2lpSWFv/sdSdJdv/weXbWx9qH5PY8fr/lY6K/+quz2y+fOaSR0j6be9z4rygTWJYIwYB1w9fer/3136MrzP9KVUz9ZOU3ymmu14aa3a8PN75Srv9/uEgEAAAC8rtXTGUstX7lS+7F8Xhv7OAEMqIYgDFgnXP392njLLm28ZZcMw5DL5bK7JAAAAAAVqp3O+KFbbtHgtdc2Nc4PXn659mPptLzbt7dcI7CeERED6xAhGAAAAOBMbw/do5fPnSveLpzO2IzlfF5PvfBCzce/8+KLWs7nW64RWM8IwgAAAAAAqOPS0pK++uQJffXJE1pcXm5rnFqaGfcH6bReu3y55uPnFhf1XDrdVG1AryAIAwAAAACghvOXL+v+p5/WZ6JRfSYa1f3f+57O1wmh6nkgkWjpsVKNusEKnqIrDKiKOcIA1MV8YwAAAOhlw5//XNntT3/7UX36248q89k/qPmcald6XM7nFf7Od2o+5w9iUb18LtdwkvtG3WAFha6w3cwVBpQhCAN61KUjf1LzsfzFC7ry479T/oWUdOmidPU16vs5jzb+/K01r0B59f7fWqtSAQAAgK5n9nTGesGV2W6wgqdefFHvGhriCpJACT4NAMoYS0ta+vM55Z//0UoIJkmXLir//I+09FffllFnXoOGYxuGRVUCAAAAa+/S0pK23XDDqvu33XBDU3N6WXU6o9lusALmCgNWoyMMQJkrz/+w5mNGdkFXnv+RNt6yy/R4+cxZLf75Q1p6IiYjc1auLVvV/y98utr/63Jd09wlogEAAACzLi0tKfzdlVMR7/rl9+iqjc0f/j6QSJRd4bHg5XPn9EAioY+++92mxrHqdMZbt23TLdu2mVpnAd0vQDmCMABlrpxKNnj8J6aDMOPiBZ07sK/8vsxZXf7WES0/l9D1n50hDAMAAMCaeCCR0GeiUUnSdZuuMh1aFSwuL+sPnzxR8/GvnHhCv+H1NgzYrDydceOGDabHAVAdQRiK0um0hoeH6y4zMTGhiYmJDlWETjMMQ7p4of5CFy+YnkB/8c+O1Hwsn/qxFr91RFd/+HeaLRMAAADrlBVdXJJ09sIFzZx4onj7y0/8tT50yy0avLb2H2ErJ7hPnDmjl3K5msu/lMvpNx/8ZsPJ6Fs9nZFJ7tGtZmZmNDMzU3eZtI2n7BKEoSifz+vMmTN1l8nV+UGA7udyuaRrrq0fhl1zremrSF5+/NH6jx9/lCAMAAAARe12cRW8PXRP2e2Xz53TSOieuld6LNXMnF6NJqPndEb0mlwu1zBbsBNBGIr6+vo0NDRUd5mBgYEOVQO7bLhpRFf+7rk6j7+96v2VV6E0DEPGwit112UsvKKLD35jVbDGFSgBAAB6TytdXNVcqnNxp8XlZVNdZlbN6SVxOiN6z8DAgLY36GhMp9PK17kwxFoiCEPR0NCQTp8+bXcZsNmGm29RPn1aRjaz6jGXe1Abbn6nqXGs7i4DAADA+tZKF1fl6YzSyimNtfzGg9+Ut8EBupVzegG9yMyUSsPDw7Z1jfFJBVDG1d+v/vfdoQ0/f+tKkCVJ11yrDT9/q/rf90G5+vtNj7XhppEGj1fvLjPDMIyWnwsAAADrXFpa0lefPKGvPnlCi8vLLY9RSzNjNgqxvvPii1pu0IXS6pxeALoDHWEAVnH192vjLbu08ZZdpifGr8aq7rKCfOasFv/8IS09EZOROSvXlq3q/xc+Xe3/da4+CQAAYBMr5vV6IJGo+5jZMRuFWGZOZWROL2B9IwgDUFc7py4WusuuPP8jXTn1k5XTJK+5Vhtuers23PzOmt1llfONSZKxtKTLf/bN8vsyZ3X5W0e09NfRmt1qZuYbayfsAwAA6EZWXZ3x0tKS/vDJE8XbXznxhH7D621qvMXl5bIxKpkd06oJ7pnTC1jfCMLQ9WZmZrTwt0/ohmuv0e/+r3fYXQ4qWNVdduX5H9Z8zMgu6MrzP9LGW3aZHm89dZfNzMwol8tpYGCg4bn4wHrD/o9exv6Pdlh1dcb7n35aL5VcWf6lXE73f+97+viv/ErV5WvN6fVSnavTv5TL6Tcf/OaqLq4TkYgWz1/QVdddq/cGApZOcA843YlIRJf++gl+BrTAZTDRTs8rTFK3ffv2rpwsv1D/Wwe3KPm1r9hdDtbI4p/PNZx4/6pf86+6u1pHmHHxgnK/8a+qDtPn2anrPzvTVhjW6Q6zbv8MA+1g/0cvY/9Hq85euKBf/dp/0svnzkmStt1wg/7m4/+upaszDn3uP1Z97OV///+u2sFVGYQt5/MKf+c7DQOsG666SsFf+qWyLq5D+/Yr98orGrjxRt394DdNjVNvPKCbFPb/bv0ZYOfPMDrCADieYRj1QzBJunjBdAC1+GdHaj6WT/1Yi986oqs//DtN1bieOswAAIA1rDr90Oqxmr06Y7UuLqn9qzNK5iemb9TF1eoE93SFAb2HIAyA47lcrpUrWDboCDPbhXX58UfrP3780aaCMOPiBZ07sK/8vtfnL1t+LtFWh5mV3WXMhQYAQGdZdfqhlWM1ujqj2YDNzNUZb60zD5eZMSrVm9uLCe4BmEUQBqArbLhpRFf+7rk6j7+96v2VE+8bhiFj4ZW66zIWXtHFB7+xKjSqNfG+1R1mVnaX0akGALCSlV1JTmXVazx74YJmTjxRvP3lJ/5aH7rllqZPP7R6LCddndHKLi4muAdg1vr7ybWOTE9PKxqNan5+XtlsVh6PR16vV+Pj4/L5fHaXB3TUhptvUT59WkY2s+oxl3tQG25+p6lx2ukuq3Y1S0la/O8P113n4l88LLlW/82x1vxlVnWXrWWnmpWc3Knm1NqcWheA9c/KDienhmpWvcZmTz+0eqxqpzMW5uOq5Q9iUb18Ltdw3iyrrs5IFxcAOzjjpw3KxGIxBQIBZbNZ+Xw+RSIReTweJRIJTU1NaWxsrHi/2+22u1ygI1z9/ep/3x268vyPdOXUT1aCrGuu1Yab3q4NN79Trv5+02O12l1WjZPnL1uLudAK2g1ijIsXtPhnR3T58UdlLLwi1+CN2vT+O3TVv97fdjjn1NrarWutuvsI1ZrHNkM3sXqOqj988kTx9ldOPKHf8HpbHtOJoZpVr7HV0w+rhldXrtQc63PHYk1N9m5FF5eZccyORxcXADsQhDlMLBbT2NiYJCkYDCocDhcf83g88vv9Gh0dVSwW0+joqOLxOGEYeoarv18bb9mljbfsautAdKW77IyM7MLqdTTRXSZZ32HWSneZUWPdVs+FZlUQY1y8oNf+/f9T+VPJN+5beEWLD/2plp75bkudalaFV1bXZmVdVnb3rWUQuV51wzZzaneN1XrhdVr5Gq0Mm+5/+mm9lMsVb7+Uy+n+731PH/+VX2l6LKeGas2+xrWcRL7gBy+/XPuxdNr0WFZ1cVk5rxd6gGFIVv3xyMqxnKoXXqMDrL/fHLpYNptVIBCQtBJ6lYZgpSKRiEZGRpRKpRQIBBR9/Yc+OutSPq/7F16VJH100K2r+viG1UntdGOsdJd90JLuMsm6DrN2u8uMixeK4ZrVc6FZGcQs/tmRsqCpVCudalaGV1bWZnVdtdhZV6+ot80uJ76jG/7gK464IMYD8bhlgYeVrA6urHydTr2in1WhjpXzSl1aWtLvf3v1H1g+/e1H9ZF3v7vp12tlqHb2wgXNPPHXxdutvk6rXqMVk8ivxVhrenXGOgfvXJ2x9/RfXtSuZ57SO/7uB7r+/Dm9dt0N+vufv1XP7n6PljZd1dRY15x/Tbd+/3v65//wnK4//5peu+56/cM/f5cSe/6npsdyKiu3F8whCHOQwumQkjQ1NVVzuUJn2NzcnGKxmGZnZxUMBjtUJQq+mT2nz/3TSkfRdX19+u3BzS2P9dW/eFTnLlzUDddeo9/9X++wqsSO6cb6S7vLvvrnf6lzFy/phhde1u/esqvpsazqMLPy6phWX2nTyiDG6k41K8OrVmqbmZlRLpfTwMCAJiYmHFNXLVYHkaUuXr6s2e99V5KzQgWpvcCp1jYzJOnkT1oKb0u7yxY2btLf3PhW+Q99RVffMNBUbYWxFh9/VPsWXtF7N25SxP1mhf/qeFvdNWa3f639v5QVoc5avc7f+dKX9Oili23VVmBVQFfslHo9WGinU8rKOaqsmmBdsi5wKuwXP/vWUX1n+bLShf3iyva6r9PKLq4TkYgWz1/QVdddq/e+/gdtq04/rDpWReBkdqy1uDpj/+VFjT77Xf3C88/phvPndO66G/Q/bn6X4rt+adXBe1O9YFZ3xDi1w8YwdGJubtX+Y7smtle1/b//8qL+H488oDe98tPictefP6c983+jn3shqW/96183He70X17Ub3/jq2X3XX/+NXmfeUpvO32yqbHM1t+SNvYxK7cXzCMIc4hUKqVYLFa8vW/fvjpLS/v379fc3JykldCMIMwcq7q4LuXz+qNX3pi0/f9+JaN/4x5oebz/+y++rZcWMnrr4Ja2gyQrO9XMjmVl/VbXZsZXv31MCzt3auCaa3RX3mh6rNIOs+VTP5Hr4gWdv+pqXbdjp/rfcYsl85cZklxqbv4yq660KVl3QQCznWrNhBZWhUSt1jYzM6MzZ85o+/btZUGA3XXVXK/FQWRlqPPB1w9Ev2lIv/3e95oep9IDiYQ+89hjkstlSXiihVd0/vobNDD2r3Tdh/5NUx1ctbZZYWsvNrHNqnWXDS5f1r96+ZRe/uS/0899KdzUBTEqxxpavqz/65XTev9rGf3JkycUfN/7TY1Vyez2r7X/F1gR6qzV67y0tKRvv/Iz6frrJbV2ap7VAZ1x8YLm/z9f0kPxpzRUEuy08hpbnaOq1vLF0xirHPA1u+2KoVqVsWqFapXhVenB49Dr95XuFx++6Zam5s8qC4qq1FWr8+rJyJxyr7yigRtv1HsDActOPyyt6boryxp/5YwC2X8q2y/CN27X+Q0bTY1lZRfXxg0bVrb/f/0vZQfvN5w/p19K/K08/5hq+uDd6q4fp3bYVNb1rxcv609TZ/THZ8/bFsRUq8vs9qrc/yVp1zNPle0Xpd70s5e165nv6Olf+pem6tr1zFM1H2t2rFUMo2r9Zlm1j1m5vWAeQZhDhEKh4v99Pl/Deb/8fn/x/9lsVnNzc2X3oTqrurj+JJNTevmNiUvTy1f0J5lXFdzqbmk8Y8MGXfUr79HSNddosYUgppSVnWpWjiVZG15ZWdvyL/yCrvmX/1JLkr6ZzbU0VqHD7IG37tCn0j+TXC4d2najfrvZ0yxrdJe51Pz8ZfU61dTEWO2csln1SpsmOtUWj/5n07VZdQqoy+WSa/DGuuO5Bm80FTZZGV6ZqUs21CXVDyj+/r4ZXdr1iy11OGUjf6r3PfpnOnV5UemNm/SX2Ze1MOLR4NYbmxqnsrbrXjunK4/8F732/adNnwJqZpupiW1Wr7tsy09f0vlHvqnr//ePNByn0VjvunRex498Q4u/+t6mg53zD/8Xve8vHi5u/0ezL+vSz7+jpffSilDH6tdZCK8Wvv1fdfK1XFkXUTOn5lkd0BkXL+jc7/+u3vVCatV4z933FV0aHW3qPSjr4Ko4SK7XwVWtW+pHp07pwz9+rmYQ81Iup9988JumOpz6z+V05dv/VU+dTVcdy+xVC2sdPBb2i+DZM03Nn/X8iy8q+I8/rvka25pEvkpIYWa8H6TTMi5e0IOnfqh3XTpfvL8y8Du3qIZj1eriSi8u6U9PpfXHmQu66xvfKHtOvXfAyoN3q7t+1rTDxuLOn6GrNunun9+hO85d0HcvLzb9Oq0IYqzeXu/4ux80ePz7pvcNK8eSqgSRv/yOYhDZDCu3mdWvEeYQhDnE7Oxs8f9er9fUczwej1KplV+Wjhw5QhDWgFVdXJfyeX3mp2dX3f8ffnpWv7Vlc0vhjhVBTKE2qzrVrO56k6wLr6x+ncujo5aN9UevZIq/ILUyVqG7bPHvf6ifJZ/Xm5dWfhn/y63b9G9/6Vea6i6rNhdaeuMmHd3yZr31F27Vr5scy+rTLK3serP6YgV9bxnSlYVXirVU1tb3lreuel7hYgWlc7QV1mtV4Feoq1Khru8PDOrdVV5PK2Gf2VBNqh9QvON8TvP3flW/eve/NzWW9Eaw0HcqqTe/ft/Q8mX92zNJPfe7/1b/0+EH257vzVBzp4Ca2WbpjZt09ZUrpoKYRt1l5x77c9NBWKOx9mX+qalT1kqDndLt/ztnknpp6t9px5eb61azKtSx8nWWvsbrKup6/2sZffi/y/Spee0EdNXCptu++1faU7K9Ksebu+czOu37tbLHzi0uFv8tHXM5n9cDf/OkJn76QtVgx2zYJEmuSxf1sePf0jsvvla8rzKIMduV1H95Uf/b/+/r2nplueZYZkIdqfbBY+l+cZ/J+bNcly7q48e/pV9o8zWWdoM16uKS6neFFcYaf+VMWQhWUBr4feXNP9ewtlpdXENX9evum//ZShBzZdmWg3eru36s7rDpROfPu264VotNhodWBTGWbi/D0PXnz9Vd5Prz58wFilaOJWuDSMu2mcWvEeYRhDlAomLOhdtuu83U87xebzEIK5wmidqs6uL6Zrb2N6tWQiwrgxgrO9Ws7nqzMryy+nUar58WY8VYVtTl6u/Xn7x1hz6zYaDsB9+G1y4oeNWmpsfaeMsuLf/CrfqVH7+g9JW8JGko+5oCN241vf0bhVf6uRHTNa10qp2Wkc2U3e+S9PfXXK937PyFpn44FWqrFV41dTrp6110qtKRt3DDZm1rpiNvDeqq1in43NXX6X+/eot+VKWbtF7YV6lRqCatDtYaBRQ3xv+25ilY1Wpb/uEzdYOF3Oc/pavetbv8sRpBZK3TeYunM5o8nVeSNr3/Di0+9Kc138ujW96st5oIYsx0l137Wk6XlpZ0dYOg2sxYQ8uX9ZUn/tr0KWv1gp2t/9R8t5pRJ9R5ZvaP9J5PfLrhOFa/zkbhVfDsGdOn5v3Go9/S9auWKg9imrk6YKNg592pv9ep/P9iKrx6/sUXdf8/JOp2EZmdo2r4RKwsBCuoDGLMdDjdmvjbshCs1lgNQzUTB49Dy5d17tIlU69z+ESsLASrVZfZSeSvu7LcsIurUZdZYaxA9p+qrqt0PzO7/S0LYiw+eLe6I8bK8Zza+WNleGXp9ne59Np1N9TdP1677oaa+8We7z1Rdvty/yZtWqo9397l/k3a8/SJmo+X2n76VN39f/Avjuil7TeZGuvW7z/d4PHvyaiz78+/+1+s/KfN7YXWEYQ5QOncYNJKp5cZlcslEgnT3WS9ptkuridPnaw6zpJh6EuXjJrr+dJPX9HPvXpW/SXfrH71ph11a7MqiLGyU20tut6sComc+jrXbKySfant7f96CCY1v/0bBTE/ePPb9G9N1rLSqXaHrjz/I51L/YOuXbxU7FSb3bpdv3/+on67icBvw823aDl9Rq4atb2riWDN1d+v/L8Y0x9/9yn9L2dfLv4V/+iWN+tbb/lnOr5ho8z+7XfDzbdo+aXTcr26OvBrpa7+931Q8WfjuvH0qbK6ZreudBeYDeJbDdWk8vDKbEDx/539T/ptk/vZlRqT+BcquXDyx6uCsGqsPp3XuHJFcg/W3Mdmt27X5m//pQLJ/9H489mgUzC9cZP+6r6vm/ujiomxXjp3Tt84/DX9VsV41X7O/eKz31W1T17hFWX+25y+84//WPbY4rlc8d9Y6DPF+2999rtVPyuFsbY+/aT+8p7/UPbzspZfbHAgVHidv3/Pf9QH++uP1+g17sv8k37tv/+5th//i1W17Sm9YTKISfz4H/Q7p3/S+HWaGO8tS4t69W+f0Ac3vREObbq8uGq55Xxet8w/2bCL6L4XrzM1R9Wek89XfawyiJEaz3u180fPmhqrYahj4uAxvXGT5HJVran0YHvJMDSS+nvTrzH+kx/rt2u8p4XTD3/5e0/U3f5/fN0Gfee2lTkUK7dUobZbDUO/efXKflTP0PJlPXC1JJdLfad/ok1n3vg+WjzYfl07gceaBRQmQ7U93/3rqmFA4TOw6fLiSo1tjlepXnjypp+9rP/ZbHhicV3tBjFW1bVq+0vKDbh1/flzNf949Opm96r9qZZXbnyL3pr+x5pj/exNbzE1jiTdWON9LHjTz35q+r2st+9LWnm8ThBc+vrb2V7VfgbAHIIwB3j66fJvZI3mByvYunVr2e35+XmCsBqs6uI6viwt1M7BdNZYWeaDJs9eszI8sbJTbS263tb763TqWJI127/0lM2Xf/L86iDm7Kv6P95kvsPM1d+v5V+4VbdvcuvlpeWyXxS+2mS3oKu/X5Ff/GWl/8cPtC/zT6tqazZY++b5S/qPN75N//HGt5X/EmM0t/1d/f2K7HqPZXVd3rBRwc3blL7uTVV/ufojk9vNqlDNzGmp6Y2b9Edns/o3Zv7gYBi6rUF4de3iJT2eSqq/5ID28vJy8d/SMRuFJ7n+TXr+hVN111fq8bf9c13Vf7rqe3l+w0adX76izyVPNgxitru36q0XL9TtLvvPVf6oUs0291a9rcFYkvTFn76if9ZoPBO/2A8sXdZSPl+2/WuNdVWDsd6yfFmHlwx9cFPjz/lPb3yL3lbnQKjwOh9ZNnT7RtV+nSZe49DyZZ3NGzq+7Kr/s9zlahgEpDdu0lm5TP1esCTppxs36S11Qo/0xk165Ip0u2Gseo2lB6HfXjL0kbPp6mW//m8h2Hn1qRN199lvX85r21L9A62h5TcO+M4tLtYccymf15ZL9T/jpWPVC5wk6Znr3XpvnYPHwn5RryZJOr5k6FdMhE2Fuip/1ysNAn45/jeSpF98br7qOIUKdv9gXn19G+quc5PLZWo/u9y/SVfX+EyWHTxbHMRYFlCYfI2mO2IsHs+y8MTKuiwIYtakrtelh4a1+dWMrrtQ3mXpknT+2uv18rbhzo/l4G1m5faCeQRhDlA4vbGg1Y6wZLL6X9J7ReVBUEErXVzVLBmGHl6uk4K9rvIX8VrdZZL06FLt8cwcUJXWZsVrbHWsWgeiBXa+zlodeYt5o+xUzUrVQgUrOwVrcfL2l6RHr96s+2++reovCk2PtWTo5eXV47xsMlAoWDIM3XPJ0MKbf27lL/YVtbW1/Sue08z2t7IuaeXgNl34HlTlOS81sd2WDEP/5/Vv0sLN1UM1s7WZCXVM1+VyKde/SQMNgoXjV1z6oImLwDUKT46436x3VgkUqlkyDD1obKj5XhY0DGK08guvK7ugoYvl3SKl3WXnTf5R5Zs3btf/nFlY1XlSOpZk8o80Fm7/dkOdSpa9TpdLi/2b6oZ0hS4iM++lZQGdVuqed79Z/9crp+uO1+g1LhmGHl7K6/dNBjuPLKtube/vb7zNFvs36YFr39gpau0ex6+4tGPjprodToXtL9V/P5cMQwcH36qvv9p4v5DqvwdWvkZJ1h5wy7mBk5UH71Z2/Vg6Xqfey9e7k+16L63e/vkNG/X373iXtr18Wm/62U+1aemyLvdv0s/e9Ba9vG1Y+Q3mIwjLxnLwNrNye8E8c9cTxpqqDMJalc1mLRlnvTHbxdXuOM2Ot2QYeqROsPbIsqElw8QKTdRmtiarx5Lsf51PnjpZ9etzyZNlp2pWKhy8lz7Hyro6MZZk7fYvG6tGCNDSWG3WtWqbVdRm1/a3sq5mgngz262stirvpdnaXty2XX939XWqHKHyQNRMXUuGoSPuleCgcsnC7aNb3mz6NX7zxu16rk5tf7h1u2XvZYGZ7bbYt0GBm27RV980vHLQr5WD/6++abg4b5DUeJsVwrkPmxjL7HhWbf/jyzI1lpntZfXr/N7gWxrWJZl7LxvtY5UBXb3X+PCyobDJ8eq9xuPL0oJcxe1USyFwalTbJpdLZ2+sv81eedNbdLXLVfzaVCtU2ygtvanGWK+/nqU3vUUPXOMqfr2/xvHf8WXpdN9G0/tFvddp5WuUVDzgrqfZwOn8tddX3S9aCZyk2tu/lYP3M299W/H1Xu7fpDNvfZv+/h3vaurg3crXaOl4nXovXS79MHfemvfy9X+beS+t3v7Syv7x0vab9P1dv6Sn9/yqvr/rl/TS9ptaCnWsGsvK/d/qbWbl9oI5LsMweaSBNVM5P4nZtyQWi2lsbKx42+/3KxKJNL3+TZs2aWlpSZLUZ2IC1kZuuOEGXV8y59VaS6fTyufz6nO5NHhD+XoNSVlDyld/alGfJLdLq76ZNTuO2fEk6ZKk8w3e6utc0tUN1mXVa2xnrIVzrylvGFXfg/X0Op06Vie2v1PHcur2t7Iuydz2Kmi03ays7ZKkC4Z0ff6Krslf0QZJVyRd7Nug1/o2lP2y2aiuwlhbl5fUv+rXVGlJLp3duPJI6Vj1tr+h+rVZuV8UNBrTqveymXHMjmfF9i/d9mbGsnJ7NXqdhqRXDWmLibrUoDaz+5hMjFX6Gl0mxyu8xmrbX5I2XLmijfnaf+xZ7tugKxveODWv0fegjctL6qvy+2ne5dLyRvNXM7ZqrFYPXuq9zlbrqvY9aMOVK9pQZ/tfqdj+Zmy4ckV9+StyaeX151sYQ6r9OpfyeRlXmfkJvnZaeY31fgeyYput9Xt5xTB0YfmKLlzJa8sNzR0/Wfm5rKzLiu3vRFbv/1Z9LltV3P59fRoaGurYel977TWdO1f/VGsz8vmV3676+/t1+XL97kurEYQ5gFVBmM/nUzQabXr9GzZsKO6EAAAAAAAAndDX16crV2oHzmuBXjsHcLvdlpzWaHaS/UpXX321Ll68KOP1NLldne4IAwAAAAAAa8/KjjCXy6Wrr+58NypBmAMMDg5aEoQNDg629Lzz51df3hkAAAAAAGC9YbJ8B2i1k6syPGt1HAAAAAAAgF5AEOYAe/bsKbtttjtsYWGh7PbIyIhVJQEAAAAAAKw7BGEOMDo6WnY7lUqZel4ymSy77fP5LKsJAAAAAABgvSEIc4DKjjCzQVhp55jb7ZbH47GyLAAAAAAAgHWFIMwBvF5v2fxeTz/9tKnnzc/PF/9fGaYBAAAAAACgHEGYQ+zbt6/4/0QiYeo5pctNTU1ZXhMAAAAAAMB64jIMw7C7CKyEWqVzhTV6W2KxmMbGxiRJHo9n1XxhAAAAAAAAKEdHmEN4vd6yye7n5ubqLh+JRIr/pxsMAAAAAACgMTrCHCSVSmlkZETSSjAWj8erLpfNZrVlyxZJK1eKjEajHasRAAAAAACgW9ER5iAej6fY6ZVIJDQ9PV11ub1790pauVJkaWcYAAAAAAAAaiMIcxi/369oNCq3262pqSkFAgElEglls1nFYjGNjo4qkUjI6/Xq5MmTZVebBAAAAAAAQG0EYQ7k8/mUyWQUCoWUSqW0d+9ebdmyRYFAQIODg4pEIorH4+siBJuentbY2Ji2bNkil8ulkZERBQIBxWKxdb1uQLJvH0wkEhofH9fIyIhcLldx3VNTU8pms2u6bqDAid+DC5+JRvN0Au1y4v5fkEgkNDc3p+npaUfUg/XJrs9ANpvV1NSUxsbGit/zC+uenZ1d03UD0sp0SGNjYx37XcPJP29sZQA2iEajhtvtNiQZPp/PiEajRjKZNCKRiOHxeIr3ZzKZdbVuwDDs2wczmYzh9/sNSXW/wuGwpesFSjn1e/Dk5GTxMxCJRDq6bvQOJ+7/mUzGCIVChtfrNSQZbrfbmJycNKLRKL8LwXJ2fgZCoVBxHw+FQkY0GjXi8bgRDoeL+7/H4zGi0ajl6wYqfw9f69+3nfjzxkkIwtBx0Wi0+A0gGAxWXab0h5GVH0471w0Yhn37YCaTKf7QM/NVqzagHU79HlxaF0EY1orT9v9MJmMEg8FiTV6vlwAAa8rOz0AhgPB6vTWXKf08xONxy9aN3pbJZMr+2NaJIMxpP2+ciCAMHZXJZIrJtMfjqblcMpksfnh9Pl/XrxswDHv3QZ/PV/wFMBKJGMlksvhXoWo/nAkDYDWnfg8urYt9H2vFaft/OBwu2+/pBMZas/MzUOgEk9TwgL/wR0O3223JutHbQqGQ4fF4ir+HdyIIc9rPG6ciCENHlX4TaPTht7p11M51A4Zh3z4YDocNScbk5GTNZZLJZPEvQ4UvfgmElZz6Pdjv9xsej6csFCAIg9WctP+X/vHD4/EYyWTS8nUAlez8DJR2PTbCafKwSjweL+ssLPw+vta/3zjp542TEYShY0pTZzN/kYlEIpYdkNu5bsAw7N0HC3+JarZGSZwmA0s49Xtw4ZfSeDxOEIY146T9v/Sgx+129+TpMOg8Oz8DpaeI+f3+hsuXrrveHxCBZsXj8TUPwpz088bpuGokOiYUChX/7/P5Gl710u/3F/+fzWbburKGnesGJPv2wUQioVQqpUgk0nBZj8dTVmfh+UC7nPg9OJVKaXx8XJOTk/J6vZaPDxQ4Zf+vvErZerkCOZzPzs9AKpUq/r/Z32m2bt3a8nqBSp34fuuUnzfdgCAMHVN6SWKzBx0ej6f4/yNHjnTlugHJvn3wyJEjCgaDpn/4+ny+sttnz55tab1AKSd+Dw4EAvJ6vavCX8BqTtj/Z2dnFYvFirfD4XDZOoC1ZOdnYHBwsPj/VCpVFoxV8/TTT1etAegGTvh50y0IwtARlX+Bue2220w9r/QD3E5HjF3rBiR798H9+/c3daBf+UNzZGSkpfUCBU78Hjw1NaVEImGqUxJohxP2/0L3Y+nYwWCwrTEBs+z+DFSGWaWfhWoK63K73WXdMoDT2f1Z6zYEYeiI0r9CSub/wlK5XCunadm5bkCydx/0er1NtWJns9m6NQDNctr34EQioenpaTpi0BFO2P8DgUDZ7YMHD7Y8FtAsuz8DXq+37EA/Fout+kwUzM7OFjvG6BZGt7H7s9ZtCMLQEaVtxpL5c6Qrz82fn5/vqnUDUnftg5WnDFSeKgk0y2n7/969e+X3++mIQUfYvf+nUqmygxq6XNBpdn8GJOnw4cNlt+fm5laFYbFYrNgtFg6H+RmBruOEz1o3IQhDR1QeXLeaUCeTya5aNyB11z5Y+sOPXwJhBSft/4UDn8qDImCt2L3/h8PhstuFP24UgoCRkRG5XC5t2bJFo6Ojmp6eXtUZDLTD7s+AtNIVVnkq/NzcnEZGRopdwmNjY/J4PIpGo/z+g67khM9aN9lodwHoDY0mpjSrlV/O7Fw3IHXXPlh60DQ1NbXm68P655T9f25uTnNzc4pGo1wpDx1j9/5fOnGytDJx+Ojo6KpTX7LZrBKJhBKJhKamphSJROgcgyXs/gwU+P1+hcPhsjnCUqmURkdHJUmTk5OcDomu5pTPWregIwwd0eoHqvJgZWFhoavWDUjdsw+WnkITCoWYPwmWcML+n81mFQgEFAwGOd0XHWXn/p9KpVat/+jRoxofH1cmk5FhGDIMQ8lkclUHTCAQ6KlJk7F2nPAzoCAYDK7qkiyIxWI9EwBgfXLSZ60bEIShq9j5A4ofjrDbWu+Dhb+EejweTU5Orum6gGa1s//v3btXHo+n5gEQ4HRWdMS73W6dPHlSwWCw7MCn8Nmo/HwcOHCA333gGFbti8FgsOqpj4lEQjt27OiZicKBWnrl+z5BGDrCqtNQWhnHznUDUnfsg4lEQrOzs3K73YpGo2u2HvQeu/f/6elpJRKJVfPDAJ1g5/5fGYRVBmCVKgOCbDarQ4cONb1eoJTdPwMqjY+Pa3Z2VsFgcFXnezab1ejo6Kqr7wHdwGmfNacjCENHDA4O2jaOnesGpO7YBw8cOCBJOnbsGKdEwlJ27v+F+Y5CoZC8Xq8ldQDNsHP/r5zw+Lbbbmv4nMq5Iaenp5teL1DKSb8DjY2NaXZ2VpOTkwqHw1VPCy4sRxiGbuOkz1o3IAhDR7SaLFe2ZnayI8yKdQOS8/fB8fHxYscMYQGsZuf+HwgE5PV6OdUXtrFz/29lDI/Hs+rnAKeKoR1O+R2o0Onl8/nKJsUPh8NVO4YDgUDPnCKG9cEpn7VuQRCGjtizZ0/ZbbM/WCon6xsZGemqdQOSs/fB2dlZzc7OKhwOc4UwrAm79v/p6WmlUikNDg4qEAg0/Cqt69ChQ2WPMWk4WmXn9/9Wf2ZU1mzVlcjQm5zwO1AgECgGutXmivT7/YrH42UBQDab5erZ6CpO+Kx1k412F4DeULg0cUEqlTLVeVLZ1t/K1b7sXDcgOXcfjMViGh8fVzgcrnpqAGAFu/b/s2fPSlJLp7ckEomyLhiPx0NQjJbY+f2/8q/6Zg+KKg+CeuUKYlgbdv8OlEqlin/M8Hq9Nad/8Hq9isfjZfv/7OysQqFQz3TIoLvZ/VnrNnSEoSNa/eti6S9tbre7pbmL7Fw3IDlzH0wkEhobG1MoFCIEw5py4v4PdEo3/v5TedDfK/PFYG3Y/TOgtAOsspZK1a4uPD8/39J6gU6z+7PWbQjC0BFer7fsF6unn37a1PNKf/g0+uHlxHUDkvP2wVQqpb1792pycpK5k7Dm7Nr/Q6GQDMMw/VX6i18kEil7rHQ+GaAZdv/+U6ryr/5m9cpBEdaG3b8DlR7kmznlq/KPg5wajG5h92et2xCEoWP27dtX/L/ZiVdLl2vnPH071w1IztkHU6mURkdHFQwGTR/cp1IprhyGtjhl/wfsYOf+X3qKi9nThCtPoeQiKmiXnZ+B0lN7zYbB7PPoVvy+ZR5BGDpmfHy8+H8zv4yVLuPxeNo6X9nOdQOSM/bBbDarsbEx7du3r6kOl0AgwGcAbXHC/g/Yxc79v/SgJpVKmZonrDQs4LMHK9j5GSjtaGylu4uOSHQTft8yjyAMHeP1ess+XI2uwlV6KeNG6fTs7KympqZq/oBby3UDZti5/0srIdjo6Kg8Hk9x2UZfsVisOPEmfx1FO+ze/wE72bn/+3y+sgP5Q4cONay39MCI04JhBTs/A/v37y/+f35+3lQYXDpWLwUDWFtmL1hSD8e8FjKADkomk4YkQ5Lh9XprLpfJZIrL+Xy+umP6fL7ispKMTCbTsXUDzbBz//d6vWXLNfMVDofbedmAYRj27v9meDye4jiRSKTlcYBq7Nz/4/F42XLJZLLmmNFotLhcMBg09doAM+z8DJQuNzk5WXfM0s9AKBRq+LoAsyKRSNn+2uz+xTGvtQjC0HGl3wRqfQMoHLS73e6GBzbNHLRbvW6gWXbs/+2EYPy9BFay8/t/IwRhWGt27v/hcLi4nMfjqTp2JpMpfg7qHTwBrbLrM5DJZAy3291wuWQyWVyuF4MBrJ3S769mQqpqOOa1Fkc4sEU0Gi3+oPH7/UY8HjcymYwRjUaLH0qv12vqQ1n6g02SEY1GO7ZuoBWd3P/9fn9bIRgdAbCand//6yEIQyc45fcft9tthEIhIx6PG/F43AiFQsXH+L6PtWTXZyCTyRjBYLCsAyYcDhvxeNyIRqPG5ORky506QDWZTMbw+/2rOrkqv3w+X/GzUA/HvNYiCIOtQqGQ4fV6y34x8/l8TR2ERKNRw+PxGG63u2G7s9XrBtph5/4P2I39H73Mzv0/HA4bPp+vbN1er9eYnJyse9okYCW7PgPxeNwIBoNlf/zweDyG3+83JicnezYUgPNxzGstl2EYhgAAAAAAAIB1jqtGAgAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAAACgJxCEAQAAAAAAoCcQhAEAAAAAAKAnEIQBAAAAwBrLZrN2l4Auls1m2YcAixCEAQAAAMAaSCQSmp6e1ujoqLZs2WJ3OegyiURCU1NTxf0nFovZXRKwLmy0uwAAAAAAWC9mZ2cVjUYVi8Xo4EHT5ubmdOTIEfYfYA3REQYAAAAAFigEF2NjY/L5fPYWg67k8Xg0Pj6uUChkdynAuuUyDMOwuwgAAAAAWG9GRkaUSqWKtzn0QjOmpqY0PT1dvB2JROT3+22sCFgf6AgDAAAAgDXg8XjsLsER5ubm7C6hK42MjNhdArAuEYQBAAAAwBpwu912l2C7ubk5HTp0yO4yutLg4KDdJQDrEkEYAAAAAMByqVRKgUDA7jIAoAxBGAAAAADAcmNjY3aXAACrEIQBAAAAACw1NjZWdqEAAHAKgjAAAABgHUkkEpqamtKWLVuUzWaL96dSKY2Pj2vLli1yuVwaHR3V+Ph40+Nns1lNTU1pdHS0ONaWLVsUCAQUi8UsfCWtyWazmp6eXjXReOE+l8ulsbGxsm1TaW5uToFAQKOjo3K5XHK5XBoZGdH4+LgSicQav4LGnP4eO2VfaEdhHyjsM4V9IBAIND35vxX7pJ2sqN/K7xtzc3MaGxsrrntkZKTs6pqNpFKp4uen2riF+gqf+VYCXSv3n7X8vLe7LQuc/nNhFQMAAABAV4vH48bk5KTh8XgMScWvTCZjGIZhhMPhsvtLvzwej5FMJk2tZ3Jy0pBkuN1uw+fzGX6/f9U6fT5fcb2lwuHwqmUL66+2rNvtrlpvOByuWls0GjX8fn/ZsgU+n2/VOMFgcNUYkUikuN7JyUkjmUwamUzGiEajZbWHQiFT26tWPa3ohvc4k8lUfY+rfUWjUcMwjLrL+/3+4tjRaLTmPlGot9q+EQwGTb33pesp1OTz+YxwOGxEo1EjHA4bXq+3bJtGIpG627LdfTISiZQ9Xm19k5OTVccq1Ojz+Uy/91bXX1pjq/tUqUwmU1xv4fNpGCufjcKYfr/f8Pl8VZ9b+R4WXk8mk1l1f+WX2c+8VfvPWn/e29mWlax6fzuJIAwAAADoYoUDl2oHpslkshgE+P1+IxQKGcFgcFWgYOZgpzB+tQPCyoOyauFWQSgUMr1sMplcdUBVGXaEQqGaAUkmk1l1IF/rNZeGDrUOekvX0ygEMQzrgrBueY+TyaQRDodXLVsIqUq/Sg+Kq4UQtQ6aqwVbjd6LZDJZNVyr9xonJyerLlO5/1bbVmuxTzZ6naVjBoPBtkIHq+o3DOu+b5S+xlrvTSGQ8Xq9Ve+v9pVMJouvtRAc1grFGoVhVu0/nfi8t7otK1n5/nYSQRgAAACwTlQeOHm9XsPj8RjxeLxsuWqdO5XLlCoceNU6aCpdxsxBYzMHR5UHU5VBWOGAPx6PrzpoLHRhFLodSg/gS+vLZDKrDjarKT2gNhMsWdkRVtAt73HpgXmjg+nK987tdtddvvKg34zCtqj13paGTvU6xgxj9XZYi32ysqZ6QVhhPW63u9hp1w6r6rdyn4pGo2VhXC1ut3vV95Rq4Wnp9x+fz7fqsxGPx6t2K3Zi/ym1Fp/3drZltddh1feMTiIIAwAAANaJys4Hr9db80Cn8iC71gFK6cFwvYOm0q6bRmFGaZDRKAgrPWhr9qDR4/Gsqjkaja4KFCrDtlphQuVyjaxFENaN73GjIMwwVneF1aujsqumXsBnGG8EnbXCy0wmU1avmVMJK8O4Ws9pdZ80DHNBWOG9q7cftKPV+q3ep0r3+0b7Rq3vKdWCvXodgpX7Ra3l13L/WYvPu9Xb0qrvGZ3EZPkAAADAOrF169ay26FQSG63u+qyPp+v7HYymay63NTUVHH5WmNJksfjKXs8m83WnBR6cHCw5jjtqKxvampq1X0+n09+v7/sPrOTlHs8nrLbdlwVsVve42YdPHiw7Pbs7GzNZYPBYNntcDhcd+zCZN21JhI/dOhQcR/w+Xyr3udqQqFQ2e3CNqzU6j5pxtzcnEZHR+X3+xWPx+u+d61qtX6r96nSi1TUm3zd7/drYWGh6mNer1der7fsvsr3sZTb7V71+Nzc3KrvF2u5/6zF592KbemE7xntIAgDAAAA1ql6gVPlwUu1UCeVShUPlMbGxhqub8+ePWW3o9GoiSrXzr59+0wtFwwGi9vD6/WuOqCsxQlX+Vsv73FlkFIv3HK73WWBxtGjR+uOHQ6H5Xa7a4ZNpVfJqwxKaqnct6oFJGae16rZ2VkFAgFNTk4qEolYMqYZZupfi32qdF+empqqua09Hk/dz2/l56VRaFUZukqrw6NO7j/tft4rl2tlWzrle0Y7CMIAAAAAVFV6wDc1NSWXy1X3q/IAcX5+vtMllzHbIeN2u5XJZBSPxxWPx2suV3nAWKtbops46T0uDR1SqVRZ50ql0oPrbDZbs7OlcNBeLdCQVocaIyMjpmqtDOOqjVXree2amprS+Pi4wuFw3Y6mtWCm/rXYp2677bbi/1OplEZHR2vuH/WCwVa2f+W+UxrkdHr/sUK729JJ3zNatdHuAgAAAAA4U+kBXzAY1OjoaFPPX6tTINdKrW6OVCqlUChU93S9buWk93h8fLxsG4fD4ZqdYZXvRTgcrtq9Unh+rdMiKwMAM6e1FezZs6fs+dFotKVTHJsRCAQ0NzenYDBYM9yz21rsU8FgsOwUxEKAEwwGG54a266xsbGy/a00AO+2/Udqf1s66XtGqwjCAAAAAFRVemrN2NhYRw7SnCQWiykUChU7GtxutyNOh7SSk95jr9crj8dTrOno0aNVD8wLp6KVLls4tayy42d2drY4bjW15lEyo7L7Z607BA8cOFDc/2ZnZzU+Pm76VLxOWot9yu126/DhwwoEAmX3z87O6ujRozp8+PCa7bv1Tjnspv2noN1t6aTvGa3i1EgAAAAAVZWGPuvhNECzCpOQj42NFU+rSyaTHZ2LqVOc9h6XThpea2LtQ4cOye12r5prqHKusFgspmw2W7MbTFr9mpsJOs3OyWSVyg6wvXv3OjKYXat9yu/3Vw1Gs9msAoGAAoHAmmyPyhC1tKOpm/afUu1sS6d9z2gFQRgAAACAqkoPctrpfOgWqVRKY2NjCgQCSiQSCgaDymQyCofDTZ3y1E2c9h5XTiJeebBe6Pw6ePDgqsm8K5ctzJ/VzCmEzRzY1wtI1sJtt91WNidYNpvV3r1713SdrVjLfSoYDCoej1f9PM7NzWnHjh1155ZrReW66s0z5uT9p1Kr29Jp3zNaQRAGAAAAoKrSA7NOTeRsl1gsppGRkeLrjMfjxasNrmdOe48rr+5Y6OoqOHTokKQ3wq3Sbq9EIlHsqilMoN8oBKsMH+pdLKHRczsRlk5OTpaFf4lEoqyLzgnWep/yer1KJpNV39tCOGhld1VlZ1Tp+9xt+0+lVral075ntIIgDAAAAEBVpSFQIpFw5GlYVih0ghVEIhFHzr20Fpz4Hleeylg45TGRSBQ79Qp1V85PVOgKK0xuXu+0SGn1PE3NXNGuMiAwe8XAdkUikbL3bXp6uuoppHbp1D4VDocVj8dXfVYLp/dZpfJ9Lr3qYjfuP9U0sy2d+D2jWQRhAAAAAKqq7FConIOpkbm5Ocd1q1RTGpZ4vd6unPy5VU58j30+X9nBdiHcKnSDVa6vtJulEAgdOnRIHo+nYaBZeaXJZk6rqzwNrlP7jdvt1rFjx8ruCwQCHZ1jqp612KdqXbHV6/UqHo+XnTIqlXcHtqtynNJ9phv3n3a3pRO/ZzSLIAwAAABAVaVdUpJWHSDVk81mdeDAgYYdOXYrnEJXsGfPHhur6Tynvsel4VYikVAsFtPc3Jz8fv+qA/HS9adSKU1NTTWcJL/A6/WuOv3V7OlepfMjeTyejp7a5vV6V71Xle+lXdZin4pEInVDpsnJyaoBjhVKQ6DKkLYb9592t6VTv2c0gyAMAAAAQFWVE5cXQgYz9u7dK5/PV/XgrvTAsVHXRuXjzZyGY2bZZk5l6sZTgBpZq/e4VCvbrfJAuXDwffDgwVXLer3eshqmp6clmZ8kv3LMalfTq6b0dESz28zKfahyvrBUKmXpKYHVmKl/rfapI0eO1H3u5ORk2fcWq+b3K90fqgU4ndx/rNLOtuzE94y1RhAGAAAArBNnz54tu93MFcyqLet2u1ed+jM9PV0MGqrJZrMaHR1VIpGo2SlQeRBUrzuhcoy1vkpZvW6OaDTa1FiVoYEVIUg3vsetnKJWeUVIaSXwqnWqY2VA4ff7TQchlQf9hStT1lN6upjX623qypRmmXlvK+cLc8JpZ2u1T5mZB620o9NMd2ez73O10xfXcv+x+vNeWmMjtbblWr2/nUQQBgAAAKwTzQQvleFTrWWrdTdMTU1pdHRUc3NzSqVSymazxavXbdmyRYlEQpFIpOZf/Usnm5ZW5jeqXH/hKo6Vwcfs7KympqaqHshVBi5mur0qa0ylUqsO6FKplMbHx1fNrVO6Dattv8p6mjmIraVb3uPK+ysDxvHx8YZhQWW4Ve8AujKgaPbUq8o5tw4cOFB3+cJ8ZdJKGFVLK/tkQeX2qRVkVtbeKJRoRqv1r8U+lUqlas5vVVlvtVMWq2k0Xul+UO99Xqv9Zy0+71L723It3t+OMgAAAAB0vWQyaUgq+/L5fDWX9/v9q5aPRCJVlw2Hw6uWrfcVDocb1ut2u8ue43a7Db/fb/j9fsPj8RiSDL/fb2QymZrrSSaTdWv0er1ly9Ti9XqrPjcYDBYf8/l8RjweX1VzYZnJycmG28zv9zespZ5ueo8jkciqbRUOh41wOGx4vV7T26Kwn3g8nobL+ny+4rpaUVlz5XtaEAqFiuuJx+M1x2tnn0wmk8XPQelza6n2Xvv9flPrWov6az2/1X2q9L2ttc2j0WjV7w2lqm2nWu9z6bL13ucCq/eftfq8W7Ut1+LnQqcQhAEAAABdLJlMVg1yKg9eM5mMYRiGMTk5uSqEKv3yeDxVD57MHPR4PB4jGo2aqrv0QKvaVygUKi5b+VomJyeLB3DBYNBUXcFgsO42rLdNSmupDCcqAwqfz1d3LLfbbXi9XlMH1qX1deN7XG1bNTqYr1R4f80cRBeCiNL3q1nxeLxsW3u9XiMcDhvRaNSIRCLFEMHn89UMCNrZJycnJ2tut8L+4/P5iq8xHo9XDUAq941m9jcrPlMFVu1TpeGN2+02QqFQ8TVlMhkjHA4XH6s3VuW2mpycLI4bDAaNUChU9vnxeDxNhYlW7D9r/Xm3alsahvXfMzqFIAwAAACAKZlMxgiFQobX6y07UPT7/S39tT+TyRjBYLB44F/owqo8QPR4PMbk5GRb3S1maintRiuss3CwWVB6oOt2u2t2fXQrK9/jwjYtjFMIBZodo5ngrDQgaEc0Gi3bH0rDH6cd1DudFfvU5ORkWZgTjUaLoXMhHDTzWawMwgzjjTCx8F4XxqvVPWmGk/cfq7ZlgdU/FzrBZRiGIQAAAAAAgHUsEAiUzS9IHNKbmCwfAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAArHvZbLbubfQGgjAAAAAAALDupVKpurfRGwjCAAAAAADAujY7O7sq+JqamqIrrAe5DMMw7C4CAAAAAADAaoFAQHNzc3WXcbvd2rNnj6LRaIeqgp0IwgAAAAAAANATODUSAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEg9Q7JHwAAAEtJREFUDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD2BIAwAAAAAAAA9gSAMAAAAAAAAPYEgDAAAAAAAAD3h/w9FBNJaNImpTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "train_bkg = train_array[train_array.classID == 1]\n", "train_sig = train_array[train_array.classID == 0]\n", @@ -79,14 +91,39 @@ " label=\"test sample, wrong pairs\",\n", ")\n", "plt.xlabel(\"neural network response\")\n", - "plt.ylabel(\"Number of tracks (normalised)\")\n", + "plt.ylabel(\"Number of Tracks (normalised)\")\n", "mplhep.lhcb.text(\"Simulation\", loc=0)\n", "plt.legend(loc=\"upper center\")\n", - "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/thesis/newparams_filtered_NN_elec_response.pdf\",\n", - " format=\"PDF\",\n", - ")\n", - "# plt.show()" + "# plt.savefig(\n", + "# \"/work/cetin/LHCb/reco_tuner/thesis/new_electron_NN_response.pdf\",\n", + "# format=\"PDF\",\n", + "# )\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The cut is set to 0.5, thereby rejecting 0.901 of fake tracks, while keeping 0.935 of the true matches.\n" + ] + } + ], + "source": [ + "response = 0.5\n", + "\n", + "n_sig_keep = ak.num(train_sig[train_sig.matching_mlp >= response], axis=0)\n", + "n_bkg_rej = ak.num(train_bkg[train_bkg.matching_mlp < response], axis=0)\n", + "nevents = 115e3\n", + "\n", + "print(\n", + " f\"The cut is set to {response}, thereby rejecting {np.round(n_bkg_rej/nevents,3)} of fake tracks, while keeping {np.round(n_sig_keep/nevents,3)} of the true matches.\"\n", + ")" ] }, { @@ -94,6 +131,24 @@ "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYoAAAXtCAYAAABDGW5jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9QWwjaX7nff6oLts1brcqpDSM1Sst0Bnsmvewh6kilQO8wDsLdCnoWWBPdjOUvvlgi+zeywLyNFnZp/fUKrJsAbuHcZPZBl6fdpRkt7GHeeEtMqsWfl/sC3SKUe3rtBlZBlLLhTElRbLt6bY9pdiD3ogiKYmiJAYjSH4/gJCk9PCJP4PByNBPD58n5fu+LwAAAAAAAADA0lqJuwAAAAAAAAAAQLwIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHEExAAAAAAAAACw5gmIAAAAAAAAAWHIExQAAAAAAAACw5AiKAQAAAAAAAGDJERQDAAAAAAAAwJIjKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGEMcx1GxWFQ6nVYqlVIqlVI6nVa5XJbneXGXBwAAAAAAACACKd/3/biLQPw8z9Pe3p6azebYdrVaTYVCYUZVAQAAAAAAAJgFgmLI8zxls1m5rjtR+0KhoFqtFnFVAAAAAAAAAGaFqScg27bluq4ymYwajYa63a663a4ajYZKpdKl9vV6/caRxwAAAAAAAADmByOKl1y9XlexWFSpVFKlUrmyjeu6sm1bjuOE3zMMQ2dnZ7MqEwAAAAAAAECECIqXXDqdlmmaarVaY9u5rqt0Oj30vVarJcuyoiwPAAAAAAAAwAww9cQScxxHruuq0Wjc2NY0zUsjjgdHGAMAAAAAAACYXwTFS+zo6EiFQkGGYUzUfnT08Oeffx5BVQAAAAAAAABm7Y24C0B8Hj9+LNM0J26fyWSG7o9ORQEAAAAAAABgPhEUL7HR4PcmnucN3b9NyAwAAAAAAAAguZh6AhNzXXfoPgvZAQAAAAAAAIuBoBgTOz4+Dm8XCoUYKwEAAAAAAAAwTSnf9/24i8B8yGazchxHktTtdqc29cRXv/pV/eIXv5Dv+1pZuf/fLr72ta/pN37jN6ZQGQAAmBd///d/r5///Of37uf8/FypVEr/4l/8C/3DP/zDFCpDHL761a/ql7/8pb7yla/ot37rt+IuBwAALLm/+7u/0xdffKE333wz0deYBMWYiOu64eJ1lUpFpVJpan1/5Stf0fn5+dT6AwAAuK+VlRV98cUXcZeBO+L6EgAAJFHSrzFZzA4TqVQqki4WsJtmSCwNX8hHNaK41+vp/PxcKysr2tjYuPc27oIaklUHNSSrjiTUkJQ6qCFZdSShhqTUkfQapjmiWLq4PsH8Cq4vozxek/CemAaeR7LwPJKF55Esi/I8pMV5LjyP228j6deYBMW4keM4qtfrMgxDrVZr6v3/1m/9lk5OTrS5ualXr15NvX9J2tra0snJiTY2NiLbBjXMVx3UkKw6klBDUuqghmTVkYQaklLHstQQbIPpCuZbcH05i2Ml7vPDffE8koXnkSw8j2RZlOchLc5z4XncfhtJv8ZkMTvcaG9vT5L0/Pnzqc1LDAAAgNlwHEfNZlPValXtdnuix1SrVeVyOa2trSmVSimdTsu27YkfP6s+AQAAMD0ExRirWCzKcRw1Gg1lMpm4ywEAAMANPM9TtVpVNptVKpXSzs6OXrx4oUwmo+3t7bGPbbfbWltbU7lcliQ1Gg11u11VKhU5jqNcLqdcLifP8yauJ4o+AQAAMH1MPYFr1et11et11Wo15fP5uMsBAADAGJ7nqVwuq16vS5IymYxarZYsy5ro8e12W7lcTpJUKBRUq9XCn5mmqXw+r2w2q3a7rWw2q06nI8MwZt4nAAAAosGIYlyp3W6rWCyqVqupUCjEXQ4AAADGqNfrevjwYRgS12o1dTqdiUNiz/Nk27akiwB3MNAd1Gg0JEmu64btZ9knAAAAokNQjEuCjwBWKhVCYgAAgIQrl8sqFovyPE+maarb7d76Gs627XDqh2CKiKsEo4Cli4EFQTA9qz4BAAAQHYJiDHFdVzs7OyqVSiqVSnGXAwAAgDFs21a1WpUkGYahTqdz68WHXdcdWlBud3d3bPvHjx+Ht68LgKPoEwAAANEiKEbIdV1ls1kVCgVVKpWJHxP8cgIAAIDZyeVyajab4f27zu87eN1nWdaNfQyuXeF53lANUfYJAACAaLGYHSRdXJDncjnt7u5OHBJLF6NYnj59GmFli2N/f1/9fl+rq6tLXUNS6khCDUmRhH2RhBqSUkcSakiKJOyLJNSQlDqSUAO+VK/Xh0bs1mq1W48kHuwrkMlkJnqMaZpyXVeSdHR0dGnh4yj6RDQW5b3N80iWRXkei2JRXo9FeR7S4jyXRXke+FLK930/7iIQL8/zlM1mxy4yMsp13fBjgZ1O517b39ra0snJiTY3N/Xq1at79RXnNoDb4rhEUnFsIqm4Zrjguq7S6XR4P5PJ3Pl6zHEcZbPZ8H6j0ZgooLVte2jU7+CvFFH0eVscKwCmgfc5sBy4bvgSI4qhnZ0dua576ZeOSUwaLAMAAGA6bNseuv/kyZM79zU4KlnSxKOSR9s5jhOOHI6iTwAAAESPOYqXXDableM4d378bVfUBgAAwN25rjt07WYYxr2maHjx4sXQ/UnnOH7w4MHQ/ePj40j7BAAAQPQIipeYbduExAAAAHNk9NNclmVJkprNpmzbVjqdViqV0tramrLZrKrVqjzPu7a/YE7gwF1H/3a73Uj7BAAAQPSYemKJNRqNuEsAAADALQwuEidJ6+vrV35CzPM8OY4jx3FULpevnSd4NNS9q8EwOoo+AQAAED2CYiyVn//jP+qDTz4e2+b9b743o2oAAAAm57rupfD02bNnqlQq2t3dDad4cF1XlUplKFS2bfvKsPiuYezodBKnp6eR9nlXvV5PW1tb9+5nf39f+/v7V/7M/8V/0S+P/nzs4998/Pv3rgEAAMze4eGhDg8P791Pr9ebQjXRIygGAAAA5sDoSF3DMPTy5ctLAatpmqrVaspmsyoWi+H39/b2ZFnWxHMG30YUo3+n0ef5+blOTk7u3U+/3793HwAAYP70+/2pXEvMC4JiAAAAYA6MBsWFQmFs6FsoFNTpdMKRxZ7n6eDgQJVKJWxjGMZUAtnBOqLo865WVla0sbFx735WV1fv3QcAAJg/q6ur2tzcvHc/vV5P5+fnU6goWgTFWAr7+/v6n/76r/VrX/31uEsBQvv7++r3+/zyicTh2ERSLfuxObq426NHj258TLlcHpqColqtDgXF6+vrUwl119fXI+3zrjY2NvTq1at793OV/f19nf5//kpf+/V/EUn/AOK37P/vAMti3Ht93PRTt7G1tTUXI5MJirEU9vf39U83zE0MzNo0/rMBosCxiaRa9mNzNHydZMStaZrKZDJDi905jqNMJjNxH7etJYo+k2h/f1+/3HwQdxkAIrTs/+8Ay4L3+pdW4i4AAAAAwM3S6fSdHre9vT10f3AKi9GfTToSeHShucHaougTAAAA0SMoBgAAAObA6AjbSQPY0cB1MJDNZrNDPxudB/k6o9NgWJYVaZ8AAACIHkExAAAAMAfGjQweZzRgHpz79659DobUhmHINM1I+wQAAED0CIoBAACAORDMKxwYHYE7qcEANpPJDAXJL168mKiP4+Pj8PZoMBxFnwAAAIgeQTEAAAAwJwanY2i32xM9ZnSKitHAeXd3N7w9uOjdOIPtyuXypZ9H0ScAAACiRVAMAAAAzInBANV13YnmKR4ceXzVvL/FYjG8PUn4PNjGNM2Z9QkAAIBoERQDAAAAc8KyrKGpIw4ODm58zGAIW6lULv08k8kMBbPNZnNsf41GI7x93cjfKPoEAABAtAiKAQAAgDkyGKpWq9Wxi8W12+3w54VC4dK0E4FarRbeHhc+e56ner0u6SK0LhQK17aNok8AAABEh6AYAAAAmCOZTGYohM3lcldOQeF5XjgFxOhjRpmmGQbQjuOoWq1e2W5nZ0eSZBjGUGA9qz4BAAAQHYJiAAAAYM4UCgW1Wi0ZhiHXdfXw4UNVq1U5jhOGsg8fPpTruioUCup0Ojf2mc/nwz7L5bJs25bjOPI8T+12W9lsVo7jKJPJ6OXLlzIMI5Y+AQAAEA2CYgAAAGAOWZals7Mz1Wo1bW9v6+DgQNlsVjs7Ozo6OlKhUFC32x07kvi6PiuVilzX1c7OjtbW1mTbttbX19VoNNTpdG4V6EbRJwAAAKbvjbgLAAAAAHB3hUJh6vP6lkollUqlxPcJAACA6WFEMQAAAAAAAAAsOYJiAAAAAAAAAFhyTD2BxOj1etra2hrbZn9/X/v7+zOqCAAALJLDw0MdHh6ObdPr9WZUDQAAAJAsBMVIjPPzc52cnIxt0+/3Z1QNAABYNP1+/8ZrDQAAAGBZERQjMVZWVrSxsTG2zerq6oyqAQAAi2Z1dVWbm5tj2/R6PZ2fn8+oIgAAACA5CIqRGBsbG3r16lXcZWCKPvjk47hLiNT733wv7hIAALcwyRRWW1tbjDoGAADAUmIxOwAAAAAAAABYcgTFAAAsGdd1Va/Xlcvl4i4FAAAAAJAQBMUAAElSs9nU2tqaqtXqXPSL23McR7lcTul0WsViUe12O+6SMCHeRwAAAACiRlAMAAnleZ48z5vZ9g4ODuR5nmq12lz0i9vLZDJqtVqJeS1mfYzPM95HAAAAAKJGUAwACWXbtlzXndn2KpWKLMtSpVKZi35xd6Zpxl2CpNkf4/OM9xEAAACAqL0RdwEAgMvK5fLMpwWwLEuWZc1Nv5hvcRzj84z3EXA3vV5PW1tbY9vs7+9rf39/RhUBAIBFc3h4qMPDw7Fter3ejKq5H4JiAEiYZrPJPKRYaBzjAGbl/PxcJycnY9v0+/0ZVQMAABZRv9+/8XpjXjD1BAAkSLPZ1N7eXnh/Z2dHa2trWltbG2rXbrdl27bq9bokqVgsKpVKKZfLXeovl8vJtm3lcjlls9nwMaNc11W5XFY2m730M8/zVK/XlcvlwsfX63Wl02mlUills1k5jjPTfgPVajVcoC2bzapYLKrZbN567lvP82TbdviVTqfDRd+ucpt922w2Zdu2yuWypC8XlUulUpcWKHNdV8ViUWtra+Fret1zCWoItlsul4ced58Ru57nqVgsDr0W0wh3p3GMN5tNZbNZpVIppVKpoedZrVaHfhbs86ie331eg2m9P6XJzgm3PcaBRbCysqLNzc2xX6urq3GXCQAA5tjq6uqN1xsrK/MRwc5HlQCwJPL5vF6+fBnef/78uc7OznR2dibpIgRLp9NhWCZJuVxOz549k3QRFgVzvgYBVKPRUKPRUKvVkmVZKhaLQ4FYEFqm02lVq9VLc8a2223t7OyoWCyq3W6HYVOtVpNlWTJNU47jKJvNDgWaUfU7KJvN6ujoSK1WS91uV0+ePFG9Xpdt22FYl0qlJtr32WxWjx49CvdXp9ORJJ2enl5qO+m+bbfbYdsgvC6Xy9rb21Mmk1GhUAi/V6/Xw+BQkgqFgkzTDPfToGDf2rYd7rt0Oq12ux3OPxxs+y7hZ7BN27bV7XbV7Xa1vr4+Nqic1DSO8Uwmo0ajcWX/pVJJnU5HhmFE+vzu+xpM6/15m3PCbY5xYFFsbGzo1atXY7+YdgIAANzH/v7+jdcbGxsbcZc5kZTv+37cRWC5bW1t6eTkRJubm3r16lVk2/ngk48navf+N9+LrIZlM+k+n1dRHSue54WjKzudjjKZzLU/N00zDFar1aq63a5qtVoYUBmGEQZw0sWoxHQ6fen70sUIxHq9fuXPJGltbU2e58kwDDUajXC+VM/z9PDhQ3mep0qlolKpNJN+y+WyqtWqGo2G8vl8+P0glDVNMwzCxoWG0sUo5mKxqG63O7TQW7vdVq1WGwol77JvB0eWjtY7uH8syxraVtCnpEu1SQpDcMMw9Pz58/BY8TxP2Ww2DAivel5BID16GRBsc/TYGzzuSqXSvRZVm8YxPvj8g5B1UDqdluu6l2qd9vO7y2sw7ffnJPvrNsf4spvVdQmiNavX8ZdHfz5Ruzcf/35kNQAAgOSbl2tMRhQDwJwxDCMMPgcXuCqVSmGAFhgNFtfX1yVdBEujo3RvGkkZ9FUoFIZCOcMwtL29LekiDBsVVb/B6MnR5xh8jD4I6G4KiQf7D/oMBCObx9UdGLdvB1+vwZBYugi2g8c9ffr00jaCx46bguPJkydDoadhGGq1WuH924S65XJZhmFcCm8Hv3fd9AjTcptjfFwfV4nq+d3lNZjW+3OS/XWXYxwAAADAcmExOwCYY9eFR5ZlXTkCdfBj66enp0NhWhBS3UWwndGPxUfZb/C90Y/ND4bNo8/xOsGo3XK5rM8//3wo1BsN+O6zb6+q5ab9s76+Ls/zrtwHhmGEo7FHmaapTCYjx3F0fHw8dhuDgiAx2CeDghqCIHOSfXtf953qYtS0n99dXoMo35/X7a/bHOMAAAAAlhMjigFgQQ2GUMFiakdHRzFWFI1xI20nHSlZKBTC0aDBnK/jFiGb5b69TxgbhOZXhcxXCfZlEGSOfvm+H37NIiSetjie33Wvwazfn7c9xgEAAAAsH4JiAFhg9Xpd6XRap6enajQaevLkSdwlTU2hUJCkS1MRBB/ZH53i4SadTid8jOu64WJj1y2kNw/79sGDB7dqH4zOnjRYnjdxPL9xr8Gsj6HbHuMAAAAAlgtTTwDAggoWULvqI+6LoFaryXVdtdtt2batSqWi9fV12batTCZzp8W5Go2Gms2myuWyXNdVs9mU4ziX5kiet30bzPV8k2B6g0UNiuN8fqOvQVzH0KTHOAAAAIDlw4hiAFhA5XJZ7XZbhUJhLoLMu2q1WspkMlpfX1e5XFa5XFaxWFSn07lVP4PTV+TzeXW7XZVKJUkXoeLg4mbztG+D8G904bbrjE6HcB3P8yJf0O6+rholG8fzu+o1iOMYus0xDgAAAGA5ERQDQIKNLtQ2qXELdi0S27bVaDRUq9XCf2875YT05ejkQZVKJexrcLTlPO3bYA7aYrE4UXvDMMLgcm9v79opCWzbHlo08D7ueowPuqrOq/qN4/ld9RrEcQzd5hgHAAAAsJwIigEgYQYX0RocBXibj8sHIdno4lgHBwfh7dGQLHjMXeYrHRf2RdVvsViU67pTG5E5OtexdDE9gCQ9evToUk132bd3EfT1+eef39hmULvdluu6KpVKt9pHlUol7DObzQ4dg47jKJvNKpPJDPVZLBaVzWbHjtIdNI1jXPpyhPDoa1cul6/sX7rb85vEbV6DWb8/A5Me4wAAAACWE0ExACRQMJrx4OBA1WpVuVxuKEQLwqLrpljY3d2VdBF8pdNp2batdDo9FAbZti3btsN+B0cUXhVGBe2uCvOC710ViEbV77Nnz+Q4jlKplNbW1pROp5XNZsMFuqrV6q1CtWq1Go7+DDQaDWUymaFRynfZt0Ed456/JB0fH1/6+SQLsJXL5aGpA4J5mwuFQhiMXrfN0Zry+fzQgmfZbFapVEqpVErZbFbb29tDfTabTdXrdTmOc6uF0e57jEtfjtJtt9vKZrPha/HgwYOw/3a7rVQqFfZ92+c3qdu8BlG8PyfZX5Me4wAAAACWlA/EbHNz05fkb25uRrqdg4+fT/QFJEG32/UzmYwvyc9kMn6r1fJ93/crlYpvmqYvKfwqFAp+o9G41EehUPANw/ANw/ALhYJ/dnYW9iHJN03Tb7VafqfT8QuFwlCfmUzGr1Qqvu/7fqfT8S3LurTNbrfrd7tdP5/PD/0sn8/73W43sn4DjUbDNwxjqM3ol2EY4fMep1Kp+Pl83jcMw7csyy8UCr5lWX6pVLqy/X32baFQ8DudTth+8DmYphnun1arde3+CQSPrdVqfqFQ8E3T9A3D8DOZjF+r1a48rsa9JoNqtZpvWVb4PC3LCo/DQWdnZ+GxKunKY/Eq0zjGR9tblhXu20Kh4Ofz+WsfN+nzu8ltX4PAtN6fk+6v2x7jy2xW1yWI1qxex1/8h/9xoi8AALDc5uUaM+X7vj+NwBm4q62tLZ2cnGhzc1OvXr2KbDsffPLxRO3e/+Z7kdUAYHra7bYajYYqlYpc19Xp6Wk4qvL09FTdblfNZlOWZV35kftFsLa2Js/zVKvVVCgU4i5H6XQ6HKG6LJL2GuD+ZnVdgmjN6nX85dGfT9Tuzce/H1kNAAAg+eblGvONuAsAAOC2ms2m9vb2dHZ2JknXBpPFYnFovlpEx3VdGYaxVCExAAAAACwS5igGAMwVz/Nk2/ZEi405jhMu1oXoeJ6nYrGoRqMRdykAAAAAgDsiKAYAzJVgcTfHcdRsNq9t12w2dXR0tNDTAdxmsb4oHRwcqNFoTBTeL5qkvAYAAAAAcF8ExQCAuWKapvL5vCTJtm2tra3Jtm0Vi0XZtq1cLqe1tTW9ePFioUe41uv18HatVpPrurHVUqlUZBhGbNuPS5JeAwAAAAC4L4JiAMDcaTQaajQasixL0sXo4Xa7LUnK5XJ6+fKlKpVKnCVGKp1Oq1gshvcdx1E6nVY2m42xquXCawAAAABg0bCYHQBgLuXz+XBk8bLpdrtxl7D0eA0AAAAALBpGFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOOYoBROaXR38edwmRevPx78ddAgAAAAAAwFQQFCMxer2etra2xrbZ39/X/v7+jCoCAACL5PDwUIeHh2Pb9Hq9GVUDAAAAJAtBMRLj/PxcJycnY9v0+/0ZVQMAi8t1XbXbbTUaDbVarbjLAWam3+/feK0BAAAALCuCYiTGysqKNjY2xrZZXV2dUTXA8mk2m9rb29OTJ09UKpUS3y9uz3EclctltdvtuEtBwi3q+3Z1dVWbm5tj2/R6PZ2fn8+oIkSNT6wBAICoLdKn1giKkRgbGxt69epV3GUAieF5niTJMIyZbO/g4ECe56lWq001GIqqX9xeJpNRq9VSvV5XsViMuxwk2KK+bycJBLe2thh1vED4xBoAAIjaIn1qjaAYABLKtm1VKhVlMpmZbK9SqahSqUw9QIyqX9ydaZpxl4CE432LRcEn1gAAQNQW6VNrBMUAkEBxTA9gWZYsy5qbfgFEh/ctFgWfWAMAAFFbpE+trcRdAABgWLPZVLVajbsMAAAAAACwRAiKASBBggWkAjs7O1pbW9Pa2tpQu3a7Ldu2Va/XJUnFYlGpVEq5XO5Sf7lcTrZtK5fLKZvNho8Z5bquyuWystnspZ95nqd6va5cLhc+vl6vK51OK5VKKZvNynGcmfYbqFaryuVySqfTymazKhaLajab4RzPk/I8T7Zth1/pdFrpdPraj97fZt82m03Ztq1yuSzpYlG5XC6nVCqltbW1oT8MuK6rYrGotbW18DW97rkENQTbLZfLQ4+7z6h0z/NULBaHXotp/AHDcZywxlQqpXQ6HdZZrVYv/Wxwn3qeF+63dDo9tF8mfU8E2wles3Q6PbQPr9oPSTlGpfu95tM6H0iT7e/bvqcAAAAAxIupJwAgQfL5vCzLCoPh58+fD81RXK1WVavV5LquJCmXyymXy+n4+FjSRXjjuq5M0wxDo7Ozs3BBvHK5rGKxKM/zwgWqHMcZmupidPG8drutcrkchmFB0OS6rizLUrvdluM4ymazQ9uKqt9BQYjV6XQkfRnIjoZfvu/fuO+DAC/YL57nKZvN6vT09FLbSfdtu91WpVIJ90GhUAj3iWVZMk1T9Xpd5XJZhmFofX1d5XJZlmWpUCio2Wyq3W5rZ2cnfI5X7dsghDQMQ6ZpynEctdvtcPu3XYwseG0qlUp4vBWLRZXLZR0dHQ3VcluZTEaNRiMMFCuVSjjFQalUkmVZ4etaq9WGpj8wDEONRkNra2tqNBoyDONW7wnHcWTbdrion3TxOu/t7alYLKrRaIT9Du6HJByj933Np3U+uM3+vs17CgAAAED8Uv4kvz0DEQrmadnc3Ix0DrkPPvl4onbvf/O9yGpYNr88+vO4S4jUm49/P5J+Pc8Lg+JOp3NpMbvBn5umGYZp1WpV3W5XtVpN7XZbuVxOhmHo7OwsfKzrumG4NPh96WJEYL1ev/JnkrS2tibP88KwLgjwPM/Tw4cP5XnelQFVVP2Wy2VVq1U1Gg3l8/nw+7Ztq9lsyjTNMJy7KsAbVK/XVSwW1e12hxZ6a7fbqtVqajQaQ9+77b4dHOk5Wu/g/rEsa2hbQZ+SLtUmSalUKnx+g39UCAK5IMy76nkFQe3oZUCwzdFjb/C4K5VKqlQqY/bozdLptFzXvbKv4GdXve5BeDsYVk/ynpAUtrnqOAxeI8uywhA5kIRjNHCX13za54NJ9vdt3lNJM6vrEkRrVq/jpNc6UV0zAACA+TAv15hMPQEAc8YwjDBUGlxwqlQqhYFYYDRYXF9fl3QR9Ix+7P26j5iP9lUoFC6N8tze3pZ0EU6NiqrfZrM59PhA8LH2IDCbJIAL+g/6DASjfsfVHRi3bwdfr8HAULoIDYPHPX369NI2BkdoX+fJkydDoa5hGENh521C3WB08+gfKAa/d910BbcRvE5X9RX8bPR4Dr43OnXBJO+Jcrksz/NUKBSurCfYR+12+9JxkIRjdNRdXvNpnQ8m2d93eU8BAAAAiBdBMQDMsevCHMuy1O12L00REARTki59/DsIje4iCH4G+4+63+B7o89jMMib9CPuwajdcrkcziMcGA3c7rNvrwoEb9o/wc+v2gdBf1f1a5pmGCQG0wJMIpg7N5hPdvArCKuvChZvKwhsPc+7NK9uEDK6rjsUkAdtrwt7pevfE0Fg+ejRoyt/nslkwuPt6Ohowmcxu2M0cJfXPMrzwXX7+zbvKQAAAADJQFAMAAtqcNReMC/qbQKweTFupO2kIxcLhUIYsFWr1aEF1m7qN+p9e5fRpoEgkLwqxLxKsC+DYHH0y/f98Os+dUkXzysYXT04cjhYPC6offBnz549GwpZb2OSfRC8rjctTndb0zhGJ3Xdaz7r88Ft31MAAAAA4kdQDAALrF6vK51O6/T0VI1GQ0+ePIm7pKkJRpWOTk8QjHQdneLhJp1OJ3yM67rhwmXXjZydh3374MGDW7UPRpVOGizfVzAFQzCKWbrYr/l8Phx1+uzZs7B9pVK5034eN3J2UBCmTmuxtWkfo5MY95rP+pi97XsKAAAAQLwIigFgQeVyORWLRbVarbEf1Z9XwQJaruvKtm25rivP82TbtjKZzJ0Wy2o0Gmo0GmFg2Gw2r/xo/bzt22Ae3ZuMm+YiCpZlhSOTg0D44OAgnH/XNE15nqdmsxmOyh2dO3kSg6Npr5pLOBDUMq1RvlEco5Mafc3jOmYnfU8BAAAAiB9BMQAsoHK5HM7lusgLR7VaLWUyGa2vr4dzoRaLxUtzsd5kcGqAfD6vbrerUqkk6SI0HVxwbZ72bRCKThqujk5PcJ1geohpGBx122w2tb29HdY7uKjdVYvY3Ubw3MZNfxAE5JMG65OY1jE6qate8ziO2du8pwAAAAAkwxtxFwAAuN5dPwIfhHzBglKLyrbtodGKd1Wr1VQul4f6qVQqcl1XzWZzaBTqPO3bIBSdNGA1DEOmacp1Xe3t7Q2N+B1k2/al6RTuqlgsqlqtynEc7e3tDY2yLRQKYcgpSWdnZ/faTrlcluM4cl33ymMmCDdHF1+7j2kdo5O66jWP45i9zXsKAAAAQDIwohgAEmYwmBsclXeb6QCCgHl0saqDg4Pw9ug8ocFj7jJ/6LhAO6p+i8XitYHfXVwVfOZyOUnSo0ePLtV0l317F0Ffn3/++Y1tBrXbbbmuq1KpdKt9FMwN7Hmestns0DHoOI6y2Ww4LUSgWCwqm82OHYV8HdM0wwXY1tfXhxarMwwjvJ/P5++1gN7gfgie46AgQL7t/prlMTroNq/5rM8HgUnfUwAAAACSgaAYABIoCMcODg5UrVaVy+WGguIgvLnu4+u7u7uSLsKvdDot27aVTqeHwhnbtsN5U6XhuVuvCoeCdlcF1sH3rgrNour32bNnchxHqVRKa2trSqfTymaz4YJZ1Wr1ViFXtVq9NC1Bo9FQJpMZWnTsLvs2qGPc85ek4+PjSz+fZIG5crk89FH+drst27ZVKBSuDEWvOpYC+Xx+aAGybDarVCqlVCqlbDar7e3toT6bzabq9bocx7nzQmXB6Nerag1+dtOo6JveE9LFNBCmaaper6tarYbfD+YQvml/xX2MDrrNax7F+WCS/T3pewoAAABAQvhAzDY3N31J/ubmZqTbOfj4+URfQBJ0u10/k8n4kvxMJuO3Wi3f932/Uqn4pmn6ksKvQqHgNxqNS30UCgXfMAzfMAy/UCj4Z2dnYR+SfNM0/Var5Xc6Hb9QKAz1mclk/Eql4vu+73c6Hd+yrEvb7Ha7frfb9fP5/NDP8vm83+12I+s30Gg0fMMwhtqMfhmGET7vcSqVip/P533DMHzLsvxCoeBbluWXSqUr299n3xYKBb/T6YTtB5+DaZrh/mm1Wtfun0Dw2Fqt5hcKBd80Td8wDD+Tyfi1Wu3K42rcazKoVqv5lmWFz9OyrPA4HHR2dhYeq5KuPBYnYVnWnX52m/fE4GMsy/JN0/Qzmcy1zy1Jx2jgtq95YFrng0n3923fU0kyq+sSRGtWr+Mv/sP/ONEXAABYbvNyjZnyfd+/c8oMTMHW1pZOTk60ubmpV69eRbadDz75eKJ273/zvchqADA97XZbjUYjnPf09PQ0HOV4enqqbrerZrMpy7KmNp9u0qytrcnzPNVqtXBRuDil0+lwxCiiOUaT9povolldlyBas3odf3n05xO1e/Px70dWAwAASL55ucZkMTsAwNxpNpva29sLFze7LpgMFjBD9FzXlWEYhMT/G45RAAAAAPOGOYoBAHPF8zzZtj3RAmGO44SLZyE6nuepWCyq0WjEXUoicIwCAAAAmEcExQCAuRIsGuY4jprN5rXtms2mjo6OFvrj+XddCG3aDg4O1Gg0JgpGl0GUx2hSXnMAAAAAi4egGAAwV0zTVD6flyTZtq21tTXZtq1isSjbtpXL5bS2tqYXL14s9AjXer0e3q7VanJdN7ZaKpWKDMOIbftJE9UxmqTXHAAAAMDiISgGAMydRqOhRqMhy7IkXYzMbLfbkqRcLqeXL1+qUqnEWWKk0um0isVieN9xHKXTaWWz2RirwqBpH6O85gAAAACixmJ2AIC5lM/nw1Gby6bb7cZdAiYwzWOU1xwAAABA1BhRDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcixmBwAAAGAh9Xo9bW1tjW2zv7+v/f39GVUEAAAWzeHhoQ4PD8e26fV6M6rmfgiKAQAAACyk8/NznZycjG3T7/cjr+ODTz6eqN3733wv4koAAMC09fv9G6835gVBMQAAAICFtLKyoo2NjbFtVldXZ1QNAABYRKurq9rc3Bzbptfr6fz8fEYV3R1BMQAAAICFtLGxoVevXsVdBgAAWGCTTGO1tbU1F6OOWcwOAAAAAAAAAJYcI4qRGCw2AgAAorRIC40AAAAA00ZQjMRIymIjAABgMS3SQiMAAADAtBEUIzFYbAQAAERpkRYaAQAAAKaNoBiJwWIjAAAgSou00AgAAAAwbSxmBwAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAALKp1OK5VKqdls3vqx1WpVuVxOa2trSqVSSqfTsm1b7Xb7zvVE0ScAAACmg6AYAAAAWEDlclmu6976ce12W2trayqXy5KkRqOhbrerSqUix3GUy+WUy+XkeV6sfQIAAGC63oi7AAAAAADT1W63Va1W7/S4XC4nSSoUCqrVauHPTNNUPp9XNptVu91WNptVp9ORYRgz7xMAAADTx4hiAAAAYIF4nifbtu/1ONM0hwLdQY1GQ5Lkuu6N24miTwAAAESDoBgAAABYIHt7e1pfX7/1qFzbtsOpH4IpIq4SjAKWLkYL1+v1mfYJAACAaBAUAwAAAAuiXq+r2WyGI3Qn5bru0IJyu7u7Y9s/fvw4vH1dABxFnwAAAIgOQTEAAACwAFzXVbFYVKlUUiaTudVjK5VKeNuyrBtHIwejf6WL6SWazeZM+gQAAEB0CIoBAACABWDbtjKZzFBAO6nBqR4mDZlN0wxvHx0dzaRPAAAARIegGAAAAJhz5XJZjuPcesoJSXIcZ+j+o0ePJnrcYPg7Ovo3ij4BAAAQLYJiAAAAYI45jqNqtaparTY0IndSg/MIS5q4j9F2g+FwFH0CAAAgWgTFAAAAwBzb2dlRPp9XoVC40+NfvHgxdP+muYQDDx48GLp/fHwcaZ8AAACIFkExAAAAMKds25YkPX369M59uK47dP+uo3+73W6kfQIAACBab8RdAAAAAIDbazabajabarVaE4/YvcpoqHtXnudF2icAAACiRVAMAAAAzBnP82TbtgqFgizLundfdzEaTp+enkba5130ej1tbW3dqw9J2t/f1/7+/r37AQAA8+Xw8FCHh4f37qfX602hmugRFAMAAABzZmdnR6ZpqlarxV1KKIrRv/ft8/z8XCcnJ/euo9/v37sPAAAwf/r9/lSuJeYFQTEAAAAwR6rVqhzHUafTmUp/hmFMJeQdHA0cRZ93sbKyoo2NjXvXsbq6eu8+AADA/FldXdXm5ua9++n1ejo/P59CRdEiKAYAAADmhOM4KpfLqlQqymQyU+lzfX19KqHu+vp6pH3excbGhl69enXvOq7zv3z2crKGv/W/j6wGAAAQnWlNP7W1tTUXI5NX4i4AAAAAwGRs21Ymk1GpVJpan3cdtTsaBI+OKJ52nwAAAIgWI4oBAACAOVCtVuW6rizLkm3bN7YfDF0PDg50dHQU3n/8+LHy+bwkaXt7W47jDD1ukoB2dKG5dDod3o6iTwAAAESLoBgAAACYA59//rkkqd1u3/qxjuMMBbemaYZBcTabHWrruu5E01p0u92h+5Zlhbej6BMAAADRYuoJAAAAYIltb28P3Xddd6LHDY5YNgxDpmlG2icAAACiRVAMAAAAzIFKpSLf9yf+GgxZG43G0M8qlUr4s0wmMzQtxIsXLyaq5/j4OLw9GgxH0ScAAACiRVAMAAAALLnd3d3w9uAUFeMMtiuXyzPpEwAAANEhKAYAAACWXLFYDG9PMgfyYBvTNK+cSziKPgEAABAdgmIAAABgyWUymaFgttlsjm3faDTC29eN/I2iTwAAAESHoBgAAACAarVaePvg4ODadp7nqV6vS5Isy1KhUJhpnwAAAIgGQTESo9fraWtra+zX4eFh3GUCAIA5dXh4eOO1Rq/Xi7vM2JimGY7qdRxH1Wr1ynY7OzuSJMMwhkYBz6pPAAAARIOgGIlxfn6uk5OTsV/9fj/uMgEAwJzq9/s3Xmucn5/HXWas8vm8Wq2WDMNQuVyWbdtyHEee56ndbiubzcpxHGUyGb18+VKGYcTSJwAAAKbvjbgLAAIrKyva2NgY22Z1dXVG1QAAgEWzurqqzc3NsW16vd7ChMXdbvdOj7MsS2dnZ6pWqzo6OtLOzo48z5NhGNre3laj0VA+n4+9TwAAAEwXQTESY2NjQ69evYq7DAAAsKD29/e1v78/ts3W1pZOTk5mVFGylUollUqlxPcJAACA6WDqCQAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyb0RdwEAAAAAEIVer6etra2xbfb397W/vz+jigAAwKI5PDzU4eHh2Da9Xm9G1dwPQTEAAACAhXR+fq6Tk5Oxbfr9/oyqAQAAi6jf7994vTEvCIoBAAAALKSVlRVtbGyMbbO6uhp5Hds/+avJGn7zvWgLAQAAU7e6uqrNzc2xbXq9ns7Pz2dU0d0RFAMAAABYSBsbG3r16lXcZQAAgAU2yTRWW1tbczHqmMXsAAAAAAAAAGDJERQDAAAAAAAAwJIjKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYl7iuq1wup2azGXcpAAAAAAAAAGaAoBghz/Nk27bS6bTa7bZOT0/jLgkAAAAAAADADBAUQ57nqVwua21tjVHEAAAAAAAAwBIiKF5y1WpV2WxWjuPEXQoAAAAAAACAmBAULzHHcWRZlrrdrlqtlmq1WtwlAQAAAAAAAIjBG3EXgPhkMpmh+9vb2zFVAgAAAAAAACBOjChGyDCMuEsAAAAAAAAAEAOCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAl90bcBQCBXq+nra2te/ezv7+v/f39KVQEAADmxeHhoQ4PD+/dT6/Xm0I1AAAAwPwhKEZinJ+f6+Tk5N799Pv9KVQDAADmSb/fn8p1BAAAALCsCIqRGCsrK9rY2Lh3P6urq1OoBgAAzJPV1VVtbm7eu59er6fz8/MpVAQAAADMF4JiJMbGxoZevXoVdxkAAGAOTWvqqa2tLUYmAwAAYCmxmB0AAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMmxmB0AAACAhdTr9bS1tTW2zbQWQgQAAMvp8PBQh4eHY9v0er0ZVXM/BMUAAAAAFtL5+blOTk7Gtun3+zOqBgAALKJ+v3/j9ca8ICgGAAAAsJBWVla0sbExts3q6uqMqgEAAItodXVVm5ubY9v0ej2dn5/PqKK7IygGAAAAsJA2Njb06tWruMsAAAALbJJprLa2tuZi1DGL2SHkeV7cJQAAAAAAAACIAUExQq7rDt0nOAYAAAAAAACWA0ExJF2EwuVyeeh7R0dHMVUDAAAAAAAAYJaYo3iJeZ6nvb09eZ6ndrt96eeO4yiVSsmyLBmGoSdPniiTycRQKQAAALD4Pvjk44navf/N9yKuBAAALCOC4iVmGIYajUbcZQAAAAAAAACIGVNPAAAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHEExAAAAAAAAACw5gmIAAAAAAAAAWHIExQAAAAAAAACw5AiKAQAAAAAAAGDJERQDAAAAAAAAwJIjKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEvujbgLAAK9Xk9bW1tj2+zv72t/f39GFQEAgEVyeHiow8PDsW16vd6MqgEAAACShaAYiXF+fq6Tk5Oxbfr9/oyqAQAAi6bf7994rYHFwkAEAAAQtUUajEBQjMRYWVnRxsbG2Darq6szqgYAACya1dVVbW5ujm3T6/V0fn4+o4oQNQYiAACAqC3SYASCYiTGxsaGXr16FXcZAABgQU0ycnRra2thLvTBQAQAABC9RRqMQFAMAAAAYCExEAEAAERtkQYjrMRdAAAAAAAAAAAgXgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAkiMoBgAAAAAAAIAlR1AMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAA5pTjOCoWi0qn00qlUkqlUkqn0yqXy/I87879VqtV5XI5ra2thX3atq12u52oPgEAADA9BMUAAADAnPE8T7ZtK5vNql6vy3Xd8Geu66parWptbU31ev1W/bbbba2tralcLkuSGo2Gut2uKpWKHMdRLpdTLpe7VQgdRZ8AAACYvjfiLgAAAADA5DzPUzabHQqHr1MsFtXpdFSr1W5s2263lcvlJEmFQmHoMaZpKp/PK5vNqt1uK5vNqtPpyDCMmfcJAACAaDCiGAAAAJgjtm3LdV1lMplwdG6321Wj0VCpVLrUvl6vq9lsju0zGKEsXQS41wXLjUZD0sWo5aD9LPsEAABAdAiKAQAAgDlRr9fVbrdVKpXU6XSUz+dlmmY4OrdSqajb7SqTyQw9bm9vb2y/tm2HUz8EU0RcJdiOdDFaeNzUFlH0CQAAgOgQFAMAAABzolKpyLIsVSqVa9uYphmO0g14nnftonGu6w79bHd3d2wNjx8/Dm9fFwBH0ScAAACixRzFAAAAwBxwHEeu66rT6dzY1jRNVSqVodDVcRxZlnWp7WDobFnWjXMEB6N/pYsAutlsDn0vqj6XwfZP/mqyht98L9pCAADAUmJEMQAAADAHjo6OVCgUJl7sbTQU/vzzz69sNzjVw+iUFdcxTXOorln0CQAAgGgxohgAAACYA48fPx4KU28yGtCm0+lLbRzHGbr/6NGjift2XVeSLi2UF0WfAAAAiB4jigEAAIA5kMlkJh5NLClcSC5wVcg8Om/xpEH0aLvBcDiKPgEAABA9gmIAAABgAQWjcwNXzU/84sWLofuTBtEPHjwYun98fBxpnwAAAIgeQTEAAACwgAaD1kKhcGWb0TD5rqN/u91upH0CAAAgesxRDAAAACygWq0W3i6Xy1e2GQ1172pwmoso+ryrXq+nra2te/ezv7+v/f39e/cDAADmy+HhoQ4PD+/dT6/Xm0I10SMoBgAAABaM67rhHL+VSuXaUb13DWNHp5M4PT2NtM+7Oj8/18nJyb376ff79+4DAADMn36/P5VriXlBUAwAAAAsmEqlIuliOodSqRT59qYx+jeKPldWVrSxsXHvflZXV+/dBwAAmD+rq6va3Ny8dz+9Xk/n5+dTqChaBMUAAADAAnEcR/V6XYZhqNVqjW1rGMZUAtnB0cBR9HlXGxsbevXq1b37SZoPPvl4onbvf/O9iCsBAGCxTWv6qa2trbkYmcxidgAAAMAC2dvbkyQ9f/78xoXk1tfXp7LNwX6i6BMAAADRIygGAAAAFkSxWJTjOGo0GspkMje2v+uo3dERw6MjiqfdJwAAAKLH1BNIjElWpWbFaQAAcFeTrFo9LytSX6Ver6ter6tWqymfz0/0mO3t7XDRO+kirJ0koB1daC6dTkfaJwAAAKJHUIzEmGRValacBgAAd7XIq1a3220Vi0XVajUVCoWJH5fNZofuu6470Ujkbrc7dN+yrEj7BAAAQPQIipEYk6xKzYrTAADgriZZtXpeVqQe5DiOcrmcKpXKrUJi6WL076BJQ93BaSIMwxiaCzmKPgEAABA9gmIkxqKuSg0AAJJhkims5mVF6oDrutrZ2VGpVFKpVLr14zOZjAzDCEPaFy9eTDRtxfHxcXh7NBiOok8AAABEj8XsAAAAgDnkuq6y2awKhYIqlcrEj6lWq0Pf293dDW8Pzi08zmC7crl86edR9AkAAIBoERQDAAAAc8bzPOVyOe3u7k4cEkuSbduX5v4tFovh7Xa7fWMfg21M07xyLuEo+gQAAEC0CIoBAACAOeJ5nrLZrEzTVLlcluu6N3612+1wkbnR+YIzmcxQMNtsNsduv9FohLevG/kbRZ8AAACIFnMUAwAAAHNkZ2cnDIDT6fStHlur1a79ftDXwcHBtXMKe56ner0uSbIsa+zieVH0CQAAgOgwohgAAACYE9lsduI5f69yXQhrmmY4qtdxnEvzGAd2dnYkSYZhDI0CnlWfAAAAiA5BMQAAADAHbNuOJCQO5PN5tVotGYahcrkcbs/zvHDqCsdxlMlk9PLlSxmGceM2o+gTAAAA0WDqCQAAAGAOzGK0rWVZOjs7U7Va1dHRkXZ2duR5ngzD0Pb2thqNxrVTSMyyTwAAAEwfQTEAAACAIaVSSaVSKfF9AgAAYHqYegIAAAAAAAAAlhxBMQAAAAAAAAAsOaaeAEZ88MnHE7V7/5vvRVwJAAAAAAAAMBuMKAYAAAAAAACAJUdQDAAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcm/EXQAAAAAAYHLbP/mryRp+871oCwEAAAuFoBgAAAAAFtAHn3w8Ubv3CZQBAIAIigEAAAAsqF6vp62trbFt9vf3tb+/P6OKAADAojk8PNTh4eHYNr1eb0bV3A9BMQAAAICFdH5+rpOTk7Ft+v3+jKoBAACLqN/v33i9MS8IigEAAAAspJWVFW1sbIxts7q6OqNqAADAIlpdXdXm5ubYNr1eT+fn5zOq6O4IigEAAAAspI2NDb169SruMgAAwAKbZBqrra2tuRh1vBJ3AQAAAAAAAACAeBEUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHEExAAAAAAAAACw5gmIAAAAAAAAAWHIExQAAAAAAAACw5AiKAQAAAAAAAGDJERQDAAAAAAAAwJJ7I+4CgECv19PW1tbYNvv7+9rf359RRQAAYJEcHh7q8PBwbJterzejagAAAIBkIShGYpyfn+vk5GRsm36/P6NqAADAoun3+zdeawAAAADLiqAYibGysqKNjY2xbVZXV2dUDQAAWDSrq6va3Nwc26bX6+n8/HxGFQEAAADJQVCMxNjY2NCrV6/iLgMAACyoSaaw2traYtQxFsb2T/5qsobffC/aQgAAwFxgMTsAAAAAAAAAWHKMKAYAAACAJfbBJx9P1O59Rh4DALDQGFEMAAAAAAAAAEuOoBgAAAAAAAAAlhxBMQAAAAAAAAAsOYJiAAAAAAAAAFhyBMUAAAAAAAAAsOQIigEAAAAAAABgyREUAwAAAAAAAMCSIygGAAAAAAAAgCVHUAwAAAAAAAAAS+6NuAsAAAAAgCj0ej1tbW2NbbO/v6/9/f0ZVQQAABbN4eGhDg8Px7bp9XozquZ+CIoBAAAALKTz83OdnJyMbdPv92dUTXJt/+SvJmv4zfeiLQQAgDnU7/dvvN6YFwTFAAAAABbSysqKNjY2xrZZXV2dUTUAAGARra6uanNzc2ybXq+n8/PzGVV0dwTFAAAAABbSxsaGXr16FXcZC+ODTz6eqN37jDwGACyRSaax2tramotRxyxmBwAAAAAAAABLjqAYAAAAAAAAAJYcQTEAAAAAAAAALDmCYgAAAAAAAABYcgTFAAAAAAAAALDkCIoBAAAAAAAAYMkRFAMAAAAAAADAknsj7gIAAAAAAMm3/ZO/mqzhN9+LthAAABAJgmIAAAAAwNR88MnHE7V7n0AZAIBEYeoJAAAAAAAAAFhyjCgG7oiREgAAAAAAAFgUjCgGAAAAAAAAgCVHUAwAAAAAAAAAS46gGAAAAAAAAACWHHMUAwAAAACmZvsnfzVZQ9byAAAgURhRDAAAAAAAAABLjhHFAAAAAICZ++CTjydq9z4jjwEAmAmCYiRGr9fT1tbW2Db7+/va39+fUUUAAGCRHB4e6vDwcGybXq83o2oAAACAZCEoRmKcn5/r5ORkbJt+vz+jagAAwKLp9/s3XmsAAAAAy4qgGImxsrKijY2NsW1WV1dnVA0AAFg0q6ur2tzcHNum1+vp/Px8RhUBy41F7wAASBaCYiTGxsaGXr16FXcZAABgQU0yhdXW1hajjoGEYS5jAABmYyXuAgAAAAAAAAAA8SIoBgAAAAAAAIAlx9QTAAAAAIDEYi5jAABmg6AYAAAAwELq9Xra2toa22aSuasBAACuc3h4qMPDw7Fter3ejKq5H4JiAAAAAAvp/Pz8xsUJ+/3+jKoBAACLqN/vL8xiyATFAAAAABbSysqKNjY2xrZZXV2dUTWIWrvyP0zUzipP1g4AgEmsrq5qc3NzbJter6fz8/MZVXR3BMUAAAAAFtLGxoZevXoVdxkAAGCBTTKN1dbW1lyMOiYoBiL2wScfT9TufRbfAAAAAAAAQEwIigEAAAAAS4MpKgAAuBpBMQAAAAAAI3559OcTtXvz8e9HXAkAALOxEncBAAAAAAAAAIB4MaIYAAAAAIAR/8tnLydqZ0VcBwAAs0JQDAAAAADAHTFFBQBgURAUYykcHh6q/dd/rV/76q/r39h23OUAki6Oy36/r9XVVe3v78ddDhDi2ERScWwiSQ4PD/XT1v9bv/7mryn/b/67uMtBjCYdefzfEyjPHf7fAZYD7/UvpXzf9+MuAstta2tLJycn2tzc1KtXryLdxm+ufk3/j++Nf9Mf/+v/YyQ13OT9b74Xy3YRn1kc+8BdcGwiqWZ5zcDxP9+Sdn0JSNJ///WHE7UjKE4O/k8AlgPXmF9iRDEwYvsnfzVRu2kHyh988vFE7QiUAQAAgMXFVBYAgLgQFAN3NGmgPKm4RjIDAAAAiN7EU1RMOPKYQBkAMG0ExcCc4YIQAAAAWFwEygCAuBAUAwkx8QjlKV8QTooLRwAAACA5Jg2UJ8ViewAAgmJcqVqtqtVq6fj4WJ7nyTRNZTIZFYtFWZYVd3mIwbSD57hwYQsAQDy4vgQWAyOUAWBxERRjSLvdlm3b8jxPlmWp0WjINE05jqNyuaxcLhd+3zCMuMtdStP+KNqySVLg7f/iv4T/xl0XF/IAgKhwfQksJwJlAJg/BMUItdtt5XI5SVKhUFCtVgt/Zpqm8vm8stms2u22stmsOp0OF/PAgog7qJ53k/6CE9eUMIvyi9qiPA9gmXB9CcyPaU9lMalJp7yYFNcBAHB3BMWQJHmeJ9u2JV1ctA9exA9qNBpKp9NyXVe2bavVas2yzLnW/J//V/2XX/6jfv3NX1P+3/x3sdTwf/uPf6mf/5df6Gu//i/0f/0//59iqSEpdSShhqRIwr5IQg33qWOaAfBtaph28Bz0l5TR7kl5PX5h/rdaXV3V/v7+zLZ7VR1xv0dGa1i2P1Tg9ri+nA9JuEadBp5HssT5PKb5/3FwTTTvDg8P1e/3J7qeSbJFeR7S4jyXRXke+BJBMSQp/DigJJXL5WvbBSM/ms2m2u226vW6CoXCjKqcbz/6n/9X/ef+z/Wbq1+bycXSVSMC/vj/+R/DGrL/h/9WUjxTVPzf/+P/S//f0zP9N+trsQUeSaghKZKwL5JQQ1LqSEINSZGEfXFRw3/Qf7O+pv/L5oNYaviyjiTsiy9riOoPFeMsyi/sy4Lry/kw62vUqPA8kuU2zyO2kcy3+D0ojj+eT/MPqIeHhzo5OdHm5uZch3mL8jykxXkui/I88CWCYsh1XbXb7fD+7u7u2PaPHz9Ws9mUdHHRz4U8AAAABnF9CSDpJgmo/+m//tcZVHK1KD6RM0ngzSd8gOVGUAxVKpXwtmVZN84Ll8/nw9ue56nZbA59D/OFxfEAAMC0cX0JYJH803/9rzMf+Tzp71/T/kROXGtqAEgGgmKoXq+HtzOZzESPMU1TrutKko6OjriQXwIEygAAYFJcXwLA/UwzmA5GRk8SeE/797ko5oye5lQgBNnAMILiJec4ztD9R48eTfS4TCYTXsgHHxMEAAAAuL4EgPkV15zRk4gi8I5i7um4pgNhAWFMA0HxkhucO066GMkxidF2juNMPFoEi+02c33F8RdtAAAQLa4vAQDzIpJgvPI/3NjkH3/elzTh78RTDrPbE9QnTfa7eBSjvOPAgslfIiheci9evBi6f9P8cYEHD4ZXfj8+PuZCHpGY9n/cBM8AAESL60sAQNySPDL6tuJ6LtMeBJZkcS5cmTQExUsu+Hhf4K4jPrrd7tRqAqIU/OeVhP/QrqqBIBsAMO+4vgQAAJhPKd/3/biLQHzW1tbkeV54f9LDodlsyrbt8H6hUFCtVrtTDb/6q7+qf/7nf5Ykrays3KmPQV/72tf0G7/xG0Pf6/V6Oj8/10oqpfWv/cY1j4zW6c//Xue+v/Q1JKUOakhWHTfV8KtvzObvmv+/My+s43+3Zsxkm9SQ7DqSUENS6khUDSsr2tjYGPrZ3//93+vnP//5vbdxfn4uSfqVX/kV/dM//dO9+1tGXF/OlyRcB0wDzyNZeB7JwvNInkV5Lgv3PLjGJChedqlUauj+pIdDu91WLpcL7+fzeTUajTvV8JWvfCV8wwAAACTBysqKvvjii7jLmEtcXwIAAFwt6deYTD2BqRgcNXJbb775pn7xi1/I/9/+enNfV434AAAAi22aoz1SqZTefPPNKVSF++D6EgAAxG3ZrjEJipecYRj3uggf7Oeu/uEf/uHe2wcAAEAycH0JAAAwn+7/53XMtfX19UT1AwAAgPnG9SUAAMB8IihecncdqTE6SuQ+Iz4AAACwOLi+BAAAmE8ExUtue3t76P6kHxM8PT0dup9Op6dVEgAAAOYY15cAAADziaB4yWWz2aH7rutO9Lhutzt037KsqdUEAACA+cX1JQAAwHwiKF5yoyM+Jr2QHxwZYhiGTNOcZlkAAACYU1xfAgAAzCeC4iWXyWSG5n978eLFRI87Pj4Ob4/+MgAAAIDlxfUlAADAfCIohnZ3d8PbjuNM9JjBduVyeeo1AQAAYH5xfQkAADB/Ur7v+3EXgXg5jjM0l9xNh0S73VYul5MkmaZ5aT45AAAALDeuLwEAAOYPI4qhTCYztFhIs9kc277RaIS3Ge0BAACAUVxfAgAAzB9GFEPSxSIj6XRa0sWFfafTubKd53laW1uTdLESdavVmlmNAAAAmB9cXwIAAMwXRhRD0sVH/IKRHI7jqFqtXtluZ2dH0sVK1IMjPwAAAIBBXF8CAADMF4JihPL5vFqtlgzDULlclm3bchxHnuep3W4rm83KcRxlMhm9fPlyaDVrAAAAYBTXlwAAAPODoBhDLMvS2dmZKpWKXNfVzs6O1tbWZNu21tfX1Wg01Ol05uIivlqtKpfLaW1tTalUSul0WrZtq91ux10aMJbruuGCPsB9BcfTTfOD3oRzKqZtWsfmbbaFeMzq+jLO81QU2+a8C1y2aO/zQbP8fxFIskV6nzuOo2KxqHQ6rVQqFfZZLpfled50i58WH1gwrVbLNwzDl+RbluW3Wi2/2+36jUbDN00z/P7Z2VncpWLJnJ2d+ZIm+ioUCnGXizl3dnbm5/P58Jiq1Wp36odzKqZtWsdm0BfnVcR5nopi25x3gcsW7X0+aJr/LwLzbJHe56Pv6+u+kvh+JyjGQmm1Wjf+QpjJZHxJvmmaXGBjpiqVysSBRrfbjbtczKmzszO/VCpN5SKEcyqmaZrHZoDzKuI8T0Wxbc67wGWL9j4PRPH/IjCvFul9fnZ2FobL8ziYgaAYC+Ps7Cz8C5Bpmte263a74RvSsqwZVohlFxyfN31xXOKuKpWKb5qmb1nWvX/p4JyKaZrmsTmI8+pyi/M8FcW2Oe8Cly3a+zwQ1f+LwDxatPd58L7OZDJ+o9Hwu91uODr5qj8OSfIbjcZUns80EBRjYQz+J3vTf658tAezVqvVfEl+qVTyW63W2C9GB+EuOp2O3+l0wvvBMXfXcx3nVEzLtI/N0X44ry6vOM9TUWyb8y5w2aK9z30/uv8XgXm1SO/zwevT63S73XCEcvBlGMa9nsc0ERRjIQz+dUfSjb8QNhqNRL4hsbhM0xz7F0pg2jqdzp1/6eCciijd59gcxHl1ucV5nopi25x3gcsW7X1+nWn9vwjMo0V7nwefFLjttiX5rVbrLk9j6lYELIBKpRLetizrxlWz8/l8eNvzPFaWRaSazaZc11W5XI67FCyRm86D43BORZTuc2wGOK8izvNUFNvmvAtctmjv8+tM4/9FYF4t0vvccRy5rqtGo3Hjtk3THNp+8PgkICjGQqjX6+HtTCYz0WNM0wxvHx0dTb0mIHBwcCDDMLS7uxt3KcBEOKci6TivIs7zVBTb5rwLXLZo73MAly3S+/zo6EiFQmHiP/5YljV0//PPP5/ocVEjKMbcG/2ry6NHjyZ63OCJgFEYiIrjOHIcR57naW1tTel0WsVikWMOicU5FUnHeRVxnqei2DbnXeCyRXufA7hs0d7njx8/vjRKeNK+JCmdTk/82CgRFGPutdvtofuDf+EZZ7RdUob5Y7GMfizadV3V63XZtq1UKiXbtjn2kCicU5F0nFcR53kqim1z3gUuW7T3OYDLFu19nslkbjWVjOd5d6ohagTFmHsvXrwYuj/pG/PBgwdD94+Pj6dVEiDpIrwY/Q9oVLPZVDabVbFYnFFVwHicU5FknFchxXueimLbnHeByxbtfQ7gsmV/n7uuO3R/dCqKuLwRdwHAfY2+ue76l6Butzu1mgDp4hir1WryPE/dblftdvvS8Rqo1+s6Pj5Wp9OZcZXAMM6pSDLOq5DiPU9FsW3Ou8Bli/Y+B3DZsr/PB0PmQqFw536mjaAYc++6XxBva3TYPzANoyd8z/NUr9d1cHBw6ZhzHEe5XE6tVmuGFQLDOKci6TivIs7zVBTb5rwLXLZo73MAly37+7xWq4W3R6dWixNTT2Du3fWNOfrRgtPT0/sXA9zAMAyVSiWdnZ2p0WhcOg7b7baq1Wo8xQHinIr5w3l1+cR5nopi25x3gcsW7X0O4LJlfp+7rhvOb1ypVBIzP7FEUAyE+IsvZi2fz+vly5eXVjs9ODiIqSJgejinIg6cV3EbcZ6notg2513gskV7nwO4bB7f55VKRdLFVBalUmmKFd0fQTHm3m1WlZxFP8BtGIahTqczFGp4nnfjYk1AVDinYt5xXl18cZ6notg2513gskV7nwO4bFnf547jqF6vyzCMRE6PRlCMube+vp6ofoC7ePr06dD9JP6HgeXAORWLgvPq4orzPBXFtjnvApct2vscwGXL+j7f29uTJD1//jxRU04ECIox9+76l6DRjwjwF1/EKZPJyLKs8P60JtcHbotzKhYF59XFFed5Koptc94FLlu09zmAy5bxfV4sFuU4jhqNxqWp0pKCoBhzb3t7e+j+pHPEjE46nk6np1UScCe5XC7uEgDOqVgonFcXU5znqSi2zXkXuGzR3ucALlu293m9Xle9XletVlM+n5/4cbP2RtwF3NZnn30mx3F0enoqz/P0+eefS5IePHggwzBkmqa2t7e1uroac6WYlWw2O3Tfdd2J/jLT7XaH7g+OOgLiMPixEz6qhrhwTsUi4by6mOI8T0Wxbc67wGWL9j4HcNkyvc/b7baKxaJqtZoKhcLkhcZgLoLiH//4x2q1Wnr27NnEKb9pmrIsS7Zt67333ou2QMRq9C9Bk77BB4+l4I8MQJwGj0E+qoa4cE7FIuG8upjiPE9FsW3Ou8Bli/Y+B3DZsrzPHcdRLpdTpVJJfEgsJXzqiR/+8Id6++23Zdu26vW6zs7O5Pu+fN+/9jHBz7vdrur1unK5nN5++2392Z/92QwrxyxlMpmhX/5evHgx0eOOj4/D26MnCSAOg8ckH5dGXDinYpFwXl1McZ6notg2513gskV7nwO4bBne567ramdnR6VSSaVS6dZ1xiGRQfHHH3+st99+W8ViMVx4ZDQcDgLh0a+r2riuq0KhoH/5L/+l/vqv/3pmzwOzs7u7G952HGeixwy2K5fLU68JuK3Bj7HwUTXEiXMqFgXn1cUV53kqim1z3gUuW7T3OYDLFvl97rqustmsCoWCKpXKRP27rqtqtTpR26ik/HHDc2Pw5MkTVavVS6GvZVnKZDJ68OCBTNMMk/9gvrlgQmnP8+S6rj7//HO5rqt2uz00NDyVSqlcLuv73//+TJ4PZsNxnKE5Zm46rNvtdjiyyDTNS/PMAHFIp9NyXVelUmni/0iA67iuO7S4wm3mw+Kciijd59i8Lc6riyvO81QU2+a8C1y2aO/z68zy/0UgaRb1fe55nrLZrCzLUq1Wm7imbDarp0+fTjQNRmT8hHj9+rW/vb3tp1IpP5VK+blczq9Wq77jOPfu2/M8v1ar+dls1k+lUv7Kyor/6NEj//Xr11OoHElhWZYvyZfkNxqNsW0LhULYtlarzahC4HqNRsOX5BuG4Z+dncVdDhZAp9MJz3N3OddxTkVU7ntsTorz6uKL6jxVq9X8Uqnkd7vdmW6b8y5w2aK9z68yq/8XgaRatPf52dmZb5qmb1mW3+12J/pqtVp+JpPxM5nM2BpmIRFB8aeffuqvr6/7qVTKLxaLvuu6kW2r2+36lmX5qVTKf/vtt/1+vx/ZtjBb3W43fNOOe3OdnZ2F7SzLmmGFWCatVss3DCM8zjqdzrVtu91u2HZcO+A2gpAs+KpUKrd6POdUROWuxybnVYyK4jw1+AujpGv/yBDFtjnvApct2vv8Kve9ZgPm3aK9zzOZzNC2b/OVhD8UxR4UO47jp1IpP5vNRhoQjwp+2Xj77bcZWbxABv+Tve4/2OBNywgjRGnwr43BV6FQuNQuOBeZpjn2L53AbQR/xR48/u7y12nOqZi2+xybnFdxlWmfp27zC1sU50jOu8Bli/Y+HzStazZg3i3K+/w+IbEUe0Tr+37MQbHruv7a2ppv23Ys2w9Oyv/23/7bWLaPaAyOOMrn836n0/HPzs7CofzBf75cWCNKrVbryhO/YRh+Pp/3C4VCeDyWSiWOR9zb2dmZn8/nL/31fPTLsqzw3DgJzqm4r2kdm5xXcZ1pnqeCfoKvVqs1s21H2Scw7xbpfR7VNRsw7+b9fZ7P5+8VEl81ACIOsQbF6XTaLxaLcZbgn52d+el02v/jP/7jWOvA9FUqFT+TyYRvdsMwfMuybpx3BpiWbrfrFwoF3zTNoePQNE0/n8/7jUaDX/IwNzinIgk4r2KcaZynWq1WeHyVSqWZbnsWfQLzbtHe5wAu430er5Tv37CsX0Tef/99OY6jjz76KI7ND/E8T6Zp6uOPP9Y777wTdzkAAAAAAAAAMFMrcW34wYMHajQacW1+iGEYev78uVzXjbsUAAAAAAAAAJi52EYUAwAAAAAAAACSIbYRxbP2ne98J+4SAAAAAAAAACCRlmZE8Ve+8hV1u119/etfj7sUAAAAAAAAAEiUpRhR/Pz5c/m+rx/96EdxlwIAAAAAAAAAiRPLiOJvf/vbevnyZeTbOT09led5cl1Xvu8rnU7rZz/7WeTbBQAAAAAAAIB58kYcGzUMQ61WS6lUKtLtjGbgruvqpz/9qd55551ItwsAAAAAAAAA8ySWqSceP358q/Z3HfScSqXCr8CzZ8/u1BcAAAAAAAAALKrYFrP7xje+oZcvX04UAqdSqTuHxaOPZ/oJAAAAAAAAABgW22J2Ozs7kqR2u63z8/NrvyqVinzfVyaTUavV0tnZ2dj2o1/Hx8d6+PChisWizs/PCYkBAAAAAAAAYERsI4qfP3+u999/Xy9evLi2zcuXL/WNb3xDhUJBf/qnf3rnbbmuq2984xv69re/rX//7//9nfsBAAAAAAAAgEUU64jitbW1sW0qlYpM07xXSCxJpmlqb29PtVpNn3zyyb36AgAAAAAAAIBFE1tQLEkfffTR2J8fHx+rWCxOZVvb29vyfV+1Wm0q/QEAAAAAAADzznEcFYtFpdNppVIpZbNZFYtFeZ4Xd2mJtaj7LNag+CaO4yiTyUylr/X1dUlSq9WaSn8AAACLaFEvegEAAHBZtVpVNptVvV6X67qSLq4H6/W6Hj58qGazGXOFybPI+yy2OYonsb6+rg8//FB/8Ad/cO++vv3tb6teryuVSumLL76YQnUAAACLpVqtqlwuX/kzwzD09OlT5fP5GVcFAACAKATXfoVCQdlsVuvr63rx4oXq9frQIIFutyvTNOMrNEEWfZ8lOij+7d/+bZ2dnY1d8G4Sr1+/DudDXltb0+effz6N8gAAABbGol/0AgAA4Euu6yqdTqvVasmyrKGfeZ6nnZ0dOY4jScrn82o0GnGUmSjLsM8SHRQ3m03t7u7qww8/1B/90R/dqY9+v6+dnR11Oh2lUillMpl7B88AAACLZBkuegEAAPClYrEowzBUqVSu/HlwfShdfLLs7OxsluUl0jLss0QHxZKUTqf12WefybZtffDBB/r6178+8WN//OMfa29vT57nyfd9pVIpVSoV/bt/9++iKxgAAGDOLMNFLwAAAL6UzWb1/PlzGYZxbZtcLqd2uy1JOjs7G9t2GSzDPkt8UOy6rr7xjW8olUpJkjKZjIrFokzTlGmaYXD82WefyfM8ua6rVqulZ8+eDQXEvu8z7QQAAMAVluGiFwAAAF9yHEeZTGZsm2KxqHq9LklKeHw4E8uwz96Iu4CbmKap4+NjbW9vS/pyJe6bBC9GEDCnUik+JgkAAHCFp0+f3hj8Ds5LTEgMAAAw324KPCXp9PR04rbLYBn22UrcBUwik8nob/7mb/Tuu+/K9/2JvlKpVDiS2Pd9PXv2TO+9917cTwUAACBxluGiFwAAALfjuq4kTTRgExfmfZ/NRVAsXYxi6XQ6evbs2ZW/oATBcCAIiPP5vM7OzvStb31rluUCAAAslHm/6AUAAMDkXNeV4zgyDEOFQiHucubCIuyzxE89MSqfzyufz+vly5dqt9vqdDpyXTcc5bK+vi7TNJXL5WRZlt56662YKwYAAJhvi3DRCwAAgMnVajVJF1OUYTKLsM8Sv5gdAAAA4lUul1WtVtVoNJTP5+MuBwAAABFyXVfpdFqFQiEMPzHeouwzgmIAAABca1EuegEAADCZXC4nSWq1WjFXMj8WZZ/NzRzFt/HkyRP97d/+bdxlAAAAzL1isSjLsgiJAQAA5pTnearX6xO1LZfLOj09nfvA876WdZ/NXVD84x//WN/5znf06NEj/fjHP76yTTab1bvvvqvf+73fIzAGAAC4o0W66AUAAFhGnucpm81OdD3XbDbVbDb1/PnzGVR2med5qlarqlar4ULKcdUxL/ts2uYmKP7jP/5jPXjwQLZtq16vy3GccAG7Ufl8Xq7r6mc/+5lM09Rf/MVfzLhaAACA+bZoF70AAADLxvM87ezsyHXdcGqE67TbbZXLZXU6HRmGMZsCR5yenqpcLqtcLscWFM/bPpu2xAfFr1+/1ttvv61yuayzszP5vq9JplU2DEOdTkfvvPOO8vm8/uzP/mwG1QIAAMy/RbzoBQAAWDY7OztyHEeStLu7e207x3FULBZvvPaLc5TvrCz7Pkt8UGzbtrrdriQplUoplUrd6vHPnz+X7/sqFAr65JNPoigRAABgYSzqRS8AAMCycBxH6XQ6DDxN07z2us5xHNm2rVarNfbar9lsqt1uR1BtMrDPLrwRdwHjPH/+XO12W6lUKhxFbBiGtre3J/4YpGEY+u53v6sPP/xQxWJR/+k//acoSwYAAJhbt7noPT09VaFQmF1xAAAAGMtxHB0cHKjZbA593zCMoYXZgms413W1s7OjQqEgx3HCkHTUixcvVK/XdXZ2Fl3xMWGfDUv5k8zjEJPd3d3whSoUCiqXy3r48KEkaWVlRfV6XX/4h394Yz+ffvqpstmsUqmU6vW6/uAP/iDSugEAAKISrMDc7XZVLpdlmuZU+nVdV9lsVoVCQY8ePbq23bxe9AIAACyyZrMp27ZvbGcYhs7OzuR5nh4+fCjP8ybqv1AoqFar3bPK8VzXVTqdliS1Wi1ZlhXp9hZhn01bokcUB6OJa7XaRIHwdQZ/gfroo48IigEAwFwJwuGjo6OhUQvtdjucous2bNuW4zjh9BLBys7BStM3YSQxAABAsuTz+fDT+O12e2ghtqvGiAbXfpMqFov3rjFp2GeXJXqOYs/zZJrmvUJi6WLVxMB1Q8IBAACS6vj4WJZlqdFoDIW0ruveet4z27bVbDZVq9XC6SWW4aIXAABgWTQajfB2JpO5sk2325Xv+xN/XdfPomCfXUh0UGwYxlR2ahAO+77PwisAAGDuWJalTCYj0zQvfXyt1WpN3E+xWFSz2VSlUhn6KN8yXPQCAAAsi8GBBI8fP46xkvnBPruQ6KDYNM1bjW65zsHBQXh73MIsAAAA82Aw5J3001Llcln1el2FQkGlUimq0gAAABAjz/OGBklGPc/vImCffSnRcxTv7Ozohz/84b36+PDDD+U4jlKplHzfn9qCLwAAAHEZvJ45Pj6+sX25XFa1WpVlWXO3oAYAAAAmNzotWRI+CRast3GTzz//PLxdq9UmGhCRz+fvnfUlcZ/FJdFB8ZMnT/Thhx/qT/7kT/RHf/RHd3p8tVoNQ+JUKrXUw8cBAMBiyGaz4e2bPn0VhMSZTOZW01QAAABg/gxe7yVlZOzx8bHK5fKtHtNsNtVsNm9sZxjGvRdaTuI+i0uip54wDEPf/e53VSqV9L3vfU/9fv/Gx/T7ff3whz/U22+/rWq1emmVQlbpBgAA82501MR1oy2CkNg0TT1//nwWpQEAACBGz549C2/bth1jJfODffalRI8olqRKpSLHcfTBBx+oUqkol8uF6X6n09H6+rpOT0/V7XbVbreHFq6TpFQqFfb1gx/8QKurq7N/EgAAAFM0GhS7rnvpI3KDIXGn02GdBgAAgAXnuu7Qp82SMjrWsqxLAzmv4rqu0um0pItRvrOoP6n7LC6JD4qli4OjWCzq6dOnarVaarVaSqVSqtfrl+Y4GQ2Ig/u1Wk17e3uzLRwAACACo0HxixcvlM/nw/vFYlH1ep2QGAAAYIkMzrVrGAbrdE2AfTYs0VNPDKrVajo+PtZ7770n3/cvfQUGA2Lf92VZlrrdLiExAABYKIMXsYOrNNu2TUgMAACwhJhr9/bYZ8PmYkRxIFiE5eXLl2q322q1WuEQ8dPTU62vr4fpfy6X0+7urt566624ywYAAJi6TCYTBsTB1Fu5XE7tdluZTEbPnz8nJAYAAFgig6NjHz9+HGMl84N9NmyuguLAw4cPtbe3xyhhAACwtEZHFGezWTmOo0wmo06nE2NlAAAAmDXm2r099tllczP1BAAAAL4ULPQRcBxHlmUREt+C67oql8vK5XJxlwIAAHAvzWYzvG2a5tAny0bX98IF9tllczmi+CafffaZHMeRYRja3t7W6upq3CUBAABM1fb29tD9fD6vRqMRUzXzpV6vq1KphFN3LPuiJQAAYP5dN9dutVplOrJrsM8uW6gRxZ999pkePXqkdDot27aVy+W0tramf/2v/7X+9m//Nu7yAAAApubo6GjoPmHn5AqFgrrd7tL+AgAAABbP4Fy7waelms2mWq2WCoXCtY9zXVfVajXM0EY/aeV5nmzb1tramqrVajTFx2TSfRbsI9u2lc1mlUqlwjVCBtXrda2tralYLEZffEQSHxT/9m//th49eqS3335bb7/9th48eHDl5NKffvppODef7/tDX8fHx0qn0/rkk09ieAYAAADTVSwWL12oB6NjF1W5XJ56n4TrAABgEYyGli9evFC9XtfBwcGNnzhrt9uyLEu5XE6e56ndbof9eZ4XZm2e5w2NwJ13t91nlmXp0aNH4eMODg4utel0OvI8T/V6fW6vzRM/9YRhGGq32zIMQ0+ePFE+n9fDhw+H2rx+/Vo7OzvyPE+pVEqpVEq+74dTT7iuK9d1Zdu2/vN//s8xPRMAAID7s21bzWYznEctuFid14vRSRSLRR0fH0+93/X19an3CQAAMGuj14HValWmaarT6dz4Capg5Gwmkwn/MN9ut5XJZGTbthqNhjKZjFzXXag/st9mnwXPO5PJSLoYwNBsNuV53lDbWq2m09NTNZvNub3OTPyIYsdxVC6XdXp6qu9+97uXQmJJ2tvbC0PiYBRxpVLR6empPvroI/3N3/yNPvroI52fn+t73/teDM8CAADg/nK5nJrNpizLUrfbHZpLbVGD4mazubSLiQAAAEwin8+rUCjIMAyZpqlSqXSnabaCa8tWqxVOtRCEo7MIiU3TDHO9wevcKNx1nw1OSfHs2bNLP3/69OmlhfHmSaKD4g8//FCZTObK4dyBH/3oR2o2m2FInEqlVKlU9N3vfneonWVZ+uCDD1gJHAAAzKVcLqd2u618Ph9+7C+dToc/9zxPnufFVF002u22bNuOuwwAAIDEq9VqOjs7U7fbVaVSuVMfwTy97Xb7xrmNF8Fd9plhGGGIfdUUFcfHx8rn81Otc5YSHRTX6/UbRwDv7e0plUpJklKplDKZzKWQOPD48eNIPrYIAAAQpWw2q3a7rVKpNHRBur29PdTuPqOKg0U60ul02I/jOMrlckqlUlcuzOE4Tri4SbD4ybgaXNdVsVhUNptVLpdTOp0OR0mPajabQ4upOI4TTjG2trZ2Zf+e54X9r62thQscDy5UMk7w+LW1NaVSKWWz2StrAwAAWESDo3jvGjYvg2Agw1XXmLVaTU+ePJl1SVOT6KC42+3qnXfeufbn3/nOd8KRM77vS7oY4n2dt956K2wHAAAwD4IFRGq12qUL9tGPAN4lKA7C4HQ6rXK5HPZRLBa1s7Mj6WI+tmBhjuDCuFwuK5vNyvM8bW9vh4ufZLPZK7fTbDaVTqd1enqqTqejVqulbrcr6eJie3Sxunw+L9/3h+aECz6KeHZ2dqn/arWqhw8fKpvN6vnz5zo7O1OtVgsD55sWw3McRw8fPtSzZ8/CAD4IwgmLAQDAMgimmZCk09PTGCtJtsFAfXBRPM/ztL6+PrfTTkgJD4pN09Rnn3125c8+/fRT1Wq1oSknCoXC2GD5008/vTTyBgAAIKlyuVwYEl/10b/Ri9C7BMWZTEatVkulUmlou7lcTmdnZ2q1Wup0OuH2g+D1wYMH8n1frVYrbCMpDJRHBQHz48ePh74fhN/VavXOU2eUy2WVy2U1Go1wrjnp4iI++IWnWq1eu39OT0+1t7cXBsxBiB30c1PIDAAAsAgGr5WCqc5wmWma4WCGwVHFwTXpPEt8UHzVLxqvX78emq8ulUrJNE396Z/+6dj+nj9/PvcvGAAAWA7BnMRB+HmdwZEfL168uPP2Hj16FN6uVCqX5lYbnHbCMIyhYDmoI7hgHv3FYlyAPRh232WKMMdxVK1WZVnWlYueTPrRv+fPnw/tS9M0tbu7K2lxFwoEAAAYZNt2eD016dRdyyq4bgyuv4PrxVks+helRAfFhUJBH3zwgb73ve+p3++r3+/rxz/+sba3t+W6bjiaWLp6AulBn376qQ4ODsKPUAIAACRVMK9urVa7cTGMwYvRqwLNer1+65G6V31cbnA7110AB48brcM0zXDqjNHns76+Ht6+y4jiYBDAdYve5fN5dbtdnZ2dXVv3dR8RHJxGg7AYAAAssmKxqGKxGF5bDU6pgMuCtTSC/VQulxdiXudEB8X5fF47OzuqVCrhIim2bavb7Q6FxD/4wQ/GTjnxwx/+8MoRJgAAAElTLpfVbDavnW5i1OiCb4Nha7PZVKvVmso8aZP0EYS+VwW+hUJhaBRyMEXF4KfH7jIXXjDaZdz0YqZp3nsf3HVaDAAAgKRrt9s6PT1VoVAYuqYaDIuv+sT/MgtyRtd11W639ejRo7memziQ6KBYuvgF53d/93fDxUuCcNj3fRmGoUajob29vUuP++lPf6onT57o7bffVrFY1NnZmTzP01/8xV/M+ikAAABMpF6vq1qtqlKpTBQSS7r0x/BgQbpqtaqDg4MbP3U1a47jqFgs6tmzZyoUChM/z6swyhcAAOD2gkWIpYvrqUqlEl4zGoYRTqtQq9UkXYw2Zs2vYYOfVCuXy5emZZtXb8RdwE3eeustNRoNPX/+XK1WS47jyDAMPXr0SIVCQW+99dalxzx9+jQ8wB8+fKiHDx+GP/vJT36i3/md35lZ/QAAAJMIAtTRkbc3MU1T+XxezWZTksJRupZl6fnz51GVe2ue58m2bbmuq06nM5URF4OjfF3XHZpjGAAAAFcLpjkzDEPr6+vhosQBy7LkOI7q9bra7bbK5TLXWVfIZDJyHGchppwIJD4oDuzs7Ew8v/De3t6Vo4wBAACS6uDgQJVK5U6jERqNhmzbVrPZlGmaKpfL9xqpO22e5+nhw4fyPE/dbndqH8sb/IWl1WrdOJ8zAAAALoLi4+Njra+vXzlN2ZMnT9RsNnV6ehoOZMBl6+vryufzCzXd7dwExQAAAIvsvlNEJG2KiUHlclme58kwjEsLyt1lXuJBhmGE8x2Xy+VrF6xzXVfNZnNhPhYIAABwVzdN/2UYhrrd7gwrmj+e5+n09FStVivuUqYq8XMUT9Nnn30WdwkAAABL5/j4WNLVC8LdtEhcMMLlunaDv+TYtn1lO9d1Zdv2pV+I7htSAwAAYDnt7e3p6dOncZcxdUsVFNu2HXcJAAAAc++mcHfU+vp6eLtarYa3HccZmi4sGLky2H/wWNd1w+8PLsBSqVTCMNlxHD18+FDlclnNZjOcUy+bzerJkyfXTnlBYAwAAIBJVatV5XK5hZy3eamCYlbGBgAAuNqLFy/C21cFwY7jhLeDEcKjgmut0WuuYrEY3i6Xy0qn01pbW9Pe3t7QlBnValXpdFoHBwdXPjabzcq2bWWz2aGVtzudTjjlhOd5qlarsm1buVxO1WpVlUrlyvmLgzo9z7vyOQ8u7HLdcwYAAMDiCq4tg2vFYAHpRZ23eSmC4n6/r29/+9u3Hv0CAACw6BzHUbFYHBrpu7e3p3K5HI7iLZfLQ4sKO46jXC6ner0uSarX68pms0MBcTqdDvvM5/Oq1WpD8wdXKpUw4K3VauH8xcVicWjl6Hw+r1KpJMMwwpG/nU5naHSwaZrqdrsqlUrhNkzTVD6fV7fbvXQhH9Q7eG2YzWZVLpfD52fbdvj8pIvAejC0BgAAwOILrovX1tbC691FXvMi5fu+H8eGX758qd3dXbmuq2KxqO9///uX2mxvb+vly5f32k7wC4Dv+0qlUvriiy/u1R8AAAAAAACAxddut2XbttbX11Wr1WRZVtwlRSq2oHh7ezv8CGMqlVKj0dDv/u7vDrUpFotTnRiaoBgAAAAAAAAALott6gnHcZRKpcL7V80f/O1vf1vSRcA7+DWpuzwGAAAAAAAAAJZNbCOKB0cLp1Ipdbtdff3rX7/Ubn19Xa9fv5bv+zIMQ+vr69euWD3K8zydnp6G008wohgAAAAAAAAALostKJYuVgo8Pj5WsVjUw4cPr2xTLpf1x3/8x+p0OnrnnXfuvK2gH4JiAAAAAAAAABgWa1A8iU8//VS7u7v62c9+du++1tfXw9WyAQAAAAAAAAAXYpujeFLvvvuu3nrrran0ZZrmVPoBAAAAAAAAgEWS+BHFkvT69euphMWffvqp3n333SlUBAAAAAAAAACLI/EjiiVNbURxKpWaSj8AAAAAAAAAsEjmIiielr29vbhLAAAAAAAAAIDEWaqg2HXduEsAAAAAAAAAgMRZ+KC43+/rs88+0+7urjzPi7scAAAAAAAAAEicN+LY6OvXr7W+vj7Tbfq+zxzFAAAAAAAAAHCFWEYUv/XWW3rnnXfk+/7MvgAAAAAAAAAAV4tt6onf+73fkySlUqnIR/oykhgAAAAAAAAArhfL1BOSZFmWpIspIUzTlGmaMgxj6tvxPE+u67KQHQAAAAAAAABcI+XHOC/D+vq6crmcjo6OIt9WvV7Xd77zHX3xxReRbwsAAAAAAAAA5klsU09IF6OKc7ncTLZVKBT01ltvzWRbAAAAAAAAADBPYg2KZxUSB7a3t2e6PQAAAAAAAACYB7FOPSFJr1+/ZqQvAAAAAAAAAMQo1hHFkmYSEr9+/VpPnjyJfDsAAAAAAAAAMI9iH1E8K9vb21pZWdFPfvKTuEvBiK9+9av65S9/qa985Sv6rd/6rbjLAQAAS+zv/u7v9MUXX+jNN9/UP/zDP8RdDu6I60sAAJAk83KNuTRB8be//W09ffpU5XJZ3//+9+MuBwO+8pWv6Pz8PO4yAAAAQisrK/riiy/iLgN3xPUlAABIoqRfY85dUPzZZ5/J8zydnp5O/BjHcXRwcKCzszOtra3p888/j7BC3Nav/uqv6p//+Z+1srKijY2NSLbR6/V0fn4e6TaoYb7qoIZk1ZGEGpJSBzUkq44k1JCUOpalhmAbv/Irv6J/+qd/imQbiB7Xl8tXBzUkq44k1JCUOqghWXUkoYak1EENs61jbq4x/Tnwox/9yP/t3/5tf2Vl5V5fqVTKX1lZifvpYMTm5qYvyd/c3JzrbVDDfNVBDcmqIwk1JKUOakhWHUmoISl1LEsNSXieuL9lOVaSUENS6qCGZNWRhBqSUgc1JKuOJNSQlDqoYbZ1JOW53uSNaGPo+/vwww/1/vvvS5L8ewx+TqVSSqVSymQy0yoNAAAAQIL1ej1tbW2NbbO/v6/9/f0ZVQQAABbN4eGhDg8Px7bp9XozquZ+Eh0Uf/rppyqXy0qlUleGxNd9/7p2pmnq6dOnUZQKAAAAIGHOz891cnIytk2/359RNQAAYBH1+/0brzfmRaKD4lqtJkl66623VCgUlE6nZZqmJOns7Ey7u7taW1vTs2fPrny853n66KOP9MMf/lCO4+idd96ZVekAAAAAYjbJXIOrq6szqgYAACyi1dVVbW5ujm0TzFGcdIkOitvtttLptH72s59d+fO9vT398Ic/VDqd1te//vUr23zrW9+SJL3//vv6y7/8y6hKBQAAAJAwGxsbevXqVdxlAACABTbJNFZbW1tzMep4Je4CxnFdNxxVfJX3339fvu+rWq2O7adcLuujjz7Sn/zJn0y7RAAAAAAAAACYe4kOiiVpe3v72p89fPhQOzs7qtVqY+cWM01T7777rkqlUmRzkFWrVeVyOa2trSmVSimdTsu2bbXb7Ui2dx3XdZXL5dRsNme2LQAAAAAAAADzLdFBcSaT0enp6dg25XJZvu/r/fffH9vu0aNH8n1fH3zwwTRLVLvd1tramsrlsiSp0Wio2+2qUqnIcRzlcjnlcjl5njfV7Y7yPE+2bSudTqvdbt+4327qK5VK3fg1OGc0AAAAAAAAgPmV6DmKTdNUvV7X97///WvbWJald999V7VaTcViUf/qX/2rK9sdHx9Lughyx/V3G+12OxxRWygUhqbJME1T+Xxe2WxW7XZb2WxWnU5HhmFMZdsBz/N0cHBw4/Qbt1Gv1yduGwTkuNn+/r76/X6sC6YkoYak1JGEGpIiCfsiCTUkpY4k1JAUSdgXSaghKXUkoQYAw5LyvkxCHdSQLEnZF0mogxqSJSn7Igl1UAOukvJ934+7iOs0m009fvxY1WpV3/rWt+S6riTpvffeu9Rud3dXqVRKzWZTv/M7vzP08w8//DAMNFOplL744ot71+Z5nh4+fCjP82Saprrd7pXtXNdVOp2WdBFqt1qte287UK1WVavVZJrmpSkuarWaCoXCnfpdW1ubaAT0tJ5PMKH35uZmZIuNzGIbwG1xXCKpODaRVFwzYFIcK1hmHJtIKo5NJBXXDV9K9IjifD6v1dVVlUollUql8PvZbFY/+clPhtrt7Ozo+fPnyufzymQy4dzG7XY7DJglTW2qBNu2wzB13KjaYGRxs9lUu91WvV6/c4A7yHEcWZYV7pd6va5isXjvfuv1ujzPU6lUunH+4XHzRwMAAAAAAACYH4kOiiXp6dOn4WjhYPBzp9PRT3/6U73zzjthu1qtpm984xuSLkJUx3EkSYMDplOplDKZzL1rcl13aATv7u7u2PaPHz8OF5crl8tTCYpHn8e0QttKpSLTNFWpVKbSHwAAAAAAAIDkS/RidtLFaOFnz54NBb6GYQyFxNLFyN2PPvpIozNpBAuvBY97+vTpvWsaDFEty7px3uF8Ph/e9jwvDI2naRpzHzebTbmuy7zDAAAAAAAAwJJJfFAsXQStZ2dnqtVqqlQqQ1NJDLIsS3/zN3+j9957T77vD31lMhkdHx9PZYLswcXeJh2hPDjlxdHR0b1riMLBwYEMw7hxhDQAAAAAAACAxZL4qScCb731lvb29m5sZ5qmWq2WXr9+rePj4/B7Dx8+nEodwZQWgUePHk30uEwmEwbcUYwovq/B6TrW1tZkmqYsy1IulxsaEQ0AAAAAAABg8cxNUHxbb731lnZ2doa+99lnn+nrX//6vfodnJtYmnxxvNF2juNMZb7kaRmdbsJ1XdXr9XD0dD6f15MnTxJV8138/B//UR988vHYNu9/870ZVQMAAIB5x/UlAABYFHMx9cS0FIvFe/fx4sWLofuTzg384MGDofvBaOckGF2c7yrNZlPZbHYq+xAAAAAAAABAsizsiOKrTCOcHZ0f+a4jirvd7r1rmRbTNFWr1eR5nrrdrtrt9rXzQNfrdR0fH6vT6cy4yvvZ39/X//TXf61f++qvx10KENrf31e/35/K3OnANHFsIqk4NpEkXF8iqThXIqk4NpFUHJtfmsug+LPPPpPneRO3d103DELv67oA9bamUcs0FQqFofue56ler+vg4OBSrY7jKJfLqdVqzbDC+9nf39c/3fCRQGDW9vf34y4BuBLHJpKKYxNJwvUlkopzJZKKYxNJxbH5pbkIij/77DNVKpWxI11v4vu+UqnUvWu5a8A7OkXF6enpvWuJkmEYKpVKKpVKajab2tvbG3ru7XZb1WpVpVJpatvs9Xra2tq6dz/7+/u8yQEAWDKHh4c6PDy8dz+9Xm8K1QAAAADzJ/FB8ZMnT1StViVdhL2LImkjisfJ5/OyLEs7OztyHCf8/sHBwVSD4vPzc52cnNy7n36/P4VqAADAPOn3+1O5jgAAAACWVaKD4h/96EeqVCqSpFQqpVQqFXtYbBjGVELeSRfBSwrDMNTpdJTNZsOw2PM8tdttWZY1lW2srKxoY2Pj3v0wpwwAAMtndXVVm5ub9+6n1+vp/Px8ChUBAAAA8yXRQfHBwYEkhQGxaZrKZDLhwnAPHjy4sY/PP/9cnufp2bNnev369b1rWl9fn0pQvL6+fu8+4vD06VNls9nwfqvVmlpQvLGxoVevXk2lLwAAsFymNfXU1tYWI5MBAACwlBIdFDuOE84r3Gq1tLOzc+e+SqWS3n777XvXdNeRwKPh8ryNKA5kMhlZlqV2uy1peov7AQAAAAAAAIjPStwFjBOEqaVS6V4hsSSZpqmHDx/eu6bt7e2h+5OOLh5dvC6dTt+7lrjkcrm4SwAAAAAAAAAwRYkOioMpJh49ejSV/mq12r37GJx2QZp8RG232x26P63pGuIQvC7S/E6hAQAAAAAAAOBLiQ6Kg1HEo6Nx79vffYyOKJ40KB4ceWwYxlDYOm8Ga5/XKTQAAAAAAAAAfCnRQfH3vvc9+b4vx3Gm0t8Pf/jDe/eRyWSGwtEXL15M9Ljj4+Pw9mjYPG8GnwvTUAAAAAAAAADzL9FB8VtvvaUPPvhAR0dH+vnPf37v/qYx9YQk7e7uhrcnDbEH25XL5anUEZfBaTTmeQoNAAAALLZer6etra2xX4eHh3GXCQAA5tjh4eGN1xu9Xi/uMifyRtwF3KRUKqnVasm2bf3lX/7lnft5+fLl1EYmF4tF1et1SVK73b6x/WAb0zTnPlxtNpuSLl4bAAAAIKnOz891cnIytk2/359RNQAAYBH1+/0brzfmReKDYklqtVra3t7W22+/rXK5PPECaqenp/I8T91uV8+ePZtaPZlMRpZlhQFws9lUPp+/tn2j0Qhv3zSauF6vq9vtqlgs3moe48E5kKPUbDbluq4Mw9CTJ09msk0AAADgLlZWVrSxsTG2zerq6oyqAQAAi2h1dVWbm5tj2/R6PZ2fn8+oorubi6D4448/lqQwQL0L3/eVSqWmVlOtVlM6nZYkHRwcXBsUe54Xjj62LEuFQuHaPnO5XBg+V6tVnZ2dTbxY3OiiepMGx+12W7Zty/M8WZalSqWiTCZz7Tb29vYkSc+fP2chOwAAACTaxsaGXr16FXcZAABgge3v72t/f39sm62trbkYdZzoOYol6Tvf+Y5yuZw+/fRTpVIp+b5/668omKYZjhR2HEfVavXKdjs7O5IkwzCGRhZfZXQai0lHQXued2mk8tHR0USPbTQaYajcbreVzWavDOODn62vr6vb7V4bJgMAAAAAAACYP4kOip8+faparRaGvXcNfaMKi/P5vFqtlgzDULlclm3bchxHnueFwarjOMpkMnr58uWNI3BHfz5u6gnP82TbtnK5nNbW1i6NKHYcR6lUSrlcLqzrKrZtX/pevV7X2tqabNtWsVhUNptVLpdToVBQp9O51ZQYAAAAAAAAAJIv0VNP1Go1SQpHEluWpVwuJ8Mwbj1P8Q9+8AN99tlnU6/RsiydnZ2pWq3q6OhIOzs78jxPhmFoe3tbjUZj7PzFgxqNhorFok5PT1UoFMYuejfJCOVJ6+92u6pUKmq32+H+khSG3E+ePJFlWUw1AQAAAAAAACyoRAfFwahYwzB0fHyshw8f3rmvvb09PXjwYIrVDSuVSiqVSvfqIwhtZ800zTCUBwAAAAAAALB8Ej31RDCC9cmTJ/cKiYO+3n333SlUBQAAAAAAAACLJdFBcTablTR+rt7bePr06VT6AQAAAAAAAIBFkuiguFgsyvf9Swu13RUjigEAAAAAAADgskQHxfl8Xu+++66Ojo6m0t+Pf/zjqfQDAAAAAAAAAIsk0UGxJDUaDXU6Hf3FX/zFvfs6ODiYQkUAAAAAAAAAsFjeiLuAm5imqR/84Af6wz/8Q/3O7/zOnft5/fq1HMeZYmWYtl6vp62trbFt9vf3tb+/P6OKAADAIjk8PNTh4eHYNr1eb0bVAAAAAMmS6KA4mCriN3/zN7W2tqa3335b+Xz+1v14nqdnz55NuzxM2fn5uU5OTsa26ff7M6oGAAAsmn6/f+O1BgAAALCsEh0Uf//739enn34a3vd9X9Vq9U59+b6vVCo1rdIQgZWVFW1sbIxts7q6OqNqAADAolldXdXm5ubYNr1eT+fn5zOqCAAAAEiORAfFu7u74XQRqVSKoHfBbWxs6NWrV3GXAQAAFtQkU1htbW0x6hgAAABLKdGL2RWLRUkXIbHv+/f6AgAAAAAAAABcLdEjit966y1lMhl9+umnqlQqymQyWl9fv3U/ruvq+9//vn76059Ov0gAAAAAAAAAmHOJDool6fHjx0qn0/rud7975z7effddfetb37pTyAwAAAAAAAAAiy7RU09IkmVZU5s6Ynt7eyr9AAAAAAAAAMAiSXxQ/O677+r/z97//TaS3nm+5yfkmhnvzJgKqQ4Gq5UAl4JV151JqgwcYM4AVSLLBvaqXaTSe9UXLpGZfbNYtYuU6g+oTCptLfamXaTKF311WiKzjLnYhbvIzFrMDnCATolZvh03Q2lAebgYTEmRrOlpzw8z9kJLtqgfFEUGGUHy/QIEk9LDJ76RjmQ9+dHDb+RyOU/m8moeAAAAAAAAAJgkgQ6KG42GHjx4oPv37+sXv/jFwPPdvXvXg6oAAAAAAAAAYLIEukdxIpHQ06dP5bquKpWKlpeX9eMf/9jvsgAAAAAAAABgogR6R3GlUul4bpqmP4UAAAAAAAAAwAQLdFBsWZYkyTAMJRIJvf/++z5XBAAAAAAAAACTJ9BBcSqVkuu6kqS9vb2B53vw4MHAcwAAAAAAAADApAl0j+JMJqNyuaxnz57p97//vb7//e8PNN/FVhYAAAAAJle9XtfS0lLXMRsbG9rY2BhRRQAAYNLs7OxoZ2en65h6vT6iagYT6KBYksrlspLJpBKJhJ49e6bvfe97fc1zdHQk27Y9rg4AAABAUDWbTb169arrmEajMaJqAADAJGo0GjeuN8ZF4INiSfrVr36lvb09RSIRbW5uKplMKhQK3fi61qLv4OBAmUxm2GUCAAAACJCZmRktLCx0HdPLvysAAACuEwqFtLi42HVMvV5Xs9kcUUX9C3RQ/Pbbb+vo6Kj93HVdpVIppVKpW8/luq4Mw/CyPAAAAAABtrCwoOPjY7/LAAAAE6yXNlZLS0tjset4LG5m1/oyDKPj+W2+AAAAAAAAAABXC3RQnE6nJUmGYbRD4n6wkxgAAAAAAAAArhfo1hOzs7P68MMP9eTJE0lSLBaTaZq3nse2bVWrVY+rAwAAAAAAAIDJEOigWDrbVfzFF1/o8PBQd+7c6XueQqGgBw8eeFcYAAAAAAAAAEyIwAfFsVhMs7OzA4XE0lm/4/v373tTFIaiXq9raWmp65heGoQDAABcZWdnRzs7O13H1Ov1EVUDAAAABEvgg2JJ2traUqPRUCgUGmieVCrlUUUYhmazeeMdIBuNxoiqAQAAk6bRaIzF3aYBAAAAP4xFUPzxxx97Ms9nn33myTwYjpmZGS0sLHQdM+gvCwAAwPQKhUJaXFzsOqZer6vZbI6oIgAAACA4xiIovqjRaKhSqahcLuvk5ES2bWt+fl6WZSkcDiuRSOitt97yu0zc0sLCgo6Pj/0uAwAATKheWlgtLS2x6xgAAABTaayC4pcvXyqbzapUKnV833VdGYbRfp7NZmVZljY3N/XTn/501GUCAAAAAAAAwFiZ8buAXu3u7iocDqtUKsl13faXpI6QWDoLjmu1mlKplH7wgx/o97//vR8lAwAAAAAAAMBYGIug+PHjx7p//35HMNwKh8+HxufD49bPDg4OFA6H9dvf/taX2gEAAAAAAAAg6AIfFD958kTZbFbSWUDcCoPv3r2rVCqlXC6nfD6vcrmsw8NDFYtF5fN5ZTIZWZYlSWo2m1pdXdXLly99PBMAAACgd9vb24rH45qbm5NhGAqHw0omk6pUKiOtw7ZtxePxS+3fbiso5wMAAICrBb5HcTabbQfEpmkql8tpbW1Ns7OzV46/e/du+/GjR4/04sULffrpp3ry5Inu37+v3/zmN6MqHQAAALi1SqWiZDIpx3EUi8VULBZlWZaq1aqy2azi8Xj7+6ZpDq0Ox3G0vr7eDoiTyWRf8wTlfAAAANBdoHcUP3nyRLZty3VdpdNpnZycaH19/dqQ+Cp3795VsVjUo0ePVC6X9dVXXw2xYgAAAKB/lUpF8XhcjuMolUqpXC4rFovJsiwlEgnVajVFIhFVKhVFo1E5juN5DY7jKJvNam5ubuBdxEE4HwAAAPQm0EHx3t6eDMPQ9va2fvnLXw40VyaT0erqqvb39z2qDgAAAPCO4zjtXbuWZSmfz185rlgsSjprCdHvLt/rbG9vKxqNqlqtDjxXEM4HAAAAvQt0UFytVhWJRPSzn/3Mk/nS6TQ90AAAABBIrfYMktr36LhKazeudLZjt1AoeHL8arWqWCymWq2mcrl8bbDbK7/PBwAAALcT6KDYtm2l02nP5jNNU7ZtezYfAAAA4AXbtjs2NKytrXUdf+/evfbjbiHsbUQiEUUikfbzlZWVvucKwvkAAADgdgIdFEtnOwy8QkgMAACAIMrlcu3HsVjsxpu6tXbgSmctHgbtJXyVQW4sF8TzAQAAQHeBDooty/I03M3n854GzwAAAIAXzrdbOL+rt5vz69q9vT3PaxrEpJ0PAADANAh0UByJRNo3txjU5uZmu+cxAAAAEBQXbxz37rvv9vS68+vaIO3AnbTzAQAAmBaBDorX1tZULpf1ySef9D1Ho9HQvXv3tL29LcMwPO15DAAAAAzq4s2We/0E3MVxFwNav0za+QAAAEyLQAfFiURCy8vLyuVy+vM//3O9fPmy59c+e/ZM9+7d09zcnEqlkgzDUCQS0fvvvz+8ggEAAIBbev78ecfzXnsDv/nmmx3PDw4OvCppIJN2PgAAANPiDb8LuEk+n9cHH3ygfD6vfD6vWCymSCSicDjc3nXgOI5OTk50eHiog4ODjt0HrutKkgzD0O7uri/nAAAAAFzn4j05+t2BW6vVPKtpEJN2PgAAANMi8EFxLBbTZ599pvv378swDFUqlUsfZzuvFQxLZ+GwYRhyXVf7+/u6c+fOCCoGAAAAeufVzZsdx/FknkEF6Xzq9bqWlpYGnmdjY0MbGxsDzwMAAMbLzs6OdnZ2Bp6nXq97UM3wBT4olqRUKqX5+XmlUik5jiPDMCR1hsItrZ+1fm6app4+faq7d++OrF4AAACgV/0GohdbOpycnAxejAeCdD7NZlOvXr0aeJ5GozHwHAAAYPw0Gg1P1hLjYiyCYumsX3E8Htenn36qx48fXzuuFR6bpqmtrS19/PHHoyoRAAAA8E1QdhR7xYvzmZmZ0cLCwsDzhEKhgecAAADjJxQKaXFxceB56vW6ms2mBxUN19gExZI0OzurXC6nXC6np0+fqlqtqlartXcbzM/PKxwOKxaLsYMYAAAAY8E0TU9C0V5vGjdsQTqfhYUFHR8fDzwPAACYTl61n1paWhqLncljFRSft7q6qtXVVb/LgId66SFHfzgAANCvXnrM+dE/bn5+3pNgdX5+fvBiPDBp5wMAADAtxjYo7scXX3yhH//4x36XgWv00kOO/nAAAKBfQe0x1+/O2YthbJB2FPcjqOcDAAAwLaYqKM5mswTFAdZLDzn6wwEAgH710mPOj/5xKysrqlar7eeO4/QUkl682Vs4HPa6tL5M2vkAAABMi6kJip88eSLbtv0uA13QQw4AAAxTLy2s/OgfF41GO57btq1IJHLj62q1WsfzWCzmaV39mrTzAQAAmBZjExR//fXXqlQqqtVqtwp8T05O5DgOITEAAAACaWVlpeN5r8Hq+VYNpmnKsiyvS+vLpJ0PAADAtAh8UPzy5Uul02lVKpW+Xu+6bvuxYRhelQUAAAB4IhKJyDTNdlD6/PlzJRKJG193cHDQfnwxnPXTpJ0PAADAtJjxu4CbxGIxVSqVjsD3NgzDICAGAABAoK2trbUfn+/v2835cdls1vOaBjFp5wMAADANAh0U379/v90ywjAMua7b9xcAAAAQVOl0uv24l0/SnR9jWVbg+vlO2vkAAABMg0AHxec/fra8vKxisajT01M1m81bfR0eHurDDz/08UwAAACA60UikY5wtFQqdR1fLBbbj2/afVsoFJTNZm99z47zPYNva5jnAwAAgOEIdFBcrVZlGIZM01S1WtWHH36o2dnZW89z9+5dFYvFvl4LAAAAjEI+n28/fvjw4bXjHMdRoVCQdNamLZVKXTs2Ho8rnU5re3tb4XD4VuHvxWD5tsHxMM4HAAAAwxPooNg0TUlnPc5CodDA87HoBAAAQFBZltXeWVutVrW9vX3luNXVVUlna+XzO3GvcrHtw/7+fk+1OI5zaWfv3t5eT69tGcb5AAAAYHgCHRQnk0lJUjgc9mS+R48eeTIPAAAAMAyJRELlclmmaSqbzSqZTKparcpxHFUqFUWjUVWrVUUiER0dHbU3Vlzn4s8ty7p2rOM4SiaTisfjmpubu7SjuPVpv3g83q5r1OcDAACA4XnD7wK62dzc1O7ubkev4kE0Gg1PdiYDAAAAwxKLxXR6eqrt7W3t7e1pdXVVjuPINE2trKyoWCwqkUj0NFexWFQ6ndbJyYlSqVTXm8QNa0evl+cDAACA4Ql0ULy8vKzPPvtMDx480NbWlv7kT/5koPlWV1f1/Plzj6oDAAAAhieTySiTyQw0RywWU61W86iiwXhxPgAAABieQLeekM76Cn/00UdKJBL69ttvB5qrl4/HAQAAAAAAAMC0CfSO4kajIemsBcXh4aHef/995XI5zc/P9zzHycmJHMfpuOsyAAAAAAAAAOAfBToofuutt/T69euO78Xj8b7mcl1XhmF4URYAAAAAAAAATJRAt55YX1+X67rtL0kdz2/zBQAAAAAAAAC4WqCD4p/85CeS1N4JTOALAAAAAAAAAN4LdOuJu3fvyrIsHR0dKRaLKRKJ6M0337zVHN98840cx1GhUBhSlQAAAAAAAAAw3gIdFEtSIpHQixcv9Dd/8zcDzZPJZPTOO+94VBUAAAAAAAAATI5At56QpHv37ml2dnbgeSzL0t27dz2oCAAAAAAAAAAmS+B3FN+9e1dbW1uezFUsFj2ZB8NRr9e1tLTUdczGxoY2NjZGVBEAAJgkOzs72tnZ6TqmXq+PqBoAAAAgWAIfFEvybCfw8vKyJ/NgOJrNpl69etV1TKPRGFE1AABg0jQajRvXGgAAAMC08i0o/vrrr3Xnzh2/Dn9Jo9HQycmJ3nrrLb9LmVozMzNaWFjoOiYUCo2oGgAAMGlCoZAWFxe7jqnX62o2myOqCMPGJ9YAAMCwTdKn1nwLij/99FO9/fbb+vTTT/0qoUMymVQ8HtfPfvYzv0uZWgsLCzo+Pva7DAAAMKF6CQSXlpbYdTxB+MQaAAAYtkn61JpvQXGhUJBlWQqHw/rpT3/qVxmSpAcPHujk5ISQGAAAAJggfGINAAAM2yR9as23oNg0Te3v7+uDDz6QJN/C4gcPHmh/f1+Hh4e+HB8AAADAcPCJNQAAMGyT9Km1GT8PHovF9OjRI62vr+uTTz4Z6bEbjYbu3bunQqGgp0+f0psYAAAAAAAAwNTyNSiWpEwmo0ePHunRo0f6wQ9+oK+++mrox/z888+1vLysUqmkg4ODQN1UDwAAAAAAAABGzfegWDoLiz/77DMdHBwoFovpBz/4gX796197eoxnz55pa2tLb775ptLptObm5vR3f/d3unv3rqfHAQAAAAAAAIBx41uP4otSqZTm5+e1vr6ug4MDJRIJSVIkElEsFtO7774ry7JkWVbXG040Gg2dnJzItm2Vy2VVKhVVq9X2z13XVSKR0P7+/tDPCQAAAAAAAADGQWCCYklKJBKKx+NKJBJ6+vSpJKlarXYEvReZpinHcbrO67pu+3GhUNBHH33kSb3nbW9vq1wu6+DgQI7jyLIsRSIRpdNpxWIxz493Hdu2lU6nlU6n22F7P4JyPgAAAAAAAACGLxCtJ86bnZ1VuVzW/v6+IpGIXNdtB72tx+e/Tk9Pr/z++S/prL3F6emp5yFxpVLR3NycstmsJKlYLKpWqymXy6larSoejysej98YZg/KcRwlk0mFw2FVKhWdnJz0NU9QzgcAAAAAAADA6AQuKG5JJBI6ODhQuVzWhx9+2LEruMUwjI6viyzLagfEjx490uzsrKc1ViqVdmiaSqVULpcVi8VkWZYSiYRqtZoikYgqlYqi0ehQwlXHcZTNZjU3N6dSqTTQXEE4HwAAAAAAAACjF6jWE1dZXV3V6uqqJOnFixeqVCp6/vy5HMfRyclJO6w0TVOWZWl+fl7xeFyxWMzzYPi81g5e6SyQzufzV44rFosKh8OybVvJZFLlctmzGra3t5XP52VZ1sBzBeF8AAAAAAAAAPgj8EHxeXfv3tXdu3f9LkOSlEwm2yF1q03DVVq7cUulkiqVigqFglKp1MDHr1arisViymQyks56L6fT6b7n8/t8AAAAAAAAAPgnsK0ngsy2bVUqlfbztbW1ruPv3bvXftwthL2NSCSiSCTSfr6ystL3XEE4HwAAAAAAAAD+ISjuQy6Xaz+OxWIyTbPr+EQi0X7sOM7AvYSvclMN3QTxfAAAAAAAAACMDkFxHwqFQvvx+V293ZzvI7y3t+d5TYOYtPMBAAAAAAAAcDsExbdUrVY7nr/77rs9ve58ABukHbiTdj4AAAAAAAAAbo+g+JbO9/KVOnfWdnNx3MWA1i+Tdj4AAAAAAAAAbo+g+JaeP3/e8bzX3sBvvvlmx/ODgwOvShrIpJ0PAAAAAAAAgNsjKL4l27Y7nve7A7dWq3lW0yAm7XwAAAAAAAAA3N4bfhcwbi4Gq/1yHMeTeQYVpPOp1+taWloaeJ6NjQ1tbGwMPA8AABgfOzs72tnZGXieer3uQTUAAADA+CEovqV+A9GLLR1OTk4GL8YDQTqfZrOpV69eDTxPo9EYeA4AADBeGo2GJ+sIAAAAYFoRFPskKDuKveLF+czMzGhhYWHgeUKh0MBzAACA8RIKhbS4uDjwPPV6Xc1m04OKAAAAgPFCUHxLpml6Eor2etO4YQvS+SwsLOj4+HjgeQAAwPTxqvXU0tISO5MBAAAwlbiZ3S3Nz88Hap5BTdr5AAAAAAAAALg9guJb6nfn7MVdu0HaUdyPoJ4PAAAAAAAAgNubyKD45cuX+uKLL/Ts2TPPb2y2srLS8bzXtg0Xb/YWDoe9Kmkgk3Y+AAAAAAAAAG5vonoUv3z5UslkUtVqteP70WhUxWJR3//+9wc+RjQa7Xhu27YikciNr6vVah3PY7HYwLV4YdLOBwAAAGip1+taWlrqOsar/tYAAGA67ezsaGdnp+uYer0+omoGE/ig+IMPPtDp6Wl7p+vJyYlisZj29vY6xr148UKxWEyO48h13Y6fHRwcKBwOq1wu67333huonos7cHsNVs/v1DVNU5ZlDVSHVybtfAAAAICWZrN5480Jvf4EIgAAmC6NRmNiboYc+KDYNE1VKhWZpqmtrS0lEgktLy93jHn9+rVWV1flOI4Mw5BhGHJdV6ZpamVlRbZty7ZtJZNJ/af/9J8GqicSicg0zXZQ+vz5cyUSiRtfd3Bw0H58MZz106SdDwAAANAyMzOjhYWFrmNCodCIqgEAAJMoFAppcXGx65h6va5mszmiivoX+KC4Wq0qm83q4cOH145ZX19vh8St3cS5XE4ff/xxe0ylUtHa2po++eQTffrppwPVtLa2pkKh0K6vF+fHZbPZgY7vtUk7HwAAAECSFhYWdHx87HcZAABggvXSxmppaWksdh0H+mZ2jx8/ViQS6RoSP3nyRKVSqR0SG4ZxKSSWznroPnr0SIeHhwPXlU6n248rlcqN48+PsSwrcP18J+18AAAAAAAAANxOoIPiQqGgTz75pOuY9fV1GYYhSTIMQ5FI5FJI3HLv3r2Olgn9ikQiHeFoqVTqOr5YLLYf37T7tlAoKJvNyrbtW9V0vmfwbQ3zfAAAAAAAAAAEX6CD4lqtpjt37lz78wcPHrQD0lbLid3d3WvHz87OXrrRXb/y+Xz7cbcdz47jtNs6xGIxpVKpa8fG43Gl02ltb28rHA7fKvy9GCzfNjgexvkAAAAAAAAAGA+BDooty9LLly+v/NmLFy+Uz+c7Wk6kUqmuwfKLFy88u/GaZVntnbXValXb29tXjltdXZV0dlO+8ztxr3Kx7cP+/n5PtTiOc2ln797eXk+vbRnG+QAAAAAAAAAYD4EPilu7V897/fq1kslk+7lhGLIsS7/85S+7zvf06VNPWyUkEgmVy2WZpqlsNqtkMqlqtSrHcVSpVBSNRlWtVhWJRHR0dCTTNLvOd/HnlmVdO9ZxHCWTScXjcc3NzV3aUVytVmUYhuLxeLuuUZ8PAAAAAAAAgPHwht8FdJNKpbS2tiZJ2tzclHS267bVw/f8buKbdre+ePFCDx8+1DfffONpjbFYTKenp9re3tbe3p5WV1flOI5M09TKyoqKxaISiURPcxWLRaXTaZ2cnCiVSnW9SdywdvR6eT4AAAAAAAAAxkOgg+JEIqHV1VXlcjnlcrn291vhcKvf8Geffda15cTnn38+9JuuZTIZZTKZgeaIxWKq1WoeVTQYL84HAAAAAAAAwHgIdOsJSSqVSvrxj38s13XbX9JZWNzaVbu+vn7pdV9//bW2trb0zjvvKJ1O6/T0VI7j6Ne//vWoTwEAAAAAAAAAAi3QO4olaXZ2VsViUU+fPlW5XFa1WpVpmnr33XeVSqU0Ozt76TW7u7vttgzLy8taXl5u/+xv//Zv9ad/+qcjqx8AAADAdHv01bOexm2+9/6QKwEAALhe4IPiltXVVa2urvY0dn19/cpdxgAAAAAAAACAywLfesJLX3/9td8lAAAAAAAAAEDgBD4ofvnypWdzscsYAAAAAAAAAC4LfOuJdDqtv/mbvxl4nqOjI1WrVQ8qwrDU63UtLS11HbOxsaGNjY0RVQQAACbJzs6OdnZ2uo6p1+sjqgYAAAAIlsAHxbZtezJPNpv1ZB4MT7PZ1KtXr7qOaTQaI6oGAABMmkajceNaAwAAAJhWYxEUf/vtt/re977X9xw///nPVSqVZBiGh5XBazMzM1pYWOg6JhQKjagaAAAwaUKhkBYXF7uOqdfrajabI6oIAAAACI7AB8Wu6yqbzeov//Iv+3r91taWtre3Pa4Kw7CwsKDj42O/ywAAABOqlxZWS0tL7DoGAADAVAr8zewkKZ/P66uvvrr16+7du6ft7W25rjuEqgAAAAAAAABgMoxFUOy6rpLJpL799tuexr98+VLvvPOOSqWSXNel5QQAAAAAAAAAdDEWQXEikdDJyYlWV1dvHPvkyROFw+H2TfAMw5DrukokEsMuEwAAAAAAAADGUuCD4lgspv39fR0cHOjg4EA/+clPrh27tbWltbW1dqsJ13U1OzurarWq/f19ffjhh6MqGwAAAAAAAADGRuBvZheJRNr/e3BwoJWVFVmWpU8//bQ9ptFoaHV1VdVqtd1qwnVdxWIxFYtFzc7OSjoLkgEAAAAAAAAAnQK/o/jRo0ftx5FIRPv7+3r06JF+9atfSZJevHih5eXlSyFxLpfTl19+2Q6JJenu3bsjrx8AAAAAAAAAgi7wQfFFiURCn332mVKplB48eKCVlRWdnp62fz47O6vDw0N9/PHHl17785//fJSlAgAAAAAAAMBYCHzriaukUinVajU9fvxYkq5tNXFRuVzWz372s1GWCgAAAMAn9XpdS0tLXcdsbGxoY2NjRBUBAIBJs7Ozo52dna5j6vX6iKoZzFgGxZKUy+Vk27aePHki13W1vb19Ywh8cHAwouowzh599ayncZvvvT/kSgAAADCIZrOpV69edR3TaDRGVA0AAJhEjUbjxvXGuPAlKH79+rWePn068Dw/+clP9PTpU6XTaVmWpS+++OLKcScnJ8rn83IcZ+BjAgAAABgPMzMzWlhY6DomFAqNqBoAADCJQqGQFhcXu46p1+tqNpsjqqh/vu0oTiQSMgzDk7m2t7dvHNO60R0AAACA6bCwsKDj42O/ywAAABOslzZWS0tLY7Hr2Jeb2c3OzioSich13YG/JPU0BgAAAAAAAABwNV+CYkmKxWKSNPAu316CYMJiAAAAAAAAALieb60n7t27124ZkclkFA6HNT8/7/lxTk5O5DiOPvvsM718+dLz+QEAAAAAAABg3PkWFN+9e1emaWp7e1sfffTR0I/34Ycf6p133hn6cQAAAAAAAABg3PjWekI6az9hWdZIjmVZlpaXl0dyLAAAAAAAAAAYJ74Gxffu3RtKu4nrJBKJkR0LAAAAAAAAAMaFb60npLN2EKP06NGjkR4PAAAAAAAAAMaBr0ExcF69XtfS0lLXMRsbG9rY2BhRRQAAYJLs7OxoZ2en65h6vT6iagAAAIBgGZug+NmzZyqXywqHwzfe/O7Jkyfa3NzU9va2/vRP/3REFWJQzWZTr1696jqm0WiMqBoAADBpGo3GjWsNAAAAYFqNRVB87949lUql9vPXr1/rL/7iL64d/+GHH2p5eVmxWEwPHz5UsVjU97///VGUigHMzMxoYWGh65hQKDSiagAAwKQJhUJaXFzsOqZer6vZbI6oIgAAACA4Ah8UP3jwQMVisf3cMAx9+eWXXYNiSYpEIrJtW8vLy4pGo3r69Kn+5E/+ZNjlYgALCws6Pj72uwwAADChemlhtbS0xK5jAAAATKUZvwvo5vXr18rn8zIMQ4ZhSJJc11Uymezp9aZp6vDwUCcnJ4pGo/rtb387zHIBAAAAAAAAYCwFOih++PChpLNweHZ2VqlUSrVa7cYexedZlqX19XU1m82eA2YAAAAAAAAAmCaBDoorlYrm5uZULpd1cnKizz77TMvLy7ee54MPPpAk1Wo1/epXv/K6TAAAAAAAAAAYa4EOim3b1tbWllZXVweax7Ks9uP9/f1BywIAAAAAAACAiRLooNhxnI6Qt18nJyeSzlpYHBwcDDwfAAAAAAAAAEySQAfFlmW1Q95BlMvl9mPHcQaeDwAAAAAAAAAmSaCD4kgkomKxOPA8hUJBhmFIkkzTHHg+AAAAAAAAAJgkgQ6KU6mUKpWKvvrqq77nuHfvXnsXsWEYWllZ8ag6AAAAAAAAAJgMgQ6KY7GY7ty5o1gsduuwuNFo6N69eyoWizIMQ67rSpKSyeQwSgUAAAAAAACAsRXooFiSdnd35bquYrGYfvSjH90YGDcaDT148EBzc3MqlUrt7xuGIcuy9NFHHw27ZAAAAAAAAAAYK2/4XcBNIpGI9vf3tba2pnK5rHK5LNM0ZVlW+0uSbNtWtVqVbduS1N5B3NpNbBiGJ/2OAQAAAAAAAGDSBD4olqREIqGDgwOtrq7q9evXchxH1WpV1Wq1Y1wrHJbUvnmd67oyTVNPnz7VnTt3Rlk2AAAAAAAAAIyFsQiKpbOdxS9fvtSnn36qx48fX/q5YRgd4XArNE6lUsrlcpqdnR1pvQAAAAD8Va/XtbS01HXMxsaGNjY2RlQRAACYNDs7O9rZ2ek6pl6vj6iawYxNUCxJs7OzyuVyyuVyevr0qcrlsqrVqk5OTmTbtubn52WaplZWVhSPxxWLxQiIAQAAgCnVbDb16tWrrmMajcaIqgEAAJOo0WjcuN4YF2MVFJ+3urqq1dVVv8sAAAAAEFAzMzNaWFjoOiYUCo2oGgAAMIlCoZAWFxe7jqnX62o2myOqqH9jGxTfxuvXr/Xo0SM9fPjQ71IAAAAAjMjCwoKOj4/9LgMAAEywXtpYLS0tjcWu4xm/CxiF2dlZlctl/eAHP/C7FAAAAAAAAAAInKkIiiVpZWVFh4eH+uSTT/wuBQAAAAAAAAACZexaT7x8+VKO4+jk5KTn11SrVRWLRbmuq3w+r08//XSIFaJf3JUaAAAM0yTdkRoAAADw2lgExV988YXy+bwqlcrAczmOM3hBGAruSg0AAIZpku5IDQAAAHgt8EHx48ePtbm5KUlyXbfveQzDkGEYikQiXpUGj3FXagAAMEyTdEdqAAAAwGuBDopfvHihbDYrwzCuDImv+/514yzL0u7u7jBKhQe4KzUAABimSbojNQAAAOC1QAfF+XxekjQ7O6tUKqVwOCzLsiRJp6enWltb09zcnPb39698veM4+vLLL/X555+rWq3qzp07oyodAAAAAAAAAMZGoIPiSqWicDis3/3ud1f+fH19XZ9//rnC4bDeeuutK8d8+OGHkqTNzU395je/GVapAAAAAAAAADC2ZvwuoBvbttu7iq+yubkp13W1vb3ddZ5sNqsvv/xSv/jFL7wuEQAAAAAAAADGXqCDYklaWVm59mfLy8taXV1VPp9Xo9G4dpxlWbp7964ymUzXcQAAAAAAAAAwjQIdFEciEZ2cnHQdk81m5bquNjc3u45799135bquHj165GWJAAAAAAAAADD2Ah0UW5alQqHQdUwsFtPdu3eVz+f129/+9tpxBwcHkqRisehpjQAAAMAwbG9vKx6Pa25uToZhKBwOK5lMqlKpTOyxbdtWPB4f6jEAAABwtUAHxWtra8rlcvrFL36hly9f6tmzZ3r27NmlcVtbW3JdV5FIRL/+9a8v/fzx48eqVquSzhafAAAAQFBVKhXNzc0pm81KOtvoUKvVlMvlVK1WFY/HFY/H5TjO2BzbcRwZhnHjVzgclmVZnp8XAAAAbvaG3wV0k0gkFAqFlMlklMlk2t+PRqP627/9245xq6urevr0qRKJhCKRSLu3caVS6QiHWXgCAAAgqCqVSntHbSqV6rixs2VZSiQSikajqlQqikajOjw8lGmagT/2TZ8SPK8VUgMAAGC0Ar2jWJJ2d3fluq4kyXVdua6rw8NDff311x3jzi9kq9WqCoWCCoWCarVa+/WGYSgSiYysdgAAAKBXjuMomUxKOgtmz69vz2u1UrNtuz0+6Md++PBhT+NisRgbOwAAAHwS+KA4kUhof3+/HfZKkmmaunPnTsc4y7L05ZdfdoyT1P4YW+t1u7u7Q68ZAAAAuK1kMtlu6dBtV21rd690tgv4Nrt1/Th2oVCQ4zjKZDIql8tdv7ifCAAAgH8M92KyGlCvX7/W/v6+HMdRKpXS7OzsleNs21Y6ndbTp087vh+JRFQsFrW8vDyKcnELS0tLevXqlRYXF3V8fDy04zz66nJ/60Fsvve+p/MBAAD/jWpdcpFt2wqHw+3np6enXds6lEql9o5e0zR1enoa2GO35q7Van3XeFusLwEAQJD4tca8rUD3KD5vdnZW6+vrN46zLEvlclmvX7/WwcFB+3sExAAAAAiqXC7XfhyLxW7s/dva1SudtY0olUod3wvKsUulkmzbvraVBQAAAIIj8K0n+jU7O6vV1VWtrq4SEgMAACDQzrdw6PWeGud7+e7t7QXy2A8fPpRpmlpbW+u7PgAAAIxGoIPiRqOhBw8e6Ic//KF+8Ytf+F0OAAAA4Llqtdrx/N133+3pdedD3VKpFLhjV6tVVatVOY6jubk5hcNhpdPpvmsFAADAcAU6KE4kEioUCiqXy8pkMvriiy/8LgkAAADwVKVS6Xh+frduNxfHXQx9/T72xZvi2batQqGgZDIpwzCUTCb7qhkAAADDEeig+OLC9aZ+aQAAAMC4ef78ecfzXte8b775Zsfz1v05gnBs27YvreUvKpVKikajSqfTPR0TAAAAwxXom9lZlqWjoyMZhqFEIqH33+cuwAAAAJgstm13PO93V2+tVgvMsS3LUj6fl+M4qtVqqlQql47VUigUdHBwoMPDw1tUDgAAAK8FOihOpVLa3NyUYRgD3aCj5cGDB/rlL3/pQWUAAACAN64LUG/LcZxAHTuVSl0aUygU9PDhw0vjq9Wq4vG4yuWyJ/W01Ot1LS0tDTzPxsaGNjY2PKgIAACMk52dHe3s7Aw8T71e96Ca4Qt0UJzJZFQul/Xs2TP9/ve/1/e///2B5rvp428AAADAqPUT8EqX20ScnJwE+timaSqTySiTyahUKml9fb3j+JVKRdvb28pkMn3VdJVms6lXr14NPE+j0fCgGgAAMG4ajYYna4lxEeigWJLK5bKSyaQSiYSePXum733ve33Nc3R05NmOCQxHLzs+2M0BAAD61cuOkHHZ7XGVfkNfP46dSCQUi8W0urracUO7hw8fehoUz8zMaGFhYeB5QqGQB9UAAIBxEwqFtLi4OPA89XpdzWbTg4qGK/BBsST96le/0t7eniKRiDY3N5VMJntarLV+839wcODpghPD0cuOD3ZzAACAfgV1R4hpmp6EvP3c+NnvYx8eHioajbbDYsdxVKlUFIvFBq5JkhYWFnR8fOzJXAAAYPp4tWFxaWkpkOvQiwIdFL/99ts6OjpqP3ddV6lU6lK/s164rivDMLwsDx7rZccHuzkAAEC/etkR4sduj/n5eU/C2vn5+bE6dsvu7q6i0Wj7eblc9iwoBgAAQO8CHRS3bmbXYhiGXNf1sSIMEzs+AADAMPWyI8SP3R797MaVLrd76HdXr1/HbolEIorFYu37idAuDgAAwB8zfhfQTTqdlnQWEA8SErOTGAAAAEG1srLS8bzXHb4XbyAXDofH6tjnxePxgV4PAACAwQV6R/Hs7Kw+/PBDPXnyRJIUi8X62q1g23bHTTIAAACAoDjfdkE6W7tGIpEbX1er1Tqe99Ouwc9jn2dZVvvxIG0sAAAA0L9AB8XS2a7iL774QoeHh7pz507f8xQKBT148MC7wgAAAAAPXNzV22tYe373r2maHWHrOBz7vPOvH6SNBQAAAPoXmNYTjUZDjUZDL1++1MuXL9VoNCSd7U6YnZ0dKCSWzvod098YAAAAQROJRDrC0efPn/f0uoODg/bji4HvOBz7uvloQwEAAOAPX4Pi73znO+2vubk5zc3NKRwOKxwOa39/vz1ua2urHRwPIpVKDTwHAAAA4LW1tbX2415bpp0fl81mx/LYLedbWQzaxgIAAAD98TUodl2342t1dVX7+/s6OTnRRx991B738ccfKxQKDXy8zz77bOA5AAAAAK+1buIsSZVK5cbx58dYljVQuOrnsVtKpZIkKZPJDDwXAAAA+uN76wnDMGQYhiqVir788kt9+OGHmp2d9busW9ve3lY8Htfc3JwMw1A4HFYymexpsT2ux7Ztm48GAgAAeCASiXQErq3g9DrFYrH9+KYdvYVCQdlsVrZtj/zYvSiVSrJtW6Zpamtra+D5AAAA0B/fg2JJyuVyev/99/0uoy+VSkVzc3PtRXKxWFStVlMul1O1WlU8Hlc8Hu+44UfQj+04TjvA7/YVDocHvnEJAAAAzuTz+fbjhw8fXjvOcRwVCgVJZ20aurVXi8fjSqfT2t7eVjgcvnZd6OWxW2tUwzAUj8e7trOwbVvr6+uSpKdPn3IjOwAAAB8FIihOJBJ+l9CXSqXSDmJTqZTK5bJisZgsy1IikVCtVlMkElGlUlE0GvU0LB7msVuL/154sYsEAAAAZ20cWrt1q9Wqtre3rxy3uroqSTJNs2N371UufsLs/H1AhnXsYrHYXnu21qLn21ucry0ajWp+fr69dgUAAIB/AhEUv/XWW36XcGuO4yiZTEo6W1if34VxXmsBbdt2e3zQj91tF8l5rWAaAAAA3kgkEiqXyzJNU9lsVslkUtVqVY7jtIPVarWqSCSio6OjG3fgXvx5t7WbV8e+at1ZKBQ0NzenZDKpdDqtaDSqeDyuVCqlw8ND1pQAAAAB8IbfBYzy42XvvPOOfve733kyVzKZbO+U6LartrXDt1QqqVKpqFAodP14oN/HLhQKchxHmUzmxv7DKysrt64dAAAA3cViMZ2enmp7e1t7e3taXV2V4zgyTVMrKysqFos9fyKvWCwqnU7r5OREqVTqxhvPeXHsWCzWbodWqVR0cnLSXru2guatrS3FYjFaTVzw6KtnPY3bfG882/YBAIBgM1zXdf06+MzMjMLhsGfhbS/HazabA89j27bC4XD7+enpaddFbqlUau+sME1Tp6engT12a+5ardZ3jbe1tLSkV69eaXFxUcfHx0M7Tq8L716xQAcAYPKMal2C4RrX9WWvWIcCADBexmWNGYjWE6Pw4sULGYbhyVy5XK79uJedEOd3XTiOc+OdpP06duuO0/QdBgAAAAAAAKbLVATFjUbD0/Dz/M3eer3pxvm+a3t7e4E89sOHD2WaptbW1vquDwAAAAAAAMD48b1HsW3b+uEPfziUuVv90Gzbluu6nuworlarHc/ffffdnl4XiURk27Yk9b2jeJjHrlar7fnn5uZkWZZisZji8XjPPfAAAAAAAAAAjCffg2JJqlQqQ5l3GO2XL9ba6x2aL45r3cgjKMe+uOPatm0VCoX2DuZEIqGtra1b1wwAAAAAAAAg+Ca69YRhGO0vrzx//rzjea93an7zzTc7nh8cHATm2LZt3xjWl0olRaNRpdPpno4JAAAAAAAAYHwEYkfxMHb+tngZEktqt3Bo6XdXb61WC8yxLctSPp+X4ziq1WqqVCqXjtVSKBR0cHCgw8PDW1QOAAAAAAAAIMgCERQPs51Bq0exV7yay3GcQB07lUpdGlMoFPTw4cNL46vVquLxuMrlsif1tNTrdS0tLQ08z8bGhjY2NjyoCAAAjIudnR3t7OwMPE+9XvegGgAAAGD8+B4UW5bVVxuG27BtW8lkUl9//fXAc/UT8EqX20ScnJwE+timaSqTySiTyahUKml9fb3j+JVKRdvb28pkMn3VdJVms6lXr14NPE+j0fCgGgAAME4ajYYn6wgAAABgWvkeFI+CZVna3d3Vu+++63cpbf2Gvn4cO5FIKBaLaXV1VdVqtf39hw8fehoUz8zMaGFhYeB5QqGQB9UAAIBxEgqFtLi4OPA89XpdzWbTg4oAAACA8TIVQbHkXXsL0zQ9CXl7vRFdkI59eHioaDTaDosdx1GlUlEsFhu4JklaWFjQ8fGxJ3MBAIDp4lXrqaWlJXYmT5BeWpvRtgwAAAyilxZo49LezPeguJ8WDP26e/fuwHPMz897EtbOz8+P1bFbdnd3FY1G28/L5bJnQTEAAADgpV5am9G2DAAADGKSWqD5HhSPsgWDF72Q+9mNK10+z3539fp17JZIJKJYLKZKpSLJuxvsAQAAAF7rpbUZbcsAAMAgemmBNi7tzXwPiiXp66+/1p07d/wuoycrKysdfXodx+kpeL24czocDo/Vsc+Lx+PtoBgAAAAIKlqbAQCAYeuljdW4tDeb8bsASSoUCn6X0LPzbRek3nfU1mq1juf9tGvw89jnWZbVfjxIGwsAAAAAAAAAwRCIoDifz+vXv/6132X0ZGVlpeN5r2Ht+fYPpml2hK3jcOzzzr9+kDYWAAAAAAAAAIIhEEGxJCUSCf3oRz/Sr3/960DfUCISiXSEo8+fP+/pdef7I18MfMfh2NfNF4/HB54PAAAAAAAAgL98D4pd121/ffnll/rwww81Nzenzz//3O/SrrW2ttZ+fL5ncDfnx2Wz2bE8dsv5VhaDtrEAAAAAAAAA4D9fg+Jms6lms6nT01Odnp6qVqupVqvp4OBAyWTSz9K6SqfT7ce93NTt/BjLsgYKV/08dkupVJIkZTKZgecCAAAAAAAA4D/fdxRL0uzsrGZnZ7W8vKzl5WXdvXtXs7Ozfpd1rUgk0hG4toLT6xSLxfbjm3b0FgoFZbPZa/sPD/PYvSiVSrJtW6Zpamtra+D5AAAAAAAAAPgvEEHxOMrn8+3HDx8+vHac4zgqFAqSzto0pFKpa8fG43Gl02ltb28rHA533IRuWMeuVCqam5uTYRiKx+Nd21nYtq319XVJ0tOnT7mRHQAAAAAAADAhCIr7ZFlWe7dutVrV9vb2leNWV1clSaZpduzuvcrFVhL7+/tDP3axWGwH0pVKRdFotKO9xfnaotGo5ufnVavVFIlEup4LAAAAAAAAgPFBUDyARCKhcrks0zSVzWaVTCZVrVblOE47WK1Wq4pEIjo6OrpxB+7Fn1uWNfRjX9ULulAoaG5uTslkUul0WtFoVPF4XKlUSoeHh13rAgAAAAAAADB+CIoHFIvFdHp6qlwuJ9u2tbq62g5Z5+fnVSwWdXh42FObhmKxKMuyZJqmMpnMjTee8+LYsVhMtVpNqVSqfeyWarWqk5MTbW1ttY9DuwkAAAAAAABg8hiu67p+F4HptrS0pFevXmlxcVHHx8dDO86jr54Nbe5uNt9735fjAgCA2xvVugTDxfoSAAAEybisMdlRDAAAAAAAAABTjqAYAAAAAAAAAKYcQTEAAAAAAAAATDlfg+LPP/9c77zzjn7yk5/4WQYAAAAAAAAATLU3/DrwixcvlEqlJEm2bWttbU0//vGP/SoHAVCv17W0tNR1zMbGhjY2NkZUEQAAmCQ7Ozva2dnpOqZer4+oGgAAACBYfAuKHz58KEkyDEOSZJqmX6UgIJrNpl69etV1TKPRGFE1AABg0jQajRvXGgAAAMC08i0orlarkiTXdVUoFPT+++9fOe7evXtKp9PX/hyTY2ZmRgsLC13HhEKhEVUDAAAmTSgU0uLiYtcx9XpdzWZzRBUBAAAAweFbUGzbtubm5lSpVHT37t1rxxWLRcXjcU+C4q+//lp37twZeB4Mx8LCgo6Pj/0uAwAATKheWlgtLS2x6xgAAABTybeb2Zmmqa2tra4hsdey2ezIjgUAAAAAAAAA48K3oNiyLFmWNdJj2rY90uMBAAAAAAAAwDjwLSi+d++e9vb2Rna8Fy9eEBQDAAAAAAAAwBV861GcSqWUzWZ1dHSkVColy7I0Pz9/5djDw8O+dx87jiPbtvXpp58OUi4AAAAAAAAATCzfguLZ2Vnt7+9rbW1Nh4eHXccWCgUVCoWBjue6rgzDGGgOAAAAAOOjXq9raWmp65hebnIIAABwnZ2dHe3s7HQdU6/XR1TNYHwLiiUpkUi0w+JuXNcdUUUAAAAAJkWz2dSrV6+6jmk0GiOqBgAATKJGo3HjemNc+BoUS2dh8enpqTKZjIrFohzH8bskAAAAABNgZmZGCwsLXceEQqERVQMAACZRKBTS4uJi1zH1el3NZnNEFfXP96BYOmtDkc/nlc/ndXR0pGq1qpOTE7muq/v37yuZTGplZaWvub/55hvZtq1SqeRx1QAAAACCbGFhQcfHx36XAQAAJlgvbayWlpbGYtdxIILi85aXl7W8vNx+fv/+fcXjcX300UcDzVupVPTDH/5w0PIAAAAAAAAAYOLM+F3AqMRisY4AGgAAAAAAAABwZmqCYkmyLMvvEgAAAAAAAAAgcALXeuKi09NTzc7OejJXsVj0ZB4AAAAAAAAAmCSBD4q9Com9ngsAAAAA/PDoq2c9jdt87/0hVwIAACZJ4IPiqzQaDVUqFZXLZZ2cnMi2bc3Pz8uyLIXDYSUSCb311lt+lwkAAAAAAAAAY2GsguKXL18qm82qVCp1fN91XRmG0X6ezWZlWZY2Nzf105/+dNRlAgAAAAAAAMBYGZub2e3u7iocDqtUKsl13faXpI6QWDoLjmu1mlKplH7wgx/o97//vR8lAwAAAAAAAMBYGIug+PHjx7p//35HMNwKh8+HxufD49bPDg4OFA6H9dvf/taX2gEAAAAAAAAg6ALfeuLJkyfKZrPtcLgVBEciEa2srCgcDss0TVmWpfn5edm2rZOTE9VqNZVKJdm2rWazqdXVVR0cHNC7GAAAAAAAAAAuCHxQ3AqJXdeVaZrK5XJaW1vT7OzslePv3r3bfvzo0SO9ePFCn376qZ48eaL79+/rN7/5zahKBwAAAAAAAICxEOig+MmTJ7JtW5KUTqf1y1/+8tZz3L17V8ViUdvb29ra2tJXX32l9957z+tS4YF6va6lpaWuYzY2NrSxsTGiigAAwCTZ2dnRzs5O1zH1en1E1QAAAADBEuigeG9vT4ZhKJfL6Wc/+9lAc2UyGVUqFe3v7xMUB1Sz2dSrV6+6jmk0GiOqBgAATJpGo3HjWgMAAACYVoEOiqvVqiKRyMAhcUs6ndbm5qYnc8F7MzMzWlhY6DomFAqNqBoAADBpQqGQFhcXu46p1+tqNpsjqggAAAAIjkAHxbZtq1AoeDafaZrtVhYInoWFBR0fH/tdBgAAmFC9tLBaWlpi1zF6tvK3/87T+Q5+8G88nQ8AAOA2Ah0US5JlWZ7NRUgMAAAAIKh6DZ4JlAEAwDAEOii2LEu2bev999/3ZL58Pu9p8AwAAAAAQfWHvb/qadx37/3ZkCsBAADjINBBcSQSUbFY1EcffTTwXJubm6pWq0omkx5UBgAAAAD+6LnlxVvLwy0EAABMlBm/C+hmbW1N5XJZn3zySd9zNBoN3bt3T9vb2zIMQ+l02sMKAQAAAAAAAGD8BXpHcSKR0PLysnK5nBzHUSaT0VtvvdXTa589e6Z8Pq9SqSRJMgxDkUjEszYWAAAAADAJaFEBAACkgAfF0llf4Q8++ED5fF75fF6xWEyRSEThcLjdb9hxHJ2cnOjw8FAHBweqVqvt17uuK+ksKN7d3fXlHAAAAAAAAAAgyAIfFMdiMX322We6f/++DMNQpVJRpVK5dnwrGJbOwmHDMOS6rvb393Xnzp0RVAwAAAAAAAAA4yXwQbEkpVIpzc/PK5VKyXEcGYYhqTMUbmn9rPVz0zT19OlT3b17d2T1AgAAAMCkoUUFAACTLdA3szsvkUjo6OhIH3/8sVzXvTIkltT+2ezsrHK5nE5OTgiJAQAAgClUr9e1tLTU9WtnZ8fvMgEAwBjb2dm5cb1Rr9f9LrMnY7GjuKUV/uZyOT19+lTValW1Wk0nJyeSpPn5eYXDYcViMcJhAAAAYMo1m029evWq65hGozGiaqYHO48BANOk0WjcuN4YF2MVFJ+3urqq1dVVv8vAGFn523/X07iDH/ybIVcCAACAUZiZmdHCwkLXMaFQaETVAACASRQKhbS4uNh1TL1eV7PZHFFF/RvboBgAAAAAullYWNDx8bHfZQAAgAm2sbGhjY2NrmOWlpbGYtfx2PQoBgAAAAAAAAAMB0ExAAAAAAAAAEw5gmIAAAAAAAAAmHL0KAYAAAAAjNwf9v6qp3HfvfdnQ64EAABIBMXAJSt/++96Gnfwg38z5EoAAACA/v37l0c9jfvXby0PuRIAADAOaD0BAAAAAAAAAFOOHcUIjHq9rqWlpa5jNjY2tLGxMaKKAADAJNnZ2dHOzk7XMfV6fUTVAAAAAMFCUIzAaDabevXqVdcxjUZjRNV459FXz3oat/ne+0OuBACA6dZoNG5cawAAAADTiqAYgTEzM6OFhYWuY0Kh0IiquRm9jAEAGC+hUEiLi4tdx9TrdTWbzRFVBAAAAAQHQTECY2FhQcfHx36XAQAAJlQvLayWlpbYdQwAAICpFOib2TUaDT148EA//OEP9Ytf/MLvcgAAAAAAAABgIgV6R3EikdDTp0/luq4qlYqWl5f14x//2O+yAAAAAAAAAGCiBDoorlQqMgyj/dw0Tf+KAfrUay9jcTM7AAAA4JI/7P1VT+O+e+/PhlwJAACTLdCtJyzLkiQZhqFEIqH33ydIAwAAAAAAAACvBXpHcSqV0ubmpgzD0N7e3sDzPXjwQL/85S89qAzwHjslAAAAAAAA4JdA7yjOZDJaXV2VJP3+978feL5KpTLwHAAAAAAAAAAwaQIdFEtSuVzWj3/8YyUSCX377bd9z3N0dCTbtj2sDAAAAAAAAAAmQ6BbT7T86le/0t7eniKRiDY3N5VMJhUKhW58XaPRkCQdHBwok8kMu0xgJHptUdErWlkAAAAAAAAg0EHx22+/raOjo/Zz13WVSqWUSqVuPZfrujIMw8vyAAAAAAAAAGAiBDoobt3MrsUwDLmu62NFwOThJnoAAADT7d+/PLp5kKR//dbykCsZDOtaAAAGE+gexel0WtJZQDxISMxOYgAAAAAAAAC4XqB3FM/OzurDDz/UkydPJEmxWEymad56Htu2Va1WPa4OAAAAAAAAACZDoINi6WxX8RdffKHDw0PduXOn73kKhYIePHjgXWHAlOGjfAAAAAAAAJMr8EFxLBbT7OzsQCGxdNbv+P79+94UBQAAAAAYS2yAAADgaoEPiiVpa2tLjUZDoVBooHlSqZRHFQG4DgtvAAAQFPV6XUtLS13HbGxsaGNjY0QVAQCASbOzs6OdnZ2uY+r1+oiqGcxYBMUff/yxJ/N89tlnnswDAAAAIPiazaZevXrVdUyj0RhRNQAAYBI1Go0b1xvjYiyC4tva2trS/fv39f3vf9/vUgBcg53HAABg2GZmZrSwsNB1zKCfWgQAANMtFAppcXGx65h6va5mszmiivo3dkHxF198oXK5rIODA21tbenHP/7xpTHRaFR3797VBx98oFwuR2AMjDECZQAA0K+FhQUdHx/7XQbGFOtQAEAvemljtbS0NBa7jscmKP75z3+uhw8fynGc9vdOTk6uHJtIJBSLxbS6uirLslQqlfSnf/qnI6oU/Zr2HnL//uVRT+P+9VvLQ64EAIDJNEn94wAAAACvBT4ofv36tVZWVmTbtlzXbX/fMIyurzNNU4eHh4pGo0okEioUCvrpT3867HIxAHrIYRDs+AAA3GSS+scBAAAAXgt8UJxMJlWr1WQYRjscPh8Y3+Tp06ean59XKpWSZVl67733hlUqBkQPOQAAMEyT1D8O8AOfgLsaGxYAAJMi0EHx06dPValUZBhGOxw2TVMrKyt6+vRpT3OYpqmPP/5Yjx8/Vjqd1n/4D/9hmCVjAPSQwyiwkAeA6TVJ/eMAAAAArwU6KM7n85LOdhCnUills1ktL5/9dnpmZqbneX7yk5/o8ePHqtVq+tWvfkULCgAAAADASLFhAQAQdIEOilu7ifP5vD766KO+57Esq/34yy+/JCieQjs7O/q6/P/WP//uP1Pif/mf/S4HY2AUC/mdnR01Gg2FQqGJvUkjxhPXJoKKaxNBwvoSQcV7JYKKaxNBxbX5jwz3Ng1/R2xmZkbhcFi/+93vrvxZoVDoKUA+OjpSOByWYRiyLOvK+eCf1kc8FxcXh9Z6onWM/yn0Pf2vn4z3X/pp6/k2Ka4KlEdx7QP94NpEUI1yzcD1P95YX/qL9epgBt1RzPsYgoprE0HFGvMfBXpHsWmaikQiA89TrVYlnbWwsG174PkA4Lau2qHs/sN/af9v6+d81BAAAGC60aICAOCXQAfFlmXJcZyB53n48GH7sWmaA88HAMPCPwwAAADQi+vWjRc3I7BuBAD0KtBB8erqqj7//POB5nj8+LGq1aoMw5Druh39igFgXBEoAwCAoPr3L496GkeLCgAAgiXQQfHW1pYeP36sX/ziF/qLv/iLvl6/vb3dDokNw9C9e/eGUKm0vb2tcrmsg4MDOY4jy7IUiUSUTqcVi8WGcsxhHtvP8wHgHQJlABhfrC8BeIH1IACgV4EOik3T1Mcff6xMJqNvvvlGm5ubCoVCXV/TaDS0v7+vXC4n27bbAXFLKpXytMZKpaJkMinHcRSLxVQsFmVZlqrVqrLZrOLxePv7Xre9GMax/Twf9IYdGhgG/gEBAMHB+hKAH1gPAgACHRRLUi6XU7Va1aNHj5TL5doLSUk6PDzU/Py8Tk5OVKvVVKlUOm5cJ6kjJP7ss89uDJpvo1KpKB6PSzoLoPP5fPtnlmUpkUgoGo2qUqkoGo3q8PDQs8XvMI7t5/kAGA+9/gOiV/xDAwA6sb5kfTlN2AAxngiUAWByGW4rUQ24dDqt3d3djuD3KhcD4tbzfD6v9fV1z+pxHEfLy8vtj83VarUrx9m2rXA4LEmKxWIql8uBPLaf57O0tKRXr15pcXFRx8fHA8/X7Rj/U+h7+l8/2RjKMYKGBXXwhf/8/6b//eRU/6f5OdX+8v/udzmBxj80RmsU78tAP0a5ZvDj+md9yfoSV2NdezvjtsZknTc9WGMiqCZ9jXkbgd9R3JLP55VOp5XNZvX06dNLP28Fw61+xK2AOBaLKZ/Pa3nZ28VF6+NzkpTNZq8d19opUSqVVKlUVCgUBm5/MYxj+3k+06L0//nf9F/+8F/1z7/7z5T4X/5nX2r4f/w/f6Nv/8s/6Hv//P+g/+v/+Ue+1BCUOoJQQ1AE4c/iphpGtZN5Z2dHjUZDoVBIGxv+/KM/CDUERRD+LIJQQ1DqCEINk471JevL2wrC+jIodYzDemaa3ObPYpg7lIPw3y5qCJag/FkEoQ5qwFXGZkfxeUdHR6pUKiqXy7JtW47j6OTkRPPz8zJNU5ZlKR6Pa21tTbOzs54f//yuB0k6PT3t+hG5UqmkZDIp6azv8unpaaCO7ef5SNOz4+P/8umO/lPj28DV4McOjSDscqCGYNURhBoGqcPLnTBB+E1zEGoISh1BqCEodUxLDX6dJ+tL1pf9CML6chR19LJeDcJaIgg1BKUOP2s4vy6blv92jUMNQakjCDUEpQ5qGG0dQTnXm4zNjuLzlpeXtb6+7mkridvI5XLtx7FY7MY+aolEov3YcRyVSqWO7/l9bD/PBwAmgZc7nt1/+C+ezQVgfLC+ZH2J6/XSy/i//Y//MYJKMA7Or8ta6yr3H/6L559Qu4gWGgAmwYzfBYyjQqHQfhyJRHp6jWVZ7cd7e3uBOraf5wMAuFrrHzTdvgBMDtaXrC8BjLfr1mujDKsBYFBjuaP45cuXqlQqOjw81MnJiSRpfn5e4XBYsVhMd+7cGdqxq9Vqx/N33323p9dFIhHZti3p7KN1QTm2n+eDYOBu08D4GlXvZgDDxfry5jmBXv23//E/blzfsq6Fn/wIi/nEGoBejVVQ/PnnnyuXy7UXkN2k02llMhm99dZbntZQqVQ6np/f+dDNxXHVarXn3RXDPLaf54PxQqAMTL7WP1xGvfOFgBrTjvXlzXMCAAbn5dqO9RswmcYiKH758qXi8bhs29bFe+8ZhtHxvPXzfD6vfD6v7e1t/cVf/IVntTx//rzj+U391lrefPPNjucHBwe3XvgO49h+ng8mEz3kANzWdf9gGXZgfZt/4PRSA/9gQr9YX948J+AlNkAAg+tnbUbPaCD4Ah8Uv3jxQrFYrH3n4/PBsOu6l4Lj8z+TpEwmo3K5rN/85jee1HNxN3O/OyRqtVogju3n+QB8NBCAn3r5B8ptPqo5zH/wePEPK/7BFFysL2+eE/ADgTIwvvzaiNCr29TBGg6jFPigOJlM6vT0tB0QtwJgy7IUi8UUDodlmqYsy9L8/Lxs25Zt26rVatrf35fjOCqXy/rRj37kSVjcS9uLXjiOE4hj+3k+QC96XaDfVmtX83VhNQt+AJNm0H8MBeEfVpPaY5H15c1zAkHWWkvetL7sFetQAOcNa90VpLVdUIJ7SIZ73ZbcANjd3VU6ne4IiWOxmHK5nO7evdvTHKVSSQ8fPtTXX3/tSRuK61pd3KRSqSgej7efJxIJFYtF34/t5/m0/NN/+k/13//7f5ckzczM9DXHed/73vf0L//lv+z4Xr1eV7PZ1IxhaP57//KaVw7Xybf/WU3XnfoaglIHNQSjjn/6xtnvK/+/p067hv/jnDnSGs4LQh3UEKw6glBDUOoIVA0zM1pYWOj42X/+z/9Z33777cDHaDabkqR/8k/+if7bf/tvA8/XC9aXN895W6wvp68OaghWHUGoISh19FtDa53shSD8NzwodQShhqDUQQ1X1DFha8x+BHpHcT6fl3S2uDQMQ/l8Xuvr67eaI5FIKJFIKB6PK5PJaH19XaFQaBjl3oqfOySGcexB5vzjH//Yftz6izOI169f6/Xr11f+rOm6+k+Nwf+CD4IaglUHNQSrjqbr6n8/OfW1hqDUQQ3BqiMINQSljkDU0Gzq1atXQz3G+fXJuGB9+Y9YX05vHdQQrDqCUENQ6ghKDX7/NzwodQShhqDUQQ3n6mCNGeyg2Lbt9o6EVsjbr2KxqPn5eRWLRf30pz/tex7TND1ZCPd6U49hH9vP82n57ne/q3/4h3+Q+///7c2grtrxAQAAJpuXuz0Mw9B3v/tdD6rqDevLm+e8LdaXAADAC+O8xuxHoIPi1gLTMAxtbW0NNJdpmkqlUtrf3x8oKJ6fn/dk4Ts/Px+IY/t5Pi1///d/P/DxAQAAxhXry5vnvC3WlwAAALc3+K/XhygSiUg6u3GdF+0iwuHwwDfX6Hdnw8XFcr87Prw+tp/nAwAAANaXvcwJAACA4Qt0ULy6uipJOjk58WzOQYPilZWVjue97pa4eA7hcDgQx/bzfAAAAMD6spc5AQAAMHyBDoo/+eQTSWeLy5cvXw48X61WG3hnQjQa7Xjea/Bcq9U6nsdisUAc28/zAQAAAOvLXuYEAADA8AU6KJ6dndX+/r5c19Xm5ubA8+3v7w/U60y6vEOi14Xv+Z0UpmnKsqxAHNvP8wEAAADry17mBAAAwPAFOiiWpEQioXw+ry+//FJ//ud/3vc8m5ubchyn3fe4X5FIpGNX8vPnz3t63cHBQfvxxcWzn8f283wAAADA+rKXOQEAADB8b/hx0Pv37+vw8PBWr5mfn1c+n1c+n7912Os4jmzblmEYisfjt3rtVdbW1lQoFCRJ1Wq1p9ecH5fNZgN1bD/PBwAAAKwve5kTAAAAw2W4ruuO+qCbm5va3t6WYRjq5fCGYUhST2Nvmuf09FShUGigearVakfvtZvqqlQq7YDasqxL/df8Praf5wMAAADWl6wvAQAA/OdL64l0Ot1+bBjGjV+3GdvtK5VKDRwSS2cfpzt/c41SqdR1fLFYbD++aXdEoVBQNpu9tpfbMI49zPMBAADAzVhfsr4EAADwmy87iiXp7bff1tHR0cC7hHsViUT07NkzT4Ji6eymHOFwuD33da00HMfR3NycpLM7N5fL5WvnjMfjqlQq7eenp6cd/d2GeexhzAkAAIDesb5kfQkAAOAn325mt7q6KunsY2bNZnPoXwcHB56FxNLZR+JaOx+q1aq2t7e7nqdpmh07Ja5yfhEvSfv7+yM79jDmBAAAQO9YX7K+BAAA8JNvQfHa2poikYjef/99v0oYWCKRULlclmmaymazSiaTqlarchxHlUpF0WhU1WpVkUhER0dHV+7eOO/izy3LGtmxhzUnAAAAesf68uY5AQAAMBy+7iheXl4e6TFfvnzp+ZyxWEynp6fK5XKybVurq6uam5tTMpnU/Py8isWiDg8Pe1r0FotFWZYl0zSVyWQ6+roN+9jDnNMv29vbisfjmpubk2EYCofDSiaTl3bWAKNi23b7Rj294BrGdVrX0k09P28yjGuM63a6eXVt3uZYvRqna5P1ZbCN07WEyTfJ74UYPdaYCCrWmCPkTpEPPvjA7xIwAuVy2TVN05XkxmIxt1wuu7VazS0Wi65lWe3vn56e+l0qJsTp6akrqaevVCp143xcw7jO6empm0gk2tdTPp/va55hXGNct9PNq2uzNRfvqQgiriWMEu+FGCXWmAgq1pijN1VB8fz8vN8lYMjK5fKNf7EjkYgrybUsa+z+wiKYcrlcz//BqdVqXefiGsZVTk9P3Uwmc+l66mehNIxrjOt2enl5bbbwnoog4lrCqPFeiFFgjYmgYo3pn7EMio+OjtwXL170/PXkyRP3gw8+cGdmZvwuHUN0enra/m2OZVnXjqvVau2/0LFYbIQVYlK1rrubvm663riGcZVcLudaluXGYrGBF0rDuMa4bqeXl9fmebynImi4luAH3gsxbKwxEVSsMf01FkHx0dGRe//+ffftt992Z2Zm+voyDIOgeMKdfxO56c3Dq48uAPl83pXkZjIZt1wud/266beIXMO46PDw0D08PGw/b11v/f5/P4xrjOt2Onl9bV6ch/dUBAnXEkaN90IMG2tMBBVrTP8FPije3NzsCHsH+SIonlznf1Mj6ca/2MVisT3WNM3RFImJZFlW198i9oprGL04PDzse6E0jGuM6xYtg1yb5/GeiqDhWoIfeC/EqLHGRFCxxhy9GQXYkydPlMvl5LquJMkwDJ8rQlDlcrn241gsduNdsxOJRPux4zgjuXMmJk+pVJJt28pmswPPxTWMXtx0XXQzjGuM6xYtg1ybLbynIoi4ljBqvBfCD6wxEVSsMUfvDb8L6Obhw4eSzgJi13VlWZYikYgsy5IkvfnmmzfO8c0338hxHO3v7+v169dDrRf+KRQK7ceRSKSn11iWJdu2JUl7e3sdf4GBXjx8+FCmaWptbW3gubiGMWzDuMa4buEl3lMRRFxLGDXeCzFuWGMi6HhfvZ1AB8XVarW9i7hcLmt1dbXvuTKZjN555x2vSkOAVKvVjufvvvtuT6+LRCLtv6zj8FsdBEu1Wm1fe3Nzc7IsS7FYTPF4/NZv/FzDGLZhXGNct/AS76kIIq4ljBrvhRg3rDERdLyv3l6gW0+0tnBnMpmBQmLpLMFfXl72oCoETaVS6Xje2nF+k4vjLv6lB7q5+LEV27ZVKBSUTCZlGIaSyWTP1xTXMIZtGNcY1y28xHsqgohrCaPGeyHGDWtMBB3vq7cX6KC49YfZa0p/k3w+78k8CJbnz593PO+1h83F1iUHBwdelYQJZ9v2pf9IXFQqlRSNRpVOp2+cj2sYwzaMa4zrFl7hPRVBxbWEUeK9EOOINSaCjPfV/gS69cTq6qpevHihk5MTz+bD5Glt4W/p97c6tVrNs5ow2SzLUj6fl+M4qtVqqlQql67DlkKhoIODAx0eHl47H9cwhm0Y1xjXLbzCeyqCimsJo8R7IcYRa0wEGe+r/Ql0UPzJJ5/o8ePHnm3L/vzzz/XRRx95MheC47q/6LflOI4n82A6pFKpjueO46hQKOjhw4eXrqVqtap4PK5yuXzlXFzDGLZhXGNct/AS76kIIq4ljBrvhRg3rDERdLyv3l6gW0/Mzs7q0aNH2tvb07fffjvwfLSemEz9/iW7+DEBr3auYzqZpqlMJqPT01MVi8VL11elUtH29vaVr+UaxrAN4xrjusUw8Z6KIOBagt94L0TQscbEuOF99WaBDoqlsxvZRSIRJZPJgeY5OjoKfMNo+Cvov9XB+EgkEjo6OlIkEun4/sOHD4d6XK5hDNswrjGuW9yE91SMO64leIH3Qkwy1pjwA++rVwt064mWcrmslZUVvfPOO8pms5qfn+/pdScnJ+1eJPv7+0OuEn4xTdOTv2i9NiIHemGapg4PDxWNRtu/pHIcR5VKRbFY7NJYrmEM0zCuMa5bjBLvqfAD1xKChvdCBA1rTIw73lcvG4ug+NmzZ5LOGj73cifCq7iuK8MwvCwLATE/P+/JX9ZefwEB3Mbu7q6i0Wj7eblcvvQfHK5hDNswrjGuW/iB91SMEtcSgor3QgQFa0xMCt5X/1HgW088ePBA8XhcL168kGEYcl331l+YbP3+NubiX/Cg/1YH4ykSiXT8B+aqBvhcwxi2YVxjXLfwA++pGCWuJQQV74UICtaYmBS8r/6jQAfFu7u7yufz7bC339CXsHiyraysdDzv9Tc8FxuIh8Nhr0oCOsTj8a4/5xrGsA3jGuO6hV94T8WocC0hyHgvRBCwxsQk4X31TKBbT+TzeUlq7ySOxWKKx+MyTfPWfYo/++wzvXz5cojVwi/nPx4gnf3m52Iz8qvUarWO5xc/VgB4xbKs9uOr3ru4hjFsw7jGuG7hF95TMSpcSwgy3gsRBKwxMUl4Xz0T6KC4Wq3KMAyZpqmDgwMtLy/3Pdf6+rrefPNND6tDUFz8rU6vf1nP//bHNM2ONwXAS+evras+ZsI1jGEbxjXGdQu/8J6KUeFaQpDxXoggYI2JScL76plAt55o/R+ztbU1UEjcmuvu3bseVIWgiUQiHX+Jnz9/3tPrDg4O2o8v/oUHvHT+Wrvq4yxcwxi2YVxjXLfwC++pGBWuJQQZ74UIAtaYmCS8r54JdFDc2tbtVdq+u7vryTwInrW1tfbjarXa02vOj8tms57XBLSc/6jJdR8z4RrGsA3jGuO6hR94T8UocS0hqHgvRFCwxsSk4H31TKCD4nQ6Ldd1r7zbYD/YUTy50ul0+3GlUrlx/PkxlmUFvkcMxlupVJIkZTKZa8dwDWPYhnGNcd3CD7ynYpS4lhBUvBciKFhjYlLwvnom0EFxIpHQ3bt3tbe358l8X3zxhSfzIHgikUjHX7jWX/DrFIvF9uNx+I0OxlepVJJt2zJNU1tbW9eO4xpGL3q9s+5VhnGNcd2iZZBr8zZ4T8WocS0hiHgvhNdYYyKoWGP6wA24Wq3mGobhfvHFFwPPtbKy4kFFCKpareZKciW5kUjk2nGnp6ftcbFYbIQVYhKUy2XXNM329XN4eHjt2Fqt1h7bbdz58VzD6KZYLLb/v5fk5nK5W71+GNcY1y1ct/9rk/dUjAOuJQwb74XwG2tMBBVrzNELfFDsuq6bz+fd+fn5geZwHMedmZnxqCIE1fk3keveQCKRiCvJNU3TPT09HW2BGHupVKrjP1SS3FQqdWlc6z9MlmW5tVqt5/m5hnGd09NT17Ksjmuv28LkOsO4xrhup9sg1ybvqRgXXEsYJt4L4SfWmAgq1pj+CHRQ/OTJk/ZXOBx23377bXdzc/PWX/fv33fn5+cJiqfE+d8cJRIJ9/Dw0D09PXXL5XL7L2okEhmrv6gIjnK5fOk/OK03/0Qi4aZSqfZ1lslk+rrOuIbRcnp66iYSCTcWi1153Z3/DXXrWunFMK4xrtvp4tW1yXsqxgnXEoaF90KMGmtMBBVrTP8FOiiORqPuzMxM+8swjI7nt/lqvRbTI5fLuZFIpP0X1zRNNxaLucVi0e/SMOZqtZqbSqVcy7I6ri/LstxEIuEWi0VP/mPANYxhG8Y1xnWL2+I9FeOGawnDwHshJglrTAQB76v9MVzXdRVQ29vb2tzclCQZhjHQXK7ryjAM/fGPf/SiNAAAAAAAAACYGIEOil+/fq25uTkZhiEvyiQoBgAAAAAAAIDLAh0US9LKyopevHihR48eKRKJaH5+/tZz2LatTz/9VF9//TVBMQAAAAAAAABcEPig+PHjxzo4ONDe3t7Ac83Pz+vk5MSDqgAAAAAAAABgcsz4XcBNYrGYJ20npLPdyQAAAAAAAACAToHfUSxJR0dHWl5eHnieFy9e6O7dux5UBAAAAAAAAACTYyyCYi+8fPlSb731lt9lAAAAAAAAAEDgBL71hBeePHmicDis3/72t36XAgAAAAAAAACBMxVB8fPnz+W6rv76r//a71IAAAAAAAAAIHAC33ri888/7/u1juOoVqupUChIkiKRiJ4/f+5VaQAAAAAAAAAwEQIfFM/MzMgwjIHmaJ2iYRiq1Wr0KgYAAAAAAACAc8am9UQ/ebbrunJdV4ZhtMPm1u5iAAAAAAAAAMCZsdlR3G+ZF18bDof1u9/9zqvyAAAAAAAAAGDsveF3Ab1YXl5WNpuVZVm3el2tVtP29rai0ah2d3cVCoWGVCEAAAAAAAAAjK+x2FFs2/ZAfYXffvttrays6K//+q+9KwwAAAAAAAAAJkTgexSbpjnwzec+++wz7e/v6xe/+IU3RQEAAN/Ztq1wONy+F0GvX3Nzc4pGo0qn0yqVSnIcx+9TuZbjOD2dU7Va9bvUwNre3r7xzy8cDvtdJgAACJBJXmeyvhzcJK8vA7+jeHd3V+vr6wPP8/bbb+vo6Ei1Wm3g4BkAAARLqVRSMpm89P1IJKJ0Oq35+XnZtq1arSbbtnVwcNCxcE8kEsrlcrduczVsjuNobm6u/TwSiWh3d/dSnaZpjriy8XL+/+uTkxNVKhWl0+n29yzLUq1W86EyAAAQdJO2zmR96Y1JXV8GPij2ytramkqlku7fv6+//Mu/9LscAADgsbm5uY4Fm2maOjo6unaR21rM2bbd/l4ul1Mmkxlypb27uJAvFotKJBI+VjQ5ksmkSqWSpPFdyAMAgNGYpHUm68vhmYT1ZeBbT3jt+fPnfpcAAACG4OJH+9bW1rruhIjFYqrVaorFYu3vZbPZK3eMBAU7O7wTlF09AAAg+CZ5ncn60juTsL6ciqD49evXqlQqkkSPFQAAJtD53Rot8Xi8p9eWy2VFIpH281KppGw261ltXpqfn/e7BAAAgKky6etM1pc4b+KD4q+//lorKyt6/fq1pMlI9wEAQKfWL4TPu81H6HZ3dzueb29v88tlAAAAsM7EVHnD7wJu8s477/T92tZvfVptmA3D6Nj2DwAAJkO5XO54fn7nRi8ikYhisVjHPwTW19d1eHjoSX0AAAAYT6wzMU0CHxTXajUZhqFB7rl3/vW5XM6r0gAAQEBc3Olx7969W88Rj8c75qlWq7Jtm08jAQAATDHWmZgmY9N6wjCMvr6ksx3Fpmnqyy+/VCgU8vlMAACAl6rV6qUbjPTzCaKrPkLYumvxuHIcR9vb24pGo5fOpVQqKR6Pa25uToZhKBqNqlAoXDtPNptVNBrtGN/rn09Q6gAAALgN1pmXBWVdF5Q6Jo4bcIZhtL/m5ubccDjc81c0GnWTyaS7vb3t92kAAIAhyeVyrqT2l2mafc1zenraMY8kNxaLeVztYDUdHh7e+JrDw0M3l8u5kUik47XFYtF1Xdet1WqXfnb+K5VKdcx38c/34lcmkwl0HdfJZDLt11qWdavXAgCA6TCJ60zWl4PXcZ1JWF8arjtAT4cRmJmZ0fb2tn72s5/5XQoAAAigaDTacUOQRCKhYrHY11ytTyO1WJalWq02UH2DcBxHc3Nz7eeHh4dd++LZtt2+k/bFXRDFYlEnJydKp9OKRCK6d++eLMuSbdt6+PBhx26ZcrmsWCymeDyug4MDra2tKRqNan5+Xs+fP9f29nbH3LVareOjk0Gpo5tsNtt+vd//PwMAgGCaxHUm60vWl135nVTfJBwO+10CAAAIMF34zX9rR4EXc/W7a8Qr/ez4aLm4Q8KyLNc0zSv/fGq1WsfYSCTiRiIRNxaLuaenp5fGl8vlrrszgljHRZOw4wMAAAzXJK4zWV+yvuwm8D2KW78tAAAAuOiq3mH99I2TdKn/3Li7amfI6enplT3yLMvq+HNr9eMrl8syTfPS+Fgs1rGz4uJNXoJYBwAAwG2wzrwsKOu6oNQxiXwNir/++usbx6yvrw+/EAAAMJbK5XLH80gkcuWCrxe2bV/63jjfiXp+fr7j+VUL5/Pi8XjH85t+WX9+gX7Vn13Q6gAAALgN1pmXBWVdF5Q6JpGvQXE0GvXz8AAAYMxd/A1/v7s8pMlZwPfr4j98Li7AL7r4Z+PVIjoodQAAgOnGOnNwQVnXBaWOceBrUOy6rn7/+9/7WQIAABhTtm1fWrTdu3ev7/ku7hqRpmMB33LTgvkmXn2kMih1AACA6cU60xtBWdcFpY5x4HuP4lwu53cJAABgDF3VL6zbHZv7mW+QfxBMujfffNPvEiQFpw4AADA5WGf6IyjruqDU4Qffg+J8Pq8f/ehH+uKLL/Ty5Us1Gg01Gg2/ywIAAAFXLBY7nt/Um6ybq3aNWJY10D8IAAAAMJ5YZ2JaveF3AdLZFvyrtuEPyx//+MeRHQsAAAzHxZ0ZF29ScRv5fP7S99LpdN/zAQAAYHyxzsS0CkRQ7Lpu+3GrwXS//UNOTk6u7R1iWdZIA2kAADAcV318r98bjDiOo+3t7Y7vmaapVCrV13wAAAAYX6wzMc0CERTncjklEgktLy8PNM/Tp0+VTCZlGEbH913XVTKZ1N7e3kDzAwCAYLj4i1/Lsvq+IcjDhw8vfW93d/fS3ZEBAAAw+VhnYpoFokfxxx9/PHBI/POf/1wffPCBXr9+3d6h7LquXNdVLpcjJAYAYIJc3OnR7y4P27Yv7fJIJBJd+9C1XhOPxzU3N3fpo4iO4yiZTGpubu7S3AAAAAi2Ua8zW+OSyaSi0agMw1C1Wr00X6FQ0NzcHG0rMFS+BsWGYWhtbW3geT744ANls9l2MGwYhlzXlWmaOjw81Mcff+xBtQAAIAgcx7m0eE4mk33NdTHktSxLu7u7XV9TqVQUi8UUj8flOI4qlUq7HsdxFI1GVa1W5TgOLa8AAADGiF/rzFgspnfffbd97Kt2Ih8eHspxHBUKhUs3xwO84mvridnZWYVCob5f//LlS8Xjcdm23Q6IpbOdxJFIRE+fPtXs7KxX5QIAgADwqm9cMpnsWGRblqXDw8MbPwrY6ikXiUSUzWbbNUUiESWTSRWLRUUiEdm23ffHFAEAADB6fqwzW+vFSCQiScpmsyqVSnIcp2N8Pp/XycmJSqVS3/f1Am7i647io6Ojvl/75MkThcPhK0PidDqtg4MDQmIAACbQxXZSrUV1rxzHUTweV6lU6pijl5D4otY/HMrlcvsjg616xj0kPjk58bsEScGpAwAATD6/15nnb3K3v79/6ee7u7uyLGtsexwHZV0XlDqCyNeguN8gd2trS2tra+1exK1WE67rKp/P65e//KWXZQIAgAC5uNNjZWXlVq+NRqMdc2Qymb5CYukfP1JYqVRULpfH+g7WFxfMjuN0Hf/NN99MdB0AAGD6+L3ONE2zvRGhWCxe+vnBwUHXe2kETVDWdUGpYxz4fjO722g0GvrhD3+o7e3tS7uIW/2I19fXfa4SAAAMS+tjeOf1siOgVCopGo22W1ZJZ7uBa7Wacrlc3/Wc/yjiIPMMw8XedTctiC/+vFar3Wr8db3yglIHAABAN0FZZ7Z6Il/VBiOfz2tra+vWc3olKOu6oNQxiQy3tS034L7++mutrq7KcZxLIXEsFlOxWKTVBAAAE6xarbbXAhelUilFo1HNz8/r5OREjuPom2++6bjRnHTWDiKdTiuRSHjWGqK1JimXy33fFfs6juNobm6u/fzw8LDnj0C2bqrXYpqmjo6OrtzR0roJ3/lFcOuX8Ff9Odm2rWg02vH/RSwWu/LmfUGp46JsNtu+E7llWTf+gwEAAEyuIK0zbdtWOByW1Ln2cxxH2WxW+Xy+77lb87C+ZH15LXcMFAoFd2ZmxjUMwzUMw52ZmWk/39zc9Ls8AAAwROVy2TVN05XU85dpmq5lWW4sFnNTqZRbLBbdWq3meW21Wq19zEwm4/n8p6enHed1eHjYdfzh4aEbi8W6/nlFIhG3WCy2x0cika5/lpFIxM3n867rnv1/YVlW1z/3WCzm/tt/+28DUUe3/88zmUx7vGVZXvzfBQAAxkxQ15mtdU4ul2t/L5VKeXIc1pesL7sJ/I7iBw8eqFAoXNpFLJ31a/nwww/9LA8AAEyx1u6SSqXSvlGJlwbZ8YHuJmLHBwAAmEjJZFKlUkmJRELFYlG2bSuXyw28m1hifTlMk7C+fMPvAq7TaDS0urqqarV6KSS2LEvlclnLy8s+VwkAAKZVOp1WOp2WZVmXPnoIAAAA9Csej6tUKrXXl9lsVru7uz5XhWkQyJvZff3111peXr4yJE4mk/q7v/s7QmIAAOCbSqWik5MTpVKpjrthnw+LC4WCH6UBAABgzLXue2HbtiqVit59990r++8CXgtcULy7u6toNKrT09N2SOy6rlzXVS6X097ent8lAgCAKeM4TvvO062P/hWLRUlnN8NofVyv9XHAdDrdESB7pZc7bwMAAGC8nb/JWjabVSaTGdqxWF/ivEAFxffu3dP9+/fbAXErJDZNU+VyWR9//LHfJQIAgCmUTCYVj8c1NzeneDzeDolbWrs+CoWCwuGwotHoUHq9nb9bMwZz1V3NAQAAgqK1lszlckM9DutL70zC+jIQPYpfvnypeDwu27YvtZqIRCJ6+vSpZmdnBz7OO++8o9/97ncDzwMAAKZLMpnUwcGB5ufnVS6XL330b2trS6VSSScnJ0qn00qlUkOpI5vNyrKsS7uV+ShidxcX7QcHB7QGAQAAgTY/P69EItHekDAsrC/7M6nrS8N1XdfPAp49e6ZkMqnT09Ozgs6FxOl0Wr/85S89O9bMzIyazaZn8wEAAAzTxbtSX4e7VV9ve3tb2Wy265hxvSs1AACYTI7jaHV1VYeHh0OZm/XlYCZ5felrUPz48WNtbm5e2kUsnfX4W19f9+xYu7u7un//vv74xz96NicAAAAAAADgpWQyqa2tLYJajJyvQfHMzEw7IJbOQuK5uTk9ffpUd+7c8ew4n3/+uVKplAzDICgGAAAAAABAIG1vb8s0zaG1MgO6CVRQLJ1tzfaqD4rjOO2m3K1dywTFAAAAAAAA8JvjOCoUCkqlUjJNU6VSSbZtK5PJ+F0aplRgguJRlEFQDAAAAAAAgCBIJpMqlUqSpEgkonv37hESw1eBCIqXl5dVLBY93UnccnBwoHw+r2q1SlAMAAAAAACAQKhUKkomk5qfn1c+n1csFvO7JEw534PicDisg4MDzc7ODvVYyWRSX3zxBUExAAAAAAAAAFzge1BcrVY9vXHddWzb1jvvvENQDAAAAAAAAAAX+BoUz8/P6+TkZGKPBwAAAAAAAADjYMbPg+dyuYk+HgAAAAAAAACMA193FAMAAAAAAAAA/OfrjmIAAAAAAAAAgP8IigEAAAAAAABgyhEUAwAAAAAAAMCUIygGAAAAAAAAgClHUAwAAAAAAAAAU46gGAAAAAAAAACmHEExAAAAAAAAAEw5gmIAAAAAAAAAmHIExQAAAAAAAAAw5QiKAQAAAAAAAGDKERQDAAAAAAAAwJQjKAYAAAAAAACAKUdQDAAAAAAAAABTjqAYAAAAAAAAAKYcQTEAAAAAAAAATDmCYgAAAAAAAACYcgTFAAAAAAAAADDlCIoBAAAAAAAAYMoRFAMAAAAAAADAlCMoBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAphxBMQAAADChwuGwDMNQqVS69Wu3t7cVj8c1NzcnwzAUDoeVTCZVqVT6rmcYcwIAAMAbBMUAAADABMpms7Jt+9avq1QqmpubUzablSQVi0XVajXlcjlVq1XF43HF43E5juPrnAAAAPCW4bqu63cRAAAAALxTqVQUj8fbz4vFohKJxK1el0qllM/nL42JRqOqVquyLEuHh4cyTXPkcwIAAMB7BMUAAADABHEcR8vLyx27c3sJis+/zrIs1Wq1K8fZtq1wOCxJisViKpfLI50TAAAAw0HrCQAAAGCCrK+va35+/ta7cpPJZDtcbrWIuIplWe3QuVKpqFAojHROAAAADAc7iuG7f/Ev/oX+8Ic/6Dvf+Y7+1b/6V36XAwAApth//I//UX/84x/13e9+V3//93/vdzm3VigUlE6ndXh4qNXV1XZIe9OO4vM7eiXp9PS0a9BcKpWUTCYlSaZp6vT0dCRz9or1JQAACJJxWWO+4XcBwB/+8Ac1m001m029evXK73IAAAD0hz/8we8Sbs22baXTaWUyGUUikVu9NpfLtR/HYrEbdyOfD50dx1GpVLoURA9jzl6xvgQAAEEU9DUmQTF8953vfEfNZlMzMzNaWFgYyjHq9frQj3FbQaxJoq7bCGJNEnXdVhDrCmJNEnXdRhBrkqjrNrV85zvf8bWOfiSTSUUikY6AtlfnWz30GjJbliXbtiVJe3t7l0LdYczZq2lZXwahhqDUQQ3BqiMINQSlDmoIVh1BqCEodVDDaOsYmzWmC/hscXHRleQuLi6O9TFuK4g1uS513UYQa3Jd6rqtINYVxJpcl7puI4g1uS51jVstt5HJZFxJbq1Wa3/PNE1XkivJLRaL17728PCwPe6mseclEomO1w17ztuYlvVlEGoISh3UEKw6glBDUOqghmDVEYQaglIHNYy2jqCc6024mR0AAAAwxqrVqra3t5XP52VZ1q1fX6lUOp73OsfFcdVqdahzAgAAYLgIigEAAIAxtrq6qkQioVQq1dfrnz9/3vH8pl7CLW+++WbH84ODg6HOCQAAgOEiKAYAAADGVDKZlCTt7u72PUerJ3BLv7t/a7XaUOcEAADAcHEzOwAAAGAMlUollUollcvlnnfsXuViqNsvx3GGOicAAACGi6AYAAAAGDOO4yiZTCqVSikWiw08Vz8uhtMnJydDnbMf9XpdS0tLA80hSRsbG9rY2Bh4HgAAMF52dna0s7Mz8Dz1et2DaoaPoBgAAAAYM6urq7IsS/l83u9S2oax+3fQOZvNpl69ejVwHY1GY+A5AADA+Gk0Gp6sJcYFQTEAAAAwRra3t1WtVnV4eOjJfKZpehLynt8NPIw5+zEzM6OFhYWB6wiFQgPPAQAAxk8oFNLi4uLA89TrdTWbTQ8qGi6CYsAnGxsbajQagfuHB3X1Log1BVlQ/7yCWFcQa5KCW1cQBfXPirrGX7VaVTabVS6XUyQS8WTO+fl5T0Ld+fn5oc7Zj4WFBR0fHw9cR1AF5e9OEOqghmAJyp9FEOqghmAJyp9FEOqght541X5qaWlpLHYmG67run4XgenW+suyuLg4tIX8KI4BBAXXO6YN1zy8FPTrKRwOyzTNnnYTz83NtcPaYrGoRCJx5bhoNKpqtdp+3us/D0qlkpLJZPt5JpNRLpcb2py3wfoS04xrE0HFtYmgYt3wj9hRDAAAAIyB7e1t2batWCzWEaZe5/yO3ocPH2pvb6/9/N69e+3geGVlpSPUdRynp5YPF280Fw6H24+HMScAAACGi6AYAAAAGAPffPONJKlSqdz6tdVqtSO4tSyrHRRHo9GOsbZt99TWolardTyPxWLtx8OYEwAAAMM143cBAAAAAPyzsrLS8dy27Z5ed37HsmmasixrqHMCAABguAiKAQAAgDGQy+Xkum7PX+dD1mKx2PGz831/I5FIR1uI58+f91TPwcFB+/HFYHgYcwIAAGC4aD0BXPDoq2c9jdt87/0hVwIAADAaa2trKhQKktTRoqKb8+Oy2exI5gyib//rf71x/ci6EQAAjAN2FAMAAABTLp1Otx/30gP5/BjLsq7sJTyMOQEAADA8BMUAAADAlItEIh3BbKlU6jq+WCy2H1+383cYcwIAAGB4aD2BqbCxsaFGo6FQKOR3KcDQcb1j2nDNA97I5/MKh8OSpIcPHyqRSFw5znGcdkuJWCymVCo10jmDYmNjQ/+v3/5W/+xf/HO/SwE68N9FBBXXJoKKa/MfGa7run4Xgem2tLSkV69eaXFxUcfHx36XQ49iAACmWNDWJYMIh8OybVvS2W7d60La80qlkpLJpKSzm+dlMplLY6LRqKrVqkzT1NHRUcdN60Y1501G9f8j60YAANCLcVlj0noCAAAAgCQpkUioXC7LNE1ls1klk0lVq1U5jqNKpdIOdCORSM+B7jDmBAAAgPdoPQEAAABMoFqt1tfrYrGYTk9Ptb29rb29Pa2urspxHJmmqZWVlZ53Jw97TgAAAHiLoBgAAADAJZlM5so2EUGbEwAAAN4gKAb6RE86AAAAAAAATAp6FAMAAAAAAADAlCMoBgAAAAAAAIApR+sJBEa9XtfS0lLXMRsbG9rY2BhRRQAAYJLs7OxoZ2en65h6vT6iagAAAIBgIShGYDSbTb169arrmEajMaJqAADApGk0GjeuNQAAAIBpRVCMwJiZmdHCwkLXMaFQaETVAACASRMKhbS4uNh1TL1eV7PZHFFFAAAAQHAQFCMwFhYWdHx87HcZAABgQvXSwmppaYldxwAAAJhK3MwOAAAAAAAAAKYcQTEAAAAAAAAATDmCYgAAAAAAAACYcgTFAAAAAAAAADDlCIoBAAAAAAAAYMoRFAMAAAAAAADAlCMoBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAphxBMQAAAAAAAABMOYJiAAAAAAAAAJhyBMUAAAAAAAAAMOUIigEAAAAAAABgyr3hdwHApHv01bOexm2+9/6QKwEAAAAAAACuxo5idKhWq0qn0wqHwzIMQ4ZhKBwOK5vNynEcv8sDAAAAAAAAMATsKIYkyXEcra+vq1QqXfqZbdva3t7W9va28vm8UqmUDxVOvl52HrPrGAAAAAAAAMPAjmLIcRxFo9ErQ+KL0um00un0CKoCAAAAAAAAMCoExVAymZRt24pEIioWi6rVaqrVaioWi8pkMpfGFwqFnkJlAAAAAAAAAOOBoHjKFQoFVSoVZTIZHR4eKpFIyLIsWZalRCKhXC6nWq2mSCTS8br19XWfKgYAAAAAAADgNXoUT7lcLqdYLKZcLnftGMuyVCwWFQ6H299zHEeVSkWxWGwUZQIAAAC3Vq/XtbS01HXMxsaGNjY2RlQRAACYNDs7O9rZ2ek6pl6vj6iawRAUT7FqtSrbtnV4eHjjWMuylMvllM1mO15PUDxavdzwTuKmdwAAAJLUbDb16tWrrmMajcaIqgEAAJOo0WjcuN4YFwTFU2xvb0+pVEqmafY0/mIo/M033wyhKgAAAMAbMzMzWlhY6DomFAqNqBoAADCJQqGQFhcXu46p1+tqNpsjqqh/BMVT7N69e7Isq+fxF/sUn29FAQAAAATNwsKCjo+P/S4DAABMsF7aWC0tLY3FrmOC4il2Mfi9ieM4Hc9vEzIDAAAAAAAACK4ZvwvA+LBtu+M5/YkBAAAAAACAyUBQjJ4dHBy0H6dSKR8rAQAAAAAAAOAlWk+gZ/l8vv04m816Pn+9XtfS0tLA8/TSGwYAAEyWnZ0d7ezsDDxPvV73oBoAAABg/BAUoye2batarUqScrncUPoTN5tNTxp7NxoND6oBAADjpNFojMUNQgAAAICgIihGT3K5nKSzG9hlMpmhHGNmZkYLCwsDzxMKhTyoBgAAjJNQKKTFxcWB56nX62o2mx5UBAAAAIwXgmLcqFqtqlAoyDRNlcvloR1nYWFBx8fHQ5sfAABMLq9aTy0tLbEzGQAAAFOJm9nhRuvr65Kkp0+fDqXlBAAAAAAAAAB/ERSjq3Q6rWq1qmKxqEgk4nc5AAAAAAAAAIaAoBjXKhQKKhQKyufzSiQSfpcDAAAAAAAAYEgIinGlSqWidDqtfD6vVCrldzkAAAAAAAAAhoigGJdUq1XF43HlcjlCYgAAAAAAAGAKvOF3AQgW27a1urqqTCajTCbjdzno06OvnvU0bvO994dcCQAAAAAAAMYBO4rRZtu2otGoUqmUcrlcz6/Z3t4ecmUAAAAAAAAAhomgGJIkx3EUj8e1trbWc0gsSclkUrFYbIiVAQAAAAAAABg2Wk9AjuMoGo3Ksixls1nZtn3ja2zbVjablSRFIpFhlwgAAAAAAABgiAiKodXVVdm2Ldu2FQ6Hb/XafD4/pKoAAAAAAAAAjAqtJ6ZcNBpVtVrt+/WpVMrDagAAAAAAAAD4gaB4iiWTSUJiAAAAAAAAALSemGbFYtHvEgAAAAAAAAAEADuKAQAAAAAAAGDKERQDAAAAAAAAwJQjKAYAAAAAAACAKUdQDAAAAAAAAABTjpvZAVPs0VfPehq3+d77Q64EAAAAAAAAfmJHMQAAAAAAAABMOYJiAAAAAAAAAJhyBMUAAAAAAAAAMOUIigEAAAAAAABgyhEUAwAAAAAAAMCUe8PvAgAA/+gPe3/V07jv3vuzIVcCAAAAAACmCTuKAQAAAAAAAGDKERQDAAAAAAAAwJSj9QQCo16va2lpqeuYjY0NbWxsjKgiAAAwSXZ2drSzs9N1TL1eH1E1mCaPvnrW07jN994fciUAAADXIyhGYDSbTb169arrmEajMaJqAADApGk0GjeuNQAAAIBpRVCMwJiZmdHCwkLXMaFQaETVAMHGTe8A4PZCoZAWFxe7jqnX62o2myOqCAAAAAgOgmIExsLCgo6Pj/0uAwAATKheWlgtLS2x6xgAAABTiZvZAQAAAAAAAMCUIygGAAAAAAAAgClHUAwAAAAAAAAAU44exQAAAAAmUr1e19LSUtcxvfSuBgAAuM7Ozo52dna6jqnX6yOqZjAExQAwAn/Y+yu/SwAAYOo0m80bb07YaDRGVA0AAJhEjUZjYm6GTFAM4EaPvnp245jN994fQSUAAAC9m5mZ0cLCQtcxoVBoRNUAAIBJFAqFtLi42HVMvV5Xs9kcUUX9IygGgAnW607m7977syFXAgDA6C0sLOj4+NjvMgAAwATrpY3V0tLSWOw65mZ2AAAAAAAAADDlCIoBAAAAAAAAYMoRFAMAAAAAAADAlCMoBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAptwbfhcAAPDfH/b+qqdx3733Z0OuBAAAAAAA+IEdxQAAAAAAAAAw5QiKAQAAAAAAAGDK0XoCgCceffWsp3Gb770/5EoAAAAAAABwW+woBgAAAAAAAIApR1AMAAAAAAAAAFOOoBgAAAAAAAAAphxBMQAAAAAAAABMOYJiAAAAAAAAAJhyBMUAAAAAAAAAMOUIigEAAAAAAABgyhEUAwAAAAAAAMCUIygGAAAAAAAAgCn3ht8FAC31el1LS0tdx2xsbGhjY2NEFQEAgEmys7OjnZ2drmPq9fqIqgEAAACChaAYgdFsNvXq1auuYxqNxoiqAQAAk6bRaNy41gAAAACmFUExAmNmZkYLCwtdx4RCoRFVAwAAJk0oFNLi4mLXMfV6Xc1mc0QVAQAAAMFBUIzAWFhY0PHxsd9lAACACdVLC6ulpSV2HQMAAGAqERQDGKlHXz3radzme+8PuRJv/GHvr/wuYaR6Pd/v3vuzIVcCAAAAAAC8NON3AQAAAAAAAAAAfxEUAwAAAAAAAMCUIygGAAAAAAAAgClHUAwAAAAAAAAAU46gGAAAAAAAAACmHEExAAAAAAAAAEw5gmIAAAAAAAAAmHIExQAAAAAAAAAw5d7wuwBgVB599czvEgAAAAAAAIBAYkcxAAAAAAAAAEw5gmIAAAAAAAAAmHIExQAAAAAAAAAw5QiKAQAAAAAAAGDKERQDAAAAAAAAwJQjKAYAAAAAAACAKff/a+9ufttK08TQP/bUzFQG0wLlzkaxFl3Uf0C5BgjQGaDbFBAgW9Je9srUMoAW5Hh3dzXUQkCyo2pVSxcV3NUACciauehpYIC2Rdx/gKwGYkcXQcYi1PNRmUnEu3DIJvVJSfw4POf3AwST0stzHskvqUcPn/O+ny07AAAAgHk4OTmJzc3NG8fs7e3F3t7egiICANLm4OAgDg4ObhxzcnKyoGgeRqEYAABIpfPz8/jw4cONY87OzhYUDQCQRmdnZ7fmG6tCoRgAAEilx48fx8bGxo1j1tbWFhQNAJBGa2tr8fTp0xvHnJycxPn5+YIiuj+FYgBm7oc330w17vOXv5hzJABk2cbGRrx//37ZYQAAKTbNMlabm5sr0XVsMzsAAAAAgIxTKAYAAAAAyDiFYgAAAACAjFMoBgAAAADIOIViAAAAAICM+2zZAQBc5c//6i+nGvdnP/v5nCMBAAAASD+FYhLj5OQkNjc3bxyzt7cXe3t7C4oIAEiTg4ODODg4uHHMycnJgqIBAIBkUSgmMc7Pz+PDhw83jjk7O1tQNGTdD2++WXYIAMzY2dnZrbkGAABklUIxifH48ePY2Ni4ccza2tqCogEA0mZtbS2ePn1645iTk5M4Pz9fUEQAAJAcCsUkxsbGRrx//37ZYQAAKTXNElabm5u6jgEAyKTHyw4AAAAAAIDlUigGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyDiFYgAAAACAjPts2QEAPMSf/9Vf3jrmz3728wVEAgAAALC6dBQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGfbbsAADIrh/efDPVuM9f/mLOkQAAAEC26SgGAAAAAMg4hWIAAAAAgIyz9ASQen/+V3851bg/+9nP5xwJAAAAQDLpKAYAAAAAyDiFYgAAAACAjLP0BAAArKhOpxONRiPa7Xb0er2IiMjn81EqleL169eRy+Xuddz9/f1otVrx7t276Pf7kc/no1AoxO7ubhSLxcQcM20slwUALJNCMZApz379y2u/9sN//68LjAQA7q/f78erV6/i6Ojo0td6vV7s7+/H/v5+NBqNqFQqUx+33W5HuVyOfr8fxWIxms1m5PP56HQ6UavVYmdnZ/T5aYvQ8zgmAACzp1AMAAArpN/vx/b29qiD+Ca7u7txfHwcjUbj1rHtdjt2dnYiIqJSqUw8ZtilvL29He12O7a3t+P4+PjWwu48jgkAwHxYoxgAAFZIuVyOXq8XhUIhms1mdLvd6Ha70Ww2o1qtXhp/eHh4ZefxuH6/H+VyOSI+FXCvKyw3m82I+NS1PBy/yGMCADA/CsUAALAiDg8Po91uR7VajePj4yiVSpHP50fdufV6PbrdbhQKhYnHvXr16sbjDpeGiIio1WrXjhueJ+JTt/Dh4eFCjwkAwPwoFAMAwIqo1+tRLBajXq9fOyafz4+6dIf6/X602+0rx/d6vYmvvXjx4sYYXr58Obp9XQF4HscEAGC+FIoBAGAFdDqd6PV6l4rAV8nn85eKyZ1O58qx4+OKxeKtawQPu38jPhWgr1rWYh7HBABgvhSKSYyTk5PY3Ny88ePg4GDZYQIAK+rg4ODWXOPk5GTZYV7rzZs3UalUpt7srVgsTtz/27/92yvHjS/1cHHJiuvk8/mJuBZxTAAA5uuzZQcAQ+fn5/Hhw4cbx5ydnS0oGgAgbc7Ozm7NNZLs5cuXjtqfVAAAMxBJREFUE8XU21ws0G5tbV0ac7HL+Msvv5z62L1eLyLiUvfvPI4JAMD8KRSTGI8fP46NjY0bx6ytrS0oGgAgbdbW1uLp06c3jjk5OYnz8/MFRXQ303bmDg03khu6qsh8cd3iaQvRF8d1Op1RfPM4JgAA86dQTGJsbGzE+/fvlx0GAJBSe3t7sbe3d+OYzc3Nle46Hjfszh26uBRFRMTbt28n7k+7rMWPf/zjifvv3r0bFXXncUwAAOZPoRjg//jVb76fatxPf/LFnCMBgId79+7d6HalUrlyzMVi8n27f7vd7lyPCQDA/CkUAwBACjUajdHtWq125ZiLRd37Gl/mYh7HvK/hZskPNU03OgCQPgcHB3FwcPDg4yR5w+RxCsUAAJAyvV5vtKlcvV6/tqv3vsXYi8tJfPz4ca7HvK9pNkuehg2VASCbVn0z5LtSKAYg8X54881U4z5/+Ys5RwKwGur1ekR8Ws6hWq3O/Xyz6P6dxzGn2Sx5GjZUBoBsmmYz5GkkecPkcQrFQCo8+/Uvlx0CACRCp9OJw8PDyOVy0Wq1bhyby+VmUpAd7waexzHvy2bJAMBDzGr5qVXZMPnxsgMAAABm59WrVxER8d133926kdyTJ09mcs7x48zjmAAAzJ9CMQAApMTu7m50Op1oNptRKBRuHX/frt2LHcMXO4pnfUwAAOZPoRgAAFLg8PAwDg8Po9FoRKlUmuoxz549m7g/7ZIRFzea29ramusxAQCYP4ViAABYce12O3Z3d6PRaESlUpn6cdvb2xP3e73eVI/rdrsT94vF4lyPCQDA/CkUAwDACut0OrGzsxP1ev1OReKIy92/0xZ1x7uEc7ncxFrI8zgmAADzp1AMAAArqtfrxfPnz6NarUa1Wr3z4wuFwsRawG/fvp3qce/evRvdvlgYnscxAQCYP4ViAABYQb1eL7a3t6NSqUS9Xp/6Mfv7+xOfe/Hixeh2p9OZ6jjj42q12qWvz+OYAADM12fLDgBg1fzqN99PNe6nP/lizpFw0Q9vvplq3OcvfzHnSADmq9/vx87OTrx48WLqInFERLlcjq+//nric7u7u3F4eBgRn9Y6vs34mHw+f+VawvM4JgAA86VQDCzFs1//ctkhzN00BWXFZADuqt/vx/b2duTz+ajValOtAdzr9UZduoVCYeJrhUIhisXiqFh7dHQUpVLp2mM1m83R7es6f+dxTAAA5kuhmEt6vV7s7u7G7u7ujQk9AACL9/z58+j1etHr9WJra+tOj200Gtd+fnisr7766tocsN/vjzqFi8XijZvnzeOYAADMjzWKGen3+1Eul2Nrayva7XZ8/Phx2SGRIM9+/cupPgCA+dne3p56zd+rXFeEzefzo67eTqdzaR3joefPn0dERC6Xm+gCXtQxAQCYHx3FRL/fj6+++ura5J2HmbZ4+u5P/nTOkQAAq6xcLs+lSDxUKpWi1WpFuVyOWq0Wb9++jdevX0c+n493795FrVaLTqcThUIhvvvuu8jlcreecx7HBABgPhSKM25/fz8ajUbk8/llhwIAwA0W0W1bLBbj9PQ09vf3482bN/H8+fPo9/uRy+Xi2bNn0Ww277w02TyOCQDA7CkUZ1in04lisRjVajUiIg4PD2N3d3fJUQEAsGzVanWUIyb5mAAAzI5CcYZd3PH62bNnS4oEAAAAAFgmm9kxYk04AAAAAMgmHcVwT9NuUpc1fi4AAAAAq0dHMQAAAABAxukoBliiX/3m+6nG/fQnX8w5EgAAACDLFIphxUy7tMO7P/nTOUcCAAAAQFooFENCWNsXAAAAgGVRKCYxTk5OYnNz88HH2dvbi729vRlEtNoUngHIkoODgzg4OHjwcU5OTmYQDQAArB6FYhLj/Pw8Pnz48ODjnJ2dzSAaAGCVnJ2dzSSPAACArFIoJjEeP34cGxsbDz7O2traDKIBAFbJ2tpaPH369MHHOTk5ifPz8xlEBAAAq0WhmMTY2NiI9+/fLzsMIAN+ePPNVOM+f/mLOUcCzMqslp7a3NzUmQwAQCY9XnYAAAAAAAAsl45iuMAmcAAAAABkjY5iAAAAAICM01EMsAJ+9Zvvpxr30598MedIAAAAgDTSUQwAAAAAkHEKxQAAAAAAGadQDAAAAACQcQrFAAAAAAAZp1DMSL/fX3YIAAAAAMASKBQz0uv1Ju4rHAMAAABANny27ABIhn6/H7VabeJzb968iWq1uqSIgPv41W++n2rcT3/yxZwjAQAAAFaJjuIM6/f7US6XY2dnJ9bX1y91FHc6nXj06FHs7OxEuVyOTqezpEgBAAAAgHnSUZxhuVwums3mssMAAAAAAJZMRzEAAAAAQMYpFAMAAAAAZJylJwAAgFQ6OTmJzc3NG8fs7e3F3t7egiICANLm4OAgDg4ObhxzcnKyoGgeRqEYAABIpfPz8/jw4cONY87OzhYUDQCQRmdnZ7fmG6tCoRgArvHDm2+mGvf5y1/MORIA7uPx48exsbFx45i1tbUFRQMApNHa2lo8ffr0xjEnJydxfn6+oIjuT6EYIIN+9Zvvpxr30598MedIAGB+NjY24v3798sOAwBIsWmWsdrc3FyJrmOb2QEAAAAAZJyOYgAAgBXy53/1l1ON+7Of/XzOkQAAaaKjGAAAAAAg4xSKAQAAAAAyTqEYAAAAACDjFIoBAAAAADJOoRgAAAAAIOM+W3YAMHRychKbm5s3jtnb24u9vb0FRQQApMnBwUEcHBzcOObk5GRB0QAAQLIoFJMY5+fn8eHDhxvHnJ2dLSgaACBtzs7Obs01AAAgqxSKSYzHjx/HxsbGjWPW1tYWFA0AkDZra2vx9OnTG8ecnJzE+fn5giICAIDkUCgmMTY2NuL9+/fLDgMASKlplrDa3NzUdQwAQCbZzA4AAAAAION0FANwrV/95vtbx/z0J18sIBIAAABgnnQUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScNYoBeJBp1jGOsJYxAAAAJJlCMQA80A9vvplq3OcvfzHnSAAAAOB+LD0BAAAAAJBxCsUAAAAAABmnUAwAAAAAkHEKxQAAAAAAGadQDAAAAACQcQrFAAAAAAAZp1AMAAAAAJBxCsUAAAAAABn32bIDAAAAWEXPfv3LmR7v3Z/86UyPBwBwFwrFACzEr37z/VTjfvqTL+YcCQAAAHCRpScAAAAAADJOoRgAAAAAIOMUigEAAAAAMs4axQAAAAkw7eZ4Nr0DAOZBoRgAFuSHN99MNe7zl7+YcyQAAAAwydITAAAAAAAZp6MYAABghUy7RMWfT3m8P/vZz+8fDACQGjqKAQAAAAAyTqEYAAAAACDjLD1BYpycnMTm5uaNY/b29mJvb29BEQHL8KvffD/VuJ/+5Is5RwKkzcHBQRwcHNw45uTkZEHRAABAsigUkxjn5+fx4cOHG8ecnZ0tKBoAIG3Ozs5uzTUAACCrFIpJjMePH8fGxsaNY9bW1hYUDQCQNmtra/H06dMbx5ycnMT5+fmCImLesn7F2rSb3oXN7ADg3tJ01ZpCMYmxsbER79+/X3YYAEBKTVMQ3Nzc1HWcIq5YAwDmLU1XrSkUAwAAqeSKNQBg3tJ01ZpCMQAAkEquWAMA5i1NV609XnYAAAAAAAAsl0IxAAAAAEDGWXoCAAAgw354881U4z5/+Ys5RwIALJOOYgAAAACAjFMoBgAAAADIOIViAAAAAICMs0YxACvpV7/5/tYxP/3JFwuIBAAAAFafjmIAAAAAgIzTUQwACWP3eQCSyO8nAEg3HcUAAAAAABmnUAwAAAAAkHGWngAgtabZ8C7CpncAAACgoxgAAAAAION0FAMAADAzNr0DgNWkoxgAAAAAIOMUigEAAAAAMs7SEwBknk3vAAAAyDodxQAAAAAAGaejGAAAIMNcWQMAROgoBgAAAADIPIViAAAAAICMUygGAAAAAMg4axQDwJSs4QgAAEBaKRQDAACwcD+8+WaqcZ+//MWcIwEAIhSKSZCTk5PY3Ny8ccze3l7s7e0tKCIAIE0ODg7i4ODgxjEnJycLigYAAJJFoZjEOD8/jw8fPtw45uzsbEHRAABpc3Z2dmuuAQAAWaVQTGI8fvw4NjY2bhyztra2oGgAks8lu3A3a2tr8fTp0xvHnJycxPn5+YIiAgCA5FAoJjE2Njbi/fv3yw4DAEipaZaw2tzc1HUMAEAmKRQDAACQWK6gAYDFUCgmM579+pfLDgEAAAAAEkmhGABm7Fe/+f7WMT/9yRcLiAQAZmea328RfscBwKp6vOwAAAAAAABYLoViAAAAAICMUygGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyLjPlh0AAAAAPNQPb76ZatznL38x50gAYDXpKAYAAAAAyDiFYgAAAACAjLP0BAAAAJlhiQoAuJpCMQAswa9+8/1U4376ky/mHAlAep2cnMTm5uaNY/b29mJvb29BEQEAaXNwcBAHBwc3jjk5OVlQNA+jUAwAKadzCsiq8/Pz+PDhw41jzs7OFhRNdngzFIAsOTs7uzXfWBUKxQAAQCo9fvw4NjY2bhyztra2oGgAgDRaW1uLp0+f3jjm5OQkzs/PFxTR/SkUAwAAqbSxsRHv379fdhisKFfkADCNaZax2tzcXImu48fLDgAAAAAAgOVSKAYAAAAAyDiFYgAAAACAjLNGMQAkmJ3jAQAAWASFYgAAABYuLW+G2vQOgLSw9AQAAAAAQMYpFAMAAAAAZJxCMQAAAABAxlmjGAAAAObMWsYAJJ1CMYlxcnISm5ubN47Z29uLvb29BUUEkC3+gCXtDg4O4uDg4MYxJycnC4oGAACSRaGYxDg/P48PHz7cOObs7GxB0QCslrTsHA/zdHZ2dmuuAbBs3rgFYFkUikmMx48fx8bGxo1j1tbWFhQNAJA2a2tr8fTp0xvHnJycxPn5+YIiAgCA5FAoJjE2Njbi/fv3yw4DAEipaZaw2tzc1HUMCeOqGQBYDIViAAAAWDGWqABg1h4vOwAAAAAAAJZLRzEAAACklM5jAKalUAwAAMDKs5YxADyMQjEAZMg0f0T7AxoAuI4OZYD0UigGAACAjJu2AAxAetnMDgAAAAAg43QUAwB34pJTAFaZtYwXQ74AsHoUismEg4OD+H9b/0/80ed/GKV/86+XHQ7M1dFf/038ww//03wnMw4ODuLs7CzW1tZib29v2eEAGSG/JKn+w1/85/jtP/xj/OiP/kX8+3/3b5cdDozI2Ugqc/N3FIrJhIODg/jw4UP8y7UfSeRJvf/0138T/+Pst+Y7mTF8jX/69GnmEztgceSX6beqncf/8S/+S/y3j6fxr56sKxSTKHI2ksrc/B2FYgBgwqr+YQwArJ5Zb6JnKQuA+1MoBgAAAFLB2sgA96dQDAAAAPfkSpzVpKAMcJlCMQAAAMAVFJSBLFEo5kr7+/vRarXi3bt30e/3I5/PR6FQiN3d3SgWi8sOD4AV4A8rYJz8kqzTeUyENZmBZFMoZkK73Y5yuRz9fj+KxWI0m83I5/PR6XSiVqvFzs7O6PO5XG7Z4QKwRP7gBaYhvwSyYNYFYIBlUChmpN1ux87OTkREVCqVaDQao6/l8/kolUqxvb0d7XY7tre34/j4WDIPAMC15Jdwd96I5S5cwQXMkkIxERHR7/ejXC5HxKekfTyJH9dsNmNrayt6vV6Uy+VotVqLDDNVjv76b+Iffvif8Uef/2GU/s2/XnY4I+KaXhJjSrKk/rySGFcSY4q4f1y3/cH77q/+MiIi/uxnP39QfElycHAQZ2dnsba2Fnt7e8sOZ0RcLJL8cv6S8vsiCXGIIVn+w1/85/jtP/xj/OiP/kX8+3/3bzMdR2JiaP7fM41hVQvPSck5khCHGLiKQjEREaPLASMiarXateOGnR9HR0fRbrfj8PAwKpXKgqJMl//0138T/+Pst/Ev136UqERSXNNLYkxJltSfVxLjSmJMEfOL69mvfxkRET/89/9647hV+oPk4OAgPnz4EE+fPk1U0isuFkl+OX9J+X2RhDiyGMN1b8T+0//6X6N/p+1Ojphth/J//Iv/Ev/t42n8qyfrSy0UJyGOtMawqp3MSck5khCHGLiKQjHR6/Wi3W6P7r948eLG8S9fvoyjo6OI+JT0S+QBABgnv4TVY8kL5mG8oDz4x38Y/busNZ0vxpC0QjYsm0IxUa/XR7eLxeKt68KVSqXR7X6/H0dHRxOfAwAg2+SXkF7TFJSHXc2QdMsuWE9jVbu3WU0KxcTh4eHodqFQmOox+Xw+er1eRES8efNGIg/Ag936h2f9/4qIy51MOkMgeeSXQMTdl7+4iU5m0miW3dV3Pc6sOrzl3umiUJxxnU5n4v6XX3451eMKhcIokR9eJggAi3DxD86LazG++6u/TNXGeLBq5JfAPFgaA5LpIUXmhxSrFajnQ6E448bXjov41MkxjYvjOp3O1N0iADBPz379y1s3xrsLSSjcjfwSWKbxgvJ9N/Ybp/AMyTTLZUPushRI2ikUZ9zbt28n7t+2ftzQj3/844n77969k8gDkBizusw1InQowx3JL4E0eWhOMYti9UNZMxqYlkJxxg0v7xu6b8dHt9udWUwAkCTPfv3LaP/6l1ONHXYd3XQZnQ5l0k5+CZBMyyxWD8//0Dhm3eF9lzh0l5MFjwaDwWDZQbA86+vr0e/3R/ennQ5HR0dRLpdH9yuVSjQajXvF8Ad/8Afxz//8zxER8fjx43sdY9yPfvSj+OM//uOJz52cnMT5+Xk8fvQonvzoj6955GJ9/O3fxflgkKiYIsR1F0mMKUJcd5XEuJIYU4S47mIWMf3TH/zhTGP60R/+4e9+Hz5+HBsbGzM9/kPMIq6/+7u/i9/+9rcPjuX8/DwiIn7/938//umf/unBx8si+eXiJOX1LwlxiCFZcSQhhqTEIYZkxZGEGJISR1Zi+IPPbu+R/f9O+5/iuCIXzVqOqVCccY8ePZq4P+10aLfbsbOzM7pfKpWi2WzeK4bf+73fGz1hAACS4PHjx/G///f/XnYYK0l+CQBwtaTnmJaeYCbGu0bu6vPPP49//Md/jMH/effmoa7q+AAA0m2W3R6PHj2Kzz//fAZR8RDySwBg2bKWYyoUZ1wul3tQEj5+nPv6+7//+wefHwCAZJBfAgCspoe/vc5Ke/LkSaKOAwDAapNfAgCsJoXijLtvp8bFLpGHdHwAAJAe8ksAgNWkUJxxz549m7g/7WWCHz9+nLi/tbU1q5AAAFhh8ksAgNWkUJxx29vbE/d7vd5Uj+t2uxP3i8XizGICAGB1yS8BAFaTQnHGXez4mDaRH+8MyeVykc/nZxkWAAArSn4JALCaFIozrlAoTKz/9vbt26ke9+7du9Hti38MAACQXfJLAIDVpFBMvHjxYnS70+lM9ZjxcbVabeYxAQCwuuSXAACr59FgMBgsOwiWq9PpTKwld9uUaLfbsbOzExER+Xz+0npyAABkm/wSAGD16CgmCoXCxGYhR0dHN45vNpuj27o9AAC4SH4JALB6dBQTEZ82Gdna2oqIT4n98fHxleP6/X6sr69HxKedqFut1sJiBABgdcgvAQBWi45iIuLTJX7DTo5OpxP7+/tXjnv+/HlEfNqJerzzAwAAxskvAQBWi0IxI6VSKVqtVuRyuajValEul6PT6US/3492ux3b29vR6XSiUCjE999/P7GbNQAAXCS/BABYHQrFTCgWi3F6ehr1ej16vV48f/481tfXo1wux5MnT6LZbMbx8fHCkvj9/f3Y2dmJ9fX1ePToUWxtbUW5XI52u53qc5NNSZ9zvV5vtNEQPNRwPt22bumsJP35BWm2qPwybXmj1630SNvcHLfo3+fMTprmZafTid3d3dja2opHjx6Njlmr1aLf7882eOYuTXOz1+tNzM319fXY3t6O3d3d6PV6M45+RgaQQK1Wa5DL5QYRMSgWi4NWqzXodruDZrM5yOfzo8+fnp6m6txk07Ln3Onp6SAipvqoVCpziYHsOD09HZRKpdGcajQacz3fsp9fwPylLW/0upUeaZub4xb9+5zZSdO8vDgPr/swP1dDmubmYDAY1Ov1W+dmvV6f+ffyUArFJE6r1bq1KFUoFAYRMcjn8zN9kVjmucmmJMy5aX6BDT+63e7Mz082nJ6eDqrV6kIT9yQ8v4D5Slve6HUrPdI2N4eW8fuc2UnTvDw9PR0V8DS8rL40zc3BYDAoFouDiBjkcrlBqVQaVKvVQalUunLONpvNmX0vs6BQTKKcnp6O3sXJ5/PXjut2u6MnVbFYXPlzk01JmXPDGG77MN+5r3q9Psjn86OEaRF/WCbl+QXMT9ryRq9b6ZG2uTm0jN/nzE7a5uVwHhYKhUGz2Rx0u91RB+hVb2YksSDHJ2mbm8P5d1238FWNWkmSrGjIvPGk47ZkY9aXOi3z3GRTEuZco9EYRMSgWq0OWq3WjR+6lriP4+PjwfHx8ej+cM7N+zU0Cc8vYL7Sljd63UqPtM3NwWB5v8+ZnTTNy/G/Ya7T7XZHXaDDj1wu96Dvg/lI09wcFpRbrdaNx6pUKhNzc/z1ddkUikmM8XdoIuLWolSz2ZzZC/4yz002JWXO5fP5G985hVk7Pj6e+x+WSXl+AfOTtrzR61Z6pG1uXmcRv8+ZnbTNy2Fn+13PPU0Bj8VK29wslUpTrTt8cZ+gJK1V/DggIer1+uh2sVi8defrUqk0ut3v9x+00+4yz002JWHOHR0dRa/Xi1qt9uBjwbRum+uzkITnFzBfacsbvW6lR9rm5nUW8fuc2UnTvOx0OtHr9aLZbN567nw+P3H+4eNJjjTNzeHnq9XqrefO5XKRz+cn7ieFQjGJcXh4OLpdKBSmesz4E+vNmzcreW6yKQlz7quvvopcLhcvXrx48LEgSZLw/ALmK215o9et9Ejb3CQd0jQv37x5E5VKZerCWrFYnLj/t3/7t1M9jsVI09yMiGi1WlOf/+PHj6Pbz549m/px86ZQTCJcfFfvyy+/nOpx40/m+76TtMxzk01JmHOdTic6nU70+/1YX1+Pra2t2N3dNZdZeUl4fgHzlba80etWeqRtbpIOaZuXL1++vNQlPO2xIiK2tramfizzlba5eRf9fj/6/X5EfHozY9pC9SIoFJMI7XZ74v74uzQ3uTjuPpeRLPPcZFMS5tzF5SZ6vV4cHh5GuVyOR48eRblcNqdZSUl4fgHzlba80etWeqRtbpIOaZuXhULhTpfpD4txd42B+Uvb3LyLb7/9dnS8aZZRWSSFYhLh7du3E/enfeH/8Y9/PHH/3bt3K3VusmnZc67X6136xXjR0dFRbG9vx+7u7r3OAcuy7OcXMH9pyxu9bqVH2uYm6ZD1ednr9SbuX1yKguXJ6tzs9/uxu7sbhUIhWq1WotYnjoj4bNkBQMTlF+/7vpvT7XZX6txk07LnXD6fj0ajEf1+P7rdbrTb7UsxDR0eHsa7d+/i+Pj4XueCRVv28wuYv7TljV630iNtc5N0yPq8HC/kVSqVex+H2cvi3Oz1erGzsxO5XC6+++67xBWJI3QUkxDXFanu6uJlJUk/N9mUhDlXqVSiWq1Go9GIbrcbp6enUa/Xr/xF1el0Ymdn5/6BwgIl4fkFzFfa8kavW+mRtrlJOmR9XjYajdHti8vvsVxZm5tHR0extbUVvV5vtFfQ/v7+TOKYJYViEuG+L/wXi1rju0auwrnJpiTOuVwuF9VqNU5PT6PZbF46V7vdTuQvMbgoic8vYLbSljd63UqPtM1N0iHL87LX643WkK3X69YnTpgszM1+vx/7+/uxtbUV5XL50tdrtdqVn18mhWJSZZnvgHv3nUWb15wrlUrx/fffX9p59auvvprL+SCJvKZD+qUtb/S6lR5pm5ukwyrOy3q9HhGflguoVqszjIgkSfLcbLfb0e12o1gsXrs+9tHRUaKashSKSYRZrctyn+Ms89xk0yrMuVwuF8fHxxPF4n6/f+smeLBsq/D8Ah4mbXmj1630SNvcJB2yOi87nU4cHh5GLpeLVqs1kziYrSzMzVKpFI1GIxqNRrRarRgMBtFoNC49rlarJeaNOoViEuHJkydLO84yz002rdKc+/rrryfuS7JIulV6fgH3k7a80etWeqRtbpIOWZ2Xr169ioiI7777zpITCZXVuVmpVOL4+PhSsfjw8HAmMT2UQjGJcN93cy6+47LId5JmcW6yaZXmXKFQmLhEZlaL/sO8rNLzC7iftOWNXrfSI21zk3TI4rzc3d2NTqcTzWbz0nJ6JEcW5+ZQPp+P7777buJzb9++vdexZk2hmER49uzZxP1pW+4vLhy+tbW1Uucmm1Ztzu3s7CzkPDALq/b8Au4ubXmj1630SNvcJB2yNi8PDw/j8PAwGo1GlEqlqR/H4mVtbl5UKBQm5mhSmrIUikmE7e3tifvTPkG63e7E/esWB0/qucmmVZtz45dquRyRpFu15xdwd2nLG71upUfa5ibpkKV52W63Y3d3NxqNRlQqlemCZGmyNDev8/Lly9FtaxTDmIvv5kz7JB1/IuVyuXutPbTMc5NNqzbnxs/jckSSbtWeX8DdpS1v9LqVHmmbm6RDVuZlp9OJnZ2dqNfrisQrIitz8ybjS6Mk5W9thWISoVAoTDwppl2b5d27d6PbF5/oq3BusmnV5tz4eS1DQdKt2vMLuLu05Y1et9IjbXOTdMjCvOz1evH8+fOoVqtRrVbvHCfLkYW5eRdJeQ1WKCYxXrx4Mbrd6XSmesz4uFqttpLnJptWac6NX17jckRWwSo9v4D7SVve6HUrPdI2N0mHNM/LXq8X29vbUalUol6vT3X8Xq8X+/v7U41lvtI8N6cx3smcmKasASTE8fHxICJGH7dptVqjsfl8fmXPTTat0pzL5/ODiBhUq9WFnpd06na7E3O/0WjM/Byr9PwC7idteaPXrfRI29y8ziJ+nzM7aZ2Xp6eng3w+P6hUKneKqVAoDI6Pj+/0GOYjrXNzWvV6fRARg1wuN5PjzYKOYhKjUChMdCseHR3dOL7ZbI5u3/ZOzuHhYdRqtWvXnZnnueEqy5zvd3F0dBS9Xi9yuVy8fv36wceDWWzS4DUdSFve6HUrPdI2N6+TlE2XmE4a52W/34/t7e3I5/Oj89/20W63R5uYja8Ny/KkcW7exVdffRUREV9//fVMjjcTy65Uw7jxd6YLhcK1405PT0fjisXijccsFosT7xKdnp4u7Nxwk2XM91arNcjlcqNj3fROerfbHY31jjuz0mw2J+ZovV6/0+O9pgNDacsbvW6lR9rm5lUe+vucxUvbvCwUChPnvsuHDvhkSdPcrNfrg0KhMKhWq9eec6harQ4iknflrkIxiTOedFyXcAx/KeRyuVuffHf5pTDrc8NtFj3fK5XKpTFXXao1LCjn8/lBt9u99/cH44aXB47Pv5sSsqt4TQfGpS1v9LqVHmmbm+Nm8fuc5UjLvHxIkThCGSyJ0jA3x4vJw4/risClUunG8y2TZwiJNN71WCqVBsfHx4PT09NBq9UaPUELhcJUSc3wOMOPVqu1sHPDNBY538fXVRr/yOVyg1KpNKhUKqNzTvMuKNzm9PR0UCqVLr2rf/GjWCyO5v9NvKYDF6Utb/S6lR5pmpuz/n3O8qz6vBwW2O77cdf1jFmcVZ+bg8Hg0pto439rV6vVQbFYHN1PakOWQjGJNmzbHz5hc7ncoFgsDprN5tTHaLVag3w+P8jlcndq6Z/FueEuFjXfu93uoFKpjMYNz5XP5welUmnQbDb98UlieU0HrpO2vNHrVnqkbW6SDuYlSbXKc/P09HRQrVYvHWP4t3aj0Uj839qPBoPBIAAAAAAAyKzHyw4AAAAAAIDlUigGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyDiFYgAAAACAjFMoBgAAAADIOIViAAAAAICMUygGAAAAAMg4hWIAAAAAgIxTKAYAAAAAyDiFYgAAAACAjFMoBgAAAADIOIViAAAAACCTer1e1Gq12NnZWXYoS/fZsgMAAIBp9Xq9aDQa0el0otVqLTscAABW1OHhYdTr9ej1ehERkc/nlxzR8j0aDAaDZQcBAAA3uSqR73a7S44KAIBVt76+Hv1+X34Zlp4AAGAFVCqV6Ha7kcvllh0KAABLUqvVZn5MncS/o1AMAMBcSOQBAJiV3d3daLfbMz/ukydPZn7MVaVQDADAzEnkAQCYlaOjozg8PFx2GKmnUAwAwExJ5AEAmJV2ux3lcnnZYWSCQjEAADMjkQcAsqrX60Wv14t+vz+T462vr4828l2UXq8X+/v7sbW1NTp3p9OJnZ2dePToUayvr8fu7u7EYzqdTpTL5VhfX4/19fXY2dm5Me5erxe7u7uxvb0dOzs7sbW1FTs7O3F0dHRp7NHRUezs7Eyc69GjR6NYrtLv90fHX19fj62trSiXy1Nf7TZ8/Pr6ejx69Ci2t7evjO3i9zTL//tlUSgGADJJIi+RX/VEHgBIlmGu9OrVqwcfa39/P/r9fjQajRlEdrthDrm1tRW1Wm2UH+7u7sbz588jIqJQKES/34/Dw8NRY0CtVovt7e3o9/vx7Nmz6Pf70W63Y3t7+8rzHB0dxdbWVnz8+DGOj4+j1WpFt9uNiIhyuXxpj4tSqRSDwWC0T0WhUIjBYBCDwSBOT08vHX9/fz+++OKL2N7eju+++y5OT0+j0WiM8tTb9tDodDrxxRdfxLfffhvPnj0bfa5cLt+YY87y/36pBgAAGZTP5wcRMSiVSg8+Vr1eH0TEoFqtziCy2x0fHw+KxeIgIkYf3W53UKlUBrlcblAsFgeFQmH0teH3WK1WBxExKBaLE4/P5XJXnqfZbF75Mxo+9rrvd/izLRQKN34f9Xp9kMvlBo1GY3B6ejoYDAaDVqs1iuuq4w/Pnc/nB8fHx4NcLjf6nsd/Hs1m89rzzvL/HgBgaJY5xvBY1+Vp8zLMF4f51sWcqlKpjL5eLBYH9Xp94uvHx8ejrzcajUvHvy5XG3/cMC8cN01+OYy91Wpd+tp4btztdie+Nswjc7ncoFAoDI6Pj0df63a7g1wuN/p5XCct+aWOYgCABxp2eixqXd5CoRCtViuq1eroczs7O7GzsxOnp6fRarXi+Pg4KpVKRPyu0/fHP/5xDAaDaLVaozERMeoMuWjYKfLy5cuJz9fr9Yj4XafLfdRqtajVatFsNqNSqUQul4uIiGKxGIVCYXT867qdP378GK9evRp1igy7UYbHua1bBAAgqY6OjkY5UL/fv/VqqVn68ssvR7fr9XqUSqWJr49frZbL5Sby0YhPeeqw+7fVak187aar2IY5XETEu3fv7hx3p9OJ/f39KBaLUSwWL3399evXUx3nu+++G+WiERH5fD5evHgRETfHnxYKxQAADyCRl8gDAMzSV199deP9RRnP+YaGuePF21c97mI+ls/no9FoXJm3PnnyZHT7Po0IwyaB6/bKKJVK0e124/T09Nq4nzx5cuX3PL6MRtpzzM+WHQAAwCq7KpG/mPguwrwS+X6/v7RE/rpkfRjDNIn8dd83AEASdTqd6HQ6V35u/A3yZbkuNxs3zBWvyhOHV7wN9fv9+PbbbyfGfvz48c5xDfe3GK4rfJVZ5IVp3+NCRzEAwD3dlMgnwSwS+fEu5OESFePLVMwzkZ8m/pukPZEHANLnuu7hWW9qd93SY4vS6XRid3c3vv3226hUKpcKyHeR9i7fRVIoBgC4J4n83UnkAQCuNr6MWbPZnPjaLHPBfr8f29vbl5YeW4R+vx87OztRLpejXq8/KK8cP+aQXPNhFIoBAO5BIn//Yw5J5AEAfmfYhFCpVKJUKl1aKmEWOWa/34/nz59Hr9eLnZ2dBx/vruf+4osvot1uR6vVevDVY0PjS3IsI2dOE4ViAIB7kMjfj0QeAOBqw/xxuJ/D8N+her3+4HM8f/58tEzacBPgRanVatHv9yOXy13Kne+znNm4Ya56eHh4YzNCr9eL/f39B50rzRSKAQDuQSJ/fxJ5AIBJh4eH0e/3o1gsjnKvi1dz9Xq90V4Pd9XpdGJra2uUW85iP4i7evfuXURcvY/EbXtLDGO9btz4z6pcLl85rtfrRblcvvRzfWhumyYKxQAAdySRv/y5cRJ5AIC7GTYZXGw+uJgL3XUvjE6nE+VyOba3tyfeoM/lcqNNiu97JdxdNw4ebqIcERPNAJ1OJ169ejW63+12Lx1/+Nherzf6fL/fH+Xb9Xp9lIN2Op344osvolarxdHRUbTb7ajVarG9vR2vX7++Nq+WZyoUAwDcmUReIg8AMCvtdjt6vV7k8/koFosTX9vd3Z24f3R0NHVed3R0FNvb26N9NcYNNyve3d2dyGnfvn07un3VeYaNDBG/ayy4aJjHXrxybPx7qdVqsbW1Fevr6/Hq1auJPT/29/dja2trYuPo8cdub2+PcuZnz56NPn98fDxq4uj3+7G/vx/lcjl2dnZif38/6vV6lEqla+Pt9/tXfs/Hx8e3fs+pMQAAyKB8Pj+IiEGpVLrT41qt1iAiBvl8/tLXjo+PBxEx8XF6ejrVcZvN5qXHXvWRy+VGj6lWq6PPN5vNG+MpFApXnnf4c7iYFl6MJ5/PD3K53KBQKAy63e6lr1Wr1Ssfm8/nB6VSaZDP5yd+Ft1ud+LcFz8ajcaV8eZyuRt/tpVK5dZj3Pf/HgDgJvfNMYrF4o25S6FQmMiT6vX6nWMb5rBX5X2Dwae8cTyPGuad1Wp10O12B6enp4NqtTqRi0XEoFgsjuJuNBqXYs3n8xPxNhqN0c8pn89PfM+NRmOQy+UuPWZoeP5cLjcolUrX5tnVanXiHKVSadDtdi+Nuy7eYV57fHw8KJVKl/LUSqVy6VhpyS8VigGATJLIS+RXPZEHAJLlPjnG8A348WaAixqNxrWNA9Mazx2vayDg/tKSXz4aDAaDmzqOAQDSaGtrK3q9XpRKpYlL3W7S6/Via2srcrlcnJ6eXjnm8PBw4tK4m8ZeZ3d3d7TERKFQmLjcjYe7z/89AMBt7pNjDPO+arV642bI6+vrE8siNJvNK5dRuC22iE/LgFWr1akfy+3Skl9aoxgAYErD5P3iWsTjKpXKxLq6/X7/ynXhbjK+Cd7Lly/vFiQAACuh3++PmgNev35949gXL15M3L/LXhj9fn9iveCL6yDDkEIxAMAUJPIAAMzSMLcslUrXbuA7dHET5eEGeNMYb0KI+HTFGlxFoRgAYAoSeQAAZumrr76KiNubECIi8vn8pbzwpqUqxrVardFtTQjcRKEYAGAKEnkAAGbl6Ogo+v1+FAqFqRsDLuahw0aG23z77bej2+VyefogyRyFYgCAW0jkAQCYpbs0IQxddWXbbTlmr9eb2ARPIwI3USgGALiFRB4AgFnpdDrR6XQil8tFqVS602Mvbqp8214Y48ua5XK5yOfzdzof2aJQDABwA4k8AACzdJ8mhKHd3d2J+8Nc9TqWNeMuFIoBAG4gkQcAYFb6/X4cHR1FxOWmgmnk8/lLeeIwX73KeCPCy5cv73w+skWhGADgGhJ5AABmaZgLViqVS8uUTetiM8JwP42LLGvGXSkUAwBcQyIPAMAsDfesqNVq9z7GtHthDBseIj41MIw/ZtqNlskWhWIAgGtI5AEAmJXDw8Po9/tRLBYfvBfFNHthXLes2f7+/oPOTXopFAMAXEEiDwDALNXr9Yh4WBPC0MX9M3q93sQyZhGTy5rt7OxExKfmhFarNZGf9nq92N/fj3K5HNvb2/Ho0aMr99U4PDyM9fX1S1fMkR6fLTsAAIAkmnUiP17wHSby4wXhmxL58SLyRb1ebzTu3bt38ezZs4nx/X4/Xr16Fe12O16/fh3VavXB3w8AAHfTbrej1+tFxOWlyWalXq+P8suLhd63b9/Gx48fo9FoxHfffXfpscPHDa9y++qrr6LZbE6MOT4+jn6/H4eHh1Gr1R7cTEHyKBQDAFyQ9ET+YqzD47Tb7Wi329HpdKJQKES/34/t7e2I+FQwbrVaCsUAAEswbEKIiFGeOWvDHDafz186x/7+fuTz+Tg+Pr60LNqw4FsoFCLiU6PEcF+N8bGNRiM+fvwYR0dH8eTJk7l8DyyXQjEAwAVJTuQvGl42WCgURt3P7XY7CoVClMvlaDabUSgURucCAGDxbrpCbB5KpVJUKpX49ttv48mTJ1EqlSZy3OtUKpVRTvntt99eWkLt66+/jk6nc++Nnkk2axQDAFzQarViMBjM/WNYuB0m8rlcLvL5fFSr1eh2u3dOwIedxa1Wa7TO3LAzRJEYACBbGo1GnJ6eRrfbnapIHBGRy+VGOeXFpSciIt69exelUmmmcZIcOooBABKg0WhcucndXezs7IyWn4hYfOcKAACrr1wuT+SU4xqNRnz99ddLiIpF0FEMAJAS45vjTds1AgAA48ZzyvG9NPr9fjx58sSyEymmUAwAkBLDZSYiIj5+/LjESAAAWFX5fH60bNl4V3GtVhutX0w6KRQDAKTE+KZ4lp0AAOC+hg0Ib9++jYjf5Zn2vUg3hWIAgJQol8ujSwWvWlMOAACmsbOzExG/W3qiVqtZ2iwDbGYHAJACu7u7sbu7G/l8Ptrt9sR6cgAAcBfD5oNerxftdju+/PJLaxNngEIxAMCKa7fb8fHjx6hUKtHv90ef73Q6o8sGDw8Po1KpLClCAID063a7yw5hZsaXmKjVanF8fLzEaJIvLf/3lp4AADKp2+3GYDCIZrO57FDurN/vj5aW6PV6Ua/XR99HLpcbFYcbjUZEfOo2fvbs2XKCTaBV/r8HAFiUYU5pyYnsUCgGAFgx5XI5dnZ2Yn19PXZ2di4VPIeXCh4eHsbW1lZsb2+PEn0AAJjGkydPolQqjXJL0k+hGABgxZTL5cjlcvHkyZNotVqX1ot7/fp15PP5yOVysbu7a8kJAADupN/vx8ePH12BlTGPBoPBYNlBAAAAAADJUC6X4/Xr165KyxgdxQAAAABARETs7+/Hzs6OInEGKRQDAAAAQAb1+/3Y39+Pfr8fERFHR0cREZYuyyhLTwAAAABABpXL5VFxuFAoxMuXL6NarS45KpZFoRgAAAAAMqjdbke5XI4nT55Eo9GIYrG47JBYIoViAAAAAICMs0YxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxikUAwAAAABknEIxAAAAAEDGKRQDAAAAAGScQjEAAAAAQMYpFAMAAAAAZJxCMQAAAABAxv3/JhxtpX9goYcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "fig, axes = plt.subplots(3, 2, figsize=(14, 15), sharey=False)\n", "# 0,0\n", @@ -121,7 +176,7 @@ "axes[1, 0].hist(\n", " train_sig.distX,\n", " bins=50,\n", - " range=(0, 100),\n", + " range=(0, 150),\n", " alpha=0.5,\n", " density=True,\n", " log=False,\n", @@ -131,7 +186,7 @@ "axes[1, 0].hist(\n", " train_bkg.distX,\n", " bins=50,\n", - " range=(0, 100),\n", + " range=(0, 150),\n", " alpha=0.5,\n", " density=True,\n", " log=False,\n", @@ -139,7 +194,9 @@ " label=\"training sample, wrong pairs\",\n", ")\n", "axes[1, 0].set_xlabel(r\"$D_{x}$ [mm]\")\n", - "axes[1, 0].set_ylabel(\"Number of tracks (normalised)\", va=\"bottom\", ha=\"center\")\n", + "axes[1, 0].set_ylabel(\"Number of Tracks (normalised)\",\n", + " va=\"bottom\",\n", + " ha=\"center\")\n", "# 0,1\n", "axes[0, 1].hist(\n", " train_sig.teta2,\n", @@ -166,7 +223,7 @@ "axes[1, 1].hist(\n", " train_sig.distY,\n", " bins=50,\n", - " range=(0, 100),\n", + " range=(0, 150),\n", " alpha=0.5,\n", " density=True,\n", " log=False,\n", @@ -176,7 +233,7 @@ "axes[1, 1].hist(\n", " train_bkg.distY,\n", " bins=50,\n", - " range=(0, 100),\n", + " range=(0, 150),\n", " alpha=0.5,\n", " density=True,\n", " log=False,\n", @@ -208,7 +265,7 @@ "axes[2, 1].hist(\n", " train_sig.dSlopeY,\n", " bins=50,\n", - " range=(0, 0.02),\n", + " range=(0, 0.03),\n", " alpha=0.5,\n", " density=True,\n", " log=False,\n", @@ -218,7 +275,7 @@ "axes[2, 1].hist(\n", " train_bkg.dSlopeY,\n", " bins=50,\n", - " range=(0, 0.02),\n", + " range=(0, 0.03),\n", " alpha=0.5,\n", " density=True,\n", " log=False,\n", @@ -227,7 +284,8 @@ ")\n", "axes[2, 1].set_xlabel(r\"$|\\Delta t_{y}^{\\mathrm{match}}|$\")\n", "plt.savefig(\n", - " \"/work/cetin/LHCb/reco_tuner/thesis/filtered_NN_elec_variables.pdf\", format=\"PDF\"\n", + " \"/work/cetin/LHCb/reco_tuner/thesis/new_electron_NN_variables.pdf\",\n", + " format=\"PDF\",\n", ")\n", "# plt.show()" ] @@ -305,9 +363,7 @@ " label=\"training sample, wrong pairs\",\n", ")\n", "axes[0, 2].set_xlabel(r\"$D_{x}$ [mm]\")\n", - "axes[0, 0].set_ylabel(\"Number of tracks (normalised)\",\n", - " va=\"bottom\",\n", - " ha=\"center\")\n", + "axes[0, 0].set_ylabel(\"Number of tracks (normalised)\", va=\"bottom\", ha=\"center\")\n", "# 1,0\n", "axes[1, 0].hist(\n", " train_sig.distY,\n",