2024-02-25 12:06:14 +01:00
|
|
|
# flake8: noqa
|
2023-12-19 13:00:59 +01:00
|
|
|
from parameterisations.utils.parse_regression_coef_to_array import (
|
|
|
|
parse_regression_coef_to_array,
|
|
|
|
)
|
|
|
|
from parameterisations.utils.fit_linear_regression_model import (
|
|
|
|
fit_linear_regression_model,
|
|
|
|
)
|
|
|
|
import uproot
|
|
|
|
import argparse
|
2024-02-26 16:18:03 +01:00
|
|
|
import awkward as ak
|
2023-12-19 13:00:59 +01:00
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
def parameterise_magnet_kink(
|
|
|
|
input_file: str = "data/param_data_selected.root",
|
|
|
|
tree_name: str = "Selected",
|
|
|
|
per_layer=False,
|
|
|
|
) -> Path:
|
|
|
|
"""Function that calculates parameters for estimating the magnet kink z position.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_file (str, optional): Defaults to "data/param_data_selected.root".
|
|
|
|
tree_name (str, optional): Defaults to "Selected".
|
|
|
|
per_layer (bool, optional): If true also calculates parameters per SciFi layer. Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Path: Path to cpp code file.
|
|
|
|
"""
|
|
|
|
input_tree = uproot.open({input_file: tree_name})
|
|
|
|
# this is an event list of dictionaries containing awkward arrays
|
|
|
|
array = input_tree.arrays()
|
|
|
|
array["dSlope_fringe"] = array["tx_ref"] - array["tx"]
|
|
|
|
# the magnet kink position is the point of intersection of the track tagents
|
|
|
|
array["z_mag_x_fringe"] = (
|
|
|
|
array["x"]
|
|
|
|
- array["x_ref"]
|
|
|
|
- array["tx"] * array["z"]
|
|
|
|
+ array["tx_ref"] * array["z_ref"]
|
|
|
|
) / array["dSlope_fringe"]
|
|
|
|
array["dSlope_xEndT"] = array["tx_l11"] - array["tx"]
|
|
|
|
array["dSlope_xEndT_abs"] = abs(array["dSlope_xEndT"])
|
|
|
|
array["x_EndT_abs"] = abs(
|
|
|
|
array["x_l11"] + array["tx_l11"] * (9410.0 - array["z_l11"]),
|
|
|
|
)
|
|
|
|
# the magnet kink position is the point of intersection of the track tagents
|
|
|
|
array["z_mag_xEndT"] = (
|
|
|
|
array["x"]
|
|
|
|
- array["x_l11"]
|
|
|
|
- array["tx"] * array["z"]
|
|
|
|
+ array["tx_l11"] * array["z_l11"]
|
|
|
|
) / array["dSlope_xEndT"]
|
|
|
|
|
|
|
|
if per_layer:
|
|
|
|
layered_features = [f"x_diff_straight_l{layer}" for layer in range(12)]
|
|
|
|
rows = []
|
|
|
|
for i, feat in enumerate(layered_features):
|
|
|
|
scale = 3000
|
|
|
|
if "dSlope" not in feat:
|
|
|
|
array[f"x_l{i}_rel"] = array[f"x_l{i}"] / scale
|
|
|
|
array[f"x_diff_straight_l{i}"] = (
|
|
|
|
array[f"x_l{i}"]
|
|
|
|
- array["x"]
|
|
|
|
- array["tx"] * (array[f"z_l{i}"] - array["z"])
|
|
|
|
)
|
|
|
|
|
|
|
|
model, poly_features = fit_linear_regression_model(
|
|
|
|
array,
|
|
|
|
target_feat="z_mag_x_fringe",
|
|
|
|
features=[
|
|
|
|
"tx",
|
|
|
|
"ty",
|
|
|
|
feat,
|
|
|
|
],
|
|
|
|
keep=[
|
|
|
|
"tx^2",
|
|
|
|
f"tx x_diff_straight_l{i}",
|
|
|
|
"ty^2",
|
|
|
|
f"x_diff_straight_l{i}^2",
|
|
|
|
],
|
|
|
|
degree=2,
|
|
|
|
fit_intercept=True,
|
|
|
|
)
|
|
|
|
rows.append(
|
|
|
|
"{"
|
|
|
|
+ str(model.intercept_)
|
|
|
|
+ "f,"
|
|
|
|
+ ",".join([str(coef) + "f" for coef in model.coef_ if coef != 0.0])
|
|
|
|
+ "}",
|
|
|
|
)
|
|
|
|
|
|
|
|
cpp_decl = parse_regression_coef_to_array(
|
|
|
|
model,
|
|
|
|
poly_features,
|
|
|
|
"zMagnetParamsLayers",
|
|
|
|
rows=rows,
|
|
|
|
)
|
|
|
|
# now fit model for the reference plane
|
|
|
|
model_ref, poly_features_ref = fit_linear_regression_model(
|
|
|
|
array,
|
|
|
|
target_feat="z_mag_x_fringe",
|
|
|
|
features=["tx", "ty", "dSlope_fringe"],
|
|
|
|
keep=["tx^2", "tx dSlope_fringe", "ty^2", "dSlope_fringe^2"],
|
|
|
|
degree=2,
|
|
|
|
fit_intercept=True,
|
|
|
|
)
|
|
|
|
cpp_ref = parse_regression_coef_to_array(
|
|
|
|
model_ref,
|
|
|
|
poly_features_ref,
|
|
|
|
"zMagnetParamsRef",
|
|
|
|
)
|
|
|
|
|
|
|
|
model_endt, poly_features_endt = fit_linear_regression_model(
|
|
|
|
array,
|
|
|
|
target_feat="z_mag_xEndT",
|
|
|
|
features=["tx", "dSlope_xEndT", "dSlope_xEndT_abs", "x_EndT_abs"],
|
|
|
|
keep=["tx^2", "dSlope_xEndT^2", "dSlope_xEndT_abs", "x_EndT_abs"],
|
|
|
|
degree=2,
|
|
|
|
fit_intercept=True,
|
|
|
|
)
|
|
|
|
cpp_ref += parse_regression_coef_to_array(
|
|
|
|
model_endt,
|
|
|
|
poly_features_endt,
|
|
|
|
"zMagnetParamsEndT",
|
|
|
|
)
|
|
|
|
|
|
|
|
outpath = Path("parameterisations/result/z_mag_kink_params.hpp")
|
|
|
|
outpath.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
with open(outpath, "w") as result:
|
|
|
|
result.writelines(cpp_decl + cpp_ref if per_layer else cpp_ref)
|
|
|
|
return outpath
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
|
|
"--input-file",
|
|
|
|
type=str,
|
|
|
|
help="Path to the input file",
|
|
|
|
required=False,
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--tree-name",
|
|
|
|
type=str,
|
|
|
|
help="Path to the input file",
|
|
|
|
required=False,
|
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
args_dict = {arg: val for arg, val in vars(args).items() if val is not None}
|
|
|
|
outfile = parameterise_magnet_kink(**args_dict)
|
|
|
|
|
|
|
|
try:
|
|
|
|
import subprocess
|
|
|
|
|
|
|
|
# run clang-format for nicer looking result
|
|
|
|
subprocess.run(
|
|
|
|
[
|
|
|
|
"clang-format",
|
|
|
|
"-i",
|
|
|
|
f"{outfile}",
|
|
|
|
],
|
|
|
|
check=True,
|
|
|
|
)
|
|
|
|
except:
|
|
|
|
pass
|