269 lines
23 KiB
Plaintext
269 lines
23 KiB
Plaintext
|
: Parsing option string:
|
|||
|
: ... "V:!Silent:Color:DrawProgressBar:AnalysisType=Classification"
|
|||
|
: The following options are set:
|
|||
|
: - By User:
|
|||
|
: V: "True" [Verbose flag]
|
|||
|
: Color: "True" [Flag for coloured screen output (default: True, if in batch mode: False)]
|
|||
|
: Silent: "False" [Batch mode: boolean silent flag inhibiting any output from TMVA after the creation of the factory class object (default: False)]
|
|||
|
: DrawProgressBar: "True" [Draw progress bar to display training, testing and evaluation schedule (default: True)]
|
|||
|
: AnalysisType: "Classification" [Set the analysis type (Classification, Regression, Multiclass, Auto) (default: Auto)]
|
|||
|
: - Default:
|
|||
|
: VerboseLevel: "Info" [VerboseLevel (Debug/Verbose/Info)]
|
|||
|
: Transformations: "I" [List of transformations to test; formatting example: "Transformations=I;D;P;U;G,D", for identity, decorrelation, PCA, Uniform and Gaussianisation followed by decorrelation transformations]
|
|||
|
: Correlations: "False" [boolean to show correlation in output]
|
|||
|
: ROC: "True" [boolean to show ROC in output]
|
|||
|
: ModelPersistence: "True" [Option to save the trained model in xml file or using serialization]
|
|||
|
DataSetInfo : [MatchNNDataSet] : Added class "Signal"
|
|||
|
: Add Tree Signal of type Signal with 6590 events
|
|||
|
DataSetInfo : [MatchNNDataSet] : Added class "Background"
|
|||
|
: Add Tree Bkg of type Background with 14040318 events
|
|||
|
: Dataset[MatchNNDataSet] : Class index : 0 name : Signal
|
|||
|
: Dataset[MatchNNDataSet] : Class index : 1 name : Background
|
|||
|
Factory : Booking method: [1mmatching_mlp[0m
|
|||
|
:
|
|||
|
: Parsing option string:
|
|||
|
: ... "!H:V:TrainingMethod=BP:NeuronType=ReLU:EstimatorType=CE:VarTransform=Norm:NCycles=700:HiddenLayers=N+2,N:TestRate=50:Sampling=1.0:SamplingImportance=1.0:LearningRate=0.02:DecayRate=0.01:!UseRegulator"
|
|||
|
: The following options are set:
|
|||
|
: - By User:
|
|||
|
: <none>
|
|||
|
: - Default:
|
|||
|
: Boost_num: "0" [Number of times the classifier will be boosted]
|
|||
|
: Parsing option string:
|
|||
|
: ... "!H:V:TrainingMethod=BP:NeuronType=ReLU:EstimatorType=CE:VarTransform=Norm:NCycles=700:HiddenLayers=N+2,N:TestRate=50:Sampling=1.0:SamplingImportance=1.0:LearningRate=0.02:DecayRate=0.01:!UseRegulator"
|
|||
|
: The following options are set:
|
|||
|
: - By User:
|
|||
|
: NCycles: "700" [Number of training cycles]
|
|||
|
: HiddenLayers: "N+2,N" [Specification of hidden layer architecture]
|
|||
|
: NeuronType: "ReLU" [Neuron activation function type]
|
|||
|
: EstimatorType: "CE" [MSE (Mean Square Estimator) for Gaussian Likelihood or CE(Cross-Entropy) for Bernoulli Likelihood]
|
|||
|
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
|
|||
|
: VarTransform: "Norm" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
|
|||
|
: H: "False" [Print method-specific help message]
|
|||
|
: TrainingMethod: "BP" [Train with Back-Propagation (BP), BFGS Algorithm (BFGS), or Genetic Algorithm (GA - slower and worse)]
|
|||
|
: LearningRate: "2.000000e-02" [ANN learning rate parameter]
|
|||
|
: DecayRate: "1.000000e-02" [Decay rate for learning parameter]
|
|||
|
: TestRate: "50" [Test for overtraining performed at each #th epochs]
|
|||
|
: Sampling: "1.000000e+00" [Only 'Sampling' (randomly selected) events are trained each epoch]
|
|||
|
: SamplingImportance: "1.000000e+00" [ The sampling weights of events in epochs which successful (worse estimator than before) are multiplied with SamplingImportance, else they are divided.]
|
|||
|
: UseRegulator: "False" [Use regulator to avoid over-training]
|
|||
|
: - Default:
|
|||
|
: RandomSeed: "1" [Random seed for initial synapse weights (0 means unique seed for each run; default value '1')]
|
|||
|
: NeuronInputType: "sum" [Neuron input function type]
|
|||
|
: VerbosityLevel: "Default" [Verbosity level]
|
|||
|
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
|
|||
|
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
|
|||
|
: EpochMonitoring: "False" [Provide epoch-wise monitoring plots according to TestRate (caution: causes big ROOT output file!)]
|
|||
|
: SamplingEpoch: "1.000000e+00" [Sampling is used for the first 'SamplingEpoch' epochs, afterwards, all events are taken for training]
|
|||
|
: SamplingTraining: "True" [The training sample is sampled]
|
|||
|
: SamplingTesting: "False" [The testing sample is sampled]
|
|||
|
: ResetStep: "50" [How often BFGS should reset history]
|
|||
|
: Tau: "3.000000e+00" [LineSearch "size step"]
|
|||
|
: BPMode: "sequential" [Back-propagation learning mode: sequential or batch]
|
|||
|
: BatchSize: "-1" [Batch size: number of events/batch, only set if in Batch Mode, -1 for BatchSize=number_of_events]
|
|||
|
: ConvergenceImprove: "1.000000e-30" [Minimum improvement which counts as improvement (<0 means automatic convergence check is turned off)]
|
|||
|
: ConvergenceTests: "-1" [Number of steps (without improvement) required for convergence (<0 means automatic convergence check is turned off)]
|
|||
|
: UpdateLimit: "10000" [Maximum times of regulator update]
|
|||
|
: CalculateErrors: "False" [Calculates inverse Hessian matrix at the end of the training to be able to calculate the uncertainties of an MVA value]
|
|||
|
: WeightRange: "1.000000e+00" [Take the events for the estimator calculations from small deviations from the desired value to large deviations only over the weight range]
|
|||
|
matching_mlp : [MatchNNDataSet] : Create Transformation "Norm" with events from all classes.
|
|||
|
:
|
|||
|
: Transformation, Variable selection :
|
|||
|
: Input : variable 'chi2' <---> Output : variable 'chi2'
|
|||
|
: Input : variable 'teta2' <---> Output : variable 'teta2'
|
|||
|
: Input : variable 'distX' <---> Output : variable 'distX'
|
|||
|
: Input : variable 'distY' <---> Output : variable 'distY'
|
|||
|
: Input : variable 'dSlope' <---> Output : variable 'dSlope'
|
|||
|
: Input : variable 'dSlopeY' <---> Output : variable 'dSlopeY'
|
|||
|
matching_mlp : Building Network.
|
|||
|
: Initializing weights
|
|||
|
Factory : [1mTrain all methods[0m
|
|||
|
: Rebuilding Dataset MatchNNDataSet
|
|||
|
: Parsing option string:
|
|||
|
: ... "SplitMode=random:V:nTrain_Signal=0:nTrain_Background=200000.0:nTest_Signal=1000.0:nTest_Background=50000.0"
|
|||
|
: The following options are set:
|
|||
|
: - By User:
|
|||
|
: SplitMode: "Random" [Method of picking training and testing events (default: random)]
|
|||
|
: nTrain_Signal: "0" [Number of training events of class Signal (default: 0 = all)]
|
|||
|
: nTest_Signal: "1000" [Number of test events of class Signal (default: 0 = all)]
|
|||
|
: nTrain_Background: "200000" [Number of training events of class Background (default: 0 = all)]
|
|||
|
: nTest_Background: "50000" [Number of test events of class Background (default: 0 = all)]
|
|||
|
: V: "True" [Verbosity (default: true)]
|
|||
|
: - Default:
|
|||
|
: MixMode: "SameAsSplitMode" [Method of mixing events of different classes into one dataset (default: SameAsSplitMode)]
|
|||
|
: SplitSeed: "100" [Seed for random event shuffling]
|
|||
|
: NormMode: "EqualNumEvents" [Overall renormalisation of event-by-event weights used in the training (NumEvents: average weight of 1 per event, independently for signal and background; EqualNumEvents: average weight of 1 per event for signal, and sum of weights for background equal to sum of weights for signal)]
|
|||
|
: ScaleWithPreselEff: "False" [Scale the number of requested events by the eff. of the preselection cuts (or not)]
|
|||
|
: TrainTestSplit_Signal: "0.000000e+00" [Number of test events of class Signal (default: 0 = all)]
|
|||
|
: TrainTestSplit_Background: "0.000000e+00" [Number of test events of class Background (default: 0 = all)]
|
|||
|
: VerboseLevel: "Info" [VerboseLevel (Debug/Verbose/Info)]
|
|||
|
: Correlations: "True" [Boolean to show correlation output (Default: true)]
|
|||
|
: CalcCorrelations: "True" [Compute correlations and also some variable statistics, e.g. min/max (Default: true )]
|
|||
|
: Building event vectors for type 2 Signal
|
|||
|
: Dataset[MatchNNDataSet] : create input formulas for tree Signal
|
|||
|
: Building event vectors for type 2 Background
|
|||
|
: Dataset[MatchNNDataSet] : create input formulas for tree Bkg
|
|||
|
DataSetFactory : [MatchNNDataSet] : Number of events in input trees
|
|||
|
:
|
|||
|
:
|
|||
|
: Dataset[MatchNNDataSet] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
|
|||
|
: Dataset[MatchNNDataSet] : such that the effective (weighted) number of events in each class is the same
|
|||
|
: Dataset[MatchNNDataSet] : (and equals the number of events (entries) given for class=0 )
|
|||
|
: Dataset[MatchNNDataSet] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
|
|||
|
: Dataset[MatchNNDataSet] : ... (note that N_j is the sum of TRAINING events
|
|||
|
: Dataset[MatchNNDataSet] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
|
|||
|
: Number of training and testing events
|
|||
|
: ---------------------------------------------------------------------------
|
|||
|
: Signal -- training events : 5590
|
|||
|
: Signal -- testing events : 1000
|
|||
|
: Signal -- training and testing events: 6590
|
|||
|
: Background -- training events : 200000
|
|||
|
: Background -- testing events : 50000
|
|||
|
: Background -- training and testing events: 250000
|
|||
|
:
|
|||
|
DataSetInfo : Correlation matrix (Signal):
|
|||
|
: --------------------------------------------------------
|
|||
|
: chi2 teta2 distX distY dSlope dSlopeY
|
|||
|
: chi2: +1.000 -0.083 +0.225 +0.287 +0.211 +0.054
|
|||
|
: teta2: -0.083 +1.000 +0.035 +0.472 +0.174 +0.617
|
|||
|
: distX: +0.225 +0.035 +1.000 -0.194 +0.684 +0.087
|
|||
|
: distY: +0.287 +0.472 -0.194 +1.000 +0.330 +0.471
|
|||
|
: dSlope: +0.211 +0.174 +0.684 +0.330 +1.000 +0.325
|
|||
|
: dSlopeY: +0.054 +0.617 +0.087 +0.471 +0.325 +1.000
|
|||
|
: --------------------------------------------------------
|
|||
|
DataSetInfo : Correlation matrix (Background):
|
|||
|
: --------------------------------------------------------
|
|||
|
: chi2 teta2 distX distY dSlope dSlopeY
|
|||
|
: chi2: +1.000 +0.003 +0.359 +0.315 -0.004 +0.101
|
|||
|
: teta2: +0.003 +1.000 +0.212 +0.622 +0.296 +0.492
|
|||
|
: distX: +0.359 +0.212 +1.000 +0.060 +0.635 +0.204
|
|||
|
: distY: +0.315 +0.622 +0.060 +1.000 +0.246 +0.530
|
|||
|
: dSlope: -0.004 +0.296 +0.635 +0.246 +1.000 +0.360
|
|||
|
: dSlopeY: +0.101 +0.492 +0.204 +0.530 +0.360 +1.000
|
|||
|
: --------------------------------------------------------
|
|||
|
DataSetFactory : [MatchNNDataSet] :
|
|||
|
:
|
|||
|
Factory : [MatchNNDataSet] : Create Transformation "I" with events from all classes.
|
|||
|
:
|
|||
|
: Transformation, Variable selection :
|
|||
|
: Input : variable 'chi2' <---> Output : variable 'chi2'
|
|||
|
: Input : variable 'teta2' <---> Output : variable 'teta2'
|
|||
|
: Input : variable 'distX' <---> Output : variable 'distX'
|
|||
|
: Input : variable 'distY' <---> Output : variable 'distY'
|
|||
|
: Input : variable 'dSlope' <---> Output : variable 'dSlope'
|
|||
|
: Input : variable 'dSlopeY' <---> Output : variable 'dSlopeY'
|
|||
|
TFHandler_Factory : Variable Mean RMS [ Min Max ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
: chi2: 13.730 8.0164 [ 0.00031556 30.000 ]
|
|||
|
: teta2: 0.0041449 0.012655 [ 1.1428e-06 0.43138 ]
|
|||
|
: distX: 69.832 60.841 [ 0.00027466 490.80 ]
|
|||
|
: distY: 31.145 37.661 [ 0.00010300 497.14 ]
|
|||
|
: dSlope: 0.36688 0.24104 [ 1.2597e-05 1.3582 ]
|
|||
|
: dSlopeY: 0.0063738 0.010662 [ 4.9360e-08 0.14883 ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
: Ranking input variables (method unspecific)...
|
|||
|
IdTransformation : Ranking result (top variable is best ranked)
|
|||
|
: --------------------------------
|
|||
|
: Rank : Variable : Separation
|
|||
|
: --------------------------------
|
|||
|
: 1 : chi2 : 8.858e-02
|
|||
|
: 2 : distY : 5.736e-02
|
|||
|
: 3 : teta2 : 3.110e-02
|
|||
|
: 4 : distX : 2.441e-02
|
|||
|
: 5 : dSlope : 2.026e-02
|
|||
|
: 6 : dSlopeY : 1.556e-02
|
|||
|
: --------------------------------
|
|||
|
Factory : Train method: matching_mlp for Classification
|
|||
|
:
|
|||
|
TFHandler_matching_mlp : Variable Mean RMS [ Min Max ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
: chi2: -0.084705 0.53444 [ -1.0000 1.0000 ]
|
|||
|
: teta2: -0.98079 0.058673 [ -1.0000 1.0000 ]
|
|||
|
: distX: -0.71544 0.24793 [ -1.0000 1.0000 ]
|
|||
|
: distY: -0.87470 0.15151 [ -1.0000 1.0000 ]
|
|||
|
: dSlope: -0.45977 0.35494 [ -1.0000 1.0000 ]
|
|||
|
: dSlopeY: -0.91435 0.14328 [ -1.0000 1.0000 ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
: Training Network
|
|||
|
:
|
|||
|
: Elapsed time for training with 205590 events: [1;31m465 sec[0m
|
|||
|
matching_mlp : [MatchNNDataSet] : Evaluation of matching_mlp on training sample (205590 events)
|
|||
|
: Elapsed time for evaluation of 205590 events: [1;31m0.252 sec[0m
|
|||
|
: Creating xml weight file: [0;36mMatchNNDataSet/weights/TMVAClassification_matching_mlp.weights.xml[0m
|
|||
|
: Creating standalone class: [0;36mMatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C[0m
|
|||
|
: Write special histos to file: matching_ghost_mlp_training.root:/MatchNNDataSet/Method_MLP/matching_mlp
|
|||
|
Factory : Training finished
|
|||
|
:
|
|||
|
: Ranking input variables (method specific)...
|
|||
|
matching_mlp : Ranking result (top variable is best ranked)
|
|||
|
: --------------------------------
|
|||
|
: Rank : Variable : Importance
|
|||
|
: --------------------------------
|
|||
|
: 1 : distY : 2.139e+02
|
|||
|
: 2 : teta2 : 1.005e+02
|
|||
|
: 3 : dSlopeY : 9.191e+01
|
|||
|
: 4 : distX : 8.898e+01
|
|||
|
: 5 : dSlope : 1.082e+01
|
|||
|
: 6 : chi2 : 1.776e+00
|
|||
|
: --------------------------------
|
|||
|
Factory : === Destroy and recreate all methods via weight files for testing ===
|
|||
|
:
|
|||
|
: Reading weight file: [0;36mMatchNNDataSet/weights/TMVAClassification_matching_mlp.weights.xml[0m
|
|||
|
matching_mlp : Building Network.
|
|||
|
: Initializing weights
|
|||
|
Factory : [1mTest all methods[0m
|
|||
|
Factory : Test method: matching_mlp for Classification performance
|
|||
|
:
|
|||
|
matching_mlp : [MatchNNDataSet] : Evaluation of matching_mlp on testing sample (51000 events)
|
|||
|
: Elapsed time for evaluation of 51000 events: [1;31m0.0702 sec[0m
|
|||
|
Factory : [1mEvaluate all methods[0m
|
|||
|
Factory : Evaluate classifier: matching_mlp
|
|||
|
:
|
|||
|
TFHandler_matching_mlp : Variable Mean RMS [ Min Max ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
: chi2: -0.011828 0.57705 [ -0.99996 0.99998 ]
|
|||
|
: teta2: -0.97507 0.067138 [ -0.99998 0.27868 ]
|
|||
|
: distX: -0.72636 0.26123 [ -1.0000 0.90538 ]
|
|||
|
: distY: -0.84283 0.18429 [ -0.99999 1.0037 ]
|
|||
|
: dSlope: -0.48676 0.36013 [ -0.99980 0.87659 ]
|
|||
|
: dSlopeY: -0.90653 0.13847 [ -1.0000 1.0030 ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
matching_mlp : [MatchNNDataSet] : Loop over test events and fill histograms with classifier response...
|
|||
|
:
|
|||
|
TFHandler_matching_mlp : Variable Mean RMS [ Min Max ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
: chi2: -0.011828 0.57705 [ -0.99996 0.99998 ]
|
|||
|
: teta2: -0.97507 0.067138 [ -0.99998 0.27868 ]
|
|||
|
: distX: -0.72636 0.26123 [ -1.0000 0.90538 ]
|
|||
|
: distY: -0.84283 0.18429 [ -0.99999 1.0037 ]
|
|||
|
: dSlope: -0.48676 0.36013 [ -0.99980 0.87659 ]
|
|||
|
: dSlopeY: -0.90653 0.13847 [ -1.0000 1.0030 ]
|
|||
|
: -----------------------------------------------------------
|
|||
|
:
|
|||
|
: Evaluation results ranked by best signal efficiency and purity (area)
|
|||
|
: -------------------------------------------------------------------------------------------------------------------
|
|||
|
: DataSet MVA
|
|||
|
: Name: Method: ROC-integ
|
|||
|
: MatchNNDataSet matching_mlp : 0.850
|
|||
|
: -------------------------------------------------------------------------------------------------------------------
|
|||
|
:
|
|||
|
: Testing efficiency compared to training efficiency (overtraining check)
|
|||
|
: -------------------------------------------------------------------------------------------------------------------
|
|||
|
: DataSet MVA Signal efficiency: from test sample (from training sample)
|
|||
|
: Name: Method: @B=0.01 @B=0.10 @B=0.30
|
|||
|
: -------------------------------------------------------------------------------------------------------------------
|
|||
|
: MatchNNDataSet matching_mlp : 0.050 (0.050) 0.446 (0.447) 0.869 (0.869)
|
|||
|
: -------------------------------------------------------------------------------------------------------------------
|
|||
|
:
|
|||
|
Dataset:MatchNNDataSet : Created tree 'TestTree' with 51000 events
|
|||
|
:
|
|||
|
Dataset:MatchNNDataSet : Created tree 'TrainTree' with 205590 events
|
|||
|
:
|
|||
|
Factory : [1mThank you for using TMVA![0m
|
|||
|
: [1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html[0m
|
|||
|
Transforming nn_electron_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C ...
|
|||
|
Found minimum and maximum values for 6 variables.
|
|||
|
Found 3 matrices:
|
|||
|
1. fWeightMatrix0to1 with 7 columns and 8 rows
|
|||
|
2. fWeightMatrix1to2 with 9 columns and 6 rows
|
|||
|
3. fWeightMatrix2to3 with 7 columns and 1 rows
|