tracking-parametrisation-tuner/electron_main.py

212 lines
7.1 KiB
Python
Raw Normal View History

2023-12-19 13:00:59 +01:00
# flake8: noqaq
import os
import subprocess
import argparse
from parameterisations.parameterise_magnet_kink import parameterise_magnet_kink
from parameterisations.parameterise_track_model import parameterise_track_model
from parameterisations.parameterise_search_window import parameterise_search_window
from parameterisations.parameterise_field_integral import parameterise_field_integral
from parameterisations.parameterise_hough_histogram import parameterise_hough_histogram
from parameterisations.utils.preselection import preselection
from parameterisations.train_forward_ghost_mlps import (
train_default_forward_ghost_mlp,
train_veloUT_forward_ghost_mlp,
)
from parameterisations.residual_train_matching_ghost_mlps_electron import (
res_train_matching_ghost_mlp,
)
from parameterisations.train_matching_ghost_mlps_electron import (
train_matching_ghost_mlp,
)
from parameterisations.utils.parse_tmva_matrix_to_array_electron import (
parse_tmva_matrix_to_array,
)
parser = argparse.ArgumentParser()
parser.add_argument(
"--field-params",
action="store_true",
help="Enables determination of magnetic field parameterisations.",
)
parser.add_argument(
"--forward-weights",
action="store_true",
help="Enables determination of weights used by neural networks.",
)
parser.add_argument(
"--matching-weights",
action="store_true",
default=True,
help="Enables determination of weights used by neural networks.",
)
parser.add_argument(
"-r",
"--residuals",
action="store_true",
help="Trains neural network with residual tracks.",
)
parser.add_argument(
"-p",
"--prepare",
action="store_true",
default=True,
help="Enables preparation of data for matching.",
)
parser.add_argument(
"--prepare-params-data",
action="store_true",
help="Enables preparation of data for magnetic field parameterisations.",
)
parser.add_argument(
"--prepare-weights-data",
action="store_true",
help="Enables preparation of data for NN weight determination.",
)
args = parser.parse_args()
selected = "nn_electron_training/data/param_data_selected.root"
if args.prepare_params_data:
selection = "chi2_comb < 5 && pt > 10 && p > 1500 && p < 100000 && pid != 11"
print("Run selection cuts =", selection)
selected_md = preselection(
cuts=selection,
input_file="data/param_data_MD.root",
)
selected_mu = preselection(
cuts=selection,
input_file="data/param_data_MU.root",
)
merge_cmd = ["hadd", "-fk", selected, selected_md, selected_mu]
print("Concatenate polarities ...")
subprocess.run(merge_cmd, check=True)
cpp_files = []
if args.field_params:
print("Parameterise magnet kink position ...")
cpp_files.append(parameterise_magnet_kink(input_file=selected))
print("Parameterise track model ...")
cpp_files.append(parameterise_track_model(input_file=selected))
selected_all_p = "nn_electron_training/data/param_data_selected_all_p.root"
if args.prepare_params_data:
selection_all_momenta = "chi2_comb < 5 && pid != 11"
print()
print("Run selection cuts =", selection_all_momenta)
selected_md_all_p = preselection(
cuts=selection_all_momenta,
outfile_postfix="selected_all_p",
input_file="data/param_data_MD.root",
)
selected_mu_all_p = preselection(
cuts=selection_all_momenta,
outfile_postfix="selected_all_p",
input_file="data/param_data_MU.root",
)
merge_cmd = ["hadd", "-fk", selected_all_p, selected_md_all_p, selected_mu_all_p]
print("Concatenate polarities ...")
subprocess.run(merge_cmd, check=True)
if args.field_params:
print("Parameterise search window ...")
cpp_files.append(parameterise_search_window(input_file=selected_all_p))
print("Parameterise magnetic field integral ...")
cpp_files.append(parameterise_field_integral(input_file=selected_all_p))
print("Parameterise Hough histogram binning ...")
cpp_files.append(parameterise_hough_histogram(input_file=selected_all_p))
###>>>
ghost_data = "data/ghost_data.root"
if args.prepare_weights_data:
merge_cmd = [
"hadd",
"-fk",
ghost_data,
"data/ghost_data_B.root",
"data/ghost_data_D.root",
]
print("Concatenate decays for neural network training ...")
subprocess.run(merge_cmd, check=True)
###<<<
if args.forward_weights:
train_default_forward_ghost_mlp(prepare_data=args.prepare_weights_data)
# FIXME: use env variable instead
os.chdir(os.path.dirname(os.path.realpath(__file__)))
train_veloUT_forward_ghost_mlp(prepare_data=args.prepare_weights_data)
# this ensures that the directory is correct
os.chdir(os.path.dirname(os.path.realpath(__file__)))
cpp_files += parse_tmva_matrix_to_array(
[
"nn_electron_training/result/GhostNNDataSet/weights/TMVAClassification_default_forward_ghost_mlp.class.C",
"nn_electron_training/result/GhostNNDataSet/weights/TMVAClassification_veloUT_forward_ghost_mlp.class.C",
],
)
###
###>>>
###
if args.matching_weights and args.residuals:
os.chdir(os.path.dirname(os.path.realpath(__file__)))
res_train_matching_ghost_mlp(
prepare_data=args.prepare,
2024-02-08 17:42:15 +01:00
input_file="data/ghost_data_B_default_only_e_as_seed.root",
tree_name="PrMatchNN_b60a058d.PrMCDebugMatchToolNN/MVAInputAndOutput", # e6feac0d, B: 3e224c41, B res: 1e13cc7e, D: 8cb154ca
2023-12-19 13:00:59 +01:00
exclude_electrons=False,
only_electrons=True,
residuals="PrMatchNN_1e13cc7e.PrMCDebugMatchToolNN/MVAInputAndOutput",
outdir="nn_electron_training",
n_train_signal=0,
n_train_bkg=20e3,
n_test_signal=1e3,
n_test_bkg=5e3,
)
# this ensures that the directory is correct
os.chdir(os.path.dirname(os.path.realpath(__file__)))
cpp_files += parse_tmva_matrix_to_array(
[
"nn_electron_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C",
],
simd_type=True,
)
2024-02-08 17:42:15 +01:00
file_name = "seed"
tree_names = {}
tree_names["seed"] = "PrMatchNN_b60a058d.PrMCDebugMatchToolNN/MVAInputAndOutput"
tree_names["def"] = "PrMatchNN.PrMCDebugMatchToolNN/MVAInputAndOutput"
2023-12-19 13:00:59 +01:00
if args.matching_weights and not args.residuals:
os.chdir(os.path.dirname(os.path.realpath(__file__)))
train_matching_ghost_mlp(
prepare_data=args.prepare,
2024-02-15 16:45:55 +01:00
input_file="data/ghost_data_B_vars_thesis.root",
tree_name=tree_names[file_name],
exclude_electrons=False,
only_electrons=True,
filter_seeds=True,
2023-12-19 13:00:59 +01:00
outdir="nn_electron_training",
2024-02-15 16:45:55 +01:00
n_train_signal=100e3,
n_train_bkg=100e3,
n_test_signal=10e3,
n_test_bkg=10e3,
2023-12-19 13:00:59 +01:00
)
# this ensures that the directory is correct
os.chdir(os.path.dirname(os.path.realpath(__file__)))
cpp_files += parse_tmva_matrix_to_array(
[
"nn_electron_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C",
],
simd_type=True,
)
###
###<<<
###
for file in cpp_files:
subprocess.run(
[
"clang-format",
"-i",
f"{file}",
],
)