tracking-parametrisation-tuner/main.py

159 lines
5.8 KiB
Python
Raw Normal View History

2023-12-19 13:00:59 +01:00
# flake8: noqaq
import os
import subprocess
import argparse
2024-02-26 16:18:03 +01:00
from parameterisations.parameterise_magnet_kink_electron import parameterise_magnet_kink
from parameterisations.parameterise_track_model_electron import parameterise_track_model
2023-12-19 13:00:59 +01:00
from parameterisations.parameterise_search_window import parameterise_search_window
from parameterisations.parameterise_field_integral import parameterise_field_integral
from parameterisations.parameterise_hough_histogram import parameterise_hough_histogram
2024-02-26 16:18:03 +01:00
from parameterisations.utils.preselection_trackinglosses import preselection
2023-12-19 13:00:59 +01:00
from parameterisations.train_forward_ghost_mlps import (
train_default_forward_ghost_mlp,
train_veloUT_forward_ghost_mlp,
)
from parameterisations.train_matching_ghost_mlps import train_matching_ghost_mlp
from parameterisations.utils.parse_tmva_matrix_to_array import (
parse_tmva_matrix_to_array,
)
parser = argparse.ArgumentParser()
parser.add_argument(
"--field-params",
action="store_true",
help="Enables determination of magnetic field parameterisations.",
)
parser.add_argument(
"--forward-weights",
action="store_true",
help="Enables determination of weights used by neural networks.",
)
parser.add_argument(
"--matching-weights",
action="store_true",
# default=True,
2023-12-19 13:00:59 +01:00
help="Enables determination of weights used by neural networks.",
)
2024-01-09 16:32:06 +01:00
parser.add_argument(
"-p",
"--prepare",
action="store_true",
help="Enables preparation of data for matching.",
)
2023-12-19 13:00:59 +01:00
parser.add_argument(
"--prepare-params-data",
action="store_true",
help="Enables preparation of data for magnetic field parameterisations.",
)
parser.add_argument(
"--prepare-weights-data",
action="store_true",
help="Enables preparation of data for NN weight determination.",
)
args = parser.parse_args()
selected = "data/tracking_losses_ntuple_B_BJpsi_def_selected.root"
2023-12-19 13:00:59 +01:00
if args.prepare_params_data:
2024-02-29 15:54:19 +01:00
selection = "isElectron == 1 && pt > 10 && p > 1500 && p < 100000 && !std::isnan(ideal_state_770_x) && !std::isnan(ideal_state_9410_x) && !std::isnan(ideal_state_10000_x) && std::abs(match_chi2) < 6"
2023-12-19 13:00:59 +01:00
print("Run selection cuts =", selection)
selected_b = preselection(
2023-12-19 13:00:59 +01:00
cuts=selection,
2024-02-26 16:18:03 +01:00
input_file="data/tracking_losses_ntuple_B_def.root",
2023-12-19 13:00:59 +01:00
)
selected_bj = preselection(
cuts=selection,
input_file="data/tracking_losses_ntuple_BJpsi_def.root",
)
merge_cmd = ["hadd", "-fk", selected, selected_b, selected_bj]
print("Concatenate polarities ...")
subprocess.run(merge_cmd, check=True)
2023-12-19 13:00:59 +01:00
cpp_files = []
if args.field_params:
print("Parameterise magnet kink position ...")
2024-02-26 16:18:03 +01:00
cpp_files.append(parameterise_magnet_kink(input_file=selected))
2023-12-19 13:00:59 +01:00
print("Parameterise track model ...")
cpp_files.append(parameterise_track_model(input_file=selected))
# selected_all_p = (
# "nn_neural_net_training/data/param_data_B_default_thesis_selected_all_p.root"
# )
# if args.prepare_params_data:
# selection_all_momenta = "chi2_comb < 5 && pid != 11"
# print()
# print("Run selection cuts =", selection_all_momenta)
# selected_md_all_p = preselection(
# cuts=selection_all_momenta,
# outfile_postfix="selected_all_p",
# input_file="nn_neural_net_training/data/param_data_B_default_thesis.root",
# )
2023-12-19 13:00:59 +01:00
# if args.field_params:
# print("Parameterise magnet kink position ...")
# cpp_files.append(parameterise_magnet_kink(input_file=selected_all_p))
# print("Parameterise track model ...")
# cpp_files.append(parameterise_track_model(input_file=selected_all_p))
# print("Parameterise search window ...")
# cpp_files.append(parameterise_search_window(input_file=selected_all_p))
# print("Parameterise magnetic field integral ...")
# cpp_files.append(parameterise_field_integral(input_file=selected_all_p))
# print("Parameterise Hough histogram binning ...")
# cpp_files.append(parameterise_hough_histogram(input_file=selected_all_p))
2023-12-19 13:00:59 +01:00
###>>>
ghost_data = "neural_net_training/data/ghost_data.root"
if args.prepare_weights_data:
merge_cmd = [
"hadd",
"-fk",
ghost_data,
"data/ghost_data_MD.root",
"data/ghost_data_MU.root",
]
print("Concatenate polarities for neural network training ...")
subprocess.run(merge_cmd, check=True)
###<<<
if args.forward_weights:
train_default_forward_ghost_mlp(prepare_data=args.prepare_weights_data)
# FIXME: use env variable instead
os.chdir(os.path.dirname(os.path.realpath(__file__)))
train_veloUT_forward_ghost_mlp(prepare_data=args.prepare_weights_data)
# this ensures that the directory is correct
os.chdir(os.path.dirname(os.path.realpath(__file__)))
cpp_files += parse_tmva_matrix_to_array(
[
"neural_net_training/result/GhostNNDataSet/weights/TMVAClassification_default_forward_ghost_mlp.class.C",
"neural_net_training/result/GhostNNDataSet/weights/TMVAClassification_veloUT_forward_ghost_mlp.class.C",
],
)
###>>>
if args.matching_weights:
os.chdir(os.path.dirname(os.path.realpath(__file__)))
train_matching_ghost_mlp(
2024-01-15 09:39:38 +01:00
prepare_data=args.prepare,
2024-01-15 16:16:12 +01:00
input_file="data/ghost_data_B_default_phi_eta.root",
2024-01-09 16:32:06 +01:00
tree_name="PrMatchNN_3e224c41.PrMCDebugMatchToolNN/MVAInputAndOutput",
2023-12-19 13:00:59 +01:00
outdir="neural_net_training",
2024-01-09 16:32:06 +01:00
exclude_electrons=False,
only_electrons=True,
2023-12-19 13:00:59 +01:00
)
# this ensures that the directory is correct
os.chdir(os.path.dirname(os.path.realpath(__file__)))
cpp_files += parse_tmva_matrix_to_array(
[
"neural_net_training/result/MatchNNDataSet/weights/TMVAClassification_matching_mlp.class.C",
],
simd_type=True,
)
###<<<
for file in cpp_files:
subprocess.run(
[
"clang-format",
"-i",
f"{file}",
],
)