Projektpraktikum/trackinglosses_rad_length_endVelo2endUT.ipynb
2024-01-28 16:15:00 +01:00

1043 lines
347 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import uproot\t\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import colormaps\n",
"from mpl_toolkits import mplot3d\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from scipy import stats\n",
"from methods.fit_linear_regression_model import fit_linear_regression_model\n",
"import sklearn\n",
"import seaborn as sns\n",
"import pandas as pd\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def round(n, k):\n",
" # function to round number 'n' up/down to nearest 'k'\n",
" # use positive k to round up\n",
" # use negative k to round down\n",
"\n",
" return n - n % k"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"41978 8523\n",
"49865\n"
]
}
],
"source": [
"file = uproot.open(\n",
" \"tracking_losses_ntuple_B_EndVeloP.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
")\n",
"\n",
"# selektiere nur elektronen von B->K*ee\n",
"allcolumns = file.arrays()\n",
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) &\n",
" (allcolumns.fromB)] # B: 9056\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) &\n",
" (allcolumns.fromB)] # B: 1466\n",
"\n",
"electrons = allcolumns[(allcolumns.isElectron)\n",
" & (allcolumns.fromB)\n",
" & (allcolumns.eta <= 5.0)\n",
" & (allcolumns.eta >= 1.5)\n",
" & (np.abs(allcolumns.phi) < 3.142)]\n",
"\n",
"print(ak.num(found, axis=0), ak.num(lost, axis=0))\n",
"print(ak.num(electrons, axis=0))\n",
"# ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"stretch factor: 0.1943140448361755\n"
]
}
],
"source": [
"rad_length_found = ak.to_numpy(\n",
" found[(found.eta <= 5.0) & (found.eta >= 1.5) & (np.abs(found.phi) < 3.142)][\n",
" \"rad_length_frac\"\n",
" ]\n",
")\n",
"eta_found = ak.to_numpy(\n",
" found[(found.eta <= 5.0) & (found.eta >= 1.5) & (np.abs(found.phi) < 3.142)][\"eta\"]\n",
")\n",
"phi_found = ak.to_numpy(\n",
" found[(found.eta <= 5.0) & (found.eta >= 1.5) & (np.abs(found.phi) < 3.142)][\"phi\"]\n",
")\n",
"rad_length_lost = ak.to_numpy(\n",
" lost[(lost.eta <= 5.0) & (lost.eta >= 1.5) & (np.abs(lost.phi) < 3.142)][\n",
" \"rad_length_frac\"\n",
" ]\n",
")\n",
"eta_lost = ak.to_numpy(\n",
" lost[(lost.eta <= 5.0) & (lost.eta >= 1.5) & (np.abs(lost.phi) < 3.142)][\"eta\"]\n",
")\n",
"phi_lost = ak.to_numpy(\n",
" lost[(lost.eta <= 5.0) & (lost.eta >= 1.5) & (np.abs(lost.phi) < 3.142)][\"phi\"]\n",
")\n",
"\n",
"eta_a = ak.to_numpy(electrons[\"eta\"])\n",
"phi_a = ak.to_numpy(electrons[\"phi\"])\n",
"rad_length_frac_a = ak.to_numpy(electrons[\"rad_length_frac\"])\n",
"\n",
"stretch_factor = ak.num(eta_lost, axis=0) / ak.num(eta_found, axis=0)\n",
"print(\"stretch factor: \", stretch_factor)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHLCAYAAAAnR/mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzm0lEQVR4nO3dTWwb653v+Z+me47itOCU5GyyGKBdBHrRGGCMorKYg4v4ACYRYLKYhUh7lzRwIBYC7TwdVrs3ljdNlNBbASkKwT03uyPSmJlFLxqs0zjOIsAdmxUHGAzmTeUGssgFJkeqGLpxdG43OAt3lUWRoqjia6m+H0CwVcWq52E9ZNVfz+tKr9frCQAAICf+q0VnAAAAYJ4IfgAAQK4Q/AAAgFwh+AEAALlC8AMAAHKF4AcAAOQKwQ8AAMgVgh8AAJArBD9YiCAI1Gw2F52N3IuiSM1mU2EYLjoruCa+Q+lw3SAR/GDOwjBUtVpVsViU53l929fX16d6U5rFOccVBIEcx1GxWFSxWJx7+uNoNpu6e/eubNtWFEUTnSt+v9VqVYVCQXt7e9PJZEqLLPtZG/Yd8n1fhUJBKysrWllZUbFYVLvdHji23W6rWCwmrwmCYGRa0/ocx3leX1/X+vq6qtXqxJ+5tHk4f93a7baq1Wpy3dbX1+U4Tl/eoiiS4zjJa8rlsnzf79sWv6/Lfl9ZWeEPjGXTAxZAUs+yrOT3brfbk9Sr1+upznd0dNQ7OTnp2zbpOScVp3/+fS7SsGtUr9d7knrdbjf1ebvdbs8wjL5z1mq11Oe7rmUs+3m4+Nk6OTnpSepJ6nmed+lxnuf1lddVJv0cx5+PSqXSq9VqPcMwepJ6hmEMlNs8DHsvcZ5ardalx7mu2zNNM/m9Vqv1SqVS33solUoD54mv3yTfMUwfNT9YCpZlqdfryXXdVMdXq1UdHx9P9ZyTsixrIeleZtg1unPnzsTnbTQa2tjYSH53XbevVm/WlrHsF8EwDNXrdUlSq9W69HXdbldPnjwZ+7yTfo4dx1G321Wr1ZLneTo5OVGpVFIURWo0GhOde1riz69hGJe+xrKsgWvhed7IY+Lj4nLB8iD4QeZVq9Urq+/zbpbXaJHXnrLvFwc1vu9fel0ODw9Vq9Xmkp8gCFStVmWaZt/2OCjNctmVy+WB93UZ27avDJIwXwQ/GKndbidt3M1mU+vr67JtO9m/t7cn27aTfgHD+lhEUSTbtpOfYf1B4rb3arU6sG9UGu12O7mB2rbd9zAcdc44T47jqFwuJ+/x/P5ms5n0nfB9P+krMex81xU/FMrlsgqFghzHmSjt+NoWCoWBgGDUNYodHx8naY77HpvNpqrVqsIwTPpTVKvV5DpO+7MTl9P58l3msp9mGY/zHZLe11xUKhVJGlqr0m63VSqV+h7Eo/J5lauupWVZQwOtuAblYkAw7e/FuNdtHOdrNyUl13kcpmmOHShhThbc7IYl1mq1eqZp9iT1arVar16v9yzLStrL4/4isU6n05PU63Q6ybajo6OeYRh921zX7Wt3Pzo6SraVSqW+PIyTRvyao6OjvnQvO2fcB+F8G7zneT1JPdd1k+MrlUpyfL1e73W73V6tVut73VU0pH9Bt9vty1Or1UqucZq0LctK+rYcHR0l/T5M00zOOewa9Xq9vmvkum6q92iaZl9fiPg9TeOzY5pmX54NwxjoX7SMZT/NMh7nO3Te+c/AxT41lmX1neeqfMYu+xxfdS0vE+fxfN+kaX8vrnPd4s/q+dde1O12e5VKZeT7GtbnB8uJ4AcjxTeLYR1HS6VS34Mo7nB5/rWVSmXgAdTrDb+ZDntYjZPGZQ/2y85pWdbQPFmW1Xee+OZ78aY67JyXGfY+Lcsa6PwYd7iMH1bjph2/7vz54ofB+etxVfBzsYPsdd7jsODn/LnTfnYsyxp4//E54+u0rGU/zTK+zncoFj+Ez1/POBi4bj4vS2vcaznMxc7D4+blOuVynetG8JM/NHthpLha+rvf/e7AvlarpW63m/z+6tUrSUqGiYZhmDR9pHVVGtcVhqGCIBjaiTNukrnYWXdYW/3FDrbXTb/RaCTNMuer7OP3N27aL1++HNgfn+86/Sk2NzcH0p10aO6kn50gCFQqlfqOq9fr6vV6qfpPzKvsp1nGab9DcXPR+aZE13X7OjpfN5/D3uN1ruV5jUajr1P2tL8X07j34Gb700VnANkw7GZjGIYMw1C73dbnn38+8JCLH56TtHVflcZ1jQoI4gBglvNxxOmPGo1zHfH18H1/4EG0LKPN0nx24us0zU6i8yr7aZZx2u9QqVSSaZoKw1DNZlO1Wk2Hh4d68+bNVPI5ybW0bVsHBwd9n89pfy+mce+5KO0fPFhO1PwgtTAMVSwWFYahWq3WwHDO+AY0yU3jqjTSGlZzFD9oL3ZsnKb4mkwrwKpUKiqVSmo0GvJ9X1EUyXVd1ev1pe5gOe5nZxaB6KzLfpp5n+Q7FNf+uK6rdrutzc3NvmByGvm87rVsNpsqFAoDnYWnXd7XvW7jfldmeW/AfBH8ILVyuayNjY1LA5L4hnK+eWPaaVxX/Nfm+REpsfhGXigUppLWMPE1GTb77mX5ukqr1VKpVEqm7Xddd+nnt7mqXONyuqwmIM1Dcl5lP80ynuQ7VKvVkubL7e3tvpF2k+YzzbVst9uKomhomU/7e3Hd6xa/ftTnKgzDmd4bMF8EP0glHt58/i/J+KYX/7UVV383m82hfyFe1W9nnDSucz7p/U3Osqzk3Oe9evVKhmHMdA6UuA+L4zgDTQdpl2KoVqtJ7Um9Xh/Z3HXxGn311VeSJqudOz4+vtbx1/3sXHzwOY4z8Bf4MpX9NMt40u/Q+T4+F2tbJsnnda+l7/t6+fLl0MCn2WxO/Xtx3esW9y8a1U/J87yxPx80kS0/gh+MFN8kLt4s4odPu91Ws9lUs9lMqtmDIEj+gotvdsViUb7vKwzD5HVhGCbzbgwLasZJI4qi5K8xz/OSjo6XnVN6X5tgGEbfX8Jxc9HBwUHyUJ7FDez8LLzFYlHValV7e3sql8s6OjpKHgLjph0HB/F5ms1m3/w3scuu0WWiKJr4/U/62Ylrr8rlsqrVajIfUKFQSMpoGct+mmV88VyjvkPDxA/rYQ/tcfN5mXGvZTx3T7xGVvxj27aKxaJM05z69+K6161UKqlSqSgIApXL5b6Azvd9lctlPXr06Mo+aPFx8163DCksergZltf5uVpM0xwYDh2vEWSaZjKkNl675/wQW8/zkvNYlpXM31Kv13tHR0fJEFL929wkrusmQ1vHTcOyrJ5hGMmcIKPO2eu9H1odD4Wt1Wq9Wq3WN8y22+0mQ3ZN0+x1Op3eyclJMoxcQ4bbnnd+/pFh6cdDfYdd2+ukHV/LePv5H9M0+9K8eI1arVYylDgeZnwxnVFrY118j7VaLRkqPK3PTqvVSq7FxTlqLntfiy772LTKOL5eo75Do9RqtbGGnV+Wz1Gf46uu5fk5h4b9XBx6P81rlua6tVqtZBqGOH+VSmXkEPhe7/08VefzEX+OryobLM5Kr9frTTGWAjBHQRDo888/15MnT3R8fNxXY9NqtVQoFFhXCAAuYKg7kFHxiKmTk5Nk6Ph5pmmm6kANADcdfX6AjIr7F2xvb/f18YnndrlOB00AyBOavYAM29vbU6PR6OtgaVmWXNe9ssMqAOQVwQ9wA8R9fZZ5YkMAWBYEPwAAIFfo8wMAAHIlF6O9fve73+kf//Ef9ed//ue6devWorMDAADG8O7dO/3zP/+zvv/97+vb3/721M6bi+DnH/7hH/RXf/VXi84GAABI4bPPPtOPfvSjqZ0vF8HPd77zHUnSwcHByHWPJrG1taXnz5/P5Nw3KY3T01Pdv39fL1680Nra2szSmfX7oCzGdxOuFWWRnzQoi+VKIwgCbW9vJ8/xaZlZ8PPjH/9Ym5ub+vTTT2eVxNi+8Y1vSJL+4i/+YmbBz61bt2Z27puUxtu3byVJ9+7d0+3bt2eWzqzfB2UxvptwrSiL/KRBWSxXGqenp5I+PMenZSYdnt+8eSPP85hWHwAALJ2Z1PzcvXtXnucx5wgAAFg6M2v22t7entWpAQAAUpvZPD/f//739fr161mdHgAAIJXUNT+PHj26dF8URfJ9X4eHh7p3717aJAAAAKYudfDTarXGes3f/d3fpU0iU3Z2dkhjicz6fVAW47sJ14qyyF8as3ZTrlNWyyL12l4PHz6U67ra2NgY2Hd0dKRms6mf/vSnE2dwGn7xi18k8zZ873vfW3R2cu3t27f61re+pd///vczHUaKq1EWy4OyWB6UxXKZ1fM7dZ8f27Z19+5dfetb3xr4sSxLxWJRf/u3fzu1jAIAAExD6uDnwYMHI/ebpinP89KeHgAAYCZS9/kZNZIrDEM5jpP21DPzwx/+UN/85jeH7tvZ2cls2yUAAFm1v7+v/f39ofv+8Ic/zCTN1MGPZVlaWVm5dH+v19Pe3l7a08/Ez3/+c/r8AACwREZVPsR9fqYtdfBjGIYePnwowzAG9t25c0eWZV3ZNAYAADBvqYOfg4MDbW1tTTMvAAAAM5e6wzOBDwAAyKKZre314x//WJubm/r0009nlcTYPvroo75/cT27u+NtG8fq6qqePn2q1dXVSbKEKaAslgdlsTwoi+Uyq+d36kkOR3nz5o0KhYLW19f11VdfjX1cFEVqNBqSJNd1R77W931Vq1WdnJxced4gCFQsFtXtdmVZ1tj5wXvTDH4AABjXrJ7fM1nY9O7du/I8T4eHh2Mf4/u+tre3tbe3pyiKrny9bdsT5BAAAOTVzJq9Hj58qG9961tjv75UKqlUKo0cPh9zHEemaer4+HiSLAIAgByaSc2PJH3xxRd68uTJ1M/r+34ylB4AAOC6Jqr5+ad/+id1Op2BZqrj42MFQaDj4+OkD8+0eJ6nVqu1lDNIAwCA5TfRPD9X9bup1WppTz+U4zhXdoQe5fT0VG/fvk19/OrqKiMAAAAY09nZmc7OzlIff3p6OsXcfJA6+PE8T51OR5ubm3r58qV+9atf6Sc/+Ymk96O2/uZv/kY//elPp5bRIAh0584dmaaZ+hyTTpH99OlT7TLMCQCAsTQaDT179mzR2RiQOvgplUrJ8hWlUkkHBwfJPsMwVCwW9eTJk6k1ezUaDbVarYnO8eLFC927dy/18dT6AAAwvidPnujx48epj3/9+vVyre31+9//vu/3hw8f6u///u/113/918m2drs9leDHcRyVy2WFYZhsi/8f/ztOjdDa2ppu3749cX4AAMDVJu0usra2NsXcfJA6+DFNU3/yJ3+i9fV1vXr1SltbW9rc3FSn05FhGGq320MXPU3D9/1LV4gvFAqyLEvdbncqaQEAgJstdfDzk5/8RL/73e/0q1/9ShsbG5Kkw8NDlctlvXnzRtLVszSPa1hg4ziOms3mWDM8AwAAxCYa6n4xuDFNU0dHR3rz5o02NjauNcmhpLFmdgYA3DC/3F10Dq728e6ic4ApmtnyFtcNfIIgSObuOTw8VLvdJhgCANwY8XOuWCyqWCwuOju5NrMZnq/Lsix5nqder6eTkxNVKpWRfYZc16XJCwCQGZZl6dGjRwqCYKbphGFI5cEVlib4AQDgppvH0kzVapW1L69A8AMAwA1RrVZnXrN0E8xsVXcAADC+KIrkOI4Mw0gCGMdxVCqVhr4miiL5vi/HcVSr1dRut5PjbNuWYRh68uQJC4EPQfADAMCCBUGgBw8e6IsvvkiClWazqXK5LNd1Va/XJUnb29syTTMZbd1sNpP+PZVKRS9fvtTe3p48z5toOaibLlfNXltbW/rLv/zLoT/7+/uLzh4AIKe2t7e1ubnZV0tTq9VkWZYcx0lWM/B9v++4aS8gvgj7+/uXPpu3trZmkmauan6eP39O9R8AYKmEYaggCJLanfNs25Zt2/I8T67ryjRN7e3t6c6dO8nrhx2XJTs7O9rZ2Rm6LwiCmUwLkKuaHwAAls2oDsqbm5uSPqxj2Wq1ZBiGHMdRoVCgc3NKBD8AACyBYXPzxPPdxctImaapN2/eqFQqKQxDFYtFNZvNOebyZiD4AQBggeLuGBf780gfAqJCoSDpfQ2QYRjqdDpqtVqS3jeN4XoIfgAAWCDTNGVZlsIwTJq3Yq9evZJhGEnH5vNralYqFXmeJ0kDxzHD82gEPwAALFjcl+d8LU4URXJdVwcHB0nz1+HhYV+gE0WRTNNMhrXHNUSe5ykMQ7Xb7fm9iQzJ1WgvXG13d9E5AJA7OVkxPQiCpKYmCALt7e2pVqvJMIykL8/29rbK5XISzLRarb5RypubmyqXy6pUKpLe1/h0u91kf61Wk+d5Ojw8lKQkPfQj+AEAYA7iBbwvC0gMw0j68Vym0+lcmc75YAjD0ewFAAByheAHAADkCsEPAADIFYIfAACQK7nq8Ly1taVbt24N3TdqbREAADAb+/v7ly4u/u7du5mkmavgh4VNAQBYLixsCgAAMGMEPwAAIFcIfgAAQK4Q/AAAgFwh+AEAALlC8AMAAHKF4AcAAORKrub5AQAsn93dRefgalnII8ZHzQ8AABgQBIGazeaiszETBD8AAMxZEARyHEfValWFQkF7e3uLzlIiDENVq1UVi0V5nrfo7MxErpq9WNsLALBoQRDowYMHOjk5kSQ5jqOjo6MF5+oD0zTVarW0srIyl/RY22vGWNsLALBojUZDGxsbye+u6y4wN4u3iLW9chX85Nmwznp04AOA+QuCYNFZyD36/AAAMAfNZlPValVhGCb9aqrVqnzfT14TRZFs25bjOCqXyyqXy3372+221tfXtbKykgRRvu+rWq1qZWVF1Wo1OU+z2VSxWFS73Zbv+yoWi32vOS9ON/5Zpj5Is0DwAwDAHNRqNbVaLZmmmfSrabVaKpVKkt7XCN29e1e2bct1XXU6HVWrVZXL5SQYqVQqevjwYd95S6XSQNPZ8fGxOp2OgiCQ53nqdDo6ODhQrVZTu93uC27CMNTdu3dVrVbled6N7eR8HsEPAABLYHt7W5ubm319U2u1mizLkuM4CsNQkmQYxsCx5/sQSe87LT969EiSVC6X5bquLMtKAptOp5O81nEcbW5uJkGYJNXr9am9r2VE8AMAwIKFYaggCIYOyrFtW5JS18gMC5aOj4+TdNvttsrlcqpzZ9VSdXiOokiNRkPS8N7v7XZbjUYj+YC4rtsXqeJ66PAMAMthVCfozc1NSUpqfqYpPqdpmlM/9zJbmpof3/e1vb2tvb09RVE0sH9vb0+e58m2bdXrdQVBMNARDACALBv2/Itrbi42bU1DHPzENUF5sTQ1P6VSSaVS6dJJlV6+fNnXRvno0SMVi0VqfwAAmRc3dw37gz4OiAqFwtTTjWt8ut3u1M+9zJam5mcU3/cHmsEsy5JlWTOpBgQAYFaOj48HalpM00yeaRefa69evZJhGKrVapKkO3fuSOpvBov/P6zmaJS4Sa3ZbA499rrny4qlqfkZZVTNznXaKU9PT/X27dvU+VhdXdXq6mrq4wEAuEyr1VKxWJRt20lLRxRFcl1XBwcHSfNXXEvkOI4Mw1AYhknNje/7KpfL6nQ6YzVlGYaher2uvb29ZC0v0zSTztVhGGpvby/16K+zszOdnZ2lOlZ6/9yehUwEP5cJwzDpBT+O+/fvT5Te06dPtUsvYQCYqrzcVuM5d+LaFNu2Va1Wkz/wTdPUmzdvtL29rXK5nPxx32q1+kaBxfP6NBoNVatV1Wo1eZ4n3/dVqVT06NGjJC3p/QAi0zS1ubkpx3GSvMRBjeu6KhQKcl1X5XJZlmWp1Wqp3W6rUqmoUqmkfs+NRkPPnj1LffysrPR6vd6iM3HeyspKUpCjxCO/xmmnjNcGefHihe7du5c6b1mu+Zn2zSUvNysAQHqT1vy8fv1a9+/fV7fbneranJmt+Wk0Gmq1Wtc6Zm1tTbdv355RjgAAwHmTVhqsra1NMTcfZKLD80WO4+jg4CB38xIAAIDJZS74aTabSZskAADAdWUq+Gm325IGR3+NmhkTAADgvKXq8zNqPgHf99VoNGTbtprNZrK92+2qWCxSEwQAAMayNMHP+WF5h4eHKpfLKpVKMgwjWcpC0tCh7ScnJ3PNKwAAyK6lCX4sy5LneUOHuFuWpSUbkQ8AADIqU31+AAAAJrU0NT9YYr/5csjGT+abBwAApoSaHwAAkCsEPwAAIFdy1ey1tbWlW7duDd23s7OjnZ2dOecIAIB829/f1/7+/tB97969m0mauQp+nj9/znxAAAAskVGVD/HC5NNGsxcAAMgVgh8AAJArBD8AACBXCH4AAECuEPwAAIBcIfgBAAC5QvADAAByheAHAADkCsEPAADIFYIfAACQK7la3oK1vQAAWC6s7TVjrO01Pbu7420DAGAU1vYCAACYMYIfAACQKwQ/AAAgVwh+AABArhD8AACAXCH4AQAAuULwAwAAcoXgBwAA5ArBDwAAyBWCHwAAkCu5Wt6Ctb0AAFgurO01Y6ztBQDAcmFtLwAAgBnLVc0Ppug3Xw7Z+Ml88wAAQArU/AAAgFwh+AEAALlC8AMAAHJlqfr8RFGkRqMhSXJdd2B/EARqNBoyTVNRFKlcLqtSqcw7mwAAIMOWJvjxfV+e56ndbqtWqw3sD8NQxWJR3W43Ga5eKBR0fHw89PUAAADDLE2zV6lUUqvVunS/bdsqlUp98/Q4jiPbtueRPQAAcEMsTfAzShRF8n1f5XK5b/vm5qYkqdlsLiJbAAAggzIR/Lx69UqSZJpm3/a4FqjT6cw9TwAAIJuWps/PKGEYSpIMwxi5/yqnp6d6+/Zt6nysrq5qdXU19fEAAOTJ2dmZzs7OUh9/eno6xdx8kIng5+joSJK0sbExdH8URWOd5/79+xPl4+nTp9rd3Z3oHAAA5EWj0dCzZ88WnY0BmQh+CoWCJOn4+Hjo/ovNYZd58eKF7t27lzof1PoAADC+J0+e6PHjx6mPf/369cQVF8NkIviJg5vLanjGDX7W1tZ0+/btaWULAACMMGl3kbW1tSnm5oNMdHiOR3Vd7NsT/z6L5e4BAMDNlIngxzAMWZY1MKrL931J0sOHDxeRLQAAkEFLFfyM6rh8cHAg3/f7an9c15XrupeOAgMAALhoafr8BEEgz/MkSYeHhyqXyyqVSklgY1mWut2uHMeRaZoKw1CO47C0BQAAuJalCX4sy5LneUkAdNlrRi2BAQAAcJWlavYCAACYNYIfAACQKwQ/AAAgV5amzw8W4DdfDm77bz6ZcyYAAJivXAU/W1tbunXr1tB9Ozs72tnZmXOOAADIt/39fe3v7w/d9+7du5mkmavg5/nz57Isa9HZWG6/+XLROQAA5MioyocgCGayigN9fgAAQK4Q/AAAgFwh+AEAALlC8AMAAHKF4AcAAOQKwQ8AAMgVgh8AAJArBD8AACBXCH4AAECuEPwAAIBcydXyFqztBQDAcmFtrxljbS8AAJYLa3sBAADMGMEPAADIFYIfAACQK7nq85Nrv/ly0TkAAGApUPMDAAByheAHAADkCsEPAADIFYIfAACQKwQ/AAAgVwh+AABArhD8AACAXMnVPD8sbAoAwHJhYdMZY2FTAACWCwubAgAAzBjBDwAAyBWCHwAAkCsEPwAAIFcy1+G53W6r0+nIMAyFYSjTNOW67qKzBQAAMiJTwU+73Vaj0VC32022lctlOY5DAAQAAMaSqWYvz/O0ubnZt61cLqvdbi8oRwAAIGsyVfNzfHysMAz7th0dHck0zQXlCAAAZE2man5s21YYhqpWq5LeT350eHhIkxcAABhbpmp+arWaut2ums2mCoWCTNPUmzdvZBjGWMefnp7q7du3qdNfXV3V6upq6uMBAMiTs7MznZ2dpT7+9PR0irn5IFPBj/S+38+rV68UBIHCMJTv+6pUKmMde//+/YnSfvr0qXZ3dyc6BwAAedFoNPTs2bNFZ2NA5oKfcrks27Zlmqaq1aqq1apardZYAdCLFy9079691GlT6wMAwPiePHmix48fpz7+9evXE1dcDJOp4Me2bUnvm78k6c2bN7p79662t7fHCn7W1tZ0+/btmeYRAAC8N2l3kbW1tSnm5oNMdXg+PDzsW5XdMAy5rqsoihQEwQJzBgAAsiJTwc/GxoaiKOrbViqVJGnsTs8AACDfMhX82Latw8PDvgCo3W7Lsizm+gEAAGPJVJ+fer0uwzBUrVaT5q8oivTFF18sOGcAACArMhX8SO87O8cdngEAAK4rU81eAAAAkyL4AQAAuULwAwAAcoXgBwAA5ErmOjxPYmtrS7du3Rq6b2dnRzs7O3POEQAA+ba/v6/9/f2h+969ezeTNHMV/Dx//rxvhmgAALBYoyofgiBQsVicepo0ewEAgFwh+AEAALlC8AMAAHKF4AcAAOQKwQ8AAMgVgh8AAJArBD8AACBXCH4AAECuEPwAAIBcIfgBAAC5QvADAAByJVdre7GwKQAAy4WFTWeMhU0BAFguLGwKAAAwYwQ/AAAgVwh+AABArhD8AACAXCH4AQAAuULwAwAAcoXgBwAA5ArBDwAAyBWCHwAAkCsEPwAAIFdytbwFa3sBALBcWNtrxljbCwCA5cLaXgAAADNG8AMAAHKF4AcAAOQKwQ8AAMgVgh8AAJArmR/tFYah2u22JKlWq8kwjMVmCAAALLXMBj9hGMpxHEVRJM/zZJrmorMEAAAyIJPNXvG4/42NDXU6HQIfAAAwtswFP1EU6cGDBzJNU57nLTo7AAAgYzLX7BU3dbmue+1jT09P9fbt29Rpr66uanV1NfXxAADkydnZmc7OzlIff3p6OsXcfJC54KfZbEqSOp2OHMdRGIba3Nwcq9/P/fv3J0r76dOn2t3dnegcAADkRaPR0LNnzxadjQGZCn6CIJAkWZYl27bluq7CMFS5XFahUNDJycnI0V4vXrzQvXv3UqdPrQ8AAON78uSJHj9+nPr4169fT1xxMUymgp8wDCVJtm0ntTxx359yuaxGozGyOWxtbU23b9+eS14BAMi7SbuLrK2tTTE3H2Sqw/NltTqlUknSh+AIAADgMpkKfjY3NyVJR0dHQ/dvbGzMMzsAACCDMhX8GIahUqkk3/f7tkdRJEkqFosLyBUAAMiSTAU/kuS6roIg6AuAms2mLMtSrVZbYM4AAEAWZKrDs/R+pFe325XjOGq1WjIMQ1EUqdvtLjprAAAgAzIX/EjvA6BOp7PobAAAgAzKXLMXAADAJAh+AABArhD8AACAXCH4AQAAuZLJDs9pbW1t6datW0P37ezsaGdnZ845AgAg3/b397W/vz9037t372aSZq6Cn+fPn8uyrEVnAwAA/JtRlQ9BEMxkAmOavQAAQK4Q/AAAgFwh+AEAALlC8AMAAHKF4AcAAOQKwQ8AAMiVXA11x4z9cndw28dDtgEAsEDU/AAAgFwh+AEAALlC8AMAAHIlV31+WNsLAIDlwtpeM8baXgAALJdFrO2Vq+AnUxg5BQDATNDnBwAA5ArBDwAAyBWavW6g3d0FpfuzTwa3fTz/fAAAMAo1PwAAIFcIfgAAQK4Q/AAAgFwh+AEAALlC8AMAAHKF4AcAAORKroa6s7YXAADLhbW9Zoy1vQAAWC6LWNuLZi8AAJArBD8AACBXCH4AAECu5KrPT2785stF52B2frk7uO3jIdsAALgENT8AACBXMh/8+L6v9fX1RWcDAABkROaDH9u2F50FAACQIZkOfhzHkWmai84GAADIkMwGP77v686dO0xaCAAAriWzwY/nearX64vOBgAAyJhMDnV3HEeu6177uNPTU719+zZ1uqurq1pdXU19PAAAeXJ2dqazs7PUx5+enk4xNx9kLvgJgkB37txJ1dfn/v37E6X99OlT7e7uTnQOAADyotFo6NmzZ4vOxoDMBT+NRkOtVivVsS9evNC9e/dSp02tDwAA43vy5IkeP36c+vjXr19PXHExTKaCH8dxVC6XFYZhsi3+f/zvqBqhtbU13b59e7aZBAAAkibvLrK2tjbF3HyQqeDH933t7e0N3VcoFGRZlrrd7pxzBQAAsiRTo7263a56vV7fT71el2EY6vV6BD4AAOBKmQp+AAAAJkXwAwAAciXzwY/rujo5OVl0NgAAQEZkPvgBAAC4DoIfAACQK5ka6g7s/uyTwW0fzz8fAIDsouYHAADkSq5qfra2tnTr1q2h+3Z2drSzszPnHAEAkG/7+/va398fuu/du3czSTNXwc/z589lWdaiswEAAP7NqMqHIAhULBannibNXgAAIFcIfgAAQK4Q/AAAgFwh+AEAALlC8AMAAHIlV6O9Mu+Xu4PbPh6yDQAAXIqaHwAAkCsEPwAAIFdo9sLyGtbMp0/mnAkAwE1DzQ8AAMiVXNX8sLYXAADLhbW9Zoy1vQAAWC6s7QUAADBjBD8AACBXCH4AAECuEPwAAIBcIfgBAAC5QvADAAByheAHAADkSq7m+cESG7qUBQAA00fNDwAAyBWCHwAAkCs0e2GmdnfH2wYAwLzkKvhhYVMAAJYLC5vOGAub3lDDOkt/PGQbAGDpsLApAADAjOWq5gfZsvuzTxadBQDADUTws6SGPfh3P/1y3tmY3G++HLLxk/nmAQCAc2j2AgAAuZLJ4KfdbqtYLGplZUXFYlG+7y86S5P55e7gDwAAmInMBT97e3vyPE+2baterysIApXL5ewHQAAAYC4y1+fn5cuX6nQ6ye+PHj1SsViU67oqlUoLzBkAAMiCTNX8+L4v13X7tlmWJcuyFIbhgnIFAACyJFM1P6NqdkzTnGNOMG0MawcAzEumgp/LhGEo27avfN3p6anevn2bOp3V1VWtrq6mPh4AgDw5OzvT2dlZ6uNPT0+nmJsPMh/8tNttmaapWq125Wvv378/UVpPnz7VLqtyAgAwlkajoWfPni06GwMyH/w0Gg21Wq2xXvvixQvdu3cvdVrU+gAAML4nT57o8ePHqY9//fr1xBUXw2Q6+HEcRwcHB2P391lbW9Pt27dnnKvZGTrr88fzz8ey4boAwHKatLvI2traFHPzQaZGe53XbDZVLpdZpR0AAFxLJoOfdrstaXD0VxAEi8gOAADIkMw1e/m+r0ajIdu21Ww2k+3dblfFYpGaIAAAMFKmgp94KQtJQ4e2n5yczDtLAAAgYzIV/FiWpV6vt+hsAACADMtknx8AAIC0CH4AAECuEPwAAIBcIfgBAAC5kqkOz5Pa2trSrVu3hu7b2dnRzs7OnHOUU7/cHbLxkzlnAgCwDPb397W/vz9037t372aSZq6Cn+fPnzMPEAAAS2RU5UMQBCoWi1NPk2YvAACQK7mq+bmRMtiENGwhUgAA5oWaHwAAkCsEPwAAIFcIfgAAQK4Q/AAAgFyhw3PG0XkYAIDroeYHAADkCsEPAADIFYIfAACQK7nq88PaXjkybPLHj4dsAwAsFGt7zRhrewEAsFxY2wsAAGDGCH4AAECu5KrZa1kxV08G0acIADKLmh8AAJArBD8AACBXaPbCjTSsKXH34/nnAwCwfHJR8/P111/3/YvF+Zd//VpfBp/pX/6Vsli0s7Mz7e7u6uzsbNFZyT3KYnlQFstlVs/vXNT8EPwsj3/91/+iF6//g/77/7aqP/2Tj+ab+LBOysPkpOPy2dmZnj17psePH2t1dXXR2ck1ymJ5UBbLheAHWKQLgRPNagCQXQQ/8za09uGTOWcCmBGmAACQAQQ/wEXjNo9hPAREAJZMroKfH/7wh/rmN785dB8Lm2ImePADwEijFjb9wx/+MJM0cxX8/PznP9f3vve9RWcDGTTWLNx5qzHK2/sFMBOjKh9+8Ytf6P79+1NPM1fBD/KNZUQAABLBDzA14wZXu9od74QZbB4bOgru0y8HX3hTmwNv6vsCbphcTHI4D5e1V07T//Z//M83Io15mPX7mMd1mvpn6pe7/T//sTHd81/if/ifTrT7s0/6fqZt1t+/ic5/8bovsLlwHvepm5LGrN2U65TVsiD4mZJ5fABe/p//641IYx5m/T4mOf/FQOCyYCCrN5WL5vGZWurgZ4nclIfhTSiPm3KdsloWmWz2CoJAjUZDpmkqiiKVy2VVKpVFZwtYHtOuXRhyPvpQAciqzAU/YRiqWCyq2+3KsixJUqFQ0PHxsWq12oJzdzUeGBhm6Ofi3f5g0DGs/8ikgc5/bEh/Nt9p/JkhG8AiZS74sW1bpVIpCXwkyXEc2badieAHGNf/F/3ZYJDwsy8HXrf76VyyAwA3RqaCnyiK5Pu+XNft2765uSlJajabyxUAsZQFFmScGsazr//zVM83sTyNlLr4Xv8zK4gD85Sp4OfVq1eSJNM0+7bHtUCdTme5gh9gDiYNTBo//3da/ejPppOZCWSuKYxJHoHMylTwE4ahJMkwjJH7L/rjH/8oSfr1r389UfofffSRPvroo/e//Nrr2/cu+q2Cf2/3bfP+l+KQs/zfqdP/l385029/l/74ZUjj6//yTpL0n776f/XRf31rZunM+n1QFuOb5H3Y/+PgcfbTzYFt7969UxAEqdIYx9Dz/1+/ndr5T999LUl6/fq11tbWPuy4cJ+5lv/OHtg09H2Mm8aQ8w07duplMY80zjk9PZU0pCyGGXbtxr1OQ54ZQ4+dwNjlPUG6V5XF119/ra+//nr8E/7v/77v11//P/9J0ofn+NT0MqRer/ck9brd7sA+ST3TNIce99lnn/Uk8cMPP/zwww8/Gfz57LPPphpPZKrmp1AoSJKOj4+H7r/YHBb7wQ9+oM8++0zf+c539I1vfCN1+n01PwAAYKRr1/xc8Mc//lG//e1v9YMf/GCKucpYs1cc3ERRNHL/Rd/+9rf1ox/9aFbZAgAAGZKpGZ7jUV0X+/bEvxeLw/rYAAAAfJCp4McwDFmWpU6n07fd931J0sOHDxeRLQAAkCEr/9ZZODOCIFCxWNTR0VHSzFUoFGTbtur1+oJzBwAAll3mgh+pf22vbrerk5MTlUqla63zxfpg05f2mrbbbTUaDQVBIMuy5LquSqXSHHJ8c03j8+37vqrVqk5OTmaUy3yYRlmEYah2uy1JqtVql073gatNcp/qdDoyDENhGMo0zYEJdzG+KIrUaDQkaezrONXn9lTHjs3Z0dFRT+of+m6aZs/zvJkch8ulvaau6/ZKpVLP87xkKgNJvU6nM+ss31jT+nybptkzDGPa2cuVScvi6OioV6lUeqVSqXd0dDSrbOZG2vJotVo9y7L6tpVKpV69Xp9JPm+6TqfTq1QqPUm9Wq021jHTfm5nOvgplUq9UqnUt83zvN5VMV3a43C5tNe0Uqn0/d7tdnuSBs6F8U3j812v13ulUongZ0KTlEW32+0ZhjH2wwFXm+SZcbEcXNe9dG45jOc6wc+0n9uZ6vB8XrzOV7lc7tt+fp2vaR6Hy6W9psPWabMsS5ZlXTpbN0abxufb933duXOnb/FgXN8kZRFFkR48eCDTNOV5E8zyjMQk5XF8fJwMrImd73eK2ZrFczuzwc8463xN8zhcLu01LZVKl948uKmkM43Pt+d5DB6YgknKwnEcRVFEn5IpmqQ8bNtWGIaqVquS3vc9OTw8pHzmZBbP7cwGP2nX+Up7HC437Wt6/iaD65m0LBzH4YY+JZOURfyXbKfTUbFY1Pr6usrlMvenCUxSHrVaTbVaTe12W4VCQY7j6M2bN9SOzsksntuZDX6Ojo4kSRsbG0P3XzYLdNrjcLlpXtN2uy3TNFWr1aaRtdyZpCyCINCdO3eodZuStGURLxJpWZZs21a321W321UYhioUCtyjUpr0PuV5XtIk7/v+QDMYZmcWz+3MBj9p1/lKexwuN81r2mg01Gq1ppKvPJqkLBqNBs1dU5S2LOK/Ym3bTl5zvu9PPDwY1zPpfapcLsu27WS4e7VaTaYfwGzN4rmdqbW9zku7zlfa43C5aV1Tx3F0cHBAGUwgbVk4jjPQrBL/P/6XcrmetGVxWdV+PPcVTV/pTHKfsm1bkpIa6Tdv3uju3bva3t5mfrg5mMVzO7M1P2nX+WJ9sOmbxjVtNpsql8u0oU8obVn4vi/btlUoFJKfdrutKIpUKBTog5XCpPeouKr/osuq/jHaJPepw8PDvnuTYRhyXVdRFCXNlJidWTy3Mxv8pF3ni/XBpm/SaxpXHV+c1ZmbyvWlLYtut6ve+3m/kp96vS7DMNTr9dTtdmee95tmkntUqVQa6FMS/9XLH2jpTHKf2tjYGKh1iO9XzLY9ezN5bqeaHWhJxBPinZ/51DTNnuu6ye9HR0c90zT7Zgwe5zhcT9qy6HQ6Pcuyep7n9f3UajVm3E4pbVlcVK/XmeRwQpPeo85vc113YJZhXE/a8nBdt2cYRu/k5KRvG+WR3snJyaWTHM7juZ3ZPj/S+9EQ3W5XjuPINE2FYSjHcfpGCkVRpOPj476ofZzjcD1pyiIIgmTSqrhN/TzWlEon7fcC0zeNe1Sr1ZJhGIqiiBq4CaUtj7gWtFqtJs1fURTpiy++mPdbuBGCIEg68B8eHqpcLqtUKiW1aPN4bmdyYVMAAIC0MtvnBwAAIA2CHwAAkCsEPwAAIFcIfgAAQK4Q/AAAgFwh+AEAALlC8AMAAHKF4AcAAOQKwQ8AAJjYxYVHlxnBDwAAmFi1Ws3MkjkEPwAAYCJBEMg0zWR9rnjtrZWVFa2srGh9fV17e3vJ633fV6FQSPbFK7TPC2t7AQCAidi2rWq1qlKp1Le9Wq2q3W6rUqmo1WoN7AvDcCEL9hL8AACAiRQKBR0dHQ1sD4JAxWJRhmHo5OQk2d5ut+U4ztBj5oFmLwAAkFq73R6o8YlZliXLshRFUdK0FQSBHMdRp9OZZzb7EPwAAIDUPv/8c9m2fen+eJ/neYqiSNVqVa1WS6ZpziuLAwh+AABAUiOzvr7eF8xUq1Wtr68PHcoeRZHCMJRlWZee9+HDh5Le1xA9ePBAruuOfP080OcHAAAkyuWyfN9Xr9dLOjKHYaharTbw2mazqSiKVK/XR55zVMfnRfjTRWcAAAAsj2q1Kt/3Zdu2HMcZ2TzleZ6++OKLK88ZnyMIgktfY9u2CoWCvvrqK333u99VpVK5fubHRPADAAAScedlwzBGBj5hGGpjYyOZ2+cy7XZbvu/LNE2FYaggCAaavarVqkzTTGqQ4hFil3WknhR9fgAAQCIOeK5arsLzvJEdnaUP/Yi++OKLvo7P54VhqHa73XeuR48eyXXdNNkfC31+AABAwnEc+b6vKIpGzsNz2dw+sSiKVCwW1Wq1kuHu6+vrkqTzoUe73Va1Wu3b5vu+yuWyTk5OrqxZSoOaHwAAIOl9IFIul2XbtsIwTGp/LtYC+b5/ZZPUgwcP5Hle0sRlGEbSj6fdbieve/ny5UCAs7GxIUk6Pj6e6P1chuAHAIAcC8NQe3t7arfbOj4+VqlUSgIbz/O0t7eXBCOxq5q8yuWyTNMcCJDK5bIkqdFoJNuiKBo4//m8zQLBDwAAORYEgRqNhl6+fJkMZzdNU5VKRc1mU6VSaaBmZlinZenDgqW+7ysIgr4anna7nfT3CYIgGVVWKBQureGZ1USI9PkBAABjG3dun3GN6vMzqxCFoe4AAGBs487tM664BikMw775gGY5CzTNXgAAYCzjzu1zHXET2/kmss8//5yh7gAAYPEcx5nZ7MvnZ3guFApDl9OYFoIfAAAwlnhF9qwj+AEAALlCnx8AAJArBD8AACBXCH4AAECuEPwAAIBcIfgBAAC5QvADAAByheAHAADkCsEPAADIlf8fFkjsaEi+q1IAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.hist(\n",
" rad_length_lost,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"darkorange\",\n",
" histtype=\"bar\",\n",
" label=\"lost\",\n",
" range=[0, 1],\n",
")\n",
"plt.hist(\n",
" rad_length_found,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"blue\",\n",
" histtype=\"bar\",\n",
" label=\"found\",\n",
" range=[0, 1],\n",
")\n",
"plt.xlim(0, 1)\n",
"# plt.yscale(\"log\")\n",
"plt.title(\"radiation length fraction endVelo2endUT\")\n",
"plt.xlabel(f\"$x/X_0$\")\n",
"plt.ylabel(\"a.u.\")\n",
"\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiMAAAL7CAYAAACfnvZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4UElEQVR4nOz9f5gb133Y+3+GK5mhzaXAlXtTmYpjYdNb041lfQeUdWs5VnIFPJVjM6m0u5TbqnGaSECcvVYiRlpETprltk+9xspfqrG6sQHqm+s0yq1JgFJrxpZSwNdWavlbyQQq/6Ru64Vs1TTTVNqFuYzXlLg8948VoF3inLPALGYwAN6v58FD7vmcX/MDwJk5mBlHKaUEAAAAAAAAAADAJ9u63QEAAAAAAAAAANDfmIwAAAAAAAAAAAC+YjICAAAAAAAAAAD4iskIAAAAAAAAAADgKyYjAAAAAAAAAACAr5iMAAAAAAAAAAAAvmIyAgAAAAAAAAAA+IrJCAAAAAAAAAAA4CsmIwAAAAAAAAAAgK+YjAAAAAiZSqUic3NzEovFJJFIdLs7PaNarUoul+vLdVYqlSSVSsnu3bulUCh0uzvoUXy2+COM67WfPw8BAEDvYjICAAAgRCqVihw9elTS6bRUKhVtnkKhILt375a5ublA+hR0e+2qVCqSSCRkdHRUUqmUlEqlbnepowqFgmSzWcnlclKr1XxpY25uTiYmJmT37t2ye/duSaVSvrXVaWHfP8Oilc8WtM+2XguFgsRiMXEcZ8MrkUgY99dKpSITExMb8k9MTEi1Wm25P/38eQgAAHqbo5RS3e4EAAAANpqYmJBCoSDxeFyKxeKGWCwWk0qlItFoVBYWFjrSXv3EcyQSaYr50Z4fcrmcpFIpERHp1SGubTs4jiMiIvl8XsbHxzvW3s033yzxeFwymYzUajWJxWJSrVYlk8nI1NRUR9rZqn7YP8PC9tnSabbt1m9s6zWRSDQmBVzXlXK5vGl9c3Nzkk6nPb8P++HzEAAA9B+ujAAAAAihkZERYyyTyTROHneK7Ze3frTnh2g02u0ubFk7v4DuhPqvuesnLSORiCwsLEixWAzNRIRIf+yfYWH7bOm0oPfnbrKt13w+3/h/q1elvPTSSxKJRDy/D/vh8xAAAPSfy7rdAQAAALQnHo9LPB7vWH3pdNp6K49Otwe9zbaDH3K5nIg0n0gN0/Zm/+xN3difwyoSiUgymWy83+bm5jadZMjlcpJMJoPoHgAAQGC4MgIAAGCAFQoF7rUfAt3YDr3wi3X2z97Edmu2/sqd2dlZa95SqSS1Wk3uv/9+v7sFAAAQKCYjAAAAWlAqlWRiYqLxy9ZUKtV4EOl6hUJBEomETExMSCKRkFgs1ihjkk6nZXR0VGKxWEv5q9WqpNNpicVixjyt9KNQKMhdd93V+Pvmm29uPMC43fZE1n7tW29rdHRUEomEcVlqtZrkcrkNeXK5nIyOjorjOI3nAHRarVaTVCq1oR3dSdNO9K++PurbNpVKSaFQaHowdKvb4VLpdFp2797d9vrK5XKye/fuDdvzmmuuabS5fn34ud+vXz+7d++WRCKxYRn6df9sdV11og/tfrZsppX3Tzv7s5f9Zit9q+frxnqNRCKNZ73UajUpFArGvJlMRsbHx5uetdHqMrajnfcFAADAlikAAAAYZTIZFY1GlYgoEVHZbFbF43EViUQaaQsLC0oppeLxuBIRtbS01Cg/NTWlRERlMpmmupeWlpTruioej28oMz4+3qg7Ho830svlcqMNEVGRSETb53b6sbS01KivXC5viLXaXrlcVtFoVI2Pj2+ot74cly5fsVhUrus26s1kMmp8fFy5rquSyeSG9b2+3GaKxWKjnCnuuq4qFotKKaUWFhYay+e6bkf757ruhjrz+XyjzPrX+vVl2g516/fB+n4zNTXleX0tLCw07cN1fu73CwsLKhqNqmQy2Sizvi/5fL6l9dJr+2c762qrfWj3s6UVrb5/6u1vtj+3u990om/dXq/r9/NoNGrNU1+WdpdxfX7b52G77wsAAIBOYDICAABgE+tPrEWj0cbJoEwmo5LJpFLqtRM/l54QrZ9Y0p0odV3XeAK1ftJXd2IrmUwa62y3H62cNLS1V+/rZhMjuuWoL2MkEtlw4m1paakRa+ekpO3kW335L13G9cs/NTXVkf7VT6iuP6mu1GsnLKPRqFpaWtpwoq+dyYhoNNqUp96fS5fBxjYZcWmfOr3frz8BWlffV9afpO3H/bOddeW1D14/W0zaff9stt28rItO9U2p7q7X9RNol044KKUaE4xbXcbNJiO8vi8AAAC2gts0AQAAbCISiTRul7H+YblTU1OSzWY35I1Goxv+rj8YuFarbbg9Ty6Xk0qlYrwnuO2BvJvdjqadfrTC1l46nZZarWZ80Gr9PumlUqnptiT1PiaTyQ3LG4lEZN++fSIisrCw0FZfbf2MRCLiuu6G9PVpl96axGv/6st56TZIpVIi8tqzGi69BUurMplM03LU+9fJ50D4sd+n02njfp/JZCQSibT9MOpe2z/beW966cNWPltMvLx/WtGJz6mg3tudWq/pdLrx//XPkVjfTv2zYn2ZTq7/rbwvAAAAtuKybncAAACgl5hOfMbjcVlYWGg6ubb+5PDi4mLj5G79ZM+lJ5fq6ifl2o21249W2Nqrn6i6/vrrtXHXdSUajUq1WpWjR4827pm+mXr/O3Vyvd7P0dHRpli9jfoJ0FbWja1/9bTFxcUN6etPVra7DbbSn07o1H5fP2Gq2+9d15WlpaW2+9Yr+2en35umPmzls8Wk0++fTq6LoN7bnVqv8XhcXNeVSqUipVJJKpVKo876M2UunSTo9DL69b4AAADYDJMRAAAAHbL+xFqhUJCjR482nWyrq59AMsWD6sdWtXIytn5Sy48HUrei3m48HpdisRhou6ZfS/u1Pbqh1f2tWq1KrVYLdNnDtn8G8d7s9GeLX++fTqyLIN/bnVyv999/v0xMTIiIyOzsrOTz+cb/L31wtR/LGLb3BQAAGBzcpgkAAKCDcrmcjI6OyuLiouTzee0tPfz69Xq7/diqS3/FbFI/eWfL46d6u0GsdxFp/Kr50lsZ1W8704+/Mm5nvw9qPwjr/unne9OPfdzP989W10VQ7+1O1z8+Pt7Y7wqFQuOkv+42UJ1exrC+LwAAwGDgyggAAIAOSSQSUiqVtLcfWW/9vdCr1WrHfxndaj+2an3dtnvn13/l262rAeq3TwlqMiKbzUq1WpVSqSQTExOSyWRkZGREJiYmxHXdxq+g+0Wr+9ulzwPo5G2qdMK4f/r93vTjs8Wv908n1kVQ720/1ms6nW48G6J+C6hoNNp0G6hOL2MY3xcAAGBwcGUEAABAB6TTaSmVSpJMJjc9ebP+ZFOnb4HRTj86od5GqVQy5qmfRKs/GDZol94OxqRWq3l6CK9OsVgU13VlZGRE0ul048RjuVzuSP1h4XW/t63narXa8ROvYdg/g3hv+vHZ4sf7p1PrIqj3th/rNZlMbniWSi6X2/Bw6zo/ljFM7wsAADBYmIwAAADoANsDRnXqJ4NmZ2e72o/1vNyOo/7L3kqlYjyBXD95pzvRFoRIJNJY33fdddeGXzmvNzExYXzGQ7smJiYkn89LNptt/Nvq7Zl66bYo7e5v9ZO6s7Ozxv0llUppT1D3+v65lfdmOzr92bLV949uu3VqXQT53vbjM/vSWzJd+uBqEX+WMUzvCwAAMFiYjAAAAOiA+gm3o0ePbkhff+Jq/Umk+m05arVa40Gm6/MdO3ZMRPS35qi3pTsp1W4/dA9KvbRdW3tTU1ONE2X1ZVqvfrJrfb5WdPqE/Pr1HYvFNixrpVKRWCwmruu23Edb/1KpVNu3cmllO3Sa6aRmO7ay38diMcnlco14qVSS0dHRDSc/+2n/bHddee3DVj5bTNp9/2y23Tq5LoJ6b/uxXqemphr/101E6NruxDL69b4AAADYlAIAAMCmRESJiEomk9p4Mpls5IlGo2p8fFxFo1GVz+eb0hcWFrRlpqam1NTUlIpGo8p13UYsEomoYrHYaGtqaqoRW1pa2nI/4vF4o51MJqPi8XjL7Sml1MLCgopGo0pEVCaTaUo3rbNIJKJERI2PjzfF6svvuq5+g2hks1lrP8fHxxvxS1+6PnrtX71cfZ3Wt2c8Hlfj4+Mqk8lo+2fbDktLS406169jXdlWrd8n8vm8No8f+/36/enS12bL1sv7p5d15bUPXj9bbNp9/9i2m5d10cm+hWm91vffcrnc0WXc7PPQ6/sCAABgK5iMAAAAsMhkMo0TNutP/OhO3iaTSRWJRFQkElHJZLJxAiiTyTROXl16giqfz6t4PN44aV0/+TY1NaXGx8c35C+XyxtOhtVPmF16ArfdfiwsLGw4AVePtdre+nUVj8c3nHzXnZArl8uNE5Xr1+nCwoJaWFhoOum22QnJhYWFlvuZzWYb6zsSiWj7uNX+5fP5DRMSulckEmk6QWjaDvl8fsOJThFRU1NTamlpSdufeDxuPbFZLpfV1NRU06TJ1NRUY7/2e78vFotN28HU517fP72sq070oZ3Plla18v6pM223dtdFJ/sWxvW6tLTU8qRWK8vYzuehUq2/LwAAADrBUUopAQAAANARpVJJ8vm8ZDIZqVarsri42LjlzOLioiwsLEihUJB4PC7ZbLa7nQUAAACAgDAZAQAAAHRIoVCQu+66S5aWlqz5qtWqpNNpyefzAfUMAAAAALqLB1gDAAAAHVB/sG0rD3ytVCqSSCQC6BUAAAAAhAOTEQAAAEAHLC4uisjaREOhUDDmKxQKcvToUUkmk0F1DQAAAAC6jts0AQAAAB0yMTHRmIiIRCISj8dlZGSk8dyIkydPSjKZlEwm0+WeAgAAAECwmIwAAAAAOqhQKEg2m5WTJ09KrVaTaDQqruvK9ddfL8lkUiKRSLe7CAAAAACBYzICAAAAAAAAAAD4imdGAAAAAAAAAAAAXzEZAQAAAAAAAAAAfMVkBAAAAAAAAAAA8BWTEQAAAAAAAAAAwFdMRgAAAAAAAAAAAF8xGQEAAAAAAAAAAHzFZAQAAAAAAAAAAPAVkxEAAAAAAAAAAMBXTEYAAAAAAAAAAABfMRkBAAAAAAAAAAB8xWQEAAAAAAAAAADwFZMRAAAAAAAAAADAV0xGAAAAAAAAAAAAXzEZAQAAAAAAAAAAfMVkBAAAAAAAAAAA8BWTEQAAAAAAAAAAwFdMRgAAAAAAAAAAAF8xGQEAAAAAAAAAAHzFZAQAAAAAAAAAAPAVkxEAAAAAAAAAAMBXTEYAAAAAAAAAAABfMRkBAAAAAAAAAAB8xWQEAAAAAAAAAADwFZMRAAAAAAAAAADAV0xGAAAAAAAAAAAAXzEZAQAAAAAAAAAAfMVkBAAAAAAAAAAA8BWTEQAAAAAAAAAAwFdMRgAAAAAAAAAAAF8xGQEAAAAAAAAAAHzFZAQAhFSlUpFcLtftbnRMvy2PiEitVpNcLifVarXbXQEAAAC6jjE/AMCGyQgAA6lSqUg6nZaJiQkZHR2Vubm5bnepoVqtysTEhMRiMclms93uzpZ5WZ769onFYhKLxXzuoTe5XE6uueYaSaVSUqvVOlJnmPdLAACAQdMLY9KwYMzfHsb9AAbVZd3uAAAErVKpyM033yxLS0siIpJOp2VhYaHLvXpNNBqVfD4vjuN0uysd4WV5XNcVEZG5ubnG/7utWq3KyMiIRCIRERFJJpOysLDQsQOHsO+XAAAAgyaoMeml48xexJi/dYz7AQwyJiMADJzZ2VkZGRlp/J3JZLrYG5iE5YCkbmJiQvL5/IaDxCuvvLJj9bNfAgAAhE8QY1LdOHNQDNqYX4RxP4DBxmQEgIFTqVS63YXAFAoFWVxclHg8LtFotNvd6VkTExO+7zeDtF8CAABgTafGmYz7ty6IMb8I434Ag41nRgAYGLlcTiYmJqRarTbuaToxMSGlUqmRp1arSSqVknQ6LYlEQhKJxIZ4oVCQ3bt3i+M4jUFkqVSSiYkJcRxHJiYmGvXkcjmJxWJSKBSkVCpJLBbbkGe9erv1V7uXAafTaXEcRxzHkVwuJ5VKRXbv3i0TExOSSqVkdHS05UFvoVBoLHcul5Pdu3dLKpVqxOfm5hrrKBaLaR9Qt9Xl2UylUpGJiQlJJBIyOjoq6XR6Q9vtrHsRafRzdHS06SCkUCg0/k6lUtqDlMXFxUabtnZ0NtsvO7096vs1B0EAAABbs9mxw6V56uPN+nitlXHmpTo17mfMH+yYX4RxPwCIiIgCgAETjUZVNBptSi+XyyoSiahyudxIy2azSkRUJpNppCWTSSUiG/ItLCwoEVHj4+ONv8fHx5WIqHg8rqamplS5XG6UXV/fwsKCikQiqlgsNtIymYwSEeW67qbLk8/nVT6fV1NTU0pEVDQaVePj46pcLqulpaVGP+p926yuaDSqREQlk0k1NTWlXNdt9KPeRl2xWFQisqHvW12e9XRlyuWyisfjG/pc72+9/VbXvVJKua6rpqamGmVFpLEe63XWl3thYWFD2fpyxeNxlclkrO1sRrdfdmp7RKPRDX2PRCIqEom01T8AAIBBZRqTtnLsMD4+3hhr1vOsj5vGmTqdGvcz5u/emF8pxv0ABhuTEQAGjmkywnXdDQPe9enrB6X1geD6A4+lpaWmgX99wHzpALU+kK0bHx/XttvqQL5ef729Sw8+6gNVXRum+kRkw0FTXTwe3zCYrS/3+rxbXZ7Nyriuu2HdK7U2yBYRtbS0pJRqfd3X862vr35gsX4Qv9mBSTabtbbTCtN+udXt4bpu03qo11lfXwAAADAzjUlbOXaIRCJN4zivkxGdHPcz5u/OmF8pxv0ABhu3aQIAEalWq1KpVLQPUKtfGpvNZj3VrXsQ3eLiYqPd+uW4Xk1NTTXqEhG5/fbbN8RrtZqItP5wuHp/r7/++qZYPp+Xcrnc+PvkyZMb2ujE8tjUt9Ps7Gzjsub1l0fX+1NnW/ciIl/96leb4vX62rmced++fU3t1rfHVm11e1QqFYnH4xvKTU1NiVJqIB+SCAAAsFXtHDtEo1GZm5vbcAuj+vi9XZ0c9zPmD9eYv16fCON+AP2NB1gDgNgHofVBZycHmnX1OjvxkLmFhQVtXfXB9+joaFv16QaskUhEIpGIFAoFOXr0aNNAuZPLo1PfTvl8viP11ftfKpWaDtpanbwJipftUV9fHHwAAAB0TjvHDvl8XmKxmKTTaclms5LP57c8zuzkuJ8xf7jG/CKM+wH0N66MAIB16r8sWa8+oBsZGel4e/WB/Ppf7nhV/3XMpQPqehuX/pLHi2q1KrFYTKrVquTz+aZfdXVyeUztr/93q8bHxyUej8vs7KyUSiWp1WqSyWRkamrKt4OrTmp1e/gxkQYAADDoWjl2iEaj8vzzz0s8Hm+M3XQPHm6H3+N+xvzhw7gfQL9gMgIA5LWBfKlUaorVDzLavbKgFfXB7/pLbr2qVCrawXT9VzKd+NVPIpGQkZER46XlnVweW/2FQkEb122/zeTzeYnH41KpVCSXy0kmk5FMJrOlfgZls+1R3+amX5VxsAIAANC+do4dqtWqRCIRKRaLjTFZ/VZOXvk97mfMHz6M+wH0CyYjAAycxcXFpl/xRKNRcV1XqtVq00Dt5MmTEolEJJlMiojIlVdeKSIbB3T1/+t+HWVT/9VSLpfTlm21vno+3UFJ/QBoq+rrZn1d9Xbr67NTy2NSvwdqOp1uujze6y/MJiYmGr8umpqash68Xdr/l156SUQ686sw3X5p0+72uPSgLZ1O+3K1DwAAQL9r59hh/Qnv8fHxxrMkLi0XlnE/Y35/x/z1ehj3AxhUTEYAwKvy+bxEIpENv1SqX8J75MiRxuCvPnBNp9NSKpUkl8s1DipKpVLjQW6tDDAjkUjj1y2xWExKpZJUq1VJp9MisjbwXP+wO5NOXqpdH9heOgivD2ALhYLkcjnJ5XKNflYqlcYvlzqxPCaXrq+JiQmZm5uTRCIhCwsLjQOXVgf39cF6vZ5cLieFQqHpoKf+y7ZsNtt4YJ9NrVbr2MHKVrdH/QA4kUjIxMSEpNNpicViMjo6yj1lAQAAPGr12OHYsWMbJh5qtZpEo9HGZEK748xOjfsZ84drzF+vb/2/dYz7AfQVBQADolwuq2QyqUREiYhKJpOqWCxuyLO0tKTGx8dVPB5XyWRSJZNJVS6Xm+rKZDIqEomoSCSipqamlFJKRaNRNTU1pcrlsiqXy8p1XSUiKhqNqmKxqJaWlja0n8lkGvVls1kVjUaViCjXddXCwkKjvoWFhU2XLZvNqkgkovL5/Ib0fD6vRKTRx83k8/lGP6LRqMpms9p26n1TSqlkMrlhPbSzPPV1oXtduq6WlpY2rH9TP9tZ9/V+6dqPRqMb2nRdV0UiEZVMJhvrKhKJNJaxXC43tbN+nbS6rOv3y05tj3w+31gnrus27fcAAABodunxw6Vj0laOHeLxeGOsNjU1pcbHxzfUoVTzONOmE+N+xvz+jfnbWV7G/QAGkaOUUl4mMQAA4ZdOp2Vubk6y2WzjUnG8plKpyNGjR+X++++XxcXFDb9uyufzMjo6arwvKwAAABAWjPvNGPMDQHhc1u0OtKJarWrvhwgAsPNym6ZBUa1WJRaLydLSkkQikaZLl6PRqKeH4wEA0C0cNwGDi3G/HmN+AAiXUE5GOI6z4W/XdaVcLlvLVCoVmZ2dlWg0KrVaTRKJhIyPj/vZTQAIvfpBCScmmtXXzV133SX3339/47671WpVSqWSLCwsbHjgIAAAYcNxE4A6xv16jPkBYHOFQkGKxaJEIpHGj1su/Wzs1BgydJMRuVxOkslk48FBItJ4OJFJfaa7XC43vlhGR0dlcXGRyxMBAFrxeFwymYzMzs5ueDid67qSyWT4/gAAhBrHTQCwOcb8AGBXKBRkdnZ2ww9aEomEpNPpxoREJ8eQoXtmRCKRkGKx2HYZEdlQLpfLSSqVkpAtHgAEqlAoyOLiohw4cKDpkmS8pn7fWH5JBgDoFRw3AViPcf/mGPMDQLNEIiHRaFSy2Wwjrf4MooWFhUYekc6MIbd1oM8dUygU5OTJkzIxMSG5XK6lMrVaTUqlUmOl1NXvk9hqPQDQj8bHxyWZTHJAsolIJMJBCQCgZ3DcBOBSjPs3x5gfAJotLi42PTtnYWGh8XnZ6TFkqCYjisWi1Go1KRQKkkqlZPfu3Zs+SOjkyZMi0nxfxPolI+3+WggAAAAAwozjJgAAAHRCKpWSarUqExMTIrL2bIhjx441btHU6TFkqJ4Zkc1mJZvNSqVSkWw2K7lcThKJxIbZmEvVH0Zkmv2vxy/14osvyuc+9zm56qqr5Cd+4ic89/l1r3udvO51r/NcHgAAAGjFyy+/LC+//LLn8j/+8Y/lzJkz8r73vU/e+MY3drBnCFpQx00cMwEAgG7rtzHwCy+8IC+++GLb5ba6HkRErrrqKvk7f+fvbEhLJpNSLpcll8vJ6OioRKNRef755xtjRq/n3o1UiOXzeSUianx83JhnampKiYgql8tNMRFR0WhUW+7Tn/60EhFevHjx4sWLFy9evAbq9elPf7pj43WEg1/HTRwz8eLFixcvXrz65RWGMfD3vvc9dXkX18Hll1+uvve972n75rpuI18+n2+kez33bhKqKyMuNT4+LuPj41KpVIx5RkdHRWTt/lY6pl8GXXXVVSIi8olPfELe8Y53eO6j6Vc+Y2Njcvz4cc/1bqaV+mOxrDFWLqe2VLe+PUtw37r/f3NM5GfX1X/ykbbbes0b1v3/vIg8ICL3ich2EflrYynb8sdi5v685S2PeVw35m0h8r+8+u+nROQ3Lon9jaWcLfYGTdqfiMgHLWXsddrX2c0icqDtcq04d+6c3HTTTfLkk0/Kzp07t1SXThjeq2Gs28/6/d6mIqz3btTNe7X/6mabdqduW/1b/TXU1772Nbn77rsb42D0D7+Omzp9zNTJ90636ordq0//7Mf/gfzm2JL80fHdm9bxSz/3F82J96z7/4/Pifx/bxL5nSel/I/1n7+x2ClN6l8aWjwm2rH6L2jG6V/U1bu+bkNdG7xnkzrW9+vfaHOWy3u16brjqre85T9qt59+Hen6sXbM0unvvX7Y3ztdj/64+GUR+bSIHBGRHRsipv2g0/3yu64w9mkQ9vcw9on17q2ufhoDv/jii/KKiNwmIu1eo7H66surl0TkxCuvyIsvvihvfvObN8QSiYSkUimJRqMyMTEhExMTks/nZXx83PO5d5NQT0aIrK0M2/1P1z9Mwxa/VP0y43e84x3ynveYBkve7dixo3HvLD+0Vv+bjBFbWV/6Przu/9t2iAyvr/9LW6h417r/r7z670/J2iDGvHvbl8/cH+/rxrwtRPa8+u/lIvLTl8TOWsotW2LDmrTLReRqSxl7nfblvkxMy7jVfens2bV1cN1118muXbs2yd2+cLxXw1e3n/X7vU1FWO/dqJv3av/VzTbtTt1B1L+V2+0gvPw4bur0MVMn9+2u1RXRJ/+se7n8xA5Hfta9fPM6hjRtrT8nsPLqMcBPXSeu287n73cM6YaxeqSd9Vev2zzuf43pBPKl/bvMmNe8PZrbbn9faF5Prut2/HuvL/b3jtej23d+/Oq//6uIbDw566Wf/bOu/K1rEPb3MPaJ9d69ukTCNQZ+o2z+bdppphtmplJrP05IJpMiIvL888/LNddcI3fddZeMj497Pvdu4mky4tlnn5XZ2Vmp1Wriuq6Mjo7Kvn375LrrrvNS3abqT+e2xS69P1X975j15/oAAAAA4A+OmwAAAHCpyyT4KwRM7R07dqwxESGy9myITCYjqVRKKpVKx8eQbS/3888/L67riuM4opSSYrEojuNs6PC+ffs2DLbXz5C0O/NXLBYbMzQ6kUhEXNeVYrEoU1NTjfT6r4IOHNjsElIAAAAA6CyOmwAAABB2IyMjTVc9xONxEVkbP3Z6DLmt3Q7WGxobG5NisSj5fF7uu+8+GRsbk2uuuUaWlpakWCw2ZlBisZjs3r1bdu/eLceOHTPWW6lUJBaLydzcXCOtUCjIyMiIjI+PN9Kq1aqMjo5uuAT5yJEjUiqVNszQZDIZyWQyxid9AwAAAIBfOG4CAACAzmWydjP1IF+mKxJSqZQcO3Zsw4REoVAQ13UbP5Tp5Biy7Ssjdu/eLY7jyMMPP9z4tc7Y2NiGPM8//7xUKhX56le/KtVqtdHRkZERY73RaFRGRkZkdnZWisWiuK4riURCstmNDziq1WqyuLi4YQW5rivlclnS6bREo1GpVquSTqc3XGISBo4z46mcUtMdL2fry972nxH1KsvzDb64/o+LIl9cl/dDB+3VfvJxS/B0C/1qj1Lm/jjOnDjO4bbLtbIN3/a2w/Ltb9+5eQc9etvbHpZvf3uTde3R3r1/S779bW/7KQAAQD/iuKmzmo9f/qc4zox2nN3ucVdbxz+36JMflHvkJfm4PLjuSdQP5e7TZ/7mhea03153aP7Kq/+WRJzfNjyUfLj5HtrqrP6+2o7zJyKyvzn/o7rcpntzr6W/7W1HN4z79ev6hLaGS7fVWl3t3Qtct73f9rajhrz2ZUHwdNvv7NmzcsUVH5Mf/tC/58kBAMympqYkEonIxMRE4xkdtVpNvvCFLzTydHIM2fZkxPj4uFxxxRXy/PPPyzve8Q5tnmuuuUauueaapsG2TSQSkWKxuGk+13VlaWlJm57P51tuDwAAAAD8wnETAAAAdIYk+GdGDFliyWRy04mFTo0h275Nk4jIF77wBfnoRz+65cb72eTkZM/W73ffRe7yuX4/vcu3mtlnuoP13r36/cR6D75uv7Heg6/bb2zT7tWP4HDctFFn9+13dqymTvXr2kn/jhW2pnPPA+nkNuxUXWH9zAzjuupkXaz34OvpdF2dFMZlDGOfOi2MyxjGPiFcHKWUarfQww8/LJlMRmKxmBw4cECi0ahcd911PnTPP3/5l38pN910kzz55JPynve8J5A2g75Nk42tL17bcxzLbZpsPrTJpZgt36ZpRUTuFpFPiMgOsd3Cyfsy6m/RtFanP7dAGnRrl+1eIT/84Q+5bLdPsE37E9u1/7BN+083xr+DrtePm8K0z5iOXzpxm6Z2jg2cnD79w8kHmtKMt2m6ZbPbNJ0V+fMrRN7/Q5E//46+Du1tmvRZHUd/qyfzbYxa18669uO4tpP43usO1nt3sN67g/XeHWEaz9Sf/XWPiFwdcNvfF5EHRaRcLjdux9QNnq4IqV+2sbCwsOHyjGg0KtFoVFzXleuvv15uu+22zvQSAAAAAHoMx00AAAC4VP0B1kG3GQae+5FOp2Xfvn1SrVZlYWFBvvrVr8p/+S//RRYWFqRYLMru3bsZVAMAAAAYaBw3AQAAAGs8TUZMTU0Zf8Hzwx/+UE6ePCnVanXLnes3Ybos1dYX77dwOmaJme9TOvpH37KUE1k4915z8E/X38LpR6/++yYReb3YbtPkle1WTH7c+goAAAC9i+OmzmlnPG3K6/W2uV4dSjna9BPqy01p9zz6YOP/Pzr7iiSvEMn92T+V5BX62yios63fXqETt2My181xDgAA7QrbA6yD5OkB1h/72MdEKSUf//jHm2JXXHGF3HzzzXLXXb38kGIAAAAA2BqOmwAAAIDXeJ6EGRsb62Q/AAAAAKDvcNwEAAAArAnLsysAAAAAAAAAAOhrPMAaAAAAAAAAAAD0pC+++tJ5JciOWAzsZMTrXve6Df+iH1wuIv9Ygp9bhJ+2b98u09PTsn379m53BR3CNu1PbNf+wzbtP4x/0S72me64fPs2uXV6r1y+3dMjHuER33vdwXrvDtZ7d7DeuyOM4xm/HmCdePWl810RmfGhzXYxGRGiHRFbdbmI3NHtTqDDtm/fLocOHep2N9BBbNP+xHbtP2zT/sP4F+1in+mOy7cPydiht3W7GwOH773uYL13B+u9O1jv3cF4JlwGdjKiXzjOYWNMqYOeyokMW8p5nUN72BhZ+BVzP0VE5AOWWOm95tiZU/Z6Dbwuo1LTnsoBAAAA6B7nNk3iY+0dEzz0RPOxwCGZ0uY9+bV3N/fh55ShZn0/dMcsHI8AANAbBvmZEVz3CQAAAAAAAAAAfBWWSZGuGRsbkx07dmhjk5OTMjk5GXCPAAAAAG/m5+dlfn5eG1tZWQm4N+gXHDMBAIAwYwzcOwZ+MuL48ePium63uwEAAABsme3EcKVSkVgsFnCP0A84ZgIAAGHWa2PgyyT4k/JhmQTgNk0AAAAAAAAAAMBXYZkUAQAAAAAAAACgrw3yA6zD0g94pNRBY8xxDltKLltiw5bYLZa+3GDpy8OWOjdx0hL7DUtsepcxZF83e4wRpe60lAMAAAAQVkpNa9MdZ0aTur+9ykvNSS+pOW3WGWeqOTFrqljfZ0lVWuoWAABAmHCbJgAAAAAAAAAA4CuujAAAAAAAAAAAIACDfJsmrowAAAAAAAAAAAC+CsukCAAAAAAAAAAAfW1Igj8pPxRweyZcGQEAAAAAAAAAAHzFlRF9bdkYUWraGHOcGUudT1nKmWO2vsgjlmIicuji75pjf/wxe2FPzhojjvOwpdxpY8Tr+raVAwAAALB1nRhz68b0X5G4Nu9+TdojyXFt3juct+sbHG7us+NUDL07oU3lWAMAgO7w65kR/0FEPmuIvexDe14wGQEAAAAAAAAAQA/75VdfOv9NRH4zwL6YcJsmAAAAAAAAAADgK66MAAAAAAAAAAAgADzAGgAAAAAAAAAAwCdcGQEAAAAAAAAAQAD8eoD1Zm2GQVj6AR8oNR1wi8uW2LA5pL5vrXWfnDTG9v9a3hg78cid5kq/+LilxbPGiFK3W8p5E/x2AgAAAGDjOJU2S+zXpK20XPo7znF9IFvQp9+rSzzRcntAL3CcmaY0jp8BoLdxmyYAAAAAAAAAAOArrowAAAAAAAAAACAAPMAaAAAAAAAAAADAJwN/ZcTY2Jjs2LFDG5ucnJTJycmAewQAAAB4Mz8/L/Pz89rYykrr968H1uOYCQAAhFmvjYF5gPUAO378uLiu2+1uAAAAAFtmOzFcqVQkFosF3CP0A46ZAABAmDEG7h0DPxnR6xxnxhhTatqHFnd5jO0xh2autrY4LMvG2JgUjLETMmGp9awlZm7PcY5ayj1njPizLXpD8PsoAAAAsFUntlxD+YXf06bfp0kzHUl8OPmANv0TSV0t+rG141QMtevy6sfujNvRDex3APrVZRL8SfmwTALwzAgAAAAAAAAAAOArJiMAAAAAAAAAAICvwnKFBgAAAAAAAAAAfY0HWAMAAAAAAAAAgJ70f7360jkfZEcsmIwAAAAAAAAAACAAQ+LPSflfefWl8y0RudWHNtvFZESPU2o60Dod52GPtb7dHLraXvKmrz9tjFWvfZO54E5brbsssbdYYk9ZYm81RhxnxhjzYxuGSb8vHwAAAMLFNPZub1y6v81WTzQnPaE/3H5Okzb9S/pa98m7tOnObZrEx8zHHNo6nLayAwAAbBkPsAYAAAAAAAAAAL7iyggAAAAAAAAAAAIwyA+w5soIAAAAAAAAAADgq7BMigAAAAAAAAAA0Ne4MgIAAAAAAAAAAMAnYZkUAQAAAAAAAACgrw1J8CflhwJuz4TJCDRxnBljTKlpS7mHLbU+ZYzc/Gs7rf25Ul40xt6yeMZc8O9aKj3xdkvwtLU/Zs8ZI7b15pXX7QQAAAD0s3bHwrpxdft1nGhKeyQ5rs37nVRz2sxn9fWWb7tRH7hFk/bYfm1WpVx9HVrt5AUAAGgPt2kCAAAAAAAAAAC+4soIAAAAAAAAAAACcNmQyOVOwG0qEVkNtk0drowAAAAAAAAAAAC+4soIAAAAAAAAAAACMDQkclnAlwgMXRSujAAAAAAAAAAAAP1v4K+MGBsbkx07dmhjk5OTMjk5GXCPuk+paY/l7jTGHOdhY+wL991urXfnzIvG2I/eYJ5PO/DAnxhjx/7HB80N/qm1OxZ7jBHb8oucNkZs28LrdgIAAP1rfn5e5ufntbGVlZWAe4N+0e/HTLpxtePMtJzXmP41/c2gne+90pT28rWXa/O+9OgD2vSvyLua0sqpkr494z2pTzSlcIwBAOhFjIHXHLkgcsRw9cOPVbB9MRn4yYjjx4+L67rd7gYAAACwZbYTw5VKRWKxWMA9Qj/gmAkAAIRZr42BL9smcvlQ5+v9zSGR3zTE/suqyI0/7nyb7eI2TQAAAAAAAAAAwFcDf2UEAAAAAAAAAABBuOwykct8uDLC2qbxto3B4soIAAAAAAAAAADgK66MAAAAAAAAAAAgAJcNiVwe8Fn5sEwChKUf6AOOc9gS3WUOle31/mh5hzH2v/3kfzbG3iefN8ZG/+23jLGF2t8zd+bEneaYnLXEnrLEAAAAAISJUtPadMepGPI3P+D77nfM6SvPNR+Gf/SH+qw3yNP6gEZ5WN9nWdb3WWR/U4rjzGhzmtYHAABAO7hNEwAAAAAAAAAA8BVXRgAAAAAAAAAAEIRtIhLwA6zlYsDtGXBlBAAAAAAAAAAA8BWTEQAAAAAAAAAABGFI1u5XFOTLciVGIpEQx3G0r1Kp1MhXqVRkYmJC0um0pFIpKRQKbS86t2kCAAAAAAAAAGDAVKtVqVarkslkJBKJNNIXFhZkbm5O4vF4I18sFpNyuSyu64qIyOjoqCwuLkoymWy5PSYj0DFKHTTGHOdhc8Evft9a78WjVxtjr797xRgryLgx9ofyW8bY+6VkjMnMLnNs+pQ5JqctsbcaI45z2FLO3Bel7rTUOWMpN21pDwAAABhsSrkt533otvu06bFHn2pOTOnrOBA5rk2/4+ufaU78uKEj9xr6vNx8XGA6HjAdQ3D8AABAbyuVSlIulzdMRIjIhokIEZFUKiXxeLwxESEijSsk2pmM4DZNAAAAAAAAAAAEIehbNNVfGslksmkiQkTk6NGjMjExISIitVpNSqWSJBKJDXn27dsnIiK5XK7lRWcyAgAAAAAAAAAASK1Wk0qlIgcOHBARkZMnT4qISDQa3ZCvfpVEsVhsuW5u0wQAAAAAAAAAQBDqD7Buw3m19vLqnNN63mPHjonruo0rJqrVqoiI9gqK9fFWMBkBAAAAAAAAAEBIzS6JzNSCaSufz8vtt9/e+HthYUFEREZGRrT5a7Vay3UzGQEAAAAAAAAAQEjdv1vkYMR7+WfPi9x0ZvN89edDZLPZRtro6KiIiCwuLmrLXHr7JhsmI9AxjjNjiQ5bYsv2ik+aQ898/j3GmHq7+fqjt//UM+ZK4+bQ6N3fMsYWDt1gLqj2mmNy2hJ7zhIzc5zHPZUDAAAA4K+TX3t3U5rpSOrRH+rTH3nzB5rS7ri3oM9sOr55rDnJdEyn1LShktbp6u5EvQAA9JxtsnarpjZsf/Xl1c7V1vKVSiWJRqMbJhjq/zddAdHOZAQPsAYAAAAAAAAAYMAdPXpUxsfHN6Tt27dPRJqfDVH/OxaLtVz/wF8ZMTY2Jjt27NDGJicnZXJyMuAeAQAAAN7Mz8/L/Py8NrayshJwb9AvOGYCAABh1nNjYA8PsO5Imy0oFApSLpc3pEUiEXFdV4rFokxNTTXSS6WSiIgcOHCg5W4M/GTE8ePHxXXdbncDAAAA2DLbieFKpdLWr5aAOo6ZAABAmDEG7oxCodCYeLjUkSNHJBaLSbVabdyWKZPJSCaTkUgk0nIbAz8ZAQAAAAAAAABAIC6T4M/Kt9De0aNHjVc5uK4r5XJZ0um0RKNRqVarkk6nJZlMdrobAAAAAAAAAACgX+XzeWvcdd1N82yGyQh0jFLTxpjjHLaUHLZX/JPm0M/+4leNsbzsN8ZekjcaY6N3f8sYW6i+zdyZneaQLD9uC1pim6wbo7OW2C0e6wQAAADQssdm9OmrzUkfuUKf9e/XvqxNL79wQ3Ni3NAP4/C/+fhNParP6Tj6ZdEdA7aTFwAADBYmIwAAAAAAAAAACMI2afmB0h1tMwRC0g0AAAAAAAAAANCvuDICAAAAAAAAAIAgDEnwZ+WDvhLDgCsjAAAAAAAAAACAr5iMAAAAAAAAAAAAvuI2TQAAAAAAAAAABOEyCf6sfEhmAULSDfS/XR5jIrLXHPpj+TVj7LiMG2Nn/vgac6VfsvTlJy2xv2uJ/c3t5tipU5aCjxsjSh00xhxnxlLnc5ZyT3lqzytbP5Wa7nh7/YL1BgAAEC7a8dn3fk+f97ebx2svi6PNu995tzb9XWquKe2hf32PNu+H3/ygNv2h1I+a++bs1+YV0ac7TqUprZ3xqP24pVkn6ma8DABA9zAZAQAAAAAAAABAELaJLw+Unj+z9tJZudj59rxgMgIAAAAAAAAAgB42edXaS6dyTiT2tWD7o9PXD7CuVqvd7gIAAAAAhBrHTQAAAAEakteeGxHUy4crMbwI9WREqVSS3bt3t5zfcZwNr4mJCR97BwAAAADdx3ETAAAAekGob9OUSqVazpvL5SSZTMro6GgjLR6P+9EtAAAAAAgNjpsAAADQC0I7GZFOpyUajcri4mJL+fP5vBSLRZ97BV/s3WUNv/PX/tIY+0fyGWMsJifNlVpC8jOW2JcsMcM92URE5MRZS7m95tiZrxtDjnPY0uCwJWZb35Z+WjjOjDGm1LSn2KDzuk6BoLCPopex/6KfcNwUEsOaz47f1md95NHxprTLDfdw/shN+vTX3XZfS/WKiNyxq6CvRCpNKUq52pzObYYqSob0Fpk+c22f01utG71Dtx+wXQH0hfptmoJuMwRCeZumUqkkV155pbiufiB0qUKhICdPnpSJiQnJ5XI+9w4AAAAAuo/jJgAAAPSSUE5GZLNZmZqaajl/sViUWq0mhUJBUqmU7N69W0qlLf5EAwAAAABCjOMmAACAHhT0w6vrrxAISTdek06nJZPJtFUmm81KNpuVSqUi2WxWcrmcJBIJWVhYkGg0ai177tw5OXvW261pRES2b98u27dv91weAAAAaMX58+fl/PnznsufO3eug71BtwV53MQxEwAA6BbGwP0lVJMRlUpFrrzyyk0nEExc15VsNiuJREImJiYknU5LPp+3lrnpJsNNOFs0PT0thw4d2lIdAAAAwGZmZ2dlZmbr91FH7wv6uIljJgAA0C2MgftLqCYjZmdnN508aMX4+LiMj49LpdL8QK5LPfnkk3Ldddd5botf+AAAACAI999/vxw8eNBz+WeffXbLJ5URDkEfN3HMBAAAuqUvx8DbJPgHSofkYQ2hmYxIp9OSSCSkWq020ur/r//bzi9/EolES/c/3blzp+zatavN3qJ9p82h5+wln/nEe4yxD9/9gDH2UPVec6W/YQ5t+8m/McYu7nuDueD7LJeuf8ayjz1pDsknLetNbrTEFi2xU5aYuZ+Oc9hSDp2m1HS3u9BzHMf8Swk/1mfQ7YXNICwjwsGP91qv7r9bvdXNzp07O9gbdEs3jps4ZnqN+TNpvyZN/2DxO24rNCc+Oq7PO6fJKyKx5FPNeZ2PGPpmmmw60ZTi5AwPQ3+sjToc3brQ5zXp1c9peGN6X/XifqBbll5cjrDop30D3jEG7i+hmYwolUoyNzenjY2OjorrulIul9uqc9++fZ3oGgAAAACEAsdNAAAAPW5Igj8rH/SVGAYhuUBDpFwui1Jqw2tqakoikYgopdoeUBeLRUmlUj71FgAAAACCx3ETAAAAelVoJiNaVa1WZXR0tHEpcaVSkVgstuHXQYVCQUZGRmR8XH+pKwAAAAD0M46bAAAAQqp+ZUSQr5BcGRGa2zS1qlaryeLiotRqNRFZux/qyMiIzM7OSrFYFNd1JZFISDab7W5HAQAAAKBLOG4CAAAYLPMLIvNVfWxlNdi+mIR6MiKTyUgmk9mQ5rquLC0tNf6ORCJSLBaD7hoAAAAAhALHTQAAAJgcXXvpVJZEYl8Mtj86oZ6MwIBQT9vjJ28whh76/H2WcubQzntfNMbO3fRGc8E/NIdk/y5L0OI5W3CPJfYNS+ysJfZeS+y7ltjbLbGnLDFvHOewJbpsjCg13fG+wBvbNlTqYIA98YdtX3OcGV/K+lHOxo86w6Tfl28rNtuHTYLe18L0fgHQX0yfE6bPCG3+W1x95bdcaEq6wzGMtb/XnFdEpOzsaE681dBeSZ8scU1+Td/WnNCm6taH+TN2f3PSsL7PjlMx1KHrg2G5faRbxl78/mh3P++19rqhn5YlDFifaJf+c+YHgfdjU0MS/G2TQnKbpp57ZgQAAAAAAAAAAOgtXBkBAAAAAAAAAEAQ6g+wDrrNEODKCAAAAAAAAAAA4CsmIwAAAAAAAAAAgK+4TRMAAAAAAAAAAEEY4Ns0MRmBgLzTEttjL/oBS+xTltiXzKFzf/VGc3Cvx/a+Y4llLbGTlphca4kNW2JPWWJnLbERS+wJS8wbx5nxVE6p6Q73BDaOc9gS3eVDe+b9wrbt/dgvbMuu1EFLSdv70x9+LH+/v9f6ffm2Iuh147W9oMvZeP3s8lrOW19+4Kk+YBC1+/5rJ7+Taz4Mryr9AUP0NkO9w27L7clyRZ9+i6aOn/66Pm/Wp++FZf3nlWl96j7fHOdEW3V0QhjGEKbP+nb61ivf963oxPoAEBzde7bd96vXc0roLiYjAAAAAAAAAAAIwpAEf6VCSK6M4JkRAAAAAAAAAADAV1wZAQAAAAAAAABAEAb4mRFcGQEAAAAAAAAAAHzFZAQAAAAAAAAAAPDVwN+maWxsTHbs2KGNTU5OyuTkZMA96k9KvdcYc5xT9sIft8R2WmLL3zfHPnm1vU2TYVt7lpilK3KvJTa91xJ82BKzdXSXJWbjbeEdZ8ZTa0pNeyo3CGzr1LbevG4Le2cOmmPqcUtfzDGRPZZyhy3lzJ8zIk9ZYmctMdsb28Zezus29INtnSpl2b6e2wvPsqPz2L7t6/R6mZ+fl717j2pjKysr8t3vdrQ5DAiOmTan/fwbNry/481J0dSfG2puY/z22H5D4IQ++V63OS2rSRMxHrM4qYom1dSPreO75DV+rgvT97muTfN3f/N+oJR+/3Ic3X4kIsOG/VGbt/X1YWzP8F4Jw37Xzjbxs80wrAv0h07sS+vrmJ+fl/n5eW2+UI6BB/g2TQM/GXH8+HFx3Ta+4AAAAICQsp0YrlQqEovFAu4R+gHHTAAAIMwYA/eOgZ+MAAAAAAAAAAAgED5dGTH/dZH5b+hjKxc6354XTEYAAAAAAAAAANDDJq9de+lU/lokdizY/ujwAGsAAAAAAAAAAOArrowAAAAAAAAAACAIQxL8A6V5gDUGiePMWKLD9sJftMVPW2KGm6SJiMhZS+xGc2j5Bku5py3lvmuOTS9b6rT101ZujzGi1F5LORtzOfv2NVNq2mNfzGx98aO9bvBnOcz7jPU9qh63lLO8lz60yxz7pG2/t8WutsQsy7DfUu7E940h+37/VktMxPbZ5TiHLeXM73vbfuE4D1vKHbS0Z+b9vbbJZ37H2wu2zjC15xevyzHI2zA8/fxBx9sCsEb3Xnacij5zSfMw8Fv1DwhXj+rTde9zpUx5T+j7sazpX8qQtw3tfK4Z+9YG02deL323dotxHzXm163r/VtvL6vfd+VeTdqy4Tsuq9/ejuWwIyjt7qP693freW352xGG99AgvL/b2d79ZFCXG0xGAAAAAAAAAAAQDJ8eYL1pmyHAMyMAAAAAAAAAAICvuDICAAAAAAAAAIAgcGUEAAAAAAAAAACAP5iMAAAAAAAAAAAAvuI2TQAAAAAAAAAABGFIgr9tUkhu08RkBAKh1LQx5jgzm5T+/3W8TRt7f75hib3dU3siw5bYaU/llLrTGLMtn9d1ZuNHnV7b22xfC7qvNo5z2BhT6qCnciL3WGKPW2JvscT2mEP/dJc5ds5S5VWWcmcsMTlr6cvV5tgjliqt7/l3WmKnbJWKiG05vLHv3+btZN9nvPVz88/1cPD6eeH1syJMnzF+sX929f53jFdh+S6sVCoSi+UC7QswyJRyW85r+t5xnE71RueEJm2/Nmd7y1JpuQ7T55Vpfejz6/uMzZm2q7PLsL2Xm7etsQ7tfqDb50REWm9PbjV8p95rqFpXx7CpPX2ydn8cNvRjuTlvJ8YB7b0n/BN0PzrzGRFufu4ffrXXjn7aVugMJiMAAAAAAAAAAAgCD7AGAAAAAAAAAADwB5MRAAAAAAAAAADAV9ymCQAAAAAAAACAIPh0m6b5p0Xmn9HHVl7pfHteMBkBAAAAAAAAAEAPm7xh7aVT+YFI7FPB9keHyQh0nVLT3e7CBl774zhPW+q83VJuxlNfHOeUJfawMeaPtxojjnPUGLOtF6+8rs/NytrYt5N5+UWes8Rs69S8fZU6aC73JktzZ3aZYx8yfJOJ2BfhZyyxZUssbon9e0tsp2UZTlrK3WGJ/elbLMGnjBHbdhDZ7D162hIbtsT2eKrT+2eet/eLfRnMgv6usL+vvX/OBFmnX7yum34Q9Lbopf0CgD868V7vRB2OU2kj9wlDHc1pSrnavKY+az8Xb/Xv89D0OdzOOtXV0e420a7/Yf26M1FnW6zXUrdue7W1b7S7rb53bXPaTxvay5rWhyY9Zfh+HTb07+O6Otp5T7Rnq/tXu3W0ozOfJ8H2eRCEed2183ke5uXoOB5gDQAAAAAAAAAA4I+BvzJibGxMduzYoY1NTk7K5ORkwD0CAAAAvJmfn5f5+XltbGVlJeDeoF9wzAQAAMKs58bAQxL8lQohuTJi4Ccjjh8/Lq7b3uWNAAAAQBjZTgxXKhWJxWIB9wj9gGMmAAAQZoyBewe3aQIAAAAAAAAAAL4a+CsjAAAAAAAAAAAIxAA/wJrJCPQ0x5kxxpSa7ng5u+9a2vuGpdywpdzD5mLOneaY2mtp76ilvcOWchbOQUtfzOvath1E9lhipzftkr49+/J53faOY16nIs95qtPOvG4c52lzsV+4wRw7c6M59u8375HWF8+aY3t3GUM/++2vGmPf/Pz15jrfZ+nLGcs2OvUWS0GbA8aIfd8Wsb3vRd5qiXndn2ztmVk/gyz9VOp2S52brZvw8/494a3OrXxn+fN9Z+ZHnYMs+LEMgG4xvW/b+d5s973v6IZjyxVD7hOtV/y939OnP9F8+sHJGepIbX28YFp37aynoLeLdpuIiAw33yZNWYbardNv19hZ/f3V92lT9c+Tke9d25T0yJvHtVnvuK2gTX8k+YHmvLfq85r3mf3NSbcatknJUEVK877QbBMREVluXqft7ouOo3sf6rdVe/uoZl2IiFLB3oavE+OUoMc6nfg8wUa6dcd6HgxMRgAAAAAAAAAAEASujAAAAAAAAAAAAIOsWq1KobB2JVoymZRIJCIiaw8Dn52dlWg0KrVaTRKJhIyP6696M2EyAgAAAAAAAACAAVatViWdTkutVpNsNivRaHRDLBaLSblcFtddu73b6OioLC4uSjKZbLmNbR3vNQAAAAAAAAAAaDbUpZdFpVKRWCwmIyMjUiwWN0xEiIikUimJx+ONiQgRkXQ6LalUqq1FZzICAAAAAAAAAIABVKvV5Oabb5ZoNCrZbFYbL5VKkkgkNqTv27dPRERyuVzLbXGbJvQ0paaNMcd5uuPtOc5hS3SPOfS5O82x952y1PmUOfTzlmJvtcS+f7s5duJxS0ELZVvXts48Z4mdtcQs61pOGyNKHbSUs3Oco5bossdahy2xay2x73pr7q9sXdlljtlWd9kSu8pc583f/pwx9oVfeZ+5zj+17ReWZXAs+72ybVtLnWJ779q2rYh9n/G2P21l/zZ7uyX2DU812j63bRxnpuN1Bs3rMti/62zfS72zbvqdH/sv2xYYDL6+1+OatMdMmfcb0k9srQ+pSpsFNP14zPwZ2yrb57TOVreL45iWu531qe+DcVmGW+9z+bYb9YFSc9KH1QParA85zWl33FrQ1/uvL2iT73jhM82Jhu1t2ia69aEedTU5bfuBZr9bbr0fpu1tak+/LPo+t0OprdfRT9pZ/4y7gjFQ6zlkD7Cu35opk8lo4ydPnhQRabpaon6VRLFYbPlWTVwZAQAAAAAAAABASJ1/ReTsivfXuR+b665f2VAsFiUWi8nu3bslkUhItVoVEWn8W3+Q9aXq8VZwZQQAAAAAAAAAACE1+4TIjPkmE55VKmtXb7muK6lUSjKZjFSrVUkkEjI6OipLS0uysLAgIiIjIyPaOmq1WsvtMRkBAAAAAAAAAEAQPNym6f73ixy8xXuTz/53kZvmmtPrVzWkUqnGbZjqz45IJBIyOzsro6OjIiKyuLiorfvS2zfZMBkBAAAAAAAAAEBIbb987eXVzu36dNOtl+LxtYdL1a+SEDFfAcFkBAAAAAAAAAAAYbNNrA+U9q1NjX379omING7FdKmRkZFGnkufDVH/OxaLtdwNJiPQx3ZZYsOealTqoDHmfMVc7lff9Slj7NPyfkuLbzeH7jWHRn/xW8bYgvNTlvZutMQe9lhu2RLbY4lZll2+a4mZt63jHLaUs29fu7OW2Fst7d1ujDnOKUud+nv0beo5S2ynJXbyaW/tnfmuMfSF3zQvuzxiq9S2rh83h5StTstnxfB7zbHlo5Y699oaFJHTm8RNft0Yse3f1s8uZ8ZSbtrSlxsssc6z96U3+LEM3j+3trLtg62zHwzysgPYGtPnajufK8bP5u/9XlPSI49+VJv1jtsK+n486jal3S0PaPN+Jfmu5sSkvmtlZ78+ICea+9CJz9hhfR3KMPTUrVNTP9rL27x8Jo5T0QduNayPxzT7QdaQ95YL+vTfbj6F9JDzI33e4eZ9Q9sHEREx9bl5GdtZz2ua9yXbeEVHqeZlMW0r/XbR52V84F0nPhtZ/8CaSCQi8XhcSqXShvT6VRCxWEwikYi4rivFYlGmpqYaeeplDhw40HJ7hjkRAAAAAAAAAADQUZd16WWQyWSkUqlsmJDI5XLiuq4kk2u/HDhy5IiUSqUNV0dkMhnJZDLGWz2ZFh0AAAAAAAAAAAwY13WlXC5LOp2WfD4vkUhEarWalMtlbZ5oNCrValXS6XRjsqJVTEYAAAAAAAAAADCg6rdh2ixPPp/fUjsDPxkxNjYmO3bs0MYmJydlcnIy4B4BAAAA3szPz8v8/Lw2trKyEnBv0C84ZgIAAGHWc2PgIQn+rHzQD8w2GPjJiOPHj4vrah6sBAAAAPQY24nhSqUisVgs4B6hH3DMBAAAwowxcO8Y+MkI9LOvW2LLxojjHPZU7ir1K8bYL8rnjbFPyz82N/dPrzaGnvnFtxtjb5SXjLHozA/M7U1/3xyTvZbYN4wRpe40xhzH1t4Tlpg3Sh3cQmnztvcac5ynPfZl0VsxddYcW95lKWjb9o9bYjeaQ5+09EWOWWLm/V7kOUts2BKzLPvyUUs523a39WUzeywx87rxun8rNe2pHHqfH9u+H/Ynx5kxxoJevjD1BUC37Nem6j4fTJ8LpvS75YGmtO84x7V5Y+opfT92NY/3Xt42pc17+ZOaxD/QZhVHytp03bKYPis78TnZTt22z+zmvBVDRL+9RU5o+qCfIHRyhioe06Tda8ib+lf69GHdOtX3WXfo4TiG5Xts69vQlFe3rjuxb7RTh3Nb8JO5/T5O6PflwwAY4CsjtnW7AwAAAAAAAAAAoL8xGQEAAAAAAAAAAHzFbZoAAAAAAAAAAAjCNgn+tkkhuSQhJN0AAAAAAAAAAAD9iisjAAAAAAAAAAAIwmUS/Fn5kMwChKQbAAAAAAAAAADAi/nPicx/Xh9beTnYvpgwGYGBpNS0MeY4M57qTEnWW2ee2mWOPWcOXXS+aYxdc8rSXtwSm77aEnzCEjtrjDjO05ZyeyyxYUvstCVmtvm29dofW8xWp22d3mKJ2dg2vi120BI7ZokdsMQet8Rs29D8nlDqBmPMcWzr0+YZj+XM29b2GSOy2fvCvByb1dtptveM1754rTPovtgE3Z5N0PvEIAjTOg1TXwB0h1KuIWJKb2b6/vmwen3LdZSdkj6QvbEp6dGUPutT75hrSrvnPzyoz+wYkjvwXercpklc1tdr+hx2nErL7XXms7x5e7fTB1M/zOtzf+sV39r6vmhiXs/N/Wt/fZ7QpLXX563ud4Pwfd7OOhqE9YHNdeb93cOGxJez8pO/vPbSqXxHJHZ359tsF8+MAAAAAAAAAAAAvmIyAgAAAAAAAAAA+IrbNAEAAAAAAAAAEIRtsnarpqDbDIGQdAMAAAAAAAAAAPQrrowAAAAAAAAAACAIPj3AetM2Q4DJCPSxZR/qHDZGsvIrxtjX5VpzlY+YQ3N/ZH7M/Q2nzeVueOuT5uAvmUMiT1tiZy0x27r+hiX2hK0zPthjjSp1pzHmODOWkub9QuQZj+Vs6828HEodNMYc52FLnacsMfPOptQuS3vmGm399EqpaUtfbMtu3n9tddo4zmFr3L78N3hq0ytbX70uv419O5nfZ17Lee2LjX2d2bat7T1vY95HN1t2P7YhAKC3GL8LvtY8WPszNabP+8Lv6ete0gz4/lBfxTvlwaa0B+Uefb3K1VcizemOUzHk1VOP6lL168j0Patfp/o+6+owbZN22jOvI712xkumup3bNImPmerdep87MY7R1dHedhUR2a/J296ytKOdfcZP7fQj6P61tz8zHg4jtsvg4jZNAAAAAAAAAADAV1wZAQAAAAAAAABAEC6T4M/Kh2QWgCsjAAAAAAAAAACAr0IyJwIAAAAAAAAAQJ/bJsE/UDoklySEpBsAAAAAAAAAAKBfDfyVEWNjY7Jjxw5tbHJyUiYnJwPuETrnrKdSSk17Kvcz8i1j7P+Uf2aMXfVHzxtj9z33kDF26g/MffnRP9fv05savsEcW37KVtBTc7Z17TiHLSWXLbE9HmMijnPUGjez9ce8bpQ6aOmLbflt+/Z7LbHTlpht+5p53U6OM+OpPfs+Y67T+75m5n0f9V7W6+eTjff9MNh+et1Otve94zztqZyN4zxsie4yRpS602N73t5L6F/z8/MyPz+vja2srATcG/QLjpl6g+k7wfS97DytmhN3X9Dm/fCbH9SmP//mq5rSvvKOd2nzPij3NKWVHf1+9ZC0vixKudq8nbHfx7qbGbeVT9/3nWivE+M+x6kY6vZz27YuLP3QCXpbtcO0XSVrWJ9PaNJK+qztLEvY9y90Rs+NgYck+LPyQV+JYTDwkxHHjx8X1+UDCAAAAL3PdmK4UqlILBYLuEfoBxwzAQCAMGMM3DsGfjICAAAAAAAAAIBeNl9Ye+msnA+2LyZMRgAAAAAAAAAAEITLxJez8pMfWHvpVJ4Tid3R+TbbxQOsAQAAAAAAAACAr7gyAgAAAAAAAACAIPAAa6D/KHUw0PYW3vb3jLEHv32PMXam+hZzpT80h/amzbFvfuV6c/BL5pCcs8RkjyV22lPMcR62lFu2dcZjX96+SdmzltgtltiiJfaMMeI4M5Zyw5aYeVs4ztOWcja29myxXcaI7T1o3/a27WBj66eZH58VSk1b445zuONtem/P9t62vQ/N69txHjfGlHqvpzpF9lpi5veZ/b1r4VxtjlmX4euWmO3z0LyNbPvo5vua+XNms7IAgD53ryYtZfgeU/rkf+uc0aQe1+Yt68biw4bvouUT+vQ2mL4Ddd9/9nG5TvMD3R2n0nJpxzSEXm63H81M3+/tLGM7dXRiPbfTXrvjl07UsVXtLncn6tjqtmpXW/tXsvn9IyLi6D6T4ob2bjNU/ljr/XAcfbpS+v7p6+j+/gX0Gm7TBAAAAAAAAAAAfMWVEQAAAAAAAAAABGGbBH/bpJBckhCSbgAAAAAAAAAAgH7FlREAAAAAAAAAAARhgB9gzZURAAAAAAAAAADAV1wZgb7lODPGmFLTHS8np75vDB2Ru4yxb0ffZoy9GN1pjC3fMGyM7fzRi8bYuXNvNMZEHTbHZNkSs1RpXde29szLJ7LLU1829Qu3m2PPWcqdOWUJnrbEzm7SIS+dsa2bPZaYrZ97PZWzb18b877mOA/7UM627LZ1ZmZvT0Spg5ay5s8g7+vU63vGtvy2/df8nnAc2/q2fc7Yyr3THBq+2hyzhOSU7X1te0981xKzbQfz+rTtE5uzfZYCAPqJ9VhF5+PNSdXk+7VZo7f9QF/Hrfc1JcUefUqbNaZJKzsVU++09N+J+7V5TevD0bTZ7rrT1SFywpC7uX/K8LXvOG11w1CHftygW0bHMDQx9a/tfazF8u302U+d6IeujnaXQ7ut2nyvdGLd6fthGpfq34c6pv3ukbPjTWl37CroM2s+v0RE5BbNcqdM607/nnWc5nTT+gx6H0UfuUyCPysfklkArowAAAAAAAAAAAC+YjICAAAAAAAAAAD4KtSTEaVSSXbv3t1S3kqlIhMTE5JOpyWVSkmhYLiUCwAAAAD6CMdNAAAAPWSbrD1QOshXSGYBQnK3KL1UKtVSvmq1KrFYTMrlsriuKyIio6Ojsri4KMlk0s8uAgAAAEBXcdwEAACAXhCSOZFm6XRaotFoS3lTqZTE4/HGgLpevtVBOQAAAAD0Io6bAAAAesyQvPYQ66BeQ4Es2aZCeWVEqVSSK6+8UlzXlZMnT1rz1mo1KZVKkslkNqTv27dPRERyuRy/8hlQSk0HWk7kKWPk/Z8oGWM33/05Y+xBuccYu0ceNMbO3fRGY0zUw+aYhdf14jgznuq0lbO66qA59leblLUdhz9piX1y7yYVm5j3GZGzxoh9vdm2r61O83qzb4thS2zZEtvjqS82jnPUUuftlnKHLbWe9tQXkV3WqL1N2zr12qZtOWzt2er02p75/aLUncaYbfuKvMUcWn7aHKvdYAxt+6s3G2MXr7J0Zed7LX2xlBNvn82b7S9e308AegPHTdgKpdnczm0/0Gf+1xe0ybE3N3/Pmo5T/ok03xLMEf040/sxWStOaNJcTZqZUs35HceQ+VZd3kpb7cmwZn0st1mHhjIfHmjpjgtM20q3jLr1JiL65TO0Z2Sow699ydy3/S3nbadvxnXXhnb7od+GrffZMR0uLOv7cYfzkebEWw11pAzr/1ZN/4YN625Z91mgX8ZObEMgCPN/svbSWflxsH0xCeVkRDablXw+L+l0etO89UH3pb8Gqv/ap1gsWgfV586dk7Nn2/wGXmf79u2yfft2z+UBAACAVpw/f17Onz/vufy5c+c62BuEQVDHTRwzAQCAbmEM3LrJD669dCrfEIm9L9j+6IRuMiKdTjf9WsemWq2KiEgkErHGTW666aaW29KZnp6WQ4cObakOAAAAYDOzs7MyM+PxykH0nSCPmzhmAgAA3dKXY+D6bZqCbjMEQjUZUalU5Morr2z5nqciIgsLCyIiMjIyoo3XajVr+SeffFKuu+66ltu7FL/wAQAAQBDuv/9+OXjQ+623nn322S2fVEY4BH3cxDETAADoFsbA/SVUkxGzs7OSz+fbKjM6OioiIouLi9r4ZgP0nTt3yq5d9nt7AwAAAN221Vvd7Ny5s4O9QTcFfdzEMRMAAOiWvhwD1x8qHXSbIRCSbqxdZpxIJDZcHlz/f/1f3QC5nmb6JU87vxYCAAAAgDDjuAkAAAC9KjSTEaVSSebm5rSx0dFRcV1XyuVyU2zfvn0i0nyP0/rfsViswz0FAAAAgO7guAkAAKC3qW0iKuBnOKhtwbZnEprJCN2AOZ1OSy6Xk6WlJWO5SCQirutKsViUqampRnqpVBIRkQMHDnS+s4CGUrcbY86bzOW+fffbjLEzv3SNMTYV/4S50ua30zpnLbFlY8RxHraUO21r0FKn+QFESk1byh02V3rmaXNs3w32Dg1bYr9hif1tS2x5rzn2C5bY+8zbyXEetzRo2xbmz0P79jVTynzfRut2suyH9nLmfVRkj6XOo8aYfRlsD8kyt7c5W1nbNrQtv41t5/bKtgy29k4ZI47zjMf2bCzve0uVF696gzl4yNLc9PfNsb1Xm2OnvG0j2/4LoD9x3IRO0Y5zhg1j8J/Vnzoof/zGprQ7Uju0ee+Q5vZsY36/6Nq0j/laq0MpV5vXcSrNid+7Vl/vv9dPCjq/r1lPw/r2ZNm0LIb8bWhve51oSnGc5rTOtbd1pvZ0+0cn8pro9hnT/mWuQ7cf7G+rjk5sQ62sYX3cq0m7xVSJoY6SJu3jhipSprqbdeOzCuhXIZkTaV21WpXR0dHGoFlE5MiRI1IqlTb8yieTyUgmk5FIJNKFXgIAAABA93DcBAAAgLAJzZURrarVarK4uLjhXqf1S5HT6bREo1GpVquSTqclmUx2r6MAAAAA0CUcNwEAAITT6pDIasBn5VcDvi2USagnI+q/0lnPdV3t5ceu60o+nw+qawAAAAAQChw3AQAAoBeEejICAAAAAAAAAIB+cbELV0ZcDMmVET33zAgAAAAAAAAAANBbuDICCMKZp82hbTeYyylLnX9uialTluAuczF10BhznBlLncOW2LKlvWlLew9b6rQtg3l9Os5RS50i8qnbjaFnPvt2Y+ydO79ujkX/kzH2b2TSXG7vN4wxOXXaHJM9lthTlpiZ1+1k359s5e60lDtsjImctcTM7H0xL7u9Tls/RUS8bkMz2/q2sb+3bX15xlN79jptMds6s+3b37VU+V5z7HcsVUYsseGrzbFTts8g8+ea7TN2s33N634BAOg9pu9003hGl+44FX3lw64+PaXLf0KfV/Yb0pvZxycbmZavnTpMfVNKv9zaum81jBu/d21T0iNv/oC+3n/4ijb9w3c/0JT2iV+e0tfx2bK+H21oZ1/qRN52tLuf6/J7HeNvpR/tMO137dWhWf+G4WZb22XYsHzLbXwW3Guoe1nTj1t+z1BHG6cztZ9Twe8zANYwGQEAAAAAAAAAQABWhxy5MOQE3KYS+6+eg8FkBAAAAAAAAAAAPSz7KSW5T+knHH7844A7Y8BkBAAAAAAAAAAAAVgdGpLVyzr/KOc7/4+1l86zlYty0zsvdLzNdvEAawAAAAAAAAAA4CuujAAAAAAAAAAAIAAXh4ZkdSjYawQuDjki0v0rI5iMAALxDXNIfddbleotluBTltiyMeI4M+bm1HTHy9md9tiXh81V3nuntcVt9/6NMfYm55vm/qTNXyB/+bF3GmMfl3vNnTllDokMW2Lm7Sty1lM5xzls64zHcrss5Szb0NJPP/ZRWzmRPZY6D1rKiTjOUUvUtoz2es3t2bbFWy0x8/vQzlanbR+1ve/Ny25bPqXM73vHedrclc/dYI6d+r45ZuPcbo4pW50jltgT9iat2962Lcy8f64DAPzUic9npdw2SzTndwzP42yn7s4sS8DfV6XWs37HOa5Nf/mKy1uu489qY/qAc8JQot1tq6laMzZuZz37uV1N4/ae3Jc07MclW9PO8rXXj/365OXW61Bv1p+2dJYr+gJZzX6e0md1ci13A0AHcZsmAAAAAAAAAADgK66MAAAAAAAAAAAgAKuyTVZlKOA2w4ErIwAAAAAAAAAAgK8G/sqIsbEx2bFjhzY2OTkpk5OTAfcIAAAA8GZ+fl7m5+e1sZWVlYB7g37BMRMAAAizXhsDr8qQXBjQKyMGfjLi+PHj4rpbf5ATAAAA0G22E8OVSkVisVjAPUI/4JgJAACEGWNgf1SrVYlGox2tc+AnI4DuW7bETnuqUamDxpjjzFjKTXtsz1zOa3te+2JbZ3MP3G0t+bPOQ8bYw7aCGXPopY+NG2PH/viD5oLDlvaWbfuFeX+yb6fDnuoU2WOJ2fq5yxhR6k5LOTPbvmbvp41tQ5iXz96XrbRp5vW95sdngo3jWN9NHS/n2Snbe+JGS8y8b4t63GNnvH0XiNi/DwAA8INSvTdx1e7YTTdG2idPafPud97dcr0f/aE+/SU115T20Av3GGr5V9pU3TK2O9ZrJ38n2muHn3W3s3/o+mEq306f/Vy+dmx1H2i3DqNhw+dMqvX9znEq2vSwrGugGxzH2fC367pSLpcbf1cqFZmdnZVoNCq1Wk0SiYSMj5vPe+kwGQEAAAAAAAAAQAAuypCsBnxa/uIm8VwuJ8lkUkZHRxtp8Xi88f9qtSqxWEzK5XLjitnR0VFZXFyUZDLZcj+YjAAAAAAAAAAAYEDl83kpFovGeCqVkng8vuHWnel0WlKpVFuTEdu21EsAAAAAAAAAANCSVdkmqzIU8Ms8DVAoFOTkyZMyMTEhuVyuKV6r1aRUKkkikdiQvm/fPhERbRkTJiMAAAAAAAAAABhAxWJRarWaFAoFSaVSsnv3bimVSo34yZMnRUSaHmZdv0rCdkXFpZiMAAAAAAAAAAAgpM6fV7J89qLn14/OKWPd2WxWlFJSLpclmUw2Hk5drVZFRBr/RiIRbfl6vBU8MwIIgFJ3GmOOM+Ox1tOWOg9byu3xVE6pg5Zy5mVQatqHcpblu9dcTuRuS0zkWkvsGWtJs+/KW4yxm3/tc8bYF379HZZab7TEntq0T3rLHsuZ90Ov5bzuh7Z9xsbre9Bre5ux9ce+bry9Z/xaDjPztg++L09YYubPSvv7bK8lZnu/nLXEzO/P4NcZAAD9x/R9ahqXObfpUvVj9JO/1Jw289kWO2bx4Tc/qE1/aLj1sYFp+ToxvgjzGMVxKtp0pVxD+tbXaS9qZ1l066jd95Uuf/v7aCfqAPx38dVbJ7Xj38wuyydmzvnUozWu60o2m5VEIiETExOSTqcln8/LwsKCiIiMjIxoy9VqtZbbYDICAAAAAAAAAICQ+tD9O+XXD77Bc/lTz74iH7hpsaW84+PjMj4+LpXK2uTt6OioiIgsLurLX3r7JhsmIwAAAAAAAAAACMDFVx9g3Y7Ltq+9vPqJnebbNOkkEonGcyPqkw2mKyDamYzgmREAAAAAAAAAAKBh3759G/699NkQ9b9jsVjLdTIZAQAAAAAAAABAAC7INrkgQwG/2psGKBaLkkqlRGTtwdWu60qxWNyQp37lxIEDB1qul8kIAAAAAAAAAAAGTKVSkVgsJnNzc420QqEgIyMjMj4+3kg7cuSIlEqlDVdHZDIZyWQyEolEWm6PZ0YAIabUtDHmOEctJU97jA1v1qW2Oc5hY8y+fOZyInuMkUMP/K4xdt+HHrLUKSK3WWKP2ouafPZfmmeHh3/nf1pK/thTe0odNMYc52lLyXdaYs9Y2vO6Dc1sy+AH2zJ45Tgznst67Y+tTT/qtDN/lvixvv3h9bPS/H7xqnfWGQAAwTONV0zfn7r8prym9OflTU1p0Rde0OZ95VptstZHrtCnX/6JqaY05/cN9/5erujTh11NWntjjHbWXTt5O9FeO5TSrIsO6adxW78sS78sB+CXaDQqIyMjMjs7K8ViUVzXlUQiIdlsdkM+13WlXC5LOp2WaDQq1WpV0um0JJPJttpjMgIAAAAAAAAAgABclMtkNeDT8hdlVZseiUSabr9k4rqu5PP5LfWD2zQBAAAAAAAAAABfcWUEAAAAAAAAAAABuCjbZFWGAm8zDMLRCwAAAAAAAAAA0LeYjAAAAAAAAAAAAL7iNk0AAAAAAAAAAARgtQu3aVoNyTUJAz8ZMTY2Jjt27NDGJicnZXJyMuAeYdAoNe2x5HMdr9NxZjz2ZY+lL3d6rHOXJfYWY+QPFj9gjD3/yausLV7z9Blz8FFz6N4fWz7Qf/miMXTuijdaenPWEls2RhzncWNMqfdaypm3vdf9SamDnsrZ+NFPP9rbSl+8vw87z7Yc9nXT+W1v043tBITV/Py8zM/Pa2MrKysB9wb9gmMmhFm73+ft5DeNMQ5J83GD+qXLtXmfr2mOQRz9ccflN+n7MfNbmsSsPq884erTH2tnjKlfR+2su06MszpRh24bhn0M2It9bkc/LQvCgzFw7xj4yYjjx4+L6xq+rAEAAIAeYjsxXKlUJBaLBdwj9AOOmQAAQJj12hh4VYbkQuBXRgTbnkk4rs8AAAAAAAAAAAB9a+CvjAAAAAAAAAAAIAgXZUhWfTgtX5j/n3J8/kVt7PyK+TbiQWIyAgAAAAAAAACAHjY++bdkfPJvaWP/T+VH8qux/xpwj5pxmyYAAAAAAAAAAOArrowAQsxxDhtjSk1bys14Kue1TpF7LOVOWco9bontscRuMEaeudJc6k71Hyx1ivzkDX9tjP2cvN8Y+/hPmC91e6etwQOWmLPLHItZYifN6822P4kMW2JmXvc1+/5kZqvTD0G31602vfDaT6/7jB99CZofyw4AQK/QfQ924vvPOGxebmO8OWzqx35t6keuONTcj/cpfRW55qRD4mizznxWX8VHrtDUkaroM99qeth887Io1f8Ppg96jNWJ/Zxx4WtYF+hXqzIU+AOleYA1AAAAAAAAAAAYCFwZAQAAAAAAAABAAC7KtsCvVLgYkmsSwtELAAAAAAAAAADQt5iMAAAAAAAAAAAAvuI2TQAAAAAAAAAABGC1C7dpWg3JNQlMRmAgOc6MMabUtKdyInssdd7ZSrc05Q566ot9GR62lPPWT/nDXebYb522FLzRHPrQDebYJ79vDD1hae0n5a8tUZGfk/9kjE2nLQU/bw6pL1nK/aol9lZLrGyJyVOWmG0fvd1WqaWceV/zyo86ER5h2r5eP0cBAIC/TN/R7Xw/m/Jq616u6Cu51dUmf/Sx5rQPJx/Q5n0od19T2s+oMW3e7zjHtemP/lDfva2yH982Y3y0OdYRANgxGQEAAAAAAAAAQABWZUguBH5lRLDtmYTj+gwAAAAAAAAAANC3uDICAAAAAAAAAIAAXJQhWQ34tPxFrowAAAAAAAAAAACDgMkIAAAAAAAAAADgK27TBLRl2BLbY4w4zsMe2zvtsb3DPpR7pzFy4O4/McaO/f4HzVVebWntj/7SGDs5HTPG3vq3zXUe+sr7zEERWX6Xefv+4sc+Z4xdn/+mMbbtOWVt0xPz4oucHDGGlHpv5/vikVLT3e4CEPh+yH4PAOhVjjOjTW/nu02X11RvO/34sHq9Pu+u+/SV3Krp8y36rLHkU4aONCc9dJuhPY1/8rnj2vR96sva9BO6xJyrr/wJQ6O3avKX9HWos4Y6AAAdsSrbfHmg9J/P/3f53Pz3tbGXVy52vD0vmIwAAAAAAAAAAKCHvX/yp+T9kz+ljX2nclZ+O/bVgHvUbOAnI8bGxmTHjh3a2OTkpExOTgbcIwAAAMCb+fl5mZ+f18ZWVlYC7g36BcdMAAAgzHptDLz2AOtgHygdlgdYD/xkxPHjx8V1DZc3AgAAAD3EdmK4UqlILGa71x+gxzETAAAIM8bAvYMHWAMAAAAAAAAAAF8N/JURAAAAAAAAAAAEYVW2yYWAb5u0GpJrEpiMwEBSatoYc5zD3ird/15z7MTjloJnLbFfN4ecq80xddRS53OW2FstMbOjh3/VGDv2Dz9ojO381IvG2B/Lrxljf+/PFoyxz6mbjTH5380hEZFnrn6PMfan//ZXjLHrvzRlrvQxS4N/bonZriA8adufThkjjvMNY0ypOy11AgAAoFc5zow+MKw5JlpuI6+t7pbtN6SfaLmGG+RpbfpDbfSimnyTNv2aT5zRF3i2OemQvhsiTzQnOe9T+rw5Qx2pSnPasCHvsiaviOjXqX79O45+/duOowEAaAWTEQAAAAAAAAAABGBVhmQ14NPyQT8w2yQc12cAAAAAAAAAAIC+xZURAAAAAAAAAAAE4KIMBX6lwkWujAAAAAAAAAAAAIOAyQgAAAAAAAAAAOArbtOEgeQ4M5boHm+Vxi2xL73XHLvaUq5miZ2xxJzbzTH1tKWgbdmXjZHTv2Mptt8c+uPX/5ox9nn5RWPs9QcLxtgHfvQZc4NfNIdERORD5tBDX7nPHKuZY/JbtgZPmUMnbdvitK1SIBC2z1GlpjteDgAAvEb3fWr6HjWlOzlN4r2G7+JvXtCn/7RusH9Cn/dWTd2PVfR5TQcRw25T0nccR583q0/+cPKBprQH5R5t3nvuflCbHs39oDnxCX17UtL04dHmPoiIPPSCvh866qw+3bQ69PTbijEZAPhrVbYFfpum1ZBckxCOXgAAAAAAAAAAgL7FlREAAAAAAAAAAARgVYbkQuBXRvAAawAAAAAAAAAAMAC4MgIAAAAAAAAAgB5Wmv9v8n/PL2hjL6+sBtwbPSYjAAAAAAAAAAAIwEUZklUfTsv/wuRe+YXJvdrY9yqL8i9iT3S8zXYxGYEBNWyJnbbE3mqMqJ91jDHnHypzlT9jae5qS+zXLbGft8S+eIM5dpWl3JmzxtDDlmISN4cmsieMMec75nX2nx74OWPsR8s7zA3aNruIyD5L7Ebz8ovsssSOWmK2fc3G1t6yMaLUQU+tOc6Mp3JKTXsqh97gdfuyXwAA4A/zmG2/NjWmVprSyk/cqK/iCcOpg2G3Oe3jmjQRkVSlOe1WQ96SPllphuTPGw5iDpnWR/L1+nSNaO4H2vRY8qmmtHLK0GnN+n/I+ZEh79cN6c3HTY7x8FN/jKUbg3kd5wMA4BWTEQAAAAAAAAAABGBVtgX+QOnVkDw6Ohy9AAAAAAAAAAAAfYsrIwAAAAAAAAAACMDaMyOCvTLiYsDtmXBlBAAAAAAAAAAA8NXAXxkxNjYmO3boH3g7OTkpk5OTAfcIAAAA8GZ+fl7m5+e1sZWV5ofVAq3gmAkAAIQZY+DeMfCTEcePHxfXdbvdDQAAAGDLbCeGK5WKxGKxgHuEfsAxEwAACLNeGwNf7MIDrC+G5AZJAz8ZgUG1yxK70RLbY4zM3GwudUD9iTH2+R+9zxg79503miv9jDkkJ82hbf/ub4yxi3971VLpWUvM4lOW2KPm0M5/+qIxduKPJ7z1Zecm8V/3Vq3IUUts2WNs2BLzuC08Umo60PYAAABg1874zHFmtOn7nUNNaeVhpa/kFkPlcU3avfqsj6iPNqXd8YLhoOanv65NdpzmtJjKGzpX0qY+tOu+pjRlGF4/ZFiWdyW/0pRWHjZsk+WKJnG/Pq9Be+Nx/cSh4zT3g3E+ACBoTEYAAAAAAAAAABCACzIkFwK+MiLo9kzCcX0GAAAAAAAAAADoW0xGAAAAAAAAAAAAX3GbJgAAAAAAAAAAAnBRhmQ14NPyF7lNEwAAAAAAAAAAGARcGYEBddYSW7TE9npq7ehnftUYu/0DnzbGjp38oLnSn1fG0FW3f9cYO/Mr15jrtC3eKfM6m77NXOzQO8yxN721aoyde9sbzQWfM4dEnTLH9m6y/c5YyspTltgeS+y0MaLUtL0/Bo4z0/E6AQAA0Dscp9KUppS75XofOTuuTb/D+UjrlXzvWn0duwrNicvNyyEiIsOGZVluHge/S16vzVqW/fo6vnmhKcnZZTg1omlPROQhR1P3sL4KkRNNKaYxu3mcv/Vt24n9AwDQGauyTVZ9uFLhK/Nfl6/Mf10be2Wl+fuvG5iMAAAAAAAAAACgh71r8lp516T+RwHfr/y1fCJ2NOAeNWMyAgAAAAAAAACAAKw9MyLYZzjwzAgAAAAAAAAAADAQmIwAAAAAAAAAAAC+6uvJiGrV/HBcAAAAAADHTQAAAEFalW1yQYYCfa2GZBogdM+MKBQKMjs7K5VKRaLRqGSzWYnH4y2VdRxnw9+u60q5XPajm+h5uyyxGy2x055am/lH5tjbPnDKGFOnHWPs7dFnjLFfkC8ZYw+dus/cmTeYQ7Z1dvfxOXOxT5hDZ37zGnPwOUtXlHmdiTxlqXOvpdwmZS3bXqk7jTHHMW8nx5mx1DntKQYAAAYDx02DTSm3Kc02tmzVP/nl49r0O773GW36y9de3pT2OnlFX/nHdYnNyyEiIvfqk3Xj4H2mMfythrp/W5+st1+fPGyoW6OdsTvjfABAvwvVZEQul5NyuSyZTEZERNLptCQSCVlYWJBoNLpp2WQyKaOjo420VgfjAAAAANArOG4CAADoXasyJKsBn5YP+oHZJqGajKjVapLNZht/HzlyRGKxWOPXPjb5fF6KxaLfXQQAAACAruK4CQAAAL0oHDeLetXU1NSGvyORiIisXTZsUygU5OTJkzIxMSG5XM6v7gEAAABA13HcBAAAgF4UqsmISxUKBclkMpv+uqdYLEqtVpNCoSCpVEp2794tpVIpoF4CAAAAQPdw3AQAANA7LsrQq7dqCu51sY3bNJVKJdm9e3dTeqVSkYmJCUmn05JKpaRQKLS97KG6TdN66XRacrmcHDlyZNO82WxWstmsVCoVyWazksvlWr5n6rlz5+Ts2bOe+7l9+3bZvn275/IAAABAK86fPy/nz5/3XP7cuXMd7A3CIojjJo6ZAABAtzAGDl4qlWpKq1arEovFpFwuN67GHR0dlcXFRUkmky3XHcrJiLm5OalWq1Kr1WRiYkKy2WxLC+W6rmSzWUkkEo1Zmnw+by1z0003bamv09PTcujQoS3VgW6wHUw9ZYm9vdMdkbfI88bYt/75qDH2zeo+Y2xftGxu8LSlM2e+bwl+wxh56I/vMxf7lKXK5ywx9bAleKMlZqvzsD2sDhpjjjPjKSYy7Kk9AAAuNTs7KzMztu8cDJqgjps4ZuoV+w3pJ1qu4e7/MKdNr8qbtel/v/blprQPy4PavA89oTlmMFyYowyHa9px963T+syP6T8vlTLk17anTzf1r/V6t943ABgU/TgGvijbAn+g9MUWb5CUTqclGo3K4uLihvRUKiXxeHzDbUHrV0j0/GRE/R6opVJJJiYmJJPJtLVQ4+PjMj4+LpVKZdO8Tz75pFx33XVeu8ovfAAAABCI+++/Xw4e9D6R/eyzz275pDLCJajjJo6ZAABAtzAGDk6pVJIrr7xSXNeVkydPNtJrtZqUSiXJZDIb8u/bt/ZD6Vwu1/IYNJSTEXXxeFySyaTMzel/nWGTSCRauv/pzp07ZdeuXV66BwAAAARmq7e62blzZwd7gzDx+7iJYyYAANAtjIGDk81mJZ/PSzqd3pBen5i49Lae9askisVif0xGiIhcf/31mz73waQ+OwMAAAAA/YzjJgAAgN6w6uE2TRfOX5DV8xc8t/njc/ay6XS66cqHumq1KiIikUjEGm9F6CcjqtWqxOPxtssVi0XtwzYAAAAAoN9w3AQAANC//vPsf5KnZp70pe5KpSJXXnml8YctCwsLIiIyMjKijddqtZbbCs1kRK1Wk7vuuktuv/12GR8fF5G1AXWxWJRisdjIV61WJZFISDablXg8LpVKpVGufs/UQqEgIyMjjXoAAAAAoB9w3AQAANDbVmVILrR5ZcS++39e/j8H3+25zb9+9owcu+mPtbHZ2VnJ5/PGsqOjoyIiTQ+1rmvn6tzQTEZEIpHGwDqbzUoikZBoNLphQC2yNvheXFxszLhEo1EZGRmR2dlZKRaL4rpuY9ANeHPaY8yb7zrHjLFT6pAx9mT0fzPGPi+/6K0zztXmmPqGOfbr3zfHhm11Pm3pjG1dm9eZ3bDHcnZKTftSLwAAwKU4boLZCW2qaaw64xxqSrvSmdLmnVBf1qbfIw82pd1xW0HfvVs0aY/pH57uOPpl0XpspvW8IuI4zfnN43lTP9y22my9PQAA9C7bfplctt37qfzX7dQ/dyOdTksikdhwq6X6/+v/1icbTFdA9ORkhIg0DaB1XNeVpaWlxt+RSKSlcgAAAADQDzhuAgAA6F0XZUhWAz4tf9FwJUapVJK5uTltbHR0VFzXlS984Qsi0vxsiPrfsVis5X5sazknAAAAAAAAAADoC+VyWZRSG15TU1MSiUREKSXlclkikYi4rtv0w5ZSqSQiIgcOHGi5PSYjAAAAAAAAAACA1pEjR6RUKm24OiKTyUgmk5FIJNJyPaG6TRMAAAAAAAAAAP1qVbbJapsPsO5Em1vhuq6Uy2VJp9MSjUalWq1KOp2WZDLZVj1MRgAAAAAAAAAAgMYVD5dyXVfy+fyW6mYyAgNJqYPGmOPMWEoOd74zFj+S1xtj77nlGWPsfY9+zlzpHkuDZ45ags9ZYiPm0PITlnJnLTHbul42RpSatpSzs237rdQLAAAA+M00XnV26fMfaqPu/c67tel33Kqa0h55dFyf97ZCc+Kwq82rzurTO8F+vBdMexxbdJdpH2C7AAjK2gOsg70ywvQA66DxzAgAAAAAAAAAAOArJiMAAAAAAAAAAICvuE0TAAAAAAAAAAABWJVtcqHHHmDdKeHoBQAAAAAAAAAA6FtcGQEAAAAAAAAAQABW5TJZDfi0fNDtmXBlBAAAAAAAAAAA8FU4pkSAgDnOjDGm1LSl3GFP7U2/3Ryb+YY5Nnv+d83l/sJc7ty9bzQHT54yx+S0JTZsjCh1gzHmOE9Z6ly2xAAAAAC0ynSMYzq+mXGa015Sc9q8VzpT2vRHHh1vSntQ7tHmjT3afFxQdkravCLmY7JWtbs+tprXzzra0Ynl7nesCwDddlG2yWrAz4y4GJJrEpiMAAAAAAAAAACgh52a/5I8N/+kNra68krAvdEb+MmIsbEx2bFjhzY2OTkpk5OTAfcIAAAA8GZ+fl7m5+e1sZWVlYB7g37BMRMAAAgzxsBr9k7+vOyd/Hlt7KXKC3IiNhtshzQGfjLi+PHj4rput7sBAAAAbJntxHClUpFYLBZwj9APOGYCAABh1mtj4NUu3KZpNSS3aQpHLwAAAAAAAAAAQN8a+CsjAAAAAAAAAAAIwkUZ6sIDrINtz4TJCKAty55KPf/1q8xB54wx9IZ/fNFTe/JWW3DYGFHqoDHmOIc9dcVWZ9goNd3tLgAAAACedGIs+xV5lzZ9fxt1lHfd2EbuUht529PO+nCciqGO3rs9Gcc0AIAw4zZNAAAAAAAAAADAV1wZAQAAAAAAAABAAFZlm1zgAdYAAAAAAAAAAACdx5URAAAAAAAAAAAEYFWGZDXg0/JBPzDbhCsjAAAAAAAAAACAr7gyAgNJqWljzHFmPJWbcQ4ZY9f87pmW+nWp0496KibyfmWO/dbVxpDjPGypdJelnHmd2djWp43XbQQAAAD0A914uBPj4HvkQW36dwz5n5YbmtI+fPYBbd6HXrinOfGn92vzmsb7umVsJ6+JUu6W+wEAQKsuylDgVypc5MoIAAAAAAAAAAAwCJiMAAAAAAAAAAAAvuI2TQAAAAAAAAAABGBVtgV+m6bVkFyTwGQEAAAAAAAAAAA97Pn5J+S783+hja2uvBxwb/SYjAAAAAAAAAAAIACrMiQXfLgy4qcm3yc/Nfk+beyHlap8JXZfx9tsF5MRwCWUmu58pc96K/awx+ZGo982xhY+9/fMBd83bAwpdbsx5jhHLb15zhLzxpdtBAAAAPSIToyHf0VdpUn9ijbvdwx1fOKXp5rSZj5ryPy9ezSJJ7RZ21k+P48NOO4AAKCzwnGzKAAAAAAAAAAA0Le4MgIAAAAAAAAAgABclCFZDfi0/MWAH5htwpURAAAAAAAAAADAVwN/ZcTY2Jjs2LFDG5ucnJTJycmAewQAAAB4Mz8/L/Pz89rYyspKwL1Bv+CYCQAAhFmvjYFXZZusBnylwmpIrkkY+MmI48ePi+u63e4GAAAAsGW2E8OVSkVisVjAPUI/4JgJAACEGWPg3jHwkxFAp0ynzbGZTHD9EBH55/IvjLFflaOWktcaI47ztKXcaUtsjyUGAAAAoBv+rXOmKe2E+rI27355tzb96Geb0z5yhb69l978YFPaQ7dOmzuo4TgzbeXXUaq9NgEA6LS1Z0YEe2UEz4wAAAAAAAAAAAADgckIAAAAAAAAAADgK27TBAAAAAAAAABAAFZlm1wY0AdYh6MXAAAAAAAAAACgb3FlBAAAAAAAAAAAAViVIVkN+LR80A/MNmEyAuiQz33sZnMw8wVPdU6/YI7NvNkce6dzzBg79+OCMbZz76q50lNHzTHZZYmdNkYcZ8YYU2raUicAAACArTihvtyUtt95tzbvR65ovd5jtbGW88YefcoQubH1BmW/NlUpt406AABAELhNEwAAAAAAAAAA8BVXRgAAAAAAAAAAEICLMuTLbZP+x/xj8j/mH9O3uXK+4+15wWQEAAAAAAAAAAA97Ccnb5WfnLxVG/ubyn+Vb8XuCrhHzZiMAAAAAAAAAAAgABdlW+APlL4Ykqc1hKMXAAAAAAAAAACgb3FlBAAAAAAAAAAAAVj16ZkRm7UZBkxGAB2SlZQxFpMveKv0B96K/YS6yhh7w4fOmAtOWyrN3m6OfdHWmxlLbI8x4jgPW8qdNkaUsi0EAAAAABGR8gs3NKX9/6/Q5/3oD/Xp07/UentXOlPNierL2rzOLlMt+5urUG7rnQAAAF3FbZoAAAAAAAAAAICvuDICAAAAAAAAAIAArMo2uRD4bZrCcU1COHoBAAAAAAAAAAD6FldGAAAAAAAAAAAQgLUHWAd7Wj4sD7DmyggAAAAAAAAAAOCrgb8yYmxsTHbs2KGNTU5OyuTkZMA9Qq+6Ul7qfKVXmEPTn7WU++9njKGznzYXe+cn/9IYu+H2p42xh66/z1zpyQPmmHzXEnvGEttjiZk5zoynciIiSk17LgsAQFDm5+dlfn5eG1tZWQm4N+gXHDP1qd9uPh3w92tf1mbd77xbm+58UTWlfVge0OZ9SD7SnPjCtfq+ffOCPl2a829ljF/HWB8Aehtj4N4x8JMRx48fF9d1u90NAAAAYMtsJ4YrlYrEYrGAe4R+wDETAAAIs14bA1+UocBvm3SR2zQBAAAAAAAAAIBBMPBXRgAAAAAAAAAAEISLsq0LV0aE45oEJiMAAAAAAAAAAOhhP5z/d/LD+X+njamV8wH3Ro/JCAAAAAAAAAAAAnBBtsmQD1dGvGHyDnnD5B3a2PnKt+SvYuMdb7NdTEYAHfLp+37DGDskH/JU51++9Z3G2E3/8WljbG7/3cbYP1v5P42xp//7TebOPGUOPXTVfeagfN0S22WJ3WOJmTvjODOWcsOWmIhSB61xAAAAoG88VmlKOvnL79ZmfeUKfRUv1R5oSnsoZzg2yDYnvXyto816rDamTb/jhc/o69ZQarrlvAAAIBjhuFkUAAAAAAAAAADoW1wZAQAAAAAAAABAAC7KZbIa8Gn5iyGZBuDKCAAAAAAAAAAA4KtwTIkAAAAAAAAAANDnLso2WfXhAdabtRkG4egFAAAAAAAAAADoW1wZAXTKx091vMrPyy8aY+p/cYyxT8mvGmNv/JfnjLGZPzD3ZUUdMgfL5pCcWLYE32KJPWyJ7TJGlJo2xhxnxlInAAAAAJ2P/lCf/tCu+5rSHjk7rs37oNzTlPY7yTlt3iudKW36I+oDTWl3yEf0nWuD41S06Uq5W64bAAC8hskIAAAAAAAAAAACsCrbZFvAt2laDckNksLRCwAAAAAAAAAAELhCoSCxWEwcx5HR0VEplUpNeSqVikxMTEg6nZZUKiWFQqHtdrgyAgAAAAAAAACAAFy8OCSrFwN+gLWlvVwuJ+VyWTKZjIiIpNNpSSQSsrCwINFoVEREqtWqxGIxKZfL4rprtzEcHR2VxcVFSSaTLfeDKyMAAAAAAAAAABhAtVpNstmsxONxicfjcuTIERFZuxKiLpVKSTweb0xEiEjjCol2MBkBAAAAAAAAAMAAmpqa2vB3JBIREWlMPNRqNSmVSpJIJDbk27dvn4isXVnRKm7TBHTMcMdr/Ni1h4yxB77+YWPsLfJdc6UTlgb/wBz6ovyCOfg3ljrlRlvQSKmDnsrZ65zueJ0AAABAbzrRlPLKk/qc08/q03/mHeNNaQ/KPdq85duajwvyj+oPTq75Q317Tq753tRK6fOaOM6Mpg6OEwAAwVld3SZyIeAHWK+2fk1CoVCQTCbTuEXTyZMnRUQaf9fVJyuKxWLLt2piMgIAAAAAAAAAgJBS58+LnH/Ze/lzP2opXzqdllwu17hVk8ja8yJEXrti4lL1eCsGfjJibGxMduzYoY1NTk7K5ORkwD0CAAAAvJmfn5f5+XltbGVlJeDeoF9wzAQAAMKs18bAqxeGRC60d1r+/McOyysffcCnHq2Zm5uTarUqtVpNJiYmJJvNSjKZlIWFBRERGRkZ0Zar1WottzHwkxHHjx/f8OANAAAAoFfZTgxXKhWJxWIB9wj9gGMmAAAQZoMwBn7dvb8lr/vwhzyXX/36N+XH/+CXrHnqz44olUoyMTEhmUxGksmkjI6OiojI4uKittylt2+yGfjJCAAAAAAAAAAAgnBxdaj9Z0YMvV7k9a/33Kb6idafdRuPxyWZTMrc3JyIvDbZYLoCop3JiNafXAEAAAAAAAAAAPra9ddf35hk2Ldvn4g0Pxui/nc7V55wZQTQMcueSv2Ceqc5eOIZY+ikmN/o9/3uQ8bY6UxL3WryFnneGHvmk+8xF3T2mmPqlLmYc9hcTB001wkAAABgU0pNN6XNOIe0eaf/QF/HHe8rNCc+oc8be/SpprRrvnbG1D29VKUpyUmdaK8OAACwqWq1KvF4XETWHlztuq4Ui8XGrZxE1m7nJCJy4MCBlutlMgIAAAAAAAAAgACsrm4T1e5tmrbo4qr+Bkm1Wk3uuusuuf3222V8fFxE1iYiisWiFIvFRr4jR45ILBaTarXauGIik8lIJpORSCTScj+YjAAAAAAAAAAAYMBEIpHGhEQ2m5VEIiHRaHTDRISIiOu6Ui6XJZ1OSzQalWq1Kul0WpLJZFvtMRkBAAAAAAAAAEAAVi8MycVXgr0ywnYlxqUTDyau60o+n99SP3iANQAAAAAAAAAA8BWTEQAAAAAAAAAAwFfcpgkAAAAAAAAAgACoi0OiVgM+LX8x2NtCmTAZAXTM455K/dziM+bgD8yhe+XjxthMxlNXrI4d/aAl+n1zSO2ylHvKElvepEcAAAAAOmn6D/XpzpeUNv2R5HhT2h23fEab9+TX3t2Utu8dX9bmzb9jQt+R33eb0wyHDUpp8gIAgK5iMgIAAAAAAAAAgCBc2CZieaC0b22GQDh6AQAAAAAAAAAA+hZXRgAAAAAAAAAAEITVoeCvjFgNxzMjQndlRKFQkFgsJo7jyOjoqJRKpZbKVSoVmZiYkHQ6LalUSgqFgs89BQAAAIDu4LgJAAAAvSZUV0bkcjkpl8uSyaw9fTedTksikZCFhQWJRqPGctVqVWKxmJTLZXHdtYdUjY6OyuLioiSTyUD6DgAAAABB4LgJAAAATf50XuSRP9LHfrwSbF8MQjUZUavVJJvNNv4+cuSIxGIxqVQq1kF1KpWSeDzeGFCLSOOXPgyqEZy9nko5/80cuzs1Z4x9IjtljH3e0t6dllhJHTAHv2IpeNXV5tiZhy0FT1tiAAAA0OG4CZ3gODNNaYdMmW/VJ9+Ra76yJpZ8Sp95qTmp/MIN2qzRJ35g6kkTpdzNMwEAECarjsgFp/P1/qP/Y+2l862KyG2xzrfZplDdpmlqauPJ1UgkIiKyYbB8qVqtJqVSSRKJxIb0ffv2icjar4YAAAAAoF9w3AQAAIBeFKrJiEsVCgXJZDLWX/ecPHlSRKQpT30gXiwW/esgAAAAAHQZx00AAAA9ZFVELgT8Wg1kyTYVqts0rZdOpyWXy8mRI0es+arVqoi89msgU9zk3LlzcvbsWU99FBHZvn27bN++3XN5AAAAoBXnz5+X8+fPey5/7ty5DvYGYRHEcRPHTAAAoFsYA/eXUE5GzM3NSbValVqtJhMTE5LNZo33MF1YWBARkZGREW28VqtZ27rpppu21Nfp6Wk5dOjQluoAAAAANjM7OyszM833eMfgCuq4iWMmAADQLYyB+0soJyPq90AtlUoyMTEhmUzGOKgeHR0VEZHFxUVt3HapsojIk08+Kdddd53nvvILHwAAAATh/vvvl4MHD3ou/+yzz275pDLCJajjJo6ZAABAt/TlGLh+m6ag2wyBUE5G1MXjcUkmkzI3N2fMUx80m37Js9lkxM6dO2XXrl2e+wi8Rv8rs009bw79gxv+wlwsdZW54G+cMYb2WN4SH3zumDH2q3LUXPDMKXNMvF3Sr9S0p3IA0Iscx/xLHz4PUbfVW93s3Lmzg71BmPh93MQxU3/Sfb/MOIfaqyRVaUoqy43arDOp5rSYelqb957kg9r0O1If0aTqH9xu+m7lexUAegtj4P4S6skIEZHrr7/eOjDet2+fiDTf47T+dywW869zAAAAABACHDcBAAD0iPpDpYNuMwS2dbsDm6lWqxKPx43xSCQirutKsVjckF4qlURE5MCBA772DwAAAAC6jeMmAAAAhF1oJiPqD10rFAqNtGq1KsViUbLZ7Ia00dHRxqBZROTIkSNSKpU2/Monk8lIJpORSCQSSP8BAAAAwG8cNwEAAPS4CyLySsCvkFwZEZrbNEUiEanVanLXXXdJNpuVRCIh0Wi06Zc7tVpNFhcXN9zr1HVdKZfLkk6nJRqNSrValXQ6bXx4GwAAAAD0Io6bAAAA0KtCMxkhIk0DaB3XdWVpaUmbns/n/egWAAAAAIQGx00AAADoRaGajAB62zc8lcp/YL8xNvF/nzAXfJOn5uRU1Rx75q2WewVfb6t1j7fOAABERESp6W53AQAA+cgV+vQTjz6lTS87O5oTU5WW2zv5tXdr050ZpU1X+mRDXr5bAQAhdVFEVrvQZgiE5pkRAAAAAAAAAACgP3FlBAAAAAAAAAAAQVgVfx4o/dj82kvn/IoPDbaPyQgAAAAAAAAAAHrZrZNrL53/WhG5KxZsfzS4TRMAAAAAAAAAAPAVV0YAAAAAAAAAABCEC+LPbZo2azMEmIwAumziV054K/gGb8WOWWLTh83RX73qqLngVbvMsTM3Wlp8yhIzc5wZY0ypaU91AgAAAINEN6ZWz7ZZybDbet7l5qRXbtJnjdX0xwmOs6Pl5pRqo28AACAQTEYAAAAAAAAAABAEvx5gvVmbIcAzIwAAAAAAAAAAgK+4MgIAAAAAAAAAgCBwZQQAAAAAAAAAAIA/mIwAAAAAAAAAAAC+GvjbNI2NjcmOHTu0scnJSZmcnAy4R+hVSt1pDv7Lu4yh039gLvYVtd8Ymxg70Uq32vOUJfYdr5V+wxLba4w4zoyn1mzllJr2VCcAAL1ifn5e5ufntbGVlZWAe4N+wTFTf9KNjf/MMHY/+cvv1qY7y+WmtEfUR7V5/8knmtP+7O4xfXufMLQ3rJoTl/Xjf8fRJotSriavvg6OHwCgN/TcGHiAb9M08JMRx48fF9dtHowAAAAAvcZ2YrhSqUgsFgu4R+gHHDMBAIAwYwzcOwZ+MgIAAAAAAAAAgEAM8JURPDMCAAAAAAAAAAD4iskIAAAAAAAAAADgK27TBAAAAAAAAABAEC6IyCtdaDMEmIwAOsRxZowx9SlzuZI6YIx98F8eMxe8ztKZRy0xm2fNoZ3feNEYO/eBN5oLnthjafAZS8xcTqk7LeXMbNtord5pT/UCAAAA/eCOFz6jT39In1/9i8ub0u6WOW3eA39wvCntO7/VnCYisk99Wd/gb2nG81nDGP5efbIOxwEAgL7wF/Mi/3FeH3t5Jdi+GDAZAQAAAAAAAABAEFbFnwdKxyfXXjrPV0R+P+ZDo+3hmREAAAAAAAAAAMBXXBkBAAAAAAAAAEAQViX4Zzj4cSWGB1wZAQAAAAAAAAAAfMVkBAAAAAAAAAAA8BW3aQIAAAAAAAAAIAgDfJsmJiOADlFq2hg77Rwyxj74N8fMlU5YGvxn5tAeS7HTlthM1RK0+ZIltve95tipt1gKPm6MOM6MMWbbDrYYAHST1881AAA66qe/rk8fdrXJjqjmxG/qz6584l9MNaVNf0Hf3EvyFW16WZeYqugrkRPaVMfZ35SmlH75AABAZzEZAQAAAAAAAABAEAb4ygieGQEAAAAAAAAAAHzFZAQAAAAAAAAAAPAVt2kCAAAAAAAAACAIFyT42zQF3Z4BV0YAAAAAAAAAAABfcWUEEIBn1c3GWOT8F42xle2vN8be+IvnjLG3/2dzX240h2Tv282xe4d+0hjb+XctT8EpWxqUYUtsj60gepzjzBhjSk0H2BOwLcKBdQ0ACIOYWtGml18w/JzyieZTCh9+84ParM/ffVVT2jU3ndHmvUf0dTyU/UFzYqqi71vW8N2aah77OM4JbVa+n4HBozs+4rMAHccDrAEAAAAAAAAAAPwx8FdGjI2NyY4dO7SxyclJmZycDLhHAAAAgDfz8/MyPz+vja2s6H/xDGyGYyYAABBmPTcG9uvKiC/Pi3xFvx7k/23v/oNku+oDsX+bMj8e6InRg1ovBst2j5PImHVI95PZCq7glLrLeCm5IjQjbVVY4yT2NMkUXls2b4Kzu0/Ptd7JPFjYRTUUPdqKFZbdRJp+KLGCge1WMKm1HfzedIHtAhx7miAjyxCY19YTPPTj6eaPpxk06nvvmx/dfXtmPp+qW9I733PP/U7f+XFOnz73PD0Zr8ORn4w4d+5cVCqVotMAAIB9y3tjuNvtRrVaHXNGHAbGTADAJNMHfs5PzV890nytG/HB4l8Hj2kCAAAAAABG6sivjAAAAAAAgLF4JiKeLuCaE8BkBIzB2x56ODP2c7c+kBn7SvxwZuxP/vwnM2M/9rLsXD743exY/El26Odf+v3ZwUdz2pwgpdKZPZ+bJKeHmAkH5fXM+545KF/DtRyWrwMAGKEf+q308uOD/Yh73vqrqVXfdOPnBgv/4z9IrfvBSG8jPYeMR4g10vtxaX2f0vXpTWT1BSeh/zTJucFB5mcIRstkBAAAAAAAjMOV545xX3MC2DMCAAAAAAAYKZMRAAAAAADASHlMEwAAAAAAjMOVGP+G0h7TBAAAAAAAHAVWRsA4fD479MVbX58Zm4lWZuy//+jdmbFj/zo7tlcfjF/NDv51zok/nRP7zKN7yiVJ7syMlUpncs47vafrcXT5njm6/C4B4Chae+RN6YHb3pxe/i9SPtb5hvS3Gd7x/sGxzbvn3pda982lU6nl99z2noGy5PH01Epv38Xf60vpf/cn+W/+JOcGwDVM4MqIVqsVi4uL0e12o1KpxNLSUtRqtW11ut1uLC4uRrlcjn6/H/V6PWZmZnaVhskIAAAAAAA4gs6ePRvtdjsajUasr6/H2bNno16vR7vd3pqQ6PV6Ua1WY21tLSqVSkRETE9Px8bGRszNze34Wh7TBAAAAAAAR9D58+ej3W7H3NxcLC0txdraWkRELC0tbdVpNBpRq9W2JiIiIhYWFqLRaOzqWiYjAAAAAABgHDYf0zTOI+MxTZ1OZ9ukQ0REpVKJSqUSvV4vIiL6/X50Op2o1+vb6p08eTIiIlZWVnb8pZuMAAAAAACAI6ZWq0W5XE6NbZZfuHBh2783ba6SaLfbO76ePSMAAAAAAGAcnomIp3d7zpMRV57c+zW/88Suqvd6va1HMG2ukJiamsqsu1MmI2Acvp0dWr/5xzNj//jf/0Rm7BX/7tnM2JmcVG7KiX05J3ZP79ezg7+Wc+IP5sR+703ZseT6zFCplPcVHs+JAexMkpwuOgUAGLvqjZ9LLV978Fj6CZ3KYFktverH5mYGyt5xfSu17of+5anU8r//ssGy/LFBWv3BMn/3AZh4n1uM+MPd/c3bq1arFeVyeWtj6vX19YiIOHHiRGr9fr+/47ZNRgAAAAAAwDhcicw9HDKdfG/Ef3LX3q/5/30+YvUtO6q6uLgYq6urW/+enp6OiIiNjY3U+lmPeUpjMgIAAAAAACbV97306rFXL75uR9UWFhbi3nvv3TbBsPn/WSsgdjMZYQNrAAAAAAA4wlZWVqJer29tTL3p5MmTETG4N8Tmv6vV6o6vceRXRtx+++1x7Fj68y/n5+djfn5+zBkBAMDeLC8vx/Lycmrs8uXLY86Gw8KYCQCYZAeuD3wlrm5iPe5r5mi1ru7jVKtt3/yp2+1GpVKJSqUS7XY7Tp363r5OnU4nIiLuuOOOHadx5Ccjzp07NzDbAwAAB1HeG8PdbndXn1qCTcZMAMAk0wfen06nE4uLi9FoNGJlZWWrfG1tLarValQqlbj33nujWq1Gr9fbeizT0tJSLC0txdTU1I6vdeQnI2Asfjsntpgd+rsv/b8zY3/y5z+5p1R+Kif25ZzYL5SbmbH7mu/KPrFxzZQyfDIzkiSn99RiqXQmN77XdgEA4DC48IX00UIp7k4/4f2Dk1TVud9PrfrB+NWBst7jP5Ba90wp/XJxW1rhrRmVszw0UJI1TjA+AGAkJmhlRLfbjXq9HhERjcbgm3gXL16MiIhKpRJra2uxsLAQ5XI5er1eLCwsxNzc3K7SMBkBAAAAAABHTKVSiSRJdlx3dXV1X9ezgTUAAAAAADBSVkYAAAAAAMA4PBMRTxdwzQlgZQQAAAAAADBSVkYAAAAAAMA4XInMDaVHes0JYGUEAAAAAAAwUlZGwDiUc2I/nb1j/Z/2TmbGvnnXddlt/toTmaHX/q2cXL6RHfr++Hp28N6cNn8pJ/a3c2KPXZ8ZKpU+kBlLkrtyYqdzLggAAEdb6XNZY5NuevFbBx9AvVY6llr1Y8k/GygrP/JIat1ecmNq+d1vTyk8XknP7VJGzscHxwTJ4+lVAWAkrsT493CwMgIAAAAAADgKTEYAAAAAAAAj5TFNAAAAAAAwDqN6TNP/sxzx58sZ17w8ggvunskIAAAAAAA4yP7D+atHmo1uxKer480nhckIAAAAAAAYh2ci4ukCrjkBTEbAGHzlD1+TGVuI38yMHYvsJVTLkTHTGRGnf2YpM3bm05mhXF+JH84OXsg58dLerpdvJI0CAMDR9taMdyq++hPp5b+S8pbCbZXUqu94e2ugrPfxH0it+0elx1LLP5bMDLZb+o303DLyiAfPpBSeTq8LAAyVDawBAAAAAICRsjICAAAAAADG4dm4uon1uK85AayMAAAAAAAARsrKCAAAAAAAGIdnYvwbSk/IBtZWRgAAAAAAACN15FdG3H777XHs2LHU2Pz8fMzPz485Iw6jH/n5xzJjS3E6M/aTH/2/MmPH41Jm7NFPL2XGbsqMRHw5J/byuJwdvC3nxH+TE8tL5jOPZoaSJPs1K5U+kHPeXTkXBICDb3l5OZaXl1Njly/n/C2HHMZMR8e7b/xgavk9K+9Jr//x9+24bm/uBwbKyit/lVr37iill5d+Y7CwWUmtG41uanHeWAKAg+nA9YGvxPhXKox7j4oMR34y4ty5c1GpZHReAADgAMl7Y7jb7Ua1Wh1zRhwGxkwAwCTTBz44PKYJAAAAAAAYqSO/MgIAAAAAAMbimYh4uoBrTgArIwAAAAAAgJGyMgIAAAAAAMbh2Rj/htLPjvl6GUxGwDj8QE7sP8sOvT6+mBn7dPxMZuy1v5Pd5pd/LieXHPf9T+/KDn4t58SbcmKf+eTeksmRJHdlxkqlM9c49/Sw0wEAgAPjnkd+NT3QSO9H39O4NaW0m1p3dm51oCz5RCm1blav/d3Jw4M5vD1jc/VmenlpJaUw4+szPgDgQPnacsSjy+mxZy+PN5cMJiMAAAAAAOAge9381SPNpW7Ehep480lhMgIAAAAAAMbhSox/Q+lxPxYqgw2sAQAAAACAkbIyAgAAAAAAxuGZGP/KiHFfL4OVEQAAAAAAwEhZGQFj8JH/8RcyY2+I85mx/yp+OzN23+++K/uCv7+TrHbn7H/9y5mxU/d/KPvEC3mt/p2c2OOZkVLpTM55r82MJMnpvGQAAIA0t+2iH/1gel997ZH/YbDwlow2fie9+J6V9wwWdrLy6KYWJ0lloKzUyGgDAEbhmYh4uoBrTgArIwAAAAAAgJE61JMRvV6v6BQAAAAmmnETAADjMHGTEa1WK6rVapRKpahWq9HpZK25HFQqlbYds7OzI8wUAACgGMZNAAAH1LMRcWXMx7Nj+cquaaL2jDh79my02+1oNBqxvr4eZ8+ejXq9Hu12O2q1Wu65KysrMTc3F9PT01tl1zoHAADgoDFuAgDgIJqoyYjz589Hu93e+vedd94Z1Wo1lpaWrtlBXl1d3XYuAADAYWTcBABwgF2J8W8ofWXM18swMZMRnU4nlpaWtpVVKpWoVCrXfIZpq9WKCxcuxOzsbNTr9ZibmxtlqrBr7/rL+zJj/+3F386Mve1HP5Hd6F/nXPDPs0PHc067lBPL9fWc2P+Rd+Kf5MS+vLdc4vHMSKl0JvfMJDm9x2sCAIyHcRMj9YaMtwgudVOLq8nlgbK1t2f0qX9lsOjp/zO96k3pxRFvTXnn5lMZOT+YXlwqDX4txgEAMB4TMxmR9wmecrmce2673Y5+vx+tVitarVYsLCzE6urqjpYbP/HEE/H449lvXl7LS1/60njpS1+65/MBAGAnnnzyyXjyySf3fP4TTzwxxGwoShHjJmMmAKAo+sCHy8RMRmTp9XrRaDRy6zSbzWg2m9HtdqPZbMbKykrU6/VYX1+/Zof8LW95y77yO336dNx99937agMAAK5lcXExzpzJX+XH0TXKcZMxEwBQlEPZB34mxv+YpnFfL8NET0a0Wq0ol8s7Xj5cqVSi2WxGvV6P2dnZrU/65PnsZz8bb3zjG/eco0/4AAAwDu9973vjrrvu2vP5n//85/f9pjKTadTjJmMmAKAo+sCHy0RPRiwuLl5zMiHNzMxMzMzMRLeb/lzL57vuuuvi+uuv30t6AAAwNvt91M111103xGyYJKMeNxkzAQBFOZR94Gci4ukRtNtfjvib5fRYyj5PRXhR0QlkWVhYiHvvvfeaj1nKUq/XY2NjY8hZAQAATA7jJgAAIiJiaj7ih76Yfvztc0VnFxETujJi89mllUplX+2cPHlySBkBAABMFuMmAIAD6NmIuFLANSfAxE1GtFqtiIio1Wrbyrvd7q462e12+5obuMG4/PIPns0OLmaHjn/4Umbsid97dWbs2/82e9HTpZft7bfPX8YPZge/P+fEX8uJvf/RPeUScVNmJEnuzIyVSh/Y4/UAACaLcRMj8acZu1v+Svr31Nount71scdnBspe/KH0ul/+hxmNfCrlLYxOetVqxuMo1kqDJ5RKD6XWTZLTGYkAAHsxUY9p6nQ6sbh49Z3ZlZWVraPRaMSFCxciIqLX68X09HR0Olc7EN1uN6rVapw9+703e1utVpw4cSJmZgY7OwAAAAeZcRMAAAfRxKyM6Ha7Ua/XIyJSP5lz8eLFiIjo9/uxsbER/X4/IiLK5XKcOHEiFhcXo91uR6VSiXq9Hs1mc2y5AwAAjINxEwDAAXclrm5iPe5rToCJmYyoVCqRJMmO6m12sCMipqamot1ujzI1AACAiWDcBADAQTUxkxEAAAAAAHCoHeGVERO1ZwQAAAAAAHD4WBkBY/AvN05lxu45/549tfmGj57PjLUibxPCB/Z0vZfHd7KDeY8a/qc5sff/nZzgozmxS5mRUulMZixJTue0CQAApHqwmxF4aLDotvQ+9zse+V8Hyv7iH754H0k951J6/3/t+vQ8kuTNO246a2xhXAEAe2MyAgAAAAAAxmHcj2gq6popPKYJAAAAAAAYKSsjAAAAAABgHK5ERKmAa04AKyMAAAAAAICRsjICAAAAAADGoYhVChOyMsJkBIzBe0/cnR386ezQY3/wI9mxC9mxb/zy918zp6Fq5MQu5J14fU7stZmRJPnFayQEAADs2g/98e7qHz89WPZgN73uv/iJgaLTP5de9czvpJd/bG5moOwdv95Kr3wpI4+oDJSUSmdSayZJytcHAJPqqeWIp5fTY8nl8eaSwWQEAAAAAAAcZC+Zv3qkudKN+E51vPmkMBkBAAAAAADjcCUikjFf89kxXy+DDawBAAAAAICROvIrI26//fY4duxYamx+fj7m5zOWtgAAwIRZXl6O5eX058RevjwZz4nl4DFmAgAm2YHrAz8TEaUxX3PcKzEyHPnJiHPnzkWlMriBFQAAHDR5bwx3u92oVot/TiwHjzETADDJ9IEPjiM/GQHj0IqZ7ODxnBM72aE3/JPzmbHXxxczYxdyLpfnh+P/zQ7mfA3X3frNzNgT/+jHsk+8lH29UulM9nn7kCSnR9IuAAAcCMd3OelUSyl7ML1q9cbPDZSV7nk6tW7ymy9OLf9K/MHOcoiIiPSvpfT2lOsZBwDAWJiMAAAAAACAcbgSR/YxTTawBgAAAAAARsrKCAAAAAAAGJcJWakwbiYjAAAAAADgCOr3+7G4uBgREUtLSwPxbrcbi4uLUS6Xo9/vR71ej5mZnP1xc5iMAAAAAACAI6bT6USz2YxWqxVzc3MD8V6vF9VqNdbW1qJSqURExPT0dGxsbKTWvxaTETAGX/n6D2cH359zYiM79Kf/3c2ZsU9/+GcyYz8cD2fGLuWkciy+kx38SHboiY+8Ojv4H+Vc8MIf5QSzJcnpPZ0HAABH3qUzu6vfSel731ZJrfqfxvsGyi5c/KnUumfemH65u7/6yGDhWzNy+1RG+YPdgaJS6aHUqsYWABx2tVotarValErpO2o3Go2o1WpbExEREQsLC9FoNPY0GWEDawAAAAAAYEu/349OpxP1en1b+cmTJyMiYmVlZddtmowAAAAAAAC2XLhwISIiyuXytvLNVRLtdnvXbXpMEwAAAAAATKwnnzv26oldn9Hr9SIiYmpqKje+GyYjAAAAAABgYi1GxC73dtqn9fX1iIg4ceJEarzf7++6TZMRAAAAAAAwsd4bEXft4/zPR8RbdnXG9PR0RERsbGykxl/4+KadMBkBQ1IqfSA7+IWcXxbX5TT6D3Jib8yJfTgntke/G38vO1jLObGTE7vwtcxQkpzOjJVK/yqn0WylUv4Mct41AQDg8Ls1tTRJKqnlpbR9Kz+V3vI9b3/PQNmHTp/aaWLZMq4XD47306MAMFovfe7Yq7w3INNtTjZkrYAwGQEAAAAAABPrmYh4uoBr7s7JkycjYnBviM1/V6vVXbf5ol2fAQAAAAAAHFpTU1NRqVSi3W5vK+90rj4G5Y477th1m1ZGAAAAAADAWDwTe1mpsP9rpsvbiPree++NarUavV5v67FMS0tLsbS0FFNTU7vOwmQEAAAAAAAcMd1uN5rNZkREPPDAA1Gv16NWq21NNFQqlVhbW4uFhYUol8vR6/ViYWEh5ubm9nQ9kxEAAAAAAHDEVCqVaDabWxMSWXVWV1eHcj2TEQAAAAAAMBYHYwPrUTjykxG33357HDt2LDU2Pz8f8/PzY86Ig+tSZuRF3//tzNizJ1+R3eRHci53U3bo9fHFzNjXc5rMc3/zFzJjD3z5ndknvi6n0Vuzg6XSmZwTj+/pvCQ5ndMmABx8y8vLsby8nBq7fPnymLPhsDBmOkKOV1KLS9fvoo1L3fTy5mDbT79lF+1meWtG+YO3ZgQeGigxTgA42PSBD44jPxlx7ty5qFTSO1wAAHCQ5L0x3O12o1qtjjkjDgNjJgBgkh28PvCVGP9KhStjvl66FxWdAAAAAAAAcLgd+ZURAAAAAAAwHkd3zwgrIwAAAAAAgJEyGQEAAAAAAIyUxzTBkCTJ6cxY6XdzTjy5x9jHskOfiZ/OjN3/t+7LjJ35Rs71vp0TuykndiEn9lBObI/y7gMAAJDjUneXJ6R16G9Nr/rrKWUZH4/MGl4k737xQFnpbUlGbQCYVEf3MU0mIwAAAAAA4EC7LyI+mhH77hjzyGYyAgAAAAAAxuJKjGalwjueO9L8aWSuXhwje0YAAAAAAAAjZTICAAAAAAAYKY9pAgAAAACAsbCBNTBKp/d43juSnFgpM/TA774zMzb/9Q9nt1n6o+zYanboF/7wI5mx+37uXdknxuM5sZtyYl/OjJRKZzJjSbLXGwEAAIdfklRSy0ulbvoJt6X0rx/MqFsbLHpxRvf8zn+SXv6V//01g4VvT68bx9O/lriUUR8AGDmTEQAAAAAAMBaj2sD6Wtcsnj0jAAAAAACAkbIyAgAAAAAAxuLo7hlhZQQAAAAAADBSJiMAAAAAAICR8pgmGIdHc2Lvyon9aCk7lnwtp83XXSuj3ftGduijX/8H2cGpnDaPX58du5QTy5Ekp/d0HgAAHHWl0pmMyK3pxZ1dNP5gd/B6b01Sq979OxnjoNJjg2W37SKHiIjjlV2eAADD9kyM/7FJHtMEAAAAAAAcAUd+ZcTtt98ex44dS43Nz8/H/Pz8mDMCAIC9WV5ejuXl5dTY5cuXx5wNh4UxEwAwyQ5eH/jobmB95Ccjzp07F5WKZZoAABx8eW8Md7vdqFarY86Iw8CYCQCYZPrAB8eRn4wAAAAAAICDrfXckebJcSaSyWQEAAAAAACMxZUYzWOT/ovnjjR/FhH/zQiuuTsmI2AcsiYlIyJmcmK/lhNrvi479pHs0A9++C9zGs0xmx169swrsoM/ndPmv348M5QkP5sZK5X+KKdRAABgT247nV7+4Jn08lrK47sefCi97vGMtnfhN145WPbQx38/te7aypvTG/n1facRpdLg65Ek+//6AOCwMxkBAAAAAABjcXQ3sH5R0QkAAAAAAACHm5URAAAAAAAwFqPaM+Ja1yyelREAAAAAAMBImYwAAAAAAABGymOaYBwezIn9dU7s2zmxS5/Mjp3/2czQF+P1OY0+lhn5wFLOab+eE/tHObG4PjNSKv2rvBNHolQ6kxO9KTOSJHcOPxkAAJgYt+6/7qXBvnbyibtTq2b1yv/Z3wyWrV3/5tS67378fanl9zRuSSmtZFwxXZKcHijLGkuk1QXgqLOBNQAAAAAAwEhYGQEAAAAAAGNhA2sAAAAAAICRMBkBAAAAAACMlMc0AQAAAADAWBzdDaxNRsA4/POcWJIT+728Rn82O3Rzduhtf/lwZuzPcq5217uyY7/2n+ec+Imc2GNfygnuTal0JjOWJKevcfZNObFHC8gHAADG6MHuLuun9HWPZ/RxLw0WPf3Zu3d1ubTeevJPS6l1S6W1jFYeSqk7WBaxu/56Vt3SIylv/vzQb+2ujdQxxa0ZbVRSywFgEpiMAAAAAACAsbAyAgAAAAAAOJA+HRH/LiP21DgTyWQyAgAAAAAAxuKZGM1KhVueO9J8JSL+8QiuuTsvKjoBAAAAAADgcDvyKyNuv/32OHbsWGpsfn4+5ufnx5wRAADszfLyciwvL6fGLl++POZsOCyMmQCASaYPfHAc+cmIc+fORaVSKToNAADYt7w3hrvdblSr1TFnxGFgzAQATLKD1we2gTUwSnm/8y58LTv2o6/Ljn3pc9mx/+1NmaHVD9+aGbvrnz+U3eafZ4fiL3JiX8r5+uKPc2KvzYk9nhPLViqduUaNvGv+2J7aTZLT17gmAABMiozxwG3pfdrk44OTVKVSN72N44N1X/yW9KqnfzO9/MwbB8v+zS/fnl7599In0NJyHqXqjSnjtqSWWjdrXJE2psh8nQFggh3ZPSOeeuqpbf/l4HvyySfj7rvvjieffLLoVBiqpyPiYzH+GWNGxc/q4eS+Hj7u6eGj/8tu+Z4pht+/xfC6F8PrXgyvezG87sWYzP7MlfjeJtbjOq6M5Su7FpMRE/WNyH48+eSTcebMGb/UD52nI+LfhsmIw8PP6uHkvh4+7unho//LbvmeKYbfv8XwuhfD614Mr3sxvO7F0J+ZLEd2MgIAAAAAABgPe0YAAAAAAMBYHN0NrK2MAAAAAAAARsrKCBiHR3Nipddlxx76Ws55b8qO1bJDf//r/0tm7ORd/0Fm7C/jB7Mb/c3sUMT1ObE3Z0aS5Orr8vjjj8crXxnxN39Tj+uvv9pWqZT9gibJL2bGSqUzeYlGxPGc2B9d49zdu3Y+6ZLk9JAzAQCAiIhb04sfTO+3lq4f7JcmSSW97spg2VfmXpNa90c+9Fh6Hin+onQuPXBbenHpkZRPhv7Qb0XEdyMi4pWvXIyIl0VEdr+79PbBsnd//H2pdS984dTg+Z9L0pOLTvr1UsYNxgQHX9Z40L2Fo2BzA+txX7N4VkYAAAAAAAAjZWUEAAAAAACMhT0jAAAAAAAARsJkxIgsLy8f2PYPcu6jNtLckxG/Ln82wvY/d3Dv6Sj2gng+P6vF8LqPv+1R87qPv+1Rc0+Lax+KMszv7Ulsa1J/doeb1xD7zp8ZTl6j7c3v3R8v/8EQWxveV+n7ffxtTWJOwzaJX+Mk5jRsk/g1TmJOR8u/j4izGcf/XGBe32MyYkQO8iD1IOc+aqPN/QBPRpw/uPfUZERx7Y+S1338bY+a1338bY+ae1pc+1CUSX2DYhLfgBmmiZ2M+KzJiJ0zGbFTh/13g9d9/O0Mu61hmsSvcRJzmkybG1gP+/i7EXFXxvGOsXxl1zJxe0a0Wq1YXFyMbrcblUollpaWolarXfO8brcbi4uLUS6Xo9/vR71ej5mZmTFkDDvwX+bE3v/J5/7niYjkk9tjx382+7xLX8uOdV43WPbtiOhEPPv+V2Se9tH3/Xxm7O/FJ7KvdyUiLmWHs/1JZqRU2ox9JyIiXvnKdkS8PCIikuQXc847kxlLktMDZa9//f3xxS+efu7c+3NyfW1Ou9n5vP712W2m5QMAsBPGTexXWr85u39aiYjtfeesNiIy2vjUC/79RE5yD+fEdqqTUf6pnb8NUip10wPHKwNF95S+84KSZ+Oe0nfinmaSkkPGBW9Lf+1+7MvbX3cOh2GMB/PGv6O4HuxW1veo78eja6ImI86ePRvtdjsajUasr6/H2bNno16vR7vdzu1Y93q9qFarsba2FpXK1U7B9PR0bGxsxNzc3LjSBwAAGDnjJgCAg8wG1hPh/Pnz0W63Y25uLpaWlmJtbS0iIpaWlnLPazQaUavVtjrUERELCwvRaDRGmi8AAMC4GTcBAHAQTcxkRKfTGeg8VyqVqFQq0ev1Ms/r9/vR6XSiXq9vKz958mRERKysrAw/WQAAgAIYNwEAcFBNzGRErVaLcrmcGssqj4i4cOFCap3NT/u02+0hZQgAAFAs4yYAgINuFJtX7+Qo3kTtGZGm1+vlLhve/PTP1NRUbvyFvvvd70ZExBe+8IV95feSl7wkXvKSlwyUX758ObrdjM2uhmCU7R/U3J944uoOaJ///OfjuuuuG3r7EfvI/et5wb947r9PPe//n3Ml71o5jT79jcGy5HLE093c0/6q+9eZsS/H5ewTn7kS8fWsXPN2pvuLnNim7z73315EvCwi4hr34K8yI2nnbb+nX8lp99u7aje9/eHys5rN6z7+tkd9X73u42/bPS2m7bz2n3rqqXjqqaf23O5mv3ezH8zhMopx07DHTMP82ZnEtobVzrB//2bnNdhvvlb+g23too3+C/595XL8aTf9edkXX1g382pX31pJHQFkjaUeyWp58/frX0fE5hj/S+ltXNlJds9l9khKHv30ZrP4ft+5w/xapbeVPf59oeef53Uvpq2j+bqnf4/u5FqbbR3OPvA3j8g1UyQTbHV1NalUKrl1Tp06lUREsra2NhCLiKRcLqeed9999yUR4XA4HA6Hw+FwHKnjvvvuG0pfnckxqnGTMZPD4XA4HI7DckxCH/irX/1q8vKXv7yw1+DlL3958tWvfrXQ12CiV0YsLi7G6upqbp3p6emIiNjY2EiNZy1Vftvb3hb33XdfvOY1r4mXvexle84xa2UEAAAM034/Ffbd7343HnvssXjb2942xKyYBKMaNxkzAQBFO0x94BtvvDG+9KUvxTe/WcwqhVe/+tVx4403FnLtTRM7GbGwsBD33ntv7nNPI77Xae73+7nxF3r1q18d73znO/eVIwAAQJFGOW4yZgIAGK4bb7yx8AmBIk3MBtbPt7KyEvV6fWsztTwnT56MiMFnnG7+u1qtDj9BAACAghk3AQBwkEzcZESr1YqIiFqttq08a2OTqampqFQq0W63t5V3Op2IiLjjjjtGkCUAAEBxjJsAADhoSkmSJEUnsanT6cTCwkI0Go1t5Wtra1GtVmNubi56vV7U6/VoNptbHe9utxvVajXW19e3lhdPT09Ho9GIU6dOjf3rAAA4Knq93jUfDwMMl3ETABxe+tccZhOzZ0S32416vR4RMdCpjoi4ePFiRFx9xunGxsa2Z51WKpVYW1uLhYWFKJfLsba2FlNTU/Gtb30rGo1G1Ov1mJmZ2VEOi4uLUS6Xo9/v7/g8Rm8/96bf78fi4mJERCwtLY0yTXZpr/e11WrF4uJidLvdqFQqsbS0NPCpQIoxjHtaLpe3vXFC8Ybx97HT6cTs7OzW33OKtZ97WiqVtv17sx9GsYbxc9rr9bY+bT83NxdTU1MjyJT9Gta46RWveEV0Op348R//8VhfX49Wq2XMNAbGNcUw7iiGsUEx9N2LoX9dDH3gAyg5ZNbX15OISNbW1rbKyuVy0mw2R3Ieo7efe9Nut5OZmZkkIpK5ublRpsku7fW+Li0tJbVaLWk2m8mpU6eSiEgiImm326NOmWvY6z1tNpvJ3Nxc0m63k3a7nVQqlSQikvX19VGnzA4M6+9juVxOpqamhp0ee7Cfe7r587q0tLR1PL8dirHfn9P19fVkZmYmqdVqfvceEcZMxTCuKYZxRzGMDYqh714M/eti6AMfTIduMqJWqyW1Wm1bWbPZTK4177LX8xi9YdwbnfbJs9f7OjMzs+3fa2trSUQMtMX47fWeLi0tbfv35j1dXV0deo7s3jB+B586dSqp1WoGNBNiP/fU79rJtJ97ura2lkxNTeknHTHGTMUwrimGcUcxjA2Koe9eDP3rYugDH0wTt4H1fvT7/eh0OlvLljedPHkyIiJWVlaGeh6j594cTnu9r51OZ2BJeqVSiUqlEr1ebzTJsiP7+Vl94TOqN5dEViqV4SbJrg3jd3Cn04lXvepV7ueE2M89bbVaceHChZidnfX3d4Ls5572+/245ZZbth6BwdFgzFQMr18xjDuKYWxQDH33YuhfF0Mf+OA6VJMRFy5ciIgY2ORl85dou90e6nmMnntzOO31vtZqtcxNnGzuVKxh/qy2Wq1YWlpyTyfAMO5rs9m0KeoE2c89bbfb0e/3o9VqRaPRiBtuuCE6nc7okmVH9nNPFxYWot/ve/b8EWPMVAyvXzGMO4phbFAMffdi6F8XQx/44DpUkxGbn1DI2mgk6xMMez2P0XNvDqdh39derxezs7P7TYt9GNY9XVhY2Np8iuLt974uLCzo4E2Y/dzTZrMZSZLE2tpazM3NbW0Q529xsfZzTzc/MdZut6NarcYNN9zgnh4BxkzF8PoVw7ijGMYGxdB3L4b+dTH0gQ+uQzUZsb6+HhERJ06cSI33+/2hnsfouTeH0zDva6vVinK5HHNzc8NIjT0axj09e/Zs9Hq96Pf7lqlOiP3c1263G6961asMHifMMH5WK5VKNJvNWF1djYirA1eKs9d72u12I+Lq/Ww0GrG2thZra2vR6/VienpaH+sQM2YqhtevGMYdxTA2KIa+ezH0r4uhD3xwHarJiOnp6YiI2NjYSI1n/VLd63mMnntzOA3zvi4uLm79waY4w7inp06ditXV1Wi32zE1NeVTORNgP/d1cXHREu8JNMzfvzMzMzEzM7PVoacYe72nm5/8ajQaW3We/9zcxcXFYafKhDBmKobXrxjGHcUwNiiGvnsx9K+LoQ98cB2qyYjNb6KsWaxrPfNxt+cxeu7N4TSs+7qwsBD33nuv74MJMMyf1VqtFnNzc5ZIToC93teFhYWtZa7PPyJi2/8zfsP+u1qv1zMHAIzHXu9p1pL2Wq0WER4Zc5gZMxXD61cM445iGBsUQ9+9GPrXxdAHPri+r+gEhmlzx/QXfuNs/rtarQ71PEbPvTmchnFfV1ZWol6vb21ORLGG/bN68803G+xNgL3e106nE2fPnk2NTU9PR6VSibW1tSFmyk6N4u/qZpsUY7/9380l7i+UteSdg8+YqRhev2IYdxTD2KAY+u7F0L8uhj7wwXWoVkZMTU1FpVIZ2DF9cyf6O+64Y6jnMXruzeG03/vaarUi4nsz15ssZSzOsH9We73ewP1l/PZ6X9fW1iJJkm3HqVOnYmpqamuDNoox7J/VdrsdjUZjaPmxe/vp/9Zqta16mzY/XeaN0cPLmKkYXr9iGHcUw9igGPruxdC/LoY+8AGWHDJra2tJRCTr6+tbZeVyOVlaWtr69/r6elIul5N2u72r8yjGXu/pposXLyYRkczNzY0lX3Zmr/e13W4nlUolaTab2465ubmk2WyO9Wtgu73c04sXLyYzMzPJ6urqtjq1Wm18iZNrv7+DN506dSqZmpoaaa7szF7u6draWlKpVLbVWV1d9bd1Quy3//v8sqWlpaRSqYwncQpjzFQM45piGHcUw9igGPruxdC/LoY+8MF0qB7TFBFby8cWFhaiXC5Hr9eLhYWFmJub26rT7/djY2Nj23PFdnIexdjrPY24+omVzU1oHnjggajX61Gr1TKfEcf47OW+drvdqNfrERGpnxS4ePHiWHIn3V7u6dTUVPT7/filX/qlaDabUa/Xo1wuD3y6geLs53cwk2kv97RcLseJEydicXEx2u12VCqVqNfrW39jKdYw+r+rq6tbv5N9AvLwM2YqhnFNMYw7imFsUAx992LoXxdDH/hgKiVJkhSdBAAAAAAAcHgdqj0jAAAAAACAyWMyAgAAAAAAGCmTEQAAAAAAwEiZjAAAAAAAAEbKZAQAAAAAADBSJiMAAAAAAICRMhkBAAAAAACMlMkIAAAAAABgpExGAADABOr1ekWnAAAAY6P/e/iZjAAAgAk0Ozsb/X6/6DQAAGAs9H8PP5MRAAAwYbrdbpTL5ZiamoqIq58SW1hYiFKpFKVSKW644YY4e/bsVv1OpxPT09NbsU6nU1DmAACwe/q/R0MpSZKk6CQAAIDvaTQaMTs7G7VabVv57OxstFqtmJmZidXV1YFYr9eLtbW1caYKAAD7pv97NJiMAACACTM9PR3r6+sD5d1uN6rVakxNTcXFixe3ylutViwsLKSeAwAAk07/92jwmCYAAJggrVZr4BNhmyqVSlQqlej3+1tL0bvdbiwsLES73R5nmgAAMBT6v0eHyQgAAJgg999/fzQajcz4ZqzZbEa/34/Z2dlYXV2Ncrk8rhQBAGBo9H+PDpMRAAAwApuf2Lrhhhu2Da5mZ2fjhhtuiF6vN3BOv9+PXq8XlUols9077rgjIq5+guyWW26JpaWl3PoAADAO+r9ciz0jAABghOr1enQ6nUiSZGtjvl6vF3NzcwN1V1ZWot/vx6lTp3LbzNvIDwAAiqT/S5bvKzoBAAA4zGZnZ6PT6USj0YiFhYXc5eTNZjMefvjha7a52Ua3282s02g0Ynp6Or71rW/FzTffHDMzM7tPHgAAdkn/lywmIwAAYIQ2N+ObmprKHYj1er04ceJETE1N5bbXarWi0+lEuVyOXq8X3W53YJn67OxslMvlrU+YVavVmJqaytwYEAAAhkX/lyz2jAAAgBHaHIClPSP3+ZrNZu7GfRHfew7vww8/vG0jv+fr9XrRarW2tXXnnXfG0tLSXtIHAIBd0f8liz0jAABghBYWFqLT6US/34/19fXMetPT07nxfr8f1Wo1VldXo1KpRL/fjxtuuCEiIp7fpW+1WjE7O7utrNPpRL1ej4sXL17zk2cAALAf+r9ksTICAABGpNVqRb1ej0ajEb1eb+vTYS/8lFin07nmEvJbbrklms3m1pL0qamprefgtlqtrXrnz58fGHCdOHEiIiI2Njb29fUAAEAe/V/ymIwAAIAh6vV6cfbs2Wi1WrGxsRG1Wm1roNVsNuPs2bNbg6NN11qiXq/Xo1wuDwzY6vV6REQsLi5ulfX7/YH2n58bAAAMk/4vO2UyAgAAhqjb7cbi4mKcP38+5ubmIuLqc3NnZmZiZWUlarXawCe30jbhi7j6ibHp6enodDrR7Xa3fQKs1WptPS+32+3G7OzsVv2sT4DlbSAIAAB7of/LTtkzAgAACrSyshL9fj9OnTo1lPbynpmr6w8AQNH0f4+u7ys6AQAAOMqazWY8/PDDQ2tv8xNmvV5v65NgWZ88AwCAcdP/Pbo8pgkAAArS6/XixIkTA8vW92NzSfzzl7Tff//9sbS0NLRrAADAXuj/Hm0e0wQAAAVZWFiIm2++OWZmZobedqPRiOnp6fjWt74V09PTW8/vBQCAouj/Hm0mIwAAoCCzs7OxurpadBoAADAW+r9Hm8kIAAAAAABgpOwZAQAAAAAAjJTJCAAAAAAAYKRMRgAAAAAAACNlMgIAAAAAABgpkxEAAAAAAMBImYwAAAAAAABGymQEAAAAAAAwUiYjAAAAAACAkfr/Acq/xXyrnvvMAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x800 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nbins = 100\n",
"vmax = 80\n",
"\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n",
"\n",
"a0 = ax0.hist2d(\n",
" rad_length_found,\n",
" eta_found,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax,\n",
" range=[[0, 0.6], [2, 5]],\n",
")\n",
"ax0.set_xlabel(f\"$x/X_0$\")\n",
"ax0.set_ylabel(f\"$\\eta$\")\n",
"ax0.set_title(f\"found $\\eta$ rad_length_frac\")\n",
"\n",
"a1 = ax1.hist2d(\n",
" rad_length_lost,\n",
" eta_lost,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax * stretch_factor,\n",
" range=[[0, 0.6], [2, 5]],\n",
")\n",
"ax1.set_xlabel(f\"$x/X_0$\")\n",
"ax1.set_ylabel(f\"$\\eta$\")\n",
"ax1.set_title(f\"lost $\\eta$ rad_length_frac\")\n",
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
"\n",
"plt.suptitle(\"radiation length fraction and eta endVelo\")\n",
"plt.colorbar(a0[3], ax=ax1)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Parameterisation for rad_length_frac:\n",
"intercept= 0.0\n",
"coef= {'1': 0.19830920321074946, 'x': -4.49175976974402e-05, 'y': 0.00039490060416272056, 'tx': 0.00015102371088508598, 'ty': -0.3004315695136339, 'qop': -15.314945266490128, 'x^2': -1.8619394568578818e-05, 'x y': -4.953907513838906e-06, 'x tx': 0.021617503882699386, 'x ty': 0.03829244150062255, 'x qop': -0.41798007270055415, 'y^2': -2.4410328131494868e-05, 'y tx': -0.03443063985633742, 'y ty': 0.024201355785359608, 'y qop': 0.069823295273139, 'tx^2': -9.507076220830514, 'tx ty': -0.3980701633198789, 'tx qop': -0.04742639222342226, 'ty^2': -5.342167619183405, 'ty qop': 0.04842038611881145, 'qop^2': 0.2070268831284635, 'x^3': 1.5823479402461545e-07, 'x^2 y': -5.806838940825474e-07, 'x^2 tx': -0.00023418353598118923, 'x^2 ty': 0.0037081774556846224, 'x^2 qop': 0.01641641113222204, 'x y^2': 6.398758958085149e-08, 'x y tx': -0.002932641224303519, 'x y ty': -0.001396824762733282, 'x y qop': -0.020888196868450136, 'x tx^2': 0.09096908124129072, 'x tx ty': -2.939755357349759, 'x tx qop': -8.73057282483271, 'x ty^2': -0.15340975596199197, 'x ty qop': 9.249941815315987, 'x qop^2': 0.030205199863621846, 'y^3': 1.6478595155078324e-07, 'y^2 tx': 0.0013152209574444013, 'y^2 ty': -0.000257931039205234, 'y^2 qop': -0.0057816482028933735, 'y tx^2': 2.685350530706497, 'y tx ty': 0.17814134491255038, 'y tx qop': 9.050929476915277, 'y ty^2': 0.10064678584510746, 'y ty qop': 4.6142369495362185, 'y qop^2': -0.00046589334175238057, 'tx^3': -0.6242025517665986, 'tx^2 ty': -0.017658603327465147, 'tx^2 qop': -0.022216794668845363, 'tx ty^2': -0.01024816705930792, 'tx ty qop': 0.024042119917448937, 'tx qop^2': 6.093129132646114e-05, 'ty^3': 0.09834545208780196, 'ty^2 qop': 0.011664187426493774, 'ty qop^2': -2.1825340747940462e-05, 'qop^3': -1.559907925017188e-06, 'x^4': -2.9483981922595603e-09, 'x^3 y': -6.13444928188045e-09, 'x^3 tx': 7.101384723817716e-06, 'x^3 ty': 7.16725431293419e-06, 'x^3 qop': 4.00953960828232e-05, 'x^2 y^2': 1.0679747086683733e-08, 'x^2 y tx': 7.616826922074438e-06, 'x^2 y ty': -3.91052449297824e-05, 'x^2 y qop': 9.93899828579223e-05, 'x^2 tx^2': -0.005400741368580057, 'x^2 tx ty': -0.009338160688408294, 'x^2 tx qop': -0.0017215190824096578, 'x^2 ty^2': 0.0007665795500993852, 'x^2 ty qop': 0.08528819041114723, 'x^2 qop^2': 8.037042310903203, 'x y^3': 8.933181749881669e-09, 'x y^2 tx': 1.766907321343325e-05, 'x y^2 ty': -2.1412010806409754e-05, 'x y^2 qop': -7.010215747540322e-05, 'x y tx^2': -0.0021778144582400415, 'x y tx ty': 0.0326584774738, 'x y tx qop': -0.1598215452174385, 'x y ty^2': 0.012945427966444779, 'x y ty qop': -0.23950569088511311, 'x y qop^2': -0.8775916738593352, 'x tx^3': 1.366672968587086, 'x tx^2 ty': 1.7459886700480327, 'x tx^2 qop': 0.4423601484422016, 'x tx ty^2': -1.0803356692637864, 'x tx ty qop': -0.0706577637682464, 'x tx qop^2': 0.006422119173581787, 'x ty^3': -2.2905272843167253, 'x ty^2 qop': -0.0063092971067729734, 'x ty qop^2': -0.001963650254414034, 'x qop^3': -1.0318719588655238e-06, 'y^4': -2.213189409516758e-09, 'y^3 tx': 7.716181404937572e-08, 'y^3 ty': 3.7462658548648164e-06, 'y^3 qop': -2.6897178570957402e-05, 'y^2 tx^2': -0.019391135282039867, 'y^2 tx ty': 0.003922857934752042, 'y^2 tx qop': 0.30048105074735626, 'y^2 ty^2': -0.0014404468920953982, 'y^2 ty qop': 0.017062949506976018, 'y^2 qop^2': -0.5172314152946776, 'y tx^3': 1.1761566789450086, 'y tx^2 ty': -1.8639649790914088, 'y tx^2 qop': -0.07088661078488609, 'y tx ty^2': -2.1282820437243197, 'y tx ty qop': -0.001276549939024397, 'y tx qop^2': -0.0019180156335069092, 'y ty^3': -0.06849699842395515, 'y ty^2 qop': -0.0351395250211265, 'y ty qop^2': -0.0005408300561230844, 'y qop^3': 4.1258598459708434e-06, 'tx^4': -0.02399482130004447, 'tx^3 ty': 0.010297903626621132, 'tx^3 qop': 0.0018304232474417028, 'tx^2 ty^2': -0.01163526658236639, 'tx^2 ty qop': -0.00029701477688915344, 'tx^2 qop^2': 2.0001744822333693e-06, 'tx ty^3': -0.014645131120788562, 'tx ty^2 qop': -2.1232731978440055e-05, 'tx ty qop^2': -3.4544969537609295e-06, 'tx qop^3': 8.78704309226661e-09, 'ty^4': -0.001422061237110601, 'ty^3 qop': -0.0001708364957408537, 'ty^2 qop^2': -7.126783100939319e-07, 'ty qop^3': 6.1964331341077185e-09, 'qop^4': -5.174168949842998e-10, 'x^5': -1.5976409084572651e-10, 'x^4 y': -1.2852829911480512e-10, 'x^4 tx': 4.777915697529167e-07, 'x^4 ty': -9.081653267184464e-07, 'x^4 qop': -7.95855762181219e-07, 'x^3 y^2': -1.3157031020227805e-10, 'x^3 y tx': 1.2230534549573235e-06, 'x^3 y ty': -1.0267895049764775e-06, 'x^3 y qop': 6.863633592146812e-06, 'x^3 tx^2': -0.0005342802093432353, 'x^3 tx ty': 0.0011253536068463917, 'x^3 tx qop': 0.0006881448740720732, 'x^3 ty^2': 0.0033717855327176985, 'x^3 ty qop': -0.006259805047891221, 'x^3 qop^2': -0.0297856432575138, 'x^2 y^3': 1.382156611384744e-10, 'x^2 y^2 tx': 1.322090420252664e-06, 'x^2 y^2 ty': 5.288591697905076e-08, 'x^2 y^2 qop': 2.9553628222434014e-06, 'x^2 y tx^2': -0.0013788732936473938, 'x^2 y tx ty': -0.005451132472848938, 'x^2 y tx qop': -0.0016912696788365421, 'x^2 y ty^2': 0.00031313327173996576, 'x^2 y ty qop': -0.00464221485985505, 'x^2 y qop^2': -0.021052188879644034, 'x^2 tx^3': 0.2645245528224416, 'x^2 tx^2 ty': -0.33220588343665813, 'x^2 tx^2 qop': -0.1711975210821735, 'x^2 tx ty^2': -2.5912873965567513, 'x^2 tx ty qop': 0.6199222216667238, 'x^2 tx qop^2': 0.26554090739446995, 'x^2 ty^3': 0.21995419222883894, 'x^2 ty^2 qop': 0.5566329227084174, 'x^2 ty qop^2': 0.007138707803204316, 'x^2 qop^3': -0.0036233474117857143, 'x y^4': 3.4643399260403385e-11, 'x y^3 tx': -3.715471736942533e-07, 'x y^3 ty': 5.088992998114605e-07, 'x y^3 qop': -2.9562267287452926e-06, 'x y^2 tx^2': 0.001848217429633696, 'x y^2 tx ty': -0.0006914744675563748, 'x y^2 tx qop': -0.0005866344884493824, 'x y^2 ty^2': -0.0007084811094364334, 'x y^2 ty qop': 0.0021049811349424605, 'x y^2 qop^2': 0.010952363514219516, 'x y tx^3': 0.4012187913820339, 'x y tx^2 ty': 4.799588041207373, 'x y tx^2 qop': 1.3345269234332224, 'x y tx ty^2': -0.3492025592669184, 'x y tx ty qop': 0.7401379477245426, 'x y tx qop^2': 0.00853019020452141, 'x y ty^3': 0.2663977835465425, 'x y ty^2 qop': -0.609737555278061, 'x y ty qop^2': 0.04129006001688038, 'x y qop^3': 0.0008163990713127198, 'x tx^4': -48.942089737430436, 'x tx^3 ty': -0.7028902863652343, 'x tx^3 qop': 0.06643076319999941, 'x tx^2 ty^2': -3.4139167347725943, 'x tx^2 ty qop': 0.004841829970654066, 'x tx^2 qop^2': 0.0007186793516648628, 'x tx ty^3': -0.2579234851632811, 'x tx ty^2 qop': 0.005881970664042852, 'x tx ty qop^2': 3.936368237569365e-06, 'x tx qop^3': -6.671449197806545e-06, 'x ty^4': -0.7419058590355208, 'x ty^3 qop': 0.0013112782683548875, 'x ty^2 qop^2': 0.00010835312377364621, 'x ty qop^3': 2.0484219462302866e-06, 'x qop^4': 2.580463321616666e-08, 'y^5': -3.2720492981752614e-12, 'y^4 tx': -5.762284480681501e-07, 'y^4 ty': 2.5788644553159656e-09, 'y^4 qop': -2.837759991436428e-07, 'y^3 tx^2': 0.0006211299557630969, 'y^3 tx ty': 0.000747045380526546, 'y^3 tx qop': 0.0020744456340701305, 'y^3 ty^2': 4.4960392427497754e-06, 'y^3 ty qop': 0.001141710321238258, 'y^3 qop^2': 0.002696814911126153, 'y^2 tx^3': -2.1363036642104674, 'y^2 tx^2 ty': 0.0687773207312733, 'y^2 tx^2 qop': 0.9871972836921945, 'y^2 tx ty^2': -0.2701567032221813, 'y^2 tx ty qop': -0.848252914690415, 'y^2 tx qop^2': 0.03660886322324573, 'y^2 ty^3': -0.005452852127128314, 'y^2 ty^2 qop': -0.7021206166732931, 'y^2 ty qop^2': -0.08018559047526934, 'y^2 qop^3': -0.00011753193330693663, 'y tx^4': -0.6680420541418445, 'y tx^3 ty': -3.384167006412971, 'y tx^3 qop': 0.006637451265825805, 'y tx^2 ty^2': -0.2331985780185122, 'y tx^2 ty qop': 0.006353552479363033, 'y tx^2 qop^2': 5.615722587673721e-06, 'y tx ty^3': -0.7572903037298312, 'y tx ty^2 qop': 0.0005634713263895614, 'y tx ty qop^2': 0.00010068765868206922, 'y tx qop^3': 2.012241389483668e-06, 'y ty^4': 1.5039421870145853, 'y ty^3 qop': -0.004362654564735129, 'y ty^2 qop^2': -0.00021869646501481262, 'y ty qop^3': 2.17774577667171e-07, 'y qop^4': -5.1794510300353154e-09, 'tx^5': -0.3290348306030112, 'tx^4 ty': -0.004713501192249353, 'tx^4 qop': 0.00039080511691431735, 'tx^3 ty^2': -0.02293656439194589, 'tx^3 ty qop': 1.795982117437259e-05, 'tx^3 qop^2': 1.3703545654537173e-06, 'tx^2 ty^3': -0.0016697750693905097, 'tx^2 ty^2 qop': 2.67609154249412e-05, 'tx^2 ty qop^2': -3.12791956432394e-08, 'tx^2 qop^3': -1.1594178303086993e-08, 'tx ty^4': -0.005076176679563355, 'tx ty^3 qop': 1.1834454126493736e-05, 'tx ty^2 qop^2': 1.9879319916637808e-07, 'tx ty qop^3': 4.055187311820455e-09, 'tx qop^4': 4.214995181248244e-11, 'ty^5': 0.010165548951092954, 'ty^4 qop': -1.6822916965291464e-05, 'ty^3 qop^2': -4.4801213131046415e-07, 'ty^2 qop^3': 7.260260169082666e-10, 'ty qop^4': -1.2734042962503632e-11, 'qop^5': -3.472724885502462e-13}\n",
"r2 score= -0.008270330873300091\n",
"RMSE = 0.10823208615961777\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHLCAYAAAAa1ZjDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqCElEQVR4nO3de3xTdZ4//lcoFAqFpgVF5NoTQLmOJODozCijTXQcbyNt4Lff3bntSCNf9js762oDu4OAjpRUd3Z3drtjijPjzuxlpKkj3jVBR2d0HGgiIjeBpoBcRCENpdB7zu8PSOw5TXM7SU4ur+fjkQecnHzOeec07Xnnc9WIoiiCiIiISCXD1A6AiIiI8huTESIiIlIVkxEiIiJSFZMRIiIiUhWTESIiIlIVkxEiIiJSFZMRIiIiUhWTESIiIlIVkxGiNPB4PGhoaMjb86eC3+9HQ0MDvF6v2qEQkUJMRijreTweWK1WmM1m6HQ61NXVqR1SiNfrhdlshsFggN1uz4rzB6+nwWCAwWBIcYSJaWhoQHl5OSwWC/x+f9KOm8mfJaJcNlztAIiU8Hg8qKioQFtbGwDAarWipaVF5ai+IAgCGhsbodFosub8er0eAFBXVxf6v9q8Xi/Kysqg1WoBANXV1WhpaUlqspDpnyWiXMZkhLJabW0tysrKQts2m03FaHJHpiQhQWazGY2NjaFkBADGjx+f1HPws0SkHjbTUFbzeDxqh0ApZjab0/Jz5meJSD1MRigrNTQ0wGw2w+v1hvpFmM1muFyu0Gv8fj8sFgusVitMJhNMJpNkv8PhQGlpKTQaTehG5HK5YDabodFoYDabQ8dpaGiAwWCAw+GAy+WCwWCQvGag4HmDj3iaEhwORyjOhoYGlJaWwmKxhPbX1dWF3pPBYAjbKVXJ+WPh8XhgNpthMpmg0+lgtVol547nWgEIxanT6QYlHg6HI7RtsVjCJiY+ny90zkjnGUq0z1KyfybBzyKTH6IBRKIsJgiCKAjCoOfdbreo1WpFt9sdes5ut4sARJvNFnquurpaBCB5XUtLiwhArKqqCm1XVVWJAESj0SjW1NSIbrc7VHbg8VpaWkStVis6nc7QczabTQQg6vX6iO+lsbFRFARBBCBWV1eLNTU1ol6vD5WrqakRB/7KOp1OEYDkXErOLxeujNvtFo1GoyTmYLzB88d6rURRFPV6vVhTUxMqC0AEIAqCEDpm8H23tLRIygbfl9FoFG02W8TzxCLcZylZPxNBECTxa7VaUavVxh0jUa5iMkJZbahkRK/XS26aA58feGML3kwGJiNtbW2SZEQUv7jpym9ywZthUFVVVdjzxpoMBG+wwRv0QEajUXIDC8Y58LVKzx+tjF6vl1wrUbx0YwUgtrW1iaIY+7UKvm7g8YLJxMAbd7RkxG63RzxPrIb6LCn9mej1+kHXInjM4DUjyndspqGc4/V64fF4wnbCDFavJzrMdmAHyiCfzxc6b7BKP1HB4y9ZsmTQvsbGRrjd7tB2c3MzAISGtibj/JEEr2ttbW2oKWNgk0gwnqBI1woAdu7cOWh/8HjxNGEsXrx40HmTOfeI0p+Jx+OB0WiUlKupqYEoimGvEVE+4mgayjmRbmTBG1cqJsoKHlMQBMXHCneT0mq10Gq1cDgcePbZZwfdHJN5/nCC17WxsTEpxwvG73K5BiWOmTaaB0jsZxK8Zkw6iCJjzQjlrHCTYQVvCgOHcCZLMBkY+O0/2cc3GAzwer1obGxETU1N2s8/8F+lqqqqYDQaUVtbC5fLBb/fD5vNhpqampQlVMkW68+Es8QSRcZkhHJO8Fv1wJEzQcEERafTJf28wRvowGr7ZDKZTCgrKxt0w0vX+YPHdzgcYfeHu97RNDY2wmg0hqart9lsWTW/R7SfSfCzOFRtEpMUokuYjFBW8/l8g2oCBEGAXq8PDdUcqLm5GVqtFtXV1QC+mDhr4OuC/493mvFgE1BDQ0PYskqmLQ++l4HV/cHjBd9/Ks8PINTvwWq1DmoKS3Tdm+BkZjU1NaipqYnYPCOP/+zZswCSVxMU7rMUSbw/E3myZrVaU1JDR5SNmIxQTgrO1jlwPohgM8CWLVtCN5Dgzc9qtYbmkQh2bnW5XKHOoLHcpLRabegbssFggMvlgtfrDc3D4fV6o875EbyZyW+8wZuWw+FAQ0MDGhoaQsf1eDyh2gql54/n/ZnNZtTV1cFkMqGlpSWUrMR6Qw/eoIPHaWhokMwrEhSsxbLb7aFOupH4/f6kNlUp/ZkEa3pMJhPMZnNoPhKdTse+JERBag/nIUrEwDklcHkOiIFzO4jipWGWwaGu1dXVYnV19aBhqaJ4aZhlcN6H4JBMQRBCc2S43e7QkGBBEESn0ym2tbVJzj9w6Kbdbg/NTaHX60PzTNTU1AwanjrQwDktBEEYNGTVbreLWq02dCxRvDQUdmDc8Zw/GHu4h/y9DRyCarPZhowznmsVjCvc+QVBkJxTr9eLWq02NPdIY2NjaEhxcLix/DwDr0mk9xrps5Ssn0ljY2Pouuj1+kGfVaJ8pxFFUUxdqkNEFJ7H48Gzzz6LtWvXwufzSWo0GhsbodPphuyLQUS5JS+G9nq93qzpnU+UD4KjUNra2kLDYwcSBCGhDrFElJ0yNhkJTq4kCAL8fj9MJhOqqqpiKitfLl2v16dshAERxS/YSXjlypVYu3ZtqO+O1+uFy+VCS0tLVo2qIco2fr8ftbW1AMKvUB3LPVjJfVouI5OR4Lcmt9sd+iOl0+ng8/lCoyCG0tDQgOrqasnQTfnsh0SkLqPRCJvNhtraWkmHVL1eD5vNFvX3nIgS53K5YLfb4XA4wv6uxXIPVnKfDicj+4wERzA4nc7Qcw0NDbBYLIgWrslkkpQjoswW7CvCplSi9NJoNKiurh60PEYs92Al9+lwMm5or9/vlwypDBo4Xn8oDocDzc3NMJvNCc97QETppdVqmYgQZYhY7sFK7tNDybhkJLjQlPyPU7AaKFKth9PphN/vh8PhgMViQWlpKTvBERERxSiWe7CS+/RQMq7PSLBj21CTAUWaPtlut8Nut8Pj8cBut6OhoSE0IdNQ37zOnDmDl19+GZMmTcKoUaMSjruwsBCFhYUJlyciotTr6elBT09PwuW7urpw6tQp3HnnnZgwYUISI5M6duwYTp48qShWAJg0aRJmzZoV8+tjuQcruU8PJWXJSHt7O3w+X2hY7YwZM2Iq19LSAmDohcximdJar9fDbrdLZjwcam2Il19+Gd/73vdiio2IiAgAnnnmGXz3u99NybGPHTuGmdOnozcJxxoxYgQOHz6MadOmxfT6WO7BybhPyyU9GXnzzTexefNmbN++HQAgimJoqK1er0ddXR1uueWWIcsHR8EMNZ1zPG3LVVVVqKqqirik/KRJkwAAP/vZz/ClL30p5mMP9O1vfxvPPvtswjUjlZWVaGpqSqismuU7OjqwdOlSvP322yguLk7ruXOhvNrXj9cue9+/kvL5fu16enqwYsUK/OY3v4m5zIcnzmOr5xSunTgG80Z8hr/70Y9C945UOHPmDHoBLANQquQ4ALb19uLMmTMxJyOx3IOTeZ8OSmoy0tTUhNraWqxYsWLQIlA+nw9utxsPP/wwHnjgAdx///1hjxF8E0NlVvG+SZPJFLHfSLBp5ktf+hJuvvnmuI4dNGbMGNxwww0JlQWAoqKiiAuEZWr59vZ2AMB1112HcePGpfXcuVBe7evHa5e9719JeV67S3+zY/17/8pHp+Dc3YL7bpuFv62YhXf/+AcAUNSsH6spACYrKD8mgTKx3IOTfZ8GkpyMNDc3hzq2hFNRUYGamhqsWbNmyNcEe+PK25yC2waDIe64gsckUkqj2SjZnjNHpUCIKKVEUURj83H85v2juPtLk3D/1wQMG6aJXjDLxXIPTsV9OqmjaYLLsUcTqdOPVquFXq8f1Bs3WLuxfPnyuGJyOp2SlVuJiIgiEUURv3r3CH7z/lH8ny9Pw8qb1ElECnCpxiDRR0EC54zlHpzs+zSQ5GTk8OHDWLt2LY4ePRp2/5EjR/Dkk0+GOr8MZcuWLaHlz4NsNhtsNluo967X64VOpwu9eY/HA4PBIFki3eFwoKysLOHpaYmIKL8EAiL+7c3D+N0HJ7DyZgF/cf20QUuMpMtwACMUPCI1fUTqZBrLPTiW18Qj7maaN998E7feemvYfU899RTMZjPKy8uh0Wig1WpRVlYWWpETuNSp9Nlnn414juBaMlarFYIgwOv1wmq1SqaYDc7aGDyuIAgoKytDbW0tnE4n9Ho9TCbToJnliIiIwunpC+Cf3vgY73vP4kHTbNxy7ZVqh5QSwekvAGDr1q0wmUwwGo2hJCKWe3Asr4lH3MmI2WzG2bNnh9zf2NiI1tZWuN1uNDc3w+/3Q6fTQRAE6PV6lJeXx3QevV4/5HDc4P62trbQtlar5TTwlHKiuF6yPXdu5MSaiLJDV28/Nr2yH3tOnMPab87BDUJs3Q5SKdhMo6R8OMHpLyJ9WY92D471NbGK+322tbXh+uuvx44dO4Z8TXl5OcrLy0PNI5FqU3LB6tWr87q8mufO9vJKKTm/2u89m69dLpRX89yZVv58Vy8efXEfjp69iA33zMPCKVpFx0+WYDONkvLZIu6F8mbOnAm9Xo8PPvgALpcL06dPj1pmxYoVUZtm1PLOO++ExtwnOrQ3X7W3t6OkpATnzp1LeIhgPuP1SxyvXeJ47aR8F3rwyLY98F3owcZ75mHWxLERX5+Oe0awD+SPAUS/ww7tKICfAJKVdTNV3B1Y7XY7tm7ditraWhiNRnz44YdDvva5557DkiVLJEuEExERZYLT7V2wNu1GR3cfNi9bGDURSTc1RtOoJe5kpKKiAsAXHVErKyvxu9/9LrR/165dWLVqFQoKCmA2m+F2u5MXLRERURIcO3sRDzt2QwPAVrkQ08aPVjukQVI5mibTKIo12JvWaDTit7/9LTweD7xeL4ItP1VVVRzRQkREGeXg6fNYv20vJowdiUfvmYfSMVzkVG1xJyNPPvkkHnroIQCXOqYGV8n1eDwQRRE6nQ7V1dWorq5GSUkJgKEX0yEiIkqnDz/x4/GX92P6+NFYf888FI/M3PqDYHOLkvLZIu5YN23ahJ07d8LlcsHv90tqQQRBwPbt22GxWCQdoyorK5MXcYp85zvfwejR4avpVq9erXrPfyIiUuZPLWdR9/oBLJxcgrXfnINRI8L3qqivr0d9fX3YfRcvXkxliBL5NJom7lj9fj8cDgdEUYRer4fFYsHy5ctDtSAOhwMGgwEOhyPhVXDV8Otf/5qjaYiIctT2/afxs+2HcKNuAv7+ttkYUTB0l8lIX0CDo2nSIZ+SkYSmg6+srAxNarZy5cpQIgJIO7a+9dZbAC6NqiEiIlLDtl0n8C+uQzDNnYia26+JmIiQOuJOnGpqarB58+aIr9Hr9WhubobRaIROp4PH48GyZcsSDjKVCgsLJf9S7EaOHIn169dj5MiRaoeSlXj9Esdrl7h8unaiKOJ/dhzDb3d8gmX6yfjeV2YoXmcmnfeMVM3Amonifp+xroCr1WrR3NwMk8k0aJnhTMJkJHEjR47Ehg0b1A4ja/H6JS4fr51Gs1GyLV+aIFb5cu0CARFb/uDFS7tP4btfmYEqw5SkHDed94xYmmm2AXhhiH09yQ0npeJORmJdWybI6XRi5syZ8Z6GiIgoIX39Afxs+yH8/uDnWH2LDt+YP0ntkFLm3suPcA4B+L9pjEWJuJKR9vb2hKYP5jwjRESUDj19AdheO4Dmo2146LZrcPPsK9QOKWH51EwTcy+e1tZW3HrrrVixYgXefPPNuE4SnLWViIgoVS729GH9C3ux6xM/HrlrTlYnIgBnYA2rvLwczc3N+OCDD2C322GxWGA0GmGxWHDdddelMEQi9SSrnZ5IKX72IjvX2YuNL+zFCX8nHr13HuZdXRK9EGWMuMc3LVq0CE899RQOHToEo9GITZs2YcmSJXjyySfR3t6eihiJiIiGdKajG2uaduPzjm7ULluQM4kIF8qLUWVlJbZu3QqXy4WSkhLceuutuP322zmvCBERpcUJfyesjt3o7gtgc+VCCFcUqx1S0uRTM01SZn4pKSnBypUr0dzcjKeeego7duzAzJkzsWrVKuzatSsZpyBShSiulzyIKHN4P+/AmqbdKBw+DHVVCzFZW6R2SJSgpE9DV15ejs2bN+Pw4cOoqqrCpk2bMGvWLDbjEBFR0uw72Y61z32ECcUjsXnZQkwozr1J3JQ00ShdZC/dUjonbkVFBbZu3YpDhw6xGYeIiJLCfdSHddv2QLhiDB6/bz5KRitZwSVzsZkmBeTNOCtWrEjXqYmIKEe8c/BzPPbSflw3VYsN98zD6MJsuuXGJ586sKb9pxhsxsk0lZWVKCoK394YaQVHym8c+kuUPq/tOYX/+H0Lvj77CvywYhaGp2jBu/r6etTX14fd19nZmZJz5rukJCNHjhzBjBkzknEo1TQ1NUGv16sdBhERheFwH8d/vncEdy6chOqbBAwbpmzBu0gifQH1eDwwGAwpO/dAsaxNE618tkhKWmkwGPD0008Per61tZWdVomIKGGiKOKZd1vxn+8dwf93/VRYbk5tIpJJ2GckThUVFRAEYdDz5eXlaGho4PBeIiKKWyAg4j9+34Imzwncf1M5/vLL06HR5Ecikm+Skjht3boVDzzwAARBkDTXHDlyBGfOnEFFRQXOnj2bjFMRZRT2ESFKjd7+AH7qPIj3Dp/BDytmwTR3otohpV0+LZSXtFqcp556CqtWrYJWq4XX64XH44HX64UoiqiqqkrWaYiIKMd19fZj86sH8OFxP6x3XIuv6CaoHZIqhhcAIxRUBA0XAfQnLZyUSkoy8sADD2DLli0QRTH0nMFgwFNPPQWj0Yjy8vJknIaIiHJcR3cfHn1xL1rPXMD6u+fhuqlatUOiNEhKn5GtW7eioqICdrsdLS0tCAQCqKiogE6nYyJCREQx8V/swT889xE+8XXiJ99akPeJSEEBMHx44o+CLGqnSUrNSHV19aC5QzZv3oympiY8/fTTuP/++5NxGiIiylGftXfhx8/vQVdfAJsrF2D6+DFqh6S64cOAEVESiqd6gYbe8Pu6xPDPZ6Kk1IwMNZtqZWUlSktLsXbt2mSchoiIctAnvouoadqNgAjUVS5kIhKHB0YAntHhH/89Su3oYpeUZGTRokVD7vN6vWhoaEjGaYiIKMccOn0e1qbdGDNyOOqqFuKqkiy6g6aYkiaa4CNbpDzUqqqqsHOQEBFRfvvo+Dk89tI+TBs/Guvvnouxo3JzwbtEDS8ARii4S2dRLpL6WMvLy9mJlYiIJP7sPQvbawcw7+oS/MM356CoMIt6W6bLMCibLCSQrEBSL5sSJyIiygFvHfgM/+I6iBuE8fj7265B4fC0LSBPGYrJCBERpc2LH55EwzteGOdMxN/cOhMFebLOTEKUTsHKmpHsU1lZiaKiorD7Iq3gSERE0YmiiGd3foL//vMxfGvRZPz1V2dk7Doz9fX1qK+vD7uvs7MzfYEMB5ORZHnyySdRVVUlWbMmEzU1NUGv16sdBhFRzgkERPzy3VZs23US375hOsyLp2RsIgJE/gLq8XhgMBjSHFHuiysZ2bJlS1zDdP1+P7xeL3w+HzZt2hR3cERElN36AyL+7c1DePPAZ3hgqQ53LpykdkjZQ2kzTZasSwPE+TYXL14Mi8US90kaGxuZjBAR5ZmevgCeeP0Adhxpw4Om2fj6NVeqHVJ2UTqaJov6BccV6qJFi1BVVYVAIBB62Gw22Gw2yXMDHzU1NXA6namKn4iIMlBnTz82vrgX7qNt+PGdc5iIUERx5002m02y7fV68fDDDw/5eovFArPZHH9kRESUldq7evGPz3+EQ5914NF752PJjDK1Q8pOwWaaRB9ZNHVL3K1R8U5g5vV64fF44j0NERFlobMd3Xhk216c6+zFpvsWYOaVxWqHlL2UjqbJovGyiluURFHEW2+9FXZfe3s7LBYLp4MnIsoDp851wtq0Gxd7+rC5komIYsE+I4k+sqjPiOK8afPmzRAEAUuWLIHJZIIgCPD5fHC73aGRN3a7XXGgRESUuVrPXMAj2/ZgdGEBNi1bgCvHcsE7ip3iZESr1aK5uRlWqxU1NTWhseOiKAIAampqcP/99ys9DRERZaj9p9qx8cW9mDhuFDbeMw/a0YVqh5QblA7tzeU+I+EIgoDGxka0trbC6/XC6/VCEAQsXrwYJSUlyTgFERFlIM+xNmx6eT9mXlmMdXfNxZiRWdRRIdPlUZ+RpIXa3t6O1tZWVFRUoKKiAtu3b4fb7catt96arFMQUZw0mo2SbVFcr1IklGyZ8LN99/AZPPH6x7huqhZr7rgWo0Zk0VdxyihJSUZWrVqFhoYGaDQa9PX1AQAqKiqwZcsWOJ1O1NbWJuM0RESUIZz7TuPf3zyEr82agL8zzsbwgizqLZktYpj0rP7UpUc4nfm0Ns2aNWtgt9uh1WoHrTWwcuVK3HbbbfjFL36BH/zgB0pPRUREGeB3HxzHL/94BHcsuAoP3KzDMK68mxox9BlZPfXSIxzPecCQJTNrKE5lHQ4HHA4HfD4fKioqBu03mUzYvHmz0tMQEZHKRFHEb/50BL/84xEsXzwFq5YyEaHkUFwzIggCli1bBgBhV2HcuXMnvF6v0tOkXGVlJYqKisLui7SCI+WXTGinj0emx0eJS/fPNhAQ8dQ7LXj1o0/x/a/OwDL9lLSeP53q6+tRX18fdl9nZ2f6AuFomthptdrQ/4PDeYM++OADOBwO6HQ6padJuaamJuj1erXDICLKOH39Afyz6yD+eOgM/t+tM3HbvKvUDimlIn0B9Xg8MBgM6Qkkj0bTKG6mWbt2LW6//Xbs2rUrVDNy5MgRPPnkk1i8eDE0Gk1CK/0SEZH6unr78ZOX9+Pdw2dR841rcz4RIXUozpsWLVqE2tpa3H///fB4PHA4HACkk5499NBDSk9DlBLxNruw2YPyyYXuPjz20j4c/qwD6++ei0XTStUOKb/EMJomavkskZRKHL1ej+bmZrS2tsLtdqO1tRWCIMBoNHLSMyKiLOS/2IP1L+zF6fYuPPat+ZgzaZzaIeUf9hmJ3a5du3DdddcBuLSir3xV3+eeey7UwZWIiDLfZ+e7sO75PbjY04/aZQtRPmGM2iHlpzxKRhRX4kSb0GzRokVYtWqV0tMQEVEaHG+7CKtjN/oDImyVTEQoPRLKuc6dO4e2tjYAgN/vx9GjRweNpAnus9vt2Lp1K37+858ri5QoBdgHhOgLhz/rwPoX9kBbVIiN987DhOKRaoeU3wqgrHYji2pGEkpGfD4fzGYzPvjgAwCX5hoZiiiK6RsGRURECdlz4hwefWkfppQWYcM98zBu1Ai1Q6I8aqZJ6G2Wl5ejubk5lJBUVVUN+VqdToeVK1fGfQ6Px4Pa2loIggC/3w+TyRTxPOG4XC6YzeZQLQ4REQ2284gPta/sx5xJ4/DjO+eiqDCL7mKUExR1YG1sbERTUxMqKyuTFQ8AwOv1wmAwwO12hyYi0+l08Pl8qK6ujvk4nN+EiCiytw9+jp86D+L6GaV4+PZrUTg8i8aD5roU1ow4HA44nU5otVp4vV4IggCbzSZ5TTIqBWKleDRNMBFpb2/HuHFfDP06cuQIysrKJM/FymKxwGg0SmZEtVqtsFgsMScjVqsVgiDA5/PFfX4ionzwyken8NTbLbjlmivxw4pZKOA6M5klRX1GHA4Hamtr4Xa7Q8+ZTCZYrdZQQpKsSoFYKU6BP/jgA4wfPx6lpdLJcGbMmIFNmzbh6aefjut4fr8fLpcLJpNJ8vzixYsBAA0NDVGP4XK5MH78eE7vTkQUhiiK2LrzE/z89y24e+HV+FsmInnFbreH7qlBJpMpNGkpELlSIBUU14xYrVaIohh2Zd7Nmzdj8eLF0Ol0uOWWW2I6XnNzM4DBnWKDF8TpdEbNyux2OxobG2G1WmM6JwB0dHSgvb095tfLjRw5EiNHsuc5EWU2URTxy3eP4PkPTuAvvzwNK5ZMDbvIaa7q7u5Gd3d3wuU7OjqSGE0UKWqm8fl8gxawbWlpCd13g5UC8mabgZUCya4dScoMrJGaQoxGI2pqarBz586YjhW8QAMX4Au3fygDq5nisXTp0rjLDLR+/Xps2LBB0TFosHSvkpttq/ISxSMQEPFvbx6Ga/9pVN8s4O4vXa12SGlXW1uLjRs3Rn9hBujRAO2BxMt3DFHWYrHAYrHAbDajsbERHo8HW7duxfbt2wEkp1IgXoqTkWgr8nq9Xng8npiP19LSAgAoKysLu9/v9w9Z1uPxYPz48RGHGg/l7bffDs0kmwjWihBRJuvpC+Cf3vgY73vP4kHTbNxy7ZVqh6SKtWvX4sEHH0y4/K5duxR/eY3Vrw4ADfuTf9zq6mq43W40NDRAp9NBEAS0traGKgGUVgokQnEyIooijh49iunTpw/at337djgcjrjmGQkmN0PVtkRKNGpra9HY2BjzuQYqLi5OqLMtEVGm6+zpx6ZX9mPvyXP4h2/OwZeF8WqHpBqlTerFxcVJjCay788Dnrgp8fK7zgBLnwu/z263o7m5GR6PB16vFy6XKzRSRkmlQKIUJyM2mw0GgwGrVq1CRUVFaJhQY2MjGhoaoNFosHbt2piPN7DNKtJ+OavVCpPJJMnYgv8P/ptIjQkRUTY739WLjS/uw7GzF7HxnvlYMIWLl2aLwhHAuKLEy0eaQNdkMsFisUAQBJjN5lCTTVVVlaJKgUQpTkZKSkrwxhtvYPny5Xj44YdDHaGC08PX1dXFtVBesIOMvBoouD1ULYvL5UJdXV3YfTqdDnq9XjKMibJDuvtssI8I5RLfhR6s27YHbRd68Ph98zFr4li1Q6J4pKgDa3BETLDfR2trK8rLy7Fy5UpUVVUlXCmgRFJmtxEEAc3NzWhpacHWrVuxefNmOJ1OtLW14aGHHorrWFqtFnq9Hk6nU/K8y+UCACxfvjxsObfbDVEUJY+amhpotVqIoshEhIjyyqfnulDj2I0L3X2wVS5kIkIhW7dulQzZ1Wq1sNls8Pv98Hg8CVcKKJHUqfbKy8tRWVmJhx9+GBUVFSgpuVQdGO+Q2S1btsDlckkuhM1mg81mk3Sw0el0oSSFiIguOXr2AmqadmOYBqirXIipZaPVDokSEawZSfQxRM1IWVnZoFoPo9EI4FJikmilgBJpmfc3lonKBgo2qVitVlitVpjNZlitVtTU1IRe4/f74fP5UtKRhogoW3386XmsafoI2qIRqKtaiCvHjVI7JEpUQRIeYVgsFmzdulVy/3Q4HNDr9aEmmFgqBZIp7taop59+Gl6vF5s2bQIArFixImJC4PP54PF44m6u0ev1EUfG6PX6qAvgBS8c5Q7OA0I0tF2f+PH4y/tQPmEMHrl7HopHJmUqKcoxwS4MZrM51Fzj9/tD84wA0koBQRDg9XphtVpTMhU8kEAyUlNTg3PnzoWSEVEUB1XlyOXT7H5ERGp4r+UMnnj9Y3xpihZr7rgWo0Zw5d2sl8KF8qqrq6MmFtEqBZIp7rfpdrslNSErVqzAkiVL8PDDD4d9vd/vT1kmRUREgGvfafzbm4fwlZkT8KBpNkYUcOXdnJDCZCTTxP02y8vLJduVlZVobW0d8vVarTaueUaIiCh223adwNN/aMU35l+FVUt1GMYF7ygLJaVBUZ6gDPTkk0+GZnUjUirZfUTYB4WylSiK+O8/H8OzOz9BpX4yvvuVGWwSzzWsGQlvy5YtcY2M8fv98Hq98Pl8oT4mRESkTCAgouEPXry8+xS++5UZqDJMUTskSoUII2JiLp8l4kpGFi9eHJq5LR6NjY1MRoiIkqCvP4CfbT+E3x/8HKtvmYlvzL9K7ZCIFIsrGVm0aBGqqqqwdevW0HNPPPEEAAzZgXXNmjV44IEHFISYHpWVlSgqCr8IwOrVq7F69eo0R0TpkOvNMmyGyi3dff2oe+1juI+24eHbr8FNs65QO6ScVF9fj/r6+rD7Ojs70xcIm2mGJp+3w+v14uc///mQr7dYLDCbzdi5c2f80aVRU1OTZHpcIqJMcrGnD4+9tA8HT3dg3V1zYJgefkVVUi7SF1CPx5OS6dDDYjIytEidVcPxer3weDzxnoaIiC47d7EXG17ci5P+Tjx273zMvXqc2iFROuRRnxHFg9FFUcRbb70Vdl97e3toiWIiIorf5+e7sea53TjT0Y3aZQuYiFBOUjy0d/PmzRAEAUuWLIHJZIIgCPD5fHC73aGRN3a7XXGgRBQ/9hHJbif8nVj3/B5oAGyuXIjJ2vD92ihHsZkmdlqtFs3NzaGF7ILj3EVRBHBp+vj7779f6WmIiPKK9/MOrH9hL8aOGo5H752PCcUj1Q6J0i2GZKT+TaA+fOMEOnuTHlHKJGXSM0EQ0NjYiNbWVni9Xni9XgiCgMWLF6OkpCQZpyAiyht7T57Doy/uw2RtEdbfMw8lRSPUDoky1OpbLz3C8RwFDI+lN55EJW0Bg/b2drS2tqKiogIrV64EcGkdGyIiip37qA+PbNsL4Ypi/OS++UxE8tkwfNGJNZFHFi1RlJRQV61ahdLSUtx2222h5yoqKtDS0sJ1aSinaDQbJQ+iZHrn4Od49KX9uG6qFhvumYvRhUmpvKZsNTwJjyyhOBlZs2YN7HY7SkpKBjXJrFy5Em63G7/4xS+UnoaIKKe9tucUnnzjYyydNQFr77gWI4dnUe9DIoUUJyMOhwMOhwM+nw8VFRWD9ptMJmzevFnpaYiIclZj8yeof6sFdy6YhB8ZZ2N4QRbVr1PqBDuwJvrIonxWcSWOIAhYtmwZAIRdMXLnzp3wer1KT0OUFEqnR+dQWUomURTxzHtH8JznBP7i+mn4i+unxrzyLqf6zwMc2hs7rVYb+n9wOG/QBx98AIfDAZ1Op/Q0REQ5JRAQ8R+/P4zX957G/TeV497rJqsdEpFqFNcFrl27Frfffjt27doVyuiPHDmCJ598EosXL4ZGo0lopV8iolzV2x9A3esfw7nvNH5knMVEhMLLo9E0imtGFi1ahNraWtx///3weDxwOBwAvqglsVqteOihh5SehogoJ3T19qP2lf3YfeIc1twxBzfqxqsdEmUqpSNismg0TVJC1ev1aG5uRmtrK9xuN1pbWyEIAoxGY9ZMelZZWYmiovBTLUdawZGyS6rb1dmOT5Gc7+rFoy/uw5GzF7D+7nm4bqo24WNl02cr234v6uvrUV9fH3ZfZ2dn+gJhn5HYrVq1Cm63Gzt27EB5eXncq/pmiqamJuj1erXDIKIc5b/Yg3Xb9uLM+W48ft8CzJ44Vu2QaAiRvoB6PB4YDIY0R5T7FLcoPfvss4M6rhIR0RdOt3ehxrEb7Z29sFUuZCJCscmjPiOKQ7XZbDAajRFf8/TTTys9DRFRVjp29iKsTbshAqirWohp40erHRJlC84zEjtBEODxeLB27VosWbJEMtQXAPx+P2w2G1fupbyQ6W3hlF6HTp/H+hf2omxMIR69dz7KxhSqHZIq+HtB0ShORmw2G7Zv3w5RFMNO1jPU80REuWz3cT9+8tJ+TBs/Guvvnouxo7jgHcWJo2liV11dDa/XC4vFMqhWBADa2trQ0NCg9DRERFnjfe9Z1L12APOuLsE/3jkHo0ZkUX05ZY5gnxEl5bOE4mSkqqoKGo0GlZWVQ76GM7DmrnQP2Yt2PqX7iZR668Bn+BfXQdygG4+/N12DwuFZdEcgUomiZOTIkSMAEDERiWU/EVEuePHDk2h4xwvT3In4m1tmYtgwNlGTApxnJLI333wTZrMZfr8fAGAwGOByuTBu3LhkxkZElBVEUcRvd36C//nzMdy3aDK+/9UZ7CtHysXQZ6R+K1DfGH5fZ3fSI0qZuJOR1tbWQUN5m5ubYTQasWPHjqQFRkSUDQIBEb/4Yyte+PAkvn3jdJgNU5iIUNqsXn7pEY7nAGD4q/TGk6i4kxG73Q6tVostW7bAaDTC5/OhsbERa9aswS9+8Qv84Ac/SEWclKGU9smI9/XJ3s8+JKREf0DEz7Yfwlsff4ZVX9fhmwsmqR0S5RI20wzN4/Fgy5YtoX4gJSUlqKmpAQC88cYbTEaIKC/09AVQ99oB7Dzahr+/7RosnX2F2iFRrsmj0TRxh9ra2hq2Q6rZbIbX601KUEREmayzpx8bXtwLz7E2/PjOOUxEKDXyaAbWpOVN5eXloQ6tck8++WSyTkNEpKr2rl784+8+wuHPOvDovfOxZEaZ2iERZb24m2nOnj2LDz/8ECUlJZLng4nI0aNHQwvn+f1++Hw+2O12PPTQQ8qjTaHKykoUFRWF3RdpBUeSirfPhdp9OKKdP9rrKb+c6ejG+m17ca6zF7XLFkB3RbHaIcWEfaPiU19fj/r6+rD7Ojs70xcIZ2Admt/vh16vH3K/IAiKAlJLU1NTxPdFRPntpL8Tj2zbg/6AiM2VCzCllAve5apIX0A9Hg8MBkN6AsmjPiMJ5U3Bmo9w078PFKwt4TA3IspmrWcu4JFtezC6sACbli3AlWNHqR0SUU6JOxkxGo1444034ipz2223xXsaylPJrj5WOnQ4WrONRlMnK18TR3SUDfafasfGF/di4rhR2HjPPGhHZ9/Ku2yWyVIc2js0q9Ua90kSKUNEpDb30TbUvrIfsyYW48d3zsWYkVnUCE/Zj8nI0CoqKuI+SSJliIjU9O7hM3ji9Y+xaJoWa+64FiOHZ9FfdqIswzSfiEjmjb2fov6tw7hp1hX4kXEWhhdkUU9Ayh0cTUOUG6JPR18ne0Y6bI9t7fnnOc9x/OrdI/jmgkmw3Cxw5V1SjTgMEBVUyIlZlEMzGSEiwqVRgr95/ygam49j+eIp+KsbpnMkIFGaMBkhorwXCIj4+dsteG3Pp/jrr83AfYumqB0SEfoLgH4Fd+n+LOrmxGSEiPJab38A/+w8iHcPn8EPK2bBNHei2iERAQACCpORAJMRouygdF4QziuS3bp6+7H51QP48Lgf1m9ci6/MnKB2SEQh/QUa9BUk3lTYXyACEJMXUAoxGSGivHShuw+PvbQPLZ934JG75mLRtFK1QyKKm/0pEQ1PhU84urrSHIwCTEaIKO/4L/bgkW178fn5bjz2rfm49qpxaodENEh/QQH6h0ceEnP/31x6hLPLE8DS6/tSEFnyMRkhorzy2fkurHt+Dy729KN22QLMmDBG7ZCIwgoUFKBfwRw3gQINACYjWaWyshJFRUVh90VawZHSK91LoXPp9dzyie8i1m3bg+HDNKirWohJJeF/5ym/1dfXo76+Puy+zs7OsM+TMkxGLmtqaoJer1c7DCJKkcOfncf6F/ZCW1SIR++dh/HFI9UOiTJUpC+gHo8HBoMhLXH0Yxj6FSww05/EWFKNyQgR5bw9J87h0Rf3YUpZETbcMw/jRo1QOySiqPpRgD4mI0SZJ93NJErPF62Zh81AqbfziA+1r+zH3KvH4R+/ORdFhVk0+QJRnmAyQkQ56/cff4Z/dh3Cl8vL8NBt16AwysgEokwSQAH6FdymA0mMJdWYjBBRTnp59ynY32nBrddeif936ywUcME7yjLK+4xkTzrCZISIcoooitja/An+6/1juPe6q/HXXy3nyrtEGY7JCFEKResDwj4iySWKIn7xx1Zs23USf3XDNCxfPJUr71LWutRMk3jNSIA1I0RE6dUfEPHvbx6Ga/9pWJYKuGvh1WqHRKRIQGEzTSCLxtNkbG8uj8cDs9kMq9UKi8UCh8MRUzmHwwGDwQCNRgOdTgeXy5XiSIlIbT19AdS9dgBvHjiNB2+bzUSEckIfhqHv8vDexB4Ze4sfJCNrRrxeLwwGA9xud2giMp1OB5/Ph+rq6iHLNTQ0wO12w2azAQCsVitMJhNaWlogCEJaYiei9Ors6cfjr+zDvpPt+IdvzsGXhfFqh0SUdbxeb+hLf3V1NbRaLYBLFQO1tbUQBAF+vx8mkwlVVVVJP39GJiMWiwVGo1EyI2qwhiRSMuL3+2G320PbW7ZsgcFggMfjYTJCCZHPAyLHPh/qOt/Viw0v7MMnvot49N75mD+5RO2QiJImgOEKh/ZGb6bxer2wWq2h++fAe2WiFQOJyLg6HL/fD5fLBZPJJHl+8eLFAC7VfgylpqZGsh3M7DjNO1Hu8V3owZrnPsKpc514/D4mIpR7gn1GEn0Eotzig1Pbl5WVwel0DvrSHqliINkyrmakubkZAAZdlODFcDqdMWdkDocDNpstplqRjo4OtLe3xxntF0aOHImRI7nWBVE6fHquCz9+fg/6AgHYKhdiatlotUOiLNHd3Y3u7u6Ey3d0dCQxGvX4/X5UVFRAEARJi8LA/S6XK9TtIWhgxUAya0cyLhnxer0AvqjVGGp/NFarFQ0NDdiyZUtMr1+6dGlMrxvK+vXrsWHDBkXHoNSLd/r1aNO3U/odPXsB67btRdGIYdh030JcOW6U2iFlnWQvQ5BNyxrU1tZi48bs+D1WPunZ0DUjwaYZebIRlMyKgVhkXDLS0tICACgrKwu73+/3Rz1GXV0dvF4v/H4/zGYz7HZ71Iv29ttv47rrros33BDWihCl3sefnseGF/biirEj8ei986AdXah2SJRl1q5diwcffDDh8rt27VL85TVWXT0a+BOvsMf5CJU4wS4PTqcTVqsVXq8XixcvDvUbSVbFQKwyLhnR6XQAAJ/PF3Z/LE0uwb4jLpcLZrMZNpstajJSXFyMcePGxRktEaXLrk/8ePzlfRAmFGPd3XNRPDLj/nxRFlDapF5cXJzEaCJ78VdteL7Bn/TjejweAJdqOSwWC2w2G7xeL0wmE3Q6Hdra2pJSMRCPjPttDiYbQ73ReEbFGI1GVFdXo66uLhmhEZFK3jt8Bk+88TG+NEWLNXdci1EjuPIu5b47vz8Bf/PE1ITLH9rViVVLDw96PlirYbFYQvfUYN8Rk8mE2trapFQMxCPjkpFg5xh5FVBw22AwxHW8JUuWcFhvDom3bVppW3Y2tYXnKue+0/j3Nw/hqzMn4O9MszGiIOMGAWadZH+O+XuRGsMKR2DUuMSbIguL+8I+P1TTi9FoBIBQLQmQnIqBWGTcb7VWq4Ver4fT6ZQ8H5xJdfny5XEdz+v1hi4wEWWXbbtO4GfbD+G2eVfhoduuYSJClATBL/3Bphi5srKypFcMRJORv9lbtmyBy+WSXASbzQabzRbK6Lxer2S692Bn1YHTxnu9XjidzrDDlogoc4miiN+8fxRP/6EVVYYp+L9f13HlXco7qZpnRKvVwmg0DlouJVgLYjAYkl4xEE3GNdMAlzrVuN1uWK3WUK9eq9Uq6YTq9/vh8/lCF0+r1cLv92PlypWhdi9BEAZdSCLKbIGAiIY/ePHy7lP43ldmoNIwRe2QiFSRyqG9NpsNBoMBLpcr1HrQ0NAAvV4futcGZzH3er2hZhl5xUCyZGQyAlxKSBobGyPub2trkzzHxCP3Re8jIu2srLQtm23h6dXXH8C/bj+Etw9+jtW3zMQ35l+ldkhEqum/vOCdkvJDGfilv7GxMfSF3u12h33NUBUDyZKxyQgR5Zfuvn7YXv0YnmNtqLn9Wnxt1gS1QyLKaeGaYcK9JlLFQLIwGSEi1V3s6cNjL+3DwdMdWHfXXBiml6odEpHqAihQuFBe9gyBZzJCOUUUayLuV3uortrnz0TnLvZi/Qt7cOpcFx67dz7mXs3JB4mA1PYZyTRMRohINZ+f78a65/fgQk8fapctgHBF+ma3JKLMwWSEiFRxwt+Jdc/vgQbA5sqFmKwtUjskoowSuDxEV0n5bMFkhIjSzvt5B9a/sBdjRw3Ho/fOx4RiLjRJJNePYQpH07CZJutUVlaiqCj8N7PVq1dj9erVaY6IUiHV08crPX8+2HvyHDa+uA9TtEVYf888lBSNUDskIon6+nrU19eH3dfZ2ZnmaPIDk5HLmpqaoNfr1Q6DKKc1H/Gh9tUDuOaqsVh351wUFWZPNTLlj0hfQD0eT9KnQh9Kv8LRNEqaeNKNyQgRpcU7Bz/HPzkPYvH0Uli/cS0Kh2dPFTKRGthnhIgoiV796BR+/nYLvj77CvytcTYKuM4MEQ3AZIRIQtpvKFofEs4bEl1j8yf49Z+O4q6Fk7DyJoEL3hHFiPOMEBEpJIoinnnvCJ7znMBfXD8Nf3H9VGg0TESIYpXKtWkyDZMRIkq6QEBE/VuH8ca+07j/pnLce91ktUMiyjqxTAf/Zv1BvFl/MOy+3s7+VISVEkxGiCipevoC+KnzIP7UcgZ/Z5qFW6+dqHZIRDnr1tWzcevq2WH3HfX48KjhtTRHlBgmI5RV5H005JT22Yi2tk2858u3PiVdvf3Y9Mp+fHTiHNbcMQc36sarHRJR1mKfESKiOJ3v6sWjL+7D0bMXseHuefjSVK3aIRFlNQ7tJSKKQ9uFHjzywl6cOd+Nn9w3H7MnjlU7JCLKIkxGKKWS3UyR6maObIs3E5xu78K65/eguy8AW+VCTBs/Wu2QiHJCQGEzTYDNNESUD46dvYh12/agcPgw1FUtxMRxo9QOiShn9Ckc2qukbLplT9pERBnl0OnzsDbtxthRw1FXyUSEiBLHmhEiitvu43785KX9mD5+NB65ey7GjuLKu0TJFss8I9HKZwsmI5dVVlaiqKgo7L5IKzhSZMnuM6HR1MmOH99Q3GiiTfce7fX54H3vWdS9dgDzJ5fgH745B6NGZM8fPKJY1NfXo76+Puy+zs7OtMXBob15qKmpCXq9Xu0wiDLamwdO419dh3CjbgIeNM3myruUkyJ9AfV4PDAYDGmOKPcxGSGimLzw4UlseceL2+ZOxOpbZnLBO6IU4zwjRESXiaKI/93xCf53xzEs00/G974ygwveEaVBP4YpXCgve2oumYxQRot33o9UzxMi77OS69O9BwIinv6jFy9+eArfuXE6zIunqh0SUd7oV9iBlav2ElHW6w+I+Nfth/D7jz/D//26DncsmKR2SESUo5iMENEgPX0B2F47gOajbXjotmtw8+wr1A6JKO+wzwhRhsi8obbSYX3pji8dzUKdPf147OV9OHCqHevunIPFM8qSfg4iio7TwRNRXmrv6sWGbXtx3N+JR++dj/mTS9QOiYjyAJMRIgIAnOnoxvpte3Gusxe1yxZAd0Wx2iER5bVYJj3z1O+Ap35H2H19nX2pCCslmIwQEU76O7Hu+T0QAdiqFmKyNvxsxESUPv0xLJS3cPWNWLj6xrD7TntO4r8MP09FaEnHZISySrqH9kY7XrqHHsf7+ljO5/28A+tf2IsxhcPx2Lfm44qxI+M6BxGRUkxGiPLY/lPt2PjiXlw1bhQ23jMfJaO54B1RpuBCeUSU89xH27Dplf2YPbEY6+6ai9GF/HNAlEm4UB4R5bQ/HjqDJ9/4GPpppbDecQ1GDs+eb1BElHuYjFxWWVmJoqLwnfYireBI6RWtD4TSPhWDTY+4N9V9PpQK18elaJYWJTdMwkN/9SX8bcUsDC/Inm9PROlQX1+P+vr6sPs6OzvDPp8KnPQsDzU1NUGv16sdBlFKjZk3HmMNV+LigTb8nXE2V94lCiPSF1CPxwODwZCWOLhQHhHlFFEU8es/HcVYw5Xo2H0GHbs+ZyJClOH6MVzhQnnZc4vPnkgpK6V6Fd1knz/a0N1sXKU3EBDx87db8NqeT/HzH30V31o0OaZy2fheiSg7MRkhymG9/QH8s/Mg3j18Bj+smAXT3Ilqh0REMeLaNESU9bp6+7H51QP48Lgf1m9ci6/MnKB2SEQUBw7tJaKs1tHdh8de3AfvmQ6sv3serpuqVTskIqIhMRmhlFK7n8HgPiB1UfZHG+ob2eDj10Q8frKvj0azEcNGFaDMNA0FY0bg7X++C9dcNTahY6n9syPKdxzaS0RZqWDMCJSZpkEzYhjOvnYU1/xvYokIEamPQ3uJKOt84ruI8XfMgBgQcfbVI+jv6FU7JCKimDAZIcoBhz87j/Uv7EWgpx8+5zEEOvvUDomIFOpXuFCekiaedGMyQlklWp+O6POIxNeHI1ofkMEiTxWdin4Ye06cw6Mv7sPUstE4+9oRiD2BmMpxHhGizJZPfUayp0GJiAbZ0erDI9v2YPZVxfjJt+bHnIgQEWUS1owQZam3Pv4M/+I8iBuE8fj7265B4XB+tyDKJbHMM9Ja/xqO1L8evnxnTyrCSgkmI5dx1d7soHQobrzNMsBY2f5nZOW/J3u99DOUqqaQl3afhP1tL4xzJuJvbp2JggTWmWGzDFF4mbJqbz8Koo6mmbr6TkxdfWfYfec8XrxneDgVoSUdk5HLuGovZQNRFLG1+RP81/vHcO91V+MHXyuHRsMF74iSKVNW7Q0o7MCaTX1GmIwQZYlAQMQv323Ftl0n8e0bpsO8eAoTESLKCUxGiLJAf0DEv715CNv3fwbLUgF3Lbxa7ZCIKMW4Ng1RkiS7z0S06dyjnT/e/YOH6k6Pq3y0Pi6xXI+evgD+6Y2P8b73LB68bTZuuebKmM8XSfT+Mxz6S6SmfBray2SEKIN19vTj8Vf2Yd/JdvzjnXNxfXmZ2iERESUdkxGiDHW+qxcbXtiHT3wX8ei98zF/conaIRFRGnFtGiJS1dmObjyybS/8nT3YtGw+Zl7JBe+I8g2ngye6TGm/gXj7dMQ7nXt08v4Vn0U83+B5Rr4q23bFdXy5WK7fqXOdWPf8HvQFRGxethBTy0ZHLTOUeOdhGUh5/55k9xfK7OORevizzH5MRogyyNGzF/Dj5/dgdGEBNt23AFeOG6V2SESkknzqwJqxDUoejwdmsxlWqxUWiwUOhyOmcg6HAwaDARqNBgaDAS6X/JssUWY68Gk71jR9hNLRhbBVLmQiQpTnApeH9ib6CGTuLX6QjKwZ8Xq9MBgMcLvdoVlRdTodfD4fqqurhyxXV1cHp9MJi8WClpYW1NXVwWQywel0wmg0pit8orjt+sSPx1/eB2FCMR65ey7GjMzIX00iopTIyL94FosFRqNRMj17sIYkUjKyc+dOOJ3O0PaKFStgMBhgs9lSmoyker6GeMvHv/5K55CvHdwnQn6u3bJn3pVtR+5DEW0tF+D6KOXl84DMlG2vkm1L49Vo2mX7H5Bty99PtHhmyI4vfz/TZdtHMWraWGhvnozuUxfg+P1x1PX/bsB+6fWR95kZ/LOUk59vaINjjXzu6OWTK/q6RPK1pZK7hki87y/evwPxzlkTzcDjZXsfimjXLtXvT3r+kyk910D9Cptp4inrcrlgNpvR1tYmed7j8aC2thaCIMDv98NkMqGqqirhmIaSccmI3++Hy+WCzWaTPL948WIAQENDQ9iEJFwZvV4PvV4Pr9ebuoCJFCiaWYKSG69G19F2+P94EgiIaodERBkinUN7LRbLoOcSbaVIRMYlI83NzQAAQRAkzwcvhNPpDHsRItV8yI8VTkdHB9rb5d+SY9WFS5cy4y4nZbAxc0di7OKrcfFgG9rf/1TtcIjyQnd3N7q7u+Ms1TXg/z3JDCeidA3ttVqtEAQBPp9P8nyirRSJyLi7Z7AWQ6vVRtwfz/HCZXxyS5cujeu4YY4A4JYh9i1QdOT4pzy/Urb/UMT9wKzQ/17A7dJzv/+G9KXf/7+SzcBZWSyNsu2bpN/0r5/7jmS7JaCTbLd9rpVs/3LiX0u252KfZHvJoj2S7cYP7pZsm7//omR776+k51uLWsn2y6e/KdkO2O+QbOM16SYOyLa/Jdv+g6z86yIgiijedwzFH3+Cjj9NRYdmOnDj5QXvPpeVPyzdHPSz/L6s6aRYuln9s3+VbFfhi47gt/35D9IXS18K/F527hGy/X3yJjr551w6LHpQefnUKW3yLwPjpJvyv1bfl/1e/Eq2/0bZ9p9k25Bey0FNdsNl5x/0eyMf9i39YWk0r8r2y5cSeCbK8aVNnINfL3dUtv3Fz0OjeU62T/bBGvTDiDYEPvLfnMHNs/LmTVlzauks6XabvHk02rWTv3d58+TAJruXALwCusTlcmH8+PHQ6/WhygAg8VaKRGVcMtLS0gIAKCsLP+213++P+VgOhwOCIMR0wd5++21cd911MR97oJKSWmTgpaRMJIoY96EXo72ncH7+DFx4bqraERHlmdtx7tz/RnzFpb/pXzh3bm3o/7t27UrCl9fYpGNor91uR2NjI6xWq+T5RFspEpVxd1Cd7tI3V3l1UVAsTS5BtbW1aGxsjP5CAMXFxRg3Tv5NKFYcgkkx0ASgbT6IUcfP4Jx+JjpnXKV2RER5aEQMf+ulf9MHvr64uFj+4pTp7+lHb3viHbH7Oroi7rdarYNqPoKS3UoRTcYlI8FkY6gakFiTEavVii1btsSVvBClzLB+lM4/gJEn/PBffw26Jk9QOyIiynDtv/odzjfENsdWvDweD8aPHz/kPTKZrRSxyLhkJNgeJc+6gtsGgyHqMRoaGmAymSSdbtQkistSfPx4h7VJ22cHtv/eq/l32WvlbcuydvJn5G3RE2XbP5ds7Rg0/FJajVh84RrJ9ndf3SqN5o4pku2Nu6RH+yZapa//lfT1E3Fasv1t/EYa7UTpUOCnH7lfsr1hxmbJ9vzv7JRs7/nhEmlAFwDN8D6ULt6HESUd6LrzagyfqkExLnW26VgsS0rOSDefObRCsv0eviLZXgy3ZPsafCzZvnn2Dsn2iYPjQ/+//svS/js7Ft8sPbm8UnFQHw/5Z0Pe50N6rcVe6WdDo5H3C5Bvyz5r8j4qv5J3WpdNcPgn+dDk78nO/ztE1Cd/w/LPbpTyUcn7NciPL98v78chH+Yt/V0DPoojlmjvNV7yPiKnZduyPiNt8n5tcrI+JZC/Xh6vtA9JspexSJcx36+C9glr9BcOoWfXAZxe+u2w+6K1HCSzlSIWGZeMaLVa6PV6OJ1O1NR88csWnEl1+fLlEcsHZ2qVj67xeDwZk5xQ/hhW2IvS6/dg+Ogu+N6fj5FT09cTn4iyW6BwFMRx2oTLi8XhF9i0Wq0wmUySL/3B/wf/TVYrRawyLhkBgC1btsBgMMDr9YbesM1mg81mC7Vfeb1emEwm2O32UOLhcrlQW1sLi8WChoaG0PHcbjcMBgOTEUqrYehC2Y17MWxEH87+aSH6zo/BSHnVBxFRmrlcLtTVhZ8wUafTQa/XY/v27QCUtVLEIyOTEb1eD7fbHRr77PV6YbVaJT13/X4/fD5fKGvzeDwwmUwAwk/eIp9VjiiVCjSdKCv8CBimwdn3FqL/otJqbyLKN8G1aZSUD8ftdg96zmq1oqGhQXKvVNJKEa+MTEaASxchUnuWXq8fdNFEUZ3ZKzOlfTFRkeOXt9VKaTTy8f3y+QXk8w/I+5RI234fGvM1yfZMUTqPSMsr8yTbG6CRbN968S3J9oHR10q2J/xjh/T0j0s3nRrpxCnrP5L2NN9wRNpn5COjtG1cM1rE8MIOlF21F4GOEfA9X4TAxeOh/R1jorR9D5fu/5un6yXbHWOkSXXDpL+Vlpd3npcP9JL005C348v7HMi0RZ7aX/kyBS7Zftk8JbI+JqIo7/v0P3HFI58uPvt/j+VLH6TyXEqXtPhelP3KptLP9p9lUD+GYViaZmANJ5ZWimTJ2GSEKBuNGHUOZRP3oa+3CL5P50G8eETtkIiIEhJLK0WyMBkhSpLm4jkou2oPervGoe30XIhi4t9oiIgCgQL0BxQ008RRNljjIRetlSJZmIyQIvFX1w69YnA4py9Km3WmfFM6nHT9dunrN4zpl2zfIL4v2T7wiHTo8EhI16gwPyU9nni1LCBpcWheu9Q0OKr0c2ivPoiePSPR9vYEIBDsqCp/f9KmEHnVuvz6dIxBROJJ+fDOaNXVX43jtcmltGo92qrB2Tp8Mx9E/9mmdn+26u8fBvQpaKbpV9ZMk05MRogUGj3hFMZNbUGn70qc+/04QNREL0REFEV/XwHQp2ChPAWJTLplT9pElGlEEWMmfoJxU1tw8fNJOHd0FhMRIqIEsGaEKBGiiLGfH8GYq0+g49Q0dHw6FQATESJKnkB/gaJmmkB/9tSMMBm5rLKyEkVF4eeCWL16NVavXp3miHJTtHb/FZgh2f4l/lqyvSog7XOx5VbZVMcbpX1Mjv9Uuj3mtoBk+7/n/x/J9j2z3pBsu8qkQ40BAKKIktOHUeQ/jfa3huPifj8A/+Wd5we/XkI+Jbq0j0i06yOnpN+H2u3sSs+fq8M5SX319fWor68Pu6+zM/GF6+LV3z8MoqJkJHsaP5iMXNbU1MQZWim6QADaUx9jVMdZ+CfNRtf+T9WOiIiSLNIXUI/Hk/TZR4nJCFHMenqHo/TEPhR2nkPb1XPQPXY8ACYjRJQa/X0FCPQmXjOipFYl3ZiMEMWgs6sQz75oRGHnebRNmYee0Vq1QyKiHCcGCiD2K7hNK5ijJN2YjFBG2aqRTlFuFLWS7aJh0vbaX0PWZ+SI7IBV0k2NT7ZkgFe6/Ze3SqcU/8uL/w3NxV6MefUIhl3og+9/5qP33MCVMOX9jOR9RmTL3g+aLj/ymjXR+pTkcz+JfH7vRLkme3q3EKlAc74HxS+2QtPdj467y2WJCBFRCvVdnvQs4Uf23OJZM0I0hDNnx6H4BS8wfBg67hYgji1UOyQiyiexDO39TT3wX/8Rfl9X+kb+KMVkhDLKoKGtr0rn7qi+59eS7eMPz5S+vll2wAPSzSnvSaeTP/6OtHyboAUAfHa6BK9sux69I0bCf8ssBDDiUgvMBNnxT8lXIT4s25bvlzfjRP5jEe9QXyLKM99efekRzh4PcO/i9MaTICYjRDInPhmP119ejLLx59F2w2yIhfw1ISIV9GuAPgWTKfZnz0SM2dOgRJQGrS0T8cqL12PipDbc+a0/MxEhIvX0A+hT8OgffMhMxb+0RJcVnT4N524DynWf4tbbPkBBgRi9EBFRqgSTESXlswSTEcpo/3nHcukTd8he8IRse51s+4x082qclGwff+xSn5HRpScwbmIrNPcVoefrV+H1YZdOFLCPkR5A3gXko4+GjP2S07JtaR8RDk8lImIyQnlPRPGET1A84RgunJ2Mq29pgSZ7mlmJKJcFm1uUlM8STEYob4kBEeMmejG69BTOfzYDF3xToNG8o3ZYRESX9AHoVVg+SzAZobwk9ou4sL0Ho0tP4dynOnT6J6kdEhFR3mIyclllZSWKisJPzR1pBUdKre+Zno38godl2w7Z9l3SzebTBqA/AO0fvSg8eQ7+L1+DrrIrQvu3/vS70gLXyI63vl32hHxbShRXSbbl07trNBtlr2cfEiKllP5e1dfXo76+Puy+zs40TiQWgLJOqIFkBZJ6TEYua2pqgl6vVzsMSjFNbz+0bx/GiDMX4F86E12nroheiIjySqQvoB6PBwaDIT2B5NFoGs4zQnlDI/aidPtBDG+7iLZbZ6Hn6hK1QyIiIrBmhPLEMLEbZeIeFFzoQZvxGvSVjlY7JCKiyDiahihDTI2y/ynZtnzpl+NAwZhOlH1tDwDgzMFF6H8tfN8gABj//AnJ9tkfT5a+YME46fZHsm24JFsajXweEs4zQpRqOfN7xWYaotwwvKQD45fuhtg/DGffXoj+vqETESIiUgdrRihnjbiiHWU37UXfhSK0vTsPgZ4RaodERBS7PKoZYTJCmU02nTtelE2vPkk2P3vbpX9GTvZB+/UD6P2sGG1vzoXYe/mjXiU73m+km2d/JGuWmSB7/UfyobyHZNvXy7Z3yLbjq5nh0F+iPMZkhCh7jZrxObQ3HUT3iVK0vX0N0F+gdkhERPFjMkKUnYpmfYqSGw+j03sFzr07CxDZLYqIKNMxGaGcMUY4jrG6I7h4YBLadwgAuOIdEWWxWNameb0eeCP8bLHoSeNssQoxGaHMJu+zAY9089RXAYgYqz+JMbrP0PHhDHR8OA1fJCLvSl+/5qvS7TGyw8u7dPw+vnAB+VDeyKL1CWEfEaI81o/oTS3G1Zce4bR6gB+nabZYhZiMUJYTMe6GTzB69lm075yMi/unqx0QERHFickIZa9hIrRfO4JR0/049940dB4er3ZERETJww6sRBmuQETp10WMnHQObW+Xo/uYVu2IiIiSi8lI/qmsrERRUfg5ICKt4EhpduMd0BT0oUy3F8OLLsC3bSJ6To1EaJr1G2XTs/9JNi+JvI/ITbLtrmgByKd/l81zgs9k21fKtqXz1cfbJ4TzjhClXn19Perrw3cK7ezMnk6h2YTJyGVNTU3Q6/Vqh0FRDBveg7KZe1FQ2A3foQXoPXVR7ZCIKMdE+gLq8XhgMKSpUyhrRogyT8GwLpTN3gPNsADOHlyAvq4xAJiMEFGO4qq9RBniV5f+GV5yEWWmPRALhuHsHxei/+Koyy+QNZP8SX4Ao3Rzhmz387LtNlmzzqCxvkdk29GqbOXl5csKS3GoLxHlIyYjlPFGjD+PUuNeBDoL4dsxH4HuQrVDIiJKPTbTEGWGwonnUFqxD33+0fC55kIcw5V3iShPMBkhUt+fvWdRajqA3tMlaHtrDsS+gsGjYYiIclUs08FHK58lmIxQRnrrwGf4F9dBdJ8ZD7/nGmDs5QXv2g5FKSkfevuqdNN1h3S7VD40V74td0K2LZ/+XT6UN75hgOwTQkT5iEuaUsZ5afdJ/NR5ELdeOxH+HdcCAX5MiSgP9SfhkSX4V54yhiiK+O2OY7C/7cW3Fk3GDytmAiJX3iWiPBXsM5LoI4uSETbTUEYIBET88t1WbNt1Et++YTrMi6dAo2EiQkSUD5iMkOr6AyL+7c1DePPAZ3hgqQ53Lpz0xc5BfUTk0623y7bls+jOivz6QfOKeGTbXw0T8UDyVYLl8Y2NUj65OF08UQ7haBqi9OjpC+DJNz7Gn1t9eNA0G1+/Rt4BlIgoTzEZIUq9zp5+PP7KPuw72Y4f3zkHS2aUqR0SERGpgMnIZVy1N73au3qx4YW9ON7WiUfvnY/5k0vCvk4U5c0s0m2Npk62Xz6UVt4ME23ormzo76Bmmx1Ryi+QbR+WbIliTZTyyrBZhki5jFm1N5Z5Rj6ov/QIWz57VhhmMnIZV+1Nn7Md3Xhk2174O3uw6b4FmHllsdohERGFZNSqvdGaWhauvvQI57QH+J80xaoQkxFKq1PnOrHu+T3oD4jYvGwhppaNVjskIqLMxD4jRMl35MwFrNu2B6MLC7Bp2QJcOXZU9EJERJTzmIxQWhz4tB0bX9iHK8eNxMZ75kE7OraVd+VDVeXTrcv7YGg0z8leLx9qe162LR96+5RsW94HRD6U96hsWzo9fLr7cHBoL1EOYc0IUfJ8cKwNj7+8HzOvLMa6u+ZizEh+7IiIouJCeUTJ8d7hM6h7/WNcN1WLNXdci1EjCtQOiYiIMgyTEUoZ577T+Pc3D+Frsybg74yzMbyASyEREcVM6WJ3bKahfPe7D47jl388gjsWXIUHbtZh2LDE1pmR93mQ94nQaJ6Rvf57sv3SPhyD5yGJNuOrfJ4SaR+UTOuTkWnxEJEC7DNClBhRFPFf7x/F1ubjWL54Cv7qhulc8I6IiCLK2GTE4/GgtrYWgiDA7/fDZDKhqqoqprJ+vx+1tbUAAJvNlsowaYBAQIT9HS9e+egUvv/VGVimn6J2SERE2Ys1I+ryer0wGAxwu92hWVF1Oh18Ph+qq6sjlnW5XLDb7XA4HFFfS8nT1x/Av7gO4Q+HPsf/u3Umbpt3ldohERFlN46mUZfFYoHRaJRMz261WmGxWKImGEajEUajkU0DadTV2w/bawfwwTE/ar5xLb46c0LKzhW9D0nkeTYGz1sinydETjovSfTjSbEPBxFRdBk3vMHv98PlcsFkMkmeX7x4MQCgoaFBjbBoCBe6+7Dhhb346Pg5rL97bkoTESKivBLAFyNqEnkEIh/e4XDAYDBAo9HAYDDA5XINeo3H44HZbA5VCDgcjiS9OamMqxlpbm4GAAiCIHk+WEvidDpT0vzS0dGB9vb2hMuPHDkSI0eOTGJEmc9/sQfrX9iL0+1deOxb8zFn0ji1QyIiiqi7uxvd3d0Jl+/o6EhiNFH0QVlTS4SydXV1cDqdsFgsaGlpQV1dHUwmE5xOJ4xGIwBlXSbilXHJiNfrBQBotdqI+5Nt6dKlisqvX78eGzZsSE4wWeCz811Y9/weXOzpR+2yhSifMCYt59Vo6pJ6vGjNLoOnm8+u6dazLV6iVKutrcXGjZGbVzNGCjuw7ty5E06nM7S9YsUKGAwG2Gy2UDKipMtEvDIuGWlpaQEAlJWVhd3v9/tTct63334b1113XcLl86lW5HjbRax7fg8Khmlgq1yIq7VFaodERBSTtWvX4sEHH0y4/K5duxR/eVWby+UaNNJUr9dDr9eHvvAHu0zIXzewy0QyE5KMS0Z0Oh0AwOfzhd0vb75JluLiYowbx2aGaA5/1oENL+xFSdEIbLx3HiYU508SRkTZT2mTenFxcRKjiaK3B+hMvPsAusM3KQVrPsIJ3mPT3WUi45KR4BsfqgYkVckIRbfnxDk8+tI+TCktwoZ75mHcqBFqh0RElLuO/wo4lb5BG16vFxaLJfR/IH1dJjIuGQlWAcnfaHDbYDCkPSYCdh7xofaV/ZgzaRx+fOdcFBWmZ8E7pUNn4+8zEbnJKXofk8zqk5Fp8RBRHCZ9H5j5ROLlO3YBH8TWpORwOCAIQqi2I91dJjJuaK9Wq4Ver5d0rAEQGnK0fPlyNcLKa28f/Bw/eXk/DNNLsf7ueWlLRIiI8ppYCGCcgkfsTUq1tbVobGwMbae7y0TGJSMAsGXLFrhcLkntiM1mg81mC1UZeb1e6HS6sOOiU9XJNR+98tEp/NMbH+Prs6/AmjvmoHB4Rn5kiIhyT18SHjGwWq3YsmWLJMFId5eJjGumAS51kHG73bBarRAEAV6vF1arVdJZxu/3w+fzDbpQHo8HdrsdALB161aYTCYYjcYh270oPFEU0dh8HL95/yju+dLV+MHXyhNeeZeIiDJTQ0MDTCaTZPgukP4uExmZjACXEpKBVUbh9re1tYV93m63hxISip8oivjVu0fwuw9O4C+/PA0rlkxVbXp9pX1C4u0zIZ9XJPrr2SeDiFIkxWvTBGdTlY+u8Xg8oaG+TqcTNTVf/F1MVZeJjE1GSB2BgIh/f+swnPtOo/pmAXd/6Wq1QyIiyk/B6eCVlB+Cy+VCbW0tLBaLZJkVt9sNg8EAvV6PLVu2wGAwwOv1hppl5F0mkoXJCIX09AXwT298jPe9Z/GgaTZuufZKtUMiIqIk83g8ofXfgkN5Bwq2OsTSZSJZmIwQAKCzpx+bXtmPvSfP4R++OQdfFsarHVJWyPShvUSUxVI0Hbxer4coijEdIlqXiWRhMkI439WLjS/uw7GzF7HhnnlYOEWrdkhERJTChfIyDZORPOe70IN12/ag7UIPHr9vPmZNHKt2SEREBKS8A2smYTKSx063d+HHz+9Bb38AtsqFmFo2Wu2QiIgoDzEZuayyshJFReGnAl+9ejVWr16d5ohS69jZi/jxtj0YNXwY6ioX4spxo9QOKSFq99FQen72OSHKPPX19aivrw+7r7OzM32BpHA0TaZhMnJZU1PToElfctXHn57Hhhf24oqxI/HovfOgHV2odkhERBkj0hdQj8eTvjXSUtSBNRMxGckzuz7x4/GX96F8whg8cvc8FI/kR4CIiNTFO1Eeea/lDJ54/WN8aYoWa+64FqNGcME7IqKMxZoRyjWufafxb28ewldmTsCDptkYUcAF7zIB+4gQ0ZCUjobhaBrKJNt2ncDTf2jFN+ZfhVVLdVzwjoiIMgqTkRwmiiL+Z8cx/HbHJ6jUT8Z3vzJDtQXviIgoTv0AlPzJZjMNqS0QELHlD168tPsUvvuVGagyTFE7JCIiikcsyURPPdAbfhgyxDQOQ1aIyUgO6usP4GfbD+H3Bz/H6ltm4hvzr1I7JCIiSoXC1Zce4fR7gItpGoasEJORHNPd14+61z6G+2gbHr79Gtw06wq1QyIiokT0A4htPbvwOOkZqeFiTx8ee2kfDp7uwLq75sAwvUztkIiIKFF9UNZnREkik2ZMRnLEuc5ebHxhL074O/HYvfMx9+pxaoeUFzidOxGljNIOrExGKJ3OdHRj3fN70NHdh9plCyBcUax2SERERDFjMpLlTvg7se75PdAA2Fy5EJO14Rf7IyKiLJRFtRtKMBnJYt7PO7D+hb0YO2o4Hr13PiYUj1Q7JCIiorgxGbmssrISRUXhaxUireColr0nz+HRF/fham0RNtwzDyVFI9QOKS+xjwhR7qmvr0d9ffi5Ozo7s2fujmzCZOSypqYm6PV6tcOIifuoD5teOYDZE4ux7q65GF3IHyMRUbJE+gLq8XhgMGTH3B3ZhHexLPPOwc/xU+dBGKaXouYb12DkcK68S0RE2Y3JSBZ5bc8p/MfvW/D12VfghxWzMJwr7xIRUQ5gMpIlHO7j+M/3juCuhZOw8iaBK+8SEeW8PgC9CstnByYjGU4URTzz3hE85zmBv7h+Gv7i+qlceZeIKC/0QVlCwWSEkiAQEPEfvz+M1/eexv03lePe6yarHRIREVHSMRnJUL39AfzUeRDvHT6Dv62YBePciWqHREREacVmGlJRV28/Nr96AB8e92PNHXNwo2682iEREVHa9UNZQtGfrEBSjslIhuno7sOjL+5F65kLWH/3PFw3Vat2SEREpArWjJAK/Bd78Mi2vfj8fDcev28BZk8cq3ZIREREKcdkJEOcbu/Cuuf3oLsvAFvlQkwbP1rtkIiISFWx1Iw8A+DXQ+zrSmo0qcRkJAMcO3sRj7ywB8OHDUNd1UJMHDdK7ZCIiEh1sfQZ+avLj3D2ALg7qRGlCqfwVNmh0+ex5rndKB45nIkIERHlJdaMqOij4+fw2Ev7MG38aKy/ey7GjuLKu0REFMQOrHmnsrISRUVFYfdFWsExUX/2noXttQOYd3UJ/vHOORg1ggveqUGj2SjZFsX1KkVCRJmivr4e9fX1Yfd1dnamMRIO7c07TU1N0Ov1aTnXWwc+w7+4DuIG3Xj8vekaFA5naxkRUaaI9AXU4/HAYDCkOaLcx2QkzV788CQa3vHCNHci/uaWmVzwjoiIhsBmGkoyURTx252f4H/+fAz3LZqM7391Bhe8ywBsliGizMWF8iiJAgERv/hjK1748CS+feN0mA1TmIgQERFdxmQkxfoDIn62/RDe+vgzrPq6Dt9cMEntkIiIKCuwmYaSoKcvgCdeP4AdR9rw97ddg6Wzr1A7JCIiyhocTUMKdfb04ycv78P+U+348Z1zsGRGmdohETiUl4iyCWtGSIH2rl5s2LYXx/2dePTe+Zg/uUTtkIiIiDIWk5EkO9PRjfXb9uJcZy9qly2A7opitUMiIqKsxGYaSsBJfyce2bYH/QERmysXYEopV94lIqJEsZmG4tR65gIe2bYHowsLsGnZAlw5lgveZSL2ESEiyjx5Pw95T0+P5N9E7D/VjrXP7UbZmELYKhfmTSLS3d2NDRs2oLu7W+1QshKvX+J47RLHa6dMMu4ZsQs20yT6yJ5mGiYjCj9YnmNtWPf8HpRPGINN9y2AdnRhMsPLaN3d3di4cSP/qCWI1y9xvHaJ47VTJr3JSLCZJtEHm2myzne+8x2MHh2+j8dQiya9e/gMnnj9YyyapsWaO67FyOFceZeIKNtFWrX34sWLaY4mmlcBvDbEvnQkTMnBZOSyX//617j55ptjfv0bez9F/VuHcdOsK/Aj4ywML8j7SiYiopwQadXed955B0uXLk1TJLF0YDVefoTTCmBtUiNKFSYjCXjOcxy/evcIvrlgEiw3C1x5l4iIUoAL5VEYoijiN+8fRWPzcSxfPAV/dcN0LnhHRESkEJORGAUCIp56pwWvfvQp/vprM3Dfoilqh0RERDmN84zQAH39Afyz6yD+eOgMflgxC6a5E9UOiYiIch5nYKXLunr7sfnVA/jwuB/Wb1yLr8ycoHZIRESUF/KnZoRDQCK40N2HDS/sxd6T5/DIXXOHTESGGgIWq2wvr+a5s728UkrOr/Z7z+Zrlwvl1Tx3tpen5GMyMgT/xR6sfe4jHDl7AY99az4WTSsd8rVq/2KoXV7Nc2d7eaWYjKh3/mwvr+a5s718+uTPDKwZ20zj8XhQW1sLQRDg9/thMplQVVWVsnIDfXa+C+ue34OLPf3YvGwhZkwYk+jbICIiSlD+NNNkZDLi9XphMBjgdruh1+sBADqdDj6fD9XV1UkvN9DxtotY9/weFAzToK5qISaVFCl/Q0RERDSkjGymsVgsMBqNoYQCAKxWKywWS0rKBR3+rAPWpt0YXTgctkomIvlg//7PodFsDD2IiDJH/jTTZFwy4vf74XK5YDKZJM8vXrwYANDQ0JDUckGtZzvxD899hInjRqG2cgHGF49M9C0QERElQf4slJdxyUhzczMAQBAEyfPB2g6n05nUckG//NMnmH1VMR7/1gKMGzUi/sCJiIgoIRnXZ8Tr9QIAtFptxP3JKtfV1QUAKOk8iVu1Pux8/904or3kwoULeP/991FYWBh3WQDo7OyEx+NJqKya5Ts6OgAAu3btQnFxcVrPnazyl745nAxtxXssJedX+/qpfe2z+dplc/l8v3Y9PT24cOEC3nnnnYTKf/jhhwC+uHek1qdQVrtxJlmBpJ6YYWpqakQAotvtHrQPgCgIQlLLPfPMMyIAPvjggw8++Ij58cwzzyi72UVw9OhRcfTo0UmJc/To0eLRo0dTFmuyZFzNiE6nAwD4fL6w++XNMErL3XnnnXjmmWcwadIkjBo1Kt5wQwoLCxOuGSEiovTo6elBT09PwuW7urpw6tQp3HnnnUmMSmratGnYv38/zpxRXrMxYcIETJs2LQlRpVbGJSPBpMHv90fcn6xyEyZMwHe/+934giQiIkqhadOmZUUSkSwZ14E1OPpF3scjuG0wGJJajoiIiNSVccmIVquFXq8fNPrF5XIBAJYvX57UckRERKSujEtGAGDLli1wuVySWg6bzQabzRYaLeP1eqHT6ULJRqzliIiIUm2oEZwUXsb1GQEuzQ3idrthtVohCAK8Xi+sVqtkSne/3w+fzyfpIyIv53a7odVqcfbsWVgslrSub5PtlFwDv9+P2tpaAJeSwXyU6PVzOByora2Fx+OBXq+HzWaD0WhMQ8SZIxnXThAE2O32vLt2QHL+frlcLpjNZrS1taUoysyk5NppNBrJdvB+RDFSezhPqrS0tIiAdKivIAii3W5PSblcouQaOJ1OsaqqSgQgVldXpzLMjJXo9bPZbKLRaBTtdntoqDoA0el0pjrkjJHotbPb7WJ1dbXodDpFp9Mp6vV6EYDY0tKS6pAzSrL+fgmCIGq12mSHl9GUXLvg589ms4Ue4aaZoKHlbDJiNBpFo9Eoec5ut4vR8q9Ey+WSZFyDfE5GEr1+VVVVkm232y0CGHSsXJbotbPZbJLt4LVrbGxMeoyZLBm/uzU1NaLRaMy7ZETJtcun39FUycg+I0qptb5NLuA1UCbR6+dyuQY1aen1euj1+rxpe1by2aupqZFsB/uIDVw0M9cl43fX5XJh/PjxeXXdAGXXzuFwoLm5GWazmX8fFcjJZESt9W1yAa+BMoleP6PRGHUOnVyXzM+ew+GAzWbLm2sHJOf62e32QYldPlBy7ZxOJ/x+PxwOBywWC0pLSyUDKyg2OZmMpHt9m1zCa6BMsq+f1+uF2WxWGlZWSNa1s1qtoU6I+UTp9bNarXnb4VzJtbPb7RBFEW63G9XV1aGOr/xbGZ+cTEZaWloAAGVlZWH3DzVLa6LlcgmvgTLJvH4OhwOCIEhGkeWyZFy7uro6eL1e+P3+vKs2V3L9PB4Pxo8fn3cJXFAyPnt6vR52ux2NjY0ALiV3FLucTEbSvb5NLuE1UCaZ16+2tjb0hy0fJOPa1dTUoLGxEU6nE1qtNq++6Su5frW1tXnZPBOUzN/bqqoqVFVVKVxNPP/kZDKS7vVtcgmvgTLJun5WqxVbtmzJq+udzM+e0WhEdXV1XlWVJ3r9rFZrqFlh4AOA5P+5LNl/90wm05CJDYWXkZOeKcX1bRLHa6BMMq5fQ0MDTCZT3o1oSPZnb8mSJXmVzCV6/VwuF+rq6sLu0+l0eTF5Vyr+7gWPSbHJyZoRrm+TOF4DZZReP4fDAQCDZg7NhyrfZH/2vF5vXs3Amuj1c7vdEC/NORV61NTUQKvVhjpm5rpkf/acTicsFkvS4ssLak5ykkrBSY8GzsAoCIJkcqSWlhZREATJDJexlMt1iV67oLa2trye9CzR6xecOdRut0se1dXVeTMDcCLXrq2tTayqqpJMcNbS0pKXE1Ep/d0NqqmpybtJzxK5dm63W9Tr9ZLXNDY25u3fPiVyspkGSN76NuHK5bpErx1w6Ru83W4HAGzduhUmkwlGozGvFipM5Pp5PJ7QhEvhvlHlyxohiVw7rVYLv9+PlStXwm63w2QyQRCEvJwTR8nvbr5L5NoJgoCysjLU1tbC6XRCr9fDZDKF/gZS7DSiKIpqB0FERET5Kyf7jBAREVH2YDJCREREqmIyQkRERKpiMkJERESqYjJCREREqmIyQkRERKpiMkJERESqYjJCREREqmIyQkREOSkfVhzOFUxGiIgoJ5nNZk57nyWYjBAR5QGr1QqNRgONRoPS0lKUlpYOua3RaLK+VsHj8UAQhNC6WMG1Zga+57q6utDrXS4XdDpdaF9wxV5KDyYjRER5wO/3w2g0oq2tLfQwGo0AgC1btqCtrQ2iKMLtdoden83sdrtk0UlBEGCz2VBVVQUAMBqNqKmpCe03Go3Q6/XQ6/WSa0PpwWSEiChP2O32qCto6/V6yU06W7lcrrAJxdq1a0P7B3I4HPB4PKFkjNKLyQgRUR4wmUwQBCGm11oslqhJSyZzOBxD1mwEaz/8fn8oIfF4PLBarXA6nekMkwZgMkJElAeCzROxEAQBgiDA4XDAZDLB5XKhoaEBpaWlsFgscDgcoT4mHo8HwKWaBrPZDI1GA7PZLDmex+OB2WyGyWSCTqeD1WpN6nuTe/bZZyVNNHLBfXa7HX6/H2azGY2NjTEna5R8TEaIiGgQh8MBq9UKl8uFxsZGtLS0QBAENDc3o6qqCsuXL5e83mg0wmazDTpOsNahsbERTqcTNpsNdXV1EZOFgeWCCVCQ2WxGaWnpkB1s/X4/vF4v9Hr9kMcOxu5wOFBRUQGbzRbx9ZR6TEaIiGiQqqqqUBKg1Wphs9ngdrtDfSrCNeOUlZUNem7lypWSJKWqqgparRYNDQ0RO8nq9XrYbDYsXrwYDQ0NAC7VaFgsFthstiFrMbZu3YoVK1ZEfG9arTZUUyQIQly1RpQaw9UOgIiIMlMw4ViyZElC5b1eLzweD2pra8Pub25ujjpqxWw2w+VywWKxwGq1Rm1Ksdvt2L59e9TYgscJNjOFY7FYoNPpcPbsWSxZsoRJSwoxGSEioogS7cwavNE3NjYmfO5gsqLVaqMmIl6vF2VlZVHjdTgccLlcEAQhlDDJm2nMZjMEQQiNLDIYDNBqtRzymyJspiEiopQI9utQMoFaMAGJ5RjyuUXCCfZF2b59u6Qj60BerxcOh0NyrBUrVoTtE0PJwWSEiIhSIphIOByOsPtjmeXUarVCr9dHbE4JcjgcEZtSBo6c0Wq1qK6uBoBQn5Sg4LkG1sTo9Xq4XK6snwwuUzEZISLKcz6fL+4y48ePByCtsQj+P3jDDjZpWK3WQcmEPAEIJzi02GKxwOv1RqxpGWqSs4EqKipgt9tDTTIDO7IOTJh27tw5qKkn2Dk3kWtF0TEZISLKU/LkQS74fLj9wRt6cPhvQ0NDqLnD5XLBZDJBq9VK+lyYzWbU1dXBZDKhpaUlbPLg9XpRV1cHh8MBn88Ho9EYep3dbkddXV3YUTvRmmiCk77Jz2kymQBA0snW7/eHPUcwPkoBkYiI8orT6RSrq6tFACIAUavVijU1NWJLS0voNY2NjaIgCCIAURAE0W63DzqOzWYTtVptqLwoiqIgCGJNTY3odrslr4t2rIHnHXi8oKqqKlGr1UqOO5AgCEO+14HnbmxslJxLr9eHrkNVVZXodDpD72sgt9stApBcI0oejSiKonqpEBERkTLBOUuStaaOw+GA2WzGwNtjsLaHt8zU4NBeIiLKarHOLRKrYBOU1+uVzEfCWVpTh31GiIgoa8U6t0g8grOyDuzU+uyzz3JobwqxmYaIiLKW1WpN2eyoA2dg1el0oaHAlHxMRoiIKGsF5w2h7MZkhIiIiFTFPiNERESkKiYjREREpComI0RERKQqJiNERESkKiYjREREpComI0RERKQqJiNERESkKiYjREREpKr/H/KxkZjsXiZJAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rad_length_frac = found[\"rad_length_frac\"]\n",
"# @ z = 9400.mm or 770.mm\n",
"state = 1\n",
"\n",
"if state == 1:\n",
" slopex = found[\"ideal_state_770_tx\"]\n",
" slopey = found[\"ideal_state_770_ty\"]\n",
" x = found[\"ideal_state_770_x\"]\n",
" y = found[\"ideal_state_770_y\"]\n",
" qop = found[\"ideal_state_770_qop\"]\n",
"elif state == 2:\n",
" slopex = found[\"ideal_state_9410_tx\"]\n",
" slopey = found[\"ideal_state_9410_ty\"]\n",
" x = found[\"ideal_state_9410_x\"]\n",
" y = found[\"ideal_state_9410_y\"]\n",
" qop = found[\"ideal_state_9410_qop\"]\n",
"\n",
"data = ak.zip(\n",
" {\n",
" \"rad_length_frac\": rad_length_frac,\n",
" \"x\": x,\n",
" \"y\": y,\n",
" \"tx\": slopex,\n",
" \"ty\": slopey,\n",
" \"qop\": qop,\n",
" }\n",
")\n",
"lin_reg, features, xx0_test, xx0_predicted = fit_linear_regression_model(\n",
" data,\n",
" \"rad_length_frac\",\n",
" [\"x\", \"y\", \"tx\", \"ty\", \"qop\"],\n",
" 5,\n",
" include_bias=True,\n",
")\n",
"\n",
"nbins = 100\n",
"vmax = 100\n",
"\n",
"a0 = plt.hist2d(\n",
" xx0_test,\n",
" xx0_predicted,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax,\n",
" range=[[0, 0.5], [0, 0.5]],\n",
")\n",
"plt.plot([0, 0.5], [0, 0.5], marker=\"\", alpha=0.8)\n",
"plt.xlabel(f\"True $x/X_0$\")\n",
"plt.ylabel(f\"Predicted $x/X_0$\")\n",
"plt.title(f\"found rad_length_frac\")\n",
"\n",
"plt.colorbar(a0[3])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMAAAAIoCAYAAACPjZdDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdcUlEQVR4nOz9f5wb+X3feb6bHA3VMkVimn5EURyvRUDK2rlTPFPoSXa1PlMSASlZbfZW0wDpfVxi6U5DQBPs5XE3JzXUlzyW5K4jDDpzvjvvIRqgpY1WyWP3MQRaziYrry1gZFGJtbHYKFFW4h+Jujiy7CiJZkAMh1arZ9is+6NZmC6g0I0fBaAAvJ6PBx4zhar61hfV3ezqd33r812wbdsWAAAAAAAAMKOOTboDAAAAAAAAwCgRgAEAAAAAAGCmEYABAAAAAABgphGAAQAAAAAAYKYRgAEAAAAAAGCmEYABAAAAAABgphGAAQAAAAAAYKYRgAEAAAAAAGCmEYABAAAAQB9M01SpVJp0N+Zes9lUqVSSZVmT7gr6xM8QJoEADAAAAAB6YFmWksmkotGoisWi6/1HHnnE1z/oR9Fmr0zTVDabVTQaVTQaHfvxe1EqlXT27Fml02k1m82h2nI+bzKZVCQS0fr6uj+dHNAkv/aj5vUzVKvVFIlEtLCwoIWFBUWjUVUqlY59K5WKotFoaxvTNA891jR8H2O8CMAAAAAAoAfhcFjlcrnj/WazqWazqe3t7YHatSyrI8QZts1hGIahixcvHhkwjFP7OUqlUkqlUkO3a5qmzp8/r3w+r3K5rEQiMdZzHrSv/ah5/QzFYjHV6/XWcjqdViKR6Ng3kUgonU4rFAqpXq/LMIxDjxXE72NMFgEYAAAAAAzBMAzZtq18Pj/Q/slkUo1Gw9c2h3VUuDBuXufozJkzQ7eby+W0tLTUWs7n867RfaMWxK/9JIRCIa2urkqSZ8jsqNfrWltb67ndoH0fY7IIwAAAAABgQpLJJCNUjjDKczTJc8/X3s0Jtmq1Wtfzcu3aNV9G/mE+EYABAAAAmEmVSkXxeFy1Wk2lUkmPPPKI0ul0a/36+rrS6XSrTpBXzaVms6l0Ot16edWHqlQqSiaTSiaTHesOO0alUmn9oZ9Op12ByGFtOn3KZrOKx+Otz3hwfalUatVSqtVqrdpJXu31yzRNJZNJxeNxRSIRZbPZoY7tnNtIJNIRCh12jhyNRqN1zF4/Y6lUUjKZlGVZrbpUyWSydR79/t5xvk4Hv75B/tr7+TXu5WdI2h8F5jz6mMvlOtZXKhXFYjGFQqGe+nmUo84lZpANAAAAADOmXC7b4XDYlmSnUil7dXXVNgzDNgzDtm3bXl1dtQ/+OVStVm1JdrVabb23vb1th0Ih13v5fN6W1Gpne3u79V4sFnP1oZdjONtsb2+7jtutzXq9bodCIbter7feKxaLtiQ7n8+39k8kEq39V1dX7Xq9bqdSKdd2Rzn4OQ8e/2CfyuVy6xwPcmzDMOzV1dXWvpJsSXY4HG616XWObNt2naN8Pj/QZwyHw3Y4HHa959f3TjgcdvU5FArZoVCotRzUr72fX+NefoYOOvg9cPv2bdc6wzBc7RzVT0e37+OjziVmDwEYAAAAgJnk/KHtBCwHxWIxVxhx+/btjm0TiURHCGHb3n9QewUWvRyjW7jTrU3DMDz7ZBiGqx0nDGj/Y96rzW68PqdhGK7QwLb3g52DgUWvx3a2O9ieE6IcPB9HBWDFYnHgz+gVgB1se9DvHcMwOj6/06ZznoL6tffza9zPz5AjFot1nE8nSOu3n92O1eu5xGzhEUgAAAAAM8l5VOrxxx/vWFcul10zz21tbUlSa0Y+y7Jaj8EN6qhj9MuyLJmm6VnY23k8r72A+8HHxRztRdf7PX4ul2s9onfwkTfn8/V67Bs3bnSsd9rrpzbW8vJyx3Ety+p5fy/Dfu+YpqlYLObab3V1VbZte56Xo4zra+/n13jQnyHnMcaDj5Xm83lX8ft+++n1Gfs5l5gND026AwAAAAAwSl5/pIdCIYVCIVUqFT3//PMdQYcToITD4aGOe9gx+nVYKOSEQMMGP70c/7BZ+vrhnI9ardYRRgRl9r5Bvnec8zRI0NXNuL72fn6NB/0ZisViCofDsixLpVJJqVRK165d061bt3zp56R/jjA5jAADAAAAMHcsy1I0GpVlWSqXy1pdXe1YLw0+WqqXYwzKawSZE7YsLS35cgwvzjnxKxxIJBKKxWLK5XKq1WpqNpvK5/NaXV0dKngctV6/d0YRooz6a+9n34f5GXJGgeXzeVUqFS0vL7sCRT/6OamfI0wOARgAAACAuROPx7W0tNQ1lHICmIOPuvl9jH45o6K8Zqpz/piPRCK+HMuLc04qlYrn+kFm0CuXy4rFYjJNU6VSSfl8Xvl8fqh+jtpRX1fn69RtdNIgoc24vvZ+fo2H+RlKpVKtR1kvXbrkmoFz2H5O+ucIk0MABgAAAGCuWJYly7JcI0qcP3yd0SrOo1ClUslzpMhRdbx6OUY/7Un7f/QbhtFq+6CtrS2FQiGlUqkj2xmUU9Mqm812PEZ2sF5TP5LJZGsU1erq6qGPPrafo5dfflnScKP0Go1GX/v3+73THrJks9mO0UVB+tr7+TUe9mfoYM2vRCLhWz8n/XOEySEAAwAAADCTnD+w2//QdgKISqWiUqmkUqnUeuTKNM3WqBJnhE80GlWtVpNlWa3tLMvS+vq6q/2DQUovx2g2m62RJsVisVU0vFub0v6oolAo5BoR4zw6uLGx0QpmhgmFugmFQq5zkkwmtb6+rng8ru3t7VYo0euxnYDIaadUKqlSqXQEGt3OUTfNZnPozz/s944zii0ejyuZTCqbzSoajSoSibS+RkH82vv5NW5v67CfIS9OCOUVRvXaz256PZeYMZOehhIAAAAA/FYul+1wOGxLssPhsF0sFl3ri8WiHQqF7HA4bK+urtq2bdupVMoOhUKtZWc7px3DMOzt7e3WPtvb23a9XrcTiYQtyZZk5/N5+/bt230dwzAMOxQK2alUyrZt+9A2bdu2b9++bScSCTsWi9mpVMpOpVJ2vV5vra/X67ZhGK3PXq1W7du3b9upVMrVZjf1er1j24PHz+fzXc9tP8d2zqXz/sFXOBx2HbP9HJXLZTsUCrW+LvV6veM4B8/xUZ8xlUrZ1Wq11bYf3zvlcrl1LgzDaLV/UNC+9g6/vsbO+TrsZ+gwqVTq0G2O6udh38dHnUvMngXbtu3RxWsAAAAAAHQyTVPPP/+81tbW1Gg0XCO3yuWyIpGIb/XTAOChSXcAAAAAADBfnJkUb9++rVAo1PHIWTgcHqioPgB0QwAGAADGqlKpqFqttmZ3CofDHTN+maapXC6ncDisZrOpeDzeUQAXADC9nOLjly5d0traWqv4vWVZqtVq2t7eDvxskACmC49AAgCAsalUKsrlcq4p0ePxuAzDaP2hY1mWIpGI6vV66w+iSCSibDbLrEwAMEPW19eVy+Vchead3wdHFTEHgH4RgAEBZZqmtra2JvbH3qSPPwrNZlPXrl1TLBZTOByedHeAuRSPxxUOh1UsFlvvra+vq1gsant7u7WNJFWr1dY2pVJJ6XRaXLYAwOxxan9xfQZglI5NugPAJJimqWw2q2QyqUgkcuj0u+NmWZaSyaSi0ajrD8QgH985n9FoVNFodMQ9HEypVNLZs2eVTqc7prMeRpC/l4AgajQaHTVdtre3W3/0NJtN1Wq1VgjmWF5elrT/swwAmC2hUIjwC8DIEYBh7pimqfPnzyufz6tcLiuRSLRGHQRBOBxWuVyequMbhqGLFy/KNM0R9ap/lmW5gq5UKuX7aLagfy8BQZROp1tBu7T/c3Tt2rXW449bW1uS1PGHkPMo5MFRYQAAAECvKIKPuZPL5bS0tNRaprimP5w/ToMimUyqXC67ZhQ6c+aMr8fgewmz4A//8A/10ksvdbz/2muv6bXXXhuq7be//e1617ve5XovlUqpXq+rVCopEokoHA7r1q1brZ9Vpyhy+2xgDmc9MC1eeukl/cZv/Ibe8Y53aHFxcdLdAQAg0HZ2dvTiiy/qgx/8oH78x3/c17YJwDB3gjRKCaORTCbH8nXmewnT7g//8A/1zp/6Kb0+ovbf9KY36Tvf+Y7+g//gP3C9XywWtbW1JdM0W7N9OTM8OqMoD4bLB/n5CDMwDl/60pf00Y9+dNLdAABgqnz+85/XRz7yEV/bJADD3CiVSqpWq63RA87jN+l0ujXLTLPZVDabVSgUaoUb2Wy2tb5SqejSpUtqNput2clqtZqKxaIqlYoSiYTK5XKr2HqxWNTa2ppCoZCy2axM02xtc5BzXEckEun5c1UqFRWLRWWzWVmWpWw2qwsXLrTqd62vr2t7e1uhUEi1Wk3pdLrjUcBhjt8L0zRbM/xYlqVEItEaLdXvuZL2v2aSVKvVZBiGa+rsSqXS+tql02mFQiHXemm/BlGpVFKxWDz0ON0c9b3k99fEOU4+nw/cSDtMt5deekmvS3pCUvv9tb0Hr0G9LOmfvP66XnrppY4ALB6PK51OKxwOK5lMtkZsJhKJ1r8/jUbDs11qxGDavP3tb5ckbWxs+PJv+MrKijY3NwPTjp9t+dXO3bt3de7cOV2/fl0nT54MRJ/8bCtoffLzfPvVJz/b8bOtWf4e53yPt09+thW0PpmmqUuXLrV+f/rKBuZMOBy2w+Fwx/v1et0OhUJ2vV5vvVcsFm1Jdj6fb72XSqVsSa7ttre3bUl2IpFoLScSCVuSHYvF7NXVVbter7f2Pdje9va2HQqF7Gq12novn8/bkmzDMA79LOVy2Q6Hw7YkO5VK2aurq7ZhGK39VldX7YM/5tVq1ZbkOtYwx2/ntU+9XrdjsZirz05/neP3eq5s27YNw7BXV1db+0qyJdnhcLjVpvO5t7e3Xfs6nysWi9n5fP7Q4/TC63vJr69JOBx29T8UCtmhUKjvPgKHqdfrtiT7b0j2L/n8+hsPfjYP/ltp2/v/hh78N+H27duu72/nZ6JcLnf09+C/HcBRPv7xj9uf/exnJ90N+/r167Yk+/r167609zM/8zOBasfPtvxq55VXXrEl2a+88srQbc3yefKrLT/Pt23P7nnys50gfo9zvnszy+fJr7b8/r15EEXwgQcuXbqk5eVl193ZVColwzBaI3kk77o07Y/qhMNhXbx4UdL+SAdn5I4zAuhgEedsNqvl5eXWKDNJWl1d7anPiUSiNRoqFAopn8+rXq+rXq9L2k/PD/bXmUXNr+P34tKlS67aWIlEQqFQSKVSSc1ms69z5YzucrYPh8OtkVPVarXnWSuTyaRWV1e7HmcYfnxNkslka3SMY21tTc1mk8e/MPWuXbvm+nfW+TlpNpsyTbP1M9Fe68tZDupMswiWW7duqVgs+vr7DAAATDcCMED7f1iZpun5aIITZvQarrTzCsycR3ssy1KlUlE8Hh+o7YPtP/744x3ryuVyK3iR3phdzQlR/Dj+YZzzmsvlWo85OY8LHuyP47BzJUk3btzoWH9wJrleOX9gHzyun4W1h/2amKbpCiSl/VDStu2uhcGBYTwk6U0+v7rVWFhaWuoIcp3v91AopFAoJMMwOkLpWq0mSbpw4cIQnxTz4uzZsyoWi7p27dqkuwIAAAKCGmCADg9Puo1G8IPTph81bbyCEeePyUqloueff74jkPHz+F6c89pPfa3DOP13an8dFMTaWIN8TZxzRtCFWZVOp5XL5ZTP51vf55VKRYZhtP4t2tjYUDQalWVZrffy+bxrH+Aoly5dmnQXAABAgBCAAQd4PV7m/LHVbUayYTgBVLdiz360n0wmdfHixVYIdbDY/TiO7/zXj5AtkUgoFospl8vJMAwtLy8rn89rdXV1agpj9/o18eucAb04Lv8vCI53eX91dVWhUEjJZLIVXDebTb3wwgutbQzDUL1eVzabVTgcbk0m0T5ZBHCYD37wg8rn83r00Ucn3RUAABAABGCA3hg95Dxic5ATivk9M6L0xsirg4/E+SkejyscDnetgTLq4zvtVyoVzz7UarWOR/2OUi6XdenSJZmmKdM0p25mxKO+Js5nKZfLnueGYAyj4DwC6Xeb3aRSqSPDLMMwfBs9itnk1IP00mw2VavVdO3atcAEYL/4i7+ot7zlLZ7rMpmMMpnMmHsEAMBkFAoFFQoFz3U//OEPR3ZcAjDMHa/RTuFwWIZhyDTNjoBha2tLoVCo9cfamTNnJO0HEU5Y4Yza6bdAufN4ZalU8ny0Z5iC55Zlufp4sD3nHIzy+NIbdX2y2axisZirL6VSaaAgJ5lM9lywvr3/L7/8siT/Rrz1206/X5NkMukKwbLZrNbW1obsNQDMhl4C0nK5rE9/+tNj6M3RvvCFL+jnf/7nh27Hr6DMz8AtiH3yy6yfp1k+50E8T5zv8bY1y+fbz7Ym0afDbvx87Wtf07lz53zr00EUwQceKJfLCoVCraL30n44kc/ntbGx0QqHnPAim82qVqupVCq1CuTXarVWQflewpFQKNQaCRSNRlWr1VqP+kj7gcn6+vqhbTgBSnvY4zyyWalUVCqVVCqVWu2apqlKpSJJQx+/n8+XTCa1vr6ueDyu7e3tVrjTa5BUKpVUq9Va7ZRKpdbMkAc5o/WKxWKr0P9hms2mr4+BDvs1cWbNjMfjSiaTymazikajikQi1D/CSDiPQPr56vYIJOCXRCKh7e1t3b59u+O1tbWlVCqlf/2v//Wku+m7af6DZ1zt+GnWz9Msn/MgnifO93jbmuXz7WdbQezTyNjAnKjX63YqlbIl2ZLsVCplV6tV1za3b9+2E4mEHYvF7FQqZadSKbter3e0lc/n7VAoZIdCIXt1ddW2bdsOh8P26uqqXa/X7Xq9bhuGYUuyw+GwXa1W7du3b7uOn8/nW+0Vi0U7HA7bkmzDMOzt7e1We9vb210/U7lcbu0XDoftYrHoWl8sFu1QKNRqy7ZtO5VKufrdz/Gdvnu92j/b7du3XeerWz/7OVdOv7yOHw6HXcc0DMMOhUJ2KpVqnatQKNT6jPV6veM4B8/JYZ/1sO8lv74m5XK5dV4Mw+j4XgX8UK/XbUn2pyT77/n8+tSBnxdgFGq12qHrS6WSvba2NqbedHf9+nVbkn39+vVJd2VuvPLKK7Yk+5VXXpl0V+YC53v8OOfjxfker1H+3lywbdv2P1YDAP+Zpqnnn39ea2trajQarpFb5XJZkUika20tAJ1M01Q0GtXflvRTPrf9XUm/pP0ag9NUpw+z44UXXtCFCxdaj79PivMox/Xr1315BBJHu3Pnjk6fPq1XXnlFp06dmnR3Zh7ne/w45+PF+R6vUf7epAYYgKlgWZai0ahu376tUCjU8ShgOBz2nMQAwOj85oOXl9fH2RHMpZs3b3Zdd/BxfgAAAGlOAjBmTQOmnzPRwKVLl7S2tuaagKBWq2l7e7tVOwtAf5waYP2KP3h5eVHS1UE7BPTAMAwtLCx0XW/b9lB1LAEAwGwJbABmmqZyuZzC4bCazabi8bgSiURP+7ZfDBmGoXq9PopuAhiTWCymfD6vXC7nKmpvGIby+Xxrlk4AwHwIhUK6cOGC5+QgZ86ckWEYOn/+/Pg7BgAAAimQAZjzqNPBuiGRSESNRuPIP3JLpZJSqVRrFjhJrZnmAEy31dVVra6utmp/MbIT8MdDkt40gjaBUdrY2NDKysqkuwEAAKZEIK9P0+m0YrGYq2huNptVOp0+MgArl8uqVquj7iKACfKqAQZgcA/J/wuCQF5gYKYQfgEAgH4E7vq02WyqVqt11PJZXl6W9MYILy+VSkVbW1tKJpOKx+M8EgUAADCnnnrqKS0vL+tjH/vYRPvx8MMPS5I+8pGPaHFx0XObTCajTCYzzm7NtBMnTujy5cs6ceLEpLsyFzjf48c5Hy/Ot/8KhYIKhYLnup2dHUlv/P7004Jt27bvrQ6hVqspHo+rXC531PxaWFhQIpFQuVz23DedTqtUKrWWQ6GQyuUyj0ACAODBNE1Fo1H9XUl+P1BsSfqk5CpnAIzLrVu3FIlE9Mgjj+jll1+eaF+cnzN+FgAAONoof28GbgSYM9Nbt8ebnPVeisWiisWiTNNUsVhUqVRSPB7X9vZ211pBL730kr70pS/p7W9/u9785jcP3O+HH354JAklAGD6vPbaa3rttdcG3v9HP/qRvv/97+tDH/qQfvzHf9zHngHz4ezZsyoWi9SKBAAALSMLwO7cuaNGoyHLshQOh/WOd7yjp/22t7clSUtLS57rm83mkW0YhqFisah4PK5kMqlsNtt11NiXvvQlffSjH+2pbwAAjNPnP/95feQjHxn5cSiCj1l04cIFnT59etLdAAAAAeH79elXvvIVPfPMM3rhhRckSbZta2FhQdJ+MLW+vq73ve99Xfd3Zm9sNBqe6/u5k5dIJJRIJGSaZtdt3v72t0uSfuVXfkU/+7M/23Pb7X7xF39RX/ziFwfeX9ov5rq5uTn1bdy9e1fnzp3T9evXdfLkyYn0YZba8ON8+tGPWWojKOc0COfCjzaCcj6D1MYTTzyhL3zhC33t88rO6yr91vdkS3rPW5v6W6v/99bvKAD9e+GFF3Tjxg3lcrlJdwUAAASArwHY5uamcrmcLl68qGw26xrF1Wg0VK/X9clPflIf//jH9eSTT3q24QRc3UZ69TuUPR6Pq1ardV3vPPb4sz/7s/r5n//5vto+6C1vecvQz6cuLi7ORBt37tyRJD366KM6derURPowS234cT796McstRGUcxqEc+FHG0E5n0Fq4y1veUtfv1N+8Oqu1r74bb0tckp/58Pv1h/c/IYkDfVofj+Oy/87Ysd9bg/w8pWvfEXVarXjurHRaMg0TTUaDQIwYASuXDl8GQCCyNfr3a2tLW1tbXVdf/78ea2urupTn/pU122c2R7ba305y9FotO9+OW0CABA0Tvgl2fo7H3633nbqzfqDSXcKmAIbGxtKp9OHbsOM4AAAwOFrAHbmzJmetjusoG8oFJJhGKpWq1pdXW2974ziunDhQl99qlarR14cAX5aWLjqWv6Zn5lQRwAEnlf4NQmD1gD7nyX94y7rBp8CAOhNsVhUtVrV8vKybty4oW9+85v65Cc/KWn/SYJPfepTeu655ybcSwAAEBTH/GzsO9/5jtbW1vTd737Xc/2LL76oZ599tlXovpuNjQ3VajXXKLB8Pq98Pt+aHdKyLEUikVYw5kyVub6+3tqnUqloaWlJiURiyE8GAIC/ghJ+SW88Atnva0XS/9Dl5b4VAPgvFovp/PnzOn36tGKxmOsphFAopGg0qrW1tQn2EAAABEnfAdhXvvKVruuee+45fec739HZs2d1/PhxnTlzRu9617t05swZHT9+XJFIRDdu3NBnPvOZQ49hGIbq9bqy2ayy2WxrJseDI8KazaYajUar5kM4HNbS0pJyuZzi8biy2axCoZCKxWK/HxEAgJEKUvgFTKtXXnnFtXzhwgU9++yzrvcqlco4uwQAAAKs70cgk8mkXn755a7ry+Wybt26pXq9rq2tLTWbTUUiEYXDYRmGobNnz/Z0HMMwVC6XD11/+/bt1nIoFFK1Wu39gwAAMAFBDL8GfQTyqDaBUQqHwzp+/LgeeeQRbW1taWVlRcvLy6pWqwqFQqpUKq0nBwAAAPq+Pr19+7b+4l/8i/rGN77RdZuzZ8/q7NmzrUcPv/KVr+j973//4L2cAplMhjZ8FJTPMUgbtn3ZtVwodK95N07TfE5H0YYfhu1HUM7FrJzPaWgjiOEXMK0++clP6qWXXtI3v/nN1szj165dUzwe161btyTtl9AIipWVFS0uLnquy2Qygfm3GACAUSsUCioUCp7rdnZ2RnbcBdu27X52eOc73ynDMPTNb35TtVpNP/VTP3XkPhcvXtTzzz8/cCdH6Wtf+5rOnTun69ev9zVlPbq7c+eOTp8+rVdeeUWnTp2adHemHufTf5xTf3E+e9NP+DWu301O/czPS/ppn9v+fUkflVSv12UYhs+tA4e7deuWlpaWdPr06Ul3pfVzxs8CZsmVK4cvYwp9/cqke3C091yZdA8wBqP8vdl3DbBisahr164pl8spFovpW9/6Vtdtv/jFL+rxxx+n/gIAYK4x8gsYr7NnzwYi/AIAAMHRdwB2/vx5SVIikdDzzz+vlZUV/eqv/mpr/c2bN/XUU0/p+PHjSiaTqtfr/vUWAIApMw3hl1MDzM8XNcAAAEBQWZbVmlBvmtrGcPoOwA5yZmv89Kc/rYsXL+pd73qXotGoisWibNvWysqKisWiHnvsMb/6CwDA1JiG8AsAAGDeJJNJNRqNqWsbw+n7Bu2zzz6rT3ziE5L2i9sXi0WZpinTNGXbtiKRiFKplFKpVGvouVOYFACAeTFN4ddD8n/EFiPAAABAECWTSZmmOXVtY3h9X59++tOf1o0bN1Sr1dRsNuXU0E8kEgqHw3rhhReUTqddhZBXVlb86zEAAAE3TeGX9MYjkH63CQAAECSVSqUVUKXTaYVCIa2trbWKrZumqVwup2azKcuylEgkXDMKN5tNZbNZhUIhNZtN1Wo1ZbNZpVKpI9vG5PV9fdpsNlWpVGTbtgzDUDqd1oULF1qjvSqViqLRqCqVin72Z3/W9w4DABBk0xZ+DeN/fPDysjvOjgAAAPQgkUjoxo0bWl9fV7FYVDgcbq0zTVPZbFbValXSfraRTCbVbDZVLBYlSZcuXVI4HG6FYqVSqVXv67C2EQwD1QBbWVlRvV7X1taWLl265Jpl52Bx/N/8zd+UtD8bJAAAs25aw6/jeuMxyH5evyjp17u8/n9j/QQAAADDuXTpkmu0VyKRUCgUcoVctVrNtU8qlRpnFzGkvkeAra6u6plnnjl0G8MwtLW1pVgspkgkItM09cQTTwzcyVF6+OGHJUkf+chHtLi46LlNJpNRJpMZZ7em2okTJ3T58mWdOHFi0l2ZCZxP/3FO/cX53Ndv+FUoFFQoFDzX7ezsSHrjdxQAAABGx7Ks1uOPXpx8IxwOa319XWfOnNHq6qoktf6L4Os7AEun0z1tFwqFtLW1pXg8Lsuy+u7YuDh/XGxubvJsrk9OnDihK1euTLobM4Pz6T/Oqb84n4ON/Drs5oppmopGo2MLwKgBBozeysoKN1sBIKCc2l3lcvnQ7crlsqLRqLLZrIrFosrlMjnCAHq5ETwKfV+fnj17tq/tq9Wq3vnOd/Z7GAAApsK0PvYIYLy42QoAweUM2rEs69DaXeFwWLdu3VIymVStVlM0GlWxWORRyD71ciN4FPqqAXbnzp2BDuIUjAMAYJbMSvjljADz88UIMAAAMC2c0KtSqXiud2p/WZalUCikarXaGi3W61NymLyeA7Bbt27p/e9/vy5evKivfOUrfR3k/PnzfXcMADAaCwtXXS8MZlbCLwAAgHnkFLaXpFgsJknKZrOtxyEdpVKp9f/tRfKdwT7tZZ8Oto3g6DkAO3v2rLa2tvSpT31K165d07ve9S499dRTunnz5gi7BwBA8Mxa+DXoLJCHvY6P9RMAo1Gr1fTII490vG+appLJpLLZrNLpdNcRAwCA4IlEIpL2n1SzLEuVSkWhUKhVzD4ajSqZTGp9fV3xeFzb29utgOzatWuusKvZbCocDrdGkHm1jeDo+wmFxx57TM8995yk/VoGn/70p3Xr1i1dvHhRqVRKp06d8r2TAAAExayFX5L00HHpTQs+t2lL2vO3TWDcvB5rsSxL0WhU9Xq9VdMrEomo0WhQAwYApkAqlVKxWNS1a9ckvVGyKZ/P68yZMyoWi6pUKjJNU9ls1vVv+/LysuLxuBKJhKT93wn1ev3IthEMQ5XoWFlZ0crKil555RVdu3ZN73//+3XmzBml02k98cQTfvURAIBAmMXwC4C3bDarcDisRqPhej+dTisWi7kK2jsjwQjAAEyt91yZdA/G6mBoddDq6mprJJiXarU6cNuYvL6K4Hdz+vRpXbp0SVtbW3ruuef0jW98Q+985zt5RBJzgXpKmDa2fdn1Qm9mOfw6flx66CF/X8d5BhJTrFar6cyZMx2zNjabTdVqNcXjcdf7y8vLktx1YgAAQLD4EoAddPbsWT3zzDP6zne+o0QioU9/+tN617vepWeffXbgWSQBAJikWQ6/AHQqFoueIwC2trYkvTFbmMMJynoZGQAAACZjpLOUnz9/vjUD5MbGBo9IAgCmzjyEXw8dk940wIit516XSq97r/uRPVyfgEnJZrOuWb4Ocgofh0KhQ9d7uXv37lA3g0+cOKETJ04MvD8AAOOwu7ur3d3dgfe/e/euj71xG2kAdtClS5d06dIl3bp1S8ViUc8//7yef/75cR0eAIC+zUP4NYyPv2n/5eWbe9J/8qPx9gcYlmmaOnPmTMcIL8f29rYkaWlpyXP9YdPenzt3bqi+Xb58WVeuXBmqDQAARi2Xy+nq1WCWBhpbAOZwHpEEZgU1lIDZNE/h10MP7c8E6WubPs8qCYxDLpdTuVzuut6Z3r69ML6jW3AmSdevX9ejjz46cN8Y/QUAmAZra2t6+umnB97/5s2bQ9806saXAOzFF1/UO97xDj+aAgBg4uYp/AKwL5vNKh6Pux5jdP7f+a8TcHUb6XVYAHby5EmdOnXKp94CABBMwz6yf/LkSR974+ZLABaNRpXP5/Xkk0+63r9165bOnDnDL3sAwNSYx/DroePSm3weEz72IebAkGq1mtbX1z3XRSIRGYahF154QVJnrS9nORqNjraTAABgYL7MAnn+/HnPO15nz55VqVTSzZs3/TgMAAAjNY/hl6T9q4HjPr8OucKIx+NaWFjwfNVqtdZ2pmkqmUwqm80qnU6rUqn4+7mBA+r1umzbdr1WV1cVCoVk27bq9bpCoZAMw+iY7dH5vr1w4cIkug4AAHrgyw3aa9eu6eMf/7jC4bDrUcgXX3xRL730ks6fP6+XX37Zj0MBADAScxt+jZllWbIsS/l83jWT3vb2ttbX1xWLxVrbRaNR1et1GYYhaX8UTqPRUCqVmkTXAUn7M5tHo1FZltW6AZzP5zu+pwEAQLD49oTCc889p6eeekqhUEiWZck0TVmWJdu2lUgk/DrMyKysrGhxcdFzXSaTUSaTGXOPMCsWFtwzYFA0HwieSYRfhUJBhULBc93Ozs7Ij+9yXP4/s3jf++1ardYaSXPQwfBLktLptGKxWCv8ktQaCUYAhkkyDEP1el3ZbFbhcFiWZSmbzfJ9CQBAwPlyufvxj39cGxsbsm279V40GtVzzz2nWCyms2fP+nGYkdrc3HRdZAMA5sOkRn4ddnPFNM2ZrSXULSR4/vnnlU6nJe0XGK/Vasrn865tlpeXJUmlUomwAWPhjOxqZxjGobNFAgCA4PGlBti1a9d0/vx5FYtFbW9v6/79+zp//rwikchUhF8AgPnEY48PPDSiV4+azaZM02zVT9ra2pLUOaOec6Oqvf4SAAAAcBRfArBUKqUvf/nLunTpUivweuaZZ3T79m199rOf9eMQAAD4ivArOK5duybDMFqPRToz6nWrp9Q+Ax8AAABwFF8CsIsXL3q+v7KyokceeURra2t+HAaYSrZ92fUCMHmEX22cGmAHXrvHpTvHBn/dXej98OVy2XUtsb29LUlaWlry3L7ZbA76SQEAACbKNE2VSqVJd6OroPdvGL7UAHvssce6rrMsS6VSSblczo9DAQAwFMKv3uRuS1eboz+OU++rWCy23otEIpKkRqPhuU/7o5HANGDCJQBBduXKpHtwtGno42GcSVMqlYoMw2jVM3Vmvs7n8xOtcdqtf6Mwqcmg/J7zqUMikeBCFQAQCIRfXRzT/iiwA9bOSE97D8Dqyc1d6dwfH71drVZTOBx2XSs4/99tpBfXFZhGTLgEAPMtHA6rXC5rYcE9TL7ZbKrZbLZGwPfLsiwtLS11LR0xbP9GYVKTQY08ADt79iyF8AEAE0f4dQjnEcgDTjx4Derk/d62e/7555VIJFzvObM9ttf6cpZndYZMAAAwfwzDkG3bA++fTCZVLpeHDsDmgS81wAAACDLCr+CqVCodtURDoZAMw+iY7bFWq0lSa7ZIAACAeZZMJmWa5qS7MTVGPgIMAIBJIvzqgVP83u82j1CpVFphV7uNjQ1Fo1FZltV65DGfzyufz3OHEwAADKTZbOratWsqFovK5/OyLEvFYlGWZSkWi2ljY6N1nVGpVFQsFpXNZlv1sS5cuNCqW2qapnK5nJrNpizLUiKRUD6f7zheNpttLTt1Tg+qVCp6/vnnJe1PDNRtf2ckfD6fl2EYqlQqrfArnU4rFAppbW2tdV3lV/9mCQEYAGBmEX4F2/PPP991NJdhGKrX68pmswqHw60Lz0kWhwUAANMtm822Zjh0gqS1tTU9//zzrUBpe3tblUqlFXyFw2GFQiGFw2FtbW1J2g+Xstlsa7R6pVJRMplUs9lsBWROcftyuaxYLCZJWl9fd/XHsixZlqVKpdLa5uC6eDyuarXauhn4yCOP6Pz587p9+7YSiYRu3Lih9fV1FYtFV41Uv/o3a0b+COSzzz6rF198cdSHAQDAhfCrD04RfD9fPVxhlMtl1+yP7QzDULlcVj6fV7lcJvwCAABDcUZ+SfuPD+bzeSUSiVYI5IRRiURC6XRa0n5phnw+r3q9rnq9Lkm6dOmSazRVIpFQKBRSqVRqTeKTzWa1vLzsCrZWV1dd/QmHwx3vOZLJpNLptCvYWltbaxXNP4xf/Zs1fY0A29jYaKWlvXCG2jUaDX3605/uu3MAAAyC8AsAAACHaZ9VOp1Oq1arqVqttgIjSXr88cdd21mW1Xq80MvW1pbC4bAqlUrHI4e9co6xsbHhen91dfXIkGoc/ZtWfQVgy8vLrRS0H+VymQAMADAWhF8D8JgF0pc2AQAApoRTO6t9Fur22qNO3a32el0HORP3tIdsvXKOMUjd03H0b1r19QjkY489pkQiofv377deTkHag+8dfK2urnbM4gQAwCgQfgEAAGAQS0tLko4OhZyArD0o89qm0WgM1JdejjHMvsP2b1r1fb+3fYicZVn6zGc+03X7dDqtZDKpGzdu9N87AAB6RPg1hAnNAgnMk5WVFS0uLnquy2QyymQyY+4RAOAgJwyKRqOHbucEZJVKxfNxxFqt1trGqRnWL2c02sEC9QcdnCV7Ev0bVqFQUKFQ8Fy3s7MzsuP2fXl69uzZvrZ3nj8NOi5KAGB6TWP4Nalf/H4q/Fup8O+81+3cH29fgKDb3Nxs/UEDAAieSqWiUCh05KQ7TiCVzWYVi8Vc/7aXSiWFw2EtLy+3lvP5fMejjEcVsT+4fzKZdIVg2WxWa2trXdsbR/+GdVjGYprmkSHkoIaeBdK2bf3mb/6m57o7d+50zFoQVJubm/rd3/1dzxfhFwAE1zSGX9L+L/5uv3c2NzfH25kBZ4HM/IT0u4b3a/Onx/sRAAAA+nFwJupms6lisegqOu+EQO1hUCgUao2sikajSiaTWl9fVzwe1/b2tmKxWMc2tVpNlmUpm81K2h8otL6+7mr/4OOIzsyTkhSPx5VMJpXNZhWNRhWJRFqBVSQSaX0WZwZLv/s3S4Z+QOGZZ55ROBzW448/rng8rnA4rEajoXq93pox8rApzgEAGNS0hl+BQxF8AAAwZ8LhsKLRaGvATrFYbI2eqlQqrRwjm82q0Wi4Robl83mdOXNGxWJRlUpFpmkqm812bBOJRJTP5xWPx2UYhsrlsiqVihKJhBKJhGu2RtM0tb6+rlQq1QqowuGwcrmcKpWKDMNQPp93jQZLpVIqFou6du1a6zP42b9Zs2Dbtj1sI05SuLm5qYWFBUn7I8Ok/Wk6n3nmmWEPMTLO8Lp6vc6wdACYIrMcfo3rd1PrOIZkvNXntl+Voqb4/Yq5x7UmZtGVK4cvA0G2vr6ubDararXqWV8LkzXK35u+3O8Nh8Mql8u6deuWLMtqFWRbXl7W6dOn/TgEAAAtsxx+TQQjwAAAADDjhq4B5rhz545u3bql8+fP69KlS5ImN6MAAGB2EX4BAAAA6JcvAdhTTz2lRx55RB/4wAda750/f17b29sdsxMAADAowq8ReWhELwAAgABpNpuqVquSpHK5POHeYNyGDsA+9alPqVgs6vTp0x2PO166dEn1el2f+9znhj0MAGDOEX4BAABgGKVSSfF4vFUAfhZnOkR3Q9+frVQqqlQqeuKJJ3ThwoWO9fF4XM8884w+9rGPDXsoAMCcIvwasWPyv2aXb0UWAAAA/LG6ujrpLmCChg7AwuGwnnjiCUlqzQB50I0bN2RZ1rCHAQDMKcIvALNgZWVFi4uLnusymYwymcyYewQAwGQUCgUVCgXPdTs7OyM77tABWCgUav2/bduudd/85jdVqVQUiUSGPQwAYA4Rfo0Js0ACI7e5uen7dO4AAEyjw278mKapaDQ6kuMO/YDC2tqaPvjBD+rmzZutEWAvvviinn32WS0vL2thYUHpdHrojgIA5gvh1xg5AZifLwIwAAAABMjQ93sfe+wx5XI5PfnkkzJNU5VKRdIbo8FWV1f1iU98YtjDAADmCOHXdChsS4UuVQ529sbbFwAAAOAwvjzwYBiGtra2dOvWLdXrdd26dUvhcFixWKxjZkgAwbSwcLXjPdu+PIGeYNyC9rUn/JqA4xpoxFbmz+2/vJi3pWhtqF4BAAAAvhk6ALt586YeffRRSdLZs2d19uxZ1/ovfvGLrSL5AAAchvALAAAAwCgMXQMsl8sduv6xxx7TU089NexhAAAzjvBrgqgBBgAAgBk30AiwV155Rbdv35YkNZtNffe73+2YAdJZVywWde3aNX3mM58ZrqcAgJlF+AUAAABglAYKwBqNhpLJpL75zW9KksLhcNdtbdse2RSWflpZWdHi4qLnusOm6ATatddTmpY6WtPST/hv0l/7eQ2/CoWCCoWC57qdnZ3xdsYZAeZ3mwCAqXflyqR7AAD+GOhy9+zZs9ra2mqFYIlEouu2kUhEly5dGriD47K5uSnDMCbdDQCYK/MafkmH31wxTXMqbh4BAAAA02Ko+73lclmbm5taWVnxqz8AgDkxz+FX4Aw4C+SRbQIAAAABMfQDD074defOHZ06dar1/osvvqilpSXXewAASIRfgcMjkMDIUW4DAIB9kyoFMvTl7je/+U3FYjE1m03t7e213n/HO96hT33qU3rnO9+pJ598ctjDAABmBOEXgHlEuQ0AAPZNqhTI0AFYNpuVbdt65plnOtY988wzWl5eViQS0fve975hDwWMXXtBe+noguGTLigOBBnhV0AxAgwAAAAzzpfL3Uaj0XVdLBbT6uqqbty44cehAABTivALwCyzLOvQmdEBAMBkDR2ARSKRQ9dbliXTNIc9DABgihF+BdyAI8AKvyMVvu29bufeUD0CJqZSqSiXy8k0TYXDYRWLRcVisY7tFhYWXMuGYaher4+rmwAAoE9DB2C2beu73/2ufuqnfqpj3QsvvKBKpcJU7gAwxwi/ZlfmL+y/vJj/XopeG29/gGGVSiXV63Xl83lJ+6U+4vG4tre3XaO7SqWSUqmU60awV0gGAACCY+gALJ/PKxqN6qmnntL58+cVCoVkWZbK5bJKpZIWFha0trbmR1+BsaOeFzAcwq8pcVz+1+yiBhimULPZVLFYbC1vbGwoGo22RoM5yuWyqtXqJLoIAAAGNHQAdvr0aX35y1/WhQsX9MlPfrI1HNy2bUnS+vq6nnjiiWEPAwCYMoRfAKbN6uqqazkUCkmSa/bGSqWira0tJZNJxeNxpVKpcXYRAAAMyJci+OFwWFtbW7p165ZM05RlWTIMQ8vLyzp9+vRAbZqmqVwup3A4rGazqXg8rkQi0VcbtVpNyWRSt2/fHqgPAIDBEH5NGWaBBDxVKhXl83nX6K9qtapms6lKpaJKpaJsNqtyucwjkAAABJyvl7tnz57V2bNnO96/c+eOTp061XM7lmUpGo2qXq+37rhFIhE1Go2+7rKl0+metwUA+IPwawoRgAEdstmsSqWSNjY2XO8Xi0UVi0WZpqlisahSqeRZJ6zd3bt3defOnYH7c+LECZ04cWLg/QEAGIfd3V3t7u4OvP/du3d97I3bsZG1fECpVOpr+3Q6rVgs5hpuns1m+wq0stksU1EDwJgRfgGYBevr67IsS81mU8lk0vNa1jAMFYtFlctlSfvXnoc5d+6cTp8+PfArl8uN5LMCAOCnXC431O+7c+fOjaxvfd/v/exnPyvLsvTpT39aknTx4kU1m82u2zcaDZmmqU984hM9td9sNlWr1Vqz7ziWl5clvTHrzmFqtZrOnDkjwzC0tbXV03EBAMMh/JpiFMEHXJxaYE45jXw+3/X6M5FIKJFIyDTNQ9u8fv26Hn300YH7xOgvAMA0WFtb09NPPz3w/jdv3hxZCNZ3ALa6uqpXXnmlFYDZtn3kLDhOYfxeOIFV++gtZzRYtVo9MgBz7sYddScOAOAPwi8AsygWiymVSml9ff3Q7eLxuGq12qHbnDx5sq+SIAAATKNhH9k/efKkj71x6zsAq9frrhFfFy9e1OOPP65PfvKTnts3m82+6nZZliXpjVl3uq3vJpvNdowe6wV1GQBgMIRfnYJc+8ATNcCArh5//PGeymo4TysAAIBg6vtyt73I/crKim7dutV1+1AopLW1tZ7b397eliQtLS15rj/scUvTNHXmzJmBan8NO8Tu8uXLunLlylBtoD8LC1ddy7Z9eaaPCwQR4Ze3XC6nq1evHr0hgMCzLOvIGR6r1SqTLwEAEHC+3O/1mvnR8eyzzyqRSPTcViQSkbRfO8zLYeFWLpdrFSLtF3UZAKA/hF/dBbn2gacBR4AVflsqfMN73c7rQ/UIGLtms6lLly7p4sWLrWtXy7JUrVZb5T5M02xt49QJq1QqWlpa6ut6FwAAjF9fl7sbGxt9zejYbDZlWZYajUarZthRnICr20ivbgFYNptVPB53PSLp/L/z38PCM+oyAEDvCL8OF+TaB37K/KX9lxfz30jR58bbH2AYoVCoFYIVi0XF43GFw2FXrdtwOKylpSXlcjlVq1UZhqF4PK5isTjBngMAgF70FYAtLy8PNLy7XC73HIA59RPaa305y9Fo1HO/Wq3WtUBpJBKRYRiq1+u9dhkA0AXh1wyiBhggSUdO7BQKhY7cBgAABNOxfjZ+7LHHlEgkdP/+/dYrn88rn8+73jv4Wl1d7etCIRQKyTCMjn2cmXUuXLjguV+9Xpdt267X6uqqQqGQbNsm/AIAHxB+zajjI3oBAAAAAdH3/d72GRYty9JnPvOZrtun02klk0nduHGj52NsbGwoGo3KsqzWY4tO0ObMDmlZVmvI+VGFSTGbJlV8nqL3mFeEXwAAAACm1dCzQB7FsiyZptnXPs7jitlsVuFwWJZlKZvNKpVKtbZpNptqNBqHzgoJAPAH4deM4xFIYORWVla0uLjouS6TySiTyYy5RwAATEahUFChUPBct7OzM7LjDn25a9u2fvM3f1Pve9/7OtbduXNH6XT60OLz3RiGceiMjoZh6Pbt24e24YwaAwAMjvALo2ZZliqViiQplUq1RnubpqlcLqdwOKxms6l4PM5Me5ham5ubMgxj0t0AAGDiDrvxY5pm19rvwxo6AHvmmWcUDof1+OOPt2bLaTQaqtfrrRkjmRkHAKYT4decmNAIMGeEd7PZVLFYdN0wsyxL0WhU9Xq9FRpEIhE1Gg3XiHAAAACgF0Nf7oZCIW1tbSmbzWp1dVULCwuS9keGSdLq6qqefPLJYQ8DHGlh4aprmVpdwHAIvzBKpmnq/PnzunDhgueI73Q6rVgs5hoxk81mlU6nCcAAAADQN1/u94bDYZXLZd26dUuWZbWK1y8vL+v06dN+HAIAMEaEX3NmFLM2HtJes9nU+fPnFQ6HPUeJN5tN1Wq1jjIGy8vLkqRSqUQIBgAAgL4c86uhO3fu6NatWzp//rwuXbokSarX6341DwAYE8IvjJrz2GO3Op1bW1uS1FFD1BkNVq1WR9tBAAAAzBxfArCnnnpKjzzyiD7wgQ+03jt//ry2t7e1trbmxyEAAGNA+DWnnBpgB167tnTn9cFfd1/vfjinRmi1WlU0GtUjjzyieDwuy7IkqfVfpxh+O2c9AAAA0KuhH4H81Kc+pWKxqFAo1Kr/5bh06ZI+8IEP6HOf+5w+9rGPDXso4FCjqPnVXldsVMcBgoDwa455FMHPfUm6+k/8P5RpmpL2R3Ol02nl83lZlqV4PK5IJKLbt29re3tbkrS0tOTZRrPZ9L9jAAAAmGlDB2CVSkWVSkVPPPGELly40LE+Ho/rmWeeIQADgAAj/EK7tf9UevoDR2/Xzc3vSefWO993Rm+l0+nWI45OLbB4PK5cLqdIJCJJajQanm23PxoJAAAAHGXoACwcDuuJJ56QpI4RYJJ048YNHlUAgAAj/IKOqaNo/Ynj0okhmjy56P1+t8caY7GYJLVGg0ndR3oRgAEAAKBfQ9cAO3gha9u2a903v/lNVSoVLlQBIKAIvzBuzkyOzmOO7ZaWllrbtN9Ac5aj0egIewgAAIBZNPQIsLW1NX3wgx9UPp9vjQB78cUXValUlM1mtbCwoHQ6PXRHR21lZUWLi963qzOZjDKZzJh7hCCYp3pf1DubP4Rfk1UoFFQoFDzX7ezsjLczTvF7v9v0EAqFFIvFVKvVXO87o72i0ahCoZAMw1C1WtXq6mprG2cfr5ILQNBxrQkAwL5JXQcPfbn72GOPKZfL6cknn5RpmqpUKpLeGA2WzWb1iU98YtjDjNzm5mZrenUAmHWEX5N32B+8pmnO9CinfD6vaDSqWq3WevSxVCrJMAylUilJ0sbGhqLRqCzLao0kz+fzyufzXR+jBIKMa00AAPZN6jrYl/u9hmFoa2tLt27dUr1e161btxQOhxWLxXT69Gk/DgEA8AnhFzp4zALpS5tdGIaher2ubDarcrmsUCikZrOper3uuU04HJZlWcpms62ADAAAAOjH0Je7Tz31lOr1ur7xjW/o7NmzOnv2rB/9AgCMAOEXgsJ5xPGobcrl8ph6BAAAgFk2dAD2/PPPt6YrBzC9qPc1+wi/0NWYR4ABAAAA4zb0LJD5fL5Vv6Obz372s8MeBgAwBMIvHOqY9gMrP19DX2EAAAAA/hn6fm84HJZpmlpbW9Pjjz/eUZi22Wwqn8/rySefHPZQAIABEH4BAAAAmHdDB2D5fF4vvPCCbNvWwsJCx/pu7wMARo/wCz15SP4/Aul3ewAAAMAQhr48TaVSsixL6XTac1ry27dvq1QqDXsYAECfCL8waoUvSYVf816389p4+wIAAAAcZugALJFIaGFhQSsrK123oUg+5snCwlXXMsXlMQmEX+jLgEXwM//H/ZcX8ztS9G8O1SsAAADAN0MFYC+++KIkHRp+9bIeAOAfwi8ACJ6VlRUtLi56rstkMspkMmPuEQAAk1EoFFQoFDzX7ezsjOy4AwVgX/nKV5RMJtVsNiVJ0WhUtVpNp06d8rNvAIA+EX5hIM4skH63CaBlc3NThmFMuhsAAEzcYTd+TNNUNBodyXH7vjy9deuWYrGYbt++Ldu2Zdu2tra2FIvFRtE/AECPCL8AAAAAwFvfI8CKxaJCoZA2NjYUi8XUaDRULpf1qU99Sp/73Of0sY99bBT9BMbCj/pd1PzCJAwTfrV/30t8H8+dAWuAHdkmAAAAEBB9X+6apqmNjY1WXa/Tp09rdXVVkvTlL3+ZAAwAxoyRXxjaQ/I/APO7PQAAAGAIAz0C6VXUPplMyrIsXzoFAOgN4RcAAAAAHM23ErVnz55tFcVv9+yzz/p1GADAA4Rf8I1TBN/PF0XwAQAAECB9P6Dw8ssv61vf+pZOnz7tet8Jv7773e/Ktu3We41GQ8ViUZ/4xCeG7+0IMTU1pPHUPaLeEvzgZ/g1zd9/ftTtm5RJTf8MAAAAzKO+A7Bms3noFM7hcHioDk0KU1MDmBaM/JoNk5r+2RNF8AEAADDjBrrcdUZ4hUKhQ7dzRoUtLCwMchgAQBvCLwRJobL/8rKzO96+AAAAAIfpOwCLxWL68pe/3Nc+H/jAB/o9DACgDeEXRmbAWSAzv7D/8mL+vhT9a0P1CpgplNsAAGDfpEqB9H25m81m+z7IIPsAs2qaahQhOAi/vPHzBGBaUG4DAIB9kyoF0ncAdv78+b4PMsg+AIB9hF8YOWqAAQAAYMb5fbkLAPAR4RfG4pj8D6yO+dweAAAAMAQuTwEgoAi/AGD8KpWKotGoFhYWFIlEVKvVOrYxTVPJZFLZbFbpdFqVSpfZIAAAQGAwAgwAAojwC2PFI5CAJKlUKqleryufz0var2Mbj8e1vb2tcDgsSbIsS9FoVPV6vVXTKxKJqNFoKJVKTazvAADgcARgGImFhauu5XEUqu7lmEdtM4l+A+0IvwBgMprNporFYmt5Y2ND0WhUpmm2ArB0Oq1YLOYqaO+MBCMAAwAguHgEEgAChPALE/HQiF7AlFldXXUth0IhSWqFXc1mU7VaTfF43LXd8vKypP0RZAAAIJgIwAAgIAi/ACBYKpWK8vl8a/TX1taWJLWWHU5AVq1Wx9tBAADQMwIwAAgAwi9MlDMLpJ8vrjAw5bLZrHK5nCvssixL0hsjw9o56wEAQPDwgAJGYtjaWu3b97JPL/W6+m1jkH4A/SL8AoBgWV9fl2VZajabSiaTKhaLSqVS2t7eliQtLS157tdsNru2effuXd25c2fgPp04cUInTpwYeH8AAMZhd3dXu7u7A+9/9+5dH3vjRgAGABNE+IVAGHAWyML/sP/ysvOjoXoETJRTC6xWqymZTCqfzyuVSikSiUiSGo2G537tj0YedO7cuaH6dPnyZV25cmWoNgAAGLVcLqerVzsHkgQBARgATAjhF6Zd5iP7Ly/mt6Xoh8bbH8BvsVhMqVRK6+vrkt4IuLqN9DosALt+/boeffTRgfvC6C8AwDRYW1vT008/PfD+N2/eHPqmUTcEYAAwAYRfCJQBR4Ad2SYwAx5//PFWsOXM9the68tZjkajXds5efKkTp06NaJeAgAQDMM+sn/y5Ekfe+NGAPbAysqKFhcXPddlMhllMpkx92i29Fs3y2v7fuuI+aGXfvSyD3DQLIRfk/h5nDWFQkGFQsFz3c7Ozng785D8vyLgCgMzwrIsxWIxSfvF7w3DULVabT0mKe0/KilJFy5cmEgfAQDA0bg8fWBzc7M1hTUAjMoshF/wx2E3V0zTPHQkCQD/NZtNXbp0SRcvXlQikZC0H35Vq1VVq9XWdhsbG4pGo7IsqzUyLJ/PK5/Pd50dEgAATB4BGACMCeEXgso+Jtk+P7JoH/O3PWDUQqFQKwQrFouKx+MKh8Ou8EuSDMNQvV5XNptVOByWZVnKZrNKpVIT6jkAAOgFARgAjAHhFwAEX3vY1Y1hGCqXyyPuDQAA8BMBGKbGKGoMDVLHqH2bo2qCLSz8ctv+g8+Igek0i+EXNb9my95xac/nK4I9iuADAAAgQHhAAQBGaBbDLwAAAACYNowAA4ARIfzCtLg/ghFg9xkBBgAAgAAhAAOAESD8AgActLKyosXFRc91h80KCwDArCkUCioUCp7rdnZ2RnZcAjDMtaPqGLXX79r3al9tYP4QfmHa7B1f0L3jCz63aUuyfW0TmGabm5syDGPS3QAAYOIOu/Fjmqai0ehIjksABgA+IvzCNNo7flx7D/VfFnTj7+1p4zN7nut+NLqbdwAAAEDfCMAAwCeEX5g3l/7GcV36G97Fvm6a93XuL94bc48AAAAAbwRgAOADwi9Ms/vHj2vvuL8TQ98/viCJAAwAAADB4O/VLgDMIcIvAAAAAAg2RoABh7DtpwPRBoKL8AuzYE/HtCfvRxkHb7N/lmUpHA772g8AAABAIgADgIERfgHDWVhwzzxpGIbq9Xpr2TRN5XI5hcNhNZtNxeNxJRKJcXcTAAAAM4AADAAGQPiFWbKn47o35hFgpVJJqVRKkUik9V4sFmv9v2VZikajqtfrMgxDkhSJRNRoNJRKpXztKwAAAGYfARgA9InwCxheuVxWtVrtuj6dTisWi7XCL0nKZrNKp9MEYAAAAOgbAdgDKysrWlxc9FyXyWSUyWTG3CP0a2HhqmvZti/P9HExGYRf8EuhUFChUPBct7OzM9a+3Ndx7fl8SXD/kHWVSkVbW1tKJpOKx+MdgVaz2VStVlM+n3e9v7y8LOmN0WPANOFaEwCAfZO6DiYAe2Bzc9N1lxkA2hF+wU+H/cFrmqai0ejY+jKaIvjdI7Bqtapms6lKpaJKpaJsNqtyudx6BHJra0uSOgriO7+nq9UqARimDteaAADsm9R18LGRtAoAM4bwC/BPsViUbduq1+tKpVKtAveWZUlS67+hUMhzf2c9AAAA0CtGgAHAEQi/MOv2H4F0jwDb3bX12q49cJt37y4cuY1hGCoWi4rH40omk62RYNvb25KkpaUlz/2azebA/QIAAMB8IgDDzJhU7S0/jntUHTHqjE0O4Rfm1Wdyd/UrV++O5ViJREKJREKmaUpSa2bIRqPhuX37o5EAAADAUQjAAKALwi/Mi/seNcBSa6f10adPDdzm7918Tf+ncy/1vH08HletVpP0RsDVbaQXARgAAAD6RQAGAB4IvzDvTpxY0IkTRz/G2M2Pney/zKgzy6Pz3/ZaX87yOCcIAAAAwGygCD4AtCH8wry5p2O6p+M+v/q7xKhWq0qn05L2i98bhqFqteraxhkhduHCBX8+OAAAAOYGI8CAADiqphc1v8aH8AsYLdM0denSJV28eFGrq6uSpEqloqWlJSUSidZ2Gxsbikajsiyr9chjPp9XPp/vOjskAAAA0A0BGAA8QPiFeXVfD2nP50uC+9rzfD8cDmtpaUm5XE7ValWGYSgej6tYLLq2MwxD9Xpd2WxW4XBYlmUpm80qlUr52k8AAADMBwIwABDhF+abVxF8P9r0EgqFOh5t7MYwDJXLZT+7BQAAgDkV2ADMNE3lcjmFw2E1m03F43HXoxHdVCoV5XI5maapcDisYrGoWCw2hh4DmFaEXwCAUVtZWdHi4qLnukwmo0wmM+YeAQAwGYVCQYVCwXPdzs7OyI4byADMsixFo1HV63UZhiFJikQiajQahz76UCqVVK/Xlc/nJUnZbFbxeFzb29tMmQ7AE+EXIO2NYATYHvPsAC6bm5ut61oAAObZYTd+TNMc2YzfgQzA0um0YrGY6yIhm80qnU4fGoA1m01XDRGngK4zGgwYhYWFq4eup4B9cBF+AQAAAMB8CNzt2WazqVqtpng87np/eXlZ0v4or26c2aQczixR3G0D0I7wC3jDno7rns8vv0eUAQAAAMMI3Aiwra0tSeoYseWEWNVqtecZoCqVivL5PKO/ALgQfgH+KBdeVqXQ8Fy3u3N/zL0BAAAAugtcAGZZlqQ3Rm91W3+UbDarUqmkjY2Nnra/e/eu7ty509O2Xk6cOKETJ04MvD+A8SD8wjjs7u5qd3d34P3v3r3rY2+Odl/HtTfAJcETmbfpiczbPNf9gflDfTT6r4btGgAAAOCLwAVg29vbkqSlpSXP9c1m88g21tfXZVmWms2mksmkisXikaPGzp0713dfD7p8+bKuXLkyVBuYvPZ6Xr3U72rf5qiaYJgcwq/RGeRnp982/Wp3HHK5nK5e5d8CAAAAICgCF4BFIhFJUqPh/UhFL48zOrXAarWaksmk8vn8kQHY9evX9eijj/bX2QMY/QUEG+EXxmltbU1PP/30wPvfvHlz6Bsz/dgbQc0uaoABAAAgSAIXgDkBV7eRXv3U84rFYkqlUlpfXz9y25MnT+rUqVM9tw1gehB+YdyGfSz+5MmTPvbmaPd1zPfA6n7w5tkBAADAHAvc1akz22N7rS9nORqN9tXe448/ThF8YI4RfgEAAAAAAjcCLBQKyTAMVavV1qOM0v7jjJJ04cKFvtqzLEuxWMzXPiKYBqlB5EfdolHUPoI/CL/GZxTf9/wsjc/eCEaA7QXvHhswUSsrK1pcXPRcl8lklMlkxtwjAAAmo1AoqFAoeK7b2dkZ2XEDF4BJ0sbGhqLRqCzLao3eyufzyufzrdkhLctSPB5XsVhULBZTs9nUpUuXdPHiRSUSidY21WpV1Wp1Uh8FwIQQfgEAgmRzc1OGYUy6GwAATNxhN35M0+z7yb9eBTIAMwxD9Xpd2WxW4XBYlmUpm826Ctk3m001Go1WrbBQKNQKwYrFouLxuMLhMOEXMIcIv4D+7Om47lEEHwAAADMskAGYtB+ClcvlQ9ffvn3b9R5hFwDCLwDAJBx8cgEAAARPYAMwoF+91fz65b738eO4GA/CL2Aw93Vcez5fEtxnBBimVKVSUS6Xk2maMgxD+Xzes57swsKCa9l5ggEAAAQTARiAmUD4BQAY1vr6uqrVqtLptLa3t7W+vq54PK5qteoKwUqlklKplCKRSOs9Jl0CACDYCMAATD3CL2A4g84C+b8UvqcvFf7Ic91rO/eH7RYwdjdu3HCV1Lh48aKi0WjHKLByuUzpDQAApgwBGICpRvgFDG//Ecj+A7C/knmH/krmHZ7rts07ejr6z4fsGTA+tVpN+Xze9Z5hGDIMQ5Zltd6rVCra2tpSMplUPB53TdIEAACC69ikOwAAgyL8AgD4JRaLdS1if/D9arWqZrOpSqWidDqtRx55RLVabVzdBAAAA2IEGOaKbT996PqFhatt20+mwH1Q+hFkhF+Af/Z0TPd8Llq/xz02zAjLspROp1vLxWJRxWJRpmmqWCyqVCopHo9re3v70Fkg7969qzt37gzcjxMnTujEiRMD7w8AwDjs7u5qd3d34P3v3r3rY2/cCMAATB3CLwDAOFQqFYXDYc/HHA3DULFYVDweVzKZVDabVblc7trWuXPnhurL5cuXdeXKlaHaAABg1HK5nK5evXr0hhNAAAZgqhB+Af7b03Ht+XxJMEhNMSBocrncoaGWJCUSCSUSCZmmeeh2169f16OPPjpwXxj9BQCYBmtra3r66cOfvDrMzZs3h75p1A0BGICpQfgFABiXbDarjY2NQx9rdMTj8SPrgJ08eVKnTp3yq3sAAATSsI/snzx50sfeuBGAPbCysqLFxUXPdZlMRplMZsw9wiT0UmtrHPW5qPnVifALs6ZQKKhQKHiu29nZGWtfBp0F8qg2gWnl1PUyDKPnfZaXl0fYIwAAMCwCsAc2Nzf7usgBMD6EX5hFh91cMU1T0Wh0zD0CIO3X/ZL2Z4U8yDTNrteK1WrVVSgfAAAEDwEYgEAj/AJGb0/HfB8BxiyQmEa1Wk25XE7pdFqlUqn1fr1eb4XSly5d0sWLF7W6uippPzBbWlpSIpGYSJ8BAEBvCMAABBbhFzAeezque74HYDwCielimqbi8bgkeY7mun37tiRpaWlJuVxO1WpVhmEoHo+rWCyOta8AAKB/BGBA397qWjqqJtg4aobNIsIvAMA4GYYh27aP3K5arY6hNwAAwG8EYAACh/ALGK/9Ivj9XxJ8pfCv9JXCv/Jc9/rO3rDdAgAAAHxDAAYgUAi/gOnx/syf0/szf85z3XfNhv6b6K+PuUcAAACANwIwAIFB+AVMBkXwAQAAMOsIwDAz2mttefGj/pZtP93n9kcfkzphhF8AgNm2srKixcVFz3WZTEaZTGbMPQIAYDIKhYIKhYLnup2dnZEdlwAMwMQRfgGTtV8DzN8RYPeZBRJw2dzclGEYk+4GAAATd9iNH9M0FY1GR3JcAjAAE0X4BQAAEAxXrky6BwAwOgRgACaG8AsIhvsjqAF2nxpgAAAACBACMEzEKGpejatu1jT3PUgIv4DguKfjuudzAOZ3ewAAAMAwuD0LYOwIvwAAAAAA48QIMABjRfgFBM9+EXx/Lwkogg8AAIAgYQQYgLEh/AIAAAAATAIjwACMBeEXEFx7AxbB/3rhd/T1wu94rnt9596w3QIAAAB8QwD2wMrKihYXFz3XZTIZZTKZMfdoto2i6PvCwi+3HeNp34+x36677+1F8Y/afh4RfgGdCoWCCoWC57qdnZ0x92Yw78n8Bb0n8xc81/2R+e/1K9Hnx9wjAAAAwBsB2AObm5syDGPS3QBmDuEX4O2wmyumaSoajY6tL/s1wPyt2UUNMMCNm60AAOyb1I1gAjAAI0P4BQDAPm62AgCwb1I3ggnAAIwE4RcwPfZ0TPd8HrG1xzw7AAAACBACMEyt9tpbvdTaGmSfo3TWBPvltmX/jxl0hF8AAAAAgCAhAAPgK8IvYPrs6bj2fL4k6KemWK1WUzKZ1O3bt13vm6apXC6ncDisZrOpeDyuRCLhaz8BAAAwHwjAAPiG8AuYTpMugp9OpzvesyxL0WhU9Xq9VTcpEomo0WgolUr51k8AAADMBwp0APAF4ReAQWSzWYXD4Y730+m0YrGYq2h4Npv1DMsAAACAozACDFOrs/bW1S5bdt9nNF499Jjj6uc4a48RfgHT7b6OjWAE2NH32Gq1ms6cOSPDMLS1tdV6v9lsqlarKZ/Pu7ZfXl6WJJVKJUaBAQAAoC+MAAMwFMIvAIMqFotaXV3teN8Jw9pHhjmjwarV6ug7BwAAgJnCCDAAAyP8AmbDnscIsHu797S3e2/gNn909/B9s9lsxwgvh2VZkqRQKHToegAAAKBXBGAABkL4Bcy2f577p/qtq9dH0rZpmjpz5oxn7S9J2t7eliQtLS15rm82myPpFwAAAGYXARhmRi81rkZRF+uoNgc5ph/97Hcfr9pk3dog/AJmy56O617bCLDltffqsad/buA2//3N7+vauf/ec10ul1O5XO66byQSkSQ1Gg3P9d2CMyDIVlZWtLi46Lkuk8kok8mMuUcAAExGoVBQoVDwXLezszOy4xKAAegL4RcwHx468ZAeOjH4ZcLDJ094vp/NZhWPx12PMTr/7/zXCbi6jfQiAMM02tzcdM1qCgDAvDrsxo9pmopGoyM5LgEYgJ4RfgGz6b6Oa8/nS4L7XWaVrNVqWl9f91wXiURkGIZeeOEFSZ21vpzlUV0UAQAAYHYxCySAnhB+AbPLKYLv78v7EqNer8u2bddrdXVVoVBItm2rXq8rFArJMIyO2R5rtZok6cKFCyM/JwAAAJgtBGAAjkT4BWDcNjY2VKvVXKPA8vm88vl819khAQAAgG54BPIBCpNOv14Kx/tRGL7TTx+6dhwF7P3gdcyFhas69paHdOYv/5SkBX37768QfgE+mVTxTy/3H4za8rvNYRiGoXq9rmw2q3A4LMuylM1mlUqlfOohAAAA5gkB2AMUJgU6HQy/Gl/+LuEX4KNJFf8MImdkVzvDMA6dLRIAAADoFQEYAE8/eHXXFX7t3X190l0CMCJ7OqZ7Po8A61YDDAAAAJgErk4BdHij5hfhFwAAAABg+jECDBPRS72ufg3SxiD9aN+mvY1RfLZxOljwvt+aX14106bt8wPzaE8Pac/nSwK/2wMAAACGwdUpgBZmewQAYDSYcAkAgH2TmgyKAAyAJMIvYJ7d17GBZoH8vcJX9fuF657r9nZ4dBo4iAmXAADYN6nJoAjAABB+AXNub8AA7M9lzuvPZc57rnvZ/K5+Lfp3hu0aAAAA4AsCMExEUOpCddbz+uVD1+9v01nnqh/tx9g/ztOHHmMU58s5xrG3PKQzf/mn9J//5//h0OFXUL6uAAAAAAAcxCyQwBxzwi9pgZFfwBy7r+Pa8/l1f4ARZUAQVCoVRaNRLSwsKBqNqlardWxjmqaSyaSy2azS6bQqlcoEegoAAPrBCDBgTh0Mvxpf/i7hFwBg7q2vr6tarSqdTmt7e1vr6+uKx+OqVquKxWKSJMuyFI1GVa/XWzW9IpGIGo2GUqnUJLsPAAAOQQAGzKEfvLrrCr/27lKsGphnezqmez6P2NpjkDmm0I0bN1StVlvLFy9eVDQaVT6fbwVg6XRasVjMVdDeGQlGAAYAQHARgGFm9FKb66gaVUfV4vJqo7NumLuNTq8esX60tbTeKHjff/g1jtpkAABMQq1WUz6fd71nGIYMw5BlWZKkZrPpud3y8rIkqVQqEYIBABBQ3J4F5sjB2R4Z+QXAsV+36yGfX9QAw3SJxWIKh8Oe65z3t7a2XMsOZzTYwdFjAAAgWBgBBsyJg+HX3/nwu/W5j/7apLsEAEDgWZaldDrd+n9JCoVCXbft5u7du7pz587A/Thx4oROnDgx8P4AAIzD7u6udnd3B97/7t27PvbGjQAMmAPt4RcF7wEc5MwC6XebwLSrVCoKh8Otxxq3t7clSUtLS57bN5vNrm2dO3duqL5cvnxZV65cGaoNAABGLZfL6erVo8sTTQIB2AMrKytaXFz0XJfJZJTJZMbcI/SrszZX/z90vdS4aq/5JZ1qW/98WxsX27Z/60DHHZSf4Rc1vwD/FAoFFQoFz3U7Oztj7cuejvkegFEEH7Mgl8upXC63liORiCSp0Wh4bt/tEUpJun79uh599NGB+8LoLwDANFhbW9PTTx9VF7u7mzdvDn3TqBsCsAc2Nzdds/kAs4CRX0BwHXZzxTRNRaPRMfeof7cKv64XC7/huW5v57Ux9wbwVzab1cbGhivUcv6/20ivwwKwkydP6tSpU13XAwAwC4Z9ZP/kyZM+9saNAAyYUYRfAHq1p+O6N8AIsJ/MfEg/mfmQ57pXTEtfj35y2K4BE1EqlRSPxztujjqzPbbX+nKWpyG4BgBgXvF8AjCDCL8AABhMpVKRtD8r5EGmaSoUCskwjI7ZHmu1miTpwoUL4+kkAADoGyPAgBlD+AWgX/tF8P29JKAIPqZRrVZTLpdTOp1WqVRqvV+v1xWNRmUYhjY2NhSNRmVZVuuRx3w+r3w+33V2SAAAMHkEYJiIURR9by9O30ubRxXK762Q/qttyz/ddxtHFfDv9fz0E34Ncs6P6pfXZ6VwPgBgGpimqXg8LklKp9Md62/fvi1JMgxD9Xpd2WxW4XBYlmUpm822ZooEAADBRAAGzAhGfgEYFLNAAvvBlm3bPW97cHZIAAAQfFydAjOA8AsAAAAAgO4YAQZMOcIvAMParwHm7wgwaoABAAAgSAjA0Dc/6ncdtc8gtaRs++m++yH9RNvyHx95zPZaY9JfaVu+1tcxvIyi5tdReqt3djh/arn5X0dsVLXJRlHLDsEzD1/nPR3TPR6BBAAAwAwjAAOmFCO/AACYHisrK1pcXPRcl8lklMlkxtwjAAAmo1AoqFAoeK7b2dkZ2XEDG4CZpqlcLqdwOKxms6l4PK5EInHkfpVKRblcTqZpyjAM5fN5xWKxMfQYGB/CLwB+2tNx7fl8SeD3I5XAtNvc3JRhGJPuBgAAE3fYjR/TNBWNRkdy3EAGYJZlKRqNql6vty4UIpGIGo3GoVNMr6+vq1qtKp1Oa3t7W+vr64rH46pWq4RgmBmEXwAAAAAA9CeQAVg6nVYsFnPdJctms0qn04cGYDdu3FC1Wm0tX7x4UdFodCyjwI6qEeNHDaJB2ji6X+31rCTp1SOO0V7Tyuu4f9T2zq+3LR9VB+utHm22f/6/fEQbDY/33t12mCfdy6+6+73gVcJmoa3WmP3bffbr3R3vdH62n25b/n1J0rG3PKQzf/mnJC2o8eXv6nMf/bUD27jPWXtNNO+v9WHHPFpnvzu/bkfVZvOj9thRvGu5HdX3V+W3QT7rUf+W9PbZDm+zF7NcB+uozzauz+rux78ZyzEdgxbB/3eFX9W/K/yqd5s7u8N2CwAAAPBN4AKwZrOpWq2mfD7ven95eVmSVCqVPEMwr30Mw5BhGLIsa3QdBsakPfzau/v6pLsEYM69LfNhvS3zYc91f2L+K/3L6KUx9wgAAADwFrgpmra2tiRJ4XDY9b4zGuzgCK+DYrFYxz6Obu8D04LwC8Ao3dexB3XA/HvdD94lBgAAAOZY4EaAOaO1QqHQoev7aS+dTh+53d27d3Xnzp2+2na7pwCeTsyAY29ZIPwCpszu7q52d/t9BPBHB/7/NT+7AwAAAMy9wCU229vbkqSlpSXP9c1ms+e2KpWKwuHwoXXDHOfOneu53S4tSHrfIev/4pDt91aHprP2z0+0rW8P+bzqef0F9+JXFtz9aBtQd3Wh8xEX+wn38m9/0b38N+3rruWEKq7l39XbOtp8WT/pWv7Hv/8fuTdwN6mrH+9oQpf/eds2bU1c/n+5l8tP/9WONv6B/rpr+Z98Pene4B+27XCjbfmpzn7pH/0l1+L5f/wlSdK9V6UffFH6we+cVeNH79beX39Q8L69xJokfdW92PG1/lxbLa4fcy9+42JnbbLH/8m/cC2/+69+w7X8L37lonuHf9TZrYU/3/bG77V3vv1n468c3UZb31VvW/7Tbcuhzn7pc20/T3+7bf1/0bbc/nWVpFfd57ijZlxHWbX2nzevenHfdre50F5j7qfb1j/v0Ub7cdw197z3aff7bcvur9PCwv/atv732pZPebTp7sfRtRK9/n1qrx/Yfg5/xr243NaPrfZ+Skef0/Zz4VUvz10z7vLlP9LVq6Ovb+eXvQFrgB3VJgAAABAUgQvAIpGIJKnR8Cpg3t/jjLlcTuVyuadtr1+/rkcffbTnttudPv13B94X8OKEX7a0H37ZzPYITIu1tTU9/XT3CSBOn851vPfKK2ut/79586YPN2Z6t6djuud7AMYjkAAAAAiOwAVgTsDVbaRXrwFYNpvVxsZGz9ufPHlSp055jVjoVeBOJabYwfDrT31Y+r3fJvwCpsmJEyd04sSJQ7bo/Jk++Dvo5MmTI+gVAAAAML8Cl9o4sz221/pylqPR6JFtlEolxePxVuF8YJocO77rCr8eGiaXBYAe7D8C6e8lAY9AAm4rKytaXFz0XJfJZJTJZMbcIwAAJqNQKKhQKHiu29nZGdlxAxeAhUIhGYaharWq1dXV1vu1Wk2SdOHChUP3r1T2a0nFYjHX+6ZpEogh8I4d39WZP/Ntwi8AAGbM5uYm16IAAOjwGz+mafY08GkQgQvAJGljY0PRaFSWZbUeYczn88rn863ZIS3LUjweV7FYbIVdtVpNuVxO6XRapVKp1V69Xlc0Gp3oRYdtdxb2Hs1xji6U73ax4532QtQL519p26KtiPTCX1K7K19sLyL9jrZ93IW+v6H/pG37tkL8ki7Y7gLsdx5zrz/1/+zYpdNN9+Ll/6Zt/b92LyZ/+590NJH8Vfd7Lz3jflTpbZF/61r+r9/237qWrzz/TGe/7krHHtrVmbPflu7Z+g8/3NDDp+6/sb69FNC/62zCXndPVnDjp//3ruXHv+cuaK/fci9ede++v0/WvfyLf/UfuJZX3/u4e4PnOtvoKFjfVuRdap+YobPCv/27f9a1vLDQXsi8rSD799t+3r7f9mEl6WPtYfo19+Jn3urug+31s/LZto62bfB77QnmW9uWP9fZr755FWRvP077Nu3F6DtrVXV8Nn2jY5vDeaW37f0aRHvR+xfbltuK4G/1Mrtv+783v9O23N7v9qL4/f/b2/+/1aN1fwRF8O8zAgwAAAABEsgAzDAM1et1ZbNZhcNhWZalbDbrms2x2Wyq0Wi0aoWZpql4PC5JSqfTHW3evn17LH0HBtEKv2Sr8eK79fCp3510lwAAAAAAmBmBDMCk/RDssBkcDcNwhVqGYci224dfAMF37HV3+LX3OgXvAYzXfR0bwQgwZoEEAABAcAQ2AAPmwbHXd3Xme4RfAKbTK4X/Sa8U/ifPdfbO7ph7AwAAAHRHAOaToNVzGcbRn6Wz5le7hYX2Gjl/3Lb8E23L72hbbq/BI/35hY+6lj9tX3Etf0G/6FpO/9fhjjYupj/vWn7+U+42P9tWw+pJ92pJ0tW8e/nyr911Ld9/rq3o1Z9u2+Hqfg2wY/auzrz2IPz6H9+hvbuvSXpNknTtz3zEvc/32+oY/UxnfaWLf/PzruVrCx92b/C+tn1ebWvgfR1N6kq+rdZW/sW2LdrrRHlp/9q79fKz016Xrn2fhYVrbet/pm19W40wSbZ9qm2b9rpYvfxMu0/ibP078OQEjtn/+VtY+PW2Ni62rT/8e6eXbXppY9rd0zEdH2AE2I9l/pp+LPPXPNftmv9S/zaaGLZrAAAAgC8IwIAJcIVfb3r3g/ALACbjvh7Sns+XBPe5xAAAAECAUKADGLOO8OsYjz0CAAAAADBK3J4FxmjnLSHCLwCBQxF8AAAAzDoCMIxEvzVyFhZ+ue2d9gJVnW611Q1LqOJavvynvI7jrq31Nvvfu5Z/5d+sunf4k842/nL7G+9yL5589CXX8pWn9mcnPbawqzNv/rb0+7YaX3639u4eDL/aanx9v72mlbseU+f5kq4ttL/jrs9lf+XptjZ6qWvUXkurvV/jqYU0bE0m23760PW9tOHXPvDX0V/7o79GfrSB/lUqFeVyOZmmqXA4rGKxqFgs5trGNE3lcjmFw2E1m03F43ElEtQVw3RaWVnR4uKi57pMJqNMJjPmHgEAMBmFQkGFQsFz3c7OzsiOSwAGjEEr/JJX+AUAk7WnYzrm8wiwvUNGgJVKJdXrdeXz+5OEZLNZxeNxbW9vKxzen8DEsixFo1HV63UZhiFJikQiajQaSqVSvvYVGIfNzc3W9zIAAPPssBs/pmkqGo2O5Lg8nwCMmCv8+hHhFwA0m83WiK9YLKaNjQ1J+xc8jnQ6rVgs5goMstms0un02PsLAACA6ccIMGCEFu6+7g6/bMIvAMFz//5x7d33uQbYIe2trrofNw+FQpLUCruazaZqtVprhJhjeXlZ0v4IMkaBAcABX7/iXn7PFa+tAGCuEYA9QF2GyeqlRtOX9E9dy5d/+6Ou5f/zX/qMe4ctj0a+5178737nk67lX7np/qPsS+8/39HEh/7UC+43PtqxiaT98Ovk/2Lp3ov31fjyn9XeXac22NH1zaSfcLfVVvOrl/PV0Z8+62Z5CUotJD/64cf5AIYxqdoHQVSpVJTP51uPP25t7f8D7iw7nICsWq0SgAEAAKAvBGAPUJcBfnLCL0kPwq83TbhHAIJmUrUPvOztHZPu+VwDbK+3KgvZbFalUqn1GKS0X/9LemNkWDtnPQAAANArAjDAZwfDr7sfOqu9j92fcI8A4HB7945L99yXBPburrT72uBtvrJ75Dbr6+uyLEvNZlPJZFLFYlGpVErb29uSpKWlJc/9ms3mwP0CAADAfCIAA3z0g9dCrvDLfuvDkn402U4BwABee/b/q9c//XdHegynFlitVlMymVQ+n1cqlVIkEpEkNRoNz/3aH40EAAAAjkIABvjkB6+FtLb9X0k/fjD8AoDgu793vOMRyOP/t6d1/KnB61/e//a/0Gv/6X/W07axWEypVErr6+uS3gi4uo30IgADAABAvwjAMDX+s4X/1LVs/6G7GP1b24rLP/eTH+1spOpefPv/5ZZr+Z2/8y9cy+/Qix1NfOh/ch/34vs/r9dfXZD1xZPS26R//z9GtfcPD872eKetBa8i+L/VtvzHbctv9djH7ahC+RR5d+N8AIdbOHFCOnFi8P1/7Mf62v7xxx9vBVvObI/ttb6c5XHWRwMAAMBs6K1CLYCuWuGXpLMf/hPtvf7mI/YAgGDZ2zumvXvH/X31WATfYVmWYrGYpP3i94ZhqFp137Wo1WqSpAsXLvjzwQEAADA3GAEGDOEHuyFX+PXwKQreA8Bhms2mLl26pIsXLyqRSEjaD7+q1aor8NrY2FA0GpVlWa2RYfl8Xvl8vuvskECQraysaHFx0XPdYbPCAgAwawqFggqFgue6nZ2dkR2XAAwY0A92Q1r73f2aX4RfAKbZ3r3juv/68aM37IN9z7u9UCjUCsGKxaLi8bjC4XDHaC/DMFSv15XNZhUOh2VZlrLZrFKplK/9BMZlc3NThmFMuhsAAEzcYTd+TNMcWbkLAjBMjfaaVncW/x+u5f/u7CfdOzzr0chX3Yvf3zrrWv6//j33jGe/JnfdMUnSn5F+sBPS2tf/K+nNC3r7h+9r79Sb1cqp/2zb9gun3Mv273l07CfalnupG9bWbNv5AYCgag+7ujEMQ+VyecS9AQAAwDwgAAP61Aq/tKC/8x8XdOnUc5PuEgAMxb5/XPaez5cE9/0dUQYE1cHHdIFpc+XKpHsAAONDAAb0wX51zxV+ve0tjUl3CQAA+KTZbCqXy0narznnZWFhwbXsPK4LHOnrV9zL77nitRUAYEQIwIAe2a/u6f4XXxLhF4CZc++Y1KVm11BtAlOkVqupWCyqUql0rTVXKpWUSqUUiURa7zmzlwIAgGAjAMPUOvXNtjeutS1/wmOnz7Ytf8+9+JNtb2x/8n8nSTqmXZ059m1Jb9X7/ta3tHXqsdY2/+TrSXcjb2s7hmfNr3Z/3Lbsrvll25d7aAMABrR33P8AbI9HIDFdYrGYYrFYxwivg8rlcs817AAAQLAQgAFHeCP8stW4/26FTv3JpLsEAMHwDwrSP/x73ut+NLoprIFJqFQq2traUjKZVDweZ0ZSjA+PTgKALwjAgEO0h197evOkuwQA/ttbkO51H/XS1X/5X+2/vPxLU3piNFNYA5NQrVbVbDZVqVRUqVSUzWZVLpd5BBIAgClBAAZ08cNXHyb8AgAAkqRisahisSjTNFUsFlUqlRSPx7W9vd3TLJB3797VnTt3Bj7+iRMndOLEiYH3BwBgHHZ3d7W7uzvw/nfv3vWxN24EYA+srKxocXHRc10mk1Emkxlzj3CUhc/Zh2/wrMd7z7Ut/4J78Z/q/yBJev1V6Y+/+LDe/Of/RPc+/Hb9qVPfb23zn/1OzbXPyUdfci3f/bkfbzvI0Re7tv2ka3lh4Zfblq+2bU9NMGBS2n8epcF+JguFggqFgue6nZ0xPz64J+neCNoEZpBhGCoWi4rH40omk62RYEc5d+7cUMe9fPmyrly5MlQbAACMWi6X09WrndfLQUAA9sDm5qYMw5h0NxAATvhlS7r34bdLp9406S4BmEGH3VwxTVPRKI8PAkGWSCSUSCRkmmZP21+/fl2PPvrowMdj9BcAYBqsra3p6aefHnj/mzdvDn3TqBsCMOCAg+HXn/3w63qZ8AvAPGAEGDCQeDyuWq129IaSTp48qVOnTo24RwAATNawj+yfPHnSx964HRtZy8CUOfbariv8etOpIx6xBAAAc295eXnSXQAAAD1gBBim188csd6rJM+ftC3/3v5/jj28qzM//W392z/9Z9R407v1L/4/3Qvef/S/dhcS+/yvfdy9wV9r2+EftN/tvdbR5sLCb7W986priZpfQHDM5M/jPfk/Aszv9oAAqlarSqfTk+4GAADoASPAMPec8Euy1XjTu7V3jNkeAcyZe5Je9/lFAIYp1Gw2Pd936vKtr6+33qtUKlpaWlIikRhT7wAAwDAIwDDXXOHX7xN+AQAwr0zTVDablSRdu3ZNlUqlFYiFw2EtLS0pl8spHo8rm80qFAqpWCxOsMcAAKAfPAKJuXXsRFv49RrhF4A5dV/+F62/73N7wIgZhqFisegZaoVCIVWr1Qn0ClPh61c633uPx3sAgIliBBjm0rETuzrzFwi/AAAAAACYB4wAw/T6o7bl9rrU7/PY54+lY2/e1ZnHvi3ds9X4Z+/W3s4b4dextLtK/v1nf6yjic8/31b0/ifbNviH7Xv8TtvyX/bo2K+3Lb/VY5vDLSxcdS3PZKFuAKOxp8Fqdv1qYf/lZXdnmB4BAAAAviIAw1w59uZdnfmPH4z8+ufu8AsA0KcPZ/ZfXv6VKV2Kjrc/QICtrKxocXHRc10mk1Em0+VnCQCAGVMoFFQoeN9E3dkZ3U1UAjDMjWMPEX4BgKd78n/WRmaBBFw2NzdlGMakuwEAwMQdduPHmXl5FKgBhrlw7KFdnTlL+AUAAAAAwDxiBBim159tf+O33Ytf/UuSpGNv2dWZD35bevlBza8fHgi/Xv091y73/8ufcbdx0uO47eW5vtRrhx2/1e8OPdX3ouYXgIENWgPsqDYBAACAgCAAw0xrhV8Lthpffrf2xMgvAOhAAAYAs+XrVzrfe4/HewAwR3gEEjOrI/y6S/gFAAAAAMA8YgQYZtKxt9wn/AKAXjECDAAAADOOAOwBpqaeAU89qPm1sKszb/629KKtxm+0hV9/rW2fz7zoXj7ZVgPsv/A4zt0j+tFeN+zVd7S98cceO/1E2/Id19Ig9b16qRsGYHImNf0zAAAAMI8IwB5gaurZ0Aq/xMgvAME2qemfPTECDAAAADOOAAwzwxV+/YjwCwAAAHBcuTLpHgDAZBGAYSYcu9cWftmEXwDQs3uSXh9BmwAAAEBAEIBhev3t/f8ce/OuzvzH35bebKvx++/W3msPwq+3e+zzj9qWF/6Ke/k/bFv/GY82ttrbaFu2/6jtjYZHI+3e2rZ8x3Or1iHb6ntJnTW+qPkFYOR+oyB92buOmV6jjhlwEPVmAQDYN6lauARgmGqt8Ett4RcAoHd7GqxmVyyz//Jyy5T+9hjrmAEBR71ZAAD2TaoWLgEYppYr/Prn79beEuEXAAyEIvgAMD2+fmXSPQCAqXRs0h0ABvGDV9vCrx3CLwAAAAAA4I0RYJg6P3h1V2tfJPwCAN8wAgwAAAAzjgAMU8UVfr3Y9tjj1uGF4/edalt+3r347EX38rJHE+316k+2LX//j9ve+Ebb8k94NPqqx3vdUeAeAAAAAIDe8QgkpsbB8OvvfJiC9wDgG2cEmJ8vRoABAAAgQAjAMBXaw6+3nSL8AgAAAAAAveERSAQe4RcAjJgzasvvNgEAAICAIABDoB0afnXU/GqvveVVE+wvtS3/hcP38awr9lvuxVf/isc2B/1023J7P6XO2mSjt7Bw1bVMXTEAAAAAwKwiAENgMfILAMaEWSCBkVtZWdHi4qLnukwmo0wmM+YeAQAwGYVCQYVCwXPdzs7OyI5LAIZAIvwCgDEaNAD7ZwXp694XL3p9dBcvwDTa3NyUYRiT7gYAABN32I0f0zQVjUZHclwCMAQO4RcATImfy+y/vPyRKf2/R3PxAgAAAPSLAOwBhqUHQz/hl223181yLy8s/LLHXo225fZ6XD/RQy8vti3/dtvyrx+x/1/0eO/3XEu2/XQP/RgONb+AyZrU0G9P9yS9PoI2AQAAgIAgAHuAYemTx8gvAPNkUkO/AQAAgHlEAIZAIPwCgAnak/9F6ymCDwAAgAA5NukOAIRfAAAAAABglBgBhokaJvxaWLja9o67fpdXHa2Fhf+17Z32GmB32pbb64xJUvtx22t6/XTb8u+3LX+jo8VJ1ONqP3/UBAPm2KCzQB7V5iEqlYpyuZxM05RhGMrn84rFYq5tTNNULpdTOBxWs9lUPB5XIpHwuaMAAACYBwRgmBhGfgHAfFpfX1e1WlU6ndb29rbW19cVj8dVrVZbIZhlWYpGo6rX660anZFIRI1GQ6lUapLdBwAAwBTiEUhMBOEXAASIMwLMz9chI8Bu3LiharWqVCqlfD6ver0uScrn861t0um0YrGYa4KabDardDrtxycGAADAnGEEGMaO8AsAAmaMj0DWajVX0CVJhmHIMAxZliVJajabntstLy9LkkqlEqPAMHVWVla0uLjoue6wWWEBAJg1hUJBhULBc93Ozs7IjksAhrHyM/xqr1nVXtNqYeF5j30utm3TXo/r1bbln9DR2uuIuZeDWlsrqP0CMNva63wdFA6HJUlbW1uuZYczGswZPQZMk83NTdeIRsDT169MugcAMHKH3fgxTVPRaHQkxyUAw9gw8gsAAuqepNfb39uV9nYHb/OHd/va3LKs1uONzkiwUCjUdVsAAACgHwRgGAvCLwCYMr+dk/639llvR6NSqSgcDrdGdW1vb0uSlpaWPLdvNptj6RcAAABmR2ADsGGmPm82m8rlcpLUUT8E40f4BQABt6fOml3La9JjTw/e5g9uSuVzPW2ay+VULpdby5FIRJLUaDQ8t29/NBLwy1HXkMNcnwIAgMkKZAA2zNTntVpNxWJRlUqF+iABQPgFAFPqoRP7r0G96WRPm2WzWW1sbLhCLef/u430IgDDKBx1DTnM9SkAAJi8QAZgh019ftQFRiwWUywW08LCwqi7iSOMO/w6qii+13tH7/P7PRz5Tt/9aEdBegATNcZZIA8qlUqKx+MdhcGd2R7ba305y6MqjIr5dtQ15DDXp5hDFLMHgMA5NukOtHOmPo/H4673D059juBj5BcA4DCVSkVS56yQpmkqFArJMAxVq1XXulqtJkm6cOHCeDoJPMD1KQAA0y9wAVgvU58j2Ai/AGDKOCPA/HwdMgKsVqu16iyVSqXWK51Ot64DNjY2VKvVXKPA8vm88vl819khgVHh+hQAgOkXuEcgJzX1+d27d3Xnzp2jN+zixIkTOnFiiFopM4LwCwCk3d1d7e7uDrz/3bt3fexND+5Jen0EbXowTbM1iiadTnesv337tqT9YKFeryubzSocDsuyLGWzWR41w0RM6voUAAD4J3AB2KSmPj93rreZqrq5fPmyrly54k9nptSkw6+FhV/2vU2v2lyddcSePmL9dNT38qpVNi19B4Iml8vp6tWj6//NI8MwZNt2z9senB0SmBQ/rk+52QoAmAdBvhEcuABsUlOfX79+XY8++ujA+8/7Bcmkwy8ACJK1tTU9/fTTR2/Yxc2bN4e+MdOXPfVUtL7vNoEZ4cf1KTdbAQDzIMg3ggMXgE1q6vOTJ0/q1KlTI2l71hF+AYDbsCM1Tp486WNvAAzLj+tTbrYCAOZBkG8EBy4AY+rz6UL4BQAzwCmC73ebwIzw4/qUm60AgHkQ5BvBgQvADk59vrq62nqfqc+DZ9Lhl1fNqoN6qV81WL2ut/Z13GmpCRbUfgEAMGlcnwIAMP0CF4BJ+1OfR6NRWZbVGlLePvW5ZVmKx+MqFouKxWKu/UdVKB9vmHT4BQDw0aAjwP5VQfrXhS5t7gzTI2AiDruG7OX6FAAABFcgA7Bepj5vNptqNBodFyqmaapYLEqSrl27png8rlgsxoWJjwi/AACSpD+X2X95aZjSb1C2ANPjqGvIXq5PAQBAcAUyAJOOnvrcMAzdvn3b8/1isdi6gIG/CL8AYAbdk/T6CNoEpkgv15BHXZ8Cffn6lZE1feVz7+188ydHdjgAmAqBDcAQPEELv46qWeVVI6x9n0HqXtl2fzNaUFsLQODdl/9F6+/73B4AAAAwhGOT7gCmQ9DCLwAAAAAAgF4xAgxHIvwCgBl3T/4/ssgjkAAAAAgQAjAcivALAABgeCsrK1pcXPRcl8lklMl0mVACAIAZUygUVCh4zyS+szO6mcQJwNAV4RcAzIk9+T9iy++aYsCU29zclGEYk+4GAAATd9iNH9M0FY2OZiZxAjB4IvzyT3sxforiAwAAAAAwXgRg6ED4BQBz5p6k10fQJgAAABAQzAIJF8IvAAAAAAAwaxgBhhbCLwCYU/c1WM2uPypIf+xdwFT3R1fAFAAAAOgXAdgD8z4zzyyGX0GpteVHP6gjBsyeSc1+42nQIvh/OrP/8nLXlL45mgKmAAC3K59776S7AACBRwD2wDzPzDOL4RcABN2kZr8BAAAA5hEB2Jwj/AIA6J78L1pPEXwAAAAECAHYHCP8AgAAAPr09SuT7gEAYAAEYHOK8Gu6UPMLwEjdk/T6CNoE0DLv9WYBAHBMqhYuAdgcIvwCAAAYr3muNwsAwEGTqoVLADZnCL8AAB3ua38mSL/bBAAAAALi2KQ7gPEh/AIAAAAAAPOIEWBzgvALANDVnvyv2eX3iDIAAABgCIwAmwOEXwAAAAAAYJ4xAmzGEX4BAI50T/6PAGMWSAAYiSufe++kuwAAU4kAbIYRfgEAenJP0usD7NcsSK94T2Ete3RTWAMAAAD9IgCbUYRfAICRC2X2X15+ZEp/NJoprAEAA/jeVzvf+8n3jrkTADA5BGAziPArWBYWrrqWbfvyhHoCAF3cl/9F6+/73B4AAAAwBIrgzxjCLwAAAAAAADdGgM0Qwi8AwED25H/Rer9HlAFTbmVlRYuLi57rMpmMMpkujxMDADBjCoWCCgXvOrI7O6OrI0sANiMIvwAAAIJrc3NThmFMuhsAAEzcYTd+TNNUNDqaOrIEYA9M8105wq9go+YXAC+TuvPliRFgAAAAmHEEYA9M6105wi8AmE6TuvMFAAAAzCMCsClG+AUA8IXfo79G1SYAAAAwIAKwKUX4BQDwzZ6khRG0CQAAAATEsUl3AP0j/AIAAAAAAOgdI8CmDOEXAMB3oxitxQgwAAAABAgB2BQh/AIABMprBel175ksZY95JksAmFFXPvfeSXcBAGYCAdiUIPwCAIzMniR7gP2OZaQT3jNZ6r4p7TKTJQAE2ve+6l7+yfdOoBMAMB4EYFOA8AsAAGC6raysaHFx0XNdJpNRJtMlTAYAYMYUCgUVCt5PEezsjO4pAgKwgCP8AgCM3D35PwvkICPKgBm2ubkpwzAm3Q0AACbusBs/pmkqGh3NUwTMAhlghF8AAAAAAADDYwRYQBF+AQDGZk9jHQHWbDaVy+UkSfl8vmO9aZrK5XIKh8NqNpuKx+NKJBI+dxDwl2VZCofDk+4GAADoggAsgAi/AABjN6ZHFmu1morFoiqVilKpVMd6y7IUjUZVr9dbj4tFIhE1Gg3P7YFJWVhwp8aGYaher0+oNwAA4CgEYAFD+AUAmGWxWEyxWKwjPHCk02nFYjFXraRsNqt0Ok0AhsAolUpKpVKKRCKt92Kx2AR7BAAAjkIAFiCEXwCAedZsNlWr1Toei1xeXpb0RugATFq5XFa1Wp10NwAAQB8IwAKC8AsAMO+2trYkqaOOkjMarFqtEoBh4iqVira2tpRMJhWPx/mehK+ufO69k+4CAMwsZoEMAMIvAEDw7Eq6M8Trbt9HtCxLkhQKhQ5dD0xStVpVs9lUpVJROp3WI488olqtNuluAQCAIzAC7IGVlRUtLi56rstkMspkMiM5LuFXsC0sXO14z7YvT6AnAGZNoVBQoVDwXLezszPm3njJSer8N3CUtre3JUlLS0ue65vN5hh7A3grFosqFosyTVPFYlGlUknxeFzb29uHzgJ59+5d3blzZ+DjnjhxQidOnBh4fwAAxmF3d1e7u7sD73/3bv83UXtFAPbA5uamq+DuOBB+AcD8OuzmimmaikajY+5RuzVJTw+x/01J5/rawyko3mg0PNcfFi4A42YYhorFouLxuJLJpLLZrMrlctftz53r7+eh3eXLl3XlypWh2gAAYNRyuZyuXh3vTdReEYBNCOEXACDYTjx4Depk33s4AVe3kV4EYAiiRCKhRCIh0zQP3e769et69NFHBz4Oo78AANNgbW1NTz89+E3UmzdvDn3TqBsCsAkg/AIABMs9Sa+PoM3+OLM9ttf6cpYnPyoO8BaPx4+sA3by5EmdOnVqTD0CAGAyhn1k/+TJ/m+i9ooAbMwIv6YL9b4AzId7GiSwOrrN/oRCIRmGoWq1qtXV1db7TrBw4cIF33oH+M0JcIFeMeMjAIwXs0COEeEXAACHF7Pf2NhQrVZzjQLL5/PK5/NdZ4cEJq1arSqdTk+6GwAA4BCMABsTwi8AQHCN7xFIZ+Y8Sbp27Zri8bhisVgr3DIMQ/V6XdlsVuFwWJZlKZvNKpVK+dw/oH+maerSpUu6ePFia5RipVLR0tKSEonEhHsHAAAOQwA2BoRfAADsc2bOc0KwbtscNpseMCnhcFhLS0vK5XKqVqsyDEPxePzQ72cAABAMBGAjRvg1XRYW3NO1UgMMwHzYk/81wPZ8bg+YvFAopGq1OuluYAp41fe68rGvjrsbAIADqAE2QoRfAAAAAAAAk8cIsBEh/AIATI/x1QADAAAAJoERYCNA+AUAAAAAABAcjADzGeHXdKPmF4D5NOgIsM9L+kKXdT8auDfALFpZWdHi4qLnukwmo0wmM+YeAQAwGYVCQYVCwXPdzs7OyI5LAOYjwi8AwHQatAj+X3vw8vIvJP3VgXsEzJrNzU0ZhjHpbgAjceVKb+/55uttjb9nlAcD4LfDbvyYpqloNDqS4/IIpE8IvwAAAAAAAIKJEWA+IPwCAEw3iuADAABgts39CLDXXnvN9d9+EX512t3d1ZUrV7S7uzvprswEzqf/OKf+4nz6b9jfTQCA4Lnyufe6XoH0va92vgBgRhCAPfjj4hd+4Rf05//8n/d8dSvORvjlbXd3V1evXuWPYZ9wPv3HOfUX53MwhUKh6++dX/iFX5A0zgDMqQHm52tvTH0HAAAAjsYjkA984Qtf0M///M/3vD3hFwBgGIcV//za176mc+fOjblHAIBBBHY0FwDAhQBsAIRfAIDZQg0wAAAAzDYCsD4RfgEAAABAgHz9Sud77/F4D8BcIwDrA+EXAGA2OXW7/G4TAAAACAYCsB4RfgEAZhePQAKjtrKyosXFRc91h9UEBABg1hQKha6TDe7s7IzsuARgPSD8AgAAwDA2NzdlGMakuwH443tfdS//5Hsn0AkA0+qwGz+maSoajY7kuARgRyD8AgDMvj0NNmJrU9Kvdlm3O3h3AAAAAJ8dm3QHgqyf8Kvb8L1+zFIbQejDLLXhh6B8lqC04Ydh+xGUczEr53PW2pgOK5L+YZfXL02wXwAwOlc+917XCwAwHQjAuuh35FdQ/mAKShtB6MMsteGHoHyWoLThBwIwfwXlswSljfFyaoD5+aIGGADggK9f6XwBwBgF9hFI0zSVy+UUDofVbDYVj8eVSCRGtt9BPPYIAAAAAAFAUAbAJ4EMwCzLUjQaVb1ebxULjUQiajQaSqVSvu93EOEXAGD+DFoD7Kg2AQAAgGAIZACWTqcVi8VcM+Vks1ml0+lDg6xB93MQfqHd7/3eD7SwcNX1nm1fnlBvAAAAgBnHiC8AIxK4AKzZbKpWqymfz7veX15eliSVSiXPMGvQ/Ryv7LxO+AUAmFNODTC/2wSAMfAKTN7j8R4G872vTroHAOCLwBXB39rakiSFw2HX+86ormq16ut+jtJvfU+EXwCA+eQ8Aunni0cgAQATRNF9AG0CNwLMsixJUigUOnS9X/v96Ec/kiS9/EfbevI9P6k/uPkN/UEf/XX88Ic/lGmaA+z5hp2dnZlo4+7du5Kkmzdv6uTJkxPpg19t7P8R929c7/TbZhDOpx/9mKU2gnJOg3Au/GgjKOczSG388Ic/1Ne+9rWB9//Wt74l6Y3fUQCm38rKihYXFz3XZTIZZTKZMfdozgw4SuzK0ZsAAPpUKBS6zpq+s7MzsuMGLgDb3t6WJC0tLXmubzabvu73/e9/X5L0v/39X9J/8fd/qY+edopGo0PtP2ttnDt3buJ98KMNqdTWZqnLdqPtx7Dn069+zFIbQTinQTkXs3I+g9SGH+fD+R01ejwCCYza5uamq04tBtTrKB5G+wBAYB1248c0TZ/+ju8UuAAsEolIkhqNhuf69kcch93vQx/6kD7/+c/r7W9/u9785sEffXz44Yf18MMPD7w/AGB2vPbaa3rttdcG3v9HP/qRvv/97+tDH/qQj70CAAAA5lfgAjAnqOo2YqtbkDXofj/+4z+uj3zkI/11EgCAmcIIMAAAAMy2wAVgzqyN7TW7nOVuQ+EG3Q8AAAzqNyR9ucu6wUfAAbPEGQ06zKhQ9Gf3tXvK/YN/prW//nM68XDg/tyZOff2XtM/++oV/dzPremhh070tzOPqg5kd3dXuVxOa2trOnGiz3OOvnG+x2uUvzcDNwtkKBSSYRgdszbWajVJ0oULF3zdDwCAadVtgpf+DTrT43lJ+S6vv+lT34DpRgA2pAFm8dt9fU9X//vr2n2d2WjHYW/vdV2/flV7e7uT7src2N3d1dWrV7W7yzkfB873eM1VACZJGxsbqtVqrgv7fD6vfD7fmuXRsixFIpFWwOW1n2maevrpp3Xu3Dlls1lVKpWejm+appLJpLLZrNLpdM/7zYNhzk2z2VQ2m1U2mx1hD6fLoOezUqkoGo1qYWFB0WjU9XMw7/w4p+3/tswzP/49rNVqeuSRR0bQu+k0zDldWFhwvZLJ5Ah7CgBAH/7on0rf++obLwAImECOCTYMQ/V6XdlsVuFwWJZlKZvNKpVKtbZpNptqNBquml8H91taWlKpVNLf+lt/S7/0S/uzO0YiETUaDVc77SzLUjQaVb1eb83U08t+82CYc1Or1VQsFlWpVOb+PDoGPZ/r6+uqVqtKp9Pa3t7W+vq64vG4qtWqYrHYuLofSIOe01KppHq9rnw+L0nKZrOKx+Pa3t7uWj9wHvj172E6nR5VF6fOMOe0VCoplUq1Jn2R5OPPPDXAAEBS5yiz7713Er2YDTzeCCBgAhmASfthVrlcPnT97du3u+4Xj8cVi8Va4Zek1t32w/7ISKfTisVirmmqe9lvHgxzbmKxmGKxmBYWFkbdzakx6Pm8ceOG61HfixcvKhqNKp/Pz30ANug5bTabKhaLreWNjQ1Fo1GZpjnXAZgf/x46NzK6zdA7b4Y5p+VyueMxf//syf/AikePAAAB0x7KveeK11YAZlQgH4EcVrPZVK1WUzwed73vFMovlUq+7jcPODf+GvR81mq11iglh2EYMgzDx1pA02mY79HV1VXXsvOo9cGQYt748TNfq9V05syZuT6PBw1zTiuVira2tpRMJvn3FgAAABjATAZgW1tbktQxcsP5I6zbHfRB95sHnBt/DXo+Y7FY1xFJ8zxSSfL3e7RSqSifz8/1OfXjfBaLxY5wcZ4Nc06r1aqazaYqlYrS6bQeeeQRn+vUOY9A+vniEUgAAddeYP/rV3Tlc+91vQAAsyOwj0AOwxkJ44zi6Lber/3mAefGX36fT8uy5r7Okl/nNJvNqlQqaWNjw6+uTaVhz2c2m+0YrTjvhjmnxWJRxWJRpmmqWCyqVCpRpw6YMr/4i7+ot7zlLZ7rMpmMMpnMmHsEAMBkFAoFFQoFz3U//OEPR3bcmQzAtre3JUlLS0ue6w8Wzvdjv3nAufGXn+ezUqkoHA7PfY06P87p+vq6LMtSs9lUMplUsVic2/M6zPk0TVNnzpwhmGnjx/eoYRgqFouKx+OtmSQPq5fZO2qAAaP2hS98QT//8z8/6W4AOMirUD91wYCRO+zGz9e+9jWdO3duJMedyUcgnRmyuhVd7vZH2aD7zQPOjb/8PJ+5XM6nP4Cnmx/ndHV1tVVoPBQKzfUIpmHOZy6X49FHD37+3CcSCSUSCZmm6UvfAEyPbnfMJ9WOn2352Se/fON3fzVwbQWxT34qbH4jUO1IAf4e/+3cG4/wDiiIny2IffLLrJ+nIJ7zg2YyAHP+iOh2N/2oGkr97jcPODf+8ut8ZrNZbWxscP7l7/doLBZTKpWa60d7Bz2f2WxW8XhclmW5XpJc/z+P/P53NB6P+zi7JjXAgGkxy3/wjPsPp/Z6X141v278/v/s2/H8aiuIffIyaD21whdv+HL8gdvxqA03rd/jvQjiZwtin/wy6+cpiOf8oJl8BNKZUav9Dy1nORqN+rrfPODc+MuP8+nUAGKGvX1+f48+/vjjcx0sDno+a7Wa1tfXPddFIhEZhqF6ve5jT6fHKP4dddqcnH8m6etd1r0+zo4AY2WapnK5nMLhsJrNpuLxuBKJxKS7BSDodn7QOVprlI9cjvNYCAa+5oeayQAsFArJMAxVq1XXYzjOjFkXLlzwdb95wLnx17Dns1KpSNofqXSQaZpzG4j5/T1qWVbH+Z0ng55Pr3DLmVjg9u3bo+nslPD7e7Rarfo4+cWgNcD+owcvL38s6VcG7hEQVJZlKRqNql6vt37nRiIRNRqNua0bCUD+BQ+9PM74J7uD7QfMuZkMwCRpY2ND0WhUlmW1RnHk83nl8/nWDFyWZSkej6tYLLb+0O1lv3k16Dl1UCjfbdDzWavVlMvllE6nVSqVWu3V63VFo9G5DcCkwc5ps9nUpUuXdPHixdbde8uyVK1WVa1WJ/VRAmHYn3l0GuScmqbZ+h51grNKpaKlpSVGnAATkE6nFYvFXL9vs9ms0uk0AViA9fMIHkaj969BsB+h6tksBVJMFhBMXiMKcaiZDcCcx2yy2azC4bAsy1I2m3VdmDSbTTUaDVcw08t+82rQcyrtj0wqFouSpGvXrikejysWi811qDjI+TRNU/F4XJI8R37M+wibQc5pKBRqhWDO7HrhcHjuwy9puJ95eBvknIbDYS0tLSmXy6larcowjFZA5h+nBpifqAGG2dNsNlWr1TomSXEeRy6VSlwzArOoPWjwM/wZZ4DhdSxClOkw6NeIr63LzAZg0v4fGofNjmcYhmdgcNR+82yYc1osFn3+g2369Xs+DcOQbdvj6NrUGuR7lLCru0F/5g9yRjhhX7/nNBQKjeF79J78D6wIwDB7tra2JHVOWuGMBqtWqwRg3fQygmTAP8TbRxbtvvYnkqTcF35OJx7+sb7bw2T9oPljR44Wu/Kxr7qXPbcf4UgyQoXOczBokOYVJvbSltd+owqJvB459dOkv5/GXZtugmY6AAMAAL14aUraBCbLmbSi2wh2r5luf/SjH0mSvvWtbw117IcfflgPP/ywdprfl/n3D4wC/1mPWoDf8rjh2Lbdzs6OTNMcqk9d2/I6vpc/aOvT7j2Zf/D/b+/+eRs3tzyO/7TIXuQGW0ieNNliCrJKS8F5AyarabYQZ8qkidgE2E5EXoEgvQNqmgmwjaOn2C6F6D6ALeJ2g727YpFmbhFLLBZJdvYC3GJArmX9tUTLY/n7AQxE4h89PtFQ8uF5zvNu7SHRvy9bMOSvc4/e/+/vkqS/Xf+X/vSPf95uLCv8/e//o3e//nXzjgc818c2pirjve2Ygt4/33pmcf93v36yZL/d3H5vLn8fzgv+ZbEv6u7v8XlFzP/yn3/TP/35Txv3X2fZmLYZw23bxnshLv+xeA3bJk7Ljls4z+3r5Y7++/f3kqS//Nu/3j3e21x7N/2uK2wVp13Ps0V8l57r99/1888/6/379zuPp/i8LD4/q1TLKScBAOBJ+uWXX/Tll1/qt99+u5fzf/bZZ3r79q2eP39+L+cHDi0MQ/X7/bkG+IVarSbLsjSZTOae/+GHH/TNN98ccJQAADx+b9680ddff13pOakAAwDgiXr+/Lnevn2rX3+9n2qtzz//nOQXjopt25Kk6XS6dPvtqZGS9OLFC71580ZffPGFPv30051fu6gAAwDgY/b+/fu9KsD++OMPvXv3Ti9evKhwVB+QAAMA4Al7/vw5SSpgS0WCa9XCH8sSYJ9//nnld7ABAMDd/cNDDwAAAAB4DIrVHm/3+ioeN5t375sDAAAOgwQYAAAAsIV6vS7HcRZWZo3jWJL08uXLhxgWAABPzrKFZzYhAQYAAABs6fXr14rjWGmaKkkS+b6vMAz11VdflYmwTW4eFwSBjDH3POrjsU/ssixTGIYKw/AeR3hcdo23MUbNZlO1Wk3NZnPrfxuoJua2bRPzLVVxPY7jWI1G4x5Gd3z2iXetVpv78X3/zq9PDzAAAABgS47jaDwe67vvvtNPP/2ks7Mz9Xo9tdtt2bat6XSqdru98vg0TdVsNudWktzmOOwXuziOFUWRjDHEeUu7xrvf72s0GikIAk0mE/X7fXmep9FoJNd1DzX8R2nXmA8GA43HY/V6PUkfVqz1PE+TyWRpb0J8UNX1OAiC+xriUdkn3oPBoPycLexyPanleZ7f+SgAAADgCfM8T5LmpkMOBgMFQaB1X693PQ7VxK5Wq6ndbiuKonsZ4zHZNd6+72s4HJaPkyRRs9mU67oL04cxb9eY9/t9dTqd8nER8+FwqFardX8DfuSquKaEYagkSXR1daXZbHYv4zwW+8S7SKLviymQAADsYZf+AwAetyzLFMdx+WW+UDTJHwwGlR4HYndou8Y7juOyCqngOI4cx+HzcoN93uM3k1/Sh36FksoqGyyq4poSx7GePXtGnLewT7yNMbq6upLv+3tf60mAAQCwB9/3lWXZQw8DwAFdXV1J0sLUouKPoFV3qXc9DsTu0HaNt+u6K6fcMRVvvSrf48YY9Xo9Yr5GFfGOomgh+Yjl9on3aDRSlmUyxigIAjUajZ173JEAAwBUJgzDsjFlo9FQo9FY+bhWqz36u8FJksiyrPJOa5qmCzHo9/vl/nEcy7btchsNaoHHqbh2Ff/2V22v6jgQu0OrOt5pmu7UsPopqSrmYRiq2+2S/Npg33iHYbhQ7YjV9ol3FEXK81zj8VjtdltZlsnzPFaBBAA8rCzL5LquZrNZ+VM0qHz9+rVms1n5AVbs/5hFUTTX+NSyLPV6vbLfhuu6c3cGXdctp4LcjA2Ax2UymUiSTk5Olm5fdW3b9TgQu0OrMt7GGFmWxeIDG1QR836/rzRNlWVZJdPFjtk+8U6SRM+ePSPJeAdVvL8dx1EURWWPwV1W9CUBBgCoVBRFK+/uFBzHOYqS8TiOlyaxvv/++3L7TcYYJUlSJgABPE7FKlTT6XTp9lV/FO16HIjdoVUZ7263O9cUH8tVEfNOp6PhcKjRaKR6vU6F0hr7xLvb7R7F99hDqvKa0mq11Gq1lCTJncdBAgwAUBnP87b+AAuCYGOi7GNmjFlZwVVUeRUNP6UPdwvDMKRPDXAEiuvcqjvWm3og3fU4ELtDqyreYRjq9evX/P/ZQpXvcdd11W63mRq8xq7xDsOwnH5380fS3H9jXtXXcM/zVibT1iEBBgCozF2W2rYsS5ZlyRgjz/MUx7EGg4EajYaCIJAxpuwZVtzhieNYvu+rVqst9BJJkkS+78vzPNm2vVNZ9F2cn5/PTX+8rdgWRVE5FWE4HPJHAHAEilWrbv+hUzxuNpuVHgdid2hVxHswGMjzPFbI21LV7/HT01O+c6yxa7zjOFYQBLJtu/wxxijLMtm2Ta+7Fe7jGl6c8y5IgAEAHowxRmEYKo5jDYdDTSYTWZalq6srtVotvXz5cm5/13WXlvMX1VVF2X+v11O/31+boLp5XJF0K/i+r0ajsfIuXpZlStN07Zf6YuzGGJ2dnanX6/FHAHAk6vW6HMdZqOgsKj5vX7v2PQ7E7tD2jbcxRpIWKqV3mbL0VFT9Hk/TlF6ja+wa7/F4rDzP5346nY7q9fpcn1vMq/r9PRqNNn7PXyoHAOAeua6bS8qHw+HS7b1eL5eUdzqdhW2dTieXlI/H4/K52WyWS8pbrVb5nOM4c/vkeZ7X6/VcUj6bzbYeY57nebvdzkejUR5F0cr9oyjKe73exvO2Wq2FsQI4DuPxOJeUTyaT8jnLsuauDZPJJLcsKx+NRnc6DsvtGvNC8fnRbrcPMt7Hbtd4j0aj3HGcPIqiuZ92u732sxW7xXw2m+WtVmvue9ZkMsld1z3cwB+pfa8phU6nk9fr9Xsd6zHYJd7j8Th3HGdun+FwuPN1/JO7p8wAAKhO0Qfs9PR0p+PTNFWSJOp2u0u3X11dbbwD6vt+WdIehuHGKQNRFOni4mLj2IrzrLvjXZTRX19f6/T09E7TSAE8HMdxNB6Py2tGmqYKw3BupbssyzSdTud6nmxzHJbbNebSh+twFEWSpB9//FGe58l13Ufdi/K+7RLvJEnkeZ4kLa3OmM1mBxn7Y7VLzOv1urIs07fffqsoisp+rPQc3Wyfawrubpd4W5alk5MTdbtdjUYjOY4jz/PK6/ld1fI8z6v4ZQAAWKbo7zUcDpcmdwaDgYIg0Gg0WkhUhWGofr+v8XhcTh/MskyNRkOtVkvD4VDGGPm+r30+ztI0lW3b6nQ6G1dMStO0HO86xhh1u91yuuTN36Hg+74syypfs9lsqtfrMWUBAAAAqBg9wAAAj9rNlXd2VVRqbXOOKIq27i12cXEx1wz/pjRNZYyZO9erV69YshwAAAC4ByTAAACPWpG8Khru3lY011wnDEM5jrNVc15jzNppijdXfKzX62VZ92AwmNuveK2b0y0dx1Ecx5TZAwAAABUjAQYAOIjpdHrnY549eyZpvjKr+O8iSVRMFwzDcCGBdTvptIwxRp7nKQgCpWm6tqIsjuON0xPPzs4URVE53bFer5cJs5tJusvLy4XeMycnJ5J2ixUAAACA1UiAAQDu1e2E1W3F88u2F0mkMAwVx7EGg0E5lTCOY3mep3q9rk6nI+lDDy3f99Xv9+V5niaTydKEVZqm6vf7MsZoOp3Kdd1yvyiK1O/3y2TUTZumPxaNZ2+/ZtEQ+Gaj/izLlr5GMT4AAAAA1SEBBgC4F8WqikUyp9vtKgzDueSOMaZMaIVhuFCx5bquer2eptOpfN/XZDJRFEWyLGuuYX2v11Ov15NlWeU5fd9f2U+rWDXy8vKynKJoWZZarZYGg8HKlcGSJFloZF/8rrZtK45jJUkyV+l183dMkqRccdK27ZWVXptWoQQAAABwN6wCCQDAFgaDgbIsK6vN9rVs9cqiqo2PZgAAAKBanzz0AAAAeAyiKNLFxUVl5ysqydI0LSu+VlWYAQAAANgPUyABANggTVOdnJwsnRa5q2LK5c3pkufn5yunbQIAAADYHVMgAQDYIAxDnZ6elqs5VikIAtm2revra9m2XfYkAwAAAD52N2czfOxIgAEAsIHv+xoOhw89DAAAAOCj0mw2dXFxUelMifvCFEgAADYg+QUAAADMS5JElmWVya80TRWGoWq1mmq1mhqNhvr9frl/sRJ6sS2O44OOlwowAAAAAAAA3EkQBPJ9X67rzj3v+76MMWq1Wgs3kn3fV5qmGo/HhxyqJBJgAAAAAAAAuCPbtjWZTBaeT5JEzWZT9Xpds9msfN4YozAMlx5zCEyBBAAAAAAAwNaMMQuVXwXHceQ4jrIsK6c5JkmiMAw1Go0OOcw5JMAAAAAAAACwtfPzcwVBsHJ7sS2KImVZVi4q9ZArRpIAAwAAAAAAeIKKyqxGozGX0PJ9X41GQ2maLhyTZZnSNJXjOCvP+/LlS0kfKsXOzs7U6/XW7n8I9AADAAAAAAB4wjzPUxzHyvO8bG6fpqna7fbCvoPBQFmWqdPprD3numb4D+GThx4AAAAAAAAAHo7v+4rjWEEQKAzDtVMVoyjSxcXFxnMW50iSZOU+QRDItm1dX1/r9PRUrVbr7oPfEgkwAAAAAACAJ6xoaF+v19cmv9I01cnJier1+trzGWMUx7Esy1KapkqSZGEKpO/7siyrrCQrVo5c1Vx/X/QAAwAAAAAAeMKKpNeynl83RVG0tvm99P99xS4uLuaa4d+UpqmMMXPnevXqlXq93i7D3wo9wAAAAAAAAJ6wMAwVx7GyLNNkMlm5n23ba7dnWaZms6nhcCjHcZRlmRqNhiTpZvrJGCPf9+eei+NYnudpNpttrDDbBRVgAAAAAAAAT5QxRp7nKQgCpWlaVoHdrgaL43jj9MSzszNFUVROd6zX62VfL2NMud/l5eVCkuvk5ESSNJ1O9/p9ViEBBgAAAAAA8ISkaap+vy9jjKbTqVzXLZNbURSp3++XCanCpumPnufJsqyFJJnneZKkbrdbPpdl2cL5b47tPpAAAwAAAAAAeEKSJFG329Xl5aXa7bakD33AWq2WBoOBXNddqNBa1she+lAZZtu24jhWkiRzlV7GmLL/V5Ik5WqTtm2vrPRa14R/H/QAAwAAAAAAwEqDwUBZlpUrNu5rXQ+w+0pTfXIvZwUAAAAAAMBRiKJIFxcXlZ2vqCRL07Ss+FpVYVYVpkACAAAAAABgqTRNdXJyUunKjMV0y5vTJc/Pz9Xr9Sp7jduYAgkAAAAAAIClwjDU6elpuZpjlYIgkG3bur6+lm3bZT+y+0ACDAAAAAAAAEv5vq/hcPjQw9gbCTAAAAAAAAAcNXqAAQAAAAAA4KiRAAMAAAAAAMBRIwEGAAAAAACAo0YCDAAAAAAAAEeNBBgAAAAAAACOGgkwAAAAAAAAHDUSYAAAAAAAADhqJMAAAAAAAABw1EiAAQAAAAAA4Kj9H9Nc9d2/6w2vAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1500x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nbins = 100\n",
"vmax = 80\n",
"\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(15, 6))\n",
"\n",
"# ax0.set_aspect(\"equal\")\n",
"\n",
"a0 = ax0.hist2d(\n",
" xx0_test,\n",
" xx0_predicted,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax,\n",
" range=[[0, 0.5], [0, 0.5]],\n",
")\n",
"ax0.plot([0, 0.5], [0, 0.5], marker=\"\", alpha=0.8)\n",
"ax0.set_box_aspect(1)\n",
"ax0.set_xlabel(f\"True $x/X_0$\")\n",
"ax0.set_ylabel(f\"Predicted $x/X_0$\")\n",
"ax0.set_title(f\"found rad_length_frac\")\n",
"plt.colorbar(a0[3], ax=ax0)\n",
"\n",
"ax1.hist(\n",
" xx0_test,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"darkorange\",\n",
" histtype=\"bar\",\n",
" label=\"test\",\n",
" range=[0, 0.5],\n",
")\n",
"ax1.hist(\n",
" xx0_predicted,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"blue\",\n",
" histtype=\"bar\",\n",
" label=\"predicted\",\n",
" range=[0, 0.5],\n",
")\n",
"ax1.set_xlim(0, 0.5)\n",
"ax1.set_title(\"radiation length fraction endVelo\")\n",
"ax1.set_xlabel(f\"$x/X_0$\")\n",
"ax1.set_ylabel(\"a.u.\")\n",
"ax1.set_box_aspect(1)\n",
"\n",
"ax1.legend()\n",
"\n",
"# plt.gca().set_aspect(\"equal\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHLCAYAAAAnR/mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3qklEQVR4nO3dT2wj+Z3394+yzsjtR+ih1L44wAI7RWAPvqRR1ByezcIyMCz44EsAsXr2ZC9gNAlDhwANrAraS3cfskQRexXgohBkMMhlmtX5c9jDLjkLtxMYyNNibe9lkScJaxZwAD9APFK5obitWa+ZQ29ViyIpUWSRLKreL0CYEYv1q69YJOvbvz/fWuv3+30BAADkxH+27AAAAAAWieQHAADkCskPAADIFZIfAACQKyQ/AAAgV0h+AABArpD8AACAXCH5AQAAuULyg1wLgkDNZnPZYeReFEVqNpsKw3DZoeCG+AxhFZH8IJfCMJRt2yqVSvI8b+Dxzc3NVL/M59HmpIIgkOM4KpVKKpVKCz/+JJrNpj744APVajVFUTRTW/Hfa9u2isWiGo1GOkFOaZnnft5GfYY6nY6KxaLW1ta0tramUqkk3/eH9vV9X6VSKXlOEARXHmsV3sdYLSQ/yCXDMNRqtYYej6JIURSp1+tN1W4YhkMX8FnbnIVpmvr444+vvbgs0uXXqFqtqlqtztxuEAT66KOP5LquWq2WKpXKQl/zrJ37eRv1GSqXy+p2u8nvtVpNlUplaN9KpaJaraZCoaButyvTNK88Vhbfx1htJD/ABaZpqt/vy3Xdqfa3bVsnJyeptjmr6y4sizbqNbp3797M7dbrdW1tbSW/u6470Ks3b1k898tQKBS0v78vSSP/gRHrdrs6ODiYuN2svY+x2kh+gJTYts2/TK8xz9doma89535QnNR0Op2xr8uzZ89S6fEDpkHyg5Xg+74sy1Kn01Gz2dTm5qZqtVqyvdFoqFarJfMCRs2xiKJItVot+Rk1H8T3fdm2Ldu2h7ZddQzf95Mv+VqtNnAxvKrNOCbHcWRZVvI3XtzebDaTuROdTieZKzGqvZsKgkC2bcuyLBWLRTmOM9Ox49e2WCwOJQRXvUaxk5OT5JiT/o3NZlO2bSsMw2Qeim3byeuY9nsnPk8Xz2+Wz32a53iSz5D0tvcnHu6q1+tD233fV7lcVqFQmCjO61z3WgJD+kDGtVqtvmEYfUn9arXa39/f75um2TdNs9/v9/v7+/v9i2/ldrvdl9Rvt9vJY71er18oFAYec123Lylpp9frJY+Vy+WBGCY5RvycXq83cNxxbXa73X6hUOh3u93kMc/z+pL6rusm+1cqlWT//f39frfb7Ver1YHnXefi33nx+BdjarVayWs8zbFN0+zv7+8n+0rqS+obhpG0Oeo16vf7A6+R67pT/Y2GYfQNwxh4LK33jmEYAzEXCoV+oVBIfs/quU/zHE/yGbro4nvg9PR0YJtpmgPtXBdnbNz7+LrXEriM5AcrIf6SjS+uF5XL5YEL0enp6dBzK5XK0AWo3x/9ZTrqYjXJMcZd2Me1aZrmyJhM0xxoJ74QXP4iH9XmOKP+TtM0By4Y/f7bi/rFi9Wkx46fd7G9+AJ68fW4LvnxPG/qv3FU8nOx7WnfO6ZpDv39cZvx65TVc5/mOb7JZyhWLpeHXs84ibppnOOONelrCVzEsBdWQtw9/uGHHw5ta7VaAytMjo+PJSlZeROGYTL0Ma3rjnFTYRgqCIKRkzjjIZnLk3UvDhHELk+wvenx6/V6MixzcZgj/vsmPfbLly+Htsft3WQuzPb29tBxZ639M+t7JwgClcvlgf329/fV7/dHvi7XWdS5T/McT/sZioeuLg4luq47MNH5pnGO+htv8loCkvS1ZQcA3MSoL+hCoaBCoSDf9/XZZ58NXeTii6dhGDMd96pj3NRVCUGcAMyz4F98/KtW49xE/Hp0Op2hC1FWVulM896JX6dpkpxxFnXu0zzH036GyuWyDMNQGIZqNpuqVqt69uyZvvjii1TiXPbnCKuLnh+svDAMVSqVFIahWq1Wssz24nZp+l6SSY4xrVE9R/GF9uKy7bTFr0laF4ZKpaJyuax6va5Op6MoiuS6rvb392dKOudt0vfOPC6g8z73acY+y2co7v1xXVe+72t7e3sgmUwjzmV9jrC6SH6w8izL0tbW1tiEJL74XhzeSPsYNxX3hoxakRJ/kReLxVSONUr8moyqvjsuruu0Wi2Vy+Xkdgeu62a+vs115zU+T+N6Jaa5YC/q3Kd5jmf5DFWr1WT48uHDhwMr7WaNc9mfI6wukh+stHh588V/ScZfevG/UuPu72azOfJfiNfN25nkGDdpT3r7hW+aZtL2RcfHxyoUCnOtgRLPYXEcZ2joYNpbMdi2nfSe7O/vXzncdfk1+vLLLyXN1jt3cnJyo/1v+t65fIF1HGeoVyFL5z7NczzrZ+jiHJ/LFZ9niXPZnyOsLpIfrIT4y/Xyl2x88fF9X81mU81mM+lmD4Ig+ddk/C/7UqmkTqejMAyT54VhmNQrGZXUTHKMKIqSf2F6npdMEB3XpvS2N6FQKAz8SzgeLjo6OkouyrMkBONcrMJbKpVk27YajYYsy1Kv10suSJMeO04O4naazeZA/ZvYuNdonCiKZv77Z33vxL1XlmXJtu2kHlCxWEzOURbPfZrn+HJbV32GRokTkFGJyKRxjjPpawkMWPZyM+A6F2u1GIYxtBza87x+oVDoG4aRLKmtVqv9QqEwsMTW87ykHdM0k/ot+/v7/V6v1+92u0nNE/3b0t94me2kxzBNs18oFJL6JFe12e+/XVodLyGuVqv9arU6sOS32+0mS3YNw+i32+3+6elpsoxcI5YoX3SxZsuo47uuO/a1vcmx49cyfvzij2EYA8e8/Bq1Wq1kWXO85PnycUYtUx/3N1ar1aSGTFrvnVarlbwWl2vUjPu7ln3uY2md4/j1uuozdJVqtXrlc66L86r38XWvJXDZWr/f788vtQKQB0EQ6LPPPtPBwYFOTk4GemxarZaKxWJq86UAYFYsdQcwk3jF1OnpabJ0/CLDMLjVAIBMYc4PgJnEE00fPnw4MMcnru3ieR6TTgFkCsNeAGbWaDRUr9cHJhWbpinXda+dsAoAi0byAyA18VyfLBc2BACSHwAAkCvM+QEAALmSi9Vev/rVr/S3f/u3+qM/+iPduXNn2eEAAIAJvHnzRv/8z/+s733ve/rmN7+ZWru5SH7+5m/+Rn/+53++7DAAAMAUPvnkE/3whz9Mrb1cJD/f+ta3JElHR0dX3m/oJnZ3d/X8+fPMtZX19s7OzrSzs6MXL15oY2MjlTaz/PdmOba8nYu02+Nc3M72OBfZai8IAj18+DC5jqdlbsnPj3/8Y21vb+tHP/rRvA4xsa9//euSpD/+4z9OLfm5c+dOJtvKenuvX7+WJN2/f193795Npc0s/71Zji1v5yLt9jgXt7M9zkW22js7O5P07jqelrlMeP7iiy/keR7l7AEAQObMpefngw8+kOd51PoAAACZM7dhr4cPH86r6an94Ac/0De+8Y2R2/b29rS3t7fgiAAAyLfDw0MdHh6O3Pab3/xmLsecW/Lzve99T67r6v79+/M6xI19+umn+s53vrPsMAAAwL+5qvPhZz/7mXZ2dlI/5tTJz8cffzx2WxRF6nQ6evbsWaaSHwAAgKmTn1arNdFz/uqv/mraQ2RamkNkaQ+3Zb29tGX5781ybPOQ9b83y+c2bVl+7VahvTRl/W/NenvzMPW9vR48eCDXdbW1tTW0rdfrqdls6ic/+cnMAaYh7jZ78eIFw15L9vr1a73//vv69a9/ndoyUkyHc5EdnIvs4Fxky7yu31Mvda/Vavrggw/0/vvvD/2YpqlSqaS//Mu/TC1QAACANEyd/Hz00UdXbjcMQ57nTds8AADAXEw95+fVq1djt4VhKMdxpm0aAABgbqZOfkzT1Nra2tjt/X5fjUZj2ubngjo/AABky0rV+SkUCnrw4IEKhcLQtnv37sk0zWuHxhaNOj8AAGTLStX5OTo60u7ubpqxAAAAzN3UE55JfAAAwCqa2+0tfvzjH2t7e1s/+tGP5nWIib333nsD/8XyrK+v6/Hjx1pfX192KLnz5Mng77/7HeciK/hcZAfnIlvmdf2eusjhVb744gsVi0Vtbm7qyy+/TLv5GwuCQKVSSd1uV6ZpLjscYCkuJz/jHgOArJjX9XsuPT8ffPCBPM+TYRjzaB4AAGBqcxv2evDggd5///15NQ8AADCVqSc8X+fzzz/XwcHBvJoHAACYykw9P3//93+vdrutKIoGHj85OVEQBDo5OVG9Xp/lEKna3d3VnTt3Rm6jyCEAAIt3VZHDN2/ezOWYM9X5qdVqVz6nWq1O2/xcPH/+nAnPAABkyFWdD/GE57RNPezleZ7a7bZOT0/1d3/3d3JdV7///e/1+9//XicnJ6pWq/rJT36SZqwAAAAzmzr5KZfL+uijj/T++++rXC7r+Pg42VYoFFQqlZjzAwAAMmfq5OfXv/71wO8PHjzQX//1Xw885vv+tM0DAADMxdRzfgzD0B/8wR9oc3NTx8fH2t3d1fb2ttrttgqFgnzfH3nTUwAAgGWaOvn5i7/4C/3qV7/SP/zDP2hra0uS9OzZM1mWpS+++EKS5LpuOlECAACkZKal7peTG8Mw1Ov19MUXX2hra4sihwCwan7+ZNkRTOZPniw7Aqywud3eIouo8wMAQLasVJ2fVUSdHwDARWEYamtray5zVOfZ9m2yUnV+FqHT6Whzc3Po8SAIZNu2HMdRrVZjVRkAYCq2bevk5GTl2sZsMt3zM6qCdBiGQ7e3LxaLSWFFAAAmYdu2giBYubYxu8z2/DiOI8Mwhh6v1Woql8sDw1dxDxAAAJPwfT9JTmq12lCyEo8wWJalYrEox3EG9o+iSLVaLbn+FItFNZvNidrG8mWy56fT6ejevXsyTXOgcnQURep0OkOrzLa3tyVJzWaT3h8AwLUqlYpevnypRqMhz/MG/rEdBIEcx1G73Zb0NpmxbVtRFMnzPEnSw4cPZRhGcj1qNpvJTb6vahvZkMmeH8/ztL+/P/R4nAhdfiPFvUDxGxUAgGk9fPhw4B/ZlUpFhUJhIMHpdDoD+/AP79WSuZ4fx3HGFkcMw1CSxs6cj7ePc3Z2ptevX08d2/r6utbX16feHwCQbWEYKggC1ev1kduPj49VLpdlGIYajYbu3buX/GN91D/a8+78/Fzn5+dT7392dpZiNO9kKvkJgkD37t0b20XY6/UkKakofVmckY+zs7MzU3yPHz/WkydPZmoDAJBd8dycVqt15fNarZZKpZIcx5HneWq1WpRSGaFer+vp06fLDmNIppKfer1+5RuuWCxK0tilg9eNq7548UL379+fOj56fQDgdotHEMIwvPKaYhiGvvjiC9m2rU6no1KpJM/zGP665ODgQI8ePZp6/1evXs3ccTFKZpIfx3FkWdbA0NXFN6H0LrkZ18NzXfKzsbGhu3fvphAtAOA2iq8jvu+PHMbqdDoql8tJctRut5MJ0bVajeTnklmni2xsbKQYzTuZmfDc6XSS5YLxj+/7iqJIxWJRtm0nq7ouz+2Jf59HFUgAwO128R/U5XJZ0tt/kF9enh4vZZc0NCE6XgV2+fp03XQMLEdmkp9ut6t+vz/ws7+/r0KhoH6/r263q0KhINM0h1Z1xbPuHzx4sIzQAQArKJ5K4XmewjCU7/sqFApJj0+pVJJt22o0GrIsS71eL0mOnj17NpDoRFEkwzCSnqNRbSM7MjPsNamjoyOVSqWB8VjXdeW6LvdPAYBZ5ehu6dVqVZ7n6dmzZ5KU9N64rqt79+7J87ykYKHjOANDWtvb27IsS5VKRdLbHp9ut3tt28iGlUt+TNNUt9tNKkCHYTj0pgQAYBIXE5aL9vf3r1y6PklduXFtY/kynfzEPTqXmaZ57TJEAACAUTKd/KRtd3dXd+7cGbltb29Pe3t7C44IAIB8Ozw81OHh4chtb968mcsxc5X8PH/+nCJUAABkyFWdD0EQzGUld2ZWewEAACwCyQ8AAMgVkh8AAJArJD8AACBXSH4AAECukPwAAIBcIfkBAAC5kqs6PxQ5BAAgWyhyOGcUOQQAIFsocggAADBnuer5AQBc7cmTZUcwmVWJ8ypBEOj4+FjVanXZoYyU9fhmQc8PAAALFIahbNtWqVSS53kDj29ubqrZbC4xuvHx3SYkPwAALJBhGGq1WkOPR1GkKIrU6/WmajcMQ0VRNGN04+O7TRj2AgAgA0zTVL/fn3p/27bVarVUKBTSC+qWoucHAIAVZ9u2giBYdhgrI1c9P9T5AQBIb4eYnj17Js/z5LquwjCU53kKw1DlcllHR0dJD4rv+/I8T47jKAxDOY6jBw8eJPNhgiBQvV5XFEUKw1CVSkWu6w4dz3Gc5PdisTgUk+/7+uyzzyRpaNjp4v5hGEqSXNeVaZryfT9JfGq1mgqFgg4ODpLSLmnFNy/U+Zkz6vwAACTJcZxkYnGcRBwcHOizzz5Lkoleryff95OkxzAMFQoFGYah4+NjSW8TC8dx1G63Jb1NYGzbVhRFSXIUhqFKpZJarZbK5bIkqdFoDMQThqHCMJTv+8lzLm6zLEvtdluGYUiSNjc39dFHH+n09FSVSkUvX75Uo9GQ53nJc9KMb56o8wMAwALEPT7S2yEj13VVqVSSBCBORCqVimq1miSpUCjIdV11u111u11J0sOHDwd6USqVigqFgprNZjL52HEcbW9vDyQ1+/v7A/EYhjH0WMy2bdVqtYGk5uDgIJkgfZW04rttctXzAwDAZReTCunt0FGn01G73U6SBUn68MMPB54XhmEypDTK8fGxDMOQ7/tDw0yTio9xdHQ08Pj+/v61Ccoi4ltVJD8AAFwQT4+I59bELq+iiufZXLUsvNPpSBpOsCYVH2OaFVyLiG9VMewFAMAFW1tbkq5PCOLk6HKSNOo5JycnU8UyyTFm2XfW+FYVPT/ALXQbSv8DyxInAtdNtI2TI9/3Rw5BdTqd5DnxHKGbinuhLk5GviieiL2s+FYVPT8AAFzg+74KhcK197SKkxHHcYZq7MQryba3t5PfR01Ovm7C8sX94yGqmOM4SS/VqPYWEd+qylXys7u7q29/+9sjf8bVGAAA3G4X718VLwG/OME4TgAuJwKFQiHpUSmVSrJtW41GQ5ZlqdfrqVwuDz2n0+kktYKktz038bLyuP2LQ1DxCjNJsixLtm3LcRyVSiUVi8VkLlBclyeuVRQncGnGNy+Hh4djr827u7tzOWauhr2o8wMAuMwwDJVKpWQIyPO8pNckLnAove1BOTk5GegRcl1X9+7dk+d5SX0gx3GGnlMsFuW6rizLkmmaarVayVL6SqUysCorCAI1Gg1Vq9UkOTEMQ/V6Xb7vyzRNua47MAxWrVbleZ6ePXuW/A1pxjdPy6jzs9af5UYiGXLVuGf84nW7XZIf5MKkc36YG4Q8azQaSQHAUfNpsHzzun5nbtjL932VSiWtra2pWCwOjXHG1tbWBn5s215wpAAAYBVlatir2Wyq2+0m45uO4yRjkxd7dZrNpqrV6sC9R8jaAQDAJDKV/Fy814gkHR0dqVQqKQiCgeSn1Wol9ykBAOCmoihKriPjlpHj9srUsNflOgTxLPaL43y+7+v4+Fi2bSdL9QAAuIlmsynLspLJvou8kSeWL1M9P5fF9xu52OvTbrcVRZF830/utjtp1n52dqbXr19PHc/6+rrW19en3h8AkA23/cadWXF+fq7z8/Op9z87O0sxmncy1fNzkeM4qtfrQyu4PM9Tv99Xt9tVtVpVFEWyLGui0t87Ozt6//33p/4Zd3M4AAAwrF6vz3Td3dnZmUtcmVzq3mg09PLlS/m+L+ltwjOu0qbv+7JtW5VKZezN2+Klci9evND9+/enjoueH6wKlroDyIJZe35evXqlnZ2d1Je6Z3LYK+6O7HQ6sm1bruuOTX4uFoi6zsbGhu7evZtqrAAAYLRZOw02NjZSjOadzA57SW+Xr1er1WuHtCzLyt0daQEAwHQynfxI0ocffji2cvNF8c3ZAAAArpL55CcMw2tXcrXbbdVqtQVFBAAAVllmkp8oimTbdjLJWXqb+LTb7aTwYTxx+WI9Bt/3tbW1NfcbrwEAgNshMxOeC4WCoijSw4cP5XmeLMuSYRgDlZwNw9DW1pbq9bra7bZM05RlWQNVoQEAAK6SmeRH0rW3rCgUCtzWAgAAzCRTyc+87e7u6s6dOyO37e3taW9vb8ERAQCQb4eHhzo8PBy57c2bN3M5Zq6Sn+fPn6daJAkAAMzmqs6HeK5v2jIz4RkAAGARSH4AAECukPwAAIBcIfkBAAC5QvIDAAByheQHAADkSq6WulPnBwCAbKHOz5xR5wcAgGyhzg8AAMCckfwAAIBcIfkBAAC5QvIDAAByheQHAADkCskPAADIlVwtdafODwAA2UKdnzmjzg8AANlCnR8AAIA5I/kBAAC5QvIDAAByheQHAADkCskPAADIFZIfAACQKyQ/AAAgV3JV54cihwAAZAtFDueMIocAAGQLRQ4l+b6vUqmktbU1FYtFdTqdoecEQSDbtuU4jmq1mnzfX0KkAABgFWWq56fZbKrb7cp1XUmS4ziyLEu9Xk+GYUiSwjBUqVRSt9tNenGKxaJOTk5UrVaXFjsAAFgNmer5iaJInuepXC6rXC7r6OhI0tuenlitVlO5XB4Yvop7gAAAAK6TqeRnf39/4PdCoSBJSaITRZE6nY4syxp43vb2tqS3PUcAAABXyVTyc5nv+3JdNxnyOj4+lqTk91icHLXb7cUGCAAAVk6m5vxc5DiOms1mMvQlvZ3vI73rEbos3j7O2dmZXr9+PXVM6+vrWl9fn3p/AADy5Pz8XOfn51Pvf3Z2lmI072Qy+Wk0GgrDUFEUybZteZ6narWqXq8nSdra2hq5XxRFV7a7s7MzU1yPHz/WkydPZmoDAIC8qNfrevr06bLDGJLJ5Cee+9PpdGTbtlzXVbVaVbFYlCSdnJyM3O/ycNhlL1680P3796eOi14fAAAmd3BwoEePHk29/6tXr2buuBglk8lPrFwuq1qtqtFoSHqX3Izr4bku+dnY2NDdu3dTjREAAIw263SRjY2NFKN5J9MTniXpww8/TJKaeFXX5bk98e/zqAIJAABul8wnP2EYqlwuS3o70dk0zaFVXXEV6AcPHiw8PgAAsFoyk/zEk5sv3qoiDEO12215npc8dnR0pE6nM9D747quXNcduwoMAAAglpk5P4VCQVEU6eHDh/I8T5ZlyTCMoV4e0zTV7XblOI4Mw1AYhnIch1tbAACAiWQm+ZEmL1JomqZardacowEAALdRppKfedvd3dWdO3dGbtvb29Pe3t6CIwIAIN8ODw91eHg4ctubN2/mcsxcJT/Pnz8fuCEqAABYrqs6H4IgmMtK7sxMeAYAAFgEkh8AAJArJD8AACBXSH4AAECukPwAAIBcIfkBAAC5kqul7tT5AQAgW6jzM2fU+QEAIFuo8wMAADBnJD8AACBXSH4AAECukPwAAIBcIfkBAAC5QvIDAAByheQHAADkSq7q/FDkEACAbKHI4ZxR5BAAgGyhyCEAAMCckfwAAIBcIfkBAAC5QvIDAAByheQHAADkCskPAADIlVwtdafODwAA2UKdnzmjzg8AANlCnZ8ZhGG47BAAAMAKyFzy4/u+SqWS1tbWVCqV1Ol0Rj5vbW1t4Me27QVHCgAAVlGmhr0ajYba7bZqtZp6vZ4ajYYsy1K73Va5XE6e12w2Va1WVSwWk8cubgcAABgnU8nPy5cv1W63k98//vhjlUolua47kNy0Wq2B5wEAAEwqM8NenU5HrusOPGaapkzTHJjP4/u+jo+PZdu2ms3mosMEAAArLjM9P1cNWxmGkfx/u91WFEXyfV++78txHLVarYmGvc7OzvT69eupY1xfX9f6+vrU+wMAkCfn5+c6Pz+fev+zs7MUo3knM8nPOGEYqlarJb97nifP8xQEgTzPU7PZlGVZ6vV6A0nSKDs7OzPF8vjxYz158mSmNgAAyIt6va6nT58uO4whmU5+fN+XYRiqVqtD20zTlOd5sixLtm0nPUBXefHihe7fvz91PPT6AAAwuYODAz169Gjq/V+9ejVzx8UomU5+6vX6tQlNpVJRpVJREATXtrexsaG7d++mFR4AALjCrNNFNjY2UozmncxMeL7McRwdHR1dO5QlSZZl6eTkZAFRAQCAVZfJ5Ceex3OTW1Fsb2/PMSIAAHBbZC758X1f0vDqr6uGteLCiAAAANfJ1JyfTqejer2uWq02UMOn2+0mNzZ7+PChPv74Y+3v70t6myxtbW2pUqksJWYAALBaMpP8BEEgy7IkaWQvzunpqSRpa2tL9Xpd7XZbpmnKsix5nrfQWAEAwOrKTPJjmqb6/f61z5vltha7u7u6c+fOyG17e3va29ubum0AAHBzh4eHOjw8HLntzZs3czlmZpKfRXj+/PmNJlEDAID5uqrzIQiCZNpLmjI34RkAAGCectXzA9xG3HEFAG6Gnh8AAJArJD8AACBXSH4AAECukPwAAIBcIfkBAAC5kqvVXhQ5BAAgWyhyOGcUOQQAIFsocggAADBnJD8AACBXSH4AAECukPwAAIBcIfkBAAC5QvIDAAByJVdL3anzAwBAtlDnZ86o8wMAQLZQ5wcAAGDOSH4AAECukPwAAIBcIfkBAAC5QvIDAAByheQHAADkSq6WulPnBwCAbKHOz5xR5wcAgGyhzg8AAMCcZS758X1fpVJJa2trKpVK6nQ6Q88JgkC2bctxHNVqNfm+v4RIAQDAKsrUsFej0VC73VatVlOv11Oj0ZBlWWq32yqXy5KkMAxVKpXU7XaTIaxisaiTkxNVq9Vlhg8AAFZApnp+Xr58qXa7rWq1Ktd11e12JUmu6ybPqdVqKpfLA3N34h4gAACA62Qm+el0OgNJjiSZpinTNBWGoSQpiiJ1Oh1ZljXwvO3tbUlSs9lcTLAAAGBlZSb5KZfLMgxj5Lb48ePj44HfY3EvULvdnmOEAADgNsjUnJ9RwjBMhrTiHqBCoTD2uVc5OzvT69evp45lfX1d6+vrU+8PAECenJ+f6/z8fOr9z87OUozmnUwnP77vyzCMZCJzr9eTJG1tbY18fhRFV7a3s7MzUzyPHz/WkydPZmoDAIC8qNfrevr06bLDGJLp5Kder6vVaiW/F4tFSdLJycnI548bNou9ePFC9+/fnzoeen0AAJjcwcGBHj16NPX+r169mrnjYpTMJj+O4+jo6GggoYn/f1wPz3XJz8bGhu7evZtajAAAYLxZp4tsbGykGM07mZnwfFGz2ZRlWUO3oohXdV2e2xP/Po8S2AAA4HbJXPITV2uOixrGgiBQoVCQaZpDq7riKtAPHjxYTJAAAGBlZWrYq9PpqF6vq1arDdTs6Xa7KpVKMk1TR0dHKpVKCsMwGeZyXVeu645dBQYAABDLTPITBEFSvHBUtebT01NJb2v6dLtdOY4jwzAUhqEcx+HWFgAAYCKZSX5M01S/35/4uRdXgQEAAEwqM8nPIuzu7urOnTsjt+3t7Wlvb2/BEQEAkG+Hh4c6PDwcue3NmzdzOWaukp/nz58PrSADAADLc1XnQxAEc1nJnbnVXgAAAPNE8gMAAHKF5AcAAOQKyQ8AAMgVkh8AAJArJD8AACBXcrXUnTo/AABkC3V+5ow6PwAAZAt1fgAAAOaM5AcAAOQKyQ8AAMgVkh8AAJArJD8AACBXSH4AAECu5GqpO3V+AADIFur8zBl1fgAAyJZl1PnJVfIDZMLPnww/9icjHgMAzAVzfgAAQK6Q/AAAgFwh+QEAALlC8gMAAHKF5AcAAOQKyQ8AAMiVXC11p8ghAADZQpHDKYRhKMMwJnouRQ4BAMiW3Bc5jKJI9XpdkuS67sjnrK2tDfxumqa63e7cYwOy4MmTZUcAAKsvM8lPp9OR53nyfV/VanXkc5rNpqrVqorFYvJYuVxeVIjICyowA8Ctlpnkp1wuq1wuD/XsXNRqtdRutxcYFQAAuG1WZrWX7/s6Pj6WbdtqNpvLDgcAAKyozPT8XKfdbiuKIvm+L9/35TiOWq0Ww17IDobLAGAlrEzy43mePM9TEATyPE/NZlOWZanX60282uvs7EyvX7+eOob19XWtr69PvT8AAHlyfn6u8/Pzqfc/OztLMZp3Vib5iZmmKc/zZFmWbNtOeoAmsbOzM9OxHz9+rCcstwEAYCL1el1Pnz5ddhhDVi75iVUqFVUqFQVBMPE+L1680P3796c+Jr0+AABM7uDgQI8ePZp6/1evXs3ccTHKyiY/kmRZljqdzsTP39jY0N27d+cYEQAAiM06XWRjYyPFaN5ZmdVe42xvby87BAAAsEJWOvlpt9uq1WrLDgMAAKyQTCU/URSNfDy+t0ej0Uge831fW1tbqlQqC4oOAADcBpmZ8xMvYZekZ8+eybIslctlFQoFGYahra0t1et1tdttmaYpy7KS5wMToQ4PAEAZSn7iJeyjEppCocBtLQAAQCoyk/wswu7uru7cuTNy297envb29hYcEQAA+XZ4eKjDw8OR2968eTOXY+Yq+Xn+/LlM01x2GAAA4N9c1fkQz/lNW6YmPAMAAMxbrnp+gMxiMjYALAw9PwAAIFdIfgAAQK6Q/AAAgFxhzg+QUU+eLDsCALid6PkBAAC5kqueH4ocAgCQLRQ5nDOKHGLhRi1hBwAkKHIIAAAwZyQ/AAAgV0h+AABArpD8AACAXCH5AQAAuULyAwAAciVXS92p8wMAQLZQ52fOqPMDAEC2UOcHAABgzkh+AABArpD8AACAXCH5AQAAuULyAwAAcoXkBwAA5EqulrpT5wep+fmTZUcAALcCdX7mjDo/AABkC3V+AAAA5ixTPT9RFKler0uSXNcd2h4Eger1ugzDUBRFsixLlUpl0WECAIAVlpnkp9PpyPM8+b6varU6tD0MQ5VKJXW73WToqlgs6uTkZOTzgYkwdwcAciczw17lclmtVmvs9lqtpnK5PDBnx3Ec1Wq1RYQHAABuicwkP1eJokidTkeWZQ08vr29LUlqNpvLCAsAAKygzAx7XeX4+FiSZBjGwONxL1C73Z5o6Ovs7EyvX7+eOo719XWtr69PvT8AAHlyfn6u8/Pzqfc/OztLMZp3ViL5CcNQklQoFK7cfp2dnZ2Z4nj8+LGePHkyUxsAAORFvV7X06dPlx3GkJVIfnq9niRpa2tr5PYoiiZq58WLF7p///7UcdDrAwDA5A4ODvTo0aOp93/16tXMHRejrETyUywWJUknJycjt18eDhtnY2NDd+/eTS0uAAAw3qzTRTY2NlKM5p2VmPAcJzfjengmTX4AAABWIvmJV3VdntsT/z6P0tcAAOB2Wolhr0KhINM01W63tb+/nzze6XQkSQ8ePFhWaEAqnvx33x1+8A8XHgYA5EKmkp+rJi4fHR2pVCopDMNkmMt1XbmuO3YVGJAaKkEDwK2RmeQnCAJ5nidJevbsmSzLUrlcThIb0zTV7XblOI4Mw1AYhnIch1tbAACAG8lM8mOapjzPSxKgcc+56hYYAAAA18lM8rMIu7u7unPnzshte3t72tvbW3BEAADk2+HhoQ4PD0due/PmzVyOmavk5/nz5wM3RgUAAMt1VedDEARzWdG9EkvdAQAA0kLyAwAAciVXw15AFoys6QMAWBh6fgAAQK7Q84PbiaKEAIAx6PkBAAC5kqueH+r8AACQLdT5mTPq/AAAkC3U+QEAAJgzkh8AAJArJD8AACBXcjXnB1g0ChoCQPaQ/ABZ9YufDj/2h99dcBAAcPsw7AUAAHIlVz0/1PkBACBbqPMzZ9T5AQAgW6jzAwAAMGckPwAAIFdIfgAAQK6Q/AAAgFwh+QEAALmSq9VewDwtpJrzL346/BiFDwHgRnKV/FDnBwCAbKHOz5xR5wcAgGyhzs8MwjBcdggAAGAFrGzys7a2NvBj2/ayQwIAACtgJYe9ms2mqtWqisVi8li5XF5iRAAAYFWsZPLTarXUbreXHQYAAFhBK5f8+L6v4+Nj2bYty7JUrVaXHRJyaCHL2gEAc7Fyc37a7baiKJLv+6rVatrc3FSn01l2WAAAYEWsXM+P53nyPE9BEMjzPDWbTVmWpV6vJ8Mwrtz37OxMr1+/nvrY6+vrWl9fn3p/AADy5Pz8XOfn51Pvf3Z2lmI076xc8hMzTVOe58myLNm2Lcdx1Gq1rtxnZ2dnpmM+fvxYT548makNAADyol6v6+nTp8sOY8jKJj+xSqWiSqWiIAiufe6LFy90//79qY9Frw8AAJM7ODjQo0ePpt7/1atXM3dcjLLyyY8kWZY10byfjY0N3b17dwER4bZhgjMA3Nys00U2NjZSjOadlZvwPM729vayQwAAACvgViQ/7XZbtVpt2WEAAIAVsFLDXkEQ6OHDh/r444+1v78v6W3dn62tLVUqlSVHh1U0ajjryY9+uugwAAALtFLJj2EY2traUr1eV7vdlmmasixLnuctOzQAALAiVir5KRQK3NYCAADMZKWSn1nt7u7qzp07I7ft7e1pb29vwREBAJBvh4eHOjw8HLntzZs3czlmrpKf58+fyzTNZYcBZMaomp0LqeP58xEH+ZNFHBhA1lzV+RAEgUqlUurHvBWrvQAAACaVq54fYBIrV9DwFz8dfuwPv7vgIABgddDzAwAAcoWeH+TGyvXoAADmgp4fAACQK/T8AMgGVoABWJBcJT/U+QEAIFuo8zNn1PlBrv3ip8OPsSoMwJJR5wcAAGDOctXzg/xgZVfKmI8D4BYh+QEwX6MSJwBYIoa9AABArtDzAyA99PIAWAEkP5gv5oosxy9+uuwIACCzcpH8fPXVVwP/xfKcf/U71Z880cHBgdbX199tmCFJejLZ03DJ7/71K/1vP32iP/3TA33ta+vX77AMOUmez8/PVa/Xhz8XWDjORbbM6/qdq+Tnz/7sz/SNb3xj5HMocpiCCYY8zv/lX/X06X+rR//Vudb/HV8sy/Sv//ovevHiqf79v3+U3eQnJ87Pz/X06VM9evSIC+6ScS4W76oih7/5zW8kkfzM5NNPP9V3vvOdZYcBAAD+zVWdDz/72c+0s7OT+jFzlfwASBGTmwGsKJIfTIcLHwBgRZH8AHn3//yv0nv/7sID311WJACwECQ/WC2jepx+8d1FR3G70asH4JYj+QGwWnKy/B3A/JD8ILtGXOS4YSkAYFa5urfXD37wA337298e+TOuxsA4N33+otpahfbS9h/+6X/KbHtZjm0eDp//h2y3l+HPbdqy/j2Q9fbSlPW/ddntHR4ejr02/+AHP0g1tliukp9PP/1U//RP/zTy56YFDrP8JZr19tL28v/4XzLbXpZjm4fD//Hlctr7+ZPhn1HtZfhzK0n63+vX/g2Tyvr3QNbbS1PW/9Zlt7e3tzf22vzpp5+mGltsJYe9giBQvV6XYRiKokiWZalSqSw7LABZwsRtAGOsXPIThqFKpZK63a5M05QkFYtFnZycqFqtLjk6pIn5Pcsx6nV/8qOfLjoMjMOEb4zC++JGVi75qdVqKpfLSeIjSY7jqFarkfwASMflC8moi8ib/3ey503SA/X/nU8WB4BUrFTyE0WROp2OXNcdeHx7e1uS1Gw2SYBWFL082Tb5+cnuvAtJkycsl02ahGQpWZklOaPHINtGndtROLdjrVTyc3x8LEkyDGPg8bgXqN1uk/zcxKQfjEk/aDdQ//RPtT5QVRi3VeaH0bKUsExrEcnZtIkjZpP2+/M2vN9TsFLJTxiGkqRCoXDl9st++9vfSpL+8R//cabjv/fee3rvvfckSW/evFEQBFfv8I/e8GP/ZW3ooYnauoGR7Y2KZZT/OCK+898p+I+/vHZX738uXfucr/7ljSTpP335f+u9//zOZDFd43e/O9cvf/V/ptJW2u1lObZ5nItf/uprqrn/xaVHh+Mdfs5N2pvetO/l2n/dnbqtSdqPz8Wr/+s/aePOe1O1edmo+Cb5jL7VHHpk9LkYft6o12pkfNEvFfz3w98300qrvbM3X0mSXv0P/83152LE9/koM30nj2pvhvfeyPZmee2uuaZ99dVX+uqrr6aOLb5ux9fx1PRXyP7+fl9Sv9vtDm2T1DcMY+R+n3zySV8SP/zwww8//PCzgj+ffPJJqvnESvX8FItFSdLJycnI7ZeHw2Lf//739cknn+hb3/qWvv71r099/Is9PwAA4Gqz9vz89re/1S9/+Ut9//vfTzGqFRv2ipObKIqu3H7ZN7/5Tf3whz+cV1gAAGCFrFSF53hV1+W5PfHvpdKk49kAACCvVir5KRQKMk1T7XZ74PFOpyNJevDgwTLCAgAAK2Slkh9JOjo6UqfTGej9cV1XruuOXQUGAABur3GrvcdZueTHNE11u105jiPHcVQul1UoFPTll1+qVqvJ9/2J2gmCQLZtJ9WhJ90P483ymkZRlJxTzG7ac+H7vkqlktbW1lQqlZJeVUwvjXNRLBY5FylJ47u/0+loc3NzDtHlyyznYm1tbeDHtu2bHTzVtWML1uv1+tLg0nfDMPqe581lP4w3y2vabrf7lUqlL6lfrVbnGWYuTHsuXNftl8vlvud5SVkJSf12uz3vkG+tac+F53n9arXab7fb/Xa73TdNsy+p3+v15h3yrZbWd79hGP1CoZB2eLkyy7mIPx+u6yY/o0rgXGWlk59yudwvl8sDj3me178up5t2P4yXxmtK8pOOac9FpVIZ+L3b7fYlDbWFyU17LlzXHfg9PhetViv1GPMkje+p/f39frlcJvmZ0SznIo3vpJUb9orF9/myLGvg8Yv3+UpzP4zHa5od056LUffMM01TpmneeCwdb83yudjf3x/4PZ7PePGGzriZNL6nOp2O7t27x3mY0Sznwvd9HR8fy7btma4tK5v8THKfrzT3w3i8ptkx7bkol8tj62SNexxXS/Nz4fu+XNflXMwgjfPhed5QYoqbm+VctNttRVEk3/dVq9W0ubk51Xy4lU1+pr3P17T7YTxe0+xI+1yEYXjziYSQlN65cBxH9XqdxGdGs54Px3GGekcxnVnOhed56vf76na7qlariqJIlmXd/tVesV6vJ0na2toauX1cFehp98N4vKbZkea58H1fhmGoWq2mEVrupHEuGo2GwjBUFEUzd/Pn3SznIwgC3bt3jwQ0JWl8NkzTlOd5arVaknTjlcIrm/xMe5+vaffDeLym2ZHmuajX68kXC24ujXOxv7+vVquldrutQqFAz8MMZjkf9Xqd4a4Upfk9ValUVKlUkrvIT2plk59p7/M17X4Yj9c0O9I6F47j6OjoiHM3gzQ/F+VyWdVqlSHkGUx7PhzHSYZVLv5IGvh/TC7ta4ZlWWMTqXFW6samF017ny/uD5Y+XtPsSONcNJtNWZbFipYZpf25+PDDD0lGZzDt+eh0Omo0GiO3FYvFpPAuJjePa0bc5qRWtudn2vt8cX+w9PGaZses5yKusFoulwcev2mXMtL/XIRhOHReMLlpz0e321X/bU285Gd/f1+FQiGZeIubSfuz0W63VavVbhbEzJWCligu/HWx6qlhGAMFwnq9Xt8wjIEqtZPsh5uZ9lzETk9PKXKYkmnPRVxJ2PO8gZ9qtUr18ylNcy5OT0/7lUploKBhr9ej2GQKZv2eiu3v71PkcEbTnItut9s3TXPgOa1Wa6rrxsoOe0mD9/kyDENhGMpxnIHVKVEU6eTkZGBscZL9cDPTngvpba+C53mSpGfPnsmyrOSebbi5ac5FEARJwbFR/4I6PT1dSOy3zTTnolAoKIoiPXz4UJ7nybIsGYZBvawUzPI9hXRNcy4Mw9DW1pbq9bra7bZM05RlWcn14ybW+v1+P60/BgAAIOtWds4PAADANEh+AABArpD8AACAXCH5AQAAuULyAwAAcoXkBwAA5ArJDwAAyBWSHwAAkCskPwAAYGardId7kh8AADAz27ZX5rYgJD8AAGAmQRDIMIzknozxvbrW1ta0tramzc1NNRqN5PmdTkfFYjHZFt/RfVG4txcAAJhJrVaTbdsql8sDj9u2Ld/3ValU1Gq1hraFYahut7vIUCWR/AAAgBkVi0X1er2hx4MgUKlUUqFQ0OnpafK47/tyHGfkPovAsBcAAJia7/tDPT4x0zRlmqaiKEqGtoIgkOM4arfbiwxzAMkPAACY2meffaZarTZ2e7zN8zxFUSTbttVqtWQYxqJCHELyAwAAkh6Zzc3NgWTGtm1tbm6OXMoeRZHCMJRpmmPbffDggaS3PUQfffSRXNe98vmLwJwfAACQsCxLnU5H/X4/mcgchqGq1erQc5vNpqIo0v7+/pVtXjXxeRm+tuwAAABAdti2rU6no1qtJsdxrhye8jxPn3/++bVtxm0EQTD2ObVaTcViUV9++aU+/PBDVSqVmwc/IZIfAACQiCcvFwqFKxOfMAy1tbWV1PYZx/d9dTodGYahMAwVBMHQsJdt2zIMI+lBileIjZtIPSvm/AAAgESc8Fx3uwrP866c6Cy9m0f0+eefD0x8vigMQ/m+P9DWxx9/LNd1pwl/Isz5AQAACcdx1Ol0FEXRlXV4xtX2iUVRpFKppFarlSx339zclCRdTD1835dt2wOPdTodWZal09PTa3uWpkHPDwAAkPQ2EbEsS7VaTWEYJr0/l3uBOp3OtUNSH330kTzPS4a4CoVCMo/H9/3keS9fvhxKcLa2tiRJJycnM/0945D8AACQY2EYqtFoyPd9nZycqFwuJ4mN53lqNBpJMhK7bsjLsiwZhjGUIFmWJUmq1+vJY1EUDbV/MbZ5IPkBACDHgiBQvV7Xy5cvk+XshmGoUqmo2WyqXC4P9cyMmrQsvbthaafTURAEAz08vu8n832CIEhWlRWLxbE9PPMqhMicHwAAMLFJa/tM6qo5P/NKUVjqDgAAJjZpbZ9JxT1IYRgO1AOaZxVohr0AAMBEJq3tcxPxENvFIbLPPvuMpe4AAGD5HMeZW/XlixWei8XiyNtppIXkBwAATCS+I/uqI/kBAAC5wpwfAACQKyQ/AAAgV0h+AABArpD8AACAXCH5AQAAuULyAwAAcoXkBwAA5ArJDwAAyJX/H9Jjxm/zoRaqAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.hist(\n",
" xx0_test,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"darkorange\",\n",
" histtype=\"bar\",\n",
" label=\"test\",\n",
" range=[0, 0.5],\n",
")\n",
"plt.hist(\n",
" xx0_predicted,\n",
" bins=100,\n",
" density=True,\n",
" alpha=0.5,\n",
" color=\"blue\",\n",
" histtype=\"bar\",\n",
" label=\"predicted\",\n",
" range=[0, 0.5],\n",
")\n",
"plt.xlim(0, 0.5)\n",
"# plt.yscale(\"log\")\n",
"plt.title(\"radiation length fraction endVelo\")\n",
"plt.xlabel(f\"$x/X_0$\")\n",
"plt.ylabel(\"a.u.\")\n",
"\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Parameterisation for rad_length_frac:\n",
"intercept= 0.0\n",
"coef= {'1': 0.2484410418213911, 'x': -0.0007601095488043627, 'y': 0.0010569724392146917, 'tx': 0.6185505303064777, 'ty': -0.9394058560136732, 'qop': -9.741031889614183, 'x^2': -0.00016580416280366622, 'x y': 5.149038989659081e-05, 'x tx': 0.22996768886351043, 'x ty': -0.043161009059129354, 'x qop': -0.21658279194428842, 'y^2': 3.9826067539320166e-05, 'y tx': -0.033498957247677735, 'y ty': -0.08085122767618998, 'y qop': 0.06428923004582791, 'tx^2': -83.06687438225835, 'tx ty': 28.76266798578089, 'tx qop': -0.32072666519746007, 'ty^2': 32.80290436519906, 'ty qop': 0.29785759094660047, 'qop^2': 0.7177557091128425, 'x^3': -1.037888276319177e-06, 'x^2 y': 5.744977724613286e-07, 'x^2 tx': 0.0016261562680787358, 'x^2 ty': 0.00819223051446815, 'x^2 qop': 0.014940216048602184, 'x y^2': 1.55836456652794e-06, 'x y tx': -0.009042353485603404, 'x y ty': 0.002769481233443616, 'x y qop': 0.007035099510620806, 'x tx^2': -0.623629094925692, 'x tx ty': -0.5792857627094614, 'x tx qop': 3.819052794399519, 'x ty^2': -1.214138821848195, 'x ty qop': -4.179406422119741, 'x qop^2': -0.11723833703778899, 'y^3': -2.1060731703048674e-07, 'y^2 tx': -0.005136952674035623, 'y^2 ty': 0.0002523550890177065, 'y^2 qop': 0.020199755591199943, 'y tx^2': 0.8881296792413045, 'y tx ty': 2.1057062787476855, 'y tx qop': -4.322557205912296, 'y ty^2': -0.062185778412248593, 'y ty qop': -12.744670929978815, 'y qop^2': 0.10865361350283592, 'tx^3': -0.2772083890350773, 'tx^2 ty': -0.002155259913110253, 'tx^2 qop': 0.01973183125611695, 'tx ty^2': 0.2547275714314975, 'tx ty qop': -0.01267461996128659, 'tx qop^2': -0.0002315355231400779, 'ty^3': 0.12852489701010045, 'ty^2 qop': -0.03229168715651398, 'ty qop^2': 0.0001733290594162183, 'qop^3': -1.1131786479856305e-06, 'x^4': 1.4072631948636172e-09, 'x^3 y': -4.525309382774623e-08, 'x^3 tx': -5.048150129027817e-07, 'x^3 ty': 2.845994251238215e-07, 'x^3 qop': 6.161442924141475e-05, 'x^2 y^2': -1.8614020325102842e-08, 'x^2 y tx': 9.737839179148333e-05, 'x^2 y ty': -1.3038804363763035e-05, 'x^2 y qop': -8.415032085912991e-05, 'x^2 tx^2': -0.0010152847281566686, 'x^2 tx ty': -0.0032259545758118137, 'x^2 tx qop': -0.041785493301881166, 'x^2 ty^2': 0.013227443641328787, 'x^2 ty qop': 0.0035654519670473366, 'x^2 qop^2': 1.2621531315710728, 'x y^3': 3.906278722709544e-08, 'x y^2 tx': 6.858475435222999e-05, 'x y^2 ty': -5.862278080592809e-05, 'x y^2 qop': -0.00016236412225426912, 'x y tx^2': -0.06608751351613794, 'x y tx ty': -0.04864228625905696, 'x y tx qop': 0.06901548261804959, 'x y ty^2': 0.04159526642181612, 'x y ty qop': 0.28489071089527757, 'x y qop^2': 0.2535927965752249, 'x tx^3': 0.5018159233398294, 'x tx^2 ty': 0.9699678165589771, 'x tx^2 qop': 0.4741265130417677, 'x tx ty^2': 10.315681588678894, 'x tx ty qop': -0.22617149043686857, 'x tx qop^2': 0.00898570789717606, 'x ty^3': -12.737405175272935, 'x ty^2 qop': -0.014062351992903526, 'x ty qop^2': 0.005154120346378951, 'x qop^3': -4.609067543005094e-05, 'y^4': 9.455609628616912e-09, 'y^3 tx': -2.99210479094425e-05, 'y^3 ty': -2.583154312318925e-05, 'y^3 qop': 5.980622324156491e-05, 'y^2 tx^2': -0.016833583405836638, 'y^2 tx ty': 0.02458057322196644, 'y^2 tx qop': -0.169419352054439, 'y^2 ty^2': 0.02331391517451325, 'y^2 ty qop': -0.04589466917231106, 'y^2 qop^2': -1.206224538163147, 'y tx^3': 15.19059646701743, 'y tx^2 ty': 5.490478536183617, 'y tx^2 qop': -0.25278933198832354, 'y tx ty^2': -3.577260288354769, 'y tx ty qop': 0.03161480393545275, 'y tx qop^2': 0.005952281392129449, 'y ty^3': -6.821531531863169, 'y ty^2 qop': 0.09776598757839021, 'y ty qop^2': 0.0023614626852912395, 'y qop^3': -1.973415862163393e-05, 'tx^4': -0.05310859403428924, 'tx^3 ty': 0.023505514315239354, 'tx^3 qop': 0.0021762610547612377, 'tx^2 ty^2': 0.04763359558524625, 'tx^2 ty qop': -0.0009428124122745564, 'tx^2 qop^2': 1.2893218326397415e-05, 'tx ty^3': -0.018754843662608302, 'tx ty^2 qop': 4.8170564904883127e-05, 'tx ty qop^2': 1.6878183944633644e-05, 'tx qop^3': -4.12730477319448e-08, 'ty^4': 0.013919613173737298, 'ty^3 qop': 0.00022052138073417403, 'ty^2 qop^2': 9.713683885787424e-06, 'ty qop^3': -5.4325325107576684e-08, 'qop^4': 1.3416430509507416e-09, 'x^5': 2.37521113888306e-11, 'x^4 y': 6.566414079145488e-11, 'x^4 tx': -3.448894636548516e-08, 'x^4 ty': 4.817853991312404e-07, 'x^4 qop': -2.777657812425005e-06, 'x^3 y^2': 6.322311563167204e-10, 'x^3 y tx': -6.301214341419836e-07, 'x^3 y ty': 5.610926190335874e-06, 'x^3 y qop': 1.114123449319493e-05, 'x^3 tx^2': 1.3140964452713899e-05, 'x^3 tx ty': -0.0006698763738434144, 'x^3 tx qop': 0.004955643949611535, 'x^3 ty^2': -0.00020626810552818679, 'x^3 ty qop': -0.008992879337357176, 'x^3 qop^2': -0.01489312550273759, 'x^2 y^3': -1.0491474355944774e-10, 'x^2 y^2 tx': -7.058621529054676e-06, 'x^2 y^2 ty': 1.8916574067162628e-06, 'x^2 y^2 qop': 1.7843819655416482e-05, 'x^2 y tx^2': 0.0007719987709393639, 'x^2 y tx ty': -0.008372751086851777, 'x^2 y tx qop': -0.0094662761279594, 'x^2 y ty^2': -0.003982741017285164, 'x^2 y ty qop': -0.014247815997652827, 'x^2 y qop^2': -0.0933449616547058, 'x^2 tx^3': -0.00211924986590092, 'x^2 tx^2 ty': 0.1354990398386329, 'x^2 tx^2 qop': -2.4034242614405197, 'x^2 tx ty^2': 1.709794803412642, 'x^2 tx ty qop': 2.929391659772189, 'x^2 tx qop^2': -0.12899963468243164, 'x^2 ty^3': 0.41237245103458525, 'x^2 ty^2 qop': 0.9459129147227289, 'x^2 ty qop^2': 0.6716348674023994, 'x^2 qop^3': 0.0065213742878363744, 'x y^4': -3.1660363219998544e-10, 'x y^3 tx': -1.6554844943783564e-06, 'x y^3 ty': -1.8566065946856725e-06, 'x y^3 qop': -9.75035823502779e-06, 'x y^2 tx^2': 0.009680843788897421, 'x y^2 tx ty': 0.004952813049497684, 'x y^2 tx qop': -0.016925260798516226, 'x y^2 ty^2': 0.003475670476866588, 'x y^2 ty qop': 0.01417176786308785, 'x y^2 qop^2': -0.01761212366224941, 'x y tx^3': -0.15192958327351774, 'x y tx^2 ty': -0.060788822811239596, 'x y tx^2 qop': 4.3726462974483224, 'x y tx ty^2': 0.253839828387595, 'x y tx ty qop': 2.515358567018165, 'x y tx qop^2': 0.7384529496261274, 'x y ty^3': -1.4590050438376516, 'x y ty^2 qop': -4.598361895076147, 'x y ty qop^2': 0.31170679839759735, 'x y qop^3': -0.01024453299524337, 'x tx^4': 1.0757508065772434, 'x tx^3 ty': -1.6800363456087655, 'x tx^3 qop': 0.025130628317134973, 'x tx^2 ty^2': 1.1790180726236092, 'x tx^2 ty qop': 0.013852458993079927, 'x tx^2 qop^2': -0.0004548226751025624, 'x tx ty^3': -0.0007529047666109905, 'x tx ty^2 qop': 0.007719696430873407, 'x tx ty qop^2': 0.0018986412331720088, 'x tx qop^3': 7.660654451074145e-06, 'x ty^4': 1.3495131383656807, 'x ty^3 qop': -0.027518299643244655, 'x ty^2 qop^2': 0.0007835380395695195, 'x ty qop^3': -1.7215942880021808e-05, 'x qop^4': -4.814887567180262e-08, 'y^5': 1.1069811733932511e-11, 'y^4 tx': 2.5401641039479728e-06, 'y^4 ty': -3.659565095404105e-08, 'y^4 qop': -8.233519552314217e-06, 'y^3 tx^2': -0.0011440038498780267, 'y^3 tx ty': -0.003958853981003943, 'y^3 tx qop': 0.0019569523522222627, 'y^3 ty^2': 4.620362246071652e-05, 'y^3 ty qop': 0.013501593121770603, 'y^3 qop^2': 0.00013943149170339843, 'y^2 tx^3': -1.930662753166049, 'y^2 tx^2 ty': -0.6244835760091016, 'y^2 tx^2 qop': 9.706592754727314, 'y^2 tx ty^2': 1.567415053011399, 'y^2 tx ty qop': -1.8692848199146312, 'y^2 tx qop^2': 0.2576730572143735, 'y^2 ty^3': -0.02555256934016916, 'y^2 ty^2 qop': -5.570585900979827, 'y^2 ty qop^2': 0.4524728269219666, 'y^2 qop^3': -0.0012165533583740602, 'y tx^4': -1.705633938705921, 'y tx^3 ty': 0.9697939146444974, 'y tx^3 qop': 0.01417529417479696, 'y tx^2 ty^2': 0.24892206316288593, 'y tx^2 ty qop': 0.02112066742630421, 'y tx^2 qop^2': 0.001983588330826661, 'y tx ty^3': 1.0027301725129028, 'y tx ty^2 qop': -0.019989975028401157, 'y tx ty qop^2': 0.000703255023993435, 'y tx qop^3': -1.7780249221490402e-05, 'y ty^4': 5.039018301955912, 'y ty^3 qop': -0.03181545636834986, 'y ty^2 qop^2': 0.0013016040850667482, 'y ty qop^3': -4.788925524502292e-06, 'y qop^4': 8.952440180633341e-08, 'tx^5': 0.009735740982675399, 'tx^4 ty': -0.013441638488465971, 'tx^4 qop': 0.00015663907591491764, 'tx^3 ty^2': 0.008836930257445317, 'tx^3 ty qop': 4.602358365785842e-05, 'tx^3 qop^2': -1.2528198912759552e-06, 'tx^2 ty^3': 8.384431822878086e-05, 'tx^2 ty^2 qop': 3.2449454369351206e-05, 'tx^2 ty qop^2': 3.870208943851117e-06, 'tx^2 qop^3': 1.1062889336368561e-08, 'tx ty^4': 0.008284216728547011, 'tx ty^3 qop': -8.101830871580909e-05, 'tx ty^2 qop^2': 1.3999083905485367e-06, 'tx ty qop^3': -2.8838718241492492e-08, 'tx qop^4': -7.302022445954643e-11, 'ty^5': 0.033986172363938666, 'ty^4 qop': -0.00011487779463878022, 'ty^3 qop^2': 2.8267877400850516e-06, 'ty^2 qop^3': -1.0303917259481338e-08, 'ty qop^4': 1.343104287668482e-10, 'qop^5': -5.690015320531571e-16}\n",
"r2 score= 0.01281806793978646\n",
"RMSE = 0.2644569540509028\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAHLCAYAAAB208rGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpGklEQVR4nO3de3xTdZ4//lehtBQKhBZFFLmcAMpVSMBxnFHUJt4vI21wZ2Zn5yaNTOc3u+uODeyKXBwJqc7sfme3o2l1ZnbnCkkdwbsJOuiM40gTUVvuPQUEEYQ0lELpLef3RzmxaXO/X17Px+M8tDk557xzaJN3Ppf3J0+SJAlEREREERqW6gCIiIgoMzGJICIioqgwiSAiIqKoMIkgIiKiqDCJICIioqgwiSAiIqKoMIkgIiKiqDCJICIioqgwiSDKcE6nE3V1dakOI67cbjfq6uogimKqQyGiIJhEUNZyOp0wGAxQq9VQq9WpDifuRFGETqeDWq2G2WwO65hMuCd1dXWYPn069Ho93G53XM4pv26dTgelUomampq4nJco1+WnOgCiRFGpVACAmpoa7/8ngiiKKCkpgUKhSNg1/BEEARaLBXl5eWEfk6x7EonB96+yshItLS1x+6B3Op0oKytDW1sbAMBgMKClpSUu5ybKdWyJoKyWjA9KnU4Hl8uV8OvES7okDzJ/96+0tDRu5zcajSgpKfH+bDKZwm65IaLgmEQQxUCn08HpdKY6jIyVjPvHfx+ixGESQTnL7XZDr9fDYDBAq9VCq9XCbrcHfI5er4dSqfQOYrRard4PKL1eH/ID0Wq1eq9RV1eH8ePHQ6/Xe/fX1NR4r6VWq/0OlpTjkbd49+07nU7odDpotVoolUoYDAafa9fV1UGtVsNqtcJut0OtViMvLw86nc7v+eQ4lUrlkPsTzv1zuVzeawa7jj91dXXQ6XQQRdE7fkSn03n/jeP97yH/DjFpoZwiEWU5AJJKpfJ5zOFwSAqFQnI4HN7HzGazBEAymUzexyoqKqTq6mqf5wzcX11dLQGQWlpagsZgsVgkQRAkAFJlZaVUXV0tqVQqb1zyeWQ2m00CINlsNu9jLS0tkkKh8HnMZDL5fX2hBLonGo3GJ2Y5Xvn6FRUVEgBJo9FI1dXVksPhkCorK4fcN0mSJJVK5b13LS0tEgAJgCQIgvecge6f/Lo0Go1kMpmCXicUQRAkQRB8HovXv4cgCD6xKxQKSaFQRBQfUSZjEkFZz98Hpkql8vnAHPj4wA81hULhk0RIkhRVEiEfB2DI+SRJkjQajc+HT1tb25DnVlRU+I05XkmESqXySaokqf/1A5Da2tokSfoisRj8QS5/4Mvk5w08n5wEDLxXoZIIs9kc9Drh8JdEDLxGtP8eKpVqyH2QzynfL6Jsx+4MyjmiKMLpdPodYCg3Z8sD7wRBQE1NjU+3QXV1dVTXlWcfLFmyZMg+i8UCh8Ph/bmxsREAvFMcRVH0Nr8ngnxPjEajt9l/YNeBHI/M30yUgYMjd+7cOWS/fL5ImvsXL1485Lrxqh0R67+H0+mERqPxOa66uhqSJCV9pg5RqnCKJ+WcYB9i8oeW/EFlsVigVqthMBhgNpthsVhint3g7wNGoVBAoVDAarVi8+bNQz7Y5HgEQYjp2oHI98RiscTlfHL8drt9yP1Kt9kh0fx7yPeLyQLlOrZEUM7yV8hI/lCQpwQKgoDW1lZoNBqIohhwgF2s5HOLogiLxTKktUNOIhI1lVQ+f7y+5VdUVECj0cBoNMJut8PtdsNkMqG6ujphiVA8hfvvwYqalOuYRFDOkb8JD56JAXyRWCiVSgD9HxIKhQI2m837LX3gCP540Wq1KCkpCdhVIn/wDmxijyf5/Far1e9+f/cqFIvFAo1G4y3LbTKZYDKZYoozWUL9e8i/Q4FabphcUK5gEkE5RxAEqFQq79S/gRobG6FQKFBZWQkAPh96FRUV3rESg4+LpTyzHMfApnH5fHLLg9zNUldX5/dasZaHlvv2DQbDkO6eaFtedDqd91t8dXV10G6MwfGfPn0aQHxaXlwuV0TnifTfY3CCZTAYfIpbEWUzJhGUkywWCxQKhU+rgtzkXl9f7/0A2bJli0/C4Ha7IQiC95u73GJhNpu9gx8DkT+IBn9gyh84VqsVdXV1qKur89ZncDqd3nPK34rVajXsdjtEUfQ+TxTFmGpGKBQKn/PrdDrU1NRAq9WipaXFm2SE+2Esf7jK56mrq/OpCyGL5P4B/fcuXl06sf57yAmmVquFTqfz1pNQKpUcK0G5I9XTQ4gSZWBtAVycljhw6l1bW5t32mRlZaVUWVk5ZIqjRqORBEGQqqurperqaqmiomLI9D2VSiUpFApv7QN/BtYlEARhyNRFs9ksKRQK77UkqX9K5OAppmaz2XselUrlrVVQXV3tM01Sfs3+tmD3xGQyBYzT4XB4p8AKgiDZbDapra1tyPkk6YsaCv6uLwiCzzUH3z+LxeKdWipPOx18nYH3JNzXWllZ6a3zEK9/D4vF4r0nKpXKp44EUS7IkyRJSmyaQkS5xul0YvPmzVi9ejVcLpdPC4LFYoFSqYx6qiwRpQ9O8SSiuJJnNrS1tXmnSg4kCEJUAzWJKP2kZRLhdrthNBoBIOzR3HKhHEEQ4Ha7odVqUVFRkcgwicgPeQzJihUrsHr1au+ASlEUYbfb0dLSkjGzNIgouLRLIux2O8xmM6xWq3eEfCjyNx+Hw+F9w1IqlXC5XGGfg4jiQ6PRwGQywWg0+gyUVKlUMJlM/JskyiJpOyYiLy8PlZWV3il1wcilgG02m/exuro66PV6pOnLI8oJ8liITCgwRUSRy/gpnm63G3a7fciaAgPncRNRaigUCiYQRFks45MIeWGcwW9UcrfGwNYJIiIiip+0GxMRKXkQV6DiLqHKz546dQovv/wyJk2ahJEjR0YdR0FBAQoKCqI+noiIEq+7uxvd3d1RH3/hwgUcP34cd911FyZMmBDHyHwdOXIEp06divk8EyZMwJQpU+IQkX8JSyLa29vhcrkgiiIEQcC0adMScp2WlhYACFhmNlQ54Ndffx3f+c534hwVERFls1//+tf49re/nZBzHzlyBDOmTkVPHM41atQo7NmzJ2GJRNyTiDfffBObNm3C9u3bAQCSJCEvLw9AfxdDTU0Nbr755rhdTy6bG6gUbqj+WDm5qa+vx6xZs6KOo6CgAF//+tfR0NAQ9TkAoKOjA0uXLsWOHTtQXFwc07nKy8tjjifdzsP7ExzvT2i8R8Fl+/35wx/+EHFLxIfHzmKL8ziunjgac0ecxL/+y79g0qRJMccTyKlTp9ADoALApTGc5yQA6/nzOHXqVGYkEQ0NDTAajXjggQeGLELjcrngcDjwyCOP4KGHHsKDDz4Yl2vKSUKgFodQSURRURGA/gQn2AJB4SgqKor5HO3t7QCAhQsXYuzYsSmPJ93Ow/sTHO9PaLxHwWX7/bnuuusiOuaVj4/D9lEL7r91Jv65bCb++pd3ACCm7u9wXQ7gihiOT8Z4hbheo7Gx0TvQ0Z+ysjJUV1dj1apVcbumPAtj8NgH+We1Wh23axERUW6QJAmWxqP4zXuHcc81k/DgVwUMG5aX6rDSTlyTiNLS0rCeF8/BKAqFAiqVCjabzacWv1xWd/ny5XG7FhERZT9JkvCrvx7Cnz44hm98aQr+YcmV3m75ZBqO0B/SfwHwboB98RhTEUpck4iDBw9i9erVeOihhzB16tQh+w8dOgSr1eodDBlIsMGQoihCq9XCbDZ7lyeur6+HWq32DuIE+stlm0wmLslLRERh83gk/M9bB2HbfQIrbhRw7zWXpyyWfAAjQjzn5oubP58AeDKuEQ0VcRLx5ptv4pZbbvG775lnnoFOp8P06dORl5cHhUKBkpIS7yp+AFBRUYHNmzcHPL/T6fRWqdyyZQu0Wi00Go03GZAr4A1MNFQqFRwOBwwGAwRBgCiKMBgMLK9LRERh6+714Kdv7MN74mk8rJ2Fm6+OZVhjbog4idDpdDh9+nTA/RaLBa2trXA4HGhsbITb7YZSqYQgCFCpVJg+fXrQ86tUKpjN5oDlrlUqFdra2vw+brFYInsxREREAC709GHjK3vQdOwMVt85G9cJ4XXPJ1I43Rmhjk+0iONra2vDtddei/fffz/gc6ZPn47p06d7V9EM1nqRTaqqqlIdgo94xZNu54mXdHtdvD/JOU88pdtrS7d7lG6vK9B5zl7owYYXd+Pw6fNYd+9cLJisiMv1YhVOd0ao4xMt4gW4ZsyYAZVKhQ8++AB2u93v2IfBHnjggaBdGKnkdDqHrACaSu3t7Rg3bhzOnDkT8/SqbMT7ExzvT2i8R8Hl2v1xnevGY1ub4DrXjfX3zsXMiWOCPv/tt9/21tG48cYbExKT/Ln0KIDQn7CBHQbwEyChn28Rr51hNpuxZcsWGI1GaDQafPjhhwGf+/zzz2PJkiU+ywETERGlgxPtF2Bo+AgdXb3YtGxByAQi2eTujGi3ZHRnRJxElJWVAfhigGR5eTn+9Kc/effv2rULK1euxPDhw6HT6eBwOOIXLRERURwcOX0ej1g/Qh4AU/kCTCkdleqQhpC7M6Ld0r7YlDwrQqPR4I9//COcTidEUYTcQ1JRUeGdjklERJQO9p84i7VbmzFhTCE23DsX40dz8cRoRZxEPPXUU/jxj38MoH/ApNlshtPphNPphCRJUCqVqKysRGVlJcaNGwcg8OJYREREyfThJ2488fIeTC0dhbX3zkVxYfouZi13SwTzOoA3AuyLfq3S8EV89zZu3IidO3fCbrfD7Xb7tDoIgoDt27dDr9f7DMgpLy+PX8RERERR+FvLadS8vhcLrhiH1XfOxsgRyRg1EL1wZmfcfXHzRwTwSFwjGiriJMLtdsNqtUKSJKhUKuj1eixfvtzb6mC1WqFWq2G1WnHNNdfEPWAiIqJIbd9zAj/ffgBfVk7Av906CyOGRzwkMOkyYYpnVNcoLy/H6tWrsWjRoiH75BaJ8vJy1NfX4+abb8bzzz+PZcuWxRxsIpWXl3tX9Bysqqoq7eZfExFReLbuOoZn32nFbXMn4gc3zQi5kFZtbS1qa2v97jt//nwiQsxYEScR1dXV2LRpU9DnqFQqNDY2QqPRQKlUwul0pn0S0dDQkBZ1IgoLC7F27VoUFhamOpS0xPsTHO9PaLxHwWXT/ZEkCb9//wj++P4nWKa6At+5flpYC2kF++L43nvv4ctf/jIKChI/GDMTKlZGXGyqtbU1ZOnqgbRaLd5880309fVFHFwypFuxKSIiip3HI6H+HREvfXQc375+GirUk+Ny3mR8ZsjX+AWAmTGc5wCAHyCxxaYiTnIiSSAAwGazYcaMGZFehoiIKCq9fR78fPsB/Hn/56i6WYnb501KdUhZK6Ikor29PaoyqKwTQUREydDd64Hptb1oPNyGH996FW6cdUmqQ4paJnRnhB1fa2srdDodlEol9Hp9RAtqyVUuiYiIEuV8dy8ef2kP9p84i8fung311MyuURTO7IwGAH8KsK8rvuH4FXYSMX36dDQ2NuKDDz6A2WyGXq+HRqOBXq/HwoULExgiERFRcGc6e7B+WzOOuTux4b65mHv5uFSHlBTlFzd/9gH4foKvH3FLyaJFi/DMM88A6J/RsHHjRrS2tuKBBx5AZWVlTqz6RkRE6eNURxfWvNCEjq5eGJfNh3BJcapDiotEd2dYrVbs3LkTACCKIlavXh3xAMyYalGUl5ejvLwcZ86cwZYtW3DLLbegtLQUer0+7ad0EhFR5jvm7sRjLzRBArCpfAGuUPiv95OJEllsqq6uDmaz2btIpiiKUKvVsFgs0Gg0YV8jLiW7xo0bhxUrVqCxsRHPPPMM3n//fcyYMQMrV67Erl274nEJIiIiH+LnHVjV8BEK8oehpiK7EohEMxgMeOCBB7w/C4LgHaIQibjX/Zw+fTo2bdqEgwcPoqKiAhs3bsTMmTPx1FNPob29Pd6XIyKiHLT703asfv5jTCguxKZlCzChOPOLYw2WH4fNH3ntK0EQfB7XarUQRRFOpzPsGBNaPLysrAxbtmzBgQMHMG7cONxyyy247bbb8PzzzyfyskRElMUch11Ys7UJwiWj8cT98zBuVCyN/ulL7s6IdguURIiiCABQKBQ+j8srbjc2NoYdY9JWIBnc3TGwGYWIiCgcb+//HI+/tAcLr1Rg3b1zMaogfZfyjpU8sDLaLdDASjlZkJMJmZxUtLS0hB1j0u++3N1BREQUideajuMXf27BTbMuwY/KZiI/A1bijEUPgI4Yjg+0VJg8A8NisaCysnLI/tLS0rCvEZck4tChQ5g2bVo8TkVERDSE1XEU//vuIdy1YBIqbxBCrsSZDf4E4A8JOK8gCKisrERdXR1qampQWVkJURRhMBi8+8MVlyRCrVbDZDLhwQcf9Hm8tbUVpaWlrB1BRERRkSQJ//vuITQ4j+Efrr0S37h2SlgrcWaDfwDwWAzHNwOoCLDPbDZDqVTCZrPBZrNBp9Nh8eLFcDqdEU3xjEsSUVZW5jdzmT59Op566iloNBpWtSQiooh4PBKe3tGC15o+w4M3TMd9C69IdUhJVQBgTAzHjw6xv7q6GtXV1d6f8/LyUFFRMWTAZTBxSSK2bNmChx56CIIg+HRrHDp0CKdOnUJZWRlOnz4dj0slTHl5OYqK/M8xDra2PBERxV9Pnwc/s+3HuwdP4UdlM6GdMzFp166trUVtba3ffZ2dnUmLI5kLcOl0OgBAfX19RNeI28DKZ555BitXroRCofDOMxVFEZIkoaIiUINK+mhoaEjYeutERBS+Cz192PTqXnx41A3DHVfjeuWEpF4/2BdHp9MJtVqdlDjyhwMjYui5yZcA9IV+Xk1NDex2OxwOR0StEECckoiHHnoI9fX1kCTJ+5harcYzzzwDjUaD6dOnx+MyRESU5Tq6erHhxWa0njqHtffMxcIrFakOKWs5nU4YDAYoFAo4HI6IBlTK4tadUVZWBp1O500aVq1aBaVSyQSCiIjC4j7fjce2NuPzs134ydfm46rLYhkRkPmGDwfyY5jFOtyDgC0RNTU1UCgUMJvNUSUPsrgkEZWVlUNqP2zatAkNDQ149tlnh8zaICIiGuhk+wU8+kITLvR6sKl8PqaWhhoWmP3yhwEjIhnYMPj4IPsGDqiMRVwqdQSqPlleXo7x48dj9erV8bgMERFloU9c51Hd8BE8ElBTvoAJRASe6QFU5/1v37yQ+OvHJYlYtGhRwH2iKKKuri4elyEioixz4MRZGBo+wujCfNRULMBl40amOqS0kZ8fevthEfDRWP/b5uIkxJjoC1RUVMTU30JERNnp46Nn8PhLuzGldBTW3jMHY0Zm50Ja0cofDoyI4VM6GetaJPwa06dP5+BKIiLy8XfxNEyv7cXcy8fh3++cjaKCGDr/s9UwRFbsYTBPvAIJLHuXPyMiorT01t6T+C/7flwnlOLfbr0KBbFMQaCUYhJBRERJ8+KHn6LubRGa2RPxw1tmYHgOLKQVtVhLVrIlgoiIsoEkSdi88xP87u9H8LVFV+B7X5mWMwtpRS0faZ9EJLwN6amnnsKhQ4cSfRkiIkpTHo+E5/7Sit/9/Qi+dd1UJhBZJKIcp76+PqLpmm63G6IowuVyYePGjREHR0REma3PI+G/3zyAN/eexENLlbhrwaRUh5Q5Yu3OCGPdjFhFFN7ixYuh1+sjvojFYmESQUSUY7p7PXjy9b14/1AbHtbOwk1XXZrqkDJLGLMzat1A7Rn/+zrTbUzEokWLUFFRgS1btngfe/LJJwEAjzzyiN9jVq1ahYceeiiGEImIKNN0dvfhJy/vxp7j7Xj0rtlYMq0k1SFlpSpF/+aP8wKg/iSx1494TITJZPL5WRTFgAkEAOj1eu865URElP3aL/TgP174GAdOdmDDffOYQERL7s6IdktC6Y2Ie1siLRwliiKcTmekl0m68vJyFBUV+d0XbG15IiL6wumOLjy2tRlnOnuw8f75mHFpEmovx1ltbS1qa2v97uvs7ExeILHOzkjC/MuYLyFJEt566y3cfPPNQ/a1t7dDr9dnRNnrhoYGqFSqVIdBRJSxjp/pxJoXmtDnkbCpfD4mjx+V6pCiEuyLo9PphFqtTk4gsVasTEINr5iTiE2bNkEQBCxZsgRarRaCIMDlcsHhcHhncpjN5pgDJSKi9NV66hwe29qEUQXDsXHZfFw6hgtp5YKYkwiFQoHGxkYYDAZUV1d75/5KkgSgf83yBx98MNbLEBFRmtpzvB3rX2zGxLEjsf7euVCMKkh1SNkh1ime6Tgmwh9BEGCxWNDa2gpRFCGKIgRBwOLFizFu3Lh4XIKIiNKQ80gbNr68BzMuLcaau+dgdCELIcdNLoyJkLW3t6O1tRVlZWUoKyvD9u3b4XA4cMstt8TrEkRElEb+evAUnnx9HxZeqcCqO67GyBFciTPZaj8Dak/435eMOhFxGXaxcuVKjB8/Hrfeeqv3sbKyMrS0tGD16tXxuAQREaUR2+4TqHltL74yoxSP3jWbCUQiyAMrg2xVVwC7Vf63hquTE2JMVq1aBbPZjHHjxg3pulixYgUcDgeee+65WC9DRERp4k8fHMXPtx/AbfMuw79pr0L+cC7lnRAZUCci5n95q9UKq9UKl8uFsrKyIfu1Wi02bdoU62WIiCjFJEnCb/52CL/8yyEsXzwZK5cqMYxLeee0mMdECIKAZcuWAYDfVdl27twJURRjvQwREaWQxyPhmbdb8OrHn+G7X5mGZarJqQ4p++XC7AyFQuH9f3lap+yDDz6A1WqFUqmM9TJERJQivX0e/Kd9P/5y4BT+v1tm4Na5l6U6pNyQC7MzVq9ejdtuuw0mk8nbEnHo0CFYrVYYDAbk5eVFtfKn0+mE0WiEIAhwu93QarWoqKgIeZzVaoXNZoNCofBONR283gcREYXnQk8fNr26F7s+caP69qvxlRkTUh0SpZGYk4hFixbBaDTiwQcfhNPphNVqBeBbbOrHP/5xROcURRFqtRoOh8NbilqpVMLlcqGysjLgcVarFUajEQ6Hw/uYVquFwWBgIkFEFKFzXb14/KXdOHiyA2vvmYNFU8anOqTckgtlrwFApVKhsbERra2tcDgcaG1thSAI0Gg0URWb0uv10Gg0PmtZGAwG6PX6oEmE2WzG4sWLfR7TarUwm81MIoiIIuA+342125pxov0CHv/aPMyeNDbVIeWeXBgTsWvXLixcuBBA/wqfg1f5fP75570DL8Phdrtht9uHfOjLyUFdXV3ARMLlcg0ZxNnS0pIRC4AREaWLk2cvYM0LTTjf3QfjsgWYPmF0qkPKTWEkEbUtQG2AuQudfXGPaIiYGzuMRmPQ/YsWLcLKlSvDPl9jYyMADPngl1slbDZbwGP1ej1EUYROpwPQP65iy5YtbIUgIgrT0bbzMFg/Qp9HgqmcCUS6q1ICu7X+t4YvJf76UbVEnDlzBm1tbQD6Ww4OHz48ZGaGvM9sNmPLli14+umnwzq33JIwcNaHv/3+VFZWelcPVSqVEAQBra2tAc81UEdHB9rb28OK0Z/CwkIUFhZGfTwRUaodPNmBtduaoCgqwPr75mJCcfa9p3V1daGrqyvq4zs6OuIYTQhyZcpYjk+wqJIIl8sFnU6HDz74AMDQVoOBJEmKaO31lpYWAEBJSYnf/W63O+jxZrMZjY2NcDqdEEURdrs9rFkdS5cuDTtGf9auXYt169bFdA4iolRpOnYGG17ajcnji7Du3rkYO3JEqkNKCKPRiPXr16c6jPAkcExEvGYyRhXe9OnT0djY6E0kgn1IK5VKrFixIuxzyzUlXC6X3/2hxjdotVro9XoIggCdTgedTgeLxRIykdixY4d3bEc02ApBRJlq5yEXjK/swexJY/HoXXNQVJC962CsXr0aDz/8cNTH79q1K+YvnakWz5mMMQ2stFgsaGhoQHl5eSyn8SEnCYFaHIIlEXI9CnngZWtrK6ZPn44VK1aETCKKi4sxdixHHxNRbtmx/3P8zLYf104bj0duuxoF+dm9DkasXc/FxcVxjCaEBLVExHMmY8y/LXICMXg8waFDh6IaYyC/sMFjH+Sfg3WNbNmyxWdaqEKhgMlkgtvthtPpjDgWIqJs9srHx/HTN/bhplmXYNUds7M+gcg4IVbwDGvzw+VywW63+zwW7UzGmH9jPvjgA5SWlmL8eN8iJNOmTcPGjRvx7LPPRnQ+hUIBlUo1ZBaG/IKXL18e8NiSkpIhLRgajcZ7XiIi6h+rtmXnJ3j6zy24Z8Hl+OeymRjOhbTSTncf0N4d/dbR4/+8cZ3JKMVIq9VK48ePl2pqavzuV6vV0ptvvhnROR0OhwRAamlp8T4mCIJkMpm8P7e0tEiCIEg2m837mMlkkhQKhdTW1ubzmEqlCnkth8MRUYxERJnI4/FIz74jSnf//B3pD38/LHk8nlSHlFGS8ZkhX6PyKkhA7Ju/WCsrKyUAkiAIkkaj8fncjERcKlYGGgQJ9LcEVFdXY+fOnWGfT6VSweFwwGAwQBAEiKIIg8HgU2TK7XbD5XL5tDxUV1dDoVBAp9N5uzXcbje2b98e+YsiIsoyHo+E/37zIOx7TqDyRgH3XHN5qkOiIL47B3jyK9Efv+sUsHSb/33RzmQcLOYkItQKnaIoRjUeQaVSwWKxBN0v16oYqLKyMmhpbCKiXNTd68FP39iH98TTeFg7CzdffWmqQ6IQCoYBYwuiP744yCzdaGcyDhbzmAhJknD48GG/+7Zv3w6r1eoz2JGIiJKrs7sPj7+0GzsPufDvd85mApEp5NkZ0W4BBlYOnMmo0Wi8RRkjKccgizmJMJlMKCsrw09/+lPs2rULhw4dwptvvomVK1fi1ltvRV5eHlavXh3rZYiIKApnL/RgzdYm7PvsLNbfOw9fEkpTHRKFK0GzM+I5kzHm7oxx48bhjTfewPLly/HII48gL69/hK90sQx2TU1NRAtwERFRfLjOdWPN1ia0nevGE/fPw8yJY1IdEkUiQXUi4jmTMS4DKwVB8C4FLg/SUKlUWLx4cVRLgRMRUWw+O3MBj77QhF6PB6byBbiyZFSqQ6I0odfrYTQaYTKZvEmDPPQg0loRcUkiZP6WAgf6C1GxGiQRUXIcPn0Oa7Y2Y2T+MNSUL8ClY0emOiSKRoJaIuI5kzGuSUQgdXV1+PGPf5yMSxER5bR9n53Fum3NuGRMITbcNxeKUTEM76fUSuAqnvGayRhxEvHss89CFEVs3LgRAPDAAw8EXVnT5XLB6XQyiSAiSrBdn7jxxMu7MX3CaDx2z1wUFybleyKlUG0jUOvwv6+zN/HXj/g3rLq6GmfOnPEmEZIkDSlRPZg82JKIiBLj3ZZTePL1fbhmsgKr7rgaI0dk70qcOSOM7oyq6/o3f5zHAXV93KPyEXES4XA4fFoeHnjgASxZsgSPPPKI3+e73W4WfyIiSiD77hP47zcP4PoZE/CwdhZGDOdCWlkhQWMi4ini8AYPnCwvL0dra2vA5ysUioyoE1FeXo6ioiK/+6qqqlBVVZXkiIiIQtu66xiefacVt8+7DCuXKjGMC2nFrLa2FrW1tX73dXZ2Jjma9BaXDjN/MzJkTz31VFT1uJOtoaGBlTXTQF7eep+fJWltiiIhSm+SJOF3fz+CzTs/QbnqCnz7+mnsOo6TYF8cnU4n1Gp1cgLJtpaI+vp61NXVhf18t9sNURThcrm8YyiIiCg2Ho+EundEvPzRcXz7+mmoUE9OdUiUCAmcnREvESURixcv9tbcjoTFYmESQUQUB719Hvx8+wH8ef/nqLp5Bm6fd1mqQ6IcFlESsWjRIlRUVGDLli3ex5588kkACDiwctWqVXjooYdiCJFyCbsviALr6u1DzWv74Djchkduuwo3zLwk1SFRImVbdwbQv+DWQKIo4umnnw74fL1eD51Oh507d0YeHRERAQDOd/fi8Zd2Y/+JDqy5ezbUU0tSHRIlWhhJRO07/Zs/nT1xj2iImGdnhCKKYsSrghER0RfOnO/Buheb8am7E4/fNw9zLucyAjkhjDERVTf1b/44PwHUJv/74iXmycSSJOGtt97yu6+9vR16vT7iBT2IiKjf52e7sOr5j3CqowvGZfOZQFBaiXmK56ZNmyAIApYsWQKtVgtBEOByueBwOLwzOcxmc8yBEhHlmmPuTqx5oQl5ADaVL8AVCv+1bChLZeOYiMEUCgUaGxthMBhQXV3tnacsSRKA/jLZDz74YKyXISLKKeLnHVi7rRljRuZjw33zMKG4MNUhUbLlQhIBAIIgwGKxoLW1FaIoQhRFCIKAxYsXY9y4cfG4BBFRzmj+9Aw2vLgbVyiKsPbeuRhXNCLVIRH5FbcC6+3t7WhtbUVZWRlWrFgBoH+dDSIiCp/jsAuPbW2GcEkxfnL/PCYQuWwYvhhcGc2WhCVU4nKJlStXYvz48bj11lu9j5WVlaGlpSUj1s0gIkoHb+//HBte2oOFVyqw7t45GFXApbxzWn4ctgSLOYlYtWoVzGYzxo0bN6TrYsWKFXA4HHjuuedivQwRUVZ7rek4nnpjH5bOnIDVd1yNwnwu5U3pL+Y8xWq1wmq1YtmyZVi+fPmQ/VqtFps2bcL3v//9WC9FRJSVLI2f4P/+dhh3L5iEFTcIXImT+oVTbOqN/s2fzu64RzREzEmEIAhYtmwZAPhdQW7nzp0QRTHWyxARZR1JkvDrdw/heecxfP3aKfj6tVdyJU76QhhJRNWd/Zs/ThFQG+IelY+4TPGUydM6ZR988AGsViuUSmWsl0m48vJyFBX5n4MdbFlYIqJoeDwSfvHng3i9+QQevGE67lt4RapDootqa2tRW1vrd19nZ2eSo0lvMScRq1evxm233QaTyeTNoA8dOgSr1QqDwYC8vLyoVv5MtoaGBqhUqlSHQUQ5oKfPg5++sR9/azmFf9HMRNnsiakOiQYI9sXR6XRCrVYnJxB5dkYsxydYzEnEokWLYDQa8eCDD8LpdMJqtQL4olXCYDDgxz/+cayXISLKChd6+mB8ZQ8+OnYGq+6YjS8rS1MdEqWrWGdYJGF2RlwuoVKp0NjYiNbWVjgcDrS2tkIQBGg0GhabIiK66OyFHmx4cTcOnT6HtffMxcIrFakOidJZLlSsXLlyJRwOB95//31Mnz494lU+iYhygft8N9Zsbcaps1144v75mDVxTKpDIopZzD0mmzdvHjKgkoiIvnCi/QKqrR+hvbMHpvIFTCAoPBlQsTLmlgiTyRRyCuezzz7LRbiIKCcdOX0ej21rwojhw1BTsQATx45MdUiUKcKpE/ECULvV/76MqRPhdDqxevVqLFmyxGfKJwC43W6YTCYmEUSUcw6cOIu125pRMroAG+6bh5LRBakOibJM1df6N3+c+wH1ysRePy4tEdu3b4ckSX6LpAR6nIgom3101I2fvLQHU0pHYe09czBmJBfSogjlwuyMyspKiKIIvV4/pBUCANra2lBXVxfrZYiIMsZ74mnUvLYXcy8fh/+4azZGjuA6GBSFBNaJ0Gq1sNvtfvfZbDZoNJqwLhFzElFRUYG8vDyUl5cHfE4mVKwkIoqHt/aexH/Z9+M6ZSn+TXsVCvKTMLqNKAKiKEIURZhMJp8v/y0tLaipqQk7gQBiTCIOHToEAEETiHD2ExFlgxc//BR1b4vQzpmIH948gwtpUWwSVCfCbrfD4XAM6T2INIEAopwA8uabb6K0tBRKpRJKpRLXXnst2tvbozkVEVHGkyQJf3j/COreFnH/oivw/93CBILiID8Omx+VlZV+hx9s3rwZOp0uohAjTiJaW1uh0WjQ1tYGSZIgSRIaGxsjzl6IiLKBxyPh2Xda8fu/H8G3vjwV3/3KNA4mp4zjdrvhdDqxfPnyiI6LuKHEbDZDoVCgvr4eGo0GLpcLFosFq1atwnPPPYfvf//7kZ6SiCgj9Xkk/Hz7Aby17yRW3qTEnfMnhX1sXt56n58laW28w6MM1+0B2i9Ef3xHV/jP3bJlC1Qqld8WimAiTiKcTifq6+u94xzGjRuH6upqAMAbb7zBJIKIckJ3rwc1r+3FzsNt+Ldbr8LSWZekOiTKMr/aBtRZk3Mti8WCBx54IOLjIk4iWltb/Q6U1Ol0sFgsEQdARJRpOrv78PjLu7H3eDsevWs2lkwrSXVIlIW+WwE8aYj++F17gaXfCv08t9sNu90Os9kc8TXiVopi+vTpcLvdfvc99dRTab8ceHl5OYqKivzuC7a2PBHllvYLPVi3tRlH3Z3YcN88zLuCKxVnm9raWtTW1vrd19nZmbQ4CvKBscXRH1/s/yNtCLvdDkEQIAhCxNeIOIk4ffo0PvzwwyFLfMsJxOHDh70LcrndbrhcLpjN5rRPIhoaGqBSqVIdBhGlSDhjFE51dGHt1mac6eyBcdl8KC+J/h2eYyDSV7Avjk6nE2q1OjmBJKli5ebNm1FRUZHIS3zB7XYH/bCNJpMhIkp3n7o78djWJvR5JGwqn4/J40elOiTKdgmsWDmQ1WqFw+GI6hJR5ThyS0OoUZxy6wSnOxFRJms9dQ6PbW3CqILh2LhsPi4dw5U4KTtYrVYoFIqoW+IjTiI0Gg3eeOONiI659dZbI70MEVFSBepe2HO8HetfbMbEsSOx/t65UIziSpyUJAmqWDnQ5s2bI64NMVDE4RkMkQ8VjeYYIqJUcxxug/GVPZg5sRiP3jUHowuTsCwikSwJSUSssyojDq+srCzii0RzDBFRKv314Ck8+fo+LJqiwKo7rkZhPlfipPRT+yug9tf+93XGUKgqXEyriYgGeaP5M9S+dRA3zLwE/6KZifzhXImTUiCM2RlVK/o3f5wfAeoEr0jBJIKIaIDnnUfxq78ewp3zJ0F/o8CFtChlpGGAFEMDmJSE3JdJBBER+med/ea9w7A0HsXyxZPxj9dN5cwyohCYRBBRzvN4JDy9owWvNX2G7311Gu5fNDnVIRGhbzjQF8OndF8ShvGkbRLhdDphNBohCALcbje0Wm3EFbVEUYTV2r96SaD104kot/X0efCftv3468FT+FHZTGjnTEx1SEQAAE+MSYQnV5MIURShVqvhcDi8BTCUSiVcLhcqKyvDOt5gMMDtdsNsNrOKJhH5daGnD5te3YsPj7phuP1qXD9jQqpDIvLqG56H3uHRd6n1DZcASPELyI+0HHKs1+uh0Wh8KmgZDAbo9fqQx8p1zUtKSmCz2ZhAEJFf57p6sW5bM5o/PYPH7p7DBIIoCmmXRMhLkmq1Wp/HFy9eDACoq6sLemxZWRkEQYhqSVMiyg3u891Y/fzHOHz6PB7/2jwsmjI+1SERDdE3fDj68vOj34Ynvj8j7bozGhsbAQxdyEtulbDZbAG7NOQuDJPJlNggiShjnTx7AWteaML57j4Yl83HtAmjUx0SkV+e4cPRF6JGybO1vXi2ttfvvgudie3KANIwiRBFEUDgxb3k/f7IrRQ2mw0GgwGiKGLx4sVhjYvo6OhAe3t7dEEDKCwsRGFhYdTHE1HifeI6jzVbm5A/LA81FQswaVxRqkOiJOvq6kJXV1fUx3d0dMQxmtg9WJWPB6v8f5R/6PTgZnX0rzUcaZdEtLS0AABKSkr87pdXBh3M6XQC6G+x0Ov1MJlMEEURWq0WSqUSbW1tQWdnLF26NKa4165di3Xr1sV0DiJKnIMnz2LttmYoigqw4b65KC1m0p+LjEYj1q9fn+owwtKHYeiLYS3wvjjGEkjaJRFKpRIA4HK5/O4P1KIgt1Do9Xrvc+SxEVqtFkajMWg3x44dO7Bw4cKo42YrBFH6ajp2Bhte3I3JJUVYd+9cjB05ItUhUYqsXr0aDz/8cNTH79q1K+YvneHqw3D0MomIjJwABGpxCJREBGpl0Gj6C4cH6wYBgOLiYowdOza8IIkoY+w85ILxlT2Yc/lY/Medc1BUwIW0clmsXc/FxcVxjCbzpV0SIc/CGPyhL/+sVquDHid3hwwWqHuEiLLXn/edxH/aD+BL00vw41uvQkF+2k1IIwrIg+Hoi+Fj2hPHWAJJu78ohUIBlUoFm83m87jdbgcALF++POBxGo3G+zyZ3KIRKPkgouz08kfH8TPbftx81SUw3H41EwjKOPKYiOi3xP/Op+VfVX19Pex2u09rhMlkgslk8nZbiKIIpVLpkzSYTCY4nU6fx+rq6qBSqcKqdElEmU+SJGzeeQTP7GjBvddcjh/dMhPDuRInUUKkXXcG0D/DwuFwwGAwQBAEbxnrgYmA2+2Gy+XyGTsx8DiLxQKFQgG32w2Hw5GCV0FEySZJEp77Syu27voU/3jdFCxffCVX4qSM5bnYohDM/9Wew29rz/vdl5N1ImQqlQoWiyXo/ra2Nr+PD+4KIaLs1+eR8D9vHoR9zwnolwq4e8HlqQ6JKCaeMKZ4frNqLL5Z5X9SQLOzG19Tn0xEaF5pm0QQEYWru9eDn76xD++Jp/HwrbNw81WXpjokopj1YlhMUzx7kzBigUkEEWW0zu4+PPHKbuz+tB3/fudsfEkoTXVIRDmDSQQRZayzF3qwbttufOI6jw33zcO8K8alOiSiuPEgP8YpnokvN8UkgogykutcN9ZsbULbuW48cf88zJw4JtUhEcVVOGMiQh2faEwiiCjjfHbmAh59oQm9Hg9M5QtwZcmoVIdElJOYRBBRRjl8+hzWbG1G0Yhh2Hj/Alw6dmSqQyJKiNgX4GJLBBGR177PzmLdtmZcMqYQG+6bC8WoglSHRJQwsS/Alfh1YphEEFFG2PWJG0+8vBvChGKsuWcOigv59kVkqT0Na63/Va+7OhO/egb/Coko7b178BSefGMfrpmswKo7rsbIEVyJk7JfOAtwLauaiGVVE/3u2+c8j++o9yciNC8mEReVl5ejqKjI776qqipUVVUlOSIiAgDb7hP4nzcP4CszJuBftbMwYnhaLvlDWaS2tha1tbV+93V2diYtjr4wyl6HOj5coijCarUCACorK73rVIXCJOKihoYGqFSqVIdBRANs3XUMz77TitvnXYaVS5UYxoW0KAmCfXF0Op1ZtSq0vDaV2+2G2WyGIAgRHc+UnojSjiRJ+M17h/HsO62oUE/GD25iAkG5xxPjUuCh6kTICVFJSQlsNlvECQTAlggiSjMej4S6d0S8/NFxfOf6aShXT051SEQpkcgpnm63G2VlZRAEAWazOeprMIkgorTR2+fB/9t+ADv2f46qm2fg9nmXpTokopRJ5BRPuQvDZDJFfX6A3RlElCa6evuw8ZW9eOfAKVTfdjUTCMp5Pd0enGvvjXrr7Ai8dkZdXR0AwGazQa1WY/z48dBqtRBFMaIY2RJBRCl3vrsXj7+0G/tPdGDN3XOgnjo+1SERpdzrvzqJV+s+i/t5nU4nAEClUkGv18NkMkEURWi1WiiVSrS1tXF2BhFlhjPne7B2WxOOn7mAx++bhzmXj011SERpoey7k/HdJ6+K+nhx11msWuoc+vjF1ga9Xu8dTCmPjdBqtTAajWF3czCJIKKU+fxsF9a80IRz3b0wLpsP4ZLiVIdElDbyC/Iwamz0H9Mji/2PiQjUyqDRaAAgoi4NJhFElBLH3J1Y80IT8gBsKl+AKxT+i70R5SpPjMWmPAGOXbx4MQCgpaXF7/6SkpKwr8EkgoiSTvy8A2u3NWPMyHxsuG8eJhQXpjokorTTh2Exzs7wP3dCoVBAo9HAbrf7PO52uwEgomJanJ1BREnV/OkZrHr+Y1xSXAjjsgVMIIhSwGQywel0+iQSdXV1UKlUqKysDPs8bIkgoqRpPOSC8dW9uOqyMVhz1xwUFXAhLaJA+sJYgCvU8YGoVCo4HA4YDAZYLBYoFAq43W44HI6IrsEkgoiS4u39n+Ontv1YPHU8DLdfjYJ8NoQSBZOoMREylUoFm80W9fkBJhFElASvfnwcT+9owU2zLsE/a2ZhONfBIMoKTCKIKKEsjZ/g//52GHcvmIQVNwhcSIsoTOGsnWGrbYGt1v8si+7OwBUr44VJBBElhCRJ+PW7h/C88xi+fu0UfP3aK5GXxwSCKFzhrJ1xc9Us3Fw1y+++Q842rFPH1l0RCpOIi8rLy1FU5H+eerC15YloKI9HQu1bB/HG7hN48IbpuG/hFakOiShstbW1qK2t9buvs7MzaXF4YhxYGWpMRDwwibiooaEBKpUq1WEQZbzuXg9+ZtuPv7Wcwr9qZ+KWqyemOiSiiAT74uh0OiOqo5DtmEQQUdxc6OnDxlf24ONjZ7Dqjtn4srI01SERZaxwxkSEOj7RmEQQUVycvdCDDS/uxuHT57Hunrm45kpFqkMiymiJnuIZD0wiiChmbee68di2Zpw624Wf3D8PsyaOSXVIRJQETCKIKCYn2i9gzQtN6Or1wFS+AFNKR6U6JKKs4ImxO8PD7gwiSmdHTp/Hmq1NKMgfhpqKBZg4dmSqQyLKGr1hTPF8p7YZf6lt9ruvp7M3EWH5YBJBRFE5cOIsHtvajNLiAjx+3zyMH12Q6pCIcs4NVXNxQ9Vcv/s+cZ7CT9XPJ/T6TCKIKGIfHXXjJy/twdTSUXjsnjkYM3JEqkMiyjqsE0FEWec98TRqXtuLeVeMw7/fORsjR3AlTqJE4BRPIsoqb+49gf9nP4AvKyfgYe0srsRJlOOYRBBRWLZ9+Cnq3xZx65yJqLp5BhfSIkow1okgoownSRL+8P4n+MP7R7BMdQW+c/00LqRFlAR9GBZydkao4xONSQQRBeTxSHj2LyJe/PA4/unLU6FbfGWqQyLKGX0xDqyMpRUjXEwiiMivPo+E/7f9AP687yR+cJMSd8yflOqQiCjNMIkgoiG6ez0wvbYXjYfb8ONbr8KNsy5JdUhEOSecMRE7axvRWOvwu6+XxaaSp7y8HEVFRX73BVsWlijbdHb34fGXd2Pv8XasuWs2Fk8rSXVIYcnLW+/zsyStTVEklOlqa2tRW1vrd19nZ2fS4gin7LWq6ktQVX3J777PnMfxS/WziQjNi0nERQ0NDVCpVKkOgyil2i/0YN3WZhx1d2LDffMw74pxqQ6JKOmCfXF0Op1Qq9VJjih9MYkgIgDAqY4urN3ajDOdPTAumw/lJcWpDokop7HYFBFlhE/dnVjzQhMkAKaKBbhC4b9rj4iSpy+MBbhCHZ9oTCKIcpz4eQfWbmvG6IJ8PP61ebhkTGGqQ4oKx0AQJR+TCKIctud4O9a/2IzLxo7E+nvnYdwoLqRFlC64ABcRpS3H4TZsfGUPZk0sxpq752BUAd8OiNIJx0QQUVr6y4FTeOqNfVBNGQ/DHVehMJ8rcRJloo9q38VHte/63dfb2ZPw6zOJoJTi3P7ke735M/zirYO4cdYl+OeymcgfzpU4idJROMWm5lbdgLlVN/jd97nzKCzq/0xEaF5MIohySIPjKH797iHctWASKm8QuBInURpLxQJcoihCEISwn88kgigHSJKE//vbYVgdR7F8yZX4xy9N4UqcRGmuD/kxLsAV+tjB7wMqlQoOh/8y2v6kbRLhdDphNBohCALcbje0Wi0qKioiOofdbodOp0NbW1uCoqRYsfsi8TweCU/vaMFrTZ/h+1+djq8tuiLVIcUFu8KIYlNXV4fKykoolUrvYxqNJqJzpGUSIYoi1Go1HA6HtxS1UqmEy+VCZWVl2OfR6/WJCpEoI/T0efCftv3468FT+FHZTGjnTEx1SEQUpnDWzgh1fDAWiwU2my3q8wNIwvyPKOj1emg0Gp+1LAwGQ0RJgcFgiKhfhyjbXOjpwxMv78HfxNMw3H41EwiiDCNP8Yx+C/wRb7Va0djYCJ1Oh7q6uqhjTLskwu12w263Q6vV+jy+ePFiAAjrxdrtdpSWlnJBLcpZHV29WLu1Gc2fnsHae+bi+hkTUh0SEUXI092L7vbOqLeejq6A57bZbHC73bBardDr9Rg/fjzsdnvEMaZdd0ZjYyMADGlFkBMCm80WskvDbDbDYrHAYDAkJkiK2uB+7MHYrx079/luPLa1GZ+f7cJPvjYfV102JtUhJQR/VyjbHfjV39BS93ZCzm02m2E2m+F0OmE2m1FXVwetVouWlpbMnp0hiiIAQKFQBN0fiMFggMlkivi6HR0daG9vj/g4WWFhIQoLM3PNAcoeJ9svYM3WJnT2eLCpfD6mlo5OdUhEaaWrqwtdXYG/oYfS0dERx2iCm/rdG7Hgya9Hfbx71xG8tdQY9DkqlQpmsxlarRY6nQ4GgwEWiyXsa6RdEtHS0gIAKCkp8bvf7XYHPNbpdKK0tDSqsRBLly6N+JiB1q5di3Xr1sV0DqJYfOI6jzVbm5A/LA815Qtw2biRqQ6JKO0YjUasXx+8RTRdDC/Ix4ix0a+om18c/hfbiooKVFRUwOl0RnaNSINKNHmqicvl8rs/WIJgNBojyqAG2rFjBxYuXBjVsQDYCkEpdfDkWazd1gzFqAJsuHcuSiN48yDKJatXr8bDDz8c9fG7du2K+UtnuPpiXIAr0pkdWq024nERaZdEyElCoBaHQEmEwWCAVqv16e6Q/1/+b7AEpLi4GGPHjo0mZAoi1XP5U339ZGg6dgYbXtyNK0tGYd29czBmJFfiJAok1q7n4uLiOEYTXDhlr0MdHyl5EkO40i6JkF/A4LEP8s9qtdrvcXa7HTU1NX73KZXKiKtwEWWC91td2PTqHsy5fCz+4845KCrgQlpEFB2bzRZxfaW0m+KpUCigUqmGFMCQm1iWL1/u9ziHwwFJkny26upqKBQKSJLEBIKyzlv7TuKJl3djybQSPHb3XCYQRFkmUXUinE4n1Gq1zxdvq9WKkpKSiCtDp11LBADU19dDrVb7LARiMplgMpm8szZEUYRWq4XZbI64TCclT6q7D1J9/UR56aNPYd4hQjN7In54ywwM50JaQ0TalZULXV+UWfowPMYFuPwfKwgCSkpKYDQaYbPZoFKpvJ+nkUrLJELuepCrToqiCIPB4FMfwu12w+VyBZ2tQZRtJEnClsZP8Nv3juC+hZfj+1+dzoW0iLKUJ8aBlYHGRCgUipjLXcvSMokA+hOJYDMtVCpVyIW15NYLomzg8Uj45V9bsXXXp/jWdVOhWzyZCQRRjjtS+zI+qX3F776+zu6EXz9tkwgi+kKfR8J/v3kA2/echH6pgLsXXJ7qkIgowfrCWIDriqp7cUXVvX73tTsPYqf6XxIQ2ReYRFBaYb/0UN29Hvz0jX14TzyNh2+dhZuvujTVIaWlUCXVQ+HvGqWbVEzxjBSTCKI01tndhyde2Y3dn7bjP+6ag2un+6/kSkSUCkwiiNLU2Qs9WLdtNz5xnceG++Zh3hXjUh0SESVRH4bFODsj8VUcmEQQpaHTHV14bGsz3J3d2LhsHmZcmp0rcRJRYMkuex0NJhGUUhwDMdTxM51Y80ITej0SNi1bgCtLRqU6pIzE3yWixGMSQZRGDp8+h0dfaMKoguHYeP98XDqWK3ES5SoOrCSisO39rB3rt+3GJWMKseG+uVCMKkh1SESUQp4wpnierG3A57V/8n98Z1ciwvLBJIIoDez6xI0nXt4NYUIxHrtnDkYX8k+TiEK7tKocl1aV+9133rkPe9TfT+j1+U51UXl5OYqKivzuq6qqQlVVVZIjyg3xXs8gE9dLePfgKTz5xj5cM1mBVXdcjZEjuJBWNAb/2w0u5ilJSQyGMlptbS1qa2v97uvs7ExaHH0xdmdwYGUSNTQ0QKVSpToMyjG23SfwP28ewFdmTMC/amdhxPC0W1iXKOcE++Ior4CZDJziSUQBvfDBMTz3l1bcPu8yrFyqxDCuxElEA3CKJ2WdWJv/Qx0f6/kT/fx4kCQJv33vMLY0HoVu8WR867qpXEgrCqF+V9h9QZR4TCKIksjjkVD3joiXPzqO71w/DeXqyakOiYjSFKd4EpFXb58H/2U/gHcOfI4f3jIDt829LNUhEVEaC2eKZ6jjE41JBFESdPX2YdOre/HBETeqb78aX5kxIdUhERHFjEkERSTSKZORHh+rvB8Mut4vEnq5sJzr6sVPXt6NAyc6sObuOVBPHZ+wa6XDlNVkifd4GqJ004thGB6iJeJs7e9wtvYPfvdJLDZFlNnOnO/B2m1N+Kz9Ah7/2jzMnjQ21SERUYbwID/k7IxRVd/GqKpv+93X7WzGSfXXEhDZF5hEECXIybMX8NgLzTjX3QvjsgWYPmF0qkMiIoorJhFECXDM3YlH//Qxhg/Lg6l8AS5X+K+GSkQUCAdWUs4J1U8daswEEPz4iP0i+f3iLZ93YO3WZowrGoH1983FhOLCpF07l8cBcIwEZZs+DMMwVqwkyh1Nx85gw0u7MVlRhHX3zcXYkSNSHRIRUcIwiSCKk8ZDLmx8ZQ9mTxqLR++ag6ICLqRFRNHzeIajzxNDd0YMx4aLSQQlVeQrLcZWVjtZTdo79n+On9n2Y8nU8ai+/WoU5HMhrVRj9wVlur6+YUBvDN0ZfezOIEp7r3x8HM/saMFNV12Kfy6bieFcSIuI4qCvdzjQG/xjutv8HHrqful3n3ThQiLC8sEkgihKkiTB4jiK3/ztMO65ZhIe/KrAlTiJKKkK9N9Hgf77fvf1ffAhOr+qSej1mURcVF5ejqIi/9Pwgq0tT7lJkiT8+t1DeN55DN/40hT8w5IruRInUZaora1FbW2t332dnZ1Ji8PTNzym7gxPH8dEJE1DQwNUKlWqw8h6oZcCx6D9iY4och6PhP956yBsu09gxY0C7r3m8lSHRERxFOyLo9PphFqtTkocfX3DIMWURIQ/JsJut0On06GtrS2iazCJIIpAd68HP7Xtw3stp/GwdhZuvvrSVIdERBQzvV4f1XFMIojCdKGnDxtf2YOmY2ew+s7ZuE4oTXVIRJTF+nqHw9MTfUtEuK0YBoMBgiDA5XJFfA0mEURhOHuhBxte3I3Dp89j3b1zsWCyItUhEVGWkzzDIfXF8DEdRp0Iu92O0tJSqFQqNDY2RnwJJhEUk1BjHEIvHT74kcFlriOc679y0PXjsBR427lurNnaBNe5bjxx/zzMnDgm9pPGSaqXXieizGY2m2GxWGAwGKI6nkkEURAn2i/g0Rea0NPnwaZlCzCldFSqQyKiXNHZB7Sdi/749uAzSQwGA0wmU/TnB5MIooCOnD6PNVubUJg/DKbyBZg4dmSqQyKiXLL5f4E/1ifk1E6nE6WlpRAEIabzMImgmMQ8RXPl4AdCdX+EKGP99KDnPx1dc//+E2exdmszJowpxIZ752L86IKg50kVdlcQZbGK7wKrnoz++D27gK/f5HeX0WiExWKJ/twXMYkgGuTDT9x44uU9mFo6CmvvnYviQv6ZEFEKDCsEisZFf3yh//FbBoMBWq0Woih6H5P/X/5vuC0UfHckGuBvLadR8/peLLhiHFbfORsjR3AlTiJKkT4AvTEe74fdbkdNTY3ffUqlEiqVCg6HI6xLcKlBoou27zmBTa/uwZeml+LRu+cwgSCi1JKTiGi3AEmEw+GAJEk+W3V1NRQKBSRJCjuBANgSQYMMnTI4qM/98KC0eKrvr9A3JN/V5L456Gy/z/sksoB+EWmf/6D4w5zyuXXXMTz7TitumzsRP7hpRsCFtCKdkhpp2e7QZcFj25/Ncvm1pxrvfe5iEkE5TZIk/OH9T/CH949gmeoKfOf6aVxIi4jSg9yiEMvxCcbuDMpZHo+EurdF/OH9I/j29dPw3a9MZwJBROmjF0BPDFsESYTJZIp48S2ALRGUo3r7PPj59gP48/7PUXWzErfPm5TqkIiIImet7d/86Ur8suV5kpSOiy0nj7ysq8PhyJilwIeMWwjR7z/ky/WgcQ3rpo6IU2Txt3aX78+vXXOTz89/z/tzxOfsG5YPx03fwYkrZuNnxb/FjT0ffLHzh77PXb8w4tMHNfj15I3vCX7ApkF5/qremPZ/4xdfjFl5Iu/7PvumH/aNRWrz/b345jXP+fz8+x98z/daT8fWLx5pv3q8nx/vEuLZNE4g28qrxzK2KBmfGd7lxn/pAK6K4Rr7nMD3EhsrWyIuKi8vR1FRkd99wdaWp8zSm1+Iv5c9CPeEqbj2zXrceMfeVIdERGnn/YtbvzlzNnv/v7Mz8d/uvRI0xTOemERc1NDQkDEtERSdrsLR+LtGj3NjL8F1tqdRerI11SERUVq69uLWb/fuoS0R1I9JBOWEzlHj8J52JboLR+H61/4b49o+TXVIRETBZcDsDCYRGSjS/seho17yQz3BK9T4i3VPJ3Y2w+AxA615vv30fw/jHB1jLsF7t66EBOArr/43is9+/sX51wwakzB18J9E8L5gHP6PQcc/EfTpa68Z9G8X4vYN/qfJywsR36C1QwbXrfjdL74Yx5B3+J98nzrotX9T8h0DMUSMYyAGi/z3Or7PjzX+VI+BSOT1s208SKJ/F+KG3RlEqXVm/OV4T/sQRnR34stv/AJF58+kOiQioqzBJIKyluuS6fi7phKj2z/Hl+xmFHadS3VIREThY0sEZZqQU59+EN/rfTvE/i9N0fr8PGQa4uODpqdenKLp+PxqbNz1PcwQeqC7+2MUFiwBANz+4Z99nr5u0PWG9uxE2KwZc1dTpM+PvtlVmjK4W2vwM743+AEfv8vpyeFDpboJPNXXHyidYsloTCKIku+d4wvx04//EeoJe7Hw3laMyE/CXxIRUbyFk0S8Wgu8FqDYVHfip6MyiaCs8tonX8Yvdutw0yQHfjTvD7Dn35jqkIiIEueOqv7NH9EJPJLY6ahMIihrNBTcgl/vvgd3XfkXVM5+HsPy2N5ORBlMXjsjluMTjEkE+Qg59WlQSe31Q6YURuZ/B/08uCz09Ly3Bj3Dd8xG3sVRDWNUl2L0vFJ0/P5zvPThfKzEfL/XkyTf8zHNIKK01YfYxjUkoSc3bVfxdDqd0Ol0MBgM0Ov1sFqtYR1ntVqhVquRl5cHtVoNu92e4Egp1cZedxlGzytF+84T6PjwVKrDISLKGWnZEiGK4pAFTpRKJVwuFyorKwMeV1NTA5vNBr1ej5aWFtTU1ECr1cJms0Gj0SQrfEqWYXlQfPVyjJw6Fmfe/RSdB1kDgoiySAbMzkjLlgi9Xg+NRuOzloXcIhHMzp07YbPZUFlZCZPJBIfDAaB/nXTKMsPzMP7myRg5ZQzadhxlAkFE2UdOIqLdcnGKp9vtht1uH/LBv3jxYgBAXV2d39YIf8eoVCqoVCqIopi4gHPcukGjCqQHfes4r382svMNXm56qLXIK+hFSVkz8sefg2v7u+g+fs5nv088HPRARJQwaZdENDY2AgAEQfB5XG6VkFsaBgvWXTH4XP50dHSgvb09klB9FBYWorCwMOrjKTzDRnajRNuM4aO74HpjPnpO2VIdEhFlkK6uLnR1dUV9fEdHRxyjCSGc7oy3aoEdAepE9ORgnQi51UChUATdH8n5QnWDAMDSpUsjOu9ga9euxbp162I6BwU3fPQFlNzahLx8D06/Nh+97tGpDomIMozRaMT69SEW1ksX4azieUNV/+bPESdgyrE6ES0tLQCAkpISv/vdbnfY57JarRAEIehgTNmOHTuwcOHCsM89WM62Qqz0/XHwlM/BUzbXLwx+ut//wLfU8jekXwIALriGQdw6FsdemoLTry5AX8dIACyvS0SRWb16NR5++OGoj9+1a1fMXzqzSdolEUqlEgDgcrn87g+na0JmNBphsVjCem5xcTHGjh0b9rkpec6fGA5x2xjkj5Zw+tUF8HQWpDokIspQsXY9FxcXxzGaEDg7I3JykhCoxSHcJMJgMKC+vj6ipIPST8fRfLT8aSwKFR7MWNbOBIKIcgdnZ0ROnoUxeOyD/LNaHbp/p66uDlqt1meKKGWewuGnIW4bg9GX92LanWcxnPkDEeUSlr2OnEKhgEqlgs1mQ3V1tfdxufLk8uXLgx4vV7YcPFvD6XQyqUiAwWWwv/mLQVM0P/x+ZOfr6Z8i+taIxfivwm/gbctYuN8+hr97+udqxjplM9RS50REFL60684AgPr6etjtdp/WCJPJBJPJ5J21IYoilEqlT1lru90Oo9EIoL81Qt70er136iilv5cKvoqfjfombul+H+4dRwEPiz0QUQ7qi8OWYGnXEgH014RwOBwwGAwQBAGiKMJgMPjMsnC73XC5XN6xE06nE1qtFgD8Tulsa2tLSuwUPQnAHwtvxe9G3oGvdb2F713Yhn+R1qU6LCKi1MiAgZVpmUQA/YlEsJkVKpXKJzFQqVSQWJ4wY0nIQ/OS++AYuRTfuvAKdF025IU+jIgot/29FtjJYlOUJX43aAxE3sJ1Pj+vg+/PAODJG4YPr38AR5VLUPpPl2Drgn/AVvxD/85nP4no+qHGPHAMBBFljHBaItRV/Zs/x53As4ktNpWWYyIod/QNy4dj6bdxVFiMRe/8FhMWRF+Ologoq2TAFE8mEZQyvfmFeL9sBU5MnoNr33wOk1udqQ6JiChnWK1WqNVq5OXlDZmoEC52Z1BcvXbNTYMe8e0+WLey/+c89KBkZDOUn72G62zPYMKJ/nLngcpeh4vdFRQIp/dSxklgnYi6ujo4HA7v6tcGgwFarRYtLS0RFWlkEkFJNyyvCyUjmzEsrxvXv14LhetoqkMiIko/sU7TDHKs2+2G2Wz2/lxfXw+1Wg2n08kkgtLX8LxOlIxsAiDhdOcCJhBERIEkcIrnwGKOwBcrZ0dalJFJBCVNvuIcSoqaIEnDcfrCfHikkakOiYgofXm6ge726I/v6Qj7qVarFSaTKeL1pphEUFz9Bt/y+/iICe0o0exG375CuOxz4bngfyEMuey1LC/Pt/bH71gKhKLEMRCUcZp+BeypS/hlDAYD6urqUF9fH/GxTCIuKi8vR1FRkd99VVVVqKoKMA+XQiqY1Ibxt+xBz+litG2fA6mHv3ZElL5qa2tRW+u/gFNnZ+ILOHnN+C6w5Mnojz+9C3h5adCn1NTUQBRFuN1u6HQ6mM1mn+rQofDd/KKGhgYu0JUAI6ecgmLpPnR9qkDbn68G+oanOiQioqCCfXF0Op1hrSYdF8MLgIKx0R8/ojjkU+SxEXa7HTqdDiaTKaIkgnUiKGFO7y6EYuleXDhUirY3ZzOBICKKRBIX4NJoNKisrPRZ+DIcbImguPp9Xn+dh9FzjmLM4kM4X3IZ2ouVwLyLYx1WDRpqPNX3x9fqb/J94Fnfuf2D604QEWWtJC/AtWTJkogHVrIlguJMQvGiQxiz+BA6Pp6M9m4lwKW0iIjSniiK0Gg0ER3DJILixuORMPZLIornH8VZxzR0fDANTCCIiKKUoLUz5EGUVqvV+5goirDZbD4FqMLB7gyKi94+D/7LfgCjZn2OM+/OQOfBy1IdEhFRZktQ2WuFQgG3240VK1bAbDZDq9VCEATYbLaIL8EkgmJ2oacPptf24oMjbrjffh8XDm//YufTg58dfEzDHUd8f4m/If2fz895gxo2pBB1I7heAhHRUNEkDP4wiaCYnOvqxeMv7cbBkx1Ye88cbP1h5KvAERGRHx6EHhwp1vZv/vQlvqYFkwiKmvt8N9Zua8aJ9gt4/GvzMHtSDPOZiYjIlzy2IZgpVf2bP24n8E5ia1owiaConDx7AWteaML57j4Yly3A9AmjL+6Jsbtgqu+v5O/xSUynY/cFEWWsJE/xjAaTCIrY0bbzWPNCE4YPy4OpfAEuV/gvF05ERNmNSQRF5ODJDqzb1oxxRSOw/r65mFBcmOqQiIiyU4JmZ8QTkwgKW9OxM9jw0m5MHl+EdffOxdiRI1IdEhFR9gpnYGWo4xOMSQSFZechF4yv7MHsSWPx6F1zUFTgfx2MwVMu834w6AmDpnzul57zfWDQ86Vf+I5pGDxlk2WwiYhSh0kEhbRj/+f4mW0/rp02Ho/cdjUK8lnolIgo4TiwkjLdKx8fxzM7WnDzVZfiR2UzMXwYy1gTESVFOFM8P6vt3/zxsE5E0pSXl6OoyP8sg2Bry2crSZJgaTyK37x3GPdeczm+/9XpGMYEgohyQG1tLWpr/X8wd3Ym/oM5IpdV9W/+dDiBj1knIikaGhqgUqlSHUZakCQJv/rrIfzpg2P45pem4IElVyJvcL3pAEKNgRgyZuLIP/n8/I1f/NJ3f55vnYhQdR9Y5pqIYhXsi6PT6YRandgPZi/OzqBM4/FI+J+3DsK2+wQqbxRwzzWXpzokIqLcxNkZlEm6ez346Rv78J54Gg9rZ+Hmqy9NdUhERJTGmEQQAKCzuw8bX9mD5k/P4N/vnI0vCaXRnejp2KZg/j7C7ovB2H1BRFmDszMoE5y90IP1L+7GkdPnse7euVgwWZHqkIiIKJzZGaGOTzAmETnOda4ba7Y2oe1cN564fx5mThyT6pCIiAjgwEpKbyfaL+DRF5rQ0+eBqXwBriwZleqQiIgogzCJyFFHTp/Ho1ubMDJ/GGrKF+DSsSPjct5Ip2CybDURUQDhzM5or+3f/JFYbIoSYN9nZ7FuWzMuGVOIDffNhWJUQapDIiKiwcIZWDmqqn/zp9sJnGCxKYqjXZ+48cTLuzF9wmg8ds9cFBfyV4CIiKLDT5Ac8m7LKTz5+j5cM1mBVXdcjZEj/K/ESUREaYBTPCld2HefwH+/eQDXz5iAh7WzMGJ4albiHDxmIlSZbCKinBXr7ArOzqB42LrrGJ59pxW3z7sMK5cquZAWERHFBZOILCZJEn7//hH88f1PUK66At++flrYC2kREVGK9QGI5S2b3RkULY9HQv07Il766Di+ff00VKgnpzokAOFM8eSUTyIiALEnAUwiKBq9fR78fPsB/Hn/56i6eQZun3dZqkMiIqJE6K4FelgnIuXKy8tRVFTkd1+wteXTTVdvH2pe2wfH4TY8cttVuGHmJakOiYgoo9TW1qK21v8Hc2dn4j+YvfoASCGeM6wKKAzw+eRxAl2sE5EUDQ0NUKlUqQ4jJue7e/H4S7ux/0QH1tw9G+qpJakOiYgo4wT74uh0OqFWJ/aD2asXsY2JCJWAxAGTiCxxprMH67c145i7E4/fNw9zLh+b6pD8irQs9uBxoFzqm4hyRqwDK0MkEVarFUajEU6nEyqVCiaTCRqNJqJLpKZYAMXVqY4urGr4CJ93dMG4bH7aJhBERJQeampqYDabodfrUV1dDafTCa1WC7vdHtF52BKR4Y65O7HmhSbkAdhUvgBXKPyP6yAiogyUoC6JnTt3wmazeX9+4IEHoFarI26NYBKRwcTPO7B2WzPGjMzHhvvmYUJxYapDIiKiNGe322EymXweU6lUUKlUEEUxonMxichQzZ+ewYYXd+NyRRHW3TsX44pGpDokAP7qQPgaPKbhm/hl0P1ERBRfwVoaBEGI6FxMIjKQ47ALG1/Zi1kTi7Hm7jkYVcB/RiKi7NMNoD2G4zsierYoitDr9REdw0+fDPP2/s/xM9t+qKeOR/XtV6EwnytxEhFlp18BqEvKlaxWKwRBQGVlZUTHMYnIIK81Hccv/tyCm2Zdgh+VzUR+ilbijKff4XupDoGIKE19F8CTMRy/C8DSsJ5pNBphsVgivgKTiAxhdRzF/757CHcvmIQVNwhciZOIKOsNAxDLjLuRYT3LYDCgvr4+4vEQQBonEU6nE0ajEYIgwO12Q6vVoqKiImHHpStJkvDrdw/heecxfP3aKfj6tVdyJU4iopzQe3GL5fjg6urqoNVqo67YnJZJhCiKUKvVcDgc3hemVCrhcrmC9tdEe1y68ngk/OLPB/F68wk8eMN03LfwilSHREREWcJqtQIYOltDrmAZjrRMIvR6PTQajc+LMBgM0Ov1QZOBaI9LRz19HvzMth/vHjyFfy6bCc2ciakOKSycoklEFC+9AHpiPN4/u90Oo9EIvV6PurovBm86HA6o1erMTSLcbrffQhiLFy8G0N/04i8hiPa4dHShpw+bXt2LD4+6seqO2fiysjTVIRERUdL1IbbujD6/j8olrgH4ndLZ1tYW9hXSbnh/Y2MjgKEFL+SsaGCZzngcl246unrx2NYmNH96BmvvmcsEgogoZ8ktEdFu/hMQlUoFSZICbgqFIuwI064lQi65GehFBCrJGe1xso6ODrS3R1/Uo7CwEIWFsZWddp/vxmNbm/H52S48cf98zJo4JqbzERGRr66uLnR1dUV9fEdHZAWcEu+X6K8n4c+FhF897ZKIlpYWAEBJSYnf/W63O67HyZYuDW8ubSBr167FunXroj7+RPsFrHmhCV29HpjKF2BK6aiY4skUg8tkc0wFESWS0WjE+vXBy/Onj3DGRHzr4ubPxwDujGtEg6VdEqFUKgEALpfL7/5A81ijPU62Y8cOLFy4MMwoh4qlFeLI6fN4bFsT8ocNQ03FAkwcG97cXiIiiszq1avx8MMPR338rl27Yv7SGb7EjImIp7RLIuQP+0AtB4GSgWiPkxUXF2Ps2LHhBRlHB06cxdptzSgZXYAN981DyeiCpMdARJQrYu16Li4ujmM0mS/tkgh5NsXgMQzyz2q1Oq7HpdLHR8/g8Zd2Y0rpKKy9Zw7GjEyPlTiJiCgdJG6KZ7yk3ewMhUIBlUo1ZDaF3W4HACxfvjyux6XK38XTWLutCVddNgY/+dq8HE4g1g7aiIion9ydEe2W+O6MtEsiAKC+vh52u92nVcFkMsFkMnlnX4iiCKVS6U0Swj0uHby19yQ2vrIHS6aXYM3dczByBFfiJCKizJN23RlA/xxWh8MBg8EAQRAgiiIMBoNPsSi32w2Xy+UzBiKc41LtxQ8/Rd3bIrRzJuKHN8/gQlpERBRA+ndnpGUSAfQnBMGWJVWpVH6raoU6LlUkScIfd36C3//9CO5fdAW++5VpXEiLiIiCSPwCXLFK2yQim3g8Ep77Syu2ffgpvvXlqdCpJzOBICKiONhycfMn+qJa4WISkWB9Hgk/334Ab+07iZU3KXHn/EmpDomIiDJCON0Z91/c/NkL4DvxDGgIJhEJ1N3rwZOv78X7h9rwb7dehaWzLkl1SERElDFYbCpndXb34Scv78ae4+149K7ZWDLNfznubDO4l0aSgj8/1H6WxSai3MWBlTmp/UIP1m1txlF3JzbcNw/zrhiX6pCIiIjijklEnJ3q6MLarc0409kD47L5UF7CEqlERBQNdmfklE/dnXhsaxP6PBI2lc/H5PG5sRInERElArszckbrqXN4bGsTRhUMx8Zl83HpmNxciTPUGIfBQo154BgIIqL0xSTiovLychQVFfndV1VVhaqqqoDH7jnejvUvNmPi2JFYf+9cKEZFvxJnV1cXjEYjVq9eHdNKc9mK9yc43p/QeI+C4/0BamtrUVtb63dfZ2cnAKC7uzsJkYTTnfEygFcC7Et8jHmSFOl3x+zidDqhVqvhcDigUqkiP/5IGza+vAczJxbj0bvmYHRhbHlZe3s7xo0bhzNnzqRkafJki3T2Ra7dn0jx/oTGexQc709wb7/9NpYuXYodO3bgxhtvTMg15M8l4EkAQgxnEgE8EvXnWzjYEhGDvx48hSdf34dFUxRYdcfVKMznQlpERJQ7mERE6Y3mz1D71kHcMPMS/ItmJvKHp+WCqERElLE4sDIrPe88il/99RDunD8J+hsFrsRJREQJwAW4sookSfjNe4dhaTyK5Ysn4x+vm8qFtIiIKGcxiQiTxyPhmbdb8OrHn+F7X52G+xdNTnVIWYFTOImIAmF3Rlbo7fPgP+378ZcDp/CjspnQzpmY6pCIiCjrsWJlxrvQ04dNr+7Fh0fdMNx+Na6fMSHVIRERUU5I/5YITikI4lxXL9Zta0bzp2fw2N1zQiYQgYqTpEq84km388RLur0u3p/knCee0u21pds9SrfXlW73Jz52ANgQYKtP+NWZRATgPt+N1c9/jEOnz+Hxr83DoinjQx6Tbr+g6faHx/uTnPPES7q9rnS7P0D6vbZ0u0fp9rrS7f6EJndnBNu+AuDfA2zfS3iE7M7w4+TZC1jzQhPOd/dh07IFmDZhdKpDIiKinJO47gy32w2j0QgAMJlMUV+BLRGDHG07D4P1I/R5JNRUMIEgIqLsYrfbsWLFCtTU1MDtdsd0LrZEDHDwZAfWbmuCoqgAG+6bi9Li3Fx8JhaRroVBRESBJGZ2hkajgUajiUudIyYRFx08eRbW9z/G5JIirLt3LsaOHJHqkIiIKKdxdkbGeObPLZh1WTGe+Np8JhBERERhyPmWCHlt+Al9p3HP5V3Y0/RhTOdyOp0xxdPR0QEA2LVrF4qLi2M6Vzziifw8n/r8NPA43p/En4f3JzTeo+B4f4Lbv38/AODChQsxxxPaMQDnYzj+dLwCCUzKcb/97W8lANy4cePGjVvY269//euEfS4dPnxYGjVqVFziHDFihHT48GG/1wEgVVZWxhRrzrdE3Hbbbfjtb3+LadOmoaioKNXhEBFRGuvs7MShQ4dw2223JewaU6ZMwZ49e/Dpp5+iu7s7pnNNmjQJU6ZMiVNkQ+VdzEaIiIgoh+Tl5aGyshJmsznqc3BgJREREUWFSQQRERFFhUkEERFRjom1UqUs5wdWJpPT6YTRaIQgCHC73dBqtaioqEjYcZkm2tdptVphNBrhdDqhUqlgMpmg0WiSEHFyxeP3wG63Q6fToa2tLUFRplY87pEoirBarQCAyspKKBSKBESaGrH8jdlsNigUCoiiCEEQYlpvIR1Fs5ZEpr43O51O7ziILVu2QKvVQqPRRPe7HtPcDgpbS0uLBEByOBzexwRBkMxmc0KOyzTRvk6TySRpNBrJbDZL1dXV3mlNNpst0SEnVbx+DwRBkBQKRbzDSwux3qOWlhapoqJC0mg0UktLS6LCTJlo74/FYpFUKpXPYxqNRqqurk5InKlgs9mkioqKiKY85sp7cyhMIpJEo9FIGo3G5zGz2SyFyuOiPS7TRPs6KyoqfH52OBwSgCHnynTx+D2orq6WNBpN1iYRsdwjh8MhKRSKmOfMp7NY3oMG3xeTySQJghD3GFMtkiQiV96bQ+GYiCRwu92w2+3QarU+jy9evBgAUFdXF9fjMk20r9Nutw9pdlSpVFCpVBBFMTHBpkA8fg/sdjtKS0uhUqkSEmOqxXKP3G43ysrKIAhCTFPd0lks98flcsFut/s81tLSAkEQ4h9ohsiV9+ZwMIlIgsbGRgAY8kcnv6HbbLa4Hpdpon2dGo0m4BtZNr3BxeP3wGw2o7q6Ov7BpYlY7pHBYIDb7c66Pv6BYrk/er0eoihCp9MB6O9P37JlS1bfr1By5b05HEwikkD+Vhxo0Eqgb83RHpdp4v06B77hZYNY74/BYMj6N/xY7pH8rdFms0GtVmP8+PHQarVZ8/cFxHZ/KisrUVlZCavVCqVSCYPBgNbW1qxt1QpHrrw3h4NJRBK0tLQAAEpKSvzuDzTVJtrjMk08X6fVaoUgCKisrIxHaGkhlvvjdDpRWlqaVS0z/kR7j+TFmFQqFfR6PRwOBxwOB0RRhFKp5N/YRWaz2dtNaLfbh3Rv5JpceW8OB5OIJFAqlQD6+xb9CfQGH+1xmSaer9NoNMJiscQlrnQRy/0xGo1Z3Y0hi/Yeyd8Y9Xq99zkDx0bIU/4yXax/Y1qtFnq93jvNU6fTeafB5qJceW8OB+tEJIH8CxUoOw3Vrx/pcZkmXq/TYDCgvr4+a+6LLNr7YzAYhjTLy/8v/zdb7lW09yhQc7RcZyRbmqVj+RvT6/UA4G3da21txfTp07FixYqMqImQCLny3hwOtkQkgTxid/AbkvyzWq2O63GZJh6vs66uDlqtNiv7aaO9P3a7HXq9Hkql0rtZrVa43W4olcqsGjcS69+Y3Dw9WKDm6kwTy9/Yli1bfP6uFAoFTCYT3G63tzso1+TKe3M4mEQkgUKhgEqlGjJiV+5XXL58eVyPyzSxvk65WXVwlcpseYOL9v44HA5I/bVgvFt1dTUUCgUkSYLD4Uh47MkSy9+YRqMZ0scvf8PMlg+DWP7GSkpKhnzjlv/WsqmaZyRy5b05LCmtUpFD5CJIAyvhCYIgmUwm788tLS2SIAg+1RbDOS4bRHt/bDabpFKpJLPZ7LNVVlZmVeW4aO/PYNXV1VlbbCrWv7GBj5lMpiFVGjNdtPfHZDJJCoVCamtr83ks2+5PW1tbwGJTufzeHArHRCSJSqWCw+GAwWCAIAgQRREGg8FnFoHb7YbL5fLJ+sM5LhtEc3+cTqe32IvcbztQNq0PEe3vTy6Jx9+YxWKBQqGA2+3OqpYaIPr7I7de6XQ6b7eG2+3G9u3bk/0SEibUWhK5/N4cSp4kSVKqgyAiIqLMwzERREREFBUmEURERBQVJhFEREQUFSYRREREFBUmEURERBQVJhFEREQUFSYRREREFBUmEURERBQVJhFERJSVsmUV1nTGJIKIiLKSTqfL2TLwycIkgogoBxgMBuTl5SEvLw/jx4/H+PHjA/6cl5eX8d/inU4nBEHwrn8hr20x8DXX1NR4n2+326FUKr37Bq/sSv4xiSAiygFutxsajQZtbW3eTV7Su76+Hm1tbT5LxGf6N3iz2eyzMJ8gCDCZTKioqADQv5x5dXW1d79Go4FKpYJKpfK5NxQckwgiohxhNpu938wDUalUPh+umcput/tNBFavXu3dP5DVaoXT6cy61VsTjUkEEVEO0Gq1EAQhrOfq9fqQyUY6s1qtAVsS5NYGt9vtTSScTicMBgNsNlsyw8wKTCKIiHKA3IwfDkEQIAgCrFYrtFot7HY76urqMH78eOj1elitVu8YCqfTCaD/m71Op0NeXh50Op3P+ZxOJ3Q6HbRaLZRKJQwGQ1xf22CbN2/26coYTN5nNpvhdruh0+lgsVjCTrLoC0wiiIhoCKvVCoPBALvdDovFgpaWFgiCgMbGRlRUVGD58uU+z9doNDCZTEPOI3/Lt1gssNlsMJlMqKmpCfohP/A4OXGR6XQ6jB8/PuDAT7fbDVEUoVKpAp5bjt1qtaKsrAwmkyno8ykwJhFERDRERUWF98NboVDAZDLB4XB4xwz46+4oKSkZ8tiKFSt8kouKigooFArU1dUFHbypUqlgMpmwePFi1NXVAehvQdDr9TCZTAFbDbZs2YIHHngg6GtTKBTelhlBECJqpSFf+akOgIiI0pOcKCxZsiSq40VRhNPphNFo9Lu/sbEx5CwInU4Hu90OvV4Pg8EQssvBbDZj+/btIWOTzyN3x/ij1+uhVCpx+vRpLFmyhMmGH0wiiIgoqGgHWcof0BaLJepry0mGQqEImUCIooiSkpKQ8VqtVtjtdgiC4E10Bndn6HQ6CILgnamiVquhUCg49XMQdmcQEVFCyOMWYilcJScO4ZxjcG0If+SxFtu3b/cZYDmQKIqwWq0+53rggQf8jvnIdUwiiIgoIeQEwGq1+t0fTlVIg8EAlUoVtNtBZrVag3Y5DJyJoVAoUFlZCQDeMRcy+VoDWz5UKhXsdnvGF+GKNyYRREQ5zuVyRXxMaWkpAN8WAvn/5Q9auenfYDAMSQIGf3D7I08x1ev1EEUxaMtGoOJSA5WVlcFsNnu7LgYOsByY6OzcuXNIl4g8aDSae5XNmEQQEeWowR/6g8mP+9svfxDL00Dr6uq83QJ2ux1arRYKhcJnTIFOp0NNTQ20Wi1aWlr8fuiLooiamhpYrVa4XC5oNBrv88xmM2pqavzOAgnVlSEX2xp8Ta1WCwA+gz/dbrffa8jx0QASERHlFJvNJlVWVkoAJACSQqGQqqurpZaWFu9zLBaLJAiCBEASBEEym81DzmMymSSFQuE9XpIkSRAEqbq6WnI4HD7PC3WugdcdeD5ZRUWFpFAofM47kCAIAV/rwGtbLBafa6lUKu99qKiokGw2m/d1DeRwOCQAPveIJClPkiQpdSkMERFRbOSaE/Fa88NqtUKn02Hgx6PcusKPTF+c4klERBkt3NoQ4ZK7akRR9KknwaqWQ3FMBBERZaxwa0NEQq5iOXCw5ebNmznF0w92ZxARUcYyGAwJqyY5sGKlUqn0TgmlLzCJICKijCXXfaDUYBJBREREUeGYCCIiIooKkwgiIiKKCpMIIiIiigqTCCIiIooKkwgiIiKKCpMIIiIiigqTCCIiIooKkwgiIiKKyv8P74pIK4du7f8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rad_length_frac = lost[\"rad_length_frac\"]\n",
"# @ z = 9400.mm or 770.mm\n",
"state = 1\n",
"\n",
"if state == 1:\n",
" slopex = lost[\"ideal_state_770_tx\"]\n",
" slopey = lost[\"ideal_state_770_ty\"]\n",
" x = lost[\"ideal_state_770_x\"]\n",
" y = lost[\"ideal_state_770_y\"]\n",
" qop = lost[\"ideal_state_770_qop\"]\n",
"elif state == 2:\n",
" slopex = lost[\"ideal_state_9410_tx\"]\n",
" slopey = lost[\"ideal_state_9410_ty\"]\n",
" x = lost[\"ideal_state_9410_x\"]\n",
" y = lost[\"ideal_state_9410_y\"]\n",
" qop = lost[\"ideal_state_9410_qop\"]\n",
"\n",
"data = ak.zip({\n",
" \"rad_length_frac\": rad_length_frac,\n",
" \"x\": x,\n",
" \"y\": y,\n",
" \"tx\": slopex,\n",
" \"ty\": slopey,\n",
" \"qop\": qop,\n",
"})\n",
"lin_reg, features, xx0_test, xx0_predicted = fit_linear_regression_model(\n",
" data,\n",
" \"rad_length_frac\",\n",
" [\"x\", \"y\", \"tx\", \"ty\", \"qop\"],\n",
" 5,\n",
" include_bias=True,\n",
")\n",
"\n",
"nbins = 100\n",
"vmax = 50\n",
"\n",
"a0 = plt.hist2d(\n",
" xx0_test,\n",
" xx0_predicted,\n",
" density=False,\n",
" bins=nbins,\n",
" cmap=plt.cm.jet,\n",
" cmin=1,\n",
" vmax=vmax * stretch_factor,\n",
" range=[[-0.1, 1.0], [-0.1, 1.0]],\n",
")\n",
"plt.plot([-0.1, 1.0], [-0.1, 1.0], marker=\"\", alpha=0.8)\n",
"plt.xlabel(f\"True $x/X_0$\")\n",
"plt.ylabel(f\"Predicted $x/X_0$\")\n",
"plt.title(f\"lost rad_length_frac\")\n",
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
"\n",
"plt.colorbar(a0[3])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame({\n",
" \"phi\": phi_a * 90.0 / np.pi,\n",
" \"eta\": eta_a * 2.0,\n",
" \"rad_length_frac\": rad_length_frac_a,\n",
"})\n",
"df = df.round({\"phi\": 0, \"eta\": 1, \"rad_length_frac\": 4})"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"df_pivoted = df.pivot_table(\n",
" index=\"eta\",\n",
" columns=\"phi\",\n",
" values=\"rad_length_frac\",\n",
" margins=False,\n",
" fill_value=0,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>phi</th>\n",
" <th>-90.0</th>\n",
" <th>-89.0</th>\n",
" <th>-88.0</th>\n",
" <th>-87.0</th>\n",
" <th>-86.0</th>\n",
" <th>-85.0</th>\n",
" <th>-84.0</th>\n",
" <th>-83.0</th>\n",
" <th>-82.0</th>\n",
" <th>-81.0</th>\n",
" <th>...</th>\n",
" <th>81.0</th>\n",
" <th>82.0</th>\n",
" <th>83.0</th>\n",
" <th>84.0</th>\n",
" <th>85.0</th>\n",
" <th>86.0</th>\n",
" <th>87.0</th>\n",
" <th>88.0</th>\n",
" <th>89.0</th>\n",
" <th>90.0</th>\n",
" </tr>\n",
" <tr>\n",
" <th>eta</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>3.1</th>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3.2</th>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3.3</th>\n",
" <td>0.0000</td>\n",
" <td>0.96215</td>\n",
" <td>0.00000</td>\n",
" <td>0.746800</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>1.7263</td>\n",
" <td>0.00000</td>\n",
" <td>0.381400</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.3813</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3.4</th>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>0.743500</td>\n",
" <td>0.37900</td>\n",
" <td>0.11090</td>\n",
" <td>1.6273</td>\n",
" <td>0.00000</td>\n",
" <td>0.380200</td>\n",
" <td>0.1115</td>\n",
" <td>...</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.38025</td>\n",
" <td>1.1143</td>\n",
" <td>0.7429</td>\n",
" <td>0.1109</td>\n",
" <td>0.00000</td>\n",
" <td>0.378400</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3.5</th>\n",
" <td>0.0000</td>\n",
" <td>0.38280</td>\n",
" <td>0.33605</td>\n",
" <td>0.110300</td>\n",
" <td>0.00000</td>\n",
" <td>1.11870</td>\n",
" <td>0.0000</td>\n",
" <td>0.23330</td>\n",
" <td>1.479350</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.1458</td>\n",
" <td>0.39860</td>\n",
" <td>0.0000</td>\n",
" <td>0.39800</td>\n",
" <td>0.0000</td>\n",
" <td>0.7175</td>\n",
" <td>0.7303</td>\n",
" <td>0.00000</td>\n",
" <td>0.243900</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9.6</th>\n",
" <td>0.0000</td>\n",
" <td>0.09270</td>\n",
" <td>0.09775</td>\n",
" <td>0.099525</td>\n",
" <td>0.09825</td>\n",
" <td>0.00000</td>\n",
" <td>0.0926</td>\n",
" <td>0.09710</td>\n",
" <td>0.000000</td>\n",
" <td>0.0934</td>\n",
" <td>...</td>\n",
" <td>0.0000</td>\n",
" <td>0.09000</td>\n",
" <td>0.1005</td>\n",
" <td>0.09510</td>\n",
" <td>0.1005</td>\n",
" <td>0.0000</td>\n",
" <td>0.0960</td>\n",
" <td>0.09185</td>\n",
" <td>0.094067</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9.7</th>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.00000</td>\n",
" <td>0.098700</td>\n",
" <td>0.09340</td>\n",
" <td>0.09075</td>\n",
" <td>0.0900</td>\n",
" <td>0.08810</td>\n",
" <td>0.000000</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.0912</td>\n",
" <td>0.00000</td>\n",
" <td>0.0000</td>\n",
" <td>0.09350</td>\n",
" <td>0.0962</td>\n",
" <td>0.0971</td>\n",
" <td>0.0000</td>\n",
" <td>0.09540</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9.8</th>\n",
" <td>0.0922</td>\n",
" <td>0.09230</td>\n",
" <td>0.09660</td>\n",
" <td>0.089067</td>\n",
" <td>0.09260</td>\n",
" <td>0.00000</td>\n",
" <td>0.0802</td>\n",
" <td>0.09195</td>\n",
" <td>0.090867</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.0000</td>\n",
" <td>0.07670</td>\n",
" <td>0.0000</td>\n",
" <td>0.08775</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0920</td>\n",
" <td>0.08030</td>\n",
" <td>0.100300</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9.9</th>\n",
" <td>0.0000</td>\n",
" <td>0.09080</td>\n",
" <td>0.08490</td>\n",
" <td>0.076200</td>\n",
" <td>0.00000</td>\n",
" <td>0.08550</td>\n",
" <td>0.0900</td>\n",
" <td>0.09840</td>\n",
" <td>0.090000</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.3018</td>\n",
" <td>0.08900</td>\n",
" <td>0.0889</td>\n",
" <td>0.00000</td>\n",
" <td>0.0900</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.08160</td>\n",
" <td>0.088767</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10.0</th>\n",
" <td>0.0000</td>\n",
" <td>0.19140</td>\n",
" <td>0.00000</td>\n",
" <td>0.119100</td>\n",
" <td>0.00000</td>\n",
" <td>0.17850</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0000</td>\n",
" <td>...</td>\n",
" <td>0.0000</td>\n",
" <td>0.10425</td>\n",
" <td>0.1109</td>\n",
" <td>0.08550</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.0000</td>\n",
" <td>0.00000</td>\n",
" <td>0.081500</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>70 rows × 181 columns</p>\n",
"</div>"
],
"text/plain": [
"phi -90.0 -89.0 -88.0 -87.0 -86.0 -85.0 -84.0 -83.0 \\\n",
"eta \n",
"3.1 0.0000 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 \n",
"3.2 0.0000 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 \n",
"3.3 0.0000 0.96215 0.00000 0.746800 0.00000 0.00000 1.7263 0.00000 \n",
"3.4 0.0000 0.00000 0.00000 0.743500 0.37900 0.11090 1.6273 0.00000 \n",
"3.5 0.0000 0.38280 0.33605 0.110300 0.00000 1.11870 0.0000 0.23330 \n",
"... ... ... ... ... ... ... ... ... \n",
"9.6 0.0000 0.09270 0.09775 0.099525 0.09825 0.00000 0.0926 0.09710 \n",
"9.7 0.0000 0.00000 0.00000 0.098700 0.09340 0.09075 0.0900 0.08810 \n",
"9.8 0.0922 0.09230 0.09660 0.089067 0.09260 0.00000 0.0802 0.09195 \n",
"9.9 0.0000 0.09080 0.08490 0.076200 0.00000 0.08550 0.0900 0.09840 \n",
"10.0 0.0000 0.19140 0.00000 0.119100 0.00000 0.17850 0.0000 0.00000 \n",
"\n",
"phi -82.0 -81.0 ... 81.0 82.0 83.0 84.0 85.0 86.0 \\\n",
"eta ... \n",
"3.1 0.000000 0.0000 ... 0.0000 0.00000 0.0000 0.00000 0.0000 0.0000 \n",
"3.2 0.000000 0.0000 ... 0.0000 0.00000 0.0000 0.00000 0.0000 0.0000 \n",
"3.3 0.381400 0.0000 ... 0.3813 0.00000 0.0000 0.00000 0.0000 0.0000 \n",
"3.4 0.380200 0.1115 ... 0.0000 0.00000 0.0000 0.38025 1.1143 0.7429 \n",
"3.5 1.479350 0.0000 ... 0.1458 0.39860 0.0000 0.39800 0.0000 0.7175 \n",
"... ... ... ... ... ... ... ... ... ... \n",
"9.6 0.000000 0.0934 ... 0.0000 0.09000 0.1005 0.09510 0.1005 0.0000 \n",
"9.7 0.000000 0.0000 ... 0.0912 0.00000 0.0000 0.09350 0.0962 0.0971 \n",
"9.8 0.090867 0.0000 ... 0.0000 0.07670 0.0000 0.08775 0.0000 0.0000 \n",
"9.9 0.090000 0.0000 ... 0.3018 0.08900 0.0889 0.00000 0.0900 0.0000 \n",
"10.0 0.000000 0.0000 ... 0.0000 0.10425 0.1109 0.08550 0.0000 0.0000 \n",
"\n",
"phi 87.0 88.0 89.0 90.0 \n",
"eta \n",
"3.1 0.0000 0.00000 0.000000 0.0 \n",
"3.2 0.0000 0.00000 0.000000 0.0 \n",
"3.3 0.0000 0.00000 0.000000 0.0 \n",
"3.4 0.1109 0.00000 0.378400 0.0 \n",
"3.5 0.7303 0.00000 0.243900 0.0 \n",
"... ... ... ... ... \n",
"9.6 0.0960 0.09185 0.094067 0.0 \n",
"9.7 0.0000 0.09540 0.000000 0.0 \n",
"9.8 0.0920 0.08030 0.100300 0.0 \n",
"9.9 0.0000 0.08160 0.088767 0.0 \n",
"10.0 0.0000 0.00000 0.081500 0.0 \n",
"\n",
"[70 rows x 181 columns]"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_pivoted"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdkAAAJRCAYAAAC5lb6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrtklEQVR4nOzdeXydZZ3//885JyfnZO1J2tKNAk3YkS0tuCEiNANuI2oLoo46aBs0gzouzeD4FXDUmo46Ololrcvo4ALtuI9bAgKuLIko+9Kwd29ymj05Oef8/uCXTkvz/tzJnWYpvJ6PB48ZeXPf93Vf97Xdd+7cieTz+bwBAAAAAAAAAIBxi053AQAAAAAAAAAAOFzxkB0AAAAAAAAAgJB4yA4AAAAAAAAAQEg8ZAcAAAAAAAAAICQesgMAAAAAAAAAEBIP2QEAAAAAAAAACImH7AAAAAAAAAAAhMRDdgAAAAAAAAAAQuIhOwAAAAAAAAAAIfGQHQAAAMCM0N7ePt1FAAAAwGGqra3NVq5caQ0NDVZXV2ebN28O3Ka2ttYikcio/7S0tIz52AUTKTgAAAAmrr293VpaWuySSy6xVCo13cUJ1NbWZnfddZetXr16uovygvZ8vA4rV660m2666bDoBwAAAJg52tvbbenSpdba2mo1NTVmZlZdXW0dHR1yvdze3m7t7e3W2Nh4wPpzy5Yttm7dOlu+fPmYj8+b7AAA4Hlp8+bNtnTp0n1vIVRXV9u6devcbVpaWmzlypX7tqmoqLCGhgZLp9NmZpZOp62hocEqKir2/Td1dXXW1tZ20L7a2tqsrq7Oli5dahUVFbZ06dJ9b1Vs2LDBVq5caWZm69ats+rqaqurq7OOjo4JnePIcUb+qa6uDvUWhtLe3m4rV660pUuXWlNTk5k9W2f7H2fp0qWjvjGyf1mXLl06ap3tr62tzRoaGvady0w2E67D5s2b3bZr9n/td+S/qa2ttZaWlgP+XUVFxQHt+7n/OxKJTNrb5m1tbVZVVbXvBqe9vf2gsu3fh/dvexUVFYekbgEAAHB4qqurs+XLl+97wG5m+95oV1paWqy1tdXWrFljq1ev3vfP7Nmzx/WA3czM8gAAAM9jZpY3s3xra+uYt6mqqsqbWb6pqWnUvLGxMW9m+ZqamoOyzs7O/IoVK/Jmll+9enV+y5Yt+7ItW7bkly9fnjez/PLly/f9+5H/fv//djxGzlFtX1NTk29ubg61b3W8/c+9s7NzXxlUneXz+XxTU1M+lUqN+Titra2ynidiy5Yt+c7OzkO6z3x++q9DPp/Pp1KpvJnlN23aJLdrbGzMV1VV7fvfq1evzi9fvvyAOhlpp/vvZ+R6jKcvjcfq1atHrZ+R/rFixYpRs0PdPgAAAHB4GbkfaWxsPODfj6xfvXuU0dTU1Ix7G95kBwAALwjj+fzEyH9bWVk57vyCCy6wzZs3W1NTkzU1NVlVVdW+rKqqypqbm23FihUHvLWujnOoXHXVVZO6/1QqZWvWrDEzs02bNsn/rrW1dVxl2f8tlENp5cqV4/6tgUNhsq+D2f+1Ja+919TUHFS3TU1NgX2kpqZm33WeDC0tLaO+MTRSb899U33z5s3W1tZmra2tk1YmAAAAHDqDg4PW1dU1oX8GBwcP2u9dd91lZnbAvZfZ/91PNDc3j7mM6XTa2tra7JJLLhnXufGQHQAA4BBpaGiwtrY2q6mpcb+TvXHjxiksldmKFSvG/+uO47T/g1D1KZgbb7xx2r8fvnLlysBP1UyWqbgOYdTW1h50Q6LU1dVNyvfSN2/eLOtm5IcC6XR634P2kc8JjeeGCQAAAJMkEhnTP2uTSZs1a9aE/lm7du1Bhx/5nKFap47nc4c33nij1dTUjHvNy0N2AACAQ2Tke9FBbyynUqlR/5t0Om11dXX7voPtfT9wrDZv3nzQd7k3bNiw79vpLS0t+74nPvKd+NHKNPKP+q59KpWyFStWmJmNuvAdeYi6/2K1ra3NVq5cabW1tVZdXW0NDQ1jPq+RcjU0NFhtbe2+74t7Rt58Nnv2YfFzH7iH2edYTdV1GIvn/ubEyHUbi6qqqjE/kB+PG264wW3vI1lTU5Ol02lbuXKlbdq0aVLKAgAAgMlxlZntneA/o91Hbdmyxcz0bwjvvw4PsmnTJrv00kvH/N+P4CE7AADAIbD/w9qxfOZktAebIw+ZGxsbraqqyjZs2GC1tbUTKtdzH3h3dHRYc3OztbW1WVNTkzU3N9vGjRtt9erVtnnz5gMe3ra3t9uSJUts5cqV+z5/42lsbDSzgx8oj5Rj/4eoI28ib9q0yZqbm62xsdHWrVs3ph8stLW12ZIlS6yurs4aGxutubl538N67+HzihUr9tV7U1OTbdq0ad+1CrvPsZrK6zCdRq7rc39ItHLlSquoqBj1LaJ0Om3t7e1uvxn5dd3NmzfbBRdcYI2NjZP2OSEAAABMjoSZlU/wn0QicdB+q6urzczkJyHH+mLGyG9OjucllBE8ZAcAABBWrVq1763y/f8Z7UHw/g8Pw75dW1dXZ01NTbZ69WprbW21qqoqa2lpGfPb1CNvhI/8E4lEDvo0SlVV1b43M2pra/c9rBx5cLv/5zcaGhps2bJlB3zGw/smd1VV1b7/dv+Hyu3t7dbe3n7AflatWrXvobzZsw/AU6mUbdiwIfBNk1WrVtmyZcsOeMi6evVqq6mpsYaGhnH9Ouhk7HO6r8N0qqmpscbGRlu2bJlt2LDBzGzf2/cjPzx6rhtvvDHwbaH9f1Oiqqoq1I0PAAAAJkksOnX/jGJkjanuI8Z6f9bS0hL6Nzd5yA4AACBs3LjROjs7D/on6E3i8fw64v6e+2buyMP8sX53urm52bZs2XLAP94CcbTvDI68/dHe3m6bN28e95v0I2/jjzxgNXv2Dff9f62zvb3d2trabO3atbZy5cp9/4wY+cNFoxnZdrS3mPf/pMh4HOp9zoTrMN1GrufI53eWL18uv8c/8oOlICN16H1Tf+RTOg0NDbZ58+YQJQcAAMDhZtmyZWZ28LfXR/730qVLx7SfG264IfTLHAWhtgIAAMAB9n+IGvTpi7EaeXM5zJvZI2UK+133kWOO9y2O5cuXW1VVlbW3t9uGDRts9erVduONN9pjjz22778ZeUi6adOmcZfLe8CqFtfTsc/9Tcd18Khfoz2URtpuKpVyy97e3m6VlZWBf1hq5Lv1I21rtB+KrFy50qqqqva95b906VJLpVIz8o/NAgAAPK/EItN6+FQqZTU1Ndbc3HzAb3yO/EbwyKcHg2zevNlaW1tDlYE32QEAAA6B/R/4eW9ij8fIg8eJPGBds2ZN4APM0Yw83A3zQHb/b8tv3rzZli1bdkAZRvY9kQfXo/22wMgx1B88mo59jpiq6zDWtjLR8xlrOYKucVNTU+APIEa+837TTTfJ3ywYeeN//31deumlB3ySCAAAAM9fGzdutJaWlgPWn42NjdbY2LhvHd7e3m7V1dWjfo5z8+bN+x7Wh8FDdgAA8ILX1tbmvs08ViOfvAjzhvZoRh76nnXWWRPeV1tb27geao88JA3zJsfq1astlUpZe3u7rVq16qCHqCP7Vp/z8L5BP7LoHe2/GamvkT98NFaTsU9lsq/DWB5uj9xcTKaGhgarqakJ7FebN292fyU3nU7bypUrbdOmTZZKpfb1sf0/R2T2f7+NsP8PGWpqaqylpSX055sAAAAwRtP8TXazZ9d+ra2t1tDQYA0NDbZy5UpraGg44M32dDptHR0do64Pb7jhhjG/8T4aHrIDAIAXvIaGhkPyOY6RtyRaWloOegi4v3Q6PabPh4x8HuNQ/JHHVatWjevt5ZHPpKg/RBr04HL/b7A/t/wjn+9oaGg46CGsV29mzz5Eramp2ffHVPd31113HfAg1rN/+Q/VPsdisq/DyLfQvW/Ij/Ub6GbhfpNh5BvydXV1B9Tpc+u2paUl8FMuF1xwgTU1Ne37Qcj+fwB1/x/S3HnnnQf9psBIPU/F53EAAAAw/WpqamzTpk3W2NhomzZtOmjNW1NTY52dnaPeX23atGncf9tpfzxkBwAALwijvdnb3t5utbW11tHRMernTNTDuZEHm8/dZyqVstbWVlu+fLnV1dXZypUrD/hv0um0bdiwYd9bFftv99z9tbe3W1NT07jeih/tIezIOabT6X3HGctDx1QqdcC3rUd+9XKk3O3t7bZu3Tq5/ciCdrSHuc/d98qVK23dunVWW1trW7ZsCXzwOvJW8/4/qEin09bY2GgbN250P8sy8gZ3U1PTvk+MTHSfzzWd12H58uW2YsUKa2trs9ra2gPaVEtLi9XW1tqll14aeD4j2431LfCRcmzevNk6Ojps+fLl+65jU1OTrVu37qAfLgR9Kqa2ttaqqqoOag8jfwR27dq1+/5dOp2WP7yYyGeJAAAAMAYFkan7Z6bKAwAAPA9t2rQpv3z58ryZ7funpqYmX1NTk6+qqjrg369Zsyafz+fzzc3N+RUrVuz796lUKt/Y2Jjv7OzM5/P5fGdnZ37NmjX5VCq1779ZvXp1vrW1VR5/5L+tqqrKL1++PN/U1HTQfzuy3+XLl+eXL1+eX716dX716tX7jhvmHJ97nqtXr87n8/l8a2trvqamZl+Zmpub852dnfnVq1fv+28bGxv3HaOpqWnffmpqavJbtmzJV1VV5desWZPfsmWLW77Vq1e7/01jY+O+fVdVVR1QN62trQeVaf/66OzszK9YseKA+hrtOoympqYmn0ql9tXJRPc5E6/Dc9tfKpXKr1ixIt/c3OyeS3Nz8wFlSKVSY7rWmzZt2vff7m/FihX5VCo1aj1WVVXJMuzfLjZt2nTAcUbqzcz2nVNjY2M+lUodsJ/W1ta8mQWWHQAAABNUVjh1/8xQkXw+n5/EZ/gAAAAAcICRz9/s/43Midi8ebOtXLnS9r+1GXlzn9sdAACASVZRNHXH6uyfumONw2HxuRh+xRMAAAB4/hjPd+HHYuSb7fvfN7S1te379wAAAMBkmpEP2SORyAH/jPwBJwAAAACHt/b2dqusrBzXd+6DjPyB4P3/GOoNN9xgjY2Nh+wYAAAAEGKRqftnhppxn4vZsGGDtba27vujVGbP/gEn3kIBAAAADn8NDQ121lln2YoVKw75vuvq6qy6utr27Nlj1dXVh/RteQAAAAhziqfuWLv7pu5Y4zDjHrLX1tZac3PzdBcDAAAAwCRYuXKlbdq0abqLAQAAgENlXunUHWtHz9Qdaxxm1OdiNm/ebHfddZetXLnSNmzYMN3FAQAAAHCI8YAdAAAAyvq+jJ28p0/+s379+uku4qhm1JvsdXV1BzxcT6VStmnTJlu+fLncZnBw0AYHByd03EQiYYlEYkL7AAAAAAAAADA1eCY4gywsn7pjbe2aumONw4x6yD6ira3Nmpqa9j1w37Jli1VVVY36354XucZutWsndLxX2tX2KrvmgH93w7X98r+/9OoimX3yl7tl9olXzxl32cbiDltvZ1v9uLf71K93ufnHL5wbtkjSzasyMjt/Y/yQH8/M7Lsv+U9bdPJ7R80K+/UfTHjZ9wsmpTyT5df1QzK7cH2hzLz20/RV/Ss4A8U5tzwfeJceYL/9uV6Z7Vqk28hHLku5xzzUhm3Qfmdr7RV2lRXY1E26P/zXAZm96dNJmT38cn1Njv+D/sWl37992C3POdfrvhB6/Plxh8xe8iv/18yWX6fb8+ZP6Lpb+Ig+D6+///kSv35mffsvMrv73D/Z4hPeN2pWoLusveTG8OXxtvXccrnue+d9c3LG582nfdmOqRq9fpb9OBZun04bWPFJ3X/MzK67rltmV1xRJrMfX6WPefFa/5ger3/d8WbdDs7+n5k1f03G3D9sg/bdUz9tS17UYNHYwePzcKFe3nrt+Y+X6Xrtm6XH2NR2v72Gbc93XZwNtc8bzvxPO/q40fuWWfhxYjp86b/0TdQJrbp/zXlK10/ux9eFmruChF2LBfHmaW+O9njjXc0V33Hr53PfT8tsqtdqn93c6eYn3aG/D/uGdXpt59V54fVNk9J+ng+GbdC+vfRTtrhmzahjs7eGMzO77Z16vjj32+Hmi29+Sd/PXP6B8J82+OpG3Yfet0qvGby5PWiNd8sl+pj/sqJCZt5+w645f/9G/1MNYceCsPcWWwb/7ObViZfI7Nqf7ZHZ1a+fPe6ymAWPTefdqNuId02+f9Z/ynuLsPOBmdnPP6wfUntrqsqteq4N22fH67c28WeCV199tV1zzTWHpkAvZDxktxm5wq6pqbGmpiarra21lStXWkNDg/y10lfYVfZS+5Dc15f+d6fMPvDaI8zMpvTh2WQIOxG9UDzz4NfkQ3bQfjzDNmi32rX2UvvQYT9OTBbaj+/ph6+TC2GYPf7Y1+RDdtC/PMM2aI/d82929EkfHPVBzgvdk1uucx+yv9DRt3zUj4/60YZt0J5q/ZQtOv0DjM0C7cdH/fi4tzjY/s8E/7PsLHvJhX8a9b87e7N+/HnVVYxXh0RMv8T6QjEjH7KPWLFiha1YscLa2trkf1NgCffhV6REv5GetCn8KQsAAAAAAACAQ2L/Z4KRSMwK4qM/50s6jz/5UgwOlVAP2e+++25bu3atpdNpq6mpserqalu2bJmdccYZh7h4ZrW1tdbS0nLI9wsAAAAAAAAAmKCY/kTtC8W4H7I/9thjVlNTY5FIxPL5vDU3N1sk8n+/EpBKpWzZsmUHPHzf/3vq5eXjf3t82bJl494GAAAAAAAAAIDJNu6H7CNvlb/5zW+2uro6S6fTduedd1p7e7u1tbVZe3u7NTc3H/Tw3cysqanJ3vOe94zreM3NzVZXVzfeYgIAAAAAAAAAMOnG/ZC9oqLCIpGIff3rX9/3Vvqb3/zmA/6bxx57zNra2vY9fG9vbzczs8rKSrnftrY2W7VqlV166aW2Zs0aMzPbvHmzVVZW2ooVK8ZbTAAAAAAAAADAZOMPn47/IfuKFSts1qxZ9thjj9npp58+6n+zZMkSW7JkyUEP3z1VVVVWWVlpa9eutebmZqupqbHa2lpramoabxEPsOy7+sH+be/MyGzJ3+KhjnfeD2bJ7JbL9fHMzAaL8jJL9DuN9ZuBxRrVkfcVu7lXP55cTGfnbwxXr2bB9adEN0WstGP0b0P1zcqFLs8PPqX/qO4xTvsZcq6zl6W2OxVrZheuL5SZW3dO+6l7X6nM/nzJsFsezzs/UiIzr915WaHTR7x6NTM799vh2uUfL9N1sPMYnVW1+cdb+Ei4v0ldvivcpDb/0fDfTuuZnbefvHtw1OwN6/RfkDnmoaTMll+n23KQym26n6TnZZ0tdZ2n5wWME+88M6BUo3vJjfqYN6/Sbb14r3+dvW29Mfi8b4brB79/e/ixIP8zs4HS0ftn2DloxSd12wra52m3FoU65sVr9TG98TfZ41/Lvl/n7baLR98+mtXbetfknOt1u2u5YsgtjzfOeuNo2Ln/1/W6PMNDQ2Ybn+1Ho/0hK68feB58yYDMLv+AnhODjveTNfqaeGOl6h9Birr8MSYsr414Y/fPPzz6PDGicqseuz/wrvF/atLM7+99s3TfCuKtc0v2hptPg9a43vjs1e3rPq/bVk2zHu9unWX2+9frNnvGrfoewht/cjHdnvvKdVbcpceef1lRIbOJ8MbKu53tguaZv7xK3z94bf3Bc/VaxGuTQU7+rW6z3jr3Zd8PN74EzTNh14BeWb35ciLet6os1HZ9qbzd8qbR20nQWmyoSM9DnrBtxLuHOu8G//y9cc1bT/T/Qo8/3rpp+B/8Tww/5ZTn6tfPllnYddxpv/eftUS92xJHNpa3rjlqY90vtwz+2d1v6XuXhiqPt/7z6i7sfYeZ39/zv8wH3vsDkynU7HjTTTfZZz7zGbvhhhsOWUFSqZQ1Nzcfsv29kJxt9dNdhBntmCXvne4izGi0H0zEnDOvmO4izGhHHk/9eKgf35EnMn8hHOZ2H33Lx9jso39hIhYx/rgYf3zzTqd+PPSvaVbAHz4NVQOtra3W1tZmb3nLW+yHP/yh3X333Ye4WBgPFnq+Y6reN91FmNFoP5iIuTUs9DyLT2D88VA/Ph4EIizmdh99y8fY7KN/YSIWncz442H88fGQ3Uf/wnQL9Sb76tWrzcxsy5YttmnTpn3/vqqqyqqqqqympsbOOusse9Ob3nRoSgkAAAAAAAAAmHn4Jnu4h+xmZg0NDbZs2TJrb2+3LVu22J133ml/+ctfbMuWLdbc3GwVFRU8ZAcAAAAAAAAAPK+Fesi+Zs0a+ab63r177a677rL29vYJFw4AAAAAAAAAMIPF+CZ7qBr47Gc/a/l83j73uc8dlM2aNcsuuOACW7Vq1YQLBwAAAAAAAAB4YVi/p89OfmSP/Gf9+vXTXcRRhf5czJvf/OZDWQ4AAAAAAAAAwOHmEL7JXn9EqdUfUer8BzPzj5BH8vl8froLMRGvXJ0JvW2mUJ96ol9/sD8X0/s8f2NcZn+8bNgtz0BpuEvhHfOWy3X9eOdhZpbs0XXQNysns6yzX69eg0Sz4bbzzvO8b+q6u+2d4dvWud/W+73rYn0iXr16+zQLf6299uO5eZVfPwVDOgs6F6XlCr3T5dcVhtqnZ8C67LM2y172zt1WUFh+UO61yWFnfJmMspqZ3f8q3X68NhA09myv1mNXaaeeSAeL9H5L9urthpztzPw26/Xb4ZDV7rVls8kZY4LG57C8dumZrDbr8eon7BgyWbzx1+O1D7PwdfDnS3SffcmNod+vCD3P5GK63UWzel3g9fWR8fkll+8adXwuGAq3jvPKOuxcrmTv5KxvvOv863o9OMWd8zcLP/d7vHXBZBzPzG+TYdeNE+HNM155gsaCmSbsGjnsfDkRXhvxjun1L+9+pq9cr8XMzGIZvW1ZR7i1UfFevc+gNd6cJ8MtOB582ej1kx3ssvs+N8+W1Y0+Nqd2+A9g9s7V9efVuzfmn3O9nveC2rLXZr0+HXYdF9QPvOcJL/t+uPMMu6by1hpB+mZ564Jw+wyqu8mYoyYyB4Wt99+/Xdd7r/Ms4cL1/lo+7Nox7BgbxLte3nOqrjm6Di76sq6Dqw/rp6IzyBkLpu5Yd2+bumONQ/g7LQAAAAAAAADAC1ss/Esnzxd8lR4AhAJL2FE1H7doLDHdRQEA7KfAErZ4KeMzAMwkkVjCFp3N2AwAeGHiTXYAEAosYccs/cR0FwMA8BwFlrCjz/p/010MAMB+ogUJW/xixmYAeEE6hN9kP1xRAwAAAAAAAAAAhMSb7AAAAAAAAACAcPgmO2+yAwAAAAAAAAAQ1mH/Jvv5G+OTst9fXTkks4KM3u7mVTqMZv1jevl53wx3nt52v67X52hmVlAY6pCuXExnQfXjbTtcmJdZwZD+aZpXBxXb/Z9Bdc3NhdpvzDnPaFaX9ZbLnYZn4dtI2DY7kb7nHTPjXMtEf7ifjAa19QvX68beV66vc3xAl2egRJ9HkO99pk9mL7pV/yGp036tO8ldF+uLOVDql9U7T69+Cp3t9izU5Un2hv8J+FCRPhevf+Viertzvz0Jg6H5ZV1+nT5myxUBY7cz5nn79cYYrw95/Wcihp3denXgnWOQ296p62Cyrpfn3G+HG2dfcqNe3k3WtQw7J3jl8eYKs/D1nnXWE3Gn/xS687fOzMz6nXHWq3evX/rrCb88Xt1646E3vnhtIGgNE5a3Nhx0+mwQ75qEHX+87YLaundNPF55vL4XtN7y1pyTNT6HFbYdFPXoOuiaE25taOavD2NZvV9vDeP1y8J+tzjuPdRQkd4utVN3vq45egDa6qwbzcze9OmkzLz7871HD8vslsv1OQa1D29O8MYfrw4uXqvPcbLGSm9NFfa+1Wt3Zn7demOsd52Lu/Qxg8ZRb168+zU63LFEZ95Y6a0bg3jjqDcWzNqln18E1U/YdZw3hgTdg3vCzsMXfXnq5xnsh2+y8yY7AAAAAAAAAABh8ZAdAAAAAAAAAICQDvvPxQAAAAAAAAAApgl/+JQ32QEAAAAAAAAACIs32QEAAAAAAAAA4fCHT3mTHQAAAAAAAACAsCL5fD4/3YWYiGsDPvlz86qMzDKF+tTzzo8fIjmdXbi+MFRZgsrj7bfliiGZRbO6gnIx/9IXDOltz/tmXGa/ulKX56IvhzuPoPJ4vLJ6JlKeYedaLr9O18Etl+s24u0zSDams0xS7/d1n0+EPqbX3r2257XZIaes3j4zusrNzCzuXOqcU3devQ6U6IEiG/ev5Yl/0vXeN8urO73PZE+49mpm1rFQn0tPhc5WfDIps198cFBmXhswM+sr18cs7tKDd4E/BEu95X79vGGdvl5hzzPZq7PBIr883nzhjc/e3Bb2eL+u98dRb671rpfX92JOP/C2C9rW413L8zfqOShoXeCNa95cEjR/TTVvvhwoCT+3eWuKsGsR75p443qy139vJey19NYF3vomqO954s718uYZz0TWMB6v7rw6COrrk3FNPBNZc3rHvOPNwzI7+3/0LzQHlWci9xdhhL3OZv48E3YM8dqzt1Y189eVpZ26sB0L9LU88iHdBoLun7w+7W378Nl6fVO+R59k0L2Ft27y1vPeWt5rr0Fjk1c/hQN6v956w7sP8Pb5bHnC3Q+HXYt4/Xk4YLgLu+726i7RPznfe/bagXee3jke/+U73WPe/6GzQu3XE3auMPPnNm+t5pXVqztv/DXzx3ZvnRJ2vXX1Yf1UdAaprT5ku1r/1F5b/3SXzOsb/8Pq6+sP2fEOFT4XAwAAAAAAAACYdvWLZ1n94lnOfzDzHrCb8ZAdAAAAAAAAABAW32Tnm+wAAAAAAAAAAITFm+wAAAAAAAAAgHB4k5032QEAAAAAAAAACIs32QEAAAAAAAAA4cQi012CaRfJ5/P56S7ERLw2st7usPUyLz+nzha+6L2jZtmY3u+F6wtl1nLFkMwKhsI3quHCcJdiOK6zi76sz+NXV+rzMDMryOhs+XV6v7/44KDMkr36lyeiWbc4dt439YnevEoXNhfT9eq1gVhAeQZK9H6Lu/R5Zpzr7LW7X9f71yvRH67tDRaFa3dB9ePx2k9Qu1QiOZ3lA35nZ6BUb3zx2qTMfv5h3dY9yV7/WpXv0gUe1lXn9qH0PH2OlVv9Cuqcr7fdddSwzLz+XtwVfqwcctpsskcf0xvThpJ6n9Fs+LJ6Y3BQn1a8ccLMn6O8Mc8bQ3LOdudv1GPzLZc7lW7+uO6dh8cbX4L26c3hXlm98/Tmdu96mJkV9ejynPvtcOXxziOoTXrjfti68+Zvr1+a+f3L461TYhl9HnHnHL1+YBZ+7ei1H29s8tYaQbw50xtHvfJ4azEzfy1bOBBuv2Hr1Sz8OBL23iJorPTK65XV69PedQ7qW95azVuPebzyeOcfdO/lnYs3FnjrfG+cyASMW0NJXUHeXPv2hmKZ3fZO3X4KA+4PvDWVl21fotd/3nq0uNtfc3rl7St32oHThby1YVB7zcbDjcHefr25NGhdEHRPc6iFHfPN/Dk87LjujXdBvHFrMtbr3prBLPjZh+Ldu09knTIZvLoLup8Juz5UfW/7PV+z7fdcJ7f793/7J6uvr3fLhDH4+xOn7lg/fXDqjjUOh/2b7GdbvZ1tujO0vCjcoAgAAAAAAADg8DX/1PfaopNHf/nWzKy+PvwPcLAfvsnON9kBAAAAAAAAAAjrsH+THQAAAAAAAAAwTfgmO2+yAwAAAAAAAAAQFm+yAwAAAAAAAADC4ZvsvMkOAAAAAAAAAEBYkXw+n5/uQkzEK9475OZDSX160Wy47wUle/V2w4X6eNmYv99sXG/7mi8mZParK3UdFGT8Y3qG4zorHAhXd7mYPsfl1/l/0fnmVfpkolm93Xnf1CfScoVTd0P+OeYCrqfSXZGTWUlX+G9YBbUvJe6cZ8Zpzxmnb5mZxZ02cuF6fa1//uFBmXnnGHeGgqBr5Y0Tb/p0UmZf+UaXzI69W2/njRNmZpVbdYG3Vw3r7bbp7cK2VzOzJ0/SlZvs0z+rfcvHi2T246sGZBbU9zzeWBB+n355IrpLW8wpjzfGevtM9Pvl8dqXdy7nb9QFuuVyPf4OlOjjeecxEV4dhD3/IN78FbbNevOTmdmv63XfyzuvSVz0ZX8+DXM8M3/s/skaPXa/YZ1ew3jzsDc2T4S3hvGOmezVle71n4nwrok3vgStCbw5/HWf19crbHmC+p7Xv/y5P9waxivrRI45UKIHPW8t/4sP6v5j5rc9b97z5v6wdW7mjz/eGBx2bejVTyZguPOudW+5vl6JkPc63twexGs/VXfrE33Z9/Uvp3tjrJlZoTOfdizUlXfxWr3O9dZ4kYCxwBubvPtabx72sqA1edh7D2/M8/qeN06Y+ffD3pjn9VmPVz/eXGHmrx0Hi8LN79444R3PLPhaK94zirBzYpDecm8tEm4cDRK0BlTCzsNB9zM9zjOT4i7doMPO/b/7Wvi6w37eetrUHet7f5u6Y40Dn4sBAAAAAAAAAEy79Q/vsfWP7JF5/fr1Vl9fP4UlGhsesgMAAAAAAAAApl398bOt/vjZzn8w8x6wm/GQHQAAAAAAAAAQFn/4lD98CgAAAAAAAABAWLzJDgAAAAAAAAAIJxbuj4Y/n/AmOwAAAAAAAAAAIUXy+Xx+ugsxEddO4Aclv64fktmF6wtl9qsr9XYDpTmZXbw2ObaCjdMtl2dkNlCiL2+B3szMzLIxJ4vr/RYO6IvilSfubGcW/pp4vDpYfp0+XtAxczF9nrGMPk+vXoO85osJmf3ig4Oh96tk/OqxWFZnYduWJ6q7ng3HA7Z1yprzyupc5/4yXaACpw2Ymc1/TP+SkdcuW67QbbJ4r/6ZavsZfv8ZKNbnkuzT+y3u0lmmUNfdpVcXueX58VUDMivs13XbXaHPo8Qpq9dezcx6U7oBle/RGxcM6bJ6Y4jX183Mfv5h3d+DxlnF65deecKOzUG8ecaru2jWP//zN+rB4idrdL3O2q3bz945ut0lnPYaJNmrt+1x2rrndZ/325bHm2e8+cKrA+9amgX3hTC8cdQbf4PmWa/tRZzLlUnqOvCul7fGNTPLO6/ZeOVx13HOIYOuVdg1lbdfrw688zDz+5e3HvXaj7cWuejL4decnmFnrvXWPt5a1cyfE/rKwx3TW8d5cgGvjL3p0/r+y1tPDDp9byLiztxfvkefzJBTHm+9FcSbL7xjDpTo7aI5fY7eOs3MbKjIucd05wtnn0ln/Zf2F3lvWBfu/sorj9cPgoTdr9envXnGW6sG8ca1sGtV7/7Sa69mfj/xxkpP0PMCj9d+vLnNm2e8uW2y1nhe25rI8xuv/XjPv877ZsCNv3D1Yf1UdAZ599KpO9Y3WqfuWOPAm+wAAAAAAAAAAITEN9kBAAAAAAAAAOHwTXbeZAcAAAAAAAAAICzeZAcAAAAAAAAAhBObGe9xt7W12dq1a62qqsrS6bTV1tbaihUrxrWP9vZ227x5s5mZrV692lKp1Ji24yE7AAAAAAAAAOCw1d7ebkuXLrXW1larqakxM7Pq6mrr6Oiw1atXj2n7hoYGS6fT1tTUZFVVVeM6/sz4MQMAAAAAAAAA4PATi07dP0JdXZ0tX7583wN2M7OGhgarq6sLLH5bW5stXbrUKisrrbm5edwP2M14yA4AAAAAAAAAOEyl02lraWmx2traA/79smXLzMxsw4YN7rYXXHCBVVVVWVNTU+gyRPL5fD701jPAWR8ZdPOCIf3XbSO5cMfMxnWVRbPh/5puQUZnQ8lwx7zoy4Why/OTNbpu40Ph9hnL6LLGsv62w/Fwx/TkYuGvZeGAzvvKdeOKOufp1U/GaQNB+/VknCbitXWvrGZmAyW6DmJO3Q4lne2cY+Zjuiy56OQMcx3zhmUWH9Q/w/Tq1cys6m+JUOXZfaQuz5yn9dfBgsbC3pT+D9JH6GOGdfkHSt3825/rDbXfd36kRGbXN/bJLO709SBeW/dM5Jiesk7dLr1xyzORsuadH/V77dIbD5O9ujwDJX7f887lwvV6sPzVlXpSHCjVJ1LU5b/r4B3z1/X6mF79eHNFstcvj7cW8XjrG++aZJ1x3cxfi7zmi3oc/cUH9fpmqEiX5+K1SZl5bcDMX294Zb15la687grdtkq6/H7p1a3X7jxeWbvm+IsUry/EnbX8+Rv14tC7zkG8axJ0rZXhQt0GgsbRoDWg4vUvr1/mAl7Dijrjs7etuzZ01nhB6yZPcbcukFs/TrvrSen2XBCwPu6q1NsOJXT9nHhnkcy88cUbJ8z8uu121n/edgPF+hw/9LaUW55vfqlHZsXdeuAKu9YvHPAbu9dvI86wlnD6tDeX/PBfB9zyeLx7U2/MT/SHe14ykXvTsHO0d47Lr/Pnrh9fpevWuyZeeSbybMO7JiV7dbsMmk8Vr87N/LnNe6b08w/r+il17jt6AsYmr+8le/R+w663rj6sn4rOIO9/6Zj+s8FszgazIR/I/v8SX/q9JRIHXtORB+ybNm066BvskUjEVqxYYZs2bRp1f3V1dbZhwwZrbm625cuXhy4X32QHAAAAAAAAAEyqtXc9Y9fe8cyE9nH1/LV2zTXXHPDv2tvbzczkHykdyUcz8pZ7c3OzNTQ0WHt7uy1btmzc32XnITsAAAAAAAAAIBznW+n7u+rsxfahpYsmdKjEVVcd9O+2bNliZmaVlZWjbpNOp0f9921tbWZmVlNTY3V1ddbY2Gjt7e1WW1tr1dXV1tnZKR/cPxffZAcAAAAAAAAATKpEQdTKEwUT+ue5n4oxM6uurjYzs46OjlGPq95IH3nDva6ubt9/s/+32deuXTvmc+NNdgAAAAAAAABAOLHJ+btiYzXygFy9sa4esqu31Ee+ze59Zua5eJMdAAAAAAAAAHBYWrZsmZkd/FB85H8vXbrU3W7kczPPpT4/MxoesgMAAAAAAAAADkupVMpqamqsubn5gH/f0tJiZmaXXHKJ3G758uX7/rsRI2/Eq4fzo4nk8/n8OMo847z4nwfdPJrVv64wWKRP/Q3rDv6+z4iWK4ZCHW8oOTlV7Z1Hoj/8r2sUd+lteypyMotl9HbZuC6rt52ZWSyrs7B1O+TUXbLH/xnURV8ulNmvrtRtJOx2A6W6zs3MIk7by8f0eQ7H9T6zznYx53gT2dbbLqxMQPvwjpkY0O3g0bN6ZHbM3SUyK+7y21amUJfHO5eo00eKu/UxL16bdMvzue+nZVa6NyazSM5pk1F9Ht4+zfzzzDmbDiV1Hyrfo7+e5m1nFjx2KYkBvZ3XL73zN/PrwBvX+8r1NYk7ZY3rYSuwbvJOV4j41S5duF6Psb+udwprfv/y60BnAyXh5suJ7Pc1Xwy3hsn6XS80b/722nqQnDN2e+uxQudaeusJbx4OWjMke8OtR70+UpDRWcO/f8Mtz6c/9m43V7w1zM8/rNfkXv8xm5w+VNahK6+70h9gvHHkqxu7ZXZ8q+57XpvsK/fLM+ysC7y2523nZbmA17C8dYrHW/95c23UWU8EyTnrjcm4NwuauzIJb03uXOc+fVEqtus1TH9A23rLx4tktvkTAzJ78gSdxTK6rGV7/cZV6Ky7S9M6S88NWBwJ7/qQXq+bmX3vM30y88rqrdWiziXpSfnXK+geQvHmoLAyepg0M3/u9+rHW8OEvcc2M/vFB/Uc5Z1L+993yuyEzRUym6xnG94axltTeWO+mdnrPq/r3ZvfSzt1m9w7R7fnoOdUYdcb3nl4rj6sn4rOIA3nTt2xGm8b9V+3tbXZ0qVLbcuWLfs+D1NdXW11dXW2Zs0aM7N9f9S0qalp3ydhRrZrbm7e9+/WrVtnN9xwg7W2to65WHyTHQAAAAAAAABw2KqpqbHW1lZraGiwqqoqa29vt4aGBlu9evW+/yadTltHR8cB327ff7tNmzZZKpWydDo9rgfsZjxkBwAAAAAAAACENc1/+HRETU2Nbdq0yc07Ow/+LZXRPjUzXnyTHQAAAAAAAACAkHiTHQAAAAAAAAAQTpT3uKkBAAAAAAAAAABC4k12AAAAAAAAAEA4M+Sb7NMpks/n89NdiIl4bWS93WHrZV7yqjqbd/oVo2av+WJCbve9z/TJ7K0fK5bZLZdnZNZXnpOZmVmyV/9igbdtfEA35H5nu/LdMbc8Q0ndNAaLdBYf0vv0znGgJHz97DpyWGYlXXq7Xqd+vOOZ+ecZy+hr0j1bH3PFJ5My+8UHB93yDDnX5Ok3dshs/s8rZfbIK7plVvXHUrc8ead5veXjRTK74dp+mV16td7u+kbdZ4udNmBm1l2RlVl6js7mbtU/p9x5pB4LSvf6fS8+qNtPYsAZJ8p0WZ8+fkBmp93mX8u9s/V+vborcPqBVwe9Zf5YENdVa5d/wD8XxWs/E+HVgdcPmr7aIzPv/M3MKrfrdjnojOtlneF+ua1rjr5ec57227on2aPL01Ohj3nRlwtl9pM1/jj6hnV6XfCDT+mxaX67rvOcUwVB8563Tvnc99My+8hlKZl5c8mTJzoTm5kd36rnqPQReixI9up+UOisYf7wWj0HmZm9+DdlMhsoDbf+8a7Jw5foubS0VZfFzOw9V+qx6Ztf0v194aO6PRd36brrK/eX9941GS7U2y6/Tpen5QrdfrqctY+ZWfke3d+9bb35PRfT5+G1OzOz4bgbS97486srdf14Y5qZf60HSvR5vunTus/+/MN6LPDuAczMMk4b8WTjejvv/spbG/YHrBkiTtzvjBPemuqIp/V1Hkr65elzjpnareeSym163Mro4gTOM56E00+2H60XI+k5+r7smAd1mzQzG3baiMerd+++zFtXm5kNOvv12o+3/kvt0tf5nk/qtaGZ2en/qvuCdy9Yvlufp7ddwVD4B2ZR3YUsmtX7LXDWuekjdJ17fcTMrHr9nTJ77IqzZLbXWeeWf3SLzHo/W+2Wx5uHvXG91Fmv7zha971ZAc9+vLEy73QTb6711iLeeZiFX6eotrX1vq/Z0w9+TW73uU/+k9XX17tlwhhcff7UHevam6fuWONw2L/JfrbV29mmO8MvTvdvqAEAAAAAAAA8/yw85b2WemmdzOvr9YstGIcYXySnBgAAAAAAAAAACOmwf5MdAAAAAAAAADBNDuE32df/+Slbf/vTMq+fvX5GfuKHh+wAAAAAAAAAgGlX/5LFVv+Sxc5/MPMesJvxkB0AAAAAAAAAEFaUL5JTAwAAAAAAAAAAhBTJ5/P56S7ERJz1kUE3H0qGO72/frpIZtea3udP1ujylHX6P9PoK8/JrGBIf9tox9EZmc19Wv+ywlCRXzfJHl3ene/dJrN3nHy0zI4d+C+ZvS35j255XnX5kMzO+2ZcZj/4VL/MLvzYn2V2x5Uvd8vzoX//jsz+9YtvlVnhgK7Xh8/ok9nJdxa75fHsnZ2VWXqOzuZu1e2n/eQB95iZ+y/T+523SWb/9O5ymV13XbfMtv3rPJklNupveZmZLXxc/zXx1f/cIrMN/7FcZoPO2NN5hO6zZmYve9UzMtv6tWqZPfBx3UZetu0Bme36zlFueR59kW6XC55Iyiwf1XWw7Qp9nSu+k3bLUzio+1DJXp21f6TU3a9ywmd6Q20X5K0f09frhmv1uNWb0n3WzKx8j+63az/6LZl94t8ul9nZn7lDZq0NZ8tsy6n+HH3c3brvPfG23TJb/IM5Mtt+jO5fT2250C1P+pKlMjv/x/8us7ienmygRPeDkrS/LnjLl38qs+9/4O9l1lOh1xPJXr2e6HLmCjOzknRMZl69171P971fXelUXoACZyhdfl2hzK42XQflt22X2Uk/TMlsa7U/rh/7F93W987R1ysb1+0npy+HlQasOR+8bI/Mjr+xUmbJXr3fbqfdDZTozMzs0qv1uvu2PffK7NHrj5HZMffqOs/F/DVw12xd3jd9Ws973n1A2+w36AP+6Um3PGee1CYzb4zx+ntPyml3AfXzzo+UyOx7n9FrhsdP1GvHox7R9bpn3rDMOt41S2ZmZou/rNeOA8W6DoqW7ZXZ8B8qZLb1fWVueSr/S++3t1yfp7dWLerW/fL+B1/slufMY/T87vHazyMNun38fufn3P1edkOdzLz7+pyz5jzmQj2uP3qzvn8wMyvqcQZahzfvleR+JLONn/XXKd59pDfOljrrje9dvlZmOeet1H9o+heZmfnz18uv1e2ubae+JkMZXZ7Yf/r3M954+OgZeuxO7dbr6rd8XM9dNzzymF+ejQtllujXZf3lZR+R2Wu+q/tX3HmeZGaWKdTXK+P0vTs/r8fuF39Qj/l737fVLc+Czx4psyXX3SmzX339NJl5/fLqw/qp6Ayy7qKpO9aaX03dscaBN9kBAAAAAAAAAAiJb7IDAAAAAAAAAMKJ8R43NQAAAAAAAAAAQEi8yQ4AAAAAAAAACCfqf/v/hYA32QEAAAAAAAAACImH7AAAAAAAAAAAhHTYfy7mdZ9PuPnVrz9RZtf+7MFDXRxr2/pimb204g532zs/n5TZy+oHZdb+kVKZbWv9sMyO7f6oW56qm2fJbMvJx7jbKqf/W7/MrvrrBe62T37hbCe9Wya3tA/J7Jef1dcr877tbnn+/WP/ILPiorzMHj9JX8vBa0+R2alveMwtz+f/eaPM/q7i/TJb8oUemb31Y8Uyu6PrYbc89tPdMtr1Md22PFdfobPeW94rs4Vt/jjx2Id0H7IP6egqZ59fG/6+zN5bcJlbHnv76TKa+6rbZHat6Xb3lwd2yqy/ocQvzxRL9vk//912RbnMjmvsldnfd7fJ7N6m42W2fbHus2Zm854plFnPOXtl9u1Cfb12LcrIrPu/9bhlZnbCOX+R2fub3iGzx17ZLbP2Px8ns7Qzd530qT6ZmZl9/mNfkdk537lJZi/O/khmT11Zprf74IBbnttfps8l/sF/19t90dnu17rvZS48wi2PvfgSGa1910tltm3zW/U+P6/HECuKu8W54BLdvx45c1hmt71Tt+dcTPeDaNb/ldOCIZ0/0H+nzF66RvfpM/9b73Prsfo8TnvnozIzM3tyl16Pbj9ar1N2vTvcfPnKVXqfZmaF9+l5r/1UXT/H3K/n045/2CGzx0892i1P9Gd6zXD17BfJLN75N5k9sV6PWw98XK9vzPx196+u1HXbtk6PBUd/SY+xsXP8tr5ngR679r6tQmbvGPyTzL6T0GPIhHxM9+mrL9Trm2M+p8f8Wc2zZXbUX590i7Nzi75eFYv1fcmTpx8lM+9aemsxM7NMIi2z6nuKZBZzxsOBkpw+4PfvccvT06i3jQ/oYxZ36bVa2fc7ZdZ9hG6vZmbbf/yPMpv/lF5vdVVm9T5/tFBmBS/ucsuza6vu05mLdbv8RP4XMuuNvFFmw/c/4ZanelFaZvf9V7XM+vTSyE467pMye/n2+2XmjXdBXtug16rd/Xotckl1lcyuNn8cPf1fdX937y0e1PfgP7B5Miu9Trc7M7M//d2VMttTqS9Y1X2fktnR5bo/X7jWv17Z/C9lFou8WmbxH++RWeZi55hfdIvj3kM8/R9nyOzop/UjzocGvOdx3rMmjBl/+JQ32QEAAAAAAAAACOuwf5MdAAAAAAAAADBN+MOnvMkOAAAAAAAAAEBYvMkOAAAAAAAAAAjnEH6Tff2t7bb+Vv03Eeoj662+vv6QHe9Q4SE7AAAAAAAAAGDa1b+yyupfqf/Ysb135j1gN+MhOwAAAAAAAAAgLL7JzjfZAQAAAAAAAAAI63n/JnvFVb+VWefP9E9ZhppX653WOge8/q86u9LZzswu2HOPzD6b+4rMHn/fVTL79imfkdkavzi2ZfDPMvv0tT+V2ffaT5HZPx/1Q5m9J/62gBJpj9+n6+DeP/fL7IK3PiSzVHzAPeZ1XzxaZh/N/UZm53frY17x1htltv3bQ255/q7i/TJ724C+lisK/yizG15/rMzuLz/TLc/Ltj0gs9+v/JzMXnTsv8ps2VE7ZPadxEtl9obcSpmZmZ11ib4md/7rpTJ73ze+JLP7O+fI7L2rlrrl2b3qFTJ77Rn3yew/Tlgis/5zFsjsWsu75Ynlfy6zf771FzL7/svPkdl/PPkSmW2rLnfLM29jl8x2rCqR2b+s+bXMdr61WGZHxbNueV425ymZveuRP8jsxg+fLbNh52fg73jTt93yvC6u+/Tnz3uPzD74oW/J7Isf+rjM3p/V82zvvbtlZmZ2zhEfcXPldkvK7Ie9G2SW+4S/X68v9JX7c4KS6fiAzD6ca3a3/f2H9Fjw5RX/rTdce1tguUZz+d5b3Pxou1NmNxW+PNQxT2t/VGZrFv3e3Xb1j/9eZkc9pcfgB7+cCC7YKC7ubpXZOSVPuNse8fG/yewnmZP1hu/W0c+7vyqzW8sK3fK87ct6XdD65BEy21oTl1nDKXfI7K0Dt7vluTo5W2a3XJ6R2W8rTtc7LdJlDZr3VnxZr1c/FH2zzF6+/X6Zdf8qJ7N1b9PzrJnZ1feeK7PjHtTfK3174hh3v0p99hY3b2k8S2YPfUzfX330l3p9/PiJNTL7l4e+J7PPRi6UmZnZCZ/pldlrL/6LzF6z926Zzenapg/4gePc8nRfViGzTzrrrfsHdL9cnEjLbOWVetw2M3v8N3puW3mRHp+/9zm9XrfLWmR03i69jjUz+1b5z2T2qSd0Pzj3qJ0y+25SrzlP+lSfW55dH9frw//MbZLZJyOv0Tv9L31fctOca9zy/GLWGTo8Sc97779Xl9U+pqM//Eyv/4Kc+gl9D35PeZHM3jH4J5ldbdWhy/OmT+u147uG9Nr55ab7+2NPLJLZra9d5ZbnK8t1G/lqux5jO6LOftfqZwnesyYzs5u8Nuu4+mKdrcr8TmaFUf/+6oGY7nt22akymv+hX8rsoqS+9wpYFmCsDuE32Q9X1AAAAAAAAAAAACE9799kBwAAAAAAAABMEr7JzpvsAAAAAAAAAACExZvsAAAAAAAAAIBw+CY7b7IDAAAAAAAAABAWb7IDAAAAAAAAAMLhm+wWyefz+ekuxEQ8c/dH3XzRmZ+bopI8a0Hr0zIrSmbdbbt79c88Xn/G4zLbMVAss/9d+wGZveUTft10Z+J6v1f+o8we/tfXy+ybx50js8+efblbnrf+7ocyKy8YlNl1BefKbG3+xzK7asXH3PJ8/7sfltnNseNlNregV2Y9uYTMhvIxtzzXzfk7mV2/4zqZvf2Xv5XZO159hcy+k3ipW54P5VpkFrOczLLOL9h84bS3yuzdf9Ht4xuLLpSZmdnL/nqXzE6as0fvt+79Mvvi13X72Rkpdcvz66erZPb5op/L7Lw5H5LZzXv+Q2bnX3ODWx778p9l9Nquv8js7YVtMtvY82KZ3Xz7F/zybE3L6IHzXiSzk/77d3qfn9T9INBrdH9P/vPvZfaZC3R5fpk+TmbHlXe6xSmM6rnm/N6HZNZSfKLMiqNDMvvst78usx+vuEBmZma3FR8rs4bWX8jsn065TGY7evSceOrsXW551sfOk9mbe++UWSanx+cViXtk9qucrnMzs+8ldT85d+d9MptX2iezsgJ9Lc+JPOaW52s7zpLZ93u+I7M5HV0yG4zrtcY/n3qpWx6vfpY+9bDMFqV6ZPbTz3xQZpdfu1ZmHYNJmQX5ce0bZPbmm34ksy27UjK7at6t7jEvLXqPzG7f+lmZvfi3d8vsHSv0mrMy3u+WZ91NP5BZYe0GmXn94LZ/fYfMvtDkr/E27zhZZmfM3SmzW584UmaXVOu5fc3N73XLU/Q/eq694kv/LrOFMd33PhF5ncw+lv+VW55bth8tszOP2CGzgZy+18nn9Y35oDPGzi/slpmZ2eff8REdXv9XGXn3CAsyul7/VrDQLU96uEhmRxe+TGb/cP+/yuzC6CqZveeEu93yfP8JvW5aWKHvWU4p0/3gTTt0e/36nJe75TkqrvOrzXl486IjZHTtvbpN7sz6Y+X6j39Ch99o1dlsfZ1tSaWM3v2Tb7rlKYlmZPbzB/UY8/Hj9ZrzyJ4Omf3dz/Q61r5+u87MbNt/rJDZjjkVMjtj3c9kdtdVer6selpfZzOzZWX6Pumdpxwls9Zu3Z5/WlYjs4/mfuOW54vNZ8isvvZemX37en3MY8/XdXDxIn0PYGb20NBcmRXHdLtbUPAKmX3rnidl9vLjtrnleXi3biNvWKTXeF+/9zSZXXDiUzL7RoE/NmGM/ttfux9S/xDwDGOa8CY7AAAAAAAAACAcvsnON9kBAAAAAAAAAAiLh+wAAAAAAAAAAITE52IAAAAAAAAAAOHwh095yA4AAAAAAAAAmH7rf/Owrf/NIzKv37Pe6uvrp7BEY8NDdgAAAAAAAABAONFD90Xy+otOtPqLTtT/wSUz7wG7mVkkn8/np7sQE3HqF/7FHt9wo8yPWnWpHb3qLaNmRxT1ye2WFL5UZl/8zl6Znf9m/ZOWqzqbZWZm9qlZF8qsazAhs3eX3imzt/3bt/UBP32LW565dzwjs386e6HMbttzr8xeXaHr59N/folbng++bIHMHujXdfCDm6+T2WknfUxmpy7c7ZanczAps2RsWGZ/fXKOzN504sMy2zVc6pZnIKt/ZvbW4VaZ/f1nb5DZmz/27zK7+4m5bnlOPLJTZouLu/V20Z0yu/b65TJbcdk9MotHcjIzM3u6v0xnHbrePzT/jzL7faxKZtd99pNuea74l0/IrPnho2QWjerhPB7TWVFSt1czs4GhmMzed4zue01PLJPZsiN3yGzHQLFbngefrpDZy6u3yew7F71VZh+9qUlm9Q/81i3PbcfpyT/qTLF7C/QY8ofMEpl9L/litzxv6b9DZtt7SmRWkhiS2cf69Py1xl4ns693/0BmZmYfX/h6mXnz3i13zpfZbad9S2ZrS2vd8vx08ctktuCmR2VWtahLZt19hTLbs1efo5nZqcd0yOyP98yT2cUvfkxmN91/pN7utC1uedIZ3Wb/3K6vSW+vnp8GBvX4ctwxul7NzLr74jJbWKnXeK+cc4rMfvqUXqect+gJmd25W6+LzMwe36bnmWXVet4rjWdk9j9/0uPECUv8urvnL7Nlltqjr9cFb31IZvdvq5TZ4jl63jczu2rgJpm9fcdKmXV06j507NG6Ds5cqOvczOyo+Mtldm/fXTKLRfSY760NvfsOM7MnhvR6o+WBxTI7/6SnZfbiqG7P713/Xbc857/tszK7+fYvyOwdy1fJbF5ct5Gv3HK6zN57nl7/mZntGNLruOqEHmMfHdR9JJfXvw5fVjDolud3jy2S2SXHPSiz7z90kswWOONdlzMHmZnNn6W37cvoseCM2boPVUb1Pj/5c38Ns3Pep2TWcOYKmT3ZXS6z5v+5RmbXvOfdbnnu6TtCZp/a+jOZvT35dpmdtWC7zP78tL7fNTN77A/6PvJf3nqrzG7v0ePEVd16jVf76Ltk9rmX3SwzM7MP/s9FMnvpcv2coatft9lUse5fHb16jRJkXrlus9vT+r4k3aPnoJdU6+tsZvbXZ/S17O7R65vSYj2XXLnkdpn9vM95WGlmP/vDV2QW/YHzLOEr35TZHQ/q/vOKU/Q9m5nZM3v12P3HW/S99JJtG0f9912/b7LoD78ut7vmK/Uz8q3ow86Neuw75C65fuqONQ6H/ZvsS1ZfaktWXyrz4Rx/2xUAAAAAAAB4oSk/p87e9cMPyZzn64dIjG+y8wQaAAAAAAAAAICQDvs32QEAAAAAAAAA0+QQfpP9cEUNAAAAAAAAAAAQEm+yAwAAAAAAAADCifJNdt5kBwAAAAAAAAAgpEg+n89PdyEmYvFXety8dG9MZlXvf0hmQ8N6u5v+sFBmiZKszK551R9lZmb28Z+cq7OLK2X2zS/5dRBWV4U+l+JTu2VW+NsKmeViurnNev0OtzzbfjtXZi+9ZIvMoqaP2TWYkNngsP8zqFTxoMx+86dFMjt3mT7PyqIBmbU+doRbnvZb3y+ziy77pMwyOX2ej20vl9m2HUm3PGee1CGz+26eL7PjX7lTZhnnmvQO6F/MKSvKyMzM7IltpTI7papTZg88npLZUQt6ZZaMD7vledDZb/Oib8nsfbE3O8fU/fmhJ2e55TnhqL0yO7lit8y+/fsTZLZ4YZ/Mntpa7Jbn9BOca9K8QGbDcT0WfOSylMzu6LrbLc/OLl3ek+bqfvCTzSfKbHiRHl+KtxS55Tnvsodl9seHdN/bvl336dee85TMnknr/tPVG5eZmdlTT5XIbPFi3Ye87ebP75dZzJmDzMyGm2fLrOIN22X2xG16firv1OuJ9Bx/LPjQ21Iyu75R96GhZM7dr9J5pq5zM7PEI7rt7fr+mTKruuhvMhu8QPfnV5601S3Pn79yisyyTn/fvnhIZi86a497TGVxSq+LzMz+1qTHw/iQfuun6K1+HShvPOZYN//KHXq/ZbfpOWG4Vo9pQ0N6ju7r9395tmevzssr9Bx+1sm7ZHbLbXotds0b/uCW53+3Hyezh57Q9bPoCN0v43HdL9uf0uOomdm8OXp9mCrV7fmpHXqs7LunTGbHnu+vyWNR3b8e+199n9RXqtcip56nx9i7b5sns4IF+vzNzM46RbeRv/zsKJkVnuL3aSX7N12vZmYnvf5pmVWl9HrrB7fqPh1x5rbSUn+e8drsrk69LnjFidtk9vDOlMy27vTXeP0P6zZbfY6+lkdW6vvhgojue5GIvy74xe26jZxQ1SWzv92j74fPOE2Po69a/IRbnnRWz8O3bdFj3oJKfZ1b79drn5hzO1xyv38tr7hC94Xb9/5VZvc/qesumXCeTyT8tj7oPN9pf0KPwZUVeox58XF6rLxri3/vnr9Nn2fUWcbNfkavrR8/Wd8/ZJ05yMzsRRfoPu09G+vu0+WJX6/vy3a/wV9vVZTren/gYd225h2h6+DvTtP3M98pfIlbHozRz/9x6o71Ov1cZDrxJjsAAAAAAAAAACHxTXYAAAAAAAAAQDhR3uOmBgAAAAAAAAAACIk32QEAAAAAAAAAoeSi+u8MHWoz9Y3xmVouAAAAAAAAAABmPN5kBwAAAAAAAACEkjuE32T/6k/vs+t+dr/M69ecafX19YfseIdKJJ/P56e7EBOxoKnbza+4okxmjTd0ymzu9rjMnjx2QGZlZVmZVfylRGZmZp1n9spszh2lMsvG9SVc9f5bZLa+7Uy3PL29+mcwsYKczHp2JmS28IlCmWV0lZuZWcn5u2XW9bvZMhso1tekp3JYZouP7HPL0/m3cpkNLRiSWfJpXT/ZY3Tbij2edMvjbdvf4VRuka6fU09My2xwOOaWp7dPt5+93bo8uceKZDa8aFBvl9O/mjQ06A/2xWld1mSf3rZnia7z4Ywuz4L5ejszs26n7/V06yzaq69JYk5GZvFC3Z/NzPqf0G2vpEcfc8Grdsnssdt1nx1K+OU5ZekemT3+23ky+8C7dJ/96VOPyGzLE3oeMTMbHNJtxOvvZad3yaygQI/rna2z3PL0O+NPRaXOOjv0+ByL62tSvEX32cHj+mVmZhZ5StfPorP1HJ1zVi5P/iUlM6+9mpnNd+aoRf/8sMxuumOBzBYfqesg/2vdD8zMirp123rkdL3fqvt1n028ZZvMHn9arzXMzOb9SfeFU+sfkNm7c7fLbNX175BZd4Weo83MKnfq8XDXfD3mZVL+fpWkM5fO2eYvYvpfkZZZ0e9SMhtM6sa+92S9boxu033LzOyYB3Qb6Zodrn4u/4BuPz95Qo+xZmb3P5ySWfEz+lxetVL3y+bWxTILWlMNO2vrwiW6751xnJ6f/vjbRTJ7+xvuc8uz+c5qmSWdOdMb1xM7dZv11rFmZnFnjurudtYihXq7zLBeN5XvCrhJcBx9rl6LLKzQfejOh+bK7JiFPTK77w96OzN//KleovebKtXX5NULT5DZJ3+p75/MzAqdtWOBs5b11mqLTtDnsXWrXjOYmc2fr/tXV2tKZhmnPN55vOzix9zy/Obmo2RW3Kvn6GhWH7P4VP38Yl6lv25qf0rPw+Vlet7b06nHAu8eat5cfc/y5OP+s415z+hj9p6s77MrK/T9nnf/fcTStFueI1K6bh98PCWz0tt1nXccoftzT7k/lx7zkO4L3prBu0+c81d9Tbw52szs+kZ9TXKv1+No/hdzdObcgkf82z3rPnevzIYeKZZZsTMHec8Grz6sn4rOHMO/WT1lxyr4uw1Tdqzx4E12AAAAAAAAAEAoU/lN9pmKb7IDAAAAAAAAABASD9kBAAAAAAAAAAiJz8UAAAAAAAAAAELJxniPmxoAAAAAAAAAACAk3mQHAAAAAAAAAITCHz7lTXYAAAAAAAAAAEKL5PP5/HQXYiIWf6XHzQeKczIr7tE/YxhK6GopPrdDZom4Pt4j982SWZAj2xMy270gI7PIokGZLV7U6x5z5y1zZFaQ0T+hKhwM99OrXfP1eZiZDZZnZVa5tVBmPUsGZFb0ZFJm73/n793yfPEPNTLLPqX321uqz2NWZ/hfLlnwUt0un7mjQmbRJf26PGX+NfHs/Ytu76+/9AGZ/fz7J8vsw++8VWZf/OYrZfYfb/+RzMzM/vn6N8osmtPtufTlus63bi+S2QlVXW553njMsTL77OZOmVXsjMusd9awzLqdvmVm9sHX3i2zLzefJrOSEr3fontLZJaLucVxZeJ67D7mVTtk9tBj5TIb6PcLlNPDvl3zWj2OfuG7aZlFs+HfAkjP1v22IKPnvZhzvY6v1m32sdtny6ynXLc7M7PFR+rxp6xUn0d3j27rxyzoltk9v1rklqeoR1/rRX+/VWbbf7RQZt582Xm2LquZWfTRYpkteMVumT15R6W7X2XONl2vZmYVb9Z18Mgf58rstRc/IrPf3HCCzFK7/b73TJVe41Q642GyT/eDHYuGZDbb2WfJhbtkZmbW+2tdP57Zr98uM2+u+Pbn/DXeZIgP6bZecKk+DzOz+x/UY/ARW/UauGOuHieyMT0flDh93cxs7ml6zNv1N13WYWcOOvnFus/ef7ueK8z8Nuvpc9acJV16zfned/7R3W9h5CKZffE7e2U2cKTus4lCPZn+8znzZfYfv/fbVqxAX5OqI/UY/FC7XscOb9P3HcmANYNnyQV6nTK3VM+X9zwebsw3M+t6sDTUdiXH6jGm0LmW/Xf598Ox0/Q1+dUR/yWzV/yxXmbFAf3ds+S1et57+DcLZHbSRc/I7MHHUzIb3qLvH4J4a8cTlut+Ul2ZltnP/0fP0S+6YJtbnse3lcms537d7rzzeOvb7pbZD+/Wc6KZ2aVnPiyzGzYsk1lfmR5Hyzv0OJoNaHZx5zb78g/o+vHm96wzB21frNc3Zmavu7BdZn/52kkym71N18GeBfo+wCurmdnORbqCjnhGr8e89tNXpsemHe/R7RVj1/O7f5qyY5W+4itTcpz29narqqoa83/P52IAAAAAAAAAAIe1trY2W7t2rVVVVVk6nbba2lpbsWLFmLaNRA78QU1NTY21traO+dg8ZAcAAAAAAAAAhDITvsne3t5uS5cutdbWVqupefbrE9XV1dbR0WGrV692t92wYYOtXr3aqqur9/275cuXj+v4PGQHAAAAAAAAABy26urqbPny5fsesJuZNTQ0WF1dXeBD9k2bNllzc/OEjs8fPgUAAAAAAAAAhJKLRqbsn9Gk02lraWmx2traA/79smXP/t2FDRs2yLJv3rzZ7rrrLlu5cqX73wXhITsAAAAAAAAAYFINDmWtq3doQv8MDh78x9TvuusuM7OD/lDpyFvt3lvqzc3Nlk6nbfPmzVZXV2cVFRXW0tIy7nPjczEAAAAAAAAAgFBy0bG9x/2F/77D1n3j9gkd6+qr59s111xzwL9rb283M7NUKjXqNiP5aJqamqypqcna2tqsqanJNmzYYLW1tbZly5aDHtp7Ivl8Pj/m/3oGmvf1bjffufDgn26MWHJMn8wK41mZ7fndbJkV9+hGtew9D8rMzGzLrpTMqubsldnewYTM4tGczO5/ssItT+ymSpmlX9Ils9LWMpltXzwks1PP3OOWZ0dHkcwWztXX8ukdJTIbvEeXdf7L/fJEorrrPHD/LJnN6tQ/2xoo1tcr2Rf+F09yMV3WZF9MZpe9+y6Zffv6GpkFKRzU51L68g6Z9fxBt8l3v+ePMtv00AluedofK5XZ0UfptvXU07pNvvTMXTI7udJvW3dumy+zbFb/MZEHH9Htrmhbocyix+tzNDPLPVwss9dcose1zb84zt2v8qKz/Pp58jfzZHbNu34ps0/cea7Mak9/WmZ/fFhfDzOzxfN6ZHbHX+fIrGybHrv/8R13yOyxPn/sfmiHzrf+Qc9fL379EzL79R8Xyqxil25bFWd3yszM7Jh5eg7/fM9PZPadxS+R2beuXyazvRXDbnnmbnf6iV4WWOFguD/y8+SxA25+/ku2yyyb0+Pok98+WmZPnar7e7RXzwdmZq+ufVxmf/nm8TLrPLNXZnNm63Xa7Fl+/RxVodcijzj9YPev9BhSvlyP3UuP2imz45MvlpmZ2de/rMeJs/7xIZm1fkPPXye9Q98o7OzS85OZ2aNPlMus6ijdLx+6S48hL3qJrru77/PHrYUP6vIOFOs1zFBCr5vKTtfto6ZKl9XM7Lb/OVZmC16xW2aP3aXPM5bT48Tx5/jlaf/tETLzzvOZrbpeX3vOUzL75U16DDEzK+3SY8W/X/a/Mrs5q+v11gf0PPOS4/VY2Nqu68bMbP7sfpnd/2hKZqX36vuHwlfoteopR+vMzOyuG6plduV7bpXZ7KweQz738EtltniuHn/NzHLOk4B4TPevbR26fh5p1+tqb+1jZvZ3l+rx8JZ7dRtZNF/PbY/eNldml1xyr1ueXQN6DdzWrve7+rS/yuzGx06S2cNb9NhsZpYZ1uNI+a64zE5/9TMyKy7MyGxOUvefH/3wRJmZmVW/VI+VHXt1O1hWrefaPz6g1+R9/f77o5UVer3R6217j27Pr7j0EZmlB5JueXZ36fzNVXqc+Nqd+lrOn6uv12uO3uKW5xtff5nMXvoWfZ69Gd3uzqk8VWY7s3q8MzP77p/0+uf8M3QdeG0kf7fuXzveo58LYew6bv/gmP67waFhG8w4N1djsODlX7RE4sCxpKGhwdatW3fAHz0dEYlErKqqyrZs8fvCiM2bN9vKlSttxYoVtmnTpjGXa0a/yd7S0mIrV660zk7/Jh0AAAAAAAAAMPXUt9KfK56MWzypf0AzFs99wG5mVl397A+oOjpG/4H3eN5IX7Fiha1YscLa2trGVa4Z/U32urq66S4CAAAAAAAAAGCGGnmInk6n3Xysamtr5QN7Zca+yd7Q0GBVVVXjPiEAAAAAAAAAwNTIRqb3Pe5ly579bOhzv70+8r+XLl0aep9jNSPfZG9pabHZs2cf9A0dAAAAAAAAAABGpFIpq6mpsebm5gP+fUtLi5mZXXLJJePaX3Nz87i/sDIjH7I3NTXZmjVrprsYAAAAAAAAAABHLhqZsn+UjRs3WktLywFvszc2NlpjY6OlUikze/bN9urq6n0P39va2mzp0qW2bt26fdts3rzZKisrbcWKFeOqgxn3uZiGhgZrbGwc83+fzwxaflj/pWjrG5JRrufZv0IeKSy0SKH/l84BAAAAAAAAzAzZwSHLDT773C/X0y3/u3y/3sfgYOGof0gTh5+amhprbW3d9wny9vZ2a2hosNWrV+/7b9LptHV0dOz7dntVVZVVVlba2rVrrbm52Wpqaqy2ttaamprGffxIPp/PH6qTmai2tjZraWnZ9xZ7Q0ODbdiwwTo7O+U250WusVvt2gkdt/BNDZZ8878c8O8ueMMW+d9fGrtbZg2P1srsjGN2u+U4s0x/Hucbf31KZu8+fbHMfrvrfpk98GO9nZnZa995j8yOLnyZzF6x54sy+0riFTI7pjjtlqcokpHZf//tFJnt2FIis5vO+ZbM/qPklW55bv6f42R2Uu02me3tK5TZRxf/QWbxXNYtz/rOl8jsgeYFMrvyH/4os+8/dJLMdnf4k9Dpx+l+29Wn/5L07nRSZum9uu7ec869MvvmH3X7MDM77Xj9tx927y2S2RuPfUhm3/raOTJb8ibdn83M3jr3bzL7yK2vktmLjk/L7LWLHpVZ3Py2VdP1hMwah86XWdsDs2X2Dy9/UGb/e/8StzwDAzGZnfeirTL77fUnuvtV/t/lv3TzT9/9cpn19uqfZdedo6/zf93ltNl7St3yHPcaXQfzy3pldlLJLpntHNbHXFTQJbMv/sH/7Nvfn/W4zLZ0zpLZ7JIBmRUXDMssFsm55dnSkZLZI0+Wy+z8056R2T1P637w+mN1vzQza++vkNlju3X9PPqELuvsu/S1DKgeS63Ubev4I9Iy29Ovx/XlFXq99ZnvneeW55Tzt8tsy88XyWzZpfqYN92ut5v1uD6PIy/SZTEze/S2uTIrOl73y9mV+kWS3TfrfSb79Bs+ZmZvf//vZfabZ/Qfhcrl9X67evXcXnvsk255fvXQMTK74Hi97SPpSpndeZ/ueycfu9ctz6NPlsnsP5a1yOy+gvky++ptp8ns4pc87pbnFzfq+Wvhy/fIbOsfdB30lOu5/x2vfcAtz+V79NqxeZ6ev6Kmbztbdum5vzSh7wF+94ujZWZm9rG33Cqzvw4slNmuPr3+e2y7HmOThf6a6sEH9bavO0+39bvb58hs7726vV5yiV4fm5kdXZCW2dasLuvN7fo+sqRIz8MfmPcntzy32LEy8+4/v3WPrrt3vOg+mT0+pOdZM7PfP6rbyNatuo2UlOk6OLVa3yNt79T7NDPLDOsPESyao+eSs+bo+XvDDfp7w298k16v/+wGfZ9oZvaqN/lrHGV7t753r3DWfzu7it39bt2l8/lz9NPXeEwvjh56XPeR5WfotaGZWYezNtqyVe/3Tac8IrMb/nqCzPJ/Srnl2bFE1200qsfu20/eKLPPzV0us7ML/fvh7zyl58wvJ358wP/+xr//xr71eT03j8XVV19t11xzzYT2AbNtbR+ZsmMtqPnclB1rPGbUm+xr1661TZs2jWubV9hV9lL7kMy/f7vuvB1/+/8XJHF+YgUAAAAAAAAcLv7h/efbW64418zM/rvyxfK/+3/3/kxmR7/4qkNerhci7zMuLxQz5iF7Q0OD1dbWHvDdnJH/f+T/VlUd/GZNgSWswPRD8mip/sl+pFj/hBAAAAAAAADAzFSYKLDCxLOPNgvL9W9ClJXq54Z8KgaHyox5yN7S0nLAR+b3V11dve+7OgAAAAAAAACAmSEf1Z+0eqGYMTXQ2tpq+Xz+gH/WrFljqVTK8vk8D9gBAAAAAAAAADPOjHmTHQAAAAAAAABweOGb7DPoTXYAAAAAAAAAAA43kXw+n5/uQkzEV3I3uvljkUqZfedbZ8ts6Zsel1lZYkhmRyR6ZVYd2SMzM7Pf9x0ts/u36vMoLMjJrCCms5PmdbjleVn8cZk9EjlCZg/unS2zJ3frP0T76uotbnke6J4rs2RsWGYvKtkps53ZUpll8/5P4bb2621PLN0ts9u2HiWzRbN6ZDY32eeW5+d/W6K3rRiQmddGzl60XWan2zNueT502/kye/Gpun5KnP41kNG/fHN5yV0y+5/hU2VmZvYO09t++MmLZHbikZ0y89pk/3DcLU/PoM5PqND9NpOP6Synf6a6s6/YLc9DT6Vk9ppTHpdZ93ChzP7ndwf/IesRbzvvYbc8tzxypMwGBnUdXHjKkzJ7qkePTUcU+33v5IQeY27pPEZmz+zRY8ilx+n+PJT/lVueXz1dLbOmyGaZXfj0u2T2/87+o8xu6ztGZm2P6XHbzOzlx22TWXVCt/Wv3Xm63udJetw6rXSHW55v3K3HilVn/E1mbT0LZBaPZmW2ZVfKLc/5Rz0hsz/vWCSz18x/VGaf+PlLZXbFq+9zy1Me03PJn3frfrm9s0hmr1ii55J0JumW575n9HrDm9tSpYMy88bYoqge19PDfllbn9brptcs0eufWEQv07cOlcssVaCvlZlZZVSPa9996GSZ9fTq+anmuF0yu+l23V7NzK5d/geZfeoH58nszW9+QGa3PaKPed5xT7vlmV2g1/O7hvXY/eKo7rM3Dx0rs4e2V7jlSRTqceTchXpue7w/JbM9ztxfM1uPzWZmj/bq+5KlZWfKrDP3W5ndvWeezE6u0OvGu3fpvmVm9shTup8cf9RemQ0N6/XEEeW6/6T7/D+eN6tIr3P/eI+ug4aX3y6zbz6k58R0l16LmflzZtQZfyoSeoz54Z16jXfsUd1uecqSGZk9eKO+V15Rp9fyv3zkGJmdcZRuW2b+GNw1pOv21r/Ml9nc2XoOqlrg109Hj25fuZy+d339kkdk1pvX+1wQ0X2k0/z7hzl5PY7+cMdJMtvhrBlOWJSW2aJiv+4eSetx67RKvZb3+kHXsK67pLNmMDN7aK8uT9tDen1Tc4J+pnRiSmf9Wf/+M2e6/RRHdb/sy+n9etsVRfVYaGaWjOj6e2ooJbML8w/KrHHrK2T2tyX6/glj9/j9H5uyYx1z8mem7FjjwediAAAAAAAAAADT7jvfa7X//r7+25wf/NAiq6+vn8ISjQ0P2QEAAAAAAAAAoeQih+6b7G9/2zJ7+9uWybzqpJn3gN2Mb7IDAAAAAAAAABAab7IDAAAAAAAAAELJRQ/dm+yHK95kBwAAAAAAAAAgJN5kBwAAAAAAAACEkovyHnckn8/np7sQE/GmXv3XZs3MYlF9evdvq9TbRfR2w1ndcArjWZl17E3IzMxsxakPy2zrYLnMbr1/ocw+WHOnzHbnS9zy/OKxapkNZXQdHLdgr8zSfboOPhP/pVue9cWvkNmCRI/MbnvqSJnNLe+XWSo56JbnkZ0pmV129L0y++5jp8rs+/nrZXaJ/YNbnu6euMyOO1Jfk8d3lMnslMUdMju5dJdbnpueOUZmx8/plNndz8yVWd2SNpndk50vs//deIbMzMzmv3abmytL5uh6fWDrbJmduXinu995hbo9t+1ZILMVlbrdPRbR4922IT2+mJm91u6X2XcHz5TZ4zv1fiPO2HzyAt3uzMy27JolM++a5PP619eqi/UxvbHQzGxxpb5es4ucMSY+oLeL9sns7h7d1s3MHt2ektmCyl6ZdfUXymxwKCazE+br/lxWMCQzM7O7t+n+XlGqx+BjyvV1fmV+i8y+uVf/8Rwzs45uPUd95Mg/yGwoot9Z+MLjL5XZnFm6fZiZ7elOyuyEebrezy/SdfDV9rNklsn6v+LprakuO36JzL5935Mye+cpR8nsoYE73PKkCnQf6svpOfHurbrdpbt1P5g/W1+vz0d/KjMzsy+Wv0pmxyT1tfzfLcfKrKQoI7OntvlrvOrFXTLb06XbnfdbwC8/5hmZ3b3jCLc8ly3U89efBnQbuXOL3m9lub+O81TP1WOMNwd9Lf5DmX0s8VqZ7dpb5JZn2ZE7ZJYq0O3yiX5d1oGsHreyzr2OmdlLK06T2W936TVDzrnrfNOcB2R2445TZLa3T/dZM7N4LCezlx25VWZP9+v18TPpUplVluhxycwsk9XzqVc/Q8N6u5KEHgv6h/x36hbN0muYxUndDwacMfbWJ/S9V7JQ3yubmc2fpdcpe3p0Pxlw1ik79ujtXn3qE2557t+t1/Pd/boOvHa3dJHuz396XN/XB/HqYH6lXldeN7hJZv9c9sbQ5Zlfoq+ld793xiJ9jzmrQI/rd27318eZYT2u5XJ6cos6a5+6I++S2afuOcctT3qvbj/z5urzLHXm/oTTv46q0PO+mVlZXO93KKfb1p+36Ho/okLPT6fO9Z8lnBrbLrPuiF6v/y59tMyqytIy+2rsXLc8GJuHH/nElB3r+OM+OWXHGg/eZAcAAAAAAAAAhJKN8E123uUHAAAAAAAAACAk3mQHAAAAAAAAAITCN9l5kx0AAAAAAAAAgNB4kx0AAAAAAAAAEEqeb7LzJjsAAAAAAAAAAGHxkB0AAAAAAAAAgJAi+Xw+P92FmIg3993l5umBpMye2VMis5cds01mv2tfKLOiwqzMunrjMjMzi8dzMrvkhAdl9qNHT5DZYEb/HCWf93+VI+mcy8BQTGbzK/tk1tOv6yAa9ZviUEYfs7xkSGbZnD7PzLCun5Pnd7jlaXtyrsxOPXKPzO57ZrYuTzb8r9fknPP06nbRbH29tncWyayybNAtT7on4ebKUXO6ZTa/pFdmd2/V12M6eO2nvWOWu21ZUrfnjl49ps0qcrZzrsdlR9/rlueGJ0+RmXedZ88akNmgM4ZkA8am7bt0u3zLWQ/L7JbHF7v7leUJ6JdeX/Dq5/j5nTJr36XbyJAzbpmZRSfht/SOnZ+W2aPbUzJbUKn7rJnZ9nSxzOIxPSdGI3pMyznt56xF293y3P7UApkNZ3W9L5rdI7Mdzjl6+zQzyznTojcnLpit631nWvefWMA8PLtc9+m/m3+SzL5yx1aZnXRMWma79+qympmduECPs8N5Xbef2Psrmb2j/y0y89ZUqTI9/pqZ5XVztnMXPy2znz1YJTNvbj/rmJ1uedKDemxKxoZltqNHt+feAb3G89prkJ4+/XXLyln+WkQ5ZnaXmz+VLpPZa498VGY/fux4mQX1d09RUl+T3n5dP0ek+mXmrY+3OfdIZmYxZ3wudO5nZpfpMaSrr1Bm3vXqzfj3V3u69bqpvDjjlEfv15tngsQLdP18p/+7MvvwEW+SmTeXHlmp5yczs4e3pWTmjfnefaR3v+fd75qZ9Q/o9hxxxryYsy440pmjn95T6pbHW5PmnT7kzd8TWad59+Devbtnziw9Tmzr0G0raM3gjTHeOOGt/06cp9fOD+9MueV50Xx9f/5oh97Wq/OIM6x7876ZPyd483vG2a444c0V/ljpzbWexfN0/3pml55LvGcXZv5Yke7S88Xpx+q14VanPT943BK3PBibvz3xb1N2rNOO/n9Tdqzx4JvsAAAAAAAAAIBp94Pv3G43fOcOmX/og5VWX18/hSUaGx6yAwAAAAAAAABCyXm/3jFOl7zzpXbJO18q8zOOmnkP2M34JjsAAAAAAAAAAKHxJjsAAAAAAAAAIJTcZPxxsMMMb7IDAAAAAAAAABASb7IDAAAAAAAAAELJRXiTPZLP5/PTXYiJ+Gi+2c1vuOdEmUWj+tSjzjv+w8O64Xj7DJIZ1gctLhqWWTart5s9a0Bmvf1xtzw551RiMR3GYzmZdexNyCxVNuSWp8DZ7+BwTGaxiFPWuN5nkN5+/TOqUxbtkdl9z8yWmffbNZmsP2DlcuHaZWHIOphV7F+vvkFdP15ZvWvita3ugPbs8fZ78dEPy+ynTx4ns2RhVmYd3bofmJlVlg3KLJd3rrPT1geGdB/xympmlozrPN1b6G4bhneOZv55hh0Lss4x8057NTOLTGDcV1Ilug109/l13jug+14yoa+ld57e+DvszEGDGf8X5kqSem7zeMdMFup9Bv0tnrwzHKZK9Ji3taNYZiXO/L0n7Y8F3lybd9qst04ZGtKVEFQ/8QJdQaXF+jy37UrKrKxEb1dQ4Pctb42zq1Mf05uDEk4f6XPmfa9uzPx1ZUen7tNHLeyVmdcPvDWcmdlQRo+VXr129+m5ttCpA28MMfPXDN7aaMm8vTJ7bMcsmfX0+e8ZzZvdLzNvve6NE90Duu66esOvYTLOOOuu153rlQ2Y9+LOfr050Vtvef2ytCgjM299E8RbO5aXhDtmosBfU3m8NUzQuls5cXaHm9/19DyZJZz1oXctvf7stUkzs0WpHpk9vqtcZl5ZX3fk8TL7+dN6nW9mtmCWHoMf3Z6SWdi14cIKfTwzs2f2lMrMu1eMec89nO7ureMSAfeQqVK9lk336PWPN395ZS107lfMzEqSuk97a2uvbXV06fPw1txBss619OZvb6w8Zm6Xe8y72+fo8nj37gHrH8Ub84N45fHa+rtPXyyzqw/rp6Izx13PrJ2yYy1bdNWUHWs8eJMdAAAAAAAAABBK1nur5AWCGgAAAAAAAAAAICTeZAcAAAAAAAAAhMI32XmTHQAAAAAAAACA0HiTHQAAAAAAAAAQCm+y8yY7AAAAAAAAAAChRfL5fH66CzER866+1tLfvV7miRXvspJL3jVqFo3qUy8rychsTzohs6JEVmZBhob0zzySSb3fgYGYzIqL9XaDzvHMzOIFOZnFYrrukk4dDGXC/1wn42zb3RuX2fy5/TIrTgzLbM/epFue8pIhmQ0M6WsylNFZJKLrtSSpy2pmNjSs62dhZZ/MntpdIrNUqT7HbHZyfko5MBTuF2wK47rdeW3ZzKxvUB8zHtPbRp3rNZzV16M44Fp6+/XK6vXL/gG9ndeWzfx++4ajj5NZa/dfZPb4rnKZxeP+9co7cS6v26VXr952GedampnNKtb1t8sZR2LOHOSJBnS9iLPfDmf+OnJer8y8djeRscAbD5OFuk8XOX2ot1+XtTBgLPB4Y6wn42zX55TVzB+7vDWD12a9tU/QGqagIFyb9ea2gUGnDQSUp6tHz/3/dPZCmV3X+ozMvPoJ22fN/OtVWKivs1fnw8POeBdQVm/t6K05vXkm4YzdPX1+W08419pb//Q6c1uPszasTA265Yk5bTbsWOCNdzFnrWHmjxXz5+h1rjc+e+NEosDve96cmcvpLN1dKLN5s/V5DDrr6p5+fZ3NzN55ylEy+9Hjj8rMu14F3towoO959eOtD717C69fBvHWVN5+vbltV6de+8wq1ffYZv563quDxXN6ZNY7qNvI4LDeZ9AxvX4StF+lN2CsrCzXY5e3Jr/hkcdClce7Ht662ix8HXjrP+96BPGul3ff5s0z7vEC7me8+6+dnUUyS5XqNrA77T+/8Hjz8KCzVvPGPG+cCHou5M3D7z1rkcw2/OXpUf997w3/ZV3f/47c7ssf/YDV19e7ZUKw3+/6/JQd65y5H56yY43HYf+5mIq3v8Mq3v4Ome91FnMAAAAAAAAAnp9KLn2XZS5aJfP6V86bwtLg+eywf8gOAAAAAAAAAJgefJOdh+wAAAAAAAAAgBngR9/4vf3om3+U+Uffn5iRn/jhITsAAAAAAAAAYNq98d3n2BvffY7Mz50z8x6wm/GQHQAAAAAAAAAQEp+LMfP/pC8AAAAAAAAAAJAi+Xw+P92FmIhFdz/t5gODMZn1dusX+Rcu7JdZ5964zJKJnN6uo1BmZmYlZcMyy+ndWnZY/6ykuEjvs6/f/0WG3l5dd0cf1af326e3izg/1olGwzfFRKGuoKeeLpLZUYv1ecQLnEo3s1hMlzeb1T/ByzjXKxHXxxwY0vVqZjY4pPfrnUtJsW4j3T26rcedsgbJ53X9lBZlQmU9/bqsXb06MzNLlQ3JLN2t+21HZ0JmRy7QbSvoWh5Rocefhx4vl9m8OQMy25PWZV0wRx/PzGzPXr2t17YGnfP0xsNkUdYtzyKnbhMFettCp80+sa1UZkVJvzxeuxzO6n6ZccaJuDO+BLWf8hLdnrv7dF/o7dVzwvy5fhuR+xzw55lcTtfB9p1JmR2zuFdmeWefXp2bmXV36/rx5q+8Mxx6c23cmbvMzN7/kgUy2/AXvf7xzsM7ZnbYr58ip2/29+t2GSvQ7dnrl0HrptlzBmXmjU3/eOpRMvv8bTtkVlKi50uv/5j5a5yMU++pWXp82bNbj81FTlnN/LVjWZk+5jZnTXXEfD0HBale3CWz7j7dDnbu0eNEapYeC737AzOz9F59zLnOXJvu0tsVJXT/KSvVdW5mNpTR18sbR71+EHW6e0HMH5u8NWBnl26X3nzpzRdJp+7iAWXt6nWuSdLp0326PHMrnDbQ449b3pjn3T9467gS536vslyPk2ZmA0P6PL31RJ9zvbLOOj8W8e/3JmPd5Alq6x6vH5QldVtPO20yaN3kze8Lj3Duzwf1fr22VebMJcMBa4ZS5x4zWaizDmcMKS/R9TrkzGtm/r27Nyd4WUenvpbe/G3m31/EnHbZ4Vwvb3wJeraRdeaSPmeNt3i+bnfeHD3ozGtmZksW9cjsgS2zZOatt+bN1eNh+8l6bYixu7nji1N2rPMrPzhlxxoP3mQHAAAAAAAAACAkvskOAAAAAAAAAAgl5/3q7wsENQAAAAAAAAAAQEi8yQ4AAAAAAAAACCUX8f9WwwsBb7IDAAAAAAAAABASb7IDAAAAAAAAAELJRnmTPZLP5/PTXYiJKPrtTjfPZ/VFjsVzMuvv1j9/SJRkgws2iuJif7te55iexM64zAaPyOjyPJNw99udGpZZauGAzHI5XefDW4pk1jdHl9XMbNHCfpnt7dZ1sHdPocwKk7oNVFQOueWJRsN1nUShPmYspjOvXs3M+vp1+ykt0XXb7dTde89aJLPrH3zcLU/MqR+vrImE7idFhTq7976UzCIF/rVKVej6yelL4oo6vyeUGQr/S0RDg3rbwoQu7Jw7SmW2rabXPaY3ji50+uW2HUmZJZPhxlEzs4Qzdu/p0P29xBm7y8t0G+h12quZ2SxnW68O5s4eDHXMuDNOmPlzTSSi+0Jvrz7mYEa3uwKnfw0P++NW0mmzXc6cmHXKU1Km5y7vWpmZdXTq9tO7W2dFlXq/Xp8tm+WXp8gZD3c9ovv0rKP7ZOb9PSKvzs38c/GUz9LXZGBA73PeXN1HzMw69+r5q8vJvDG/Y4/eLlmk26s3TpqZZZ1u643d5U577nhCr6kqFuux2cwfK7366Xbq9arauTL74h+3ueXJDut20N+vs9nOWm3hEbofbNtd7JbHGw+Li/Q1yead+w5n/I0FrFOyzlha5oxr3losvVe3gaB7Fo+3Ju/a64wx/TEZffziSpl9+74n3fIUxvW5eHWQyep2V5nSY9NE1utFztrIG++8uS3j9C0zs4FBXe/eesMbQ7w68MY7s/Drw+Ii7zrrugtq63Mr9LWOOP2rI63vs70xJOOsb4K2zTr1vrvDK4+ug6SzDgm6F966Xc9RKWf947VJrzzeeGfm14835u91xq05c/UctGeH/6zFuz/15mHvPrK/Q7f1Yef+ycxs3hG6re95Rl/LgnLdJuPOOWYC7hGGM84zJWfboh7dfiLz9PXqfeU8tzwYm192fWXKjvXq8n+asmONB2+yAwAAAAAAAABCyXlv87xAUAMAAAAAAAAAAITEm+wAAAAAAAAAgFDyEb7JzkN2AAAAAAAAAMC0+98Nt9r/brhV5k9cmbP6+vopLNHY8JAdAAAAAAAAABBKzg7dm+yvXn2evXr1eTL/+9IrDtmxDiW+yQ4AAAAAAAAAQEi8yQ4AAAAAAAAACCXHN9ktks/n89NdiIm4NuAafvE7e2XWM28o1DHjaf2ziUxqWGalOwrd/e6t0NsmBsP90sFwgb68sZKsu21krz7PwUQuVHlKemIyK92rMzOzSE5f7O2LB2UWK9RlXbSwX2bFSb9+Orv09ezs0Nnixb0ySzv7DBKL6Gu994limUXn6H4Qd9rPQL9/vaIduv0ULNDH7HHandd+Cpfoa9m1PSEzM7MSpw4yw7rdeXUwd45ukzu3J93yeGJZXR7vPHJO/xne5rc7b1wrdMaCxONFMut29pns98e7uDMeds7VdZAMaLNSZcaNS0v1uXj13rNVt8tTlu6R2f0Pp9zyxOL6mgw5deddy8UL+/Q+M7peOzr9ttW/U+c5Z45KVehrkhnS59jVGXfL45nV6YxpGX2du5y5vaTLf9ch41yTyp16264KXXdeWXfP99dFVUv0/LV1u+7vg726jcx7RreBnln+PDzg9U2vvxc59dOt63W4TF9LbzszswHnmIVOv4x6Y+XTegwJWqeFnYe99WjFTt2/up1+YGY25JT3qEfCzZlbTtbrgsKkXz9ZJy6f5fTpIp09s1X3EW+9ZWZW4rQ9z+L5us8+1F4us3lzB9z9dnTqttfr9HePN65782UQr20VOevKxGJdB3lnbo9E/Ws5sFW3Z+9eaKBYn0dmjq47ry2bmcWcJZe3nvB4a5/iYn9c99bsYdfr3jEHtuh7JDOz0uN1H9q9O9x9m1c/QWNBUYkeC2aV6XYwOKTbVr8zXyYT/vXyePc71cd1y6ynV88lex/V18vrI2b+Oi4X0/Xe5/UvZ80Z9Pwm4lRt4SJ9Hxl16iDvjD9B9eOtU6LOqUS9Mc9pW6Vd/lzhrY0GnD7dUxluvsxeNCfUdjjQj3ubpuxYF5fUTdmxxoM32QEAAAAAAAAAoeQifJGcGgAAAAAAAAAAICQesgMAAAAAAAAAEBKfiwEAAAAAAAAAhMIfPuVNdgAAAAAAAAAAQuNNdgAAAAAAAABAKNkZ8iZ7W1ubrV271qqqqiydTlttba2tWLFiXPtoaWmxlStXWmdn57i2i+Tz+fy4tphhFn+lJ/S2A8W5UNuVdcZk9tSxgzJb+EShu9+dizIym7MtHlywcUrPGXbzsk79M5h8VDebnllZmQ0ldJ3Pf8qvn61HD8mstEtfE4/XBgaK9HmYmUVyegDx6sdTVqaPmRn2B6zk0wmZDcd1efpSuh0U9Otfdsk4+zQzK0zquo126LYVd84zmtXZoNO2Snr89uG1g6gzTPTN0X22bJu+Hr3lft9LevVeoOvdO0+vX3p1Z2aWGNTlqdipx6ZtRw/ILFWh6678zjK3PEMJXQeFg7qN7F2q54vsU0mZFQe0n67qfpmVPqb3O+T0Efd4Tp81M4s6v6NWPkvXe4HTtrr36uuc7dX1UxDQ1gu36XE/55yH1y+99jEZc6mZP8Z6fS/Z5/9CYXGPzsP2g13zdRtY9Lget8zMth+l5+GCjD5mxU495vfOcsZffxp25+GsN++V6h1nnfnbGwu9spj5435Bpb4mxVuKZBZ1jlk44JfHm/e8dpkNt9yyziP0OQYds2uu3naeM8buma/ba6FzLc3MIov0ej6z01+vKsmFek5MBszDHU+EawfDZbrdDTvrrYKMXz/e2J531mreWrZyq67Xrgp9vIUB49bjJ+g5+oitetv0bN3uSrr0mFbS7dfdHqcvpPboOSqoDyne2Byk1xkrvTVn3Olf2bjf1ocW6H6bS+t69+pu95G6P5c5fcTMbNGCPplt/cNsmfU75xHf7aypAu4h884Y7F3r2GI9/uScMaS7Wx9w1iy/7nqd9WGyQ9fBQJFuI3FnfePN0Wb+PB136i7Zp7OOI3QdeP3AzO8LJXt1W/fm74Qz9wc9+xl27gPmbNfXq895fjHfef6VKfTben+pPs8iZ33c6VwTb+7f8R7//hNjc8PAN6bsWJcm3z3qv29vb7fq6mprbW21mpoaMzOrrq62hoYGW7169Zj3X11dbR0dHeN+yM7nYgAAAAAAAAAAoeQikSn7R6mrq7Ply5fve8BuZtbQ0GB1dXVjPo+GhgarqqoKVQc8ZAcAAAAAAAAAHJbS6bS1tLRYbW3tAf9+2bJlZma2YcOGwH20tLTY7NmzD3hIPx48ZAcAAAAAAAAAhJKz6Jj+GRzMWk/X4IT+GRw8+FNgd911l5nZQW+hjzwwb25uDjyHpqYmW7NmTeg64A+fAgAAAAAAAAAm1U/X/a/96NM/mdA+nrl6h11zzTUH/Lv29nYzM0ulUqNuM5IrDQ0N1tjYOKFy8ZAdAAAAAAAAABBK3vlW+v5e3/A6e/UHL5rQsd5R9o8H/bstW7aYmVllZeWo26TTabm/trY2mz17duhvsY/gITsAAAAAAAAAYFLFE3GLJ+IT2keiMHHQv6uurjYzs46OjlG38R6gr1271jZt2jShMpk9Dx6y9/12g3X/QX+8vuTc1VZ67upRs2Sf/iT9QHFOZvEh/dOZ+U8VyqxwwP8EvlceL0vPGZZZQUaXtbgn5panvzQbqjxzn9GdJZbV5RmO593yeHXr8fbb55zjEVsP7rT727nw4G9AjSjI6PqJD+o6GCrUZR102p2ZWfmgPuZgQreROU/r8xwo1vVTqE/fzMxSj/v1p3jXK2w/SO32h7rtRw3JrGSv3tbLYrrqLJb1y9OxUJentENvO5TU45Yntcef4Lxz2Xb0gMyObE/KLJrT2VDCHwtK9+qxy6uDSHuRzIqd/tNxlD5HM7M5D+v95pxhNuqMh11zMzK75tVz3PJ85oejLyrMzNI5fa29cSsbc66JkyV3+ON2T6Xut/lhb67V40vMmb+9ud3MHyu6Kp3xcECX1ZsTB4r9tu6tG3LRcP097Fxq5p9L1hm7vSzqjC9FPf66ydtv3tnUu87eHN07S9d5yV6/rKndejDodNZjcWdsKkvrbNdC3beCypOeoy9KSbc+prfmLO/05z2vHVTcp8dYb10Zy+q2nvWXwJaO6rY17MxRxb3OvcVWPe/1OcczM0v2h/0zWrreo84xg9YF3U4/GXDW1kH7VbxxK2hcn7PduzfT51G5U5e1Z5Y+xyGnH5iZJZw+7d17eeZsc8bmgLbeO0uPFWVdeuNkn85yTtsq6fbHggFn3it25oSM07QWPqr7XpezDjEz67i3RGaDFXrb+G5doI9clpLZZzd3uuXxrvXORfr+Ibdb94NcQvehZL++zs50YGZm5bt0Wb17cG954/WfSM7ve90L9M1rsXO9SvbqrMyZ25J9fnl2LXLWFE7lemsfb91U1OOv/zLO3OZdk6IeXT9DSb3PSMAy1hvbC505qEisqXpv3WCdt+jnhusHr7T6+nq/UAiUG+Ob7JNl5CG6emNdPWRvaGiw2traAz4nM/L/j/zfsb7hftg/ZC8/p87Kz6mTedCDWwAAAAAAAADPPyWvXG2VL9bPDevr9Q/UcPhYtmyZmR387fWR/7106dJRt2tpabF169aNmlVXV1tNTY21traOqQxhX4sAAAAAAAAAALzA5SwyZf+MJpVKWU1NjTU3Nx/w71taWszM7JJLLhl1u9bWVsvn8wf8s2bNGkulUpbP58f8gN2Mh+wAAAAAAAAAgMPYxo0braWl5YC32RsbG62xsdFSqZSZPftme3V19b6H74fSYf+5GAAAAAAAAADA9MhFpv897pFPuzQ0NFhVVZW1t7dbQ0ODrV79f3+rM51OW0dHh/x2+0TwkB0AAAAAAAAAcFirqamxTZs2uXlnp/+Hpkfefh8vHrIDAAAAAAAAAEJR30p/IYnk8/n8dBdiIo7+zx43zzm/rRAfDNcAsnFdZbHM1DeqgWJdnmTf5JQnk9DHjObC7dO7VkGGnWvScURGZhlnu8SgX6AC51pno3q/8WG9XabAuZb9Mbc8iYFw19o7j94yfTGTfX79xLLhjjlQrI95xRVlMru+sU9mXZVOYcysMGTdZZ1Lkkno84gHtK1dC4ecbXVZ5z1TKLM+51oGyTntOZrT5fHqNWwbCNrWG3+6KnQ7KO/UF7N7ll8ery/squ6XWeWTSZlFnSY7mAw/beedaxlxrqW3XS7mZAHjunctB50+5I3PRT36WnrjkpnffqZjfvfEsro83pw4kes109ZNeae86TnDMpuzLS6zrFM/E+GV1bsmM63dTYewdee1555ZAesCZ4wZcsYmb9zy+kGy3+98Uae/e2X15u+gtYjHmxMKnXHCuybefOCNaV4WxFtvePtN7Q7/nprX9rz2k9qjx63uCj3eefVqFryeV7z68dpW0Dzs8eZor21523l9yyz8+tm9x3TWx31lfgV55fWutZftPHpQZqUduq0POc8DzPyxwDsPr2356zS/LXvjlncfUDig9/vMMbru5m7XfdbMn987j9B9umKnvibeM5ribr9+MoXhxlJvPeqNsUHPjMKuf7zyDCX1QZ94f2mo4+FAXx/+3pQd6z0Fb52yY43H9H8wBwAAAAAAAACAwxSfiwEAAAAAAAAAhJKL8BuYvMkOAAAAAAAAAEBIvMkOAAAAAAAAAAglyx8+5U12AAAAAAAAAADC4k12AAAAAAAAAEAoh/Kb7Ld+9df2u6/+Rh+rfo/V19cfsuMdKpF8Pp+f7kJMxLyvd7t5yd5D/7J+LKsbTjZ2WFfnpMs7lyMXUHdDCZ0Px3U2UJyTWVRHgaJOO4jknDYS1wdN9sVkNpTwC5vsO/Rt3TuPuveVutt+/cs9oY6Z1VXgyjj1Ex+cWb+045XVzCzq1Hs0q7fz+oFXB0HlKciEa+szTcypu4nwxpFMXGdZ53rlojrzroeZ2WDSaQfOtl0Vw6HKU9Klf16fd7Yz89usV6+xjG7PE7nOxT16v96Y781fMafOvTnRzCwygTnqhSA+pOt2yOkHnp5ZugGVdYacoMws46xh4oOHfhz1xhczv11Oh7DrQ2+M7XbGtKB1gTd29ZXqNlLco9tIoTcPB1wvT2LAG5v0dt66ciJrSu+Y/nio62Cy1hre+serg7Br1SDp2RmZlTlzbaHTBroqdT8wMyvu1ifj3UN59TNZ18ub371rMpF1gbcWyTndxJtLvLrz+o9Z+H7r7dcbf7x1Y9C45dV7rzOOxoe9+6DJuSfxzjPZF7Y8oYszKVhz+muxp/7Jf7aBsVmfu2HKjlUfvXTKjjUevMkOAAAAAAAAAAglzzfZ+SY7AAAAAAAAAABh8SY7AAAAAAAAACCUXIT3uKkBAAAAAAAAAABC4k12AAAAAAAAAEAoOb7JzpvsAAAAAAAAAACExZvsAAAAAAAAAIBQeJP9efCQvbg7/Mv4mUReZvFB3TiyMb1dNq6zWMZvcHnnVCI5ncWy4co6Wbw68Aw518PMbKDYqQRHNNxmFnXq1cwsktN5YsDZdiAWqjxFPf52+Wi4evfOw9vnddd1u/vNOcUN6gthxAfDjwWxrM6Gnfbs1Z2nIOD8vbrzyjOUDNfYg/qW14cKB3S9B51n2PIE9QUlG26zCe3X60NRp93FMrpeg/p6sk9v67X1OdviMvPanddeM3qXZmZWkNFZzp1rvTYSvu4GinWe7HOOGDBfKN7cPlm8OTrseZj518sb8721WNAYMpTU23rjSOle3WiLe3T7mcgaL+xaJKyJzLPpOXqgSO0ON5B6a1UzsyGnT3vrQ29s8tpPJhF+3ivv1LdP3nzgjflJZ8w388cudy3i9Muwc6lZ0Diitwu7Vp0s3trRa1sT4c2ZyX4devXqldVbTwRt643rft/TxwtaO3ttJBvy4c1E1n9ht/X6l3eOmYB2581fXZXDMkv26e1KnOcpYce0IGVdehwdcsZnr00Gjete/3LrvdjZp7c2DGivU70GDDre4fRMyVuvemPTZN0LAvs77B+yAwAAAAAAAACmB2+y8012AAAAAAAAAABC4012AAAAAAAAAEAo2QhvsvMmOwAAAAAAAAAAIfEmOwAAAAAAAAAgFL7JzkN2AAAAAAAAAMAM8Kf1v7A/r/+FzMvrn7b6+vopLNHYRPL5fH66CzERi7/SE3rbaE5nOedDOgUZ/dOZXGzqqzPmlCcb1+XxtpuIvFN3A8W60nMxf78DxVmZRbPhrom3XbLP/5pSJBeu/vJRXZ6w+zTzr3VUV51b7952w87xzMyyAddTSQx41zLcPoOErZ+ccy3Dnr+ZWX+pLpA3/nhjmtfWBxPOhua3rcJB3U+8PuS1H+8cg0RD9qGMUx6vTQbxzjNsWb32amZWOOj0oUn4SFzQWBCWN194JtK2vDHYa89eG4mEO40J8ebhiZiMa+3tcyJzYjyjs0z80O9zIn1rKKnrINkXdkwLW5rwx/TmiqD68dpB2LHAE7Rej2V0gWPOGOyNMRNpz56w60pvuyBh145h13HePoPqNex5hp2/vfVEUHm8dum1SU9v+bCbl3Tpd+4GigIWHELCWRsG8a6n1/c83vUKWlN5JuMeIai9eutu7165cEBvV9yjM2/snsi9jj9fTE7dTca9R1GPLpC3ZjAL/yzGW+N5a86gtWHY9ar/DEKf40TWlGHbXsa55911eXnI0mB/a+0nU3asq+wNU3as8eBNdgAAAAAAAABAKDn+7Cc1AAAAAAAAAABAWLzJDgAAAAAAAAAIJc8fPuVNdgAAAAAAAAAAwuJNdgAAAAAAAABAKDneZOdNdgAAAAAAAAAAwjrs32Tv+v0G67t1g8zLX7bays+pG/d+o1mdRXLOhjFvn/5Pdbz9ZhJ5HcZ1lnN+jJLz9mlmUac83n6Hkl55dDZQ7FWsWUFG118upvfr1XvhoD6RSM6/XjGnjWSdduCdh8fbZ5BcyG297YaddjcRfWW6HRQO6Os1lAy3nVlw2zvUhgL63nBBuLodTOjziDvtbsjZzszvJx6vjXh9dsjJzPw+nYuFu5axjD7HoPbhnYu3X2+MzTh1lwiYS7zxeTJ4Y9pExi2v3XlzyUTknf32zhqWWSahyxp3zsObR8z8NuKZ6jZgFr6sXvsJ2mfY8/Suc7LPaXdOX48P+v0y6/Tp4m59TG8c9eouFtBHvL7pldUbfzNxvU+vzs3M9lbo/hUfdsZ8pw147SfZ5w9O3hjj1XvQ2nEyeMf06v2KK8pk9pVvdLnHjDrH9Nqst13QWkSZrDrPxnV53DVDkT+we+25r0QfM5pz1rnufOkWxy2vNxZ4+43lws/RUWfbrDPGeOUJe+9lFr5/ef3AWxcErbm9flKyN9yjnbBzaTzj596cEPPm/pDjune8Z7cNd1/ice8RnPWEmf+8KWx5JvIsyuvvHr/9ePNB+P16bU/dZ/fessH6f7tRbre+/0qrr6/3C4VAvMn+PHjIXvLK1VbyytUyTwxwkQEAAAAAAIAXmpLzVlvFS/XLt/X1pVNYGjyfHfYP2QEAAAAAAAAA04M32fkmOwAAAAAAAAAAofEmOwAAAAAAAAAglCxvsvMmOwAAAAAAAAAAYfEmOwAAAAAAAAAglDxvsh/+D9nz0bybD8e9TG9bOOg0jlhQqcLJO79XUJDR5Ynk9HbRCfyuglc/XpZxsoGirMzyAfXq1UE0q7PCQV0JUV0cizlZkIlsG5Z3Lt718mSdazJQ7DQ8M8s5fTPmXEuvHeSi/jGVoLIOFOm8YFiXdbhAn2M25px/YbjzMDMbHNLtuXTWsMy6u3XFFjjnYWY2HLLehxI6i+acMS2g/2Sd6+X1d09mAmOT19aTznZZZ36KZfR5RJy6M/P7bVhhx7R4xs8zbh045+lsV+AcM2gs8OaZsLLefJnw+16yL1x79trAZM1PQ865hK1Xr32Y+e1roFiXZyjhjSG6rDnncgyV+m3L67d5pzxFPfqgXvsJqvP4oM68NjuY9NqzPo+gcSnhjN3eGiZ82/L7XmLAW3frLGjMU7y2FcSrW6+sX93YLTNvjjbz+5B3zKGkHoC8McQTtGbw+GtOXZ6oU1ZvOzOz/tJwBfbqNRPX+4wErPEGYs49VFJf55yzPh7y7k0D2pZXf94aL+vVe8Bc4nPW+gHXWilwtgtapyT7dKMNei6ieJ93mKz74bDjVsypnqC+l48693TOnOBd57D3pmZm2bhzns7c5s0z3lwSVD9hT8XbzivPBKpuQnMmMNkO+4fsAAAAAAAAAIDpkTuEb7K3rf+pta3/mcwX1a+x+vr6Q3a8Q4WH7AAAAAAAAACAaVdT//dWU//3Mq+3v5vC0owdD9kBAAAAAAAAAKFk81P4TfYZ+vl3vmYEAAAAAAAAAEBIPGQHAAAAAAAAACAkPhcDAAAAAAAAAAjlUP7h08PVYf+QvXDQv4g55139ZJ8Oh+N5mUVz4Y5npvc5Ebm4zryyBhko1htnY3q7TEJvF8vp65UNqJ+Is21YE9ln2Hbg1d1k8dqzd509uah/vaJO3eadOhgu0PsdKsnq4w3qSp9IPxh02nM+oA6U4WG/3RU752lOebLOeRZknEZZ4BzPzAqdYw479f7xiytldu3P9sgslg3fLweKdFm9dhDL6GMGtXWvv3eX67pNOHWXzOpjZp3+bOafi9dmvfHQG7difvNxedu687B7TOc8Aq7lcLHOvXbQV6IbV7Lfuc7OOsRscuo9/BrGF7QeC3PMxIC/T6+NJPv0tsk+XbFRZ/zx2kDQtfTKWjCgtw3q70ou5m835LR1byzwxhCvvQbNl2HXIl57LnTqNUiBM46GXcdlnPX6dPDac9jrYWbWWzocajtv7i9w1k39pROYhEIK20fM/PVYYSojsyFnzeCJBWymj2gWccYRrzl7NeCt8yfCGyvz7rwXsMZz1uTeej7ZrwcKr39Fgppzsf4PvLnNE3WuWNZbUwUczluneJk3rnvjqHfvaRa0TnHudZz5MuoMd94zkf9/64B8dN5YOZF7Xm89Fna/3lwatE4Ju171jjmUmJzxB9jfYf+QHQAAAAAAAAAwPfK8yc432QEAAAAAAAAACIs32QEAAAAAAAAAoeR4j5saAAAAAAAAAAAgLN5kBwAAAAAAAACEkstP4TfZZ+jn33mTHQAAAAAAAACAkA77N9mHEnk3LxwM9+ONgky47aLZUJuZmVku5p9LqH06P0YZKM6520Zzug4GivWJZqP6PGLOPhOD/s98Yk7dhr1enmwsfJ536sCTc/aZifv7zMb966lEnHrNO+UZSvjHK3Sup7dtxGkjMadec84+s8N++4hlnWM6mTlZ1Kme4SK/7rIZp+4GdOaVNeuNL0N+38vl9Lbelp/5YYfM4k6f9cYeM7PhAqc8TtV64+FQqe4IXps088/F+xG71/cGnfYcNFfEnPaTGAg3VnpjWnaSXiPwxvVhZzzMOWWNB4wFNqyj7vJwY6w3JwbNM8mQa4p4Jtx2Xv8xM4t642FIE1k3eW3E6ydhzyNsmzQLmBOcbf31Tfh1o7c+9tbWfWXhLthE1uve9fLWGhPhXRNvTsjEJ6M0/hgcdu3ojusB61hvfejNie5atki3reF+fcACZ84z89c/YddNYef9IAPOeXqiTj9Izhlyt83uLpSZt2XOGdP0HoN5Y6V3/+Ct8byx0t/O540FQyW6PeedtUjgPWSP00ac+/PQ46g7l+rNzMKvD4PWRmF568Ogtb7izW1Bzyf8e3fnfs+9h3IP6Qp7DxX2mBNZU05k7YjJNVn3hYcT3mQHAAAAAAAAACCkw/5NdgAAAAAAAADA9Mgfwm+y3/vVH9m9X/uRzE+u/6jV19cfsuMdKjxkBwAAAAAAAABMuxe97432ove9Ueb1sXOnsDRjx0N2AAAAAAAAAEAoOb7JzjfZAQAAAAAAAAAIizfZAQAAAAAAAAChZA/hN9kPV7zJDgAAAAAAAABASIf9m+yRnP+Tkmj28PlJStiyRrPhjleQ8Y83UJyT2XA8H2q/Qcf0eNt67SAf1WX1slxsbOU6lPpK9cWM6sthZma5kD8yyzvnOVw2LLPIkH/AgsqMzDLd4YaeaK9TWKc4QXUXVjRg/FEK+v26iw/qPJ/QJxMp0+2nYK+u8+EC3Q/MzMwZm8LWrVd3OadfTuSY2ZjerzeGxAPGrcnoe56M+fWTcyooG9fbxTL6RLw6iDrlGZ7Aj/K9eWayDCX0MZN9Tv0MhxsLvDnIzCzrtJHEgNOHnLZ+OK2LJmKqz3Mi65uw67jJO8dwfc/rP0H101eix63UHj1/eXUXdI/gyXrjj9O/Ms522bg+x6Br6dXfUFLvN+z8FGTQWYt4vDHPXeM5wq7Fnt3WS/V+YxPo717byjtzSawwXJ13dToTv5nbnr2zLHTWqv41CVrj6W299ap3Lb1+4K0NzcKPI1GnfoadsaDAWYuZBawd9W2bu6bKxZz7T2ds8tZFZv6zBG8NM5gMtxYLun/wOFXgH9ObDwLur8KOXf7a0VmvT2DNEHadMtO858pSHf7T1JXj+Yxvss/AN9k3b95sS5cutUgkYtXV1dbS0jLdRQIAAAAAAAAAYFQz6iH7hg0brLm52RobG625udlSqZTV1tZae3v7dBcNAAAAAAAAAPAc+Xxkyv6ZqWbU52LS6bQ1NTXt+98bN260pUuXWltbm1VVVU1jyQAAAAAAAAAAONiMepN9zZo1B/zvVCplZmY1NTXTUBoAAAAAAAAAwOGgra3NVq5caQ0NDVZXV2ebN28e03aH4vPlM+pN9ufavHmzNTY28hY7AAAAAAAAAMxAM+EPn7a3t9vSpUuttbV13wvb1dXV1tHRYatXr5bbbdiwwVpbW62xsdHMzBoaGqy2tta2bNkyrmfSM/Yhe0NDg23YsME2btzo/nf5zKDlhwdlnhsMvsiRgoRFChLjLiMAAAAAAACAqZcf9p8JjhiwrMwGBxOWSPBM8Pmgrq7Oli9ffsAXUUbeaPcesh+qz5fPyIfs69ats/b2dkun07Zy5UpramqSldHz689bzy/WTuh4s/7uKqu46F8ntI+ZKhfLh942ktM/oCgcww8vxrvPmB7zzMwsF9NZ1MKdp7fPXNTfZ9bZNpPIhSrPcFwfsyDj17m37aBTnsSg/mpUtFefZNC3poY74jKLORtHw1WdFQzr+gm6loVOHWSdbePuMfXxhnXVmJlZb6nuDN71mpUakllXhx7uoxP4cFjMaZcxp797guon4owVWacfRAqc/tWvK8FrH2ZmA0XhGq3Xp4ecPhsNeENg2Bn33XEkro+Zj+rtvHF9snjzhTc2J/uc0MxiGV133jG98XcivLkkltXtMmi+eCHw1j/R7KGvn6D11mQccyK88rrrLec8Cp3721jGH0fjzjjr9S+vvycG3EO6ok5/9+on64yjnoHikIsf8+fETGJyxqa4M8Z4658C7zp7c7Sz3vK2m8i2SWdd4K1VvfM3M4v3O+smZw7KOH3PK2vQGiUe8p7OW29594k5Zz1h5q+7C5z1T9BaX4kFjc1OnvXmGafavXVT2OthFn496q1zMwXhxyZvv31leuDy1mph77HN/LWRN6777dlpAwFrQ28e9uaSXMZfy74QpVs+Z3t/E/xM8LNOllh7tV1zzTWHrEwvVLlp/oOk6XTaWlpa9r2NPmLZsmVm9uzb6urZ8qH6fPmMfMg+cnItLS22cuVKa2xslBVReuGHreSCf5L7SozxTXYAAAAAAAAAh4fU8o/YrPOunNA+rvpQ5SEqDcYiOzhk2cHMhPYxWDZ40G8f3HXXXWZmB715PvKgvLm52X2bfX9hP18+Ix+yj1i+fLmtXr3a1q1bJ/+bSDxhkbh+SB6NzKw3hwAAAAAAAABMzKH4/DOfijk0smN8k/1vjd+xez/9jQkd68SrD/7tg/b2djP7v7fQn2skDzLWz5ePZkY/ZDczO+uss/jDpwAAAAAAAABwGDtlzTvtpA+8dUL7uKr85Qf9uy1btpiZWWXl6L+ZkE6nA/c7ns+Xj2bGP2Rvb2+35cuXT3cxAAAAAAAAAADPkQ/422EjoomERSf42wOj/fZBdXW1mZl1dHSMus1YXuAez+fLRzOBP3d3aI38lGDz5s37/l17e7s1Nzcf8BdeAQAAAAAAAAAw+7+H6OqN9fF8JWXk8+Vj/cTMiBnzJnsqlbJ0Om2rVq2ypqYmq62ttaqqKmtubp7uogEAAAAAAAAARpEb4zfZJ8uyZcvM7OBvr4/876VLl45rf2E+Xz5jHrKbWagH6nXvK3Xz//pCr8yG43mZFWQOnz+Y6p1HNqa3G0zq7czMMomczLz6ieR0Fp9AvUaz4bbLOXXg7TMX8Hse2biun4Eip+6GdR0MF+hrkov618uT7NMnE3fKk3FGiLxTr2Z+G/HarMerA+942Qn8zo5XP56obgKBvOsVc/rXjp36V65Kne0yAW3La7Nh68frX4WD/j4zTj+JOe0g6gwGfvvx6yfulNe7Xt5+vfMI6ntePxmO+9vqfYZr0FHn/M38th52Hp7IPJMY0Nt6c0kuNoEO7xj2ssNoDZOL6bJGs+HL6tXBRMZgZbLOYzr0leoK8taOk1Xnft9zMne8C79u8sausOsxb+7y1n/PlkdnhRk9jmZzer+Fg1P/C81h20jEWa8XBPxqujceeplXVm8NM5F+EDS/TwZvnRJ+va6zoPpx1w3OpDhQpMvqrdMmUudh91vS4/TZoDWns+4Oey3DXueg7QaK9QXz+l4mZHliAc8Kwj4T8J5t5BLh12JDIdcUXv1Ena9vJPtm1jrFW1MFCbvmGiienPU6Zo5UKmU1NTXW3Ny877MvZs9++sXM7JJLLhnX/sJ8vnzGfC4GAAAAAAAAAHB4yeYjU/aPsnHjRmtpaTngbfbGxkZrbGy0VCplZs8+PK+urt738P1Qfr58Rr3JDgAAAAAAAADAeNTU1Fhra6s1NDRYVVWVtbe3W0NDwwF/vDSdTltHR8e+b7cfys+X85AdAAAAAAAAABCK85W6KVVTU2ObNm1y887OzgP+3aH6e6B8LgYAAAAAAAAAgJB4kx0AAAAAAAAAEEre+Vb6CwVvsgMAAAAAAAAAENJh/yb7N7/U4+a5kD9GyMX0x4TC7jMb8/PEgP6pz2BSlyeW1fvMJHK6PHGdTUQ8o88j5mT5aPgPOOWcus3E9X7zCZ0NO9sFiQ/q88w6+8067a5g2G94EacdxHK6PJkCp2052xU452hm1leqC5Ts1+fSV6LbpVevnviwv113uS5rYlCXtcBpz177GShyLpaZFTrHzJreb6IwXHseDhgLos6gN5RwN5VyE+jvUaddevv1xp+ss10+YOwudNplNOu0vbiOos4lyQUO3eH6Sa/TZ2POeRQ4/WvQmYPM/OuV2qMryNsu6ncvl9ens86pFHfrRuLN30HzsLcW8fu0N8/o43nrkKDyeLx+EHafZn4/GSjW+032hT6kNJE1g9fuwtZP0FrVawdeu/TqPJbRB032TeC9HqcOvP0OFOvCBl0vb1706sBbw3jbeZmZfz29c/HmS287r00+u1+deWX1Mm8uddtzQN0NOfOQty4YduZor368dbWZfx8wXKTL6s39PU57LQgoz4CThb3O3ppqyLn3Mgu4VwxYj4XZLqitDzjXJO6t8RzuWiOgfsLet3m8e8h+Z21YGA0/rnv9y+vUceceyRvvzPz1YSRk3Xnl8fq6mT9nevOwd53Drg3NJtDfnf7lPacKejbmiXn3Ac55hL3OGLscb7LzJjsAAAAAAAAAAGHxkB0AAAAAAAAAgJAO+8/FAAAAAAAAAACmRy7kZ0ufT3jIDgAAAAAAAACYdo9tuMEe33CjzNdf+WGrr6+fwhKNDQ/ZAQAAAAAAAAChZA/hHz49atVb7KhVb5F5fdkZh+xYhxLfZAcAAAAAAAAAIKTD/k32vtKcmyf79M8Rov6mobaLZvVPbgoy4Y5nZhbL6uw9V5bK7AvfTcssF/AjloKMPpdILtxPqPLRfKjtguRC7nc4Hr48A0W6IbhtxKm7ZF/4n/zlY07olCfmlMdrA7mYX3cxZ9uhhN62YFhvl3G2y5jOhuN+Zy/I6M4wmNDbDhc4deecRzSg7w17bWvQGdO6dSMYcs5jIsL2vYkYKNIDojc2BY15SnzQ75fefqPO2P2Ry1Iy+9J/denjBVzLrHNNvHHCmy+zzlg5XKCzuDMOmAWNE5PTZj05p368a+lt583f+ahfP974Y0mdeWP3RMb1sCZrvx6vbXm8dZx3Hl69mk1svaF4Y89Q0j+etx4LO1ZGnX16Y4iZf728vhd0npPBW8N4641CZ/4Oaq9RZ4zx5mFvzekeL2D49fqJOesxT8aZS9ztnOthZpZ1+m3Ytu6tQ7w1pZm/Psw59R723mt42M+9hwHeetSTDVux5o8VGSeLOW3yY2+qkNlnftjhlsfr0/FB3TGD5gQl2e/d0JllQq6NvPL0pXQjSfb65fF468OMU68FGX1Mb+7KxP3yJJw2EvYZhdcvCwf8NuC1Z3881HWXSbiHdE3GczOPtz42M8t6a3KnPF47mKxnUfg/+UP4JvvhijfZAQAAAAAAAAAI6bB/kx0AAAAAAAAAMD1yIX/r6vmEN9kBAAAAAAAAAAiJN9kBAAAAAAAAAKFk+SY7b7IDAAAAAAAAABAWb7IDAAAAAAAAAELJ8SY7b7IDAAAAAAAAABBWJJ/P56e7EBOxoKnbzQsy+icp2ZjeLh/V1RJx/mJuPOMWxxXN6v0OJnV5snGdDRRnZZYp8C99SY+uoKhTBzmn7rzt+kp1Wc3M4oP6Z0LZeE5msUy47YYSfv0MO/VXMKzP022TTt0FiTvHzIX8cZpX1qDr5V1rr+6yMafv/X/t3Xl4XVd97//vmY8mWx5iZtJIv9LeFm6L5PR2ANKCVEopJb/WToAWSoFIEDVMpRGmucji5iKkUiAFp5EMAVKmYN2UNhe4VGpaKJc+bWJdOnEp1AdCgEy2fGyNZ/794Z8NivX9bHkdjfb79Tx+8kRf7b3XXnsN3720zz5iu5o4f9WfzcySoo1UM34bUcdUZU1F9L3iol+ejOgHT//ZR93Y1L/slMdUQus22+DXXfm0/0EqVedmZlUdDqLHdf0XedXW04Wwfqn6XlX0ETOzmW1+31TnkhZta7617G83588VMT1MBFPjnZKdFxO/mcUDy1vVu3WVxPxtpuco1X6y835QzaX15DCh1HnEI/q62lbleJlFv/288s1Nbuz2W2bdmMrhoqg+Hbrf/G6/z9ZzTDVOKFF9K7QPqZxzsdFvQFFtS1kUc5vq0wlRr1HlSYixO3Q8VNc5ap6RfU9cE3XPUhRzv5qjE2ldeZXi+j5TFplzihywKs4zru6vxDz8c89+SJbnq//u54eFhzJ+TFwvlWtEzXuqn0gN/iCj2kBU+5HXRIyH6l5QUXljlKh7+xBqfIm6V1ZUfqjGiexCeH9WawIJUR6Vk9dDre+o8uR3+fO7mku2ndQvsVDnGXo/o6g8ba2otvXwa1rWsSQXr+ee+Ld1O9Y9u35y3Y51IXiSHQAAAAAAAACAQLyTHQAAAAAAAAAQhHey8yQ7AAAAAAAAAADBeJIdAAAAAAAAABCkuopfDfH9D33Cvv/hT7rxQ69/s/X19a3eAVcJi+wAAAAAAAAAgA33xFe/zJ746pe58b7LfmIdS7NyLLIDAAAAAAAAAIJUqryTfcsvsp/68pgV7jnsxrf9Qo81P6dn2Vjv9c3udrffMuvG4hW/4Sw2Vt1YsqQbXDXuf7aiJmKLjRU3Vkr626XKujxx0UHi/iEtUfJf9V9JifIU9FcElDJ+3ZbFfmNJv7DqemUiypNdEOcprpeiromqVzNdP6o86prMNfuxhOgHZ4TVQUy02VpEmw1VTol+K9pBclvZjRXmEn7MP5yZmTXMh/WhBx5scmNxcR7q/M3MVK0nRbusimPuuWLejT1yf6Msj4m2HtpGVLuziLG7LLZV47oaY+ea/XErqu9lRftRFhtEPxDjXUzMB1HzjJqjan4XsmLC307NtUXRdqK2VddLUceMulaLcf+Yqm2pOTHrd701o/ImNVfo7XQdJES7VFT+V4+qaLNV2QxU/ufHChFtPSHbc9j8nYgYK5W4OGZVjQVZ/zzjogrUeBdFnWdazrUiV41or2o8ND8VkW1rRuQw6r7DTJ+nOqa6JrHAMbYcNe8H5uQqv5F5Y0S+nlzwyyv7bVqMd6JN3vtvu2R5ivmUG4sH3pvGRSNIlWRxrNokOsOC3xEqRf+YGbHPWtQ8EzhUqNywHmreU/1S3Quqe17VL5OqQ0dQm6p7nWImLP8zMys1iNxanKfK1eS4HjGmqT5UFsNI6BqEurc4s1+/f+n82N+nyuPiEe8VCZ1LPDN/N2aJ8Q+68UOFvk356hFsPVt+kT3bdZ1lu65z400zfLcrAAAAAAAAcKlpeXaPvWr8zW6c9XWsli2/yA4AAAAAAAAA2Bi1Gq+L4TFvAAAAAAAAAAAC8SQ7AAAAAAAAACBIlSfZeZIdAAAAAAAAAIBQPMkOAAAAAAAAAAhSqfIke6xWq9U2uhD1uPxPZmU8Xtk8F7mc0lUdr/qx+WY/uNjoxypx/5hNs4mI8vh1VxLnkqiE7bOYERVgZgURr4jyVMXnNVIFvzxqn2ZmiZK/bUKcZ1Jsp86xpi+XVBXtQNVPJRE+PCRC+16D34AqRb+wNXGO2QbdtooFf79xEVNU24q6lqqNqD4dKqqtK2osSInziLX417m4GP4hq1jSL09c1J1qW8FtOUI55bdL1WYLc7oBqb6QFPXTeDzlxtRcWhXjREkcz0yPlcqiqB/V96KOp/peWowFaowNPZ6ZWSEr2qxoP0pa9K/GWd33QnMq1UbWKk9TdZcq+dttprwxynyLyg1FMhZBtZGoNuupRsx7qg9VxLYlkTepvFvlW2ZmGdHfQ+doNf5Eze0Lzf71zC74FaTOU81tiSbdftQ8LefhwJxKzZdRkiX/mCrPVXNpXJxGNaKoah6Oi/ld3UOVxT53P2VBluf4Aw3imP52Kv9T/SdqvlT3g6relZSon1JZj2mqzYbWj6L6j5lZTZR3LfJVlVOpsccsPE9R96aKyg3NzJIR19qTVnmlGF+iZBZFnxbtR40Fau6PqtfsvP8LKhaaF2w233pT00YX4aJw5fe+sW7HuvdJT1u3Y10InmQHAAAAAAAAAAThney8kx0AAAAAAAAAgGA8yQ4AAAAAAAAACFILf7vbRYMn2QEAAAAAAAAACMST7AAAAAAAAACAILyTnUV2AAAAAAAAAMAmcPyOj9nxOz7mxg+98U3W19e3jiVamS2/yF6NfOFNzY3EK/5fWaoJfztF7TNZ0n/VKaf8Y6pYXLz3KF4NL4+KV+OqPP52i40VsU9ZHKsldNyTLPvlUftMF3SBKqIOVN2d2lF2YwnRfioRbbImy+OfS9R+Q45nZlYOLE9VtJ+UbJOi3bmR6PIo5ZTf+eKiQas+YmY2u81vI82n/WFbbdcw6zf2RMRYUMr41zIj+km5xS9P8pR/HrUGf5ww09crLtuIv081vKQKun4Wmv3yqrJmG/z2U5gT1ysd/rK7StEvT1Fc53Qh7HiJiLau5q9S0i+PuiaqvZZETmBmlhLjSCxwbIqL5qz2aWaWEYNXQbzxryLGpmJWjVu6PNl5P6byHyU03zLTfVrNUWq+UPmNotqy2drknCqnipIQY9PvvXqbGxu9ddaNlTLhY1NoDqxyMXUts/Phb8xUx1RzorrOlYjiqLmkLMZKReV/lUVdINW/EiovUHmTOGR6ITyn0n1abCvm2lRe5DAR9yvqHkG1ddmeRf2UI8bm0Pm0SeSV+jxkcYJz8qoYfwpFMUdHHE6N7TKvFPWu+kEiYg6qiDar+rTqs+qetyKuZamqx/yU2K+eo/1YsY55ZlHcX6h8TOUMjfI662vZNLP6S3FpMXbPifsVs/B5WK4ZiTYZmjdG7RcbS63lXKidv/1y2/nbL3fjfVe0r9qxVhPvZAcAAAAAAAAAINCWf5IdAAAAAAAAALAxKryTnSfZAQAAAAAAAAAIxZPsAAAAAAAAAIAgtVV8J/tWxZPsAAAAAAAAAAAEYpEdAAAAAAAAAIBAW/51MZWEjserfqyaqPnbVfyPOajtZCziTxrFbNh+VVmTJXUeujwVUXdKMeNvWEr657HYqA+YEueSELFUWdSBuCaq7ZiZFTP+ucynKn55RFmlBl2gqvhoTlVck0TBr4SKaHf1UPvNnvYb5kKzX69pcR6xiI8tqfqJi/2GKojjmZklS/4xVf9Kiv5VEu21nNLliYsqqIpOVCn6sXjcL486fzN9vSqivyuqX1ZSuh+o8so+pMY0Ma4nIppkZc7vQ2rYr4prMt8krpeo85jfZc3MLC76phq71fibKvjbRc4z5m9bE/Wj53dxLSPmmXJE21tv+jxXv6xReZOi8h+ZG4pjqpwzKmcIvZYqN1wrtx6ecWNqnFB1Xog4D1U/KqbKo3LDWkQOnJ0Pa3xqfo+aS0KpOVzlP2pMi5qH46JuVZ6icrWyyHPVXFEWuY+ZnhPioh1UxVyqcqqo3LkaD8tT1Ni0KOpu8WRK71icizX4k3ipyY+pPCRyrBTnklwQ+ZbIGZLqXjkib1RjjDqXkujvqn9VoypIiKm+sAb3w6rdmek5QeVjcv1ClPWmq3fK8gzefcKNqbxbHVOt0aQi7iFD5/d4RG7tSUTdD8s1Ln87NUfrtaj1z2/UuhlWR3Vz3bpsCJ5kBwAAAAAAAAAg0JZ/kh0AAAAAAAAAsDEqfPEpT7IDAAAAAAAAABCKJ9kBAAAAAAAAAEHU9wReKniSHQAAAAAAAACAQDzJDgAAAAAAAAAIUqvxJDuL7AAAAAAAAACADXf6Ex+105+8w40fevMbra+vbx1LtDKxWq1W2+hC1OPyP5kN3jZeCfsrSzWxNlU2s73qxiopP5Yo+W/9SZX8c4xXdHmqCT9WSvl1UIv7sULGP4+aOJ6ZWVXsNx747qd0wd+uGvEypaI4F7VtRbQfVXfJZHi7qxT9AiUC+0GUlKjbimg/qm2FllXVuZlZTNRtvODXXdxvAsFtIIqqg6pok8kFv0CqLZuZJcUYkyz75SmLelXbLTbowSmTFmNM0d9vTIwTGXGd1dhjpseft+7b4cYG7z7hxhJpMR+I/mym20iiya/b4qK/XzU2qXpVc5CZWSIivtqi5hklJpqlaj/11I9qe0mx7XyLuM6ZsH2ambUe95/NUOOhyrdUTlVKyeJYquTHorYN2Wdo3mimz1PNF7Pb/WtZTz6ana+jMzgWG/2ylurJYUReoKRFv4wSOr8vNoixewPm/qqe3l3xiKpLz/ntJ2rO9JRF3alcrCzukcx0OwjNOdW1rCevVvvNiPm7mvfH5qrYzswsLq+l2E5Uu6rXKGpeVOdSFnmlmoejrpfKV1VbV3Wg7jtU3zLTOXJ2wd9W5eSm8m61z4i+p8aRmqhXlVOpPCXqfkaNBaH39ap9qHUGM72GkxCXJCXOQ82XUWPzXLN/0O0n/TEm6jy3ivtf37zRRbgo/Mi/fmfdjvXtpz913Y51IXgnOwAAAAAAAAAAgXhdDAAAAAAAAAAgSDXwDRMXE55kBwAAAAAAAAAgEE+yAwAAAAAAAACCVHiSnSfZAQAAAAAAAAAIxZPsAAAAAAAAAIAgvJP9Ilhkz39lzOa/OObGG6/qsaarepaNJeI1d7t41T9mvOI3nHLK32eUmihPVXzmIFvyyxOvBBfHqqI8lZRfQcWMv1056cdSBd0h4+bHY+I8E6KjLzb451GKuJYpUe+VhL9tQrSfRNYvT6EYPmAlxTFVvS82+uXJFPQHYdS2qu6i9utR7dVE2zEzC+0mql9WM/7518T4YmaWLIXVQUtL2Y3NFdJuLBYxGar2rGLqOhdE/USJnfKnrmTgGFMR/b3apFtIdSHhxg5+9rjc1hOf8/eZjLheajwsmb/fmhjX06JfFsW1VPOBmVky7u9XzcPZBX871S/jfheJ3Fad53zKr3RV1qgPFGYW/Wtd9S+lpRfV9fLLqurczKwijqno8dmXqCOHUX06IcYm1WbTBf94qu2YRdetR82lSXEeqcC5tB6qDtR5mOncSFHjuqrzkpgrzMwqgeciczwRU3NpVFzlFGrsVqK2U+OhagcJMZ/WxLilcqpkRFnLIte3srqnC+y0gW3ZTN8LLoq5JCmqoCzOMWpba/Cvl8p96mnrqv1UiqIO0v71Kou5P6r9KKofyFxerSVEjE1ZUe8q/0uKe6FF0UYyKgeO6CIJVQWirYup1goZP9ZyWicpcmwS86naa0nkDGqONjMrif7Vf+0ON/aBD512Y/E6Fjjlmomcw/2KTUes76ynmb8bs5kv++uGhxI3WF9f3zqWCBerLb/I3iQW0QEAAAAAAABcmlqerdcN+/qa17E0F6+ohwkvBbyTHQAAAAAAAACwpU1NTdn+/futv7/fent7bXx8fEXbjY+PW2dnp8ViMevs7LTJyckLPvaWf5IdAAAAAAAAALAxKrWNf0VQLpezzs5OO3r0qHV0dJiZWXt7u01PT1tPj/9phpGREZuYmLDe3l47duyYjYyMWHd3t01MTFhXV9eKj8+T7AAAAAAAAACALau3t9e6urrOLbCb2bkn2pV7773XJiYmrKenx4aHh+3o0aNmZjY8PHxBx2eRHQAAAAAAAACwJeXzeZucnLTu7u4lP9+7d6+ZmY2NLf/lt5OTk+ctpnd0dFhHR4flcrkLKgOviwEAAAAAAAAABKlWV/a6mFqxYFYq1nWsQqFgmUxmyc/uu+8+MzNra2tb8vOzT7WffVL9sdTrYB67ryhbfpG9Fq/JeLoQ9k6geMXfrprwjxkX36ZbzOiyllN+vHE24R+zErbPKGrbUtKPVcU1yS74H554y0tbZXne/cm8G5PnKa5JtcmvvFpZtx11PZMl/zyrGVGgOXGd1XYRktvKbqx02h8GEqIfFCLKkyqJPiQ+Q1NK+ftV5bnp6p1u7J13TfsHNN1+yqI9q+usJEX/MTOLF/yYqrs51X7E5UqW9XmURXnL4nqVG8R5iv4VVa+qPOo8a371yLEgEXGZi2JOUOeSbi35+xTbqXM0M6uI9lwRZd2W98eC+Sb/oPE6PhMXdS4eNQelIsZupSL6e7nBL2xKlOe0GCuzC6JRmpmZH88sho2xDSKfKEWM64uNfrzl1Pp/OFLlaulFf7ukmp+iLolXloi2rMo63+yPPyqPlf1AF8cSog7UdVZ5t+o/mYJuH+qaqP3K8U7lsXXkx1KDfy3LYmxKR9SP6tMm2pa6zmpOLEaMBWo8TItcpDrjx7KBZY3MR8W9R1wsBqj9qnw0GTEHqfuk2AoXJx5Lze1Zca3MzMRQKXM1E/mfyn3U/YGZbls1cSqVosi3xDFVTmmmx3Z1vVQ7UG0rFlGeqhoM5P2VGJ/TfuxA92VubPDuE/4BzSyRFW1Ejd1i3U31PTUnmpklxPVSuaO651drG1HjqBqfb/nIaX87sfajqPHuTNyPqfWv0LxJzmtR5VHdQN3zRow/WD8LH32/LX7oPXXtY2hgwA4ePLjkZ2efOm9tbV12mwt9Kj2Xy0W+ZuaxtvwiOwAAAAAAAABgY1RX+ABV5uU3WOYlF7Z4/VgHnn35eT87duyYmZnt3Ln8A5j5fH7F+x8fH7e2tjb5ZanLYZEdAAAAAAAAALCmYumMWToT/YvCY18VY2bW3t5uZmbT08u/yeBCXv0yNDRkR44cueByscgOAAAAAAAAAAhSC3zt2Wo5u4juPbG+0kX2/v5+O3z48AW/j91MvrkLAAAAAAAAAIDNa+/evWZ2/rvXz/5/Z2dn5D7Gxsasu7v73JelXigW2QEAAAAAAAAAQarV2Lr9W05ra6t1dHTYxMTEkp9PTk6amdk111wjyz8+Pm5mZl1dXUt+PjU1teI6YJEdAAAAAAAAALBlHT582CYnJ5c8zT48PGzDw8PW2tpqZmeebG9vbz+3+G52ZiF+aGjIzM48zX72X29vr913330rPn6sVqvVVudUNsZlt5+W8ey8/3eEcso/9WTJf5dQXHxjblX82SK/u+wHzawS98uTEO82apxNiPL4+6z4m5mZWU1sO7ut4sZU/aQLfgWp7cx03aprWU6qOvBj6vzNzJJiv95f1szM0nNh1yuKqh+lnFrhV0A/hrqWZro8Udc6RDHj7zS7oBu7aiNVsd+4qAPVttJZXQEVFY44F4+qc1V3ZmbJkn+ea1E/URKVsPFZUe21nrKqcSSqD3mi+vpNVy//bepmZgc/e9yNqeus6iAl5suSGJujqOssNYj5SYy/ZmZxMXarvED1IXW9Guf0xUyIa6LqPe5XgVVFFcw3iw1N51Qp0Z5TJbnbNaH7tB9LiCpYi7nLzGxmu7/jkmhbus7D34mp2rPKt6LmEiUhyqtyYNUvVa6aaNJtvVT295sVY0xRjeti/o5qW2psWhTlkfsURa1GlSdw25g4DzXmh85BZrpdhs57SvDcZTonV2VV0q16AC5Pp9xYaG4UE3l1TfStqG2TC+o+0t9v6L2gWXjOqcqjxCK6c03MX6FjgeqXSiZiHFXjYVQ7CBF5fyVyQJWPxUUbkGsQETmwapeqPNn5wHvBiOahyrvYKO73RLVvmw7/CkiVq4XmlSV/uLPvv645bKdYoumLD6/bseauepwbm5qasqGhIWtra7NcLmfd3d3W09OzJP685z3PDh8+bPv27bOpqSn5KpmTJ0+eW6CPwhefAgAAAAAAAAC2tI6ODjty5IiMnzx5csn/r9bz5yyyAwAAAAAAAACCqDc6XCp4JzsAAAAAAAAAAIF4kh0AAAAAAAAAEKRWx/eSXCx4kh0AAAAAAAAAgEA8yQ4AAAAAAAAACFKpbnQJNt6WX2RPFfTD+HFxkdOF1f8oQyURVpYz/PJk5/3zjFf8PRYz/jfkzjeLDc0sHvilBWq76DrwVeL+uZSTfqySWJ1vCT7Pgn+xk+I8yy1lP1b2666xSV+v+Tm/PGnRT1RMqUZspq51ouSf52Kjv2FCfPwoWfILVBVtx0yXtSxiNdG2VFkr4lqZmVmDf61Ve06kRWHFMVXdRYkHtp9axDVRqqK/xxf88pRS/nb1lCcpyqPGCdWHkmIsiGrP7xo/6cbUtU5uE2OTqNeE2KeqczOzmKi7pBjz1EcRC0U/1iDGHjM9/iRL/rVU897bfmOHG1PXyswsW/HrR83valyPaj+KynFSwXsNp/qQKmtCTKevuaHZjd1+y+wKSrU8db3U+KPyv6Roz9WIaUYpZPx+UBP7fdtv7Aw+5rs/mXdjs2JsyooxVs2XlUU9d6n5VOVbaj4op8KTYDV2q/6uxqa37vPHpnfeNS3Lo/qeqtmqaFsW+BHzyHxUxNU1UXVez72Fyjlj4nqpsqo2oNqrmZmJa6LqTl2tqjpHXRqLi/FQXeuyyJ2TIodRc8WZuF8etQ5Rich/PNWI1RnVDlT7yYiyFlW+JfLRjLrvMLPYo35moPKt0Jy8JMpqZlYVdVdK+tsmAm+T1BxtpvMxlTNUxeKPyhnUPs3M3viK7W7slo+cdmMVUa+qf0X1EbVe8Ko3+LnaB98fnqsBq2HLL7IDAAAAAAAAADZGNfBB3YsJi+wAAAAAAAAAgA1Xu/tDVrv7djd+qP/11tfXt44lWhkW2QEAAAAAAAAAGy72oldb7EWvduN9v7J7HUuzciyyAwAAAAAAAACCqO/kuFSEf9sdAAAAAAAAAACXOJ5kBwAAAAAAAAAEifHFpzzJDgAAAAAAAABAqC3/JHuiEr5tNfBPDHHxnqHe65vd2LvGT8r9NswmgspTFZupvySlC7oCyqmaG0uW/f2Wk2K7kthOHM/MrNxS9mOiPKoOanH/mPGo9tHgN75S0d9YXWVV1vJ0ShYnLaO+0H5QSURcL9V+ROUmKn4dqGOq7ZI7S27MzGx+zr8qa/HX2HJKv6zs4PMvc2M3f2bajVVEu6tE9C9F9RNVPzExFsREn1XHMzNLLvjnWRLnKduWOF5UedT4kxWxqtivikX1PRVPiTG4mvdTAjW+LDSHT8QJMQ8VxXah7/srbNNlzZ4Om4djdeQiSiHjn2hTYM4QF31W5TdmZhUxdi02+tulTq3NMx2qvCr2qjf4udrtt8y6sZKYhlN6mpGqqk+LPqvEI9pkIRs2J6g2qeanxjndBt7y0lY39s67/P2m9vgjReGUP6Yl0rqxq/k0La5JYlaMsWL8iRrTVN6g5mF1nzR49wmxnW53qn+pvDIuxnw1d8l5OKKsKmeQZRXnWAkbfiOpvKkWWucRw29a5MDqvm12m39fpu4xi2IMMTOLi/KEti21XSbifnhR3O+p/CdZ8vcbOndFUTlebbt/vbJifCmK+ll4JOLuU+Tkqk9HrVF4ItuW2G0pI+4fFsLypvkmXR61nqLaXSyzNk8K3/KR025M5X9v/q1WN3bbbTNu7PrrWmR5Rm/18zEVU/nYWo3d+IGo/OFSwJPsAAAAAAAAAAAE2vJPsgMAAAAAAAAANkY9n8a5WPAkOwAAAAAAAAAAgXiSHQAAAAAAAAAQRH3306WCJ9kBAAAAAAAAAAjEk+wAAAAAAAAAgCCxykaXYOPFarVabaMLUY/tL3mPzX9xzI23PKvHWp7dc8H7fdUbmt3Y7bfMurHpPeULPtZZ6ksCsvOJoH0WM/5O55t1Dwj9qEd23v+AhDpmuUF/S0JVhFta/P3OzPh1ly74ZU2U9PlXd/rXurgY9iGRWtzvjqqsZmallL9tohJ2Laui/dQjHnEuQfsURVX9wEzXbcOeYlB5Tp9MuTF1nc3M4qJ6VD+IBfbZqPJk0n5ctfVY0t9OnUdUW682+f09Puf3d9VHlExUeSLqz6PapbqWof05iupDanxOi/MoiOthpuu2LNqPNfhtoFL09xnV1kM1zPrnWQubvs1Mt63sgn+eadEv6/kY5+kd/ryXLvj73TbtP9NREfWTKunyVEXXLIv+rsqq8r/RW/38L8rcdr/u1HkkRS6i8i11/ma63hdErqbapBq7o74Ia74pLN9QeUpWjBMLM/o5o3TW329N5JVqrKyV/WsZNc8UxHmqOaGSEGOIaD+ViPaj5lM1zobmKfXMe0lR70WRT8h9ivE3NNcw03WXLInrJa6zastmZiVRPypXU9R1jpqHQ7dVubO671B1Z2aWEmPwRtx7rUXbCy1r1LiuyqPqVVHzZSKiP6u2rqj20zjnx1RZzcwqoj0Xtvnn0pj35685MX9f9lBalkfN7yoXee1rW9zYLR857caaZsLXA1QOk3CqYPZLYzbzZX/d8JY/vMH6+vqCy4QzGj99ct2ONX/NjnU71oXY8k+yN13VY01X+YvoUTdoAAAAAAAAAC4+zc/psfQvX+fG+17j/7EAK5fgnexbf5EdAAAAAAAAALD1Ff/qsJX+6kNu/NCJzfnpAxbZAQAAAAAAAABBol4jdSGyXddZtkt8+uBlrat3sFW0+i9GBgAAAAAAAADgEsGT7AAAAAAAAACAIPE6vqj8YsGT7AAAAAAAAAAABIrVarXaRheiHpf/yWzwtqWUH0tUwvZ5Yk/JjWUK+m8ayVLYX32KWf/FR4sNfqyY0S9MiolvBs7O++dSyvhNqiqOGY+oH6WS8I9Zi/uxrKifxYWo6+XH1buoqoGnqc7RzCyWFHVQ9q9lIvCvjepamunrGdoOVB2kRP8pi+scpSo2zaT98pREnat9RlH9Uo0xiw3+oNbYpAe8+blEdMGWofpIOSXaQEQfUfWn6ictxsrajH+O1Yj6Sc74Hwori34ZKhFRnkrg9VL7rag2uyDqLmqcEOOz2q8aC9SYptpdFNUuG/NhHwx8y0tbZfzgZ4+7MdXWW077dZed92PXX9ciyzN850k3llDlOenXT+/1zW5s9Fad44XmapWwLmIpP8WzxUbd11XOVU7526rcUMVUbmim80MlrsbYgpj3Isb1ueawi6nGdSVqnFRjjMq36sllldDyNIlxffaU3y+jcsPQPFfNCSpXrSfHS4tjqlw/qebvOuY9lcOoYyZEvRaKfv3s3CUGLjObPuHfEKvyVMVYUE+eq+balCiPqoPWHX4dLC7qsaB82u8nofclJTHmq/5spvtJKNXfVV9X52Gm6yCUOubAi3bJbW/+wqNBx1RtXUlGrCUoCdV+xFqLul6Ns7qtr8ValLJtWufOofOMbrN+7Puv8/NRrNyOPzu1bsc6+fLt63asC8HrYgAAAAAAAAAAQdRDQJcKXhcDAAAAAAAAAEAgnmQHAAAAAAAAAAQJfZXjxYQn2QEAAAAAAAAACMST7AAAAAAAAACAIHHeyc6T7AAAAAAAAAAAhIrVarXaRheiHoMRfyi5/ZbZVT9mVfxp4jU3NLux991xSu43XQj7m8d8s//io3LKv7xv3bdD7vc9H8+7sZlt/jET6aofE6dY8Tc7Ey/6GycqfkOIi/1Wm0TdlXXjUt+cnBHXUtX74N0n5DGVWty/1smSXx5VP+UGP1iNuF6qflRZM2k/VlwM6yOqfZiZWYPfDmS7E21dtZ+ob92OJf06iKtxIvQ8IuonIfqJ7LcLidXfp5nF5/z9lsSY17y97MZmT/kf7FLXI0pNtIPsvH9NKuI81Dma6Xap2kGq5JdVzXtqDIkqqzqm2laNIaFjs5nZouhDSdUORFtPRswlSlWcpxqfG/N+e06JOoh6j6LKKVSs5aRfHnXMil+tZhbeDlIlvV+P6gfFrG7rM9v88Ue1y4ZZvxLU+c+36Is53+S3H9Wnlaj+rqhzUVR+o5RT+iTjYrdpMQeVW/zrXM88XEmEjYfq3iJ0XDfT11qdSzUj2l1gG4jK1xXVflQbUblqk2gDZmb5kyk3pnLr7SKHOSVymEaRb5mZFfN+eULzynqo9qNyx9pMWG6ociYz3b7UOKHa803Pv8yN3fyZaVme0PFZ9Xc1vigqhzMzK4r+HnqfmBW5T0GMzWbhY5Mixy2RG5qZpQqr/8RvKeOXJ+p4TSLfCH06ebHR77NNYtyKshZ53AO/56/jYeWeMDqzbsd6sLdl3Y51IXiSHQAAAAAAAACAQLyTHQAAAAAAAAAQJOoT+5cCnmQHAAAAAAAAACAQT7IDAAAAAAAAAIJEfb/ThZj90pjN/t2YGz9UvcH6+vpW74CrhEV2AAAAAAAAAMCGa35OjzU/p8eN9/Vtzi+rZZEdAAAAAAAAABAkXt3oEmy8WK1Wq210IepxxXvnZLyc8k/vNTf4f/m4/ZZZN1ZK+cc7uafkxppPJfwNI1TEpvld/jFTJf+LB+IRX0qQFNsuNvi9p5Lw6zyRDu91lWLYVwgkKv55lFN+edIFfbyqCMs6EOVR20Wpxf1ts+J6FcV5VusYJNWXXgy8aJcbG7z7RNDx6qnXTJP/uaa4qNf5ubA+3dKiP0f1uD0Lbix/Ou3GWrcV3dgDDzS5seKibutP+7HTbuyhRxrc2KlTYX/Hbd3hj2lmZvMPZdxYVVzL0DEklgzvl8kF/5jFjN/BDr5wtxt7513T8pglMe+pfrIWquIczcziEeOsu53YrTr/qGtZK/v1o+avsthOjYVqjjbT84yq28a83/dSos6jyqPqdm5b2Y3tesgft9THSqMSdVU/Kv9T+Y3Kt1RZi1ndtmZE/aRE+8nO+wVS12OheRU/r/tDsvN+pZ/a4Z9jOqsvZknUQUr025iYZwqij0SNBaFjk8orkyV/n2o7Mz2OhOY/6ppE5QWhuXVc7FbVeT33FglxTNV+Fhv8PqSux67HFWR5Tjzs5zANLX4fesoT592YysUSEW1d5fqXP9G/z859p8WNqdx5Lip3XvDj9dy3eaLuh9U4ou69lEaRq0ZR922q7tR8qufSsDGtHqHXWeXVUdR+1b2Fyv+iqPpLFcL2W8qI3CeirGp+V1RONbvdr7sdj4hFtQihryRR/eD+12/Op6K3msv/xF9HXW2b9ZrxJDsAAAAAAAAAIEh8nR/o2ozW5s+PAAAAAAAAAABcAniSHQAAAAAAAAAQJMY72XmSHQAAAAAAAACAUDzJDgAAAAAAAAAIor4Y/VLBk+wAAAAAAAAAAARikR0AAAAAAAAAgECxWq1W2+hC1GPnR0/LeNOM/3eESsLfLlHxY3Mt/tv8Sxk/Nrut7O/UzHY/lHZjJ/aU5LaeVCn84xrZBb/uTrf65xKrhh2zFtdNMVnyy1MV9V4r++VRH2epJHR5Ykk/Hi/4ZS2n/LKmxXZFcY5mZklRnqq4JlWxW7XPKPE5v4NVxZ/3ourdI69HRNsqizbSusPvexlxLZV83u/rZmYxUQet2/3ybG8p+sc8JcaXaV0e1X7arph1Y5VK2N9xT82kZHx+3m9bqn7m5vw3pKk2Uijq8yiKfqvGHzXmxcUh62nPaoypNomJb0FMmEJof46ixm41xkbJNoi5RByzJOo82+DXazGv27qahyuiHZQyfixV8Mvacjr8LYLzzf55pkS7y877MZWLmZnFxaUuiaqN2q/nNTc0u7EPfEjno7Pb/YM2nwrrXyo3VHOimc5TkqI9V1W7S4X3d5WvJkSsutPPRyuifahx0kznnIoa8xJpUaCoMVaMI+pc6plLlLTISRfFuajxUG2n2mu6Vd8jpURfmDvu5z/tP3HKjd3/3SY31tys7/fU9WoU9ZPN+LFnPOWEG/vFpm/J8gz/n591YztbC27smvY2N/an937Pjb3uyifJ8hz87HE3lkmrXE3Nw357reb1vKfGNZWLqPlJ5VuJiKFH5Ruqrcv6EX2vXMe9oBq3lIrIu0Pvv6MkxDWpiHta5aard8r4Oz7vt/W0OGbDrB+bf5LfZ2sz+jzU/bnKHTPq3kLNiRHz7Bteuc2NffD9/v2novrl/a/3czys3I8Nza/bsf79QOO6HetCbLon2cfHx62zs9NisZh1dnba5OTkRhcJAAAAAAAAAIBlbaovPh0ZGbGJiQnr7e21Y8eO2cjIiHV3d9vExIR1dXVtdPEAAAAAAAAAAD8kHvhWi4vJplpkv/fee21iYuLc/1977bXW2dlpw8PDLLIDAAAAAAAAADadTbPIPjk5acPDw0t+1tHRYR0dHZbL5TaoVAAAAAAAAAAATyzwe4+WM/0Pt9nJe8fc+KHW37O+vr7VO+Aq2TSL7OpJ9bY2/4tVAAAAAAAAAABb387/8lrb+V9e68b7+hrWsTQrt2kW2T25XM56e3vdeK1UMCv736JcXVDfdnzmv7FkxmKpTHAZAQAAAAAAAKyfWqlgNbEm+INf9EOFQsoyGdYE65Wo8E72WK1WE01tY42Pj9vQ0JAdPXrU/Z1fjB20L9pgXcdp/tUD1vJrb1vys1rcr5bZ7f5nICpiu5bT4X/TOL2j7MYWG/zyZBcSQdtFbfvWfTvc2NDEo26sNuPvM+pLEgqZqoy7xxTXJO7/DSZSvOBvHA8rqjXsKbqxRXE9zMyKi355VB08/vH+hPTQQ/5EE1V3j3/8ohsrlsQfv0Q7WBTnmBDlad3u16uZ2SOPZN3YB35xwo0p30u9LGi7KO/7yoNu7ORXXu3GBt/yubUojv2P3DE39ptt7UH73FP+lIw/knyJG/vY17/txqbzfntOp/xOuyj6upnZG3/+CW7s4GePu7FM2u+XhaLfD5LJ8Gm7XPb3q/q0Gu/Kou6iyGOKcUudh6oftZ2Z2fbt/lx76pQ/h6trWQmvHkvl/WOmxLnMN/kHzYqHD1IRbT1V8o9ZSvl1oOag5lN6bgul5uFqHXO/Z7FRX+iyqJ+0qHdVrzOtfnuN6pcxMddmRHmKTX7u+PYX7HZjN3/Bzw2jVIphF0zd6FUjcsqUGEdUvpUR9VMV/bkYUZ6WFn+/RXG91FyiRM0zaixV4+jc8bQbe+rTZtzYt+9vcmOXP3XejZmZNWT98iRi/nn+8yf8p+ee9MIPu7GeZz5ZlieU6kM3Pf+yNTnmWnhS6RMy/ppbPuYHU/58MfiGu93YHV+7341954FGWZ72K2bd2EOP+E9RZjN+n334kfD7q9YdJTd28lG/f4XeD9dEX49FjBNqW1UeJSnuIaPcdPVON6bydTUeJsUcrcZmM7OqGPbVHJ2dF/f8IqVS83dUeXY/5Letijhm6DqVmVnTjH+ejz3mzP98p81+bkjuL8rAwIAdPHiwrn3A7BkD/hrQavuXQX8NZyNt6ifZh4aG7MiRI/J3nm0H7OfszW78jhF/Yqz80JPsAAAAAAAAALaG5uf/vjU97/fMzCwh/pag/rZz4A27VrlUl6b4Kr6TfavatIvs/f39dvjw4cj3sSctY0kTfw1uCPtLHwAAAAAAAIDNKZb6weuf1SKv+pQjr4rBatmUi+xjY2PW3d1tHR0dG10UAAAAAAAAAIAj9LXJF5M1eCtlfcbHx83MrKura8nPp6amNqI4AAAAAAAAAAC4NtWT7JOTkzY0NGS9vb02NjZ27udHjx61zs5OnmwHAAAAAAAAgE0kJr50/lKxaRbZp6amrLu728zMent7z4ufPHlyvYsEAAAAAAAAAIAUq9Vq4jt2N7/BiD+UjN4668Z6r292Y7fdNuPGjj++5MaaT/vfpvqBa/7cjZmZ3fCp33Bjc9vKbixR8ishUfVj5ZS+9IsN/rdGNDb5sYUZ/283sWR4c4uLr4OuFP03HyXEX9OqGf+lUfGCfpuS2rZW9o+ZzvrbNTT51zl/MiXLkxR129DgH/OJj593Y/d/t8mNlUW7MzN74c8/4Mae2eJ/KuW2o99zY3/09Ek31lxadGOti/45mpl9cfebZBxbx8A7n+/GBt/2haB93vG1+2VcjU3plN/3Tkz7X7DzyENZN7bjsqIsz/y8Pw8V5vxYIu2XtSzGtLgYKqt1vJfv4At3B203ePcJN9bQ4o+xZmblaX+cLYtxVJ1nJu23j5KoVzM9D2UX/Jia38tirmjJhz978YZXbnNj77xr2o3teijtxlSeZmb2wff7Od5rbvC3VblhTfTnpJj38rt128rO+9er4ndLWZ5TO/xjNs2KnUZYFG3dRG6YFPnfW/ftkMe8+TN+G1FULvb2F/hjyMHPHpf7TZb86xWa/ynqOkfZvt1vB3NizE+KceKtz90jj/muex5xY63b/fukhqzffn7nJ5/qxi4v/pkbuz/9cjdmZjbw7l91Y7e/4bfc2AMpP6b2OfiWz8nyYP0NDP+KG2v7tTE3ZmY21Dbhxvr/o9uNLS76fW9mzh8rq+Le3cxsUcz9aty66eqdbkzlTerePRVxX18oho2H6jwqifCxMiNyqpoYR0PPI7ug52E1L6o5KnQdRuUhZmaLjf7cpnKKRhE79SP+/XnquF7baD4VlseoHFjlcQ/2tgQdD0td+ZbCuh3r3nf799JTU1M2NDRkbW1tls/nrbu72/bt27ei/ebzeRsaGjIzs+Hh4Qsu16Z5kh0AAAAAAAAAgAuVy+Wss7PTjh49eu6V4+3t7TY9PW09PT1y28nJSRsdHbXx8fHI3/Vsui8+BQAAAAAAAABsDfHK+v3z9Pb2WldX15Lv9Ozv71/2teSP1dXVZUeOHKmvDuraGgAAAAAAAACADZLP521ycvLc932etXfvXjMzGxvTrwhbDbwuBgAAAAAAAACwpqrlgtUq9b2/vVDYZpnM0vey33fffWZm1tbWtuTnZ59qn5iYCH4NzEqxyA4AAAAAAAAACBKvrOyLgr/3j39k3/vHm+s61tCeATt48OCSn+VyOTMza21tXXabs/G1xCI7AAAAAAAAAGBNPWnvjfaEZ76hrn0cONBy3s+OHTtmZmY7d+5cdpt8Pl/XMVdiyy+y3/KR0zL+hlduc2O33Tbjxn7ut7/hxrJJ/y37/+tTP+7G/iP7SjdmZlb5eN6NPa59zo29+qeeIvfrufkLj8p4Rryxf34u4cbU365qZT868KJdsjwHP3s86JjlVNWNJeM1N1bN+NuZmVVFOJP1gxVRd6cW/UpX+zQziyX8c8lk/TY7v+APA42N/nYtTSVZntZM2Md/Hrz9N/3gk7a7ocG3fSHoeLi4rEU7OPbxV8r4zTf/vhu76zs/FnTMK9pn3dh0Pi23XVzwx5GDYpx9513TbizZ5I8F1ao/AscjvvlFzQl//KWH3djsKX/cippLFFUHoYpiXE9HjOsFMdEUxaZxcU2a9/hj84K4HmZmb923w429R+QwqjyVlD93ffD9fj84s18/Nnqrv+33j/xnN/bjo3/txl76tCvc2PCdJ/3CmFnFn/otVfLr5/iTi26sJs5/rll8I5SZZef9dnnT1cvfmJiZvePzfi5WiMiblIQYY0qiXaoxZPDuE24smfTbnZnZTS/060B51z2PuLFiwa/zqOe+3v6C3W5MnWfz9rIba2ryYx/7+rdleS4r+A36yXv8e5Z/+Kp/Hsor3/txNzZoL5fbDr7lc37wLUHF0fvEpjPY/7/c2O/0620Xin7O9bvPeKob2125040dT1zrxp5S8tu6mdnQsV9wY9/9fqMbU/fRKleLi3vlKGqcVbljRdzT1kR5YmKfZmaLDf48ExO5msqd3/eVB93YQlrXnbom2QaR/4m5JLHCp4iXo/Lnd38y78ZKIo9r+U7GjbW/wK87M7Pv/Y8nybgnKXKq19zQ7G8Y/Z2YWIHYClPBRCxjiaTfPlYikzl/fG5vbzczs+np5e/pHvsambXAF58CAAAAAAAAALaks4vo3hPr67HIvuWfZAcAAAAAAAAAbIyE/iDlmtu7d6+Znf/u9bP/39nZueZl4El2AAAAAAAAAMCW1Nraah0dHTYxMbHk55OTk2Zmds0116x5GVhkBwAAAAAAAAAEiVdi6/bPc/jwYZucnFzyNPvw8LANDw9ba2urmZ15sr29vf3c4vsPq/fLUXldDAAAAAAAAABgy+ro6LCjR49af3+/tbW1WS6Xs/7+fuvp6Tn3O/l83qanp89bUJ+amrLR0VEzM/v0pz9t3d3d1tXVdW5xfiVYZAcAAAAAAAAABIlv8DvZz+ro6LAjR47I+MmTJ5f9+ejo6LmF9hCxWq1WC956Exj0PyVQl1sPz7ix669rcWO3fOS0G4v6EoDTO8purHDXc93Yl977Cjf2N5e92Y0d/OxxWZ7t2/3yvOlZj3djN39mWu7XU0mEN8VY0t+2VvYbSUJ8zOSmq3cGl0cZvPuEGxt40S43FnW9Ln/qvBuLixdDPfhw1o299bl73NjAzd2yPHbcL8/g+/633ha4BOyojruxp87748Rr/++vyf0+NPEqN3ZZ14fdWFmMlbOPZNyYGivf8Xk9bsXj/tgdn0u4sWKmKve7Fg6+cLcbe9c9j7ix8mn/eYZEk04MKuI0b3r+ZXJbT+fMn7qx9xSeI7f9+3/2j5lJ+4Wt3e/PM9l5/zr/5P/7HVmeez73Djd22Y+/14393s880Y199N/8Y859ZYcbm9nm50xmZkde8Ek39pHkz7ixpzfulfv1DJhOkP/+wWE39gv3vdqNqXwrJWJRVFsPVa36dfD2F/j92cxs5G8fdmPFgp9UqX6p8jg1vpiZ/fGX/PK0tJTc2Et+6utubFu8Sx5zLQy88/l+cNE/j8F33LMGpQHqMzDo96HBgfNfQXDWzV941I3NxW+Sx/zxJ/6hG7v6P33Tjf3F1/8fN7ZY8OfhR0T+VynqNw/XVI4nNlW5oS34ZS2nwieSlhY/H1tY8Aurcmd1jmZ6jWLHZUU3Nn0i5cbUXHJ/8SuyPJ/8y//kxqrimjSJPPeO3/y4G3vp/3ypLM9bXtrqxj75jW+5sSfu9Ncgrtr9k25sYEuvim4ev/Rqfy5fbX/zIb8vbCSeZAcAAAAAAAAABNksT7JvJL74FAAAAAAAAACAQDzJDgAAAAAAAAAIEhevY75U8CQ7AAAAAAAAAACBeJIdAAAAAAAAABCEd7LzJDsAAAAAAAAAAMF4kh0AAAAAAAAAEGQ1n2S//5u32neO3ebGDx3qs76+vtU74CqJ1Wq12kYXoh5/WvmUjGdq/lV+/9t/041964V5N/amZz3ejX15+l9keZSJnf/ZjTWMT7uxq573gBv7qy8/yY29tPs/ZHk+/cU2N/b5Kz/pxl5w70vlfj3pTFXGFxcSbuztL9gddMyhiUeDtjMz27W74MYeeijrxuJxv8v1dH3Nje1JXCXL87Gvf9uNffMTr3Jjg++4R+4XwNq48Z7XubGGv/umGxscmJT7fULZH58fTPrj853f/JYb+9YDTW5s546iG+t55pPdmJnZe7/8kBsrFP0P2xULYR/EU+OvmVlC7LZQ9L/IJy62U/NT1Bx0oPsyGfcM33nSjXX96rfdWGfLM+V+n7Z4uxt7/8mfd2Pf+7TfDtLPP+7G4nftkeV52dsa3djAk7e7scHvnpL79eyojruxk/F9ctv33RF2zDe+wj8PRbUBM7O9v/SgG/vfR/16V+35HZ/3r2VVp3h28IX+fm/+gt9Pbnq+30dUeaJkG/z7h/k5Px+NVf1xoibGn2c+XV+vF1/+o27sw//yHTf27U+83N/pQtmPlSLukr/ll3fwc/+utwUQ7A1feb0ba/2Gn1NZxn+28o7f/BU39vtf7XJjJx7O+Mczs1gybJkpar7wZBv0hip3jMoPPckZv17fum+H3FbNUfc+fcyN3f2Ut7mxP/+2v76TTetx/aETDW7s28+43I094bbTbuzB125zY4MWvgyp8tHJxI+5sS//kZ/n/vsBP6fEyr3gWpFbrLLP37k5nxnfnKUCAAAAAAAAAGx6vJOdd7IDAAAAAAAAABCMRXYAAAAAAAAAAALxuhgAAAAAAAAAQJB4xf9umksFT7IDAAAAAAAAABCIJ9kBAAAAAAAAAEH44lOzWK1Wq210Ierxwtgh+0c75Maf9yc/a1dd/8vLxnLxXe52k3/4bDd29VDWjQ2Y//GIQdNV/eljOTf2b+3tQfu97bYZN3ayfVGW50D3ZW7sXfc84sbKp/2/3ZRTVTeWbfBjZmaFuYQbS6T9bdMZP1Ys+B/muOn5/vlHufkLj7qx0t/uc2MfO/gqN/bb//2j8piD77gnumAAtryBP/wl/QtVf8z75MDvuLE/PNblxt72tC+7seFjP6/LI3z7/iY3psbuatWfa8slP1bXuP6ZaTf2ihf+Xzf28b99mhtb/Jo/5puZPa7xE27s+uta3NhPzY66sdmUn8N88PSVsjwv2/FPbuz2Rzrc2Kv2TMn9eh5MvlTG95Q/5cZOJ/zzvLP/BW7sxSMZN/aZA37etPC7D7oxM7OvP63Njak8Th3zdf/tz93Yf/vTF8nyvOh1/jW5NXmVG7uj6OciX4lf4caekPTzajOdN4X2W7XPKMmUf00WF/zc8XF7Cm5sZs7Pj+e++FuyPB854I/dr7z5w26M3BCAmdnAAX9ct6a0Gxq8acKNfbfk54ZmZp/71x9xYzMzKTc2J+75a2U/x1PrAZEW/GPGxW7f9hs73dg77/LzRjOzWIu/GqnWYdR6U+Lz/ry3+7t+fmNm9sevuMuNHcv4c1B7wc8L1HbqPKKovOkvH/jmsj9/9CMfs4X/esTd7uAH+qyvry+4TDjjxb++fqvsf/GXfr/dSFv+SfafsT77GfM7w57r/RswAAAAAAAAABeny1752/br/3XQjbO+vjp4kp13sgMAAAAAAAAAEGzLP8kOAAAAAAAAANgYPMnOk+wAAAAAAAAAAATjSXYAAAAAAAAAQJB4JfwLbS8WPMkOAAAAAAAAAECgWK1Wq210IeoxuEZ/KBkwf8eHKp9yYx+86cVu7P8MNchjDpp/KfaU/WOO/der3djVQ1k3ps7RzOyO4kfd2O/+9a+6sd3fzbixR55YcGPxiD/5vP0Fu/UvOIYmHnVjxUX/oAMv2hV0PDOzgQNX+cGp7/uxvU92Q4P//W+CywMA9ZitTrixpljJjcVi/lxhZvauex5xY9ms/1K/xcWEG4vH/bm0mE/J8rSe8D/gt9hYdWPJkj+fPv47aTf2B/13yfIc+Mivy7jn+uta3NhnDiy6MZUz1GN35U431pd4iRtT+ZaZ2fHEtUHlGfipJ/jBf3rIDak8rR4D7/b7yaE3/Y4bu/qf73Njf/mMTnnM1yVf6sauK/2dG3ty6llu7K8f+Zobu/dLos7NrCr67dt+Y6fcNoQae8z0+LOztejGMil/nLj2R69wYwNvf64sj5X88gwOfVFvC+CSN/A0/z568BvHw/ap7ndt/cemkb99WMZv/MXHubHBu0+4se0nw3LD1uP6pRGz2/1x/e7uD7uxb7Q+3o3deeoZbuw5u54uyxNKrVOpXCPKMw8suDGVr6qcU+WNA1t6VXTzuPa5fp+4UN/87q127Hu3uvF3jvRZX1/fqh1vtfC6GAAAAAAAAADAhvvRJ19vP/rk6914X9/mfDELi+wAAAAAAAAAgCBx/wMal4zNufQPAAAAAAAAAMAWwJPsAAAAAAAAAIAgPMnOk+wAAAAAAAAAAATjSXYAAAAAAAAAQBCeZDeL1Wq12kYXoh6DMR0fMP8XBs0/9dDtQssStd895U+5sUeSLwkqz1/cWJDxF49kgvYb6qPvnpPxheaqG3vta1vc2MHPHndjjU3+KHDjLz5OlueK4h1u7BU3fdCNDY58Se4XADabgRuf48Ye3n+lG7v7pzvlfr+XellQedS43jCbcGNNImZmtvNh/9mDl72t0Y196uYFN/aSmxrkMTcTlWuYhecboerJm0L3G7rPtTrmm758gxt777PeX1eZQtx6eMaNXX+dn4tF+eD7Z93Ya25oDtrnzV941I1VivrDvAMv2uXG/vhLD7uxYsHf74Huy+QxAeBi8rTF291YpuLfg//B/b/sxl7xE5cHl+fL0//ixp618xlB+4xav1Be9ft/48YqsV8L3q9ns+V4m83All4V3Txe/nP+mt1q+7O/35wvZtmcpQIAAAAAAAAAYAvgdTEAAAAAAAAAgCDxSsSrRi4BPMkOAAAAAAAAAEAgnmQHAAAAAAAAAAThi095kh0AXGUr2N/YQSub/pJgAMD6KpgxPgPAJkPuDAC4lLHIDgCOshXsizbIjQIAbDIFM8ZnANhkyJ0B4NIVr6zfv80qVqvVahtdiHoM8l79i8Zf3KiTsRePZNzYez6ed2Nv/q3WwBLhUrdop+1dtt3eaqcsa9s2ujjAhhl4+uPc2OC/PryOJYl26+EZN3b9dS3rWJK1NWB+AjRoWzq1WxHG563lc2/UOd4/dF/vxgZf+KHVLg6ANcLYjLX0oX96wI09+K0mue2P/HvWjVUSft70O2/R+8XFYeDiT53Xxat/ev0q8kNf3ZyLwbyTHQAAAAAAAAAQZDM/Yb5eWGQHAAAAAAAAAGy4r504ZF+bvtWN//ShPuvr61vHEq0Mi+wAAAAAAAAAgCCr+ST701v77Omt/iJ6X9/mfF0MX3wKAAAAAAAAAEAgnmQHAAAAAAAAAAThnew8yQ4AAAAAAAAAQDCeZL8I/KMdsp+xzffC/wv14pFM8LZv/q1WN3ax1M9aoX5QD9qPdrHUz+C/Prwm+12L+rn+upZV3d9GUvUzaLV1Lg22ks029vzq+yJyvONH16cg/7/NVj+bDfWjUT+oB+1HU/Xz6p96yjqXZvOh/WjUz8aKlze6BBuPJ9kvAv9ohza6CJsa9aNRP6gH7UejfjTqR6N+EIq2o1E/GvWjUT+oB+1Ho3406kejfrDReJIdAAAAAAAAABAkXoltdBE2HE+yAwAAAAAAAAAQiCfZAQAAAAAAAABB4pWNLsHG40l2AAAAAAAAAAAC8SQ7AAAAAAAAACAIT7LzJDsAAAAAAAAAAMG2/JPsuz9wyA4dOuTG+/r6rK+vbx1LtP52H+qzi/wU60L9aNSPr1DIWGZowA4cyFgms9Gl2ZxoPxr1o1E/GvXjY3zWtl7b+aobGfiz1T/a1quf9UX9aNSPj7E5Gu1Ho3406kfz6ufQIb1ueGY7Khb1i9VqtdpGFwIAAAAAAAAAsPX8/uPW71h//PD6HetCbPkn2QEAAAAAAAAAW99X5w/ZVxf8Tx+0bdJPH/AkOwAAAAAAAAAgyB/sXr9j/dHx9TvWheCLTwEAAAAAAAAACMTrYgBc0vL5vA0NDZmZ2fDw8HnxqakpGxoasra2Nsvn89bd3W379u274N8BANSP8RYA1g95MgBgpeKVjS7BxmORHcAla3Jy0kZHR218fNx6enrOi+dyOevs7LSjR49aR0eHmZm1t7fb9PT0ud9fye8AAOrHeAsA64c8GQCAC8M72QFc8mKxmPX09Njo6OiSn3d3d5uZ2cTExLmfjY2NWW9vr50dOlfyOwCA+jHeAsD6I08GAKzEgW3rd6yh0+t3rAvBO9kBYBn5fN4mJyfP3RyctXfvXjM7c4Owkt8BANSP8RYANg/yZAAAzsciOwAs47777jMzs7a2tiU/P/tR14mJiRX9DgCgfoy3ALB5kCcDAB4rXl6/f5sVi+wAsIxcLmdmZq2trW58Jb8DAKgf4y0AbB7kyQAAnI8vPgWAZRw7dszMzHbu3LlsPJ/Pr+h3AAD1Y7wFgM2DPBkA8FjxykaXYOOxyA4Ay2hvbzczs+np6WXjbW1tK/odAED9GG8BYPMgTwYAbFZTU1M2NDRkbW1tls/nrbu72/bt27dm2/0wFtkBXLSW+7KliYkJ6+rqitz2bOLvPWXT1ta2ot8BANSP8RYANg/yZADAY22GJ9lzuZx1dnba0aNHz30HSHt7u01PT1tPT8+qb/dYvJMdwEWrq6vLjh07tuTfShbYzcz27t1rZue/L/Ls/3d2dq7odwAA9WO8BYDNgzwZALAZ9fb2WldX17mFcjOz/v5+6+3tXZPtHotFdgAXtbNP0vzwEzUr0draah0dHTYxMbHk55OTk2Zmds0116zodwAA9WO8BYDNgzwZAPBY8cr6/VtOPp9f9m0GZ//oOzY2tqrbLVsHK/5NALgIqS9dOnz4sE1OTi55Amd4eNiGh4ettbV1xb8DAKgf4y0ArC/yZADAaitbwRbtdF3/CoXCefu97777zOz815GdfTr9sX/0rXe75fBOdgCXrKmpKRsdHTUzs09/+tPW3d1tXV1d55L+jo4OO3r0qPX391tbW5vlcjnr7+9f8k6ulfwOAKB+jLcAsH7IkwEAF2KgtrLfO3hwyG4eHKzrWJmhATt48OCSn539g673R9zHvr6s3u2WE6vVaiusBgAAAAAAAAAALlyhUFj2SfQLkclkLJPJLPlZf3+/jYyMLPny0rNisZi1tbXZsWPHzttX6HbL4Ul2AAAAAAAAAMCaWm6BfDW0t7ebmdn09PSyce87+kK3Ww7vZAcAAAAAAAAAbElnF8O97xPxFstDt1sOi+wAAAAAAAAAgC1p7969Znb+O9TP/n9nZ+eqbrccFtkBAAAAAAAAAFtSa2urdXR02MTExJKfT05OmpnZNddcs6rbLYdFdgAAAAAAAADAlnX48GGbnJxc8lT68PCwDQ8PW2trq5mdeUK9vb393CL6SrdbCb74FAAAAAAAAACwZXV0dNjRo0etv7/f2traLJfLWX9/v/X09Jz7nXw+b9PT00vewb6S7VYiVqvVaqt1MgAAAAAAAAAAXEp4XQwAAAAAAAAAAIFYZAcAAAAAAADgmpqaWpdjjI2NrflxgLXAIjsAAAAAAAAA1/79+5e8xzpKLpezWCxm7e3t1t/fb/39/e72uVzO9u/fb52dnTY6Oro6BX7M/vv7+623t9d27NhhsVjsgs4FWAm++BQAAAAAAACA1NraesHbrOQLJNva2uzIkSMWi8UCS6a1tbXZ8PCwmZ05h5GRkTU5Di5tPMkOAAAAAAAAYFm5XM7a2to2uhirYteuXRtdBFykWGQHAAAAAAAAcJ7x8XHr7e21XC5nIyMjvGYFcLDIDgAAAAAAAOCcXC5nnZ2dNj09bR0dHdbV1WVDQ0N2xRVXrMqXoObzeevt7T33z3uFy9TUlO3fv9+6u7vPvd99OWf3097ebvv371+XL2oFfhiL7AAAAAAAAADM7MwCeGdnp1177bXW09NjuVzOent77fDhw5bP5+26666ra/+5XM6uuOIK279/v42Ojrpfdjo1NWX9/f125MgRm5iYsOHhYRsZGbHe3t4lv9fZ2Wmtra02OjpqExMTNj4+bp2dndbe3n7e7wJrhUV2AAAAAAAAAGZmtn//fsvn83bjjTea2ZnF7rNPs5/9/3peG9Pf32979+49tz8zO3esH3bddded+8JSM7N9+/ZZa2urjY2NnTv++Pi4TU1N2bXXXmtmZ77k9OwXrU5MTLgL+MBqS250AQAAAAAAAABsvFwuZ5OTk7Zv377zYq2trauy//Hx8SWL597vTU1N2dDQ0LLx++67z7q6uuzee+89L7Z//34bGxuzqampi+YLW7H5scgOAAAAAAAAwMbHx83Mzi1O53K5ZReqQxfcc7nckv17zr5T/ciRI/L3rrzySjMzm5yctI6OjiWxx/4/sJZ4XQwAAAAAAAAAO3bsmJmZ7dq1y8x+8KoYsx8skP/wa14u1Nl9TE9Pr+j3zv7Xs2/fvnNfyjo5OWn5fN6Gh4ftxhtv5Cl2rCsW2QEAAAAAAACcc+LECTM7s8j9w0+Lm1ldXyZ6duH76NGjK/q9s0/WP9bZspidedq9q6vLpqambGxszIaHhyNfRwOsNhbZAQAAAAAAAFh3d7eZ/WAR+9577z234D06Omr79u1b9n3tK7V3714zsyVfXvrDzv7s7NPy/f39514dc9bY2NiS/9+/f78dOXLEbrzxRrvxxht5TQw2BIvsAAAAAAAAAGzfvn3W0dFx7qnws6+L6e/vt507d0a+Iz1Ka2ur3XjjjWZm1tnZaZOTk5bL5ay/v9/Mzjw5PzIyct7v7d+/30ZGRqy7u9uOHTt2bhF+bGzMJicnz8XHxsZsfHz8vIV5YK3xxacAAAAAAAAAzOzMq1x6e3tteHjYcrmc7d+/37q7u1ftFSzDw8PW3t5uw8PD1t3dbR0dHXbkyBEbHx9f8qT88PCw7dq1y0ZHR88tnPf391tPT8+5fXV1dVlbW5uNj4+f92qZtrY2O3r0aPCXtAIXIlar1WobXQgAAAAAAAAAm0cul7Pe3l6bmJgI2ra9vd1GR0eXLIqvtqmpKbvzzjvtwIEDNj09bfl8/tyXqh45csTa29vPPRFvZjYyMmL9/f128uRJFt+xqniSHQAAAAAAAMASZ18VU4/l3ru+WnK5nHV2dp5bMH/sonlbW9uSL0g1+8EXugKrjUV2AAAAAAAAAEvkcjm78sor69rH0NDQuYXtAwcOrOrT47lczszMrrvuOjtw4MC5PwjkcjmbnJy0Y8eOnXvlzejoqJmd/6WpwGrhdTEAAAAAAAAAljj7HvZ6n2ZfSyMjIzY0NLTkifmOjg4bHh4+9+WowHpgkR0AAAAAAADAEqvxupj1cvZd7G1tbRtdFFyiWGQHAAAAAAAAACBQfKMLAAAAAAAAAADAVsUiOwAAAAAAAAAAgVhkBwAAAAAAAAAgEIvsAAAAAAAAAAAEYpEdAAAAAAAAAIBALLIDAAAAAAAAABCIRXYAAAAAAAAAAAKxyA4AAAAAAAAAQKD/D+YJekD6wdc9AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2100x700 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(21, 7))\n",
"ax = sns.heatmap(\n",
" df_pivoted,\n",
" robust=True,\n",
" square=True,\n",
" cmap=colormaps[\"rainbow\"],\n",
" xticklabels=False,\n",
" yticklabels=False,\n",
" vmax=0.7,\n",
")\n",
"# ax.set_yticks([5, 15, 25, 35], [2, 3, 4, 5])\n",
"ax.set_yticks([10, 30, 50, 70], [2, 3, 4, 5])\n",
"ax.set_xticks([39, 89, 139], [-100, 0, 100]) # ([79, 179, 279], [-100, 0, 100])\n",
"ax.set_xlabel(f\"$\\phi$ [deg]\")\n",
"ax.set_ylabel(f\"$\\eta$\")\n",
"\n",
"# ax.set_yticklabels([])\n",
"ax.invert_yaxis()\n",
"ax.set_title(\"LHCb EndVelo to EndUT $x/X_0$\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# make these smaller to increase the resolution\n",
"dy, dx = 0.1, 1.0\n",
"\n",
"# generate 2 2d grids for the x & y bounds\n",
"y, x = np.mgrid[slice(1.5, 5 + dy, dy), slice(-180, 180 + dx, dx)]\n",
"\n",
"plt.pcolormesh(x, y, df_pivoted, cmap=colormaps[\"jet\"], vmax=0.7)\n",
"\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "tuner",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}