1182 lines
150 KiB
Plaintext
1182 lines
150 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\t\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from mpl_toolkits import mplot3d\n",
|
|
"import awkward as ak\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"41978 8523\n",
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
|
|
"file = uproot.open(\n",
|
|
" \"tracking_losses_ntuple_B_EndVeloP.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
|
|
")\n",
|
|
"\n",
|
|
"# selektiere nur elektronen von B->K*ee\n",
|
|
"allcolumns = file.arrays()\n",
|
|
"found = allcolumns[\n",
|
|
" (allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromB)\n",
|
|
"] # B: 9056\n",
|
|
"lost = allcolumns[\n",
|
|
" (allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromB)\n",
|
|
"] # B: 1466\n",
|
|
"\n",
|
|
"electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n",
|
|
"\n",
|
|
"print(ak.num(found, axis=0), ak.num(lost, axis=0))\n",
|
|
"print(ak.num(electrons, axis=0))\n",
|
|
"# ak.count(found, axis=None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{all_endvtx_types_length: 7,\n",
|
|
" all_endvtx_types: [101, 101, 101, 101, 101, 101, 0],\n",
|
|
" all_endvtx_x_length: 7,\n",
|
|
" all_endvtx_x: [-6.97, -52.9, -52.9, ..., -1.71e+03, -2.14e+03, -3.57e+03],\n",
|
|
" all_endvtx_y_length: 7,\n",
|
|
" all_endvtx_y: [-0.89, -6.75, -6.75, -7.08, -66.1, -72.6, -39.5],\n",
|
|
" all_endvtx_z_length: 7,\n",
|
|
" all_endvtx_z: [112, 859, 859, 895, 8.7e+03, 9.68e+03, 1.26e+04],\n",
|
|
" brem_photons_pe_length: 6,\n",
|
|
" brem_photons_pe: [2.62e+03, 812, 2.54e+03, 1.86e+03, 3.12e+03, 241],\n",
|
|
" brem_photons_px_length: 6,\n",
|
|
" brem_photons_px: [-161, -49.7, -156, -114, -1.18e+03, -101],\n",
|
|
" brem_photons_py_length: 6,\n",
|
|
" brem_photons_py: [-18.9, -6.92, -21.6, -16.8, -20.9, -0.26],\n",
|
|
" brem_photons_pz_length: 6,\n",
|
|
" brem_photons_pz: [2.61e+03, 810, 2.54e+03, 1.86e+03, 2.89e+03, 219],\n",
|
|
" brem_vtx_x_length: 6,\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -52.9, -55.2, -1.71e+03, -2.14e+03],\n",
|
|
" brem_vtx_y_length: 6,\n",
|
|
" ...}\n",
|
|
"---------------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" all_endvtx_types_length: int32,\n",
|
|
" all_endvtx_types: var * float32,\n",
|
|
" all_endvtx_x_length: int32,\n",
|
|
" all_endvtx_x: var * float32,\n",
|
|
" all_endvtx_y_length: int32,\n",
|
|
" all_endvtx_y: var * float32,\n",
|
|
" all_endvtx_z_length: int32,\n",
|
|
" all_endvtx_z: var * float32,\n",
|
|
" brem_photons_pe_length: int32,\n",
|
|
" brem_photons_pe: var * float32,\n",
|
|
" brem_photons_px_length: int32,\n",
|
|
" brem_photons_px: var * float32,\n",
|
|
" brem_photons_py_length: int32,\n",
|
|
" brem_photons_py: var * float32,\n",
|
|
" brem_photons_pz_length: int32,\n",
|
|
" brem_photons_pz: var * float32,\n",
|
|
" brem_vtx_x_length: int32,\n",
|
|
" brem_vtx_x: var * float32,\n",
|
|
" brem_vtx_y_length: int32,\n",
|
|
" brem_vtx_y: var * float32,\n",
|
|
" brem_vtx_z_length: int32,\n",
|
|
" brem_vtx_z: var * float32,\n",
|
|
" endvtx_type: int32,\n",
|
|
" endvtx_x: float64,\n",
|
|
" endvtx_y: float64,\n",
|
|
" endvtx_z: float64,\n",
|
|
" energy: float64,\n",
|
|
" eta: float64,\n",
|
|
" event_count: int32,\n",
|
|
" fromB: bool,\n",
|
|
" fromD: bool,\n",
|
|
" fromDecay: bool,\n",
|
|
" fromHadInt: bool,\n",
|
|
" fromPV: bool,\n",
|
|
" fromPairProd: bool,\n",
|
|
" fromSignal: bool,\n",
|
|
" fromStrange: bool,\n",
|
|
" ideal_state_770_qop: float64,\n",
|
|
" ideal_state_770_tx: float64,\n",
|
|
" ideal_state_770_ty: float64,\n",
|
|
" ideal_state_770_x: float64,\n",
|
|
" ideal_state_770_y: float64,\n",
|
|
" ideal_state_770_z: float64,\n",
|
|
" ideal_state_9410_qop: float64,\n",
|
|
" ideal_state_9410_tx: float64,\n",
|
|
" ideal_state_9410_ty: float64,\n",
|
|
" ideal_state_9410_x: float64,\n",
|
|
" ideal_state_9410_y: float64,\n",
|
|
" ideal_state_9410_z: float64,\n",
|
|
" isElectron: bool,\n",
|
|
" isKaon: bool,\n",
|
|
" isMuon: bool,\n",
|
|
" isPion: bool,\n",
|
|
" isProton: bool,\n",
|
|
" lost: bool,\n",
|
|
" lost_in_track_fit: bool,\n",
|
|
" match_fraction: float32,\n",
|
|
" mc_chi2: float32,\n",
|
|
" mc_dSlope: float32,\n",
|
|
" mc_dSlopeY: float32,\n",
|
|
" mc_distX: float32,\n",
|
|
" mc_distY: float32,\n",
|
|
" mc_teta2: float32,\n",
|
|
" mc_zMag: float32,\n",
|
|
" mcp_idx: int32,\n",
|
|
" mother_id: int32,\n",
|
|
" mother_key: int32,\n",
|
|
" originvtx_type: int32,\n",
|
|
" originvtx_x: float64,\n",
|
|
" originvtx_y: float64,\n",
|
|
" originvtx_z: float64,\n",
|
|
" p: float64,\n",
|
|
" p_end_ut: float64,\n",
|
|
" p_end_velo: float64,\n",
|
|
" phi: float64,\n",
|
|
" pid: int32,\n",
|
|
" pt: float64,\n",
|
|
" px: float64,\n",
|
|
" py: float64,\n",
|
|
" pz: float64,\n",
|
|
" quality: int32,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" scifi_hit_pos_x_length: int32,\n",
|
|
" scifi_hit_pos_x: var * float32,\n",
|
|
" scifi_hit_pos_y_length: int32,\n",
|
|
" scifi_hit_pos_y: var * float32,\n",
|
|
" scifi_hit_pos_z_length: int32,\n",
|
|
" scifi_hit_pos_z: var * float32,\n",
|
|
" track_p: float64,\n",
|
|
" track_pt: float64,\n",
|
|
" tx: float64,\n",
|
|
" ty: float64,\n",
|
|
" ut_hit_pos_x_length: int32,\n",
|
|
" ut_hit_pos_x: var * float32,\n",
|
|
" ut_hit_pos_y_length: int32,\n",
|
|
" ut_hit_pos_y: var * float32,\n",
|
|
" ut_hit_pos_z_length: int32,\n",
|
|
" ut_hit_pos_z: var * float32,\n",
|
|
" velo_hit_pos_x_length: int32,\n",
|
|
" velo_hit_pos_x: var * float32,\n",
|
|
" velo_hit_pos_y_length: int32,\n",
|
|
" velo_hit_pos_y: var * float32,\n",
|
|
" velo_hit_pos_z_length: int32,\n",
|
|
" velo_hit_pos_z: var * float32,\n",
|
|
" velo_track_idx: int32,\n",
|
|
" velo_track_tx: float64,\n",
|
|
" velo_track_ty: float64,\n",
|
|
" velo_track_x: float64,\n",
|
|
" velo_track_y: float64,\n",
|
|
" velo_track_z: float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {all_endvtx_types_length: 7, ...} type='{all_endvtx_types_length: i...'>"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"electrons[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{lost: True,\n",
|
|
" rad_length_frac: 0.129,\n",
|
|
" energy: 1.17e+04,\n",
|
|
" photon_length: 6,\n",
|
|
" brem_photons_pe: [2.62e+03, 812, 2.54e+03, 1.86e+03, 3.12e+03, 241],\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -52.9, -55.2, -1.71e+03, -2.14e+03],\n",
|
|
" brem_vtx_z: [112, 859, 859, 895, 8.7e+03, 9.68e+03]}\n",
|
|
"---------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {lost: True, rad_length_frac: ..., ...} type='{lost: bool, rad_leng...'>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"lost_e = electrons[\"lost\"]\n",
|
|
"e = electrons[\"energy\"]\n",
|
|
"brem_pe = electrons[\"brem_photons_pe\"]\n",
|
|
"brem_z = electrons[\"brem_vtx_z\"]\n",
|
|
"brem_x = electrons[\"brem_vtx_x\"]\n",
|
|
"length = electrons[\"brem_vtx_z_length\"]\n",
|
|
"rad_length = electrons[\"rad_length_frac\"]\n",
|
|
"\n",
|
|
"brem = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(electrons, axis=0)):\n",
|
|
" brem.begin_record()\n",
|
|
" brem.field(\"lost\").boolean(lost_e[itr])\n",
|
|
" brem.field(\"rad_length_frac\").append(rad_length[itr])\n",
|
|
" # [:,\"energy\"] energy\n",
|
|
" brem.field(\"energy\").append(e[itr])\n",
|
|
" # [:,\"photon_length\"] number of vertices\n",
|
|
" brem.field(\"photon_length\").integer(length[itr])\n",
|
|
" # [:,\"brem_photons_pe\",:] photon energy\n",
|
|
" brem.field(\"brem_photons_pe\").append(brem_pe[itr])\n",
|
|
" # [:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem.field(\"brem_vtx_x\").append(brem_x[itr])\n",
|
|
" brem.field(\"brem_vtx_z\").append(brem_z[itr])\n",
|
|
" brem.end_record()\n",
|
|
"\n",
|
|
"brem = ak.Array(brem)\n",
|
|
"brem[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"photon_cut = 0\n",
|
|
"photon_cut_ratio = 0.2\n",
|
|
"\n",
|
|
"cut_brem = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem, axis=0)):\n",
|
|
" cut_brem.begin_record()\n",
|
|
" cut_brem.field(\"event_id\").integer(itr)\n",
|
|
" cut_brem.field(\"lost\").boolean(brem[itr, \"lost\"])\n",
|
|
" cut_brem.field(\"rad_length_frac\").real(brem[itr, \"rad_length_frac\"])\n",
|
|
" cut_brem.field(\"energy\").real(brem[itr, \"energy\"])\n",
|
|
"\n",
|
|
" ph_length = brem[itr, \"photon_length\"]\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_photons_pe\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (\n",
|
|
" brem[itr, \"brem_vtx_z\", jentry] > 2700\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut_ratio * tmp_energy\n",
|
|
" ):\n",
|
|
" ph_length -= 1\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_photons_pe\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_vtx_x\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (\n",
|
|
" brem[itr, \"brem_vtx_z\", jentry] > 2700\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut_ratio * tmp_energy\n",
|
|
" ):\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_vtx_x\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_vtx_z\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (\n",
|
|
" brem[itr, \"brem_vtx_z\", jentry] > 2700\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut_ratio * tmp_energy\n",
|
|
" ):\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_vtx_z\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" cut_brem.field(\"photon_length\").integer(ph_length)\n",
|
|
"\n",
|
|
" cut_brem.end_record()\n",
|
|
"\n",
|
|
"ntuple = ak.Array(cut_brem)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"24758\n",
|
|
"50501\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{event_id: 0,\n",
|
|
" lost: True,\n",
|
|
" rad_length_frac: 0.129,\n",
|
|
" energy: 1.17e+04,\n",
|
|
" brem_photons_pe: [2.62e+03, 2.54e+03, 1.86e+03],\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -55.2],\n",
|
|
" brem_vtx_z: [112, 859, 895],\n",
|
|
" photon_length: 3}\n",
|
|
"-------------------------------------------------\n",
|
|
"type: {\n",
|
|
" event_id: int64,\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64,\n",
|
|
" photon_length: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {event_id: 0, lost: True, ...} type='{event_id: int64, lost: bool, ...'>"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"print(ak.sum(ak.num(ntuple[\"brem_photons_pe\"], axis=1)))\n",
|
|
"print(ak.num(ntuple, axis=0))\n",
|
|
"ntuple[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# nulltuple = ntuple[:7000]\n",
|
|
"# onetuple = ntuple[7000:14000]\n",
|
|
"# twotuple = ntuple[14000:21000]\n",
|
|
"# threetuple = ntuple[21000:28000]\n",
|
|
"# fourtuple = ntuple[28000:35000]\n",
|
|
"# fivetuple = ntuple[35000:42000]\n",
|
|
"# sixtuple = ntuple[42000:49000]\n",
|
|
"# seventuple = ntuple[49000:]\n",
|
|
"\n",
|
|
"# ntuple.nbytes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# cut = \"tenCut\"\n",
|
|
"# tree = \"Tree10\"\n",
|
|
"# with uproot.update(\"trackinglosses_B_photon_cuts.root\") as outFile:\n",
|
|
"# #outFile[\"README\"] = \"The Cuts are placed on the photons. noCut: 0*E, first: 0.05*E, second: 0.1*E, etc.\"\n",
|
|
"# outFile.mktree(tree, {cut + \"_event_id\": ntuple[\"event_id\"].type, cut + \"_lost\": ntuple[\"lost\"].type, cut + \"_rad_length_frac\": ntuple[\"rad_length_frac\"].type, cut + \"_energy\": ntuple[\"energy\"].type, cut + \"_brem_photons_pe\": ntuple[\"brem_photons_pe\"].type, cut + \"_brem_vtx_x\": ntuple[\"brem_vtx_x\"].type, cut + \"_brem_vtx_z\": ntuple[\"brem_vtx_z\"].type, cut + \"_photon_length\": ntuple[\"photon_length\"].type} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": nulltuple[\"event_id\"], cut + \"_lost\": nulltuple[\"lost\"], cut + \"_rad_length_frac\": nulltuple[\"rad_length_frac\"], cut + \"_energy\": nulltuple[\"energy\"], cut + \"_brem_photons_pe\": nulltuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": nulltuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": nulltuple[\"brem_vtx_z\"], cut + \"_photon_length\": nulltuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": onetuple[\"event_id\"], cut + \"_lost\": onetuple[\"lost\"], cut + \"_rad_length_frac\": onetuple[\"rad_length_frac\"], cut + \"_energy\": onetuple[\"energy\"], cut + \"_brem_photons_pe\": onetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": onetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": onetuple[\"brem_vtx_z\"], cut + \"_photon_length\": onetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": twotuple[\"event_id\"], cut + \"_lost\": twotuple[\"lost\"], cut + \"_rad_length_frac\": twotuple[\"rad_length_frac\"], cut + \"_energy\": twotuple[\"energy\"], cut + \"_brem_photons_pe\": twotuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": twotuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": twotuple[\"brem_vtx_z\"], cut + \"_photon_length\": twotuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": threetuple[\"event_id\"], cut + \"_lost\": threetuple[\"lost\"], cut + \"_rad_length_frac\": threetuple[\"rad_length_frac\"], cut + \"_energy\": threetuple[\"energy\"], cut + \"_brem_photons_pe\": threetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": threetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": threetuple[\"brem_vtx_z\"], cut + \"_photon_length\": threetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": fourtuple[\"event_id\"], cut + \"_lost\": fourtuple[\"lost\"], cut + \"_rad_length_frac\": fourtuple[\"rad_length_frac\"], cut + \"_energy\": fourtuple[\"energy\"], cut + \"_brem_photons_pe\": fourtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fourtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fourtuple[\"brem_vtx_z\"], cut + \"_photon_length\": fourtuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": fivetuple[\"event_id\"], cut + \"_lost\": fivetuple[\"lost\"], cut + \"_rad_length_frac\": fivetuple[\"rad_length_frac\"], cut + \"_energy\": fivetuple[\"energy\"], cut + \"_brem_photons_pe\": fivetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fivetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fivetuple[\"brem_vtx_z\"], cut + \"_photon_length\": fivetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": sixtuple[\"event_id\"], cut + \"_lost\": sixtuple[\"lost\"], cut + \"_rad_length_frac\": sixtuple[\"rad_length_frac\"], cut + \"_energy\": sixtuple[\"energy\"], cut + \"_brem_photons_pe\": sixtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": sixtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": sixtuple[\"brem_vtx_z\"], cut + \"_photon_length\": sixtuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": seventuple[\"event_id\"], cut + \"_lost\": seventuple[\"lost\"], cut + \"_rad_length_frac\": seventuple[\"rad_length_frac\"], cut + \"_energy\": seventuple[\"energy\"], cut + \"_brem_photons_pe\": seventuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": seventuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": seventuple[\"brem_vtx_z\"], cut + \"_photon_length\": seventuple[\"photon_length\"]} )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"50501\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{event_id: 1,\n",
|
|
" lost: False,\n",
|
|
" rad_length_frac: 0.148,\n",
|
|
" energy: 1.28e+04,\n",
|
|
" brem_photons_pe: [7.42e+03],\n",
|
|
" brem_vtx_x: [-3.61],\n",
|
|
" brem_vtx_z: [35.6],\n",
|
|
" photon_length: 1}\n",
|
|
"-----------------------------------\n",
|
|
"type: {\n",
|
|
" event_id: int64,\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64,\n",
|
|
" photon_length: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {event_id: 1, lost: False, ...} type='{event_id: int64, lost: bool,...'>"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# data in cut_brem_found and cut_brem_lost\n",
|
|
"\n",
|
|
"length_found = ak.num(ntuple[~ntuple.lost][\"brem_photons_pe\"], axis=0)\n",
|
|
"length_lost = ak.num(ntuple[ntuple.lost][\"brem_photons_pe\"], axis=0)\n",
|
|
"print(length_found + length_lost)\n",
|
|
"ntuple[1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"Z_found = ak.to_numpy(\n",
|
|
" ak.sum(ntuple[~ntuple.lost][\"brem_photons_pe\"], axis=-1,\n",
|
|
" keepdims=False)) / ak.to_numpy(ntuple[~ntuple.lost][\"energy\"])\n",
|
|
"Z_lost = ak.to_numpy(\n",
|
|
" ak.sum(ntuple[ntuple.lost][\"brem_photons_pe\"], axis=-1,\n",
|
|
" keepdims=False)) / ak.to_numpy(ntuple[ntuple.lost][\"energy\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHOCAYAAAB0PWY+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAq2ElEQVR4nO3dP2wbWYLn8Z9m904wILgpedIF7GI0mVFUJ5PYgMntZDORcjCdNUxioKyBYY03sZwsQWFTAVs0BrgDZgOJNA4X9rK8kJMNzmKNo9vD7ancgIO7oJuuMQQI2t0BL9CSLYoUVSKLZJHv+wGMsciqV89v3OTP7+9Kp9PpCAAAwEA/m3cFAAAA5oUgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAEYIgmDeVQAwRQQhABihUCgoDMN5VwPAlBCEACTO3t6e1tfXtbKyopWVFeVyud6vdDrde33afN+XZVlKpVKJrB+Ayf35vCsAAFeVy2WdnJyoVqupXC6rWq32vR8EgXK53NTr4bquSqVSYusHYHL0CAFIpOPjY0kaGigsy1I2m516HTzPu/Y5SagfgMmtcPo8gCTqDi1d9xEVhuHAkFWcGo2Gms2mXNcd+v686wcgHvQIAUgcz/MkaaBXpdFo9H4/7ZBxcHAwdFhMSkb9AMSDIAQgcer1uqT+YacwDHVwcDCT54dhqCAIZNt2IusHID4EIQCJ0+1xOTg4UCaTUTqd1vr6ur788suZPP/w8FBPnz5NbP0AxIdVYwASpdsbk0ql1Gq1eq89efJk7AnIYRjq8PBQrVZL1Wr1xmEr13X15s2b2OpXKpWUTqf1448/6ssvv1Q+nx/rzwEgfgQhAIlyeHgoqX/+TSqVUjabvXao6iapVEobGxs6PDy8dvJzVxAE2tjYuDYs3bZ+hUJBlmWpXC5LkjKZTO96APPH0BiARGk2m5IGl6U/f/58onLfvXun7e3tG6+7bu+gceoXBIEajUZfeU+fPh3YdwjA/BCEACRKd/7N1dByuYeme81ty42yyWGj0Rg5dHWb+vm+L+liX6Eu27bleR7HdgAJQRACkBhBECgMw6HHWnTVarWBg1C7R140Gg3t7e0pnU7LcZze+2EYyvd9ZbNZNRoNpdPpob0+ozZQHKd+7969G7huY2NDktRut699DoDZIQgBSIzuPjyXe1C6wjBUqVRSqVQa6I2xbbvXw1Iul+W6rvb29nqveZ4ny7J0fHwsy7LkOE5vZ+jLbhoWu239wjDsBZ+rONUeSAYmSwNIhL29vV4vjud5ymQy2tjYULvd7q3UkqR8Pj/Qy9JsNmXb9rVDWs1mU5ZlaWNjQ7Ztq1KpaHNzc+A63/evnZA9Tv3S6XRvcvVVw8IUgNkjCAFIhHK53FtZdVue5/Xt+3P11PjukFc35Hie19sUsatWq43sDRqnfpZlDcwF6g6JEYSAZOCsMQALb2VlRScnJ71wkU6n5bqustmswjDU+vp67/0gCJROpwfOCMtkMnrz5k2sR2N0n3W5bnt7ezo4OOjtQQRgvpgjBGCheZ6nVCrVFzTy+Xxv0rPnebJtu/d+t3fI9/1eb81NeweNy7Is5fP5vjPIDg4OWD4PJAhDYwAWWrPZ1MbGhjzPUxAEfZsXShcrty4Pm4VhqHa7rXa73Rsqu2mS9CTq9bpKpZL29vb0448/qlQqsZkikCAMjQFYaJlMRqVSScVicewyCoXCwJwhAGYgCAFYaFfnBwHAbTBHCMDC6g5ndXdwBoDbokdohB9++EHfffed7t+/rzt37sy7OgAAIIKzszN9//33+uqrr/Tzn/985LVMlh7hu+++09dffz3vagAAgDH8/ve/169+9auR1xCERrh//76ki4b8xS9+EWvZp6enevTokd6+fau1tbVYy97a2tLr169jLXPaZU+rXNp5NmVPs52lxft7N62yaefZlL2o7TzNshftM/qf//mf9fXXX/e+x0chCI3QHQ77xS9+ce22++P6/PmzJOnhw4e6e/durGXfuXMn9vpOu+xplUs7z6bsabaztHh/76ZVNu08m7IXtZ2nWfYifkZLijStZWpB6Ne//rU2Nzf1zTffTOsRM7O1tXVtY+7s7GhnZ2fGNQIAwGz7+/va398f+t7Z2VnkcqYShD58+CDXdXV4eLgUQej169dTS+8AAOD2RnVE+L6vTCYTqZypBKEHDx7IdV329QAAAIk2taGxZ8+eTatoAACAWExtQ8WvvvpK79+/n1bxAAAAExu7R+jyIYZXhWEoz/N0eHiohw8fjvuIxFi0ydLTrM+0yk5aG0axiO087bKnZRH/3tHO0y932mVPyyK2RxLbOa7J0mPvLP2zn93cmZROp/Uv//Iv4xSfCN3JVq1WayrLM7/44gv98Y9/nMqSQVygnWeDdp4N2nk2aOfZmVZb3+b7e+yhsXw+r5OTE3369Gng1/HxsYrF4kKHIAAAsPzGDkKlUkkPHjzQF198MfDLtm1lMhn99V//dZx1BQAAiNXYc4SePHky8n3LsvTb3/5Wf/M3fzPuIxJj0eYIAQCw7Oa+oeKoFWFBEMhxnHGLThw2VAQAIFnmvqGibdtaWVm59v1Op6O9vb1xiwcAAJi6sYNQKpXS9va2UqnUwHv37t2Tbds3Dp8BAADM09hB6NWrV9ra2oqzLgAAADM1dhAiBE1mdXVVjx690N7eqv78P/5f2N2da5WW0urqql68eKHV1dV5V2Wp0c6zQTvPBu08O0lo67E3VLzJr3/9a21ubi706fPdyVb379+fyqqxq8GHIAQAQDQ3rRr7/vvvI22oOJUg9OHDB6XTaa2vr+vHH3+Mu/iZmebO0hJBCACAabjN9/dUTp9/8OCBXNeVZVnTKH55fDy68sLj2dcBAACDTSUISdL29ra++OKLaRUPAAAwsbGP2LjJmzdv9Pz582kVDwAAMLGJeoT+8R//Uc1mU2EY9r3ebrfl+77a7bYqlcokjwAAAJiaifYRKpVKI68pFovjFp8onDUGAECyzP2sMdd11Ww2tbm5qXfv3ukPf/iDfvOb30iSwjDUb3/7W/3d3/3duMUnCmeNAQCQLHGdNTb2HKFsNqsnT57oiy++UDab1fHxce+9VCqlTCbDHCEAAJBoYwehP/7xj30/b29v62//9m/7Xms0GuMWDwAAMHVjD41ZlqU/+7M/0/r6uo6Pj7W1taXNzU01m02lUik1Go2hB7ICAAAkxdhB6De/+Y1++OEH/eEPf9DGxoYk6fDwULlcTh8+fJAkVavVeGoJAMBV/7Q77xpE88vdedcAI0y0fP5q0LEsSycnJ/rw4YM2NjbYUBEAACTa1I7YAAAA8fB9XwcHB/I8T5LUarXmXKPlMbUjNpYJ+wgBAOapu4XL3t7eVLdzCYJAGxsbCzHHd+77CJmEfYQAAPM2i++hQqGger2+EEFo7vsIAQCA5VEoFOT7/ryrMXP0CAEAsODCMJTjOEqlUr0w4ziOstns0GvCMJTneXIcR8ViUY1Go3dfqVRSKpXS8+fPjRgNIQgBALDAfN/XkydP9ObNm15wqdVqyuVyqlarKpfLkqRnz57Jsqzeiu9ardY7ND2fz+vdu3fa29uT67qyLGsuf5Z5YGgMAIAF9uzZM21ubvb13hSLRdm2LcdxFASBJPVWnF2+BgQhAAAWVhAE8n1/6BBWqVSSdHFIunSx19/e3p729vZ613R7i0xGEAIAYEGNmty8ubkpSb0eoe5qMMdxlE6njZwYPQxBCACABded63NZdwl89xgsy7L04cMHZbNZBUGgTCajWq02w1omE0EIAIAF1R0Suzr/R/opHKXTaUkXPUOpVErNZlP1el3ST8NnJmPVWATsLA0ASCLLsmTbtnzfVxAEfau9jo+PlUqlepOiq9Vqb75QPp+X67oqlUoD9w3rXUoidpaeIXaWBgAkVb1eVyaTUalUUrPZlHQRZqrVql69etUbIjs8PJTjOL3QE4ahLMvq/dztOXJdV47jyPd95fP52f+BIoprZ2mCEABgMf1yd941mBnf93u9Ob7va29vT8ViUalUqjf359mzZ8rlcr1gU6/X+/4Rv7m5qVwu1ws3QRD0Hd5aLBbluq4ODw8l/bTabNkRhAAASDjbtuW67rXhJJVK9eb9XKfbWzSKiafaM1kaAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMbirLEItra2dOfOnaHvjTr9FgAATMf+/r729/eHvnd2dha5HIJQBK9fv+47wRcAAMzXqI4I3/eVyWQilUMQAgAspN3dedcgmkWpZ5x839fx8bGKxeK8q3Ij5ggBALBAfN+X4zgqFApKp9Pa29ubd5V6giBQoVBQJpOR67rzrk4k9AgBALAgfN/XkydP9OnTJ0mS4zg6OTmZc61+YlmW6vW6VlZW5l2VyAhCAAAsiEqloo2Njd7P1Wp1jrVZDgyNAQCwIHzfn3cVlg5BCACAhKvVaioUCgqCoDcPp1AoyPO83jVhGKpUKslxHOVyOeVyub73G42G1tfXtbKy0gtUnuepUChoZWVFhUKhV06tVlMmk1Gj0ZDnecpkMn3XXNZ9bvdXkuYsRUEQAgAg4YrFour1uizL6s3Dqdfrymazki56ih48eKBSqaRqtapms6lCoaBcLtcLJvl8Xtvb233lZrPZgeG1drutZrMp3/fluq6azaZevXqlYrGoRqPRF3SCINCDBw9UKBTkuu7CTJC+jCAEAMCCe/bsmTY3N/v2vCsWi7JtW47jKAgCSVIqlRq49/KcI+liwvPTp08lSblcTtVqVbZt90JOs9nsXes4jjY3N3uBTJLK5XJsf65ZIAgBALDAgiCQ7/tDN/4tlUqSNHZPzbDg1G63e89tNBrK5XJjlZ0UBCEAABbYqAnUm5ubktTrEYpTt0zLsmIve5YIQgAALIEwDAde6/boXB3+ikM3CHV7iBYVQQgAgAXWHRK7vEKsqxuO0ul07M/t9gS1Wq3Yy54lghAAAAui3W4P9MBYliXbtntL6y87Pj5WKpXqnfl17949Sf1DZd3fD+tRGqU77Far1Ybee9vy5oUgBADAgqvX60qlUr3J0dJFEKlWq3r16lVviKzbe+Q4jjzPU61W602k9jyvN/E5ynBXKpXqrRDLZDLyPE9BEMhxHEkXAWsR9hTiiA0AwEIy6VT37p4+3V6WUqmkQqHQW7ZuWZY+fPigZ8+eKZfL9Yat6vV632qy7r5BlUpFhUJBxWJRruvK8zzl83k9ffq09yzp4ggPy7K0ubnZCzi+72tvb0/lclnValXpdFrValW5XE62bater6vRaCifzyufz8+wlcaz0ul0OvOuRFL5vq9MJqNWqzV0WeKkdr856v/5d49jfwYAAKa5zfc3Q2MAAMBYSzM0FoahKpWKpOGn8fq+r0qlIsuyFIahcrncQnTZAQCA6VmKIOR5nlzXVaPR6M2MvywIgoEusnQ6rXa7PfR6AABghqUYGstms6rX69e+XyqVlM1m+8YJHcfpm10PAADMsxRBaJQwDPuWBHZd3v8AAACYaSmGxkY5Pj6WNHgWSrd3qNls3jg8dnp6qs+fP49dh9XVVa2uro59PwAAJjk/P9f5+fnY95+enka+dumDUHfHzGEn6F5+f5RHjx5NVIcXL15o16QNLwAAmEClUtHLly9n8qylD0InJyeSrj9wLsoW4G/fvtXDhw/HrgO9QQAARPf8+XN9++23Y9///v37yJ0YSx+EugfNXbdd+NUhs2HW1tZ09+7dWOsFAACGm3RKydraWuRrl36ydDfoXNfzEyUIAQCA5bT0PULd1WFX5wJ1f85kMjeWsbW1pTt37gx9b2dnRzs7OxPWEgAA3Mb+/r729/eHvnd2dha5nKUPQqlUSrZtq9ls9k7JlS42YZSk7e3tG8t4/fr1VM4aAwAA4xnVEdE9ayyKpRkaGzXp+dWrV/I8r69XqFqtqlqtXruaDAAALL+l6BHyfV+u60qSDg8PlcvllM1meyHHtm21Wi05jiPLshQEgRzH4XgNAAAMt9LpdDrzrkRSdbvW7t+/P5U5QrvfHPX//LvHY5UDAIBpbpoj9P333/edMXqdpegRmjbmCAEAkCzMEQIAAJgQQQgAABiLIAQAAIzFHKEI2FARAIBkYUPFGWKyNAAAycJkaQAAgAkRhAAAgLEIQgAAwFjMEYqAydIAACQLk6VniMnSAAAkC5OlAQAAJkQQAgAAxiIIAQAAYxGEAACAsQhCAADAWKwai4Dl8wAAJAvL52eI5fMAACQLy+cBAAAmRBACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsls9HwD5CAAAkC/sIzRD7CAEAkCzsIwQAADAhghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFhsqBgBO0sDAJAs7Cw9Q+wsDQBAsrCzNAAAwIQIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFoeuRsDp8wAAJAunz88Qp88DAJAsnD4PAAAwIYIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMbi9Hksvd3d0T8DAMxFjxAAADAWQQgAABiLoTEYJ8rQGMNnAGAGo3qEwjCU4zhyHGfeVQEAAAlgTI+Q53lyXVeNRkPFYnHe1cEsfTzq//kvHs+hEgCAJDImCGWzWWWzWa2srMy7KjDJP+0OvvbLIa8BAObCmCAEjPTx6MoLj2dfBwDAzBGEgCGYUA0AZiAIRXB6eqrPnz+Pff/q6qpWV1djrBGSYFgQIhwBwOTOz891fn4+9v2np6eRryUIRfDo0aOJ7n/x4oV2+YYEACCSSqWily9fzuRZBKEI3r59q4cPH459P71BAABE9/z5c3377bdj3//+/fvInRgEoQjW1tZ09+7deVcDcfl4NMVyHsdTNgAYbNIpJWtra5GvJQgBUX08uvGSgQNe/3IaFQEAxIUgFMHW1pbu3Lkz9L2dnR3t7OzMuEYAAJhtf39f+/v7Q987OzuLXI5RQSgMw7Hue/36tWzbjrcyAABgbKM6InzfVyaTiVSOMUHI9325ritJOjw8VC6XUzabVSqVmm/FkEwfj2K5b/d3jwev+Yf+H4cuKGRHagCYCWOCkG3bcl23F4aAxBgWegAAM2FMEJoEc4QwTUN7jYZd98vp1gMAFglzhGaIOUKI1cejedcAGO5q7yTDsUiwuOYI/SzOSgEAACwSeoSABTHOQbCch3YDJqUDxiMIAUuEkAMAt0MQioDJ0lhm9BoBWERMlp4hJksjkT4e3XzNXzyeciWmYBGGq2Y5qTiuZzERGkuGDRUBzNe0vqCRHIsQSoEJEYQA01z9cvv4eMhFw16b3O43R0Nem8qjkCQEKiQYQQjAjaIEmHnPNYqyYs4Y9LIBkRGEImCyNEwTaan+1R2x/yKmZw/ZaXtgV+2hX/TDXgOwrJgsPUNMlgYi+Hg05MXHs63DZcs6HLOsfy7glpgsDWAsUc82i+VZu9MpZ/cv4yk3NoQTYGERhIBF8fFo3jWYitiC2cejeMqZ5XJ1lrQDc0cQArBwxg1PAz1UQ1bMDZsYftPzo9wTCZOcgZkjCAFIvo9Ht75leFi6fTmYkSjDiwxBYgoIQsAy+3g07xogqcbtfWI47ydR2jBq+9Cuc0MQioDl84A5BnqS/mEu1ZjI0C0IvjmadTWSi96npcDy+Rli+Twwpo9H867B3AzMIxpzn6NI85EGvrQfD15zQ7nXlo34MRcsFiyfB4CEiDJ5O9I13xxNWhUAt0QQAgDEix4PLBCCEAAskFkOaUV51tAz5ma54eUsJxmPE/AIhYlHEAKAhBh7f6SYhubGelZMZ8zNHYHFWD+bdwUAAADmhR4hAACShuX7M0MQioB9hGCcj0fzrgHmYJYH8mJKDNqYkX2EZoh9hABguoZOzP7l7OuBxcE+QgAwCx+P5l2DZPt4NPBSbIfSMoEZM8BkaQAAYCx6hAAAUzXTYS8mGeOW6BECAADGokcIADBzw3akHqucuOYjwVgEIQDA7H08mkqxQ4fhtDuVZ2E5EIQAAInEvkYzYvi8KoIQAMB4kc5r++Zo2tXAHBCEImBnaQAAkoWdpWeInaUBAHOfmD3OBpNLPOzFztIAAIyBuUe4jCAEAFhqBB+MQhACAMAknOHWhyAEAMCUDN3X6JujWVcDIxCEAACYIcJRsnDWGAAAMBY9QgAAxISJ2YuHHiEAAGAsghAAADAWQ2MAAIyBYbDlQI8QAAAwFkEIAAAYi6GxCDh9HgBglKu7TyfwoFZOn58hTp8HAEzT3E+2X0BxnT7P0BgAADAWPUIAACwAeo2mgx4hAABgLHqEAADAaFcnT0uJnEA9DnqEAACAsegRAgAgYdi1enboEQIAAMYiCAEAAGMRhAAAgLGYIwQAwAIaNo+IvYVujx4hAABgLHqEAABYEuw+fXv0CAEAAGMRhAAAgLEYGgMAALd39diNBT1ygx4hAABgLIIQAAAw1kIOjfm+r0qlIsuyFIahcrmc8vl8pHvDMFSlUpEkVavVaVYTAIC5Yq+hmy1cEAqCQJlMRq1WS7ZtS5LS6bTa7baKxeLIez3Pk+u6ajQaN14LAACW38INjZVKJWWz2V4IkiTHcVQqlW68N5vNql6vT7N6AABggSxUj1AYhvI8b2BIa3NzU5JUq9Xo6QEAYAQ2Xey3UD1Cx8fHkiTLsvpe7/YONZvNmdcJAAAsroXqEQqCQJKUSqVGvh+309NTff78eez7V1dXtbq6GmONAABYXufn5zo/Px/7/tPT08jXLlQQOjk5kSRtbGwMfT8Mw6k899GjRxPd/+LFC+3u7sZTGQAAllylUtHLly9n8qyFCkLpdFqS1G63h75/dcgsLm/fvtXDhw/Hvp/eIAAAonv+/Lm+/fbbse9///595E6MhQpC3aBzXc/PtILQ2tqa7t69O5WyAQBAv0mnlKytrUW+dqGCUHd12NW5QN2fM5nMVJ67tbWlO3fuDH1vZ2dHOzs7U3kuAAAYbn9/X/v7+0PfOzs7i1zOQgWhVCol27bVbDZVLpd7r3ueJ0na3t6eynNfv37dt28RAACYr1EdEb7vR+4cWajl85L06tUreZ7X1ytUrVZVrVZ7q8mCIFA6ne4FpMumNaEaAAAsnoXqEZIu9gxqtVpyHEeWZSkIAjmO07eRYhiGarfbA6HH9325ritJOjw8VC6XUzabvXY5PgAAWG4LF4SkizA06qgM27b16dOnoa+7rtsLQwAAmM70g1kXMgjNGpOlAQBIFiMnS88Lk6UBACZZhPPIjJ0sDQAAEBeCEAAAMBZDYxEwRwgAgGRhjtAMMUcIAIBkYY4QAADAhAhCAADAWAQhAABgLIIQAAAwFpOlI2DVGAAAycKqsRli1RgAAMnCqjEAAIAJEYQAAICxCEIAAMBYBCEAAGAsJktHwKoxAACShVVjM8SqMQAAkoVVYwAAABOiRwgAAEzun3ZvvuaXEa6ZMXqEAACAsQhCAADAWAyNAQCAkXZ/93jwtW+OZl2NqaBHCAAAGIseoQjYRwgAgGRhH6EZYh8hAACShX2EAAAAJkQQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFvsIAQCAW7t67MaiHrlBEIqAnaUBAEgWdpaeIXaWBgAgWdhZGgAAYEIEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMxenzEWxtbenOnTtD3xt1+i0AAJiO/f197e/vD33v7OwscjkEoQhev34t27bnXQ0AAPAfRnVE+L6vTCYTqRyGxgAAgLEIQgAAwFgEIQAAYCyCEAAAMBaTpQEAwMR2f/d48LVvjmZdjVujRwgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYyXu0FXf91WpVGRZlsIwVC6XUz6fj+2+MAxVqVQkSdVqNfb6AwCAxZGoIBQEgTKZjFqtlmzbliSl02m1220Vi8WJ7/M8T67rqtFojCwPAACYIVFDY6VSSdlsthdmJMlxHJVKpVjuy2azqtfr8VYaAAAsrMQEoTAM5Xmecrlc3+ubm5uSpFqtFut9AAAAiRkaOz4+liRZltX3ereXp9lsDh3OGve+2zg9PdXnz5/Hvn91dVWrq6sT1QEAAFOcn5/r/Px87PtPT08jX5uYIBQEgSQplUqNfD+u+27j0aNHE93/4sUL7e7uTlwPAABMUKlU9PLly5k8KzFB6OTkRJK0sbEx9P0wDGO97zbevn2rhw8fjn0/vUEAAET3/Plzffvtt2Pf//79+8idGIkJQul0WpLUbreHvn916GvS+25jbW1Nd+/enbgcAABws0mnlKytrUW+NjGTpbuB5boenOsCzbj3AQAAJKZHqLvK6+qcnu7PmUwm1vtuY2trS3fu3Bn63s7OjnZ2diZ+BgAAiG5/f1/7+/tD3zs7O4tcTmKCUCqVkm3bajabKpfLvdc9z5MkbW9vx3rfbbx+/bpvjyIAADBfozoifN+P3BGSmKExSXr16pU8z+vr3alWq6pWq71VYUEQKJ1O94JO1Pu64pg8DQAAlkNieoSki71/Wq2WHMeRZVkKgkCO4/TtAxSGodrtdl+giXKfdJEQXdeVJB0eHiqXyymbzV679B4AACy3RAUh6SLUjDoGw7Ztffr06db3da9xXbcXhqJijhAAAMmydHOEkow5QgAAJMtSzhECAACYJYIQAAAwFkEIAAAYizlCETBZGgCAZGGy9AwxWRoAgGRhsjQAAMCECEIAAMBYBCEAAGAsghAAADAWk6UjYNUYAADJwqqxGWLVGAAAycKqMQAAgAkRhAAAgLEIQgAAwFgEIQAAYCwmS0fAqjEAAJKFVWMzxKoxAACShVVjC+78/FxH/n/Rv//pX+ddlaVGO8/Gv//pX2nnGaCdZ4N2js/u7x73/brq/Pxcu7u7Oj8/n33l/gNBaE7Oz8/19v1/1Z/+9G/zrspSo51n409/+jfaeQZo59mgnWfn/PxcL1++JAgBAADMA0EIAAAYiyAEAACMRRACAADGYvl8BOwjBABAsrCP0AyxjxAAAMnCPkIAAAATIggtoeu6CpNc9jTrPC3/43/+N8qekWnVmXbuRzvPxiK2xyK2c1QEoSVEEJqNd//rv1P2jEyrzrRzP9p5NhaxPRaxnaMiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBYbKo7Q3Znyr/7qr7S6ujr0mqdPn2p7e/vWZZ+enkqS/t+P/0f/+T9d7Frt+3fHrGm/s7Mz+b4fS1mzKnta5Q5r57j8+7+f6//+8L9jLXNRy/7Xf7v4b2Ua7SxNrz1o536084VFbedplh1XuVe/57qf0e/fv9fa2tqtyjo8PNTBwcHQ987PzyVF22F6pdPpdG71ZIP8/d//vb7++ut5VwMAAIzh97//vX71q1+NvIYgNMIPP/yg7777Tvfv37/2rDEAAJAsZ2dn+v777/XVV1/p5z//+chrCUIAAMBYTJYGAADGIggBAABjsWpsCnzfV6VSkWVZCsNQuVxO+Xx+aveZatz2ajQaqlQq8n1ftm2rWq0qm83OoMaLKY6/l57nqVAo6NOnT1Oq5eKLo52DIFCj0ZAkFYtFpVKpKdR08U3y2dFsNpVKpRQEgSzLUrVanUGNF08YhqpUKpIUuY3m9h3YQaxOTk46kjqtVqv3mmVZHdd1p3KfqcZtr2q12slmsx3XdTvlcrkjqSOp02w2p13lhRTX30vLsjqpVCru6i2NSdv55OSkk8/nO9lstnNycjKtai6Fcdu6Xq93bNvuey2bzXbK5fJU6rnIms1mJ5/PdyR1isVipHvm+R1IEIpZNpvtZLPZvtdc1+3clDnHvc9U47ZXPp/v+7nVanUkDZSFC3H8vSyXy51sNksQGmGSdm61Wp1UKhX5C8d0k3xGX23jarXasSwr9joui9sEoXl+BzJHKEZhGMrzPOVyub7XNzc3JUm1Wi3W+0w1bnt5njfQRWvbtmzbVhAE06nsAovj76Xnebp3755s255KHZfBJO0chqGePHkiy7Lkuu5U67kMJmnrdrstz/P6Xjs5OZFlWfFX1DDz/g4kCMXo+PhYkgb+w+h+CTSbzVjvM9W47ZXNZq/90OLDbFAcfy9d11W5XI6/cktkknZ2HEdhGDJPJaJJ2rpUKikIAhUKBUkX81kODw9p+xjM+zuQIBSjbq/CdRMUr+t1GPc+U8XdXpc/3PCTSdvZcRy+JCKYpJ27/1JuNpvKZDJaX19XLpfjM+Mak7R1sVhUsVhUo9FQOp2W4zj68OEDvZ0xmPd3IEEoRicnJ5KkjY2Noe+HYRjrfaaKs70ajYYsy1KxWIyjaktlknb2fV/37t2jpy2Ccdu5ezafbdsqlUpqtVpqtVoKgkDpdJrPjSEm/exwXbc3lO553sBQGcYz7+9AglCM0um0pIux5GGu+1IY9z5TxdlelUpF9Xo9lnotm0nauVKpMCQW0bjt3P1XcqlU6l1zea5Qd+kyfjLpZ0cul1OpVOotoS8UCr3tCjC+eX8Hso9QjLr/Z12XXm+an3Lb+0wVV3s5jqNXr17RvtcYt50dxxkYnun+vvu/tPlPxm3n64YRuntiMTw2aJLPjlKpJEm93uMPHz7owYMHevbsGfu9TWje34H0CMWoO8P96gdQ9+dMJhPrfaaKo71qtZpyuRzj+yOM286e56lUKimdTvd+NRoNhWGodDrNfKwrJv3c6A4rXHXdMIPJJvnsODw87Pu8SKVSqlarCsOwN0yJ8cz7O5AgFKNUKiXbtgdmuHfHkbe3t2O9z1STtle3K/vqbtJ8mPUbt51brZY6F3uU9X6Vy2WlUil1Oh21Wq2p132RTPK5kc1mB+apdP9VzT+gBk3y2bGxsTHQY9H9DGEH78nM/Ttw6jsVGaa7Qd/l3V0ty+pUq9XezycnJx3Lsvp2M45yH34ybjs3m82Obdsd13X7fhWLRXbxHmLcdr6qXC6zoeIIk35uXH6tWq0O7ICMn4zb1tVqtZNKpTqfPn3qe422Hu7Tp0/XbqiYtO9A5gjFzLZttVotOY4jy7IUBIEcx+lblRSGodrtdt+/LqLch5+M086+7/c27OqO91/GOViDxv37jNuJ43OjXq8rlUopDEN63UYYt627vZqFQqE3RBaGod68eTPrP0Li+b7fm7R/eHioXC6nbDbb6zlL2nfgSqfT6Uz9KQAAAAnEHCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAYG7mfUAwQQgAAMxNoVCY6870BCEAADBgb29P6+vrWllZ0crKinK5XO9XOp3uvT4J3/dlWdbAwbWzeHYXZ40BAIAB5XJZJycnqtVqKpfLqlarfe8HQdA7v3FcrusOPftxFs/uokcIAAAMdXx8LElDQ4dlWcpmsxOV73netWVM+9ldHLoKAACG6g4/XRcVwjAcGNaKqtFoqNls9k6qn+WzL6NHCAAADPA8T5IGel4ajUbv95MEkYODg6HDYrN49mUEIQAAMKBer0vqH5oKw1AHBwcTlx2GoYIgkG3bM3/2VQQhAAAwoNsrc3BwoEwmo3Q6rfX1dX355ZcTl314eKinT5/O5dlXsWoMAAD06fbYpFIptVqt3mtPnjyJZZKy67p68+ZNbM8ulUpKp9P68ccf9eWXXyqfz0euC0EIAAD0OTw8lNQ/RyeVSimbzV47nBVVEATa2Ni4do7PbZ9dKBRkWZbK5bIkKZPJ9K6PgqExAADQp9lsShpcuv78+fOJy75u76Bxnh0EgRqNRl95T58+Hdh3aBSCEAAA6NOdo7O9vd33+uVenO410kUgSafTymQyvdfCMFQmk+lb6SVdrPwaNXR1m2f7vi/pYl+hLtu25Xle5GM7CEIAAKAnCAKFYTj06IuuWq3Wd1iq4ziqVqsKw7AXUiqVisIw7As9ozZQHOfZ7969G7huY2NDktRut2/6o0pijhAAALik24NzuZelKwxDOY6jWq2mT58+9V5/+vSp8vl8L8iEYai9vb3eMFeX67ojh9du++wwDHvB56ogCIaWcxVBCAAASLo47NRxHEkXvTeZTEYbGxtqt9u91VySlM/n+3piur0+tm0rCAJVKhXl8/mB3h/f96+dbD3Os9PpdG9y9VVRQpDEERsAACAmvu/r4OBAjUZDrVarLyzVajWFYdhb3RWHRqOhQqHQdwyH53nK5XLXHs1xFT1CAAAgFqlUSnt7e6rX6wNzd0btHTSubu/S5WGwUb1OwzBZGgAAxCIMQ2Wz2YFVYTftHTQuy7KUz+f7VqYdHBzcavk8Q2MAACAWjuPo3r17A8NfjuPcesfn27i8s3Q6nVaxWIx8L0EIAABMLAxDra+vy3XdgSBSKBR6B6kmDUNjAABgYrVaTdLw1VpJDUESQQgAAMTg5ORElmXFcijrLDE0BgAAYhGGYewToqeNIAQAAIzF0BgAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYKz/D0YdbMwkOz3+AAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xlim = 0\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" Z_lost,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
" range=[xlim, 1],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" Z_found,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
" range=[xlim, 1],\n",
|
|
")\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.title(r\"$E_{ph}/E_0$\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found: 19848 , lost: 4910\n",
|
|
"0.2473800886739218\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[-3.61,\n",
|
|
" -33.8,\n",
|
|
" -133,\n",
|
|
" 65.2,\n",
|
|
" -26.6,\n",
|
|
" 31.6,\n",
|
|
" -52.1,\n",
|
|
" -44.7,\n",
|
|
" -103,\n",
|
|
" -10.2,\n",
|
|
" ...,\n",
|
|
" 330,\n",
|
|
" -11.6,\n",
|
|
" -13.1,\n",
|
|
" -25.6,\n",
|
|
" -4.27,\n",
|
|
" -103,\n",
|
|
" 8.82,\n",
|
|
" 12.8,\n",
|
|
" -17.8]\n",
|
|
"---------------------\n",
|
|
"type: 19848 * float64</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [-3.61, -33.8, -133, ..., 8.82, 12.8, -17.8] type='19848 * float64'>"
|
|
]
|
|
},
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"tuple_found = ntuple[~ntuple.lost]\n",
|
|
"tuple_lost = ntuple[ntuple.lost]\n",
|
|
"\n",
|
|
"brem_x_found = ak.to_numpy(ak.flatten(tuple_found[\"brem_vtx_x\"]))\n",
|
|
"brem_z_found = ak.to_numpy(ak.flatten(tuple_found[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"brem_x_lost = ak.to_numpy(ak.flatten(tuple_lost[\"brem_vtx_x\"]))\n",
|
|
"brem_z_lost = ak.to_numpy(ak.flatten(tuple_lost[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"n_found = len(brem_x_found)\n",
|
|
"n_lost = len(brem_x_lost)\n",
|
|
"print(\"found: \", n_found, \", lost: \", n_lost)\n",
|
|
"stretch_factor = n_lost / n_found\n",
|
|
"print(stretch_factor)\n",
|
|
"ak.flatten(tuple_found[\"brem_vtx_x\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAAL5CAYAAAD7Uaj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACypElEQVR4nOz9f5Qj533f+X5qhuK4Y3KIafpIEe2YQ7SUazmxLlkY/8g618NIwPF6vc690XQPN7F3NY5FYJnezSa8Vw0zc3ebEx+mg7EvvZtNWwZGicZ74vVygNGe2Md2EkA2xydObGtQpO0kdK7Z0FCyqFBH6oaGvG4NNT11/+gBCDTqeRpVAAq/3q9z+vRMfet56ltPFdDPgwdV5fi+7wsAAAAAAAAAAGCOHBl3AgAAAAAAAAAAAHFjggQAAAAAAAAAAMwdJkgAAAAAAAAAAMDcYYIEAAAAAAAAAADMHSZIAAAAAAAAAADA3GGCBAAAAAAAAAAAzB0mSAAAAAAAAAAAwNxhggQAAAAAAAAAAMwdJkgAAAAAAAAAAMDcYYIEAAAARs1mU5VKRSsrKzpx4oQ8zxt3SpgRtVpNuVxOJ06cUKVSGXc6AAAAAOYQEyQAAAAwKpVKKhaLqlQqajab404HMbh48WJ7QuzEiRPK5XJDP/aVSkXFYlGlUonzakI1m005jqNMJhOqTD6f19LSkhzH6fppnU8HlzuOo1KpNMI9GVylUlEmk1Emk1EqlVImk1GtVhta/Z7nKZPJ9DUBPattDAAAMC5MkAAAAMBobW1NxWJx3GlMtWazORWTAM1mU6lUSl/96ldVLpf1uc99TouLiyqVSkP/cHV5eVnlcnmodfZrWo7HuLWO+crKSt9lEomECoWCqtVq17KdnZ32j+/78n1f9Xpd2WxWknTq1KnhJj9EKysrWllZae9XvV5XLpdTJpNRPp8fqO5Go6GVlRWlUqm+J1xmsY0BAADGiQkSAAAAWC0uLo47ham2srKiRqMx7jQOlc/n5XmecrmcpP0PXbe2tlStVrW2tjbm7IZnWo7HuL3wwguSpLNnz4Yu2zkBdfbsWSUSiZ51XNdVsVhUIpGQ67pR0xypXC7XvtqpM8fl5WVls1ldvHgx8u3hWlfnRTUrbQwAADBuTJAAAAAAI5LP54d6K55Ral0xcHBCLJ1OjyOdkZim4zFOjUZDnucpnU4HfvB+mM42PuwKlDBXNrSu3IjjGDYajfZronUVxsFcJEW+iiSbzapQKKhQKEQqP6o2BgAAmDdMkAAAAAAjUKlUdPHixXGn0Zd5uKJimo7HuLWubGhNAoTVefunwybYwtxqrVgsKpPJtG9LFfXqjX60Ji5M+buuq0QioUajMdCETdQr9EbVxgAAAPOGCRIAAACE0rpvfuuBwLZbFtVqNa2srLS/iZ3L5QIf/NxsNpXL5doPHk6lUsYPsyuVilZWVtrf3G494Lj1kOLOco1GQ7lcrv3g4kwmE+r5E57nKZVKdT3s+GBelUqlnXer/kqloieffLK9zoc//OF2e3W2YWe9mUym/c391jZPnDgR6RvqFy9ebD9QemlpSZlMJvA5IqVSSSdOnFAqlWove+SRR9q59juh0HqIdWsb+Xy+q837/QC5s1wqlTr0odX97udhxyNqvdL+uVsqlbrWKZVKXeeyaT+azWb7GRcrKytaWlrS0tLSoRMTnud1PYx7aWmp3cYXL17siXXm3mw226+XpaWlwNdDa+JheXnZmodJK5egD+6bzWZXe4S9QmVtbU07OzvK5XLth5WP4gHkrX2w3ZoqmUxK0lie0zTKNgYAAJgrPgAAAGCxs7PjS/Il+YVCwZfkJ5NJP5FItJdL8qvVartMoVDwk8lkO1YsFv10Ot1VZmtry/d9369Wq77ruu3yW1tbfjqd9iX5ruu266xWq+3lkvxsNuuvra35ruv6a2trfjab7dpeuVz2k8lke71WPp119rv/rbzT6XTgOq39NbVbvV4PLFcsFtvrlMvlnvp2dnZC5Vqv1/1kMukvLy935bG8vNzOP6jOra2tnuPS7/Y6j0krb9d1fdd1u86PQqHQU77zeLmu66fT6a5jJSkw3yj72c/xCFtv69zt3Mfl5WXfdV0/m80euh/JZLKrXXZ2dnq2b1KtVgPPndZ+BL0uD7ZFUDu0yvaTw2F5FYvFnng2mw11jh2m9TpPJBKB51gUB9/zTFrnxcHXftRtmc7Lg+JuYwAAgFnGBAkAAACsOj/ASyaTXR+8dX5Ql0gkrOVaH9QWCgU/m836vv/OB/MHPxjsLLu2ttYV6/xA/uAHw61JkkQi0fMBb9RJgFbOrbJBlpeXez6o7PeDz9YH7K2Jm9aETL8flnZKJBI9x6Gl1W5BkzyDtI3v+13nQGferQ/8TXV3nh8H97c1KXXw+Efdz36OR9T2a+WaSCS6JiQ6J9cOftDemhw72CbVarXvyYlW2wa1USsW9AF/a2InyNramnFipR+t8gf3bWdnxy8UCsb2HVS5XPZd121PlISdXOzUOcEUNAHR0jkpG1WUCZJxtTEAAMAs4hZbAAAA6FuhUGjfVkbav71L6/YyzWaz65ZMiUSifWuXdDrdvhXM2tpau0w+n1cikei5jU3nsoO3z+ms8+AtgFoPK242m7p06VJXLJlMtsseduumgzof0nwwn2azqVqtFvgg5360ng/geZ5KpZJWVlaUzWatt/YJks/n1Ww2jXm0nqlQq9VG9uyGZ555pivvRCLR9awE0wOpC4VCz/62zpeDt28b1X4OUm/rNZHNZrtueZRIJNoPyN7a2uoq0/r/wbrS6XTXa8ymdSuuoFtMtWJBt38qFovG23iVSiUlEolDn2th0rk/rduMdd4u7uzZs5HqPczy8rLq9brK5bKq1Wp7e2Fuqdeyvb3d/rftGSGdt66Ksp2oBmnj1u0MW7d1a93aDwAAYF4xQQIAAIC+BX1wm81m2x8Ufvaznw0s1/mMi06VSkXNZrP97IXOn9YkRrPZ7PrwsfWBZdB99Q974HErHvYDwUQi0f7g/OAHzleuXIn8YbK036Zra2uS9j/UbjQaxokEm9aHpt/93d8dGHddt338XnjhhYjZBmsdi6Bjkkwm25Mf169f77vOVq4Hj9Wo9nNU9Zr2Y2lpSdL+xMzB58z0e/xb52Rrkq5TawKm9VybFtuEXq1WU7PZjDyJ0Ww22/uZzWbl79+xQDs7O6pWq0okEu1JzFFJp9OqVquq1+tqNBo6ceJE+3U1CwZt49Z7cblcVrlcbk+SxDnBAwAAMEmYIAEAAMDAWt+SD3NlRmvddDqtra2tnp/WB3++7w/tIcOD1NP6xr3neV37WSwW9cwzzwyUV+eVOWGvHGnp5wPg1jbCXkEzKNPVIFGMaj/jbr/Oq4QuXrzY9aD1fiUSifZVVJ0Td60Hx7favTNmm9BrXc102EPiTa5cudL+d+eH9K0rUpLJ5ECTiWG4rqtyuaytrS1tb29raWmp78mZzonWzqtJDuqcVIjrQeiDtHE+n++ZgG1NlD355JMjyhgAAGCyMUECAACAgfV7S6BOrQ8ep+Wb3a7rtj/Qbn3g3Gg01Gw2I09qdGp90F2pVEJ/UN7ZhrYPdFvHybbOKDz44INDqWdU+zmu9qvX6+3j3mg0lMlktLKyEurb/K3JjNbVWNL+bbKWl5fbH4R3fqheKBSME3qt22tFPZ87b6cW9CF9XJMjBx12ZdlBne9ntmPROg/imhyRBmvjUqkk13V78k2n013nDwAAwDxhggQAAAADa33gFuaD1ai3uxqng898sD3LIYxGo9H+8LJzO/3q/ED34LMuOrWOU5QJrWFoXWkU1aj2c5zt17rVUavOSqVivCVdkHQ63c6rNRGysbHRfh5MMplUs9lUpVJpX/kS9Dpt3WIs6rN0JLUn9kwf0ke5dVxUjUZDKysrWlpa0vb2tra2ttpXyBwmkUi0j8dXv/pV43qtCYU4J36itrHneWo2m4Gvwdb51jmRBgAAMC+YIAEAAMDAWpMcpuc3BOn8kNn2MO3W7YImQefzVkqlkkql0kAfKLesrKyoUCi0HyzfaDS6Hnjfj1Z72q4+aR2nQScqwmpNOgzjSptR7Wfc7dd5m67l5WVtbW21n0XTmjDrV+fzcSqVik6dOtUz2VYsFq0Teq3nqjzxxBPhd0bvfAAvSZlMpq8yttd9VJ7nKZPJaGlpSYuLi9rZ2emagOpX68oe2+3UWs/U6Xd/BzVIG7dytT27yTY5CAAAMKuYIAEAAMDAPM/repB5Pzq/pf3kk08ab++ysrIytlvzBGk9wDqfz3d9e9/Gdkum1kRI65kUrQ/JW88L6FfnM1JM5Vof9h58KPiotSYdhnG1zTD2M+h4xN1+xWKxZzuFQqH9wXyYD6s7c3/yySe78mu9Jmu1mnVCr1KpKJlMRp7E6nxwfT+v12E/rL1WqymVSunDH/6wXNfVzs6OisVi5NtftdrUNGHWur1e2Pe9QQzSxq3316Db3bXaaJqu5gMAABgWJkgAAAAwkFqtpkajoUuXLoX+MLJ1O5hms6lUKtX1bW3P85RKpdq3CWoZ5PkPrQ8JbbfNOUzrw+dms2n9wL+zLTr3q/NDyEajoXw+33Xrn0Kh0C4bZkJhbW2t3U5Bt9lpffDfuV7LsJ49EFRP6/wI2m4UUffzsOMxSPvZ2M7Xzoent7SuDAh7NVbrA/PFxcWuD89bD++W9q+KCHqNtq4yGGQCq3MiwTbJ0mw2tbKyolqt1p4MGkSlUmk/gP2JJ57Qzs5O12soqmQy2Z74CLrSpXWOBJ0rjUZDqVSqr/YM8342SBvH+ZwUAACAqeIDAAAAh0gmk74kP51O+1tbW+3l5XLZTyQSfrFYDCwnyZfkZ7NZY93Ly8vt9Q7+BJVLp9PtXA4ql8vtstVqtSeeSCR8Sf7y8nI/u22UTqf9ZDLZ13qS/EQi4RcKBT+dTnfl5bpu4D527kehUOg7r62trfax6izXWm46Dp3bK5fLfW+vpdWukrrOhWq16icSicDt7uzsWPexs+2GtZ+HHY+o9drOK9d1fUm+67pdy7PZbOB5mk6ne9btR+sYBh2/VizoNdHapqSu13YYW1tbXa/bg/Xs7Oz49XrdLxQK7bZaW1uLtK2WYrHoJ5NJP5lMGt9/hmF5edlPJBJd+1StVq37sLa21m6Ler1urb/f196gbWzLuZWD7X0aAABgVjFBAgAAgL4UCgXfdV0/kUj4iUTCTyaT/vLycuCHqoVCof1Bc+dkh+kDwGKx6KfT6XbdBz+49n3fr9fr7Q+VO+tsfQDZ+cGgJD+ZTLY/5K5Wq+0PgTvLRv1AuFwu9/Wh7NbWVtcH5K19qlar7eXpdLrrQ9Stra2eXJeXl/2dnZ2+82t9+J9MJn3XdQPb0/f323Rtba2r3RKJhL+2thZqoqRVvlgs+tls1k8mk34ikfBd1w1sp3K53N7/1s/a2pq/s7Pjb21t9UyaHWyjsPvZYjoeg7Sf6bwK2o/O10uhUGh/+J5Op/1sNuun0+mBJg6CJg0Pi7UmqqJMyvi+33P+dJ5HQctNH/D3q/U6TyaTkSbzomi9Py0vL/vpdNp4PrbU63U/mUxaj0e5XDa+9g6+ZobRxq0JlqBJkGKx2DO5CQAAMC8c3/d94+UlAAAAAHCIEydOqNlsqlgsxvY8BsyfXC6n69evq1AoTNRziabFiRMnlEwmVa/Xu5bncjmVSiVtbW0N5TZ4AAAA0+SecScAAAAAAMBhgp7Zgv5ls1ldvHixZ3mtVlM6nWZyBAAAzCUe0g4AAAAAwIwrFApKJpPK5/PtZZVKRY1Gg8knAAAwt7iCBAAAAMBAms3muFMA0IetrS3lcjnlcjlJ0vb2NrfWAgAAc41nkAAAAACIrFQqtT9sdV1X5XKZD1sBAAAATAUmSAAAAABEsrS0pEaj0bPcdd2eB0EDAAAAwKRhggQAAAAAAAAAAMwdHtIOAAAAAAAAAADmDhMkAAAAAAAAAABg7jBBAgAAAAAAAAAA5g4TJAAAAAAAAAAAYO4wQQIAAAAAAAAAAOYOEyQAAAAAAAAAAGDuMEECAAAAAAAAAADmDhMkAAAAAAAAAABg7jBBAgAAAAAAAAAA5g4TJAAAAAAAAAAAYO4wQQIAAAAAAAAAAOYOEyQAAAAAAAAAAGDuMEECAAAAAAAAAADmDhMkAAAAAAAAAABg7jBBAgAAAAAAAAAA5g4TJAAAAAAAAAAAYO4wQQIAAAAAAAAAAOYOEyQAAAAAAAAAAGDuMEECAAAAAAAAAADmDhMkAAAAAAAAAABg7jBBAgAAAAAAAAAA5g4TJAAAAAAAAAAAYO4wQQIAAAAAAAAAAOYOEyQAAAAAAAAAAGDuMEECAAAAAAAAAADmDhMkAAAAAAAAAABg7jBBAgAAAAAAAAAA5g4TJAAAAAAAAAAAYO4wQQIAE6zZbI47BQAAAABTgvEDAADhMEECABOsVqupVquNOw0AAAAAU4DxAwAA4TBBAgAAAAAAAAAA5g4TJACAsfI8T6VS6dD1Go2GSqUStw0AAAAAZhj9fgBAnJggAYAZ5nme8vm8VlZWtLS0pIsXL447pbZGo6GVlRWlUikVi0XruhcvXtTS0pJyuZy2t7djynC2NBoNnThxoq/JKAAAAMyP1pghlUoplUqNNRf6/YOj3w8A4dwz7gQAAO/I5XJd/280GpKkcrnctfywCQVpf6Dz4Q9/WDs7O5KkfD6vra2tIWU6uGQyqXK5LMdxDl13bW1Nn/3sZ1WpVGLIbPo1Gg0tLi4qkUi0lzWbTTWbzYk6BwAAADCYYYwfXNeVtD850fr3KAT1UQ+i3x8O/X4AGBwTJAAwQQ4OXCqVihKJhNLpdOi6NjY2tLi42P5/oVAYOL9x6twX2K2srKhcLncNlFzXle/740sKAAAAQzes8cMoJ0ZagvqoQej3949+PwAMjltsAcCM8jxv3ClgDFZWVjj2AAAAmCj0UYePNgWA4WCCBABmTKlU0srKihqNRvs5HysrK6rVau11ms2mcrmc8vm8MpmMMplMV7xSqejEiRNyHKfd6a7ValpZWZHjOFpZWWnXUyqVlEqlVKlUVKvVlEqlutbp1Npu6yfKM1FadZw4cUInTpzoua1ApVJp70+pVOpZx/M8raysKJPJaGlpSfl8vqvuUqmkTCajUqmkRqOhTCajEydOKJPJtB8U2bo38okTJ7rKm3ie127PVCrVvvWBtH/rM8dxutrClqNtHyuVSvt45XK5rkFTpVJpnwumNs3lcu3z4eBg67CcOs+pXC6npaUl7nsMAAAwAw4bOxxc52Bf0NZH7We79Pvp9wPASPkAgNiVy2U/m836a2trvuu6/tbWlnG9arUaaRvJZNJPJpM9y+v1up9IJPx6vd5eViwWfUl+oVBoL8tms76krvW2trZ8Sf7y8nL7/8vLy74kP51O+2tra369Xm+X7axva2vLTyQSXftTKBR8Sb7ruofuT6vOdDrtZ7NZv1gs+q7rtpf5/n57JZNJX1JX+7bqr9fr7XVb67fWbeXYuZ3W/lSr1a5tV6vVrn3vbCOT1rZabdfZLp05HZbjYfu4trbmS+o6p7a2ttpt3Vl3K5ZMJrvWTyQSfiKR6Dsn3/f95eVlf21trf3/YrHYdfwBAAAQXRzjh6B+eb9jh8P6gkF9VBP6/fT7ASBOTJAAQMyy2WxXZzmRSPjFYrEd6/xJp9PtznnnTz9MEySu6/Z0llvLOzvYrQ535yBgZ2enp7Pf6jQf7BQf7JQvLy8HbjfsBEm5XO7ZT0ntgWBrQNDZae/cx4ODmkQi4Uvyd3Z2fN/fHxQcHAS0yh4cgLTW7XdA0Mq1U6FQ6NqnfnK07aNt8Bk0UHJdtyf/Vv2t7fWTUyKR6MmHgRIAAMDg4ho/BPXL+x07HNYXjDJBQr+ffj8AxIGHtANAjDKZjK5fv67Pfe5zkvYvf242m+2HKB58yOKwNRoNeZ6ntbW1nljrUutisRjpge5BD1vc3t5ub7dSqQzlQfEHHyDZury7Wq0qnU638/ju7/7urvVa+76xsRFY7/Xr17seZnlwf5LJpDzP63poZDKZlCRtbW31lXsr10qlouXlZUnSCy+8oHq9HipH0z6G1drepUuXupavra21z5F+c0omk7p48aIefPDBdtmg8wwAAAD9G+f4IczYYRR9Qfr99PsBIA5MkABATEqlkmq1msrlshKJhEqlkgqFgqrVarvDPWq2e/2eOnVKkrrukzssrTpHsZ+twc3BvA8OdFr7Xi6Xh55Dv7LZrPL5vIrFopaXl+V5XrvdpfA5Bk1KhdHanq2efnMql8tKpVLt/SuXyz2DWgAAAPRv3OOHMGOHOPqC9Pujo98PAGY8pB0AYtJ6YGCj0Wg/6G5ra6vr20txaT10sFOrs9z5TalhaQ1iWleUDFMr78MGia0cRjEB1K9EIqHl5WXVajU1Gg298MILXQ+SjDvHfrbXb07JZFKf+9znlE6n1Wg0lEqleFgjAADAACZl/NDP2CGOviD9/ujo9wOAGRMkABCDWq0maf+bRGtrayoUCspms7Hn0fpmTyufTq2Bz9LS0tC32xrEtC4pH6ZW3odddt7KoVKpBMaD2mQUnnnmGUn7t0PwPK/r21Zx59jatulbYo1Go++cGo2GEomEqtVqu77OQSAAAAD6NwnjhzBjhzj6gvT7o6PfDwBmTJAAQIyCJh9G9a2h7e3tnis2ksmkXNdVo9Ho2e7169eVSCTaA68HH3ywJ7/Wv4O+RWbTupy8VCoFlg1bX6daraZkMtm+t69J65t2+Xy+53YBcX7jyXXd9n17V1ZWRpZjP23aeVwODsLy+bwWFxf7zqnz+TLLy8vt+2GP85t7AAAA0y7O8cNBYcYO/fYF6fcPP0f6/QAwGCZIACAGrQ5p69tD0v49Xi9evDiSW1rZtO5h3Pktn2azqUKhoEuXLrUvXW99yyifz6tWq6lUKrU7v7VaTZlMRlJ/t81KJBLtB/elUqn2peatWwU0Gg1dvHjx0Dpa67Y0Go32fW8796XztymHlZUVXbx4UZlMputWBab9adXXGW/9O+ytw1ptf/bs2Ug5mvZRemcQXSwW1Wg02t8AC8o/kUi0BziZTEYrKyvK5/NKpVJaWlpSIpHoO6crV650HZtms6lkMhnb83UAAABmyaSMH/odOxzWFzT1UYPQ76ffDwCx8gEAsahWq34ymfQl+a7r+sVicSTbqdfrfjab9SX5kvxsNutXq9WudXZ2dvzl5WU/nU772WzWz2azfr1e76mrUCj4iUTCTyQS/tramu/7vp9MJv21tTW/Xq/79Xrdd13Xl+Qnk0m/Wq36Ozs7XdsvFArt+orFYlcbbG1ttevb2tqy7tfOzo6/trbmp9Pprrx3dnba65TL5Xb9yWQysI0LhYJxnXq97qfTaV+Sn0gk/HK53M67tT/Ly8t+vV73t7a2/OXl5fa6YY5nq41MbDn2s4+u6/qJRKK9jXq93s61dUwOtlvrOLqu23O+HJaT7/t+Op1uH8u1tTV/eXm5axsAAAAIZ1zjh4N9xX7GDv30BQ/2UU3o9/e/j/T7AWBwju/7/qgnYQAAAAAAAAAAACbJPeNOYFiazaY2NjYkdd8PscXzPG1sbCiZTKrZbCqTyfTct3JY6wAAAADApGHMBAAAAHSbiQmSWq2mYrGoSqXSfkBYp0ajoVQqpXq93r6n/tLSkra3t9vrD2sdAAAAAJg0jJkAAACAXjN1iy3HcZTNZtsPEW5pPUi4Wq22l5VKJeVyObV2f1jrAAAAAMCkYswEAAAAvOPIuBMYtWazqVqt1u6ot5w6dUrSfmd9WOsAAAAAwLRhzAQAAIB5NfMTJNevX5ckJZPJruWty72r1erQ1gEAAACAacOYCQAAAPNqJp5BYtNoNCRJiUTCGB/WOjZf+cpX9Ku/+qt673vfq2/6pm86PHGDe++9V/fee2/k8gAAAEA/3n77bb399tuRy3/961/Xl770Jf3wD/+wvuVbvmWImWHYGDMBAADsm7U+8Oc//3l95StfGcu2v+VbvkXf/u3fPpZthzHzEyRbW1uSpMXFxcB4s9kc2jo2//Jf/kudO3euj4wBAACA2XH58mV99KMfHXcasGDMBAAAMFyT0Af+/Oc/r/c9/LC+Mabt33vvvfrjP/7jiZ8kmfkJkqWlJUnS9vZ2YDyZTA5tHZuTJ09Kki5duqQ//+f//KF5mwR9G+rMmTO6evVq5DqDvPXWWzp9+rSuXbum++67b6h1jyJf6t03V8ftlVekH/sx6Z/9M+kDHxhevYcYar139+FPL13S/+3JJ+fjuM1QvXP1epuhejlu01nv1B23Q/5GDSLO4zbot+d+//d/X3/7b/9tvfe97x00PYzYLI6Z/vpf/+sDv1aG9d4zrNftMOqZpFymun0N7/MT0b5DHmNMxD4NuZ65P39HXA/tO9p6Zq59h9hvHlb7/tIv/dLM9IG/8pWv6BuSPiIp7mtZviLp02+/ra985StMkIxbqxNu+rZSMpkc2jo2CwsLkvbvv9u6B++wLCwsDL3OmzdvSpIeffRRHT9+fKh1jyJf6t03l8ftAx+QAspPbL4B3rr7AcBcHbcZqHcuX28zUC/HbTrrncbjJsn4N2oQ03TcWga5VRLiMYtjpmGc08N67xnW62sY9UxSLjPRvgfe5yepfYc1xpikfRpWPZy/o62H9h1tPbPYvpKG0m8eVvt+3/d930B1tExSH/hbJD007iQmWN8TJK0XzyCGPaDtx6lTpyT13u+29f9UKjW0dQAAAADMt2kcNzFmAgAAmF33KP6rJKbpqowj/a6YSCR04sSJyD+m+9COWiKRkOu6qlarXctrtZok6ezZs0NbBwAAAMB8m8ZxE2MmAAAAzKu+J3MSiYSy2awefPDB0Bv5yle+okuXLoUuF4btgX+XLl1SKpVSo9FoX9ZdKBRUKBSUSCSGug4AAACA+TXJ4ybGTAAAAPPnHknvGsM2p0XfuZ49e1b/8B/+w8gbchwnctnDeJ6nYrEoSbpy5YoymYzS6XS7A+66rur1uvL5vJLJpBqNhvL5vLLZbLuOYa0DAAAAYH5N6riJMRMAAADQK9QVJJPKdV0Vi8V2h9+0TrlcPrSeYawDAAAAYD5N6riJMRMAAADQq+8JklwuN9CGBi0Ps9XV1XGnEMqo8qXe0Zq2dpi2ekdl2tph2uodlWlrh2mrd1SmrR2mrd5RId/R1juPGDdNhkk6p4eVyzDqmaRchmWS9mmSchmWSdunSTpOwzBJ7TKsemjf0dYzi+07LLPWvsN0VPHf8upozNsbhOP7vj+qyj/5yU/qYx/72Kiqnyqe5ymVSqler8t13XGnc6ibN2/qgQce0Ne+9jUdP3583OmgT3N13DxPSqWkel2agtdUoLv78Na1a7r/9On5OG4zZK5ebzOE4zadpu64zcLfqCH4rd/6LZ0+fVrXrl3TD/zAD4w7nYnGuGnfpI2Zpu69Z8pMdftO8vs8Y4xYTPX5OwVo39GaqPad5PfTiCapD9zqW/1dSd8W87b/RNLPShPTr7MZaPLo5ZdfVq1W09bWVk9se3tbtVqNjj4AAACAuca4CQAAAOPCQ9rtIuf6kz/5k/rpn/5p2S5AGeWD2QEAAABg0jFuAgAAACbXkagFS6WSzpw5o3q9rp2dnZ6fV199VWfOnBlmrgAAAAAwVRg3AQAAYJxazyCJ82eankES+QqSxcVFXbx4USdPngyMP/DAAyoUClGrBwAAAKaG41xo//sxvS5Pkpsq6iU9JN9fH19iGDvGTQAAAMDkinwFSS6XU6PRsK7zta99LWr1AAAAADD1GDcBAAAAkyvyBMnHP/5xlctlvfbaa7p582bPz40bN7SxsTHMXAEAAABgqjBuAgAAwDi1HtIe589cPKT95s2b2traUjKZHGY+M+/MmTNaWFgIjK2urmp1dTXmjAAAAIBoNjc3tbm5GRj70z/905izmUyMm8JjzAQAACYZfeDZEnmCZHl5WbVaTa7rBnb2d3Z29Bu/8RsDJTeLrl69Ktd1x53GoY4dO6b19XUdO3Zs3KkgBI7bdLr33ns5blOI19t04rhNJ47b5LJ9WP07v/M7+kt/6S/p3nvvjTmrycK4KbxJGTPx3jNatO9oMcYYLc7f0aJ9R4v2Hdy09YFbD2mPe5vTInLbXL9+XbVaTR/60IeM61y6dClq9RizY8eO6dlnnx13GgiJ4zad7r33Xo7bFOL1Np04btOJ4zadWoPCSRocjgPjpunFe89o0b6jxRhjtDh/R4v2HS3ad7ToA0+fyBMkp06d0uLionWdJ598Mmr1AAAAwNTw/fV3/uN5Uqokr56TJuBb8Bgvxk0AAADA5Ir8kPZisagXXnjBus6nP/3pqNUDAAAAwNRj3AQAAIBx4iHtdpFz/cxnPiPP8/TUU08pkUgErlMqlfSRj3wk6iYAAAAAYKoxbgIAAMAsqt79CfJ2nIkMKPIEyZUrV1Sr1azrOI4TtXoAAAAAmHqMmwAAADBO92g0V3T80N2fIJ+T9MwItjkKkdtmZWVFyWRSuVwuMP7Vr35VFy9ejJwYAAAAAEw7xk0AAADA5Io8QXL27Fml02k98sgjxnUefPDBqNUDAAAAwNRj3AQAAIBxaj2DJO5tTovID2l/4IEHrJ18SarX61GrBwAAAICpx7gJAAAAmFwDTea8/PLLqtVq2tra6oltb2+rVqvpYx/72CCbAAAAAICpxrgJAAAAmEyRJ0h+8id/Uj/90z8t3/eN6/CwQQAAAADzjHETAAAAxolbbNlFvsVWqVTSmTNnVK/XtbOz0/Pz6quv6syZM8PMFQAAAACmCuMmAAAAYHJFnsxZXFzUxYsXdfLkycD4Aw88oEKhELV6AAAAAJh6jJsAAAAwTkcV/xUdR2Pe3iAiX0GSy+XUaDSs63zta1+LWj0AAAAATD3GTQAAAMDkijx59PGPf1xPPfWUlpaWdOLEiZ749va2NjY29MILLwyU4Kw5c+aMFhYWAmOrq6taXV2NOSMAAAAgms3NTW1ubgbGdnd3Y85mMjFuCo8xEwAAmGT0gWdL5AmSmzdvamtrS8lkcpj5zLyrV6/Kdd1xpwEAAAAMzPZhted5SqVSMWc0eRg3hceYCQAATLJp6wPzkHa7yLkuLy+rVqvJdd3Azv7Ozo5+4zd+Y6DkAAAAAGCaMW4CAAAAJlfkCZLr16+rVqvpQx/6kHGdS5cuRa0eAAAAAKYe4yYAAACMEw9pt4v8kPZTp05pcXHRus6TTz4ZtXoAAAAAmHqMmwAAAIDJFXmCpFgsHvogwU9/+tNRqwcAAACAqce4CQAAAOPUegZJnD+2K1aazaby+bzy+fyhuddqNZ04caJnued5WllZUT6fVy6XU6VSObQuk8hX13zmM5+R53l66qmnlEgkAtcplUr6yEc+EnUTAAAAADDVGDcBAAAA+2q1morFoiqVirLZ7KHr53K5nmWNRkOpVEr1el2u60qSlpaWtL293VedB0WeILly5YpqtZp1HcdxolYPAAAAAFOPcRMAAACwL51OK51O99X/zefzSiaT2t7e7lqey+WUTqfbkyOtdXO5XLwTJCsrK0omk4GzOJL01a9+VRcvXoxaPQAAAABMPcZNAAAAGKdpfEh7rVbTgw8+KNd1df369fbyZrOpWq2mQqHQtf6pU6ck7V+ZHXaSJHLbnD17Vul0Wo888ohxnQcffDBq9QAAAAAw9Rg3AQAAAOEUi0WVy+We55S0JkuSyWTX8tbVJNVqdXQTJDdv3tTx48fb/3/ggQf0wAMPWMs89thjxvIAAAAAMGsYNwEAAGCStB7SHsbbd3+i+sYAZfP5fM8VIi2NRkOSjM/2a8XDONLvihsbG6ErH2Z5AAAAAJh0jJsAAAAw7T4l6fQAP09G3K7neXrwwQd7rhBp2drakiQtLi4GxpvNZuhtxn37MQAAAAAAAAAAMKF+XNKPDlD+/6tokyQbGxsql8vG+NLSkiT1PLi9xTSxYtP3BEmlUtH73vc++b4feiPNZlOlUolvQwEAAACYaYybAAAAMEnuUfirJO6R9GcG2Ob9Ecrk83llMpmu22S1/t363ZoAMV0pMtIJkq2tLT35ZNSLYyTHcSKXBQAAAIBpwLgJAAAACK9Wq+nixYuBsaWlJbmuq8985jOSep810vp/KpUKvd1QEyQAAAAAADPGTQAAAJgkUR7SPoxthlWv13uW5fN5lUol7ezstJe5rqtqtaq1tbX2slqtJkk6e/bs6HJ95JFHQleOXmfOnNHCwkJgbHV1VaurqzFnBAAAAESzubmpzc3NwNju7m7M2UwGxk2DY8wEAAAmGX3gwUR5kHqnS5cuKZVKqdFotG+pVSgUVCgUlEgkQtfHQ9pjdvXqVbmuO+40AAAAgIHZPqz2PC/SJe4AYyYAADDJpq0PfFTxTwIcNSz3PE/FYlGSdOXKFWUyGaXT6VATG67rql6vK5/PK5lMqtFoKJ/PK5vNRsqVCRIAAAAAAAAAADBSruuqWCy2J0kO07oyJKiecrk8lJyYIAEAAAAAAAAAxMJxLkiSHtPr8iS5qaI8v78PzIFhY4IEAAAAAAAAAIAZNC0PaR+XI+NOAAAAAAAAAAAAIG4jnSD55Cc/OcrqAQAAAGDqMW4CAADAqLSuIInzZy6uIPmZn/kZa/zq1avK5XJRqwcAAACAqce4CQAAAJhckSdINjY29Pu///s9y2/cuKEf/MEf1NmzZwdKDAAAAACmHeMmAAAAYHJFvtrFdV19/OMfVyqV0sbGhqT9b0fl83n5vq90Oq1EIjGsPAEAAABg6jBuAgAA6Ob76/v/8DwpVZJX52raUTqq+G95dTTm7Q0icttUKhU98MADunTpkt7//vdLkhqNhh555BEVi0V9+MMf1te+9rWhJQoAAAAA04ZxEwAAADC5Ik+QfOYzn5HruqpWq9ra2pIkJRIJ1Wo1nTx5UpL0wAMPDCVJAAAAAJhGjJsAAAAwTvccld7lxLxNX9JevNuMKvIzSJaXl7W0tKRKpaJsNqudnR3VajUtLy+3H0R48+bNoSUKAAAAANOGcRMAAAAwuSJPkEjSI488onq9rp//+Z/XAw88INd1df36dfm+r/e97308cBAAAADA3GPcBAAAgHE5elS65554f45O0UNIIk+QpNNpvfrqq3rsscd6Yh//+Mf1r/7Vv9Krr746UHIAAAAAMM0YNwEAAACTK/IzSIrFojWeTCYPXWcenTlzRgsLC4Gx1dVVra6uxpwRAAAAEM3m5qY2NzcDY7u7uzFnM5kYN4XHmAkAgNnmOBckSY/pdXmS3FRRnj89/SH6wPsu3ZYuGZ4z8nU/3lwGEXmC5JFHHjl0nQ9/+MNRq59ZV69eleu6404DAAAAGJjtw2rP85RKpWLOaPIwbgqPMRMAAJhk09YHvueI9K4R3PLqbx2V/pYh9tKe9P1fH/42R2GgZ5AAAAAAAAAAAABMo8hXkAAAAAAAAAAAgMl1zz3SPTE/NP0eJ97tDYIrSAAAAAAAAAAAwNxhggQAAAAAAAAAAMwdbrEFAAAAAAAAAIiF76/v/8PzpFRJXj033oRm3D1HpXfFPAswTZMOXEECAAAAAAAAAADmDhMkfWo0GuNOAQAAAAAmFmMmAACACXRE0tGYf6Zo1mGKUh1cJpOR4ziBP7VarWvdg/GVlZWuuOd5WllZUT6fVy6XU6VSiXNXAAAAAGDoGDMBAABgnkzT7cAG0mg01Gg0VCgUlEgk2su3trZ08eJFpdPp9rJSqaRsNqulpaX2ss54o9FQKpVSvV6X67qSpKWlJW1vbyubzY5+ZwAAAABgyBgzAQAAzKCjin8W4E7M2xvA3EyQ1Go11ev1ro6+pJ6OviSVy2VVq1VjXblcTul0ut3Rl9T+VhSdfQAAAADTiDETAAAA5s3cTJCYOuEvvPCCcrlc+/+VSkXXr1/XysqKMplMT7lms6laraZCodC1/NSpU5Le+SYVAADAODnOhUjlfH99yJlMHlvbzMP+AyaMmQAAGIypn0kfE5hcc/UMkoOazaY8z9PZs2fby6rVqprNpiqVinK5nE6cONF1r93r169LkpLJZFddrW9G2b5FBQAAAADThDETAADAlLtnTD9TYopSHb4rV67Idd2uS8iLxaKKxaI8z1OxWFSpVFImk9HW1paSyaQajYYk9Vx23tKKm7z11lu6efNm5JyPHTumY8eORS4PAAAA9OPWrVu6detW5PJvvfXWELPBuDBmAgAA84Q+8PyZ6wmScrmsJ554IjDmuq6KxaIymYxWVlaUz+dVLpe1tbUlSVpcXAws12w2rds8ffr0QDmvr6/r2WefHagOAAAA4DAbGxu6cCHardowOxgzAQCAeTKTfeBxPKR9L+btDWBuJ0ha98UtFovW9ZaXl7W8vCzP8yRJS0tLkqTt7e3A9Q9eRn7QtWvX9Oijj4ZP+C6+CQUAAIA4PPPMM3r66acjl3/55ZcH/qAb48WYCQAAzBv6wPNnbidIarWaksnkoZ1zScpkMu176rbWN33r6bD67rvvPh0/fjxcsgAAAEDMBr1N0X333TfEbDAOjJkAAMC8oQ88f+Z2guSFF17Q8vJy3+ufOnWq6/fB++a2/p9KpYaUIQAAQHS+vz70Oh3Hfqn5KLY5GnPbBQZCYcwEAEA409MfHq/WuOIxvS5PkpsqyvPtV6xiAEe0f5utuLc5JaYo1eGqVCrGe+keVK1WlcvlJO0/aNB1XVWr1a51Wt+WOnv27HATBQAAAIAxYMwEAACAWTeXEySVSqXdae/keZ5SqZQuXrzYte7i4mLXN6cuXbqkWq3W9Y2oQqGgQqGgRCIx8vwBAAAAYJQYMwEAAMyI1kPa4/yJ+4qVAczl/QVeeOGFwG8tJZNJLS4uamNjQ9VqVa7rKpPJ9DyU0HVd1et15fN5JZNJNRoN5fN5ZbPZuHYBAAAAAEaGMRMAAABsNrelzZ3g2O6deHMZxFxOkJTL5cDliUSi5zJwE9d1jfUAAAAAwDRjzAQAAACb1cX9nyDerpS6EWs6kc3lBAkAAAAAAAAAADOvdduruLc5JebyGSQAAAAAAAAAAGC+TdFcDgAAADo5zoWh1+n765Fi08T3z487BQAAAGButccVnielSvLqufEmNOuOKP6Hpk/RZRlTlCoAAAAAAAAAAMBwcAUJAAAAAAAAAACz6KjinwWI+4qVAXAFCQAAAAAAAAAAmDtMkAAAAAAAAAAAgLnDLbYAAAAAAAAAAJhF9yj+WYApmnWYolRnw5kzZ7SwsBAYW11d1erqaswZAQCAaeX765HKOc5zEctdsMaj5oPptbm5qc3NzcDY7u5uzNlgVjBmAgDMM1Ofe1L62kH5mXJznMuBy33/3BAzih994NnCBEnMrl69Ktd1x50GAAAAMDDbh9We5ymVSsWcEWYBYyYAADDJpq4PfETxPzR9ih7sMUWpAgAAAAAAAAAADAcTJAAAAAAAAAAAYO5wiy0AAAAAAAAAAGbRUcU/CxD3Lb0GwBUkAAAAAAAAAABg7nAFCQAAwJzx/fMRy60POZPZ4TgX2v9+TK/Lk+SminpJD9FuAAAA6Nuk9x3D5Of750aXCPrHFSRWXEECAAAAAAAAAADmDleQAAAAAAAAAAAwi+5R/LMAUzTrwBUkAAAAAAAAAABg7jBBAgAAAAAAAAAA5s4UXewCAAAAAAAAAAD6dkQjeWj65g1p8/PBsd294W9vVJggAQAAmEGOc8EY8/31GDOZHX23qedJqZK8ek5y3RgyAwAAwCRznMuBy33/XKx5DENQn9g0vpil/Uav1ZP7P0G8r0mp344zm+iYIAEAAAAAAAAAYBYdVfyzACO4YmVUeAYJAAAAAAAAAACYO1xBErMzZ85oYWEhMLa6uqrV1dWYMwIAAACi2dzc1ObmZmBsd3c35mwwKxgzAQCASUYfeLYwQRKzq1evyuVe1AAAAJgBtg+rPc9TKpWKOSPMAsZMAABgkk1dH5hbbFlxiy0AAAAAAAAAADB3uIIEAABgBvn+ujHmOBcilZt3/bbpY3pdniQ3VdRLeog2BQAAmHO+f27cKQxNmL7tLO33VDuq+K/o4AoSAAAAAAAAAACAycUVJAAAAAAAAAAAzCKeQWLFFSQAAAAAAAAAAGDuMEECAAAAAAAAAADmDrfYAgAAAAAAAABgFnGLLSsmSAAAAOaM769HKuc4F0ZSb9xs+2Hbh77LeZ6UKsmr5yTXjZQjAAAApo+pvzgt/WRgHnGLLQAAAAAAAAAAZtHRMf0YNJtN5fN55fP5wHilUlEqlZLjOEqlUqrVaj3reJ6nlZUV5fN55XI5VSqVEA3SjStIAAAAAAAAAADASNVqNRWLRVUqFWWz2Z74xYsXVa1WlcvltLW1pYsXLyqTyaharSqdTkuSGo2GUqmU6vW63LtX7C8tLWl7ezuwzsNwBQkAAAAAAAAAABipdDqtcrlsjH/2s59VtVpVNptVoVBQvV6XJBUKhfY6uVxO6XS6PTkiqX0lSRRMkAAAAAAAAAAAMItaD2mP8yfCQ9prtVrXRIgkua4r13XVaDQk7d+eq1arKZPJdK136tQpSVKpVAq9XSZIAAAAAAAAAADA2KTTaSWTycBYa/n169e7/t/SupqkWq2G3i7PIAEAAAAAAAAAYBa1riAJ4dbe/k9Ub92JXvagRqPRvn1W60qSRCJhXDcsJkhidubMGS0sLATGVldXtbq6GnNGAAAA8yZqF5iu80Gbm5va3NwMjO3u7sacDWYFYyYAwCRxnAuBy31/va9lYevA5JuHPvCGJ12ojzsLqVKpKJlMth++vrW1JUlaXFwMXL/ZbIbeBqO8mF29erXrATIAAADAtLJ9WO15nlKpVMwZYRYwZgIAAJNs6vrAEa4geeZ7pKcH2I2XvyKd/nT08i0bGxtdD3VfWlqSJG1vbweub7pFlw0TJAAAAAAAAAAAQJJ07Oj+T1T3DWHWIZ/P69KlS12THq1/m64UiTJBwkPaAQAAAAAAAADARCiVSspkMj1XFZ86dUpS77NGWv+PcvUOEyQAAAAAAAAAAMyio2P6iahSqUiS0ul013LP85RIJOS6rqrValesVqtJks6ePRt6e9xiCwAAAAAAAAAAjJztQeq1Wk0bGxvK5XIqlUrt5fV6XalUSq7r6tKlS0qlUmo0Gu1bahUKBRUKBSUSidD5MEECAAAQguNcMMZ8fz3GTKJznOeNMd9/2lJyVrqOC5FK+f55Y6zzvHhMr8uT5KaKekkPTc15AQAAgF7D6MvNen/QNEaa9f2eGhEe0j6UbQbwPE/FYlGSdOXKFWUyGaXTaSUSCXmep0wmI0nK5XI9ZXd2diRJruuqXq8rn88rmUyq0Wgon88rm81GSnVWRrkAAAAAAAAAAGBCua6rYrHYniQ5GPN9v+96yuXyUHLiGSQAAAAAAAAAAGDucAUJAAAAAAAAAACzaIJusTWJuIIEAAAAAAAAAADMHa4gAQAAAAAAAABgFh1V/Fd0TNEVJEyQAAAAhOD76+NOoc1xLow7hSl1fOg1dp0XnielSvLqOcl1h74tAAAATBdTvz1obBFm3XFwnMs9yyYlNyAKJkgAAAAAAAAAAJhFPIPEimeQAAAAAAAAAACAucMVJDE7c+aMFhYWAmOrq6taXV2NOSMAAAAgms3NTW1ubgbGdnd3Y84Gs4IxEwAAmGT0gWcLEyQxu3r1qlzuRQ0AAIAZYPuw2vM8pVKpmDPCLGDMBAAAJtnU9YG5xZYVt9gCAAAAAAAAAABzhytIAACYAo5zwRjz/fUYM5kds9CmUfN0nOcjbvF2xHKT5ovGyCycFwAAYLaY+if0TSbPPBwr3z/Xs8zWhw6uY3baYypwBYkVV5AAAAAAAAAAAIC5wwQJAAAAAAAAAACYO9xiCwAAAAAAAACAWXRUI7nl1ea/kTb/bXBs9xvD396oMEECAAAAAAAAAAD6tvqf7f8E8b4opf5RvPlExS22JDUajXGnAAAAAAATizETAADAlGo9pD3Onyl6SPtcXkHiOE7X/13XVb1eb//f8zxtbGwomUyq2Wwqk8loeXm5q0w/6wAAMCy+vz7uFGbOrLep41wYdwoTbC67wEAojJkAYHLMer91lpiOlalvPo3H1nEu9ywz73fvuvvL99vjMb0uT5KbKsrzi0PKEAhn7kaHpVJJ2WxWS0tL7WXpdLr970ajoVQqpXq9Ltd1JUlLS0va3t5WNpvtex0AAAAAmEaMmQAAAGZI6wqSuLc5JeZugqRcLqtarRrjuVxO6XS63YmXpHw+r1wu1+7I97MOAAAAAEwjxkwAAACYF3P1DJJKpaLr169rZWVFpVKpJ95sNlWr1ZTJZLqWnzp1StL+N6n6WQcAAAAAphFjJgAAAMyTuZogqVarajabqlQqyuVyOnHihGq1Wjt+/fp1SVIymewq1/rWU7Va7WsdAAAAAJhGjJkAAABmzNEx/UyJubrFVrFYVLFYlOd5KhaLKpVKymQy2traUjKZVKPRkCQlEonA8o1Go691bN566y3dvHkz8j4cO3ZMx44di1weAAAA6MetW7d069atyOXfeuutIWaDuDBmAgAA84w+8PyZqwmSFtd1VSwWlclktLKyonw+r3K5rK2tLUnS4uJiYLlms9nXOjanT5+Onrik9fV1PfvsswPVAQDAJHKcC5HK+f76kDOZLLZ2ib7v98dcbtLcHnqNncfpMb0uT5KbKuolPTS15+jGxoYuXIj2usT0Y8wEAMDwTGt/sF+mMYtpv6OO/eIwk31gHtJuNZcTJC3Ly8taXl6W53mSpKWlJUnS9vZ24PrJZLKvdWyuXbumRx99NGLG4ptQAAAAiMUzzzyjp59+OnL5l19+eeAPujF+jJkAAMA8oQ88f+Z6gkSSMplM+566rY666RtNyWSyr3Vs7rvvPh0/fjxasgAAAEBMBr1N0X333TfEbDBOjJkAAMC8oA88f+Z+gkSSTp061fX74D1xW/9PpVJ9rQMAAAAAs4QxEwAAwJTiFltWR8adwLhVq1XlcjlJ+w8RdF1X1Wq1a53Wt6XOnj3b1zoAAAAAMCsYMwEAAGBWzc0Eied5SqVSunjxYntZpVLR4uKilpeX28suXbqkWq3W9W2nQqGgQqGgRCLR9zoAAAAAME0YMwEAAMygI9q/oiPOnymadZibW2wlk0ktLi5qY2ND1WpVrusqk8moWCx2ree6rur1uvL5vJLJpBqNhvL5vLLZbKh1AAAIy3EuGGO+vx5jJuMxSfs4ScfCtj1bnvY6oz90MG6jORbmLrDvn49YJzD9GDMBwHQJ6ieNsq9q6pdNUj9+Fkx+e77Ws8SUs+O8GLi8vb7nSamSvHpuWMkBoc3NBEkikei5xNvEdV2Vy+WB1wEAAACAacGYCQAAAPNmbiZIAAAAAAAAAACYK/co/lmAKZp1mKK7gQEAAAAAAAAAAAzHFM3lAAAAAAAAAACAvh1V/LMAR2Pe3gC4ggQAAAAAAAAAAMwdriABAAAAAAAAAGAWjegKks1/sf8TZPft4W9vVJggAQBgQvj++rhTmEqOcyFSOVt7z8KxsO2D43zCUu4pS60LA2QUzWiORbT9sLdbR56eJ6VK8uo5yXUjbQsAgHkX1MebhT7aMMXdHtPY/qaxwiTvy6TnHC6PG4FLW/v4mF6XJ8lNFeX5xYFzQ7xW//P9nyBeQ0rl480nKm6xBQAAAAAAAAAA5g5XkAAAAAAAAAAAMIuOKP6Hpk/RZRlMkMTszJkzWlgIvq3D6uqqVldXY84IAAAAiGZzc1Obm5uBsd3d3ZizwaxgzAQAACYZfeDZwgRJzK5evSqXe1EDAABgBtg+rPY8T6lUKuaMMAsYMwEAgEk2dX3gexT/LMAUzTpM0cUuAAAAAAAAAAAAwzFFczkAACBOjnPBGPP99RgzmX2jaGvHec5S5/lIdUpfjlhuVpj333Geb//7Mf2JPElu6p/pJb0o3386htwAAJgtk9zfNPXdgnIOs+4wjHJ7ce/LMIwyt6D2CLs92zhgUjnO5Z5lvn8ucF3T8jbPk1IlefXcwHkBUTFBAgAAAAAAAADALDqq+GcB4n4o/AC4xRYAAAAAAAAAAJg7XEECAAAAAAAAAMAsOqL4r+iYossypihVAAAAAAAAAACA4eAKEgAAAAAAAAAAZhHPILFiggQAEDvHuWCM+f56jJlMVi6TZpL2f5KOk+M8Z4z5/vkYM7Gz5eI4z1vKPW2JRW/rSTqG0dF1BgAA4foucfdzRrm96emzTY/pbNPXxp0AMFTcYgsAAAAAAAAAAMwdvgYHAAAAAAAAAMAsukfxzwJM0awDV5AAAAAAAAAAAIC5M0VzOQAAAAAAAAAAoG9HFP9D06fosowpShUAAAAAAAAAAGA4uIIkZmfOnNHCwkJgbHV1VaurqzFnBADx8/31cafQNopcHOfC0Lc3ijqnySTto++fH0Gd0fbPVs5xnotUp+1ck953SD4/aolNzjG0sbfbeyyxb3T8+1jH7+B+36zY3NzU5uZmYGx3dzfmbDArGDMBAEYtqM8btr8aZn1THzuojjDrjsfpvtd0nMuBy33/3HBSGRP6wLOFCZKYXb16Va7rjjsNAAAAYGC2D6s9z1MqlYo5I8wCxkwAAGCSTV0f+KhGMguwWdn/CbJ7a/jbGxUmSAAAAAAAAAAAQN9Wl/d/gnh/JKXOxZpOZEyQAAAAAAAAAAAwi+5R/LMAUzTrwEPaAQAAAAAAAADA3JmiuRwAAAAAAAAAANC3ET2D5NBtTgkmSAAAGDLfX5+oOh3nQuzbNLHlMortzbqox1Z6tzHi+09Ztvd8xO1NmuOW2K4l9sU+69/u+P1NfZYBAADDZOon0eeENJzzIExfPNz2Hg6fTIx8//GeZY5z2bDuucDlrfUf0w15ktzUL8vz3aHkB4TFLbYAAAAAAAAAAMDc4QoSAAAAAAAAAABm0RHFf8urKbosY4pSBQAAAAAAAAAAGA6uIAEAAAAAAAAAYBbxkHYrriABAAAAAAAAAABzhytIAMwNx7lgjPn+eoyZzAfae3LY2tt2nEaBYz9s91tib1piuxG3txCx3KRZtMRuWmK2duus8+sdy97db1IAgBnkOJd7lvn+udjzmEfj6HcG9a3p/86uMMfWNO6axvMj6H1Nei1kLa31v3TgNxA/JkgAAAAAAAAAAJhF9yj+WYApmnXgFlsAAAAAAAAAAGDuTNFcDgAAAAAAAAAA6NsRxf/Q9Cm6LIMJkpidOXNGCwvB9+9eXV3V6upqzBkBAAAA0WxubmpzczMwtrsb9Vk3mHeMmQAAwCSjDzyYZrOpjY0NSVKhUOiJe56njY0NJZNJNZtNZTIZLS8vh16nX0yQxOzq1atyXXfcaQAAAAADs31Y7XmeUqlUzBlhFjBmAgAAk2zq+sBHFf8sgOGKlVqtpmKxqEqlomw22xNvNBpKpVKq1+vt/uDS0pK2t7fb6/ezThhTdLELAAAAAAAAAACYRul0WuVy2RjP5XJKp9NdX5bJ5/PK5XKh1gmDK0gAzA3fXx93CnMlans7zoWh1wmzUbSp7Rja2HJxnOcs5c5HymWSzqeo+yd90BL7bUss+NY1hzsesdykecUSWzRGfP9pY6z7GN7s+L0dJjEAwIzx/XPjTmGmmPp2k9KvC8pj0nNGdEHHdh6Oa9D7WtgxYLudPE9KleTVo32wjdnSbDZVq9V6brt16tQpSVKpVNLZs2cPXSfsVSRcQQIAAAAAAAAAwCxq3WIrzp8ID4W/fv26JCmZTHYtb10pUq1W+1onLK4gAQAAAAAAAAAAkqRbt6Rbb0cv/9afhi/TaDQkSYlEwhjvZ52wmCABAAAAAAAAAGAWta7qCGHjeenCz4wkG6OtrS1J0uJi8G2Pm81mX+uExQQJAAAAAAAAAACQJD3zP0hPPxW9/Mv/Tjr9fw9XZmlpSZK0vR38HMdkMtnXOmExQQIAAAAAAAAAACRJx47t/0R13zeHL9Oa3DBdBZJMJvtaJywmSAAAE8X318edwkg5zgVjbFb2Pep+RG2b6OWes2Rz2xIzd598/7ylnI1teza/a4ndb4ntRtzejYjlJs0HLLEbkWrsOvaeJ6V+Tl79J6S7DwsEAOAwtj7NQbPSb5TM+z0r+zgr+4Fe4Y7twyPLYxJwnk82/4jkR3ho+qDbDOvUqVOSep8j0vp/KpXqa52wIqQKAAAAAAAAAAAwHIlEQq7rqlqtdi2v1WqSpLNnz/a1TlhcQQIAAAAAAAAAwAzaOyrtxTwLsGe5YsX2IPVLly4plUqp0Wi0b5dVKBRUKBSUSCT6XicMJkgAAAAAAAAAAMBIeZ6nYrEoSbpy5YoymYzS6XR7YsN1XdXrdeXzeSWTSTUaDeXzeWWz2XYd/awTBhMkAAAAAAAAAADMoDtjuILkjuEKEtd1VSwW25MkpnXK5bK1/n7W6RfPIAEAAAAAAAAAAHOHK0hidubMGS0sLATGVldXtbq6GnNGwPRxnAt6TK/Lk+SminpJD3VE320puW2M+P556/bM5dYt24OJrU1t4m7vqMfevn+z8ad3FG0Td7nobg+9xtGc28H9jX3vMkbsbfZdkbOJajTvwW9YYictuXyir9of0+fv/o0q6yX9rnz/qVDZTZPNzU1tbm4GxnZ3d2POBrOCMRNmieO82LPM9x8PVcesjznC7N+st8UwmPpO09h2k7Ivw8njNUPdlwPqPRei3vg5Tu8y3zetax+PdX624/nmKwomDX3g2TIbn9JMkatXr8p13XGnAQAAAAzM9mG153lKpVIxZ4RZwJgJAABMsmnrA+8ddXT7aMDM1ki36UsyzJxNGG6xBQAAAAAAAAAA5g5XkAAAAAAAAAAAMIP2jh7V3j3xXiexd/SORnF76lHgChIAAAAAAAAAADB3mCABAAAAAAAAAABzh1tsAZg6vr8ueZ6UKsmr56SOh3g6zqctJXcjbvH+iOVg4vvrxpjjXIgxE7uoedrKReU4z1m2d37o29vfZrR9HEXb2LdnbpuoRrG9UbSnvSv3LkvsjYh1xm8UryfpuGV7HzHGHOcTljq3O/59s+P3dsC6AIBZY/p7Hebv2Gj+5k2vMOMC2u4d42iLoGMVNo9h1DEqYfIIP559re86Jqc9epeZ9/thw/Le/cbo3Dl6VHtH471O4s5RR9xiCwAAAAAAAAAAYEIxQdKnRqMx7hQAAAAAYGIxZgIAAJg8ezqiPR2N+Wd6ph2mJ9MhqVQqSqVSchxHqVRKtVotcD3Hcbp+VlZWuuKe52llZUX5fF65XE6VSiWO9AEAAABgpBgzAQAAYF5M1k2mR+zixYuqVqvK5XLa2trSxYsXlclkVK1WlU6n2+uVSiVls1ktLS21l3XGG42GUqmU6vW63LvPPlhaWtL29ray2Wx8OwQAAAAAQ8SYCQAAYLbs6ahu62jM25weczVB8tnPflbVarX9/yeeeEKpVEqFQqGrM18ul7vWOyiXyymdTrc7+pLa34qisw8AAABgWjFmAgAAwDyZmwmSWq2mQqHQtcx1Xbmu23Wv3EqlouvXr2tlZUWZTKan895sNgPrOnXqlKR3vkkFYDx8/yMjqPX4COqcHo7znCV62xjx/fVI24taLm6jyNNxLsS6vcPYtmk7L0bTNrbtnbeUM7epfXvDPxajKOc4n4xUp/QeS+yLEeuMX/TjtBupTundlthCx7+PdfxeCFgXmEyMmYDopqUPO2ymv5vDaI9Zb9NRtt2gwuY2r8fbcS73LDPtR5g2dZwXB0lr5BznRs+ysMcv6jgNk+VTm7f0qc23A2Nf3/Vjzia6uXkGSTqdVjKZDIx1Lq9Wq2o2m6pUKsrlcjpx4kTXPXevX7/eU0ZS+5tRtm9RAQAAAMCkYswEAAAwe+7oqPZ0z9B//pvVb9Zv/ocTgT+lq9PzZeO5uYLEpNFoKJfLtf9fLBZVLBbleZ6KxaJKpZIymYy2traUTCbb35xKJBLG+mzeeust3bx5M3K+x44d07Fjxw5fEQAAABjArVu3dOvWrcjl33rrrSFmg3FizAQAAOYFfeD5M9cTJJVKRclkMvDybtd1VSwWlclktLKyonw+r3K5rK2tLUnS4uJiYJ3NZtO6zdOnTw+U8/r6up599tmB6gAAAAAOs7GxoQsXuP3BvGPMBAAA5sks9oH3dER7sT+k/U6s2xvEXE+QbGxsqFwuW9dZXl7W8vKyPM+TJC0tLUmStre3A9c3XZLecu3aNT366KPhk72Lb0IBAAAgDs8884yefvrpyOVffvnlgT/oxvgxZgIAAPOEPvD8mdsJknw+r0uXLh3aOZekTCbTvqdua33Tt54Oq+++++7T8ePTcw82AAAAzKdBb1N03333DTEbjANjJgAAMG/oA8+fuZwgad0jt/WQwH6cOnWq6/fB++a2/p9KpYaUJYDJEf0e2HFzHPNloL6/Hqmc3Vz+GZEUvc1sx2Ecoh/7qNt7zhK9bYxEPX9H0d6j2IfR+IYl9h5L7IsRy43GaI7vRy2xf2CJvcsSe3/Hvxc6lr0/YF1g8jFmAkYnbP8r7j5EUH6mHCalbxsm50kxyflNcm5hmV5vw9nH1wK2d9mw7sOBS4PzC153crwYsOxc4JqOE1xDu/09T0qV5NVzwStiKPYf0h7vLbbuTNEtto6MO4G4VSoVSVI6ne5a3rocPEi1Wm0/lDCRSMh1XVWr1a51Wt+WOnv27DDTBQAAAIBYMWYCAADAvJirr/7WajVtbGwol8upVCq1l9fr9fa3mJ588kk98cQTWltbk7Q/OFhcXNTy8nJ7/UuXLimVSqnRaLQvDy8UCioUCkokEvHtEAAAAAAMEWMmAACA2XJnDA9pv6O9WLc3iLmZIPE8T5lMRpLa32zqtLOzI0laXFzUxsaGqtWqXNdVJpNRsVjsWtd1XdXrdeXzeSWTSTUaDeXzeWWz2dHvCAAAAACMAGMmAAAAzJu5mSBxXVe+7x+63sHLwG31lcvlQdMCAAAAgInAmAkAAADzZm4mSAAAAAAAAAAAmCe3dUS3Y77F1u0pevT59GQKAAAAAAAAAAAwJFxBAmBgjnPBGPP99Rgzic5xPmGJvmkpF33f3VRR3t3fL+mhUGWjbNNxnotULm6O87wlaj4WNvZ2iXYMo9Zpi9nYjt9hfP98xHLR9tHudsRyZvY8ba/tbUud5jazxaK3i5m9zvstsYWIscnqHo7m/elGpO3Zz6c3Ov791Y7fx0PkBQCYZ5PSJw/Kw9QfiTvnSckD0c3+MXwt1NphXm+T42SIdS8HLnWc/XZ6TK+3Pxfx/GLguhjcHd2jvZjHedP0kHauIAEAAAAAAAAAAHNnsr4iCAAAAAAAAAAAhuKOjmgv5meQ3Jmi6zKmJ1MAAAAAAAAAAIAhYYIEAAAAAAAAAADMHW6xBQAAAAAAAADADNobwy229qbougwmSGJ25swZLSwsBMZWV1e1uroac0aYVo5zwRjz/fUYM4m+Pds+RN2e4zxvKfe0pdbjltiXI+UyDpN0XtiP7/2W2K4xMop9sJ9Pz1nKnR96Lna3jZHD2sW+H9Ha1N5uw39t28R9nKLu32jq/F5LzPxakr7DGPH9HzLGHOe3D09pKgT3xSTJcT5pKfcuS+w9Hf++eff3gweWz57NzU1tbm4GxnZ3becgYMaYCSZBfy8nrT/en4fHnUBopnY29WFGdVzC5DEp58Yw2ijudh6lafm8ImrdjvOiYe3HQ9R8OkI2cbrRs8S0375/LnD5KMZUcaIPPFuYIInZ1atX5bruuNMAAAAABmb7sNrzPKVSqZgzwixgzAQAACbZtPWB93RUt0dwBUl586uqbG4Hxm7t3hn69kaFCRIAAAAAAAAAANC3ldUHtbL6YGDsj7xd/TeprZgzimZ6bgYGAAAAAAAAAAAwJFxBAgAAAAAAAADADLqjo9qLeRrgTswPhR8EV5AAAAAAAAAAAIC5wxUkACaS76/HvMWTltirI9miV89JqdL+7wMPInWcC8ZyUdvGVqdN1O3ZykXdP8d5zlLufH+JxZLL8I9R/K8Ju1G0m/0cfbcldjvS9mznjON8wrI9m6hdK1u5BUusZol9jyUW/CC9fd9mic2K91hiJy2x3+2z/tc7fr+rzzIAMNuC/s6H7d9MWn8ouscDl5r6QpOw35OcmzQ5eYyKaf+G8boKY5TnwaD74jiXDZHXApeGqzvMft8wrNv35ubEw3d/txrmveNKZC7s6aj2Yr6iI+7tDYIrSAAAAAAAAAAAwNzhChIAAAAAAAAAAGbQHR2J/YqOO1N0Xcb0ZAoAAAAAAAAAADAkTJAAAAAAAAAAAIC5wy22AAAAAAAAAACYQXtjuMXW3hRdl8EECTClfH993CkMzLYPjvOcpdx5S61vDpCRaXujaWs3VZR39/dLeqjvbTrO85G2F7W9bRzngiV6f8Q6o+USd5228zB6u5j/LNuOu+8/banzsFxtbXPbWm+UOu2v32js7W0rF3Xfo3WfbHnaX5+2/fsuS+y4JbZgidlEe10fJmrbRHfDEjO3jf219Nsd/2sNBh6R9H8JkRcAzK5hvJ8H/b0Y5bhodNv7hcClprrj3u8g0zj+NPUvpnFfTEa1L8Nou7jb3/fPhVo/zOvK/Np8MdQ2+3fNsPzxEW0vrMd7F91/MnBNcz//9N3fb9/9/ZBhPWD0mCABAAAAAAAAAGAG7emobsd+BUm82xvE9FzrAgAAAAAAAAAAMCRcQRKzM2fOaGEh+NYNq6urWl1djTkjAAAAIJrNzU1tbm4GxnZ3d2POBrOCMRMAAJhk9IFnCxMkMbt69apc1x13GgAAAMDAbB9We56nVCoVc0aYBYyZAADAJJu2PvAdHdVezNMAd7jFFgAAAAAAAAAAwOTiChJgSjnOJ4wx33/KUu5CpO35/vrQ67Qzvz05zgU9ptflSXJTRb2kh/oqZ/f9lu09bykX/dLJxywx+zZtou2/75+PWM58XtiM5pyxuW2MRD+3zW0dvV2es0TfjFhOsu2/zShe99Hb1HyORm1vG3ubLlpi5vcE33/asj1zu9iPg/lvgRR8e5p9b1hi77fEPmiJRTeKY2jlWPbRP2kuZj0vHo+aDQCgT2H+XgT9bQ3792Z0f5+C6x1GH9lNFXvGSab9MG1vGPs9jPYfVOz9C4O48xjGeTTKnMOcd+HWvWxY99xIcjM7aaj7hqHuoPUfDrG9cfiF3kVvTnrO821PR2J/aPreFF2XMT2ZAgAAAAAAAAAADAlXkAAAAAAAAAAAMIP2n0ES7xUkPIMEAAAAAAAAAABggnEFCQAAAAAAAAAA6Nuvbn5ev7b5hcDY27t7MWcTHRMkAAAAAAAAAADMoD0d0e0R3PLqB1cf0Q+uPhIYa3hf08dT/2bo2xwFJkgwdxzngjXu++uxb9PEnsv20Ot0nE9YYsPfB9v2bPvn++uS50mpkrx6TnLdPuu0cCwx/01L8H5LzFbuMLvGiO+fH6DeYPbja/tTcdsSe3fEbGwWjBHH+aQxZj8Pn49Y7rlIMdvxi3psbdvbZzuGtjaNel5EZcvFto/mcoO9Dk3Mr09bzHF+3VLO/Hqx7/sPWWKWY3Tig5bt2Y77X7PEJMlc7yhE/dukE5a/rzvXotWpNzr+vd3x+42AdQFg+pneg0cxnooiTB7mvycPB9R7LlpCXcK1XZi/d149FzhOCrO9UYn8d7vDpJxfk2wcbRTm2I4qv7CvzaA8wp+jQf3GjxrWvWFYfjJg2eMh84hb0DGM+DfBOy6lJK9+avC0gIiYIAEAAAAAAAAAYAbt6aj2Yp4GiPuh8IPgIe0AAAAAAAAAAGDuMEECAAAAAAAAAADmDrfYAgAAAAAAAABgBt3R0dhveXWHW2wBAAAAAAAAAABMLq4gAQAAAAAAAABgBu3pSOxXkOxN0XUZTJDE7MyZM1pYWAiMra6uanV1NeaMppfjPGeM+f55S8nvH2Cbf2zZ5vstJf+apdwHI2azZow4zgVLOdvL/ilL7AVLLOI+LFi2983RqpS+HK3Y/9MS+5n7LcFdS+ywt9hv7vh9cBtvGktFP7425nK215M9F1vb2AS/R+7n8rQll+ctMfP7hY293G1LzHzOjKLOw9nqtR2nd1ti25aY+Rjamc97+7ltKxdtH+znvflcs/H9H4pYp+X4vc81x171zLFHLZv7TUvsMfv7ve09wffXrWWjiFqn82ds0Rvm0IKlf9H1Umq1/YckWY7RDNjc3NTm5mZgbHc36t8BzDvGTNGY3oOD3isdJ7gO3zfV/WJf9Y5acB6PG9a9EbDuSUPNpw3Le+sYig+Ea7txtPVBYc4v2/JB67aPP/ozqtxs648qj+Bz91rf9ZryCLvfozKcNuq/7uHs341Qawfmff/4X/PhPRy41PmfDKv/1A1J0mN6XZ4kN/W6PH96+s30gWcLEyQxu3r1qlx3el7wAAAAgIntw2rP85RKpWLOCLOAMRMAAJhk09YH3tNR3Y79ChKeQQIAAAAAAAAAADCxmCABAAAAAAAAAABzh1tsAQAAAAAAAAAwg+7oqPZinga4wy22AAAAAAAAAAAAJhdXkGCiOc5zEct9whI9GanOwdweQZ1vWmLml7bvnzfGHOfTljpPmkPf8v2Wcha7Ny2xBWPIcf6BHtPr8iS5qaJe0kMd0b8RLZcfscR+xpyL/Xx6JVoukqT7LbHdiHXa9sN8PjnOJ0ewPds+mGOO83zE7dli2xHL2Zj3wf4a/EVLnZbXi/X94DDvscTeGEG5RUvM1t627dmOoa3dzO/N9r8/tjxtddrOX9tr4rvMoVd/O1q53/xjSzlL9/A7LMUk6aVD4lPA9z9mjDnfbin4J52VdBYaNCMA88xxLoRY++EQ6wbX6zimOk6GqDuY47zYs8z3Hw9Zy7WAenuX7Qval3OBa5ryCNP+pnV9f7134feZ6njRUHvvPgbWK8lN/fLdcdIv6yX9wd11zxnqDSP43DC3UdD6JwPXNO1LuPO//3qHUcegudkE1T3KPEa5L2G2F+Z4Oc7lvtcd7TE83bvoxx8PXvULhipqAe9h3xYxnbikA5bVXgte90+CFyNeezoS+0PT9yzXZVQqFVWrVSUSCTUaDSWTSRUKha51PM/TxsaGksmkms2mMpmMlpeXR5IrEyQAAAAAAAAAAGCkKpWKNjY2VK/X28symYzy+Xx7kqTRaCiVSqler8t1XUnS0tKStre3lc1mh54Tt9gCAAAAAAAAAAAjVSwWderUqa5lmUxGlUql/f9cLqd0Ot2eHJGkfD6vXC43kpyYIAEAAAAAAAAAYAbtP6Q93h/TQ9q3t7dVq9W6lm1tbSmZTEqSms2marWaMplM1zqtSZVSqTT09mGCBAAAAAAAAAAAjFQul1Oj0dDKyoqk/WeNXLlypX17revXr0tSe8KkpXU1SbVaHXpOPIMEAAAAAAAAAIAZdCfCQ9q/cWtPt2/tRd7mn74VXDabzaper6tUKmlpaUnJZFKf+9znlEgkJO0/f0RS+/8HteLDxAQJQnGcC8aY769HKie92xL7gCX2Pkvs28yhv7RoKXeIv/L+aOWecg9fJ6wfN++H/0/PG2PWY7FgPoba3TbHnjKHrNv7Rcv2/rU5pE9YYjppCxr51xxjzNHvW0q+aYlZ2kyS9Nbd38ckLRyIvctSbtcSe48l9g1LzLYftnL3W2I2tte2rd2+aInZ9uG7LDFbm/2hJWbb94PH8x2O80lLOdv7k+24295HDyv7hiVmyydquZOW2A1LzNym0s2I5WwxW5vZ2M41W5vZcnnFEjtpqfK4ObZridleEwlLMdn7AlFF7XtY/XDEZNKW2OWIdQKYWeb3r4+GqOW0YfnjvYtCdctM75+mnE/2LDHtn/m9ubeO8B4O2N65wDUd25+6vtcdxrHqtf1P/0zg8sVP/ZyhRO9+m32p47d5jGMTdGxNx9VxLoeo+UbITMLsd//MOb/Ws8S032H6IOHaSAo6l8x1BJ131wzr9t+exteVIY+g9jC/B/b/WgnfdkF1hFk7ODfff9xQ94u9Cz91ObjqD5wz1B3Qdob3JPtna4fXOzQBw3Lze8SLwXV84PH937vb+28NJx8aQmIYpn+18fv69QsvjaTuYrGo69evy/M8NRoN1Wo1LS8vS9q/3ZYkLS4Gf67QbDaHng8TJAAAAAAAAAAAzKDbOqrbIa8g+fAzrk4//X+NvM0vvvxV/a+nfyUwlslklMvllEwmtbKyopWVFZXLZS0vL2tpaUnS/rNKghy89dYwMEECAAAAAAAAAAAkSfccO6p7joWbVOl0733Bd0bJ5XKS9m+1JUmf+9zn9Mgjj+jJJ5/U8vJy18PagzBBMgPOnDmjhYXg22isrq5qdXU15owAAACAaDY3N7W5uRkY292Neqs6zDvGTAAAYJLRB47uypUr7ckRaf9ZI4VCQblcTp7n6dSpU5J6nzXS+n8qlRp6TkyQxOzq1aty3RE8jwIAAACIme3Das/zRjKAwexjzAQAACbZtPWB7+io9mKeBrhjuKXX4uJiz9Uh6fT+wx4TiYQSiYRc11W1WtXa2lp7nVqtJkk6e/bs0HM9MvQaAQAAAAAAAAAAOuRyOV25cqVrkqRSqch13fbtsy5duqRardZ1FUmhUFChUFAikRh6TlxBgh6O85wl+iOWcp6l3Lox8qj/O8bYy7/1fZY6zR7/gX9hjP3mX/4ha1nH+Tlj7Nf9K5Zy5rb5n/3/aCn3g9Z8TC76L1rq/KClpDlP/bfm0Huf/5ox9tv6i8ZY8qf+sTGW/Rv/izH2H/7Gdxpj//oT90v65rv/+2ZJ978T/OvB9zg81B+aQ9f8J42xH/jx3zMXfMC+Sfd/+T/v/ut7Jf2FA9EHLSX/xBJ71RILfsDVvvdFrPP7LbHftsTeb4nZLFpir1hixy2x37XEou6frT3fsMS+YYnZjOYSXt9/yhhznOctJd9jidn+Vty2xGznr+28sPmyJWbrIpm35/sfMcbsf1+DbyVzeMxyPn3dUixtidUs5+HPW8pJcj5xwRK93xJ70xjxfXMfwnFs27McwxPnLeUs/g9LzO98T2j93X9Z8ndlfy8BMIkc57Ih8lrvog8Y3qeKwcsfzv5Rb63f+R3BdfzMycDFP/Ff9N7W46f18cB1HSffs+zv+XuB6/4D528GLv8N/2/0LPuQ8w8M2zO9N3/UsDxMHb1t6vxa8JoP3+xtZ8d5IXjlXw0+Vn/vv/inAXUc1WN6XZ4kN1XUS3poP5A2/7066GU9Grjcf/ePBxd4qHfRZcewrrI9SxznxeBVP/B48PKAfRnGcZVuBC51nODlga83nTasey2g3suBa/r+OUMdvUK9F8jeb+mt+8W+15VOGpb37rcphzDtYT7eD/ddtzmP4Lodp3dfzILzCOL7wcsdJ2jdxw3rGtoj6HX/dw2JVEx5vNi78MeD89Cnes9/c86XDYmcDFFHmNd9b72SpP8xuG7927u/b2r/reHdhk1hKPZ0RHshH9I+jG0GWVtbUyKR0MrKSvuK4Wazqc985jPtdVzXVb1eVz6fVzKZVKPRUD6f77o11zAxQQIAAAAAAAAAAEYum80eOtnhuq7K5XIs+XCLLQAAAAAAAAAAMHe4ggQAAAAAAAAAgBm0/5D2eG+xZXpI+yTiChIAAAAAAAAAADB3uIIEAAAAAAAAAIAZtKcjuj0hD2mfREyQDMDzPG1sbCiZTKrZbCqTyWh5eXno23Gc5yzR25bYT5hDy99mDP33/r3G2INOyrK9iBxz6P8x/K3pwiHxM/5xY+x3nReNsQdu/ZIx1nTea97g1s+b6/y2N4yxP3XOmOv8//jmOv+7/2SMff7oMWPsZT1qjN12vmSMnfF3jbG/q581xo46rxljf15fkPSHkn5WUkbSd7Vj//X/fslYzll50hjzf8sY0g+8+nvG2Pd+6pox9rvnT5srlSQ90PH7wQOxr1rKmfORblpiP2KJmdtbeo8lZmPbnvnclsyvQelGtFT0B5bYoiX2u5bYuy2xVyOW27bEFowR33/aUk5ynE9EqtfOVs52fG3t/eWI5aK1m/StlphtH95ljDjOYX9lTN60xGznzA+ZQ+Y/BVLClsv3m0Pm7sO+L9xvCZr30ffXjTF7P8jWlbX0kSxdJMd53hx8zPJae+m7Ov6zd/f3+9T5NwqYR3GNmfrhBHUx/k7wun/PbwQuv9f5qd6FrzwbXEnOkIhpeZAf7n/Vf2RY/j/7r/csazql4JX//d8PXPxbzr/tWfYT/r8PXPeflILf05/N9Q78/qquBOfx48F1fOpTvXW8FqKN3vb/x8Dl9zqWQWmPz0n6d5JK2u/v/kVJkv+fBdfxfwSMan9QLwdXfcqwyYDD8pppXb234/fDd/99I3jVPzFU8crlgIWmv9UvGpYHjZNMdQRtL6yP9r2m49wIXO77JwfOIqgvaOrnmPqNQeuH6WOG7Y86zuW+cggrbB6DbjPu7UmSar2Lvqca/OHC7538geA6fufxEBs82bMk6PjZ9b42Ta8JyfCZRrE3D6PvOyT+Je1/xPHB/qsEho0JkogajYZSqZTq9bpc15UkLS0taXt7W9lsdszZAQAAAMB4MWYCAAAYvz0d1V7M0wBxP/NkENNzrcuEyeVySqfT7Y6+JOXzeeVyYb4OBAAAAACziTETAAAAJh0TJBE0m03VajVlMpmu5adO7V/jWioZLlcGAAAAgDnAmAkAAADTgAmSCK5fvy5JSiaTXctb34yqVqux5wQAAAAAk4IxEwAAwGS4o6N3b7MV38+dKbrFFs8giaDR2H9gXyKRsMaDvPXWW7p50/YQ5SBf7/j3PeKwAQAAYNRu3bqlW7duRS7/1ltvDTEbTJv4x0zvOHbsmI4dOxa5PAAAmF/0gecPn7RHsLW1JUlaXFwMjDebTWPZ06dPD7Tt9fV1Pfvs+b7WdZxvmIM/bg7d0r3G2PdYtvd7h6c0FS7pSWPsH1nKPXbvy9E2+DuOMfS1P/tno9VpKfa1f20O/uyH3zbGnr32u+aYzPtQeezHjDHnV79ujPnXvskY0+k/knTj7n9uSHpXO9RUwlzuz5lDX/yyOfZr7/uvjTHb+aLD/p4ee2B/nWMPSEcOvJ/sftVS8FstseD3pX2vWmJftMQs7yU6aYmZzxnp/ZbYb1titnehBUvshiVm8x5LzPbBje0Y2draxrx/jvN85LI2jvOLlui7LDHbPt4fMWZz2xJ7M2LMdgzfsMTebYltW2InLTHbuVYzhxbS5thfMof88geNMedvWVKRpE8cEjfV61ww5+OvW8p90lLuY+Zytj/of/1pc+yXPm0p+F0d/97u+P2GpOOWcpNrY2NDFy6Yjw1gM/4x07O9gTdf7Fn0G3//7wXW8aH/8G8Cl39KP9Wz7LUQuY3DB/WHPct+y7Duw9/5R33X+3f1s8GBrKFAwKNnfkEfDVz1f/unwX/fXvtU77Iv+P84cN0/5/x3PcsyTu/xk6S/UvQDl/uf7R3nPHvjpHRze38A/D0PScdP7gdeD6xCf/PmP+1Z9qeng18Xv/lS8B/oR/Vyz7L1j+0GrvvPP/mlu//6ktQap91v+Fv6vcGLVTtnCAQ5GWLdFw3Lh/EqutHnMsmUs+OY1g8SfO5KvxBQ74uBa9r6OP0KqsPWrwrWf/uHqXsY+2faXlDdYbcXdFx8//FQdQQNX37vf/qB4HUrhjpeudG77O+cDF73U0HLTccvzN9Sw/ZMr6Fy7yLH9HixDxiWt/f77pvnJ1+XLrmGleM1i33gOzoS+0PT70zRjauYIIlgaWlJkrS9HfxBx8HLyDtdu3ZNjz76aM/yBx7YMJb52teeaf+bb0IBAAAgDs8884yeftoyYXSIl19+eeAPujG9RjFm6hdjJgAAEBV94PnDBEkErc686VtPts7+fffdp+PHg75FaP62fPD6AAAAwOgMepui++67b4jZYNqMZswEAAAwWvSB+3d987Oqb14PjN3etd3pYbIwQRLBqVOnJPXeN7f1/1QqFXtOAAAAADApGDMBAABMhr0R3WLrsdXv02Or3xcY+0/e6/qFVGno2xyF6bkZ2ARJJBJyXVfVarVrea22f5/Us2fPjiMtAAAAAJgIjJkAAAAwDbiCJKJLly4plUqp0Wi0Lw8vFAoqFApKJBLjTQ4AAAAAxowxEwAAwPjt6ahux/yQ9rgfCj8IJkgicl1X9Xpd+XxeyWRSjUZD+Xxe2Ww2Un2+vz7kDCXff5cx5jgXjLGSvtUS+/1oyTz1QXPs2yzlLDH/PznGWHXtLxtjRf23lg1Ki86PGmOX/SeMsRedPzHGfsl/wBh71vmkJZtvGCM5a501S50Lxsiv+dfMxZzgB2xK0h/6/8wY29RvWur8VWPoB/1/boz5flryFqWU5NW/V3Ldd6q0PEfLf94c0445lJa5PR/58S+ZC5ofLbTv1q91/H7lQNB8nKT3WWKvHrJRE9v2/nNL7DVLzHbv8BuWWNoSs/k9S+y7LDHbvn/RErO8r+kPLLF3W2K7lpitPc3v9/tuHhI3+bIlZtsP898R6Q1LzHaPUlvb2LoztuNrq9OWZ9Q6bWzH6D2W2MPm0Ddbipn/ZMlxnjMHP3DeUqkkvWmM2Po6tm3a+iyRu7K/Y4m9bCt4wxJ7vOPfD3T8frCfjICZNOwx06B8//GeZY7zg4a1g997flyf6l14/7ngKkxjGdufyQMerv5R4PLXSt/Ru242eN1nnYA3vfS/Cd6g4T332V/1A+p9MbgOBY8pfsS/0rPshFYC1/07hrp/ye/tm6xrNXBd51d7ly/8ZUOn/4Hg/XaKvfvtX5LkaX8s8glJd4cizvHeddvrH/T3g9N41PBH6B85IfoXJ3PSjdL+74W7yb1yOXjd3z3Xf70y1NH1969DOmB57YahDtM4NMxDjoPqNoxVTK/ZNy/3X4exTxDUNwveP8fwkUbQe5WJE/BaCfv5kr2v1V/djnO573rD5GfeXlDdwf1i3z9nqL33uDjODcO6hpzfDFi/cjJ43Yqh6r/QW8dPZIM/K/knub9gqGRQptegYawR9NZtGjq/Yjq/PmpPCYgREyQDcF1X5XJ53GkAAAAAwERizAQAAIBJxgQJAAAAAAAAAAAz6I6Oai/maYA7U3SLLR7SDgAAAAAAAAAA5g5XkAAAAAAAAAAAMIP2dCT2h6bvTdF1GdOTKQAAAAAAAAAAwJBwBQkAAAAAAAAAADNo/xkk8V5BMk3PIGGCZE75/vrQ63Sc58zBT7xqKXk82va+xTcH/7Gl4H2H1ewZI+e+/QVjzLek47gfs2zP0m4W7/1QM1IuNs4/skUvGCNX/4b5fLr6X/6oMWZts79lSeXnLLGft8Set8R+yxxKOv/CUnDBEqtZYtJjev3uv25J2j0QPfj/Tr9irdfMlqvNNUvsDUvMtg+LltjvWmInLbH7LbEbltibEev8A0vM9r72RUvsWy2xmxG3N8g2bcfQFov2vm7PxbYPNuY8ff+8MeY4ttev7Ry1vc7eY4nZXhM2ljq/YjlnvmA7RrfNoT9rz8b/D1H7F+ZtjqLPon9tiX3FVvADQ04EwLgN4z3GcQz95Fc+alj+YsDCc4GrvuZ8R995vJYzjVUe7l1UC8rB3B5OwJ8N33/csL3g5UF1mLo3prqd473L/yvTn7sfvtGzaPf+k4btGfb7OwMWZg3be/OyIXCuZ8m//5GlwDX/ovP/NtRxsmeJqY3+uZPb/8eNoqSH7i4NOAck+Ya2Czqnw75WHOdyQB3nDOsG12E+x/rNIfi1ad7v1wJyMJwbzovBdRv2MUwdQW1nEqaNwtQbXm/bmZjzOBmw7Ebf9YZp+32nA5aZxr4vGpbf6F30fYY8AlaVgo+h8529y/bXDVoavO4oBb6f/x3Dyj8V/P7zzvHevvv7IcN6wOhxiy0AAAAAAAAAADB3uIIEAAAAAAAAAIAZtKcjus1D2o2YIInZmTNntLAQfPuN1dVVra6uxpwRAAAAEM3m5qY2NzcDY7u7tlvxAWaMmQAAwCSjDzxbmCCJ2dWrV+W67rjTAAAAAAZm+7Da8zylUqmYM8IsYMwEAAAm2bT1gfd0j/ZingaIe3uDmJ5rXQAAAAAAAAAAAIZkeqZyMPF8/3ykco5zwVLnuqXcJyJtTzrsUrc3zaEvvGIp96Pm0Eu/bgxFb7fftsRqlu2Z21T/wx9EykW/ZM5Fv3S/MeT86K9YKrW0y89Ziu3+sSX4fnMuv+Kbi/0F8zlqd9hb7O2O3984ENvuo1wQc3tLwbeq2PdlS8zymrDu43sssZuWmC3PGxHL2UQtZztGtjZ7d8Tt2d67Dntfs50Xb1hitnMtaj629rblYtuHaJcw2/+O2Or8gDHi+x+JuD3z+eT7H7PUaXn/te3DF9OW7Vn+9n7IsrlD2P7e24/vCHzB8vr9c4uWcrZ+wA91/PuBjt+W+gDMBNP7pv1972Ad4bYZVHeYPHz/XKjt+bauWx/b23c6YNnjofLQmy+GqONGQPmT4bb3StC+BLdzmDb9i8dfNdTRdxWhhD3e88o6Vu5Z9/EhbG/wOiZFmLYzCfOeGfR+4jiXDeu+1netYffD+ZsBC79gWPm/MiwPen995bJh5XOHZBSToOHuT4Wt5Mbd3693/ObqUYwHEyQAAAAAAAAAAMygOzqivZgf0n5nim5cNT2ZAgAAAAAAAAAADAlXkAAAAAAAAAAAMIP2xnAFyd4UXZfBBAkAAAAAAAAAAOjbf9z8Tf3HzRcDY3u7B5+1O7mYIAEAAAAAAAAAYAbd0dGRXEHyvtW03reaDoxte6/pX6T+/tC3OQpMkGDsfH89YskvRyz3/YfE/9gSezXiNr81YjmLP2feD//zh+2jyeLQc9EX/sQY8v3zxpjj3LTEflaP6XV5ktxUUS/poY7ouy2Jvt8c+qSlmNX9UQtKev3u75uStgeo5x2+/3Skco7zXMQt3rbEvmiJ2Y7TriX2pj2dSHUujCB23BKztYvN+yyxNw4pa2s3W1fAdn7b2vSwfKKIeuzNfP8pY8xxLlhK3rCUe95SztZm5teSPZefiLa9f2spZvM7EctpkL/3Zra2sW/P/LfJ9ndLOmmJdX5D6nbH729IepelHIBZZXofsr+vH1z3xSFk8vDANQTlbNo/836/OHAetr/BvU4GLLtsWPecYflHQ2wvhJ8Jt3qY9vfqOSlV2v/tulGy6zsHWx6+f27gOgbNI/xrsPe1ErQfwzKM9giu93Ko9UfRRxuWMMdwLPvxqcsBeZwLXNVxwlR8MkIyB7c3mvNLkvSBgGWvDF4tMC7TczMwAAAAAAAAAACAIeEKEgAAAAAAAAAAZtCejug2D2k3mp5MAQAAAAAAAAAAhoQrSAAAAAAAAAAAmEF7Oqq9mKcBRvFQ+FHhChIAAAAAAAAAADB3uIIkZmfOnNHCwkJgbHV1VaurqzFnNL18f31ENadHUOf/aYl90BhxnAsRtxetbXz/2yLV6TjPRdqedN4S+18tsXv0zttX578laTdaKn9oDtnONfsxOuwt9nbH79sHYt9qKXdzRPmYLFpi25ZY8HvdYOXeHbFO2z582RKLeD5Z9+H+iOVeNUYGeT+0nzNR99/W3u+yxL5oidnOX/P2fP8pY8y+77bX4BuW2MHXcifzPkQ9ho7z65ao7fi9ZqnzDywbfPrQnMz1mts76v5HP/c/YKnTfI46327+m60vdL4H/f86fr8p+2tium1ubmpzczMwtrsb9T0E827Wx0xh3rt8/3FDxLQ8iPk9v/88hjH2uhaw7PGQeZwLse7JgKX9lzfXEcxxLhvqCNjm/8tQSdaUx2Dtb/obbKp3VGPt0Y3hg/cx7v0zCdv+YfYlzLqTIvrnHO8I2sew9YapI0ybOs6LhkjQe6DkOA/3XXcYIz1nXrkRUMdJw/YeD1f3lKAPPFuYIInZ1atX5bruuNMAAAAABmb7sNrzPKVSqZgzwixgzAQAACbZtPWB7+ho7Le8usMttgAAAAAAAAAAACYXV5AAAAAAAAAAADCD9nQk9itI9qbouozpyRQAAAAAAAAAAGBIuIIEAAAAAAAAAIAZtKejuh37FSTT8wwSJkiAGPj++tDLOc6FqOlEEn17cb/N7EYrVrtpDDnOz0aq0vfPW+Ou88zdfy1KeveBsh+z5BPtWNjysde5PfQ67ef2Jyy5fNkSszHvg/0cXbDE3oy4vfdYYl+0xKKLfiyet9Rqe63Z9v+2JWY+Foe9nqKw7/svWkra9sFm0bK9qO+x32OJHY9Yp+Xc9v/4kLLvNxeN+Dct6t9Qu3dFykX6a5ZY53nxesfvB2Q79gAwaqN5Hw1vUvIYndf6X/XNy4bAucClQX+bwrRn2LYfdHvDEiaPoHVNf9Pj3pew2xs0v2Hs96S0XTgPBy71/XMj22JQ3Y5z2bB2cNv5fu8y5zsjp3SooRzDD5wMsfKNQ5a3fl+X9F9GSgcYFLfYAgAAAAAAAAAAc4crSAAAAAAAAAAAmEF3dFR7MU8D3JmiW2xxBQkAAAAAAAAAAJg7XEECAAAAAAAAAMAM2tOR2B+avjdF12VMT6YAAAAAAAAAAABDwhUkAPri++sxb3HBGPH9pyXPk1I/J6/+E5LrtmOOcyHi9v7QEnu3JfbliNuTpO2O39/UFYm6H9GPk+3PgflY2N1vjNj2L/5zLRrHed4Y8/2nI9ZpO+6D/MmOVta2H1GPob3c+f4SC8FxnotY8uQw07hrN2I582tJepclZnvtRs1lNOJ/3XvGiP38vWmp8xc7/v35u7//naSbktze1QEAoQX1Iyan7/hwiHVfC1XzqPbR1C+blDYNk0fQutHHhsMVNo+499txLodaf1Bh9s+cW+9raBjnbdg6gtvaVMcNQx0vBix93FDHyUMyiskrYfb7WuDSdlt7npS6IK/+V4eSGhAFEyQAAAAAAAAAAMyg/Ye0D/8WW1/c/BV9cfNXgre5+/bQtzcqTJAAAAAAAAAAAIC+fevqj+hbV38kMPam96rqqf8+5oyiYYIEAAAAAAAAAIAZtKcjus1D2o2YIInZmTNntLAQfE/w1dVVra6uxpwRAAAAEM3m5qY2NzcDY7u7k/WsG0wPxkwAAGCS0QeeLUyQxOzq1atyXR7UCQAAgOln+7Da8zylUqmYM8IsYMwEAAAm2bT1gfd0VHsxTwOM4pknozI917oAAAAAAAAAAAAMCVeQAFPK99eHXqfjPGfZ3vmhb8/uTWPEcS7oMb0uT5KbKuolPdQRjfq2Fnwbh33bEeuMbjTH90Kkcr7/dKQ6R7EPNlH3z8a+D/Zz1Mx8jtq2N8j+xf36dZxPRCwXdR9tr/vbEeu8EalU1GMY9fXiOJ+OVE5ajFju/dboJL0n2J2MWO7VPutsnXcPDbAtAJh9pr8bpr8Zk/W3pJvvnxu4jrDtEcRNFXvGSaNsz2HkPKrtTcr5YsrDtC9By8PsS9j9Djp3w/bLB8057DYn5dhKDwcsuxyqhuD2N9XRu+54nO5/1Q+Yzv/LkqTHdOPue9Yvy/O5ehTjwQQJAAAAAAAAAAAz6I6Oxn7LqzvcYgsAAAAAAAAAAGBycQUJAAAAAAAAAAAz6I6OjOEKkum5LmN6MgUAAAAAAAAAABgSJkgAAAAAAAAAAMDc4RZbAAbmOBcilfP99UgxSZLnSamSvHpOct2Bc5HeiFhuEN/c8fv+rohtPw5tmyGXmySjONfi3p7jPB+pTundEcuN5nyy+3Kk7UXN036c7rfE3rRs77ylnFnUXKK/d9m6couW2AeNEXtbe9Zspud9xnYsfjFind/T8e9bd3//OUnvi1gfAMy+sH83gv5eDuNvj+nv8Oj+rn3UsPzFgWv26rnAcdKohGmjYbSzad0wfam4+ytxn19h+5VBeYTNLWj9UR7vSeH753qWOc7lvtcNU+9kOdmzJOx+O87wssHh9sbwkPa4tzcIriABAAAAAAAAAABzhytIAAAAAAAAAACYQXs6otuxX0EyPddlMEECAAAAAAAAAABi12g0VKlUJEnZbFaJREKS5HmeNjY2lEwm1Ww2lclktLy8PPTtM0ECAAAAAAAAAMAM2n8GSbzTAP08g6TRaCifz6vZbKpYLCqZTHbFUqmU6vW63LvP1FpaWtL29ray2exQc52ea10AAAAAAAAAAMBU8zxPqVRKi4uLqlarXZMjkpTL5ZROp9uTI5KUz+eVy+WGngtXkMTszJkzWlhYCIytrq5qdXU15oyAd/j++Yjl1oecyTh4xkjUdnGcC9a4X/8xKfWz8uo/JnW84Q9S7yiOheM8F/P2ou3fYe0dhX175naxezNSnVHPw/2yUdvN3E0YxbGPmmfc70GjyMV+HN5tie1aYu+3xG7aEzLajlhu0vyhJfYBS+xFS+xax79fu/u7Lukrsh+L6ba5uanNzc3A2O6u7fwEzBgzwWRUf/PjH8/8woTkMRlM/aAw7THJbRd3bqbtDWO8NIxjZRKmDse5HLD0tYBl4doj7H6EqSM4Z8n3z/VVr63uyRDc/mYn7/5+++7vh4aXSgzoAw+m2Wzqwx/+sJLJpIrFYmC8VqupUCh0LT916pQkqVQqDfUqEiZIYnb16tWumS8AAABgWtk+rG59KwwIizETAACYZNPWB76jo33d8qqrzK235d96+/AVDW6/dcsYa91W6+AESMv169clqeeqklb/sFqtMkECAAAAAAAAAACGb3vjn2j7ws+PpO5SqSRpf6Ijn8+r0Wjo1KlT7eeQNBoNSWo/rP2gVnxYmCABAAAAAAAAAGAG3dGR0FeQJJ7J6oGnz0Xe5q2X/0ivn+4t73n7t7h3XVe5XE6FQkGNRkOZTEZLS0va2dnR1taWJGlxcTGw7mazGTmvIEyQAAAAAAAAAAAASZJz7F45x+6NXP7IfX8mcHnr6o9cLte+hVbrWSSZTEYbGxtaWlqSJG1vBz8D8+CttwZ1ZKi1AQAAAAAAAAAAHGC6bVY6nZa0P4HSmgAxXSky7AkSriABMJEc54Ix5vvrkWI2vn/eksvzlnJPR87FdXLyJLmpol7SQ32XjbqP0d02RmzHySbq/kU9L6Ky75/5T2jUPKO25yDibrfo+29r7+cs5cznb1T2fRhFLl+2xN5nib1hiS1EzOVGxHJ2o3gvsbsRKWZ7z3ecT3T873bH72/0nxYAYKIE/X0aRt/JVIfjvGhY//GBtxm8veC/v2H2MUwd8Y9j0GmU5+6otmeu+9wQ6hhNe5j7tacH3t7k+IUh1HHt7u/X7/6uD6FOmNzWER0NeYutYWwzyKlTpySpfRutgxYXF9vrHHzWSOv/qVRqWGlK4goSAAAAAAAAAAAwYolEQul0WrVarWt562qRVCqlRCIh13VVrVa71mmVOXv27FBzYoKkDwdnqwAAAAAA3Rg3AQAATJ47ukd7Mf/csdwFolAoyPO8rkmSUqkk13WVzWYlSZcuXVKtVuvqXxYKBRUKBeNtuqKaqwmSSqWiVColx3GUSqV6ZqpaHMfp+llZWemKe56nlZUV5fN55XI5VSqVONIHAAAAgJFj3AQAAIBRcV1X9XpdhUJBuVxO+XxeW1tbqtfrPevk83nl8/l2n3JtbW3o+czNM0guXryoarWqXC6nra0tXbx4UZlMRtVqtf0QGGl/tiqbzWppaam9rDPeaDSUSqVUr9fluq4kaWlpSdvb2+0ZLgAAAACYRoybAAAAZssdHdFezM8guXPIdRlBt9AKWqdcLg8zrUBzM0Hy2c9+tqvRn3jiCaVSKRUKha6OfLlcth6cXC6ndDrd7uRLan8jio4+AAAAgGnGuAkAAADzZC4mSGq1mgqFQtcy13Xlum7XfcwqlYquX7+ulZUVZTKZno57s9kMrOvUqVOS3vkWFYDB+f56pHKO87ylzqejpjMSXj0npUr7vzs+PBiE41yIVM7W3lGPxSiMIhdbm0U/D5+LdXuHGcc2Tezn6P3GyChev6NoF98/H2l79jrNuTjOL0aqU3olYrnTEcvZTdL7jPS9xoj9GH5Px79v3/39kKSTg6cExIRxE9At/r9P1wzLH+9ZYvqb5Nd/pO+tDWP/JutvOEbNeN6FOA+GUcckM+2H41yON5GYhT1+7fU9753PRYAxmYtnkKTTaSWTycBY5/Jqtapms6lKpaJcLqcTJ0503W/3+vXrPWUktb8VddhlQQAAAAAwqRg3AQAAzJ69u7fYivdneqYd5uIKEpNGo6Fc7p0ZymKxqGKxKM/zVCwWVSqVlMlktLW1pWQy2f7WVCKRMNZ3mLfeeks3b96MnPOxY8d07NixyOUBAACAfty6dUu3bt2KXP6tt94aYjYYp7jHTYyZAADAuNAHnj9zO0FSqVSUTCYDL+12XVfFYlGZTEYrKyvK5/Mql8va2tqSJC0uLgbW2Ww2D93u6dOD3ZpifX1dzz777EB1AAAAAIfZ2NjQhQvRbg2H2TGOcRNjJgAAMC6z2Ae+c+eo9u7E/JD2mLc3iLmdINnY2FC5XLaus7y8rOXlZXmeJ0laWlqSJG1vbweub7ocvdO1a9f06KOPhku2A9+EAgAAQByeeeYZPf109Of/vPzyywN/0I3xG8e4iTETAAAYF/rA82eqJkg8z1M+n+9r3WQyqWKxGBjL5/O6dOlSXxMamUymfT/d1vqmbzz1U999992n48ePH7oeAAAAME6D3qbovvvuG2I2CGPax02MmQAAwLjQB54/UzVB4rruwA/0a90ft/WAwH6cOnWq6/fBe+a2/p9KpQbKDcAwLAy9Rt+P/s2BqBzHfDmn769Hitm395wlejtSnTZR8xyFUeTi++eNMduxtcXs27Pvgy0e9VyLalrOUfuxsHWfouUS9RjZcwm+tc2+/vtB3a4cEjef+5PlcUvs05aYrb2/2PHvL3f8Hv7fJeAwjJsAyXEu9yzz/XNDqfcx3ZAnyU39sl7SHxxS4vGAPE4Grhmmn2Rc9+6VXIMI6ntMUv99ks162w1jX2apPcKN3x4eWR7x692XoPdcaTjvuxjc3t4R6Xa8t7za25ueh7RPT6ZDUKlUJEnpdLpruWfpQFSr1fYDCROJROBgo/VNqbNnzw4zXQAAAACIHeMmAAAAzIupuoJkELVaTRsbG8rlciqVSu3l9Xq9/Q2mJ598Uk888YTW1tYk7Q8MFhcXtby83F7/0qVLSqVSajQa7UvDC4WCCoWCEolEfDsEAAAAAEPGuAkAAGC27N0+Kt2OdxpgL+YrVgYxFxMknucpk8lIUvtbTZ12dnYkSYuLi9rY2FC1WpXruspkMj3343VdV/V6Xfl8XslkUo1GQ/l8XtlsdvQ7AgAAAAAjwrgJAAAA82YuJkhc15Xv+4eu1+99el3XVblcHjQtAAAAAJgYjJsAAAAwb+ZiggQAAAAAAAAAgHlzZ+/oSB7SfvvSJ3X70icDY/7Xvz707Y0KEyQAAAAAAAAAAKBv9zz5Md3z5McCY3de/n3dOv1XYs4oGiZIAMwNx/lFY8z3fzTGTA7n++sxb/G2MWLLxXEuRCo3CrZcorLv+3OWcucttdr+9EY7DoOIWm/U9o5abhT7P4rzdxR12s/D5y0lty2xd0XKRVqIWG7SvGCJ7Vpitv3/Yse/v9zxm+42AIyD758bXb2eJ6UuyKv/Vcl1Jdn6AL8QsCz4b7upjrj71cPYXpg+X/xjn1F6eNwJIEazde6G8VrPElNbOM7lwOWjeo9GsL29I/Jjfmj6nb0jsW5vENOTKQAAAAAAAAAAwJDwlTYAAAAAAAAAAGbQ3u2juvONeK8gifuKlUFwBQkAAAAAAAAAAJg7TJAAAAAAAAAAAIC5wy22AAAAAAAAAACYQf6do/L3Yp4GuDM9t9higiRmZ86c0cLCQmBsdXVVq6urMWcEzBbff2rodTrOBcv21iOVkyS//iORcxq2qPthKxe3+HO5HamU75+PVO6w88m+zeG3zSjOGcd5bqCcwht+NyhqW0d/nb1pidn274uWXGzH4T2W2GiM5j3IvB++/xFLLp/ss/5v7vh9f99ZTaPNzU1tbm4GxnZ3d2POBrOCMROmkelvUpg+3FDqmJAxxiSME0ztFqadw+6H758Ltf4kGMZ+z6tRtd0stf80vib6QR94tjBBErOrV6/Kdd1xpwEAAAAMzPZhted5SqVSMWeEWcCYCQAATLKp6wPfPiLF/dD029PzZI/pyRQAAAAAAAAAAGBImCABAAAAAAAAAABzh1tsAQAAAAAAAAAwi/aOxn+Lrb3peUg7V5AAAAAAAAAAAIC5wxUkAOaG41wwxnx/PVLM5tBynhep3rhF3f9ZEPWcid9k/TmP/po5b4zZjkX0XG5H2p6tzrjfZ+zM+2c7Z+zH4ZMD5BPNaNrmjYjlbA+N/vWOf9/q+L0bcVsAgFkwjL9joeqYkjFGHEztZuqvTVb/vj9B+xJ2P6Zxv4NMynENO24Jym9S9sUkTB6Tvi9zY8+Rbjvxb3NKcAUJAAAAAAAAAACYO5P1lVMAAAAAAAAAADAce7LfYGBU25wSXEECAAAAAAAAAADmDhMkAAAAAAAAAABg7nCLLQAAAAAAAAAAZhG32LJiggTA3PD99XGngAE5zgVjbBTHd1rOGd8/H/s24z4WNrbtRc3TVi7uXKJv7xOWku+JtD1pIWK5SbMbsdyvDzULAMDsC/r7Py19zFkVpv1N/bdJOYaztC+DGs9+nA7I4/HANcOMLyb9mDjO5Z5lvn8ucN1J3xdAYoIEAAAAAAAAAIDZdFujuYLkyub+T5BbUb+UFj8mSAAAAAAAAAAAQP/Oru7/BHnFk34sFW8+ETFBErMzZ85oYSH49hSrq6taXTWcVAAAAMCE2dzc1OZm8LfGdnen51tjmCyMmQAAwCSjDzxbmCCJ2dWrV+W67rjTAAAAAAZm+7Da8zylUtPxrTFMFsZMAABgkk1dH/i2pG+MYZtT4si4EwAAAAAAAAAAAIgbV5AAAKaG76+PO4WxmbR9jzufqNsbRZ6OcyHS9qLm4jjPWaLmr+XYtmev0+aNiOVmxaIl9uWOf9/u+D1FX50CAAzdpPXhJpGpbzWqtguzvWk8fnG3Z1i2vvRBk5Kz2bWAZY8PXOukH0PptYFrcJzLkqTHdEOeJDf1y/J8rh4dmTuS9sawzSnBFSQAAAAAAAAAAGDucAUJAAAAAAAAAACzaE/xX9ge9xUrA+AKEgAAAAAAAAAAMHeYIAEAAAAAAAAAAHOHW2wBAAAAAAAAADCLbiv+W2zFvb0BMEECAJDjXDDGfH89xkwQhe34HWYUx3cWzqeoeTrOc5Y6z1vKRWszWzlbLtJ7LDGb3YjlpofjfNoS/bIldk/Av+8R3W0AAOzi7h9OS3+0k6nPF7Qvk75/k55fGGH2ZVTrjsfpIdTx2t3fXzrwG4gfIzb8/9u7gxBHsjxh7H8N4+mtob8hq3oua3AblAdfZ0K1R9PzQepbzIIvlVl93IHPkzrkrcElmgZXF3xNknn4bvnZyvoW+rCXnlRh39YgLd7Z0+KtjO01hoGFFB5sZsHsZsnzNVtT3VUTPlSnprJKUimVipAU8ftBUKl4oYh/vhehei+f3nsAAAAAAJSRRdqnsgYJAAAAAABQOTpIAAAAAACAyjHFFgAAAAAAlJEptqYyggQAAAAAAKgcI0gAAAAAAKCMjCCZSgdJwe7cuRM3btwYm7a3txd7e3sFRwSsm1rtwcS0LLs/1znnfR9XN2/5Xafcp703D1W+n7Lsk4lpeTy7002uAWfZf5fD9dZHln00Ma1W+2zK+6Y9o//jK6+++vbfH0TErasFt2aOjo7i6OhobNrTp08Ljoay0GYCymRSHfAq9b8q16/L4ir3wSLumXz9XzMfWat9Pnb/6HdJ04jGcaSnreuHVSB14HLRQVKwR48eRZIkyw4DAACubdofq9M0jUajUXBElIE2EwCwytauDmwEyVQ6SAAAAAAAgNn9xVHE/zp+JE18vT4jaXSQAAAAAAAAs/tv9l5u4wzSiP9+xUbSTKCDBAAAAAAAyuh5RHyzhGuuie8sOwAAAAAAAICiGUECsGay7P6yQ+Ba5vuv9zrlvi73TK32YGLauvwO00z7HfL43adf77Mp7/tkylnX6GtAU9Rq/37O903Ot4hb8wUDAJRanvXYcXXIMtSbF2lSPbvofCpTuWTZT69w9K/yCoOreBHFL5q+Rou0G0ECAAAAAABUjg4SAAAAAACgckyxBQAAAAAAZfQiip8t2RRbAAAAAAAAq8sIEgAAAAAAKCMjSKbSQQIABcqyT5YdQu5qtQcT07Ls/lxpZTfv717lPLuepxNTpj2jtdpnU875/77y8/kr//7BVQIDAJjZOtYFJ7UV8vpd1jGPIv7LZQewMOuZ/1SNDhIAAAAAACgjI0imsgYJAAAAAABQOUaQFOzOnTtx48aNsWl7e3uxt7dXcEQAADCfo6OjODo6Gpv29OnkqcxgGm0mAGCVqQOXiw6Sgj169CiSJFl2GAAAcG3T/lidpmk0Go2CI6IMtJkAgFW2dnXg51H8FFtFX+8aTLEFAAAAAAAUrt/vx82bN9/Yn6Zp7OzsRLvdjlarFd1uN5frG0ECAIxVqz2YmJZl9+dKozjTyo/xU/dEzJ9vl+77NI1oHEd62orwLXgAgJGytxVqtc/H7s+yn858jqscuyrmrUP/OH4daUQkjU6kWWexQfF7K75Ie6vVemPfYDCIRqMRp6eno5HFm5ubcX5+Hru7u4uKMiKMIAEAAAAAAArWbrejXq+/sb/VasXW1talaVcvRpIsmg4SAAAAAACgMP1+P95777031p4bDofR7/ej2Wxe2n/79u2IiDg+Pl5oHDpIAAAAAACgjC6m2Cpym2GKrU6nE/fu3Xtj/+PHjyMi3hhZctGR0uv1Zvq1Z2UNEgAAAAAA4KXnz15u83r21dTkdrsdBwcHY9MGg0FERGxsbExNX5TKd5AMBoOx85wBAADwknYTAMCaeh4R31zxPb39iL98kEc0kaZpvPfeexPrlmdnZxERcevWrbHpw+FwofFUroOkVqtdep0kSZyeno5ep2ka+/v7Ua/XYzgcRrPZjO3t7UvvmeUYAMqtVptcUciy+wVG8nbzxrpqv0eZzVtG87/vs9kCK63/NDFl3vx+NU9/HL+ONCKSxp/F38VfRJZ9MleUsEzaTQCsk0n1tKLbNFn202ufo1b7qwnn/sm1z70I4/J6Uj6/tVzSNKJxHOnp4hfe5pr+9ccR//VH87//119GHH8wNml/fz9OTk4mvnVzczMiIs7Pz8emL/pLO5XqIDk+Po7d3d1RJkdEbG1tjX4eDAbRaDTi9PR0NKfZ5uZmnJ+fx+7u7szHAAAArCvtJgCAEnkRM60JckntnYj/7J35r/ndd8fubrfb0Ww2L02TdfHzxb8XHSCTRoroILmGk5OTqYu4tFqt2NraGlXgI14WWqvVGlXiZzkGAABgXWk3AQCQh36/H4eHh2PTNjc3I0mS+Mu//MuIeHOtkYvXjUZjoTF9Z6FnW2HdbjceP34cOzs7cXx8/Eb6cDiMfr8fzWbz0v7bt29HxMtvUc1yDAAAwLrSbgIAIC+np6eRZdml7d69e7GxsRFZlsXp6WlsbGxEkiRvfGGn3+9HRMTdu3cXGlNlOkh6vV4Mh8PodrvRarXi5s2bo0yNiHj8+HFEvDlE5+IbT71eb6ZjAAAA1pV2EwBAybyIlwu1F7lddUqv1zx8+DD6/f6lUSQHBwdxcHAQGxsb1zv5ayozxVan04lOpxNpmkan04nj4+NoNptxdnYW9Xp9lNmTMngwGMx0zNt89dVX8Zvf/Gau3yEi4p133ol33rnG/G8AADCDZ8+exbNnz+Z+/1dffbXAaCjKKrSbtJkAgGVRB14NSZLE6elptNvtUR203W7nMlVrZTpILiRJEp1OJ5rNZuzs7ES73Y6Tk5M4OzuLiIhbt26Nfd9wOJzpmLf54IMP5gv8W/fv349PP/30WucA4Pqy7P6yQ5jZOsVaVfOW0bT31WoPFn698pivCjxzvqVpROM/RHr6byNeWX9h3ezv78eDB5PvI8ptme0mbSZg1U2qZ6ljFWNc/q9K3i/i3siynywomnxc7XdZjXK5ilLWgS9GkBR9zRldjAx5XZIkcXJyssCgxqtcB8mF7e3t2N7ejjRNI+LlIjAREefn52OPr9frMx3zNr/4xS/iRz/60RwRv+SbUAAAFOHjjz+Ojz76aO73f/nll9f+QzfLt4x2kzYTALAs6sDVs1YdJGmaRrvdnunYer0enU5n6jHNZnM0n+5FJX3St5nq9fpMx7zNu+++Gz/4wQ/eehwAACzTdacpevfddxcYDVex7u0mbSYAYFnUgatnrTpIxq1ef123b9++9O/r8+FevG40GjMdAwAAsEzaTQAAjKz4FFvL9p1lB7BMvV4vWq1WRLxcQHBcQ+Lim1J3796d6RgAAIAy0W4CAKCsKtFBkqZpNBqNODw8HO3rdrtx69at2N7eHu17+PBh9Pv9S990ulgkZmNjY+ZjAAAA1o12EwBACT2PiG8K3ooesXINazXF1rzq9XrcunUr9vf3o9frRZIk0Ww235hrN0mSOD09jXa7HfV6PQaDQbTb7djd3b3SMQCwSmq1BxPTsux+gZFQrDyqef8qh3Ouj2nP0qt+HL+ONCKSRif+Lv5zzxlrQ7sJYDb+b1+uVc7/SbFNqkeOO/4qxy5DrfZXb+zLsp9MOHa1fxeIqEgHycbGxsxz8CZJEicnJ9c+BgAAYJ1oNwEAUDWV6CABAAAAAIDKeRHFL5pukXYAAAAAAIDVZQQJAAAAAACU0YsoftF0I0gAAAAAAABWlxEkAAAAAABQRkaQTKWDBABKLsvuL/yctdqDQq/H1WXZJxPTarV/P+V9H00563+6RkSrY1reTH/f5Ht72jMBAEC1XaWNtPrtqV+M2feTCcd+kGMcsBg6SAAAAAAAgNn9n0cvt3GePy02lmvQQQIAAAAAAGX0PCK+yeG8/9Xey22cf0oj/pdGDhddPB0kBbtz507cuHFjbNre3l7s7U24qQAAYMUcHR3F0dH4b409fbo+3xpjtWgzAQCrTB24XHSQFOzRo0eRJMmywwAAgGub9sfqNE2j0ViPb42xWrSZAIBVtnZ14BdR/KLpa7RI+3eWHQAAAAAAAEDRjCABAK4sy+4vOwQiolZ7MCVVNW+SWu2zKanPJ6ZMv++/O+bn74ZyAACuYlz9Tt2bVXKV+zHLfpJfILAgWmwAAAAAAFBGL2La98Dyu+aaMMUWAAAAAABQOUaQAAAAAABAGRlBMpURJAAAAAAAQOUYQQIAAAAAAGX0PCK+WcI114QOEgBgJdRqDyamZdn9AiNZH9PyZVp+Vr0KmGWfTEybnm8AAPlS72XVjasvu29ZZ6bYAgAAAAAAKqfaXx8EAAAAAICy+l0Uv2j67wq+3jUYQQIAAAAAAFSOESQAAAAAAFBGz6P4RdPXaJF2I0gAAAAAAIDKMYKkYHfu3IkbN26MTdvb24u9vb2CIwKA1ZBl95cdQqlMy89a7cHCz7lOarXPpqROrh5Py7dLeZOmEY3/EOnpv41IkjkiXB9HR0dxdHQ0Nu3p06cFR0NZaDMBUDa12udj92fZTwuNIy+12l+N3Z9lPyk0jqKoA5eLDpKCPXr0KJKSN5QBAKiGaX+sTtM0Go1GwRFRBtpMAMAqW7s68IsofsqroheFvwZTbAEAAAAAAJVjBAkAAAAAAJTR84j4Jofz/t9HEf/P+KnG4sX6TDWmgwQAAAAAAJjdf7H3chvnN2nE/75iU41NoIMEAAAAAADK6HdR/Jogvyv4eteggwQAoAC12oOJaVl2f85zfjblnJ/Mdc4qmJY385bTq2Xx4/h1pBGRNP4s/i7+QlkAAFRclv102SHkKst+Mnb/pLr1vO0fyINF2gEAAAAAgMoxggQAAAAAAMroRbxcqL3oa64JI0gAAAAAAIDKMYIEAAAAAADK6HkUP4Kk6OtdgxEkAAAAAABA5RhBAgCwILXag4lpWXZ/4dfLsk8KjWXaOa9z3qLlU07Px/y8jK9qAQBAfq5SX16X9gHVpoMEAAAAAADK6HlEfLOEa64JU2wBAAAAAACVYwQJAAAAAACU0e8i4sUSrrkmdJAU7M6dO3Hjxo2xaXt7e7G3t1dwRAAAMJ+jo6M4Ojoam/b06dOCo6EstJkAgFWmDlwuOkgK9ujRo0iSZNlhAADAtU37Y3WaptFoNAqOiDLQZgIAVtna1YFfRPFrghQ9YuUarEECAAAAAABUjhEkAABrqlZ7MDEty+4v/Hp5nHMZ5v09puU3AABw2aT6c1naFZSDDhIAAAAAACij51H8FFtFX+8aTLEFAAAAAABUjhEkAAAAAABQRs8j4pslXHNNGEECAAAAAABUjhEkAAAAAADA7IZHEf/f0fi07GmxsVyDDhIAgAXJsvulvl6t9tnU9Cz7pKBIrmfa7zHtd5g5v9M0onEc6WkrIkmuGh4AAJRC0e0VJvhdRLzI4bz/au/lNs6zNOLXjRwuunim2AIAAAAAACrHCBIAAAAAACijF1H8oul5jFjJiREkAAAAAABA5RhBAgAAAAAAZWQEyVRGkAAAAAAAAJVjBEnB7ty5Ezdu3Bibtre3F3t7ewVHBABUTa32YGJalt2fkvZJHuEUbt7fY1q+vVqt/nH8OtKISBp/Fn8Xf1GafBvn6Ogojo6OxqY9ffq04GgoC20mAGCVqQOXiw6Sgj169CiSJFl2GAAAcG3T/lidpmk0Go2CI6IMtJkAgFW2dnXgoqfXWtY152SKLQAAAAAAoHKMIAEAAAAAgDJ6ERG1JVxzTRhBAgAAAAAAVI4OEgAAAAAAoHJMsQUAQKXUap9NTMuyT6ak3Z9yzgevvHr+yr9rtDohAAAs0OU68u9Nq1eTg2VMd2WKLQAAAAAAgNWlg2QGg8Fg2SEAAACsNO0mAIAV9CJ+P7i9qO0tI0i63W40Go2o1WrRaDSi3++/cUyaprGzsxPtdjtarVZ0u93582CKykyx1Ww2x2Z0RESv14utra3R61qtdik9SZI4PT0dvU7TNPb396Ner8dwOIxmsxnb29v5BA4AAFAQ7SYAAPJ0eHgYvV4vWq1WnJ2dxeHhYTSbzUt1zcFgEI1GI05PTyNJkoiI2NzcjPPz89jd3V1oPJXoIBkMBjEYDOLg4CA2NjZG+y8K4NVK/vHxcezu7sbm5uZo36vpRRYOAABAUbSbAABK6HlE1N561GJlk5P+9m//Nnq93uj1hx9+GI1GIw4ODkb1yVarFVtbW6N6ZESMRpLoIJlDv9+P09PTS5X8iHijkh8RcXJycqmAXldk4QAAABRFuwkAgDz1+/04ODi4tC9JkkiSZDRd63A4HHvc7du3I+L3X9RZlEp0kEzKsC+++CJardbodbfbjcePH8fOzk40m8033ld04QAATFOrPZiYlmX350pjspnzO00jGseRnrYiXvnjMKw67SYAYJG0O3jd61+6eVW9Xo+IiMePH196feHiize9Xm+hdcnKLtI+HA4jTdO4e/fuaF+v14vhcBjdbjdarVbcvHnz0vy7sxQOAABAWWg3AQCsuRdzbM+fRTz/zfzbi6+uFOJgMIidnZ3RzxHxxqjmV49dpEqMIBnn5z//eSRJcimjO51OdDqdSNM0Op1OHB8fR7PZjLOzs6jX6wspnK+++ip+85vfzB33O++8E++8887c7wcAgFk8e/Ysnj17Nvf7v/rqao0iVtMy2k3aTADAsqgDX9iPiMkj6Bep2+1GvV4fjQo5OzuLiIhbt26NPX44HC70+pXtIDk5OYkPP/xwbFqSJNHpdKLZbMbOzk602+04OTlZSOF88MEHc8ccEXH//v349NNPr3UOAAB4m/39/XjwoJhGEatrGe0mbSYAYFlKWweesmj6eB9HxEfXuOCXETFbnW5/fz9OTk5Grzc3NyMi4vz8fOzxr49Svq5KdpBczInb6XSmHre9vR3b29uRpmlELKZwfvGLX8SPfvSjqwX8Ct+EAgCgCB9//HF89NH8jaIvv/zy2n/oZrmW1W7SZgIAlkUd+MI7327zenemo9rtdjx8+PBS/fDi50lfqql0B0maptFut2c6tl6vT6zI9/v9qNfrM2Vms9kczae7iMJ599134wc/+MFbjwMAgGW67jRF7747W6OIxVv3dpM2EwCwLOrAxbmYpvVinboLt2/fjog3p2W9eN1oNBYax1p1kCRJspAF/b744ovY3t6e+fiLQim6cAAApsmy+8sOYS1l2Sdzvk9+sx60mwAAWGXdbjciIra2ti7tT9M0kiQZ1Wfv3bs3Srv4Ms7du3cXGst3Fnq2NdHtdifOo/u6Xq8XrVYrIl4uMjiusZFX4QAAACyLdhMAAIvW7/djf38/Il6OIrnYWq1WPH78OCIiHj58GP1+/9IXbg4ODuLg4CA2NjYWGs9ajSBZhG63O6qwvypN0/jZz34WH3744ahnqtvtxq1bty59a+rhw4fRaDRiMBiMhobnVTgAAADLoN0EAMCipWkazWYzImL05ZpXPXnyJCJejog+PT2Ndrsd9Xo9BoNBtNvt2N3dXXhMlesg+eKLL8Z+Y6ler8etW7dif38/er1eJEkSzWbzjfl4iywcAACAZdBuAgBg0ZIkiSzLZj725OQk54gq2EEyKVM3NjZmnqe3qMIBAABYBu0mAACqoJJrkAAAAAAAANWmgwQAAAAAAKicyk2xBQAAAADA1dVqD2Y+Nsvu5xgJs3seEd8s4ZrrwQgSAAAAAACgcowgAQAAAACAUnoexY/oMIIEAAAAAABgZekgAQAAAAAAKscUWwAAAAAAUEoWaZ9GB0nB7ty5Ezdu3Bibtre3F3t7ewVHBABQLbXag4lpWXa/wEjW39HRURwdHY1Ne/r0acHRUBbaTACwXqpWh1YHLhcdJAV79OhRJEmy7DAAAODapv2xOk3TaDQaBUdEGWgzAQCrbP3qwC+i+BEdLwq+3vysQQIAAAAAAFSOESQAAAAAAMAV/MeI+LMJab8tMpBr0UECAAAAAACllNci7X/67TbO/xER/yaHay6eKbYAAAAAAIDKMYIEAIBKybL7E9NqtQdzvQ8AAKpAnXgd5TWC5G3XXA9GkAAAAAAAAJVjBAkAAAAAAJTSiyh+RMeLgq83PyNIAAAAAACAytFBAgAAAAAAVI4ptgAAAAAAoJQs0j6NDhIAAAAAAApRqz2IiIgfx68jjYik0Yk06yw3KCpLBwkAAAAAAJSSRdqnsQYJAAAAAABQOUaQFOzOnTtx48aNsWl7e3uxt7dXcEQAADCfo6OjODo6Gpv29OnTgqOhLLSZAIBVpg5cLjpICvbo0aNIkmTZYQAAwLVN+2N1mqbRaDQKjogy0GYCAFbZ+tWBLdI+jSm2AAAAAACAyjGCBAAAvpVl95cdAgAArJVa7cHY/ZPq1qP9aRrROI70tJVXaETEy9EcRY/oMIIEAAAAAABgZRlBAgAAAAAApWQNkmmMIAEAAAAAACpHBwkAAAAAAFA5ptgCAAAAAIBSehHFT3n1ouDrzU8HCQAAAAAAc8my+8sOgaV4FBH/84S0Z0UGci06SAAAAAAAoJTyWqT9v/12G+cfIqKVwzUXzxokAAAAAABA5eggAQAAAAAAKscUWwAAAAAAUEoWaZ/GCBIAAAAAAKByjCABAAAAAIBSymuR9rddcz3oICnYnTt34saNG2PT9vb2Ym9vr+CIAABgPkdHR3F0dDQ27enTpwVHQ1loMwEAq0wduFx0kBTs0aNHkSTJssMAAIBrm/bH6jRNo9FoFBwRZaDNBACssvWrA1uDZBprkAAAAAAAAJWjgwQAAAAAAKgcU2wBAAAAAEApWaR9GiNIAAAAAACAyjGCBAAAAAAASskIkmmMIAEAAAAAACpHBwkAAAAAAFA5ptgCAAAAAIBSeh7FT3llii0AAAAAAICVZQQJAAAAAACUkkXapzGCBAAAAAAAqBwdJIz17Nmz+PTTT+PZs2fLDoUrUG7r6euvv1Zua8jztp6U23pSbuvp66+/vvQvrBufPfmSv/nSxsiX+zdf8jdf8jdfq1kHfhG/X4ekqO1FIb/ZIuggYaxnz57FgwcPfFiuGeW2nr7++mvltoY8b+tJua0n5baeVrNxCLPz2ZMv+ZsvbYx8uX/zJX/zJX/zVa068P8WEf/DhO1/WmJcV2MNkoLduXMnbty4MTZtb28v9vb2Co4IAADmc3R0FEdHR2PT/uVf/qXgaCgLbSYAYJWpA1/4199u4/wqIv5dgbHMTwdJwR49ehRJkiw7DAAAuLZpf6z+67/+6/jggw8Kjogy0GYCAFbZ+tWBLdI+jSm2AAAAAACAyjGCBAAAAAAASulikfair7kejCABAAAAAAAqRwcJAAAAAABQOabYAgAAAACAUrJI+zRGkJTA0dHRskO4krzidd58rVs+rNt587Ju+bBu583LuuXDup03L+uWD+t23ryIN9/zwrKs0j29qFgWcZ5VimVRVul3WqVYFmXVfqdVKqdFWKV8WdR55G++5ylj/i5K2fKX4uggKYF1e3jXrWG/bufNy7rlw7qdNy/rlg/rdt68rFs+rNt587Ju+bBu582LePM9LyzLKt3TZfzDmvzN7xyLPM8irNrvtErltAirlC+LOo/8zfc8ZczfRSlb/i7WxSLtRW7rs0h7qabYGg6Hsb+/HxERBwcHb6SnaRr7+/tRr9djOBxGs9mM7e3tXI4BAABYRdpNAADwUmk6SPr9fnQ6neh2u7G7u/tG+mAwiEajEaenp5EkSUREbG5uxvn5+ej4RR0DAACwirSbAACqxhok05Rmiq2tra04OTmZmN5qtWJra2tUOY+IaLfb0Wq1Fn4MAADAKtJuAgCA3ytNB8k0w+Ew+v1+NJvNS/tv374dERHHx8cLOwYAAGAdaTcBAFA1leggefz4cURE1Ov1S/svvs3U6/UWdgwAAMA60m4CACijohdov9jWQ2nWIJlmMBhERMTGxsbE9EUdM8nTp08j4uVChV999dUMUY/3ve99L773ve+9ce40Tec+5zgXMX755Zfx7rvvLvTcecTrvC9Vqtx++cvL/y7qvG+x0PN+G/u//MM/RERFyq1E563U81ai8yq39Tzv2pXbW/6Puo4iy+3rr7+Or7/+eu5z/v3f/31ERPz2t7+9VmwUZ9ntpkW2mRbxrCzqs2dRz+0izrNKsax1/k74nF+J/F1wG2MlfqcFn6fy92/O55G/+Z6ndPm7wHrzovL3b/7mb0pYB/6nilxzTlnJRES2u7t7ad+9e/eyiMhOT0/HHl+v1xd2zCR//ud/nkWEzWaz2Ww2m81Wqe3zzz+fo1ZP3iJWr92kzWSz2Ww2m60s2yrUgX/1q19l3//+95eWB9///vezX/3qV8vOhreqxAiSzc3NiIg4Pz8fm16v1xd2zCR//Md/HJ9//nn84R/+YfzBH/zBzLG/btwIEgAAWLTrjiD57W9/G//4j/8Yf/Inf7LAqMjTsttN2kwAwLKVqQ78/vvvxy9/+cv4p39azmiOH/7wh/H+++8v5dpXsTIdJGmaRrvdnunYer0enU5n5nNfVMCHw+HE9EUdM8kPf/jD+NM//dPZAgYAABijzO0mbSYAgMV6//3316KTYplWpoMkSZLcFuu7fft2RLw51+3F60ajsbBjAAAA8qLdBAAAi/OdZQdQhI2NjbENiX6/HxERd+/eXdgxAAAA60i7CQCAqilVB8mkIdwREQ8fPox+v3/pW0wHBwdxcHAQGxsbCz0G8vb6t/GA/HnuYDk8e7B42k0Uyec4ZeA+pgzcxzBeLcuybNlBLEKaptHpdOL4+Dg2Njbi4cOHsbW1danynaZp7O/vR71ej8FgEM1mM3Z3d984zyKOWVev/m7D4TCazWZsb28vO6zKq9Vql14nSRKnp6ej17OUm7LNx3A4jP39/Yh42eh/3aLKRvkt1tvKLcJzt8q63W7s7+9HmqaRJEkcHBzE1tbWpWM8e6tnlnKL8OytmlfL7WI9C8/betNuejv34vX4HL8+bYx8aQvkT309X+rV+VL/raAMvnV2dpZFRHZ6ejraV6/Xs06ns8So6HQ62e7ubnZwcDDaXi2jWcpN2eaj1+tl29vbWURku7u7b6QvqmyU32K9rdyyzHO3yg4ODrKtra2s0+lk9+7dyyIii4is1+uNjvHsrZ5Zyi3LPHur5qI8er1e1uv1siRJsojIzs7ORsd43igb9+L1+By/Pm2MfGkL5E99PV/q1flS/60mHSSMbG1tZVtbW5f2dTqdTD/acr1eJuPS31ZuyjZfkyrXiyob5ZePaY0iz93q2t7evvT69PQ0i4hLee3ZWz2zlFuWefZWzcHBwaXXF+V2cnIy2ud5o2zci9fjc3xxtDHypS2QH/X1fKlX50v9t5pKtQYJ8xsOh9Hv96PZbF7af/v27YiIOD4+XkZYldftduPx48exs7MztgxmKTdluxyLKhvlVzzP3erq9/tvTIOQJEkkSTKaT9ezt3pmKbcIz94qunfv3qXXF1MwJUkSEZ43yse9eD0+x/Pnczd/7uPrUV/Pl3p1/tR/q0kHCRER8fjx44iIqNfrl/ZffAD0er3CY+Jlvg+Hw+h2u9FqteLmzZvR7/dH6bOUm7JdjkWVjfIrnududW1tbb2Rpxcu9nv2Vs8s5Rbh2VsH3W43Dg4OPG+UlnvxenyO58/nbv7cx9ejvp4v9eriqf9Wgw4SIiJGPc2vLs44Lp1idTqdyLIsTk9PY3d3d7Rg00V5zFJuynY5FlU2yq94nrv1MxgMYmdnZ/RzhGdvHbxabhGevVXXbrdHC0he8LxRNu7F6/E5nj+fu/lzH+dDfT1f6tX5UP+tDh0kRETE2dlZRETcunVrbPpwOCwwGl6XJEl0Op04OTmJiJcf0hGzlZuyXY5FlY3yWx7P3XrodrtRr9djd3c3Ijx76+L1cnuVZ2/1HB4exmAwiOFweGmqBs8bZeNeXAyf4/nxuVsc9/HiqK/nS706H+q/1aKDhIiI2NzcjIiI8/PzsemThvBRrO3t7dje3o40TSNitnJTtsuxqLJRfsvnuVtt+/v7owp/hGdvXbxebuN49lbHvXv34uTkJHq9XmxsbIzmvva8UTbuxcXyOb54PneL5z6+PvX1fKlX50P9t1p0kBARv3/wJvVQejBXR7PZHH2AzlJuynY5FlU2ym81eO5WU7vdjocPH17KT8/e6htXbpN49lbL1tZW7O7ujob8e94oG/fi4vkcXyyfu8vhPp6f+nq+1Kvzp/5bDTpIiIiI27dvR8Sbc9xdvG40GoXHxGQX5TVLuSnb5VhU2Si/1eG5Wy3Hx8fRbDZHi9hd8OyttknlNo1nb7X80R/90ajB5nmjbNyL+fA5vjg+d5fHfXx16uv5Uq8ujvpv+ekgISJeLgqUJEn0er1L+/v9fkRE3L17dxlhMUav14tWqxURs5Wbsl2ORZWN8lsNnrvV0u12I+Llt3lelaapZ2+FTSu3STx7q2cwGIzK0PNG2bgXF8/n+GL53F0O9/HVqa/nS726WOq/FZDBt05PT7OIyM7Ozkb76vV6dnBwsMSoquv09DRLkuRS/p+cnGS7u7tvHPe2clO2+Xny5EkWEW+US5YtrmyU3+JNKjfP3err9XpZkiRZp9O5tO3u7madTifLMs/eKnpbuXn2Vs+TJ0+y7e3t7OTkZLTv7Ows29raunSc542ycS/Ox+f4Ymlj5EtbIF/q6/lSr86P+m911bIsy/LtgmGdpGka+/v7Ua/XYzAYRLPZjN3d3WWHVUnD4TB2dnbi8ePHcfv27UiSJJrN5hvfEIiYrdyU7eKlaRqdTieOj49jY2MjHj58GFtbW7GxsXHpmEWUjfJbnGnl5rlbbWmaTh1q/OTJk9Hz59lbHbOUW0R49lZQs9kclUmz2Yx6vR7b29tvHOd5o2zci1enDrU42hj50hbIl/p6vtSr86f+W006SAAAAAAAgMqxBgkAAAAAAFA5OkgAAAAAAIDK0UECAAAAAABUjg4SAAAAAACgcnSQAAAAAAAAlaODBAAAAAAAqBwdJAAAAAAAQOXoIAEAAAAAACpHBwkAAAAAAFA53112AAAAwNsNBoPY3NyMer0e29vbERHx8ccfx8bGxtLj6nQ6MRwO4+c//3kMh8N48uTJ0uMCAGC9qf9SBB0kAACwRtrtduzu7i47jJF6vR4HBwcREbGxsRGHh4dLjggAgDJR/yVPptgCAAAW4r333lt2CAAAUBj13/WngwQAAAAAAKgcHSQAAFCgzc3NaDabsbOzE61WK3Z2dqJWq0WtVos0Ta98vuFwGMfHx9FsNuP4+DgGg0E0m824efNmNJvNGA6HERFxeHgYm5ubcfPmzWi32wt7PwAATKP+yyqzBgkAABRoa2srOp3O6PXh4WF0u93Y3d2NJEmufL7z8/M4PT2Nfr8fERFnZ2dxcHAQ5+fno4ZovV6PnZ2d6PV60W634/DwMD788MNIkuTa7wcAgGnUf1llOkgAAKBAOzs7o5+Hw2G02+3Y2NgYLfR4VfV6PVqtVhwfH19aMDIiIkmS6Pf7cXZ2FvV6PSIiPv744+h2u9Hv9yNJkmu/HwAAplH/ZZWZYgsAAAq0tbU1+vlnP/tZREQcHBzExsbGtc/9+jkuGnW3bt16Y9/Z2dnC3w8AAK9T/2WV6SABAIAl6Pf70e12I0mS2N3dXXY4AACQK/VfVpEOEgAAWIJWqxUREScnJ0uOBAAA8qf+yyrSQQIAAAVrt9sxGAzi3r17oyH7AABQVuq/rCodJAAAUKDBYBCHh4djF6Y8PDxcUlQAAJAP9V9WmQ4SAAAo0KSpBdI0jX/+53+e65zn5+dj9w+HwzfSL34et2/e9wMAwCTqv6wyHSQAAFCQfr8f/X4/Il42EFutVrRarWg2m9FoNGJzc/PK50zTdPRNvOPj4+h2u6OfL67VbrcjTdMYDAbRbrdHsRwfH1/7/QAAMIn6L6uulmVZtuwgAACA6QaDQWxubkan04nd3d1lhzPW4eFhtNvtePLkSWxsbCw7HAAA1pj6L0UwggQAANbIxbD/VTTvFAkAADCJ+i95+u6yAwAAAGa3v78/aoh9/PHHS/+m2mAwiE6nExFhygEAABZO/Zc8mWILAAAAAACoHFNsAQAAAAAAlaODBAAAAAAAqBwdJAAAAAAAQOXoIAEAAAAAACpHBwkAAAAAAFA5OkgAAAAAAIDK0UECAAAAAABUjg4SAAAAAACgcnSQAAAAAAAAlfP/Ax+zhxAYagj1AAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 2000x800 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"vmax = 150\n",
|
|
"nbins = 100\n",
|
|
"\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" brem_z_found,\n",
|
|
" brem_x_found,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax,\n",
|
|
" range=[[-200, 3000], [-1000, 1000]],\n",
|
|
")\n",
|
|
"ax0.vlines([770, 990, 2700], -1000, 1000, colors=\"red\")\n",
|
|
"ax0.set_ylim(-1000, 1000)\n",
|
|
"ax0.set_xlim(-200, 3000)\n",
|
|
"ax0.set_xlabel(\"z [mm]\")\n",
|
|
"ax0.set_ylabel(\"x [mm]\")\n",
|
|
"ax0.set_title(r\"$e^\\pm$ found brem vertices\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" brem_z_lost,\n",
|
|
" brem_x_lost,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax * stretch_factor,\n",
|
|
" range=[[-200, 3000], [-1000, 1000]],\n",
|
|
")\n",
|
|
"ax1.vlines([770, 990, 2700], -1000, 1000, colors=\"red\")\n",
|
|
"ax1.set_ylim(-1000, 1000)\n",
|
|
"ax1.set_xlim(-200, 3000)\n",
|
|
"ax1.set_xlabel(\"z [mm]\")\n",
|
|
"ax1.set_ylabel(\"x [mm]\")\n",
|
|
"ax1.set_title(r\"$e^\\pm$ lost brem vertices\")\n",
|
|
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
|
|
"\n",
|
|
"plt.suptitle(\"brem vtx of photons w/ $E>0.1E_0$\")\n",
|
|
"plt.colorbar(a0[3], ax=ax1)\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"energy_emissions = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for jelec in range(ak.num(ntuple, axis=0)):\n",
|
|
" energy_emissions.begin_record()\n",
|
|
" energy_emissions.field(\"lost\").boolean(ntuple[jelec, \"lost\"])\n",
|
|
" energy_emissions.field(\"energy\").real(ntuple[jelec, \"energy\"])\n",
|
|
"\n",
|
|
" tmp_velo = 0\n",
|
|
" tmp_richut = 0\n",
|
|
" tmp_neither = 0\n",
|
|
" tmp_velo_length = 0\n",
|
|
" tmp_richut_length = 0\n",
|
|
" tmp_neither_length = 0\n",
|
|
"\n",
|
|
" for jphoton in range(ak.num(ntuple[jelec][\"brem_photons_pe\"], axis=0)):\n",
|
|
" if ntuple[jelec, \"brem_vtx_z\", jphoton] <= 770:\n",
|
|
" tmp_velo += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_velo_length += 1\n",
|
|
" elif (ntuple[jelec, \"brem_vtx_z\", jphoton]\n",
|
|
" > 770) and (ntuple[jelec, \"brem_vtx_z\", jphoton] <= 2700):\n",
|
|
" tmp_richut += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_richut_length += 1\n",
|
|
" else:\n",
|
|
" tmp_neither += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_neither_length += 1\n",
|
|
"\n",
|
|
" energy_emissions.field(\"velo_length\").integer(tmp_velo_length)\n",
|
|
" energy_emissions.field(\"velo\").real(tmp_velo)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"rich_length\").integer(tmp_richut_length)\n",
|
|
" energy_emissions.field(\"rich\").real(tmp_richut)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"neither_length\").integer(tmp_neither_length)\n",
|
|
" energy_emissions.field(\"downstream\").real(tmp_neither)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"photon_length\").integer(tmp_neither_length +\n",
|
|
" tmp_richut_length +\n",
|
|
" tmp_velo_length)\n",
|
|
"\n",
|
|
" if (tmp_velo == 0) and (tmp_richut == 0):\n",
|
|
" energy_emissions.field(\"quality\").integer(0)\n",
|
|
" else:\n",
|
|
" energy_emissions.field(\"quality\").integer(1)\n",
|
|
"\n",
|
|
" energy_emissions.end_record()\n",
|
|
"\n",
|
|
"energy_emissions = ak.Array(energy_emissions)\n",
|
|
"\n",
|
|
"print(ak.num(energy_emissions, axis=0))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{lost: False,\n",
|
|
" energy: 5.09e+04,\n",
|
|
" velo_length: 0,\n",
|
|
" velo: 0,\n",
|
|
" rich_length: 0,\n",
|
|
" rich: 0,\n",
|
|
" neither_length: 0,\n",
|
|
" downstream: 0,\n",
|
|
" photon_length: 0,\n",
|
|
" quality: 0}\n",
|
|
"--------------------------\n",
|
|
"type: {\n",
|
|
" lost: bool,\n",
|
|
" energy: float64,\n",
|
|
" velo_length: int64,\n",
|
|
" velo: float64,\n",
|
|
" rich_length: int64,\n",
|
|
" rich: float64,\n",
|
|
" neither_length: int64,\n",
|
|
" downstream: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" quality: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {lost: False, energy: 5.09e+04, ...} type='{lost: bool, energy: flo...'>"
|
|
]
|
|
},
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"energy_emissions[3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found: 41978\n",
|
|
"lost: 8523\n",
|
|
"50501\n",
|
|
"VELO energy emission, eff: 0.19057048375279698\n",
|
|
"RICH1+UT energy emission, eff: 0.1271657986970555\n",
|
|
"Neither, eff: 0.513494782281539\n",
|
|
"total efficiency: 0.8312310647313914\n",
|
|
"efficiency: 0.8312310647313914\n",
|
|
"\n",
|
|
"found in velo/(found + lost in velo)\n",
|
|
"VELO energy emission, eff: 0.8275150472914875\n",
|
|
"RICH1+UT energy emission, eff: 0.7901082677165354\n",
|
|
"eff von e die nicht strahlen: 0.8435090915005041\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# efficiency berechnen als found in velo oder rich über alle elektronen\n",
|
|
"# dann kann man zusammenrechnen mit velo, rich, und allen anderen elektronen\n",
|
|
"# expected eff = 81.19%\n",
|
|
"\n",
|
|
"electrons_found = energy_emissions[~energy_emissions.lost]\n",
|
|
"electrons_lost = energy_emissions[energy_emissions.lost]\n",
|
|
"\n",
|
|
"anz_found = ak.num(electrons[~electrons.lost], axis=0)\n",
|
|
"anz_lost = ak.num(electrons[electrons.lost], axis=0)\n",
|
|
"print(\"found: \", anz_found)\n",
|
|
"print(\"lost: \", anz_lost)\n",
|
|
"\n",
|
|
"num_velo_found = 0\n",
|
|
"num_rich_found = 0\n",
|
|
"num_no_up_rad_found = 0\n",
|
|
"for itr in range(ak.num(electrons_found, axis=0)):\n",
|
|
" if electrons_found[itr, \"quality\"] == 1:\n",
|
|
" if electrons_found[itr, \"velo\"] >= electrons_found[itr, \"rich\"]:\n",
|
|
" num_velo_found += 1\n",
|
|
" else:\n",
|
|
" num_rich_found += 1\n",
|
|
" else:\n",
|
|
" num_no_up_rad_found += 1\n",
|
|
"\n",
|
|
"num_velo_lost = 0\n",
|
|
"num_rich_lost = 0\n",
|
|
"num_no_up_rad_lost = 0\n",
|
|
"for itr in range(ak.num(electrons_lost, axis=0)):\n",
|
|
" if electrons_lost[itr, \"quality\"] == 1:\n",
|
|
" if electrons_lost[itr, \"velo\"] >= electrons_lost[itr, \"rich\"]:\n",
|
|
" num_velo_lost += 1\n",
|
|
" else:\n",
|
|
" num_rich_lost += 1\n",
|
|
" else:\n",
|
|
" num_no_up_rad_lost += 1\n",
|
|
"\n",
|
|
"denom = ak.num(electrons, axis=0)\n",
|
|
"print(denom)\n",
|
|
"\n",
|
|
"eff_velo = num_velo_found / denom\n",
|
|
"\n",
|
|
"eff_rich = num_rich_found / denom\n",
|
|
"\n",
|
|
"eff_other = ak.num(electrons_found[electrons_found.quality == 0], axis=0) / denom\n",
|
|
"\n",
|
|
"print(\"VELO energy emission, eff: \", eff_velo)\n",
|
|
"\n",
|
|
"print(\"RICH1+UT energy emission, eff: \", eff_rich)\n",
|
|
"\n",
|
|
"print(\"Neither, eff: \", eff_other)\n",
|
|
"\n",
|
|
"print(\"total efficiency: \", eff_velo + eff_rich + eff_other)\n",
|
|
"\n",
|
|
"print(\"efficiency: \", anz_found / (anz_found + anz_lost))\n",
|
|
"\n",
|
|
"print(\"\\nfound in velo/(found + lost in velo)\")\n",
|
|
"\n",
|
|
"eff_velo = num_velo_found / (num_velo_found + num_velo_lost)\n",
|
|
"eff_rich = num_rich_found / (num_rich_found + num_rich_lost)\n",
|
|
"\n",
|
|
"eff_no_rad = num_no_up_rad_found / (num_no_up_rad_found + num_no_up_rad_lost)\n",
|
|
"\n",
|
|
"print(\"VELO energy emission, eff: \", eff_velo)\n",
|
|
"\n",
|
|
"print(\"RICH1+UT energy emission, eff: \", eff_rich)\n",
|
|
"\n",
|
|
"print(\"eff von e die nicht strahlen: \", eff_no_rad)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"41978\n",
|
|
"8523\n",
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(ak.num(electrons[~electrons.lost], axis=0))\n",
|
|
"print(ak.num(electrons[electrons.lost], axis=0))\n",
|
|
"print(ak.num(electrons, axis=0))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy_emissions = energy_emissions[energy_emissions.energy >= 5e3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHLCAYAAAAk8PeNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9EUlEQVR4nO3dTWgja57v+Z+ne8qdYPLIqtr0QEGd0KpmM0nYdRfFQBak4h6Y3ZCSE6YLelGkROHdmW4H7k1mblpI9NZQIXOhB4oBpyIZZlkdOk0mDA130orO2UwPPaM4Dbnou6gjRyWGbFd3lWaRHXEsOySHZL2EHN8PmEzHy6NHEZbj7+fl/2wMh8OhAAAAcui/WnUFAAAAVoVACAAA5BaBEAAAyC0CIQAAkFsEQgAAILcIhAAAQG4RCAEAgNwiEAIAALlFIATkhO/7arfbq67G2uB6AflAIAQsQRAE2t7eXsmDNQgCVatV7ezsyHGcpb/+uhl3vW66h77vy7ZtVatVlUoltVqtVPswu1V+rnB3/OGqKwDkQRiGCsNQ/X7/2r4gCFQsFlUoFFJtn5ZhGOp0OtrY2LhVOXkx7npNuoe+7+vRo0c6OzuTJNm2HR83aR/SS/o8TLonQFobrDUGrNbOzo46nY4Mw0i1fVYbGxsyTVO9Xm8u5d1101yvarUq3/cTH8iT9iG9eX8egAhdY8AKRQ/JtNuRTZPuFffx9vg8YJEIhAB9elhVq1VZlqVSqSTbtuN9YRiq3W7Lsiy1220FQSDLsrS9vS3LshSGoSSp1WqpVCppe3t75HxJcl1X1WpV1Wp1ZFv0y71er8e/7MdtT1PXy3Wu1+vx1zRjUtJci52dHbmuq263q52dHW1sbIy8t7R1dV1XlmWp2+2q3W5re3tb9Xr9WjnR+yiVSteuR7fb1fb2tjY2NmRZ1si+drutjY2NG99/muuVdA/b7baq1aqCIIjHFlWr1fj9jNs3j2szz/t09RpYlnXtWqap8zg3vZdWq6V6vS7btrWzszMy5mfS5yHpnlx9P7Ztx+8nuvbAiCGQc71eb1gul+PvO53OUNKwVqsNh8PhsN/vD2u12lDSsFwuDw8ODoa9Xm/oeV68rVarDT3PG/b7/WGlUhlKGvZ6vfj8ZrMZH3vZwcHBUNKw3++n2n5TXaPXKxQKQ8/z4m3R65umeetrEb2/y9ciuj7NZjN1WZ1OZ2gYRrzt4OBgaJrmtTqapjk8ODiIX1/SUNLQMIy4rOj9XX796Pib3nOa6zXpHg6Hw6FhGEPDMBLLT9p322szz/sUHW8YxsjPW6FQGBYKhdR1Huem9xL9rEeiz9Xl+5H0eZh0T3q93rBQKMSfweFwOHQcJ/G9AwRCyD3TNEd+YQ6Hnx4CkoZnZ2fD4fDTL9akX/qmaV77BR0de/UX7jwCoTR1rVQqiQ/rNIFQmvKjB+BN7y9NWdGDLAp0rope63I50cP86rWJgqPLms3m0HGcie95mus1r0DottdmnvcpKu/qcdHrR+Wlec1xJr2Xcrk8EnCdnZ1dO3bc52HS+0m6T0mfV4BZY8i1IAjk+74ajUbi/tPTU5XL5fj7qzO4DMOQ7/sqFosj2yTNfXBsmroahiHXddVsNhdS/qRrIUmDwWCqsqIyfvSjHyUe9/bt22vbqtWq2u22fN8fGThbq9XUbrfV7Xbjep6cnOirr75KLDuq56zXa1a3vTbzvE+Xyzs+Ph455uDgQAcHBzO95lWT7nOn0xmpz+npqSTFXc7Tiuoa1f2yqOvPcZyl3nNkG4EQci0aa9DpdFZck5ulqWs0BmKWmTXzvBbTljUuRUD04Ox2uzJNc2Tf1e9t21a73Vaz2VS5XFYYhjemHwiCQNJs12tWt7028/6ZjcqbdJ3m9ZpJr1EoFFQoFOS6rk5OTsYGxWlNGlS9u7sr6dv7DkgMlkbORb8Q1+EXY5q6Rvsu/4U9z/KXXValUlG5XFaj0VC321UYhmo2mzo4OLgWvBiGoXK5rG63qyAI4sHKaeo5y/Wa1W2vzbx/Zqf5uVrE5yQIAu3s7CgIAnU6ncSWnFkktShFgdjlFlyAQAi5Fj1MXddN3J+lWSZp6hodM0uuoHlei3mW1el0VC6X4yUvms3m2G6NaBaT4zjyPE+1Wi1VPZeZW+m212beP7NRy9q41p4gCBb6ObEsS8VicW4BUPR+kuoUBUelUmkur4W7gUAIuRaNa7Bt+1qT+jLT9o8bD3F5e5q6Rk3/7XY7scxJ4y7meS3mWVa1Wo1bCg4ODq51iV19XcMw1Gq1UmXkvs31umwwGIxtVbq677bXZt4/s5evwdXgwbZtFYvFhX1OotQCV7NFS8mtdGnuh2EYMk0zLvuy09NTFQqFGwNk5AuBEHKtUCjEf4nu7OyoWq2q1WrJsiz1+/34ATDuIZf0Szv6/+Vt4365R3+ZOo4TD9wdtz1NXa8eE3UTRS0lQRCMzalz22sxS1nRdRn3gIseztH57XZ7JK9Mkui9PnnyZOp6Trpekx7Q07jttZnnfYrKi1rYLMtStVqN8/mUSqV4DE+a1xxn3HuJuqhc11W73Va73Y6vfZRTKwzDsZ+Tcfek0+moUCiM5CqKulWPj49vvWwN7phVT1sDsqDZbMa5TgzDGJlyHeVPkTQsFArDTqczHA6/zUsiaVipVIa9Xm8kf0uhUBg6jjPs9XrxNv37dObL041N0xwWCoXEqflJ2yfVNeI4TnyMaZpxnpiDg4Mbpw7fdC2iKciGYQw9zxuenZ3FU9p1Zbr2pLIu55cZ9z6iekdlX/4yDCNx2nY0/XoaN12vcffwcm4e/Xt6hSj/zaR987g287xP0WtG55imOVLXNK85zk3vxXGcYaFQiK/3cPgpRUKhUBiZQn/183DT5+rs7CxOjVCr1Ya1Wu3a9H9gOBwOWWsMQGb5vq+TkxMdHh5qMBgoDMP4r/9Op6NSqXRtbEm321Wn0xlZOR4AxmH6PIBMimYTnZ2dxd0zlxmGkTgg1nEcHR4eLqmWANYdY4QAZFI00PXp06cjY4KiqfGO48SDXqOxPdG/kwZUA8BldI0ByKxWq6VGozEyyNY0zThpovQpCLIsK97f7/eXmiARwHojEAKQedHYoHEBjm3bCoJAh4eHtAYBmAqBEAAAyC3GCAEAgNxi1tgEv/71r/WrX/1KP/jBD3Tv3r1VVwcAAKTw8eNH/dM//ZO++OILfe9735t4LIHQBL/61a/005/+dNXVAAAAM/jlL3+pP/mTP5l4DIHQBD/4wQ8kfbqQP/zhD+da9vn5uR4+fKg3b95oa2trrmU/fvxYr169mmuZiy573eq8yPsnrd/1WGS5iyp7Xe/hul3nRZbL79Hllb1u9/Af/uEf9NOf/jR+jk+ysEDo5z//uXZ3d/Wzn/1sUS+xcFF32A9/+MO5z0T58OGDJOnBgwe6f//+XMu+d+/ewmbOLKrsdavzIu+ftH7XY5HlLqrsdb2H63adF1kuv0eXV/Y63kNJqYa1LGSw9Ndffy3Hca6lvgcAAMiShbQIff7553Ich6RmAAAg0xbWNfb06dNFFQ0AADAXC8sj9MUXX+jdu3eLKh4AAODWZm4RevLkydh9YRiq2+3q5cuXevDgwawvkRmPHz8eO+Bqf39f+/v7S64RAAD5dnR0pKOjo8R9Hz9+TF3OzIFQp9NJdcxf/uVfzvoSmfHq1au1Wr9okYHZospexzov0jpej3Ws8yJxnRdf7iKt43VeZNlZvIeTGiJ839fOzk6qcmZea2xvb0/NZlPFYvHavn6/r3a7rV/84hezFJ0Z0YXs9XoLmbr72Wef6Te/+c1Cpgxisbh/6497uP64h+tvUfdwmuf3zGOE6vW6Pv/8c3322WfXvkzT1M7Ojv7iL/5i1uIBAAAWbuZA6NGjRxP3G4Yhx3FmLR4AAGDhZh4jNGlGWBAEsm171qIBAACWYuZAyDRNbWxsjN0/HA7VarVmLR4AAGDhZg6ECoWC9vb2VCgUru377ne/K9M0b+w+AwAAWKWZA6Hj42M9fvx4nnUBAABYqpkHSxMEAQCAdbewtcZ+/vOfa3d3Vz/72c8W9RJLs4jM0pubm3r27Jk2NzdvWz2sAPdv/a3rPXz+fLrtd9m63kN86zb3cF6ZpWdOqDjJ119/rVKppO3tbX3zzTfzLn5pFplQEQBmQSAE3Gya5/dCWoQ+//xzOY4jwzAWUTwAAMBcLKxrbG9vT5999tmiigcAALi1mQdL3+Srr77S4eHhoooHAAC4tVu1CP3t3/6tPM9TGIYj2weDgXzf12AwUKPRuM1LAAAALMyt8gjV6/WJx9RqtVmLBwAAWLiZu8Ycx5HneTo7O9Pf/M3fqNls6ve//71+//vfazAYqFar6Re/+MU86woAADBXMwdC5XJZjx490meffaZyuazT09N4X6FQ0M7ODmOEAABAps3cNfab3/xm5Pu9vT391V/9lf7sz/4s3ua67p0YI7SIhIoAAGB280qoOHMgZBiG/uAP/kDb29s6PT3V48ePtbu7K8/zVCgU5Lpu4oKs6+jVq1ckVAQAIEMmNURECRXTmDkQ+vM//3P9+te/1t///d+rWCxKkl6+fCnLsvT1119LkprN5qzFAwAALNytps9fDXQMw1C/39fXX3+tYrFIQkUAwOL83fNV1yCdHz9fdQ0wwcKW2AAAAPPh+75OTk7U7XYlSb1eb8U1ujsWllkaAADMh2maevLkiXzfX+jrBEFwLUnyXUcgBADAGljGpJ1qtarBYLDw18kSAiEAAKBqtbrwFqcsWtjq8wAAYDnCMJRt2yoUCnEwY9u2yuVy4jFhGKrb7cq2bdVqNbmuG59Xr9dVKBR0eHiYi9QxBEIpkFARAJBVvu/r0aNH+uqrr+LApd1uy7IsNZtNHRwcSJKePn0qwzDiGd/tdjseD1SpVPT27Vu1Wi05jiPDMFbyXqax8oSKeUJCRQBAVj19+lS7u7sjz6larSbHcWTbtiqVigzDULfbHVkMvVarqdVqraLKczGvhIqMEQIAYE0FQSDf9xP/WK/X65I+LZIufcr112q1RoKfqLUoz3IbCAVBsOoqAABwK5MGN+/u7kr69nnX6XRUKBRk27ZKpVIuB0YnyVQgFA3ksm071fGWZWljYyPxK0o6Fbm6v1qtLuItAACwdEm5f6L1PqNlsAzD0Ndff61yuawgCLSzs6N2u73EWmZTZsYIdbtdOY4j13VH+jDHCYJAQRCo2WyOLO7a7/fVarVGRsq3223VajWVSqV42+X9AACso6hL7Oof/9K3wVH07AuCQIZhyPM8ua6rarWqer2e6pl7l2UmECqXyyqXy9rY2Eh1fLfbVa/Xu7bC/dUgSPrUHOh53ryqCgBAJhiGIdM05ft+HOhETk9PVSgU4kCn2WzG44UqlYocx1G9Xr92Hpml10StVrsWBEnSycnJSLeX67o6PT1VtVqlCRAAcOdEY3+iwdHSp2Cm2Wzq+Pg4fla+fPlyZHxsGIYyDCMOgqKWI8dxFASBXNdd3ptYocy0CM1DGIbyfV97e3vxNs/zFIahXNeV67qybVudTmeqrrHz83N9+PBh5nptbm5qc3Nz5vMBAAlytKq77/txa47v+2q1WnGDQDT25+nTp7IsKw5sOp3OyGyy3d1dWZalSqUi6VNX2eXFW6Mp9y9fvpT07WyzVbi4uNDFxcXM55+fn6c+dmM4HA5nfqUF2NjYiG/GtNrtthzHSVyVN/ohilqF+v3+jQmjpslDMMmzZ8/0/PnzW5cDAON+lfArBnfJ8+fP9eLFi1uX0+v1bswDeKdahDqdjp48eZK4zzRNOY4jy7JUrVbjlqE03rx5owcPHsxcL1qDAABI7/DwUF9++eXM5797904PHz5MdeydCYSidVNuakmqVCqqVCpT5U/Y2trS/fv3b1tFAACQwm2HlGxtbaU+dm0HS1/V7XZHBn1NYlmWBoPBEmoFAACy7M4EQicnJ/EAsDSijJsAACC/7kzXmOu6iYOkk3ieNzLNEAAA5FOmWoQmJXEKgkClUikxe6bruioUCtdGhkezvi4vMOe6rorF4lStRwAA4G7KTCDk+368xtjLly/luu5IYBSGoQaDQWKwdHJyMpI7KGIYhorFohqNhizLkm3bKhQKK82NAAAAsiNzeYSyJGpRSpOHAACWYdp8QeQXQh5N8/zOTIsQAADAst2ZwdKL9PjxY927dy9x3/7+vvb395dcIwAA8u3o6EhHR0eJ+z5+/Ji6HAKhFF69ekXXGAAAGTKpIWKaJbLoGgMAALlFIAQAAHKLrjEAwFpalxlx61LPvKJFCAAAzJXv+2q326uuRioEQgAArJEoAXG1WlWpVBpZPWHVgiBQtVrVzs7O2iQvpmsMAIA14fu+Hj16pLOzM0mSbdvq9/srrtW3DMNQp9PRxsbGqquSGoEQAABrotFoqFgsxt83m80V1uZuIBBKgYSKAIAs8H1/1VXIDBIqLhEJFQEAq9Rut+V5noIgkCRVq1VJUr1eV7lclvRpcfJocfEoYLJtO97vuq6ePn2qMAzjNbi63a4cx5HruqpUKup0OgrDUC9fvpTjODo8PFShUJBt2/J9Pz7msuh1I6VSaeHXQyKhIgAAuVGr1dTpdGQYRjwOp9PpxEGO7/v6/PPPVa/X1Ww25XmeqtWqLMuKB1NXKhXt7e2NlFsul691rw0GA3meJ9/35TiOPM/T8fGxarWaXNcdGZwdBIE+//xzVatVOY6zNgOkLyMQAgBgzT19+lS7u7sjvRe1Wk2macq27bglqVAoXDv38pgj6dOA5ydPnkiSLMtSs9mUaZpxkON5Xnysbdva3d2NAzJJOjg4mNv7WgYCIQAA1lgQBPJ9P3EIR71el6SZW2qSAqfBYBC/ruu6sixrprKzgkAIAIA1NmkA9e7uriTFLULzFJVpGMbcy14mAiEAAO6AMAyvbYtadK52f81DFAhFLUTrikAIAIA1FnWJdbvda/ui4GgRM7milqBerzf3speJQAgAgDUxGAyutcAYhiHTNBUEwbUusNPTUxUKBdVqNUnSd7/7XUmjXWXR/5NalCaJut3a7XbiudOWtyrkEUqBhIoAgCzrdDra2dlRvV6PZ3WFYahms6nj4+O4iyxqPYryDQVBELfodLtdWZYlz/NSdXcVCgUdHByo1WrFa4sZhhEPzA6CQK1Wa2GzyOaVUHFjOBwO51WpuyZKyBQlngKAVXv+fLHHI5uinD7Riu61Wk3VanVk2noYhnHCxKjbql6vX3t+tVotNRqNuJxms6lSqaRKpRJPm3/69Kl8348Dm93dXdm2Hb9+s9mMA5x2u61ms6kgCGSapjqdjizLUqVSUb1eX8lg6mme3wRCExAIAcgaAiHgZtM8vxkjBAAAcotACAAA5BaBEAAAyC0CIQAAkFsEQgAAILcIhAAAQG6RUDEFEioCAJAt80qoSCCUwqtXr8gjBABAhkxqiIjyCKVB1xgAAMitOxkIXV10DgAAIEmmusbCMIzXP2k2m6nP29jYGPneNM14ETnpUxNZo9GQYRgKwzBeAwUAAORbZgKhbrcrx3Hkuq5qtVrq89rttmq1mkqlUrzt8iJ0QRBcW2+kVCppMBhM9ToAAODuyUwgVC6XVS6Xr7Xu3KTT6cjzvLH76/W6yuXyyGBn27ZVr9cJhAAAyLm1HiPkuq5OT09VrVbVbrev7Q/DUN1uV5ZljWzf3d2VpMRzAABAfqx1IOR5nsIwlOu6qtfr2t7eVrfbjfefnp5KkgzDGDkvah2a1JIEAHfB8+fXvwB8KzNdY7NwHEeO48j3fTmOo3a7Lcuy1O/3ZRhGPHusUCgknp92dtn5+bk+fPgwcz03Nze1ubk58/kAAOTJxcWFLi4uZj7//Pw89bFrHQhFTNOU4ziyLEvValW2bavT6ajf70uSisVi4nlhGKYq/+HDh7eq37Nnz/ScP8MAAEil0WjoxYsXS3mtOxEIRSqViiqVinzfl6R4JtlgMEg8/mqX2Thv3rzRgwcPZq4XrUEAAKR3eHioL7/8cubz3717l7oR404FQpJkWVY8TigKdMa1/KQNhLa2tnT//v251A8AAEx22yElW1tbqY9d68HS40SzwqJ/r44Fir5Puw4JAAC4m+5cIOR5nur1uqRPg6RN07w2OyxqMdrb21t6/QAAQHZkqmts0uDlIAhkWZYcx1G5XJbv+3r69KmePHmig4MDSZ/yChWLxZHlM46Pj7Wzs6MgCOKusGazqWazOXY2GYDxxo37Zz4AgHWUmUAomgIvSS9fvpRlWSqXy3GwEoahBoNBHCwZhqFisahGoyHP82SaZhwoXRatO2bbdjyl3rZtskoDAIDsBELRFPirgczl/WdnZ/H3hUIhdUJE0zTV6XTmUk8AAHB33LkxQgAAAGllpkUoyx4/fqx79+4l7tvf39f+/v6SawQAQL4dHR3p6Ogocd/Hjx9Tl0MglMKrV69GVq8HAACrNakhwvf91Cly6BoDAAC5RSAEAAByi0AIAADkFoEQAADILQIhAACQWwRCAAAgtwiEAABAbpFHKAUSKgIAkC0kVFwiEioCAJAtJFQEAAC4JQIhAACQWwRCAAAgtwiEAABAbhEIAQCA3CIQAgAAuUUgBAAAcotACAAA5BYJFVMgszQAANlCZuklIrM0AADZQmZpAACAWyIQAgAAuUUgBAAAcotACAAA5BaDpQEgZ54/n247cJfRIgQAAHKLQAgAAOQWXWMpkFARAIBsIaHiEpFQEQCAbCGh4i0FQbDqKgAAgBXLVCAUhqFs25Zt26nPcV1XOzs72tjY0M7OjrrdbuJxGxsbI1/VanVe1QYAAGsqM11j3W5XjuPIdV3VarVU57RaLXmep3q9rn6/r1arJcuy5HmeyuVyfFy73VatVlOpVIq3Xd4PAADyKTOBULlcVrlc1sbGRupz3r59K8/z4u+fPHminZ0dNZvNkUCn0+mMHAcAACBlrGtsGt1uV81mc2SbaZoyTXNk/I/rujo9PVW1WlW73V52NQEAQIatbSBULpdlGEbivsvbPc9TGIZyXVf1el3b29tjxxEBAIB8yUzX2LwEQaB6vR5/7ziOHMeR7/tyHEftdluWZanf748NpK46Pz/Xhw8fZq7T5uamNjc3Zz4fAIA8ubi40MXFxcznn5+fpz72TgVCruvKMIzEwdamacpxHFmWpWq1Ktu21el0UpX78OHDW9Xr2bNnes4iPgAApNJoNPTixYulvNadCoQajcaNwU2lUlGlUpHv+6nLffPmjR48eDBzvWgNAgAgvcPDQ3355Zczn//u3bvUjRh3JhCybVvHx8epurssy5pqnNDW1pbu379/m+oBAICUbjukZGtrK/WxaztY+rJo3M80y2Ds7u4usEYAAGAdrH0g5LqupOsJEid1fUVJGAEAQL5lKhAKw3DsviAIVCqVRrq0ut2uGo2GpE+tQtFXvV7X6elpvOhaq9WKz3FdV8ViUZVKZWHvAwAArIfMjBGKprdL0suXL2VZlsrlsgqFgqRPQdJgMIiDJd/3ZVmWJCW27pydnUmSisWiGo2GPM+TaZqyLCt+HQAAkG+ZCYSi6e3jghTTNOPgJvp+OBzeWC5LawDA7MZl/iAjCO6KTHWNAQAALFNmWoSy7PHjx7p3717ivv39fe3v7y+5RsBy8Fc/gKw6OjrS0dFR4r6PHz+mLodAKIVXr15NNTUfAAAs1qSGiGiyVBp0jQEAgNwiEAIAALlFIAQAAHKLQAgAAOQWgRAAAMgtAiEAAJBbBEIAACC3CIQAAEBukVAxBTJLAwCQLWSWXiIySwPIA5ZUwTohszQAAMAtEQgBAIDcIhACAAC5RSAEAAByi0AIAADkFoEQAADILQIhAACQW+QRSoGEigAAZAsJFZeIhIoAMuP96+Tt3//JEisBrB4JFQEAAG6JQAgAAOQWgRAAAMgtxggBYLFNALlFixAAAMgtAiEAAJBbdI0BmM7712N2/GR5dQCAOSEQSoGEigAAZAsJFZeIhIq4896/Tt5Okj4AGUVCRQAAgFsiEAIAALmVqa6xMAzVaDQkSc1mM9U5vu+r0WjIMAyFYSjLslSpVKY+BgAA5E9mAqFutyvHceS6rmq1WqpzgiDQzs6Oer1ePIanVCppMBjEZaQ5BgAA5FNmusbK5bI6nc5U59TrdZXL5ZGBzLZtq16vT3UMAADIp8y0CE0rDEN1u91rXWi7u7uSpHa7rb29vRuPoVUIAKY3blkWlmvBulnbQOj09FSSZBjGyPao5cfzvHjfpGMIhADcae9fX99GWgQgtraBUBAEkqRCoTB2f5pj0jg/P9eHDx+mrmNkc3NTm5ubM58PAECeXFxc6OLiYubzz8/PUx+7toFQv9+XJBWLxcT9YRimOiaNhw8fTl/BS549e6bntBdjHb1/veoaAMihRqOhFy9eLOW11jYQKpVKkqTBYJC43zCMVMek8ebNGz148GD6Sv47WoMAAEjv8PBQX3755cznv3v3LnUjxtoGQlEQM65VxzCMVMeksbW1pfv3709dRwAAML3bDinZ2tpKfWxmps9PK5r5dXWcT/T9zs5OqmMAAEB+rW0gVCgUZJqmPM8b2d7tdiVJe3t7qY4BAAD5lalAaNLg5SAIVCqV4iBGko6Pj9XtdkdafJrNpprNZjxTLM0xALD23r9O/gIwUWbGCPm+L8dxJEkvX76UZVkql8txsBKGoQaDwUiwZJqmer2ebNuWYRgKgkC2bY/kBkpzDAAAyKfMBEKmacpxnDgYStp/dnaWuP2mpTnSHAMAAPInU11jAAAAy5SZFqEse/z4se7du5e4b39/X/v7+0uuEQAA+XZ0dKSjo6PEfR8/fkxdDoFQCq9evRpZvR4AAKzWpIYI3/dTp8ihawwAAOQWLUIAgLlJWlaRpRaRZbQIAQCA3KJFCACwEuNaimhBwjIRCAEAForABllGIATkDA8lAPgWgRBwRxHwAMDNCIRSIKEigDvl/evk7d//yRIrAdwOCRWXiISKAABkCwkVAQAAbokWISBv3r9edQ2Au+fvnl/f9uOEbcgcWoQAAEBu0SIEAPjk/evr2xhAjTuOFiEAAJBbtAgBAPKN8T25RosQAADILVqEUiChIgAswPvXY3b8ZHl1wNoioeISkVARAFaLlepxFQkVAQAAbolACAAA5BaBEAAAyC3GCAHLwhRdAMgcWoQAAEBuEQgBAIDcomsMAJApTInHMtEiBAAAcosWoRTILA0AQLaQWXqJyCwNAEC2kFl6ToIgWHUVAADAimSuRcj3fTUaDRmGoTAMZVmWKpXKxHMsy1K3203c53meyuVy/P3GxsbIftM01ev1bl9xYEUYWAoAs8tUIBQEgXZ2dtTr9eKuqFKppMFgoFqtNvacIAjUbDZVKBTi7f1+X61WayQIarfbqtVqKpVK8bbL+wEA62XsYqz/MWEHCUyRIFOBUL1eV7lcHhmPY9u26vX62ECo2+2q1+uNBEGSrgVBktTpdOR53tzrDQDIvvFB01KrgYzJzBihMAzV7XZlWdbI9t3dXUmfWnOS1Gq1a0GQJJ2cnKharcbfu66r09NTVavVsWUBAFJ6/zr5C1gzmQmETk9PJUmGYYxsj1qHpmnJCcNQvu9rb28v3uZ5nsIwlOu6qtfr2t7eHjuuCAAA5ENmusai2VtJrTuX96fx8uVLmaY5UpbjOHIcR77vy3EctdttWZalfr9/Lfi66vz8XB8+fEj9+ldtbm5qc3Nz5vMBAMiTi4sLXVxczHz++fl56mMzEwj1+31JUrFYTNwfhmHqsjqdjp48eZK4zzRNOY4jy7JUrVZl27Y6nc7E8h4+fJj6tZM8e/ZMz5naAwBAKo1GQy9evFjKa2UmEIpmcg0Gg8T9N7XaRKKxRo7jTDyuUqmoUqnI9/0by3zz5o0ePHiQ6vWT0BoEAEB6h4eH+vLLL2c+/927d6kbMTITCEWBzriWn7SBULfblWEYqY6flH/osq2tLd2/fz/V6wMAgNu57ZCSra2t1MdmJhCKZoddHQsUfZ82VfbJycmNCRiTXhcAcHc8/08/ub7x+0uvBtZAZgKhQqEg0zTleZ4ODg7i7VGLzeUZYJO4rps6U7TnearX69NXFgCQ7P3r69u+/5PllwGklJlASJKOj4+1s7OjIAjirq1mszmSNToIAlmWJcdxriVMdF03Dqgu831fT58+1ZMnT+Igy3VdFYvFqVqPgFVjzD0AzFemAqFo3S/btmUYhoIgkG3bI1mlwzDUYDBIHEt0cnKS2HJkGIaKxaIajYY8z5NpmnEwBQAA8itTgZD0KRiaNJ3dNE2dnZ0l7ht3XqFQYGkNAABwTWYySwMAACxb5lqEsujx48e6d+9e4r79/X3t7+8vuUZYmL97nrydVasBIFOOjo50dHSUuO/jx4+pyyEQSuHVq1fXBmADAIDVmdQQ4ft+6rQ7BELItpy20DA7DLji/etV1wB3FGOEAABAbtEiBNxV71+vuga4C96/XnUNgIWiRQgAAOQWgRAAAMgtAiEAAJBbBEIAACC3GCydAgkVAQDIFhIqLhEJFQEAyBYSKgLLlJTY8Y4ndQRwx/F7TRJjhAAAQI7RIgQAyLXn/+kn17f9ePn1wGoQCOHuWMN1ycauKfb+dfpCvv+TW9cDwBLN43fVuDJuW24O0TUGAAByixYhrKdp/hpalDVsgQJy7f3rVdcAGUQgBMzZuO6u5/9xqdUAcAtju63HHc/ne23RNQYAAHKLFqEUyCwNAEC2kFl6icgsDQA58/518nZmaWbGvDJL0zUGAAByixYhAAAWgIkT64FACFiSpOy1+v4cCn7/eg6FALizspBuJMPoGgMAALlFixAAYLHev151DYCxaBECAAC5RYsQsErvX6+6BgCm8f71qmuAOSMQSoGEigAAZAsJFZeIhIoAAGTLvBIqEgjh7mOVeADAGHd6sHQQBKuuAgAAyLDMtQj5vq9GoyHDMBSGoSzLUqVSSXXuxsbGyPemaarX682lbNxBi0oy9v71YsoFAMxdpgKhIAi0s7OjXq8Xj8kplUoaDAaq1WoTz22326rVaiqVSvG2crk8l7IBAJhkYZnjsXCZCoTq9brK5fLIwGTbtlWv128MVjqdjjzPW0jZAADgbsrMGKEwDNXtdmVZ1sj23d1dSZ9afMZxXVenp6eqVquJx92mbAAAcHdlpkXo9PRUkmQYxsj2qAXH87yxLTee5ykMQ7muK9d1Zdu2Op1O3DV2m7Il6fz8XB8+fJjhXX2yubmpzc3Nmc8HACBPLi4udHFxMfP55+fnqY/NTCAUzfAqFAoT9ydxHEeO48j3fTmOo3a7Lcuy1O/3ZRjGrcqWpIcPH978BiZ49uyZnj9/fqsyAADIi0ajoRcvXizltTITCPX7fUlSsVhM3B+G4Y1lmKYpx3FkWZaq1WrcMnTbst+8eaMHDx7c+Prj0BoEAEB6h4eH+vLLL2c+/927d6kbMTITCEWzvQaDQeL+q91ak1QqFVUqFfm+P5eyt7a2dP/+/dSvj/WVOPND0vOfvV5mNQDcYWN/z/x4ufXIstsOKdna2kp9bGYCoSgYGdc6M00gJEmWZanb7S6kbEAa/8sMALA+MhMIRTO4ro7Xib5Pu2ZIUpmLKBspsLQFACDjMjN9vlAoyDTNa7mAoladvb29qcrzPE/1en0hZQMAgLshMy1CknR8fKydnR0FQRB3VzWbTTWbzXjGVxAEsixLjuOoXC7L9309ffpUT5480cHBgaRPeYWKxeLI8hlpygYAYG7ev57q8KTJxUw4XrxMBULR2mC2bcfT3m3bHsnxE4ahBoNBPN7HMAwVi0U1Gg15nifTNONAadqygXEYDwQAd1OmAiHpU8DS6XQm7j87O4u/LxQKE5fWmKZsAACQL5kLhJADSYOoGUANANeNm3SybHd48guBUAqPHz/WvXv3Evft7+9rf39/yTUCACDfjo6OdHR0lLjv48ePqcshEErh1atXI6vWYwGy8lcPAKzK+9errsFamdQQ4ft+6tQ4mZk+DwAAsGy0COH2aM0BgIVg2Z/Fo0UIAADkFi1CuPP4iwoAUsphCz8tQgAAILdoEQIAYM3Q0j0/BEJYS0m/BPgFAACYFoFQCiRUXA+sBwYA+UFCxSW6MwkV73CKdABAvswroSKBEHKLFiQAALPGAABAbtEihEyj1QYAsEi0CAEAgNyiRQjJg6gZQA0AyAFahAAAQG4RCAEAgNyiaywFEioCAJAtJFRcojuTUBEAkDt3dV2yeSVUpGsMAADkFi1CAADcEeRemx6BEDKBDy8AYBXoGgMAALlFIAQAAHKLQAgAAOQWY4QwnaTlOKbEeCAAQFYQCKVAQkUAALKFhIpLREJFAACyhYSKAAAAt5T7QCgIglVXAQAArEjmusZ831ej0ZBhGArDUJZlqVKp3Hie67pqNBryfV+maarZbKpcLl87bmNjY+R70zTV6/XmVv87Yw6DogEA2ZU0cWXd1x+bRaYCoSAItLOzo16vF4/JKZVKGgwGqtVqY89rtVryPE/1el39fl+tVkuWZcnzvJFgqN1uq1arqVQqxduSgiUAAJAPmQqE6vW6yuXyyMBk27ZVr9cnBkJv376V53nx90+ePNHOzs61VqFOpzNyHAAAyLfMBEJhGKrb7arZbI5s393dlfRta85VSeeYpinTNEfG/7iuq9PTU1WrVVmWNTGwwnTICwQAWFeZCYROT08lSYZhjGyPWoc8z0sMXiZ1bV0uy/M8hWEo13Xluq5s21an06FrDMizcWPhfjxmO4BRSZ+hNfv8ZCYQilpvCoXCxP3TlFev1+PvHceR4zjyfV+O46jdbsuyLPX7/WvB11Xn5+f68OHDVK9/2ebmpjY3N2c+HwCAPLm4uNDFxcXM55+fn6c+NjOBUL/flyQVi8XE/WEYpi7LdV0ZhpHYgmSaphzHkWVZqlarccvQJA8fPkz92kmePXum58+f36oMAADyotFo6MWLF0t5rcwEQtFMrsFgkLj/plabyxqNxo3BTaVSUaVSke/7N5b35s0bPXjwIPXrX0VrEAAA6R0eHurLL7+c+fx3796lbsTITCAUBTrjWn7SBkK2bev4+DjV8ZZlqdvt3njc1taW7t+/n+r1AQDA7dx2SMnW1lbqYzMTCEWzw66OBYq+T7NmSDTuZ5p1waLXxahxM8HymGwLAHB3ZWaJjUKhINM0r+X5iVps9vb2Jp7vuq6k67PIJnV9RUkYAQBAPmUmEJKk4+NjdbvdkVahZrOpZrMZzyYLgkClUmmkS6vb7arRaEj61CoUfdXrdZ2ensar0LZarfgc13VVLBZTLd8BAADupsx0jUnfrvtl27YMw1AQBLJte2T2VxiGGgwG8Vgi3/dlWZYkJbbunJ2dSfo0G63RaMjzPJmmKcuy5DjO4t8UAADIrEwFQtKnYGjSjC/TNOPgJvp+OBzeWC5La8wHWaQBAHdJprrGAAAAlilzLUJZ9PjxY927dy9x3/7+vvb395dcIwCLlJT/lJyoyIN1mjF8dHSko6OjxH0fP35MXQ6BUAqvXr2aako+gPwYFyAROAGLNakhIpoklQZdYwAAILdoEVp3d2DlXyBz3r++vu3vErZJ0vufjClk3HYAWUKLEAAAyC1ahABgWZJacCVacZF56zSIeloEQiA3EHJr2T/7Yx8mP15qNQBcQiB0F437qxPIs8TPxU9Sn77QoImWImBlCIQA5MLSW3+eL/XlAMyIQCgFEioCAJAtJFRcIhIqAhlEdxKQayRUBAAAuCVahNbFHAZAMzsMuTD2s/KTJVYCwLogEAKAjGLANbB4BEIAMi8padvzny29GtN5/zobZQALlNTTsG55sRgjBAAAcosWIQCZQVcQgGUjELqDGBSNTEkavMwUd+DuWrPUFgRCANbSXVoEkj9egNUhEEqBzNJACvNY4+7969uXASAXyCy9RIvILH1xcaFGo6HDw0Ntbm7OtWws3r/97rf6P/6v/1X//X/3P+kP/+A7q64OLknbusI9XH/cw/V3m2chmaXX3MXFhV68eKGLi4tVVwUz+N3v/lVv3v0v+t3v/nXVVcGMuIfrj3u4/rLwLCQQAgAAuUXXWNZMOc6CQZZYR0yTB5AVtAgBAIDcIhACAAC5RdcYgOV7/3rVNQAASbQIAQCAHKNFKAUSKgKzY0A/gEUgoeISLSKh4rSmeZj8n//3/6b/8N/+jwupx6LKXsc6L9I6Xo//4X8+W7s6LxKflcWXu0jreJ0XWfY05Y5d/ubHc6yQSKiICd7+P//72pW9jnVepHW8HutY50XiOi++3EVax+u8yLLX8R6mlbkWId/31Wg0ZBiGwjCUZVmqVCpzOW/WsgEAwN2UqUAoCALt7Oyo1+vFXVGlUkmDwUC1Wu1W581aNgAAuLsy1TVWr9dVLpdHxuPYtq16vX7r82YtGwAAzMHfPb/+9Z8bK62SlKEWoTAM1e121Ww2R7bv7u5KktrtdmLLTZrz9vb2Zip7FZhhAwDA8mSmRej09FSSZBjGyPaoBcfzvJnPm7XspfjPjdHoGAAALE1mWoSCIJAkFQqFiftnOW/WsqM8BL7v6/z8PPGYNL7zne/oO9/5zsi2qLx3/+9/0da9b/f986//cebXifzbv13MpZxllr1udf7tv3762fgv3/x/+s5/nZxj6jbW7XosstxFlb2u93DdrvMiy13kPVzH67zIsudRbr3531zbFt3Dd+/eaWtr69vtv/2tfvvb3878Wv/4j5/qmiqf0DAjDg4OhpKGvV7v2j5JQ8MwZj5v1rJ/+ctfDiXxxRdffPHFF19r+PXLX/7yxvgjMy1CpVJJkjQYDBL3X+3Wmua8Wcv+4osv9Nd//df64z/+Y/3RH/3R+MrfIKlFCAAAJLtti9C//Mu/6J//+Z/1xRdf3HhsZgKhKBgJw3Di/lnOm7Xs733ve/rTP/3TMTUGAADrLjODpaMZXFfH60Tfj0uVnea8WcsGAAB3W2YCoUKhINM0r83g6na7kqS9vb2Zz5u1bAAAcLdlJhCSpOPjY3W73ZGWm2azqWazGc/4CoJApVIpDmLSnpfmGGCZxs1WBDBffNYwyca/z5zKjMvrgQVBIMuyRpId+r6vR48e6fj4eGSdsJvOS3vMMoRhqEbjUzbNq0kex2GdtGy4zX3Y2NgY+d40TfV6vUVUM/cWuWYhloPP2npbq+fcjfPKMFee5w0rlcpQ0rBWq6U6p9/vD6XR6f+GYQwdx1lUNZHgNvfBcZxhrVYbNpvN+CspnQNub9b7xOcsO/isrbd1e84RCK3IND8g5XJ5WC6XR7Y5jjMkjl2u29yHq+dhcWa9T3zOsoPP2t2wLs+5TI0RwnXRWmqWZY1sv7xOGhbvNvfBdV2dnp6qWq1yvxZs1vvE5yw7+Kzlz6o/fwRCGZfpddJy5Db3wfM8hWEo13VVr9e1vb09Mtgf87PINQuxHHzW8mfVnz8CoYybdZ00zNdt7oPjOBoOh+r1eqrVavEgQO7d/C1yzUIsB5+1/Fn1549AKOP6/b4kqVgsJu4fly0b8zWP+2CaphzHUafTkSTZtj23+uGTWe8Tn7Ps4LOWP6v+/BEIZdys66RhvuZ5HyqViiqVinzfn0vd8K1FrlmI5eCzlj+r/vxlZq2xdeH7fuq/LgzDkOM4t3q9WddJQ7JZ79+874NlWYxdWIBFrlmI5eCzlj+r/vwRCE0paamORWKdtPma9f4t4j5EZWJ+FrlmIZaDz1r+rPrzR9dYxrFOWjbM+z54nqd6vT63+uGTRa5ZiOXgs5Y/K//8LTxTEa45Ozsbm2iq3+8PDcMYep4Xb+v1ekNJw36/H28zDGPYbDaXUl98kuY+XL1/vV5vaJrmyDGdTid1kjFMb5b7lPY8LAeftfW3Ts85usaWzPf9eNzJy5cvZVmWyuVyPG0wDEMNBoORvtJonRzbtuN10mzbXsk6aXmW5j5cvX+GYahYLKrRaMjzPJmmKcuybj12DOPNcp/Snofl4LO23tbtOZe5RVcBAACWhTFCAAAgtwiEAABAbhEIAQCA3CIQAgAAuUUgBAAAcotACAAA5BaBEAAAyC0CIQDIkKvrLQFZdZuf1Sz9nBMIAUBGtFot+b6/6moAqQRBoFarNdO51Wp17Grzy0YgBAAZ4LquvvnmG1UqlWv7Wq2Wtre3tbGxoY2NDVmWFX+VSqV4Oz7hei1HuVyWJLXb7anO831fhmHES25EVnbfFr6aGQBgorOzs6FpmhOPqdVqQ0nDg4ODa/uiRSzxLa7X8pimOTw7O0t9fK1WG1lw9eq+Zd83WoQAYMVs21a9Xp94zOnpqSTJsqxr+wzDiP86xydcr+Wp1+uybTv18d1ud+z1X8V9Y9FVAFix7e1tnZ2dTTwm6hIY9ys7DMNrXQ15xvVaru3tbX399dc3XlPXdeV5Xrw6/VWruG+0CAHACrmuK8MwJh7T7XYl6dpfw67rxv/nof4trtfyGYahly9f3njcycnJ2NbPVd03AiEAWCHP825s7u90OpJGuwvCMNTJyclC67auuF7LVy6X5XnexGPCMFQQBDJNM3H/qu4bgRAArNDp6alKpdLEY6K/lE9OTrSzs6NSqaTt7W396Ec/WkYV1w7Xa/lKpdKNuYFevnypJ0+ejN2/qvv2hwstHQAwURiGKhaLE/cHQaBCoaBerxdve/ToEQN+E9yl6+W6rt6+fatms7nqqtyoWCzeGAg5jqOvvvoqcd8s961er6tUKumbb77Rj370o8TUE2nQIgQAKzQYDCaOe4jGXVx+GBQKBZXL5WtdDK7ramNjQ9vb2/Ff19KnB0q1WtX29vZIwkbXdeO8LdHMn+jhcnUcR1T2xsbGxCR6YRjKtu34q1qtTnxAhmEY//Wf9mtS0slprlfSdbNtO85dc7nel9//5TEr0qe8ONVqVdVqNX7PlmWN5NcZd/3a7fa1exaGoVqt1tySDo577TAMVa/Xtb29Hb+ny/e/Wq3G+Xyi48aN7zEMY2JdgyBQsVgc+7M+7X2rVqsqFAo6ODhQs9lUo9EY+Zmfytwn5AMAUisUCmNzqgyHw2GlUhlKGjqOM7J9XN4W0zSH5XL52vZxuVsMw7h2/NnZ2bXXi+paq9XG1tVxnKFpmsN+vx9v6/V6Q0lT5Zm5jWmvV0RXctcYhnEtZ03S+z84OLj2nofDT/fh6vVOOv/s7GwoadhsNq/VyTTNidc74nnesNfrTTxGUmJZnU5n5LUvH+M4zsi963Q6Y39WPc8bFgqFsa9/cHAw7HQ6Y/dPc9/6/f5Q0sg1bzabiT/3aRAIAcAKGYYx8QFRKBRuDCQuP5xqtdq1B1K/3x9WKpVr5016CF99vejhM66u0UPzakAwHF4PMhZp2usVfS9pZHv0YI4kvf+Dg4Ox77nT6YzUYdz1i147KZApl8upAqFJAcpw+G0wmnRMrVYbqf/l/5fL5ZFgcNI17XQ6E5Md3pQIcZr71ul0hlfbcaLrOEvATdcYAKyQYRhju46CIFAYhonLEUTa7fbI+Ts7O9e6KGzb1vHx8bVzo66EaGxFGIbxtquvF3WdJI3DCIJA9XpdtVptbCqAZSyyOcv1khTPdoq6ZaLrcHBwEB9z9f37vq9Wq6Vms5n4niuVykgdxl2/TqejQqEwtttuHqJZV0ljbYIgGKn/5f93u92R+k7qwh0MBmPv/aQEilEdprlvb9++vXZcNM5uMBiMfZ1xGCwNACtkmqbevn2buC96eCY9YKKxOO12eyQZY3Ss7/syTVOu68qyrMQHTPSAdBwnfvhHA1Wv8jxv7MM6yiqcNKg3Gs8zaUD4vMxyvaLzCoWCbNuOH8rNZlO1Wi0+5ur7j97z5WBpkijYqlarI9tvChLm4WpAE5k0lT0KiJMyPCfp9Xpjy3IcR4eHh2PPnfa+TZpgcDWwS2XqNiQAwNz0er3EboNmszmUFH9FY39M0xwahhFvv9rlFXV3RV0wSV1ikctjVs7OziZ2w2hMF1q0b1zXR/Q+JnXdzMNtr5fjOBO7qa6+/0KhcOP6cJPOHw5v7m6cR9fY5fd3VbPZHDu2KOr2S8swjLF1mNQtNst9azab17p/o+6/pG7Km9AiBAArFP0VHbXgRA4ODlK3NlxWKBRUKBQUBEHcdZPE932FYRj/xV8oFKbO+Jv0Pq5qNBoql8sLb/WY9XpFs5X29vbia+c4zsgSEGne/yTjzp+13Kv36fT0VMViMU5IGHEcJ167K+k13r59O/aaTdNSFXVZJR3fbrcnrqM3y31LmqEWdYlN3RokusYAYOVs27728L2N3d1dnZyc6MmTJxPHbUijY1bGBWWTxrFE3UpJXRXRVO2rD+gs8TxvZGxKrVZTq9UauRdJ7393dzcOMq66uh7WuOvX6XQmjosZ5+rPSXQPxo0Bkq4HCJO6kMIwlO/7qX8em83m2EVXJ+UOmlV0HS+/h6s/s9NgsDQArFitVlMQBHMbUBz9xTzpL+2Tk5PEB0c0Tuayca0D1WpVpmnq8PDwWg4X13V1cnKiXq+X6XW9rr63qPXicq6gpPffbDbjfD9Xy7u65ta46zdu7M48Ra97Na9UvV4fO24nKafPONHP7eXxVJf3TcodNCvDMFSpVEbu0cnJycyJJ2kRAoAM6HQ6qlarN67XlMbOzs61QbmXtVqteBBz9Jd8EATyfV+DwWDkgRIFRoPBIA4SBoNBfL5hGHHAVa1W4yCsVCqNHXidFfV6Pc5oHLUuGIYh0zT19OlTGYahk5OTOOPx5RYI0zTV7/dVr9d1cnISP/Cj2XOR6PoVCoW41SIIgvi6+76f2Drjuq663a4Mw7jVgGrDMOR5Xvx6hmGoWCzKcZzEAMV13fhY13VVq9UmBjL1en1sy5HjOBO7xW6j0+moXq+r1Wrpm2++Ub1en/kabQyHY9a6BwAsVRAEcl13prEuyK9JXWOL1Gq1VKlUxnaxVavVTHeLRgiEAABYY1fHJGE6BEIAACC3GCwNAAByi0AIAADkFoEQAADILQIhAACQWwRCAAAgtwiEAABAbhEIAQCA3CIQAgAAufX/Axrb/ZEEkTWNAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# energyspektren angucken von velo und rich\n",
|
|
"diff_found = (\n",
|
|
" ak.to_numpy(\n",
|
|
" energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"velo\"\n",
|
|
" ]\n",
|
|
" )\n",
|
|
" - ak.to_numpy(\n",
|
|
" energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"rich\"\n",
|
|
" ]\n",
|
|
" )\n",
|
|
") / ak.to_numpy(\n",
|
|
" energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"energy\"\n",
|
|
" ]\n",
|
|
")\n",
|
|
"diff_lost = (\n",
|
|
" ak.to_numpy(\n",
|
|
" energy_emissions[(energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"velo\"\n",
|
|
" ]\n",
|
|
" )\n",
|
|
" - ak.to_numpy(\n",
|
|
" energy_emissions[(energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"rich\"\n",
|
|
" ]\n",
|
|
" )\n",
|
|
") / ak.to_numpy(\n",
|
|
" energy_emissions[(energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"energy\"\n",
|
|
" ]\n",
|
|
")\n",
|
|
"\n",
|
|
"xlim = 1\n",
|
|
"nbins = 80\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" diff_lost,\n",
|
|
" bins=nbins,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
" range=[-xlim, xlim],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" diff_found,\n",
|
|
" bins=nbins,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
" range=[-xlim, xlim],\n",
|
|
")\n",
|
|
"# plt.xlim(-20000, 20000)\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"plt.title(\"emitted energy difference ratio\")\n",
|
|
"plt.xlabel(r\"$(E_{VELO} - E_{RICH1+UT})/E_0$\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHJCAYAAABpOFaGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxrElEQVR4nO3dT4wb2WHn8Z8ijdqTCJ7q1hysvWxUDIwglx0UWz4Y2GhgsdYIfDCMIdu3zACGSBh9CQYIC8plpEuIInLIpQGTjQDa4zRpBHsIgoS0sfYCOew0K8plsVgsS7k5wHrYZUOx3PKf2oOmashuks1m8091v+8HaHiaxXr1WEV3/fTq/bkWx3EsAAAAA/3OuisAAACwLgQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCELAJRKGoZrNpqIoWndV1iaKIjWbTYVhuO6qYMGCIFCz2Vx3NWAYghBwSdTrdeVyOVUqFQ0Gg3VXZyZBEMjzPJVKJeVyOdXr9QuV12w2dffuXVUqFaPD4DKEYajNzc21BJEwDFUqlZTP59VoNFZ+fJiNIARcEtVqVcVicd3VmFkQBHrw4IF831er1VKxWFS/379QmeVyWeVyeUE1/FwYhsYHqyiKFEXR2Gs06fws6rzZtq1Wq3XhcoB5EISAS2Rra2vdVZhZrVYbqa/v+wv51/7t27cvXMZJpVLp0rSyLYvjOIrjWL7vn9o26fxw3nAVEIQALEUQBOuuwkxKpdKlqes6TDo/nDdcFQQhYIKkU24+n1e73Va321U+n9e1a9dUKpXS97XbbW1uburatWvpjaHb7apUKo28NynPdd20s6/rutrc3JTruukjhqQv0ObmpjzPm1i3SqWizc1NbW5uqlKpnHpPEAQqlUpyXVe5XO5UWe12W67rqtvtqtlsTixn0rE9z5PrumkZiWazqVKppDAM074fpVJp5D3TznVSn3w+r83NTZVKpbGPXwaDQfq+k9dk1rq22+30mlUqlVM397P2n/U7crKsSqWiXC53rv44067nIr5b7XY7vVZnnZ+zzttZ373h85H8XLT/GDC3GMBY/X4/LhaLsaS4UCjE1Wo17vV6cblcjiXFvu+n701e6/V6I/tLiovFYvp78r7h8jqdTvpauVyOO53OyLGHyxzev1wux41GI3YcJ30t0ev1Rn5vtVqxpLhcLqe/27advlatVmPHcWLHcaaek16vF1uWNVKnRqNx6nzEcRzbth3btj3TuU4+1/C5abVa6TkYLsf3/fR9vu9PvCaz1rVarcaS4n6/f+7Pep7vSLFYjKvV6khZJ8/ZJGddz4t+t/r9/sh5HTbp/Ew7b9PqmhzPsqy40+mkryXHP+s7CCwaQQiYIvkjfvKGdfKGkdwUhm+aR0dHI0Eojl/fJE7eFOI4TsPM8E0lee+4wNVqtUb2T0JNcmNxHGekLnEcx5ZlxZLio6OjOI4/v/EM35zP4jjOqRvlpPqfJwgN16fRaIy8XigURj7zpPedvCaz1nXSDX3W/Wf9jliWdepczxqEZrmeF/1ujatzHJ8/CM1S12KxOPbcEoSwDjwaA2ZgWdap1y7SSfRkebZtSxrtDJ28Nm4Uj+M4I78nj7Q6nY7CMFQQBKrVaumjjuHHHYeHhyN1uHfv3kx1Tso9eezh4y+iM3TyuU+W3el0Rl7f3t4e+d2yrHRuoYvWdZ79z/qO2Later0+8gioWq1OrMPJupx1PSfV47zfrYuYpa5hGKaPZYEsuLHuCgC4uEKhIOnzG5GkmYcjj7uBjzOtY2wSSpYxyWESRs5T9kXruozP2mq1lM/n5XmeGo2GWq3W2KA1qS6XYXj5LHVN+lidDLzAutAiBFwBSZixbXukVWQZxnVcTo6/jOH9SZnz3DgvWtdFflbbtvX8+XMVCgWFYah8Pj9TZ+llX89FmqWuyTaG3SMrCELAFZDcsO/du5cGhna7Pfa900ZvTZO0XozbPzl+Lpebq+xpkhtmPp+feZ+L1nUZnzUMQ1mWpU6nk7aYzDJKb1nXcxlmqWvynl6vt7J6AdMQhIAFSCb5G/6XcPLfq5ixOLnBFIvF9DGZ53mnHvFcZPkE27blOE46LH7Y4eGhLMsamfV5MBgs5F/97XZ7pOxPP/00LX9RdZVGr9M8+59leKLCYrGY9jE6q6VnWdfzvCZ9j4dfn6WuyaPFSWvmmT7DN1aPIARMMeuNPGlB8DwvnQcnudF1u920Y+ik8pI//sPbk/8efi15LHMycCV9TpL3JJ1w8/m8SqWS6vW6XNdVv99Pb1bJMc9z42m1WrIsa6QlI4oi+b6v/f39mfsbTTPcCTmKIjUaDe3v75+5XxRFI+dq1romLTuNRiPtyHue/Wf9jhwcHIxctyiKZNv2mY/8Zr2eF/1ujXufNPn8jHt9lrqefE+321UYhulcQ2EYMqcQVmvdw9aArOr1eunQY9u2406nEx8dHY3MeTM8/Nj3/diyrJFh0rZtp3O6JPOrSIoty0qHgydz0+izofa9Xm9krhfLstKh4kdHR3G1Wo0LhUI6N0y5XE6HJQ/zfT8dVm/b9shw8+F5hE5uO8vR0VE6/Dk5/vBw6eF5dPTZcO7h+WImGR7O7zhOXCwW42KxOLJvq9VKh2Inw7RPXpPhIepn1TXhOE5sWdapoeezfNZZvyOFQiH9PlSr1bhYLI69btPOz6RrdtHvVq/XS19L6jxct0nnZ9Lr0+qaaDQa6Xscx4n7/X56fk4OyQeW6Vocx/GKMhcATFSv1+V5njqdTtrKAQDLxqMxAABgLIIQAAAwFkEIwNpFUZTOHH0ZJg4EcHXQRwjA2o0bJTTL8hMAcFEEIQAAYCwejQEAAGMZu+jqT3/6U/3DP/yDfv/3f19vvvnmuqsDAABm8PLlS/3rv/6rvv71r+vtt9++cHnGBqG/+7u/0wcffLDuagAAgDk8ffpU77///oXLMTYI3blzR5K0v7+fLo+wDO+9956+//3vX9ryV3GMFy9e6P79+/rRj36kW7duLe04V+FccS3MOQbXIlvHWMX1uArnaRXHCIJADx8+TO/jF7W0IPTd735X29vb+s53vrOsQ1zIF77wBUnSl7/85aUGoTfffPNSl7+KY/z85z+XJL3zzjv64he/uLTjXIVzxbUw5xhci2wdYxXX4yqcp1Uc48WLF5I+v49f1FI6Sz9//lyNRoPhrwAAINOW0iJ09+5dNRqNM1dVBgAAWKelPRp7+PDhsooGAABYiKXNI/T1r39dz549W1bxAAAAFzZ3i9C3v/3tiduiKFK329XBwYHeeeedeQ8BAACwVHMHoVkWRmy1WvrLv/zLeQ+xEn/6p3+q3/3d3x27bXd3V7u7uxcq/6L7r7v8VR1jFa7CueJamHeMZbsq54lrcbWOsbe3p729vbHbfvGLX1y4/GFzrzW2s7Mj3/e1tbV1alu/31ez2dT3vve9C1dwWX784x+nc0L88R//8bqrY7Sf//zneuutt/Szn/1sqcOEcTauRXZwLbKF65Edi75/z91HqFKp6O7du3rrrbdO/TiOo3w+r7/4i7+4cAUBAACWZe4g9ODBg6nbbdtWo9GYt3gAAIClm7uP0LQRYWEYyvO8eYsGAABYibmDkOM4unbt2sTtcRyrXq/PWzwAAMDSzR2ELMvSzs6OLMs6te327dtyHOfMx2cAAADrNHcQ2t/f13vvvbfIugAAAKzU3J2lCUEAAOCyW9paY9/97ne1vb2t73znO8s6xIXcvHlz5H8vrX96vO4aXNjGq1/ro48+0sbGxrqrYryNjQ2uRUZwLbKF65Edi75/zz2h4jTPnz9XLpfT5uamPv3000UXvxBBECifz6vX68lxnHVXZ35XIAhJkr76eN01AABcAou+fy+lReju3btqNBqybXsZxQMAACzE0h6N7ezs6K233lpW8QAAABe2tCD0gx/8QJ988olqtdqyDrEQ7733nt58882x2xax6CoAADifaYuuvnz5cqHHulAfoR/+8IfqdDqKomjk9cFgoCAINBgM6CO0bPQRAgAYJDN9hPb391WpVKa+p1wuz1s8AADA0s09j1Cj0VCn09HR0ZH+8R//Ub7v67e//a1++9vfajAYqFwu63vf+94i6woAALBQcwehQqGgBw8e6K233lKhUNDh4WG6zbIs5fN5PXr0aCGVBAAAWIa5g9DPfvazkd93dnb0V3/1VyOvtdvteYsHAABYurn7CNm2revXr2tzc1OHh4d67733tL29rU6nI8uy1G63xy7ICgAAkBVzB6E///M/109/+lP98z//s7a2tiRJBwcHcl1Xz58/lyT5vr+YWi5RoyHdubPuWszv8X9Zdw0AALi8LjSP0MmgY9u2+v2+nj9/rq2tLSZUBACszmWZToTpQjJlaUtsAACAbAuCQB9//LG63a4kqdfrrblGqzd3Z2kAAHC5OY6jb3/72wqCYN1VWRuCEAAABrvUqyssAEEIAAAYa2mLrl4WBwfv6caN8Yuu3ru3q698hUVXAQDZEQSBHjx4oCiK5DiOWq2WbNuWJHmep3q9Lt/3Va1W0/fXajVFUaQwDFUsFmce1R1FkTzPk2VZ6eMzz/NUKBSW8+E+s8pFV40PQjs739edO2Y3CwIALg/HcbS/v69SqSTbttMQJEmVSkVBEIyEIM/z1Ol0JL2e6LhUKimKIjUajanHSQLXD37wg/TxWbPZlOu6I0FrGXZ3d7W7O74hIll0dVF4NAYAwCVTLBZl2/apFRza7fbIgugPHz4caf0pFouyLEvNZlNRFE09xsOHD7W9vT3Sh6hcLstxHHmepzAMF/Nh1owgBADAJZQEnuEw9PHHH6tYLEqSwjBMH4uVSqX0JzG8RuhJyb7jOlInxz2rRemyMP7RGAAAl1G5XJbneWo0GioWiwqCQNvb2+n2pE9Pq9U6d9nThtMnx6BFCAAArI1lWSoWi+p2uwrDUB9//PHIY7EkqFwksIx7fJasI5osr3XZXekgdFXSKgAA4zx69EjS68dUJx9lJZ2oT/YjSiSzSY+TlDPuPUk4yuVyc9U5azIXhIIgUKlUkud5qlQqEy/gONeuXRv5GX4WCgDAVeM4jmzbVr1eP3XPS4a4e5536lFXs9mcWq5t23IcR2EYnmpUODw8lGVZKpfLC/gE65epPkJhGCqfz6vX66VpNJfLaTAYnHnCm82myuXySEJd9jwHAACsW6VSked52tnZGXndsixVq1XV63Xl83kVi0Xdu3dPnU5HjuOceV9ttVrK5/OqVCrp8PsoiuT7vvb399NHZJddpoJQpVJRoVAYadpLWoZmuWDJhQIAGMjQVd3L5bL6/f7YYOL7vm7fvq1Go6F2u53OK5TcU4MgSEd/BUGger2ucrksy7Jk27aeP3+uhw8fynXd9FFbq9W6UstyZCYIRVGkbrd7arbLpHd60uIzTrvd1uHhoUqlklzXvTLNdQAAnMWyrKlD2avV6sTJDx3HUaPRmLi/ZVlzjTq7TDIThJL5DIZnyJQ+77DV6XQmBpxOp6MoitRut9Vut+V5nlqt1kyPxl69eqHj45/PXe/r1zd048bG3PsDAGCS4+NjHR8fz73/ixcvFlibDAWhpDPWpGeO00aAJWk2aeJLpgDv9/ungtVJT5/en7vOknT//kd6993HFyoDAABT1Go1PXnyZN3VSGUmCPX7fUmT5yU4aypw6fMmPtd105FnZzXpffDBj/SlL71z3uqmrl+nNQgAgFk9evRIH3744dz7P3v2TPfvX6wRY1hmglAy2mswGIzdflbLzrBisZjOsnmWmzdvaWPjizOXDQAA5rexsaGNjfkbEW7durXA2mRoHqEk6Exq+TlPEJIk13UnhioAAAApQ0Fo0tolye/5fH7uMgEAAMbJTBCyLEuO45yaCyiZ3vvkRFFn6XQ6I2uuAAAAnJSZICRJ+/v76eJxCd/35ft+OposDEPlcrk0IAVBoHw+r3q9nu7Tbre1tbWlYrG40voDAIDLJTOdpaXXo756vZ48z5Nt2wrDcGQGTOl1H6LBYJD2JbJtW1tbW6rVaum04a7rTp1cCgAAQMpYEJJeh6FpQ94dx9HR0VH6u2VZLK0BAADmkqlHYwAAAKtEEAIAAMYiCAEAAGNlro8QAADzePx43TWYzWWppymMD0IHB+/pxo03x267d29XX/nK7oprBADAekRRpIODAxUKhXOv6LBIe3t72tvbG7vt5cuXCz2W8UFoZ+f7unPHWXc1AABYiDAMlc/n5fv+yPQzZ2k2m/I8T1EUqdfrLbGGZ9vd3dXu7viGiGT+wEWhjxAAAFdIFEWKokj9fv9c+5XL5XMFp6vC+BYhAACuEsdxFMfxXPvevn17wbXJPlqEAACAsQhCAABcMu12W67rqtvtqtlsanNzM11ovN1uq1QqqVQqndoviiJVKhVVKhW5rivXdRUEwan3DQYDNZtN5fN5Xbt2bWxZVwWPxgAAuETa7bY8z1MYhrJtW5ZlybZtHR4eKgxDhWGodrutQqEwsl8YhnJdV51OJx0Rtrm5qQcPHowsXSW9XvDcdV3t7++r0Wio2WyqXq+rWq2u7HOuCi1CAABcIsViMW39sSxLvu+r1+up1+vJtu2JYaVUKqlSqYwMi3/06FHaufrke6vVqhzHSRcxv6rrehKEAAC4ZCzLkiTdu3dvpveHYaggCE61ElWrVcVxnJaX2N7ePnW8MAznrm+WEYQAALikTgaYSZJ+QLO+3yQEIQAArrikNeeqtupcBEEIAIArznFer6DQarXGbjc5IBGEAAC44pI+P81mU91ud2Sb53na2tqSJH366aeSXg+fN4Xxw+dZdBUAcNkko7xOjvYafm04zCSjyzzPk+u6KhaLsm1b3W5XlUrlzL5D446zTCy6ukIsugoAV8Pjx+uuwWq02+10SLvneRoMBukaYUEQqFarpf9dr9dVLpdlWZaq1aps21atVlO73ZbjOPJ9Px1J1m631Ww203L39/dl27Y8z5P0Ogx5niff95f+GVe56Oq1eN4FSS655ESWy71LHYQe/5fH667CYnz18bprAAC4BJL7d6/XS/s+XQR9hAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWMavNcaiqwAAZAuLrq4Qi64CAJAtq1x0lUdjAADAWAQhAABgLOMfjV12j//m3XVXYSEef3XdNQAAmIgWIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWMZPqMiiqwAAZAuLrq4Qi64CAJAtLLoKAACwAgQhAABgLIIQAAAwFkEIAAAYiyAEAACMlbkgFASBSqWSPM9TpVJRu90+dxndblebm5tLqB0AALhKMjV8PgxD5fN59Xo9Oc7rIe25XE6DwUDlcnnmciqVyrKqCAAArpBMtQhVKhUVCoU0BElKW4Zm5XmebNteRvUAAMAVk5kgFEWRut2uXNcdeX17e1uS1Gw2zyyj2+3q9u3bI0EKAABgkswEocPDQ0k61ZqThJpOp3NmGY1GQ9VqdfGVAwAAV1Jm+giFYShJsixr6vZJPM+T7/vnPu6rVy90fPzzc++XuH59QzdubMy9PwAAJjk+Ptbx8fHc+7948WKBtclQEOr3+5Kkra2tsdujKJq4bxAEun379lx9g54+vX/ufYbdv/+R3n338YXKAADAFLVaTU+ePFl3NVKZCUK5XE6SNBgMxm6fFnJqtZpardZcx/3ggx/pS196Z659pdctQgAAYDaPHj3Shx9+OPf+z5490/37F2vEGJaZIJQEnUktP5OCkOd5cl135NFZ8t/J/04LUTdv3tLGxhfnqTIAADinjY0NbWzM34hw69atBdYmQ0EoGR12si9Q8ns+nx+7X7fbVb1eH7stl8vJcRz1er0F1hQAAFwVmRk1ZlmWHMc5NTqs2+1KknZ2dsbu1+v1FMfxyE+1WpVlWYrjmBAEAAAmykwQkqT9/X11u92RViHf9+X7fjqaLAxD5XK5NCABAADMKzOPxiSlj7GS2aHDMJTneSPLa0RRpMFgMHUUGQAAwCwyFYSk12Fo2ggwx3F0dHQ0tYykFWkm/3Yo/Xr+eYQAAMDllalHYwAAAKtEEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFiZGzW2agc//Gji6vH3/vCb+soffWvFNQIAwGx7e3va29sbu+3ly5cLPZbxQWjna0905+0vr7saAADgM7u7u9rd3R27LQiCictuzYNHYwAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwlvFrjbHoKgAA2cKiqyvEoqsAAGQLi64CAACsAEEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxl/FpjLLoKAEC2sOjqCrHoKgAA2cKiqwAAACtAEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxm/1hiLrgIAkC0surpCLLoKAEC2sOgqAADAChCEAACAsQhCAADAWAQhAABgLIIQAAAwVuaCUBAEKpVK8jxPlUpF7XZ7pv3a7bby+byuXbumXC6nbre75JoCAIDLLlPD58MwVD6fV6/Xk+M4kqRcLqfBYKByuTxxv2azqV6vJ9/3JUme58l1XfX7fdm2vZK6AwCAyydTLUKVSkWFQiENQZLSlqFpoihSo9FQoVBQoVDQ/v6+pNetSwAAAJNkJghFUaRutyvXdUde397elvS61WeSarU68rtlWZI0EqgAAABOykwQOjw8lKRTj7KSMNPpdGYuq91uy/d9HosBAICpMtNHKAxDSZ+35kzafhbP89RsNtPHY2d59auXOn717zO9d5zr19/Qjes3594fAACTHB8f6/j4eO79X7x4scDaZCgI9ft9SdLW1tbY7VEUnVlGvV5XGIaKokilUkmNRmNqJ2tJevr3f3beqo64/877etf54EJlAABgilqtpidPnqy7GqnMBKFcLidJGgwGY7fP8pgr6SvU7XZVKpXk+/6ZQeiDP/lrfen2H5yztp+7fv2NufcFAMA0jx490ocffjj3/s+ePdP9+/cXVp/MBKEk6Exq+TlPf59CoaByuax6vX7me2++8aY2bv7ezGUDAID5bWxsaGNjY+79b926tcDaZKizdDI67GRfoOT3fD5/rvLu3btHZ2kAADBVZoKQZVlyHOfU6LBkhuidnZ1zlReGoQqFwsLqBwAArp7MBCFJ2t/fV7fbHWkV8n1fvu+no8nCMBxZQiPpGD28FEcYhup0Omo0GiutPwAAuFwy00dIej1nUK/Xk+d5sm1bYRjK87yRDs9RFGkwGKR9iSzLUhRFevjwoRqNhlzXlW3b55p3CAAAmClTQUh6HYZardbU7UdHRyOvEXoAAMA8MvVoDAAAYJUIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGCtzo8ZW7eCHH+nGjfFTfd/7w2/qK3/0rRXXCAAAs+3t7Wlvb2/stpcvXy70WMYHoZ2vPdGdt7+87moAAIDP7O7uand3d+y2IAjOvezWNDwaAwAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjGb/EBmuNAQCQLaw1tkKsNQYAQLaw1hgAAMAKEIQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFjGrzXGoqsAAGQLi66uEIuuAgCQLSy6CgAAsAIEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwlvFrjbHoKgAA2cKiqyvEoqsAAGQLi64CAACsAEEIAAAYiyAEAACMRRACAADGIggBAABjZS4IBUGgUqkkz/NUqVTUbrdn2q/dbiufz+vatWvK5/PqdrtLrikAALjsMjV8PgxD5fN59Xo9OY4jScrlchoMBiqXyxP3q9fr6nQ6qlQq6vf7qtfrcl1XnU5HhUJhVdUHAACXTKZahCqVigqFQhqCJKUtQ9N88skn6nQ6KpfL8n1fvV5PkuT7/lLrCwAALrfMBKEoitTtduW67sjr29vbkqRmszl2v263eyrwOI4jx3EUhuFyKgsAAK6EzAShw8NDSZJt2yOvJ61DnU5n7H6FQuHUPolJrwMAAEgZ6iOUtN5YljV1+3nKO+uRmiS9+tVLHb/693OVPez69Td04/rNufcHAMAkx8fHOj4+nnv/Fy9eLLA2GQpC/X5fkrS1tTV2exRFM5fVbrdl2/bUDtaJp3//ZzOXO879d97Xu84HFyoDAABT1Go1PXnyZN3VSGUmCOVyOUnSYDAYu/08j7lqtZpardZM7/3gT/5aX7r9BzOXfdL162/MvS8AAKZ59OiRPvzww7n3f/bsme7fv7+w+mQmCCVBZ1LLz6xByPM87e/vz/z+m2+8qY2bvzfTewEAwMVsbGxoY2Nj7v1v3bq1wNpkqLN0MjrsZF+g5Pd8Pn9mGc1mU67rjgy/BwAAmCQzQciyLDmOc2p0WDJD9M7OztT9kxmoT06gGATBAmsJAACukswEIUna399Xt9sdaRXyfV++76ejycIwVC6XG1lCo9vtqlarSXrdKpT8VCqVdFg+AADASZnpIyS9njOo1+vJ8zzZtq0wDOV53sjoryiKNBgM0r5EQRCkkzCOGy5/dHS0kroDAIDLJ1NBSHodhqaN+HIcZyTcOI6jOI5XUTUAAHDFZOrRGAAAwCoRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFbmRo2t2sEPP9KNG+On+r73h9/UV/7oWyuuEQAAZtvb29Pe3t7YbS9fvlzosYwPQjtfe6I7b3953dUAAACf2d3d1e7u7thtQRDMtOzWrHg0BgAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjGb/WGIuuAgCQLSy6ukIsugoAQLaw6CoAAMAKEIQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFjGrzXGoqsAAGQLi66uEIuuAgCQLSy6CgAAsAIEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwlvFrjbHoKgAA2cKiqyvEoqsAAGQLi64CAACsAEEIAAAYiyAEAACMRRACAADGIggBAABjZW7UWBAEqtVqsm1bURTJdV0Vi8WZ9o2iSLVaTZLk+/4yqwkAAK6ATAWhMAyVz+fV6/XkOI4kKZfLaTAYqFwuT9232+2q0Wio3W6f+V4AAAApY4/GKpWKCoVCGoIkyfM8VSqVM/ctFApqtVrLrB4AALhiMhOEoihSt9uV67ojr29vb0uSms3mOqoFAACusMwEocPDQ0mSbdsjryetQ51OZ+V1AgAAV1tm+giFYShJsixr6vZFe/Wrlzp+9e9z73/9+hu6cf3mAmsEAMDVdXx8rOPj47n3f/HixQJrk6Eg1O/3JUlbW1tjt0dRtJTjPv37P7vQ/vffeV/vOh8spC4AAFx1tVpNT548WXc1UpkJQrlcTpI0GAzGbj/5yGxRPviTv9aXbv/B3Ptfv/7GAmsDAMDV9ujRI3344Ydz7//s2TPdv39/YfXJTBBKgs6klp9lBaGbb7ypjZu/t5SyAQDAqI2NDW1sbMy9/61btxZYmwx1lk5Gh53sC5T8ns/nV14nAABwtWUmCFmWJcdxTo0O63a7kqSdnZ11VAsAAFxhmQlCkrS/v69utzvSKuT7vnzfT0eThWGoXC6XBqRhy+pQDQAArqbM9BGSXs8Z1Ov15HmebNtWGIbyPG9kyYwoijQYDE6FniAI1Gg0JEkHBwdyXVeFQmHicHwAAIBMBSHpdRiatlSG4zg6Ojoa+3qj0UjDEAAAwFky9WgMAABglQhCAADAWAQhAABgLIIQAAAwFkEIAAAYK3Ojxlbt4Icf6caN8VN93/vDb+orf/StFdcIAACz7e3taW9vb+y2ly9fLvRYxgehna890Z23v7zuagAAgM/s7u5qd3d37LYgCBa67BaPxgAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWMYvsYGM+KfH667BYnz18bprAAA4B+ODEIuuAgCQLSy6ukIsugoAQLaw6CoAAMAKEIQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLGMX2KDtcYAAMgW1hpbIdYaAwAgW1hrDAAAYAUIQgAAwFjGPxpDNjz+m3fXXYWFePzVddcAAHAetAgBAABjEYQAAICxCEIAAMBYBCEAAGAsY4PQq1evJEm//u2v1lwT/Po3r/Tfg6f69W9erbsqxjs+Ptbjx491fHy87qoYj2uRLVyP7Eju38n/XpTxQei3v/n1mmuC3/zmV/rRs/+q3/yGULpux8fHevLkCX/sM4BrkS1cj+wgCAEAACwIQQgAABjL+AkV//Z/1PTGjS+M3caiqwAArN60RVd/8YtfLPRYxgehb/3nR/qPd/7TuqsBAAA+M23R1R//+Me6f//+wo7FozEAAGAsghAAADAWQQgAABiLILRk//N//e2lLn9Vx1iFVXyOSZ37Lkv5q7KKz3FVjrFsV+U8cS3MOsYiEYSW7JP//d8udfmrOsYqrOJzEIRmc1X+GF+F63FVzhPXwqxjLFLmRo0FQaBarSbbthVFkVzXVbFYXNp+AADAXJkKQmEYKp/Pq9fryXEcSVIul9NgMFC5XF74fgAAwGyZejRWqVRUKBTSMCNJnuepUqksZT8AAGC2zAShKIrU7Xbluu7I69vb25KkZrO50P0AAAAy82js8PBQkmTb9sjrSStPp9MZ+5hr3v2ApXj5/6R/enx5y/93VtYGYJbMBKEwDCVJlmVN3b6o/X75y19Kkv5t0D9HLU/7nes3dON33pi4/de/PtZPfvp/LnSMaZZd/iqO8epXLyVJ//bp/9XNN95c2nFWca5+8tMbqvj/4dKWn1yLZ8+e6datW0s7zsuXLxUEwdLKvwrHePHihSSuRVaOsYrrcRXO0yzHePXqlV69ejV3+f/yL/8i6fP7+IXFGVGtVmNJca/XO7VNUmzb9kL3e/r0aSyJH3744Ycffvi5hD9Pnz69WPD4TGZahHK5nCRpMBiM3X7y0ddF9/vGN76hp0+f6s6dO/rCF8avPj+Lmzdv6ubNm3PvDwCASS7aIvTLX/5SP/nJT/SNb3xjIfXJTBBKAksURVO3L2q/t99+W++///75KgkAAK6UzIwaS0Z5nezTk/yez+cXuh8AAEBmgpBlWXIcR51OZ+T1brcrSdrZ2VnofgAAAJkJQpK0v7+vbrc70rrj+758309HhYVhqFwulwadWfcDAAA4KTN9hKTXc//0ej15nifbthWGoTzPG5kHKIoiDQaDkT5Bs+yXYE2y7Gi326rVagqCQI7jyPd9FQqFdVcLet2iWiqVdHR0tO6qGC8MQ7XbbUlSuVzmH3cr1G631el0ZFmWwjCUbdvyfX/d1bryoihSrVaTpLHne+H38YWMPbsk+v1+LI0OtbdtO240GmuslZl8348LhULcaDTSKRAkxZ1OZ91VQ/z6/xeWZa27Gkbr9/txsViMC4VC3O/3110d47RardhxnJHXCoVCXK1W11QjM3Q6nbhYLMaS4nK5fGr7Mu7jRgWhQqEQFwqFkdcajUZsWB7MhGKxOPJ7r9eLJZ26Pli9arUaFwoFgtAa9Xq92LKssTcCrEahUDh1/n3fnzg3HRZrUhBaxn08U32Elok1ybKj2+2eau50HEeO40ycCRyr0e12dfv27ZEFjLFaURTpwYMHsm1bjUZj3dUx1mAwGOmLKkn9fn/ilCxYvmXdx40JQrOsSYbVKBQKZ84LhfVoNBqqVqvrrobRPM9TFEX0RVmzSqWiMAxVKpUkve6XcnBwwHVZo2Xdx40JQvOuSYbVGf6jg9XzPI8/8hmQ/Ku20+kon89rc3NTruvyN2rFyuWyyuWy2u22crmcPM/T8+fPaS1do2Xdx40JQv3+68VVt7a2xm6fNDM1VqPdbsu27bEj/bB8QRDo9u3btMitWbJQpeM4qlQq6vV66vV66bQh/J1arUajkT6y73a7px6VYbWWdR83JgjNuyYZVqNWq6nVaq27Gsaq1Wo8EsuA5F+0lUol/Zs03FcoGVKM1XBdV5VKJR1CXyqV0qkMsHrLuo9nah6hZZp3TTIsn+d52t/f5xqsied5px69JP+d/C/XZjUmNfkn82vxeGx1KpWKJKWt1M+fP9fdu3f18OFD5p5bk2Xdx41pEWJNsmxqNptyXZfn7mvU7XZVqVSUy+XSn3a7rSiKlMvl6Le1QsnfqeQRwEmTHglg8Q4ODkb+LlmWJd/3FUVR+ggTq7Ws+7gxQYg1ybInaWI+OZs0f2RWq9frKX49p1j6U61WZVmW4jhWr9dbdxWNYVmWCoXCqb4oyb+A+Qfb6mxtbZ1qeUj+VjG793os6z5uTBCSWJMsS7rdbtrfodlspj+VSiUdIgmYyPd9BUEwEoaazaYcx2EwwQpVKhUdHByMhKF2uy3HcXhUvGTTOj0v4z5+7bMZHI0xvEZJGIZyXZc/LisWBMHUf9keHR0RTNfM8zw1m03WGluTIAjStRMty1IURUyuuAbNZlOtVit9RJbM78Tfp+UJgkCNRkPNZlOWZWl/f1+FQmHknC/6Pm5cEAIAAEgY9WgMAABgGEEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAwJUThqGazebUWYqvuiiK1Gw2Waz3DAQhAMCVUq/XlcvlVKlUNBgM1l2dmSSziZdKJeVyOdXr9QuV12w2dffuXVUqFaPD4CxurLsCAAAsUrVa1SeffJIu7Jx1QRDowYMH6ZI2nuep3+9fqMxyuax+v3/hQHVSGIba2tq6UsuMEIQAAFfO1tbWuqsws1qtNlJf3/cXUu7t27cXUs6wUqmkVqt1pYIQj8YAAFijIAjWXYWZlEqlS1PX8yAIAQAuJOmUm8/n1W631e12lc/nde3aNZVKpfR97XZbm5ubunbtWnpD7Xa7KpVKI+9NynNdN+3s67quNjc35bpu2ucl6Qu0ubkpz/Mm1q1SqWhzc1Obm5uqVCqn3hMEgUqlklzXVS6XO1VWu92W67rqdrtqNpsTy5l0bM/z5LpuWkai2WyqVCopDEOFYahSqaRSqTTynmnnOqlPPp/X5uamSqXS2P5Ag8Egfd/JazJrXdvtdnrNKpXKqVB01v6zfkdOllWpVJTL5dRsNs8833OLAQC4gH6/HxeLxVhSXCgU4mq1Gvd6vbhcLseSYt/30/cmr/V6vZH9JcXFYjH9PXnfcHmdTid9rVwux51OZ+TYw2UO718ul+NGoxE7jpO+luj1eiO/t1qtWFJcLpfT323bTl+rVqux4zix4zhTz0mv14styxqpU6PROHU+4jiObduObdue6Vwnn2v43LRarfQcDJfj+376Pt/3J16TWetarVZjSXG/3z/3Zz3Pd6RYLMbVanWkrJPnbJEIQgCAC0sCxMkb1sngkdxMh2+aR0dHI0Eojl/fXIcDSSIJM8M34+S94wJXq9Ua2T8JNZ1OJy1vuC5xHMeWZcWS4qOjoziOPw8UwzfnsziOM/K5p9X/PEFouD6NRmPk9UKhMPKZJ73v5DWZta6TgtCs+8/6HbEs69S5XmYQ4tEYAGBhxnWivcgQ9pPl2bYtabQzdPLauJFWjuOM/J480up0OgrDUEEQqFarpY+lhh/THB4ejtTh3r17M9U5KffksYeP32g0ZiprmuRznyy70+mMvL69vT3yu2VZ6dxCF63rPPuf9R2xbVv1en1kxFu1Wp1Yh4ti1BgAwBiFQkHS5zdwSWq1WjPtO+tIqWkdipNQsoxJDpMwcp6yL1rXZXzWVqulfD4vz/PUaDTUarXGBq1FoUUIAGCMJMzYtj3SKrIM4zouJ8dfxvD+pMyTLUWzuGhdF/lZbdvW8+fPVSgUFIah8vn8UjtLE4QAAMZIbtj37t1LA8OkiRenjd6aJmm9GLd/cvxcLjdX2dMkj5fy+fzM+1y0rsv4rGEYyrIsdTqdtLVullF68yIIAQBWJpnkb7gVJvnvVSwF0e12Zdu2isVi+pjM87xTj3gu0gJh27Ycx0mHxQ87PDyUZVkql8vpa4PBYCFLgbTb7ZGyP/3007T8RdVVGr1O8+x/luEJJYvFYtrHaFktdwQhAMCFzXojT1oQPM9L58FJbnTdbleu604tL7kJD29P/nv4teSxzMnAlfQ5Sd6TdMLN5/MqlUqq1+tyXVf9fj8NSskxzxPUktmXh1syoiiS7/va399fyMzMw52QoyhSo9HQ/v7+mftFUTRyrmata9Ky02g0FIZh2pI26/6zfkcODg5GrlsURbJte65HfjNZ2ng0AIARer1eOlTatu240+nER0dHI3PeDA9/9n0/tixrZJi0bdvp3DLJ3D6SYsuy0uHgydw0+myofa/XG5mfxrKsdKj40dFRXK1W40KhkM4lVC6X0yHxw3zfT4fV27Y9Mtx8eB6hk9vOcnR0FBeLxZHjDw/VH55HR59NFZAM659meDi/4zhxsViMi8XiyL6tViudBiCZIuDkNRkeon5WXROO48SWZZ2a1mCWzzrrd6RQKKTfh2q1GheLxbHXbVGuxXEcLydiAQCARavX6/I8T51OJ221wvx4NAYAAIxFEAIAAMYiCAEAcElEUZTOHD3rRJCYjj5CAABcEsPLTiSWufyECQhCAADAWDwaAwAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACM9f8Bu4JaNy15zYUAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# number of brem vtx with E>x*E_0\n",
|
|
"\n",
|
|
"number_velo = ak.to_numpy(\n",
|
|
" energy_emissions[energy_emissions.quality == 1][\"velo_length\"]\n",
|
|
")\n",
|
|
"number_rich = ak.to_numpy(\n",
|
|
" energy_emissions[energy_emissions.quality == 1][\"rich_length\"]\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" number_velo,\n",
|
|
" bins=10,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"velo\",\n",
|
|
" range=[0, 10],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" number_rich,\n",
|
|
" bins=10,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"rich\",\n",
|
|
" range=[0, 10],\n",
|
|
")\n",
|
|
"plt.xlim(0, 10)\n",
|
|
"plt.title(\"number of photons emitted\")\n",
|
|
"plt.xlabel(\"number of photons\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' \\nphoton cut = x*E_0\\neffs, all photons included: x=0\\nfound in velo/(found + lost in velo)\\nVELO energy emission, eff: 0.8446167611094543\\nRICH1+UT energy emission, eff: 0.7961586121437423\\neff von e die nicht strahlen: 0.7954674220963173\\n'"
|
|
]
|
|
},
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\" \n",
|
|
"photon cut = x*E_0\n",
|
|
"effs, all photons included: x=0\n",
|
|
"found in velo/(found + lost in velo)\n",
|
|
"VELO energy emission, eff: 0.8446167611094543\n",
|
|
"RICH1+UT energy emission, eff: 0.7961586121437423\n",
|
|
"eff von e die nicht strahlen: 0.7954674220963173\n",
|
|
"\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "tuner",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|