1369 lines
412 KiB
Plaintext
1369 lines
412 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from mpl_toolkits import mplot3d\n",
|
|
"import awkward as ak\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"import mplhep\n",
|
|
"\n",
|
|
"mplhep.style.use([\"LHCbTex2\"])\n",
|
|
"plt.rcParams[\"savefig.dpi\"] = 600\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"31836 6689\n",
|
|
"38525\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
|
|
"file = uproot.open(\n",
|
|
" \"/work/cetin/LHCb/reco_tuner/data/tracking_losses_ntuple_B_upstream.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
|
|
")\n",
|
|
"\n",
|
|
"# selektiere nur elektronen von B->K*ee\n",
|
|
"allcolumns = file.arrays()\n",
|
|
"found = allcolumns[\n",
|
|
" (allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromB)\n",
|
|
"] # B: 9056\n",
|
|
"lost = allcolumns[\n",
|
|
" (allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromB)\n",
|
|
"] # B: 1466\n",
|
|
"\n",
|
|
"electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n",
|
|
"\n",
|
|
"print(ak.num(found, axis=0), ak.num(lost, axis=0))\n",
|
|
"print(ak.num(electrons, axis=0))\n",
|
|
"# ak.count(found, axis=None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{all_endvtx_types_length: 7,\n",
|
|
" all_endvtx_types: [101, 101, 101, 101, 101, 101, 0],\n",
|
|
" all_endvtx_x_length: 7,\n",
|
|
" all_endvtx_x: [-6.97, -52.9, -52.9, ..., -1.71e+03, -2.14e+03, -3.57e+03],\n",
|
|
" all_endvtx_y_length: 7,\n",
|
|
" all_endvtx_y: [-0.89, -6.75, -6.75, -7.08, -66.1, -72.6, -39.5],\n",
|
|
" all_endvtx_z_length: 7,\n",
|
|
" all_endvtx_z: [112, 859, 859, 895, 8.7e+03, 9.68e+03, 1.26e+04],\n",
|
|
" brem_photons_pe_length: 6,\n",
|
|
" brem_photons_pe: [2.62e+03, 812, 2.54e+03, 1.86e+03, 3.12e+03, 241],\n",
|
|
" brem_photons_px_length: 6,\n",
|
|
" brem_photons_px: [-161, -49.7, -156, -114, -1.18e+03, -101],\n",
|
|
" brem_photons_py_length: 6,\n",
|
|
" brem_photons_py: [-18.9, -6.92, -21.6, -16.8, -20.9, -0.26],\n",
|
|
" brem_photons_pz_length: 6,\n",
|
|
" brem_photons_pz: [2.61e+03, 810, 2.54e+03, 1.86e+03, 2.89e+03, 219],\n",
|
|
" brem_vtx_x_length: 6,\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -52.9, -55.2, -1.71e+03, -2.14e+03],\n",
|
|
" brem_vtx_y_length: 6,\n",
|
|
" ...}\n",
|
|
"---------------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" all_endvtx_types_length: int32,\n",
|
|
" all_endvtx_types: var * float32,\n",
|
|
" all_endvtx_x_length: int32,\n",
|
|
" all_endvtx_x: var * float32,\n",
|
|
" all_endvtx_y_length: int32,\n",
|
|
" all_endvtx_y: var * float32,\n",
|
|
" all_endvtx_z_length: int32,\n",
|
|
" all_endvtx_z: var * float32,\n",
|
|
" brem_photons_pe_length: int32,\n",
|
|
" brem_photons_pe: var * float32,\n",
|
|
" brem_photons_px_length: int32,\n",
|
|
" brem_photons_px: var * float32,\n",
|
|
" brem_photons_py_length: int32,\n",
|
|
" brem_photons_py: var * float32,\n",
|
|
" brem_photons_pz_length: int32,\n",
|
|
" brem_photons_pz: var * float32,\n",
|
|
" brem_vtx_x_length: int32,\n",
|
|
" brem_vtx_x: var * float32,\n",
|
|
" brem_vtx_y_length: int32,\n",
|
|
" brem_vtx_y: var * float32,\n",
|
|
" brem_vtx_z_length: int32,\n",
|
|
" brem_vtx_z: var * float32,\n",
|
|
" endvtx_type: int32,\n",
|
|
" endvtx_x: float64,\n",
|
|
" endvtx_y: float64,\n",
|
|
" endvtx_z: float64,\n",
|
|
" energy: float64,\n",
|
|
" eta: float64,\n",
|
|
" event_count: int32,\n",
|
|
" fromB: bool,\n",
|
|
" fromD: bool,\n",
|
|
" fromDecay: bool,\n",
|
|
" fromHadInt: bool,\n",
|
|
" fromPV: bool,\n",
|
|
" fromPairProd: bool,\n",
|
|
" fromSignal: bool,\n",
|
|
" fromStrange: bool,\n",
|
|
" ideal_state_5000_qop: float64,\n",
|
|
" ideal_state_5000_tx: float64,\n",
|
|
" ideal_state_5000_ty: float64,\n",
|
|
" ideal_state_5000_x: float64,\n",
|
|
" ideal_state_5000_y: float64,\n",
|
|
" ideal_state_5000_z: float64,\n",
|
|
" ideal_state_770_qop: float64,\n",
|
|
" ideal_state_770_tx: float64,\n",
|
|
" ideal_state_770_ty: float64,\n",
|
|
" ideal_state_770_x: float64,\n",
|
|
" ideal_state_770_y: float64,\n",
|
|
" ideal_state_770_z: float64,\n",
|
|
" ideal_state_9410_qop: float64,\n",
|
|
" ideal_state_9410_tx: float64,\n",
|
|
" ideal_state_9410_ty: float64,\n",
|
|
" ideal_state_9410_x: float64,\n",
|
|
" ideal_state_9410_y: float64,\n",
|
|
" ideal_state_9410_z: float64,\n",
|
|
" isElectron: bool,\n",
|
|
" isKaon: bool,\n",
|
|
" isMuon: bool,\n",
|
|
" isPion: bool,\n",
|
|
" isProton: bool,\n",
|
|
" lost: bool,\n",
|
|
" lost_in_track_fit: bool,\n",
|
|
" match_chi2: float32,\n",
|
|
" match_dSlope: float32,\n",
|
|
" match_dSlopeY: float32,\n",
|
|
" match_distX: float32,\n",
|
|
" match_distY: float32,\n",
|
|
" match_fraction: float32,\n",
|
|
" match_teta2: float32,\n",
|
|
" match_yCorr: float32,\n",
|
|
" match_yCorr_def: float32,\n",
|
|
" match_zMag: float32,\n",
|
|
" match_zMag_def: float32,\n",
|
|
" mcp_idx: int32,\n",
|
|
" mother_id: int32,\n",
|
|
" mother_key: int32,\n",
|
|
" originvtx_type: int32,\n",
|
|
" originvtx_x: float64,\n",
|
|
" originvtx_y: float64,\n",
|
|
" originvtx_z: float64,\n",
|
|
" p: float64,\n",
|
|
" p_end_scifi: float64,\n",
|
|
" p_end_ut: float64,\n",
|
|
" p_end_velo: float64,\n",
|
|
" p_upstream: float64,\n",
|
|
" phi: float64,\n",
|
|
" pid: int32,\n",
|
|
" pt: float64,\n",
|
|
" px: float64,\n",
|
|
" py: float64,\n",
|
|
" pz: float64,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" scifi_hit_pos_x_length: int32,\n",
|
|
" scifi_hit_pos_x: var * float32,\n",
|
|
" scifi_hit_pos_y_length: int32,\n",
|
|
" scifi_hit_pos_y: var * float32,\n",
|
|
" scifi_hit_pos_z_length: int32,\n",
|
|
" scifi_hit_pos_z: var * float32,\n",
|
|
" track_p: float64,\n",
|
|
" track_pt: float64,\n",
|
|
" tx: float64,\n",
|
|
" ty: float64,\n",
|
|
" ut_hit_pos_x_length: int32,\n",
|
|
" ut_hit_pos_x: var * float32,\n",
|
|
" ut_hit_pos_y_length: int32,\n",
|
|
" ut_hit_pos_y: var * float32,\n",
|
|
" ut_hit_pos_z_length: int32,\n",
|
|
" ut_hit_pos_z: var * float32,\n",
|
|
" velo_hit_pos_x_length: int32,\n",
|
|
" velo_hit_pos_x: var * float32,\n",
|
|
" velo_hit_pos_y_length: int32,\n",
|
|
" velo_hit_pos_y: var * float32,\n",
|
|
" velo_hit_pos_z_length: int32,\n",
|
|
" velo_hit_pos_z: var * float32,\n",
|
|
" velo_track_idx: int32,\n",
|
|
" velo_track_tx: float64,\n",
|
|
" velo_track_ty: float64,\n",
|
|
" velo_track_x: float64,\n",
|
|
" velo_track_y: float64,\n",
|
|
" velo_track_z: float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {all_endvtx_types_length: 7, ...} type='{all_endvtx_types_length: i...'>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"electrons[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{lost: True,\n",
|
|
" rad_length_frac: 0.129,\n",
|
|
" energy: 1.17e+04,\n",
|
|
" photon_length: 6,\n",
|
|
" brem_photons_pe: [2.62e+03, 812, 2.54e+03, 1.86e+03, 3.12e+03, 241],\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -52.9, -55.2, -1.71e+03, -2.14e+03],\n",
|
|
" brem_vtx_z: [112, 859, 859, 895, 8.7e+03, 9.68e+03]}\n",
|
|
"---------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {lost: True, rad_length_frac: ..., ...} type='{lost: bool, rad_leng...'>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"lost_e = electrons[\"lost\"]\n",
|
|
"e = electrons[\"energy\"]\n",
|
|
"brem_pe = electrons[\"brem_photons_pe\"]\n",
|
|
"brem_z = electrons[\"brem_vtx_z\"]\n",
|
|
"brem_x = electrons[\"brem_vtx_x\"]\n",
|
|
"length = electrons[\"brem_vtx_z_length\"]\n",
|
|
"rad_length = electrons[\"rad_length_frac\"]\n",
|
|
"\n",
|
|
"brem = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(electrons, axis=0)):\n",
|
|
" brem.begin_record()\n",
|
|
" brem.field(\"lost\").boolean(lost_e[itr])\n",
|
|
" brem.field(\"rad_length_frac\").append(rad_length[itr])\n",
|
|
" # [:,\"energy\"] energy\n",
|
|
" brem.field(\"energy\").append(e[itr])\n",
|
|
" # [:,\"photon_length\"] number of vertices\n",
|
|
" brem.field(\"photon_length\").integer(length[itr])\n",
|
|
" # [:,\"brem_photons_pe\",:] photon energy\n",
|
|
" brem.field(\"brem_photons_pe\").append(brem_pe[itr])\n",
|
|
" # [:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem.field(\"brem_vtx_x\").append(brem_x[itr])\n",
|
|
" brem.field(\"brem_vtx_z\").append(brem_z[itr])\n",
|
|
" brem.end_record()\n",
|
|
"\n",
|
|
"brem = ak.Array(brem)\n",
|
|
"brem[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"photon_cut = 0\n",
|
|
"photon_cut_ratio = 0.1\n",
|
|
"\n",
|
|
"cut_brem = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem, axis=0)):\n",
|
|
" cut_brem.begin_record()\n",
|
|
" cut_brem.field(\"event_id\").integer(itr)\n",
|
|
" cut_brem.field(\"lost\").boolean(brem[itr, \"lost\"])\n",
|
|
" cut_brem.field(\"rad_length_frac\").real(brem[itr, \"rad_length_frac\"])\n",
|
|
" cut_brem.field(\"energy\").real(brem[itr, \"energy\"])\n",
|
|
"\n",
|
|
" ph_length = brem[itr, \"photon_length\"]\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_photons_pe\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (brem[itr, \"brem_vtx_z\", jentry] > 9410\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\",\n",
|
|
" jentry] < photon_cut_ratio * tmp_energy):\n",
|
|
" ph_length -= 1\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_photons_pe\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_vtx_x\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (brem[itr, \"brem_vtx_z\", jentry] > 9410\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\",\n",
|
|
" jentry] < photon_cut_ratio * tmp_energy):\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_vtx_x\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_vtx_z\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (brem[itr, \"brem_vtx_z\", jentry] > 9410\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\",\n",
|
|
" jentry] < photon_cut_ratio * tmp_energy):\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_vtx_z\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" cut_brem.field(\"photon_length\").integer(ph_length)\n",
|
|
"\n",
|
|
" cut_brem.end_record()\n",
|
|
"\n",
|
|
"ntuple = ak.Array(cut_brem)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"48551\n",
|
|
"38525\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{event_id: 0,\n",
|
|
" lost: True,\n",
|
|
" rad_length_frac: 0.129,\n",
|
|
" energy: 1.17e+04,\n",
|
|
" brem_photons_pe: [2.62e+03, 2.54e+03, 1.86e+03, 3.12e+03],\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -55.2, -1.71e+03],\n",
|
|
" brem_vtx_z: [112, 859, 895, 8.7e+03],\n",
|
|
" photon_length: 4}\n",
|
|
"-----------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" event_id: int64,\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64,\n",
|
|
" photon_length: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {event_id: 0, lost: True, ...} type='{event_id: int64, lost: bool, ...'>"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"print(ak.sum(ak.num(ntuple[\"brem_photons_pe\"], axis=1)))\n",
|
|
"print(ak.num(ntuple, axis=0))\n",
|
|
"ntuple[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# nulltuple = ntuple[:7000]\n",
|
|
"# onetuple = ntuple[7000:14000]\n",
|
|
"# twotuple = ntuple[14000:21000]\n",
|
|
"# threetuple = ntuple[21000:28000]\n",
|
|
"# fourtuple = ntuple[28000:35000]\n",
|
|
"# fivetuple = ntuple[35000:42000]\n",
|
|
"# sixtuple = ntuple[42000:49000]\n",
|
|
"# seventuple = ntuple[49000:]\n",
|
|
"\n",
|
|
"# ntuple.nbytes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# cut = \"tenCut\"\n",
|
|
"# tree = \"Tree10\"\n",
|
|
"# with uproot.update(\"trackinglosses_B_photon_cuts.root\") as outFile:\n",
|
|
"# #outFile[\"README\"] = \"The Cuts are placed on the photons. noCut: 0*E, first: 0.05*E, second: 0.1*E, etc.\"\n",
|
|
"# outFile.mktree(tree, {cut + \"_event_id\": ntuple[\"event_id\"].type, cut + \"_lost\": ntuple[\"lost\"].type, cut + \"_rad_length_frac\": ntuple[\"rad_length_frac\"].type, cut + \"_energy\": ntuple[\"energy\"].type, cut + \"_brem_photons_pe\": ntuple[\"brem_photons_pe\"].type, cut + \"_brem_vtx_x\": ntuple[\"brem_vtx_x\"].type, cut + \"_brem_vtx_z\": ntuple[\"brem_vtx_z\"].type, cut + \"_photon_length\": ntuple[\"photon_length\"].type} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": nulltuple[\"event_id\"], cut + \"_lost\": nulltuple[\"lost\"], cut + \"_rad_length_frac\": nulltuple[\"rad_length_frac\"], cut + \"_energy\": nulltuple[\"energy\"], cut + \"_brem_photons_pe\": nulltuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": nulltuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": nulltuple[\"brem_vtx_z\"], cut + \"_photon_length\": nulltuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": onetuple[\"event_id\"], cut + \"_lost\": onetuple[\"lost\"], cut + \"_rad_length_frac\": onetuple[\"rad_length_frac\"], cut + \"_energy\": onetuple[\"energy\"], cut + \"_brem_photons_pe\": onetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": onetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": onetuple[\"brem_vtx_z\"], cut + \"_photon_length\": onetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": twotuple[\"event_id\"], cut + \"_lost\": twotuple[\"lost\"], cut + \"_rad_length_frac\": twotuple[\"rad_length_frac\"], cut + \"_energy\": twotuple[\"energy\"], cut + \"_brem_photons_pe\": twotuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": twotuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": twotuple[\"brem_vtx_z\"], cut + \"_photon_length\": twotuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": threetuple[\"event_id\"], cut + \"_lost\": threetuple[\"lost\"], cut + \"_rad_length_frac\": threetuple[\"rad_length_frac\"], cut + \"_energy\": threetuple[\"energy\"], cut + \"_brem_photons_pe\": threetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": threetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": threetuple[\"brem_vtx_z\"], cut + \"_photon_length\": threetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": fourtuple[\"event_id\"], cut + \"_lost\": fourtuple[\"lost\"], cut + \"_rad_length_frac\": fourtuple[\"rad_length_frac\"], cut + \"_energy\": fourtuple[\"energy\"], cut + \"_brem_photons_pe\": fourtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fourtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fourtuple[\"brem_vtx_z\"], cut + \"_photon_length\": fourtuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": fivetuple[\"event_id\"], cut + \"_lost\": fivetuple[\"lost\"], cut + \"_rad_length_frac\": fivetuple[\"rad_length_frac\"], cut + \"_energy\": fivetuple[\"energy\"], cut + \"_brem_photons_pe\": fivetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fivetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fivetuple[\"brem_vtx_z\"], cut + \"_photon_length\": fivetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": sixtuple[\"event_id\"], cut + \"_lost\": sixtuple[\"lost\"], cut + \"_rad_length_frac\": sixtuple[\"rad_length_frac\"], cut + \"_energy\": sixtuple[\"energy\"], cut + \"_brem_photons_pe\": sixtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": sixtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": sixtuple[\"brem_vtx_z\"], cut + \"_photon_length\": sixtuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": seventuple[\"event_id\"], cut + \"_lost\": seventuple[\"lost\"], cut + \"_rad_length_frac\": seventuple[\"rad_length_frac\"], cut + \"_energy\": seventuple[\"energy\"], cut + \"_brem_photons_pe\": seventuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": seventuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": seventuple[\"brem_vtx_z\"], cut + \"_photon_length\": seventuple[\"photon_length\"]} )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"31836\n",
|
|
"6689\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{event_id: 1,\n",
|
|
" lost: False,\n",
|
|
" rad_length_frac: 0.148,\n",
|
|
" energy: 1.28e+04,\n",
|
|
" brem_photons_pe: [7.42e+03, 1.88e+03],\n",
|
|
" brem_vtx_x: [-3.61, -61.5],\n",
|
|
" brem_vtx_z: [35.6, 8.49e+03],\n",
|
|
" photon_length: 2}\n",
|
|
"---------------------------------------\n",
|
|
"type: {\n",
|
|
" event_id: int64,\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64,\n",
|
|
" photon_length: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {event_id: 1, lost: False, ...} type='{event_id: int64, lost: bool,...'>"
|
|
]
|
|
},
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# data in cut_brem_found and cut_brem_lost\n",
|
|
"\n",
|
|
"length_found = ak.num(ntuple[~ntuple.lost][\"brem_photons_pe\"], axis=0)\n",
|
|
"length_lost = ak.num(ntuple[ntuple.lost][\"brem_photons_pe\"], axis=0)\n",
|
|
"print(length_found)\n",
|
|
"print(length_lost)\n",
|
|
"ntuple[1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"Z_found = ak.to_numpy(\n",
|
|
" ak.sum(ntuple[~ntuple.lost][\"brem_photons_pe\"], axis=-1,\n",
|
|
" keepdims=False)) / ak.to_numpy(ntuple[~ntuple.lost][\"energy\"])\n",
|
|
"Z_lost = ak.to_numpy(\n",
|
|
" ak.sum(ntuple[ntuple.lost][\"brem_photons_pe\"], axis=-1,\n",
|
|
" keepdims=False)) / ak.to_numpy(ntuple[ntuple.lost][\"energy\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmVklEQVR4nO3dT29j+Xof+Ee6jYmTjGmqemCAEAO4KWc3C5uqNjBeNVLkK4hU9QIuWtoriejOqlbuSIa5DCKW7z5VUpKtccU2amUD6RLjDLxLxHuBkkzASJfYzJ/xDGBqFgXykpKKIiWKh9T5fADhSq0fz3nEe/SH33p+z1m6vLy8DAAAAAB45JaTLgAAAAAAZkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAGAhtNvtaDQa0Ww2ky4FAFhQgjAAABZCpVKJ9fX1qNfrSZcCACwoQRgAwALa39+P9fX1WFpauvdbrVZL+ssZy5s3byIi4vnz57euTePzAwDcbuny8vIy6SIAALibdrsdX3zxRbTb7f5/KxQKUalUolAoDK378OFDtNvt+P777+Po6Kj/uZOTkygWi7Mse2KNRiPW19ejWCzGycnJ2I9Ly/MDAIzns6QLAADg7rLZbBQKhWg0Gv3/dnBwEKVSaeTj2u12rK+vR7PZXIiQ5/Xr1xER8eLFi4kel5bnBwAYj62RAAAL7urw+NtCnoiPAdHGxsbChDy9Dq2NjY2JH5uG5wcAGI+OMACABdZsNoe2/Y0T8vSsra0NPXZeNZvNaDabUSgUhrYzjvvYx/78AADj0xEGALDArt5BcXNzc6LHl8vlaZbzIO7TDZaG5wcAGJ+OMACABXZ8fDz08SQdT1tbW9Mu50HcdT5YRDqeHwBgfO4aCQCwwJaWlvrvFwqFOD09/eTao6OjO3VVJandbsfKykpks9m4uLiY+PGP/fkBACZjayQAwIIavBNixOitg/V6/Vp31CJ48+ZNREQ8f/584sem4fkBACYjCAMAWFC9LYM9o+ZZbW9vL+S8q8PDw4iYfLZXRDqeHwBgMrZGAgAsqPX19aGup5v+rKvX61GpVKLRaNz4+Xl2322Rj/35AQAmZ1g+AMACarfb17b+ra2tRUTEhw8f+mt6JhkSPy962yLvUnsanh8AYHKCMACABVSv14c+3tjYiEKhEBEfA54PHz5Es9nsh0F32Vp4X41GI969exelUqlf2yR62yLvcrfIRXh+AIDZszUSAGABbW5uxtHRUf/j09PTG8OmWq0W29vbn/z8Q9jf34/Xr1/3Q6a7nrt3x8e7/Ln60M9PrVbrB3UfPnyIQqEQ33zzTRSLxYlrBQBmR0cYAMACGux4ymaznwxxCoVC/21Wdnd3o1Qqxfr6+p3P3QuxRt3pcZSHfH7K5XK8e/cuTk5O+o+rVCqxvr4eh4eHd64ZAHh47hoJALBgGo3G0Hyr58+ff3Jts9lMJJh59+5dRNx99lbvjo932Rb5kM/P9vZ21Ov1ePXq1VB4tre3F8ViMTY3N6PZbE5cMwAwG4IwAIAFc3X+1aj5Vk+fPo3t7e2HLuma4+PjiPjYPXUXva/xLkHaQz0/zWYzarVaZLPZG8Oz3nEqlcoE1QIAs2RGGADAgllfXx+6I+I8/jm3srIS7XY7Li4uIpvNTvTYer0e5XI5SqVSP1CbxEM9P9vb21Gr1WJjY6M/H2xQs9ns35nyLl83APDwdIQBACyQdrs9FPLcdevh4CD5aettTSwWi3cKg3oh013u5PiQz8+bN28iIuLLL7+88TGDWyVrtdqdzgsAPCxBGADAArm67e8uWw9rtVocHBzc+LlGoxGVSiU2NzdjbW2tH0bVarVYW1uLpaWlWFtbGxmk3bSt8ejoKNbX12NpaSn29/dH1tcLnEbN9rrt3D3Ten6azWZ/7tiocK8Xhp2enk58XgDg4QnCAAAWyNWtgpN2PNXr9dje3v7kHKtisRjffPNN1Ov1aDabUS6X+7OvDg8PY3d3N5rNZmxubg51Xt1UYy+EqlQq8fr1636to2Zo3beb7KGen8Hh+0+ePPnk43s1G5gPAPNJEAYAsEB63VI9xWJx7MfWarUol8uRzWZHBkSDAdTJyUlUKpXY2tqKYrEYe3t7/a6nT3WVDXaE7e/vx5dffhmHh4fxzTff3Frjfe4WGfFwz89gsDUqoOuFZIIwAJhPnyVdAAAA4+l1S/UMzqQapdlsxvb2dj+g2traunV97zybm5vXztMLgj58+HDtsYMh2NHRURQKhf4dFnufG1V3b8vlTXdlvM2snh8AYHEJwgAAFkC73Y6vv/566L/1tii+ePGiH0612+1oNpvxww8/RLPZjEajca07qbfV8VN6gVCxWLyxc6wXNt0UNPW2JhaLxWg2m7G7u3vtc58KuZrNZjSbzSgUCmOHWIM1PeTzM1jPYNh2VS8cdMdIAJhPgjAAgDlXLpevDYHvOTo6mugOkMVi8daQqRdY3bQ9sRckRdx898ReLfV6PU5OToY+1/saPjXA/q7dYLN4fgb/202dcD2jQkIAIHmCMACAOXd1APxD64VKNwVSvRlc2Wz22ucHQ7Kr88B63V4Rnx5gf9f5YLN4frLZbGSz2Wi322N1hN3lbpUAwMMzLB8AgL7enK1PbU/c29sb+t9BgzPAroZko8K1iI8hWqPRiGw2O9GA+1l6/vx5RER8//33N35+MCSb9G6VAMBsCMIAAOgbFVjVarVoNptRKpVuHCjf6+i6acbW1e2WV+dy9TrNemHTPOp9XZ/ahjl4owBbIwFgPgnCAADo6wVWV+d/tdvtqFQqUSwWP7kVcVSINhgSNZvNa3O7Dg8PI+LjXSrnVbFYjI2NjWi32zeGYd9++21E3NwtBwDMh6XLy8vLpIsAAGA+LC0tRUTEyclJf4tis9mMcrkcpVIpDg4Obnxcs9mMtbW1yGazcXFxcePnIiIODg7i5ORk6DjtdjtWVlZufOy8abfbsbm5Gc1mM05OTvp3h9zf349KpRKHh4cTD/sHAGbHsHwAACLiV11b2Ww2vv322ygUCv2ZV4eHhyNndzWbzSgWizcOuu/NG/vw4UOcnp5eC9N62yIXYa5WNpuN4+PjqNVqsbm52R+gn81m4/T01JZIAJhzOsIAAIiIiEqlEvv7+7G7uzvT7X3NZrM/oL/XYQUA8BB0hAEAEBG/6ggrl8szPa8uKgBgVnSEAQAQEb+aD3ZxcaEzCwB4lNw1EgCAfjeY7YkAwGMmCAMASLl6vR6VSiUiPs7rqtfr/SH5AACPia2RJO4f/sN/GH/7t38bP/nJT+I3f/M3ky4HAFLnb//2b6/9t88++yw++8w4WQBg+v7mb/4m/u7v/i5+7dd+Lf7n//yfMz23IIzELS8vh8sQAAAA0mVpaSm63e5Mz+mf+UjcYAi2urqaYCWTabVa0e12Y3l5OXK5XNLlTETts7eodUcsbu2LWneE2pOwqHVHqD0Ji1p3hNqTsKh1R6g9CYtad4Tak7CodUdEnJ+fR0Qk0hQjCCNxy8vL/W/es7OzpMsZWz6fj/Pz88jlcgtVd4Tak7CodUcsbu2LWneE2pOwqHVHqD0Ji1p3hNqTsKh1R6g9CYtad4Tak7CodUdE/OQnP+nnALNmWD4AAAAAqfCog7Aff/wxXrx4ET/5yU/i937v96LT6SRdEgAAAAAJedRBWKVSicPDw7i8vIyTk5N4/vx50iUBAAAAkJBHPSOsXq/H0tJSRHwcwHZ8fJxwRQAAAAAk5VF3hD179mzoDgSlUinBagAAAABI0qPuCDs4OIiIiO+++y6KxWK8evUq4YoAAAAASMqjDsIifhWGAQAAAJBujz4IY/79+q//evz444/x67/+60mXkho7OzvR6XQik8kkXcrEFrX2Ra17kS3yc652JrHIz/mi1r6odS+6RX3eF7XuiMWufVEt8nOudiaRZA6wdDk4RAsSkM/n4/z8PFZXV+Ps7Czpcsa2qHXDpFzrpIHrnLRwrZMWrnXSYJGv8yRrf9TD8nt++ctfJl0CAAAAAAl79EHYv/t3/y7W1tbiL//yL5MuBQAAAIAEPfoZYd9//31cXl7Gmzdv4nd+53eSLocRWq1W5PP5kWt2dnZiZ2dnRhUBAAAAk6hWq1GtVkeuabVaM6rmurkOwv7kT/7kzo9tt9txenoatVotlpaW4vj4OP7wD/9witUxbd1uN87Pz0eu6XQ6M6oGAAAAmFSn07n1tX2S5joI29raiqWlpXsdo3cvgEajEb/85S/jt37rt6ZQGQ9heXk5crncyDXu4gEAAADzK5PJxOrq6sg1rVYrut3ujCoaNtdBWM/l5eXEgVgvABt8XK1W0xU2x3K53MLd6QIAAAD4lXFGGvXuGpmEhRmWf3l5OdFbxMcQbPC/HR4eJvxVAAAAAJCUue8I++KLL6JSqUShUJjocaenp7G/vx/r6+vx6tUrW+qYup2dneh0Oq4tHj3XOmngOictXOukhWudNHCd383SZa99ag4tLy9Hs9m811yv3/7t346nT5/Gv/23/3Z6hTFVvZbI1dVVWyMBAADgkUsyB5jrrZHZbPbew+3/zb/5N/HmzZv44z/+4+kUBQAAAMBCmusgbG9v797HKJVKUSgUYnd3N375y1/evygAAAAAFtJcB2Fff/31VI5TLBbj8vIy9vf3p3I8AAAAABbPXAdh0/b9998nXQIAAAAACXn0QdiPP/4Y9Xo9IiIajUbC1QAAAACQlEcdhP3lX/5lPH36NH788ceIiCgUCglXBAAAAEBSPku6gFH+8T/+x3d+bLPZjIiIy8vLiIhYWlqKUqk0lboAAAAAWDxzHYSdnp7G0tJSP8y6i8HHT+MulAAAAAAspoXYGrm0tHSnt4iPHWHZbDZ+/vOfRyaTSfgrAQAAACApc90RFvGrrY3ZbDaePHky9uOy2WwUCoX48ssv41/8i3/xUOUBAAAAsCDmPgjb39+Pf/7P/3nSZQAAAACw4OY6CCsUCkIw5trLl9NdBwAAADycuZ4RVqlUki4BAAAAgEdiroOwr7/+OukSAAAAAHgk5joIAwAAAIBpEYQBAAAAkApzPSz/vn788cfY2tqKo6OjWF9fj3q9HplMJumy+IRWqxX5fH7kmp2dndjZ2ZlRRQAAAMAkqtVqVKvVkWtardaMqrnuUQdhlUolDg8PIyLi5OQknj9/Hn/6p3+acFV8SrfbjfPz85FrOp3OjKoBAAAAJtXpdG59bZ+kRx2E1ev1WFpaioiIy8vLOD4+TrgiRlleXo5cLjdyjY4+AAAAmF+ZTCZWV1dHrmm1WtHtdmdU0bBHHYQ9e/YsXr161Q/DSqVSwhUxSi6Xi7Ozs6TLAAAAAO5onJFG+Xw+sa6xRx2EHRwcRETEd999F8ViMV69epVwRQAAAAAk5VEHYRG/CsMAAAAASLflpAsAAAAAgFkQhAEAAACQCo8+CPvxxx/jm2++SboMAAAAABL26IOw3/iN34jj4+P4vd/7vaRLAQAAACBBjz4Ii4h4+vRpnJycxL/8l/8y6VIAAAAASMhC3TXyl7/8ZbTb7fjw4cPYj2k0GnF4eBiXl5dxcHAQf/iHf/iAFQIAAAAwr+Y+CPv3//7fx8HBQdTr9Xsfq91u378gAAAAABbSXAdhf/RHfxR/8Ad/EBERl5eXdz7O0tJSLC0tRbFYnFZpAAAAACyYuZ0R9p/+03+KSqUSETeHYEtLS2MdZ2lpKS4vL+OLL76IV69eTbVGAAAAABbH3HaEHRwcRMTHuz5ubW3F2tpaFAqFiIi4uLiI58+fx8rKSrx58+bGx7fb7fj5z38ef/InfxKNRiN+53d+Z1alAwAAADCH5jYIq9frsba2Fv/lv/yXGz//9ddfx5/8yZ/E2tpa/NZv/daNa/7pP/2nERHxB3/wB/Gnf/qnD1UqAAAAAAtgboOwZrM5ckD+H/zBH8SrV69if38//vW//tefXFepVOK3f/u344//+I/jn/2zf/YQpQIAADANf/4y6QoW0++/TLoCWBhzOyMsIuLp06ef/NwXX3wRz549i4ODg+h0Op9cVygU4nd/93djd3d35DoAAADgfkY1tMA8mNsgrFgsxocPH0auqVQqcXl52b+z5Kd8+eWXcXl5Gf/qX/2raZYIAAAAqdZsNqNWq0W5XI6lpaUol8tJlwQjzW0QVigUolarjVxTKpXid3/3d+Pg4CD+83/+z59c9+7du4iIODw8nGqNAAAAkEbNZjPW19djfX09tre3dYKxMOY2CHv+/Hns7e3FH//xH8cvf/nL+LM/+7P4sz/7s2vrvvnmm7i8vIxisRj/4T/8h2uf/6M/+qNoNBoR8fEbFQAAALifQqEQJycncXFxEbu7u0mXA2Ob22H5GxsbkclkYnd3d+iban19Pf7jf/yPQ+uePXsW3333XWxsbESxWOzPFqvX60PhV6FQmN0XAAAAAClQLpdjf38/6TJgLHPbERYR8erVq7i8vIyIiMvLy7i8vIyTk5P4y7/8y6F1BwcH/fcbjUbUarWo1Wpxenraf/zS0lIUi8WZ1Q4AAABp8OTJk6RLuLPt7e2kS2DG5joI29jYiDdv3vTDrIiIbDYbv/M7vzO0rlAoxM9//vOhdREfw6+lpaX+4169evXgNQMAAADzr9dEQ7rMdRAW8TEMu7i4iIODg9jb2/vknK9SqRT/9b/+1/gn/+Sf9LvHem/FYjHevXsXmUxmxtUDAAAA86bZbOoGS6m5nRE26Dd+4zfi66+/vnVdoVCI4+Pj+PHHH/t3iiwUCvHFF188dIkAAADAAmi321Eul5Mug4QsRBA2qd/4jd+IZ8+eJV0GAAAAMEfa7XY8e/bsk7vNePzmfmskAAAA8Li02+3Y39+PcrkcKysrsbS0FCsrK7G+vh6VSmXsoKper0e5XI61tbVYWVnpv/X+26BGoxFffPFFNBqNof/emy++tLR07TE8PoIwAAAAYGZqtVqsrKxEpVKJcrkc3333XZyenvZvcLe/vx9ra2uxubk58jibm5tRLpdjc3MzTk9P4+LiIi4uLuL58+dRr9ej2WxGu93ury8UCvHdd9/F3t7e0HFOTk76b4eHh1P/epkvj3JrJAAAADB/KpVK7O/vRzabjZOTkygUCv3PFQqF2NjYiM3NzTg6Ooqjo6NYW1uLk5OTyGazQ8fZ39+Po6Oj2N3dja2traHPHRwcRERcuyNkNpuNYrEYHz58GPrvxWJxil8h805HGAAAAPDgarVa7O/vR0TE3t7eUAg26PDwsP+5ZrN5Y2dYL+z6/PPPbzxGr+vraugFgjAAAADgwVUqlYj42Jl1tYvrU2sjPs4Bq9frQ5/vzRB7/fr1jY/PZrOxsbFxn3J5pARhzI1WqxX5fH7kW7VaTbpMAAAAJlSr1frzuj7VCTZoa2traDvk1blevWM0Go0ol8tDs8AGHzPOuZiuarV662v7VquVWH1mhDE3ut1unJ+fj1zT6XRmVA0AAADTcnx83H9/3HCqVCrF0dFRRMS1jrBKpRLb29v9z33xxRext7c31GkmBEtGp9O59bV9kgRhzI3l5eXI5XIj12QymRlVAwAAwLT0tjJO4mqQ1W63+11iW1tbcXx83A/K2u12bG9vx97eXuzt7dkWmaBMJhOrq6sj17Rareh2uzOqaJggjLmRy+Xi7Ows6TIAAACYssGti+OGYmtra0Mff/jwYWi75OHhYezv7w/NE+sN1y+VSnFwcKArLAE7Ozuxs7Mzck0+n0+sa8yMMAAAAOBBDQZY4wZhT548Gfr4plBrd3c3Li4urnWA1ev1WFtbi0ajMXmxPGqCMAAAAOBBDYZY7Xb7xuH2V3348OHGx1+VzWbj8PAwTk5OolQqDX3u2bNnkxfLoyYIAwAAAB7Uixcvhj6u1Wq3Pub09LT//tWOr83NzWvri8ViHB8fx8HBQf+/tdvt/hwxiBCEAQAAAA9sY2NjaHvkYFj1KYN3ivzmm2+GPjcq3Nra2ord3d3+x4OdZSAIAwAAAB7cq1ev+u83m82hoOuqRqPRn++1t7c3FKL1jOoqK5fL/fevbpe8us3y6syycbZtsrgEYQAAAMCdXe24+lSQtLGxEXt7e/2PNzc3b1zbbrfj66+/jojr3V2DKpXKJ8/VC9FKpdK14Ovqx9vb29Fut6PZbMb29vZY2zZZXIIwAAAA4M6ubnN88+bNJ9fu7u7G4eFhZLPZaLfb8cUXX0StVotmsxnNZjNqtVqsr69Ho9GIvb29kVsoe4+/uk3y6OgoKpVKFIvFODw8/GQdPfV6PVZWVmJtbe3a53h8li4vLy+TLoJ0y+fzcX5+Hqurq3F2dpZ0ORN5+XK66wAAABZBr2urXq/f2JVVLBbj6dOnI4OsWq0Wh4eH8e7du2i325HNZqNQKMSLFy9ia2vrxu2QPZubm1Eul2Nvb6+/tbFQKMSHDx/i6dOnsbm5GVtbWyO/hkqlEkdHR9FsNqNYLMY333xzbSg/DyPJHEAQRuIEYQAAAJAeSeYAtkYCAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIhc+SLgAW2vu3Yy786uFqAAAAAMaiIwwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFT4LOkCAAAAICLi5cukK1hMnjcYn44wAAAAAFJBEAYAAABMTaPRiO3t7VhbW4ulpaVYWVmJ9fX1ODo6Srq0udVut6NWq0Wj0Ui6lEdPEAYAAABMRaVSifX19SiXy3F8fBxbW1vRbrej0WjE5uZm7O/vJ13i3Gg2m7G/vx/lcjlWVlZie3s73r17l3RZj54ZYQAAAMC91Wq12N/fj93d3djY2IiIiIODg/jw4UO/G+z4+Dh2d3eTLHMuHB0dxevXr6PRaESz2Uy6nFQRhAEAAAD3VqlUIiKiXC4P/ffDw8Mol8vRbDb7a9JuY2OjHxYuLS0lXE26CMIAAACAezk6Oop2ux0REU+ePLn2+ePj4xlXtDgKhYKusBkyIwwAAAC4l4ODg/772Ww2uULgFoIwAAAA4F50NLEoBGEAAADAvQjCWBSCMAAAAABSQRAGAAAATKTZbMbS0lL/bdDa2trQ50bdFbHdbsf+/n6Uy+VYWVmJpaWlWFlZifX19ahUKp/sNKvVarG+vn7recrl8o319Ab73/R17e/vx9raWjQajRvPt7a2Fpubm588xqe+xvX19VhZWYmVlZUol8uxv78/1uOZLkEYAAAAMJFCoRAnJydxcnJy7Y6QBwcH/c/13m5Sq9ViZWUlKpVKlMvl+O677+L09DRevXoVEdEPpDY3N689dmtrK05OTmJra2tkncfHx3F6ehp7e3ufXNNut6NSqcTa2lqsra0NBXDtdjvW19dje3u7H4w1m804OjqKL7744tYtob11lUolSqVSHB4exsnJSWxvb8fBwUGsra3Fhw8fRh6D6RKEAQAAABMrFotRLBajVCoN/fenT5/2P9d7u6pSqcT29nZks9k4PT2N3d3dKBaLUSgUYmNjI05OTmJjYyMiPoZJa2trN3Zg3RSS3aR3rJt8+PAhyuXyta/j3bt38cUXX0ShUOgHagcHB/27Yrbb7dje3v7kcWu1Wr++k5OT2Nvbi1Kp1P8aT09PI5vNjt1ZxnQIwgAAAICZqdVq/W2Be3t7USgUblx3eHjY/1yz2Rw79LrJkydPPvm5QqEQpVIpDg4Ohv57pVKJw8PDODw87AdYW1tb/Y61iIh6vX5jkNVoNPoh2d7e3o1hYMTHr5HZEoQtuGazGeVyOY6Oju51nKt7snvtp/V6fUqVAgAAwMeAKSIim83eurWxtzbiY+j00K9Re91eERGvXr261iUWcb277N27d9fWfP311/3jjfoaC4XC0Dl5eIKwBdVut2NzczPW1taiXq/feU9xvV7v78mO+JhG9/ZPNxqNKJfLUS6XtWoCAABwb7Varf/68lOdYIO2traGgqJRs75mabD2q3PC6vV6f57YTUHaVaO61Zg+QdiC6Q3xW1lZuXcXWL1e74dcW1tbcXx8fG2/crFYjHq9Huvr68IwAAAA7mVwsP44QVjEcJi0CLuWBrc7jvs1MjuCsAXSu93q4C1c76rXURbx8Rvz6l7ont438H33YwMAAMBtd1m8ydUwad6bNAbDurW1tQQr4SaCsAXRaDSiVCrF6elpHB8ffzK4Gtfm5mb/h8fgnuuret1hER+/mWu12r3OCwAAQHoNhljjhmJXw6S7jgaalcH65j20SyNB2IK4esvZp0+f3vlYzWZzKKF+/vz5yPUvXrzovz8qNAMAAIBRBud9jRuEXZ2hNe/bDQfDr9PT0+QK4UaCsAV1n7tKDA4XLJVKtx5r8I4Y7Xb73rPJAAAASKfBEKvdbo/VMTXYYTXvIVjE6EH6JE8QlkKD2xsHu8xGGfxGfv369dRrAgAA4PEb3HEUEWON3xnsqhps1JjELLdTDr7OrtfrtkfOGUFYylwdtP/ll1+O9bjBb2QdYQAAANzFxsbG0K6kceZfD472+eabb4Y+d3Xb5KdCp1l2Zl0N+4wYmi+CsJS5eqvZcdtKr66bxp0rAQAAeHxu67569epV//2rM6yvajQa/defe3t710b7XN3ldFOHWbPZvBZGPWSH2MbGxlBdtVrtk51vjUZjKKQzU+zhCcJS5vvvvx/6eNxZY59//vnQx+/evZtWSQAAACywq91Wt20F3NjYGJpdvbm5eeNj2u12fP311xERsbW1Fbu7uzcer1Qq9d+vVCqxvb0d9Xo9jo6OYnt7O9bW1q6FaJ/qEBt3G+Pg4296zOHh4dDH29vbsb293X9cs9mM/f39ePbs2VBd+/v7sb29rYvsAQnCUubqN/tdO8Kk1AAAAERc3944znbH3d3dODw8jGw2G+12O7744ouo1WrRbDaj2WxGrVaL9fX1aDQasbe3N/KYveP01Gq1KJfLsbm5GW/evInj4+OhsCziY2DWbDaHQqyrnWnHx8c3nm+cdYVCIU5PT4deS9dqtVhbW4ulpaVYW1uLb7/9Nr777ruh7Z2FQiGy2Wxsb29/8uvlfgRhKTOtfdGG/QEAAKRXs9mMzc3NWFtbi/39/aHP1ev1WFlZiXK5PLKzaWNjIy4uLuLg4CCePn0alUol1tbWYn19PQ4ODmJ7ezsuLi4+2QnWk81m4xe/+EVsbW31g6disRi7u7txcXHRD8EKhULs7u7G6elpnJyc9EOnRqMR5XI5yuXy0HF7wVUvlGo2mzeuq9frNz4PvTBsb28visViP6wrFAqxtbUVv/jFL6JYLPY/Pjk56a9fhLtjLqqly8vLy6SLYHLNZjPW1tb6Hx8cHMTW1tatj1taWhr6eNz/++v1+tA3+8bGxrVWz7vK5/Nxfn4eq6urcXZ2NpVjzsrLn74db93PvnrIMgAAAGBhJJkDfDbTs/FoPERHWKvVinw+f+/j7OzsxM7OzhQqAgAAAHqq1WpUq9V7H6fVak2hmrsRhKVMb//1NI4zbd1uN87Pz+99nE6nM4VqAAAAgEGdTmcqr9uTJAhLmSdPnkwlCBsc5jcty8vLkcvl7n2cTCYzhWoAAACAQZlMJlZXV+99nFarFd1udwoVTU4QljJ37eS6Gp49REdYLpdbuBlhAAAAkBbTGkXUmxGWBHeNTJmnT58OfTxud9iHDx+GPh4c1A8AAACwCARhKbO+vj70cbPZHOtxp6enQx/3bj8LAAAAsCgEYSlztSNs3CBssHMsm81GoVCYZlkAAAAAD04QljLFYnFovtf3338/1uPevXvXf/9qmAYAAACwCAzLT6Hnz59HrVaLiIhGozHWYwbXVSqVB6mr1WpFPp8fuWZag/kAAACA6atWq1GtVkeuabVaM6rmOkFYCm1vb/eDsHq9fuv6wTWFQuHB5oN1u91b7xrR6XQe5NwAAADA/XU6ncTuCDkOQdiCGvdujzcpFotRKpX6AdfR0VFsbGx8cv3h4WH//YfqBouIWF5ejlwuN3JNJpN5sPMDAAAA95PJZGJ1dXXkmlarFd1ud0YVDROELairQ+4nDcYODg5ibW0tIiK+/fbbTwZh7Xa73z1WKpVia2tr8mLHlMvl4uzs7MGODwAAADyscUYa5fP5xLrGDMtfQO12+1pn1uvXryc6RqFQ6Hd6NRqN2N/fv3Hds2fPIuLjnSIHO8MAAAAAFo0gbEG02+3Y3NyMcrkcKysr1zrCGo1GLC0tRblcjs3NzbGG4G9sbMTx8XFks9moVCr9x7Xb7ajX67G+vh6NRiOKxWL84he/GLrbJAAAAMCisTVyQTxUR1apVIqLi4vY39+P169fx7Nnz6Ldbkc2m42nT5/G4eHhyPlhAAAAAItCEEZEROzu7sbu7m7SZQAAAAA8GFsjAQAAAEgFQRgAAAAAqWBrJHOj1WpFPp8fuWac27ACAAAAyahWq1GtVkeuabVaM6rmOkEYc6Pb7cb5+fnINZ1OZ0bVAAAAAJPqdDq3vrZPkiCMubG8vBy5XG7kmkwmM6NqAAAAgEllMplYXV0duabVakW3251RRcMEYcyNXC4XZ2dnSZcBAAAA3NE4I43y+XxiXWOG5QMAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApMJnSRcAPa1WK/L5/Mg1Ozs7sbOzM6OKAAAAgElUq9WoVqsj17RarRlVc50gjLnR7Xbj/Px85JpOpzOjagAAAIBJdTqdW1/bJ0kQxtxYXl6OXC43ck0mk5lRNQAAAMCkMplMrK6ujlzTarWi2+3OqKJhgjDmRi6Xi7Ozs6TLAAAAAO5onJFG+Xw+sa4xw/IBAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKnyWdAHQ02q1Ip/Pj1yzs7MTOzs7M6oIAAAAmES1Wo1qtTpyTavVmlE11wnCmBvdbjfOz89Hrul0OjOqBgAAAJhUp9O59bV9kgRhzI3l5eXI5XIj12QymRlVAwAAAEwqk8nE6urqyDWtViu63e6MKhomCGNu5HK5ODs7S7oMAAAA4I7GGWmUz+cT6xozLB8AAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFLhs6QLgJ5WqxX5fH7kmp2dndjZ2ZlRRQAAAMAkqtVqVKvVkWtardaMqrlOEMbc6Ha7cX5+PnJNp9OZUTUAAADApDqdzq2v7ZMkCGNuLC8vRy6XG7kmk8nMqBoAAABgUplMJlZXV0euabVa0e12Z1TRMEEYcyOXy8XZ2VnSZQAAAAB3NM5Io3w+n1jXmGH5AAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEiFz5IuAHparVbk8/mRa3Z2dmJnZ2dGFQEAAACTqFarUa1WR65ptVozquY6QRhzo9vtxvn5+cg1nU5nRtUAAAAAk+p0Ore+tk+SIIy5sby8HLlcbuSaTCYzo2oAAACASWUymVhdXR25ptVqRbfbnVFFwwRhzI1cLhdnZ2dJlwEAAADc0TgjjfL5fGJdY4blAwAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCp8lnQB0NNqtSKfz49cs7OzEzs7OzOqCAAAAJhEtVqNarU6ck2r1ZpRNdcJwpgb3W43zs/PR67pdDozqgYAAACYVKfTufW1fZIEYcyN5eXlyOVyI9dkMpkZVQMAAABMKpPJxOrq6sg1rVYrut3ujCoaJghjbuRyuTg7O0u6DAAAAOCOxhlplM/nE+saMywfAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKnyWdAHQ02q1Ip/Pj1yzs7MTOzs7M6oIAAAAmES1Wo1qtTpyTavVmlE11wnCmBvdbjfOz89Hrul0OjOqhnn28uV01gAAwML685e3r/n9MdbAlHU6nVtf2ydJEMbcWF5ejlwuN3JNJpOZUTUAAADApDKZTKyuro5c02q1otvtzqiiYYIw5kYul4uzs7OkywAAAADuaJyRRvl8PrGuMcPyAQAAAEgFHWHAo2SOGAAAAFfpCAMAAAAgFQRhAAAAAKSCrZEAAAAwC3/+8vY1vz/GGuDOdIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBcPyAQAAWBzjDJyPMHQeuJEgDAAAANJKsEjKCMIAAABgXowbTM2jcWqfZqA26/PxKJgRBgAAAEAq6AgDUuvly+muAwCAubLI3WXwQHSEAQAAAJAKOsIAAACA+aKbjQciCAMAAODhGWwOzAFBGAAAADCaDi0eCTPCAAAAAEgFHWEAAADAbOgsI2GCMAAAANLJ3DJIHUEYAAAA82GRu4UWuXZIETPCAAAAAEgFHWEAt3j5cjprAABYQDq94FERhAEAAACP07hBpllwqSEIA5iCaXaE6S4DAAB4GGaEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACp4K6RAAAAN/nzl7ev+f0x1szaOHVHzGftAA9MRxgAAAAAqaAjDAAAII0WteMN4B4EYQAAAPNAMAXw4ARhAAAA3Ew4BzwygjAAAAAg3YS+qWFYPgAAAACpoCMMAACAuxunkwZgTgjCuKbZbMb29nZsb2/HxsZG0uUAAABMTkAH3EAQRl+73Y6vv/46jo6OIiJic3Mz4YognV6+nM4aAAAAhpkRRrTb7ahUKrGystIPwQAAAAAeGx1hKbe/vx8HBwdRKBSSLgUAAEZzVzcA7kkQlmKNRiNKpVLs7u5GREStVovt7e2EqwLm0aJu1xy3pnmsHQAAmD5BWIoVi8Whj58+fZpQJcCkFjWYAgAASJIgjL5sNpt0CcAjp0MLAABIkiAMAABgUYwzJw2ATxKEATxStk8CAAAME4QBAECauPMiACm2nHQBAAAAADALOsIAmDuz3tZpGykAAKSDIAwAAOAhGXAPMDcEYcyNVqsV+Xz+3sfZ2dmJnZ2dKVQETELHFAAAPG7VajWq1eq9j9NqtaZQzd0Iwpgb3W43zs/P732cTqczhWogHYRXybAVEyBhOrQA7qTT6UzldXuSBGHMjeXl5cjlcvc+TiaTmUI1wLwTFI1P8AYkyl0qAR6NTCYTq6ur9z5Oq9WKbrc7hYomJwhjbuRyuTg7O0u6DAAAAOAG0xpFlM/nE+ssE4QBwBh0VQEApJwO10dBEAYAzKVxg8VpBZCzPh8AALMnCAOAOaQDDUgVw+sBmBFBGABMiWAKAADmmyAMAJg5oSEAAEkQhDE3Wq1W5PP5kWumdYcKgMdgmmHSvB4LYGK2WQJJGvdn0CMeql+tVqNarY5c02q1ZlTNdYIw5ka327319qmdTmdG1QBwV4IwAID06nQ6t762T5IgjL52u53o+ZeXlyOXy41ck8lkZlQNqfD+7Xjr/tFXD1gEAEyRbigAEpbJZGJ1dXXkmlarFd1ud0YVDROE0ddsNoc+nnUwlsvl4uzsbKbnBAAAAKZnnJFG+Xw+sa4xQRgR8TH0qlQqQ//t9evXsbu7m1BFAPDImSHCY6ADDYAFIwhLsXa7HV9//XW02+2o1+vXPt9oNGJpaSlKpVJks9n45ptvolgsJlAp3MH7t0lXADxSU5uB9v6r8c73+1M6H/AwhIEAC0UQlmLZbDYODw+TLgMA7mWcYOqxD/Bf5OdgkWsHABaPIAxYPO/fJl0BafT+7e1r3FhhbglSZs9zDgDMI0EYAMAcEygBAEyPIIy50Wq1Ip/Pj1wzzt0nAAAAgGRUq9WoVqsj17RarRlVc50gjLnR7XZvvX1qp9OZUTUw4P3b29fMekvc+7e3r7FNDwAAmLFOp3Pra/skCcKYG8vLy5HL5UauyWQyM6oGAHiMDOePePmzr25f426lANxRJpOJ1dXVkWtarVZ0u90ZVTRMEMbcyOVycXZ2lnQZAAAAwB2NM9Ion88n1jUmCAMAmGfv396+ZopboRe1Y2qaNc3rsQCA+xOEAQDApN6/HXPhV9M535+/nM5xACDllpMuAAAAAABmQUcYwDS8f3v7GndxBBI01S16Y3UnjXnC92/HWPTVeMea1vlsNZ25cQb4R0S8/OnbhywDgBQQhAEAAA9m3JALAGZBEAYAwETGCjb+0YOXAQAwMUEYAADzbZpbMQGAVBOEMTdarVbk8/mRa3Z2dmJnZ2dGFQEA80AHGgAsjmq1GtVqdeSaVqs1o2quE4QxN7rdbpyfn49c0+l0ZlQNAHf2/u3ta9w8gnn2/u2Mj/XVrStmPkx+rC48ALiu0+nc+to+SYIw5sby8nLkcrmRazKZzIyqgQfw/m3SFcCnvX97+xrhFcy9WQ+mNwgfgKsymUysrq6OXNNqtaLb7c6oomGCMOZGLpeLs7OzpMsAAAAA7mickUb5fD6xrjFBGAAA0/f+bdIVcA86vQB4rARhAADAQhgnoJvanDQAHiVBGAAAv/L+bdIVpM7Ll0lXAADpIQgDAAC4gQ40gMdHEAbA7Lx/O946dyecrvdvk64AAADmgiAMAABgQehSA7gfQRjAY/X+7e1rdF4ttvdvk67gYb1/O9461zGL7v3bpCsAgNQQhAEAAI+GjikARhGEMTdarVbk8/mRa3Z2dmJnZ2dGFQE8kPdvb1+jy2l879/evmaaz+esz8d43r9NugIAGN+fv7x9ze+PsWYOVavVqFarI9e0Wq0ZVXOdIIy50e124/z8fOSaTqczo2oAAHisxuka4yMddsCkOp3Ora/tkyQIY24sLy9HLpcbuSaTycyoGgBS5/3bpCsAAFh4mUwmVldXR65ptVrR7XZnVNEwQRhzI5fLxdnZWdJlAAAAAHc0zkijfD6fWNeYIAwAAGAO2LIJ8PAEYQAAAHdkhhbAYhGEAXC7929vX7PId8l7/zbpCgBganSWAXyaIAwAAOABCaama9znUycecBNBGABMy/u3SVcAAACMsJx0AQAAAAAwCzrCAAAAmAu2kQIPTRAGAADAo+OOnsBNBGEAwHjev026grt7/zbpCgAeLcPrgUViRhgAAAAAqaAjDAAAgFSyfRLSRxDG3Gi1WpHP50eu2dnZiZ2dnRlVBJCg92+TrgAAACZWrVajWq2OXNNqtWZUzXWCMOZGt9uN8/PzkWs6nc6MqgEAAKbJHSEhHTqdzq2v7ZMkCGNuLC8vRy6XG7kmk8nMqBogUe/f3r7mH331wEUAAACTymQysbq6OnJNq9WKbrc7o4qGCcKYG7lcLs7OzpIuAwAAALijcUYa5fP5xLrG3DUSAAAAgFTQEQaQZu/fJl0BafX+bdIVPC7v396+xnZigDsZd7aZu0vCYtARBgAAAEAqCMIAAAAASAVBGAAAAACpYEYYAAAAzMA488bMGoOHJQgDAEiD92+TrgCAMYw7nH+sY/307dSOBY+FrZEAAAAApIIgDAAAAIBUsDUSgMfr/dukKwAAAOaIIAwAAADuaZqzvYCHIwgDYDrev33c5wMAABaeGWEAAAAApIIgDAAAAIBUsDWSudFqtSKfz49cs7OzEzs7OzOqCAAAAJhEtVqNarU6ck2r1ZpRNdcJwpgb3W43zs/PR67pdDozqgYAAACYVKfTufW1fZIEYcyN5eXlyOVyI9dkMpkZVQMAAABMKpPJxOrq6sg1rVYrut3ujCoaJghjbuRyuTg7O0u6DAAAAOCOxhlplM/nE+saMywfAAAAgFTQEQYAAACP0MuffXX7mp++fegyYK7oCAMAAAAgFXSEAQBM2/u3SVcAAMANdIQBAAAAkAqCMAAAAABSwdZIAAAASKlxBupHGKrP46EjDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKTCZ0kXAAAAAMy3lz/76vY1P3370GXAvekIAwAAACAVBGEAAAAApIIgDAAAAIBUMCOMudFqtSKfz49cs7OzEzs7OzOqCAAAgHGZI0ZERLVajWq1OnJNq9WaUTXXCcKYG91uN87Pz0eu6XQ6M6oGAAAAmFSn07n1tX2SBGHMjeXl5cjlciPXZDKZGVUDAAAATCqTycTq6urINa1WK7rd7owqGiYIY27kcrk4OztLugwAAADgjsYZaZTP5xPrGjMsHwAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKTCZ0kXAAAAADDo5c++un3NT98+dBk8QjrCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKnyVdAAAAAJAOL3/2VdIlkHI6wgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVHDXSOZGq9WKfD4/cs3Ozk7s7OzMqCIAAABgEtVqNarV6sg1rVZrRtVcJwhjbnS73Tg/Px+5ptPpzKgaAAAAYFKdTufW1/ZJEoQxN5aXlyOXy41ck8lkZlQNAAAAMKlMJhOrq6sj17Rareh2uzOqaJggjLmRy+Xi7Ows6TIAAACAOxpnpFE+n0+sa8ywfAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKlgWD4AAACwcF7+7Kvb1/z07UOXwYLREQYAAABAKugIAwAAAJg3f/7y9jW/P8YahugIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACp8FnSBQAAAAA8hJc/+2q8dT99+5BlMEd0hAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIhc+SLgAAAAAgSS9/9tXta3769qHLYAZ0hAEAAACQCoKwOba/vx/lcjlWVlZiaWkp1tbWYnNzM+r1+kzraDabUS6X4+joaKbnBQAAAJgmQdgcqtfrsbKyEpVKJSIiDg8P4/T0NPb29qLRaES5XI5yuRztdvtB62i327G5uRlra2tRr9fjw4cPD3o+AAAAgIdkRticqdfrUS6XIyJia2srDg4O+p8rFAqxsbER6+vrUa/XY319PU5OTiKbzU61hna7Hd9++23s7+9P9bgAAAAASdIRNkd6HVgRH0OvwRBs0OHhYUR83LLYWz8t+/v7sb6+Ho1GY6rHBQAAAEiaIGyObG5u9rc79rZF3qTXGRbxsYOsVqtN5fyNRiNKpVKcnp7G8fHxJ4M4AAAAgEUkCJsTzWZzaAj+8+fPR65/8eJF//1RodkkisViFIvF/sdPnz6dynEBAAAA5oEgbE7s7e313y+VSrfO/ep1hEV83FL5EHd0nPbsMQAAAIAkCcLmxOD2xsGurFEKhUL//devX0+9JgAAAIDHRBA2B64Opv/yyy/HetxgYPYQHWEAAAAAj4kgbA4MzgaLGO70GuXqOnd6BAAAAPg0Qdgc+P7774c+Hnc21+effz708bt376ZVEgAAAMCjIwibA81mc+jju3aEnZ6eTq0mAAAAgMdGEDYHrgZhd9Vut6dyHAAAAIDHSBA2B+4aYF3dQvnhw4f7FwMAAADwSH2WdAFMz6J3hLVarcjn8/c+zs7OTuzs7EyhIgAAAKCnWq1GtVq993FardYUqrkbQdgcyGazUwmxxh2yP6+63W6cn5/f+zidTmcK1QAAAACDOp3OVF63J0kQNgeePHkylSDsyZMn9y8mQcvLy5HL5e59nEwmM4VqAAAAgEGZTCZWV1fvfZxWqxXdbncKFU1OEDYH7trJdTU8W/SOsFwuF2dnZ0mXAQAAANxgWqOI8vl8Yp1lhuXPgadPnw59PG532NXh+Gtra9MqCQAAAODR0RE2B9bX14c+bjabUSwWb33c6enp0MelUmmqdQEAAAAfvfzZV7ev+enbhy6De9IRNgeudoQ1m82xHjfYOZbNZqNQKEyzLAAAAIBHRRA2B4rF4tB8r++//36sx717967//tUwDQAAAIBhtkbOiefPn0etVouIiEajMdZjBtdVKpUHqWuWWq1W5PP5kWumNZgPAAAAmL5qtRrVanXkmlarNaNqrhOEzYnt7e1+EFav129dP7imUCg8ivlg3W731rtGdDqdGVUDAAAATKrT6SR2R8hxCMLmRLFYjFKp1A+4jo6OYmNj45PrDw8P++/f1g1Wq9Xi9PQ0tre3J5ojNu7dK6dleXk5crncyDWZTGZG1QAAAACTymQysbq6OnJNq9WKbrc7o4qGCcLmyMHBQaytrUVExLfffvvJIKzdbve7x0qlUmxtbX3ymOVyuR+u7e/vx8XFxdA8slGuDu1/6GAsl8vF2dnZg54DAAAAeDjjjDTK5/OJdY0Zlj9HCoVCv9Or0WjE/v7+jeuePXsWER/vFDnYGXaTq9ss37x5M1Yt7Xb7WqfZ69evx3osAAAAwDwShM2ZjY2NOD4+jmw2G5VKJTY3N6PRaES73Y56vR7r6+vRaDSiWCzGL37xi1u7u65+ftTWyHa7HZubm1Eul2NlZeVaR1ij0YilpaUol8v9ugAAAAAWha2Rc6hUKsXFxUXs7+/H69ev49mzZ9FutyObzcbTp0/j8PBw5PywQYeHh7G9vR0fPnyIra2tkUP1x+kwAwAAAFhUgrA5tru7G7u7u/c6RqlUitPT0ylVBAAAALC4bI0EAAAAIBUEYQAAAACkgq2RzI1WqxX5fH7kmnFuwwoAAAAko1qtRrVaHbmm1WrNqJrrBGHMjW63G+fn5yPXdDqdGVUDAAAATKrT6dz62j5JgjDmxvLycuRyuZFrMpnMjKoBAAAAJpXJZGJ1dXXkmlarFd1ud0YVDROEMTdyuVycnZ0lXQYAAABwR+OMNMrn84l1jRmWDwAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFT4LOkCoKfVakU+nx+5ZpzbsAIAAADJqFarUa1WR65ptVozquY6QRhzo9vtxvn5+cg1nU5nRtUAAAAAk+p0Ore+tk+SIIy5sby8HLlcbuSaTCYzo2oAAACASWUymVhdXR25ptVqRbfbnVFFwwRhzI1cLhdnZ2dJlwEAAADc0TgjjfL5fGJdY4blAwAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCp8lXQD0tFqtyOfzI9fs7OzEzs7OjCoCAAAAJlGtVqNarY5c02q1ZlTNdYIw5ka3243z8/ORazqdzoyqAQAAACbV6XRufW2fJEEYc2N5eTlyudzINZlMZkbVAAAAAJPKZDKxuro6ck2r1YputzujioYJwpgbuVwuzs7Oki4DAAAAuKNxRhrl8/nEusYMywcAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkwmdJFwA9rVYr8vn8yDU7Ozuxs7Mzo4oAAACASVSr1ahWqyPXtFqtGVVznSCMudHtduP8/Hzkmk6nM6NqAAAAgEl1Op1bX9snSRDG3FheXo5cLjdyTSaTmVE1AAAAwKQymUysrq6OXNNqtaLb7c6oomGCMOZGLpeLs7OzpMsAAAAA7mickUb5fD6xrjHD8gEAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCp8lXQD0tFqtyOfzI9fs7OzEzs7OjCoCAACA8b382Vfjrfvp24csI1HVajWq1erINa1Wa0bVXCcIY250u904Pz8fuabT6cyoGgAAAGBSnU7n1tf2SRKEMTeWl5cjl8uNXJPJZGZUDQAAADCpTCYTq6urI9e0Wq3odrszqmiYIIy5kcvl4uzsLOkyAAAAgDsaZ6RRPp9PrGvMsHwAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKnwWdIFQE+r1Yp8Pj9yzc7OTuzs7MyoIgAAAGAS1Wo1qtXqyDWtVmtG1VwnCGNudLvdOD8/H7mm0+nMqBoAAABgUp1O59bX9kkShDE3lpeXI5fLjVyTyWRmVA0AAAAwqUwmE6urqyPXtFqt6Ha7M6pomCCMuZHL5eLs7CzpMgAAAIA7GmekUT6fT6xrzLB8AAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkwmdJFwAAAACQJi9/9tXta3769qHLSCUdYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKrhrJHOj1WpFPp8fuWZnZyd2dnZmVBEAAAAwiWq1GtVqdeSaVqs1o2quE4QxN7rdbpyfn49c0+l0ZlQNAAAAMKlOp3Pra/skCcKYG8vLy5HL5UauyWQyM6oGAAAAmFQmk4nV1dWRa1qtVnS73RlVNEwQxtzI5XJxdnaWdBkAAADAHY0z0iifzyfWNWZYPgAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwqZkf38/yuVyrKysxNLSUqytrcXm5mbU6/WFP3ez2YxyuRxHR0dTOR4AAABAEgRh91Sv12NlZSUqlUpERBweHsbp6Wns7e1Fo9GIcrkc5XI52u32wp273W7H5uZmrK2tRb1ejw8fPkyxegAAAIDZ+izpAhZZvV6PcrkcERFbW1txcHDQ/1yhUIiNjY1YX1+Per0e6+vrcXJyEtlsdu7P3W6349tvv439/f2p1AoAAAAwD3SE3VGvWyriY/A0GEQNOjw8jIiP2wt76+f53Pv7+7G+vh6NRmMqtQIAAADMC0HYHW1ubva3HPa2Jt6k150V8bGLq1arze25G41GlEqlOD09jePj408GbAAAAACLSBB2B81mc2gQ/fPnz0euf/HiRf/9UcFV0ucuFotRLBb7Hz99+vSOVQIAAADMH0HYHezt7fXfL5VKt87e6nVlRXzc1nifuy/O8tzTmmcGAAAAMA8EYXcwuMVwsINqlEKh0H//9evXC3luAAAAgEUmCJvQ1SHyX3755ViPGwyt7toRluS5AQAAABadIGxCg/O5Ioa7rUa5uu4ud2VM8twAAAAAi04QNqHvv/9+6ONx52h9/vnnQx+/e/duoc4NAAAAsOgEYRNqNptDH9+1K+v09HShzg0AAACw6ARhE7oaRt1Vu91eqHMDAAAALLrPki5g0dw1RLq6jfHDhw8Lde5ZaLVakc/n732cnZ2d2NnZmUJFAAAAQE+1Wo1qtXrv47RarSlUczeCsIQk2ZU1rx1h3W43zs/P732cTqczhWoAAACAQZ1OZyqv25MkCJtQNpudSpA07qD7eTn3LCwvL0cul7v3cTKZzBSqAQAAAAZlMplYXV2993FarVZ0u90pVDQ5QdiEnjx5MpUw6smTJwt17lnI5XJxdnaWdBkAAADADaY1iiifzyfWWWZY/oTu2k11NcC6a0dYUucGAAAAWHSCsAk9ffp06ONxO7SuDqhfW1tbqHMDAAAALDpbIye0vr4+9HGz2YxisXjr405PT4c+LpVKC3VuAAAAYHZe/uyr29f8/sPX8djoCJvQ1a6sZrM51uMGu7ey2WwUCoWFOjcAAADAohOETahYLA7N2Pr+++/Hety7d+/6718NtBbh3AAAAACLThB2B8+fP++/32g0xnrM4LpKpbKQ535orVYr8vn8yLdqtZp0mQAAAMAnVKvVW1/bt1qtxOozI+wOtre3o1arRUREvV6/df3gmkKhcK8ZXUme+6F1u91bb5/a6XRmVA0AAAAwqU6nc+tr+yQJwu6gWCxGqVTqh0xHR0exsbHxyfWHh4f992/ryKrVanF6ehrb29s3zvJ6yHNfNe5dKadleXk5crncyDWZTGZG1QAAAACTymQysbq6OnJNq9WKbrc7o4qGLV1eXl4mcuYF12w2Y21tLSI+hlMnJyc3rmu327GyshIRH+/WeHx8/MljlsvloQ6ui4uLoZlgD3numxwdHcXm5mb/4729vdjd3Z3oGOPI5/Nxfn4eq6urcXZ2NvXjP6SXP3073rox7vbB+MZ93gEAAB6zRX2tmWQOYEbYHRUKhX63VaPRiP39/RvXPXv2LCI+3q1xsDvrJle3Or5582Zm576q3W5f6yB7/fr1RMcAAAAAmCeCsHvY2NiI4+PjyGazUalUYnNzMxqNRrTb7ajX67G+vh6NRiOKxWL84he/uLG7a9DVz9+0NfKhzh3xMfza3NyMcrkcKysr0Ww2hz7faDRiaWkpyuVy/3wAAAAAi8KMsHsqlUpxcXER+/v78fr163j27Fm02+3IZrPx9OnTODw8HDnDa9Dh4WFsb2/Hhw8fYmtr69bB9tM8d8TdOscAAAAAFoUgbEp2d3fvPT+rVCrF6elpIucGAAAAeOxsjQQAAAAgFXSEMTdarVbk8/mRa3Z2dmJnZ2dGFQEAAACTqFarUa1WR65ptVozquY6QRhzo9vtxvn5+cg1nU5nRtUAAAAAk+p0Ore+tk+SIIy5sby8HLlcbuSaTCYzo2puV61W423j/46/97/9g/i//s/nSZcDD+Yv/upN/L//3/9yrfOouc5JC9c6aeFaJw3+4q/exMuXbyOTyczVzqlMJhOrq6sj17Rareh2uzOqaJggjLmRy+Xi7Ows6TLGVq1W4/z8PH79H/wffrnyqP3FXx3Gf/9f/821zqPmOictXOukhWudNPiLvzqMn//H/xarq6tzFYSNM9Ion88n1jVmWD4AAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCp8lnQB8D/+x/+IiIi//uu/jnw+P3Ltzs5O7OzszKKsR61arUan04lMJrNwz2e1Wo23jf87/t7/9g/i//o/nyddztj+4q/exP/7//2vhat7kS3yc652JrHIz/mi1r6odS+6RX3eF7XuiMWufVEt8nOudnqq1WpUq9WRa/76r/86In6VB8ySIIzE/ff//t8jIuLy8jLOz89Hru10OrMo6dGrVqtxfn4eq6urCxmEnZ+fx6//g/9joX5J/cVfHcZ//1//beHqXmSL/JyrnUks8nO+qLUvat2LblGf90WtO2Kxa19Ui/ycq52eTqdz62v7nl4eMEuCMObK6urqyM9nMpkZVQIAAABMKpPJ3Praftyg7CEIwpgby8vLcXZ2lnQZAAAAwB2NM9LoJz/5SXS73RlVNMywfAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFZYuLy8vky6CdFtaWuq/f9stVudJq9WKbrcbS0vL8b///Scj12ZW/t6MqhpPr/bl5eXI5XJJlzORSZ73efI//p8PcXm5eHVHLG7ti1p3hNqTsKh1R6g9CYtad4Tak7CodUeoPQmLWneE2pPQq3sRX9edn5/33591LCUII3HLy8szv/ABAACAZC0tLUW3253pOT+b6dngBn//7//9+Nu//dv4yU9+Er/5m7+ZdDkAAADAA/qbv/mb+Lu/+7v4tV/7tZmfW0cYAAAAAKlgWD4AAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhpM7+/n6Uy+VYWVmJpaWlWFtbi83NzajX64/63KRPUtdbo9GI7e3tWFtbi6Wlpf65K5VKtNvtBz036TSPP1t71//R0VFiNfC4zON13tNoNOLo6Cj29/fnoh4WW1LXervdjkqlEuVyuf8zvHfuWq32oOcmXZrNZpTL5Zn9jTDPvz8ScwkpcXx8fJnNZi8j4rJUKl0eHx9fnp6eXh4eHl4WCoX+f7+4uHhU5yZ9krreLi4uLjc2Ni4jYuTbwcHBVM9Les3rz9bd3d3+9X54eDjTc/P4zON1fnFxcbm3t3dZLBYvI+Iym81e7u7uXh4fH/tbhjtL8lrf29vrX8t7e3uXx8fHlycnJ5cHBwf967xQKFweHx9P/dykx9W/lR/6b+J5/P0xLwRhpMLx8XH/B87W1taNawZ/yU3zh0GS5yZ9krreLi4u+r9Qx3n7VG0wrnn92TpYlyCM+5q36/zi4uJya2urX1OxWBQMMBVJXuu9YKJYLH5yzeB1f3JyMrVzkw4XFxdD/0g2iyBs3n5/zBtBGI/excVFPwkvFAqfXHd6etr/YVEqlRb+3KRPktdbqVTq/xF5eHh4eXp62v8Xp5t+8QsIuI95/dk6WJfrnPuat+v84OBg6PrW3cu0JHmt9zrBIuLWIKD3D37ZbHYq5yYd9vb2LguFQv9v5VkEYfP2+2MeCcJ49AZ/6Nz2w2barapJnpv0Sep6Ozg4uIyIy93d3U+uOT097f+rU+/NH5Lc1bz+bN3Y2LgsFApDYYEgjLuap+t88B80CoXC5enp6dTPQXolea0PdjfexrZ3JnVycjLUQdj7m/mh/y6Zp98f80oQxqM2mHKP8y89h4eHU3uRnuS5SZ8kr7fev3JNWmNE2FLDxOb1Z2vvj9uTkxNBGPc2T9f54IukbDabuu0zPKwkr/XBrWMbGxu3rh8896h//INPOTk5efAgbJ5+f8wzd43kUdvb2+u/XyqVIpvNjly/sbHRf7/dbt/rTh5Jnpv0Sep6azQa0Ww24/Dw8Na1hUJhqM7e42ES8/iztdlsxvb2duzu7kaxWJz68UmfebnOr97V7OTk5NZaYBJJXuvNZrP//qR/j3z++ed3Pi/pNYufn/Py+2PeCcJ41AZvdTzui5NCodB///Xr1wt5btInqevt9evXsbW1NfYv9lKpNPTxDz/8cKfzkl7z+LN1c3MzisXitaAX7moervNarRb1er3/8cHBwdA5YBqSvNafPHnSf7/ZbA4FYzf5/vvvb6wB5sk8/P5YBIIwHq2r/7Lz5ZdfjvW4wR8Y9+mSSercpE+S19uLFy8mevF/9Rfy2tranc5LOs3jz9ZKpRKNRmOsrkgYxzxc570ux8Fjb21t3euYcFXS1/rVMGvwmr9J71zZbHaoiwbmRdLfU4tEEMajNfivmBHj/8vN1XV32bqV5LlJnySvt2KxOFGbd7vdHlkDjDJvP1sbjUbs7+/rlGGq5uE639zcHPr4m2++ufOx4FOSvtaLxeJQAFCv169d+z21Wq3fMab7l3mV9PfUIhGE8WgNti9HjL8n++qe/3fv3i3UuUmfRbrerm47uLpVEkaZt2v92bNnsbGxoVOGqUr6Om82m0MvgnS/8FCSvtYjIl69ejX08dHR0bUwrF6v97vFDg4O/Mxnbs3D99SiEITxaF19wX3XRPz09HShzk36LNL1NviL1R+STGqervXeC6WrL6LgvpK+zg8ODoY+7v2DRS8gWFtbi6WlpVhZWYn19fXY39+/1u0L40j6Wo/42BV2dWv70dFRrK2t9bt+y+VyFAqFOD4+9rcLc20evqcWxWdJFwAP5baBl+O6yx93SZ6b9Fmk623wBValUnnw8/G4zMu1fnR0FEdHR3F8fOwOekxd0tf54KDliI8DxdfX169tlWm329FoNKLRaESlUonDw0OdY0wk6Wu9Z2NjIw4ODoZmhDWbzVhfX4+IiN3dXdshWQjz8j21CHSE8Wjd9Rv46ouaDx8+LNS5SZ9Fud4Gt9vs7e2ZqcTE5uFab7fbsbm5GVtbW7b28iCSvM6bzea187958ya2t7fj4uIiLi8v4/LyMk5PT691xmxubqZmyDLTMQ8/03u2traudUP21Ov1VAQDLL55+p6ad4IwuEWSv/j80mWWHvp66/1raqFQiN3d3Qc9F4xyn2v92bNnUSgUPvmCCebFNDras9ls/OIXv4itra2hF0q974Gr3wdff/21v12YuWldc1tbWzdufWw0GvHFF1+kYoA4RKTjNaggjEdrWttV7nKcJM9N+izC9dZoNKJWq0U2m43j4+MHOw+PW9LX+v7+fjQajWvzZGCakrzOrwZhVwOwq64GB+12O7799tuJz0s6Jf0z/art7e2o1WqxtbV1rWu93W7H+vr6tbvywTyZt++peSYI49F68uRJYsdJ8tykzyJcb19//XVERHz33Xe2RHJnSV7rvTlIe3t7USwWp1IH3CTJ6/zqgOQvv/zy1sdcnfe4v78/8XlJp3n6+6VcLketVovd3d04ODi4cftvb50wjHk1T99T804QxqN11yT7aivoLDvCpnFu0mfer7ft7e1+F40AgftI8lrf3NyMYrFoWy8PLsnr/C7HKBQK136220LGOObl75dep1epVBoain9wcHBjB/Dm5mYqto6xeOble2oRCMJ4tJ4+fTr08bi/sK4OB1xbW1uoc5M+83y91Wq1qNVqcXBw4G5i3FtS1/r+/n40m8148uRJbG5u3vo2WNe333479DnDxLlNkj/T7/p74GrN07pzGY/bPPz9srm52Q9ub5r9uLGxEScnJ0PBQLvddudr5tI8fE8tis+SLgAeSu+Wxz3NZnOsbpSr2wLuclewJM9N+szr9Vav12N7ezsODg5u3F4Ak0rqWv/hhx8iIu60HabRaAx1xxQKBaEwIyX5M/1qF8C4L6KuvmhKwx3HuL+k/35pNpv9f5woFoufHN1QLBbj5ORk6Dqv1Wqxt7eXis4ZFkfS31OLREcYj9Zd/3Vy8I++bDZ7p3lGSZ6b9JnH663RaES5XI69vT0hGFMzj9c6TNsi/v1yNQxIw3wZ7i/pn+mDHWBXa7nqprsFv3v37k7nhYeS9PfUIhGE8WgVi8WhP8y+//77sR43+Evttl+K83hu0mferrdmsxnPnj2L3d1d85SYqqSu9b29vbi8vBz7bfAPyMPDw6HPDc6fgZsk/ffLoKtdAuNKw4so7i/pv18GX/yPsxXs6j/s2QLMvEn6e2qRCMJ41J4/f95/f9zBrYPr7rP/P8lzkz7zcr01m81YX1+Pra2tsV/wN5tNdxljbPNyrcNDSvI6H9wSM+524KtbKN0YhXElea0PbuEdN/R1bTPv/J00HkEYj9r29nb//XH+mBtcUygU7rU/Oslzkz7zcL212+0ol8vx/PnzibpeNjc3Xe+MbR6udXhoSV7ngy+Cms3mWHPCBkME32NMIslrfbBz8S7dXTofmUf+ThqPIIxHrVgsDn0z33a3rsFbJN+WhtdqtahUKp/8xfmQ54arkrzWIz6GYOvr61EoFPprb3ur1+v9oZ7+hZVxJX2twywkeZ2XSqWhF/jffvvtrfUOvpCy/ZdJJHmtv3jxov/+u3fvxgp9B4+VlsCA6Rn3BiSjeA06JZfwyJ2enl5GxGVEXBaLxU+uu7i46K8rlUojj1kqlfprI+Ly4uJiZueGT0nyWi8Wi0PrJnk7ODi4z5dNCiV5rY+jUCj0j3N4eHjn45BuSV7nJycnQ+tOT08/eczj4+P+uq2trbG+NhiU5LU+uG53d3fkMQev9b29vVu/Lrjq8PBw6Lqc9DryGnR6BGGkwuAPnU/9wOm9kM9ms7e+AJrkhfy0zw2jJHGt3ycE8+8x3FWSP9dvIwhjWpK8zg8ODvrrCoXCjce+uLjoX++jXmzBbZK61i8uLi6z2eyt605PT/vr0hYYMB2DPy/HCalu4jXo9HgFQmocHx/3f4FtbGxcnpycXF5cXFweHx/3fwgUi8WxfggM/sKMiMvj4+OZnRtuM8trfWNj414hmO4B7iPJn+ujCMKYpnn5+yWbzV7u7e1dnpycXJ6cnFzu7e31P+dnOdOQ1LV+cXFxubW1NdQZc3BwcHlycnJ5fHx8ubu7e+cOHtLt4uLicmNj41on19W3UqnUv+ZH8Rp0egRhpM7e3t5lsVgc+sOuVCpN9GLl+Pj4slAoXGaz2VvbqKd9bhhXktc6zJJrnTRI8jo/ODi4LJVKQ+cuFouXu7u7I7dNwl0kda2fnJxcbm1tDf1jRqFQuNzY2Ljc3d1NZVjAfPEadHqWLi8vLwMAAAAAHjl3jQQAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAgAVRLpdjaWkptre3ky5lIQnCAAAAgEepXC7HyspKLC0tTe1tZWUl0a+pXq9HRMTm5ubYj3mMz8NdfZZ0AQAAAAAP4fj4OCIiGo1GPHv2LNrt9tDns9lsPH/+PNbW1vr/7YcffoiIiHa7Hc1mM969ezf0uKdPnz543Z9ydHTUf79UKo39uMf2PNyHIAwAAAB41IrFYjx//jxqtdrQfz85OYlCoXDr4+v1emxubka73Y5isfhQZd7q9evXERGxsbFxp8c/lufhPmyNBAAAAB69Dx8+DH1cKBTGCn8iPnZf7e3tRUTEl19+OfXaxtXrCHvx4sWdj/EYnof7EIQBAAAAj16j0Rj6eJKthRG/2gqYVCdUbzZYxN07wiIW/3m4L0EYAAAA8Kj15lwNmmTYfE82mx27e2raDg8PI2Ly4GrQY3ge7ksQBgAAADxqg91UPZMGSr2B8kl58+ZNRNwtuOp5DM/DfQnCAAAAgEetd9fEnrt0VRUKhTg4OJhWSRNpNBr9OzbeJ4Ra9OdhGgRhAAAAwKPW66bqKZfLI9fftIUwSb27RRaLxchms3c+zqI/D9MgCAMAAAAerWaz2e+m6rlt2HylUrlxG2FSeneL3N7evvMxHsPzMA2fJV0AAAAAwEPphUg9tw16bzabUavV4uLi4qFLG0uz2ex3Zd1nW+SiPw/ToiMMAAAAeLSuzsW6LUza3Ny89xbEaeoFWPetadGfh2nREQYAAAA8Wle39vXmYvW2CX748CHa7XbU6/U4ODiIZrMZu7u7sy7zk3rzwV68eHGv4yz68zAtS5eXl5dJFwEAAAAwbfV6/daB8Dc5OTmJYrH4ABVNpt1ux8rKSkREnJ6ejtzKOMqiPw/TpCMMAAAAeJSubgcsFAqxvb0dP/zww1AnVLPZjEajEREfZ2fNS/hTq9Ui4mPddw3BIhb/eZgmQRgAAADwKF0dEL+9vf3J7X6NRiPW19ejVCrNorSx9LZF3nZ3x9vM8nkYvNNku92OQqEQlUplbp5Xw/IBAACAR6fdbvfvttgzKozpdT/ddxbXtLTb7X531n1qmtXz0Gg0Ym1tLY6OjuLw8DBOTk7i9PQ0isVilMvlqFQqkxf/AHSEAQAAAI/Omzdvhj6+batfb4vgvHQu9eq/7xbFWTwP7XY7nj17Fu12+9oss729vWg0GrG/vx+ff/554gP4dYQBAAAAj87VuVi3BTvNZjOKxWJks9kHrGp8h4eHERHx/Pnzex1nFs/D119/He12OzY2Nm6cZba3txcRH7dNXu1OmzVBGAAAAPDo9OZU9dx218RisRgnJycPWdJEevVvbm5O5Tg9034e2u12fwbZp7ZTDgZrvVAsKYIwAAAA4FFpNBr9LX499+2smqXB4fb32ao5i+fh22+/7b8/astl7+vo3QkzKYIwAAAA4FG52gVVKBTuteXx6l0XH9q07hY5i+dh8Bw3bYvs+fLLLz9Z1ywJwgAAAIBHpRck9dynq6pWq33yjoftdju2t7djZWUl1tbWYn9/f+SxKpVKrK+v9+8G+Sm3bTUc1yyeh97XMioEi4ihAO62r/8huWskAAAA8Gi02+1rQctd52w1Go3Y3t6+ca5Vo9Ho3ymxd95KpRI//PDDjevr9Xrs7+9HoVAYuYVwsFvqPh1hs3geBrdd3tZpNhiUnZ6e3qmOadARBgAAADwaN227e/r06cTH6QVdERFbW1tDn2u327G5uRnffPNNHB8fx+HhYT8I2t/fvzaXK+JXQ+JvGxbfu1vkfbq3ImbzPAzeAfLJkydjH/PDhw8T1zEtOsIAAACAR+PqdsC7zMU6Ojrqd0+VSqVrj//2229jb29vqGOrWCzG2tpaRES8efNmKDRqNBpRr9ejUCjc2uX15s2biLj/3SJn8TxMYjAouykonBUdYQAAAMCj0G63rw10H7f7qN1uR61Wi/X19aEQant7+9razz///FqgNRhynZycDH2ud2fFg4ODkTUM3uXxPnd3nNXzMEkwNnj++wRq96UjDAAAAFh4ve2KN/33lZWVeP78eb9jKyLihx9+iHa7Hc1mM969e3djl1I2m72xg2t3d/fGGl68eBFHR0dDWwabzWYcHR1FqVS6dbtjr4urWCzeOSya5fMw2OU1yXbHSbZRTpsgDAAAAFhoa2trQ+HTVb0up0lN2pXVG4I/WEuvk6o3+2uUXhfXTd1X45j18zAY1t223XHw84NB3KwJwgAAAICFluRdCAf17ozY646q1+tRr9fj4ODg1g6vZrPZD7Huui0yieehVCpFvV6/tSNsMKC7740A7sOMMAAAAIApKRQK/e6n7e3tKJVK1+62eJNeN9h9tkUmoVwuR8THjq9RXWHff/99//1e51wSBGEAAAAAU5LNZiObzcb+/n40m81bB+T39OaDvXjx4iHLm7rBkO/du3efXNdoNK6tT4IgDAAAAGBKnjx5Eu12OyqVShwcHPS3S47Sbrf7QdFNQ+nn2eAg/U+FfoPbPiuVysxqu4kgDAAAAGDKxt0SGRH9AfaFQmGs4GzevHr1KiLi2h0ze3rh197eXuJfnyAMAAAAYEp6Q+PHuUtkT29b5KJ1g/Vks9k4PT2NQqEQ5XJ5KAzb39+Po6Oj2N3djd3d3QSr/MhdIwEAAACmaG9vb+yB94PbIhdtPtigQqEQp6enUalUolwu97/+QqEQJycniQ7IH7R0eXl5mXQRAAAAAIvu6OgoNjc34+LiYqI7P/butrhId4tcVIIwAAAAgHtqNpuxtrYWxWIxTk5Oki6HTzAjDAAAAOCetre3I+LjkHzmlyAMAAAA4B6Ojo6iXq9HxGLP+UoDWyMBAAAA7mFtbS2azWZ/YDzzS0cYAAAAwB01m81oNpsREVGpVBKuhtt8lnQBAAAAAIuq3W5HNpuN58+fx9bWVtLlcAtbIwEAAABIBVsjAQAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBUEIQBAAAAkAqCMAAAAABSQRAGAAAAQCoIwgAAAABIBUEYAAAAAKkgCAMAAAAgFQRhAAAAAKSCIAwAAACAVBCEAQAAAJAKgjAAAAAAUkEQBgAAAEAqCMIAAAAASAVBGAAAAACpIAgDAAAAIBUEYQAAAACkgiAMAAAAgFQQhAEAAACQCoIwAAAAAFJBEAYAAABAKgjCAAAAAEgFQRgAAAAAqSAIAwAAACAVBGEAAAAApIIgDAAAAIBU+P8BmJ4gIpUQCX4AAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xlim = 0\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" Z_lost,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
" range=[xlim, 1],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" Z_found,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
" range=[xlim, 1],\n",
|
|
")\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.title(r\"$E_{ph}/E_0$\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found: 7000\n",
|
|
"lost: 6689\n",
|
|
"found: 7910 , lost: 12529\n",
|
|
"1.583944374209861\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[-3.61,\n",
|
|
" -61.5,\n",
|
|
" 65.2,\n",
|
|
" -5.73,\n",
|
|
" -26.6,\n",
|
|
" -4.26,\n",
|
|
" -396,\n",
|
|
" 10.7,\n",
|
|
" 26.2,\n",
|
|
" 19.6,\n",
|
|
" ...,\n",
|
|
" -38.9,\n",
|
|
" 17.6,\n",
|
|
" -168,\n",
|
|
" -74.7,\n",
|
|
" -500,\n",
|
|
" -566,\n",
|
|
" 4.2,\n",
|
|
" -20.3,\n",
|
|
" -59.9]\n",
|
|
"--------------------\n",
|
|
"type: 7910 * float64</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [-3.61, -61.5, 65.2, ..., 4.2, -20.3, -59.9] type='7910 * float64'>"
|
|
]
|
|
},
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"tuple_found = ntuple[~ntuple.lost]\n",
|
|
"tuple_found = tuple_found[:7000]\n",
|
|
"tuple_lost = ntuple[ntuple.lost]\n",
|
|
"\n",
|
|
"print(\"found: \", ak.num(tuple_found[\"brem_vtx_x\"], axis=0))\n",
|
|
"print(\"lost: \", ak.num(tuple_lost[\"brem_vtx_x\"], axis=0))\n",
|
|
"\n",
|
|
"brem_x = ak.to_numpy(ak.flatten(ntuple[\"brem_vtx_x\"]))\n",
|
|
"brem_z = ak.to_numpy(ak.flatten(ntuple[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"brem_x_found = ak.to_numpy(ak.flatten(tuple_found[\"brem_vtx_x\"]))\n",
|
|
"brem_z_found = ak.to_numpy(ak.flatten(tuple_found[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"brem_x_lost = ak.to_numpy(ak.flatten(tuple_lost[\"brem_vtx_x\"]))\n",
|
|
"brem_z_lost = ak.to_numpy(ak.flatten(tuple_lost[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"n_found = len(brem_x_found)\n",
|
|
"n_lost = len(brem_x_lost)\n",
|
|
"print(\"found: \", n_found, \", lost: \", n_lost)\n",
|
|
"stretch_factor = n_lost / n_found\n",
|
|
"print(stretch_factor)\n",
|
|
"ak.flatten(tuple_found[\"brem_vtx_x\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 37,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB9QAAAMyCAYAAAA8EPqZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/MUlEQVR4nOz9f3QjZ37f+X4K7B9qdYsNsjU/6OZaI9AaJ3Z+rIBW9iQnuU7SgKRJdrJrD9Gdo52Zs07UpH12nXsvb4ac9s3uSe4m0yZn02fP5t7cIeTEuTNebVqgZ+5GN/ZIhJz4+OzmXjcJjb2JM9aYkDRhm5ofYqPZ3epfJOr+QRGNqnoAFIACUAW8Xzp9hCo+9dSDQgFV33qqnq9l27YtAAAAAAAAAAAAAADgEOt3AwAAAAAAAAAAAAAACCM61AEAAAAAAAAAAAAAMKBDHQAAAAAAAAAAAAAAAzrUAQAAAAAAAAAAAAAwoEMdAAAAAAAAAAAAAAADOtQBAAAAAAAAAAAAADCgQx0AAAAAAAAAAAAAAAM61AEAAAAAAAAAAAAAMKBDHQAAAAAAAAAAAAAAAzrUAQAAAAAAAAAAAAAwoEMdAAAAAAAAAAAAAAADOtQBAAAAAAAAAAAAADCgQx0AAAAAAAAAAAAAAAM61AEAAAAAAAAAAAAAMKBDHQAAAAAAAAAAAAAAAzrUAQAAAAAAAAAAAAAwoEMdAAAAAAAAAAAAAAADOtQBAAAAAAAAAAAAADCgQx0AAAAAAAAAAAAAAAM61AEAAAAAAAAAAAAAMKBDHQAAAAAAAAAAAAAAAzrUAQAAAAAAAAAAAAAwoEMdAAAAAAAAAAAAAAADOtQBAAAAAAAAAAAAADCgQx0AAAAAAAAAAAAAAAM61AEAAAAAAAAAAAAAMKBDHQAAAAAAAAAAAAAAAzrUAQAAAAAAAAAAAAAwoEMdAAAAAAAAAAAAAAADOtQBAAAAAAAAAPhQoVDodxMAAECI0KEOAAAip1gsanZ2VlNTU7IsS2NjY0qlUlpZWel300KrXC4rl8upWCz2uykAAAAAECqlUkm5XE6ZTEaWZSmTyfS7SQAAIEToUAcAAJGysLCgVCqlTCaj1dVVzczMqFwuq1gsKpvNamlpqd9NDI1SqaSlpSVlMhmNjY1pdnZWa2tr/W4WAAAAAIRCqVRSKpVSKpXS7OwsT6YDAAAjOtQBAEBk5HI5LS0taX5+XtPT00okElpeXtb09HS1zOrqah9bGB4rKytaWFjQ8vIyF4UAAAAAwCCRSGh9fV3Xr1/X/Px8v5sDAABCig51AAAQGQsLC5LkGX4vn88rnU4rkUhUywy76elp5fN5bWxs9LspAAAAABB6DPMOAADqoUMdAABEwsrKisrlsiRpfHzc8/fV1VVtbGwonU73uGXhl0gk+t0EAAAAAAg1U5wZFbOzs/1uAgAAA40OdQAAEAnLy8vV1/F4vH8NAQAAAAAgJHK5nHK5XL+bAQDAQKNDHQAAREKpVOp3EwAAAAAACI1SqcTT6QAA9AAd6gAAIBLoUAcAAAAAYF+5XCbvOwAAPUKHOgAAAAAAAAAAEVEul3X27FluPAcAoEfoUAcAAKFUKpVkWVb1X62pqSnH39x/r1Uul7W0tKRMJqOxsTFZlqWxsTGlUiktLCzUvQCRy+WUSqWarieTyRjbUy6X676vpaUlTU1NqVgsGtc3NTWlbDZbt4567zGVSmlsbExjY2PKZDJaWlrytTwAAAAAoHXtxptuhUKhGlsexHQHcd3U1JSjbLFY1JNPPumIJyU54lH3MgAAoDOWbdt2vxsBAABgcnCBYHt72zGU3fLyss6cOeMom0wmPcvncrlqPrnFxUWl02nF43EVi0VdunSpWv/09LTy+byxDbOzs8rlctXpeqdOS0tLWlhYqE5fv35d8Xhc0v5FlkuXLmllZcVxQWV9fV2JREJnz571XAyRpHg8Xi1Tz8rKii5cuKByuaz5+XllMhklEgkVi8Vqe7a3t6ud88vLy5qZmalbHwAAAAAMo2KxqFQqVZ1udtk8iHhTkrLZrFZWVjyxWm0s6o4vS6WSCoWCIwZdX1931GuKkQEAQHvoUAcAAJFQ+3T4+vp604sDCwsLWlpaatgpfXDhQpISiYTW19erFykOHDwpcKDeqVOpVHI8BVB7waNUKqlUKimfzzs655eXl7WwsKB0Oq3Z2VklEonqRZGDDvB0Oq3V1VXjOg8u4MTjcb3xxhvGbZJKpRyd9XSoAwAAAIBXKx3qQcWbBzdmz8/Pa3Fx0VPHQad6bXx5wG+sCgAAOseQ7wAAYODkcrnqcOeLi4t1n/DO5/PVv5VKJWWz2bbXOT4+XvdviURC6XRay8vLjvkLCwvK5/PK5/NKp9NKJBKamZnRSy+9VC1TKBSMQ78Xi0XH0xD1bjBo9CQEAAAAAKA1QcabBzHiqVOnjHUcdLJvb2933G4AANA+OtQBAMDAORj2Lh6PN30au3aIvEKhoEKh0NW21T5V8NJLLymdTnvKTE9PO6bX1tY8ZS5cuFCtr9F7TCQSnicZAAAAAADtCTLePEgJduXKFePy8XjcEx8CAIDeo0MdAAAMlFwuV32iu1Hu8QMzMzOODmfTMHv9UNv22rzr0v6FmINh3E0d8m6Nnp4HAAAAAPgTdLx5UEexWFQmkzGOTtboKXgAANAbdKgDAICBUptv3O9Fh9pO6W4/oR6E2mHcubACAAAAAL0RdLzpfoL9ySefVC6Xc5Qh5gMAoP/oUAcAAAPF/TS3H+4LFKanAsKk9iLM1NRUH1sCAAAAAMMj6HhzZmbGMaR7uVzW7OyspqamtLKy0nY7AQBAsOhQBwAAA6X24oTfix3uTunt7e0gmxS42vaFvfMfAAAAAAZFN+LNfD7vGQq+VCopm80qk8m01YkPAACCRYc6AAAYKLX56fxeeHDnGA/7kHq1F3E2Njb61xAAAAAAGCLdijfn5+d1/fp1x9Pq0v7oZFNTUyoWi603FgAABIYOdQAAMFBqL06Uy2VfT3DXPiEQ9s50ydlGnlYAAAAAgN7oZrwZj8eVz+e1vr7uyLsuSWfPnm29sQCAoVQqlZTJZHqSOuRgXX4tLS0pk8lobGxMlmVpampK2WzWkd4yrOhQBwAAA+X8+fOO6Vwu13SZ2qe83U8E+NXLYeKTyWT1daFQYNh3AAAAAOiBoOPNbDbrKZ9MJrW6uqrl5eXqvHK5TE51AEBD5XJZ2WxWU1NTKhQKHV2rLJfLsiyr6b+pqSlfDycVCgWNjY1pYWFB0n66k42NDS0uLqpYLCqTySiTyYT6Gicd6gAAYKBMT087huGrvQhRT+1dkBcvXnT8zT08X70Tu14+Ke6+iHNwMgoAAAAA6J6g481GneQzMzOan5+vTvfyJm4AQHSUy2UtLCxobGwssJuv/NwwdqDZdclCoVDtLJ+ZmdHq6qrS6bQSiYSmp6e1sbGhZDKpQqGgVCoV2k51OtQBAEDkNLuQ8NJLL1Vfl0qlhsMGFYvFaj66xcVFx8URyfk0uGQ+oSyVSp6Tx25e7Jienna0K5fL1T3RLRaLjs5+cq4DAAAAQPuCjDelxp0WtcPouoeBdz8R6L7JO6wdEgCA4CwtLSmVSlWPNUG5dOmSr3IHHeP1HDw1L+0ft+rdiJbP5yXtH8tMo7eEAR3qAAAg9Fq9MDA9Pa3FxcXqdDabNS5TLpd14cIFSd67/2vVXrhYWFjQ7OysCoWCVlZWNDs7q6mpKc/FkXpPrPu9qFG7vGmZgxPNA7Ozs5qdna0uVyqVtLS0pLNnzzratbS0pNnZWZ5qBwAAAIAa7pui68VuQcebCwsLddd10EFi6rBwT8/OzqpcLqtUKml2dralpwsBANFTLBaVTqe1sbHhSRXSiVwup3K5rPn5ea2urjb8574+6VZ7jGx0LfLgaXVp/4n2MB7DLNu27X43AgAAoJGFhQUtLS1Vp9PptFZXV5sut7KyogsXLqhcLisej2txcbHaOV4oFLS4uKhSqaTFxcW6Fzek/QshTz75pPEiRzweVz6fVzqd1tjYWLVMMplUPp/X+Ph4tUP7YIijAzMzM8aTXXe5eu+3VCopk8nU7byPx+N64403lM1mq2UOTlBnZ2d95TgCAAAAgGGQzWYdQ+UuLy9rZmambvkg4k3LsiTtx24vvfSSI8f6ysqKstmsksmk3njjDePT7e5Y+UC9WBMAMLiKxaJSqVR1utlxrJ6pqSlJnY9yWSqVqnVJ0vXr143HsgMHxz1p/7h4/fr1jtYfNDrUAQBAKB0Mo+4esvxAPB7XmTNnlEwmHU8HmORyOeXzea2trVUvdiQSCZ0/f14zMzMNT+YOHOQjKhQKKpVKSiaTSqfTjnWnUiml02lPZ3WxWKwu65ZIJJROp7W8vFx9kqBeudnZWeOFmKWlJV25ckWlUknlcrla58FT85lMprq8ewh7AAAAABhWB0+RFwoF4w3UyWRSZ86cadg53Um8mc1mlclkqp3v0n7st729rTNnziibzTbtDFlYWNDKyko1Tr148aKjYx4AMBzcHdjtdKgfdGq32xlfq3a0FL8PRx3caCbtj84ZpuMZHeoAAAAAAAAAAAAAEFFBdKinUimVSiW9/fbbvh5AaqS2c3x+fr7pA1HS/tPxBzeYTU9PNx1SvpfIoQ4AAAAAAAAAAAAAQ6pYLKpYLKpcLmtsbExTU1OanZ11pENppa5azzzzjK/lakfWbGe93USHOgAAAAAAAAAAAAAMqYWFBcd0qVRSLpdTNpuVZVnKZrOejvJ63Oksa1NjNuIu53d9vUCHOgAAAAAAAAAAAAAMoVKp5OkEd1tZWVEqldLs7GzT+q5eveqY9jt8/KlTpxzTa2trvpbrhUP9bgAAAAAAAAAAAAAAoPcSiYSWl5dVLpe1sbGhQqFQzWXulsvltLa2pvX19br1uZdt9wn1jY0NX8v1Ah3qAAAAAAAAAAAAADCkZmZmHNPlclm5XE6XLl1SuVx2/K1YLCqTyWh1ddVYV73O+Fa519tPDPkOAAAAAAAAAAAAAJC0P0z7/Py8rl+/rnw+7xm2vVAoaGlpybhsux3h7nVsb2+3VU838IQ64HL8+HHduXNHtm0rFmt8z8ljjz2mEydO9KhlAAAAAKLk1q1bunnzZsMylUpFlmXp2LFjun37do9aBvQPMTcAAMDgGISY58yZM3rvvfdaWsbP+/brscce04/92I+FKl+42/T0tNLptM6ePatisVidf+nSJc3Pz3dtvWF6Qp0OdcDl7t27sm1b0v4PfSM3btzQjRs3etEsAAAAAAPKtm3duXOn380AeoKYGwAAYPiEOeZ57733dO3atb6t/8aNGy136PdDPB7X+vq6UqlUtVO9XC6rUCgonU57ygbRGe5+Yr2f6FAHXEZGRqpBfbt3y29tbalSqSgWi2liYqIr7exUV9po29If/dH+6x/5EcmyOq7njyRZw7YduyAK7eyojUHte00M/HbsoSi0kzYGgzYGJwrtDH0ba44X78Vi+ngY26gIbEdFo41S/9vp92kNSdUORmDQtRNz9/u7LAX0e9JJ3BKSY9jAfBa9bkMXYtZIbgfaQBtow3C0gWPWULVhkGKeWEya+Ji/btNbtyq6ebvxzaF+NLm/NJReeuklpVKp6vTq6qqnQ318fDyQDvXx8fGO6wgKHeqAy0c/+lFdu3ZNp0+f1ubmZlt1TE5O6tq1a5qYmGi7jm7rShtv35YObjB46y3p+PGO6zkuaWzYtmMXRKGdHbUxqH2viYHfjj0UhXbSxmDQxuBEoZ2hb2PN8eKpj31M3wljGxWB7ahotFGKRjsPOhebdSwCg6KdmDsM3+VA2tBJ3BKSY9jAfBa9bkMXYtZIbgfaQBtow3C0gWMWbXCJSswz8bERvVN8oqfr/ETyHV3b2uvpOjuVTCaVTqdVKBQkSaVSyVOm3SfL3Z3wYXpCPdx7LwAAAAAAAAAAAAAgFDKZTMO/nzlzxjHt92n17e1tx/TU1FRL7eqmvj6h/tRTT/Vz9Q6WZemtt97qdzMAAAAAAAgEMTcAAACAoGVi2aZlViv5HrQkeHt2BMdg74NEIlF9bRqWvXZIeGn/KfZkMtm03o2NDce0eyj5fuprh/rGxoYsy+pr3oSD9VtdyrcblFKppMXFRRUKBZVKJcXjcSUSCZ05c0YLCwuOnbcVS0tLWl1d1dramsrlshKJhJLJpGZnZ9veUaNSJwAAAAAMMmJu/4i5ibkBAAAA+FMbH5mGZXc/oe63Q732SfaDmCwshn7I935eWPBraWlJU1NTyuVy1VwE5XJZxWJRuVxOU1NTWlpaaqnOQqGgsbExLSwsSJLy+bw2Nja0uLioYrGoTCajTCbjexiGKNUJAAAAAOgNYu5wx8fE3AAAAABatba2Vn1tGv49mUw6OtqvXr3acr3uTvl+6+sT6tJ+cD09Pd23uwzK5bJyuVxf1u1HJpNRoVBQPB5XOp1WIpFQqVRSsVisBvqSqnfMT09PN62zUChUd/CZmRktLy9X/3ZQRyqVUqFQUCqV0vr6uvEOkyjWCQAAAADDhJi7MWJuYm4AAABAkmxJFfX2huDw335sVjs0e70Rrc6dO1eNBYvFoq96a8sd3PQbFn3vUM/lcnrxxRf72obp6Wk999xzfW2DycLCggqFghYXFzU/P+/5+9LSkmOHymazTe/+L5fLymb381skEglHwFwrn89rampKpVJJ2WxWq6urka8TAAAAAIYNMXd9xNzE3AAAAGjOnTM9qvnREZyVlRVJMsZRB2ZnZ6sd6oVCoWmdtWUSiUToUk/1fcj3MGyQZ555pt9N8CiVStUcZvV2yPn5ec3MzDjmNbvLI5vNVodqa3R3R+2d94VCoeETBVGpEwAAAACGDTG3GTE3MTcAAADgVunxf0HqVZqmlZUVlUolxeNxXbx4sW65ZDLpiEcPOuHryecf3qgRtqfTpRA8oT4+Pt7vJoTSwsKCFhcXm178WFxcdAS0hUJByWTSWLZUKjnu8Dh37lzDus+fP1/dwRcWFjwXEqJUJ7zm5ua0s7Oj0dHRfjeloV+8eFHHHn+8382oKyrbMQqisC1p43CJwrakjcMlCtsyCm088Au/8Av9bkKkReWzjkI7H3vsMd24cUOPPfZYV+on5jYj5ibmblWYfk/6eQwL03bopzBsB9oQHmHYDrQhPMKwHcLQhgPDHneF4bMIQxu6HfNgX23KKsl/B3uhUKjecJtOp7W4uNgw5rlw4YIk6Y033miaEmp5eVlTU1OSpEuXLtVNoVWbKiydTocz5rD7KBaL2Tdu3OhnE2zbtu1yuWzHYrF+N8MhnU77LptIJGztp1qwl5eX65abmZmplvNb/0F5SXY+n49sna04ffq0Lck+ffp0X+uIpFu3bFva/3frVv/rQdXA75PsM5Ez8PskIoX9cYhE5HjBPjlcuvl5E3PXR8wdrZh7YH4XOzkOReQY1guR3B/4/LomkvsDuob9ISRC8pvH/hCctDXt+NeqsH8WB+37kYkR+9Yf/WhP//3IxEgg2+b69euOuEWSnUwmfS1bGx8c/JuZmfGUW11dtePxuJ1IJOyNjQ3fbcvn89V6FxcXjWWSyaQtyY7H4/b169d9191LfR3y3W6Se6yXwtQWSS3lJdve3q6+PnPmTN1ytXfV17u7xC2RSFRfX7lyJbJ1AgAAAEAvZWJZ479eClOcG6a2SMTcQdcJAACAwbVayTv+9TPG6Spb2rPtnv5TB2FSuVxWNptVJpPR2NiY5wn1YrEoy7KUyWSUzWbrpq/KZr2fYS6X09jYmLLZrGZnZ5VKpZTJZDQzM6P19XVHfNDM9PS0VldXFY/HtbCwUG1LuVxWoVBQKpVSsVhUMpnU22+/3fSp937p65Dvi4uLoRh25OTJk1pcXOx3M9pSLperwzak0+m6wbD7i+I3h10ymax+Cd35DaJSJwAAAAAMI2LuzhFzN68TAAAAQO/F43FH3vF2pdNpbWxsaHFxUYVCQdvb29UY6KCj++LFi0qn0213dqfTaV2/fl1LS0u6cuWKzp49q3K5rHg8rjNnziifz9cdDj4s+tqh/oUvfKGn63vnnXf0iU98IhRtCcorr7wiaf9u8UZfnNr8aAfl/XCXO/jyRKlOAAAAABhGxNydI+ZuXicAAAAwKCqdPDIeYYlEQsvLy11fz/z8vObn57u+nm7o65DvvTY7O9vvJgSqXC5rdnZWyWSyOlxCPVevXnVM+72L5NSpU47ptbW1yNUJAAAAAOg+Yu6HwhofE3MDAAAAQOv6+oR6rw1SwFcqlZTJZBSPx/XGG280DYLduRPavQt9Y2MjcnUCAAAAQK+tVjofei9qiLkfCmt8TMwNAAAAAK2LZIf6O++8Ux2/349SqaTl5eWWlgmzlZUVZbPZ6vTY2JgWFxcbDpPgDprbVbsNo1InAAAAAMA/Ym5i7lbqBAAAAAaBLVt7PR7y3R7SIeajKBId6u+8844WFxdVKBTaDv5s25ZlWQG3rHfK5bJyuZyWl5eN22BhYUFXr16tm9Ot3WDXfRf+9vZ25Ops19bWliYnJ9te9uD/ly9f1tzcXMftAQAAABAely9f1uXLlzuu5yB26CdibmLuTupsVysxd22M7V5mbm6OmBsAAKAL6sU8P7Sd54LNzunCEPMAnQp9h/rFixe1tLQkaT9AH1aFQkEbGxtKp9MqlUoqFAqeMisrK1paWmp413ynunEXeljrrFQqunbtWsd17OzsdNwWoFNzc3Pa2dnR6Ohov5sCSGKfRLiwPyJs2CejYWdnp+N4IQyIufcRc/e+znZibtMyxNzDh+MkarE/oBb7A2qxP3TOb8wzCHHRgQpPjKOOUHeo/9qv/ZoWFxclSZZlybKsoQ3wp6enNT097ZiXy+W0sLDgCGQXFhY0MzPjuXs8Ho8HEvDW1huVOtsVi8U0MTHRcT0csBEGPLGBsGGfRJiwPyJs2CejYXR0VKdPn+64nq2tLVUqlQBa1Dpi7oeIuduvs13E3GgXx0nUYn9ALfYH1GJ/6NxBzPPDa84n0h8/Pd5SPf2Mefrp/7l8S1/J3WpY5nvfH77tElWh7lC/dOmSJFWD+kQioWQyqUQiIUk6depU0zref/99lctlvfLKK7px40ZX29trMzMzSqfTSqVSjoA4l8t57pgfHx8PJGgeHx93vI5Cne2amJjQ5uZmx/UAAAAAGDxBDTM9OTnZtyc6iLkbI+b2V2e7iLkBAADC7SDmycSyjvmrm+Y0SPX0M+bpp5u3Ktp6jw7zQRHqDvVisVjNwba6uqqzZ8+2Xdf8/LyeeuqpoJoWGolEQm+88YZSqVR13tWrVz3l2r173B1ou+9sj0KdAAAAAAAvYu7miLmb1wkAAAAMir0AR+w6fsLSxMdjDct87/sVDeHD+5HU+JPss4MAbX5+vqPAXtoPgp988skAWhU+yWTSMTRdqVTylDlz5oxj2u8d6dvbzqE8pqamIlcnAAAAAMCLmNsfYm5ibgAAAKBVPzdzQsW1jzX897GPhrqbFjVC/UkdDDP3zDPPBFLf8vJyIPWE0fnz56uvTQFx7d30kvkCgMnGxoZjOp1OR65OAAAAAIAXMbd/xNzE3AAAABhstqRKj/8F9zw8ui3UHeoHd8i774TutL5BlEwmq69NQ6+570L3GzTXXiiIx+PVCy5RqhMAAAAA4EXM7R8xd/06AQAAMNhWK3nHP7dMLOv5BwyaUHeo/+Iv/qJs21axWAykvl/+5V8OpJ6wcwfI0n7wXxv0m3K+maytrdWtNyp1AgAAAAC8iLnbQ8xNzA0AAIDBtCe7p/8QHaHuUD958qR+6Zd+SVeuXNHNmzc7rm+Qh5+rvas8k8kYy5w7d6762u8Fk9pyCwsLka0TAAAAAOBEzO0fMTcxNwAAAIDhFeoOdUman59XMplUNtvZEBFvv/12YHfdh9HBe4vH45qenjaWmZ2drb4uFApN66wtk0gkjDnSolInAAAAAMCLmNsfYu7GdQIAAADAIDvU7wb4sbq6qjNnzuipp57SwsKCxsfHfS23vb2tcrmsjY0NvfLKK11uZX9dunRJkvTSSy/VLZNMJpVOp6vB8MrKSt0LAZKUzz/MhVHvDvSo1AkAAAAAQTDlAzTlEYwSYu7miLkb1wkAAIDBkBk537yQXel+Q/pkj1HYUYdl23bod4/f/M3f1Pz8vIrFoizLaqsO27ZlWZb29vYCbl13LC0t6cqVK0qn07p48aIjx5nbwsKClpaWND8/r8XFxYb1lkolTU1NSdoPotfX143lyuWyxsbGJEnpdFqrq6uRr9OvyclJXbt2TadPn9bm5mbH9Q2V27elEyf2X9+6JR0/3t96MDzYZwAAfnC8QACC7lAPQ/xBzE3MTczdI50chziGRRufH4Bhwm9epAXVoV4bI4X9/O+gfR//eEz/5upHe7ruP/vM9/Xee5XQbhs8FPoh33/+539emUxGb775pizLkm3bLf+LmnK5rIWFBRWLRS0tLWlsbKzuXeDZbFZLS0taXFxsGthL+8OzHdxdflC/ydmzZyXtD2dXezd6lOsEAAAAADgRcxNzE3MDAAAA+yo9/ofoCHWH+ksvvaTl5eVqgN5uoB61AD8ejyuRSDjmHQT52WxWCwsLymQy1bvENzY2ND8/77v+6elpra6uKh6Pa2FhQdlsVsViUeVyWYVCQalUSsViUclkUm+//XbDO/WjVicAAAAAYB8x90PE3MTcAAAAAFBPqHOoLy8vS1L1Lvl0Oq1MJqN4PN5yTrevfOUreuedd7rY2mCtr6/r0qVLKhQKKpVKKpfLkvbvHJf275LP5/NtB7TpdFrXr1+vDnN39uxZlctlxeNxnTlzRvl8vmEOtSjXCQAAAADtinq+9FrE3MTcxNwAAABoyjXEuzsm8jVMPBBxoc6hHovFZFmW4vG41tbW9OSTT7ZdV7lc1qlTpyKTzw39E/Z8HqFGDnX0C/sMAMAPjhcIoX7GH8Tc6IehjrnJoT68+PwADBN+8yLN2DneRof66t6V6uuwn/8dtO9jH4/pt69+rKfr/gvPfE/fI4d6JIR6yPeDO8EvXrzYUWB/UNfTTz8dQKsAAAAAAIg+Ym4AAAAAAJoLdYd6KpWSJE9us3a99NJLgdQDAAAAAEDUEXMDAAAAwEMVu7f/EB2hzqE+OzurN954Q6VSKZD6uFseAAAAANCJTCzrmRfVvOrE3AAAAABq1Q7VfsA9pLs7JopqPAS0ItQd6tPT03r66ad15coV/e2//bc7ru/rX/+6fuZnfiaAlmEYbG1taXJysmGZubk5zc3N9ahFAAAAAKLk8uXLunz5csMyW1tbPWqNFzE3+omYGwAAIPretd9qek7Xz5gHCEqoO9QlKZ/P68d+7Mf0jW98Qz/90z/dUV2XLl0iuIdvlUpF165da1hmZ2enR60BAAAAEDU7OztNY4p+I+ZGvxBzAwAARN+uHoQ+5mnFnqx+NwEhFfoO9UQioa985St68cUXOwrub9y4oWKxGGDLMOhisZgmJiYalhkdHe1RawAAAABEzejoqE6fPt2wzNbWliqVSo9a5EXMjX4h5gYAAIi+Qzoc+pgHCEKoO9S//vWvS5Ief/xxjY2N6amnntL09HTL9ZTLZb3yyitBNw8DbmJiQpubm/1uBgAAAIA+cOcJPGDKD1gvr7qf4aonJyf79kQHMTf6iZgbAACg/9yxjHXosLeQXb8z/Anrk9IfeefXxk39jHlaYSvYJ9S/+tJNffWlWw3L/PD73GgQFaHuUP/Sl76kN998szpt27aWlpbaqsu2bVkWQzUAAAAAACARcwMAAABAt9y6aev779FhPihi/W5AI+fOnZNt27JtW5IIzgEAAAAACAgxNwAAAAB0x4nHLH3047GG/2Kh7qVFrVA/oT47O6svfvGLsiyrGuADAAAAAIDOEXMDAAAAwAFLFTu4m4w/++KoPvviaMMyz/4nW/r+e3uBrRPdE+oO9ZMnTyqZTOrNN9/U4uKiksmkxsfHW66nVCrpS1/6kr71rW8F30gAAAAAACKImBsAAAAAgOZC3aEuSefPn9fU1JS+8IUvtF3H008/rc985jNtXRgAAAAAAAyf1b0r/stW8l1sSXcRcwMAAADDyx3LZGLZlstEOR5y2xNpsGAW+tH50+l0YEPPnTlzJpB6AAAAAAAYBMTcAAAAAAA0FvoO9aefflqLi4uB1PW3/tbfCqQeAAAAAAAGATE3AAAAAACNhb5DXZKefPLJQOr5R//oHwVSDwAAAAAAg4KYGwAAAACkPcV6+g/REfoc6kFaW1vrdxMAAAAAABhIxNwAAACAP0HkIe9XLvN28q4DURfJDvV33nlH5XLZd/lSqaTl5eWWlgEAAAAAYBgRcwMAAAAYNrakim31fJ2Ihkh0qL/zzjtaXFxUoVBQqVRqqw7btmVZvf0iAAAAAAAQdsTcAAAAAADUF/oO9YsXL2ppaUnSfoAOAAAAAACCQcwNAAAAAPv2xE3CMAt1h/qv/dqvaXFxUZJkWZYsyyLABwAAAAD0TWbkvK9yq3tXutySzhFzAwAAAN1hyivuYMWc5Q1xRrOYIoi86wD8CXWH+qVLlySpGtQnEgklk0klEglJ0qlTp5rW8f7776tcLuuVV17RjRs3utpeAAAAAACigpgbAAAAAIDmQt2hXiwWqznYVldXdfbs2bbrmp+f11NPPRVU0wAAAAAAiDRibgAAAAB4aM+ONS+EoRTqDvV4PK4bN25ofn6+o8BekhKJhJ588smAWoZhsLW1pcnJyYZl5ubmNDc316MWAQAAAIiSy5cv6/Llyw3LbG1t9ag1XsTc6CdibgAAgOi7fPmyftv+l575ted5/Yx5gKCEukM9kUjozTff1DPPPBNIfcvLy4HUg+FQqVR07dq1hmV2dnZ61BoAAABgMJhy9rWT+y9IneYRNLU/E8tqw/53uqbGMUU/EXOjn4i5AQDAIHPHCJ6Yw644p63ePBndLPYy5XJvVGaj8m91T3c8ZZqd54WRLUsV9fYJdVtWT9eH9oW6Q/3s2bN68803tb29HVh9gF+xWEwTExMNy4yOjvaoNQAAAACi5pAO66iOOeY9fnrcMb21taVKxXUxrUeIudFPxNwAAADRd8g6rNM/crphmX7GPEBQQt2h/ou/+Iv68pe/rGKxGEh9v/zLv6wXX3wxkLow+CYmJrS5udnvZgAAAACIqCesT+oJfdIxb3XT+UTI5ORk357eIOZGPxFzAwAARN8T1o9rdfNbDcv0M+YBgtLbsQtadPLkSf3SL/2Srly5ops3b3ZcH8PPAQAAAACwj5gbAAAAAB7ak9XTf4iOUD+hLknz8/NaXV1VNpvVN7/5zbbrefvttwO76x4AAAAA0J5+50s36bRNYcwL7xcxNwAAABA8d4zQNKd6WLhzu8ubV31170rDv5vKDKP8L1/Xyj+53rDM9vd3e9QadCr0HeqStLq6qjNnzuipp57SwsKCxsfHmy8kaXt7W+VyWRsbG3rllVe63EoAAAAAAKKHmBsAAAAApD07uIG9b92s6Ifv0WE+KCLRof6bv/mbkqSNjQ3Nzs62VYdt27Ishk8AAAAAAKAWMTcAAAAABOvREyN6/OONu2G3v7+rindQAIRQ6DvUf/7nf165XE6SZFmWbNtuuQ6CegAAAAAAvIi5AQAAACB40y+Oa/rFxqN/vfDn/pCn2CMi1B3qL730kpaXlyW1H9hLans5AAAAAEB76uUEDGNu8VbyF5raH8b35AcxNwAAANAd7hjh2SMvNF7AkLu8H6xDhz3z7L09x3Ro878HoCJuFoZZqDvU3YF9Op1WJpNRPB5vOafbV77yFb3zzjtdbC0AAAAAANFBzA0AAAAAQHOh7lAvFouyLEvxeFxra2t68skn267rwoULOnXqVICtAwAAAAAguoi5AQAAAGCfLWlPsZ6vE9HQ2z2jRfF4XJJ08eLFjgL7g7qefvrpAFoFAAAAAED0EXMDAAAAANBcqDvUU6mUJCmRSARS30svvRRIPQAAAAAARB0xNwAAAAAAzYV6yPfZ2Vm98cYbKpVKgdTH3fIAAAAA0JlMLOuZt1rJ+5oXVlFqa5CIuQEAAIDucMdN1qHDfWpJa+y9Pc+81b0rjulnj7zgmH79/stdbVMv7dmhfg4ZfRTqPWN6elpPP/20rly50rywD1//+tcDqQcAAAAAgKgj5gYAAAAAoLlQd6hLUj6f1/r6ur7xjW90XNelS5cCaBEAAAAAAIOBmBsAAAAAJMlSRbGe/pOsfr9p+BT6DvVEIqGvfOUrevHFFzuq58aNGyoWiwG1CgAAAACA6CPmBgAAAACgsVDnUD8YLu7xxx/X2NiYnnrqKU1PT7dcT7lc1iuvvBJ08wAAAABg6PjNN27Ktd7K8v2WGTlv/oNd8bV8FN4nMTcAAAAGiSkGCct5uTvPuDsPuSl3eT+486VL9WO7Rn8Py3YHghLqDvUvfelLevPNN6vTtm1raWmprbps25ZlMXQCAAAAAAASMTcAAAAAHLBtac/ubUxj2z1dHToQ6g71c+fOVYeMsyyL4Bw9tbW1pcnJyYZl5ubmNDc316MWAQAAAIiSy5cv6/Llyw3LbG1t9ag1XsTc6CdibgAAgOh7135L39V3PPNrz/P6GfMAQQl1h/rs7Ky++MUvyrIs2dymgR6rVCq6du1awzI7Ozs9ag0AAACAqNnZ2WkaU/QTMTf6iZgbAAAg+nb1QPd0xzM/zHFQI3uK9bsJCKlQd6ifPHlSyWRSb775phYXF5VMJjU+Pt5yPaVSSV/60pf0rW99K/hGYmDFYjFNTEw0LDM6Otqj1gAAAADollZy/rVSdnR0VKdPn2647q2tLVUq/vKyB42YG/1EzA0AAIIWpbzd7pzqJu7Yoxfvz0+889yxz1VfH949pqO7xzzLPH76YVzRz5gHCEqoO9Ql6fz585qamtIXvvCFtut4+umn9ZnPfKatCwMYXhMTE9rc3Ox3MwAAAABElJ/hqicnJ/v69AYxN/qFmBsAACD6PnHoJ/SjewnP/NXNh53w/Y55WlGxeUIdZqHfM9LpdGBDz505cyaQegAAAAAAGATE3AAAAAAANBb6DvWnn35ai4uLgdQVVD0AAAAAAAwCYm4AAAAAABoL/ZDvkvTkk08GUs/TTz8dSD0AAAAAgMaCyEHeK6b1m9pZr2zUEXMDAABgENQ7h6/Vq/P5ZuvJjJx3TFsjI91sjm+txEaDxpa0F+BzyL/+T7f06//0vYZlyj94ENj60F19fUL9W9/6Vj9X7xCmtgAAAAAA0KkwxblhagsAAAAAdNudW3u6/r0HDf/ZlX63En719Qn1VCql69eva3R0tJ/N0I0bN5RKpbS3t9fXdgAAAAAAEBRibgAAAADwb8+2Aqvr6PFDGvvY4YZlyj+gUz0q+tqhbtt2P1fvEKa2AAAAAADQqTDFuWFqCwAAAAB026f+xoQ+9TcmGpb5P/6Foq5/j2Hfo6CvHeqWFdydHp0KU1sAAAAADJcw5hXvGquvmcd8G4TtH6Y4N0xtAQAAwGAK0zm8O0e65zFkV1xkG0Zz6sf7ee7455uWCdN2BnqFJ9QBAAAAABhAxNwAAAAA4Jelinp9Azg3HkdF3x8NePvtt/vdBK2trfW7CQAAAAAABI6YGwAAAACAzvT1CXVJunDhgr74xS8qHo9rfHy8p+ve3t5WqVTS/Px8T9cLAAAAAEAvEHMDAAAAgD97dt+fQ+5YqVTS7OysZmdnNT093VYdxWJRy8vLKhQKKpVKkqREIqHp6WldvHhR8Xg8wBY7HbR/dXW1a+toR9871NfX15XNevMF9pJt2+RzAwAAAAAMHGJuAAAAABh85XJZFy5c0MrKiiS1FQe666hVKpW0tLSkpaUlLS8va2ZmpuW6x8bGfJVtte5e6HuH+oF+5XYjqAcAAADQb6uVfL+b0Dt2pd8t8CUT83/xIQqfHzE3AAAAos59ju7nPLydZQLhinvc6+1bu5qo3L3nmWcdOuyYfvbIC47p1++/3NU2obFyuaxLly5paWmp43pSqVT1ifRGZmdntb6+ruXlZd/153I532UXFhZ8l+2Vvo9dYNt23wL7g/UDAAAAADCIiLkBAAAAoDlbUkVWT/91Gi0tLS0plUqpWCx2/P6z2axKpZKSyaTy+bw2Nja0sbGhfD5vTOOVy+WMT7LXc+nSJV/l0um0EomE73p7pa9PqF+/fr2fqwcAAAAAYGARcwMAAADAYCoWi0qn09XO7lwup9nZ2bbqyuVyKhQKmp+f1+LiouNvB7nTZ2dnlc1mHZ33Fy5c8JWnPZfLqVwua35+XplMpmHZM2fOtPUeuq2vHeonT57s5+oBAAAAABhYxNwAAAAA4N+e3feBvX1LJpOO6U46ohcXF5VOpz2d6bUSiYTy+bympqaq88rlsgqFgtLpdNP6E4lEw/rDLjQ51AEAAAAA4WfKLW7K95cZOW9cPiy5AZuyzBdSVveueOb53SYAAAAA2tdWHvI65/Xd5s473qytYYkpRo4/6pm3d+uWc4Zrm4al7cMuHo+3tVyxWFSpVNL6+nrTsged4rU5zg+elK9nZWVFpVKppXzrYUSHOlDH1taWJicnG5aZm5vT3Nxcj1oEAAAAIEouX76sy5cvNyyztbXVo9YA4ULMDQAAEH3v2n+g79pveebXnucR84TblStXNDMz47tD3t15/v777zcsf+nSJcXjcZ07d67dJoYCHepAHZVKRdeuXWtYZmdnp0etAQAAABA1Ozs7TWMKYFgRcwMAAETfrv1A93THMz+qcdCeojPke1DOnz+vRCLhu7x7qPnaIeDdisViNef62NiYEomE0um0MpmMr9zrYUKHOlBHLBbTxMREwzKjo6M9ag0AAACAqBkdHdXp06cbltna2lKlUulRi4DwIOYGAACIvkPWYR21j3nmP356vPqamCfc3B3kzZTLZcd0o8742qHhJalUKimXyymXy0mSpqendfHixZbb0A90qAN1TExMaHNzs9/NAAAAAELFdy48O9oXTEy50ltxkEfwj+vPOut1bb/JycnIPr0BdIKYGwAABC0zct47s09xib37wDmjjVzuvnLEB+ybO7/StB21nrB+XE/oKc/81c2HbY1OzGOpYls9X2fUlEolx3S9/OmlUkmFQqFhXSsrK1pZWdHMzEzoc6zToQ4AAAAAAAAAAAAAaGhtba36emZmpm65RCKh5eVllctlbWxsqFAoeDrjD+RyOa2trWl9fT3w9gaFDnUAAAAAAAAAAAAAQ8tW73Oo2z1dWzBqnyR3D+nu5u5wL5fLyuVyunTpkmfo+GKxqEwmo9XV1cDaGqTe7hloW7FY1OzsrKampmRZlizL0tTUlBYWFjw7XSuWlpaUyWQ0NjZWrTObzTYdhmEQ6gQAAAAAQCLmJuYGAAAA0EypVFKxWJQkLS4uNsyfbhKPxzU/P6/r168rn88rHo87/l4oFLS0tBRUcwPFE+ohVy6XdeHCBa2srHj+ViqVtLS0pKWlJS0vLzccWsGtUCgom82qXC4rnU4rn88rkUioWCxqYWFBmUymOt+9Q0e9TgAAACBsTDnpepEfLyittH8Q36spH2KnOdjRG8TcxNwAACC62okjepWXvFm9nrjClGO9T/nfPdxtc7UrSvFcUP7VP/uu/vU/+27H9ez84F4AremdxcVFSfvDuc/Pz3dU1/T0tNLptM6ePVvtpJekS5cudVx3N9ChHmLlclmpVKpuToFas7OzWl9fdwy1UE+hUFAmk5G0P9xC7TKJRELT09NKpVIqFApKpVJaX19vGjhHpU4AAAAAACRibmJuAAAAwKli+xvY+87NPd34XrQ6wztVLBaVy+UUj8cDG5Y9Ho9rfX1dqVSq2qleLpdVKBSUTqcDWUdQGPI9xLLZrEqlkpLJpPL5vDY2NrSxsaF8Pm+8OyOXyxnvqq9VLpeVze7f+ZRIJOpeDMjn9+8oKpVK1fJRrxMAAAAAgAPE3MTcAAAAQDseOXFIJz92tON/poEJwurChQuSpDfeeKPlod6beemllxzTYcyjHqGParjkcjkVCgXNz89rfX1d09PTSiQS1bvEFxcXtbGxoWQy6VjuYIeu52AoN0laWFioW+5gPdL+Xeu5XC7ydQIAAAAAIBFzE3MDAAAAXnuyfP37C//lJ/R3/tVPdfxv9CNH+/2WfZmdnVWxWFQ+n/fESEFIJpOOJ9L9jCLWa5Zt23a/GwGvqakpJRKJpndhlEolTU1NOeatrq4ah0Jwl71+/XrD4dpWVlaqd6DH43Fdv349snW2YnJyUteuXdPp06e1ubnZUV1D5/Zt6cSJ/de3bknHj/e3HgwP9hkAgB8cL0Ih6jnUTTp5T8Qf/UHMTczdF50chziGRRufH4Bh0sXfvMzI+YZ/t0ZGPPPs3QeO6V7FHk1zpIc0D7kptvFwvZfVvSsNi4f9/O+gfSc/dlR/51/9VE/X/ff/0m/pxvfuBbJt3Of5y8vLmpmZ6bSJyuVymp2dDay+epaWlqo3+05PT1dHywqLoXpC/Z133ul3E3wpFosqlUq+dpZEIqHFxUXP8ia15dLpdNPcZwd3oUv7w8GZhraLSp0AAAAAgO4i5o5GfEzMDQAAAMCPQqHQk850SY5h5MfHx7u6rnYMVYd6VPJ9XblyRTMzM02D2gPuO+Pff/99Y7naodn8DslQuwNfueK9yygqdQIAAAAAuouYOxrxMTE3AAAA4GVLqtixnv4L8xDixWJRmUxGi4uLXe9Ml5wxh99YrZdC36G+s7MTSD1vvvlm3bvIw+b8+fOeO+AbcQfA7uHoJO8d9M8880zLdbvvQo9KnQAAAAAAM2Lu5oi5ibkBAACAYVIqlXT27FnNz89rfn6+J+tcW1urvs5kMj1ZZysO9bsBzaRSKX3nO9/pqI5vfetbOnv2bEAt6j6/d4gfKJfLjunauzgOFAqFpmVM3OWKxWK1fVGpEwAAAEB3tZJDPCy5AZvxlTvwQ1F5TybE3M0RcxNzAwCAcGiWq7uVc/iuc+dMb8KYH74PedatQ4e9zXDloXe3a5Dsyep3E/quVCoplUppZmbG943IpVJJKysrHXW+b2xsVF+7RwkLg9A/ob6xsaGbN2+2vfyXv/xlpVIpTwA8SEqlkmPatKNdvXrVMe13uIRTp045pmvvEIlKnQAAAAAAM2Lu5oi5ibkBAACAYVAul5XJZHTu3LmWRvXKZrMdd4IfjITVqyfiWxX6J9Ql6ezZs/qd3/mdlpZ55513lM1mVSwWZdthzkLQudpAtl4eA/cFgHbvQq+9QyQqdQIAAAAA6iPmboyYm5gbAAAACLtOb3Iul8tKpVJKJBJaWFjwxA4mpVJJCwsLklofCazWysqKSqWS4vG4Ll682HY93RSJDvX19XU9//zzeuWVVzQ6Otq0/Je//GV98YtflCTZti3LsgY6wF9eXq6+Pthx3fzs+H7UfiGjUicAAAAAoD5i7saIuRvXCQAAAAwGSxW71wN7BzfEvPtcv9Vz9rNnz6pUKqlUKmlqaqqlZWtjJmk/1VQ2m1W5XFY6ndbi4mLdDvdSqaQLFy5Ikt544w3fo2j1WiQ61G3b1uuvv65EIqF8Pq+/9Jf+krHct771LWWzWZVKpWpQP+iBfalUUrFYlCQtLi7Wvbu83WDXveNub29Hrs52bW1taXJysuN65ubmNDc313E9AAAAAMLjXfstfVf7ucc7iRu2traCalLbiLnrI+ZuXme7iLkBAADC7d29b+vdyreblmt2TheGmGfQlctlz82/V65c8T18eiqVqsY97XCP5JXP56uxR6FQqOZkr9fxPj4+rvX1dd8jaPVD6DvU4/G43njjDV29elULCwtKp9OanZ3VP/7H/9hR7uLFi1paWqoG8gdBfSKR0MrKij7xiU/ozJkz/XgLXXWQwyCRSPQkr0A37kIPa52VSkXXrl3ruJ6dnZ2O6wAAAEB4ZGJZz7zVSj50dfZSlNrqV733dPBZ7eqB7umOJAUSN/QLMXdjxNzdq5OYGwAANJMZOe+YtkZGHNP23l7zSqzgnzh2x2+m2GF170rLy4TB6/dfrr7+u3/37+rv/b03my4T5XjIwZb2ev2Eegf3JpfLZV24cEHlclmFQsHz92KxKMuylE6nq0Opm54SP0jl1S5TWqxsNqtcLueYl8vl9MorryidTmt8fFxra2sqFouan5/XxYsXQ/tk+oHQd6ifO3dOTz/9tJ5++mmdP39eL774or7yla+oUCgon8/Ltm3PHfK2bcu2bS0uLuoLX/hCta7Z2dk+vpPgFYtF5XI5xeNxra6uNiwbj8cDCXhrd+io1NmuWCymiYmJjuvxM2QiAAAAgGg5pMM6qmOSpMdPj3v+/sNr5id43WW3trZUqVSCb6BPxNz1EXP7q7NdxNwAAADhNjo6qtOnT3tiG1P800i/Y55BFY/Hlc93fmNGEHW4pdNpbWxsaHFxUYVCQdvb29U4pFgsKplM6uLFi9XO/igIfYf6V77ylerrkydPKp/PK5fL6Ytf/GL1Tgr3HfLJZFL5fF5PPvmko67aQH8Q1OYUaDYMwvj4eCBB8/j4uON1FOps18TEhDY3NzuuBwAAAMDgecL6pJ7QJyVJq5veCxDup2kOrG46n1SZnJzs6xMdxNz1EXP7q7NdxNwAAADhdpBax/N0vSH+aaTfMQ/6I5FIeIZ4j7Iej13Qunfeecczb2pqSpKqd8VbllX92/LystbW1jyB/aCZnZ1VsVhUPp83DtHg1u4dHu5A231nexTqBAAAAACYEXObEXP7rxMAAAAYBLakiqye/utgxHf0WOifUM9ms7p69aqk/bxYFy5c0MrKiiRVg/qDu+Wnp6d1/rz5KYBBksvllMvltLy8rOnpaV/LnDlzxpEDoVwu+wqAt7edQ3kcXFiJUp0AAABAkHqV686UV72X66+nXrvc+t3OfnPnTAwrYm4vYu7W6gQAAOgWTx5y9yhQtmsY8S7kSzdpJ9axDh12TLvfS1jiB+NIWz3arkCYhf5bsL6+rn/4D/+hfv7nf15jY2NaWVmpBvO2bevpp5/WxsaGvvCFLyifzyuRSOgb3/hGn1vdPYVCQbOzs1peXtbMzIzv5VKplGO6VCr5Wm5jY8MxnU6nI1cnAAAAAMCMmNuJmLv1OgEAAIBBsWfHevoP0RGJT2t+fl65XK4a1Ev7gf3i4mJ1qLmD1ydPntT09LSef/553bx501HPzs5Or5seqGKxqEwmo8XFxZYCe2n/LvRafoPm2mHd4vG4I29cVOoEAAAAANRHzL2PmLu9OgEAAABg0EWiQ11SNW+bbdtKp9PVO+RrJZNJbWxs6MUXX9Trr7+usbEx/ZN/8k+qf89m/Q1NGEalUklnz57V/Py85ufnW14+mUw6hnE7GNKvmbW1teprd+AdlToBAAAAAI0RcxNzt1snAAAAAAy60OdQr2XbtpaXl3XhwoWG5ZaXl5XNZpXNZjUzM6PFxUV95jOfUaFQ6FFLg1UqlZRKparvxe8yKysrjgsB586dUy6XkyRHzrRGasstLCx4/h6VOgEAAIAwi1K+cb9t9ZtrvZU6w2pQ3isxNzF3u3UCAAB0Q1hyprfDEyM0aasppuhG7OBej2cd7m0sedruJ/4Jc9zTSMW2Aqvr//fV7+h3vvaHDcvc+uHdwNaH7grvr41LOp3W9evXmwb27vI/8zM/oz/8wz/U0tJSl1vYHeVyWZlMRufOnfMd2Ev7Twa4c5rNzs5WX/u50FFbJpFIGHOkRaVOAAAAAEB9xNzE3J3UCQAAAMDp3u1d3fz+3Yb/TPcvIJwi0aE+MzOj119/XSdPnmx52Xw+r1deecWRCy4qyuWyUqmUEomEFhYWVCqVmv4rFApKpVKS9odyq5VMJh2B78rKSsP15/MP7yCqdwd6VOoEAAAAAJgRcxNzd1onAAAAEHW2LO0pFti/w8cP68RHjzX8F+JBFuBi2SGPesfHx7W9vd1xPYVCQc8995z29vYCaFVvpFIp38OvuS0vL2tmZsYzv1QqaWpqStJ+EL2+vm5cvlwua2xsTNL+kwerq6t11xWVOv2anJzUtWvXdPr0aW1ubnZc31C5fVs6cWL/9a1b0vHj/a0Hw4N9BgDgB8eLnhqUYdDdWnlfJu732u/4g5ibmJuYu4c6OQ5xDIs2Pj8AwyTA37xuDPm+unel7fa0otUh302PKvdjyHdjvONuu4/HqmvrDfv530H7Tnz0mP6r1b/S03X/PzK/rlvfvxPabYOHQp9DPaihxNLptJ5++ulA6uqFTgJ7ScbAXtofni2fzyubzapYLGppacmR8+3A2bNnJUnxeNxxN3qU6wQAAADQuU5z+4Wx8zzoTvIoIeZuDzE3AABA97k7v5898kLD8vbuA8+82LFjgbapXb3qyG+mrdil2Y0MAzRueZA51DFYQj+YwCuvvBJYXVEJ/g4C2nbVC+wPTE9Pa3V1VfF4XAsLC9X1lcvl6vB1xWJRyWRSb7/9tuLxeNN1RqVOAAAAAMBDxNytI+YGAAAAgOES+ifUg/Tkk0/2uwm+9OIiRDqd1vXr17W0tKQrV67o7NmzKpfLisfjOnPmjPL5vKanpweyTgAAAABA8Ii5H4pKfEzMDQAAAADNDVWHOrzm5+eNw7oNQ50AAAAAAHRTVOJjYm4AAABAqoR/YG/0CR3qAAAAABBC9fJ69ztft9/11yvXaQ72bjCtP6zbHwAAABgWmZHzjmlrZMQxbe/tNa+kYgfZpMC488G/fv/lPrXExZ0fXeHJ/w70Ex3qAAAAAAAAAAAAAIbanm31uwkIKcYuAAAAAAAAAAAAAADAgCfUgTq2trY0OTnZsMzc3Jzm5uZ61CIAAAAAUXL58mVdvny5YZmtra0etQYIF2JuAACA6CPmwbCgQx2oo1Kp6Nq1aw3L7Ozs9Kg1AAAAAKJmZ2enaUwBDCtibgAAgOgbpJjHllTp8ZDvdk/Xhk7QoQ7UEYvFNDEx0bDM6Ohoj1oDAACAqMnEssb5q5W8r+X9lgsD03ut137T/FaW75Ug1j86OqrTp083LLO1taVKpdLxuoCoIeYGAADNrO5dcUw/d+xzDcvbu97z6tfufC3QNvkVO/qIY9od87j//uyRFzx1vH7/5eAb1oR7m5vUvpd37beIeTAU6FAH6piYmNDm5ma/mwEAAAAgovwMVz05OTkwT3QArSDmBgAAiL4nrE9qdbPxzchRinkqdqzfTUBIsWcAAAAAAAAAAAAAAGBAhzoAAAAAAAAAAAAAAAYM+Q4AAAAAXVAvB3cY84W3wpTbr5X2R+X9m9op+c8BX08Y3ysAAAAQRp7zbMv1jKhdafx3H3V26/y8cv9+47/fu+ucYWh7ZuS8Y9pPfvNucLfD8/eIxHh+7MnqdxMQUjyhDgAAAAAAAAAAAACAAU+oAwAAAAAAAAAAABhilip2r59Q54n4qOAJdQAAAAAAAAAAAAAADHhCHQAAAAB6KKq55A68fv/ljpaP+vv3mx+wWZ5BAAAAAI25z7ObnWNbIyOeec8eeaFhnd3iznfujiOsQ4cd0/beXtM6euG5Y59rWibqMV2v/N6v/r5+7+VvNyzzwQ/v9Kg16BQd6gAAAAAAAAAAAACGWsUObmDve7d3dfv7HwRWH/qLDnUAAAAAAAAAAAAACMjh40d0/KOPNizzwQ/vyK7YPWoROkGHOgAAAAAAAAAAAIChZUuqyAqsvj/xX/yk/sR/8ZMNy/zPfzWvD3iKPRLoUAcAAACAEDLl6pb6n6+uXrvc6rXTbw7yXupGm/qR7xAAAAAIgvv8uNm5cW35R+xdvdqVVkmyKy0v8vr9l7vQkObc23DkxAnH9N5tVydqG++tGyr37nrmufO9t7p/AIMguGQAAAAAAAAAAAAAAAAMEJ5QBwAAAAAAAAAAADDU9uzghnzHYOEJdQAAAAAAAAAAAAAADHhCHQAAAAC6wG+uccmcc25Q89CF8X2Z2vTskReMZe3dB23XCQAAAERBq+eyjvK3b0uufOG9Yu/teeY9d+xzjunX7nytV81x2Lt1yzEdO3bMMW0/2PUs05dc5Zb3OVx3HvrMyHnntCH2jWQ8ZEsVu8fPIdu9XR3aR4c6UMfW1pYmJycblpmbm9Pc3FyPWgQAAAAgSi5fvqzLly83LLO1tdWj1gDhQswNAAAQfe/af6Dv2m955tee5xHzYBDQoQ7UUalUdO3atYZldnZ2etQaAAAAAFGzs7PTNKYAhhUxNwAAQPTt2g90T3c886MaB1XIoY466FAH6ojFYpqYmGhYZnR0tEetAQAAABA1o6OjOn36dMMyW1tbqlQqPWoREB7E3AAAANF3yDqso/Yxz/zHT49XXxPzYBDQoQ7UMTExoc3NzX43AwAAAEBE+RmuenJyMrJPbwCdIOYGAACIviesH9cTesozf3XzYQ51Yh4MAjrUAQAAAKBDmVjWM2+1kjeUNJeNknrvK8o6/vysWNBNAgAAAODmPu+2mz/1bO/tdakxjbnjiczIecd05Y53mHQ369DhQNskeeMZdztX9654l3G13VRmENiSKurtkO92T9eGThD1AwAAAAAAAAAAAABgwBPqAAAAAAAAAAAAAIaYpYrd2yfU1eMn4tE+nlAHAAAAAAAAAAAAAMCAJ9QBAAAAoEMt5RX3mW+7Xq71fucwd+fPqydKefVa2aamsqbPKqyfHwAAAKKrWf7rQeN+v+6c4vauK4e6Iae63Z8U6t64ydW22LFjjunK3XueOl6//3Lg7Wq2z5jiGPd2f/bIC45pe/dBy+sBooYOdQAAAAAAAAAAAABDrWIzsDfM2DMAAAAAAAAAAAAAADDgCXUAAAAAAAAAAAAAQ61iW/1uAkKKDnUAAAAA6CVDXj+T0OacM7Q/tG3tQN1c8Yb3Hzv6iGfea3e+FnSTAAAAMOQG8by7FfZe6wnRrZGRlpcJIlf96t4VZ52u+MKUM70bmr0XT850yzuwtXsbVu7dDaZxA+6tf/67+s4//72GZe68/0GPWoNO0aEOAAAAAAAAAAAAAAF5cPu+7vzgdr+bgYDQoQ4AAAAAAAAAAABgaNmSKgpuyPdDx4/qkY8cb1jm7vsfSBU7sHWie+hQBwAAAAAAAAAAAICAPPXX/7Se+ut/umGZX//Pv6q7PMUeCXSoAwAAABhI7lxwj9i7erVH62rIkJNuENXbJn7zD3a6fKfcOQ8PmNpFvnQAADBsgsgxjeHS1j7TJHaKHX3EMW3K7W3vPmi+Hpdmecb9tP35sRddDak4Jq1Dh51/NrQzkFzuTZbx0w537vpB/r5X7OCeUMdgGY4rOQAAAAAAAAAAAAAAtIgOdQAAAAAAAAAAAAAADBjyHQAAAAAAAAAAAMBQY8h31EOHOlDH1taWJicnG5aZm5vT3Nxcj1oEAACAVnjyut2+LZ040Zt1qUEO8Dq5uaPCb768euWePfKCZ97r919uez295s4xKEmZkfPegnZF79pv6bv6jmP246fHHdNbW1uBtg+ICmJuAIi2sJ6rIbza2mdcecfdKvfvO6Zjx455y9y50/p6Xdppu333nnOGKx+8O1d5v75T7vzofso8d+xz1dfv7P6+bn/sew2XJ+bBIKBDHaijUqno2rVrDcvs7Oz0qDUAAAAAomZXD3RPzgt4zWIMYFgQcwMAAETfrv1goGIcnlBHPXSoA3XEYjFNTEw0LDM6Otqj1gAAAACImkM6rKNyPiVjekK9Umn85A0wiIi5AQAAou+QdVinT59uWIaYB4OADnWgjomJCW1ubva7GQAAAAAi6gnrk3pCn3TMW910DuU4OTk5UE90AH4RcwMAAETfJw79hF7bXG9YJkoxD0+oox461AEAAACgC1rJgWfKwR3WXOum3PCt5JCPOmOOwSa5HQEAAICwcJ+n9yt3dztiRx9xTL9252uO6W7FIG1ts1hrHbN+46zAuWMZV653oxbfGzAIfHwzAAAAAAAAAAAAAAAYPjyhDgAAAAAAAAAAAGBo2ZIq6u3T93ZP14ZO8IQ6AAAAAAAAAAAAAAAGPKEOAAAAAAAAAAAAYHjZlip2j/PD93p9aBsd6gAAAAA6lollPfNWK/k+tCT8TNsq6jr9/MO4/2RGzvsuax067Jln7+0F2RwAAAAgEP0+z26Fu63uuMHPOXvs6COBt8OP125/1THtbqvnvbUQfwTJ3Y5PfeTnPGX2buw4pit37nS1TUAYMeQ7AAAAAAAAAAAAAAAGPKEOAAAAAAAAAAAAYKj1fMh3RAZPqAMAAAAAAAAAAAAAYMAT6gAAAAA6FqU8fN3Qjbzo9ers97b2u/56OQBX964E2ZxAtJLD3fy5jATcIgAAAKA3/MQy/YpB3G1rllPd1M5+5SZ/9sgLDf/u2e5WOJ5//Y0ffKVpGU8u+xbiqbAL8gn17+bX9R/yxYZl7m3fDmx96C461AEAAAAAAAAAAAAgILu37+veD2/1uxkICB3qAAAAAAAAAAAAABCQQ8eP6OjjJxqWubd9W6rYPWoROkGHOgAAAAAAAAAAAIChZSvYId8np89ocvpMwzL/2/mc7vMUeyTQoQ4AAAAAHWolP5zf/HL9yvXXjpZykBveV9/z6xnyFdbd/oay1og3h7q9t9dxswAAAIBu6/u5eAPWocOOaXfc4f67SezIkYZ/71f+bz/r8JMjPmh+4tDYsWOO6dduf7VbzQFCgw51AAAAAAAAAAAAAEPNDvAJdQwW7631AAAAAAAAAAAAAACAJ9SBera2tjQ5OdmwzNzcnObm5nrUIgAAAABR8q79B/qu/ZZjnjvG2Nra6mWTgNAg5gYAAIi+dx78ftNzOmIeDAI61IE6KpWKrl271rDMzs5Oj1oDAACAqDHl4pNkztfdp7x93VQ3955d6W1D/GilTYbPr3L/vrHOXfu+7umOY3azGAMYFsTcAACgmdfvv+yYfvbIC45pe2/PMW2MQZqc63cr7rJ3HzRcT914scEy3eBux8j4mKfM3vUbdZfftR8MVIxTUfSHfC+VSpqdndXs7Kymp6fbrmdpaUmrq6taW1tTuVxWIpFQMpnU7Oys0ul0aOrsFTrUgTpisZgmJiYalhkdHe1RawAAAABEzSEd1lEdc8x7/PS4Y3pra0uVSghvMgC6jJgbAAAg+g5Zh3X69OmGZYh5eqNcLuvChQtaWVmRJGWzzW/aMCkUCspmsyqXy0qn08rn80okEioWi1pYWFAmk6nOj8fjfauz1+hQB+qYmJjQ5uZmv5sBAAAAIKKesD6pJ/RJx7zVTedTJpOTkwP1RAfgFzE3AABA9H3i8E/otc21hmWiFPNU7Og9oV4ul3Xp0iUtLS11XFehUFAmk5EkzczMaHl5ufq3RCKh6elppVIpFQoFpVIpra+vN+0A70ad/eAdqw4AAAAAAAAAAAAAEFpLS0tKpVIqFosd11Uul6tPtScSCUfHd618fv8m8VKp1PQp+G7U2S88oQ4AAICBVS8nWdRzUyN8Os2B7s4FGGZ+32uUvn+ttN+Ug3HkxAnPvMrdex23CwAAICzc50Z+zunaWQadc+cRX9270qeWtMZPTvHYsWMN/26NjATVnK6LHX3EMV25d7cv7XB/L5879jlvIXcMVLEdk53Gw2hPsVhUOp3W/Py8JCmXy2l2drbt+g6GZJekhYWFuuUOnipfWVlRoVBQLpfTzMxMz+rsF55Qj5BSqaRMJlPNf9CupaUlZTIZjY2NybIsTU1NKZvNqlAoDHydAAAAAACYEHMTcwMAAGC42bbV03+dSCaTSiaT1ekzZ860XVepVHLEAefOnWtY/vz5hzfu1Oso70ad/USHegQcDIkwNTWlQqGg7e3ttuopFAoaGxur7oj5fF4bGxtaXFxUsVhUJpNRJpOp3i0ySHUCAAAAAGBCzE3MDQAAAERdJ3nHFxcXq6/T6XTTuqanp6uvy+Wy8abkbtTZT3Soh1i5XNbCwoLGxsY63nEKhUI1IJ6ZmdHq6qrS6XR1GIWNjQ0lk0kVCgWlUilfgXNU6gQAAAAAwI2Ym5gbAAAAqFWxrZ7+C4tcLld9XfvUeyOJRKL6+soVb2qJbtTZT3Soh9TS0pJSqZSKxWLHdR3cbS/t74zLy8vGcvn8fk6LUqlULR/1OgEAAAAAcCPmJuYGAAAAIE9M9Mwzz/harraT3H2Dcjfq7LdD/W4AvIrFotLptObn5yXt38UxOzvbdn3ZbLZ6V3mjvAMHd6SvrKyoUCgol8tpZmYm0nUCAIDhtlrJ97sJGBKmfS0TM3dEmcq+fv/lwNvULcb3OnLeV7mwMn5Wlvn+c2tkxDOvcveeZ569t9dxu9AdxNzE3AAQZe7zll6dc7WzniidDw6S1b1wPdXpl5/95bnjn2+94lh/ngK2Dh12TLu/u+6/x44+0vU2mbjbZWqHu62v3fmaY/q5Y58LvmF9YKvzvObtrLPfavOcS86nxBtxlysWi9UO8W7U2W88oR5CyWTSsYOcOXOm7bpKpZJjxz137lzD8ufPP7wQVi/AjkqdAAAAAAC4EXMTcwMAAADYd/XqVce031zsp06dckyvra11tc5+o0M9AvzuaCaLi4vV1+l0umld09PT1dflctk4pEJU6gQAAAAAoBli7vbqBAAAABB9pVLJMd3u0+QbGxtdrbPf6FAfcLlcrvra77AItTvslSve4WGiUicAAAAAAN0UlfiYmBsAAABowpYqttXTf7L7/aa9nd/tOkgv1a06+40c6gOsWCw6pp955hlfyyWTyerO7r4LPSp1AgAAAP1WLwdgvdzqndbbK522P4yMeeHrvE97t+Jr+WePvNB5wxBqUYmPibkBIDyCyH/e73PBekznTmFt67ALYj/sFXdu7sr9+w3LW4e9XV7WyEigbTJpJ0ay9/Yc06a2Z0bOO6ZX97p/k2Pl3t3Wl2nyuQyi977+O3rv67/TcT0Prt8KoDWdabfT2j3q1fb2dlfr7DeeUB9gtfnRpPaHVKgNvqNSJwAAAAAA3RSV+JiYGwAAAPDHtv392719Tw/ev9nxP1VC8Ih6QLrxNHmYnlCnQ32AXb161THtNy/cqVOnHNNra2uRqxMAAAAAgG6KSnxMzA0AAAAEa+TRozp86rGO/ylm9fut+I4PWqmnG3X2G0O+DzB3joJ270Lf2NiIXJ0AAAAAAHRTVOJjYm4AAAAgWB//mT+jj//Mn+m4nt/93P99/0n1PhofHw/kSfDx8fGu1tlvdKgPMHfQ3K7anT4qdQIAAAD95s53V2X5GyisF/nx2mEdOtzvJgTOmPOw3udke3OoG4u5ciJi8EQlPibmBhBmw5Z3m/eGTgWR/zxKn1WzfN6xo484pu0Hu9467t4LtE0mpm367JEXGi7jzplubKfP2KMTfvYH934XxH4YVhX1/4nxXmv3KXB3fBDEE+qN6uw3OtQHWLvBrnsH3d7ejlydQdja2tLk5GTH9czNzWlubi6AFgEAAAAIi3ftt/RdfUeSjHHDDyvm+MRddmtrK/jGoSeiEh8TcwMAAKAdly9f1uXLl/VDu/F5YLNzOmKecDtz5oyKxWJ1ulwu++rIdscHU1NTXa2z3+hQR1PduAs9CnVWKhVdu3at43p2dnYCaA0AAACAMNnVA93THUlqKW4IIsbAYIlCfNyNOom5AQAAwm1nZ8fX+dogxTi2PXxPqKdSKcd0qVRSMplsupw7JVQ6ne5qnf1Gh/oAi8fjgQS87mEaolBnEGKxmCYmJjquZ3R0NIDWAAAAAAiTQzqsozomSXr8tDev2w+vmZ/icJfd2tpSpdL9oRwRvKjEx8TcAAAAaMfo6KhOnz5dN7Y5YIqHahHzhNuZM2cc0347v2tjjHg8rkQi0dU6+40O9QE2Pj4eSNA8Pj7ueB2FOoMwMTGhzc3NQOsEAAAAwpob3S9794Gvcsa85DLnYH/9/ssdtalTppx/9dp/kKfxSf0pPak/JUmyv+/Nl/667e89TU5ODtQTHcMkKvExMTeAMBukvLvDlg8ewfOzDw3dPmXFnNOunOLW8WPOv9++0+UGtS/2yFHHtCdneg/ypfvhzv3+E/o/yLZcMaD7czGM6F4b9xLzhFsymXTchHv16lVNT083XW5tba362t2B3o06+y3WvAiiqt27x92BtvvO9ijUCQAAAABAN0UlPibmBgAAAPyp2FZP/4XFuXPnqq9rc583UltuYWGhJ3X2Ex3qA8x994bfO9K3t53Dd0xNTUWuTgAAAAAAuikq8TExNwAAAIBGZmdnq68LhULT8rVlEomEMdd5N+rsJzrUB1gqlXJMl0olX8ttbGw4pmt32qjUCQAAAABAN0UlPibmBgAAAPyx7d7+C1InaZ6SyaTjfH9lZaVh+Xz+YfqJek+Sd6POfiKH+gBz34VeKpWUTCabLlf7pYvH40okEpGrEwAAAOilVnJmZkbO+6oz6rnWW3n//c45asyX7s4L+KHX7nzNu7zP9yQNYd7LARaV+JiYGwB6g2P8cHGf65k+fz9lWvl7L7Xa9m5xx0TPHfucY9q+c9c5vbfnqcM0rx/2bn/QuIAh/uhHTPj6/Zc989zxTtRj1UHlvnG21Q725eXl6qhUly5dqpvzvFwuK5fLSdq/6XZmZqandfYLT6gPsGQy6chxdvXqVV/Lra2tVV+7A++o1AkAAAAAQDdFJT4m5gYAAAAGW7lc9jzVfeVKazc+JBKJ6lPixWJRS0tLxnJnz56VtH/Tbe1T5b2qs1/oUB9w586dq74uFou+lqktZxpWISp1AgAAAADQTVGJj4m5AQAAgMZsSbZt9fZfB+0tl8vKZrPKZDIaGxvzPKFeLBZlWZYymYyy2ayvOGB6elqrq6uKx+NaWFioLlcul1UoFJRKpVQsFpVMJvX22287btztZZ39QIf6gJudna2+LhQKTcvXlkkkEsYcaVGpEwAAAACAbopKfEzMDQAAAAyWg6e5V1dXZdt23X+rq6vK5/O+0j5J+0OuX79+XYuLiyqVSjp79qzGxsaUzWY1Pj6ufD6v9fX1ljq+u1Fnr5FDPQJazXNQK5lMKp1OV4PhlZWVujkKJDmGUqh3B3pU6gQADLZ+59sFgFot/f7YFV/LP3vkBePippx2veQnP2TD5UOYb6+Vz89vvnWOSdFBzN1enQDMwpJ3GBhmvfge+qmzF9//bl0baVZHr37r3DGRddjZpVW5e8/ZDkOs4c673ivuuM3zXkZGHNOV+/e73iYTzz5kiG3cMaz7vZjy1Icx7vPDtq1+NyE05ufnNT8/H/o6e4Un1CPAPUxDq8H+8vJy9fWlS5fqliuXy8rlcpL27xaZmZmJfJ0AAAAAADRCzN1+nQAAAAAwDOhQD7lyuey5G/zKldbu7EkkEtW7y4vFopaWlozlzp49K+nhMBGDUCcAAAAAAPUQc3dWJwAAAAAMAzrUQ6hcLiubzSqTyWhsbMxzt3yxWJRlWcpkMspmsyoWi03rnJ6e1urqquLxuBYWFqrLlctlFQoFpVIpFYtFJZNJvf32277yFESlTgAAAAAADhBzE3MDAAAAJhXb6uk/RAc51EOoW3eBp9NpXb9+XUtLS7py5YrOnj2rcrmseDyuM2fOKJ/PN8yhFuU6AQAAAACQiLmJuQEAAACgNZZt23a/GwGEyeTkpK5du6bTp09rc3Oz382Jltu3pRMn9l/fuiUdP97fejBQMrGsZ95q5cMLoewzAAA/uni8MB2n6qkev2qXHznvLWhXfC/fS8b3ankHP7NGRozLW4e993W/dvurHbcraPU+U+vQYc88e/eBZ57fz4n4A8NmqPf5To5DxDzRxucHhIr7PK+d8+sg6uiXrre95jfv0/rPddc65Gs9Da/9fejZIy84pt2xhSmucMdaq3utpfdp1/OjP+uYrty955j2xBCGmKpXba313LHPeeZV7t93TLtjvdfvv9ywzrCf/x2079Cpx/TUL88FVu/7/8u/0far/6Zhmd3rt6SKHdptg4d4Qh0AAAAAAAAAAAAAAlK5c0+779/sdzMQEDrUAQAAAAAAAAAAAAwvW7IDzGseO3ZUh8Yfa1hm9/otiYHEI4EOdQAAAAAAAAAAAAAIyPhf+3Ma/2t/rmGZP3zxH2p3m6fYo4AOdaCOra0tTU5ONiwzNzenubngcmoAqC9KuagAAMPHmBe9lbzqhtx4rSzfb7EjRzzzXrvzNWNZ0/vyky+x10y50iVzvnRTvsNMLKt37bf0XX3HMf/x0+OO6a2trfYbCUQYMTeGRSaW1SP2rl7td0OALgvj+Vw9YW1Xr/h5/0HlWX/11q9Kx48H1i53znR3Lm93vvR+2rv9QcO/x44dc0xX7tzpZnN8c+dLN6nNmX758mU9Yj3qKVMb9xDzYBDQoQ7UUalUdO3atYZldnZ2etQaAAAAAFGzqwe6J+eFsWYxBjAsiLkBAACib2dnxxPzSFGNe6xAh3z3u05EAx3qQB2xWEwTExMNy4yOjvaoNQAAAACi5pAO66icT56YnlCvVCq9bBYQCsTcAAAA0Tc6OuqJeSTvE+rEPIg6OtSBOiYmJrS5udnvZgAAAACIqCesT+oJfdIxb3XTOZTl5ORkRJ/eADpDzA0AABB9c3Nz+o2//W8882vjnijFPHa/G4DQokMdANC2lnLDDnl+KgDRVO93jt80+FFvP3n2yAueeX7zcodV5d5d32XD+P0xfdfr5VA3fi6292mLML5PAMBD7jy7q3tX+tQShEGU8n+HVb+2V78+u16936BymbfKvZ5+tcO93pETJxzT7jzl7pzqkmTv7QXfMB/cbXHHfK/d/qpj+vnRn/XU0Y9jVeyRo555lbv3HNOemDZCsSvQLvZyAAAAAAAAAAAAAAAMeEIdAAAAAAAAAAAAwFCzbavfTUBI8YQ6AAAAAAAAAAAAAAAGPKEOAAgUOcYAtCuMeQv7vX4MJlO+dFO+7n7l+msm6t8Lv781pnL1xI4+4nv5qG8/ABgU7jy0QZ2LuvPdWocOy7ItabdO+RCeAw+jYd/mUd4Po9LOdoXl/TVrR+0+9Ii9q1c/fP3pE5/VXeuQrzr8rNeTu9uuuJbw5lA35QTvhdjxRx3Tezs3G5Z35ymXZHh/3Wdqh/uY2fxziDC73w1AWPGEOgAAAAAAAAAAAAAABnSoAwAAAAAAAAAAAABgwJDvAAAAAAAAAAAAAIaWLcm2rZ6vE9FAhzoAoG29zOPkzkMnqZqfpzY3E3onyjnWBsEgbv+otx/DrZV82ybGfOkhzUPnyZcnc154U15xSarcv++Z587J10inv3++86Vb5gHdrBFvXkbT58dvGgCEmzvGDOp323ScaITjBcJg0PdD97neoL/ffnBs09u3pRMn9l9bsbrn1X64Pzvr0GHH9MjJk03raJa7vB1+9qm9Gzca1uGOq16//3LnDQuCIQ51t9U67OxaDE3bgS6iQx0AAAAAAAAAAADAULN5ZBx1kEMdAAAAAAAAAAAAAAADOtQBAAAAAAAAAAAAADBgyHcAAAAAAAAAAAAAQ822rX43ASFFhzoADLFMLOuZt1rJB15nEPWu7l3xzHv2yAuSJMu2pN2OqkcbOv1M0Rm2PxAupu9kZuS8/+UNx7nnjn2uozZ165hs7z7wVefBcdpT1vBeWzkn6cbvXyt1mj7XRucpbq/ff9l/wwAAgal3XGz093aOOe7j5MiJE7LsmHSr5aoAGLi/q36+p1GJn/38DrXz/oPQ7npfvflV6fjxwNphjYw4Z4w4B2G2b99pWkcQ27CdZaxDhx3T7uOFMX60Kx2vt1UjJ0545lXu3nPNcCYa78Y15kFQ/pf/q278y/+1YZm96zd71Bp0ig51AAAAAAAAAAAAAMMtwCfUKx/c0972TmD1ob/oUAfq2Nra0uTkZMMyc3Nzmpub61GLAAAAAETJu3vf1ruVbzvmuWOMra2tXjYJCA1ibgAAgOh7Z/f39a797z3za8/zhjXmiR07qpHx0YZl9q7flGy7YRmEAx3qQB2VSkXXrl1rWGZnh7uLAAAAAJjt6oHuyTnsZLMYAxgWxNwAAADRt2t7Yx4punFPkH3bJ//Kn9fJv/LnG5b57n+9yFPsEUGHOlBHLBbTxMREwzKjo43vLgKGUbfy4xjz3Vn7eZJse68r6wQAoBOmvNr1+MmX1/L6e5izrtFx2u2545/3zOt3fj1T+905Dg+0kgP+8uXLunz5csN1b21tqVLp7LMGooiYG6FT57jVqW/u/Ip0+7Z04n8y/r1beWf7lWc5Ktg+Tr3Kf2w8Z2xxnVH6rJrtZ1HKB9+37e76bbYOO7u07Dt3G/5dkmIx5xDer93+atPVBvEb4cmZvue8funOVb53+4OW19EN39z5Fc88d7xau50PxY7o6N4xzzKPnx6vvibmwSCgQx2oY2JiQpubm/1uBgAAAICI8jNc9eTkZGSf3gA6QcwNAAAQfZ84/BP60d0nPfNXNx/ehEDMg0FAhzoAAAAAAAAAAACA4WV/+K/X60QkdGcsIwAAAAAAAAAAAAAAIo4n1AGgR3qVj6oVray/ldyoxnW1kEfWyLSug9yyHeaYBYAwCONxAv61dJw0HbcMZWNHH+mwVd1halfl3l3PvHrH/ma5M8POlO/etE1M5aQAzokAIOTCmpu6WTvq/W63yn1MePbIC3rE3tW/aLNd7QrLdg+rsGwf037Xj3MF0/boxne56fcwxDFRN/Kdh+W9hVqTa36xsbiz+F1vXGLtjbS82iA+m9jxR50zRlwx3/0HznX2KU7wfO8Msam7bc+Pvehc5MFu4O3qF9u2+t0EhBRPqAMAAAAAAAAAAAAAYECHOgAAAAAAAAAAAAAABgz5DgAAAAAAAAAAAGC42f1uAMKKDnUA6EAruZ06zb3T7zxSxnxavcz1ZciZdJCbzrJ3pXvdWS0A9Ar586LN9Pk9e+QFY1l7L/j19/I8oXL/vnemIc9evfdvHTrsmRfG85x67Tedkxi3SZN8jwAwqNy/qc3yDvfqGNAsR6w10nqOXT/s3Qey7cHJLYvOuK+j9Ctnslu/z8VaWaepre3U0+062xHU59Dq726UY9HdP9pyTI+Mj3nK7O3c7FVzXCt2Bn6V2x84pkdOjjqmnzv+eU8Vr93+qmO62b7azmfpXsbUDvc89zHT3utCkAuEDB3qAAAAAAAAAAAAAIaabVv9bgJCihzqAAAAAAAAAAAAAAAY0KEOAAAAAAAAAAAAAIABQ74DQAf6nduzl0w5eg5ymDvKGfKqS+a8YJ3moD9YV20+uk+f+KzuWt7DW7+3H4BghSXHH9CIvfvA/AdDvnFT3lZjXu46enpOYjimm/KNv37/ZePypnOFfn9/jbkIDZ9Tw/ku/X5PANALxt9013GiF7l7/ZwbNmuHNXKk43ZI0mt3vuaYfn70ZxWzH0i3Aqm+a/p1fj1s5/VhyZnu1qtt3o38z0EIyz4XVDua1dOv9xvI778rbho5ccIxbd+523qdBkG01Z1X3DrsvF5Z+cCZU91+sCu3fuS7N8Wm39z5Fcf084/POAvc7maLeszudwMQVjyhDgAAAAAAAAAAAACAAU+oAwAAAAAAAAAAABhyVr8bgJDiCXUAAAAAAAAAAAAAAAx4Qh0AhoTfvGTN8lnVqtzz5iWyDh32vXwreX8a5XC37Jh0b3/eq7d+VTp+vO06w5I3K0j1PtNBfK/or15+p9h/g9fp5zcsv6ktqZNr25Q7s6Uc3ga93P7PHf+8Z54pz97zoz9rXD52JJgctd1mek/12LsPPPNMeYWl8OZOBRBunz7xWb1a+9r+Rl/bc6Cd37Ru5Exvq07XcdYU37bDfZys3Lmjiu3Nixs2g5a7uh95h7slrO+lrXa5vndB/IbUO+caZmHaZz594rO6ax0ytsNXO90x0UjjaUve65IjbcQfQWwz69gjjum97esN1/Hcsc956nj9/ssdt6MZ9+dgurbr+Z7ZFcdkWH6XgG6iQx0AAAAAAAAAAADAcLODq2rnm7+tndd+u2GZvfLN4FaIrqJDHahja2tLk5OTDcvMzc1pbm6uRy0CAAAAECXv2n+g79pvOea5Y4ytra1eNgkIDWJuAACA6HvXfqvpOd2wxjyVO3e1d32n381AQOhQB+qoVCq6du1awzI7O/wYAgAAADDbtR/onu445jWLMYBhQcwNAAAQfbt6MFgxToBPqMeOPaKRsdGGZfbKNyU7wJWia+hQB+qIxWKamJhoWGZ0tPGPIQAAAIDhdcg6rKP2Mce8x0+PO6a3trZUqThzEALDgJgbAAAg+g7psE6fPt2wzLDGPKPP/QWNPvcXGpbZnPsST7FHBB3qQB0TExPa3NzsdzOAwKxW8p55mVjWW9CKGZe3Rka88w4bDiOV7txRFzt2rP4f21yl721Sp2xURLntiBb2Na8o/aZ0+psYxvfUd7b5goFpuxq3/8h536vq6fY3HetjlmfW3q1bxsVHTpzwzPO7TcLAdP4TG/W+p73rN/SE9eN6wvpxx/zVzSuO6cnJycF6ogPwiZj7IdPv/eqe87fi1Vu/Kn34+/nqrV8NZr0B/Pb26/fbzzqaHUfdMa41cqSjNh2o3L3nmB4ZH1PMfiBtB1I9fIrKvmzi3nebtaNb3+Vmdbazfdy/be71BlFnr7TT9l4t4y7Ti/XW7reP2Lt69WDCitW91uinHZ7rkXvOGMu+f79xeUkyzeuByo4zHnJf23R/1w995JSnDs/vQRf2d/fn8Nzxz/tY6uE2/YR+UrGdo54S39z5leprYh4MAjrUAQAAAAAAAAAAAAw323uzOCBJ5luDAAAAAAAAAAAAAAAYcjyhDgAAAAAAAAAAAGCo2d3JZooBQIc6gL4y5nm6+c9635AaUcp36yfHVUN1chgZixryDVXu3PGWO3S4oybV485DV8u2dwNbTy8/Z985dCO0T5q0sp9G5T2FQZhy/KG+fn8mnf5+9Lv9UWLa1vWOifbenq/l3Tn2wsKUQ3zv9geGgubzDNMxvd/7WivHX6OK4ZyoT7kaAUSPKR+qJ2fqzj8NfsUtxIO91o28yu5t2q3fafd6nz3yQqAxa9S0k/+32TG4WX5oU5lm6/BzLtCr8xXTPlTr9fsvO8t3qV3dyMPdbB1+tHMtrBvbqK3fpQCWCSLfvZ/PstW2Ovbb27elE1+XJL1686vS8eO+6jC+N9exynbFErHxuPPvHxjOyx870XA9vfpuu+Og2JEjzr/fdOZc7xVPLvcfPe0ps/tdV/5z25nLfu/Wg8DbBYQNHeoAAAAAAAAAAAAAhhtPqKOO8N6KCgAAAAAAAAAAAABAH9GhDgAAAAAAAAAAAACAAUO+A+iKvxb/Wd21nD8x9q43l4oxR83t291qVk+4885UuXLLSJ3ny+40x08recb85oY15YUNginP2vOPz0iSYvYDabsrq+2qYclh3O/2dysHfb9zmPd7u0Zdvz+/XunWe+p0+0Vl+7f0+2HIQ2vKNV6fN4/ra7e/2sLyvWPKgd4K03Zx5waVvPlBu8mYw/7oI8aypnOdbp3/ABhcn37s89WY2Z1DVZIxfgxaEDnE28mh3E4+4HbyMLuXcf+uV+7ddf792LGm7fDTrkOnTjmmrcOHJNuWIphGvZ3PzpO7uUnOdD91BJGHu52cyd04P22nHe5zoiDyvweRh7ydOtzc19Ca7S8mQeRhD2MsciCI3PXNcqqHhZ992RNLuM7D7fv3PXVU3vt+541rQ+yRo45pd8zgPg7bD7wHiiCO1c2417F37b2my7iPmaa2R5Jt7f/r9ToRCTyhDgAAAAAAAAAAAACAAU+oAwAAAAAAAAAAABhqlt3vFiCseEIdAAAAAAAAAAAAAAADnlAH4Fsr+U7/RflXpOPHncsbcoub5q3u/NOO1t9KDqdu5CVvJ9+Tn/Ubc7P7zMsu1dkuhnyvdRnKmvKFHhof819nC5479jnPvNjJxyRJlt3erYNRyeE7TLrxmXTrM2VfiTY+v874Pf7W28692v7uNj1i7+rVFpZvpZ2m4/9zxz/ve3lTvnDTsU+SXrvzNd/1doO9+8Azzzp02DOvXg500/vqdw5y02dtyutejym3YcWQvxEAquyKpP14zvh70SRWCyL/r+n3vJkgcje7tZMPuB3u7ew+dsUefbTlOk1tdx/nrEeOyrIt6U7L1fdds5zZQZzTtXNdp1f50Fvd77qVy7yd/Netvt9u5aEPQq/2u06181n6EcQyzdoW5vjYFGc4HDnStI6Rj5xyTP/GtX/kmPYTy7a1Hx5xtf22M8+4XXFNG2KiXsRJ7nXEDNvUE+9U7MZ/BwYQHeoAAAAAAAAAAAAAhhtDvqMOhnwHAAAAAAAAAAAAAMCAJ9QBAAAAAAAAAAAADDfb6ncLEFJ0qAPwrZV8Op9+7PO6azl/YmKPHPWUq9zxn0TM9/rr5Zoz5Bs3qZtXyFCvKV+qMdd5vfX7rLPe8i3lODKsy5Tfpt77N+UsGhmPe+bZH3QnMZx1/Jh3Xbv7uYZse9fzN7dOc3ObPte6n5WPdbe6fr+inhc+Sm2FP63s/1Hff3spjNuq3+s38bTp9m3pxImurKuVHJuxY95jmuk4M3LcnMu1V59/K+dEpjy89XKQG/MA+jxPa0Wnx1/Tuatkbn/l7j3PPPIIAoOhG/mP3Uy/99/c+RXnjNu3W25H09+7Jnna/aj3W99IN3JGu/OWt7PMQXzZCtN7iR19xDG9t3NTFR8xa7N6awWR79p97uEnvu1Vnu0gchd3ox1B6Nd7cWu2P0jefSKQnNJt6Fec0er7a6edPdsfAvi9b9enT3y2eo24nX3IOuy8vmwddZ6j2+UbjunYo95jarNrlX62YbMypt/tEVfs6X4vcsUL9u0PPHWY8pkHzf1dNx3b3bGR/cB5XKvcuxt8w4CQoUMdqGNra0uTk5MNy8zNzWlubq5HLQIAAAAQJe/ufVvvVr7tmOeOMba2tnrZJCA0iLkBAACi753d39e79r/3zK89zxvWmGen8FvaKfx2wzJ7N3Z61Bp0ig51oI5KpaJr1641LLOzw48dAAAAALNdPdA9OZ+IaRZjAMOCmBsAACD6dm1vzCNFOO6xg6uqcuee9lyjKCC66FAH6ojFYpqYmGhYZnR0tEetAQAAABA1h3RYR+Uc4v/x0+OO6a2tLVUqwQ95D4QdMTcAAED0HbK8MY/kjHuGNeaJPXJUI/GTDcvs3diR7AB78dE1dKgDdUxMTGhzc7PfzQAAAAAQUU+M/DE9MfLHHPNe33zZMT05ORndpzeADhBzAwAARN8nDv2EfnQv4Zm/uvkw73ykYp4A+7ZHz/6URs/+VMMym7/493mKPSLoUAeGSCaW9cxbreQNJessP3LeO9N+eGfZI/auXv3w9as3vyodP+4o+qmP/Jxn8cod73Awnz7x2Wo9nz7xWd21DtVta7M2NfPcsc955rW0TQzb1Dp02FjW3jPN9N9WU73G998Ce8/bqHrv37StdOwRzyxrrzt3G1qPnfDOvP9g/2+VWFfWWWt170r7y9bZpp1+J/2uq95+YnpP3WhTWHX8mziA28r0nurx+15b2SZR334m9bZpN77rCCHLfHwynf/EjnqPqXu3PzAu36vPv956nj3ygmee6TwndvxR4/J7NwwXC+psq060sp3M78l08ibFjhzxNa9y767v9QMIL/dvifvYbjz/dpU5mK6NmWXFHv72HfHGes8d/7xj+sgHN51xcsz5u+OnHe4yfuIBzzJNtoexTJO4tV4MXcsdj/r5jXWv1xoZcUyPfOSUc4E6v/uNmLb7p07/gmM6Jmmk8kB6r+XqfWsnNukkxu1kvd2ow6RZHX6+y0Fo9p3x8/670bZWYj/fdfq5Ruc653Pvh+20K0qxUbP9rmv7QwvXH4P26q1f9VwjbknF2btp37vXuLzhmGqNOPe7bnz//VyPc8cMr+38imPadO21HzGFKQ7au3XLMe05dnchngPChr0cAAAAAAAAAAAAAAADOtQRGUtLS8pkMhobG5NlWZqamlI2m1WhUOh30wAAAAAAiDRibgAAAAw9u8f/EBl0qCP0CoWCxsbGtLCwIEnK5/Pa2NjQ4uKiisWiMpmMMpmMyuVyfxsKAAAAAEDEEHMDAAAAQGPkUEeoFQoFZTIZSdLMzIyWl5erf0skEpqenlYqlVKhUFAqldL6+rri8XifWtt9fvMI1cv74icvmeTN1XZgxJAH05nbM1a9q6o293l1+T/+SW+bbux4V/Rg17h+v+/flINUMuecqdy/711PC3nJY8eOeeu8a87lY9p+ppw0dddvyndkyk/TSl4kw/L11h975Kh3pisHnSTpqDeHaCBM63r0w32sYvibW4e5fKKcL7uV3HhReU9B8JNnsl65IJbvhk7XP0yff68M0zbt9/7fb6b3asqBJ5mP/6ZzEneu17Awtd/U1r2dm77rDCKPaydev/+yZ169z8/0WY2MnfTM4+51RMGwxdzuY5UpdvR8x13xlTuuNsVPIyedvwmVD+Nmy7YkQ7hrxb2/IXvXbzimX731q9KJE9XXmdG/4a3IU7Hzl+jZIy80XaRp/vMm+ZBN63HnjHVvYz9xcdM8y4Z2uI9NMXdM7s6z6/1597bLT95dd70PdiXLal55s3oDLO9Xs+swftbbbJv5qcNdxn2MNu1D9u6Dlups51zWz3WqprnsfcSVzeowfbfd77+d7e7ne+ao03A+53kvTc75gtgeJs1+U3zV0UY7mu0jfups9jvs99pELff1zCD2/3Y+Fz/LvHbna47p5x+fabyAKf/3drnl9bbKuM1d3xn3tennR3/WMW36LWv2W9WV338f16Dd8VMr19NDz27tmA2nUqmk2dlZra6u9rspgSPGR2iVy2Vls/sHiEQi4Qjsa+Xz+weNUqlULQ8AAAAAAOoj5gYAAAAGw0Hapnb+zc7ONq2/XC77qmtqakqJRKIH77j36FBHaGWz2eqQcgdDz5kc3DUv7d9dn8vletE8AAAAAAAii5gbAAAAiL6VlZWO0jMdjFjVSCsxQKPYIsroUEcolUolFQqF6vS5c+calj9//uGQIoP6ZQUAAAAAIAjE3AAAAICXZff2XxDqjTTl18HNs41cunTJV13pdHpgn1AnhzpCaXFxsfo6nU43zdFW+4Uvl8taWVnx9SMQBu5cKZJkfewjxrIj42O+6vzUR37OvPyTP+qZZ8pvcmjiY8blr//FT3jmxX9vu/o6Vrkv/bsP1/XRx3XIcuYNe//MKc/y4//hjzzzrEO2dOfD18ceUezDeky5OU35yk35ZiSf+fHkze/WqKxtyPc+MvqYcXkjw/LGXOUyv9dW1mXKY2pal+k9SZJl2i6Gbf1g6uPG5f3kFpMa5P4xrOvOj+/vq/bufam0P++vfeRF3XPte0HoJCdRvfceldzCfj87qbX3ZMp79c0f9veJJ1/5yg7KGnKu9SwPV511RWWfakXUvz/dEsZ85f1ef7+ZfivqnVPUO1fxlGuS+zNIrexTpnOyVvK924a3b8r9acprXk8rxyqTVvZf4znpzq2O1g/0WhRjbj/fc3dOWP1x58U8d/7z2Ee8MWrM/Rt9zBlH/sYfftkx/fzYi96G/Igzpo597wf767cfSB+G0NaRI4pZ+5flPvik9xrAI9fec0x/+sRn9WrN61X7G46/u3NKS4Z4r+K8amsd9nFZ0JVH1R1XG2Pq0RPOMq7fSHe76sWgtUzXTmqNuPOjS7Iede4P9j1nW/c+7rzG8mDUe9x2H598HS9cx//7T35Esb370tb+9F+L/6zuWg+3feypJz1VfPPf/YPm66nh5/sxcvKkc4ZrX//mzq94lulFDnFf9bpy94785FOO6Rt/atxTx+gra45pT75fH23vRq5i9++Qn7zLzfJ/m86ZWj038nMu2Go+cGOZNvKBt7MfenLGN8mZ7if/s7tO9++D6XNodRsa1+tq+6cm/5Zj2nRtxX0N2b7jzN3t+d21evPcZTu57N3beeTkqLPAiCtP+Q1/1z9b1ez3wLSfes4RmsSBpvivJznTXdy/U1Lz39Bhvx7QTwc3yiYSCS0sLCidTmt83HtcdEulUiqVSkqn003L5nI5lctlzc/PN32a/cyZM77bHjV0qCOUaoePSCaTvpZJJBIqlfZ71K5cuRKZDnUAAAAAAHqJmBsAAABwsT/81+t1dmB5eVmJRELr6+tNb5I9UCqVquf12WzzG30WFxeVSCQcN+UOI4Z8R+gUi0XH9DPPPONrudqLACsrK4G2CQAAAACAQUDMDQAAAAyGXC6nfD7vuzNdcp7LN0v9tLKyolKpRNon0aGOEKrN4ybJd74Fdzn3RQIAAAAAAIYdMTcAAAAwGPL5vO8Rpw5cubKfbsFP6qdLly4pHo837XgfBgz5jtC5evWqY9rvnTWnTjlzn62trbX8Q9KOT/3EL3rm/cGFx41lfzP7Zc+8X3+rhXzbBn/udz/jmfef/Ue/ayy7fNWbl+uJK958Gm//RXP+6f/kp37fM+93f+0nqq+P3b9XzaH+4I9N6v6IM2/Y3emyZ/lz/9fveOa9/Lf/ivTqP5ckfZD+k7p7aL+eE4V/5yk78qOnvQ29ddvYfu1VvPM+sDyz6uVvM+YrN+S+sQ25ziVzfrrKvbvecoY8NZI5348pL7opd5xUJ7dpxTumTN0cqKY8P/e9uX1id8zbzzR6jTFfdZ18UocSn/DMO3xrf12H9x6u0zpyRJYhh/r9v/wnPfM+9ZGf87Zz19z+vRs3PPP85gcaOXHCOL9XOZA7zUHdrTxIe9vXu1Jv0Pzk9GqH389/mPJQdeM70cr+H8a85PWEtV1DzfaeZ7x252vGon7zrZvy0nZLp/uUsa2GbSJ58+9K5nOiVnTjO9HS9je8V08uZyAkohJzu2Ptd//+n3NM/4Pzv+pZ5jPH3fHR/9f59w1nzscjMe9vz9+Z/P84pl948286ps/8zcuO6f9m3ZmnWZL+6qPOnOFf/F5qf313dqU/uz/v2n/9p3XnyH6M99N//bc9dfx3H/23jumffPm/lP4v/29J0h/+w2f07J/97xx/j/24N9637jh/x+xDzljP2vXGeJ/60f+TY9qdh9eKO/NwW+97z+mtR5y/8zF3LO7Kd2uNeONK1YtLD/7sirFMcbztyqMbG487pq//seOO6ZtPeK8PPPnWxx3Tnzr9Cw3bJUn2Kec2uv0jR1UTsspO/jHZNddLfv3rX/XUMfXPnW0b2XAeU578+81vaHEfG3/slb/vmH7st5zr8MNX/md3/m/XMu5rHsZrEE3yOVe+XXJMj93zfv67rlzEzdpuPG67rpm4czn7yTvtXq/7PMiY/7xJnnFPOwzc2/m5Y59zFoh593dPO5p93q73b4qdm2531/bwtFPec+pm29TEXa/nPK/OeatjvU3yfwcRT/qqw33dynBtzv0b6v6exR51Xjv8jR98xX8j67XLzzJtXF/x/EYccV3zc73/2CnncUuSKq5jVTv5v9t5v+7rtm3lcm/ym9qNOCg26r2OaYphHX+P0PWUQeMnB3qtcrlcvTG22XDvxWKxWnZsbEyJRELpdFqZTGYo0z/xhDpC5yB3w4F275bf2NgIrE0AAAAAAAwCYm4AAABgOOVyuerrZk+du4d5L5VKyuVyymazsixL2Wx2qEatokMdoeMO7ttVLpcDqQcAAAAAgEFBzA0AAACYWXZv//XawXDvyWSy4UhVpVLJkyrKbWVlRalUSrOzs0E2MbQY8h2h025Q7v7yb29vd9SOra0tTU5ONi33w+/teObt/r2H96qc/Kmf0sm/+FMdtQUAAABAuLxr/4G+a79Vv8Ad81Cqk5O/6Zje2toKsllAU1GJud2x9t6i85mQn/sfP5Ak/ad/46P6T//mxzpqCwAAALzeufN7eufuv5UqzdMiuNWe5xHzhEPtcO/nzzcexj+RSGh5eVnlclkbGxsqFAp1b8zN5XJaW1vT+vp64G0OEzrUMbA6vVu+Uqno2rVr7S1ck2rZ/uCuYh+mtvnRQ53lSzepvPwRz7xv/1cTxrKPPObN7W0f9uaI+m9+2pzf5L//9xnPvEpN2pra1FIjN+7q0IjzQPv0x7zb84OKN1/oI9v3na8/TJVjPebN32KXvXmtrbG4Z54k2T/0XvCpmy/ctLwhj2bM1KYb3rzmkrR3+wPPPFNubVM5yZyD3ZR7qF4uLb95emxTrnRJ1qR3v7rzoyc9847+wNx+20duMal+Dvmd/9h7keyxf7+fAylWaZ7jdOSu931Vbt32zKv3/jvK+9PCftYNPc1BbcipVC9H1rDnUurV+2/l8+u3brSplTrDuE3qiXp+slZ+Kzpaj2s7PWLv6tXA1+J//Y20koM88nzk7Ow102dVLx/nwWe1az/QPd2pX2mdpw2uXTOfKwFR0/OY23Uv+/aH099+P674ziclSZ853vgi3q9NrTqm//SXf95T5pc/64wxb77vzDP92C3nl/vTj3q/0z/xv33eMb331v61gGP37+lL+rok6X5cuv9hOPyD+82vFVgV5+vYjjP/u2V7f3Qqj7lymd9o/vtjP+Z8v55fbFcMZR1/1F3Ck9/XXcauE/M6uPKs27edv7fuuM0UL7vzX+/96EeddbhC1EffM7TjlqutrnbJlZddknbHnO83/nvbOloTs47c+ECHYt6c37X+o484r1+8+wNnPF655/z8TdzHtkMrf9IxffhW88fimuXqNV1/8MTUrmsB7r/Xi8EdVbhianfe8ef/1N8xLOT6rJqcV71225vL3n3OGjvivIblbpfpfK7ZObppG7qv39gPnPuL7coPb7qO4t5G7vfiuR5muGbjPj9/7rjzt820zTx1NNln/OwP7mX8xD1Nc6Y3aadpvaZ89622q9kyfuIH+57zvZiuI7r3VTf3NdZW4paHlTj3mW7Ec5L02p2vOaaff3zG2Yyjza93xk46j7Ovvfe1OiXbZ9qGI+OufO57zt8h97Xm2DHvdXr39//1+87t3JWc6jV56Xd37+pexXv91I+2+1b6zQ5fvBqUV155pfraTw70mRnn961cLiuXy+nSpUueWKBYLCqTyWh11Xm+PUjoUEfoxOPxQIaOazRchR+xWEwTE86A5YfXDHfgH/GetO4ee/ijG3vEfCEOAAAAQHQdsg7rqP3hRS/LcNHF0LklSY+fHndMb21tqdLGEx9Au8Icc9f64Q+dNyrvHXZ+z44+un8R+sgJ8w25AAAA6Mwh64iOWo8aYhvnednjp103D7gMYsxz41/9lm7869/quJ69He8IyN2yvLwsaX+490Qi0fLy8Xhc8/Pzmp+f18rKii5cuOCIKwqFgpaWljQ/Px9Uk0OFDnWEzvj4eCDB/fj4ePNCDUxMTGhzc9Mxz3i3XupPe2a9/dOGO7QBAAAADIwnrB/XE9aPSzKPBOR+muTA65vOp5smJyej+/QGIinMMXets3/5kmP6vT/jvFk9ff53Olo/AAAAGvvEkZ/UJ478pCp3nSPfuke5eG2z8VP/gxjzVO7e1d4N7+i5YdXKcO9+TE9PK51O6+zZs9V6JenSpUt0qAO90u5d7u4LAp3eLQ8AAAAAwKAh5gYAAADqaJ4RRdL+yMQjJ73pUFu1t7NTd3SzILU63Lsf8Xhc6+vrSqVS1U71crmsQqGgdDodyDrChA51hM6ZM2ccd7SUy2Vfgfr2tnM49qmpqaCbBgAAAABApBFzAwAAAJ05+Rd/Sif/4k91XM93/+7/rSdPuh8M955IJNoa7r2Rl156SalUqjq9urpKhzrQC7VfPEkqlUpKJpNNl9vY2HBMd+MLu1rJd7T8c8e/5Z1Z8d59FDv9cePy9oljnnm/8605z7xPfeTnjMs/Of6BZ95v/MF/65n37J+5Y1z+9O17nnnWB/+h+vpo5UH1dWzz+4pZzlx2b/7zP+FZ/nu/4s03eeTOHzysZ+0PNGLt/1RVYt6y7uFlJKmyuWVqvqzD3p+8vdvebWKqU5Jev/+yZ97zoz9rLGsyctybCmDv1i3PvNgx7+csSdaxRzzzMiPe4VliR44Yl7f39jzz3MP1NFpeN256Zo3ce8y7/La3nCS9tnfFM8+YRqGOR98z7H+7++/Jqjx8b5UbO9qzvJ/1od/6PW+bDJ9pK23y65vXf9k4vxvr6pSpTa389q0aPufnjn3O9/Kv3Wk8RNQwqref+P1cOj12oTs6/q5F/HM1/VZ0ZT3u7XT7tnTiRG/WpfrnCaahwCv373vmxY56j/1B6HT/M51Tmdi75hx5r93+qrdNhnOaXjKdf1XumM+JZcW8ZQ3nVEBYhTnmrvXGb15s+HfTOeZfPelsk73r/L21jjrTM/zv1/7PnjqeH3vRMf3HjzuHpf+Nzf/RMf3sn7ntqePJP/qhc0Zs/2aE2ph56n/4ju59GDP/7v/uTSX3/JUHjumpB1cfvv7CVd077PzdMsV77hh01xX/mmJUdz2265qFaT2eOnadbbcOOa8NuNNkmOJiN/fvdOwRV9tN7XKF9rEbzt/1R3/oPM4e//0feKr4jR98pWnb3DJ//h84pnfHHtWhvYfHzsrGdx0x61/9k3/ZU8e//sF/75xx1lXgF1pulp498kLjAv8v7yz3+YH7HMLP+YN7ve5rK6ZzgGbnis//x85rWeU/5U1B8di/a9q0lrnjVT/bo1kZ9/dFMnzPbOc5lfs7Zfpeerarq47X7zu3sen80DPPdQ7Uzv7gbqv7szbtD+5t1Kxd+ws1ydXc5L2YuNvmabuPc2zPd6qNc2DrlDNX9aFHDdcRT7qu1+04f2d3t77X8nrbjUE/feKzuvvhb147vynu433M9d4qZWdHpGW4rmkbYq2gGdt+/PPOGa5jquVOG2U6lhn6Dpqtt1Om2Mb93XXHhKZjjOlaeiR0/2Hxnqsd7j2op9NrJZNJpdNpFQoFSfvxxSAyHG2A/jpz5oxj2u+Xr3b4uXg8HvhdNgAAAAAARB0xNwAAADA8aod7DyJ/ukkmk+lKvWFChzpCJ5lMOoabu3r1av3CNdbW1qqv3RcIAAAAAAAAMTcAAAAwTPL5/ZEM4vG4r5Gp2lF7s+34uHfkmEFAhzpC6dy5c9XXtbndGqktt7CwEHibAAAAAAAYBMTcAAAAgJdl9/Zft5XL5epQ7DMzM11bT22Heu3Nu4OEHOoIpdnZWeVyOUmqftkbqS2TSCS6nsutXaZ8ka1omu/qQ5UPvHnBJcm65y+3Y6y0aZxf2Wmc16xiP8xPt/f+tnZdeaxPf+M/uBfR7o4337b16GHpw6Zah0dkfViP33zn9XKgm5Y3qZcTzpSjr3LvrmdevXynxrxwhjxPpryq+/O9yxtzyBvaVG9dJqYcrpJk3fSu/8jmde/yp0Z9rUdqLc/Pp04bksQd5E2qeW+v3vpV6fhxT1FTXqp+5zAPYw7kbrQp6nnRO81hjt7pNC90L4W1XUEbpu+P6b2O1MnXbjrWtnRM71DH29+Qx8+U/7PeekzntM1ypXabKV96vfZ7ciGq/vkbEFaDEHObzjF95dVtouKKGy1DHtFar//Of9vw77XtOlQTM1du3Kzm0R7/zbc9y+y641Ir9jCnpxXz5jI1HEfcMag7VjXFqM1yM/vJGdysDr+xeS1PPlf377aPz3rk+87c9sd/sO2Ytj96quV2mRx6r+ys99GjGqk8PPb/i/KvOGJWP7mrgzh3CiKXrZ92NGt7EO/N/gPnd+bkH3jLVJrk0Pa1Xlcdrb43P+tp5/03y+Xth/t8rJ3P1o9WP2/Te2lnu3vq7cJ+2M429LTLx29q0/dn+P2zfvC+Y9r9/W8nd3sQ2tnu7tgp5jrexeInHdO24fplvWvF3ebuC/DEQa73ZopJ+iHmzu0ub7zjmTbEgwiHXgz3LjlHsxrU4d95Qh2hlEwmHQH6yspKw/IHQ1ZI3CkPAAAAAEAjxNwAAACAgd3jf13Wi+HeJWljY6P6Ogw333YDHeoIreXl5errS5cu1S1XLperd9an0+muDlsBAAAAAMAgIOYGAAAABlftcO+1KZ+64eAG3fn5+a6up5/oUEdoJRKJ6t0zxWJRS0tLxnJnz56VtH+HTe1d8wAAAAAAwIyYGwAAABhctcO9Z7PdS326srKiUqmkeDyuixcvdm09/UYOdYTa9PS0VldXlc1mtbCwoKtXr+rixYtKJBJaW1vTwsKCisWiksmk3njjDcXj8X43uav85ruql6vdb66jvW1vXuy6avL02LY593j17+/7q/d/eW9ZOvE/PXxtyIfdSL1c87EjRzzzTLlJ6+XvMW4/Q56ievmiTfmJWslz5Xf99RjzzR/2Hgbq5esx5dc75MpTJEmxG+b1d5rbuGEOpErzPD39zs3aDb3KFz1MOZBN+v0+u7X+qOQbj/r+12n7o/7+w9zOT5/4rO5aD4+DHbfVcEz25Hs9YMjpaR025Klz588NCdP5kzsvb6s6PU/qlDvfb8Oypnz3hvOnVuoE+mXQYu5u5JluFkf7+v2qHiMe5kG39/ZkW9b+6w8MvyHu35pdZ65S97HEFI432x6mtjfLme7m67fO1VbvMt7fVU8uVvex03XcNf02uz/L50d/1lmlq7x187anjrbyLN9y1mPduSurQcwaRF7yMOlGznA307lIp+sxfpdbrKNXn6WfvNtN84y7vkN+6mgnd3lYBLHd28nl3vR3uI12eZZp45zZ/Ztp73rjk1bzztf+/RF7V68a1ttOLvtDH/+ooaYa7vdiiKH6lUPdfY3a3TZPWw0xZaufbxDXetz50aX617sP1LseH0k9GIa9V2qHe29lGPZCoaBsNqtyuax0Oq3FxcW6w8WXSiVduHBBkiIRL3SCJ9QReul0WtevX9fi4qJKpZLOnj2rsbExZbNZjY+PK5/Pa319faC/qAAAAAAAdAMxNwAAADBYaod7bzWneT6fV7lclrTfuZ5KpTQ7O+spd/C38fFxbWxsdDVHexjwhDoiY35+fqDzLwAAAAAA0C/E3AAAABh21oA8oV473LupM7yRbDarXC7nmJfL5fTKK68onU5rfHxca2trKhaLmp+f18WLF4fi5lueUAcAAAAAAAAAAACAAXAw3LvU+hPq6XRaGxsbmpmZUSKRcHSWF4tFbW9v6+LFi9VRroahM13iCXVgqPjNl9J2Pqvbt6UTX6/757p5RF0+/djnq3l2Pv3Y56v5Tf3mjPHkWvuQKQe9Ka9MSzmgDDlQTXm3JHMOd2NZQ52trL9uDnhTfjzTtqqTl93UfvuDD7wFTfMCYJ0a867//ev7/7eb51AfRL3Kmxfm/HxoXxhzeHea66vf+2o38tL38j11o/1h9uqtX5WOH29rWb/b6rnjnzcuH3vEmy9979Ytb8E6x+ReaeWcyJSrsNP338vfH1P7657TGdpPvnRgcDX9zTHFhE1yFUvSqze/Wj0OmX4v3b9Lr978ajXerl22kWbtMMXYreZANf1+NotpPcv4iYGbHBONv+NN3v+hj5xyTFfe3/bU0c4xx/7gjnO1H31cqnR2TA/i2BelPOzNdKPt7eSh9qMXubv91NmVbdZGDvFu5CE38vF716qwfGfayWXvXsZ0jbTVOvxqFHf5qXP3ve87pt2/3e7f3NhjJ7yV9CmHujtu2LvtvGbqyWVvOqa2KIj91JQvvel+1ufYNTC2JNvq/Tq7YHV1taPlE4mElpeXA2rNYBiQvRwAAAAAAAAAAAAAgGDxhDpQx9bWliYnJxuWmZub09zcXI9aBAAAACBK3t37tt6tfNsxzx1jbG1t9bJJQGgQcwMAAETfu/Zb+q79Hc/82vM8Yh4MAjrUgToqlYquXbvWsMzOzk6PWgMAAAAganb1QPfkHIayWYwBDAtibgAAgOgzxTxShOOeLg3BjuijQx2oIxaLaWJiomGZ0dHRHrVmgBlypdXLDec3j1Iv89Ua29RCXiZTbs6W1m9Yvl6+T7/51ustX7l/3zPv0MnHvKvZ3TUu33EOnweGeo98mK90SE90hiXfcVhzeA/L9u/4NzGkOdCjnu+8G6Le/l7ye/yMHTliXH7v7gfemYacc/WW75W6v3/1zjVcKnfvGee7cwW2vP4ufH+N2zpmzp1nG85JrMPe0Lpy955G7BEd1THH/MdPjzumt7a2/v/t/V1sZFmeGPj9g5lZWdVVw2ZmtQ1RyVXNRO7MrAR7Fw5WLRaCMDtABrvnRcA+kJVAe3uAMVzkmx/ygUTZDysZlnNJwGlABgyTtcAC00LD2aRlaxtYq5tsa2a0u/K6kiHswh6PesCoqXbmUJC6M2PYlV2VXxF+SJHDiLjxxfi6N+L3A4jkvTz33BMRJyPuP8495x/Vahf5g2HCTErM3c37z9n7Vqtc4dWEgKah7N9+5z+OH5z7/atc56/0OrUtMR7tMc/wsPJON2psa+N5u/psanhOXz2u1G13+/nU8TSNnxP/6mdRq70YSN39SMu1XlpzuXeTh7rRRXKXX+jxd8hNPKrYdBS53C/S7rT0oQtpeG0vkg89d/lKU5nGHOmj+H9XV+fTpxHvJOQyv4jGz85Xjdv1ecerf/GLpipm3knO4T5sjfFQY8yR9F3rODT2j5m33moqc6nh9Tz/WXfl5Vtx9WXzMefjHjEPk8CAOrQwPz8fDx8+HHczAACAjHov95vxXu436/btP6wfBFpYWMju7A3og5gbACD7fvXy34i/Vv23m/afj3uyFPPkBjhx68k//YOo/Fd/2LbMq19YkSkrDKgDAAAAAAAADEj12Vfx6uQvxt0MBsSAOgAAAAAAAMCAzFx9My7Nfr1tmVe/OImoTWk+04wxoA4MRe6tN2MmV5/D54dPf7+pXC85qvrN79NvTqmL5NPqpKd8632ePzHfaw91zlx9s2nfy3/1r5v2Xbp+rbeGdan6pNK07zRfT62WnLd90nX7mmY6n1iMtv1pzffdrXG//ml8Tlrptq2t3iez9FgZkYS8uK1y4iXl604qW332Vf/tGoKkHLO1l825YZOuHSL6zxU4jP9/P/zyu037vvXWdxLLJj3WWkPuRoBO/qN/938Vz2Zefx4kvQc1XoP84It/cJaP9gdf/IOIt99uWz6ic97xljndO9RbV+eQrol6zffbTWzdWGfje/fA3stncnWbr57+Mqo9xqxZyTM+Sfmuu4mvB5IP/QI69e+LtP1C7RjTa9fxvaybOkadQ3yA7ej0PtzNe9cwHu8gHks3xzTm7o436r9vzr1VH3PUfv64qY5aF593w5AUN5038+bVuu3zeclPDaL/d9Iqbjvv1RdftD1mGO0amwGObV/7W78d1/7Wb7ct89l/+nfNYs+ImXE3AAAAAAAAAADSyAx1AAAAAAAAYGrlIiI34tXXc52LkBJmqAMAAAAAAABAAgPqAAAAAAAAAJDAku/AUPwX//o/i3j77Qsd+7ff+Y/jB+d+/yr3+q1qv7rbV5v6Pb5fSzMrTfuG0aZWdXZ7/qVLtxOP/+GX3+2qztqXX3VqYtvjW5m5+mbTvktfn339t9qLiJ/3fq5env9RvX7dnrvV+cfdz7Oulz6ZZNzP/7jPP4k8p6MzzvfZQejlM7X26lV3leYydP9zQlurz1pcEySUHfdrndT/kq49IiIuv/tu077/+7/+PzXX2eL1B6bP2Xvc06cR77wTERGvyp/Hy38T6/7O7O81HZO7fKVuuzFO/kHt/5p8jou065zG965BvD83vsd2U2enMt1ctzfV0fj5U6vW/7nhOb+wav9rxY7jc7Gba7HG7bRcv42rHYP6f9fJRf4PdbqObPq//up+z+26iAu9HzS0rZs6mvpEw/Nxoed0EC5wfd/p/103j38Y76mj6v+vnv6ybnumIZbKvZV8zV5fSbVzmRFojI8a442kODF36dJQ2xTR/J3vt97+3eZCHfru71z7nzft+8dP/rO+2jU2I17ynezI0Dc0AAAAAAAAADA6ZqgDAAAAAAAA080MdVowQx0AAAAAAAAAEpihDoxVYu6cc3nlfvDFP7hwLvZBG3duzyRd5YlqUzZRrb+8Qr3k9unlOf3mG99u2ld79uz1v7UXAz3XMI7P6rmnTRqf677/T0NGDOUzrU+9nD+xbIs8c4k51JM+fzOUQ/3S219r2teY7/DUMPIA9ps7NalsYu7AiHj58583l33rO037RpHvEMiuTrFu4/vaD774B/Vx8gV0k1P3IrmKO53nIu3oVEc3ubwbNb4v11425FC/MpivSavPnzedN1erRbwcSPUDM4gc0mmJSYbVjkw/vg7f7YwrZ/ogdJV3PSWv3TBytV/k8V8od31KnsOZN96o2266xm7Ij55rKP+6TEL8NQozubrNxue0MYZofKwRzXnXh6Gb/6czb71Vt/3Dp79fX8el2wNtE6SRAXUAAAAAAABgquUs+U4L2ZnyAAAAAAAAAAAjZEAdAAAAAAAAABJY8h2YGv3m1uzXqHJ4D+s8STnMe8k3OgynuVmrtZQlo4MBSkveMjiv38/Ubo8fd/9vdf5u298yj1xCTsvc5SvNxcaV66+DpNzgSfnSe8khnvRc9ZLbs9++kpg3sEUO+6TXKvf2W037fviznb7aBEy3pve1p08HX+cAjunmM7HxPb6b9/de29pN+R89/159uxraXnsxmLjy0ttfq6/31auIFOZQH9d11iBySg8jL/WoXKTt48p/PYjnuVMu70EY1fd9w3gdRtWXB5FTvZPzdb5Zexk/6LvG1xpziF96+1rddu3pl3XbSdflnXKoD6sPNX6u/M7s77U/oCHnekS0jEkGqVNu94jmx5JUBiadAXVo4fj4OBYWFtqWuXPnTty5c2dELQIAALLk3r17ce/evbZljo+PR9QaSBcxNwBA9v3Zyz+Oz6v/36b956/zxDxMAgPq0EK1Wo1Hjx61LXNycjKi1gAAAFlzcnLSMaaAaSXmBgDIvpe1F/Esvmzan9k4qDbuBpBWBtShhZmZmZifn29bZnZ2dkStAQAAsmZ2djZu3LjRtszx8XFUq81pAGDSibkBALLvcu5KXI3mpfa/ceP62e9iHiaBAXVoYX5+Ph4+fDjuZjBAacyp1UuOnm7zTA0jh21Ec765iOR8OY25jQYlrXlkAdJiVHnNe613GMePW9/tT8iDl/Q510sO8lHqtq0zb15NPD4p3/q4Jb2mSXndIyJmGnLjRkS8evIXiWW7Wa56YWEhu7M3oA9i7snQVQ7hhpzpg8gh3U07es3dPqiY89UXXzTXXUtZAvUxGsR14FDyYyd87nfqM13VO4Sc6d18PzSI3N3DeJ6zUueojK3tQ8jLXfdYnj6NeOedgZ8jIiL35pt124051GtfNn8vOfO15uv387r6f9njZ0pEc4zU6XOmMU95Uh2j0Ovn4a9e/hvx16r/dtP+/Yd/+RxlJuapReRGPUPdjPjMGPw7JwAAAAAAAABMADPUAQAAAAAAgOk2wBnjj//ZH8STf/aHbcu8/OJkcCdkqAyoAwAAAAAAAAxI9dlX8fIXyenByB4D6gB96Ddf7TDKdptrvVWdrY5PKpuYL30IeZgiIqJWbdp11qanTyPe+YfDOS9966VPARc3if+nMv/+kfDZFZHc/m++8e1ht2ZgEnPqJTzWV0+Tc+8l5QH80fPv9d2ufiT1tUvXryUXftX8WJMeU6sc7IPIxwowLhfJB91oGMdcJDbPXb7Sczu6MXO1Ib/vq1eRq+Ui+kijPojnfdp1fA5bXLf1axj9PS156LPcLy/S9mE8vnE9h1m+Hq19Vf9dZGNsUnveHIM0Xqtf6PW/wHOWu1I//Fb96lnddmMMlBg/DOm9qe68Dc9H4+dYV0bQziyaufpmXP6Vr7ct8/KLk4iaROpZYEAdAAAAAAAAmG4DHNu+/h/8dlz/D367bZmj//3fNYs9I4Y0jRAAAAAAAAAAss0MdQAAAAAAAGCq5ay+TgtmqAMAAAAAAABAAjPUAfqwX90ddxOajLtNuUuXhlJv0uNaunQ7IiLerL2MHwzlrAzCuPsk0J00/l/tt01LMyt128P8vGg8V0RE5JLvX/7mG99u2vej599r2vett3+373YNQ9Jnfe1ltWnfzBtvJB5fe/Wqad/pZ/p5+6/uX6B1g/PqSXIeu6THVXv5omlf7vKVgbcJYNzScr3Q+Ll7kXY1vncP63279vJF1Gov+6ojLc/7RQzitRqETufN8nM8CEnXssN4zgbRH7qpo1OZSX+9R/U8D1piTNWgevJF3fbMm1frCyTEKrnL9cNg+yf/ee+Nu4DqV8/qthvjoMZ4LynO+OGX3x18wxo0vrbdxGbfeus7ddtiH6aBAXUAAAAAAABgulnynRYs+Q4AAAAAAAAACcxQBwAAAAAAAKZazgx1WjCgDjDFesmR1U0eo4jkHLBDU6vW/8vYXSTvGsCwNL3/PH0a8c47ozlXG0nvlUl56tIqKV94Ur74Vvn+us033+raYyifK0n57ltcX1SffdXd8QBTahR5dwdRZ1PO2C5j3k4ac+S+/oyYmdolZAfxWqUlD/skS0uO7W6+U+jmPGnpd+PK5T6K98hRvbc3xkmXvj5bt1394mn99tNfNtWRS8irPgpN+d0bvGpoa1I7Gx9/Yy7zYUhqd1PO9Cv1Q4vV58+H2iZIA1E/AAAAAAAAACQwQx0AAAAAAACYblO6ogydGVCHFo6Pj2NhYaFtmTt37sSdO3dG1CIAACBLPn/1J/F59U/q9jXGGMfHx6NsEqSGmBsAIPv+7Pn/J/6s+v9u2n/+Ok/MwyQwoA4tVKvVePToUdsyJycnI2oNDEe/+Y5GmbdsUPnsGC657CBdRpqDmiat8qLnLl9p2teUbzXGl+uvk8Tchkl54Vt9difkGx9FLsB2ks7/O7O/l1i2+tWzpn1Jr9UPv/xu/J2/83fi7/7df163v1OMAdNCzD25RnGdMYzcxoPSmFc2d+lS5GozEc0fH3TJtWs6XeR16XRMN9eZnXJ7X+S8gzqm1zpGkZe8m/MMKnd9r+3odM5El+pjiab33DHFVd30w5m33qrbboxBunkdhqGrz8OGGO781ouXX8Wz+LLpkMzGPWao04IBdWhhZmYm5ufn25aZnZ0dUWsAAICsmZ2djRs3brQtc3x8HNVqdUQtgvQQcwMAZN/l3BUxD1PBgDq0MD8/Hw8fPhx3MwAAgIzqZrnqhYWF7M7egD6IuQEAsu9XL/+N+OHDw7ZlxDxMAgPqAAAAAAAAwFTLWfKdFgyoA1Anrfl2257/6dOId94ZXWNGLK2vCfRjXLnBps20P6eN/ezN2sv4wSgbUEte0q7WnNYvseyPno83r3gr33rrO12Vy1L/S/ysTcj1HpGcb/1bb//uoJsEQBujyG18UT98+vt1299849stPvyBblwk73pWXCSX+SDOM4xzXMRFzlv7ZX2u7tzsr9Rvv3jZdMzMO2+3rbObHOIXeQ6/+ca367ZrDW1rOm9C/NFYZhSvVWOu94iI6lfP2h7jOx6mgQF1AAAAAAAAYHrV/s3PqM9JJhhQBwAAAAAAABiQn/+//iB+/ukfti3z8unJiFpDvwyoAwAAAAAAAAzIq+dfxcsv/mLczWBADKgDTIluc9n0m99mlPm+T3O4Xq29jP9i4LWnh5xDTCL9mlFo6mdPn0a8885QztVvDu6k45cu3e76+FH64ZffbdqX1NZuchGeSuN7QqvnOemxzrzxxrCbA0CfOuWqHdbna+3Vq6jJoU4fOl1TpeU6Sg7lZsPIfz2IOseRl/ui5+l0nV19Uqnbzr15talM7Vn7/N/Devy5S5fqd8zk6jZrL190rGMUr03jOU6/b61Tq9ZvNzyWifq/PsAl2C+98WZcfufrbcu8fHoSUbPuexYYUAcAAAAAAAAYkHc/+O1494PfblvmJ//Hv2sWe0YYUAcAAAAAAACmWs5kcVpIXoMQAAAAAAAAAKacGeoAU2IYuWxGmR8rKV/pWY67p08j3vk/D+Y8I8wBD93QJyEbkv5Ptvr/m/iZlqH/04m53Rtz6kXrx9RLbvVR6eX1S5K70hxaJz5PMbwcvQC0N6rP2sTcxE+fRrzzD0dyfiZfWq8b09qubgzr+61e6+imfDdlxpUjfRh++OV367ab8ns35iX/qjlfetK1+ijUXr2qb0fU51Sfeeut+gOq6ZgaXX32VfPOXP3c3GrD85yUd73xtcuMdLwMpJAZ6gAAAAAAAACQwIA6AAAAAAAAACSw5DsAAAAAAAAw1XKWfKcFM9QBAAAAAAAAIIEZ6gBc2H51d3TnenV/NOcZ4WOCbuiTDMPSzErTPn1t8Fo9p0nPf5Zek5k3rzbtq375ZfcV5Jrv6x734+/l/L8z+3tN+2ovXjbty1261H/DAMicxs+PpZmVeLP2Mn4wpvbAOCVdY52XluvdUbVj6dLt+vMO6buuTo9nGI/3/Gs9yPe8xues0cwbbwzoTL1p7NvdPKc//PK7ddvffOPbIzlvxzobnuPc5StNZX70/Ht9nyczzFCnBTPUAQAAAAAAACCBGerQwvHxcSwsLLQtc+fOnbhz586IWgQAAGTJ56/+JD6v/kndvsYY4/j4eJRNgtQQcwMAZN+9e/fi3r17bcuIeZgEBtShhWq1Go8ePWpb5uTkZEStAQAAsuZlvIhnUb8cfqcYA6aFmBsAIPtOTk4mK8ax5DstGFCHFmZmZmJ+fr5tmdnZ2RG1BgBgcIadM2+Y58mSVvn+kp6Xb731nebjW+ScHPfz+sOnv9+0L+mxprX9SZLa1Or1S8rTWH32VWLZS7WZuBpv1e37xo3rddvHx8dRrVa7bSpMDDE3k6pTzmjoVRqvnbo1rrb3mmd6VLHMsHKmp0Hd8/X0acQ770RExN/+ld+Nr3Kvh6Eu8vgbj0mKm+rM5Jp2vXr6y57P20k3/aP28kXddmN8MfPm1foDqs0jucPImd7oIq/L+XZ9XvtJU8wTUR/3iHmYBAbUoYX5+fl4+PDhuJsBAABk1Hu534j34jfq9u0/rP8SbGFhYbJmdECXxNwAANmXFPNE1Mc9WYp5mm/JgNdmxt0AAAAAAAAAAEgjA+oAAAAAAAAAkMCS7xlULpdjbW0t1tbWYnl5+cL1bG1txf7+fjx48CAqlUrk8/koFAqxtrYWxWJxousEgGGQQ5pplvW+3u//36R8273koqs+f97X+dOoVfsz815ZS87xV3v1qnlnLuFe9RbHk35ibjE3DNJ+dbcunzBkRdI123mpvH77N3ptW5ofS9b94Be/H/H22xc+vrEf5i5fqd++0jDElZCHPHfp0oXP34+Zq2/WbTfFfA1tTYozBtE3O+Vhb/x7Y7uTNL4OiTFSVjV3IYgIM9QzpVKpxMrKSty8eTMODg7i8ePHF6rn4OAgrl27FhsbGxERsbu7G0dHR7G5uRmlUimWlpZiaWkpKpXKxNUJAAAAScTcYm4AAIAkZqhnQKVSibt378bW1lbfdR0cHMTS0lJERKyursb29vbZ3/L5fCwvL8fi4mIcHBzE4uJiHB4extzc3ETUCQAAAI3E3GJuAADIRURugDPU/3XpD+Jn//wP25Z5+fRkcCdkqMxQT7mtra1YXFyMUqnUd12nd9tHvA6QzwfM5+3uvl7yo1wun5XPep0AAADQSMwt5gYAgGF49fyrePHFX7T9iZo15rPCDPUUK5VKUSwWY319PSIidnZ2Ym1t7cL1raysnC3VdrqkW5LTu9H39vbi4OAgdnZ2YnV1NdN1AnSrVY4w+bTohn4C2dXv/9+kfOmd8k52On9aP5MS25WUQ7yVXsqm0I+ef69pX9/PCWMh5hZzwzCM+3MaIjrnTO6GvpxOg3htL3KeRqPqH43n+dbbv9v+gJlc065cjCeHevXZV3XbTY/lre/UbQ8r13un16opp/ql281lGuLdxjJJ8TARl954M6688/W2ZV48PTGonhEi/BQrFApRKBTOtt9///0L11Uul+Pg4OBs+8MPP2xb/vbtv3xDbBVgZ6VOAAAAaCTmFnMDAMCZ2mB//gf/k9+Ov/4/+0/a/lz52uxoHyMXZkA9Q/rJV7a5uXn2e7FY7FjX8vLy2e+VSiX29vYyWycAAAB0Iua+WJ0AAACTzoD6lNjZ2Tn7/fwd+O3k8/mz3+/fb16yIyt1AgAAwDBlJT4WcwMAQBsDnqXe8YfMkEN9CpRKpbrtDz74oKvjCoVClMvliIimu9CzUidAr+QIA0YhKR+d959s6yVfelJu7TT2iZaPqcvc4L0cP+7Hn3T+3OUrXZcd92vFeGUlPhZzw3QZVZ5l0snrPbm6eW0H8f9/GH1oEO1qzDNe/epZ/d+vNA95NeYyv4gLtb1D3FR9/rx+R606mPP2ST50SGaG+hQ4nx8tov7u8nYay50PvrNSJwAAAAxTVuJjMTcAALSXq432Z1zK5XIsLS11XX5rayuWlpbi2rVrkcvl4ubNm7GystIUY0wyA+pT4NNPP63b7jYv3Lvvvlu3/eDBg8zVCQAAAMOUlfhYzA0AAJOtUqlELpfr+HPz5s2ubrA9ODiIa9euxcbGRkRE7O7uxtHRUWxubkapVIqlpaVYWlqKSqUy5Ec2fpZ8nwKnS7Oduuhd6EdHR5mrEwAAAIYpK/GxmBsAACbbzs5O12VPB8lbOTg4OJvFvrq6Gtvb22d/y+fzsby8HIuLi3FwcBCLi4txeHjY9U27WWSG+hRoDJov6vwdJlmpEwAAAIYpK/GxmBsAADqojfhnwO7evdtVuWKx2PYG20qlEisrKxHxevD8/GD6ebu7uxHxOtY4LT+pzFCfAhcNdhvvJHn8+HHm6uzH8fFxLCws9F3PnTt34s6dOwNoEUC6LM00XyTtV3fH0BLIHv9Xptv+q/tN+5LeU5cu3e76+H718p6eVDZyPdyrXat2fa5RSTp/4uOMiNzlKxER8fmrP4nPq38SERFv5r7W9bm+ceN63fbx8XHXx5JOWYmPxdwwXcb92TpujZ/j0/580Dt9aPAu8hw2vg6X3nmnbrv28sVQzttrHd3ESI3x3cwbb9RtV58/v1jjetTU1jax3Oe1fxE/rf2kKYb5WfVJ3XZSPHT+GDHPaOzs7ESlUon19fWO+dHff//9tn9fWVk5ix/azWQ/nam+t7cXBwcHsbOzE6urqz23PQsMqNO1YdyFnuY6q9VqPHr0qO96Tk5OBtAaAAAgTV7Gi3gWX/Z83CBiDCZTmuPjYdQp5gYASLeXtdcxz0Wu2bIa9+SGMGt8VDY3NyOfz8fm5mZf9ZTL5Tg4ODjb/vDDD9uWv337duzt7UXE68F3A+pk1tzc3EAC3vN3pWelzn7MzMzE/Px83/XMzs4OoDUAAECaXI4rcTXe6vm4pBnq1WrzrH2yIyvxsZgbAIBeXM5diau1t5pnqD960lCyeRS6cYa6mGe49vb2olwut1yavRfnB+SLxWLH6//l5eWz3yuVSuzt7dXtmxQG1Huws7MTa2trA62zUCjE4eHhQOtsdP369YEEzdevX6/7PQt19mN+fj4ePnw4kLoAAIDJ8t6lfyfeu/TvRER3S02e2n9Yv1zkwsJCZmdvDJqYW8wNAEB6vJf7zXgv95ux/7A+7di33vpO3Xb12VdNx56Pe8Q8w3f37t2Ym5vrOJu8Gzs7O2e/FwqFro7J5/NRLpcjIuL+/fsG1Mmmi9493hhoN97ZnoU6ARge+cMALiYxN3ovOciHoKf39IS2JuaFb5EDPimHehq1zCGf8LhO86qf18sgO9mWlfhYzA1ME/FqOo0rL3lifusO7chyH2ps+zCe91HUmeTV01+2Pe/vzP5e0zHfevt367Z/+PT3L9C69pIef6fztoyXzhtC7NSpfyTFNr3kXc+8DC75XiqVolQqRUTEtWvXIp/PR7FYjKWlpZ4Htk/rOfXBBx90dVyhUDgbUD9d/n3SGFDvQbFYjN3dwX6QjiIQff/99+v+E1Qqla7O+/jx47rtmzdvZq5OAAAAskHMLeYGAAB6s7GxUbddLpdjZ2fnbKb58vJyfPzxx13NNj+fOz3i9czzbjSWK5VKXc9uzwoD6j3I5/Ndd540WVxcrNsul8tddeSjo6O67WKxmLk6AQAAyAYxt5gbAADGKZexGerlcrlpELzR3t5e7O3txerqascc659++mnddrc3KL/77rt12w8ePJi4AfUJXpeBU++//37d9umyC52cX9Ztbm6u7ouNrNQJAAAAw5SV+FjMDQAAkyWfz8f29nZsbm7G6upq22v1nZ2dpptsGzXGCBedod54U+4kMEN9ChQKhZibmzsLgj/99NOu8iY8ePDg7PfGwDsrdQIAwCgk5cz75hvfTiybmFs7KQddn/nyWuUg7Du/YUK7ks6VpbyTic9Vq7yACY9/5u1fadr36uQX/TaLjMhKfCzmBpheF8l3PYwc2eO6PszSdekwDOPxj6rOpvzely7VbTfmTK9+9aypjtyV8QyDNbal8bHMXH2zvvyzr4bepkQNcc+Pnn+vqUhjbNsU005yTvUMWF1drduuVCqxs7MTd+/erbs5NuL1UuxLS0uxv7+fWFe3N9120njeSaCXT4kPP/zw7PfzOdPaOV+uMQdDluoEAACAYcpKfCzmBgCANmoj/hmCubm5WF9fjydPnsTu7m7Tsu0HBwextbWVeOxFB8Ibz/H48eML1ZNmZqhPibW1tdjZ2YmI6JhPobFMPp9PzJGWlToBAABgmLISH4u5AQCgf//qv/+D+Ff//R/2Xc+LX54MoDWtLS8vR7FYjFu3btXdKHv37t1YX18f2nnNUGes+umAhUKhLvDd29trW3539y+XV2l1B3pW6gQAAIBOxNwXqxMAACZGlzPLXz37Kl48/Yu+f6I2pGnq58zNzcXh4WEUCoWzfZVKJfEG28aZ5v2cc9KYoZ4hjbkLeg32t7e34+bNmxHx+u6TVrnSTvMrREQUi8Wm/AtZrBMAAIap3xziS5du93V8kpHmikzImdcqh3tS2f1X9wfdop50k6/xTEL7k/KlN+Z3JP3E3BevE6Bbw8jLTWcXeZ69NpNjkv/f/eOT/7xu+1tvfae5UHX4A5YDMaY4qZtz1F69qtvOXb7S9u/T4NIbb8aVt7/edz0vfnkykkH1iIhPPvkkFhcXz7b39/ebVqC6fv36QGaXX79+ve860sYM9YyoVCpNd4Pfv9/bm2k+nz+7u7xUKrXMkXDr1q2IeH0Hyfm70bNcJwAAALQi5u6vTgAAmCb/w3/3t+N/9D/9T/r+ufK12ZG1uXG1qsYbiiMuPrO8cRB+EmeoG1BPsUqlEisrK7G0tBTXrl1r6tylUilyuVwsLS3FyspKXf6DVpaXl2N/fz/m5uZiY2Pj7LjT5R0WFxejVCpFoVCIzz77rKtOn5U6AQAA4JSYW8wNAADn5Wqj/Rm1paWltn9///3367a7na3++PHjuu3TFbEmiSXfU2xYd4EXi8V48uRJbG1txf379+PWrVtRqVRibm4u3n///djd3W255FvW6wQAAIAIMbeYGwAApks+nz/7PWlZ9vNLwke8nsV+Pvd6K0dHR3XbjUvJTwID6lNsfX091tfXp7JOAAAYtpY5uBP0ksM7jTkPk/Lu9fL406gxL+Cp2ssXXR1fe1kdZHPIoKzEx2JuYJTSeB0ziSY5Zzac9803vl23nXSt3uq6fuQacqT/8Mvv1m0vXbrddEjjvmHkVG86by0hjmlo+4+ef2/g7UiF2r/5GfU5R+j8gHrSKlSNM9S7HVA/P5N9bm6u7jyTwpLvAAAAAAAAABPswYMHZ78nLf9eKBTqBto//fTTnuttHJSfFAbUAQAAAAAAACbY+aXZWy3L/uGHH579XiqVuqr3fLmNjY0Lti7dDKgDAAAAAAAAUy1Xq430Z9T29vYiItqmfFpbWzv7/eDgoGOd58vk8/mJzJ8eIYc6tHR8fBwLCwtty9y5cyfu3LkzohYBAJBWveSl7Dq3eC6d9z/3nYMzISdf0nMy7lyfrfICJuU2bJXL8N69e3Hv3r26fY0xxvHx8QVbCNkm5gam0ahym4/7OmoSdbqGT/Nznua29ar26lXddu7SpbrtpMfadfw1YI0xwrfe+k7ddjftGsZr1+l9qDEvfURzbvrzdXxe+0n8NP606Zhv3Lh+9ruYJx329vaiXC7H3NxcfPzxxy3LFQqFKBaLZwPle3t7sby83LL87u5f9qFJnZ0eYUAdWqpWq/Ho0aO2ZU5OTkbUGgAAIGtOTk46xhQwrcTcAADZ9zJexLP4sml/ZuOg0U8av7CDg4NYWVmJSqUSxWIxNjc3o1AoJJYtl8vx0UcfRUTEj3/847o86Um2t7fj5s2bERFx9+7dlgPqlUoldnZ2IuL1EvKrq6sXfDTpZ0AdWpiZmYn5+fm2ZWZnZ0fUGgAAIGtmZ2fjxo0bbcscHx9Htdo8ax8mnZgbACD7LseVuBpvNe1vnKEu5hm83d3dqFQqEfF6cH1xcTFWV1dje3u7rtzpwPv169fj8PAw8vl8x7rz+Xzs7u7GyspKlEql2NraSlwm/tatWxERMTc3VzdTfRIZUIcW5ufn4+HDh+NuBgAAkFHdLFe9sLCQ3dkb0AcxNwBA9r2X+414L36jaf/+w78cXM1SzJPL0Az1lZWVs9nhp3Z2duL73/9+FIvFuH79ejx48CBKpVKsr6/Hxx9/3HFm+nnLy8uxv78fKysrsbGxEZ9++ml8/PHHkc/n48GDB7GxsRGlUikKhUJXs96zLp1J+QAAAAAAAABoUiwW4+joKFZXVyOfz9cNaJdKpXj8+HF8/PHH8eTJk9jc3LzQgHexWDw7vlwux61bt+LatWtnM953d3fj8PBw4gfTI8xQBwAAGKn9avMyaEszK12VS6uk9reSlce1dOl28h9q3S1V2Oo5ycrjBwAGz3VAdjW+dr1c/zI4l2Z/pW67+vSXdduJ1/C5/ueVNr7e3fxf/p3Z36vbrr16Vbc9c/XNuu3q8+cDOW+/ddRevuhYZ2Pbf/jld3tuF4ORz+eblngfhvX19cQl36eJAXUAAAAAAABgumVoyXdGy5LvAAAAAAAAAJDADHUAAAAAAABgquXMUKcFA+oAAABD0CoH9/6r+837usyr3qrsuKWxTb1IfK1a5UpPyMGY9Fpl/TkBAJgUg8hD3ci13njUGvKMN+YlT7qGH9fr/eqLL9r+vZu2D8JA+mpDDNTY9m++8e2mQ370/Hv9nxdSxJLvAAAAAAAAAJDADHUAAAAAAABgug1wyfd/+cd/GP/yj/+wbZkXX54M7oQMlQF1AAAAAAAAgAF59fyrePHLvxh3MxgQA+oAAABjlqUc3P22NSlfeVJe+ZHqJV9hUtmEvOpJeQQj5BIEAEZvGDnEs2TaHu9EabjOrn75Zdu/z1x9s6mKxvijm9hjGP9ncpev1G9fqR+eq7142XRM7eWLvs/bq4s81laxTxblBjhD/dKVN+PK177etsyLL08iagM8KUNjQB0AAAAAAABgQOb/xn8Y83/jP2xb5p//X/7XZrFnRPNt9AAAAAAAAACAGeoAAAAAAADAlLP6Oi0YUAcAABiGXvJyT6CkXOtp1W8O+KTXuvZyul9/ACA95BBn0IaRYzxJY77zTrm6q8+fN+3LXbrU+3lH8H/mh09/v247Kc4Yx//db739u037OuWu7yYvPWSdAXUAAAAAAABgetUicqOeoW5GfGbIoQ4AAAAAAAAACcxQhxaOj49jYWGhbZk7d+7EnTt3RtQiAAAgSz6v/SR+Gn9at68xxjg+Ph5lkyA1xNwAANn3ee1fdLymE/MwCQyoQwvVajUePXrUtszJycmIWgMAwCRLyo3XKgf5uHNg9n3+XPNCaUmPddyPMzFXekRivvRWXsaLeBb1+QY7xRgwLcTcADBdLpJ3vSlOaIglZt68Wrdde/WqqY7ayxddtnCwZq6+2fbvreK9ccu9ldDur561LP+y9mKyYpyaNdhJZkAdWpiZmYn5+fm2ZWZnZ0fUGgAAIGsux5W4Gm/V7fvGjet128fHx1Gtdj9ID5NCzA0AkH2Xc1fiau2tpv3n4x4xD5PAgDq0MD8/Hw8fPhx3MwAAgIx6L/cb8V78Rt2+/Yf1M3EWFhYma0YHdEnMDQCQfe/lfjPei19v2n8+7slKzJOLiNyIJ6jnRns6+tC81h4AAAAAAAAAYEAdAAAAAAAAAJJY8h0AAGCElmZWmvbtV3cTSg7n+GFIalPkWty/XWvOnZep9idIan9inQAAMAEucv0+iGv+3KVL9TuqDetzJ8QanXRz3X6Rtv/wy++2P++l23XbTY9tTKonXzTv7PS89hA7pd6Il3wnOyaolwMAAAAAAADA4JihDgAAAAAAAEy1XO+LHDAlzFAHAAAAAAAAgARmqAMAAAxBqzx73ebWHnde8VYac/1FRGLOvP1X90fQmsEYxnOd1tcPAACyovGaujGWqr18UX9AUi7vDvm/h3Xd3tjWxvM05kxveiwj0lV82vi8NjynWYr9OpJDnRbMUAcAAAAAAACABGaoAwAAAAAAAAzIn//kD+P4J3/UtszzL09G1Br6ZUAdAAAAAAAAmGq5AS75/ur5V/H8y78YXIWMlQF1AACAEcp8bu2EHIS9PKakHH2Zf04StMpFOImPFQAAhqHxmnrm6pt129VnX9Uf0GesMkiNbW30o+ffq9v+1lvfaSqzdOl23fYwcpUP4vmZlhivV5evvBlvvPX1tmVez1CXuD0LDKgDAAAAAAAA0602uMHtv/rrvxV/9dd/q22ZB//l/8Ys9oyYGXcDAAAAAAAAACCNDKgDAAAAAAAAQAJLvgMAAAxBLzm0W5Xt9vhxy3r7e9F1fsCc+9cBAJgO56+R36y9jB+M6sRdXHM35ib/4ZffHVZr6jTmd//mG9+u285dqR+eG1W7OknK5V59/rxue+bNq3XbWY/xztQicqNOZy59emYYUIcWjo+PY2FhoW2ZO3fuxJ07d0bUIgAAIEs+r/2L+GntJ3X7GmOM4+PjUTYJUkPMDQCQfX/24o87XtOJeZgEBtShhWq1Go8ePWpb5uTkZEStAQAAsuZl7UU8iy/r9nWKMWBaiLkBALLvZe3FZMU4ZozTggF1aGFmZibm5+fblpmdnR1RawAAgKy5nLsSV2tv1e37xo3rddvHx8dRrVZH2SxIBTE3AED2Xc5diRs3brQtI+ZhEhhQhxbm5+fj4cOH424GAAAZ1SqPXLc5uHvJSz5K3ebHS2v7u7V06Xb3ZVs81vfi1+O93K/X7dt/WP/8LSwsTNaMDuiSmBsAJkddjPD0acQ77wyk3pmrb9Zt1169qi9Qqx+kzV2+0lRHYy7zUWlsS2PbG7e7jRP71XiexnMkPl8Nuepzly6d/f5rl/7H8Y8fPmh7TjEPk8CAOgAAAAAAADDVcpZ8p4WZzkUAAAAAAAAAYPqYoQ4AAAAAAABMt5op6iQzoA4AADBC3ebBG0a+vEHoNrdfWtufpN98hUn51vdf3e+rTQAAMO0a83k3XqM3Xoc35ViPaMr/PSq1ly/a/r3TY0naN4gYo1Ock/T3xnjp1Rdf1P9dPMQUsOQ7AAAAAAAAACQwQx0AAAAAAACYajkrvtOCGeoAAAAAAAAAkMAMdQAAAAAAAGC6maFOCwbUAQAAxmxpZqVp3351dwwt6UKueaGzb77x7aZ9P3r+vcTD0/hY+z5/rTqYhgAAAGcar9OXLt2uL9DNdXhC/DISjedtaGtTXJTUzjHEGUnxWmPb9l/dH1FrID0MqAMAAAAAAABTTQ51WjGgDgAAAAAAADAgD8t/FA/L/7RtmedfnYyoNfTLgDoAAAAAAADAgLx88VU8/+ovxt0MBsSAOgAAQJ/6zQs+7hzivUjKl5eYZ6/V8Rl6rEnSmAMeAAAmUac4o2OO9Yix5CGPiMhdulTfjJcN7chSXvLG/O8Nz3Oq296TWkR1cGu+X750Nd54c7Ztmedf/eL1eUk9A+oAAAAAAAAAA7KQ/61YyP9W2zL/z//H37Pse0YYUAcAAAAAAACmVy1GP1nc5PTMmOlcBAAAAAAAAACmjxnq0MLx8XEsLCy0LXPnzp24c+fOiFoEAEAajCqHdqt8gWnM153GNvUi6bnOXb6SWLbbx7o0sxKf134SP40/rdv/jRvX67aPj4+7bCVMFjE3ANBJU470TjnVE3J5f/ONbw+0TUk6tSsimnKmjyu3e6PGfOhJcVDt5Yu67fPP87179zpe04l5mAQG1KGFarUajx49alvm5ERuCwAAINnLeBHP4su6fZ1iDJgWYm4AgOw7OTmZqBgnZwl2WjCgDi3MzMzE/Px82zKzs7Mjag0AAJA1l+NKXI236vYlzVCvVtMxOwVGScwNAJB9s7OzcePGjbZlxDxMAgPq0ML8/Hw8fPhw3M0AAAAy6r3cb8R78Rt1+/Yf1i9bubCwMFEzOqBbYm4AgOzrJkVPpmKeminqJDOgDgAA0IN+84V3m4M9rXnJ+80h31V+wR7r7FdP7W/IMRgRkbt0qa86AQCALjTkIe8mthjFdXk352hsa1Ku8rFoyOU+M/v1piKvHj9pW0VSnvofPf9ef+2ClJnpXAQAAAAAAAAApo8B9QwolUqxtrYWN2/ejFwuF7lcLm7evBkbGxtRqVQuXO/W1lYsLS3FtWvXzupcWVmJg4ODia8TAAAAIsTcYm4AAHgtVxvtD9lhQD3FKpVKrKysxOLiYuzs7ES5XD77W7lcjq2trbh27Vrs7Oz0VO/BwUFcu3YtNjY2IiJid3c3jo6OYnNzM0qlUiwtLcXS0lJPXxxkpU4AAACIEHOLuQEAALqTq9Vq7oFIoUqlEouLi3UBfTurq6uxvb3dsdzBwUEsLS21PWZxcTFKpVLk8/k4PDyMubm5iaizWwsLC/Ho0aO4ceNGPHz4cCB1To2nTyPeeef17198EfH22+Oth+mhzwDQjRF/XrTK5zeJubX7zas+DP0+/6M6XvwxHmJuMfdY9PM5JObJNq8fME0G+J7XKUd6N9fmjfm9R5Xbu1PO9NqrV50rachvPogYq7FdF3kOm9re0M7GetN+/Xfavjeuzsbf/K3/5UjP/d/80f82nj87Se1zw18yQz2lVlZWolwuR6FQOLtL/OjoKHZ3d2N9fb2p/M7OTuzt7bWt8/Tu+4iIfD7f8suA3d3Xb3TlcvmsfNbrBAAAgFNibjE3AABAtwyop9DOzk4cHBzE+vp6HB4exvLycuTz+cjn87G8vBybm5txdHQUhUKh7riPPvqobb0rKytnS7WdLumW5PQ8Ea/vWm+3vF1W6gQAAIAIMbeYGwAAoDcG1FNoc3MzisVibG5utiyTz+fP7hY/ValU4uDgILF8uVyu+9uHH37Ytg23b98++71VgJ2VOgEAAOCUmFvMDQAAjXIRkavVRvsz7gdN1wyop0ypVIpyudwUuCfJ5/NNXwCUSqXEsufLFYvFjrnPTu9Cj3j9pUHS0nZZqRMAAAAixNxibgAAgN5dHncDqHf//v1YXV3tGNSeKhaLdds///nPE8udX5qtcdm6VvL5fJTL5bN2nQ+ks1QnAACMw36184BdO0szyTmL+613GCaxTb0cn/RapfE5Qcwt5gYAsqTTNXWrmOm83OUrPZ+3sd6LXNs3nvdHz7/X9hxJ7ay9rPZ0zm7iksbtbtrR2PZG33r7d7ttYvr19pQzRcxQT5nbt2+3XXauUWMAfPPmzaYyjXfQf/DBBz3X3XgXelbqBAAAgFNi7sHWCQAAMA3MUE+Zbu8QP1WpVOq28/l8U5nGHG9JZZI0liuVSmfty0qdAAAAcErMPdg6AQCAZD/96T+Nh/+//6ptmWfPfjGi1tAvM9Qz7nTZtVONy9FFRHz66ad1290ubffuu+/WbT948CBzdQIAAMBFibnF3AAATI9crTawn1cvv4pnz07a/kTUxv2Q6ZIZ6hl3PpBdXV1NLNP4BcBF70I/OjrKXJ0AADAKw8ihnaUc3N3kLjyVlcfV72NqdXxWHj+vibnF3ABAdiRda3/zjW8PpJ5edcqZHrn6+a61ly/6bsdF2t0pp3pExNKl23XbM2+8UbddffZVz+edBpcvvRlXr862LfN6hrpB9SwwoJ5x29vbZ79vbGwklmkMmi/q/FJ3WakTAAAALkrM3b5OAACYGLUY6Nj2X/u3/lb8tX/rb7Ut81//N/9pPHt+MriTMjQG1DOsXC5HqVSKiIjNzc2Wd5dfNNhtXP7t8ePHmauzH8fHx7GwsNB3PXfu3Ik7d+4MoEUAAEBafF77Sfw0/jQiIjFu+FktOS5pLHt8fDz4xjEQYu7OdfZDzA0AkG5nMU/jIPNXuYYdzaPQ56/zxDxMAgPqGba5uRkRr5dfW19fH/r5hnEXeprrrFar8ejRo77rOTlxdxEAAEyal/EinsWXERE9xQ2DiDEYDTH3cOsUcwMApNv5mKdXmY17apZfJ5kB9YwqlUqxs7MTc3Nzsb+/37bs3NzcQALe83elZ6XOfszMzMT8/Hzf9czOts+RAQBA9vWSq67bfOtpzcHdb774xvx7ERH7r+731aZh6PSY7t27F/fu3Wv59589Sp7F+40b1+u2j4+Po1qt9t5AhkrM3V2d/RBzAwC9aoxFusn/PYr4Kem8uctX6rZnrr5Zt/3DL79bX0dCnNS4bxRx0/nn6zTmaRXbtHM+7hHzMAkMqPdgZ2cn1tbWBlpnoVCIw8PDno/76KOPIiLixz/+cctl505dv359IEHz9evX637PQp39mJ+fj4cPHw6kLgAAYLJ0Wma65Q0RD+u/0FtYWMju7I0BE3OLuQEASI/TmKcptsnN1G/XmgfLz8c9Yh4mwUznIqTN2tpalEql2N3djUKh0LH8Re8ebwy0G+9sz0KdAAAA0Asxd/d1AgDAJMnVRvszaKVSKdbW1uLmzZuRy+Uil8vFzZs3Y2NjYyjpoM4rl8uxtLQ01HOMkxnqPSgWi7G7O9jlQXoNRHd2dmJnZye2t7djeXm5q2Pef//9KJVKZ9uVSqWr8z5+XL+Mx82bNzNXJwAAANkg5hZzAwAAvatUKvHRRx/F3t5e09/K5XJsbW3F1tZWbG9vx+rqas91X7t2rauyvdadJQbUe5DP5zsu9TZMBwcHsba21nOHX1xcrNsul8td3WV/dHRUt10sFjNXJwAApE23OfzGnSu9lW7zvbdqfxrzpbdanj1J1l+/NBNzi7kBAHrRKad6t2X6lVTnN9/4dt127dWr+nYl5ExvkrCU+rB1E9s15XafpNinNoRp40NWqVRicXExyuVyx7Jra2txeHgY29vbXde/s7PTddmNjY2uy2aNJd8zolQqxdLSUmxubvZ8h8f7779ft93Nf6qI+mXd5ubm6r7YyEqdAAAA0ImY+2J1AgAA47WysnJ2s+zu7m4cHR3F0dFR7O7uxvr6elP5nZ2dxJnsrdy9e7ercsVicaJjBQPqGVAul+PWrVuxvr6e2Pk7KRQKdcu4ffrpp10d9+DBg7PfGwPvrNQJAAAA7Yi5L14nAAAwPjs7O3FwcBDr6+txeHgYy8vLZyt/LS8vx+bmZhwdHTWtTPXRRx91XX+lUon19fXY399v+zPo9F1pY0A95crlciwuLsbq6mpsbm52fczW1lbdvg8//PDs9/M509o5Xy5pmYas1AkAAABJxNz91wkAAJMiVx3tT782NzejWCy2jWXy+XzTYHelUomDg4Ou6s/n82fnafdz/ubdSSSHeopVKpVYWlqKDz/8sOvAPuL18g6ffPJJ3b61tbWzPAfd/Cc5XyafzyfmSMtKnQAAkCZJufLSmFe8F93mVW9VdtzS2CaGT8wt5gYA0q1VTNGyfFJe8tx45pX+6Pn36rab8o43xIC9PtZx6qbtYqzhK5VKUS6X4/DwsGPZ00Hx8zfIlkqlttf3e3t7US6Xe8q3PsnMUE+pSqUSi4uLkc/nY2NjI8rlcsefg4ODWFxcjIhoWr6hUCjU/cfolB/h/N0qre5Az0qdAAAAcJ6Ye3B1AgDAxKjVRvvTh/v378fq6mrXM8MbB89//vOfty1/9+7dmJubq1vlapqZoZ5St27dOgvab9682dOxre4W2d7ePqvr7t27sby8nFiuUqmc3bFeLBZjdXW17bmyUCcAAACcEnOLuQEAIMtu374d+Xy+6/KNNwW3i4NKpdJZ6qdr166drVa1tLTUMn6YdGaop9Di4mLXucyStApyz+dJKJVKTTnfTt26dSsiIubm5pryKmS1TgAAAIgQc4u5AQAg+wqFQk95yyuVSt12u8H4xtWpyuVy7OzsxMrKSuRyuVhZWekrpsoiA+op028n7HTH+PLycuzv78fc3FxsbGycna9SqZwtX1cqlaJQKMRnn33W1X/GrNQJAADAdBNzD69OAADIvNqIf0aoXC7XbbfKn36a7qqdvb29WFxcjLW1tYG1L+0s+Z4yo7jru1gsxpMnT2Jrayvu378ft27dikqlEnNzc/H+++/H7u5uz0s2ZKVOAAAYlaWZlXE3YSiSHtd+tTmOSdo3Sq2e/27b1cvrN+7HSvfE3MOtEwBgkDpdZzdds9eqPdcxKvuv7vd+TI9t7zZW6/Wc33zj23XbP3r+vb7OwXg8ePDg7Pd2Nwrn8/nY3t6OSqUSR0dHcXBw0DQYf2pnZycePHgQh4eHA29v2hhQn2Lr6+uxvr4+lXUCAADAMGUlPhZzAwDAa7naiKeNj9D29vbZ741LujdqHHCvVCqxs7MTd+/ebVo6vlQqxdLSUuzv7w+srWlkQB0AAAAAAACgC58f/9fx+fE/67ueZ89/MYDWdFYul89SX21ubrbNn55kbm7u7Ebcvb29+Oijj+oG1g8ODmJra2uib9SVQx0AAAAAAACgCy9fPotnz0/6/hlVIvXNzc2IeL2ce7+D3svLy/HZZ59FoVCo23/37t2+6k07M9QBAACGYFLzyCU9rkHk6hu0YZ1/3I8LAACmVWPc0c21+UWO6VVSPBS5hvmsCfnde623U9sH8dguEtt9663vNO374Zff7bstI1eLiC6XfL986WpcvTLb9ymfvfhFDHtQvVQqxc7OTszNzQ1sWfa5ubk4PDyMxcXFs5nvlUolDg4OolgsDuQcaWNAHVo4Pj6OhYWFtmXu3LkTd+7cGVGLAACALLl3717cu3evbZnj4+MRtQbSRcwNAJB99+7diz/86h827V9Y+Cdnv09izPPe/N+M9+b/Zt/1/FHpfxfPXpwMoEWtffTRRxER8eMf/7jnpd47+eSTT2JxcfFse39/34A6TJtqtRqPHj1qW+bkZLhvdAAAQHadnJx0jClgWom5AQCy7+TkJJ7FL5v2P3rUvC8Tel9IINXW1taiVCrF7u5u0xLtg1AoFKJYLMbBwUFEvM7VPqkMqEMLMzMzMT8/37bM7Gz/S3oAAACTaXZ2Nm7cuNG2zPHxcVSrE/atDXRBzA0AkH2zs7NxNb7WtP8bN66d/S7mGY+dnZ3Y2dmJ7e3tWF5eHtp5lpaWzgbUJ5kBdWhhfn4+Hj58OO5mAABA6vWSqy+N+daTDKJN3SxXvbCwYBY7U0nMDQD0qtM1+rhijaRzNLWlQ071NMZEp9rlchfzpNPBwUGsra3F9vZ2rK6uDvVc55eRv379+lDPNU4G1AEAAAAAAIApVotcrTbycw5aqVSKpaWl2NzcHPpgekT9gPrc3NzQzzcuM52LAAAAAAAAAJBW5XI5bt26Fevr67G+vj6Scz548ODs96WlpZGccxwMqAMAAAAAAADTrVYb7c8AlcvlWFxcjNXV1djc3Oz6mK2trb7Oe3R0dPZ7sVjsq640s+Q7AABAn3rJ1ZeVHOLTLul1aqWrnIltygIAAP1L07V2Y1uWLt1uWz41cWJjrveI2H91v+0hqWn7FKtUKrG0tBQffvhh14PpERErKyvxySef9HXuvb29iIiRzYgfFwPqAAAAAAAAwHQbeQ71/lUqlVhcXIx8Ph8bGxtRLpc7HlMul2NjYyMiIgqFwoXPvbe3F+VyOebm5uLjjz++cD1ZYEAdAAAAAAAAIGNu3boV5XI5yuVy3Lx5s6djt7e367YPDg5iZWUlKpVKFIvF2NzcbDngXi6X46OPPoqIiB//+McxNzd3ofZnhRzqAAAAAAAAABmyuLgYpVLpwsevrq7Wbe/u7kalUomI14Pri4uLsba21nTc6d+uX78eR0dHfc1yzwoz1AEAAPrUS364Scwll5QPsFWevaw8/lbt7Da3elYeJwAA0F5jDHCRa/3G+KgprkjIXT4OnfKlR6S37QNRHXcDureysjLQwfTTOnd2dur27ezsxPe///0oFotx/fr1ePDgQZRKpVhfX4+PP/544memnzKgDgAAAAAAAJARu7uDv4m7WCzG0dFRbG5uxsHBQTx+/PhsxnqpVIpCoRAff/xxFIvFqRlIP2VAHQAAAAAAAJhquVpt3E0Yu3w+35RbHTnUAQAAAAAAACCRGeoAAABjlpSXO0s5uLvJszcpun1dWuVaz9LrCgAAXOwafunS7d7OkeGYKstth24ZUAcAAAAAAACmmyXfacGS7wAAAAAAAACQwAx1AAAAAAAAYHrVYqAz1P/sX/+38Wc/+2/blnn28ouBnY/hMqAOAAAAAAAAMCAvq8/i2ctfjLsZDIgBdWjh+Pg4FhYW2pa5c+dO3LlzZ0QtAgBgUu1Xd5v2Lc2sdF12lJLalaX2J+n2MfViv7ob9+7di3v37tXtb4wxjo+P+zoPZJWYGwCYaLVq/XauPgNzY7wxjJjkIrppx/nte/fudbymm9aY5/LM1bh6+Vfalnk9Q13e9iwwoA4tVKvVePToUdsyJycnI2oNAACQNScnJx1jCphWYm4AgOybuJhngEu+/+o3/v341W/8+23L/MGf/B/MYs8IA+rQwszMTMzPz7ctMzs7O6LWAAAAWTM7Oxs3btxoW+b4+Diq1WrbMjCJxNwAANkn5mFaGFCHFubn5+Phw4fjbgYAAJBR3SxXvbCwMFkzOqBLYm4AgOybuJjHuD8tGFAHAABIoTTmGo/ovl1pbX+SLLUVAABIv9zlK3XbtZcv6rabcpU35Fgfl6TYaOnS7fodjfnhu6wHsiwd/0MBAAAAAAAAIGXMUAcAAAAAAACmWq5WG3cTSCkz1AEAAAAAAAAggRnqAAAAdK0p11/0lh+vKf9eROy/ut9Xm0ap38cPAABMlkHECN966zuDak5fkh5LUz74Vw0FusipnhlmqNOCGeoAAAAAAAAAkMAMdQAAAAAAAGCK1SKqo56hbkZ8VpihDgAAAAAAAAAJzFAHAACga/3mC89KvvSk3IERyY8/KS98qzyC8q0DAMBkGcQ1fu1VY2Ly8UiMdxpiIzEN08iAOgAAAAAAADDdapZgJ5kl3wEAAAAAAAAggRnqAAAAAAAAwPSqxehnqJsQnxkG1AEAAKBBT3kBW+RLBwAAiJCHHLLOku8AAAAAAAAAkMAMdQAAAAAAAGC6jXrJdzLDgDq0cHx8HAsLC23L3LlzJ+7cuTOiFgEAAFnyee0n8dP407p9jTHG8fHxKJsEqSHmBgDIvnv37sW9e/falpnWmOezyoP4s8qDtmWevXo6otbQLwPq0EK1Wo1Hjx61LXNycjKi1gAAAFnzMl7Es/iybl+nGAOmhZgbACD7Tk5OJivGqQ5uhvrLV8/i2asvBlYf42VAHVqYmZmJ+fn5tmVmZ2dH1BoAAGBYlmZWmvbtV3e7ryA303z8q/tdz9aoVqvdnwsmhJgbAJgmneKLHz3/XtO+xjilpxilS92co915Z2dn48aNG23PMa0xz+WZN+LqpXfalnk9Q90y81lgQB1amJ+fj4cPH467GQAAQEZ1s1z1wsLCZM3ogC6JuQEAsk/M09qvff39+LWvv9+2zD/56bZZ7BlhQB0AAAAAAACYbrXpm0lPd5rXpQMAAAAAAAAAzFAHAABguiXlBFy6dDu57Kv7zTvNYgAAAPrQmMs8Yjg50wdxjlHkdh+bmnzmJDNDHQAAAAAAAAASGFAHAAAAAAAAgASWfAcAAAAAAACmW9WS7yQzoA4AAAANEnOlx/hyGwIAAJNrXDHF0qXb9e1IiIOSYiCYNgbUAQAAAAAAgClWi6iNeoa6GfFZIYc6AAAAAAAAACQwoA4AAAAAAAAACSz5DgAAAF2SLx0AAJgYtWrHIo0x0MTmVK/F6Jd8t+J7ZpihDgAAAAAAAAAJzFAHAAAAAAAAptuoZ6iTGWaoAwAAAAAAAEACM9QBAACgD0k5BOVaBwAA0k7c0qDaOac808kMdQAAAAAAAABIYIY6tHB8fBwLCwtty9y5cyfu3LkzohYBAABZcu/evbh3717bMsfHxyNqDaSLmBsAIPs+r/2k4zWdmIdJYEAdWqhWq/Ho0aO2ZU5OTkbUGgAAIGtOTk46xhQwrcTcAADZ9zJeTFbMU6sNrKrPnv538We//O/alnlW/eXAzsdwGVCHFmZmZmJ+fr5tmdnZ2RG1BgAASKtWeQdnZ2fjxo0bbY89Pj6Oqjx9TCExNwDA8C3NrNRtXyRners6ul2Vaxpjnpe15/Gs+nTczWBADKhDC/Pz8/Hw4cNxNwMAAMiobparXlhYmKwZHdAlMTcAQPZNXMwzwBnql3NX4urM223LvJ6hPrhzMjwG1AEAAAAAAAAG5Ne+9u/Fr33t32tb5p/87LtmsWfEzLgbAAAAAAAAAABpZEA9A8rlcqytrcXNmzcjl8vFtWvXYnFxMdbW1qJcLl+43q2trVhaWopr165FLpeLmzdvxsrKShwcHEx8nQAAABAh5hZzAwDAv1GtjfaHzDCgnnJbW1tx8+bN2NnZOQvkK5VKlEql2NnZiZs3b8bW1lZPdR4cHMS1a9diY2MjIiJ2d3fj6OgoNjc3o1QqxdLSUiwtLUWlUpm4OgEAAPqxNLPS9EN2ibnF3AAAk2y/ulv300k38Y54iGkkh3qKLS0txcHBQczNzUWxWIx8Ph/lcjlKpVLdXfIbGxuRz+djeXm5Y50HBwextLQUERGrq6uxvb199rfTOhYXF+Pg4CAWFxfj8PAw5ubmJqJOAAAAOCXmFnMDAMB5tVp13E0gpcxQT6mNjY04ODiIzc3NePLkSezu7sbm5mbdHePnrax0vguoUqmclcvn83UB83m7u6/vUiqXyx3rzUqdAAAAcErMLeYGAADolgH1FCqXy7G1tRX7+/uxvr6eWGZ9fT1WV1fr9pVKpbb1rqysnC3VdrqkW5Lzd94fHBzEzs5O5usEAACACDG3mBsAAKA3uVqtJut9yqysrMQHH3zQMrA/ValU4tq1a2fbm5ubLY8pl8tx8+bNs+0nT560Xa5tb2/v7A70ubm5ePLkSWbr7NXCwkI8evQobty4EQ8fPuy7vqny9GnEO++8/v2LLyLefnu89TA99BkAuuHzgh70kguwm1yErYg/Rk/MLeYem34+h3yGZZvXD5gm3vMmztKl23Xb+6/u93R82q//Ttt3Nfe1+O25b4/03H9Q+V48q/0ytc8Nf8kM9RSqVCodA/uI18FsPp+v227l/HJ1xWKxY+6z87nhKpVK7O3tZbZOAAAAOCXmHmydAAAAk86Aegrt7+93Xfbx48dnv7///vsty51fmq1QKHRV9/kvDu7fb77jKCt1AgAAwCkx92DrBACAiVGrjfaHzDCgnmGVSuUs71mxWGwZDDfmefvggw+6qv98fY13oWelTgAAALgIMXfnOgEAAKbB5XE3gIv7/ve/HxGv7xbf3W2ds+/g4KBu+/zd5e00liuVSmeBdFbqBAAAGKR+8qWTLWLuznUCADBZlmZWmvY1xkDffKM+z/iPnn9vqG2CNDBDPaMqlUqsra1FoVCI/f39tnnPPv3007rtTjnSTr377rt12w8ePMhcnQAAANArMXd3dQIAwESpVkf7Q2YYUM+gcrkci4uLMTc3Fz/+8Y873lVeLpfrti96F/rR0VHm6gQAAIBeiLm7rxMAAGAaGFDPmL29vbh582aUy+WoVCpx7dq12NraantMY9B8Uae547JUJwAAAHRLzN1bnQAAMFFqtdH+kBlyqGdApVKJnZ2d2N7eTgyANzY24tNPP22Z0+2iwW7j8m+PHz/OXJ0AAAAX0Uuu9G7yDJJeYu6L1wkAQLY1xTK5zvNwa69e1ddx6XZTmf1X9/tqF6SNAfUMODg4iKOjoygWi1Eul+Pg4KCpzN7eXmxtbcX6+vrQ2jGMu9DTXOfx8XEsLCz0Xc+dO3fizp07A2gRAACQFvfu3Yt79+5FRMTPas0DjN3GEsfHxwNtF70Tc4+nTjE3AEC6fV77F/HT2k+artl+Vu18g+X5Y8Q8TAID6hmwvLwcy8vLdft2dnZiY2OjLpDd2NiI1dXVprvH5+bmBhLwnq83K3X2o1qtxqNHj/qu5+TkZACtgf7cu3cvTk5OYnZ21pdNpII+SZroj6SNPpkNJycnbeOFQcQSjIaY++J19kPMzUX5nOQ8/YHz9AfO0x/697L2Ip7Flxe6ZstqPFSrVsfdBFLKgHoPdnZ2Ym1tbaB1FgqFODw87Pm41dXVKBaLsbi4WBcQ7+zsNN0xf/369YEEzdevX89cnf2YmZmJ+fn5Cx17fHwc1Wo1ZmZmYnZ2diDtgX7cu3cvHj16FDdu3HABSSrok6SJ/kja6JPZMDs7Gzdu3IiIiJ89ap6h8Y0b3cUlp7EDYm4xd2vnY+zGY8Tc08fnJOfpD5ynP3Ce/tC/y7krcbX2VlNskxT/NDp/zLTGPH/24o/j8xd/3LbMs9qXI2oN/TKgnmH5fD5+/OMfx+Li4tm+Tz/9tKncRe8ebwy0G+9sz0Kd/Zifn4+HDx9e6NiFhYV49OhRzM/P+7AGAIAJNKhlpk9jB9JHzN25zn70EnOfj7EvGqcDANBsv7pbt30+H/p7ud+M93K/GfHn9YPh+7WGYxrzsEfE/sO/LJOpmKdWG1hVL6vP41ntlwOrj/EyoN6DYrEYu7u7nQv2oN9AtFAoxPLycuzt7UVERLlcbirz/vvvR6lUOtuuVCpdnffx4/q7jG7evJm5OgEAAMgGMbeYGwAAJsXl3JW4mvta2zKvZ6gPbhCf4TGg3oN8Ph/5fH7czWhy+/bts+A+afm283fTR7z+AqBQKHSs9+joqG67WCxmrk4AAACyQcwt5gYAgLGpRUR1cIPbv3rpr8evXvrrbcv84Vf/MJ6FWexZMDPuBtC/8wFw0t3l77//ft120h31Sc5/UTA3N1f3xUZW6gQAAIB+iLlb1wkAADANDKhPmMYAOeJ18H8+6E/K+ZbkwYMHLevNSp0AAAAwKGJuMTcAADB9DKhPgPN3lS8tLSWW+fDDD89+P58zrZ3z5TY2NjJbJwAAAFyUmFvMDQAwNWrVpp/96m7dT5PcTPNPJtUSH/9Qf+RPz4ys9mrOOQ1u5+bmYnl5ObHM2tra2e8HBwcd6zxfJp/PJ+ZIy0qdAAAAcFFi7vZ1AgAATLrL424A/bt7925ERHzyySctyxQKhSgWi2fB8N7eXssvAiIidnf/8i6jVnegZ6VOkt27dy9OTk5idnY27ty5M+7mtPT3/t7fi7e+8Y3UtjErz2MWZOG51MbpkoXnUhunSxaeyyy08dTf//t/P/4XH3887mZkVlZe6yy084svvqj7l/QRc7evc1qk6f1knJ9haXoexikNz4M2pEcangdtSI80PA9paMOpaY+70vBapKENWYp5alUzxkmWq9VqekfKbG1txf3796NYLMbHH39cl+Os0cbGRmxtbcX6+npsbm62rbdcLsfNmzcj4nUQfXh4mFiuUqnEtWvXIiKiWCzG/v5+5uvsxcLCQjx69Chu3LgRDx8+HFsdwzaUNj59GvHOO69//+KLiLff7ruetyPi2rQ9j0OQhXb21cZB9b0OJv55HKEstFMbB0MbBycL7Ux9G899Xvz6/Hz86Z//+ZgblCz1z2Nko40R2WjnpUuXolqtxszMTLx69WrczZkKYu7sxdxp+L88kDb0E7ek5DNsYl6LUbdhCDFrJp8HbdAGbZiONvjMynQblmZWmvYlLvN+/phLt5uPeXX/7Pe0xzynz9HVeCt+68p/NNJz/9GL/1s8iy9THbPymiXfU6ZSqcTGxkaUSqXY2tqKa9eutbwLfGVlJba2tmJzc7NjYB/xenm207vLT+tPcuvWrYh4vZzd+bvRs1wnAAAAiLnF3AAAtNaYL32/uhtLMyttf5Jzg8NkMaCeMnNzc5HP5+v2nQb5KysrsbGxEUtLS2d3iR8dHcX6+nrX9S8vL8f+/n7Mzc3FxsZGrKysRKlUikqlEgcHB7G4uBilUikKhUJ89tlnbe/Uz1qdAAAATDcx9/DqBACAzEu6OWCYP2SGAfUUOjw8jPX19SgUCnVBa6lUinK5HCsrK/HZZ5/F7u5u0xcB3SgWi/HkyZPY3NyMcrkct27dOvvy4Pr167G7uxuHh4c9BcxZqRMAAIDpJuYeXp0AAACT6PK4G0Czubm5rpaT69f6+npPd9pPUp0AAABMJzH38OsEAIAsqlVr424CKWVAHQAAAAAAAOhov7o77ibAyFnyHQAAAAAAAAASmKEOAAAAAAAATLdaddwtIKVytVpNQgA454033ogXL15ERMTMTPtFHH7lV34l3nnnnab9x8fHUa1WY2ZmJubn54fSzn4NpY21WsSf//nr3//qX43I5fqu588jIjdtz+MQZKGdfbVxUH2vg4l/HkcoC+3UxsHQxsHJQjtT38Zznxf/cmYm/koa2xgZeB4jG22MGH87v/jii/jFL37Rtky1+pdf2AjPmQYXibnH/X85YkDvJ/3ELSn5DJuY12LUbRhCzJrJ50EbtEEbpqMNPrMmrg0/e/S4bvsbN66f/T4JMc/CwkI8evQoIiKuxlsjPfez+DIiIm7cuBEPHz4c6bnpjQF1aHDp0qW6N3gAAIBhy+Vy4hCmgpgbAGA6pTXmOT+gPi4G1NPPku/Q4M0334wvv/wyarXahWeoAwAAdDtbI5fLxVtvjXYmBIyLmBsAYHJMQszzV/7KXxl3E1LRBtozQx0AAAAAAAAAErS/FRgAAAAAAAAAppQBdQAAAAAAAABIYEAdAAAAAAAAABIYUAcAAAAAAACABAbUAQAAAAAAACCBAXUAAAAAAAAASGBAHQAAAAAAAAASGFAHAAAAAAAAgAQG1AEAAAAAAAAggQF1AAAAAAAAAEhgQB0AAAAAAAAAEhhQhwHZ2tqKpaWluHbtWuRyubh582asrKzEwcHBuJvGGJRKpVhbW4ubN29GLpc76xMbGxtRqVQuXO8w+llW6mS4Tvvq3t5ez8dmpQ/pl9lTKpVib28vtra2un6dstJ39Md0qVQqsbGxEUtLS2fvh6evyc7OzoXrzUrf0R+BtPL+lB5iXH2xF+JLGontJp+YSj+AiVcD+rK/v1+bm5urRUStWCzW9vf3a0dHR7Xd3d1aPp8/2//kyZNxN5URePLkSW15ebkWEW1/tre3e6p3GP0sK3UyfOvr62d9c3d3t+vjstKH9MvsePLkSW1zc7NWKBRqEVGbm5urra+v1/b39zu+PlnpO/pj+mxubp71t83Nzdr+/n7t8PCwtr29fdYX8/l8bX9/v+s6s9J39Ecgrbw/pYcYV1/slfhSn6jVxHbT1hfEVPoBTAMD6tCH/f39syBhdXU1scz5iwYfnJPtyZMnZxdK3fy06jONhtHPslInw3f+devlC4+s9CH9MhuePHlSW11dPXutCoVCz4F2FvqO/pg+pwMEhUKhZZnzffPw8LBjnVnpO/ojkFben9JDjKsv9kp8qU+I7S5eZ1aJqfQDmBYG1OGCnjx5cnb3WT6fb1nu6Ojo7IO1WCyOsIWMWrFYPLuA3N3drR0dHZ3dkXj+Du1egsth9LOs1MnwnX/devnCIyt9SL/Mhu3t7bp+2Ovspqz0Hf0xfU5nUURExy82TgcT5ubm2pbLSt/RH4G08v6ULmJcfbEX4sve65w0YruL15lVYir9AKaJAXW4oNPAspsLxPPLo/V6MUk2bG9v1yKitr6+3rLM0dHR2V2Jpz+dLiKH0c+yUifDt7y8XMvn83UBbzdfeGSlD+mX6Xf+i9h8Pl87OjrquY6s9B39MX1On+N2MylOdbt0aVb6jv4IpJX3p/QQ4+qLvRJf9l7nJBHb9VdnVomp9AOYJgbU4QLO31kW0fkOvN3d3a6DS7Ipn893dZdhY9+JiJZLXw2jn2WlTobv9Auyw8PDnr7wyEof0i/T73xAOTc3d6Glz7LSd/TH9Dm/NN/y8nLH8udfk1YDC1npO/ojkFben9JFjKsv9kJ82Xudk0Rs11+dWSWm0g9g2hhQhws4n/el26Vazn/IdptDimw4PDzs6uLp1PnlkCKitrm5mVhuGP0sK3UyXKcX/qcBTC9feGSlD+mX6Xb+Tu6IuNDshVotO31Hf0yf0y99I9ovz3fq/BcgPrf1R2A4vD+lhxhXX+yF+PJidU4KsV3/dWaVmEo/gGkzE0DPdnZ2zn4vFApdHZPP589+v3///sDbxPjcv38/VldXY25urqvyxWKxbvvnP/95Yrlh9LOs1MlwraysRKFQiM3NzZ6PzUof0i/Ta2dnJw4ODs62t7e36577Xus6lea+oz+mz/Xr189+L5fLUS6X25b/9NNPz35v1V+z0nf0RyCtvD+lhxhXX+yF+PJidU4Csd109wUx1WDrBNLPgDr0qFQq1W1/8MEHXR13/sN1b29voG1ivG7fvt1T4Nh4oXXz5s2mMsPoZ1mpk+Ha2NiIUqkUu7u7PR+blT6kX6ZXuVyOtbW1s+1CoRCrq6sXqisrfUd/TKfGL3DO98skp6/B3NxcLC8vN/09K31HfwTSyvtTuohxB1vnJBNfXqzOSSC20xfEVIOrE8gGA+rQo/N3Xka0vqOuUWO5xg9fsqtQKHR9535ERKVSqdtO6kPD6GdZqZPhKZVKsbW1deG7xrPSh/TL9FpZWanb/vjjjy9cV1b6jv6YToVCoe4LjYODg6b+eWpnZ+dstkWrwYWs9B39EUgr70/pIsYdbJ2TSnx58TongdhOXxBTDa5OIBsMqEOPzi9PExFdB5nvvvtu3faDBw8G1SQypnEJpMbl8SKG08+yUifDc+vWrVheXr7wXeNZ6UP6ZTqVy+W6gLHVXendykrf0R/T65NPPqnb3tvba/oC6ODg4Gymxfb2dsv3z6z0Hf0RSCvvT9kmxp3Ovii+vHidWSe2G1ydWSem0g9gmhhQhx41BooXvQvt6OhoYG0iW85fMLW6iBxGP8tKnQzHaUDTGOz0Iit9SL9Mp+3t7brt0y9aTwPumzdvRi6Xi2vXrsXi4mJsbW01zXY6Lyt9R39Mr0Kh0LQ86d7eXty8efNsxtXS0lLk8/nY399v+2VxVvqO/giklfenbBPjTl9fFF/2V2fWie0GV2fWian0A5gml8fdAMiaxg/Ni2p3IclkOx94bGxsJJYZRj/LSp0M3t7eXuzt7cX+/n5PSzc2ykof0i/TaWdnp277+vXrsbi42LTMWaVSiVKpFKVSKTY2NmJ3dzdxtkNW+o7+mG7Ly8uxvb1dl++vXC7H4uJiRESsr693lUM2K31HfwTSyvtTtolx29c5acSX/deZdWK7wdU5CcRU/dcJZIMZ6tCji37YNQYZjx8/7r8xZM75ZbE2Nzdb3sU4jH6WlToZrEqlEisrK7G6upq49GKvdV2Efkm5XG56Xb7//e/H2tpaPHnyJGq1WtRqtTg6Omq6Y31lZSX29vaa6sxK39Ef0291dbVpls2pg4ODrl7DrPQd/RFIK+9P2SXG7VznJBFfDqbOLBPbDbbOSSGm6q9OIBsMqMOYuAttOp3ekZnP52N9fX3o5xtGP8tKnbx269atyOfzLQObcchKH9IvB6fxDu65ubn47LPPYnV1tS6oPO2rjf31o48+GtrrkZW+oz8O1+rqauLyg6VSKX7t136tabbNsGSl7+iPQFp5fxo9Me7o6kwD8WW66hwHsV0660wDMdX46wSGy4A69Kif5ayGUQ/ZUSqVYmdnJ+bm5mJ/f79t2WH0s6zUyeBsbW1FqVRqymd1UVnpQ/pl+jR+6dL4ZUujxkC8UqnE3bt368pkpe/oj9mwtrYWOzs7sbq62jSzrlKpxOLiYhwcHLQ8Pit9R38E0sr7UzaJcburc1KILwdXZ5aJ7QZb5yQRU128TiAbDKhDj65fv56qesiOjz76KCIifvzjH7dcBu/UMPpZVupkME5zlG1ubkahUBhInVnpQ/pl+hwdHdVtf/DBBx2Pacy/ubW1Vbedlb6jP6bf0tJS7OzsxPr6emxvbycuT3lartUXQFnpO/ojkFben7JJjNtdnZNAfDnYOrNMbDfYOieFmKq/OoFsMKAOPbro3WONy7i4C226rK2tnd3J3U3wOYx+lpU6GYyVlZUoFAoDXXYxK31Iv0yfizy3+Xy+6f3y/BJxWek7+mO6nc6SKBaLZ0vWRkRsb28nzr5aWVlJXJovK31HfwTSyvtT9ohxu69zEogvB1tnlontBlvnJBBT9V8nkA0G1KFH77//ft12t/lOHj9+XLd98+bNQTWJlNvZ2YmdnZ3Y3t6O5eXlro4ZRj/LSp30b2trK8rlcly/fj1WVlY6/px/3e7evVv3t729vbO/ZaUP6Zfpc9HnsvG1PL+8YFb6jv6YXisrK2df5CXlAV1eXo7Dw8O6LzoqlUrTDJuI7PQd/RFIK+9P2SLG7a3OrBNf6hPnie0GW2fWian0A5gml8fdAMiaxcXFuu1yudzV3diNSyIVi8WBtot0Ojg4iLW1tdje3k5c6qiVYfSzrNRJ/37+859HRLTNTdVKqVSqu1M8n8+ffUmWlT6kX6ZP453X3QacjQHm+QA0K31Hf0yncrl89oVuoVBouUxtoVCIw8PDur64s7MTm5ubdf06K31HfwTSyvtTdohxe68z68SX+sR5YrvB1pllYqrB1Qlkgxnq0KN2d1S2c/4Cc25urmN+MbKvVCrF0tJSbG5u9vRFQ8Rw+llW6iS9stKH9Mv0uehr0vhlzfkcY1npO/pjOp2fPdH4GjXK5/NNsy0ePHhQt52VvqM/Amnl/SkbxLgXq5NkWXn99Il6YrvB1pllYqrB1QlkgwF16FGhUKi7CPz000+7Ou78RUKniwyyr1wux61bt2J9ff1COcaG0c+yUif929zcjFqt1vXP+Yv43d3dur+dz3+VlT6kX6ZP493ajXdmd+t8X81K39Ef0+n8lxndLLXXOGjQ+KVJVvqO/giklfen9BPjXrzOrBNf6hPnie0GW2eWiakGVyeQDQbU4QI+/PDDs9/PL13VzvlySXlimBzlcjkWFxdjdXW1LljsdMzW1lbdvmH0s6zUSXplpQ/pl+lzfjmzbpeLbFw+sPHLm6z0Hf0xfc4vMdntl4CdlvHLSt/RH4G08v6UXmLc/uskWVZeP32inthusHVmlZhqsHUCGVADenZ4eFiLiLOfTvb398/K5vP5EbSQcXny5Ektn8/XVldXezquUCjUDg8P6/YNo59lpU5GK5/Pn70mu7u7bctmpQ/pl+lz/jmOiNqTJ086HrO6unpWvlgsNv09K31Hf0yf9fX1tn0rSaFQODtmf3+/6e9Z6Tv6I5BW3p/SSYyrL/ZKfDn5fUJspy/UamIq/QCmjxnqcAGFQqHubsy9vb225Xd3d89+dwfa5KpUKrG4uBj5fD42NjaiXC53/Dk4OIjFxcWIaL5Lcxj9LCt1kl5Z6UP6ZfoUi8W6Zf3u3r3b8Zjzsx2SZkNlpe/oj+lz+/bts98fPHjQNGMmyfklCc+/nqey0nf0RyCtvD+ljxh3cHWSLCuvnz5RT2ynL0SIqfQDmELjHtGHrDo6Ojq7s6xQKLQs9+TJk57v1iObzt9l2evP9vZ2Yp3D6GdZqZPR6WUGQa2WnT6kX6ZP413cR0dHLcuev4O73YyorPQd/TF9isXi2XO9vr7etuz5/ri5udmyXFb6jv4IpJX3p3QR4+qLFyG+nI4+IbbTF2o1MZV+ANPFgDr0YXd3t+OFwGkAOjc319USSGRTP180RLR/Kx5GP8tKnYxGr1941GrZ6UP6Zfpsb2+fvSb5fD7xOT9dWrRTYHoqK31Hf0yXJ0+e1Obm5rr64v+0XDdfgGSl7+iPQFp5f0oHMa6+eFHiy+npE2I7fUFMpR/ANDGgDn3a398/uyBYXl6uHR4e1p48eVLb398/+8AsFAo+MCfY8vJyX180dJOLbhj9LCt1MnwX+cKjVstOH9Iv0+f8azI3N1fb3NysHR4e1g4PD2ubm5tnf+slV2dW+o7+mC5Pnjxpyue4vb1dOzw8rO3v79flBWw3i6JRVvqO/giklfen8RLjDrfOSSe+nK4+IbbTF8RU+gFMCwPqMCCbm5u1QqFQdxFZLBZ7Ch6gk2H0s6zUSXplpQ/pl+mzvb1dKxaLda9JoVCora+vt10ysJ2s9B39MV0ODw9rq6urdV8A5/P52vLycm19ff3CX35kpe/oj0BaeX+afFn5XNMXRycrr58+UU9spy+IqfQDmHS5Wq1WCwAAAAAAAACgzsy4GwAAAAAAAAAAaWRAHQAAAAAAAAASGFAHAAAAAAAAgAQG1AEAAAAAAAAggQF1AAAAAAAAAEhgQB0AAAAAAAAAEhhQBwAAAAAAAIAEBtQBAAAAAAAAIIEBdQAAAAAAAABIYEAdAAAAAAAAABIYUAcAAAAAAACABAbUAQAAAAAAACCBAXUAAAAAAAAASGBAHQAAYIpVKpXI5XIdf0ql0ribmlpbW1sdn7+bN2+Ou5kAADCVxDz9E/Mw7XK1Wq027kYAAAAwHpVKJa5du3a2XSgU4pNPPol8Pl9Xbm5ubsQty5ZKpXL2++PHj+Pg4CDW1tbO9uXz+Tg6OhpDywAAYLqJeQZDzMM0M6AOAAAwxRq/XNrd3Y3l5eUxtmhyrKysxN7eXkT4cgkAAMZFzDM8Yh6mhSXfAQAAOGNWxuA0zngBAADGT8wzOGIepoUBdQAAAM5cv3593E0AAAAYGjEP0CsD6gAAAAAAAACQwIA6AAAAAAAAACQwoA4AAAAAAAAACQyoAwAAcGGVSiW2trZicXEx9vb26v62t7cXS0tLce3atcjlcrG4uBg7Ozst69nY2IjFxcW68o11pr0dAADAZElLrJGWdsA0ujzuBgAAAEy7jY2N2NrautCxhUIhDg8PB9yi9kqlUhwcHMT9+/ejVCo1/b1cLsfKykrT30qlUqytrcXh4WFsb2+f7d/a2oqNjY3E86ysrMT6+npsbm6mth0AAEB7Yh4xD2SZAXUAAIAxq1QqERGRz+djbW0t8vl8YrlPP/206UuoUX/ZUS6X4+7duxERiV/o7OzsxNraWhQKhdjc3Ix8Pn92zOnj3NnZiZWVlSgWi7G0tBQPHjyI1dXVWFxcjOvXrzc9zq2trabnJS3tAAAAOhPziHkg02oAAACM1erqam1ubq5juUKhUIuIs5/V1dW+z/3kyZO6Og8PD7s+dnNzs+7YfD5fm5ubq+3u7jaVPTo6qitbKBRqhUKhViwWa0+ePGkqv7+/3/VjTUs7Gq2vr9e1CQAAppWY50lTeTEPZIcc6gAAACnw8ccft/371tZW3ayEubm5uqX7xqFQKDTte/LkSSwvLzftz+fzUSwWz7ZLpVJUKpXY39+Pubm5pvLFYrFuVsTBwUHq2wEAALQm5qkn5oHsMKAOAAAwZo8fP078guRUuVxuynO3u7s77GZ1dP369brtpC9zzltaWqrbTsrdd97556RcLqe+HQAAQDIxTzIxD2SDAXUAAIAx29zcrJtB0GhlZaVue3V1tW35tGqcDdH4pVCjxrx9g/piJy3tAACAaSHmSSbmgWwwoA4AADBmjV9enLezs9O07OHm5uYomjVwnb7E6aRSqUxUOwAAYFqIeboj5oF0MqAOAACQUuVyOdbW1ur27e7uJua9m0TvvvvuuJsQEelpBwAATBoxTzpijbS0A9LKgDoAAEBKNX6xtLy8nMllDwEAAJKIeYAsMKAOAACQQjs7O3FwcHC2PTc3F5988skYWwQAADA4Yh4gKwyoAwAApEylUomNjY26fZ988snULHsIAABMNjEPkCUG1AEAAFJmZWUlKpXK2fby8nIsLy+Pr0EAAAADJOYBssSAOgAAQIrs7e1Z9hAAAJhYYh4gawyoAwAApESlUomPPvqobp9lDwEAgEkh5gGyyIA6AABASnz00Uc9L3u4tbUVOzs7Q24ZAABA/8Q8QBYZUAcAAEiBg4OD2NvbO9vudtnD/f39uH79+jCbNjSPHz8edxMiIj3tAACASSbmGZ+0tAOyyoA6AABACqysrNRtd7PsYaVSiYODg8jn80Ns2eA0folzfmZKkp///OcT3Q4AAJgmYp5mYh7IBgPqAAAAY7a2tlb3BUexWOy47GFEnOUeHNeXS+VyuW6705c0jX8/OjrqqXzj+dLWDgAAIJmYp7vyYh5Ip1ytVquNuxEAAADT6uDgIJaWlur2bW9vJ35hVKlU4vHjx3F0dBR7e3tnX3L0E9ZVKpW4du3a2fbh4WEUCoWujl1cXIxSqXS2PTc3F5999lniLJNKpRKLi4t1X8zMzc3F4eFh4mMtl8uxuLjY9KXb/v5+atvRaGNjI7a2tiLi9ReAnb7EAgCASSTmEfNA5tUAAAAYm0KhUIuIC//Mzc31df4nT57U1Xd4eNi2/OHhYa1YLNbm5uZatqlQKNR2d3fPynd6jIVCoba9vV2r1Wq1/f39Wj6fb/t4i8Vi7R/9o3+UinYcHR21fK7W19fPyufz+b5eJwAAyCoxj5gHss4MdQAAgCnWz2wN2jNbAwAAxk/MMzxiHqaFHOoAAAAAAAAAkMCAOgAAAAAAAAAkMKAOAADAmcePH4+7CQAAAEMj5gF6ZUAdAACAM+VyedxNmBiVSmXcTQAAABqIeQZHzMO0uDzuBgAAAJAeGxsbkc/n4/3336/bPzc3N54GZUTjF0kPHjyInZ2d8TQGAABoScxzMWIeppkBdQAAAM5UKpVYWlpq2n94eBiFQmEMLUq/ra2t2NjYGHczAACALoh5eifmYdrlarVabdyNAAAAAAAAAIC0kUMdAAAAAAAAABIYUAcAAAAAAACABAbUAQAAAAAAACCBAXUAAAAAAAAASGBAHQAAAAAAAAASGFAHAAAAAAAAgAQG1AEAAAAAAAAggQF1AAAAAAAAAEhgQB0AAAAAAAAAEhhQBwAAAAAAAIAEBtQBAAAAAAAAIIEBdQAAAAAAAABIYEAdAAAAAAAAABIYUAcAAAAAAACABAbUAQAAAAAAACCBAXUAAAAAAAAASGBAHQAAAAAAAAASGFAHAAAAAAAAgAQG1AEAAAAAAAAggQF1AAAAAAAAAEhgQB0AAAAAAAAAEhhQBwAAAAAAAIAEBtQBAAAAAAAAIIEBdQAAAAAAAABIYEAdAAAAAAAAABIYUAcAAAAAAACABAbUAQAAAAAAACCBAXUAAAAAAAAASGBAHQAAAAAAAAASGFAHAAAAAAAAgAQG1AEAAAAAAAAggQF1AAAAAAAAAEjw/wcFnXLIGHTdZQAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 2000x800 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"vmax = 150\n",
|
|
"nbins = 150\n",
|
|
"\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" brem_z_found,\n",
|
|
" brem_x_found,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax,\n",
|
|
" range=[[-200, 9500], [-3200, 3200]],\n",
|
|
")\n",
|
|
"ax0.vlines([770, 990, 2700, 7500], -3200, 3200, colors=\"red\", lw=1.5)\n",
|
|
"ax0.set_ylim(-3200, 3200)\n",
|
|
"ax0.set_xlim(-200, 9500)\n",
|
|
"ax0.set_xlabel(\"z [mm]\")\n",
|
|
"ax0.set_ylabel(\"x [mm]\")\n",
|
|
"ax0.set_title(\"found\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" brem_z_lost,\n",
|
|
" brem_x_lost,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax, # * stretch_factor,\n",
|
|
" range=[[-200, 9500], [-3200, 3200]],\n",
|
|
")\n",
|
|
"ax1.vlines([770, 990, 2700, 7500], -3200, 3200, colors=\"red\", lw=1.5)\n",
|
|
"ax1.set_ylim(-3200, 3200)\n",
|
|
"ax1.set_xlim(-200, 9500)\n",
|
|
"ax1.set_xlabel(\"z [mm]\")\n",
|
|
"ax1.set_ylabel(\"x [mm]\")\n",
|
|
"ax1.set_title(\"lost\")\n",
|
|
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
|
|
"\n",
|
|
"# plt.suptitle(\"brem vtx of photons w/ $E>0.1E_0$\")\n",
|
|
"plt.colorbar(a0[3], ax=ax1)\n",
|
|
"\n",
|
|
"plt.show()\n",
|
|
"# plt.savefig(\n",
|
|
"# \"/work/cetin/Projektpraktikum/thesis/brem_vtx_found_lost_hist2d.pdf\",\n",
|
|
"# format=\"PDF\",\n",
|
|
"# )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 38,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAOWCAYAAABF0OMKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/j0lEQVR4nOz9fZAjd37feX5Q/UBSTVajqimNSl0nqlEmZTt2V0eg2ht22KG5K4Ac+yzfSQK6N8bSxCpiumB5z76ICk9BrYt70N7ttACt+x/fnQlQ9jok74SLKI1iPbFaDQHKGntvfaeuAseKW3s0I2RzxlXGaDTsyi6yp9kPhbw/agDiIROVABLITNT7FYFgIfuXv/xlAvWAL3+/T0Ysy7IEAAAAAAAAeGjO7wEAAAAAAABg9lB0AgAAAAAAgOcoOgEAAAAAAMBzFJ0AAAAAAADgOYpOAAAAAAAA8BxFJwAAAAAAAHiOohMAAAAAAAA8R9EJAAAAAAAAnqPoBAAAAAAAAM9RdAIAAAAAAIDnKDoBAAAAAADAcxSdAAAAAAAA4DmKTgAAAAAAAPAcRScAAAAAAAB4jqITAAAAAAAAPEfRCQAAAAAAAJ6j6AQAAAAAAADPUXQCAAAAAACA5yg6AQAAAAAAwHMUnQAAAAAAAOA5ik4AAAAAAADwHEUnAAAAAAAAeI6iEwAAAAAAADxH0QkAAAAAAACeo+gEAAAAAAAAz1F0AgAAAAAAgOcoOgEAAAAAAMBzFJ0AhJ5pmn4PAQAAAADQg6ITgFCq1WrK5XJaWFjQjRs3/B4OAAAAAKDHWb8HAGD21Go1bW1tqVaryTAM3bt3T6ZpKhqNKhaLaXFxUfF4XKlUSslksm//TCYjwzC0u7vb3maapqrVqra2tlStVpndBAAAAAABF7Esy/J7EEDQlEolZbPZofeLx+NdhZJRRSKRofeJRqM6ODiw/bdMJqPt7e2h+6xUKrZFITumaerWrVsqFApDHycejyuZTGplZUWVSkXb29t917JViKrVan37p9NplcvloY8LAAAAAJgcltcBNtbX13VwcKDd3V2l0+mBbZPJpCqVSru9FyzLUr1eV7FYVDQadWwXi8VULBZVr9cdC06SVC6XdXBw4KqItLm5qd3dXR0cHLguOLWWufUWnFrFoFZ/rfOqVCpaX19vn1utVlOhUFA2m20Xx3pnMrX6sSxLsVjM1bgAAAAAAP5hphPgQjabValU6ts+jRk2hmFoZWXF9t8ODg4GFqWcJBIJ2xlDxWJR6+vrQ40tlUrJMIyu7evr6yoWi676KBQKyuVyfdtjsZjq9brtPr2vBzOdAAAAACB4mOkEuOC01G6UJXjDisViisfjfdvT6fRIBSfJedzDFJyq1apWVla6Ck7RaFS7u7uuC07S8cyqer3edy737t1z3GfU8wYAAAAATA9FJ8AFp+Vc01rmZXeccY5tt+8whZxaraZUKtW3/zvvvGNbIHMznrt373aNgaBwAAAAAAg3ik6AC04FmcXFxekOJAAMw9Da2lrf9nK5PFLBqaU1S2oWbW9v9y1BxMeq1arfQwAAAAAwARSdgBCwK25dunTJ0/7cFtAymUzfLKT19XXXoeODxGIxbW5ujt3PtNRqNWWzWa2srCgSiWhhYUErKytKJBLtOwZub2/rxo0bJxZWqtVqe/9ZL8IYhqFSqaRUKqVIJNI3a85vp+m1AAAAACbprN8DABAe1WrVNoA8n897doybN2+274JnmmYg85tM09SNGzfad9qLxWLtuxwahqFaraZardb+99Y+g7SKeaZpKpvNOoaoh5lhGMpkMjIMI9DLJ0/DawEAAABMAzOdALhmF0A+TqC5nWg0OlSguR9as5ik4zv+1et1lctllctl7e7uql6v9838OqlwcRqWasZiMe3u7urg4CDQM9pOw2sBAAAATANFJwCuVKtV21yimzdven6sTCYjafAd7AapVqvKZDJdy95SqZRKpdLYYysUCu0lV5ubm7YFslgspkql0jUD7KRMp2KxqFgsplgspnK5PPY4gy5oS+o6nbbXAgAAAJgUltcBcMXpw/c44eFOksmk8vn80DNOTNPU2tpa3xJA0zRVrVZVrVaVz+fHCj2/detW+2u7mV+dNjc39f7776tQKJxYQEsmk6dqGZdfs4my2ayKxeLANqfttQAAAAAmhZlOAFyxC1T2Ijzcyebm5lDL9gzD0JUrV2wzp3rbJRKJkQKiR8kiyufzisfj3L0uAEqlkiez3QAAAAC4Q9EJwIkMw7AtmkxiltMoTNNshz+n02kVi0Xt7u6qUqk4ZgelUqmhC0G9BSe3haubN28GOjj7NDAM48SZaQAAAAC8xfI6ACdyKs6srKxMeST2WsWfSqXSN/sqmUwqm83aFpkymYx2d3ddHycWi3U9z+Vyunbt2okzslp3tgvq3fhmnWmagc6QAgAAAGYVM50AnMip6BSku3zZFZxaWsHevWq12lDL7KLRaFfRyDRNJRIJVzOmLMui4OSDVs4XyxsBAACA6aPoBIRULpdTJBIZ6ZFIJIY6ltPSsKAUUaLR6In5UrFYrOtuci122wbpbW8YhlZWVjzJCqrVaspmsyfOIDNNU6VSSYlEouu4rSVkCwsLikQiWllZUaFQ6NvfMAzlcrn23f1WVlaUzWZtX+fWcXrfQ71SqVS7v86Hl8sKS6VS13EWFhaUSCRsz1E6vp52OV+d43O61m5fixbTNFUoFJRKpdrXvzW+XC7nquhlGIYKhYJWVla6xtz5GqysrLSXkgIAAACBZwFwRVLf4+DgYCrHXl9ftz2+l49YLDb08SuVylTOv9fm5mbXOJLJpOt9o9Fo33kMK5lM2l6PeDxu7e7uDtXX7u6utb6+3jWuaDTa1+7g4MDK5/NWPB7vOmaxWLQsq/+adD7W19fb/QxqF4vFHN/Tve8BJ/l83tX3yO7uruvXoFwut69LuVzu6iMWizmO/eDgwNrd3e0b0+7ubtejsz83r0WvYrHYbp/P563d3V2rXq9b5XK56/VKp9N9+x4cHFibm5vt8+gc48HBQd/r3Tmuer1+4tgAAAAAPzHTCQip9fV17e7ujvQ46ZbxvZxmNAVltsUwM67sZkSddMe7XpVKpZ3T1NtPIpFwPRPFMAxtbW25nk0Tj8f7wrB3d3eVSCRUq9VULpdVr9d1cHDQFaBeKpVUq9WUSqVUrVZVqVR0cHCgg4MDVSqV9vUzDEO3bt2yPXYmk3E1RrvrMo5qtdo+9s2bN7v6j8fjKpfLko7HfuPGja59o9Go4vF4X+B9a1vnvw37WrTkcjlls1lFo1HV63Vtbm4qHo8rFospnU5rd3e3Pebt7W2trKx0vTfu3bunVCrV977c2dnRlStX2ktD6/W6isVi+7UyTZNgdAAAAASf31UvICwUsJlO+Xx+5P56Z5nohJlOvTNFWo/WLJtp652tYzeDxElr1owX5+F0XUbpt7Ovk2bX9M5+cZpx1jsjq3PGU6fOa+J07Eql4mpm0sHBgaczndLp9Inv+ZP6cTv2FrevRecMp5Ne686ZTE4z8zrHGI1GbV/X3vfvtH4GAQAAAKNgphOAEwV9ptMweu9AJ41+Hpubmzo4OHCc3dO6a56b/u3G5aQzwH19fd0xz6r3jm1OM9w6x2+aZmBfV6f3Yed2LwLD3b4WuVyuffz19XVXbaXj2Vt2Afad5/Hmm2/avq6977WdnR1XYwUAAAD8QNEJwImcPoTX6/Upj2R8doWL999/f6z+yuWydnd3+5ZxSccFhrW1NU8LOW6XE3a+bsMsQQzSnd7efPNN5fN5lcvlEws70vQKoaVSqX0sN0Wq9fX1rtdg2AD7Tp3HC9JrBQAAAPSi6ATgRE4zaexmawSdXYHg0qVLY/cbj8cd87JqtVpf3tA0jHp3wXv37nk7kDFEo1Ftbm46ZmgNm8fllUql0v7a7cyozu+jMH7vAAAAAMOi6ATAFbtZPIZhBHYp1jCGWdp2kvX1ddXr9b6Cz/b2dqALDaMWqKbNMAyVSiVVq1XbkPBpjmNYve+zWfjeAQAAAAah6ATAlevXr9tuD3IhxUlvgcXLolOrv93d3b7jDHvXQHysdfe9YrE4MMdqWjoLRm4LUL13xgvSjDIAAABgEig6AQFQq9Vc35LeL055OmEspPTOMHEzW6ZarSqRSLg+RiwW05tvvtm1za+lYGGXzWaVSCQUi8XGykLy0ijh5Z0B8JL3xU4AAAAgaCg6AQFw48aNwC+1iUajtrk61Wo1VMWU3uvsdsZMLBZTrVYbamZX7/Ui9Hl42WxWpVJJ0njh217rLBi5veNf58wmCk4AAAA4DSg6AT5rFW16b2/fyetlOKP25/Shv/N28F6ZVBGu9xbz2WzW1X6tIoHb9nb8yh+aJi/fq7VarV1wisVigcqd6l1u2hrnIJ13e7Qr4AIAAACzhqIT4CPTNNvL6ob9EPr+++97OhY3xQKn5U3ValWFQsGzsRiGoUQiMVaBx0nvXceGue6xWEyGYbgusvXObHLKxQqD3qVhTkVBL2dzdc4qG9SvH7ME0+l0VxHMzTLTzvO5efPmJIYFAAAABApFJ8CFSXyoNU1Ta2trMk1T0Wh06OU2Xo/JbX+bm5u2S9JyuZwnoeLVarUduDyJ5VTb29vtr4fNo2q9RoVCwdXMls7+Y7GYNjc3hzqeE7evVWe7k/Y56d97Z2nZnb9dQc7LmU+dr12Lm+P1fm/1FrBG/V7qzOwyDGPg+79Wq7WXoebz+UDN2gIAAAAmhaIT4ILTLItRP1C3QqlbH0KvXbs29PHH+TA/7myUSqViO0MolUqNPOPJNE1ls1mlUinHu78N2teNUqnUPvdR7oDWWbzIZrPKZrOOxy6VSl3XonOGlZ3O19PvfC+n43der1wup2w2q2q1qu3tbWWzWa2srPQVVNx+79gds7fQlclkVCgU2jPrVlZWZBhG1+tSLBZVrVaVy+XaffYWnVqvm2EYXZlRdmMb9Fqk0+muwmgmk7Ftb5qmbty4Ien4fedUfHT7undeU7/fKwAAAMBAFoATra+vW5L6Hslk0qrX6yfuf3BwYFUqFWtzc9OKxWJ9/ZTLZcd96/W67bElWQcHByOdTzwet+2vWCwO1c/m5qZtP/F43KpUKq76ODg4sPL5vBWNRtvX9KTz6j1uNBo98Tid1zGZTLoaW69isWh7vul02trc3LSKxaK1vr7e9Rq7fY/0viZO74mDg4O+a+0knU67en0rlUpXu/X1dcdjt16n3kc0Gm2/5p1t4vG4Va/X+15Tt2Prbdf5yOfzlmXZf3+m0+mufpzeq3bn6va1aCmXy+1zjkajVrFYtOr1ulWv161isdh+P7TGa8fta9DbbtT3MgAAADANFJ2AAXZ3dwd+6PXqYVdkOTg4sIrFouOHfElWLBazisWi6+LT7u6ulUwmB45lc3PTVZGkpVKpOBaxotGolU6nrWKxaFUqFWt3d9eqVCpWsVi08vl8137RaPTED/ctdoW4WCzmWOjqLAr0FiOGUalU2uMsl8vW+vq6lUwmrXg83vU6tc77pMJb6/3l9BrH4/F2oWJQ21gsZqXT6fb7oLfw1VukaPVZqVQc3w+xWMy28HFwcNDVfzwetzY3N7vatLb1vo8ODg5OPF+7Y+bz+fbxYrGYtbm52fWePzg4aJ9H5zXr1Vn0jcfjXe+3YV4LJ8Vi0Uomk10FqNZ+Tt+jg74nO1+Der0+sN1JYwMAAAD8ELEsyxKALqVSaSIh1nbi8bh2d3e7tkUikaH7iUajOjg4sP23TCZjm4dzkkql4noJ2vb2tm7dutVeMuhWLBZTNpvV+vr6UDk3rfyg3vOKRqNaXV1VNBqVaZra2dlp52aVy+Whl9QBAAAAAEZD0QmAp0zTVLVa1dbWlgzDaGfnSB/f9j4Wi+nq1atKp9NDB6ifdLzWMVvHWV1dVSaTodgEAAAAAFNG0QkAAAAAAACe4+51AAAAAAAA8BxFJwAAAAAAAHiOohMAAAAAAAA8R9EJAAAAAAAAnqPoBAAAAAAAAM9RdAIAAAAAAIDnKDoBAAAAAADAcxSdAAAAAAAA4Lmzfg8ACJoLFy7o4cOHsixLc3OD67IvvPCCnn/++SmNDAAAAECQfPjhh/rggw8Gtmk2m4pEInruuef04MGDKY3Me6urq/r2t7898eO4uabS8WexP/Nn/ox2dnYmPiaMLmJZluX3IIAgOXPmjJrNpt/DAAAAADBDIpFIqD9nLC8va39/3+9hdLl8+bL29vb8HgYGYKYT0KOz6DTqTKdGo6Fms6m5uTktLS1NZJzjmMj4LEv6D//h+Osf+REpEhm7n/8gKRLQaygF/3WWTsEYvXrfnSDo1zHo45MYo1cY4/iCPj6JMXqi4/fDt+fm9MNBHKOCfx2DPj7J/zG6nekkSbMy32NuTlr6xORKCR9+2NQHDwYX50Jcuzt1KDoBPX7oh35I+/v7Y1XNW/8XYGlpKZCV94mM78EDqVWA+/rXpQsXxu7ngqSFgF5DKfivs3QKxujV++4EQb+OQR+fxBi9whjHF/TxSYzREx2/H17+xCf0jSCOUcG/jkEfnxSOMbb+p/ZJ/0M7LJY+cVbfql3xdQw/Gr+r/cZTX8cAdyg6AQAAAAAAlyw15fdUo9mYNXYa+Fp0evnll/08fJdIJKKvf/3rfg8DAAAAAABgJvhadKrX64pEIr6ubW0dPzKhHBAAAAAAAGbJkeX3TCeExWwsKh3DrIS5AQAAAAAABInvmU6WZSmdTisWi/lyfNM0VSqVfDk2AAAAAADArPK96FQqlfTZz37W1zGk02m9/vrrvo7hJIZhKJ/Pq1qtyjAMRaNRxWIxra6uKpfLjVy0KxQKqlQq2tnZkWmaisViisfjymazSiaTM90nAAAAAGA4lqSmz0HerFcKD9+X1wWhYHD16lW/hzBQoVDQysqKSqWSDMOQdDxDq1arqVQqaWVlRYVCYag+q9WqFhYWlMvlJEnlcln1el35fF61Wk2pVEqpVEqmac5cnwAAAAAAYPJ8n+m0uLjo9xACLZVKqVqtKhqNKplMKhaLyTAM1Wq1dgFKUnu2UzqdPrHParWqVColSVpfX1exWGz/W6uPRCKharWqRCKh3d1dRaPRmegTxzY2NnR4eKj5+Xm/hzLQL9+8qedefNHvYTgKy3UMujBcx6CPMejjC4swXEfGeDqE4RqGYYwtf+fv/B2/hxBaYXidwzDGF154Qffv39cLL7zg91CAqYtYPiZpnzlzRgcHB77/gLh//74WFxd1dHTk6zh65XI5FQoF5fN5bW5u9v17oVBozwBqOenlNE1TV65caS9Rq9frtu0Mw9DKyoqk49lolUol9H26tby8rP39fV2+fFl7e3u+9RE6Dx5Izz9//PWHH0oXLvjbDySdgvci75fQmPn3IkKD9+IpEZLfD7wfT4dZeZ1b5/EjS2f09d3Lvo7llcS+/kPjKPTX9DTwdXldkO4cF6SxSMfFlFaOkV3BSZI2Nze1vr7eta1Wqw3sN5PJtJei9RasOnXOmqpWqwPD1sPSJwAAAAAAmB5fi075fN73WU6SdPHiReXzeb+H0SWXyymfz5+YedU77mq16tjWMIyuf7927drAvq9fv941njD3CQAAAAAApsvXotPnPve5qR7vvffec/y3aY/lJKZpOs5w6tS6i13ncyedBapkMnli/lFnPpRpmtre3g5tnwAAAADgtdRcpu8x8yzpyLJ8fXD7uvDw/e5105TNZv0egmvDZBPdu3ev/fXq6qpju86lZ/F43FXfnQWtra2t0PYJAAAAAACm61QVnXZ2dvwegudM02xnHyWTScciTW/W09WrV13139lf7wyisPQJAAAAAACm76zfAxjFe++91y60uGEYhorF4lD7hMVbb70l6XimT7lcdmzXm/XUOTNokN52tVqtXeAJS58AAAAAAO80Wd8Gl0JRdHrvvfeUz+dVrVZlGMZIfViWpUgk4vHI/GWaprLZrOLxuMrl8sDsozt37nQ9PyknqeXSpUtdz3d2dtrFnLD0CQAAAAAApi/wRaebN2+qUChIOi4c4ZhhGEqlUopGo3rnnXdOLM70FutGnUFUr9dD16cfNjY2dHh4GIi7M+J0472IoOC9iKDgvYgg4f0YfpWm82qTWWXJ0pHPM50sZlqFRqCLTr/1W7/VvpNZJBJRJBKh8KTjzKJM5uO7IiwsLCifzw+8292oM8R6dS5RDEufftjY2PD1+EAL70UEBe9FBAXvRQQJ70cAsy7QRadbt25JUrvYFIvFFI/H27NaepdU2Xn//fdlmqbeeust3b9/f6LjnSTTNFUqlVQsFm0LM7lcTnfu3HHMdRq1CNM7g6rzTnlh6XNUjUZDy8vLY/ezsbHBHxQAAABAyNy+fVu3b98eu59Go+HBaIBwCnTRqVartXOYKpWK1tbWRu5rc3NTL7/8sldDm7pqtap6va5kMinDMPoCt6XjGVCFQmHgjKdxTWIGUVD7bDab2t/fH7ufw8PDsfsAAAAAMF2Hh4eefB6YRQSJw61AF52i0aju37+vzc3NsQpO0nHmz5UrVzwa2fSl02ml0+mubaVSSblcrqvAksvltL6+3jfzJxqNelKI6ew3LH2Oam5uTktLS2P3wxp9AAAAIHzm5+d1+fLlsftpNBpqNpsejOh0+IfFD/VG6cOBbf7kO1zPsAh00SkWi+ndd9/V1atXPemvWCx60k9QrK+vK5lMKpFIdBVqSqVS32ynxcVFT4o5i4uLoetzVEtLS9rb2xu7HwAAAADh41VMxvLyMjOmhvDBh001vk1RaVYEuui0tramd99915N8nlZ/syYWi+mdd95RIpFob7tz505fu1Fn/vQWgHpnJYWhTwAAAACAd44meIOvC89HtPTDcwPb/Ml3mmLyWDgMfiV99su//MuyLEu1Ws2T/n7913/dk36CJh6Pdy29swsaX11d7XrudjZRb8FvZWUldH0CAAAAAMLhb60/r9rOJwY+PvFDgS5loEOgX6mLFy/qV3/1V7W1taUPPvhg7P5mbXldp+vXr7e/tivUdM6EkuwLU3bq9XrX82QyGbo+AQAAAADA9AW66CQd33UuHo8rk8mM1c/du3c9mzEVRPF4vP213dKy3hlEbos5nQWsaDSqWCwWuj4BAAAAAN6wJDV9fnDvvPAIdKZTS6VS0erqql5++WXlcjnXIdH37t2TaZqq1+t66623JjzK4Ogt3EjHRanOO8PduXOn7254dnZ2dhz7DUufAAAAAABg+kJRdPq93/s9ScdLqLLZ7Eh9WJalSCTi5bACpXNGUCqVsm1z7do1lUolSXI966uzXS6XC22fAAAAAABgugK/vO4Xf/EXlUql9O677yoSiciyrKEfp0Gr6BKNRh1nBnUW7KrV6ol9draJxWK2OUlh6RMAAAAA4I0jWb4+EB6BLjq9+eabKhaL7cLRqAWk01B4unXrlqTja+YkHo93FWS2t7cH9lkul9tfO80eCkufAAAAAABguiJWgCsyq6urqtVq7RlOyWRSqVRK0Wh06FynN954Q++9956Ojo4mPGpvFAoFbW1tKZlM6ubNm7bh4C25XE6FQkGbm5vK5/MD+zUMQysrK5KOizu7u7u27UzT1MLCgqTjO8FVKpXQ9+nW8vKy9vf3dfnyZe3t7Y3d36nx4IH0/PPHX3/4oXThgr/94HTg/QIAsMPvB4whNdd/E6tKs2zT0p1Z+XzROo8f/uE5/es7P+TrWP7i1e/o299uhv6angaBznRqFZyi0ah2dnZ05cqVkfu6ceOGLl265OHoJsc0zfaMnVqtNrCglMlktL29rXw+r83NzRP7jsViKpfLymQyXX33Wltbk3S8XK9zJlGY+wQAAAAAwI5hGMpms8pms65uZjWslZUVGYahcrk8dP+FQkGVSkU7OzsyTVOxWEzxeFzZbDbw8TKBXl7Xmt1z8+bNsQpOrb5effVVD0Y1edFoVLFYrGtboVDQwsKCMpmMcrmcUqlUe4ZPvV53VXBqSafTqlQqikajyuVy7cKOaZqqVqtKJBKq1WqKx+O6e/fuwFlWYesTAAAAAIAW0zSVyWS0srKiarWqe/fueX6MXC7XdfMvt6rVqhYWFtqTUsrlsur1uvL5vGq1mlKplFKpVPvu70EU6KJTIpGQpL4CzKgG5R0Fze7urjY3NxWPx7uKKbVaTYZhKJPJ6O7duyqXyyNdn2QyqYODA+XzeRmGobW1tXZRa3FxUeVyWbu7u0MVcsLSJwAAAABgdE2fH15orTBaWFg4MUd4HNVqVYVCYaT9WgWl9fV1VSoVJZNJxWIxpdNp1et1xePx9oSMoBaeAr28LpvN6p133hmpImgnLDOdpOPZTiflM3lhc3NzqFlSs9QnAAAAAOD0KRQKKhaLnk1wcdKaRTXOfrFYTMVi0bZduVxuL9vLZDKeZBx7LdAzndLptF599VVtbW150t8Xv/hFT/oBAAAAAMymSrPc98DsqNVqSiaTqtfrqlQqjgUdL9y4cUOLi4tDr8zJZDLtmUuD7tDemvUkHc+MKpVKow51YgJddJLUXj7127/922P3devWLQ9GBAAAAADA6WRJOlLE14c1xvjj8bji8Xj7+erq6tjXxE6pVNL29vbQN7wyDEPVarX9/Nq1awPbX79+vf31oAKVXwJfdIrFYnrjjTf02c9+dqx+7t+/r1qt5tGoAAAAAABA2E0iH7h1J7xWTvMwOmN2ksnkiePrvBOeaZoTzacaRaAznVrL4V588UUtLCzo5ZdfHunWhaZp6q233vJ6eAAAAAAAAF0ymYzi8fhIOc2dS+TcFqxisVg7C3tra2ukusmkBLro9PnPf17vvvtu+7llWSOlvrf2jUQiXg0NAAAAAIBTqTnO+rYZl8vlVKvVVK/Xh963d3XW1atXXe0Xj8fbRSdmOg3h2rVr7YseiUQoGgEAAAAAJio113+3McLE4UatVhvrznidWU6SXPfR265Wqw29rG9SAl10ymaz+qVf+iVFIhFZFqVUTFej0dDy8vLANhsbG9rY2JjSiAAAAAAEye3bt3X79u2BbRqNxpRGA7+tra0pnU5rfX19pP3v3LnT9dxt3tSlS5e6nu/s7FB0cuPixYuKx+N69913lc/nFY/Htbi4OHQ/hmHo85//vL761a96P0jMrGazqf39/YFtDg8PpzQaAAAAAEFzeHh44meGWXQkViH1ymSOZ8i9+eabI/fRWiLXMupMp1GW9k1KoItO0vHt/1ZWVvS5z31u5D5effVV/ezP/uxIBSucXnNzc1paWhrYZn5+fkqjAQAAABA08/Pzunz58sA2jUZDzWZzSiOCH7a3t7W9va1KpTLW3fB6i06jMk3Tk368EPiiUzKZ7JtiNqrV1VVP+sHpsLS0pL29Pb+HAQAAACCg3MRtLC8vn8rZUHb+yZsf6jfe/HDsfv70O8Ep4pmmqUwmo/X1dSWTybH7GkVvoevevXtjjcNLgS86vfrqqyPdZtDO3/27f9eTfgAAAAAA4Zc6c71vm11ouF24uFPbWWdp9OV1H3xg6U++HZyCkRfW1tYUi8VULBb9HkobM52GdOXKFU/6+Qf/4B/or//1v+5JXwAAAAAAwL3nX4joh354bux+vvudpoKwYrFQKKhWq2l3d9eT/qLRqCcFo3GW+HktFEUnr+zs7Pg9BAAAAAAAQiyipjXaTKef++y8fu6z4+fivvafNvSdbx+N3c84arWacrlc+6ZnXlhcXPSk6BSkPOtQFp3ee++9oV4IwzBULBYDNcUMAAAAAACEUyaTUTwe1+bmpmd9jjpDqbfWwUynIb333nvK5/OqVqsjp7lblqVIhNs6AgAAAACOVY623LU7hdlNcFYoFGQYhpLJpDIZ+7yvTp1FoVu3bmlr6+P33fXr15VOpyUd3/ysVqt17eemgNQbHL6ysnLiPtMS+KLTzZs3VSgUJB0XjgAAAAAAgH9GDRKfFe+//74kqVqtDr1vrVbrKizFYrF20SmRSHS1NQzD1dK9er3e9Xzcu+h5afwErwn6rd/6LeXz+XaxiZlKAAAAAABgFq2urnY9d7vSq3MmVTQaVSwW83JYYwn0TKdbt25JOi42WZalWCymeDzevoCXLl06sY/3339fpmnqrbfe0v379yc6XgAAAAAAMNvy+bzy+bzr9isrK+0CUrlcbs9s6hWPx7vuYHfnzh3Htp06b5rWW7jyW6CLTrVarT27qVKpaG1tbeS+Njc39fLLL3s1NAAAAAAATqWjYC+aCrVr166pVCpJUtcyvEE62+VyuYmMa1SBfqe0ArM2NzfHKjhJx+skr1y54sGoAAAAAAAAvJfNZttfu8mM6mwTi8UCleckBbzo1FpGd/XqVU/6KxaLnvQDAAAAAADCrzMPKQji8XhX4Wh7e3tg+3L54zsrBm2WkxTwolNrdlPv7f/G7Q8AAAAAAAzPktS0Ir4+vLyvfW9YdxCKUJ0TZlpZ13ZM02wvxUsmk1pfX5/42IYV6KLTL//yL8uyLNfrGE/y67/+6570AwAAAAAAws00zb7ZQVtbWz6N5mOxWKw9g6lWq6lQKNi2a02siUajXTOegiTQRaeLFy/qV3/1V7W1taUPPvhg7P5YXgcAAAAAwOllmqYymYxSqZQWFhb6Zjq1bmiWSqWUyWQ8mwQzrHQ6rUqlomg0qlwu1x6LaZqqVqtKJBKq1WqKx+O6e/duOxM7aAJ99zrpOES8Uqkok8nod3/3d0fu5+7du769WQAAAAAA4ZA6c91128qR/7Ni/HCkiN9DGJkfs4Lq9fpI+yWTSR0cHKhQKGhra0tra2syTVPRaFSrq6sql8tKp9Mej9ZbgS86SVKlUtHq6qpefvll5XI5LS4uutrv3r17Mk1T9Xpdb7311oRHCQAAAAAA4K3NzU1tbm76PYyRhKLo9Hu/93uSjquDnbcPHIZlWYpEwluNBQAAAAAgCI6sQCf1IEACX3T6xV/8xXYaeyQSkWUNn1NPsQkAAAAAAGC6Al10evPNN9vh36MWnCSNvB9Ot0ajoeXl5YFtNjY2tLGxMaURAQAAAAiS27dv6/bt2wPbNBqNKY0GCJ5AF516C07JZFKpVErRaHToXKc33nhD77333gRHi1nTbDa1v78/sM3h4eGURgMAAACEQ2ouY7u90vTvlu5OY3LLaeyxyJ/XvgZ/Zpg1liJqyt/ldVaIg8xPm0AXnVq3KoxGo9rZ2dGVK1dG7uvGjRu6dOmSh6PDrJubm9PS0tLANvPz81MaDQAAAICgOatzekbPdW178XL3BIlGo6FmsznNYQGBEeiiUzQa1f3793Xz5s2xCk6tvl599VWPRobTYGlpSXt7e34PAwAAAEBAvRR5RS/pla5tlb3uWVHLy8snrqAAZlWgI+cTiYQkKRaLedLfm2++6Uk/AAAAAACcVkeK+PpAeAR6plM2m9U777wjwzA86Y+ZTgAAAAAABFf51w+0/Y8OBra5952nUxoNxhXoolM6ndarr76qra0t/b2/9/fG7u+LX/yifuZnfsaDkQEAAAAA7PgZGO5k3DEFMRx9Vn3vwyN999sUlWZFoJfXSVK5XNbu7q5++7d/e+y+bt265cGIAAAAAAA4vY6suYk9nr1wVi/+8ODHXOArGWgJ9Ewn6TjP6Y033tBnP/tZ/fRP//TI/dy/f1+1Ws3DkQEAAAAAAC+lP7uo9GcXB7b59F/6Y2ZDhUSgi05f/OIXJUkvvviiFhYW9PLLLyudTg/dj2maeuutt7weHgAAAAAAABwEuuj0+c9/Xu+++277uWVZKhQKI/VlWZYiEVLuAQAAAMArdllHQcw5cspksmM3/iCek5+a3EEOLgV6JeS1a9dkWZYsy5IkikYAAAAAAAAhEeiiUzablXRcbGoVn0Z9AAAAAACA8ViSjjTn64NP+OER6OV1Fy9eVDwe17vvvqt8Pq94PK7FxcGBYnYMw9DnP/95ffWrX/V+kAAAAAAAAOgT6KKTJF2/fl0rKyv63Oc+N3Ifr776qn72Z392pIIVAAAAAAAAhhf4olMymdSdO3c86Wt1ddWTfgAAAABglrkNCA9LwHZYxhkWR1agk3oQIIF/p7z66qvK5/Oe9OVVPwAAAAAAABgs8EUnSbpy5Yon/bz66que9AMAAAAAAIDBfC06BSnYO0hjAQAAAAAgmCJqas7XhxTx+yLAJV+LTolEQoeHh34OQZJ0//59JRIJv4cBAAAAAAAwM3wNErcsy8/DdwnSWAAAAADAT26Dt90GjgdV6sz1/o1W0/X+YTpXwA++Fp0ikeBMiQvSWAAAAAAACCLLko4sfz8/M2ckPHxdXsfsIgAAAAAAgNnk60wnSbp7965+4id+wtcx7Ozs+Hp8BFOj0dDy8vLANhsbG9rY2JjSiAAAAAAEye3bt3X79u2BbRqNxpRGAwSP70WnGzdu6Jd+6ZcUjUa1uLg41WPfu3dPhmFoc3NzqsdFODSbTe3v7w9sE4QgfAAAAAD+ODw8PPEzwyw68nfRFELE96LT7u6uMpn+8LlpsiyLTCf0mZub09LS0sA28/PzUxoNAAAAgFHZBZ5L9kHgw4Sj3759W5cvXx547EajoWbTfTg5MEt8Lzq1+JXvRLEJTpaWlrS3t+f3MAAAAAAElJu4jeXl5ZmbDdW0mOkEd3wvOvkdJu738QEAAAAAAGaRr0Wng4MDPw8PAAAAAACACfG16HTx4kU/Dw8AAAAAAIZgabJB4r/zjxv6nX/87YFtzD99MrHjw1u+L68DAAAAAIST2yBup7bT4nTsYULDMR0PPzzSwZ9QVJoVFJ0AAAAAAEAgPPf8GS184tzANuafPpHFDQFDgaITAAAAAABw7cia3F3gX/+FH9Hrv/AjA9v8H/5KjdlQIcF9DgEAAAAAAOA5ZjoBAAAAwBQEMetoIiLhmdswc9ceCBiKTgAAAAAAwKWImr4vmprc8j54y+93CgAAAAAAAGYQRScAAAAAAAB4juV1AAAAAADAtSOL+Stwh6ITAAAAAEzBqQmttpp+j8A1p3D3XqfmtQM8RtEJAAAAAAC4Yklq+hzkbfl6dAyDOXEAAAAAAADwHEUnAAAAAAAAeO5ULa9777339GM/9mN+DwMAAAAAgNAiSBxunaqiUyaT0Z07d/weBgAAAAAEml3Atl2YdurMdVftAivSXzypHG31bXMKHA/VuQI+CHzR6fDwUPPz82P38+6776pWq3kwIpwWjUZDy8vLA9tsbGxoY2NjSiMCAAAAECS3b9/W7du3B7ZpNBpTGg0QPIEvOiUSCX3jG98Yq4+vfvWrWltb82hEOC2azab29/cHtjk8PJzSaAAAAAAEzeHh4YmfGWbREfHQcCnwRad6va4PPvhAL7zwwkj7/9qv/Zp+6Zd+SZZlKRLx97aOCJe5uTktLS0NbOPFLDwAAAAA4TQ/P6/Lly8PbNNoNNRsNqc0IiBYAl90kqS1tTX9wR/8wVD7vPfee8pkMqrVarIsa0IjwyxbWlrS3t6e38MAAAAAEFBu4jaWl5dP5WwoQApJ0Wl3d1ef+tSn9NZbb7maWdKa3SSpPcOJwhMAAAAAuOM6INsK9wweu9DwYbgNXJ8tETUtv1cR+X18uBWKhZiWZentt99WLBbTv/gX/8Kx3Ve/+lW9/PLL7eV0kig4AQAAAAAA+CDwRadoNKrd3V298cYbOjo6UjKZ1N/+23+7r93NmzeVSCRUr9e7ZjdduXJFtVpN9+7d05UrV3w4AwAAAAAAgNMn8Mvrrl27pldffVWvvvqqrl+/rs9+9rN64403VK1WVS6XZVmWMpmMDMPoKjZZlqV8Pq/Pfe5z7b6y2ayPZwIAAAAAQLhZ8v/udaxlCo/AF53eeOON9tcXL15UuVxWqVTSL/3SLykej0tS31K6eDyucrncN7OpswAFAAAAANNkl/8jhScDyG1+0SyepyL2RZZxM6HQ71/8k2/p9//Jtwa2OfzTR1MaDcYV+OV17733Xt+2lZUVSWrPaIpEPg4RKxaL2tnZmbmldLVaTdlsVisrK4pEIopEIlpZWVEul5NpmiP3WygUlEqltLCw0O4zk8moWq3OfJ8AAAAAgOE1rbmJPR5+cKT7f/Jo4CPk+fWnSuCLTpnMx1Xmw8NDXb9+Xa+99pru37/fLr60Zjql02ldv37dr6FOhGmaymQySiQSKpVKMgyj/W+GYahQKGhhYUGlUmmofqvVqhYWFpTL5SRJ5XJZ9Xpd+XxetVpNqVRKqVRqqIJWWPoEAAAAAATTs8+f1cVPPDPw4TDxDAEU+OV1u7u7+vt//+/rj//4j9uFlc7sptZSujfeeEO/9mu/pnfeeUdvvvmmfvqnf9rnkY/PNE0lEomuQpOTbDar3d1dFYvFE9tWq1WlUilJ0vr6etc+sVhM6XRaiURC1WpViURCu7u7ikajM9EnAAAAACC4Pvmfv6RP/ucvDWzzK/+rf6n7f8ISuzAIRX1wc3NTpVKpPaNJUjsovLWUrvX1xYsXlU6n9alPfUoffPBBVz+Hh4fTHvpYWgHprcJavV5XvV5XuVzW5uZmX/tSqaTt7e2BfbZmTknHhRunIlW5fLze2jCMrtlmYe4TAAAAADC+I0V8fSA8QlF0krpnNyWTSdXr9b5g8Hg8rnq9rs9+9rN6++23tbCwoH/0j/5R+9/DVJQolUqqVqva3NzU7u6u0um0YrFYe4ZPPp9XvV5vh6m33LhxY2C/mUymvRSttWTNTus40vGMo0HL98LSJwAAAOCnSrNs+wiLMI99GLbnaTXtHwAGCk3RSTouPBWLRb399tsDg8JbbV544QWtr6/rlVde0c2bN0MVOp3P55VMJpXP5x3bxGKx9kyfFtM0Hc/TMIyuf7t27drAMXTmYzkVfsLSJwAAAAAAmK7QFJ2SyaQODg5OnMnT2/5nfuZn9Md//McqFAoTHqF3arWaDMPoKyjZicVifYWpWq1m27azXTKZPDH/qDWDSDouZtkt3QtLnwAAAACA8Vma7N3r3DysE0eJoAhF0Wl9fV1vv/22Ll68OPS+5XJZb731VlceVNBtbW1pfX3ddSh2Mpnsev7+++/btutceta7LM9JLBbrGldY+wQAAAAAANMV+KJTNBrVP/yH/3CsPtLptN5++22PRjR5169fH7isrldvYWZlZaWvTe/sp6tXrw7dd+8MorD0CQAAAAAApu+s3wM4Se8snnH6efXVVz3pa9Lczu5paQVut3TO+mnpzXmya2Ont12tVmuPLyx9AgAAABhfaq7/xkx2YeJhChi3Oyc7YTqnaeAOcnAr8DOd3nrrLc/6cpORFEaGYXQ9tyvU3blzp+u526V7ly5d6nq+s7MTuj4BAAAAABjEMAylUqmxVs7UajVls1mtrKwoEokoEoloZWVFuVyub7LIMAqFglKplBYWFtp9ZjKZUNwsLfBFJy8NuuNdmHUWWNbX123b9BamRp1BVK/XQ9cnAAAAAAB2TNNUJpPRysqKqtWq7t27N3IfiURCpVKp63OtYRgqFApaWFjoyi92o1qtamFhoX2X9nK5rHq9rnw+r1qtplQqpVQqNVZBa9ICv7wOJysWi+2vW2/GXr3FnFF1vpnD0icAAAAAwCsRNS2/56+Mv7zPNE3dunVr7Dvdm6apRCLh6rNsNpvV7u5u12d4J9VqValUStLx5JLOfWKxmNLptBKJhKrVqhKJhHZ3d12vFJomik4hZxhGO3w7n887zgwatQjT+6btrPqGpc9RNRoNLS8vj93PxsaGNjY2xu4HAAAAwPR80/q6vqVvSNJYnwsajYZXQ4JHCoWCisWi65U1g2QyGRmGoXg8rps3b7azhWu1mu7cudNX1CqVSkqlUkqn0459tmZOSccFJqciVblc1srKigzDUCaTUaVSGft8vEbRKeRad7mLxWLa3Nyc+PEmMYMoqH02m03t7++P3c/h4eHYfQAAAGC6nAKmxwmUnkSf0xSWcQ7D7pxar9NTPdEjPZQkTz4XzAxLOvJ7ppM1+q61Wk3JZLL9+blUKimbzY7UV6lUUrVa1ebmZt8d6FuzkbLZrDKZTNed2m/cuDGw6JTJZNqfaZ1WM3UeY3t7W9VqVaVSyTFyxy8UnUKsVqupVCopGo2eWNGMRqOeFGI6ZxSFpc9Rzc3NaWlpaex+5ufnx+4DAAAAwHSd1Tk9o+ckSS9eXrRt8939/hUWvW0bjYaazab3A8RIeu9yvrq6OnJf+XxeyWSyr+DUKRaLtWcktZimqWq1ansTMMMwugLCr127NnAM169fb4ef53I5ik7wzo0bNyRJ77zzzonTAhcXFz0p5iwuLnZ9HYY+R7W0tKS9vb2x+wEAAAAQPi9FXtFLekWSVNmzn+WVOnO9b1tlb6vr+fLyMjOlAmzUCQu1Wk2GYWh3d/fEtrFYTPl8vmvWUmvGVa/OAlYymTxxfJ0zpkzT1Pb29sBZVNPmd/oXRpTNZlWr1VQul/sqtXZG/UbqLQD1zkoKQ58AAAAAAG9YkpqK+PoYY3WdZ7a2trS+vu76s2dvgen999+3bdd5hzs3n/Wl7ru5b21tDWg5fRSdQqhUKqlUKqlYLLquYPZOGXQ7m6g3kLtzSmBY+gQAAAAAwEvXr18fuKyuV28Bye4za2fukyRdvXp16L5bS+2CguV1IVOtVpXNZlUsFodaq5lIJLqet9L1T1Kv17ued1Znw9InAAAAMKxphmbbBYz7HdrtFHrey+9x+q1yFKxZJZget7OQWnonVNhF5HRmOTm1sdPbrlarDT2+SWGmU4jUajWlUinl8/mhw8F6ZxAZhuFqv85vjGg02vVmDkufAAAAAADvHFlzvj7CqPezrd1EiTt37nQ9d7t079KlS13Pd3Z2hhvcBIXz1TqFDMPQ2tqaNjc327d2HEY8Hu96w/a+mZ10vll7C0Jh6RMAAAAAAD91fmZ1mkTSW5gadaZT70ogP1F0CgHDMJRIJLS+vu56zahhGCoUCl3bOm+12LtW1Elnu86k/bD1CQAAAACAX4rFYvtrp8+sblf6nMSLO8J7hUyngDNNU6lUSteuXRsqpCyTyejNN9/s2pbNZttJ+L1rRe10tonFYrbT/8LSJwAAAOC3MOUfuR2r2+ynYfoMotNynm41rchI+/1/f+Mb+oPf/OOxj//hdz8au49pMgyjPVEin887zmAatVjUuwyv90ZbfqLoFGCmaSqRSCgWiymXy7mqehqG0a6a9gaHxeNxJZPJdpFme3t74N3vyuWPf1g6VWLD0icAAAAAwF+PHjzVB98JV8HIC60JJLFYbKS4nGEx0wmurK2tyTAMGYZhezvFQTqn7vVub/V169Ytx2KOaZrt2UbJZHJgcHlY+gQAAAAA+OeZC2f1wg89O3Y/H373I1lNDwY0BbVaTaVSSdFoVJVKZWDbaDTqScHIbQD5NFB0CqhEIuE6z8iOU/ElFoupXC4rk8moVqupUCjYVlrX1tYkHb9ZO2cShblPAAAAAMB4LEV0NGI89Opnflyrn/nxscfw/0z9jj78zsOx+5mGGzduSJLeeeedE4PBFxcXPSk6LS4ujt2HVwgSD6BWoWVUJ832SafTqlQqikajyuVy7eOZpqlqtdoueMXjcd29e9dVlTQsfQIAAAAAMA3ZbFa1Wk3lcrkv/sbOqJ9pewtVQfpszEynAJrGjJ1kMqmDgwMVCgVtbW1pbW1NpmkqGo1qdXVV5XJ5YI5SmPsEAAAAMJhdcLbbgOwgBmkPEwRuJ4jn5KdRg8RPk1KppFKppGKx6Poz6+rqatcElNZn35P0BocPG88zSRSdTrnNzU3Pg8zC0icAAAAAAF6rVqvKZrMqFotD5Q4nEomu54ZhuJohVa/Xu54H6Y7uLK8DAAAAAADwQK1WUyqVUj6fH/pGV6urq13P3dzBXupeXheNRk/Mjpomik4AAAAAAMC1puZ8fQSVYRhaW1sbeaVOPB7vWk53584dV/vt7Oy0v+4tXPktuK8WAAAAAABACBiGoUQiofX1deXzedf7FAqFrm3Xrl1rf+32BmOd7XK5nKt9poVMJwAAAADw0Tih3ZMyTmi4U2i3n+fkdOwgXnuEj2maSqVSunbtmuuCk3R85/o333yza1s2m1WpVJJ0nA11ks42sVgsUHlOEkUnAAAAAAAwhKMZuntdZx7SqPsnEgnFYjHlcjlXOUyGYbRnJPUGhcfjcSWTyXYxaXt7e+Dd78rlj4ukQZvlJFF0AgAAAAAAp1RvkWjYItTa2poMw5BhGFpZWRlq32Kx6Li91detW7cci06mabZnRSWTyaGDy6eBTCfAQaPR0PLy8sDH7du3/R4mAAAAAJ/cvn37xM8MjUbD72HCgWmafbODtra2XO+fSCRc5y7ZcSoSxWKx9gymWq3Wl/vUsra2Jun4jnWdM56ChJlOgINms6n9/f2BbQ4PD6c0GgAAAABBc3h4eOJnhlljSWr6vLzOGmNf0zR148YNmaZpm5lUq9UUiUSUTCYVjUZ18+bNviVw0nEe0yQKTi3pdFqVSkWZTEa5XE537tzRzZs3FYvFtLOzo1wup1qtpng8rnfeeafrrndBQtEJcDA3N6elpaWBbebn56c0GgAAAATVuGHUYQmudnueYQrtHvf48/Pzunz58sA2jUZDzWZzrOPAO17NCprGzKJkMqmDgwMVCgVtbW1pbW1NpmkqGo1qdXVV5XJ5YN5TEFB0AhwsLS1pb2/P72EAAAAACKiNjQ1tbGwMbLO8vHzqZkPBW5ubm9rc3PR7GCOh6AQAAAAAAFxrWsRDwx3eKQAAAAAAAPAcM50AAAAAYAx2uUBBzC8axmvnP923ze347c59mP2nye3r5HROdoJ4nl47kr9B4ggPZjoBAAAAAADAcxSdAAAAAAAA4DmW1wEAAAAAAJcialp+L6/z+/hwi5lOAAAAAAAA8BwznQAAAADAY2EPk3778RdG3jfs5z5MCHzqzPVJD+fU+cN/+m/1h1/42sA23/vuwymNBuOi6AQAAAAAAFxrWpNbNPXowVM9+M73JtY/pouiEwAAAAAACIRzF87rwg/9wMA23/vuQ1lNa0ojwjgoOgEAAAAAgED4T/7mn9d/8jf//MA2X/jfbDMbKiQoOgEAAAAAAFcsSU2f7x7HHKfwoOgEAAAAAD4aJrh6WuzGZMdunE77+nlOkxpT5WhrrP2BWTe59C8AAAAAAACcWsx0AgAAAAAArh1Z/i6vQ3gw0wkAAAAAAACeY6YTAAAAAABwx5Kals/zV0gSDw2KTgAAAAAwhnFCtwdtD6sgno/TmF47/+m+bdbTJ2P3C+AYRSfAQaPR0PLy8sA2Gxsb2tjYmNKIAAAAAATJ7du3dfv27YFtGo3GlEYDBA9FJ8BBs9nU/v7+wDaHh4dTGg0AAACAoDk8PDzxM8MsahIkDpcoOgEO5ubmtLS0NLDN/Pz8lEYDAAAAIGjm5+d1+fLlgW0ajYaazeaURgQEC0UnwMHS0pL29vb8HgYAAACAgHITt7G8vHwqZ0MBEkUnAAAAAHDNLjTcLkzabbh4UM1aQLbT6+H6tYv4fLe2ALEkNeXv8jpuXhcefOcAAAAAAADAcxSdAAAAAAAA4DmW1wEAAAAAAJciAbh7nd/Hh1sUnQAAAADAJddZR0NkALnNiZqm1JnrrtpVjrYmPBJvDHM9h8noCuJrBwQJy+sAAAAAAADgOWY6AQAAAAAA15oW81fgDu8UAAAAAAAAeI6ZTgAAAAAAwDX/g8QRFhSdAAAAAMBrVtN100AGT9uMP5DjHJNtYLrNuc8986zt/l9++JteD+nU+/o/+zf6xj/7w4FtHr7/vSmNBuOi6AQAAAAAAALhyYPHevinD/weBjxC0QkAAAAAALhiSWpqcsvrzl54Rs/+4IWBbT56/3tS05rYGOAdik4AAAAAACAQXv7PfkIv/2c/MbDN7/zvfkMfMRsqFLh7HQAAAAAAADzHTCcAAAAAoZaay3Q9f9Z6qi9N6ViOIqfj/+/bXY9hAsfH3X9claOtvm12YyIwvBt3r4Nbp+MnIQAAAAAAAKaKohMAAAAAAAA8x/I6AAAAAADgGsvr4BYznQAAAAAAAOA5ZjoBDhqNhpaXlwe22djY0MbGxpRGBAAAADt9wdMPHkjPPz+dY8khDNsmoDpM3IZ527V77fynbdu+/fgLIx9nmiJnz/VtS525btv2m82v6Vv6Rte2Fy8vdj1vNBreDQ4IGYpOgINms6n9/f2BbQ4PD6c0GgAAAABB81RP9EgPu7ad9BliFrC8Dm5RdAIczM3NaWlpaWCb+fn5KY0GAAAAQNCc1Tk9o+e6ttnNdGo2m9McFhAYFJ0AB0tLS9rb2/N7GAAAAAAC6qXIK3pJr3Rtq+x1LxlcXl6eudlPzHSCWxSdAAAAAGAMbnOJnHKBgpj/ZJtT5TLPKuysoyObjcxUAkbB3esAAAAAAADgOWY6AQAAAAAAVyxJTfm7vM7y9egYBjOdAAAAAAAA4DmKTgAAAAAAAPAcy+sAAAAAuOY2YPq0m8WA7XFf+yC+d5zC3XtFzp6z3W4bOj7rrIj/d6/z+/hwjZlOAAAAAAAA8BxFJwAAAAAAAHiO5XUAAAAAAMA135fXITSY6QQAAAAAAADPMdMJAAAAgGt+Bz/7bRIB4UEM2HZ7fLsg7srRltfDGZvT62Z3nvZtz3g8Ijj55ls1fatcG9jm0b0HUxoNxkXRCQAAAAAAuDbJ5XVPHjzWo+9+OLH+MV0UnQAAAAAAQCCcvXBez7z4/MA2j+49kJrWlEaEcVB0AgAAAAAArlia7Eyn5fSqltOrA9v8T9dLesxsqFAgSBwAAAAAAACeY6YTAAAAALjkOmB7iHBwuzDuIHJ7Tk7n42s4esR+voXtWG3aRs7YB4lbR0djDQuYdRSdAAAAAACAa9YEl9dhtrC8DgAAAAAAAJ5jphPgoNFoaHl5eWCbjY0NbWxsTGlEAAAAAILkm9Yf6VvW17u29X6GaDQa0xwSECgUnQAHzWZT+/v7A9scHh5OaTQAAAAAguap9USP9LBr20mfIWZBUyyvgzsUnQAHc3NzWlpaGthmfn5+SqMBAABAUNkFbNuFUdu2k88B22OyDeK2mtMfyEmGGZPNa9d8/Ni26Vmd1TN6rmvbi5cXu543Gg01mwG8JsAUUHQCHCwtLWlvb8/vYQAAAAAIqJcir+glvdK1rbLXXURcXl4+FbOfws4wDGWzWWWzWaXT6ZH7KRQKqlQq2tnZkWmaisViisfjymazSiaTgelzWggSBwAAAAAArjWtiK8PL5mmqUwmo5WVFVWrVd27d2+kfqrVqhYWFpTL5SRJ5XJZ9Xpd+XxetVpNqVRKqVRKpmn62ue0MdMJAAAAAACcKqZp6tatWyoUCmP3Va1WlUqlJEnr6+sqFovtf4vFYkqn00okEqpWq0okEtrd3VU0Gp16n36g6AQAAICZMIt5OQgeu/eZ2/fYa+c/7fVwJsbteY5zPabJaUy2Pzds8p/OPP+87f7Njx6NNS74o1AoqFgsKhaLjd1Xa6aUdFwM6iwOdSqXy1pZWZFhGMpkMqpUKlPt0y8srwMAAAAAAK5ZVsTXxzhqtZqSyaTq9boqlYpjQcetTCbTXt7WWgZnpzU7STqexVQqlabap18oOgEAAAAAgFMhHo8rHo+3n6+uro7cl2EYqlar7efXrl0b2P769Y/v9uhUTJpEn36i6BQihmEolUppe3t7rH4KhYJSqZQWFhYUiUS0srKiTCbT9cae1T4BAAAAAOOZpSDxcXKQ8vl8++tkMnliX513xTNN0/az/ST69BNFpxA4bWn6s5DQDwAAAACYbZ3L2TpnTw3SmSO1tbU1lT79RJB4gJ3GNP1ZSegHAADTF8TwYsyeccK03378hYmMaRJsz/PMdVftgsjpRgOK9M/DiJw507fNKTDcOjoaa1wIr1qt1vX86tWrrvaLx+MyDEOS+mYlTaJPvzHTKaAKhYISiUTfm24UwyTfS2on389CnwAAAAAA71jyN0TcsiKy5O0Su1H0xr64vRNeb7vOz/yT6NNvFJ0C6LSm6c9SQj8AAAAAYHbduXOn67nbFTiXLl3qer6zszPRPv1G0SmATmOa/qwl9AMAAAAAZldrOVvLqLOS6vX6RPv0G0WnEDgNafqzltAPAAAAADPJCsDd6yy/L0J/gWhUnTfImkSffiNIfMaNmnzferNvbW11FXjC1CcAAAAwDW7Dxcftc5rGHX/QOF1Pu/O0njZd7//a+U+PNzCE1qiFnd4JFp13p59En36j6DTDwpKmP4sJ/QAAAACAbt/+4h/o21/8g7H7eXLwoQejCYZJzEpiphOmwsvk+9bso7D0CQAAAACYDGvE5W1PHzzSk/c/8HYwPolGo54UdzpnKU2iT79RdJphXibft4o5YekTAAAAABAsZ37gGZ279MLY/Tw5+FBq+hvstLi46EmBaHFxcaJ9+o2i0wwLS5r+LCb0AwAAAAC6/fDP/AX98M/8hbH7+Tc////wfcbUqLOJeotKvTOdvO7TbxSdZlhY0vRnMaEfAAAAp0fqzPX+jRH3NwqvHG15OBpvRM6e83sInnIMRrd7naz+IHEn1tHRiCMKt6Yifg/Bd6urq135xKZpuir29IZ8r6ysTLRPv1F0mmFhSdMPakJ/o9HQ8vLy2P1sbGxoY2PDgxEBAAAAmJZvWl/Xt/QNSXL8XPDdZv9nkN62jUbD+8HBd4lEouu5YRiu4l56V+gkk8mJ9uk3ik44UVjS9L3us9lsan9/f+x+Dg8PPRgNAAAAgGl6qid6pIeSNNTnAi8+QwSdZTHTaXV1teu52wJR5+fWaDTaFRsziT79RtFphoUlTT+oCf1zc3NaWloau5/5+XkPRgMAAABgms7qnJ7Rc5KkFy/bBzN/d79/plNv20ajoWbT/ZI9hEM8Hu/6LHvnzh2l0+kT99vZ2Wl/3VtkmkSffqPoNMPCkqYf1IT+paUl7e3tedonAAAAgHB4KfKKXtIrkqTKXtm2jV2eV2WvO6NreXn5VMx+Oo2uXbumUqkkSV1ZTIN0tsvlclPp008UnWZYWNL0ZzGhHwAAAKdbEMPBh2E9feKqnV1At1MI+duPvzDWmMZRaToUjWzGP/fMs33bXjv/aft+Q/46j6rJ8jpJUjabbReIqtXqie0728RiMdvspUn06Sf3t1RA6PROq3M7m+ikNP0w9AkAAAAAwEnGWXUTj8e7ijzb29sD25fLHxc/nWYkTaJPP1F0mmF2yfduDJumH8Q+AQAAAAA4Se/nz2GLUMVisf31rVu3HNuZptmewZRMJrW+vj7VPv1C0WmG2SXfuzFsmn4Q+wQAAAAATIZl+fvwimmafbODtraGWzIZi8Xas41qtZoKhYJtu7W1NUnHn107ZydNq0+/kOk0w8KSpj+LCf0AAACYTXYZQHZ5QXYB007CnAs0zLm7vXaTYHdsSVKkfx7Glx/+Zv/+ATwnjMY0Td24cUOmadpmJtVqNUUiESWTSUWjUd28eVPxeHxgn+l0WpVKRZlMRrlcTnfu3NHNmzcVi8W0s7OjXC6nWq2meDyud955x1Ue8ST69AMznWbctWvX2l97maYfhj4BAAAAAOjUmhVUqVRkWZbjo1KpqFwun1hwakkmkzo4OFA+n5dhGFpbW9PCwoIymYwWFxdVLpe1u7s7VHFoEn1OG0WnGZfNZttfe5mmH4Y+AQAAAADesiRZVsTfh98XYYDNzU3t7u7q4OBAlmXp4OBAlUrF1WqeafY5LRSdQuA0pOnPWkI/AAAAAACnHUWnEDgtafqzlNAPAAAAAMBpR5B4wDml6W9ubrruo5V8n8lk2sn3dvuPkqYf9D4BALPDKQSWwFYA0+T6Z47VdL3va+c/3bft7cdfGGpcXrMNCHcK4+7dN4DB6MP8rrA9T5vA8WH7nSWWFfF7CAgJZjoFkGmaymQySqVSWlhY6Jvp1ErTT6VS7QLNSVrJ99FoVLlcrr1fK7E/kUi0k+/v3r07VJp+0PsEAAAAAADTx0ynAJrUDJ5W8n2hUNDW1pbW1tZkmqai0ahWV1dVLpeHDiILS58AAAAAAG80mekElyg6nUKbm5tDLc+bpT4BAAAAAMB0sLwOAAAAAAAAnmOmEwAgsAiORidedwBB4DpM2y6I+8x1+8Y2oeN+cxumbReCHjln/zHzyw9+Y+xxec3uPCNnz/Vts54+mcZwQsOy/B4BwoKiEwAAAAAACIT3/7t/rXtf+tcD2zw9+HBKo8G4KDoBAAAAAIBAaD58pKfvf+D3MOARik4AAAAAAMAdS7ImePe6ueee0dnFFwa2eXrwIWv8QoKiEwAAAAAACITFv/GXtPg3/tLANn/82b+vp/eYDRUGFJ0AB41GQ8vLywPbbGxsaGNjY0ojAk4fgqMBAEFjGxDuNlz8aMt2u9v9/TZ3/nzfti8//M2+bU7nY7fd79/1rkPDbULUJemVyE/oW/pG17YXLy92PW80GqMPEAg5ik6Ag2azqf39/YFtDg8PpzQaAAAAAEHzVE/0SA+7tp30GSL8IhNdXud2DAgHik6Ag7m5OS0tLQ1sMz8/P6XRAAAAAAiaszqnZ/Rc1za7mU7NZnOawwICg6IT4GBpaUl7e3t+DwMAAABAQL0UeUUv6ZWubZW97iWDy8vLp2D2E2CPohMAYGiusyvIZAIQIk4/2/hZhpPYvUdeO//pvm22WUGSY15Q0DQffeSqXRC/Z5y+v+0ynWxfD8t+plIQz3UauG8c3ArHTzcAAAAAAACECjOdAAAAAACAa/4HiSMsmOkEAAAAAAAAz1F0AgAAAAAAgOdYXgcA8MRpDdIEMJoghnbzcwxesgsNtw2tlmQdHU16OEML8/eD3c8Xp/Nxe3OUuWeeHftYM4UkcbjETCcAAAAAAAB4jqITAAAAAAAAPMfyOgAAAAAA4Iol/+9ex+q+8GCmEwAAAAAAADzHTCcAwNCmFZCZOnPd/h+spiTpWeupvjSVkaDl1AamBsCsXfswjx2nm9vgaTuOgeHf/70WJK+d/3TfNrtwdLuA7ebjx7Z9Vo62XB173BsN2LVzfN0i/fMwImfO9G1zeu34WQYMRtEJAAAAAAC4ZrG+DS6xvA4AAAAAAACeo+gEAAAAAAAAz7G8DgAAAAAAuOb33esQHhSdAOAUmkQg8ST6dAocbYWbRqyI9HSsQ2BIBKb6h2sPBINtSLXTjS9693X4vfb6cz8/8njGDd12YhcabtenXeC403m6/VthEj/vhunT7vU86W+STm8//oL7gQEzjqITAAAAAABwb4Izncz//n/U/d/5fw9sc3TwwcSOD29RdAIAAAAAAIHQfPhIR/cO/R4GPELRCXDQaDS0vLw8sM3GxoY2NjamNCIAAAAAQfLNo6/pm82vdW3r/QzRaDSmOaTQm3vuGZ1ZnB/Y5ujgA8mypjQijIOiE+Cg2Wxqf39/YJvDQyrwAAAAwGn1VE/0SA+7tp30GWIWTLLec/Gv/WVd/Gt/eWCbb/3v88yGCgmKToCDubk5LS0tDWwzPz+4Ag+cJpMI/XQKR1VkTpJkWUeeHxMAgGE5hUz3cgwct5qjH3uKNxmw/b38/d/JnV6/8Bnb/f28IYLT3xSRs+f6ttm9nk77/xf/9S/o9u3bA4/daDTUbI7+GgNhRtEJcLC0tKS9vT2/hwEAAAAgoNzEbSwvL5+K2U+AHYpOAAAAAADAHev7D7/HgFDonwsJAAAAAAAAjImZTgAwYXYZAH5mGgx7fLf5DbbHcZlx4cjpOK3sizEyMADAT0H83QB3XP9etPsd5fB7be6ZZ8cclffsxtR89FHftmHyj8LCLnvL6TWyazv23z/ADKHoBAAAAAAAXLOsiN9DQEiwvA4AAAAAAACeo+gEAAAAAAAAz7G8DgAAAAAAuMfd4+ASRScAGJHbENhxg2H9Dpu1O9bUQjMdgsJbYZ4R66n0yPvDAsCkERoeXnav3WvnP923zTry/tjT/Jug+fhx/0abIHS7c4+cPWfbp59/0zgdx278dn9/2F4Ph7YAPkbRCQAAAAAAuEaQONwi0wkAAAAAAACeo+gEAAAAAAAAz7G8DgAAAAAAuEeQOFyi6AQAI/I7+HJa7EI/W0HeXe2GCBcfN4S9dSzLetre9lPP/5w+inT/WvP72gHwht83VABOYj190r/RJnQ7cuaM7f6OIdU9pnojEZvf4Xah228//kLfNru/CSR/v2/tfo5Isn2dbLc54GcRMBjL6wAAAAAAAOA5ZjoBAAAAAIAhcPc6uMNMJwAAAAAAAHiOohMAAAAAAAA8x/I6AJhxbgN4HQM2bTQffdS3LXL2nOv93YZuOo2pFWQeseakR8fbvvThP5UuXBi5z1kLAj0t5wl/TSvgm/ett8b9+UCwuw2b4Gm7IO6hwqxtTPPav37hM33b7ILQPzX/C33b5s6fn8iYJsEp3L2XbVi8hruRykzh7nVwiaITAAAAAAAIhMPf/Vc6/PK/GtjmyPxgSqPBuCg6AQ4ajYaWl5cHttnY2NDGxsaURgQAAAAgSL5p/ZG+ZX29a1vvZ4hGozHNIYVe8+FHOjo49HsY8AhFJ8BBs9nU/v7+wDaHh/wwBAAAAE6rp9YTPdLDrm0nfYaYCRNcXjf33LM6szA/sM2R+YFkscYvDCg6AQ7m5ua0tLQ0sM38/OAfhkAQuM5vcsiTsMs6iJyz+fXR9P4X/9xzzw1uMMIhnbIvZi2jJMxjR3jwPusWlp8j4/4cDOI5+c5q9m0a5v1glwtkZ6rX3u73+lykb9PRhx/2bTvz/PO2XYble8Tu75y5eftzOnvvnJ6xuv9eefHyYtfzRqOhZrP/PQJ786//Fc2//lcGttnb+DyzoUKCohPgYGlpSXt7e34PAwAAAEBAvRT5cb0U+fGubZW97iDx5eXl2Zv9ZPUXIAE77m6TAAAAAAAAAAyBohMAAAAAAAA8x/I6AAAAAADgGhnecIuiEwDf2IZJfvBPpj+QDmEJuLQNAh+GQ2i4bVObIPHmw4f97c6eG2tIdpofPRr475b11LNjTet1HipYNiTvRzvDvEfDck5+C/P74bTw+/UY9z3i9/jDwu462/0OtI6OXO0rubhxhg/swrSPHnzPpmH/3xROv7/9fI8N87vWVrP/bx/J/u8kAB9jeR0AAAAAAAA8R9EJAAAAAAC4Z/n88JBpmsrlckqlUlpZWVEkEtHKyooymYxKpdLI/RYKBaVSKS0sLHT1Wa1WPRx98FF0AgAAAAAAp06hUNDCwoJKpZJSqZSKxaJ2d3eVy+VkGIay2axWVlaGKhRVq1UtLCwol8tJksrlsur1uvL5vGq1mlKplFKplEzTnNBZBQuZTgAAAAAA4FTJZDLa3t5WPB7X7u5u17/F43Gtr68rm822C1K7u7uKx+MD+6xWq0qlUpKk9fV1FYvF9r/FYjGl02klEglVq1UlEgnt7u4qGo16fm5BQtEJgOf+RvQX9FGk+8eL9fRJXzvbQMcHDyY1rKlInbnev9Fq9m0aNzh63CDOccOs3QamjqtytGW7/VMvrkuS5qwn0j3PDztRpyXU1++xTyJ02+8gb7+vaZj5/dpNyyTOadxrF5ZrP9Q4bYKz7UK37dmHTn/5wW+43H96TrqZxyBO1+O185/u2/b24y+MfJxhOIa4P/Ns3za7v2km8XdOaFmR44ffYxhDoVDQ9va2JOmdd95xbFcsFlWtVmUYhtbW1nRwcODY1jRNZTLH77NYLNZVcOpULpe1srIiwzCUyWRUqVTGOJPgY3kdAAAAAAA4NVpL3+Lx+IkzjdLptKTjolKrUGUnk8m0l8y1+rfTmvEkHc+MGic3KgwoOgEAAAAAgFOhM58pFoud2P7q1avtr+/cuWPbxjCMrn6vXbs2sM/r1z9eHTGoQDULKDoBAAAAAADXIpa/j3EYhtH+ularDbXvpUuXbLfn8/n218lk0vXsKenkGVRhR9EJAAAAAACcCouLi+2vDcPoKkLZ6Zzd5DQzqnOJ3Elh43Z9bW3Z55jOAoLEAbgyTMDmPzf/G+nChe79bQK27bZVDv/xWMd3Com0M4mAbqfga9f7252Ty3Byx/3trolNCKojm7Z2YZpnFxfc9+nS68/9vO32uYsvSJIi1vD/q8vpPRLEYNvTYhJBw5N4PXmPhBev3ejc/l5xusbTuva9Y3rWeqovDbH/UDd5sPld//qFz7ja1yk02+733Zcf/qbrMU2C3U1g7G4kYndOTr+//QzjdnqN7cLN7UTO2IfANx8/HnlMoTbmbCM/9RaOstnswDDv1iykaDTaNUOppXe2VOdyvEHi8Xi74MVMJwAAAAAAgJCLx+Nds5Gq1Wr7rnO9SqVSuzDUuYSuU2eWk+QuJ8qu3bBL/cKCohMAAAAAADg13nzzza7n29vbfYWnarWqbDYrSSoWi1pfX7ftqzdc/KQ8p5befKidnR1X+4UNRScAAAAAAOCeFfH3MaZ4PK5yuXvJ5fb2tlZWVlSr1VQoFJRKpRSLxVSpVBwLTpL6MqFGnelUr9ddjj5cKDoBAAAAAIBTJZ1Oq1gsdm0zDEOJREK5XE6bm5uq1+tKJpMD+zkpiNwt0zQ96SdoCBIHHDQaDS0vLw9ss7GxoY2NjSmNyF/DBGz+1Auf0UeR7h8vc88+09eu+fCh98e3C8h2CN22M0zotl2QqOvQ7yH6tNt/qGBWm2PZhWE6BWzbhYaeWYz2bbO+5/71dCty4Tnb7dbTp8f/tZ4O3H/cgGrbsPshwuInEZDt53EmJUxjxcnGvfED74duQbxOQXyN+sb04IH0/PMTOZbbm5bMPdf/O8z27wRJZy78gKvjTOt3iCT7G4nYhIvbBXE7BoYP8TeZW+NeJ7u/Ue3G3/zoke3+39I39M3m17q29X6GaDQarseD6WrNYGoto+tUrVZlmuaJy+VGLRb19nvv3r2R+gk6ik6Ag2azqf39/YFtDg8PpzQaAAAAAEHzVE/0SN3/4+2kzxAzYcS71x1Wv6LDd/7V2Ic/uu/d57D19XXt7u6qVCp1ba/Varpy5YreeeedruDxSWGmE3DKzM3NaWlpaWCb+fn5KY0GAAAAQNCc1Tk9o+5ZbS9eXux63mg01Gx6P8srjJofPdKRed/vYXTJZrMqlUpaX19XtVrtWi5nmqYSiYQqlYrjMrtoNOpJwchtAHnYUHQCHCwtLWlvb8/vYQAAAAAIqJfO/Fm9dObPdm17e+8LXc+Xl5dPx+wnF+aefUZnohfH7ufo/qFkjTjdqkMqlVK1WtXm5qby+bykj4tQve2cCk+Li4ueFJ0WFxdPbhRCFJ2AU2IS2Tad6/KftZ7qS9//+ksf/IZ04UJX07/6g3+rb3e7TKefev7n2v381PM/186Gss0DcZuf5OD1536+b9tQ18TmmtrlH1l2sQZDjNOuT6dMCLfssgqczt3uOum5Z/s2RY68/z94kRcc8jgeH2dKRJqTvR/GMPlNtvu7zLEZN6PD9feHHLLIQp4J5dbYPwdn8Dq5zaYZ5jzdtg37tbMzre9vBJBN/pHd3zlzz/T//pSkowff69s2rdfe6Tj2WU397eZs8qiO7jvMZHHItByH2+tkdz6S/d9Ec+fPu9omSc1HH7k6/swZsd4zv/aTml/7ybEPv/fL//exZ0wlEgnVajUlk8l2wUmSisWiUqmUMpnun+mZTEZ3797tm5E06gyl3kLVrM504u51AAAAAADg1MhkMqrVapLUdwc76fjOdru7u12FINM0lcvl+tqurq52PXc766k3OHxlZcXVfmFD0QkAAAAAAJwKhmFoe3tbkhSPxxWLxWzbxeNx7e7udm0rlUp9RaVEItHXvxv1er3ruVNmVNhRdAIAAAAAAO5ZPj/G0DmzqXeWUq9YLNY3E2pnZ6freW8fbotOncWraDTqWPwKO4pOAAAAAADgVOgs9rhZ0ra+vt71vLeoFI/Hu5bh3blzx9U4OotXJxW/wowgcYRGoVBQpVLRzs6OTNNULBZTPB5XNpud2amIndyGvUr2gYp2YdROXr/wmb5tZ+xCIrtCL+fa/9ehMwC8vf+fe6V/TPcP+w/+5KntmNyev11Ap1PAY/Px4/7jDBHQPffcc33bmh896ttmd+3sQisdj28XOu4UxOk2oNxmf6dzn3v2mf6NZ870b3vGPmBzLHbHkaQf+P77q+nw7y1jBpaGOTh6mBD0sJzTuNwGuzu1nVYw/DDGPf5pee2n5bRcT7/f936zO1e7m27Y/a63+9tDkiJOv+98ZDd+u3EeHX7gus9xb9Axjrcff8F2u91rZ/c6nVmwv+PaqZ3FYUX8HsHIOrOUepe4OYnH4+0MKDvXrl1r3/FuULtOne3ssqJmxan9HkF4VKtVLSwstL8Ry+Wy6vW68vm8arWaUqmUUqmUJ7epBAAAAADMrs5lbG6Xwjnt35LNZttfV6vVE/vobBOLxWZ6EgVFJwRatVptF5TW19dVqVSUTCYVi8WUTqdVr9cVj8dVrVaVSCQoPAEAAAAAHF2//vHs/tYqmpN0FqfsCkTxeLxreyuo3Em5/PGMyVme5SRRdEKAmaapTOZ4+rZdgFtL6xvWMIx2ewAAAADAZEQsfx/j6CwQmaapW7duDWxfrVbbhal8Pu/YrvPz6qA+TdNsL8VLJpN9mVGzhqITAiuTybS/uQdVf1uznqTjHwitb2AAAAAAAHqVy+V2+HehUHD8DNk5sSGZTGpzc9Oxz1gs1p4QUavVVCgUbNutra1JOr5jXeeMp1lFkDgCyTCMrnWu165dG9j++vXr7SmMuVwuVNXiT83/Qt+2yCd+sG/bmcUF133+1R/8W/37X/nRvm1OwdFnlz7Rt+3gkz/Wty36hx+H8M01H0v/8/eP9UMv6mykO7j8/dVLffsv/vv/0LctctaSHn7/6+ee1dz3+7ELrrQL7bYLvbQLF5fsQyLnzveHYTuFflo2oedn5l+wbdvHITDdLrTbNpzc7XFkH/Bpdxy785GkiM01kc11frLyw33bxg3AtzuOJD388eP3qPX0sfT92c5/4wc/q0cR94H5I49pCGEO2x37tbPxqRftfzb/7nf9+58FTmO3+/loF4A7iddz3HDzsAvz980kDPN+mJbT/HpI9j8f7P5+cLppiB3r6ZOxxuTWMN9fdn97uQ08txxO/bXzn+7b5hTwbWeY3029hnnf2v7defjhyMdG8ESjUd29e1e5XE6lUknZbFblclmZTEarq6u6d++eKpVKu3CUz+cHFpxa0um0KpWKMpmMcrmc7ty5o5s3byoWi2lnZ0e5XE61Wk3xeFzvvPNO113vZhUznRBIndMWk8nkid+MrZlO0vF0xZPW0AIAAAAARmAF5DGmaDSqYrGo3d1dra+vyzAMZbNZJRIJZbNZGYahzc1NHRwcuCo4tSSTSR0cHCifz8swDK2trWlhYUGZTEaLi4sql8va3d09FQUniZlOCKjO6Y3xeNzVPrFYrB3wtrW11VWIAgAAAACgVzwed8wPHsfm5uZQxapZxUwnBE6tVut6fvXqVVf7dRanmOkEAAAAAIC/KDohcDqznKTjGUxu9LbrLV4BAAAAAIDpYXkdAufOnTtdz92udb10qTuoemdnx/XSvHH81T//y33b/ujGi33bfi/za7b7/87X3QdC2/lL/+Zn+7b9b/8X/6ZvW/HOlb5tL20t2vZ595P9Ycz/6U/+275t/+a3/nz76+ceP2oHiT/5s8t6fKY7UPOjtNm3/7X/4zf6tn3h7/016Uv/TJL0veR/rI/OHvfzfPV/7mt75kcv9w/+wwf9246a/dsk6XuRvk1DhYPbBIRaNqHfkXP9P2qbjz6y7TJytv/a24V+24WDS9KZCz/Q36dd6GezfyG8YzioXRDq4/7A07mH/dfOabm9XZinXTjo2diP2e5/7sPjY507+viYkfPnFekJEn/8v/6P+/a1C9qXJOtp//iP7t/v2zZMEOmZ55/v2zatkORxw4cnMaajewee9zkpdqHh43L72p+WkOZJBGQP02dYAsuDOKZTz+r/u+LLD3+zb5vbwHHJ+aYlXhv3/WQ7Tpvr4XgTF4e/f9yaxPeD62tvc56SNPfccx6OBpg9zHRC4LRymVpGnelUr9c9GxMAAAAAABgOM50QOL1Fp1GZpulJPwAAAACAj0U8uHscTgeKTgicUYtFvcvw7t27N9Y4Go2GlpeXT2z33T857Nv29Fc+nkR48Sd/Uhc/+ZNjjQUAAADAdH3T+iN9y/r64EYP++Malpd/r+t5o9HwclhAqFB0wswad6ZTs9nU/v7+aDt3xMBY3/tIc0+lHz07XnaTk+YXfrBv29f+i6W+bc++0J81ZJ2zX4P+f/rp/vXy//W/S/UfuyM+pzMi6Mz9j3T2TPe691c/0X8tv9fszzV49t7j7q+/HzMUeaE/G8cy+/N2IgvR/nbftS9AOmYY9e7vsNZ/zm5M9/uzlo4efK9vm13Wj1Nbu0wop7yZ185/un+cNplQdiy77CZJkeX+99PDH73Yt+2ZP+0fuxVxv4rbLs/q8H/5Cdu2L/y742yguebgHIYzH/WfU9Mu90v25z92doTL99gkjDv2obJxbHJL7N6jpz2bZlrnf5qziobpM4jXxM4ksq+mye3Ph7GP03OdnrWe6kueH8X98Z045gc55AWF1lx/IcZvTq+RXf5U63V6aj3RIz0c3LHNjJ/9/f6/iWaOFbzXGMFE0QmBE41GPVka5zaA3Mnc3JyWlro/bH9336Z4cb7/g/LT5z7+ITz3rH2QIgAAAIDgOhs5p2es7/9P2ohDkcXqrzq9eLn7Zj2NRkPN5owVFgGXKDohcBYXFz0pOi0u2t+Zza2lpSXt7e11bbP9PySJn+jbdPen++8gBgAAACA8Xor8uF6K/Lgk55njdnc+fnvvC13Pl5eXR19BcQrd/xdf0f3f/8rANkeH/REnCCaKTgicUWco9Raqxp3pBAAAAACwMcEg8eZHH+nofn+MBsKJohMCZ3V1VbVarf3cNE1XBaTe4PCVlRWvhwYAAAAAmKC5Z5/VmYv9+aGdjg4PbZc2IngoOiFwEolE13PDMBSPx0/cr16vdz1PJpOejksaL7Tz9Qtftf+HZv8Py7nLP9y3zXrePvT7D7660bftr/7g3+rbdmWxP9Dwf/ij/7Ntn6/9hf7AxMsP+oPII9/79+2vn2k+aX89t/cdzUW6s67e/Wf/Ud/+f/Lf9K+NP//wjz7uZ+ePdCZy/GOqaRNIaRcE3tzrvzuIXRC35BDabdPn24+/0LdNkj41/wu223ududC/3PLoww9t28491/86R57rzwWzC2aVpLnz/eHsdgHZzY/6X0+7fSVJNuHoZx71B+PP3etv92WHsFi3gas/8O3+cUpS5OnxOUWaH59b8/6hjiLdr/XZr/xh/5gcXk+3YxrG7x78+lSOM65xg6ftQoFff+7nXe//5Ye/6brtaTBucHRYAqZPi9P+ek4iNNz2OL3X6cEDyeGmHZ4fS/Z/E9gtu3IKErcLsx7XuD/bnf5+6mU97c8q+vKD37Afk8PfL9Ng9zeWJDUf2gSF29wIxe5vJ0zGxU+efPfvb/1f/0tmQ4WE+9sKAVOyurra9dwwDFf7dS6vi0ajisViXg4LAAAAACAdL6/z84HQoOiEwInH413L6e7cueNqv52dnfbXvYUrAAAAAAAwXRSdEEjXrl1rf92Z7zRIZ7tcLuf5mAAAAAAAgHsUnRBI2Wy2/XW1Wj2xfWebWCw2kTwnAAAAAIAUsfx9IDwIEkcgxeNxJZPJdjFpe3tb6XTasX25/HEoYlBnOTkFKrr12vlPu27b/J5NQPYj9+GHc8Zef5+H9sHX7X+3Pg7LPHr/np72BDpf/u1/37uLnh72B09HfuCc9P2hRs6dUeT7/bgN/bbbZrevE7vQbadA5Oajj/q22QWB2oaG2wRUSvaho9aT/v3tztNpTE7H6tvXIdw08kH/8c/vHfTvf2ne1XEk90Gmf/Xy37H/h4vfDzLvOLcvffhPpQsXuprZBZb6HeQdxFDgSYwp7OHg4wbwYvLC8hoFcUyTMG5gepjYnesZm9Byu9+rQ/3+HtPY197mZjfW0yd92+yO4/R367SC5e3YBobLfvyvX/hM3za7v9EAnIyZTgisYrHY/vrWrVuO7UzTVKlUknR8x7r19fWJjw0AAAAAAAxG0QmBFYvF2jOYarWaCoWCbbu1tTVJx3es65zxBAAAAACYAO5eB5coOiHQ0um0KpWKotGocrmcMpmMarWaTNNUtVpVIpFQrVZTPB7X3bt3u+56BwAAAAAA/EPRCYGXTCZ1cHCgfD4vwzC0tramhYUFZTIZLS4uqlwua3d3l4ITAAAAAAABQpA4QmNzc1Obm5t+D8M3bz/+guu2dqHlw4QnH93rD4m21RHibFn9AdydrPfd9fnffbsoPf/ffvx1TzD0SeyCK+fOn7dtaxfaaRcm6XjtbAK67cKT7cKshwnStD2+y3BwySFw/Vz/j3+ngE27IPSz0Yt92+bu9+87brCsZRNiLnWcU7M/0LTrOD4Glk7KtMKTT1MosB0/z/O0v55hCQi3M+7Yw3zuQR7nTz3/c/qo4wYnY4/V5ndw8yObG7ZYzf5dzz1j26XdjUz85vaGKcMY92+icUTOnnPf1uZvJ6e/k4bpd6awxA0uMdMJAAAAAAAAnmOmEwAAAAAAcC3CTCe4xEwnAAAAAAAAeI6iEwAAAAAAADzH8jrglBgmNHOkgM0HD6Tnv+j4z7YBmzZ+6oXP6EsdX7eCP92GTFpP+4OlnULY7QJbhwlctwsItQvItAsyt2vn1Ocw7WyD0G2OZXednMLJ7cZvfe97/Q3tto0pcmnBdnsrmN6yBgeJz6JphfUGORQYwwtimPW44eZ+v0cncZ2mdU5hCpb3wpc+/KdD35hEGu46vX7hM33b5p7tDw23uzmHpKFuEOK1Yf72sQs8d3vukv35T+tnjlNYu+3fbjbjP7WB4XYsSVbE/zEgFJjpBAAAAAAAAM8x0wlw0Gg0tLy8PLDNxsaGNjY2pjQiAAAAAEHyzaOv6ZvNr3Vt6/0M0Wg0pjkkIFAoOgEOms2m9vf3B7Y5PDyc0mgAAAAABM1TPdEjPezadtJniJnA8ja4RNEJcDA3N6elpaWBbebn56c0mhllk0v0pQ9+o50N9aUPfqOdweB2vf808zRsx+Qye8op08nt8Z32t91uc53dZj9JUvPx475tZy++0H+Yp09dHWcoT/r7lCSd/36uwin8g2da2Rd+C2Ku0Gm59tPKf5rmtQtz/tIkhHns0+R0ndzmNx59ZJN1OER+4rQMc5527HI7I2fOjHX8SeSOOV7juf5sIsvm74/IOfuPzmeentEzeq5r24uXF7ueNxoNNZsuczuBGUPRCXCwtLSkvb09v4cBAAAAIKBeivy4Xor8eNe2yl73/4RcXl4+HbOfABsUnQAAAAAAgGuRCc42P/hXvy/zf/zKwDZHHxBzEhYUnQAAAAAAQCA0H32ko8P7fg8DHqHoBAAAAAAAAmHumWd1Zv7iwDZHHxxK1ikM9wwhik4APBd57lnNRc51bfvyg9/oa+cUEmlnnODIccMohxmnW24Dx704/jABnXbmnnm2b9vT7/xp37YziwvDDcyF5oFpu70V8GlZDkHjM+y0BFxPa/zDHCeI19Tv1z6I18TOuD/vw3KemBKbG3TY3XTDLrjarp10PLMjaOzCwK2nT/q22f2d4HSebk3ie+7LD3/Tdvvrz/183za787SOjjwfU6hNsN6z8Jc/qYW//MmBbe7+6q8wGyok7G+fAAAAAAAAAIyBmU4AAAAAAMCViCYbJO52DAgHZjoBAAAAAADAcxSdAAAAAAAA4DmW1wHw3D//01+XLlwYad+fev7n9KWOrz+KHP+YGidQ0u8A2GkG/Y4TMp06c922T7vgTbs+rYfuQ1DdBpnbhZNK0pmL88f/bj2R3h/uOMNce79Dmt0e3+/3eJhNIqh/mvw+/qzhek6H3z9bx+X2d+hQwdORkMwFsBmnbQi6w/n4+To7/by3+1vj7KVLfdv+hz99w75fh7+fZh43joNLIfnpBgAAAAAAgDCh6AQAAAAAAADPsbwOAAAAAAC4x/I6uMRMJwAAAAAAAHiOmU4AfGMbJvnggfT885KkL334T0cOJPdSEMNNncY0Vjir1RxnSIqcOeO6rdsxvXb+07bbrUePjv9rPfHkOJPaf1x+H/80COI1dgq7DeJYgVG4vemFU9tJGOb3p+1YbYKzbYPEnX7XhiRI/MyFH+jbdvTge33bhvmbYBjj/J3j1O71C5/p2/b0/f67lLz+3M/b7j+pcwVmBUUnAAAAAADgWoTldXApHCV1AAAAAAAAhApFJwAAAAAAAHiOohMAAAAAAAA8R6YT4KDRaGh5eXlgm42NDW1sbExpRBiV3+Gk0wyzHudYTvvahXnbtbUL4pyUVmhp03o6tWMC00JgOIJkrBtUDLG/3+/7ccPNU2eu9ze0CQ2PnD1n26dt6LjP7AKyxw0Nt7tOlaMt1/uP8z5xej3tQtztXqfIhedsd3/9l/+sbt++3bWt9zNEo9FwOUpg9lB0Ahw0m03t7+8PbHN4eDil0QAAAAAImsPDwxM/M8wkgsThEkUnwMHc3JyWlpYGtpmfn5/SaAAAAAAEzfz8vC5fvjywTaPRULPZP/MNOA0oOgEOlpaWtLe35/cwAAAAAASUm7iN5eXl0zkbChBFJwCngN85EXaGyolwyiBwub/b4zvt+/bjL/Rte/25n+/b1nz0katjDyOIGRcAEATjZC0N8ztomrmEQTP22G2ygpx+rw2TizQtdmO1G+fcs8/0bbPLfvKb0+tplzM1d+EH+rYdHdz3fEyhZUkRv5fX+X18uMbd6wAAAAAAAOA5ZjoBAAAAAIBAuPc//b4O/vVXBrZ5+iE3dAoLik4AAAAAAMC9CS5vaz76SE8/YDnjrKDoBAAAAAAAAmHumWd19oWLA9s8/fBQsgh2CgOKTgAwonFCXIcJJx2mrdvQ8WECy+3a2oaG2wSmjs2yv71we0wPHkjPf9H742Js43x/ADjZrH0/DfM7KJBsfl/Zjf2185+exmg8YRt6bnOeRw/cBY5L9jcnmRan99iZxYX+jUf95+l0TnZB5JWjreEGhy6Lf/GTWvyLnxzYpn77V5gNFRIUnQAAAAAAgHtMMoJL3L0OAAAAAAAAnqPoBAAAAAAAAM+xvA4AAAAAALgWYXkdXKLoBAAjCmK4qZ9jcgrYHIfT+bRCO5+1nupLnh8VXgji9weAY0H8/hx3TL0h0ZP8/WAbSG1zMw270HCnIO3XL3xm7HF5ze73uvW0P2B77vz5/nZ2IeQKZuj20UF/GLXtOT19Yrt/5Ow5z8cEzBKKTgAAAAAAwD1mOsElMp0AAAAAAADgOYpOAAAAAAAAA9RqNW1vb6tQKKharbrap1AoKJVKaWFhQZFIRCsrK8pkMq73nwUUnQAAAAAAgGsRy9/HNJimqUKhoEQioUgkorW1Nd25c0fxeFyrq6sD961Wq1pYWFAul5Mklctl1et15fN51Wo1pVIppVIpmaY5hTPxF5lOAHAK2YWgOoZ22wWm2nAKR50Iq9n9X/hqmPcTAExC38+cBw+k55+fzrEc2P1stAvSDirb4GybwPQvP/zNvm2OfzvY7D+13yE2x5Zk+7dE89FH7vfHzDFNU7lcTqVSSZIUj8dVqVSUTCZd7V+tVpVKpSRJ6+vrKhaL7X+LxWJKp9NKJBKqVqtKJBLa3d1VNBr1/DyCgu8cAAAAAABw6pVKJV25cqVdcCoWi9rd3XVdcDJNU5nMcSE1Fot1FZw6lcvHhVXDMNrtZxVFJwAAAAAA4J7l82MCcrmcstmsTNNULBZTvV7X+vr6UH1kMpn2krnW0jo7rRlP0vHMqFaRaxZRdAIAAAAAAKdWJpNRoVCQJEWjUe3u7ioWiw3Vh2EYXQHh165dG9j++vWPl9sOKlCFHZlOgINGo6Hl5eWBbTY2NrSxsTGlEQHeGTcrYVp5PW7zpOAv8puAYCBfzT92WU2Rs+f6tllHR7b7R86c8XxM47J779jmVNn9rnbIP6ocbY09rlE5HftT87/Qt6350aO+bU6v0ev/1au6fft217bezxCNRsPtMOGDVCrVVSwaNWMpn8+3v04mkyf20ZrpJB0vy9ve3u7aNisoOgEOms2m9vf3B7Y5PDyc0mgAAAAABM3h4eGJnxlm0pTuIDdppVKpq+BULBaHnuHU2VdLPB53tU8sFpNhGJKkra0tik7AaTI3N6elpaWBbebn56c0GgAAAABBMz8/r8uXLw9s02g01Gxyx92gMQxD2Wy2/Twejw+d4dRSq9W6nl+9etXVfvF4vF102t7eHunYQUfRCXCwtLSkvb09v4cBAAAAIKDcxG0sLy+fztlQAdd717ibN2+O3FfnbClJrmdL9bar1WquZ0mFBUHiAAAAAADAtYjl72NchmF0zU6KRqNjLW27c+dO13O3mVCXLl3qer6zszPyGIKKmU4AAEnOod1+htCeeOwHD6Tnn5/OYHxAKDBmBe/l6TjN17T3Pfas9VRfmuYArP6lU5ZdZrhNO0l6+7F/AdtOXn/u5121C8v7zvHmJDah53ah469f+IzXQ4KPisVi1/NkMinpeInb1taWarWaDMNQNBpVLBbT9evXtb6+7lhMai2Raxl1plO9Xnd5BuFB0QkAAAAAALhjyf8g8TGP3xn6LUmLi4tKJBJ92UymaapWq6lWqymXy6lcLtvOiOotOo3KNE1P+gkSik4AAAAAAGDi3v+D39f7d74ydj9PH4x+F3HDMPqKO2+99Zby+byuXbvWns1kGIby+XxXgSqTydgWnkYtFvXOnLp3795I/QQZRScAAAAAADBxR48/0tMP7/s6ht5ZSdFoVHfv3u0rAMViMRWLRSUSia673N24cUPJZNJ1btMwZnGmE0HiAAAAAADAPWu0x5nzz+rs8xfHfigSGXnovUWnQVlNrX9fX19vPzdNU7du3epq41UBahKFLL8x0wkAZpzbAN9xg0CnGRTcCjd9xnqqfz6RIwRDWMJZgZPwXsak9b3HJnijCdtAapdh1E5h1qkz113tP01ffvibfdvsxukY0G0jiD8LbF8nm/OcO39+GsOZeZeuflKXrn5y7H6+/v/6lZFnTPWGdV+9evXEfXK5XNcyu0KhoHw+336+uLjoySylxcXFsfsIGmY6AQAAAACAU6G3OORmdlEsFlM8Hu/a1hk6PuoMpVHGEjYUnQAAAAAAgGsRy9/HOFZWVkbab3V1tet55zK93n9zO+upNzh81LEFGUUnAAAAAABwKvTOJnJbIOotCHUWjBKJRNe/9eZGOeld6pdMJl3tFyYUnQAAAAAAwKkwaMbSIL3Fqs78pVH77Cx4RaNRxWIxV/uFCUHiADDjJhHaOa3QcLsgT6kj9PPBA+n5f+bNsaYYhA4M4hTKy/sRCAa770W771vbcPAQfR/b/g62mn2b3F4Pvzlde7djjZyz/+gcxBD4qRhziZuferOZemcbudVZIIrH44pGo+0i0p07d5ROp0/sY2dnp/11b+FqVjDTCQAAAAAAnBqdy9iq1aqrfXqX4fUWr65du9b+ujNkfJDOdrlcztU+YUPRCQAAAAAAnBqdBR7DMFzlOnXOiLLLXspms+2v3RSyOtvEYrGZzHOSKDoBAAAAAIAhhPnuddJx0ahzedytW7dO3KezSJTP5/v+PR6PdxWOtre3B/ZXLn+85HNWZzlJFJ0AAAAAAMAp01n0KRQKA8O/q9Vq+9/X19f7lta1FIvF9teDClmmaapUKkk6LoCtr68PNfYwIUgcADC0aQWhTjOIM0zhrphtvBfhJW6SMB2uw8VDdKOAuWef6dvWfPjQ3c4R+7kNfr4fh7n2n5r/hb5t1pOntvtHzpwZb2BhFeIg8ZZ4PK5isdheFpdKpbS7u9t3lzrTNNttWvs4icViKpfLymQyqtVqKhQK2tzc7Gu3trYm6fiOdZ3Fr1nETCcAAAAAAHDqrK+vq1KpKBqNyjAMXblyRYVCQbVarV00unLligzD0Pr6unZ3d0/sM51Ot/vM5XLtApRpmqpWq0okEqrVaorH47p7925fkWvWMNMJcNBoNLS8vDywzcbGhjY2NqY0IgAAAABB8s2jr+mbza91bev9DNFoNKY5JAwpmUzq4OBApVJJ5XJZt27dUi6XUzQaVSwW0/r6urLZbFcGlNs+C4WCtra2tLa2JtM0FY1Gtbq6qnK5rHQ6PcGzCg6KToCDZrOp/f39gW0ODw+nNBoAAAAAQfNUT/RI3csOT/oMMRNmYHldr/X1dc+zlTY3N22X150mFJ0AB3Nzc1paWhrYZn5+fkqjAQAAGN4k8nLIieqXOnO9b5vdNXn9uZ+33z+A1/TLD36jb5vdeQZx7HacxmR3TnPnz/dtaz76yHb/M9acntFzXdtevLzY9bzRaKjZbLodKjBTKDoBDpaWlrS3t+f3MAAAAAAE1EuRV/SSXunaVtnrLnAtLy+fjtlPgA2KTgAAAAAAwLWI3wNAaHD3OgAAAAAAAHiOohMAAAAAAAA8x/I6AACAEYUlQBfwUtjf4+N+39qGhh9tudq3+fix7fYwX1O7sdtdY6e2vrP6A76to6P+dhGH+Ro2+58KM3j3OkwGM50AAAAAAADgOWY6hZBhGMpms8pms0qn0yP3UygUVKlUtLOzI9M0FYvFFI/Hlc1mlUwmZ7pPAAAAAEDw/Gnt9/Xd2lcGtnn64HBKo8G4mOkUIqZpKpPJaGVlRdVqVffu3Rupn2q1qoWFBeVyOUlSuVxWvV5XPp9XrVZTKpVSKpWSaZoz1ycAAAAAYHQRSRFrco/mo4/09MP7Ax+yWN8XFsx0CgHTNHXr1i0VCoWx+6pWq0qlUpKk9fV1FYvF9r/FYjGl02klEglVq1UlEgnt7u4qGo3ORJ8AAAAAgGA7c/5ZnXv+4sA2Tx4cUngKCYpOAVcoFFQsFhWLxcbuqzVTSjou3HQWcjqVy2WtrKzIMAxlMhlVKpXQ9wkAJyEQGqPgPQKEz7jft3ah4U7B2W6PHcTfQbbn5BSmPWq7gHr78Rf6tjm+xiE/15FYmmiQ+A+++kn94KufHNjm3/2jX9GTB/cnNwh45hR+h4RHrVZTMplUvV5XpVJxLL64lclk2kvRWkvW7LRmEknHM45KpVLo+wQAAAAAANNF0SnA4vG44vF4+/nq6urIfRmGoWq12n5+7dq1ge2vX//4VrBOhZ+w9AkAAAAAAKaPolOIjJNZlM/n218nk8kT++q8K55pmtre3g5tnwAAAAAAD1k+PxAaFJ1Oic6lZ52zpwbpzJHa2upfux6WPgEAAAAAwPQRJH4K1Gq1rudXr151tV88HpdhGJLUN4MoLH0CgFt+B7YCmE1O4cP8zAkvt6HhdgHTQXw/jBuQPUzguJ+B6U7nGTl7zlVbvmeB0TDT6RTozEiS5PpOeL3tOotCYekTAAAAAOCtiOXvA+FB0ekUuHPnTtdzt9lQly5d6nq+s7MTuj4BAAAAAIA/KDqdAq2lZy2jziCq1+uh6xMAAAAAAPiDTKdToLeYMyrTNEPXJwDAW+RcAMPh++P0qhz13+DGKVcodea6q/3HNczP8GGymvpYTdvNfn4/DHOebnOehj3WTGGJG1xiptMpMGoRpnd5271790LXJwAAAAAA8AczneDaJGYQBbnPRqOh5eXlsfvZ2NjQxsaGByMCAAAAMC3fPPqavtn82tD79X6GaDQaXg0JCB2KTqdANBr1pBDTOaMoLH2Oo9lsan9/f+x+Dg8PPRgNAAAAgGl6qid6pIdD7+fFZ4ig4w5ycIui0xBKpZKy2aynfcbjce3u7nraZ6/FxUVPijmLi4uh63Mcc3NzWlpaGruf+fl5D0YDAAAAYJrO6pye0XND7/fi5e7PI41GQ82mfc4VMOsoOp0Co8786S0A9c5KCkOf41haWtLe3p4nfQHArDgV4agA4AG7cHDXQdwTMtTPcJux2oaj252nQ5B4ENldk9Y5/ahe1o/OvSxJipw5Y7u/9fRJf5973X0uLy/P3uwnZjrBJYpOQ0gmkyqXvf1j26sCySCrq6uq1Wrt56ZpujpubyD3yspK6PoEAAAAAAD+oOg0hFgsplgs5vcwhpZIJLqeG4aheDx+4n71er3reTKZDF2fAAAAAADAH/7O78RUrK6udj03DMPVfp3L1qLRaFfBLSx9AgAAAAC8FbH8fSA8KDqdAvF4vGuZ2p07d1ztt7Oz0/66tyAUlj4BAAAAAIA/WF53Sly7dk2lUkmSunKTBulsl8vlQtsnAAAA4BW74OnXzn+6b5tdwLRjkPgYwdupuYzt9rFv/GAzJrtjheUGE07XyfY1sTn3uQsv2O5+dPjBOMMCZh4znU6JbDbb/rparZ7YvrNNLBazzUkKS58AAAAAAA9ZPj8QGsx0CpHO7KJhxeNxJZPJdpFme3tb6XTasX3nXfqcZg+FpU8AAAAAQDh85w9/X9/5w68MbPPke4dTGg3GxUynEOkN1h62CFUsFttf37p1y7GdaZrtJW7JZFLr6+uh7xMAAAAAEHxHjz/Skwf3Bz5kMd0pLCg6hYRpmn0zeba2tobqIxaLtWcG1Wo1FQoF23Zra2uSju8E1zmTKMx9AgAAAAA8MsGlc2fOPatzFy4OfCgSmebZYgwRy6JEGFSmaerGjRsyTXNgvlEymVQ0GtXNmzcVj8dP7LdarSqTycg0TaXTad28eVOxWEw7OzvK5XKq1WqKx+N65513uu4mNwt9urG8vKz9/X1dvnxZe3t7nvU78x48kJ5//vjrDz+ULlzwtx+cDrxfAAB2Jvj7YZww7dSZ67bbK0fD/c/kabAN3nYZuu0UmB7q83QQOXOmb9vbj7/Q9XxWPl+0zuPchYv6j/7m/8XXsfz//ttf0ZMH90N/TU8DMp0CbFIzeJLJpA4ODlQoFLS1taW1tTWZpqloNKrV1VWVy+WBOUph7hMAAAAAAEwHRadTbHNzU5ubm6eyTwAAAADAaCKsl4JLZDoBAAAAAADAc8x0AgAAAAAA7rRCv/0eA0KBohMAAAAAjME2jNqGU+D4OOHk02QXBO723IMqcvZc3zbr6RPX+1tPbYLUAbSxvA4AAAAAAACeY6YTAAAAAABwLWKxvg3uMNMJAAAAAAAAnmOmE+Cg0WhoeXl5YJuNjQ1tbGxMaUQAAADwm9uspaGyjiLBmwswVqaUZZ9zFMTsqrcff6FvW+rM9b5tdnlWknT79m3dvn27a1vvZ4hGozHGCIFwo+gEOGg2m9rf3x/Y5vDwcEqjAQAAABA0h4eHJ35mmEmsroNLFJ0AB3Nzc1paWhrYZn5+fkqjAQAAABA08/Pzunz58sA2jUZDzSZ3ucPpRNEJcLC0tKS9vT2/hwEAAAAgoNzEbSwvL5/O2VCAKDoBAAAAAIAhRFheB5coOgEAAACAx+wCsp3Cxf0O03bLbTh6WM5Hsg8NdwpCt90/gOHoQJAE7zYJAAAAAAAACD1mOgEAAAAAAPdYXgeXmOkEAAAAAAAAzzHTCQAAAAAAuEaQONyi6AQAAAAAY7ALo64cbfVvcwiYDksYdRDH5JZtYLhkHxoe6V8QFPYQeMAvLK8DAAAAAACA55jpBAAAAAAA3Jvg8rpv/9uv6Nv/9isD2zx5eDi5AcBTFJ0AAAAAAEAgHD3+SE++d9/vYcAjFJ0AAAAAAEAgnDn/rM79wMWBbZ48PJQs0szDgKITAAAAAExBmMKoxwk3dwrttgtXnxq7wPBh2tqEi0vSa+c/3bft7cdfcH+skJrk3euW/txPaunP/eTANu/+1n/JbKiQIEgcAAAAAAAAnqPoBAAAAAAAAM+xvA4AAAAAALhHnBJcYqYTAAAAAAAAPMdMJwAAAAAYxzAh1TPGKRw9aIYJa7cNQnd4ja2np/e1B9yg6AQAAAAAANyxJnv3OrdjQDhQdAIcNBoNLS8vD2yzsbGhjY2NKY0IAAAAQJB80/q6vqVvdG3r/QzRaDSmOSQgUCg6AQ6azab29/cHtjk8PJzSaAAAAAAEzVM90SM97Np20meImWCdrqlGKysrMgxD5XJZ6XR6qH0LhYIqlYp2dnZkmqZisZji8biy2aySyeSERhwcFJ0AB3Nzc1paWhrYZn5+fkqjAQAAQNg55QrZ5SINk0E0CWMdP2J/v6ognucw+U12zuqcntFzXdtevLzY9bzRaKjZJPsprHK5nAzDGHq/arWqTCYj0zSVTCZVLpcVi8VUq9WUy+WUSqXa26PRqPcDDwiKToCDpaUl7e3t+T0MAAAAAAH1UuQVvaRXurZV9roLacvLy6dj9tMMqlarKhQKI+2XSqUkSevr6yoWi+1/i8ViSqfTSiQSqlarSiQS2t3dndnCk30JGgAAAAAAoEdEx0Hivj6mcJ6maSqTGf7ujJ37xWKxroJTp3L5uDhpGMZIxwkLik4AAAAAAAAdbty4ocXFxaFnILWW1EnHS/OctGY8Scczo0ql0qhDDTSKTgAAAAAAAN9XKpW0vb3dno3klmEYqlar7efXrl0b2P769Y8zxQYVqMKMTCcAAAAA8Ni4odmBDN22GZNtaLhDELef47cdu+QYet5rmBD4U2GGb15nGIay2aw2NzcVj8eH2jefz7e/TiaTJ86S6rwTnmma2t7eHvrueEHHTCcAAAAAAAAdL4+Lx+NdBSS3OpfIuS1YxWKx9tdbW1tDHzPomOkEAAAAAABOvVwup1qtpnq9PvS+tVqt6/nVq1dd7RePx2UYhiRpe3t76OMGHTOdAAAAAACAa5Gmv49JqNVqKhQKKhaLXbOP3OrMcpLkuo/edr3Fq7Cj6AQAAAAAAE61tbU1pdNpra+vj7T/nTt3up67vevdpUuXup7v7OyMdPygYnkdAAAAAIzBLmR6mIBpvwPC7aTOXO/faBO6XTkKRwbNpK5xEF87DC+TOf5+ffPNN0fuo7VErmXUmU6jLO0LMopOAAAAAADAvRm6e9329ra2t7dVqVRcz06y01t0GpVpmp70ExQUnQAAAAAAwMT9h69/RY2v/8ux+3n88NCD0RwXeDKZjNbX15VMJsfuaxS9ha579+6NNY6goegEAAAAAABci4w40+no8Ud6/PC+t4MZw9rammKxmIrFot9DaWOmEwAAAAAAwJDOnntW55+7OHY/xzOdxlvjVygUVKvVtLu7O/Z4pOMZS14UjMZZ4hdEFJ0AAAAAwGOhD5i2+u9L7/acnELUQ39NbNid6yyep1d+5JWf1I+88pNj97Pz3//fxpoxVavVlMvllM/nFY/Hxx6PJC0uLnpSdFpcXBx/MAFC0QkAAAAAALhnhTtJPJPJKB6Pa3Nz07M+R52h1FuoYqYTAAAAAABACBUKBRmGoWQyqUzGflZep86i0K1bt7S1tdV+fv36daXTaUnS6uqqarVa135uCki9weErKysn7hMmFJ0AAAAAAMCp8P7770uSqtXq0PvWarWuwlIsFmsXnRKJRFdbwzBcLd2r1+tdz8e9i17QUHQCAAAAgDG4zfVxyjqyE8RcILfjD+LYhzFUTlNkbsKjCSBr9LvXeTmGoFldXe167rbo1DmTKhqNKhaLeT00X53C7xAAAAAAAHAa5fN5WZbl+tFZBCqXy13/ls/n2/8Wj8e7ltPduXPH1Xh2dnbaX/cWrmYBM50AB41GQ8vLywPbbGxsaGNjY0ojAgAAABAk37T+SN+yvt61rfczRKPRmOaQ4KNr166pVCpJUtcyvEE62+VyuYmMy08UnQAHzWZT+/v7A9scHh5OaTQAAAAAguap9USP9LBr20mfIWZCAJe3BUE2m20XndxkRnW2icViM5fnJFF0AhzNzc1paWlpYJv5+fkpjQYAAABA0JyNnNMz1nNd2168vNj1vNFoqNlsTnNY8Ek8HlcymWwXk7a3t9tB43bK5Y+zwmZxlpNE0QlwtLS0pL29Pb+HAQAAgIBzGxruFEY9TMD4tLgNAw/i2IeROnPdXTuH83xJL+ulyMtd2yp73ddueXn5dMx+giSpWCxqZWVFknTr1i3HopNpmu1ZUclkUuvr61Mb4zQRJA4AAAAAAFyLWP4+giwWi7VnMNVqNRUKBdt2a2trko7vWNc542nWUHQCAAAAAADwSDqdVqVSUTQaVS6XUyaTUa1Wk2maqlarSiQSqtVqisfjunv3btdd72YNy+sAAAAAAIB7VsCnG3moXq+PtF8ymdTBwYEKhYK2tra0trYm0zQVjUa1urqqcrk8MO9pVlB0AgAAAAAAmIDNzU1tbm76PQzfUHQCAAAAAI+5DeIetu20uA1CD+LY7TgFgbsOTHcIHK8cbY08JuA0oOgEAAAAAABcC3qYN4KDIHEAAAAAAAB4jqITAAAAAAAAPMfyOgAAAAAA4B7L6+ASRScAAAAAmIJxw6ynKtK/KOa185/u2/b24y/0bQvieY59bKvpzUCAU4bldQAAAAAAAPAcM50AAAAAAIBrk7x73Z7xL7Vn/KuBbR5/dDi5AcBTFJ0AAAAAAEAgPH3ykR5/dN/vYcAjFJ0AAAAAAEAgnD33rM4/e3Fgm+OZTqSZhwFFJwAAAABwyS4k221IdSADwx1Ujrb6tjkFhPftG6LztDPOa3w6WFJzcgWf5R/7K1r+sb8ysM3/5/f+K5bYhQRB4gAAAAAAAPAcM50AAAAAAIA7lvxf2eb38eEaM50AAAAAAADgOWY6AQ4ajYaWl5cHttnY2NDGxsaURgQAAIBpccovmkS2T1gyhII4JrecXs/I2XN924Y5z1ciP6Fv6Rtd2168vNj1vNFouO4PmDUUnQAHzWZT+/v7A9scHhJeBwAAAJxWT/VEj/Swa9tJnyFmQYTlbXCJohPgYG5uTktLSwPbzM/PT2k0AAAAAILmrM7pGT3Xtc1uptP/v737iW0kTe87/qN6dmfXOytT6j2sLDm7W0QM+GSgqIYRw8mlyUNuCUB2A7k3ectBBxJzCbwHo0Mi6YNzIvuYUw+JIPCV1XDi2AkMiQX4YgQ2WLO7kVYBstMqaGe97p0ZVg4yuSz+LYpFsl7q+wGIIam3Xr4iH0yrHj7vU/1+f5PLAhKDpBMww9HRkS4vL7e9DAAAAAAJ9b3U7+h7+p3Qc53L8Pa8k5OTB1H9BExD0gkAAAAAAEQXsL8O0ZB0AgAAAIAxqzbNXqY5eBIbdK/S3HxW0+5pNvW7L/M6+UfPJ55LPXq08rzAQ7S37QUAAAAAAABg91DpBAAAAAAAIuPqdYiKSicAAAAAAADEjqSTAVzXVblcViaTUSqVUiqVUiaTUbVale/79563Xq8rn8/r4OBgOGexWJTjODs/JwAAAAAAWC+21yWY7/t68eKF2u32xM88z1O9Xle9Xlej0VCpVIo8r+M4KhaL8n1fuVxOrVZLlmXJdV1Vq1Xl8/nh8+l0eqfmBAAAAOK2StPtpJq2/qi/5yZ/91Xf+20fbyy21yEikk4J5fu+stmsPM9bOLZcLqvb7arRaCwc6ziO8vm8JKlUKoWOsSxLhUJB2WxWjuMom82q2+0uTOiYMicAAAAAANgcttclVLFYlOd5sm1brVZLvV5PvV5PrVZLlUplYnyz2ZxaETXK930Vi3eZeMuyZiapWq27zLznecPxps8JAAAAAFhdSlIqCLZ72/abgMhIOiVQs9mU4ziqVCrqdrsqFAqyLGtY4VOr1dTr9WTbdui4Fy9ezJ13sFVNkqrV6sxxg9eR7iqOms2m8XMCAAAAAIDNIumUQLVaTblcTrVabeYYy7KGlT4Dvu/PbK7teV7oZ8+ePZu7hufPnw/vz0r8mDInAAAAAADYPHo6JYzruvI8T91ud+FYy7JUq9VCyRbXdZXL5SbGjiawcrncwv5Hgwoi6S6Z1W63Q8+ZNCcAAACwTqs2jjalGfUurinq8dM+ozhe31j9bS8ApqDSKWHevHmjUqkUuSn2eILps88+mzpudOvZ+La8WSzLCq3L1DkBAAAAAMDmkXRKmOfPn8/dVjduPDGTyWQmxriuG3r85MmTpeceb1JuypwAAAAAAGA72F6XMFGrewYGDbcHRqt+Bsb7PE0bM834ONd1h+szZU4AAAAAQLxSQbC2uX/yk7/Q/7n8i7lj3r//+dpeH/Ei6WQ4z/NCj6f1czo/Pw89jrp17/Hjx6HHFxcXw2SOKXMCAAAAcVpH/yVT+gLN6ms0zpTfR1r9dzKlH5dJvvzqH/T+/e22l4GYkHQy3MXFxfB+qVSaOmY8MXXfCqJer2fcnAAAAAAAc3zw6Bv68MP9uWPuKp3WV22F+JB0Mlyj0RjeH72K3ajxZM59jW7lM2VOAAAAAECMAq013/NPfvsP9U9++w/njvnL//nv9f5XVEOZgEbiBvM8b9h8u1arzawMum8SZnx727t374ybEwAAAAAAbAeVTgYbXOXOsixVKpW1v946KoiSPOf19bVOTk5Wnufs7ExnZ2cxrAgAAADApvw4+Fv9RH8nSTPPC34WTH7hPT72+vo6/sUBhiDpZCjXddVsNpVOp9XpdOaOTafTsSRiRiuKTJlzFf1+X1dXVyvPc3tL2ScAAMCuiNokepkG00lsRr3KmvKPnk99vvPVm5XWtA7zfqc/+qM/0g9/+ENJWuq8II5ziMRb49XrsFtIOi2h2WyqXC7HOqdt2+p2u0sf9+LFC0nS27dvFzbcPjw8jCWZc3h4aNycq9jb29PR0dHK8+zvz2+CBwAAACB59vf3dXx8PHfMz64mK52+cxw+H7m+vla/3491bYApSDoZqFwuy3VdtVot2ba9cPx9K3/GE0DjVUkmzLmKo6MjXV5exjIXAAAAALNEaZMxtSLsMlw9dXJysnPVTykKnRARSacl5HI5tVrxlrkumyBpNptqNptqNBoqFAqRjjk9PR02HJfukjRRXne8IXcmkzFuTgAAAAAAsB0knZZgWdbCrWzr5DiOyuWyGo2GSqVS5OOy2Wzosed5kSqker1e6HEulzNuTgAAAAAAsB0knQzhuq7y+bxqtdpSCSfproJoVNRkzui2tXQ6HUq4mTInAAAAsA3LNALfdtPwaaatKWpz8SQ2DJ+29llM/+w2gkbiiGhv2wvAYp7n6enTp6pUKqpUKksfb9t2aJva+fl5pOMuLi6G98cTQqbMCQAAAAAAtoOkU8J5nqdsNqtSqaRarRb5mHq9Hnru2bNnw/ujfZPmGR1XrVYnfm7KnAAAAAAAYPNIOiWY7/vK5/N69uxZ5ISTJBWLxYm+RuVyeXjfcZyFc4yOsSxrap8kU+YEAAAAAMQn1d/uDeYg6ZRQvu8rm83KsixVq1V5nrfw5jjOsBn3eC8k27ZDCZl2uz339Uev0jeresiUOQEAAAAAwOalgoAOYEmUzWYjby8bN+vqdp7nKZPJSLpL7nS73anH+76vg4MDSXdXgut0OjNfy5Q5l3FycqKrqysdHx/r8vIyljkfhF/8Qvroo7v7n38ufetb250HDwPxAgCYJgH/PuQfPZ94LokNtlcVtbn4Q7Yr5xeD3+PDr+/rnz9ZvtdwnP7HeV3vf3Vr/Hv6EFDplECrJJwkzby6nWVZw8og13Un+j4NPH36VNLdleBGK4lMnhMAAAAAEJMg2O4NxiDplDDFYnEtCaeBQqGgTqejdDqtarU6fD3f94fb81zXlW3b+vTTT0NXkzN9TgAAAAAAsDkfbHsBCNtExU4ul9PNzY3q9brevHmjp0+fyvd9pdNpnZ6eqtVqqVAo7OScAAAAAABgM0g6PWCVSkWVSrx7cU2ZEwAAAABwT+xwQ0QknQAAAABgBdOaaZsuaoPwbTcNX7WRedTPbtu/J2Aqkk4AAAAAACCyFM28ERGNxAEAAAAAABA7Kp0AAAAAAEAi/Pj6L/Xj6/81d8z7X/18Q6vBqkg6AQAAAMAKdrHfz7TfadX+Seuwjtff9u+UeIGkNW6v+/LL93r/q9u1zY/NIukEAAAAAAAS4YNHH+rDr+3PHfP+i5+LS+iZgaQTMMP19bVOTk7mjjk7O9PZ2dmGVgQAAAAgSV69eqVXr17NHXN9fb2h1eyG7x39gb539Adzx/y5+x/1/guqoUxA0gmYod/v6+rqau6Y21v+RwcAAAA8VLe3twvPGXZSf9sLgClIOgEz7O3t6ejoaO6Y/f35ZZ8AAAAAdtf+/r6Oj4/njrm+vla/T5YGDxNJJ2CGo6MjXV5ebnsZAAAAQCJEbbA9reH4Msdv0qpritJu4+Tk5GFWQwEi6QQAAAAAACILlFrj1euirgFm2Nv2AgAAAAAAALB7SDoBAAAAAAAgdiSdAAAAAABAdEGw3VvMXNdVuVxWJpNRKpVSKpVSJpNRtVqV7/v3nrderyufz+vg4GA4Z7FYlOM48S0+4ejpBAAAAAARTWuSPa0ZddRx2K5ZTc/Hzfrs+JzN5vu+Xrx4oXa7PfEzz/NUr9dVr9fVaDRUKpUiz+s4jorFonzfVy6XU6vVkmVZcl1X1WpV+Xx++Hw6nY7xN0oekk4AAAAAACC6rTcSX53v+8pms/I8b+HYcrmsbrerRqOxcKzjOMrn85KkUqkUOsayLBUKBWWzWTmOo2w2q263u9OJJ7bXAQAAAACAB6VYLMrzPNm2rVarpV6vp16vp1arpUqlMjG+2WxOrYga5fu+isW76jfLsmYmqVqtu2o4z/OG43cVSScAAAAAAPBgNJtNOY6jSqWibrerQqEgy7KGlUi1Wk29Xk+2bYeOe/Hixdx5B1vqJKlarc4cN3gd6a4yqtlsrvYLJRhJJwAAAAAAEF1/y7cV1Wo15XI51Wq1mWMsyxpWJA34vj+zCbjneaGfPXv2bO4anj9/Prw/L0FlOno6AQAAAEBEUZtE72Iz6fyj5xPPdb56M/mcQb971CbwyxyPZHNdV57nqdvtLhxrWZZqtVooKeS6rnK53MTY0QRWLpdb2KdpUOkk3SWz2u126LldQaUTAAAAAAB4EN68eaNSqRS5efd4gumzzz6bOm50i9z4trxZLMsKrWsXUekEAAAAAAAiSxl89brnz5+Hkj2LjCeQMpnMxBjXdUOPnzx5EnnuwdXzFjUpNxWVTgAAAAAA4EGwbTtylZOkYWPwgWkJq/E+T1GTWuPjxpNXu4BKJwAAAADYgFm9gkzpCzStf9MuWubzmPaZmvJ5IppBJdLAtH5O5+fnocdRk1qPHz8OPb64uIi8Nc8UJJ0AAAAAAEB0Bm+vW9bFxcXwfqlUmjpmPDF130qnXq+35OqSj+11AAAAAAAAUzQajeH90avYjRpPOt3X+Fa+XUDSCQAAAAAAYIznecM+S7VabWYF032TRePb8N69e3eveZKM7XUAAAAAACCaQPfeXvej//dX+tHP/mrlJbz/8vOV54iiVqtJutsGV6lU1v56u1jpRNIJmOH6+lonJydzx5ydnens7GxDKwIAAIDJZjWYTmIz6qhrSuLap1lXE/d/+R/+mV69ehV6bvwc4vr6eqXX2CVf9t/r/Zc/3/YyInFdV81mU+l0Wp1OZ+7YdDodS8JomavqmYKkEzBDv9/X1dXV3DG3t7cbWg0AAACApLm9vV14zrCT7lnp9MHe1/XhB99e+eXvKp3W28z8xYsXkqS3b98ubAx+eHgYS9Lp8PBw5TmShqQTMMPe3p6Ojo7mjtnf39/QagAAAAAkzf7+vo6Pj+eOub6+Vr/f39CKku373/l9ff87v7/yPP/tf/+ntVZMlctlua6rVqsl27YXjr9vhdJ4oopKJ+ABOTo60uXl5baXAQAAACChorTbODk5eZjVUIZqNptqNptqNBoqFAqRjjk9PR02HJfukklREkjjjcMzmcxSazUBV68DAAAAAADR9bd8WxPHcVQul9VoNFQqlSIfl81mQ489z4t0XK/XCz3O5XKRX9MUVDoBAAAAwBYlsfF21DUlce3TmLJObI/rusrn86rVakslnKS7SqdRnudF2pY3ur0unU4v7B1lIiqdAAAAAADAg+V5np4+fapKpaJKpbL08bZth7bTnZ+fRzru4uJieH88cbUrSDoBAAAAAIDIUkGw1VucPM9TNptVqVRSrVaLfEy9Xg899+zZs+H90f5O84yOq1arkY4xDUknAAAAAADw4Pi+r3w+r2fPnkVOOElSsVic6L9ULpeH9x3HWTjH6BjLsnayn5NETycAAAAAAPDA+L6vbDYry7JUrVYjNf/2PG9YkTTes8m2beVyuWEyqd1uz736Xav16z5ju1rlJJF0AgAAAACMye8VJ56L2ow7/+j51Oc7X71ZaU2bssrv/mDEvMVtG54+fSrP8+R5njKZzFLHNhqNmc8P5nr58uXMpJPv+2o2m5Lurli3bONyk7C9DgAAAAAAPBjZbDZy36VpZiWJLMsaVjC5rjvR92ng6dOnku6uWDda8bSLSDoBAAAAAIAHoVgsriXhNFAoFNTpdJROp1WtVoev5/u+HMcZJrxs29ann34auurdLmJ7HQAAAAAAiCiQ+tveXnf/199EZVEul9PNzY3q9brevHmjp0+fyvd9pdNpnZ6eqtVqze33tEtIOgEAAAAAAMSsUqmoUqlsexlbRdIJAAAAABCySuNsUxqGS9Gbhs9qjq6gH+n4nbMDjcSxGfR0AgAAAAAAQOxIOgEAAAAAACB2bK8DAAAAAADRBNr+9jp29xmDpBMAAAAA4EGK3H9pSu8mAIuxvQ4AAAAAAACxo9IJAAAAAABEt+3tdTAGlU4AAAAAAACIHZVOwAzX19c6OTmZO+bs7ExnZ2cbWhEAAACAJPlx8Lf6if4u9Nz4OcT19fUml2S8T/0L/ci/mDvm/Ve/2NBqsCqSTsAM/X5fV1dXc8fc3t5uaDUAAAAA7iu/V5z6fORG4qnpm4T+zb/71/rhD38Yem7ROcRO6K9ve92XX73X+68+X9v82CySTsAMe3t7Ojo6mjtmf39/Q6sBAAAAkDT7+/s6Pj6eO+b6+lr9Ple/i+qDva/rw0cfzR1zV+lEXykTkHQCZjg6OtLl5eW2lwEAAAAgoaK02zg5OXkY1U8x+cFvnuoHv3k6d8yf/aRBNZQhSDoBAAAAAIDoAiq3EA1XrwMAAAAAAEDsqHQCAAAAAOy0WQ3D84+eT4796s3kQCp7wgL6KSEaKp0AAAAAAAAQO5JOAAAAAAAAiB3b6wAAAAAAQHR9ttchGiqdAAAAAAAAEDsqnQAAAAAAD9K0puH5veLkuBmNyAHMR9IJAAAAAABEFCTg6nXbfn1ExfY6AAAAAAAAxI6kEwAAAAAAAGLH9joAAAAAABBNoO1vr2N3nTFIOgEAAAAA8I9oGg7Eh+11AAAAAAAAiB2VTgAAAAAAILptb6+DMah0AgAAAAAAQOyodAIAAAAAYI78XnHq8w+2/1O/v+0VwBBUOgEAAAAAACB2VDoBM1xfX+vk5GTumLOzM52dnW1oRQAAAACS5NWrV3r16tXcMdfX1xtaDZA8JJ2AGfr9vq6uruaOub293dBqAAAAACTN7e3twnOGnUQjcURE0gmYYW9vT0dHR3PH7O/vb2g1AAAAAJJmf39fx8fHc8dcX1+rTw+kyD79xV/rR3//13PHvO///YZWg1WRdAJmODo60uXl5baXAQAAAGDL5jUMX9Ru4+Tk5GFWQ93Tl8Gv9L7/i20vAzEh6QQAAAAAAKJb4/a6D1Jf04d735o75q7SiS1+JiDpBAAAAAAAEuEHv/F7+sFv/N7cMX/2s/9MNZQh9ra9AAAAAAAAAOweKp0AAAAAAEB0fba2IRqSTgAAAAAA/KP8XnHiuXmNxAHMxvY6A3iep3K5rEwmo1QqpYODA2WzWZXLZXmed+956/W68vm8Dg4OlEqllMlkVCwW5TjOzs8JAAAAAADWi6RTwtXrdWUyGTWbzWGCyfd9ua6rZrOpTCajer2+1JyO4+jg4EDValWS1Gq11Ov1VKvV5Lqu8vm88vm8fN/fuTkBAAAAAKsJgv5WbzAH2+sSLJ/Py3EcpdNp5XI5WZYlz/Pkum6owqlarcqyLBUKhYVzOo6jfD4vSSqVSmo0GsOfDebIZrNyHEfZbFbdblfpdHon5gQAAAAAAJtDpVNCVatVOY6jWq2mm5sbtVot1Wq1ULXPqGJxct/xON/3h+Msywolcka1Wnf7lT3PWzivKXMCAAAAAGIQBHeNxLd5C2hkbgqSTgnkeZ7q9bo6nY4qlcrUMZVKRaVSKfSc67pz5y0Wi8OtaIMta9OMVk05jqNms2n8nAAAAAAwLr9XnLgBiA9JpwSqVquq1WrK5XJzx41XO81rrO15Xujnz549mzv38+fPQ+sxeU4AAAAAALB5JJ0SyPf9mRVOo9LptCzLCj2eZTRBlcvlFvY/Gu0P5fu+2u22sXMCAAAAAGIUBNu9wRgknRKo0+lEHvvu3bvh/dPT05njRree2bYdae7RhNabN2+MnRMAAAAAAGweV68zmO/7w95HuVxuZpJmvNfTkydPIs1v2/bwKnnjFUSmzAkAAAAAy+j0W9teArAzqHQy2CeffCLprtJncCW3acZ7PY1WBs0zPm40KWTKnAAAAACAmPX7273BGCSdDOX7vsrlsmzbVqfTmdv76Pz8PPR4UZ+kgcePH4ceX1xcGDcnAAAAAADYDpJOBvI8T9lsVul0Wm/fvl1YETTYejZw3wqiXq9n3JwAAAAAAGA7SDoZpt1uK5PJyPM8+b6vg4MD1ev1uceMJ3Pua9A/yqQ5AQAAAAAx4+p1iIhG4gbwfV/NZlONRmNqYqZarer8/HxmX6f7JmHGt7eNXinPlDkBAAAAYJaoTcPze8WVjgceKpJOBnAcR71eT7lcTp7nTTTclu4qoOr1uiqVytrWsY4KoiTPeX19rZOTk5XnOTs709nZWQwrAgAAALApr1690qtXryRJPwumf7Ed5Xzh+vo61nUBJiHpZIBCoaBCoRB6rtlsqlqthhIs1WpVpVJpovInnU7HkogZndeUOVfR7/d1dXW18jy3t7cxrAYAAADAJt3e3i48H4jjfMFEAVeQQ0QknZbQbDZVLpdjndO2bXW73aWPK5VKyuVyymazoURNs9mcqHY6PDyMJZlzeHho3Jyr2Nvb09HR0crz7O/vx7AaAAAAAJu0v7+v4+NjSdLPrqZXOn3nePG5x/X1tfokafBAkXQymGVZevv2rbLZ7PC58/PziXH3rfwZTwCNVyWZMOcqjo6OdHl5GctcAAAAAMwy2iZjZk+ny8U9nU5OTh5sRdR9/OiLv9GPv/ibuWPeB7/c0GqwKpJOS8jlcjObdd/XqgkS27ZVKBTUbrclTb8C3OnpqVzXHT72fT/S64435M5kMsbNuS2vXr3S7e2t9vf36eeErSIWkRTEIpKCWESSEI/moGH4mDVeQe7L/q/0Pvj7tc2PzSLptATLsmRZ1raXMeH58+fDpNO07WmjlVDSXWLKtu2F8/Z6vdDjXC5n3Jzb8urVK11dXen4+Jg/ILBVxCKSglhEUhCLSBLiEZj0Qepr+jD1G3PH3FU6rS/xhfiQdNoBo4mZaZVBp6enocdRkzmjCax0Oh1KuJkyJwAAAAAgRoGk/voSPt9/9Lv6/qPfnTvmv//Df9F7UQ1lgr1tLwDxGk/cSHdJqdFk1LS+T9NcXFzMnNeUOQEAAAAAwHaQdNoBo32c8vn81DHPnj0b3h/tmzTP6LhqtWrsnAAAAAAAYPNIOu2AQdIlnU6rUChMHVMul4f3HcdZOOfoGMuypvZJMmVOAAAAAEBcAinob/dGPydjkHTaAS9fvpQkvX79euYY27ZDCZlB4/FZRq/SN6t6yJQ5AQAAAADA5pF0SqB6va5sNqtqtTr1anSjBmMqlcrMKqeBRqMxvD9IVE3j+76azaakuyvBlUol4+cEAAAAAACbRdIpYXzfV7Valeu6qtfrOjg4mFnBUywWVa/XVavVVKvVFs5tWdawMmgw/zRPnz6VdLddb7SSyOQ5AQAAAADxCPrBVm8wxwfbXgDC0um0LMsKNQev1+tqNpvK5XKyLEuu6+ri4kK5XE69Xk+WZUWev1AoqNPpqFgsqlqt6vz8XB9//LEsy9LFxcUw4WXbtt6+fRu6mpzpc+LXXr16pdvbW+3v7+vs7Gzby5npj//4j/XN73wnsWs05X1MOhPex6SvMenrM4UJ7yNrfBhMeA9NWOPAn/zJn+jffvzxtpdhJBM+ZxPW+Pnnn4f+CzwkqSAISBMmjO/7evnypRzHked58n1f6XRah4eHsm1b+Xxez549WznRUq/X9ebNm9BrnJ6eqlwuL9yqZ/qc85ycnOjq6krHx8e6vLzc2hzrtJb1/eIX0kcf3d3//HPpW99aeZ5vSTpI6HsoJf9zlh7AGuOKuwWS/j4mfX0Sa4wLa1xd0tcnscZYjPz78E+PjvR3P/3plhc0XdLfx6SvTzJjjY8ePVK/39fe3p6++uqrbS/n3gbv9Yf6pv7F1/7VVtfy51/8V73XLxP9ueMOlU4JlE6nI22XW1WlUlGlUnmQcwIAAAAA7inob3sFMAQ9nQAAAAAAABA7kk4AAAAAAACIHdvrAAAAAABAZFxBDlFR6QQAAAAAAIDYUekEAAAAAACio5E4IqLSCQAAAAAAALFLBUHAZkxgxNe//nV98cUXkqS9vfl52W9/+9v66KOPJp6/vr5Wv9/X3t6ejo6O1rLOVaxlfUEg/fSnd/d/67ekVGrleX4qKZXQ91BK/ucsPYA1xhV3CyT9fUz6+iTWGBfWuLqkr09ijbEY+ffh/+7t6btJXKOS/z4mfX3S9tf4+eef6+c///ncMf3+r6uCTD79Pjk50dXVlSTpQ31zq2t5r19Kko6Pj3V5ebnVtWA+kk7AmEePHoX+YQAAAACAVaVSKaPPM0aTTklB0in56OkEjPnGN76hX/7ylwqC4N6VTgAAAAB2X9RKp1QqpW9+c7vVQav67ne/u+0lTEjimhBGpRMAAAAAAABiRyNxAAAAAAAAxI6kEwAAAAAAAGJH0gkAAAAAAACxI+kEAAAAAACA2JF0AgAAAAAAQOxIOgEAAAAAACB2JJ0AAAAAAAAQO5JOAAAAAAAAiB1JJwAAAAAAAMSOpBMAAAAAAABiR9IJAAAAAAAAsSPpBMSkXq8rn8/r4OBAqVRKmUxGxWJRjuNse2nYINd1VS6XlclklEqlhrFQrVbl+/69511HfJkyJ9ZnEKftdnvpY02JH2LSHK7rqt1uq16vR/58TIkZ4jAZfN9XtVpVPp8f/v9v8Fk0m817z2tKzBCHALYiALCSTqcTpNPpQFKQy+WCTqcT9Hq9oNVqBZZlDZ+/ubnZ9lKxRjc3N0GhUAgkzb01Go2l5l1HfJkyJ9arUqkM47LVakU+zpT4ISaT7+bmJqjVaoFt24GkIJ1OB5VKJeh0Ogs/F1NihjhMjlqtNoyzWq0WdDqdoNvtBo1GYxiDlmUFnU4n8pymxAxxCGCbSDoBK+h0OsOTtlKpNHXM6B8y/GO+m25uboZ/tEW5zYqVceuIL1PmxHqNfmbLJJ1MiR9iMtlubm6CUqk0/Ixs2176RN+EmCEOk2PwpZBt2zPHjMZkt9tdOKcpMUMcAtg2kk7APd3c3Ay/NbIsa+a4Xq83/Mc+l8ttcIXYlFwuN/xjttVqBb1eb/gN4mg1yTIn+euIL1PmxHqNfmbLJJ1MiR9iMtkajUYo/pat/jQlZojD5BhUOElamFAZfIGUTqfnjjMlZohDAElA0gm4p0GiIcofzaPbrpb9AxvJ1mg0AklBpVKZOabX6w2/RRzcFv1Bu474MmVOrFehUAgsywqd+EdJOpkSP8Rkco0m4S3LCnq93tJzmBIzxGFyjFbULRJ127EpMUMcAkgCkk7APYx+IxTlm7NWqxU52QCzWJYV6VvB8ZiRNHM7yTriy5Q5sV6DJGm3210q6WRK/BCTyTV6QptOp++1hceUmCEOk2N0a1mhUFg4fvSzmPVlkikxQxwCSAqSTsA9jO77j1qGPPoP/zJNe5Fc3W430h9yA6Ml/pKCWq02ddw64suUObE+gxOQwYnUMkknU+KHmEym0WoLSfeqcAoCc2KGOEyOQaJdmr+9bGA08cK/0cQhgHjsCcDSRi+ra9t2pGMsyxref/PmTexrwua9efNGpVJJ6XQ60vhcLhd6/Nlnn00dt474MmVOrE+xWJRt26rVaksfa0r8EJPJ02w2Q5djbzQaofd82bkGkhwzxGFyHB4eDu97nifP8+aOPz8/H96fFaemxAxxCCApSDoBS3JdN/T4yZMnkY4b/Qe/3W7HuiZsx/Pnz5c6gR//oy+TyUyMWUd8mTIn1qdarcp1XbVaraWPNSV+iMnk8TxP5XJ5+Ni2bZVKpXvNZUrMEIfJMp44Go3HaQbvfTqdVqFQmPi5KTFDHAJIEpJOwJJGv7GVZn8TNm583PgfBDCPbduRq5wkyff90ONpsbOO+DJlTqyH67qq1+v3rjAxJX6IyeQpFouhxx9//PG95zIlZojDZLFtO5RIcRxnIi4Hms3msBJq1hdKpsQMcQggSUg6AUsaLb2WFDnp8Pjx49Dji4uLuJYEQ4yX9Y9vt5PWE1+mzIn1ePr0qQqFwr0rTEyJH2IyWTzPC52wzqocicqUmCEOk+f169ehx+12eyLx5DjOsAqq0WjM/P+lKTFDHAJIEpJOwJLGEwf3/fao1+vFtiaYYfSPt1l/0K4jvkyZE/EbnFiNn3Qtw5T4ISaTpdFohB4PkuyDE/5MJqNUKqWDgwNls1nV6/WJatBRpsQMcZg8tm1PbC1ut9vKZDLDStB8Pi/LstTpdOYm6E2JGeIQQJJ8sO0FAKZZ1IQyqnl/XGM3jZ6EVavVqWPWEV+mzIl4tdtttdttdTqdpbaBjjMlfojJZBltYizdNXTOZrMT23V835frunJdV9VqVa1Wa2pFlCkxQxwmU6FQUKPRCPV08jxP2WxWklSpVCL1aDQlZohDAElCpROwpPv+Azx+0vfu3bvVFwNjjG41qdVqM791XEd8mTIn4uP7vorFokql0tRtnMvOdR/E5MPled7E5/HJJ5+oXC7r5uZGQRAoCAL1er2JqpJisTi1gbEpMUMcJlepVJqowBtwHCfSZ2dKzBCHAJKEpBOwJXx79LAMvkG1LEuVSmXtr7eO+DJlTtz1cbIsa+YJ1jaYEj/E5OrGqyzS6bQ+/fRTlUql0EntIEbH4/TFixdr+xxMiRnicD1KpdLU7XOu6+oHP/jBxhpnmxIzxCGAOJB0Apa0yjaVdcyD5HNdV81mU+l0Wp1OZ+7YdcSXKXMiHvV6Xa7rTvQwuS9T4oeYTI7xpNN4smnceCLA9329fPkyNMaUmCEOk61cLqvZbKpUKk1UHPu+r2w2O3Hlt1GmxAxxCCBJSDoBSzo8PEzUPEi+Fy9eSJLevn27sJnnOuLLlDmxukFfnFqtFrpM+CpMiR9iMjnGmw8/efJk4THjfe7q9XrosSkxQxwmVz6fV7PZVKVSUaPRmLq9czBuVuLJlJghDgEkCUknYEn3/dZnvESZb48ehnK5PKw6iZIEWEd8mTInVlcsFmXbdqxbOE2JH2IyOe7znlqWNfH/yNGtTqbEDHGYTIMKplwuF2oY3mg0plaFFovFqVvLTIkZ4hBAkpB0ApZ0enoaehx1v/t4M8ZMJhPXkpBQzWZTzWZTjUZj6tWYpllHfJkyJ1ZTr9fleZ4ODw9VLBYX3kY/s5cvX4Z+NtrI2ZT4ISaT477v4fhnOLpNz5SYIQ6Tp1gsDhOY0/rcFQoFdbvdUILF9/2pV5k1JWaIQwBJ8sG2FwCYZnB53QHP8yJVsIxvN1j1ilJINsdxVC6X1Wg0ppbvz7KO+DJlTqzms88+k6S5/UhmGVyyfsCyrGGi1JT4ISaTY7w6IuoJ7/gJ7ugJsCkxQxwmi+d5wyS6bdszt7jbtq1utxuKwWazqVqtFopnU2KGOASQJFQ6AUua903sPKN/dKfT6YW9fWAu13WVz+dVq9WWSjhJ64kvU+ZEMpkSP8Rkctz3sxhPVo32kzElZojDZBmtbBr/bMZNu+LnxcVF6LEpMUMcAkgSkk7AkmzbDv1hfH5+Hum40T9cFv3hA3N5nqenT5+qUqncq6/OOuLLlDmxmlqtpiAIIt9GTyZarVboZ6M9T0yJH2IyOcYrKsarJ6IajVFTYoY4TJbRJEqUrWLjXxSNJ2tMiRniEECSkHQC7uHZs2fD+6NbUuYZHTetTwDM53mestmsSqVS6KR90THjV2laR3yZMieSyZT4ISaTY3RbTtQtn+Pb8MaTV6bEDHGYHKNbNKMmPxdtQzMlZohDAIkRAFhat9sNJA1vi3Q6neFYy7I2sEJs2s3NTWBZVlAqlZY6zrbtoNvthp5bR3yZMic2x7Ks4efRarXmjjUlfojJ5Bh9byUFNzc3C48plUrD8blcbuLnpsQMcZgclUplbkxNY9v28JhOpzPxc1NihjgEkBRUOgH3YNt26Fvc0Ss9TTN6OV6+Odo9vu8rm83KsixVq1V5nrfw5jjOsNHn+Leq64gvU+ZEMpkSP8RkcuRyudD2uJcvXy48ZrQialq1qCkxQxwmx/Pnz4f3Ly4uIjW1H91SN62RtikxQxwCSIxtZ70AU/V6veE3QrZtzxx3c3Oz9LdsMMvot6LL3hqNxtQ51xFfpsyJzVim0ikIzIkfYjI5xister3ezLGjVRbzKkZNiRniMDlyudzwPa5UKnPHjsZhrVabOc6UmCEOASQBSSdgBa1Wa+EfJ4OERDqdjrS9AGZZJeG0KO+/jvgyZU6s37JJpyAwJ36IyeRoNBqhLTvT3uvB9uRFJ8YDpsQMcZgMNzc3QTqdjvRlz2BclMSLKTFDHALYNpJOwIo6nc7wj5RCoRB0u93g5uYm6HQ6w3/EbdvmH/EdVCgUVko4Ren/tI74MmVOrNd9kk5BYE78EJPJMfpZpNPpoFarBd1uN+h2u0GtVhv+bJmeeKbEDHGYDDc3NxM9wxqNRtDtdoNOpxPq/TSvwmmcKTFDHALYJpJOQExqtVpg23boD+tcLrfUyRwwyzriy5Q5kUymxA8xmRyNRiPI5XKhz8K27aBSqczdejePKTFDHCZDt9sNSqVSKOluWVZQKBSCSqVy76SLKTFDHALYhlQQBIEAAAAAAACAGHH1OgAAAAAAAMSOpBMAAAAAAABiR9IJAAAAAAAAsSPpBAAAAAAAgNiRdAIAAAAAAEDsSDoBAAAAAAAgdiSdAAAAAAAAEDuSTgAAAAAAAIgdSScAAAAAAADEjqQTAAAAAAAAYkfSCQAAAAAAALEj6QQAAAAAAIDYkXQCAAAAAABA7Eg6AQAAAMAO831fqVRq4c113W0vNbHq9frC9y+TyWx7mUDipIIgCLa9CAAAAADAevi+r4ODg+Fj27b1+vVrWZYVGpdOpze8MrP4vj+8/+7dOzmOo3K5PHzOsiz1er0trAxILpJOAAAAALDDxpNOrVZLhUJhiyvaHcViUe12WxJJJ2AattcBAAAAwANCRVN8xqvFAISRdAIAAACAB+Tw8HDbSwDwQJB0AgAAAAAAQOxIOgEAAAAAACB2JJ0AAAAAAAAQO5JOAAAAAICZfN9XvV5XNpsdXqltoN1uK5/P6+DgQKlUStlsVs1mc+Y81WpV2Ww2NH58zqSvA0B0H2x7AQAAAACw66rVqur1+r2OtW1b3W435hXN57quHMfRmzdv5LruxM89z1OxWJz4meu6KpfL6na7ajQaw+fr9bqq1erU1ykWi6pUKqrVaoldB4D7IekEAAAAAGvm+74kybIslctlWZY1ddz5+flEcmrTSRDP8/Ty5UtJmproaTabKpfLsm1btVpNlmUNjxn8ns1mU8ViUblcTvl8XhcXFyqVSspmszo8PJz4Pev1+sT7kpR1ALi/VBAEwbYXAQAAAAC7rFwu65NPPtHNzc3ccdlsNpRgKZVKoUqd+/B9XwcHB8PH3W5Xtm1HOna8MsiyLL17906vX79WoVAIjfU8T5lMZvh48BqHh4dqtVpKp9Oh8Y7jKJ/PDx/P+12Tso5xoxVslmWp1+tFOg54KOjpBAAAAAAb8PHHH8/9eb1eDyWc0un0ygmnVU1LTt3c3EwkeqS7pEsulxs+dl1Xvu+r0+lMJHokKZfLhSqKHMdJ/DoALIekEwAAAACs2bt37+ZWF3meN9FrqNVqrXtZCx0eHoYeT0vyjBqtGJI0tX/SqNH3xPO8xK8DwHJIOgEAAADAmtVqtVD1zbhisRh6XCqV5o5PqvFKovFk0bjx3klxJXySsg7goSPpBAAAAABrNq8xdbPZnNhWZ+oV1BYldxYZNADflXUADx1JJwAAAADYEs/zVC6XQ89Na3a9qx4/frztJUhKzjqAXUPSCQAAAAC2ZDzhVCgUjNxWBwDTkHQCAAAAgC1oNpuhK6Wl02m9fv16iysCgHiRdAIAAACADfN9f+KKaq9fv34w2+oAPAwknQAAAABgw4rFYqhZdaFQUKFQ2N6CAGANSDoBAAAAwAa122221QF4EEg6AQAAAMCG+L6vFy9ehJ5jWx2AXUXSCQAAAAA25MWLF0tvq6vX62o2m2teGQDEj6QTAAAAAGyA4zhqt9vDx1G31XU6HR0eHq5zaWvz7t27bS9BUnLWATw0JJ0AAAAAYAOKxWLocZRtdb7vy3EcWZa1xpXFZzy5M1rVNc1nn3220+sAHjqSTgAAAACwZuVyOZT4yOVyka5WN+j/tK2kk+d5oceLkjfjP+/1ekuNH3+9pK0DwHJSQRAE214EAAAAAOwqx3GUz+dDzzUajamJJN/39e7dO/V6PbXb7WHyY5XTNt/3dXBwMHzc7XZl23akY7PZrFzXHT5Op9P69NNPp1Zo+b6vbDYbStik02l1u92pv6vnecpmsxPJuE6nk9h1jKtWq6rX65LuEoOLklvAQ0OlEwAAAACsUbVanXiuXC4rn89P3IrFosrlsur1+jBpsukr27muq3w+r4ODg1CiR/p1AiubzQ77U7muq2w2q4ODg6kVSZlMRtlsdtgM3XEcZTIZZTKZiQojx3F0cHCgfD6vP/3TP03EOqh6Au6PSicAAAAA2GGrVDphPiqdgPmodAIAAAAAAEDsSDoBAAAAAAAgdiSdAAAAAOABeffu3baXAOCBIOkEAAAAAA8IjbHjM96AHEDYB9teAAAAAABgc6rVqizL0unpaej5TV8lzzTjCaaLi4vhlfAATEfSCQAAAAAeEN/3lc/nJ57nqnaz1et1VavVbS8DME4qCIJg24sAAAAAAADAbqGnEwAAAAAAAGJH0gkAAAAAAACxI+kEAAAAAACA2JF0AgAAAAAAQOxIOgEAAAAAACB2JJ0AAAAAAAAQO5JOAAAAAAAAiB1JJwAAAAAAAMSOpBMAAAAAAABiR9IJAAAAAAAAsSPpBAAAAAAAgNiRdAIAAAAAAEDsSDoBAAAAAAAgdiSdAAAAAAAAEDuSTgAAAAAAAIgdSScAAAAAAADEjqQTAAAAAAAAYkfSCQAAAAAAALEj6QQAAAAAAIDYkXQCAAAAAABA7Eg6AQAAAAAAIHYknQAAAAAAABA7kk4AAAAAAACIHUknAAAAAAAAxI6kEwAAAAAAAGJH0gkAAAAAAACxI+kEAAAAAACA2JF0AgAAAAAAQOxIOgEAAAAAACB2JJ0AAAAAAAAQO5JOAAAAAAAAiB1JJwAAAAAAAMTu/wM14AN/FUneCwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"nbins = 150\n",
|
|
"vmax = 150\n",
|
|
"\n",
|
|
"a1 = plt.hist2d(\n",
|
|
" brem_z_found,\n",
|
|
" brem_x_found,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax,\n",
|
|
" range=[[-200, 9500], [-3200, 3200]],\n",
|
|
")\n",
|
|
"plt.vlines([770, 990, 2700, 7500], -3200, 3200, colors=\"red\", lw=1.5)\n",
|
|
"plt.ylim(-3200, 3200)\n",
|
|
"plt.xlim(-200, 9500)\n",
|
|
"plt.xlabel(\"z [mm]\")\n",
|
|
"plt.ylabel(\"x [mm]\")\n",
|
|
"# plt.title(r\"$e^\\pm$ lost brem vertices\")\n",
|
|
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
|
|
"\n",
|
|
"# plt.suptitle(\"brem vtx of photons w/ $E>0.1E_0$\")\n",
|
|
"plt.colorbar(a1[3])\n",
|
|
"mplhep.lhcb.text(\"Simulation\", loc=0)\n",
|
|
"# plt.show()\n",
|
|
"plt.savefig(\n",
|
|
" \"/work/cetin/Projektpraktikum/thesis/brem_vtx_hist2d_found.pdf\",\n",
|
|
" format=\"PDF\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAOWCAYAAABF0OMKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADN2ElEQVR4nOz9f5Aj6X3feX6B6p/snmpU9ZBiqes8apRnZNmx0g1Q7Q355BBvC5gZrU3HSgK6HbMkwwxPAyvHyndXZxbYur0f2rXZArTq2DjfnQcYreUjuROuQYm627mTOAO0JJ599p26gKG1u741SWQPGVXCiOR0ZVd3T/8s5P1RBBpAPolKIBPITNT7FVExVU8/+eQDIOsHvvM8nwwZhmEIAAAAAAAA4KKw1xMAAAAAAADA9KHoBAAAAAAAANdRdAIAAAAAAIDrKDoBAAAAAADAdRSdAAAAAAAA4DqKTgAAAAAAAHAdRScAAAAAAAC4jqITAAAAAAAAXEfRCQAAAAAAAK6j6AQAAAAAAADXUXQCAAAAAACA6yg6AQAAAAAAwHUUnQAAAAAAAOA6ik4AAAAAAABwHUUnAAAAAAAAuI6iEwAAAAAAAFxH0QkAAAAAAACuo+gEAAAAAAAA11F0AgAAAAAAgOsoOgEAAAAAAMB1FJ0AAAAAAADgOopOAAAAAAAAcB1FJwAAAAAAALiOohMAAAAAAABcR9EJAAAAAAAArqPoBAAAAAAAANdRdAIAAAAAAIDrKDoBCDxd172eAgAAAACgD0UnAIFUr9cll8vJ3NycXL582evpAAAAAAD6HPF6AgCmT71el/X1danX66Jpmty6dUt0XZdIJCLRaFTm5+clFotJMpmURCJhOj6dToumaVKr1Tptuq5LtVqV9fV1qVarrG4CAAAAAJ8LGYZheD0JwG9KpZJks9mhj4vFYj2FklGFQqGhj4lEIrKzs6P8t3Q6LRsbG0OPWalUlEUhFV3X5erVq1IoFIY+TywWk0QiIUtLS1KpVGRjY8P0XLYLUfV63XR8KpWScrk89HkBAAAAAOPD9jpAIZPJyM7OjtRqNUmlUgP7JhIJqVQqnf5uMAxDGo2GFItFiUQilv2i0agUi0VpNBqWBScRkXK5LDs7O7aKSGtra1Kr1WRnZ8d2wam9za2/4NQuBrXHaz+uSqUimUym89jq9boUCgXJZrOd4lj/Sqb2OIZhSDQatTUvAAAAAIB3WOkE2JDNZqVUKpnaJ7HCRtM0WVpaUv7bzs7OwKKUlXg8rlwxVCwWJZPJDDW3ZDIpmqb1tGcyGSkWi7bGKBQKksvlTO3RaFQajYbymP7Xg5VOAAAAAOA/rHQCbLDaajfKFrxhRaNRicVipvZUKjVSwUnEet7DFJyq1aosLS31FJwikYjUajXbBSeR/ZVVjUbD9Fhu3bplecyojxsAAAAAMDkUnQAbrLZzTWqbl+o8Ts6tOnaYQk69XpdkMmk6/vr168oCmZ353Lx5s2cOBIUDAAAAQLBRdAJssCrIzM/PT3YiPqBpmqysrJjay+XySAWntvYqqWm0sbFh2oKIp6rVqtdTAAAAADAGFJ2AAFAVt86ePevqeHYLaOl02rQKKZPJ2A4dHyQajcra2prjcSalXq9LNpuVpaUlCYVCMjc3J0tLSxKPxzt3DNzY2JDLly8fWFipVqud46e9CKNpmpRKJUkmkxIKhUyr5rx2mF4LAAAAYJyOeD0BAMFRrVaVAeT5fN61c1y5cqVzFzxd132Z36Truly+fLlzp71oNNq5y6GmaVKv16Ver3f+vX3MIO1inq7rks1mLUPUg0zTNEmn06Jpmq+3Tx6G1wIAAACYBFY6AbBNFUDuJNBcJRKJDBVo7oX2KiaR/Tv+NRoNKZfLUi6XpVarSaPRMK38OqhwcRi2akajUanVarKzs+PrFW2H4bUAAAAAJoGiEwBbqtWqMpfoypUrrp8rnU6LyOA72A1SrVYlnU73bHtLJpNSKpUcz61QKHS2XK2trSkLZNFoVCqVSs8KsIMynYrFokSjUYlGo1Iulx3P0+/8tqWu22F7LQAAAIBxYXsdAFus3nw7CQ+3kkgkJJ/PD73iRNd1WVlZMW0B1HVdqtWqVKtVyefzjkLPr1692vlctfKr29ramnz44YdSKBQOLKAlEolDtY3Lq9VE2WxWisXiwD6H7bUAAAAAxoWVTgBsUQUquxEebmVtbW2obXuapsn58+eVmVP9/eLx+EgB0aNkEeXzeYnFYty9zgdKpZIrq90AAAAA2EPRCcCBNE1TFk3GscppFLqud8KfU6mUFItFqdVqUqlULLODksnk0IWg/oKT3cLVlStXfB2cfRhomnbgyjQAAAAA7mJ7HYADWRVnlpaWJjwTtXbxp1KpmFZfJRIJyWazyiJTOp2WWq1m+zzRaLTn61wuJxcvXjxwRVb7znZ+vRvftNN13dcZUgAAAMC0YqUTgANZFZ38dJcvVcGprR3s3a9erw+1zS4SifQUjXRdl3g8bmvFlGEYFJw80M75YnsjAAAAMHkUnYCAyuVyEgqFRvqIx+NDnctqa5hfiiiRSOTAfKloNNpzN7k2Vdsg/f01TZOlpSVXsoLq9bpks9kDV5Dpui6lUkni8XjPedtbyObm5iQUCsnS0pIUCgXT8ZqmSS6X69zdb2lpSbLZrPJ1bp+n/xrql0wmO+N1f7i5rbBUKvWcZ25uTuLxuPIxiuw/n6qcr+75WT3Xdl+LNl3XpVAoSDKZ7Dz/7fnlcjlbRS9N06RQKMjS0lLPnLtfg6Wlpc5WUgAAAMD3DAC2iIjpY2dnZyLnzmQyyvO7+RGNRoc+f6VSmcjj77e2ttYzj0QiYfvYSCRiehzDSiQSyucjFosZtVptqLFqtZqRyWR65hWJREz9dnZ2jHw+b8RisZ5zFotFwzDMz0n3RyaT6YwzqF80GrW8pvuvASv5fN7W90itVrP9GpTL5c7zUi6Xe8aIRqOWc9/Z2TFqtZppTrVareejezw7r0W/YrHY6Z/P541arWY0Gg2jXC73vF6pVMp07M7OjrG2ttZ5HN1z3NnZMb3e3fNqNBoHzg0AAADwEiudgIDKZDJSq9VG+jjolvH9rFY0+WW1xTArrlQrog66412/SqXSyWnqHycej9teiaJpmqyvr9teTROLxUxh2LVaTeLxuNTrdSmXy9JoNGRnZ6cnQL1UKkm9XpdkMinValUqlYrs7OzIzs6OVCqVzvOnaZpcvXpVee50Om1rjqrnxYlqtdo595UrV3rGj8ViUi6XRWR/7pcvX+45NhKJSCwWMwXet9u6/23Y16Itl8tJNpuVSCQijUZD1tbWJBaLSTQalVQqJbVarTPnjY0NWVpa6rk2bt26Jclk0nRdbm5uyvnz5ztbQxuNhhSLxc5rpes6wegAAADwP6+rXkBQiM9WOuXz+ZHH619lIgesdOpfKdL+aK+ymbT+1TqqFSRW2qtm3HgcVs/LKON2j3XQ6pr+1S9WK876V2R1r3jq1v2cWJ27UqnYWpm0s7Pj6kqnVCp14DV/0Dh2595m97XoXuF00GvdvZLJamVe9xwjkYjyde2/fif1MwgAAAAYBSudABzI7yudhtF/BzqR0R/H2tqa7OzsWK7uad81z874qnlZ6Q5wz2QylnlW/Xdss1rh1j1/Xdd9+7paXYfd7W4Ehtt9LXK5XOf8mUzGVl+R/dVbqgD77sfxxhtvKF/X/mttc3PT1lwBAAAAL1B0AnAgqzfhjUZjwjNxTlW4+PDDDx2NVy6XpVarmbZxiewXGFZWVlwt5NjdTtj9ug2zBdFPd3p74403JJ/PS7lcPrCwIzK5QmipVOqcy06RKpPJ9LwGwwbYd+s+n59eKwAAAKAfRScAB7JaSaNareF3qgLB2bNnHY8bi8Us87Lq9bopb2gSRr274K1bt9ydiAORSETW1tYsM7SGzeNyS6VS6Xxud2VU9/dREL93AAAAgGFRdAJgi2oVj6Zpvt2KNYxhtrYdJJPJSKPRMBV8NjY2fF1oGLVANWmapkmpVJJqtaoMCZ/kPIbVf51Nw/cOAAAAMAhFJwC2XLp0Sdnu50KKlf4Ci5tFp/Z4tVrNdJ5h7xqIp9p33ysWiwNzrCalu2BktwDVf2c8P60oAwAAAMaBohPgA/V63fYt6b1ilacTxEJK/woTO6tlqtWqxONx2+eIRqPyxhtv9LR5tRUs6LLZrMTjcYlGo46ykNw0Snh5dwC8iPvFTgAAAMBvKDoBPnD58mXfb7WJRCLKXJ1qtRqoYkr/82x3xUw0GpV6vT7Uyq7+54vQ5+Fls1kplUoi4ix8223dBSO7d/zrXtlEwQkAAACHAUUnwGPtok3/7e27ub0NZ9TxrN70d98O3i3jKsL132I+m83aOq5dJLDbX8Wr/KFJcvNardfrnYJTNBr1Ve5U/3bT9jwH6b7bo6qACwAAAEwbik6Ah3Rd72yrG/ZN6IcffujqXOwUC6y2N1WrVSkUCq7NRdM0icfjjgo8VvrvOjbM8x6NRkXTNNtFtv6VTVa5WEHQvzXMqijo5mqu7lVlg8b1YpVgKpXqKYLZ2Wba/XiuXLkyjmkBAAAAvkLRCbBhHG9qdV2XlZUV0XVdIpHI0Ntt3J6T3fHW1taUW9JyuZwroeLVarUTuDyO7VQbGxudz4fNo2q/RoVCwdbKlu7xo9GorK2tDXU+K3Zfq+5+Bx1z0L/3r9JSPX5VQc7NlU/dr12bnfP1f2/1F7BG/V7qzuzSNG3g9V+v1zvbUPP5vK9WbQEAAADjQtEJsMFqlcWob6jbodTtN6EXL14c+vxO3sw7XY1SqVSUK4SSyeTIK550XZdsNivJZNLy7m+DjrWjVCp1Hvsod0DrLl5ks1nJZrOW5y6VSj3PRfcKK5Xu19PrfC+r83c/X7lcTrLZrFSrVdnY2JBsNitLS0umgord7x3VOfsLXel0WgqFQmdl3dLSkmia1vO6FItFqVarksvlOmP2F53ar5umaT2ZUaq5DXotUqlUT2E0nU4r++u6LpcvXxaR/evOqvho93Xvfk69vlYAAACAgQwAB8pkMoaImD4SiYTRaDQOPH5nZ8eoVCrG2tqaEY1GTeOUy2XLYxuNhvLcImLs7OyM9HhisZhyvGKxONQ4a2trynFisZhRqVRsjbGzs2Pk83kjEol0ntODHlf/eSORyIHn6X4eE4mErbn1KxaLysebSqWMtbU1o1gsGplMpuc1tnuN9L8mVtfEzs6O6bm2kkqlbL2+lUqlp18mk7E8d/t16v+IRCKd17y7TywWMxqNhuk1tTu3/n7dH/l83jAM9fdnKpXqGcfqWlU9VruvRVu5XO485kgkYhSLRaPRaBiNRsMoFoud66E9XxW7r0F/v1GvZQAAAGASKDoBA9RqtYFvet36UBVZdnZ2jGKxaPkmX0SMaDRqFItF28WnWq1mJBKJgXNZW1uzVSRpq1QqlkWsSCRipFIpo1gsGpVKxajVakalUjGKxaKRz+d7jotEIge+uW9TFeKi0ahloau7KNBfjBhGpVLpzLNcLhuZTMZIJBJGLBbreZ3aj/ugwlv7+rJ6jWOxWKdQMahvNBo1UqlU5zroL3z1FynaY1YqFcvrIRqNKgsfOzs7PePHYjFjbW2tp0+7rf862tnZOfDxqs6Zz+c754tGo8ba2lrPNb+zs9N5HN3PWb/uom8sFuu53oZ5LawUi0UjkUj0FKDax1l9jw76nux+DRqNxsB+B80NAAAA8ELIMAxDAPQolUpjCbFWicViUqvVetpCodDQ40QiEdnZ2VH+WzqdVubhHKRSqdjegraxsSFXr17tbBm0KxqNSjablUwmM1TOTTs/qP9xRSIRWV5elkgkIrquy+bmZic3q1wuD72lDgAAAAAwGopOAFyl67pUq1VZX18XTdM62TkiT297H41G5cKFC5JKpYYOUD/ofO1zts+zvLws6XSaYhMAAAAATBhFJwAAAAAAALiOu9cBAAAAAADAdRSdAAAAAAAA4DqKTgAAAAAAAHAdRScAAAAAAAC4jqITAAAAAAAAXEfRCQAAAAAAAK6j6AQAAAAAAADXUXQCAAAAAACA6454PQHAb06dOiX3798XwzAkHB5cl33mmWfk9OnTE5oZAAAAAD+5e/eu3LlzZ2CfVqsloVBITp48Kffu3ZvQzNy3vLwsH3zwwdjPY+c5Fdl/L/YX/+JflM3NzbHPCaMLGYZheD0JwE9mZmak1Wp5PQ0AAAAAUyQUCgX6fcbi4qJsb297PY0e586dk62tLa+ngQFY6QT06S46jbrSqdlsSqvVknA4LAsLC2OZpxNjmZ9hiPzZn+1//uM/LhIKOR7nz0Qk5NPnUMT/r7PIIZijW9fdAfz+PPp9fiLM0S3M0Tm/z0+EObqi6/fDB+GwfNKPcxT/P49+n5+I93O0u9JJRGRa1nuEwyILPza+UsLduy25c29wcS7AtbtDh6IT0OcTn/iEbG9vO6qat/8vwMLCgi8r72OZ3717Iu0C3Le+JXLqlONxTonInE+fQxH/v84ih2CObl13B/D78+j3+YkwR7cwR+f8Pj8R5uiKrt8Pz//Yj8m3/ThH8f/z6Pf5iQRjju3/qX3Q/9AOioUfOyLfq5/3dA5/IXZTtptPPJ0D7KHoBAAAAAAAbDKkJV4vNZqOVWOHgadFp+eff97L0/cIhULyrW99y+tpAAAAAAAATAVPi06NRkNCoZCne1vb5w+NKQcEAAAAABBsyXDadt9KqzzGmfjDnuH1SicExXRsKnVgWsLcAAAAAAAA/MTzTCfDMCSVSkk0GvXk/LquS6lU8uTcAAAAAAAA08rzolOpVJLXXnvN0zmkUil5+eWXPZ3DQTRNk3w+L9VqVTRNk0gkItFoVJaXlyWXy41ctCsUClKpVGRzc1N0XZdoNCqxWEyy2awkEompHhMAAAAAMBxDRFoeB3mzXyk4PC86+aFgcOHCBa+nMFChUJBcLtfTpuu61Ot1qdfrUiqVJJ/Py9ramu0xq9WqpNNp0XVdEomElMtliUajUq/XJZfLSTKZ7LRHIpGpGhMAAAAArKjymw5DThMwDp4Xnebn572egq8lk0mpVqsSiUQkkUhINBoVTdOkXq+Lpmmdfu3VTqlU6sAxq9WqJJNJERHJZDJSLBY7/9YeIx6PS7ValXg8LrVa7cCCTlDGxL7V1VXZ3d2V2dlZr6cy0K9duSInn33W62lYCsrz6HdBeB79Pke/zy8ogvA8MsfDIQjPYRDm2Parv/qrXk8hsILwOgdhjs8884zcvn1bnnnmGa+nAkxcyPAwSXtmZkZ2dnY8/wFx+/ZtmZ+fl729PU/n0S+Xy0mhULBcxaRaAXXQy6nrupw/f76zRa3RaCj7aZomS0tLIrK/Gq1SqQR+TLsWFxdle3tbzp07J1tbW56NETj37omcPr3/+d27IqdOeTsOROQQXItcL4Ex9dciAoNr8ZAIyO8Hrkd/cnul07S8zu3H8eMLM/Kt2jlP5/JCfFv+rLkX+Of0MPD07nV+unOcn+Yisl9MaecYWW2bW1tbk0wm09NWr9cHjtveqiYipoJVt+5VU9VqdWDYelDGBAAAAAAAk+Np0Smfz3u+yklE5MyZM5LP572eRo9cLif5fP7AzKv+eVerVcu+mqb1/PvFixcHjn3p0qWe+QR5TAAAAAAAMFmeZjp94QtfmOj53n//ffmJn/gJX8zlILqu2woGb9/Frp3vNCjTqLtAlUgkDsw/6s6H0nVdNjY2TJlRQRkTAAAAAOxQbaVTbbmz6jv1DJE9r3cK+WujEgbwdKXTpGWzWa+nYNsw2US3bt3qfL68vGzZr3vrWSwWszV2NBrtfL6+vh7YMQEAAAAAwGQdqqLT5uam11Nwna7rneyjRCJhWaTpz3q6cOGCrfG7x9vY2AjkmAAAAAAAYPI83V43qvfff79TaLFD0zQpFotDHRMUb731lojsr/Qpl62XdvZnPXWvDBqkv1+9Xu8UeIIyJgAAAADAPS32t8GmQBSd3n//fcnn81KtVjvZRcMyDENCoZDLM/OWruuSzWYlFotJuVwemH1048aNnq8PyklqO3v2bM/Xm5ubnWJOUMYEAAAAAACT5/ui05UrV6RQKIjIfuEI+zRNk2QyKZFIRK5fv35gcaa/WDfqCqJGoxG4Mb2wuroqu7u7vrg7Iw43rkX4Bdci/IJrEX7C9YggMsSQPY9XOhmstAoMXxedfvd3f7dzJ7NQKCShUIjCk+xnFqXTT++eMDc3J/l8fuDd7kZdIdave4tiUMb0wurqqqfnB9q4FuEXXIvwC65F+AnXI4Bp5+ui09WrV0VEOsWmaDQqsViss6qlf0uVyocffii6rstbb70lt2/fHut8x0nXdSmVSlIsFpWFmVwuJzdu3LDMdRq1CNO/gqr7TnlBGXNUzWZTFhcXHY+zurrKHxQAAABAwFy7dk2uXbsmIiI/NNTvL+y8X2g2m67OCwgSXxed6vV6J4epUqnIysrKyGOtra3J888/79bUJq5arUqj0ZBEIiGappkCt0X2V0AVCoWBK56cGscKIr+O2Wq1ZHt72/E4u7u7jscAAAAAMFm7u7sHvh9w4/1CEBEkDrt8XXSKRCJy+/ZtWVtbc1RwEtnP/Dl//rxLM5u8VColqVSqp61UKkkul+spsORyOclkMqaVP5FIxJVCTPe4QRlzVOFwWBYWFhyPwx59AAAAIHhmZ2fl3LlzIiLyw231Sqdnz80fOE6z2ZRWq+Xq3KbZPynelddLdwf2+fPv83wGha+LTtFoVN577z25cOGCK+MVi0VXxvGLTCYjiURC4vF4T6GmVCqZVjvNz8+7UsyZn5/v+TwIY45qYWFBtra2HI8DAAAAIDiS4af5uT8lPysiIhVDHWNix+Li4qFdETWKO3db0vyAotK08HXRaWVlRd577z1X8nna402baDQq169fl3g83mm7ceOGqd+oK3/6C0D9q5KCMCYAAAAAwD17Y7zB16nTIVn4ZHhgnz//fktYPBYMg19Jj/3ar/2aGIYh9XrdlfF++7d/25Vx/CYWi/VsvVMFjS8vL/d8bXc1UX/Bb2lpKXBjAgAAAACC4T/JnJb65o8N/PixT/i6lIEuvn6lzpw5I7/xG78h6+vrcufOHcfjTdv2um6XLl3qfK4q1HSvhBJRF6ZUGo1Gz9eJRCJwYwIAAAAAgMnzddFJZP+uc7FYTNLp9MGdB7h586ZrK6b8KBaLdT5XbS3rX0Fkt5jTXcCKRCISjUYDNyYAAAAAwB2GiLQ8/uDeecHh60yntkqlIsvLy/L8889LLpezHRJ969Yt0XVdGo2GvPXWW2OepX/0F25E9otS3XeGu3HjhulueCqbm5uW4wZlTAAAAACwq9KyHxreHTo+yvHAtAtE0ekP//APRWR/C1U2mx1pDMMwJBQKuTktX+leEZRMJpV9Ll68KKVSSUTE9qqv7n65XC6wYwIAAAAAgMny/fa6X/mVX5FkMinvvfeehEIhMQxj6I/DoF10iUQiliuDugt21Wr1wDG7+0SjUWVOUlDGBAAAAAC4Y08MTz8QHL4uOr3xxhtSLBY7haNRC0iHofB09epVEdl/zqzEYrGegszGxsbAMcvlp8tCrVYPBWVMAAAAAAAwWSHDxxWZ5eVlqdfrnRVOiURCksmkRCKRoXOdXn/9dXn//fdlb29vzLN2R6FQkPX1dUkkEnLlyhVlOHhbLpeTQqEga2trks/nB46raZosLS2JyH5xp1arKfvpui5zc3Misn8nuEqlEvgx7VpcXJTt7W05d+6cbG1tOR7v0Lh3T+T06f3P794VOXXK23FwOHC9AABU+P0Am5Izlw7uJCJitGyP2Z/pNC3vL9qP45OfDMu/vvEJT+fysxe+Lx980Ar8c3oY+DrTqV1wikQisrm5KefPnx95rMuXL8vZs2ddnN346LreWbFTr9cHFpTS6bRsbGxIPp+XtbW1A8eORqNSLpclnU73jN1vZWVFRPa363WvJArymAAAAAAAqGiaJtlsVrLZrK2bWQ1raWlJNE2Tcrk89PiFQkEqlYpsbm6KrusSjUYlFotJNpv1fbyMr7fXtVf3XLlyxVHBqT3Wiy++6MKsxi8SiUg0Gu1pKxQKMjc3J+l0WnK5nCSTyc4Kn0ajYavg1JZKpaRSqUgkEpFcLtcp7Oi6LtVqVeLxuNTrdYnFYnLz5s2Bq6yCNiYAAAAAAG26rks6nZalpSWpVqty69Yt18+Ry+V6bv5lV7Valbm5uc6ilHK5LI1GQ/L5vNTrdUkmk5JMJjt3f/cjXxed4vG4iIipADOqQXlHflOr1WRtbU1isVhPMaVer4umaZJOp+XmzZtSLpdHen4SiYTs7OxIPp8XTdNkZWWlU9San5+XcrkstVptqEJOUMYEAAAAAIyu5fGHG9o7jObm5g7MEXaiWq1KoVAY6bh2QSmTyUilUpFEIiHRaFRSqZQ0Gg2JxWKdBRl+LTz5entdNpuV69evj1QRVAnKSieR/dVOB+UzuWFtbW2oVVLTNCYAAAAA4PApFApSLBZdW+Bipb2Kyslx0WhUisWisl+5XO5s20un065kHLvN1yudUqmUvPjii7K+vu7KeF/72tdcGQcAAAAAMKWMlumj0iorPyQUNn/A1+r1uiQSCWk0GlKpVCwLOm64fPmyzM/PD70zJ51Od1YuDbpDe3vVk8j+yqhSqTTqVMfG998R7e1Tv/d7v+d4rKtXr7owIwAAAAAADidDRPYk5OmH4WD+sVhMYrFY5+vl5WXHz4lKqVSSjY2NoW94pWmaVKvVztcXL14c2P/Spad3YBxUoPKK74tO0WhUXn/9dXnttdccjXP79m2p1+suzQoAAAAAAATdOPKB23fCa+c0D6M7ZieRSBw4v+474em6PtZ8qlH4OtOpvR3u2Weflbm5OXn++edHunWhruvy1ltvuT09AAAAAACAHul0WmKx2Eg5zd1b5OwWrKLRaCcLe319faS6ybj4uuj0pS99Sd57773O14ZhjJT63j42FAq5NTUAAAAAAA6llpP9bVMul8tJvV6XRqMx9LH9u7MuXLhg67hYLNYpOrHSaQgXL17sPOmhUIiiEQAAAADANZU9802rkjOXzG1h9R3IKq3h8now3er1uqM743VnOYmI7TH6+9Xr9aG39Y2Lr4tO2WxWvvjFL0ooFBLDoJSKyWo2m7K4uDiwz+rqqqyurk5oRgAAAAD85Nq1a3Lt2rWBfZrN5oRmA6+trKxIKpWSTCYz0vE3btzo+dpu3tTZs2d7vt7c3KToZMeZM2ckFovJe++9J/l8XmKxmMzPzw89jqZp8qUvfUm++c1vuj9JTK1WqyXb29sD++zu7k5oNgAAAAD8Znd398D3DNNoT9iF1C+d3l8N98Ybb4w8RnuLXNuoK51G2do3Lr4uOons3/5vaWlJvvCFL4w8xosvvii//Mu/PFLBCodXOByWhYWFgX1mZ2cnNBsAAAAAfjM7Oyvnzp0b2KfZbEqr1ZrQjOCFjY0N2djYkEql4uhueP1Fp1Hpuu7KOG7wfdEpkUiYlpiNanl52ZVxcDgsLCzI1taW19MAAAAA4FN24jYWFxcP5WoolX/2xl358ht3HY/zg+/7p4in67qk02nJZDKSSCQcjzWK/kLXrVu3HM3DTb4vOr344osj3WZQ5e///b/vyjgAAAAAgOCwCgIPHTlqbjTsFzRU4057uLgho2+vu3PHkD//wD8FIzesrKxINBqVYrHo9VQ6WOk0pPPnz7syzj/+x/9Y/ubf/JuujAUAAAAAAOw7/UxIPvHJsONxfvj9lvhhx2KhUJB6vS61Ws2V8SKRiCsFIydb/NwWiKKTWzY3N72eAgAAAAAAARaSljHaSqfPvDYrn3nNeS7uS/9+U77/wZ7jcZyo1+uSy+U6Nz1zw/z8vCtFJz/lWQey6PT+++8P9UJomibFYtFXS8wAAAAAAEAwpdNpicVisra25tqYo65Q6q91sNJpSO+//77k83mpVqsjp7kbhiGhELd1BAAAAIDDxipnyW4mk1Um1LTnN0GtUCiIpmmSSCQknVZfG926i0JXr16V9fX1zteXLl2SVColIvs3P6vX6z3H2Skg9QeHLy0tHXjMpPi+6HTlyhUpFAoisl84AgAAAAAA3hk1SHxafPjhhyIiUq1Whz62Xq/3FJai0Win6BSPx3v6appma+teo9Ho+drpXfTc5DzBa4x+93d/V/L5fKfYxEolAAAAAAAwjZaXl3u+trvTq3slVSQSkWg06ua0HPH1SqerV6+KyH6xyTAMiUajEovFOk/g2bNnDxzjww8/FF3X5a233pLbt2+Pdb4AAAAAAGC65fN5yefztvsvLS11CkjlcrmzsqlfLBbruYPdjRs3LPt2675pWn/hymu+LjrV6/XO6qZKpSIrKysjj7W2tibPP/+8W1MDAAAAAOBQ2vP3pqlAu3jxopRKJRGRnm14g3T3y+VyY5nXqHxddIpEInL79m1ZW1tzVHAS2d8nef78eZdmBgAAAACwG8TtdEw3xnXCaRA5YFc2m+0UnexkRnX3iUajvspzEvF5plN7G92FCxdcGa9YLLoyDgAAAAAACL7uPCQ/iMViPYWjjY2Ngf3L5adFTr+tchLxedGpvbqp//Z/TscDAAAAAADDM0SkZYQ8/XDzvvb9Yd1+KEJ1L5hpZ12r6LreWRWVSCQkk8mMfW7D8nXR6dd+7dfEMAzb+xgP8tu//duujAMAAAAAAIJN13XT6qD19XWPZvNUNBrtrGCq1+tSKBSU/doLayKRSM+KJz/xddHpzJkz8hu/8Ruyvr4ud+7ccTwe2+sAAAAAADi8dF2XdDotyWRS5ubmTCud2jc0SyaTkk6nXVsEM6xUKiWVSkUikYjkcrnOXHRdl2q1KvF4XOr1usRiMbl586ZEIhFP5nkQXweJi+zfda5SqUg6nZavf/3rI49z8+ZNzy4WAAAAAAgSqzBvk5B5HUNy5pKya2XP3gqScQWRwz17EvJ6CiPzYlVQo9EY6bhEIiE7OztSKBRkfX1dVlZWRNd1iUQisry8LOVyWVKplMuzdZfvi04iIpVKRZaXl+X555+XXC4n8/Pzto67deuW6LoujUZD3nrrrTHPEgAAAAAAwF1ra2uytrbm9TRGEoii0x/+4R+KyH51MJvNjjSGYRgSCgW3GgsAAAAAgB/sGb5O6oGP+L7o9Cu/8iudNPZQKCSGMXxOPcUmAAAAAACAyfJ10emNN97ohH+PWnASkZGPw+HWbDZlcXFxYJ/V1VVZXV2d0IwAAAAA+Ml3jW/J9+TbPW397yGazeYkpwT4iq+LTv0Fp0QiIclkUiKRyNC5Tq+//rq8//77Y5wtpk2r1ZLt7e2BfXZ3dyc0GwAAAGByVGHeyoBuo2VuU4SLT9IwQeRWoed2+736v/9F+fVf//WetoPeQwSdISFpibevsRHgIPPDxtdFp/atCiORiGxubsr58+dHHuvy5cty9uxZF2eHaRcOh2VhYWFgn9nZ2QnNBgAAAIDfzM7Oyrlz5wb2aTab0mopinPAIeDrolMkEpHbt2/LlStXHBWc2mO9+OKLLs0Mh8HCwoJsbW15PQ0AAAAAPmUnbmNxcXHqVz8BVnwdOR+Px0VEJBqNujLeG2+84co4AAAAAAAcVnsS8vQDweHrlU7ZbFauX78umqa5Mh4rnQAAAAAA8K/yb+/Ixn+9M7DPre8/mdBs4JSvi06pVEpefPFFWV9fl3/wD/6B4/G+9rWvyS/90i+5MDMAAAAAmF6q0HDb4eJBoghCV4WGV/bWlYcP0xf2fHR3T374AUWlaeHr7XUiIuVyWWq1mvze7/2e47GuXr3qwowAAAAAADi89ozw2D5OnDoiz35y8EfY95UMtPl6pZPIfp7T66+/Lq+99pr84i/+4sjj3L59W+r1uoszAwAAAAAAbkq9Ni+p1+YH9nn1r32H1VAB4eui09e+9jUREXn22Wdlbm5Onn/+eUmlUkOPo+u6vPXWW25PDwAAAAAAABZ8XXT60pe+JO+9917na8MwpFAojDSWYRgSCpFyDwAAAAAHUeU3vXTsVXsHK3KS/Cp05KipzdjbM7UFPrvKZS3uIAebfL0T8uLFi2IYhhiGISJC0QgAAAAAACAgfF10ymazIrJfbGoXn0b9AAAAAAAAzhgisidhTz94hx8cvt5ed+bMGYnFYvLee+9JPp+XWCwm8/ODA8VUNE2TL33pS/LNb37T/UkCAAAAAADAxNdFJxGRS5cuydLSknzhC18YeYwXX3xRfvmXf3mkghUAAAAAAACG5/uiUyKRkBs3brgy1vLysivjAAAAAMA0UwVnq0K3g04VGl7ZWze1WYWov/voTdfnFAR7hq+TeuAjvr9SXnzxRcnn866M5dY4AAAAAAAAGMz3RScRkfPnz7syzosvvujKOAAAAAAAABjM06KTn4K9/TQXAAAAAAD8KSQtCXv6IRLy+kmATZ4WneLxuOzu7no5BRERuX37tsTjca+nAQAAAAAAMDU8DRI3DMPL0/fw01wAAAAATB9VOLeISKVVnvBMRqMKzVYFbKvCuf1KFRpu9TqpqPoG5fUEJsHTolMo5J8lcX6aCwAAAAAAfmQYInuGt++fWTMSHJ5ur2N1EQAAAAAAwHTydKWTiMjNmzflZ37mZzydw+bmpqfnhz81m01ZXFwc2Gd1dVVWV1cnNCMAAAAAfvJd41vyPfl2T1v/e4hmsznJKQG+4nnR6fLly/LFL35RIpGIzM/PT/Tct27dEk3TZG1tbaLnRTC0Wi3Z3t4e2McPQfgAAAAAvPFEHstDud/TdtB7iGmw5+2mKQSI50WnWq0m6bT9oLZxMAyDTCeYhMNhWVhYGNhndnZ2QrMBAABA0E1jwLQqXNyKH0O37c7p5ZOfVR5/5MFROS4ne9qePde7mKLZbEqr1XIwSyC4PC86tXmV70SxCVYWFhZka2vL62kAAAAA8KnnQi/Ic/JCT1tlq7dotbi4OHWrn1oGK51gj+dFJ6/DxL0+PwAAAAAAwDTytOi0s7Pj5ekBAAAAAAAwJp4Wnc6cOePl6QEAAAAAwBAMGW+Q+O//06b8/j/9YGAf/QePx3Z+uMvz7XUAAAAAcBioQquteB2wbff8yZlLprbQzIzb0xkb1eMc5nWC++7f3ZOdP6eoNC0oOgEAAAAAAF84eXpG5n7s6MA++g8ei8ENAQOBohMAAAAAALBtzxjfXeBf/vyPy8uf//GBff4Xf73OaqiA4D6HAAAAAAAAcB0rnQAAAABgArzOaRqGKqtJuZ8pZF7HYOztKcf04+N/+dTnbPXz49yBIKDoBAAAAAAAbApJy/NNU+Pb3gd3eX2lAAAAAAAAYApRdAIAAAAAAIDr2F4HAAAAAABs2zNYvwJ7KDoBAAAAgAPJcNrUNkzwtNPjx0IRGq6aky/nPoTWg4emttCRo6a2l469qjz+3Udvuj4nYJpQdAIAAAAAALYYItLyOMjb8PTsGAZr4gAAAAAAAOA6ik4AAAAAAABw3aHaXvf+++/LT/zET3g9DQAAAAAAAosgcdh1qIpO6XRabty44fU0AAAAAEwRxwHbIf+9gVeFadt9TKp+Vn29NnPqY6a2vbt3zR0tXqOgB6kD4+b7otPu7q7Mzs46Hue9996Ter3uwoxwWDSbTVlcXBzYZ3V1VVZXVyc0IwAAAAB+8l3jW/I9+XZPW/97iGazOckpAb7i+6JTPB6Xb3/72wd3HOCb3/ymrKysuDQjHBatVku2t7cH9tnd3Z3QbAAAAAD4zRN5LA/lfk/bQe8hpsEe8dCwyfdFp0ajIXfu3JFnnnlmpON/8zd/U774xS+KYRgSCnl7W0cESzgcloWFhYF93FiFBwAAACCYjshROS4ne9qePTff83Wz2ZRWqzXJaQG+4fuik4jIysqK/Mmf/MlQx7z//vuSTqelXq+LYRhjmhmm2cLCgmxtbXk9DQAAAAA+9VzoBXlOXuhpq2z1ZjotLi4eitVPgEogik61Wk1eeeUVeeutt2ytLGmvbhKRzgonCk8AAAAAvJScuaT+B8N/q2CMJ4/NjQ4Dz/0Yuv313d8xtVkFoaMtJC3D611EXp8fdgViI6ZhGPLuu+9KNBqVP/qjP7Ls981vflOef/75znY6EaHgBAAAAAAA4AHfF50ikYjUajV5/fXXZW9vTxKJhPy9v/f3TP2uXLki8XhcGo1Gz+qm8+fPS71el1u3bsn58+c9eAQAAAAAAACHj++31128eFFefPFFefHFF+XSpUvy2muvyeuvvy7ValXK5bIYhiHpdFo0TespNhmGIfl8Xr7whS90xspmsx4+EgAAAAAAgs0Q7+9ex16m4PB90en111/vfH7mzBkpl8tSKpXki1/8osRiMRER01a6WCwm5XLZtLKpuwAFAAAAAOPiNKvI6/wju+dS5h9ZZT/5MLtKSTV/i7l7nUk1jf7on31P/viffW9gn90fPJzQbOCU77fXvf/++6a2paUlEZHOiqZQ6GmIWLFYlM3NzanbSlev1yWbzcrS0pKEQiEJhUKytLQkuVxOdF0fedxCoSDJZFLm5uY6Y6bTaalWq1M/JgAAAABgeC0jPLaP+3f25PafPxz4EZT6JQJQdEqnn1bOd3d35dKlS/LSSy/J7du3O8WX9kqnVColly5Z3BEioHRdl3Q6LfF4XEqlkmia1vk3TdOkUCjI3NyclEqlocatVqsyNzcnuVxORETK5bI0Gg3J5/NSr9clmUxKMpkcqqAVlDEBAAAAAP504vQROfNjxwd+OLyRIibI99vrarWa/NZv/ZZ85zvf6RRWurOb2lvpXn/9dfnN3/xNuX79urzxxhvyi7/4ix7P3Dld1yUej/cUmqxks1mp1WpSLBYP7FutViWZTIqISCaT6TkmGo1KKpWSeDwu1WpV4vG41Go1iUQiUzEmAAAAAMC/PvV3npNP/Z3nBvb59f/5/0tu/zlb7IIgEPXBtbU1KZVKnRVNItIJCm9vpWt/fubMGUmlUvLKK6/InTt3esbZ3d2d9NQdaQektwtrjUZDGo2GlMtlWVtbM/UvlUqysbExcMz2yimR/cKNVZGqXN7fm6xpWs9qsyCPCQAAAABwbk9Cnn4gOHy/0qmte3VTIpGQYrFoym2KxWLSaDQkm83KG2+8IXNzc1IsFuXv/t2/KyL7RZx33nnHi+kPrVQqSbValbW1Ncnn8z3/1l7lk81mJZ1OS71e7/zb5cuXJZVKWY6bTqc7W9HaW9ZU2ufY2NiQarUqpVJJMplMoMcEAAAAxiE5Yy/iIzQzo2w3njw2tXkdUD1UQHifyt66y7MZH+XjVGE/FzCSQH3nGIYhxWJR3n333YFB4e0+zzzzjGQyGXnhhRfkypUrgQqdzufzkkgkTAWnbtFotLPSp03XdcvHqWlaz79dvHhx4By687GsCj9BGRMAAAAAAExWYIpOiURCdnZ25PLly0P1/6Vf+iX5zne+I4VCYcwzdE+9XhdN00wFJZVoNGoqTHWvfOrW3S+RSByYf9S9YkrXdeXWvaCMCQAAAABwzpDx3r3Ozodx4CzhF4EoOmUyGXn33XflzJkzQx9bLpflrbfe6smD8rv19XXJZDK2Q7ETiUTP1x9++KGyX/cd7mKxmK2xo9Foz7yCOiYAAAAAAJgs3xedIpGI/JN/8k8cjZFKpeTdd991aUbjd+nSpYHb6vr1F2aWlpZMffpXP124cGHosftXEAVlTAAAAAAAMHm+DxLvX8XjZJwXX3zRlbHGze7qnrZ24HZb96qftv6cJ1Uflf5+9Xq9M7+gjAkAAACMk93gbNuh1X7gIDjbMljdaJmavA5MDx05ampTBbur5n6YcQc52OX7lU5vvfWWa2PZyUgKIk3Ter5WFepu3LjR87XdrXtnz57t+XpzczNwYwIAAAAAMIimaZJMJh3tnKnX65LNZmVpaUlCoZCEQiFZWlqSXC5nWiwyjEKhIMlkUubm5jpjptPpQNwszfdFJzcNuuNdkHUXWDKZjLJPf2Fq1BVEjUYjcGMCAAAAAKCi67qk02lZWlqSarUqt27dGnmMeDwupVKp532tpmlSKBRkbm6uJ7/Yjmq1KnNzc527tJfLZWk0GpLP56Ver0symZRkMumooDVuvt9eh4MVi8XO5+2LsV9/MWdU3RdzUMYEAAAAALglJC3D6/Urzrf36bouV69edXyne13XJR6P23ovm81mpVar9byHt1KtViWZTIrI/uKS7mOi0aikUimJx+NSrVYlHo9LrVazvVNokig6BZymaZ3w7Xw+b7kyaNQiTP9F2131DcqYo2o2m7K4uOh4nNXVVVldXXU8DgAAAIDJ+a7xLfmefHtgHzvvF5rNpltTgksKhYIUi0XbO2sGSafTommaxGIxuXLlSidbuF6vy40bN0xFrVKpJMlkUlKplOWY7ZVTIvsFJqsiVblclqWlJdE0TdLptFQqFcePx20UnQKufZe7aDQqa2trYz/fOFYQ+XXMVqsl29vbjsfZ3d11PAYAAAD8QRWSHZqZMbUZe3v2B3UQ2j0MVZC5VZC3Khx9mOOD4t1Hb5ra2o/ziTyWh3J/4PFuvF8IHENkz+uVTsboh9brdUkkEp33z6VSSbLZ7EhjlUolqVarsra2ZroDfXs1UjablXQ63XOn9suXLw8sOqXT6c57WqvdTN3n2NjYkGq1KqVSyTJyxysUnQKsXq9LqVSSSCRyYEUzEom4UojpXlEUlDFHFQ6HZWFhwfE4s7OzjscAAAAAMFlH5Kgcl5MiIvLsufmRx2k2m9Jqcfc7v+i/y/ny8vLIY+XzeUkkEqaCU7doNNpZkdSm67pUq1XlTcA0TesJCL948eLAOVy6dKkTfp7L5Sg6wT2XL18WEZHr168fuCxwfn7elWLO/Px8z+dBGHNUCwsLsrW15XgcAAAAAMHzXOgFeU5eEBGRytboK7oWFxcP54qogBh1wUK9XhdN06RWqx3YNxqNSj6f71m11F5x1a+7gJVIJA6cX/eKKV3XZWNjY+AqqknzOv0LI8pms1Kv16VcLpsqtSqjfiP1F4D6VyUFYUwAAAAAgDsMEWlJyNMPB7vrXLO+vi6ZTMb2e8/+AtOHH36o7Nd9hzs77/VFeu/mvr5u3hrrJYpOAVQqlaRUKkmxWLRdwexfMmh3NVF/IHf3ksCgjAkAAAAAgJsuXbo0cFtdv/4Ckuo9a3fuk4jIhQsXhh67vdXOL9heFzDValWy2awUi8Wh9mrG4/Ger9vp+gdpNBo9X3dXZ4MyJgAAAOAWZcC2IlxcDEWGz4QCw604Df0OHTlqalM9dtVz5FfK187j1wnBYHcVUlv/ggpVRE53lpNVH5X+fvV6fej5jQvfTQFSr9clmUxKPp8fOhysfwWRpmm2juv+xohEIj0Xc1DGBAAAAAC4Z88Ie/oRRP3vbVULJW7cuNHztd2te2fPnu35enNzc7jJjVEwX61DSNM0WVlZkbW1tc6tHYcRi8V6Ltj+i9lK98XaXxAKypgAAAAAAHip+z2r1SKS/sLUqCud+ncCeYmiUwBomibxeFwymYztPaOapkmhUOhp677VYv9eUSvd/bqT9oM2JgAAAAAAXikWi53Prd6z2t3pcxA37gjvFjKdfE7XdUkmk3Lx4sWhQsrS6bS88cYbPW3ZbLaThN+/V1Slu080GlUu/wvKmAAAAIAbgpLf5FQynDY32nxMymPFeaaUXarzW57b5mtn9ZhUJvU4vdQyQiMd9//98rflT77yHcfnv/vDB47HmCRN0zoLJfL5vOUKplGLRf3b8PpvtOUlik4+puu6xONxiUajksvlbFU9NU3rVE37g8NisZgkEolOkWZjY2Pg3e/K5ac/LK0qsUEZEwAAAADgrYf3nsid7werYOSG9gKSaDQ6UlzOsFjpBFtWVlZE0zTRNE15O8VBupfu9be3x7p69aplMUfX9c5qo0QiMTC4PChjAgAAAAC8c/zUEXnmEyccj3P3hw+Ui9T8qF6vS6lUkkgkIpVKZWDfSCTiSsHIbgD5JFB08ql4PG47z0jFqvgSjUalXC5LOp2Wer0uhUJBWWldWVkRkf2LtXslUZDHBAAAAAA4Y0hI9kaMh17+3E/K8ud+0vEc/s/J35e737/veJxJuHz5soiIXL9+/cBg8Pn5eVeKTvPz847HcEuwNxpPqXahZVQHrfZJpVJSqVQkEolILpfrnE/XdalWq52CVywWk5s3b9qqkgZlTAAAAAAAJiGbzUq9XpdyuWyKv1EZ9T1tf6HKT++NWenkQ5NYsZNIJGRnZ0cKhYKsr6/LysqK6LoukUhElpeXpVwuD8xRCvKYAAAAwKgqe+umtpeOvWrrWOPJY2V7+ORJR3OaFNVj9yPHQd7DBMMHZY+Xy0YNEj9MSqWSlEolKRaLtt+zLi8v9yxAab/3PUh/cPiw8TzjRNHpkFtbW3M9yCwoYwIAAAAA4LZqtSrZbFaKxeJQucPxeLzna03TbK2QajQaPV/76Y7ubK8DAAAAAABwQb1el2QyKfl8fugbXS0vL/d8becO9iK92+sikciB2VGTRNEJAAAAAADY1pKwpx9+pWmarKysjLxTJxaL9Wynu3Hjhq3jNjc3O5/3F6685t9XCwAAAAAAIAA0TZN4PC6ZTEby+bztYwqFQk/bxYsXO5/bvcFYd79cLmfrmEkh0wkAAAAAbErOXDK1hWZmTG3G3p79QVuGkyl5ShWi/u6jNz2YyYgUAeFBCUyHf+i6LslkUi5evGi74CSyf+f6N954o6ctm81KqVQSkf1sqIN094lGo77KcxKh6AQAAAAAAIawN0V3r+vOQxr1+Hg8LtFoVHK5nK0cJk3TOiuS+oPCY7GYJBKJTjFpY2Nj4N3vyuWnd2v02yonEYpOAAAAAADgkOovEg1bhFpZWRFN00TTNFlaWhrq2GKxaNneHuvq1auWRSdd1zurohKJxNDB5ZNAphNgodlsyuLi4sCPa9eueT1NAAAAAB65du3age8Zms2m19OEBV3XTauD1tftb6+Mx+O2c5dUrIpE0Wi0s4KpXq+bcp/aVlZWRGT/jnXdK578hJVOgIVWqyXb29sD++zu7k5oNgAAAAD8Znd398D3DNPGEJGWx9vrnKSg6bouly9fFl3XlZlJ9XpdQqGQJBIJiUQicuXKFdMWOJH9PKZxFJzaUqmUVCoVSafTksvl5MaNG3LlyhWJRqOyubkpuVxO6vW6xGIxuX79es9d7/yEohNgIRwOy8LCwsA+s7OzE5oNAAAA/EAVMv3yyc/aOtZ40lK2v3P/K47mNA7h4ydMbclw2lY/Vbi4iD8Dxu2Ghqseu4jIL/yXPyvnzp0beGyz2ZRWS/3aY/LcWhU0iZVFiURCdnZ2pFAoyPr6uqysrIiu6xKJRGR5eVnK5fLAvCc/oOgEWFhYWJCtrS2vpwEAAADAp1ZXV2V1dXVgn8XFxUO3GgruWltbk7W1Na+nMRKKTgAAAAAAwLaWQTw07OFKAQAAAAAAgOtY6QQAAAAANimzfUKK/5dvKDJ8VP2GOE+lNbm7U7UePbLX7+EDc6PF40zOXDK12c1UmiTVPC37evw6eWVPvA0SR3Cw0gkAAAAAAACuo+gEAAAAAAAA17G9DgAAAAAA2BSSluH19jqvzw+7WOkEAAAAAAAA17HSCQAAAABsUoVE2w2eDs3MKNtfOvaqrfNMkirgWxWaHTpy1NRm7O3ZHtNrL5/8rK1+Xr8eh8mffvXfyp+++T8O7PPRD+9PaDZwiqITAAAAAACwrWWMb9PUw3tP5N73Pxrb+Jgsik4AAAAAAMAXjp46Jqc+8bGBfT764X0xWsaEZgQnKDoBAAAAAABf+On/+C/LT//Hf3lgnzf/xgaroQKCohMAAAAAALDFEJGWx3ePY41TcFB0AgAAAOApVUC1iP3w5v7jTxhP5G3HsxqC0XJ0+LuP3nRpIu5RvSYzp0+b2vbuKVabOHw+Jqn18IGpTRWO7vQaBQ6r8aV/AQAAAAAA4NBipRMAAAAAALBtz/B2ex2Cg5VOAAAAAAAAcB0rnQAAAAAAgD2GSMvweP0KSeKBQdEJAAAAgKechjGbjr93T0QReu01Y29P2f7yyc+a2t65/5VxT2doe3fvmtrCJ0+a2ozHT5THq8K4PQ/iDpmLJ6pg9+TMJeXhvnxMgI9QdAIsNJtNWVxcHNhndXVVVldXJzQjAAAAAH7yXeNb8j35dk9b/3uIZrM5ySkBvkLRCbDQarVke3t7YJ/d3d0JzQYAAACA3zyRx/JQ7ve0HfQeYhq0CBKHTRSdAAvhcFgWFhYG9pmdnZ3QbAAAAAD4zRE5Kseld4vhs+fme75uNpvSarUmOS3ANyg6ARYWFhZka2vL62kAAAAA8KnnQi/Ic/JCT1tlqzfTaXFx8VCsfgJUKDoBAAAAgBOKMGox7K9ssQoY95IqDFsVpt26f9/UZiV05KijOdk1TLh3ZW/dfLzicar6HVaGiLTE2+113LwuODy+zyEAAAAAAACmEUUnAAAAAAAAuI7tdQAAAAAAwKaQD+5e5/X5YRdFJwAAAABD5eAcZqrnSZVVZDxRZDpZ5DwZ/ot0UuYaqeYfPnnS1NZ68FA55ruP3nQ8LzuGuW7tvp4vHXtVebzx5LGj8wPTju11AAAAAAAAcB0rnQAAAAAAgG0tg/UrsIcrBQAAAAAAAK5jpRMAAAAAALDN+yBxBAVFJwAAAACEHztg7DlLAg/NzIx8rCoIW8T561nZWzefSxEubhUaPil2A/CtnicJmTf/qF6P1sMHw08OI/nWP/838u1//qcD+9z/8KMJzQZOUXQCAAAAAAC+8PjeI7n/g3teTwMuoegEAAAAAABsMUSkJePbXnfk1HE58fFTA/s8+PAjkZYxtjnAPRSdAAAAAACALzz/t39Gnv/bPzOwz+//R1+WB6yGCgTuXgcAAAAAAADXsdIJAAAAI7Eb4Av4iePrVhE8rRI+fsLUZhVGbTx5bP/8fazm7vRxvjL3mrnRaJmaQkeOmrtZPJ5x/Mywe7xqniLquaqC4fnZ1ou718EuVjoBAAAAAADAdRSdAAAAAAAA4Dq21wEAAAAAANvYXge7WOkEAAAAAAAA17HSCbDQbDZlcXFxYJ/V1VVZXV2d0IwAAPAXgnURRI6vW0WYtkrr0SNTW/jkSXXf+/cdTUnF6eM0Hjw0NypC1FVB3H782aAKBx+m78snP6vs+/I/elGuXbs2cLxms2n73MC0oegEWGi1WrK9vT2wz+7u7oRmAwAAAMBvdnd3D3zPMI3YXge7KDoBFsLhsCwsLAzsMzs7O6HZAAAAAPCb2dlZOXfu3MA+zWZTWi17K+SAaUPRCbCwsLAgW1tbXk8DAAAAgE/ZidtYXFycutVQrHSCXRSdAAAAAIxFMpw2tfkx78ep8PETprZ37n/F1KZ6PsbF8XMfHr2oYPU4PX3trbK4FDlVSg6eD+Aw4+51AAAAAAAAcB0rnQAAAAAAgC2GiLTE25VfhqdnxzBY6QQAAAAAAADXUXQCAAAAAACA69heBwAAAGAspjE0XPWYVMHZyZlLtsdUBZE75fS5f+fel01tqsekfD6GeOyTYvV8/MLH/xNT297tXVNb6/591+cUWEbI+7vXeX1+2MZKJwAAAAAAALiOohMAAAAAAABcx/Y6AAAAAABgm+fb6xAYrHQCAAAAAACA61jpBAAAAGBiVKHbVvwYRK6av91wcavH48fg7ZeOvWqrn/L1DAVnbcMf/OB1W/2srtthXmfY89236vK9cn1gn4e37k1oNnCKohMAAAAAALBtnNvrHt97JA9/eHds42OyKDoBAAAAAABfOHLqmBx/9vTAPg9v3RNpGROaEZyg6AQAAAAAAGwxZLwrnRZTy7KYWh7Y519dKskjVkMFQnA22wIAAAAAACAwWOkEAAAAYGKCHrIcOnLU1KYKk1b1sxI+dsxWPz+GVg9zfj/O326Ie/jkSWX7O/e+7OZ0gKlD0QkAAAAAANhmjHF7HaYL2+sAAAAAAADgOlY6ARaazaYsLi4O7LO6uiqrq6sTmhEAAAAAP7l27Zpcu3ZtYJ9mszmh2QD+Q9EJsNBqtWR7e3tgn93d3QnNBgAAAIDf7O7uHvieYRq1hO11sIeiE2AhHA7LwsLCwD6zs7MTmg0AAAD84N1Hb5raXjr2qqnN2NsztVmGVhstW+eeZOi28eSxrfOrwsGteBkabjXPmfk5U9vezm3b487Ozsq5c+cG9mk2m9Jq2XuNgWlD0QmwsLCwIFtbW15PAwAAAIBP2YnbWFxcPJSroYJG0zTJZrOSzWYllUqNPE6hUJBKpSKbm5ui67pEo1GJxWKSzWYlkUj4ZsxJIUgcAAAAAADY1jJCnn64Sdd1SafTsrS0JNVqVW7dujXSONVqVebm5iSXy4mISLlclkajIfl8Xur1uiSTSUkmk6LruqdjThornQAAAAAAwKGi67pcvXpVCoWC47Gq1aokk0kREclkMlIsFjv/Fo1GJZVKSTwel2q1KvF4XGq1mkQikYmP6QWKTgAAABjIKgvFbj6L6ngvs13gjCqXqLK37sFMxmuYrKLwyZO2+oVmZkadjm+Fj58wtbUePvBgJoNZ/cx5+eRnzY2qjK2WoTyen2/BVCgUpFgsSjQadTxWe6WUyH4xqLs41K1cLsvS0pJomibpdFoqlcpEx/QK2+sAAAAAAIBthhHy9MOJer0uiURCGo2GVCoVy4KOXel0urO9rb0NTqW9OklkfxVTqVSa6JheoegEAAAAAAAOhVgsJrFYrPP18vLyyGNpmibVarXz9cWLFwf2v3Tp6UpRq2LSOMb0EkWnANE0TZLJpGxsbDgap1AoSDKZlLm5OQmFQrK0tCTpdLrnwp7WMQEAAAAAzkxTkLiTHKR8Pt/5PJFIHDhW913xdF1Xvrcfx5heougUAIctTX8aEvoBAAAAANOteztb9+qpQbpzpNbXzXl44xjTSwSJ+9hhTNOfloR+AABG5TS0exycnptQ3ekyjaHhKsNcty+f+pyzk4XdXbnhhtCRo6Y21c8nVT9VuLjXrH62quaqekzv3P+K8nhlEDkOhXq93vP1hQsXbB0Xi8VE0zQREdOqpHGM6TVWOvlUoVCQeDxuuuhGMUzyvYh0ku+nYUwAAAAAgHsM8TZE3DBCYoj3hdr+2Be7d8Lr79f9nn8cY3qNopMPHdY0/WlK6AcAAAAATK8bN270fG13B87Zs2d7vt7c3BzrmF6j6ORDhzFNf9oS+gEAAAAA06u9na1t1FVJjUZjrGN6jaJTAByGNP1pS+gHAAAAgKlk+ODudYbXT4K5QDSq7htkjWNMrxEkPuVGTb5vX+zr6+s9BZ4gjQkAwLipgmkPe+j2OJ4TBNc0Xg+q4OjWo0e2jg0dVb/9Cs3MOJqTE1YB23YZe3umNqvHmZy5ZGrzOpi+9fCBs+NtvvaYPqMWdvoXWHTfnX4cY3qNotMUC0qa/jQm9AMAAAAAen3wtT+RD772J47Hebxz14XZ+MM4ViWx0gkT4WbyfXv1UVDGBAAAAACMhzHi9rYn9x7K4w/vuDsZj0QiEVeKO92rlMYxptcoOk0xN5Pv28WcoIwJAAAAAPCXmY8dl6Nnn3E8zuOduyItb4Od5ufnXSkQzc/Pj3VMr1F0mmJBSdOfxoR+AAAAAECvT/7SX5VP/tJfdTzOv/ns/8nzFVOjribqLyr1r3Rye0yvUXSaYkFJ05/GhH4ACDqrYNmgBwC7jefDjOckuAjGt8du8HT4+AlTm/H4iXrMBw8dzckJq9fopWOv2jpeFRpu+XiMlu15uW2Ya1H1vcDvxV4tCXk9Bc8tLy/35BPrum6r2NMf8r20tDTWMb1G0WmKBSVN368J/c1mUxYXFx2Ps7q6Kqurqy7MCAAAAMCkfNf4lnxPvj2wj533C81m060pwUfi8XjP15qm2Yp76d+hk0gkxjqm1yg64UBBSdN3e8xWqyXb29uOx9nd3XVhNgAAAAAm6Yk8lodyf2AfN94vBJFhsNJpeXm552u7BaLu962RSKQnNmYcY3qNotMUC0qavl8T+sPhsCwsLDgeZ3Z21oXZAAAAAJikI3JUjsvJgX2ePXdwYHOz2ZRWy7uthRiPWCzW8172xo0bkkqlDjxuc3Oz83l/kWkcY3qNotMUC0qavl8T+hcWFmRra8vVMQEAAAAEw3OhF+Q5eWFgn8rWwZlOi4uLh3ZF1LS7ePGilEolEZGeLKZBuvvlcrmJjOklik5TLChp+tOY0A8AQXdYg1HbxhGoDHhhmGuZa9ymUNjcpgjIDp1SrJC5N3irlt+FTxw3tSlDwz0MDB+W3cB05esuIsmZS6a2yt66kykFQovtdSIiks1mOwWiarV6YP/uPtFoVJm9NI4xvaT+zsFU6F9WZ3c10UFp+kEYEwAAAACAgzjZdROLxXqKPBsbGwP7l8tPi/tWK5LGMaaXKDpNMVXyvR3Dpun7cUwAAAAAAA7S//5z2CJUsVjsfH716lXLfrqud1YwJRIJyWQyEx3TKxSdppgq+d6OYdP0/TgmAAAAAGA8DMPbD7foum5aHbS+Ptz2yGg02lltVK/XpVAoKPutrKyIyP571+7VSZMa0ytkOk2xoKTpT2NCPwAg2Mi2wbjZzVpS9bPq66Sf15w+zklS5fW8fPKzpjbj/gNz296eckyrdr/Zu/eRvY4W+Ud+zDp699GbprbDmtN0WOi6LpcvXxZd15WZSfV6XUKhkCQSCYlEInLlyhWJxWIDx0ylUlKpVCSdTksul5MbN27IlStXJBqNyubmpuRyOanX6xKLxeT69eu28ojHMaYXWOk05S5evNj53M00/SCMCQAAAABAt/aqoEqlIoZhWH5UKhUpl8sHFpzaEomE7OzsSD6fF03TZGVlRebm5iSdTsv8/LyUy2Wp1WpDFYfGMeakUXSactlstvO5m2n6QRgTAAAAAOAuQ0QMI+Tth9dPwgBra2tSq9VkZ2dHDMOQnZ0dqVQqtnbzTHLMSaHoFACHIU1/2hL6AQAAAAA47Cg6BcBhSdOfpoR+AAAAAAAOO4LEfc4qTX9tbc32GO3k+3Q63Um+Vx0/Spq+38cEEGxBCpYFECx2g7zHJShB4JN6noYZ0+vX7qVjr5raQkfNb6taDx6a2qzCqFVB5F5TBWwrH/vMjKmt9ejRWObkhNXfFMrQc6NlalI9dhF1CPxhCB03jJDXU0BAsNLJh3Rdl3Q6LclkUubm5kwrndpp+slkslOgOUg7+T4SiUgul+sc107sj8fjneT7mzdvDpWm7/cxAQAAAADA5LHSyYfGtYKnnXxfKBRkfX1dVlZWRNd1iUQisry8LOVyeeggsqCMCQAAAABwR4uVTrCJotMhtLa2NtT2vGkaEwAAAAAATAbb6wAAAAAAAOA6VjoBAHzL6wBdANPL6+Bqr8Ow7fLj4xz2+E+f/ow8CD1922P3+GFuZqEKmQ6fOG5zhv4M3n5l9vO2+rUePjA3qsK5PWb1uqtC3Id5PQ5DaLiKYXg9AwQFRScAAAAAAOALH/7f/7XcevtfD+zzZOfuhGYDpyg6AQAAAAAAX2jdfyhPPrzj9TTgEopOAAAAAADAHkPEGOPd68Inj8uR+WcG9nmyc5c9fgFB0QkAAAAAAPjC/N/6azL/t/7awD7fee235MktVkMFAUUnwEKz2ZTFxcWBfVZXV2V1dXVCMwLQ1g53PWE8kbc9nguAXkEJyB5G0OfvpXGEdg/r7btfFTl1aujjhjl36Kj5bVVoZsbUlpy5NPQ8vLJ37yNb/cInT5raWvfvuz2dsbEbGv7uozeV7S+Efka+J9/uaXv23HzP181mc7TJAVOAohNgodVqyfb29sA+u7u7E5oNAAAAAL95Io/lofQW2Q56DxF8obFur7M7BwQDRSfAQjgcloWFhYF9ZmdnJzQbAAAAAH5zRI7Kceld7aVa6dRqtSY5LcA3KDoBFhYWFmRra8vraQAAAADwqedCL8hz8kJPW2Wrd2vm4uLiIVj9BKhRdAIADE2VSVHZW/dgJsB0ZggFmR+fez9eI16ef5z5SaOyOrcfXzvVnGZOnza1qTKRVDlPIiLG3p7ziblMNVfjyWNT2zv3vmxqe2X288ox/fj3Q/jEcVNb68FDU9tLx15VDxAKuz2lQOC+cbDrcH6HAAAAAAAAYKxY6QQAAAAAAGzzPkgcQcFKJwAAAAAAALiOohMAAAAAAABcx/Y6AMDQVKGf4wh7VQWOioiEjhzd/68REnky4HgfBtDCfbymozss3yPT+JicCNLzYXeu/dfyCeOJvP2jzz99+jPyIPT0bY/Tx686XhkybbQUR6uDxFVh1l4Ln/qYqW1v946tY1VB3CJi8Zx4SzVX1d85lkHiPnxME0GSOGxipRMAAAAAAABcR9EJAAAAAAAArmN7HQAAAAAAsMUQ7+9ex+6+4GClEwAAAAAAAFzHSicAwNBUAd/jCKYNzagDV+0KUlgu4AW+R3qpgtVFeJ6CwPQa3bsncvr0/ueh8P6HS1TXSfsGF91mzpyxPabdgG6nhrl5wN7t27bGVAVsv/vozeEm5iVFELjqMYWOqt86B+qxAh6g6AQAAAAAAGwz2N8Gm9heBwAAAAAAANdRdAIAAAAAAIDr2F4HAAAAAABs8/rudQgOik4AgIGsgnXt9HMavms8eaxsn/lROGzICIvcdXQKAFPEaRD4NAaGD/OzeRw/x51yY05v3/myyKlTbk1JSXnjixnzphLj3n3bY47j9XB6vCowXfW7WnXDkf3O5tBur6+x9t8U3VoPHpo7ttQhRn78vgH8hKITAAAAAACwb4wrnfT/57+U27///x7YZ29nMnd8hHMUnQAAAAAAgC+07j+UvVu7Xk8DLqHoBFhoNpuyuLg4sM/q6qqsrq5OaEYAAAAA/OS7xrfke/Ltnrb+9xDNZnOSUwq88MnjMjM/O7DP3s4dEUO95RH+QtEJsNBqtWR7e3tgn91dKvAAAADAYfVEHstD6c3qOug9xDQYZ73nzH/4c3LmP/y5gX2+95/mWQ0VEBSdAAvhcFgWFhYG9pmdHVyBBw6VkDkwdVy+vvs7+5/cuydy+r+x7DfJcE+CRMfPaUg0zLy8bu3epECEIHAV1WN1+nr68fnz45xUv+9CR81vq4z7D2z1ExEJh835OO/c+7Kt6YzrZ6MyNHxvz9SmCuLeu/eRo3NPUudvii6qIHSr1+6IHJXjcrKn7dlz8z1fN5tNabXMIerAYUDRCbCwsLAgW1tbXk8DAAAAgE89F3pBnpMXetoqW70Fv8XFxUOx+glQoegEAAAAAADsMX704fUcEAiT2wsBAAAAAACAQ4OVTgAwZkHP+rE7V1X+gVPh4yeU7S8de1VERE4YT+S/HXD8JJ/nIL2mQRWU59jqe6Gytz7hmRxsHLlATs5tJcg/R53m7QQ9k2kqGfayecJzEfOhD8w5TyIiob2Zkaczrtc9fOpj5sYZxZqFR49NTX78eWeZI6fI6FLN/5W519SHP37iaF7AtKPoBAAAAAAAbDMMc/g9oML2OgAAAAAAALiOohMAAAAAAABcx/Y6AAAAAABgH3ePg00UnQBgzOwG9Q7Td5Jhscq5KkI3QzOjh6AOy3iyH1pqGIR3wluq0HA/Buha8frni122b2hgFRTsYEyn5/L6+RzHazzMmEG5xsbhyZ81TW0z83PKvnu7d8Y9neHt7ZmaWvc+MrXNnJk1tb186nPKId+592VT26S+b62OVc1V1Wb1d46heJ4APEXRCQAAAAAA2EaQOOwi0wkAAAAAAACuo+gEAAAAAAAA17G9DgAAAAAA2EeQOGyi6AQALrIbKux14Oow57Ebbh6aOeZ8Yn3euf8VZfsrs58XEZGw8VjkruunnbhhguUnxY9z8qMghYar+PEaU/HjdefHOamMY57DjOnH52ksv2sVIdMzp0+b2oz7D5ydR2FcP69VAdmho+a3j62PzOHixmP1jT78GCyvCgj/+u7vmNpeeTajHuCe2zMCpgvb6wAAAAAAAOA6VjoBAAAAAIAhcPc62MNKJwAAAAAAALiOohMAAAAAAABcx/Y6AL7y6dOfkbe7Pn8Q2v8x5XXIpF1OQ4W9Dg23LWT+fxath+6Ho7586nPK9tb9+/v/NdRBpUHjx+t7knPyY7DspAT9sTuav+LniIizn6OWN2lQ3OQBowvaddv994SI/RtkWD4m1bU7Y68tJEeVQ84cG/1mHON67kMnT5ja9m7t2Dr/yyc/qxzz3UdvOp/YiKwC10NHzK+J8meG0VIe7+drf6y4ex1sougEAAAAAAB8Yffr/0J23/kXA/vs6XcmNBs4RdEJsNBsNmVxcXFgn9XVVVldXZ3QjAAAAAD4ybVr1+TatWsD+zSbzQnNZjq07j+QvZ1dr6cBl1B0Aiy0Wi3Z3t4e2Gd3lx+GAAAAwGG1u7t74HuGqTTG7XXhkydkZm52YJ89/Y6IwR6/IKDoBFgIh8OysLAwsM/s7OAfhnhKtTdeldvx9t2vipw+/fTzU6fGN6cxZFL4MefC7vmHyTwJzcwo2kbPo7DSevBQ2T4zPyciImHjscgt10+LCZvG7zsV5c/BIeY5qZ9ZKlbncXJ+q+ymcTxOp3l74+D0cTo53up1t3u83UykSc6p//vrhPGkkxEpobBlhtiw5xFR/w6UPXPej/Hokb1jRUSs2j3U2r1ragufPGlqU/1sO/Lxs8ox7f49OA5Wr7FVfqSZ+jX657/x+3I89LGetmd/fK7n62azKa2WOhMKZrMv/3WZffmvD+yztfolVkMFBEUnwMLCwoJsbW15PQ0AAAAAPvUTx/6K/MSxv9LT9vWt3+n5enFxcfpWQxkhr2eAgBhc8gcAAAAAAABGQNEJAAAAAAAArmN7HQAAAAAAsI0Mb9hF0QnARKhCIpVhkrv/dBLT2XdAqKifOQ1cVR5rFeqreJ0sg1BdZjWnl469KiIihvFkIvOYJk5DXJ0ET08yaNiP4eKq57l9LXd799Gb6uMnNP9JvnZOxnR6HrfPPelzOfp5b3Gsk+/vYcYc5ni7TN9f9+6JnP6aiIi8fefLI92YxPL5UPz9YChufBGej5j7fXRfPeQzp22d3+ufY6obfISPmW8k0rpjDiH3mtUNU478hXOmtiffU+QvGeog8L27jx3NC5h2wX3HBQAAAAAAAN+i6AQAAAAAAOwzPP5wka7rksvlJJlMytLSkoRCIVlaWpJ0Oi2lUmnkcQuFgiSTSZmbm+sZs1qtujh7/6PoBAAAAAAADp1CoSBzc3NSKpUkmUxKsViUWq0muVxONE2TbDYrS0tLQxWKqtWqzM3NSS6XExGRcrksjUZD8vm81Ot1SSaTkkwmRdf1MT0qfyHTCQAAAAAAHCrpdFo2NjYkFotJrVbr+bdYLCaZTEay2WynIFWr1SQWiw0cs1qtSjKZFBGRTCYjxWKx82/RaFRSqZTE43GpVqsSj8elVqtJJBJx/bH5CUUnAK779DOfkweh3h8vqpBJq0DGSRlHGPakApGHHdfJecLHT5jaWg8fmPudPGnr3FZU5z9y9qyyb+joj64vwxCZ4ixxuyGyw4TN2g0NH8c1OkwArtMA3UmF7Tqdpyo0fByB6eMK2HY6rnJMh2H3Kk6vBz8GOjsxjmB4y585AX6ehrnuO7+Xuu3tmZqMR4+UY7Y++P5wk5uA8InjpjZD8ZhUf08Zj9W/nCd1I5Jhzr23/YGt463+zrF6rFPNCO1/eD0HBwqFgmxsbIiIyPXr1y37FYtFqVarommarKysyM7OjmVfXdclnd7/+RCNRnsKTt3K5bIsLS2JpmmSTqelUqk4eCT+x/Y6AAAAAABwaLS3vsVisQNXGqVSKRHZLyq1C1Uq6XS6s2WuPb5Ke8WTyP7KKCe5UUFA0QkAAAAAABwK3flM0Wj0wP4XLlzofH7jxg1lH03Tesa9ePHiwDEvXXq6qndQgWoaUHQCAAAAAAC2hQxvP5zQNK3zeb1eH+rYsxbRD/l8vvN5IpGwvXpK5OAVVEFH0QkAAAAAABwK8/Pznc81TespQql0r26yWhnVvUXuoLBx1Vjr686yC/2MIHEA7jNaItIbEt5SBWeG7Ne9xxHiajx57Oj4cYQ8qzgNX3ZK9dqFjhw1tYU/9jFH51E9zpdPflbZN/SjcNOQERK57+i0vjaO68nJua3Ob7ffJIPAxxGcPY7QbtXxk3yexnHzg0mZZLi3l8H0VpzMaRzXzaTm7geq34FKqpuoWJj5uHn1xB9s/2NT2zDXvePvkWOKx3nPHJpttBRtisDxQe2TYHVu1c1ulKHjLfXyGi/D0T3lcLWRl/oLR9lsdmCYd3sVUiQS6Vmh1Na/Wqp7O94gsVisU/BipRMAAAAAAEDAxWKxntVI1Wq1c9e5fqVSqVMY6t5C1607y0nEXk6Uqt+wW/2CgqITAAAAAAA4NN54442erzc2NkyFp2q1KtlsVkREisWiZDIZ5Vj94eIH5Tm19edDbW5u2jouaCg6AQAAAAAA+4yQtx8OxWIxKZd7t5tubGzI0tKS1Ot1KRQKkkwmJRqNSqVSsSw4iYgpE2rUlU6NRsPm7IOFohMAAAAAADhUUqmUFIvFnjZN0yQej0sul5O1tTVpNBqSSCQGjnNQELlduq67Mo7fECQOWGg2m7K4uDiwz+rqqqyurk5oRs44DZ5UGSaMcuaUOWT667u/Y+54757tczkOyBwiyNyul4696uh4p8+93cevCuge5rlTHW88MQeJDkP12MPHTyj77u3eERGRljH8OccVdms7ZHrmkrnfnv07lngd/DyO78VxBEJ7Gfzs9WNXsfx5b/N6HFtQsQN+DKP2Y4D+xK7HMfxOdcunT39GHoSevu1x+nMsdNT8Fip0/LipzdBvm9qsbrphfGTvrhjjuJ6sfl/MnD5talM9dlEEaRv3PlKOqQrtnhSr37Wqv93CJxSv52P13xw3H/ypfE++3dO2uPhHPV83m02708SEtVcwtbfRdatWq6Lr+oHb5UYtFvWPe+vWrZHG8TuKToCFVqsl29vbA/vs7u5OaDYAAAAA/OaJPJaHfbfSPeg9xFQY8e51u9VvyO71f+H49Hu33XsflslkpFarSalU6mmv1+ty/vx5uX79ek/w+Liw0gk4ZMLhsCwsLAzsMzs7O6HZAAAAAPCbI3JUjsvJnrZnz833fN1sNqXVak1yWr7VevBQ9hSrAL2UzWalVCpJJpORarXas11O13WJx+NSqVQst9lFIhFXCkZ2A8iDhqITYGFhYUG2tra8ngYAAAAAn3ou9II8Jy/0tFW2erc2Li4uHo7VTzaETxyXmcgZx+Ps3d4VMUZcbtUlmUxKtVqVtbU1yefzIvK0CNXfz6rwND8/70rRaX5+/uBOAUTRCTgk7OYXDNO3u+2E8UTebn8RCpuzHY4dNR3/8qnPmdqOfXSnM05PBoMiK8JpJoNqb/9Qxzs4vypHxUroiPm5s6LKWmo9fGDrWKs5hRRZDTMfP2vuuLdn6zxWVM/TL5z7VWXf9tUw03os8oGj0w7NaVbSMPlNdo0jV2dcmVBOxpzknOye56CfjQcd72X21NjOpfpZYij+D79FBpDdn83D8GP+k1O2f984/L1mm+o19om3735V5NQp9wZsmd/oGg8f2jtW8feQiEhoxvz94MfMN1Um0zuKjE7V3yMi9v8mmSRD8ffL3t27pjbLv8d8nGc2ViPWe2ZXfl5mV37e8em3fu0fOl4xFY/HpV6vSyKR6BScRESKxaIkk0lJp3u/B9PptNy8edO0ImnUFUr9happXel0SL9DAAAAAADAYZROp6Ver4uImO5gJ7J/Z7tardZTCNJ1XXK5nKnv8vJyz9d2Vz31B4cvLS3ZOi5oKDoBAAAAAIBDQdM02djYEBGRWCwm0WhU2S8Wi0mtVutpK5VKpqJSPB43jW9Ho9Ho+doqMyroKDoBAAAAAAD7DI8/HOhe2dS/SqlfNBo1rYTa3Nzs+bp/DLtFp+7iVSQSsSx+BR1FJwAAAAAAcCh0F3vsbGnLZDI9X/cXlWKxWM82vBs3btiaR3fx6qDiV5ARJI7AKBQKUqlUZHNzU3Rdl2g0KrFYTLLZ7NQuRexmFaIaPn7C1NZ69MjcURHwaRWIqAqOnDljvstE695HT8cyQiJPlMPt/7viLhV7O+bwv7fvflXk9Omnn/8o+NN28LYizPGlY6/aO1aGDP22GYyrOr8qiFNE/dqpAi6t5mQ7gFcxT1VguIhI+NTHzI2qIFTFZWfFdjiqReCqPP7RxRYK2T/poPNM8Phh2A1PHmZOdp/7YcZU9VWFyKquZRER48njkc8j4ixsd5iAatth8WOYp4j6Z4nquXP6etr9mWHF9k0ahgjVdxqQbdcwP1ttj+kwAH+Ya9TxzSwUv9eGuRGJSvjkSVOb09duHK/9MMe/c/8rprZXns0oeipY/Bzcu6U7mpMTlq+n4vteFQT+yuznTW1WP+8n9b08FJt/z7376E3l4cPcHGaqGMP/DeYX3VlK/VvcrMRisU4GlMrFixc7d7wb1K9bdz9VVtS0YKUTfK9arcrc3FznG7FcLkuj0ZB8Pi/1el2SyaQkk0lXblMJAAAAAJhe3dvY7G6Fszq+LZvNdj6vVqsHjtHdJxqNTvUiCopO8LVqtdopKGUyGalUKpJIJCQajUoqlZJGoyGxWEyq1arE43EKTwAAAAAAS5cuPV2d1t5Fc5Du4pSqQBSLxXra20HlVsrlp6v5pnmVkwhFJ/iYruuSTu8vt1UFuLW1v2E1Tev0BwAAAACMR8jw9sOJ7gKRruty9erVgf2r1WqnMJXP5y37db9fHTSmruudrXiJRMKUGTVtKDrBt9LpdOebe1D1t73qSWT/B0L7GxgAAAAAgH7lcrkT/l0oFCzfQ3YvbEgkErK2tmY5ZjQa7SyIqNfrUigUlP1WVlZEZP+Odd0rnqYVQeLwJU3Teva5Xrx4cWD/S5cudZYw5nI5z6vFTgM25afM+4StQr/DHz9rblOFN540B47/wXd+UznmK3OvmRt//MfM5/nzHzydn/FY5EeZfKFjxyQc6v3x8tELHzcdf2L7A1Pbp09/Rt7u+vzBj8axG1QcPnHcPPeW+n+HhI7a/BGoCpgU+yHu4dnT5n67d9VjKuZvPB6Q0N5HFeapMqMIBw99THEtiojx0PyY9j45Z2p7PGsOR7cKcbcdEGoRuP7o/P71FN57JNLcb/tbkc93rpe28PPnTcd+/X/4R/bObWGY729VAL8qRPbru7+jPN7LMOyhzqUIXJ35K8+b2m7/9LxyzNm3Nk1tqsDWcQQqO6X62TxMKK8qgNYqtNrpc6JiO3ja4XOv7OcwzHosAfpDBIbbDQ+2mqfq56PqNR4mmN4uq8f5C4t/39SmCsiemTf/DjDumwOmRSx+hw0RTD8Ow3zfqaheu5kzs+aOM4og7tt3lGMq/35xyOmNI5R/D1oEhPezukGE56HhCqqf48P8vPV6/hhNJBKRmzdvSi6Xk1KpJNlsVsrlsqTTaVleXpZbt25JpVLpFI7y+fzAglNbKpWSSqUi6XRacrmc3LhxQ65cuSLRaFQ2Nzcll8tJvV6XWCwm169f77nr3bRipRN8qXvZYiKROPCbsb3SSWR/ueJBe2gBAAAAACMwfPLhUCQSkWKxKLVaTTKZjGiaJtlsVuLxuGSzWdE0TdbW1mRnZ8dWwaktkUjIzs6O5PN50TRNVlZWZG5uTtLptMzPz0u5XJZarXYoCk4irHSCT3Uvb4zFYraOiUajnYC39fX1nkIUAAAAAAD9YrGYZX6wE2tra0MVq6YVK53gO/V6vefrCxcu2DquuzjFSicAAAAAALxF0Qm+053lJLK/gsmO/n79xSsAAAAAADA5bK+D79y4caPna7t7Xc+e7Q3U3tzctL01z4lf+Mu/Zmr77j/8a6a2f3Tpq8rjf/mUKlDy/2Pu10gqjz8WNgd3/meL/w9T26vv/V1T2/LfvaYc839bM4f6/o2PmYOvv/jn8afzuP9E5Gf3P9/+T39G7h/rDcT8xb/9L0zH/xef+O9NbX/lzb8j8r/+v4mIyHd+64LcP74/zks/+1+Y+oZ/0hwSHbpvDr02jsyY2kREQk/MYZi/8Bf+l6Y2VWCqiEgoYg6JDn24Y247YQ4cD++pw8lVoaOhGUUY54z6MSmHPG0OMlcFuxpW4abzEVPbzl86ZWq781zI1Hb+W59UjvkL535V2W6a01lFELeI3Pvx/etir+thGLG/JMZMb/D473/ty6Zjl/65ee4iIjMNc5D6+X9ov3itChL9i2/9Q1PbM99Qn98u2+HBFkG9quNVIaohq2vMZgBw63/UTG1zD9Wh+E8UgbOOb8iguIGAMth+iEBj1ZxUNxRQBdCKWARPK0KzrQL4VVSvneomCxI2f39aGSqgWvH8qQKZh3o9Fc+p6jG9c/8rts+jGlNF+dyJ+iYRVjeZMM3JInDc7vM0jvB/yzGfKL5HH9n7HWT1MyP8MfONK/7gB6+rz2+T0+dkmNBwFeVjPaa44YviuQufVf9N0VL8/eD0enD6PO3tmv8ucBx4rrqhgsfh4qobvti9UYCI9/MH/I6VTvCddi5T26grnRqNhmtzAgAAAAAAw2GlE3ynv+g0Kl3XXRkHAAAAAPBUyIW7x+FwoOgE3xm1WNS/De/WrVuO5tFsNmVxcfHAfj/8811T217+6SLCyP/s52Xu5z7laC4AAAAAJuu7xr+T7xnfGvq4/vcQzWbTrSkBgUPRCVPL6UqnVqsl29vbox3cXYfafSBHd0X+5e4Lyq6/fKpma8jfXaoo23/mN3/F1Pbbn7ltarvzoTlH5pm76v9F8emPfWRq+8v/6nOmtr1vPdP5/OSjh/Il+ZqIiDyKiDzqjdaRHzx6RuwItXo/b38d3jVnV4UM8/xbzyjyk26bH48V4xnz82SZhHL3nrnvKXN2hSojQ9lPRIx7NueqyH7aP/6+uW3PnF0VOqr48a/IwBER2fsLnzCPqTj9xz5QHHzX4vGo5q/Ijnoyp36eIn+6X1Q+3nqaszJz+yM5ElZnBnX7n3xcXZD+7g8WTG2th+brzooq0+HIxr9najtq8X1nd0xVToQqA0j1uouIMk9D1dfyeNWQinwTVa7RKz/9n9mek928HBGRd+6Zs7tUeRzhY8dMbVY5NKoMH7sZHVaZTKosFGW+miLjSkSd36R6nlWPfZiMLlXezcunzL8DRNTPvYrd61bE/vWoOn6YHBVVfpMyu8mC3cdklfFld8xhqI4fJk/LeGh+/HuK30uq7yUroWcUeTnD5IYpB7V33Y6LKk/slWczprbQcfv5R+Ez5r+T3vnAfJ5xsHo9lJmWikxKQ/F9o8zaE/XPvHcf2c+BG0tWkiJ7q/0zc29vTx4a5r+tDjLye4ggMexnBeJwo+gE34lEIq5sjbMbQG4lHA7LwoL5TWi/H/7QHLK4d/TpD+GZY/bCSwEAAAD4xxE5KselXUBTF1mePacOh+/WbDal1bL/P1OAaULRCb4zPz/vStFpfn7e0fELCwuytbV1YL+V/+Cqqe2Dv0qhCQAAAAiy52b+kjw385dExHrF6DtbB69IW1xcPByrn1xy+4++Ibf/+BsD++ztmiNO4E8UneA7o65Q6i9UOV3pBAAAAABQGGOQeOvBA9m7bY4LQTBRdILvLC8vS71e73yt67qtAlJ/cPjS0pLbUwMAAAAAjFH4xAmZOXNmYJ+93V0RRb4r/IeiE3wnHo/3fK1pmsRisQOPazQaPV8nEglX52Xl+h9esdVPFVgqIvI3zpjnaaiCpy3CKP+77f+Vqe2VuddMbT91yrxV8A+2/o/KMV/6q+aA7PN/9kNzx/DTQt/x1tMQxqX/6tvyMNQbePtv/rufMc9z3RzcuPT4xtPPv3BDHoT2f0y1FAG6qmDZGUVA9xOLcG5VX2WArUXAtt2gZVUosCoQWEQdNLx3966t84iogzvDJxRh3Kq5W+QMh2+bAzQ/9kPzFtJT//YHprY/+MHr6kFtSv7cP1K2twPGj+w9/TXWanxP9kK9v9b+xr/3H5iO/eMf/Jfqk60o2n7V3jytWAUlm/xf1c12Q4GHCVa1G3SsCqMWsR/W+8r/9H9natN/Wr3t+Zn/wdaQjqnCf4cJq7X73FsFgSt/ZigC061+PqiOV75OijFVQb0i6sekfE5UYe8Wfe1ej1Y/Q1XXmOpxqp5ny4Bqh2H1quPthmEP8700zPOpvEYtzmVX6Kw5m+bIxxSB0IrQa9lV/6560vxzR3NyIzj606c/0/l7wmrMYZ571d90qiDwlm5eqRGyCGFXhXFPiuXjVN1AQPE3UUjxt4vy7wyL44eZ0zi0Hjw0tdm+CYs4v4EAzM586uflzKd+fmCf7/0f/nNWQwWE+i8IwEPLy8s9X2uaZuu47u11kUhEotGom9MCAAAAAIjsb6/z8gOBQdEJvhOLxXq20924ccO6c5fNzc3O5/2FKwAAAAAAMFkUneBLFy9e7Hzene80SHe/XC7n+pwAAAAAAIB9FJ3gS9lstvN5tVo9sH93n2g0OrE8JwAAAAA4bEKGtx8IDoLE4UuxWEwSiUSnmLSxsSGpVMqyf7n8NGzQr6ucVAG2IsMFttrVUgRnhxQhiVbe/RNzALBK99yPGE/Dz1u375gCnef/8Kbp+CeqkMlQ+Ok+7VC481woAx1nzMnXqtDt8HFz6LVVX1WA71Bht4rXc5gx9yxCz+1ShWHKfXMQ+DDX2Mz3zSHyp35wy9RmfOKs7THtOvKBrmw3PrYfWjrTehq8+t/qvyNy6lRPP9shyTKe0NJxBInanec4ArKHYfw78/f8mX+n7tuyGeg81JwUYw7zOJ08J06fO6ch7ipWofZOrye7nF5jTkO37c5/HNeDFdVr4nRMu8/TUK+n4vdF6Acfmtqsft45DTcfB6evZ0sR+h1W/E0SjpjvvmXcUQeuq/6m8do7975salP+LFE8Hy3V3x4+pbqJi/HYfFMfVZuI9c0jAOxjpRN8q1gsdj6/evWqZT9d16VUKonI/h3rMpnM2OcGAAAAAAAGo+gE34pGo50VTPV6XQqFgrLfysr+fc4jkUjPiicAAAAAwBhw9zrYRNEJvpZKpaRSqUgkEpFcLifpdFrq9broui7ValXi8bjU63WJxWJy8+bNnrveAQAAAAAA71B0gu8lEgnZ2dmRfD4vmqbJysqKzM3NSTqdlvn5eSmXy1Kr1Sg4AQAAAADgIwSJIzDW1tZkbW3N62m4blLhxcOEhqpCP5UBtj3hok8DwI29PTFCoZ6uxkfmQEllaOYTdUijKhTYUGRxD/N8qh6nKuB7mPBeVWi4kkVwsvp48/NkGVqpGlcVAqt47q1CYF+Z/bz5NIp+oTv3TG2OQ7vvmscUEQndf7D/39bg8M6hrocxBAV7aaiQ5jE8ztbDBxM7v/JnltNAZgcB2+MIgx7mXMPcoMLumE4DuoNiHDcamGSo/1iOdxBgL6L+fWM8Mf+uchri3t/vhPFE3raYk9Pn/sgnP2Exch/VY7e4kYgfg8RVoeGq+Ssfk8XPHKfX01hufKEICLe6AZCK1Y0aph5b3GATK50AAAAAAADgOlY6AQAAAAAA20KsdIJNrHQCAAAAAACA6yg6AQAAAAAAwHVsrwMOiaFCFhVh1MME075958sip071tL186nPm0yiCJ9++82WR01+zHOcgw8xTFWbpNAxSGaZpERo+juOtHqud81gGAivGPPLxs6a21oe3TG2Owz0VAfQiIqFPPPujk7r3/07GEaY9beHkw5jk43QaTGvXOF7PYca0e66JPvcOApknGbCtpPjZNo5rKUjf88O8TnaOFbG+SYWTOQ3r7btfPfDviWHO8+SD75vaVL8XVb/Dws+cVg/qwyDx8Injpra9ex+Z2pRh8RaB6U6N4/tJFRo+1E0SbP7tNVUMETFCB3Yb+xwQCIfwOwQAAAAAAADjxkonwEKz2ZTFxcWBfVZXV2V1dXVCMwIAAADgJ981/p18z/hWT1v/e4hmsznJKQG+QtEJsNBqtWR7e3tgn93d3QnNBgAAAIDfPDEey0Pp3Up50HuIqcD2NthE0QmwEA6HZWFhYWCf2dnZCc1msuzul+/Z735Q7lBL8ZtJccynT39G3u76/EFouB9Tw+z1T85cMh/vMM9jUtkyVuw+JlU/S4rXae+WbmpTZTo4ZTx+ov6H7/9w/9+Nx66f001ByXIJevbUUNkbfYZ5nGPJGhoiC8TL12mY/KVxZE85fZxBup4dUVxPw3x/qJ6n0JGjpjZVTtMw18g4mM5z757IaYv8JKdUf/PsqdrMuUat23eUQ4ZPD5dhOQmtBw9NbeFjx8z9Hj2axHQcs7pGwydPmtpmFNeO1d8kRx4eleNG7xjPnpvv+brZbEqrNURGJzBFKDoBFhYWFmRra8vraQAAAADwqedCPynPhX6yp62y1fs//BYXFw/H6idAgaITAAAAAACwLTTG7XU7/+KPRf+X3xjYZ+8OMSdBQdEJAAAAAAD4QuvhA9nbve31NOASik4AAAAAAMAXwsdPyMzsmYF99u7sihikmQcBRScArvuPfvp/Iw/DvUGT79z/iqmfKtDx7btf7QR/vn33qyKnrIM1VccPFQ5+UPj5gPNY8WOor7LfEIHnqnMZinBUVZtj4ZCyee/eRyIi0jIsgsYH8Drs1qlxhEkH5bFbcRLw7fX1MMz34liCzB2c22vjuBmE59fDMDfDcPDaD/N7ze7P9kleI06ve6fHq0Km5Zg5cD108oSpzfjwlnJMw+bfJJNk9wYh4RPHTW1Wodvj+L61K3zc/HpY2bt71/bxXt9ExjNjrPfM/dynZO7nPjWwz83f+HVWQwWE/VumAAAAAAAAADax0gkAAAAAANgSkvEGidudA4KBlU4AAAAAAABwHUUnAAAAAAAAuI7tdQBG1hO6ee9eJwB8T/uuPAn1/nh5ZfbzpuNDR8yhm58+/Rl5u+vzBz8aRxXwOY7wZGXA5RjCUR0HgTsMTB1qzJDi/08oAk9Vr6djLffXbvsyEHmI68HLMGmnvA5pHse5nR7v+LVTfX+qzqP42SbibQDuOG6IMMyYyr4Wz6cvv8dsvvYqVnN3EsA/jt9LVuN6/X3bvplFt7AicF0VJG49qP+CxFVaDx+Y2lQB21YB9HbDycdBdVMbEZGXT33O3DjE99crc6+Z2r6+89u2jw8sbhwHm1jpBAAAAAAAANdRdAIAAAAAAIDr2F4HAAAAAADsY3sdbGKlEwAAAAAAAFzHSicArnv77ldFTp06sJ8qSPTtu1/tBJLbHWeU84hYhJM6DKYd5vx2+9oOwLXg9HhV6KfxRBEkftT9XymtR48GzilkGCJPXD/tWI0jkNjzQGObJjnPQ/OcKEL9lefxMDBcZLifOU4M83wG5RqZZAC/k5tZTPIGGV4LHztmalMGZCvCwUOKY/f7qoO3PRUOmZpUr9PLJz9rPtTicaqCyCdlmJ9D4ZMnTW3v3PuyelyLGzUA2EfRCQAAAAAA2BZiex1sYnsdAAAAAAAAXEfRCQAAAAAAAK6j6AQAAAAAAADXkekEWGg2m7K4uDiwz+rqqqyurk5oRtNHGRp6795kzjOm420HgVuETtoN+53kY3r30ZumNtXjNB67n+g9c+pjynajHbgawCBxP4bljiPcfBxj+pHTx+n0+HE8p5MKu59UuLjVuSZ1PU4yYNvLx2l1nknNqf88J4wn8rbrZ9mnCsOeOTVnajPu3Te1hU6ZA6pFxHaQ+CRfY9Xv9VdmP2/vYEUIuYiIhLxb82D1PKmC0FWPXdVPROS7xr+T7xnf6mnrfw/RbDbtThOYOhSdAAutVku2t7cH9tnd3Z3QbAAAAAD4zRPjsTyU3gLjQe8hpgJB4rCJohNgIRwOy8LCwsA+s7OzE5oNAAAAAL85Ejoqx43eFWzPnpvv+brZbEqr1ZrktADfoOgEWFhYWJCtrS2vpwEAAADAp54L/aQ8F/rJnrbKVm9cwuLi4uFY/QQoUHQCABfZzuiwyG4aRz6M8vxjyJkybOZRDGPv7t3B5zQCFujkU+PIA5lkfpPq2rV73Q51ngnlNw2TdWT3/MPkCnmdART0c3nJl49zQhk+psd+757I6dMTObeISOjECVObKtPJuG/OgxIRCX9MnWHYb6ifOQ5/NoZmZkxtdn/XW+U8qsb02jj+fpl6hkjI6+11Xp8ftnH3OgAAAAAAALiOlU4AAAAAAMAXbv2rP5adf/2NgX2e3OWGTkFB0QkAAAAAANg3xu1trYcP5Mmd2+M7ASaKohMAAAAAAPCF8PETcuSZMwP7PLm7K2IQ7BQEFJ0AYEROQ4VVJnW807mHjhy13deJ8HFzMKvI09DPkBEScSlLfByvJ0Y31OthTOY21JP6/gxSsPth+b5x8jgnGqrvw9djHKH+fmQ8MAeEqwKqjUfq0GpVwLbT19Ppcx86an6r2Hrw0NT27qM3TW1WNyeZ1M9rFasbKlj9rWGbh49pWs3/7Kdk/mc/NbBP49qvsxoqICg6AQAAAAAA+1hkBJu4ex0AAAAAAABcR9EJAAAAAAAArmN7HQAAAAAAsC3E9jrYRNEJAEbkdTirXeMIljWePDa1TSpcvPv8huFSirgE5/V0yo9BwypDheX6cP5B4Tio2MFzbxXqO6kxh3nsXGO9xvFzZBzXg1NWc1Jp7d41tYVPHDd3VASGi4iEjpjfllV2f8f2+cdBFRquCkd/+dTnTG3hY8eUY75z/yvOJzYiq2tJFXquCmF/+eRnlcdP8u8fIIgoOgEAAAAAAPtY6QSbyHQCAAAAAACA6yg6AQAAAAAADFCv12VjY0MKhYJUq1VbxxQKBUkmkzI3NyehUEiWlpYknU7bPn4aUHQCAAAAAAC2hQxvPyZB13UpFAoSj8clFArJysqK3LhxQ2KxmCwvLw88tlqtytzcnORyORERKZfL0mg0JJ/PS71el2QyKclkUnRdn8Aj8RaZTgAwZl4HN4/jXHZDeZ1SBZaKiEio/f9MwmQKDGkc14PX1zhGN47wZy+vMa8D6L0O2J7U992kfq+IePvzZZjg6Zkzs6a21t175rZ7HynHDFkEjHtJGYSusKd4TFaPx25o9ySpHqcqNDx0VP3WufXoketzgrd0XZdcLielUklERGKxmFQqFUkkEraOr1arkkwmRUQkk8lIsVjs/Fs0GpVUKiXxeFyq1arE43Gp1WoSiURcfxx+wUonAAAAAABw6JVKJTl//nyn4FQsFqVWq9kuOOm6Lun0frE8Go32FJy6lcv7RW1N0zr9pxVFJwAAAAAAYJ/h8ccY5HI5yWazouu6RKNRaTQakslkhhojnU53tsy1t9aptFc8ieyvjGoXuaYRRScAAAAAAHBopdNpKRQKIiISiUSkVqtJNBodagxN03oCwi9evDiw/6VLT7ebDipQBR2ZToCFZrMpi4uLA/usrq7K6urqhGaEoPI622aSGSNus8pPaGdFhIywyMOJTAUDeH2NwztOXnun+UvD/Gyz+zPL6bU8yawjFS/zj4bJnhpmnpPK3nJ87hnz/8tX/Q4LWWQVepnpNMzv9PDJk6Y2VSbTMNfDpAz1t0vI/Hpardb4hd/89+XatWs9bf3vIZrNpv1zY+KSyWRPsWjUjKV8Pt/5PJFIHDhGe6WTyP62vI2NjZ62aUHRCbDQarVke3t7YJ/d3d0JzQYAAACA3+zu7h74nmEqTcmNXEqlUk/BqVgsDr3CqXustlgsZuuYaDQqmqaJiMj6+jpFJ+AwCYfDsrCwMLDP7Kz5TiUAAAAADofZ2Vk5d+7cwD7NZlNardaEZgS7NE2TbDbb+ToWiw2d4dRWr9d7vr5w4YKt42KxWKfotLGxMdK5/Y6iE2BhYWFBtra2vJ4GAAAAAJ+yE7exuLh4OFdD+Vz/XeOuXLky8ljdq6VExPZqqf5+9Xrd9iqpoCBIHAAAAAAA2BYyvP1wStO0ntVJkUjE0da2Gzdu9HxtNxPq7NmzPV9vbm6OPAe/YqUTAEw5r4NtnXjn3peV7S8de3X/E0MdyApg+jkNIp9GTkO73T63G30nxemcjI/um9pCs8+Y2x4/UR4fPn3K1nmGCcO2+5is+nV+13YxFPNXzkkRxG3V1+vrQRWO3npg/y4lfnxMOFixWOz5OpFIiMj+Frf19XWp1+uiaZpEIhGJRqNy6dIlyWQylsWk9ha5tlFXOjUaDZuPIDgoOgEAAAAAAHsM8T5I3OH5u0O/RUTm5+clHo+bspl0XZd6vS71el1yuZyUy2Xliqj+otOodF13ZRw/oegEAAAAAADG7sM/+WP58MY3HI/z5N7odxHXNM1U3Hnrrbckn8/LxYsXO6uZNE2TfD7fU6BKp9PKwtOoxaL+lVO3bt0aaRw/o+gEAAAAAADGbu/RA3ly97anc+hflRSJROTmzZumAlA0GpVisSjxeLznLneXL1+WRCJhO7dpGNO40okgcQAAAAAAYJ8x2sfMsRNy5PQZxx8SCo089f6i06Cspva/ZzKZzte6rsvVq1d7+rhVgBpHIctrrHQCAAxkNyC0src+gdnsM/b2A8QNgsQRcOMIBfYaobrusrpGxvGcjuO18+P14PT84WPHbPVr7eimttCJ48q+xkN7wdWTfO5CMzPmxrD5jb7x5LHtMb187a3O/fLJz5objZa5TfHYB40LtbMXPiVnL3zK8Tjf+r/8+sgrpvrDui9cuHDgMblcrmebXaFQkHw+3/l6fn7elVVK8/PzjsfwG1Y6AQAAAACAQ6G/OGRndVE0GpVYLNbT1h06PuoKpVHmEjQUnQAAAAAAgG0hw9sPJ5aWlkY6bnl5uefr7m16/f9md9VTf3D4qHPzM4pOAAAAAADgUOhfTWS3QNRfEOouGMXj8Z5/68+NstK/1S+RSNg6LkgoOgEAAAAAgENh0IqlQfqLVd35S6OO2V3wikQiEo1GbR0XJASJAwAG8jIg88AA3Xv3RE5/bYIzAsYv6KG0QZ+/XZMKyHY65jDH2+3rx3DwSXrn/ldMbcowalXo9gN1YHjoqP/elrVv2tEtJOZw8fDJk+aDWw73P01Q6+EDc6Pihikti9dO9dqrrpGpE5yX2KQ/m6l/tZFd3QWiWCwmkUikU0S6ceOGpFKpA8fY3NzsfN5fuJoWrHQCAAAAAACHRvc2tmq1auuY/m14/cWrixcvdj7vDhkfpLtfLpezdUzQUHQCAAAAAACHRneBR9M0W7lO3SuiVNlL2Wy287mdQlZ3n2g0OpV5TiIUnQAAAAAAwBCCfPc6kf2iUff2uKtXrx54THeRKJ/Pm/49Fov1FI42NjYGjlcuP92WPK2rnEQoOgEAAAAAgEOmu+hTKBQGhn9Xq9XOv2cyGdPWurZisdj5fFAhS9d1KZVKIrJfAMtkMkPNPUj8l1gHAMCPWAXTtkNsTxhP5O1JTgjASKxuCqASlEBqr+eZnLlkaqvsrU/k3OMIJ3eq/xob5+8H1XOvEj52bEwzGJ3TEHhVQPZLx171dE62z2PxuoWOHDW1vfvoTdfPP3UCHCTeFovFpFgsdrbFJZNJqdVqprvU6bre6dM+xko0GpVyuSzpdFrq9boUCgVZW1sz9VtZWRGR/TvWdRe/phErnQAAAAAAwKGTyWSkUqlIJBIRTdPk/PnzUigUpF6vd4pG58+fF03TJJPJSK1WO3DMVCrVGTOXy3UKULquS7ValXg8LvV6XWKxmNy8edNU5Jo2rHQCLDSbTVlcXBzYZ3V1VVZXVyc0IwAAAAB+cu3aNbl27drAPs1mc0KzwSgSiYTs7OxIqVSScrksV69elVwuJ5FIRKLRqGQyGclmsz0ZUHbHLBQKsr6+LisrK6LrukQiEVleXpZyuSypVGqMj8o/KDoBFlqtlmxvbw/ss7u7O6HZAAAAAPCb3d3dA98zTKUp2F7XL5PJuJ6ttLa2ptxed5hQdAIshMNhWVhYGNhndnZ2QrMBDqdhcmCAIPI6F2hS/Pg4nebITCqHxsqk8puCwvTc37sncvq0iIh8+pnPyYPQ07c9Tp871fEvn/ysvYPDIWXz3r2PnEzJtmGuUePJY1ObKhcpfOK4+eCWuiLh5feN09fd6m+S7xrfkuNysqft2XPzPV83m01ptVqOzg8EFUUnwMLCwoJsbW15PQ0AAAAAPvVc6AV5Tl7oaats9RbSFhcXD+dqKEAoOgEAAAAAgCGo1+wBZty9DgAAAAAAAK6j6AQAAAAAAADXsb0OABA4ndDRrqBYAO4YJsDfjwHhdjmde5Af+2Hz9p0vi5w65dp4qu+R0JGj5rajirdaFgHboZkZx/NyW/j4CVNb69Ejc0fFYzL29pRjjuP7xm44udXPNtXjVFG9xiLWj3XqTeHd6zAerHQCAAAAAACA61jpFECapkk2m5VsNiupVGrkcQqFglQqFdnc3BRd1yUajUosFpNsNiuJRGKqxwQAAAAA+M8P6n8sP6x/Y2CfJ/d2JzQbOMVKpwDRdV3S6bQsLS1JtVqVW7dujTROtVqVubk5yeVyIiJSLpel0WhIPp+Xer0uyWRSksmk6Lo+dWMCAAAAAEYXEpGQMb6P1sMH8uTu7YEfYrC/LyhY6RQAuq7L1atXpVAoOB6rWq1KMpkUEZFMJiPFYrHzb9FoVFKplMTjcalWqxKPx6VWq0kkEpmKMQEAAAAA/jZz7IQcPX1mYJ/H93YpPAUERSefKxQKUiwWJRqNOh6rvVJKZL9w013I6VYul2VpaUk0TZN0Oi2VSiXwYwIIJoJ6gcHsBugOg++7w2sc15OTc1vx+hpVnf/lU5+zd3A4pGwOif+CxFsPH5jalI/95GdNbZMMRrd7PVj1S85cMvfdW7fVz6rv1DNkrEHiH3/xU/LxFz81sM//77/+dXl87/b4JgHXsL3Ox+r1uiQSCWk0GlKpVCyLL3al0+nOVrT2ljWV9koikf0VR6VSKfBjAgAAAACAyaLo5GOxWExisVjn6+Xl5ZHH0jRNqtVq5+uLFy8O7H/p0tNKvlXhJyhjAgAAAACAyaPoFCBOMovy+Xzn80QiceBY3XfF03VdNjY2AjsmAAAAAMBFhscfCAyKTodE99az7tVTg3TnSK2vm/cqB2VMAAAAAAAweQSJHwL1er3n6wsXLtg6LhaLiaZpIiKmFURBGRMAJsXLAF4cXlxjcJPd6ynoAfbjmL8qOLv14KG531H12y9VaLdTjh9nyN76hNajR+ZGozWeOY3BoQwCByaIlU6HQHdGkojYvhNef7/uolBQxgQAAAAAuCtkePuB4KDodAjcuHGj52u72VBnz57t+XpzczNwYwIAAAAAAG9QdDoE2lvP2kZdQdRoNAI3JgAAAAAA8AaZTodAfzFnVLquB25MAJgUrzMpgsyPGR/AKLiWg8Hpa6J6nWdOnza1GU8eT2xOTsZUPR4RUWY6JWcumdrCx46Z2pQ5TxOkfEw2M6pE1DlPqsdpda5D8X3PFjfYxEqnQ2DUIkz/9rZbt24FbkwAAAAAAOANVjrBtnGsIPLzmM1mUxYXFx2Ps7q6Kqurqy7MCAAAAMCkXLt2Ta5duyYiIj98sGPRy7zkp/89RLPZdHtqQGBQdDoEIpGIK4WY7hVFQRnTiVarJdvb247H2d3ddWE2AAAAACZpd3d3pPcDbryH8DvuIAe7KDoNoVQqSTabdXXMWCwmtVrN1TH7zc/Pu1LMmZ+fD9yYToTDYVlYWHA8zuzsrAuzAQAAADBJs7Ozcu7cORER+eG2/ZVOz57rfT/SbDal1Wq5PT0gECg6HQKjrvzpLwD1r0oKwphOLCwsyNbWlitjAQCsHYrAVZhYhRd7eT1YBiorqOZ5WK5l1eOc5Os5qeDmYa6HvXsfmdpUc3pl9vPK418+9TlT2zv3vmz7/E5YPXd256QKF7dkTKbwMsw1GjpydGDfn5Kf3f8kbBGHrHhMla3e8y8uLk7f6idWOsEmik5DSCQSUi67+wvNrQLJIMvLy1Kv1ztf67pu67z9gdxLS0uBGxMAAAAAAHiDotMQotGoRKNRr6cxtHg83vO1pmkSi8UOPK7RaPR8nUgkAjcmAAAAAADwhsUaQUyT5eXlnq81TbN1XPe2tUgk0lNwC8qYAAAAAAB3hQxvPxAcFJ0OgVgs1rNN7caNG7aO29zc7HzeXxAKypgAAAAAAMAbbK87JC5evCilUklEpCc3aZDufrlcLrBjAgBwmDgNWZ5USLMfQ7f9OKegmORzN6lzWZ1H9T0SmpkxtalCw1sPHirHDB3139sy1VxVjz18/IT52IcPxjInR0Lq9RbvPnrT1PbSsVdNbcaTx0ONC2Af3yGHRDab7XxerVYP7N/dJxqNKnOSgjImAAAAAMBFhscfCAz/ldRhqTu7aFixWEwSiUSnSLOxsSGpVMqyf/dd+qxWDwVlTAAAAABAMHz/T/9Yvv+n3xjY5/FHuxOaDZxipVOA9AdrD1uEKhaLnc+vXr1q2U/X9c4Wt0QiIZlMJvBjAgAAAAD8b+/RA3l87/bADzFY7hQUFJ0CQtd100qe9fX1ocaIRqOdlUH1el0KhYKy38rKiojs3wmueyVRkMcEAAAAALhkjFvnZo6ekKOnzgz8kFBoko8WDrC9zsd0XZfLly+LruvKfKN6vS6hUEgSiYREIhG5cuWKxGKxgWOmUimpVCqSTqcll8vJjRs35MqVKxKNRmVzc1NyuZzU63WJxWJy/fr1nrvJBX1MAIDapIKjMRlOXztee4xC9XNE5HBfT1/f/R1T28snP6vu3JqyVRsW4dqVveH+p7mbhjm3sbdnagsdOWq7L5z5xE9/Sj7x058a2Oe//29+fX/FE3yPopOPjWsFTyKRkJ2dHSkUCrK+vi4rKyui67pEIhFZXl6Wcrk8MEcpyGMCAAAAAIDJoOh0iK2trcna2tqhHBMAAAAAMJrQlC3Ow/iQ6QQAAAAAAADXsdIJAAAAAADY0w799noOCASKTgAAHHKHOeg36AiBB/zrpWOvmtqMJ4+Vfa1Cqn1HERD+zv2vmNqSM5eUh6vaJxUubjUnMVrmNsXjfPfRmy7PCDgc2F4HAAAAAAAA17HSCQAAAAAA2BYy2N8Ge1jpBAAAAAAAANex0gmw0Gw2ZXFxcWCf1dVVWV1dndCMAAB+43WmEvlN/qe6RqwE+fUM8tzdYOztmdpCMzOmNqvnaZjrZFJUWUsvn/ysqc2P1/gwP5vtZm9ZPc7vGt+S78m3e9qePTff83Wz2bScKzDtKDoBFlqtlmxvbw/ss7u7O6HZAAAAAPCbJ/JYHsr9nraD3kNMBXbXwSaKToCFcDgsCwsLA/vMzs5OaDYAAAAA/OaIHJXjcrKnTbXSqdVS3CUPOAQoOgEWFhYWZGtry+tpAAAAAPCp50IvyHPyQk9bZat3K9/i4uLhWP0EKFB0AgAAAAAAtoXYXgebKDoBAACM6LCHJ+NgQQqOxuhmZp8xtbXufWRqS85cUg8Qcv+m4k5vdPDK7OdNbarA9PDxE6a21qNHY5nTOMZUhYarqB6niMg7979i+1zAYeT+TzcAAAAAAAAceqx0AgAAAAAA9rG9Djax0gkAAAAAAACuY6UTAAAAAACwjSBx2EXRCQAAABDrcO9xBMYTQj9dDEVwtip0W4yW8ng/XmN7d+/a6jfM4xyHsXwvKYLdlY9TRF469qqp7d1Hb7o+JSCo2F4HAAAAAAAA17HSCQAAAAAA2DfG7XUf/NtvyAf/9hsD+zy+vzu+CcBVFJ0AAAAAAIAv7D16II8/uu31NOASik4AAAAAAMAXZo6dkKMfOzOwz+P7uyIGaeZBQNEJAABgiqjCsAmttofnCbYoQqZb9+/b6hc+fkI5ZHLmkqmtsrduazqTDMAPHTlqbjtqfktpPH6iPN548tj1OTnl9HlSBYkfBuO8e93CT/28LPzUzw/s897v/ueshgoIgsQBAAAAAADgOopOAAAAAAAAcB3b6wAAAAAAgH3EKcEmVjoBAAAAAADAdax0AgAAmCKEYWPaeR2Wrwr4thsm3Xr0SNkempkZfT4ef8+/c+/LpjZVMLqI93NVefnU50xtdoPhRewHvgOHFUUnAAAAAABgjzHeu9fZnQOCgaITYKHZbMri4uLAPqurq7K6ujqhGQEAAADwk2vXrsm1a9cG9mk2mxOaDeA/FJ0AC61WS7a3twf22d3dndBsAAAAAPjN7u7uge8ZppJxuJYaLS0tiaZpUi6XJZVKDXVsoVCQSqUim5ubouu6RKNRicViks1mJZFIjGnG/kHRCbAQDodlYWFhYJ/Z2dkJzQYAAABucJoJpTpelfcTPnHc1Gbs7SnHNJ48tn3+SQkfP2Grn/L5CJDQScXjfPDQ9vFv/vrvyXE52dP27Ln5nq+bzaa0Wq2R5gfv5XI50TRt6OOq1aqk02nRdV0SiYSUy2WJRqNSr9cll8tJMpnstEciEfcn7hMUnQALCwsLsrW15fU0AAAAAPjUc6EX5Dl5oaetstVbxFxcXDycq6GmQLValUKhMNJxyWRSREQymYwUi8XOv0WjUUmlUhKPx6VarUo8HpdarTa1hSd1BD8AAAAAAECfkOwHiXv6MYHHqeu6pNPDr+TrPi4ajfYUnLqVy/vFSU3TRjpPUFB0AgAAAAAA6HL58mWZn58fegVSe0udyP7WPCvtFU8i+yujSqXSqFP1NYpOAAAAAAAAP1IqlWRjY6OzGskuTdOkWq12vr548eLA/pcuXep8PqhAFWRkOgEAAAAIjGFCv8dxvEpoZsbc2FLc3ctwFiY9TGi308f5zv2v2OqXnLlkalM+Hz7V2r1rbhzmdVKEyB8KU3zzOk3TJJvNytramsRisaGOzefznc8TicSBq6T+/+3dT4wiaZrn+R8ekRmZXdleuEcd2jt8pqsMbUtzGsnw0Eij6Z2DQ/V1DxAhldR7C7jNwQ+gPK9aMSCNH3pPEMeWSvIErVa92kMXxPZOz8zujtwxaS6tmV5hWdXrXqy0Fe42XpmVGZER2B5ckPwxwAADzPDvR0LlmL/28gJPZTgPz/vY4JXwHMdRvV6f++p4YXdP/x8CAAAAAAAwLJvNyjTNoQSSX4Nb5PwmrAzD6P98dnY292OGHZVOAAAAAADg3isWi7IsS+12e+5zLcsauv/06VNf55mmKdu2JUn1en3uxw07Kp0AAAAAAIBvse5mb6tgWZbK5bIqlcpQ9ZFfg72cJPmeY3TcaPIq6kg6AQAAAACAe+34+FiZTEa5XG6h88/Pz4fu+73q3ePHj4fuX1xcLPT4YcX2OgAAAADwyatBt1eDb/f9d+MnT2o67bNx9SqaoE/i9Zy8Ht+rabjnc9+weZqwe75PE96jxoft68FzH2Wzd/Hx6tWrhefobZHrWbTSaZGtfWFG0gkAAAAAAPi3RVevq9frqtfrajQavquTvIwmnRblOE4g84QFSScAAAAAALByv/77f6vO3//t0vO8++Y2gNXcJXiy2axyuZxSqdTScy1iNNF1fX291DrChqQTAAAAAADwLbZgpdOHd9/q3Tf/NdjFLOH4+FiGYahSqWx6KX1UOgEAAAAAAMzp4Uef6ONPf7j0PHeVTsvt8SuXy7IsS61Wa+n1SHcVS0EkjJbZ4hdGJJ0AAAAAwCevhtQ7jz4ZO9Z9++34yZOaUa+xQbhfXs/Jyy/e/Xzs2J9++meeY9MPno8dW1cj7lW9xn4bruPOH/7xv9Qf/vG/XHqei//1f1iqYsqyLBWLRZVKJZmmufR6JGl/fz+QpNP+/v7yiwkRkk4AAAAAAMA/N9qdxLPZrEzTVKFQCGzORSuURhNVVDoBAAAAAABEULlclm3bSqVSymbHK9VGDSaFXr58qbOz76vznj9/rkwmI0k6OjqSZVlD5/lJII02Dk8kEjPPiRKSTgAAAAAA4F548+aNJKnZbM59rmVZQ4klwzD6SadkMjk01rZtX1v32u320P1lr6IXNiSdAAAAAETaaF+dT9z3+l82tJa+2I7voV49kP76m78McjVz8+pJ9dOPfzZ2LPbR+EfKTa99Hl6vfffdu7FjO5888jz/XvZvche/el2Qawibo6Ojoft+k06DlVTxeFyGYQS9tI3y/19CAAAAAACACCuVSnJd1/dtMAlUq9WGflcqlfq/M01zaDvd+fm5r/VcXFz0fx5NXG0DKp2ACTqdjg4PD6eOOTk50cnJyZpWBAAAACBMTk9PdXp6OnVMp9NZ02qwac+ePVO1WpWkoW140wyOKxaLK1nXJpF0Aibodru6urqaOub29nZNqwEAAAAQNre3tzM/M2ylEG5vC4N8Pt9POvnpGTU4xjCMrevnJJF0Aiba2dnRwcHB1DG7u7trWg0AAACAsNnd3dWTJ0+mjul0Oup2u2taETbJNE2lUql+Mqler/cbjXup1b7vCbaNVU4SSSdgooODA11eXm56GQAAAJhhrJnz119Ln322ksfaefTJ2DH3w4fxge54kiH28CPPOb2adm+a11q9nqfXsdHG7j3rarrt9fiTHtvztfdoAh978MDzfD/tNg4PD+9nNdQ9ValUlEgkJEkvX76cmHRyHKdfFZVKpZTL5da2xnWikTgAAAAAAPAt5m72FmaGYfQrmCzLUrlc9hx3fHws6e6KdYMVT9uGpBMAAAAAAEBAMpmMGo2G4vG4isWistmsLMuS4zhqNptKJpOyLEumaerLL78cuurdtmF7HQAAAAAA8M8NeblRgNrt9kLnpVIp3dzcqFwu6+zsTMfHx3IcR/F4XEdHR6rValP7PW0Lkk4AAAAAAAArUCgUVCgUNr2MjSHpBAAAAAA+eTWe9mpSnX7wfOyYZ8NxybNx9aa577/zNc7vc590vPHhbL6FLbimecZ6NSL/8NVXnuev6zkBUUXSCQAAAAAA+Bb2Zt4Ij/Cl1AEAAAAAABB5JJ0AAAAAAAAQOLbXAQAAAAAA/9heB59IOgEAAACAT74bZ7td/5OGsJG455o8npNX0+2Jz2ee12RN/K6f5uDAYkL4XzcAAAAAAABEHZVOAAAAAADAt1Veve7S/ltd2v9u6ph3396ubgEIFEknAAAAAAAQCu+/+1bvvv2vm14GAkLSCQAAAAAAhMLDjz7Rx5/8cOqYu0onuplHAUknAAAAAPDJs/G0B98Nx6VQNtiOPXgwdsx977HObWy67dUwfcJ7F/nnuhBX6q4u4XP44z/R4Y//ZOqY/+t/+3O22EUEjcQBAAAAAAAQOCqdAAAAAACAP642v7Nt048P36h0AgAAAAAAQOCodAIm6HQ6Ojw8nDrm5OREJycna1oRAAAANs2zV5PfPk8T+v/89OOfLbWmZfhduyTP/k1h7EflZVJPptjDj8aOue+/Gzs26b07PT3V6enp1MfudDo+VghsJ5JOwATdbldXV1dTx9ze0rwOAAAAuK9ub29nfmbYRjG2t8Enkk7ABDs7Ozo4OJg6Znd3d02rAQAAABA2u7u7evLkydQxnU5H3W40KsKAoJF0AiY4ODjQ5eXlppcBAAAAIKT8tNs4PDy8l9VQgETSCQAAAAAAzMNlfx38IekEAAAAAMvwaLA9T4Nur+bk6zLPY3s9J69G3KE0oeH5zu4Px459uL7xPa1XE/hfvPu5/3UBW87j8gMAAAAAAADAcqh0AgAAAAAAvnH1OvhFpRMAAAAAAAACR9IpAizLUj6fVyKRUCwWUywWUyKRULFYlOM4C89bLpeVTqe1t7fXnzObzarZbG79nAAAAAAAYLXYXhdijuPoxYsXqtfrY7+zbVvlclnlclmVSkW5XM73vM1mU9lsVo7jKJVKqVaryTAMWZalYrGodDrdPx6Px7dqTgAAAGAZfhuEz9OgO4zNqP02DXc/fBg/98Fz70k9mnmvoom619qXfT/meU73Atvr4BNJp5ByHEfJZFK2bc8cm8/n1Wq1VKlUZo5tNptKp9OSpFwuN3SOYRjKZDJKJpNqNptKJpNqtVozEzpRmRMAAAAAAKwP2+tCKpvNyrZtmaapWq2mdrutdrutWq2mQqEwNr5arXpWRA1yHEfZ7F3W3zCMiUmqWu3uWwDbtvvjoz4nAAAAAGB5MUkx193sbdMvAnwj6RRC1WpVzWZThUJBrVZLmUxGhmH0K3xKpZLa7bZM0xw678WLF1Pn7W1Vk6RisThxXO9xpLuKo2q1Gvk5AQAAAADAepF0CqFSqaRUKqVSqTRxjGEY/UqfHsdxJjbXtm176HfPnj2buobnz7/fszwp8ROVOQEAAAAAwPrR0ylkLMuSbdtqtVozxxqGoVKpNJRssSxLqVRqbOxgAiuVSs3sf9SrIJLukln1en3oWJTmBAAAAILityG134bjkneDbr8mPc6yDbq91uTV3Nxvw3FJct8v13Tbb4Nwr2OTXie/z3OSP/3Bf+977Fa5p/3TMT8qnULm7OxMuVzOd1Ps0QTTmzdvPMcNbj0b3ZY3iWEYQ+uK6pwAAAAAAGD9SDqFzPPnz6duqxs1mphJJBJjYyzLGrr/9OnTuecebVIelTkBAAAAAMBmsL0uZPxW9/T0Gm73DFb99Iz2efIa42V0nGVZ/fVFZU4AAAAAQLBirruyuf/hH/69/p/Lfz91zNu3v13Z4yNYJJ0izrbtofte/ZzOz8+H7vvduvf48eOh+xcXF/1kTlTmBAAAAMJiUp+ln378s8DnXJbf/k2KjW+ecd9/5znnsmtd5vxJ53o9p/SD52PHdj7+2PP87ttvF14TvL3/8K3evr3d9DIQEJJOEXdxcdH/OZfLeY4ZTUwtWkHUbrcjNycAAAAAIDoePvhEjx7tTh1zV+m0umorBIekU8RVKpX+z4NXsRs0msxZ1OBWvqjMCQAAAAAIkKuV5nv+8T/6F/rH/+hfTB3zH/6Pf62376iGigIaiUeYbdv95tulUmliZdCiSZjR7W3X19eRmxMAAAAAAGwGlU4R1rvKnWEYKhQKK3+8VVQQhXnOTqejw8PDpec5OTnRyclJACsCAAAAsC6/cv+L/sH9+7s738YmjBov+Rn9DNHpdAJeGRAdJJ0iyrIsVatVxeNxNRqNqWPj8XggiZjBiqKozLmMbrerq6urpee5vaXsEwAAYJt5NaP2alzt2Yh7wth1mbSm2MOPxo7tPPpk7Nhff/OX43N6NOKedLzx4WzWEldq2vv03n2nt/pm7jmD+AwReiu8eh22C0mnOVSrVeXz+UDnNE1TrVZr7vNevHghSXr9+vXMhtv7+/uBJHP29/cjN+cydnZ2dHBwsPQ8u7vTm+ABAAAACJ+H+kiP9Onc5/3oyfDnkU6no263G9SygEgh6RRB+XxelmWpVqvJNM2Z4xet/BlNAI1WJUVhzmUcHBzo8vIykLkAAAAARMsfxf5Yf6Q/vrsTm9AO2R1PJjUuh6unDg8Pt676KUahE3wi6TSHVCqlWi3Y0td5EyTValXValWVSkWZTMbXOUdHR/2G49JdksbP44425E4kEpGbEwAAAAAAbAZJpzkYhjFzK9sqNZtN5fN5VSoV5XI53+clk8mh+7Zt+6qQarfbQ/dTqVTk5gQAAAAAAJtB0ikiLMtSOp1WqVSaK+Ek3VUQDfKbzBncthaPx4cSblGZEwAAANgEv83F5x0btEmP89OPfzZ2zP3wYezYpKbhnjy2om2a7ybwE57nJpvAbxSNxOHThI2pCBPbtnV8fKxCoaBCoTD3+aZpDm1TOz8/93XexcVF/+fRhFBU5gQAAAAAAJtB0inkbNtWMplULpdTqVTyfU65XB469uzZs/7Pg32TphkcVywWx34flTkBAAAAAMD6kXQKMcdxlE6n9ezZM98JJ0nKZrNjfY3y+Xz/52azOXOOwTGGYXj2SYrKnAAAAACA4MS6m70hOkg6hZTjOEomkzIMQ8ViUbZtz7w1m81+M+7RXkimaQ4lZOr1+tTHH7xK36TqoajMCQAAAAAA1i/munQAC6NkMul7e9moSVe3s21biURC0l1yp9VqeZ7vOI729vYk3V0JrtFoTHysqMw5j8PDQ11dXenJkye6vLwMZM574euvpc8+u/v5q6+kH/xgs/PgfiBeAABeVvjvg1fjad9i/r/zb3w4W/xxVsSrmbbXOud5jTbdiHvZJu5+zt+Wzxe95/Ho4139ydP5ew0H6d+dl/X23W3kX9P7gEqnEFom4SRp4tXtDMPoVwZZljXW96nn+PhY0t2V4AYriaI8JwAAAAAgIK672Rsig6RTyGSz2ZUknHoymYwajYbi8biKxWL/8RzH6W/PsyxLpmnqyy+/HLqaXNTnBAAAAAAA6/Nw0wvAsHVU7KRSKd3c3KhcLuvs7EzHx8dyHEfxeFxHR0eq1WrKZDJbOScAAAAAAFgPkk73WKFQUKEQ7F7cqMwJAAAAAFgQO9zgE0knAAAAAPDJb5Npz2barve13jfdTNuvZZubL/s8l2367cXr/J9+/LOxY79493Pf5wP4HkknAAAAAADgW4xm3vCJRuIAAAAAAAAIHJVOAAAAAAAgFH7V+Q/6Vef/nDrm7bvfrmk1WBZJJwAAAABYwrK9hlbRq2iZx5YkxTw2xUzoSbXMY83zPFfxmiy7pj/99M/Gjv31N3+51JpCz5W0wu1179+/1dt3tyubH+tF0gkAAAAAAITCwweP9Oij3alj3n73W3EJvWgg6QRM0Ol0dHh4OHXMycmJTk5O1rQiAAAAAGHyy/d/p1+9/89Dxw4P/2bofqfTWeeSIu+PDv65/ujgn08d87fWv9Hb76iGigKSTsAE3W5XV1dXU8fc3vIfOgAAAOC+eu9+p7f63dCxq6vfTRi9RZbbaYl7hKQTMMHOzo4ODg6mjtndnV72CQAAAGB7PYx9pEf6vaFjP3qyN3S/0+mo2yVLg/uJpBMwwcHBgS4vLze9DAAAAISc38bTk5p2r6tp+DyP7blWn83FN/l8gjBPc/H/8l1r5nyHh4czd1AA24qkEwAAAAAA8MlVbIVXr/O7BkSDR6oaAAAAAAAAWA5JJwAAAAAAAASOpBMAAAAAAPDPdTd7C5hlWcrn80okEorFYorFYkokEioWi3IcZ+F5y+Wy0um09vb2+nNms1k1m83gFh9y9HQCAAAAgDWIUoNtr7WmHzz3dW4YG6ZP5NEcvfHhzPfp8zQdR/g4jqMXL16oXq+P/c62bZXLZZXLZVUqFeVyOd/zNptNZbNZOY6jVCqlWq0mwzBkWZaKxaLS6XT/eDweD/AZhQ9JJwAAAAAA4N/GG4kvz3EcJZNJ2bY9c2w+n1er1VKlUpk5ttlsKp1OS5JyudzQOYZhKJPJKJlMqtlsKplMqtVqbXXiie11AAAAAADgXslms7JtW6Zpqlarqd1uq91uq1arqVAojI2vVqueFVGDHMdRNntX/WYYxsQkVa12Vw1n23Z//LYi6QQAAAAAAO6NarWqZrOpQqGgVqulTCYjwzD6lUilUkntdlumaQ6d9+LFi6nz9rbUSVKxWJw4rvc40l1lVLVaXe4JhRhJJwAAAAAA4F93w7cllUolpVIplUqliWMMw+hXJPU4jjOxCbht20O/e/bs2dQ1PH/+fY+0aQmqqKOnEwAAAABsmVU0uPZqsO3ZNNyjOXdY+W0aPqk5epSeK+5YliXbttVqtWaONQxDpVJpKClkWZZSqdTY2MEEViqVmtmnqVfpJN0ls+r1+tCxbcH/QwAAAAAAwL1wdnamXC7nu3n3aILpzZs3nuMGt8iNbsubxDCMoXVtIyqdAAAAAACAb7EIX73u+fPnQ8meWUYTSIlEYmyMZVlD958+fep77t7V82Y1KY8qKp0AAAAAAMC9YJqm7yonSf3G4D1eCavRPk9+k1qj40aTV9uASicAAAAA2DLL9m9KP3g+e9Ckx/bZJ2kb3Kfnel/1KpF6vPo5nZ+fD933m9R6/Pjx0P2LiwvfW/OigqQTAAAAAADwL8Lb6+Z1cXHR/zmXy3mOGU1MLVrp1G6351xd+LG9DgAAAAAAwEOlUun/PHgVu0GjSadFjW7l2wYknQAAAAAAAEbYtt3vs1QqlSZWMC2aLBrdhnd9fb3QPGHG9joAAAAAAOCPq4W31/3y//uP+uVv/uPSS3j7/qul5/CjVCpJutsGVygUVv5421jpRNIJmKDT6ejw8HDqmJOTE52cnKxpRQAAAMCauN3xY7HxjTJeDcvTO1nPKZdtbr4KXmv1WuektZ+enur09HTqY3Q6ncUWt4Xed9/q7fvfbnoZvliWpWq1qng8rkajMXVsPB4PJGE0z1X1ooKkEzBBt9vV1dXV1DG3t7drWg0AAACAsLm9vZ35mWErLVjp9HDnYz16+PtLP/xdpdNqm5m/ePFCkvT69euZjcH39/cDSTrt7+8vPUfYkHQCJtjZ2dHBwcHUMbu7u2taDQAAAICw2d3d1ZMnT6aO6XQ66nY9KsfuoR//6J/pxz/6Z0vP87//5/9xpRVT+XxelmWpVqvJNM2Z4xetUBpNVFHpBNwjBwcHury83PQyAAAAAISUn3Ybh4eH97MaKqKq1aqq1aoqlYoymYyvc46OjvoNx6W7ZJKfBNJo4/BEIjHXWqOAq9cBAAAAAAD/uhu+rUiz2VQ+n1elUlEul/N9XjKZHLpv27av89rt9tD9VCrl+zGjgkonAAAAAMCQ2MOPxo65778bO+bZNNyj4XhYeTZCf/B8fKBXY/U55kT4WZaldDqtUqk0V8JJuqt0GmTbtq9teYPb6+Lx+MzeUVEUnf8aAAAAAAAABMy2bR0fH6tQKKhQKMx9vmmaQ9vpzs/PfZ13cXHR/3k0cbUtSDoBAAAAAADfYq670VuQbNtWMplULpdTqVTyfU65XB469uzZs/7Pg/2dphkcVywWfZ0TNSSdAAAAAADAveM4jtLptJ49e+Y74SRJ2Wx2rP9SPp/v/9xsNmfOMTjGMIyt7Ock0dMJAAAAAADcM47jKJlMyjAMFYtFX82/bdvuVySN9mwyTVOpVKqfTKrX61Ovflerfd/7a1urnCSSTgAAAABwb3k2AtdyzbD/9NM/W/jcdfN6/p5N1D9MmGCOBuNbJeAtbptwfHws27Zl27YSicRc51YqlYnHe3O9fPlyYtLJcRxVq1VJd1esm7dxeZSwvQ4AAAAAANwbyWTSd98lL5OSRIZh9CuYLMsa6/vUc3x8LOnuinWDFU/biKQTAAAAAAC4F7LZ7EoSTj2ZTEaNRkPxeFzFYrH/eI7jqNls9hNepmnqyy+/HLrq3TZiex0AAAAAAPDJlbqb3l63+OOvo7IolUrp5uZG5XJZZ2dnOj4+luM4isfjOjo6Uq1Wm9rvaZuQdAIAAAAAAAhYoVBQoVDY9DI2iqQTAAAAANxTyzQMn8T9MKnrdvh4PX+v5uKreJ0ibQsaiWM96OkEAAAAAACAwJF0AgAAAAAAQODYXgcAAAAAAPxxtfntdezuiwySTgAAAACAmeh1BGBebK8DAAAAAABA4Kh0AgAAAAAA/m16ex0ig0onAAAAAAAABI5KJ2CCTqejw8PDqWNOTk50cnKyphUBAAAACJPT01Odnp5OHdPpdNa0mu3wpXOhXzoXU8e8/fD1mlaDZZF0Aibodru6urqaOub29nZNqwEAAAA2y2/T8F+8+7nn8U02Ivd67EmPP8+abm9vZ35m2Erd1W2ve//hrd5++Gpl82O9SDoBE+zs7Ojg4GDqmN3d3TWtBgAAAEDY7O7u6smTJ1PHdDoddbvdNa0o+h7ufKxHDz6bOuau0om+UlFA0gmY4ODgQJeXl5teBgAAAICQ8tNu4/Dw8H5WQy3oJz880k9+eDR1zN/8Q4VqqIgg6QQAAAAAAPxzqdyCP1y9DgAAAAAAAIGj0gkAAAAAEJh5mnavy7KPHcbntFEu/ZTgD5VOAAAAAAAACBxJJwAAAAAAAASO7XUAAAAAAMC/Ltvr4A+VTgAAAAAAAAgclU4AAAAAgMCEsbl2+sFzz+OND2fjYyc0DQcwP5JOAAAAAADAJzcEV6/b9OPDL7bXAQAAAAAAIHAknQAAAAAAABA4ttcBAAAAAAB/XG1+ex276yKDpBMAAAAAYLu5Xd9DvRqh01wcWAzb6wAAAAAAABA4Kp0AAAAAAIB/m95eh8ig0gkAAAAAAACBo9IJAAAAALDVvPo0YQld/z2ycL9R6QQAAAAAAIDAUekETNDpdHR4eDh1zMnJiU5OTta0IgAAAABhcnp6qtPT06ljOp3OmlYDhA9JJ2CCbrerq6urqWNub2/XtBoAAAAAYXN7ezvzM8NWopE4fCLpBEyws7Ojg4ODqWN2d3fXtBoAAAAAYbO7u6snT55MHdPpdNSlB5JvX379n/TL3/2nqWPedn+3ptVgWSSdgAkODg50eXm56WUAAAAAmCC9kx07tmzT8HnnnNVu4/Dw8H5WQy3ovftOb7tfb3oZCAhJJwAAAAAA4N8Kt9c9jH2kRzs/mDrmrtKJLX5RQNIJAAAAAACEwk9+75/qJ7/3T6eO+Zvf/CXVUBGxs+kFAAAAAAAAYPtQ6QQAAAAAAPzrsrUN/pB0AgAAAABE0iqahs8zbtnHB7Yd2+siwLZt5fN5JRIJxWIx7e3tKZlMKp/Py7bthectl8tKp9Pa29tTLBZTIpFQNptVs9nc+jkBAAAAAMBqkXQKuXK5rEQioWq12k8wOY4jy7JUrVaVSCRULpfnmrPZbGpvb0/FYlGSVKvV1G63VSqVZFmW0um00um0HMfZujkBAAAAAMtx3e5Gb4gOtteFWDqdVrPZVDweVyqVkmEYsm1blmUNVTgVi0UZhqFMJjNzzmazqXQ6LUnK5XKqVCr93/XmSCaTajabSiaTarVaisfjWzEnAAAAAABYHyqdQqpYLKrZbKpUKunm5ka1Wk2lUmmo2mdQNjt7L7LjOP1xhmEMJXIG1Wp3+5Jt2545b1TmBAAAAAAEwHXvGolv8ubSyDwqSDqFkG3bKpfLajQaKhQKnmMKhYJyudzQMcuyps6bzWb7W9F6W9a8DFZNNZtNVavVyM8JAAAAAKMa3drYTbGdsZvXOJqIA7ORdAqhYrGoUqmkVCo1ddxotdO0xtq2bQ/9/tmzZ1Pnfv78+dB6ojwnAAAAAABYP5JOIeQ4zsQKp0HxeFyGYQzdn2QwQZVKpWb2PxrsD+U4jur1emTnBAAAAAAEyHU3e0NkkHQKoUaj4Xvs9fV1/+ejo6OJ4wa3npmm6WvuwYTW2dlZZOcEAAAAAADrx9XrIsxxnH7vo1QqNTFJM9rr6enTp77mN02zf5W80QqiqMwJAAAAAJOkd8YvSOTVq+mnH//M8/xfvPt54GsCtgmVThH2xRdfSLqr9Oldyc3LaK+nwcqgaUbHDSaFojInAAAAACBg3e5mb4gMkk4R5TiO8vm8TNNUo9GY2vvo/Px86P6sPkk9jx8/Hrp/cXERuTkBAAAAAMBmkHSKINu2lUwmFY/H9fr165kVQb2tZz2LVhC12+3IzQkAAAAAADaDpFPE1Ot1JRIJ2bYtx3G0t7encrk89ZzRZM6iev2jojQnAAAAACBgXL0OPtFIPAIcx1G1WlWlUvFMzBSLRZ2fn0/s67RoEmZ0e9vglfKiMicAAAAAeDUMlyTF/NVhuB8+eM/74PnYscYHrqgN9JB0ioBms6l2u61UKiXbtscabkt3FVDlclmFQmFl61hFBVGY5+x0Ojo8PFx6npOTE52cnASwIgAAAADrcnp6qtPTU0nSb7r+v9ge/QzR6XQCXRcQJSSdIiCTySiTyQwdq1arKhaLQwmWYrGoXC43VvkTj8cDScQMzhuVOZfR7XZ1dXW19Dy3t7cBrAYAAADAOt3e3i70eSCIzxBh53IFOfhE0mkO1WpV+Xw+0DlN01Sr1Zr7vFwup1QqpWQyOZSoqVarY9VO+/v7gSRz9vf3IzfnMnZ2dnRwcLD0PLu7uwGsBgAAAMA67e7u6smTJ5Kk31z5r3T60ZPhzyOdTkddkjS4p0g6RZhhGHr9+rWSyWT/2Pn5+di4RSt/RhNAo1VJUZhzGQcHB7q8vAxkLgAAAADRMtgmw6t30ySNy+GeToeHh/ei+ikov/zu7/Sr7/5u6pi37jdrWg2WRdJpDqlUamKz7kUtmyAxTVOZTEb1el2S9xXgjo6OZFlW/77jOL4ed7QhdyKRiNycm3J6eqrb21vt7u7SzwkbRSwiLIhFhAWxiDAhHten0fX+HOeVTPJqOj7x/EkNyrfdCq8g9777Tm/d361sfqwXSac5GIYhwzA2vYwxz58/7yedvLanDVZCSXeJKdM0Z87bbreH7qdSqcjNuSmnp6e6urrSkydP+AMCG0UsIiyIRYQFsYgwIR6BcQ9jH+lR7PemjrmrdFpd4gvBIem0BQYTM16VQUdHR0P3/SZzBhNY8Xh8KOEWlTkBAAAAAAFyJXVXl/D58YN/oh8/+CdTx/zbb/8nvRXVUFGws+kFIFijiRvpLik1mIzy6vvk5eLiYuK8UZkTAAAAAABsBkmnLTDYxymdTnuOefbsWf/nwb5J0wyOKxaLkZ0TAAAAAACsH0mnLdBLusTjcWUyGc8x+Xy+/3Oz2Zw55+AYwzA8+yRFZU4AAAAA8OR2x26Nbm3sNlFsZ/y29VzP122tN/o5RcZ9+H/E1nv58qUk6dWrVxPHmKY5lJDpNR6fZPAqfZOqh6IyJwAAAAAAWD+STiFULpeVTCZVLBY9r0Y3qDemUChMrHLqqVQq/Z97iSovjuOoWq1KursSXC6Xi/ycAAAAAABgvUg6hYzjOCoWi7IsS+VyWXt7exMreLLZrMrlskqlkkql0sy5DcPoVwb15vdyfHws6W673mAlUZTnBAAAAAAEw+26G70hOh5uegEYFo/HZRjGUHPwcrmsarWqVColwzBkWZYuLi6USqXUbrdlGIbv+TOZjBqNhrLZrIrFos7Pz/X555/LMAxdXFz0E16maer169dDV5OL+pz43unpqW5vb7W7u6uTk5NNL2eiP//zP9enP/pRaNcYldcx7KLwOoZ9jWFfX1RE4XVkjfdDFF7DKKyx5y/+4i/0rz7/fNPLiKQovM9RWONXX3019L/AfRJzXZc0Ycg4jqOXL1+q2WzKtm05jqN4PK79/X2Zpql0Oq1nz54tnWgpl8s6OzsbeoyjoyPl8/mZW/WiPuc0h4eHurq60pMnT3R5ebmxOVZpJev7+mvps8/ufv7qK+kHP1h6nh9I2gvpayiF/32W7sEag4q7GcL+OoZ9fRJrDAprXF7Y1yexxkAM/Pvw3xwc6P/+9a83vCBvYX8dw74+aTVrTO9klzp/tPH4gwcP1O12tbOzow8fPiw19yb1XutH+lT/7Uf/3UbX8rff/c96q29CHZu4Q6VTCMXjcV/b5ZZVKBRUKBTu5ZwAAAAAgAW53U2vABFBTycAAAAAAAAEjqQTAAAAAAAAAsf2OgAAAAAAphjt03TfcQU5+EWlEwAAAAAAAAJHpRMAAAAAAPCPRuLwiUonAAAAAAAABC7mui6bMYEBH3/8sb777jtJ0s7O9Lzs7//+7+uzzz4bO97pdNTtdrWzs6ODg4OVrHMZK1mf60q//vXdz3/4h1IstvQ8v5YUC+lrKIX/fZbuwRqDirsZwv46hn19EmsMCmtcXtjXJ7HGQAz8+/D/7uzoD8K4RoX/dQz7+qTVrPE3V9djx370ZN9z7FdffaXf/va3U+frdr+vCoryx+/Dw0NdXV1Jkh7p042u5a2+kSQ9efJEl5eXG10LpiPpBIx48ODB0D8MAAAAALCsWCwW6c8Zg0mnsCDpFH70dAJGfPLJJ/rmm2/kuu7ClU4AAAAAtp/fSqdYLKZPP91sddCy/uAP/mDTSxgTxjVhGJVOAAAAAAAACByNxAEAAAAAABA4kk4AAAAAAAAIHEknAAAAAAAABI6kEwAAAAAAAAJH0gkAAAAAAACBI+kEAAAAAACAwJF0AgAAAAAAQOBIOgEAAAAAACBwJJ0AAAAAAAAQOJJOAAAAAAAACBxJJwAAAAAAAASOpBMQkHK5rHQ6rb29PcViMSUSCWWzWTWbzU0vDWtkWZby+bwSiYRisVg/ForFohzHWXjeVcRXVObE6vTitF6vz31uVOKHmIwOy7JUr9dVLpd9vz9RiRniMBwcx1GxWFQ6ne7/96/3XlSr1YXnjUrMEIcANsIFsJRGo+HG43FXkptKpdxGo+G22223Vqu5hmH0j9/c3Gx6qVihm5sbN5PJuJKm3iqVylzzriK+ojInVqtQKPTjslar+T4vKvFDTIbfzc2NWyqVXNM0XUluPB53C4WC22g0Zr4vUYkZ4jA8SqVSP85KpZLbaDTcVqvlViqVfgwahuE2Gg3fc0YlZohDAJtE0glYQqPR6H9oy+VynmMG/5DhH/PtdHNz0/+jzc9tUqyMWkV8RWVOrNbgezZP0ikq8UNMhtvNzY2by+X675FpmnN/0I9CzBCH4dH7Usg0zYljBmOy1WrNnDMqMUMcAtg0kk7Agm5ubvrfGhmGMXFcu93u/2OfSqXWuEKsSyqV6v8xW6vV3Ha73f8GcbCaZJ4P+auIr6jMidUafM/mSTpFJX6IyXCrVCpD8Tdv9WdUYoY4DI9ehZOkmQmV3hdI8Xh86rioxAxxCCAMSDoBC+olGvz80Ty47WreP7ARbpVKxZXkFgqFiWPa7Xb/W8TebdYftKuIr6jMidXKZDKuYRhDH/z9JJ2iEj/EZHgNJuENw3Db7fbcc0QlZojD8BisqJvF77bjqMQMcQggDEg6AQsY/EbIzzdntVrNd7IB0WIYhq9vBUdjRtLE7SSriK+ozInV6iVJW63WXEmnqMQPMRlegx9o4/H4Qlt4ohIzxGF4DG4ty2QyM8cPvheTvkyKSswQhwDCgqQTsIDBff9+y5AH/+Gfp2kvwqvVavn6Q65nsMRfklsqlTzHrSK+ojInVqf3AaT3QWqepFNU4oeYDKfBagtJC1U4uW50YoY4DI9eol2avr2sZzDxwr/RxCGAYOwIwNwGL6trmqavcwzD6P98dnYW+JqwfmdnZ8rlcorH477Gp1Kpoftv3rzxHLeK+IrKnFidbDYr0zRVKpXmPjcq8UNMhk+1Wh26HHulUhl6zeedqyfMMUMchsf+/n7/Z9u2Zdv21PHn5+f9nyfFaVRihjgEEBYknYA5WZY1dP/p06e+zhv8B79erwe6JmzG8+fP5/oAP/pHXyKRGBuziviKypxYnWKxKMuyVKvV5j43KvFDTIaPbdvK5/P9+6ZpKpfLLTRXVGKGOAyX0cTRYDx66b328XhcmUxm7PdRiRniEECYkHQC5jT4ja00+ZuwUaPjRv8gQPSYpum7ykmSHMcZuu8VO6uIr6jMidWwLEvlcnnhCpOoxA8xGT7ZbHbo/ueff77wXFGJGeIwXEzTHEqkNJvNsbjsqVar/UqoSV8oRSVmiEMAYULSCZjTYOm1JN9Jh8ePHw/dv7i4CGpJiIjRsv7R7XbSauIrKnNiNY6Pj5XJZBauMIlK/BCT4WLb9tAH1kmVI35FJWaIw/B59erV0P16vT6WeGo2m/0qqEqlMvG/l1GJGeIQQJiQdALmNJo4WPTbo3a7HdiaEA2Df7xN+oN2FfEVlTkRvN4Hq9EPXfOISvwQk+FSqVSG7veS7L0P/IlEQrFYTHt7e0omkyqXy2PVoIOiEjPEYfiYpjm2tbheryuRSPQrQdPptAzDUKPRmJqgj0rMEIcAwuThphcARM2sJpR+TfvjGttp8ENYsVj0HLOK+IrKnAhWvV5XvV5Xo9GYaxvoqKjEDzEZLoNNjKW7hs7JZHJsu47jOLIsS5ZlqVgsqlareVZERSVmiMNwymQyqlQqQz2dbNtWMpmUJBUKBV89GqMSM8QhgDCh0gmY06L/AI9+6Lu+vl5+MYiMwa0mpVJp4reOq4ivqMyJ4DiOo2w2q1wu57mNc965FkFM3l+2bY+9H1988YXy+bxubm7kuq5c11W73R6rKslms54NjKMSM8RheOVyubEKvJ5ms+nrvYtKzBCHAMKEpBOwIXx7dL/0vkE1DEOFQmHlj7eK+IrKnLjr42QYxsQPWJsQlfghJpc3WmURj8f15ZdfKpfLDX2o7cXoaJy+ePFiZe9DVGKGOFyNXC7nuX3Osiz95Cc/WVvj7KjEDHEIIAgknYA5LbNNZRXzIPwsy1K1WlU8Hlej0Zg6dhXxFZU5EYxyuSzLssZ6mCwqKvFDTIbHaNJpNNk0ajQR4DiOXr58OTQmKjFDHIZbPp9XtVpVLpcbqzh2HEfJZHLsym+DohIzxCGAMCHpBMxpf38/VPMg/F68eCFJev369cxmnquIr6jMieX1+uKUSqWhy4QvIyrxQ0yGx2jz4adPn848Z7TPXblcHroflZghDsMrnU6rWq2qUCioUql4bu/sjZuUeIpKzBCHAMKEpBMwp0W/9RktUebbo/shn8/3q078JAFWEV9RmRPLy2azMk0z0C2cUYkfYjI8FnlNDcMY+2/k4FanqMQMcRhOvQqmVCo11DC8Uql4VoVms1nPrWVRiRniEECYkHQC5nR0dDR03+9+99FmjIlEIqglIaSq1aqq1aoqlYrn1Zi8rCK+ojInllMul2Xbtvb395XNZmfeBt+zly9fDv1usJFzVOKHmAyPRV/D0fdwcJteVGKGOAyfbDbbT2B69bnLZDJqtVpDCRbHcTyvMhuVmCEOAYTJw00vAIia3uV1e2zb9lXBMrrdYNkrSiHcms2m8vm8KpWKZ/n+JKuIr6jMieW8efNGkqb2I5mkd8n6HsMw+onSqMQPMRkeo9URfj/wjn7AHfwAHJWYIQ7DxbbtfhLdNM2JW9xN01Sr1RqKwWq1qlKpNBTPUYkZ4hBAmFDpBMxp2jex0wz+0R2Px2f29kF0WZaldDqtUqk0V8JJWk18RWVOhFNU4oeYDI9F34vRZNVgP5moxAxxGC6DlU2j780oryt+XlxcDN2PSswQhwDChKQTMCfTNIf+MD4/P/d13uAfLrP+8EF02bat4+NjFQqFhfrqrCK+ojInllMqleS6ru/b4IeJWq029LvBnidRiR9iMjxGKypGqyf8GozRqMQMcRgug0kUP1vFRr8oGk3WRCVmiEMAYULSCVjAs2fP+j8PbkmZZnCcV58ARJ9t20omk8rlckMf2medM3qVplXEV1TmRDhFJX6IyfAY3Jbjd8vn6Da80eRVVGKGOAyPwS2afpOfs7ahRSVmiEMAoeECmFur1XIl9W+zNBqN/ljDMNawQqzbzc2NaxiGm8vl5jrPNE231WoNHVtFfEVlTqyPYRj996NWq00dG5X4ISbDY/C1leTe3NzMPCeXy/XHp1Kpsd9HJWaIw/AoFApTY8qLaZr9cxqNxtjvoxIzxCGAsKDSCViAaZpD3+IOXunJy+DlePnmaPs4jqNkMinDMFQsFmXb9sxbs9nsN/oc/VZ1FfEVlTkRTlGJH2IyPFKp1ND2uJcvX848Z7AiyqtaNCoxQxyGx/Pnz/s/X1xc+GpqP7ilzquRdlRihjgEEBqbznoBUdVut/vfCJmmOXHczc3N3N+yIVoGvxWd91apVDznXEV8RWVOrMc8lU6uG534ISbDY7TSot1uTxw7WGUxrWI0KjFDHIZHKpXqv8aFQmHq2ME4LJVKE8dFJWaIQwBhQNIJWEKtVpv5x0kvIRGPx31tL0C0LJNwmpX3X0V8RWVOrN68SSfXjU78EJPhUalUhrbseL3Wve3Jsz4Y90QlZojDcLi5uXHj8bivL3t64/wkXqISM8QhgE0j6QQsqdFo9P9IyWQybqvVcm9ubtxGo9H/R9w0Tf4R30KZTGaphJOf/k+riK+ozInVWiTp5LrRiR9iMjwG34t4PO6WSiW31Wq5rVbLLZVK/d/N0xMvKjFDHIbDzc3NWM+wSqXitlott9FoDPV+mlbhNCoqMUMcAtgkkk5AQEqlkmua5tAf1qlUaq4Pc8Akq4ivqMyJcIpK/BCT4VGpVNxUKjX0Xpim6RYKhalb76aJSswQh+HQarXcXC43lHQ3DMPNZDJuoVBYOOkSlZghDgFsQsx1XVcAAAAAAABAgLh6HQAAAAAAAAJH0gkAAAAAAACBI+kEAAAAAACAwJF0AgAAAAAAQOBIOgEAAAAAACBwJJ0AAAAAAAAQOJJOAAAAAAAACBxJJwAAAAAAAASOpBMAAAAAAAACR9IJAAAAAAAAgSPpBAAAAAAAgMCRdAIAAAAAAEDgSDoBAAAAAAAgcCSdAAAAAGCLOY6jWCw282ZZ1qaXGlrlcnnm65dIJDa9TCB0Yq7rupteBAAAAABgNRzH0d7eXv++aZp69eqVDMMYGhePx9e8smhxHKf/8/X1tZrNpvL5fP+YYRhqt9sbWBkQXiSdAAAAAGCLjSadarWaMpnMBle0PbLZrOr1uiSSToAXttcBAAAAwD1CRVNwRqvFAAwj6QQAAAAA98j+/v6mlwDgniDpBAAAAAAAgMCRdAIAAAAAAEDgSDoBAAAAAAAgcCSdAAAAAAATOY6jcrmsZDLZv1JbT71eVzqd1t7enmKxmJLJpKrV6sR5isWiksnk0PjROcO+DgD+Pdz0AgAAAABg2xWLRZXL5YXONU1TrVYr4BVNZ1mWms2mzs7OZFnW2O9t21Y2mx37nWVZyufzarVaqlQq/ePlclnFYtHzcbLZrAqFgkqlUmjXAWAxJJ0AAAAAYMUcx5EkGYahfD4vwzA8x52fn48lp9adBLFtWy9fvpQkz0RPtVpVPp+XaZoqlUoyDKN/Tu95VqtVZbNZpVIppdNpXVxcKJfLKZlMan9/f+x5lsvlsdclLOsAsLiY67ruphcBAAAAANssn8/riy++0M3NzdRxyWRyKMGSy+WGKnUW4TiO9vb2+vdbrZZM0/R17mhlkGEYur6+1qtXr5TJZIbG2ratRCLRv997jP39fdVqNcXj8aHxzWZT6XS6f3/acw3LOkYNVrAZhqF2u+3rPOC+oKcTAAAAAKzB559/PvX35XJ5KOEUj8eXTjgtyys5dXNzM5boke6SLqlUqn/fsiw5jqNGozGW6JGkVCo1VFHUbDZDvw4A8yHpBAAAAAArdn19PbW6yLbtsV5DtVpt1cuaaX9/f+i+V5Jn0GDFkCTP/kmDBl8T27ZDvw4A8yHpBAAAAAArViqVhqpvRmWz2aH7uVxu6viwGq0kGk0WjRrtnRRUwics6wDuO5JOAAAAALBi0xpTV6vVsW11Ub2C2qzkziy9BuDbsg7gviPpBAAAAAAbYtu28vn80DGvZtfb6vHjx5tegqTwrAPYNiSdAAAAAGBDRhNOmUwmktvqAMALSScAAAAA2IBqtTp0pbR4PK5Xr15tcEUAECySTgAAAACwZo7jjF1R7dWrV/dmWx2A+4GkEwAAAACsWTabHWpWnclklMlkNrcgAFgBkk4AAAAAsEb1ep1tdQDuBZJOAAAAALAmjuPoxYsXQ8fYVgdgW5F0AgAAAIA1efHixdzb6srlsqrV6opXBgDBI+kEAAAAAGvQbDZVr9f79/1uq2s0Gtrf31/l0lbm+vp600uQFJ51APcNSScAAAAAWINsNjt038+2Osdx1Gw2ZRjGClcWnNHkzmBVl5c3b95s9TqA+46kEwAAAACsWD6fH0p8pFIpX1er6/V/2lTSybbtofuzkjejv2+323ONH328sK0DwHxiruu6m14EAAAAAGyrZrOpdDo9dKxSqXgmkhzH0fX1tdrttur1ej/5sczHNsdxtLe317/farVkmqavc5PJpCzL6t+Px+P68ssvPSu0HMdRMpkcStjE43G1Wi3P52rbtpLJ5FgyrtFohHYdo4rFosrlsqS7xOCs5BZw31DpBAAAAAArVCwWx47l83ml0+mxWzabVT6fV7lc7idN1n1lO8uylE6ntbe3N5Tokb5PYCWTyX5/KsuylEwmtbe351mRlEgklEwm+83Qm82mEomEEonEWIVRs9nU3t6e0um0/uqv/ioU66DqCVgclU4AAAAAsMWWqXTCdFQ6AdNR6QQAAAAAAIDAkXQCAAAAAABA4Eg6AQAAAMA9cn19veklALgnSDoBAAAAwD1CY+zgjDYgBzDs4aYXAAAAAABYn2KxKMMwdHR0NHR83VfJi5rRBNPFxUX/SngAvJF0AgAAAIB7xHEcpdPpseNc1W6ycrmsYrG46WUAkRNzXdfd9CIAAAAAAACwXejpBAAAAAAAgMCRdAIAAAAAAEDgSDoBAAAAAAAgcCSdAAAAAAAAEDiSTgAAAAAAAAgcSScAAAAAAAAEjqQTAAAAAAAAAkfSCQAAAAAAAIEj6QQAAAAAAIDAkXQCAAAAAABA4Eg6AQAAAAAAIHAknQAAAAAAABA4kk4AAAAAAAAIHEknAAAAAAAABI6kEwAAAAAAAAJH0gkAAAAAAACBI+kEAAAAAACAwJF0AgAAAAAAQOBIOgEAAAAAACBwJJ0AAAAAAAAQOJJOAAAAAAAACBxJJwAAAAAAAASOpBMAAAAAAAACR9IJAAAAAAAAgSPpBAAAAAAAgMCRdAIAAAAAAEDgSDoBAAAAAAAgcCSdAAAAAAAAEDiSTgAAAAAAAAgcSScAAAAAAAAEjqQTAAAAAAAAAkfSCQAAAAAAAIH7/wFoK+qljoP9GwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# import matplotlib\n",
|
|
"\n",
|
|
"# nbins = 200\n",
|
|
"# vmax = 400\n",
|
|
"\n",
|
|
"a1 = plt.hist2d(\n",
|
|
" brem_z_lost,\n",
|
|
" brem_x_lost,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax, # * stretch_factor,\n",
|
|
" # norm=matplotlib.colors.Normalize(vmin=1, vmax=vmax * stretch_factor),\n",
|
|
" range=[[-200, 9500], [-3200, 3200]],\n",
|
|
")\n",
|
|
"plt.vlines([770, 990, 2700, 7500], -3200, 3200, colors=\"red\", lw=1.5)\n",
|
|
"plt.ylim(-3200, 3200)\n",
|
|
"plt.xlim(-200, 9500)\n",
|
|
"plt.xlabel(\"z [mm]\")\n",
|
|
"plt.ylabel(\"x [mm]\")\n",
|
|
"\n",
|
|
"plt.colorbar(a1[3])\n",
|
|
"mplhep.lhcb.text(\"Simulation\", loc=0)\n",
|
|
"# plt.show()\n",
|
|
"plt.savefig(\n",
|
|
" \"/work/cetin/Projektpraktikum/thesis/brem_vtx_hist2d_lost.pdf\",\n",
|
|
" format=\"PDF\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 55,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAOWCAYAAABF0OMKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1z0lEQVR4nOz9e3QjWX7Yef4CJPNRmZUJMqu7RSXHVQmqWg+fsaaArBn5MZZmCFR129teq0Vk9rRasuWpJC3NsXfMVQOdmj1nxjvjTgE67tk9nl0XUfJjrJa2WaBaOq7jGauAkixr/VKSqLZ3JLVbDVRVmyn2q5KRrMzKB0nE/sEGEvcGEQ9GBBAgv59zeA6CcXHjxgME8OP9/cKwLMsSAAAAAAAAIESJYQ8AAAAAAAAARw9BJwAAAAAAAISOoBMAAAAAAABCR9AJAAAAAAAAoSPoBAAAAAAAgNARdAIAAAAAAEDoCDoBAAAAAAAgdASdAAAAAAAAEDqCTgAAAAAAAAgdQScAAAAAAACEjqATAAAAAAAAQkfQCQAAAAAAAKEj6AQAAAAAAIDQEXQCAAAAAABA6Ag6AQAAAAAAIHQEnQAAAAAAABA6gk4AAAAAAAAIHUEnAAAAAAAAhI6gEwAAAAAAAEJH0AkAAAAAAAChI+gEAAAAAACA0BF0AgAAAAAAQOgIOgEAAAAAACB0BJ0AAAAAAAAQOoJOAAAAAAAACB1BJwAAAAAAAISOoBMAAAAAAABCR9AJwMgzTXPYQwAAAAAAaAg6ARhJjUZDisWiTE5OyrVr14Y9HAAAAACAZnzYAwBw9DQaDVlZWZFGoyGtVktu374tpmlKMpmUVColU1NTkk6nJZfLSTabtT0/n89Lq9WS9fX17u9M05R6vS4rKytSr9eZ3QQAAAAAMWdYlmUNexBA3FQqFVlcXPT9vHQ6rQRKDsswDN/PSSaTsrW1deC6fD4vq6urvvus1WoHBoUOYpqm3LhxQ8rlsu/tpNNpyWazMjs7K7VaTVZXV23HshOIajQatufPz89LtVr1vV0AAAAAQHRIrwMOsLCwIFtbW7K+vi7z8/OObbPZrNRqtW77MFiWJc1mU5aXlyWZTPZtl0qlZHl5WZrNZt+Ak4hItVqVra0tT0GkQqEg6+vrsrW15Tng1Elz0wNOnWBQp7/OftVqNVlYWOjuW6PRkHK5LIuLi93gmD6TqdOPZVmSSqU8jQsAAAAAMDzMdAI8WFxclEqlYvv9IGbYtFotmZ2dPXDd1taWY1Cqn0wmc+CMoeXlZVlYWPA1tlwuJ61WS/n9wsKCLC8ve+qjXC5LsVi0/T6VSkmz2TzwOfr5YKYTAAAAAMQPM50AD/ql2h0mBc+vVCol6XTa9vv5+flDBZxE+o/bT8CpXq/L7OysEnBKJpOyvr7uOeAksj+zqtls2vbl9u3bfZ9z2P0GAAAAAAwOQSfAg37pXINK8zpoO0G2fdBz/QRyGo2G5HI52/PfeOONAwNkXsbz1ltvKWOgUDgAAAAAjDaCToAH/QIyU1NTgx1IDLRaLZmbm7P9vlqtHirg1NGZJXUUra6u2lIQ8Vi9Xh/2EAAAAABEgKATMAIOCm5duHAh1P68BtDy+bxtFtLCwoLnouNOUqmUFAqFwP0MSqPRkMXFRZmdnRXDMGRyclJmZ2clk8l07xi4uroq165dcw2s1Ov17vOPehCm1WpJpVKRXC4nhmHYZs0N23E6FwAAAECUxoc9AACjo16vH1iAvFQqhbaN69evd++CZ5pmLOs3maYp165d695pL5VKde9y2Gq1pNFoSKPR6K7vPMdJJ5hnmqYsLi72LaI+ylqtluTzeWm1WrFOnzwO5wIAAAAYBGY6AfDsoALkQQqaHySZTPoqaD4MnVlMIvt3/Gs2m1KtVqVarcr6+ro0m03bzC+3wMVxSNVMpVKyvr4uW1tbsZ7RdhzOBQAAADAIBJ0AeFKv1w+sS3T9+vXQt5XP50XE+Q52Tur1uuTzeSXtLZfLSaVSCTy2crncTbkqFAoHBshSqZTUajVlBphbTafl5WVJpVKSSqWkWq0GHmfcxS2lrtdxOxcAAABAVEivA+BJvy/fQYqH95PNZqVUKvmecWKapszNzdlSAE3TlHq9LvV6XUqlUqCi5zdu3Og+PmjmV69CoSDvvvuulMtl1wBaNps9Vmlcw5pNtLi4KMvLy45tjtu5AAAAAKLCTCcAnhxUUDmM4uH9FAoFX2l7rVZLLl26dGDNKb1dJpM5VIHow9QiKpVKkk6nuXtdDFQqlVBmuwEAAADwhqATAFetVuvAoEkUs5wOwzTNbvHn+fl5WV5elvX1danVan1rB+VyOd+BID3g5DVwdf369VgXzj4OWq2W68w0AAAAAOEivQ6Aq37BmdnZ2QGP5GCd4E+tVrPNvspms7K4uHhgkCmfz8v6+rrn7aRSKWW5WCzKlStXXGdkde5sF9e78R11pmnGuoYUAAAAcFQx0wmAq35Bpzjd5euggFNHp7C3rtFo+EqzSyaTStDINE3JZDKeZkxZlkXAaQg6db5IbwQAAAAGj6ATMKKKxaIYhnGon0wm42tb/VLD4hJESSaTrvWlUqmUcje5joN+50Rv32q1ZHZ2NpRaQY1GQxYXF11nkJmmKZVKRTKZjLLdTgrZ5OSkGIYhs7OzUi6Xbc9vtVpSLBa7d/ebnZ2VxcXFA89zZzv6NaTL5XLd/np/wkwrrFQqynYmJyclk8kcuI8i+8fzoDpfvePrd6y9nosO0zSlXC5LLpfrHv/O+IrFoqegV6vVknK5LLOzs8qYe8/B7OxsN5UUAAAAiD0LgCciYvvZ2toayLYXFhYO3H6YP6lUyvf2a7XaQPZfVygUlHFks1nPz00mk7b98CubzR54PNLptLW+vu6rr/X1dWthYUEZVzKZtLXb2tqySqWSlU6nlW0uLy9blmU/Jr0/CwsL3X6c2qVSqb7XtH4N9FMqlTy9RtbX1z2fg2q12j0u1WpV6SOVSvUd+9bWlrW+vm4b0/r6uvLT25+Xc6FbXl7uti+VStb6+rrVbDatarWqnK/5+Xnbc7e2tqxCodDdj94xbm1t2c5377iazabr2AAAAIBhYqYTMKIWFhZkfX39UD9ut4zX9ZvRFJfZFn5mXB00I8rtjne6Wq3WrdOk95PJZDzPRGm1WrKysuJ5Nk06nbYVw15fX5dMJiONRkOq1ao0m03Z2tpSCqhXKhVpNBqSy+WkXq9LrVaTra0t2draklqt1j1+rVZLbty4ceC28/m8pzEedFyCqNfr3W1fv35d6T+dTku1WhWR/bFfu3ZNeW4ymZR0Om0reN/5Xe86v+eio1gsyuLioiSTSWk2m1IoFCSdTksqlZL5+XlZX1/vjnl1dVVmZ2eVa+P27duSy+Vs1+Xa2ppcunSpmxrabDZleXm5e65M06QwOgAAAOJv2FEvYFRIzGY6lUqlQ/enzzIRl5lO+kyRzk9nls2g6bN1DppB0k9n1kwY+9HvuBym396+3GbX6LNf+s0402dk9c546tV7TPptu1areZqZtLW1FepMp/n5eddr3q0fr2Pv8Houemc4uZ3r3plM/Wbm9Y4xmUweeF7163dQf4MAAACAw2CmEwBXcZ/p5Id+BzqRw+9HoVCQra2tvrN7OnfN89L/QePqp7eA+8LCQt96Vvod2/rNcOsdv2masT2v/a7D3t+HUTDc67koFovd7S8sLHhqK7I/e+ugAva9+/HKK68ceF71a21tbc3TWAEAAIBhIOgEwFW/L+HNZnPAIwnuoMDFu+++G6i/arUq6+vrtjQukf0Aw9zcXKiBHK/phL3nzU8KYpzu9PbKK69IqVSSarXqGtgRGVwgtFKpdLflJUi1sLCgnAO/Bex79W4vTucKAAAA0BF0AuCq30yag2ZrxN1BAYILFy4E7jedTvetl9VoNGz1hgbhsHcXvH37drgDCSCZTEqhUOhbQ8tvPa6w1Gq17mOvM6N6X0ej+NoBAAAA/CLoBMCTg2bxtFqt2KZi+eEntc3NwsKCNJtNW8BndXU11oGGwwaoBq3VakmlUpF6vX5gkfBBjsMv/To7Cq8dAAAAwAlBJwCeXL169cDfxzmQ0o8eYAkz6NTpb3193bYdv3cNxGOdu+8tLy871rEalN6AkdcAlH5nvDjNKAMAAACiQNAJiIFGo+H5lvTD0q+ezigGUvQZJl5my9TrdclkMp63kUql5JVXXlF+N6xUsFG3uLgomUxGUqlUoFpIYTpM8fLeAvAi4Qc7AQAAgLgh6ATEwLVr12KfapNMJg+sq1Ov10cqmKIfZ68zZlKplDQaDV8zu/TjRdFn/xYXF6VSqYhIsOLbYesNGHm941/vzCYCTgAAADgOCDoBQ9YJ2ui3t+8VdhrOYfvr96W/93bwYYkqCKffYn5xcdHT8zpBAq/tDzKs+kODFOa12mg0ugGnVCoVq7pTerppZ5xOeu/2eFAAFwAAADhqCDoBQ2SaZjetzu+X0HfffTfUsXgJFvRLb6rX61Iul0MbS6vVkkwmEyjA049+1zE/xz2VSkmr1fIcZNNnNvWrizUK9NSwfkHBMGdz9c4qc+p3GLME5+fnlSCYlzTT3v25fv16FMMCAAAAYoWgE+BBFF9qTdOUubk5MU1Tksmk73SbsMfktb9CoXBgSlqxWAylqHi9Xu8WXI4inWp1dbX72G89qs45KpfLnma29PafSqWkUCj42l4/Xs9Vbzu357it12dpHbT/BwXkwpz51HvuOrxsT39t6QGsw76Wemt2tVotx+u/0Wh001BLpVKsZm0BAAAAUSHoBHjQb5bFYb9Qd4pSd76EXrlyxff2g3yZDzobpVarHThDKJfLHXrGk2masri4KLlcru/d35ye60WlUunu+2HugNYbvFhcXJTFxcW+265UKsqx6J1hdZDe8zns+l79tt97vIrFoiwuLkq9XpfV1VVZXFyU2dlZW0DF62vnoG3qga58Pi/lcrk7s252dlZarZZyXpaXl6Ver0uxWOz2qQedOuet1WopNaMOGpvTuZifn1cCo/l8/sD2pmnKtWvXRGT/uusXfPR63nuP6bCvFQAAgONgdnZWDMM48J+gbsrlsuRyOZmcnBTDMGR2dlby+Xygf9hH0WdkLACuFhYWLBGx/WSzWavZbLo+f2try6rValahULBSqZStn2q12ve5zWbzwG2LiLW1tXWo/Umn0wf2t7y87KufQqFwYD/pdNqq1Wqe+tja2rJKpZKVTCa7x9Rtv/TtJpNJ1+30HsdsNutpbLrl5eUD93d+ft4qFArW8vKytbCwoJxjr9eIfk76XRNbW1u2Y93P/Py8p/Nbq9WUdgsLC3233TlP+k8ymeye89426XTaajabtnPqdWx6u96fUqlkWdbBr8/5+Xmln37X6kH76vVcdFSr1e4+J5NJa3l52Wo2m1az2bSWl5e710NnvAfxeg70doe9lgEAAOBN7+dIt8+FvWq1mvIdp1arWc1m06pWq93Ph16++0TdZ9QIOgEO1tfXHb/0hvVz0B+Fra0ta3l5ue+XfBGxUqmUtby87PmPyvr6upXNZh3HUigUPAVJOmq1Wt8gVjKZtObn563l5WWrVqtZ6+vrVq1Ws5aXl61SqaQ8L5lMev4jflAgLpVK9Q109QYF9GCEH50/8tVq1apWq9bCwoKVzWatdDqtnKfOfrsF3jrXV79znE6nu4EKp7apVMqan5/vXgd64EsPUnT6rNVqfa+HVCp1YOBja2tL6T+dTluFQkFp0/mdfh1tbW257u9B2yyVSt3tpVIpq1AoKNf81tZWdz96j5muN+ibTqeV683PuehneXnZymazSgCq87x+r1Gn12TvOWg2m47t3MYGAAAA//R/+Hn9vtL7vH7/TOx8F0qlUp6+z0XR5yAYlmVZAkBRqVQiKWJ9kHQ6Levr68rvDMPw3U8ymZStra0D1+Xz+UNNBa3Vap5T0FZXV+XGjRvdlEGvUqmULC4uysLCgq86N536Qfp+JZNJuXz5siSTSTFNU9bW1rp1s6rVqu+UOgAAAADHj2macunSJaWcQbVadb0RUe/zUqmUcgfjXq1Wq1vLNpvNOpbjiKLPQSHoBCBUpmlKvV6XlZUVabVa3do5Io9ve59KpeT555+X+fl53wXU3bbX2WZnO5cvX5Z8Pk+wCQAAAIBn+XxeGo2G3L59uxt48hJ0yuVy3dpKy8vLsrCw4LiNzj/RndpG0eegEHQCAAAAAAD4jk7my/r6eveO4yLuQafemUYiIltbW47ZHKurq5LP50Wkf+ZKFH0OEnevAwAAAAAAEOne4bhQKNjupuym987G2WzWtXxIbwDLNM0DS6JE0ecgEXQCAAAAAACQ/fS0dDqtBHu8qlQq3cdeA1a95UZWVlYG0ucgEXQCAAAAAADHXrFYlEajIdVq1fdz9RsqPf/8856e1xtI0mclRdHnoBF0AgAAAAAAx1qj0ZByuSzLy8uHutlRp9B3h9c+9Ha9gaYo+hw0gk4AAAAAAOBYm5ubk/n5+UPf7e3mzZvKslvtpY4LFy4oy2tra5H2OWgEnQAAAAAAwLHVudvbK6+8cug+Wq2WsnzYWUnNZjPSPgdtfGhbBgAAAAAAGKLV1VVZXV2VWq3meSbRQfQA0WGZphlpn4PGTCcAAAAAAHDsmKYp+XxeFhYWJJvNBu7rMPRA1+3btyPtc9CY6QRozpw5I/fv3xfLsiSRcI7LPvnkk3L27NkBjQwAAABAnNy9e1fee+89xzbtdlsMw5DTp0/LvXv3BjSy8F2+fFm+/vWvB+rDy/Hy6sknn5Tv+Z7vCVSvaG5uTlKplCwvL4cypjBEMStpmDOdCDoBmgcPHohlWSKy/wbh5M6dO3Lnzp1BDAsAAADAiLIsS+7fvz/sYQTy9a9/XW7dujXsYXTduXMnUBCsXC5Lo9GQ9fX1UMaTTCZDCe70zlKKos9BI+gEaMbGxrrBpsPOdNrc3JR2uy2JREKmp6cjGWcQkYzPskT+6I/2H3/3d4sYRuB+/khEjJgeQ5H4n2eRYzDGsK47F3E/jnEfnwhjDAtjDC7u4xNhjKHoeX/4eiIh3xXHMUr8j2Pcxycy/DF6nekkIt1/bI+6REJk+kOHCyXcvduW9+45/2PfC5e5Aa4ajYYUi0UplUqSTqcDj0dEZGpqKpQA0dTUVKR9DhpBJ0DzwQ9+UG7duiUXL16UjY2NQ/UxMzMjt27dkunp6UP3EaVIxnfvnkgnAPeVr4icORO4nzMiMhnTYygS//MscgzGGNZ15yLuxzHu4xNhjGFhjMHFfXwijDEUPe8Pz37oQ/KHcRyjxP84xn18IqMxxs4/td3+oT0qpj80Ll9rXBrqGP5Y+i25tbl76Ofn83lJp9NSKBRCG9NhZxPpQSV9plPYfQ4aQScAAAAAABzkEnnH9bV2dUAjiQNL2hJ8tlLQMRxWuVyWVqsl2WxW8nnn8yqiBnBu3LghKysr3eWrV6/K/Py8iOzXvGo0GsrzvAR79CLfs7Oz3cdR9DloQw06Pfvss8PcvMIwDPnKV74y7GEAAAAAAICIvPvuuyIiUq/XfT+30WgoQaBUKtUNOmUyGaVtq9XylLrXbDaV5d676EXR56ANNejUbDbFMIyh5rZ2tm9EVAcEAAAAAICjZM8a9kyn+Ll8+bKy7DVA1DuTKplMSiqVirTPQTsaSaUBHJVibgAAAAAAwFmpVBLLsjz/9AZsqtWqsq5UKnXXpdNpJfXt5s2bnsaztrbWfawHmaLoc9CGXtPJsiyZn58fWuTNNE2pVCpD2TYAAAAAYPQcrxpO8OrKlSvd+EJvGp6T3nbFYnEgfQ7S0INOlUpFXnrppaGOYX5+Xl588cWhjsFNq9WSUqkk9XpdWq1Wd4rc5cuXpVgsHjpoVy6XpVarydrampimKalUStLptCwuLh4673NU+gQAAAAA+GOJSDtAIe+wxhBHi4uL3QCRl5pRvW1SqdSB322j6HOQhp5eN+wDICLy/PPPD3sIjsrlsszOzkqlUpFWqyUi+zO0Go2GVCoVmZ2dlXK57KvPer0uk5OT3ahntVqVZrMppVJJGo2G5HI5yeVytlstHoU+AQAAAAAIWzqdVmIcq6urju2r1ccz5vrNSIqiz0Ea+kynqampYQ8h1nK5nNTrdUkmk5LNZiWVSkmr1ZJGo9ENQIlId7ZTp3K+k3q9LrlcTkREFhYWZHl5ubuu00cmk5F6vS6ZTEbW19ddb8s4Kn1i39LSkmxvb8u5c+eGPRRHP3f9upx+6qlhD6OvUTmOcTcKxzHuY4z7+EbFKBxHxng8jMIxHIUxdvy1v/bXhj2EkTUK53kUxvjkk0/KnTt35Mknnxz2UDAAy8vLMjs7KyIiN27c6PsdvbfUTzablYWFhYH2OSiGNcRK2mNjY7K1tTX0PxB37tyRqakp2dvbG+o4dMViUcrlspRKJSkUCrb15XLZFrl0O52macqlS5e6KWr6rRQ7Wq1W96LOZrNSq9VGvk+vZmZm5NatW3Lx4kXZ2NgYWh8j5949kbNn9x/fvSty5sxw+4GIHINrketlZBz5axEjg2vxmBiR9weux/jKJfLKcpAaTkflPHf247unx+Qr6xeHOpYPZ27JH23uDeSYzs7Odid8VKtVTxM9VldXJZ/fv4b6fZ/PZDLSaDQkmUzKW2+95TqBIoo+B2Go6XVxunNcnMYish9M6dQxOuhiEhEpFAq2yKVbYbF8Pt9NRXOaatc7a6perzsWWx+VPgEAAAAAiNr8/LzUajVJJpNSLBYln89Lo9EQ0zS7mTqNRkPS6bTn4FAUfQ7CUINOpVJp6LOcRETOnz+v3OowDorFopRKJdeaV/q4nQqLtVotZf2VK1cc+7569aoynlHuEwAAAAAAv5rNpliWJZZleZrl1JHNZmVra0tKpZK0Wi2Zm5uTyclJyefzMjU1JdVq1XeJmCj6jNpQazp9+tOfHuj23n77bXnmmWdiMRY3pmn2neHUq3MXu850P6eLqzdAlc1mXS/E3heUaZqyurpqe5GNSp8AAAAAcFh6up0uSPrdyLFE9oadKRSvRCVHhULB03f7YfcZlaHfvW6QFhcXhz0Ez/zUJrp9+3b38eXLl/u26009S6fTnvpOpVLdxysrKyPbJwAAAAAAGKxjFXRaW1sb9hBCZ5pmt/ZRNpvtG6TRaz09//zznvrv7U+/NeOo9AkAAAAAAAZvqOl1h/X22293Ay1etFotWV5e9vWcUfHqq6+KyP5Mn2q1/5ROvdZT78wgJ3q7TmGyUeoTAAAAABCedoT5bf+v5ffk/12569jm69+M153n0d9IBJ3efvttKZVKUq/Xu7WL/LIsSwzDCHlkw2WapiwuLko6nZZqtepY++jmzZvKstfCYhcuXFCW19bWusGcUekTAAAAAPzQazS51XRCeN6725Y/+jpBpaMi9kGn69evS7lcFpH9wBH2tVotyeVykkwm5Y033nANzujBusPOIGo2myPX5zAsLS3J9vZ2LO7OiOONaxFxwbWIuOBaRJxwPWIUWWLJXoQznc6cNWT6u5wrAX3jm21ptyMbAkIU66DTr/7qr3bvZGYYhhiGQeBJ9msW5fOPI+2Tk5NSKpUcq9cfdoaYrjdFcVT6HIalpaWhbh/o4FpEXHAtIi64FhEnXI+A3c8sPik/s/ikY5v/OLMpm18n6jQKYh10unHjhohIN9iUSqUknU53Z7XoKVUHeffdd8U0TXn11Vflzp07kY43SqZpSqVSkeXl5QMDM8ViUW7evNm3rtNhgzD6DKreO+WNSp+Htbm5KTMzM4H7WVpa4gMFAAAAECN6upyeTici8rnPfU4+97nPiYjIty3n7xdO3xs2NzcPMULgaIh10KnRaHTrMNVqNZmbmzt0X4VCQZ599tmwhjZw9Xpdms2mZLNZabVatoLbIvszoMrlsuOMp6CimEEU1z7b7bbcunUrcD/b29uB+wAAAAAwWNvb256/D4TxvWGURFlIHEdLrINOyWRS7ty5I4VCIVDASWS/5s+lS5dCGtngzc/Py/z8vPK7SqUixWJRCbAUi0VZWFiwzfxJJpOhBGJ6+x2VPg8rkUjI9PR04H7I0QcAAABGz7lz5+TixYsiIvLtW84znZ66ONV33ebmprQpQIRjKtZBp1QqJW+++aY8//zzofS3vLwcSj9xsbCwINlsVjKZjBKoqVQqttlOU1NToQRzpqamlMej0OdhTU9Py8bGRuB+AAAAAIye3jIZbnevq20cXOZEZD/17rjNhAI6Yh10mpubkzfffDOU+jyd/o6aVColb7zxhmQyme7vbt68aWt32Jk/egBIn5U0Cn0CAAAAgB+2IJOh3k2ttrcywNHEzx43+IJHzvchHLKf+7mfE8uypNFohNLfL/7iL4bST9yk02kl9e6gQuOXL19Wlr3OJtIDfrOzsyPXJwAAAAAAGLxYB53Onz8vP//zPy8rKyvy3nvvBe7vqKXX9bp69Wr38UGBmt6ZUCIHB6YO0mw2leVsNjtyfQIAAAAAgMGLddBJZP+uc+l0WvJ55xxaN2+99VZoM6biKJ1Odx8flFqmzyDyGszpDWAlk0lJpVIj1ycAAAAAIByWiLSH/ENy3+iIdU2njlqtJpcvX5Znn31WisWi5yLRt2/fFtM0pdlsyquvvhrxKONDD9yI7Aeleu8Md/PmTdvd8A6ytrbWt99R6RMAAADA8eZWCNyVpd59Tu+v1u5fSBw4zkYi6PSbv/mbIrKfQrW4uHioPizLEsMwwhxWrPTOCMrlcge2uXLlilQqFRERz7O+etsVi8WR7RMAAAAAAAxW7NPrfvqnf1pyuZy8+eabYhiGWJbl++c46ARdkslk35lBvQG7er3u2mdvm1QqdWCdpFHpEwAAAAAQjj2xhvqD0RHrmU6vvPJKt/h3J+B0GMch8HTjxg0R2T9m/aTTaclms90gzerqqmPqWrX6eIpov9lDo9InAAAAgONLT3/T0+NyY1eVZVt7bT3pdoA3sQ466QGnbDYruVxOksmk77pOL7/8srz99tsRjjZc5XJZVlZWJJvNyvXr1w8sDt5RLBbFNE0pFAqu9Y+Wl5dldnZWRPYDVf3am6bZTXHLZrOysLAw8n0CAAAAAILbO/rzOhCSWAedGo2GGIYhyWRS1tbW5NKlS4fu69q1a3LhwoUQRxcd0zS7M3YajYaUy2UpFApSKpVsbfP5vKyurkqpVJJCoeDadyqVkmq1Kvl8XulbNzc3JyL76Xq9M4lGuU8AAAAAADA4sa7p1Jndc/369UABp05fzz33XAijil4ymZRUKqX8rlwuy+TkpOTzeSkWi5LL5WRyclJE9gusewk4dczPz0utVpNkMinFYrEb2DFNU+r1umQyGWk0GpJOp+Wtt95ynGU1an0CAAAAAOLrFyv35E8+/03Hn29+s+3eEWIh1jOdMpmM/OZv/qYtAHNYTvWO4mZ9fV1u3Lgh9XpdWq2WmKYpIo8LhufzealWq4cOtGSzWdna2uqm8c3NzYlpmpJMJuXy5ctSrVZdU/VGtU8AAAAAcOJWo+m413CKMuTz3t22fP3rBJWOilgHnRYXF+WNN96QVqsVSn+jMtNJZH+200HpdGErFAq+ZkkdpT4BAAAAAPFy9mxCvuu7nJOyvvnNtrSJS42EWAed5ufn5bnnnpOVlRX52Z/92cD9ffGLX5SPf/zjIYwMAAAAAACE7b9eOCP/9cIZxzZ/+vlvMhtqRMQ66CQiUq1W5Xu+53vk137t1+RHf/RHA/V148YNgk4AAAAAEEODTFkzxsaU5dd3vuA4Fn1Zlxu7qizX9lYCjC7eLBHZE2PoY8BoiHUhcZH9u5i9/PLL8tJLLwXq586dO916SAAAAAAAAIhWrGc6ffGLXxQRkaeeekomJyfl2WefPVTRaNM05dVXXw17eAAAAAAAAOgj1kGnz372s/Lmm292ly3LknK5fKi+LMsSwxjuFEAAAAAAAEZdm/w2eBTroNOVK1e6KXGGYRA0AgAAAIAjKsoaTjpLi5roNZv0mk/W3p6yPMixAqMs1kGnxcVF+cxnPiOGYYhlEUrFYG1ubsrMzIxjm6WlJVlaWhrQiAAAAADEyec+9zn53Oc+59hmc3NzQKMB4ifWQafz589LOp2WN998U0qlkqTTaZmamvLdT6vVks9+9rPypS99KfxB4shqt9ty69Ytxzbb29sDGg0AAACAuNne3nb9znAUDfvudRgdsQ46iYhcvXpVZmdn5dOf/vSh+3juuefkx37sxw4VsMLxlUgkZHp62rHNuXPnBjQaAAAAAGExEmrQxFKz52zpdLpOOt471lfkpJyWpy72/665ubkp7Xb7cAMFRlzsg07ZbFZu3rwZSl+XL18OpR8cD9PT07KxsTHsYQAAAACIqaeND8vT8mGpbfSv8TQzM3MsZ0MBIiMQdHruueekVCqF0tdf/+t/PZR+AAAAAAA4jiwZfnodFZ9HR2LYA/Di0qVLofTzd/7O3wmlHwAAAAAAADiL/UynMK2trQ17CAAAAACAIXt95wvKcm7sqtrA0mowGep8jdreShTDGhGGtK1hFxIf9vbh1UgGnd5++20xTdNz+1arJcvLy76eAwAAAAAAgMMbiaDT22+/LaVSSer1urRarUP1YVmWGAbRUAAAAAAAgEGIfdDp+vXrUi6XRWQ/cAQAAAAAAIYnykLin3/lPfnlX3zPsc23v7kX2fYRrlgHnX71V3+1e+c6wzDEMAwCTwAAAACAQF6Y+ISyrNdoyiXy6hO0Gk/6+lq7Gt7gjrl7d9vyza8TVDoqYh10unHjhohIN9iUSqUknU5LKpUSEZELFy649vHuu++KaZry6quvyp07dyIdLwAAAAAAOLwzZxPywe8ac2zz7W/uSbvt2AQxEeugU6PR6NZhqtVqMjc3d+i+CoWCPPvss2ENDQAAAACAY2lPEu6NDum/unZe/qtr5x3b/J/+sw1mQ42IWAedksmk3LlzRwqFQqCAk4hIKpWSS5cuhTQyAAAAADjecmNX1V9oKWhxTjl7fecLyrItnQ5AKKILT4agk0b3/PPPh9Lf8vJyKP0AAAAAAADAWayDTp3ZTbdv3w61PwAAAAAA4J8lIm3LGOoPtxcbHbEOOv3cz/2cWJYljUYjlP5+8Rd/MZR+AAAAAAAA4CzWNZ3Onz8vP//zPy+lUklKpZI8+eSTgfpbXl6Wl156KaTRAQAAAMDR5bfOUdAaTvr2oqwJRQ0nYDBiPdNJZP+uc+l0WvL5YH8U3nrrrdBmTAEAAAAAcFztiTHUH4yOWM906qjVanL58mV59tlnpVgsytTUlKfn3b59W0zTlGazKa+++mrEowQAAAAAAEDHSASdfvM3f1NERJrNpiwuLh6qD8uyxDCIiAIAAACAF37T23JjV53721sJdXuOY3FL1TO0pB+r7difMTamNt/b87e9I2bPin3SFGIi9kGnn/7pn5ZKpSIiIoZhiGX5r1NPsAkAAAAAAGCwYh10euWVV2R5eVlEDh9wEpFDPw/H2+bmpszMzDi2WVpakqWlpQGNCAAAAECcvGN9Rb4mf2j7fe/3iM3NzUEOCYiVWAed9IBTNpuVXC4nyWTSd12nl19+Wd5+++0IR4ujpt1uy61btxzbbG9vD2g0AAAAAOJmV3bkody3/d7te8Qos8SQ9pDvSWZRTHxkxDro1Gg0xDAMSSaTsra2JpcuXTp0X9euXZMLFy6EODocdYlEQqanpx3bnDt3bkCjAQAAAAbLrU6Rvt5vnaQoudVUstVo2lXH6rqv3zEuE3JSTtt+/9TFx5MkNjc3pd0e3rEAhinWQadkMil37tyR69evBwo4dfp67rnnQhoZjoPp6WnZ2NgY9jAAAAAAxNTTxoflafmw7fe1jcdBq5mZmSM98wlwEuuS85lMRkREUqlUKP298sorofQDAAAAAMBxtSfGUH8wOmI902lxcVHeeOMNabVaofTHTCcAAAAAAOKr+otbsvr3thzb3P7m7oBGg6BiHXSan5+X5557TlZWVuRnf/ZnA/f3xS9+UT7+8Y+HMDIAAAAAQK/a3sqwh+DZ649+RVnWazb5rWflVkMK3r1/d0++/XWCSkdFrNPrRESq1aqsr6/Lr/3arwXu68aNGyGMCAAAAACA42vPSkT2c+rMuDz1Xc4/idhHMtAR65lOIvv1nF5++WV56aWX5Ed/9EcP3c+dO3ek0WiEODIAAAAAABCm+ZemZP6lKcc2n/xTX2U21IiIddDpi1/8ooiIPPXUUzI5OSnPPvuszM/P++7HNE159dVXwx4eAAAAABxfhjrdRE8509fHKf3ONlaNWzqdW3+k242WVqslpVJJ6vW6tFotSSaTkkql5PLly1IsFkO7uVm/bS8uLkqtVvPUvlwuS61Wk7W1NTFNU1KplKTTaVlcXJRsNhvZOA8r1kGnz372s/Lmm292ly3LknK5fKi+LMsSw6DKPQAAAAAAQbSP0B3kyuWyFItF5XemaUqj0ZBGoyGVSkVKpZIUCgVf/ZqmKZOTk57aLiwsuLap1+uSz+fFNE3JZrNSrVYllUpJo9GQYrEouVyu+/tkMulrrFGKddDpypUr3ZQ4wzAIGgEAAAAAgFDkcjmp1+uSTCYlm81KKpWSVqsljUZDWq1Wt11ntpOfzKtKpeK5rR700tXrdcnlciKyH6BaXl7uruuMK5PJSL1el0wmI+vr67EJPMW6/Nbi4qKI7AecLMsK9AMAAAAAAIKxRGRPEkP9CeMbfrFYlHq9LqVSSba2tqRarUqpVJJqtSrNZlNKpZLSPp93TrHUeb2RWSfY1Y9pmt1tp1IpJeDUq1rdT+lstVq+xxqlWM90On/+vKTTaXnzzTelVCpJOp2WqSnngmIHabVa8tnPfla+9KUvhT9IAAAAAIihsOsMudZscuk/VnWPtLEbCTWrJjd21Vd31HAaLa1Wq1sbqV8dpEKhIM1mU5mx1Gg0JJ1Ou/ZfqVTENE0pFArdGUr9XL582XF9J6VOxHlGVGfG0+rqqtTrdalUKp7S9qIW66CTiMjVq1dldnZWPv3pTx+6j+eee05+7Md+7FABKwAAAAAAcHQUi0UplUquhbdLpZISdKrX656CTqVSSVKplG22lF+tVkvq9Xp3+cqVK47tr169KqurqyKyv49xCDrFOr1OZH+qWVjpcW4RRAAAAAAA4GzPSgz1J6jOLCQ3nbvY9S67WV1dlVar5VqnyYveoFU2m3Xdfm/NKdM0uwGoYYr9TKfnnnsucHSwI6x+AAAAACBsYaefBU750lLQxGo7Lrul37kZZPqdnk5n7e05bvuFiU84tsdoqdVqntvevn27+9jLRJYbN25IMpl0nZXkRe8sKy8zrESkWwxdRGRlZcVX8fMoxH6mk4jIpUuXQunnueeeC6UfAAAAAABwtJmm2a2nlM1mXQM/jUZDGo2GmKYpk5OTMjs7K4uLi4eacdRoNJTl559/3tPzescYh5lOQw06xamwd5zGAgAAAABAPBnSlsRQf0QM11GG4dVXXxWR/dlDnbvDOdFT6lqtllQqFcnn82IYhuTzeVswqZ/eWk6dMXiht/O6vagMNeiUyWRke3t7mEMQEZE7d+5IJpMZ9jAAAAAAAEAMmKYpi4uLkk6npVarudZT0ot+H2R1dVUymYwsLi66bv/mzZvKspd6UiIiFy5cUJbX1tY8PS8qQ63pFFaB8DDEaSwAAAAAjh5bzSNNlDWMwqCPLzd2VW3gUvPJbf8Guf9uNZlG/VwhmFarJblcTpLJpLzxxhueAj6pVEqWl5fFNE1pNptSr9e7tZV0lUpF1tbWZH193XEMev9e6O2azaan50VlqEEnwxjMlDgv4jQWAAAAAADiyLJE9qzhfn+Ocs7I6uqq5POPg46Tk5NSKpU83e1uYWFBWTZNUyqVity4caNbG6qj0WhILpfrW9S8X8DKL327gzbU9DpmFwEAAAAAgGEyTVPK5bLMzs4qAaeOYrF44O/dJJNJKRQKsrW1JdVq1TZjql6vS7lc7jumw9C30Xv3vWEY6kwnEZG33npLfvAHf3CoYxh2jiPiaXNzU2ZmZhzbLC0tydLS0oBGBAAAACBOPve5z8nnPvc5xzabm5sDGk38/eO/90157e9/K3A/W9/aCWE0j9XrdWk2m5LNZvvWZlpdXZVyuexpxtNB5ufnJZvNytzcnFLc+8aNG4fu04thz3QaetDp2rVr8pnPfEaSyaRMTU0NdNu3b9+WVqsV6QnG6Gq323Lr1i3HNnEohA8AAIDRMHJ1gLSaTHqdI7f90dv7fX6kDDXpp7a3oizbajpp7Tvrm9bvyS1x/s5wFO0dMmnq3t223P5GuAGjMMzPz8v8/Lzyu0qlIsViUQnaFItFWVhY8FzUW5dMJmV9fV0ymUw38GSaptTrdclms7a2YQSMDjvWsAw96LS+vn6oaWphsiyLmk6wSSQSMj097djm3LlzAxoNAAAAgLgZlwk5KaflqYv9J1Bsbm5Ku93uu/44eeLsmEx9aCJwP1vf2rHVrQ/bwsKCZLNZyWQySvCnUqkEnrjyyiuvSCaT6S7XajVb0GlqaiqUoNOgJ/fohh506hhWfSeCTehnenpaNjY2hj0MAAAAADH1tPFheVo+LLWN/rO2ZmZmXDMoRk3bOtxMpz/3V6blz/0V53/se/Ezf+bfDmTGVCqVkjfeeEMJEN28eTNwv+l0WrLZbDeN76Ci4YedoaQHqo79TKdhFxMf9vYBAAAAHE2xSicLgT5+WwqaxhgbU5Zf3/lC6GM6NJfUQZ2RUCcrWO2h3pMLA5ROp2V+fl5WV1dFJLy7yuVyuQNrR3VcvnxZqf1kmqanAJJeOHx2dvbQYwzDUINOW1tbw9w8AAAAAACAo6tXr3aDTmEV5k6lUt3HB6XA9c6uEtkPdqXTadd+m82msqyn7Q3aUINO58+fH+bmAQAAAACAD5YcvpB4mGMYpN5gT1jpar1Bp4P6vHz5srLsNejUGxRLJpPKdoaBOYEAAAAAAAAe6MGgw1pbW+s+zuVytvXpdFoJRnmtJdXbb1hjDWLoNZ0AAAAAYFT11gLSax75rYEUu5pPhvMcBX28L5z4pLJs7aqFnsOuceV07IEw9dZxOihAdBi9aXD9UuCuXLkilUpFRESp7+Skt12xWAwwwnAw0wkAAAAAAHi2ZxlD/Rm0TiAnmUzK/Px8KH12akQVCoW+bRYXF7uPnYqOH9QmlUoNvZ6TCEEnAAAAAACAvm7cuCEiIq+88koo/a2urkqr1ZJkMinXr1/v2y6dTiuBo06gqp9q9fGMvzjMchIhvQ4AAAAADi1IWlfsU8KstuNqW7qgz3S8oAL1p4/VZV+tvb3DbwuxUy6XZWVlRbLZrFy/ft2xOHixWBTTNKVQKPSd5VSv1yWfz4tpmpLNZqVUKvUt+t1qteTatWsiIvLGG2+4FiZfXl6W2dlZEdkPfvUbg2ma3VS8bDYrCwsLjv0OCjOdAAAAAACAR4a0JTHUH5HDp9iZpinFYlEajYaUy2WZnJzsOyson89LuVyWUqkkpVKpb5/VarV717h6vS6ZTEZJjevorJuampJms+npbnSpVKo7g6kz5oPMzc2JyH4KYO+Mp2Ej6AQAAAAAAI6FZDIpqVRK+V0n+JTP56VYLEoul5PJyUkR2S/47VR3SWQ/OKWrVCrdPhcXFyWTyUgul5OFhQVZX1+3jcHJ/Py81Go1SSaTUiwWJZ/PS6PRENM0u4GsRqMh6XRa3nrrLdfZU4NE0AkAAAAAABwb6+vrUigUJJ1OKwGaRqMhrVZL8vm8vPXWW1KtVj0Fh7LZrDSbTVlYWJBUKmXr8/bt23L9+nXZ2tqSUql0qKBQNpvtPr/Vasnc3Fw3qDU1NSXValXW19djFXASoaYTAAAAABxab10jvzWG9JpIca/xZKvh5MalxlOsuIzVGBtTlo97jac9a4TO7QGSyaRjutxhpFIpWV5eDrXPgxQKBdeZV3Ey2lcKAAAAAAAAYomZTgAAAAAAwBNLRNoBCnmHNQaMBoJOAAAAAPAdUaa86X35TlcbsMApZVY7xNFEq7a3oiznxq46P0Hbt1FLlYyz1//BLan9g1uObe5869GARoOgCDoBAAAAAIBYeHB3V8xvEFQ6Ko5V0Ontt9+WZ555ZtjDAAAAAABgZEVZSPzkmQlJfuiEY5s733o0ShPpjrVjFXTK5/Ny8+bNYQ8DAAAAAAAcIPtTM5L9qRnHNp/54X/NbKgREfug0/b2tpw7dy5wP2+++aY0Go0QRoTjYnNzU2ZmnP/YLS0tydLS0oBGBAAAgKj5rcXT296trk/cazjprLZartlvjSe9fZzrHr0w8QllWa/x9OKZn1SWrd0dERF5x/qKfE3+0NZf7/eIzc3NsIYJjJzYB50ymYz84R/aX8R+fOlLX5K5ubmQRoTjot1uy61bzgXstre3BzQaAAAAAHGzKzvyUO7bfu/2PWLU7Ul06XU4WmIfdGo2m/Lee+/Jk08+eajn/8Iv/IJ85jOfEcuyxDCGe1tHjJZEIiHT09OObcKYhQcAAABgNI3LhJyU07bfP3Vxqvt4c3NT2m0KEOF4in3QSURkbm5Ofvd3f9fXc95++23J5/PSaDTEsiz3JwCa6elp2djYGPYwAAAAAMTU08aH5Wn5sO33tY3HqYMzMzNHfuYT0M9IBJ3W19flIx/5iLz66queZpZ0ZjeJSHeGE4EnAAAAAFEKWsMpdjWPtNuDWc4lnFzbD31/euljbavpYrZzZyQcl/UaUEebIW1r2FlEw94+vBqJREzLsuT111+XVColv/Vbv9W33Ze+9CV59tlnu+l0IkLACQAAAAAAYAhiH3RKJpOyvr4uL7/8suzt7Uk2m5Wf+ZmfsbW7fv26ZDIZaTabyuymS5cuSaPRkNu3b8ulS5eGsAcAAAAAAADHT+zT665cuSLPPfecPPfcc3L16lV56aWX5OWXX5Z6vS7ValUsy5J8Pi+tVksJNlmWJaVSST796U93+1pcXBzingAAAAA4ytzS4/yuj1u6ne/0QcM5ZW3Y+9NLT49z3TctPS/O+xY2S4Z/9zpymUZH7INOL7/8cvfx+fPnpVqtSqVSkc985jOSTqdFRGypdOl0WqrVqm1mU28ACgAAAAAAANGJfXrd22+/bfvd7OysiEh3RpNhPC4itry8LGtra0cula7RaMji4qLMzs6KYRhiGIbMzs5KsVgU0zQP3W+5XJZcLieTk5PdPvP5vNTr9SPfJwAAAADAv7aVGOoPRkfsz1Y+/3ia4vb2tly9elVeeOEFuXPnTjf40pnpND8/L1evXh3WUCNhmqbk83nJZDJSqVSk1Wp117VaLSmXyzI5OSmVSsVXv/V6XSYnJ6VYLIqISLValWazKaVSSRqNhuRyOcnlcr4CWqPSJwAAAAAAiJ5hxfzWbolEQn7hF35BvvrVr3YDK721mzqpdC+//LL8wi/8gkxNTckrr7wiP/qjPzrkkQdnmqZkMhkl0ORkYWFBlpeXXdvV63XJ5XKOz8lkMtJoNCSVSsn6+rokk8kj0acXMzMzcuvWLbl48aJsbGwE7u/YuHdP5OzZ/cd374qcOTPcfnA8cL0AQOzEorbNkN4fXpj4hLJs7e35en7c6gDlxrR/6Gt1jPSaTUZCvY396ztfiGJYh+JWo8kYG1OWrbbL12TtWDidu6Py/aKzH+c/dFL++9/6s0Mdy9/8L/653PnGw5E/psdB7Gc6iYgUCgWpVCrSGx/rFArvpNJ1Hp8/f17m5+flIx/5iLz33ntKP9vb24MeeiCdAumdwFqz2ZRmsynValUKhYKtfaVSkdXVVcc+OzOnRERSqVTfIFW1uv9Hs9VqKbPNRrlPAAAAAEBwe2IM9QejYySCTiLq7KZsNivNZtNWGDydTkuz2ZSXXnpJXn/9dZmcnJS/9/f+Xnf9KAUlKpWK1Ot1KRQKsr6+LvPz85JKpSSVSsn8/LyUSiVpNpvdYuod165dc+w3n893U9E6KWsH6WxHZH/GkVP63qj0CQAAAAAABmck0ut66zYtLy+7BlZE9gMQ+Xxetre3ZXZ2Vn7sx35MyuWy7Pmc4joss7OzkkqlpFarObZrtVrdwuodtVpNstmsa9utrS3HdLTV1dVuoC6ZTMrW1tbI9unHUZn+OnCk12EYuF4AAAcZ4PtDb9qWnmJlS+nS0tFqeyuO7YedbmdLr9PYxu+Sjjfs/enldqz19cb4hLJs7e449t/b31H5ftGbXvd/+60fjmw7v/0P35bf+V/fcWyz/a2HYrVl5I/pcTAyM52y2axsbW15Cjj1tv/4xz8uX/3qV6VcLkc8wvA0Gg1ptVrd1DEnqVRKSqWS7fkH6W2XzWZd6x91ZhCJ7Ke7HZS6Nyp9AgAAAACCsyTau9c9uLsnd77x0PFHLy+G+BqJoNPCwoK8/vrrcv78ed/PrVar8uqrr0rMJ3QpVlZWZGFhwXNRbH1W07vvvntgu97UMz0tr59UKqWMa1T7BAAAAADE38kz43LuQycdf4yRiGRARGR82ANwk0wm5e/+3b8bqI/5+Xl5/fXX5cUXXwxpVNG6evWqEkRxowdm9HQ7Efvsp+eff95z35275+kziEalTwAAAADAaPizf/mS/Nm/fMmxzd/6L39Ltr/xcEAjQhCxDzodVJvosP0899xzofQVNa+zezo6Bbc7DgpY1et11zYH0ds1Go3u+EalTwAAAGAQbDWcdFpOUNxqOLnSx+9Sw0kX5/11O3fWiNQGHhTuIAevYj8p7dVXXw2tLy81kkZRZ4ZPx0GBups3byrLXlP3Lly4oCyvra2NXJ8AAAAAAGDwYh90CtOlS85T9EZVb4BlYWHhwDZ6YOqwM4iazebI9QkAAAAAAAYv9ul1cLe8vNx9XCwWD2yjB3MOqzeVb1T6BAAAAACExZC2Nez5K6T3jQqCTiOu1Wp1i2+XSqW+M4MOG4TR09tu3749cn0e1ubmpszMzATuZ2lpSZaWlgL3AwAAgOD81hVybd97Gy2/93HXbsEVdc2jwP273TJMX68dD2NszN/2IqTv+0E1nd6xviJfkz/cX/B5M/Te7xGbm5u+xwccFQSdRlypVBKR/fSyQqEQ+faimEEU1z7b7bbcunUrcD/b29uB+wAAAAAwWLuyIw/l/qGeG8b3iNiyRPaGPdPJZxAQw0PQaYQ1Gg2pVCqSTCalVqs5tk0mk6EEYnpnFI1Kn4eVSCRkeno6cD/nzp0L3AcAAACAwRqXCTkppw/13KcuTnUfb25uSrvtcxYccEQQdBph165dExGRN954w7Xg9tTUVCjBnKmpKeXxKPR5WNPT07KxsRG4HwAAAAxOLpGXU9auvNZnvd+UMl/ttfSy2t6KbWwKLf0s7HQ6ne/+faYLuqWsvb7zBX/bj9BB6XS9jLExeUa+X56R7xcREautTa1xOTa1jcfHYmZm5mjPfAIcEHQaUYuLi9JoNKRarUo6nXZtf9iZP3oASJ+VNAp9AgAAAADCYYlIe8iFvMmuGx3DLjmPQ6hUKlKpVGR5eVnm5+c9Pefy5cvKstfZRHpB7tnZ2ZHrEwAAAAAADB5BpxFTr9dlcXFRlpeXZWFhwfPzMpmMstxqtTw9r9lsKsvZbHbk+gQAAAAAAINHet0IaTQaksvlpFQq+Qo4idhnELVaLU9peb0zjZLJpFI7alT6BAAAwPFRa1dF7t0TOXt2MBt0qO2j1w0yxifUp+7tqe3HrirLek2ooPTxuNZ40mpUGWNjyrK1u6Msv3Dik47P9739CNn2RTsXfms4HTdDv3sdRgZXyohotVoyNzcnhUJBCoWC7+en02mlztHNmzc9PW9tba37WA8IjUqfAAAAAABg8Ag6jYBWqyWZTEYWFhakVCp5fk65XFZ+d+XKle7jRqPhqZ/edsVi0bZ+VPoEAAAAAACDRXpdzJmmKblcTq5cueI54CQiks/n5ZVXXlF+t7i4KJVKRUT2a0O56W2TSqUOrJM0Kn0CAAAAkehJIdPT4fR0Mj2Fy0gYjuvD5judTUsps3a1FDMtfU5Ptwu8/QjZ0udc2NLxjnn6XduK7u51/+Yf/aH87i991bHN3W8/iGz7CBcznWLMNE3JZDKSSqWkWCxKq9Vy/anX691i3HotpHQ6rQRkVldXHbdfrT5+U+g3e2hU+gQAAAAAxN/De7vy3jcfOP4csxjfSGOmU4zNzc11g0mzs7O+nru8vNz3952+bty4IfPz8we2M02zO9som806Fi4flT4BAAAAAPF28sy4PPnBU45t7n6bwNOoYKZTTGUyGc/1jA7SL/iSSqW6M4MajYat7lPH3NyciOzfCa53JtEo9wkAAAAACMYSQ/YkEdnP5Z/8XvmZ2p93/Dnz1OlhHwZ4RNAphvL5fCQBp475+Xmp1WqSTCalWCx2t2eaZjc9r9FoSDqdlrfeeku5m9yo9wkAAACEymp3f3KJvPIjRkL96WkrVlusvT3lJ26MsTHlx0bbH9v+aj+24xMht20ZCUP5cWO1LeXHtu8ADkR6XQwNYsZONpuVra0tKZfLsrKyInNzc2KapiSTSbl8+bJUq9W+KW2j3icAAAAA4PCiLCSOo4Wg0zFXKBSkUCgcyz4BAAAAAEB0CDoBAAAAgEeOaWGGWr2ktrfi3NfYVfUXA07T0vel1lYzLvSUP329rT99fwJyG58Tt7b6vhnjE1oD7Vxo59baVdf7GRtwnBB0AgAAAAAAnrUpDw2PuFIAAAAAAAAQOoJOAAAAAAAACB3pdQAAAADgkV6758VTP959/BsPfllZ51j/ScRWJ2jQ/NYhcquxZIyNKcvW7s7hBtan/yDczoXbWGvtL/jq76jb4+518IiZTgAAAAAAAAgdM52APjY3N2VmZsaxzdLSkiwtLQ1oRAAAAADi5B3rK/I1+UPH7w2bm5sDHBEQLwSdgD7a7bbcunXLsc329vaARgMAAAAgbnZlRx7KfdfvDUeJJSLtIafXWUPdOvwg6AT0kUgkZHp62rHNuXPnBjQaAAAAxJHVfvz1Nzd2VV3pVrPJaiuLYdYwioI+vhdOfFJZtvb2lGVbjSdt/SDpY/dbb6tf+3GZkJNyWp66ONW3q83NTWm3233XA0cZQSegj+npadnY2Bj2MAAAAADE1NPGh+Vp+bDUNvoHDGdmZo7VTCigF0EnAAAAAADgWdvinmTwhqATAAAAgJGhpzkNPSWtN0XOJV3Oln6nsa0fcvqdMT6hLLsde338ejrd0M+VD0ZCrVlkjJ9SltuPHinLsbsuR9ibn/8D+dIvf9mxzfvfvj+g0SAogk4AAAAAAMCzPYmukPjDe7ty75sElY4Kgk4AAAAAACAWTpyZkDMfPO3Y5v1v39cnAiKmCDoBAAAAAIBY+MFPfb/84Ke+37HNP/roF5kNNSIIOgEAAAAYGXGrlaPXLerlVqNJDLUYc21vJaxhhcK2b9p49TpG+nqdfjyi3F/fNZa0sb++8wVl+YUTn3R8etyuy2gZ0raiS6/zOoYwtVotKZVKUq/XpdVqSTKZlFQqJZcvX5ZisSipVOpQ/ZbLZanVarK2tiamaUoqlZJ0Oi2Li4uSzWZj02eUKDkPAAAAAACOpXK5LLOzs1KpVKTVaomIiGma0mg0pFKpyOzsrJTLZV991ut1mZyclGKxKCIi1WpVms2mlEolaTQaksvlJJfLiWmaQ+1zEJjpBAAAAAAAjp1cLif1el2SyaRks1lJpVLSarWk0Wh0A1Ai0p3tND8/79pnvV6XXC4nIiILCwuyvLzcXdfpI5PJSL1el0wmI+vr65JMJgfe56AQdAIAAACAPtzStIyxse5jWzqaSzqd30rIvlPGgnIbv4veYyPinIoYNr/pdIkTJ5Rlv6mRAz83Q9a2Rj9pqlgsSr1el1KpJIVCwba+XC53ZxWJiOTzebEsy7FP0zQln9+/FlKplBIc6lWtVmV2dlZarZbk83mp1WoD7XOQRv9KAQAAAAAA8KjVanVrIx0UcBIRKRQKsrCwoPyu0Wg49pvP57vpbb0BK13vrKl6vS6VSmWgfQ4SQScAAAAAAHBsFItFKZVKroW3S6WSslyv1/u2bbVayvorV6449n316uPZdP2CSVH0OWgEnQAAAAAAgCeWiLTFGOqPc5KbO9M0+85w6tW5i13vcj+9AapsNutaU6m3PpRpmrK6ujqQPgeNmk4AAAAAYsNvbZyoa+m49ddbp0hva6sLpPNZI2ngdYK08ek1msRSb1tvjE8oy+1HjyIZVhRcx+pSj+uo13A6avzUO7p9+3b38eXLl/u2601nS6fTnvruFC4XEVlZWbEVKo+iz0FjphMAAAAAAIDGNM1uPaVsNts38KPXenr++ec99d/bnz4rKYo+h4GgEwAAAAAA8GzPMob6MyivvvqqiOzPHqpW+89m02s99abkOdHb9QaaouhzGAg6AQAAAAAA9DBNUxYXFyWdTkutVnOsp3Tz5k1l2a32UseFCxeU5bW1tUj7HAZqOgEAAAABRV1X6Djxe+yGfqx7av241nDSaXWBwr6OQr8utfFaba2cc099KxERI6HOSHl9Jz6vC70+leUydr19e2dXWT5WfwMskbY15PkrQSuJu2i1WpLL5SSZTMobb7zhGvDp1FDqOOyspGazGWmfw8BMJwAAAAAAANmvgzQ7OyutVktM05TJyUkpl8uOz9EDRIfVqR8VVZ/DwEwnoI/NzU2ZmZlxbLO0tCRLS0sDGhEAAACAOHnH+vfyNesrtt/3fo/Y3Nwc5JBwCKZpSqVSkeXl5QODPcViUW7evNm3rtNhAzv6DKreO+VF0ecwEHQC+mi323Lr1i3HNtvb2wMaDQAAiLMjnUoDR7W9le5jPcXKxlATTdxSvIIK+7q0jc9wTpzR2w8yBc3vtvR0On3fbKmE37Fr7chDuW/7vdv3iFHXPmQx79//lf+ffPn/838E3v79d+3HPIh6vS7NZlOy2ay0Wi1bEW+R/RlQ5XJZCoVCqNvuFcWsJGY6ATGVSCRkenrasc25c+cGNBoAAAAAcTNuTMhJ67Q8dXGqb5vNzU1pt9t91x8nO/d25P1vvT/sYdjMz8/L/Py88rtKpSLFYlEJ2hSLRVlYWLDNJkomk6EEd3r7jaLPYSDoBPQxPT0tGxsbwx4GAAAAgJh62vheedr4XqltrPRtMzMzc+RnPnk1cWZCnvjAE4H7uf/u/b6zz8KysLAg2WxWMpmMEvypVCq22U5TU1OhBIimpqaUx2H3OQwEnQAAAAAAgCeWiLTlcOl13/fJPyHf98k/EXgMv/axX5H7A5gxlUql5I033pBMJtP93c2bN23tDjubSA8q6TOdwu5zGAg6AQAAAMAhvXDik93HthpN2kwM2/rdHbUzlxpJushrJFlaSpjP8en0/Y+S27GwHXuNoQ9Vr8el1YAaZL0qDFY6nZb5+XlZXV0VkYPvKnf58mVpNBrdZdM0PQV79CLfs7OzkfY5DMH+agAAAAAAABxhV69e7T4+KOWtdyaUyMGBqYM0m01lOZvNRtrnMBB0AgAAAAAAHhnStob7I4dM7zusdDrdfXzQbKPLly8ry14DRL0BrGQyKalUKtI+h4H0OgAAAOAYG/W0oKGPX09Bc2q6t6f+Qk9Xc+lr0PtqjE+ov9DGp6cP2vZP8/rOF5TlYZ47fd/cUh3d1o/a6waHpweDRPaDUr13m7t586btbngHWVtb69tvFH0OAzOdAAAAAAAA+uidZZTL5Q5sc+XKle7j3lpMTnrbFYvFgfQ5aASdAAAAAACAZ20rMdSfQesEcpLJZN/ZRouLi93H9Xrdtc/eNqlU6sDaS1H0OWgEnQAAAAAAAPq4ceOGiIi88sorfduk02klyNO5210/1erjlMx+M5Ki6HPQqOkEAAAAxMwga92Mei2aoY+/p7aPraaRj3pPXrjta9jXjVuNJiOhFnPWazy5CTq+3v3V+3I9Ftq5catflThxQllu7+z6GeqRs1/Me3SVy2VZWVmRbDYr169fP7A4eEexWBTTNKVQKLjWVFpeXpbZ2VkR2Q9U9WtvmqZUKhUR2b+73MLCwkD7HCRmOgEAAAAAgGPBNE0pFovSaDSkXC7L5ORk31lB+XxeyuWylEolKZVKrn2nUqnubKNO/weZm5sTkf10vd7ZSYPqc5AIOgEAAAAAgGMhmUxKKpVSftcJPuXzeSkWi5LL5WRyclJERJrNphQKBc/9z8/PS61Wk2QyKcViUfL5vDQaDTFNU+r1umQyGWk0GpJOp+Wtt95ynGUVZZ+DQtAJAAAAAAB4YolIW4yh/vhL5LRbX1+XQqEg6XRaCdA0Gg1ptVqSz+flrbfekmq1agtQeZHNZmVra0tKpZK0Wi2Zm5vrBrWmpqakWq3K+vq6r+BQFH0OgmFZVtDzBRwpMzMzcuvWLbl48aJsbGwMezij4949kbNn9x/fvSty5sxw+8HxwPUCANDkEnk5Ze3Ka/Lr+7+I+P3hhROf7D62dneUdcbYmLKs10hyWx92vSq/NZ9emPiEsqzXbNJrOvXWt/rOE9TFiPfPj97zJiL2Gk/6udH2XT/Xut59OyrfLzr7ceoDZ+TP/fpPDnUs/9tf/Efy4Fv3Rv6YHgfMdAIAAAAAAEDouHsdAAAAAADwbNTvXofBIegEAACAQ3G6XTnQ4TelK5T+e9OvXdrr/I6vN8XM0tPLbMtqitbrO1/wNTY3oe/b+ISybD16pC639Uote+JH1NeG07ZstHNltXdF+0XII0I/X/3Cl+SrK//Wsc2Dd98f0GgQFEEnAAAAAAAQCzv3HsmDb90b9jAQEoJOAAAAAADAsyjT68afOCmnPuBc/P/Bu++L2GbaIY4IOgEAAAAAgFiY/cR/IrOf+E8c27z+8X/IbKgRQdAJ6GNzc1NmZmYc2ywtLcnS0tKARgQAQLxQxwleRH2d+O0/7PEodY20uj/WrrqcOHlKWQ5aw0nnd9/caipZe2qNpt76VSL2mk7G2Jjj84f5N0Pf9gsTn1CWbfWr9H0fO3Hg+nf2vizvtL9s217v94jNzU3/AwaOCIJOQB/tdltu3brl2GZ7e3tAowEAAAAQN7uyIw/lvu33bt8jRh13r4NXBJ2APhKJhExPTzu2OXfu3IBGAwAAACBuxmVCTspp2++fujjVfby5uSntNne/w/FE0AnoY3p6WjY2NoY9DAAAAMSILSXOSDx+qKeXaeln7UeP+j43irG5pbO5rdf3p/1wx7G9nk6o75/f8fnhu29tbO2HD9TVLul2nVTKpxMflqcTH7anEm483v7MzMyRm/nETCd4Fe5fOQAAAAAAAEAIOgEAAAAAACACpNcBAAAAAABPLBFpy3DT6yz3JogJgk4AAAAAIhNlHZ9h0Mffu3/Wnt5ao9UR0msmvf7oV0IdW1C2OkY6fX8SaiBCr2kVpaD77lbDKTGhfnVuP9KOTcj1uYCjglcGAAAAAAAAQsdMJwAAAAAA4I1lDP/udcPePjwj6AQAAADAM7/pcqOeTqfT919Jq7La/dfJAelnbulrQ6aPT08H1PfPlpJ24oSy3H70KNB4Bpmq6baviZOnlOXfuP9LkY0FGGWk1wEAAAAAACB0zHQCAAAAAACeDT29DiODmU4AAAAAAAAIHTOdAAAAAHgWdh2dQdbpiUJv3SK3mkVuNZJyY1eV5dreSsDRBaPXZLJ2d9Rll5pU+vEIuj9hXhu2sev1uHw+f9Sv4zh559WGfK3acGzz8Pa9AY0GQRF0AgAAAAAAnkWZXrdz75E8/PbdyPrHYBF0AgAAAAAAsTB+5oScfOqsY5uHt++JtK0BjQhBEHQCAAAAAACeWBLtTKeZ+csyM3/Zsc2/vFqRR8yGGgkEnQAAAI4oaowgDG7Xkd/rTG8fN277oy+/cOKTnvvWazgZ4xPK8uv3f8lzX0NhaPehstQaT/r+WdpMlDj9TdLHKqKNXatfZZxQz5V1X63pxN9X4GDcvQ4AAAAAAAChY6YTAAAAAADwzIowvQ5HC0EnAACAI4p0j/iIU1qRzm86mc7vvkS977lEXk5Zu/Kaw3qn8QQZny29TEvRstSMLFv6mV9RX1fthw/UX+jpddqytafuoC198NFKaGMLm23sevrd7q6ymJhQv0rnxq4qy7W9+O4rMEgEnYA+Njc3ZWZmxrHN0tKSLC0tDWhEAAAAAOLk7d0/kHf2vmz7fe/3iM3NzUEOCYgVgk5AH+12W27duuXYZnt7e0CjAQAAABA3u7IjD+W+7fdu3yNGXVtIr4M3BJ2APhKJhExPTzu2OXfu3IBGAwAAACBuxmVCTspp2++fujjVfby5uSntdnuQwwJig6AT0Mf09LRsbGwMexgAEHtxrlUDZ5y7wRnksfV7Xt3Wj9p1UmtXRe7dEzl7tv96H/zsv14XyFYDKcRteVnvl759na3OkcZWs0qraaXXPRJLDcQEOTd+n2ucUOtNGbvqzB1bvS29ftV39u1p48Py9PiHbee+tvF4PDMzM0d+5hPQD0EnAAAAAADgWZu718Ejf6F3AAAAAAAAwANmOgEAgEDinmoTpVFLO9JFmWY06GMz6uciTGHvu97fqB/roOPXn2+MT/RpaWdLT9PSy/T0tEGznWstHU5Pl9MlTp5S22spZ68/+pUAo7ML8jfIevhQXdbT6TTGhPrV2ZZKCeBABJ0AAAAAAIBnFul18Ij0OgAAAAAAAISOoNMIabVaksvlZHV1NVA/5XJZcrmcTE5OimEYMjs7K/l8Xur1+pHvEwAAAAAQTNsyhvqD0UF63QgwTVOuXbvWDTbl8863Mu2nXq9LPp8X0zQlm81KtVqVVColjUZDisWi5HK57u+TyeSR6hMAcHQFuWV2UKNWyyYoP/vLuTi6Rv1Yu43frRaQraZTT50mvc6PkTD6tt2nLr++8wXHsQ2d4Txnof3okeP6QdYDc+vbdi4M55pOotV80utXue07vNv81d+VzS/edGzz6Pa9AY0GQRF0ijHTNOXGjRtSLpcD91Wv1yWXy4mIyMLCgiwvL3fXpVIpmZ+fl0wmI/V6XTKZjKyvr7sGdEalTwAAAADAaNh9/5E8+vbdYQ8DISG9LqbK5bJkMhlpNBqB+zJNszs7KpVKKYGcXtXq/n8DWq2W62yqUekTAAAAABAeSwyxrOh+xk6flImnnnT8kQQpdqOCoFMMNRoNyWaz0mw2pVar9Q2+eNVJVRMRKRaLfdt1ZhKJ7M84qlQqI98nAAAAAGB0TP/Yfyrpz/83jj8TU2eHPUx4RHpdDKXTaWX58uXLh+6r1WophbevXLni2P7q1avd2lHFYlEWFhZGtk8AwPEQp/oyQeuVDLLeSdjbH/bYh22U9n+UxjoMfo+HUsfJamvrXJ7sUiNp2BIT6tdFS6trZKthpdVJ0pcHWfdIv851xviEsuy2L/q5be/sOq4HsC/ef+UgIhKoZlGpVOo+zmazrn11ZhCJ7Ke7HXSnvFHpEwAAAAAQMisGd69zqfuO+CDodMT1pp7pM6j6SaVS3ccrKysj2ycAAAAAABge0uuOML0I+fPPP+/peel0WlqtloiIbQbRqPQJAMAwBE1TGnaaU5DtD3vswzZK++821rDTRP1uf6S5pcu5rM+NXVWWa3uD/ceqfu7cUtB0hlbc2a19UL3j1a8rt+vshYlPqO21Y/3iqR93fL6efmftkl4HHISZTkdYb40kEXVmkBO9XW9QaFT6BAAAAABEw7KG+4PRQdDpCLt586ay7LU21IULF5TltbW1kesTAAAAAAAMF0GnI6yTetZx2BlEzWZz5PoEAAAAAADDRU2nI0wP5hyWaZoj1ycAAAC8CVrDSRf0+WGPJ2z6eF448cnu48SE+vWqvbPr2Jet5pE13LpATvsmIpI4dVJ9gjZ+2/7q++NW80rjdi0EuTastpqjpdfT0iVOnFCfv/cotLGMorYY7o0AIeh0pB02CKOnt92+fXvk+gzD5uamzMzMBO5naWlJlpaWQhgRAAAAgEF5x/r38jXrK/sLD/Qgixq0cvresLm5GfLIgNFB0AmuophBNAp9ttttuXXrVuB+tre3QxgNAAAAgEHatXbkodz31DaM7w2jxLKY6QRvCDodYclkMpRATO+MolHpMwyJREKmp6cD93Pu3LkQRgPgKItbKkncxoPD41yOjiDnSn+uzq2vuKXDHanrVEsvMxLq1y9Ly67TuR3bqF/jxokJZbn9/vtaAzVdzhgb01Zr6YaP1JQ03TD/Zumpg+0HD2XcmJCT1umDn2BoQRftlmpPXZzqPt7c3JR2e7ipk8CwEHQ6wqampkIJ5kxNTSmPR6HPMExPT8vGxkaofQIAAAAYDU8b3ytPG9974DpbkOq+OiOqtvE4YDYzM3PsZkIBHQSdjrDDzvzRA0D6rKRR6BMAAAAAEI026XXwyN/tAzBSLl++rCx7nU2kF+SenZ0duT4BAAAAAMBwMdPpCMtkMspyq9WSdDrt+rxms6ksZ7PZkesTwNGXS+TllLUrrw17ICGIW/2SuI1nkI5aDaRRH/9R5laHya1977kddk2mo36duR2f3jpG1u6Oum5crYkkes2jPbWok9VW5wTU9lYcxxb5sd9T6xAlTp5Slt1qNOn7q9eA0g3yWtLrT4l2LhIT2ldlfexttYYTwvOtX/vX8q1f/zeObXa27g5oNAiKmU5HmD6DqNVqeXpe70yjZDIpqVRq5PoEAAAAAETDsqL72X3/oey8+57jD0G/0UHQ6QhLp9NKnaObN296et7a2lr3sR4QGpU+AQAAAACjZ+yJkzJx4UnHH0lQU2pUkF53xF25ckUqlYqIiDQaDU/P6W1XLBZHtk8AR1utXRW5d0/k7NlhDwVHSNzShI5auh8eC5rC5pSeN+rpcXG/7vXx6SlnvSwtZcvQvihb2mwNt3S6QTO0FLO9u2pKky19UNN+8FD9hdU+uOF3uJ37MK8N/e5zlpYq2N7ZVZb1dDz93CI8H/iLPyQf+Is/5NjmD/7y/3N/xhNij5lOR9zi4mL3cb1ed23f2yaVSh1YJ2lU+gQAAAAAhMsSEcsyhvsT8j41Gg1ZXFyU2dlZMQxDDMOQ2dlZKRaLnm90dVitVktyuZzn9uVyWXK5nExOTnbHmc/nPX2PHgaCTiMgyEWeTqeVgMzq6qpj+2r18X8L+s0eGpU+AQAAAADoxzRNyefzkslkpFKpKPWFW62WlMtlmZyc7Gbl+O27E8By+pmdnfVUn7her8vk5GT3+2+1WpVmsymlUkkajYbkcjnJ5XKRB8n8Iug0AvTC2n4vouXl5e7jGzdu9G1nmmb3xZTNZmVhYWHk+wQAAAAAQGeapmQyGdcJDyL7mTm92Tle+AlUuU2kqNfr3YDSwsKC1Go1yWazkkqlZH5+XprNpqTTaanX65LJZGIVeDIsy6Lse4x1Xgi9gad0Oi3r6+u++lldXZV8fj8HulQqSaFQsLXJZDLSaDQkmUzKW2+9pRT3HuU+/ZqZmZFbt27JxYsXZWNjI9S+j7Te2jp374qcOTPcfhDYKNTUOGXtymvy6/u/4Ho5NoJcm3G/rgfN7/E4SsdvkLVjBi3ssQftL+xj7VTPqvv8CD9P2Go6nTjRfazXAbLVMDLU//n3PldEpP3wgbI87OsuN3bVcb0+fhlT9896qNZ00usgDXP/Xjz9E8pyW6vppNff0s+dztrdUZZ79+2ofL/o7Mf4hSfl+/7+3xjqWL78V/5n2X33vUDHNJfLSb1el3Q6LdevX5d0Oi0i+6l2N2/elHK5bHtOtVqV+fl5T/1PTk56Cv5ks1mp1Wp915umKZcuXRLTNCWVSkmz2TywXavVktnZWU99DhIznWKoM8Wvk6epz3RqNBpiGIbkcjnJ5/OeCm/Pz89LrVaTZDIpxWKx+zzTNLvR0EajIel02nMgZ1T6BAAAAACgo1KpSL1el0KhIOvr6zI/Py+pVKo7c6hUKnVnD/W6du2a5/5N05RCoSC1Ws3xp7d0zEHy+Xw3eOU0I6ozdpH9mVGHSQmMAnevi6FkMul64R1GNpuVra0tKZfLsrKyInNzc2KapiSTSbl8+bKvqO2o9QkAAAAACEfbMtwbxVipVJJsNiulUqlvm1QqJdVqtTt7SES6kyHcbmRVKpUklUo59u9Fq9VSCoRfuXLFsf3Vq1e76YLFYjEWpWgIOh1DhULhwLS149AnAAAAAOD4ajQa0mq1PJWs6QSOemcYNRoNx6DT6uqqtFotpWbxYfUGrbLZrGumT+/kDNM0ZXV1degTNgg6AQAONOzaLm7922p24NgIcq0Nuz6KX1G/zvz2F+b2g9b5CXps3NpHXePJU12iQxr0sQoq6vF87Oyn5IHx+GtP0P3Rn//CiU/2bWuMT6i/0Go86TWOhk2/VnyPX1+21UEa3v667Zten0rfN2NszHG9W80nxMfKyoosLCx4LtWiB5jeffddx/Y3btyQZDLpOivJi94UOT3Vr59UKtUt0bOyskLQCQAAAAAAjI5Rvh3Z1atXJZVKeW6vB3t60+10jUajW3N5cnJSUqmUZLNZyeVyvoM/eu3m559/3vN4O0EnL3fmixrhWAAAAAAAcCyk02lfN6TS70DnFLDSC323Wi2pVCqSz+fFMAzPNwITEaWWk9t2ndp53V5UmOkEADiUYadb5BJ5OWXtymuRjmI0DTv1EeE5ysfWb3qb3/VhG3Zq46hsK45eu/t5kTNnDv18t795etpVLz0Fy5bCtbtz6HFFwS110JZyNq7OYTBOqClr1sOHIY7OH7fz9uKpH1eW248eKctu6XS29Dot9RBHh343+X71nPSi3wdZXV2V1dVVWVhYcK35dPPmTWXZa6DswoULyvLa2prn1LwoEHQCAAAAAADeWCLWsO9eN8D0vrW1te5jp7vBpVIpWV5eFtM0pdlsSr1etwWsOiqViqytrTkWM9efe9iZTs1m09PzokLQCQAAAAAA4AC9M5L09DmdHpQyTVMqlYrcuHHDlqbXaDQkl8tJrVY7sK9+ASu/9O0OGkEnoI/NzU2ZmZlxbLO0tCRLS0sDGhEAAACAOHnH+vfyNesrtt/3fo/Y3Nwc5JAQolar1a2JVCqVfBUgF9lPiSsUClIoFGR1dVWuXbumBIHq9bqUy2UpFAq25x42WKSn4d2+fftQ/YSFoBPQR7vdllu3bjm22d7eHtBogPihrk98Dbve1nES9HWgP183yvW4+Bvh7DgdHy81+pzaD/tYuY1HjMd1jWw1m/Q6QG41nAzn+zwN+lg41asSEXsdI+2WZra6SO1gOVF+9t/vsRk784Sy3H6g1qPS98VI7KeX7e3uycO9+7b+3L5HjDbj0Ol1t//xv5St1/5V4BHsbt0N3IcXpVJJRPZT1g4KDPkxPz8v2WxW5ubmlOLeN27cCNy3E2Y6ATGVSCRkenrasc25c+cGNBoAAAAAcTMuE3JSTtt+/9TFqe7jzc1NabcpNC4i0r7/UHZvj8Y/7huNhlQqFUkmk31T4PxKJpOyvr4umUymG3gyTVPq9bqtQHkymQwlYOTnTn1RIOgE9DE9PS0bGxvDHgYAAACAmHpm/PvlmfHvt939rrbxeKbVzMzMEZ/55F3i9EkZnwr+j/vdrfdsM+vCdu3aNREReeONN3yn1bl55ZVXJJPJdJdrtZot6DQ1NRVK0Glqasq9UYQIOgEADsclBSAot7QjoKP3Whl22s2gnx/n7cUtXSxuKVxBU86CGHa6mm7Y2w8qcfpU93H7/feVdcb4hLqc0FKS9PQ1LXChC3rdBj33erqgbX/0dMKA6XSR0j7HuKXTyZj2uWf3eM9cOuyZnfwLf0om/8KfCrz91rW/HemMqcXFRWk0GlKtViWdTofefzqdlmw2K/V6XUQOLhp+2BlKeqBq2DOdov3GAAAAAAAAMCIqlYpUKhVZXl6W+fn5yLaTy+Uc11++fFlZ9jrrSS8cPjs762tcYSPoBAAAAAAAPLMsY6g/UanX67K4uCjLy8uysLAQ2XZEREnZOygFrjf9TuTg2VAHaTabyrKetjdoBJ0AAAAAAMCx1mg0JJfLSalUijzgJKIGnQ5KgdNnOnkNOvXOiEomk6HXo/KLmk4AcEyEfWt3vU5F2DVCbLdZ1upE7NdiSBy+qECMxa3eStyN8vEZdp2h43Stue1b0H13q0N3lI5t3Opf6XKJvJyyduW1AY3nxdM/0X2cOHlKWWd779JpNY/81kDye2x8nyutZpNew0kfr3FS/Xpp7Kl1j6zdHX/b1/gZv9t12n74wPH5+ucQY0L93GNp+xZ1rUtEq9VqydzcnBQKBSkUCgPZ5traWvfxQal26XRauYPdzZs3PaX79farB66GgVcGAAAAAADwzhryT4harZZkMhlZWFiQUqnk+TnlcjnQdnvT4PqlwF25cqX7uNFoeOq3t12xWDzk6MJD0AkAAAAAABw7pmlKLpeTK1eueA44iYjk8/nAtZJWV1dFRBxnVi0uLnYfd+5056S3TSqVGno9JxHS6wAAAAAAwDFjmqZkMhlJpVJSLBY91UxqtVrd2UPpdPrQ215dXZVWqyXJZFKuX7/et106nZZsNtsNJq2urjqm2FWrj9NI4zDLSYSgEwAcG0FrbthqzYxddWwftOaH37oWYW9/mEZprHDmdh1GXWfITZT9+61XpRu110HY441y/4PW9Bv08/32P3BjPckju7vKKntdIJevXy51hgbNGFfHaz165Nw+oSbSWC7HY5DcalPa6PWr7t9Xlts76r6JpdV4OsIskUjvIOd1DEHNzc1Jq9WSVqsls7Ozvp67vLysLNfrdcnn82KapmSzWSmVSn2DUq1WS65duyYiIm+88caBRcT1bXXGd+PGjb5BJ9M0pVKpiMh+ut4giqF7QXodAAAAAAA4NjKZjOcaSQfRAzrVarVb8Lter0smk1FS4zo666ampqTZbHqaLZVKpbozmBqNRt9aUnNzcyKyf8e63hlPw0bQCQAAAAAAHAv5fD7UgFOnT12lUpHJyUnJ5/OyuLgomUxGcrmcLCwsyPr6uqRSKc/bnJ+fl1qtJslkUorFYncfTNPsBrIajYak02l56623XGdPDRLpdQCASARNn9Cn4L/+aEVZfuHEJ8WwLBFtdvthtx9l+scop/qJjP74h8ktpSxO1+lhtt8rbqmDfsXt2Lptv7d93NMwBz0+/Vh+7Oyn5IEx7rm973TwRzvdx8aJib7rDn6ympLl57x7EXRfbeM3EtqiOn6rrS77TUELM+3WNaXXLR1OT/PXUyW19dbu8UmvExGxQr6D3CBFMQsom81Ks9mUUqkk9Xpdbt++3Z351AkGXb9+XbLZ7KEDQtlsVra2tqRcLsvKyorMzc2JaZqSTCbl8uXLUq1WHes9DQtBJwAAAAAAgABSqZSt1lMUCoWC4x3v4ob0OgAAAAAAAISOmU4AAAAAAMCzKO9eZ/6TfyF3/sm/cGyzt/VeZNtHuAg6AcAx5bt+yNhV9RcutRBemPiEsvz6zhe8D05ErL09x+2HfdvlON2ePGxB65UMe/xHSdxr48R9+07crvO412yK8nUZtA7QsPk9d7V2VeTePZGzZ0VE5LW7nxc5c8a5fYDxJE6ffrywp743GhPa1y1D/6KuJp7o73W1PbWeoc61bpFLe51t306ecmxvo++/9l6t1z0a5uvSGFfrbxlnTivL1v0H6hO0Gk5GQj2XlkESUVja7z+Qvdvbwx4GQkLQCQAAAAAAeBfhTKfE6VMyNnXOsc3e1nujXc38GCHoBAAAAAAAYiH55/+MJP/8n3Fs885/U2I21Igg6AT0sbm5KTMzM45tlpaWZGlpaUAjAoIJcjtuT+21lAA9PS5s1u6OWNZu3/VhT9kPkrIw7LSeuKXKBOXneEZ9HRy1YztIYR9LTylXAdYHNcxrJe7Xadiph2FvX6evf/H0T3Qftx89UtYltPQ6S0/R0lPFXVLXo76OnfZNROzj01LK9BQ1uXtPXX/ihLL8Gw9+2df4gvzdcNu39vZdZVk/N8ZpNdWw/Z19e2fvy/JO+8u27fV+j9jc3PQ8TuCoIegE9NFut+XWrVuObba3ia4DAAAAx9Wu7MhDuW/7vdv3iFFHZhu8IugE9JFIJGR6etqxzblzzrnGAAAAAI6ucZmQk3La9vunLk51H29ubkq77TyLDTiqCDoBfUxPT8vGxsawhwEAAAAgpp4e+z55euz7xNrdUX5f23iczjczM3PkZz4B/RB0AoBjwu/tw93qJLxw4pPKsu22yAFLOiVOnVSW2w8eKsv6LbHdBK0f46cG1qDrkUQtbnWRgtRwivo68DueYXOrVaYLc/x+z03cj6Uu6Hj91JEb9WM37PEE3v7Y47pGCa3uj+yps1uME2oNJJ2txpNPYZ9rQ3svlkfqHcusHa224iM18NLW17vUrHLjdG373VfX2pNj6rmy7j9Qlo2Edix8bX3EWTL8HR729uGZ8189AAAAAAAA4BAIOgEAAAAAACB0pNcBAAAAAADPLMtwbwQIQScAGKhB1sbxUw/kMNtKnDihLIddt0G0Wgt6nYsXJj4hp6xd+cd9nj7oukPDrkkSpbD3Lcq6SMf5PB1GnI7HoM9d1HWO3Ooqhfl8v8cu7jWeBi3S46G9FxpjE9p6tTBN263OkAu/153bvlo7O47r3djqPe7G5w5uev0tvcaTpdWn0mtNWvrd6B49Cm9wwBFCeh0AAAAAAABCx0wnAAAAAADgHXePg0cEnQAggEGnYLlNk3e6dbDf1A5be0ObHKtNmTfa6qePoFPoLa0/262J2wkJMmHX7dwdp3STuKfaxG08vYZ9HbltP+j6UTLofR309sK8Vfyg04/jzm38QfZXfy/TU8dlV0tN92ngqeAuqe8623u3tj7o6yjQ/lj65wztM8UJNRXS0tLnDK3MwKi/DoCoEHQCAAAAAACeUUgcXlHTCQAAAAAAAKFjphMAAAAAAIiF7f/9d2T7n/5/Hdvsme8NaDQIiqATgGMl6hobbtsL2p9b+97t+an/dFBftr7HrirL7QcPHfs3xicc17uNL3H6tOP2xs48IYaVELm7v/yxs5+SB8bjt7VB3359lHEs+otb7Zqgf1PitD9+a7noXP9mRbyvQetnBe3PaX8Gve+D3r7b9kRETlm78lpI/buOv7cu07j69UqvaaTXQGo/2ol0bKEfe62+o7WrjX9MS6TR60Fq/I4/yLWlP3fs7Fll2dpxrq9lnDyp/kKrCfXCiU8qy68/+hXPYxtJERYSb99/KHtb29FtAANF0AkAAAAAAMRC4vRJGZs859hmz3zPFvhDPBF0AgAAAAAAsXDuI/+5nPvIf+7YZuO/vcFsqBFB0AnAsRb27cZ1fqe1R5mS4HfsejqdTk8R0Jf1Kfd+9+3F0z+h/sJqq4s7u2JZj2/d/Nrdz4ucOePYZ5SC3L487tdR1Kkyo5TypRt0mtGgU4L9tA+aHhx2e13Q11nQ54eZPn2Y/vwIch14aR+2A7d3756Ilj7VEfS936Ynpc56qKaCGydOqG21mRnGCTUV3drbU5ajTtN3Y0yo42s/el9dr+/fnvperafb6Z8VBkk/Ni+e+Um1gTbW9v0H6upTanpd+556LI58Op0Nd6+DN9y9DgAAAAAAAKEj6AQAAAAAAIDQkV4HAAAAAAC8o4Y3PCLoBCBWPnb2U91bHH/s7KfkNevXQu1/0LeNDtswa3i8MPEJfx1qt0mutb/g7/labYXEyVPq+oQR6ANP2PW8gpybYddschN1DacohV0vy6+o68CFLcj2/e6b23Ucdv2qoK8bv+fSTdj1ww7b9jBjGeRr+KDteRnfKWu3+3lCF/Rc6u3HP/BU93Fbr2nU1t6oXEoaGQm1Ts7rO8P9m2DtqPUZ9RpUsrurrj992vH5QTmdO99/MwytJpG2L4nT6ucO6/59x+6GXdsMiCuCTkAfm5ubMjMz49hmaWlJlpaWBjQiAAAAAHHyzt6X5Z32l22/7/0esbm5OcghAbFC0Anoo91uy61btxzbbG9zm04AAADguNqVHXko9llQbt8jRh7pdfCIoBPQRyKRkOnpacc2586dG9BoRpffqcav3f189xbHr939fOjb1wVNvwg7xcB1e2NX1V9Y7YMbeujLtu9a37Z909Llxs49oQ5Fn0K/G2xKvaHdmlhn3bvv+IFn0Kk7gxT2rdndRJ0yEGZ/YadQRS3uqZV+XkeDTEn1YtDXbdDtDfL4uL13Bf37Gfa+BH0v/tjZT8kD4/HXnqB/Q/X1Hzn/Vx4vaO/Lli29TruPk56OZwS7z1PQzzF6eyOhjsfa23Psz5aOpz8/4P7pglxb+tjkxAnnJ5xUP5cYE/vX1MT9M3LywRmRtnoun7o41X28ubkp7Xb/z2zAUUbQCehjenpaNjY2hj0MAAAAADH1zOk/Ic+c/hOyd3tL+X1t43FAbGZm5ujNfLIM9zaAiIQbagYAAAAAAACEoBMAAAAAAAAiQHodgGi55O7bagm89w9D3bzfGklR32Lbtn2tf981orTjW9tb6duX333T14+de1Lbtjqt2tBqIbTff7/PoL2x7t5z7F/GEqFO7Q67DkaYY9EF3VbYt2qPuhaNn/793gp92DWchj2+MK/7qK8jv38fg/7NG3g9MJ+1boLcKn7Q133Qc3uoa+vePbVG5Jkznrenc702emsDjY9rq7Tzqq0XvUbSI5/bDpntvX9qUm1wb1dZ1Gs8Jc6eUZZlR21vjI0FG2CYTkyoy3r9rV117DKhnjvrnlo8PFb7NgAWhcThETOdAAAAAAAAEDqCTgAAAAAAAAgd6XUAAAAAAMC7CNPrtl//5/Je7Xcc2+yZ70U3AISKoBOA0H3s7KfkgbH/5yVx8pSyznfNooDCrtsQ9vj91jix1fyw2s7te7xw4pPOfblpq9sSrU6FtbOjdu+ztoGtjsSTag0pvW6E7LUdCwpEXX/L6doI2lfU111QUdfG0QXpP+7HctC1eMKui+R03Uf99zJu7yeDPpe9zw/7Ned3X/3+TQj6Xjvs+lu296vz57uPDf29UXvvslUi1OoKtd9Tv0gH3Te/7ze6j5z7KfUX2ucOY9y5LlL7/gP16fp7uU9+zr3f66RtqyWp7duDh+rymHauH1HkKCzt+w9lb2t72MNASAg6AQAAAACAWEicPiljk+cc2+yZ71HNfEQQdAIAAAAAAN5YRqh3ENady/2wnMv9sGObW5/+W7Jn3olsDAgPQScAoTNOn5KE8Z0pyYb6hqSn2/3G/V9Sn3xPndrsl990Cz0FTJ/27dqfS4pabuyqslzbW/HXv06b1u5nPNbuTt91Ivax2p/vfNtj49RJbSj+0vf0ae8fmXzJub9TCTGsHRFttntUgtwOPmiaZ9D2ftMpgqZjuPGdVupD0NTFoClcYd/OPG7jc9q+31SWoGmaflO43ESdohV2CpxTX4M+tkH+PobRPqigqZMf/cBf7T7W513Yvpbrnzu09LOwxxY4/Xlc+7q4o34WsKUPajNPEtpng6DpdX6uDde22r640T/nWPfu+3o+cFxx9zoAAAAAAACEjplOAAAAAADAM4NySvCImU4AAAAAAAAIHTOdAITOuv9A2sZ+nryeT//i6Z9Qlm21Bd77h47rdbZ8fZcaS3pNJL22QOj1XtzGo0mcOKEst13qDRgJtVqEsj/6tn2OxVZj6akF5yfsabdRPvOEY3O3Yzf+oQ8qy+337irLiRNPiOFQ4yrsW34HEXU9k7BrywStuRR2fRk/2w+7XlSUY/Xy/LCvhaDnzqm935pKfrcVda0xN1HXAwuzBlXYxyJofS6/wq7N5iboeK2e9yK97k97+z1lWa/xZJzU6iE+eqQsv77zBWU56HXl99gZE9rXxV1tWX8fHtM+a2ifs9oPBlSI0QutVmTi9CnH9Yb+OerEhLqsnbsjj5lO8IiZTgAAAAAAAAgdQScAAAAAAACEjvQ6AK68TM0+Ze3Ka99Zfu3u50XOnDmwL+PMafUXD9VbBX/syZ/s9vOxJ39S3GLjubGr6i8c0q0OHM+4OjVa78+2r/r2bB36HK/GLZ3Onh6obV7bH7Wtdltj/bbN2nr9vI+dP+84NOP8k2p/W3cc27vegvrZgtq/PiX/xAmRtu1m1D1P0M6Fy7Xheq59XFuuaTba2Gp7K479hX0r+qDCTl2JMhUm6LEI+9bzYRt0GpHT/gdNeRr0uQna/6DTZp3SqqJ+zfsVdVqp388lHzv7KXlgjPdt79a/m7Gpye5j6/37yjpb+pz23tu+r7Z3G8sgU8NFRCy3dDjDOQXN0vY3oafraaLcX/25iSfUMgD6uRFDK2Gwq31Gs9T8Mr3kwZFnHbP9xaEx0wkAAAAAAAChY6YT0Mfm5qbMzMw4tllaWpKlpaUBjQgAAABAnLz96Pfk7Ue/Z5v51Ps9YnNzc9DDAmKDoBPQR7vdllu3bjm22d7eHtBoAAAAAMTNrvVIHlrv237v9j1i5HH3OnhE0AnoI5FIyPT0tGObc+fODWg04bLVLdLqybjVMnhh4hOO6//ChZfk4XdqJ/zG/V9S1hn6Mbu9pSy+9t4/Ejn7xe7j3JN/2XFbNi41ldzy7fV8frdaPHp7vaZSW6tZ5fZ8q+38Dq73r9dh8rruwG3rNZ/0+lDabZCtZ75bbf8N9Vzq//HTuV1n48/Oqv0/NaU2eP++SNtfDS8/23fjVGci7BobUd8ePGj9lahrVvkZn1vboHWGgl43fscTdT0vt/cDP8fH7TqwbTvi29yH/bqL+vl+z72fGk9+hV2TKezXTdD+w/470Pt+au1ptRcfqjWRDK2OkE5/73195wuO7d0EvY5tnyX093b9s4G2v5b+Pq39XYjyb7JbHbYXz/ykOtZHO+pQJ9R9te3Ld4zJhJw0nrAdm6cuPv7csrm5Ke0An1mAUUbQCehjenpaNjY2hj0MAAAAADH1zMQPyDMTPyDt++o/Gmsbj4P4MzMzR3/mE9AHQScAAAAAAOAd6XXwiKATAAAAAACIhe03flu23/gdxzZ7d6itOyoIOgHHgFudDb+1EA6q/WNYhsiuh+eePaUsJ06qyx978ifltZ7HiZNq7QN92251i2zb12omJU6odY30GkxudY8sl80nTpxQf6Ed+/ajR47bc9u+jfW4XoC+bX1bOtcaTydPqusNrT7WafVc7v3R15VlvzVCPvr919UGlra9M0+ItJ33yal/1+ter0djqbUY/NSh8LvvYdfxCbp9t+3ZWP7qVoRZy8Z3/amIue1L0LpEQWvZBG3vOD6f14HbtoNeJ35r24Rd923Q/ce17ygcON5790TOnhURkdfufl7kzJnItq+8X+rv0/rnBu29OHFG/Zyzt3VHWfb7NyRojSSdkdBqNtn2T3udn1I/Kxg76ofDtlY3aZi11/TPPe0dtR6VXq/Kdiz0Gk0B/+bhsfb9h7Jn3nFviJFA0AkAAAAAAHgXYXpd4tRJGUued2yzd2fb9aY1iAeCTgAAAAAAIBbOzf2wnJv7Ycc2G//d/8RsqBFB0Akjo1wuS61Wk7W1NTFNU1KplKTTaVlcXJRsNjvs4UXK7+3IXzz144G2l9Bu52u7hWxCS3MaH9//b0dnBvWY0R3jR//Yf6s+V7+1rrZtI2GI7D1+bEvxckkBs6Wz6fSx66u1dD89JU1fr7Oly51U/8zqx1Ifr1v6oC397oR6a+Xe/l2PjXYuEhPaWPUp9GfV1IT70+p1cmbrrtr9+XPK8p5pihPbdf4nf1BZHL99T13/cEfE4fbD+rEadMpaEGGnCbn153dfAqfDufwN87t9J2GnaPndnt/1g7zODtqeX73jC/qa0gVNhxv0ePy+rqJMvws75datf1cuaf2BUx8PSIc+Ze120/XDpo/3I5Mv9W88rn3d0t9rtTueWbvB0s/Cft3YUsj01PoxbVn7nGPtONdeCHotBOnLtm+6XXXsln4ujzu97AHQR8K9CTBc9XpdJicnpVgsiohItVqVZrMppVJJGo2G5HI5yeVyYrp8oQUAAAAAQNdoNGRxcVFmZ2fFMAwxDENmZ2elWCwG+p5ZLpcll8vJ5ORkt898Pi/1ej1WfUaJoBNirV6vdwNKCwsLUqvVJJvNSiqVkvn5eWk2m5JOp6Ver0smkyHwBAAAAADwxDRNyefzkslkpFKpSKvV6q5rtVpSLpdlcnJSKpWKr36jmDgxqpMxCDohtjp/AEREUqmULC8vH9iuWt2fOttqtbrtAQAAAADRMKzh/oTBNE3JZDKyurrq2nZxcVEWFxc99RvFxIlRnoxBYipiK5/Pd18snWjuQTovtNXVVanX61KpVGRhYWFAozwcPefcXqdHrb0zfvG71Q7GnGsjjP+xGWX5N97+n5Xljz5bUJb33tlQlhN/7KKy3H5Cqzuk3zL2xJhYe49E/vV3nn/mCUkY+7WGbv/wH1PaTv2bbyjLthpLJyZE7vc81koB2OoU6bfm1Ws+6fn6Wn6+rdaCpfV/2rmGk3773LEJ5z+rxrmz6i/0ell6jSa9rpI2fiOhbs/oOR7tB9qtf7Vj7XrrX23b7SfVYzGxrY790R+bUp//H6nLb/zWdWXZtebIn/6f1PGdUPf1/qVJae8+Enlnf/ljZz8lD4zHbYxx9Vi68V2Lx6FGid9bWg+6zk/gukVjV321T6T/uLLcfvMPlOUXJj6hLAepSeK7HoheC0YTde2voPWvoq6T5Ka3v7D3Vb/9uNvrShe0bpFfgesSufTndLz068L2XJfXrN7+xdM/oSzb3ou0c6XXDLR9ztH+Hlu74d5a3u114SZo+/ELF7qPbd+FtfdW/XNKu629V4cs6OvA9lnBdi1ony1sn5vUmlX669otdjDM+or6Z0TXz00u7yeIn3w+L61WS9LptFy/fl3S6bSI7Kfa3bx5U8rlstK+UqlILpeT+fn5vn36mTgxOzvbnThRq9UG2ucg8cpALLVaLSUn9cqVK47tr159/GHKKUAFAAAAADjeKpWK1Ot1KRQKsr6+LvPz85JKpboTGkqlUnf2UK9r16459ut34oSIdCdODLLPQSLohFgqlUrdx9lsVpLJpGP73mizaZqepkgCAAAAAHyyYvITQKlUkmw2q3zv1KVSqW4plw7TNPsW7I5i4sRRmIxBeh1iqTcqq0eX+0mlUt3CbysrK47THgfthROfVJb1dLmdSx9UlrdTp5Xl+1Pq1OWzX1en8577xreV5W+8qKa0vXjmJ5XlzYXnlOXplzeV5W/+mQ+o4zujLMrEXXX5lNmW9u7jMe5d+m7ZHdufav+NP62O9VsfPa8sn137LmX50t//Uje9zjhxQhJPuKTPaelpOj1dzRjXd0ab8n//vrJsaOtFn1r9nnYwbKmSzile1phzSpu+feNJNT3PevhIa//4z/qYPsW9rb07j6tjlXvvq32dP6c9XX2+paV5Glr/u0+o/buld+hT5B/8n/8zZfmUNvy7Fydkd6d/isZX/hf1Ov++n/19ZfmjqZ9VlvW01N2vqWmnNlb/afX6vtz5yT+pLP+uz/SAsG9v7nYu9NeZaxqUvj2t//FL6t+kxIdTyvLuv/+q8/Y0tv11OPZuY9PPo9t6fdv6sdL/3rtx3Ve3tCGXW9HbBEzX85XK4jI2299z7e9f0PQ5t311E3aqZOipjz3XZth/IxKn1c8hYsuuUz+XtB+p70U6a1d9rw6a2ujpWN67J3L27IHr/Z4bt+1/5CnvZR30zy22zxk+U7T8ppf5va7HP6h+JrR97tHor2NrRytroL8uA74unNa7nWdbeYvTzn+TRP9Muad9Dnhf/RyF+Go0GtJqtWR9fd21bSqVklKppARwGo2GZLNZW9swJk7o32Gj6HPQmOmE2Gk0Gsry888/7+l5vcEpZjoBAAAAAHQrKyuysLDgGsDp0ANM77777oHtDjtxondcg+hz0Ag6IXb06Yq9Lxonejs9eAUAAAAAON6uXr3qmFan04M9s7OztjZRTJw4KpMxCDohdm7evKkse41AX+i5c4iIyNraWlhDAgAAAAAcAel02vN3TBHpFvHuOGhSRBQTJ47KZAxqOiF2OnWZOg774mo2m6GNya3+yfsf/0+V5Z/6W7+uLP/Tr30jtLEc5Ht+aFFZ/uqVv6ss//EP/bSy/Hs/o67/ExPq+n+3pK735P22yK9/Z/s/dULun9yv6TSfVoOI5Q+9qT7vv1QXP/fJZ0S+E8T/z+ub8r9dVxuc+Pp7yrJ1Usuvv6/VeBpT607IfbXuhKXn52t1ikSrmWQ9VG9trN8a2Fa7QKtz5HarYRttPG2tloLt9r27PdvXbvUrek0mrX6V6LUJTmh1GbTaB3f/I/UW2bun1H05eUft7/RZtZ6Wfiz0uhaPzqr7dupbav9PfGtXTu1qx7PH//hf/Kqy/L8+9xeU5Tsp9dw9uaGe6/Fbaq0zS6+Jpdd06lm23R5cO81B64n4rdGkc6ttY+vP5Vb2Ntr63dbbynLipHrsA9ekchuPj7Z+b71uvy6c68z55XYubOP1eS34rRHlVA/G73m0/z30VwPKr0hvrX6I7QeuWeXQl+0147JtW42iyZeUZbe6PIZ2aqxd9XWm14gK+jcwKL/1t1xrA/UcD2tPq9mkvU8bp9RalW1zW13vUlPP7dz55fb8j5z7KfUX2ucWW21N/bOExva614R5bbg9Vx+Lfp1aeo0ml30L+jcK8aV/Pz2onlOYEyc6M5Wi6HMYCDohdvQX9WHpEWkAAAAAQHBGwLvHjZLeDJqFhYNvHBDFxIk4TsY4DIJOiJ3DBov0yO/t27cDjWNzc1NmZvbvZvXttnNf1j/5DWX593/n8QyS3E9dlL/yf+GlBgAAAIySt3d+X97Z/YP9hfvObfUZ5Z3vESL73yswupaXl7uPe+9i1yuKiRNHZTIG34RxZAV9cbXbbbl165a3xlqa0qOexe9++E0R+e5AY3HTftJ5qnJ7wnG1WAGru/2zB4YkHhjyI51fPEh0O3245+/PzL98d1ZEat3Hxq6WEuaSTmedUreX0NPttKnRxj2X29tqKV+GnrK2q6UcaB842tq1kTjzhNpcT1lwmZrtOnW7d/vaWMQlnU30uzZr660J9UK5/f3qFPvJf69u78nmPfX5+vb1lAP92Gruf0hNSTi9+UBO7T1OiTPGJ8QwHvfR1soW7p1Sj93eCe2W3+NaqqLL7dudUgBePPuXlHXvf1DdVlJUgW9T7ye9zEt/OpdbeOvX5es7X1C3p6V86eklbileNtr+9h4vt33Tx6qnx7mlpwU+dvq5clvv89y6pdu5pQ+6Pd/WX4DblduOpcu+2lIZdS7H0rb9IGmaXvpza+8zbcrp2nO7Lv2mKLW190ZrV0sZc3kd6YyT6mte/9wU+G+gRn/+x85+Sh70vD/4PdZu68fOn3+8oKef6elk76v7bkyo731u7z26sNO1dYkn1M8ttvdurcyA/jnGuv9AbX/C5UPpAOmfc/bu2FMdd9uP5KHl8lmxD8/fI0aVXjvAozu/9dty55/9duDN721vuzcKQavV6tZEKpVKfWcbRTFxIi6TMYIi6ITYSSaToURj/RSHO0gikZDp6WkREfn2rdv6SmWxrQU6Lpx7XHfo7NmAER0AAAAAAzduTMhJ+U7gTY+x6P/c0zx1car7eHNzU9ptf4Hto6r94IHs3bkz7GF41rnLXSqVkkKhEPn2opiVxEwnQDM1NRXKC2Nqasq9kYPp6WnZ2NgQEft/gcY/+EFl+Vt/Xr1t5ur/8AuBtg0AAABguJ4Z/wF5ZvwHROSAm8dohcbb2uz12sbjmaMzMzNHf+aTR4lTp9TZgYe0t73tGvgLqtFoSKVSkWQyKbVazbFtFBMn4jIZIyiCToidw74o9BfksF9cAAAAAHAkHTLec/5HfljO/8gPB9781/6H/3vkM6auXbsmIiJvvPGGaxHvKCZOxGUyRlAEnRA7ly9f7ubNiuwHk7wEkPRc1dnZ2T4t/fOdHz/2b5TlsXNPKsvW7Iyy/GBavZX8yW+p+f7/4QX1+Wf+SP0r/72fX1eW/8xfWFSWn/519XabP/TVv6osz7zaUJYv3/lpZXninro9Y09dfjCZkFM7D+Vfy3UREZmtPpQHY/tt/sn5P660/ZffeEZZfv9fPaUsP/u3H4919+N35MTZr4mT9l21blDirHos3W7Na6trpP/HRFvWbw2s16aRMTWdMnFSHY+t/4Q2V3tHq3uk1T6w1YDSx9czddvQ6koYT55Vltt67QJ9X7RbB+t1Kk68p64+sa1OG7fWf09dVpu71pY5cVerv6Vdd2PvP5JET02nf2z+A5Ezj4/3pf/lbyvtv+/31Wvp5Kb6ujIeqsdWO9KudS961ydOnFDWXfiy8+3G/d72Pmi9k8B1hjT660wf/3jqabW9XtND/9AYZo0qbV9stWdcthX4tvZa//q10X70SFn2W8/KtR6Wz/3zXV8ryHP91mByq1vk8jfF9+vEL5dj7Xf7YY7Xb80nt/qB9lvNqzNA2lodnz3tS5Pvc+vzc5jutbufV94f3LhtT1//0Q88/lzV1ma/iP43R//cEbGgtcP0z1XtO+qbv+1a0D5L6DWr2g8eOo436Ln2Q68lqY9d/8yl74vtc9KO9sEII21xcVEajYZUq1VJp9Ou7aOYOHFUJmNQbAaxk8lklGWvVfv1W0Fms9nQxgQAAAAAOPoqlYpUKhVZXl6W+fl5T8+5fPmysux1hpLTxIko+hwGgk6IHf3F5TXo1PsiTCaTrlMgAQAAAACHYA35JyL1el0WFxdleXlZFhYWPD8viokTR2UyBkEnxE46nVamAN68ebN/4x5ra2vdx3rgCgAAAACAfhqNhuRyOSmVSr4CTiLRTJw4KpMxqOmEWLpy5YpUKhUREaW+k5PedsViMZJxeaXXldDp9U5O/lu1Vk7iiSeU5Wf+g1aHQMuf/98f/LKy/NFn/obaXKszMfnv1Popv3H/l9Tnf+9n1OdPOddBOCcip3pq64z93tsybuzXLJj+te9X2j75+2oNJvkP/86x770tdax6jSP9WFhaHQlLq5diaPn37Qd31fUJLRav1TESbX17y9Taa88/o27PcqlloG/ftj/67Xb3tDpKPcfDstRtJfRaBBrrnlpLrL2tHpvEefU6eOLrp7VldXt6LTO92KNb3aJT31L72zut1hixxhNi9Rzvj539lDwwHu/jh7XX0a5eZ8PnTWSirDMRtNZL2GPzW1/F1l77m9NOajVB1v8PtX3A2j5O++/3WLnVAXKrh+LGrb/A67XXld/xBbmWfG/L5b3Srf+o6wDZ/ka51NMKei7dOD0/aO0xff3Y1KSybGk1APUaTrb6iPrfW+01Hnl9LY3+/hD0WrLd1Xj6u7qPjYfae5WhvU/vqLUhbbUZd7X1Gr9/04L+DXjx7F9ybK/X/zJOqnWR2vfVzxaGXstygGz1qrTPhHqNJ72Gk17X09L2DaOt1WrJ3NycFAoFKRQKvp/fmTjRCfjcvHnTU2qe08SJKPocBmY6IZYWFx8Xwq7X667te9ukUqmhTyEEAAAAgKPKsIb7E6ZWqyWZTEYWFhakVCp5fk65XFZ+d+XKle7jsCZORNHnoBF0Qiyl02klcLS6uurYvlp9/F+ZOLywAAAAAADxZpqm5HI5uXLliueAk4hIPp+3TXSIYuLEUZiMQXodYmt5eblbaf/GjRt9pxKaptlNxctms77zb4fBb0qB32noe7c2lWX9drbWv/uy4/Pb7/wHZdn4modbeFs9t5Xd2+tOpX/yK6bal6lO0W9rY5NHu8rjxGktLUebyqzf/jyhTfO23R5dnwqtTaV2uz3u3rZ6O1z99ueGlnJg3VXTCfXx6OdGn6au377XNg1ff37PtHVLO7RuqX16X7qEqe77B15X0+X2vmtKfcLMh9RlLb3O7fbiiXtqauT4N9Rz9/CZKRnbe3xt6rfEfuHEJx3717mlT/hJvwiaVhM0DSdo2o7f9W7tg6a4uXFqH3QsYacuuvYXMA1Jf38ZZBpT2Oc17P59P187F36fH3Y6nd/1ftrqY/un3674au835dbv+ILS3x+C0sf70Yt/zfNzbamI+nrtc4jbtt0E/fubOKl9rtHS/wztc5Dlcq7bWtkDt+2HeW3YztsH/qqybEsF1D+DaYyz2jWllYRA/JmmKZlMRlKplBSLRU81k1qtVneSQzqdVtZ1Jk50Aj+rq6uO6XBeJk5E0eegEXRCbKVSKalWq5LP56XRaEi5XD4wv3Zubk5E9ouk9b7IAAAAAAARiPAOcoMyNzcnrVZLWq1Wd7KDV8vLy31/H/bEiVGfjEF6HWJtfn5earWaJJNJKRaL3QCUaZpSr9clk8lIo9GQdDotb731lnLXOwAAAAAAdJ3vkYfVL6DTmTghIt2JEwfxM3Eiij4HiaATYi+bzcrW1paUSqXuXQUmJycln8/L1NSUVKtVWV9fJ+AEAAAAAHDUmchwWG4ziKKYODHKkzFIr8PIOOztK48Cv/nsr+98QVn2W1vBlm/vcjtzY3xCqTVkPXgk7c4tgv+gqbQdm31a3dbm19Wu5XHf1t6eaw0nG70ukTZWvc6RXkNJr1XgdutiXfs9te6R67HTbh2sL1tt7dbzWl0mW/ue/bPdxlirTdDevquuP6HWmWjff6Asi14T6smzyuLY12+rY3lSrXXgt7bOR/7j/07dnlZP6+TbIifaj69Vv7fEjnL9sGsaBd2+3/7D3t4wj33Yx8b39l1q/gWu0aTXKfJZY1DnNJ7Qayy5CFpDydafz3MR9es+yrpHQV+jrlzeC90EPdZu7w9B632Nf9cHe9ap78uyp+3rKef/+bvVV/Qr6Ln9yFPal+sH6viNhLY/j1w+N+nXgsv2o3xdWA/VzzWWy9ht9bjGjvn8jRFOrxvELKDOxIlyuSwrKysyNzcnpmlKMpmUy5cvS7VadazNNKg+B4GgEwAAAAAAQMiimDgxapMxCDoBAAAAAADPjBGe6YTBIugEHAN+bwVvSznTU9q0qdHW7o5Y1sG3+H390a8oyx/9/uuOYzUShsje48e2betT8rWxtF1uNWxLt3NNV9Pz8bTtPVRT0Ixxbeq1vj2X9ECrrY7fcEsndEhZsG3r7j21qbZv1n112XYsdrTbJOvpd+NaOt+99w8ccofvKfH6bZlPTCj7qN8SOzd21XF7blP2/a7v7T9oKkjQ9ILAKVgu/Qc1yDSiQacaum0/aP9Rp0GFuX9+U5aCpm1GncbqJuy00iDb9tt34FTEoOlqLuuDvs709wc3rsdTS7386DN/4/GCnm7mloKlpd/pn8EGTd/3sfPn/XUwrn291D8r+OTnWvL9N0ErK2C4fIbUPwdZ9/yVYIB35j//bTF/57cd2+xtbw9oNAiKoBMAAAAAAIiF9oMHsnfnzrCHgZAQdAIAAAAAAN5YImIZrs0OK3HylIydc55lt/fetnIjI8QXQScAAAAAABALyT/7I5L8sz/i2Obtv/U3ZW+b2VCjgKAT0Mfm5qbMzMw4tllaWpKlpaUBjSg8QeulHFgr5949kbNnReQ7NZ76VBe0bn1d/YVeH2rvUc/jPZGES20DlxpPtvpUQe9EbDnXXrDVgHIbn143SavDZO1q9QJsx8tph7SaTS77bqsjoY9du5Ww9aEPqOv/wx+p67XaCH5rjhj31HpbtroYf/QNEat/PQW95kbQ26+H+dywazxFfWv2sOurDLLWjd++9L9vQW/tHnd+6yQ5Cbt+Vtj9D7qel19R9+9H1PW0/G7fzUHX6SlrV14L8Hyn8ejtxy9ceLygvy9rNZtsNZz0ukIPnD/3hH2s3fr7yNQ1x+fr7/X63BdjQv26aeifa3yOx8/+uz13bGrScazWo0fKsl6vqnPu3t75fXln5/dts256v0dsbm72HSdw1BF0Avpot9ty69YtxzbbFLADAAAAjq1d65E8tOw3T3H7HjHyyGyDRwSdgD4SiYRMT087tjl37tyARgMAAAAgbsaNE3LSeMI20+mpi1Pdx5ubm9Ju+5s5CxwVBJ2APqanp2VjY2PYwwAAAAAQU89M/IA8M/ED0n5fne1U23ic3jczM3P0Zz4BfRB0AuDbQbVy/NROULjVS/FZT0Vv//ojdawvTHxCbb7nr+6RfXM+5xZr47PaCcf1fvXWiLLVe3Ktd+Wy81p74/376vozTyiLe9/4prLsu1bMvXvq+B4514FwE0aNEKf+gtS+GXT9k6jb+z12bs/3s/2gNYr8th90naBB184J89gH6dtL/37raQWtHRP0Og/Kz/4Gvu6194+wj7Xf57vRa016ah+Atfu4rpGtxpFeJ+iBc71CWy1HF0GPrWt7rfakkdBrS2qfa/TPEnqtSm150PXCeumfg9qP1M8deg0nG71e1zHTp3wrYJNwbwIAAAAAAAD4Q9AJAAAAAAAAoSO9DoAr/RbienqdLjGVlDFj/zayH5l8SVm3d89+d49ADOfYedDbnwcVNP3DRh+/oU9z3+u7zrUvl2OjpwQY2nLb1O7m6LZ9NydPqt1p09wtPb1PE3WaVZQpYH7F6Vbrw9h+7/b8nqewU6SiPhdhp9+F2T7qY2U7d/p70wDTcsLoL8pbw/vdtlt/QdsHvQ6D9v+xs5+SB0b/rz1hXjvGmdPKsnX/gbr+lPreZku3c3nvDP1zhRu9jIChptvp6YCJ8+pNdmyfHfTU/l3nzx5hnhu9rf4ZVS8joHNLLdT37cgjvQ4eMdMJAAAAAAAAoWOmEwAAAAAA8MSQ4RcSN9ybICaY6QQAAAAAAIDQMdMJgCu3Gk76rYnbW9uy953aCWNabr9bTSI9P3zQtW58163Qa0a59WfbX/V46P2/MPEJtbl2K2K9fsDrjx6fK7d6VlY72P8d2lumOpazZ5TlMa1uhRv9WI1NTSrL1l31VsbGyZOBanSFfS0E2XbYt5qPupbNsGvl+KkrFHa9E7+1Z4Yt6HXsp+7QwGt5eXlvCtJ/xPW/wvw7ELg+VsDXdNDnh90+l8jLKWtXXjvk8/2u/8i5n+o+th49Utbp79PGiQnHvq1Hao2kqOtd+WXt7irLxri2Pzvaer0O0oBra/Zy+5yh16sSS/1QarW1Gk4TWq1Jrb4VgH0EnQAAAAAAgHcUEodHpNcBAAAAAAAgdMx0AhC61977RyJn9lOt9PQw19saGz8a6ljCTB0ROeAW3Vp6R9BUHr/P16dyOz7f5TbMttsYa6l8+rKNfttnn/Rj/+LZv6Q20Mf38KFYljqNP0xRpgqFeav0A7mca7/CHm/U6R9hGnYqoS7sdDk3QdOQBsl3enTIxyLo68Rv+zBTGwd9nt3Sv8Pe3mt3P9/9XOKF32tDSdN6oKWya+l2+nuZuLy3DvvvqfVQfW+3f1Z4pC27fFbQ3p9q7S8oy0H2x+/fANvnDC2dzjiplgmw7j9Q2584oS6H/N57nG39i38m5r/4bcc2u+9tD2g0CIqgEwAAAAAA8C7C9Lr2gweyu30nug1goAg6AQAAAACAWEicPCXj5847ttl9b9s2Ow3xRNAJAAAAAADEwuSf/hGZ/NM/4tjmrV/4m8yGGhEEnQBE6vWdLziut+Xu3/28yNmzIvKdGgwhC3z79KC3+g34fFtND5e6GH7G8vqOcz0RI6HeSrit3RY5kdBqH+w411tyq9Ngu82yfqvikyfFsBIi3ykn8bGzn5IHxuO3tWHXwQgicH0Wl1vJu4lbHaMwtxX2reHdthe0P7f+w65LFKWoa3/53be4178Kvdabg4G/LiKu4VRrV0Xu3et+nnAT9NqUdv/ZFra6QDtqLUZbHSHtvdZN0HPl+l6s1XBqa/Ub9fEaExPKshWw3mMQbq8hpRaXiFj37qvLWj0u48xpdb1W48m1ntURYzDJCB5R7QwAAAAAAAChI+gEAAAAAACA0BF0AgAAAAAAQOio6QT0sbm5KTMzM45tlpaWZGlpaUAjOppstQTu3fP1/NjV/DDUWL5eW8dvDSa/NT161/sdu1tNDr1WQeLECXW9VvugrS37ptWR0KtcWLu7YlmP60a9dvfzImfOeO4+6joYYW572ILWMQq7XkyUxz5obRc/r1Ev/bsJ+1oKMj63547adR+nY3tQez81p4LuS9BzG7hmkk9hv9e76qnLZKtHuKvVP3ziCWW5fV+tI6TXS9QNvB7hCbVGU0Kv8XTvfWXZGFP33zil1bTS2uuC/M30eyz0Gk6+faeW19u7vy/v7H5ZRNQiR73fIzY3N4NtCxhhBJ2APtrttty6dcuxzfb29oBGAwAAACBudq0deSj2YJrb94iRRyFxeETQCegjkUjI9PS0Y5tz584NaDQAAAAA4mbcmJCT8oToUZinLk51H29ubkq7HfAOyMCIMizLIkYJ9JiZmZFbt27JxYsXZWNjY9jDGR29tya+e9dXmpOffqK+5XZQftOQgqYQDJSWOmi7TfK4OgW//VC9lbDfY//i6Z9Qf6HfRrptyUlrV/7xwy/sLwe57mIu7Ot44OkZEfOTVhqkby/CTh0MmtroV5C/YVGnTcb977+bYY5n4O+FWiq5LdV8ECm3AT6X+B3fRyZf6j62tHQ523vnhPo///aDh1pz9b3uNx78suO23QQ91h8591PKsp5Kb9s/PZ1uZ0dtv6cGXn7j/i/5Gk8Q+rGwlQloq1+LE9q+iKGeGz11Uj+Xvdf9Ufl+0dmP8XPnJfV//e+HOpbW3/6bsrt9Z+SP6XHATCcAAAAAAOCNJWIMe+rKsLcPz7h7HQAAAAAAAEJH0AkAAAAAAAChI70OwEgZ+G2QfQpaYyRofRc/Y/E9Nq1Gh17Hoa3XeQhKu+2y9UirC2G1RSznW0tHKcpby+vCvo4H/boIWpfIz/EadO2aoGP3e+6D1oEL+9ob5LUU97//ukHWYgtaTzDs+lhh13Cy9R9xXTvf/ffW+tHeG61d9b1Lr3lknNDqIb5vvwuak6j/5ll68etx56+Peg0n/b3b2tsLZVwdfurK6etfPPXjju2tHfUzhnH6lLr+vlq7UqxjViic9DZ4xEwnAAAAAAAAhI6gEwAAAAAAAEJHeh0ABBA0VSXKdLugt3q3Pd8lZcB22+RxNWXAN0udt61PyddvKx220NMvjjG/qTtuzx9kCl3cznPUaUlB/gaNWvqbX3FOiw07DdPPtqN4ftSv8dD/pvS+X+kpVvp754OH6uoJ7euY4W9OQNj7oj8/8cQTyrIt1V2T0NIHRXuvtsLNrgt2bWipgomEdq70VED9c8jYmNpe/1x01EWYXnf7X/0z2frXv+3YZvfudnQDQKgIOgEAAAAAgFhoP3wgu+/dGfYwEBKCTgAAAAAAIBYSJ0/J+JPnHdvs3t22zYpHPBF0AgAAAAAAnhkRxnsu/NCPyIUf+hHHNl/9f/xNZkONCIJOABDAsGuS+Nl+2PWjbLUM2uF++tBvVWxjJGRU74cR9e2+o36+X2HXx4pyvKN2bIMaZj2tqI9V2P0P+3US177D6D/sGlR+RXlubfUH9WXtvTSosK/zF8/8pLJsnNDqNe6q79VWW6tppdVNkkePfI0nymvXmFD3pX3vfXW9/jlHr2eln0uf9biA44KgEwAAAAAA8I7MNnhEOBYAAAAAAAChY6YTAAxRlLfc9puu4HcsL0x8wrH9649+xdf2Xem3oZZwUxJ0cU6Linua0LC3F8QojfUwgqaqDPP4+B272/q4pUJGuf2o9y3sv0n6uQmaHh6U2/vp2JNPdh/rqea2FC0tddw1ldznWKK+7m0pZtp7c+LECXW1tn/GuJae58LP/vjelwcPlWXbudrbU9dPqF+dDW1f5f59X9sHjguCTgAAAAAAwLMoC4njaCG9DgAAAAAAAKEj6AQAAAAAAIDQkV4HABEa5m2qI69pod8a2FZzKVx6nYj2zq5Y1l6f1hikuNXGGaa473uUfxfc6uwEHUvQsfutcxdU0NeFn+fH7TU46NphUR5bL+s/cu6nuo/1ukDtR4+UZSNhqMtajSO9jpDfsbjxW/Mpcfq0smyve6Q+31azSt8fl88KYZ4b1760c6EzEloNJ33fj3sNJ9Lr4BEznQAAAAAAABA6ZjoBfWxubsrMzIxjm6WlJVlaWhrQiAAAAADEydu7fyDv7H3Z9vve7xGbm5uDHBIQKwSdgD7a7bbcunXLsc329vaARgMAAAAgbnZlRx6KPdXO7XvEyCO9Dh4RdAL6SCQSMj097djm3LlzAxoNRlXUdTX89O9W2yBuNUH0ug9WW80INxKGGJYhcsiyTrHbXxxLYV+Hg6wj5Lbeb+0Yv+39bs9vzamgoq6940fc/t4N+jqNvL/xnq9UbfW9S69HaHtv293xt62Que37Cyc+6au/9sMHynLi5CltvfP+Rnlt6vuq19Oyf+5Qoyp6TafO8rhxQk7KE6JHYZ66ONV9vLm5Ke12tLUvgbgi6AT0MT09LRsbG8MeBgAAAICYemb8B+SZ8R+wBdxqG48DaDMzM0d/5hPQB0EnAAAAAADgmUF6HTwi6AQAx0TY6XS1vRXH9UH7t91mWft0o9922q9hp5f4EbdUFN0oHUu/Ru3YDTOlK+oU3kEfq7ilpDkJe2xRn6uwr9NhX1vWo0fdx0ZCTQW39lxStrT0O0N/79METTP12z5x6qSy3H7w0LG9noImAd+rg3DbtxdP/biyrKfx6/n7xgktHW+PdLmovPu7/0zevfnbjm1271Jbd1QQdAIAAAAAAN5YEmkh8b2HD2T3vTvRbQADRdAJAAAAAADEwtiJUzL+/2/vfmMbydPEvj8l9Z+ZnTktpZ6zT9ey57bo3C0MGDiQatuADd8CIjevDOQF2W0cnJdNvssLvSDR77xJDgoZoAM4CBByXiQvzofTkEES75t4yY5vfbaTWGLZ8CWXvb2wdmcjLS/2rlSnndmebkmsvNCSzfqRrCqKRVYV9f0AxLDEH3/8Ffnr6eaj53nqw6+6jrn64kLEpsYvDgg6AQAAAACASHj0178hj/76N1zHfP+/+ZZcfU42VBwQdAKAFeXV42LenhielxvX1N4IM1Kfr1zKWLT7IjLna8RElC69ftcs+72LUx8hVdhrnff/YV7/j1y0IHv1zNpfa57Xus3rBz1f2P3BRqk9j7T7zq9b2rqzL5DaA+r69WvX+cPuRaaej3155TxWelbJSL+rIMxyfp5jlX9naEo7KrU/1Vi/rivnuY/1s1p1JBnBp7vxr3UAAAAAAIApTNOUbDYrzWZzaa/lV7ValWw2K5ubm6JpmiSTScnn89Jutxe4ymAQdAIAAAAAAHeSZVmSz+clmUxKu92Ws7OzuebSNM3zlkwmRdd1z/na7bZsbm5KuVwWEZFGoyHdblcqlYoYhiHZbFay2axYlnXrNS8a5XUAsKIWfYnr7Poz9wnVcrhZeT3f7ruOCbrUJs5W+dxmFfX3ImrrUbm9f2GXqy27xCrovTRPSfOs73XU95kqautVP4u1r3xleF8tsRort1NLsO4H+3Us6PdqrHzu+tpxrD1wlguuvfehc7xy/vbrLx3H8/45Gn3+vP/PGTs35bNS34u+cqytaTO9XtxpK1BeZ1mWHBwcSLVaDWzOer3ue+wgkDRNu90eZkMVCgWp1WrDx3Rdl1wuJ+l0WtrttqTTael0OpJIJG617kUi0wkAAAAAANwZ1WpV0um0GIYR6LwHBwe+xmUyGddMp0H2lchNgGk04DSq0bgJrpqmORwfNWQ6AQAAAACAO8EwDMlkMlIqlUTkJjupWCzOPW+9XhfLsqRUKnn2a9rd3XV9PJ/PD0vm3DKiBhlPzWZT2u221Ot1KRQKM699kQg6AQAAAAAA/2JcXpdKpRzHXgEgvyqViui6LpVKZa55TNN0NAh/+vSp6/hnz54Nm5+Xy2WCTgCAeJr1Etxz95VQLmWs9m/6zuXvi3zxhciH/8PEp8/b32WRvX+i3ldolUWtt9fS/1zN+Poqt8fv2j5e9vlG6f296z3z1PV/88Fv33ou7d495fj+lJEhWXf+XWy/fet8XDm03146jsd6WM3Y73GZe0ft6aSuVXv40Hms9nxSn4/YCKIPUrPZFNM0p5bBzWI0aJXJZDzXl8vlhvcty5Jms+n4Wdjo6QQAAAAAAHBLBwcHkkgkPLOS/BhtRq5mZU0z2h/q8PBw7jUEiaATAAAAAADwTbPDvUWJYRhiGIZYliWbm5uSTCalWCwOS95mnWvUkydPfD1vNDh1m9ddJIJOAAAAAAAAt6A2+jZNU+r1uuTzedE0TfL5vO+r5I32chIR1yvcuY0L+qp886CnEwDAl3l6vdyKR9+H7Fpe3rOv5Nu/OP67H/59+VJ799favOtZZN+IWeeet6dF3PunLFPYfXqW3ftmkfOH3a8qbMvux+X2WkGvZdF/H8y7XvXvh6DnV7n18lm7r/RsevDAcXz9+RfKZM6/+4Jeq9u+mTj/tfJ3sbI++0rpe6T2pPL4uzzU/y8o/arUz0plv3nj/IHSe1Jb0wJZVmxELNsoLGrT70mazaY0m00pFAqePZ+Ojo4cx377TT169MhxfHx87Ls0b9EIOgEAAAAAAMxI13Wp1WpiWZZ0u11pt9timubEsfV6XY6Pj6XT6UydT33ubTOdut2ur+ctA0EnYIperyc7OzuuY/b392V/f39JKwIAAAAQJZ9df08+639v7Oej3yN6vd4yl4QlKxQKjmPLsqRer8vBwYFYluV4zDAMyWaz0mq1Js41LWA1K/V1w0TQCZii3+/L6emp65iLi4slrQZYPZ4p9Era+liKvrYmImvD9O5vf/67Ih98EOwiI2LVyo6CNrqXeK+CNU+pS9jldMsub1Pnj1Jp5NJLsjyeP295nq/3/osvRD78UESCL79WjZZl2X1nzVH/8so5Vnmutr7uOFbL1YIux571vVWNrVc5X+2Bs7zOfnvpOp9qmf8PHyuXUx9Xzm39g684jvtf3jz/Si7ljbwee77X94jYu2V53U86fyA/Mb4798tffRHd72GJREJKpZKUSiVpNpvy/PlzRxCo3W5LtVqVUqk09tzbBovUMryzs7NbzbMIBJ2AKdbW1mR7e9t1zMbGxpJWAwAAACBq7sl9eSjvj/38o8dbw/u9Xk/6fff+VnfF9dsv5erzPw97GUuTy+Ukk8nI3t6eo7n3wcHBxKBTUMh0AmJge3tbTk5Owl4GAAAAgIj6eP3r8vH618cayrdODof3d3Z2Vj/zyaf1B+/JvQ+/Ovc8V19ciNjx6GaeSCSk0+lIOp0eBp4sy5J2uy2ZTGZsbBABI78NyJeBoBMAAAAAAPDtttfq++X0N+SX09+Y+/X/70++FbuMqU8++UTS6fTwuNVqjQWdtra2Agk6bW1teQ9aEoJOAIBQePb0uD50HGfXnzkH2H3PSzHjbohzH6cgLg0/z/OXadnnNm/vmnn7DgUtSp910J9F0K+fXcvLe/aVfPuW88/8Xo/2ILSVHkbq31NKTyTpO3s+zWve91p9/jcf/LbHM5zZPXKlnM+C/56ep6ffWD+qNWcYRe1fNejhNDKB41D9dwugSqVSkslkpN1ui8jkpuG3zVBSA1VRynRSe9kBAAAAAAAgYNls1vXx3d1dx7HfrCe1cXgymZxpXYtE0AkAAAAAAPhnh3yLKV3Xh/cnlcCNlt+JTM6GmqTb7TqO1bK9MFFeBwCIhYlp6yOXxAbCsOgSsEU/P8oWfW6r/N4FLWrvla/SyJG/H779+e+KfPDB1Oer5zfz+Y6UWY2VbN277xzbj9a3Za/3YqzE7O1bx/HafeXrpObMadDuOY/VZtvzmmdvquV0Y2tXz0357PpvneeitgGg3A6TjAadJpXAqZlOpmlKKpXynHc0IyqRSDheJ2xkOsWQaZqSzWal2WzONU+1WpVsNiubm5uiaZokk0nJ5/PDGtNVnhMAAAAAgGU6Pj4e3p9UapdKpRzBqKOjo5nnVQNXYSPoFCOWZUk+n5dkMintdnusbtOvdrstm5ubUi6XRUSk0WhIt9uVSqUihmFINpuVbDY7U9f8uMwJAAAAALg9TUQ0O+Rb2G/CLY2WwU0rgXv69OnwvmEYvuYdHTf4/hwVBJ1iwLIsKZfLsrm5OXd2U7vdHgZqCoXC8DKNuq5LLpeTbrcrqVRK2u22pNNpXwGduMwJAAAAAEBYBt/nS6XS1DHFYnF43091z+gYXdcj1c9JhJ5OkVetVqVWqwVSkznIlBK52Yy1Wm3iuEajIclkUkzTlHw+L61WK/ZzAoCXKF2OHPER9j5Z9L4N+/zwzip/Fl77OOh9Hvh7qc3we/yR/k+Tjr3Wtuz3Qu3BpPZBGuthdV95XOkBNa9F/j/Pq9+U9kDpz6V+lndJFJp5B/j6y0pgaDabYpqmJBIJefHixdRxqVRKMpnMMJjUbDYll8tNHd9ovPtzELUsJxEynSLNMAzJZDLS7Xal1WpNDb74lc/nh3+g3DbjIJtI5CZqWq/XYz8nAAAAAAAq9QpxfoNQg3YwmqZJNpt1LYUzTVOeP38uIiKvXr2a2ER81Oh3/4ODg6njLMsafg/OZDJSKBR8rX2ZCDpFWCqVcnSqn6chmGmajrS70TrRSZ49e3f1hWmBn7jMCQAAAACAatDKZtThob8rDzYajWGAatD2ZbQ0bmDw2NbW1rBNjBdd14cZTIZhSLVanThub29PRG6uWDea8RQllNfFiFc01E2lUhnez2QynnONpu9ZljUxpS8ucwKAH6tcuoLVFad9e9dLWKN8/rOubdklXst+r+Y5P2193fVxtRxNLc3Lrj9zHLeunV9+l75v1BIyZb2eJWn3nCVpY+c/oyDPX3v40HlsO9fW//KN49h+rZQaqufm8V6snLDL6+ZgWZY8f/5cLMua2DPJMAzRNG34ffTFixcTA0X5fH6s2qZer8unn34qmUxGtra25Pj4WAzDkFKpJC9evJjpO30ul5NWqyX5fF7K5bIcHR3JixcvRNd1OT4+lnK5LIZhSCqV8pU9FRYyne6I0T8MfiKrIuLoIzUp2huXOQEAAAAAEHmXFdRqtcS27am3VqsljUZj6vfSQSucQqEguq47gj6GYcjZ2Zm8ePFCzs/PpVKp3CoolMlkhs83TVP29vZkc3NT8vm8bG1tSaPRkE6nE9mAkwiZTneCWlv65MkTX89LpVLD+lb1qnlxmRMAAAAAgEVwu/BVkEqlkusV76KMTKc7QE0Z9HslPHXcaFAoLnMCAAAAAIKl2eHeEB9kOt0BR0dHjmO/qXePHj1yHB8fHw9TC+MyJwAsy2gPkCj1aokDtX+KivdzNdy1zzHKPZxU6tq81j7ruUT9vVjq+jx6JKk9nOY1b7+uta98xXHcf/2l41hb01znU/scefW8CpLXuavnsnbf+dVYXaumPG6/feucP+DP7i779//6D+Tf/5vvuo65/PnFklaDeRF0ugPUS0DeNoOo2+3Gbk4AAAAAQHxcv/1SLr/487CXgYAQdLoD1GDObQ0uBxmnOQEAAAAAAVtgidv6g/fk/gdfdR1z+fMLEZs6uzgg6HQH3DYIo5a3nZ2dxW5OAAAAAEB8/PJvfkN++Te/4Trmj//7b5ENFRMEneDbIjKIojxnr9eTnZ2duefZ39+X/f39AFYE3C1R7wGiivr65rHoz2KV37tVRy+zd+L0/6yg1xp0D6ig/d0P/758qb372hN0jyrt3v3hffvq0jlY6dmk9g3qX145515/5lzbnH2CZu3hpLLfOs9H7eFk952ZJmsPnH2Q1PdDHb9IXue+9t5Dx7GtfBYiIp9df08+63/v5uBK6V+lZNm8pzn7X330eGt4v9freS0XWFkEne6ARCIRSCBmNKMoLnPOo9/vy+np6dzzXFzQ5A4AAACImyu5lDfy+uZgxnhZEN8joowryMEvgk4zqNfrUiwWA50zlUpJp9MJdE7V1tZWIMGcra0tx/04zDmPtbU12d7ennuejY2NAFYDAAAAYJnuyX15KO/fHGjumU4qNdOp3++7jAZWF0GnO+C2mT9qAEjNSorDnPPY3t6Wk5OTQOYCMLuwyzHwDp/F4iy6JGuZpZHzvlbY5Wlerx90CVmY5+v1WlH/Mz/re/ftz39X5IMPbj2/F/v6+t2BUk43Zt1ZfqaNPledawm83rtvPvhtx7FXeZxnOZ0dncBL/8s3ro9r6+vy8frX5eP1r4vIhHK8t2+d8ynlea2Td6WROzs7q5f5RKYTfCLoNINMJiONRrB/CQcVIHGzu7srhmEMjy3L8vW6akPuZDIZuzkBAAAAAEA4CDrNQNd10XU97GXMLJ1OO45N05RUKuX5vG636zjOZDKxmxMAAAAAAITDI/8Tq2B3d9dxbJqmr+eNlq0lEglHwC0ucwIAAAAAgqXZ4d4QH2Q63QGpVMpxZbijoyPJ5XKezzs+Ph7eVwNCcZkTAOIg7F42WJywLyUfpT5Bi37+vJbd5yjs8w3Sss9l1n5b887v5T98/z8e3u8rfX60NaX5tNLjSLt333Hs1TNJtei/PzSlB5Xas0ntYaU9eOB8XOlzZF9Fp6eTem5qvym1v5baA2rss41QvyogSsh0uiOePn06vD/aN8nN6LhyuRzbOQEAAAAAwPIRdLojisXi8H673fYcPzpG1/WJfZLiMicAAAAAIEB2yDfEBuV1MTLau2hWqVRKMpnMMEjTbDZdS9dGr9I3LXsoLnMCQNStUpkNnJb92QZdauN16Xj2LqJg0fvQ88/VLGVVyti+Un42a4nWos9dLRdUqSVqagmaatb1Bvn/NHUutbRRLQ201XI6tdRQKb8DMBmZTjGiNtaeNQhVq9WG9w8ODqaOsyxL6vW6iNxcCa5QKMR+TgAAAAAAsFwEnWLCsqyxTJ7Dw8OZ5tB1fZgZZBiGVKvVieP29vZE5OZKcKOZRHGeEwAAAAAQEMrr4BNBpwizLEvy+bxks1nZ3Nwcy3QyDEM0TZNsNiv5fN5X4+1cLietVksSiYSUy+Xh8yzLkna7Lel0WgzDkFQqJT/4wQ8kkUiszJwAAAAAAGB56OkUYYvK4MlkMnJ+fi7ValUODw9lb29PLMuSRCIhu7u70mg0XPsoxXlOAIC3RV+CG4sT9GcVp8+efRsdi/4sovZZ23179EB5zPk7fs3ZFkjW7ju/jnn1UFq2NaXP0dj6lPNV+x6pxyqvzzLIz1adK7v+zHGs9mgaW/u6kq+h9nTSyOcIyr/7t38g/+6Pvus65vLnF0taDeZF0OkOK5VKUiqV7uScAAAAAIDb0RZY4nb99ku5/OLPF/cCWCqCTgAAAAAAIBLW778n9z/4quuYy59fiNg0d4oDgk4AAAAAAMCfBTfz/ot/7RvyF//aN1zH/NHvfUsuf042VBwQdAIAAA5h90cBboN9O13UeiB5WXSfn1nfj5leT+3ro/Z4WnAfoKA/a68eTqLddx4qfZDsq0vn+pQ+SmHuRbWf1thno352b94oDzujLq3r2a4sDtwVdDsDAAAAAABA4Mh0AgAAAAAAvmn0U4JPBJ0AAMBCxa20Zx7LPte79N7OK+z3KszXX/a5zvt6i17vMt8P7Z6z/EwtN1MvAea1NnUfqRZ+bh7lgJ7lg7Zy/gvk9WdOXataLjdWKqiM19a0eZcI3AkEnYAper2e7OzsuI7Z39+X/f39Ja0IAAAAQJR81v8T+az/J67fG3q93hJXBEQLQSdgin6/L6enp65jLi4ulrQaAAAAAFFzZV/KG3nt+b1h5VBdB58IOgFTrK2tyfb2tuuYjY2NJa0GAAAAQNTc0+7LQ/t9+ejx1tQxvV5P+v3+1MeBVUbQCZhie3tbTk5Owl4GAMTeXeozFLfeOXdJ2O+V+vph95haJUG/l3PNZyuBBduj748y3uu1l71PxvoaKT2pbLWFk0cfJFWoPaqUflNr952f1djalc/K7t88/y/Lr8tfXvt1aZ0cTn2pnZ2du5cJBfwCQScAAAAAAOCbRnkdfHK//AAAAAAAAABwC2Q6AQAAYCJKwBaHcrvgBP1eec2nflZr778/daxajqaWn6klXur4ec1bvuZVLqetuZcPqo+r5XhBfnZe56ryLAVUPhvtnnu+Bn+GgckIOgEAAAAAAP8or4NPlNcBAAAAAAAgcGQ6AQAAAAAA32gkDr8IOgEAgFihb8byROm9XfTnHva+WuTrhX1uq0Z9/755/+/5fq7dV7+pX08cF5R5P+v+27fO+a4PHcfZ9WfOJ9hKTypteYU1s57rWA8nu+/6+FgPqLHPEkH5s//ru/Jnf/xd1zGXry+WtBrMi6ATAAAAAACIhOvLL+Xy538e9jIQEIJOAAAAAADAvwUmeq3ff0/uf+WrrmMuX1+I2GSbxQFBJwAAAAAAEAm/8ld/S37lr/6W65h/0/xPyYaKCYJOAAAgVuhHM90q9+5Z9Lms0nul8jq3Vd43yzDa6+effPmPHI+pPY/W7ju/fvUvrxa3sCAofY7G+lcpj6s9nNQ+SN956+wJFSq1h5PSo0ld+3h/KmfPJ/7cAJMRdAIAAAAAAL5x9Tr4tbzLCQAAAAAAAODOINMJAABgRVDegduI+74JuzzQvn5XZqWW042NVUq4xsrTZrTwc1dKysbW72H0vRHxXq/6uGqe8xubWy2XGysVvO98+OrScbz28D3X+eP+5woICkEnAAAAAADgH+V18InyOgAAAAAAAASOoBMAAAAAAAACR3kdAAAAgKnm7VUTdK+bqPXOGe1zpK2vOx9T+gCJOB/37CvkIehzV99b7d79KSMHlPNVejiNvx/u5xfk+czaP2rtwQPHcf/tW8ex+l6oj499lqvMjsDV68J+ffhG0AmYotfryc7OjuuY/f192d/fX9KKAAAAAETJZ/afyI/s74/9fPR7RK/XW+aSgEgh6ARM0e/35fT01HXMxcXFklYDAAAAIGqu7Et5I6/Hfu71PSL2bFKN4A9BJ2CKtbU12d7edh2zsbGxpNUAAACEY96Sp6BLwMIup3PjVV6mls+1rg8dx2rJ16y8nu/13nmVoKklZmPnu6a5Pj6reUopvcaOnUtfCaIo5XJjpYK/OLd72n15aL8/Nv9Hj7eG93u9nvT7s5VOAquCoBMwxfb2tpycnIS9DAAAAAAR9bH2G/Kx9hvjAcWTd0GvnZ2d1c98AqYg6AQAAAAAAHzRJPxG4pr3EETEHWqxDwAAAAAAgGUh0wkAAABAbMzbt2iePkFexnoaqX2ClBKs7Pqzmeafde1zn5vS18i+unQdbqstnLT5chwW2b9r1v5T6rmrz//OZXR7jcVN73vfld73/pnrmLevuaBTXBB0AgAAAAAA/i2wvO7q7Zfy9vWfL+4FsFQEnQAAAAAAQCTcu/+ePHj/q65jbjKdQm4sBV8IOgEAAETEIst+gIG477N51xv0+Wrr6+/uj5Vc/SPHsVc5nbo2r88q9M/So3xu9L0REbGv+lNGLp9a+jhWCqlQz6V/eRX4mnBj++u/Jdtf/y3XMcb//J+RDRUTBJ0AAAAAAIBvWnTih4g4rl4HAAAAAADuNNM0JZvNSrPZnGuearUq2WxWNjc3RdM0SSaTks/npd1uR2rOZSHoBAAAAAAA7iTLsiSfz0symZR2uy1nZ2e3mqfdbsvm5qaUy2UREWk0GtLtdqVSqYhhGJLNZiWbzYplWaHOuWyU1wEAAERE3HrrIJ7YZ8Gyr69HDpw9ndSeS2oPpNb1oevcXp9V1D9Lx3sj8683yB5W9tWl61zffPDbjuP+27e3fq2VtAI9vC3LkoODA6lWq3PP1W63JZvNiohIoVCQWq02fEzXdcnlcpJOp6Xdbks6nZZOpyOJRGLpc4aBTCcAAAAAAHBnVKtVSafTYhjG3HMNMqVEboJBo8GhUY3GTWDTNM3h+GXOGRaCTgAAAAAAwDfNDvc2D8MwJJPJSLfblVarNTWg41c+nx+Wtw3K4CYZZCeJ3GQx1ev1pc4ZFoJOAAAAAADgTkilUpJKpYbHu7u7t57LNE1HM++nT5+6jn/27Nnw/rRg0iLmDBM9nQAAAGIqyP4mAG5HW18f3v/O299zHZtdf+Y8jtifYXU92r37jmPb2aJpzOh7cTPe+YR5zzfQ90fpr6V+NmL33Z+unCvia54+SJVKZXg/k8l4zjXIShK5KaFrNpuOny1qzjCR6QQAAAAAAPyz7XBvETFazjaaPeVG1/Xh/cPD8YsJLGLOMBF0AgAAAAAAmIHahPzJkye+njcaSGo2mwufM2yU1wEAAMRU2KU4wDLMWpKVXcvLe/aVfHtJ6xkts1IfU42Vn/WVEq+Qy+3U1/vm/b/nHKCWnCklal4laX4+u1nGBzqXx9rHhzuzbcL+7LB8o32XRJzZRm7UcYZhDINGi5gzbGQ6AQAAAAAAf0K+cp1m36whbEdHR45jv72hHj165Dg+Pj5e6JxhI+gEAAAAAAAwA9M0Hce3zUrqdrsLnTNslNcBU/R6PdnZ2XEds7+/L/v7+0taEQAAAIAo+cz+E/mR/f2xn49+j+j1estcEpZEDRDdlmVZC50zbASdgCn6/b6cnp66jrm4uFjSagAAABYj6r1obtUH6IsvRD78cJHLeme0r5Gm1PwofYLUPkBr951fx/7Jl//I9aW8ekaF/dmN9ay6fjvT84NcvzrX2Hun9KNS1z7Wr0phX1+LiMiVfSlv5PXY417fI2LvluVtp3/6Xfnx//OHc7/82y/D/x5228COWjJ3dna20DnDRtAJmGJtbU22t7ddx2xsbCxpNQAAAACi5p52Xx7a74/9/KPHW8P7vV5P+v3ZGpWvquurN/L2yz8PexmRsoisJDKdgBjY3t6Wk5OTsJcBAAAAIKI+1n5DPtZ+YyyrrXXyLtNqZ2dn9TOffFq/91AevPfVuee5yXQKt5t4IpEIJLgzmqW0iDnDRtAJAAAAWLIolbSFXZLlxeu9Cnv9gzKrmwMl8KCWeK0/cxz33zrLz6J2rmo5oJf+5ZXjWLt333G8zH3v9VrffPDb7hMon+VYOd6a5hx+LXeKWknq185f+S3Z+Su/Nffr/6v/5T8PPWNqa2srkADR1taW437Qc4aNq9cBAAAAAADM4LbZRGpQSc10CnrOsBF0AgAAAAAA/tl2uLcI2N3ddRz7zVBSm3wnk8mFzhk2gk4AAAAAAAAzSKfTjmPTNH09r9vtOo4zmcxC5wwbPZ0AAABiIkp9gDAfPjv/5n2v/u6Hf1++1N597Zl3Ptc+TUrfH/XPrLa+7jiOfR8gj75Hjn5XEx5fJK/PWV2b+tl85/L3HcdqD6ixc8Odo2YlmaYpqVTK83mj2UuJREJ0XV/onGEj0wkAAAAAAPim2eHeoiCVSjl6Jx0dHfl63vHx8fC+GmRaxJxhI+gEAAAAAAAwo6dPnw7vG4bh6zmj48rl8lLmDBNBJwAAAAAAgBkVi8Xh/Xa77Tl+dIyu6xN7Ly1izjDR0wkAACAm6AMEjPPqdfbtz39X5IMPlrmkqWtR1zpmiT2PbmXW9ak9nyJkrIfT299zHKuf1dr77zuOx3o6RfhcFyIiJW5B8HuFuElSqZRkMplh4KfZbEoul5s6vtF49/+EaRlJi5gzTBH/vxoAAAAAAMBiqFeImzUIVavVhvcPDg6mjrMsS+r1uojcXF2uUCgsdc6wEHQCAAAAAAB3jmVZY9lBh4eHM82h6/ow28gwDKlWqxPH7e3ticjN1eVGs5OWNWdYKK8DAAAA4JtXOduyhf36QZZVta5n+7K7aGoJmn11qQzwyGFQH49QCZp6Ll6lj/3Xr10fD30fLllUriB3G5ZlyfPnz8WyrIk9kwzDEE3TJJPJSCKRkBcvXkgqlXKdM5fLSavVknw+L+VyWY6OjuTFixei67ocHx9LuVwWwzAklUrJq1evHFeoW+acYSDoBAAAAAAA7oRFZQVlMhk5Pz+XarUqh4eHsre3J5ZlSSKRkN3dXWk0Gq69mZY157IRdAIAAAAAAAhAqVSSUqkU+TmXhaATAAAAAADwyRbph11fF/brwy+CTgAAAAB8u2u9a1Rq7x/t3v3h/e+8/T3XsV49kBbdL2ve+dXx37z/9xzHthqIiFAPJy/quWXXnzmOtTXNcWxfXy98TXfVifnP5OSHf+g65u2XP1vSajAvgk4AAAAAAMAfWxaaaHR19UbefnmxuBfAUhF0AgAAAAAAkXDv3kN58HDDdczbNz8TSuzigaATMEWv15OdnR3XMfv7+7K/v7+kFQEAAGDZvErSRsuw1JKsMUq5mVdJV9DGXs/j3NQSMnV9retDx/FYuZ1SgbbM0kyvc9PW153jPc5t2nwvX76Uly9fynvaVxyPf/R4a3i/1+vNsHLsfO3vyM7X/o7rmP/9f/0defuGbKg4IOgETNHv9+X09NR1zMUF/6MDAAAA7qqLi4uJ3xm8vkfEnUaSEXwi6ARMsba2Jtvb265jNjbc0z4BAAAArK6NjQ15/Pix/OT0zPFzNdOp349PU3UgSASdgCm2t7fl5OQk7GUAAAAAiKhBu42x8ruTd+V8Ozs7K5/5BExD0AkAAAAApvDsQ2RPz2Dxeq4aqFi2Wc9trA+Sun5tLYhlBcLz3JS1rj1w7/Gkjg/7swudTX0d/InO/xUAAAAAAACwMgg6AQAAAAAAIHCU1wEAAADAbbmUlM1afuZZEuYx/6zPn5Xd9yipcik1FFn+et3Y19fO46tL5wCPz0otNfzO5e8Hsq644Op18ItMJwAAAAAAAASOoFMMGIYhxWJRksmkaJommqZJMpmUcrkslmXdet5qtSrZbFY2NzeHc+bzeWm32ys/JwAAAAAAWCyCThFmWZbk83lJp9NSr9fFNM3hY6ZpSrValc3NTanX6zPN2263ZXNzU8rlsoiINBoN6Xa7UqlUxDAMyWazks1mZwpoxWVOAAAAAMCc7JBviA16OkWUZVmSTqcdgaZpisWidDodqdVqnmPb7bZks1kRESkUCo7n6LouuVxO0um0tNttSafT0ul0JJFIrMScAAAAQOBG+hh59SjKrj9z/kDpGzRrz6MweyKJiGffI68eT/Ma65k1wvO98VibtqYpw52RDrUnVJT6VQFRQqZTROXzeTFNU1Kp1DDDp9vtSqPRkFKpNDa+Xq9Ls9l0nXOQOSVyE7iZFqRqNG7+B2ma5nB83OcEAAAAAMxPExHNtsO9hf0mwDeCThFUr9el3W5LqVSSTqcjuVxOdF0fZvhUKhXpdruSSqUcz3v+/LnrvPl8fliKNihZm2TwOiI3GUdu5XtxmRMAAAAAACwXQacIqlQqkslkpFKpTB2j6/ow02fAsqypzbVN03Q89vTpU9c1PHv2LvV3WuAnLnMCAAAAAIDlo6dTxBiGIaZpSqfT8Ryr67pUKhVHsMUwDMlkMmNjRwNYmUzGs//RIINI5CaY1Ww2HT+L05wAAABAUNz6CLk9NpFXT6QZBd1XSFtfdxyrfYzU+cfOXz2/OXs8BXl+2r37jmP76tJ5rJyrei5j703/jnW3XmC7rh/96A/l5P/9565j3rz52eIWgECR6RQxh4eHUigUfDfFVgNMP/3pTyeOGy09U8vyptF13bGuuM4JAAAAAIiH66s38ubNheuNS9jFB5lOEfPs2TNHEMWLGphJJpNjYwzDcBw/efLE99yDq+epTcrjMicAAAAAID7W7z2Uhw83XMfcZDoReIoDgk4R4ze7Z2DQcHtgUsBK7fPkN6iljjMMY7i+uMwJAAAABMmzpGwWarnZnOV285bTqb5z+fuOY/VcF11Opwry/NRyurHPdf2Z41g9F7t/t4uGNHtxAZ+P/9Lflo//0t92HfMv/uV/8YuMJ0Td3f6TsgIGGT4Dk/o5HR0dOY79lu49evTIcXx8fBy7OQEAAAAAQDgIOsXcaIClUChMHKMGpm6bQdTtdmM3JwAAAAAACAfldTFXq9WG90evYjdKDebc1mgpX1zmBAAAAAAEyJbw2ymF/frwjaBTjJmmOWy+XalUpmYG3TYIo5a3nZ2dxW5OAAAAIEiz9HCauf9TwD2Q5uW53hl7UAXdc2ouyto9+1Mpx9qa5ji2r68DWxqwSgg6xVilUhGRm/KyUqm08NdbRAZRlOfs9Xqys7Mz9zz7+/uyv78fwIoAAAAALMtn9p/Ij+zvT37QIz44+j2i1+sFuCogXgg6xZRhGFKv1yWRSEir1XIdm0gkAgnEjGYUxWXOefT7fTk9PZ17nosLrqoAAAAAxM2VfSlv5PWtnhvE94hIW+DV67BaCDrNoF6vS7FYDHTOVColnU5n5uc9f/5cRERevXrl2XB7a2srkGDO1tZW7Oacx9rammxvb889z8bGRgCrAQAAQBS4lYhl158tbO5l8Cwx86KUB2r37rvOH+r5qmtdX3c+fH0t9+SePJT3fU330ePp30F6vZ70+9EqnQSWhaBTDBWLRTEMQxqNhqRSKc/xt838UQNAalZSHOacx/b2tpycnAQyFwAAAIB4+Vj7dflYfv3mwCMA1zo5nPrYzs7OymU+aSQ6wSeCTjPIZDLSaAQbjZ81QFKv16Ver0utVpNcLufrObu7u8OG4yI3QRo/r6s25E4mk7GbEwAAAAAAhIOg0wx0XfcsZVukdrstxWJRarWaFAoF389Lp9OOY9M0fWVIdbtdx3Emk4ndnAAAAAAAIBwEnWLCMAzJZrNSqVRmCjiJ3GQQjfIbzBktW0skEo6AW1zmBAAAQLxEqu+PD2N9kNx4lGhF7tyVvkdj6/d43L6+dn9+hHzn8vcdx2P9uZRzDf2zCRuNxOFTdP/UY8g0Tdnb25NSqSSlUmnm56dSKUeZ2tHRka/nHR8fD++rAaG4zAkAAAAAAMJB0CniTNOUdDothUJBKpWK7+dUq1XHz54+fTq8P9o3yc3ouHK5PPZ4XOYEAAAAAADLR9ApwizLkmw2K0+fPvUdcBIRyefzY32NisXi8H673facY3SMrusT+yTFZU4AAAAAQHC0frg3xAc9nSLKsixJp9Oi67qUy2UxTdPzOaZpDjN91F5IqVRKMpnMMEjTbDZdr343epW+adlDcZkTAAAA8RHrXjlePYu8eiSFTH3vvfoaaffuOx++ulzIuhZCee9n6s01YXys923EfHb6L+RHP/4XrmPevP3ZklaDeRF0iqi9vT0xTVNM05RkMjnTc2u12tSfD+Y6ODiYGsyxLEvq9bqI3FwJzq1xeVzmBAAAAABE39X1l/Lm7UXYy0BAohVah4iIpNNp3/2MJpkWfNF1fZgZZBjGWN+ngb29PRG5uRLcaCZRnOcEAAAAAATEthd2u7f+UB4+2HC9iWhhvwPwiUyniMnn8wsJOA3kcjlptVqSz+elXC7L0dGRvHjxQnRdl+PjYymXy2IYhqRSKXn16pXjanJxnxMAAABYKKX8zLNkSy23ixhtfd1xbF/1leMYldOpvN57tfQx4p/VKvn4V/+WfPyrf8t1zB8e/5dkQ8UEQaeIWUbGTiaTkfPzc6lWq3J4eCh7e3tiWZYkEgnZ3d2VRqPh2kcpznMCAAAAAIDlIOh0h5VKJSmVSndyTgAAAADALdlhLwBxQU8nAAAAAAAABI5MJwAAAAAIg9I3qHV9GNJCJlN7NrX6zlYgnj2rFOrzZ6W+3uh8bo9N5NWzSTnW7t13Pqy8NzO/fsxpNqlO8IdMJwAAAAAAAASOoBMAAAAAAAACR3kdAAAAANzSXCVeirBLtMbK5ZQStOz6M9fHx6gla3Nyez8W/V7Z19fOH0S8NHKhbBEJu7yO6r7YINMJAAAAAAAAgSPTCZii1+vJzs6O65j9/X3Z399f0ooAAAAARMln9p/Ij+zvu35v6PV6S1wREC0EnYAp+v2+nJ6euo65uLhY0moAAAAARM2VfSlv5LXn94aVE2zlJFYYQSdgirW1Ndne3nYds7GxsaTVAAAAIIpG+yB59RXy6tm07B5OqlnXr9LW1x3Hdl/pCRVyzypXan8qtR+VevyL8fe0+/LQfn9suo8ebw3v93o96feJ0uBuIugETLG9vS0nJydhLwMAAABARH2s/YZ8rP3GWFCqdfIuoLazs3P3MqGAXyDoBAAAAAAAfLJFC/vqdVy+Lja4eh0AAAAAAAACR6YTAAAAACyAVw+kSPc4EpHs+jPXx9X1jo1XS86idH5TejRNPfYQqXOLuR/+2b+Uz/6//811zJvLz5e0GsyLoBMAAAAAAPBvgeV1V9dv5M3lzxY2P5aLoBMAAAAAAIiEe+sP5eH9X3Idc5PpRF+nOCDoBAAAAAAL4FVypZbXRa3crnV96Dj2KhccK1lTRO38ZuJVjnfXLDDT6df+wt+UX/sLf9N1zHf/6L8iGyom7vifFAAAAAAAACwCQScAAAAAAAAPpmlKNpv1Pb5arUo2m5XNzU3RNE2SyaTk83lpt9sLXGW0EHQCAAAAAAD+9UO+BcyyLNE0zfOWTCZF13XP+drttmxubkq5XBYRkUajId1uVyqVihiGIdlsVrLZrFiWFfzJRAw9nQAAAADglkb7Es3as2jRPY3m7aHk1cPJs8dTjHj2r7rrPZxWXL1e9z12EEiapt1uD7OhCoWC1Gq14WO6rksul5N0Oi3tdlvS6bR0Oh1JJBK3Wncc8CcHAAAAAADcWQcHB77GZTIZ10wny7Ikn78JWOq67gg4jWo0bgLApmkOx68qMp0AAAAAAIBv2gKvXrds9XpdLMuSUqnk2a9pd3fX9fF8Pj8smXPLiBpkPDWbTWm321Kv16VQKMy89jgg6AQAAAAAK2jucjq1pMyesZmO8ny1hC3SPM590aWRWJ5KpSK6rkulUplrHtM0HQ3Cnz596jr+2bNn0mw2ReQmQLWqQSfK6wAAAAAAwJ3TbDbFNE3PPk1+jAatMpmMZ5+mXC43vG9Z1jAAtWoIOgEAAAAAAP9sO9xbQA4ODiSRSHhmJfkx2ow8lUr5es5of6jDwxhlAs6AoBMAAAAAALhTDMMQwzDEsizZ3NyUZDIpxWLxVhlHhmE4jp88eeLreaPBqVXNdKKnEwAAAAAEwKvPj9ozKWp9gdT1jPV4mnG82sMp6uc/amzt68+cxzE6F0ymltSZpin1en2YsZTL5eTFixe+spZGezmJiOsV7tzGGYbhO0sqLsh0AgAAAAAA/tgSfnndnBV2atPvSZrNpqTTaSkWi57zHR0dOY69+jkNPHr0yHF8fHzs63lxQqYTMEWv15OdnR3XMfv7+7K/v7+kFQEAAACIks/s78uP5E9dvzf0er0lrgh+6LoutVpNLMuSbrcr7XZbTNOcOLZer8vx8bF0Op2p86nPvW2mU7fb9fW8OCHoBEzR7/fl9PTUdczFxcWSVgMAAIC48yxHi3qJluYslPEqv4vd+bmx+47Dwbn8g3/wD+Rb3/qW5/eGlRNgM++wFAoFx7FlWVKv1+Xg4EAsy3I8ZhiGZLNZabVaE+eaFrCalfq6q4CgEzDF2tqabG9vu47Z2NhY0moAAAAARM3GxoY8fvzYdUyv15N+v+865q744U/+D/nhT/7V3PO8ufo8gNU4JRIJKZVKUiqVpNlsyvPnzx1BoHa7LdVqVUql0thzbxssUsvwzs7ObjVPlBF0AqbY3t6Wk5OTsJcBAAAAIKL8tNvY2dm5e5lQU1xdv5E3Vz8LexmecrmcZDIZ2dvbc1yZ7uDgYGLQKSirmOlEI3EAAAAAAOBf/3a3e2sP5eG9X5r7JqIt/BQTiYR0Oh3H1eQsy5rYgNxv43A/r7lqyHQCAAAAgBBErcfRWI8mpYeT2tco1mbsT6XKrj9z/mBKzyc4/dqjvyG/9uhvzD3PH3z/v15axtQnn3wi6XR6eNxqtSSTyTjGbG1tBZKltLW1NfccUUOmEwAAAAAAwASpVMoRZJrUNPy2GUpqoGoVM50IOgEAAAAAAN802w71tmzZbNb18d3dXcex36wntXF4MpmcaV1xQNAJAAAAAABgCl3Xh/cnlcCNlt+JTM6GmqTb7TqO1bK9VUBPJwAAAAAIgdpHaNl9gLxef9Y+R2PUnlBR4tGDyau/Vev60H08Vspo0GlSCZya6WSapqMB+TSjGVGJRMLxOqsiwv8XAAAAAAAAkWPb4d6W7Pj4eHh/UqldKpVyBKOOjo5mnlcNXK0Kgk4AAAAAAABTjJbBTSuBe/r06fC+YRi+5h0dVy6Xb7m6aKO8DgAAAABCsOxyunlf32t8dv3ZPMsJlGfpolIuN7b2GUsDw/4ssVjNZlNEREql0tQxxWJR6vW6iIi0223POUfH6Lq+kv2cRMh0AgAAAAAAvtki/ZBvsrwSu2azKaZpSiKRkBcvXkwdl0qlHIGjQaBqmkbjXaByVbOcRAg6AQAAAACAO6Ldbsvm5qZomibZbNa1FM40TXn+/LmIiLx69WpiE/FRtVpteP/g4GDqOMuyhllRmUxGCoXCDGcQLwSdAAAAAACAfzFuJN5oNIZXjWu325JOp6VYLI6NGzy2tbUl3W7X19XodF0fZjAZhiHVanXiuL29PRG5uWLdaMbTKqKnEwAAAADA01jfI7sfzkKC4LV2taeTMl59L1rXh0GsCkuQz+eHWUYD9XpdPv30U8lkMrK1tSXHx8diGIaUSiV58eKFZ4bTqFwuJ61WS/L5vJTLZTk6OpIXL16IrutyfHws5XJZDMOQVCrlK3sq7sh0AgAAAAAAd0Imk5FutyuFQkF0XXcEfQzDkLOzM3nx4oWcn59LpVK5VVAok8kMn2+apuzt7cnm5qbk83nZ2tqSRqMhnU5n5QNOImQ6AQAAAAAAv2yZu8QtkDXMQdd1R/+lRSmVSq5XvLsLCDoBAAAAAMa0+s5eM9m1vPsT1JI0hfp8df4gzTr3zOca59JCYIkIOgEAAAAAgEj4wfmR/NA6dh3z5vqLJa0G8yLoBAAAAAAA/Ftged1V/428uf58YfNjuQg6AQAAAACASLi39lAern/oOuYm0ynkvlLwhaATMEWv15OdnR3XMfv7+7K/v7+kFQEAAADRscieTKFT+1MpPZwG5/7y5Ut5+fKl6/eGXq8X+PJW2dcSu/K1xK7rmH/6w/+WbKiYIOgETNHv9+X09NR1zMXFxZJWAwAAACBqLi4uPL8zrKQ+WUbwh6ATMMXa2ppsb2+7jtnY2FjSagAAAABEzcbGhjx+/Nh1TK/Xk36fq93hbiLoBEyxvb0tJycnYS8DAAAAQET5abexs7NzN7OhACHoBAAAAADwwauHU3YtH+h8i6Str7sPUHo4qeOz688cx63rw0DWFRs2mVvwZ817CAAAAAAAADAbMp0AAAAAAIB/No3E4Q9BJwAAAADA3NRyObXcLsxyujGas+hHLZdTHx+jlJdF+lyBEFFeBwAAAAAAgMCR6QQAAAAAAPzrU14Hf8h0AgAAAAAAQODIdAIAAAAABC7KfY3sq0v3AUpPJ/v62nV4lM8VCBNBJwAAAAAA4JMdgavXhf368IvyOgAAAAAAAASOTCcAAAAAwJ0yazlcdv2Z8/nXh0EuB1hZBJ0AAAAAAIA/tiy0vO4HP/vX8sPP/7XrmDf9ny/s9REsgk4AAAAAACASruy38qb/RdjLQEAIOgEAAAAAgEi4pz2Qh2sfuI65yXSimXgcEHQCAAAAANwp2bW849izx5Pdd32+ataeUbGzwPK6r334m/K1D3/Tdcw//bP/jmyomODqdQAAAAAAAAgcmU4AAAAAAMC/ft97DCAEnQAAAAAAMTBzSdwS5175cjrglgg6AVP0ej3Z2dlxHbO/vy/7+/tLWhEAAACAKPnM/r78SP7U9XtDr9db4oqAaCHoBEzR7/fl9PTUdczFxcWSVgMAAAAgaq7kUt7Ia8/vDStngY3EsVoIOgFTrK2tyfb2tuuYjY2NJa0GAAAAQNTck/vyUN6Xjx5vTR3T6/WkTw8k3FEEnYAptre35eTkJOxlAAAAAJBw+ybN89o7Ozt3LxMK+AWCTgAAAAAAwD/K6+DTWtgLAAAAAAAAwOoh6AQAAAAAAIDAUV4HAAAAAIi17FrecezZg0lT8i9sZ6NvdT5VmP2lIqFPeR38IdMJAAAAAAAAgSPoFAOmaUqxWJRkMimapsnm5qak02kpFotimuat561Wq5LNZmVzc1M0TZNkMin5fF7a7fbKzwkAAAAAABaLoFPEVatVSSaTUq/XhwEmy7LEMAyp1+uSTCalWq3ONGe73ZbNzU0pl8siItJoNKTb7UqlUhHDMCSbzUo2mxXLslZuTgAAAACrp9VvOG6e468PHTfR1pw3uLLtfqg3xAc9nSIsm81Ku92WRCIhmUxGdF0X0zTFMAxHhlO5XBZd1yWXy3nO2W63JZvNiohIoVCQWq02fGwwRzqdlna7Lel0WjqdjiQSiZWYEwAAAAAQbT98/W/lh1/+n65j3vR/vqTVYF6EcCOqXC5Lu92WSqUi5+fn0mg0pFKpOLJ9RuXz7o3uRG4ypAbjdF13BHJGNRo3vxkwTdNz3rjMCQAAAAAIgG3fNBJf0O2q/1be9L9wvYnQyDwuCDpFkGmaUq1WpdVqSalUmjimVCpJoVBw/MwwDNd58/n8sBRtULI2yWjWVLvdlnq9Hvs5AQAAAADRd097IA+1r7jeRLSwlwmfNNu2CRFGTD6flydPnkwNOA1YliWbm5vD40qlMvU5pmlKMpkcHp+fn7uWozWbzWH2UCKRkPPz89jOOaudnR05PT2Vx48fy8nJydzz3RlffCHy4Yc39z//XOSDD8KdB3cD+wUAMAl/P2BG2TWPygmlz1Pr+tD1+aN9pVbl+8XgPB5qX5FvJH471LX8gfV78sb+eezf07uATKcIsizLM+AkchNk0XXdcTzNaDleJpPx7H802h/KsixpNpuxnRMAAAAAECDbDveG2CDoFEGtVsv32LOzs+H93d3dqeNGS89SqZSvuUcDWoeHh2OPx2VOAAAAAACwfFy9LsYsyxr2PspkMlODNGqvpydPnviaP5VKDa+Sp2YQxWVOAAAAAFB5ldONlseJiGTXn800HsANMp1i7NNPPxWRm0yfwZXcJmm3247j0cwgN+q40aBQXOYEAAAAAASs3w/3htgg6BRTlmVJsViUVColrVbLtffR0dGR49irT9LAo0ePHMfHx8exmxMAAAAAAISDoFMMmaYp6XRaEomEvHr1yjMjaFB6NnDbDKJutxu7OQEAAAAAQDjo6RQzzWZT8vl39cebm5tSqVRcr3anBnNua9A/Kk5zAgAAAMAYTcm/sJ0lW2M9n5TxYz2elOevfI8nriAHn8h0igHLsqRarUoymXQEnAbK5fLEn48+/zbU8rbRK+XFZU4AAAAAABAOMp1ioN1uS7fblUwmI6ZpjjXcFrnJgKpWq64ZT/NaRAZRlOfs9Xqys7Mz9zz7+/uyv78fwIoAAAAALMtn9vflR/KnNwczJvaMfo/o9XoBrgqIF4JOMZDL5SSXyzl+Vq/XpVwuOwIs5XJZCoXCWOZPIpEIJBAzOm9c5pxHv9+X09PTuee5uLgIYDUAAAAAlulKLuWNvL7Vc4P4HhFlNleQg08EnWZQr9elWCwGOmcqlZJOpzPz8wqFgmQyGUmn045ATb1eH8t22traCiSYs7W1Fbs557G2tibb29tzz7OxsRHAagAAAAAExnYPmrT6DXn58qW8fPlSRER+cjpbC4+PHr/7TtLr9aRPkAZ3FEGnGNN1XV69eiXpdHr4s6Ojo7Fxt838UQNAalZSHOacx/b2tpycnAQyFwAAAIB4GW2TMdZY3EPr5F0j8Z2dnZXPfAKmIeg0g0wmI41GsFchmDdAkkqlJJfLSbPZFJHJV4Db3d0VwzCGx5Zl+XpdtSF3MpmM3ZxhefnypVxcXMjGxgb9nBAq9iKigr2IqGAvIkrYj4gtrl4Hnwg6zUDXddF1PexljHn27Nkw6DSpPG00E0rkJjCVSqU85+12u47jTCYTuznD8vLlSzk9PZXHjx/zDwiEir2IqGAvIirYi4gS9mN0zZzZ1A82OQFYFQSdVsBoYGZSZtDu7q7j2G8wZzSAlUgkHAG3uMwJAAAAAAiQLSL9xWU6/fDqj+Wzq++5jrltg3cs31rYC0Cw1MCNyE1QajQYNanv0yTHx8dT543LnAAAAACA+LiyL+WN/Nz1dhP5QhwQdFoBo32cstnsxDFPnz4d3h/tm+RmdFy5XI7tnAAAAACAeLin3ZeH8hXXm4gW9jLhE+V1K2AQdEkkEpLL5SaOKRaLUq/XRUSk3W57zjk6Rtf1iX2S4jInAAAAAIyatQfTrD2eVpstYvcXNvuvrX9dfm39665jvvvmf6TELibIdFoBBwcHIiLyySefTB2TSqUcAZlB4/FpRq/SNy17KC5zAgAAAACA5SPoFEHValXS6bSUy+WJV6MbNRhTKpWmZjkN1Gq14f1BoGoSy7KG2UaZTEYKhULs5wQAAAAAAMtF0CliLMuScrkshmFItVqVzc3NqRk8+XxeqtWqVCoVqVQqnnPruj7MDBrMP8ne3p6I3JTrjWYSxXlOAAAAAJgmu5Z33Ly0+g3Hbdbnx53dt0O9IT7o6RQxiURCdF13NAevVqtSr9clk8mIrutiGIYcHx9LJpORbrcruq77nj+Xy0mr1ZJ8Pi/lclmOjo7kxYsXouu6HB8fDwNeqVRKXr165biaXNznxDsvX76Ui4sL2djYkP39/bCXM9Xv/M7vyPsffRTZNcblfYy6OLyPUV9j1NcXF3F4H1nj3RCH9zAOaxz4h//wH8p/8uJF2MuIpTh8znFY4+eff+74L3CXaLZtEyaMGMuy5ODgQNrttpimKZZlSSKRkK2tLUmlUpLNZuXp06dzB1qq1aocHh46XmN3d1eKxaJnqV7c53Szs7Mjp6en8vjxYzk5OQltjkVayPq++ELkww9v7n/+ucgHH8w9zwcishnR91Ak+p+zyB1YY1D7zkPU38eor0+ENQaFNc4v6usTYY2BGPn74T/Y3pY//fGPQ17QZFF/H6O+PpHg1qhmJ6mNxud5fH19Xfr9vqytrcn19fWt1xi2wXv9UN6Xv3P/Pwp1Lf/s8n+SN/I60nsTN8h0iqBEIuGrXG5epVJJSqXSnZwTAAAAAHBLC7x6HVYLQScAAAAAwJ3mlbk06/MB3KCROAAAAAAAAAJHphMAAAAAAPCNK8jBLzKdAAAAAAAAEDgynQAAAAAAcEHPJgWNxOETmU4AAAAAAAAInGbbNsWYwIgHDx7I5eWliIisrbnHZX/pl35JPvzww7Gf93o96ff7sra2Jtvb2wtZ5zwWsj7bFvnxj2/u/+qvimja3PP8WES0iL6HItH/nEXuwBqD2nceov4+Rn19IqwxKKxxflFfnwhrDMTI3w9/trYmvxLFNUr038eor09kcWv8yemZ4/ijx1sTx33++efys5/9zHWufv9dVlCcv37v7OzI6empiIg8lPdDXcsbeS0iIo8fP5aTk5NQ1wJ3BJ0Axfr6uuMvBgAAAACYl6Zpsf6eMRp0igqCTtFHTydA8d5778nr16/Ftu1bZzoBAAAAWH1+M500TZP33w83O2hev/IrvxL2EsZEcU1wItMJAAAAAAAAgaOROAAAAAAAAAJH0AkAAAAAAACBI+gEAAAAAACAwBF0AgAAAAAAQOAIOgEAAAAAACBwBJ0AAAAAAAAQOIJOAAAAAAAACBxBJwAAAAAAAASOoBMAAAAAAAACR9AJAAAAAAAAgSPoBAAAAAAAgMARdAICUq1WJZvNyubmpmiaJslkUvL5vLTb7bCXhiUyDEOKxaIkk0nRNG24F8rlsliWdet5F7G/4jInFmewT5vN5szPjcv+YU/Gh2EY0mw2pVqt+v584rJn2IfRYFmWlMtlyWazw///DT6Ler1+63njsmfYhwBCYQOYS6vVshOJhC0idiaTsVutlt3tdu1Go2Hruj78+fn5edhLxQKdn5/buVzOFhHXW61Wm2neReyvuMyJxSqVSsN92Wg0fD8vLvuHPRl95+fndqVSsVOplC0idiKRsEulkt1qtTw/l7jsGfZhdFQqleE+q1QqdqvVsjudjl2r1YZ7UNd1u9Vq+Z4zLnuGfQggTASdgDm0Wq3hl7ZCoTBxzOg/ZPjLfDWdn58P/9Hm5zZtr6gWsb/iMicWa/QzmyXoFJf9w56MtvPzc7tQKAw/o1QqNfMX/TjsGfZhdAx+KZRKpaaOGd2TnU7Hc8647Bn2IYCwEXQCbun8/Hz4WyNd16eO63a7w7/sM5nMEleIZclkMsN/zDYaDbvb7Q5/gziaTTLLl/xF7K+4zInFGv3MZgk6xWX/sCejrVarOfbfrNmfcdkz7MPoGGQ4iYhnQGXwC6REIuE6Li57hn0IIAoIOgG3NAg0+PlH82jZ1az/wEa01Wo1W0TsUqk0dUy32x3+FnFw8/oH7SL2V1zmxGLlcjlb13XHF38/Qae47B/2ZHSNBuF1Xbe73e7Mc8Rlz7APo2M0o86L37LjuOwZ9iGAKCDoBNzC6G+E/PzmrNFo+A42IF50Xff1W0F1z4jI1HKSReyvuMyJxRoESTudzkxBp7jsH/ZkdI1+oU0kErcq4YnLnmEfRsdoaVkul/McP/pZTPtlUlz2DPsQQFQQdAJuYbTu328a8uhf/LM07UV0dTodX/+QGxhN8RcRu1KpTBy3iP0VlzmxOIMvIIMvUrMEneKyf9iT0TSabSEit8pwsu347Bn2YXQMAu0i7uVlA6OBF/6OZh8CCMaaAJjZ6GV1U6mUr+fouj68f3h4GPiasHyHh4dSKBQkkUj4Gp/JZBzHP/3pTyeOW8T+isucWJx8Pi+pVEoqlcrMz43L/mFPRk+9Xndcjr1Wqzne81nnGojynmEfRsfW1tbwvmmaYpqm6/ijo6Ph/Wn7NC57hn0IICoIOgEzMgzDcfzkyRNfzxv9C7/ZbAa6JoTj2bNnM32BV//Rl0wmx8YsYn/FZU4sTrlcFsMwpNFozPzcuOwf9mT0mKYpxWJxeJxKpaRQKNxqrrjsGfZhtKiBo9H9OMngvU8kEpLL5cYej8ueYR8CiBKCTsCMRn9jKzL9N2EqdZz6DwLETyqV8p3lJCJiWZbjeNLeWcT+isucWAzDMKRard46wyQu+4c9GT35fN5x/OLFi1vPFZc9wz6MllQq5QiktNvtsX05UK/Xh5lQ036hFJc9wz4EECUEnYAZjaZei4jvoMOjR48cx8fHx0EtCTGhpvWr5XYii9lfcZkTi7G3tye5XO7WGSZx2T/syWgxTdPxhXVa5ohfcdkz7MPo+eSTTxzHzWZzLPDUbreHWVC1Wm3q/y/jsmfYhwCihKATMCM1cHDb3x51u93A1oR4GP3H27R/0C5if8VlTgRv8MVK/dI1i7jsH/ZktNRqNcfxIMg++MKfTCZF0zTZ3NyUdDot1Wp1LBt0VFz2DPswelKp1FhpcbPZlGQyOcwEzWazouu6tFot1wB9XPYM+xBAlNwLewFA3Hg1ofTL7R/XWE2jX8LK5fLEMYvYX3GZE8FqNpvSbDal1WrNVAaqisv+YU9Gy2gTY5Gbhs7pdHqsXMeyLDEMQwzDkHK5LI1GY2JGVFz2DPswmnK5nNRqNUdPJ9M0JZ1Oi4hIqVTy1aMxLnuGfQggSsh0AmZ027+A1S99Z2dn8y8GsTFaalKpVKb+1nER+ysucyI4lmVJPp+XQqEwsYxz1rlugz15d5mmOfZ5fPrpp1IsFuX8/Fxs2xbbtqXb7Y5lleTz+YkNjOOyZ9iH0VUoFMYy8Aba7bavzy4ue4Z9CCBKCDoBIeG3R3fL4Deouq5LqVRa+OstYn/FZU7c9HHSdX3qF6wwxGX/sCfnp2ZZJBIJ+cEPfiCFQsHxpXawR9V9+vz584V9DnHZM+zDxSgUChPL5wzDkK997WtLa5wdlz3DPgQQBIJOwIzmKVNZxDyIPsMwpF6vSyKRkFar5Tp2EfsrLnMiGNVqVQzDGOthcltx2T/syehQg05qsEmlBgIsy5KDgwPHmLjsGfZhtBWLRanX61IoFMYyji3LknQ6PXblt1Fx2TPsQwBRQtAJmNHW1lak5kH0PX/+XEREXr165dnMcxH7Ky5zYn6DvjiVSsVxmfB5xGX/sCejQ20+/OTJE8/nqH3uqtWq4zgue4Z9GF3ZbFbq9bqUSiWp1WoTyzsH46YFnuKyZ9iHAKKEoBMwo9v+1kdNUea3R3dDsVgcZp34CQIsYn/FZU7ML5/PSyqVCrSEMy77hz0ZHbd5T3VdH/t/5GipU1z2DPswmgYZTJlMxtEwvFarTcwKzefzE0vL4rJn2IcAooSgEzCj3d1dx7Hfene1GWMymQxqSYioer0u9XpdarXaxKsxTbKI/RWXOTGfarUqpmnK1taW5PN5z9voZ3ZwcOB4bLSRc1z2D3syOm77Hqqf4WiZXlz2DPswevL5/DCAOanPXS6Xk06n4wiwWJY18Sqzcdkz7EMAUXIv7AUAcTO4vO6AaZq+MljUcoN5ryiFaGu321IsFqVWq01M359mEfsrLnNiPj/96U9FRFz7kUwzuGT9gK7rw0BpXPYPezI61OwIv1941S+4o1+A47Jn2IfRYprmMIieSqWmlrinUinpdDqOPViv16VSqTj2c1z2DPsQQJSQ6QTMyO03sW5G/9GdSCQ8e/sgvgzDkGw2K5VKZaaAk8hi9ldc5kQ0xWX/sCej47afhRqsGu0nE5c9wz6MltHMJvWzUU264ufx8bHjOC57hn0IIEoIOgEzSqVSjn8YHx0d+Xre6D9cvP7hg/gyTVP29vakVCrdqq/OIvZXXObEfCqViti27fs2+mWi0Wg4HhvteRKX/cOejA41o0LNnvBrdI/GZc+wD6NlNIjip1RM/UWRGqyJy55hHwKIEoJOwC08ffp0eH+0JMXN6LhJfQIQf6ZpSjqdlkKh4PjS7vUc9SpNi9hfcZkT0RSX/cOejI7Rshy/JZ9qGZ4avIrLnmEfRsdoiabf4KdXGVpc9gz7EEBk2ABm1ul0bBEZ3ry0Wq3hWF3Xl7BCLNv5+bmt67pdKBRmel4qlbI7nY7jZ4vYX3GZE8uj6/rw82g0Gq5j47J/2JPRMfreioh9fn7u+ZxCoTAcn8lkxh6Py55hH0ZHqVRy3VOTpFKp4XNardbY43HZM+xDAFFBphNwC6lUyvFb3NErPU0yejlefnO0eizLknQ6LbquS7lcFtM0PW/tdnvY6FP9reoi9ldc5kQ0xWX/sCejI5PJOMrjDg4OPJ8zmhE1KVs0LnuGfRgdz549G94/Pj721dR+tKRuUiPtuOwZ9iGAyAg76gXEVbfbHf5GKJVKTR13fn4+82/ZEC+jvxWd9Var1SbOuYj9FZc5sRyzZDrZdnz2D3syOtRMi263O3XsaJaFW8ZoXPYM+zA6MpnM8D0ulUquY0f3YaVSmTouLnuGfQggCgg6AXNoNBqe/zgZBCQSiYSv8gLEyzwBJ6+4/yL2V1zmxOLNGnSy7fjsH/ZkdNRqNUfJzqT3elCe7PXFeCAue4Z9GA3n5+d2IpHw9cuewTg/gZe47Bn2IYCwEXQC5tRqtYb/SMnlcnan07HPz8/tVqs1/Es8lUrxl/gKyuVycwWc/PR/WsT+isucWKzbBJ1sOz77hz0ZHaOfRSKRsCuVit3pdOxOp2NXKpXhY7P0xIvLnmEfRsP5+flYz7BarWZ3Oh271Wo5ej+5ZTip4rJn2IcAwkTQCQhIpVKxU6mU4x/WmUxmpi9zwDSL2F9xmRPRFJf9w56MjlqtZmcyGcdnkUql7FKp5Fp65yYue4Z9GA2dTscuFAqOoLuu63Yul7NLpdKtgy5x2TPsQwBh0GzbtgUAAAAAAAAIEFevAwAAAAAAQOAIOgEAAAAAACBwBJ0AAAAAAAAQOIJOAAAAAAAACBxBJwAAAAAAAASOoBMAAAAAAAACR9AJAAAAAAAAgSPoBAAAAAAAgMARdAIAAAAAAEDgCDoBAAAAAAAgcASdAAAAAAAAEDiCTgAAAAAAAAgcQScAAAAAAAAEjqATAAAAAKwwy7JE0zTPm2EYYS81sqrVquf7l0wmw14mEDmabdt22IsAAAAAACyGZVmyubk5PE6lUvLJJ5+IruuOcYlEYskrixfLsob3z87OpN1uS7FYHP5M13XpdrshrAyILoJOAAAAALDC1KBTo9GQXC4X4opWRz6fl2azKSIEnYBJKK8DAAAAgDuEjKbgqNliAJwIOgEAAADAHbK1tRX2EgDcEQSdAAAAAAAAEDiCTgAAAAAAAAgcQScAAAAAAAAEjqATAAAAAGAqy7KkWq1KOp0eXqltoNlsSjablc3NTdE0TdLptNTr9anzlMtlSafTjvHqnFFfBwD/7oW9AAAAAABYdeVyWarV6q2em0qlpNPpBLwid4ZhSLvdlsPDQzEMY+xx0zQln8+PPWYYhhSLRel0OlKr1YY/r1arUi6XJ75OPp+XUqkklUolsusAcDsEnQAAAABgwSzLEhERXdelWCyKrusTxx0dHY0Fp5YdBDFNUw4ODkREJgZ66vW6FItFSaVSUqlURNf14XMG51mv1yWfz0smk5FsNivHx8dSKBQknU7L1tbW2HlWq9Wx9yUq6wBwe5pt23bYiwAAAACAVVYsFuXTTz+V8/Nz13HpdNoRYCkUCo5MnduwLEs2NzeHx51OR1KplK/nqplBuq7L2dmZfPLJJ5LL5RxjTdOUZDI5PB68xtbWljQaDUkkEo7x7XZbstns8NjtXKOyDtVoBpuu69Ltdn09D7gr6OkEAAAAAEvw4sUL18er1aoj4JRIJOYOOM1rUnDq/Px8LNAjchN0yWQyw2PDMMSyLGm1WmOBHhGRTCbjyChqt9uRXweA2RB0AgAAAIAFOzs7c80uMk1zrNdQo9FY9LI8bW1tOY4nBXlGjWYMicjE/kmjRt8T0zQjvw4AsyHoBAAAAAALVqlUHNk3qnw+7zguFAqu46NKzSRSg0UqtXdSUAGfqKwDuOsIOgEAAADAgrk1pq7X62NldXG9gppXcMfLoAH4qqwDuOsIOgEAAABASEzTlGKx6PjZpGbXq+rRo0dhL0FEorMOYNUQdAIAAACAkKgBp1wuF8uyOgCYhKATAAAAAISgXq87rpSWSCTkk08+CXFFABAsgk4AAAAAsGSWZY1dUe2TTz65M2V1AO4Ggk4AAAAAsGT5fN7RrDqXy0kulwtvQQCwAASdAAAAAGCJms0mZXUA7gSCTgAAAACwJJZlyfPnzx0/o6wOwKoi6AQAAAAAS/L8+fOZy+qq1arU6/UFrwwAgkfQCQAAAACWoN1uS7PZHB77LatrtVqytbW1yKUtzNnZWdhLEJHorAO4awg6AQAAAMAS5PN5x7GfsjrLsqTdbouu6wtcWXDU4M5oVtckP/3pT1d6HcBdR9AJAAAAABasWCw6Ah+ZTMbX1eoG/Z/CCjqZpuk49greqI93u92ZxquvF7V1AJiNZtu2HfYiAAAAAGBVtdttyWazjp/VarWJgSTLsuTs7Ey63a40m81h8GOer22WZcnm5ubwuNPpSCqV8vXcdDothmEMjxOJhPzgBz+YmKFlWZak02lHwCaRSEin05l4rqZpSjqdHgvGtVqtyK5DVS6XpVqtishNYNAruAXcNWQ6AQAAAMAClcvlsZ8Vi0XJZrNjt3w+L8ViUarV6jBosuwr2xmGIdlsVjY3Nx2BHpF3Aax0Oj3sT2UYhqTTadnc3JyYkZRMJiWdTg+bobfbbUkmk5JMJscyjNrttmxubko2m5V//I//cSTWQdYTcHtkOgEAAADACpsn0wnuyHQC3JHpBAAAAAAAgMARdAIAAAAAAEDgCDoBAAAAwB1ydnYW9hIA3BEEnQAAAADgDqExdnDUBuQAnO6FvQAAAAAAwPKUy2XRdV12d3cdP1/2VfLiRg0wHR8fD6+EB2Aygk4AAAAAcIdYliXZbHbs51zVbrpqtSrlcjnsZQCxo9m2bYe9CAAAAAAAAKwWejoBAAAAAAAgcASdAAAAAAAAEDiCTgAAAAAAAAgcQScAAAAAAAAEjqATAAAAAAAAAkfQCQAAAAAAAIEj6AQAAAAAAIDAEXQCAAAAAABA4Ag6AQAAAAAAIHAEnQAAAAAAABA4gk4AAAAAAAAIHEEnAAAAAAAABI6gEwAAAAAAAAJH0AkAAAAAAACBI+gEAAAAAACAwBF0AgAAAAAAQOAIOgEAAAAAACBwBJ0AAAAAAAAQOIJOAAAAAAAACBxBJwAAAAAAAASOoBMAAAAAAAACR9AJAAAAAAAAgSPoBAAAAAAAgMARdAIAAAAAAEDgCDoBAAAAAAAgcASdAAAAAAAAEDiCTgAAAAAAAAgcQScAAAAAAAAEjqATAAAAAAAAAkfQCQAAAAAAAIEj6AQAAAAAAIDAEXQCAAAAAABA4P5/65wi2/dmEu4AAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1200x900 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"nbins = 200\n",
|
|
"vmax = 400\n",
|
|
"\n",
|
|
"a1 = plt.hist2d(\n",
|
|
" brem_z,\n",
|
|
" brem_x,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax,\n",
|
|
" range=[[-200, 9500], [-3200, 3200]],\n",
|
|
")\n",
|
|
"plt.vlines([770, 990, 2700, 7500], -3200, 3200, colors=\"red\", lw=1.5)\n",
|
|
"plt.ylim(-3200, 3200)\n",
|
|
"plt.xlim(-200, 9500)\n",
|
|
"plt.xlabel(\"z [mm]\")\n",
|
|
"plt.ylabel(\"x [mm]\")\n",
|
|
"# plt.title(r\"$e^\\pm$ lost brem vertices\")\n",
|
|
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
|
|
"\n",
|
|
"# plt.suptitle(\"brem vtx of photons w/ $E>0.1E_0$\")\n",
|
|
"plt.colorbar(a1[3])\n",
|
|
"mplhep.lhcb.text(\"Simulation\", loc=0)\n",
|
|
"# plt.show()\n",
|
|
"plt.savefig(\n",
|
|
" \"/work/cetin/Projektpraktikum/thesis/brem_vtx_hist2d.pdf\",\n",
|
|
" format=\"PDF\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 133,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"energy_emissions = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for jelec in range(ak.num(ntuple, axis=0)):\n",
|
|
" energy_emissions.begin_record()\n",
|
|
" energy_emissions.field(\"lost\").boolean(ntuple[jelec, \"lost\"])\n",
|
|
" energy_emissions.field(\"energy\").real(ntuple[jelec, \"energy\"])\n",
|
|
"\n",
|
|
" tmp_velo = 0\n",
|
|
" tmp_richut = 0\n",
|
|
" tmp_neither = 0\n",
|
|
" tmp_velo_length = 0\n",
|
|
" tmp_richut_length = 0\n",
|
|
" tmp_neither_length = 0\n",
|
|
"\n",
|
|
" for jphoton in range(ak.num(ntuple[jelec][\"brem_photons_pe\"], axis=0)):\n",
|
|
" if ntuple[jelec, \"brem_vtx_z\", jphoton] <= 770:\n",
|
|
" tmp_velo += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_velo_length += 1\n",
|
|
" elif (ntuple[jelec, \"brem_vtx_z\", jphoton] > 770) and (\n",
|
|
" ntuple[jelec, \"brem_vtx_z\", jphoton] <= 2700\n",
|
|
" ):\n",
|
|
" tmp_richut += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_richut_length += 1\n",
|
|
" else:\n",
|
|
" tmp_neither += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_neither_length += 1\n",
|
|
"\n",
|
|
" energy_emissions.field(\"velo_length\").integer(tmp_velo_length)\n",
|
|
" energy_emissions.field(\"velo\").real(tmp_velo)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"rich_length\").integer(tmp_richut_length)\n",
|
|
" energy_emissions.field(\"rich\").real(tmp_richut)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"neither_length\").integer(tmp_neither_length)\n",
|
|
" energy_emissions.field(\"downstream\").real(tmp_neither)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"photon_length\").integer(\n",
|
|
" tmp_neither_length + tmp_richut_length + tmp_velo_length\n",
|
|
" )\n",
|
|
"\n",
|
|
" # if (tmp_velo == 0) and (tmp_richut == 0):\n",
|
|
" if (\n",
|
|
" False # (tmp_velo >= 0.5 * ntuple[jelec, \"energy\"])\n",
|
|
" or ((tmp_velo == 0) and (tmp_richut == 0))\n",
|
|
" or (ntuple[jelec, \"energy\"] - tmp_velo < 3000)\n",
|
|
" ):\n",
|
|
" energy_emissions.field(\"quality\").integer(0)\n",
|
|
" else:\n",
|
|
" energy_emissions.field(\"quality\").integer(1)\n",
|
|
"\n",
|
|
" energy_emissions.end_record()\n",
|
|
"\n",
|
|
"energy_emissions = ak.Array(energy_emissions)\n",
|
|
"\n",
|
|
"print(ak.num(energy_emissions, axis=0))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 134,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{lost: False,\n",
|
|
" energy: 5.09e+04,\n",
|
|
" velo_length: 0,\n",
|
|
" velo: 0,\n",
|
|
" rich_length: 0,\n",
|
|
" rich: 0,\n",
|
|
" neither_length: 0,\n",
|
|
" downstream: 0,\n",
|
|
" photon_length: 0,\n",
|
|
" quality: 0}\n",
|
|
"--------------------------\n",
|
|
"type: {\n",
|
|
" lost: bool,\n",
|
|
" energy: float64,\n",
|
|
" velo_length: int64,\n",
|
|
" velo: float64,\n",
|
|
" rich_length: int64,\n",
|
|
" rich: float64,\n",
|
|
" neither_length: int64,\n",
|
|
" downstream: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" quality: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {lost: False, energy: 5.09e+04, ...} type='{lost: bool, energy: flo...'>"
|
|
]
|
|
},
|
|
"execution_count": 134,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"energy_emissions[3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 135,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found: 41978\n",
|
|
"lost: 8523\n",
|
|
"50501\n",
|
|
"VELO energy emission, eff: 0.18201619769905547\n",
|
|
"RICH1+UT energy emission, eff: 0.12653214787825984\n",
|
|
"Neither, eff: 0.5226827191540762\n",
|
|
"total efficiency: 0.8312310647313914\n",
|
|
"efficiency: 0.8312310647313914\n",
|
|
"\n",
|
|
"found in velo/(found + lost in velo)\n",
|
|
"VELO energy emission, eff: 0.848831840428479\n",
|
|
"RICH1+UT energy emission, eff: 0.794479671764267\n",
|
|
"eff von e die nicht strahlen: 0.8345505706788074\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# efficiency berechnen als found in velo oder rich über alle elektronen\n",
|
|
"# dann kann man zusammenrechnen mit velo, rich, und allen anderen elektronen\n",
|
|
"# expected eff = 81.19%\n",
|
|
"\n",
|
|
"electrons_found = energy_emissions[~energy_emissions.lost]\n",
|
|
"electrons_lost = energy_emissions[energy_emissions.lost]\n",
|
|
"\n",
|
|
"anz_found = ak.num(electrons[~electrons.lost], axis=0)\n",
|
|
"anz_lost = ak.num(electrons[electrons.lost], axis=0)\n",
|
|
"print(\"found: \", anz_found)\n",
|
|
"print(\"lost: \", anz_lost)\n",
|
|
"\n",
|
|
"num_velo_found = 0\n",
|
|
"num_rich_found = 0\n",
|
|
"num_no_up_rad_found = 0\n",
|
|
"for itr in range(ak.num(electrons_found, axis=0)):\n",
|
|
" if electrons_found[itr, \"quality\"] == 1:\n",
|
|
" if electrons_found[itr, \"velo\"] >= electrons_found[itr, \"rich\"]:\n",
|
|
" num_velo_found += 1\n",
|
|
" else:\n",
|
|
" num_rich_found += 1\n",
|
|
" else:\n",
|
|
" num_no_up_rad_found += 1\n",
|
|
"\n",
|
|
"num_velo_lost = 0\n",
|
|
"num_rich_lost = 0\n",
|
|
"num_no_up_rad_lost = 0\n",
|
|
"for itr in range(ak.num(electrons_lost, axis=0)):\n",
|
|
" if electrons_lost[itr, \"quality\"] == 1:\n",
|
|
" if electrons_lost[itr, \"velo\"] >= electrons_lost[itr, \"rich\"]:\n",
|
|
" num_velo_lost += 1\n",
|
|
" else:\n",
|
|
" num_rich_lost += 1\n",
|
|
" else:\n",
|
|
" num_no_up_rad_lost += 1\n",
|
|
"\n",
|
|
"denom = ak.num(electrons, axis=0)\n",
|
|
"print(denom)\n",
|
|
"\n",
|
|
"eff_velo = num_velo_found / denom\n",
|
|
"\n",
|
|
"eff_rich = num_rich_found / denom\n",
|
|
"\n",
|
|
"eff_other = ak.num(electrons_found[electrons_found.quality == 0], axis=0) / denom\n",
|
|
"\n",
|
|
"print(\"VELO energy emission, eff: \", eff_velo)\n",
|
|
"\n",
|
|
"print(\"RICH1+UT energy emission, eff: \", eff_rich)\n",
|
|
"\n",
|
|
"print(\"Neither, eff: \", eff_other)\n",
|
|
"\n",
|
|
"print(\"total efficiency: \", eff_velo + eff_rich + eff_other)\n",
|
|
"\n",
|
|
"print(\"efficiency: \", anz_found / (anz_found + anz_lost))\n",
|
|
"\n",
|
|
"print(\"\\nfound in velo/(found + lost in velo)\")\n",
|
|
"\n",
|
|
"eff_velo = num_velo_found / (num_velo_found + num_velo_lost)\n",
|
|
"eff_rich = num_rich_found / (num_rich_found + num_rich_lost)\n",
|
|
"\n",
|
|
"eff_no_rad = num_no_up_rad_found / (num_no_up_rad_found + num_no_up_rad_lost)\n",
|
|
"\n",
|
|
"print(\"VELO energy emission, eff: \", eff_velo)\n",
|
|
"\n",
|
|
"print(\"RICH1+UT energy emission, eff: \", eff_rich)\n",
|
|
"\n",
|
|
"print(\"eff von e die nicht strahlen: \", eff_no_rad)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 136,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"41978\n",
|
|
"8523\n",
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(ak.num(electrons[~electrons.lost], axis=0))\n",
|
|
"print(ak.num(electrons[electrons.lost], axis=0))\n",
|
|
"print(ak.num(electrons, axis=0))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 137,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# energy_emissions = energy_emissions[energy_emissions.energy >= 5e3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 138,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHLCAYAAAAJAtg3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0JUlEQVR4nO3dz4sbeZ7n/1d+p7c9CaYqMt2XOTS0Q6c+rQllwVIsVIGlrT8gJRt2GuZQWKLRrWAkPBe7LpOEmKugJTMwC8WCLSXLHnukGrJgtw5bVoy/l+8sw2Z4IA/zPXRlRheGHPdMd+zBFVFSKqSUlJLiI+n5AGFnxEef+OgTkuKtz6/YCcMwFAAAgKH+n7QLAAAAMAnBCgAAMBrBCgAAMBrBCgAAMBrBCgAAMBrBCgAAMBrBCgAAMBrBCgAAMBrBCrDhPM9Tq9VKuxhrg/oCzEOwAiyR7/va29tL5eLn+76KxaKy2ayazebKj79uxtXXdefQ8zzVajUVi0VlMhnV6/Wp9gGY3o/SLgCwyYIgUBAEOj09Hdnn+7729/dlWdZU22dl27ba7bZ2dnZulM+2GFdfk86h53m6f/++Li4uJEm1Wi1ON2kfgNnscG8gIB3ZbFbtdlu2bU+1fV47OztyHEf9fn8h+W26WeqrWCzK87zEIGTSPgCzoRsoRUEQpF0EpCS6kE27HWaadK44j8DiEKysWCaT0c7OjnZ2dlQsFtMuztbzPE/FYlH5fF6ZTEa1Wi3eFwSBWq2W8vm8Wq2WfN9XPp/X3t6e8vl8HGzW63VlMhnt7e0NPV+SOp2OisXi0LnudDrxhaxcLscByrjt05R1sMzlcjl+zDJGYpq6yGaz6nQ66vV6ymazY9/H15W10+kon8+r1+up1Wppb29P5XJ5JJ/odWQymZH66PV62tvb087OjvL5/NC+VqulnZ2da1//NPWVdA5brZaKxaJ834/HuhSLxfj1jNu3iLpZ5Hm6Wgf5fH6kLqcpM7B0IVam2+2G7XY7vLi4CC8uLtIuztbr9/thLpeL/26326GksFQqhWEYhqenp2GpVAolhblcLqxWq2G/3w+73W68rVQqhd1uNzw9PQ0LhUIoKez3+/HzXdeN0w6qVquhpPD09HSq7deVNTqeZVlht9uNt0XHdxznxnURvb7Buojqx3XdqfNqt9uhbdvxtmq1GjqOM1JGx3HCarUaH19SKCm0bTvOK3p9g8eP0l/3mqepr0nnMAzD0Lbt0LbtxPyT9t20bhZ5nqL0tm0Pvd8sywoty5q6zMAqEKysUKFQCF3XjS9mSJfjOCPnwrKsUFIcTPb7/cQvZsdxRoKKKO3VC8IigpVpylooFBIvqNMEK9PkH12krnt90+QVBQBRMHJVdKzBfKIL7tW6iQKYQa7rhs1mc+JrnqW+FhWs3LRuFnmeovyupouOH+U3zTGBZdv62UBBEOjo6EiS5LruyH7P83R0dCTbthUEgfL5vAqFwtzHippPS6US00lT5Pt+fG6TvHz5UrlcLv776swc27bleZ729/eHtkla+IDKacpq27Y6nU7ie3gR+U+qC0k6Pz+fKa8ojw8++CAx3TfffDOyrVgsqtVqyfO8ocHHpVJJrVZLvV4vLufz58/15ZdfJuYdlXPe+prXTetmkedpML9nz54NpalWq6pWq3MdE1iWrQ5Wer2ems2mOp2OSqXSyH7f95XNZtXv9+U4jqR3Y07Oz88T01+n2+1KetffHfXDR18KWK2oT77dbqdckutNU9ZoPMQ8M4gWWRez5jVuenZ0oe71evFnL3L171qtplarJdd1lcvlFATBtVO/fd+XNF99zeumdbPo92yU36R6WqfPCTbbVg+wzeVyEz+E5XJZuVxu6MuxVqslDgScRalUkuu6ev78+Y3ywfyii1X0r8mmKWu0b/CX8yLzX3VehUJBuVxOR0dH6vV6CoJAruuqWq2OBBi2bSuXy6nX68n3/XiA6zTlnKe+5nXTuln0e3aW99U6fE6w2bY6WJkkCAL1ej3l8/mh7QcHB5IUr2bZarVUq9XGPqJfvFcVCgWmLqcouuB1Op3E/ePOWxqmKWuUZp61VBZZF4vMq91uK5fLxcvfu647ttsm6l5tNpvqdrvXtnzepL7mddO6WfR7NvoRNu4Hm+/7a/U5wYZLe9DMTV1cXISFQmHs/m63O3YQX0QJAyijGR/tdjsx/aRjTiMatY90XFxcxLNLrg4ebDab8QyRaNDs1fdQNONicIBhlOfV95ImDLC9euyk7dOUdTDN1UGPShiAOk9dRAM3rw5c1cCA1GnzajaboaShmThXJQ1onSSaRTPN52rW+ko6h2E4OnNm0r6b1s0iz9PV/K4eq1qtxrMWpzkmsGxr37JiWVa8PsBVvV5v4q+xSaJmz3H9ubM2i/q+P/QrpNls6vHjxzOXC4thWVY8XiibzapYLKperyufz+v09DQeNDiumyBqFRvcH/1/cFtSOund2Cfp3fsgGuw5bvs0Zb2aJuoSiVocfN8fu+bITetinryiehnXuhgNmI2e32q1htahSRK91ocPH85czkn1Ne4czuqmdbPI8xTlF3035vN5FYtF1Wo1ZbNZZTIZWZY19TGBpUs7WlqUbrc79Mvn6t+TKOHX8LhfvlH6Sb9Ux5XPsqywUCiEzWaT6cuGcF03/kVu2/bQr9FofQlJoWVZcStb9MtX3/+K7/f7Q+tbWJYVn+Nom76fSjr4K95xnNCyrMRp0UnbJ5U10mw24zSO48TraFSr1ZEpv7PWRTRd27btuDUnmk4cvb5p8hpcS2Tc64jKHeU9+LBtO3HKbNQKMIvr6mvcORxcuyT6/hhsjRu3bxF1s8jzFB0zeo7jOImtJdO894Bl2qh7A0UtKeVyOe67nsbOzs7IVOJoxk632x359bCzs6NcLjd1/gBm43menj9/rsePH+v8/FxBEMQtBu12O3EmXa/XU7vdZkkAYANt1NTlKIAoFovxnU7nFQ0sG9dMvcopj8A2iZYMuLi4iLsiBtm2nTiwk65VYHOt/ZiVQb1eT57nqd1u3/i+O9Gsn6tjU6K/s9nsjfIHkCz6jD169GhojEo0LbnZbMazfaKxJtG/V9dgAbAZNqZlJeoCGuyayefzc3fVWJYlx3HU7XaHmpujX3QPHjy4WYEBJMrlcnJdV0dHR0NTZh3Hkeu6Q4HK4MD6Ra8cDMAcGzFmJSlQkd6tDXDd2JUgCLS3t5e4/L3necpmszo9PY27fTKZjMrlMivPAisQjVUZ1+1aq9Xk+74eP35MqwqwwdY+WAmCQI8ePRq7sFGn09E333wz9r4/zWZTrVZLlmXp2bNnQ/fmiNJE9wbyfV/5fH6upfYBAMB81j5YAQAAm22tx6z85je/0a9//Wv97Gc/0+7ubtrFAQAAU7i8vNQ//dM/6ZNPPtFPfvKTa9OvdbDy61//Wr/4xS/SLgYAAJjDF198oT/90z+9Nt1aBys/+9nPJL17sT//+c8XmvebN2/00Ucf6auvvtLt27cXmvfh4aGOj48Xmuc6572sfDmHq8l3WXkv8/xJ1PMq8uYcri7vdfse/Yd/+Af94he/iK/j11lasPLLX/5SBwcH+vTTT5d1iLjr5+c///nCZwJ89913kqR79+7pvffeW2jeu7u7S5u5sI55LytfzuFq8l1W3ss8fxL1vIq8OYery3sdv0clTT2EYymLwr1+/VrNZpPpvQAA4MaW0rJy9+5dNZtNlqQHAAA3trRuoEePHi0rawAAsEWWdm+gTz75RK9evVpW9gAAYEvM3bLy8OHDsfuCIFCv19OLFy907969eQ8BAAAwf7Aybnn7q2n+8i//ct5DbKxKpULeK8h3majn1eW9LNTz6vJeFs7h8vM1xdzL7T948ECu62p/f39k3+npqVqtln71q1/duICTRDca7Pf7S5ly9/777+u3v/3tUqZrYfk4h+uN87f+OIfrb1nncNbr99xjVsrlsu7evav3339/5OE4jrLZrP7iL/5i3uwBAAAk3SBYuX///sT9tm2r2WzOmz0AAICkG4xZmTTTx/d91Wq1ebMGAACIzR2sOI6jnZ2dsfvDMFS9Xp83ewAAAEk3CFYsy9KDBw9kWdbIvjt37shxnGu7igAAAK4zd7Dy7NkzHR4eLrIsAAAAI+YeYEugAgAAVmFp9wb65S9/qYODA3366afLOkTs8PBw7G2mK5XKXIvl3Lp1S0+ePNGtW7duWjykhHOYsq+fJm//cMz2Kzh/649zuP5ucg4bjYYajUbivsvLy5nymntRuElev36tTCajvb09ffvtt4vOPrbMReEA3NANgxUAm2vW6/dSWlbu3r2rZrMp27aXkT0AANgiS+sGevDggd5///1lZQ8AALbE3ANsr/Pll1/q8ePHy8oeAABsiRu1rPzd3/2dut2ugiAY2n5+fi7P83R+fq6jo6ObHAIAAGy5G62zUi6XJ6YplUrzZg8AACDpBt1AzWZT3W5XFxcX+tu//Vu5rqs//OEP+sMf/qDz83OVSiX96le/WmRZAQDAFpo7WMnlcrp//77ef/995XI5vXz5Mt5nWZay2SxjVgAAwI3NHaz89re/Hfr7wYMH+qu/+quhbZ1OZ97sAQAAJN1gzIpt2/qjP/oj7e3t6eXLlzo8PNTBwYG63a4sy1Kn00m8ySEAAMAs5g5W/vzP/1y/+c1v9Pd///fa39+XJL148UL5fF6vX7+WJLmuu5hSAgCArXWjqctXgxHbtnV6eqrXr19rf3+fReEAYJuNu+WCabgFhPGWttw+AADbwvM8PX/+XL1eT5LU7/dTLtFmWdoKtgAAbAvHcfTw4UN5nrfU4/i+P7IQ6zYgWAEAYAGmuXvwTRWLRZ2fny/9OKYhWAEAYA0Ui8Wlt9yYaml3XQYAAO8EQaBarSbLsuKAo1arKZfLJaYJgkC9Xk+1Wk2lUkmdTid+XrlclmVZevz48Upac0xAsAIAwBJ5nqf79+/ryy+/jIOLVqulfD4v13VVrVYlSY8ePZJt2/FM21arFY9PKRQK+uabb1Sv19VsNmXbdiqvJS0bEawcHh5qd3c3cV+lUlGlUllxiYAtsy5TVIEUPHr0SAcHB0OtIKVSSc1mU7VaTYVCQbZtq9frDd0AuFQqqV6vp1HkhWg0Gmo0Gon7Li8vZ8prI4KV4+PjrWkKAwCsD9/35Xle3HoyqFwuq1wuq9lsynVd2bater2uO3fuxOmTnrcuJjUWeJ6nbDY7dV4MsAUAYEkmDYg9ODiQ9C6gkaR2uy3LslSr1ZTJZLZ2MG0SghUAAJYsaW2U6P550S1rbNvW69evlcvl5Pu+stmsWq3WCktpLoIVAACWJBqiEK1sOygKYDKZjKR3LSyWZanb7ardbkt611UEghUAAJbGtm05jiPf9+PunsjLly9lWVY8qHbwfnuFQkHNZlOSRp7HCrYAAGChorEog60kQRDIdV09e/Ys7g568eLFUGASBIFs246nKUctMM1mU77vq9PprO5FpGwjZgMBAAy0RXcz9jwvbgnxPE/1el2lUkmWZcVjUR49eqR8Ph8HH+12e2gm68HBgfL5vAqFgqR3LSqDN0SMpju/ePFCkuLjbQOCFQAAbshxHDWbzbEBhGVZ8TiUcbrd7rXH2da7OdMNBAAAjEawAgAAjEawAgAAjEawAgAAjEawAgAAjEawAgAAjEawAgAAjEawAgAAjEawAgAAjLYRK9geHh5qd3c3cV+lUlGlUllxiQAA2G6NRkONRiNx3+Xl5Ux5bUSwcnx8PHR/BQAAkK5JjQWe5ymbzU6dF91AAADAaAQrAADAaBvRDQQAMM/Tp2mXYDrrUs5tRssKAABbxvM8tVqttIsxNYIVAAAWyPM81Wo1FYtFZTIZ1ev1tIsU831fxWJR2WxWzWYz7eJMjW4gAAAWxPM83b9/XxcXF5KkWq2m09PTlEv1A9u21W63tbOzk3ZRZkKwAgDAghwdHWl/fz/+23XdFEuzOegGAgBgQTzPS7sIG4lgBQCAG2q1WioWi/J9Px4XUiwW1ev14jRBEKhcLqtWqymfzyufzw/t73Q62tvb087OThz09Ho9FYtF7ezsqFgsxvm0Wi1ls1l1Oh31ej1ls9mhNIOi40YPk8bQTItgBQCAGyqVSmq327JtOx4X0m63lcvlJL1rcbl7967K5bJc11W321WxWFQ+n4+Dh0KhoAcPHgzlm8vlRrqSzs/P1e125Xmems2mut2unj17plKppE6nMxSM+L6vu3fvqlgsqtlsrtWg2kEEKwAALNmjR490cHAwdGuYUqkkx3FUq9Xk+74kybKskecOjoGR3g2SffjwoSQpn8/LdV05jhMHIt1uN05bq9V0cHAQB02SVK1WF/a6VsWoYKXT6cRNZMViUbVaLe0iAQBwI77vy/O8xHvYlctlSZq7xSMpuDk/P4+P2+l0lM/n58rbJMbMBup0Ojo6OlK/34+35fN51Wo1RlMDANbWpEG3BwcHkhS3rCxSlKdt2wvPe9WMaVlpNpvxSYvk83l1Op2USgQAwOIEQTCyLWoZudrVswhRsBK1tKwzY1pWzs/PRyLL09PTjYgIAQDbK+r+GZz5E4kCmEwms/DjRtfPwR6LdWVMy0q5XI6ne0nvms1evHhBFxAAYG2cn5+PtGTYti3HceJpzYNevnwpy7JUKpUkSXfu3JE03C0U/T+pZWaSqLei1WolPnfW/NJkTMtKqVRSv99Xq9VSJpORbdt6/fp14uChq968eaPvvvtu7mPfunVLt27dmvv5AABM0m63lc1mVS6X49k6QRDIdV09e/YsvtZFrTC1Wk2WZcn3/bhlpNfrKZ/Pq9vtTtW1Y1mWqtWq6vV6fC8g27bjwby+76ter881O+jt27d6+/btzM+LvHnzZrYnhIZxHCeUFEoK2+32xLT9fj9Oe5PHkydPVvPigE31P59M/wA2UL/fD0ulUnxdKZVKYbfbHUpzcXERFgqFMJfLhaVSKSyVSmG/3x/Jy3Xd0LKs0LKssFqthmEYhrZth9VqNez3+2G/34+vlbZth91uN7y4uBg6vuu6cX7NZjO0bTuUFDqOE56ensb5nZ6ezvV6nzx5spDrb9LrT7IThmE4W3izPPl8XsViUbZtq1gsKggCtdttFQqFxPSe5ymbzeqrr77SvXv35j4uLSvADX39dPq0H86QFoCRbtqy8urVK3300Ufq9/uJU7qvMqYbKJprHvXbvX79Wnfv3tWjR4/GBiuR27dv67333lt6GQEAwM1/5N++fXum9MYMsH3x4sVQdGVZllzXVRAE3BgKAIAtZkywsr+/PzIyOVoeeJpBtgAAYDMZE6yUy2W9ePFiKGDpdDpyHIe1VgAA2GLGjFmpVquyLEvFYjHuDgqCQF9++WXKJQMAAGkyJliR3g2ujQbYAgAASAZ1AwEAACQhWAEAAEYjWAEAAEYjWAEAAEYjWAEAAEYjWAEAAEYjWAEAAEYjWAEAAEYjWAEAAEYjWAEAAEYzarn9eR0eHmp3dzdxX6VSUaVSWXGJAADYbo1GQ41GI3Hf5eXlTHltRLByfHwc3/wQAACkb1Jjged5ymazU+dFNxAAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADDaj9IuwCIcHh5qd3c3cV+lUlGlUllxiQAA2G6NRkONRiNx3+Xl5Ux5bUSwcnx8LMdx0i4GAAD43qTGAs/zlM1mp86LbiAAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGA0ghUAAGC0jbjrMoAl+Prp6LYPE7aZLul1SOv5WoAtRcsKAAAwGsEKAAAw2kZ0Ax0eHmp3dzdxX6VSUaVSWXGJAADYbo1GQ41GI3Hf5eXlTHltRLByfHwsx3HSLgYAAPjepMYCz/OUzWanzotuIAAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSCFQAAYDSj7w3k+746nY4kqVQqybKsdAsEbLuvn6ZdAgBbyMhgxfd91Wo1BUGgZrMp27bTLhIAAEiJcd1A0Z0Y9/f31e12CVQAANhyRgUrQRDo/v37sm1bzWYz7eIAAAADGBWsRF0/ruumXRQAAGAIo8astFotSVK321WtVpPv+zo4OLh23MqbN2/03XffzX3cW7du6datW3M/HwCAbfL27Vu9fft27ue/efNmpvTGBCue50mSHMdRuVyW67ryfV/5fF6ZTEYXFxdjZwN99NFHNzr2kydP9PTp0xvlAQDAtjg6OtLnn3++suMZE6z4vi9JKpfLcStKNHYln8/r6OhobPfQV199pXv37s19bFpVAACY3uPHj/XZZ5/N/fxXr17N1NBgTLAyrtUkl8tJ+iGYSXL79m299957yygWAAC44qbDJ27fvj1TemMG2B4cHEiSTk9PE/fv7++vsjgAAMAQxgQrlmUpl8up1+sNbQ+CQJKUzWZTKBUAAEibMcGKJLmuK8/zhgKWVqslx3FUKpVSLBkAAEiLMWNWpHczgfr9vmq1mtrttizLUhAE6vf7aRcNwIYZNwGQiYGAeYwKVqR3AUu32027GAAAwBBGdQMBAABcRbACAACMRrACAACMRrACAACMRrACAACMRrACAACMRrACAACMRrACAACMRrACAACMRrACAACMZtxy+/M4PDzU7u5u4r5KpaJKpbLiEgEAsN0ajYYajUbivsvLy5ny2ohg5fj4WI7jpF0MYD19/TTtEgDYQJMaCzzPUzabnTovuoEAAIDRCFYAAIDRCFYAAIDRCFYAAIDRNmKALQCsq6dPp9sGbDOCFQCYE4EGsBoEKwAwgAAEMA9jVgAAgNEIVgAAgNEIVgAAgNEIVgAAgNEIVgAAgNGYDQRgtcbdOPHDMdsXkTeAtUawAgALNG6aM9OfgfnRDQQAAIxGsAIAAIxGsAIAAIy2EWNWDg8Ptbu7m7ivUqmoUqmsuEQAAGy3RqOhRqORuO/y8nKmvDYiWDk+PpbjOGkXAwAAfG9SY4Hnecpms1PntRHBCgAsEzN5gHQxZgUAABiNYAUAABiNYAUAABiNYAUAABiNYAUAABiNYAUAABiNqcsANtrTv/44ecdPV1oMADdAywoAADAawQoAADAawQoAADAawQoAADAaA2wB4DpnJ8nbf/rxCgsBbC9aVgAAgNEIVgAAgNHoBgI20ddPR7d9mLANANbARgQrh4eH2t3dTdxXqVRUqVRWXCIAALZbo9FQo9FI3Hd5eTlTXhsRrBwfH8txnLSLAQAAvjepscDzPGWz2anz2ohgBQBmdnaSvH2WGT5JeTBDCFg4BtgCAACjEawAAACj0Q0EbIukGUJYvLOTMTs+Xl0ZgA1DywoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADAawQoAADCa0cFKr9fT3t5e2sUAAAApMjpYKZfLaRcBAACkzNgVbGu1mmzb1vn5edpFAYCVevp0tu3ApjOyZaXX6+nOnTtyHCftogAAgJQZ2bLSbDbVbrdVq9XSLgqAAU//+uPk7Z+erLIYALaMccFKrVaT67ozPefNmzf67rvv5j7mrVu3dOvWrbmfDwCmoSsJy/T27Vu9fft27ue/efNmpvRGBSue5+nOnTuybXum53300Uc3Ou6TJ0/0lE8wMGRcKwrSQwACUxwdHenzzz9f2fGMClaOjo7Ubrdnft5XX32le/fuzX1cWlUALBsBBTbJ48eP9dlnn839/FevXs3U0GBMsFKr1ZTP5+X7frwt+n/077gWl9u3b+u9995bfiGBtHz9NHn7h2O2Y35nJ2mXADDeTYdP3L59e6b0xgQrvV5P9Xo9cV8mk5HjOOr3+ysuFYBpJHUZMegWwKIYM3W53+8rDMOhR7ValWVZCsOQQAUAgC1lTMsKgDmM6x4CgA1CsAJgKViTZXUYvItNZ0w3UBLXdXVxcZF2MQAAQIqMDlYAAAAIVgAAgNEYswJsOVaqBWA6WlYAAIDRCFYAAIDRCFYAAIDRCFYAAIDRCFYAAIDRCFYAAIDRmLoMYGMwDRvYTBsRrBweHmp3dzdxX6VSUaVSWXGJAGAJzk6St//04xtnnXR/Ie45hJtoNBpqNBqJ+y4vL2fKayOClePjYzmOk3YxAKPR6gBglSY1Fniep2w2O3VejFkBAABG24iWFQDYamcno9sW0DUEmIKWFQAAYDRaVgBgizBoFuuIYAUwzddPRzbNOjj26acniygJVuHsZHQbXTjAELqBAACA0WhZATYQ05QBbBJaVgAAgNFoWQHSkjA2BQAwipYVAABgNIIVAABgNIIVAABgNIIVAABgNIIVAABgNGYDAYBpzk7SLsHSJS37z60AMA4tKwAAwGi0rAAAbmxcqwitJViEjQhWDg8Ptbu7m7ivUqmoUqmsuEQAAGy3RqOhRqORuO/y8nKmvDYiWDk+PpbjOGkXAwAAfG9SY4Hnecpms1PntRHBCrBJuAkhAAwjWAGATXR2krz9px/fOGvGoWDVmA0EAACMRssKsGRjZ0n8p5UWAwDWFsEKsEA0j2MrnJ2Mblti9xKfK9ANBAAAjEbLCgAgES0aMAUtKwAAwGi0rACLdHYyum0Bffm44uunY3Z8vMJCbJizk9FtTHOGIWhZAQAARiNYAQAARqMbCABW4ewk7RIAa4uWFQAAYDSCFQAAYDS6gbB9xs0k+XDMdgBAqghWgJQ8/euP0y4CAKwFuoEAAIDRNqJl5fDwULu7u4n7KpWKKpXKikuETZK0qBULXQHAZI1GQ41GI3Hf5eXlTHltRLByfHwsx3HSLgYAYAm4G/N6mtRY4Hmestns1HnRDQQAAIy2ES0rAL+8NtTYewAB2Ca0rAAAAKPRsgIA2Bi0sm4mghVg2c5O0i4B8IOzk9Wm/enH0+exRAQx641gBQCAKbCMQXoIVgAAa4lAYXsQrADfm+WLjy9JAFgdghXgOmcno9sM6YcH1tbZyeg2PlcYg2AFALC1GIeyHoxbZ6XT6SibzWpnZ0fZbFa9Xi/tIgEAgBQZ1bJSr9fV7XZVLpd1enqqer2ufD6vbrerXC6XdvGw6c5O0i4BACCBUcHKN998o263G//98OFDZbNZua5LsAIAwJYyJljp9XpyXXdom+M4chxHvu+nVCpsoqd//XHaRQAAzMCYYGVSy4lt2yssCYw29sZ2Y7Ynpv94ESUBsGhnJ8nbmSW09YwJVsbxfV/lcnlimjdv3ui7776b+xi3bt3SrVu35n4+AADb5O3bt3r79u3cz3/z5s1M6Y0OVjqdjmzbVqlUmpjuo48+utFxnjx5oqfMVQMAYCpHR0f6/PPPV3Y8o4OVo6Mjtdvta9N99dVXunfv3tzHoVUFAIDpPX78WJ999tncz3/16tVMDQ3GBiu1Wk3Pnj2barzK7du39d57762gVAAA4KbDJ27fvj1TeuMWhZOkVqulfD4vx3HSLgoAAEiZcS0rnU5H0ujsIM/zCF6ADTBu6vjTD1dbDgDrw6hgpdfr6ejoSOVyWa1WK97e7/eVzWYJVgAA2ELGBCue5ymfz0tS4lTli4uLVRcJBhq7oNtPV1oMAMAKGROsOI6jMAzTLgYAADCMMcEKsFbOTtIuAQBsDSNnAwEAAERoWYGxWFQYQBr47jEPwQoAwGxnJ8nbucHh1iBYwUYbO3sIALA2CFZwI+OaS5O2z5IWADbRLN+N+AHBCgBgec5O0i4BNgDBCgAABqI1+gcEKwDWDmORgO1CsAIA2F5nJ9OnZfZRaghWAABI0TZ268xqI4KVw8ND7e7uJu6rVCqqVCorLhEAYBswrmS8RqOhRqORuO/y8nKmvDYiWDk+PpbjOGkXw2xfPx3d9mHCNiAtSe9RYFZnJ8nbV9yFs/JgZdznZ5bv+UXkMWBSY4Hnecpms1PntRHBClZjlg8fvyoAAIvCjQwBAIDRaFlZA8aseHh2MrptAU2rY19L0vHGmSUtAMzj7GR0GzOEVoKWFQAAYDRaVrYYo9gBYDOMWyjx6YerLcey0LICAACMRssKRo2dQvrx6Kazk+Sk9OMCQPoWPB05LQQrAACskZmWkdiQ7iGCFQAAtkziLNP/tPJiTI1gBatzdpK8nS4jAOvq7CR5O99rC0WwsiUSmwJ/OkNaIAW8FwFIBCsAAEBmj28hWDHJ2Fk4o9s3ao2Us5O0SwAAi3V2kryd7qG5sM4KAAAwGi0rBhnbPz9mbAkAANuAYGVRNmThHQAATLMRwcrh4aF2d3cT91UqFVUqlRWXCACA7dZoNNRoNBL3XV5ezpTXRgQrx8fHchwn7WIkSlx4J2HbMo8HAMCqTWos8DxP2Wx26rw2IlhZubGzdgAAK3N2knYJFuPsJHk7M4dizAYCAABGI1gBAABGoxto2c5ORrd9nbBNkvTxco4HAFg/ZyfJ27ewe4hgZQ5J66E8/fRk1cUAAGAr0A0EAACMRsvKBEwDBlaHOywDGIdgJQUzfymfnSyhFEt2dpJ2CQDgB2cnaZfgnbOTtEvwztlJ2iWYCcHKgvCrEACA5WDMCgAAMBotK5OcnaRdAgAAth4tKwAAwGgEKwAAwGh0A22zs5O0SwAAmNXZSdolWDlaVgAAgNEIVgAAgNEIVgAAgNE2YszK4eGhdnd3E/dVKhVVKpUVlwgAgO3WaDTUaDQS911eXs6U104YhuEiCpUGz/OUzWbV7/flOM5C83779q0++Q9l/cd//5/1oz/68ULzxmr82+9/p//x//5XzuGa4vytP87h+vu33/9OP/rZ13r8+LFu3bq1sHxnvX7TDTTG27dv9dWr/6Lf//5f0y4K5vT73/8r53CNcf7WH+dw/f3+9/+qzz//XG/fvk21HAQrAADAaAQrAADAaAQrAADAaAQrAADAaAQrAADAaAQrAADAaAQrAADAaAQrKfhf/99/I+8V5LtM1PPq8l4W6nl1eS8L53D5+ZqCYCUF3/zv/07eK8h3majn1eW9LNTz6vJeFs7h8vM1hXH3BvI8T0dHR7JtW0EQKJ/Pq1AopF0sAACQEqOCFd/3R+4VkMlkdH5+rlKplHLpAABAGozqBiqXy8rlckM3NarVaiqXyymWCgAApMmYYCUIAvV6PeXz+aHtBwcHkqRWq5VGsQAAQMqMCVZevnwpSbJte2h71MrS7XZXXiYAAJA+Y8as+L4vSbIsa+L+QZeXl5LeDcp98+bN3Mf+8Y9/rB//+MdD26L8/v9v/49+/O925847yb/921v982/+caF5rnPey8r3d//67v3BOVxuvsvKe5nnT6KeV5E353B1eS/7e/TVq1e6ffv2D9t/9zv97ne/mzvff/zHd2WNruPXCg1RrVZDSWG/3x/ZJym0bXtk+xdffBFK4sGDBw8ePHis4eOLL76YKkYwpmUlk8lIks7PzxP3X+0ekqRPPvlEf/M3f6M/+ZM/0R//8R/PfeyklhUAAJDspi0r//Iv/6J//ud/1ieffDJVemOClSgYCYJg4v5BP/nJT/Rnf/ZnyywWAABImTEDbKNZP1fHpkR/Z7PZlZcJAACkz5hgxbIsOY4zMuun1+tJkh48eJBGsQAAQMp2vh/AagTP85TNZnV6ehp3+2QyGZXLZVWr1ZRLBwAA0mBUsCIN3xvI933l8/kbLbXf6XR0dHQkz/PkOI5c11Uulxt7zHH3I1plGowKgkBHR0eSJNd1R/ZzDjcLdbx6fMbW30Zf724039hwruuGuVwubDab8dRoSWG3243TnJ6ehtLwlGnbtsNms5lKGozqdrthoVAIJYWlUmlkP+dws1DHq8dnbP1t+vVuo4OVQqEw9He/3w8lhblcLt6Wy+WG/g7DMGw2m+FgHLfKNBhv3Bcp53CzUMfp4TO2vjb9emfMANtF6/V6I02ZjuPIcZx4htE09yNaZRrMjnO4Wahj8/AZM982XO82NljJ5XKJa7NIP6zZMs39iFaZBrPjHG4W6tg8fMbMtw3Xu40NVsbxfV/FYjH+vzT5fkSrTIPZcQ43C3VsHj5j62uTrndbFax0Oh3Zth3PLjo9PZUk7e/vJ6YPgmClaTA7zuFmoY7Nw2dsPW3a9W6rgpWjoyO12+3472nuR7TKNJgd53CzUMfm4TO2njbtemfMvYHG8TxPtVptqrS2bavZbCbuq9Vqevbs2VAlTXM/olWm2VSLOofj0kucw01BHZuHz9j62cTrnfHBStIS/LNqtVrK5/Px4J7INPcjWmWaTbWIczgO53CzUMfm4TO2Xjb1erfx3UCdTkeSElfxm+Z+RKtMg9lxDjcLdWwePmPrY6Ovd3OtzrImut1u6DhO2Gw2hx6lUileRS9aOOf09DR+nm3boeu68d+rTINkFxcXYxes4hxuFuo4HXzG1tumX++MuzfQokQ3RRzn4uIinlY1zf2IVpkGwzzPU7PZVKvVkmVZevbsmXK53NC0OM7hZqGOV4vP2HrbhuvdxgYrAABgM2z8mBUAALDeCFYAAIDRCFYAAIDRCFYAAIDRCFYAAIDRCFYAAIDRCFYAAIDRCFYArJ2r9xwBTMV7dTEIVgCslXq9Ls/z0i4GMBXf91Wv19MuxtojWAGwNjqdjr799lsVCoWRffV6XXt7e9rZ2dHOzo7y+Xz8yGQy8Xa8Q32tRnRTwVarNdPzfN/Xzs6OMpmMarWaarWagiBQp9NRsViMz0+5XL42r3q9HqfPZrNTl6XX6w29F7LZbHyzxEGdTkfZbDZO43mefN9XrVZTuVyO32dBEMxUB0PmuqMQAKzYxcVF6DjOxDSlUimUFFar1ZF9p6enoW3byyreWqK+VsdxnPDi4mLq9Kenp6Gk+CaEV9m2HUoKJV2b72DawRsLTiO6weWksoRhGDabzdCyrMR91Wp1qnJOQssKgLUQ/Uqb5OXLl5KkfD4/ss+27fhXLt6hvlanXC6rVqstLD/LsuKbEx4dHY1N1+v1ZNt2/Pf+/v7Mx6lWq5Kkdrs9Nl2/39fjx48T9925c2emYybhRoYA1sLe3p4uLi4mpom6LcZ9rQVBMHQn4W1Hfa3W3t6eXr9+PVWd+r6vTCajZrOZeKfiqMuuVqvJsqyxn40oTRSQDt6BeVpBEGhvb0/Su6DEcZyRNJNeW71eV61Wm+vYEVpWABiv0+kM/TpM0uv1JGmkNWCwj50L7w+or9WzbVsvXrxYWH6FQkG2bSsIgsRxKL7vy/f9iS1knuepWCzGY5WSWn8sy4rHiSW14nQ6HeVyuaW+XwhWABiv2+1e2yURNVEPdmkEQaDnz58vtWzrivpavVwup263u9A8o+DCdd2Rfa7rTux68jxPtVpN7XZb3W5XruuqXq8ndrdG+Xc6nZGBskdHR1MN9L0JghUAxnv58qUymczENFFLwfPnz5XNZpXJZLS3t6cPPvhgFUVcO9TX6mUymYWvu1IqlWRZlnzfj8+p9C7w7PV6iV1IkUePHg0FOYVCQZZlqdVqjQQkg2OYBltXpmm9WQSCFQDGC4Jg4sDAIAjk+74sy1K/348fjuMwSDTBJtVXp9NZ6MDVZdrf31/KInFRQDIYeLRarcQp/hHf9+V5no6OjlQsFuNHJBp8PSiq58EuJ9d1xw6sXSSCFQDGOz8/n9gfHo0DGLzQWpalXC43Mhiw0+loZ2dHe3t7I79Ei8Wi9vb2hhad63Q68ToR0YyOcrmsTCYz0vQd5b2zszNxIbAgCOK1M2q1morF4sSLWBAEcevHtI9JC+fNUl9J9RYN2Mzn80PlHnz9V9fjiMZGFIvF+DXn8/mhC9+4+mu1WiPnLAgC1et1FYvFm63fcc2xgyCI1wqJXtPg+Y/WPMnn83G6cV0i0fiSRYuChV6vF5/3ZrM5MYiI0rXb7aHHxcWFwjBMDFpzudzIGJkXL15MbL1ZmLknPQPAiliWFXa73bH7C4VC4joQ49Z1cBwnzOVyI9tLpVLicWzbHkl/cXGRuO6EZVlhqVQaW9Zmsxk6jjO03kW/37/xOhSzmLW+IrqyJott2yNrsSS9/mq1OvKaw/Ddebha30nPj9b6cF13pEyO40ys70i32w37/f7ENJIS82q320PHHkzTbDaHzl273R77Xu12u2PXIrnqunVWcrncUH1G57RQKITtdnvkdejKmiyu68617kr0em3bDtvtduLn6KroWDd5fxOsADBe9MU4jmVZ134ZDl5ASqXSyEXj9PQ0LBQKI8+bdKG8erzoAjOurNEXfdIF4mogsEyz1lf0t6Sh7dEFMpL0+qMFwZJec7vdHirDuPqLjp0UbORyuamClUlBRBj+EDAmpSmVSkPlH/x/LpcbCtgm1Wm73Z56ob3rgpVxAW8USFytq6vBSrvdHvu+DsPR8z8oev9YljXxcxlZRLBCNxAA49m2PbabxPd9BUEg27bHdhW1Wq2h52ez2ZHm+FqtpmfPno08N+p2iPr/o4GL0ujU3qibIGmsgO/7KpfLKpVKY6dhr+Kmd/PUl6R4FkvUPRDVQ7RgmDT6+j3PU71el+u6ia85GtA57vmRdrsty7LGdlEtQjQLKqn7w/f9ofIP/r/X6w2Vd1J35fn5+bVT8Gcx+B4eHG9k2/a1dRWlrdVqI12G1y3HP9i9NGlczCL9aCVHAYAbcBxH33zzTeK+6AKXdBGIxoa0Wq2hRbOitJ7nyXEcdTod5fP5xAtNdBFrNpvxBbrf7yeWpdvtjr1ITJpiGl0sZl1ddB7z1Ff0PMuyVKvV4oDHdd2h8QpXX3/0mgcDmkmigGhwoKf0LiBY9sDfq0FHxPf9sec0ClqTVgBOMm5BtXlEs3Cu1nev1xsZcDwYeEbjv6KVaev1urLZrAqFgj744IP4HE4ah1IqlVSr1VYzViUyd5sMAKxIv99PbD6PmpejRzQWxXGcofuhXO3eibp2oibspO6fyOAYiouLi4ldDprQrK7vm+eTRK9jUtP7Ity0vprN5sQumauv37Ksa+/nNOn5YXh919oiuoEGX99VruuOHesSdXFNy7btqc/xuG6gaJyIvu+GuVpfV8eQRGOkBs/5YJ6u68bn3rbtiff/GXS1a2wSxqwA2BpJ/fA3EX3Ru6479ks3GgcweKEcV4ZJF/EwDBODgMGyTDNQMS1XB5EmDYJNev2zBCvj6u/qsa8aF6yUSqWhRxSYXd0+eOyk98GkQHbcQO0ks94Y8roxK+tkEcEK3UAA1kKtVlOz2VSz2VxIfgcHB3r+/LkePnw4dhzB1fEqkuJm96gLKTJpXEXUhZLUzRNNk510k7i0dbvdoTEupVJJ9Xp96Fwkvf6Dg4PE9Tqk0fsOjau/drs9cXzNOFffJ9E5GDcmRRrtGrs6VuVq+T3Pm/r9eN1qsuMsY6rzqn377bc3zoMBtgDWQqlUivvpFyFaL2LSeIrnz58nBh/RuI1B48ZVFItFOY6jx48fD63rIr27gD5//lz9ft/o+/BcfW3ROiKDa6kkvX7XdeP1UK7md/UeOePqb9xYkkWKjnt13Z1yuTx2rZKktWrGid6384zxODo6itfjWafAxff9uNzXDdidyuIaegBguS4uLhbWXRKNvxhncHxHtVoNq9VqWCgUQtu2R6Y9R2MXou6RUqkUpx1s+nddNywUCmG1Wg1LpdLY8S0mKZVKoaSRdT0cxwktywr7/X78+pPWUjk9PY3HxeRyubBQKIzU++Dzo26gaCp50rEj0fTbacaCXDd1udvtho7jhI7jhIVCYeKYjHa7HU/fdV332u6NceXH9HbCcMy9wQHAQL7vq9PpTD3DBJAmdwMtU71ej++OjPkRrAAANt7VMTJYLwQrAADAaAywBQAARiNYAQAARiNYAQAARiNYAQAARiNYAQAARiNYAQAARiNYAQAARiNYAQAARvu/L0kukIxDEkYAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# energyspektren angucken von velo und rich\n",
|
|
"\n",
|
|
"velo_found = ak.to_numpy(\n",
|
|
" energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality == 1)][\"velo\"]\n",
|
|
")\n",
|
|
"rich_found = ak.to_numpy(\n",
|
|
" energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality == 1)][\"rich\"]\n",
|
|
")\n",
|
|
"energy_found = ak.to_numpy(\n",
|
|
" energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"energy\"\n",
|
|
" ]\n",
|
|
")\n",
|
|
"\n",
|
|
"velo_lost = ak.to_numpy(\n",
|
|
" energy_emissions[(energy_emissions.lost) & (energy_emissions.quality == 1)][\"velo\"]\n",
|
|
")\n",
|
|
"rich_lost = ak.to_numpy(\n",
|
|
" energy_emissions[(energy_emissions.lost) & (energy_emissions.quality == 1)][\"rich\"]\n",
|
|
")\n",
|
|
"energy_lost = ak.to_numpy(\n",
|
|
" energy_emissions[(energy_emissions.lost) & (energy_emissions.quality == 1)][\n",
|
|
" \"energy\"\n",
|
|
" ]\n",
|
|
")\n",
|
|
"\n",
|
|
"diff_found = velo_found - rich_found # / energy_found\n",
|
|
"diff_lost = velo_lost - rich_lost # / energy_lost\n",
|
|
"\n",
|
|
"xlim = 20000\n",
|
|
"nbins = 80\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" diff_lost,\n",
|
|
" bins=nbins,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
" range=[-xlim, xlim],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" diff_found,\n",
|
|
" bins=nbins,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
" range=[-xlim, xlim],\n",
|
|
")\n",
|
|
"# plt.xlim(-20000, 20000)\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"plt.title(\"emitted energy difference\")\n",
|
|
"plt.xlabel(r\"$(E_{VELO} - E_{RICH1+UT})$ [MeV]\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 139,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHJCAYAAABpOFaGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxsklEQVR4nO3dT2wj2WHn8Z/SPS1P0vCU1HPwnDZdDIwglx0U1T4E2LSRJmMEPgTGkJpbZgCjSRi6BAOEhc5lui8hSsghFwEuCgF6c5smjWAPQZCQNna8QA5rsdK5LBaLZXWAPWSB9VA1g7bbattTe+ipGlIiKYrinxLf9wMIHrFYrx6raNWvX70/G3EcxwIAADDQb6y6AgAAAKtCEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBFwhYRiq0WgoiqJVV2VloihSo9FQGIarrgrmLAgCNRqNVVcDhiEIAVfE/v6+crmcqtWq+v3+qqszlSAI5LquyuWycrmc9vf3L1Veo9HQ7du3Va1WjQ6DixCGoba2tlYSRMIwVLlcVj6fl+/7Sz8+zEYQAq6IWq2mUqm06mpMLQgC3bt3T57nqdlsqlQqqdfrXarMSqWiSqUypxp+KQxD44NVFEWKomjkNRp3fuZ13mzbVrPZvHQ5wCwIQsAVsr29veoqTK1erw/V1/O8ufxr/9atW5cu47RyuXxlWtkWxXEcxXEsz/PObBt3fjhvWAcEIQALEQTBqqswlXK5fGXqugrjzg/nDeuCIASMkXTKzefzarVa6nQ6yufz2tjYULlcTt/XarW0tbWljY2N9MbQ6XRULpeH3puUVywW086+xWJRW1tbKhaL6SOGpC/Q1taWXNcdW7dqtaqtrS1tbW2pWq2eeU8QBCqXyyoWi8rlcmfKarVaKhaL6nQ6ajQaY8sZd2zXdVUsFtMyEo1GQ+VyWWEYpn0/yuXy0HsmneukPvl8XltbWyqXyyMfv/T7/fR9p6/JtHVttVrpNatWq2du7uftP+135HRZ1WpVuVzuQv1xJl3PeXy3Wq1Weq3OOz/nnbfzvnuD5yP5uWz/MWBmMYCRer1eXCqVYklxoVCIa7Va3O1240qlEkuKPc9L35u81u12h/aXFJdKpfT35H2D5bXb7fS1SqUSt9vtoWMPljm4f6VSiX3fjx3HSV9LdLvdod+bzWYsKa5UKunvtm2nr9VqtdhxnNhxnInnpNvtxpZlDdXJ9/0z5yOO49i27di27anOdfK5Bs9Ns9lMz8FgOZ7npe/zPG/sNZm2rrVaLZYU93q9C3/Wi3xHSqVSXKvVhso6fc7GOe96Xva71ev1hs7roHHnZ9J5m1TX5HiWZcXtdjt9LTn+ed9BYN4IQsAEyR/x0zes0zeM5KYweNM8Pj4eCkJx/OomcfqmEMdxGmYGbyrJe0cFrmazObR/EmqSG4vjOEN1ieM4tiwrlhQfHx/HcfzljWfw5nwex3HO3CjH1f8iQWiwPr7vD71eKBSGPvO4952+JtPWddwNfdr9p/2OWJZ15lxPG4SmuZ6X/W6NqnMcXzwITVPXUqk08twShLAKPBoDpmBZ1pnXLtNJ9HR5tm1LGu4Mnbw2ahSP4zhDvyePtNrttsIwVBAEqtfr6aOOwccdR0dHQ3W4c+fOVHVOyj197MHjz6MzdPK5T5fdbreHXt/Z2Rn63bKsdG6hy9Z1lv3P+47Ytq39/f2hR0C1Wm1sHU7X5bzrOa4eF/1uXcY0dQ3DMH0sC2TB9VVXAMDlFQoFSV/eiCRNPRx51A18lEkdY5NQsohJDpMwcpGyL1vXRXzWZrOpfD4v13Xl+76azebIoDWuLldhePk0dU36WJ0OvMCq0CIErIEkzNi2PdQqsgijOi4nx1/E8P6kzFlunJet6zw/q23bevbsmQqFgsIwVD6fn6qz9KKv5zxNU9dkG8PukRUEIWANJDfsO3fupIGh1WqNfO+k0VuTJK0Xo/ZPjp/L5WYqe5LkhpnP56fe57J1XcRnDcNQlmWp3W6nLSbTjNJb1PVchGnqmryn2+0urV7AJAQhYA6SSf4G/yWc/PcyZixObjClUil9TOa67plHPJdZPsG2bTmOkw6LH3R0dCTLsoZmfe73+3P5V3+r1Roq+5NPPknLn1ddpeHrNMv+5xmcqLBUKqV9jM5r6VnU9byocd/jwdenqWvyaHHcmnmmz/CN5SMIARNMeyNPWhBc103nwUludJ1OJ+0YOq685I//4PbkvwdfSx7LnA5cSZ+T5D1JJ9x8Pq9yuaz9/X0Vi0X1er30ZpUc8yI3nmazKcuyhloyoiiS53k6PDycur/RJIOdkKMoku/7Ojw8PHe/KIqGztW0dU1adnzfTzvyXmT/ab8jT548GbpuURTJtu1zH/lNez0v+90a9T5p/PkZ9fo0dT39nk6nozAM07mGwjBkTiEs16qHrQFZ1e1206HHtm3H7XY7Pj4+HprzZnD4sed5sWVZQ8OkbdtO53RJ5leRFFuWlQ4HT+am0RdD7bvd7tBcL5ZlpUPFj4+P41qtFhcKhXRumEqlkg5LHuR5Xjqs3rbtoeHmg/MInd52nuPj43T4c3L8weHSg/Po6Ivh3IPzxYwzOJzfcZy4VCrFpVJpaN9ms5kOxU6GaZ++JoND1M+ra8JxnNiyrDNDz6f5rNN+RwqFQvp9qNVqcalUGnndJp2fcdfsst+tbrebvpbUebBu487PuNcn1TXh+376Hsdx4l6vl56f00PygUXaiOM4XlLmAoCx9vf35bqu2u122soBAIvGozEAAGAsghAAADAWQQjAykVRlM4cfRUmDgSwPugjBGDlRo0Smmb5CQC4LIIQAAAwFo/GAACAsYxddPWnP/2p/vEf/1G//du/rddff33V1QEAAFN48eKF/u3f/k3f+ta39Oabb166PGOD0N///d/r/fffX3U1AADADB4/fqz33nvv0uUYG4TeeustSdLh4WG6PMIivPPOO/rBD35wZctfxjGeP3+uu3fv6uOPP9bNmzcXdpx1OFdcC3OOwbXI1jGWcT3W4Twt4xhBEOj+/fvpffyyFhaEvve972lnZ0ff/e53F3WIS/nKV74iSfr617++0CD0+uuvX+nyl3GMzz77TJL09ttv66tf/erCjrMO54prYc4xuBbZOsYyrsc6nKdlHOP58+eSvryPX9ZCOks/e/ZMvu8z/BUAAGTaQlqEbt++Ld/3z11VGQAAYJUW9mjs/v37iyoaAABgLhYWhL71rW/J8zy9/fbbizrEXPzpn/6pfvM3f3Pktr29Pe3t7S25RgAAmO3g4EAHBwcjt/385z+f67FmDkLvvvvu2G1RFKnT6ejJkyeZD0J/+7d/qz/4gz9YdTUAAMAXJjVE/PjHP9bdu3fndqyZg9A0CyM2m0395V/+5ayHWAuLblFaRovVurSKrcO54lqYd4xFW5fzxLUw6xjzNPNaY7u7u/I8T9vb22e29Xo9NRoNff/73790BRclSZQff/wxLUIr9tlnn+mNN97Qp59+utBhwjgf1yI7uBbZwvXIjnnfv2cePl+tVnX79m298cYbZ34cx1E+n9df/MVfXLqCAAAAizJzELp3797E7bZty/f9WYsHAABYuJn7CD19+nTstjAM5brurEUDAAAsxcxByHEcbWxsjN0ex7H29/dnLR4AAGDhZg5ClmVpd3dXlmWd2Xbr1i05jnPu4zMAAIBVmjkIHR4e6p133plnXQAAAJZq5s7ShCAAAHDVLWyJje9973va2dnRd7/73UUd4lJu3Lgx9L9X1j8/XHUNLm3z5a/04YcfanNzc9VVMd7m5ibXIiO4FtnC9ciOed+/Z55QcZJnz54pl8tpa2tLn3zyybyLn4sgCJTP59XtduU4zqqrM7s1CEKSpN9/uOoaAACugHnfvxfSInT79m35vi/bthdR/Fy98847ev3110duY9FVAACWb9Kiqy9evJjrsRb2aGx3d1dvvPHGooqfmx/84AdXu0UIAIA1M6khImkRmpeZO0uf54c//KEePHiwqOIBAAAu7VItQj/60Y/UbrcVRdHQ6/1+X0EQqN/vq16vX+YQAAAAC3OpeYSq1erE91QqlVmLBwAAWLiZH435vq92u63j42P90z/9kzzP0+eff67PP/9c/X5flUpF3//+9+dZVwAAgLmaOQgVCgXdu3dPb7zxhgqFgo6OjtJtlmUpn8/TRwgAAGTazEHo008/Hfp9d3dXf/VXfzX0WqvVmrX4uQjDcKXHBwAA2TZzHyHbtnXt2jVtbW3p6OhI77zzjnZ2dtRut2VZllqt1sgFWc8TBIHq9bps21YURSoWiyqVSlPtu7GxMfS74zjqdrsXrgMAADDDzEHoz//8z/XTn/5U//Iv/6Lt7W1J0pMnT1QsFvXs2TNJkud5FyozDMMzs0Xmcrm0z9EkjUZDlUpFuVwufa1QKFzo+AAAwCyXGj5/OujYtq1er6dnz55pe3v7whMqVqtVFQqFoQkOXddVtVo9Nwg1m0212+0LHQ8AsEauypJDLCmUKQuZUPH27dsXDkFRFKnT6ahYLA69vrOzI+lVi884rVZLR0dHKpfLE98HAAC+FASBXNdVPp+f62zNV8nCZpa+qGTU2en1yZLWoUmtPcmkjq1WS9VqVVtbW+p0OourLAAAa8BxHL377rsKgmDVVVmZha01dlHJCK9xHawnjQDzfV++7ysIAvm+r0ajoWKxqF6vd+7Cr8+fP9dnn302c703Nze1ubk58/4AAKzSstfbPDk50cnJycz7P3/+fI61yVAQ6vV6kpR2vD7t9DIeoziOI9/3VSwWVS6X5bqums3mxH3u3r174boO+vDDD/Xw4cNLlQEAgCnq9boePXq06mqkMvNoLBnt1e/3R24/r2VnUKlUUqlUmqqp7+OPP9ann3468w+TRgIAlikIAm1tbWljY0P5fH7oiYnrutrY2ND+/v7Q+8vlsorFonK5nFzXnfpYURSpWq3KdV0Vi0UVi8VLdz158ODBpe67H3/88aWOf1pmWoSSoDOu5eciQUjS1Bfr5s2b+upXv3qhsgEAWBXHcXR4eKhyuSzbtofuj9VqVUEQqFarSfqyM3TSz7bVaqlcLiuKIvm+P/E4QRDo3r17+uEPf5g+Pku6nnielx7joi7bpeTmzZsz7ztKZlqEktFhp/sCJb/P0ps9KRMAgHVSKpVk2/aZFRySQUOJ+/fvD011UyqVZFmWGo3GuV1O7t+/r52dnaE+RJVKRY7jyHXdtVm9ITNByLIsOY5zZnRY0qqzu7t7ofLa7fbQlwEAgHWS3OMGw9BHH32UrsYQhmG6WkO5XE5/EoNrhJ6W7DuqI3Vy3PNalK6KzDwak6TDw8P0eWfS1Od5njzPS0eThWGoYrEo3/dVKBQUBIHu37+vd999N22ma7Va2t7enmppDt+X3nprYR9p4R7+0aprAABYhUqlItd15ft+2i928ElI0k/2vEFDo0zqYzvuCc5VlakglKwN5rqubNtWGIZyXXdoVukoitTv99MmPdu2tb29rXq9rna7Lcdx0qAEAMC6sixLpVJJrVZLYRjqo48+GnoSkgSVwcaFixr1+CxpmBg3yvuqyVQQkl6FoUnp1XEcHR8fp79blsXSGgAAIz148ECtViudS2+wP1ASflqt1siOzZ1OZ+yanMkjsVGDjpJwNLi251WWmT5CAADgYhzHkW3b2t/fH+r/I3258LjrumcedZ23HJVt23IcR2EYnnkEdnR0JMuyzl0D9KogCAEAcIUlj8NODyqyLCttCcrn8yqXy9rf309XXhjXGpRoNpuyLGvocVsURfI8T4eHh2NXgrhqMvdoDACAmRi6qnulUlGv1xsZTDzP061bt+T7vlqtVjqvUNKakyxNlfz3/v6+KpWKLMuSbdt69uyZ7t+/r2KxmD5qazabS1+WY5E24jiOV12JVQiCQPl8XpVKV2+9dXUv6MM/erjqKsyHoX/AAAAXk9y/u93uXAIZj8YAAICxjH809uTJO7p+/fWR2+7c2dM3vrG35BoBAGC2g4MDHRwcjNz24sWLuR7L+CC0u/uDK/1oDACAdbO3t6e9vdENEcmjsXnh0RgAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGMv4JTYAAOvh4cNV12A6V6WepqBFCAAASJKiKFKj0VAYhquuytIY3yLE6vMAgHUShqHy+bw8z1OlUpl6v0ajIdd1FUWRut3uAmt4PlafXyJWnwcArJMoihRFkXq93oX2q1Qq6vV62t/fX1DNprfM1eeND0IAAKwTx3EUx/FM+966dWvOtck++ggBAABj0SJ0xT38m2+uugpz8fD3V10DALg6Wq2WfN+X67oKw1Cu62p3d1e+76vVaumjjz6SJDWbzaH9oiiS67qSlHaI9jxPjjPcRaTf76vRaMj3fQVBoFKpdKasdUEQAgDgCmm1WmkAsm1blmXJtm0dHR0pDEOFYahWq6VCoTC0XxiGKhaLarfbsm1bkrS1taV79+7p+Ph46L2e56lYLOrw8FC+76vRaGh/f1+1Wm1pn3NZeDQGAMAVUiqVVK1WJUmWZcnzPHW7XXW7Xdm2PTaslMtlVavVNARJ0oMHD9LO1affW6vV5DiOfN+XJLXb7cV8oBUjCAEAcMVYliVJunPnzlTvD8NQQRCcaSWq1WqK4zgtL7Gzs3PmeOs6txBBCACAK+p0gBknCIILvd8kBCEAANZc0pqzrq06l0EQAgBgzSWjwsaN/DI5IBGEAABYc0mfn0ajoU6nM7TNdV1tb29Lkj755BNJr4bPm4IgBADAFZOM8jo92mvwtcEwk4wuk6RisahyuSzXdZXP55XL5c7tOxRF0dqGI+PnEWLRVQBYDw8frroGy5FMpii9as3p9/vp4qpBEKher6f/vb+/r0qlIsuyVKvVZNu26vW6Wq2WHMeR53npSLJWq6VGo5GWe3h4KNu20wkYk8kYk0C1SMtcdHUjnnVBkisuWbStUule7UVX/89/XXUN5mJdZsgGACxWcv/udrtnZsSeBY/GAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWq8+z+jwAAJmyzNXnjQ9Cu7s/uNqrzwMAsGb29va0tze6ISJZfX5eeDQGAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYmQtCQRCoXC7LdV1Vq1W1Wq0Ll9HpdLS1tbWA2gEAgHWSqeHzYRgqn8+r2+3KcV4Nac/lcur3+6pUKlOXU61WF1VFAACwRjLVIlStVlUoFNIQJCltGZqW67qybXsR1QMAAGsmM0EoiiJ1Oh0Vi8Wh13d2diRJjUbj3DI6nY5u3bo1FKQAAADGyUwQOjo6kqQzrTlJqGm32+eW4fu+arXa/CsHAADWUmb6CIVhKEmyLGvi9nFc15XneRc+7suXz3Vy8tmF90tcu7ap69c3Z94fAACTnJyc6OTkZOb9nz9/PsfaZCgI9Xo9SdL29vbI7VEUjd03CALdunVrpr5Bjx/fvfA+g+7e/VDf/ObDS5UBAIAp6vW6Hj16tOpqpDIThHK5nCSp3++P3D4p5NTrdTWbzZmO+/77H+trX3t7pn2lVy1CAABgOg8ePNAHH3ww8/5Pnz7V3buXa8QYlJkglASdcS0/44KQ67oqFotDj86S/07+d1KIutH/n9r8jc9nqTIAALigzc1NbW7O3ohw8+bNOdYmQ0EoGR12ui9Q8ns+nx+5X6fT0f7+/shtuVxOjuOo2+3OsaYAAGBdZGbUmGVZchznzOiwTqcjSdrd3R25X7fbVRzHQz+1Wk2WZSmOY0IQAAAYKzNBSJIODw/V6XSGWoU8z5PneelosjAMlcvl0oAEAAAwq8w8GpOUPsZKZocOw1Cu6w4trxFFkfr9/sRRZAAAANPIVBCSXoWhSSPAHMfR8fHxxDKSViQAAIBJMvVoDAAAYJkIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjJW54fPL9uRHH+r69dFrntz53T/RN37vO0uuEQAAZjs4ONDBwcHIbS9evJjrsYwPQrt/+Ehvvfn1VVcDAAB8YW9vT3t7eyO3BUEwdv3RWfBoDAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGMn6tMRZdBQAgW1h0dYlYdBUAgGxh0VUAAIAlIAgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFjGL7rK6vMAAGQLq88vEavPAwCQLaw+DwAAsAQEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwlvFrjbHoKgAA2cKiq0vEoqsAAGQLi64CAAAsAUEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxMheEgiBQuVyW67qqVqtqtVpT7ddqtZTP57WxsaFcLqdOp7PgmgIAgKsuU/MIhWGofD6vbrcrx3EkSblcTv1+X5VKZex+jUZD3W5XnudJklzXVbFYVK/Xk23bS6k7AAC4ejLVIlStVlUoFNIQJCltGZokiiL5vq9CoaBCoaDDw0NJr1qXAAAAxslMEIqiSJ1OR8Vicej1nZ0dSa9afcap1WpDv1uWJUlDgQoAAOC0zDwaOzo6kqQzj7KSMNNutyc+HhvUarXked5Uj8Ve/vKFTl7+7IK1/dK1a6/p+rUbM+8PAIBJTk5OdHJyMvP+z58/n2NtMhSEwjCU9GVrzrjt53FdV41GI308dp7H//BnU71vnLtvv6dvOu9fqgwAAExRr9f16NGjVVcjlZkg1Ov1JEnb29sjt0dRdG4Z+/v7CsNQURSpXC7L9/1zW5He/+O/1tdu/c6F65u4du21mfcFAMA0Dx480AcffDDz/k+fPtXdu3fnVp/MBKFcLidJ6vf7I7dP85gr6SvU6XRULpfled65QejGa69r88ZvXbC2AABgFpubm9rc3Jx5/5s3b86xNhnqLJ0EnXEtPxcZBl8oFFSpVKZ+nAYAAMyUmSCUjA47HV6S3/P5/IXKu3PnDnMIAQCAiTIThCzLkuM4arfbQ68nM0Tv7u5eqLwwDFUoFOZWPwAAsH4yE4Qk6fDwUJ1OZ6hVyPM8eZ6XjiYLw3BoCY2kY/TgUhxhGKrdbsv3/aXWHwAAXC2Z6SwtvZozqNvtynVd2batMAzluu5Qh+coitTv99O+RJZlKYoi3b9/X77vq1gsyrbtMy1LAAAAp2UqCEmvwlCz2Zy4/fj4eOg1Qg8AAJhFph6NAQAALBNBCAAAGIsgBAAAjEUQAgAAxiIIAQAAY2Vu1NiyPfnRh7p+ffSaJ3d+90/0jd/7zpJrBACA2Q4ODnRwcDBy24sXL+Z6LOOD0O4fPtJbb3591dUAAABf2Nvb097e3shtQRBceNmtSXg0BgAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjGb/WGIuuAgCQLSy6ukQsugoAQLaw6CoAAMASEIQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCzjF11l9XkAALKF1eeXiNXnAQDIFlafBwAAWAKCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYy/i1xlh0FQCAbGHR1SVi0VUAALKFRVcBAACWgCAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYmQtCQRCoXC7LdV1Vq1W1Wq2p9mu1Wsrn89rY2FA+n1en01lwTQEAwFWXqXmEwjBUPp9Xt9uV4ziSpFwup36/r0qlMna//f19tdttVatV9Xo97e/vq1gsqt1uq1AoLKv6AADgislUi1C1WlWhUEhDkKS0ZWiSn/zkJ2q326pUKvI8T91uV5Lked5C6wsAAK62zAShKIrU6XRULBaHXt/Z2ZEkNRqNkft1Op0zgcdxHDmOozAMF1NZAACwFjIThI6OjiRJtm0PvZ60DrXb7ZH7FQqFM/skxr0OAAAgZaiPUNJ6Y1nWxO0XKe+8R2qS9PKXL3Ty8mcXKnvQtWuv6fq1GzPvDwCASU5OTnRycjLz/s+fP59jbTIUhHq9niRpe3t75PYoiqYuq9VqybbtiR2sE4//4c+mLneUu2+/p28671+qDAAATFGv1/Xo0aNVVyOVmSCUy+UkSf1+f+T2izzmqtfrajabU733/T/+a33t1u9MXfZp1669NvO+AACY5sGDB/rggw9m3v/p06e6e/fu3OqTmSCUBJ1xLT/TBiHXdXV4eDj1+2+89ro2b/zWVO8FAACXs7m5qc3NzZn3v3nz5hxrk6HO0snosNN9gZLf8/n8uWU0Gg0Vi8Wh4fcAAADjZCYIWZYlx3HOjA5LZoje3d2duH8yA/XpCRSDIJhjLQEAwDrJTBCSpMPDQ3U6naFWIc/z5HleOposDEPlcrmhJTQ6nY7q9bqkV61CyU+1Wk2H5QMAAJyWmT5C0qs5g7rdrlzXlW3bCsNQrusOjf6Kokj9fj/tSxQEQToJ46jh8sfHx0upOwAAuHoyFYSkV2Fo0ogvx3GGwo3jOIrjeBlVAwAAayZTj8YAAACWiSAEAACMRRACAADGIggBAABjEYQAAICxMjdqbNme/OhDXb8+eqrvO7/7J/rG731nyTUCAMBsBwcHOjg4GLntxYsXcz2W8UFo9w8f6a03v77qagAAgC/s7e1pb29v5LYgCKZadmtaPBoDAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFjGL7rK6vMAAGQLq88vEavPAwCQLaw+DwAAsAQEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwlvFrjbHoKgAA2cKiq0vEoqsAAGQLi64CAAAsAUEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYyftFVVp8HACBbWH1+iVh9HgCAbGH1eQAAgCUgCAEAAGMRhAAAgLEIQgAAwFgEIQAAYKzMjRoLgkD1el22bSuKIhWLRZVKpan2jaJI9XpdkuR53iKrCQAA1kCmglAYhsrn8+p2u3IcR5KUy+XU7/dVqVQm7tvpdOT7vlqt1rnvBQAAkDL2aKxarapQKKQhSJJc11W1Wj1330KhoGazucjqAQCANZOZIBRFkTqdjorF4tDrOzs7kqRGo7GKagEAgDWWmSB0dHQkSbJte+j1pHWo3W4vvU4AAGC9ZaaPUBiGkiTLsiZun7eXv3yhk5c/m3n/a9de0/VrN+ZYIwAA1tfJyYlOTk5m3v/58+dzrE2GglCv15MkbW9vj9weRdFCjvv4H/7sUvvfffs9fdN5fy51AQBg3dXrdT169GjV1UhlJgjlcjlJUr/fH7n99COzeXn/j/9aX7v1OzPvf+3aa3OsDQAA6+3Bgwf64IMPZt7/6dOnunv37tzqk5kglASdcS0/iwpCN157XZs3fmshZQMAgGGbm5va3Nycef+bN2/OsTYZ6iydjA473Rco+T2fzy+9TgAAYL1lJghZliXHcc6MDut0OpKk3d3dVVQLAACsscwEIUk6PDxUp9MZahXyPE+e56WjycIwVC6XSwPSoEV1qAYAAOspM32EpFdzBnW7XbmuK9u2FYahXNcdWjIjiiL1+/0zoScIAvm+L0l68uSJisWiCoXC2OH4AAAAmQpC0qswNGmpDMdxdHx8PPJ13/fTMAQAAHCeTD0aAwAAWCaCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxsrcqLFle/KjD3X9+uipvu/87p/oG7/3nSXXCAAAsx0cHOjg4GDkthcvXsz1WMYHod0/fKS33vz6qqsBAAC+sLe3p729vZHbgiCY67JbPBoDAADGIggBAABjEYQAAICxCEIAAMBYxneWRkb888NV12A+fv/hqmsAALgAWoQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYyfh4hVp8HACBbWH1+iVh9HgCAbGH1eQAAgCUgCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCzjR40hGx7+zTdXXYW5ePj7q64BAOAiaBECAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAs40eNsegqAADZwqKrS8SiqwAAZAuLrgIAACwBQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCxjg9DLly8lSb/6/Jcrrgl+9euX+q/BY/3q1y9XXRXjnZyc6OHDhzo5OVl1VYzHtcgWrkd2JPfv5H8vy/gg9Pmvf7XimuDXv/6lPn76n/XrXxNKV+3k5ESPHj3ij30GcC2yheuRHQQhAACAOSEIAQAAYxm/6Orf/be6Xrv+lZHbWH0eAIDlm7T6/M9//vO5Hsv4IPSd//RA/+Gt/7jqagAAgC9MWn3+xz/+se7evTu3Y/FoDAAAGIsgBAAAjEUQAgAAxiIILdh//x9/d6XLX9YxlmEZn2Nc576rUv6yLONzrMsxFm1dzhPXwqxjzBNBaMF+8j//y5Uuf1nHWIZlfA6C0HTW5Y/xOlyPdTlPXAuzjjFPmRs1FgSB6vW6bNtWFEUqFosqlUoL2w8AAJgrU0EoDEPl83l1u105jiNJyuVy6vf7qlQqc98PAACYLVNBqFqtqlAopGFGklzXVbVanRhoZt0PmLsX/0/654dXt/yfsY4SALNkpo9QFEXqdDoqFotDr+/s7EiSGo3GXPcDAADITIvQ0dGRJMm27aHXk1aedrs9snVn1v2ARfh/0W/p4d98c4HlP15o+Scvf7awsgEgizIThMIwlCRZljVx+7z2+8UvfiFJ+r/93gVqedZvXLuu67/x2tjtv/rVif79p//rUseYZNHlL+MYL3/5QpL0fz/537rx2usLO846nKtlXYunT5/q5s2bCzvOixcvFATBwspfh2M8f/5cEtciK8dYxvVYh/M0zTFevnyply9fzlz+v/7rv0r68j5+aXFG1Gq1WFLc7XbPbJMU27Y91/0eP34cS+KHH3744Ycffq7gz+PHjy8XPL6QmRahXC4nSer3+yO3n370ddn9vv3tb+vx48d666239JWvjF59fho3btzQjRs3Zt4fAACTXLZF6Be/+IX+/d//Xd/+9rfnUp/MBKEksERRNHH7vPZ788039d57712skgAAYK1kZtRYMsrrdJ+e5Pd8Pj/X/QAAADIThCzLkuM4arfbQ693Oh1J0u7u7lz3AwAAyEwQkqTDw0N1Op2h1h3P8+R5XjoqLAxD5XK5NOhMux8AAMBpmekjJL2a+6fb7cp1Xdm2rTAM5bru0DxAURSp3+8P9QmaZr8Ea5JlR6vVUr1eVxAEchxHnuepUCisulrQqxbVcrms4+PjVVfFeGEYqtVqSZIqlQr/uFuiVquldrsty7IUhqFs25bneauu1tqLokj1el2SRp7vud/H5zL27Iro9XqxNDzU3rbt2Pf9FdbKTJ7nxYVCIfZ9P50CQVLcbrdXXTXEr/5/YVnWqqthtF6vF5dKpbhQKMS9Xm/V1TFOs9mMHccZeq1QKMS1Wm1FNTJDu92OS6VSLCmuVCpnti/iPm5UECoUCnGhUBh6zff92LA8mAmlUmno9263G0s6c32wfLVaLS4UCgShFep2u7FlWSNvBFiOQqFw5vx7njd2bjrM17ggtIj7eKb6CC0Sa5JlR6fTOdPc6TiOHMcZOxM4lqPT6ejWrVtDCxhjuaIo0r1792TbtnzfX3V1jNXv94f6okpSr9cbOyULFm9R93FjgtA0a5JhOQqFwrnzQmE1fN9XrVZbdTWM5rquoiiiL8qKVatVhWGocrks6VW/lCdPnnBdVmhR93FjgtCsa5JheQb/6GD5XNflj3wGJP+qbbfbyufz2traUrFY5G/UklUqFVUqFbVaLeVyObmuq2fPntFaukKLuo8bE4R6vVeLq25vb4/cPm5maixHq9WSbdsjR/ph8YIg0K1bt2iRW7FkoUrHcVStVtXtdtXtdtNpQ/g7tVy+76eP7DudzplHZViuRd3HjQlCs65JhuWo1+tqNpurroax6vU6j8QyIPkXbbVaTf8mDfYVSoYUYzmKxaKq1Wo6hL5cLqdTGWD5FnUfz9Q8Qos065pkWDzXdXV4eMg1WBHXdc88ekn+O/lfrs1yjGvyT+bX4vHY8lSrVUlKW6mfPXum27dv6/79+8w9tyKLuo8b0yLEmmTZ1Gg0VCwWee6+Qp1OR9VqVblcLv1ptVqKoki5XI5+W0uU/J1KHgGcNu6RAObvyZMnQ3+XLMuS53mKoih9hInlWtR93JggxJpk2ZM0MZ+eTZo/MsvV7XYVv5pTLP2p1WqyLEtxHKvb7a66isawLEuFQuFMX5TkX8D8g215tre3z7Q8JH+rmN17NRZ1HzcmCEmsSZYlnU4n7e/QaDTSn2q1mg6RBEzkeZ6CIBgKQ41GQ47jMJhgiarVqp48eTIUhlqtlhzH4VHxgk3q9LyI+/jGFzM4GmNwjZIwDFUsFvnjsmRBEEz8l+3x8THBdMVc11Wj0WCtsRUJgiBdO9GyLEVRxOSKK9BoNNRsNtNHZMn8Tvx9WpwgCOT7vhqNhizL0uHhoQqFwtA5n/d93LggBAAAkDDq0RgAAMAgghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgCAtROGoRqNxsRZitddFEVqNBos1nsOghAAYK3s7+8rl8upWq2q3++vujpTSWYTL5fLyuVy2t/fv1R5jUZDt2/fVrVaNToMTuP6qisAAMA81Wo1/eQnP0kXds66IAh07969dEkb13XV6/UuVWalUlGv17t0oDotDENtb2+v1TIjBCEAwNrZ3t5edRWmVq/Xh+rred5cyr1169ZcyhlULpfVbDbXKgjxaAwAgBUKgmDVVZhKuVy+MnW9CIIQAOBSkk65+XxerVZLnU5H+XxeGxsbKpfL6ftarZa2tra0sbGR3lA7nY7K5fLQe5PyisVi2tm3WCxqa2tLxWIx7fOS9AXa2tqS67pj61atVrW1taWtrS1Vq9Uz7wmCQOVyWcViUblc7kxZrVZLxWJRnU5HjUZjbDnjju26rorFYlpGotFoqFwuKwxDhWGocrmscrk89J5J5zqpTz6f19bWlsrl8sj+QP1+P33f6WsybV1brVZ6zarV6plQdN7+035HTpdVrVaVy+XUaDTOPd8ziwEAuIRerxeXSqVYUlwoFOJarRZ3u924UqnEkmLP89L3Jq91u92h/SXFpVIp/T1532B57XY7fa1SqcTtdnvo2INlDu5fqVRi3/djx3HS1xLdbnfo92azGUuKK5VK+rtt2+lrtVotdhwndhxn4jnpdruxZVlDdfJ9/8z5iOM4tm07tm17qnOdfK7Bc9NsNtNzMFiO53np+zzPG3tNpq1rrVaLJcW9Xu/Cn/Ui35FSqRTXarWhsk6fs3kiCAEALi0JEKdvWKeDR3IzHbxpHh8fDwWhOH51cx0MJIkkzAzejJP3jgpczWZzaP8k1LTb7bS8wbrEcRxblhVLio+Pj+M4/jJQDN6cz+M4ztDnnlT/iwShwfr4vj/0eqFQGPrM4953+ppMW9dxQWja/af9jliWdeZcLzII8WgMADA3ozrRXmYI++nybNuWNNwZOnlt1Egrx3GGfk8eabXbbYVhqCAIVK/X08dSg49pjo6Ohupw586dqeqclHv62IPH931/qrImST736bLb7fbQ6zs7O0O/W5aVzi102brOsv953xHbtrW/vz804q1Wq42tw2UxagwAYIxCoSDpyxu4JDWbzan2nXak1KQOxUkoWcQkh0kYuUjZl63rIj5rs9lUPp+X67ryfV/NZnNk0JoXWoQAAMZIwoxt20OtIoswquNycvxFDO9PyjzdUjSNy9Z1np/Vtm09e/ZMhUJBYRgqn88vtLM0QQgAYIzkhn3nzp00MIybeHHS6K1JktaLUfsnx8/lcjOVPUnyeCmfz0+9z2XruojPGoahLMtSu91OW+umGaU3K4IQAGBpkkn+Blthkv9exlIQnU5Htm2rVCqlj8lc1z3ziOcyLRC2bctxnHRY/KCjoyNZlqVKpZK+1u/357IUSKvVGir7k08+ScufV12l4es0y/7nGZxQslQqpX2MFtVyRxACAFzatDfypAXBdd10HpzkRtfpdFQsFieWl9yEB7cn/z34WvJY5nTgSvqcJO9JOuHm83mVy2Xt7++rWCyq1+ulQSk55kWCWjL78mBLRhRF8jxPh4eHc5mZebATchRF8n1fh4eH5+4XRdHQuZq2rknLju/7CsMwbUmbdv9pvyNPnjwZum5RFMm27Zke+U1lYePRAABG6Ha76VBp27bjdrsdHx8fD815Mzj82fO82LKsoWHStm2nc8skc/tIii3LSoeDJ3PT6Iuh9t1ud2h+Gsuy0qHix8fHca1WiwuFQjqXUKVSSYfED/I8Lx1Wb9v20HDzwXmETm87z/HxcVwqlYaOPzhUf3AeHX0xVUAyrH+SweH8juPEpVIpLpVKQ/s2m810GoBkioDT12RwiPp5dU04jhNblnVmWoNpPuu035FCoZB+H2q1WlwqlUZet3nZiOM4XkzEAgAA87a/vy/XddVut9NWK8yOR2MAAMBYBCEAAGAsghAAAFdEFEXpzNHTTgSJyegjBADAFTG47ERikctPmIAgBAAAjMWjMQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWP8f6DCokBM5ZxoAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# number of brem vtx with E>x*E_0\n",
|
|
"\n",
|
|
"number_velo = ak.to_numpy(\n",
|
|
" energy_emissions[energy_emissions.quality == 1][\"velo_length\"]\n",
|
|
")\n",
|
|
"number_rich = ak.to_numpy(\n",
|
|
" energy_emissions[energy_emissions.quality == 1][\"rich_length\"]\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" number_velo,\n",
|
|
" bins=10,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"velo\",\n",
|
|
" range=[0, 10],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" number_rich,\n",
|
|
" bins=10,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"rich\",\n",
|
|
" range=[0, 10],\n",
|
|
")\n",
|
|
"plt.xlim(0, 10)\n",
|
|
"plt.title(\"number of photons emitted\")\n",
|
|
"plt.xlabel(\"number of photons\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 140,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' \\nphoton cut = x*E_0\\neffs, all photons included: x=0\\nfound in velo/(found + lost in velo)\\nVELO energy emission, eff: 0.8446167611094543\\nRICH1+UT energy emission, eff: 0.7961586121437423\\neff von e die nicht strahlen: 0.7954674220963173\\n'"
|
|
]
|
|
},
|
|
"execution_count": 140,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\" \n",
|
|
"photon cut = x*E_0\n",
|
|
"effs, all photons included: x=0\n",
|
|
"found in velo/(found + lost in velo)\n",
|
|
"VELO energy emission, eff: 0.8446167611094543\n",
|
|
"RICH1+UT energy emission, eff: 0.7961586121437423\n",
|
|
"eff von e die nicht strahlen: 0.7954674220963173\n",
|
|
"\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "tuner",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|