1391 lines
495 KiB
Plaintext
1391 lines
495 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\t\n",
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"import matplotlib\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from mpl_toolkits import mplot3d\n",
|
|
"import itertools\n",
|
|
"import awkward as ak\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"44804"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
|
|
"file = uproot.open(\n",
|
|
" \"/work/cetin/Projektpraktikum/tracking_losses_ntuple_B_rad_length_beginVelo2endUT.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
|
|
")\n",
|
|
"\n",
|
|
"# selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV\n",
|
|
"allcolumns = file.arrays()\n",
|
|
"found = allcolumns[(allcolumns.isElectron)\n",
|
|
" & (~allcolumns.lost)\n",
|
|
" & (allcolumns.fromB)\n",
|
|
" & (allcolumns.p > 5e3)] # B: 9056\n",
|
|
"lost = allcolumns[(allcolumns.isElectron)\n",
|
|
" & (allcolumns.lost)\n",
|
|
" & (allcolumns.fromB)\n",
|
|
" & (allcolumns.p > 5e3)] # B: 1466\n",
|
|
"\n",
|
|
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
|
|
"# ak.count(found, axis=None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"eff all = 0.8343228283189001 +/- 0.0017564670414882176\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"def t_eff(found, lost, axis=0):\n",
|
|
" sel = ak.num(found, axis=axis)\n",
|
|
" des = ak.num(lost, axis=axis)\n",
|
|
" return sel / (sel + des)\n",
|
|
"\n",
|
|
"\n",
|
|
"def eff_err(found, lost):\n",
|
|
" n_f = ak.num(found, axis=0)\n",
|
|
" n_all = ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
|
|
" return 1 / n_all * np.sqrt(np.abs(n_f * (1 - n_f / n_all)))\n",
|
|
"\n",
|
|
"\n",
|
|
"print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# try excluding all photons that originate from a vtx @ z>9500mm\n",
|
|
"# ignore all brem vertices @ z>9500mm\n",
|
|
"\n",
|
|
"# found\n",
|
|
"\n",
|
|
"brem_e_f = found[\"brem_photons_pe\"]\n",
|
|
"brem_z_f = found[\"brem_vtx_z\"]\n",
|
|
"e_f = found[\"energy\"]\n",
|
|
"length_f = found[\"brem_vtx_z_length\"]\n",
|
|
"\n",
|
|
"brem_f = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(found, axis=0)):\n",
|
|
" brem_f.begin_record()\n",
|
|
" # [:,\"energy\"] energy\n",
|
|
" brem_f.field(\"energy\").append(e_f[itr])\n",
|
|
" # [:,\"photon_length\"] number of vertices\n",
|
|
" brem_f.field(\"photon_length\").integer(length_f[itr])\n",
|
|
" # [:,\"brem_photons_pe\",:] photon energy\n",
|
|
" brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n",
|
|
" # [:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n",
|
|
" brem_f.end_record()\n",
|
|
"\n",
|
|
"brem_f = ak.Array(brem_f)\n",
|
|
"\n",
|
|
"# lost\n",
|
|
"\n",
|
|
"brem_e_l = lost[\"brem_photons_pe\"]\n",
|
|
"brem_z_l = lost[\"brem_vtx_z\"]\n",
|
|
"e_l = lost[\"energy\"]\n",
|
|
"length_l = lost[\"brem_vtx_z_length\"]\n",
|
|
"\n",
|
|
"brem_l = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(lost, axis=0)):\n",
|
|
" brem_l.begin_record()\n",
|
|
" # [:,\"energy\"] energy\n",
|
|
" brem_l.field(\"energy\").append(e_l[itr])\n",
|
|
" # [:,\"photon_length\"] number of vertices\n",
|
|
" brem_l.field(\"photon_length\").integer(length_l[itr])\n",
|
|
" # [:,\"brem_photons_pe\",:] photon energy\n",
|
|
" brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n",
|
|
" # [:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n",
|
|
" brem_l.end_record()\n",
|
|
"\n",
|
|
"brem_l = ak.Array(brem_l)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cut_brem_found = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem_f, axis=0)):\n",
|
|
" cut_brem_found.begin_record()\n",
|
|
" cut_brem_found.field(\"energy\").real(brem_f[itr, \"energy\"])\n",
|
|
"\n",
|
|
" cut_brem_found.field(\"brem_photons_pe\")\n",
|
|
" cut_brem_found.begin_list()\n",
|
|
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
|
|
" if brem_f[itr, \"brem_vtx_z\", jentry] > 9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem_found.real(brem_f[itr, \"brem_photons_pe\", jentry])\n",
|
|
"\n",
|
|
" # cut_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
|
|
" cut_brem_found.end_list()\n",
|
|
"\n",
|
|
" cut_brem_found.field(\"brem_vtx_z\")\n",
|
|
" cut_brem_found.begin_list()\n",
|
|
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
|
|
" if brem_f[itr, \"brem_vtx_z\", jentry] > 9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem_found.real(brem_f[itr, \"brem_vtx_z\", jentry])\n",
|
|
" cut_brem_found.end_list()\n",
|
|
"\n",
|
|
" cut_brem_found.end_record()\n",
|
|
"\n",
|
|
"cut_brem_found = ak.Array(cut_brem_found)\n",
|
|
"\n",
|
|
"cut_brem_lost = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem_l, axis=0)):\n",
|
|
" cut_brem_lost.begin_record()\n",
|
|
" cut_brem_lost.field(\"energy\").real(brem_l[itr, \"energy\"])\n",
|
|
"\n",
|
|
" cut_brem_lost.field(\"brem_photons_pe\")\n",
|
|
" cut_brem_lost.begin_list()\n",
|
|
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
|
|
" if brem_l[itr, \"brem_vtx_z\", jentry] > 9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem_lost.real(brem_l[itr, \"brem_photons_pe\", jentry])\n",
|
|
"\n",
|
|
" # cut_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
|
|
" cut_brem_lost.end_list()\n",
|
|
"\n",
|
|
" cut_brem_lost.field(\"brem_vtx_z\")\n",
|
|
" cut_brem_lost.begin_list()\n",
|
|
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
|
|
" if brem_l[itr, \"brem_vtx_z\", jentry] > 9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem_lost.real(brem_l[itr, \"brem_vtx_z\", jentry])\n",
|
|
" cut_brem_lost.end_list()\n",
|
|
"\n",
|
|
" cut_brem_lost.end_record()\n",
|
|
"\n",
|
|
"cut_brem_lost = ak.Array(cut_brem_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{energy: 3.26e+04,\n",
|
|
" brem_photons_pe: [824, 287, 1.26e+04, 4.49e+03, 3.59e+03, 111],\n",
|
|
" brem_vtx_z: [157, 158, 601, 2.33e+03, 8.65e+03, 8.67e+03]}\n",
|
|
"----------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {energy: 3.26e+04, ...} type='{energy: float64, brem_photons_pe: va...'>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# data in cut_brem_found and cut_brem_lost\n",
|
|
"\n",
|
|
"cut_length_found = ak.num(cut_brem_found[\"brem_photons_pe\"], axis=-1)\n",
|
|
"cut_length_lost = ak.num(cut_brem_lost[\"brem_photons_pe\"], axis=-1)\n",
|
|
"\n",
|
|
"cut_brem_found[1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### in magnet\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"inmagnet_found = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(cut_brem_found, axis=0)):\n",
|
|
"\n",
|
|
" inmagnet_found.begin_record()\n",
|
|
" inmagnet_found.field(\"energy\").real(cut_brem_found[itr, \"energy\"])\n",
|
|
"\n",
|
|
" inmagnet_found.field(\"brem_photons_pe\")\n",
|
|
" inmagnet_found.begin_list()\n",
|
|
" for jentry in range(cut_length_found[itr]):\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] > 1500:\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" inmagnet_found.real(cut_brem_found[itr, \"brem_photons_pe\",\n",
|
|
" jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" inmagnet_found.end_list()\n",
|
|
"\n",
|
|
" inmagnet_found.field(\"brem_vtx_z\")\n",
|
|
" inmagnet_found.begin_list()\n",
|
|
" for jentry in range(cut_length_found[itr]):\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] > 1500:\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" inmagnet_found.real(cut_brem_found[itr, \"brem_vtx_z\", jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" inmagnet_found.end_list()\n",
|
|
" inmagnet_found.end_record()\n",
|
|
"\n",
|
|
"inmagnet_found = ak.Array(inmagnet_found)\n",
|
|
"\n",
|
|
"inmagnet_lost = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(cut_brem_lost, axis=0)):\n",
|
|
"\n",
|
|
" inmagnet_lost.begin_record()\n",
|
|
" inmagnet_lost.field(\"energy\").real(cut_brem_lost[itr, \"energy\"])\n",
|
|
"\n",
|
|
" inmagnet_lost.field(\"brem_photons_pe\")\n",
|
|
" inmagnet_lost.begin_list()\n",
|
|
" for jentry in range(cut_length_lost[itr]):\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] > 1500:\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" inmagnet_lost.real(cut_brem_lost[itr, \"brem_photons_pe\",\n",
|
|
" jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" inmagnet_lost.end_list()\n",
|
|
"\n",
|
|
" inmagnet_lost.field(\"brem_vtx_z\")\n",
|
|
" inmagnet_lost.begin_list()\n",
|
|
" for jentry in range(cut_length_lost[itr]):\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] > 1500:\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" inmagnet_lost.real(cut_brem_lost[itr, \"brem_vtx_z\", jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" inmagnet_lost.end_list()\n",
|
|
" inmagnet_lost.end_record()\n",
|
|
"\n",
|
|
"inmagnet_lost = ak.Array(inmagnet_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cutoff_energy = 350\n",
|
|
"# possibly: instead of checking if any photons exceed the cutoff, use the sum of all photon energies to separate nobrem and brem\n",
|
|
"\n",
|
|
"inmagnet_brem_found = inmagnet_found[ak.sum(inmagnet_found[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) >= cutoff_energy]\n",
|
|
"magnet_energy_found = ak.to_numpy(inmagnet_brem_found[\"energy\"])\n",
|
|
"magnet_eph_found = ak.to_numpy(\n",
|
|
" ak.sum(inmagnet_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"magnet_residual_found = magnet_energy_found - magnet_eph_found\n",
|
|
"magnet_energyloss_found = magnet_eph_found / magnet_energy_found\n",
|
|
"\n",
|
|
"inmagnet_brem_lost = inmagnet_lost[ak.sum(inmagnet_lost[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) >= cutoff_energy]\n",
|
|
"magnet_energy_lost = ak.to_numpy(inmagnet_brem_lost[\"energy\"])\n",
|
|
"magnet_eph_lost = ak.to_numpy(\n",
|
|
" ak.sum(inmagnet_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"magnet_residual_lost = magnet_energy_lost - magnet_eph_lost\n",
|
|
"magnet_energyloss_lost = magnet_eph_lost / magnet_energy_lost"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"20316.361014308728"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ak.mean(magnet_eph_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHRCAYAAAB96iOvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLGklEQVR4nO3dTYwbaX7n+V8ag9YUVihFpnyZWynoOfjkqmDqMpeyLXLq7BYpHcbAXDrJLujWcJGdgwFKdemsoHW00B3M8sIL9EVJVhl77Ca104UBjMUqGS2fButuRqoPC+/BlYwSNFtWuV2xh+wniu9JBl+Skfn9AISUZPCJJ54IRvzjiedlK4qiSAAAACn2exedAQAAgEUR0AAAgNQjoAEAAKlHQAMAAFKPgAYAAKQeAQ0AAEg9AhoAAJB6/+aiM7BK5XJZmUxGX3zxhW7fvq1CoXDRWVq5q7jNAABc2oCmWCzKtm1VKhVJUjablWVZyuVyF5yz1bmK2wwAgCRtXcaRgoMgUCaTUbfblW3bkqRaraZWq6VWq3XBuVuNVW1zu93Wzs6OHMdZVlYBAFi6S9mGxvd9SYov7JLkOI7a7bbCMLygXK3WqrY5DEOdnp4umj0AAFbqUgY0z549k2VZA+/t7OxI0qW4OFerVQVBMPDeZd/my8QEn1dFGIaq1+sjxywWFwSB6vX6pb1Rw+yu2nllnNQENGEYqlaraWtrS1tbW9re3laxWFQ+n1cmk1GtVhtY1lzMh23KSbVeryuTycTbk8/n1W63JZ0dmPl8Pv7MbFu9Xpck3bx5M17OfCcN23wVFYvFeD+aV7VaHbus7/sqFovKZDLa3t5WNptVPp9XtVpVvV5XNpuda93tdnvgGMtms2o2myPLNZtNZbPZeJllnhjr9bpu3bqlcrnMRTeBcrk8cb/XajVlMhmVy2VuWi6BIAhULpdVLpdVLBan/mZmPa9Uq1UVi8X4WjnpWjDrchsvShnHcSJJked58XuNRiOSFBUKhSiKosh13ciyrIHvdTqdSFLU7XbXmt9pXNeNJEW2bY98lsvlIsdxol6vF7/X6XSiUqkUlUqlyHXdqFKpxJ+vapsbjUbUarUSf/8q6/V6kW3bUaFQGHh1Op2RZSuVSnwM9++vXq8XlUqlSFKU5Ofa6/Xi7/b/ZoZ5njdy/CyL2bZx272Ibrc78Pu4jCzLmrrfCoXCxp3XVu0y7ndzru7/jVQqlciyrJF9O+t5xXGc+JoYRVHUarUiy7ISL5cGqevlZCLH/p47pmuyufu0bXsksjV3MP1tTC5at9uVpJHI2vRWGm7M6ziOstmsGo2GLMvS/fv348dMy9rmcrk88Pfx8bF2dnbUaDQG3vc8b+Y0pbM79U6nM3WZfD5/qbqZHxwcyHXdc7epWCyq2WzKdd24h5phWZY8z1M2mx3ZN7OwLEuVSkW1Wk2NRkOlUmnscp1OR/v7+3OnPwtTo7hsxWIx/i1cRqb927179yYuM6lW9jK7jPt9b29PjuMMdL5wXVe1Wk3VanXg/DvLeaVarcr3fT19+jR+L5fLybZt7e3txefiWZdLjYuOqOZhothxNRr63V1or9eLut3uyF2L67qR4zhLzY/rugvdGdm2PZDPbrcbOY4z8Y6sUChErVYrcl036vV6UaVSiZdd1TZfhRqaXq83tdyTsiwrcl136p2OqV2cZT8l3Zf9tTST8mJZ1sruek1N5DLv+K5CzUShUDh3n5vau8tcDv3Stt8bjUbkOM7U/Jpzd6lUGvksl8uNbO8s5xXLssZeJ4d/i7MulxapCmhMIQ/v+HEXhUKhELmuG//tOM7SL8yNRmPsQTgLc5Ex1fyNRiOybXumA6hSqYxdbhXbfBUCmiiK4gDRtu2BMkzKHKvmZVlW1Gg0RpYzQe0swdS4k2Kn04kKhUKUy+Ui27ajSqUy9rvmQtBftWw0Go2x70/T6/Uiz/PiY8z837KsqFAoDARHpiz6l5uUF/OIrVKpRLlcLsrlciPHn/mtSIpyudxIdft5afTn3Rzfk/LUn1apVIps2z53X7VarXi/m/Q6nU6cZ8dxBvI76SI9y3FhAhrzONqyrMiyrLHnSFMO5vFi/zLTjiNTXrlcLvI8L+p2u1Eul4ssy4pyudzAY2/btiPLsiYeh+N0Op3Isqy4bPrLwTyudF134n43+TFl3mg0ol6vF+dxnt+zbdtx2qVSKd43817cPc+LbNuOSqXSuTcK5vo1rszM/jXnjlnOK+bGf9zvyxyb5hoyy3JRtPgxsOpjyEhVQGMO2v4d2B/MDJ8Q+tuaLPvu2xgX3c7C87yBH2b/Tj3PtGh/1m02wVilUpl6BzFvQDNrustmTtjmB37ehXMa86Pqb6M0r16vFzUajThIMieg/ouIuTMzF/t5dTqdKJfLxX+b38K4ILt/XcPblCTw7W/Xk8vlokqlEgdGw7Wo5iScy+XiO0vz/f6Ljbmw9V84zO9k+KJkLnTDx9csaXS73TifJu+T8lQoFAZOrJ7nzXSBNPnrL9fhi0R/msPvmX153vFn8pzL5aJSqTRw3Jtjoz8Q6P9tmhvA846jbrc7sB5TXmZ7zLpbrdZA2c4TAAy3gzTMhc+YtN+jaLTGO5fLzV3DMPzbmXQTPUmSc4cpx3Hnqf6ALopmO6+Y431cnvuDmFmXi6LFj4F1HENRlLKAxuw882M0EepF1iCYC+m8zA4zdybLqBWYlbnzMKY1PJwnoJkn3VUwP5j+GixzQkgS7c9zl3Uec8Luv8j138lPSr/T6USu6w68zPeH7/SjKIqPp3HpmRuC/rLodruJGwObk/3wPh6+8Zi0XP9F12zPuN+S+a2Pu3MfvrDNmobZH8O/u+E8jbtTnOW3agLI4YvUuCr+4Ybg5r1ZzivDd/CGudiZY8Xsg3G/g1mOI3OBG774jds3Ztl5z2kmz/1MzYwxLaAZvlgn+c0P1+SZc/S03/+itbv9j4SHme2ddn4ePq9M29fmuHQcZ+bljEWPgXUcQ6nptm26JzuOo06nE78kDXR5XrdCoaB8Pq98Pj9Xt1STX9MYq1qtrqVbaz6f19HRkQ4PDyWdNaQOw3Di9Ai5XG6mqRPmTXcVjo+PJUn379+PG9fdv39fUrKu66VSSd1uV/l8Xnfu3FG5XE7cnbFQKMSNvOdpUO04jkqlkqrVatx4PJfLKQgC+b6vg4ODuLtlsViMv2fKop/5vun+L501PFy0MfBwo3PTeHm4Ufvu7u7A35ZlxeVptmfciNQmvfPKLUka4xqW9neBtm1btVptYFiI4Ybb49i2LcdxxnaTD4Ig3u4wDBWG4UgZNpvNgf15nuFtHt4HZjtv3749kpd5jqPh8jL57m+cbN4znR5mZfLcX2ZPnjyZuaOA+a2YBvau6861fmmws8ne3p6ks9/IuOPEdLPOZrPxKO2zHBvDLMuKG+v3l3273Y5/q5M6dow7r8zSWDoMw5mXG5fffvMeA6s8hlIT0Jid1n/AOY4TX0Dn+fGPYyZ1TPLyPE/tdlvb29szBVa+78cnMcdx4h/BpPFJlqVer6vdbuvw8FCWZaler6tararVak38wcxy0CdJdxV831ehUBg4uZsLxyK9QQqFgjqdzsAJP0nwmcvl5DhOnKf+C/y0QMmyrHibzL9mrJhGozHw6vV6iqJobCBpei+Yge4k6ejoaGLPp6RMHucJ/qaNfWPK6bz0lpHGMNObplqtKpPJzDVGz/AFul6vxz2WzMXn6Oho5Nxllp/Wu+k8Zv8Pb+/w7znJcbQq5jg0ZeP7/kgQfJ4kQcw47XZbzWYzDpKG9Y/Z0u12F/4NeZ4n13Xl+348HlQQBPF5a1o5DJ9XzDl33DnKvGfb9szLpUlqAhoTKOTz+YH3zQ/O3Okk5Xmeut1uopfneXIcR61Wa6YTgNkWs6y5A1j1aKrmBBsEQRw8dbvdhU9aq0p3HuYiMNy1+dmzZ5IWD3j7LXKc2bYdn6T6Ly7jalTGMd/tr9mYh9k/ruuq2Wxqd3d36d1fTR6TnAyn3RHOGpQuIw3Dtm2dnJzEtWLZbHaghmua4Qu0uWjlcrk4Dc/zRi6GT548US6XW2i/9A/nME3S42gVLMtSoVBQu91WEAR68uTJ3EMVBEEQ1/z116rNy6x3eLiKVapUKup2u4qiSJ1OR7u7uwqCQIVC4dxjof+8Yvb5uMEWzXuO48y8XJqkIqAJwzC+kxi+SPb/EC9iXALf91WtVvX06dOZL+Cmtqk/ODN3FknGGpmFCaJKpZIqlYpc113Knfmq0p3XuBo86eyueNbHZpOYkXQ9z1Oj0VCr1Up8rIVhODLWRP+/szIno3GPNCRNrCkslUrxCX9vb28lx5s5Gc4zsrEpk3H5NgFKJpNZeRrDzAWy1WrFF7d5ysxcoPuDRzMCbK1WG3vnPe/jpnHM9g4/YhqW9DhaFfP40/O8iY8PpzFjp9i2PXaKmFmY71UqlYkBoanJarVaymQyMwe58+ZDmu3c0H9esW174HFuP3MdzefzMy+XJqkIaIZrNPo9efJEki5sQLa9vb25B3katz2lUkm2bavdbq/0JDLuhL6Mu7NVpTtrbUi73R45PswdWtK7LDM9hbmYNRqNhapgwzDU8fHxQJuVSqUSVxfP88jRbKsZGGs439P0r3/S72aRWqhmsznQLuCLL76QNH1OMfP4tb99iXF8fDyQ3qR8Jk1jmv6LSaFQiGtbZj22TfBTLBbj/WvKvFqtjgRHy3jcJJ39HmzbPve8uMhxtAqm5qBWq00N6sYdn7VaTffv35dt2/F+SlLDU6vVZFnWSCAxXONj1tPpdNTtdkem4FlErVZTu92e6Zwz7rxSKpXipg39TDMAs99nXS415mpCfEFMj6Dh1tGm25lt2xcyFHaScWhMz5ZpgxktewDAKPq2JX3/WDemB80iZbeqdKNosNfSNKZFfn+LeNNVNUm38UW7bZsW+rlcLl5/r9eLB0Ycx/RmGNfV1Bwzw8Ogm+/odz07XNeNu0ROY/bZpOVmLXdzvPb35DHDso/rmTK87WabDNPjqr93z7j0omiwa2q3240/nzUN8/1xPa/6f3/DZW6OjXkM5yeKzs5p49KZtXeTMa5su93uyJhWZl+NGwtpluNoUpfzcQO/TerhNSuT13G/vWn7fbg8xw3zcR7zneFjtdPpzPS7MsfHIuc/M+XBpPFlZj2vmB6ahtmHw+eXWZdb9BhYxzG08QFN/4/N7Ewzz5EZpOci8zbvWAv9Ywf0H/Sm+3f/iWXZ3dFbrdbA4F7LKrtVpWv2/XndivtPcqa75rxdNodPRoswJxmTdzP2x3knODMWihlYygxPYLqhjmPybILKWcveXBDGmbXc+7t9mnwOH7eNRmNg0LROpzMyP9XwAFzmom7mLZv0GzMD+Q3fVJyXRqfTibuK2rYdtVqtkTyZY6B/oLlKpTIyaOAsxo3q2ul0xu6rcUHWNKbLsDkvmu3tz2P/eWfSMTLtODLj1Jhjwlxoze/OnK/MIHf9x35/Ov3n8eHX8DZNu1Ec3u/m/NM/llf/b3C4TKflw7xMOZZKpXjb59kvZsiHWW+Kut1uPLL7pO8kOa8Mb8ek39J5yy16DCzrGDrPVhRF0bnVOMAFymazU+cUKRaLarfb6vV6idIPw1DZbFbVavVC2v9sqvPK3cwzM2tjeOCqqdfrcdu7aY+OzCPCtPUq2jSpm5wSV0u9Xj93nJRx7WfmYVnW3OMdXHazlDuA6Uql0kw3SdwQLAcBDTaW7/vnNkwzDdrO682B2c1S7gCwaVLRywlXk+M45wYzZjTPVqs116BnmOy8cpfOHtOZrvLrHKsDACahDQ2AuY3rnppk2HcAWBYCGgAAkHo8cgIAAKlHQAMAAFIv1b2c/umf/kk/+9nP9NZbb+mNN9646OwAAIAZfPXVV3rx4oXee+89/f7v//5S0kx1QPOzn/1Mf/7nf37R2QAAAAn89Kc/1X/6T/9pKWmlOqB56623JJ0VyB/+4R8uLd1Xr17p3Xff1eeff67r168vLV3j7t27+vTTT1OT7irTXmVZp7E80ljOUvrKY1Vpp7WcV5l2Go/pNJbzqtJeVTn/j//xP/Tnf/7n8XV8GVId0JjHTP/1v/7XiY+cHjx4oAcPHsyV7suXLyVJb7/9tt58883FMjnGG2+8EU/1noZ0V5n2Kss6jeWRxnKW0lceq0o7reW8yrTTeEynsZxXlfYi5fz48WM9fvx47GdfffWVJC21uUjigOazzz5Tq9XS8fFxPPW4ZVnK5/O6f/++/uiP/mhZeTzXp59+urIDBAAAzG9ahYLv+8pms0td39wBzWeffaZKpaIgCOL3LMuSJHW7XXU6HbmuK8dx9Mknn6w1sAEAAFfTXN22v//976tSqahcLqvT6eibb77RN998o9PTU52ensZ//+xnP9Of/umf6u7du/rkk09WlXcAAABJcwQ03//+95XP5/XrX/9aH3zwgd55552Jy+ZyObmuq1//+tf69a9/TVADAABWaqaA5tGjR6pWq7p79+7cK/j4448VRZGeP38+93cBAABmMVNAc/fuXd26dSvxSvb29nTjxo3E379s5u11ddHprjrtVUljeaSxnKV0lkcayzqN5UE5X46002Alk1M+evRIhUJhqf3LxzGtpDudzlJ7Ob18+VI3btzQl19+uZKul/gWZb0elPN6UM7rQ1mvx6rKeRXX73N7OR0eHqper8+cYBiGCoJAp6en+tGPfrRQ5gAAAGZxbkCzu7urcrk8d8KNRoOABgAArMW5bWjeeecdFQqFuEv2N998I9d15bruwHv9r0qlolartY78AwAAzNYo2HXdgb+DINAHH3wwcflyuaxisbhYzgAAAGY0U0Azbw+nIAjk+36iDAEAAMxrrpGCjSiK9N/+238b+9nLly9VLpdl2/ZCGQMAAJhVoskpP/74Y9m2rdu3byufz8u2bZ2enqrT6cQ9ojzPW2pGp7l79+5SZ9sGAACLmWW27WVKFNBYlqXj42NVq1VVKhVtbW1JOqu5kaRKpaLvfe97y8vlOZY92/a1a9f04Ycf6tq1a0tLE+NR1utBOa8H5bw+lPV6LFLO655te+GB9U5OThQEgYIgkG3b2t3dXduowKsaWG+ahw/nex8AAAxaxfU7URsa4+XLlzo5OdGdO3e0t7cnSep0OkvJGAAAwKwSBzTvv/++tre39R//43+M37tz54663a729/eXkjkAAIBZJApofvjDH8rzPN24cWPk8dLe3p46nY7++q//eikZBAAAOE+igKbZbKrZbOr09FR37twZ+Tyfz+vjjz9eOHNGEARLSwsAAFw+iQIa27b13e9+V5LiHk79nj17tlAQsrW1NfBi1GEAADBN4m7bxnAnqV/+8pdqNpvKZDKJMlSv11UqlQa+n8vlEqUFAACuhkQBzf7+vt577z25rhvX0Lx48ULNZlPValVbW1uJZuiWzmbpZmJLAAAwj0QBzTvvvKODgwN973vfk+/7ajabkr6tralWq/qLv/iLudNtNps6Pj5WsVhUPp9XqVRKkj0AAHDFJApoJMlxHB0fH+vk5ESdTkcnJyeybVu5XC7xwHqtVkthGMaNjqvVqhqNBo+cAADAVIkDGuPWrVtjZ+P+5JNP5p7+wPM8eZ4n3/fleZ7q9bry+by63e7UyS5fvXqlly9fzp1349q1awyfDQDAjF6/fq3Xr18n/v6rV6+WmJsziQOa58+fq91uq9vtjnx2enqqdrudeD4nx3HkeZ7y+byKxWJcUzPJu+++m2g9xocffqiHzF0AACsRBIHa7bbu3bs30KlkUWEYStJS08RsDg4O9NFHH110NgYkCmh++MMf6i//8i9Hejj1G9ede16FQkGFQkG+709d7vPPP9fbb7+deD3UzgBIm2azqYODg/j8aNu2yuWyKpXKxO+02215nhe3e7QsS6VSSfv7+7IsS2EY6uDgQPV6PQ4WSqWSyuXyyHw7pib9+Pg4nsvPvDKZjFqtlhqNhmq1mqrVqqSzHqtJgo8wDFWtVnV0dKSdnR2dnp7Gtfb7+/sqFArxskEQKJvNynXdtbfD9H1fT548UbvdlrS8qYAucpsm2d/f1w9+8IPE33/+/PnClREjogS2t7ejYrEY+b4fhWE48up2u1GxWEyS9AjP8yLLssZ+1ul0IklRp9NZyrpm8eGH418AcBEkzX0etG07khR5njf2c9d1I0mR4zgjn/V6vahQKESSolKpFHW73fizbrcb5XK5SFKUy+Xi983y/cvOw3GcyHGcqNfrjeTBdd2BZc11oVKpJFrXosz6x5XdLLrdbrydw2le1Datwiqu34lqaHZ2dlSr1fTWW2+N/fzGjRtyXTdJ0mPt7u4uLS0AuIzmqfkwy+7s7Mz9+Z07d+LameHaAtu21Wq1VCwWBwZXnbSeWTSbTfm+r1arFefLsiw1Gg0Vi0V98cUXA8s7jjP16cGqLTpzdLFYVKPRGNifF71NaZFopOByuXzuSMBffvllogwNa7Vaice0AQAsT7Vale/7chxn6qOPw8PDpa3TXGvGNT04PDy8VFPjFIvFc5tYYLJEAc0HH3ygRqOh3/zmN3r58uXI68WLFzo4OJgrTd/3lc1mVavV4veazaZ2dnYGno8CAC6GOT/v7+9PXc6yrLHLhGGocrms7e1tbW9vz3SzatrKVKvVuG3KtPU0m00Vi8WBKXPCMIx7zdbrdQVBoHw+r+3tbeXz+bi9UK1WUyaT0fb2dtzux6S5vb2tra2tOOBot9sqFotzTc9Tq9VULpdVrVaVzWZVr9cH1mHSLpfLA8HNuG3q3zaTZj6fVz6fHygns+3ZbFbNZlPtdlvZbPZyTiuU5DnVl19+GeXz+ej3fu/3pr7m0ev1olwuF1mWFeVyuahSqUStVmvqd2hDA+Cq0+/a0MzTPsVxnEhS1Gg0xn7ued5IOxhzvp13XVEURaVSKU6vVCpFnufFeehfx3n51e/a7Qy3MTG63W7c/qc/3W63O5CHSqUSdTqdqNVqDeSr1WpF3W43bp/Tf20x3+9/r9vtRpKiQqEwkA+NaUNTqVSi/kuuWXf/dc4sM9wuadw2RdHZPrEsayBPZt+ZtkX929O/7WZ7htsgrcsqrt+JApp8Ph9tbW1F2Ww2KhaLI69cLjd3QJMEAQ2Aq26RgMayrLEvk2b/BbTRaMTvz8tcPIcDKNM4+bybV3PDa9ZvWdbEBs1RFE28+JuAqJ8pi/7yM8v2X+xNsNF/ven1ejMHNOaGffi7/Q19xwU007bJcZyxAeHwNpl9Nxy8zBpQrsIqrt+JHjkdHx+r3W7r+PhYR0dHI69Wq6Wf/OQnSZIGAKzJ4eGher3eyMvzvKnfM49o5jXcYNY8cjpv/j7LsuJu4KZ7uXksM6/hxtPmkVZ/w2Xz3rhx1pJqNBoD3biPj48lJS/LIAji9kzDTLkO78dxDcdPT08TrX8TJerltLu7e26r9b29vUQZSqtJ4/IxXh+Ay6B/tPYgCBbuzSMpntZm1oa9Zmyycrmser0eT5GzzF61q2JZlizLUrPZ1JMnT3T79u2F0pvWeNj0DL5MDaZnkaiGxvM8PXnyZOoyn332WaIMAQA2T38AY2oXFmVqDKZNbTPuoux5XjyAYH9Hkk1mBscLgkCNRmPqAIjzGFfDc163/MsqUQ3N06dP5fu+3n///YljH9TrdX33u99dJG8AgCUwd/OL1qqUSiXV63U1Go2ljFhrLsbTaiuKxeLYEXdd142DmTAMN376g3w+L9u2lxbImH053PNL+rZcM5nMUtaVFokCmqOjo7GF2G8ZUx8AABZ33nx4s3JdNz7/1+v1iUGNmargvLY47XZbtm1PHZojCAI1m82Jy5hHOat28+bNOD8mmDC1R+e1gwmCYOQxnfnOuDYss7SrsW1bjuPI9/146gnj+Pg4ntbiKkn0yKlYLKpUKqnT6Yx9/fznP9edO3eWnVcAwATjHs2Y8VZOT08HLvpm2UkNQs0FdThNy7LU6XSUy+XiRrn9y5gxT8ykwv3fG04vCAJ5nnduoLW7u6tisTgwZov0bcPX4e9PChTO29b+z83/+98zwYgZD6der8cBW7vdVj6fn7gN5tFPs9lUvV5XvV6Py8f3fTWbTYVhGNeoeJ4XB3LTtsk0ku4fzycMQ7muq8PDw7jcL1PD36mSdI368ssvo5OTk6nL+L6fJOm5mG5fb731VvSHf/iHY19/9Vd/tdR1Tuq2TXduAOvUaDQGujLrd12FHceJu0Obl+ka3Gq14jFJ9Lvuz67rDsyRVKlUBrpul0qlsV1rzfrNsrZtR7lcbmx3apNuLpeLx3yZNp5Mv1KpFOVyuXjbcrlcvK7hfHU6nYHtM9vW6XTisrIsK+4+bsZs0e+6Xnc6nYFxW4a7h7uuG3dtN2Vq23Y8tkv/+C796zfrsiwrXt5sW39aUXTW5dqyrLh7+aRt6i/bQqEwUK795dLpdOJu3LZtR61WK+r1eiP5XIW/+qu/mnhtfuutt5bebXsriuafIOL999/X8fGxnj17ljySWgIzunCn01lKi/tZzNtriV5OAAAMWsX1O9Ejp/N6OAEAAKxTooDGdd14/IBJPvnkk0QZAgAAmFeiXk62bcv3fe3v7+v27dsjLcxNo6Tvfe97y8gjAADAVIkCGtd19fTpU0VRNLZ79qT3AQAAViFRQFMqlRQEgcrl8tj+/71eb6SLHQAAwKokCmgKhYK2trZ09+7dictctREKAQDAxUkU0EjS3bt39eLFi3gAoJ2dHf3BH/yB9vb29Oabb04NdgAAAJYpcUDz6NEjVatVDQ9j86Mf/UiffPKJ/uzP/mzhzAEAAMwi8eSUlUpFjuOoXC5rd3dXlmUpDEM9e/ZMH3zwgW7duqW33357ydkFAAAYlbiXk+d52tvbG/nsnXfe0b1797S/v68f//jHC2cw7caNFMzowQAALFeigfUkjQ1mjE2fxh0AAFwuiQKabDZ77jLjZn4FAABYhUSPnHq9nv7+7/9ef/RHfzTy2YsXLyaOT7Mqd+/e1RtvvDH2swcPHujBgwdrywsAAJAeP36sx48fj/3sq6++Wvr6EgU0H3/8sWzb1u3bt+NZMsMwVLvdVhAEsixLJycnS83oNJ9++unaZtsGgMsqDe370pDHZfN9X8fHxyqVShedlblMq1Aws20vU6JHTpZlqd1u65/+6Z/kum7cSLjb7eqdd97R8fGx3nzzzaVmFACAZfN9X9VqVcViUZlMRrVa7aKzFAuCQMViUdlsVp7nXXR2Nl7icWgcx1Gn09HJyYl834/fu3Xr1tIyBwDAqvi+rzt37qjX60mSqtWqut3uBefqW7Ztq9FoMDfijBIHNMatW7fGBjGPHj3SX/zFXyyaPAAAK3FwcKCdnZ34b9d1LzA3WNRCIwW3Wi2dnp6O/dz3fQIaAMDGMk8XcDkkCmju37+vRqMxdRmqyAAAm6her6vVasXDixSLRUlSuVxWLpeTdNbRpVqtyrKsOPCpVqvx581mU3t7ewrDUJ1OR47jqN1uy/M8NZtNFQoFNRoNhWGoo6MjeZ6n/f19WZalarUq3/fjZfqZ9RpM9Dy7RI2CG42GyuWyvvnmm4mvaQPvAQBwUUqlkhqNhmzbjtupNBqNOFjxfV+3bt1SuVyW67pqtVoqFovK5/Nxo+FCoaB79+4NpJvL5UYeW52enqrVasn3fXmep1arpcPDQ5VKJTWbzYFGyEEQ6NatWyoWi/I8j4bAc0oU0Jg5nKbhWSQAII329va0u7s7MBxIqVSS4ziqVqtxzc648db62+RIZw1779+/L0nK5/NyXVeO48TBSqvVipetVqva3d2NAytJqlQqS9uuyy5RQOO6rp48eTJ1mU6nkyhDAABclCAI5Pv+2LHNzI180pqTcQGQaYcaBIGazaby+XyitJGwDU0YhvJ9X48ePZo4IrDruvrVr361SN4AAFiraQ2Fd3d3Ja1mah+Tpm3bS0/7qkgU0BwcHMj3/YGqsmE0CgYApFUYhiPvmRv44cdKy2ACmkk9h3G+RAFNqVRSu92OnwsO++KLL1Sv1xfKGAAA62YeNbXb7ZHPTJCzip5HpmaG5hrJJe62nc/np44KfPv27cSZmheTUwIA5jWuNsS2bTmOI9/3FQTBwCOg4+NjWZYVz6l08+ZNSWe1KyYQMjUt42p4pjGPs+r1ulzXHWnOMW96m2AjJ6d8+fLlwNxMN27c0I0bN6Z+55133pmaxjIxOSUAYFkajYay2azK5XLctCIMQ7muq8PDwzjYMNcdM15NEARxDUu73VY+n586AG0/y7JUqVRUq9XiuZts244bIAdBoFqtlqpeTxs5OaXneXrx4kXilXz22Wc6Pj5O/H0AAJbF932Vy2WFYagwDFUulwceMdm2rZOTE1mWpXw+r3K5rGq1qkajoUKhEC9nxp05PT1VsVhUt9uNA5FKpSLXdePxZ6SzzjLtdjtep8mLGYvGTPQsnXXxLhaLKpfLcXr968aorSiKolkWvHfvnt5//339yZ/8yVwrODw81JdffrmSaRBMhGdGaVyHZUxdv4w0AABIq1Vcv2ceh+bo6EgffPCB7t+/r7/927/Vy5cvJy774sULPXr0SP/+3//7lQUzAAAAxlyNgo+Pj1WtVnX37l1tbW3Jsizt7OzEzxODIIgbLtm2raOjo5G2NAAAAMs290jBruuq1+vp4OBA2WxWX3zxhTqdjjqdjqIo0t27d3V0dKRf/epXBDMAAGAtEnXbvnHjhiqVSqpaWwMAgMsr0VxOAAAAm4SABgAApB4BDQAASD0CGgAAkHoENAAAIPUIaAAAQOol6rY9zYsXL/TWW28tO9mpmG0bAIDNspGzbQ/75JNP4hGBzbQGh4eH+v73vy/pbJTgTqezstm1hzHbNgAAm2UjZ9se9vHHH8uyrDiY+eUvf6lyuawoivSTn/xEe3t72tvbW2pGAQAAJklUQ5PL5fS9730v/rtYLGpra0uNRkPf/e53JUk//OEPl5NDAACAcyQKaLa3t+P//+Vf/qWCIFA+n4+DGUna2tpaPHcAgPX5u4cXnYPz/YeHF50DbKhEAU2v19P+/r6ks8kqt7e31Wg04s9PTk7UbDZ1cHCwnFwCALAkvu/ryZMnarfbkqROp3PBOcIyJGpD47quut2uPM+T4zg6Pj7Wm2++qZOTE33/+99XNpuVbdvLzisAAAtzHEf379+X7/srXU8QBHEHGqxeooDmxo0bOjo60unpqY6Pj3Xr1i1J0q1bt/STn/xEp6en+tnPfrZw5trt9sDjLQAAlmEdPWOLxaJOT09Xvh6cSRTQPH/+fOrnn332WZJkR5TL5aWkAwDAOhWLxZXXAGFQooDmvLYx77zzjt5///1EGTKq1SqPrQAAaxeGocrlsqrVqvL5vPL5fNzeZtwy5XJZmUxG9XpdktRsNuNgplwuE9ysycyNgr/88kv1ej1JZzvyN7/5jaIoGlkuDEN5nqejoyP9+Mc/TpSpdrutmzdvxu1zAABYB9/3defOHT19+jR+LFWv15XP5+W6riqViiRpb29Ptm3Ldd14GdNeplAo6NmzZ6rVavI8j5vzNZm5hub09FSFQkGZTEbtdlu2bSuTyYy8stnswjvQ87z4oAEAYF329va0u7s70MamVCrJcRxVq1UFQSBJIzU2pVJprfnEqJlraG7duqXj42MVi0X98pe/VKFQmLhsJpNJPFJwtVqNI95ZvXr1Si9fvky0Pkm6du2arl27lvj7AID0C4JAvu+PvaEul8sql8vyPE+u68q2bdVqNd28eTNe/irdiL9+/VqvX79O/P1Xr14tMTdn5h6HptFo6NNPP9Xdu3eXnhnf93Xz5s25a3fefffdhdb74Ycf6uHDhwulAQBIt2ntXHZ3dyUprqFpNBrKZrOqVqvyPE+NRuNKzSl4cHCgjz766KKzMSDRwHqzBDOPHj2K53qa1cHBwcAAfbP6/PPP9fbbb8/9PYPaGQCAMW7sGMuyJEk7OzuSziZhPjk5UbFYVLvdjptbXJVHT/v7+/rBD36Q+PvPnz9fuDJiWKKARjoLWFqt1sQ+9r7vzxXQmNbkJvqVvo2Ezb+Tam6uX7++tpm9AQCXk6lhGW4fI30b5GQyGUln1yXbttVqtdRsNlUsFlUul69MQLNoU43r168vMTdnEgU09+/fP7cmZd65nNrttmq12tjPMpmMHMdheGoAwMrYti3HceT7fhywGMfHx7IsKw5YXNeV53mSzno1eZ6ncrk88j1GCl6fROPQNBoNlctlffPNNxNf8zYK7nQ6iqJo4FWpVGRZlqIoIpgBAKxco9GQZVkDA7uGYSjXdXV4eBg/ejo6Ohp4ohCGoWzbjoMZU5PjeZ6CIFCz2VzfRlxRiWpoHMc5dxTfeXsqAQAu2BWZydr3/bh2xfd91Wo1lUolWZYVt43Z29tTPp+PA5ThRr+7u7vK5/Nxj98gCAZuvEulUjwmm6R4fVidRAGN67p68uTJ1Ia4nU5Hf/qnf5o0XwAArITjOPI8b2KQYVnWuc0qWq3WuevhycJ6JQpowjCU7/t69OhRXP02zHVd/epXv1okb3Jdl5oeAABwrkQBzcHBgXzfnxqhztsoGAAAIKlEAU2pVFK73db9+/fHfv7FF1/Ek3QBAACsWuJu2/l8Xrdu3Zq4zO3btxNnCgAAYB6JApobN27oxo0bEz9/7733aPsyxaRZFph9AQCAZBLX0EwShqHa7baOjo4Wmo4AAABgVokCmlnmW2o0GvrRj36UJHkAAIC5JApoCoWCXNeNJ+nq1+12Va/X9ZOf/GThzM3q7t27euONN8Z+9uDBAz148GBteQEAANLjx4/1+PHjsZ999dVXS19fooCmXC5PbBDsOI6y2az+y3/5L2urofn000+v1LTtAABsumkVCr7vK5vNLnV9ieZyunPnztTPbdtmmGcAALA2iWponj9/PvGzIAhUrVaT5gcAAGBuiSennDYScBRFqtVqiTMFAAAwj0QBjWVZunfv3th5nG7evCnHcc59LAUAALAsiQKaw8ND3b17d9l5AQAASCRRQGOCmRcvXsjzPAVBoJ2dHf3BH/yB9vb29Oabby41kwAAANMkCmgk6dGjR6pWq4qiaOD9H/3oR/rkk0/0Z3/2ZwtnDgAAYBaJApqnT5+qUqnIcRyVy2Xt7u7KsiyFYahnz57pgw8+0K1bt5j6YE7M8QQAQDKJAhrXdeV5nvb29kY+e+edd3Tv3j3t7+/rxz/+8cIZBAAAOE+igfUkjQ1mjHG9nwAAAFYlUUAzy3DFQRAkSRoAAGBuiQKaXq+nv//7vx/72YsXL/Tee+9RSwMAANYmURuajz/+WLZt6/bt2/GkkGEYqt1uKwgCWZalk5OTpWZ0GmbbBgBgs6Ritm3LstRut7W3tyfXdQc+cxxHjUZjrWPRMNs2AACbZd2zbSceh8ZxHHU6HZ2cnMj3/fi9W7duLS1zAAAAs0gc0EjSy5cvdevWrTiIefHihV6+fMlIwQAAYK0SNQr+5S9/qZs3b2p7e3vg/bfeeiseKRgAAGBdEtXQmCkPPv7445HPPv74Y+3u7iqTyehP/uRPFs4gAADAeRI/cjo9PZ34WS6XU6VS0bNnz5ImDwAAMLNEj5wymczUz4MgiBsKAwAArFqigCaKIv3mN78Z+9nTp0/VbDbpRg0AANYm8eSU2WxW77//vu7cuSPLshQEgRqNhur1ura2trS/v7/svK4ds1wDAJAOiQKaGzdu6Oc//7nu3bunDz74QFtbW5LOam4kqVar6bvf/e7ycgkAADBF4kbBtm3r+Pg4HlgvCAI5jqPd3V3duHFjmXkEAACYaqGB9SQNDKwHAABwERYOaDYBk1MCALBZUjE55aZhckoAADbLuienTNRtGwAAYJMQ0AAAgNQjoAEAAKlHQAMAAFKPgAYAAKQeAQ0AAEg9AhoAAJB6BDQAACD1CGgAAEDqEdAAAIDUI6ABAACpR0ADAABS71JMTsls2wAAbBZm206A2bYBANgszLYNAAAwJwIaAACQegQ0AAAg9QhoAABA6hHQAACA1Nu4gKbZbCqbzWpra0uZTEbtdvuiswQAADbcRgU09XpdrVZLruuq1WrJsizl83kFQXDRWQMAABtso8ahCcNQnufFfx8eHiqbzcr3fdm2fYE5AwAAm2yjamgqlcrA35ZlSRKD5gEAgKk2KqAZ1mw25boutTMAAGCqjXrk1K9araper+vw8PDcZV+9eqWXL18mXte1a9d07dq1xN8HAOAqef36tV6/fp34+69evVpibs5sZEBTq9UUBIHCMFSxWJTneSqVShOXf/fddxda34cffqiHDx8ulMYqjcvaBmcXAHDJHRwc6KOPPrrobAzYiqIouuhMTNJut1UsFrWzs6NutzvyuZnc6vPPP9fbb7+deD2Tamg2OWjY5LwBAC63RWtonj9/rnfffVedTmdp7WQ3sobGyOVyKpVKqtVqU5e7fv263nzzzTXlCgCAq23RphrXr19fYm7ObHRAI0m3b9+mUfAYk2poqLkBAFxFG93LSZKCIFAul7vobAAAgA22MQGNaQDcbDbj94IgUKvVGhhsDwAAYNjGPHKyLEthGGpvb0+e5ymfz8u2bbVarYvOGgAA2HAbE9BIIngBAACJbMwjJwAAgKQIaAAAQOoR0AAAgNQjoAEAAKlHQAMAAFKPgAYAAKTeRnXbTuru3bt64403xn724MEDPXjwYM05AgDganv8+LEeP3489rOvvvpq6eu7FAHNp59+urTZOgEAwOKmVSj4vq9sNrvU9fHICQAApB4BDQAASD0CGgAAkHoENAAAIPUIaAAAQOoR0AAAgNS7FN228a2HD2d7DwCAy4QaGgAAkHoENAAAIPUIaAAAQOoR0AAAgNQjoAEAAKl3KXo5Mds2AACbhdm2E2C2bQAANguzbQMAAMyJgAYAAKQeAQ0AAEg9AhoAAJB6BDQAACD1CGgAAEDqEdAAAIDUI6ABAACpR0ADAABSj4AGAACkHgENAABIvUsxlxOTUwIAsFmYnDIBJqcEAGCzrHtyyksR0GC6hw/nex8AgLShDQ0AAEg9AhoAAJB6BDQAACD1CGgAAEDqEdAAAIDUI6ABAACpR0ADAABSj4AGAACkHgENAABIPQIaAACQegQ0AAAg9S7FXE7Mtg0AwGZZ92zbW1EURUtPdU3MbJ2dTmcls21f1ckbr+p2AwDWYxXXbx45AQCA1COgAQAAqUdAAwAAUo+ABgAApB4BDQAASL2NC2iazaay2ay2traUzWbVbrcvOksAAGDDbVRAU6vV5HmeyuWyKpWKfN9XPp8nqAEAAFNt1MB6z549U6vViv++f/++stmsXNdVLpe7wJwBAIBNtjE1NO12W67rDrznOI4cx1EQBBeUKwAAkAYbU0MzrQbGtu015gQAAKTNxgQ0kwRBoHK5PHWZV69e6eXLl4nXce3aNV27di3x9wEAuEpev36t169fJ/7+q1evlpibMxsd0DSbTdm2rVKpNHW5d999d6H1fPjhh3rIBEYAAMzk4OBAH3300UVnY8BGBzQHBwdqNBrnLvf555/r7bffTryeZdXO/PF3Ho6894uvR98DACDN9vf39YMf/CDx958/f75wZcSwjQ1oqtWqDg8PZ2o/c/36db355ptryNXVMK6yigosAICxaFON69evLzE3Zzaml1O/er2ufD6/tCnFAQDA5bZxAU2z2ZQ02uvJ9/2LyA4AAEiBjXrk1G63dXBwoHK5rHq9Hr/f6XSUzWapsQEAAGNtTEBjpjmQNLabdq/XW3eWAABASmxMQOM4jqIouuhsAACAFNqYgAabbVIvJ3o/AQA2wcY1CgYAAJgXAQ0AAEg9HjlhIQzCBwDYBNTQAACA1COgAQAAqXcpHjndvXtXb7zxxtjPHjx4oAcPHqw5RwAAXG2PHz/W48ePx3721VdfLX19lyKg+fTTTxlFGACADTKtQsH3fWWz2aWuj0dOAAAg9S5FDc26/fF3Hl50FgAAQB9qaAAAQOpRQ7Nik2pzfvH1+PcBAMD8qKEBAACpRw0Nlo6JLAEA60YNDQAASD1qaC4IbWsAAFgeamgAAEDqEdAAAIDUI6ABAACpR0ADAABS71I0Cr7ss23TgBgAkDbMtp0As20DALBZmG0bAABgTgQ0AAAg9S7FIyekA1MiAABWhYBmw0xqAAwAACbjkRMAAEg9amhw4cY9cuIxFABgHtTQAACA1COgAQAAqUdAAwAAUo82NNhIdPEGAMyDgCbFmOMJAIAzlyKgueyTUwIAkDZMTpkAk1MCALBZmJwSAABgTpeihgaDxrWtoV0NAOAyI6BBqjCqMABgHB45AQCA1KOGZgpmvgYAIB2ooQEAAKlHQAMAAFKPgAYAAKQebWiQesz7BFxRf/dw9L3/MOY9XAkENLi0CHQA4OogoMGVw1g2AHD50IYGAACk3qWooWG2bQAANguzbSfAbNvJrXvep0mDFTLXFIBUGtcwWaJxsphtGwAAYG4ENAAAIPUuxSMnnG/d81IxDxYAYJ0IaAAA6LfKdjEMBrgyBDRInXU3ZAZwwSYFGECfjQpowjDUwcGBJMl13QvODYbxGAkAsKk2plFwu93W3t6earWawjC86OwAAIAU2Zgamlwup1wup62trYvOCq4g5n0C1oy2JMvFeDibU0MDAACQ1MbU0AAA1oA7eVxSBDTAVUI1/8VJYyCxjDzTQ+l8aTw2NtClCGhevXqlly9fJv7+tWvXdO3atSXmCJfFuDY0tKsBLpF5Ai6Cs9jr16/1+vXrxN9/9erVEnNz5lIENO++++5C3//www/1kKsUAFwsAobUODg40EcffXTR2RhwKQKazz//XG+//Xbi71M7AwDA7Pb39/WDH/wg8fefP3++cGXEsEsR0Fy/fl1vvvnmRWfj0mAAvUEj5fF3UxZO4zNvnt8vHzUNuOQWbapx/fr1JebmzKUIaIB1+sUvxr//x388/n3a4axRGoOzNOYZ2EAbFdAwQjAwJy6Gy0dPsPNx3J2PWrq125iAxvd9eZ4nSTo6OlI+n1cul5NlWRebMWBGv/iF9IufX3QuAIxFgHHpbUxA4ziOPM+LgxoA2BjUSOAicNzNZWMCGmDYuhsnb3xjaO4wAczrCgVFBDTYCIsGE/N+/xdfL7a+efOxqvVtPNqjJLdoAHsR5bwJQfcm5AEXgoAGwGYjKEpm3gs7gQBSjoAGuChXqCoYAFaNgAZX0sa3l+ljxqz54+8Mvj9p3BtJ3G3PgjICLhUCGuCSGTfw39TgZx4EAQA21KUIaO7evas33nhj7GcPHjzQgwcP1pwjIBnGslkRAjFg7R4/fqzHjx+P/eyrr75a+vouRUDz6aefynGci84GMLOHD0cfIQHAZTKtQsH3fWWz2aWu71IENMCmm6fNTpra9wDApiCgATAej2kApAgBDZBSk2b9XlXaS2tYvAybEmxtSj6AeV3C8Z0IaIArYFLwcyFBCkEAgBUgoAGusFXW8gDAOhHQAACQJtRyjvV7F50BAACARRHQAACA1OORE4CZbFTDYgAYQg0NAABIPWpoACwdtTkA1o2ABsCF2/iB/ABsvEsR0DDbNnBxGMsGwDjMtp0As20DALBZmG0bwKVFbQ6AVaGXEwAASD1qaACkHr2qAFBDAwAAUo+ABgAApB4BDQAASD3a0ADYSJepRxQDBwKrRw0NAABIPWpoAEDz9ZSiVxWweaihAQAAqUcNDYArZ572OetelloeIJlLEdAwOSWAcS5Tw2Jg5f7u4fj3/8OE98/B5JQJMDklgMuCHlG4LJicEgAwgMdTwPloFAwAAFKPGhoASClqboBvUUMDAABSjxoaALgCGDgQlx01NAAAIPWooQGAK4zBAHFZENAAwCWzCQMKEvxg3QhoAAAL2YQACqANzRivX7/Ww4cP9fVvf3vRWbn0vv7tb/U3T39BWa8Y5bwelPP6vP76t3r417/Q668p61V6/fVv9fDhQ71+/fqis3IuApoxXr9+rY8++kj/8tt/veisXHr/8tt/1f/2f3xOWa8Y5bwelPP6vP6Xf9VH/+vnev0vlPUqvf6Xf9VHH32UioCGR04AgLVZxuMpuppjnEsR0DDbNgBgHAKdi8Ns2wkw2zYAXB2/+IX0P//57P///b9L/8u/TZbGMIKc5WK2bQAANgjBTzoQ0AAAMCceZW0eAhoAAJZknkbPBD/LRUADAIDWP0AgtTzLxTg0F+Bv/8//K1XprjrtVUljeaSxnKV0lkcayzqN5UE5ry/tx5+mr6yXaeMCGt/3VSwWVa1WVS6X1Ww2LzpLS/e//5/PUpXuqtNelTSWRxrLWUpneaSxrNNYHpTz+tJ+/Fn6ynqZNuqRUxAEymaz6nQ6cTfsTCaj09NTlUqlC84dAACrN0+vqv5l/7//+e3fV/Gx1UYFNOVyWblcbmBMGVNTQ0ADALiq5m3fcxUbJ2/MI6cwDNVut5XP5wfe393dlSTV6/WLyBYAAEiBjQlojo+PJUm2bQ+8b2prWq3W2vMEAADSYWMeOQVBIEmyLGvq5wAAYHkuy0jIGxPQdLtdSdLOzs7Yz8MwHHnPTG7l+75evXqVeN3f+c539J3vfCf+26T163/8f/VG3/vL8vpffqt/+H/+MTXprjLtr77+WtJqyjqN5ZHGcpbSVx6rSjut5bzKtNN4TKexnJed9pv/99m/r746K+fnz5/r+vXr8edff/21vv7dPkjiH/7hHyQteZLKaEN4nhdJilqt1shnkqJcLjfy/k9/+tNIEi9evHjx4sUrha+f/vSnS4sjNqaGxrSdGVcT0/95v/fee09/8zd/o3/37/6d/u2/TTDd6u8M19AAAIDJFq2h+ed//mf94z/+o957772l5WljAhrTm2m4rYz5e9w047//+7+v//yf//PqMwcAADbaxvRysixLjuOM9GZqt9uSpHv37l1EtgAAQAps/a6NykbwfV/ZbFbdbjd+xJTJZFQul1WpVC44dwAAYFNtVEAjnQU1BwcHsm1bQRAon88vdZTg/vTDMFQ+n1ehUFjZ966ypGXWbDZ1cHAg3/flOI5c11Uul1tDjtNpGcdmu91WsVhUr9dbUS4vh2WUdRAE8Rx1pVJp4lAVV9ki545WqyXLshQEgWzbluu6a8hx+oRhqIODA0mauYw2/jq4tObFKdDtdiNJUafTid+zbTvyPG8l37vKkpaZ67pRLpeLPM+LKpVK3BJ+XO83LO/YtG07sixr2dm7VBYt6263GxUKhSiXy0XdbndV2Uy9pOXcaDQix3EG3svlclGlUllJPtOs1WpFhUIhkhSVSqWZvpOG6+CVCmhyudxI92/TXXwV37vKkpZZoVAY+LvT6UTS+G77WM6xWalUolwuR0BzjkXKutPpRJZlzXzxuMoWOU8Pl6/rupFt20vP42UxT0CThuvgxjQKXrWkc0Uxx9T8kpZZu90eqfp0HEeO4zBS9BjLODbb7bZu3rw5MCEsRi1S1mEY6s6dO7JtW57nrTSfabdIOZ+ensadSIz+9phILi3XwSsT0CSdK4o5puaXtMxyudzEkw8npVHLODY9z6PB/QwWKetqtaowDGnLMYNFyrlcLisIAhWLRUln7T2Ojo4o9yVIy3XwygQ0SeeKYo6p+S27zPpPUvjWouVcrVY52c9okbI2d6+tVkvZbFbb29vK5/OcO8ZYpJxLpZJKpZKazaYymYyq1apOTk6ofVyCtFwHr0xAk2SuqEW+d5Uts8yazaZs215qT7fLYpFy9n1fN2/epOZrRknL2vd9SWd3suVyWZ1OR51OR0EQKJPJcP4Ysui5w/O8+BF1u90eeQSFZNJyHbwyAU0mk5F09px1nEkn9qTfu8qWWWYHBwdqNBpLyddls0g5Hxwc8KhpDknL2ty5lsvleJn+tjSm2yzOLHruyOfzKpfLcdftYrEYd5FHcmm5Dm7M1AerlmSuqEW+d5Utq8yq1aoODw8p4wmSlnO1Wh155GH+b/6lzAclLetJVfRmXKVNqarfFIucO8rlsiTFtbknJye6deuW9vb2NmuslBRKy3XwytTQJJkrapHvXWXLKLN6va58Ps/z7ymSlnO73Va5XFYmk4lfzWZTYRgqk8nQXmmMRc8fpsp+2KQq/KtqkXPH0dHRwPnCsiy5rqswDONHf0gmLdfBKxPQJJ0rijmm5rdomZkq4uHRgTkpDUpazp1OR9HZGFTxq1KpyLIsRVGkTqez8rynzSLnj1wuN9KWw9zpbsqFYFMscu7Y2dkZqUEw5xBGY15Maq6DFzoKzpqZQdr6R+m0bTtyXTf+u9vtRrZtD4xMO8v3MChpWbdarchxnMjzvIFXqVTaqBEpN0XSch5WqVQYWO8ci54/+t9zXXdkVFucSVrOrutGlmVFvV5v4D3KebxerzdxYL20XgevTBsa6aynQafTUbVajeeKqlarAz1owjDU6enpQKQ/y/cwKElZ+74fD9xknof3Y56hUUmPacxvGeePRqMhy7IUhiE1YRMkLWdTy1gsFuNHT2EY6unTp+vehI3n+37cMP3o6Ej5fF65XC6uyUrrdXDjJqcEAACY15VpQwMAAC4vAhoAAJB6BDQAACD1CGgAAEDqEdAAAIDUI6ABAACpR0ADAADGStN8YwQ0AABgrGKxmJpBOQloAGCFms2mstmstra2tLW1pe3tbWWz2fiVyWTiz4bnfEob3/dVrVbjbdsU7XZb+Xx+YB+YiVmz2ayKxeJKyj4IAm1vb6tery897Vqtpu3t7Xib8vl8/Oo/phbh+75s2x6ZC2sd607koudeAICrQNLIXDj9HMeZOt9WWpg5fzZxDiWzD4bnKHIcJ5IUVSqVxGl3u92BeaRM2oumO02pVJqYvpmPadH0Jx2Tq153EtTQAMAG2N/fv+gsLIWZR2kTmZqGnZ2d+D3HcdRoNCSd1TwkfbxSLBZ1eno68J7jOIqiSK7rJkrzPMfHx5IUz4HXz7bteLbxpNrt9sQ0Vr3uJAhoAGADFAqFC7kI4OwCbJgL9TyKxaJ8319mlmZi1jnpuFkkkGo2m1OPx1WuOykCGgC4YM1mc6BmIAxD1et1ZbNZNZtNtdvtuB1OsVgc+b7v+yoWi3Ebhmq1OpJ+Pp9Xu91WvV7X9vb2yIz25XJZ5XJZmUxm5ALdbrfjNhP5fH7gs3q9rq2tLdVqtXO3MwxDlctlVavVuM3FcNuV/mVMfvrboJz3eRL9Zd8f3Bi1Wi1eZzabHVhfs9mMy6NcLg+UXbPZVLFYHLvPZimLacyywwFFs9mM/z/c9mUeT548GTlG1rXuxNb+kAsAriBNaUPjOM5A+4tutxsVCoVIUpTL5aJKpRJ1Op243YLruvGynU4nyuVy8d+NRiOSFJVKpfhv27bj9yqVSuQ4zkAbF8dx4rYQ3W43zqtt23E6ruuOrNssP9xeRmPa0HQ6nciyrKjT6cTveZ43kmahUBhol+F53lyfT2NZViRpIA8mzXF5jqIoqlQqUf+lstVqjbTDMcv079tutxuXWf/+macsphl3LPR6vahQKMz0/Wl6vd7UNlCrXPciCGgAYA36g4T+l3l/uEGpCUyGL3DDF0jHcUYu0ObCbdI0F9ZxDTjNevrTMBes4eDL5L+f67qR53kjyw1fEB3HGbmwm/f712VZ1kg++8vgvM+nMeVSqVQi13WjUqkUv1coFEb2QRRFUS6XiyzLiv/u9XojZTkuoDHGBTSzlsU05tgxwan5e9aymOa8IHGV614Ej5wAYI1arZa63e7Aa9xjDmNc1b1pfBoEgXzf18HBQfxoo//xhmkPYtK4ffv2SFrPnj0bec+kMdwupFQqKQiCgUcjT5480b179ybmvz+f4xoMm8canudJOnvkU6vVBh5hVSqV+P/nfT6LIAjUarVUr9e1s7OjKIrUaDTGlnWj0VCn04n/NmWatPHwPGUxSRiGCoJAlmWp0+nEL8dxltIOy/M8lUqlpa27XC6rVqupWq0OPJZaNgIaALhAtm1PbKtwHhNwNBqNgVev11MURSMXmHEXbBPkjGu/MXzRNW1zTIPPMAy1s7NzbnuJaQ1md3d3JX07Iq0JLKrVqjKZzMh3z/t8Fvv7+2q1WrJtW0EQjLQ56mdZlmzbjtvDLNr4d56ymOTo6EjSYBsWy7KUy+UW7mUWBMHUfTrvuovFoizLUqVSkeu6Ojg4WNl4SwQ0AHDBKpVKokaU5sK3yPD0pneVudCEYSjXdVWpVEZqjkx33Ha7rSAIVK/XxzZ4nWRcrcZwV2rbtnVycqJcLqcgCEYa4Z73+TxarZaks0a/k2oOzDqCIFCj0Zi7NmiSWcpiEpPv4S7Ty+j673ne1AB7nnUHQaBmszmQ3v3791fWA4qABgA2hO/7cwUnJuCYdDGe9U640Wgol8vJ933V63W5rjvxomNqMzzPU6vVmvhoop+5cx+XH3Nhz2QykhQ/zmi1WvH4MP0XxPM+n4dt23Eak2pf8vm8dnZ2lhbIzFMWk5jvDj/q6w+K+9MPgiAeFbl/XaYXXb9ms6lCobCUdZvy7A+MHceJA+dlI6ABgA2xt7d37t15P1PtX61WRy7G89RaFIvFuPahUqlMfWyRy+Xidiyz1irZti3HcRQEwUjAdnx8LMuy4sCoP5AqFApxexLzvfM+n1ehUIjXfefOnYELrclv/3aaz4cH0ev/bJp5ymKcIAgUhuHYKQmMer0+kHa1WpXrugrDMA42Dg4OFIbhQPAybSC9JOt+9uzZyHLm+B5XfosioAGANRp30QuCQPl8XmEYxheAWU74pm2CpHhOolqtpnw+r263G1+czDrHrbter6vdbsffrdfrA2OrjGNqae7fv39uHg3T9qW/NsU83jo8PIy3++joaOBibC6g5i7/vM+nmRSMeJ4nx3EUhuHAIzRz8W02m6rX66rX6/G2+74fjx9kalQ8z4sfs0xb36xlMY5Je9z2mrFtyuXyQA3K/fv3VSgUVC6XFYahwjBUrVYbaXx83uOmeddt2liNs5JZvC+0jxUAXHKNRiPK5XJx92z1dXft7/KqvrFj+ucXsm07arVaUa/Xi7tTa6iLrOu6cTq2bQ90o+4fh2b4syj6dt6d/vyZl23bY7sym67Lw/rHyjF57P++Gaskl8tFpVIpKpVKI13Oc7lcZNt2VKlUokqlMtKd+rzPx2m1WgP7wLbtsePpmC7c/fNqeZ4XWZYVrzOKori7d3/XbcdxIsuyBvahGd8maVkMM93v+4+jXC43chxNGg+m1WpFnufF5TZs2vxLSdbtuu5Al3dTLpqxa/q8tqIoipYfJgEA0sD3fT158kT7+/s6PT1VGIZxjUKj0VAmkxlpP9Jut9VoNM7tXozNYvZ1s9lUp9MZqAmq1+sKw3BpbYWkb0dK7g8zzMznqwg9/s3SUwQApILpwdPr9WRZ1sijDtu2xzZe9Tzv0kymeZVYlqVarTZ2zB3P8/T06dOlrs+0xQqCIH5MNWkMnmWgDQ0AXFGmHcPe3t5AmxnTJbt/gDXTVdv8u8mzamO8MAyVy+VGejGdN/ZMUrZtq1AoDPSkevLkycq6bfPICQCusFqtFvd4MRzHkeu6caNi85jAOG90Y2ymarWqmzdvjjxWqlarun379tTu2oswk4h+8cUXymQyM3X1T4KABgAQt52ZFKhUq1UFQaD9/X1qZ1IoDENtb2+PndbAdNtPO9rQAADGtqHpt6rHBFgPMy7RuID1MgQzEm1oAAC49MxjwmVMXrmpeOQEAMAV0D9w42VEQAMAAFKPR04AACD1CGgAAEDqEdAAAIDUI6ABAACpR0ADAABSj4AGAACkHgENAABIPQIaAACQegQ0AAAg9f5/DWNTltr1SDUAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.hist(\n",
|
|
" magnet_energyloss_found,\n",
|
|
" alpha=0.5,\n",
|
|
" bins=80,\n",
|
|
" density=True,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" magnet_energyloss_lost,\n",
|
|
" alpha=0.5,\n",
|
|
" bins=80,\n",
|
|
" density=True,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
")\n",
|
|
"\n",
|
|
"# plt.vlines(ak.mean(both_eloss),0,3,colors=\"red\", label=\"mean\")\n",
|
|
"plt.xlabel(r\"Energyloss Ratio $E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"counts (normed)\")\n",
|
|
"plt.title(\n",
|
|
" r\"$B^0\\rightarrow K^{\\ast 0} e^+e^-$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"plt.legend(title=\"LHCb Simulation\", title_fontsize=15)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHhCAYAAAB5kCQCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSeElEQVR4nO3dT4zb6J03+G/NDFJjbMFmlXMZ7KVNJYfJZWyqfHizL+AkJtPndEkuYCeLObwpKY26NdJiajCA7cMbNRVfC2mqehazQLCAi3IP9pghPdMe7A5erEts55IBJhHtHN6ZPaRL7EINPJU3ae6h+mHrD6WiKEoiVd8PINglUuTDhxT508Pn+XElCIIARERERDn2B4suABEREdG0GNAQERFR7jGgISIiotxjQENERES5x4CGiIiIco8BDREREeUeAxoiIiLKvT9adAFmqVqtolAo4JNPPsHt27dRKpUWXaSZu4zbTEREtLQBTblchizLqNVqAIBisQhJkqCq6oJLNjuXcZuJiIgAYGUZMwV7nodCoYBOpwNZlgEAjUYDtm3Dtu0Fl242ZrXNjuNgY2MDiqKkVVQiIqLULWUfGtd1ASC8sAOAoihwHAe+7y+oVLM1q232fR/Hx8fTFo+IiGimljKgef78OSRJ6ntvY2MDAJbi4qzrOjzP63tv2bd5mYjg87LwfR/NZnPomKXpeZ6HZrO5tD/UKL7Ldl6JkpuAxvd9NBoNrKysYGVlBevr6yiXy9A0DYVCAY1Go29ecTEflJWTarPZRKFQCLdH0zQ4jgPg/MDUNC2cJrat2WwCAK5fvx7OJz6Th22+jMrlcrgfxUvX9ch5XddFuVxGoVDA+vo6isUiNE2DrutoNpsoFosTrdtxnL5jrFgsotVqDc3XarVQLBbDedI8MTabTdy4cQPVapUX3QSq1erI/d5oNFAoFFCtVvmjZQl4nodqtYpqtYpyuTz2OxP3vKLrOsrlcnitHHUtiDtf5gU5oyhKACAwTTN8z7KsAEBQKpWCIAgCwzACSZL6PtdutwMAQafTmWt5xzEMIwAQyLI8NE1V1UBRlKDb7YbvtdvtoFKpBJVKJTAMI6jVauH0WW2zZVmBbduJP3+ZdbvdQJbloFQq9b3a7fbQvLVaLTyGe/dXt9sNKpVKACBI8nXtdrvhZ3u/M4NM0xw6ftIiti1qu6fR6XT6vh/LSJKksfutVCpl7rw2a8u438W5uvc7UqvVAkmShvZt3POKoijhNTEIgsC27UCSpMTz5UHuRjmJyLF35I4Ymix+fcqyPBTZil8wvX1MFq3T6QDAUGQtRisNduZVFAXFYhGWZUGSJGxvb4e3mdLa5mq12vf30dERNjY2YFlW3/umacZeJnD+S73dbo+dR9O0pRpmXq/XYRjGhdtULpfRarVgGEY4Qk2QJAmmaaJYLA7tmzgkSUKtVkOj0YBlWahUKpHztdtt7O3tTbz8OESLYtrK5XL4XVhGov/bvXv3Rs4zqlV2mS3jft/Z2YGiKH2DLwzDQKPRgK7rfeffOOcVXdfhui6ePn0avqeqKmRZxs7OTngujjtfbiw6opqEiGKjWjTw+a/QbrcbdDqdoV8thmEEiqKkWh7DMKb6ZSTLcl85O51OoCjKyF9kpVIpsG07MAwj6Ha7Qa1WC+ed1TZfhhaabrc7tt6TkiQpMAxj7C8d0boYZz8l3Ze9rTSjyiJJ0sx+9YqWyDR/8V2GlolSqXThPhetd8tcD73ytt8tywoURRlbXnHurlQqQ9NUVR3a3jjnFUmSIq+Tg9/FuPPlRa4CGlHJgzs+6qJQKpUCwzDCvxVFSf3CbFlW5EEYh7jIiGZ+y7ICWZZjHUC1Wi1yvlls82UIaIIgCANEWZb76jApcayKlyRJgWVZQ/OJoDZOMBV1Umy320GpVApUVQ1kWQ5qtVrkZ8WFoLdpWbAsK/L9cbrdbmCaZniMif9LkhSUSqW+4EjURe98o8oibrHVarVAVdVAVdWh4098VwAEqqoONbdftIzesovje1SZepdVqVQCWZYv3Fe2bYf7XSyv3W6HZVYUpa+8oy7ScY4LEdCI29GSJAWSJEWeI0U9iNuLvfOMO45EfamqGpimGXQ6nUBV1UCSpEBV1b7b3rIsB5IkjTwOo7Tb7UCSpLBueutB3K40DGPkfhflEXVuWVbQ7XbDMk7yfZZlOVx2pVIJ982kF3fTNANZloNKpXLhDwVx/YqqM7F/xbkjznlF/PCP+n6JY1NcQ+LMFwTTHwOzPoaEXAU04qDt3YG9wczgCaG3r0nav76FqOg2DtM0+76YvTv1IuOi/bjbLIKxWq029hfEpAFN3OWmTZywxRf8ogvnOOJL1dtHaVLdbjewLCsMksQJqPciIn6ZiYv9pNrtdqCqavi3+C5EBdm96xrcpiSBb2+/HlVVg1qtFgZGg62o4iSsqmr4y1J8vvdiIy5svRcO8T0ZvCiJC93g8RVnGZ1OJyynKPuoMpVKpb4Tq2masS6Qony99Tp4kehd5uB7Yl9edPyJMquqGlQqlb7jXhwbvYFA73dT/AC86DjqdDp96xH1JbZHrNu27b66nSQAGOwHKYgLnzBqvwfBcIu3qqoTtzAMfndG/YgeJcm5Q9Rj1HmqN6ALgnjnFXG8R5W5N4iJO18QTH8MzOMYCoKcBTRi54kvo4hQF9mCIC6kkxI7TPwySaNVIC7xy0MY1/FwkoBmkuXOgvjC9LZgiRNCkmh/kl9ZFxEn7N6LXO8v+VHLb7fbgWEYfS/x+cFf+kEQhMdT1PLED4Leuuh0Ook7A4uT/eA+HvzhMWq+3ouu2J6o75L4rkf9ch+8sMVdhtgfg9+7wTJF/VKM810VAeTgRSqqiX+wI7h4L855ZfAXvCAuduJYEfsg6nsQ5zgSF7jBi1/UvhHzTnpOE2XuJVpmhHEBzeDFOsl3frAlT5yjx33/p23d7b0lPEhs77jz8+B5Zdy+Fseloiix5xOmPQbmcQzlZti2GJ6sKAra7Xb4AtA35HneSqUSNE2DpmkTDUsV5RWdsXRdn8uwVk3TcHh4iIODAwDnHal93x/5eARVVWM9OmHS5c7C0dERAGB7ezvsXLe9vQ0g2dD1SqWCTqcDTdNw9+5dVKvVxMMZS6VS2Ml7kg7ViqKgUqlA1/Ww87iqqvA8D67rol6vh8Mty+Vy+DlRF73E58Xwf+C84+G0nYEHO52LzsuDndo3Nzf7/pYkKaxPsT1RGanF8i6qtyTLiOpY2jsEWpZlNBqNvrQQgx23o8iyDEVRIofJe54Xbrfv+/B9f6gOW61W3/68yOA2D+4DsZ23b98eKsskx9FgfYly93ZOFu+JQQ9xiTL31tnjx49jDxQQ3xXRwd4wjInWD/QPNtnZ2QFw/h2JOk7EMOtisRhmaY9zbAySJCnsrN9b947jhN/VUQM7os4rcTpL+74fe76o8vaa9BiY5TGUm4BG7LTeA05RlPACOsmXP4p4qGOSl2macBwH6+vrsQIr13XDk5iiKOGXYFR+krQ0m004joODgwNIkoRmswld12Hb9sgvTJyDPslyZ8F1XZRKpb6Tu7hwTDMapFQqod1u953wkwSfqqpCUZSwTL0X+HGBkiRJ4TaJf0WuGMuy+l7dbhdBEEQGkmL0gkh0BwCHh4cjRz4lJco4SfA3LveNqKeLlpfGMgaJ0TS6rqNQKEyUo2fwAt1sNsMRS+Lic3h4OHTuEvOPG910EbH/B7d38Puc5DiaFXEcirpxXXcoCL5IkiAmiuM4aLVaYZA0qDdnS6fTmfo7ZJomDMOA67phPijP88Lz1rh6GDyviHNu1DlKvCfLcuz58iQ3AY0IFDRN63tffOHEL52kTNNEp9NJ9DJNE4qiwLbtWCcAsS1iXvELYNbZVMUJ1vO8MHjqdDpTn7RmtdxJiIvA4NDm58+fA5g+4O01zXEmy3J4kuq9uES1qEQRn+1t2ZiE2D+GYaDVamFzczP14a+ijElOhuN+EcYNStNYhiDLMl6+fBm2ihWLxb4WrnEGL9DioqWqargM0zSHLoaPHz+GqqpT7ZfedA7jJD2OZkGSJJRKJTiOA8/z8Pjx44lTFXieF7b89baqTUqsdzBdxSzVajV0Oh0EQYB2u43NzU14nodSqXThsdB7XhH7PCrZonhPUZTY8+VJLgIa3/fDXxKDF8neL+Ii8hK4rgtd1/H06dPYF3DR2tQbnIlfFklyjcQhgqhKpYJarQbDMFL5ZT6r5U4qqgUPOP9VHPe22Sgik65pmrAsC7ZtJz7WfN8fyjXR+29c4mQUdUsDwMiWwkqlEp7wd3Z2ZnK8iZPhJJmNRZ1ElVsEKIVCYebLGCQukLZthxe3SepMXKB7g0eRAbbRaET+8p70dlMUsb2Dt5gGJT2OZkXc/jRNc+Ttw3FE7hRZliMfEROH+FytVhsZEIqWLNu2USgUYge5k5YDiHdu6D2vyLLcdzu3l7iOapoWe748yUVAM9ii0evx48cAsLCEbDs7OxMneYrankqlAlmW4TjOTE8iUSf0NH6dzWq5cVtDHMcZOj7EL7Skv7LE4ynExcyyrKmaYH3fx9HRUV+flVqtFjYXT3LLUWyrSIw1WO5xetc/6nszTStUq9Xq6xfwySefABj/TDFx+7W3f4lwdHTUt7xR5Uy6jHF6LyalUilsbYl7bIvgp1wuh/tX1Lmu60PBURq3m4Dz74MsyxeeF6c5jmZBtBw0Go2xQV3U8dloNLC9vQ1ZlsP9lKSFp9FoQJKkoUBisMVHrKfdbqPT6Qw9gmcajUYDjuPEOudEnVcqlUrYtaGX6AYg9nvc+XJjoi7ECyJGBA32jhbDzmRZXkgq7CR5aMTIlnHJjNJOABgEX/Sk7811I0bQTFN3s1puEPSPWhpH9Mjv7REvhqomGTY+7bBt0UNfVdVw/d1uN0yMGEWMZogaaiqOmcE06OIz+Hxkh2EY4ZDIccQ+GzVf3HoXx2vvSB6Rlj1qZMrgtottEsSIq97RPVHLC4L+oamdTiecHncZ4vNRI696v3+DdS6OjUkMlicIzs9pUcuJO7pJiKrbTqczlNNK7KuoXEhxjqNRQ86jEr+NGuEVlyhr1Hdv3H4frM+oNB8XEZ8ZPFbb7Xas75U4PqY5/4lHHozKLxP3vCJGaApiHw6eX+LON+0xMI9jKPMBTe+XTexM8ZwjkaRnkWWbNNdCb+6A3oNeDP/uPbGkPRzdtu2+5F5p1d2sliv2/UXDintPcmK45qRDNgdPRtMQJxlRdpH746ITnMiFIhJLifQEYhhqFFFmEVTGrXtxQYgSt957h32Kcg4et5Zl9SVNa7fbQ8+nGkzAJS7q4rllo75jIpHf4I+Ki5bRbrfDoaKyLAe2bQ+VSRwDvYnmarXaUNLAOKKyurbb7ch9FRVkjSOGDIvzotje3jL2nndGHSPjjiORp0YcE+JCK7534nwlktz1Hvu9y+k9jw++Brdp3A/Fwf0uzj+9ubx6v4ODdTquHOIl6rFSqYTbPsl+ESkf4v4o6nQ6YWb3UZ9Jcl4Z3I5R36WL5pv2GEjrGLrIShAEwYXNOEQLVCwWxz5TpFwuw3EcdLvdRMv3fR/FYhG6ri+k/09WXVTv4jkzcTvDE102zWYz7Hs37taRuEWYt1FFWZO7h1PS5dJsNi/MkxLVf2YSkiRNnO9g2cWpdyIar1KpxPqRxB8E6WBAQ5nluu6FHdNEh7aLRnNQfHHqnYgoa3IxyokuJ0VRLgxmRDZP27YnSnpGo11U78D5bToxVH6euTqIiEZhHxoimljU8NQkad+JiNLCgIaIiIhyj7eciIiIKPcY0BAREVHuMaBZoGnSyxMREdEXGNDMWaFQwMrKClZWVlJ9AjQREdFlxk7Bc+Q4DnzfD4fELuLp4ERERMuILTRzZJpm+CRgBjNERETpufSZgn3fR71eB4Chx8UD58nb6vU6ZFmG7/vQNA2lUinxunRdB3CeEls84p6IiIimc6kDGsdxYJomWq1W5PM2PM8LH9CnKAqA8z4wx8fHiR5iKDKrNptNVKtVFAoFJiMjIiJKAfvQAFhZWYlsMdE0DcAXgQjwRTAybbU1Gg08fvx47NOMiYiIKJ5L3UIzju/7cBxn6DbU5uYmgPPAplKpoNlsjn1Ss6Zpkc/FKZVKvOVERESUktwHNL7vY2dnZ+QD8hzHgW3bkf1jxjk6OgIAyLLc97649WTbduxHw48ilkVERETTyf0oJ0mSUK1Ww9tDvUQLy6TBDHDef0Ysf9z0SZbnOE74t2ma2Nvbm7hcRERENCz3LTQAwls6mqaF/V1EMNPb/2US4jbSxsZG5PRJs/x6nodyuQxVVaFpGra3t9lCQ0RElJKlCGiA/qCmWq3CNM3EwQxwPpoJAI6PjyOnD96KilO+brebuDxEREQ02tIENMB50GDbNsrl8tTBgwhYRrXETBrQEBER0ezkvg9NL8dx4LouLMua+jlJYjTTYF8Z8XexWJxq+URERJSepQloevvMlEqlkR2F45IkCYqiDN22Eh177927N1V5iYiIKD1LccspqgOweDxBb0fhKOM69x4cHKBYLMLzvPAWkxg1xWcxERERZUfuMwVflIem1Wrh+fPnI5/TZJomms0mJEnCwcEBVFXtC1Z6n+XkeR40TZsq9wwRERGlL9cBzW9+8xv87Gc/wxtvvIErV64sujhEREQUw+vXr/Hq1Su8+eab+PKXv5zKMnN9y+lnP/sZvvvd7y66GERERJTAT3/6U/z5n/95KsvKdUDzxhtvADivkD/90z8N39/a2sKTJ0+mWvbp6Snu3LmDZ8+eYW1tbaplpVGeZV0O63k+y2E9z2c5y1zPaS6LdZ2f5cyqnv/5n/8Z3/3ud8PreBpyHdCI20x/9Vd/1XfL6V//9V/Dlpvd3V3s7u5OvOyTkxMAwM2bN3H16tWpy5lGVuBlXA7reT7LYT3PZznLXM9pLot1nZ/lTFPP+/v72N/fD//uvTa/fv06LGNach3QCE+ePOnbaV/72tfwi1/8YoElIiIiutwGGxR6r82u66aezy1xQPPhhx/Ctm0cHR2FQ58lSQqfU/Rnf/ZnaZWRiIiIaKyJA5oPP/wQtVqtL4OuGObc6XTQbrdhGAYURcEHH3zAwIaIiIhmbqJMwd///vdRq9VQrVbRbrfx2Wef4bPPPsPx8TGOj4/Dv3/2s5/hW9/6Fra2tvDBBx/MquxEREREACYIaL7//e9D0zT86le/wrvvvotbt26NnFdVVRiGgV/96lf41a9+xaCGiIiIZipWQPPo0SPouo6tra2JV/Dee+8hCAK8ePFi4s8mlWRU0yylVZ5lXU5asrZdWVtOWrK2XVlbTlqyuF1ZLFMasrZdWVtOWmZdnliZgl++fIkbN25MtaI0ljFI9JJut9upDUsUTk5OcO3aNXz66adTDwmk0VjP88F6ng/W8/ywrudjVvU8i+t3rBaaSQORR48e4dWrV1Mtg4iIiCiuC0c5HRwcoNlsxl6g7/vwPA/Hx8f40Y9+NFXh4tra2hqZnCdpYj0iIiJKbjCxXi+RWC9NFwY0m5ubqFarEy/Ysqy5BTSDifWIiIhoscY1KMwisd6Ft5xu3bqFUqkUDsn+7LPPYBgGDMPoe6/3VavVYNt2qgUlIiIiGiVWHxrDMPr+9jwP77777sj5q9UqyuXydCUjIiIiimkmnYI9z4PruokKRERERDSpiTIFC0EQ4B/+4R8ip52cnKBarUKW5akKRkRERBRXoodTvvfee5BlGbdv34amaZBlGcfHx2i32+GIKNM0Uy3ovK2uruL+/ftYXV1ddFGWGut5PljP88F6nh/W9XzkqZ5jJdaL4nkedF3HkydPsLKyAuC85QYAarUa3nvvvfRKOcIsE+tlwj89GD3t62OmERERZdgsrt+JWmgAQJZlWJaFly9fwvM8eJ4HWZaxubmJa9eupVK4uHKRh4bBCRERXSKZy0MzzsnJCV6+fIm7d+/i7t27ePr0KdrtNr71rW+lVb5YmIeGiIgoWzKXh2aUt99+G+vr6/j2t78dvnf37l10Oh3s7e2lUjgiIiKiOBK10Pzwhz+EaZqQJCnsPyPs7Ozg29/+Nv76r/8a/+W//JeJlttqtWDbNiRJCm9hDebAoc+NuoXF21dERHQJJWqhabVaaLVaOD4+xt27d4ema5o2cafgVquFer0O0zRhGAYsy4LrutB1PUkRiYiI6BJJFNDIsoy33noLAIZaaADg+fPn8DxvomWaponNzc2+9zRNQ6vVSlJEIiIiukQS3XKSJCn8/+Co748//hitVguFQmGiZR4fHw8FQZ1Ohwn6iIiI6EKJWmj29vbw5ptv4sWLF2ELzatXr/Do0SNsbm5iZWVl4id0V6tVeJ4XPgPKdV0cHh6yDw0RERFdKFELza1bt1Cv1/G9730PruuGt4VEa42u6/jBD34w0TIrlUqYabhQKECWZbx8+bKvNWiU09NTnJycTLwdwurqai6yIBIREWXB2dkZzs7OEn/+9PQ0xdKcS5yHRlEUHB0d4eXLl2i323j58iVkWYaqqokT65mmiaOjI7iuC8/z4DgOSqXShZ+7c+dOovUJ9+/fx4MHD6ZaBhER0WVRr9fx8OHDRRejz1SJ9YDzJ3FHPY37gw8+wPe+972JlqVpWvhgy3K5jHK5DMuyLgxqnj17hps3b060rl5snSEimh3xA/XevXuxWt3j8n0fAFJdJsWzt7eHd955J/HnX7x4MXVjxKDEifVevHiBR48e4e233x56bW9vTzzcWvS5qVQqUFU1vN20s7Nz4WfX1tZw9erVxC8GNESUN61WC8ViESsrK1hZWUGhUECj0Rj7GcdxUC6Xw8+sr69D1/UwMPB9H7quY319PZynWq3Cdd2hZbmui2q1imKxiPX1dRSLRZTLZei6jmazGfaHbDQaKBQKqFarOD4+TrStvu+jWq1ifX0dhUIhXN/du3fhOE7fvJ7nYX19PXxQ8jyJVCPFYjHVLLiL3KZRVldXp7rurq2tpV6mxIn1fvzjHw+NcOoVNZx7nMPDQ1QqlfBvSZJgGEb4ZeKjDYiIvlAqlVAqlcJzrWVZF54nVVWFqqooFArwPA+GYUSed69fvw5d16EoCkzT7FuG7/vY2dlBq9VCpVKBZVnhaFTP81CtVtFoNKCqKoDzhxU/f/58qhQcIt+Z+KHbW4bB0bG+78P3fXQ6ncTrS0rUf6PRSHzN8jwPGxsbfa1Oi9ymPEkU0DSbTWxtbWFvby9yWPUnn3yCH/7whxMtc2NjI/yVIIgvBJsTiYjGm+Q8Kebd2NiYePrdu3fhui5M0+wLhoDzHGW2baNcLvcFGqPWE0er1YLrumEWeVE+y7JQLpfxySef9M2vKMrYH9uzNu2Pb9HVond/Lnqb8iLRLaeNjQ00Gg3cunUL165dG3oleWRBtVrF4eFhX1DTarWgKApz0RARZYCu62GL+WAw0+vg4CC1dYrAKOq218HBwcRJXLOsXC5HbifFkyigETljxvn0008nWmatVoNhGOE9WF3X0el08PTp0yRFJCKilIk+Ohc9gFiSpMh5evvCrK+vx8pXJn7Q6ro+1F8maj2tViscVNK73mazCU3T0Gw24XkeNE3D+vo6NE0Lf0iL/j6ib1HvMkW/IhFw9PZH6l3XOI1GA9VqNexn09snRrREAefX2N7gJmqberdNLFPTNGia1ldPYtuLxSJarRYcxwn7XsUtd14kuuX07rvv4u233w53/KDj42PU63U8fvx4ouVWKpWxUT8RES1Gb8tBnNsqUaNTdV0PW/BN0wyDC9u2xy5HURS4rgtN01CpVGAYRnhLprcsnufB8zy0Wq2wywJwfk1qt9vhhb7T6cAwDBwfH0PTNJTL5XB0rW3b0HUdjUYD29vbUBQFpVIJtm33BSCqqkKW5dh9g8Qyxa0jx3GgaVqY7qRUKuH58+doNBowTbOvX1LUNgHn++Tu3bt4+vRpWA8icDMMA7VaDcfHx7BtO7xNqCgKDg4OwvpvNBqo1WqxtiHrErXQnJychI8lEJF276tQKMz1GUxbW1v42te+Fvna39+fWzmIiPJkZ2cn8hwe1XLS2yqftBtAtVoN+960223IsgzHcYZaXgY9ffo0vJg3m03cuHEjcsSPLMuRF2dZlsNtEgGVoihQVRWKosBxHOi6HgYpotWnt1xRfZQm6Rvkum7fMsSzC8cFc+O2CTjff5ubm31BXaVSgaIo0HUdnudBlmVsb28DQBjo9Hb2vmj909jf3x95bd7a2kp9fYlaaEqlEhzHGdm/pdvt4u///u+nLlxcT5484SgoIqIJHRwcRLakNJvNsbeDfN9PNFhj8DwtbpXYtj3U+tBLkiTYto1Wq4WdnZ3wNott27Asa6IyDJZblmW4rtsXnIjrWpqjiizL6hu2fnR0BABDg2Hi8jwPrutGBjvVajUMHnv7s0bts6RD6ePY3d3F7u5u5DTXdVMd2g4kDGiOjo7gOA6+9a1vjZwnzU5hRES0WL0/Xj3PS+VHpAhi4nbsFUPVq9Uqms0mWq0WdF3PxTP/JEmCJElotVp4/Pgxbt++PdXyxnUeFq0/y9RhOo5Et5w2NzcvbGqLkxCPiIjyoTeAEa0L0xItBuNuYUVdlE3TDFsmLkommBWe56FYLMLzPFiWlVq/lagWnouG5S+rRAGNaZoXdvj98MMPExWIiIjS5bpuKsOBxaCNSW/zjCIuxuNaK0aNxOltlUl622aeNE3DxsZGaoGMCDCj+h+J+igUCqmsKy8S3XJ6+vQpXNfF22+/PfI+arPZxFtvvTVN2YiIKAW6rqcShBiGgcPDQziOg2azOXJUqniEwmCW4UGO40CW5bHP6xMjfEbNI27lzNr169fD8ohgQrQeXRRQiZFKva1c4jNRfVjiBGiyLIejv0TnX+Ho6AiSJF26UcOJAhpxQI8z6aMPiIgoucGLmnhPPEOp96IvLsSjOoSKC+rg7R5JktBut8NOp7ZtwzCMcL2+7+Pw8BCWZfUFM2LdvWX0PA+maV4YaG1ubqJcLg9lJhadlgc/PypQuGhbe+tIzNv7GRGM6LoOSZLgeR7a7TaAL4ZgjxoxJG79tFqtcHSW+KzruuGQbNGiYppmmMSwVCqN3CbLslAsFsN9IbbHMAwcHBwMbc/SCxJoNptBtVoNXNeNfNm2HWialmTRE2m32wGAoN1uz3xdU/t/7o9+JfnMpMsioqViWVagqmoAIHwpihIoihLIstz3fq1WC4IgCGzbDkqlUvi+JEmBYRhBt9sNgiAIut1uUKvVAkmSwnkqlUrkOVasX8wry3KgqmpgmubQvGK5qqoGqqoGlUolqFQq4XrHqVQqgaqq4bapqhqua7Bc7Xa7b/vEtrXb7bCuJEkKLMsKgiAITNMM5y2VSkG73Q46nU64DEmS+rbHMIxAkqRAkqSwTmVZDmq1WtBut4N2ux1UKpWh9Yt1SZIUzi+2rXdZQRAEiqIEkiQFlUpl7Db11m2pVOqr1956abfbgaIo4T6ybTvodrtD5Zy3WVy/V4Jg8gdEnJyc4Pj4GG+88cbIeT7++GPcunVr0kVPRAz7arfb2R+2/U8PRk/7+ohp4z4z6bKIiIgyYhbX70S3nHRdx9HREZ4/fz5ynlkHM722trZw5cqVyGnjxsETERHRbOzv749Mbvv69evU15cooHn8+HGmek/nPrFekpYYIiKiDJt3Yr1Ew7YNwxib1REAPvjgg0QFIiIiIppUohYakSp6b28Pt2/fHhoyJ3pZf+9730ujjERERERjJQpoDMPA06dPEQRB5PDsUe8TERERzUKigKZSqYT5DaISGnW73cgnoRIRERHNQuKnba+srIx9/HeWOg0TERHRcksU0ADnQ6VfvXoF0zTheR42Njbwla98BTs7O7h69erYYIeIiIgoTYkDmkePHkHXdQzm5fvRj36EDz74AN/5znemLhwRERFRHIkfTlmr1aAoCqrVKjY3NyFJEnzfx/Pnz/Huu+/ixo0buHnzZsrFjcbEekRERNky78R6iR598O1vfxvlchk7OzuR033fx97eHn7yk59MXcBxlubRB2niow+IiCjjZnH9TpRYD8DIYAbAXB7lTkRERCQkuuUUJ13x4GPnaU5GtQSx5YaIiJZYohaabreLn//855HTXr16hTfffJOtNERERDQ3iVpo3nvvPciyjNu3b4f3vnzfh+M48DwPkiTh5cuXqRaUiIhm68GDRZfgYnkoY9pc18XR0REqlcqii5JpiVpoJEmC4zj4zW9+A8MwYBgGTNNEp9PBrVu3cHR0hKtXr6ZdViIiolS5rgtd11Eul1EoFNBoNBZdpJDneSiXyygWizBNc9HFybzEeWgURUG73cbLly/hum743o0bN1IrHBER0ay4rou7d++i2+0CAHRdR6fTWXCpviDLMizL4rMRY0oc0Ag3btyIDGIePXqEH/zgB9MuPhbmoSEioknV63VsbGyEfxuGscDSLJ9556GZKlOwbds4Pj6OnO667twCmidPnmQ/Dw0REWWKuLtAszGuQUHkoUlTooBme3sblmWNnYdNZERElEXNZhO2bYfpRcrlMgCgWq1CVVUA5wNddF2HJElh4KPreji91WphZ2cHvu+HyeEcx4Fpmmi1WiiVSrAsC77v4/DwEKZpYm9vD5IkQdd1uK4bztNLrFfgg57jS9Qp2LIsVKtVfPbZZyNf4xLvjaJpGlZWViJfjuMkKSoREVGfSqUCy7Igy3LYT8WyrDBYcV0XN27cQLVahWEYsG0b5XIZmqaFnYZLpRLu3bvXt1xVVYduWx0fH8O2bbiuC9M0Yds2Dg4OUKlU0Gq1+johe56HGzduoFwuwzRNdgSeUKKARjzDaZxJ70V6ngfP88IRU+JVq9UAIDzQiIiIZmlnZwebm5t9XRkqlQoURYGu62HLTlS+td4+OcB5x97t7W0A5z/aDcOAoihhsGLbdjivruvY3Nzsu96JayBdLFFAYxgGHj9+PHaedrs90TIdx0G73UatVkOlUglf169fZzBDRERz4XkeXNeN7JcpfsgnbTmJCoBEP1TP89BqtaBpWqJlU8I+NL7vw3VdPHr0aGRGYMMw8Mtf/jL2MkclDHr8+PGFrUFERERpGNdReHNzE8BsHu0jlinLcurLviwSBTT1eh2u6/Y1lQ1Ko1OwCJwG71MSERHNku/7Q++JH/CDt5XSIAKaUSOH6WKJAppKpQLHccL7goM++eQTNJvNqQoGAIeHh1AU5cLnQp2enuLk5CTxelZXV7G6upr480REtBzEraaogSgiyJnFyCPRMjNpd41FOTs7w9nZWeLPn56epliac4mHbWuaNjYr8O3btxMXSrAsa2TQ1OvOnTtTref+/ft4cBkfEEJEdIlFtYbIsgxFUeC6LjzP67sFdHR0BEmSwi4S169fB3DeuiICIdHSEtXCM464ndVsNmEYxtAP+UmXN2v1eh0PHz5cdDH6xApoTk5O+p7NdO3aNVy7dm3sZ27dujV2GRcRD7uM0/nq2bNnuHnzZuxlD2LrDBERCZZloVgsolqthl0rfN+HYRg4ODgIgw0RxIh8NZ7nhS0sjuNA07SxCWh7SZKEWq2GRqMRPrtJluXwGuh5HhqNRmZGPe3t7eGdd95J/PkXL15M3RgxKFZAY5omyuUy3njjjUQr+fDDDyFJEr71rW/F/ozjOGGOgIusra3xYZhERFO6LA3VIieMaPWoVqsol8vhiFpZlvHy5Uvs7OxA07TwOmRZVt/oJ5F3pl6vo1wuo1KpwDRNOI6DUqmE7e3tcF3A+WAZWZaxubkZJs9zXTcMVAzDQKFQgGEY0DQNiqLAsqwwUV+pVJpjLY03bVeNtbW1FEtzbiUIgiDOjPfu3cPbb7+Nb37zmxOt4ODgAJ9++unEj0Eol8uQZXlsPhuROllkacy0f3qw2PV/fcHrJyIi+twsrt+x89AcHh7i3Xffxfb2Nv72b/92bCfcV69e4dGjR/jqV7+aKJgBztNKx+k/Q0RERDRRp+CjoyPouo6trS2srKxAkiRsbGyE9xM9zwub8GRZxuHh4VBfmjharRYkScp+qwsRERFlwsSZgg3DQLfbRb1eR7FYxCeffIJ2u412u40gCLC1tYXDw0P88pe/TBTMAOfJ9Jh7hoiIiOJKNGz72rVrqNVqM+ttfdGTvImIiIh6JQposmZrawtXrlyJnLa7u4vd3d05l4iIiOhy29/fx/7+fuS0169fp76+2KOcsoijnFLCEVBERDRHCx3lRERERJRVDGiIiIgo9xjQEBERUe4xoCEiIqLcSz2gefXqVdqLJCIiIhorUUDzwQcf4NGjR3j06FH43sHBAf7wD/8QhUIBX/3qV8c+GoGIiIgoTYkCmvfeew+SJIXPaPr4449RrVYRBAHef/997OzsYGdnJ9WCEhEREY2SKLGeqqr43ve+F/5dLpexsrICy7Lw1ltvAQB++MMfplPCGJhYj4goBVnOlyUwb1ZuzDuxXqKAZn19Pfz/j3/8Y3ieB03TwmAGAFZWVqYvXUxPnjzJfmI9IiLKBNd18fjxYziOAwBot9sLLtFyGtegIBLrpSnRLadut4u9vT3s7e1B13Wsr6/3PX/p5cuXaLVaqRWSiIgoLYqiYHt7G67rznQ9nufB9/2ZroO+kKiFxjAM7OzswHEcKIoCy7Jw9epVvHz5EoZh4PDwELdv3067rPmQhyZbIqJLbh6t+uVyGZZlQZKkma+Lpnja9uHh4dD7N27cwPvvv4/3339/6oIRERHlVblcnnkLEPVLdMvpxYsXY6d/+OGHSRZLRES0cL7vo1qtQtd1aJoGTdPC/jZR81SrVRQKBTSbTQBAq9UKg5lqtcrgZk4SBTT1en3s9Fu3buHtt99OVCAiIqJFcV0XN27cQLVahWEYsG0b5XIZmqah0WiE8+3s7ECSJBiGAdM0oet62F+mVCqhVCoBAEzThGVZHLgyB7EDmk8//RSvXr3Cq1ev4Ps+fv3rX4d/975evHiBRqMReUuKiIgoy3Z2drC5udkXgFQqFSiKAl3X4XkeAAy12FQqlbmWk4bF7kNzfHyMcrmMjz/+GAAgy/LIeYMgSH041jjMQ0NERNPyPA+u66JWqw1Nq1arqFarME0ThmFAlmU0Gg1cv349nD/qc5dZZvPQ3LhxA0dHR2FQI5rTohQKhblmCmYeGiIimta4fi6bm5sAELbQWJaFYrEIXdd5W2mEeeehmXiUk2VZePLkCba2tlItCBERURZE5Y4RQ683NjYAnN+lePnyJcrlMhzHQbFYhGmavPW0QIk6BccJZnofXElERJR1ooVlsH8M8EWQUygUAJy31EiSBNu2w8Sy1Wp1PgWlSIkCGuA8YHnzzTdx+/btyJeu62mWk4iIaKZkWYaiKPA8L7y1JBwdHUGSpLAFxjCMcFqpVIJpmgAw9DlmCp6fRIn1tre3+x51EGWez3IiIiJKg+gbU61WYds2gPOgxDAMHBwchLeeDg8Poet6OEDG933Ishz+LVpyxJBu13XH9j2l6SUKaCzLQrVaxU9+8pOR83z/+99PXCgiIqJZcV03bFFxXReNRgOVSgWSJIV9Y3Z2dqBpWhigDHb63dzchKZpYZDieV7fQy4rlQpM0wxTmIj10eysBEEQTPqhzc1NfPDBB7h58+bIeT799FNcu3ZtmrJdSPSSbrfb2eldnsdnOX39waJLQEREl8gsrt+J+tAYhoHHjx+PnYePYyciIqJ5SXTLyfd9uK6LR48ejXyKqGEY+OUvfzlN2WJjYj0iIqJsmXdivcS3nC560NbKygp+//vfJy5YHLzllBLeciIiojmaxfU7UQtNpVKB4zjY3t6OnP7JJ5+ETx0lIiIimrXEw7Y1TcONGzdGznP79u3EhRI8z0Or1QKAsAc6ERER0aBEAc21a9fGjmB68803+5IOTcrzvPBR7KZpjn0QJhEREVHiFppRfN+H4zg4PDwcO6x7FNd1cffuXdy7d+/C5H1EREREwBSJ9eLM86Mf/Wii5fq+j7t370KWZSYhIiIiotgSBTSlUgmGYYRPHe3V6XTQbDbx/vvvT7xccZtp0ttVp6enODk5mXh9wurqKlZXVxN/noiI6DI5OzvD2dlZ4s+fnp6mWJpziQKaarU6skOwoigoFov4y7/8y4lbaMTIKNu2oes6PM/D5ubmhf1o7ty5M9F6Bt2/fx8PHjyYahlERESXRb1ex8OHDxddjD6J8tBc5OnTp7h37x4++eST2J8RY9IVRYFlWZBlGZ7nQdM0eJ6Hbrc7NMpJfObZs2eJ+usIqbbQMA8NEREtuWlbaF68eIE7d+4sPg/NixcvRk4TI5QmJR65Xq1Ww9YY0ZdG0zTU6/WRt6LW1tZw9erViddJREREk5u2IWBtbS3F0pxLFNAoioKVlZWR04MgQKPRmGiZo3LMqKoK4IuAh4iIiGhQooBGkiTcu3cvMgi5fv06FEXB3bt3J1rm5uYmgPNOxVGiOiATERERAQkDmoODA2xtbaVaEEmSoKoqHMfpe9/3fQBAsVhMdX1ERES0PBIFNCKYefXqFUzThOd52NjYwFe+8hXs7Owk7s9iGAaKxSIcxwlvNTWbTSiKgkqlkmiZREREtPwSBTQA8OjRI+i6jsFBUj/60Y/wwQcf4Dvf+c7Ey1QUBe12G7quw7IsSJIE3/fRbreTFpOIiIgugUQBzdOnT1Gr1aAoCqrVKjY3N8Pg4/nz53j33Xdx48aNREOpFUWBbdtJikVERESXVKKAxjAMmKaJnZ2doWm3bt3CvXv3sLe3h5/85CdTFzCOra0tXLlyJXLa7u4udnd351IOIiIiOre/v4/9/f3Iaa9fv059fYlvOUUFM8KoIdiz8uTJk9QS8xAREdH0xjUoiMS4afqDJB+KUwjmjSEiIqJ5SRTQdLtd/PznP4+c9urVK7z55ptzb6UhIiKiyyvRLaf33nsPsizj9u3b4a0e3/fhOA48z4MkSXj58mWqBSUiIiIaJXGmYMdxsLOzM/R8JfFwST5biYiIiOYlcadgkTPm5cuXcF03fO/GjRupFY6IiIgojsQBDQCcnJzgxo0bYRDz6tUrnJycsHWGiIiI5ipRp+CPP/4Y169fx/r6et/7b7zxRpgpmIiIiGheErXQiEcevPfee0PT3nvvPWxubqJQKOCb3/zm1AWMg4n1iIiIsiU3ifWOj49HTlNVFbVaDc+fP0+6+IkwsR4REVG25CKxXqFQGDvd87ywozARERHRrCUKaIIgwK9//evIaU+fPkWr1WKLCREREc1N4odTFotFvP3227h79y4kSYLnebAsC81mEysrK9jb20u7rERERESREgU0165dw9/93d/h3r17ePfdd7GysgLgvOUGABqNBt566630SklEREQ0RuJOwbIs4+joKEys53keFEXB5uYmrl27lmYZiYiIiMaaKrEegL7EekRERESLMHVAkwXMQ0NERJQtuclDkyXMQ0NERJQtuchDQ0RERJQlDGiIiIgo9xjQEBERUe4xoCEiIqLcW4pOwTSlf3oQ/f7XR7xPRESUMWyhISIiotxjQENERES5txS3nJhYj4iIKFuYWC+C53mQZXnkdCbWIyIiyhYm1gOwsrLS9yqXy4suEhEREWVY5lpoms0mKpUKCoVC+J6qqgssEREREWVd5gIay7Jg2/aiizHeqGHOREREtBCZuuXUarVwdHSEcrmMZrO56OIQERFRTmQqoLFtG77vo9VqoVqtYn19HY7jLLpYRERElHGZuuVkmiZM04TrujBNE81mE5qmodPpjB3ldHp6ipOTk8TrXV1dxerqauLPExERXSZnZ2c4OztL/PnT09MUS3MuUwGNoCgKTNOEpmkol8vQdR2WZY2c/86dO1Ot7/79+3jw4MFUyyAiIros6vU6Hj58uOhi9MlkQCOUSiWUSiW4rjt2vmfPnuHmzZuJ18PWGSIiovj29vbwzjvvJP78ixcvpm6MGJTpgAYANE27sB/N2toarl69OqcSERERXW7TdtVYW1tLsTTnMtUpeJTNzc1FF4GIiIgyLPMBjW3bqFariy4GERERZVhmAhrxXIdGoxG+12q1sLGxgVKptMCSERERUdZlpg+NLMvY2NhAvV6HbdtQFAWapsE0zUUXjYiIiDIuMwGNJEnZf+RBjn300ehp3/jGvEpBREQ0G5m55URERESUVGZaaKaxtbWFK1euRE7b3d3F7u7unEtERER0ue3v72N/fz9y2uvXr1Nf31IENE+ePIGiKIsuBhEREX1uXIOCGAiUpqUIaGhG/unB6GlfHzONiIhoztiHhoiIiHKPAQ0RERHlHgMaIiIiyj0GNERERJR7DGiIiIgo95ZilBPz0HxhXEZgIiKieWEemgSYh4aIiChb5p2HhreciIiIKPcY0BAREVHuMaAhIiKi3GNAQ0RERLnHgIaIiIhyjwENERER5R4DGiIiIsq9pchDw8R6RERE2cLEegkwsR4REVG2zDux3lIENDSdUY9L+MY35lkKIiKi5BjQUCIPHkz2PhER0SyxUzARERHlHgMaIiIiyj0GNERERJR77ENDiXzjSw9GTBn1PhER0ewsRUDDPDRERETZwjw0CTAPDRERUbbMOw8N+9AQERFR7mW6hcZxHJTLZXS73UUX5VIalXCPiIgoazId0FSr1UUXIbMYbBAREX0hs7ecdF2HLMuLLgYRERHlQCYDGsdxcP36dXb0JSIiolgyecvJNE1YlgVd1xddFJrQuGc58TlPREQ0K5kLaHRdh2EYE33m9PQUJycnide5urqK1dXVxJ8nIiK6TM7OznB2dpb486enpymW5lymAhrXdXH9+vWJ+87cuXNnqvXev38fD9h8QEREFEu9XsfDhw8XXYw+mQpo6vU6LMua+HPPnj3DzZs3E6+XrTNERETx7e3t4Z133kn8+RcvXkzdGDEoMwGNruvQNA2e54Xvif+Lf0e13KytreHq1auzLyQRERFN3VVjbW0txdKcy0xA4zgOGo1G5LRCoQBFUdBut+dcKiIiIsqDzAQ0UcGKrutoNpvMFLwkRnVTYvclIiKaVibz0BARERFNggENERER5V6mAxrDMHi7iYiIiC6U6YCGiIiIKI7MdAqextbWFq5cuRI5bXd3F7u7u3Mu0eX1jS89GDnto99GT2NnYSKi5bO/v4/9/f3Iaa9fv059fUsR0Dx58oQPsiQiIsqQcQ0KruuiWCymuj7eciIiIqLcY0BDREREuceAhoiIiHKPAQ0RERHlHgMaIiIiyj0GNERERJR7SzFsm3loLh/mriEiyjbmoUmAeWiIiIiyhXloiIiIiCbEgIaIiIhyjwENERER5R4DGiIiIsq9pegUTPkw6knco57CTUREFBcDGloq44ZtJxnqzWHgRET5wFtORERElHtL0ULDxHoUB1tbiIjmh4n1EmBiPSIiomyZd2K9pQhoKN9GdRZ+wCYVIiKKiX1oiIiIKPcY0BAREVHuMaAhIiKi3GNAQ0RERLnHTsGUWaM6CwPMLkxERP2WIqBhHhoiIqJsYR6aBJiHhoiIKFvmnYeGfWiIiIgo9zIX0LRaLRSLRaysrKBQKMBxnEUXiYiIiDIuUwFNs9mEbdswDAO2bUOSJGiaBs/zFl00IiIiyrBM9aHxfR+maYZ/HxwcoFgswnVdyLK8wJIRERFRlmWqhaZWq/X9LUkSALDDLxEREY2VqYBmUKvVgmEYbJ0hIiKisTJ1y6mXrutoNps4ODi4cN7T01OcnJwkXtfq6ipWV1eHJ/zTg8TLJCIiWlZnZ2c4OztL/PnT09MUS3MukwFNo9GA53nwfR/lchmmaaJSqYyc/86dO1Ot7/79+3jw4MFUyyAiIros6vU6Hj58uOhi9FkJgiBYdCFGcRwH5XIZGxsb6HQ6Q9NFYp5nz57h5s2bideTxxaajz5adAkWa16PPmCcS0Q0bNoWmhcvXuDOnTtot9up9ZPNZAuNoKoqKpUKGo3G2PnW1tZw9erVOZVqfi570JIFSQIaBkFEtOxGNgTEtLa2lmJpzmU6oAGA27dvs1MwxcYHWhIRXU6ZHuUEAJ7nQVXVRReDiIiIMiwzAY3oANxqtcL3PM+Dbdt9yfaIiIiIBmXmlpMkSfB9Hzs7OzBNE5qmQZZl2La96KIRERFRxmUmoAHA4IWWwqhOwewsTEQ0O5kKaJLa2trClStXIqft7u5id3d3ziUiIiK63Pb397G/vx857fXr16mvbykCmidPnvB5T0RERBkyrkFB5JFLU2Y6BRMRERElxYCGiIiIcm8pbjnR5TMugV5WsbMwEdHssIWGiIiIco8tNESXxLiWILYSEVHeMaAhWjAGGkRE0+MtJyIiIsq9pWihYWI9IiKibGFivQSYWI+IiChb5p1YbykCGqLLhv1uiIj6sQ8NERER5R5baIiWDFtoiOgyYgsNERER5R4DGiIiIso93nIiyjDePiIiimcpAhrmoSEiIsoW5qFJgHloiIiIsmXeeWjYh4aIiIhyjwENERER5R4DGiIiIsq9pehDQxTHN770IPL9j34b/T4REeUHW2iIiIgo9xjQEBERUe4xoCEiIqLcW4o+NHlPrPfRR4suAVG0cZmKmcWYiMZhYr0EmFiPiIgoW5hYj4iIiGhCmWuhabVaqNfrcF0XiqLAMAyoqrroYhEtNd4+IqK8y1QLTaPRgGmaqFarqNVqcF0XmqbBcZxFF42IiIgyLFMtNM+fP4dt2+Hf29vbKBaLbKUhIiKisTIT0DiOA8Mw+t5TFAWKosDzvAWVii6DURmEgWRZhJmROBpHTBHRLGUmoBnXAiPL8hxLQkRERHmTmYBmFM/zUK1Wx85zenqKk5OTxOtYXV3F6upq4s8TERFdJmdnZzg7O0v8+dPT0xRLcy7TAU2r1YIsy6hUKmPnu3PnzlTruX//Ph6wzZuIiCiWer2Ohw8fLroYfTId0NTrdViWdeF8z549w82bNxOvh60zRJMb9RuAvw2Ilt/e3h7eeeedxJ9/8eLF1I0RgzIb0Oi6joODg1j9Z9bW1nD16tU5lIqIiIim7aqxtraWYmnOZTKgaTab0DSNjzMgyiG20BDRImQuoGm1WgCGRz2JzMFEdHlwqDcRxZWpgMZxHNTrdVSrVTSbzfD9druNYrHIgIaIiIgiZSagEY85ABA5TLvb7c67SERERJQTmQloFEVBEASLLgZRpjDrMBFRPJkJaKaxtbWFK1euRE7b3d3F7u7unEtERJNgfxii5bO/v4/9/f3Iaa9fv059fUsR0Dx58oT9a4iIiDJkXIOC67ooFouprm8pAhoiIoEjo4guJwY0RJdE2k8VJyLKkj9YdAGIiIiIpsUWGqIExrV2EBHR/LGFhoiIiHKPAQ0RERHlHm85EdGlkWSUE0dGEeXDUgQ0TKxHecCsv8tlVKDDAIjoHBPrJcDEekSXDwMHomxjYj2iS4YjpoiIpseAhmgMBhtERPnAUU5ERESUewxoiIiIKPd4y4mIaAx2PibKBwY0RMQh5Sni076JFmMpAhrmoSGiy4aBE2Ud89AkwDw0RERE2cI8NEvqo48WXQIiWrR5ZRdmFmO6jBjQEBFlGIMQongY0BAtGSYDJKLLiHloiIiIKPcY0BAREVHuMaAhIiKi3GMfGiJaOCb2Wy4cZUWLsBQBDRPrEVGe8UJPy4iJ9RJgYj0iIqJsudSJ9XzfR71eBwAYhrHg0hBlF4dmExH1y0xA4zgOTNNEq9VCpVJZdHGICOMDJ/ZvyZ8kz39ifxjKi8wENKqqQlVVrKysLLooRDQDbFVaLnxcA2VNZgIaIloODFzyiYED5R0DGiK69HhrjSj/liKgOT09xcnJSeLPr66uYnV1NcUSERERLa+zszOcnZ0l/vzp6WmKpTm3FAHNnTt3pvr8/fv38YDtrUQT4a0lmhRPs8ujXq/j4cOHiy5Gn6UIaJ49e4abN28m/jxbZ4iIiOLb29vDO++8k/jzL168mLoxYtBSBDRra2u4evXqootBRER0KUzbVWNtbS3F0pxbioAmSz76aNElIKJ54POn5oO5cyguBjRERJRLkwYoSQKaNAMqmq1MBTS+7y+6CESUIXkcTp3HMtNoWQ5OGFD1+4NFF0BwXRe6rgMADg8P0Wq1GOAQERFRLJlpoVEUBaZpwjTNRReFiIiIciYzAQ0RURYx3w7NQ5K+OmmuZxluUy1FQLO1tYUrV65ETtvd3cXu7u6cS0REs8ZRRpRVyxAcpGF/fx/7+/uR016/fp36+pYioHny5AkURVl0MYgoA9gplygbxjUouK6LYrGY6vqWIqAhIiJaVvMYnr4MMjPKiYiIiCgpttAQES1Y2rfJ2L+ILiMGNER0aSzTiKVl2haiNDCgSYDPayIiIsoWBjRERESX3Lzy4MzSUgQ0zENDRHQxDmmneWIemgSYh4aIltW8+spktSNxmkEYA7r5mnceGg7bJiIiotxbihYaIiKar8vS2pGF7cxq61nWsIWGiIiIco8BDREREeUebzkREVGqeIuEFoEBDRHRnDC772hJ6oaB0+SWuc4Y0BAR0VJJMzii/FiKgGYWifXOzs5Q/+uPsPe//WesfmkpqimTfvu73+H/fPZ/43+985/xpT9iPc8K63k+WM/jpRk0ZKGul7m1Q/jd787w4EEde3t7WF1dneizTKyXwCwS652dneHh//4Mt//n/4T/6Y+Xopoy6X/87vf4P/7+Gcr/y3/iBWCGWM/zsYz1nNWWi2Ws6yz6/e/P8F//60O88847Ewc0806sx6OAiIgoh7IabC4KAxoiIqIUJUnGx+BkesxDQ0RERLnHFhoiIqI5yWpLzKhy/ftnZ/MtyBTYQkNERES5x4CGiIiIcm8pbjnNIg8NERERJTfvPDRL0ULz5MkT/OIXvwhfu7u7ff9ftL/9b/8vlzMHWduurC0nLVnbrqwtJy1Z3K4slikNWduurC0nqd5r8eC1+cmTJ6mvbykCmkGjIsJF+b/+23MuZw6ytl1ZW05asrZdWVtOWrK4XVksUxqytl1ZW05aZn1tztwtJ9d1Ua/XIcsyfN+HpmkolUqLLhYRERFlWKYCGs/zUCwW0W63w0cZFAoFHB8fo1KpLLh0RERElFWZuuVUrVahqmrfc5l0XUe1Wl1gqYiIiCjrMhPQ+L4Px3GgaVrf+5ubmwCAZrO5iGIRERFRDmQmoDk6OgIAyLLc975orbFte+5lIiIionzITB8az/MAAJIkjZ3eS4xjd10Xp6en4fv//u//jn/8x3+Mve4vfelL+NKXvtT3nljer/7t/8OVgWmTOvsfv8O//Pd/m2oZy7qc17/9LQDW86yXw3qez3KWuZ7TXBbrOj/LEfX84sULrK2the//9re/xW8/nxZX77X5X/7lX86Xn2Y+miAjarVaACBot9tD0wAEsiwPvf/Tn/40AMAXX3zxxRdffOXw9dOf/jS1OCIzLTSFQgEAcHx8HDl98FYUALz55pv4m7/5G/zJn/wJ/viP/zjxuqNaaIiIiChakhaaXv/xH/+Bf/u3f8Obb76ZWpkyE9CIgMX3/bHTe335y1/GX/zFX8yyWERERJQDmekULEYzDfaVEX8Xi8W5l4mIiIjyITMBjSRJUBRlaDST4zgAgHv37i2iWERERLkVNaBmWa183uk2E1zXRbFYRKfTCW8xFQoFVKtV1Gq1uZWBj16I5vs+6vU6AMAwjKHpcepunvPkWavVQr1eh+u6UBQFhmFAVdW+eVjf0+utZ1mWYZom63nGHMdBuVxGt9vte5/1nI6VlZW+vxVFQbvdDv9e6npOrXtxStrtdlAqlYJarRaUSqXANM25rbvT6QRA/0grWZbnWoassm07KJVKAYCgUqkMTY9Td/OcJ88MwwhUVQ1M0wxH/wEIbNsO52F9T880zaBSqQS2bQe2bQeKogQAgk6nE87Dek6fLMuBJEl977Ge0yGOacMwwlfvdi57PWcuoFkkVVUDVVX73jNNM8hg3LcwowKaOHU3z3nyrFQq9f3dbrcDAH3bzPqenmEYfX+LerYsK3yP9ZyuWq0WqKo6FNCwntMxuF1R05e5njPTh2bR+OiF5OLU3TznyTPHcYZu5ymKAkVRwnvhrO90DN7GFkk9RXZy1nO6HMfB9evX+57VB7Ce09JqtXB0dIRyuRy5HZehnhnQfI6PXkguTt3Nc548U1U1MkUB8MU2s75no9VqwTAM1vOMmKYZ2ReS9ZwO27bh+z5arRaq1SrW19fDQTXA5ahnBjSfS/LoBToXp+7mOc8y8jwP5XI5/D/A+k6Truth50WB9ZweXdcjBxIArOe0mKaJIAjQbrdRqVTCTrhimy5DPTOg+Vyn0wEAbGxsRE4flfCP4tXdPOdZNq1WC7Iso1KpAGB9p63RaMDzPPi+39dcz3pOh+u6uH79+siWR9ZzuhRFgWmasCwLwHkwCVyOemZA87kkj16gc3Hqbp7zLJt6vR6enADWd9pqtRosy4Jt25AkKWxJYD2no16vj027wXqejVKphFKpBNd1AVyOemZA87kkj16gc3Hqbp7zLBNd13FwcNC3Xazv2VBVFZVKJWwOZz1PT9f18LZH7wv44tYE63l2NE0Lg4rLUM+ZeZbTovHRC8nFqbt5zrMsms0mNE0bGhXC+p6d27dvhydb1vP0HMdBo9GInFYoFKAoCp4+fQqA9TwrYpsvxfE8swHhOaQoyshx891udzGFyhiMyEMTp+7mOU/eWZYVmYBKJKlifc+GYRh9xzfrOX21Wm0oDw3reTZKpVJfXqVlr2cGND1EYq3eTKGyLA8l4Lqsut3uyIAmTt3Nc548E1lrTdPse1UqlTDIYX1Pp9vtDp3sO53O0AmY9Zy+qICG9TyddrsdKIrStw2WZQ2dq5e9njP1LKcs6H32hOd50DQtHF1ymbmuC9M00Ww2IUkSDg4OoKpq37C8OHU3z3nySDzPbJRutxvWOet7Opqm4ejoCJubm9A0DbIsRz5nhvWcLl3X0Ww2xz7LifU8GTFCTxzPiqJA07Sh55IBy13PDGiIiIgo9zjKiYiIiHKPAQ0RERHlHgMaIiIiyj0GNERERJR7DGiIiIgo9xjQEBERUe4xoCEiIqLcY0BDRJQC13XRbDYXXQyiS4sBDRFlkuM40DQNKysrWFlZwfr6OgqFAgqFAorFIsrlMhzHmdn6Pc/D+vr6hUGK53kol8soFoswTTP1criuC13XUSwWYz3Ur9VqoVgs9tWb+GyxWEShUAinzbL+FinuvqPpNBoNrK+vh8eTpmnhq/c4m5uZPVSBiCgFAAIAgW3b4Xvi2TUAglqtNpP1imfRxF0+gEBRlJmWZZLli3rrfZZOL0VR+up0mUy67+j8WWZJHhpZqVRG1nWn0wlkWU6hdPGwhYaIMk08u2pjYyN8T1EUWJYF4PxXou/7qa9XURQEQQDDMFJfdpKypG1vby/1ZWZFlvZdXpTLZRwfH0/8uaOjIwDnz0YbJMty5POkZoUBDRHlkizL4f/FSZXiK5VKc73YUHaVy2W4rpvos+Jzo46leQaVDGiIKJd6W2V6gxvBdV2Uy+Xwfr6u60Ofr1ar0HUd1WoVhUKhr89Fq9VCuVxGuVyOXHe1Wg1fjUajb3qr1Qr7FogTvuM4KJfLWFlZGVpmo9EIy1IsFmfe96PVavXVn+/7aDabKBaLaLVacBwn7IcTtf0X1W2r1YKmaXAcB81mE+vr66hWq+F0UW+FQmHoYuo4Tlh3mqb1TWs2m1hZWRmq76jtG9x3k27jIPF5TdPQbDbDp0evr69D07SwPhuNBgqFAtbX14fqRUyPs6/H1VGa+6vVaoXLrlarEwU3og/WYDDTarXC/4sW1rmY280tIqIEJEkKAATtdrvv/VKpNLJfSbvdDlRVDf+2LCsAEFQqlb7P9973N00zMAwjCILze/+GYQQA+pYjpkmS1Nf/RMzbWxbRt6C33J1OJwAQlEql8L1arRb0nopt2x7qMxQEk/fRwZg+NIqi9PWX6HQ6YX2qqhrUarWg3W6H2yDqJQgurlvLsgJZlsP3arVaoChKWHZFUcJ6F/UBIJBlOVyGqM/e9Yr5L6qDUftukm0ctVwxb+/nxf5SVTWoVCqBbdt96+rd/3H39UV1lOb+6i3XqP5Wo0Str9vt9h3f88SAhogyTQQ0tVotMAwjqFQq4XulUimyI6OiKEMBkPiMmF+SpKGOjIMXtaiAplQqDb0n5u292IqLRG85ut3uUECjqmogSdLQPINlSxrQyLLc9xLvD9abuNBdVAdx6lYEFIPbINbR+3lxURy8mIqy9zIMIzBNM/b2D+6nuNs4iuhs3BsMBEEQdlDv3QYxb++64uzruHWU5v5KGtCI40kErOLvi4LDWfmjqZp3iIjmxPM8uK4Lx3EgyzK63e7Y+er1euT0o6MjqKoKWZbRaDRw/fp11Go1AAj/HVeGVquVar8Ay7L6OmOK/kBpdXS2bbvvlpy4VTJK1C0CUb64dSuWcfv27b7pz58/H/pMuVxGs9mE67p95axUKmg2m3AcJ7yl8fjxYzx9+nRk2eMat41JPi/LMlzX7eu4Lral0+mE78XZ15PU0UXbEnd/JeH7PjzPgyRJaLfb4Xt3795dWN8sBjRElAt7e3tQFAWFQgGe50HX9cjAQtz/F6OgRrEsC8ViEbquwzRNWJZ14Wgiz/MARPfZSUqSJEiShFarhcePHw8FAWmTZbmvP8sk4tatMHixFdvmOM5QXQ/+res6ms0mDMOAqqrwfR8bGxvz7ZORsjj7epI6usik+2sSh4eHAPr7z0iSBFVVZzIqLw52CiaiXLFtG8B558rezoeCCDrEv6PIsoyXL19CVVV4nherM65YZpLhreOWWSwW4XkeLMu6sJUoDbVaLVFgELduRxEjq+r1OhzHge/7MAwDtVptKEgUQ34dx4HneWg2m7E672ZZnH09SR3FWV/vv2kS38PB1r5FpgNgQENEuSLLcviLM2pEhjjpRwU7wBcjM0RzuW3b4fIuarkQyxZN7GnQNA0bGxtzCWQGua470cUubt2OY1kWVFUNHxVhGMbIW3hiNI5pmrBtG5VKJXZZsyjuvp6kjsZJY3+NIj577969vvd7A+Xe5XueF2b5FnzfD0dqpYEBDRHlTqlUCi9ud+/e7euDIJrAdV0fCnZ6W2B6LxClUil8bMG4C/zm5ma4nKg+Lr3vXb9+fWh54v9iPs/zwsBqcBlptgKNsrOz09fv4yJx63accrkctk7UarWxtyd6+zrl+VYTMNm+nqSOxpl0f8Xtt+V5HnzfhyzLI/eLGNouiFvEvu+HgU69Xofv+yiVSrHWexEGNESUaaNO+qZpQlEU+L7fdytCkqTwF7B45lOj0YCmaeh0OuFJ/vDwsO+EK07Q4ldt1HoHly1uh4iWBM/zwhwp4iKk63qYj0UETeI5VSKYaLVaaDabaDab4bJc1x3KF5NE1OdFx2Df98MLUpwAKm7dinUOrlt08hWfazabfXlQooj62N7evrB8wqhjZtogcdTno9Yn/i/+jbuv49ZRmvurUCgAOP9OiY7v44jpUbfAenM09bbebG9vo1QqoVqtwvd9+L6PRqOR7vPPFjK2iojoArZtB6qq9g0/jspLIoagDj6byDCMcBipLMtDw31VVQ1kWQ5qtVpQq9X6hoC32+0wzwc+H4baO8zZNM2+IavimTW1Wq1v6KthGIEkSX1DxMV8YiitaZqBJEnh+0EQhEPTB/OLRJVlkGVZffWGnmG1vUNr0TP8uPfZWLIsB7ZtB91ud2i9ceq2Nw/N4DRRT71l692/UdslhjbHNWrfTbqNUcsV9SpJUmBZVhAE5/tPfL5UKgXtdrsvT4wkSWEdXLSv49ZRmvtLUBQlkCRpaEj6IDEkv/fYUlV16NgalYvGtu3ANM3wO5emlSAIgvTCIyIiomiu6+Lx48fY29vD8fExfN8PWxosy0KhUBjqX+I4DizLmsmTzLMoSR3lidi+VquFdrud6q1EDtsmIqKZEyN8ut1uOHy5lyzLkZ1UTdNc6gdp9kpaR3kiSRIajQYsy0q9XxT70BAR0cyJ/ko7Ozt9/UHEkGzTNMOO3qJvkvh3UXlN5m2SOsor3/ehqmpqHYF78ZYTERHNRaPRCEe2CIqihMnzgC86TAudTifVRIZZF6eO8kzX9b7s3GliQENERHMl+oWMClR0XYfneWF26MvoojrKI9/3sb6+PrOWJvahISKiuYrqH9IrzWdl5dVFdZRHIvfNrII09qEhIiKimRO3D2d164y3nIiIiGguepM5po0BDREREeUebzkRERFR7jGgISIiotxjQENERES5x4CGiIiIco8BDREREeUeAxoiIiLKPQY0RERElHsMaIiIiCj3/n/ECGVd8FA/QwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"nstart = 0\n",
|
|
"nend = 5e4\n",
|
|
"plt.hist(\n",
|
|
" magnet_residual_found,\n",
|
|
" alpha=0.5,\n",
|
|
" bins=70,\n",
|
|
" density=True,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
" range=[nstart, nend],\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" magnet_residual_lost,\n",
|
|
" alpha=0.5,\n",
|
|
" bins=70,\n",
|
|
" density=True,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
" range=[nstart, nend],\n",
|
|
")\n",
|
|
"\n",
|
|
"# plt.vlines(ak.mean(both_eloss),0,3,colors=\"red\", label=\"mean\")\n",
|
|
"# plt.xlim(0,50000)\n",
|
|
"plt.xlabel(r\"Residual Energy in magnet $E_\\gamma$\")\n",
|
|
"plt.ylabel(\"counts (normed)\")\n",
|
|
"plt.title(\n",
|
|
" r\"$B^0\\rightarrow K^{\\ast 0} e^+e^-$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"plt.legend(title=\"LHCb Simulation\", title_fontsize=15)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"6"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"cut_length_found[1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Split in Upstream and Downstream Events and analyse separately\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# try to find a split between energy lost before and after the magnet (z~5000mm)\n",
|
|
"\n",
|
|
"upstream_found = ak.ArrayBuilder()\n",
|
|
"downstream_found = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(cut_brem_found, axis=0)):\n",
|
|
" upstream_found.begin_record()\n",
|
|
" upstream_found.field(\"energy\").real(cut_brem_found[itr, \"energy\"])\n",
|
|
"\n",
|
|
" downstream_found.begin_record()\n",
|
|
" downstream_found.field(\"energy\").real(cut_brem_found[itr, \"energy\"])\n",
|
|
"\n",
|
|
" upstream_found.field(\"brem_photons_pe\")\n",
|
|
" downstream_found.field(\"brem_photons_pe\")\n",
|
|
" upstream_found.begin_list()\n",
|
|
" downstream_found.begin_list()\n",
|
|
" for jentry in range(cut_length_found[itr]):\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] > 5000:\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" downstream_found.real(cut_brem_found[itr, \"brem_photons_pe\",\n",
|
|
" jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" upstream_found.real(cut_brem_found[itr, \"brem_photons_pe\", jentry])\n",
|
|
" upstream_found.end_list()\n",
|
|
" downstream_found.end_list()\n",
|
|
"\n",
|
|
" upstream_found.field(\"brem_vtx_z\")\n",
|
|
" downstream_found.field(\"brem_vtx_z\")\n",
|
|
" upstream_found.begin_list()\n",
|
|
" downstream_found.begin_list()\n",
|
|
" for jentry in range(cut_length_found[itr]):\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] > 5000:\n",
|
|
" if cut_brem_found[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" downstream_found.real(cut_brem_found[itr, \"brem_vtx_z\",\n",
|
|
" jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" upstream_found.real(cut_brem_found[itr, \"brem_vtx_z\", jentry])\n",
|
|
" upstream_found.end_list()\n",
|
|
" downstream_found.end_list()\n",
|
|
" upstream_found.end_record()\n",
|
|
" downstream_found.end_record()\n",
|
|
"\n",
|
|
"upstream_found = ak.Array(upstream_found)\n",
|
|
"downstream_found = ak.Array(downstream_found)\n",
|
|
"\n",
|
|
"upstream_lost = ak.ArrayBuilder()\n",
|
|
"downstream_lost = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(cut_brem_lost, axis=0)):\n",
|
|
" upstream_lost.begin_record()\n",
|
|
" upstream_lost.field(\"energy\").real(cut_brem_lost[itr, \"energy\"])\n",
|
|
"\n",
|
|
" downstream_lost.begin_record()\n",
|
|
" downstream_lost.field(\"energy\").real(cut_brem_lost[itr, \"energy\"])\n",
|
|
"\n",
|
|
" upstream_lost.field(\"brem_photons_pe\")\n",
|
|
" downstream_lost.field(\"brem_photons_pe\")\n",
|
|
" upstream_lost.begin_list()\n",
|
|
" downstream_lost.begin_list()\n",
|
|
" for jentry in range(cut_length_lost[itr]):\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] > 5000:\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" downstream_lost.real(cut_brem_lost[itr, \"brem_photons_pe\",\n",
|
|
" jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" upstream_lost.real(cut_brem_lost[itr, \"brem_photons_pe\", jentry])\n",
|
|
" upstream_lost.end_list()\n",
|
|
" downstream_lost.end_list()\n",
|
|
"\n",
|
|
" upstream_lost.field(\"brem_vtx_z\")\n",
|
|
" downstream_lost.field(\"brem_vtx_z\")\n",
|
|
" upstream_lost.begin_list()\n",
|
|
" downstream_lost.begin_list()\n",
|
|
" for jentry in range(cut_length_lost[itr]):\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] > 5000:\n",
|
|
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry] <= 9500:\n",
|
|
" downstream_lost.real(cut_brem_lost[itr, \"brem_vtx_z\", jentry])\n",
|
|
" else:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" upstream_lost.real(cut_brem_lost[itr, \"brem_vtx_z\", jentry])\n",
|
|
" upstream_lost.end_list()\n",
|
|
" downstream_lost.end_list()\n",
|
|
" upstream_lost.end_record()\n",
|
|
" downstream_lost.end_record()\n",
|
|
"\n",
|
|
"upstream_lost = ak.Array(upstream_lost)\n",
|
|
"downstream_lost = ak.Array(downstream_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{energy: 1.28e+04,\n",
|
|
" brem_photons_pe: [7.42e+03],\n",
|
|
" brem_vtx_z: [35.6]}\n",
|
|
"-----------------------------------\n",
|
|
"type: {\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {energy: 1.28e+04, ...} type='{energy: float64, brem_photons_pe: va...'>"
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"upstream_found[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"upstream: cutoff energy = 350MeV, sample size: 6604\n",
|
|
"eff = 0.8798 +/- 0.004\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# plot efficiency against cutoff energy\n",
|
|
"up_efficiencies = []\n",
|
|
"up_deff = []\n",
|
|
"\n",
|
|
"for cutoff_energy in range(0, 10050, 200):\n",
|
|
" up_nobrem_f = upstream_found[ak.sum(upstream_found[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) < cutoff_energy]\n",
|
|
" up_nobrem_l = upstream_lost[ak.sum(upstream_lost[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) < cutoff_energy]\n",
|
|
"\n",
|
|
" if ak.num(up_nobrem_f, axis=0) + ak.num(up_nobrem_l, axis=0) == 0:\n",
|
|
" up_efficiencies.append(0)\n",
|
|
" up_deff.append(0)\n",
|
|
" continue\n",
|
|
"\n",
|
|
" eff = t_eff(up_nobrem_f, up_nobrem_l)\n",
|
|
" deff = eff_err(up_nobrem_f, up_nobrem_l)\n",
|
|
" up_efficiencies.append(eff)\n",
|
|
" up_deff.append(deff)\n",
|
|
"\n",
|
|
" # print(\"\\ncutoff = \",str(cutoff_energy),\"MeV, sample size: \",ak.num(up_nobrem_f,axis=0)+ak.num(up_nobrem_l,axis=0))\n",
|
|
" # print(\"eff = \",np.round(eff,4), \"+/-\", np.round(eff_err(up_nobrem_f, up_nobrem_l),4))\n",
|
|
"\"\"\"\n",
|
|
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
|
|
"\"\"\"\n",
|
|
"cutoff_energy = 350.0 # MeV\n",
|
|
"\"\"\"\n",
|
|
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
|
|
"\"\"\"\n",
|
|
"up_nobrem_found = upstream_found[ak.sum(upstream_found[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) < cutoff_energy]\n",
|
|
"up_nobrem_lost = upstream_lost[ak.sum(\n",
|
|
" upstream_lost[\"brem_photons_pe\"], axis=-1, keepdims=False) < cutoff_energy]\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"\\nupstream: cutoff energy = 350MeV, sample size:\",\n",
|
|
" ak.num(up_nobrem_found, axis=0) + ak.num(up_nobrem_lost, axis=0),\n",
|
|
")\n",
|
|
"print(\n",
|
|
" \"eff = \",\n",
|
|
" np.round(t_eff(up_nobrem_found, up_nobrem_lost), 4),\n",
|
|
" \"+/-\",\n",
|
|
" np.round(eff_err(up_nobrem_found, up_nobrem_lost), 3),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"nobrem_vertices\n",
|
|
"upstream: cutoff energy = 350MeV, sample size: 6604\n",
|
|
"eff = 0.8798 +/- 0.004\n",
|
|
"\n",
|
|
"downstream: cutoff energy = 350MeV, sample size: 21986\n",
|
|
"eff = 0.8739 +/- 0.002\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"down_efficiencies = []\n",
|
|
"down_deff = []\n",
|
|
"\n",
|
|
"for cutoff_energy in range(0, 10050, 200):\n",
|
|
" down_nobrem_f = downstream_found[ak.sum(\n",
|
|
" downstream_found[\"brem_photons_pe\"], axis=-1, keepdims=False) <\n",
|
|
" cutoff_energy]\n",
|
|
" down_nobrem_l = downstream_lost[ak.sum(downstream_lost[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) < cutoff_energy]\n",
|
|
"\n",
|
|
" if ak.num(down_nobrem_f, axis=0) + ak.num(down_nobrem_l, axis=0) == 0:\n",
|
|
" down_efficiencies.append(0)\n",
|
|
" down_deff.append(0)\n",
|
|
" continue\n",
|
|
" eff = t_eff(down_nobrem_f, down_nobrem_l)\n",
|
|
" deff = eff_err(down_nobrem_f, down_nobrem_l)\n",
|
|
" down_efficiencies.append(eff)\n",
|
|
" down_deff.append(deff)\n",
|
|
"\n",
|
|
" # print(\"\\ncutoff = \",str(cutoff_energy),\"MeV, sample size: \",ak.num(down_nobrem_f,axis=0)+ak.num(down_nobrem_l,axis=0))\n",
|
|
" # print(\"eff = \",np.round(eff,4), \"+/-\", np.round(eff_err(down_nobrem_f, down_nobrem_l),4))\n",
|
|
"\"\"\"\n",
|
|
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
|
|
"\"\"\"\n",
|
|
"cutoff_energy = 350.0 # MeV\n",
|
|
"\"\"\"\n",
|
|
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
|
|
"\"\"\"\n",
|
|
"down_nobrem_found = downstream_found[ak.sum(\n",
|
|
" downstream_found[\"brem_photons_pe\"], axis=-1, keepdims=False) <\n",
|
|
" cutoff_energy]\n",
|
|
"down_nobrem_lost = downstream_lost[ak.sum(downstream_lost[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) < cutoff_energy]\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"nobrem_vertices\\nupstream: cutoff energy = 350MeV, sample size:\",\n",
|
|
" ak.num(up_nobrem_found, axis=0) + ak.num(up_nobrem_lost, axis=0),\n",
|
|
")\n",
|
|
"print(\n",
|
|
" \"eff = \",\n",
|
|
" np.round(t_eff(up_nobrem_found, up_nobrem_lost), 4),\n",
|
|
" \"+/-\",\n",
|
|
" np.round(eff_err(up_nobrem_found, up_nobrem_lost), 3),\n",
|
|
")\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"\\ndownstream: cutoff energy = 350MeV, sample size:\",\n",
|
|
" ak.num(down_nobrem_found, axis=0) + ak.num(down_nobrem_lost, axis=0),\n",
|
|
")\n",
|
|
"print(\n",
|
|
" \"eff = \",\n",
|
|
" np.round(t_eff(down_nobrem_found, down_nobrem_lost), 4),\n",
|
|
" \"+/-\",\n",
|
|
" np.round(eff_err(down_nobrem_found, down_nobrem_lost), 3),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABc4AAAJLCAYAAADeqgXEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5lklEQVR4nO39QYhjWZog6P5WBOnpVGSk3KI7m6ag6ZAxDa/oRbbkRb+CpgI6JHrRtWhwKWIxi5lFhcRgvE0uTDj0kJk0jCHbDsYg86KZRW3Cpdi9WgxSMmRRzXtNuNQ5MExDDyafzdB0vikzVVQMnlGLum/hfRVXbjIzXTPJTJJ9HxjupnvuvUf3yGS/fjv3PztJkiQBAAAAAABERMRv3XcHAAAAAABgnUicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQBsqfF4HJPJ5L67AQAAABtH4hwAtlSv14vBYHDf3QAAAICNI3EOAAAAAAAZEucAAAAAAJAhcQ4AwNJMJpMYj8f33Q0AAIBbkTgHAGBpXr58Ge12+767wTV6vd59d+FBmkwm0ev1ol6vx5MnT2I0Gt13l9beeDyOk5OTqFar990VAOCBkTgHAHI5OjqaJn2ePHkSzWYzJpPJfXdr6UajUTSbzXjy5Ens7OzMfKXPvVwuR6vV2ujn32q1olwuX3iO9Xp9urjsZDKJVqt14Vo0m82IeHut0lnmu7u7USgUpvtZoPb+HB0dXRjX9OuLL764dv/BYBDNZjP29vamY5993Q8GgxiPx1Eul2+VAO71enNfg9VqNY6OjubuMxqNol6vX3jNrvvdDicnJ9HpdKLX6230+8ZdGI1GUa1WY29vL5rNpvcSAODO7SRJktx3JwCAm7ssoXB2dhYRbxOZ8/Y5ODjIdZ7JZBKffPJJVCqVaLfbMZlMolwux3g8jna7nft4myKdHRoRUSqVYjgcTre1Wq1pYm84HEapVLqXPi7DkydPpom8fr8flUrlQptqtRqDwSAqlUp0u91pgrzX68Xnn38e7XY7nj59Gq9evYpisRj1ej2eP3++ta+NdZcd03dd9XodjUbx+eefT5PhBwcHUa1Wo1gsxmQyiVevXkWn05lJli/j9Z++viIu/qxd5ujoKFqt1ka9B43H49jb24uIzX/fuAsnJyfTP9Ld10fX9Ocofc8DAB6G9+67AwDA7XQ6nbmPHx0dRbFYjFqttpTztFqtGI1G0e12I+JtAuH09HSaSN1W2RmsafIm1W63YzAYxGg0ik8++STOz8/vuntLkyaGSqXS3PFMZxjPS1DWarWo1WrTJObZ2Vk8ffo0Xr9+LdF0T05OTmJ3d/fS5HOxWJz7ePYPRZVKJTqdzoW2pVIpGo3GTEIz/UPdbXS73Xjy5ElExMIz2P/iL/4iCoXCxiTNI+b/MZPLXfZavUv1ej3a7bY/cgDAA6NUCwCwkJOTk4i4mPTZ5qR5RMRXX301/f+nn356YfvTp08j4m3ieVNLL2STlJ999tmF7c1mM05OTmI4HF6ZoEyT5NlyLbzVbDZnZlSvWrvdjna7HcVice7XPGn5k4i3P9f9fv/KpGWj0Zj+IW0Zr/1CoRCNRmP6/WVlWrJOTk5m9oFlS/9oCAA8PBLnAMC11r1u8CqlCZNisTg3GZy9NsuYdbuIZrO51DHJJoWyfwhJ61ePx+N4/fr1pbMtB4PBtCxIu92Oer0e1Wo1Pvroo4WSnw9Bp9OJarUa9Xo9yuXyShfn7PV6MR6P4+zsLFft8TRpHhHThPh1arXaUv94ll1Y9vDw8Mq2g8EgJpNJPH/+fGnnh6xer+c9DAAeMIlzAOBSJycn08UAUx999NF0ccxsQmEwGES9Xp/OTG82m9MF/t51dHQU1Wo1yuVy7O3tRbVane43T1o+otVqRcR3i8alixVm+zEej2cW9axWqzeeDTsajab7Xlby5tWrVxHxdrbsXZUUGI/HS028ZheKTJPj6YKNn332WfT7/WtnkP/iF7+Ig4ODGI/HcXp6GpVKJV6/fr0WZRbWxcHBQZyfn0ez2YxWqxV7e3tXvu5vKk04N5vN6aKb9Xr9yiT6ycnJ9I8xtVot1x0D6cz2eSaTyXSB0Z2dnSiXy1cmIguFwvRnbTKZXPk6b7fbuft6WR9PTk5m3odOTk5m+nzdHyDyvqdljcfjmQWXr1rkdNH32TzX/T7eX/O+LlZxvHTM0sVvq9XqzDinazekPvnkk+kYZa3qd99tXpeTySTq9fr0a29vb7rIKgCQQwIArL1ut5vUarWkVqslxWIxaTQa1+7TbreTbre7lPOfnp4mEZFERHJ6enrhPMVicbq90+kklUolKRQKF/YZDodJsVhMarXadP/z8/OkVqslEZFUKpXk/Px8uq3f7yeVSmV6nEajkRwcHCSlUik5ODhIGo3GzHm73e70+hwcHEz7VSqVbvS82+329Pj9fv/C9rTfl21flfR5Lkv6HGq12nQ8CoVCMhwOcx+r0+ks9PrMyvv6vsnPQx7D4TA5ODiYHj99/XS73aRUKiURkRSLxaTdbt/qPOk4FgqFWx8rdX5+nlQqlZmfyezXwcHB3P2yP2fLet/o9/tJqVSa/mycnp5Oz3PVz2T2/eay13na5rY/d2kf0/O12+2kVqslpVIpaTQaM9cx+96Uyvuelm7Pni99ntn3zHefW5732UWv+329v+Z9XfT7/Wk/lnG809PT6fNIxyb7msu+/rNj9e774ap/993mdfnu+9P5+fmF8wMA15M4B4A1ln7Yzn6oPjg4mEmqNBqNpFQqXfgqFApJoVCYuy1vku6qxHmSzCYXisXitG/tdnsmqZn2aZ400VGpVC7dNi+plyZ3CoXChaTAdf2+TjZxkT1mp9OZbqvVajc69m0Vi8WlJDi73e5M4rxQKCTFYnFuMmYR5+fnCyfcF3l936b9baXJqYODg+Tg4CBpt9vJcDhMOp3OTELrttKEfJpAv+m1f9f5+flMsv+q5Hl2+zJez+nP3ruvhex7xWVJ/CSZ/ZmfN7Zp4nZZ0mRnoVCYOd/5+fl027yxvsl72rvvl9nrnU0Sv3vcRd5nb3Ld7/L99Sb9uypxfpPjlUqluQnk9DpkX1dXJc7f3b6K3303eV2m70/vjkm/35c4B4CcJM4BYE2lyYJ3P0ynH7JvMhv4phZJkKQf4i+b/ZsmOC9Llg2Hw0uTN9lZee/KJlXmJRzTft0kyZxNJr47G7RYLN7pGLwrfd637UN2Vul1sxiXKe/r+z5+HtLrUavVLhw/fU0uM3mbnQF8cHCw1DHo9/szr+F3n0/2tX3dedMZ+Y1G48JXmtxL/wgzT5rIv2x72t+0P5clFJc1Sz/bp3nvT+mYvPvedtP3tGyydd770lV/mLnuffYm1/0u319v0r+rEud5j5eO2bz3i+FwmBQKhZlre13iPElW+7vvNq/LeT8fV/2xCgC4SI1zAFhDaY3ZQqEws0jfYDCIwWAQlUrl0oUa71u2HnpWWqv4937v9+ZuL5VK0zrJ2ZrbERG7u7sREXNrGafbLpNuz7uYZnbBzE6nE+fn55EkSZyfn0ej0ZgunHlfC8dVKpVot9vxySef3Gqh0Ozip9nXWra277LlfX3fx8/DZDKZXtdqtXrh+OlrdZkLwlYqlej3+zEcDmM8HseTJ0+WthBspVKJ4XA4/T77+s5bo7pUKkW73Z7WaD85OYmXL19Gq9WaLhTa6/ViMplMaytnv9K6zJPJ5NJzZ8d0MBhcqD09mUyi0Wjk6vdNpWP97jjc5j3t3WNnNRqN6XvdV199NXe/q95n8173u3x/ve3r4rbHS2uFz3u/KJVKcX5+Hp1OZ6Fzv2sVv/uuctnrcm9vLyIiWq3WtG59Krv4LgBwPYlzAFhD9Xo9IiKeP38+TWakC7ilybVNs0hiJU0EXLcQXx43XTgwm6BNk4Hp8TqdznQBw1arNZOEvE6axFnGV6PRiEajEXt7ezdK4I/H4+m4pInK9Hn1er2ljkNW3tf3ffw8pGNaKBTmJmjT67aKxU9LpVJ0u904PT2Ns7Oz2Nvbm16D2ygWi3FwcBARswnZd39GFk2CZq9LpVK58PNbqVTi9PT0wlfy9q7XSJLkyp/P58+fT/+fLnia/n8Zi4Le1irf054+fZp7v2Vd9zzyHGfZ/ct7vPF4HJPJ5M4XLL7r332NRmP6h4Gjo6PY29vL9TsKAPiOxDkArJmjo6PpB+1GoxG9Xi+q1WocHh7GixcvNj5pftUM3VXM4r2p7EzseYmWzz77bPr/RWfx9Xq9ePLkyVK/0oR5q9W6dMbjdc8x4rvk9IsXL6aPrWLWed7X9339PKTHvWxWczZpt0rXzfjNq1qtRsTFWebZ1/irV68WOtZlyc305/e2M+Vrtdq0X71eL8bjcYxGoxiNRjNJ9fuw6ve0myR3l3XdV2XZ/ct7vLTdXf5+ua/ffcPhcPpH0PF4HNVqNer1eu67SwDgoZM4B4A1k94mXiwWp7dZdzqdmQ/CmyabBDo9Pb20XZqIu+sZge96dyb2PNlb/RdN3NRqtZlZkMv4Ojg4iEKhEO12e6YUxyLmzapPjxXxNjmclhlYlryv7/v6eXj58mVEzP6BJDUajaZjPm/7bY3H46jX67G3txdnZ2dxeno6M1a3kf5svfszlr2Wt/1jxE3LI82TLTXRbrej0+lEsVi891JVq35PS/fL8zyXed1XYdn9y3u8tH2eUjC3dZ+/+7rdbnS73Zk/PuX94yoAPHQS5wCwZtIkQJokys663GTpc7jqlvH0uadlCu7LvJnY78oma+6rZESr1YperxfD4XBagiOP9Hm+m5w7ODiYjteyZ53nfX3fx89DWtKhUCjMTVymydxarbbUBG5ay31vby92d3fj/Px8JvG1rHNEXKzHnJ3BfdsyPdn+XvWHl8lkMq05fZlsve+0nvq7dZvvyyrf09L9LquLfVV/Im5/3Vdh2f3Le7zsz+pVx8/+4XQZ7vp3X/Znt1arxenp6fT3w3g8vpexB4BNJXEOAGskOwvuvuv3Lluz2YyI2dm670o/8N93Yuyy+uaXtUmf213q9XpxcnISw+HwRonVbBJn3qzpdNb5ZDJZ2njkfX3f189Dem0+/fTTC9tGo1EMBoMoFoszZW1ue75yuRyffPLJzAKFq3jO/X4/CoXCheeW1u5P3eYPJoVCYeYPL5fN7k1r1F/n3bIsd7Uo6HVW+Z42Go0ura9/mWVf92Vbdv9ucrw0eX54eHjpmDWbzbnvqTcto3LXv/s6nc6F87Tb7eldJVfNfAcAZkmcA8AaKRQK02TZvNIMo9HoXpK0y7itPTuLeV5N8DSpkG2Xuk3d17Tvf/EXf7HwPpfNxM5uT2ft1Wq1e0nkff755/HixYsbJ1ez5TjmJamyM7uzdcZvI+/r+6Y/D81mM8rl8o3LzKTnmlfWoF6vR6FQmCagb6PX600X/vzss8/i/Pw82u32rY57dHQUrVZr7niNRqM4OTmJbrc79xyNRmOaPB+NRlEul68c96u2Zf/wUi6XZ2bBpsculUoL/dEnezfFdT9rtx37eS57/7nNe9pVBoNBjMfjG/183+S63+X76zJfFzc53rvtT05Ops9hMBjE3t7eTPI6e/2zx87zfriq18lV45b9I1gqXd8gz10MAPDgJQDAWmm320lEJBGRNBqNpN/vJ51OJ6nVakmj0biXPnW73Wmfut3u3DbZPl/m9PQ0KRaLSUQk7Xb7wuOX7VupVJKISCqVypV96/f7F7YXCoUkIpJarXbd00ySJEk6nc70eIVCITk/P5/pZ6PRmG5f9JjL1ul0klKpdKtjpNclIpLT09O5bQ4ODqZt5l37m8j7+s7bPvt6iIiZ8VvUvNfT+fl5UiqVkkqlcqNjZnU6naRYLCbFYjHpdDq3Ota7ss+90Wgkp6enyenp6fQ1MxwOrz3GcDhMSqXShet+enqanJ+fJ8PhMGm329PX0GXHrdVqM/15t295pK/Fq/p/m7G/6n0ivRbzfuZu+p6W7lOpVGZ+/rrdblIoFC59XSxy/fJe97t8f71J/7LvyfPGNO/xsu9r735lxzCVXp9CoZC02+2kUqnMXItV/u67yesy/R317nhVKpVb/94AgIdG4hwA1lCaWIuI6YfqRRJeyzYcDpODg4OZJGuhUEgODg6mCfR2uz3tazaBcFmCPd2nUqkkxWJxmoycl5QZDoczier02Om1yCbv0muVJiX6/f404fFuInGe8/PzC+fKHjf9t1KpXHmcu1CpVOYmeBaRJlCzz69UKiUHBwfTNul1z17bee1uKu/rO0/7NMF93R96LjMcDqev81qtlhwcHCSNRiOp1WpzX6N5pK/XYrGYu1+L6na7M8+/UCgklUrlRgn69Oe/VCpNXwtp/2u1WtJut6/9Oeh0OkmlUkkKhcK0Lze5jum4LtImz9gPh8NL3ydOT08vJGVrtdrc57zoe9q7+6TXNntdLzt+nvfZRa77Xb6/3qR/7/6hMn0Pmvfel/d1lvY/2/6y95TT09OZJHV63FX/7rvp67Ldbie1Wm36vBqNRlKpVJby3g0AD81OkiRJAACwMVqtVjx//nzr6uAv297eXnS73VwLeLZarTg6OpopW7IMzWYzXr16Fe12+17qSz80Nxl7AADIeu++OwAAQD7z6uQyazweR6FQyJ04Tevbp/WAl2WZSXiudtOxBwCALDPOAQDYKpPJJOr1enQ6nVyL7UVE7OzsRETE+fm5Gf0b6DZjDwAAWWacAwCwVQ4PD6Pb7eZOfKezzQuFgqT5hrrp2AMAwLvMOAcA4MEbj8dRr9djNBpFRMRwOFTqAwAAHjCJcwAAHrxer3fhsWKxKHkOAAAPlMQ5AAAAAABk/NZ9dwAAAAAAANaJxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAMCSjUajODk5ue9uAHBDEucAXDAej2Mymdx3NwAAYOOMx+Oo1+tRLpej0+ncd3cAuCGJcwAuqNfrcXZ2dt/dAACAjVMsFqPb7d53N27NZBrgoZM4B2BGvV6P0Wh0390AAADukck0wEMncQ6wxnq9Xjx58iR2dnamyezBYBD1ej12dnaiXq9HRMRkMomTk5Mol8sxGAym/3/y5EnU6/WZmSKTySSazWa0Wq1oNpuxt7c3rb3Y6/Wm52k2mzNJ9F6vF9VqdXr8J0+eRLPZnB53NBpFvV6ParUae3t70Wq1Ljyfo6Oj6bnL5fJMzcf0OVSr1Tg5OYnxeBzVajWePHkS1Wp1+hyOjo5ib28vnjx5MvccAADA7ZhMAyBxDrDWarVafPrppzOPVSqVaLfbM4+lSfDRaBTtdjtOT0/j+fPnUalUotfrRblcnrb9/PPPo1AoRLvdjk6nE61Wa5qUrtVqUavVIiKi0+lEt9uNUqkUvV4vWq1WDAaD6Ha7cXp6GsViMV69ehURb5PmrVYrut1u9Pv9aLfb0yR5to+tVis6nU602+1ot9vRbDZjMBhERMTZ2VkMh8PpOdJ23W53+seCZrMZpVIp+v1+VCqVODo6EtADAHDv0skp6dfR0dGV7VqtVlSr1enElNRgMIidnZ2ZSTKj0Sj29vZiZ2cnyuXyTPybTqhJy6qkE2h6vV4MBoMol8szx5rXD5NpAC6RALDWDg4OkohIhsPh9LHz8/MkIpJarTZ9rN1uJxGRdDqdmf0rlUoSEUm3202SJEkKhUJycHAw06bdbl843+np6YU2EXFh3yRJklKpNNO/9DwRkZyfn0/7USgULjyH7PGGw2ESEUmj0bhw/Hf7lLbN9h0AAO7a6elpUigUkn6/P30sjZ1LpdL0seFwmBQKhZm4udPpXIhp03g8e7x+vz83Fu90OtPHTk9Pk1qtlkREUqlUkoODg2Q4HCaNRuPCOWq12syxOp3OtZ8Jut1uUiwWp/H6wcFBUiqVps9xOBwmlUplpv27sX163HefV/pcT09Pp/3NPoe0XaVSSRqNRtLv92ee77ufRQCWwYxzgC1TLBZnvk9ngPT7/en2o6OjmVkwBwcH1x63UChERMTv/d7vzTw+Ho9jNBrF4eFh1Ov16VcqnZXe7XZjOBxeeHzegkPpud59Tru7uxceOz09vbbvAACwKq1WK54+fRqVSmX62Lz4+vPPP4+nT59GqVSaPtZoNKJUKkWr1YrxeBwR38XvnU5n2q5SqUShUIherzdzzH6/P21fLBbjs88+i4iIarUa7XY7SqXS9Djp54GImJnlnvbjOrVabXqu9A7W4XA4jfE///zzmTtja7VaFAqFODk5mcb8o9FoJtZ/+vTpTN+KxeLM80mfQ6VSiVKpFIPBIFqtVlQqlSgWi/H8+fO5zwdgGSTOAbZcGpingXi3241CoRCtViv29vZylzp5N6md7t/tdme+zs/PI0mS6QeIQqEQxWIxer2emokAAGyF8Xg8LV9yXbvRaDSTNE+9mygvFovTconzjpPG9ZPJJCaTyYWJMxEXY/aImFno02QagOtJnANsuTSwTIPKYrEYr1+/jkqlEuPx+EJdwbzSwD3996p25XI5xuNxdLvdhQJzAABYZ2kMPC95nXXVpJF01nU2nk6T6Wny/OTkZLr2UZpgf/ny5YXa5YsymQbgehLnAFsunVmSLhA6Ho+jUChEv9+PbrcbETGzoE9e6YeEeTNiIr67bbJarcbu7q6EOQAAWyNNdmdnc1/lqpnV2ZnUaemUNEne6XSi3W5HpVKZTnrpdDoLlViZx2QagOtJnAOsuQ8//DAiZoPQ7O2Z1+n1elEoFKZB9bt1B9Ng/N0gd5FjR8R09kir1bowYyQNvtNbSrMzU9LjL/ohAwAA1k06iSRbfmSetETLvFrcaVy8t7c383itVovBYBC9Xi+ePn0ahUIhms1mTCaTODo6ms5UvwmTaQCuJ3EOsObSILvVasVgMIiTk5NpsnswGFyop5hdRGgymUSn04kXL15MH3v58uVMkjyti5gGu2nA3ul0pjUb03bZf1OFQmEa+JbL5ajX63F0dBTVajVOT0+jUqlMZ8/0er04OTmJk5OTaLVaEfH2ts5erxeTyeTSJPq8JHv6f4l3AADuS5q8zi6AmZU+ltYtz9YoT7169WpmoksqTWTX6/Vp7Fyr1SLi7WeD2yS6TaYBuJ7EOcCaq1Qq0W634+zsLOr1epyenkan04lisRgHBwczQW/E26A8TWB//vnn0el0pgF2xNvgvlqtRqvVilarFV999dXMDJlGoxGlUilevnwZ7XY7arVa9Hq9aTDdarUu3MbZbrej3W5P6xV2Op2o1+vTvhUKheh0OlEoFKLdbk+fQ6PRiLOzs/jqq69iPB5P25+cnMzUc0xnqKSB+Hg8nn54SP+YAAAAd+3dSSSDwWAmVh2Px9MFONO64tmE92QyiXa7HS9evLhQN7xSqUShUIhKpTJTQ71Wq00T8e9aNAFtMg3AAhIAtkK73U4iIun3+/fdFQAAeFA6nU5SLBaTiEhKpVJyenqaFIvF5ODgIDk9PZ22Oz8/T2q1WlKpVJJGo5E0Go1kOBxeetx2u31h+3A4TDqdzoW2w+EwKZVKSUQkxWIx6ff7yfn5edJoNJKISCIiabfbSZIkSaVSmfbv4OAgqdVqyfn5+czxSqVSUigUkkajkSRJknS73elzLBaLc/vQbrevbNPpdJJCoTA9d5IkSaPRSAqFQnJwcJAMh8OkUqkkEZEUCoWk2+1O90ufQ61WS4bDYXJ6eprUarVp23n9AbiNnSRJknvK2QOwREdHR9FqtaLf709vlQQAAAAgv/fuuwNZk8kkDg8PIyIulB64zGg0isPDwygWizGZTKJarc6UJFhmGwAAIB8xPgAAm2htEueDwSA6nU70er0LC2JcZjweR7lcjuFwOK3ttbe3F2dnZ9NjLKsNwDqbTCbR7/cj4m3tRDPOAVgHYnwAADbV2pVq2dnZiUajMV2E7irVajUiYposini7iFyz2Yz0aS2rDcA6SxccykoX5wGA+ybGBwBg0/zWfXfgpiaTSQwGg2lAnHr69GlEvA2Kl9UGYN0dHBxc+AKATSPGBwBgXWxs4vzVq1cREVEsFmceT2/D7Pf7S2sDAACsnhgfAIB1sTY1zvMaj8cREVEoFC7dvqw21/m//q//K/70T/80/u7f/bvx/e9//9r2l/ne974X3/ve9268PwAAs/76r/86/vqv//rG+//mN7+J//gf/2P883/+z+Nv/a2/tcSeMc+6xPjiewCA9XVXMf6NEufPnz+PnZ2d+O/+u//uwravv/46Pvjgg5scNpfT09OIiNjd3Z27fTKZLK3Ndf6n/+l/iv/6v/6vr20HAMBm+pM/+ZP4L//L//K+u7FSYvzviO8BALbfdTF+7sT5l19+Ge12e7rAz9//+39/ZvtXX30Vg8EgDg8Pc3c2j729vYiIODs7m7u9WCwurc110mvw4sWL+Af/4B9c2/4yi85I+eabb+Ljjz+OX/7yl/H+++/f+Hx5PXv2LL788ss7O99DOed9jOdDuK73cU4/m9tzPmO5Pec0ltt1zpuM521no/yH//Af4vPPP78Q824bMf6su47vI7xfbds5xfjbc86H8rNpLFfnIVzbuz6nsdyuc65zjJ87cf7FF19EpVKJVqs1Pfh/89/8N/E//A//Q0REfPLJJzEej+OP//iP44/+6I9yd3xRabB72WyRYrG4tDbXefz4cUS8rZmY1k1cpa+//joiIn784x/fycyf1OPHj+/k+T20c97HeD6E63of5/SzuT3nM5bbc05juV3nvI/xTIP3NN7bVmL8WXcd30d4v9q2c4rxt+ecD+Vn01iuzkO4tnd9TmO5Xedc5xj/RouD9nq9+OSTT6bfn5ycxP/xf/wf0+8rlUq02+2bHHphT58+jYiL9QnT78vl8tLaAADAthPjAwDAd3InzovFYrx+/XrmsR/+8IczU9s/+uijhRbVvI1CoRClUin6/f7M44PBICIiPv3006W1AQCAbSbGBwCAWbkT55VKJf7pP/2n8T//z/9zRET8u3/37+Iv//Iv43/5X/6XaZt/9+/+3Y06c9UiPePxOPb29qbBbsTbmoODwWAmgG+329Fut6NQKCy1DQAAbCsxPgAAzMpd47xSqUSpVIpKpTJ97KOPPop/+k//aRwdHUW5XI7PP/98odrgWaPRKDqdTkREvHz5MqrValQqlWlQO5lM4uzsbCbwLpVKMRwOo9VqRbFYjPF4HK1WKxqNxtLbAADAthLjAwDArNyJ84iIfr8f9Xo9vvzyy6hWq/Hy5cv4+3//788EoQcHB7mOWSqVotPpTAPredvPz8/nPt7tdq899jLaAADAthLjAwDAd26UOI+ICwHoL37xi6jX6/H69euoVqtxeHh4686xXvb3951zSzyU6/oQxjLiYVxbY+mcm+ahXNeHMJYPjRj/4Xko7x0P4f3qoVzXhzCWEQ8j3jaWzrlpHsp1fQhjuaidJEmS++7EphuNRlEul2M4HEapVFr5+b7++uv44Q9/GH/5l38ZH3zwwcrPx2oZz+1hLLeHsdwexnK73Md43nWcx3q4j3H3frVdjOf2MJbbw1huD2O5XdY5xs+9OCgAAAAAAGwziXMAAAAAAMi4cY1zLnr27Fk8fvx47rb9/X01ggAA1tDx8XEcHx/P3fbmzZs77g3rRHwPALCZlhHjS5wv0Zdffqn2JQDAhrkqAZrWP+RhEt8DAGymZcT4SrUAAAAAAECGxDkAAAAAAGRInAMAAAAAQIbE+QZ69OhR/PSnP41Hjx7dd1dYAuO5PYzl9jCW28NYbhfjyTbz+t4uxnN7GMvtYSy3h7HcLus8njtJkiT33YlNlxaUHw6HFg8CANgi4ryHybgDAGyvRWM9M84BAAAAACBD4hwAAAAAADIkzgEAAAAAIEPiHAAAAAAAMt677w5sk2fPnsXjx4/nbtvf34/9/f077hEAANc5Pj6O4+PjudvevHlzx71hnYjvAQA20zJi/J0kSZJlduohWnQlVgAANos472Ey7gAA22vRWE+pFgAAAAAAyJA4BwAAAACADIlzAAAAAADIkDgHAAAAAIAMiXMAAAAAAMiQOAcAAAAAgAyJcwAAAAAAyJA4BwAAAACADIlzAAAAAADIkDgHAAAAAICM9+67A9vk2bNn8fjx47nb9vf3Y39//457BADAdY6Pj+P4+Hjutjdv3txxb1gn4nsAgM20jBh/J0mSZJmdeohGo1GUy+UYDodRKpXuuzsAACyJOO9hMu4AANtr0VhPqRYAAAAAAMiQOAcAAAAAgAyJcwAAAAAAyJA4BwAAAACADIlzAAAAAADIkDgHAAAAAIAMiXMAAAAAAMiQOAcAAAAAgAyJcwAAAAAAyJA4BwAAAACAjPfuuwPb5NmzZ/H48eO52/b392N/f/+OewQAwHWOj4/j+Ph47rY3b97ccW9YJ+J7AIDNtIwYfydJkmSZnXqIRqNRlMvlGA6HUSqV7rs7AAAsiTjvYTLuAADba9FYT6kWAAAAAADIkDhfwHg8vu8uAAAASyTGBwDgKmtX43w0GsXh4WEUi8WYTCZRrVajVqtdu1+v14uvvvoqIt4Gwc+fP5+Zal+tVmMwGMzdt9/vR6VSmX6/s7Mzs71UKsVwOLzJ0wEAgAdPjA8AwKZZq8T5eDy+UF9mb28vzs7OotFoXLrfyclJdDqdaeCbHqfb7UalUonxeBzj8Tja7XYUCoXpfqenp3F0dDQTUJ+cnESj0Yi9vb3pY9ntAADA4sT4AABsorVKnDebzahUKjOzSFqtVjSbzSuD6larFc+fP59+XywWo1KpRLPZjNPT0xgMBjEcDmcC6oi4EFBHRHS73ej3+8t5QgAA8MCJ8QEA2ERrU+N8MpnEYDCIarU68/jTp08j4u0skXkGg0FMJpMoFoszj1er1RiPxzEajaLRaFwIqCMivvjii6jX69Pve71evHr1Kur1+qXnAwAAFiPGBwBgU61N4vzVq1cREReC43RmymUzRNJFfd4Nmnd3d2eO+67JZBKj0Sg+/fTT6WP9fj8mk0n0er1oNpvx5MmTS2smAgAAVxPjAwCwqdYmcX5ZcPzu9nelwfO729PjnJ6ezt3v5cuXUSqVZs7X6XQiSZIYDofRaDSmCxdddm4AAOByYnwAADbV2tQ4T4PfNEh+12Qymft4Olul2+3OrZH44Ycfzt2v2+3GZ599dukxO51OVKvVqNfr0Wq1otvtXvcU4ptvvomvv/762naXefToUTx69OjG+wMAMOvbb7+Nb7/99sb7f/PNN0vszcOz6TG++B4AYP3cVYy/NonzdIX7s7Ozudvfvb0z+3ij0YiTk5M4OjqKRqMR4/E4Wq3WpfultRY7nc6VfarValGr1WI0Gi30HD7++OOF2l3mpz/9afzsZz+71TEAAPjO4eFh/PznP7/vbjxYmx7ji+8BANbPXcX4a5M4T4Pfy2adXBZUR7y9/XJvby/6/X70+/2o1+vx9OnTGI1GUalULrQfDAZRLBavPGaqWq0uXAPxl7/8Zfz4xz9eqO08ZqMAACzX8+fP4yc/+cmN9//Vr3516+TpQ7bpMb74HgBg/dxVjL82ifOnT59GxMU6hun35XL5yv0PDg7i4OBg+v3Ozk7UarW59RS/+OKLqNVquft2nffffz8++OCDhY8LAMBq3bZUxvvvv7/E3jw8mx7ji+8BANbPXcX4a7M4aKFQiFKpFP1+f+bxdCbIp59+uvCx6vV6RES8ePFi7vZer3dp7cN39fv9aDabC58bAAB4S4wPAMCmWpvEecTbIHgwGMzMSGm329Fut6ezSsbjcezt7V16a+XR0VEMBoMYDodzZ6L0er1pAJ81Go2iXC7H0dHRTNvd3d1cM1cAAIDviPEBANhEa1OqJeLtSvfD4TBarVYUi8XpAkCNRmPaZjKZxNnZ2YU6iaPRKFqtVhQKhRgOh5fWNvziiy/mzmwpFouxu7sbh4eH0e/3o1QqRbVavXZxIQAA4HJifAAANtFOkiTJfXfito6OjqJQKESlUlloMaBlS2eyDIfDC7NcAADYXOK8+3OfMb5xBwDYXovGems14/ymsgsGAQAAm0+MDwDAfVqrGucAAAAAAHDfJM4BAAAAACBD4hwAAAAAADIkzgEAAAAAIGMrFgddF8+ePYvHjx/P3ba/vx/7+/t33CMAAK5zfHwcx8fHc7e9efPmjnvDOhHfAwBspmXE+DtJkiTL7NRDNBqNolwux3A4jFKpdN/dAQBgScR5D5NxBwDYXovGekq1AAAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAEDGe/fdgW3y7NmzePz48dxt+/v7sb+/f8c9AgDgOsfHx3F8fDx325s3b+64N6wT8T0AwGZaRoy/kyRJssxOPUSj0SjK5XIMh8MolUr33R0AAJZEnPcwGXcAgO21aKynVAsAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAxnv33YFt8uzZs3j8+PHcbfv7+7G/v3/HPQIA4DrHx8dxfHw8d9ubN2/uuDesE/E9AMBmWkaMv5MkSbLMTj1Eo9EoyuVyDIfDKJVK990dAACWRJz3MBl3AIDttWisp1QLAAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGS8d98d2CbPnj2Lx48fz922v78f+/v7d9wjAACuc3x8HMfHx3O3vXnz5o57wzoR3wMAbKZlxPg7SZIky+zUQzQajaJcLsdwOIxSqXTf3QEAYEnEeQ+TcQcA2F6LxnpKtQAAAAAAQIbEOQAAAAAAZDz4xPl4PL7vLgAAAEskxgcA4LbWbnHQ0WgUh4eHUSwWYzKZRLVajVqtdu1+vV4vvvrqq4h4Gyg/f/58bo2anZ2dme9LpVIMh8Nbnx8AAJhPjA8AwKZZq8T5eDy+UJh9b28vzs7OotFoXLrfyclJdDqdaXCcHqfb7UalUplp12g0Ym9vb/pYdvtNzw8AAMwnxgcAYBPtJEmS3HcnUtVqNSIi+v3+9LGTk5NoNptxVTefPHkSz58/j4ODg+lj9Xo9RqNRnJ6ezhw/e+xlnX/RlVgBANgs4rzb28QY37gDAGyvRWO9talxPplMYjAYTAPb1NOnTyPibXA7z2AwiMlkEsVicebxarUa4/E4RqNRRLy9zfPVq1dRr9fnHuum5wcAAOYT4wMAsKnWJnH+6tWriIgLwXGa9b9sFkm68E+hUJh5fHd3d+a4/X4/JpNJ9Hq9aDab8eTJkxgMBrc+PwAAMJ8YHwCATbU2ifPLguN3t78rDZ7f3Z4eJ72Ns9PpRJIkMRwOo9FoTBcFSve76fkBAID5xPgAAGyqtVkcNA1+0yD5XZPJZO7j6WyRbrc7d3GfDz/88EL7TqcT1Wo16vV6tFqt6Ha7Nz5/1jfffBNff/31te0u8+jRo3j06NGN9wcAYNa3334b33777Y33/+abb5bYm4dn02N88T0AwPq5qxh/bRLne3t7ERFxdnY2d/u7t1dmH280GnFychJHR0fRaDRiPB5Hq9W6cr9arRa1Wm1aH/Gm58/6+OOPr21zlZ/+9Kfxs5/97FbHAADgO4eHh/Hzn//8vrvxYG16jC++BwBYP3cV469N4jwNWi+b9XFVUNvpdGJvby/6/X70+/2o1+vx9OnTGI1GUalULt2vWq1OayDe5vypX/7yl/HjH//42naXMRsFAGC5nj9/Hj/5yU9uvP+vfvWrWydPH7JNj/HF9wAA6+euYvy1SZynK9u/W2cw/b5cLl+5/8HBQRwcHEy/39nZiVqtdmk9w3fPe9vzR0S8//778cEHH1zbDgCAu3HbUhnvv//+Envz8Gx6jC++BwBYP3cV46/N4qCFQiFKpdKFle3T2SKffvrpwseq1+sREfHixYsr2/X7/Wg2m0s/PwAAIMYHAGBzrU3iPOJtEDwYDGZmhLTb7Wi329NZJePxOPb29qbB7ruOjo5iMBjEcDic7jMajaJcLsfR0dG0Xa/Xi93d3ajVarnODwAALE6MDwDAJlqbUi0REaVSKYbDYbRarSgWi9MFgBqNxrTNZDKJs7OzC3UKR6NRtFqtKBQKMRwOZ+oVFovF2N3djcPDw+j3+1EqlaJarUan08l9fgAAYHFifAAANtFOkiTJfXfito6OjqJQKESlUlloEc9lS2e7DIfDKJVKd35+AABWQ5x3f+4zxjfuAADba9FYb61mnN9UdsEgAABg84nxAQC4T2tV4xwAAAAAAO6bxDkAAAAAAGRInAMAAAAAQMZW1DhfF8+ePYvHjx/P3ba/vx/7+/t33CMAAK5zfHwcx8fHc7e9efPmjnvDOhHfAwBspmXE+DtJkiTL7NRDtOhKrAAAbBZx3sNk3AEAtteisZ5SLQAAAAAAkCFxDgAAAAAAGRLnAAAAAACQIXEOAAAAAAAZEucAAAAAAJAhcQ4AAAAAABkS5wAAAAAAkCFxDgAAAAAAGRLnAAAAAACQIXEOAAAAAAAZ7913B7bJs2fP4vHjx3O37e/vx/7+/h33CACA6xwfH8fx8fHcbW/evLnj3rBOxPcAAJtpGTH+TpIkyTI79RCNRqMol8sxHA6jVCrdd3cAAFgScd7DZNwBALbXorGeUi0AAAAAAJAhcQ4AAAAAABkS5wAAAAAAkCFxDgAAAAAAGRLnAAAAAACQIXEOAAAAAAAZEucAAAAAAJAhcQ4AAAAAABkS5wAAAAAAkPHefXdgmzx79iweP348d9v+/n7s7+/fcY8AALjO8fFxHB8fz9325s2bO+4N60R8DwCwmZYR4+8kSZIss1MP0Wg0inK5HMPhMEql0n13BwCAJRHnPUzGHQBgey0a6ynVAgAAAAAAGRLnAAAAAACQIXEOAAAAAAAZEucAAAAAAJAhcQ4AAAAAABkS5wAAAAAAkCFxDgAAAAAAGRLnAAAAAACQIXEOAAAAAAAZEucAAAAAAJDx3n13YJs8e/YsHj9+PHfb/v5+7O/v33GPAAC4zvHxcRwfH8/d9ubNmzvuDetEfA8AsJmWEePvJEmSLLNTD9FoNIpyuRzD4TBKpdJ9dwcAgCUR5z1Mxh0AYHstGusp1QIAAAAAABkS5wAAAAAAkCFxvoDxeHzfXQAAAJZIjA8AwFXWLnE+Go2iXq9Hq9WKZrMZvV5vof16vV60Wq1otVpRr9djNBrNbVMul2NnZyfK5XIMBoO5x9rZ2Zn5qtfrt3pOAADwkInxAQDYNO/ddweyxuPxhcLse3t7cXZ2Fo1G49L9Tk5OotPpxHA4nDlOt9uNSqUSERFHR0fR7/ej2WzG6elpHB0dRbVajX6/P22THqvRaMTe3t70sex2AABgcWJ8AAA20VolzpvNZlQqlZnVTNNZKVcF1a1WK54/fz79vlgsRqVSmQbQERFfffVV9Pv9aZvPPvssyuVytNvtmaC52+3OtAMAAG5OjA8AwCZam1Itk8kkBoNBVKvVmcefPn0aEW9nicwzGAxiMplEsVicebxarcZ4PI7RaBSDwSDa7fbM9lKpFKVSaaa2Ya/Xi1evXkW9Xr/0fAAAwGLE+AAAbKq1SZy/evUqIuJCcJzOTLlshkgaFBcKhZnHd3d3p8etVCoXjpvKPt7v92MymUSv14tmsxlPnjy5tEYiAABwNTE+AACbam0S55cFx+9uf1caPL+7PT1OehvnZcfMLgrU6XQiSZIYDofRaDRiMplMZ7UAAAD5iPEBANhUa1PjPA1+0yD5XZPJZO7j6WyVbrc7t0bihx9+OHe/Xq8XxWJx7j6lUik6nU5Uq9Wo1+vRarWi2+1e+xy++eab+Prrr69td5lHjx7Fo0ePbrw/AACzvv322/j2229vvP8333yzxN48PJse44vvAQDWz13F+GuTOE9XuD87O5u7/arbMBuNRpycnMTR0VE0Go0Yj8fRarWu3O/w8PDaQLlWq0WtVovRaLTQc/j4448XaneZn/70p/Gzn/3sVscAAOA7h4eH8fOf//y+u/FgbXqML74HAFg/dxXjr03iPA1+L5t1cllwHPH29su9vb3o9/vR7/ejXq/H06dPYzQaRaVSudC+1WrFixcvrjxmqlqtLlwD8Ze//GX8+Mc/XqjtPGajAAAs1/Pnz+MnP/nJjff/1a9+devk6UO26TG++B4AYP3cVYy/Nonzp0+fRsTFOobp9+Vy+cr9Dw4O4uDgYPr9zs5O1Gq1C/UUT05OolqtTm//zNO367z//vvxwQcfLHxcAABW67alMt5///0l9ubh2fQYX3wPALB+7irGX5vFQQuFQpRKpej3+zOPpzNBPv3004WPlS4G9OLFi5nHe71eRMSFGSpX3abZ7/ej2WwufG4AAOAtMT4AAJtqbRLnEW+D4MFgMDMjpd1uR7vdns4qGY/Hsbe3d+mtlUdHRzEYDGI4HM7MRBkMBnF4eBgRb2ekpF/NZjNevXoVo9EoyuVyHB0dTffp9Xqxu7sbtVpt+U8WAAAeADE+AACbaG1KtUS8Xel+OBxGq9WKYrE4XQCo0WhM20wmkzg7O7tQJ3E0GkWr1YpCoRDD4XCmtuFoNIpqtRoRMXdmyfn5eURE7O7uxuHhYfT7/SiVSlGtVqPT6azgmQIAwMMgxgcAYBOtVeI84m1g3e12r9yeBsGpo6OjKBQK0el05i4GVCqVIkmSa8/97i2kAADA7YnxAQDYNGuXOL+J7IJBAADA5hPjAwBwn9aqxjkAAAAAANw3iXMAAAAAAMiQOAcAAAAAgIytqHG+Lp49exaPHz+eu21/fz/29/fvuEcAAFzn+Pg4jo+P52578+bNHfeGdSK+BwDYTMuI8XeSRZai50qj0SjK5XIMh8MolUr33R0AAJZEnPcwGXcAgO21aKynVAsAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAxnv33YFt8uzZs3j8+PHcbfv7+7G/v3/HPQIA4DrHx8dxfHw8d9ubN2/uuDesE/E9AMBmWkaMv5MkSbLMTj1Eo9EoyuVyDIfDKJVK990dAACWRJz3MBl3AIDttWisp1QLAAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGS8d98d2CbPnj2Lx48fz922v78f+/v7d9wjAACuc3x8HMfHx3O3vXnz5o57wzoR3wMAbKZlxPg7SZIky+zUQzQajaJcLsdwOIxSqXTf3QEAYEnEeQ+TcQcA2F6LxnpKtQAAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkvHffHdgmz549i8ePH8/dtr+/H/v7+3fcIwAArnN8fBzHx8dzt7158+aOe8M6Ed8DAGymZcT4O0mSJMvs1EM0Go2iXC7HcDiMUql0390BAGBJxHkPk3EHANhei8Z6SrUAAAAAAECGxDkAAAAAAGSsXY3z0WgUh4eHUSwWYzKZRLVajVqtdu1+vV4vvvrqq4iIGI/H8fz58wtT7Rc59k3PDwAAzCfGBwBg06xV4nw8Hl+oL7O3txdnZ2fRaDQu3e/k5CQ6nU4Mh8OZ43S73ahUKgsf+6bnBwAA5hPjAwCwidaqVEuz2YxKpTIzi6TVakWz2bxyv1arFZ999tn0+2KxGJVKZWa/RY590/MDAADzifEBANhEa5M4n0wmMRgMolqtzjz+9OnTiHg742SewWAQk8kkisXizOPVajXG43GMRqOFjn3T8wMAAPOJ8QEA2FRrkzh/9epVRMSF4DidGdLv9+fuNx6PIyKiUCjMPL67uzs97iLHvun5AQCA+cT4AABsqrWpcX5ZcPzu9nelwfO729PjnJ6eXnhs3rFven4AAGA+MT4AAJtqbRLnafCbBsnvmkwmcx9PZ4t0u925i/t8+OGHCx37pufP+uabb+Lrr7++tt1lHj16FI8ePbrx/gAAzPr222/j22+/vfH+33zzzRJ78/BseowvvgcAWD93FeOvTeJ8b28vIiLOzs7mbn/39srs441GI05OTuLo6CgajUaMx+NotVrT7ekMk6uOfdPzZ3388cfXtrnKT3/60/jZz352q2MAAPCdw8PD+PnPf37f3XiwNj3GF98DAKyfu4rx1yZxngatl836uCqo7XQ6sbe3F/1+P/r9ftTr9Xj69GmMRqOoVCrT2oZXHfs250/98pe/jB//+MfXtruM2SgAAMv1/Pnz+MlPfnLj/X/1q1/dOnn6kG16jC++BwBYP3cV469N4jxd2f7dOoPp9+Vy+cr9Dw4O4uDgYPr9zs5O1Gq1KBQKCx37tuePiHj//ffjgw8+uLYdAAB347alMt5///0l9ubh2fQYX3wPALB+7irG/60bn2HJCoVClEqlCyvbDwaDiIj49NNPFz5WvV6PiIgXL14sfOxlnh8AABDjAwCwudYmcR7xNggeDAYzM0La7Xa02+1pDcPxeBx7e3vTYPddR0dHMRgMYjgcTvdZ9NiLtAEAABYnxgcAYBOtTamWiIhSqRTD4TBarVYUi8XpAkCNRmPaZjKZxNnZ2YU6haPRKFqtVhQKhRgOhxfqFS5y7EXaAAAAixPjAwCwiXaSJEnuuxO3dXR0FIVCISqVykKLeC7baDSKcrkcw+EwSqXSnZ8fAIDVEOfdn/uM8Y07AMD2WjTWW6sZ5zeVXTAIAADYfGJ8AADu01rVOAcAAAAAgPsmcQ4AAAAAABkS5wAAAAAAkCFxDgAAAAAAGVuxOOi6ePbsWTx+/Hjutv39/djf37/jHgEAcJ3j4+M4Pj6eu+3Nmzd33BvWifgeAGAzLSPG30mSJFlmpx6i0WgU5XI5hsNhlEql++4OAABLIs57mIw7AMD2WjTWU6oFAAAAAAAyJM4BAAAAACBD4hwAAAAAADIkzgEAAAAAIEPiHAAAAAAAMiTOAQAAAAAgQ+IcAAAAAAAyJM4BAAAAACBD4hwAAAAAADLeu+8ObJNnz57F48eP527b39+P/f39O+4RAADXOT4+juPj47nb3rx5c8e9YZ2I7wEANtMyYvydJEmSZXbqIRqNRlEul2M4HEapVLrv7gAAsCTivIfJuAMAbK9FYz2lWgAAAAAAIEPiHAAAAAAAMiTOAQAAAAAgQ+IcAAAAAAAyJM4BAAAAACBD4hwAAAAAADIkzgEAAAAAIEPiHAAAAAAAMiTOAQAAAAAgQ+IcAAAAAAAy3rvvDmyTZ8+exePHj+du29/fj/39/TvuEQAA1zk+Po7j4+O52968eXPHvWGdiO8BADbTMmL8nSRJkmV26iEajUZRLpdjOBxGqVS67+4AALAk4ryHybgDAGyvRWM9M86Z8euvfxO//qtv40c/eBQ/+uD7S22/ymMDAAAAACyLGucPwK+//k38r//nX8avv/7NtW1P/mwcf/jf/3mc/Nl4oWPnab/KYwMAAAAALIvE+QOQJwH9B//gb8/8u8z2qzz2quX54wMAAAAAsNkkzh+APAno3d/+3sy/y2y/ymNH5Etu502Em/0OAAAAAA+HxPkDkDcBvalWWTZmnWa/AwAAAACrJXHO1lhl2Zg8f3xQ1gUAAAAANpvEOWvr347/Yubf66yybEweyroAAAAAwGaTOOdW8iS387Tt/2//Kf7Vn/77iIj4V3/676P/v/2nW/TybinrAgAAAACbTeKcGatKbudNhP9/Tv8ifmvn7f9/ayfi/7vgrPNVyXNdHkpNeQAAAADYVhLnTK0yuZ03Ef77ex/G3yRv//83ScT/s/jhtf03+x0AAAAAWIb37rsD2+TZs2fx+PHjudv29/djf3//jnuUT5rc/pvku+R29Xf/zqXtf3/vw/jX/+Z1RFyf3M7TNiKi+rt/J/7bf/7/iH/1p/8+/tt//v+4sh8RF5Pbf+/D3750nzxtI/Jfl2xS/h/+zg+v7HfE28VEf/1X38aPfvAofvTB969tDwAs1/HxcRwfH8/d9ubNmzvuDetk0+N7AICHahkxvsT5En355ZdRKpXuuxsXLJrIXWVyO28iPCLiH//n8//jBWab50lur/IPBHmT8hFvFxP94z9/HX/0Tz6Kf/mHv3vdUwUAluyqBOhoNIpyuXzHPWJdrGt8DwDA1ZYR4yvVsuXylBlJk9sRsZLkdp62eeUp7ZK3DEye63KT2ux5FhP99de/if/1//zL+PXXv7m2LQAAAABwMxLnWy5vIneVye1VypPcXuUfCG5Smz3PYqInfzaOP/zv/zxO/mx8bdsIiXYAAAAAuAmJ8wWMx4slKdfRTRK56+Ls//7rmX+vsw6z32+SlM8jz+z0iHyJdkl2AOAh2eQYHwCA1Vu7xPloNIp6vR6tViuazWb0er2F9uv1etFsNqPVak33z6pWq7GzszP3azAYzLR9d3u9Xl/a87trq07k5pE3Ef5n/+H/N/PvfcrT97xJ+WwN+uvkmZ0ekS/RbjY7ALAqYvzlE4sBAKzWWi0OOh6Po1wux3A4nC7Cs7e3F2dnZ9FoNC7dr9frxeHhYQyHw+lj1Wo1Wq1WtNvtGI/HMR6Po91uR6FQmLY5PT2No6OjqFQq08dOTk6i0WjE3t7e9LHs9k20yvIreRLK2UT4Ioncxh8U41/8o9+JH/3g0e06OcdtkviLzvZexE0WE80jT6L9D/7B344//vPXuWazW9QUALiOGH81xGIAAKu1VonzZrMZlUplZuX6dFbKVUF1p9OJp0+fzjxWrVaj0+lEu92OwWAQw+FwJqCOiAsBdUREt9uNfr9/+yfzQORJKOdNhP/og+/Hjz74/sJ92cQkflqD/m+S72rQX5U4z85O/4e/88Ol9uUms9kXTbT/+uvfxK//6tv40Q8e5RpTAGDzifFXQywGALBaa1OqZTKZxGAwiGq1OvN4GiyfnJxcuu/Z2dmFWzFPT0+jWCxGRESj0bgQUEdEfPHFFzO3aPZ6vXj16lXU6/Urz7fN8s7EbvxBMf7f/69/Eo0/KF7b9kcffD/+4e/8cGXBep7SLnn6HZGv73muYZ4a9O/OTu//b//p2uPnKQOTl0VNAYDriPFXZ5WxGAAAa5Q4f/XqVUTENBBOpTNTrpoh0mw2YzweTwPk0WgUL1++jHa7fek+k8kkRqNRfPrpp9PH+v1+TCaTaS3FJ0+eXAjWt13euuKrTobnsS5J/DzXME8N+nR2esR3s9OvkjfRvsok+yoXNQUA1pcYfz3kjcUAAFijUi3pqvbzZo1kt8/TaDRiOBzGyclJ7O3tRbFYjNevX196rIiIly9fRqlUmmnT6XSi0+nEaDSKTqcTJycnUa1WZ2a2XOWbb76Jr7/++tp2l3n06FE8erT8et55rLKu+KrlLe2yKnmv4aI16H9/78P41//mdURcPzs9Il8ZmJvUWs9TNmaVZWAA4CrffvttfPvttzfe/5tvvllibx6eTY/x1zm+X2UsprQLALDO7irGX5sZ56enpxERsbu7O3f7ZDK5cv9OpxOlUinG43EMBoNrZ5F0u9347LPP5m4rlUrR6XSi2+1GxNsajIv4+OOP44c//OGNvw4PDxc6zyqt0wzyTbWqa5hndnpEvjIw6zabPe+HOwC4zOHh4a3is48//vi+n8JG2/QYf13j+1XHYu7+AwDW2V3F+Gsz4zxd4f7s7Gzu9utmg1Sr1Wg2m1EsFqNer0e9Xo9utxu1Wu1C27TWYqfTufKYtVotarVajEajhZ7DL3/5y/jxj3+8UNt5VjUbJW/dcu5WnvFZdHZ6xHeJ9n/1p//+2kT7Js9mNyMKgKs8f/48fvKTn9x4/1/96leS57ew6TH+usb3q47FLDwKAKyzu4rx1yZxngbNl806uSqobjabEfH2ds6IiNevX8dHH30Un3/++dygejAYRLFYXKj8SrVaXbgG4vvvvx8ffPDBQm3vUrbmttIX62eV47Nooj1Pkj0iX6I9zwe7iPwf7k7+bBx//Oev44/+yUfxL//wd6/sNwAPz21LZbz//vtL7M3Ds+kx/rrG96uMxSLyLzyaJxaTaAcAbuuuYvy1KdXy9OnTiLhY5zD9vlwuX7pvWsswVSgUot1uTxcHetcXX3wxN9i+rm+bKs+imdy9POOzyrsHbjKbPeL6sjF5SsZE5C8bY7ErAFhfYvzVWGUsFpGvtItF4AGAbbU2ifNCoRClUin6/f7M4+lMkE8//fTSfXd3dy/MYqlUKtPjvqvX611a+/Bd/X5/OttlU6lbvt7yjE92dvoi8iTa8ybl885mj1h+bfaImy129b/+n38Zv/76Nwu1BwBuToy/OquKxfLWT7/JIvDZfwEA1tXaJM4jIl68eBGDwWBmRkq73Y52uz0Njsfjcezt7c3cWtlsNuPly5czgXWv14tSqXThVs1erzcN4LNGo1GUy+U4Ojqaabu7u5tr5gqsUt67B/Ik2vMm5fNY1Wz2m8gzy0mSHQBuT4y/GqtaJyfv3X8WgQcAttXa1DiPeLvS/XA4jFarFcViMcbjcbRarWldw4i39RHPzs5mAuiDg4MoFApRr9enwfJkMolf/OIXF87xxRdfzJ3ZUiwWY3d3Nw4PD6Pf70epVIpqtXrt4kJwl370wfdz3TnQ+INi/It/9Dvxox9cX/cpT9uI9Skbk2ch0Yh8i12pnw4AtyfGX4086+Tkidvy1E+3CDwAsM3WKnEe8Taw7na7V24/Pz+/8Hij0ZgJvi9z2bELhcKFW0hh0+VJtOdNyq/qw1oeN/mwlmeWU54kOwBwOTH+8uWZ9JAnbsuzaLxF4AGAbbZWpVqAzZGnbMyqarPnvZU4It/txOqnAwDrKs86OXnL/S1699+6LQIvFgMAlkniHLiRVX5YWzTRnvfDWt7FrvLKUz8dAOCu5InbIhafxLDqReD/9//0VzP/XkcsBgAsk8Q5sHJ5P6wtmmjP+2Ft1Ytd5Z0VBQCwjvLcLbiqReBvMuFBLAYALJPEObB28iTa83xYyzPL6SYf1vKUdnErMQCwrvLcLZh3LZtFY7eblOTLW2YPAOAqa7c46CZ79uxZPH78eO62/f392N/fv+MewfbL82FtlYtdRczOUP+Hv/PDK9vmXezq11//Jn79V9/Gj37wKNcirgBc7/j4OI6Pj+due/PmzR33hnXyUOP7PIvG51l4NGLx2O339z6Mf/1vXkfEYmVdIvLFYmIrANhuy4jxJc6X6Msvv4xSqXTf3YAHJe+HtTyLXeX5sPbuDPW/9+FvX5lo/4N/8Lfjj//89cK3EudNtAOwuKsSoKPRKMrl8h33iHUhvr9e4w+K8S/+0e/Ej37waKH2i8ZueSY8ROSPxcRWALDdlhHjK9UCbLS8C4+uarGrvLcT572VWM1OAGAdrWotm4h8JfnyxmJ5Yytl9gDg4ZE4BzZa3g9rq1rsKk/99Ij8C4/mTbT7cAcArKM8sVueknx5Y7G8sdXJn43jD//7P4+TPxsv1B4A2HwS58CDsqrFrvLMUL/JwqN5E+15PtxJsgMA6yjPhIe8dwvmja3c/QcAD4/EOfCg5JnllOfDWsTiM9Tz3kp8k0R7ng93ZlABAOsob0m+/+Lv/GDm38vcJLZy9x8APDwS5wCXyPthbVF5byXOm2iPyPfhTo1PAGAdraok301iK3f/AcDDI3EOcIm8H9ZWtfBo3kR7RL4Pd6us8emDIABwVxad9JA3tnL3HwA8TBLnAEuyqoVH8yba8364W2WNTx8EAYC7suikh7yx1U1mqP/v/+mvZv69irv/AGA9SZwDLMmqFh6NyJdoz/PhbtU1Plf5QdCHRgDgphathx6x+hnqeZLsESYmAMBdkTgHWJJVLjyaR54Pd6uu8bnKMjB5PzRKtAMAqTyx2CpnqK+6DIz4BwBu7r377sA2efbsWTx+/Hjutv39/djf37/jHgHrqvEHxfgX/+h34kc/eLRQ+zwz1NMPd//qT//9tR/ufn/vw/jX/+Z1RNxsBtXf+/C3rzx+Nsn+D3/nh9f2/Q/+wd+OP/7z1wt9EMzTNuJtov2P//x1/NE/+Sj+5R/+7pVtf/31b+LXf/Vt/OgHjxaucQ9sruPj4zg+Pp677c2bN3fcG9aJ+H575Y3F8s5QXzS+SpPsf5N8l2S/LjGfnaF+XRyUJ/6JEAMBsD2WEeNLnC/Rl19+GaVS6b67AWyAH33w/VwfRrKzohZJFC9a2iVPkj0i34e7vEn2iHwz1PPOZs+TaPchEx6WqxKgo9EoyuXyHfeIdSG+316rjMXWaRLDKicaAMA6W0aMr1QLwAbIUz89rzz109epDEzeRU1XWZs9T9kYt0wDwObJG4vlncQQsZqFSvPWT1cGBgC+I3EOsAHy1E+PyFfa5SZlYCKu/3C3yoW0blIPdJW12fN8yFSbHQA2zypjsVVNYrhJvJQn0S6mAWDbSZwDbKE8C17lXah0HWZQ5Z1tlfeD46bOZgcA1kOe+GpVkxhWHS+JaQDYdhLnAFsoz+3EeW89XocZVHlns+f54LjJs9nzzuQy8wsAViNPfLWqSQyrjJcilIEBYPtJnANsoTy3E+e99XgdZlDlnc2+ytrs6zSbPe9MrlXWZs/T3odjALZNnvhqVZMYVhkv3WSiwSpjGgBYBYlzAHJZhxlUeduusjb7Os1mz3vL9Cprs+dpv8oaqZLyAKy7VU5i+C/+zg9m/r3KKsvARKw2pvH7HoBVkDgHIJd1mEGVt23E6mqzr9Ns9ry3TK+yNnue9quskWrhMgC2zTpMYljlIvAR+WMaM9QBWAWJcwBWZpUzqPJ+EFxVbfaHMps9b232PO1XWfd91QuXmf0OwF1bh0kMq1wE/iYxTd7f9wCwCIlzANbGKhc1XVVt9oiHMZs9b232PO1XWfd9lUn5iPWZ/W5hWADmWeUkhlUtAn+TMjB5ft/7HQjAoiTOAVgbq1zUdJW3NZvNfvP2q54pv8qkfMT6zH5fp4VhAdhceeKlVS0Cnzemicj3+15ZFwAW9d59d2CbPHv2LB4/fjx32/7+fuzv799xjwBI/eiD7+dKsv+Lf/Q78aMfPFqofTbRfl1SdNWz2f/Vn/77hWez/+t/8zoiFp/59TfJd0n2RRYMW6R93mO/m2j/ex/+9qXt87RNZT94/8Pf+eGVbSNWP/v9j//89cJJ+UXb5m1/8mfj+OM/fx1/9E8+in/5h797bftff/2b+PVffRs/+sGja3/m8rRdpePj4zg+Pp677c2bN3fcG9aJ+J6HJk+8lCf+iVh8odK8MU3e3/d5f2euy+8qAPJZRowvcb5EX375ZZRKpfvuBgC3lOdDY0S+RHveD5mrns2+yIfSPEn2vO3zHntdkvKpPIn2vEn57MJo171WVlmDPm+CIU+ifZVJ+TyuSoCORqMol8tLOxebRXwPl1vlRIM8MU3e3/d5fr9G5PtdJckOsD6WEeMr1QIAt7TKRbo2sTZ7nvarrPu+yvI1EastSbNONeg3tXwNAKu1yrJ5eWKaPL/vV73wqN9TANtF4hwA7tBDqM2et/2q6r6vMikfkS/Rnjcpvy416CM2e/FWANZHnhgoT0yT5/f9TRYezc5Qv07e31PWEQFYbxLnALDGNnU2e572eY+9aI3UiNUl5SNWO/s9T/t1SspHrHbx1jzJCwA2V96YZtHYIO/v47y/B/P+njJDHWC9SZwDwJZYp9nsedqv8tirKl8TsdrZ73nar1NSfp3K1wCwufLGNIvGBnl/H6/6j815ZqibnQ5w9yTOAeCBWuVs9jztV3nsVZaviVhdSZo87dcpKb8u5WsAeFjyxAZ57lxb5R+bI/LNUM87O12iHeD2JM4BgGvlnfmVp/0qj73K8jURqy1Jk6d9niRAnvabWr4GgIdlHeqnr7oMjAW1Ae6exDkAsLVWWb4mYn1K0qzy2JtYvgYALrOq+umrLAMTkb9+ujIwALf33n13AABgXfzog+8vnGSPePvh+1/8o9+JH/3g0VLbrtOxV7l4a96Z8nnL3QDAu/L+rs/+sfm6JHSe31O/v/dh/Ot/8zoirp+h/u7s9L/34W9fm5jPJtqv6/fJn43jj//8dfzRP/ko/uUf/u61ff/117+JX//Vt/GjHzzKdS0BNo0Z5wAAN7QuJWlWeex1mimfN4kPALeVZ4Z6nt9TeWaor3Kx7ojVl4Exox3YVGacL9GzZ8/i8ePHc7ft7+/H/v7+HfcIAOB21mmmfJ5Zf3kcHx/H8fHx3G1v3rxZ2nnYPOJ7IM8M9by/pxa98yrP7PSI7xLtf5N8l2i/KjGfZ3Z6xNsE+x//+etcifZFZ7SbzQ4syzJifInzJfryyy+jVCrddzcAAJYm7y3tedqvsjROHlclQEejUZTL5aWej80hvgfyWNUfhNPZ6f/qT//9wot1r7IMzO5vf2/m3+vkSbTnLRsDcJllxPhKtQAAsBHylqQBgLu0ykXJ86wLssoyMBER//Y/t/m3C7SNyLewad6yMcrAAKskcQ4AAABwx1a55siiC5X+/t6H8TfJ2/8vUgYmb/30vO3zJNkj8tVbl2QH8pI4BwAAAFhjeWanRyy+UGme2ekR+Weo52mfN8kekW+GukVNgbwefOJ8PF7sDRMAANgMYnxg2+QtA5NnhnqeMjB5Z6jnaX+TsjGrLANjNjuwdouDjkajODw8jGKxGJPJJKrVatRqtWv36/V60e/3o1AoxHg8jmKxGO12+0K7nZ2dme9LpVIMh8Nbnx8AAJhPjA9wt/IsVLroIqUR+RcqzdM+z6KmEfkXNs0m2RdJnq9yUdNff/2b+PVffRs/+sGja/8YkqctsFxrlTgfj8dRLpdjOBxOV6/f29uLs7OzaDQal+7X6/Xi8PBwJjiuVqvRarVmAuuTk5NoNBqxt7c3faxSqdz6/AAAwHxifIC796MPvp9rkdJFk+wR+WaoRyxebz1vUj6dof43yXcz1C/bJ2+SPSJfoj1Pkj0iX6J9lUl54GprVaql2WxGpVKZBrQREa1WK5rN5pX7dTqdePr06cxj1Wo1er3ezGPdbjc6nU4cHBxMv7Lnuun5AQCA+cT4AOttlWVgIhavtx6xeJI9YrVlYFa9qGmesjFKzMD9WZvE+WQyicFgENVqdebxNFg+OTm5dN+zs7MYDAYzj52enkax+N2iGb1eL169ehX1en3usW5zfgAA4CIxPsD2ybtQaZ5Ee54ke56FTfPWZl/1oqZ5Eu27v/29mX+vY8FUWJ61SZy/evUqImImEI6I6cyQfr9/6b7NZjPG43HU6/WIeFvD8OXLlzO3cPb7/ZhMJtHr9aLZbMaTJ09mAvHbnB8AALhIjA+wffLOUM+TaM87mz1vGZiI65PsEes1m/3f/ufj/dsFFkuNyJdoN5sdrrY2Nc7H47c/dIVC4crt8zQajRgOh3FychJ7e3tRLBbj9evXM8fqdDrR6XRiNBpFp9OJk5OTqFar01krtzl/6ptvvomvv/762naXefToUTx6tFhNMQAArvftt9/Gt99+e+P9v/nmmyX25uHZ9BhffA9we6ust55nhnqe2uyrXNR01bXZs4n2f/g7P7yy7U1ms6/DgqlwVzH+2sw4Pz09jYiI3d3dudsnk8mV+3c6nSiVSjEej2MwGFy4rTNVKpWi0+lEt9uNiLf1DZdx/oiIjz/+OH74wx/e+Ovw8PDacwAAsLjDw8NbxWcff/zxfT+FjbbpMb74HuBurbLeutnsF5nNzqa6qxh/bWac7+3tRcTbWobzvHt75buq1Wo0m80oFotRr9ejXq9Ht9uNWq02t32tVotarRaj0Wgp54+I+OUvfxk//vGPr213GbNRAACW6/nz5/GTn/zkxvv/6le/kjy/hU2P8cX3AOstzwx1s9lnrXo2e7aO+6KLoJrNzqLuKsZfm8R5GrReNuvjqqC22WxGxNvbOSMiXr9+HR999FF8/vnnlwbVEW8D8XTWym3On3r//ffjgw8+uLYdAAB347alMt5///0l9ubh2fQYX3wPsN7ylIHJ0zZidob6dcncPG0jFk+050myR+RLtOdJskfkS7TfJCmfJ9GeJ8kekS/RnjfJLil/P+4qxl+bUi3pyvbv1hlMvy+Xy5fu+/Lly+kCPxFvaxi22+2YTCbT2SbXnfc25wcAAC4S4wOwqfIsapqnbUS+sjE3mc0ecX3ZmDwlYyLylY1ZdYmZbJJ9EXnKxuQpGXOT9srMbJa1SZwXCoUolUoXVrZPZ4t8+umnl+67u7t7YRZJpVKZHvcy/X5/OpPlNucHAAAuEuMDsKny1FvPW5s9T6I9b232vLPZI5Zfm32VSfm8SfaIfIn2vLXZ1XLfbmuTOI+IePHiRQwGg5kZIe12O9rt9jQ4Ho/Hsbe3N7MwULPZjJcvX84E1r1eL0qlUhSLxRiNRlEul+Po6Ghm++7u7sxtnoucHwAAWJwYHwBm5Um0b+Js9k1eMDXvbPY8C6ZGrHb2u0T78q1NjfOIiFKpFMPhMFqtVhSLxRiPx9FqtaZ1DSPe1ic8OzubCaAPDg6iUChEvV6f3s45mUziF7/4RUS8rV24u7sbh4eH0e/3o1QqRbVajU6nk/v8AADA4sT4AHBzeWuz51kEdVW12fO2fSgLpkY8jFru21T3fa0S5xFvA9tut3vl9vPz8wuPNxqNS4PfQqFw4fbMm54fAADIR4wPAHcjT6I9T5I9woKp78qbaM/bPk+SPSJfoj1Pkj1v+7zHXudE+1qVagEAAAAAVm+Vtdk3scTMKmuz522/ybXcV1n3/a5JnAMAAAAAV7Jg6qy8ifZNruWep33eY+dNtN8liXMAAAAA4N5s+4KpeduvcvZ73iR7nvarnil/19auxvkme/bsWTx+/Hjutv39/djf37/jHgEAcJ3j4+M4Pj6eu+3Nmzd33BvWifgeANbPpi6Ymqf9OtVyz9N+1XXi81hGjC9xvkRffvlllEql++4GAAA5XJUAHY1GUS6X77hHrAvxPQBsvnVZMDVv+5vMfl8k0Z4nyZ63fd5j502057GMGF+pFgAAAADgwVtlbfa87fPWcv/H/zlJ/Y+vSVavssTMquvE3zUzzgEAAAAAcspbNmaVs9/P/u+/nvn3KqsqMROxeAI/In9JmrtmxjkAAAAAwBrJO/s9zwz1vLPZ87TPk8CPyJ/Ev0tmnAMAAAAAbLA8M9TzzmZf5QKredvfJYlzAAAAAIANlqcMzDqVmMnb/i5JnAMAAAAAcGurTMrfNTXOAQAAAAAgQ+IcAAAAAAAyJM4BAAAAACBD4hwAAAAAADIsDrpEz549i8ePH8/dtr+/H/v7+3fcIwAArnN8fBzHx8dzt7158+aOe8M6Ed8DAGymZcT4O0mSJMvs1EM0Go2iXC7HcDiMUql0390BAGBJxHkPk3EHANhei8Z6SrUAAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQMZ7992BbfLs2bN4/Pjx3G37+/uxv79/xz0CAOA6x8fHcXx8PHfbmzdv7rg3rBPxPQDAZlpGjL+TJEmyzE49RKPRKMrlcgyHwyiVSvfdHQAAlkSc9zAZdwCA7bVorKdUCwAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAEDGe/fdgW3y7NmzePz48dxt+/v7sb+/f8c9AgDgOsfHx3F8fDx325s3b+64N6wT8T0AwGZaRoy/kyRJssxOPUSj0SjK5XIMh8MolUr33R0AAJZEnPcwGXcAgO21aKynVAsAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicL2A8Ht93FwAAgCUS4wMAcJW1S5yPRqOo1+vRarWi2WxGr9dbaL9erxfNZjNardZ0/3ltyuVy7OzsRLlcjsFgMPdYOzs7M1/1ev1WzwkAAB4yMT4AAJvmvfvuQNZ4PL6woune3l6cnZ1Fo9G4dL9erxeHh4cxHA6nj1Wr1Wi1WtFutyMi4ujoKPr9fjSbzTg9PY2jo6OoVqvR7/ejUqlM9zs5OYlGoxF7e3vTx7LbAQCAxYnxAQDYRGuVOG82m1GpVKYBdURMZ6VcFVR3Op14+vTpzGPVajU6nc40qP7qq6+i3+9Pt3/22WdRLpej3W7PBM3dbnemHQAAcHNifAAANtHalGqZTCYxGAyiWq3OPJ4GyycnJ5fue3Z2duGWzNPT0ygWixERMRgMpsF1qlQqRalUmqlt2Ov14tWrV1Gv1688HwAAcD0xPgAAm2ptEuevXr2KiJgGwql0ZspVM0SazWaMx+NpncLRaBQvX76cBtKVSuXCcVPZx/v9fkwmk2ktxSdPnlxaIxEAALiaGB8AgE21NqVa0lkhhULhyu3zNBqNGA6HcXJyEnt7e1EsFuP169eXHit7zGazOf2+0+lEp9OJ0WgUnU4nTk5Oolqtzsxsuco333wTX3/99bXtLvPo0aN49OjRjfcHAGDWt99+G99+++2N9//mm2+W2JuHZ9NjfPE9AMD6uasYf20S56enpxERsbu7O3f7ZDK5cv9OpxOvXr2K0WgU4/E4BoNB1Gq1S9v3er0oFotz6yqWSqXodDpRrVajXq9Hq9WKbrd77XP4+OOPr21zlZ/+9Kfxs5/97FbHAADgO4eHh/Hzn//8vrvxYG16jC++BwBYP3cV469N4jxd4f7s7Gzu9utmg1Sr1Wg2m1EsFqNer0e9Xo9ut3tpYH14eHhtoFyr1aJWq8VoNFrgGUT88pe/jB//+McLtZ3HbBQAgOV6/vx5/OQnP7nx/r/61a9unTx9yDY9xhffAwCsn7uK8dcmcZ4GzZfNOrkqqE5vxUxnlrx+/To++uij+Pzzz+cG1a1WK168eLFQ+ZVqtbpwDcT3338/Pvjgg4XaAgCwerctlfH+++8vsTcPz6bH+OJ7AID1c1cx/tosDvr06dOIuFjnMP2+XC5fuu/Lly+nCwxFvK2h2G63YzKZXJhJktY0zLZftG8AAMDixPgAAGyqtUmcFwqFKJVK0e/3Zx5PZ4J8+umnl+67u7t7YRZLpVKZHjfV6/VmtqWuuk2z3+/PLC4EAAAsRowPAMCmWpvEeUTEixcvYjAYzMxIabfb0W63p8HxeDyOvb29mVsrm81mvHz5ciaw7vV6USqVprdqDgaDODw8jIi3M1LSr2azOV1wqFwux9HR0cwxdnd3r1yACAAAuJwYHwCATbQ2Nc4j3q50PxwOo9VqRbFYjPF4HK1Wa1rXMOJtfcSzs7OZAPrg4CAKhULU6/Xp7ZmTySR+8YtfRMTb2SbVajUiYu7MkvPz84h4O6vl8PAw+v1+lEqlqFar0el0VvV0AQBg64nxAQDYRDtJkiT33YlNl85kGQ6HueoqAgCw3sR5D5NxBwDYXovGemtVqgUAAAAAAO6bxDkAAAAAAGRInAMAAAAAQMZaLQ666Z49exaPHz+eu21/fz/29/fvuEcAAFzn+Pg4jo+P52578+bNHfeGdSK+BwDYTMuI8S0OugQWDwIA2E7ivIfJuAMAbC+LgwIAAAAAwA1InAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAxnv33YFt8uzZs3j8+PHcbfv7+7G/v3/HPQIA4DrHx8dxfHw8d9ubN2/uuDesE/E9AMBmWkaMv5MkSbLMTj1Eo9EoyuVyDIfDKJVK990dAACWRJz3MBl3AIDttWisp1QLAAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGS8d98d2CbPnj2Lx48fz922v78f+/v7d9wjAACuc3x8HMfHx3O3vXnz5o57wzoR3wMAbKZlxPg7SZIky+zUQzQajaJcLsdwOIxSqXTf3QEAYEnEeQ+TcQcA2F6LxnpKtQAAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJxvoG+//TZ+9rOfxbfffnvfXWEJjOf2MJbbw1huD2O5XYwn28zre7sYz+1hLLeHsdwexnK7rPN47iRJktx3JzbdoiuxLsvXX38dP/zhD+Mv//Iv44MPPlj5+Vgt47k9jOX2MJbbw1hul/sYz7uO81gP9zHu3q+2i/HcHsZyexjL7WEst8s6x/hmnAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkvHffHdgmz549i8ePH8/dtr+/H/v7+3fcIwAArnN8fBzHx8dzt7158+aOe8M6Ed8DAGymZcT4EudL9OWXX165EisAAOvnqgToaDSKcrl8xz1iXYjvAQA20zJifKVaAAAAAAAgQ+KchV12e4Nzbp6Hcl0fwlhGPIxrayydc9M8lOv6EMYStt1Dee94CO9XD+W6PoSxjHgY8baxdM5N81Cu60MYy0VJnLOwh/LD+hDeIB7KdX0IYxnxMK6tsXTOTfNQrutDGEvYdg/lveMhvF89lOv6EMYy4mHE28bSOTfNQ7muD2EsF7V2Nc5Ho1EcHh5GsViMyWQS1Wo1arXatfv1er3o9/tRKBRiPB5HsViMdrud+9g3PT8AADCfGB8AgE2zVonz8Xgc5XI5hsPhdBGevb29ODs7i0ajcel+vV4vDg8PYzgcTh+rVqvRarWmgfUix77p+QEAgPnE+AAAbKK1KtXSbDajUqnMrFzfarWi2WxeuV+n04mnT5/OPFatVqPX6+U69k3PDwAAzCfGBwBgE61N4nwymcRgMIhqtTrzeBosn5ycXLrv2dlZDAaDmcdOT0+jWCwufOzbnB8AALhIjA8AwKZam8T5q1evIiKmgXAqnRnS7/cv3bfZbMZ4PI56vR4Rb2sYvnz5cnoL5yLHvs35AQCAi8T4AABsqrWpcT4ejyMiolAoXLl9nkajEcPhME5OTmJvby+KxWK8fv16eqxFjn2b87958yYi3gbz33zzzaXtrvO9730vvve9713bLj3Hr371q3j//fdvfL683rx5E6PR6M7O91DOeR/j+RCu632c08/m9pzPWG7POY3ldp3zJuP513/91/HXf/3XNz7nf/gP/yEivov3yGdTY/y7ju8jvF9t2znF+Ntzzofys2ksV+chXNu7Pqex3K5zrnWMn6yJg4ODJCKS4XB4YVtEJMVi8dpjlEqlJCKSiEi63W6uY9/m/H/yJ38yPa8vX758+fLly5ev7fv6kz/5k2tjUS7a1BhffO/Lly9fvnz58rX9X9fF+Gsz43xvby8i3tYynOfd2yvfVa1Wo9lsRrFYjHq9HvV6PbrdbtRqtYWOfZvz/7N/9s/if/wf/8f4u3/378b3v//9K/t5lTwzUgAAuN5tZ6P85je/if/4H/9j/LN/9s+W2KuHY1NjfPE9AMD6uqsYf20S59lFfq7aPk+z2YyIt7dzRkS8fv06Pvroo/j888+jVqstdOzbnP9v/a2/Ff/Vf/VfXbodAAAeok2N8cX3AACszeKg6cr279YZTL8vl8uX7vvy5cvpAj8Rb2sYttvtmEwmMRqNFjr2bc4PAABcJMYHAGBTrU3ivFAoRKlUurCy/WAwiIiITz/99NJ9d3d3L8wiqVQq0+MucuzbnB8AALhIjA8AwKZam8R5RMSLFy9iMBjMzAhpt9vRbrejUChExNvZIXt7e9NgN+LtbZwvX76cCax7vV6USqXp7ZeLHHuRNgAAwOLE+AAAbKKd/7yi/NoYjUZxeHgYxWIxxuNxVKvVaV3DdPsnn3wSL168iFqtNn385OQkut3u9HbOyWRyIRi+7tiLtrlP2f5NJpOoVqsz14G71+v14vDwMEajUZRKpWi329PZUKlFxm1ZbViOwWAQ9Xo9zs/PZx43lptpPB5Hr9eLiLe1ctPfDcZz/fV6vej3+1EoFGI8HkexWIx2uz3Txjiun8lkEoeHhxERF8Yr4m7HzLiuBzH+1bxO148YfzuJ8beH+H6zifE304OM8RM2xunpaRIRyXA4nD5WLBaTTqdzj7162NrtdlKpVJJOp5McHBwkEZFERNLv96dtFhm3ZbVheYrFYlIoFGYeM5ab5/T0NKnVakmlUklOT08vbDOe663b7SalUmnmsUqlkhwcHEy/N47rp9/vJ7VaLYmIpNFoXNh+l2NmXNkEXqfrR4y/vcT4m098v/nE+Jvpocb4EucbpFKpJJVKZeaxTqeT+PvH/anVajPfD4fDJCJmxmmRcVtWG5bj4OAgqVQqF4JqY7lZhsNhUigU5v5STxLjuQkqlcqF8Wu320mxWJxpYxzX02VB9V2OmXFlE3idrh8x/nYS428+8f12EONvtocW469VjXMuN5lMYjAYRLVanXn86dOnEfH2Nlbu1mAwuHBrSqlUilKpNK2huci4LasNyzEYDOLDDz+c3hKeMpabZTKZxCeffBLFYjE6nc7c7cZz/Z2dnc3UO46IOD09ndY2No6b5y7HzLiyCbxO148YfzuJ8Tef+H57iPG3zzbH+BLnG+LVq1cREdM3klT6i7/f7995nx66SqVyYTxS6eOLjNuy2rAcnU4nDg4OLjxuLDdLq9Wa1sGdx3huhmazGePxOOr1ekS8rWP38uXL6bgax81zl2NmXNkEXqfrR4y/ncT4m098vz3E+Ntnm2N8ifMNkc5uyC6ENG879y/7C2CRcVtWG26v1WpdGogZy82S/pW53+9HuVyOJ0+eRLVanV5f47kZGo1GNBqN6PV6sbe3F61WK16/fj0Niozj5rnLMTOubAKv080hxt9cYvztIL7fHmL87bPNMb7E+YY4PT2NiIjd3d252yeTyR32hsv0er0oFovRaDQiYrFxW1Ybbmc0GsWHH3546QwjY7k5RqNRRLz9i3Oz2YzhcBjD4TDG43Hs7e0tdayM5+p1Op3p7fGDwWDmtk7juHnucsyMK5vA63QziPE3lxh/O4jvt48Yf7tsc4wvcb4h9vb2IuJtLah5LgsEuFuHh4fR7Xan3y8ybstqw+0cHh7OvX0zZSw3R/oX5mazOb2e2VqIh4eHxnODVKvVaDab0e/3o1AoRL1ej16vFxF+LjfRXY6ZcWUTeJ1uBjH+5hLjbwfx/fYR42+XbY7x31vq0ViZ7CIJV23n/rRarXjx4sXMWCwybstqw821Wq2Z2/wi4sItf8Zyc1x2y1alUomIt2OaLiRiPNdbs9mMiJjO8Hv9+nV89NFH8fnnn0etVvNzuYHucsyMK5vA63T9ifE3lxh/e4jvt4sYf/tsc4wvcb4h0tVh363Vk35fLpfvvE985+TkJKrV6oVV2hcZt2W14eYGg0EcHR3N3ba3txelUil+8YtfRISx3ATpNU5v4XrX7u6un80N8fLly2lAHfH2Q1O73Y5msxmj0cg4bqC7HDPjyibwOl1vYvzNJsbfHuL77SLG3z7bHOMr1bIhCoVClEqlC6vDpnWgPv300/voFhHT24nSv3anRqPRQuO2rDbc3HA4jCRJZr4ODg6iUChEkiQxHA6N5QYpFApRqVRm6uRFfPcX6XK5bDw3xO7u7oWZBOl7baFQMI4b6C7HzLiyCbxO15cYf/OJ8beH+H67iPG3z1bH+AkbYzgcJhGRnJ6eTh8rFotJu92+x149bP1+PymVSkmn05n5ajQaSafTSZJksXFbVhuW5+DgICkUCjOPGcvNkV7jfr8/fazdbielUulCG+O5vtrtdlIoFJLz8/OZx4zj+js/P08iImk0Ghe23eWYGVc2gdfp+hHjby8x/uYS328PMf7meogx/k6SJMlyU/Gs0mg0isPDwygWi9M6XtlbXLg7o9HoyltAzs/Pp7XYFhm3ZbVhOVqtVpycnMT5+fnM48Zyc4xGo2i1WlEsFqNQKMRkMpkuIJRtYzzX28nJSXS73elt8pPJJNrt9kytS+O4XkajUXQ6nTg5OYlCoRAvXryISqVyb2NmXNkEXqfrQ4y/3cT4m018vz3E+Jvnocb4EucAAAAAAJChxjkAAAAAAGRInAMAAAAAQIbEOQAAAAAAZEicAwAAAABAhsQ5AAAAAABkSJwDAAAAAECGxDkAAAAAAGRInAMAAAAAQIbEOQDAfzYajaLVakW9Xo+9vb04OjpaaNtDNx6PY2dnJ/b29qLVakWr1YrJZBK9Xi/q9Xrs7OzEzs5ONJvNa491dHQ0bV8ul+Pk5GShPgwGg9jb25vZt9frXWjX6/WiXC5P24xGoxiPx9FqtaLZbMaTJ09iZ2cnJpNJ3ssAAMAaEuPfjBg/YidJkiTXHgAAa2g8Hsfu7m4UCoUb7T8ajeKTTz6J8/PziIhpYNjpdK7cxttrv7e3F51OJxqNxoXte3t7MR6PIyLi/Pz8yjHKtj09PY1isbhwPyaTSTx58iQi4tK+REScnJxEq9WajmdWq9WKo6Oja/sJAMDqifHvjxjfjHMAYEvU6/U4Ozu78f6Hh4exu7s7/b7dbk+D5qu2cb1CoTANUA8PDy9tNxgMZoLo7DVf9DwHBwcREdHtdi9tNxwO4/nz53O3ffjhh7nOCQDA6ojx19dDiPElzgGAjVev12M0Gt3qGFftf9tjP3S7u7vTIPaq2zLb7Xa0Wq1bnSs9z2AwuHTcXr58eelMFQAA1oMYf709hBhf4hwAuDeTySSazWY0m82oVqtRrVangVCv15vWoksfGwwG03p69Xp92i7d3mw2LwTY6Tlardb0HIPBYLr95OQk6vV6jMfjGI/HUa/Xo16vx2AwuHLbVUajUdTr9ahWq9OagNn+nJycTOvzDQaDaT2+9Dkteqz0+afP6eTkJJ48eXKhzmB6jff29i5cn8FgML3O2eufXpudnZ2l1Hqs1WpRLBanz/9d6TWuVCqXHuO6axHxdkZKrVaLiPkzX3q9XlQqFWVYAABWRIwvxk9tfIyfAADcg9PT06RYLCanp6fTxwqFQlIoFKbfNxqNJCKS4XA4s19EJLVabfrYwcFBEhEzx0qSJBkOh0mhUJjZv9PpJBGRtNvtmbbFYjEpFotz+3rVtncNh8OkUqlMv+92u0lEJI1GY9r/Wq2WRERSqVSSg4ODZDgcTp9rtl/XHavb7SbFYnH62MHBQVIqlZJSqTTdp1QqJQcHBzPXLiKSYrE4PU673Z57TU5PT2eOdZn0uJ1OZ+72SqWSnJ6eTq/9vGvZaDSm+6d9PD8/X/hazOvPu8dIr0e/37/0uaTX4t39AAC4nhhfjJ+16TG+xDkAcC9KpdKFIO7dgCYNlrNB8fn5+cJBdalUmgnEso+/235ZQXWpVJrpb5K8/bCQfV5pQPju808D7TzHSq9ZGjhnpefJHiMN3t+9VvOC3Xa7fWmgnLVoUJ3tfzawPT8/nzn3vIB4kWvx7jnfvS6np6czH9rmkTgHALg5Mb4YP7UNMb5SLQDAnRuPxzEajS7csndwcBBJkizlFrv0HKVS6cK29DbHZS/+k57z8PBwestn9tbMV69ezbSf9zzTxY8WPVZ6jN/7vd+7cKyvvvrqwmPpMd6tDdhoNGI8Hs/covrFF1/Ep59+etVTzi2tO9hut6ePnZycTG+9nCfvdY2I6S2e2VtG2+32pQsGAQBwO2L8t8T4b21DjP/eSo4KAHCFNKBbZZ3pqxb7efr0aUS8DdZWcc6rVntf1bHmXcs00B4MBhc+XLz7favVipOTk2i321GpVGIymcTu7u7Sx+j58+dxdHQ0XdinVCpFp9OJ4XB46T43ua6VSiWKxWKMx+M4OTmJRqMRL1++jNevX9/6OQAAcJEYf/nHEuPPuusY34xzAODOpcHssoPaeSaTyYXH0kBxd3d3qeda5vNaxrFqtVpUKpU4PDyMwWAQk8kk2u12HBwcRLFYnGlbLBajUqnEYDCYBqLzFjK6rXcX9llkIZ+bXot0Rkq73Y5erxdPnz61KCgAwIqI8e/mWGL8u4vxJc4BgDuXzoS4bHbBMoLS9BzZ2xJTaaC9t7d36/NkpYFqr9ebu31eX1Z9rG63G5VKJUaj0XS2SfYWyqw0CO10OtHv96e3XN5WemtqKr2VstfrRavVmt5We5mbXotGoxGFQiHG43F8/vnn154HAICbE+Pf3bHE+HcT40ucAwB3Lr2N8uTk5EJA1Gq1prNEPvzww4iYDbLT/8+bZZJ9rFgsRqlUivF4fCFIf/XqVRQKhZmg8ezs7ELwt8i2rLSeY6vVunAbabYO3yKWdax6vR7dbjcODg7i4OBgbj3I7DmLxWIcHR0tfdZGdmxKpdL0+aXjdJXbXItsvcOraiwCAHA7YvzrifFn+xWx3jG+xDkAcOcKhcJ0RkS1Wo16vR6tVivK5XLs7e1NA7o02Gq1WjEYDOLk5GS62M9gMIhqtRoR380q6XQ6MR6Pp7MWut1uFAqFmVkI6a2ML168WHrgWCgU4uDgICIiyuVy1Ov1ODo6imq1Gqenp9PgcJEAfdFjpcHqvA8Z6YeWdN+Tk5Po9XpX1oZMZ6R89tlnCz/v68z7YJOeJ/032zaVXqdFr8U86QenZc2sAQBgPjG+GH/rYvwEAOCedLvdpFQqJRGRlEqlpN/vX2jTbreTQqGQFAqF5ODgIEmSJCkWi8nBwUEyHA6n7UqlUlIoFJJGozGz//n5eVKr1ZJKpZI0Go2k0WjM7DccDpNGo5FERBIRSaPRmPbjqm1XabfbSbFYTCIiKRaLSafTmTlf+pyLxWLS7/eT8/PzmfO02+2FjtXtdi/dliRJcnp6Ot3+7lexWEzOz88v9P38/DzJGyKenp4mEXHh/N1uN6lUKklEJIVCYeZ5JUmSVCqVme87nc702qSviewxr7oWV2k0Gsnp6elCbdvtdhIRc68NAADXE+OL8bM2OcbfSZIkWUVCHgCA+zUajeKLL76I58+fx9nZWUwmk+kMj263G3t7e9NZHqnBYBDdbnc662cR4/E49vb2otPpbPzM7qOjo2i1WnF+fm4hUQAA1o4YP7+bxvjvra5LAADcl/F4HOVyeRocvhsgFovFuQvudDqdmZqBecy7lXTT/MVf/MV9dwEAAOYS49/MTWN8iXMAgC2U1hH8/PPP4/nz59NakuPxOAaDQZyenk5rUA4GgygWi9M6hdct5HOZw8PDaVD6/PnzjZmxPR6Pp7Nv8i7wBAAAd0WMv7hlxPhKtQAAbKmjo6M4PDy8sNp9u92eLraTXYApIuL09DSKxeJddxUAAFiAGP/uSJwDAGy5tO7hZcFyq9WK8Xg8M2sFAABYX2L81ZM4BwAAAACAjN+67w4AAAAAAMA6kTgHAAAAAIAMiXMAAAAAAMiQOAcAAAAAgAyJcwAAAAAAyJA4BwAAAACADIlzAAAAAADIkDgHAAAAAICM/z+5m581+bgNRwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1800x600 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# plot efficiencies wrt cutoff energy\n",
|
|
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18, 6))\n",
|
|
"x_ = np.arange(0, 10050, step=200)\n",
|
|
"\n",
|
|
"ax[0].errorbar(x_, up_efficiencies, yerr=up_deff, ls=\"\", capsize=1, fmt=\".\")\n",
|
|
"ax[0].set(\n",
|
|
" xlabel=\"cutoff energy [MeV]\",\n",
|
|
" ylabel=r\"$\\epsilon$\",\n",
|
|
" title=\"upstream\",\n",
|
|
" ylim=[0.8, 1.0],\n",
|
|
")\n",
|
|
"# ax[0].set_yticks(np.arange(0.8,1.01,step=0.02),minor=False)\n",
|
|
"# ax[0].set_xticks(np.arange(0,10100,step=200),minor=True)\n",
|
|
"# ax[0].grid()\n",
|
|
"\n",
|
|
"ax[1].errorbar(x_,\n",
|
|
" down_efficiencies,\n",
|
|
" yerr=down_deff,\n",
|
|
" ls=\"\",\n",
|
|
" capsize=1,\n",
|
|
" fmt=\".\")\n",
|
|
"ax[1].set(\n",
|
|
" xlabel=\"cutoff energy [MeV]\",\n",
|
|
" ylabel=r\"$\\epsilon$\",\n",
|
|
" title=\"downstream\",\n",
|
|
" ylim=[0.8, 1.0],\n",
|
|
")\n",
|
|
"# ax[1].set_yticks(np.arange(0.8,1.01,step=0.02),minor=False)\n",
|
|
"# ax[1].set_xticks(np.arange(0,10100,step=200),minor=True)\n",
|
|
"# ax[1].grid(True)\n",
|
|
"\n",
|
|
"fig.suptitle(\n",
|
|
" r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, nobrem electrons\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"brem vertices\n",
|
|
"upstream eff = 0.826 +/- 0.002\n",
|
|
"downstream eff = 0.796 +/- 0.003\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"cutoff_energy = 350\n",
|
|
"# possibly: instead of checking if any photons exceed the cutoff, use the sum of all photon energies to separate nobrem and brem\n",
|
|
"\n",
|
|
"upstream_brem_found = upstream_found[ak.sum(upstream_found[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) >= cutoff_energy]\n",
|
|
"up_energy_found = ak.to_numpy(upstream_brem_found[\"energy\"])\n",
|
|
"up_eph_found = ak.to_numpy(\n",
|
|
" ak.sum(upstream_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"up_residual_found = up_energy_found - up_eph_found\n",
|
|
"up_energyloss_found = up_eph_found / up_energy_found\n",
|
|
"\n",
|
|
"upstream_brem_lost = upstream_lost[ak.sum(upstream_lost[\"brem_photons_pe\"],\n",
|
|
" axis=-1,\n",
|
|
" keepdims=False) >= cutoff_energy]\n",
|
|
"up_energy_lost = ak.to_numpy(upstream_brem_lost[\"energy\"])\n",
|
|
"up_eph_lost = ak.to_numpy(\n",
|
|
" ak.sum(upstream_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"up_residual_lost = up_energy_lost - up_eph_lost\n",
|
|
"up_energyloss_lost = up_eph_lost / up_energy_lost\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"brem vertices\\nupstream eff = \",\n",
|
|
" np.round(t_eff(upstream_brem_found, upstream_brem_lost), 3),\n",
|
|
" \"+/-\",\n",
|
|
" np.round(eff_err(upstream_brem_found, upstream_brem_lost), 3),\n",
|
|
")\n",
|
|
"\n",
|
|
"downstream_brem_found = downstream_found[ak.sum(\n",
|
|
" downstream_found[\"brem_photons_pe\"], axis=-1, keepdims=False) >=\n",
|
|
" cutoff_energy]\n",
|
|
"down_energy_found = ak.to_numpy(downstream_brem_found[\"energy\"])\n",
|
|
"down_eph_found = ak.to_numpy(\n",
|
|
" ak.sum(downstream_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"down_residual_found = down_energy_found - down_eph_found\n",
|
|
"down_energyloss_found = down_eph_found / down_energy_found\n",
|
|
"\n",
|
|
"downstream_brem_lost = downstream_lost[ak.sum(\n",
|
|
" downstream_lost[\"brem_photons_pe\"], axis=-1, keepdims=False) >=\n",
|
|
" cutoff_energy]\n",
|
|
"down_energy_lost = ak.to_numpy(downstream_brem_lost[\"energy\"])\n",
|
|
"down_eph_lost = ak.to_numpy(\n",
|
|
" ak.sum(downstream_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"down_residual_lost = down_energy_lost - down_eph_lost\n",
|
|
"down_energyloss_lost = down_eph_lost / down_energy_lost\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"downstream eff = \",\n",
|
|
" np.round(t_eff(downstream_brem_found, downstream_brem_lost), 3),\n",
|
|
" \"+/-\",\n",
|
|
" np.round(eff_err(downstream_brem_found, downstream_brem_lost), 3),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"upstream:\n",
|
|
"mean energyloss relative to initial energy (found): 0.3289231319498724\n",
|
|
"mean energyloss relative to initial energy (lost): 0.530926023218989\n",
|
|
"downstream:\n",
|
|
"mean energyloss relative to initial energy (found): 0.18366915850891907\n",
|
|
"mean energyloss relative to initial energy (lost): 0.32907909342930114\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\n",
|
|
" \"upstream:\\nmean energyloss relative to initial energy (found): \",\n",
|
|
" ak.mean(up_energyloss_found),\n",
|
|
")\n",
|
|
"print(\"mean energyloss relative to initial energy (lost): \",\n",
|
|
" ak.mean(up_energyloss_lost))\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"downstream:\\nmean energyloss relative to initial energy (found): \",\n",
|
|
" ak.mean(down_energyloss_found),\n",
|
|
")\n",
|
|
"print(\"mean energyloss relative to initial energy (lost): \",\n",
|
|
" ak.mean(down_energyloss_lost))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABbsAAAJPCAYAAABVWwkOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB670lEQVR4nO39T2ybaZogeD7Ori23MUYE7ejLLFBAmuo+dGOBiiQdA0xigMiuICuvWykqvNipxRwyTVZCt0ClWJ5LOC6ppDrmSFRTzlr07hYWCJPKxgJ7qSKjxgEs8jBhsqIuO7tTKToaPvQCWymxDC80rulO7sH9MSSLlCiKEv/o9wOICH9/H/L7+On9Hj7f+17r9/v9AAAAAACABfatWQcAAAAAAADnJdkNAAAAAMDCk+wGAAAAAGDhSXYDAAAAALDwJLsBAAAAAFh4kt0AAAAAACw8yW4AAAAAABaeZDcAAAAAAAtPshsAAAAAgIUn2Q0AS6jX60W32511GAAAAHBpJLsBYAk9fvw4KpXKrMPgFI1GY9YhLLRWqxWlUilu3brls1xgvV4vGo1GrK2txa1bt6LT6cw6JDgT1x8AmB+S3QDMtU6nM0hmXbt27cjr1q1bcevWrchms1Eul6PX68063ImVy+XIZrPH3uPa2lq0Wq2IeJ0QKpfLxz6LUqkUEa8/q6Sa+/bt25FKpQbrJdvg8m1tbR07rsnrs88+O3X9JKG7srIyOPaHz/tWqxXdbjey2ey5koSNRmPoOZjP52Nra2voOp1OJ9bW1o6ds5fxVEGj0YharRbb29sL/d1fdr1eb3AejbK9vR21Wi0ajYZjyYUrl8uRz+cjm83GrVu3olQqjXXeTXotbzQakc/nB/vM5/Nj/U2edD0AuPL6ALAA6vV6PyL6EdHPZDJH5m1sbAzmtdvtGUU4HalUavBems3m0GVyuVw/Ivq5XK6/v78/mF6v1/upVKpfq9X67Xa7X6vV+s1ms59KpfqVSuWS3gFvOnxM33yddL622+1+JpMZLLuxsdFvNpv93d3dwfE9PH9a539yfg37ro1SqVT6ETGT8yyJtV6vX9o+9/f3j3z3GC05N2q12onL7e7uLs11fNacn8O12+1+Op3uF4vFwbT9/f1+JpPpp1KpU8+7Sa7lhULh2PykPbOxsTFyX5OuBwD0+5LdACyEJGEyKmmSJP1SqdQMopue05KMSWL/pKRipVLp53K5fiaT6ReLRUmPGarVav10Ot3f3d0d+hrl8I87uVzuxGVrtdqpP5Ccxf7+/pEkzjg2NjZm9t2bRbI7l8tJyI4puTafdh06fN75bM/H+TlcKpUaep3a398fJLJHXWsnuZYXi8WRbZZk3rDr1qTrAQCv6cYEgIXw5ZdfDv7/ww8/PDb/7t27EfH6kflFfQz+cBcU9+7dOza/VCrF9vZ2tNvt2NjYGLmdpPuSw12Z8Przu+zHwCuVSlQqlUin00NfwyRdg0RE5HK5aDabI5eNiCgWi1Gv1yMipnLup1KpKBaLg3+P6sLksO3t7SPrLLOk6xhO1+12o9PpRC6Xcy26JFfh/Dzcpde417ykq7NcLndsXiqVGrQryuXy0PXPei3vdruxvb0dETH02ph0P/bm/iZdDwD4hmQ3AAshuXlPp9NDkyaH+wje29u7lJhKpdJU+yY+nKA4fEOe9Mfc7Xbj2bNnkclkRq6f3PxXKpVYW1uLfD4fd+7cGSthuexqtVrk8/lYW1uLbDZ74QOKNRqN6Ha7sbe3d6a+tJNEd0QMktinKRQKQ5M4kzo8uOnm5uaJy7Zarej1evHgwYOp7X9eNRoN36UzqNVqEfFNgo6LteznZ7fbHYzh0e124/PPPx/7R5Tkev/ee+8NnZ9cd5Pr9pvrnvVanlxDR12XM5lMpFKp6Ha7R/72T7oeAPANyW4A5l6n0xlUbxUKhaHLPH36NCJeV2idVAU7Td1ud6oJ08MDXCUJ7WTQwHv37kWz2Tz1xv7zzz+PjY2N6Ha7sbu7G7lcLp49e3Zpn8m829jYiP39/SiVSlEul2NlZWVQRTdtSZK4VCoNBn5cW1s7MVmyvb09SLQUCoUzVcMmVYfD9Hq9wSCX165di2w2e2JSLJVKDb5rvV7vxPO8UqmcOdZhksHYkuNxeDDWs1TkH15vnEE7t7a2BgPAraysHInhzfju378/+PcHH3wwGCT3PNuNeP0Zb29vH1lme3v7yPEa9T56vV6sra0NXisrK7GysjJWgrnT6RwZ8HZlZWXwOW9tbR2bdzj+Xq8X+Xx+MG9YhW1y3oy6bp+k2+3G2tra4DM+aeDTVqsVa2trg/hKpdLQQTHP8j1oNBqxtrY2qKDtdDqD93vr1q0j6x1Owib7nfQpi06nc2yg2DdjbDQag/eQ7Ou08zP5PN8cfDapvk/2eevWrYmqhpPBG2/dujU4B5PX4X1O8rkksa+srMTe3l7s7u5GvV4f+cPvqG1ExMjr1OFr55vftUmu5cn36KQYk30mPwqdZ72IiztnZ/VdAICJzbofFQA4zeH+uof1SZwM5DRq/kWp1+v9dDo9te0l76FQKPT39/f7hUJhrEGzhqnVakcG4RpHvV7vFwqFfqFQODaI1zSWP4t2u93f2NgYbDvpw7xerw/6AE6n0+ceEDE5htMexHN/f7+fy+X66XR66GBmowYYOzw45LT6ZG02m/1MJjP4buzu7g72c9IAlIcHDBx1nifLnOd71263j7zvSqUyOOZvDsA57Bgl85IBO3O5XH9jY+PIZz+sv+hksLpCoTCYlnzvYsgAsMn8ZJujvpdn3W5yfA6/x0KhMOhz/7T38eb3YH9//9j+T9JsNkeec+12+8Rra/J5DPssknXHjePwZ5tc85Pv5uFz4HAcybly+BzI5XJH1kn6Ux73e9BsNo+cj8Visb+xsdHPZDL9jY2NQZ/Jyf6Sa0iyXBLPuIO7jvoskveQy+WGLpO891Gf4ajz83Af/4ePd7K9Scd4qFQqQ69rh8cfOOs19vC14TzjTxy+lo2K4c3z7/D0s17LR23rTck1ITmOk653UefsPHwXAGASkt0AzL3DiaDE7u7uILmVJFROGsTvoqTT6akkJQ8nBJIk93kSD/v7+2MnyZPk3OEkXDIQ5rAE11mXP4/kZnljY6O/sbHRr1Qq/Xa7fSRhM40kdZJET5Le0xzUc39//0iS/qQkyeH50zifkyTPm+fC4aTKqMR7v380+T7s2CYJjWlI9vPmDzxJ8nbU53I4If/m+0wShsPe46jB6vr9b973m4nGcZKJk2z3cKypVOrIZ3048fnmuZ58D978TJrN5thJ5n7/6Pds1Lxh37MkgTzMWa8Jhz/bZCDAw/s5fH6ctF6yv0qlMvgBbpLvwUk/PCVJvlQqdexzPpxYPc93+PCPvMMUCoVjAxiOO8hnci1Kjl1yjp1nUMuNjY2h183k3D1LwvPwD0CjtntWhxO2py0z6rsz7rX88I9EwwaZTBxOFp9nvcRFnbOz/i4AwFlJdgMw9w7fVL5Z5TcswXWZkiTMeWM4fPN6WiXnNCXxv5l8S25u33xfZ13+vJLPolAoHNv2m9Vt03C4km1aSZY3t3/4HH7zPR0+t0/bd1L9XiwWj72ShF/yw8kwScJm1Pwk3iSeUQnaaVXEn/TjxeGkyZvJqlFJmH7/m3PkzSRMkogdleg/nHQ6vN3TkomTbrff7x9J7r3pcHXrsP0N+8xO+hHjTUliddi5cLjK+k3DEq6Jk5L+wxz+bIcdy5N+4Eq+U6MSmZN8Dw5X4r/p8PfipATveX4IPfx5DEtqD3s/4ya7D3+fkmr4s5wvwwzb3+G/a+P8bXjzR8dpSv6WnHROjpMQT5x0LT/paYnDku9vch5Nul7ios7ZWX8XAOCs9NkNwFw73E9vrVaL/f396Pf7sb+/H8VicTB446wG5crlclGpVOKDDz4412CVhwfgPDwo4eE+WKct6XczlUod2Wer1YpWqxW5XO5Iv6FnXf68er3e4DPN5/PHtp30WzrNAUlzuVw0m81ot9vR7Xbj1q1bUx2INJfLRbvdHvz78Pl91n5NM5lMVCqVQV/K29vb8fjx4yiXy4PBzRqNRvR6vWN96K6srAz6m+31eiP3ffiYtlqtI33UJtsuFotninuUpC/dYX3qptPpQRxJ//zjSM6RYQPORYwerC6TyQzWPdyX/mkuaruj3sfKykpEvO6n/M1+lg8PMnqa5Bj2er1jfaPv7u4O9n34+CfLDjv+yaClH3744dgxHDas7/lisTg4N7788suh62Wz2aHTJ/ke3L59OyKGn4/JvFGS+ee5bqRSqcFn+2bfzI8fPz7XgLTpdDo2NjYi4puBls9yvgzz5vW50+kM+lDf2Ng48W9D0j/9/fv3o1Qqxf7+/iC+aUneX6/XG9peOHxuJ9+rk5x0LZ+VizpnZ/1dAICzkuwGYK4dTqoevrlPpVJRq9UGA5+Vy+Uz3WwmiY1pvIrFYhSLxVhZWZko6d7tdgc3gklyMXlfjUbj1AH2JrW2thYREQ8ePBjcxCYDUSVJ3/Msf17J8Tyc9Dks+cwuYvDNTCYT9Xo9dnd3Y29vL1ZWVgbv/7wOJ5oOJ+3eTCSMmxw4/NnkcrnB55GcN7lcLnZ3d4+9+q+f8It+v3/i4JIPHjwY/H8yUFvy/9MYmHJcyfd/GkmTcbbx5uc4y+2OUiwWB0nEra2tIwNMnsXhAUkPJ1aTgTOTz/7wvJMSrsl1e5xBMs/i7t27EXG2z25a34OzmNZ2ks+v0+kcec+1Wu3I93IShwe0neaPlInkh9p0Oj0ykd5oNOLWrVtRqVSiUqkMfsS+CIVC4Uh7oVQqDX6oLZVKR35YHvfzGHUtP5wAPunH2MM/rqRSqYnXm4aLuo5f1t8HADhMshuAuXa44nlYUvPevXuD/x+3Mi25wZ7mK0lyl8vlkdWFp73HiG8Syo8ePRpMu4jq7q2trUFirlgsRqPRiHw+H5ubm/Ho0aNjieuzLj8NyTZHJT8OJ7Eu0mmVa5PI5/MRcbya+/A5Pm4F86hkQpIsOW9yuFAoDOJqNBqDCt9Op3PuhNtZvPPOO1PZzuHP46SE0lmfHLio7Z6m3W4Pknjdbjfy+Xysra2d+UmBJLGaVEFHvK64LRQKg2vr48ePB8tXKpWRx397eztSqdTUk6iT/LA1re/BLGQymcFnmPzQ0O12o9frTeWzPfyj6jQrk7e2tgbX5zer0oe5rIRovV6PWq0WuVwuHj9+HGtra1GpVGJtbe1IW+Isf1OGXcsPn6cnfQ+TczN5/5OuBwAcJdkNwNx6s+J5mMM3/OMmMwqFwpFqvmm8NjY2IpVKRaVSOfJo8ziGVa8n24p4ndRNukeYliQBkU6nB90f1Gq1I4mz8yw/DUli7XASItHpdAbHe9j88+p2u7G2thYrKyuxt7cXu7u7R47TeSVJjTeTd4c/y/P+gDDNx8cPd5FRqVSiVqsd6VrkMiXVvZM6/JknXXQMMywBNYvtjqNer0e9Xj/yo8RZf3TL5XKD2JLv3ubmZjx48GDQ/Uqv1zvytMmw459cqy6iQjeJ7yzn3aJ3o5D8CJF0CVKr1aZSMd/tdmN7e3vwWU6rCr/X6w2uF4VC4cTEcaFQiP39/UFlddIl00UqFovRbDZjf38/9vf3o9lsRi6XG/yNO+t5O+xankqlBv/+9a9/PXLdJKF9+O/+JOsBAEdJdgMwt4ZVPL/pcAJjVlVO5XI5Go1GtNvtifoZTd7nmwmcjY2NwY3vtKu7k88tSVwert6dxvLTiK/X642sDj2cTJlmwjXpl3xlZSVu374d+/v7R5KI09xPxPE+hg9Xyp63C5vDMZ/0Y0nSVcVJDveXnPQP/mYf0RctSSBP43gnn81J1azJOX+W5PpFbXeUw+dHoVCI3d3dwTUoSWaexeE+ohuNRty9e/dYMrRWq52YcE36Ir+oH6EiRveJPsw0vwezMOy7N40fEpKq5uQpom63O5WxL5K/1alU6sgTSicpFouxv78/6M7k8NNSl6HVag3OrbNe10Zdy5MfLk+6hidP7yTV4edZDwD4hmQ3AHNrVH/do5aZdv+w42g0GrG9vR3tdnuihOjhpNiw5NDhQbWmlVw8a3+fF9E/6GmSz2XYAHedTidarVak0+mxkynj7C+bzcYHH3wQmUwm9vf3o1arXdj7bTabkUqljr2/pC/6xHl+5DhcJXj//v2Rj8Unfa6f5s0uKy6qb91RknNiGt/zw30hj6r4TZJNo753w7ohmcZ2z6JWqx3bT6VSGSTMTqowH+Zw/Pfv3z8SY3K8W63WiQnXRqNxYVX/nU5nZB/+o0z7ezALyXUiGXx2nOvSSd3kJInkpM/35AeScrl8rgr4w92hPHr0aGicJyWxkx9s6vV6fPbZZ3Hr1q0ol8tn7pLnLHq93iBBnzyxchajruXJd2nUD1+Hf9A9fD5Puh4A8A3JbgDm1qiK58Pzk0q8QqEwkxu/+/fvj7ypH8fhriqGJVoOV1Af7jf7PFKp1CDeYV1zdDqdIwnFsy6fKJVKkc1mJ+qCJdnPsK4Y1tbWIpVKDZIM59FoNAaDT967d29QXXje7W5tbY1MHHU6ndje3o56vT50P8VicZDw7nQ6kc1mTzzuJ807/GNJNps9Ui2YbDvpouI0h59aOOm7dp7jnsT6pqTy8vDTDudxeDvD+vpPktVv7u/w8Tr8WSbHYNLtnuakxOWwPpGTis+zVEBHvK6CTq5Dt2/fPjYocPLvUQOTJsf8In54TM6BSa63k3wPztOnenIOn9QVxVkkPzr0er0TP9vTzs/k/8vl8pFr+eFr3nmOXfLjXC6XG9q9VaPRGOvY5XK5aLfbUa/Xo9PpXGjS+4MPPjgy0PSbJr2Wp9PpwfaGXQuTc/LN68Sk60Vc3Dk7T98FABhLHwDmUK1W60dEPyL6qVSqv7+/P5i3u7vbLxaLg/mFQmFmMWYymXNtI5VKDd7H7u7u0GU2NjYGy+RyuXPtL1GpVAbbLBaL/Waz2a/Vav1CodAvFovnXr5erw+Wj4gjx28cyXrNZnMwbX9/v5/JZPq5XO7M23tTrVbrp9Ppfjqd7tdqtXNta5jD771YLPZ3d3f7u7u7g3Om3W6fuo12u93PZDLHPvfd3d3+/v5+v91u9yuVyuAcGrXdQqFwJJ43YzuL5FwcFf95jvvh78LhY9JsNvupVGporPv7+4N1KpXKsfm5XG5wDXnT7u5uP51OH1s3mT7qszm8zUql0s/lckfO00m3m7z/Ydez5Dx483qTXAcP7z+JcdJrU3IM6/X6yHlv7u/wfk+6lp0m+dxyudyRbdTr9X4qlRr5XR3nfD7r9yB5L8OuuYfP82GfxUnHclK5XK6fTqfHWu6k8zOTyZx6zR72XTrN4b/Jw45/cv6POndO0m63B8cvuZ6e1+7u7uB7tbGxMXK5817LC4VCP5VKHYm52Wyeut9J1ruoc3bevgsAcBrJbgDmyv7+/pGb5sOvJBGSTqf7uVxuaje9k8rlchMlBfr9bxLlh99fJpM5chPbbrf7xWLxSBJw2HKTShK+yWdaLBZPvHE/y/JJYjqJeVjibJR2uz1I1hQKhf7Gxka/WCz2C4XCRImSw5LkcDqdPlNMZ1Wv14+8/1Qq1c/lchMl1tvtdn9jY6OfyWQG50LyHgqFQr9SqZz6PajVav1cLtdPpVKDWCb5LJPjetr8SY578t5qtVq/WCz20+l0P5VK9TOZzNDP7c3POEkC7e/v93d3d48lN3O53NDzNUkIptPpwY8pJ302h5NkmUxm5LLjbrfdbg+SScOSam++j0KhMDjelUplkBRLrom5XO7c14eTflQbNS/54eG8PwBWKpXBuX74PB92jlcqlcE16fBnN+q8G+d7kFx339xmcu4c/oEpuRYmfweazebIY5kYlXA//BqmXq+Pdf0YdX42m83B9De/C7u7u8fiLhQKgx+rxon5zb/Vh1+HP69xfug76b0lx6ZQKEy8reTH9FQqdep1cBrX8uS8KxQK/VwuN/JaNOl6F3XOXvR3AQAuyrV+v98PAODMyuVyPHjwYGYDYy6KlZWVqNfrY/fhWy6XY2tr60h3HtNQKpXi6dOnUalU5rZv3mVy1uN+69at6PV6UavV9EULjNTr9WJzczO2t7fj2bNnY/0N7nQ6g+5IMplM3Lt3b2hXKwDA4pPsBgAuTLfbjbW1tWi322Ovk/SpW6/XJSMW1CTHXbIbAAA4LwNUAgAXIhlMbdiglidJBlZTfb2YJj3uAAAA5/Vbsw4AAFhOm5ubUa/Xz9TNS6vVioiIVCqle5gFNclxj3idJAcAADgP3ZgAAHMh6foiqexut9tj9/fMYtve3o5SqRQREZlMJur1eqTT6RlHBQAALBrJbgBgLjQajWPT0um0hPeSW1lZiW63e2x6JpM5U5/fAAAAkt0AAAAAACw8A1QCAAAAALDwJLsBAAAAAFh4kt0AAAAAACw8yW4AAAAAABaeZDcAAAAAAAtPshsAAAAAgIUn2Q0AAAAAwMKT7AYAAAAAYOFJdgMAAAAAsPAkuwEAAAAAWHiS3QBT0mg0Ym1tLa5duxbXrl2LW7duRblcjl6vN1im1+tFuVweLJPP56PVas0uaAAAAIAlca3f7/dnHQTAMrl161b0er2o1+tRKBSGLrO1tRW1Wi12d3cvJIZutxu3b9+OVCp1IdsHAIBF02q1olarRaPRGExLp9MREbG3txd3796NfD4fxWJROxpgQansBpiy27dvR0Sc2EDOZDKRyWQuLIa1tbXY29u7sO0DAMCiyeVyUa/XB+30er0eu7u7sbu7G/v7+7G2tha1Wm3whOai63a7R54yBbgKJLsBlsza2lp0Op1ZhwEAAHNpVHFKsViM3d3dyGQysbW1FaVSaQbRTY8CGOAqkuwGmIGkgZ3o9Xqxvb0d2Ww2Wq3W4P9v3boVa2trx/r9LpVKUS6Xo1QqxcrKSmxvb0fE637Dk0R3qVQ6kvhuNBqDPsK3t7fj1q1bRxrwnU4n1tbWIp/Px8rKytBqlqTRXy6XI5vNDvZ7+D3k8/nY3t6Obrcb+Xw+bt26Ffl8fvAetra2YmVlZWkqZgAAWC6ff/55pFKp2N7eXtgiEgUwwFUl2Q0wB5LEdafTiUqlEru7u/HgwYPI5XLRaDQim80Olr1//36kUqmoVCpRq9WODIJZKBQG/YTXarWo1+uRyWSi0WhEuVyOVqs1eFwznU7H06dPI+J1ortcLke9Xo9msxmVSuVYNUu5XI5yuRy1Wi0qlUpUKpUolUqDATb39vai3W4P9pEsV6/Xo9VqxdraWpRKpchkMtFsNiOXy8XW1pZGOAAAcyWVSkWxWIyI123vww4XnuTz+WMDzrdarcFg9GtraxHxuq29srIS165di2w2e6T9mwxwn3Q5khS9NBqNaLVakc1mj2xrWBwKYAAO6QMwVel0uh8R/WazOXKZdrvdLxQKR6ZVKpV+RPRrtdqR6blcrh8R/Xq93u/3+/1UKtXf2Ng4tm5iY2OjHxH93d3dodt/c91+v9/PZDL9drt9ZFoqlepHRH9/f38QRyqVGszf398/tr12u92PiH6xWDy2/TdjSpY9HDsAAFy0cdvrEdE/nDZpt9v9VCp1pN1cq9WOtWmT9vjh7TebzaFt8VqtNpi2u7vbLxQK/Yjo53K5/sbGRr/dbveLxeKxfRQKhSPbqtVqp94T1Ov1wXsvFov9jY2NfiaT6WcymcH7y+VyR5Z/s22fbPfN95W8193d3UG8h99Dslwul+sXi8V+s9k88n7fvBcBmJTKboA5k4wIn0gqLZrN5mD+1tZWbG1tDZbZ2Ng4dbtJn4Tvvffekendbjc6nU5sbm7G2tra4JVIqr/r9Xq02+1j04cNevNm/4fJezrcfUsybXd399TYAQDgMh1ukyft3fv378fdu3ePDDRfLBYjk8lEuVyObrcbEd+032u12mC5XC4XqVQqGo3Gkf00m83B8ul0Ou7duxcREfl8PiqVSmQymcF2kvuBiDhSTZ7EcZpCoTDYV/KkaLvdHrTx79+/H5VK5cjySXcuyWfQ6XSOtPXv3r17JLZ0On3k/STvIZfLRSaTiVarFeVyOXK5XKTT6Xjw4MHQ9wMwqd+adQAAV9FZBopJGtNJ47ler0c2mx10KZJ0VTKuNxPRySON9Xr91PWSBvpnn312LGkOAADLaG9vL/b29qLT6QwtMimVSlEqlQbd+KXT6UFXgm/qdrvR7XYjnU5Hr9eLXq93rNgl4nibPYkjkRTAvPPOO4OYplUAM8zTp08jl8tFvV4/EsdZC2A6nY4CGOBCqewGmLJhjdVh3hyk8rTlku2m0+l49uxZ5HK56Ha7x/rJO6skiZ7896TlstlsdLvdqNfrYzWmAQBgER1uGydJ2lGS6ubD6yTVzUnCe3t7Oz788MOI+Kbi+/Hjx8f64h5XvV6PVCoV5XI5VlZWzjwOzkkFMIdf+/v70e/3I5fLDdZLp9PRaDQMggnMJclugClLktInJY+73W6srKyMtb2kciIZpLLb7UYqlYpmszmoxj48qMyk8Q6rPIn45pHCfD4ft2/fluQGAGDpJW3gJMmbOKmC+XAxS9KtSJLYTqq+c7ncoFClVquN1f3IMApgAIaT7AaYsqQ643AffW86S8O20WgcGRH+zX70kv282TAd1hAfJmnAl8vlY5UZSYM5edzycAVIsv2zdMkCAACLIGljJ23vpNvAYX1LJ+3iN4tZCoVCtFqtaDQacffu3UilUlEqlaLX68XW1tagInwSCmAAhpPsBpiyXC4XhUIhOp1O5PP5I0noVqsV+Xw+7t27N7QfvoijSfJerxe1Wi0ePXo0mPb48eMj20z6+UsaqEkju1arRbfbHTRYk0b4m0nwVCo1aKxms9lYW1uLra2tyOfzsbu7G7lcblCl0mg0Ynt7O7a3t6NcLkfE60ceG41G9Hq9kYnvYYnx5P8lywEAmCelUim63W5sbGwMktxJP9xJEchhT58+PVKccng7Ea+LYZK2c6FQiIjXhSbnSU4rgAEYTrIb4AIkfdxFvE4gX7t2LW7duhW1Wi3K5fKJlRDpdHqQdL5//37UarVBozjidZ+A+Xw+yuVylMvl+PLLLwcjqEd8MyL848ePo1KpRKFQiEajMWgAl8vlY484ViqVwWA6ybJra2uDRnQqlYparTYYtX13d3dQnb63txdffvlldLvdwfLb29tH+idMKkGSxnO32x00+Fut1rkeuQQAgLNIErNvJoKTwpTt7e3Y2Ng4klCO+Kaf7MNJ6l6vF5VKJR49enSsmCWXy0UqlYpcLndkXJ9CoTBIno+K7TQKYABG6AMwFyqVSj8i+s1mc9ahAADA0mk2m/1CodCPiMErk8n00+l0P5PJ9AuFQn9jY6O/u7s7chv7+/v9QqHQz+Vy/WKx2C8Wi/12uz1y+Uqlcmx+u93u12q1Y8u22+1+JpPpR0Q/nU73m81mf39/v18sFgfxViqVfr/f7+dyuX46ne5vbGz0NzY2+oVCob+/v39ke5lMpp9KpfrFYrHf7/f79Xq9n06nB9sfFkOlUjlxmVqt1k+lUoN99/v9frFY7KdSqf7Gxka/3W73c7lcPyL6qVSqX6/XB+sl76FQKPTb7XZ/d3d3cDxSqdTQeADO6lq/3+/PJMsOwBFbW1tRLpej2WweGwgHAAAAgJPpxgQAAAAAgIUn2Q0wB3q9XjSbzYiIQV/fAAAAAIxPNyYAc2Bra+vYtJMGsQQAAADgKMluAAAAAAAWnm5MAAAAAABYeJLdAAAAAAAsvN+adQCz8nd/93fxF3/xF/Htb387bty4MetwAACYkoODg/j666/j+9//fvyTf/JPZh0Ol0gbHwBgOY3bxr+yye6/+Iu/iD/8wz+cdRgAAFyQP//zP4//+r/+r2cdBpdIGx8AYLmd1sa/ssnub3/72xHx+gP65//8n1/4/l6+fBnvv/9+fPHFF3Hz5s0L319idXU1dnZ2Lm1/V2Wfjudy7dPxXK59Op7LtU/Hc7n2eVnH83/8H//H+MM//MNBe4+rQxvfPs/D8VyufTqey7VPx3O59ul4Ltc+562Nf2WT3cljjf/8n//zyGQyF76/Fy9eRETEu+++G2+99daF7y9x48aNS3l/V22fjudy7dPxXK59Op7LtU/Hc7n2ednHUzcWV482vn2eh+O5XPt0PJdrn47ncu3T8Vyufc5bG3/iZPcvfvGLaDab8fTp0+j1ehERkUqlIp/Px7179+J3f/d3J900AACwYNwfAAAwa2dOdv/iF7+IjY2N6Ha7g2mpVCoiInZ3d6PdbkelUolMJhM///nPNWoBAGCJuT8AAGBefOssC//RH/1RbGxsRKlUina7Hb/5zW/iN7/5Tezt7cXe3t7g33/xF38Rv/d7vxerq6vx85///KJiBwAAZsj9AQAA82TsZPcf/dEfRT6fj1/96lfxk5/8JL7zne+MXDaXy0WlUolf/epX8atf/UqDFgAAloz7AwAA5s1Y3Zh8+umnUS6X486dO2fewc9+9rN49OhRfPXVV/Huu++eef2Ltrq6OrJj8/X19VhfX7/kiAAAOE21Wo1qtTp03sHBwSVHc/Us8/0BAACLa6xk9+rq6kQN2cT9+/fj2bNnE69/kXZ2di59VNTLNItk/VXZ5yxclc/W8bTPRXRVPlvH0z7nxUlFCZ1OJ7LZ7CVHdLUs8/3BIrgq14tFvkadxVX5bB1P+1xEV+WzdTztc5lc6/f7/Wlv9NNPP41CoRDf/va3p73pqUlugtrt9qUku1+8eBFvv/12/P3f/3289dZbF74/LpbjuVwcz+XieC4Xx3O5XNbxvOx2Hqe7rPuD5Nh/+9vfvpSnN12jlovjuVwcz+XieC4Xx3O5TPN4nvb05tdff31qG//Uyu5Hjx7F9vb22EH1er3odruxt7cXP/3pT8deDwAAmH+LcH+w7E9vAgAso2k8vXlqsvvu3btRKpXOHFy9XpfsBgCAJeP+AACAefWt0xb4zne+E4VCIX7zm98MXpVKJSqVypFph18bGxvRbDYvI34AAOASuT8AAGBenZrsjoioVCpH/t3tduMnP/nJyOVLpVKsra2dLzIAAGAuuT8AAGAejZXsPutI691uNzqdzkQBAQAA8839AQAA82isZPeb+v1+/Pf//X8/dN6LFy+iVCpFOp0+V2AAAMBicH8AAMA8OHWAymF+9rOfRTqdjvfeey/y+Xyk0+nY29uLdrs9GJm9VqtNNVAAAGA+uT8AAGAeTJTsTqVS8fTp0yiXy7GxsRHXrl2LiNcVHRERGxsb8aMf/Wh6US6B69evx8cffxzXr1+fdShMgeO5XBzP5eJ4LhfHc7k4nsvrqt4fOKeXi+O5XBzP5eJ4LhfHc7nM2/G81k9aoBN69uxZdLvd6Ha7kU6n4+7du/H2229PK74L0+l0IpvNRrvdjkwmM+twAACYEu282Zrl/YFjDwCwnMZt503UZ3fixYsX8ezZs/jggw/i/v37ERHRbrfPs0kAAGBBuT8AAGCWJk52//jHP45bt27F7//+7w+mffDBB7G7uxsPHjyYSnAAAMBicH8AAMCsTdRn95/8yZ9ErVaLVCo16I8vcf/+/fj93//9+LM/+7P44Q9/OJUgAQCA+TVv9werq6tx48aNofPW19djfX39UuIAAGB81Wo1qtXq0HkHBwdjbWOiZHej0YhGoxE/+MEP4sMPPzw2P5/Px89+9jPJ7gvy8OHZpgMAwEWat/uDnZ2dmffZrc0OAHA2JxUlJH12n2aiZHc6nY4f/OAHERHHKjciIr788svodruTbJpz0KAGAGAW3B8AADAPJkp2p1Kpwf/3+/0j8/76r/86Go1GrKysnCuwyzLPjzhKUgMADDeNRxyZnmW6PwAAYHFNlOx+8OBBfP/7349KpTKo3Pj666+j0WhEuVyOa9euRalUmmqgF2UeHnEEAOBspvGII9OzTPcHAAAsromS3d/5zndic3MzfvSjH0Wn04lGoxER31RxlMvl+OM//uPpRQkAAMwt9wcAAMyDiZLdERGZTCaePn0az549i3a7Hc+ePYt0Oh25XC7efvvtacYIAADMOfcHAADM2sTJ7sSdO3fizp07x6b//Oc/jx/96Efn3TwAALBA3B8AADArEye7v/rqq2i1WrG7u3ts3t7eXrRaLY1ZAODi/PLhrCMYz3cfzjoCuBTuDwCAc9PG55wmSnb/yZ/8Sfyrf/Wvjo20flgyMA0AAJPrdDrx2WefRavVioiIdrs944jgOPcHAADj08a/ON+aZKXt7e1YXV2Ndrsd+/v7x16/+tWvYnV1ddqxAgBcOZlMJu7duxedTudC99PtdqPX613oPlhe7g8AAManjX9xJqrsvn37dmxtbcW3v/3tofPffvvtqFQq54kLAID/JJPJXPg+1tbWol6vRyqVuvB9sXzcHwAAnI02/sWYKNldKpWi2+2ObMxGRPz93//9pDEBAHCJ1tbWLryqhOU2b/cHq6urcePGjaHz1tfXY319/dJiAQCYhUVs41er1ahWq0PnHRwcjLWNiZLdP/nJT+LHP/5xrKysxK1bt47N39vbi83Nzfjss88m2TwAAGPq9XpRLpcjlUoNGrPlcjlyudzQZXq9XrRarSiXy1EsFqPRaAzWK5VKkUql4sGDB5dSacLymLf7g52dHecwALCwrmob/6SihE6nE9ls9tRtTJTsfvHiRezu7kY6nZ5kdQAApqDT6cQHH3wQn3/++aDhur29Hfl8PiqVSmxsbERExP379yOdTg+6kdje3h703VcoFOLLL7+Mra2tqNVq2ndMxP0BAMB0aOOfz0TJ7kKhEK1WKzKZzNAPa39/P/7qr/7q3MEBADDa/fv34+7du0cqNIrFYtRqtSiXy1EoFCKdTker1YpisXhkma2trVmEzJJyfwAAMB3a+OczUbL76dOn0Wq14vd+7/dGLvPo0aOJgwIA4GTdbjc6nc6gsuOwUqkUpVIparVaVCqVSKfTsbW1Fe+8885g+WHrwaTcHwAAnJ82/vl9a5KV7t69G7dv3z5xmfv3708UEAAApztpsJm7d+9GxOvGckQMRmAvl8uxsrKycAPVMP/cHwAAnJ82/vlNlOyu1WqnDi7zi1/8YqKAAAAYX9Iv32GpVCoiYpB8TKfT8ezZs8jlctHtdiObzcb29vYlRsmyc38AADA92viTm6gbk88//zw6nU78+Mc/HnzQb9re3o4f/OAH54ntUqyursaNGzeGzjtpBFAAgFlK+vBrtVrH5iWN45WVlYh4Xf2RTqej2WxGo9GItbW1KJVKR/r4WzTVajWq1erQeQcHB5ccDct0fwAAMCtXvY0/DRMlux8/fjz0Qz/s2rVrEwV02XZ2do50+A4AsAjS6XRkMpnodDqDhm7i6dOnkUqlBg3dSqUStVotIl4PJFir1aJUKh1bb1gFybw6qSih0+lENpu95IiutmW6PwAAmJWr3safhom6MVlbW4tisRjtdnvo6y//8i/jgw8+mHasAAAckvTTVyqVBtN6vV5UKpV49OjRoML28ePHg779kmXS6fSgEZxUh9Rqteh2u9FoNC7vTbAU3B8AAEyHNv75TFTZfe/evcjn8/Htb3975DLvvPPOpDEBAJzuuw9nHcGl6HQ6g4qNTqcTW1tbUSwWI5VKDfrpu3//fuTz+UHDtl6vH3ly7e7du5HP56NQKETE60ce2+32YH6xWIxarRaPHz+OiBjsD8bl/gAAmAptfG38c7rW7/f7Z13pxz/+cTx9+jS+/PLLi4jpUiSPt7bb7bntxuThw/naDgDAIliEdt6ymZf7g+TYf/vb3575uDyj2uDa5gAAw502Ls/XX399aht/osruzz77bFAKDwAAXG3zdn9gXB4AgMUzjXF5Juqzu1KpRC6XO3GZn//855NsGgAAWDDuDwAAmAcTVXan0+nodDrx4MGDeO+99wYdoyeSTtN/9KMfTSNGAABgjrk/AABgHkyU7K5UKvH5559Hv9+Pa9euHZs/ajoAALB83B8AADAPJkp2F4vF6Ha7USqVjlVtRETs7+/H9vb2eWM7t263OxixFAAAuBiLcn8AAMBymyjZXSgU4tq1a7G6ujpymUkHqGk0GrG5uRmdTicymcxY/f8l3qwWyWQy0W63J4oDAAAYz0XdH+Tz+Wi1WkPnNZvNse8TAAC4GiZKdkdErK6uxtdffx21Wi263W7cvn07/uk//adx//79eOutt05s6I6ytbUVzWYzSqVS7O7uxtbWVuTz+bEastvb21EsFo80ojV+X3v48GKWBQCAxLTvD7rdbnS73ahUKkeqxZP7BG19AADeNHGy+9NPP41yuRz9fv/I9J/+9Kfx85//PP7gD/7gzNv88ssvo9lsDv597969yGazY1V31+v1I+sCAACXZ9r3B61WK9rt9rFuUSS6AQAYZaJk9+effx4bGxuRyWSiVCrF3bt3I5VKRa/Xiy+//DJ+8pOfxJ07d+Ldd98de5utVisqlcqRaZlMJjKZTHS73RPXbTQa8fTp01hbW4t8Ph/FYnGStwUAAEzgIu4PRrXpP/vssyiVSlOKHACAZTJRsrtSqUStVov79+8fm/ed73wnPvzww3jw4EH86Z/+6djbPKk647RBJpvNZvR6vWg0GtFoNKJcLke9XlfxAQAAl+Ai7g+G6fV60el04sMPPzzXdgAAWE4Td2MyrCGbGDYC+6SSUd1PUqvVolarRafTiVqtFtvb25HP52N3d/fURPnLly/jxYsXE8d3/fr1uH79+sTrAwBw1KtXr+LVq1cTr//y5cspRsO4LuP+4PHjx5HJZE7dnjY+AMB8uaw2/kTJ7mw2e+oyp3U9Mo5GoxHpdHrsbkkymUzUarXI5/OxtrY2qPA+yfvvv3+uGD/++ON4aFRHAICp2dzcjE8++WTWYXAGl3V/UK/X4969e6cup40PADBfLquNP1Gye39/P/7mb/4mfvd3f/fYvK+//jpKpdJUqjc2NzdPTVYPUygUolAoRKfTOXXZL7744kx9B75JxQcAwHQ9ePAgPvroo4nX/+qrr86d7ORsLuP+oNfrRavVilqtduqy2vgAAPPlstr4EyW7f/azn0U6nY733nsvMplMRHzT+Ox2u5FKpeLZs2eTbHqgXC7Ho0ePTu2GZJR8Ph+tVuvU5W7evBlvvfXWRPsAAGZnUYouFyXOael0OvH06dNzDRh+3i4kbt68OfG6TOYy7g9arVak0+mx7g+08QFgMS1K23lR4pyWRWrjf2uSjadSqWi1WvF3f/d3UalUBgPS7O7uxne+8514+vTpuRqXSZ/bSUN5Unfv3j3X+gAA86TT6US5XI61tbVYWVmJra2tWYc00O12Y21tLbLZ7FiVtyyXi74/iIj47LPPolAoTCliAID5oI0/XRMPUJnJZKLdbsezZ88G3YVkMpm4c+fOuQJqNBoREZHL5Y5M73Q6Z0p+N5vNUwe2nCdX7RchAOBsOp1OfPDBB7G/vx8Rr5+C293dnXFU30in01Gv1+PatWuzDoUZuaj7g0Sj0Yh2uz2VbQEAzANt/OmbONmduHPnztAG7Keffhp//Md/fKZttVqt2NzcjFKpFNvb24Pp7XY7stlsZDKZ6Ha7kc/no1arRS6Xi06nE/fv34979+7FxsZGRLxuCN++fVvlBwCwNDY3N+P27duDf1cqlRlGA6NN8/4g0Wg0IpVKnfvJTwCAeaKNP30TJ7s//fTTaDabsbe3N3R+p9M5U2O20+lEPp+PiBhakZ38wtHr9WJvby96vV5EvP6F4fbt27G5uRnNZjMymcwgGQ4AsCzGGXgbZmna9weHffbZZ/Hhhx+eJzwAgLmjjT99EyW77927F/V6/cRlzlrenslkot/vj7VckviOeN0/YLPZPNO+AAAWxfb2djSbzeh2uxERsba2FhGviwOSbt96vV6Uy+VIpVKDBnO5XB7MbzQacf/+/ej1etFutyOTyUSr1YparRaNRiMKhULU6/Xo9Xrx+PHjqNVq8eDBg0ilUlEul6PT6QyWOSzZb2JlZeXCPw/m00XcHxx22rYBABaJNv7FmWiAynq9HqVSKX7zm9+MfN2/f3/asQIAXDnFYjHq9Xqk0+lBn3n1en3QyO10OnHnzp0olUpRqVSi2WzG2tpa5PP5weA2hULhWFVsLpc79pjk3t5eNJvN6HQ6UavVotlsxqNHj6JYLEaj0TgyWE632407d+7E2tpa1Go1T9Vdce4PAADGp41/cSZKdmcymVMHf9THDADAxbt//37cvXv3SF/GxWIxMplMlMvlQbVIKpU6tu7h/gEjXncPd+/evYiIyOfzUalUIpPJDBq5h5+mK5fLcffu3SODiifjp3D1uD8AAJgebfzJTZTsrlQq8dlnn524jJHSAQAuVrfbjU6nM3TQviTxOGk1xrCGc9IXc7fbjUajMRhvBdwfAABMhzb++UzUZ3ev14tOpxOffvrp0A8p4nWD92//9m/PExsAACc4aUCbu3fvRkQMqj6mKdlmOp2e+rZZTPN2f7C6uho3btwYOm99fT3W19cvJQ4AgLO6ym38arUa1Wp16LyDg4OxtjFRsntzczM6nc6JA0OeZwAaAADG1+v1jk1LEo5vPsY4DUlDOKkCgXm7P9jZ2RlaDQUAsCiuYhv/pKKETqcT2Wz21G1MlOwuFovRarUG/b286de//nVsb29PsmkAAMaUJPNardaxeUnj+CJGT0+qPXRLQcL9AQDAdGjjn89Eye579+5FPp+PO3fujFzmvffemzgoAACOGlZhkU6nI5PJRKfTiW63e+SRw6dPn0YqlYpisRgREe+8805EvK7YSBrQSfXGsKqRkySPT25vb0elUjnWbcVZt8fic38AAHB22vjTN9YAlS9evDjy77fffvvEhmxExHe+850TtwEAwPnV6/VIpVKDwWoiXjdEK5VKPHr0aNBITRq/5XI5Wq1WbG9vDwa2abVag4FoxnlsMZVKDUZlz2az0Wq1otvtRrlcjojXDeytra2pvUfmj/sDAICLo40/ubGS3bVaLb7++uuJd/KLX/winj59OvH6F2l1dTX+xb/4F0NfozpEBwC4LJ1OJ0qlUvR6vej1elEqlY480phOp+PZs2eRSqUin89HqVSKcrkc9Xo9CoXCYLlcLheVSiX29vZibW0tdnd3o1arRTqdjo2NjahUKtHpdAaN40qlEq1Wa7DPJJakgVupVAbL5vP5WFtbi1KpNNje4X1fhGq1OrINt7q6eqH7ZrnvDwAALpo2/sW51u/3++Ms+OGHH8aPf/zj+Jf/8l+eaQePHj2Kv//7v48//uM/nijAi5J0at5ut+di8JqHD2cdwWvzEgcAwKTmrZ23rObx/mCejv2odrX2NgDA2Y3bzhursjsi4vHjx/GTn/wk7t27F//23/7bEx87/Prrr+PTTz+Nf/bP/tlcJroBAIDzcX8AAMC8OdMAlU+fPo1yuRyrq6tx7dq1SKVScfv27UE/Md1ud9BZeTqdjsePHx/rmw8AAFgO7g8AAJgnY1d2JyqVSuzv78fm5mZks9n49a9/He12O9rtdvT7/VhdXY3Hjx/H3/7t32rIAgDAknN/AADAvDhTZXfi7bffjo2NjcEInQAAwNXl/gAAgHlw5spuAAAAAACYNxNVdgMAAMyr1dXVuHHjxtB56+vrsb6+fskRAQBwmmq1GtVqdei8g4ODsbYh2c0RDx+ebToAAMybnZ2dyGQysw4DAIAzOKkoodPpRDabPXUbujEBAAAAAGDhSXYDAAAAALDwJLsBAAAAAFh4U092f/3119PeJAAAsKDcHwAAcFkmSnb//Oc/j08//TQ+/fTTwbRHjx7FP/pH/yhWVlbin/2zfxYvXryYWpAAAMD8cn8AAMA8+K1JVvrZz34Wf/InfxI/+tGPIiLir//6r6NUKkVERK1Wi/39/bh//3589tln04uUmXr48GzTAQC4OtwfjE+7GgDg4kyU7M7lcoOGbETE2tpaXLt2Ler1evzgBz+IiIg/+ZM/mU6EAADAXHN/AADAPJgo2X3r1q3B//+rf/WvotvtRj6fHzRkIyKuXbt2/uguwerqaty4cWPovPX19VhfX7/kiAAAOE21Wo1qtTp03sHBwSVHwzLdHwAAsLgmSnbv7+/HgwcPIiKiUqnErVu3ol6vD+Y/e/YsGo1GbG5uTifKC7SzsxOZTGbWYQAAcAYnFSV0Op3IZrOXHNHVtkz3BwAALK6JBqisVCqxu7sbtVotMplMPH36NN5666149uxZ/NEf/VFks9lIp9PTjhUAAJhD7g8AAJgHE1V2v/322/H48eNj0+/cuRP/+l//6/jX//pfnzswAABgMczb/YGuCgEAFs80uiqcKNn91Vdfxbvvvjty/i9+8Ysj/fMBAADLa97uD3RVCACweKbRVeFE3Zic1tfed77znfjxj388yaYBAIAF4/4AAIB5MHZl99///d/H/v5+RET0er34d//u30W/3z+2XK/Xi1qtFo8fP44//dM/nV6kAADA3HB/AADAvBk72b23txdra2vx13/91xERJw4w0+/3xyorBwAAFpP7AwAA5s3Yye47d+7E06dPBw3aQqEwctmVlZW4f//+VAIEAADmj/sDAADmzZkHqKzX67GzsxOrq6sXEQ8AALBA3B8AADAvJhqgcpyG7KeffjrJpgEAgAXj/gAAgHlw5sruxKeffhrNZjP29vaGzu90OvHHf/zHEwcGAAAsDvcHAADM2kTJ7nv37kW9Xj9xmWvXrk0UEAAAsFjcHwAAMA8m6sakXq9HqVSK3/zmNyNfBqABAICrwf0BAADzYKLK7kwmE6VS6cRlKpXKRAEBAACLZd7uD1ZXV+PGjRtD562vr8f6+vqlxQIAwHiq1WpUq9Wh8w4ODsbaxkTJ7kqlEp999lm8++67I5dpt9vxe7/3e5NsHgAAWCDzdn+ws7MTmUzmUvYFAMB0nFSU0Ol0IpvNnrqNiZLdvV4vOp1OfPrpp5FKpYYuU6lU4m//9m8n2TwAALBA3B8AADAPJkp2b25uRqfTiWazOXKZRRmAxiOOAACLZxqPODI9y3R/AADA4poo2V0sFqPVasW9e/eGzv/1r38d29vb5wrssnjE8XwePhxvGgDANE3jEUemZ5nuDwAAWFwTJbvv3bsX+Xw+7ty5M3KZ9957b+KgAACAxeH+AACAefCtSVZ6++23T2zIfv/73/eYIgAAXBGXdX/Q7XZja2srtra2otfrnXt7AAAsl4kru0fp9XrRarXi8ePHJ47GDgAALIeLvj/odrtRLpej1+tFrVaLdDo9YaTza1RXgLoIBAAY30TJ7nq9PtYyP/3pTyfZPAAAsEAu8v6g0+nEBx98EB9++OFY+wEA4OqaqBuTQqEQu7u7sb+/f+z19OnTKBaL8bd/+7fTjhUAAJhDF3V/0Ov14oMPPoh0Oh21Wu0CIgcAYJlMlOwulUpx586dePvtt4+9MplMZLPZ+G//2/922rECAABz6KLuD5KuSyqVygVEDQDAspko2f3BBx+cOF/lBQAAXB0XdX+wvb0dERHNZjOy2WzcunUr8vl8dLvdE9d7+fJlvHjxYuLXq1evzhwrAACjvXr16lzts5cvX461n4n67P7qq69GzksGjwEAAK6Gi7g/6HQ6ERGRyWSiVCpFpVKJbrcb+Xw+VlZWYn9/P1Kp1NB133///TPv77CPP/44HhoZEgBgajY3N+OTTz658P1MlOzOZDJx7dq1kfP7/X5sbW1NHBQAALA4LuL+IKneLpVKkU6nI+KbCvF8Ph+bm5sjuzf54osv4t133z3T/g67fv36xOsCAHDcgwcP4qOPPpp4/a+++mqsgoaJkt2pVCo+/PDDoZUU77zzTmQymVMfZQQAAJbDRdwfjKrazuVyEREndmVy8+bNeOutt860PwAALs7169fPVVBw8+bNsZabKNn96NGjWF1dnWRVAABgyVzE/cHdu3cjImJ3d3fo/Nu3b091fwAALL6Jkt1JQ/brr7+OWq0W3W43bt++Hf/0n/7TuH//vioKAAC4Qi7i/iCVSkUul4tWq3Vkeq/Xi4iIbDZ77rgBAFguEyW7IyI+/fTTKJfL0e/3j0z/6U9/Gj//+c/jD/7gD84dHAAAsBgu4v6gUqlENpuNVqs16L5ke3s7MplMFIvFqcQNAMDymCjZ/fnnn8fGxsZgZPS7d+9GKpWKXq8XX375ZfzkJz+JO3funGtQGAAAYDFc1P1BJpOJdrsd5XI56vX6YJvtdvti3ggAAAttomR3pVKJWq0W9+/fPzbvO9/5Tnz44Yfx4MGD+NM//dNzB3jRVldX48aNG0Pnra+vx/r6+iVHBADAaarValSr1aHzDg4OLjkaLvL+IJPJRLPZnEaYAAAsuYm7MRnWkE2MGjl9Hu3s7EQmk5l1GAAAnMFJRQmdTkd/zjOwLPcHAAAsrm9NstI4Nw/dbneSTQMAAAvG/QEAAPNgomT3/v5+/M3f/M3QeV9//XV8//vfV70BAABXhPsDAADmwUTdmPzsZz+LdDod77333qALkF6vF61WK7rdbqRSqXj27NlUAwUAAObTvN0fGJcHAGDxTGNcnomS3alUKlqtVty/fz8qlcqReZlMJur1erz11luTbBoAAFgw83Z/YFweAIDFM41xeSYeoDKTyUS73Y5nz55Fp9MZTLtz586kmwQAABaU+wMAAGZt4mR3RMSLFy/izp07gwbs119/HS9evFDVDQAAV5D7AwAAZmmiASr/+q//Ot555524devWkenf/va346c//Wn8/Oc/n0pwAADA/HN/AADAPJiosrtcLke/34+f/exnx+b97Gc/i7t378bKykr8y3/5L88dIAAAMN/cHwAAMA8mquyOiNjb24uf/OQnQ+flcrnY2NiYaLuNRiOy2Wxcu3YtstlstFqtsdbrdDqxtrYW5XI5SqVSNBqNifYPAACc3UXdHwAAwLgmquxeWVk5cX632x0MSnMWW1tb0Ww2o1Qqxe7ubmxtbUU+n49msxm5XO7E/WWz2Wi324NR11dWVmJvby+KxeKZ4wAAAMZ3UfcHAABwFhNVdvf7/fh3/+7fDZ33+eefR6PRGCSdz+LLL7+MZrMZxWIxKpVKtNvtiIioVConrlcqlSKXyx3ZZ1LhDQAAXKyLuj8AAICzmCjZXalU4oMPPoj/7r/77+Krr76Kr7/+Ov7qr/4qfvzjH8fv//7vx7Vr1+LBgwdn2mar1TqW1M5kMpHJZKLb7Y5cr9frRavVinw+f2T63bt3IyJie3v7THEAAABncxH3BwAAcFYTdWPy9ttvx1/+5V/Ghx9+GD/5yU/i2rVrEfG6oiPidXckP/jBD860zZO6KUmn0yPnPX36dOgySeVIUikOAABcjIu4PwAAgLOaKNkd8Tq5/PTp03j27Fl0Op3odruRyWTi7t278fbbb08twG63e2J3JEnVdyqVOnH+KC9fvowXL15MHN/169fj+vXrE68PAMBRr169ilevXk28/suXL6cYDeO6rPsDAAAYZeJkd+LOnTtx586dacRyTKPRiHQ6fWJl9u7ubkRE3L59e+j8Xq934j7ef//9ieOLiPj444/j4cOH59oGAADf2NzcjE8++WTWYTChi7w/GNfq6mrcuHFj6Lz19fVYX1+/5IgAADhNtVqNarU6dN7BwcFY2zh3svsibW5uRr1eP3GZZOT3vb29ofNP6gIlIuKLL76Id999d6L4IkJVNwDAlD148CA++uijidf/6quvzl3QwGLb2dkxICYAwII5qSih0+lENps9dRtzm+wul8vx6NGjU5PVyfxRFdynrX/z5s146623JooRAIDpO283cTdv3pxiNAAAwKL41qwDGGZ7ezvy+fxY1Rh3796NiON9cyf/HifjDwAAAADAYpu7ZHej0YiIiFwud2R6p9MZunwqlYpMJhPNZvPI9FarFRERH3744QVECQAAAADAPJmrZHer1YrNzc2IeF3dnbxKpVI8ffo0Il5XbK+srAyS2RERjx49ilardaS6u1KpRKVSiVQqdanvAQAAAACAyzc3fXZ3Op3I5/MREVEqlY7N39/fj4jXfXPv7e0d6aM7k8lEu92Ocrkc6XQ6ut1ulMvlKBaLlxI7AAAAAACzNTfJ7kwmE/1+f6zlksT3m9Pr9fpFhAYAAAAAwJybq25MAAAAAABgEpLdAAAAAAAsPMluAAAAAAAWnmQ3AAAAAAALb24GqAQAAJiG1dXVuHHjxtB56+vrsb6+fskRAQBwmmq1GtVqdei8g4ODsbYh2Q0AACyVnZ2dyGQysw5jKh4+HG8aAMCiO6koodPpRDabPXUbujEBAAAAAGDhSXYDAAAAALDwrnw3Jvrzm0+jHs30yCYAEDGd/vwAAIDlcuWT3cvUnx8AwFUxjf78AACA5aIbEwAAAAAAFp5kNwAAAAAAC0+yGwAAAACAhSfZDQAAAADAwpPsBgAAAABg4f3WrAMAAACYptXV1bhx48bQeevr67G+vn7JEQEAcJpqtRrVanXovIODg7G2IdkNAAAslZ2dnchkMrMOAwCAMzipKKHT6UQ2mz11G5LdXJqHD2cdAQAAAACwrCS7mTpJbQAAAADgshmgEgAAAACAhSfZDQAALJRutzvrEAAAmEO6MQEAuEp++XD49O+OmA5z4Nq1a0f+nclkot1uzygaAADmlWQ3AAAwt7a3t6NYLMbKyspgWi6Xm2FEAADMK8luAABgbtXr9Wg2m7MOAwCABaDPbgAAYC41Go14+vRprK2txfb29qzDAQBgzl35yu7V1dW4cePG0Hnr6+uxvr5+yREBAHCaarUa1Wp16LyDg4NLjoaL0mw2o9frRaPRiEajEeVyOer1um5MAAAY6sonu3d2diKTycw6DMb08OHZpgPAlTZqMMolcFJRQqfTiWw2e8kRcRFqtVrUarXodDpRq9Vie3s78vl87O7uRjqdHrney5cv48WLFxPv9/r163H9+vWJ1wcA4KhXr17Fq1evJl7/5cuXYy135ZPdAADAfMtkMlGr1SKfz8fa2tqgwnuU999//1z7+/jjj+OhagoAgKnZ3NyMTz755ML3I9kNAAAshEKhEIVCITqdzonLffHFF/Huu+9OvB9V3QAA0/XgwYP46KOPJl7/q6++GqugQbIbAABYGPl8Plqt1onL3Lx5M956661LiggAgNOct5u4mzdvjrWcZDdLQV/eAABXx927d2cdAgAAc+hbsw4AAABgXM1mM0ql0qzDAABgDkl2AwAAc6fT6UQ2m42tra3BtEajEbdv345CoTDDyAAAmFe6MQEAAOZOOp2O27dvx+bmZjSbzchkMpHP56NWq806NAAA5pRkNwAAMHdSqVQ0m81ZhzEW48QAAMwH3ZgAAAAAALDwJLsBAAAAAFh4kt0AAAAAACw8fXYDAABLZXV1NW7cuDF03vr6eqyvr19yRAAAnKZarUa1Wh067+DgYKxtSHYDAABLZWdnJzKZzKzDAADgDE4qSuh0OpHNZk/dhm5MAAAAAABYeFe+stsjjgAAi2cajzgCAADL5conuz3iCACweKbxiCMAALBcrnyyGxIPH55tOgBcul8+HD79uyOmAwAAXCH67AYAAAAAYOFJdgMAAAAAsPAkuwEAAAAAWHiS3QAAAAAALDzJbgAAAAAAFp5kNwAAAAAAC++3Zh0AAADANK2ursaNGzeGzltfX4/19fVLjggAgNNUq9WoVqtD5x0cHIy1DcluAABgqezs7EQmk5l1GAAAnMFJRQmdTiey2eyp29CNCQAAAAAAC09lN0vt4cPxpgEAAAAAi01lNwAAAAAAC0+yGwAAAACAhSfZDQAAAADAwrvyfXavrq7GjRs3hs47aQRQAABmp1qtRrVaHTrv4ODgkqOByzVqDBpj0wAAV92VT3bv7OxEJpOZdRgAAJzBSUUJnU4nstnsJUcEAADMmm5MAAAAAABYeJLdAAAAAAAsPMluAAAAAAAW3pXvsxsAAFguBqEHAFg80xiEXrIbAABYKgahBwBYPNMYhF6yGwAAYNqePxk+/Xe+d4lBAABcLfrsBgAAAABg4S1lZXe32410Oj3rMJhTDx/OOgIAlsIvHw6f/t0R0+fdsr0fAADgypmryu5erxflcjnK5fKZ1rt27dqR19ra2gVFCAAAAADAPJqbyu5WqxW1Wi0ajUYUi8Wx19ve3o5isRgrKyuDablc7iJCBAAAAABgTs1NsjuXy0Uul4tr166dab16vR7NZvOCogIAAAAAYBHMTbJ7Eo1GI54+fRpra2uRz+fPVBEOAACwTEaNTWPMGgDgqpirPrvPqtlsRq/Xi0ajEaVSKW7duhWtVmvWYQEAAAAAcMkWurK7VqtFrVaLTqcTtVottre3I5/Px+7ubqTT6bG28fLly3jx4sXEMVy/fj2uX78+8foAABz16tWrePXq1cTrv3z5corRAAAAi2Khk92JTCYTtVot8vl8rK2tRblcjnq9Pta677///rn2/fHHH8dDzwUCAEzN5uZmfPLJJ7MOgwW2uroaN27cGDpvfX091tfXLzkiAABOU61Wo1qtDp13cHAw1jaWItmdKBQKUSgUotPpjL3OF198Ee++++7E+1TVDQAwXQ8ePIiPPvpo4vW/+uqrcxc0sNh2dnYik8nMOgwAAM7gpKKETqcT2Wz21G0sVbI7IiKfz5+p3+6bN2/GW2+9dYERgcGCABjhlw9nHcFcOm83cTdv3pxiNAAAwKJY6AEqR7l79+6sQwAAAAAA4BItXbK72WxGqVSadRgAAAAAAFyiuUp293q9kfO63W6srKwMuihJ+mnZ2toaLNNoNOL27dtRKBQuOlQAgOF++XD4CwAAgAs1N312dzqdqNVqERHx+PHjyOfzkcvlIpVKRcTrRPje3t4gIZ5Op+P27duxubkZzWYzMplM5PP5wTbgog3rb1sf3AAAF6fVasXa2lrs7+/POhQAAObQ3CS7M5lM1Gq1kcnqTCZzpFGbSqWi2WxeVniL6/mT4dN/53uXGAQAAJyf7goBADjJ3CS7YV6p1gYAmL1yuRzpdDr29vZmHQoAAHNqrvrsBgAAeFOr1Yp33nknMpnMrEMBAGCOSXYDAABzrVarxcbGxqzDAABgzunGBAAAmFvlcjkqlcqZ1nn58mW8ePFi4n1ev349rl+/PvH6AAAc9erVq3j16tXE6798+XKs5SS7AQBO8suHs44ArqxOpxPvvPNOpNPpM633/vvvn2u/H3/8cTw0cAsAwNRsbm7GJ598cuH7keyGKXJPBAAwPZubm1Gv18+83hdffBHvvvvuxPtV1Q0AMF0PHjyIjz76aOL1v/rqq7EKGiS7AQCAuVMulyOfz0e32x1MS/4/+e+oiu+bN2/GW2+9dfFBTuL5k+HTf+d7lxgEAMDlOm83cTdv3hxrOcnuZfL8yawjAIDFpssSmButViu2traGzltZWYlMJhPtdvuSowIAYJ5d+WT36upq3LhxY+i89fX1WF9fv+SIAAA4TbVajWq1OnTewcHBJUfDRRiWyC6Xy7G9vR37+/sziAgAgHl35ZPdOzs7kclkZh0GAABncFJRQqfTiWw2e8kRAQAAs3blk90wS6MGtDTQJQDAAnn+ZNYRAAAQEd+adQAAAADjqFQqujABAGAkld1X1fMnw6cbBR4AFo+BNQEAACS7YR4N68ZE1yYAAAAAMJpkNwCw+EZVNn93xHQAAACWjmQ3AACwVFZXV+PGjRtD562vr8f6+volRwQAwGmq1WpUq9Wh8w4ODsbahmQ3AACwVHZ2diKTycw6DAAAzuCkooROpxPZbPbUbXxr2kEBAAAAAMBlk+wGAAAAAGDhSXYDAAAAALDwJLsBAAAAAFh4kt0AAAAAACw8yW4AAAAAABbeb806AOBiPHx4tukAAAAAsMhUdgMAAAAAsPCufGX36upq3LhxY+i89fX1WF9fv+SIAAA4TbVajWq1OnTewcHBJUcDAADMgyuf7N7Z2YlMJjPrMAAAOIOTihI6nU5ks9lLjggAAJi1K5/sBgAAlounNwEAFs80nt6U7IYFYcBJAIDxeHrzqGHtRW1IAGDeTOPpTcnuRfT8yawjAACuil8+HD79uyOmAwAAzMi3Zh0AAAAAAACcl8puxvP8yfDpv/O9SwwCAGJ0pfFlbwMAAIC5orIbAAAAAICFJ9kNAAAAAMDC043JJTPqOQAAAADA9KnsBgAAAABg4ansBgC4DAbFBObIqCdOPYkKACwyyW7AzQ4AwKw9fzJ8+u987xKDAABYbJLdAADAUlldXY0bN24Mnbe+vh7r6+uXHBEAAKepVqtRrVaHzjs4OBhrG5LdAADAUtnZ2YlMJjPrMAAAOIOTihI6nU5ks9lTt2GASgAAAAAAFt6Vr+z2iCNXjX64AZiKYQNufnfItAsyjUccAQCA5XLlk90ecQQAWDzTeMQRAABYLroxAQAAAABg4V35ym4AYE4N6yYDAAAARlDZDQAAAADAwlPZDQCLZlTF8yUODggAAADzRmU3AAAAAAALT2U3LLiHD2cdwTeGxTJP8QEAAACwvCS7OZ/nT45P+53vXXIQAAAAAMBVJ9kNjDSqKlu1NgAwz1ZXV+PGjRtD562vr8f6+volRwQAwGmq1WpUq9Wh8w4ODsbahmQ30/f8yfDpKr4BALgEOzs7kclkZh0GAABncFJRQqfTiWw2e+o2DFAJAAAAAMDCU9kNXHkG1gQAAABYfCq7AQAAAABYeCq7gTNT9QwAAADAvJHs5qjnT2YdAQDL6pcPZx0BsIAajUZsbm5Gp9OJdDodtVotcrncrMMCAGAOXflk9+rqaty4cWPovJNGAAUAYHaq1WpUq9Wh8w4ODi45Gi7K9vZ2tNvtqFQqERFRLpcjn8/H7u5upNPpGUcHAMC8ufLJ7p2dnchkMrMOAwDmw6jq6++OmA4zclJRQqfTiWw2e8kRcRF6vV7UarXBvx89ehTZbHZQ5Q0AAIdd+WQ3AAAwnzY2No78O5VKRUQoVrlAo8ZmMWYLALAIJLuBmXAjBQCcVaPRiEqloqobAIChJLvn2fMns44AgNPo9gPgUpTL5dje3o5Hjx6duuzLly/jxYsXE+/r+vXrcf369YnXBwDgqFevXsWrV68mXv/ly5djLSfZDSyEYRXfqsAB4GrY2tqKbrcbvV4v1tbWolarRbFYHLn8+++/f679ffzxx/FQQwMAYGo2Nzfjk08+ufD9SHazWJ4/GT79d753iUFwFrO4T9RFCktjVNX4LKhgB2Yo6bu71WrF2tpaVCqVE5PdX3zxRbz77rsT709VNwDAdD148CA++uijidf/6quvxipokOwGAAAWQi6Xi2KxGFtbWycud/PmzXjrrbcuKSoAAE5z3m7ibt68OdZykt0AZ6BqHABm67333jNAJQAAQ0l2czU9fzL+srpIAQCYG91uN3K53KzDAABgDn1r1gEc1uv1olwuR7lcHnudTqcTa2trUS6Xo1QqRaPRuMAIAQCAy5AMRnm4fd/tdqPZbEatVpthZAAAzKu5qexutVpRq9Wi0WicONjMYd1uN7LZbLTb7chkMhERsbKyEnt7e2NvgyX3/MmsIwAAYAKpVCp6vV7cv38/arVa5PP5SKfT0Ww2Zx0aAABzam6S3blcLnK5XFy7dm3sdUqlUuRyuUGiOyIGFd6S3QAAsNgktgEAOIu5SXafVa/Xi1arFZVK5cj0u3fvRkTE9va2hDdwaYYNUGnQSgAAAIDLs7DJ7qdPn0ZEHBuJPanybjabkt0AnOyXD4dP/+6I6Yxv1GcLAAAAF2Rhk93dbjciXvfld9L807x8+TJevHgxcRzXr1+P69evT7w+cNS8VEPPSxwAV9GrV6/i1atXE6//8uXLKUYDAAAsioVNdu/u7kZExO3bt4fO7/V6Y23n/fffP1ccH3/8cTyUFRvP8yfDp//O9y4xCKbi+ZPh0x1LAKZgc3MzPvnkk1mHwQJbXV2NGzduDJ23vr4e6+vrlxzRJXn+ZPh0bTQAYAFUq9WoVqtD5x0cHIy1jYVNdq+srERExN7e3tD5b3ZvMsoXX3wR77777sRxqOoGAJiuBw8exEcffTTx+l999dW5CxpYbDs7O0cGsQcAYP6dVJTQ6XQim82euo2FTXYnyexRFdzjJrtv3rwZb7311rTCAgDgnM7bTdzNmzenGA0AALAoFjbZfffu3Yg43jd38u9xMv0ATImBHs/PgI4AAABwLt+adQCTSqVSkclkotlsHpnearUiIuLDDz+cRVgAAAAAAMzAXFV2nzSoZLfbjXw+H7VaLXK5XEREPHr0KLLZbHS73UG3JZVKJSqVSqRSqUuImKl4/mT4dAPpcIqzjg1rLNk5N0/V4dOosp6n9wMAAABXwNwkuzudTtRqtYiIePz4ceTz+cjlcoOkda/Xi729vSMJ8UwmE+12O8rlcqTT6eh2u1Eul6NYLM7gHQAAAAAAMCtzk+zOZDJRq9UGCe9h8/f394dOr9frFx0eAEyHvrkvl88bwJOUAMCVMTfJbgAuzqguXHTtAgBz7vmT49MkqQEAhpLsBgAA4ER+OAcAFoFkN3Dxnj8ZPl1VEiw+3YQAAAAwJ7416wAAAAAAAOC8VHYzv54/mXUErz1/Mnz6RVYlz2KfAABLYnV1NW7cuDF03vr6eqyvr19yRAAAnKZarUa1Wh067+DgYKxtSHYDAABLZWdnJzKZzKzDAADgDE4qSuh0OpHNZk/dhm5MAAAAAABYeCq7WQ7Pn8w6guX1/MmsI2CUUQMDfnfE9Ev28M++F/GXb0x7OItIGHquzMl5AgAAANMi2Q1wyUYlfCWCAQAAACZ35ZPdBq8BWFBzXtk+E6M+E1hC0xi8BgAAWC5XPtlt8BoAgMUzjcFrAACA5WKASgAAAAAAFt6Vr+wGrpDnT4ZP/53vXWIQc8jghVeTLk8AAABYMpLdAJzLw4cR8fx7M44CAAAAuOoku2FSz58Mn37Vq4SZ2Ouk8ZPj03/4ZLkqrVUUAwAAABdAshuAsTx8OOsIAGA8q6urcePGjaHzThrcFACA2alWq1GtVofOOzg4GGsbkt0AC2hU1yEPf/jkcgMBgDm0s7MTmUxm1mEAAHAGJxUldDqdyGazp25Dshum7fmT8ZfV5cnV9fzJrCOYzPMns44AAAAAYCjJboA59/DPvhfxl7OOAgCYG8+fzDoCAIC5JNkNvPb8yawjAABgwQwb08M4HwDArEh2AywRVeAAAADAVfWtWQcAAAAAAADnpbIbltXzJ8OnGxSTy/T8ydF///LJkIUuwS8fzma/AAAAwKWR7AYAAGBqRvXZrS9vAOCiSXbDVfP8yawjmD/PnwyfvqhV8M+fDJ8+5P08fBgRz49Of/jDJ8Mrod9YDgAAAGCeXPlk9+rqaty4cWPovPX19VhfX7/kiAAAOE21Wo1qtTp03sHBwSVHAwAAzIMrn+ze2dmJTCYz6zAAmGMP/+x7w6f/8MllhgEcclJRQqfTiWw2e8kRAQAAs3blk90AZ/b8yfDpi9rtCQAsGU9vAgAsnmk8vSnZDXBBDMIEALPh6c0xPX9yfJof7wGAGZnG05uS3cDsPH9yfJobLAAAAAAmINkNAADAhRv11Jun4QCAaZHshmXw/MmsI4CL88uHs44AAAAAWACS3QBcSQ//7HvDp//wyWWGAcApGo1GbG5uRqfTiUwmE5VKJXK53KzDAgBgDn1r1gEAAAAMs7W1FbVaLUqlUmxsbESn04l8Ph+tVmvWoQEAMIdUdgOL4fmT4dMvckDLUfu87G1wNro9AVgaX375ZTSbzcG/7927F9lsVnU3AABDSXYDAABzp9VqRaVSOTItk8lEJpOJbrc7o6iusOdPhk+/yMIDAIAzkuyeB8+fzDoCAACYKydVbqfT6UuMBACARSHZDcARowZuBIB50O12o1QqzToMAADmkGQ3AJdmVCL94Q+fXGYYc8VnAjC+RqMR6XQ6isXiicu9fPkyXrx4MfF+rl+/HtevX594fQAAjnr16lW8evVq4vVfvnw51nKS3QDT8vzJrCPgkklUA1yuzc3NqNfrpy73/vvvn2s/H3/8cTx8+PBc2wAA4Bubm5vxySefXPh+JLsBmDlJYwBOUy6X49GjR2P11/3FF1/Eu+++O/G+VHXPr1G/QfhtAgDm24MHD+Kjjz6aeP2vvvpqrIKGK5/sXl1djRs3bgydt76+Huvr65ccEZzg+ZNZRwBza54S5vMUCyyrarUa1Wp16LyDg4NLjoaLtr29Hfl8PjKZzFjL37x5M956660LjgoAgHGdt5u4mzdvjrXclU927+zsjN1oBoDzOMvgnxLmcLKTihI6nU5ks9lLjoiL0mg0IiIil8sdmd7pdLTjAQA44sonuwEAgPnUarVic3MzSqVSbG9vD6a32+3IZrOS3Rfh+ZPpLP873xt7E7omAQCmRbIbZun5k1lHwFXy/MmsIwCAsXU6ncjn8xERUSqVjs3f39+/7JAAAJhzkt0AzK2zdPuxyPsE4LhMJhP9fn/WYQAAsEAku4Hpef5k1hF84/mTWUcAAAAAwCWS7AZgqanUBgAAgKvhW7MOAAAAAAAAzkuyGwAAAACAhacbEwAAYKmsrq7GjRs3hs5bX1+P9fX1S44IAIDTVKvVqFarQ+cdHByMtQ3JbmC+PH8y6wjm0/Mns44AABbGzs5OZDKZWYcBAMAZnFSU0Ol0IpvNnroN3ZgAAAAAALDwVHYDAAAwdx4+nHUEAMCikewGgAXy8M++d3zaD59cdhgAAAAwdyS7AWDBDUuAR0iCAwAAcLXosxsAAAAAgIV35Su7V1dX48aNG0PnnTQCKAAAs1OtVqNarQ6dd3BwcMnRAAAA8+DKJ7t3dnYik8nMOgwAAM7gpKKETqcT2Wz2kiMCAABmTTcmAAAAAAAsvCtf2Q0AV82iDmi5qHEDMGXPnxyf9ssnEd99eLlxAABzR7IbWGzPn8w6Aphbo5LDAAAAsIwkuwGAkVRTA4vIIPQAAItnGoPQS3YDAABLxSD0AACLZxqD0Et2AwBnpuIbgBM9fzJ8+u987xKDAACuGsluACAi9PENAADAYvvWrAO4SN1ud9YhAAAAAABwCeausrvT6cTm5mak0+no9XqRz+ejUCiMte61a9eO/DuTyUS73b6IMAEAAAAAmCNzlezudruRzWaj3W4PBpRZWVmJvb29KBaLJ667vb0dxWIxVlZWBtNyudyFxgsAHKUvbwBm4eGffS/iL4dMf3jZkQAAszRXye5SqRS5XO7IyOnlcjlKpdKpye56vR7NZvOiQwQAAGBSz58cn2bQSgBgSuYm2d3r9aLVakWlUjky/e7duxHxTeX2MI1GI54+fRpra2uRz+dPTYwDAACw/EZVdqv4BoDlNDcDVD59+jQiItLp9JHpSZX3SVXbzWYzer1eNBqNKJVKcevWrWi1WhcXLAAAx/3y4fAXAADAJZibyu5utxsREalU6sT5w9RqtajVatHpdKJWq8X29nbk8/nY3d09ljx/08uXL+PFixcTx339+vW4fv36xOsDAHDUq1ev4tWrVxOv//LlyylGAyylUT/EfXfEdABgIcxNsnt3dzciIm7fvj10fq/XO3UbmUwmarVa5PP5WFtbi3K5HPV6/cR13n///TPHetjHH38cDz0DBwAwNZubm/HJJ5/MOgwW2Orqaty4cWPovPX19VhfX7/kiFgEBrkEgNmqVqtRrVaHzjs4OBhrG3OT7F5ZWYmIiL29vaHzT6vQPqxQKEShUIhOp3Pqsl988UW8++67Y2/7Taq6AWBxPPyz7w2f/sMnlxkGp3jw4EF89NFHE6//1VdfnbuggcW2s7NzZNB7eNOovwcAwOycVJTQ6XQim82euo25SXYnyexRFdxnSXZHROTz+bH67b5582a89dZbZ9o2AAAX57zdxN28eXOK0QAMN6ziWxU4AMzW3CS77969GxHH++ZO/j1O5n7UNgGA+aPKGgAAgGmam2R3KpWKTCYTzWYzNjY2BtOT6uwPP/zwTNtrNptRKpWmGiMAMJmLfFx82LYlzAEWyPMns47gRKq1AWBxzE2yOyLi0aNHkc1mo9vtDrotqVQqUalUIpVKRcTrSu98Ph+1Wi1yuVx0Op24f/9+3Lt3b5AkbzQacfv27SgUCrN6KwDAhOapH1WJdAAAgMUxV8nuTCYT7XY7yuVypNPp6Ha7US6Xo1gsDpbp9Xqxt7c36Ns7nU7H7du3Y3NzM5rNZmQymUEyHAAAAACAq2Gukt0RrxPe9Xr9xPn7+/uDf6dSqWg2m5cRGgAAAAAAc2rukt0AAOd11q5Q5qnrFAAAACbzrVkHAAAAAAAA5yXZDQAAAADAwpPsBgAAAABg4emzGwAAWCqrq6tx48aNofPW19djfX39kiMCAOA01Wo1qtXq0HkHBwdjbUOyGwAAWCo7OzuRyWRmHQaX7fmT49N+53uXHAQAMKmTihI6nU5ks9lTtyHZDQAAwHJ6/uTy9/nLh8Onf3fEdABgavTZDQAAAADAwpPsBgAAAABg4V35bkwMXgMAsHimMXgN86/X68Xm5mZERFQqlRlHA6d7+DAinn/v+PQfPrncQADgirryyW6D1wAAZ/Hwz743fPoPn1xmGFfeNAavYb61Wq2o1WrRaDSiWCzOOhyuiudPxl/2Age/fPhwvGkAwFFXPtkNAADMn1wuF7lcLq5duzbrUODcHv7Z9yL+csj0h5cdCQAsN8luAIApUPENcMU8fzKd7fzy4ZCJw6YBAKeR7AYAAICrbmjSPSK+O2I6AMwhye7L9vzJrCMAAAAAAFg6kt0AAMBSefnyZbx48WLi9a9fvx7Xr1+fYkQQwwuffjlk2gij+ve+Uv1+D6s+V3kOsBBevXoVr169mnj9ly9fjrWcZDcAALBU3n///XOt//HHH8fDK5VBZFZGjfcQvzOlHeiaBIA5sbm5GZ988smF70eyGwDgAhm4Ei7fF198Ee++++7E66vqZuGMSmpf5LYlzAE4gwcPHsRHH3008fpfffXVWAUNkt0AAMBSuXnzZrz11luzDgOuJl2NADDEebuJu3nz5ljLfWviPQAAAAAAwJxQ2Q0AAMylXq836xCAZaNbFoClprIbAACYO51OJ8rlckREPH78OBqNhuQ3AAAnUtkNADADwwauNGglfCOTyUStVotarTbrUGCuPXwYEc+/d3z6D59cbiCMph9zgEsj2Q0AAACL4PmTsRcd9qNqxH9Kgo/qyuMs5mUbs9g2AHNLNyYAAAAAACy8K1/Zvbq6Gjdu3Bg6b319PdbX1y85IgDgqjqxCo8jqtVqVKvVofMODg4uORoAZuaqVHAbWBNgLFc+2b2zsxOZTGbWYQAAcAYnFSV0Op3IZrOXHBHA8vEjLHNBoh84gyuf7AYAAJaLpzeBM5vGIJKLWmUumcx5OH+Yomk8vSnZDQAALBVPbwJwzDR+0DjLtqe5fbgipvH0pmQ3AAAAXBHDuibRLQkAy0KyGwAAABibvrw5ZhaVzaqpz89nyBKS7AYAAIArbFTyemoWtS/rq04i9DjnMsw9yW4AAAAA4LXL7t/8Kv+AwtRJdgMAAAC8SWXzYppG9fVFVnAv6nmlqp0F8a1ZBwAAAAAAAOelshsAYM4ZCAzginn+ZNYRTGTY36tRf6v8bQMmdtYq83mvmmeqJLsBAACAhTOzhPmiduewqHEvMp85XDrJbgAAAOBCjEpIX3mSoPNh2Y7DovYHDlMk2Q0AAAAsDV2kXLBZDN4I0+aHgaUl2Q0AACyV1dXVuHHjxtB56+vrsb6+fskRAQBwmmq1GtVqdei8g4ODsbYh2Q0AsGTOMkAYLKOdnZ3IZDKzDgOYwEV2e+Lv4xxRwT2+aVQg+7xZECcVJXQ6nchms6du48onu1V9AAAsnmlUfQDAKLpCAVhMVz7ZreoDAGDxTKPqAwAWnn6HWQYqz5miK5/sBgAAADiPs3S/ojqcK+EqJ7DP+t79ODVVkt0AAAAAM6ZPcYDzk+wGAFhQFzmIFwBcBf6WwhVwkVXmV7mCfU5JdgMAAAAsk3lJwM1LHIvAZzXfHJ+FIdkNAAAAMIbLrgQftT/dmyD5CsNJdgMAAABwIol3rgQ/Iiy8b806AAAAAAAAOC+V3QAAV4BqLK6S1dXVuHHjxtB56+vrsb6+fskRAczWsHaANgDMuWFV5t8dMm2JVKvVqFarQ+cdHByMtQ3JbgAAYKns7OxEJpOZdRgAV5Yf2YFJnFSU0Ol0IpvNnroNyW4AAACAJXCWATQlpIFlJNkNAHCFudEFgMVzlqQ2wFUi2Q0AAABwSSSqAS6OZDcAAAAAEXGxyXhPlMEcGzYgZsTCDYop2Q0AAADA3DlTH+Q/fHJh24C5sSQJ6Yt05ZPdq6urcePGjaHzThoB9KxevXoVm5ub8R/+43fjt/7Rb09lm8zOf/iP/xD/j7/5v8Z/9bv/e8dzCTiey8XxXC6O53JJ2kMPHjyI69evn2tb1Wo1qtXq0HkHBwfn2jaMSxt/ufibs1wcz+UyzvHUPcziePUP/yE2/y//j3jwf/iv4vpvX/nU5OgE9oKYZht/Gq78GbWzsxOZTObC9/Pq1av45JNP4k/+8P/uD+0S+I//8X+JL776P8V/+b9ZczyXgOO5XBzP5eJ4LpekPfTRRx+duyF8UlFCp9OJbDZ7ru3DOLTxl4u/OcvF8bw800gyn7aNZT6eV7Frl1f/y3+MT/6PX8RH/7v/UrJ7VqaYYJ9mG38avjXrAAAAAAAA4Lz8fAIAAAAAF+giK+CXuQqcMenLe0CyGwAAAACmQN/hzJUF7w98EpLdAADAUrmsQegBWC5XJVE97H2qDmceTGMQesluAABgqVzWIPQAMA90b8KymMYg9JLdAAAAALBkLrtSXdKdeSDZDQAAAABX2FkT1dNIpG/+n/+ruP7b/9nY+4RxfGvWAXCx/of/57+1zyVyVT5bx9M+F9FV+Wwdz6uzz4d/9r1jL2A+zNv1Ypn2OQtX5bN1PO1zEc3ys73MtthVOZ7Vnf/BPq+Auavs7nQ6sbm5Gel0Onq9XuTz+SgUChe23rL78v/1f4v/4l/8gX0uiavy2Tqe9rmIrspn63jaJ1w27fzjrsr14qpco67KZ+t42uciuiqf7Un7nEXBw0Xts/qLfxPrq//Fpe0vIuLxX1WH7vMiVX/x5XT3+cuHw6d/d8T0GZurZHe3241sNhvtdnswoMzKykrs7e1FsVic+noAAMD80s4HgMX3ZjL51T/8/2YTCFfCXCW7S6VS5HK5IyOnl8vlKJVKJzZmJ10PAACYX9r5AMA0zUvXfAbzvDhzk+zu9XrRarWiUqkcmX737t2IiNje3h7aoJ10PQAAzkajnMuknQ8ALLr/b+8/O1OCfTrJ+Oq597fI7fu5GaDy6dOnERGRTqePTE+qOJrN5lTXAwAA5pd2PgDA2SUJ9qs62PzcVHZ3u92IiEilUifOn9Z6AABMxzJWhDB72vkAAJzV3CS7d3d3IyLi9u3bQ+f3er2prndwcBARr0d3f/ny5RkiPeq3f/u347d/+7dPXS7Zx//n17+K3/5f3Zh4f2f1H/7Dq/j3f/c/Xdr+rso+/+F/eX3+OJ7LsU/Hc7n26Xgu1z4dz8XeZ+f//e9f/88/7kTEN+2hr776Km7evDlyvX/4h3+If/iHf5h4v//T//T6PSXtPRbTJO18bXz7PA9/c5Zrn47ncu3T8VyufTqes9lnqfK/HrL08NiGLxtR+t+2v/nHvLbx+3OiVqv1I6LfbDaPzYuIfi6Xm+p6f/7nf96PCC8vLy8vLy8vryV9/fmf//n5GqjM1CTtfG18Ly8vLy8vL6/lfp3Wxp+byu6kL75Rldhv9tV33vW+//3vx7/5N/8m/vP//D+Pf/yP//HZgj1k3KoPAADGc96qj//5f/6f49//+38f3//+96cYFZdtkna+Nj4AwHy6rDb+3CS7k1HV3+x7L/l3Npud6nr/5J/8k/hv/pv/ZvKAAQCACzNJO18bHwDgavvWrANIpFKpyGQyx0ZVb7VaERHx4YcfTnU9AABgfmnnAwBwVnOT7I6IePToUbRarSPVG5VKJSqVymAU9m63GysrK4NG7rjrAQAAi0U7HwCAs7j2nwZ4mRudTic2NzcjnU5Ht9uNfD4fxWLxyPwPPvggHj16FIVCYez1LivmXq8X+Xz+SGzTXo+LNelxaTQasbm5GZ1OJzKZTFQqlcjlcpcQMSeZxves1WrF2tpa7O/vX1CUjGsax7Pb7Uaj0YiIiGKxKFkyQ+e53jabzUilUtHtdiOdTkelUrmEiBml1+vF5uZmRMTYx0I7iHHNqp2vjb9ctPGXizb+ctHGXy7a+MtjYdv4Uxos/cra3d3tR0S/3W4PpqXT6X6tVruQ9bhYkx6XSqXSz+Vy/Vqt1t/Y2BiMENtsNi86ZE4wre9ZOp3up1KpaYfHGZ33eO7u7vYLhUI/l8v1d3d3LypMxjTp8azX6/1MJnNkWi6X629sbFxInJyu2Wz2C4VCPyL6xWJxrHW0g5h32vjLRRt/uWjjLxdt/OWijb88FrmNL9l9Trlcrp/L5Y5Mq9Vq/dN+R5h0PS7WpMelUCgc+Xe73e5HxLFtcbmm8T3b2Njo53I5DeE5cJ7j2W63+6lUauw/0ly88/z9fPM4ViqVfjqdnnqMnM1ZGsLaQcw7bfzloo2/XLTxl4s2/nLRxl8+i9jGn6s+uxdNr9eLVqsV+Xz+yPRk5Pjt7e2prsfFmvS4tFqtY49zZDKZyGQyR/qX5HJN43vWarXinXfeiUwmcyExMr7zHM9erxcffPBBpNPpqNVqFxon4znP8dzb2zsybkdExO7ubqTT6ekHyoXQDmLeaeMvF2385aKNv1y08ZeLNv7VNk/tIMnuc3j69GlExLEvX/JH882R48+7Hhdr0uOSy+VGXoBdmGdnGt+zWq0WGxsb0w+OMzvP8SyXy9Hr9fT3NkfOczxLpVJ0u91YW1uLiNd9wj1+/NjxXSDaQcw7bfzloo2/XLTxl4s2/nLRxr/a5qkdJNl9Dskv+qMGPhj1i/+k63Gxpn1cDl+ouXznPZ7lctkf1jlynuOZ/ILcbDYjm83GrVu3Ip/Pu9bO0HmOZ7FYjGKxGI1GI1ZWVqJcLsezZ89UZy0Q7SDmnTb+ctHGXy7a+MtFG3+5aONfbfPUDpLsPofd3d2IiLh9+/bQ+b1eb6rrcbGmeVwajUak0+koFovTCI0JnOd4djqdeOedd1TtzJFJj2en04mI178ml0qlaLfb0W63o9vtxsrKiuvtjJz3elur1QaPkbdarWOPPDLftIOYd9r4y0Ubf7lo4y8Xbfzloo1/tc1TO0iy+xxWVlYi4nXfQsOM+iM66XpcrGkel83NzajX61OJi8mc53hubm56tHHOTHo8k1+PS6XSYJnD/fptbm5OO1TGcN7rbT6fj1KpFM1mM1KpVKytrUWj0Zh6nFwM7SDmnTb+ctHGXy7a+MtFG3+5aONfbfPUDvqtS9vTEkoO1KhfJ07r4+2s63GxpnVcyuVyPHr0yHGcsUmPZ7lcPvb4W/L/yX8d28s36fEc9QhVLpeLCI+Uz8p5rrelUikiYlBV9+zZs7hz507cv38/CoXCdAPlQmgHMe+08ZeLNv5y0cZfLtr4y0Ub/2qbp3aQyu5zSEYUffNCmvw7m81OdT0u1jSOy/b2duTzef1KzYFJj2er1YpSqRQrKyuDV6PRiF6vFysrK/ponJHzXm+TR6reNOoRKy7Wea63jx8/PnKNTaVSUalUotfrDR5pZb5pBzHvtPGXizb+ctHGXy7a+MtFG/9qm6d2kGT3OaRSqchkMsdGFE36Ffrwww+nuh4X67zHJXm8Jvk1OeHCPBuTHs92ux39fv/Ia2NjI1KpVPT7/Wi32xceO8ed53qby+WO9feW/Nos8TAb57ne3r59+1i1QHLdHVXlw3zRDmLeaeMvF2385aKNv1y08ZeLNv7VNlftoD7n0m63+xHR393dHUxLp9P9SqUy+Pfu7m4/nU73m83mmdbj8k16PJvNZj+TyfRrtdqRV7FY7NdqtUt9D3xj0uP5po2NjX4qlbrQWDndea+3h6dVKpV+JpO5nMAZatLjWalU+qlUqr+/v39kmuM5W/v7+/2I6BeLxWPztINYRNr4y0Ubf7lo4y8Xbfzloo2/XBa1ja/P7nPKZDLRbrejXC5HOp2Obrcb5XL5yAjdvV4v9vb2jvxKNc56XL5Jjmen04l8Ph8R3/Qzddj+/v6lxM5xk34/mU/TuN7W6/VIpVLR6/VU8MzYpMczqcJaW1sbPOrY6/Xi888/v+y3wH/S6XQGA0I9fvw48vl85HK5QRWOdhCLSBt/uWjjLxdt/OWijb9ctPGXxyK38a/1+/3+pe4RAAAAAACmTJ/dAAAAAAAsPMluAAAAAAAWnmQ3AAAAAAALT7IbAAAAAICFJ9kNAAAAAMDCk+wGAAAAAGDhSXYDADAz3W531iEAAABTNMs2vmQ3AAAzs7a2Fr1eb9ZhAAAAUzLLNr5kNwAAx2xtbcWtW7fi2rVrce3atcjn84PXysrKYPp5dDqdSKfTkUqlLn3fAABw1VyFNv5vnXsLAAAsnY2Njdjd3Y3t7e3Y2NiISqVyZH632418Pn+ufdRqtSiVSjPZNwAAXDVXoY2vshsAgKGePn0aETG00ZlOpyOXy51r+61Wa+Q2LnrfAABwFS17G/9av9/vn3srAAAsneQxwlHNxV6vd+zxxHE1Go1oNptRq9Uufd8AAHBVLXsbX2U3AADHtFqtiIhj1RWNRmPw/+dpiH722WdDH2+8jH0DAMBVdBXa+JLdAAAcU6/XI+LoI4a9Xi8+++yzc2+71+tFt9uNTCZz6fsGAICr6iq08SW7AQA4Jqm8+OyzzyKbzcbKykrcunUr3nvvvXNv+/Hjx3Hv3r2Z7BsAAK6qq9DG/62pbg0AgIWXVGWkUqlot9uDaR988MFUBo2p1Wrx+eefT23fpVIpVlZW4te//nW89957USgUzh0jAAAsk6vSxpfsBgDgiMePH0fE0f70UqlU5HK5kY8ljqvb7cbt27dH9sd31n2vra1FOp2OjY2NiIjIZrOD5QEAgNeuShtfNyYAABzRbDYj4mh/ehERDx48OPe2a7XayEFrzrrvbrcbjUbjyPbu3bsXlUrl3HECAMAyuSptfMluAACOSPrT+/DDD49MP1ypkSwT8bpBurKyEtlsdjCt1+tFNps9Mrp6xOvR1k96BPEs++50OhERkU6nB/MymUy0Wq3o9Xoj9wEAAFfNVWnjS3YDADDQ7Xaj1+tFOp0e+Rji9vZ2dLvdwb/L5XJUKpXo9XqDRurm5mb0er0jjd5Wq3Xio4dn3feXX355bLnbt29HRMTe3t5pbxUAAK6Eq9TG12c3AAADSZXG4UqKRK/Xi3K5HNvb27G/vz+Yfu/evSgUCoOGbK/Xi62trcHjiolarXbiY5Jn3Xev1xs0fN/U7XaHbgcAAK6aq9TGl+wGACAiIra2tqJcLkfE6wqNbDYbt2/fjr29vcEI6hERhULhSLVFUtmRyWSi2+3G5uZmFAqFYxUenU5n5OA3k+x7ZWVlMNjNmyS6AQDg6rXxr/X7/f6pSwEAwCk6nU589tln0Wg0ot1uH2ksb29vR6/XG4yoPg2NRiPW1tbicHO21WpFPp8PTVwAADi/RWvjq+wGAGAqUqlUbG1tRb1eP9bPXq1Wi88//3yq+0sqSA4/znhSZQkAAHA2i9bGN0AlAABT0ev1IpfLHRuJvdvtxu3bt0cOSDOpdDodhULhyGjwn332WVQqlanuBwAArqpFa+PrxgQAgKkol8vxzjvvHHuMsVwux3vvvXesgTwtpVIpVlZW4te//nWsrKxEsVi8kP0AAMBVs2htfMluAADOrdfrxa1bt6JWqx1riK6trUW9Xp9RZAAAwCQWsY2vGxMAAM5te3s7IoaPkD6PjWAAAOBki9jGl+wGAODcdnd3I51ORy6Xm3UoAADAFCxiG183JgAATEWv15v6ADUAAMDsLFobX7IbAAAAAICFpxsTAAAAAAAWnmQ3AAAAAAALT7IbAAAAAICFJ9kNAAAAAMDCk+wGAAAAAGDhSXYDAAAAALDwJLsBAAAAAFh4kt0AAAAAACw8yW4AAAAAABbe/x9/BcuRyI5DMgAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1800x600 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# in abhängigkeit von der energie der elektronen\n",
|
|
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18, 6))\n",
|
|
"\n",
|
|
"ax[0].hist(\n",
|
|
" up_energyloss_lost,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
")\n",
|
|
"ax[0].hist(\n",
|
|
" up_energyloss_found,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
")\n",
|
|
"# ax[0].set_xticks(np.arange(0,1.1,0.1), minor=True,)\n",
|
|
"# ax[0].set_yticks(np.arange(0,11,1), minor=True)\n",
|
|
"ax[0].set_xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"ax[0].set_ylabel(\"counts (normed)\")\n",
|
|
"ax[0].set_title(\"Upstream\")\n",
|
|
"ax[0].legend()\n",
|
|
"# ax[0].grid()\n",
|
|
"\n",
|
|
"ax[1].hist(\n",
|
|
" down_energyloss_lost,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
")\n",
|
|
"ax[1].hist(\n",
|
|
" down_energyloss_found,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
")\n",
|
|
"# ax[1].set_xticks(np.arange(0,1.1,0.1), minor=True,)\n",
|
|
"# ax[1].set_yticks(np.arange(0,11,1), minor=True)\n",
|
|
"ax[1].set_xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"ax[1].set_ylabel(\"counts (normed)\")\n",
|
|
"ax[1].set_title(\"Downstream\")\n",
|
|
"ax[1].legend()\n",
|
|
"# ax[1].grid()\n",
|
|
"\"\"\"\n",
|
|
"most electrons lose little energy relative to their initial energy downstream\n",
|
|
"\"\"\"\n",
|
|
"fig.suptitle(\n",
|
|
" r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHOCAYAAACVVnNvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNhElEQVR4nO3dTZDb5pkv+n9P3RuNq1QS2MpmFlPjBjOLzCYW2NrMxokFlNdxk+rFpGoWx03YpZ0rJtyzsbwxBUZbVQy2cmpOVTbdhDx1lwmgmvYmi6sGrGxm7p1copXqRc5izIZVqtJ0JgnvovPC/ABJEPwG/78qltQkPl6CIPDweb822u12G0REREQZ8heLLgARERHRtDHAISIiosxhgENERESZwwCHiIiIMocBDhEREWUOAxwiIiLKHAY4RERElDkMcIiIiChzGOAQzYjv+4suwlyFYYh6vY4gCBZdlMwJggD1eh1hGC66KLRg63ZdmQQDnBTCMEStVsPGxgY2NjaQy+VQKpWgaRry+Txqtdqiixip1+vI5/NRWTVNg+u6AC6/KJqmRa/1ltswDN6sEiqVStFxFA/DMGKX9X0fpVIJ+XweuVwOhUIBmqbBMAzU63UUCoWx9u26btdnXCgUYNt233K2baNQKETLTPNCWa/XsbW1BV3XeRNOQdf1gZ97rVZDPp+HrutotVpzLhlNWxAE0HUduq6jVCoN/c4kva4YhoFSqRTdhwZdt5MulxltSk1RlDaAtmVZ0XONRqMNoF0sFhdYsm6mabYBtGVZ7ntNVdW2oijt8/Pz6DnxfkzTbDebzbbneW3HceZV3JVzfn7elmW5XSwWux6e5/UtW6lUovOj2Wx2baNcLrcBtNN8Lc/Pz6N1O8/HXpZltSVJGnv7SYj3Fve+02o2m13nZlZJkjT0cysWi20AXedM1mXxs/c8r+87UqlU2pIk9X22Sa8riqJ03W8cx2lLkpR6uSxhgDMBSZJiLzppb1KzIm6cvRfQYrHYLpfLfct7ntcul8vtcrncNk2zXalUMnehmaZKpdJuNBojlxM3KdM0By5jWVbqc0cEGKqqDlxGfKazIALpaV4wFUXJ/E3dcZw2gKHfMfEdzvqx6JTFz15RlLaiKH3Px/0oTnJdEd/53nOndz9Jl8ua5bkLrxgRicdlRUSAM82gQGRT0pBluevi2Gw224qijPylr6pqu1KpZCbCPz8/H/m+05AkqW2a5tDjJDJ7SS4maS84nVmcQWWRJGlmweq0A5x1yVoUi8WRn/m6BTir9tk3Go2RAVmz2WwDiP1Rqapq3/tNcl2RJCn2HtT7XUy6XNawDU5Koh2Lqqpdz4u2D4qiQJKkqe1PlmWYpjn2emEYIggCSJIEWZZh2zY0TcPBwQHK5XLsOqVSCbIsQ9M07O/v4/DwEPV6fdK3sHCSJOHJkydoNptTaytVq9UQhiEMw0ChUEAul4tt/yLqzXVdH7nNRqPR95xotyPaecXVw0uShGKxCACoVqt9r9u2DVVVxzovRcPhQqEA13Wj/4t2Z3FtB1qtVrTcxsYGSqVS7HZ1XYdhGNA0rattmCiraCMk2ip0thkatX5nuW3bhuu6icuj6zry+fzIc9513ahdhNim7/tRe6jedk6iPUVvuwfbthOdF53lzOVyyOVyfeuJ77f4rHqXGXYeiWOmaVrUWFzTNORyOWiaFn3Wok1QLpcb2M4sju/7yOVy0bHpPA6GYUTtAAd99qI84pjbto0wDKMyjvN9zufz0DQtagPT2dZlnLZpoo2j4zh48uQJZFke+v4BxH7/xHpimSTXFd/3EYYhFEXp25547vDwMPFywOTnwKzPobEtOsJaVSLi7kwhdv5Kn8Uvj7gIfBRR5aGqartYLLZVVU38Cz5p9qbRaLTL5XK7UqkMfO9Jlkmi0Wi0VVVtS5LUbjQabcuyorZQ47Z7Mk2zLcvyRFVw5+fn7Uaj0a5UKlGmDD2/0sQvNwCp2jJ5ntdV7STOs7hfgp37iktHj7v/znZBIqPXaDSiX9id56T4NaiqavTLU6zfWS3meV5f3b84TzuXE2n13nMlyfrNZjMqY2cmMq487fZlxqBSqXRtL0lVnihj53EVVU6d2xPb7H1OfJajzj9RblVV2+Vyueu8F+dGo9GIzsHO75rIDo06j5rNZtd+xDET70fs23GcruM7zq//QW0Um81mV9kGffbtdn9GWlXVsTMQvd8dce7GfafipLl2iOMYd50S71ecc0muK+KcH9TMQOwr6XLt9uTnwDzOoXEwwElJnHDiAgKgLUnSTBvjipv7OMQJJNoLjdP+IkkQUi6Xu76wcY0lkywzDvEF6gzAxAWi9waShGVZbVmW2+VyeeLqG3EB77zpiS/3sBuZ53lt0zS7HmJ9RVH6LgDi84zbngi+O49Fs9lM3bhYXPx7P7PeIH/Qcp03YfF+4s5j8T0S592gm1zS9cVn0XvO95an3b48nr3nTpLviggoe29acVUCvQ3LxXNJvtPinO9tkyFufuJcEZ9B3PcgyXkkbni9N8PeY9u57LhtukSZO5mm2fXehgU4vTfvNN/5zuu0qNodVX17fn4eBRxp2rF1ViH3Eu930HUx7roy7LMW56WiKImXEyY9B+ZxDiXFKqoURCpcURR4nhc9APSlyqepWCxG6fikXXFFWZ48eQLgMhWcdN1h6Vbg8r0eHR3h4OAAAKKUcWe1XZJlxnVycgIA2N3djVKsu7u7AJCq22O5XEaz2YSmabh9+zZ0XU/dfbJYLMJxHACAZVmJ11MUBeVyGYZhRClbVVURBAF830e1Wo26d3ZWsYhj0Ums31nFYpom9vf3U70nofd8EFUf4v0K29vbXX9LkhQdT/F+4tLlYnvDjlua9eOqBHq7W8uyjFqt1lXNUalUBpajcz1FUWKrJYMgiN53GIYIw7DvGNq2HVtlNkjv++79DMR7vXXrVl9ZxjmPeo+ZKPfm5mbfc81mM3H5O8vcecwODw+j6tVRxHfFtm2Yppmq6r7z+rO3twfg8jsSd66Ibt2FQgH5fB7NZjPRudFLkqSoWUDnsRfVicDga27cdSVJVXMYhomXiytvp3HPgVmeQ0kxwElBnGidXxJFUaKb+KgLlqjjT/OwLAuu6yKXy40MpETdq7gIiy/lNOo86/U6XNfFwcEBJElCvV6HYRhwHCc6aZMsk4bv+ygWi10Xe3Ej6fzyjKtYLMLzvK4bQJoxXVRVhaIoUZk6b/jDAidJkqL3JP4VdfKNRqPrcX5+jna7HRsoqqoKWZaj+nAAODo6GtjmKi1RxnGCwWHtG8RxGra9SdcfpNFoQJIkGIaBfD4/VjuM3ht2vV7HnTt3AHxzMzo6Ouq7LojlxbJpiM+/9z333lzSnEezIs5DcWx83+8LikdJE9TEcV0Xtm1HQVOvzjFjms3mxN8hy7JgmiZ83+9qiySuW8OOQ+91RVxD465R4jlZlhMvl0UMcFIQgYWmaV3Pi4uE+LU2iGVZaDabqR6WZUFRFDiOM/Ki1NsQWvxCmcZos+KiHgRBFDA1m82uMiVZZlziptDbuPLp06cARgeX45hkwDpZlqOLVufNJi7jEkes25n5GIc43qZpwrZtbG9vT7XRe2cZ01wch/1iTBKkTrp+L1mWcXp6GmXNCoVC4ob1vTdscRNTVTXahmVZfTfHw8PDsRt99xLrjvoM0p5HsyAaw7uuiyAIcHh4mLiRtSA6TgRBMFFnAbHfuIb9s1KpVNBsNtFut+F5Hra3txEEAYrF4shzofO6Ij7zuMEfxXOKoiReLosY4IwpDMPo11Dvjbrz4jHtmwlw+UvHMAw8efIkUZAgMk2dgZj45TPuBaWTCJzK5TIqlQpM0+y7eCdZJo247Blw+atZVdWJg6dCoQDLstBoNOA4TurPsbfXgjju4/7yFBenuCoQAAOzeOVyOboB7O3tTfR5DyIujuOMvCyOSVy5RdCSz+dntv4g4obpOE50sxvnmIkbdmcwKUaordVqsb/Mx62eiiPec2+VVK+059GsiOpSy7IGVjkOs7e3B8/zIMty6hHXxXqVSmVggCgyXY7jJOpZl0bnj5FROq8rsix3Vf92EvcoTdMSL5dFDHDGNKh7OPBNV7ukdcnj2tvbi1LpScSVtVwuQ5ZluK478UUt7kbS+yVKssw4mRLXdfuOvfgFl/ZXWGdXT3FBmyRlG4YhTk5Outq8VCqVKL08ThWheK+GYfRVm4y62Hbuf9A5OUmWyrbtrnYFX331FYD4X4qCqC7tbJ8inJycdG0vroxp1k+i8+ZSLBajbEzSG6cIhkqlUvT5imMuup53mkb1FHD5fZBleeQ1Z5LzaBZEZqFWqw0N8uLOz1qtht3dXciyHH1OaTJAtVoNkiT1BRa9GSGxH8/zpjrEhNiX67qJrjlx15VyuRw1RegkmgGIzz3pcpkzk6bLGSZ6JfW2EBdd8WRZnslAaqKbdVKi586wwZ0mHVBOluWoV4boBSTee5Jl2u3uHlGjiBb/nS3uRdfYNN3OJ+0mLnoAqKoa7f/8/LxdLBYH9qbrHG24t0eL+Mx6h20X6+DPPUdM04y6YA4jPoNByyU99uJ86ewpJIaRj+v50vvexXsSRI+uzt5Dcdvr7N7abDaj18ZdP65XV++533vMxbkxjt4ytduX14u47STtPSXEHdtms9n1/RLlRkxvq85tDDuPBnVxjxuIblAPsqREWeO+e8M++97jGTdkxyhind5z1fO8RN8rcX70Xs/GIaZo6C33uNcV0QNUEJ9h7/Ul6XKTngPzPIdGYYAzhs4LhDgBxVxOqqpOfYTc3n0nHSugczwMERCIL6Hoat55oUvTtd1xnGgfg0YHTrKMOKZJujB3XvRE99Bxu4j2XpwmIS46ovxi7JFRFzwxHossy21JkqKhBkS31ziizCJoTHquiRtEnKTHvrObqShn73nTaDSiLseiO3Lv/Fqdn5U4dmJcjHK5HHt+K4oSHdtOo9b3PC/qlirLcttxnL7ydH7+qqpGwW6lUmkXi8Wxb1xxo856nhf7WcUFXsOILsrimiPec2cZO7/3g86RYeeRGCdHnBPixiu+d+J64Xle1xgmvcM+dF4jex+972nYj7bez15cTzrH8ur8DvYe02HlEA9xHMvlcvTex/lcxBATSX8kNZvNtmmabUVRBq6T5rrS+z4G3StGLTfpOTCtc2haNtrtdntkmodoxgqFQtTVfpBSqQTXdXF+fp5qH2EYolAowDCMqfcoWmWjjn2tVot6v2U2lU00gXq9HrXdG1bVJKoUs9pradn8H4suAFG9Xk80Rktc+5txSJI0s/EWVlXSY09Eg5XL5UQ/mvgDYb4Y4NBC+b6fqJGbaCA3qrcIJZf02BMRrSL2oqKFUhQlUXAjRht1HGesQdhosCTHPgzDqGv+PMcKISKaFNvgENFAcd1h0wxTT0Q0bwxwiIiIKHNYRUVERESZwwCHiIiIMmdte1H953/+J37xi1/g9ddfx2uvvbbo4hAREVECr169wvPnz/H222/j29/+9sDl1jbA+cUvfoEf/ehHiy4GERERpfDzn/8c//AP/zDw9bUNcF5//XUAlwfou9/97tS2+/LlS7z55pv44osvcPXq1altFwB2dnbw+PHjqW5zVbc9y+MMrN7xmOV2V/VYr+JnyOvHfLa9quf0LLe9Suf0v//7v+NHP/pRdB8fZG0DHFEt9d3vfjeafn4aXrx4AQB44403cO3ataltF7gs8zTLusrbnuVxBlbveMxyu6t6rFfxM+T1Yz7bXtVzepbbXtVzepjUAc7nn38Ox3FwcnISTcEuSRI0TcPu7i6+973vpd00ERER0UTGDnA+//xzVCoVBEEQPSdJEgCg2WzC8zyYpglFUfDo0SMGOkRERDR3Y3UTf++991CpVKDrOjzPw5/+9Cf86U9/QqvVQqvViv7+xS9+gbfeegs7Ozt49OjRrMpOREREFCtxBue9996Dpmn47LPPRi6rqipUVYVpmvjoo4/w6NEjvPvuuxMVdFZ2dnYG1uPdvXsXd+/enXOJiIiI1tvDhw/x8OHD2NdevXqVaBuJApwHDx7AMAxsbW0lL92f3b9/HwcHB3j27BneeOONsdeftcePH8+sMRgRERGNb1iCwfd9FAqFkdtIVEW1s7OTKrgR9vb2cP369dTr06VZZpNWdduzsorHYxWPM7Cax2MVj/WqHg8e6/lsexWP8ygzmWzzwYMHKBaLI/uoL5KIAD3Pm3o38evXr+Prr7+eSfdDusTjPD881vPDYz0fPM7zM4tjnfT+PbKK6uDgAPV6PfGOwzBEEARotVr49NNPE69HRERENC0jA5zt7W3ouj72hhuNBgMcIiIiWoiRbXBu3ryJYrEYdQH/05/+BNM0YZpm13Odj0qlAsdx5lF+IiIioj6JGhmbptn1dxAE+PDDDwcur+s6SqXSZCUjIiIiSilRgDNuD6ogCOD7fqoCEREREU1qrJGMhXa7jX/913+Nfe3FixfQdR2yLE9UMCIiIqK0Uk22ef/+fciyjFu3bkHTNMiyjFarBc/zoh5XlmVNtaBERERESaUKcCRJwsnJCQzDQKVSwcbGBoDLzA4AVCqVpZ2aYdauXLmCjz/+GFeuXFl0UTKNx3l+eKznh8d6Pnic52eRx3rigf5OT08RBAGCIIAsy9je3l6JUYtnNdDfJO7dS/YcERHRukp6/54owHnx4gVOTk7w1ltvAQCePHmCjY2N6O9lJg7Q66+/vrDJNtMELwx4iIgo60ZNtvn8+fPJRzIe5P3330e9XsfGxgb+8Ic/AABu376Ng4MDOI6DarWadtNzxck2iYiIlsvcJtvs9dFHH8GyLFy/fr2vOmpvbw+e5+FnP/tZmk0TERERTSxVgGPbNmzbRqvVwu3bt/te1zQN9+/fn7hwRERERGmkCnBkWcY777wDAFEPqk5Pnz5FEASTlYyIiIgopVQBjiRJ0f972yh/+eWXsG2bA/0RERHRwqQKcPb39/H222/j2bNnUQbn+fPnePDgAba3t7GxsZFqBnIiIiKiaUjVi+rmzZuoVqt499134fs+bNsG8E02xzAM/PjHP55eKYmIiIjGkLqbuKIoODk5wenpKTzPw+npKWRZhqqqKzHQHxEREWVX6gBH2Nraip1t/NGjR2s7XQMREU0uCAK4ros7d+50tf2cVBiGADDVbdLySdUGBwCePXuGBw8e4P333+977O7uwjCMaZaTiIimwLZtFAoFbGxsYGNjA/l8HrVabeg6ruuiVCpF6+RyORiGEQUKYRjCMAzkcrloGV3X4ft+37Z834eu6ygUCsjlcigUCiiVSjAMA/V6HaVSCQBQq9WQz+eh6zparVaq9xqGIXRdRy6XQz6fj/Z3+/ZtuK7btWwQBMjlctGE0fPk+z4Mw0ChUEg0gF1Si3xPyyBVBuejjz7CT37yk74eVJ3iuo8TEdFiFYtFFIvF6BrdaDRGjuauqipUVUU+n0cQBDBNE+VyOXpdkiSYpokbN27AMAwoigLLsrq2EYYh9vb2YNs2yuUyGo1G1Ns2CALouo5arQZVVQFcTtr89OnTqI1nGmKcttPTU0iS1FWG3qFMwjBEGIZoNpup95eWOP61Wi31yPpBEGBzc7MrK7XI97QMUgU49XodOzs72N/fj+0O/tVXX+Gjjz6auHBERDRb41TTiGU3NzfHfv327dvwfR+WZXUFR8Dl2GqO46BUKnUFHoP2k4Rt2/B9H47jROWSJAmNRgOlUglfffVV1/KKogz90T5rk04ZVCqV0Gg0uj7PRb+nRUsV4GxubqJWq+H111+Pff369eswTXOScs3Nzs7OwibbJCJaB4ZhwPd9KIrSF9x0Ojg4iB0dPw0RKPm+H2WFOvezt7c3lf0sg1KpFFsduMpGTbaZRKo2OLqujxyp+Ouvv06z6bl7/Pgx/u3f/i32weCGiGhyoo3P/v7+0OUkSYpdprMtTS6XSzTOmqhdMAyjr71N3H5s20apVIraAIn91ut1aJqGer2OIAigaRpyuRw0TYvaIIn2QqJtUuc2RbskEYB0tmfq3NcwtVoNuq5H7XQ629SITBVweW/uDHbi3lPnexPb1DQNmqZ1HSfx3guFAmzbhuu6UdutpOWexN27dwfemx8/fpxoG6kCnA8//BCNRgO//e1v8eLFi77H8+fPV2Y2cSIimp3OzEKSaphisdj3nAgaTNOELMtR0DFqO2J/mqZB1/UoIOktSxAECIIAtm13LdNqteB5HlzXRaPRgGVZME0TjUYjClR0XYeiKHAcB6qqolarRe+5WCzizp07XeVSVXWsGg7DMGAYRrRv0zSh63oUjIg2VQBgWVbUpmrQewIuP5OtrS3oug7TNKPqQU3TomC01WrBcZyoWtFxHBwcHKBcLsO27ZEN05dBqgDnxYsXaDabkGU5iqg7H/l8fqKGYUREtLz29vZir/1xmZXObH/aKXx0XY/a7nieB1mW4bpuX2am15MnT6LqqXq9jq2trdgeRbIso1KpxD4v3pMsyzBNE4qiQFVVKIoC13VhGAZUVYUsy1FWqLNccW2cxmlb5Pt+1za2t7cBAI7jDF1v0HsCLj+/7e3triCvXC5DURQYhoEgCCDLMnZ3dwFcBojivYvG46P2vwxSBTjFYhGu6+LmzZvY2dnpe7z11lvTLicRES2Jg4MDnJ+f9z16e0716s0kJNWb+RFBx6ibrCRJcBwnanwrqmXSVLH0BioiWOsMVsRz0+y11Gg04Hle9PfJyQmA9McyCIKoPVQvcVx7P8e4IC1t1/15StXI+OTkBK7rDg1kDg4OUheKiIiyoTNrEwTBxL2FAERZmVFtQQVRjaPrOur1OmzbhmEYK9EZRpIkSJIE27ZxeHiIW7duTbS9YY2RRXYo6XFddqkyONvb2yNTbMvQQj0rHxIR0arqDGhE9mFSIqMwrMor7vpvWVZUbbMKbUiAy/dRKBQQBAEajcbAaqdxxWWARg0DsGpSBTiWZeHw8HDoMp9//nmqAnWOslkoFEbWsXYSI2iKxzxaehMRZZXv+1Ppfiy6hjcajYm3BXxzcx6WzRh0/e/M2qSt5pknTdOwubk5tcBGBJxx91ZxPPL5/FT2tWipqqiePHkC3/fx/vvvDxwkql6v45133hlru7VaDY7jQNd1NJtN1Go1aJoWtU4fpl6vo1wud30wo9YhIqLBDMOYSlBimiaOjo7gum50rY4jpnwY1ZbHdV3Ishzb40oQPYgGLSOqfmbtxo0bUXlEcCGyS6MCLNETqjMLJtaJawOTJGCTZRmKosD3/agxsXBycgJJkoaOVbRKUgU44kQdJs1UDU+fPu1qNLa7u4tCoQDTNEcGK41GYyVadU/q3r3pLENEBKDvJieeE3NAdQYB4sY8qIGpuMH2Vg9JkgTP86DrOnRdh+M4UZdvsd7R0VHUFbtzvd4yBkEQdYceZnt7G6VSqW/kZNGQtnf9QYHDqPfaeYzEsp3riODEMAxIkoQgCKJGw67rRj/i44iqItu2o95fYl3f92HbdjSFBnBZuyIGVSwWiwPfU6PRQKFQiD4L8X5M08TBwUHf+1lVqaqoSqVS1F0v7vHLX/5y7NEoXdfta/ClKErUn38Y27ZxcnKCUqm0tpOKERElYdt21xgymqZFkzzm8/loAk7XdaMflmLMF3HDNAwDtVqtb7JNMf6ZCJA6q7fEdAyNRgNhGEZNEfL5fFSd5DhOV7C1v7+PSqUC0zSjsWxM04TneSMbK8uyDFVVYVkWCoUCNE2L5tLyPK/rR7Pv+1G7Ud/3o/fm+350XxKNk8X/xY98EVAEQRCN1yMyVcA34960Wi2USiU0m01YlhV14zZNM5qAtHf/kiTBsqxori+xbrlcRqvVwtOnT6OMi6IoODo6gmmaKBaLA9+TODZifi5xXEW2TmS8xPg3wGUGznXdqBda5zaX2UY7xUQVL168QKvVGjhVAwB8+eWXuHnz5iRlAwAUCgVsbm4Ozc6IlvGCmG9kWNbH930UCoVEX5RZmVWmhRkcIiLKqqT371RVVIZh4OTkBE+fPh24zDSCG+CbXwLDWJYFy7KiiFOMcikGIxzm5cuXePHiReryXblyBVeuXEm9PhER0Tq5uLjAxcVF6vVfvnyZaLlUAc7h4eFcWlnbtg1ZlhM3eBKjLGqahlKplKiB3JtvvjlRGT/++GPcY8qEiIgokWq1ik8++WTm+0kV4JimObJdzKNHj/Duu++mKpRQrVZTteAXgzol6d74xRdf4I033khRukvM3hARESW3v7+PDz74IPX6z549S5ScSBXgyLIM3/exv7+PW7du9XW1E62xJwlwDMPAwcFB6rlLemdGHeTq1au4du1aqn0QERHReCZt2nH16tVEy6XO4Dx58gTtdju2O/ig55MSbWgmbfwrhp0mIiKi9ZIqwCmXy1Hj37iBks7Pz1N31xbd8Hp7QA2aHGwQMWDgsmAzHSIiovlJFeAUi0VsbGxgZ2dn4DJpGiG7rotqtdrX7dvzPBQKhWhMHE3TYFkWVFWN+vrv7u5GQ1nbto3Nzc2ho1wSERFRdqUKcABgZ2cHz58/h2VZCIIAm5ub+M53voO9vT1cu3ZtaPATx/f9aPCpuMzL+fk5gMv2Pa1Wq2vAos3NTVSrVTiOA0VRogCIiIiI1lPqAOfBgwcwDAO94wR++umnePToEX74wx+OtT1FUfq2NWg5EewAl4P6rcMUDURERJRc6sk2K5UKFEWBruvY3t6GJEkIwxBPnz7Fhx9+iK2trYm6XxMRERGllboXlWVZ0TwXnW7evIk7d+5gf38fP/3pTycuIBEREdG4Uk22CSA2uBHmMQU9ERER0SCpApxCoTBymVEjHRMRERHNSqoA5/z8HL/+9a9jX3v+/DnefvttZnGIiIhoYVK1wbl//z5kWcatW7eiwffCMITrugiCAJIk4fT0dKoFnZWdnR289tprsa/dvXsXd+/enXOJiIhWzK/uLboEyfz9vUWXgBJ6+PAhHj58GPvaq1evEm0jVYAjSRJc18Xe3h5M0+x6TVEUNBqNlZnf6fHjxxNPCUFEROvB930cHh5Gcx16nrfgEmXTsASD7/uJmsqkHgdHURR4nofT09No1m5FUbC1tZV2k0REREtN/CCu1Woz/XEsBtBlc4/0UveiEra2trCzs4OdnZ2u4ObBgweTbpqIiGjpzCPrXyqV0Gq1Zr6fLJtoJGPHcQZ+AL7v48c//nHqghEREa2jUqkU1YxQeqkCnN3dXTQajaHLbGxspCoQERHRqgrDEIZhQJKkKEgxDAOqqsYuIzroGIaBcrkM27aj9XRdhyRJ2N/fZ1vRFFIFOI1GA7quDx2p+L333ktdKJrMvXvD/yYiounzfR+3b9/GkydPooCkXq9D0zSYpolKpQLgcqBcWZajTjr1ej2aQLpYLOLp06eo1WqwLAuyLC/kvWRBqjY4Yg6qYXp7VxEREWXZ3t4etre3u7It5XIZiqLAMIxoAFzRA6tzGZq+VAGOaZo4PDwcugy7zhER0boIggC+78dWJYmEgGVZAABZllGr1VCr1aJlRHaHpidVFVUYhvB9Hw8ePBjYhc00TfzmN7+ZpGxEREQrYVij4O3tbQDfTGHUaDRQKBRgGAYsy0Kj0WAbmxlIFeBUq1X4vg/HcQYuw0bGRES0bkRbmk4iEbC5uQngMoNzenqKUqkE13VRKBRgWRarqqYsVYBTLpfhui52d3djX//qq69Qr9cnKhhNT1wjYzY8JiKaHpGB6W1fA3wT9OTzeQCXmRxZluE4DmzbRqlUgq7rDHCmLHU3cU3Tho5afOvWrdSFIiIiWiWyLENRFPi+HwUwwsnJCSRJigIY0zSj9jjFYhGWZUHX9b714rJBlFyiRsYvXrzo+vv69esjp2S4efPm0G0si52dHfzd3/1d7GPQRF9ERES9Go0GJEnq6mUchiFM08TBwUFUVXV0dBS1xxHLyLIcBTci02NZFoIggG3b83sTS+Lhw4cD7807OzuJtpEog2NZFkqlEl5//fVUBf38888hSRLeeuutVOvPEifbJCKipHzfj7Ivvu+jVquhXC5DkqSobc3e3h40TYsClt5GxNvb29A0DcViEcBllVVnz+NyuQzLsnB0dATgm95X62Qak21utNvtdpKd3blzB++//z5+8IMfjFXIg4MDfP3110s3bYM4QJ7nzSXAWbY2L8tWHiIioiSS3r8Tj4NzdHSEDz/8ELu7u/iXf/mXoVVOz58/x4MHD/C3f/u3SxncEBERUbaN1cj45OQEhmFgZ2cHGxsbkCSpazr3IAiiRlGyLOPo6KivLQ4RERHRrI09krFpmjg/P0e1WkWhUMBXX30Fz/PgeR7a7TZ2dnZwdHSE3/zmNwxuiIiIaCFSdRO/fv06KpUKh5YmIiKipZRqLioiIiKiZcYAh4iIiDKHAQ4RERFlDgMcIiIiyhwGOERERJQ5DHCIiIgoc1J1Ex/m+fPnqeesWoSdnR289tprsa8NmwuDiIiIZuPhw4cDJ7x+9epVom0knouq06NHj6IRi8U0DAcHB3jvvfcAXI5i7Hkerl27Nu6m52bd56LqtezlIyIiAmYwF1Wn+/fvQ5KkKLj58ssvoes62u02PvvsM+zt7WFvby9dyYmIiIgmlCrAUVUV7777bvR3qVTCxsYGbNvG3t4eKpUKtra2plZIIiIiGp/v+6jX64suxkKkaoOTy+Wi///kJz9BEATQNA3vvPNO9PzGxsbkpSMioqW3KlXc0y6n7/s4PDxEEATwfR+6ri/NFEZBEMAwDNi2DUVRUC6XF12kuUsV4Jyfn2N/fx/A5eSbuVwOjUYjev309BS2baNarU6nlEREREvE933cvn0b5+fnAADDMNBsNhdcqm/IsoxGo7HWyYZUVVSmaaLZbMKyLCiKgpOTE1y7dg2np6d47733UCgUIMvytMtKRES0FKrVKjY3N6O/TdOEZVkLLBH1Sj2b+NHRUd/zW1tb+Oyzz/DZZ59NXDAiIqJl5fv+ootAI6TK4Dx79mzo659//nmazRIRES21er2OUqmEIAgQBAFKpRJKpRJc142WCcMQuq7DMAxomgZN07pet20buVwOGxsbUaDkum7UYadUKkXbqdfrKBQKsG0bruuiUCh0LdNJ7Fc8arXajI/GcksV4IxqW3Pz5k28//77qQpERES0rMrlMhqNBmRZjtq5NBoNqKoK4DKzs7W1BV3XYZomHMdBqVSCpmlRwFEsFnHnzp2u7aqqCtM0u55rtVpwHAe+78OyLDiOg4ODA5TLZdi23RXABEGAra0tlEolWJbF6jKMEeB8/fXXeP78OZ4/f44wDPHb3/42+rvz8ezZM9RqtdgqLCIioizb29vD9vZ21wB05XIZiqLAMAwEQQAAkCSpb93ONj3AZUPh3d1dAICmaTBNE4qiRMGL4zjRsoZhYHt7Owq0ACxNj65FSdwGp9VqoVQq4csvvwSAoY2I2+02CoXC5KUjIiJaEaK7eFxgIaqNLMvqy9QkERcQtVqtaL+2bafabpYlDnC2trZwcnISBTnFYnHgsvl8niMZE82Zbds4PDyEbdsALi+I5XIZ+/v70cUxDENUq9Uota2qKgzD6PrVR0TpDGt4vL29DQBRBmeaxDbZe7nb2L2oGo0GHj9+jJ2dnVmUZ+442SZlRbFYRLFYRC6XQxiGODg46PshIkkSTNPEjRs3ojr9WQiCAJubm7G/OomyTszV2El8F3qroaZBBDgio5MF05hsM1U38STBzYMHD6K5qpbZ48eP5zLZJtG8bG5uIgzDocGFoigzPe9LpRIajQYDHFor4jvV2WNKEEFPPp+f+n5F5sbzvKlve1GGJRjEZJujpApwgMsAxnGcgRGj7/srEeAQ0XSVSiWOEUKZF3fvk2UZiqLA930EQdBVZXRychJVGwPAjRs3AFxmX0RgJDIxcRmgYUT1V71eh2mafT8sxt1eVqTqJr67u4tKpQLHceB5XuyDiJZXb5q8c7wN13Wj/+dyOZRKpa4LZOcYH7quI5/PR5P52bYdBTe6rncFO7ZtR+OB1Ot15HI56Loebdf3/ag7bT6fh2EYfeWu1WrRvguFQtckguI9aJqGer0ezZGXy+WgaVr0Hmq1GvL5PHK5XOw+iCYhMped53YYhjBNEwcHB1HwIYIawzCi74ToHeW6LjRNA5Cs2kmSpKhhs/gOi7mogMvAaR3HxEmVwWk0GtB1HT/96U8HLvPee++lLhQRzZdhGFGwILqi7u/vR42Wfd+P5tnZ29uDLMtRj416vR4FD8ViEU+fPkWtVoNlWdEvWNu2oy6ysixDkiTIsoyTkxMAl8GNYRhRmyDbtqPASlz0DcNArVZDu90G8M1NQJZlqKqKVqsFz/Oi6oFmswnTNNFqtaBpGkqlEmRZRqlUguM40fZ2d3dZTU2JiTFpxDkvAnnRUF+WZZyenmJvby86P4HL+2bneSbGvalWqyiVSiiXy7AsC67rolgsYnd3N9oXcPm9lGUZ29vbUeDi+z5qtRoqlQpM00Q+n4dpmtA0DYqioNFowLbtqH3eutloi6vFGLa3t/Ho0SO88cYbA5f5+uuvcf369UnKNlOiDs/zvLlc3JZ9tt1lLx8ll8/nEQQBHMcZ2DvK931Uq9WuSXJrtRoMw4BlWV0zD4usS6PRiBoxl8vlri6p4iILfBOINJvNrhS92L64GHcqFAo4ODjo+i6KxtLn5+eQJAmapuHk5CSa3DAMQ+Ryua7tie+1uFl0bl8EaaJMYlnTNNd+vBCiVZL0/p16ss3Dw8Ohy7Caimg19XY1Fal2kV2RZRm1Wq0r5Z0kQBCp+Vu3bnU9L8YOEb9kxUMQWZ5Go9F1XRHPD+ux0vueOqvmxHPLNAM0EU1PqiqqMAzh+z4ePHgwsJeEaZr4zW9+M/a2bdtGtVqF7/tQFAWmaSYao0NcIGVZRhiG0DRtLVNyREmM0520twFko9FAoVCIsj29qfdReq8Zoo1OZzZp0HqSJEXj/fQGSkREnVIFOCIAGTaGxsbGxtjbrdVqcBwHuq6j2WyiVqtB07ShqXbg8sLbm67K5/NotVpdqXaidSDLcqLBxJKOxyGWExkP0cZATDBYKBT6qrXGIcra2+skbrlSqYTd3d0oGGIjYSIaJFWAUy6X4bpuNEdGr6+++qqrd0NST58+7Qqadnd3ozryYQGOrutQVbXrV6To4cEAh9aNCBKGBTlBECQej0Nke8S4EyIQcRwnagw8yXetsyFyXFWX67pQVTVqsMn2MkSUROpu4qZpYmdnJ/ZRLpdxcHAw1jZd1+1reCgGIxt2oQ7DsKtLndA5LgDROhHtV4bNJjxOxsW27a7xOzq/p8ViMdpP7/c06dgb4seLYRh94+eI728QBAiCoKt6S2w/S6O3EtH0pApwrl+/jq2trYGvv/3222NXUamqOjA9PSxtLRoa9i4jsjmzGoqeaFmpqopisQjf96FpWlfgIX4M7O7uDmw/1xkYiW7anT9Yjo6OurYZhiFkWY6+gyIzZFlWNAmgWK7zX6F3DI9SqRRVTzebTaiqGlWT2baNer2Oer3e1VXWtm2EYTgw2IkLhsT/GSARZVOqKqpBVVPANxmVo6Ojod3IkwqCoGvApLjXgfiZVjtfH+Tly5d48eJF6vJduXIFV65cSb0+0SyI8S8sy0KhUIimbkgyuaYsyygUClHAYllW1/Lb29tdjfiDIOjq3SS6aB8dHUXri7IAl5ma3vZxnfNjiXF3DMOIlpEkCZZlwTAMmKbZlTk6OjrC06dP+8bmuXXrForFIur1ejQ2jmEY0eSjIkASg6yxOptoPi4uLnBxcZF6/ZcvXyZaLtU4OH/xF6MTP/l8PlUvqk6iR9WwLudizI24/vAbGxuQZTm2G2jSuSxG+fjjj3EvwSAyyz7OzLKXj2ZPjFMzqlE/EdEk7t27h08++WTi7YwaBydVBqdYLMI0zdheGM1mE/V6HZ999lmaTXfpHYgsjkiHD0ozj5o+/osvvpgo08TsDRERUXL7+/v44IMPUq//7NkzvPnmmyOXSxXg6Lo+sA2OoigoFAr4p3/6J3z66adpNg/gMjNzcHAwMkARrw9q0Dhq/atXr+LatWupykhERETjmbRpx9WrVxMtl6qR8e3bt4e+Lsvy0B4co4gJ85IMHiZ6S/W2tRF/T6MaiijrwjCMGuSPypoSEa2CVBmcZ8+eDXytcwbTNESPi942AGJk416SJEFRFDiO0zU+hmhUeOfOndRlIVoX4keFGG6hc24pIqJVlCrAURRlaDfwdrudamp213VRrVah63rX+DWe56FQKERj4mia1tWz4+DgAIVCoWskVNM0YZrmwN5VRPQNBjNElDWpAhxJknDnzp3Y4OHGjRtQFGVkNVYvMWYHgNhu4Z0zCLdara42N4qiwPM8GIYRDVPf2cWUiIiI1kuqAOfg4AA7OztTLYiiKEjSY11RlCjY6X2ebQeIiIgISBngiODm+fPn0Wilm5ub+M53voO9vT32SiIiIqKFShXgAMCDBw9gGEZf1uXTTz/Fo0eP8MMf/nDiwhERERGlkSrAefLkCSqVChRFga7r2N7ehiRJCMMQT58+xYcffoitra2pTNVARERENK5UAY5pmrAsC3t7e32v3bx5E3fu3MH+/j5++tOfTlxAIiIionGlGugPQGxwI7BrNhERES1SqgxOktGBR83ivSx2dnbw2muvxb529+5d3L17d84lWi29k3Ry0k4iIprUw4cP8fDhw9jXXr16lWgbqQKc8/Nz/PrXv8b3vve9vteeP38OXddXJovz+PHjRFNCEBER0XwMSzD4vp8o0ZIqwLl//z5kWcatW7ei4CAMQ7iuiyAIIEkSTk9P02yaiIiIaGKpRzJ2XRd7e3swTbPrNTHgHsfCISIiokVJPQ6OmB7h9PQUvu9Hz21tbU2tcERERERppA5wAODFixfY2tqKgprnz5/jxYsXzN4QERHRQqXqJv7ll1/ixo0byOVyXc+//vrr0UjGRERERIuSKoMjpmi4f/9+32v379/H9vY28vk8fvCDH0xcQJoPdu8mIqIsSV1F1Wq1Br6mqioqlQqePn2advNEREREqaWqosrn80NfD4IganhMRERENG+pMjjtdhu//e1v8Td/8zd9rz158gS2bScahIeIiIgW7Ff3uv/++3txS62c1JNtFgoFvP/++7h9+zYkSUIQBGg0GqjX69jY2MD+/v60y0pERESUSKoA5/r16/jlL3+JO3fu4MMPP8TGxgaAy8wOANRqNbzzzjvTKyURERHRGFI3MpZlGScnJ9FAf0EQQFEUbG9v4/r169Ms40xxsk0iIqLlMo3JNjfaIu2yZsRkXZ7nzWWyzXXuhr3O752IaKn0treJs+RtcJLev1P1oiIiIiJaZgxwiIiIKHMmmouKKIneKipWWRER0awxg0NERESZwwCHiIiIMocBDhEREWUOAxwiIiLKHAY4RERElDkMcIiIiChzGOAQERFR5jDAISIiosxZ+4H+ONkmERHRcpnGZJtrH+A8fvx4LpNtEhERUTLDEgxiss1R1j7AoeUUN50Dp3ggIhoibqbwJZ8ZfJbYBoeIiIgyhwEOERERZQ4DHCIiIsocBjhERESUOQxwiIiIKHMY4BAREVHmMMAhIiKizOE4ODR3HOOGiIhmjRkcIiIiyhwGOERERJQ5a19Fxck2iYiIlgsn25wCTrZJRES0XKYx2SarqIiIiChzGOAQERFR5jDAISIioszJZIATBMGii0BEREQLtFQBThiGMAwDhmGMtd7GxkbXo1QqzaiEREREtAqWpheV67qwLAu2baNcLider16vo1wuI5/PR8+pqjqLItIMcSRjIlobv7rX/fff34tbanF6ywcsXxkTWJoAR1VVqKqKjY2NsdZrNBpwHGdGpSIiIqJVtFRVVOOybRsnJycolUqo1+uLLg4REREtiZUOcBzHQRiGsG0buq4jl8vBdd1FF4uIiIgWbKUDHMuy0G634XkeyuUywjCEpmnsRUVERLTmlqYNziQURYFlWdA0DaVSCYZhoNFoJFr35cuXePHiRep9X7lyBVeuXEm9PhER0Tq5uLjAxcVF6vVfvnyZaLlMBDhCsVhEsViE7/uJ13nzzTcn2ufHH3+Me+wCRERElEi1WsUnn3wy8/1kKsABAE3TxmqH88UXX+CNN95IvT9mb4iIiJLb39/HBx98kHr9Z8+eJUpOZC7AAYDt7e3Ey169ehXXrl2bYWlokeKSa0y4EdHKiRubZkVN2rTj6tWriZZb6UbGcRzHga7riy4GERERLdBSZXDCMBz4WhAE0DQNlmVBVVX4vo+9vT3s7u6iUqkAuBwXZ3NzE8VicU4lpkVidoaIMiEjIwcvm6XJ4Pi+H81BdXR0BNu2uwKeMAzRarWi52RZxubmJqrVKjRNg2EYkCQJlmUtoPRERES0TJYmgyO6eg8KUBRFwfn5efS3JEnrOUXD2XH333/9/QUUYjGYnSEioqSWJoNDRERENC0McIiIiChzlqaKioiIKHMy1L171TDAoUxhOx0iIgIY4Cy3s+NFl4CIiMbBjM3SYBscIiIiypy1z+Ds7Ozgtddei33t7t27uHv37pxLREREtN4ePnyIhw8fxr726tWrRNtY+wDn8ePHUBRl0cWgOeptp8N2O0REy2VYgsH3fRQKhZHbWPsAZ+WdHfc/t0aD/xER0RBr3CaIbXCIiIgoc5jBobXHSTuJqA8nwFx5zOAQERFR5jDAISIiosxhgENERESZwwCHiIiIMocBDhEREWUOAxwiIiLKHHYTJ0qJIyITES0vZnCIiIgoc9Y+g8PJNomIiJYLJ9ucAk62SUREtFymMdkmq6iIiIgoc9Y+g7NUzo4XXQL6MzYgJiLq0Ds31wrMy8UMDhEREWUOMzjr4Oy4/7m//v6cC0FEtMTiZg+fxTo0N8zgEBERUeYwgzMjbLNBRES0OMzgEBERUeYwg0NERLRs2L5nYgxwiGaI3c2JiBaDVVRERESUOQxwiIiIKHPWvoqKk23StLD6iYjWRlwboSmObszJNqeAk20SEREtl2lMtrn2AQ4REa0Z9lBaC2yDQ0RERJnDDA4REaU347YYRGkxwCFKYJ4NiOP2xQbMRETjYYCzrs6Ou//m7OJERJQhDHCI5ojZGSKi+WCAQ5fOjvufY1aHiIhWFAMcIhqKWSciWkXsJk5ERESZwwCHiIiIModVVFl0drzoEtAYWN1DNEUcpZj+bO0DHE62SUREtFw42eYUcLJNIqIlwBGRqQMn2yRaU+zZREQ0HAOcRTk7XnQJiGhdMDtCa4gBDlFGMctDROuMAQ5N39lx998cEXliswpMGATR2ObZS6l3X8w60RiWKsAJwxDVahUAYJpmonV830e1WoUsywjDEJqmoVgszrKYRNSDgRIRLZulCXBc14VlWbBtG+VyOdE6QRCgUCjA87yoJ1Q+n0er1Uq8DVoSZ8ejl2EmiIiIElqakYxVVUWj0RhrHV3XoapqVzdvwzCg6/q0i0dEREQrZGkCnHGFYQjXdaFpWtfz29vbAIB6vb6IYlFSZ8fdDyIioilamiqqcZ2cnAAAZFnuel5kcxzHYTUV0QL1tsFhmxwimqeVDXCCIAAASJI09HWidcEAYk2wZ1E3zj1FA6xsgNNsNgEAm5ubsa+HYZhoOy9fvsSLFy9Sl+PKlSu4cuVK6vWJVhGDKSJK6+LiAhcXF6nXf/nyZaLlVjbAyefzAIBWqxX7em/V1SBvvvnmROX4+OOPcS+rV/uz4+6/2YtpNs6O+5/jsSaijKpWq/jkk09mvp+VDXBEADMoU5M0wPniiy/wxhtvpC4HszdERETJ7e/v44MPPki9/rNnzxIlJ1Y2wBG9pXrb2oi/k8w0CgBXr17FtWvXpls4IsqOdW7zwvYtNAOTNu24evVqouVWNsCRJAmKosBxHFQqleh513UBAHfu3FlU0YhWWlZrXIlovSxVgDOsYXAQBNA0DZZlQVVVAMDBwQEKhQKCIIiqpEzThGmaA3tX0QTOjvufY1uRlcLgZU7mOXt32izLOmemaC0sTYDj+z4sywIAHB0dQdM0qKoaBSphGKLVanUFQYqiwPM8GIYBWZYRBAEMw+D4N0RERGtuaQIcRVFgWVYU5MS9fn5+Hvv8uFM8EFG2cfLPFNjeZjQeo5WyNAEOEQ1xdtz/HKsHad0wwKAxrOxcVERERESDMINDkzk7Xuy+ppXF6N02syNERCuNGRwiIiLKHGZwaPbOjhddguVydrzoEqy+BXZx5izpKcyz2zzRnzHAIaKFYbBARLOy9gHOzs4OXnvttdjX7t69i7t37865RES0FrKc1WBvJ5rQw4cP8fDhw9jXXr16lWgbax/gPH78GIqiLLoYRERE9GfDEgy+7yeab3LtAxwi6nF23P9cFnqVZTljsoqY5aEZY4BDRDTAvXsAzr7f/eRfL6AgRDQ2Bji02s6Ou//OQqZhjV0GFMfdz/3s+/MvyLiYjSBaOgxwiIj+jL24iLKDAQ5ly9nx6GWY5VkeZ8djrxJXbXTv76dQFoBjFBFlCAMcIlpqzKoQURoMcIhm6ex40SUgIlpLDHCIaOUxy0NEvRjgEKV1dtz/HNv3ZN/ZcfffvzqOWWhK2DuLKDXOJk5ERESZwwwO0TSdHS+6BLNxdtz997Jlqs6O+5/rKWPveDr3/sdxTIbk+yCibFj7AIeTbRIRES0XTrY5BZxsk2hKzo67/162LM+aiM1UEa2YaUy2yTY4RERElDlrn8EhWllnx91/L3nGhF25iWiemMEhIiKizGEGhyips+NFl4BWGce0IZorBjhERCuCDYiJkmOAQ5RlZ8fdf0+rnU7vdme93rpglodoatgGh4iIiDKHGZx5OTtedAmIiIjWBgMcIlpLve1ZiChbGOAQ0WycHS+6BHMRFygtU+PftOVjg2ZadQxwiIimjMEB0eKtfYDDyTYp1tnxoktAa2aeQRGr52jZcbLNKeBkm0REoy17VRxlyzQm21z7AIfW0NnxoktA83B2vOgSENECMcAhIpqxWVUJsaqJaDAGOETL6Ow4m/uixBi8EE2GIxkTERFR5jDAISIiosxhgENERESZwzY4RFlxdrzoEszG2fGiS0BEK4gZHCIiIsocZnCIiCgVTklBy4wBDhERTQVHO6ZlwioqIiIiypy1z+Bwsk0iIqLlwsk2p4CTbRIRES0XTrZJREQrZdna6SxbeWh6GOAQrZOz40WXgNYM59SiRWGAQ0RES4VZFZqGTAc4QRBAluVFF4OIiCbEMXdoXEsX4Pi+j2q1ClmWEYYhNE1DsVhMtO7GxkbX34qiwPO8WRSTiIimhNVYNAtLFeAEQYBCoQDP86KeTfl8Hq1WC+Vyeei69Xod5XIZ+Xw+ek5V1ZmWl4iIiJbTUgU4uq5DVdWubtuGYUDX9ZEBTqPRgOM4sy4iERERrYClCXDCMITrujBNs+v57e1tAN9kaOLYto2TkxOUSiVomjYyGCIiotXGhsg0ytJM1XBycgIAfY2CRTZnWHbGcRyEYQjbtqHrOnK5HFzXnV1hiYiIaKktTYATBAEAQJKkoa/HsSwL7XYbnuehXC5HjZOHrUNERERT9Kt73Y8FW5oqqmazCQDY3NyMfT0Mw5HbUBQFlmVB0zSUSiUYhoFGozF0nZcvX+LFixdjl1e4cuUKrly5knp9IiKidXJxcYGLi4vU6798+TLRcksT4IjeT61WK/b1ccazKRaLKBaL8H1/5LJvvvlm4u3G+fjjj3Hv3r2JtkFERKuF4/KkV61W8cknn8x8P0sT4IgAZlCmZtwB+zRNS9QO54svvsAbb7wx1rY7MXtDRESU3P7+Pj744IPU6z979ixRcmJpAhzRW6q33Yz4O8nMoYO2OczVq1dx7dq1sbdNRETLLW1PK2ZnZmvSph1Xr15NtNzSBDiSJEFRFDiOg0qlEj0vsjB37twZa3uO40DX9amWkYiIlleSEZE5avL6WJpeVABwcHAA13W7sjimacI0zah3VRAEyOfzUeDj+z4KhQJqtVq0jm3b2NzcTDzFAxER0bTd+9n3ux40X0uTwQG+mTvKMAzIsowgCGAYRtfAfWEYotVqRW11ZFnG5uYmqtUqHMeBoijQNA2WZS3oXRAREdGiLVWAA1wGOcO6diuKgvPz8+hvSZI4RQMREc0Mq75W01JVURERERFNAwMcIiIiyhwGOERERJQ5DHCIiIgocxjgEBERUeYwwCEiIqLMWbpu4vO2s7OD1157Lfa1u3fv4u7du3MuERER0Xp7+PAhHj58GPvaq1evEm1j7QOcx48fQ1GURReDiIgyLu3cWOtoWIJBzGAwytoHOERERIvCiT1nh21wiIiIKHOYwZmFX90Dzr6/6FIQERGtLWZwiIiIKHOYwSEiIloSbIg8PczgEBERUeYwwCEiIqLMYYBDREREmcM2OEREREuMY+WkwwwOERERZQ4DHCIiIsqcta+i4mSbRES0StahKzkn25wCTrZJRES0XKYx2SarqIiIiChzGOAQERFR5jDAISIiosxhgENERESZwwCHiIiIMocBDhEREWXO2ncTJyIiWnWczqEfMzhERESUOQxwiIiIKHMY4BAREVHmsA0OERHRGli3djprH+Bwsk0iIqLlwsk2p4CTbRIRES0XTrZJREREFGPtMzhERERZ09veZh0xg0NERESZwwCHiIiIMocBDhEREWUO2+AQERGtobh2OlkaG4cZHCIiIsocBjhTdnFxgXs/O8Yf/vj7RRcl0/7wx9/j2P9nHuc54LGeHx7r+eBxHuzez77f9ZjUxcUF7t27h4uLi8kLNyYGOFN2cXGBT/7nF/jjH/970UXJtD/+8b/xxbP/xeM8BzzW88NjPR88zvNzcXGBTz75hAEOERER0TQwwCEiIqLMWfteVJxsk4iIaLlwss0p4GSbREREy4WTbRIRERHFYIBDREREmcMAh4iIiDKHAc4K+b//7V+47TlZxeOxiscZWM3jsYrHelWPB4/1fLa9isd5lKULcHzfR6lUgmEY0HUdtm3PdL1V8vT/+b+47TlZxeOxiscZWM3jsYrHelWPB4/1fLY9aLu9IxtPY3TjeVmqXlRBEKBQKMDzvKhnUz6fR6vVQrlcnvp6RERElE1LlcHRdR2qqnZ12xYZmVmsR0RERNm0NAFOGIZwXReapnU9v729DQCo1+tTXY+IiIiya2kCnJOTEwCALMtdz4usjOM4U12PiIiIxrcqbXKWpg1OEAQAAEmShr4+rfWIiIhocnFBzr3/cTzvYvRZmgCn2WwCADY3N2NfD8NwquuJuSx838fLly/HKGm3b33rW/jWt74V/S229b+/+v/wrf8zfo6rtP7whwv87j//Y6rbXNVt//6/Lz+/WRxnYPWOxyy3u6rHehU/w1ke61U8HrPa9qqe07Pc9rS36/+/vwP+8pv767Nnz3D16lUAwO9//3v8/ve/T73t//iPy3KOnJOqvSQsy2oDaDuO0/cagLaqqlNd7+c//3kbAB988MEHH3zwsYKPn//850PjiqXJ4Ig2NIMyLr1tbCZd7+2338Y///M/46/+6q/wl3/5l+MVtkNvBoeIiIgGmzSD81//9V/43e9+h7fffnvocksT4IheT71tZsTfg2YOTbvet7/9bfzjP/5j+gITERHR0lqaXlSSJEFRlL5eT67rAgDu3Lkz1fWIiIgouzb+3FZlKfi+j0KhgGazGVUt5fN56LqOSqUC4DIzo2kaLMuCqqqJ15tW+arVKmRZRhiG0DQNxWJxZuutq7THy7ZtVKtV+L4PRVFgmmZ0jlC8aZybruuiVCrh/Px8RqXMhmkc6yAIomloyuXywN6j626Sa4jjOJAkCUEQQJZlmKY5hxKvnjAMUa1WASDxMZr7vXBk69858zyvXSwW25VKpV0sFtuWZfW9LklSu9FojLXepJrNZhtA2/O86DlZlkfuJ+166yrt8TJNs62qatuyrHalUokaocU1PqdL0zo3ZVluS5I07eJlyqTHutlstovFYltV1Xaz2ZxVMTMh7bFuNBptRVG6nlNVtV2pVGZSzlXmOE67WCy2AbTL5XKidRZxL1y6AGdZqara1yNL9OCaxXrrKu3xKhaLXX97ntcGBveio+mcm5VKpa2qKgOcESY51uJHXdIbybqb5Frde4xN02zLsjz1MmbFOAHOIu6FS9MGZ5lxGon5SHu8XNftS5EqigJFUTjQ4wDTODdd18WNGze65oCjfpMc6zAMcfv2bciyDMuyZlrOLJjkWLdarajtptDZ7IHSW9S9kAFOApxGYj7SHi9VVUcOI0DdpnFuWpY11TZuWTXJsTYMA2EYsh1IQpMca13XEQQBSqUSgMv2IkdHRzz2U7CoeyEDnAQ4jcR8TPt4dV6sqNukx9owDF74E5rkWItfto7joFAoIJfLQdM0XjsGmORYl8tllMtl2LaNfD4PwzBwenrKDOUULOpeyAAngXlPI7Gupnm8bNuGLMsol8vTKFrmTHKsfd/HjRs3mB1LKO2x9n0fwOWvXF3X4XkePM9DEATI5/O8fsSY9BpiWVZUte26bl+VFaWzqHshA5wE8vk8gMs62jiDLvRp11tX0zxe1WoVjUZjKuXKokmOdbVaZdXUGNIea/GrVtf1aJnOtjiiiy59Y9JriKZp0HU96ipeKpWibvmU3qLuhUszkvEym/c0EutqWsfLMAwcHBzw+A6R9lgbhtFXRSL+L/7lce+W9lgPSueLsZ1YTdVvkmuIrusAEGV9T09PsbW1hb29PY5bNqFF3QuZwUlg3tNIrKtpHK96vQ5N01hvPkLaY+26LnRdRz6fjx62bSMMQ+TzebZ5ijHp9UOk93sNSvevs0muIUdHR13XDUmSYJomwjCMqgspnUXdCxngJMBpJOZj0uMlUsm9oxfz4tQv7bH2PA/ty/GzokelUoEkSWi32/A8b+ZlXzWTXD9UVe1rByJ+BfMHUr9JriGbm5t9GQZxLeGI0ZNZ2L1wZiPsZIwYOK5zFFFZltumaUZ/N5vNtizLXaPnJlmPvpH2ODuO01YUpW1ZVtejXC5z1OgB0h7rXpVKhQP9jTDp9aPzOdM0+0bcpW+kPdamabYlSWqfn593PcdjHe/8/HzgQH/Lci9kG5yEFEWB53kwDAOyLCMIAhiG0dVLJwxDtFqtrl8BSdajb6Q5zr7vRwNIiXr0TpwjKV7ac5rGN43rR6PRgCRJCMOQmbIh0h5rkYkslUpRVVUYhnjy5Mm838LS830/aux+dHQETdOgqmqU6VqWe+FSTbZJRERENA1sg0NERESZwwCHiIiIMocBDhEREWUOAxwiIiLKHAY4RERElDkMcIiIiChzGOAQERFR5jDAISIioplY5KSwDHCIiIhoJkql0sJGQmeAQ0REtGZqtRpyuRw2NjawsbEBTdOiRz6fj56fhO/7kGW5b7LSeewbADgXFRER0ZqpVCpoNpuo1+uoVCowTbPr9SAIojn+0rIsK3Z+wHnsG2AGh4iIaC2dnJwAQGwwIcsyVFWdaPuu6w7cxqz3DXCyTSIiorUkqoEGhQFhGPZVLyVl2zYcx4lmHZ/nvgVmcIiIiNaM67oA0JcpsW07+v8kAcbh4WFs9dQ89i0wwCEiIlozjUYDQHcVURiGODw8nHjbYRgiCAIoijL3fXdigENERLRmRBbl8PAQhUIB+XweuVwOt27dmnjbR0dH2N3dXci+O7EXFRER0RoRGRZJkuB5XvTc7du3p9K417IsPHnyZGr71nUd+XweX331FW7duoVisZioHAxwiIiI1sjR0RGA7jYwkiRBVdWB1UpJBUGAzc3NgW1oxt13qVSCLMuoVCoAgEKhEC0/CquoiIiI1ojjOAD6u2jv7+9PvO1BY9+k2XcQBLBtu2t7u7u7fePmDMIAh4iIaI2INjB37tzper4z6yKWAS4DjXw+j0KhED0XhiEKhUJXzyfgsifUsCqkcfbt+z6Ay3FxBEVR4LpuoukfGOAQERGtiSAIEIZh7BQKQr1e75ok0zAMmKaJMAyj4KNarSIMw65gZtjAfmn2/fTp077lNjc3AQCtVmvUW2UbHCIionUhMi6dWREhDEMYhoF6vY7z8/Po+d3dXRSLxShACcMQtVotqm4SLMsaWs017r7DMIwCml5BEMRupxMDHCIiojVQq9VgGAaAy2xLoVDA5uYmWq1W1LsJAIrFYlfmRGRpFEVBEASoVqsoFot92Rrf9wc2Uk6z73w+HzVK7jUquAE4VQMREREl4Ps+Dg8PYds2PM/rCoLq9TrCMIx6O02DbdsolUpd0zm4rgtN0wZO8dCJGRwiIiIaSZIk1Go1NBqNvrYxw8a+SUtkgzqro4ZliXqxkTERERGNFIYhVFXt6yU1auybtGRZRrFY7OqpdXh4mLibOKuoiIiIaCTDMHDjxo2+aijDMMYaYXhcnSMZ5/N5lMvlROsxwCEiIqKhwjBELpeDZVl9AUapVIom0FwmrKIiIiKioer1OoD43kvLGNwADHCIiIhohGazCVmWpzIZ57ywioqIiIhGCsNw6g2JZ4kBDhEREWUOq6iIiIgocxjgEBERUeYwwCEiIqLMYYBDREREmcMAh4iIiDKHAQ4RERFlDgMcIiIiyhwGOERERJQ5DHCIiIgoc/5/n06MA8Ht1RgAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.hist(\n",
|
|
" up_energyloss_lost,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" up_energyloss_found,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
")\n",
|
|
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"counts (normed)\")\n",
|
|
"plt.title(\n",
|
|
" r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm\")\n",
|
|
"plt.legend(title=\"LHCb Simulation\", title_fontsize=15)\n",
|
|
"plt.text(0.35, 2.0, \"Upstream\", size=15)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHRCAYAAACGvdZwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3dTYzcZn4/+G8NslGMFSR2O5c5xWJNDjlFZrXORkZkfAuQUVF9yAC5uIt2dDPi4nQusrHAtFmjqzImWwFymIualHPaBSakEnivatIaYPEPkKAozWKx8z+Mq2hBC6cnL9xDz0OzqlhvrJeuan4/QEHqKr48fMgif/W81tI0TUFERERUQd+56AQQERERXRQGQkRERFRZDISIiIioshgIERERUWUxECIiIqLKYiBERERElcVAiIiIiCrrdy46AZvIMAzU63V89dVXuHXrFprN5kUnaeWqeMxEREQMhIboug5ZltFutwEAjUYDkiRBVdULTtnqVPGYiYiIAKDGkaW/Fccx6vU6ut0uZFkGAHQ6Hfi+D9/3Lzh1q7GqYw6CALu7u1AUZVlJJSIiWjq2EcqJoggAsoAAABRFQRAESJLkglK1Wqs65iRJ0Ov1Fk0eERHRSjEQynn27BkkSRp4b3d3FwAuxUPdNE3EcTzw3mU/5stEBK1VkSQJHMcZuWZpcXEcw3GcS/sDj2ZXtftKkUsfCCVJgk6ng1qthlqthp2dHei6Dk3TUK/X0el0BpYVQcCwTbkZO46Der2eHY+maQiCAMD5Ba1pWvaZODbHcQAAb775ZracWGcbjrmKdF3PzqN4maZZuGwURdB1HfV6HTs7O2g0GtA0DaZpwnEcNBqNufYdBMHANdZoNOB53shynueh0Whkyyzzhuo4Dm7cuAHDMPiwLsEwjLHnvdPpoF6vwzAM/ti5BOI4hmEYMAwDuq5P/M7Mel8xTRO6rmfPynHPglmX23hpRSiKkgJIbdvO3nNdNwWQNpvNNE3T1LKsVJKkgfXCMEwBpN1ud63pncSyrBRAKsvyyGeqqqaKoqT9fj97LwzDtNVqpa1WK7UsK22329nnqzpm13VT3/dLr19l/X4/lWU5bTabA68wDEeWbbfb2TWcP1/9fj9ttVopgLTM17zf72fr5r8zw2zbHrl+lkUcW9FxL6Lb7Q58Py4jSZImnrdms7lx97VVu4znXdyr89+RdrudSpI0cm5nva8oipI9E9M0TX3fTyVJKr3cNqhMrzERqeZ7Qoku4uLXrizLI5G0+MWUb0Nz0brdLgCMRPKi99dwI2dFUdBoNOC6LiRJwv7+flYdtqxjNgxj4O/T01Ps7u7Cdd2B923bnnmbwHnJQBiGE5fRNO1Sdfc/OjqCZVlTj0nXdXieB8uysh5/giRJsG0bjUZj5NzMQpIktNttdDoduK6LVqtVuFwYhjg8PJx7+7MQJZjLput69l24jET7vrt3745dZlwp8GV2Gc/7wcEBFEUZ6JRiWRY6nQ5M0xy4/85yXzFNE1EU4enTp9l7qqpClmUcHBxk9+JZl9saFx2JrYOImotKUPDbX739fj/tdrsjv5Isy0oVRVlqeizLWuiXmCzLA+nsdrupoihjfwE2m83U9/3Usqy03++n7XY7W3ZVx1yFEqF+vz8x38uSJCm1LGviLytRmjnLeSp7LvOlQuPSIknSyn5li5LPZf7CrEJJSLPZnHrORWnhZc6HvG07767rpoqiTEyvuHe3Wq2Rz1RVHTneWe4rkiQVPieHv4uzLrctKhEIiZMzfMEUPUyazWZqWVb2t6IoS3+gu65bePHOQjycRHWE67qpLMszXXjtdrtwuVUccxUCoTRNs8BSluWBPCxLXKviJUlS6rruyHIiGJ4lCCu6mYZhmDabzVRV1VSW5bTdbheuKx4g+SJwwXXdwvcn6ff7qW3b2TUm/i9JUtpsNgeCKpEX+eXGpUVUBbbb7VRV1VRV1ZHrT3xXAKSqqo5UC0zbRj7t4voel6b8tlqtVirL8tRz5ft+dt7F9sIwzNKsKMpAesc93Ge5LkQgJKrNJUlKJUkqvEeKfBDVoPllJl1HIr9UVU1t20673W6qqmoqSVKqqupA9bwsy6kkSWOvwyJhGKaSJGV5k88HUa1qWdbY8y7SI/Lcdd203+9naZzn+yzLcrbtVquVnZt5gwLbtlNZltNWqzX1B4Z4fhXlmTi/4t4xy31FFBgUfb/EtSmeIbMsl6aLXwOrvoaESgRC4mLPn/h8EDR8I8m3pVn2r32hKJqehW3bA1/o/MUwzaRfF7Meswji2u32xF8s8wZCs2532cSNXtwYpj1wJxFfxnwbrHn1+/3Udd0suBI3rvzDR/wSFEHCvMIwTFVVzf4W34Wi4Dy/r+FjKhMw59stqaqattvtLKAaLrUVN29VVbNfsmL9/ENKPBDzDxzxPRl+mIkH5PD1Ncs2ut1ulk6R9nFpajabAzdk27ZnerCK9OXzdfjhkt/m8HviXE67/kSaVVVNW63WwHUvro18AJH/boofjtOuo263O7AfkV/ieMS+fd8fyNt5Aofhdp6CeGAK4857mo6WsKuqOneJxvB3Z9yP73HK3DtEPhbdp/KBYJrOdl8R13tRmvPBz6zLpeni18A6rqE0rUggJE66+BKLiPgiSyzEA3he4kSLX0LLKIWYlfilI0xqkDlPIDTPdldBfNHyJWbiRlLm18U8v+qmETf6/MMxX3IwbvthGKaWZQ28xPrDJQtpmmbXU9H2xA+JfF50u93SjaTFQ2L4HA//YBm3XP5hLY6n6LskvutFJQXDD8RZtyHOx/D3bjhNRb9MZ/muisBz+OFWVBUx3EBevDfLfWW4xEAQD0lxrYhzUPQ9mOU6Eg/G4Ydm0bkRy857TxNpzhMlQcKkQGj4IV/mOz9cciju0ZO+/4uWJuerroeJ4510fx6+r0w61+K6VBRl5uWERa+BdVxDl777vOgmrigKwjDMXgAGup6vW7PZhKZp0DRtru7BIr2ikZppmmvpXqxpGk5OTnB8fAzgvIF5kiRjp+FQVXWmKTrm3e4qnJ6eAgD29/ezRof7+/sAyg0h0Gq10O12oWkabt++DcMwSncrbTabWeP3eRqaK4qCVqsF0zSzRvWqqiKOY0RRhKOjo6zbq67r2XoiL/LE+mIYBuC8QeaijaSHG+OLRt3Djf339vYG/pYkKctPcTxFI5iL7U3LtzLbKGpwm++KLssyOp3OwPAcww3ai8iyDEVRCocriOM4O+4kSZAkyUgeep43cD6nGT7m4XMgjvPWrVsjaZnnOhrOL5HufKNt8Z7oDDIrkeZ8nj1+/HjmDhTiuyI6HliWNdf+gcFOOAcHBwDOvyNF14no7t5oNLJR/We5NoZJkpR1YsjnfRAE2Xd1XIeXovvKLI3IkySZebmi9ObNew2s8hq69IGQONn5C1VRlOzBO89No4iYrLTMy7ZtBEGAnZ2dmQKyKIqym5+iKNmXZ9z4MsviOA6CIMDx8TEkSYLjODBNE77vj/2izfJlKbPdVYiiCM1mc+ChIB44i/SuaTabCMNw4EFRJmhVVRWKomRpygcGkwIsSZKyYxL/irF+XNcdePX7faRpWhiAit4gYoBDADg5ORnbk6wskcZ5gsZJYxeJfJq2vWVsY5jonWSaJur1+lxjLA0/2B3HyXqAiYfWycnJyL1LLD+pt9g04vwPH+/w97nMdbQq4joUeRNF0UjwPE2Z4KdIEATwPC8Lroblx9zpdrsLf4ds24ZlWYiiKBvPK47j7L41KR+G7yvinlt0jxLvybI883Lb5NIHQiLA0DRt4H3xRRW/rMqybRvdbrfUy7ZtKIoC3/dnunGIYxHLil8cqx59V9yY4zjOgq5ut7vwzW5V252HeHgMdzF/9uwZgMUD5bxFrjNZlrObW/6hVFSCU0Ssmy9JmYc4P5ZlwfM87O3tLb0bskhjmZvopF+gswazy9iGIMsyXrx4kZXCNRqNgRK1SYYf7OJhp6pqtg3btkceoo8fP4aqqgudl/ywGpOUvY5WQZIkNJtNBEGAOI7x+PHjuYeMiOM4K2nMl+LNS+x3eNiQVWq32+h2u0jTFGEYYm9vD3Eco9lsTr0W8vcVcc6LBtkU7ymKMvNy2+RSB0JJkmS/XIYfrvkv8EWMKxFFEUzTxNOnT2d+8IvSrXxQJ37JlBkrZhYi+Gq1Wmi327AsayklAava7ryKSgyB81/hs1bvjSNGXrZtG67rwvf90tdakiQjY4Xk/52VuIkVVb0AGFsy2Wq1sgfFwcHBSq43cROdZyRskSdF6RaBTb1eX/k2hokHq+/72UNxnjwTD/Z80ClGDO50OoW/9OetFisijne4KmxY2etoVUQ1rW3bY6s5JxFj38iyXDgV0SzEeu12e2wgKUrOfN9HvV6fOTieNx3AbPeG/H1FluWBauc88RzVNG3m5bbJpQ6EhktQ8h4/fgwAFzYQ38HBwdyDexUdT6vVgizLCIJgpTefogfBMn4Nrmq7s5a+BEEwcn2IX4Rlf9WJaVDEQ9B13YWKipMkwenp6UCbnHa7nRVrz1M1Ko5VDIg2nO5J8vsf971ZpNTL87yBdg9fffUVgMlz3olq4nz7GeH09HRge+PSWXYbk+QfQs1mMyvdmfXaFkGTruvZ+RV5bprmSFC1jGox4Pz7IMvy1PviItfRKoiSik6nMzEYLLo+O50O9vf3Ictydp7KlCh1Oh1IkjQSgAyXMIn9hGGIbrc7MtXTIjqdDoIgmOmeU3RfabVaWROMPNFcQZz3WZfbGnM1rd4yoofVcGtz0f1PluULGXK9zDhCoqfQpEGslj3wY5p+2zMhP1aR6JG0SN6tartpOtgLbBLRwyHfw0B0GS7TfX/R7vOix4Oqqtn++/1+NiBmEdE7pKjLr7hmhofbF+vgtz1lLMvKuqZOIs7ZuOVmzXdxveZ7Ronh/4t6+gwfuzgmQfRgy/eWKtpemg52Ee52u9nns25DrF/Uky3//RvOc3FtzGM4PWl6fk8r2s6svcWEorztdrsjY5KJc1U0ltUs19G4rv9FA/6N6zE3K5HWou/epPM+nJ9Fw61MI9YZvlbDMJzpeyWuj0Xuf2JqjXHjA816XxE9XgVxDofvL7Mut+g1sI5r6NIGQvkvqbgIxDxcYnCmi0zbvGNl5Md+yH9ZRDf8/A1p2cMC+L4/MKjbsvJuVdsV535a9+78zVF0m5236+zwTWwR4uYk0i7Gbpl2YxRj2YgBxcQwEaI7cBGRZhGMzpr34kFSZNZ8z3e/Fekcvm5d1x0YLC8Mw5H504YHXhPBgJhXb9x3TAzgOPxjZNo2wjDMuuzKspz6vj+SJnEN5AcYbLfbI4NFzqJoFOAwDAvPVVFwNonoui3ui+J482nM33fGXSOTriMxzpC4JsQDWnzvxP1KDG6Yv/bz28nfx4dfw8c06Qfm8HkX95/8WGz57+Bwnk5Kh3iJfGy1Wtmxz3NexNAbs/6Y6na72UwA49Ypc18ZPo5x36Vpyy16DSzrGpqmlqZpOrXYiGgLNRqNiXPe6LqOIAjQ7/dLbT9JEjQaDZimeSHtmzbVtHwX8yDN2kmAqGocx8naFk6q4hJVmdvWS2vTVGbSVaoWx3GmjnNT1D5oHpIkzT1exWU3S74T0WStVmumH1f8IbEcDITo0omiaGqDPdHQb1rvGJrdLPlORLRpLnWvMaomRVGmBkFi9Fff9+ca7I7Gm5bvwHl1ohiyYJ1jrRARjcM2QkS0NkXdhMtML0BEtCwMhIiIiKiyWDVGRERElcVAiIiIiCqrsr3Gfv3rX+PnP/853nrrLbzxxhsXnRwiIiKawTfffIOXL1/i3Xffxe///u8vvL3KBkI///nP8cMf/vCik0FEREQl/OxnP8Nf/MVfLLydygZCb731FoDzjPyjP/qjpW339evXeOedd/DFF1/g6tWrS9suANy5cwdPnjxZ6ja3ddurzGdg+/Jjldvd1rzexnPI+8d6tr2t1/Qqt71N1/S//Mu/4Ic//GH2HF9UZQMhUR32R3/0R1AUZWnbffXqFQDg5s2buHbt2tK2C5yneZlp3eZtrzKfge3Lj1Vud1vzehvPIe8f69n2tl7Tq9z2tl7Ty1A6EPr888/h+z5OT0+RJAmA8ykHNE3D/v4+/viP/3gpCSQiIiJalbkDoc8//xztdhtxHGfvSZIEAOh2uwjDEJZlQVEUPHr0iAERERERbay5us+///77aLfbMAwDYRjiv//7v/Hf//3f6PV66PV62d8///nP8f3vfx937tzBo0ePVpV2IiIiooXMXCL0/vvvQ9M0fPbZZ1OXVVUVqqrCsiz86Ec/wqNHj/Dee+8tlNBVuXPnzth6xnv37uHevXtrThEREVG1PXz4EA8fPiz87JtvvlnqvmYKhB48eADTNHHjxo25d/Dpp5/i+PgYz58/x82bN+def9WePHmyskZtRERENL9JBRFRFKHRaCxtXzNVjd25c6dUECQcHBzg+vXrpdenc6ssndrWba/KNubHNuYzsJ35sY15va35wbxez7a3MZ+XZSWTrj548ADNZnNpffxXQUSUYRguvfv89evX8fXXX6+kWyadYz6vD/N6fZjX68F8Xp9V5PWyn99Tq8aOj4/hOM7MG0ySBHEco9fr4cc//vFCiSMiIiJapamB0N7eHgzDmHvDruuWCoQ8z8PR0RGiKIIsy7BtG6qqTl0viiIcHR1BlmUkSQJN09BsNufePxEREVXH1EDo7bffRrPZxMnJSfbeT37yEwDARx99VLjOj370I7z//vtzJ8ZxnGwcIgAwTROapqHb7UKW5bHrxXE8UkxWr9fR6/XQarXmTgcRERFVw0yNpUVgIsRxPDYIAgDDMKDr+tyJSZIkKwFSVRXHx8cAzkt7JjEMA6qqDtQVmqZZqiSLiIiIqmOmQGjeHmNxHE8NXoq02+2Bv8WI1ZMaQyVJgiAIoGnawPt7e3sAMFf7JiIiIqqWuUaWFtI0xT//8z8Xfvbq1SsYhjGxKmtWnufBsqyJ2zo9PQWAkWVE8OT7/sLpICIiosup1KSrn376KWRZxq1bt6BpGmRZRq/XQxiGWQmMbdsLJcw0TTiOk1WPjSPmPBOlR+M+JyIiIhpWKhCSJAmnp6cwTRPtdhu1Wg3AeUkRcF7FtciUGp1OB3EcI0kS6LoO27bHNnrudrsAgN3d3cLPkySZuK/Xr1/j1atXpdN65coVXLlyZeDv+/fvD7xHy8d8Xh/m9fowr9eD+bw+RXl9dnaGs7Oz0tt8/fr1MpKWWXhAxRcvXiCOY8RxDFmWsbe3t7RRpIMggK7r2N3dzQKeYY7jwDAM+L4/0s2+VqtBVdXC6rFlDdF9//59fPzxxwtvh2hlfvUrwLYBwwC++92LTg0RVdzHH3+MTz75ZOHtrG1AxUlevXqFFy9e4Pbt27h9+zaePn2KMAzx/e9/f+GEAeeTt7ZaLXQ6nbHLiLZB40p+prVV+uKLLxaaA42/KGjj/epXwCefAH/2ZwyEiOjCHR4e4sMPPyy9/vPnz/HOO+8sLT2lA6EPPvgAjuOgVqvhP//zPwEAt2/fxvHxMXzfx9HR0VISeOvWrYnBjOgdNtwWSPw9rdTn6tWrHGKdiIhoTYablMzr6tWrS0xNyV5jP/rRj2DbNq5fvz5SDXZwcIAwDPF3f/d3S0lgHMcTR5aWJAmKooxUfwVBAAC4e/fuUtJBREREl0+pQMjzPHieh16vh9u3b498rmkaPv3007m2KRpGe56XvRfHMXzfH+iBFscx6vV6FugA5/OhBUEwUCpkWRYsyxrbm4yIiIioVNWYLMv4wQ9+AABZj7G8Z8+ezd1tXZIkJEmCg4MD2LaddcsfLulJkgS9Xm+gTZCiKAjDEKZpQpZlxHEM0zQ5vQYRERFNVLr7vDDc6ezLL7+E53mo1+tzb3eWwQ8VRUG/3y9833XdufdJRERE1VWqauzw8BDvvvsunj9/npUIvXz5Eg8ePMDe3h5qtRrn+SIiIqKNV6pE6O2338bR0RHee+89RFGUtesRpUOmaeKv//qvl5dKIiIiohUo3X1eURScnp7ixYsXCMMQL168gCzLUFV1aQMqEhEREa3SQgMqAucz0xfNTv/o0aOFptkgIiIiWrXSgdDz588RBEHh1Be9Xg9BEGxFIHTnzh288cYbhZ/du3cP9+7dW3OKiIgIOB8uJQgC3L17d6lDoYhexxxeZXM9fPgQDx8+LPzsm2++We7O0hJM00y/853vpLVabezrO9/5TplNr00YhimANAzDi04K0WqFYZoC5/9S5bmumyqKkgJIAaSyLKeWZU1cx/f9tNlsZutIkpS22+203++naZqm/X4/bbfbqSRJ2TKtVqvw/hqGYdpqtVJFUVJJklJFUdJms5m22+3Utu202WymaZqmlmVl2+p2u6WOtd/vp61WK5UkKZVlOdufoiip67oDy3a73VSSpNS27VL7WkQYhmm73c7StiwXeUyrtOznd6lAaGdnJ9V1PY2iKE2SZOTV7XZTXdeXksBVYSBElcFAiAqIIGOee6AsyymAsQ9WEbwUPcz7/X4WTLVarYHgptvtpqqqpgBSVVWz98XyZQMhEVjkAzaxzeHgTzwT2u12qX0tSuy/bCDU7Xaz4xze5kUd06os+/ldqmpsd3cXnU4Hb731VuHn169fh2VZZTZNRERrNE/1kFh2d3d37s9v376NKIpg2/bIYLdi8Fxd1wcG4x23n1l4nocoiuD7fpYuSZLgui50XcdXX301sLyiKCPj4q3TorOo67oO13UHzudFH9O2KDWOkGEYU0eO/vrrr0sliIiILhfTNBFFERRFmTji//Hx8dL2KZ5RURQV7mfe2Q82ma7rhcdJsykVCH300UdwXRe//OUv8erVq5HXy5cvlzb7PBERbbdOpwPgfDDeSSRJKlwmSRIYhoGdnR3s7OzMNGCvLMsAzoOw/NyU4/bjeR50XYeu6wP7dRwHmqbBcRzEcQxN07CzswNN07JG151OB/V6HTs7OzBNc2CbOzs7qNVqWaASBAF0XUetVhvY1ySdTgeGYcA0TTQaDTiOM7APsW3DMAaCoqJjyh+b2KamadA0bSCfxLE3Gg14nocgCNBoNOZK99YoU5/29ddfp5qmpd/5zncmvjYZ2whRZbCNEBVAiYbIopH1cENjwbbtkXY+4l47777SNE1brVa2vVarldq2naUhv49p6cVv2yUNt6ERut1u1r4pv91utzuQhna7nYZhmPq+P5Au3/fTbrebtT/KP1fE+vn3ut1uCiBrGC6goI1Qu91O849qsW/f90eWGW53VXRMaXp+TiRJGkiTOHei7VT+ePLHLo5nWgP7VdqIxtKapqW1Wi1tNBqprusjL1VVGQgRbQoGQlRgkUBIkqTCl9hm/sHrum72/rzEQ3c48BKNtvPBQJF+v581whbpntSDalzQIAKpPJEX+fwTy+aDBBGk5J81/X5/5kBIVdVUkqSRdfMNoIsCoUnHpChKYSA5fEzi3A0HPbMGoquy7Od3qaqx09NTBEGA09NTnJycjLx838dnn31WZtNERLThjo+P0e/3R162bU9cT1QlzWu4IbGoGps2UbckSfB9P2tELKqDylTtDDcqF1Vv+Qbd4r2i8fXKcl0XYRhmf5+engIon5dxHGfttYaJfB0+j0UN6nu9Xqn9b6JSgdDe3t7U1vwHBwelEkRERJeHCA4ALK2Bsqqqc22v2Wyi3+9nDbU9zxtoy7PJJEmCLMtZe59FG0VPWn9vbw/A8s7TtigVCNm2jcePH09c5vPPPy+VICIiujzyJQ+iNGNRooQiH2QNK3qY27aNdrsN4NsG3JsujmM0Gg3EcQzXdbP0L6qoRGna8AiXValxhJ4+fYooivDBBx+MHYPCcRz84Ac/WCRtRER0gUTpwaJj3LRaLTiOA9d1J3afn5V4iN+6dWvsMrquD1QpCZZlZUFQkiQbP82GpmmQZXlpAZA4l8M96YBv87Very9lX9uiVCB0cnJSmIl5tVqtVILWjXONEREVM00TrusuvB3LsrLnhuM4Y4OhJElgmubUtkZBEECWZTSbzbHLxHEMz/PGLiNJ0lqCoDfffDNLjwhCRGnVtHY+cRwPrJdfp6iNzizthmRZhqIoiKIIcRwPlKqdnp5CkqSlBKuLWudcY6UCIV3XIcvy2LEcvvrqq60pdnzy5MnCv3aIiLbV8MNQvGcYBnq93kCwIB7g4xrKigfxcLWUJEkIwxCGYcAwDPi+D8uysv0mSYKTkxO4rjsQBIl959MYxzFs254aoO3t7UHX9ZGRrMVza3j9cQHGtGPN55FYNr+OeL6YpglJkhDHcVZSFQQBNE0b2+hbVFF5npeNHSTWjaIInudBVdWsBMe27WzwymazOfaYXNdFo9HIzoU4HsuycHx8PHI8F2FSQUQURWg0GsvbWZmuZl9//XX64sWLictEUVRm02vD7vNUGew+Tzmu6w50Kcdvu2wripJ1Sxcv0UW7aNJVy7JKTboq9i+WlWU5VVW1sFu72K6qqtmYPZPGA8prtVqpqqrZsamqmu1rOF1hGA4cnzi2MAyzvJIkKevGL8bcwW+7wIdhODDuznA3fcuysiEGRJ7KspyNzZMfnye/f7EvMWmsWFdMJJvvQi8msRXd/McdUz5vm83mQL7m8yUMw6w7vSzLqe/72SS2+W1ehGU/v2tpOv9EJB988AFOT0/x7Nmz8hHYBRMRZRiGLBGiyy2KgEYDCEOA1zoRbbllP79L9Rqb1mOMiIiIaBuUCoQsy8rGcRjn0aNHpRJEREREtC6lGkvLsowoinB4eIhbt26NtLwXja7ee++9ZaSRiIiIaCVKBUKWZeHp06dI07Swm/y494mIiIg2SalAqNVqZd0ri8Zh6Pf7WVc/IiIiok1VKhBqNpuo1Wq4c+fO2GWqNjIlERERbZ9SgRBwPiLzy5cvYds24jjG7u4uvve97+Hg4ADXrl2bGCQRERERbYLSgdCDBw9gmiaGhyH68Y9/jEePHuHP//zPF04cERER0SqVnnS13W5DURQYhoG9vT1IkoQkSfDs2TN89NFHuHHjBm7evLnk5C4f5xojIiLaLOuca6zUyNJ/+qd/Cl3XcXBwUPh5kiQ4PDzET3/604UTuCocWZoqgyNLE9ElshEjSwMYGwQBWMuMvkRERESLKhUIzTLr6/Dsw0RERESbplQg1O/38Ytf/KLws5cvX+Ldd99lqRARERFtvFKNpT/99FPIsoxbt25l9XNJkiAIAsRxDEmS8OLFi6UmlIiIVuPgb3sXnYSZHP/V7kUngS6hUiVCkiQhCAL8+te/hmVZsCwLtm2j2+3i7bffxunpKa5du7bstBIREZXmeR50XUetVkOtVsPOzg5M00SSJNkySZLANM1sGU3TEATBxSWaVq70OEKKoiAMQ7x48QJRFGXv3bhxY2mJIyIiWpZms4lms4mdnR0kSYLj42M0m82BZSRJgmVZePPNN2HbNnzfX0laxEDEbEZy8Ur3GhNu3LiBO3fu4M6dOwNB0IMHDxbdNBER0dLt7p5XsU0KQhRFWenQKrquo9fbjirJy26hkaV93x97IqMowl//9V+XThgREdFlpOt6VpNCF69UidD+/j7a7TZ830cYhoUvIiKibSVKjYQkSeA4DhqNBoIgyP6/s7MDXddH2hkZhgHTNGEYBur1OhzHAXDeTkkEQYZhDARFnudlbZIcx8HOzg4Mw8i2G0URdF2Hpmmo1+swTXMk3Z1OJ9t3o9HI9ps/Bk3T4DgO4jiGpmnY2dmBpmnZMXQ6HdTr9awN1WVXqkTIdV0YhjFx5Oj333+/dKLWiVNsEBHRNKZpZkGFZVlQFAWHh4d4/PhxFtx0u10A5wMOy7IMy7IAAI7jZEFGs9nEs2fP0Ol0YNs2ZFkGcB4EmaaJOI4hyzIkSYIsyzg9PQVwHgSZppm1WRINv5MkgW3bWRo7nU42B2gQBNA0DbIsQ1VV9Ho9hGGYNf7udruwLAu9Xg+apkHXdciyDF3X4ft+tr39/f21z8Cwzik2SgVCYo6xScQFsOmePHnCKTaIiGgi27azUhhd19FqtQCcBzaiFMfzPDSbTQRBkH0OAK1WC51OZ+L2m80m4jiGaZpZg+28g4MDHB8fDywvSRIcx4FlWZAkCVEUDbR72tvbAwD4vg9VVSHLMgzDgOM4A4EacP5cD4IA3W43C84ODw/heR6CIFj7c3JSQYSYYmNZSlWNWZaFx48fT1yG1WNERHQZiUBBEAUDorRGlmV0Op2B4Kfdbk/drghibt26NfB+HMeIoghHR0fQdT17CaLUyHXdgWeveD9fbTe8r+FjylcJivdESddlVapEKEkSRFGEBw8ejG11b1kW/u3f/m2RtBEREV2IeXp0idISMbWU67poNBowTRO2bcN13blKVIafq6INkeu6U9eTJAme5+Hx48cjARUVKxUIHR0dIYqiieMr1Gq10okiIiJaFVmWZ5oPc7jB9LTlRAmKLMt48eIFdF1HEARoNBqwbXugumweIq2i/dCk5XRdx/7+fhY0VaGx86JKBUKtVgtBEGB/f7/w86+++mqgpfpFmXbREBFR9YjnwqRgKI5j1Ov1mbYnSo9EuxXx7PF9P2vUbBhG6UAo36C6qIotCAKoqpo1jJ6lGo6+Vbr7vGVZ2UCKw69WqzXQqGsenueh0WigVqtl3RRnJYZEF698HSoRERGA7NkgelsVmacEx/M8SJKULZ9vhNxsNrP9DAdeRW13iqiqCuC8dGd4/CFR6BDHcTbX5/D2OXDjZDMFQq9evRr4+/r161On0nj77bcnbqOI6E5oGAba7TaiKJp5nhfHcdBqtbK5zyzLKh2MERHR5aWqKprNZvaMyQcoosv5/v7+2Daw+QBKdF/PP29OTk4GtpkkCWRZzkp2REmTbduI4xie52XL5f8VJEnKSnkajQZ0XUen04Gmaeh2u1BVNaue8zwPjuPAcZysWiyKIniehyRJxgZFRUGT+P9lD6RmqhqzbRu6ruOtt94qtZPPP/8ckiTh+9///sTlnj17NtDuaH9/H41GA5ZlZRHxOK7rrmxOGCIiulxc14XnebBtG41GA0mSQJIkqKoK0zQnPnNkWUaj0cgCG9u2B5bf29uDpmnZPGZxHA/05mq1WrBtGycnJ9n6Ii3AeclPr9cbKJHKz38mxi0yTTNbRpIk2LYN0zRhWdZASdTJyQmePXs2MrbRrVu30Gw24ThOVuBgmiYODw8hSVIWSIkBHstW7W28dEa6rqf/9E//NOviGcdx0p/85CdTl/N9P+12uyPvK4qSyrI8cV3XdVNJktJms5natj1TusIwTAGkYRjOtDzR1grDNAXO/yWi0izLSgGkvu9fdFIqbdnP75nbCJ2cnOCjjz7C/v4+/uEf/mFiVdfLly/x4MED/OEf/iG+/vrrmeYcE4M9FZnW4Nn3fSRJAs/zYBgGdnZ25mpbRERERNU0V6+x09NTmKaJO3fuoFarQZIk7O7uZvWocRxn9YyyLOPk5GSkrdC84jieOoq1bduwbRtRFMG27WwulfwImeO8fv16pvZL41y5cgVXrlwpvT4REVGVnJ2d4ezsrPT6r1+/XmJqMHvVWF6SJKllWammaenOzk5aq9XSWq2W7uzspLqup57nLaW4ynXdVFGUUusBSJvN5thlRNHaoq/79+8vcISTvffwq5EX0dxYNUa0sH6/n6qqmgJIW63WRSdnq92/f38pz99lVY3V0vS3s7NtoEajAdd1S40FJGb0HTc0uJir5IsvvsDNmzdLp3GVJUIHfzvaUv/4r2Yb4IsoE0VAowGEIcB59YhKKZorjOP1lLNoidDz58/xzjvvIAzDpcyBVmpAxXUwTRPHx8elB0Sctdv91atXce3atVL7ICKiamDQszyLFiBcvXp1iakpOaDiqok2PotGemLmXSIiIqIiGxcIiYGlhsdwGB5Ncxrf96c2siYiIqJq26hAKAgCHB0dAUA2MqbjODAMA6enpwC+nf9FVHuJtj75+lvP87C7u5sNZkVERERUZGPaCImhzgEUluT0+30AyIYIz3fT393dxdHREXzfh6Io0DRt4hwyRERERMAGBUKKomCWDmyKomRBEXA+rDin1iAiIqIylh4IvXz5svScZFVX1F2eiIiIVqdUIPTo0aOsakpMn3F8fIz3338fwHl1VRiG7JY+AYMeIiKii1eqsfSnn34KSZKyIOjLL7+EYRhI0xSfffYZDg4OcHBwsNSEEhERES1bqRIhVVXx3nvvZX/ruo5arQbXdfGDH/wAAPCjH/1oOSkkIiIiWpFSgdDOzk72/5/85CeI4xiapmVBEADUarXFU7cGd+7cwRtvvFH42b1793Dv3r01p4iIiKjaHj58iIcPHxZ+9s033yx1X6UCoX6/j8PDQwCAZVnY2dmB67rZ5y9evIDnedmYQJvsyZMnS5mrhIiIiJZjUkGEGD9wWUq1EbIsC91uF7ZtQ1EUnJ6e4tq1a3jx4gXef/99NBqN0nOEEREREa1LqRKh69ev4+TkZOT9Gzdu4LPPPsNnn322cMKIiIiIVq1UidDz588nfv7555+X2SwRERHRWpUKhKa1/Xn77bfxwQcflEoQERHRKiRJAsdxoGkaHMfJOvrs7OxA07RsfLxOp4N6vY6dnR2YpjmynSiKoOs6NE1DvV4vXKbT6cAwDJimiUajAcdxRtLRaDTgeR6CIECj0UCtVoOu6ys7fio2c9XY119/PTDf1y9/+cvCKTGSJIFt2zg5OcFPf/rT5aWUAIwOxHj8V7sXlBIiujR+9avz16b77nfPXyX1ej2EYZhN2t3tdmFZFnq9HjRNg67rkGUZuq7D932YpolOp4P9/f2sU00URTBNM5vayfM86LqePfsAZOuJZ2QQBNA0DbIsQ1VV9Ho9+L6PKIqytrbHx8ewbRuO46DT6aDdbi+SUzSHmQOhXq8HXdfx5ZdfAsDExtBpmi61RTcREa2QbQOffHLRqZju/n3g449Lry7LMgzDgOM4kGUZlmVlnymKgiAI0O12s+fb4eFhVmIjAqGDgwMcHx9n6zWbTUiSBMdxYFkWJElCFEWQJClbZm9vDwDg+z5UVYUsy9jf34fnedA0LQt6RCDk+z4DoTWaORC6ceMGTk9Ps2Co2WyOXbZer3Nk6TUpmqqDpURENBfDAP7szy46FdMtUBo0LB+oAOdBUhRF2N3dHXgPOC85AoA4jhFF0djmIaenp1BVFa7rotfrDbwPIKt6m5QOAAPr0urN3WvMdV08efIEd+7cWUV6iIho3RascqqKKIoAYGDcvCKSJEGSJHieh8ePH+PWrVvrSB6VVKqx9CxB0IMHD8psmoiIaCPFcTzw76TlGo0G4jiG67qs5tpwpcYRAs4DHd/3xxbhRVGUTcpKRES07URVmed5hcFNEARQVTVrGM0AaDuUCoT29/enFg1yrjEiIrpMVFUFcN4rTFXVgemZRAPsOI4Rx/HAZ6JtENv+zG7j5xpzXReGYUzsHv/++++XTtQ6ca4xIqLqGBeM5IMV0YBZLCv+lSQJ7XYbnU4HjUYDzWYTt27dgu/7UBQFrVYr247nednYQWEYAjivKfE8L+tCT+Nt/FxjiqLAMIyJy+S7JRIREV20KIqyZ5PjOPA8L/u/GFvINE1EUYQ4jrOBEoMgyIIay7JgWRZkWYbnebBtG7quZ9uVJAm2bUOSpIF5OVutFnq9Hp49e4Y4jrMxhyzLQhAESJIke65GUYROp7O+jKm4Wlo0KuIUT58+RRAEE0eY/qd/+id8//vfXyhxqyQiyjAML6REqKjb+7Kw+zwNiCKg0QDCEGDpJxFtuWU/v0tVjSVJgiiK8ODBg8IxEIDzKPff/u3fFkkbERER0UqVCoSOjo4QRVE2xHiRbWksTURERNVVKhBqtVoIggD7+/uFn3/11VcDE8wRERERbaLS3ec1TcONGzfGLsORNImIiGjTleo1dv369YlB0LvvvsuqMSIiItp4pUuExkmSBEEQ4OTkBDdv3iybLiIiIqKVKz2g4izL/PjHPy6zeSIiIqK1KBUINZtNWJaF3d3R8Wq63S4cx8Fnn322cOLWgVNsEBERbZaNn2LDMIyxbYQURUGj0cDf/M3fbEWJEKfYICIi2iwbP8XG7du3J34uy3I2fDgRERHRpipVIvT8+fOxn+XnZyEiIiLaZKUCIUVRJnaPT9OUE8YNWeXcYkRERFROqUBIkiTcvXu3cJ6xN998E4qiTK0+IyIiIrpopQKh4+Nj3LlzZ9lpISIiIlqrUoGQCIJevnwJ27YRxzF2d3fxve99DwcHB7h27dpSE0lERES0CqUCIQB48OABTNNEmqYD7//4xz/Go0eP8Od//ucLJ46Wo6h90vFfjY4BRUREVDWlAqGnT5+i3W5DURQYhoG9vT1IkoQkSfDs2TN89NFHuHHjBqfYuCBsmE1ERDSbUoGQZVmwbRsHBwcjn7399tu4e/cuDg8P8dOf/nThBBIRERGtSqkBFQEUBkFCUW8yIiIiok1TqkRolqGt4zgus+m141xjREREm2Xj5xrr9/v4xS9+gT/+4z8e+ezly5cwDGNrSoU41xgREdFmWedcY6UCoU8//RSyLOPWrVtZEJEkCYIgQBzHkCQJL168WFoiiYiIiFah9MjSQRDg4OAAlmUNfKYoClzX5VhCREREtPFKjyOkKArCMMSLFy8QRVH23o0bN5aWOCIiIqJVKh0IAcCrV69w48aNLPh5+fIlXr16xdIgIiIi2gqlus9/+eWXePPNN7GzszPw/ltvvZWNLF2W53loNBqo1WpoNBoIgmCm9aIogq7rME0ThmHA87zSaSAiIqJqKFUiJKbW+PTTT0c++/TTT7G3t4d6vY4/+ZM/mWu7nU4Hvu/DMAx0u110Oh1omgbf96Gq6tj14jhGo9FAGIZZ4+16vY5er4dWqzXfwREREVFllK4a6/XGT+Ogqira7TaePXs21zafPXsG3/ezv/f399FoNGBZ1sRAyDAMqKo60A1elAwxECIiIqJxSlWN1ev1iZ/HcZw1oJ5VEASFPdAURZk4OKPotq9p2sD7e3t7AADHceZKBxEREVVHqRKhNE3xy1/+En/wB38w8tnTp0+zdj7zmFTiI8vy2M9OT08LlxGlQ77vs1SowPDErJyNnoiIqqj0pKuNRgMffPABbt++DUmSEMcxXNeF4zio1Wo4PDxcSgLjOIZhGBM/B8bPbzZtqo/Xr1/j1atXpdN35coVXLlypfT6REREVXJ2doazs7PS679+/XqJqSkZCF2/fh3/+I//iLt37+Kjjz5CrVYDcF5SBJw3ev7BD36wcOI8z4MsyxNLdLrdLgBgd7e4RCNJkon7eOedd0qnDwDu37+Pjz/+eKFtEBERVcXR0RE++eSTi05GpnRjaVmWcXp6mg2oGMcxFEXB3t4erl+/vpTEHR0dwXXdicuI9krjGm9PqlYDgC+++AI3b94slT4ALA0iIiKaw+HhIT788MPS6z9//nzhQoy8hQZUBDAwoOIymaaJ4+PjqYGM+Hxcyc+09a9evcoBIImIiNZk0SYlV69eXWJqSvYaWzXHcaBp2kyzwoveYcNtgcTfy5yhloiIiC6XjQuExIjQw73IxnXHlyQJiqIMjD8EIBuR+u7duytIJREREV0GGxUIBUGAo6MjAOelQuJlGEbWTT6OY9Tr9YGpN46PjxEEwUCpkGVZsCxrbG8yIiIiooXbCC1LFEXZoIhF3eX7/T6A87ZAvV5voE2QoigIwxCmaUKWZcRxDNM0OX4QERERTbQxgZCiKFn3+2nLiaBo+P1pPcyIiIiI8jaqaoyIiIhonRgIERERUWUxECIiIqLKYiBERERElbUxjaUvyp07d/DGG28Ufnbv3j3cu3dvzSkiIiKqtocPH+Lhw4eFn33zzTdL3VflA6EnT57MNII1ERERrcekgogoipY6awSrxoiIiKiyGAgRERFRZTEQIiIiospiIERERESVxUCIiIiIKouBEBEREVUWAyEiIiKqLAZCREREVFkMhIiIiKiyKj+yNKfYICIi2iycYmONOMUGERHRZuEUG0RERERrwECIiIiIKouBEBEREVUWAyEiIiKqLAZCREREVFkMhIiIiKiyGAgRERFRZVV+HCFazMHf9kbeO/6r3QtICRER0fwYCBEABjRERFRNDIRorOHgiIERERFdNpUPhDjXGBER0WbhXGNrxLnGZldUfUZERLRsnGuMiIiIaA0YCBEREVFlMRAiIiKiyqp8GyFaPvY2IyKibcESISIiIqosBkJERERUWQyEiIiIqLLYRohWjtN3EBHRpmKJEBEREVUWAyEiIiKqrMpXjXGuMSIios3CucbWiHONERERbRbONUZERES0BpUvEaLNxRGqiYho1S5liVAcxxedBCIiItoCGxUIJUkC0zRhmuZc69VqtYGXrusrSiERERFdJhtTNRYEAWzbhud5aLVaM6/nOA5arRbq9Xr2nqqqq0giERERXTIbEwipqgpVVVGr1eZaz3Vd+L6/olQRERHRZbYxgVAZnufh9PQUuq5D07S5SpLoYrEhNBERbYKNaiM0L9/3kSQJPM+DYRjY2dlBEAQXnSwiIiLaElsdCNm2jTRNEYYhWq0WkiSBpmnsNUZEREQz2eqqMUFRFNi2DU3ToOs6TNOE67ozrfv69Wu8evWq9L6vXLmCK1eulF6fiIioSs7OznB2dlZ6/devXy8xNZckEBKazSaazSaiKJp5nXfeeWehfd6/fx8ff/zxQtsgIiKqiqOjI3zyyScXnYzMpQqEAEDTtLnaCX3xxRe4efNm6f2xNIiIiGh2h4eH+PDDD0uv//z584ULMfIuXSAEAHt7ezMve/XqVVy7dm2FqSEiIiJh0SYlV69eXWJqtryxdBHf92EYxkUng4iIiLbARpUIJUky9rM4jqFpGmzbhqqqiKIIBwcH2N/fR7vdBnA+rtDu7i6azeaaUkzLMjyuEBER0TpsTIlQFEXZHGMnJyfwPG8gMEqSBL1eL3tPlmXs7u7i6OgImqbBNE1IkgTbti8g9URERLSNNqZESHSBHxfIKIqCfr+f/S1JEqfWICIiooVsTIkQERER0boxECIiIqLKYiBERERElcVAiIiIiCprYxpLX5Q7d+7gjTfeKPzs3r17uHfv3ppTREREVG0PHz7Ew4cPCz/75ptvlrqvygdCT548gaIoF50MIiIi+q1JBRFRFKHRaCxtX6waIyIiospiIERERESVVfmqMdpuw1NzHP/V7gWlhIiIthEDIdoanI+MiIiWjYEQXXosNSIionHYRoiIiIgqi4EQERERVRarxuhSYTsiIiKaB0uEiIiIqLIYCBEREVFlVb5qjHONERERbRbONbZGnGuMiIhos6xzrrHKB0JUPUUNqjm2EBFRNTEQIgIHXSQiqio2liYiIqLKYiBERERElcVAiIiIiCqLgRARERFVFgMhIiIiqiwGQkRERFRZ7D5PVBLHIyIi2n4sESIiIqLKqnyJEOcaoyIs7SEiujica2yNONcYERHRZuFcY0SXBEuWiIg2G9sIERERUWUxECIiIqLKYiBERERElcVAiIiIiCqLgRARERFVFnuNEV0w9iwjIro4LBEiIiKiymKJENESFZXuEBHR5qp8IMQpNmhWDHKIiNaDU2ysEafYICIi2izrnGKDbYSIiIiosipfIkS0bqxiIyLaHCwRIiIiospiIERERESVtVFVY0mS4OjoCABgWdZM60RRhKOjI8iyjCRJoGkams3mKpNJREREl8TGBEJBEMC2bXieh1arNdM6cRyj0WggDMOs51e9Xkev15t5G0TbgKNPExGtxsYEQqqqQlVV1Gq1mdcxDAOqqg50fzdNE4ZhMBCircYG1URE67ExgdC8kiRBEAQjVWh7e3sAAMdxLiwY4kOMiIhoO2xtIHR6egoAkGV54H1ROuT7PkuF6FIbDrhZVUZENL+tDYTiOAYASJI08fNpXr9+jVevXpVOx5UrV3DlypXS6xNtGrZHIqJVOjs7w9nZWen1X79+vcTUbHEg1O12AQC7u8U36CRJZtrOO++8s1A67t+/j48//nihbRBtOpY+EdGyHB0d4ZNPPrnoZGS2NhCq1+sAgF6vuD3OcJXZOF988QVu3rxZOh0sDaJtt6w2bQyWiGgWh4eH+PDDD0uv//z584ULMfK2NhASgc64kp9ZA6GrV6/i2rVry0oW0YXZtCqtTUsPEW2GRZuUXL16dYmp2eJASPQOG24LJP5e5sy0RDSIPSOJ6LLY2ik2JEmCoijwfX/g/SAIAAB37969iGQRbZSDv+3hfzv5GgCyf4mI6FsbFQhNauAcxzHq9XoW6ADA8fExgiAYKBWyLAuWZY3tTUZEREQkbEzVWBRFsG0bAHBycgJN06CqahbQJEmCXq83ECwpioIwDGGaJmRZRhzHME2T4wcRERHRTDYmEFIUBbZtZ8FQ0ef9fr/wfdd1V508IiIiuoQ2qmqMiIiIaJ02pkSIiGgTcXwkosuNJUJERERUWSwRIqqQKo3/w5IcIppF5QOhO3fu4I033ij87N69e7h3796aU0RERFRtDx8+xMOHDws/++abb5a6r8oHQk+ePIGiKBedDKJK4jQcRFRkUkFEFEVLnT2i8oEQEW0WVmkR0ToxECIimgNLsYguFwZCRLR1WGpERMvC7vNERERUWQyEiIiIqLJYNUZEtEVYLUi0XCwRIiIiospiiRARbb0qjZg9C5YaEc2OgRAR0W8xoCKqHlaNERERUWVVvkSIc40RbbZVltKwBIhoM3GusTXiXGNE1bDOoIejTxMthnONERHRhWNAR1XANkJERERUWSwRIiIitpeiymIgRER0ybGKi2g8BkJEtDYsdSCiTcNAiIioghiUEp1jY2kiIiKqLJYIERFtiDJzhLFkh2gxDISIiBZUpWBklmNlQ2zaJpUPhDjFBhFdhCoFT0Tz4hQba8QpNoiIiDbLOqfYYGNpIiIiqqzKlwgREa1DmaowVp+tBgeYpDwGQkREtJHK9KIjmhcDISIioiVh8LZ9GAgREdFKzVIVddHVgAxgqouNpYmIiKiyGAgRERFRZbFqjIiI1u6iq8KIBAZCRES0VKsKcji9B60Cq8aIiIiosipfIsS5xoiIiDYL5xpbI841RkREw1bZ5Z9d9adb51xjlQ+EiIjocrvIhtmz7JtTflwsBkJEREQzYE+3y4mNpYmIiKiyLnUgFMfxRSeBiIiINtjGVY1FUYSjoyPIsowkSaBpGprN5kzr1mq1gb8VRUEYhqtIJhERbSBWX9G8NioQiuMYjUYDYRhmPbnq9Tp6vR5ardbEdR3HQavVQr1ez95TVXWl6SUiIqLttlGBkGEYUFV1oDu7aZowDGNqIOS6LnzfX3USiYiI6BLZmDZCSZIgCAJomjbw/t7eHoDzEp9xPM/D6ekpdF2fuBwRERFR3sYEQqenpwAAWZYH3helQ5NKe3zfR5Ik8DwPhmFgZ2cHQRCsLrFEREQrdPC3vYEXrc7GVI2JHl6SJE38vIht27BtG1EUwbZtOI4DTdPQ7XZHAqthr1+/xqtXr0qn+8qVK7hy5Urp9YmIiKa5TIMunp2d4ezsrPT6r1+/XmJqNigQ6na7AIDd3eITmyTJ1G0oigLbtqFpGnRdh2macF134jrvvPPO3GnNu3//Pj7++OOFtkFERFQVR0dH+OSTTy46GZmNCYREb69er7gIcFrJTl6z2USz2UQURVOX/eKLL3Dz5s2Ztz2MpUFERESzOzw8xIcfflh6/efPny9ciJG3MYGQCHTGlfzMEwgBgKZpM7UTunr1Kq5duzbXtomIiKicRZuUXL16dYmp2aDG0qJ32HBbIPF3mZlmxTaJiIiIimxMiZAkSVAUBb7vo91uZ++LUp27d+/OtT3f92EYxlLTSEREtClm6U22rQ2q12ljSoQA4Pj4GEEQDJQKWZYFy7Ky3mRxHKNer2cBUhRFaDQa6HQ62Tqe52F3d3fmqTmIiIiqYLhbPrvmb1CJEPDt3GCmaUKWZcRxDNM0B0aVTpIEvV4va0skyzJ2d3dxdHQE3/ehKAo0TYNt2xd0FERERLQtNioQAs6DoUld3hVFQb/fz/6WJIlTaxAREZU0XCpUteq0jaoaIyIiIlqnjSsRIiIiouVgG6DpWCJERERElcVAiIiIiCqr8lVjd+7cwRtvvFH42b1793Dv3r01p4iIiKjaHj58iIcPHxZ+9s033yx1X5UPhJ48eQJFUS46GURERPRbkwoixPiBy8KqMSIiIqosBkJERERUWQyEiIiIqLIYCBEREVFlMRAiIiKiymIgRERERJVV+e7zRERE9K2iaTku80SsLBEiIiKiymIgRERERJVV+aoxTrFBRES0WTjFxhpxig0iIqLNwik2iIiIiNaAgRARERFVFgMhIiIiqqzKtxEiIiKiyYbHFrpM4wqxRIiIiIgqi4EQERERVRYDISIiIqosBkJERERUWWwsTURERHO5TBOzskSIiIiIKqvyJUKca4yIiGizcK6xNeJcY0RERJuFc40RERERrQEDISIiIqosBkJERERUWQyEiIiIqLIYCBEREVFlMRBasrOzM4T/u4X/+o+zi07KpfZf/8F8Xhfm9fowr9eD+bw+Z2dn+Pjjj3F2trl5zUBoyc7OzvDl/9HBf/3n5p70y+C//pP5vC7M6/VhXq8H83l9zs7O8MknnzAQIiIiItpEDISIiIioshgIERERUWVVfooNzjVGRES0uOEZ6ReZjZ5zja0R5xojIiLaLJxrjIiIiGgNGAgRERFRZTEQ2iL/44tH3PaabGN+bGM+A9uZH9uY19uaH8zr9Wx7G/N5WTYuEIqiCLquwzRNGIYBz/NWut42+R//599x22uyjfmxjfkMbGd+bGNeb2t+MK/Xs+1tzOdl2ajG0nEco9FoIAzDrAFzvV5Hr9dDq9Va+npERERUbRtVImQYBlRVHejFJUp4VrEeERERVdvGBEJJkiAIAmiaNvD+3t4eAMBxnKWuR0RERLQxgdDp6SkAQJblgfdFKY/v+0tdj4iIiGhjAqE4jgEAkiRN/HxZ6xERERFtTGPpbrcLANjdLR6SO0mSpa4nhuiOogivX7+eI6WDfvd3fxe/+7u/m/0ttvXV//N/4X+58r+W3m6R//yPf8ev/+9fLHWb27rt/zj7/wCsJp+B7cuPSdv9nf/5r4gA/L//81/x6xLb3da83sZzuMq83sb8WNW2t/WaXuW2V7HdKLqePROfP3+Oq1evAgB+85vf4De/+U3p7f7rv/4rgCVOtZFuCNu2UwCp7/sjnwFIVVVd6no/+9nPUgB88cUXX3zxxdcWvn72s58tFnj81saUCIk2PuNKcIbbAC263rvvvou///u/x3e/+1383u/93nyJzRkuESIiIqLxFi0R+vd//3f86le/wrvvvruU9GxMICR6eQ236RF/j5tgrex6v//7v4+//Mu/LJ9gIiIi2nob01hakiQoijLSyysIAgDA3bt3l7oeERER0cYEQgBwfHyMIAgGSncsy4JlWVmvsDiOUa/Xs0Bn1vWIiIiIhm1M1RhwPvZPGIYwTROyLCOOY5imOTBNRpIk6PV6A22CZllvGaIowtHREWRZRpIk0DQNzWZzZetVVdn88jwPR0dHiKIIiqLAsiyoqrqGFG+vZVybQRBA13X0+/0VpfJyWEZex3GczaPYarX4Q2+MRe4hvu9DkiTEcQxZlmFZ1hpSvH2SJMHR0REAzJxHG/ssXEqT6wrodrspgDQMw+w9WZZT27ZXsl5Vlc0vy7JSVVVT27bTdrud9Soo6k1I55Z1bcqynEqStOzkXSqL5nW3202bzWaqqmra7XZXlcxLoWxeu66bKooy8J6qqmm73V5JOreZ7/tps9lMAaStVmumdTb5WchAaEaqqo50xRdd91exXlWVza9msznwdxiGKTB++ARazrXZbrdTVVUZCE2xSF6HYZhKkjTzA6fqFrlXD+exZVmpLMtLT+NlMU8gtMnPwo1qI7SpOA/aepTNryAIRopmFUWBoigcWXyMZVybQRDgzTffHJjsmEYtktdJkuD27duQZRm2ba80nZfBInnd6/UG2p4C5wP2jhuChWa36c9CBkIz4Dxo61E2v1RVnTrOFA1axrVp2zba7fbyE3fJLJLXpmkiSRK2U5nRInltGAbiOIau6wDO27OcnJww75dg05+FDIRmwHnQ1mPZ+ZW/qdGgRfPaNE0+IGa0SF6LX8q+76PRaGBnZweapvHeMcYied1qtdBqteB5Hur1OkzTxIsXL1jiuQSb/ixkIDSDdc+DVlXLzC/P8yDL8tJ7Dl4Wi+R1FEV48803Wdo2o7J5HUURgPNfzYZhIAxDhGGYDSHC+8eoRe8htm1nVepBEIxUlVE5m/4sZCA0g3q9DuC8DrnIuAdC2fWqapn5dXR0BNd1l5Kuy2iRvD46OmKV2BzK5rX4lWwYRrZMvq2Q6LpM31r0HqJpGgzDyLrQ67qeDVdA5W36s3CjxhHaVOueB62qlpVfpmni+PiY+TtB2bw2TXOkakb8X/zLfB9UNq/HVSOIsbEuujphEy1yDzEMAwCyUuQXL17gxo0bODg42IyxbrbYpj8LWSI0g3XPg1ZVy8gvx3GgaRrr9acom9dBEMAwDNTr9ezleR6SJEG9XmebrAKL3j9EtcKwcdUMVbbIPeTk5GTgviFJEizLQpIkWTUllbPpz0IGQjPgPGjrsWh+iSLs4dGkeRMbVTavwzBEej7+WPZqt9uQJAlpmiIMw5Wnfdsscv9QVXWknYr4VX3RD49NtMg9ZHd3d6TEQtxLOIL3Yjb+WXihoxhtETFAX35UV1mWU8uysr+73W4qy/LAaMazrEffKpvPvu+niqKktm0PvFqt1kaMXLqJyub1sHa7zQEVp1j0/pF/z7KskRGQ6Vtl89qyrFSSpLTf7w+8x7wu1u/3xw6ouG3PQrYRmtGmz4N2WZTJ5yiKsoG6RD1/HufAKlb2mqb5LeP+4bouJElCkiQseZugbF6Lkk1d17MqsiRJ8PTp03UfwsaLoihrtH9ycgJN06CqalZytm3PwlqapulFJ4KIiIjoIrCNEBEREVUWAyEiIiKqLAZCREREVFkMhIiIiKiyGAgRERFRZTEQIiIiospiIERERERLty3z4TEQIiIioqXTdX0rBmNlIEREtKE8z0Oj0UCtVkOtVsPOzg4ajUb2qtfr2WfDc5JtmyiKYJpmdmybIggCaJo2cA7EhMONRgO6rq8k7+M4xs7ODhzHWfq2O50OdnZ2smPSNC175a+pRURRBFmWR+ZpW8e+53bRc3wQEdFkAEbmacpTFGXifHDbQsxHtYnze4lzMDx/lqIoKYC03W6X3na32x2Y40xse9HtTtJqtcZuX8wVtuj2x12Tq973vFgiRES05Q4PDy86CUsh5vjaRKJkY3d3N3tPURS4rgvgvKSjbDWQruvo9XoD7ymKgjRNYVlWqW1Oc3p6CgDZPI15sixDVdWFth8EwdhtrHrf82IgRES05ZrN5tofHnROluXs/+IBPw9d1xFF0TKTNBOxz3HXzSIBmOd5E6/HVe67DAZCRERbzPO8gZKIJEngOA4ajQY8z0MQBFk7I13XR9aPogi6rmdtNEzTHNm+pmkIggCO42BnZweGYQwsYxgGDMNAvV4febAHQZC1CdE0beAzx3FQq9XQ6XSmHmeSJDAMA6ZpZm1Khtvm5JcR6cm3sZn2eRn5vM8HRUKn08n22Wg0BvbneV6WH4ZhDOSd53nQdb3wnM2SF5OIZYcDEc/zsv8Pt+2Zx+PHj0eukXXtu5S1VsQREdHcMKGNkKIoA+1Lut1u2mw2UwCpqqppu91OwzDM2mVYlpUtG4Zhqqpq9rfruimAtNVqZX/Lspy91263U0VRBtrwKIqStfXodrtZWmVZzrZjWdbIvsXyw+2BUNBGKAzDVJKkNAzD7D3btke22Ww2B9qd2LY91+eTSJKUAhhIg9hmUZrTNE3b7Xaaf8z6vj/Szkgskz+33W43y7P8+ZknLyYpuhb6/X7abDZnWn+Sfr8/sY3XKvddFgMhIqINlw8u8i/x/nBDWxHQDD8Yhx+siqKMPNjFA19sUzyQixq2iv3ktyEedMNBm0h/nmVZqW3bI8sNP0gVRRkJCMT7+X1JkjSSznweTPt8EpEv7XY7tSwrbbVa2XvNZnPkHKRpmqqqmkqSlP3d7/dH8rIoEBKKAqFZ82ISce2IoFb8PWteTDItuFzlvsti1RgR0ZbwfR/dbnfgVVQdIxRVMYhGuXEcI4oiHB0dZVUw+WoY0d5FbOPWrVsj23r27NnIe2Ibw+1eWq0W4jgeqMJ5/Pgx7t69Ozb9+XQWNaQW1S+2bQM4r5rqdDoDVW3tdjv7/7TPZxHHMXzfh+M42N3dRZqmcF23MK9d10UYhtnfIk/LNqqeJy/GSZIEcRxDkiSEYZi9FEVZSjsz27bRarWWtm/DMNDpdGCa5kD12TIxECIi2lKyLI9tizGNCFRc1x149ft9pGk68mAqetCL4Kiofcrww1q0PRINYZMkwe7u7tT2IJMaEu/t7QH4dgRjEZCYpol6vT6y7rTPZ3F4eAjf9yHLMuI4HmlTlSdJEmRZztr7LNooep68GOfk5ATAYBsdSZKgqurCvfbiOJ54Tufdt67rkCQJ7XYblmXh6OhoJWM2MRAiItpi7Xa7VONS8cBcZBoE0VtNPKCSJIFlWWi32yMlVaJbdBAEiOMYjuMUNgQep6gUZbhLuyzLePHiBVRVRRzHI42Tp30+D9/3AZw3hh5XUiH2EccxXNedu/RpnFnyYhyR7uGu68sYgsG27YmB+Tz7juMYnucNbG9/f38lPcoYCBERXQJRFM0V1IhAZdxDfNZf3q7rQlVVRFEEx3FgWdbYh5UoPbFtG77vj61CyRMlBUXpEQFBvV4HgKzaxff9bHyf/IN02ufzkGU528a40h5N07C7u7u0AGievBhHrDtcJZkPpvPbj+M4G0U7vy/RKzHP8zw0m82l7FvkZz6gVhQlC7iXiYEQEdElcHBwMLU0IE9UT5imOfIQn6eURNf1rLSj3W5PrF5RVTVrpzNrKZYsy1AUBXEcjwR6p6enkCQpC6jyAViz2czay4j1pn0+r2azme379u3bAw9okd78cYrPhwdPzH82yTx5USSOYyRJUjj1heA4zsC2TdOEZVlIkiQLUo6OjpAkyUDQM2kAxTL7fvbs2chy4vouyr9FMBAiItoSRQ/LOI6haRqSJMkeHLM8KETbCwDZnFmdTgeapqHb7WYPNbHPon07joMgCLJ1HccZGBuniCgV2t/fn5pGQbTtyZfeiGq44+Pj7LhPTk4GHuLiwStKFaZ9Psm4IMa2bSiKgiRJBqr6xEPb8zw4jgPHcbJjj6IoG/9JlODYtp1VB03a36x5UURsu+h4xdhEhmEMlNjs7++j2WzCMAwkSYIkSdDpdEYaZU+rFpt336INWZGlz2p/Yf3ViIhoItd1U1VVs27yyHU7znc9Rm7sn/z8V7Isp77vp/1+P+vWjqGuypZlZduRZXmgO3t+HKHhz9L023mh8ukTL1mWC7uUiy7kw/JjHYk05tcXY82oqpq2Wq201WqNdP1XVTWVZTltt9tpu90e6dY+7fMivu8PnANZlgvHQxJd6fPzvtm2nUqSlO0zTdOs232+C72iKKkkSQPnUIxPVDYvholhEPLXkaqqI9fRuPF8fN9PbdvO8m3YpPnByuzbsqyBoQdEvmDGIQLmUUvTNF1uaEVERFUQRREeP36Mw8ND9Ho9JEmSlWC4rot6vT7SPiYIAriuO7WbN20Wca49z0MYhgMlT47jIEmSpbWFAr4dWTsfogRBAE3TsOyw5XeWujUiIqoE0SOq3+9DkqSRKhlZlgsb9dq2fWkmia0SSZLQ6XQKx0yybRtPnz5d6v5EW7M4jrPqtHFjKC2KbYSIiGhuop3GwcHBQJsg0TU+P7Ce6DIv/t3kWeapWJIkUFV1pFfYtLGDypJlGc1mc6Bn2uPHj1fSfZ5VY0REVEqn08l6EAmKosCyrKyxtajOEKaNhk2byTRNvPnmmyPVX6Zp4tatWxO7zS9CTI771VdfoV6vzzTkwrwYCBER0UJE26BxAY5pmojjGIeHhywN2kJJkmBnZ6dw+gwxfMI2YxshIiJaSFEbobxVVGfQ+ohxpYoC3W0PggC2ESIiIqIJRHXmMiZl3USsGiMiIqKJ8gN2XjYMhIiIiKiyWDVGRERElcVAiIiIiCqLgRARERFVFgMhIiIiqiwGQkRERFRZDISIiIioshgIERERUWUxECIiIqLKYiBERERElfX/A9tWgPUfxwwPAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"both_eloss = np.append(up_energyloss_found, up_energyloss_lost)\n",
|
|
"plt.hist(\n",
|
|
" both_eloss,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"cornflowerblue\",\n",
|
|
" label=\"Upstream\",\n",
|
|
")\n",
|
|
"plt.vlines(ak.mean(both_eloss), 0, 3, colors=\"red\", label=\"mean\")\n",
|
|
"plt.xlabel(r\"Energyloss Ratio $E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"counts (normed)\")\n",
|
|
"plt.title(\n",
|
|
" r\"$B^0\\rightarrow K^{\\ast 0} e^+e^-$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"plt.legend(title=\"LHCb Simulation\", title_fontsize=15)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjIAAAJPCAYAAADWqU3EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADV3klEQVR4nOz9f3Bc55nYez6H4IBWoiEboJ27o6qbSA05U5Od1Wi6aXuXN4qhsCGDG92rKALIIbDZzGZHwNwC7/jK1qCHVmiaw8iY5pWvd2qJzTSUm3JtlkBEQKVSormEDWgER7PcdYndtlVJZnJHaGlm9zq3xia6yWhDE0Pw7B/UaXUD3f08b/fpX+D3U4WyxfP0e97znvf8fM/7vp7v+74AAAAAAAAAAAB0oD3tzgAAAAAAAAAAAEA1NGQAAAAAAAAAAICORUMGAAAAAAAAAADoWDRkAAAAAAAAAACAjkVDBgAAAAAAAAAA6Fg0ZAAAAAAAAAAAgI5FQwYAAAAAAAAAAOhYNGQAAAAAAAAAAICORUMGAAAAAAAAAADoWDRkAACAlisUCpLL5dqdDQAAAAAA0AVoyAAAAC136dIlSaVS7c4GFEtLS+3OAtARVldXZXJyUvr6+jguulihUJClpSUZHR2Vvr4+yWaz7c4S4ITzDwDgXkZDBgAADchms8WXW57nlf319fVJX1+fxONxSSaTUigU2p3duiWTSYnH4zu2cXR0VFZXV0Xk7guiZDK5oywmJydF5G5ZBb0w+vv7JRKJFH8XpIHWO3/+/I79Gvy98sor6u+DF7wDAwPFfV9a71dXVyWXy0k8Hm/opeHS0lLFOjg0NCTnz5+v+JtsNiujo6M76qxLb6ClpSUZGhqqeHyPjo5WPK6D8tieT+p5d1paWpJ0Oi1zc3NdfR7fzQqFQvE4q2Vubk7S6bQsLS2xL9F0yWRShoaGJB6PS19fn0xOTprqXb3X5eB6FazTet2p93cAALScDwAAGra4uOiLiC8ifiwWK1s2PT1dXJbJZNqUw3BEIpHitqysrFSMSSQSvoj4iUTCz+fzxX9fXFz0I5GIn06n/Uwm46fTaX9lZcWPRCJ+KpVq0RZgu9J9uv2vVn3NZDJ+LBYrxk5PT/srKyv++vp6cf+WLg+r/gf1q9KxVk0qlfJFpKF6VnqMRyIR02+C7a92rLRCPp8vOw5Rv2D/Ly4utmyd7D+b4BhPp9Nq7Pr6+q65Jrcb9bOyTCbjR6NRf2Jiovhv+Xzej8VifiQSUetdPdflkZGRHcuD69b09HTVddX7OwAA2oGGDAAAQhC8RKn2IiV4oWl9AdqptBfIQaNNrRfGqVTKTyQSfiwW8ycmJngJ0kbpdNqPRqP++vp6xb9qSl/qJxKJmrHpdFpt/HKRz+fLXupYTE9PN3zslb78TCQSpt8E54V2SiQSvKwNSTsaMth/NsE11nI9KT2HULaNoX5WFolEKl5z8vl8sZGi2nWznuvyxMRE1fvPYFml81a9vwMAoF0YWgoAgBC88847xf9/7NixHcsPHTokIneHv+jW4SxKhwU6fvz4juWTk5MyNzcnmUxGpqenq6YTDClVOrwU7pZfq4dzSKVSkkqlJBqNVvyrJBiuSUQkkUjIyspK1VgRkYmJCVlcXBQRCaXuRyIRmZiYKP53tWGlSs3NzZX9Jow8WESj0bbW8WBoL3Qn9p9NLpeTbDYriUSCa0oL3Qv1s3TITOv1KxhKNJFI7FgWiUSK94jJZLLi712vy7lcTubm5kREKl7nguE9t6+v3t8BANBONGQAABCC4GG+2ovL0jH5NzY2WpKnyclJp7kANKUvLEof0IP5D3K5nLz//vsSi8Wq/j54GZBKpWR0dFSGhobkoYceMr2M3u3S6bQMDQ3J6OioxOPxpk/oubS0JLlcTjY2NpzmrggaMUSk2EChGRkZqfhSp16lE8XPzMzUjF1dXZVCoSCnTp0Kbf0u+vv727LepaUljqsuxv6zS6fTIvLxi1c0326vn7lcrjj/WS6XkzfffNPcSBZcuz/zmc9UXB5cQ4Nr8Pbful6Xg+thtWtsLBaTSCQiuVyu7D6u3t8BANBONGQAANCgbDZb/FJvZGSkYszVq1dF5O7XeLW+Xg9TLpcL9WV46QSTQWNFMAHz8ePHZWVlRX3Qf/PNN2V6elpyuZysr69LIpGQ999/v2Vl0ummp6cln8/L5OSkJJNJGRgYKH4xGbagAWBycrI4ifbo6GjNlydzc3PFFy8jIyNOXz8HX5hWUigUyibIjsfjNV+SRSKR4rFWKBRq1vNUKuWc11YIJlcN9m/w1a82MXihUJDR0dHi38DAgAwMDJS9xF1aWpJnn322+N9HjhyRvr4+6evrK0trdXVVRkdHi3mYnJysOGGy6/4Jti1orIzH41Xr8dLSkoyOjha/+s1ms8XJ1fv6+srWU/pyMchnPb186i377Up/Z5nM/vz588XyGBgYKMvD9vxZ9p9ruiJ39+Xc3FxZzNzcXNm+rbQdlnpXTTabLZaT53kyMDBQLOPz58/vWFaa90KhUKwPAwMDFfd3cPxXu/5qcrmcjI6OFst4dHS06kcAzThm2nEMBOsJzv3B3/Y8Li0tFbchWJdWP4PyLE13aGio2HMmWGdfX19dX/sHE2H39fUV62HwV7rOesolyPvAwIBsbGzI+vq6LC4uVv1Ao1oaItV77pVeB7cfa/Vcl4NjqVYeg3UGjX6N/E6keXW2XccCAKCLtHtsKwAAul3p/BiV5gAIJlKstrxZFhcX/Wg0Glp6wTaMjIz4+XzeHxkZMU1aWUk6nS6bBNNicXHRHxkZ8UdGRnZMohlGvItMJuNPT08X0w7mDFlcXCyO1R6NRhuexDzYh2FPiJ7P5/1EIuFHo9GKk4lWm+CzdKLtsMbNXllZ8WOxWPHYWF9fL66n1mTepXNWVKvnQUwYx13p+kZGRky/qXQMZjKZsnJMpVLFOrR9cvRK+3x7vcrn8340Gt2Rp1rzAATrDJan02k/kUiUTTAbjMXuun+CZaVzFVSaO2dlZaWsHCYmJvzp6Wk/Fov509PTxfHZg/wFZRnEBfm3TvgeRtmX5icWi/mJRKIsL9u3u3S92/dRcA6Vj+Zc2f47yzwOrukG+7J0G0dGRorzFdXaDmu9q2ZlZaXquSOTydS8RgZlUakcgt9a81GaXlAGwTlk+wTLpXlpxjHTjmOgUlkE21Bt7p9g26uVYbX6WTo/Uuk+D9Krd36sVCpV8RpVOneT6/Wy9NzQyNxdpdeJannYXv9K/931ulwtre2Cc0KwH+v9XbPqbCccCwCA7kBDBgAADSp9MRRYX18vvuwKXrLUmhC5WaLRaCgvnEtfEAQNGI28iMjn8+YGkOBlXelLueDFaKWXXq7xjQgenqenp/3p6Wk/lUr5mUym7AVOGA0QQQNJ0KAR5gTp+Xy+rAGm1kuT0uVh1Ofgpc/2ulD6kqVao4rvlzesVNq3wQuOMITVkBEI0treGBi8IK5UzkG92l72KysrTg0Z25dHo9Fi+aVSqWKjn+v+CV5Wb5/kNkin0uS3tRrHgpdXkUhkx/aV7g/XulhP2Zf+LhqN7iiT4GVwpfpabeLf0u3f/hLZ8qK4nnRL8xqJRMqOm9KX2qXnLZd6V0vp+bLaskrny6BhoJJ6zu3b637pdpU2uGwv22YcM77fnmOgVOnHGJWMjIzsmAzaOmF6cF0J9l9QxxqZIHx6erriNTCouy4vs0sb96ql66r0ZbwWU+34sV6XSxsBK03YHShtCGjkd4Fm1dl2HwsAgM5HQwYAAA0qfcjc/kVnpRderRS8lGk0D6UPs9rXx2EK8r/9ZVzwsLt9u1zjGxWUxcjIyI60t3/JGIbSrxbDeumyPf3SOrx9m0rrtrbuoNfKxMTEjr/gBWDQKFZJ8AKn2vIgv0F+qr2wDasnS7MaMirlr3RdpS/DKvVsKF1WyvoivNYLN9f9E+yP7S8SS/Oyvd6U9h7YrnT/1npx6dpYW0/Zl/6u0vqC7dheN4J9Vq1BrvSFYmm62v6rN13f98te3G5X+lX69nVZ6l0twQvzSnWqtGfEdpVepAdqNeZUU1q2lfZlrYbosI+Z4DetPgZKlZZHpQaLSttjbcgoPZ6CXiwudaaSSusrvUexXOe3fxwQpuC+oFa9tDR2BGpdl2v1dCoVHMNBPar3d4Fm1dl2HwsAgM7HHBkAADSgdCz1dDot+XxefN+XfD4vExMTxYmw2zUpZiKRkFQqJUeOHGlo4u/SycxLJ3guHSc7bMHYyJFIpGydq6ursrq6KolEomxsZ9f4RhUKhWKZDg0N7Ug7GFs6zMndE4mErKysSCaTkVwuJ319faFO6p5IJCSTyRT/u7R+u449HYvFJJVKFce8n5ubk0uXLkkymSxOLrq0tCSFQmHHOOcDAwPFMcELhULVdZfu09XV1bJxxIO0JyYmnPLdKsH46ZXGUY9Go8XtCubXEREZGBgQkbtzM2wfW750AnRX8Xi84r+77p9EIiHr6+tldUhEyurn9uMhmAy9UjloE6UHy13rfz1lrwmO90qT94pUn/g3FosVf1s6D5GmWelW2o6w6l1wLBYKhR3zkKyvrxfXW3ocB7GVjuPV1VUpFApy7Ngxcx62qzRvz8TERLFuvPPOOxV/F9YxI9KeY6BUJBIplu/2uRAuXbpUdTJoi2g0KtPT0yIixWtVI+cqkZ1zOmSz2eKcJdPT0zWv88F8MM8++6xMTk5KPp8v5i8swfYVCoWK936l9Ts4tmqpdV1ul2bV2XYfCwCAzkdDBgAADSh9YV76sB+JRCSdThcnH00mk04Pn8GLjjD+JiYmZGJiQgYGBupqUMnlcsUHw+DFcbBdS0tL6gS39RodHRURkVOnThUfaoOJIIMX+o3ENyrYn6UvgUoFZdaMicxjsZgsLi7K+vq6bGxsyMDAQHH7G1X64qn0Jd72FwvWlwWlZZNIJIrlEdSb4OX39j//bs9h8X2/5kTdp06dKv7/YKLU4P934iTfVsH5pLScJyYmii/pzp8/XzZpctjq3T+l9T04/lxepLto1r6tVPb1sqSx/ZhoZ7qVhFXvIpFI8dpR+sI8mIA8KPfSZbVepAfXX8uE464OHTokIm5lF9Y5zUVY6QRlmM1my7Y5nU6XnWPrkUqlinUxzI8JAsEHFdFotGojydLSkvT19UkqlZJUKlX82KQZRkZGyu79Jicnix9UTE5Oln0AYi2Patfl0pf7tT6aKG04i0Qidf8uDM06b3frtR4A4IaGDAAAGlDaU6HSC+vjx48X/7/1K8TggTvMv6ABI5lMVv2SVNtGkY8bC15++eXivzWjV8b58+eLL+omJiZkaWlJhoaGZGZmRl5++eUdjRKu8WEI0qz2MqT0pVYzaV8p1mNoaEhEdvbCKK3j1q/Vq71cCF6eNPqyeGRkpJivpaWl4hfd2Wy24RdwpUrL2bV3Sj0OHjxY8d8zmUzxJVkul5OhoSEZHR0NPU+N7J/gq+eNjQ1ZXFwMdT+0QrWyd1WrJ0op195bzUq3lrDqXfDCPOi5IHK3voyMjBSvkZcuXSrGp1KpqvVnbm5OIpFIU16O19MAHdY5rR1isVixHIOGpFwuJ4VCIZTyLf34IczG1/Pnzxevtdt7k1TSqpfdi4uLkk6nJZFIyKVLl2R0dFRSqZSMjo6W3Re63B9Uui6X1tNax2JQN4Ptr/d3AAC0Gw0ZAADUaXtPhUpKXwBYX26MjIyUfbkZxt/09LREIhFJpVI7hn3RVOp1EqQlcveFfTDMSViCFxLRaLQ4lEk6nS57mdZIfBiCl22lLyUC2Wy2uL8rLW9ULpeT0dHR4svi9fX1sv3UqOAlx/aXeaVl2WjjUJjDQJQOd5NKpSSdTpcNERSG0hc51hfDGxsbDb8ACr4ML7W4uCiLi4tlDTiuDZSaevfP0NCQTE5OysrKSscO62VVqexdlB4/wdBJlVR6udiOdDVh1LtEIlHMV3AOnZmZkVOnThWHwyoUCmW9/Sodx8E1p1l1LMijyzmk24e2CRqZgmGa0ul0KL1dcrmczM3NFcsyrB40hUKheO4fGRmp2SgwMjIi+Xy+2CMiGPKwmSYmJmRlZUXy+bzk83lZWVmRRCJRvF9xrbuVrsuRSKT439euXav629Lh/xr5HQAA7UZDBgAAdarUU2G70hca7fqiLZlMytLSkmQymbrGgg62c/sLnenp6eKDcNi9MoJyC15Kl351H0Z8GPkrFApVvwYufbkS5sv0YB6QgYEB6e/vl3w+X/ZiMcz1iOwcB770y+hGhxXbPgRRNcGwM7WUjmkfzMexfSz/MFSbB6GaTCZT98vw4AX19nlgAiMjI7K+vl48poOXhWGpZ/8EQ+hNTEw09fhrtkplX6+gHGp9hR7UJ5e60qx0Kwm73pXOx7C0tCSHDh3a8ZI7nU7XfJEeDFfWjIZikY/LrtocJJWEeU5rh0rn0TAaioLeCEFPzlwuF8q8YcF9VyQSKeslWsvExITk8/niEFOlPVZbYXV1tVi3XK9R1a7LwQcGta7HQQ/KoFdHI78DAKCdaMgAAKBO1ebHqBbTjHG8NUtLSzI3NyeZTKauF4ulL8kqvTAqndQyrBfHrmMyN2MMZ01QLpUmmc1ms7K6uirRaNT8csWyvng8LkeOHJFYLCb5fF7S6XTTtndlZUUikciO7Qvmfgk00oBV+kXos88+W3V4i2COE8324Wea8aV28OKnUCiYGnEuXbpU93Ef1LHS36fT6R2NKKlUqpival/n1zO0UD37J3h5a5nAtpNVKvt6lc49UK0BLKhL1c6hlfZfGOla1VvvqinN+7PPPluWv+C4XV1drfkifWlpKfReV6Wy2WzV+Y+qCfuc1g7BOT+ZTJb1nqml1vklaCQI5lkJGsCSyWRDPVdKh6h6+eWXK+azVgNF0CC3uLgor7zyivT19UkymWzqsIGFQqHY+BL0GnRR7bocHE/VGjVLP7worc/1/g4AgHaiIQMAgDpV66lQujz46nJkZKQtD4LPPvts1Yd8i9Lhgyq9eCnt+VA6T0UjIpFIMb+VhkvKZrNlLxhd4wOTk5MSj8frGhYrWE+lYVVGR0clEokUXzo0YmlpqTiR9/Hjx4tfkjaa7vnz56u+SMpmszI3NyeLi4sV1zMxMVFszMhmsxKPx2vu91rLShvC4vF4WeNAkHYw3IymtLdRrWOtkf1eWvZHjhypuW2jo6NlX5pXU+nFWfDVbmmvp0ClceCDr2VLvx4v3Xel5epyjLrun+CF5vbJvUsnYd++vY3M3xCkVWtoFMvvS9Uq+3qUplNpnqSgIWL7+rT9V2+6mmr7w1rvLKLRaPF60t/fX3ZtiUQixf8eGRmpeA4Kjt1mfRwQ1IF6rp31nNPaeQxsFzQqFQqFmuVrOb/kcjlJJpNl1+XSc2gj+y9oRE8kEhWHj1xaWjLtu0QiIZlMRhYXFyWbzTa1QePIkSNSKBRkYmKi4jWq3utyNBotplfpuhbUye3niXp/J9K8OttJxwIAoEP5AADAWTqd9kXEFxE/Eon4+Xy+uGx9fd2fmJgoLh8ZGWlbHmOxWENpRCKR4nasr69XjJmeni7GJBKJhtYXSKVSxTQnJib8lZUVP51O+yMjI/7ExETD8YuLi8V4ESnbfxbB71ZWVor/ls/n/Vgs5icSCef0tkun0340GvWj0aifTqcbSquS0m2fmJjw19fX/fX19WKdyWQyahqZTMaPxWI7yn19fd3P5/N+JpPxU6lUsQ5VS3dkZKQsP9vz5iKoi9Xy3+h+D7Y7Go0Wj/2JiQk/nU77mUzGX1lZ8aenp/1IJKLWg9Jjq3Qfr6ysFNPdLjivlNY73/f9RCJR8VhPJBLFfKZSKT+RSJT91lLOLvun9LwXjUb9kZERPxqNlpV78O/B+STIY6VzR+nvtm9zaRm6nmPrKft8Pl/8TSqV2rG8tKy3W19fL9aZ0t8G/16t/LX9V2+6tcotOKZL65NrvbMI9u3i4mLVZZX2ebDeWtcki6DcEolEWTqLi4t+JBKpet4N+5gp3Z5WHgO1JBIJPxqNmuJq1c9YLKZefysdS5rS80ylOhDU/2r1p5ZMJlPcf8G1sVHr6+vF42p6erpqXKPX5ZGRET8SiZTleWVlRV1vPb9rVp3ttGMBANB5aMgAAMBBPp8ve4gu/QtejESjUT+RSIT2EFyvRCJR10sC3/+4EaR0+2KxWNlDbSaT8ScmJspeClaKq1fwMj8o04mJiZoP8i7xQaNDkOdKL9OqyWQyxZc3IyMj/vT0tD8xMeGPjIzU9eKkVPDiP3j52yyLi4tl2x+8eK+n0SSTyfjT09N+LBYr1oVgG0ZGRvxUKqUeB+l02k8kEn4kEinmpZ6yDPartrye/V4tz0GdK31Jb8l7UFbpdNqfmJjwo9GoH4lE/FgsVnU/pFKp4kun4ByTSCSqHm+lL9BisVgxX6lUqizfwYuzauXhsn+Cc0LQIBA05gSNjcELxuD8sT0PwTFb2ggW/C44n62srBRfeG1/8WfhWvbbj5fgBV8+n/fX19d3vLhOJBIVzz3By95oNFps9KxVV6rtv3rTzWQyVcut0nYEDU6u9c6qVsN3tWVBg1KjjfS+f7fcgvNW6TmrUj1qxjHTzGOgWkNK6V81i4uLpmtBtfq5srJS/Pftx8L6+vqOfI+MjBTPE5Z8b7/vKv0rLS9Lg3ytbQv2zcjISN1pBR+9RCIR9boQxnU5qHcjIyN+IpGoei6q93fNqrPtvB4AALqL5/u+LwAAYNdJJpNy6tSptk0y3i0GBgZkcXHRPNZ6MpmU8+fPlw2xFIbJyUm5evWqpFKpjh0/fTdx3e9h6+vrk0KhIOl0mvHHW4yyB2BRKBRkZmZG5ubm5P333zfdT2Wz2eIQUbFYTI4fP15x+CsAAOBub7szAAAAmqPSuMYol8vlJBKJOL3MDuZGCcaHD0uYjSKorZ79DgC4t0QiEUmlUk73U7FYrGx+MQAAEB4m+wYAAPekYDLTShOE1xJMbEqvie5U734HAAAAALQPPTIAAMA9aWZmRhYXF52G3gp6Y0QiEYbs6lL17PdmKBQKbV3/vYyyBwAAALoPPTIAAMA9KZVKOb3MzuVykkwmReTui9CgZwa6i+t+b4a5ubni/0+n05LL5dqYm3sLZQ8AAAB0Jyb7BgAAMFhaWtrxb9FolHkW4GRgYKDiy/NYLCaZTKYNObp3UPYAAABA96IhAwAAAAAAAAAAdCyGlgIAAAAAAAAAAB2LhgwAAAAAAAAAANCxaMgAAAAAAAAAAAAdi4YMAAAAAAAAAADQsWjIAAAAAAAAAAAAHYuGDAAAAAAAAAAA0LFoyAAAAAAAAAAAAB2LhgwAAAAAAAAAANCxaMgAAAAAAAAAAAAdi4YMAKgim83K3Nxcu7MBAAAAAAAA3NNoyADQFtlsVpLJpIyOjsrAwICcP3++3VkqyuVyMjo6KvF4XNLpdLuz01bBforH4xKPx9udna5D+QEAANSPe6nWoJwbQ/kBQGvQkAGg5bLZrBw5ckRSqZQsLi7KyMiIrK+vtztbRdFoVBYXF9udjY4Qi8Xk+PHjks1m252VlsrlclIoFBpOp1XlF1Z+AQAAOgn3Uq1xr97zi4Sz76mnANAaNGQAaLmZmRnp7+8v/ncqlbrnez50slgs1u4stNzo6KhsbGyEklYryi/M/AIAAHQS7qVa41685xcJb99TTwGg+WjIANBy9+KXPugeo6OjXVVHuy2/AAAAnYR7qXtXN+37bsorADQLDRkAWmZubk5GR0cll8sV56EYHR2V1dXVYkyhUJDJyUlJJpMyNDQkQ0NDZcuXlpakr69PPM8r3sitrq7K6OioeJ4no6OjxXTm5uYkHo/L0tKSrK6uSjweL4spFaw3+HOdsyObzcro6KgMDQ3JwMCAJJPJsrRd8lIrraAMgnKZm5uTvr4+mZyc3JFOsC0DAwM7bnxXV1eL5Tg0NFS2bG5uTjzPM5WBtr+2xwT5KZ1EXVteyerqqnieV1aG2WxWBgYGxPM8icfjZdsU1I9cLlezDJeWloq/m5ycND0waPur0d+W1s2gjIM81cqvVk+0fedab+vZxnYcG604LgAAQGs0ei8a9r3fbr23adc9f7ANnXDfzz1//du4m5+HAbSYDwAtFo1G/Wg0uuPfM5mMH4lE/EwmU/y3dDrti4ifSqWK/zYxMeGLSFnc+vq6LyL+yMhI8b9HRkZ8EfETiYQ/PT3tZzKZ4m9L01tfX/cjkYi/srJS/LdUKuWLiB+LxdTtyWQyfiKRKP734uKiLyL+xMSEc160tBYXF/1oNFr8t+npaT8Wi+3IZywW86enp8vKRkT8aDRaTCvYxtL1B/Hb06tUFtb9NTIyUsxLEOOyvJrp6WlfRMr228rKii8iZekFaQb/ppVhkO76+rqaB21/BaqVn/bb9fV1PxqNluUlEon4kUhkRzmUxmjbaNl3LvW23vJp9bER9nEBAABao5n3omHe+3X7vU0n3vP7fvvv+7nnr63Tjgvf574f2K1oyADQctUaMmKxWNlNS+m/l960BTdxpTdk+Xy+rCHD9z++6dl+YxLcQAVGRkYqrtfakBGLxcry4vt3bzxFxM/n8055saQV3HBtv2kPBOsqTSe4Sdx+kx7czJVKpVJ+Op3eEVfp5tCyvyKRyI68lpaDtrya7Y1Xpelt36aRkZGyba9Vhi4Ps5b95fvVy0/7bSwW21EWQd6DmGr5rbWN1n1nrbfVdNKx0YzjAgAAtEYz70XDvvfr5nubTrzn9/323/dzz19bJx0Xpevivh/YfRhaCkBHyOVyks1mK06SFnQTrXdC8EgksuPfgknScrlcsWtqPYJ8z8zMFIfKKu0ee/XqVae8WNIK0vjMZz5TMU/vvPPOjn8r7YZdamJiQnK5XFn34ldeeUWOHTtWbZPL8mrZX9FoVM6fP1/WNXd6err4/7Xl1USjUYnFYrK0tFQxf0F38kKhIIVCQaLRaHG5VoYWrvve9bdBTCKRKPvt9PS0+L5fsS6VqraN9RxrteptNZ12bLTiuAAAAK0R5r2o6zrvpXubTrjnD37brvt+7vm7655fhPt+YDfb2+4MAIBI7QnADx06JCJSvEENU5Bm6c2uiyDfi4uLDefFNa1qN7XBDd3q6uqOG9ft/51MJmVubk5SqZQkEgkpFArS39+v3jC77K/FxUWJx+OSTCYlnU7L4uJiWT605bUE454uLS3JyMiIzM3NybFjx2Rubk7S6bSkUim5dOlS1fFdte2spZF9b/lt8KDWSB4r/b5Vx1qnHRutOC4AAEBrhHkv6rrOe+neplPu+UXad9/PPX9tnXZciHDfD+xm9MgA0FEKhcKOfwtuIvr7+0NfX3Dzpn1pov0+jJvAsNIaGRmRRCIhMzMzsrq6KoVCQVKplExPT+9osIlGo5JIJGR1dVVyuVxxQnYry/6KRqPy/vvvSyKRkFwuJ/F4vGxiP215LRMTEyLy8ddEwUNMIpEoppFOp4txYWpkf1l+G2bdqqTZx1qnHRutPC4AAEBrhHEvanUv39u0+55fpH33/dzz19Zpx4UI9/3AbkZDBoCOEHwZUdqlMxDcfA0MDIS+3uBGJpPJNPT7St2cRSpvTyvSWlxclEQiIdlstviFSSqVqhibTCZF5O6N/8rKiunm32V/5XI5iUQisrKyUvy6JujObFmuGRkZkdXVVVlaWpJDhw5JJBKRyclJKRQKcv78+eIXR2FrZH9ZfhuUcbUvkuq9wW/VsdaJx0azjwsAANAaYd6LWt2L9zaddM8v0p77fu75a+vE40KE+35gt6IhA0DLbWxs7OgBEYx7WjrGaeDq1asSiUSKNxQHDx4UkfKbutJxUV0EN7tzc3MVf6ulF4xlmkwmd3Tfdf3SK8y0RkdHZXFxUaanp2V6erpmt+1EIlEcs9bahdZlf5XeMI6MjBS/ogp+py3XBA9Ao6OjxZvQkZEREblblvU8qIo0d99bfltaN7fftCeTyR1fUFnrvsu+a0QnHhvNPi4AAEBrhHkvGujG+/576Z5fpD33/dzz19aJx4UI9/3AbkVDBoCOsbi4WPyqJhB0A3355ZeLNxXBTUgymZTV1dXiuKgid7/SCCbutgwXFYlEipPMxePxYpfS4MY4l8uVTUin/X50dFTOnz8vQ0NDsr6+XrwZqycv1dIKbl6r3cQGN8HB7+fm5mRpaanmOKnB9h4/flzNZ8C6vy5dulR28xxMwBd8caMt1yQSCYlEIsUb0MDIyEjxBn67WmUYfJmUTqeLk8FXYt1f9f42EokUH/iGhoaKD2zxeFwGBgaK5Vstv7W20brv6h1yzaV8WnVstOq4AAAArRHWvWjY93677d6mU+75Rdpz3889f22ddlyIcN8P7Go+ALRIJpPxJyYmfBHxRcSfmJjwV1ZWymLy+bw/MjLiJxIJf2Jiwp+YmPAzmcyOtFKplB+JRPxIJOJPT0/7vu/70WjUn56e9jOZjJ/JZPxYLOaLiB+NRv2VlRU/n8+XrT+VShXTS6fTfjQa9UXEj8Vi/vr6ejG99fV1ddtSqVTx99Fo1E+n02Xb7ZKXWmktLi5WXRYI8h6kXfoXjUb9fD6/4zf5fN6vdEnYvs9SqVTZ7y37K5FIFMtyenraHxkZKUtDW26RSqV2rDeTyVQsH0sZxmIxPxKJ+BMTE6Z119r3tcqv1m9L8xvUn1gstuOYqZRfyzZq+8613tZbPq06NsI8LgAAQGu04l7U98O99+vGe5tuuecPyqwd9/3c89fWKceF73PfD+xmnu/7vnvzBwCgU2WzWXnllVfk1KlTsrGxIYVCofgFzOLiogwMDBS/dAmsrq7K4uJisWcLsNtwXAAAgN2EexugMo4NYPfa2+4MWORyOafuhgBwr8rlchKPxyWfz0skEtkxxmc0Gq04SVo6nZZTp061KJdAa3FcALhX8NwE3Bu4twEq49gAdreObMjwPK/sv2OxmGQymeJ/Z7NZmZmZkWg0KoVCQYaGhooTPLUjBgA6RTDu7LPPPiunTp0qjhOby+VkdXVV1tfXi2Owrq6uSjQaLU4AV2sCNKCbcVwA2K14bgLuTdzbAJVxbAC7XLvHttounU77ExMTfiqVKv6Vjt+3vr7ui0jZv20fF6+VMQDQaYL5Q6RkLNDt46yurKyULbfMAwJ0M44LALsNz03AvY17G6Ayjg1g9+q4OTKGhoZkZWWl5nIRKYuZm5uTyclJCTallTEA0KmCsUCrDTGRTCYll8uVfakC7HYcFwB2C56bAIhwbwNUw7EB7D572p2BUktLS3L16lUZHR2Vubm5HcsLhYKsrq4Wb5QDhw4dEpG7N8utjAGAThaJRGqOk51KpWRxcZGbNtxTOC4A7AY8NwEIcG8DVMaxAew+HdWQsbKyIoVCQZaWlmRyclL6+vrKJuG5evWqiMiOE1Fw0llZWWlpDAAAAAC0Gs9NAAAAuNeE2pBx48YN+eCDD+QP/uAP5IMPPnD+fTqdFt/3JZPJyMTERHGSuGCynuB/I5FIxd8HE/S0KgYAAAAAXPHcBAAAALjZG0Yif/AHfyC/8zu/I2+++aaIiPi+L57nicjdL3HOnz8vjz/+uDm9WCwm6XRahoaGZHR0VJLJpCwuLsr6+rqIiPT391f8XaFQaGlMNT/5yU/k93//9+Xnfu7n5BOf+ETVOE1vb6/09vbW/XsAAADAYnNzUzY3N+v+/U9/+lP5D//hP8jf+Tt/Rz75yU+GmLPdheemj/HMBAAA2m233QP/2Z/9mfzkJz9pStqf/OQn5a/+1b/alLStGm7IePXVV2VmZkaOHz8uyWSy7AZ2Y2NDMpmM/OZv/qb8+q//uvzar/2aU9ojIyMyMjIi2WxWREQGBgaK6VYSjUZbGlPN7//+78uv/uqvVl0OAAAA7Ebf+ta35B/8g3/Q7mx0JJ6byvHMBAAAdotOuAf+sz/7M3n4r/01+Ysmpd/b2yt/8id/0tbGjIYbMq5evVocF7WSI0eOyPT0tPzWb/1WXekPDQ0Vx3sNboKrfdUTjUZbGlPNz/3cz4mIyJ6Z87LnF3+xatwv7v83VZeJiHi9e+X7/7s/rhkjPztZe7mIfOLg/17+16/+o5oxmcuH1XT+r0cn1Jj/Jv6bSsSXRb7wL9V05IoeIv/xTwxBf1Bj2SUROWYqQ/mPacO6/rYhppr/JCL/UER+VUS0L8oM6/nZTzeQFxH58BmR+1+1xRrKJpMxlHEVzzzzjLz66t28xOOW/WBRuwwzmcrlV5oXi3i80ToaqJTfoM78MxH5S8Z0LOqtx18WkW+U/HdY+anHR8d2USPHZql6tml7XkQs+alWB0u51a9NEfmWVD7HhJUf1/Pk9jojUv/xUM49v5X2k43l/OZ27qo/L9b8WHz44Yfy+c9/Xr773e/K/fffv2O5+/6u4guG69W3g3XVKpuQro3Ga5p2PbCUj63u6Mf5gw/+ltO1qZpGv0b74Q9/KL/xG79RvA/GTjw3lfu4riRF5Ocrxuz0ryv8W89HfxaNnWMDLufaZ555Rj744ImmpF1tfdXOCbZ7h1LadbnW/UVt9W6n5X48vGcGke11xiXfrvmwXF/qTbvqM6//ociHnxe5/7si3t3rfWbNLWkXd/NtPw7DuK+pVqYuZeh6zIdxXa6mPN+1j8Gw7gu3cz2vNa52nQl7O5u9DwPxQal4DFZkeif1sVplsn376jlXWcUHxen9ksv5p/Y1zeVZc+ujv49997v/J3M+Ouke+Cc/+Yn8hYiMiMhfCTntPxeRpc1N+clPftLdDRkHDx40xTXSvebQoUNl/7t9nNXgv+PxeEtjqgm6Ru/5xV+UPYf/i6pxkX6v6rKP3ai9eG9MTWHPfb3ys7GHawf9sZ7Ow7GfVWNEfkFZvk+kX1+XrWZagmo1BO0VkQdMZSjygCFG2/ZaPvzof/9XIqJ1rTesZ+8jDeRFRLz7jOUiYimbYLLHetx3330lv7fsB4vaZRiLVS6/8rxYNFpHA5XyG9SZnxeR+43pWNRbj/dt+21Y+anHR8d2USPHZql6tml7XkQs+alWB3emrQny/NOP/rfSOSas/LieJ7fXGZH6j4dy7vmttJ9sbOcEl7Trz4tIY+fbUjdu3L3/ePTRR2X//v0VIkK6Lva77KtaZRPWtdF2TdOvB2FdG/Xj3P3a1FyNDBG02/HcVO7juvLzIlL92arcnxnjqmnsHBtwOebuu+8+p3U2ejzXPie4Pv5r1+Va9xe11budtnNeWM8MItvrjFu+3fJhu77Ul3bVZzv/o/cNex8V8fZ/lA+3pN08IC7HYRjXt+pl2pzjsvnX5dJ81z4Gm5UP1/Na42rXmbC3s2X3Vnul4jFYmfv5pJqd2xde2jvsFaf3S27FXuuaVu+z5l1/62/9LZeMiEhn3QP/FWntEdpKDU/2/d5778mpU6fkT//0Tysu/+CDD+Sll14qjp3qamVlRSYn77b2RSIRicVisrKyUhYTfHl07NixlsYAAAAAgAXPTQAAAGi2vSLyMyH/hTLJdggabsj4vd/7PXnvvffkoYcekp6eHjl48KB8+tOfloMHD0pPT48MDAzIO++8I//kn/yTmulks1mJx+Ny/vz54r8tLS1Jf3+/jIyMFP/t5ZdfltXV1bIvflKplKRSKYlEIi2PAQAAAAANz00AAABA/UJpUFlcXJT3339fMpmMXL16VQqFggwMDEg0GpVYLCYPPfSQmkY0GpX+/n6ZmZmRlZUVicViMjQ0JOl0+VhtsVhMMpmMJJNJiUajksvlJJlMysTERFtiarn9X/4vIvJB9QBfT6P32nM1lyf7X1DTOPfzf0mubChzYJzU83J0/Hf1oD5l2Ibr+0SW9WRMThiGiFiotfD/LiJPi+Tf1dPpO6PHaOnUyu9f3BBZEhH5L+XuMEENyp9tMIEf303jhGG7F55WQ7x+NUT8yvNDbqOvS62DImr5eFVHfbslnmeoL22hl43v62XjeXrd8f2d9eJv/I198u/+3cfpVy/DEoZj2J83pLMjL6/Iv/t3hrpbIrT9uv2Y+f1XRP5O+b9ZtsmWn9fs+aohrHrhuq7tdeYuQ14M5xNbXj7eL/XUmWJ+6jxm6knHcpyHta9EhkRE5MCBfyP1XpcsdcvCq3ktDxiOh7weY99XPw6xrGvlRy/Dv/E3mp4NhIjnJgAAADRTj4Tfg8I6G1mzmbarp6dHotGoJBIJSaVSFcdKfuihh+Shhx4q+wrIRSQS2dEduZpYLCaLi4sdEwMAAAAAPDfx3AQAAIDmMDVk+L4vKysr8uCDD9aMe/PNN+X999+X48ePy8/+rGViaAAAAADYHXhuAgAAQDsFc2SEnWYnMM2REY1G1ZtxEZEjR46I7/sSiUTkV37lVxrNG0LS839+tt1Z+Ni+qXbnoMTxdmegg3223RkompqiznSDTtpPnZQX+XQH5aXDdNJ+6qS8dNL5t/N0Utl0Tl46q/6C56ZO1/pjt9XH6G4/J7R++1pbZ3b7/rtrd5fpvbAPOQ67W8u3ry3vAXl3s1uZGlSi0WjZf7/66qvyyiuvyGc/+1lJJBLy6KOPFpc9++yzcvXqVfmn//Sfyr/4F/8i1MyiPj2/1kENGZ/opAsCD43V8YKmMupMNZ20nzopL/LXOygvHaaT9lMn5aWTzr+dp5PKpnPy0ln1Fzw31eEfDYj8gnFOnXF7smHN09OoqakpOXnSPqeO6/w72+f2qX1OcJtfS5s36MaNG3LgwO/I9eunKg6jFpbtZaKXp2FevSKtTMrP9y77xzLv0nbWc7pr2tXz/dO7/1OYEZFPfPRvYaW9Uz1l0qhqZdqsvExNTTW1TErjW3UMbjc1NSWddPvRjHnLPj7PuJxP3Pj+I3LjhsiBAyLX/1Sk1i70PLd8aGVSeh4N73yy09207ZXFbe7KWufvfTuWt+P80y73/BwZ3rZZW5955hk5cuSI9Pf3Szwel0QiIadOfXziTKVS8vLLL4efWwAAAADoUDw3AQAAoJ1289BSdecjEolINBqVN998c0fLb7AM/1pE/qzG8s+pKWwe/GbN5ecs3aVOGFrmL+ghg2M/UmPWxgxfPi0YWm/7DC2ly3qI6asjy7ryhlbhPmXba273R1/CjPyiyM8o+8uy3XnL11aGFv0nDcmIZZ/r5bftub8yrYyNtJZ4r9+QiKVOmL560/dDpS8K7359I3L9+i/K/v37TV9FeJ6eH8tXCqavJAz7yp/Xk9HX5fZlYXWW/RDOFxy2L1gsX9wYYoL94N8QKfyOSOSUiFfP11qW/Oj7Qtuflq9n/Q1DVgws+6HzvtoJ6xgO46u15n2d1vFOGOqF4V7H9sVZOPsc7cVzEwAAANA40xwZKysr8pWvfEX+4A/+oOzf+/r6qnZfi0QiDWcOAAAAALoFz00AAABop2BoqTD/umpoKZG73Z5TqZSIiAwNDUkikagZf/DgwcZyBgAAAABdhucmAAAAIHymhoxIJCLHjh2Td955R77//e/Ld77zHVlZWRGRuzfeiURChoaG5NixY8UvjTY2Qhr7AQAAAAC6AM9NAAAAaKfdPEeGaWipU6dOye/93u9JJpORO3fuyMrKivzar/2aPPTQQ5LP52VxcVEmJyelr69PPv3pT8sXvvAFyWazzc47AAAAAHQMnpsAAACA5jA1qPzmb/5m2X8fOXJEjhw5IiIi169fl0uXLsnKyoqsrq7K+vq6rK+vi2eauRcAAAAAdgeemwAAANBOwbwWrr4tIt+psmyz/uyEquGeIQcOHJBnn31Wnn32WRERef/992VxcVFOnTrVcOa6VW9v70f/74iIPFI1bq2/+rKiE8M1F5+ef0FN4ty8YT1v6CEypof0Xrihxmwun9ETyr9ryNBrekifYV21i/iuBUNM/qwS8HSNZZsiUhBZ+p9EpLdGnNEJw3YvaPkVkZOGumPaVzrf19fleYY8W7Zdo+5Lkdr70x5j2e5K9u3bJ2fOnJF9+/bd/QdLXTdsl+cZ9mefpV4Y1tVv2Ve1j3Pf19Ow1Btb/dPLxrY/LXVH55bnTRH5dZFCpXOMJc+G820I5x3PM6zHwnA8WOqORVjpdJqf/jQuMzNn5NSp+MfnmSYwndcvGsp4PJxrkSk/lmPYUgcNowmFdky0QHD/+/F9MLbjualcsa7spc50qx33o+hCe0Xk89I5g4bABcdg92Mfdr/ddA/8hY/+KnlfRDrhjjX0q9VDDz0k09PT9/SXRR9X3t8SkWono+Nie3mEe0OviPzX7c4Eusi+ffvka1/7Wruzga7BOQZuOMegktnZWZmdna247ObNmyKyOx7iWuVef24q1pWvHZXqj6Wf/ejPXSc1BLo0etsaVOvl9jGFLS+enD37O/Vlx6i5Hw24PZN7/U3Khrjte9cy6ZQPL0wfTZVw+ejL9dhpZpm0qry1+7Vmnk9ct9Fl39f7sZ8tbdd8u5Sh6zk2KJO/J2fP/vuasa5l4lk+nK6bfTvd66BDGVo+5qwzL9vrSbfdA+/mOTKalo/t3arvTd8QkV9odyYAAACAhk1NTcnU1FTFZdlsVuLxeItztDvw3HRMRB5odyYAAAAq6rZ74N3ckGGa7BsAAAAAAAAAAKAdOqVBBQAAAAAAAAAA1KlHwn/h3xNyevWiRwYAAAAAAAAAAOhY9Mhopn/8aZGHqk+wMzi2rCaRlFTN5Uf739LzMayHyII+8dLagmHs2r79hpWFxHFin6r03WCaWEmdUPCEnkbvhRtqzObBb6oxstDCyQ0vGiaRGtcnVTJNRnVR3+f+mJ6MZ4jRWcpYn6jKNOmZoe5IXi9jy8RmpgkM83qeTesyTLalpRNGGtZ0TPvTUn6W/Wk4J4e37WHtT7fJGyuzTO6mH3v+hp5KWPvcdi7QhTUpZDj7IZx0TJMShnVeHw8pP46TvjYirGMYAAAAAALMkQEAAAAAAAAAANAGndKgAgAAAAAAAAAA6sQcGQAAAAAAAAAAAB8pFAqSTCYlmUyqsaurq9LX11f3umjIAAAAAAAAAACgywVzZIT5V62Hx+rqqjz77LNy/vx5KRQKat4mJyfr3SyRGvkAAAAAAKBznDhjDvXn3ZL2vLOOmWlW2k83LR++/4jjL1zjdz9/o4lp+/b63Uk6Jd/NzIf7+cHlOH7NKWWX7eykMumUetLcfenG5Zzc3Hw381zfvPLrfe+GU/yt/s6og63QyqGlEomEJBIJ8TxPTSOZTEo0GpWNjfovpjRkdLv8u2rI6flX1JhzC8f1dfUZTm6G/JjSaSVDng3Ho4Rxgt48+IEa03vtuVDSCc245YIa0sVr3LCvDBdh7cHWW9Dza7np8DzD8WCxHE4ypvyYjk/9ZtvrN+wHw82s169F6PuqmS8m6mF5seItWB5oLNuu73P3lxrV6HnW9rltXxm2W603xvrXwrpjybPpGmtg2/ba6zKdA0PaJm/ckI7pJUBYedbrhaWMw6qDnfJiAAAAAAAqWV1dlYMHD0osFpOrV6/WnQ5DSwEAAAAAAAAA0OVaObSUVTqdlunp6QZToSEDAAAAAAAAAACELJlMSiqVCiUthpYCAAAAAAAAAKDL7ZWdL/w3P/qrV72/zWazcvDgQYlGow2s/WM0ZAAAAAAAAAAAsAv9DyLye21Y78zMjCwuLoaWHg0ZAAAAAAAAAAB0uWCOjFK/LiL/sIE0/1hE/o+Ov0kmkzI0NCS5XK74b8H/D/7XtacGDRnN9LaI/Nvqi9/65FE1iX2HrisRH6hpnBt7UY2RE3qILBti5DU9JB9SOvKIYV3vhrOuE2f0mIXa6/Ln9SS8ZX2bNg9atskipDKWp/WQE5Z0LMJJxzPsCzUNL6S61WeoW8OGVS0Y9kOfXn7+hp6M5xnWZeCNGYLyZ0NZVxgG/R+pMWuevs89z7AyQ72w7StL+YVzXPm+nmd9n+t1y/f1/Fq22+s3HHuh7QfD+aKFdd1UB9U09Pxa6kRo53XDsWcS0n4Ir3wAAAAAoDG9H/3V6y/V8ZvV1VU5f/58xWUDAwMSi8Ukk8k4pclk3wAAAAAAAAAAdLke+XiejLD+eurIRyaTEd/3y/6mp6clEomI7/vOjRgi9Mhorj98RqTnvsrLPj3V2rwAAAAADZidnZXZ2dmKy27evNni3GD3uCTVH0s/+9HfXZYezgFbr8SPufSSck27mVzy4toTzNYDORBSz7gQuO1Lt97ulp6h3c69frv01narJ51yXDa3F6VbnXLbTree9C712/180sx8N6+euJSJa9puPYpdR0VwSbt557Xeaw86xW8+vN8eaxo1poRlRIgquu0euNLQUmGkWU2hUAh5bdXRkNFMf/NVkf5YjYCTLcsKAAAA0IipqSmZmqr8MU42m5V4PN7iHGF3OCYiD7Q7EwAAABVxD1xdNpuVdDotIiKXLl2SoaEhSSQSEolEmrI+hpYCAAAAAAAAAKDLBT0ywvyr1hMiFotJOp0W3/cln8/LyMhIzUaMVCol+bxp8uSq24Zm+fafSK0i3ndBm8hbZPNk7W5VlslnH5NX1BjThOAhTThs6Vq2+XBIXTcvGrrInTTEKBN5i4g6kbJtYuPG12N2wZDOuKFrZAgToYtIiBNRhzAJd2gT/BqyYjquQppYPG/pXhrSsWeZMHc5jHWFNDm04fh8y5Id37JDdabJqkOaNNwitImL1e6/4UyWbpp4PIxzhYh4Y4bttlyLxvWQsCY6N50vlHO7Px9WXiwsx3krJ84O57xjwYTgAAAAAHAXDRkAAAAAAAAAAHS5YLLvsNPsBAwtBQAAAAAAAAAAOhY9MgAAAAAAAAAA6HJ7e0R+xjIUtUuavohshZtmPeiRAQAAAAAAAAAAOhY9MgAAAAAAAAAA6HI9PSJ7Q+660HNHOqJHBg0ZzfSPPy3y0CNVFx/uX1aTeGz+7ZrLz82/qKaxJsNqjMnCWUPQ02rE5sEP9GROVC+3oif1EJP8uyElpFgIaT0XDDHjhnWNv6bHnDijx4RULyw8z7BdlrqzbIgJQ59hPSHVC9837CsDUxlbtitvqF+mY0+rO/p6vDHLftDrsbdgqMemsrEcMzrLPvc8w3Z54RyfFv5G7eWeofur7+tlbKnHlnRELOsy7M8Fw6oM51vT8RkW5ZjwLNsU0rlfLoa0H/oM50lLjOkYbmU9BQAAAIC79u4R+ZmQZ+fulAaETskHAAAAAABVmRotW5C26wckbmm7NWB6/c1s8DR8mFLk1njdzIba5u5Ll48KXMrPTVgfMbU6bUtDfymX8m7mcemqmWm76KQPIppZr5q6L/ublrS4nTebdz7xxhx/YPl47yObDzum7fShcefUb7QODRkAAAAAAAAAAHS5vXvvTvgdapohTx5eLxoyAAAAAAAAAAC4R/2TWyL/ZLPysp/6rc1LNTRkAAAAAAAAAADQ5fb2iPxMHW/8f2OvyG/85crLsrdF4tcby1cYQp7DHAAAAAAAAAAAIDz0yGimt0Xk31ZfPDh+VE3ia/K1mstP+y+oaZzrf1GN6X3vhhqzuWyYnGlYD5FlQ4xB77Alz/v1hC4aJgga1yccOr1Re1+c847r67E4aYixbNMbhpgFy0RLhgmqHCaDqulESHlW8uNv6El483qM5C2TjunlZ5mkzZQfQ90xrcsw6Z5lMjdbOrXz41nGaTSdcywTrRkmWMuHta5w2PaDXk/DmpxPn0hOL5uwJtwLa1LAsOq6bV2Wc6nlGA5j28M5ZkKrW+N6jOncHtK+Cm/Sycb3Z3MnbQUAAADQUfaISMhzZMidkNOrEz0yAAAAAAAAAABAx6JHBgAAAAAAAAAA3a5Hwn/j3yE9MmjIaKY/fEak577Kyz491dq8AAAAAA2YnZ2V2dnZistu3rzZ4txg97gk1R9LP/vRHwAAQHt03T3wXqEhA3X4m6+K9MeqL89YJjsAAAAA2m9qakqmpip/jJPNZiUej7c4R9gNMpk3JRar8czUIi5z5LjOg9PUuWpMc7IFmjlnjmEusRKe5xbvwqW8m7svQ5onsILw5mJqXDPrt21+sM7TzDJx2ffu9cRlLj+3Y7i59aR5x7zkHeZP63PcRqfzd/P4lvk2S7iUoft+tx/zznMnqvM1Vsc9cOegIQMAAAAAAAAAgG7XjKGltkJOr040ZDTTFalZwl+/dl1NoldZfm5sv56PYT1k86QhHUNL9On5V9SYw3JFjTk6/5Yas3nwm2pM77Xn9HQeNmx7n94qfK6/dkzvtRt6Xpb1vPQOG9Kx7M9lPcSy3U5fKNRiqKeyYFmX4cuQvBZg2O43DFkxfdGi59dT6paIhPg1h+GLiRN6fkxfRxjql/Z1pOUrLdsXluF8FRhefnThfYnn8uVVdaZ9rp4vLMevHmP78iecfWXZD5b8mNa1HM5XiWF8EWerx3rdstVjQx292MyvjLfT89PKc0FTv/QGAAAAgA5BQwYAAAAAAAAAAN1uj9ztlRF2mh2gQ7IBAAAAAAAAAACwEz0yAAAAAAAAAADods2YIyPsHh51okcGAAAAAAAAAADoWPTIAAAAAAAAAACg2+2V8N/4d0gLQodkY3eKr12Rn439eVPX8dj822rMubEX9YQW3g0hNyLPb72kxhz41C01pve9G2rMZt8ZPebgWTVG5Gk95MQjesyTWl4+0NPo09ezKfv1dPKG7TaUnwzrIbLwmiHIUH7LhmQsDNul1S/PsxwPlu3W+b6eX6/fklI49di2LoMLhpjxxo9PW34t+8pQfoZ0PC+cY8/f0JPxPMN2hXScm7bLQstPPpzjypJfy7EX1nEeVr0wndsNvP4Q1nXCkEZI9xYm4/q6vHFLQuGcL2zXEQAAAACAFQ0ZAAAAAAAAAAB0uz0S/pwWHTI5BQ0ZAAAAAIC2iMfTIvJA+AlberqV8H1DD+Iil1g37j26LL1Km8/W0/FjLr093dNuXq84l7Td6lRzy6RZ+eiktJtZJq6aWU/cuJ4fwumNXIlTz3/HXsjN3fcOZRJS7/LKmrcvvTHHpB2ur808Hw/6P3L8hWXIkV2izsm+Z//87l8lN+80lKPQ0JABAAAAAAAAAMA9auqv3P2rJPv/E4n/UWvzUwkNGQAAAAAAAAAAdLtdPNl3h4xwBQAAAAAAAAAAsFOHtKfsTpn4p6TWeK+X/S+qaVyRwzWXn+t/UU3j+o/3qTGfuvBjNeZw/xU15sD8LTVG8voYeZsH9WR6rz1oSMcwjuAJw5iUC5Zx/ZR0LOtZNqzGNF5k68bKtYxH6c0bEhq3lLFhnMe8HnKrv/a+8PoM+8o0/qW+H5zGCq3FkueFcOqOZRxX23aFsy49L4YxPA3npdCOK8Mx7HnhrMq0XQvh1OUwxtQ1nU9M46zqeQltjGbDGLH+RjirEgmpfMK4jliuV6Y6Edb1yrAu074K5/xm2eeWOhjGuaC5Y28DAAAA6Ci7eLLvDskGAAAAAAAAAADATvTIAAAAAAAAAACg2/VI+G/8w+7hUScaMprqyyJSbVin463MCAAAANCQ2dlZmZ2drbjs5s2bLc4Ndo9LUv2x9LMf/QEAALQH98Cdg4aMpvqGiPxCjeX/r1ZlBAAAAGjI1NSUTE1NVVyWzWYlHo+3OEfYHY5JrXkFAQAA2qnr7oHpkQEAAAAAQNj+ttT++KvUa+ZU/Q23XHjeWXva/hnHtN91iLZvYz15cfO0OdKl/ETc8t3ctJ2SFt9/xO0HTmk3c1+6sO93Ecf90+e4jXm3fd8srnXQLe3mHfPNPHZcueXFtQ7az7Gdc5y5aep5sN8xMy7H5UXH8h6378u1/mG3tB3vC7raXgn/jX+HtCB0SDZ2qX/8aZGHqt/oDD+/piaReilZO8Bw3B545ZYa0zt8Q425snFYX9lJPaT32oN6kMHmw/v1oBOGG81lw8oM6fjztZe7PcDUyovhQrBguLDkDTdMC/oNhPekoYzf0EOkz5BO3pCOYV/p+8JyM2m4ubJsk0VIN/CWmxnLTYypLhu23XIucL6pqiQfTn5t62rdw5Zpf1pueA0PlLaXQZZjT8tPWA8WIR2fhrrj+qKsmvAekC0PfpYY5TxoOR8b1mN5IeSN6Wvy55v3YmnHugz7vJkvPLZr5ks1AAAAAOgUNGQAAAAAAAAAANDt9kj4Q0HtCTm9OnVINgAAAAAAAAAAAHaiRwYAAAAAAAAAAN1uF0/2TY8MAAAAAAAAAADQseiR0Ubej3w15rS8UHN5cj6lpnFF9Em6z82/qMZYJgQ/vVE7v9Z1WSYNN1nQJ2q1TDi8efCb+rrmlUlqLxom4xy3TA5qSMcwea9lonhL+YXFNnmqISHL5O2qECbCFQltcnJ50rA/DceMZZJu08S7/ZZJkvW6vHlQT0bXwn0V1iTwJvq6LJMJ2yYE1+uF6dgz5FnLj2kiedN+MMg3nl+R8I6rsCZd9/r1GLlgiBnXyiek8jNM5N1KrZx0nUm6AQAAAIRuF/fIoCEDAAAAAAAAAIB71Oy6yGyu8rKbW63NSzU0ZAAAAAAAAAAA0O16pK4eFFN//e5fJdm8SHy1oVyFgoYMAAAAAEBbZDKflljMOtSafUg223CFpcIaHnInl6HkbMM5lsa7DInnto2dk+/maeYwf+510D58pmX4xrK8WIaeLKbtViae5zDsp2H42VZxLUMXLuUtebd60sxj3ilty3DWJZpZ3i5czz0u+Xba7yJOx4PzMe+wnc5pa8OqlzINn17ihEPaoQwrvkvt4qGlmOwbAAAAAAAAAAB0rI7ukbG6uiqjo6OSz5fPwprNZmVmZkai0agUCgUZGhqSkZGRtsUAAAAAQLvw3AQAAAAR2dU9Mjq6IWNycnLHv+VyOYnH45LJZCQWi4mIyMDAgGxsbMjExETLY2p6W0T+bY3lT1pKobanNl5XY17vf0qNOT32ghqT2kiqMee8XjVGLuohMmyIMZRf7/CDaszmw/v1dK49p8ao3QgN3QYtXfq8MTXE1kVxwZCOpSvqST1kcEPv8+eNWXa6gaVrbl/t7tL+hp6E12/ocm3Iiz9vWZceE1r9cu4CX8VFQ5dQQ93RmPbVmGFfLejbPeh/To1ZM63L0r1WP/Ys3f5tXYoNx7lyzIiI+BuND81g2ybD8AWWLsmG/RDa8RCS0IbhGNdDwuj+H1b9s9ULy75yGPqiUYZjBghT1z83AQAAAIqOHVoqmUxKNBrd8e+Tk5OSSCSKN8hBbOnNeytjAAAAAKBdeG4CAABAUU+T/jpARzZkrK6uysGDB8tuhEVECoWCrK6uytDQUNm/Hzp0SERE5ubmWhoDAAAAAO3CcxMAAADuFR3ZkJFOp2V6enrHv1+9elVEZMcXR8GN+8rKSktjAAAAAKBdeG4CAABAmWCOjDD/OqRHRsfNkZFMJiWVSlVclsvlREQkEolUXd7KGNXtD0X+4kb15f9J+f3P7NPXAQAAADTo1q1bcuvWrbp//+GHH4aYG1jsluemDz/8UG7cqPHMpNi3b5/s28dzEwAAcMc9cHfpqIaMbDYrBw8erDjGq4jI+vq6iIj091ee+bZQKLQ0RvXm52svX1J+//fOiPwDfTUAAABAI2ZmZuTs2ZAmlEfT7abnps9/XnlmUpw5c0a+9rWvNZQGAAC4N+3Ke+CgR0bYaVZRKBRkZmZGRKTiRzZLS0syMzMj2WxWYrGYpFIpSSQSdWWjoxoyZmZmZHFxserygYEBERHZ2NiouDwajbY0RrP3X/2P4v3i/6bq8tyB2mns2/d1OSb/smbM5vJ+NR9Xxg6rMefGXlRjZOFdNaT32nNqzObD+qrkgiFmXM/PprxmSOhpPZ2HH9GTGVaWL+jr8cb01Vj2g2WbpM+wTXnDyTyvh6zNa4UjIgv6unz/jBrjeYbyUbdLX09YPM9QxicM+VloPC8iEl69OKmn41c+vZbZt1H7C03P+6aeSF84+3PN+54hyhKj8329/LzK74u2MZwLTOdJQ34sx562Lsu+MsT483oy3nJIx7nleDCUn+Qt5WcRzj7Xzk2W87GFqa532nnSwlQvLNe0cK6NFqdOnZIvfelLdf/+Bz/4QcMvpGG3m56bvvvd78qjjz5aM6YWemMAAIB67cp74BY2ZKyurko6nZalpSWZmJjYsfz8+fOysrIik5OTsr6+LufPn5ehoSFZWVmpqzGjYxoyksmkDA0NlXU9Dv5/8L/BTXC1r3qi0WhLY1R/+S+Lt796Q8P+/Z6eBgAAANBkjQ7Pc//994eYG9Sy256bPv/k/SJ79Y+zRMTYSFgfl0ZBUwNrB7I0HpeyfaQQsHwYUR/XBlun/eP4wYvlQ5yPuZVJ59RBxzIJqUF9V2niucr20cpd7se8vc66HQtuTB94ljJ97Fmfbj3fu3A714vt48dirNv5ofeCfajJzZPGewcF98CNSSQSkkgkxPMqv+N+5513yuZLO378uMTj8bp7ZXRMQ8bq6qqcP3++4rKBgQGJxWLy5ptvisjOcVaD/47H43Lo0KGWxQAAAABAK/HcBAAAgKp6JPzJuetIb3V1dcdQU7FYTGKxmG3u6Qr21PWrJshkMuL7ftnf9PS0RCIR8X1fMpmMRCIRicViZS05IncLRkTk2LFjLY0BAAAAgFbiuQkAAACdLpFIVO2ZaxrpqIKOaciwevnll2V1dbWs5SaVSkkqlZJIJNLyGAAAAADoNDw3AQAA3IOCOTLC/Auxh0cul5PR0dG6ftsxQ0tZxWIxyWQykkwmJRqNSi6Xk2QyWTahSCtjAAAAAKDT8NwEAAAAEZFbt0VubdX/+w83w8nH0tKSRKPRuu8RO7ohI/iKZ7tYLCaLi4s1f9vKmGpup+4X6a8x2fcf6bXgrSNHawc8oefDG/PVmMvzj6sxh//5FTXmwKduqTGWSaG8eT1GThgmGFowTFblMlFRzXUpEyQZ8nt6/gU15tyTL+p5GTdM1mSZgOyiYWImy7rGWzhB1kXD/jxZO8brN6zngiFGWc9dlnrcvMnLdshb1qVPMGc6zk2TiinH8ImQJhdcCCcZ2+R7IU2GadpXlnOgoQwt6zKdS5UYw3nJMqGkqW4Zzsm+4VrkjVnyE852mc4XBqaJHJV6YSnjsPaVLR3LdcZw7nKcFLOaKnPdOWMCVVh1+3MTAAAAQhL0yCgx8/8WOfv/bEtuyvMxM9PQ/WJHN2QAAAAAAAAAAID6nPrfinzpM/X//gd/LvJ5y0fnNSSTSXn55Zfrnh9DhIYMAAAAAAAAAAC6X4/smNNiX4/IvgaSvP8TjWRIZG5uToaGhiQWizWUTtdN9g0AAAAAAAAAALbpsMm+l5aWREQkkUiU/Xs2m3VOix4ZAAAAAID2OCwilvnJRMSfb968MaY50lqgs+bGsc/r1Un5dsmLbc62UiHNr9gg1/K2zSXlHltPXrqRa5m4scyx9zGX+bxcz2vN3JdOZeg4D6JTmVjmiitLuzPqt2ke2RJO58Exx8ws20NPb+jzwJZKbSTtwQuOx2UT7yHudYVCoeqy1dVVmZmZkcnJSZmbmyv+eyaTkXg87txDg4YMAAAAAAAAAAC6XYXJvkNJs4JsNivpdFpERC5duiRDQ0OSSCQkEolINpuVoaEhERGZnJzc8dt8Pu+cDRoymumK1C7hv6Yn8fhLl2suXxsbVtPovXBDjTk69paemQXD1yp9esiyPK4HnTTkJ2/Jj6HF9YIeIm8YYpSvc3xDC/o+l9bnGgb9H6kxa/0htUafMHz9sNwZXy4Vaft83FC3xg3r6TNst34Ii+nLL0MZW760sHzNYvmyx/Z1m+VrGOULJdevMOpdj9i+ajF9aXSxw74EyVvK0PClmOGcrNUvz9NXY6l/pnps2FfegqVeGNYlrdvntq/dDNu1oa1HP369fsu535COYV2m4zOkc5ftqz/L+S2cetopXwoCAAAAuLfEYjFJp9PFxozty3zfD3V9NGQAAAAAAAAAANDtWtgjo9WY7BsAAAAAAAAAAHQsemQAAAAAAAAAANDteiT8HhT0yAAAAAAAAAAAAKiNHhnN9OEzIt59lZftm2ptXgAAAIAGzM7OyuzsbMVlN2/ebHFusGv84TMiPVWemT49JfLXeW4CAADt03X3wLt4jgwaMprp/ldF9saqL0+dbHgVl+cfV2OOjr3V8HpEROTEI6Ek89TG63rQsB7iz+v5+aq8oMa8LY/pKxvTQ9bGamfam9fT6DVstxiqzdr4A3pQnx7iG7Z73/ANNWbz4DfVmN5rz6kxXv9+PUP5s3rMiTO1l/cZ6nr+3VBiLPXY8wzp+JZ09LLxFtQQvfxERBZeU0N8X09H3/an9byY6Pn1PD3GUjaW48qyzy15NpVxv2FVBv6GHqPWwT5D3TIc456nJ2Orf5Z1GeqFgbeg12XLcR4WWx0MgWWfG5jqseW8Hda5wMBSvzrN1NSUTE1VfqmczWYlHo+3OEfYFf7mqyL9NZ6ZAAAA2qjr7oF3cUMGQ0sBAAAAAAAAAICORY8MAAAAAEBbZL4uEjN2yHDqLWbpYVvC0rPw43w4JS3h9SBtTDN723VWLzOX8nbrZRdWr7xGNbW8Q+ot2elcjgdLT976025ej1uX85pIBx3Hy27hLvl235fNS3vfhj66RTHtMcPoFCUsI4IULbjud/s59tzYi25JP9mcfNxzmOwbAAAAAAAAAACg9eiRAQAAAAAAAABAt6tzjozZtbt/ldz8iwbyEyIaMgAAAAAAAAAAuEdNDd79qyT7ZyLxr7cyN5XRkNFMh0Wkv/pi71d8NYkf5msPwPpL8kM9H316yOmNF9SYc/362HaDG/pghmvzw3qGFvQxJb1ly1iSep5739PHJdx82DAe4QVl+bhhnMxrDza+HhHxx/Sy8WrUzWLMmB4jy25jNVazefCDUNJp2ZiuFw31z7DPwxqr2LSvLE7o5ecbxtv0FgwxhvFGtXFGLeVnGXfWfazr+lmOPRNDXQ9tnNuw1qWlY7g8iKFutXRsZ8u68oayORHS+MgXDfl5w5COdjnPG9LIW85v4Yw1bhmTOLRxzQ373HVMagAAAAAIRZ09MtQ0OwBzZAAAAAAAAAAAgI5FjwwAAAAAAAAAALrdHgm/B0WHdIWgIQMAAAAAAAAAgG63V8J/498hLQgd0p4CAAAAAAAAAACwU4e0p+xO8a9fkZ+N/XnV5YPeUTWNR75de/ngEz9S03h96zNqzAHvK2qMiD5p51q/ZaZWA8Okp4Pz4UwsvmmZrNoyYekbSp4N27R5Ul+NZbuXJaUnlP9dPUYMk89aysY0Ga4lnZAmww2DZfJ2Q34tE8KGNTl077Xn1JjNg/qkxJaJvC2ThsuCYTJ0bRJzQxmHMgm1iK2OLoQ0ubZlwmbD+SK07TJN2mygnZL105utbMYN9dgywXsrJw03bHtoddnCMkF5GEznCsP+1M4VIiLytB5imXTdcO4yXT9DotULy0ToQDvFB6UpT6WWe6xSYd1vVeL7zTsnmK4NdTOcNz/SzG105Xkh3bd0MNdzu0uZuB47zeSUb+c6+JpDrFvanXLMN/MeoJlpu57XXPLifs60nwebeu5xrVOG56GP2bfRmevzseVdQ6CVz2rdhsm+AQAAAAAAAAAAWo8eGQAAAAAAAAAAdDt6ZAAAAAAAAAAAALQePTIAAAAAAAAAAOh2eyT8HhQd0hWiQ7IBAAAAAAAAAACwEz0ymmhODktMYlWXf9X/ip7Id75ec/Ha/LCexnE9RE6cUUNOz7+gxpzrf8SwMt3g/LIa89bzR9WYx1+6rMZc2TisZ+jag2rIppblk/pqBjf07V7r1/f5Wv4BfWXymh6yYEjmhGGfP2lI5w1DOgtn9RhDXVbzo+8GMZVfXg/xPMOq+vSy8ect6/pAT8fXy8/z3tVXtmCIsbDsc02foU7kDfk17AcRw77a0FPxxgyrssiHUH5irReGdJR6aqpbhjIWedoQYziGLQxlHNpxdVFPxw+r7kjtddn2lYHlGLccw5bztuF6ZTqXGuqgpXx8P5x7JgAAAAAo2ivhv/HvkBaEDsnG7vTMM8/IfffdV3HZ1NSUyFSLMwQAAADUaXZ2VmZnZysuu3nzZotzg13jw2dEvMrPTLJvSuQTPDQBAID26bp74F082TcNGU306quvSixWo0eG6D0cAAAAgE4wNTV192OcCrLZrMTj8RbnCLvC/a+K7K3+zAQAANBO3AN3DhoyAAAAAAAAAADodrt4sm8aMgAAAAAAbZFZE6nRib2M57nMb+Q2D41lDqtiPvoNc/eUxnv2Oass8yq1SjPn8mlmmbjl220bXfJtm7OrPm75cNW8MnGv3/Zj3gtpvs4wdMox7zqnWXPz4lBnLfOjtYjL+SS0OeQqpd3v+APD3HpF4475tsyTGrDMu1p32q7nwc6pV51q9l+KzP6rystubrY2L9XQkAEAAAAAAAAAQLerc46Mqb9396+S7P8kEv+vG8pVKGjIaKL4ZRH54+rL/ezX9USeqL349Jg+z8aB+VtqjP+rnhrjjflqTO97N9SYzZP71Zi1/mE9P6LnR/6ZHiJ5Qyuu5YuAC9p69FZuy3Zb0pE+Qyv2cEhfrCyHk4yJy1cFNfhjtZd7bxgSWbB8YaV/QdR77TlDOvpx5Xkf6MkY6oXpKxLDVxL+vJ6M6auSvLLcVNcN67F8KRLSsWf6GslyzjHkJ6yvqix5HvQ/p6cTxpdyhuPT8uWUp1/2bPv8hF7Gzl9QVTOu7wfP8KWRdg4UsZwLXL6KrsVwLjVcpy113VKPPcO5wHRczYdzjbWckzvp620AAAAAaBYaMgAAAAAAAAAA6HZ7Jfw3/h3SgtAhU3UAAAAAAAAAAADs1CHtKQAAAAAAAAAAoG575O48GWGn2QE6JBsAAAAAAAAAAAA70SMDAAAAAAAAAIBu1yPhv/EPu4dHnWjIaKZ/9CdSs4i/rSdx40hvzeWpjaSeyEk9ZN9719WYy088rsakRM/P2pPDeoYslg0xllUtGGLyZw1BZ2ou7b32oJrC5sOG1chraoS/8YglIZU3H0oy0nvhhhqzeXK/ntC4YT/01d4PIiKeFrCgr8f3Devpt+wHvWwO919RY9bke/qq8nrdMTEcM96yYdvDOD4taTxpiLHk18J0rnjakM67hnT0/Wmqg5Z1GY6rNc+QzkUtwJDfcX09nqGO+r6+Ls+yTZZrkYnh+DTsB8t50jupp6OVj+cZrkWW86RnOGZOGNIZ05MxlZ/p2NNZ6o6lDlpiAAAAAKBoF0/23SHZAAAAAADca+LxtIg8YAu2NEjWydSw2gJev1u8pdG4Xi5l0in5EHHLS1P3e18zG6MNH8aUCemDpgrcytvtg4Fmpu2imfWkqfXb8Xziwrm8DR+mFBk+LCzPi1tWmsfxOGviNc3y8dfH+WjiueqEY9qWjxADlo+SsevQkAEAAAAAAAAAQLfbxUNLMdk3AAAAAAAAAADoWPTIAAAAAAAAAACg2+2R8HtQdEhXiA7JBgAAAAAAAAAAwE70yGimf/xpkYcamzRn/5ubNZf/+Min1DSe2nhdjbmycViNGf7OmhojT+ghj429rQeN6SHnxl5UYwbnl9WYKxeeU2MO919RY9aUPG+e3K+m4W+oIeJ5+sRunqH8ZMEw+dNFQ/01pJOcf0WNObes70/TZFgX9BAZVyYPM0xEZpuUTd9Xmyf1Ml57clhfVZ8hxlI2bxhi9MNKJK/XC39e33ZPm8DLMBGcP2+oN4ZjJrzJ8gyTwJkmfjMcn4b9EBrD+cJXyjm0SRoNE9aFtq68oQ4aJmW0nNvDukZY8uyNNT75oOk8aZn40XK9CmkSU9u+Cuf8b0mnmZPnAgAAANiFdvEcGTRkNNP/5RmR3vsqLxuaMr04AwAAADrB7OyszM7OVlx28+bNFucGu8clqf5Y+tmP/gAAANqDe+DOQUNGM/23r4o8FKsRcLJlWQEAAAAaMTU1JVNTUxWXZbNZicfjLc4RdodjIvJAuzMBAABQUdfdA++Vut74z/4/7v5VcvNWQzkKDQ0ZAAAAAAAAAAB0uzon+576B3f/Ksn+G5H4f9VQrkJBQwYAAAAAoE3+toj8Quip2uazaQ2X+W5c53DyPJc5ggzzKNWpmeXtOl+QU14sczWV5mXeJR/N25fucyjZ5+503ZedMp+T77vNT+p5LtFuc3G5HfNu5e0W73rM28vQvbybeU522U63fdkp1xLLXHmlnK4Nece55pabeMwb5sD8WPOuaehcNGQAAAAAAAAAANDtmOwbdflHaak53uu39ST2Hbpec/mt5AE9kZf0kFtX9XS++sRX1JhzYy+qMZfnH1djUpJUY2RZD1mbH9bzM6bn5+jYW/rKlJbj3mvPqUksy1P6ek4Y8vKkHiJPGr6gsEzjckJP59yY29caVeUNXzWdDGFdC4b19LXwy6OwptMZt3zd0LqvGmxfqWlfh+j59fpN2dFZ6t9FvV74Y3oypi9/LHWwz3A8XNBDZNyw7eN6iKccn5Yvuyxl0/veg2rM5sOGssmHc8yY6qBhX9m+CLMcw3qM9sWpt2BYTVgMZeNvhFV+urC+PLV8KWfJc6d8CQsAAAAAzURDBgAAAAAAAAAA3W4X98jY0+4MAAAAAAAAAAAAVEOPDAAAAAAAAAAAut1eCf+Nf4e0INAjAwAAAAAAAAAAdKwOaU/Zrf62iPxC1aVnv/A1NYVbX649CffyS4NqGlc2Dqsx3q/4akzvezfUGMsE3Ef79cmqBzcMCRkMjunpWCby7r2gb/um1J5sc9NSNm8YJvK2FI1lsmrDJN2iz5Vum1j8DUOMZVJdw0TKlkmJT/ubNZef8/TV2CZ+NkxQG9bEz5ayOWmIMWzXaf8VNeac16uvyzDh8KD/uZrL11q4ryyTWVsmVPcs6VgmbDZM0m05B1quEZuW84XhvONv1F4e1mTMmwe/GUo6pkmxLROUG45zWQhpIm/DvtIm8hYxTFBumWzecuxZrlcGXr+hjlomZg+pDlowSTcAAACAsPl7RPyQ57TwO6QrBA0ZAAAAAAAAAAB0ua0eka2Q3/hv1WgYKRQKMjMzIyIiqVRqx/JsNiszMzMSjUalUCjI0NCQjIyM1JUPGjIAAAAAAAAAAIDZ6uqqpNNpWVpakomJiR3Lc7mcxONxyWQyEovFRERkYGBANjY2KsZraMgAAAAAALTJH4jIH9tChy3DyN3lz7sN3+Z54Qx1Vznt1g1bV1OfvfxERCT/mkPaXTpcnmlox495C4ZhHoscyk/ENlRsnZpZB13Sbuawis3cRtd8O+XF8djRhmpthGk41EA4o4GHw+Hc5m84ngcdNPc4a941qqnnb8NwyKUGx2oPLV3qLWnevux2d5rQI+NOlR4ZiURCEomEeF7lcb8nJyclkUgUGzFERJLJpExOTtbVkNEhI1wBAAAAAAAAAIBuVygUZHV1VYaGhsr+/dChQyIiMjc355wmDRkAAAAAAAAAAHS5rR5PbvfsCfVvq6dyj4tarl69KiIi0Wi07N+D3hkrKyvOaTK0VDN94dMi/TW6Oi3oSdxI9dZcPvz8mprGj1OfUmMO5L+ixmwe1LvRDvo/UmPWxob1mH495vLG42rM0fm31BhLl8jNh/erMYMbtRNam9e3qffCjVDyIicMXewWQuqauGxYl77p0nvtOTVm86CeZ9/X8+ONaTGWLqGGbuXjejreuKV7uiHmpCGZvGG7TujdSs/VOq8V0zHkx9CVf81z6b5fjaFb/7hj1/9qLN1y8yEde4b6tTZuSKfPcIBaGM47andry5AK45byM+xPQ12XJw2rsrCcbw358ef1ZEzdzucNx7BaT0M6Zkz73HDuMgw341u2u4Vd1G1DBDRezs0cxgMAAAAAKsnlciIiEolEai53QUMGAAAAAAAAAABdbqunR7b2lg/CdOuWL7du1Z/mjZ/6InLb6Tfr6+siItLf319xeaFQcM4HDRkAAAAAAAAAAOxC//3vbMnvnLvT0nUODAyIiMjGxkbF5duHnLKgIaOZ/vAZkZ77Ki/79FRr8wIAAAA0YHZ2VmZnZysuu3nzZotzg93jklR/LP3sR38AAADt0W33wHd6emSrp7xHxhdf2CO//nz9af6bH9yRJz+/6fSboKGiWs8LGjI6zd98VaQ/Vn15xjKoPQAAANB+U1NTMjVV+WOcbDYr8Xi8xTnC7nBMRB5odyYAAAAq6rZ74C3ZI1vSU/Zve/fd/avXJ+7fcv7NoUOHRGTnXBjBf9dTbnv0EAAAAAAAAAAAAF0kEpFYLCYrKytl/766uioiIseOHXNOkx4ZbfQ5f1CN2f/La7UDUvp6Dryiz+bif9lTY776kt6FKLWR1DO0rIfIBT3kqY3X1Zje4RtqzObwfn1lC++qIWtjww2nsdn3iJ4XQ9lYDM7/SI1Z8/Sv4/zKQ92V8SrP61Nmc9mwH+Q1fV1jhjJcOFtzce+159QkNh825HfYkBeD3guGemw4rnqHDdt1UK+nYqmnhvru+2fUGLXu5A35PaGvR6sTIiLSZ0jHcnyOG2JMng4nGUsZWva5iZLnccv+NORlufHzwN0YPcQLa39a1mWI8X192z3PUM7a+dZ0XBnW84YhK5a6bliXpfws15lWspwngXvKk/ZQb94xbcv1JWA5v9XN9fpuP29Z7tvL2c9BtmtLSV4M16uP0zZcs+tluZ6Vstw/BCz3jqXGHdIec0vb5XriXt4h3ZNW4JIX12umS9pNrYPKa4RGWJ7DS7mcI1yPead64nI+FnE6Lj2veefYZh4LrveoTsf8mFtOBuctL/XuUt+TbZMcM7zkLGriwdPltqRHbm/rkdF4mtXVmrT75Zdflng8LrlcrjiUVCqVklQqJZFIxDkfNGQAAAAAAAAAAACzbDYr6XRaREQuXbokQ0NDkkgkio0UsVhMMpmMJJNJiUajksvlJJlMysTERF3royEDAAAAAAAAAIAud0d6ZCvkV/53qvx7LBaTdDpdbMyoFrO4uBhKPpgjAwAAAAAAAAAAdCx6ZAAAAAAAAAAA0OW2ZI9shT5HRrU+Ga1FjwwAAAAAAAAAANCx6JHRTN9Oi8gDVRd/b2FNTWL427WXLz8xqKYxKMtqzI3jvWrMubEX9XXN6+taGx5WY2T8XTVkU15TY/wvf02N8RZ+qOen7xE9RqXnVy4Y1nNSD+l974Ya85i8rcasXdT3+b4NfV2S/0AN6R1+UI3ZvHhGX9cbeoicqJ3OpqGMJa/XUVkw7PM+fZsO919RY9bGq59rApsXDfXrhCFmwbDthmPGm9eTUVnya+D7hroVEm88nHphkj9rCHo6nHSWDXnW9pd+CRHfUG+8MT1GxJBfQ37EcEmzHDO+bzhmDNtl23YD5TwpCyHVLcs+t5SNZ8mPgbbdYquDFpY8W2Jaef4CAAAA0NnuzpERbo+MOx3SI4OGDAAAAAAAAAAAutydJgwtdUe2Qk2vXgwtBQAAAAAAAAAAOlbH9chYWlqSmZkZyWazEo1GJZ1OSyKRKIvJZrMyMzMj0WhUCoWCDA0NycjISNtiAAAAAKCVeG4CAADAdrdlj9wOuUfG7Q7pC9FRDRlzc3OSyWQklUqJiEgymZShoSFZX1+XaDQqIiK5XE7i8bhkMhmJxWIiIjIwMCAbGxsyMTHR8hgAAAAAaKXd9NyUyUwWf6Nxmw/HME9PKYd5tyxz95TyPMP8WEUusW7z5Hj9Tknb5oQLOM4p6HkOaTtyKhPHOZaaOy9R8/LtwnUb3fLiVk+6dV861W/L/IOl5h3K0DRfXqlm1m+Hc5tlrsl6uc5/mm9ONu6m3bzj2Ol873KuF5G1he/Zg09YJhT82NH5t+zBlrlNS/gbbvHoTJ3RnPKRQqFQ/JIokUjIyy+/LCJ3v+4JTE5OSiKRKLvZTSaTMjk52ZYYAAAAAGglnpsAAABQyR3ZK1sh/93pkL4QnZGLj0xPT5f9dyQSEREp3hAXCgVZXV0tfnkUOHTokIjc/TLp2LFjLYvRe2X8bRH5hRrLv6b8XuTxJy7XXL42prduDs4vqzEWYaXjP+CpMZ78UI0Z9D+npzPm6xm6qIeYWnrVLyn0r8J6h2+oMZuyX495WI95e+MxNcay3Zv5b+pBF/UvOzYf1pMJjXbYWL6KsXzJMazH9F7Q9/maZ/jiwVDGJpbD3PUrlmrGDV+g9CnbtRDOVyye4esjf96QzlgImbEyfDnTe+05NcZyvjB9PWf5omhZKecLehKmMg7rGLZ8nWT5Ykyrx2L8ivCE4Tg3HROGr5TDuORbvm42rMf0RZmhjE111FB3vAVLfsI5Tzb3y190s9333AQAAIB2Wpi9Lguz1ysuu3XT8H61BTqqIWO7paUlSaVSxe7RV69eFREp/ncguGFfWVkpLmtFDDfkAAAAANqN5yYAAACIiNyRPbJVxxwZx6b65dhU5a/I/ij7U/mV+J81mrWGdWxDRjKZlLm5uWI3aZG7Y6+KfPzF0Xa5XK6lMbr/JCIfVl36U+XXHbtzAAAAsKvcunVLbt26VffvP/yw+j0vmqvbn5s+/PBDuXFD76F6V6UnqL3CkxMAAKgH98DdpSPv+M6fPy+5XE4KhYKMjo5KOp2WiYkJWV9fFxGR/v7KrUOFQqGlMbp/WHPp7yi//ryI6IMwAQAAAI2ZmZmRs2ebN+kkmmM3PDd9/vOfr7lc93kRebzBNAAAwL1oN94Db9XZI0NLsxN0ZENGMObr6uqqjI6OSiqVkomJCRkYGBARkY2NylPNR6PRlsbo/pmI/HzVpb8l/0XNX+8VkT80rAUAAABoxKlTp+RLX/pS3b//wQ9+EMILabjaDc9N3/3ud+XRRx+tGRM4cGCmwr925CMtAADoArvxHnhLeuR26A0Z4aZXr46+60skEjIxMSHnz58XkY9vgqt91RONRlsao/tLInJ/1aWfMKQAAAAANNu+fftk3759df/+/vur3/Oi+br5uen++++X/fv314z5GE9QAAAgPNwDd5eObsgQEfnMZz5TvPk9dOiQiOwcZzX473g83tKYRj13u1eNOfP80ZrLH5+/rKaxNj+sZ+a4HvK7Xu28iIg8aNimr770FTVm8KUfqTGPydtqzNqT+rYPji3r6Zw0pOPXzvNav57Gpp4VEcPulCf1kCsbhw0J6XqvPafGtHK75KQhZkHpNnjijJpE7wV9LOfD/VfUmDXvATVG+vT8+GN6Mvs29Dxv5j/QE5LX9BBDni/7a2rMsNROx/Oe1vMSEs8zdDc11J3Q9D2ihmw+rCfjV/6Atoyl7hzu/5wac0VJZ/PgB3pmLPXPsh8W3tVjLuplLOOG/OT1dfm+nmfPM+TZcOxZ8iMXlOXjhmPPcO631D/TsRcS39f3uSk/+RAyAzjazc9NAAAAsLkjPbIV8iv/O/TIsMnlcpJIJETk7gRysVhMVlZWit2oRe52pRYROXbsWEtjAAAAAKATdOtzUzyeFhHDhx0itsbagOUjmVKWBu6PeAuGRuwyDh9eWBrR69T7nnVS9bs2DzoE590anS0N+AHPcy1vB44foTSzcd2lTFxiRdzy7VWe7qaG1n1YFCbTByJ1snwYUa9WfuBRi/s2dkiZOF8b7Ocf9+PS4dzm+sGc9vFmKZdrq4hI3iHflo9aSzlci901rw6idTpjpg6R4gR1S0tLxX/L5XKysrIi6XS6+G8vv/yyrK6uln3xk0qlJJVKSSQSaXkMAAAAALQKz00AAACoZkt6mvLXCTqmR0YkEpFCoSDPPvuspNNpGRoakmg0KisrK2VxsVhMMpmMJJNJiUajksvlJJlMysTERFtiAAAAAKBVeG4CAADAvahjGjJEZMfNdzWxWEwWFxc7JgYAAAAAWoXnJgAAAFRyR/aE3oPiTocM6tQZuQAAAAAAAAAAAKigo3pk7DaZzKclFqs+mcyyHNYTean24reeP6omcSPVq8bsf3NTjXnky2qIfLXneTXmbXlMjVkb02dgunLBUH4GVzb0dCwT472+9VTN5Qfy7+iZeUOffOjy/ONqzNH5t/R1hWRzeb8e9IYhIcukTsuGyZksEw1qE2UZJsbaXNAntVs7oddj31dDTBPumSar6wtncqvTvn6+OGeYcO3omKGeqvXCMNGY6+RlVRkmMrRMZmaZqM0yOZshHX9eTyasiQ7XTBO1ftD4iiz703I+sUymOt7MyebKeWN6THgTR+rpqOcdy/kkr5ef5+nJmBjqhb+hJ2PZDzb6ucl1QkgAAAAA0Gw1oUfGVof0haAhAwAAAAAAAACALrclPXI79IaMzpjsuzOaUwAAAAAAAAAAACqgRwYAAAAAAAAAAF3ujvTIVsiv/O/QIwMAAAAAAAAAAKA2emQ0UTyeFqkx+enXZE1N48yjtZffuGqYyPuQPjGv95v6jMO+6DNyHpYraszzW8oM5iJy4MlbaszmSX2S6cF5feZdbZJuEZGnel7XY6R2zKD/IzWNtX598lTLRN6XxwwTghsmWrZMcm6a7NsirIl3LRMpayyTCRsmsbVM/LxvQy9jyX9Tj7loyLOl/EwTgr9iiDGwTMh8QsuPIb+WibMX9BDLZN+mY+agYX+GUY/FOpF3SBOm63Pb68eE5bgyrSek84lpQms9xHR+e0MPMe1PU54Nx4RW39VjU2z7wbLPLQz1Qp3A3MgySbfnWcoYgIhIJjMpsVjMFGu7rn3EdG0vYTlXB8YN184Svm9P2/X84Y3r9yet4ZYPl+20nHfrTduVa15cuFyn/A23tF3y7Y05pj3vUr9dr/v2Y6259cS1ftu30+X80Gzu+8fO6Tzoes9meVYJWJ5B60y7ufl2PK+5pH3BLWkZd4i1PLuVsjw/BEzPNKU651hrtnon+35j9v8jvz/7/624bPPmnUazFQoaMgAAAAAAAAAAuEc9OfWfy5NT/3nFZe9lb8h/G3+nxTnaiYYMAAAAAAAAAAC63N05MsKd04I5MgAAAAAAAAAAABT0yAAAAAAAAAAAoMttyR65HXIPiq0O6QtBQ0ZTXZLqRfzZVmYEAAAAaMjs7KzMzs5WXHbz5s0W5wa7xTPPPCP33XdfxWVTU1MyNTXV4hwBAAB8rNvugbekR7ZCfuUf9lBV9aIho4kymTclFotVXX7W89Q0lr8/WHP597w1NY2vXfTVmOvH96kxktVDUpJUY9b+/rAac3r+BTXmnLyoZ8jgqZ7X1Zi1eT3PcrL24tMb+jat5R9QY3qHH1Rjjo69pcbIsh6yefADPT/X9PxsntwfSn6u3/6MGnPg798KZV2qvkfUEH9DT8bzvqkHXTyjr2vMsC7R86zVYxGRc2OGY69PD5ELhpjxs8p69LKx8H09Hc97V42xHDMiT+shTxqSGdfzIycM+9xSLyz5sVhQ8nzRkBfLdhuOT5HX9JBhw3E+r8dY6o4pP5a6k1eOGWs6mjDOoyK2fXUhnHOXSd6yrwz1wnRO0feVJZ1WqvVSOZvNSjweb3GOsBu8+uqrNZ+ZAAAA2ol74M5BQwYAAAAAAAAAAF2Oyb4BAAAAAAAAAADagB4ZAAAAAIC2iMfTIqIPr3qXfWg837cMM/gxr98pvHOYhlP8iGn4wfq4DoXneZYhFVvgRPOG8LMMIVh/2m7xTvvHcfhIb94lH47HpUM9sQ3lWR/XfDeXyxChTTzOXM490tzjwaV+ux47tmFHA27l3dR8W4Zx/kjv8A2npDdd6qDrcLQO+fbHOmsI1k6yJXtC75HRKZN9d0YuAAAAAAAAAAAAKqBHBgAAAAAAAAAAXW5LeuR26D0yOmOODBoy2ujMo4ag76zVXDxsSONr43pXuP3/3aYas+/N6/rKNvSQ6/98nxpzYP6WntBJPeT140+pMZ+6/mM1ZnBM7w/32NjbNZefG3tRTUNO6CEiere/0/MvqDHn+i35sXQXNXRDtHQPfEMPOfCKoV5Yui4OK8sX9GOm99qDaow3v9+QmXDs27B0BzXkRysbkXDKWMR0DIfCMGSAN6YnY9nnmwe/qcac9vXz7bkxy7Gnd13uvfCgGrN5Uq8XlnPg2rxlp4fAcl560pDOSUNXZMO5wFvQk7EMR2DpLn7Z/6Iac9T7XT0hy1AATt3om5iGiMi4XtddhzSpxjKEhWVfWfZ5WHkGAAAAgHsBDRkAAAAAAAAAAHS5O9IjWyG/8r9DjwwAAAAAAAAAABAGJvsGAAAAAAAAAABoA3pkAAAAAAAAAADQ5e4OLeXeI2Nt9o/ku7N/XHHZX9zcajRboaAhAwAAAAAAAACAe9Tg1C/I4NQvVFz2Z9lrMhP/Vy3O0U40ZLTR2R/oMWeStZe/a0jD//IvqTFezFdjeuWGGvPjA59SYw68ckuNuX58nxrz0tjzaswVOazGHO6/oqezoaejrav3gl5+mw/v12OW9Zhz471qTO81Q35O6utK9qf0/MiLaozJ+Lt6TN8jesyTWoCexuZJfTUmfWf0GMN2b140bHdIefY39BhvzJBQ3rI/lfIZNqxnOZy8bBrqhcU577ga4+unZPEWnlZjLMewxVq/oaAt+0IT1jG+cFaPOWE49hb0EAvT8XBC366j/W8Z0tFD/Hk9xutX8pPXy9j39TL2PMO+MvD6Q0lGRPTjyvfDORdYtt1ShkDX+9lJkb0xW6zDtcb5vGC5L6mT07nOcm9YwnJfVsxHv+M5xXCur5vjdrpwOXe6Xoc8h3sD13N4WNfEymnb63dY17lG8+HKNd+e5xLrlm+XvDQ1be1+bjuX86DjOdPtuHRLu5nHjuXesL5Y4zNCvRye/TfzHzglPej/yBz71vP6+8hS+4avO0SH86y7G91pwhwZdzpkdorOyAUAAAAAAAAAAEAF9MgAAAAAAAAAAKDL3ZYeuR1yj4yw06sXPTIAAAAAAAAAAEDHokcGAAAAAAAAAABd7o70yFbIr/zvdEiPDBoymuiZZ56R++67r+KyqampFucGAAAAqN/s7KzMzs5WXHbz5s0W5wa7xofPiHiVn5lk35TIJ3huAgAA7cM9cOegIaOJXn31VYnFYlWXnz15Uk3j3R/UXv7It/V8eD/x1ZjBsWU9IYP9z2/q63pJX9enNn4cRnbk9f6n1JjH5G09pl+P0aQ2knpQ/qwaMjj2OTVm7eQZQ45uGGJ058ZeVGMG5/V9vvbGsGFtr+khFx4xpKN40hCjH74i+XfVkMv+F9WYo/1vqTG9w/r+3Mx/oMYM+j9SY7x5w76ynFL6DPtKW9WCfsz4vn48eJ6eFdM2XTQce2/oId6YHmPZV2uW7TIcV73XnlNjNg9+oK9K2+eGY8ZynhR5Wo0wnZcWHlBjeq89qMYc7jesa8xyDjRY0MvQWzCcS/ss1xFlPZ5lX4UkpOITS9lICNcZsZ2bOs3U1FTVj3Gy2azE4/EW5wi7wv2viuyt/swEAADQTt12D7wle2Qr5B4UWx0yOwUNGQAAAAAAAAAAdLm7Q0uF25DB0FIAAAAAAAAAAKArLS0tycrKikQiEcnlchKNRiWVSjVlXTRkAAAAAAAAAADQ5bZkj9xu0dBSS0tLMjMzI5lMpvhvQ0NDkkwmm9KYQUMGAAAAAKA9/mNaRPQ5iUREBuf1ueICa5Y5vUqNu4W7cJkTx+t3S9vzDPNLFVnmASrhMF+S+7xI+nxWH3Obm8gtLy75EPF9e17c9k1z505yKRPT3HElXMrEJfZuXhzrrJPmpd3MfLul7Va/m1kmLsdxU+uJ6zxwpvn5Ao7lbZmbM7DglrRccIg96Vbea/0O58Fhfc7eUr7jNRDtl06n5dChQ2X/NjQ0JOl0moYMAAAAAAAAAACw05b0yFbIr/yrzbmxsbEhuVyu7N/W19clGo2Guv4ADRkd7pFvN57GD8f1Typ+NDaoxqQkqcZ4/0xvbe39yg015tbVA2rMV5/4ihpzdOwtPT8X9Pwc7r+ixqz11/7qq/c9fT3+t7+mxsh39BAv/0M15nD/j9SYtWXHL9mqpeP6RVw1rl9PVDPu9nVURRcNXyGM61+GPLXxuhpjqTubJ/fr+TF8YbPmGb4i6TOsyrLLFwz7Qfvy5GJIdaLP7SuUqk6Gk4zk9bJZW/iens4JQ/kYvu7ZfNhQv06EUIYLeh21fK34VXlBjTnnHTdkSM/P5kE9lbcMefYMX2QNzi+rMWueoV6EwvLFmeXrOEM6lrq1YPlaTl+XpX5ZvrC1fElo+Tq2mV/nAgAAAEAjJicnZXJyUkZHR2VxcVGy2axcunRJ3nzzzaasj4YMAAAAAAAAAAC63B3pqdqDopE0K5mYmJBMJiNzc3MyMDAg0WhU3n//fYlEIqGuP0BDBgAAAAAAAAAAu9DtW7dl69ZW3b/f/HCz6rJ0Oi1Xr16VbDYruVxOVldXZWRkpO511UJDBgAAAAAAAAAAXe6O7NnRI+PtmT+UPzz7r5uyvqGhIZmcnJRoNCqjo6PFYaaa0ZhBQwYAAAAAAAAAAF1uq0JDxudO/S059KXDdaf55z/4X2T+89/a8e+Tk5MicneIKRGR999/Xx566CF59tlnacjYbc58WY85+4XG03jEEPNL8/qk2INj+iSj/j/UJxb3lvUJwR8fu6zGvPXLR9WYt7//mBrzmLytxpzrf1GN0SZkTvan1DS8b+llY5kgedA3TOTtPaCvK6xJnS0sE7UaJvvuHdYnxpZrD+oxik39cDBNtLxpmRzasi7Dfui99pwhIZ1p2y0Tqlsm2NYmvTasZ9/wg/p6xDCZdVh13VJ+JpbJlg0s+8Gy7ZbtUicx17fJGzOsR/RztoiljhomWjZMzO71G7KT18+Ba+OGfR5SnrX8WM4nm8uGvFjOgSbhTBpumYDbRl8XE3kDAAAAaIW9+/bK3n31NwP8zP29Ff/90qVLxUYMEZFIJCKpVEomJyclm81KLBare52V0JABAAAAAAAAAECX25IeuR3yZN/VJg/v7++XQqFQ9m+JREJEpCkTftOQAQAAAADoeKYexUWG3mf1svR+K7Fvw9BjOJD/wC0v8ppDrFtvTn/DJdqtTFx6wHmeyza68X1Dz9QS4fXcq5D2mENeLL3ZW8StTELqUdxwPrqYodd/kWE0h7pddDzmLT2UA4aeymUczsmnN15wSvqcV/kr9FC8YQ8d9D/nlPSaqRf7Ry44Je3Uo3pw3m04Aq/fPgyC2zUKzTI5OSkzMzOSSqWKDRdLS0sSi8UkGo2Gvj4aMgAAAAAAAAAA6HJ3pEe2Qn7lf6dKj4zp6WmJRCIyOjpaHEaqUCjIm2++Ger6AzRkAAAAAAAAAAAAJxMTE2XzZDQTDRkAAAAAAAAAAHS5LdlTdU6LRtLsBDRktNG732g8jbOGNJ67rY/p5x/y9IT+Oz3E+wVfDzJMWP+YvK3GPP79y2pMUlJqzOGtK2rMOXlRT6e/djrnxvQ05Ek95PL8F9WYo/NvqTGDvj5W4Vuij9P6uOjprI3p4xz6X/6aGuP9SB/7cvPh/WqM5JWxQk8Yxqc17CtD0eh5ERHpcxu7t5pQysbMMJbxsKWclRjDuKKbB/VtOu2/osac847rK7PUHVMZW8aCNowxbBo/2ZDOckjbdTGEumwZS9ZyfBrObyZhlY1lvGPLdlnGrDWdU2rHWI4r03oMZePP6+l4C/qqTOdkA9/X95XnGbbLcVx2AAAAALiX0ZDRRM8884zcd999FZdNTU3JYy3ODwAAAFCv2dlZmZ2drbjs5s2bLc4Ndo9LUv2x9LMf/QEAALRHt90D350jI9weGdXmyGg1GjKa6NVXXy1OdFLJuyctn00CAAAA7Tc1NSVTU1MVl2WzWYnH4y3OEXaHYyLyQLszAQAAUFG33QNvyR65vUuHluqMXAAAAAAAAAAAAFRAjwwAAAAAAAAAALrcluyVrZBf+YedXr3okQEAAAAAAAAAADpWZzSn3KNeM8Sc+XLt5e9+I5SsyLs/0GOW/K+oMaflBTXmt7/zdTVm38Z1NSbZn1JjrshhNeap66+rMZc3HldjUpKsHfCkmoT0Dt9QY472v6XGDG4sqzGPydtqzL4Nvfw2D35Pz4+vhog3ZggysGz7mld7HObB+XDK7/njL6kxBz51S42RYT3EwlKPLcdMakOp6yIi8pwakezXzxfnvOM1l5/2X9HTWOjVY8ZeVGN6r+nH5+bBd9UYufiIHjOuh0ifIZ284UpzQk/Hn9eT8fr1dLRz3ObJ/fqKFs7q67mg1z/Tui7oIZZzu2l/GrZL5IweYsmzhTaNl6Ee+5/01BjvC1/TYzzLHdPTekjeUMYX9TL2PMu+sjAcw8A9IJOZrDmvYCnPM1xnA4brWxnL+Tww7pAPEblluEYGPNNTYinD+S/gWCbemEOw6TpWyiHfTeS0jSLilm/Hfblgr1e+b7gnKBHetauSJpZJn307/Q23pF3KxL28Xc4RbmViuS8v5uNJx/Og5Z41yIfjseO5TBHrsN9FxHaP95Fznv5sWHdeHPJxl33/rI05vhRwOScvu5V373v6c3HAOd9OZehYT+4hd2RPEyb77oy+EJ2RCwAAAAAAAAAAgArokQEAAAAAAAAAQJfbqrNHxr+ffUv+/exa5TRv/kWDuQoHDRkAAAAAAAAAANyjfn7qcfn5qcpDkl/L/qn8j3F9SO5moyEDAAAAAAAAAIAud0d6mjBHRrjp1YuGDAAAAAAAAAAAutyW7JHbITc8bHXINNs0ZLTRmW/rMWe/oKTxqCGNvZt6Xgzp/EiuqDHf89b0hAzbbfH81ktqzIFP3dITuqCHHH3jLTXG/1Wv5vIbx3vVNA68YsjvsB5icW7e0CXspCGhi2fUkMfkBT1m/m015ly/nue1fr2Aeq/dqJ3G2CP6egw74tyCvs9P+3rZvC2P6fkxbPcVOazGWGwe/EAP6tPLMPVeUk/nxP7aaWw8qCbRe01fzebBd/WYBT2d67c/o8Yc2PuOntAJvfxkQc9zWLz+cNLZPFl7f5r06ecckdrHuIjYzqWWc2BI52TTdi3rIf68HuN5Z/Ugebr24vHXDJnx9Zg+Q1YsDNdyGbfE6GXj+5Y6CAAAAAAIEw0ZAAAAAAAAAAB0uS3pka2QX/mHPVRVvTqjXwgAAAAAAAAAAEAF9MgAAAAAAHS+i4ahF+tlGFru43y4DTHneQ7DQZ5wS9sypGAxH65DReZdhrFUhiTcwTBEYZ2aOQSgZxhqtG6GoVmL+TANE1nKZf80b9+41m9ZsG+nV3uk59Zy2JeSb+KxMOYW751sYh00DQ/7kbxb2i7HvNP5WMTxPOjIoX73XnvOKWnLsMitcHn+caf4owu/26Sc3Ft282Tf9MgAAAAAAAAAAAAdix4ZAAAAAAAAAAB0uS3ZE3qPjK0O6QtBQ0Yb3TjSa4jarLn07A/0FM58WY9ZfmlQjfmet6bGrPmX1ZjPSUqNOSxX1Jin5HU1ZnBjWY1JGvJzZeywGuPN+7UDPqUmIb3v3VBjXh97So05vGUovzG9/K4M69u9ubxfjbFIbST1oGE95PT8C2rM2/JY7QBDF/21fkNmDN1n3xa9jq55D6gxvdf0unPOO67GmLpB9+khlu7Amw833u0/2a8fv5btHvR/pMZY9sOBve+oMaYytnQztnTNt3QptqzL0hX8gmFdb9RePDhvOB4Mx57pvGTqym0YhmHBMByApfwMpxRZ0Lu2f1Ve0dM58aJhZbX583o9tg054DoUSWX+mCE/45ahG8LJDwAAAAAgXDRkNNEzzzwj9913X8VlU1NT8vd/vcUZAgAAAOo0Ozsrs7OzFZfdvHmzxbnBbqE9M01NTbU4RwAAAB/rtnvgLemR26H3yOiMOTJoyGiiV199VWKxWNXlN7a+1MLcAAAAAPWr9VI5m81KPB5vcY6wG2jPTAAAAO3UbffAdyf7DveVP5N9AwAAAAAAAAAAKOiRAQAAAAAAAABAl9vNk313Ri4AAAAAAAAAAAAqoEdGG31z72ZrVvSEHvI9b02N+Zw/qMdISo1JSVKNSRrSGX5+TY356ktfUWOOzr+lxvif9NSY1LCyXe+pSciPD3xKjXlKXldjrlw/rMZsPrxfz1BIzp18UQ8aDmddz2+9pMa83fNYzeVr3gP6ivqsOartyoa+ry77T6kxR8cM9fjbv6TGeD/x1RgZP6uGDPqf09ORZTVCK59zY4a6Je82vB4RETkRzjEzOK9v95r3tJ6QnozIiUf0mIXX1JDe926oMZvLevlo2742H9KJwKLvjB5zwZDOuCGmhZv126IfE+cW9GNYKx9vzJIbQz020euo5xnq8bXn1JjNg9805MdwXAEAAABAG9ydIyPcHhmdMkcGDRkAAAAAgLaIx/9ErI+ll/0vmtO1fKxUxtLAHRjXP5Ko24Jb2t6yQ+OqpYG+lKWxPtDn2Mib1xugiy467BsR8frdsuLGId+uDfp5w4cGdbPn2/cdy9tzqLOWD3HK2MvQ993qoEs9cdpG57y4lrdDPTnhlrYTl3NmJ6Vt+dCrlOUDoI8089i51e/2Ud0+wwc8xbS/rn+4W2q5f9Ac63wtFpfzIB8Xhe1/nv1X8j/P/quKy+7cbNHH+AoaMgAAAAAAAAAA6HJbskdu19GD4j+b+rvyn0393YrLPsz+ifwgPtVgzhrHHBkAAAAAAAAAAKBj0SMDAAAAAAAAAIAutyU9shXyK/+w59yoFw0ZAAAAAAAAAAB0OSb7RlNYpq1ymUqsmrNfCCERERl+fk2NefcbhoT8pL6uXzas6weGdb2kh3xtXJ/Y6MbtXjXm9Z6nai5/auN1NY0rPYfVmMfkbTVGLBOXbRhiQvL6Vu2yERE58PdvqTG9F26oMZ+6/mM1ZnO59kRZg74+C93afDgTS20+rE/adfSCPkHW4Lye530b19WYy/2P6/kZH1Rj1vqH1Zje9/T9uXnwg9oBrhNLVluPYT9YWLbJUjZy0bCuYUP5nTRsl2ECzc2HDfmxbPu8su0n9fWYJsI8aZhoz7AbQvOkIcay7Qa2SQMdJx+txDQZreEuxjKZY96wKsPEjZsH9brjOkkjAAAAAKA1aMgAAAAAAAAAAKDL3ZE9TeiR0RnTbHdcQ8bS0pLMzMxINpuVWCwmqVRKEolEWUw2m5WZmRmJRqNSKBRkaGhIRkZG2hYDAAAAAK3EcxMAAADuJR3VkHH+/HlZWVmRyclJWV9fl/Pnz8vQ0JCsrKwUb8pzuZzE43HJZDISi8VERGRgYEA2NjZkYmKi5TEAAAAA0Eo8NwEAAKCSrSbMkcFk3xW88847srKyUvzv48ePSzweL/u6aHJyUhKJRPEGWUQkmUzK5ORk8Sa5lTEAAAAA0Eq76bkpk/m0xGK2Oa88b9AUd5dlLp+P9V570By7edJxji59KrOP5d3ybZo7KjDuOEeSYf6hogWHfDjyxxx/4BBvm1uqJC8Ocyl5lnkLS+VdZsgMYb6rKjzX8naZs86lvoqIy3Z6nmPahnniisbdknbhWgdN84t9xJ9vcl5cNLGeePq0p0Wu86F5Cw510PWYdzjHOqc97DAH5B+5JX1F9Lldi0KaB7AS9/N3OPNror06piFjdXVVUqlU2b/FYjGJxWKSy+VERKRQKFSMO3TokIiIzM3NybFjx1oW02hjxoOGCaRl72bNxWe+bViRPre2fPX7X9GDnv+6YWW6Kxv6SW/5+4OhrOuwXFFjhr+sp7NsmIR7+DtrNZcnn0jVXC4icnRen9T59NgLaoxpcu1XDJNrWyYTVibOFhF5aex5NcbCsi6T8doXvMfG9AnVrwzrdcKS38EN/cnWcsyokyiL7SHwccMJo/eaYdsNk0NbXL/9mZrLn+p5XU3DUjZanRAROe2/osac8/Tz+qD/OTVmzXtAjdm8GM6NmOU4l/f0ENPxqd3IGh5aeq89Z8iLnhV5wxBjufE2PJRZjj3Psi7Lw05YE4urL9IsL1vCesliWNeCIRnDg7/lJQgTgqPd7sXnJgAAANhsyR65HXqPjM6YI6MzciEiiURCotFoxWXBv1+9erXsvwPBlz8rKystjQEAAACAVuK5CQAAAPeijumRUU0ul5PJycni/xcRiUQiVWNbGaP58MMP5caN6l+63tjya/5+3z51FQAAAEDDbt26Jbdu6b01q/nwww9DzA3q0a3PTdozU7mfVvi3vdIFj7UAAKAD7cZ74LtzZIR7b8QcGQZLS0sSjUaLXZHX19dFRKS/v/LgcIVCoaUxms9//vNqTC2/dXqPfKKhFAAAAADdzMyMnD3bvDHu0Vzd/NzU6DOTyOdF5PEG0wAAAPei3XgPfKcJk33foSFDNzMzI4uLi8X/HhgYEBGRjY2NivHRaLSlMZrvfve78uijj1ZdfmPrkzV/v2+fyP/t3B11PQAAAEAjTp06JV/60pfq/v0PfvCDEF5Io17d/NykPTOVOnBgpsK/dvQjLQAA6GDcA3eXjr3rSyaT8vLLL5fd+Ab/v9pXPdFotKUxmvvvv1/2768x+emWp6YBAAAANNu+fftkXwPjmt5///0h5gYuuv25SX1mKkN/dQAAEJ7deA98R/Y0oUdGZ0yz3ZENGXNzczI0NFScIC5w6NAhEdk5zmrw3/F4vKUxjdqf3Gw4jbNfaDgJERH57V/+uh6UMiT0DT3k1tUDasy7hu168HavGnOl57AacyNlSEf0dIaTa7UDnlCTkMGxZTXmt7+j76uvPvEVNaZ3WB+L+HD/FTVGxvSQc/MvqjGn51/Q8yN6fo72v6VnqO8RZT1f1NMwOD2mb9M5T69/g7Wn0xERkSvDeh315g0vCU4O6zEGve/p9WvzYT0/n3rvx7XTOKmnYalb597Q6+i5sdr1RkTksq8PbXG0/4waI316iOUY/vHxT6kxB/a+o69MXtNDThi2K/9uzcWnff26eK5f3+em+jf+gRqjnSus6/qq5QJ6Qa+DMl67/EREZMGwr/osdVDZ9ryehIlSJ+56Wo3wfX1fWXh8Y4Iuc688NwEAAKC5rs8uyPXZhYrL/Jv1zyMSps5oTimxtLQkIiKJRKLs37PZrEQiEYnFYrKyslK2bHV1VUREjh071tIYAAAAAGgHnpsAAACw3W3ZI7elx/nvL0/9H+SBf/f7Ff8++ervtnuzRKTDemSsrq7KzMyMTE5OytzcXPHfM5mMxONxicVi8vLLL0s8HpdcLlfsppxKpSSVSkkkEhERaWkMAAAAALTSvfrcdNlfM8em5HNOaa8Zel4WLbhOCqr3LCs64drDzCFe7/xdbsHSa+4jlt5+dfI8x/J2yYuh92VZXgy90YtcOzovONQTZ4Yem0WOdTDvsH9c64mp52Z9fId96Y27pe1UZ5t57PQ3LWnnY8evPI1SRc3sIevNu/7C4dhx7LHce+FBc6xlNIMyTzrE/qpb0ufGDD3JA47nQX/efjw4Xxtcz23oSB3TkJHNZmVoaEhERCYnJ3csz+fvnhFisZhkMhlJJpMSjUYll8tJMpmUiYmJYmwrYwAAAACgVXhuAgAAQDV3ZK9shfzK/06HNCF0Ri7k7s2v7xsGgv8odnFxsWNiAAAAAKAVeG4CAADAvahjGjIAAAAAAAAAAEB97sge2ZKe0NPsBDRktNHjL11WYwa/cbTh9Zz5th5z9guGdJJ6jGX0wNcM69ryv6LGHJYrasz3vDU15qlr19WYZH9KjfH+tPaXcT80DPR42B9UY5af0GMsYxb2Xrihxqx5D6gxrmNjVvP88ZfUmCs9h9WY0xsvqDHn+muXz1Mbr6tp/PjAp9SYA947asxp/xU15ty8PrBk77C+Py0GN/TBk9e87xlSek4PMYx5u3mw9lml95q+HsvxcHn+cTXmqKdPbnV0+S01xjSO8Al9bNDNk/o4qQeevGVYlx4S2nii6rjf+vFgOsa943peDOeu6z/ep8YceEUv43Mn9TpoOvbeMAwyu6CHmMabVveVoU5YxmK/YIgZ1/PrPkZuZb7fvHGqAQAAAKDZtmSP7Am5IWOrQxoyOiMXAAAAAAAAAAAAFdAjAwAAAAAAAACALnfnTo9s3Ql5aKmQ06sXPTIAAAAAAAAAAEDHokcGAAAAAAAAAABdbmtrj8jtkOfI2LL3hcjlcrK0tCQiIhMTExKJRELLBw0ZAAAAAAAAAACgLrlcTpLJpBQKBUmn0xKNRkNfBw0ZbfSYvN2S9Zz9Qkjp/CCcdM582xD0/Nf1mDf1kKeuXVdj3jl4QI35on9Zjbn+4301l7/U8xU1jee3XlJjDvz9W2qMxev9T6kxV/zDasy5sUfUGP8BT89QUg956iuvqzGbD+9XY05vvFBzeWpDz8yVHr1sLvtfVGNShg0fHFvW87Oh56d3+IYas9Y/rMaIfE+NONx/RV9Xn76u0xuv1Fz+tujrkXk95Kg3qMb0XntQjdk8qa9Lnjyjx7xhSGfhXUOQfnzKk4ZkLPmxpKM45/XqQX2G8hND2RiquuV8e3q+9vlEROScvKjGrM0bMmTZ532GfW6hnXYspwqLcUs9tnhaDwmpbDzvbCjp+L6lLgMoNfydNXPs0W+95Za4y3VsuYnHr37bVy4f1nm0xVyuIwuGc3y98o7ndJe8uF53XOKd97tDvl3roEPa/oZbyp7hWbPoSbfy9rzmHTsu13j3fLxmD73oeK4ad0g77xArIt6YQ15OuOW794L+nBvYPOhY3qZnj4+4nk/kOXNk73v2bRQR2TypvxcJfHVef1dV5lv2UJd9c5c939xLV7d1u0fkdriv/LeUHh7ZbFaOHDkix44dk8XFxVDXXYo5MgAAAAAAAAAAgJNCoSBHjhyRaDQq6XS6qeuiRwYAAAAAAAAAAF3uzlZP6HNk3Nmqnl4wnFQqlQp1nZXQkNFEzzzzjNx3330Vl01NTYlMtThDAAAAQJ1mZ2dldna24rKbN2+2ODfYLbRnpqkpHpoAAED7cA9c29zcnIiIrKysSDKZlFwuJ4cOHWrKPBk0ZDTRq6++KrFYrOryr4o+rjYAAADQCWq9VM5msxKPx1ucI+wG2jMTAABAO3XbPfDW1h7xt/XI8G/dErlV/5y7/o3KDTbZbFZERGKxmExOTkoqlZJcLidDQ0MyMDAg+XxeIpFI3evdjoYMAAAAAAAAAAC63NbtHrnzF+UNGXe+8U2Rb8yEvq5cLiciIpOTk8XeF8FcGUNDQzIzMxPqkFM0ZLRRj/f1htN42hDzyKOGIEOdOvsFQzoGlnSeu92rxux/c1ON+fGBT6kxH+jZMfnm3tr5edt/TE/EMITd9X++T415qud1NeaKHFZjUhtJNWZwflmNeVwuqzGvbz2lxhzuuaLGrMmwGnNu/sWay3uHb6hpPLWhl3FYNk/uV2NOz+s9vM6N1d5uO/3Mc2XjQTVmcEOvO/p69Hq8efADPaGLZ9SQ1/sfV2OOylv6ugwsx9XawgOhrMtS3y110GTh3drLT+j7QZ7UQ/yxR9QYb15P5/KYYZ/3h7PPe9/T98Mt37BdY4aVWQ49/VTaYV7TQ/J6jOfpyfi+oZ4CAAAAQIfwfuN5kV//b+r+vf9v3xX5uzsfEqv1tkgkEiLycUNHWGjIAAAAAAAAAACgy/l3esTf2vbKf+9ekb1/uf5EP3Gg4j8fOnRIRETW19crLu/v769/nRXsCTU1AAAAAAAAAACwq0UiEUkkErK6ulr274VCQUQk9PlD6JEBAAAAAOh833GIbXwEy+ouOMa/4RC7cNYxcReWgYnrlHfNt8swfYbhA0sN60MxFi03cbjAvDKk5nYn7Pn25x22UWxDahaNO+7LPnsZmobALNF7QR96M2AaTraMQ70yDENbyvMc970Ly1CsAZdzj4jbdp50S9oyFHLgt8VtSGRvzGEY3D63Y8fpfP+GWz3ZPOhQTy665dvl2DnXH9YQ1DttHvym2w8YwjUct/eI3DaMXe+aZhWpVEri8bisrq4Wh5Sam5uTWCwmExMToWaDhgwAAAAAAAAAAOAkFotJJpORZDIpi4uLEolEpFAoSCaTCX1dNGQAAAAAAAAAANDttnrC75GxVTu9WCwmKysr4a6zAhoy2ujMl/WYs9+ovdzSGfLBq71qzP43Nw0p6Z67ra/rg736uvYnw8nP/u/o6XzRv6zGvL71lL4uZX9+feOwmoYY5sD57eTX1Zi1Hw2rMVcu6Pl5vV/fbouUJNWYl3qeV2OuGMrw9IbeZfVteazm8jXve2oa12/r++HAK7fUmMExw7gHhq7g58YM3UEtQywYus72Dj+oxmwu6917197Q6+ma6DGa0/4rakxq40E15mj/W/q6DPXPsq/WThq2u08PGZzXd/ramGFdlt2woHeNHvR/VDsvlmESDN3YPUs3esPxcHT8d/Ugw36wDC2xeVC/onuWoQQM+8F096ANtWEZQsQ01IQhL6btdhx2pAqf7uwAAAAA0JFoyAAAAAAAAAAAoNtteSK3vfDT7AA0ZAAAAAAAAAAA0O22ROR2E9LsANWnHAcAAAAAAAAAAGgzemQAAAAAAAAAANDtdnGPDBoy7gHfNEyuHRbLRN4PGiYEPxtSns88GkoypjLc8r9Sc/k73gE1jUcME8DLE4aYn+ghmw/rkzEfvaBPbnz9+D415sp1fZLutWV9NmH/k/qYfI8/oU/evtavresBNY39b35NjekdvqHnxdPXZZms+q1fParGyB/pITeO68fnUz2vqzGmSbqf1EO0MvzxgU+paRzo1yddt0zGfNn/ohpzdF4/ZizbfXn+cX1d3qAas2YaxlKvg/63f0mN8cTX86NN5m2ZpDukicd7rz2oxtzq1ycf9zzL5NoWT+shIUyoLiKy1m+Y0For5wU9idBYJjA3TCzub+jJeJ4+iTkTggMAAABA69GQAQAAAAAAAABAt7st4ffICDu9OtGQAQAAAADoeN43fmiOHfSXndK+sqH3IK7X5vgHDtGGHnr1OqH3NCxj6REXMPSMK09b7wFXdNEx7fEmpn3SLdyJS5nMN7FMTjRxXzr26NwUl7y85pa4Q531x9yS9sZd8uJ2zA/O289ta/OWrswlxsPqabzTOU/v+V+MveiYuMvp3tATv5zDedPtsiNy0Z62ZXSKUjcO2Mt7/79wGxHF+xW9Jz7QLDRkAAAAAAAAAADQ7W6LyF80Ic0OQEMGAAAAAAAAAAD3qqXZu3+V3LrZ2rxUQUNGEz3zzDNy3333VVw2NTUlUy3ODwAAAFCv2dlZmZ2t/HBz82ZnPNyg+6jPTFM8NQEAgPbpunvgOyKyVcfvnp66+1fJv8+K/MN4I7kKBQ0ZTfTqq69KLBarutzzHlPT+Jr8UphZqurMl/WYs9/QY5b8r6gxz2+9pOfnUX1dy98f1IN+eU0Nees7R9UYyyiKj3zn6zWX77t2XU1jc3m/GnP9yD415nLP42rMcHZNjblxXB9X8UqPPp7wrasH1Jh9w3r57BM95tYv6+v66kbtenpu/kU1jbD0XntQjfnt52vXLRHbmNGD/o8sWVKtjeljrfq/qo/h+dUn9PPFuf7a++LA8C01Dbmgh8gb+vikT228rsZYxi71vqWPKXr0jbfUGMuZyVK/Ng9+U43Zd0g/9uRbeog6rrRlGF/LOMyGsZ0P9+uD2HqWcYX7HMcbr6L3vRtqzOZJ/RqxZhk+94Qeoo2/vGYYs9qf19fjeSGNBZ+3jM/tOOY3dqj1UjmbzUo83v6HG3Qf7ZkJAACgnbruHnhLwh8Kqp6GkSbY0+4MAAAAAAAAAAAAVEOPDAAAAAAAAAAAut1tCb9HRodM9k2PDAAAAAAAAAAA0LHokQEAAAAAAAAAQLfbxXNk0JABAAAAAOh4vdceNMe+9Z1fckrb+4nvmBsHJx6xxy6827x8uKZ90SHfrk6eMYf2Dt9wSnqzz562jDexvPscy++CPd4bc8zLxeaVyaD/OXPsmveAU9q9F+z7fnPBKWmR/FlzqDfmUH4iIi51cNgt6bWxJp5PXOrsBbek5Q172oNjy05Jr4271SsXLuefzQv7m5YP12vU5Z7HzbFHv/WWa3bMfN/x2AEUNGS0k+XGcLz52RAROfuNcNLp8b6uxux/VE9n+fuDasz3vDU15uhF/WR/+okX1Jjf/rK+XV994is1l/9461NqGlfGDqsxL8nzaszb8pga88A31tSYR97cVGOufF/P85Un9JikpNQYy3Y9/v3LoaxL433LcCPxE0NCb+gh7xpuyi0P9pab3sF5/abR8kBx40CvGpPaSKox/r/wai7fd+i6mobF5kn9pvP1/qfUmMef0OuffEsPuTyv33geXbbccFpuvJ9WIzYPflON6b32nBrz4wO1z4Ofuv5jPS8Len4t9Xit3/DU6PhgWU3ve/p+2FwO58HHci443B9S+ShML1lcX/JUk39NDfE8/WGehy0AAAAAXW0X98hgjgwAAAAAAAAAANCx6JEBAAAAAAAAAEC328U9MmjIAAAAAAAAAACg2+3ihgyGlgIAAAAAAAAAAB2LHhkAAAAAAAAAAHS72yLyF01IswPQkNFO42fbnQMnZ76tx3z1ia+oMWe9r+sJeWt6jMHlscfVmO8Z1mXZUz3fqL1d3zSkseYnDVGGdOaH1ZjPXLuuxmw+vF+NGZRlU55aZW1M3/bH5t9ueD3+r3pqjPcrvhrT+94NNWZpXj+uZEMP6b2gryssB165FUo63vgPay4/7adCWc85eVGNOdr/lp6QXv1M+yGsdVmOYbn4iB7zhh6T7H9BjTnQr9SLvOFse/GMGrI2ZtimC3qIvGGIMaSzefADPeiEIc+G0+3mSX2fry0bKk/+3ZqLfV/Pr+fVTiPcdPR6AQAAAADoXjRkAAAAAAAAAADQ7bYk/DktmCMDAAAAAAAAAACgNnpkAAAAAAA6nmnIxI/se08fRrXMQZdhf592Svq0/4o5NnXBbahZ0/CFHxn0f+SU9lq/YdjDj1iGSy21KfZ96bKNIrZhCwOewzaKiGlozyLXEXhP2kMHN9wSX/O+Z47tvfacW9qWIT0DJ5ySls2HXaLdjsumcqknrhb0ITfrZhnmtchxWM8n7aGWobLLXHSIHXcrP5frjjY063aX/S+aY5/aeN0p7aPzhqGKA67nqmbWE4RjS+qb02J1VuTN2crLNm82kqPQ0JABAAAAAAAAAMC9KjF196+SD7IiZ+KtzU8FNGQ00TPPPCP33XdfxWVTU1UqBgAAANCBZmdnZXa28ldaN292xlda6D7aMxPPTQAAoJ267h643h4ZWpodgIaMJnr11VclFotVXW65Jz/rfS28DDXo7Bf0mB75uhqz5X9FjRnx9HQeeVTPj3xnTQ2xd7JtzJkv6zFrhnRe33pKjdn/yU09oSN6yOMbl0PJz4FXbqkxl8ceV2OGn19TY746r9evc/Mv1lw+OKb3rdy3oQ9XYOnyvTamd5u1DDGwuax3ebVsl6Xb+Wn/bTXm3PhxNUb6DN3QL2ox+lAN2v4WETm98YKejqdvk/+rv6TG7JNw6s6VjcNqzObJcOqFjOkh58b0cpYLtRf3DutDGST7DftK9LyYjoeT+vE5OG/YV8OWfaWG2LqrL7ymhvi+3sXbU4aJ8Ob1rIjoefE8PcbGcWgQ1KXWS+VsNivxePu/0kL30Z6ZAAAA2qnr7oF3cUMGk30DAAAAAAAAAICORY8MAAAAAAAAAAC63W0Jv0dG2OnViR4ZAAAAAAAAAACgY9EjAwD+/+3dYWibV57v8Z+mXWe6WxLFaV9sX3S78twXl4XcjpQykEsYh0ppwhRCqd1sHJbdfVHrhQtDp7kWaUkdx7RGwWVYqLnIvVwKyzgkVimFQtJaJR4CgaGRmpbLHe5lrM686cDt1FJC2dRu3HNfpFKtWNY5jyzJzyN/PyDa6Pnrf46e55F0jp/nnAMAAAAAAAAEHWtkAAAAAAAAAAAAdB4jMnzuGcv2dztUjmtZL97pscb8MfS6NWbvS/ayPnvDoUJP2UPGHnfI86RDTAu8t3q0MwVJevWTl60xV04escZcnuq3xvQcvmWNOfzTBWuM0vaQsz+1n19XPznQcHvKoaAjL1yxxixcPmyNubR00BrjwqU+7x2zn19T5qQ1Zr+uWWP6TeN9LEkp/dIac2So8fuaeP81a46b/77DGrMr9LE1Rrv3WkMuH+q3xqwM7bTGHJi9ao1xOb963rR/9q4t7bfGrFy211mX7SG2+qy8YC9n4mn7MXexMGTff055Qo/Yg3Y77L83HQq7bD8HTy9dsMaEQp/Zy7Kd7+cdcrSIMWMdKysUGrfGdLI+AGr1Lzn82DTp2lcvOseu7Pmjp9wTs+6/XaeHXvGWW8ecYxdmPf72ldy/61desP9GrWWW3GN3LD3mKXdoyFO4N097iPV6unrY307tj7V2u/92rezx+Bt/3P3Yu7RNa+vyR/fg33g7B/WCe+jpWW+fy/RSyjnWpf1bw6FPUlWyt2vW6vHyPej1/H7fQz28nicufZUKD+erVz1vPuYp/prs/bCKVK/DH0PW2D9k77NXuPwtoZbLXxCxpRiRAQAAAAAAAAAA0HmMyAAAAAAAAAAAIOjuSPq2DTl9gAsZAAAAAAAAAAAE3apaPxUUU0sBAAAAAAAAAAA0xogMAAAAAAAAAACCrosX++ZChs+9G7Byfn3/ijXmGZdEH9lD9r5kjxl/wx7zxSf91pgjs1esMTeP7Wi4fWfKvm92fmSP2bHvpjXmyycftsa4CH1hrDHmw5A90T57yGWH4+DisBasMQd0teH2I0P2431p9qA1xuW8uab91pizH75ujdFhe8iuC8v2IAenh16xxqSUtsa4vHfbfnbJMaWT1ph+84U15r3VJ6wxLvXpn71sjUkvpawxesEeoj/YQ1Yu72xNWQ7noK0sl32zMOtQ0Ilxa0i/+Zm9rF57WT1fPWaNWbG/Lac6u5gI9bQkj0qN62PMmDVFKOTSunBqFTiUZd9/LnV2iQEAAAAAdB4XMgAAAAAAAAAACLpmR2R8PC1dn66/7c7tzdSoZbiQAQAAAAAAAADAdvXEyN1HPX8uSP8j1tn61MGFDAAAAABAV7ny4RFP8S7Tt1acNhc85b4q+xSWFRNDr3nKLX3mHOkyPWhNXd53r8vpWW+5D+qAc+zKZYdpJdd62kPseY9TO55wD715x2F62DU8TQP7vqfUkss0lxW793rLfd79HNw/6/5ZkKQFPeIefMK9HpKk4+7vc7+ueUq9suePbamHJKnk8X16sPIThylnv3d6ydtnPn3YYercSj1ecK+H5Dbtc7UeQ+71kKT3Vo86x7pMFb7WwUOXnGNt02Pfy2Wa62YZ4/GcRed18RoZP9rqCgAAAAAAAAAAAGyEERnouL2P22PGbzgkcogZ+8Ahz08XrCFnbtgXtL421N94+5TDos4n7XftpA7ZF1E+qvesMf0h+11q5iWHu4gcbmhY+W/2Oyp+d2LBGrNg7HcsHN1nf+8rs43rc+a8/Xjv/3f7grqmYM8Tkn1B9bMP2Y+D+b29rFdnX7aX5bCweCh0xhpzyf62NDFrv8uv5/Cthtu93DXUsJw/NC5Hko722s8tl7s/j/ylRXfHuCyu7XA3k9MC2y6Feb0zsI5rS/bvSadyjtsXbF4IOdzN9ht7iMs52L/ksI9POCx67fUOyY1YFvJ2EXLYf51cOJtFugEAAABAd0djfNuGnD7AhYw2evbZZ/XAAw/U3TYyMqKRkQ3mHQMAAAB8Znp6WtPT9RcAvH3bHwsAInjoMwEAAD8LXBt4Va2fCsonU0txIaON3nnnHUWj0a2uBgAAALBpjf6oXCgUFItt/QKACB76TAAAwM9oA/sHFzIAAAAAAAAAAAg6FvsGAAAAAAAAAADoPEZkAAAAAAAAAAAQdF08IoMLGWipsZfsMbfSPfag+1c2XxlJStlDxm/YY16841Dn1WsNNx95+Io1xdm/e90ac3J1yp4nZc9z0Fyyxoz99Ig1Rml7yOlDr9iDTthDri3tt8YsX99ljQm9YBpuXzUv2yvjcBxCXzQuR5JOT9n3zauy12fiH1+zxpwJhawx+sAeIj1jjTi69KI9zQsORf3Bsv2wPUX/7GVrzMKsPVFqyH6yHzxk/1z1y6E+vQ5vzCHEoSinsvqX7IkODF21xkyEGn+Xpoz9uz/9pv2LfeUnO60x+s1ee8z79hCVPrOGXHE4WKHfOJR1wl6W9K49ZPeYPaY03nj7cfv+C4UsOSQZY69Lq/IAAAAAANorl8tpcHBQpVKp5bm5kAEAAAAAAAAAQNDdkfRtG3I6SiaTLS78B1zIAAAAAAD43kLoEefYHV/d9JR75bLDaL7vnX3IPvp5rdBf7KN0q87bR6GtdfOOe12mdNJTbvMvDqN5vxfq9fAeJZkl99iQywjJtZ72EHu8fSP6dv2Tx9wOI2mrXEbmruEyurZiYchj8vPuoQuh33nL7TASvMpltG2TjszaZ1dY67RxmJHgexO9Huu92z3+9NIFT6mvejgJJ0LHPOXuN41nsKgx6ym1rsk+c0PFAdlHka/18M0vnWOXU/bZIda6ts+93gs/8fi5dBg1XuXhnJLcRktXMGp6+0mlUopEIlpa8vBD7wGLfQMAAAAAAAAAEHSrbXpY5HI57dmzR9FotKVvZy0uZAAAAAAAAAAAEHSVxb5b+XC4kJHJZDQ6OtrSt3IvLmQAAAAAAAAAAADPUqmU0ul028thjQyf+5npb7j9d6GFjtTD1fgb9pgxrdhjXmpNWeM37DEudu6z11lPNt78ack+x+ytL3usMX+836EuDg5M2eeGPPjJJWvMe6tHrTFXdcBeH/OyNSYl+5fi5UP91pibX+5ouN3r/MEbuTR70BpzdOk9a8x7vfZ93POHW9aYMYcplG89aT8HXaR67cfq5JdT1pip+xofi4mnX7PmcDlHd5342Bpz5MS/WWOkd60R/eZn1hiX4/nyHvscrGd2O8xX/aY95NqSff7WhRcc5m39TePNLvPyrvzEfQ7zhk64zO1qn5f5tHGZe9hh3tkTDvPYOs1f6xBT8jb/el3nPcy724CXOXYBAAAAABaVERk1zy1L3y03n3P56w03FQoF7dmzR5FIpPn8jnx1IaNcLmtyclKS6l7FKRQKmpycVCQSUblcViKR0MDAwJbFAAAAAECn0W8CAACAs/89Kf2v9txENjk5qbm5ubbkvpdvLmTkcjllMhlls1kNDw+v214sFhWLxZTP56uLhvT19Wlpaaka38kYAAAAAOg0+k0AAADY0B1J397z3H86JfX9qvmc5RvSb3++7ulUKqVEIqFisVh9rvL/lf+2cqSGb9bIiMfjDa/eJJNJxePxmpXPU6mUksnklsQAAAAAQKfRbwIAAIAn9+2Q/mpn84/7H6ybNpfLKZlMqq+vr/rIZrMql8vq6+vT4OBgS9+Gby5kNFIul5XL5ZRIJGqe37dvnyRpZmamozEAAAAA4Df0mwAAALa573R3nYxWPr6rX1Q+n5cxpuYxOjqqcDgsY4zy+XxL35pvppZq5Pr165LWD0Wp3PkzPz9f3daJGIZJAwAAAPCb7u83vesc+V7vgrfUQ+6hB3XJU+qbqzucYx8+/KWn3A/ffNFTvBcT//iae/Cb3nKHQp+5Bx/f6yl3z+FbzrEr2ukpt973EHvZW+p2ura03zn29OwrnnJPyMN5Im/Hsq08HEuv++SqDrgHlzzOWf+bMefQ9FLKU+qVy+6fh37TvhO8P3TEU/yZ3cY51vxdyFPu/Z9ccw9ev2RVQys/8fj944Ex7p+1UMjbOWiM+zkItFogLmRU5tQKh8Mbbu9kjKuvv/5at265N6LutWPHDh351ysNY87I25ewH4y/YY95pv3VqBp73B4zfsMhkSVm1bxsTTHRa28E3rxj7whN3XfSGnP2w9etMfrQHvLqlP19uTh70qE+h1pSlNVZ2ety8JC9A3tAV60xqV57a+eR0II1ZvmDXdYYl2Plcl6cNhesMS6N9/RNe8P6y10PNw5w+KPDw0v2Pwj0fGXP49LQPL1k3zcTvYfthTmEnDnu0GA/7/BHgvftjdz9Q/YG/L+dt3c4fjnb+HPj0sk+vWTvSE7MOnSo33dogDvsP5fv7YmSw3HYbT8OZsmexsWOJfsfvVb2/NoS4fLHRJdfc3seOkudsby8rOXl5aZf//XXX7ewNmhWEPtN3vpM39R57n4FpFsLAAB8pivbwHe+f7Q6pw8EosW3uLgoSert7a27vVwudzTG1c9/vn4RFC/GxsYkndlUDgAAAMBmcnJS4+Me7wqF7wSx37TZPpP0c0kHN5kDAABsR7SBWy+dTiud9jhEyVEgLmT09fVJkpaW6t+KGIlEOhrj6re//a0ef/xx5/h77dixQ+P/2vTLAQAAACenTp3Sr371q6Zff+PGjRb8QRqbFcR+k5c+065dk3WeDUSXFgAA+FBXtoFX1foRFKstztekQLT6Ko3gje7qiUQiHY1x9eCDD2rnzvbNeQcAAAC0wo4dO7Rjh/s8/vd68MEHW1gbNCuI/SZvfaYfO8YBAADYdWUb+I6kb9uQ0wd+tNUVcLFv3z5J6+dZrfw7Fot1NAYAAAAA/IZ+EwAAALpVIC5khMNhRaNRzc/P1zyfy+UkSc8991xHYwAAAADAb+g3AQAAbHPf6e5UUK18fNfRd7AhX00t1WhBuLfeekuxWEzFYrE6TLmyeEg4HO54TKeY2cbbx893ph6d9q5DzDMOMXsft8eM37DHjDnksfks9Lo15uxL9phb6rHGnFydssaMP2UN0dgH9pj0Usoas3x9lz3RIXuIS50XzCVrzJWTRxpuD0WNNcdpvWKNuaoD1hgX+02/NeYLhzwux+rkk/Zzx+X80n32kIU9j1hjdv1mueF2UwhZc0y8ccwac8n80hrjtP9c9k39qcRrTITsn3PtHrOGnDYX7Hlkj5nofc0a88RXN60xKTVe8GvhhcPWHFdn7Z+rnsO3rDErcpjG5Om99pgTLVoYrmQPCfU61Kf0mT3muEOe443PL1v7RJJCIfu+McZ+HgNYj34TAAAAthvfXMgoFArKZDKSpIsXLyqRSCgej1cbwNFoVPl8XqlUSpFIRMViUalUSsPDw9UcnYwBAAAAgE6j3wQAAIANsdh3+0WjUWUymWqjfKOYubk5a55OxQAAAABAJ9FvAgAAwHbkmwsZAAAAAABsxMt0dJ+FznjKvfcl99ijL7/nKffRXm/xXrzXe9Q59sjQFU+5b365w2t1nO16v/H0oWv1z172lHuh1z5VZdPe9BD7tMfcJxymh6xymCZyjVRv4+k913KZUrRZp5fs0/OuNTHkXpf+IW/niYbcQ71OGbww634OXjLux0aSjsy6fw96+X6QpGtD+z3Fe+EyTW/Fe3ccptld44zLbLrfGz/hKbVeXL3mHuz+Fr0reZ3O1v08YarXLnRHrR+R0ep8TQrEYt8AAAAAAAAAAGB7YkQGAAAAAAAAAABBd0fSt0287v9N333U893tzdSoZbiQgcB61yXoRmvKGm9BnrEPNp9Dko7eZx+a3h860pKyxp+yxyw/vssa8+onL1tjBkKvW2N+ZvqtMS+u2ofPjr/ReLv5IGTNcVn2upz9qf093brubdjsRnZdsA/Pdxpu7bCAk8s5eOVD+zk4cXzzw9YvT/VbY/qnvrDGHJm1T7Vw85h9eoWp+05aY5yGyB+3h5yetQ/Nn5h1KMthGoNL5qA1xmUfTqhxfVzek5dh6Q29YA/p+cMta8zKboeh2CWXqSIcftVKDmlc8py3hxjTeMqKUMg+vJ1h6gAAAADQYd+pucW594zcfdTzHwXp/8Q2U6uWYGopAAAAAAAAAADgW4zIAAAAAAAAAAAg6FbV+sW5mxnh0QaMyAAAAAAAAAAAAL7FiAwAAAAAAAAAAILujlo/IqPV+ZrEiAwAAAAAAAAAAOBbjMhAYL14p8ca8+v7VzpQk7vGHm+8ffyp1pTzbzpijXm3NUU5Gb9hj7kv9Lo1xqXOYz9dsMa8+snL1pj95lrjHNpvzXFydcoac/mTfntdVhvXRZJ2phzO4y/sIVcesp87Bw9dssaklLbGhP7RWGNOL71ijbFJK2WNubZkP556wR5ydOg9a8zC7GF7IhdP20Ou6oA96H2XwuyfvqNL9vfuoufwrYbbXd7Tyk92tqQuZskeE+p1KKs0bo/ZPeaQxx7i9k35TIvy7G241RiH9wQAW8hrezg7ZW9DVqzMevstSg3Z204VRy5f8ZT7iNzjT896a3vtGlp2ju15s/Fv/L1u/vsO92CP83I//Icvvb3Ag+XXdznH7nj5pqfcK7sb//bWOP+Zp9zpN+1t5gqvbfSJodecY8+etPcLa+L/xT3+1qr97wNrTd130jk2veS+/yQ5tsHvujbk0FdZ4+Yx98/Ow0vePgtezu/LU/2ecr/Xe9Q5dkrux0aSp/3t8nektR6+6b4PV/6zx37KnzzEuvQngIo7kr5tQ04fYEQGAAAAAAAAAADwLUZktNGzzz6rBx54oO62kZERjYyMdLhGAAAAQHOmp6c1PT1dd9vt27c7XBt0C/pMAADAzwLXBv5OnkczOuX0AS5ktNE777yjaDS61dUAAAAANq3RH5ULhYJisViHa4RuQJ8JAAD4WeDawKtq/VRQrb4w0iSmlgIAAAAAAAAAAL7FiIyAWzX2RelcFloOok4u5O3Ctuj12AcOORwWBO/kQt4udXZZHPrKSfsi06GofXHoZ06E7BVycNiyaPgjNxpvl6Rdx+31/fS8vb7XTL815sgb9hjzgb2sW0/aFzZzOlb/0/7e9aY9xGVhZ9vi2ZeGDlpzHJV9oer+pcv2ugzZF/J2Wehy5cSvrTGnZ+3fb06LDjosGq6n7QvHrTgshu7C9t4XXBaqPu5QkP1wKtTrkMfFcYeF9847LAgOAAAAAMBmMSIDAAAAAAAAAACg8xiRAQAAAAAAAABA0LV6NEa7cjaBERkAAAAAAAAAAMC3GJEBAAAAAAAAAEDQrUpqzRKztTl9gAsZAAAAAICusmpe9hR/cnXKOfa+E697yn244CE46im1zpzw8JeKE95ymw/c3+fB3kueck/ppHPs2ZPe9veX6Yc9xXsx/oZ77Mdv7PKU+7E7Pc6xu/5p2VPuVO8rzrFXdcBT7tOz7rlvrbq/R0maus/DefKht/PES/zVKW/7JDWbdo49fHLBU+5Xp9y/2/b3XvOU28v5rTcWPOX2Yr/xFt8/e9k5dlevt8+ODnuIPf+Zp9TG7HWODYXGPeWWxjzGA5K+mZaWp+tvM7c7W5cNcCEj4M7qNWvMuLz9oAfF2OP2mPEb7a6FByl7yNgH9pjxpxzyvOSQx6WR4lDnA4eu2oM+sodcmjpojfnlkL2DlJJ7o3Ejex3236dv2DuNX5j+TddFknTcpRFyxhrxx/tXrDH/5bhDq/FNe8jpIXuHZmLW/v3VP9S4UXpN+605Vi7vtMakhhzOm1l7iMv5d+T4FWvMhENZZsgec9Cy/yRpYdahdX7epeH8jD1kd+Nz2SzZU4RC3joIG3vXGmGM/bMX6rWX5JTHoXPikseNe6cJAAAAABAgzY6euH/k7qNuzoL0H7Gmq9QqXMgAAAAAAAAAACDoViV5HNlk9V2L8zWJxb4BAAAAAAAAAIBvMSIDAAAAAAAAAICgu6PWL/bd6hEeTWJEBgAAAAAAAAAA8C1GZAAAAAAAAAAAEHSr6toRGVzI2AbGPrDHjD/V/nq02viNra6BN071dTgOz7iU9YY95sU7Pfagj1asIfeFXrfnedwecvjDBWvMtUP7rTH7V69ZY1795OWG20+uTllzZKdOWmPOfmjfNzv23bTG9M9etsYc1CVrzMLxw9aY07OvWGMmZl+zxrjsQw3ZQ9JLqcYBvfYcLtKylCNpYda+/xbet8c4ecEeEnKI0eEW1cfpm+dde0ip8eZQ716n2nRKKPSZNcaY1tTZmDFrTCg03pI8AAAAAAAEDRcyAAAAAAAAAADoBj4ZQdFqXMgAAAAAAHSViZDD6OM19hv7yN8fLHjK7TJauuJMy+eC+IHLSP0aH7qHHjh01WNyDw55Cz9633vOsVdOHvFYGXePuYyAX2PqPvuI74pPz3s8T867h1419pHeazmNxP6el2MjSSmlPcV74uG86g95O09+16ZYSTp7yGFGhO9dPtTvKbeXuvzMeMt9dMn92K+Efu0pt37jYRR6qwas1+UwQr2G+8huRl0Dd3Eho42effZZPfDAA3W3jYyMaGRkpMM1AgAAAJozPT2t6enputtu377d4dqgW9BnAgAAfkYb2D+4kNFG77zzjqLR6FZXAwAAANi0Rn9ULhQKisViHa4RugF9JgAA4Ge0gf3jR1tdAQAAAAAAAAAAgI0wImM7OOSywkv75mLtBqvmZWvMfSH3uSo34jLP5N6fLlhjHrtun491Z2rFGuMyn6/T3JgnF6whO/bdtMZ8ufqwNcblfZ1MN57H1WXu1vdWj1pjXOYkXf5wlzXGZd+keu3zxx6Ytc9dPBE6Zo3RcXvI0SH7PlwIPWKN6fmq8XaXeXMXHCZCvbbkZV7sjfW8ecsas7LH45yvG9ltnyfVzNrThHpdCnOY79WhPtZDcX68JeWYJXsaL3PS+gVz4wIAAAAAtitGZAAAAAAAAAAAAN9iRAYAAAAAAAAAAIF3R9K3bci59biQAQAAAAAAAADAtvXfv3/U800nK7IhLmQAAAAAAAAAABB4d9TcCIrnv3/U84mk/9p0jVqFCxkAAAAAgK5izJjHV7jHH9Fn3lLv3useWxr3mNu93mOHvKUOPeVeFzPlbX+HQu778Kx5zVPuhV4P9Sid8ZRbxz3s7/u8pT7rITakHm/JvQg94il8lz5uU0WkBfV7iPYSK0nPeIh911NmL98/oZC3z/zYIQ/fVR4+Z14Zefhek7Ts4XMpj9/fXvah998GD2bbmBuAJC5k4Htn9Kk96LjDD9XTDoWdcPkxdWko2Bsextjr7PSjF7KHGGPsQda6OOwbl47Q/fb35PIDPjZlLyrk0iApObyvN35tDXFpJLsc8122/eywj3cuLVtjDlsjpNBTLp8H+76Z2G3v4Jkle0kTcjh3Zl0+V7+z52lJI/KKPeSE/T2tOJTkVt+dDola08B1+e4KOXx3uWhrg38tGv8AAAAAAGwCa2QAAAAAAAAAAADfWlXrLzystjhfc3601RUAAAAAAAAAAADYCCMyAAAAAAAAAAAIvO6dWooRGQAAAAAAAAAAwLcYkQEAAAAAAAAAQOB174gMLmRAkmTM3s4VNuRSVufqY8xYx8qyad1x6Nx7MksuUX475h083y3c6hK8z4O/Plf+qUsrdev7AgAAAAAAuBdTSwEAAAAAAAAAEHirujuCopWP1YYlZrNZxWIxhUIhxWIx5XK51r8tcSEDAAAAAAAAAAB4dO7cOWUyGSWTSY2OjqpQKCiRSLTlYgZTSwEAAAAA4Ki905T6Z+rIdk5j2c596Db1bYV/9rcX22eKUb9MCdzG8zWgnzM/2T6fB8BVZ9fI+PjjjzU/P1/997FjxxSLxZROpxWPx1taCy5ktNGzzz6rBx54oO62kZERjYyMdLhGAAAAQHOmp6c1PT1dd9vt27c7XBt0C/pMAADAz4LXBq5MLdXqnOvlcjml0+ma56LRqKLRqIrFYovrwIWMtnrnnXcUjUa3uhoAAADApjX6o3KhUFAsFutwjdAN6DMBAAA/ow28sUYjLiKRSMvL40IGAAAAAAAAAACB19mppeopFotKJpMtrgMXMgAAAAAAAAAA6FIr3z+a9R/OkdlsVpFIRMPDw5sorz4uZAAAAAAAAAAAEHh3tH4ExVuSZjpS+uTkpObm5tqSmwsZAAAAAAAAAAB0pX+VdGITr/+/kp63RqVSKb311lttWR9D4kIGAAAAAAAAAABdoN4aGSFJOzaR86+sETMzM0okEopGo5sop7EftS0zAAAAAAAAAADoWtlsVpIUj8drni8UCi0thxEZAAAAAAAAAAAE3qrWr5HRipz15XI5TU5OKplMambmh3U48vm8YrFYS0docCEDAAAAAAAAAIDAqze1VCtyrlcoFJRIJCRJyWRy3fZSqdTSWnAhAwAAAAAAAAAAOItGozLGdKw8LmQAAAAAAAAAABB4nZ1aqpNY7BsAAAAAAAAAAPgWIzIAAAAAAAAAAAi8zq2R0WmMyAAAAAAAAAAAAL7FiAwAAAAAAAAAAAKPNTIAAAAAAAAAAAA6jhEZAAAAAAAAAAAEXveukcGFjDZ69tln9cADD9TdNjIyopGRkQ7XCAAAAGjO9PS0pqen6267fft2h2uDbkGfCQAA+Fnw2sBcyEAT3nnnHUWj0a2uBgAAALBpjf6oXCgUFIvFOlwjdAP6TAAAwM9oA/sHa2S0wcrKSs1/AZvl5WWdOXNGy8vLW10VBATnDLzgfIFXnDPwivYvvOKcCT5+K4KPYxhsHL/g4xgGnz/bM3eafFyS9KsNHm909B1shAsZbeDPkxh+try8rPHxcX684IxzBl5wvsArzhl4RfsXXnHOBB+/FcHHMQw2jl/wcQyDr7vaMwlJ5zZ4/HIL6/UDppYCAAAAAAAAACDwuneNDEZkAAAAAAAAAAAA32JEBgAAAAAAAAAAgbeq1o+gWG1xvuYwIgMAAAAAAAAAAPgWIzIAAAAAAAAAAAg81sgAAAAAAAAAAADoOEZkAAAAAAAAAAAQeKyRgQCbnp7e6ipUUZdg8NO+oS7B4Kd9Q12CwU/7hroEg5/2DXUBgmkrPi+dLrPbvxO6fX92+/GTun+fcgwpz++2w/7s9mNoV5laqpUPppYKjEKhoMHBQaVSKSWTSWWz2a2ukid++gBTl2Dw076hLsHgp31DXYLBT/uGugSDn/YNdQHq83u/aTv8MaXbvxO6fX92+/GTun+fcgwpz++2w/7s9mO4nTG1lEWxWFQsFlM+n1c0GpUk9fX1aWlpScPDw1tcOwAAAADYevSbAAAA/ICppbatZDKpeDxebYxLqt5hBAAAAACg3wQAAID24kJGA+VyWblcTolEoub5ffv2SZJmZma2oloAAAAA4Bv0mwAAAPyCNTK2pevXr0uSIpFIzfOVu4zm5+c7XicAAAAA8BP6TQAAAGg31shooFgsSpLC4XDD7QAAAACwXdFvAgAA8Is7av0ICn+MyOBCRgOLi4uSpN7e3rrby+Vy3ee/+eYbSdKnn366qfJ7enrU09OzqRySdPv2bRUKhU3naQXqUt/XX38tSbpx44YefPDBLa6Nv/YNdamPc2Zj1GU9v50vkn/2jURd6uGcaawb67KysqKVlZWmX19p91bawdhemuk3bUWfaSs+u50us5PlbcVvRTfvz60oj2MY7PK2qr3Wzfu00+XxGdz6MruzDfyXgORsgsGGMpmMkWTm5+fXbZNk4vF43de9/fbbRhIPHjx48ODBgwcPHtvq8fbbb7e7iQ4faqbfRJ+JBw8ePHjw4NEtDz+0gf/0pz+Zv/7rv27be+zp6TF/+tOftvQ9MiKjgcocrxuNvLh3DtiKX/ziF3r77bf1t3/7t/rxj3/cdPmtGpEBAAAANLLZu9G++eYb/fnPf9YvfvGLFtYKQdFMv4k+EwAA2Grd1AZ+9NFH9fvf/15/+Ut7Rk889NBDevTRR9uS2xUXMhrYt2+fpPVzulb+HYvF6r7uoYce0j//8z+3t3IAAAAA4APN9JvoMwEAALTWo48+uuUXG9rpR1tdAT8Lh8OKRqOan5+veT6Xy0mSnnvuua2oFgAAAAD4Bv0mAAAAtFvIGGO2uhJ+VigUFIvFtLi4WB0S3dfXp2QyqdHR0S2uHQAAAABsPfpNAAAAaCcuZDgoFAqanJxUJBJRPp9XqVRSPB5XuVxWIpHQwMCApxxeXofga/bYZ7NZTU5OqlAoKBqNKp1OKx6Pd6DG2Gqt+L7I5XIaHBxUqVRqUy3hF604X4rForLZrCRpeHhY4XC4DTWFX2zmd2l+fl7hcFjFYlGRSETpdLoDNcZWKpfLmpyclCTn4027d/uqHPu/+Zu/US6X0z/8wz/oscceo88UQPRhgo8+RbDRxg8+2tzBRhvYp7Z0qfGAWVxcNJJMPp+vPheJREwmk2nL6xB8zR77dDpt4vG4yWQyZnR01Egyksz8/Hy7q4wt1qrvi0gkYsLhcKurB5/Z7PmyuLhoBgYGTDweN4uLi+2qJnyk2XNmbm7ORKPRmufi8bgZHR1tSz3hD/Pz82ZgYMBIMsPDw06vod0L+kzBRx8m+OhTBBtt/OCjzR1stIH9iwsZHsTjcROPx2uey2QyxnY9qNnXIfiaPfYDAwM1/87n80bSulzoPq34vhgdHTXxeJxOxzawmfMln8+bcDjs3DBDd9hMW+becyWdTptIJNLyOsJ/vHTiaPeCPlPw0YcJPvoUwUYbP/hoc3cH2sD+w2LfjsrlsnK5nBKJRM3z+/btkyTNzMy09HUIvmaPfS6XWzdsLRqNKhqNqlgstqey8IVWfF/kcjnt2bNH0Wi0LXWEf2zmfCmXy3ryyScViUSUyWTaWk/4x2bOmaWlpeqivRVr58EHJNq9oM/UDejDBB99imCjjR98tLm3H9oxncOFDEfXr1+XpHVfHpUf9vn5+Za+DsHX7LGPx+Mb/kjx49XdWvF9kclkWFBzm9jM+ZJKpVQul5lrdZvZzDmTTCZVLBY1ODgo6e78rxcvXuQcQg3avaDPFHz0YYKPPkWw0cYPPtrc2w/tmM7hQoajyl0kGy2OtNFdJs2+DsHX6mO/9scM3Wmz50wqlaKBs41s5nyp3BEyPz+vWCym3bt3K5FI8JvU5TZzzgwPD2t4eFjZbFZ9fX1KpVL6/PPPuVMTNWj3gj5T8NGHCT76FMFGGz/4aHNvP7RjOocLGY4WFxclSb29vXW3l8vllr4OwdfKY5/NZhWJRDQ8PNyKqsGnNnPOFAoF7dmzhzvetpFmz5dCoSDp7t0hyWRS+Xxe+XxexWJRfX19/C51sc3+LmUymeoUIblcbt2wd4B2L+gzBR99mOCjTxFstPGDjzb39kM7pnO4kOGor69P0t356urZ6Ie+2dch+Fp57CcnJzU3N9eSesG/NnPOTE5OMvx7m2n2fKncDZJMJqsxa+fRnZycbHVV4ROb/V1KJBJKJpOan59XOBzW4OCgstlsy+uJ4KLdC/pMwUcfJvjoUwQbbfzgo829/dCO6Zz7t7oCQVE56Ta6imabD9Tr6xB8rTr2qVRKb731FufKNtDsOZNKpdYNGa78f+W/nD/dp9nzZaPhrvF4XBLDXrvZZn6XksmkJFXvqv3888/193//93r++ec1MDDQ2ooisGj3gj5T8NGHCT76FMFGGz/4aHNvP7RjOocRGY4qK83f++Vf+XcsFmvp6xB8rTj2MzMzSiQSzIe4TTR7zuRyOSWTSfX19VUf2WxW5XJZfX19zEvcpTb7u1QZ/nqvjYbDIvg287t08eLFmt+icDisdDqtcrlcncoAoN0L+kzBRx8m+OhTBBtt/OCjzb390I7pHC5kOAqHw4pGo+tWmq/MVffcc8+19HUIvs0e+8rQwcodFBX8eHWvZs+ZfD4vY0zNY3R0VOFwWMYY5fP5ttcdnbeZ36V4PL5urtXK3SM0srrXZn6Xent7191hVPl92ugOQGw/tHtBnyn46MMEH32KYKONH3y0ubcf2jEdZOAsn88bSWZxcbH6XCQSMel0uvrvxcVFE4lEzPz8vKfXoTs1e87Mz8+baDRqMplMzWN4eNhkMpmOvgd0VrPnzL1GR0dNOBxua12x9Tb7u7T2uXQ6baLRaGcqji3T7DmTTqdNOBw2pVKp5jnOme5XKpWMJDM8PLxuG+1e1EOfKfjowwQffYpgo40ffLS5g482sD+xRoYH0WhU+XxeqVRKkUhExWJRqVSqOneddPdq99LSUs0VVJfXoTs1c84UCgUlEglJP8yPuFapVOpI3bE1mv2ewfbUit+lubk5hcNhlctl7rTbBpo9Zyp3ZA4ODlaHu5fLZX300UedfgvooEKhUF0k9OLFi0okEorH49U7Amn3oh76TMFHHyb46FMEG2384KPNHWy0gf0rZIwxW10JAAAAAAAAAACAelgjAwAAAAAAAAAA+BYXMgAAAAAAAAAAgG9xIQMAAAAAAAAAAPgWFzIAAAAAAAAAAIBvcSEDAAAAAAAAAAD4FhcyAAAAAAAAAACAb3EhAwAAANgmisXiVlcBAAAA6Bjav92DCxkAAADANjE4OKhyubzV1QAAAAA6gvZv9+BCBgAAALpaoVBQKpVSLBZTLBbb6urUde7cOe3evVuhUEihUEiJRKL66Ovrqz6/GYVCQZFIROFwuONlAwAAoHNo/95F+7e73L/VFQAAAADaKRqNSrrbYan8v9+Mjo5qcXFRMzMzGh0dVTqdrtleLBaVSCQ2VUYmk1EymdySsgEAANA5tH/vov3bXRiRAQAAgK7n1w7cWtevX5ekup2mSCSieDy+qfy5XG7DHO0uGwAAAJ1F+5f2b7cJGWPMVlcCAAAAaLdQKKRoNKp8Pr/VVamrMnx9o+Z5uVxeNyzeVTab1fz8vDKZTMfLBgAAwNag/Uv7t5swIgMAAABVhUJBg4OD1flhU6lUdVu5XNbMzIxisZiy2axyuZxisZhCoZAGBwc95ZLudi4SiYRyuZxmZma0e/fudUO/k8mkksmk+vr6NDg4qEKhUN2Wy+Wqc9smEomabTMzMwqFQjp37pz1PZfLZSWTSaVSqercuLlcbsOYSn1mZmact9tUyrv3zq9sNlv9/810pC5cuFB3WH0nygYAAPAz2r+0f1tdNtrEAAAAAMaYfD5v4vF49d9zc3NGkhkeHjbGGLO4uGgGBgaMJBOPx83o6KjJ5/NmeHjYSDLpdNo519zcnIlEItXnRkdHTTQaNdFotPqaaDRqRkdHq2VLMpJMJBKp5kmn0+vKrsSvzWWMMZLWPZfP5004HDb5fL76XCaTWZdzYGCgWpdKjJftNvX2YalUMgMDA845NlIqlda9706VDQAA4Ge0f++i/Uv7Nwi4kAEAAABjzN2O09oOjTHGhMNhI8mUSiVjzA8dsns7KZXOnZdclU7Y2g5QRaWctTkqHY7FxcV1ZUcikZrn0um0yWQy6+Lu7dBEo9Gaeq99fm1Z4XB4XT3X7gPbdptKp7bSma3820uOjdg6le0sGwAAwM9o/9Y+T/uX9q+f3d/a8R0AAAAIomKxqEKhoMnJybrbr1+/XjP0ut5Q66WlJU+5KjmeeOKJdTEff/zxuucGBwc1MzOjQqGgSCRSfX54eFgzMzM1i/lduHBBH330Uf03+71KPUdHR9dtqwzpz2QySqfTikQiOnfunPbs2VONX/s62/ZGyuWyisWiwuFwdf7icrmsJ598siWLDGYymQ33RTNlV6YO+Oqrr/TEE09oYGBg03UEAADoNNq/tWj/0v71Oy5kAAAAoDq/7tzcXMdz1esUVjp3uVxO0Wi0Ztu9/06lUpqZmVE6nVY8Hle5XFZvb691Xtu1cwrfa9++fZLudvaku+8lFosplUopk8lobm6uph627Y1cvHhRktZ1lOPxuHOOjRSLxYb7wmvZg4ODikQi1U5qLBarxgMAAAQJ7d9atH9p//odi30DAACg2mGp/Hercw0MDCgej2tyclK5XE7lclnpdFqjo6M1d6NJd+8Gi8fjyuVyKhaLmpmZqbv44kbK5fK65yodn97e3moZn3/+ueLxuIrFomKxWM1ihrbtjczPz0uSEolEzfOnTp1yfg8byWQyGy5y6LXsYrGobDZbk+/YsWNKp9ObricAAECn0f6tRfuX9q/fcSEDAAAA1c5RNputuz2Xy3U819zcnOLxuAqFQvWOs406DalUStLdjsv8/LyGh4et+St3XNWrT6Vz19fXJ0nV4efz8/PVO+3Wdmhs2xuplP/cc8/VPL/2LrK1dSwWi+rr61MsFqupbywWW7fPs9lsw6HvXsqu3MG3tiMdjUarHW0AAIAgof1bi/bv+rJp//oLFzIAAABQHRqdSqXWDTl3vbOq1bkGBwc1Nzen0dFRjY6ONhxmHo/Hq/P02obUV0QiEUWjURWLxXV3z12/fl3hcLjaIVzbgRwYGFAmk5H0w113tu0bKRaLKpfLikQiG9Z7ZmamJk8qlVI6nVa5XK52siYnJ1Uul2s6bWvnTG5F2R9//PG6uMode5X5oQEAAIKC9i/tX1vZtH/9hQsZAAAAUDgcrpn3dXBwUOfOnVMikdDi4mK1Q+DSYHfNVbmLqd7dTJXFCyuvnZmZUTabbTivb+WutGPHjjm/77m5OYXD4Zq7xyrD+N96661qx+XixYs1nalKB6hyd5Zt+0Yqd5DViyuXy9VFF9feMXbs2DENDAwomUyqXC6rXC7r3Llz1c5jhW1YvdeyK3Mv19OKKRkAAAA6ifYv7V9b2bR/fcYAAAAA30un0yYSiRhJJhKJmEwmU92Wz+dNNBqtbpufnzelUskMDw8bSUaSSafTTrnm5uY23GaMMYuLi9Xt9z4ikYgplUrr6l4qlUy95m0+n19Xx7WvL5VKZmBgwMTjcTM8PGyGh4dNPp+vyRGPx00kEjGjo6NmdHTUDAwM1OSwbd9oX699X9Fo1MTjcRONRmve+8DAQN3Xz8/Pm0wmUy3vXpFIpKVlp9NpEw6Ha/Lk83kjySwuLjZ8rwAAAH5F+5f2L+3fYAgZY0yrL44AAAAAm1EoFHThwgWdOnVKS0tLKpfL1bvh5ubm1NfXV73rrSKXy2lubm7dnVndqrKPstms8vl8zbD3mZkZlcvldftoM7LZrAYHB7W2+5DL5ZRIJESXAgAAYHNo/9rR/t3e7t/qCgAAAABrFYtFxWIxlUolhcPhdfPSRiKRugsUZjIZnTp1qkO13HrhcFjnzp2rTg+wViaT0UcffdTS8ipzNBeLxepw/EKh0HDuZgAAANjR/nVD+3d7Y40MAAAA+Eplvtnnn3++Zk7gYrGomZkZZTKZ6iKEuVxOxWKx+t/t1Kkol8uKx+M1CxxKd/dTb2+v86KPriKRiAYGBqpzC0vShQsXahZ6BAAAgHe0f93Q/t3emFoKAAAAvnPu3DlNTk7WLIQYjUaVTqeriyVWhnVXLC4uWhcX7CapVEp79uxZN3w+lUrpiSeeWNfBa5VkMqm+vj599dVX6uvrq3aqAQAA0Dzav3a0f7c3LmQAAADAtypzA2/UQUulUioWizp16tS2uxtt9+7dNXfnVQwODmpubm6LagYAAIDNoP1bH+1fsEYGAAAAfKveHMFrbddh3TMzM5JUt4NLJw4AACC4aP/WR/sXrJEBAAAABExlGoHKNAMAAABAN6P9C6aWAgAAAAKoXC63fEFDAAAAwK9o/25vXMgAAAAAAAAAAAC+xdRSAAAAAAAAAADAt7iQAQAAAAAAAAAAfIsLGQAAAAAAAAAAwLe4kAEAAAAAAAAAAHyLCxkAAAAAAAAAAMC3uJABAAAAAAAAAAB8iwsZAAAAAAAAAADAt7iQAQAAAAAAAAAAfIsLGQAAAAAAAAAAwLf+P5rZM0L8bA+VAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# energyloss in abh von der energie der elektronen\n",
|
|
"# upstream\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 6))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" up_energyloss_found,\n",
|
|
" up_energy_found,\n",
|
|
" bins=(np.linspace(0, 1, 80), np.linspace(0, 5e4, 80)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=15,\n",
|
|
")\n",
|
|
"ax0.set_ylim(0, 5e4)\n",
|
|
"ax0.set_xlim(0, 1)\n",
|
|
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax0.set_ylabel(r\"$E_0$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" up_energyloss_lost,\n",
|
|
" up_energy_lost,\n",
|
|
" bins=(np.linspace(0, 1, 50), np.linspace(0, 5e4, 50)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=15,\n",
|
|
")\n",
|
|
"ax1.set_ylim(0, 5e4)\n",
|
|
"ax1.set_xlim(0, 1)\n",
|
|
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax1.set_ylabel(r\"$E_0$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
|
|
"\n",
|
|
"fig.colorbar(a1[3], ax=ax1)\n",
|
|
"fig.suptitle(\n",
|
|
" r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, Upstream photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjIAAAJPCAYAAADWqU3EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAlklEQVR4nOz9cZRc133Yef4eGu4mEwiobiiZWDszEaup5Gh2hqarICvDjUwwqJbADTMMg27AAOY43sTodrYxdiTRXYYcGYI5UrsQajzesDeuZmaPJhmiTXTj8HAjD2FVUYRWWZzVEFWieTKJs1YXae+OsicWuwowEwgtNN7+0XyFqu6qur9bdd+rV93fzzl9SPT71X333Xtf9Xvvvnuv5/u+LwAAAAAAAAAAADG0p98ZAAAAAAAAAAAAaIeODAAAAAAAAAAAEFt0ZAAAAAAAAAAAgNiiIwMAAAAAAAAAAMQWHRkAAAAAAAAAACC26MgAAAAAAAAAAACxRUcGAAAAAAAAAACILToyAAAAAAAAAABAbNGRAQAAAAAAAAAAYouODAAAYK1Wq0mlUul3NgAAAAAAwC5ARwYAALB2+fJlyeVy/c4GDFZWVvqdBQAfKBaLMjMzI6Ojo5ybA6xWq8nKyopMTU3J6OiolMvlfmcJsML3DwBgUNGRAQDY1crlcv3Bkud5TT+jo6MyOjoq6XRastms1Gq1fme3a9lsVtLp9LZjnJqakmKxKCKbD2ey2ey2spiZmRGRzbIKRmGMjY1JIpGofy5IA9G7ePHitnoNfl5++WXj54OHq+Pj4/W6b2z3xWJRKpWKpNPpnh7YraystGyDExMTcvHixZafKZfLMjU1ta3N2owGWllZkYmJibZl1Hi8MzMzsrKyMtDnOuJpZWVF8vm8LC4u0r5iqlar1b+TOllcXJR8Ps93BSKRzWZlYmJC0um0jI6OyszMjKrddXttEPzNDPY5MTGhusbr9nMAAFjxAQCAv7y87IuILyJ+KpVq2jY3N1ffViqV+pRDNxKJRP1YCoVCy5hMJuOLiJ/JZPxqtVr//fLysp9IJPx8Pu+XSiU/n8/7hULBTyQSfi6Xi+gIsFVjnW796dReS6WSn0ql6rFzc3N+oVDwV1dX6/XbuN1V+w/aV6tzrZ1cLueLSE/trPEcTyQSfrVa9avVqr+6uuoXCgU/l8s1leX09HRT+9/NgrJC74L2tby8HNk+qT+d4Hsmn88bY1dXV3fMdUG/0T5bK5VKfjKZ9Kenp+u/q1arfiqV8hOJhLHddXNtMDk5uW178Ldzbm6u7b66/RwAALboyAAAwL//AKPdQ4zggW4ikehD7twxPUAOOm06PTDO5XJ+JpPxU6kUD3v7LJ/P+8lk0l9dXW35007jQ/1MJtMxNp/PGzu/bFSr1aYHKhpzc3M9n3uNDx4zmUzbuK0dHjyk3Ox8ohzc6EdHBvWnE/yd1/xNa/weo2x7Q/tsLZFItPy7V61W650U7f52d3NtMD093fYaONjW6nur288BANANppYCAEBE3nzzzfr/Hz9+fNv2Q4cOicjm1BODOpVE47RAJ06c2LZ9ZmZGFhcXpVQqydzcXNt0gimlGqeXwmb5RT2VQi6Xk1wuJ8lksuVPK8F0TSIimUxGCoVC21gRkenpaVleXhYRcdL2E4mETE9P1//dblqpRouLi02fcZGHdiYnJ6VUKonI5vEeOXJkVy9sH0wvhsFE/elUKhUpl8uSyWT4uxah3dA+G6ft1P4NDaYzzWQy27YlEon6dWo2m235edtrg0qlIouLiyIiLf/WBlOMbt1ft58DAKBbdGQAACBSv5FOJpMtH2I0PshcW1uLJE8zMzNOH6A2PixovDkO1j+oVCryzjvvSCqVavv54EY8l8vJ1NSUTExMyEMPPaR6GL3T5fN5mZiYkKmpKUmn06EvprmysiKVSkXW1tas1q4IOjFEpN5BYTI5OdnygUq3GheKn5+f7xhbLBalVqvJuXPnnO3fJJVKST6fF5HNh1CNZbabrKyscG4PMOpPLzjfgwevCN9Ob5+VSqW+BlulUpHXX39d3UkWXD984hOfaLk9+JsUXAds/azttUHwN7nd3/lUKiWJREIqlUrTtWS3nwMAoFt0ZAAAdr1yuVx/S25ycrJlzI0bN0Rk8024Tm+vu1SpVJw+DG9c3DHorAgWYD5x4oQUCgXjTfbrr78uc3NzUqlUZHV1VTKZjLzzzjuRlUnczc3NSbValZmZGclmszI+Pl5/W9G1oANgZmamvoj21NRUxwcXi4uL9Ycek5OTVm8eB293tlKr1eoLhnueJ+l0uuMDqkQiUT/XarVax3aey+Ws8+rC9PR0/XjL5XLbhzAXL16sL246Pj4uExMT2+q8XC7XF1L3PE/Gx8fr6V28eHHbtsbP12q1+mLl4+Pj9e+qWq0mi4uLTftbXFxsqoN2bSHonAl+xsfHZXx8vOkh7srKipw5c6b+7yNHjsjo6KiMjo42pVUsFmVqaqqeh5mZmZYLJtu2kWDh2KDDNJ1Otz2XVlZWZGpqqv7Wb7lcrpfZ6Oho034aHy4G+exmpFGQvyBPwRvXQZrah3aNn+tUZwFNewvyp6k/23RFwm97rYRxDm0tL5H21wAmlUpFpqam6mU8NTXV9kWEMM6ZfpwDwX6Cvz/Bz9Y8rqys1I8h2JepfQbl2ZjuxMREfeRMsM/R0dGu3vYPFsIeHR2tt8Hgp3Gf3ZRLkPfx8XFZW1uT1dVVWV5ebvuSSLs0RNqPHmz8W7z1XOvm2iA4lzrlMdhn0OnXy+dEwmuz/ToXAAAR6ffcVgAA9Fvj+hit1gAIFjFstz0sy8vLfjKZdJZecAyTk5N+tVr1Jycnu14DIJ/PNy1AqbG8vOxPTk76k5OT2xawdBFvo1Qq+XNzc/W0gzVDlpeX6/OkJ5PJnhcxD+rQ9YLo1WrVz2QyfjKZbLmQZ7vFNRsX2nY1Z3WhUPBTqVT93FhdXa3vp9Ni3o1rVrRr50GMi/OucX+Tk5OqzzR+N2xtf8FCrI1pBeeVfLAOR+Nc+4VCoW3Zl0qljt8xwXz8wbkalHnwmVwu509OTtbXrWlsF63m+9/atqvV6rZjadxv474by6ZxP/l83s9kMk0LzAZzsdu2kWBbY95brd9TKBSa2vT09LQ/Nzfnp1Ipf25urj4/e5C/4HwM4oL8axed9/3NumrcZ1AOqVSqqU625jXQmJ9UKuVnMpmmvLSrM9v2FmxvV3/dphtV22vF5TnU6rPa74XG9IIyCL7Hti6w3JiXMM6ZfpwDrcoiOIZ26w8Fx96uDNu1z8Y1mhrrPEiv2zW6crlcy7+TjWsk2f7Nbvxu6GX9sMa/Ve3ysLX9Nf7e9tqgXVpbBd8JQT12+7mw2mwczgUAQPjoyAAA7HqND2UCq6ur9QdNwQOOTgsihyWZTDp54Nx4cx50YPTyEKBarao7QIIHZY0PxIKHkq0eONnG9yK4cZ2bm/Pn5ub8XC7nl0qlpocnLjoggg6SoEPD5QLp1Wq1qQOm0wOLxu0u2nPwwGVrW2h8wNGuU8X3mztWWtVt8HDBhW46MhofnG59uNFuIVbfv39cWx/qNba3rYJtrdpb8FBzq+DhYSKRaCq/xgeLW9ML2vbW+i8UClYdGVu3J5PJeh5yuVy948e2jQRlvrVsg3RalXmnDrrg4VUikdh2fI1twvZ8CD63tTM4eDDfLt3G8tpaJkGdtWof3bQ3zYPibtJtzGtYba8d1+eQ73f392Vr2288psbvja1lG8Y54/v9OQcaNXb6tjI5ObltMWjtgunB37ag/oI21ssC4XNzcy3/Dgdt1+ZhdmPnXrt0bTU+jDfFtDt3tNcGjZ2ArRbsDjR2BPTyuUBYbbbf5wIAIFx0ZAAAdr3GG7ytb1O2etgUpeCBSK95aLyRNL0x61KQ/60PwoIbza3HZRvfq6AsJicnt6W99S1CFxrfGHT1wGNr+o1teOsxNbZt076DUSvT09PbfoKHb0GnWCvBw5N224P8Bvlp97DU1UiWbjoyGj/TeBzBg892nTSND3i2vkXcrkwa3+reqtVDQN/3mx6ebdX4ZnCjViMbGrc10j4I7/TAzbaNBG1i64PExrxsbbuNowe2amxjnR5c2nYYB2m2KsfGdrO1XNo9YGs8jq3ts9v2Zqq/btP1/fDbXjuuzyHf79yZ005j2baqy06d4a7PmeAzUZ8DjRrLo1WHRavj0XZkNJ5PwSgWbXtpp9X+Gq+TNNcaW19QcCm4NunULjWdHYFO1wadRjo1Cs7foB11+7lAWG223+cCACBcrJEBANjVGucxz+fzUq1Wxfd9qVarMj09XV8Iu18LUmYyGcnlcnLkyJGeFv5uXMy8cYHnxjmqXQvmJU4kEk37LBaLUiwWJZPJNM2rbBvfq1qtVi/TiYmJbWkH8zq7XNw9k8lIoVCQUqkklUpFRkdHnS7qnslkpFQq1f/d2L5t531OpVKSy+Xq880vLi7K5cuXJZvN1hf2XFlZkVqttm2O8fHx8fp83LVare2+G+u0WCw2zeEdpD09PW2V77CMjY3V/9+0EGsqlaq3n8a1aYJjqdVq29ZQWF1dFRGpzwEfCGJtyyHY/9a2NT4+LiKbazNsnVu+cRF2W+l0uuXvbdtIJpOR1dXVpna89Ti2npNB3bSaT76x3loJttueg8G+Wu0zmUzW23WwvpJGuzrrtr2ZhJVumG3P9TlULBalVqvJ8ePHVftvpdXaQdPT0/W28eabb7b8nKtzRqQ/50CjRCJRL9+tayFcvny57WLQGslkUubm5kRE6n8ve/muEtm+pkO5XK6vWTI3N9fxWiNYD+bMmTMyMzMj1Wq1nj9XguOr1Wotrz8b23dwXnXS6dqgX8Jqs/0+FwAA4aIjAwCwqzU+MG+80U4kEpLP5+sLf2azWasbv+Ahg4uf6elpmZ6elvHx8a46VCqVSv2mLHhwHBzXysqKcXHZbk1NTYmIyLlz5+o3lMEijMED/V7iexXUZ+MDmEZBmYWxkHkqlZLl5WVZXV2VtbU1GR8frx9/rxof+jQ+QNt6U6+9UW8sm0wm07QAdvC71dXVbT/+5shf8X2/40Ld586dq/9/sEhp8P/9WOS7UeODwsZ8aMpuazkFaQTnXuPDvmDx5OA7qHFbrw8Bt5qenq4/pLt48WLTosmuddtGGs+54DvA5kG6jbDaV1BnLh6Iddve+pVuOy7anutzKLgGMC023o1Dhw6JiF3ZufpeteEqnaAMy+Vy0zHn8/mm7/lu5HK5elt0+UJDIHipI5lMtu0kWVlZkdHRUcnlcpLL5eovvIRhcnKy6fpzZmam/lLHzMxM00so2vJod23Q+HC/04sbW/8edvs5F8L63u7n9QYAQIeODADArtY4UqHVA+sTJ07U/1/7BmBws+vyJ+jAyGazbd/iNB2jyP3OghdffLH+uzBGZVy8eLH+kGx6elpWVlZkYmJC5ufn5cUXX9zWKWEb70KQZrsHEY0PlMJkekOwGxMTEyKyfRRGYxvXvine7sY+eHDR64PaycnJer5WVlbqb1OXy+WeH371qvHYWj2Y7vTwpt2InuBhX/DWtcjmG76Tk5P175jLly/X43O5nPNyKJVK9YdklUpFJiYmZGpqynrUjkkvbSR463ltbU2Wl5f73hZsHTx40Ek6vba3qNM1cdH2XJ5Di4uLkkgkQnk43k0nuKvv1X5IpVL1cgw6kiqVitRqNSfl2/gChsvO14sXL9b/3m8dTdJKVA+7l5eXJZ/PSyaTkcuXL8vU1JTkcjmZmppquja1uUZpdW3Q2E47nYdB2wyOv9vPAQDQCzoyAAC71taRCq003nxrHyxMTk42vTXp4mdubk4SiYTkcrltU66YtBp1EqQlsvnAPphixJXgYUAymaxPIZLP55seYvUS70LwoKvxgUCgXC7X67vV9l5VKhWZmpqqP6hdXV1tqqdeBQ8Ytj5IayzLXjuHXE7B0DjNTC6Xk3w+3zQ9T780PtQK2kFjmQZT2bTS6mGPyOY5GGwL2uD8/LycO3euPpVPrVZrGi0VRjksLy/L8vJyUyeSbSepSbdtZGJiQmZmZqRQKMRmarFuBW/ld6vX9hZ1uhq9tj1X51Dwdy+sNhbk0eb8HfSpbYJOpmCapnw+72S0S6VSkcXFxXpZuhpBU6vV6n9/JicnO3YKTE5OSrVarY+ICKZdDNP09LQUCgWpVqtSrValUChIJpOp/23qdsrBxvM5kUjU//3ee++1/Wzj9H+9fA4AgF7QkQEA2LVajVTYqvFhQr/eJstms7KysiKlUqmreZiD49z6MGVubq5+E+p6VEZQbsFD6ca37l3Eu8hfrVZr+yZu44MNlw+Rg3VAxsfHZWxsTKrVatMDPZf7Edk+B3vjW8m9Tiu2dfqfdoIpXzppnE8+WI9j6xz6UatUKvVzZ+v6LMGxd3orOGjTrR5kN84lv7KyIocOHdr2gC6fzzt7CNiosc4nJydldXW1/r0SPCx0pZs2EkzjNz09Hep3QNiCzgEX3x+9treo023HZdtzcQ4F05WF0Vktcr/s2q1B0orL79V+aPVd7qKjKBiNEIwmrVQqTtYuC679EolE00jVTqanp6VardanmGocNRuFYrFYb1u2fyfbXRsELzl0uiYIRnEGozp6+RwAAN2iIwMAsGu1Wx+jXUwYc2ibrKysyOLiopRKpa4e6jU+oGr1sKZxQUlXD45t50MOY/5kk6BcWi3wWi6XpVgsSjKZVD/Y0OwvnU7LkSNHJJVKSbValXw+H9rxFgoFSSQS244vWPsl0EsHVuPbmGfOnGk7tUSwxonJ1qlf+v0mfuMDrq3TjTTOBd/uzengwU6r86rx82fOnGmKCY67WCw6ewjYKJ/Pb8tzLperP5Bq93Z+N1MLddNGgoe3mgVs4yz4jnHxd6PX9ibSuv5cpGuj27bXiotzaGVlJdSRX+Vyue0aTO24/l7th+DvTjabbRo900mn75egkyBYYyXo/Mpmsz2NXGmcourFF19smc9OHRRBZ9zy8rK8/PLLMjo6Ktls1vkUfY1qtVr9b1MwctFGu2uD4Hxq16nZ+PJHY3vu9nMAAHSLjgwAwK7VbqRC4/bgjcfJycm+3ISdOXOm7Q22RuP0Qa0eejSOfGhcp6IXiUSint9W0yWVy+Wmh3u28YGZmRlJp9NdTYsV7KfVdCZTU1OSSCTqN/y9WFlZqS/kfeLEifpbnL2me/HixbYPccrlsiwuLsry8nLL/UxPT9cfzJfLZUmn0x3rvdO2xo6wdDrd9FZmkHYw1YtJ42ijTudaL/Ue6PSgqVKpyPj4eP0h5Ouvv74t/42jmVqtnRM8GG6Ma5RMJuvn49jYWNO5mUgk6v/uZbHzTg8GW80DH7wt2/j2eOO+G+vW5nvCto0E+d66uHfjQvBb66+X9RuCtDpNjaL5fKPgjel29W+r2/Zmqr9e23E7LtqeSa/nUPD9EdYLCkEb6Obvdzffq/08B7YKOpVqtVrH8tV8v1QqFclms03XBo1/Q3upv6AjP5PJtJzCcmVlRVV3mUxGSqWSLC8vS7lcDrVD48iRI1Kr1WR6errl38lurw2SyWQ9vVZ/W4M2ufV7otvPiYTXZuN0LgAAQuADALAL5fN5X0R8EfETiYRfrVbr21ZXV/3p6en69snJyb7lMZVK9ZRGIpGoH8fq6mrLmLm5uXpMJpPpaX+BXC5XT3N6etovFAp+Pp/3Jycn/enp6Z7jl5eX6/Ei0lR/GsHnCoVC/XfVatVPpVJ+JpOxTm+rfD7vJ5NJP5lM+vl8vqe0Wmk89unpaX91ddVfXV2tt5lSqWRMo1Qq+alUalu5r66u+tVq1S+VSn4ul6u3oXbpTk5ONuVna95sBG2xXf57qfd253y1Wq2XXSaTacp7p/RXV1f9ZDLpi4ify+W2/d507MGxLC8vt93W2D5bCeqm1XdUULdbv0OC77ataWcymZbfN0GZJBIJP5fL+ZlMpumzmrq2aSON373JZNKfnJz0k8lkU90Hvw++04I8tvr+avxcq/LsVIadNH63Np7jhULBTyQSLcujWq3WP9PYZgKNZb1Vt+3NVH/dphtF2zPp5RwKyqXd30WNoNwymUxTOsvLy34ikWj73e/6nGk8nijPgU4ymYyfTCZVcZ3aZyqVMl4DtDqXTBq/Z1q1gaD9m76DWymVSvX6C/4+92p1dbV+Xs3NzbWN6/XaYHJy0k8kEk15LhQKxv1287mw2mzczgUAgFt0ZAAAdpVqtdp0A9v4EzyUSCaTfiaTcXYD2q1MJtPVDbrv3+8EaTy+VCrVdENZKpX86enppgdyreK6FTzMD8p0enq64020TXzQ6RDkudWDrHZKpVL9wcnk5KQ/NzfnT09P+5OTk109tGgUPPgPHryGZXl5uen4E4mEn8lkuuo0KZVK/tzcnJ9KpeptITiGyclJP5fLGc+DoBMgkUjU89JNWQb1atpuU++FQqHjQ8Gtx5vP5606SIKHb8lkst4Rpj32Th2HnbaVSqWmTpetD622Hm/jQ/9cLld/6BR8z2UymbbnfOMDtFQqVT+2XC5XP18b89CuTmzaSPC9FHQIBPURdHgGDxiD77CteQi+Nxo74oLPBd+phUKhbRlqBOnm83l/enraTyaTfiKR8FOpVMvzcOs5GzzgCzrSttZZJpNp+f1n297a1V+36UbZ9jS6OYeCDqVeXxTw/c1jCr47G79HWrWjMM6ZMM+BTt+ZwU87y8vLqr9H7dpnoVCo/37rubC6urot35OTk/XvCU2+t177Nf40lpfmpYBOxxbUzeTkZNdpBZ3wiUTC+LfFxbVB0O4mJyf9TCbT9ruo28+F1Wb7+fcAABAdz/d9XwAAQOxks1k5d+5cZOtGDKrx8XFZXl5Wz3OezWbl4sWLTVMsuTAzMyM3btyQXC4X27nLdxLbegdcGh0dlVqtJvl8nrnfAbRVq9Vkfn5eFhcX5Z133lFd05XL5foUUalUSk6cONFy+isAAHYbOjIAAMDAqlQqMjU1JaVSSf2ZYM7x5eVlHgwMqG7qHXCJjgwAAAAgWiz2DQAABlKwkGirBcI7CRYVZdTEYOq23gEAAAAAg2tvvzMAAADQjfn5eVleXraaeqtYLIqISCKRYMquAdVNvQOu1Wq1fmcBAAAA2FWYWgoAAOwKwXREwYiMUqnE+goArC0uLsrMzIyIiKRSKVleXpZkMtnnXAEAAAA7Gx0ZAABgV1hZWdn2u2QySWcGALXx8XGpVCrbfp9KpVizBQAAAAgRHRkAAAAAAAAAACC2WOwbAAAAAAAAAADEFh0ZAAAAAAAAAAAgtujIAAAAAAAAAAAAsUVHBgAAAAAAAAAAiC06MgAAAAAAAAAAQGzRkQEAAAAAAAAAAGKLjgwAAAAAAAAAABBbdGQAAAAAAAAAAIDYoiMDAAAAAAAAAADEFh0ZANBGuVyWxcXFfmcDAAAAAAAA2NXoyADQF+VyWbLZrExNTcn4+LhcvHix31mqq1QqMjU1Jel0WvL5fL+z01dBPaXTaUmn0/3OzsCh/AAAALrHtVQ0KOfeUH4AEA06MgBErlwuy5EjRySXy8ny8rJMTk7K6upqv7NVl0wmZXl5ud/ZiIVUKiUnTpyQcrnc76xEqlKpSK1W6zmdqMrPVX4BAADihGupaOzWa34RN3VPOwWAaNCRASBy8/PzMjY2Vv93Lpfb9SMf4iyVSvU7C5GbmpqStbU1J2lFUX4u8wsAABAnXEtFYzde84u4q3vaKQCEj44MAJHbjW/6YHBMTU0NVBsdtPwCAADECddSu9cg1f0g5RUAwkJHBoDILC4uytTUlFQqlfo6FFNTU1IsFusxtVpNZmZmJJvNysTEhExMTDRtX1lZkdHRUfE8r34hVywWZWpqSjzPk6mpqXo6i4uLkk6nZWVlRYrFoqTT6aaYRsF+gx/bNTvK5bJMTU3JxMSEjI+PSzabbUrbJi+d0grKICiXxcVFGR0dlZmZmW3pBMcyPj6+7cK3WCzWy3FiYqJp2+LioniepyoDU31tjQny07iIuml7K8ViUTzPayrDcrks4+Pj4nmepNPppmMK2kelUulYhisrK/XPzczMqG4YTPXV62cb22ZQxkGeOuXX1E5MdWfbbrs5xn6cG1GcFwAAIBq9Xou6vvbbqdc2/brmD44hDtf9XPN3f4w7+X4YQMR8AIhYMpn0k8nktt+XSiU/kUj4pVKp/rt8Pu+LiJ/L5eq/m56e9kWkKW51ddUXEX9ycrL+78nJSV9E/Ewm48/NzfmlUqn+2cb0VldX/UQi4RcKhfrvcrmcLyJ+KpUyHk+pVPIzmUz938vLy76I+NPT09Z5MaW1vLzsJ5PJ+u/m5ub8VCq1LZ+pVMqfm5trKhsR8ZPJZD2t4Bgb9x/Eb02vVVlo62tycrKelyDGZns7c3Nzvog01VuhUPBFpCm9IM3gd6YyDNJdXV015sFUX4F25Wf67Orqqp9MJpvykkgk/EQisa0cGmNMx6ipO5t22235RH1uuD4vAABANMK8FnV57Tfo1zZxvOb3/f5f93PN31nczgvf57of2KnoyAAQuXYdGalUqumipfH3jRdtwUVc4wVZtVpt6sjw/fsXPVsvTIILqMDk5GTL/Wo7MlKpVFNefH/zwlNE/Gq1apUXTVrBBdfWi/ZAsK/GdIKLxK0X6cHFXKNcLufn8/ltca0uDjX1lUgktuW1sRxM29vZ2nnVmN7WY5qcnGw69k5laHMzq6kv329ffqbPplKpbWUR5D2IaZffTseorTttu20nTudGGOcFAACIRpjXoq6v/Qb52iaO1/y+3//rfq75O4vTedG4L677gZ2HqaUAxEKlUpFyudxykbRgmGi3C4InEoltvwsWSatUKvWhqd0I8j0/P1+fKqtxeOyNGzes8qJJK0jjE5/4RMs8vfnmm9t+1zgMu9H09LRUKpWm4cUvv/yyHD9+vN0hN+VVU1/JZFIuXrzYNDR3bm6u/v+m7e0kk0lJpVKysrLSMn/BcPJarSa1Wk2SyWR9u6kMNWzr3vazQUwmk2n67NzcnPi+37ItNWp3jN2ca53abTtxOzeiOC8AAEA0XF6L2u5zN13bxOGaP/hsv677ueYfrGt+Ea77gZ1sb78zAAAinRcAP3TokIhI/QLVpSDNxotdG0G+l5eXe86LbVrtLmqDC7pisbjtwnXrv7PZrCwuLkoul5NMJiO1Wk3GxsaMF8w29bW8vCzpdFqy2azk83lZXl5uyodpeyfBvKcrKysyOTkpi4uLcvz4cVlcXJR8Pi+5XE4uX77cdn5X03F20kvdaz4b3Kj1ksdWn4/qXIvbuRHFeQEAAKLh8lrUdp+76domLtf8Iv277ueav7O4nRciXPcDOxkjMgDESq1W2/a74CJibGzM+f6CizfTmyamz7u4CHSV1uTkpGQyGZmfn5disSi1Wk1yuZzMzc1t67BJJpOSyWSkWCxKpVKpL8iupamvZDIp77zzjmQyGalUKpJOp5sW9jNt72R6elpE7r9NFNzEZDKZehr5fL4e51Iv9aX5rMu21UrY51rczo0ozwsAABANF9eiWrv52qbf1/wi/bvu55q/s7idFyJc9wM7GR0ZAGIheDOicUhnILj4Gh8fd77f4EKmVCr19PlWw5xFWh9PFGktLy9LJpORcrlcf8Mkl8u1jM1msyKyeeFfKBRUF/829VWpVCSRSEihUKi/XRMMZ9ZsN5mcnJRisSgrKyty6NAhSSQSMjMzI7VaTS5evFh/48i1XupL89mgjNu9kdTtBX5U51ocz42wzwsAABANl9eiWrvx2iZO1/wi/bnu55q/szieFyJc9wM7FR0ZACK3tra2bQREMO9p4xyngRs3bkgikahfUBw8eFBEmi/qGudFtRFc7C4uLrb8rCm9YC7TbDa7bfiu7ZteLtOampqS5eVlmZubk7m5uY7DtjOZTH3OWu0QWpv6arxgnJycrL9FFXzOtN0kuAGampqqX4ROTk6KyGZZdnOjKhJu3Ws+29g2t160Z7PZbW9Qadu+Td31Io7nRtjnBQAAiIbLa9HAIF7376ZrfpH+XPdzzd9ZHM8LEa77gZ2KjgwAsbG8vFx/qyYQDAN98cUX6xcVwUVINpuVYrFYnxdVZPMtjWDhbs10UYlEor7IXDqdrg8pDS6MK5VK04J0ps9PTU3JxYsXZWJiQlZXV+sXY93kpV1awcVru4vY4CI4+Pzi4qKsrKx0nCc1ON4TJ04Y8xnQ1tfly5ebLp6DBfiCN25M200ymYwkEon6BWhgcnKyfgG/VacyDN5Myufz9cXgW9HWV7efTSQS9Ru+iYmJ+g1bOp2W8fHxevm2y2+nY9TWXbdTrtmUT1TnRlTnBQAAiIara1HX13477domLtf8Iv257ueav7O4nRciXPcDO5oPABEplUr+9PS0LyK+iPjT09N+oVBoiqlWq/7k5KSfyWT86elpf3p62i+VStvSyuVyfiKR8BOJhD83N+f7vu8nk0l/bm7OL5VKfqlU8lOplC8ifjKZ9AuFgl+tVpv2n8vl6unl83k/mUz6IuKnUil/dXW1nt7q6qrx2HK5XP3zyWTSz+fzTcdtk5dOaS0vL7fdFgjyHqTd+JNMJv1qtbrtM9Vq1W/1J2FrneVyuabPa+ork8nUy3Jubs6fnJxsSsO0XSOXy23bb6lUalk+mjJMpVJ+IpHwp6enVfvuVPedyq/TZxvzG7SfVCq17ZxplV/NMZrqzrbddls+UZ0bLs8LAAAQjSiuRX3f7bXfIF7bDMo1f1Bm/bju55q/s7icF77PdT+wk3m+7/v23R8AgLgql8vy8ssvy7lz52RtbU1qtVr9DZjl5WUZHx+vv+kSKBaLsry8XB/ZAuw0nBcAAGAn4doGaI1zA9i59vY7AxqVSsVquCEA7FaVSkXS6bRUq1VJJBLb5vhMJpMtF0nL5/Ny7ty5iHIJRIvzAsBuwX0TsDtwbQO0xrkB7Gyx7MjwPK/p36lUSkqlUv3f5XJZ5ufnJZlMSq1Wk4mJifoCT/2IAYC4COadPXPmjJw7d64+T2ylUpFisSirq6v1OViLxaIkk8n6AnCdFkADBhnnBYCdivsmYHfi2gZojXMD2OH6PbfVVvl83p+envZzuVz9p3H+vtXVVV9Emn63dV68KGMAIG6C9UOkYS7QrfOsFgqFpu2adUCAQcZ5AWCn4b4J2N24tgFa49wAdq7YrZExMTEhhUKh43YRaYpZXFyUmZkZCQ4lyhgAiKtgLtB2U0xks1mpVCpNb6oAOx3nBYCdgvsmACJc2wDtcG4AO8+efmeg0crKity4cUOmpqZkcXFx2/ZarSbFYrF+oRw4dOiQiGxeLEcZAwBxlkgkOs6TncvlZHl5mYs27CqcFwB2Au6bAAS4tgFa49wAdp5YdWQUCgWp1WqysrIiMzMzMjo62rQIz40bN0REtn0RBV86hUIh0hgAAAAAiBr3TQAAANhtnHZk3Lp1S95991355je/Ke+++6715/P5vPi+L6VSSaanp+uLxAWL9QT/TSQSLT8fLNATVQwAAAAA2OK+CQAAALCz10Ui3/zmN+U3fuM35PXXXxcREd/3xfM8Edl8E+fixYvyxBNPqNNLpVKSz+dlYmJCpqamJJvNyvLysqyuroqIyNjYWMvP1Wq1SGPa+cEPfiC/+7u/Kz/+4z8uDzzwQNs4k+HhYRkeHu768wAAAIDG+vq6rK+vd/35H/7wh/Jv/+2/lb/+1/+6fPjDH3aYs52F+6b7uGcCAAD9ttOugf/4j/9YfvCDH4SS9oc//GH5T//T/zSUtLV67si4cuWKzM/Py4kTJySbzTZdwK6trUmpVJJf/uVfll/4hV+Qn//5n7dKe3JyUiYnJ6VcLouIyPj4eD3dVpLJZKQx7fzu7/6u/NzP/Vzb7QAAAMBO9LWvfU3+9t/+2/3ORixx39SMeyYAALBTxOEa+I//+I/l4b/4F+VHIaU/PDwsf/iHf9jXzoyeOzJu3LhRnxe1lSNHjsjc3Jz8yq/8SlfpT0xM1Od7DS6C273Vk0wmI41p58d//MdFROTh/8svyL6faB/3W393ru02EZFhEfkfXv47HWP+yRdmO24XEZFvHBPZd8UcZ/KneXPMh2Y6b3//mIj/aXM6nzGkIyKlr5iTSaf/sMPWz4vIV0U+9DFzQhp/2mlfIqVS+/28//778vjjj4vIz8lmzffqrxkjOuXn2LFjcuXKFUP5Bb6p2Je5Pk15ccl8XO2O6bKIHBeR3o7JLi/t8rMuIl8Td21mU7fHFUY9daufeUmnt35P3m8zAU0Zb09nO5u6Cr5jvvWtb8m+ffvUnwtTq3pyfdydNO9rez1p9+U6z3E5lwalzfTLTsxLr2+j/f7v/7784i/+Yv06GNtx39Tsfls5KiJ/oWXMNkf+T9t/t2d482er32t1jfXB9X9L5mva+8zX2s37/OsW8ba25qXTMdoylUkv16P6Mmy8b4n6+3en7K/99cr2OnR1rdXOTinTTvt7913FM48P2JZ38/3jfxCRvyMi/zcR+TMt0nb0rGOLQa5DzbV7u3sDk27OnX5cc/danrpnGIFvik15uvr+sTnGnXQN/IMf/EB+JCKTIvLnHaf970RkZX1dfvCDHwx2R8bBgwdVcb0Mrzl06FDTf7fOsxr8O51ORxrTTjA0et9PJCXx0/9F27ifVnxH/c8pw0X9WMqciPegyF5FnNFHzCGm/XgPiviKdBTHlVIdUqcmPiIiHxfZ+4gmoR73JZJKtd/PrVu3Pvi/vyAi3Q+tv+/jxohO+XnwwQc/WKBR8xXxB4p9dd/+7ufFJdNxtTumvRKcB+7y1G0Z//CD/7pqM5u6Pa5w6qk7/c3L1u+3vdt+p8ub+XvS5hiD75hHH31U9u/fr/5cmFrXk9vj7qxxX9vrSb8vt3mOy7k0OG2mP8hLe71MEbTTcd/U7H5b+Qsi8lHjsYmIyJ//aV2ciLS+xvrg+r8l8zXtfeZr7eZ9Ku5/urY1L52O0ZapTHq5HtXnsfG+JervvJ2zv3ZtcHsdhn28O6dM2+/P5py3z1vjd9v7H/z3L4vI9gdMne75ezHYdaipm9b3Bibd5LEf19y9l6fNo+Q/EJvydFXP/bg+jtM18J+XcK88+qnnxb6/973vyblz5+SP/uiPWm5/99135fnnn6/PnWqrUCjIzMxmj1wikZBUKiWFQqEpJnjz6Pjx45HGAAAAAIAG900AAAAI214R+THHP04W2Xag546M3/7t35bvfe978tBDD8nQ0JAcPHhQPvaxj8nBgwdlaGhIxsfH5c0335R//I//ccd0yuWypNNpuXjxYv13KysrMjY2JpOTk/Xfvfjii1IsFpve+MnlcpLL5SSRSEQeAwAAAAAm3DcBAAAA3XPSobK8vCzvvPOOlEoluXHjhtRqNRkfH5dkMimpVEoeeughYxrJZFLGxsZkfn5eCoWCpFIpmZiYkHy+ef66VColpVJJstmsJJNJqVQqks1mZXp6ui8xnbz165/sPPw5p0qms6vmkI//x/9a/tWLXscY7we+OaHTz5hjjhq2/66IDJ03p6PgeW8rol7psO3W5vaj5uGW/iVNjlwM2/wb0mpIaFNe/HCGh3a/r+jy43kXItuXiSYvvm9u692W8a1bt+TAgd+QmzfPyf79+2NVNlou8qwpY1d1pbE1nf/sP3tZ/tW/cpP2VnbltzltwIED87J16oc4laGrerDdV7t6irLtxM1mW2ndZkR27nEDYeO+CQAAAGEaEvcjKIYcp9ct1XENDQ1JMpmUTCYjuVyu5bxtDz30kDz00ENNbwHZSCQS24Yjt5NKpWR5eTk2MQAAAADAfRP3TQAAAAiHqiPD930pFAry0Y9+tGPc66+/Lu+8846cOHFCPvShD7nIHwAAAAAMBO6bAAAA0E/BGhmu04wD1RoZyWTSeDEuInLkyBHxfV8SiYT8zM/8TK95gyOzf6PfOWjwsdl+56DBT/U7A7E1OxufeopTXmgz7cWpnsjLYIhT2ZCXwRCnsiEvaIf7prg7sQv22Y9jjE7U33k7fX/9sNPLlDoc/P3t9Pv+3VCeu+E83K1UHSrJZLLp31euXJGXX35ZfuqnfkoymYw8+uij9W1nzpyRGzduyD/5J/9Efud3fsdpZtGd2f+q3zlo8JdmRSrmsGjs7D9OvYjTl36c8kKbaS9O9UReBkOcyoa8DIY4lQ15QTvcN3Xjp0UkrQtVrA94X6u18kba/N5u7R+7dapGLGK7sfV42h+jiGLNw4jYrPu3tbzPnu1c/i7XcdopD2zblcnWdfe6YXM++P55q2O0TbsVF2Vqu7ZfeN8nzWlv1p/IzZv/edf1121ebIu1l7p0eV6Euc6bbh3X+8Jc/9RU3qbv0U7syjC6NVUb7fbr412/RobnNS8UfezYMTly5IiMjY1JOp2WTCYj587d/8OXy+XkxRdfdJ9bAAAAAIgp7psAAADQTzt5aqmu85FIJCSZTMrrr7++rec32Lbbfevo4/LTHTofL3zGnMZzL325c8AL5jR+7dNfMMb45mTEO6voSdW8JVVV9FJfVexrVBFTbfc2UoMlc0+0d9VBr321035++MF//7mIPNA5L17HzSISbs/+Vpq3Dlzlx9XbE7ZvvYS5H80xtU5ns80cODAvIg+E+maJLj/NNPmJMs9x4qr8bPT6tl2c6srV+Ru3NtqPdtHJzZvnen5DE8Am7psAAACA3qnWyCgUCvKFL3xBvvnNbzb9fnR0tO3NbSKR6DlzAAAAADAouG8CAABAPwVTS7n8GaippUQ2hz3ncjkREZmYmJBMJtMx/uDBg73lDAAAAAAGDPdNAAAAgHuqjoxEIiHHjx+XN998U7773e/KN77xDSkUCiKyeeGdyWRkYmJCjh8/Xn/TaG1tLbxcAwAAAEDMcN8EAACAftrJa2SoppY6d+6c/PZv/7aUSiW5d++eFAoF+fmf/3l56KGHpFqtyvLysszMzMjo6Kh87GMfk8985jNSLpfDzjsAAAAAxAb3TQAAAEA4VB0qv/zLv9z07yNHjsiRI0dEROTmzZty+fJlKRQKUiwWZXV1VVZXV8XTrEgMAAAAADsE900AAADop2BdC1u/JyLfaLNtvfvsONXzyJADBw7ImTNn5MyZMyIi8s4778jy8rKcO3eu58wNquHhYRER+dpf/Vkp/pX/uG3cs3efN6Z1behq5+1jR41pPCdfNsecftsYI/KKOWT0vDHE9x8xxnjeBUV+nnGSH6kqjr2qyI9mX23tFZHHRXdKmutBcz+sqQcNV+m4omk7vt+5rjzP3CZcHbdmX63b+rqI1ETkmIgMOzluLVfpaOi+CzqLMr8a/Sm/uyLyuBw48A9l6/eMq/xE1QbjVp+uRFkPGj/84a/I+fPnZWRkxEl62PmC69/gv9iO+6Zm99uK68kPEB2bexjE0cjICH/vBxj1N/iow8G3k66BP/PBTyvviEgcrlidX3E89NBDMjc3t6vfLAoa7ysnX5W9D7Yu4kOzaZFfiDJXiLe9IvJEvzOBgTIsIn+v35nAwOA7BnZGRkbkS1/6Ur+zgZhZWFiQhYWFlttu374tIjvjJi4qu/2+qd5WPvxFkeEHWwdNzIp8evb+v1UvX3VH93JJd8LshLfrwFa8mGZl8K8vbF8AsKlL2zZl86KUfXvtVPeeXLjwGw35sGuvdmUSZnmHl3aYesmH6+u1QS1vm7zY5iPMtEXCvOZWvPj7gTi9nGrz3RZlvgftGngnr5ERWj62DqvejSavHJMfT/2F9gEb1yLLCwAAANCL2dlZmZ2dbbmtXC5LOp2OOEc7w66/b/r7V0QeSvU7FwAAAC0N2jXwTu7IUC32DQAAAAAAAAAA0A9x6VABAAAAAAAAAABdGhL3D/yHHKfXLUZkAAAAAAAAAACA2GJERoi+Kz8p35OH227/9UNfMaaR/W6uc8CaOR/Xxo6ag0YVi+RUzSHygiImSlXNQkGOFr2rdl4ESrPwk24hKf2iTb3S5MfVcbkrHxc0bcLNwlKuFqjyPHOedQtnuTkfomrvcVqYzCVX54wrccuPC67Oh7gdd9zyE5W4tdG45QcAAADA7sAaGQAAAAAAAAAAAH0Qlw4VAAAAAAAAAADQJdbIAAAAAAAAAAAA+ECtVpNsNivZbNYYWywWZXR0tOt90ZEBAAAAAAAAAMCAC9bIcPnTboRHsViUM2fOyMWLF6VWqxnzNjMz0+1hiXTIBwAAAAAA4cpJSHelz4SRqIiI+P55q3jPe9si7Udss2PBtkxeCSUXtmzLO8y0Pe9CSDkREdHXvX070cfbHqNNGcapLuOS9qAa1DIJs32HKcx8x6lMwv0buHtEObVUJpORTCYjnucZ08hms5JMJmVtba3rfNCREaLSa4+J/EGqfUDOnEZOOg/LeePZJ41peNUvmXd0UvFFdFXxhXLa/AXonXX0pTeqyE9V8YU8qshP1XzzYfrCtbmB6cjRcXtelDcmbm4kNX8wNX+ETXXhaj9xuei5z1zn7srYTfk4O292qSjboIs6j/a8cnM+7FSmuhi0thX1vnZi2zGXzfcjyQcAAACAwVIsFuXgwYOSSqXkxo0bXafD1FIAAAAAAAAAAAy4KKeW0srn8zI3N9djKnRkAAAAAAAAAAAAx7LZrORyimmJFJhaCgAAAAAAAACAAbdXtj/wX//gp1vdfrZcLsvBgwclmUz2sPf76MgAAAAAAAAAAGAH+h9E5Lf7sN/5+XlZXl52lh4dGQAAAAAAAAAADLhgjYxGvyAif6eHNP9ARH7W8jPZbFYmJiakUqnUfxf8f/Bf25EadGSE6Hf+QVo+3mH7rbvDxjSuXTracfsTz79mzkiqcxoiInLWHCLVt40hw+991hizftCcjoyeV2TIDX/NHOONPWKOOWXYj29OQ0QTY+Z5zxhjNPnxvAtOYjQ87xUn6Wjo6sKUhrmNasom0nTGjCEqujybz3MXx+WqbOLGVZ5dlU9UZRhlXblqxy6+Tzb35ea71FUZxum8iVu72K1MZVMulyWdXowoNwAAAAC0hj/46daf6eIzxWJRLl682HLb+Pi4pFIpKZVKVmmy2DcAAAAAAAAAAANuSO6vk+HqZ6iLfJRKJfF9v+lnbm5OEomE+L5v3YkhwoiMUH1eREbabDshIr8SYV4AAACAXiwsLMjCwkLLbbdv3444N9gxRv+WyAMPtNw09HfPyNDPn6n/e/2sxSi4p+yyMXz0lt0HrOhHHnueXco2I8lcjf7rNR+2wsy3rXCPUzFzQdf0bXBQRyfatpO4tNm45ENkcOs+Lt+DtuLSTuIkrmUyaNfAraaWcpFmO7VazfHe2qMjI0RfFek4tRQAAAAwKGZnZ2V2drblts2ppdIR5wg7wd6v/VPZ8xOP9jsbAAAALXEN3F65XJZ8Pi8iIpcvX5aJiQnJZDKSSCRC2R9TSwEAAAAAAAAAMOCCERkuf9qNhEilUpLP58X3falWqzI5OdmxEyOXy0m1Wu3p2BCS//qb3+r4dtEX9h4wpuE/2nls8ROnFIt9O/Ka/0vGmCdPveFmZ4qFxVXDY0+6WUhZs/i4f8m0HzfHFLdFgF0thhvlwthuhpNqFlR3U37OVDXHHa9FdeM09DdKrs6ruH1fxGU/Wq6+u3T72h3Dxfspbu0LAAAAAKBHRwYAAAAAAAAAAAMuWOzbdZpxwNRSAAAAAAAAAAAgthiRAQAAAAAAAADAgNs7JPJjnVcqsE/TF5ENt2l2gxEZAAAAAAAAAAAgthiRAQAAAAAAAADAgBsaEtnreOjC0D2JxYgMOjJC9J1feFxSf6ZDwO+Z0/C+5ncOuGROY/joLWPMevVdY8yTY2+Yd1Z92xxz8hFzzFVziLygSOfrinTkGXPIUU06Jq+4SEQ8T1HGqn2Zj9vzLpiTGT3vJh1H+fF9c37M+3FVxuY26vvmGM/xkMBe6epTk445xkV9amjqXFNXrujaRTTng8t04rIfl1zlOcr63K0oPwAAAAA73d49Ij/meHXuuHQgxCUfAAAAAIBd5vV9R+TRA7rXBp++9Ko63Wved6zysW4Ra/uOSZgdqTYvmNjmwyZt2xddbPISp45ou+NUvDDXwOalGVcvFkVN98LYfVG+SNRJmOUdZtpxOnfiIk5lMqh/G8LKh0i86gfxREcGAAAAAAAAAAADbu/ezQW/naYZk5lC6MgAAAAAAAAAAGCX+sd3RP5xmyGqPzSsfBAVOjIAAAAAAAAAABhwe4dEfqyLJ/6/uFfkF/9s623luyLpm73lywXHa5gDAAAAAAAAAAC4w4iMEKV/tiTyUKrt9i99xjzB2Gv+Ex23f8S7ZkzjJ0bN438O+983xlw7pVho66oiZsluga+2Tr+iCFIssPaSIs+nzQsUeUt2i7m1olnYSLdYkiIvJ83H7V8yx0S70FzvZSxizrNugSk3C895Y5ooTVtX1GfMFs7SLN5nKh9/LcK8uDr3FDT5iVt9arj4vnB13Jq8uPtONhvE+kR7rtoXAAAAAFjZIyKO18iQe47T6xIjMgAAAAAAAAAAQGwxIgMAAAAAAAAAgEE3JO6f+MdkRAYdGWH674+JDD/YetvEbLR5AQAAAHqwsLAgCwsLLbfdvn074txgp/jZ43flgTa3TGf+3pCc+T+7nhsBAABAb+CugfcKHRnowt+/0nGNDPkfz0aXFwAAAKAHs7OzMjvb+mWccrks6XQ64hxhJ/ijd6dF5CMttz37i5s/dSePWqT8Hat8hLlujefp1wjUrJPVTL8+l+26TjZlYnOMtnkJt27CKxNburXzIsiHZV3atFn79m2Tj/DKZLesazWo56WN3VKXcamfnVLeXAPHBx0ZAAAAAAAAAAAMujCmltpwnF6X6MgIUekP0pKqtt+u6cN8bON6x+3X/cPmRC4pdqRw+NJVY8w1T/Hm06iiR/YFc4h/yvw2h+qtltOaN07MbzqZ3i7xvFeMabh788C8L1lSJHPJXMaaHnbdcZnz7GpfpnRcpKHlr5ljPE8T4ybP7tqg+ZzRvO3l4q2tSOtTkV9NfjR17uqc0XBVhi7OPVfc1fnOeMvIVpTn1SDazccOAAAAAGGgIwMAAAAAAAAAgEG3RzZHZbhOMwZikg0AAAAAAAAAAIDtGJEBAAAAAAAAAMCgC2ONDNcjPLrEiAwAAAAAAAAAABBbjMgAAAAAAAAAAGDQ7RX3T/xj0oMQk2zsTH/4P/VewO/uXe+4/cmX3jAncvptY8g1OWpO56w5REYV6VTN+Tl86vvGGG/Mzb5k9BFzjILnXTDs57w5EU1+5RVVfowUx+15mvzEzTOR7MVY3yLi+4o6V9Ck450ypxNlnjVtx/c1bdCcZ/N+IqyHCMtYxM13V5RM5eOubNxw0f42mb+XNOdDnMStrgAAAAAAOxsdGQAAAAAAAAAADLo94n5Ni5gsTkFHBgAAAACgPz40I7I35T5dzWjoBjaj8OxHpelHVHtjliP0bEaXVx2N7G7JLu34jOyzG83tjelj/TXLrKhG5wfCG8lpO0rUbgSr7eh5fbuybVPhnvPxYDu62OY43Y1c7i0ftuJUJoParuJSP4NafpHocrHvhX+3+dPK7Xs95cgZOjIAAAAAAAAAANilZv/85k8r5X8vkv7X0eanFToyAAAAAAAAAAAYdDt4se+YzHAFAAAAAAAAAACwXUz6U3amf1j6R/Kh1MNttx/2nux5H4dPXTXGXJOjbtI5/RFVnowU87heu6SYl7OqmTvPPAenZu5SzTx9pvn5vFPm/ciSYg5QzXy/irLRHbc5RjNvaZRzF9rO6do6DXN+w5wTtBv+JUXQJTf1oJkbWFMPnmeeBzhO8166+B7Y7fuKU31qDFp+ER9RnlcAAAAAULeDF/uOSTYAAAAAAAAAAAC2Y0QGAAAAAAAAAACDbkjcP/F3PcKjS3RkhOh/Pfbfyp4Hh1tu+9/N/o2IcwMAAAB0b2FhQRYWFlpuu337dsS5wY7x/jER78HW20ZmRR6YjTY/AAAADbgGjg86MkL0v7/yDzqukSFn/6/RZQYAAADowezsrMzOtn6oXC6XJZ1OR5wj7Aj7rojsTfU7FwAAAC0N3DUwIzIAAAAAAHDsT/9Q1LelVx/Rp1t92zIjz6gjPe+CZdoWqnZp+/55i2ibWDt2+YiTV+zCq/p4z7NL2qYMQ22DlqzyPWaZuEV5oxX995qtMM952/ZtkxfbfNvkhbR7TxuO7BX3T/xj0oMQk2zsTL9/8xHZs/Zo2+2HFWn8kv9ax+3XTh21ylM7byjS8V5SJHRaccOguak4rdiXoz/Kui9hB/tasr2ZCper447bHybvlCJoqfOxa45JE+OujC1u2nukybOrY3fRdjzPzXmlK2NzXbm7qYzu+y1u53CcaNpXlOcn2nN17nE+AAAAAEA80ZEBAAAAAAAAAMCg2yPup4La4zi9LsUkGwAAAAAAAAAAANsxIgMAAAAAAAAAgEG3gxf7ZkQGAAAAAAAAAACILUZkhOjnDvyP8uNjv9dTGtfXHuu4/eY/GzGmceDlO8YYzSKZw+991hizflKx6OlVc4ho1jB3tXj2qGJhz6q5fLxTDhZ8PanIi2Gh6k1uFgqOG93Czq8YI0yLubraj445Hc/T7Cu6RcNdLWLuQrQLLcerHnYid22r9++BzRhzXe3WRaZdLYQe5YL0UZbxoNUnAAAAgB1iB4/IoCMDAAAAAAAAAIBdamFVZKHSetvtjWjz0g4dGQAAAAAAAAAADLoh6WoExexf2vxppVwVSRd7ypUTdGQAAAAAAPrjQx8T2aubdnH4e7fUya4ftJwGVDPFa2DJdopRmyk37dJ2NcVhKzbT5OmmZm2kP85Qp+vTTDPcwF/Tx4ZZN2FO4xrqNKiKKZujshumgYzTlLY250OYdWN7Xg5qO7H7/o5PmQxqecfODp5aisW+AQAAAAAAAABAbMV6REaxWJSpqSmpVqtNvy+XyzI/Py/JZFJqtZpMTEzI5ORk32IAAAAAoF+4bwIAAICI7OgRGbHuyJiZmdn2u0qlIul0WkqlkqRSKRERGR8fl7W1NZmeno48ppOv3fzbsmft0bbb35SvGNO4Nna94/br8pgxDTlrDvmiv26MyWmG0V41h2iG43qXFPtaUuxLMZRSNwxaMXR3qXM6h/3vG5O45imyomI73L0d83Frys/dkFbzcWmGIpqGTurScFTGiuHsNkPYe+Wi/KKky4u5HWvaqLuyiW6Ity7Pmu9AN+3dlB9XZRzlkOQo9xXluWeuKzft2FX5MQwdu92g3zcBAAAAJrGdWiqbzUoymdz2+5mZGclkMvUL5CC28eI9yhgAAAAA6BfumwAAAFA3FNJPDMSyI6NYLMrBgwebLoRFRGq1mhSLRZmYmGj6/aFDh0REZHFxMdIYAAAAAOgX7psAAACwW8SyIyOfz8vc3Ny239+4cUNEZNsbR8GFe6FQiDQGAAAAAPqF+yYAAAA0CdbIcPkTkxEZsVsjI5vNSi6Xa7mtUqmIiEgikWi7PcoYo3//78W/davt5vcNHx827wEAAADo2Z07d+TOnTtdf/79901XtnBtx9w3+e+L+O3vmZpCW91bjYyINzKi+jwAAEAjroEHS6w6Msrlshw8eLDlHK8iIqurqyIiMjY21nJ7rVaLNMbk7t/4P3bc/n8wfP4XjHsAAAAAejc/Py8XLkS3oDx6s6Pum95/vPP2Bj96aPvv9sz9iuzNnlOnAQAAENiR18DBiAzXabZRq9Vkfn5eRKTlSzYrKysyPz8v5XJZUqmU5HI5yWQyXWUjVh0Z8/Pzsry83Hb7+Pi4iIisra213J5MJiONMXn0Wxdl36Pt43739cmOnx/5MZE3pPVbVoGcZI35+OLarxpjnKmaT37Pe8aczslHzDGj5hjPe9sY4/uKdFrflzWn07qpNKShOCZRfHmePG/OyyXFrhSclZ/n6o+Cue1o9uX75jJ0kYaq/AztZjMdN8ekyY/IK472palzzTnRe140XJWxq/xESXMOu6grV+JW51GKW36ws5w7d04+97nPdf35t956Sx5/XP9AGr3ZUfdN+74lsvfRzjEf+LHvth6RAQAA0I0deQ0cYUdGsViUfD4vKysrMj09vW37xYsXpVAoyMzMjKyursrFixdlYmJCCoVCV50ZsenIyGazMjEx0TT0OPj/4L/BRXC7t3qSyWSkMSZD+x6Uvfv/bNvtHTYBAAAAkRkZGZGRHh4I79u3z2Fu0MmOu2/6lX0iD+3vHPOBH6V0cV1Z0rzwgXZ0L0bc53nml2fux9q+FKV4ce4D9vnWtxPbFxDcvfzVqzBfYNHXjYh9/YTFtm5s6j5e7VufF9v2vRteyInPORzud5VdPsI7d2yF1b53+zVwJpORTCYjnue13P7mm282rZd24sQJSafTXY/KiE1HRrFYlIsXL7bcNj4+LqlUSl5//XUR2T7PavDvdDothw4diiwGAAAAAKLEfRMAAADaGhL3i3N3kV6xWNw21VQqlZJUKqVbe7qFPV19KgSlUkl832/6mZubk0QiIb7vS6lUkkQiIalUqqknR2SzYEREjh8/HmkMAAAAAESJ+yYAAADEXSaTaTsyVzPTUSux6cjQevHFF6VYLDb13ORyOcnlcpJIJCKPAQAAAIC44b4JAABgFwrWyHD543CER6VSkampqa4+G5uppbRSqZSUSiXJZrOSTCalUqlINpttWlAkyhgAAAAAiBvumwAAACAicueuyJ2N7j///rqbfKysrEgymez6GjHWHRnBWzxbpVIpWV5e7vjZKGPa+f2bj8ietUfbbr91ZNiYxtGfvNY54LvmfDy99qo5SCE7tr0utnpu9MvmhKqKRYcUi+1pFq7yTiliNAv+nDQv9GNMZ1SzWJBi4a6r5hCbhZ16pSk/Vws2uVo8y0U6umPSLGKoWYDN3C7c1YPmnNGcn9Es5jaIbT3KReCiPPfitICfroztFptsvy83f692q0E8H4A4GvT7JgAAADgSjMhoMP//Ernw/+xLbprzMT/f0/VirDsyAAAAAAAAAABAd879FZHPfaL7z7/170Qev9RbHrLZrLz44otdr48hQkcGAAAAAAAAAACDb0i2rWkxMiQy0kOS+x7oJUMii4uLMjExIalUqqd0Bm6xbwAAAAAAAAAAsEXMFvteWVkREZFMJtP0+3K5bJ0WIzIAAAAAAP2RE/1d6VGbhC3XxVGsQxfw1+zWPgpzTS+b9X+iXJfIxCrfpyzTtpj6wrZMwizvMNdysmmDYeabdcO2i9MaXnHKi40o103sJE7lF5dzLU5lgvDUarW224rFoszPz8vMzIwsLi7Wf18qlSSdTluP0KAjAwAAAAAAAACAQddisW8nabZQLpcln8+LiMjly5dlYmJCMpmMJBIJKZfLMjExISIiMzMz2z5brVats0FHRohe33dEHj3Qfvau39y7bkzj/Oc7bz/6jWvGNF799NPGmCdPvWGM+fVLXzbGPPeCMUREFD3Dp8096qo3c5bM6Wh6iJ308FcVaYwqykaTjryiiHnGGKHpxfc88768MUV2quY3f6KqK91xK95UGo2obUVOUeeKdqHTuZ26etPE88wxrtqFrh27SUdD0wZd5dnFfqJMR7eveLztFIiy7bgQp7wAAAAAAPRSqZTk8/l6Z8bWbb7vO90fHRkAAAAAAAAAAAy6CEdkRI3FvgEAAAAAAAAAQGwxIgMAAAAAAAAAgEE3JO5HUDAiAwAAAAAAAAAAoDNGZIToZ4/flQcebL3tzN+LSVcWAAAAoLCwsCALCwstt92+fTvi3GDHeP+YiNfmpmlkVuSB2WjzAwAA0GDgroF38BoZdGSE6MNX/pF8KPVwy21fF5HDv/ikOZFP956PJy+90XsiIuJ5byuiXjGHjJ43x5x8xByzpMmPmeddMAedVOR5yXDso4pjqiqOSZWOOcSdZ8whVXMZ+765jFV1pWDal2Y/mvzqmOvT1XG74u7YoxFtfSrOBwVn54Pm+1bxve155pjBaxfm71vfV3zfOuKqnQ5aPbgS7Xm+e83OzsrsbOuHyuVyWdLpdMQ5wo6w74rI3lS/cwEAANDSwF0D7+CODKaWAgAAAAAAAAAAscWIDAAAAABAf/xpXkQ+oou9ajGySjEiuNHwe59Vx3pj+63Sthnh550KbzRgmCPTdKP377MpE/+SbV7iMZo5TiMB7UaZ2rVBb8wiH2tWSdvlw7Le41Q/cWFVhqqR3/fZ1H1czmERu/Zt+3fHpg2G2b7DLG/b88wmL7Zp76pznsW+AQAAAAAAAAAAoseIDAAAAAAAAAAABl2Xa2QsXNv8aeX2j3rIj0N0ZAAAAAAAAAAAsEvNHt78aaX8xyLpr0SZm9boyIi5q58+3HH70W9cM6bx2qknjDG5U1ljzKcufdsY85x3whgjR80hclURo3FSMb/nkiKdJcWcr5ZzRLZOw9GcuKrjNs896HmvGGN08wya86OaV9dFGSu4mjtRM7+jZl+aGFfzWrrKsyum/ERZfrp9uTmHo60HN+UTp7YTZV6iPM+j5OLci7Ie4lZ+AAAAANAXXY7IMKYZA6yRAQAAAAAAAAAAYosRGQAAAAAAAAAADLo94n4ERUyGQtCRAQAAAAAAAADAoNsr7p/4x6QHISb9KQAAAAAAAAAAANvFpD9lZ/o5+Zo8LB9qu/07ijQe27jecfvIoZvGNO5844Ax5smfecMYc/17jxljfH+/McY7ZQzRLQj+lGJR3a8r0lEsjO1fMifjZLFlxWLWh9fMK6Ff8z6i2Nkzihgzb0wRVFUs5C3mhcU1i4b7a+ZUzHWlKRtNfs3puFqkW7XwrubcU4gyz1Et4BvlwsWDmI7Gbl1sWVfG5u9AVwvFa7hoO3Fa3B3AgPvQjMjelC5WdU0ZsLvWvTNmvo8JeFXbv53670PNfUe3bP/m232Pa66NG/Oij7f9exKXvz+av/+NorwWcElz/xWIU5lYnQ+K+/SdwObcUT0HiCAfYbNpJ2Hm2zbtuOTbVpzyMtBY7BsAAAAAAAAAACB6jMgAAAAAAAAAAGDQMSIDAAAAAAAAAAAgeozIAAAAAAAAAABg0O0R9yMoYjIUIibZAAAAAAAAAAAA2I4RGSH67M3/TvasPdp2+xfkgDGN39y73nH7+sn9xjSuXjpsjJGj5pDHxq4bY54wJyNyVbGz6tvmmCVziO8/YozxxszpeJ4iPyfPd87LJcV+FHm55n3HHCTPKGJeMYeMdj4mERGpXlDsS5Mfc4y/Zk7F8zT5MVGUjYKq/XmafWnKz0zTBuWSuc5V54OiDHV1ZTp28358X3NM5ry4SsdVfbqiOa6ouKqHKEWZZzffb27yE7d6AAAAAADI5tN+10/8Y9KDEJNs7Ex3f+5nRR54oOW2ob97JuLcAAAAAN1bWFiQhYWFlttu374dcW6wY7x/TMR7sPW2kVmRB2ajzQ8AAECDgbsG3sGLfdOREaK9X/unsucnHm0fkH02srwAAAAAvZidnZXZ2dYPlcvlsqTT6YhzhB1h3xWRval+5wIAAKAlroHjg44MAAAAAAAAAAAG3Q5e7JuODAAAAABAf/xpXkQ+oos1rEnXC1frEEWddphrb9nk23btJJu0deuzRUOzBl43sWELsy5t2JaJTd2HmW/7czgea4nZ5tuqDFVrZTaKR/2wzhvQ3sL/XWThn7fedrvzEs6RoSMDAAAAAAAAAIBB1+UaGbN/a/OnlfL/WyT993rKlRN0ZITo7tP7RPbu7ymNr7x3s+P2mwdGjGns/0lzt9kXv/ur6jx18px3wrwv37yv50592byzq+YQb8wcI0cVMU8p3hw5a8iL5m2SUfN+NG8Q6N5cUby9Zf2WRWuaN280b1F4novcmMsw3LfmtjLXg6vy09C9ofJKhPsycfOmm+680pSxm/rUcPU2keb7wlWeTWXoqh6ifNPKXdtxs6+oRNlu4iZubRAAAAAAdgM6MgAAAAAAAAAAGHR7xf0T/5j0IMRkqQ4AAAAAAAAAAIDtYtKfAgAAAAAAAAAAurZHNtfJcJ1mDMQkGwAAAAAAAAAAANsxIgMAAAAAAAAAgEE3JO6f+Lse4dElOjJC9I+uTcvDqQ+13f4Rz5zGMwcPdNz+tP+aMY1PfffbxpjnLn3ZnJnTF8wxo48YQ74t3zens/S2MWT4vY8aY9YP/qZiX8+YY8R8XFJVlI8xDXOIp2g3vm/Or+eZy1hEUzZmqn2NnjfHuChjEfHGOm/3fXNePM+cF81xu6orTZ6j5KoMXezHFVf70hx3lPvSUXwHKsStnUZlZx73K8YIzzPHDGLZDGKeAQAAAOwSO3ix75hkAwAAAACw+/w1Efm4+2SXLDvzT1p0Ul61S9pKVfOyUSNzp3HAtiPW9PJPU6z1yxNuXphqLcQysTpOu2PUvOAURzZlYv8ygL4uNS9QdJuXcNuJnTDzHVY+bIVZfvbC/K4KT1xevAm3LnfHdyya0ZEBAAAAAAAAAMCg28FTS7HYNwAAAAAAAAAAiC1GZAAAAAAAAAAAMOj2iPsRFDEZChGTbAAAAAAAAAAAAGzHiIwQ/TeHF0X2ptpu/5J4xjTOf77z9lc3njamceDlO8YYOWsOGX7vs8aYdcXCd9fXHjMHndzvZF+qRfuWbBfUC5N5gbJIF20aVSyGdFSRjqaurBc27IFhX7qF4jQLS5nTsV2Urj03C1dpFuNy1wbNZehiQa4ojynKhek8z3zOaI7LVZ6jKmdXxxTld6mursxtPcr2ZSqfaMsvTgs+xmfxRAAAAADYZgevkUFHRpjePybiPdh628hstHkBAAAAerCwsCALCwstt92+fTvi3GDn+LyIjLTZdkJEfibCvAAAADTjGjg+6MgI074rHUdkyG3FMAgAAAAgBmZnZ2V2tvXLOOVyWdLpdMQ5ws7wVRH5eL8zAQAA0NLAXQPvla6e+C/8T5s/rdxWTPYTBToyAAAAAAAAAAAYdF0u9j37tzd/Win/S5H0f9VTrpygIwMAAAAA0CffFJE/0IVetVg7a9RyPZsl/Xo8tmvlaNZKiiN/TR/reZr147rlak257WzrJsx1kmzyYruOXJj5tkk7TuVtw3a9rjDLxCYv4X5X2Z2XNnmxz3eY66npj9MzL4Pbddr29N/JLtaldCUu37F2dfN926ygB3RkAAAAAAAAAAAw6FjsG/1y4audt5+XdWMah5+/aoy5dvo7xpj1s4qeUfOuZP2F/eagp8whclrRm/qSomd5SbEvFQdvIZ005zd2b3QtmfOj6eH3PFdvI4T5Nlgjc341bxPo3h4xH5M3Zk7F5q26KOjaRefy0ZRxlPXgbl8a5jbo6rzSfO/E5Y05LU096OrTzXegK3GqB1dlHKdjAgAAAAD0Bx0ZAAAAAAAAAAAMuh08ImNPvzMAAAAAAAAAAADQDiMyAAAAAAAAAAAYdHvF/RP/mPQgMCIDAAAAAAAAAADEVkz6U3aox0Sk0wK8DhaZvvr8YWPM9bXHzAm9dNQY8tqpJ4wxT6+9at6XwvpV84Lgw+991BhzR7EAsndakaElNwsBGykWS5dRxaKxVUf5rSoWFtcsUK6oBw1XCymb0vE8TV6iO27Nos5SNYdoFn7eiYvqulrIW1UPEt2izho7sT41olx0PW4LebtbxLxzOizSDQAAAADx4+8R8R2vaeHHZCgEHRkAAAAAAAAAAAy4jSGRDcdP/Dc6dIzUajWZn58XEZFcLrdte7lclvn5eUkmk1Kr1WRiYkImJye7ygcdGQAAAAAAAAAAQK1YLEo+n5eVlRWZnp7etr1SqUg6nZZSqSSpVEpERMbHx2Vtba1lvAkdGQAAAACA/vjMjMhYShU6/MItdbLrZ81T1TZ5Sj8dnvX0oZqpYT/gr9klrZkStVt20zDaTrOrmbJzk+1UhTb1Y13eNnWvmu63IS8Wx+lqisxe82FPX+8iuqlxA+Hm2659e55iiuYP2E5TGuY5b5cXy3xbnTv68gtbmO0qPu07PNbf3xbfbbZph9W+y+WypNOLVnkJ270QRmTcazMiI5PJSCaTEa/Nl9PMzIxkMpl6J4aISDablZmZma46MmIywxUAAAAAAAAAABh0tVpNisWiTExMNP3+0KFDIiKyuGjfAURHBgAAAAAAAAAAA25jyJO7Q3uc/mwM2Q8Hu3HjhoiIJJPJpt8HozMKhYJ1mkwtFabr0rGENYMTf2LU7xxwyZzG7582N7afOGnYj4g8efYNY8zhtavGmOtrjxljNNYP/qYxZuS9z5oT0gz1rioyZBwmq6hx1RBK8/BDzRA71ZC9k4qheuYqVw6rth2O3lpUQy5dDeeOcoioq2HIqmMfVRzXUXOIqXw0eXFXxnbDp9uJts7j1U7Nw+wj/H5z9J2j4aqdhjmNxFYuzj0X+9Hua1CH2wMAAADATlSpVEREJJFIdNxug44MAAAAAAAAAAAG3MbQkGzsbZ6E6c4dX+7c6T7NWz/0ReSu1WdWV1dFRGRsrPUiObVazTofdGQAAAAAAAAAALAD/Xe/sSG/8dy9SPc5Pj4uIiJra2stt2+dckqDjowwvX9MxHuw9baR2WjzAgAAAPRgYWFBFhYWWm67fft2xLnBjvEvjokMtbln+tisyF/ivgkAAPTPoF0D3xsako2h5hEZv/Sre+QXnu0+zX/51j156vF1q88EHRXtRl7QkRE3+66I7E213377bHR5AQAAAHowOzsrs7OtHyqXy2VJp9MR5wg7wl+9IjLW4Z4JAACgjwbtGnhD9siGDDX9bu/I5k+3Hti3Yf2ZQ4cOicj2tTCCf3dTbnvMIQAAAAAAAAAAAGaJREJSqZQUCoWm3xeLRREROX78uHWajMgI05/+oXQq4lcUSfi/43Xc/vZn7LLUzs1/Zu6We37IPAbpMblujHny4TfMGapeMMecPG8MWT+oSOclczpy9hFzTNUcYvSSYj+nzS3H8xTHPao47qW3jSG+b86z17kZf0BzXOZUVPlpvc6QFd83l5/nmctPE6P7tjBT5fmUo3QUx+VfUrR3J3kxnw+u0hF5RhFjrk9NfjQxcWM+P3tvE5v7cdNG4yZOde7unHGzLwC7w2Nj5nuNwLWrR+0Sv2oRW7X8GzKq//tm/92pufYI0g7zb5/t9apNvsMsE8ukHV2XtxKXaxP7fIRXJvG5BgivfdvS3O8GXF2Ltc6HXd34rafIb8n2vLTJi22ZhNsGw/v+tmkn8RLeuWNT9/H57unOhgzJ3S0jMnpPs71Oi3a/+OKLkk6npVKp1KeSyuVyksvlJJFIWOeDjgwAAAAAAAAAAKBWLpcln8+LiMjly5dlYmJCMplMvZMilUpJqVSSbDYryWRSKpWKZLNZmZ6e7mp/dGQAAAAAAAAAADDg7smQbDh+5H+vze9TqZTk8/l6Z0a7mOXlZSf5YI0MAAAAAAAAAAAQW4zIAAAAAAAAAABgwG3IHtlwvkZGuzEZ0WJEBgAAAAAAAAAAiC1GZITpMx8TGXuk/fYlRRrZzpsf+T1zEt4PfGPMTRkxxuTWDJkRkfWz+80Zql4wx8gzihgz3z9vjPHGFAlV3zbHjHaoaxGRo4r9nFbsx1HZ6OrBzPOcJCMyaq4rVT1oGI/dXMaeZy4/VftTpKOr81ec7Mtdns08z5xnU35cHZM7vR9T1FzVp5u2Y27rvm/4rlXtx11b16QTtzqPyiAed/y+UwAAAABAb3ONDLcjMu7FZEQGHRkAAAAAAAAAAAy4eyFMLXVPNpym1y2mlgIAAAAAAAAAALEVuxEZKysrMj8/L+VyWZLJpOTzeclkMk0x5XJZ5ufnJZlMSq1Wk4mJCZmcnOxbDAAAAABEifsmAAAAbHVX9shdxyMy7sZkLESsOjIWFxelVCpJLpcTEZFsNisTExOyuroqyWRSREQqlYqk02kplUqSSqVERGR8fFzW1tZkeno68hgAAAAAiNKOum+6Luq70munNIvORcG8JlaTqmW8lfDStlkTyPMs17IzrS/YmI81fexmXmzW/7JbfzDUMolJXdqzq5+wuFr3zQXNmm6BcPNt277jUZdh5sP2XLCpH/vzLLxzXrMeZSBO67/FpQ0ivuLRnfKBWq1Wf5Mok8nIiy++KCKbb/cEZmZmJJPJ1C+QRTYv3GdmZvoSAwAAAABR4r4JAAAArdyTvbLh+OdeTMZCxCMXH5ibm2v6dyKREBGpXxDXajUpFov1N48Chw4dEpHNN5OOHz8eWYzx7aJPichDHbYvdf64xhOffs0Yc3NjxBjz9NCrxpj1g++aM6R4s+aw/0ljTFZ+yRjzpPdbxhhP8XbI8PduGWPWHzan468Z8uLqTYuXFL3lZzUJKXq6q+Y8a3rMvTE3+9K8UWL/5lMr5rcXnL21MKpIx1HZRMucH1XbMdSnph5cnXtR7kuTjqs2OGhv4GjO8UEsG1d1HmXb2YkoGwyKHXffBAAAgL5aWrgpSws3W267c9uPODetxaojY6uVlRXJ5XL14dE3btwQEan/OxBcsBcKhfq2KGK4IAcAAADQb9w3AQAAQETknuyRjS7WyDg+OybHZ8dabvvX5R/Kz6T/uNes9Sy2HRnZbFYWFxfrw6RFNudeFbn/xtFWlUol0hijH74v8h/av+3/Q8PHY1s5AAAA2FHu3Lkjd+7c6frz77//vsPcwMbA3zf574v45hHSIiLyoxa/2zMiMmQegQ4AALDd3Q9+7rt1S3ldIlwDRy2Wz8ovXrwolUpFarWaTE1NST6fl+npaVldXRURkbGx1r1DtVot0hij//bxjpt/w/Dxzp8GAAAA3Jifn5cLF+KzUCp0dsR90/sWdz0rLX73n58X+S++pE8DAACg7tsi8q2m3xw4YHpiG28bXY7IMKUZB7HsyAjmfC0WizI1NSW5XE6mp6dlfHxcRETW1lovRpBMJiONMfoH3xL5i4+23fwrZw50/HgsKwcAAAA7zrlz5+Rzn/tc159/66235PHHeQ0najvivmnft0T2Pto5JpBp8bs9jMYAAADd+pSI/JdNv7l585z603G8Bt6QIbnrvCPDbXrdivWz8kwmI9PT03Lx4kURuX8R3O6tnmQyGWmM0QP7RP7M/vabzSkAAAAAoRsZGZGRke4fCO/bt89hbmBroO+bvH0iXvt7piY/pgsDAADQ2StbH4/v36+8LhGugaMW644MEZFPfOIT9YvfQ4cOicj2eVaDf6fT6UhjjHLScwlfeKvz9jeefbK3HQTpfNqczsh7rVeub/Tq2BPGmCe93zLGXDv5hjFGTppDZOltY8j60iuKhJ4xRoysfVSRTu/7ka8rkqkqpoY4ed4cc9Uc43mO9rVkDnGnczn7/iPGFFTHHSlNOzbzLpmP3ffdtAvPM+dZsy8zxXmlKL8o69zNcetojstVnevqIhqujnsQuTj23Vx+GlGWj2lfu7kedpuBvm8CAACAE/dkSDYcP/K/x4gMnUqlIpnM5hjiRCIhqVRKCoVCfRi1yOZQahGR48ePRxoDAAAAAHEwsPdNj4lI6+U1evOCZfzpMF9YsOnIt3w5RfPC0Af8S3ZJh/kSh79mfnkmjsJ9sUXfTjQvXjUKtS4tOsw9z/yiYXPa+uO07bi3KpPRENO2Ft73iefZRNulbddO7Mov3Jc2wnwRK8y03bzoGDWburetd17u2RnisVKHSH2BupWV+yu4VSoVKRQKks/n67978cUXpVgsNr3xk8vlJJfLSSKRiDwGAAAAAKLCfRMAAADa2ZChUH7iIDYjMhKJhNRqNTlz5ozk83mZmJiQZDIphUKhKS6VSkmpVJJsNivJZFIqlYpks1mZnp7uSwwAAAAARIX7JgAAAOxGsenIEJFtF9/tpFIpWV5ejk0MAAAAAESF+yYAAAC0ck/2OB9BcS8mkzrFIxcAAAAAAAAAAAAtxGpExo7zp38oYRfxrz3/BWPMY3LdGHNdHnOSzpNjbxhj5KQ5RGXJvAjQYf+TxphrnmKBpVHzImPrZztv1ywspFr8bEkRo1n0T5OOgqsFk7wlzUJXUS1YpVlUzpxf20X44kCzuJZ31lznztqF8ZxQtAnN4nxVczquzmFNGQ/iQmTR5VnzPWA+9+JWxq7yo2unYS5ACRF39aBJJ25tGQAAAED/bIQwImMjJmMh6MgAAAAAAAAAAGDAbciQ3HXekRGPxb7j0Z0CAAAAAAAAAADQAiMyAAAAAAAAAAAYcPdkSDYcP/K/x4gMAAAAAAAAAACAzhiREaJS6WOSSrVfcPSC1/s+hryvGGOO/p45naPZa8aYq989bIy5dvSoMWb4hVvGmPWr+40xIubFLa+dUiSjWXxcszD2UucFaHWLWWsoFrq96miR6ZfM6XhjbnalWVBdtQh3VVFXqn11plnI21XZ+Gtu0nFWV1XFguAOvt9UVAvbR7iwsaJt+Wtuzk9XCza7W5g9PouYxykvWpqF4jXfO1GJsvzi1tZdiVt+gL65Lvq7Us11XmDJMh+jFuek4lqoOW399/fw9z5qlfT6QX2ZeLZlIjb3L4p7lAY23+3235eu7ru2s8mL7d8vm7/zrv42tmZXfmHWpeb66H7adtdJYdZlXIR5reF5tue8TV3atpPw2qDdeWnxN8qaXXnb/E2zz7c+L/blzfWxC90u9v31hf+P/O7C/7fltvXb93rNlhN0ZAAAAAAAAAAAsEs9NfufyFOz/0nLbd8r35K/n34z4hxtR0cGAAAAAAAAAAADbnONDLdrWrBGBgAAAAAAAAAAgAEjMgAAAAAAAAAAGHAbskfuOh5BsRGTsRB0ZITo2LFj8uCDD7bcNjs7G3FuAAAAgO4tLCzIwsJCy223b9+OODfYMd4/JuK1vmeSkVmRB7hvAgAA/TNo18AbMiQbjh/5u56qqlt0ZIToypUrkkql2m6/cPZsz/s4/3lzzIXPmGO+8t5NY8xjct2c0NIFY8j61fPGmOHv3TKnc3a/MeaLa79qjHnu1JeNMSonDce19LY5jZceMcec1mXHaFSzL3N9ijzTc1Y2veJmXyfNx+Vf6rzd8xR15Sq/qnTM54wmz75vLhvPU2RHwffNedYwHpfiO0eTF88zp6OJcbUvTTruytjVed77d4EuL2ZR1oOrc093fsan7bjKi4ardFyJ8tjjZnZ2tu3LOOVyWdLpdMQ5wo6w74rI3vb3TAAAAP3ENXB80JEBAAAAAAAAAMCAY7FvAAAAAAAAAACAPmBEBgAAAACgP/40LyIf0cW+ZDFt22nNVKFdMk0pu9VVfeidMfP0uY081TSl8WMzBZ83Zpt6eGXiebugvFXT7HbHfhpR/dSlrqYo7TUfm8JsJ/q0w2yvYU6jaVuXdu07vHYS7tSiiqnBG9icx5opbpvTtgofSHbt5Puh5aNbG7LH+YiMuCz2HY9cAAAAAAAAAAAAtMCIDAAAAAAAAAAABtyGDMld5yMy4rFGBh0ZA+7CV80xG/4XjDGPyXUHuRE57H/SGHN97ZYxZv2sYkh11TzU67lLXzan85Q5RK4qhtotmfJjHo7qnzLvxvu6Ji/mYYSa4YPemGJopKIeZFSTjjlERVGf5mGCiqHDqmMKcUqDLWyHg7ZPx3xcmmGW4Q7tthNlXlztS5OOq6HLqjrXTOmg+S4wDIkOdzi2/b5c1YNmaLfmHI4yz3HKS5Tng0aU+wIAAAAAbKIjAwAAAAAAAACAAXdPhmTD8SP/e4zIAAAAAAAAAAAALrDYNwAAAAAAAAAAQB8wIgMAAAAAAAAAgAG3ObWU/YiMawv/Wr618Actt/3o9kav2XKCjgwAAAAAAAAAAHapw7Mfl8OzH2+57Y/L78l8+p9HnKPt6MgYcOc/b44ZWcsaY75w8IAx5pr/miZLRutX9xtjXrv0hDHmyatvmHd2VpMjM3/NHON5hoCTjxjTGFm7Zd7R0rvmGMW+vDFzMlJ9WxHkyKg5z1K9YI45rdnX+Y6bdfVtzovvd96PiIg35qauXOVZ5BlziKH89PnRtK9XOu9HUcZR0pWxmavjcpUfHXPbcZGfQSwb31ec546+U6I6J1zlV0P1XRphfgA49pkZkbGUKtQvmy647/Ne8u3ycdrm74Ll94nVNbXimrjRSxZ5OW15ba+4pwj4l+yStqG5rmymLxPd9Wg0bK5Nwv2b1vn6eyubvIRZ3rZlEu61oOKeqi7M8rY7xrikHSbrdqJ5btKlcM95fbvyvPic85r7pijYHGO5XJZ0ejHE3Ni7F8IaGfdisjpFPHIBAAAAAAAAAADQAiMyAAAAAAAAAAAYcHdlSO46HpHhOr1uMSIDAAAAAAAAAADEFiMyAAAAAAAAAAAYcPdkSDYcP/K/F5MRGXRkhOjYsWPy4IMPttw2OzsbcW4AAACA7i0sLMjCwkLLbbdv3444N9gx/sUxkaHW90zysVmRv8R9EwAA6B+ugeODjowQXblyRVKpVNvtF86e7Xkfv/b8F4wxj8l1Y8wn/cPGmM9uPG2M+XM3/8QYc/jUVWPMdXnMGCNHzSFi3pUqHe+SIh15pvPmpQvGFNavntfsyGzpbWOI7z+iSMgc440p0qmaj90VzXF5XufyUR2Tqb5FxPMUxz2qqHNF+XljbtqOrvwU+fHM5SOjinI+2jlGkxffN5eNN2bOiqt2rMlPlKLNj+bc6sxVnbs67vjlx9X3vykNxXkVUV4204muPjXf/66OS0OX58605Tc7O9v2ZZxyuSzpdLrnvGAX+qtXRMba3zMBAAD006BdA2/IHtlwPIJiIyarU9CRAQAAAAAAAADAgNucWsptRwZTSwEAAAAAAAAAgIG0srIihUJBEomEVCoVSSaTksvlQtkXHRkAAAAAAAAAAAy4DdkjdyOaWmplZUXm5+elVCrVfzcxMSHZbDaUzgw6MgAAAAAA/fF7eRH5iCr0Cf81fbqa9a8aDL/3WXXs+kHzGkBNNOuCfcB+3RvFumTdUqzxV3cpPmuA2ZRhnNYu87xXQkzbss1apR2P8g733AmvbmxZHadmPcYu07atSxdrerlJO7zvTN1am12mbVl+8fluszt3bL4H43OMu1s+n5dDhw41/W5iYkLy+TwdGQAAAAAAAAAAYLsNGZINx4/82625sba2JpVKpel3q6urkkwmne4/QEfGgBvyvmKMefXusDFm/+vrxpgnPm1+A2r97H5jjFwyhzx36cvGmOEXbpnz87A5P74iP54ixvc7975reueHv2c+JpGPGiM0x+1p3lKrKnr9X1L0gp/WvPVg7nnX9Lg7edOjGuEbN1Xz21Hu3jRQlJ+mXSje7PHXzMmo6mpJkR8XFG3dVT1ojttVW3eXZ007De8NpOb98OZNJ5p6iKo+o2oTLg1i+xrEPAMAAAAYfDMzMzIzMyNTU1OyvLws5XJZLl++LK+//noo+6MjAwAAAAAAAACAAXdPhtqOoOglzVamp6elVCrJ4uKijI+PSzKZlHfeeUcSiYTT/QfoyAAAAAAAAAAAYAe6e+eubNzZ6Prz6++3n8knn8/LjRs3pFwuS6VSkWKxKJOTk13vqxM6MgAAAAAAAAAAGHD3ZM+2ERnfnv8X8i8u/D9C2d/ExITMzMxIMpmUqamp+jRTYXRm0JEBAAAAAAAAAMCA22jRkfHJcz8thz73WNdp/ru3/n9y6fGvbfv9zMyMiGxOMSUi8s4778hDDz0kZ86coSMD251/VBHkaCHvN37ySWOM93FfkSGz4aPmRa+zYzljzHNiXjTcFeMiyYpFndcPavbkaCFqxYLNmoW8/VPmZLzTivyIeUFw3ULemoXFTRRlfFJRfktuFtT1FGXsatF6V4teR7mgtZs0XLQbHXfH7eac0eTH1aLNpkWmdQtVR7fIuUbczoeo6jNu9RC3/AAAAABAXOwd2St7R7rvBvixfcMtf3/58uV6J4aISCKRkFwuJzMzM1IulyWVSnW9z1boyAAAAAAAAAAAYMBtyJDcdbzYd7vFw8fGxqRWqzX9LpPJiIiEsuA3HRkAAAAAgL7Y+83TsucnHlXFXl/Tp/va2hNW+Xh67VV17GH/+1ZpX7tkMRLurOXoMcWo7/scjeyOmGlEZ29p247+tRjFO+pmRGsrtmViNxrTLt8uRlC3T1t/nLYjL+3ybTd629Vo5lZs8u1bfGduph1OPsJmU/dhnjthfp+E26Zsv2P1f0sGdUS0XV3aXRPsNDMzMzI/Py+5XK7ecbGysiKpVEqSyaTz/dGRAQAAAAAAAADAgLsnQ7Lh+JH/vTYjMubm5iSRSMjU1FR9GqlarSavv/660/0H6MgAAAAAAAAAAABWpqenm9bJCBMdGQAAAAAAAAAADLgN2dN2TYte0owDOjIG3NtvmWN+6dOvGWN+y3vSnNDnzSHDX7hlDnLkMblujBn+njk/3qn95p09pcmRIS/vfdQYs35WkZcl83yEmnkIVfMgnjXPw+id1synqJhDcdScZ39NkZ8xRXaqnec7VJWfZj8KurkXFXNnauZeVtWV3fyv4acTDc2co67mgdW0L9057CY/mnRczW3qYm7XQZxn1V35xefYXeXFVfuLU9mIRHteAQAAAMBuQEdGiI4dOyYPPvhgy22zs7MR5wYAAADo3sLCgiwsLLTcdvv27Yhzg53i7s/9rMgDD7TcNvR3z8jQz5+JOEcAAACN/pcPflq5G2VGVDbXyHA7IqPdGhlRoyMjRFeuXKkvdNLKhbNnI8wNAAAA0L3Z2dm2L+OUy2VJp9MR5wg7wd6v/VPZ8xOP9jsbAAAAbfzUBz+tfF9EFiPMi9mG7JG7O3RqqXjkAgAAAAAAAAAAoAVGZAAAAAAAAAAAMOA2ZK9sOH7k7zq9bjEiAwAAAAAAAAAAxFY8ulPQtVcUMW88+6Qx5oIinUcUMXeOHFBEmXm/7Btjnj76qjFm/ep+886W3jaGDL/wUfO+Xui8r/WD75rzclJRyi+dN4Z4Y+ZkZFSxr6PmEP+SOR3PU+Snam6FnveMOR1NGV7tXIaeZ24TmrPP9zV1Zc6vv2bOjecpzuKT5vxozgfVvhQ8T/MNpqhzI81+zDT1GSVV+1LUVZTpuNiPRtzqareKqt1EvS+NnXpcQBju/rWXROQNVexh/5PqdJ8c06VZp7juDVxb+o5d2mIRP2p5Tmuu6QNHLWJFRJ7Sh7r6G96ai+vB1obf+6xVvOqeLqC4v4mK7v5mk+9btpMQ2eRFdQ/clHZ4fz9tzgfbfNjE75Yysfr+UTxP6TptS1bt2+Ictk0b29m0wc114uK1RsY92RPCYt/xGAsRj1wAAAAAAAAAAAC0wIgMAAAAAAAAAAAG3EaXIzL+zcIb8m8WrrVO8/aPesyVG3RkAAAAAAAAAACwS/3l2SfkL88+0XLbe+U/kv85/eWIc7QdHRkAAAAAAAAAAAy4ezIUwhoZbtPrFh0ZAAAAAAAAAAAMuA3ZI3cddzxsxGSZbToyBtz5z5tj3v6qm3RGvnDTGHPn0wfM6RwypyNXzSGPjV03xlyTo+aERh8xx8gtc8jptztvP2nez2uXWg/havSkd9icl5PnzTFLF8wxV83peKfMyURqyVAPGoq6kqvmGG9Msa+qOb+e94oiIQVNnSv4vqJdeObj8n3Nudc7Z+Wn2peijEcV56eiXWho6krnGUfpdKZrW27asat0XJ0PIm7aqasydNF2XLW/qPIb9b40otwXAAAAAMQZHRkAAAAAAAAAAAy4DRmSDceP/F1PVdWteIwLAQAAAAAAAAAAaIERGQAAAACAPvlrIvJxZez31akeXlPMVdvg2phiStqAZhrXRhbTe/prdklbTZW4ZDlV5JI+1HYqPJt8205HajOt6PrB37RK22a6zTCnB7Se3tdqilm78rY5TldTe/aaDxHlNMABR9O+uqCbsjRgN3WpN2ZRhiGWiW07CfVcO23xvamZoroxbavvQdvvWH39hPkdG6dzfjfZyYt9MyIDAAAAAAAAAADEFiMyAAAAAAAAAAAYcBuyx/mIjI2YjIWgI2PAXfiqOUYzEO7q84eNMXe+ccAY82uf/oIxJis5Y0zuaNYYc837iDFGRs0hGutX9/eeyJJ5aN+TT71hTuclxb5Oa4YRmluGZmi7aljzqHmo4uE181QB1zzzrmyHRYZJN4xScYYqpi/wL7nJj2Z4pm6Yqma4qbmuTPvS1be5jF2VjbPzymK4bmeaMnYz3FeT5906/FfTTqMsPzfnedzy6+ocBgAAAADEER0ZITp27Jg8+OCDLbfNzs5GnBsAAACgewsLC7KwsNBy2+3btyPODXaOz4vISJttJ0TkZyLMCwAAQLNBuwbekCG563xERjzWyKAjI0RXrlyRVCrVdvuFs2cjzA0AAADQvdnZ2bYv45TLZUmn0xHnCDvDV0W/2DcAAEC0Bu0aeHOxb7eP/FnsGwAAAAAAAAAAwIARGQAAAAAAAAAADLidvNh3PHIBAAAAAAAAAADQAiMydoFf8l8zxrzxk0+aEzpiDnnuB182xnzx1K8aY+7cOGCM8eT3jTH+73jGmKufPmyMefLSG8YYs1fMIWcfMYYMf++WMWb9pDkdecoc4nlvm4NUzMd+zVxVIqPnjSGqPI8qysekqimbZ8whL5nz4p8yJ6M5bt83l5+Ooi0reN4FY4wpzy7S2GSuB3f7MnNXVxrmdur7bsrHhSjLWHNeuWoXUda57rvdzXluMojlN2h0fx8c/F0EAAAA0Heba2S4HZERlzUy6MgAAAAAAPTHhz4mslfXmfbGT/6EOtmR12/a5eOoRazihaBGwy98Vh3rXbJL245dJ7VNJ7E3ZpsXPeuXq05adG4vWb6I4eKFqDbsXgpRvDDVSPFCWHf5sMyLRT5ERPw1faxtO7HrxLerd8/Tn2v2Lw+G97KJXXmHlg1rNm3W/uUXi/Jesqwby/PBhk37juqFtH4Lt53sDP/bwj+X/23hn7fcdu/2esS5aY2ODAAAAAAAAAAABtyG7JG7XYyg+I9m/6b8R7N/s+W298t/KG+lZ3vMWe9YIwMAAAAAAAAAAMQWIzIAAAAAAAAAABhwGzIkG44f+btec6NbdGQAAAAAAAAAADDgWOwbA+2Nn3wysn198dSvGmOGvK8YY7yTvjHm5t0Rczovm9ORU+YQuaqIMS0CpVl0TrGf9av7jTGHL5kTuuZ9xLwzzWJ2Vc3iZJoF4BwtWnZSkWdT8VQVi0Bp6lOzeOBpc4h3WlM25jK2X0iuDUeLktksJtc2DcUiXM6OW1XG5jrX5dnNgmuafWkWgotqAbgoF5pzVTaaxR9dtQtXXB2XC3FbSC/K/ETVLuwWMwUAAACAeKIjAwAAAAAAAACAAXdP9oQwIiMey2zHriNjZWVF5ufnpVwuSyqVklwuJ5lMpimmXC7L/Py8JJNJqdVqMjExIZOTk32LAQAAAIAocd8EAACA3SRWHRkXL16UQqEgMzMzsrq6KhcvXpSJiQkpFAr1i/JKpSLpdFpKpZKkUikRERkfH5e1tTWZnp6OPAYAAAAAosR9EwAAAFrZCGGNDBb7buHNN9+UQqFQ//eJEycknU43vV00MzMjmUymfoEsIpLNZmVmZqZ+kRxlDAAAAABEaSfdN5WuiTR8rKNbG8O6QBG5M2ReV67RE4o15rqlWpsuoFmjrpFm3bZAeIeoXDevW3Zr6fmXLMrwkt1aRHZrr1nWpc06dKGWtx2btZhs167zPH3d264rFeXabJ3Yr2UV3tpXNmViX962ubGgWSezno941LuIWJ3H3inLetes19mlMNeUC7N+4rY2H7oTm46MYrEouVyu6XepVEpSqZRUKhUREanVai3jDh06JCIii4uLcvz48chiBqUz48Jb5pjzv2eO+bVPf8EY85hcN8Y8/d5N884UF9l/7uafGGMOn1Isei1HzeloFs8+ZfhSXNL8kVJcqJ02Lzh87evmYxJR/IGomkNUCwVfUqSj+MPsKRZmH37hljFm/eHON7auFmNWpaMoG1Es9q1bsNnRDY+jGyfdjYlmoXgTTflFtwB3lAuC6+o8XuXjRnQLs+u4aMc6cVtYPCqDeNyu8mM69rgdN3rHfRMAAADa2ZA9ctf5iIx4rJERj1yISCaTkWQy2XJb8PsbN240/TsQvPlTKBQijQEAAACAKHHfBAAAgN0oNiMy2qlUKjIzM1P/fxGRRCLRNjbKGJP3339fbt1q/3b4Dw2f3ysDUEEAAAAYeHfu3JE7d+50/fn333/fYW7QjUG9bzLdMzW6teFv+93IiMjISJhzlgAAgJ1qJ14Db66R4faJMmtkKKysrEgymawPRV5dXRURkbGxsZbxtVot0hiTxx9/3BjT8fMi8kRPKQAAAABm8/PzcuFCnKaIg41Bvm/q9Z7pV764R86dj/VtLQAAiKmdeA18L4TFvu/RkWE2Pz8vy8vL9X+Pj4+LiMja2lrL+GQyGWmMybe+9S159NFH226fP3Cg4+djXTkAAADYMc6dOyef+9znuv78W2+91fMDaXRvkO+bTPdMjW5tfHjb70ZGVB8FAADYhmvgwRLbZ+XZbFZefPHFpgvf4P/bvdWTTCYjjTHZt2+f7N/fflHhB4wpAAAAAOEbGRmRkR6eCO/bt89hbmBj0O+bTPdMTTaYQgoAALizE6+B78meEEZkxGOZ7Vh2ZCwuLsrExER9gbjAoUOHRGT7PKvBv9PpdKQxg+IZRcyFz5hjnnvpy8aY4aPm+W1fHXvaGPPYievGmOeHnjXGPHfKnGd5yhxy7dRRc5ALJ8+bY64q0ll62xwzqtjXC+YQ75Q5RlPGnqfIs8KdS4+Yg1q/MGjJfGZ5rWdYaFZVDGFU1JXnaYZCar4NXnGUjpnva47L1C7M+dXtx81Q0rjtS8d8zmjacnTHbm5/vq84Js/cdnTfS67aoHlfmuOKqh7ctT9X3HwvacrGVRm7KsP41QWixH0TAAAAXLi5sCQ3F5ZabvNvd7+OiEvx6E5psLKyIiIimUym6fflclkSiYSkUikpFApN24rFooiIHD9+PNIYAAAAAOgH7psAAACw1V3ZI3dlyPrnz87+1/KRf/W7LX8+fOW3+n1YIhKzERnFYlHm5+dlZmZGFhcX678vlUqSTqcllUrJiy++KOl0WiqVSn2Yci6Xk1wuJ4lEQkQk0hgAAAAAiNJOum9Kp/Mi8hHVcfufX1fFiYh4KXNMo+Gjj6lj1w++a5e4jarlKOWritHIXbIbwWc7Ms4iftTuGFUjxgNLtqMU9fm2HQFpM8JOM7K0mU0Z2tWlzch6zejS5rTDyYeI6GYo+IBvOaLfJi/2I2XDO3es2rdm9oEmNm3Wrg36l/SxXuuXzR2x/R7Ul4mvmXmi0SWb7xO7Nhju3wabfLiZ1aMV2+8qRCc2HRnlclkmJiZERGRmZmbb9mq1KiIiqVRKSqWSZLNZSSaTUqlUJJvNyvT0dD02yhgAAAAAiAr3TQAAAGjnnuyVDceP/O/FpAshHrmQzYtf3/fVscvLy7GJAQAAAIAocN8EAACA3Sg2HRkAAAAAAAAAAKA792SPbMiQ8zTjgI6MXcB29sx2/H9onqDyiVOvGWMe27hujPlzN//EGPPq2NPGGHnKHKLiIJ3hFz5qjHl17AljzJOn3lDsTTGfn+aYTpvnHPyi/7Ix5tfly8YY77Sipb5knudRNVence5hzVmjmOvRdo7jXtLRzPFatZ1/tR1z+Wjm+LWfD7Y7mv24yq+rY9LN9+mqHtzsy/PM54TN3M9hc1U27o5J873jZq7WONWDq/PTVfnFqWwAAAAAwNaG7JE9jjsyNmLSkRGPXAAAAAAAAAAAALTAiAwAAAAAAAAAAAbcvXtDsnHP8dRSjtPrFiMyAAAAAAAAAABAbDEiAwAAAAAAAACAAbexsUfkruM1Mjb0YyEqlYqsrKyIiMj09LQkEgln+aAjAwAAAAAAAAAAdKVSqUg2m5VarSb5fF6SyaTzfdCR0UfnP2+OufBVB/t5tPc0REQuvGWO+S3vSWPMdf+wMebVsaeNMU96v2XO0EvmkOGjt4wx61f3mxP6umH7UXMST156wxz0lDnEmBcRkdNvK4LMnvOGzTFywRgz/N5njTHrB83pyOh5c4zJS4o0TivyonHSQX5FRJbc1KfIM4qYV4wR3pg5Fd83H7vnmY7LnBcNTX6jZT4uTfmpjD5ijqlqylnRLjxTjJv2p0nH983HrYlBb5y14wh5nvn73833m0ik3wVAn5RKM5JKpVSxI2vm68W6g3bXRutW1xSav1f3Db/3UX0+NPcdjWyu6TV/85viLb5fFPc6TZYsrqVV1yH3+Zf0+faW7OrSjl3aur8LmzT3To3WLc4Hm/a6mfa76libY9ykr3vbv4feKcus2LA41/w1u/NScx1S94LlOX/WIr5qV5c29WPbTmzKxLqdWLdZCxbfsWGeO7bfVVYs/+7Yng9obePukMhdt4/8NwwjPMrlshw5ckSOHz8uy8vLTvfdiDUyAAAAAAAAAACAlVqtJkeOHJFkMin5fD7UfTEiAwAAAAAAAACAAXdvY8j5Ghn3NtqnF0wnlcvlnO6zFToyQnTs2DF58MEHW26bnZ2V2YjzAwAAAHRrYWFBFhYWWm67fft2xLnBTmG8Z5rlrgkAAPQP18CdLS4uiohIoVCQbDYrlUpFDh06FMo6GXRkhOjKlSud53t99mx0mQEAAAB60OmhcrlclnQ6HXGOsBMY75kAAAD6aNCugTc29oi/ZUSGf+eOyJ07Xafp32rdYVMul0VEJJVKyczMjORyOalUKjIxMSHj4+NSrVYlkUh0vd+t6MgAAAAAAAAAAGDAbdwdkns/au7IuPfV3xT56rzzfVUqFRERmZmZqY++CNbKmJiYkPn5eadTTtGR0U+fVsR8tffdXHir9zRERM5/3hzzxPOvGWOyYm7AT6+9aow57F9X7OuXjDFPnnrDGCNXzSFytPPmx8bM+b32dUMiIjL8wq2e8yIisv7UI+ag02+bY06eN8coym9dM0BpVLGv6gVzzEuGdFwd95IiL0uKfckrxgjfN+fH8xS7crYv87Hr8vOMJqj3NKqaejDTlY2bOtfQ7Mv3zd8Fnqcow1HFd4qJ4rvLv6TJr5v6jJKm7UTJdA7HLb9R5sfVvjTnnoiD80pB850dtzoHAAAAoOP94rMiv/DfdP15/399W+Rvbr9hbzfaIpPJiMj9jg5X6MgAAAAAAAAAAGDA+feGxN/Y8sh/716RvX+2+0QfONDy14cOHRIRkdXV1Zbbx8bGut9nC3ucpgYAAAAAAAAAAHa0RCIhmUxGisVi0+9rtZqIiPP1QxiRAQAAAACIveyYfo7l5+SEVdrD731WHbt+db9V2qopVAOqaUfv001Tt8k7ZZW0bkrbD6w/bFcmYQpzikmr8rZ8CdVf08fa1qWc1Od7/aBt+bmZErVX1mWimT46SNv2hWKraWvtppG0merR+lywaCeyZJe0Xf3Eo02JiN30uZpprpvibYLtyiTMKUE1U5LWVW3rMsT2bVGGAz+l6t09IlsW+3aSZhu5XE7S6bQUi8X6lFKLi4uSSqVkenraaTboyAAAAAAAAAAAAFZSqZSUSiXJZrOyvLwsiURCarWalEol5/uiIwMAAAAAAAAAgEG3MeR+RMZG5/RSqZQUCgW3+2yBjow+unVkWBG1Hno+tH7t+S8YY7JiHu6dk6wx5tWxp40xT556wxhzbekjxpjDvnlM6asb5vw8P/Rsx+3PXfqyMQ1ZMg/RW7+qGOJ21BziXzLHeF9XDKPUDMlVDLH0L5mPSzUcVVE+viEd76ziuBV1JaOKulINO37GGGE9lLoHVkNJO3AxXNPzNMNDzTG6vJjbhWZ4q25KAs2+3NSDpgxdDa015lkxRN1bMp8PrmjKWFM2rupKw1V+TOlEWTZRprNbUTYAAAAA4o6ODAAAAAAAAAAABt2GJ3LXc59mDNCRAQAAAAAAAADAoNsQkbshpBkD7ZccBwAAAAAAAAAA6DNGZAAAAAAAAAAAMOh28IgMOjL66MDLd4wxX5Jo5iA7/6gi6NmvGEM0C4Jfu2ReifpTp75tjPF/zlw2T1x6zRijWcj76aFXjTHXTnU+ruEXbhnTWD+pWGzzKXOIhjemCFIsGj78PcVxPexoEVFHC2x7poXOHS3ArTH83keNMXfG9htjNItMaxa9Hn7vs27y42jx8SgXSXZDs/i4ZrFvDU0b1OTHzNVCylEtKKw7H1ztK7pFpl2dD3FboNyFKMt4Jy6MvVuPGwAAAMDgoCMDAAAAAAAAAIBBd1fcj8hwnV6X6MgAAAAAAMTerytGiAdy72Wt0l6/ah5xWvd1q6Tl8KWr6thrS9+xSts75Wqk53brD1uUSdVyJN9LFqO8ztolbcUy355nMdpVM9q+W/omtUk14jzgZkRvK7aj+6xG2drOXKAZ7f8B+3zry9CznoQjvPqRq/rvE9+3++4Jc8S0Tf2oZqZoTHtNH+uN2bUTq7Qt20lcRleHO6I3xHMBsUVHBgAAAAAAAAAAg+6uiPwohDRjgI4MAAAAAAAAAAB2q5WFzZ9W7tyONi9t0JERomPHjsmDDz7Yctvs7KzI6GzEOQIAAAC6s7CwIAsLrW9ubt+Ox80NBo/pnml2lnsmAADQPwN3DXxPRDa6+Nwzs5s/rfybssjfSfeSKyfoyAjRlStXJJVKtd1+9lKEmTG48JY55rM3hp3sy/+H5sn9fu3UF4wx3g98Y8zw2i1zhg6YQ66NHTUHvWAOMVLM6/nFU79qjHnOO2FO6CXznJaHT5knX1WVjYKnOR9GzfMrDn/PXOfrB3+zc4Bizl7/lDFENS/l+sFnzOmYdyVyUjFH6ZJ5DknNXMia/Gjm+3QzT6q5/DRlo5pDVNH+NHOA6uYrVRyXI67mLdUcl2lfLtLYZG7rmrmLXdWnrq1Hlx9NOuHOZxtfcTtuF/Mbu6zvTg+Vy+WypNP9v7nB4DHdMwEAAPTTwF0Db4j7qaC66RgJwZ5+ZwAAAAAAAAAAAKAdRmQAAAAAAAAAADDo7or7ERkxWeybERkAAAAAAAAAACC2GJEBAAAAAAAAAMCg28FrZNCRAQAAAACIPe/7vjr28NhVq7Q/derb6thnTzxvlfaBsTsW0R+xSjtU1bf1saPn7dI+bZH2S4/Ypf11i9ilZ+zSHrXIi10TFO+URfBRu7Rl6RXLD+j5vr7uvTHLxE9a1r0NizbreReskg6zTPw1fZlYl7dFu/I8i3M4Tmy+10RExKINWqbteZZZ2QVszjWb8ww7Bx0ZUPvNvevGmGfvmi/qR16/aYy58+wBY8y3n/+UMeZTYr4heV6eNcYcXjNfhV7zvtNx+6v+NWMaTx991RjzmFw3xsjol80xZ80h175uvpLRlY3ihuys4gJBcWGwftCcjOkP3sjaLWManveueUcnFX9YNTc4mgsiTTqai3XNvhQ3cLobsd5vqHxfkRfVRbbiJraquagyl7HmgkuXZzc3pKobnBfMIbrjMpWh5cOEHrjJr7sLaM2NjKv82N6Mt2auK8356arOo6wrDTdlzA0aAAAAAEs7eEQGa2QAAAAAAAAAAIDYYkQGAAAAAAAAAACDbgePyKAjAwAAAAAAAACAQbeDOzKYWgoAAAAAAAAAAMQWIzIAAAAAAAAAABh0d0XkRyGkGQN0ZPTT6Qv9zoFz+7PrxphXn3/aGON93zfGvCZPGGOeXnvVGKPxJwf+nDHmef/Zjtuf9H7LmMbwe+a8qI7pqDlElt42xzz1iDHk2phiZycV+bmqiJFXNEFG3pjhuKq/aUzD9887yYuGd8pcD7Kk+T55RhGjKOOjmvyY25emDL0xw3YvXt+jnqc5bnP5aWJEzDGa8vHXFLtyxFTnmvJTHZOmbanqys157irPmjrXiPL7y8z8neN55pi41VW8yhgAAAAABh8dGQAAAAAAAAAADLoNcb+mBWtkAAAAAAAAAAAAdMaIDAAAAABA7N38ZyPq2AOX7lil/caHn1THej9jnga30eE11RyqIiJy7ZRmjtgGT1nEWk9trJmWtEsnLaZLtM33Sf30frrpPO/TTE3ZPTdTSPZs1G56RLupXi3b1JJNsGX5VcOrS6t2MhpiG7RMWzfdc8By2mebdlW1S9vuvLRN2yLe8tyRakymSbbMt83UxLZTQTM9qyMb0t2aFsUFkdcXWm9bv91LjpyhIwMAAAAAAAAAgN0qM7v508q7ZZHz6Wjz0wIdGSE6duyYPPjggy23zc62aRgAAABADC0sLMjCQuu3tG7fjsdbWhg8pnsm7psAAEA/Ddw1cLcjMkxpxgAdGSG6cuWKpFKptts11+QXvC+5y1AHIQ4a7sprl54wxhz9xjVjzPrX9jvZ1/5vrBtjvv3pT3UOeMk8rHP9rDFEDl8yj/e8dlUxJF2RH1HkRzSj3xVDVDVD7q955pY6/N5HjTHrB01DT8378U4ZQ0SWFMMobYef9pKOZuiqYii+f0mRn0vm9qUpQ9OwVc9T5MXVMTnijblJRzWk12JqhU40Q4I1w4DN6Wj+GinOT8shzO3TMQ8l1xy3m7LRcTUc29hOFd8ncSsbHTfty1k9RLgvjU4PlcvlsqTT/X9LC4PHdM8EAADQTwN3DbyDOzJY7BsAAAAAAAAAAMQWIzIAAAAAAAAAABh0d8X9iAzX6XWJERkAAAAAAAAAACC2GJEBAAAAAAAAAMCgY40MAAAAAAAAAACA6DEiAyIi8sjvmWMufEaR0FfNIUflmjHGS/mKnZl98dKvGmOeXnvVGPPYp68bY65dOto54OvGJESeMod8Sr5tjLn+vccUOzNbP7rfSToa19cUeX7JnJ/1h83J+P4jHbd7Y+Y0ZOltRdAz5pCqIp3RzvndTOeCOUZDcVze0itu9qUoHyf70hyTmMvYv2Telabt+GvmGA3P07RBRfldOt9zXrR8v/d9eZ6btu4iLyLa/Jjburv8OGoXDmjKJtp6MNPkx/OiKT8Rd+UD7BTPDz2rjv3iKfN9QKNfky+oYw+vXbVKW3P9Xqe43mhkvAdpdNLuO2X4hVvq2PWzVkkrr6U/YJlvGyNr+mMUEd11ebeWbP6WKe4zGlmUoeaat5HnWebFhkV5W+d7yTIvFkz3m035sL2GecnifLA9LzX3pnWW9W51v2qZts15WQ3xOs76ntziOG2/e2zq0jLf3qnwvpNtzgfb62TdfVLApp183yofkWBEBgAAAAAAAAAAQPQYkQEAAAAAAAAAwKC7KyI/CiHNGKAjAwAAAAAAAACAQbch7qeCYmopAAAAAAAAAACAzhiRAQAAAAAAAADAoNvBi33TkbELnH/UHHPhM2729YhiX/K6Iub75pAvXvpVY8xjct0Ys352vzHm+guPGWOGj97quP3VU08b03jS+y1jzHNnv2yM+eKauWye806Y0/FfNsZoyvjJU28YYzT1IFfNIVJ92xjinXpEkZDBSUUaTynSOauIqV5QBGk8o4h5xc2uXjpvjjnt6rhMFMe0ZI7xltyUn+cpknFl1FwPnmc+ZzRtx/PM9en7inbhIA1NXjQxOq7OKwffSyLi++Z0PM+cHxd1pRFVu9ncl+Lvg6N2EeVxAQAAAMBuQEcGAAAAAAAAAACDrtsRGW8uiNxYaL3t7u1ecuQMHRkAAAAAAAAAAOxWn5jd/Gnl35ZF/kk62vy0QEcGAAAAACD2cmtZdeydIwes0vY+7qtjNVPcNnpuzDw1bODmn4xYpf3njv6JOnb964qpXLulmQK2kWaa1m5Z5EU1vW2jFyxibadRPWkx5aBmCtsG/il9rDdml7aMWtSlYhrg5nh9GY6sfdYubat8202/+4T1CWHh6xaxRy3TXrIJtpyS2KZ9L9m2E338Yf+TVklf8z5ilxcLmilhA9bnpU39KKYjbmJTPzb1LiKypD/n7aeE1UwJvEPs4DUy9vQ7AwAAAAAAAAAAAO0wImMXuPBWvPZ1/vPmmN//qnk13E+8cNOckMLhS27elviUfLvj9pyY3yAbfu+jxpj1h815Ub319ZI5RMS82LdmIW9Vj73mrSzNGyWKRZuNi+pq9mP5FlRbtm8l9ULz1pHqbSPFmwyaN9A0b344W+jcxNWCzYp0NPWgeNtP82adq4WLVQtsn9IsMm3Ij6JN+GvGEGdcLSwe5aLOUeXH2X5s3wDrgW4hdE1K8VksXSNubRQAAABAiO6KyI9CSDMG6MgI0bFjx+TBBx9suW12dlZmZ9vMOwYAAADEzMLCgiwstF4A8PbteCwAiMHDPRMAAIi3/+WDn1Zi8oS/0Ya4nwoqJlNL0ZERoitXrkgqlep3NgAAAICedXqoXC6XJZ3u/wKAGDzcMwEAgHj7qQ9+Wvm+iCxGmJfdjY4MAAAAAAAAAAAGHYt9AwAAAAAAAAAARI8RGQAAAAAAAAAADLodPCKDjgw4df73zDG/9ukvGGO+/fynjDF3fvKAMeaJ775mjLm+9pgxZv3h/caYT619u/f9nDXvR46aQ4ZfuGXe11XzvnJrWfPOli6Y8/PeZ835Ofi2Ip2PmtN56rwxRs4atlfNxyRLzxhDfP8RczqnzDGe94ox5ov+ujHmOc9cxvKSufz8U+ZkvDHFsVcV+RntnB9/TZEXT1GfKuY6V1Gcw6oydnZc0e3L9zvXp6doo5rzQVdX5nRcHbcmHVPZaGnScZEfZ/lVnMMamraj+k5WtAtXx67hog1GmV8AAAAAu1uxWJSpqSmpVqvO06YjAwAAAAAAAACAQXdXRH4UQppKMzMzjnd+Hx0ZAAAAAIDYe2zsujrW+2XfKu3Dp66qY1Wjlhv4f9FTx3ov2+V7+Kh5JHad/hBFRDcqvU4x4rSRZgR5PR8H37VLfFQzAu8DitHljYZfMI80D6zbjuZ9yiL2tGJkcwPv6xZlYlmXVmV40nKU4JJmJO4m63ZiwzBKfKtrViMqHY36bsWyfduxzPeSXZsNyzXvIyGmrm+vIiLeJYvzMkyaGSkaKWZxqLP8rrIZSWw7clk3Ojugjy2Xy5JOL1rlZSfLZrOSTCZlbc3R0PstWOwbAAAAAAAAAIBBtxHSj0GxWJSDBw9KKpVyejiN6MgAAAAAAAAAAGDQBYt9u/xRdGTk83mZm5tzeihb0ZEBAAAAAAAAAACsZbNZyeVyoe+HNTJi7pP+4Y7bv+Ndi2Q/IiKPbZjnpL2wd90Y8+zd540xv579ijFGFOfHqxtPG2OeH3vWnJBiardnNzof17fHPmVM41OXvm2MeW7sy+bMaJw1h6wfVcyLq5gfcf2gYl5ExVy264o86+YB7Tyf5/B75rlvNXOwemOKrNjOR9nGc96wOUgzX7CijL2vm2OkqpkLUzOHaOc8a8pYM89mlHXlK+ZC9U4p0tEcl+W8ob3ty1znmhgXNPOfep7dHLbt9+WmHnRl4ybPmvmpTXm2mb+2V5ryc5UfV21dU1eafUVZzgAAAAB2gGBERtPv7ojcu9N9mnfeb7upXC7LwYMHJZlMdp++Uqw6Mmq1mszPz4uItOzFKZfLMj8/L8lkUmq1mkxMTMjk5GTfYgAAAAAgatw3AQAAQO1fzYv8SzcvOm41Pz8vy8vLoaS9VWw6MorFouTzeVlZWZHp6elt2yuViqTTaSmVSvVFQ8bHx2Vtba0eH2UMAAAAAESN+yYAAAC0dVdEfrTldx87JzL+ue7TrL0l8q3Ht/06m83KxMSEVCqV+u+C/w/+63KkRmzWyMhkMh17b2ZmZiSTyTStfJ7NZmVmZqYvMQAAAAAQNe6bAAAAYGVoROTH9nf/s3dfy2SLxaLMzMzI+Ph4/WdlZUVqtZqMj4/L1NSU08OITUdGJ7VaTYrFokxMTDT9/tChQyIisri4GGkMAAAAAMQN900AAAC73D3ZXCfD5c+91rsqlUri+37Tz9zcnCQSCfF9X0qlktNDi83UUp3cuHFDRLYPRQne/CkUCvVtUcQwTBoAAABA3Oz0+6Zrl47qg79ul/bh00+qY9/4vF3a3h/5+mDLfK+fflcf/NIjdomftYi9apf0+sP79cEnLfNt4+p5q/D1hy2Cbcs7JoZfuGX3gRc+axFsl/adS/r68caskhapvq0O9dfskvY8i+Awz8uTdu3bylOW8adt5uZ/xjJxPd+3K2+bduWvhZe2WPz522RR90v6c0FE7NpgiHzfrn17nr4N2qaN6AxER0Ywp1YikWi7PcoYrffff19u3bK8CGgwMjIiuZFsx5jDcq3r9Bt9xzOn8x0nexLZf2jdGPP2W+Z0HnndHPPuW+Z9/fqjXzEnpDDy+s2O2zUX659a+7YxZvh75jb12Nh1Y8w1xV9CzUVsdmz7ApNbPXf6hDFG9Yd5SfGH56Xe/+CsH1T8IR91dGMyqsiv5iJbcYPnXzIn450yx6gudFTlo4gxHbtiP55neWHWVngX1NtoyviSos4VF2CaCzrdRV/v5aO7sdDUuTm/UV6cutuXm2NXfZc6qE+bm4VOXLVjV/Xgqp1qRHlcd+7ckTt37nT9+ffff99JPtCbQbxvsrpn+g8tfvdjI5s/AAAA1u5+8HOfzbPcWF4Dbz8kN2nGwEB0ZKyuroqIyNhY6+7KWq0WaYzW449vXwTFxvnz50W+9Fd6SgMAAAAwmZ+flwsX3HQ+oX8G8b6p13sm+VvnRY59qbc0AADALvVtEflW028OHPiN/mRlh8jlcpLLmV967sZAdGSMj4+LiMjaWuvxfMlkMtIYrW9961vy6KOPquO3GhkZkW/JG11/HgAAANA4d+6cfO5zn+v682+99VbvD6TRs0G8b7K5ZzpwucUvGY0BAAC69ikR+S+bfnPz5jn1p2N5Dbwh7kdQbDhOr0sD0ZERXAS3e6snmUxGGqO1b98+2b/fYu5PAAAAoA9GRkZkZKT7B8L79u1zmBt0axDvm6zumf6MLgwAAEBnr2x9PG7zLDeW18B3ReRHIaQZA3v6nQGNQ4cOicj2eVaDf6fT6UhjAAAAACBuuG8CAADATjUQHRmJREJSqZQUCoWm3xeLRREROX78eKQxAAAAABA33DcBAADscvdkcyoolz/3Ij2CtmI1tVSnBeFefPFFSafTUqlU6sOUg8VDEolE5DFRueZ9p+P2w4o0zj9qjrnwliIhRzT7uua/Zow57D1pjHlGkZ+3Ffn56N1hY8xjQ9c7B7SePrg5DTGkISLrD5uHuL3xO+ayeWLNXMbX1x4zxjw39mVjjIh58dDXLv2SMebJpd8yxhw+ddUYc837SMftvv+IMQ3Pe9sYM/zeR40x6wffNcaoLJnL2JPzTtKRk+Z0/EvmZLxT5hi5aqiLqrkeRF5RxGi+LdzwPFeL6WraaZQL92rKuTPPM6fh+4r2p4hRlc2o4pypasrY3L503zvmfWmOXcO8L3N+XeVFQ1fn5u8LTT1EyVlbdrAfxAv3TQAAANhtYtORUS6XJZ/Pi4jI5cuXZWJiQjKZTP0COJVKSalUkmw2K8lkUiqVimSzWZmenq6nEWUMAAAAAESN+yYAAAC0xWLf4UulUpLP5+sX5e1ilpeXjelEFQMAAAAAUeK+CQAAALtRbDoyAAAAAABox9dMS/kBzzLt8z9nkfbP+FZp3/yTEXXs00OvWqV97epRdaxmCtamtEWf9vDRW1Zpr181T5dbd9YqaTv6Q9xkV4R2TmumTP3AScupEC3yrZnKuMkLFrGWdWl1Hqum+7xv+L3PWsWHl7bluSMW9WPbXm3q0pZmytaAZV3KS/q0R9bsylssyts67eq7+tinLM/50zZlaDnNsk39KKalbqSZCvZ+2uFNCWs3dev3Q8tH1+6K+xEZrtPr0kAs9g0AAAAAAAAAAHYnRmQAAAAAAAAAADDo7orIj7r43L9b2Pxp5d7tXnLkDB0ZMef7nYdhXfC+ZEzjwltu8qLxSf+wMeY73jVjzBvPPmmM0Qz0+r4iP0d/0pyfq0OPKfbW2afk28aYJ0+9YU5IMfx55NBNc9CaOUQz5PuLa79qjHnu0peNMU+OKYYcjppDro2Zhxce9juPsX1CMzTwpLki7oyZk/FGHQ2HPOooHc2Q36fMIVZDQjsxlI/va47bHKPJr2ZfdkNQO1DUg3fJza6cUeTZN3zvOCs/V2yHtbeha6fxYrr+cFVXpv249YoxwvPMMRrRHlfn6QAGsf0BAAAA6NI96W5x7oOzmz+t/IeyyL9J95IrJ5haCgAAAAAAAAAAxBYjMgAAAAAAAAAAGHQb4n5x7m5GeISAERkAAAAAAAAAACC2GJEBAAAAAAAAAMCguyvuR2S4Tq9LjMgAAAAAAAAAAACxxYgMOPUd75ox5pP+YWPMBUU65x81hsitjevGmCe++5ox5vraY8aYO1850HH7rz3/BWMar116whjz9Nqrxpj1h/cbYw6vXTXGXD9qPu7HxFzGw0dvGWPke+YQzXHJUXPItbHOQZqyEUWI510wB508b45ZelsRYw7x/UeMMd4pczpy2tFxaRiO3TtlPiZNXYm8Yozwxsz7Gn7vs8YYTTv214whKt7/v707CnXkuvM8/lPG204nIVbfdh6SB+OU5i1gZkrtDWQJOLi0Y+OFIbTkXrcZsrtg6eEaFnYHiSaYdsdkLrq7S1jwZZH6xbC4e7ulJgwE4h2pScNAYLdbGicvgSWS1y+bh9hX5SFMu++45+xDt+Srlu6tU1JJqpK+HxB2q45O/avqtPQ/XXXOeTWaeqTvBxcZBLfTVCr4PAfXYdH+ImJMcDtOpSz+flqwOa7o4pn/OtjFEnxMUR23jajqWWYbXOb5AdaN+U+pcB943r7oG/s/DFX1E1fuWZd97rxV4vJ5eZu89aGKqqHq/utzf25d9omv2R+jFC5umz7JYVZ9hqFwp1t6O2T5ME5Z5LVLcOK3Fn23GR0oxLVRuFgOTlvkq4fLv24fSypsOwl5nKGEaYM2/bbDfhYip7Dpox72boj2HSYOWf57w0MHp/9vqLr1in3cYdpUWGGOUZIOouqPT3M1RF/iX4Ws+70Q7SRsG9wkn0n6xwXUGQOMyAAAAAAAAAAAALHFiIwFOnv2rE6ePDl12/b2tra3t5ccEQAAADCbvb097e3tTd129+7dJUeDdUGfCQAAxNv/fviaJiZDFQ77J0n3F1BnDHAjY4Fu3Lgh13VXHQYAAAAwt+P+Ubnb7SqbzS45IqwD+kwAACDe/vnD1zT/T1J9ibFYuK/o769EfWNkRkwtBQAAAAAAAAAAYosRGQn35ikTXGYQcqG7I9gsrn3p/eAyNguC3zLBC3Bf/MsXA8s88RfBi869eTX4/NyyOM/6d8dvfit1LriOV34cWMT8Jjje7+1Hs4D5wemfBJZ58dQvAsuY/xEcc+oji3Nsw2LBpxMfPz33bmwWnjt4L3iBLWOxuHbKZsErm4WWt4KrsVo8zmJh8dALJ87qqs0CdhYL/0W06PrBaYuFzyJaeC2qRaZtWC0UH6NFiZe14LVtPalofoYjXBB8WYuuh1t0c759LU9UC53bnJ8o/s5Edf5YVBwAAABIAEZkAAAAAAAAAAAALB8jMgAAAAAAAAAASLpFrD8ekzXNGZEBAAAAAAAAAABiixEZAAAAAAAAAAAk3X1JEa3TOFZnDHAjAwAAAACwVlIfmlDlzU37Hv8fpf4qXN3/0b78e+efC1X3C396y7rs4zc/CVX375/4mnXZN/Z/GKruH/2p/Tn53t/9PFTdt95+wbrsz89/L1TdL175RajyC/NeuOInfvv31mW/s/XLUHXfOm9/vhWiqCQdvPdV+8KvPBOu8hCe2w93wm+l/pd94XcvhovlfIhYzn87VN23roQo/F648/3GefvviLde/3Goug9eD9FOToWL+5P//rh12a998vtQdR/IPpaDkH/ndfVSiMLfD1f3qRBt9tVfh6s7lJ8urGZj7I+x2+0qm60vLJal+nRPurc3fZu5u9xYjsCNjIQz+8FlLkV0F+7S+8FlbL7+bL5q/mvqxcAyNl+Hb1rcgvy2eS6wzIn94MQv9d7xnaUTHwfXUdkK/nFPnbfolG0FF9HbFmVskqrXg4uk/nVwzDbJ9YEsEpR3g5OBoCTg1usWGbbN+bOQSi3yh/0RA5tkxuKa27SLqBKWoERzYFOJxbfOVZt6bAR/CxqLDoJVu7BJwgc237jBMUfVTlOpMAn1olkct8V3qU2SG9VxL3NfQefHmOD2ZxOLXSdhcf8w8ajU+ahqsvgusDiHNoLOc5iOGAAAAICEm3X0xGPbD15T6+xK/5CdOaSocCMDAAAAAAAAAICkuy8p3MDUYP8UcX0zYrFvAAAAAAAAAAAQW4zIAAAAAAAAAAAg6T5T9It9Rz3CY0aMyAAAAAAAAAAAALHFiAwAAAAAAAAAAJLuvtZ2RAY3MhCpZ/7Eokw1uMzjZz4JLFPZCq7oL+//58AyX/2bW8EBnQku8sb5HwYXCvCjv/mrwDJv6cfBFb0QXOTEC38fWObgva9Gsi9d/bXFvp6JZl+vBxcx+8dvf9zm3PxxROfm3eDjtrpWr1vEc/WnwWUiOH+SlHo1uIxOWVzzoFhMcB2plMVxv2IRy9VLFhF93yKe4L8PVgbRxCNZnB8r8+/LmIvRhGLB5jpYtfVU8HWwOa7UVvC+bCzzHEYhqvMXFXMlonosvpuikrRrDgAAAACz4EYGAAAAAAAAAADrICYjKKLGjQwAAAAAwFqxGVV32KUQUzBc/JNwdeumfdEXr/wiVNWf3Hncuux3/uiXoer+SerAuuzfmu+GqlsWo/SHvqu/DVX1rZ/ZDIt+GMb5Sqi6f37+e9ZlXzwf7lpajeZ+6MTbwSO2D7Maaf/QrVe/Earu58x79nWfD3GQshuZPnTwM/tjlGQ1a8DQd6+EbIPvWsyiMPSzUFXr1uv25/C5fftrI4U832+HO99vnQ9xTt4OVbXVrAKz1v3EX9yzLxyiTUmymxVg6NWwo/ptRsvPEIckhWtW4VjMWDHyesi4rWY0QNxxI2OBzp49q5MnT07dtr29re3t7SVHBAAAAMxmb29Pe3t7U7fdvXt3ydFgXdBnAgAAcUYOHB/cyFigGzduyHXdVYcBAAAAzO24f1TudrvKZrNLjgjrgD4TAACIM3Lg+PjCqgMAAAAAAAAAAAA4CiMyNsBFE7zCy6VU8KSwF/9n8L4u/VlwmW//y+cCy/y1/jywzDdStwLLPPFK8LGbfxN87L9/4muBZX6p78y1XZLeszg3+ii4iI2DPw6e0/KN/R8GlnlLFnNdXrUIyGbOx1MWcyAOgusJau4nPn46eD82c2tazNX5xhWLc2wzn6jVfJwW82RazBuZStnMt/nTwBInfvt0YJmD0z+JIBaLMleDj9uYixb7ikYqFXYO1Ols2vLBaYvzYzNvagRtMJWymbc0mva3zOtpxeq7K/i4ohLN+Qm+VsaEnNt2DklsXzYxx64tAwAAAMACMCIDAAAAAAAAAADEFiMyAAAAAAAAAABIvM8k/eMC6lw9bmQAAAAAAAAAALCx/tvD1zSfLjOQI3EjAwAAAAAAAACAxPtMs42geO3ha5q/k/QvZo4oKtzIAAAAAABstIvGWJdNpS6FqtuYi/ZlQ9UspVK3Q8TxTLi69aZ93XohXN1/FqLuEOdPkt66+mvrsr+4Ei5uhThOcyVczWHa1b0r4c5J6lX7usOebylEuwp5TqSvWpdMXV3c38tQxyjpR+fty4a5NlK4uFOpb4SsO8T5XmDcoYU432GFPc4wzJUwf3dCfn+H+Z26+tNQdS/y704ooa/7AtsgloYbGZBkl7inUvYJ4fEVBRexSrJtsnyLmFNX37SIJ/gL78WAH4qofrhNRD/SNj/Ib6VOBJax6vOdX+CP14TgfQX9qN/bsrhWFtfB5hz/SD8OLmOT8IdMbI5mc/6C/15FlqgG1GOToNnFssw2GszmOzCVCk44721ZdEZC/qPGkSJpg8trx1GxaV/r2k6D2XSK4nWt7CQxZgAAAACbgTUyAAAAAAAAAABAbN1X9Dce7kdc32y+sOoAAAAAAAAAAAAAjsKIDAAAAAAAAAAAEm99p5ZiRAYAAAAAAAAAAIgtRmQAAAAAAAAAAJB46zsigxsZsGbMM6sOITS7mKM5LmMuRlLPsiQt3igt69jX9RzH6btgXc+xjU0+9qTZ1Gu1qccNAAAAAIgeU0sBAAAAAAAAAJB49/VgBEWUr/vH7rHZbCqbzSqVSimbzardbkd/WOJGBgAAAAAAAAAACGl3d1e1Wk2lUknlclndble5XG4hNzOYWgoAAAAAAEtxmjpvkVN+LvI4F1t3fKZBDSOp5zsuknqMSf27kNTzHVZSjzOpcSMqy10j4/bt22q1WqM/nzt3TtlsVtVqVZ7nRRoFNzIW6OzZszp58uTUbdvb29re3l5yRAAAAMBs9vb2tLe3N3Xb3bt3lxwN1gV9JgAAEGfJy4GHU0tFXeekdrutarU69p7runJdV/1+P+IYuJGxUDdu3JDruqsOAwAAAJjbcf+o3O12lc1mlxwR1gF9JgAAEGfkwEc7bsSF4ziR748bGQAAAAAAAAAAJN5yp5aapt/vq1QqRRwDNzIAAAAAAAAAAFhTBw9fs/oH65LNZlOO46hYLM6xv+m4kQEAAAAAAAAAQOJ9pskRFJcl1Zey952dHTUajYXUzY0MAAAAAAAAAADW0r+V9Oocn/8/kl4LLFWpVHT58uWFrI8hcSMDAAAAAAAAAIA1MG2NjJSkx+eo858FlqjX68rlcnJdd479HO8LC6sZAAAAAAAAAACsrWazKUnyPG/s/W63G+l+GJEBAAAAAAAAAEDi3dfkGhlR1Dldu93Wzs6OSqWS6vXP1+HodDrKZrORjtDgRgYAAAAAAAAAAIk3bWqpKOqc1O12lcvlJEmlUmli+2AwiDQKbmQAAAAAAAAAAABrruvKGLO0/XEjAwAAAAAAAACAxFvu1FLLxGLfAAAAAAAAAAAgthiRAQAAAAAAAABA4i1vjYxlY0QGAAAAAAAAAACILUZkAAAAAAAAAACQeKyRAQAAAAAAAAAAsHSMyAAAAAAAAAAAIPHWd40MbmQs0NmzZ3Xy5Mmp27a3t7W9vb3kiAAAAIDZ7O3taW9vb+q2u3fvLjkarAv6TAAAIM6SlwNzIwMzuHHjhlzXXXUYAAAAwNyO+0flbrerbDa75IiwDugzAQCAOCMHjg/WyFiAg4ODsf8CQe7du6c333xT9+7dW3UoSAjaDMKgvSAs2gzCIv9FWLSZ5OO3Ivm4hsnG9Us+rmHyxTOf+WzG188l/YcjXv9lqUdwFG5kLEA8GzHi7N69e7p06RI/XrBGm0EYtBeERZtBWOS/CIs2k3z8ViQf1zDZuH7JxzVMvvXKZ3KSdo94/fsVxvU5ppYCAAAAAAAAACDx1neNDEZkAAAAAAAAAACA2GJEBgAAAAAAAAAAiXdf0Y+guB9xfbNhRAYAAAAAAAAAAIgtRmQAAAAAAAAAAJB4rJEBAAAAAAAAAACwdIzIAAAAAAAAAAAg8VgjAwm2t7e36hBGiCUZ4nRuiCUZ4nRuiCUZ4nRuiCUZ4nRuiAVIplX8fVn2Ptf9O2Hdz+e6Xz9p/c8p15D9xd0mnM91v4bBhlNLRfliaqnE6Ha7KhQKqlQqKpVKajabqw4plDj9BSaWZIjTuSGWZIjTuSGWZIjTuSGWZIjTuSEWYLq495s24R9T1v07Yd3P57pfP2n9zynXkP3F3Sacz3W/hpuMqaUC9Pt9ZbNZdTodua4rScpkMtrf31exWFxxdAAAAACwevSbAAAA4oCppTZWqVSS53mjZFzS6AkjAAAAAAD9JgAAACwWNzKO4fu+2u22crnc2PtnzpyRJNXr9VWEBQAAAACxQb8JAAAgLlgjYyPduXNHkuQ4ztj7w6eMWq3W0mMCAAAAgDih3wQAAIBFY42MY/T7fUlSOp0+djsAAAAAbCr6TQAAAHHxmaIfQRGPERncyDhGr9eTJG1tbU3d7vv+1Pc//fRTSdKvfvWrufZ/4sQJnThxYq46JOnu3bvqdrtz1xMFYpnuD3/4gyTp/fff11e+8pUVRxOvc0Ms09FmjkYsk+LWXqT4nBuJWKahzRxvHWM5ODjQwcHBzJ8f5r3DPBibZZZ+0yr6TKv4u7vsfS5zf6v4rVjn87mK/XENk72/VeVr63xOl70//g6ufp/rmQN/lJA6Z2BwpFqtZiSZVqs1sU2S8Txv6ufeeecdI4kXL168ePHixYsXr416vfPOO4tO0RFDs/Sb6DPx4sWLFy9evNblFYcc+MMPPzRf+tKXFnaMJ06cMB9++OFKj5ERGccYzvF61MiLR+eAHXrppZf0zjvv6Otf/7q++MUvzrz/qEZkAAAAAMeZ92m0Tz/9VL/73e/00ksvRRgVkmKWfhN9JgAAsGrrlAM/9dRT+s1vfqOPPlrM6Iknn3xSTz311ELqtsWNjGOcOXNG0uScrsM/Z7PZqZ978skn9YMf/GCxwQEAAABADMzSb6LPBAAAEK2nnnpq5TcbFukLqw4gztLptFzXVavVGnu/3W5Lkl5++eVVhAUAAAAAsUG/CQAAAIuWMsaYVQcRZ91uV9lsVr1ebzQkOpPJqFQqqVwurzg6AAAAAFg9+k0AAABYJG5kWOh2u9rZ2ZHjOOp0OhoMBvI8T77vK5fLKZ/Ph6ojzOeQfLNe+2azqZ2dHXW7Xbmuq2q1Ks/zlhAxVi2K74t2u61CoaDBYLCgKBEXUbSXfr+vZrMpSSoWi0qn0wuIFHExz+9Sq9VSOp1Wv9+X4ziqVqtLiBir5Pu+dnZ2JMn6epP3bq7htf/yl7+sdrutb33rW3r66afpMyUQfZjko0+RbOT4yUfOnWzkwDG10qXGE6bX6xlJptPpjN5zHMfUarWFfA7JN+u1r1arxvM8U6vVTLlcNpKMJNNqtRYdMlYsqu8Lx3FMOp2OOjzEzLztpdfrmXw+bzzPM71eb1FhIkZmbTONRsO4rjv2nud5plwuLyROxEOr1TL5fN5IMsVi0eoz5L2gz5R89GGSjz5FspHjJx85d7KRA8cXNzJC8DzPeJ439l6tVjNB94Nm/RySb9Zrn8/nx/7c6XSMpIm6sH6i+L4ol8vG8zw6HRtgnvbS6XRMOp22TsywHubJZR5tK9Vq1TiOE3mMiJ8wnTjyXtBnSj76MMlHnyLZyPGTj5x7PZADxw+LfVvyfV/tdlu5XG7s/TNnzkiS6vV6pJ9D8s167dvt9sSwNdd15bqu+v3+YoJFLETxfdFut3X69Gm5rruQGBEf87QX3/f1/PPPy3Ec1Wq1hcaJ+Jinzezv748W7R06PA8+IJH3gj7TOqAPk3z0KZKNHD/5yLk3D3nM8nAjw9KdO3ckaeLLY/jD3mq1Iv0ckm/Wa+953pE/Uvx4rbcovi9qtRoLam6IedpLpVKR7/vMtbph5mkzpVJJ/X5fhUJB0oP5X69fv04bwhjyXtBnSj76MMlHnyLZyPGTj5x785DHLA83MiwNnyI5anGko54ymfVzSL6or/3hHzOsp3nbTKVSIcHZIPO0l+ETIa1WS9lsVqdOnVIul+M3ac3N02aKxaKKxaKazaYymYwqlYo++OADntTEGPJe0GdKPvowyUefItnI8ZOPnHvzkMcsDzcyLPV6PUnS1tbW1O2+70f6OSRflNe+2WzKcRwVi8UoQkNMzdNmut2uTp8+zRNvG2TW9tLtdiU9eDqkVCqp0+mo0+mo3+8rk8nwu7TG5v1dqtVqoylC2u32xLB3gLwX9JmSjz5M8tGnSDZy/OQj59485DHLw40MS5lMRtKD+eqmOeqHftbPIfmivPY7OztqNBqRxIX4mqfN7OzsMPx7w8zaXoZPg5RKpVGZw/Po7uzsRB0qYmLe36VcLqdSqaRWq6V0Oq1CoaBmsxl5nEgu8l7QZ0o++jDJR58i2cjxk4+ce/OQxyzPY6sOICmGje6ou2hB84GG/RySL6prX6lUdPnyZdrKBpi1zVQqlYkhw8P/H/6X9rN+Zm0vRw139TxPEsNe19k8v0ulUkmSRk/VfvDBB/rmN7+p1157Tfl8PtpAkVjkvaDPlHz0YZKPPkWykeMnHzn35iGPWR5GZFgarjT/6Jf/8M/ZbDbSzyH5orj29XpduVyO+RA3xKxtpt1uq1QqKZPJjF7NZlO+7yuTyTAv8Zqa93dpOPz1UUcNh0XyzfO7dP369bHfonQ6rWq1Kt/3R1MZAOS9oM+UfPRhko8+RbKR4ycfOffmIY9ZHm5kWEqn03Jdd2Kl+eFcdS+//HKkn0PyzXvth0MHh09QDPHjtb5mbTOdTkfGmLFXuVxWOp2WMUadTmfhsWP55vld8jxvYq7V4dMjJFnra57fpa2trYknjIa/T0c9AYjNQ94L+kzJRx8m+ehTJBs5fvKRc28e8pglMrDW6XSMJNPr9UbvOY5jqtXq6M+9Xs84jmNarVaoz2E9zdpmWq2WcV3X1Gq1sVexWDS1Wm2px4DlmrXNPKpcLpt0Or3QWLF68/4uHX6vWq0a13WXEzhWZtY2U61WTTqdNoPBYOw92sz6GwwGRpIpFosT28h7MQ19puSjD5N89CmSjRw/+ci5k48cOJ5YIyME13XV6XRUqVTkOI76/b4qlcpo7jrpwd3u/f39sTuoNp/DepqlzXS7XeVyOUmfz4942GAwWErsWI1Zv2ewmaL4XWo0Gkqn0/J9nyftNsCsbWb4RGahUBgNd/d9Xzdv3lz2IWCJut3uaJHQ69evK5fLyfO80ROB5L2Yhj5T8tGHST76FMlGjp985NzJRg4cXyljjFl1EAAAAAAAAAAAANOwRgYAAAAAAAAAAIgtbmQAAAAAAAAAAIDY4kYGAAAAAAAAAACILW5kAAAAAAAAAACA2OJGBgAAAAAAAAAAiC1uZAAAAAAAAAAAgNjiRgYAAACwIfr9/qpDAAAAAJaG/Hd9cCMDAAAA2BCFQkG+7686DAAAAGApyH/XBzcyAAAAsNa63a4qlYqy2ayy2eyqw5lqd3dXp06dUiqVUiqVUi6XG70ymczo/Xl0u105jqN0Or30fQMAAGB5yH8fIP9dL4+tOgAAAABgkVzXlfSgwzL8/7gpl8vq9Xqq1+sql8uqVqtj2/v9vnK53Fz7qNVqKpVKK9k3AAAAlof89wHy3/XCiAwAAACsvbh24A67c+eOJE3tNDmOI8/z5qq/3W4fWcei9w0AAIDlIv8l/103KWOMWXUQAAAAwKKlUim5rqtOp7PqUKYaDl8/Kj33fX9iWLytZrOpVqulWq229H0DAABgNch/yX/XCSMyAAAAMNLtdlUoFEbzw1YqldE23/dVr9eVzWbVbDbVbreVzWaVSqVUKBRC1SU96Fzkcjm1223V63WdOnVqYuh3qVRSqVRSJpNRoVBQt9sdbWu326O5bXO53Ni2er2uVCql3d3dwGP2fV+lUkmVSmU0N2673T6yzDCeer1uvT3IcH+PPvnVbDZH/z9PR+ratWtTh9UvY98AAABxRv5L/hv1vrEgBgAAADDGdDod43ne6M+NRsNIMsVi0RhjTK/XM/l83kgynueZcrlsOp2OKRaLRpKpVqvWdTUaDeM4zui9crlsXNc1ruuOPuO6rimXy6N9SzKSjOM4o3qq1erEvoflD9dljDGSJt7rdDomnU6bTqczeq9Wq03Umc/nR7EMy4TZHmTaORwMBiafz1vXcZTBYDBx3MvaNwAAQJyR/z5A/kv+mwTcyAAAAIAx5kHH6XCHxhhj0um0kWQGg4Ex5vMO2aOdlGHnLkxdw07Y4Q7Q0HA/h+sYdjh6vd7Evh3HGXuvWq2aWq02Ue7RDo3rumNxH37/8L7S6fREnIfPQdD2IMNO7bAzO/xzmDqOEtSpXOS+AQAA4oz8d/x98l/y3zh7LNrxHQAAAEiifr+vbrernZ2dqdvv3LkzNvR62lDr/f39UHUN63j22Wcnyty+fXvivUKhoHq9rm63K8dxRu8Xi0XV6/WxxfyuXbummzdvTj/Yh4ZxlsvliW3DIf21Wk3ValWO42h3d1enT58elT/8uaDtx/F9X/1+X+l0ejR/se/7ev755yNZZLBWqx15LmbZ93DqgI8//ljPPvus8vn83DECAAAsG/nvOPJf8t+440YGAAAARvPrNhqNpdc1rVM47Ny12225rju27dE/VyoV1et1VatVeZ4n3/e1tbUVOK/t4TmFH3XmzBlJDzp70oNjyWazqlQqqtVqajQaY3EEbT/O9evXJWmio+x5nnUdR+n3+8eei7D7LhQKchxn1EnNZrOj8gAAAElC/juO/Jf8N+5Y7BsAAACjDsvwv6uuK5/Py/M87ezsqN1uy/d9VatVlcvlsafRpAdPg3mep3a7rX6/r3q9PnXxxaP4vj/x3rDjs7W1NdrHBx98IM/z1O/3lc1mxxYzDNp+nFarJUnK5XJj71+4cMH6GI5Sq9WOXOQw7L77/b6azeZYfefOnVO1Wp07TgAAgGUj/x1H/kv+G3fcyAAAAMCoc9RsNqdub7fbS6+r0WjI8zx1u93RE2dHdRoqlYqkBx2XVqulYrEYWP/wiatp8Qw7d5lMRpJGw89brdboSbvDHZqg7ccZ7v/ll18ee//wU2SHY+z3+8pkMspms2PxZrPZiXPebDaPHfoeZt/DJ/gOd6Rd1x11tAEAAJKE/Hcc+e/kvsl/44UbGQAAABgNja5UKhNDzm2frIq6rkKhoEajoXK5rHK5fOwwc8/zRvP0Bg2pH3IcR67rqt/vTzw9d+fOHaXT6VGH8HAHMp/Pq1arSfr8qbug7Ufp9/vyfV+O4xwZd71eH6unUqmoWq3K9/1RJ2tnZ0e+74912g7PmRzFvm/fvj1RbvjE3nB+aAAAgKQg/yX/Ddo3+W+8cCMDAAAASqfTY/O+FgoF7e7uKpfLqdfrjToENgm7bV3Dp5imPc00XLxw+Nl6va5ms3nsvL7Dp9LOnTtnfdyNRkPpdHrs6bHhMP7Lly+POi7Xr18f60wNO0DDp7OCth9l+ATZtHK+748WXTz8xNi5c+eUz+dVKpXk+75839fu7u6o8zgUNKw+7L6Hcy9PE8WUDAAAAMtE/kv+G7Rv8t+YMQAAAMBD1WrVOI5jJBnHcUytVhtt63Q6xnXd0bZWq2UGg4EpFotGkpFkqtWqVV2NRuPIbcYY0+v1RtsffTmOYwaDwUTsg8HATEtvO53ORIyHPz8YDEw+nzee55lisWiKxaLpdDpjdXieZxzHMeVy2ZTLZZPP58fqCNp+1Lk+fFyu6xrP84zrumPHns/np36+1WqZWq022t+jHMeJdN/VatWk0+mxejqdjpFker3esccKAAAQV+S/5L/kv8mQMsaYqG+OAAAAAPPodru6du2aLly4oP39ffm+P3oartFoKJPJjJ56G2q322o0GhNPZq2r4TlqNpvqdDpjw97r9bp83584R/NoNpsqFAo63H1ot9vK5XKiSwEAADAf8t9g5L+b7bFVBwAAAAAc1u/3lc1mNRgMlE6nJ+aldRxn6gKFtVpNFy5cWFKUq5dOp7W7uzuaHuCwWq2mmzdvRrq/4RzN/X5/NBy/2+0eO3czAAAAgpH/2iH/3WyskQEAAIBYGc43+9prr43NCdzv91Wv11Wr1UaLELbbbfX7/dF/N6lT4fu+PM8bW+BQenCetra2rBd9tOU4jvL5/GhuYUm6du3a2EKPAAAACI/81w7572ZjaikAAADEzu7urnZ2dsYWQnRdV9VqdbRY4nBY91Cv1wtcXHCdVCoVnT59emL4fKVS0bPPPjvRwYtKqVRSJpPRxx9/rEwmM+pUAwAAYHbkv8HIfzcbNzIAAAAQW8O5gY/qoFUqFfX7fV24cGHjnkY7derU2NN5Q4VCQY1GY0WRAQAAYB7kv9OR/4I1MgAAABBb0+YIPmxTh3XX63VJmtrBpRMHAACQXOS/05H/gjUyAAAAgIQZTiMwnGYAAAAAWGfkv2BqKQAAACCBfN+PfEFDAAAAIK7IfzcbNzIAAAAAAAAAAEBsMbUUAAAAAAAAAACILW5kAAAAAAAAAACA2OJGBgAAAAAAAAAAiC1uZAAAAAAAAAAAgNjiRgYAAAAAAAAAAIgtbmQAAAAAAAAAAIDY4kYGAAAAAAAAAACILW5kAAAAAAAAAACA2OJGBgAAAAAAAAAAiK3/D4Dgn3zmc5/1AAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# downstream\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 6))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" down_energyloss_found,\n",
|
|
" down_energy_found,\n",
|
|
" bins=(np.linspace(0, 1, 80), np.linspace(0, 5e4, 80)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=15,\n",
|
|
")\n",
|
|
"ax0.set_ylim(0, 5e4)\n",
|
|
"ax0.set_xlim(0, 1)\n",
|
|
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax0.set_ylabel(r\"$E_0$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" down_energyloss_lost,\n",
|
|
" down_energy_lost,\n",
|
|
" bins=(np.linspace(0, 1, 50), np.linspace(0, 5e4, 50)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=15,\n",
|
|
")\n",
|
|
"ax1.set_ylim(0, 5e4)\n",
|
|
"ax1.set_xlim(0, 1)\n",
|
|
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax1.set_ylabel(r\"$E_0$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
|
|
"\n",
|
|
"fig.colorbar(a1[3], ax=ax1)\n",
|
|
"fig.suptitle(\n",
|
|
" r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, Downstream photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAJPCAYAAADPIqNiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADH6ElEQVR4nOz9f5Qc533fe34KoAAhZjQNUPEBlcQxelY6Mi3JVDcUE8INERLd1slmY1tCD6CspYS5S/Y4d6gQl1zPGFauIfiuMu45JkNGnBt1w+dEeyJtDHRDjpPj7LG6SYrMJaE9QrdpUaa0jqcn8eZG2Kwy08NLGSJEoPYPsJo9M/3j+XZX/5z365w+JKa/9dRTTz311FP19FPl+b7vCwAAAAAAAAAAYELtGnYGAAAAAAAAAAAA+onBEAAAAAAAAAAAMNEYDAEAAAAAAAAAABONwRAAAAAAAAAAADDRGAwBAAAAAAAAAAATjcEQAAAAAAAAAAAw0RgMAQAAAAAAAAAAE43BEADA2KtWq6rVasPOBgAAAAAAAEYUgyEAgLFXKBRUKpWGnQ0AAAAAAACMKAZDAAAAAAAAAADARGMwBAAAAAAAAAAATDQGQwAAALpQq9VUrVaHnQ0AAAAAAOCAwRAAAIAuXLx4UZlMZtjZQAeFQmHYWQBGQqlU0uzsrPbv389xMcZqtZoKhYJmZma0f/9+VSqVYWcJMKH9AQAME4MhAAC0sLS0VL/ZsH//fs3OzqpWqw07W6GrVCr1G2Se5236BNsej8e1sLAw1tu/sLCgeDy+bRtnZmZUKpUk3brJtLCwsK0sZmdnJd0qq2A2yIEDBxSJROrLBWlg8JaWlrbt1+Bz4cKFjssHN4mnp6fr+76x3pdKJVWrVcXj8Z5uPBYKhaZ1MJlMamlpqekylUpFMzMz2+qsdVZSoVBQMplseozPzMw0PbaDMtmaV+r6+CkUCspms8rlcmPdjk+6Wq1WP85ayeVyymazKhQK7Ev03cLCgpLJpOLxuKkv3O15OThXBet0Ped0uxwAYAfyAQAYE+l02o9Go9s+kUjEj0QiTb/LZDLm9ayvr/uxWMyfn5+v/zsajfqSukpvXOTzeV+SL8mPxWKbvpufn69/Vy6Xh5TDcEQikfq2FIvFpjGJRMKX5CcSCX99fb3+93w+70ciET+bzfrlctnPZrN+sVj0I5HIRNeNUde4T7d+2tXXcrnsx2Kxeuz8/LxfLBb9lZWV+v5t/D6s+h/Ur2bHWiuZTCaUNqjxOI9EIk7LBGXQ6ngZhPX19U3HIroT7Pt8Pj+wdbLv3AXHeTabbRu3srIyMefkYaN+Nlcul/1oNOqn0+n634L+cSQS6Vjvujkvp1Kpbd8H56ygTx7mcgCAnYnBEADA2MtkMqHe2Emn074kf2VlZdPfh3kjcBCCmzCtbsQEN0Rdb6COqk43oYOBn3Y3nTOZjJ9IJPxYLOan02lupAxRNpv1o9Gov7Ky0vTTSuOgQCKRaBubzWY7DqBZrK+vb7ox5GJ+fj6UY6/xJmoikXBaJmgbhimRSHDTNwTDGAxh37kLzrOdzimNbQhl2xvqZ3PBD422Wl9frw90tDpvdnNeDvrezfqfwXfN2q1ulwMA7Fw8JgsAgC1yuZykW49BapRIJIaRnYH55je/Wf//kydPbvv+8OHDkm49xmNcH83R+IijU6dObft+dnZWuVxO5XJZ8/PzLdMJHo/V+Kgs3DI7OzvQx1NkMhllMhlFo9Gmn2aCR09Jt47rYrHYMlaS0um08vm8JIVS9yORiNLpdP3frR6R1SiXy21aJgyudTcajQ61ngePKsP4Yd+5q1arqlQqSiQSnFcGZCfUz8bHf7qev4LHojbr90YikXofcWFhoeny1vNytVqt972bneeCR5VuXV+3ywEAdjYGQwAAaGB9Dv8kCW4ItLrx2Vg2a2trA8nT7OxsqPuk8aZH40V+8D6IarWq1dVVxWKxlssHNxQymYxmZmaUTCZ16NAhpxvaO0E2m1UymdTMzIzi8XhfX5RaKBRUrVa1trZmepdHMBAiqT7I0UkqlQp1QDSTydT/f3FxsW1sqVRSrVbTmTNnQlu/1dbB4UEpFAocW2OKfWeTzWYlvX0DF/016fWzWq3W3wdXrVb1zDPPOA+yBeftj3zkI02/D86hwTl467LW83JwPmx1jo3FYopEIqpWq5v6cd0uBwDY2RgMAQBAt351HbwwOXDo0KH6C8QbL5hLpZJmZmbqv0abnZ1t+cLTpaWl+sscp6enlUwm68s1UygUNDMzU/8VW6VSqb/0eGs+Gi90g/V3+6v1SqVSXzaVSjWNuXLliqRbvwps9yv6MFWr1VBvpje+tDMY8Ahean3q1CkVi8WONwueeeYZzc/Pq1qtamVlRYlEQqurqwMrk3EwPz+v9fV1zc7OamFhQdPT023rfbeCQYTZ2dn6i8lnZmba3oDJ5XL1mzepVMr0C+zgl67N1Gq1TS8cj8fjbW+0RSKR+rFWq9Xa1vNMJmPO66AEL60N9m/wC+ROL1uv1WqamZmpf6anpzU9Pb3pRnChUNBDDz1U//fx48frbXIj1zbZuo+CbQsGPePxeMt6POi2u9ty36pxuXg83vHmpes5zXXfWdOVbu3HXC63KSaXy23ar622w6XetVKpVOpl5Xmepqen6+W8tLS07bvG/NdqtXp9mJ6ebrq/gzag1Tm4nWq1qpmZmXoZz8zMtPwhQT+Ol2H2XYK2P/hszWOhUKhvQ7CuTvUzKM/GdJPJZH32TrDO/fv3dzXrIHi5+P79++t1MPg0rrObcgnyPj09rbW1Na2srCifz7f8kUerNKTWswcbz4Nbj7VuzsvBcdQuj8E6g0HDXpaT+ldnh3UsAAAMhv2cLgAAGuXzeT+VSvmpVGrbixtbCfOdIY3P09/6XONMJlN/kbreej5xIpHY9JLIYJngxZOpVKq+/Pr6ev0lj1tfzF0sFje9VDmdTvvz8/P1F7kHzz0O1pvP5+vlMz8/X8+X68uYt2p8X0izdyIE+W71fb8E2xmWYBtSqVR9f7i8CLSZbDbrVD8bWet3N8eDRblc9ufn5+vpB/Unn8/Xn10fjUZDeWl3NBoN9UXz6+vrfiKR2HRMNn5avTS18TgLq90oFot+LBarHxsrKyv19bQ7Jhvbm1b1PIgJ67hrXGdj+9ROs+OwXC5vKsugfYzFYtteOt9sn2+tV+vr69vazODvQTpbj1NLm2zdR8F3je10s/cJDbrt7rXcG/MSi8X8RCKxKR9bt7lxvZZzWvB9q33XbbrBfmzcxlQqVX9/U6ftcK13rRSLxZbtR7lcbnueDMqjWVkEy7rmo7Fsg/N30MY21oHGfPTjeBl23yUoi2AbWr0HKdj2VmXYqn42vi+qcX8H6XX7vrBMJtP0HNX4LivrubKxbejlXWaN54hWedha/xr/bj0vt0prq6BNCPZjt8v1q86OwrEAAHDDYAgAYCQEN0Qab3wEN56Ci/F0Ol2/4dP4CV7y2Ow768Vku8EQ39988RWNRut5y2Qym25Ut3rxpO+/fZOt2UV7uxu1wYVUJBLZdsOkU747aby51JhmcMMsuEnTTdq9ikajody0brzJEAyC9HIzY3193XkQxaV+9xLfq+AifH5+3p+fn/czmYxfLpc33QgKYxAjGGQJBkXCevH8+vr6pgGcdjdeGr8Poz4Hx97WutDYVrQamPH9zcd8s30b3CQJS1iDIYEgra2DisFN5mZlHdSrreVfLBZNgyFbv2/VJlv3UXDDe2sbHqTTrG0fdNvdTbk3LheNRreVR3BDuVl97eac5nKzudtzZZDXSCSy6bhpvDG+tc2y1Lt2GtvLVt81ay+DAYZmrO371nrfuE2NAzZby7Yfx4vvD6/vEmj8QUczqVRq2wu2XV9CH5xXgn0X1LFeXro+Pz/f9PwX1F3LDfHGAcJW6Vo13tDvFNPq2HE9LzcOIjZ7CXqgcTChl+UC/aqzwz4WAACdMRgCABi64MJ96w2P4IKilwtOK5eLkeBitdVFYnBTo9UN0MYLuK0XSo2/ht2q8QZHu4vobgYOGi9Ut/6ytNlNs0EKtrvXPDReEHf69XCYrPV7GMdDUB6pVGpb+lt/VRmGxl9QhnXzpjHtxjq8dXsa63an9QYzZ9Lp9LZPcBMxGFhrJrgJ1Or7IL9Bflrd9A1rNo3v928wpFkeG9fV2F42m2HR+F0j1xvq7dpk6z4K9snWG5KNedladwbddndT7o3LNVtXsA1b60W357RO+66Xc2Xjzd+tGn8d32x9LvWuneDGe7M61ThLY6tmN+QD7QaFmmks22b7st1AdtjHS7DMMPougcbyaDbo0Wx7XAdDGo+nYDaNpb4002x9jX0Ul/P81h8XhCnoE7Srky4DJoF25+V2s60aBcdvUI+6XS7Qrzo77GMBANAZ7wwBAAxV8CzdSCSy6UXGpVJJpVJJiUTC9JzjQWp8v0ijTi+ejMVi9WcYN77DQnr7JcXNntPc6QXGwffWF443Pls+m81qfX1dvu9rfX1d6XS6/nLxYb1oNJFIKJPJ6Pjx4z29TL3xBfGNda3xueFhs9bvYRwPtVqtXq7JZHJb+kFdXVtbC22diURCxWJR5XJZ1WpV+/fv1+zsbE/7tzHtcrlc/3dj/bY+izsWiymTydSf/5/L5XTx4kUtLCzUX9haKBRUq9W2Pfd9enq6/oz0Wq3Wct2N+7RUKm16rnqQdjqdNuV7kIK2qlmbFY1G69sWvHNIkqanpyXdel/F1uftN75Y3qpdm2zZR4lEQisrK5vqkbS5bd16PAy67e6m3DsJjvVmL0SWujuntdOvdFttR1j1Ljgea7XatnezrKys1NfdeCwHsc2O5VKppFqtppMnTzrnoVGz9xil0+l63fjmN7/ZdLmwjhdpOH2XRpFIpF62W98NcfHixZYv2HYRjUY1Pz8vSfXzVC/tlLT9HReVSqX+Dpf5+fm25/ng/TgPPfSQZmdntb6+Xs9fWILtq9VqTft+jXU7OK7aaXdeHpZ+1dlhHwsAgM4YDAEADNXMzIwk6cyZM/ULh+Dlg8EN03HjchET3Lzo9LJai25frtx4073xhkEkElE2m62/zHVhYcF0ARvcLAnjk06nlU6nNT093dWgTLVare+X4OZzsF2FQiHU/dDIWr+HcTwE+7TxZlKjoNz68YL4WCymfD6vlZUVra2taXp6ul4GvWi8edV4I3DrMeJ6w6GxXBKJxLbjN7h5vvXj35qFLd/32x6fZ86cqf9/8PLZ4P9H9cXproI2pbGs0+l0/Wbf0tLSphdRh63bfdRY34Nj0HJD3qIf+7dZuXerX+e0QZ8rw6p3kUikfv5ovPEevNg9KPvG79rdkA/OwS4vcbc4fPiwJFvZhdWmWYSVTlB+lUpl0zZns9lNbWw3MplMvS724wc6wY8yotFoy4GWQqGg/fv3K5PJKJPJ1H+w0g+pVGpT3292drb+o4zZ2dlNPyJxLY9W5+XGAYJ2P7poHHyLRCJdLxeGfp2Tx/lcDwDjhMEQAMDQLC0t1W+GpNNpFQoFJZNJLS4u6vz582M/ENLu4qwfv7bvVuOMiWY3vE+dOlX/f9dfQwYX7WF+gkGQhYWFlr9o7bSN0tsDDufPn6//rR+zQ6z1e1jHQ5Buq5sqjTfH+qnTLyatksmkpO2zQRrruOuv5lvdoAiO315vOKdSqXq+CoVC/VfllUql55t4WzWWs3WmTDfuuOOOpn8vl8v1m23ValXJZFIzMzOh56mXfRT8AnttbU35fD70fdFPrcrdql/ntGGdK8Oqd8GN92AWhXSrvqRSqfp58uLFi/X4TCbTsv7kcjlFIpHQb7J3M4AdVps2DLFYrF6GwUBUtVpVrVYLpWwbf0AR5uDt0tJS/Ty7dVZLM4O6YZ7P55XNZpVIJHTx4kXNzMwok8loZmZmU7/Q0jdodl5urKftjsOgbgbb3+1yAAAwGAIAGJrgoi8ajdYfWZHNZjfdrBg3jRdnweMymml2MTcMW2dMNNN4E8H1Bkkqldr0C9IwPvPz84pEIspkMtseX9NJs9kvQVrSrRv+wSNbwmKt38M6HoIbdo03NwKVSqW+z5t936tqtaqZmZn6DeeVlZVN+6oXwbG19RhrLMteB5jCfKRF42N7MpmMstnspscdhaXxhpDrDea1tbWebyQFv1JvlM/nlc/nNw0EWQc6O+l2HyWTSc3OzqpYLI70Y8o6aVbuFv06pw3zXBlGvUskEvW8BW3o4uKizpw5U3+8V61W2zTzsNmxHJx3+lHHgvxZ2pBxf0xPMEgVPHIqm82GMuOmWq0ql8vVyzKsWTy1Wq3e9qdSqbYDC6lUSuvr6/WZGcHjG/spnU6rWCxqfX1d6+vrKhaLSiQS9f6Ktd42Oy9HIpH6v//bf/tvLZdtfIxhL8sBAMBgCABgaIKL7eDGX+Ovo8dZsA3tfjkYbHuvN6p61WzGxFaNN0WG9cu6hYUFFQoFlcvlrp6NHWzn1ptC8/Pz9f0V9uwQa/0exvEQ/Gq21a+SG2/ShHlTPng3yvT0tA4cOKD19fVNNyfDWoe0/bn4jb/O7vURaVsfpdRK8Picdhqf8R+8n2Trew3C0uqdCq2Uy+Wu26rgRvfWd+MEUqmUVlZW6sd1cNMxLN3so+CRgOl0emzPSc3KvVv9OqcN+lwZdr1rfEdFoVDQ4cOHt90sz2azbW/IB49e69dgs9T6nSzNhNmmDUOzdjSMgaZgVkQwo7RarYbyHrWg3xWJRDbNVm0nnU5rfX29/risxpmzg1Aqlep1y3qOanVeDn6k0O58HMzkDGaX9LIcAGBnYzAEADAU/XiG76hofG51q5uNwYVbv252umr1vpBWMWE/09xFoVBQLpdTuVzu6sZk4422ZjecGl8UGtb+sNbvYR0PQdk0e3FvpVJRqVRSNBp1vknjsr54PK7jx48rFotpfX1d2Wy2L9tcLBYViUS2bVvwLpxAL4Ngjb9Mfeihh1o+qiN450snWx+j08/nwUu36p3LYNDFixe7PvaDOta4fDab3dY2ZjKZer5azRTo5lFJ3eyj4Cawy4uBR1Wzcu9WGOe0Zvtu0OfKbutdK435f+ihhzblMTh2S6VS2xvyhUKhLzPAgny1ehdUK2G3acMQtPkLCwubZvC0065tCQYagnfOBANoCwsLPc2gaXzc1vnz55vms90gRzCgl8/ndeHCBe3fv18LCwt9ffxhrVarD+AEsxctWp2Xg2Op1cBo4w83Gutzt8sBAHY2BkMAAEMRiUTqF37NHotTqVSGcuM9jIvIxtkGzd6xEdz4aYwL9PJc9CDv7R4XsFWrGRON3we//kylUkO5mHzooYda3ihw0fgopGY3bxpnYDS+t6MX1vrd7fEwOzureDze9SO+gnU1e0TMzMyMIpFI/eZFLwqFQv3l6KdOnar/qrWXdJeWllrejKpUKsrlcsrn803XkU6n6wMilUpF8Xi87X5v913jYFo8Ht80uBCkHTw2p5PGWU+djrVe9n1j2R8/frzt9s3MzGz6xXsrzdrO4BfEzdq6Zs/GD3652/hL9sb911i2luPUuo+CdnjrC9MbX26/dXsH3Xa3yofUvty70e05rdO+6+Vc2U67feFa71xEo9H6OeXAgQObzi+RSKT+71Qq1bQdCo7dfvR1gjrQzbmzmzZtWPW/mWBQqlartS1bl7alWq1qYWFh03m5sf3sZd8FA/GJRKLpozALhYLTvkskEiqXy8rn86pUKn0dFDl+/LhqtZrS6XTTc1S35+VoNFpPr9k5LaiTW9uJbpeT+ldnR+lYAAC04AMAMCSZTMaX5Evy0+m0XywW/Ww266dSKT+dTg8lT/l8vp6nfD7fNKYxz62srKz40WjUl+RnMpltf2+1bCKR8CX5iUSibd6KxeK27yORiC/JT6VSnTbT933fz2az9fQikYi/vr6+KZ/pdLr+vWuaYctms34sFuspjaBcJPkrKytNY+bn5+sxzcq+G9b6bY1vrA+SNu0/V83q0/r6uh+LxfxEItFVmo2y2awfjUb9aDTqZ7PZntLaqnHb0+m0v7Ky4q+srNTrTLlc7phGuVz2Y7HYtnJfWVnx19fX/XK57GcymXodapVuKpXalJ+tebMI6mK7/Iex78vlcr2NikQifjqd9rPZrF8ul/1isejPz8/7kUikYz1oPL4a93GxWKynu1XQtmxtxxKJRNPjPWgXI5GIn8lk/EQisWlZl7K27KPGti8ajfqpVMqPRqObyj34e9CmDLLtblzGUu7r6+v1ZRrPS4HGct6q13Naq33Xbbrtyiw4prfWJWu9cxHs22b9heC7Zvs8WG+781InQbklEolNaeTzeT8SibRsc8M+Xhq3ZVD1v5NEIuFHo1GnuHb1MxaLdTz/NjuWOmlsY5rt/6D+t6o77ZTL5fr+C86NvVpZWakfV/Pz8y3jej0vp1IpPxKJbMpzsVjsuN5ulutXnR21YwEAsB2DIQCAoQpulgY3l9LptNNNzLCVy+X6zb/GAYL5+fn6TY5MJlPPa+PFXqtBk2CZ4KI8uMHc7AKoXC5vujgO0g7KovGGbFBWwQV4sVisX3xtvQhtZn19fdu6GtMN/ptIJEK7kO5WIpHo6kaD7789kNK4fbFYbNOFcVDujWXbLK5b1vptiQ8GLYI8t6uHzZTL5Xo9T6VS/vz8vJ9Op/1UKtXVDZhGQX0NbiD3Qz6f37T9wY37bgZdguM/FovV60KQ/1Qq5WcymY7HQTab9ROJhB+JROp56aYcg/3qEtPtvm8U5LuxbQu22yX/QXlls1k/nU770WjUj0QifiwWa7kvMplM/eZV0M4kEomWx1zjjbhYLFbPl7VNtuyjoF0IBhaCAaFg0DK4UTnItruXct96vAQ3CdfX1/2VlZVtN78TiUTTtsf1nBZote+6TbdcLrcss2bb0ThgZa13rtoNoLf6LhiY6nWwP5PJ1NutxjarWR3qx/HS7/rfakCm8dNMPp93Ohe0qp/FYrH+963HwsrKyrZ8p1Kpehvhkuet/a7GT2N59dIfbvxRSyqV6jqt4IczkUik4zkhjPNyUO9SqZSfSCRatkXdLtevOjuscwEAwM7zfd8XAADACFpYWNCZM2cm7r0yYZuenlY+nzc9d35hYUFLS0ubHhkVhtnZWV25ckWZTGZknyk/SbrZ92Hav3+/arWastksz2QfIModgItarabFxUXlcjmtrq469acqlUr9cVexWEynTp1q+igvAADG0W3DzgAAAEArzZ7zjM2q1aoikYj5ZnjwvpjgeflhCXNgBe11u+8BADtDJBJRJpMx9adisdim960BADBJeIE6AADAmApeENvspeudBC+MZfbGeOpl3wMAAADATsTMEAAAgDG1uLiofD5vfoxYMCskEonwCLIx1e2+D1utVhvq+ncqyh0AAACwY2YIAADAmMpkMuab4dVqVQsLC5Ju3VANZohgvHSz78OWy+Xq/5/NZlWtVoeYm52DcgcAAAC6wwvUAQAAdpBCobDtb9FolPdOwGR6errpTfhYLKZyuTyEHO0MlDsAAADQPQZDAAAAAAAAAADAROMxWQAAAAAAAAAAYKIxGAIAAAAAAAAAACYagyEAAAAAAAAAAGCiMRgCAAAAAAAAAAAmGoMhAAAAAAAAAABgojEYAgAAAAAAAAAAJhqDIQAAAAAAAAAAYKIxGAJg5FQqFeVyuWFnA3BGnQUAAAAmH/1+ABhvDIYAO0ylUtHCwoJmZmY0PT2tpaWlYWeprlqtamZmRvF4XNlsdtjZGapgP8XjccXj8WFnZ8epVqvav39/xwudftfZftQD6hYAAHBBn2EwKOfhot8PADsLgyHADlKpVHT8+HFlMhnl83mlUimtrKwMO1t10WhU+Xx+2NkYCbFYTKdOnVKlUhl2VgaqWq2qVqsNOxuq1Wqq1Wodj49+19l+1INB1a1R2ZcAAKA79BkGY6f2+6XR2Pf0+3s3CvsRAFwxGALsIIuLizpw4ED935lMZsfPwBhlsVhs2FkYuJmZGa2trQ07G4rFYvJ9X5lMZthZ6Us9GETdGpV9CQAAukefYTB2Yr9fGo19T7+/d6OwHwHAFYMhwA6yE39thPExMzNDHZ0Q7EsAAOCCPsPOxb6fDOxHAOOGwRBgB8jlcpqZmVG1Wq0/63RmZkalUqkeU6vVNDs7q4WFBSWTSSWTyU3fFwoF7d+/X57n1Ts7pVJJMzMz8jxPMzMz9XRyuZzi8bgKhYJKpZLi8fimmEbBeoOP9R0mlUpFMzMzSiaTmp6e1sLCwqa0LXlpl1ZQBkG55HI57d+/X7Ozs9vSCbZlenp6W+ewVCrVyzGZTG76LpfLyfM8pzLotL+2xgT5aXwWbqfvmymVSvI8b1MZVioVTU9Py/M8xePxTdsU1I9qtdq2DAuFQn252dnZjp3qTvui077stO2FQqF+nLQq+1Z11vVYCSwtLdXzEo/HQ3khY6ft73XZxjII6l+wre32Zaf91qleW4/pbrZxGO3GINoMAADC1mt/1Nr/k3bmOXxY/f5gG4bd96ff3x79/u63cZLvFwBowwewY0SjUT8ajW77e7lc9iORiF8ul+t/y2azviQ/k8nU/5ZOp31Jm+JWVlZ8SX4qlar/O5VK+ZL8RCLhz8/P++Vyub5sY3orKyt+JBLxi8Vi/W+ZTMaX5MdisY7bUy6X/UQiUf93Pp/3JfnpdNqcl05p5fN5PxqN1v82Pz/vx2KxbfmMxWL+/Pz8prKR5Eej0XpawTY2rj+I35pes7Jw3V+pVKqelyDG8n0r8/PzvqRN+61YLPqSNqUXpBn8rVMZBumurKy0XX+ndDrty07bvrKyUt9HjekE37nUWZdjpXGbt5ZjY/q+37wetOKy/a3SdFl2ZWXFj0ajm/ZTJBLxI5HItu1qjHHZb53qteWY7rZ8Bt1uhN1mAAAQtn72R137f8E6J/kcPor9ft8fbt+ffn979Pt7K59JuF8AwI7BEGAHaTUYEovFtnX+gr83dmyCjk5jp2V9fX1bRy/oGGw9eW/tZKZSqabrde0AxmKxTXnx/VudM0n++vq6KS8uaQWdkq2d/kCwrsZ0go7U1k5+0OFplMlk/Gw2uy2uWQfKZX9FIpFteW0sh07ft9Kscx+kt3WbUqnUpm1vV4aWi+F26bjsS5dtb3ZR5FpnXY+VRCKx6WIiiNmaN8tFkcv2t0rTZdlYLLatrIL9EcS02ped9ptLvXY9plsZpXajH20GAABh62d/1NL/m/Rz+Cj2+31/+H1/+v2t0e9vb5TajMZ10fcHhovHZAE7XLVaVaVSafpitWBKZ7cvWY9EItv+FrxYrVqt1qeRdiPI9+LiYn1ac+NU1itXrpjy4pJWkMZHPvKRpnn65je/ue1vjdPJG6XTaVWr1U1TgS9cuKCTJ0+22uRNeXXZX9FoVEtLS5um0c7Pz9f/v9P3rUSjUcViMRUKhab5C6bF12o11Wo1RaPR+vedytBVq3Rc92U3295rnW0mn8+rXC5vy1+tVusqPetxYV02iEkkEpuWnZ+fl+/7TY+zRp32m6UdandMtzJq7cYg2gwAAMIWZn/Uus6ddA4fhX5/sOww+/70+5uj3z9e/X6Jvj8wKm4bdgYADFe75/IePnxYkuod3DAFaTZ2li2CfOfz+Z7zYk2rVccv6PSUSqVtnbut/15YWFAul1Mmk1EikVCtVtOBAwc6diot+yufzysej2thYUHZbFb5fH5TPjp9307wnNNCoaBUKqVcLqeTJ08ql8spm80qk8no4sWLLZ/n2mk7XW1Nx3VfdrPtvdbZZiKRiCKRiAqFgi5cuNDzIFEvx4XLssFFcK/7r9V+aybMdmjU2o1BtBkAAIQtzP6odZ076Rw+Kv1+aTT6/vT7N6Pf396otRkSfX9gVDAzBICk5r9ICU60Bw4cCH19QQen0y86Oi0fRkcprLRSqZQSiYQWFxdVKpVUq9WUyWQ0Pz+/rSMdjUaVSCRUKpVUrVbrL7l35bK/otGoVldXlUgkVK1Wt72kr9P37aTTaUlv/2onuAhKJBL1NLLZbD1uUFz3ZTfb3mudbZVmPB5XtVpVPp/v6peSW9Nr/G/Yy4Z53DXT73Zo1NqNQbYZAACELYz+qKudfA4fdr9fGs2+P/1++v3tjFqbIdH3B0YFgyHADhf8AqFx+mUg6KBMT0+Hvt7gZN84Vbib5ZtN15aab88g0srn80okEqpUKvVfcmQymaaxCwsLkm5dOBSLRaeLB8v+qlarikQiKhaL9V+xBFOPXb7vJJVKqVQqqVAo6PDhw4pEIpqdnVWtVtPS0lL9lz2D5Lovu9n2XutsM8lkUgcOHOj5YijQS112WTaof61+FdXtBcKg2qFRbDf63WYAABC2MPujrnbiOXyU+v3S6PX96ffT729nFNsMib4/MAoYDAF2kLW1tW2/bgmeAdv4vNfAlStXFIlE6ifdO+64Q9Lmjk/jM2Itgs5yLpdrumyn9IJnly4sLGybamv9tVmYac3MzNR/6TM/P992CnYikag/w9Z1uqtlfzV2qlKpVP2XXMFynb7vJLiImJmZqXfUUqmUpFtl2c2FrtT9c3Ml933ZzbZb6qzLsRLsw8Z9H3zX7a/QeqnLLss2lsHWTv/CwsK2X3G57ktLve7FKLYb/W4zAAAIW5j90cA49v13Ur9fGr2+P/1++v3tjGKbIdH3B0YBgyEAlM/n67/sCQRTNs+fP18/8QYn6oWFBZVKpfozYqVbv4YIXjDn0qGLRCL1X8XE4/H69M+gY12tVje95K7T8jMzM1paWlIymdTKykq9w9JNXlqlFXTwWnX0go5isHwul1OhUGj7XNRge0+dOtUxnwHX/XXx4sVNHczghYbBL1s6fd9JIpFQJBKpd9ICqVSq3sndql0ZBr8Aymaz9ZcWttIqHdd92Wnbm12cWOqsy7ESXEAUCgXlcjnlcrl6WpVKRYVCwXxx6Lr93S4biUTqF5TJZLJ+MRyPxzU9PV2ve632Zbv971qve3lcwai1G4NqMwAACFtY/VHX/t9OPYePSr9fGl7fn35/c/T7wymfSbxfAKADH8DEK5fLfjqd9iX5kvx0Ou0Xi8VNMevr634qlfITiYSfTqf9dDrtl8vlbWllMhk/Eon4kUjEn5+f933f96PRqD8/P++Xy2W/XC77sVjMl+RHo1G/WCz66+vrm9afyWTq6WWzWT8ajfqS/Fgs5q+srNTTW1lZ6bhtmUymvnw0GvWz2eym7bbkpV1a+Xy+5XeBIO9B2o2faDTqr6+vb1tmfX3db9YUb91nmUxm0/Iu+yuRSNTLcn5+3k+lUpvS6PS9i0wms2295XK5afm4lGEsFvMjkYifTqdbrtMlnXb70vfbb3u5XPZTqVTLsnets52OlSCtSCRS/7vv+346na4v06ketNLpuGiXZqeyC/ZBcGzFYrFt7Ynvb9+XLvutU722HtPdls+g2o0w2wwAAMI2iP6o77v1/wKTeA4fl35/UGaD7PvT7387L63Q7++tfMb1fgGA7nm+7/sugyYAgPYqlYouXLigM2fOaG1tTbVarf5Lk3w+r+np6W3PiC2VSsrn8/VfDwHYOWgzAAAYT5zDAVjRbgCj4bZhZ8CiWq2apnECwKBUq1XF43Gtr68rEolse6ZnNBpt+mK1bDarM2fODCiXAEYFbQaAfuK6CegfzuEArGg3gNEx0oMhnudt+ncsFlO5XK7/u1KpaHFxUdFoVLVaTclksv4Cr2HEANi5gufQPvTQQzpz5kz92bHValWlUkkrKyv1Z66WSiVFo9H6S+PavTQNwGSizQAQJq6bgMHhHA7AinYDO0WhUNDi4qIqlYpisZgymcy2dxh121cMrY857Od0tZLNZv10Ou1nMpn6p/H5gSsrK76kTX/b+ly+QcYAQPCsWDU8+3Prc1WLxeKm713eiwJgMtFmAAgD103A4HEOB2BFu4FJl8lk/EQi4WezWX9+fr5ejxvreLd9xTD7mCP7zpBkMqlisdj2e0mbYnK5nGZnZxVs0iBjACAQPPuz1eMpFhYWVK1WN/0iBMDORZsBoBdcNwHDwzkcgBXtBibVzMyM8vl8/d+VSkXxeFyJRKLeN+y2rxhmH3OXKbqDr371q6GkUygUdOXKFc3MzCiXy237vlarqVQq1QsicPjwYUm3CmOQMQDQKBKJtH1OdyaTUT6fp2MDQBJtBrDThHXNJHHdBAwb53AAVrQbmESlUqn+qLdALBZTLBarPyau275i2H3MUAdD/sk/+Sd673vfq+eee66ndIrFomq1mgqFgmZnZ7V///5NLxK6cuWKJG1rPIKGolgsDjQGAAAAAFyEdc0kcd0EAACA4UskEi0H+YK/d9tXDLuPGepgyDPPPKNPfOITOn78uE6dOqXXXnutq3Sy2ax831e5XFY6na6/FCUYSQr+G4lEmi4fvGRoUDEAAAAA4CKsayaJ6yYAAACMrmq1qpmZmfr/S/a+Yth9zNtM0R1MTU0pk8no137t17S4uKh4PK6lpSV9/OMf7yq9WCymbDarZDKpmZkZLSwsKJ/Pa2VlRZJ04MCBpsvVarWBxrTy/e9/X7//+7+vO++8U+985ztbxnWyZ88e7dmzp+vlAQAAABfXr1/X9evXu17+hz/8ob73ve/pb//tv613v/vdIeZscoR9zSSN93UT10wAAGDYJq0P/Gd/9mf6/ve/v+3vvW6nJN15551673vf2zGuUCgoGo0qnU5LUtd9xV7uzTcT6mCIJD377LOq1Wqanp7WiRMndOLECSWTSSWTyfpz8e6//35TmqlUSqlUSpVKRZI0PT0tSVpbW2saH41GBxrTyu///u/rgQceaPk9AAAAMIm+9KUv6e///b8/7GyMrH5cM0njed3ENRMAAJgUo9AH/rM/+zP9H/7aX9OP+pT+O97xDv3pn/6pfuInfqJt3OLi4qYXqnfbV+zl3nwzoQ6GfOQjH1GtVtPs7Kw+/OEP6/Dhw5qdnVWtVtOFCxc0Pz8vz/M0PT2tK1eu6F3vepdz2slksv7822AjW438RKPRgca0cuedd0qS3vlP/2/a/cGfbhnX0Z53yNvzjqZfHXrHqnMyf3Lic3pj+vdt6/6kIfahrCH4oqSTtrzI2Jicd/xl2f90QvqfLxnzIumsfZGObr4uXT0mHXxe+p9vty370P/LFn/8ZzvHXD4hHXmrbJ6xpV8uO6TfIB7vlP5vSPr1hn+/bEpfutsY387WvEjSzxiW/yPj+l5u8911SV+S9ICkbn8NeXeXyzXTrGxeDjH9Zlq1Db8k6Su9J/8e469U/0uztrCbNq+5cnm262Vff/11HTt2TM8//7xuv93YxrTQ+djdbGvbcOLECV261EUbHIJ4fOu+Cm8/Sb3tq36Uy/btdeHexli315qfIP1h1pmtJjEvvf5a7I/+6I/0j/7RP6r3g7FdP6+ZpPG7bgrqyj/7Z/9MP/Mzlv7UZpaZIWEfu27tmds5ppdzR6NBtk/W/oVr36Hd9cSg299xWJ/rebVZHetHH7GTcShTC5d+pevxbd2Xw9h/0uTtw2Guj2Nw+OucpD7w97//ff1IUkrSj2/57k1JN3pJW9Lv/ehH+v73v992MGRhYUHnz5/f1P/rtq/Yy735ZkIdDFlfX9fS0pI+8YlPbPvuwx/+sM6cOaNsNqtqtWru1EtvvyU++O/WZ4IF/47H4wONaSWY5r37gz+t2/7GPR23rxu3txgkaWbXvr3S/phtBe+zBL/HEHubMV6SPmwLf98+t7i9+6T3GctFkvbaF+no5lvPjN57t/Q+6zHSfIS0JZe6sHtfQ5wt/eBFRu46pb9HUuM0vP9qTL/zFD53W/Mi2ernnxvX125bf/jWfw9K6vbREv0uG+u+smpV9u9s853BXse2pK5Z29ZNm9ec/dh6W/Bc+rvvvrur83BzvbUN+/bt62mberN1n4S3n6Te9lV/yqWbbXNvY+z5teUnSH+4dWYz8tJaL487mnT9vmaSxuu6KagrP/MzP6N7773Xaft6Ff7x4tKeuZ1jwsrXINsEe//Cre/QLv+DbvPGY31u59Vm6fanj9jeeJSpRed+pfv6bftyGPtPmsR9OLz1cQxOzjpHqQ/84wrz6vYWl1uhuVxOyWRyW9l321fs5d58M6G+QP1rX/uafud3fkdf/epXm34/NTWl+fl5ffGLXzSnXSwWNTt7a9Q7EokoFotte1t88AuokydPDjQGAAAAAFz085pJ4roJAAAAt4Zk3xHyp9OsikKhIElKJBKb/l6pVLruK4bdxwx1MCQajerixYtNf+XkqlKp1F8iGCgUCjpw4IBSqVT9b+fPn1epVNo0KpTJZJTJZOpvlx9kDAAAAAB0EsY1k8R1EwAAAEZHqVTS4uKipFuzQ4LP7Oysrly5Ismtr1itVjU9PV0f7HBdzpXTY7J2796taDSqRCKhTCbT1ylb0WhUBw4c0OLioorFomKxmJLJpLLZzc9MjMViKpfLWlhYUDQaVbVa1cLCQv0N9YOOAQAAALBzDfKaSeK6CQAAAK3tVsjvx3grzWYqlYqSyaQk1WcoN1pfX5fk1les1WpaW1vb9I6QMPuYTmXi+76KxaJ+8id/sm3cM888o9XVVZ08ebLrzn8kEtk27aWVWCy26a30w44BAAAAsDMN8ppJ4roJAAAAoyEWi8n3fefYdn3FWCxWHzyxLOfKaTAkGo127NRL0vHjx3X+/Hnt379fMzMz+p3f+Z1e8zcR/to7/qOm9kw5xV5+4j5T2pcPH3QP/vO/oKmvXDWlv/G0If3nz7rH/r0L0i5DvCQ9bAvXA45x/+Wt2NVrxhUYpRxewvwjSf9J0t3drOCoKdp3aD/uukt69a04z7PlxvNKnYMa8+Mn2n5/110/pldffTvGmp/RYttX7eNfk/Sbkk5LCm6ovNhFnty121db99Mt7fftVta6Iy21+Pv323xnsNp7EsPkeeca/nXrZdhTU4tq/TJsY1vS4dgdpM3b2pnvbz4P3XXXBb36qvHc1Mf8hK2b9F977TVNTf2mNjbOhP4r935vLzBoXDP15tixK5Kud4jq3MdxbVtc2mjXtFziwj7HjDfXvuro9DGGLcz6iv4Is18Z5r507Y8Ouv6Mar5cjXv+sTME7wwJO81x5/TOkGg0uunfly5d0smTJ/Vbv/Vbevnllzd999BDD+nBBx/k10Cj6ONzw87B20YpL+8aobyMmLm50SmbUcqL9PPDzsDIGq399NeHnYEGo5SX0TJKdYa8jIdRKhvygkZcM42PYRwvg17npLcJk16ek77/pMkvU/Yh6xt1O6E8J30fojue7zCH5WMf+5j+4A/+YNPfarWaDhw4oHg8rkQioTNn3v7FYPDdzZs3+5PrMfHCCy/o2LFjuuv5f6qpe3/GaRnrzBAdtoVP3dPHmSHGvDjP3AhYZ4Y8bYwfiZkhr0m/NyX9wob0qPEXuMds+fd9h/w0sP9a38b66/J+58fOOtsjLK9JOijpqkZhZkgY7Pu2v9s7aqy/Lto+M+Q3Jf2qmBnS/19qjVp+unFrZsiUNjY2+v7+A0yGoP/7/PPP69577x12dgaKa6buBHVGelzShzpEj+bMkJ3Oeq7gF9V2/a6vnO/HW7v9N6rH26jmy1XY+ecYHH+j1AeuVCqKx+P6VUk/EXLaf6ZbdxTK5bJisVjIqQ9G17NbIpGIotGonnnmmW0HavAdAAAAAOxUXDMBAABgGHhMVnNOj8kqFov6tV/7NT377LOb/r5///6WI5aRSKTnzAEAAADAOOCaCQAAABhtzgM6mUxGmUxGkpRMJpVItH8sxh133NFbzgAAAABgjHDNBAAAgFGwW93N5HhG0rMtvrvefXZGhlOZRCIRnTx5Ut/85jf1h3/4h/ra176mYrEo6VYHPpFIKJlM6uTJk/VfPa2trfUv1wAAAAAwQrhmAgAAwLg7/tanmf8oyfZmzNHj9JisM2fO6Itf/KLK5bJu3rypYrGoBx98UIcOHdL6+rry+bxmZ2e1f/9+vfe979XHPvYxVSqVfucdAAAAAEYC10wAAAAYFcE7Q8L8TMI7Q5y24Vd+5Vc2/fv48eM6fvzWGNHGxoYuXryoYrGoUqmklZUVraysyPO88HM7pl499tOS7nGKTftPmdLOzTxiit944KApXqvXbPEmL9rCD7d/zMA2q9axyqPGeKOCS/pvlffvXZN+758aVzBviva8kjF9Y/mk9pnCPc9a14z1x5r/Q9b65l6evm9L2/Pa1eUfvvXfJyW905RuXepsd8s5ap//MNjqvrTUl1wEfN9WntZj0X7s2ljr5yixl72tblrT7/t5Zcz1u/z7v3+BzbhmGg39Pk/2wqVdGkZbNKr5wtsofxvXPsBOKFfalP4Y9/wDO5nTzJB2pqam9NBDD+nixYtaW1vTysqKfvM3fzOMvAEAAADA2OOaCQAAAIN0W58+4y70bTh06JDm5+f5lZOkPXv2BP831HxgnOyV9Gtv/RdwcZukY5qMUxL6j/oCm7179+rs2bPau5fzEtwE/d+3+8Fohmumt71dVzg3jSvOFeOPfTje2H/jj304/ugDj4++9Ti3ThPfid4+AB5Q68fXpCX98kDyg3GwV9I/HnYmMFZuk3TfsDOBsUF9gc3evXv1uc99btjZwIhZXl7W8vJy0++uXbv12EsuBN1wzdRYVxbV+kdkPy/pFwaTIZhxrhh/7MPxxv4bf+zD8TBufeDgnSFhpznuJmEbxsBXJH142JkAAAAAejY3N6e5ubmm31UqFcXj8QHnCJPh1yW9d9iZAAAAaGrc+sAMhjTX8ztDAAAAAAAAAAAARtkkDOgAAAAAAAAAAABJuxX+jf/dIac3DKHMDHn55ZfDSAYAAAAAJhLXTAAAAMBwhTJANDMzo//wH/5DGElNpv/xndJf2ecU+oo+ZEr62fxHTfGf1edN8ZefMLxo97GSKe0jvm088XLUFC4dOmuLf9iYvnF77eb7nL7Vi7bwcqK/6VsdMuZn1bZ/fd89fc/rd92x8fP9XoO1LlvrwpIxvr/s+9e2vb5va9s8r7/HluedM8Vb829hzUv/Wcve2m72V7/3bT/rQjfpj1JdxmTimqmTn1E471nsc5+yB6PbbhwddgZ64tL3svTVw+JyXgmzToTZDxpGXXXNv0veXPM/7mU2qiiL4QnzOML4450hzYWyDb7vh5EMAAAAAEwkrpkAAAAw6n5P0r9p8d31QWakT0IZDPE8L4xkAAAAAGAicc0EAACAQen2nSEn3vo08yeSZrvO0WgI5Z0hAAAAAAAAAAAAo2oSHvUFAAAAAAAAAADEO0NamYRtAAAAAAAAAAAA6v4xWZ3SHHc8JgsAAAAAAAAAAEw0ZoYAAAAAAAAAADAheExWc5OwDSPvi596QO+L3e4Ue/8TL5nS/uyjn+8mS86mHr7qHLuhhCntyzPGzMSN8WVj/GVj/CHb9h6pPmeKv+zdY4o3M+Zfq+eM8bZw6agtPGXMf8GYf2N+vCeMyRv4/llTvOeVjPHXTPHSkjHear7P6b9ojLfVBd+31U3Ps+anv6z1p588z3bcWo+V/jO2a0b9Lp/RK8/+2mnbC4yacvmdisX2tY0J85wZ5jHv2h6Pajtj7bv0vr5wy8El/8PYR4OuY6Nav1xxTAK9o04DnTEYAgAAAAAAAADAhLhN4d/4n4SBBN4ZAgAAAAAAAAAAJlooAzpTU1NhJAMAAAAAE4lrJgAAAAwK7wxpLpSZIc8880wYyQAAAADAROKaCQAAABguZoYAAAAAQJ9xzQQAAIBB2a3ubvx/WdJXWnz3RvfZGRmTMLtl5H3uxJ9o777mk3B+Ye6gfnHu4IBzBAAAAHRneXlZy8vLTb+7du3agHODSXHixAnt27ev6Xdzc3Oam5sbcI4AAADeNm594G4fk/UP3vo0821Jf6frHI0GBkMG4HOX3qf3xW4fdjYAAACAnrW7MV2pVBSPxwecI0yCS5cuKRaLDTsbAAAATdEHngwMhgzAsuZ0u97nFOv/mWdK+6ps0+0v6JQp/tU9dznH5i4/YkpbBeuo6Yu28EMJW3zZFq4v2cIvey/YFnj+Plv8MWN5rpZs8Zo3xlsZ92+hP7mos9afx/r3KwDP6/OxYnbUFO37trK0b6+N7581xXue7VjxvHOmeCt7+rZj1/eb/yq3Fc/rZ32z1bV+s9YFe93vb93pN2v+rcciALgIs20Ju112S8/tvG09X/fKtSxo29/m0m+w9hXGlUv9CbPuUA/tBr2PdkqbMuhyBRrxAvXmQt2G1157TWtra6pWq4pGo/rJn/zJMJMHAAAAgLHGNRMAAAAwHM1fZGH07LPP6ud+7ue0f/9+TU9PK5FIaHp6Wrt379ZHPvIRPffcc2GsBgAAAADGEtdMAAAAGJTgBephfnYPdAv6o+eZIZcuXdLi4qJOnTqlhYUFHThwoP7d2tqayuWyfuVXfkW//Mu/rAcffLDX1QEAAADAWOGaCQAAABi+ngdDrly5oitXrrT8/vjx45qfn9ev/uqv9roqAAAAABg7XDMBAABgkG7bLb3D9mrqzmn6km6Em+ag9fyYrDvuuMMp7t3vfnevqwIAAACAscM1EwAAADB8PQ+G/Omf/qnOnDmj//Sf/lPT7//jf/yP+q3f+i2trKz0uioAAAAAGDtcMwEAAGCQdu+Wbrst3M/uCXhpSM+PyfriF7+omZkZHTp0SJ7nKRKJ6MCBA1pbW1OtVpMkpVIpXbhwoddVAQAAAMDY4ZoJAAAAg3TbLukdIQ9e9DyQMAJC2YZ8Pq/V1VWVy2VduXJFtVpN09PTikajisViOnToUBirGVurPzqk3dd/yi34sC3tO1+omeLT9z5lir9w/ZQp3uJJ/7Qp/vRM1raCz9jC1foxzs0dKxkXmDemf80W//g+W7wStvDHjPmxShnzUzhnXMFRW/iqdXtfdI70fdu2ep6xrh06a4tf7W9ZelFb6r5vq8ue5172t+JN4ROgv+Xj+8b6ZmLNuy3ezlj3PduxZS1La/r91t+6AIw/rpnai8ezkt7TczrmflMbYbdrnufSv1xyTK1z3sI8T7iWhVv5h3u+HtXzj7XP3z6t8Pb3MMprVPcR3jbofeTepnSu12GmZUlv0GkBCIfTYMju3bsVjUaVSCSUyWT0rne9a1vMoUOHdOjQIaVSqdAzCQAAAACjjGsmAAAAjIrbbrv1EnWrf/6G9M+vN//uh35veRoFToMhvu+rWCzqJ3/yJ9vGPfPMM1pdXdWpU6f0F//iXwwjfwAAAAAw8rhmAgAAwLj7h3tvfZr5wxvSz74+2PyEzekF6tFotGOnXpKOHz8u3/cViUT0yU9+ste8AQAAAMBY4JoJAAAAo+K23dI7bgv3081Mk1HjPBjS6NKlSzp58qR+67d+Sy+//PKm7x566CE9+OCDyufzoWUSAAAAAEYZ10wAAADAaHN6TJa35W2qJ06c0PHjx3XgwAHF43ElEgmdOXOm/lzcTCaj8+fPh59bAAAAABhBXDMBAABgZOySFPZMjpshpzcEToMhzUQiEUWjUT3zzDPbXg4YfAcAAAAAOxXXTAAAAEC4qtVq1/1op8GQYrGoX/u1X1MikdD9999f//v+/fu3deoDkUikqwxNokvvOKEP7XEbivvop561Jf6ELTx35RFT/NTDV51jj+SfM6V9+omsKV5lW7iOlWzxjyf6G3/YFq5j14wLGD12zhb/+Flb/NO2cBWM+UkZ82NVMJb/Iff64HnWffuiLXz1qC3+kK0s/aotec+zHYueZ8y/mTV9Y/kb+b6t/K3l2e/8e14/0583xi8Z4/tb1+z71tgOjjnr9lrLExg0rpn6z6UdcG1bBp3Wrbh9DlFuabnkLcx2M9yyMF5HhWAnnENct3HQdSdsYeZ/3Mti0MJuE0c1rXGuF8PYRxhhu9XDNIgW2swMqdVqWlxclHRrBnSjZDKpUqn5vYxisahEon3fYOsM7FgspnLZeqP4FuciyWQy9Q1JJpMdM3nHHXd0laFJ9OCJH+id+7ym3/2DuT36B3N7B5wjAAAAoDvLy8taXl5u+t21a33+MceI45qpFxfV+vL0r7/1AQAAGI6x6wPfpoENhpRKJWWzWRUKBaXT6U3fVatVVatVZTKZTT8EWllZ0dLSUsf+ci6XUzqd1vT0dP1vnZZpx6lIIpGITp48qW9+85v6wz/8Q33ta19TsViUdKsDn0gklEwmdfLkyfqvntbW1rrO1KT57Us/pg/Fwn5IGwAAADB4c3Nzmpuba/pdpVJRPB4fcI5GA9dMvTop6T3DzgQAAEBT9IFbSyQSSiQS22ZwSLcGSsrl8rYZ0S4DIZKUz+frfeow7HIJOnPmjL74xS+qXC7r5s2bKhaLevDBB3Xo0CGtr68rn89rdnZW+/fv13vf+1597GMfU6VSCS2TAAAAADDKuGYCAADAyAgekxXmp4vf+qfT6aaPhr1w4YJmZmbaLlsoFHTlyhXNzMwol8vZV96E08yQX/mVX9n07+PHj+v48eOSpI2NDV28eFHFYlGlUkkrKytaWVlpOhIEAAAAAJOIayYAAACgs1qtpkqlopMnT7aNKxaLqtVqKhQKKhQKWlhYUD6f7+kxWU4zQ9qZmprSQw89pIsXL2ptbU0rKyv6zd/8zV6TBQAAAICJwDUTAAAABmqXbs3kaPi84UmvqfvP6yFl7eLFi4rFYk1njDTKZrPyfV/lclnpdFq1Wk3JZFLVarXrdYf9GhUdOnRI8/Pz/MoJAAAAAJrgmgkAAACDtrgunRuBV9bl83mdOnXKOT4WiymbzSqZTGpmZqY+Q6QboQ+GBLZOEwcAAAAAvI1rJgAAAPRF8M6QBmf+kvTou7tP8uUfSsf+rKdcqVarqVQqKZvNmpdNpVJKpVI9vXevb4MheNvHvvy89PWYU+yf/7rt12HfeP2IKf5b+qAp/vQL7hXz1XtMSUtPG+MfNsYfNj4/7gFj+nFb+NTDV03xG88ftK3AbN4Wbt1fZsb8FM6Zwn3/rCne8160pV91r2/mH4E+bsu7Hrtmi1+1laUXNeZHR03Rvr/PmL41Pzb2H+3attfzbOVvL09r3S8Z0+/+WZ2d2MvGxpp3a37M7Uif99WosW4vgMlWLs8qFmt/zRTmecElrbDbqTDzH2be+n2+RWuuZR/m/h738y9lMTw7pbzGeTvHOe8YjL27pL09LH97zy/ckEqlkqLRqKLRaFfLJ5NJlUrdXwszGAIAAAAAAAAAwKS4TeHf+Q8hvQsXLiiVSvWUxuHDh7telsEQAAAAAAAAAADQV4VCQeVyuevli8WiZmdnu14+hMktAAAAAAAAAABgJOzSrfeGhPlpM5JQq9U6ZqlQKCgSiTR9NGq1WtX09HT9EViVSkXxeFxLS0ublj9w4EBPM0uYGQIAAAAAAAAAwKRo8gL1UNJsolKp1F+IfvHiRSWTSSUSCUUikU1xFy5c0MmTJ5umUavVtLa2Vh9UiUajOnDggBYXF1UsFhWLxZRMJrt68XojBkMAAAAAAAAAAIBZLBZTNpvtOFCRz+fbprG+vl7/dyQSUbFYDC2PAQZDAAAAAAAAAACYFCP6AvVh450hAAAAAAAAAABgok3AeM7o++KnHtD7Yrc7xZ5+9ElT2nfpVVP8KV0wxV+495POsZe9e0xpy/qum6eN8avXjAtY7TNFb+z9ti35QwdN4VPfvWqK30jZ0lfBWp4v2sIPJYzpnzVFe17JlnzKlh/Pcy8f37fVHS9qCpe57DVvC189Z0z/qCna84zJm7fXlh8r37fWHVv+7ekb676xPO35tx27/WQvGxvrtnqe7djqd1n2Oz+jtr0Ahisez0p6T9uYUW0HrO1ZO8PYxjDXOe5lESaXsnDdxjDTAvqN+gqMiOAF6mGnOeYmYBMAAAAAAAAAAABaY2YIAAAAAAAAAACTYre6uvO//L9Jy/+l+XfXbvaUo5HAYMgAfO7En2jvvuaTcH5h7qB+cc74uCIAAABgSJaXl7W8vNz0u2vX+v2YUkyui2p9efrX3/oAAAAMx07pA8/95VufZir/uxSvDDY/YWMwZAA+d+l9zu8MAQAAAEbZ3Nyc5ubmmn5XqVQUj8cHnCNMhpPq9M4QAACAYRm7PnCXM0M6pjnmGAwBAAAAAAAAAGBS3Kbw7/xPwEgCL1AHAAAAAAAAAAATbQLGcwAAAAAAAAAAgKRbUyDCfqzVBEyrYDBkAL6mn1NFf9Up9snbT5vS3nh9yhR/5xM1U7xNyRZ+JGGMt4XrsRdN4VNvfMAUv/FL+0zxknF7jTa+cdC2gLU8y8btXT1qjLe9bOqI/w1T/GXPVh9UMOb/kHv5eJ7xxVqGtG8xbmvfGfOTOmuLLxuPrdVztnjNm6LN+1e2uuZ51vzb+L6t/O3bO0psddNaNlb9Tr/frHVz3LcXwOC5tDOj3La45M3z3K6pfL9z/8e9Xe7cF3FZ36240S1/F2HWMbf97baPBl2uo5ovjIdxrxdhXm+Ne1kAk4jBEAAAAAAAAAAAJgUvUG9qAia3AAAAAAAAAAAAtMbMEAAAAAAAAAAAJgUzQ5piZggAAAAAAAAAAJhozAwBAAAAAAAAAGBS7Fb4MzkmYGYIgyEAAAAAAAAAAEwKHpPVFIMhAAAAAAAAAADscMt/Ii3/h+bfXbsx2Lz0w1gMhpRKJc3MzGh9fX3T3yuVihYXFxWNRlWr1ZRMJpVKpYYWE4Z937DF/4WZmm2Bz9jC0/c+5Rybe/oRW+KXbeFTX7lqit84nLDF/5Ip3G61ZIt/3JZ/HbtmCvf9faZ47zFb/n3fln/vCVO4Lnv32BbQC8b4F23hq5b4eWPatn1rTt+6rTpqjDcqWLd3yRhvLZ8+p2891h+z7q/+MrclUUvaZ425sfE8a12zpm9s943HorV8PO+cKd6q3/ur36zlM+7bi8k0ztdN5fKsYrFY2xiX49S97XVpc936PK7tQbjtsLH/0IZLv73f55BmhlGug27bh3EucTlGxr3sXfPFuXx4RnkfUS8wMbqcGTJ3161PM5X/JsX/XU+5GrqxGAyZnZ3d9rdqtap4PK5yuVzvNE9PT2ttbU3pdHrgMQAAAAAwTFw3AQAAAK3tGnYGOllYWFA0uv1npLOzs0okEpt+PbSwsLDpAmCQMQAAAAAwLFw3AQAAoG53nz5jbqQHQ0qlku64445t06VrtZpKpZKSyeSmvx8+fFiSlMvlBhoDAAAAAMPCdRMAAADQ2UgPhmSzWc3Pb3/2+pUrVyRp2y+fgs5/sVgcaAwAAAAADAvXTQAAANgkeGdImJ8JmBkysu8MWVhYUCaTafpdtVqVJEUikZbfDzKmkx+9fl3XX/thxzhJeu317X/bu+fWBwAAAOinN954Q2+88UbXy7/+epPOLPpqUq6bXn/9db322mttY6R211TBVToAAIANfeCdYyR7i5VKRXfccUfTZ95K0srKiiTpwIEDTb+v1WoDjenk3x77QseYwJea/O3sP5Q+9z84JwEAAAB0ZXFxUefOnRt2NuBokq6bjh071vb7zo5Juq/HNAAAwE40kX3gYGZI2GmOuZEcDFlcXFQ+n2/5/fT0tCRpbW2t6ffRaHSgMZ38nec/ozvu/ssd4yTpqVd/ddvfmBUCAACAQThz5oweffTRrpd/+eWXQ7ipDVeTdN30/PPP6+67724bMzW12Obbkby0BQAAY2Ai+8AMhjQ1cj3GhYUFJZPJTdOog/8P/ht0pFv9uigajQ40ppN33L5He971zo5xkjR13d/+x+ut4/3/n+eUbuC5e4+Y4u9/4SXn2HT1KVPar+hDpvjLM8ZfepVt4XrYGP/YNVP41BsfMMVv7C2Z4qUXTdHeC2dtyT+esKXv2crHLLXPFl84aos/ZNtexQ3x1rq5ai1LW13oN9831p0ZY/p5W132POuxZXTIVjd9Y3/Le8xWl83l3/m0ttmq9dcz259p35qtLD3Plhff73fdsR2L1vz026jlp9922va2snfvXu3du7fr5W+//fYQc4N2Ju266dixr0h6rm2M77cbDLHxHC6jXM+h1vPPqHE5v7m2kS5lMYz2dhjrHN2y6FyvXev0Tjh3DqMsdkL5D6NN2Qnliu7RB945Rm4wpFQqaWlpqel309PTisVieuaZZyRtf+5s8O94PK7Dhw8PLAYAAAAABonrJgAAALS0W+HP5JiAmSG7hp2Brcrlsnzf3/SZn59XJBKR7/sql8uKRCKKxWIqFoubli2Vbv2i5eTJkwONAQAAAIBB4roJAAAAsBm5mSGuzp8/r3g8rmq1Wp9ynclklMlkFIlEBh4DAAAAAKOG6yYAAIAdqMt3hiz/obT8cvPvrr3ZS4ZGw9gOhsRiMZXLZS0sLCgajaparWphYUHpdHooMQAAAAAwarhuAgAAgKu5D9/6NFP5/0rxLw82P2Ebi8GQ4NdEW8ViMeXz+bbLDjIGAAAAAIaF6yYAAABI6npmSMc0x9zIvTMEAAAAAAAAAAAgTGMxM2Tc/Zy+pvfpdqfY9xw7bUr7Of+IKf6+05dN8d97MuIc+x3dZUr7nM6a4i/kT5nirU57TxqXeNEUvbH3qCn+iG8bbr0ctZWnvmALn/rKVVP8xuWDthUUrtniy7Zws1VbfvzqPudYL2rLytQbG6Z4a12z1mWlEqZwb8aWvAolW/pen7dXxvRXz5nC+59/2/7Sqq38reXj++7HipXvG9tBM1vZW/Pjeba6M+48z1bXfN9YlwGMmbslvXeA6+vcpnueW7vf//PPdi5t6DDy5bLOsM93g16na7kOo/xdWM+/cONSx8KuE27twHj3n8Iss1E9JodhGPUVQ7Bb4c/kmICZIQyGAAAAAAAAAAAwKXhMVlM8JgsAAAAAAAAAAEw0ZoYAAAAAAAAAADApmBnSFDNDAAAAAAAAAADARGNmCAAAAAAAAAAAk4KZIU0xMwQAAAAAAAAAAEw0ZoYAAAAAAAAAADApdiv8mRwTMDOEwZARc/aYLf45Y/pXn5wyxR/89oZz7NkPnDKlnXvhEVO81ZF7jaXz/D5b/LGjpvC0nzPF554wls+XbOF6wBa+8f6DtgUetoWr8KItftUYL9v+0iFbffC8a+7BKVvaG3u/bYo3b6tVwbCtA+D7xn0VPWtbwap1e/tc/kaed864xLwp2lz+5vz0j+8b64KRdVut+el3+v3m+wlT/LhvL4D2yuWfVSwWaxvjeSWHlFz7iJ3P19Z2arA6b6fnuaUU5na6tNXDaJ93wjnB9TzpUhaeZ73WGpxR6ks2civX8PaRe3pux/eoHruwCbuOjeo60V/LL0nLl5t/d+1Hg81LPzAYMgCfO/En2ruv+RPJfmHuoH5xzniTGQAAABiS5eVlLS8vN/3u2rXRGjDH+Dhx4oT27Ws+wD43N6e5ubkB5wgAAOBtY9cH7vKdIXP33vo0U/nPUvyf9pSroWMwZAA+d+l9el/s9mFnAwAAAOhZuxvTlUpF8Xh8wDnCJLh06VLHmSEAAADDMnZ9YF6g3hQvUAcAAAAAAAAAABONmSEAAAAAAAAAAEwKXqDeFDNDAAAAAAAAAADAwFSr1YGvk5khAAAAAAAAAABMigG/M6RWq2lxcVGSlMlkmsZ4nrfp37FYTOVyue0qK5WKFhcXFY1GVavVlEwmlUqlbPluwGAIAAAAAAAAAAAwK5VKymazKhQKSqfTTWNyuZzS6bSmp6frf0skEm3TrVarisfjKpfLisVikqTp6Wmtra21XE8nDIYMwC9/+UvS12NOsf6DXuegBj+lV03x39FdpvizHzhlirdI3/uUKf4u47aevX7OFK8v2ML1/D5TeM6zHaRTb1w1xW+8/6ApXnFbuI4Y4x+7ZotPtW8AtynYws1Wjfm3aD/oHYIXTdG+byt7z+tj2aib/JSMa7CVj5XvnzXFe56xrdK8Mf6oMd7GXv4W1rz3d99a82Ovy9a6YNPffWXfXgBoFI9nJb2nQ1Tndtj1POzS5nqe23nFfZ3htcMu63Q/r3Ruv13zbu0HDYprWQw6/2HmK8y6P6r70VW4+e9vX7oX47yfRvWYHHfDKC/20Qgb4MyQRCKhRCKxbeZHo3w+r2KxaFrd7OysEolEfSBEkhYWFjQ7O9v1YAjvDAEAAAAAAAAAAKErFAq6cuWKZmZmlMvlnJap1WoqlUpKJpOb/n748GFJck5nKwZDAAAAAAAAAACYFLt0ayZHmJ8uRxKKxaJqtZoKhYJmZ2e1f/9+lUrtZ51euXJFkhSNRjf9PZglYp1lEmAwBAAAAAAAAACASXHb9s8bvvTaj7r/vP5md1nJZrPyfV/lclnpdLr+IvRqtdpymeC7SCTS9nsr3hkCAAAAAAAAAMAEW/y30rnfHd76Y7GYstmsksmkZmZmtLCwoHw+3zR2ZWVFknTgwIGm39dqta7ywGAIAAAAAAAAAACToskL1M98XHr0/9R9ki//J+nYb/SUK0lSKpVSKpVSpVJpGTM9PS1JWltba/r91sdnuWIwBAAAAAAAAACACbb3Hbc+3br9neHlJZlMtn1vSDDY0WoGCIMhAAAAAAAAAADsdE1mhoSSZogOHz7c8but7wYJ/h2Px7taJ4MhA1A+EFfsx91iS5+2pZ24smFb4MlXTeF3yT3+9BNZW16Mjjz6nCl+45cOmuKnvnLVFH9qzwVTfO75R0zxd+35hin+8sO27dVjrUdfm0nn/9gUn7ts216zQwlb/JeM6T9gjLdYPWdc4Ghf4z3vmjF9o0P7TOGeZ6ub5rqwai3PJVO059n2r++fNcVb2fevbXvt9dOd79v2ree9aIy31TV7fox12chad+z5sZWnZDwWjfp9rFiN2rEOjL+7Jb2351TCbHtdj1vX9iDMdsDaBvXK9Rzokq+w28NBr9O1jrmU2TDODcOoh+FuZ//6ns2Mct0fVZQFABfFYlGzs7Mtv49EIorFYioWi5qfn6//PZhNcvLkya7Wu6urpQAAAAAAAAAAwOjZpVszOcL8tBlJaPU4q0qlong8rqWlt394WSgUdODAAaVSqfrfqtWqpqenNz066/z58yqVSptmh2QyGWUyGUUiEZdS2IaZIQAAAAAAAAAAwKxSqSibvfXEoIsXLyqZTCqRSCgSiSgajerAgQNaXFxUsVhULBZTMpmsxwdqtZrW1tY2DarEYjGVy2UtLCwoGo2qWq1qYWFB6XS667wyGAIAAAAAAAAAwKS4TeHf+W+RXiwWUzab3TbAId163FWxWOyYdCwW0/r6etO/5/N5c1ZbYTBkAE48Je3b0/y7uYQ0lxxsfgAAAIBuLS8va3l5uel31671+T1UmGC/IanFRZN+XtIvDDAvAAAAm41dH3gMXqA+DAyGDMClR6TYTw47FwAAAEDv5ubmNDc31/S74JnAgN2vK4wXqAMAAPQDfeDJwGAIAAAAAAAAAACTIniBethpjrkJ2AQAAAAAAAAAAIDWmBkyAJ//Pz6md8f+qlPsez592pR2aul7pviNmYOm+CP559xjH3WPlaTL0ftM8a8+/FOmeH3GFr7xtK1s7nr0VdsKrtjCL1+xlY8u28KVSpjCc0/Y4qe+ctUUv7F3yhQvLdnCjx01pm+Mf3yfe+xjfc6LlSXvkvTYOVv8ap+3d7VkTN9qvq+pe16/899vLxrj3fev5xnrWr+PFSPft7WbnmfLv7Xu2PNjCjez718b3z871ukDO025/LOKxWJtYwZ9znRtp1zbA7f03M4Fo9sGhddvCrP83etO537N6Jb94A2jLFz6M2H2MVy3McyyCLvtCUuY5Tqq2zjuXNs663UBxlSX7wxZ/tfS8u81/+7a9V4yNBoYDAEAAAAAAAAAYIeb+8Vbn2YqfyLF/+EgcxM+BkMAAAAAAAAAAJgUtyn8O/8TMJLAO0MAAAAAAAAAAMBEm4DxHAAAAAAAAAAAIOnWFIjdfUhzzE3AJgAAAAAAAAAAALTGzBAAAAAAAAAAACbFboV/5z/smSZDwGDIAPycvqb36Xan2BvGtM9evNO2wC/Ywr0nfPfgy7a0p7571RT/u3s+YYq/Xy+Z4tOPPmWKP/1E1hQ/9bBtezeePmhL/yvG9H/Jlv7ISZ3tb/qFa7b4pw2xjydsaR+2hesBY7wl75Kko8b4F23hKWP5FGzhfc9/39O3mjfGW/O/ZIzv3/b6vq3ueF7JGH/OFG9nK3v79try7/u2dtZcPoeM7fhqv8sfwKiztnvthZdWuOcHt/Ok53WOCbO8XM+Z4e4ja5+knX73t8ZHmPXV2lcYNYPOv2vZh5mvYaxz0MLuo49zWYTbBofLZT+Nc9mPJF6g3hSPyQIAAAAAAAAAABNtAsZzAAAAAAAAAACAJB6T1QIzQwAAAAAAAAAAwERjZggAAAAAAAAAAJNil8KfyTEB0yoYDAEAAAAAAAAAYIdb/lfS8u80/+7aG4PNSz8wGAIAAAAAAAAAwKTo8p0hc5++9Wmm8sdSPNVTroaOwZAB+NyJP9Hefc3nEf3C3EH94tzBAecIAAAA6M7y8rKWl5ebfnft2rUB5waT4sSJE9q3b1/T7+bm5jQ3NzfgHAEAALyNPvBk8Hzf94ediUlVqVQUj8f1ifJjenfsrzot8x7vtGkds/5UFzlzd+cLNefYJ++dNaX9qu4yxV+4fsoUv/F+2yDT1Hev2tLf+21TvFIJU/iR/HOm+M/rs6b4z+rzpvjLT9xnitdjxhPBoeYXvy09bAvXZWN8wXoie9E91FgXzArnjAvM28JTxn1lZS77pb5k421Hxzx9a/nY8uP7tvrseaU+pm2t+9ayNxznXel32fe3fPqdH98/a4rHcAT933K5rFgsNuzsYAwEdUb6XyS9t0N053bYta1wa4PCPkcPOv9uXNbpfv4O71w5qu3+oMsew+Va9639ILhxOd44jjAKRqkPXM/Lv5ZiPx1y2n8sxX9RI7Gd3WJmCAAAAAAAAAAAk4IXqDc1AZsAAAAAAAAAAADQGjNDAAAAAAAAAACYFF2+QL1jmmOOmSEAAAAAAAAAAGCiMTMEAAAAAAAAAIBJwcyQppgZAgAAAAAAAAAAJhozQwAAAAAAAAAAmBS3Kfw7/xMwkjABmzD6vhr/hKQPO8X6x06b0r5qzMtZnTPFp+99yrgGd7knHrEt8Ng1U3jat+Xdmp+pN0zh2njaFn85ep8p/v7VZ2wreH6fLd7qcVv6Uw/bavOpPRdM8eb6VrCFK5UwpG2ry1NvbJjiNwrzpniljHXBmH9pyRb++Flb/NO2eL9qS97K82ztrHTUGP9in9O38byScQn3/HueMem+l6WV7Vj0fduxaK1rvm88tvps1PJjrcu+b2j3AXRULv+sYrFY2xgvOtjjzvU4t5/7exdmG+qSf9f1eV7nc6t7Wm7lOvjziWt/o9/9jM1Gt7zG204534fZDoS1vklYJ4DRw2AIAAAAAAAAAAATwt8l+SG/48OfgBduMBgCAAAAAAAAAMCEuLFbutHFnf//5bz0xfPNv7v2w97yNAoYDAEAAAAAAAAAYIf7Hx669Wmm8rL0s8cGmp3QMRgCAAAAAAAAAMCEuNnlzJBOaY67CXjSFwAAAAAAAAAAQGvMDAEAAAAAAAAAYELc2O3pzd1eyGn6kvxQ0xw0ZoYAAAAAAAAAAICJxsyQASj/3aOK/bhb7LmnbGkf9TZM8a/4HzLFf1Dfco5N354zpX36x7Om+Cf906b4C/qkKf57j0ZM8e+//l1TvC7bwvUlW/jUPba6sPH0PtsKRswrstVlPXbNFn/IWD5lS/CLpqQ3filhitfjtnA9VrLFp4z50VlbeJ/z43nGupCyHitHbeHGuuZXrdt7zhRvzb/vW/PTz7Rtdcf3bXXTXHe0ZIy35ceef1tdsKY//mxts2RtC/uHfYtJEI9nJb2nQ9R8x3Q8z9r2hsHt3Gk9rw2KS5vg3s4Y+0FtuLZV9r5OOy75dztfhNnWumyje3l17i+FXVcHvU7XOsH58G2DLothlD37e/Rx7Ibrxu7dunFbuPMgbuy+KenNUNMcNGaGAAAAAAAAAACAicbMkAE48fvSvhYlPfchae5nBpsfAAAAoFvLy8taXl5u+t21a9YZVEDgolpfnv71tz4AAADDMW594Ju7d+vG7nDnQdzc7WncZ4YwGDIAl/62nB+TBQAAAIyyubk5zc3NNf2uUqkoHo8POEeYDCfV+TFZAAAAwzFufeAb2qUb2h1ymuOPx2QBAAAAAAAAAICJxswQAAAAAAAAAAAmxA3t1pvMDNmGwRAAAAAAAAAAAHa4f7H8hv7F8vWm3/3wmj/g3ISPwRAAAAAAAAAAACbETe3WjS5u/f+9udv09+Z+rOl3r1Te1N+Kb/SataFiMGQA/h//10/o38fe7RQ7/9s5U9pLP7Dl5aXT95vir/22e+y+w7a8PPn1WVP8I6dtZfPIy7Z47zdso5tP3mvL/9mvnDPF37XnO6b4yy/cZ4rXZVu4PmOMP3bNFv+wLfzyjG17p964aorf2GsK19Qb7ieDjV9KmNJO558yxWf1iCnee+yoKV5lW7hWjXXBqmBM/9C+/uSjW6slU7jnGfeX+hvvedb9656+59nKxp53a/ovmqJ9/6wp3pof37e1JfbysZ237OaN8dbyt5WPdX+NknHOO2DTuR0I83gIux30vPDy75I397Ss58PBGE6+BlvHXLms07W+hpmWK7d1uu1vl/P7MNoBzsU2lCuaYX9jEBgMAQAAAAAAAABgQtzQLt0I/Z0hN0NNbxh2DTsDAAAAAAAAAAAA/cTMEAAAAAAAAAAAJsStd4aEOzPk5ojMDKlWq4pGo10ty8wQAAAAAAAAAAAmxM23HpMV5udmm6GEWq2mhYUFLSwsNP2+UCgoHo/L8zzF43GVSu7vBvM8b9NnZmbGXB4BZoYAAAAAAAAAAACzUqmkbDarQqGgdDq97fulpSUVi0XNzs5qZWVFS0tLSiaTKhaLSiQSbdPO5XJKp9Oanp6u/63TMu2M7GBIoVDQ4uKiKpWKotGostnstg2tVCpaXFxUNBpVrVZTMplUKpUaWgwAAAAADBLXTQAAANjqTe3SmyE/JuvNFjNDEomEEomEPM9r+v03v/lNFYvF+r9PnTqleDyuTCbTcWAjn89vWrZXIzkYksvlVC6XlclkJEkLCwtKJpNaWVmpPw+sWq0qHo+rXC4rFotJkqanp7W2tlYfgRpkDAAAAAAMEtdNAAAAGGWlUqneVw3EYjHFYjFVq9W2yxYKBV25ckUzMzNKJpOh9Cc93/f9nlMJ2dLSkubn5+v/rlQqisfjyufz9V8VJZNJSdo0MpTL5TQ7O6tgkwYZ00yQ70+UH9O7Y3/Vadvf4512iuvW2Vds8ZH3fc859nf3fMKU9n1/87IpfvbrT5riX9GHTPFWr17/qb6mf27PWVP8BX3SFH85ep8pXl+yhU/dc9UUf9ee79hWYHR5xri9nzGu4AuG2MI1Y+JGz++zxV8xpv+YMf+HjPnpt7gxvuD+HMtbXrSFP2471mVrOqWyLdxv3xfZxrO+s2zVUJ4p49TXwjlbvOY7hzTwfVtd9jxbfnzfVhf6nf6oGbXtHbX8jIqg/9t4Mxz9MwnXTZY643kO55BDjueOVes5Y9Qc7Rjh+25lYW3P2q+zc1vnuj7XdtMlvTDb4EGXl+s63dNy6csvOaXlrnN9Nfeh2xj3c+5w6phLvXDbR65tz6gadJvialTzhVtGqQ8c5OVi+a/ortjeUNN+tfKGTsb/c8vt9DxP6XRa2Wy2Y1rxeFwHDhxoO+tjdnZWuVyu/u9IJKJ8Pt/TY7JG8gXqjR166daGSqoXcq1WU6lUqne2A4cPH5Z0q8M9yBgAAAAAGDSumwAAAODq+hu+Xn/tZtefP3/9Zmh5qVarHV+Ens1m5fu+yuWy0ul0/RGsnWaUtDOSj8naqlAoKJPJ1Kd6X7ly62fMwb8DQae/WCzWvxtEDFO+AQAAAAwb100AAACQpJvapRtb3hmSW/y+vnhubUg5eluhUFA0GnXuG8ZiMWWzWSWTSc3MzGhhYUH5fL6rdY/8YMjCwoJyuZzOnz9f/1sw+hP88mmrarU60JhOfvT6dV1/7Ycd4ySpWdRtGoMdBQAAgLH3xhtv6I033uh6+ddffz3E3MBi3K+bXn/9db322mttY6QftPnuHZL2dFgeAABgu53SB/6/nDmgTz+6v+vl/98vv6H//th/7jkfi4uLXQ1mpFIppVIpVSqVrtc90vfYl5aWVK1WVavVNDMzo2w2q3Q6rZWVFUnSgQMHmi5Xq9UGGtPJvz1meZnAdsckGd92AAAAAJgtLi7q3Llxf5fCzjMJ103Hjh1r+31nn5b093pMAwAA7EST2Ae+0WRmyO69u7Wvh9eI7L39Ro+5uvUDnvPnz2+bTewqmUyqVLK+2/VtIz0YEjwDt1QqaWZmRplMRul0WtPT05KktbXm03qi0ehAYzr5O89/Rnfc/Zc7xknSwalf3fa3kd5JAAAAmBhnzpzRo48+2vXyL7/8cgg3tWE1CddNzz//vO6+++62MVNTz7X59h1tlwUAAGhlEvvAN7Rbb24ZDAkjzV7kcjklk8meXzIfvJOuG2Nxnz2RSCidTmtpaUnS2x3pVr8uikajA43p5B2379Ged72zY5wkuUUBAAAA4du7d6/27u3+52K33357iLmB1ThfN91+++1617ve1TZG+rEO3wMAANjRB+6/QqEg6VZ/tVGlUjENjhSLRc3Oznadj7EYDJGkj3zkI/UOdDD6s/W5s8G/4/H4QGOG6ey/tMU/94Ejpvjat+90jvW+5pvSfvLrtor7ij5kire67NmmeqX9C6b4C9dPmeJPyZb+h/SKKf7++EumeBmf9vbde99vir/zhZptBceu2eIft4WbFYz56Sdj2Rzxv2GKv/zYPaZ4rRqnmj5+1hZ/2RZu96ItPGXM/2PG6Z2HEp1jGq3a0vc84/ZaHTKUT8E6TfmoMd62rV7UVva+b6sLnmfbXmv6o2bct3fU8gMExvW6KR7PSnpPh61zsOoaOO8QE+450fc7n0fc28bOeXM9p7u0Z9Y2uz3r+bq9MNtjz3PpR7vl321/u/XTwj3nLA14fW71h/Pq21zLItzjsnN74VKnR5lreQ26LoaZr3DrhBuO3dF1U7t1I+Rb/zfbzAxp90jUUqmkxcVFzc7OKpfL1f9eLpcVj8cVi8VUrVaVTCaVzWaVSCRUqVT00EMP6dSpU/VZ0IVCQQcOHFAqlep6G3Z1veSAVavV+shRJBJRLBZTsVjcFBM8L+zkyZMDjQEAAACAUcB1EwAAAAapUqloYWFBknTx4kUVCoX64EilUlEymVSlUtHs7OymTy6Xq/cRa7Wa1tbW6stFo1EdOHBAi4uLSiaTWlhYUCQSUTab7SmvIzczpFar1Ud9glGearWqYrG4qWN9/vx5xeNxVavV+i+fMpmMMpmMIpHIwGMAAAAAYFC4bgIAAEArN7S753d8NEuzmVgspmw223SgIhaLyfc7P00oFotpfX29/u9IJLLtRzZhGLnBkEgkUu/YZ7NZJZNJRaPRbRsfi8VULpe1sLCgaDSqarWqhYUFpdPpocQAAAAAwKBw3QQAAADYjNxgiCTnUZ9YLKZ8Pj8yMQAAAAAwKFw3AQAAoJmb2hX6zJCb4/PGjZbGfwsAAAAAAAAAAADaGMmZIQAAAAAAAAAAwO5GH2aG3JiAeRUMhgAAAAAAAAAAMCFuaLfe7GIw5N8s/xf9m+XvNf3u+rWbvWZr6BgMGYCvVv7P0usxp9iiTpvSfu5TR0zx9335siled7uHPvnorCnpV3WXLS999j0/ZYp///XvmuI3vnHQFP+de23l8y190BSvz9jCn7zXtn+t5aMv2ML1+D5T+JFHnzPFX/ZumOKVShgyY0t66uGrpviNX7LVtcvePaZ4HbKVvXTWFv60MfnVknGBo7bwQ8b8F67Z4h831B1Jesy2vb5vS9/zjOWjJVv4qrF8RohftcV73jnbAsa6Zk3f9/ubvjRvjLfWNRt7/m2s5QmgvXJ5VrGY2zVTO140hMwEVt3CXM+1/W6XtnJtpwafr8GXl3ub3blfE2b7b+2nhbPO8PIf5j4axv4eTh0Lj8s6Xbdx0GmFaVTz5SrM+jqM43vcyx/b/fzce/Tzc+9p+t1/qLyuufjLg81QyBgMAQAAAAAAAABgQtzUbt0I+db/zZAfuzUM4/+gLwAAAAAAAAAAgDaYGQIAAAAAAAAAwITgBerNjf8WAAAAAAAAAAAAtMHMEAAAAAAAAAAAJsStd4aEOzOEd4YAAAAAAAAAAACMOGaGAAAAAAAAAAAwIW5ol97knSHbMBgyAAc+f0zv2Ne8qP+7uZ/W35j76fq/XzSmfdS7bFvgmC289Lx77Cn/gintO1+omeKfvHfWFP/Il3Om+NlPPWmK/909nzDFf+veD5ri73/hJVO8rtjCrc7ec84Uv/GNg7YVHLGF67FrpvAPPvotU/zl1COmeIuph6/2LW1JUqFkXOBoX7JRt2rMz/MJW/wDxvi4LVwFW13T4/ts8Y9Z95eN5/U3fbNDlvI5a0t71bivtGSK9jzzWdoWbj1WjPpfF6zlY4u3lr/vG+tPn3me7Tw6avlvtLy8rOXl5abfXbtmPQ6BW06cOKF9+5qfI+bm5jQ3N+d4HM07rtHlHODWjluP73Zcj32XdQ4jX2EKsyzc9blf3Eeu5RDmvhzlc5WLMPMfZj/L943XN23TGu/9He7xHZ5htK/h1tfO+R/347sfxq0PfEO7dSPkW/9hP3ZrGBgMGYB/cOnn9Fdj7x52NgAAAICeBTemm6lUKorHraPOgHTp0iXFYrFhZwMAAKAp+sCTgcEQAAAAAAAAAAAmBC9Qb47BEAAAAAAAAAAAdrivLVf1teXVpt9dv3ZjwLkJH4MhAAAAAAAAAABMiBva1dXMkONz79Xxufc2/W61sq7/Kf5sr1kbqvF/BTwAAAAAAAAAAEAbzAwBAAAAAAAAAGBC3NBuvRnyOz7CfgfJMDAzBAAAAAAAAAAATDRmhgxA9kez2n39Q06x/6NyprRfNOblxeeNC1jS9jZM8f4jnineO/bnpvgP+a+Y4i9cP2WKf2WP2z4NfFUfN8Wf/kLWFK/CNVt8ap8pfEMHben3na325554xJa8tTwfdy/PjV8ylmXZFq7nbekfufc5U/xl7x5TvA4lbPFfsIXrYWP8ZWP8IduxoqeN6T9vLJ9jJeMKrI7awq37d9WQf2vaI8dYllrqSy5Gl618fN9WHzzvnDH9s6Z4q36nD+wM8w4xrn1El7QG3y57Xr/P8810LgvXNtWlrbO2z+Gs07Vcrefu3tbpem5zKbMwzzNh7u9b6bmUv9uxO4w65iLcfIVXL1wNuv6Eub5h9LHc6354+2jQ5eoq7PYC4bmp3boR8q3/mxMwM4TBEAAAAAAAAAAAJkS3L1DvlOa4G/8tAAAAAAAAAAAAaIOZIQAAAAAAAAAATIhbj8kKd2bIJDwmi5khAAAAAAAAAABgojEzBAAAAAAAAACACXGzD+8MuTkB8yrGfwsAAAAAAAAAAADaYGYIAAAAAAAAAAAT4k3t1ptdzAz598t/rP91+Y+bfveja2/2mq2hYzBkAA69Y1W373nHsLMhSfoD/1lT/Me8+/uUE0mHbeH+sb9gW+DbtvCND06Z4i+n7jPFfyd/lyn+2fxHTfH3P/GSKV6XbeFTD181xZ/bc9YUf/b6OVP8hhKmeP/HPVO8p6IpXodt+TE5Yoy/Ygu/fOwF2wKP2+r+kUefM8VfjtrSN7OWZ+GacYEXbeHHjhrTt8X7/j5TvOcZt3e1ZIs3lY/1uDKWvVm/y96avq18PM/Wzvq+rR3vd/pW/U4fQLji8ayk93SImu+Yjmvb6Hmdz1+u7Yh7++fSzod3LguzHfRsXekOXM93YZ7XXdNyiXMt185peV6/+y7N1tm5voZd913SG0ZZhGkY5epiGP0ht/0dXt0Zd+EeR27XZjuhXNG9vzH30/obcz/d9Lv/T+X7ejz+1QHnKFwMhgAAAAAAAAAAMCFuarduhHzr/2bI7yAZBgZDBuBPTnxOu/btbfrdwblf0MG5XxxshgAAAIAuLS8va3l5uel3165ZZ9MBgYtqfXn619/6AAAADAd94MnAYMgAvO/S53R77H3DzgYAAADQs7m5Oc3NzTX9rlKpKB6PDzhHmAwn1fkxWQAAAMMxbn3gG9qlGyHP5LihXaGmNwwMhgAAAAAAAAAAMCFuPSYr3MGQSXhM1vgP5wAAAAAAAAAAALTBzBAAAAAAAAAAACbEDe3Smzwma5vx3wIAAAAAAAAAAIA2mBkyAK9UPiK9HnOK/Vif8/LSl+83xV/7MffYfd8wZua3beHPff2IKf5b+qAp/nv+nab4szpniv/49a+a4je+cdAUn370KVP8XXrVFP+q7jLFW53bc9YUf1pZU/zsp540xeu/Jkzh6Xvdy//CPadMaW+831YXpr571Zb+07ayn3rYlv7lF+4zxWv1mjHeFq7Ci6bwZ/1fN8XfP/OSKV6Fki3+kK1uep4x/edt6esBY/yqofxX+1s2ihvjjfvKi9qSl2x10/Ns8b5vO9Y9z3aes6dvPNaN5eP7xv0LYPQd2tcxxLVtcWkjXM+h1vav/Tod27pDndfp3gewta/hrLOzMMs13H1kOz+245qvQa8zzPXdSi+8euHCvVxd8hXe8eFqGPUiTC75GsYxOe7tgFtag+//hpl/hOuGdutGyLf+w34HyTAwMwQAAAAAAAAAAEw0ZoYAAAAAAAAAADAhbmp36DM5bjIzBAAAAAAAAAAAYLQxMwQAAAAAAAAAgAlxU7u6mhlyZfmbKi9fafrdm9fe7DVbQ8dgCAAAAAAAAAAAE+JGl4MhH567Rx+eu6fpd1cr/0X/93iu16wNFY/JAgAAAAAAAAAAE42ZIYPw0A8lXetL0meP2eKf+9QRU/x9umxbgcFTT6ZN8R/SK32Nt7pw/ZQpfuOXDprin81/1BT/8etfNcXftec7pniru/SqKf6CPmmKn3r4qin+k7pgir/rUVv+Tz+RdQ8+bEpaU9+1batZ3Ba+8Q1bXVbz2ZWtpfbZ4svG9L+UMIXf771oSz9lC1fKlh/ZmnHpMVv41D22+raxaqj7ZsayXz1qjF+yxT9+1hb/mPXcb8y/keedG+v0fd9Y/gDGSrk8q1gs1jbG88K7pvK8UuegQ8ZzdAhc2zq3NnfebaUu27nq2sa7nMvczr+e57hKa3+hZ67n6/DyFeY50Iu6RLlto++HeYwM43hzWWd4+XLtK7nub5e4fvfP+i3M/IdZ/uG21W5c0qK/jEY3tFtvhvzC87BfyD4MzAwBAAAAAAAAAAATjZkhAAAAAAAAAABMiJvarRsh3/q/OQEzQxgMAQAAAAAAAAAAXanValpcXJQkZTKZbd9XKhUtLi4qGo2qVqspmUwqler8nPFul2uFwRAAAAAAAAAAACbEDe0K/R0fN1q8caNUKimbzapQKCid3v6O6Gq1qng8rnK5XH9H3PT0tNbW1prG97pcO7wzBAAAAAAAAAAAmCUSCeXz+Zbfz87OKpFI1Ac0JGlhYUGzs7Nt0+12uXaYGTIQvyTpnS2+S0v65QHmBQAAAOje8vKylpeXm3537dq1AecGk+LEiRPat29f0+/m5uY0Nzc34BwBAAC8bdz6wLfeGRLuzJBu3hlSq9VUKpW2PTrr8OHDkqRcLtd0lke3y3XCYMhAfEXSh4edCQAAAKBn7W5MVyoVxePxAecIk+DSpUubfvUHAAAwSsatD3xDu/TmgB6T1c6VK1ckSdFodNPfg35fsVhsOqjR7XKdMBgyCO95p7S3+a+ctlm1JX3ueWNevMum8Pv+pSEvH7RlZda/YIo/+OUN2wqMzn3aFl87dqcp3vsN3xT/U3rVFH/Xnu+Y4l/69v2meO/nbfn/avXjpvjTM1lT/JH8c6b4+194yRQ/dc9VU3w/ndtz1hR/2puxreDQQVv8FVv41MO2styQMT9Wx6y/2Jg3RVvr5uXofaZ4HbGFW23s/bZtgUO2+qnVc4bgo7a0Dzmea9/iV2159zxL3iVz/s3xS8Z4o5StfPzWs6JD0e/y9/2EKd6aH983HisAuuTaNjqc31dLTil53ouO6xw0x3ytusS5tqlhnpvc8u/Svrq32S79Ptdt7FxmrvkKcxvdzkdu58Rw1+nG3h9op/M+cu0fhJkvz3Nre1zy5lr2Lvkf5/0o2ft6YRj8sevGrY6F1wZjdNx4403deOPNrpf/0evXzctUq1VJUiQSaft9WMt1wmAIAAAAAAAAAAAT4oZu040tt/4ri3+gPzz3/xxoPlZWViRJBw4caPp9rVYLdblOGAwBAAAAAAAAAGCC/cyZn9MHHrU9KabRf3v5P+vfHXvKtMz09LQkaW1tren3Wx+D1etynTAYAgAAAAAAAADAhLipXdtfoL53t3bv7T7N3bf/BfMywaBFq5kcrQY1ul2uE/tbTwAAAAAAAAAAANo4fPiwpO3v+Aj+3erF890u1wmDIQAAAAAAAAAATIgbb80MCfdjH0qIRCKKxWIqFoub/l4qlSRJJ0+eDHW5ThgMAQAAAAAAAAAAXWn3QvPz58+rVCptmuWRyWSUyWQUiUQk3ZrxMT09XR/scF3OineGAAAAAAAAAAAwIW6+NZsj7DSbqVQqymazkqSLFy8qmUwqkUjUByxisZjK5bIWFhYUjUZVrVa1sLCgdDpdT6NWq2ltbW3ToIrLclYMhgzCKUl/xTH2sX5mxO65Tx1xjp391KumtA+e3rBmx+ZlW/jZR2zxV5+cMsV/TxFT/Puvf9cUf2rPBVO8ftsWnq4+ZYr/hH7XtoLP2MJfvf5TtgUesIVvfOmgbQGLB2zhp+NZ2wIpW7jcD/Nb4Y8+Z4o/pd8xxZ++bNxesxdt4amEKfxy9D5b+l+yheuKLdz3bfn3nrClP/XwVVP8xvvPugevnrNlRsZt9a4Z0583xhul9tniC/3JxtvpW8vfsG8Hwnase54t3vdHbXuByef7ndtJz3Ntqzsf867nUM9zW6NLeu7npiWHGGOfJxRHO0a4l2upc1DoXMp1NLmel9zKNdy643kufYrOdcfVMM7RLut0Kwd3Lum5lkWY+XdJy72+umyj7RogDO7t0zDa4c7cyizccg2zvsLNDe3SmyEPhrR6TFYsFlM2m60PiLSKyefzbb9fX183L2fFY7IAAAAAAAAAAMBEY2YIAAAAAAAAAAAT4tYLz8O99R/2Y7eGgZkhAAAAAAAAAABgojEzBAAAAAAAAACACTHIF6iPEwZDAAAAAAAAAADY4arLX9Pq8teafnfj2vUB5yZ8DIYAAAAAAAAAADAhbmhXVzND/trc39Jfm/tbTb+rVar69/Ff7TVrQ8U7QwAAAAAAAAAAwERjZsgg/NO/LWlPiy9/XtIvDDAzNje8y86xUz9mSzuy9j1TfO3n7jTFP/X1tCn+Q3rFFH/fafeykaTZJ580xZ/bc9YU/8jfzJni9aAtPBd9xBT/vWrEtoJ7beHvv/5dU/yT1VlT/Nnr50zxGw8cdI49Un3OlPbn9VlT/Gf1eVP85Zn7bPFPGOMP2+KnvnLVFL/xfveyl6Qjvu2XEadkqzunn8ia4vWALVxxW7jnXbMtkNpnCt94zLi9mjfkxdYOqmwLt26rNX2/aos37ytLWUryfdv2el7JGG/N/5Ix/qgx3sb3E6Z4z7OdJ0aJ7xuPrS2Wl5e1vLzc9Ltr16z1ALjlxIkT2reveTs1Nzenubk5t3bpkOux3DnOizom5cjarrbT63HcyC1fL4a2Ppeyt6zT8zrHuZaX0z5fdW3/wyszt3NOmOdJ17TcttGl/N2Pj/C206Xv4tp/csm/cz107mP0t2+0Uw26jxd+vQiLW/1y7UOHed4alnHrA9/Qbr0Z8js+wn4HyTAwGDIQvy7pvcPOBAAAANCz4MZ0M5VKRfG4cdQWkHTp0iXFYrFhZwMAAKCpcesD33qBeri3/ifhBeo8JgsAAAAAAAAAAEw0ZoYAAAAAAAAAADAhun2Beqc0x934bwEAAAAAAAAAAEAbzAwBAAAAAAAAAGBC3HpnSLgzQ3hnCAAAAAAAAAAAwIhjZggAAAAAAAAAABPihnbpTd4Zsg2DIQNQLv+sYrGYU+w5r8+Z6aOlH9jia/N3muJLz9vST9+eM8XvO2xL/7mvHzHFZ7992hTvrfmm+FNfv2CKv/OFmin+e9WIKf6CTpniz14/Z4r/3T2fMMXfH33JFJ+uPmWKV9UWbnHf6cum+Ms/cZ8pfuorV03xG984aIrXA7bwjbgtfeu+unDdVjcv7PmkKV623aUj1edsyUdt+1fP77PFP2AL1+NnbfGPXXOPLZSMeUn0Ly+SpBdN0d6MMT8p474q2NpNzztqS1/WeFv52NO3xi8Z4437y8j3jccKgO1c2nnX87D1HNOWY/t0yKGdX3XLl+fZzgHtdc5/mG2Ya96HsU5pPrR1Okk5bqPTOd/tPBzu+Si8c6fvu6Xlti/d0vJ9Y9+rLZfydy0vtzbFpczCPd7c8uV5Lu3YMOqrm+G0PYM17m26i1HNF4aPwRAAAAAAAAAAACbEDe3WjS5u/V9d/te6uvx7Tb+7ee2NXrM1dAyGAAAAAAAAAAAwIbp9gfpfmjuhvzR3oul3P6j8if44/lCvWRuq8X/QFwAAAAAAAAAAQBvMDAEAAAAAAAAAYELc1K6uZoZ0SnPcjexgSKFQ0OLioiqVimKxmDKZjBKJzS+HqlQqWlxcVDQaVa1WUzKZVCqVGloMAAAAAAwS100AAACAm5EcDFlaWlKxWNTs7KxWVla0tLSkZDKpYrFY79hXq1XF43GVy2XFYjFJ0vT0tNbW1pROpwceAwAAAACDxHUTAAAAmrnR5TtDOqU57kZybss3v/lNFYtFpdNpZTIZlctlSVImk6nHzM7OKpFI1DvZkrSwsKDZ2dmhxAAAAADAIHHdBAAAALgbuZkhpVJpU+ddkmKxmGKxmKrVqiSpVqs1jTt8+LAkKZfL6eTJkwOLmeRfOb3Yx7Sv/bYtfrd/xBS/729etq3gaVv4T+lV2wIv28KLn/ZM8Wf9J03xT95ruyg9q3Om+HM6a4o//Y2sKf5+vWSKn/ruVVN87oVHTPG6Yog11rVXqh+yLTBjC9/QQdsCxvwrboz/jC085xnb4Of3mcIvXzGWj9HlmftsC6xeM4VP3bNhijfXh8O2cGnJuoC7x47a4lO2uiAlOoc0KtjaTcmYf82bon3ftr2esS1RwRbu+7by9LySbQXG8gHGzY68bnrM4Rx4yLWtc2lzXc9ZjldNq53X6do2el6Y+e+clue59j/CO8+7t/su5e96ju1jP6UZ576CS/7d6qHnWfsnvfN927XhoNJyqWPW/kqv67Os02VfupZXmPXCZZ2eF159DbNODGudLga9Ttc6MYyygJsb2qU3Q58ZMpLzKkxGbgsSiYSi0WjT74K/X7lyZdO/A8EvkIrF4kBjAAAAAGCQuG4CAAAAbEZuZkgr1Wq1Pr06+KVTJBJpGTvImE5ef/11vfbaax3jJOmHTf52m8ZoRwEAAGBsvfHGG3rjjTe6Xv71118PMTfoxrheN7ldM7WbnbD3rQ8AAIDNJPaBb70zJNw7ypPwzpCxuMdeKBQUjUbr06pXVlYkSQcOHGgaX6vVBhrTybFjxzrGtF1ekvEhKgAAAIDZ4uKizp0b/CNUEI5xvm7q9ZpJ+jVJ/7jHNAAAwE40iX3gm314gfpNBkMGY3FxUfl8vv7v6elpSdLa2lrT+Gg0OtCYTp5//nndfffdHeMkaXFqatvfxmInAQAAYOydOXNGjz76aNfLv/zyyyHc1Ea3xvm6yeWaaWqq08wQAAAAO/rAO8fI32dfWFjQ+fPnN3Weg/9v9euiaDQ60JhObr/9dr3rXe/qGCdJ73SKAgAAAMK3d+9e7d3b/U3l22+/PcTcwGLcr5vcrpne0eF7AAAAu0nsA9/Urq5mhmws/yttLP+rpt/517p/lNioGOnBkFwup2QyWX/pXuDw4cOStj93Nvh3PB4faAwAAAAADAvXTQAAAAjD1Nzf1dTc32363RuVV/Wf4ycHnKNwjexgSKFQkCQlEolNf69UKorFYorFYioWi5qfn69/VyqVJEknT55UJBIZWAwG474vX7Yt8LRxBb9tCz94eMMU7/2Eb4pP+0+Z4l/Rh0zx53TWFH/w27bt1cu28Cc/NWuKf+TLOVP8c/ceMcXfr5dM8c8++lHn2N959JQp7QvXbfFH8s+Z4j+ob5niX3nUVtcue/eY4qV9puhn/eOm+G/pg6b4V++9yxSfiz5iik9Xbce6Nf2Np23lqdV2jyBp4ooxfYvHbe2Uud23NQvSY8ZnyD5vzP8xY9lryRTtecbkU8b8G3leybjEi32Nt5aP7/e3fABXO+u6yeG4XnU79l2OYc+b7xhzi2t7c9Rhna5to8s6XfNvO5+041aubtvo+4nOQZIk17jOvGjntPxqx5Ch8Lww675bn8f1XOiSnntaneuPa91xiQuzLOx9nzDWGe6+DEuY6wu7TQm3HRvffTTuKC/pTe3S7pDf8fGmdoWa3jCM5GBIqVTS4uKiZmdnlcu9fcOzXC4rHo8rFovp/Pnzisfjqlar9SnXmUxGmUxGkUhEkgYaAwAAAACDxHUTAAAA4G7kBkMqlYqSyaQkaXZ2+y/F19fXJUmxWEzlclkLCwuKRqOqVqtaWFhQOp2uxw4yBgAAAAAGhesmAAAAtHJTt+lGyLf+b47eUILZyG1BLBaT77s9TigWiymfz49MDAAAAAAMAtdNAAAAgM3IDYYAAAAAAAAAAIDu3NQu3Qj5nSE3eWcIAAAAAAAAAAAYFTe0S7tCHgy5MQGDIeO/BQAAAAAAAAAAAG0wMwQAAAAAAAAAgAlx8+Zu3bgZ8mOyQk5vGBgMwdg492lb/FFj+ol/aVzgblt48YOeKX63f8QUn/2bp03x3s+7vXCzW88++lFT/Nnr52zxJ23xGy8cNMVbfUsfdI49p7OmtM/tscUfPL1hivc+YasLT947a4p/9Y2fMsV/d8+dpvg7ozVTvFavmcKn3rCVZ7r6lCk+98IjpnitlmzxShjjjQ4b45+31ee+eszWjuiQMe9fsIXbzRvjX7SFF2x1zfdtdc3zbMeiOf/W/WVsGzzPWH/6yPdH6LgC+ulxh3bmabe2yHvCIejQPqe0nM+1qy7thutVjMs5YMkxLZd1uuXLrW20Xqn1vk7ndtJpH7mlFW5ZdD4Hum7jcM5fnbczzHx5zpfeYZartV/Tu1Drfkjrc13nMOqh57n2JTvXV9d+b5j7yIs6BDm1YePfdxx03cdkYTAEAAAAAAAAAIAJcePGLunNkN8ZcmP837jBYAgAAAAAAAAAADvcG//8X+j6F/9F0+/8H/5wwLkJH4MhAAAAAAAAAABMiBtv7pbetN/6v+2hh3TbQw81T/MP/0jX/rs+P4q7z8Z/bgsAAAAAAAAAAEAbzAwBAAAAAAAAAGBC3LyxO/R3hty8EW56w8BgyACcOHFC+/bta/rd3Nyc5ubmBpwjAAAAoDvLy8taXl5u+t21a9cGnBtMCq6ZAADAKKMPPBkYDBmAS5cuKRaLDTsbAAAAQM/a3ZiuVCqKx+MDzhEmAddMAABglI1bH/jGjV3yQ58ZMrg3blSrVUWj0dDTZTAEQ7P0A1v82WO2+GtXbPHnPm2Lt4r4aVP8I9/O2VbwtC3cf9gzxT/39SO2FRhtPH3QFH/k0edM8V+99/2m+LM6Z4r/kF5xjr3zhZopbT1gC/f/jW3fPvmBWVP82eu2srlrz3dM8dbySVefMsV/UhdM8fdHXzLF5/SIKV5fsoVLR23hl63pL9nCr5w1hU89fNWWvsGGbO2IHrflXY/Z6r6+ZEy/3PwX0S09bAvXY8a6Y+R51l9D2eqa7xvL08xW/p6tqZX12PV99xcTep6tbva/LIE+MfZ32zrsELNackrK9Xj1vDDbYeP5up1DDvl3LAs3LzrGhfeCVs9zzX/nfeTa5obZ1nqea5kNlvX8EwaXcnXPl8v+Dq8dsPcdehfmPgqzTrum5da/dGsPwz0mw6tjzkJsh4dx7LocS67nU/qybm68uVs3fxTuYEi7wZVkMqlSqfl+LhaLSiTa719vSyMZi8VULpftmeyAwRAAAAAAAAAAAGBWrVZVrVaVyWQUiUTqf19ZWdHS0lLHgZBcLqd0Oq3p6en63zot0y0GQwAAAAAAAAAAmBD+zd3yb4R86/9m85khpVJJ5XJ500CIJKeBEEnK5/MqFoth5LCjwT3oCwAAAAAAAAAATIx0Or1tIESSLly4oJmZmbbLFgoFXblyRTMzM8rljK8M6AKDIQAAAAAAAAAATIo3d0lv7g754z6UUKvVVKlUdPLkybZxxWJRtVpNhUJBs7Oz2r9/f8t3j4SBwRAAAAAAAAAAACbZG29I//tr3X/+/AfOq7p48aJisVjTGSONstmsfN9XuVxWOp1WrVZTMplUtVrtcWOb450hAAAAAAAAAABMihtvzeZo9PSS9M9+YyCrz+fzOnXqlHN8LBZTNptVMpnUzMyMFhYWlM/nQ88XgyEAAAAAAAAAAEyyXz4j/fePdr/8d16W/u7f7BhWq9VUKpWUzWbNq0ilUkqlUqpUKvb8OWAwBGPj3PP9TX/+x2zx+x40ruB0f18CdO4pW/zZf2mL/6w+b4r/vD5rivf/jWeK/+ijz5rirbLfPm2K/+gH+pefdNW2c2f1ZH8y8paNpw/aFnj0O6bw9L227c1FHzHFyzjT0lr+d+lVU/zpF4ydg0P7bPGfsYXrM2dt8ceumcI3Dhvrj8WXjPEPGONT1rIxPuf0UMIW/5gtfd+3pR+5ftUUv/F+476NG8vTyPPOGZeYN0X7vi3/nmc7Viz5t+YFGFtfcohxPS8dW3IIOuqUlOeF+Vxrt3VKL4aX1qqtfep9na7b6Mql/XYpL7dzpee5peXSjofZfrueN1zW6V6nXfdl5+PNtSzs5/d2Ouff99363m75cutrhFv+bvXVRZhl7173XdrqcIVbxzqXv2ubEi6Xum+8NukozLIIr+5PdD/6hie9ueVe2+53Svve2X2ae/+iU1ipVFI0GlU0Gu1qNclksm/vDWEwBAAAAAAAAACASXFD0pt9SNPBhQsXlEqlelrV4cOHe1q+FQZDAAAAAAAAAABAzwqFgsrlctfLF4tFzc7Ohpijt+3qS6oAAAAAAAAAAGDwgpkhYX4cZoYUCgVFIhHFYrFt31WrVU1PT9cfgVWpVBSPx7W0tLRp+QMHDvQ8s6QVZoYAAAAAAAAAAICeXLhwQSdPnmz6Xa1W09rammq1miQpGo3qwIEDWlxcVLFYVCwWUzKZ7OrF664YDAEAAAAAAAAAYFIEsznCTrODfD7f8rtYLKb19fX6vyORiIrFYhg5c8ZjsgAAAAAAAAAAwERjZggAAAAAAAAAAJPiTUk/6kOaY47BEOAtSz8wLvBUX7JRd7S/yevqp6ZM8a9e/ylT/H0XL5vi9aAt/PP6rCn+O7rLFH9Qtvxbysf/qmdK+6l706Z4qw/pFVP8k79+2hR/58PfM8W/dPF+U/xd1VdN8a8a68JdsqV/+gXjsy2v2MKfrM6a4q35mbrnqil+49DBvqW/8bQt7SOPPmeKV9UWfjl6n22BQwlbfNwWrrgtfW/GmH7ZVv5avWaLj+8zhXtRW/LSvHUBE88rmeJ931gfdNYYD+wAxxzamecd25YvOBxjBdfj3LHnfsghb6vnHNfp0sa96JiWQ5zrOc0h/67toec5nlecytWtLDzPJS68KzX3c4nL/l7qHOK6zpTj/i4Yz/0h8P3wzo8uZeFWJ9zy5Xmux7crh3rhfOx2Lgv3Y7fzdrrXfZfjzfX4DrP8XduBwbYp7u1+Z+HX187CPb7Dqxdh5gvDx2DIAJw4cUL79jXvoM3NzWlubm7AOQIAAAC6s7y8rOXl5abfXbs2+BtjmAxcMwEAgFE2dn3gm5Ju9CHNMcdgyABcunRJsVhs2NkAAAAAetbuxnSlUlE8bp3mBHDNBAAARtvY9YFvKPzHWoU9uDIEDIYAAAAAAAAAALDT/e7yrU8zb4zgDBgjBkMAAAAAAAAAAJgUb6q7mSF/Z+7Wp5k/qUj/cMRmwBjtGnYGAAAAAAAAAAAA+omZIQAAAAAAAAAATAreGdIUM0MAAAAAAAAAAMBEY2YI0KX5H7PFL/3AFv+iLdzs4Jc3TPE13WmKP/dpU7giftoU/8i3c7YVPGwLf+7rR0zxtS+7l8/sk0+a0s5++7Qp/qMfeNYU/yG9Yoo//fqTpviNFw6a4iMnv2eK13Vb+MbeKdsCRkf850zxl6/cZ4q31v3TV7Km+NoB27HuyTfFf3fP+51j71TNlPblF2xlqQds4Vo1vizu8X22+Kdt4dZ2TY+ds8U/f9YW/wXj9hasL98znhkPJYzpG632N3nPM+4vA9837ltgnDzgFjb13asdYzbKju2Ia3vs1M4fdUzMpU0M8Ypi1TGtQ53bF89zbf+X3MKc2mPXcg0zLZf8h5mWK4d9WXBNK7xy9bySU5zvdz4uXdNyKQvXc6bbOt3Ky2UbXYVZFp4X5nHkKsw7IyPavjoLc52Drvtu6xyGie4XMzOkKWaGAAAAAAAAAACAicbMEAAAAAAAAAAAJgUzQ5piMAQAAAAAAAAAgEnBYEhTPCYLAAAAAAAAAABMNGaGAAAAAAAAAAAwKd6U9KM+pDnmmBkCAAAAAAAAAAAmGjNDgLecfcUWf+6DxvSP2eKtrn59yhZvTP/OmZop3j/m2VZwOmcKv/qkbXunrmyY4q0++qlnnWNfOn2/Ke2nnkyb4j+ob5ni7zt92RSvJ23hd937qin+gj5pW4HR5/3PmuLvf+GlPuXkliOPPmeK957wbSs4bAuPvO97pvgjVVv+74zWTPEWU9+1tWwbOmhbwaF9tnjjoaW4LTz96FOm+JzOmuKP3Gvbt5e/cJ8p3uxQor/pr17ra/Ked65vafu+bd8CY8ulHXZsSzeedjgHuLYLj73oFOb7Lu2YW1vneSWHqKNOablx20athpcv17bNrX11LYvO2+n7rv2Bzvl3PzfMO8Q47iPnuPDSctmXrmXhOVxmuh1rkud1zn+o+8ixL+m+zs71OsyyCLPuuObLpU10aw8tXI63Jce0wmyHw1zfgOu+LPs8HPSPdev9Ht284+Nry1Jxufl31/t7zTQIDIYAAAAAAAAAALDT/dzcrU8zqxXpHxt/xTdiGAwBAAAAAAAAAGBS3FD47/joZqbJiOGdIQAAAAAAAAAAYKIxM2QATpw4oX37mj8bcm5uTnNzLaYeAQAAACNmeXlZy8vNnyN87dr4P0cYw8E1EwAAGGVj1wdmZkhTDIYMwKVLlxSLxYadDQAAAKBn7W5MVyoVxePj/RxhDAfXTAAAYJSNXR+YwZCmeEwWAAAAAAAAAACYaMwMAQAAAAAAAABgUryp8GeGhJ3eEDAYMmLmf8wWv/SD/uRjJzr3wT6n/3x/05e3YQo/e8yWvP+gZ4q/+qkpU3zWmH89ZYv/A/9ZU/zHvPtN8S+9Yog/bEpaj3w7Z4q/do8t/ZKxHUk8eNkU/9kPfN4Uf0q/Y4q3uv+Jl2wL2DZXn7/3s6b4j1//qin+2Uc/aoq/78u2DXju3iOm+M/Ktn+PVJ9zjv2gvmVKO/fCI6Z4GWcxT33lqil+4xsHbSs4ds4UnnvhrC39p23hpx61HYuXdZ9tBanm7wZoxVz+TxvL/7ElW7zmjfEvmqJ937h/gZ1g1aGdXD3qllbBJc6xXXjc7Xj1og5BLtsoya0Ncm3XXNJyLFendbq1h57nuk6X/Lu2wZ3X6XlhPhfe9VziUq6uadnOR2HwvFKIqXXOv+d86epSxxzL65BDv2bVsRwOOfYBHNoL9+OoM99POMW5rNP9OAqz7rty2eeu5RpmWg5Sbvso1HOgY5zbcRleudKXRisMhgAAAAAAAAAAMCl4Z0hTvDMEAAAAAAAAAABMNGaGAAAAAAAAAAAwKZgZ0hSDIQAAAAAAAAAA7HT/67L00nLz734U5nuzhoPBEAAAAAAAAAAAJsWbkn7UxXI/O3fr08z/VpG+EO8lV0PHYAgAAAAAAAAAAJPihsJ/rNUEPCaLF6gDAAAAAAAAAICJxsyQEfON14/YFvAu9ycjAzD/Y7b4pR/0Jx+DctQY/6Ix3lqeV78+ZYrPehum+KOftsVbnX3FFj+rj5vip4zlee6D7rFnj9nS1t22cOuxMuvb6sJzussU/9KX7zfFX/2ULT/fMebHqljwTPH3fdmW/rlPnTXFf1afN8V//lOfNcXfc7vtvPLV143H1u3ubYP1nPjKvR8yxeteW/jlJ+4zxR959Dlb+s/b6oK+YAvXqu35rqdnsrb0jV0Yq3N7bOVz+rIx/4eM5W8sTyvPO+cc6/vGvAPjyuU4/ZJjWlccYh5z7ME/5ni8Pt45/1MPzzoltbG389WCa9vgeSWHKMerk5TDOguO5XUo4Ra36pCeS74kqeBSFtYru9657Eu3/ejKejXayXzHCN9329+h1tcw96VLPXROyy3/4daLzvvIvW/iUq6O+8ih3ferbkkN5xjpXK6hHm+FMPunLnmXdGhfeKt07l93LjPX/e3a9owlXqDeFDNDAAAAAAAAAADARGNmCAAAAAAAAAAAk4KZIU0xMwQAAAAAAAAAAEw0ZoYAAAAAAAAAADApmBnSFDNDAAAAAAAAAADARGNmCAAAAAAAAAAAk+JNST/qQ5pjjsGQAThx4oT27dvX9Lu5uTnNzc0NOEcAAABAd5aXl7W8vNz0u2vXrg04N5gUXDMBAIBRNnZ94BsK/7FWE/CYLAZDBuDSpUuKxWJOsfd9+7Ip7Re6ydCIWPrBsHMwWC8a488+Yos/95RxBd6GcQEb8/b+S1v8uQ8a03/EuL1ftIXr04bYB41p320LP3vYmP7ftJXN2a+fsqX/KVv4t2Tbuenbc6Z4/xueKV6v2MKvfmDKtoDRS1++3xT/1KfSpvj7f+MlU/z3FDHF/4V/5zvH+l+27auvfurjpvhP6HdN8f7P2fITuf49U/yz937UFP8799qOxVf0IVP85SfuM8U/+eisKf6CPmmKP/1E1hSvgvWCZMkYf9QU7ftnTfGed64vsd3kZat2N6YrlYri8XhP6WNncrpmWi11TOfIvbud1nf5mMPVfCrhlJYKjj3fpzuHbDzm2NalOh/HXtQtKR1y2M64a1m4tL1u7efUd686xW2836FNK3SuO7fY2vb2XOqFW93xvPnOQS77UZJWHWJc637ZLUyrnc9TTtsoyW0fuV6NusS51gnrFXBrrudpz3Op12Hm3zWtznG+71bHvCccYlzbOmdhtgMu/UvXuh/W+iQd6lzH/KpbUm71UI5tlLU/Plg7pg/88rL0R80HffTmCA76GDEYAgAAAAAAAADApOj2BeofmLv1aea/VqQL4z3owwvUAQAAAAAAAADARGNmCAAAAAAAAAAAk6LbmSGd0hxzzAwBAAAAAAAAAAATjcEQAAAAAAAAAAAmxZuSfhTyp4uZJtVqtafNCBuPyQIAAAAAAAAAAD3xPG/Tv2OxmMrlcttlKpWKFhcXFY1GVavVlEwmlUql+pI/BkMAAAAAAAAAAJgUNxT+Oz46pJfL5ZROpzU9PV3/WyKRaLtMtVpVPB5XuVxWLBaTJE1PT2ttbU3pdLrnLG/FYMiI8X7eN8V/Tl7nIDiZ/zFb/NIP+pOP/3979x/jxnnfefwzaSBHtc5LrYOD3QN8Ffef/LCDYCgHVgxIZ4e8Ay5/HFqTVoDE1+AQkwFkn1QZICEUd6vttVhwARsWYh1KOn8YSApUIt2g/efQI21HApw1apHn1qkT9G6pcw9wdECjnfXZVaRIfu6PNemllrvzPFz+Gu77BQxskV9+5+HMw5nn2WdmnraFM27xDzvmf90x3jV/8rhb/LXvOq7Akev2/CvzqlP8Hz7xqH1ZnnAry7zjtnT9rq51f0HzTvH3/HDNKf7iE8tO8UtO0dJf3e+2b1/ZZ79vJemeN9y+r+53C7/yrRmn+MArO8X/wpxzip/Z5/Z9/8nlvPWGU2qd01Gn+OWLjzjFf/WwW91Zy9zjFK+KW3j5otvBYeahK24rOOgWfk7fcIpfjrttf11ecItXfrjxB/Y65h8eY9yOy57nti1d8wPjtJyxPLYM8mLDtOVv5GmLmG9b5qpeswiybPGnt/8jxfr66na5DljkumzXs1i7w7bHUrKIsT3G27QsXc8vg8gVvi1My2LbS/JsmmK2+9uWzW/Eep3h9cf2vOV5Nuu0q4c267Rbn/t5enu2PXmb72mZKx3eRvIydqmsXB5wfR3kccDmmJiwS6WqzfoszyGXw88hVscKSdb14imLmOVBngPt2PwujbE7vk6cMUygXqlUVKvVnFLmcjklk8nOQIgkFQoF5XK5oQyGMGcIAAAAAAAAAADoS7Va1aVLl5TJZFQu212UGQSB6vW6UqlU1+sHD65fmWebxwWDIQAAAAAAAAAATIv2nSGDXLa5M6RWqykIAlWrVeVyOe3fv1/1+vZ33ly6dEmSFI/Hu15v3yXiepeJjYl8TFYQBFpcXJQkFYvFTe/bTKoyyhgAAAAAGDX6TQAAALB267r00fX+P3/zgy3fKpVKKpVKajabKpVKKpfLSqVSWllZ2TTY0dZqtSRJsVhs2/cHaeIGQ+r1ukqlkqrVas/ngtlMqjLKGAAAAAAYNfpNAAAA2NJNSb++7bW/W5R+Nsh5iTbzfV+lUkmpVEqZTEaFQkGVSu8JMldWViRJs7OzPd8PgmDg5Zu4x2Qlk8ktN5C0/aQq44gBAAAAgFGj3wQAAAAnnzsl/bu1/pcjF6xXlU6nlU6n1Ww2t4yZm5uTJF29erXn+1vdUbITEzcYsh2bSVVGGQMAAAAAk4Z+EwAAwC73kdbn+Ni46A7pU3ftYNnnVIRUKrXlQIf0yWDHVneA7PrBEJtJVUYZAwAAAACThn4TAAAAJkH7Apnt3rt9bpD2vxOJxMDLM3FzhmzHZlKVUcbY+uCDD/T+++9bxa69tfm1O+64Q3fccUfP+AXPuhgIsfThuEuwM68POf/Dd7rF18+4xbuW/2HHeNf8R/Vnjp+wN/8Dt/iFJ4ZTjravffCqU/yf63fcVnDJLTxnZpziZ/atOcXP/6tHneL1HbdwPeUW/qUfv+0Uf05HneJjxilc0jmnaNdj57zL133LLffx77tdfXzu+W84xbvW/Xvm3epmTs87xR86/JpT/B/rD5ziH9VPnOLfufF5p/hDLbfyL7u2eS7sdQqfeeiKU/zaN93ye4O/qOmT3F7dKd6Y+S3fu379uq5f755U0bYdK623ezF+Uew32fSZ1ta+suV77T6T95zV6qRnroXHHLD7nWdbdg3fcvx4eNBli3JJsmrdPpu0S7VsE+Ta+t6G5XbVU5blf8ampb9kl+vA1sdHZ5dt1me5LS7bfEfL7ZW2iKsOsB465bOQDt9mnmf5PHyb/Z2w266eZ3NMsdxHNnXHNp/tMcVmW9jmstrflnXHor4aY7uPbOdJyIdGzFy3a+e7the3N8Dj8MjPIZYO2cZZbFeb87w+qT+92sBtnnfKIpNbX2Ikbn68DDqng1qttu1jU2OxmHzfV61WUz7/yW+vXl/v3zz++ON9FXM7kRoMsZlUZZQxto4cOWId28v8/LxOnz69oxwAAABAmMXFRS0sDHdSRQxfFPtN9JkAAMC40AbemWazqSeffFJHjx7tDGpUq1XNzs4qnU534lqtllKplEqlkpLJ9YGoF198UYlEQq1Wq3OncbFYVLFY3PJim52I1GCIzaQqo4yxdeHCBX35y1+2jr/dVneFAAAAAIN06tQpnTx5su/Pv/XWWzv+ozZ2Lor9JvpMAABgXLZrA8/MLFpkuCLppUEWaeduafB3htzq/XI8Htfs7KwWFxdVq9Xk+35n0GOjIAh09erVrotlfN9Xo9FQoVBQPB5Xq9VSoVBQNpsdcOHXRWowxGZSlVHG2Nq3b5/uuusu63gAAABgHLZ7PKuNffvcJlXEcESx30SfCQAAjMv2beDPWGTYM8jiDMZNSb8eQs4eYrGY1Txxvu9rdXW15+uVSmWnpbMSqQnUbSZVGWUMAAAAAEwa+k0AAADAZpEaDNk4qcpGGydVGWUMAAAAAEwa+k0AAAC73Edaf6zVIJePRvoNhmIiB0O2m2TvxRdfVL1e77ry6PZJVUYZAwAAAADjQL8JAAAAsDdxc4Y0m83O5Crnz59XKpVSMpnsNKJtJlUZZQwwKeaPu8UvnHGL33vQLf71C27xrl53jH/YNb9Xdot3iE1eciuLq/kfOH7Ae9QpvBQe0mX+bbf4krfmuAY3ecft71qXH77TLf6Wt+wU/yXjln/Y5l3nSf6+Q+xbbqkXHPfVvznjVvdlZpzCz9zv1l5Y0LxT/O/qR07xn9c7TvHmHzyn+Nzh553iy57b9jE/cNtf3vfctqcecgsfurRD+asLjsmTjvGYRPSbept56opV3NryPeFBT9uts/ycZUP8KYuY5b12uZ62+B3btnlsvufTluWy8W3LOOv+R3hLf+b6/VaZ1u6ohwcdsDyG2sbZeDb8nOBdtMzVsIg5YLm/L9v2six6S5bba+ZPw3/ja7ZtqqrF/rb8jsYM7jfi2TbBLluc/y3qjiTpmQHW/cvXQkOMscvleeG5vIu2296yvlrU/2CP3To9mzqWttsWWRP+N4py3O58ZHNMXPumVSrpkGWcTR2z/stKPjzkguU+8sLLZUz476jZbCqRcPs70tCNcAL1KJm4wRDf91UqlTbNNn97TNikKqOMAQAAAIBRot8EAACAgXvv7PrSy0fhA5STbuIGQwAAAAAAAAAAQJ9uqr87Q/75sfWllw+a0tuJnZRq7CZyzhAAAAAAAAAAAIBB4c4QAAAAAAAAAACmxU1Jvx5CzohjMAQAAAAAAAAAgGnxkQY/4flHA843BjwmCwAAAAAAAAAATDXuDAEAAAAAAAAAYFrc0uAfazXoO03GgMEQYEosnBly/gvDzT9sD9/p+IEPh5j/LcfcbuHS910/4Gb+uFv8wgPDKceouNadvd9xzO+6v/YtO4UvOdZlmUNO4fd82a08Lseq+SNOqZ3rZt3xuHnPD9ec4r/0rbeHmv+V7z7qFL/3oFO4rvx4xin+C3rHKf6QecMpvu45hUuO5621F+5xip/50ytDza9n6g7BbmcKz3PJLRmTdIoHxmntDcvfmsXpLnvY7kRR/p7jCWgQjlwLjzmw1y7XUxYxtqf7qs3x5XW7XEfylisNPwau3WGZyqZsly2PuRcstv8Ry+PxMxYxactj9eUFi1zzdrmesqxjsiib5Xlv7QWLXFb1ULKuixa8uEW5Llv8bp1Y/EbcmurbszlWSJLC64XnWW4Lm+OYzfFQsv+NNMJDPM/idyRJByx+S1W78pe9L4bGZI3deettfSk0Zvlpu/PpocOvWcW989T9oTFWv29b37MNDD8OeJ7NseI92xVizBgMAQAAAAAAAABgWtzU4O8MmYIJ1JkzBAAAAAAAAAAATDXuDAEAAAAAAAAAYFrclPTrIeSMOO4MAQAAAAAAAAAAU407Q0bgscce0969vSd9OnbsmI4dOzbiEgEAAAD9OXv2rM6ePdvzvWvXBj05LHYL+kwAAGCy/fXHSy8TeMvER5JuDSFnxDEYMgIvv/yyfN8fdzEAAACAHdvuD9PNZlOJRGLEJcI0oM8EAAAm21c+Xnp5T1J5hGWxcEv9jdH8v7PSB70vfJKJ/oVPDIYAAAAAAAAAALDb/bNj60svN5rS/432hU8MhgDYFfYedIt//YJj/IcOwY65XbmWPX+nW/zCGbf4+SNu8fqOW/jCE27xSy77qh+O28fV/NuOH3jALfyhfctO8QtD3J5119/hkOv+lW/NOMXf8ty25RXjlv+e76+55f+xY/4fuuX/0rfcKufxnzpeOXXcLdz8g+cUnzv5vFP8guad4u99IXCK17NJ+9gX3FKbllu85y04RL/nlhwYtCN1qzDzdio0xvP+yW6dabswHbKIecbyistnez9SrItt+/fb4SEzP79ilWrtkMWx6xmrVPZstoXtKflpi2P79yxz2cSlLY/1NnXH9jsesPiOVct62LDY9pJk8Xezmev3W6Va+5zdKu3kB5fqqfAQc9Jue3new3brHGTdt6mLju2NbdmUXbI8Jr5ul6vh0LYKNbi6c8i8YRW3/Fx4+csWMZKs9uWh1mtWqZa9h+zWmbbY5zbHOtm1872njV2yqsX6TPhxc/3u6Cm5MyQsZ8QxgToAAAAAAAAAAJhq3BkCAAAAAAAAAMC0GMac7hM4T7wr7gwBAAAAAAAAAABTjTtDAAAAAAAAAACYFrckuU2jaJcz4rgzBAAAAAAAAAAATDXuDAEAAAAAAAAAYFoM4y6OKbgzhMEQAAAAAAAAAACmxS1JZsA5PxpwvjFgMCTiTuv0UOOBabFwYdwl+MT8Ebf4YZd96UO3+KGXf4L2lSTNv+0Wv/DAcPPrKcd4R671IX/n8PK/7pbamet3lbfmFO68bRzzuzqsLzjFz3x32Sn+8996xyne9bfiav64W3zpyyec4q/cP+O2gsvX3OKX9zrkrjul9hyfHWzMvHVss9lUIlF2WwEwQMYkreJe06HwoAt2v8OZh65Yxa29cU94UNrhtz8oifCQtTt+apfr2fDveMj8hlWq5ecGuC2qlsfgqkXMgTHso6rFcf5Zu7pvU/X1guV3tD3/JMLLtvZNi9+H7Tptt8UL4SEzP7f8fd8RHuPJcrtaHnuyh8+ExpSfs2sQHTr5WmjMsveQVS6r8h+x/E3a/N4u26XSS3ZhNsf0tRcs66tFc/qo/swq1QMn/zY0puwFVrmUDm/bLXuWtwAMsL6WfnjCKteVk+Ht8KzC1ydJ5WfDt4Xn2Rzr/qfV+jB+DIYAAAAAAAAAADAtbmrwE6gP+k6TMWAwBAAAAAAAAACA3e6js+tLT453u08gBkMAAAAAAAAAAJgWt9TnnSHHJO9Y77dMU1bP15xgnxp3AQAAAAAAAAAAAIaJO0MAAAAAAAAAAJgmUzDHx6BxZwgAAAAAAAAAAJhq3BkyAo899pj27t3b871jx47p2LEtnsMGAAAATJizZ8/q7Nnekypeuxb9SRUxHvSZAADAZPsLSX+5xXs3RlkQ7ACDISPw8ssvy/f9oeQ2Zt4pfsE7PZRyALC3cGHcJdiZSSv/w47xrzvGLzzg+IEJyz/s7bP0oeMHhmj+B27xC08Mpxxtrttm2Pvq83rHKd5533prjh+YME+5hf/sx19win/enHCKf0f2+cte4JTbtf3oeQs9Xj26RfR7kspO+QFpuH2mXh7N/CQ8qGGXK7jvXqu4Mz/Ohsac+HbJKtfzlVxozFGds8r1s8Phx5s/0B9b5VqOWwSdtEql50+Gf0dJmr/R6xjVbW35HruVHrKIOWiXSpcsYl6wzOXcStjhOi3PiYdO/oZVnFW9uFy3W+mzyfCYZ+wG5meuh7dd1r5pV3deNV8NjXn0OYvjjqRDh1+ziit7XwwPetYqlZYzj4QHpe1y6dvhIbbtohPPWRwTn7FKJR2xqxdfMD8LjVm2PKYcqoTvyxMX7Y77+p5FjGVf/ReHY6Ex8wo/tkrS27I7DpQvHg+NOff4Vu3LbgsKb8uWfnrCKldZ4eX6pOf1WUn/YYsY2sBRwWOyAAAAAAAAAADAVGMwBAAAAAAAAAAATDUGQwAAAAAAAAAAwFRjzhAAAAAAAAAAAKbGTUm/HkLOaOPOEAAAAAAAAAAAMNW4MwQAAAAAAAAAgKlxU/3dyfEnkspbvPer/oszIRgMAQAAAAAAAABg1/vux0sv/0PSwyMsy+AxGLLLnFbNMT41pJIA3fJ3usUvfTicciB6XneMn7S65tqMcP2+rvFRtvDEcPMPu+4Me1+VvLUhr2GyLJwZ8gq8ZafwnHnHKf539SOH6IeccnveNad4Y+atY5vNphKJra4kAyaHqYTHeBftcn318KtWcQ/ob0NjzF96div9YXhI7lvPW6X6hs6Fxrxz4/NWuWZ+fiU0ZvniI1a5li/ZxWVPWhzwLfa3ref3nbCKO/HB86ExZR23W+ny3vCYZyyP7enwXK+e/KpVqkfjP7FbZyI85PmW3U468VwyPOiCxfaStPbN8LhsZXANCuvt6v2hXcIDFtvCtl48G74tZp4K/31L0tE94ceUc/qGVS6b3/cXTtq1seZv3G8Vtxy3OPa8ZJVKyxYnkl+Y37HKde/3gtCYmYfs9tG9F8NzvXrYrr6WfnjCKm6QfbXAIuaKmbHK9er94d/z0WWLY91qU3pl0trAzBnSC4MhAAAAAAAAAABMjVsa/ODFrQHnGz0mUAcAAAAAAAAAAFONwRAAAAAAAAAAAKZG+zFZg1xG95isVqs1lLwMhgAAAAAAAAAAgL5Vq1UlEgl5nqdEIqF6vW79Wc/zupZMJjOUMjJnCAAAAAAAAAAAU2O0E6gvLS2pVqspl8tpZWVFS0tLSqVSqtVqSiaT22Ytl8vKZrOam5vrvBb2mX4xGAIAAAAAAAAAAPry5ptvqlardf599OhRJRIJFYvF0IGNSqXS9dlhYjBklzHGdVTNDKUck8jzFtw+cGDeLf7yNafwmetrTvE/2vO7TvGf1ztO8SXPrTyulj4cavpIm/+BW/zCE8MpR9uklSfqXneMf3gopfiEa3l2E45T2ImZfW7n0Z8cfNQ69jVzyCn3o96/cYr3PJfo95xyA5PMHLaNfGRwcfcft0t1f3hIyS6TpPB1rt1h21eyaanM2KU6sNcqrLwcXv6ZP71ilevonnOhMXsPWqXSNxSe6wsn7fpkx39aDo3xGnZ9dzMfflD3LtrlOtR6zSruz/U7oTHndNQql/nX4eXP3f+8Va7Sn58IjbHdFuceCi//wh67vyHMXLf4gUtaeyE85vmTJ6xyvaMvWMXZKF8M/02aWbvGhc2+/JLetsq19s17rOJebX01NOZv9YBVrhMXwo/E95w4bZXL/IvwbXZlj93x9Z7/HN4uXbhglUqPWP59IH9neMzeP7HLZfM3Bvu/YS2Hh9hsi7+X9IrlKkfmlgY/x8etnq/W63UVi8Wu13zfl+/7oXN/VKtVXbp0SZlMRqlUStlsdmCl7YU5QwAAAAAAAAAAgLNkMql4PN7zva1eb6vVagqCQNVqVblcTvv373eaa8QVgyEAAAAAAAAAAEyN9pwhG5cPJa3uYHnfqQStVit0IvRSqSRjjBqNhrLZrIIgUCqVCr2jpF88JmsEHnvsMe3d2/sW32PHjunYsWMjLhEAAADQr7/+eOll0LfiY7egzwQAACbaj86uL71cd3s0/mj0ekzWf/14Gb5qtap4PG792Cvf91UqlZRKpZTJZFQoFFSpVAZeLgZDRuDll1+W7/vjLgYAAAAwAF/5eOnlPUnhz7YHbkefCQAATLTfOba+9PL3TenJxGjL05espG/v4PM/l/TvrSIXFxf7GsxIp9NKp9NqNpvOn7XBY7IAAAAAAAAAAJgavR6T5Um6YwfLHqs1FwoFvfjii6HzhWwllUrp6tWrfX02DIMhAAAAAAAAAABgR8rlslKp1I7v+D148OCAStSNwRAAAAAAAAAAAKbGzSEtW6tWq5KkZDLZ9brrI69qtZpyuZzTZ2wxZwjwMWPmh7yG3hNCDi7+J47xbubNUNMPnefV3T6QTobH9MnMe07xX73/Vaf4V777qFP8Gx8ccoo/owec4vXEZD07funDcZeg2/wRt/iFC8MpBwA3rr9dfdktfOGMfWx+37Jb8mfd2gzmpH1ss9lUIjFZx30AOzf8vtKw3WMZdzw85McWMZIe9RYsoh62ynVCvxUac8i8ZpXLu2jRsbtklUrL33vELtDikfHHf2p37njt/vC+S+mnJ6xy2Th9xK7vZtMuqFu244MjlufR71jEnLBLJYsLsBeesEtljlus1Kbskn7LC8/1iGWbzHzZbl8uWITN/8Cu7ZX9bvi+XBhk//TM2gCT2bGtF1YGmWuAzGx4pWjeJUVhxpBhqtfrWlxcVC6XU7n8Sd1vNBpKJBLyfV+tVkupVEqlUknJZFLNZlNPPvmkjh49qnw+L2l9QGV2dlbpdHoo5WQwBAAAAAAAAACAqdGeM2TQOTdrNptKpVKS1POOjtXVVUlSEAS6evWqgiCQJMXjcc3OzmpxcVG1Wk2+73cGS4aFwRAAAAAAAAAAAODM930ZE37noe/7nYERSYrFYqrVasMs2iYMhgAAAAAAAAAAMDVuKWyOj/5yRhuDIQAAAAAAAAAATI3RPSYrSj417gIAAAAAAAAAAAAME3eGAAAAAAAAAAAwNXhMVi8MhgAAAAAAAAAAsOv9haS/3OK9G6MsyFAwGAJgVzAmOe4ibGCcon/imv4Dt/yPOKZ3jZcpuX7CiectOH4iP5RydDy71yn89DOO5U/PO4UfqrzmFL980W0Pzzx0xSn+53s+5xQ/TPc+FzjFm3/whlOQj732/KGh5r/oLTvF5+90y1/+IOsUf/ynZbcVvOUWfu27bvGuYv/9F07xwd/f6xTv8kuPLbmVRXfU3eJPTtI5FACiwRi3Ntv2BngcPjygGCdBeMj9dpmsWqqWubwzFufDA3bb/vSFa6Exh8wbVrn+Tn9mFWfjuOzaWwtPDGyVWjhjEWQTI+lhi5grP56xylXy1uxWamGQ28u2zb30YXiMzfaSpNct47Bu4YHwmPeGX4w+9DtnyL/9eOnlf0n6j32XaBIwZwgAAAAAAAAAAJhq3BkCAAAAAAAAAMDUYM6QXrgzBAAAAAAAAAAATDXuDAEAAAAAAAAAYGr0O2dIWM5oYzBkBB577DHt3dt7Qt1jx47p2LFjIy4RAAAA0J+zZ8/q7NmzPd+7di18AlmgF/pMAABgkv31x0svkzlEwGBILwyGjMDLL78s3/fHXQwAAABgx7b7w3Sz2VQikRhxiTAN6DMBAIBJ9pWPl17ek1QeYVnQP+YMGaIbN250/RcIc/36dZ0+fVrXr18fd1EQEdQZuPjo+g39n9Mv6aPrnJdg57qR/ujG+n8BG7R/4Yo6E320R6OPfRhtN6/f0n87fUk3r0d/YuPdijZ39LV/fZPVnrk5pCXaPGMMP7UhuXjxoo4cOaILFy7o8OHD4y4OIuD999/XzMyM1tbWdNddd427OIgA6gxcUF92xvMWnOKNmXfMX3eKHzZjkk51xr38DzvGvz7k+OFyrw9u9c2Fa1lc0P6FK+pM9NG+iD72YbRFcf8Ntp1j16acuX6/Vdza5+4JD7K9CfZpi5hvS/rofendGelfrkmf2mIfPmWR6xnLx5Ue6P1Yyi6237FhGXfZomxpi3JJylbOhMaU48etcumyTR/Gpl/xvyW9NBHtmU/u1P4vkg4MOPtlSf9JjUYjsnf08pgsAAAAAAAAAACmBnOG9MJjsgAAAAAAAAAAwFTjzhAAAAAAAAAAAKbGLfV3J8drHy+9DPpOk9FjMAQAAAAAAAAAgF3vkY+XXt6V9EcjLMvgMRgCAAAAAAAAAMDUYM6QXpgzBAAAAAAAAAAATDXuDAEAAAAAAAAAYGr0O2dIWM6IMxiaCxcuGEnmwoUL4y6KMcaYF154YdxF6KAsva2trRlJZm1tbdxFMcZM1rahLL1RZ7ZGWTabtPpizORsG2MoSy/Ume1Rls0mrf2LyTeOOjOO38uo1znK9Y3jXDHN23Mc62MfRnt942qvTfM2HfX6+A1Gf52T1AZuNBpGkpF+30jPDnj5fSPJNBqNcX/NvvGYLEfNZlOZTEaFQkG5XE7VanXcRbJ29uzZcRehg7JEwyRtG8oSDZO0bShLNEzStqEs0TBJ24ayAL1Nep9pHL+XUa9z2o8J0749p33/SdO/TdmHrG/S7YbtOe37EP3hMVkOWq2WEomEGo2GfN+XJM3Nzenq1avKZrNjLh0AAAAAjBd9JgAAgEnAY7J64c4QB7lcTslkstOol9S52gkAAAAAdjv6TAAAAJhUDIZYCoJA9XpdqVSq6/WDBw9Kksrl8jiKBQAAAAATgT4TAADApLgp6dcDXgZ9p8noMRhi6dKlS5KkeDze9Xr7iqdarTbyMgEAAADApKDPBAAAgEnGnCGWWq2WJCkWi237PgAAAADsRvSZAAAAJsVNDf5OjujfGcJgiKWVlRVJ0uzsbM/3gyDY9NqvfvUrSdLf/M3f7Gjde/bs0Z49e3aUQ5KuXbumZrO54zyDQFl6++CDDyRJb731lvbt2zfm0kzWtqEsvVFntkZZNpu0+iJNzraRKEsv1JntTWNZbty4oRs3bvT9+Xa7t90Oxu4SlT7TOH67o17nKNc3jnPFNG/PcayPfRjt9Y2rvTbN23TU6+M3OP51Tmcb+B8jknPEDKyUSiUjydRqtU3vSTLJZHLT6y+99JKRxMLCwsLCwsLCwrKrlpdeemkUTXRMGPpMLCwsLCwsLLt5mYQ28Lvvvmt+8zd/c2jfcc+ePebdd98d99fsG3eGWGo/97bX1Uwb39/o61//ul566SXde++9+sxnPtP3ugd1ZwgAAACwnZ1eFferX/1Kv/jFL/T1r399gKVCVNBnAgAAUTRNbeD77rtPP/vZz/SP/zicuzg++9nP6r777htK7lFgMMTSwYMHJW1+zm3734lEYtNnPvvZz+r3fu/3hl84AAAAABgz+kwAAADjd99990V6wGKYPjXuAkRFLBaT7/uq1Wpdr9frdUnS448/Po5iAQAAAMBEoM8EAACASeYZY8y4CxEVzWZTiURCKysrnVu85+bmlMvllM/nx1w6AAAAABgv+kwAAACYVAyGOGo2m1pcXNSdd96per2uL37xi/rt3/5tpVIppdNp68/H43EFQWD9OURfv/u+Wq1qcXFRzWZTvu+rWCwqmUyOoMQYt0EcL+r1ujKZjFZXV4dUSkySQdSZVqularUqScpms4rFYkMoKSbBTs5LtVpNsVhMrVZL8XhcxWJxBCXGOAVBoMXFRUmy3t+0e3cv+kzTgz5M9NGniDba99FHmzvaaANPofHO3x5NKysrRpJpNBqd1+LxuCmVSkP5HKKv331fLBZNMpk0pVLJ5PN5I8lIMrVabdhFxpgN6ngRj8dNLBYbdPEwgXZaZ1ZWVkw6nTbJZNKsrKwMq5iYEP3Wl0qlYnzf73otmUyafD4/lHJiMtRqNZNOp40kk81mrT5Duxf0maKPPkz00aeINtr30UebO9poA08nBkP6kEwmTTKZ7HqtVCqZsLGlfj+H6Ot336fT6a5/NxoNI2lTLkyfQRwv8vm8SSaTdFx2iZ3UmUajYWKxmHUDD9G3k7bM7fWkWCyaeDw+8DJi8rh0BGn3gj5T9NGHiT76FNFG+z76aHNPB9rA04UJ1B0FQaB6va5UKtX1+sGDByVJ5XJ5oJ9D9PW77+v1+qZb8Hzfl+/7arVawyksJsIgjhf1el133323fN8fShkxWXZSZ4Ig0Ne+9jXF43GVSqWhlhOTYSf15erVq52JkNs2zgsASLR7QZ9pGtCHiT76FNFG+z76aHPvPrRjooHBEEeXLl2SpE0HoHbjoFarDfRziL5+930ymdzyRMcJcLoN4nhRKpWYpHQX2UmdKRQKCoKA58/uIjupL7lcTq1WS5lMRtL683DPnz9P/UEX2r2gzxR99GGijz5FtNG+jz7a3LsP7ZhoYDDEUftqlq0mnNrqapd+P4foG/S+33hCxHTaaZ0pFAo0knaZndSZ9tUptVpNiURC+/fvVyqV4rw0xXZSX7LZrLLZrKrVqubm5lQoFHT58mWuGEUX2r2gzxR99GGijz5FtNG+jz7a3LsP7ZhoYDDE0crKiiRpdna25/tBEAz0c4i+Qe77arWqeDyubDY7iKJhQu2kzjSbTd19991cebfL9Ftnms2mpPUrVXK5nBqNhhqNhlqtlubm5jg3TamdnpdKpVLncSf1en3TLfwA7V7QZ4o++jDRR58i2mjfRx9t7t2Hdkw0MBjiaG5uTtL68/t62aqx0O/nEH2D3PeLi4uqVCoDKRcm107qzOLiIrey70L91pn2lSm5XK4Ts/HZwouLi4MuKibATs9LqVRKuVxOtVpNsVhMmUxG1Wp14OVEdNHuBX2m6KMPE330KaKN9n300ebefWjHRMOnx12AqGlX3K1G88Kej+r6OUTfoPZ9oVDQiy++SF3ZBfqtM4VCYdPtz+3/b/+X+jOd+q0zW92+m0wmJXEb77TayXkpl8tJUufq3suXL+vAgQN68sknlU6nB1tQRBbtXtBnij76MNFHnyLaaN9HH23u3Yd2TDRwZ4ijgwcPStp8Amn/O5FIDPRziL5B7PtyuaxUKsXzIXeJfutMvV5XLpfT3NxcZ6lWqwqCQHNzczyneYrt9NzUvp33dlvd3oto28l56fz5813nolgspmKxqCAIOo9lAGj3gj5T9NGHiT76FNFG+z76aHPvPrRjooHBEEexWEy+76tWq3W93n523+OPPz7QzyH6drrv27dBtq/kaOMEOL36rTONRkPGmK4ln88rFovJGKNGozH0smM8dnJuSiaTm54/276ShcbadNrJeWl2dnbTlU7t89NWVyJi96HdC/pM0UcfJvroU0Qb7fvoo829+9COiQgDZ41Gw0gyKysrndfi8bgpFoudf6+srJh4PG5qtZrT5zCd+q0ztVrN+L5vSqVS15LNZk2pVBrpd8Bo9VtnbpfP500sFhtqWTEZdnpu2vhasVg0vu+PpuAYi37rS7FYNLFYzKyurna9Rn2Zfqurq0aSyWazm96j3Yte6DNFH32Y6KNPEW2076OPNnf00QaePswZ0gff99VoNFQoFBSPx9VqtVQoFDrP8pPWR92vXr3aNZJr8zlMp37qTLPZVCqVkvTJ8yI3Wl1dHUnZMR79Hmewew3i3FSpVBSLxRQEAVf9Tbl+60v7ytBMJtO5dT8IAr3yyiuj/goYoWaz2Zl49fz580qlUkomk50rE2n3ohf6TNFHHyb66FNEG+376KPNHW20gaeTZ4wx4y4EAAAAAAAAAADAsDBnCAAAAAAAAAAAmGoMhgAAAAAAAAAAgKnGYAgAAAAAAAAAAJhqDIYAAAAAAAAAAICpxmAIAAAAAAAAAACYagyGAAAAAAAAAACAqcZgCAAAALDLtFqtcRcBAAAAGCnawGAwBAAAANhlMpmMgiAYdzEAAACAkaENDAZDAAAAsCs0m00VCgUlEgklEolxF6enpaUl7d+/X57nyfM8pVKpzjI3N9d5fSeazabi8bhisdjI1w0AAIDRog28jjYwJOnT4y4AAAAAMAq+70ta7/C0/3/S5PN5raysqFwuK5/Pq1gsdr3farWUSqV2tI5SqaRcLjeWdQMAAGC0aAOvow0MiTtDAAAAsItMagdwo0uXLklSz05XPB5XMpncUf56vb5ljmGvGwAAAKNHG5g2MNZ5xhgz7kIAAAAAo+J5nnzfV6PRGHdRemrfhr9VMz0Igk2399uqVquq1WoqlUojXzcAAADGhzYwbWBwZwgAAAB6aDabymQynWflFgqFzntBEKhcLiuRSKharaperyuRSMjzPGUyGadc0nrnJJVKqV6vq1wua//+/ZtuYc/lcsrlcpqbm1Mmk1Gz2ey8V6/XO8/5TaVSXe+Vy2V5nqelpaXQ7xwEgXK5nAqFQuc5wfV6fcuYdnnK5bL1+2Ha67v96rNqtdr5/510xM6dO9fz8QCjWDcAAMCkow1MG3jQ68aEMQAAAMAGjUbDJJPJzr8rlYqRZLLZrDHGmJWVFZNOp40kk0wmTT6fN41Gw2SzWSPJFItF61yVSsXE4/HOa/l83vi+b3zf73zG932Tz+c765ZkJJl4PN7JUywWN627Hb8xlzHGSNr0WqPRMLFYzDQajc5rpVJpU850Ot0pSzvG5f0wvbbh6uqqSafT1jm2srq6uul7j2rdAAAAk4428DrawLSBpxmDIQAAAOji+35Xh8gYY2KxmJFkVldXjTGfdOhu7+S0O4cuudqduI0dqLb2ejbmaHdYVlZWNq07Ho93vVYsFk2pVNoUd3uHyPf9rnJvfH3jumKx2KZybtwGYe+HaXeK253h9r9dcmwlrFM6zHUDAABMOtrA3a/TBqYNPI0+Pdj7TAAAABBlrVZLzWZTi4uLPd+/dOlS1y3kvW4Zv3r1qlOudo4HH3xwU8ybb7656bVMJqNyuaxms6l4PN55PZvNqlwud02OeO7cOb3yyiu9v+zH2uXM5/Ob3ms/mqBUKqlYLCoej2tpaUl33313J37j58Le304QBGq1WorFYp1nOQdBoK997WsDmbSxVCptuS36WXf7EQi//OUv9eCDDyqdTu+4jAAAAONAG7gbbWDawNOKwRAAAAB0tJ81XKlURp6rV6ey3Tms1+vyfb/rvdv/XSgUVC6XVSwWlUwmFQSBZmdnQ5/xu/H5yrc7ePCgpPXOorT+XRKJhAqFgkqlkiqVSlc5wt7fzvnz5yVpU0c7mUxa59hKq9Xadlu4rjuTySgej3c6uYlEohMPAAAQNbSBu9EGpg08rZhAHQAAAB3tDk/7v+POlU6nlUwmtbi4qHq9riAIVCwWlc/nu66Ik9avSEsmk6rX62q1WiqXyz0ns9xKEASbXmt3nGZnZzvruHz5spLJpFqtlhKJRNfkkGHvb6dWq0mSUqlU1+unTp2y/g5bKZVKW04a6bruVqularXale/o0aMqFos7LicAAMA40AbuRhuYNvC0YjAEAAAAHe3OVbVa7fl+vV4fea5KpaJkMqlms9m56m2rTkehUJC03vGp1WrKZrOh+dtXffUqT7tzODc3J0md2+hrtVrnar+NHaKw97fTXv/jjz/e9frGK9k2lrHVamlubk6JRKKrvIlEYtM2r1ar297C77Lu9lWEGzvivu93OuoAAABRQxu4G23gzeumDTwdGAwBAABAR/sW70KhsOnWeduruwadK5PJqFKpKJ/PK5/Pb3u7fDKZ7DyzOOzRAG3xeFy+76vVam26gu/SpUuKxWKdDuXGDmg6nVapVJL0yZV/Ye9vpdVqKQgCxePxLctdLpe78hQKBRWLRQVB0OmkLS4uKgiCrk7fxudHD2Ldb7755qa49lWD7WdlAwAARAltYNrAYeumDTwdGAwBAABARywW63oGbiaT0dLSklKplFZWVjodCpsGv22u9pVUva6oak8G2f5suVxWtVrd9hnH7Svjjh49av29K5WKYrFY1xVs7ccRvPjii52Oz/nz57s6Y+0OVPsKsbD3t9K+iq1XXBAEnUksN161dvToUaXTaeVyOQVBoCAItLS01Ol8toU9HsB13e3nUPcyiEdLAAAAjBptYNrAYeumDTwlDAAAAHCbYrFo4vG4kWTi8bgplUqd9xqNhvF9v/NerVYzq6urJpvNGklGkikWi1a5KpXKlu8ZY8zKykrn/duXeDxuVldXN5V9dXXV9GrmNhqNTWXc+PnV1VWTTqdNMpk02WzWZLNZ02g0unIkk0kTj8dNPp83+XzepNPprhxh72+1rTd+L9/3TTKZNL7vd333dDrd8/O1Ws2USqXO+m4Xj8cHuu5isWhisVhXnkajYSSZlZWVbb8rAADAJKMNTBuYNvB084wxZtADLAAAAMAgNJtNnTt3TqdOndLVq1cVBEHnirxKpaK5ubnOlXdt9XpdlUpl09Vh06q9jarVqhqNRtft++VyWUEQbNpGO1GtVpXJZLSxG1Gv15VKpUTXAgAAYOdoA4ejDYx+fHrcBQAAAAB6abVaSiQSWl1dVSwW2/SM3ng83nPCx1KppFOnTo2olOMXi8W0tLTUeczBRqVSSa+88spA19d+XnWr1eo8VqDZbG77HGsAAADYoQ1shzYw+sGcIQAAAJhI7WfvPvnkk13PR261WiqXyyqVSp1JHev1ulqtVue/u6lTEgSBkslk14SR0vp2mp2dtZ5E01Y8Hlc6ne48Z1mSzp071zVxJgAAAPpDG9gObWD0g8dkAQAAYGItLS1pcXGxa2JJ3/dVLBY7k0+2b09vW1lZCZ2scZoUCgXdfffdmx4DUCgU9OCDD27qIA5KLpfT3NycfvnLX2pubq7TKQcAAMDO0AYORxsY/WAwBAAAABOv/ZzkrTp4hUJBrVZLp06d2nVXxO3fv7/rCsG2TCajSqUyppIBAABgp2gD90YbGP1izhAAAABMvF7PS95ot96eXi6XJalnB5lOIAAAQLTRBu6NNjD6xZwhAAAAQES1H4fQflwCAAAAMO1oA6NfPCYLAAAAiLAgCAY+QSQAAAAwyWgDox8MhgAAAAAAAAAAgKnGY7IAAAAAAAAAAMBUYzAEAAAAAAAAAABMNQZDAAAAAAAAAADAVGMwBAAAAAAAAAAATDUGQwAAAAAAAAAAwFRjMAQAAAAAAAAAAEw1BkMAAAAAAAAAAMBUYzAEAAAAAAAAAABMNQZDAAAAAAAAAADAVPv/1BeNA/ZkonYAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n",
|
|
"# upstream\n",
|
|
"nbins = 60\n",
|
|
"\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 6))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" up_energyloss_found,\n",
|
|
" up_residual_found,\n",
|
|
" bins=(np.linspace(0, 1, nbins), np.linspace(0, 5e4, nbins)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=20,\n",
|
|
")\n",
|
|
"ax0.set_ylim(0, 5e4)\n",
|
|
"ax0.set_xlim(0, 1)\n",
|
|
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" up_energyloss_lost,\n",
|
|
" up_residual_lost,\n",
|
|
" bins=(np.linspace(0, 1, nbins), np.linspace(0, 5e4, nbins)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=20,\n",
|
|
")\n",
|
|
"ax1.set_ylim(0, 5e4)\n",
|
|
"ax1.set_xlim(0, 1)\n",
|
|
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
|
|
"\n",
|
|
"fig.colorbar(a1[3], ax=ax1)\n",
|
|
"fig.suptitle(\n",
|
|
" r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, Upstream photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"\"\"\"\n",
|
|
"\"\"\"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAAJPCAYAAADbtz2DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACze0lEQVR4nOz9f5gc133fe34KoAjBpoUG6ND6kdCDHskRKSOWuyHZudglr4keK453k2ugB6SlvaYtizO5d5TEkR7NBMoNhyM/8rgn1l5no4ndgyutmX3MS6IbyM0fyr1yN6UV92Fkk+g2vQhJOdY0IG5sx4yEaTKMIYgY1P4BVrNnpn+cb3dVd3XP+/U8/ZCY/tapU6dOVZ2q06eO5/u+LwAAAAAAAAAAgBjbM+wMAAAAAAAAAAAAdEOHBgAAAAAAAAAAiD06NAAAAAAAAAAAQOzRoQEAAAAAAAAAAGKPDg0AAAAAAAAAABB7dGgAAAAAAAAAAIDYo0MDAAAAAAAAAADEHh0aAIChq9Vqqtfrw84GAAAAAAAAYowODQDA0BWLRZXL5WFnAwAAAAAAADFGhwYAAAAAAAAAAIg9OjQAAAAAAAAAAEDs0aEBAAB2pXq9rlqtNuxsAAAAAAAAR3RoAACAXens2bPK5XLDzga6KBaLw84CgDeUy2XNzs7q4MGDHJsjrF6vq1gsanp6WgcPHlS1Wh12lgATzj8AsLvRoQEAGFsrKyuNm/WDBw9qdnZW9Xp92NkKXbVabTxg8jxvyyfY9nQ6rYWFhZHe/oWFBaXT6R3bOD093ZhUvl6va2FhYUdZzM7OSrpZVsGojEOHDimRSDSWY2L64VlZWdmxX4PPE0880XX54CHr5ORkY9831/tyuaxaraZ0Ot3Xg7tisdiyDk5NTWllZaXlMtVqVdPT0zvqrHV0ULFY1NTUVNtyat7m2dlZFYvFkT7eET/FYlH5fF5ra2vUrRir1+uN81I7a2tryufznCcwEAsLC5qamlI6nTa1x3ttGwTXy2CdU1NTTm28XpcDAAyBDwDAgMzMzPjJZHLHJ5FI+IlEouV3uVzOvJ6NjQ0/lUr58/PzjX8nk0lfUk/pjYpCoeBL8iX5qVRqy3fz8/ON7yqVypByGI5EItHYllKp1DImk8n4kvxMJuNvbGw0/l4oFPxEIuHn83m/Uqn4+XzeL5VKfiKRGOu6EXfN+3T7p1N9rVQqfiqVasTOz8/7pVLJX19fb+zf5u/Dqv9B/Wp1rLWTy+VCOQc1H+eJRMLf2NjwNzY2/PX1db9UKvm5XG5Lec7MzGw5BnazoKzQn6BuFQqFga2TfecuONfk8/mOcevr62PTLhg26mdrlUrFTyaT/szMTONvQRs9kUh0rXe9tA2y2eyO74PrZnBfEOZyAIDhoEMDADB0uVwu1AcjMzMzviR/fX19y9/bPfweF8FDjHYPMoIHu4lEYgi5C0+3B8lB502nB8e5XM7PZDJ+KpXige+Q5fN5P5lM+uvr6y0/7TQ/2M9kMh1j8/l8104wi42NjS0PVlzMz8+Hcuw1P4TMZDJt47Z3fPDA8mZHFOXQv2F0aLDv3AXX+m7XtebzGGXbH+pna8EPlrbb2NhodFa0u3b30jYI2v+t2sDBd63OW70uBwAYHl45BQAYO2tra5JuvlKoWSaTGUZ2BubZZ59t/P+pU6d2fH/06FFJN19HMaqvmGh+XdD999+/4/vZ2Vmtra2pUqlofn6+bTrBq6aaXzuFm2ZnZwf6moVcLqdcLqdkMtny00rwGifp5nFdKpXaxkrSzMyMCoWCJIVS9xOJhGZmZhr/bve6qWZra2tblglDp7qbzWZVqVQk3dzm48ePm19zNU6CV49h9LDv3NVqNVWrVWUyGa5tA7Ib6mfz6zxdr6HBa05btb0TiUSjnbqwsNByeWvboFarNdr/ra61watHt6+v1+UAAMNFhwYAYKzs5gd2wQ11Mpls+SCjuWyuXLkykDzNzs6Guk+aHxo03yQH8yPUajVdunRJqVSq7fLBDXkul9P09LSmpqZ0+PBhp4fSu0E+n9fU1JSmp6eVTqcjnXizWCyqVqvpypUrprktgs4MSY2Oim6y2WyonZrNE8ovLy93jC2Xy6rX6zp9+nRo63eRSqWUz+cl3Xwg1Vxuu0mxWOT4HlHsO5vgeA8ewiJa414/a7VaY462Wq2mJ5980rmjLGg7fOADH2j5fXA9CtoB25e1tg2Ca3K763wqlVIikVCtVtvSlux1OQDAcNGhAQAYC2tra40JcQOHDx9uTIrdfMNZLpc1PT3d+EXW7Oxs2wk0V1ZWGpMDTk5OampqqrFcK8ViUdPT041fclWr1cZEvtvz0XyjGKy/11+PV6vVxrLZbLZlzIULFyTd/GVcp1+zh6lWq4X6QLx5Esig0yKYqPn+++9XqVTqerP95JNPan5+XrVaTevr68pkMrp06dLAymQUzM/Pa2NjQ7Ozs1pYWNDk5GTHet+roCNgdna2Mdn29PR0xwcYa2trjYcf2WzW9Cvk4NeerdTr9cbE4p7nKZ1Od3xQlUgkGsdavV7vWM9zuZw5r2GZmZlpbHO1Wm37QMblXFetVhvnK8/zNDk52UhvZWVlx3fNy9fr9ca5cHJysnG+qtfrWltb27K+tbW1LfuhXX0IOmmCz+TkpCYnJ7c8zC0Wi3rooYca/z5+/HjjutDM9bpgrSfBJLNB52k6nW57LA36+hHkLchP8AvsID3Xh3fNy3XaXwHX66rrvrOmK0Vf79qJ4hjaXmZS+3ZAJ7VaTdPT040ynp6ebvuDhCiOl2G2n4LrT/DZnsdisdjYhmBd3epnUJ7N6U5NTTVG0QTrPHjwYE+//g8mzD548GCjDgaf5nX2Ui5B3icnJ3XlyhWtr6+rUCi0/bFIuzSk9iMJm6/F24+1XtoGwXHUKY/BOoOOv36Wk6Krs8M6FgBgpAz7nVcAgPFSKBT8bDbrZ7PZHRMBthPmHBrN75ff/o7dXC7XmBxcb7wrN5PJbJl0MFgmmMgwm802lt/Y2GhMGrh9sulSqbRlouCZmRl/fn6+MTl58A7eYL2FQqFRPvPz8418uU4wvF3z/Bmt5ggI8t3u+6gE2xmWYBuy2Wxjf/Q6P0A+n3eqn82s9buX48GiUqn48/PzjfSD+lMoFBrvUU8mk6FMRJ1MJkOdPH1jY8PPZDJbjsnmT7tJOJuPs7DOG6VSyU+lUo1jY319vbGeTsdk8/mmXT0PYsI67prX2Xx+6qT5/LC9DvZyrmtX/pVKpeN5Jnhnf3C8BuUeLJPL5fxsNtuY26a5brSaD2B73d7Y2NixLc3rbV53c9m4Xhes9ST4rjnvreb4GfT1o1KpbFlfUAapVGrL/tiez0BzXlKplJ/JZLbko93+sta14Pt2+67XdAdV79oJ8xhqtaxrPprLNjhHBOf55jrQnI8ojpdht5+Csgi2od3cRMG2tyvDdvWzeQ6n5v0dpNfrHF65XK7ldbJ5/iTr9br53NDP/GLN16l2edhe/5r/bm0btEtru+CcEOzHXpeLqs7G4VgAgFFBhwYAIBTBA4XmBwfBg5vgZnZmZqbxwKT5E0wa2Oo7681Ypw4N399685JMJht5y+VyWx70tZvI0PfffEjV6qa308PW4EYkkUjseODQLd/dND+caU4zeOAUPOToJe1+JZPJUB48N9+kBx0Z/TwM2NjYcO4Icanf/cT3K7iJnZ+f9+fn5/1cLudXKpUtD1LC6IgIOkqCjo2wJlPf2NjY0gnT6cFF8/dh1Ofg2NteF5rPFe06V3x/6zHfat8GDxnC0kuHRvMD1O0POno51zXXt+2C71rVt+AB53bBg8REIrGlDJsfMm5PL6jb2+tAqVQydWhs/77ddcFaT4Iy3162QTqtynzQ149gme2dwsED+nZpNpfV9vII9lerutFLXXN5YNzr9TrqetdJ2MeQ79uvMdvrffM2NZ8ztpdtFMeL7w+v/RRo7vhtJZvN7pg02nVi9eDaFuy7oI71M5H4/Px8y2twUHctD7WbO/napWvV/FC+W0y7Y8e1bdDcEdhqYu9Ac4dAP8sFoqqzwz4WAGAU0KEBAOhbcOO7/YFB0CDv54bNyqUxH9zstbvJCh4KtHuI2XwDtP1Go/kXods1PyDodBPay8P/5hu97b+ubPXQaZCC7e43D803lN1+QRsma/0exvEQlEc2m92R/vZfFoah+VeEYT38aE67uQ5v357mut1tvcEIlpmZmR2f4CFc0DnWSvAQpd33QX6D/LR7aBrWqBbf761Do3mZ5m3p9VwXPPhrVS7Nv/TertUDQd/3tzxI267518LNWo10aP6umetD8U7XBWs9CerF9oeKzXnZXn8Hff0I0mtVhs11ZnuZtLv+NW/D9rrZa13rtu/6uV5HXe86CfsY8v3OHTutNJdtq33ZqUM87OMlWGYY7adAc3m06rhotT2uHRrNx1MwqsVSX1pptb7mdpJLW2P7jxTCFLRLOtVJl06PQKe2QadRT82C4zeoR70uF4iqzg77WACAUcAcGgCAvgTvdU0kElsm5y2XyyqXy8pkMqZ37g5S83wbzbpNZJhKpRrv022e00GSDh06JKn1O4OD79oJvrdOot38nvN8Pq+NjQ35vq+NjQ3NzMw0Jswe1sSVmUxGuVxOx48f72uC8OZJz5vrWvM7rMNmrd/DOB7q9XqjXKempnakH9TVMCeCz2QyKpVKqlQqqtVqOnjwYGgTwGcyGVUqlca/m+u39b3QqVRKuVyu8S76tbU1nT17VgsLC40JQIvFour1+o53kE9OTjbe112v19uuu3mflsvlLe/4DtKemZkx5TtKzeehXs91wfbU6/Ud8yysr69LUuM98YEg1loWwfq3163JyUlJN+dv2P7++eYJ2606XRcs9SSTyWh9fX1LXd6+HduPyUFfP4L1tFpfMpls1Otg/iUX7fZXP9fVTqJKN+p6F/YxVC6XVa/XderUKec8NGs1t9DMzEyjbjz77LMtlwvreJGG035qlkgkGmW7fa6Es2fPtp002kUymdT8/LwkNa6V/ZynpJ1zPlSr1cacJvPz8x3bGsF8MQ899JBmZ2e1sbHRyF9Ygu2r1+st25/NdTs4rjrp1DYYlqjq7LCPBQAYBXRoAAD6Mj09LUk6ffp0o+EdTGYXPPQcNS43Ac2T7Ial1wmDmx+cN99wJxIJ5fP5xuSgCwsLphvA4GFDGJ+ZmRnNzMxocnKyp46VWq3W2C/BA+Rgu4rFYqj7oZm1fg/jeAj2afPDmGZBuUUx6XkqlVKhUND6+rquXLmiycnJRhn0o/nhT/ODtO3HiOsNe3O5ZDKZHcdv8PB5+8e/OZpZvu93PD5Pnz7d+P9gMtPg/4c1GXiz5oeGzXnp9VzXPCF684O/YKLl4DzU/F2/DwS3m5mZaTywW1lZ2TK5cth6rSfNx1xwHrA8VLeIoo4F+yuMB2NRXVcHfb0Oq96FfQwF7QCXicktjh49KslWdmGdVy3CSicov2q1umWb8/n8lvN8L3K5XKMuRvFDn+DHHclksm1nSbFY1MGDB5XL5ZTL5Ro/fIlCNpvd0v6cnZ1t/LhjdnZ2y49RXMujXdug+SF/px9vbL8W9rpcGKJqFwy7vQEAg0KHBgCgZysrK42HCTMzMyoWi5qamtLy8rLOnDkz8p0ZnW5uovjVe6+aRy60emh9//33N/7f9ReBwU1vmJ+gI2NhYaHtrzq7baP0ZqfBmTNnGn+LYpSGtX4P63gI0m33UKL54VKUuv1q0GpqakrSzlEZzXXc9Zfj7W7wg+O33we22Wy2ka9isdj4ZXW1Wu37IVgYmrev1UPqXs51wYO/4JfY0s1f/Waz2cZ55uzZs434XC4XellUKpXGA7NaraapqSlNT0+bR/J00089CX4JfeXKFRUKhVjUB1e33357KOlEdV0d1vU6rHoX5jG0tramRCIR+oPyXjrCwzqvDkMqlWqUYdCZVKvVVK/XQynb5h9ihNkBu7Ky0rjWbx9d0sqgHnoXCgXl83llMhmdPXtW09PTyuVymp6e3tI2tbRPWrUNmutpp+MwqJvB9ve6HABg+OjQAAD0LLhpSiaTjVcv5PP5LTf7o6b55iZ47UMrrW6GhmH7yIVWmm/CXR8wZLPZLb+iDOMzPz+vRCKhXC634zUs3bQahRKkJd18aB+8eiQs1vo9rOMheODV/HAgUK1WG/u81ff9qtVqmp6ebjywXV9f37Kv+hEcW9uPseay7LeTKMxXMzS/fiaXyymfz295bc8wNT/gCupBv+e6TCbT+C6og8vLyzp9+nTjNT/1en3LCKooyqJQKKhQKGzpULJ2mHbTaz2ZmprS7OysSqVSrF47ZhX8Sr9XUV1Xh3m9DqPehXUMBde+KOpYkD/LsTvqr7wJOpqC1zfl8/lQRr7UajWtra01yjKs0TT1er1x/clmsx07B7LZrDY2NhojJILXMUZpZmZGpVJJGxsb2tjYUKlUUiaTaVyXen0NYfPxnEgkGv/+zne+03bZ5lcC9rMcAGD46NAAAPQsuFkNHt41/0p5lAXb0OnXc8G29/ugp1+tRi5s1/xQYVi/LltYWFCxWFSlUunpPc3Bdm5/qDI/P9/YX2GP0rDW72EcD8EvR9v9Mrf5IUeYD5ODuUImJyd16NAhbWxsbHm4F9Y6pJ3vaG/+hXK/rxvb/kqgdoLXwHTS/L75YL6O7e/YH4ZardY4frbP4dLvua75ffPFYlFHjx7d8bAun8+H9kCwWfN+z2azWl9fb5xbggeHYemlngSv+JuZmRnZ62LQSRDGuSOq6+qgr9dh17swjqHgNWZRdVpL7ecoaSXM8+owtDqXh9FZFIxOCEaX1mq1UOY2C9p+iURiy8jVTmZmZrSxsdF49VTzKNpBKJfLjbplvU62axsEP3bo1CYIRnUGozz6WQ4AMFx0aAAAehLF+2Tjovkdyu1+YRjc+Az7gWW7+TPaxYT9UNFFsVjU2tqaKpVKTw/2mh9UtXpg0zzxZFj7w1q/h3U8BGXTaiLYarWqcrmsZDLp/JDDZX3pdFrHjx9XKpXSxsaG8vl8JNtcKpWUSCR2bFswN0ygn46s5l9nPvTQQ21fORHMgdLN9tfBxOFX+c0Pu7a/iqTfc13z8g899NCWmGDby+VyaA8Em+Xz+R15zuVyjYdT7X6x38trh3qpJ8GDXJfJbuMqOL+Ecd0I47raat8N+nrda71rJ4xjqFgsRjYarFqttp2fqZ2wz6vDEFx3FhYWtoyk6aTTuSXoLAjmYAk6wRYWFvoaydL86qozZ860zGenjoqgU65QKOiJJ57QwYMHtbCwEPpr+5rV6/XGdSkYyWjRrm0QHEvtOjebfwDSXJ97XQ4AMFx0aAAAepJIJBo3Tq1eMVOtVofy8DyMm7DmX/23mnMieHDSHBfo5x3dQd47DXvfrt3Ihebvg19AZrPZodyMPfTQQ21vtF00v1ao1cOP5pEQzfNY9MNav3s9HmZnZ5VOp3t+XVawrlavOpmenlYikWjc/PejWCw2Jvy+//77G7/s7CfdlZWVtg9zqtWq1tbWVCgUWq5jZmam8XC+Wq0qnU533O+dvmvuEEun01t+pRmkHbz+pZvm0UfdjrV+932Q53ZqtZomJycbDySffPLJHdvQz7lOuvlL7OCYPHTo0JbjM5FINP7dz8Tonc6prd4VH/yCtvkX5c3rbt6/lnOFtZ4E+d4+CXjzpPHb99+grx/t8iG9+Qvqdvveqte61m3f9VuH2wmj3rno9xgKzh9RtLeCOtDL9buX8+qw6n8rQcdSvV7vWLYu55ZaraaFhYUtbYPm62c/+y7o0M9kMi1fbVksFp32XSaTUaVSUaFQULVajbRj4/jx46rX65qZmWl5ney1bZBMJhvptbquBnVy+3mi1+Wk6OpsnI4FAIgtHwCAHuVyOV+SL8mfmZnxS6WSn8/n/Ww268/MzAwlT4VCoZGnQqHQMqY5z+2sr6/7yWTSl+Tncrkdf2+3bCaT8SX5mUymY95KpdKO7xOJhC/Jz2az3TbT933fz+fzjfQSiYS/sbGxJZ8zMzON713TDFs+n/dTqVRfaQTlIslfX19vGTM/P9+IaVX2vbDWb2t8c32QtGX/uWpVnzY2NvxUKuVnMpme0myWz+f9ZDLpJ5NJP5/P95XWds3bPjMz46+vr/vr6+uNOlOpVLqmUalU/FQqtaPc19fX/Y2NDb9Sqfi5XK5Rh9qlm81mt+Rne94sgrrYKf/97Pt2x/3Gxkaj/ILzUJD/Tun3eq7bvi2tzrfBd63Od806nfuC/bv9PBKc37annclkWp5zgjJJJBJ+LpfzM5nMlmVd9relnjSff5PJpJ/NZv1kMrll3wd/D85rg7x+NC8jacvxXSqV/EQi0bIsNjY2Gss015dAczlv1+91td2+6zXdQdQ7F/0cQ0HZtLs2dhOUWyaT2ZJGoVDwE4lE2/N+2MdL87YMqv53k8lk/GQy6RTXqX6mUqmubYBWx1I3zeeYVvs/qP/dzr+tVCqVxv4Lrs/9Wl9fbxxX8/PzbeP6bRtks1k/kUhsyXOpVOq63l6Wi6rOxu1YAIA4okMDANCX4IFn8HBmZmbG6UFk2CqVij8/P7/lAU0ikfDn5+cbDwlyuVwjr803S+06PoJlgpva4CFxqxuISqWy5eYySDsoi+aHqkFZBTewpVJpywPIbjeQGxsbO9bVnG7w30wmE9qNaK8ymUxPN+q+/2ZnSPP2pVKpLTeWQbk3l22ruF5Z67clPuh4CPLcqR62UqlUGvU8m8368/Pz/szMjJ/NZnt6gNEsqK/BA9goFAqFLdufSCT8TCbTU8dJcPynUqlGXQjyn81m/Vwu1/U4CDoCEolEIy+9lGOwX11iLPu+VCp1fEC4fZvz+bypo8T1XNdKp07ETt9VKpW257719fUd29v88D+XyzUeQAXnukwm0/a4b36YlkqlGttmvS5Y6klwbgo6B4L9EXR+Bg8bB3n9aBakmc/n/ZmZGT+ZTPqJRMJPpVItj8Ptx2zwoC/oTNu+vzKZTMvzn7Wutdt3vaY7yHrnqpdjKOhc6vdHA7lcrnHubD6HtKpDURwvUdf/TufM4NNKoVBwuh61q5+lUqnx9+3Hwvr6+o58Z7PZxjnCJc/b237Nn+by6qdN3vzjmGw223NaQUd8IpHoel0Jo20Q1LtsNutnMpm256Jel4uqzg7rWgAAo8jzfd8XAABABBYWFnT69OmBzisxiiYnJ1UoFEzvQF9YWNDKysqW1y+FYXZ2VhcuXFAul4vt+83HSS/7HgjDwYMHVa/Xlc/neTc8gLbq9bqWl5e1tramS5cuObXpqtVq49VRqVRK999/f8vXYgEA0As6NAAAAIaoVqtpenpalUrFtFzwXvJCocBDghHV674HwkCHBgAAAEYRk4IDAAAMSTDhaKuJxLsJJiBlFMVo6mffAwAAAMBudcuwMwAAALBbLS8vq1AomF/JVS6XJUmJRILXeY2oXvc9EJZ6vT7sLAAAAABmvHIKAABghASvKQpGaFQqFeZfAGCytram2dlZSVIqlVKhUFAymRxyrgAAAIDu6NAAAAAYIcViccffkskknRoAnExOTqpWq+34eyqVYj4XAAAAxB4dGgAAAAAAAAAAIPaYFBwAAAAAAAAAAMQeHRoAAAAAAAAAACD26NAAAAAAAAAAAACxR4cGAAAAAAAAAACIPTo0AAAAAAAAAABA7NGhAQAAAAAAAAAAYo8ODQAAAAAAAAAAEHt0aACInWq1qrW1tWFnA3BGnQUAAADGH+1+ABg+OjSAXaZarWphYUHT09OanJzUysrKsLPUUKvVND09rXQ6rXw+P+zsDFWwn9LptNLp9LCzs+vUajUdPHiw681K1HU2inpA3QIAAC5oMwwG5TxctPsBYPTQoQHsItVqVcePH1cul1OhUFA2m9X6+vqws9WQTCZVKBSGnY1YSKVSuv/++1WtVoedlYGq1Wqq1+vDzobq9brq9XrX4yPqOhtFPRhU3YrLvgQAAL2hzTAYu7XdL8Vj39Pu718c9iOA3YUODWAXWV5e1qFDhxr/zuVyu34kRJylUqlhZ2HgpqendeXKlWFnQ6lUSr7vK5fLDTsrkdSDQdStuOxLAADQO9oMg7Eb2/1SPPY97f7+xWE/Athd6NAAdpHd+KsfjI7p6Wnq6JhgXwIAABe0GXYv9v14YD8CGAY6NIBdYG1tTdPT06rVao13f05PT6tcLjdi6vW6ZmdntbCwoKmpKU1NTW35vlgs6uDBg/I8r9FgKZfLmp6elud5mp6ebqSztramdDqtYrGocrmsdDq9JaZZsN7gY53To1qtanp6WlNTU5qcnNTCwsKWtC156ZRWUAZBuaytrengwYOanZ3dkU6wLZOTkzsaeOVyuVGOU1NTW75bW1uT53lOZdBtf22PCfLT/G7Ybt+3Ui6X5XneljKsVquanJyU53lKp9NbtimoH7VarWMZFovFxnKzs7NdG8bd9kW3fdlt24vFYuM4aVf27eqs67ESWFlZaeQlnU6HMslgt+3vd9nmMgjqX7CtnfZlt/3WrV5bj+letnEY541BnDMAAAhbv+1Ra/tP2p3X8GG1+4NtGHbbn3Z/Z7T7e9/GcX5eAIw9H8CukUwm/WQyuePvlUrFTyQSfqVSafwtn8/7kvxcLtf428zMjC9pS9z6+rovyc9ms41/Z7NZX5KfyWT8+fl5v1KpNJZtTm99fd1PJBJ+qVRq/C2Xy/mS/FQq1XV7KpWKn8lkGv8uFAq+JH9mZsacl25pFQoFP5lMNv42Pz/vp1KpHflMpVL+/Pz8lrKR5CeTyUZawTY2rz+I355eq7Jw3V/ZbLaRlyDG8n078/PzvqQt+61UKvmStqQXpBn8rVsZBumur693XH+3dLrty27bvr6+3thHzekE37nUWZdjpXmbt5djc/q+37oetOOy/e3SdFl2fX3dTyaTW/ZTIpHwE4nEju1qjnHZb93qteWY7rV8Bn3eCPucAQBA2KJsj7q2/4J1jvM1PI7tft8fbtufdn9ntPv7K59xeF4A7FZ0aAC7SLsOjVQqtaMBF/y9uXESNFaaGx4bGxs7GmvBxX37BXh7QzGbzbZcr2sjLpVKbcmL799sYEnyNzY2THlxSStoWGxvuAeCdTWnEzSGtjfUg0ZLs1wu5+fz+R1xrRpBLvsrkUjsyGtzOXT7vp1WDfQgve3blM1mt2x7pzK03NB2SsdlX7pse6sbG9c663qsZDKZLTcEQcz2vFlubFy2v12aLsumUqkdZRXsjyCm3b7stt9c6rXrMd1OnM4bUZwzAAAIW5TtUUv7b9yv4XFs9/v+8Nv+tPvbo93fWZzOGc3rou0P9I9XTgG7XK1WU7VabTlZWDA8steJwxOJxI6/BZOF1Wq1xpDMXgT5Xl5ebgwRbh4WeuHCBVNeXNIK0vjABz7QMk/PPvvsjr81D81uNjMzo1qttmVY7RNPPKFTp0612+QteXXZX8lkUisrK1uGpM7Pzzf+v9v37SSTSaVSKRWLxZb5C4aY1+t11et1JZPJxvfdytBVu3Rc92Uv295vnW2lUCioUqnsyF+9Xu8pPetxYV02iMlkMluWnZ+fl+/7LY+zZt32m+U81OmYbidu541BnDMAAAhbmO1R6zp30zU8Du3+YNlhtv1p97dGu3+02v0SbX8gTLcMOwMAhqvTe2qPHj0qSY1GapiCNJsbvBZBvguFQt95sabVrvEWNFzK5fKOBtr2fy8sLGhtbU25XE6ZTEb1el2HDh3q2jC07K9CoaB0Oq2FhQXl83kVCoUt+ej2fSfBez+LxaKy2azW1tZ06tQpra2tKZ/PK5fL6ezZs23fb9ptO11tT8d1X/ay7f3W2VYSiYQSiYSKxaKeeOKJvjt6+jkuXJYNbmT73X/t9lsrYZ6H4nbeGMQ5AwCAsIXZHrWuczddw+PS7pfi0fan3b8V7f7O4nbOkGj7A2FihAYASa1/GRJcLA8dOhT6+oJGSrdfVnRbPozGTlhpZbNZZTIZLS8vq1wuq16vK5fLaX5+fkdjOJlMKpPJqFwuq1arNSZud+Wyv5LJpC5duqRMJqNarbZj4rlu33cyMzMj6c1fzwQ3MplMppFGPp9vxA2K677sZdv7rbPt0kyn06rVaioUCj39YnF7es3/DXvZMI+7VqI+D8XtvDHIcwYAAGELoz3qajdfw4fd7pfi2fan3U+7v5O4nTMk2v5AmOjQAHa54JcAzUMZA0EjY3JyMvT1Bhfs5mG3vSzfauiz1Hp7BpFWoVBQJpNRtVpt/KIil8u1jF1YWJB0s/FfKpWcbgAs+6tWqymRSKhUKjV+TRIM43X5vptsNqtyuaxisaijR48qkUhodnZW9XpdKysrjV/YDJLrvuxl2/uts61MTU3p0KFDfd/QBPqpyy7LBvWv3a+Tem3kD+o8FMfzRtTnDAAAwhZme9TVbryGx6ndL8Wv7U+7n3Z/J3E8Z0i0/YGw0KEB7CJXrlzZ8SuT4J2oze8/DVy4cEGJRKJx4bz99tslbW28NL8z1SJo8K6trbVctlt6wbs8FxYWdgxbtf7qK8y0pqenG7+4mZ+f7zicOZPJNN7p6jp01LK/mhtG2Wy28YuqYLlu33cT3AhMT083GlvZbFbSzbLs5WZV6v09spL7vuxl2y111uVYCfZh874Pvuv112D91GWXZZvLYHvDfWFhYcevqVz3paVe9yOO542ozxkAAIQtzPZoYBTb/rup3S/Fr+1Pu592fydxPGdItP2BsNChAUCFQqHxC5tAMPzxzJkzjYtncLFdWFhQuVxuvDNVuvmrhGDSNJdGWSKRaPw6JZ1ON4ZSBo3jWq22ZeK2bstPT09rZWVFU1NTWl9fbzQ6eslLu7SCRlq7xlrQ2AuWX1tbU7FY7Pie0GB777///q75DLjur7Nnz25pJAaT9AW/MOn2fTeZTEaJRKLR0Apks9lGQ3W7TmUY/BInn883JuJrp106rvuy27a3usGw1FmXYyW4CSgWi1pbW9Pa2lojrWq1qmKxaL7Bc93+XpdNJBKNm8KpqanGDW06ndbk5GSj7rXbl532v2u97mfof9zOG4M6ZwAAELaw2qOu7b/deg2PS7tfGl7bn3Z/a7T7wymfcXxeAOwKPoCxV6lU/JmZGV+SL8mfmZnxS6XSlpiNjQ0/m836mUzGn5mZ8WdmZvxKpbIjrVwu5ycSCT+RSPjz8/O+7/t+Mpn05+fn/Uql4lcqFT+VSvmS/GQy6ZdKJX9jY2PL+nO5XCO9fD7vJ5NJX5KfSqX89fX1Rnrr6+tdty2XyzWWTyaTfj6f37Ldlrx0SqtQKLT9LhDkPUi7+ZNMJv2NjY0dy2xsbPitTsXb91kul9uyvMv+ymQyjbKcn5/3s9nsljS6fe8il8vtWG+lUmlZPi5lmEql/EQi4c/MzLRdp0s6nfal73fe9kql4mez2bZl71pnux0rQVqJRKLxd9/3/ZmZmcYy3epBO92Oi05pdiu7YB8Ex1YqldpxPvH9nfvSZb91q9fWY7rX8hnUeSPMcwYAAGEbRHvU993af4FxvIaPSrs/KLNBtv1p97+Zl3Zo9/dXPqP6vADY7Tzf932Xjg8AQGfValVPPPGETp8+rStXrqherzd+8VEoFDQ5ObnjnanlclmFQqHxKx4AuwfnDAAARhPXcABWnDeA8Nwy7AxY1Go105BIABiUWq2mdDqtjY0NJRKJHe+4TCaTLScLy+fzOn369IByCSAuOGcAiBL3TUB0uIYDsOK8AXRmbbvGukPD87wt/06lUqpUKo1/V6tVLS8vK5lMql6va2pqqjEp1TBiAOxewXtZH3roIZ0+fbrxLtVaraZyuaz19fXGO0jL5bKSyWRjIrROE4EBGE+cMwCEifsmYHC4hgOw4ryB3aJYLGp5eVnValWpVEq5XK7lnD7d2q5dDfudV+3k83l/ZmbGz+VyjU/z+/TW19d9SVv+tv09dYOMAYDg3alqehfm9veMlkqlLd+7zBMCYDxxzgAQBu6bgMHjGg7AivMGxl0ul/MzmYyfz+f9+fn5Rj3ePvdOt7ari9jOoTE1NaVSqdTxe0lbYtbW1jQ7O6tgkwYZAwCB4F2Y7YbLLSwsqFarbfllBoDdi3MGgH5w3wQMD9dwAFacNzCupqenVSgUGv+uVqtKp9PKZDJb2obd2q4u9vS19Dbnz58PJZ1isagLFy5oenpaa2trO76v1+sql8uNBnPg6NGjkm42mgcZAwDNEolEx3f/5XI5FQoFGicAJHHOAHabsO6ZJO6bgGHjGg7AivMGxlG5XG68Ni2QSqWUSqUar1yTurddXYXaofFrv/Zres973qOvfvWrfaVTKpVUr9dVLBY1OzurgwcPbpkc58KFC5K04wQQHOylUmmgMQAAAADgIqx7Jon7JgAAAAxfJpNp21HX/PdubVdXoXZoPPnkkzpx4oSOHz+u+++/X6+++mpP6eTzefm+r0qlopmZmcZkckGPTvDfRCLRcvlg4pxBxQAAAACAi7DumSTumwAAABBftVpN09PTjX93a7u6uiXMTB44cEC5XE6f/vSntby8rHQ6rZWVFf3cz/1cT+mlUinl83lNTU1penpaCwsLKhQKWl9flyQdOnSo5XL1en2gMe18+9vf1pe+9CW94x3v0Fvf+ta2cd3ceuutuvXWW3teHgAAAHDxve99T9/73vd6Xv673/2u/vzP/1w/+7M/qx/8wR8MMWfjI+x7Jmm075u4ZwIAAMM2bm3gl156Sd/+9rd3/L3f7ZSkd7zjHXrPe97TNa5YLCqZTGpmZmbHd+3arq5C7dCQpK985Suq1+uanJzUyZMndfLkSU1NTWlqaqrxnrj77rvPlGY2m1U2m1W1WpUkTU5OSpKuXLnSMj6ZTA40pp0vfelL+sVf/MW23wMAAADj6Hd+53f04IMPDjsbsRXFPZM0mvdN3DMBAIBxEYc28EsvvaR3//AP6/WI0n/LW96ib37zm7rzzjs7xi0vL3ftpNjednUVaofGBz7wAdXrdc3OzurHf/zHdfToUc3Ozqper+uJJ57Q/Py8PM/T5OSkLly4oLe97W3OaU9NTTXeqRU0htv9yieZTA40pp13vOMdkqT/x8elH5tsG7bVD+/8061vuflp5Rf+yhnHhKU/OflP9b3JLznHS5KetAT/mSH2f1Cl8m9MWUmn86Z4adYx7qSkc8a0Jekrxvj3OsT8V0kPSHpc0vcb0/+GKbpS6X6TfPLkSZ0710vZhG97XtJpS32TrOUj/UmH785KOrXlL5WKa33rpS536vn+rqR/KulXJb31jbzYHoDY89NJf2UTbn525qWX/IQhLsfSa6+9pnvvvVdf+9rXdNtttw07O5LiUzYSeWmFOtPZOOal319t/dEf/ZH+wT/4B412MHaK8p5JGr37pjfryt+S9PaWMW/6cIfvbpX0FlUq3Ud5nDx5Upcv/3TXuHCdVaViurnqqHt7qXU7qJV+20bWa4VrW69TvprPeS7p9buN1vX1u85BX1+Gcb0f9DZGvb6d9aL/+yL3dX5P0u9I+kXdPBdGt85m47YPh7k+jsHhr3Oc2sDf/va39bqkrKQ7tn13XdJmP2lL+jevv65vf/vbHTs0FhYWdObMmY7PzQPNbVdXoXZobGxsaGVlRSdOnNjx3Y//+I/r9OnTyufzqtVq5oa5JB09enTLf7e/Xyv4dzqdHmhMO8GQ6R+blO75G10376a7HOPe8P3v+BHn2D3790kHU7YVeIZYv/Xw8tbe2pgg0N07beGeY/r+fvfYLctdNi7wow4x/+WN/94t6QeM6dtOvC7lv3///h72UzR25sVS3yRr+dzsXGrnFm2vj7ZyMtZldboA/OUb/52Q9H095KWX/HTSb9lox/Jh5kXqJT/9i8uxFLyn/f3vf39P1+EoxKVsJPLSCnWmM/LSXj+vDhp3Ud8zSaN13/RmXXm7brZnOvk/dfleSqX2d43Zv3+/wm3/uLgl5GO0W/5bt4Na6Tdf9mtF//naes7rnl6/22hdX7/rHPQ5fRjX+0FvY/Tr214vwrgvcl3nd9/479sV/MgtunW+afz24fDWxzE4PuuMUxv4DoXf2tnnELO2tqapqSlT2QftSFehTgr+e7/3e3r88cd1/vz5lt8fOHBA8/Pz+u3f/m1z2qVSSbOzN3uWE4mEUqmUSqXSlpigN+fUqVMDjQEAAAAAF1HeM0ncNwEAAOBmt+pbQv50GxlRLBYlSZlMZsvfO71Sqrnt6irUDo1kMqmzZ8+2/LWRq2q12pgYL1AsFnXo0CFls9nG386cOaNyubzlF0C5XE65XE6JRGLgMQAAAADQTRj3TBL3TQAAAIiPcrms5eVlSTdHaQSf2dlZXbhwwbnt6sLplVN79+5VMplUJpNRLpeLdPhTMpnUoUOHtLy8rFKppFQqpampKeXzW99HmEqlVKlUtLCwoGQyqVqtpoWFhS0zpw8yBgAAAMDuNch7Jon7JgAAALS3VyHPNfFGmq1Uq1VNTU1JUsvRFhsbG5Lk1HZ14bRdvu+rVCppYmKiY9yTTz6pS5cu6dSpUz034BOJxI5hyu2kUqmus6UPMgYAAADA7jTIeyaJ+yYAAADEQyqVku/7XeNc267dOHVoJJPJrg1zSTp+/LjOnDmjgwcPanp6Wo8//ni/+RsLf5S6S7rHbYLnb+rdprQvd504702v6y03p7i3KF52j11yz4s+/xZ5dxvz4i3a4v3W7yXe6b+8EXvRmKEHjfHt3xf3pmCC5z+SvP+bLXn/UVO45zTh+3+R57mWY3983/raBZfy7D39zuXzVklHTOn1p1PdDCaAe17BBHCeZ63LNr7f/li8++4n9MILxmPVkL5FGHmRJM9bMsWHlf+wbM3/zfpy4MCytk8YGIhb/i1GfV8BGG3cM/Xna1/7Jd1zzz0dY9zO82Ge2485xj3tFOV55a4xvp/pGhNnLvso7OvvoK/ntB/e5Nr22g1ltn0b+7kXsZbrq6++qgMHfl2vvHJ6YBNKA4i/YA6NsNOMA6c5NJLJ5JZ/nzt3TqdOndJv/MZv6Lnnntvy3UMPPaSPfexj/ConhvbP/cKws/CmD8wNOwdN/tawMxBj8SmbuTnqzCiI034iL6MhTmVDXkZDnMqGvKAZ90yjYzjHywfHfH2DNeh9OO7rG4ZxL1P2IeuLu91QnuO+D3czpw4Nb9tPlU+ePKm1tTXNz8/roYce0unTp/Xqq682vs/lck7DTDBY3zdnHVEQoZ+I00nlZ4adgRiLT9nE60IUn3KJmzjtJ/IyGuJUNuRlNMSpbMgLmnHPNDro0Bh94/4gbjec08e9TNmHrC/udkN5jvs+7CaYQyPMT7s5NAat55EiiURCyWRSTz755I4hbcF3AAAAALBbcc8EAACAYdj1r5wqlUr69Kc/ra985Stb/n7w4MG27+dLJBJ9Zw4AAAAARgH3TAAAAED0nDtWcrmccrmcJGlqakqZTOfJym6//fb+cgYAAAAAI4R7JgAAAMRB8MqpsNOMA6ftSiQSOnXqlJ599ln94R/+oX7v935PpVJJ0s1GeCaT0dTUlE6dOtX49dGVK1eiyzUAAAAAxAj3TAAAAED0nF45dfr0af32b/+2KpWKbty4oVKppI997GM6fPiwNjY2VCgUNDs7q4MHD+o973mPPvShD6larUaddwAAAACIBe6ZAAAAEBfBHBphfuIyh4ZTPj71qU9t+ffx48d1/PhxSdIrr7yis2fPqlQqqVwua319Xevr6/I8L/zcjqgfq76oe667xd6jZ0xpX75vwhT/qz//WVP8h/2vdA96w2Pefaa0ddeELf6kLVxFY7weNMZbb0AvOsR8943/Pm9MW/L9RfMyFp63ZFziiDH988b0bTzvsnGJlDF9a/m467RvX331VR048Ot65ZXTjV97RpmXm+nb9pXvn4hZ+tGWT9w0159W9aVf1vKM8lxlTTtOeQcw+rhnGoBs9/Ow67k9zHO65z3tuM7OryCzGOVr0jD2UZhGPf9h2g3bOAyUKwB05jRCo5MDBw7ooYce0tmzZ3XlyhWtr6/r13/918PIGwAAAACMPO6ZAAAAMEi3RPSJg9DzcfjwYc3Pz/NrI0m33nrrzf/GZW9jBNwi6V7F5xSBuNu3b58WFxe1b9++YWcFI4D6AivqDKwa7d83/ovWuGd6E3Vm9HGtGH3sw9HG/ht97MPRR3tmsCJ7arp9yPVuFFTin/+stL9NfZ77u9Lcfze4PCHubpH0U8POBEbIvn379Mgjjww7GxgR1BdYUWfQyurqqlZXV1t+d/XqVUnczLninqnpnunnf1779+9vGTM3N6e5ublBZgsGXCtGH/twtLH/Rh/7cDSMWhs4mEMj7DTjIC75GGvnFqXUjww7FwAAAED/Oj1crlarSqfTA84RxsG5c+eUStnmMAMAABiUUWsD99qh8SVJ/7bNd9/rPTuhokMDAAAAAAAAAIBd7mff+LSyLukfDTAv7dChAQAAAAAAAADAmNir8B/87w05vV7tCSOR5557LoxkAAAAAGAscc8EAAAA9C+Ujprp6Wn9yZ/8SRhJjaWXP3hAf5pyK+p1TZrS/tXpz9oy87/awh+7+6OG6PO2xL8xYYy3hWvphC1+8bIt3jOm79vC9V5buOcZy18XjfE2vm8sHyPPWzIuYXsns+9PGNNfNMZHx/fjk5deRF13rOVjr2u7yyjXt1HOO4DRwz1TZ+l5SQe7BBWvhrY+z+uelu+3nqQ8Djyv7BD1tFNaYV4PXdJyy/twuLT7aD+8yX1fdq+LwyhX9jeAcTbOk4KHMkLD961PagEAAABg9+CeCQAAAOhfKB0rnueFkQwAAAAAjCXumQAAADAozKEBAAAAAAAAAAAwRHF59RUAAAAAAAAAAOjTOM+hEZd8AAAAAAAAAACAPvHKKQAAAAAAAAAAgCFihAYAAAAAAAAAAGOCV06hLz+z9hXpnSmnWP+KZ0r7w4UvmuIfe+Gjpnh9wxC7dMKW9uJlW/xdE9Gm7xnTt/Js5eO/YF2BsfyN8Z5xPJc1Xv554wJWj5qiPduhKN9ftC2AkRG3fet5S6Z4a/6jTj9Ko5x3ANjtKitSqsstk1v7bN5pfb6/v2uM+3XlmFOU55W7xvh+xikttzi3tAbNdRuHIa5tA5e6OIy8u+/LeO5zlzJzPQ/Ete7sBuwjYPehQwMAAAAAAAAAgDFxi8J/8B+XjgTm0AAAAAAAAAAAALEXSsfKgQMHwkgGAAAAAMYS90wAAAAYlHGeQyOUERpPPvlkGMkAAAAAwFjingkAAADoHyM0AAAAACBi3DMBAABgUPYq/BEVe0NOr1dxGSky3p44Kb1lf+vvPjAn/cTcYPMDAAAA9Gh1dVWrq6stv7t69eqAc4NxcfLkSe3f3/qeaW5uTnNz3DMBAIDhGbU28Di/ciou+Rhv95+T3pkadi4AAACAvnV6uFytVpVOpwecI4yDc+fOKZXingkAAMTTbmkD/ytJ/6823313kBnpgA6NAfhn+bSSjrEP+5+ONC8fvvuLpvjHTn40opxIumvCFv/ikjH9RWP6523xumgLt+bHyPNs+ff9E7YV+NGm73nG8tSDpmjfnzCmb+N57vXT96OtC1GLuq5ZyvJm+rbytKYvHTFFm4+tERf1/ooybXtdsBn1Y90qTnUBwOhJ/18l7esc4/ttRr038byy4xozjnFherprhOd1j5HCPYeGeT0cRr5G+XoyjG10Wecol+mwUK7DQ7kCrfU6QuOX3/i0clHSz/Sco/CE2qHx6quv6sqVK6rVakomk5qYmAgzeQAAAAAYadwzAQAAAL3bE0YiX/nKV/TTP/3TOnjwoCYnJ5XJZDQ5Oam9e/fqAx/4gL761a+GsRoAAAAAGEncMwEAAGBQgknBw/yMzaTg586d0/Lysu6//34tLCzo0KFDje+uXLmiSqWiT33qU/p7f+/v6WMf+1i/qwMAAACAkcI9EwAAABCOvjs0Lly4oAsXLrT9/vjx45qfn9c//sf/uN9VAQAAAMDI4Z4JAAAAg3TLXuktXshp+pI2w02zF32/cur22293ivvBH/zBflcFAAAAACOHeyYAAAAgHH13aHzzm9/U6dOn9a1vfavl95cvX9Zv/MZvaH19vd9VAQAAAMDI4Z4JAAAAg7R3r3TLLeF+9sZkEo2+Xzn127/925qentbhw4fleZ4SiYQOHTqkK1euqF6vS5Ky2ayeeOKJflcFAAAAACOHeyYAAAAM0i17pLeE3AHRd0dCSELJR6FQ0KVLl1SpVHThwgXV63VNTk4qmUwqlUrp8OHDYaxmZN23IKX+mlvsidVfizQv3qpvW+Ab0eSjN0ds4da8Z0/Y4ou2cP8FW7znnbctYOR5lyNN38r3FyNN31qevm+sDxHyvCXjErZjxbqtUZeNtS5Yyyf6umbdXzZR5z/q9ONkN23rIFCeQGfcM3Vxl6SDnUM8rxza6tyu18ec0vL9jONaXePC4XlXQ0trGOf4uF5XXNt6LvmPa7mGuY2jbjdsIwCMGqcOjb179yqZTCqTySiXy+ltb3vbjpjDhw/r8OHDymazoWcSAAAAAOKMeyYAAADExS233JwYPNQ0Q55kvFdOHRq+76tUKmliYqJj3JNPPqlLly7p/vvv1w/8wA+EkT8AAAAAiD3umQAAAIDoOU0KnkwmuzbMJen48ePyfV+JREIPPPBAv3kDAAAAgJHAPRMAAADi4pa90ltuCfcT9oiPXjl3aDQ7d+6cTp06pd/4jd/Qc889t+W7hx56SB/72MdUKBRCyyQAAAAAxBn3TAAAAED0nF455XlbX5B18uRJHT9+XIcOHVI6nVYmk9Hp06cb74nN5XI6c+ZM+LkFAAAAgBjingkAAACxsUdS2CMqboScXo+cOjRaSSQSSiaTevLJJ3dMeBd8BwAAAAC7FfdMAAAAQLicOjRKpZI+/elPK5PJ6L777mv8/eDBgzsa5oFEIhFKBsdBPie90zF28Ulb2h+57wu2BT5+2RafnXCPPWJLWs8b45WyhfuXbfHnJmzJ+ydM8Z63ZEx/0RQfNW/PhC3eO29cg3H/6lFTdNzKM0pxq5vWumDNPxAY9fMsgNHGPVOfHpD0I51DDvzuj3ZN5pV9+XDyI0l62jEu4xTleeUQ19md+3Wue5z7NfZY1wjfdyuvuBr19oPLvgx7G4exzt2AcgXQ0V71MZShjVEboZHL5ZTL5SRJU1NTymQ6N0Juv/32/nI2Rs6qfUF/8I0PAAAAMApWV1e1urra8rurV68OODfxwj1TH/7pSWnf/tbf/dzczQ8AAMCQjFwb+Bbt7g6NRCKhU6dO6dlnn9Uf/uEf6vd+7/dUKpUk3WyEZzIZTU1N6dSpU41fH125ciW6XI+YU3IfoQEAAADE2dzcnObmWj9crlarSqfTA85RPHDP1KdfPSf9iHXELgAAwGDQBo4Ppw6N06dP61Of+lTj308++aTOnj2rJ598UrVaTYVCQcViUbOzs0omk0omk6pWq5FlGgAAAADihHsmAAAAxEaPr5xafUVafbX1d1f9vnIUGqfNam6YS9Lx48d1/PhxSdIrr7yis2fPqlQqqVwua319Xevr6/I8L/zcAgAAAEAMcc8EAACAUTd34Oanleo1Kf2ng81PK3v6TeDAgQN66KGHdPbsWV25ckXr6+v69V//9TDyBgAAAAAjj3smAAAADNQe3RylEean756EcIQ9NYgOHz6s+fl5fm0EAAAAAC1wzwQAAAD0JvQOjcD2IdcAAAAAgDdxzwQAAIBI9DiHRtc0YyCyDg306C5b+Df1btsCz0/Y4ouG2EdsSeukMf7FR23x3qIt3r9sS96zTuL4oC196zAu/7xxAauUMf5ixPFHTNGetxRp+pZ4a15831iXIxZ1/kc9fbuo67JN3OqbxSjnXYpj3QSAwamkpFSX5qbn5R1Smg8lP5Lk+/tDS+tmepmuMZ73tGNa4V0DXK4/ruvzvHIo67OsM0xhtrNc8j+MshhGvmizRINyBbBb0aEBAAAAAAAAAMC4uEXhP/mPSU9CTKbyAAAAAAAAAAAAaC8m/SoAAAAAAAAAAKBvexT+nBcxGRpBhwYAAAAAAAAAAONijCcFj0m/CgAAAAAAAAAAQHuM0AAAAAAAAAAAYFwwKTgAAAAAAAAAAMDwxKRfZbzNvl1K3eoWe/mdtrT/tu41xT/zuG9bgcV7jfHFy7b47KIt/pwtPHpVW7hvjPdOGNM/bwv3J0zxnvegKd5cPrpojLeKLn3fN9ZlI89bijT9qPMvHYk4/WhZy8e6v6IvfwwL+xbAbpZO/4GkK12i5h1SWnFcY/e0PO+qY1pu6wzzPO95ZYeop53SCjNfvp9xiHKJcRdm25drMYDdwOW8yflwDIzxpOAxyQYAAAAAAAAAAEB7jNAAAAAAAAAAAGBc7FX4T/7DHvHRIzo0BuDkf5b2e62/m/uBmx8AAABgFKyurmp1dbXld1evur6iB9juM5Lavaf370j6uwPMCwAAwFa0geODDo0BOPdX3OfQAAAAAOJsbm5Oc3NzLb+rVqtKp9MDzhHGw8OS3jPsTAAAALQ0cm1gRmgAAAAAAAAAAIDYu0XhP/mPSU8Ck4IDAAAAAAAAAIDYi0m/CgAAAAAAAAAA6Nse9fSKqNXL0upLrb+7utlPhsJDh8YA/JMvPaxDqR92iv0R75dNaf9b/2um+DvUpka28fILdzrHfvDhp0xpP7PnHlO8iudt8VZLJ2zxi49Gk4/A0qIt/hHrCi6aoj0vZUvem7DF+7by9H1b+XjeUqTpW1jzYhV12UTN943Hojn96PZtb44MOwNbxK1+WsTpOAcAWP2YpB8f4PpWHGKOOaXkej3xvO4ThoZ5bfK8p0NLy32d4bUjXMvCJS5u7d0ouG4j7Z/x4bLP2d9ohXqBTuYmbn5aqb4ipQffvNiBDg0AAAAAAAAAAMbFGE8KzhwaAAAAAAAAAAAg9hihAQAAAAAAAADAuGCEBgAAAAAAAAAAwPAwQgMAAAAAAAAAgHGxV+GPqIjJCA06NAAAAAAAAAAAGBe8cgoAAAAAAAAAAGB4RmKERrlc1vT0tDY2Nrb8vVqtanl5WclkUvV6XVNTU8pms0OLaeezP/sZpW513Ng7HePe8G9t4Xr5btsKPvjCU86xz0zfY8vMe23het8J4wJGj1sXeNAYX7WFL16ONn0diTR9/8aEKd7zrPkZXb6/aIr3vPORxlvrgjV937cdu563ZEzfVp5Rizr/UacfdX4s8VHnHQDGzWjfN/2RpL/sEnPMIZ15hxjJ9/c7xblwvbaFeZ1yW6dLeUmeV3aIetoprcFvo9s6h9FGsLaR+hXmNsa5TeVSrnHNf9jnirhuJ4CYGOMRGiPRoTE7O7vjb7VaTel0WpVKRalUSpI0OTmpK1euaGZmZuAxAAAAADBM3DcBAABg3MX+lVMLCwtKJpM7/j47O6tMJtNoKAexzY34QcYAAAAAwLBw3wQAAICGvRF9YiDWHRrlclm33377lgaxJNXrdZXLZU1NTW35+9GjRyVJa2trA40BAAAAgGHhvgkAAAC7Raw7NPL5vObnd74D9cKFC5K04xdIQQO+VCoNNAYAAAAAhoX7JgAAAGwRzKER5qfLCI1isah0Oi3P85ROp1Uu75ynq1qtanp6ujGKt1gsmjcttnNoLCwsKJfLtfyuVqtJkhKJRNvvBxnTzWs3pFdvdA1ra5938wMAAABE6dq1a7p27VrPy7/22msh5gYuxue+6aqk/9ol5tUO3+174wMAAGBDG7h/KysrKpVKmp2d1fr6ulZWVjQ1NaVSqaRMJiMpvPnWYtmhUa1Wdfvtt7d8B6wkra+vS5IOHTrU8vt6vT7QmG7ufblrSEeLb5MeSfSXBgAAANDN8vKylpaWhp0NOBqv+6ZPdvm+m09L+p/6TAMAAOxGY9kGDkZohJ1mG88+++yWEbn333+/0um0crlco0Oj03xrI9+hsby8rEKh0Pb7yclJSdKVK1dafp9MJgca083X7pDef2vXsLYYnQEAAIBBOH36tD7xiU/0vPxzzz2ne++9N8QcoZPxum/6nKTJLjE/2eE7RmcAAIDejGUbeIAdGuVyeceI4VQqpVQq1RilG8y3tj2ueb41106N2HVoLCwsaGpqasuQ5OD/g/8GjeF2v/JJJpMDjenmL//3A/ovKbeiXu/aiN9qVnlT/OUXJkzxJs8b499njD9ijF+09qw+aAu/a8IW/+Kjtngr74Qt3r9sTH/CFu5Z07fl3/PO29I38rz49Mz7/mKk6Udflrb0rdtr3VdRl6c9/6NdPlGXJ9qLW92PW37Qm3379mnfvt4fDN92220h5gadjN99009K+vEuMU93+d41RvK8Y11jfD/jlFaY5zP3c2l4+fe8qyGm5ZL/7nm/uU63cnVZ5zDScokL857DNa1Rv/6GWa6DLotRL3tgnNEG7k8wAqOVoA3oMt/ayHZolMtlraystPxucnJSqVRKTz75pKSd72EN/p1Opxu9O4OIAQAAAIBB4r4JAAAAbe3VjhEV165L1zZ7T/I147K1Wk2zs7ON/5f6m6c6sMeWjehVKhX5vr/lMz8/r0QiId/3ValUlEgklEqltryXS1Jj5vRTp04NNAYAAAAABon7JgAAAFgsX5AO/Hbvn3vPua+rWCwqmUw2Rl2EMU91IHYjNFydOXNG6XRatVqtMVQll8spl8s1enoGGQMAAAAAccN9EwAAwC7UYg6N0z8pfeIDvSf53MvSvWfdYrfP9RbGPNWBke3QSKVSqlQqWlhYUDKZVK1W08LCwpZ3bQ0yBgAAAADihvsmAAAASNK+W25+enXbrW5xCwsLOnPmzJZOijDmqQ6MRIdG8Kue7VKp1JaenlYGGQMAAAAAw8J9EwAAACS1HKERSppdrK2taWpqqjHZdyDM+dZiN4cGAAAAAAAAAAAYHcViUZKUyWS2/L1arYY639pIjNAYdf9Rf1Xfp+93ir3nz58xpf3Nd7zbFP/yZ+60xT9iiH+vKWm7x43xS4u2+MXztvgXbeHSEesCNtby/8ZEFLl4k2dM31+KJBtvspb/RVO07xvrW4z4/olhZ2ELz7PVhbiVfdT59zzbucqefnzyP+p108palnGr+3HLD4Ddat4pyvf3d41xPe+7nv88rxxaWuFa6RrheW4pxfVaEOa+dNmPN9PKOMSEV15xLfvhODbsDKCLsM+vAFrYK6cRFeY02yiXy1peXtbs7KzW1tYaf69UKkqn00qlUqHNt0aHBgAAAAAAAAAA42KAr5yqVquampqSJM3Ozu74fmNjQ1J4863RoQEAAAAAAAAAAMxSqZR833eO7Xe+NTo0AAAAAAAAAAAYF0OaFHwQmBQcAAAAAAAAAADEHiM0AAAAAAAAAAAYF4zQAAAAAAAAAAAAGB5GaAAAAAAAAAAAMC72KvwRFTEZoUGHxgCkfuN5pe5wi13657a0/5rbBPINH3z4KdsCD7uHPrPnHlvai7ZwPW+MX7xsi/dO2OJP2sJVfNS4wIO28BeXjOlbHYk4fStj+Sja8vc8S/nbytL3jXUzYp533hRvzb/v204OtrK3p28X7bESdX2Iunws+Y9631rTt4q+rtnE7ViJW34ADNsfSfrLLjHHHNJZcVqb57lEuawv3OuJ5z0dWlru502X7XTLV9TX1lbCvD6Em/9MiGnBwvcp+7ijXQegH3RoDMDJL0n725T03N+Q5n5ssPkBAAAAerW6uqrV1dWW3129enXAucH4+IykW9t893ck/d0B5gUAAGCrkWsDj/EcGnRoDMC5n5XzCA0AAAAgzubm5jQ3N9fyu2q1qnQ6PeAcYTw8LOk9w84EAABASyPXBh7jDg0mBQcAAAAAAAAAALHHCA0AAAAAAAAAAMbFGE8KzggNAAAAAAAAAAAQe4zQAAAAAAAAAABgXPQ4h8bq//vmp5Wrr/eRnxDRoQEAAAAAAAAAwC4399/e/LRSfUlK/9ogc9MaHRqDcFnSlWiS/pC+HGl8SlX34H9vSlr6UVv4HTdeMsW/fPeEbQUP2ML1iDHeW7TF+0u2+Lts6fsv2JL3vPO2BSL3qCna923lE+32pkzRnnfZmL7huJUkXTRFW8ty97GVp+ftrvL3PPdzW9TbGnX6lm2VRn97reKWHwDD9pykl7vEHOuezGHHc8sll3O0w/okSU87xg2W55Wd4nw/45BWeNs4jPO/6zV5N1ybrO2TTsIsr92wj8Iseym+ZeGynXHNe9goCwxVjyM0uqYZA8yhAQAAAAAAAAAAYo8RGgAAAAAAAAAAjIs9Cn9ERUyGRtChAQAAAAAAAADAuLhF4T/5j0lPQkz6VQAAAAAAAAAAANqLSb8KAAAAAAAAAADoG5OCAwAAAAAAAAAADA8jNAAAAAAAAAAAGBdjPEKDDo0B+LOvS4ciSvtdv/IdU/xHfvMLpvhlnXaO/eXi75rS1ntt4S9P32lb4MXztvjHT9jirfwl4wJHbOEvXjaFe96jpnjfXzSmbyx/M1v5eN5lU7zv2+qD55nCjWz7ylx3jDzPWpdtrHXNXjdt+bembxV1/q3itr2jbDdt6yDE7dgFELb3S3pP36n4Nbc4zzvmEPW02zodzzcu57Ewz12eVw4trTC30ZVrWi552w3XhDDLaxjiexzFtx4OuixcxbWODQNlAUSDDg0AAAAAAAAAAMbFHoU/oiImk1fEJBsAAAAAAAAAAADtMUIDAAAAAAAAAIBxcYvCf/Ifk56EmGRjvP0Pkt7a5rv/XtIvDDAvAAAAQD9WV1e1urra8rurV68OODcYH5+RdGub7/6OpL87wLwAAABsNXJtYCYFRz9+S9KPDjsTAAAAQAjm5uY0NzfX8rtqtap0Oj3gHGE8PKwwJgUHAACIAm3g+KBDAwAAAAAAAACAccGk4AAAAAAAAAAAAMPDCI0BeOeCNPHXHIM/bkx8wRb+Tb3bFP+Yd597sGfLi/zLxgUmbOF3nbDFv3jZFm92xBh/0RifMsbb8uN5543p2/Lv+4umeM9bMsVb8+N5Ue6vaMvGyvPitq9srOlHXZ7RH1u29H3feC4E3hC3Yyv6YxfAcD0n6eXOIYczIa7vmEPMilNKnve04zrnHeNc1ulyjh70+sLlet53yVuY1xDXsnBZZ5jluluuk7thO8OsYwB2MebQAAAAAAAAAAAA42r1f5NW/03r765+b6BZaYsODQAAAAAAAAAAxsUt6unJ/1z25qeV6n+Q0g/1latQMIcGAAAAAAAAAACIPUZoAAAAAAAAAAAwLvYo/DkvYjI0IibZAAAAAAAAAAAAaI8RGgAAAAAAAAAAjIu9Cv/Jf9gjPnpEh8YgvCTpu26hi/8w0pzoQ/qyKf7d/qRz7GMvfNSWmcUJW/zztnC9uGSLzy7a4ovG9O8ypv+iLdzuojH+iCna943ba2bNz4mI8nGT57nHRp8XY92MmLUuRJ1/a/r2upwypj9hTN8m6u2Ncn9FfR6Juq5Ffx6M1qjnH8BoqVRmlUp1voZ63tWu6XjeSlhZkg47ngcvuV5PXPLmeu491jXC9/c7ptWd6zXB88qhrdPVKF+vwsy7a7tmlMsrbC5l5l73w0uLfQQgFD1OCt41zRjglVMAAAAAAAAAACD2YtKvAgAAAAAAAAAA+jbGr5xihAYAAAAAAAAAAIg9RmgAAAAAAAAAADAu9ij8ERUxGRoRk2wAAAAAAAAAAAC0xwgNAAAAAAAAAADGxRjPoUGHxgCc/JK0v01Jz/0Nae7HBpsfAAAAoFerq6taXV1t+d3Vq1cHnBuMi5MnT2r//v0tv5ubm9Pc3NyAcwQAAPAm2sDx4fm+7w87E+OqWq0qnU7rf68c0JGUW9/R/+J9x7SOj/m3m+Lf9bds6Xv/TXTV446HXzLFv3z3nbYVFG3het9l4wJGSxO2+EeiyESTk7Zwv2CL94wvtPNv2OKj5nlLkaXt+4umeM87b1xDyhj/qCnanv/oylKy5ydq1rov31Y+sdteY/30/RMR5SR61roct30FDELQ/q1UKkqlrNcj7EZBnZH+paT3DHDNx7pG+H7rDpbtPM/1IcaKQ0z3fN30tGNcd2Fer1yulWFfH8Nc56Dz7962cKmvmf4yEyHPK3eNiXP+AaCbOLWBG3n536TU+0JO+3kp/d9p6NvJCA0AAAAAAAAAAMYFk4IDAAAAAAAAAAAMDyM0AAAAAAAAAAAYF2M8KTgjNAAAAAAAAAAAQOwxQgMAAAAAAAAAgHExxiM06NAAAAAAAAAAAGCXW/1/Squ/0/q7q98daFbaokMDAAAAAAAAAIBxcYt6evI/99DNTyvV/6+UzvSVq1DQoTEAdzzzit5Vjybtd33lO7YF5m3hH77vi86x39S7TWk/88Q9tsxYve+8cYFUJNkIfPDhp0zxzyzeaVzDo8b4RVO05122Je9NGNNfsqVv5dm2V3rQGO9e/vZtPWKMt9YFm/jtK2Pyxvz7vjE/frTpe57t3Ob7J0zxVlGnv5tEfWyZ6zIADNRzkl7uEnMsxPWtOMS4nTd9f7/jOrun53llx3WGd053uf64rm/Q+XJdZ5jlGma+XMvLbZ1uT5jC3N+ufD8GT796FOb+HnVhtlXjXF7DOEbCQn3FbkGHBgAAAAAAAAAAY8LfI/khz3nh7wk3vV7RoQEAAAAAAAAAwJjY3CtthvzkfzMmk4LHpF8FAAAAAAAAAACgPUZoAAAAAAAAAAAwJm5EMELjBiM0AAAAAAAAAAAA3DBCAwAAAAAAAACAMbG519P1vV7IafqS/FDT7AUjNAAAAAAAAAAAQOwxQmMA/s0H/5aeSx1yjH7MlviKLfyH/o9vmeJf3nOne/AjtrxE7Q7/qCnetK09eGZ6wrbAXdY1LNrCi+eN6ads4f6SMf0jxngj37q90fF9277yPGtZRsua/1HnefGpOzddNEV7ni0+TvvXWvejznvUx26cyn4cUP7AaKlUZpVKdW5vet7Vrun4/n6n9XkOP1h0Wd9Nxpuyjo6FlpLreTDM85/nlR3Wl3FKK8x8ua7TLS23fIVZFmGtb1hc6mK49XDwdT9Mcc1/XMsrbKO8naOcd4Rvc+9ebd4S7liGzb03JF0PNc1eMEIDAAAAAAAAAADEHiM0BuBfnvz/6C37W08Df9/cj+i+uR8ZcI4AAACA3qyurmp1dbXld1evuv6iHdjq5MmT2r+/9eiKubk5zc3NDThHAAAAbxq1NvCNvXu1uTfcsQw39nqKwwgNOjQG4H8893/WDzu/cgoAAACIr04Pl6vVqtLp9IBzhHFw7ty5rq+cAgAAGJZRawNvao821foH9r2nGQ+8cgoAAAAAAAAAAMQeIzQAAAAAAAAAABgTm9qr64zQAAAAAAAAAAAAGA5GaAAAAAAAAAAAMCZuaK82Q370fyPU1HpHh8YA/At9XG/REafYv/j8Y7bET9jCX37iTlP8HTdeco6d0GVT2v9MnzLF3/v4H5jiX/6MbVv1Xlu4Xrxsi39+Itr0PWP6VncZ03/RmH7WWJmLS8YVuB2Db4puUkrPuxxZ2jdZtzVannfeFO/7trrgeda6YHUx4vRtfH8x0vSt5RllfqLeVqs4lQ26o/yB8XPg2itdY7zp/SGuccUx7phj3NMhxUhSpmvEMM6Dvt89X67X01E/j7uUhXtaYZZFePkKc1963lXHtLof42GW16jXQ1cu+3K3lAWA+KNDAwAAAAAAAACAMbGpPdrsYQ6NR1f/Uv9qtXUn83ev+v1mKxR0aAAAAAAAAAAAsMs9OPd9enDu+1p+d7H6uv4v6Y0B52gnOjQAAAAAAAAAABgTN+fQsI/Q6JxmPGbRoEMDAAAAAAAAAIAxcaPHV051TnMz1PR6tWfYGQAAAAAAAAAAAOgmtiM0isWilpeXVa1WlUwmlc/nlclktsRUq1UtLy8rmUyqXq9rampK2Wx2aDEAAAAAMEjcNwEAAGC769qj6yGP0Lgek7ERsezQWFtbU6VSUS6XkyQtLCxoampK6+vrSiaTkqRaraZ0Oq1KpaJUKiVJmpyc1JUrVzQzMzPwGAAAAAAYJO6bAAAAsNt4vu/7w87EdisrK5qfn2/8u1qtKp1Oq1AoNH7dMzU1JUkqlUqNuLW1Nc3OzirYpEHGtBLku/JbUupH3LZ96bhbXOBj/u2m+Ne975jiDz9uqB5/bEpaH3z4KdsCRs94d9oW8CZs8f5lW/xdxvS/YQvXI8b4xSVbvLdoi/eN6euIMT5avn/CFO951u21JG4seyPfOKeTdVt935Z/e1na6o5130Yt6vK08rzzkaYft/IHEK5G+7fpgTaiMw73TUGepX8p6T2dN/hzmc7fS9InXa+r891DDu93S+pSeOv0fbd1urUfjjml5fsO5Roi17ZP1G2eVjzvatcY931Udoh62iktl7Jwb1OGVw/DFGa9iHMdA3oV5jMH6n744tQGDvJytvJXdXdqX6hpv1C9plPp/zj07YzHOJFtmhvlkpRIJCSpUVD1el3lcrnRYA4cPXpU0s1G8yBjAAAAAGDQuG8CAADAbhPLDo3tisWicrlcY9j0hQsXJKnx70DQcC+VSgONAQAAAIBh474JAAAAknRDe7SpvaF+bsSkKyGWc2g0W1hY0Nrams6cOdP4W61Wk/TmL5C2q9VqA43p5rXvSq/+165hkqTvtvjbLRqBHQUAAICRd+3aNV27dq3n5V977bUQcwOL0b9vuiqpy03Td19t/90t+25+AAAAjGgDj5ZYPydfWVlRrVZTvV7X9PS08vm8ZmZmtL6+Lkk6dOhQy+Xq9fpAY7q59x91Dem8vKSf6i8JAAAAoKvl5WUtLUU4LxQiMR73TZ/s8r2kf9Lhu59elD70SPc0AAAAthnHNvDmGyM0wk4zDmLdoRG8E7ZcLmt6elq5XE4zMzOanJyUJF25cqXlcslkcqAx3Xztf5beP9k1TJK0/Hd2/i3WOwkAAABj4/Tp0/rEJz7R8/LPPfec7r333hBzBBfjcd/0OUldbpo+2+FnXozOAAAAPRrHNvCm9up66B0a4aZXq9Wcnq1vNxLPyjOZjGZmZrSysiLpzcZwu1/5JJPJgcZ0c9tbpbd9f9cwSdJb3cIAAACA0O3bt0/79vX+YPi2224LMTewGu37pv2Sutw0vfVtXdIAAACwow3cv3q9ruXlZUlSLpdrGeN53pZ/p1IpVSoV87pGokNDkj7wgQ80GsFHjx6VtPM9rMG/0+n0QGO6+leSImp7v+59xxT/Fv92U/yH9UXn2Emtm9LOa9YU//ILd5ridZctXA8Y47MTtviiMf2LxnizB6NegYnvnzDFe551KOARY/qXI0zfuHPfawvXi7ay2XY9cWAty3gN24xbfnx/0RTveeeN6duOLfvJJ17nEgDY7Ub6vqmbT17tHnPY8bp6yaE9cMktKemYY9xK1wjPc0vL2n7ovM7uZeG6vmG0szyv3DXG9zOOqbnsI7eUXMrM8552Sivcch3sNg5DXPPluh/jmn9XYdbXUS+LMFEWsLqhvdoM+dH/jTYjNMrlsvL5vIrFomZmZlrGrK2tbRlBLN38MU4v4vHiKwe1Wq2xkYlEQqlUSqVSaUtMuXyzIXPq1KmBxgAAAABAHHDfBAAAgEHKZDIqFAodYwqFgvL5vObn5xufVCrV0/pi16ERTGRXLL75c/ZaraZSqaR8Pt/425kzZ1Qul7f8AiiXyymXyymRSAw8BgAAAAAGhfsmAAAAtLOpvZF8elEsFnXhwgVNT09rbW2t722L3SunEomE6vW6HnroIeXzeU1NTSmZTO74pU/wjq2FhQUlk0nVajUtLCxsGdYyyBgAAAAAGBTumwAAADAKSqWS6vW6isWiisWiFhYWVCgUen7lVOw6NCTtaIS3k0qlug5nGWQMAAAAAAwK900AAABo5Yb27BhR8b1rN/T6Nb/nNP/ra70tl8/nlc/nVa1Wlc/ntba2pqmpKa2vrzfmfrOIZYcGAAAAAAAAAAAIx+8u/5l+Z+nPhrb+VCrVGFk8PT3dGKlhRYcGAAAAAAAAAABjYrPFCI0HTv81nfzEu3pO85vP/Vf9o3tf6DdrymazymazqlarPS1PhwYAAAAAAAAAAGNiU3t1fVuHxp59e7VvX+9p3nrb633m6k1TU1Mql8s9LUuHxgC8/PkD+tOUY1F73zGlPWEdJbRqS39lbt45Nq9ZU9oTumyKf1l3muK1aAvXEWP8+y4bFzB6fMIWb83/I8b0/SXjCmwZ8jxr+g8a4229vr4/YYr3vEcN0bay8Y2d355nLRtL3nsRdX4uGuOtB4s1fRtr3fd928kt6vQBAAjHj0n68c4hh/eHuL5j3UMOO05UecnxZvywwzX2ktt12/OedlunA5drv2t7wi0tt/Jyb8N035dhpiW5lb3nXXVcp4vw8hVmWy/MerEb7JZyCPOcAmC8HT16tKfl6NAAAAAAAAAAAGBM3NBebYb86P/GthEf/SiVSpqdtf04PrAntFwAAAAAAAAAAIBdpV6vt/x7tVpVOp3WyspK42/FYlGHDh1SNpvtaV2M0AAAAAAAAAAAYEy0mhQ8jDRbqVaryufzkqSzZ89qampKmUxGiURCyWRShw4d0vLyskqlklKplKamphrxvaBDAwAAAAAAAAAAmKVSKeXz+ZadFIlEQqVSKdT10aEBAAAAAAAAAMCYuDmHRrgjNMKcQ6MfzKEBAAAAAAAAAABijxEaAAAAAAAAAACMiU3t0fUBzaExaHRoDMDP/K2D0q37W3/503PSh+Ya/3xEni3xnzRm5vdt4fNa6R70hsc+81Fb4o/Yws3xF43xS8b4qP28Mf69xnj/vHGBI7bwu07Y4l+07jCrlCna86zlY2HbVs+z5d3K9xdN8Z4Xt4PFWDdjJvryj7Z8rPmxbG/Udc1a9gBuWl1d1erqasvvrl69OuDcYFxMTHxE+/e3vmeam5vT3NycPM+lfrnevxzrHnIp5OvQpadDTMwh/wpzffOhpeT7GcdItziX9oLrNT/MtNzW5xrZfX+7lmv82vI3hVuubttIW3B44npMAp2MWht4U3u1GfKj/7BfYdUrOjQG4RPnpMPRPpAEAAAABiF4uNxKtVpVOp0ecI4wDs6dO6dUinsmAAAQT7SB44MODQAAAAAAAAAAxgSTggMAAAAAAAAAAAwRIzQAAAAAAAAAABgTm9oT+giNuEwKHo9cAAAAAAAAAAAAdMAIDQAAAAAAAAAAxsSm9up66CM0mEMDAAAAAAAAAADACSM0BuDMT/+CfiT1/U6xX33AlvbSS8bMvNMWPumvO8d++OEvmtL+5sPvNsU/88I9png9YgvXSWP8+yZs8eeM6Vu9eN64QMoWnp2wxRet+TlijK+aon3/hCne80zhEbNtq5XnRZu+vewvRpSTm6KuC/b0l4zpL0aavmTLvzU/aC/quhC1uOU/bvkBEIaV7iGHHY/lSy7niGNOSfl+xinO5bzkei7yvHJoabnw/f1OcfZ2R6d1uuXfJc49X933eZhpue9vl3WGub+5JkbBte5Q/m+iLIDe3dBebfbw6P8rq/9BX1n9Dy2/e/3qZr/ZCgUdGgAAAAAAAAAAjIleJwW/d+4u3Tt3V8vvvlX9jj6b/rf9Zq1vvHIKAAAAAAAAAADEHiM0AAAAAAAAAAAYEzdfORXuJN43mBQcAAAAAAAAAADADSM0AAAAAAAAAAAYEzd6nEOjW5pxEI9cAAAAAAAAAAAAdMAIDQAAAAAAAAAAxsR17dX1kEdohJ1er+jQGIDUf35eqT93i/1qtFnR4p22+D9V3jl2XiumtJ/5zD22zFi91xi/ZIx/32VbvDdhi3/EFq7HT9jiXzxviy/awuUZ83PSmH7RtsO8u2358f0JW/pe1RB90ZS29KAp2px361g935Z/z7MeXFbW/FjL38bzIk3eXJ6+v2hM33huMJa/JT/2vBvPC5HXTRvr9lpFvb1R598qbvkB0Fk6nZf0zo4xB67Ndk3nlX1XHdc47xDztGNaro51jXA9V7uc4+J2nXtT93KQJC/pmNyl8LbT9zMOUS4x4Qpzf8f1+uh5Zac4l300jG2M7/EWT2Hub/d1Dv78GtfjDRh1dGgAAAAAAAAAADAmbmivNkN+9H+DERq7x8mHpP1vbf3d3C9Kc7800OwAAAAAPVtdXdXq6mrL765edf11PLDdWbW/Pf3gGx8AAIDhoA0cH3RoDMC5M1Lqbww7FwAAAED/5ubmNDc31/K7arWqdDo94BxhPJxSt1dOAQAADMuotYE3tUebIY+o2JT1neXRoEMDAAAAAAAAAIAxcfOVU+F2aMTllVPx6FYBAAAAAAAAAADogBEaAAAAAAAAAACMiU3t0fUxfeVUPHIBAAAAAAAAAADQASM0BuAX/soZff87fsQp9m/r3kjz8sVvfdgU/2590zn2Me8+U9p3+C+Z4l/+zJ2meBVt4coa45cmbPGPG9O3xr943hZ/1wnjCozeZ4w/Z4z3Fm3x3zAm7xnLUxfdQ+8y5v3Fy6Zwz7PF+/6EMX1TuKQHjfFVU7TvR1uX7XVhtNnLM+JzSYR833gsjrjdtr0Axs8rH3l715gD1/6TW1r78v1mp8HzjjlGusQ97bjOqw5R805puazT9zNOKXleOcS0lpzi3MrVTZj5D2t9N7nVi3DX2V2YZRFmWsNAO8tmGPvbdR+5n3sguZcXx8jgbWqvNkN+9B/2nBy9YoQGAAAAAAAAAACIPUZoAAAAAAAAAAAwJm5ob+gjKm4wQgMAAAAAAAAAAMANIzQAAAAAAAAAABgTN7SnpxEaF1afVWX1Qsvvrl+93m+2QkGHBgAAAAAAAAAAY2Kzxw6NH5/7Sf343E+2/O4/Vf9Mj6bX+s1a33jlFAAAAAAAAAAAiD1GaAzA87WU9NaUU+zfNqb9oDF+YvUxU/yfzt3uHOv/2WFT2j+kb5ni9ddt4Soa4x8wxl80xr/PGH/EGL9ozNCLbnUycIdv6/98+e47TfF6ry1c3zDG+0vGBYy8RffYF89Hl48eeF7VuISxct41YYt/0RbueZdtC+hRY7z1YLQdW/Z42/6ylo/vTxjTtx1bvu9+rFjTjprn2Y5d3z8RUU4AYJf6m91DXvnI2x0TO9Y1wvczTil5Sbc1+jWHtLx5t8T0tENM922U3LczLOFf37uXhaX9EZYwt9Ml/67rC3N/D6OtFm5ZDDatOHPZzjC3cRjlulv25aBRXvG1qb26HvIk3mFPMt4rRmgAAAAAAAAAAIDYY4QGAAAAAAAAAABj4ob2ajPkR/83GKEBAAAAAAAAAADghhEaAAAAAAAAAACMiU3tCX3Oi82YjI2IRy4AAAAAAAAAAAA6YITGIPzKSWnf/tbf/fyc9OG5weYHAAAA6NHq6qpWV1dbfnf16tUB5wbj46za355+8I0PAADAcIxaG/jmHBrhjtCIyxwadGgMwm+ek+5ODTsXAAAAQN/m5uY0N9f6BznValXpdHrAOcJ4OCXpncPOBAAAQEuj1gbe1B5dH9NXTtGhMQjTkrxokn7UGL94ly3+Xb/yHefYp37T9qupgqZN8ff+8R+Y4r/w8EdM8b/8md81xet5W7heXLLFFx80hd/h/5Ip/mXvhi3+M3ea4vUNW7iVb8u+vOlF2wLnbOHyzxuCL9rSvsuYd2td0xFbuHfCFm+uC1VTtO/b8uNFdD4O+P6EKd7zrPsrahOmaN831s+YpN0b47Er47ESM9a6Gb/9BWCUVCqzSqU6/wgs8b3/1DWdVz55wHGNT3eNcG8zdE/rZnrzXWN8v83I/h1puazzmFNabusrO0a65Kt7Ody04hTlcv3xPNdfzrrk321/uwjz2uma1nDant3rou9nQlvbMMo1TK7H26DLbBj5ChNtVWB80KEBAAAAAAAAAMCY2NQt2gz50X/Y6fUqHuNEAAAAAAAAAAAAOohHtwoAAAAAAAAAAOjbDe2JYFLweIyNiEcuAAAAAAAAAAAAOmCEBgAAAAAAAAAAY2IzghEamzEZGxGPXAAAAAAAAAAAAHTACA0AAAAAAAAAAMbEDe2NYA6NcNPrFR0agzAr6Z2OsYtRZkT60/tuN8W/65e+4xw7/ZsFU9pVpUzxVr/8md+1LfDXjSuw7qulaHfuy9PGBZaM8YvnjQtY92/VFO15xuSN+fH9CVO85100RD9oSlsvXrbF64gx3riv/MvG9G37Vt4JW7h32RTv+9Eei55nPbiiZqmbkmQr/zixlr21LkRdd+Jmt21v1KKun8Bu8Mrvv90h6qpbYl9zOMYuuCWlTx5zizu8v2tIuO2IFacot3a14zY68P3u5SC5t/fdyswt/76fcVjf045pda9jrvt78NeE8MpLcttO1/3tto/KIaY1+H3kWq6DFma+wiyv+B5Hg0dZoNmm9uh6Dx0Qf7Ja1vrqV1qnefV7/WYrFHRoAAAAAAAAAACwy71nLqP3zLXuwNyoXlYp/chgM9QCHRoAAAAAAAAAAIyJTe3VZsiP/sN+hVWvmBQcAAAAAAAAAADEHiM0AAAAAAAAAAAYE+M8KTgjNAAAAAAAAAAAQOwxQgMAAAAAAAAAgDGxqT2hj9DYjMnYiHjkAgAAAAAAAAAAoANGaAxC/u9KemubL/97Sb8wsKy87n3HFL9kiM2obEo7r1lT/Bce/ogp/pdf+F1TvIq2cC1aSkdSdtEW/7wt3OyiMf6uE7b4bxjTPzlhiz9nTN+/bAr3PFu8af8WjWmb2Xau79v2rblslLKFG/eV9Kgp2vOMyRv5vvFYN/I827nHmp/o0z9vSNtWN6Mue6uoyzJu4ra9ccvPqO/fZqurq1pdXW353dWrVwecG4yLkydPav/+/S2/m5ub09zcnHTBIaHDrdPY4V6Hc8TnHI9b13U6cD1XeEmHoEu2+7POnnaKcsm/6/k5zPOm57mVhee5nMPmHdMy3i/GiO9nnOLC3Ua3OubSlnfN/6C51sO45j9MYdadcWpj9YuyiNaotYE3tVfXQx+hEY85NOjQGIjfkvSjw84EAAAA0LfGw+UWqtWq0un0gHOEcXDu3DmlUsYfQQAAAAzIqLWBb04KHu6jfyYFBwAAAAAAAAAAcMQIDQAAAAAAAAAAxgSTggMAAAAAAAAAAAwRIzQAAAAAAAAAABgTN+fQCHeEBnNoAAAAAAAAAAAAOGKEBgAAAAAAAAAAY2JTe3R9TOfQoENjIL4h6XvDzoQk6VFj/OKfGYJ/5ZeNqdt88Tc/HGn6/sO2eC+7aFsgawvXA8b4i8b4I8Z4c/7P2+LPnbDF+5dt8VZ3Tdjii5cNwdYj0biz7rLVTc+7bEtfVVO07xv3rZHnPWiK9/0JY/pLpngra/n7vnX/Rpt/K0t9sJfNhCneWjbWst9t4lY+ccsPgP7NfOKfd41ZO/oP3RK791j3mE9edUrK9/e7rdOB55UdIx3y7xQjSSuOcd25XFvjfX7uXhbu+Q9vO13qhe9nnNJyyX/c2o9bPe0Q41YWLsKsr677yLX8w9yXg04r3ueB7sIsi7jaDduI0UWHBgAAAAAAAAAAY2JTe7UZ8qP/sOfk6BUdGgAAAAAAAAAAjIlxnhScDg0AAAAAAAAAAHa5v1j91/qL1X/d8rsbV68NODet0aEBAAAAAAAAAMCYuKE9PY3Q+MG5rH5wrvVEun9Z/WO9mI52DmUXse3QKBaLWl5eVrVaVSqVUi6XUyazdQKlarWq5eVlJZNJ1et1TU1NKZvNDi0GAAAAAAaJ+yYAAADsJrHs0FhZWVGpVNLs7KzW19e1srKiqakplUqlRuO8VqspnU6rUqkolUpJkiYnJ3XlyhXNzMwMPAYAAAAABon7JgAAALSyGcEcGnGZFHzPsDPQyrPPPqtSqaSZmRnlcjlVKhVJUi6Xa8TMzs4qk8k0GsqStLCwoNnZ2aHEAAAAAMAgcd8EAACA3SZ2IzTK5fKWBrgkpVIppVIp1Wo1SVK9Xm8Zd/ToUUnS2tqaTp06NbCYbr82qlTu29Ko72TJcwrr2eKHbPF/+o7bnWPf9Y3vmNJ++P/4tCn+Vz/zWVO8jCPbvRds8bpojP+GMd6Y/w8+/JQp/pk999hW8F5buJZO2OKt5Vk0xi9N2OIfMaavR91Ds4u2pM/ZwvXieVO479v2lXf3hC3eWzLF2z1oivbMXflHbOl7l43pV43pG+qaJGv+rTzPVt/sB7s7z7Ntq+/bjsXo6zIAuBvH+6Zu7pZDg/0XHRM7nOkec6nslJTnHXNc6YpDjGtaTzvGuXBZp9v6rNfWTtyvu+Hl3yWtUNsDh93Ky/cd6muIwtyPrlzLdTh1LCxux7frNrrkP8zyGkbZD6MuuohrvsK0G7Zx3G1qj66HPkIjHmMj4pGLJplMRslksuV3wd8vXLiw5d+BoNOgVCoNNAYAAAAABon7JgAAAOxGsRuh0U6tVmsMVQ5+cZRIJNrGDjKmm9dee02vvvpq1zhJ+m6Lv92iEdpRAAAAGFnXrl3TtWvXel7+tddeCzE36MWo3je53DN9V99r+90t+/bqln3xeK8zAAAYLePYBr45h0a4T5TjMofGSDwnLxaLSiaTjSHK6+vrkqRDhw61jK/X6wON6ebee+/tGtNxeUk/1VcKAAAAQHfLy8taWuL1aqNqlO+b+r1n+tBiSj/zyNG+0gAAALvTOLaBb0QwKfgNOjTcLS8vq1AoNP49OTkpSbpy5UrL+GQyOdCYbr72ta/p/e9/f9c4SVo+cGDH30ZiJwEAAGDknT59Wp/4xCd6Xv65557r+8E0ejfK900u90y/pX/Y9jtGZwAAgF7RBh4tsX9WvrCwoDNnzmxpAAf/3+5XPslkcqAx3dx2221629ve1jVOkt7qFAUAAACEb9++fdq3b1/Py992220h5gYWo37f5HLP9Fbd2vF7AACAXoxjG/iG9kQwQiMe03HHIxdtrK2taWpqqjGRXODo0ZtDibe/hzX4dzqdHmgMAAAAAAwL900AAADYLWI7QqNYLEqSMpnMlr9Xq1WlUimlUimVSiXNz883viuXy5KkU6dOKZFIDCxmlCx92RZ/xPuOc+yJJ21pZ1Q2xc8+nDfFn9B5U/wzT9xjire648ZLpviXp+80xT9zxJh/3/ZuQP+FRVO8d7cpXHrAGP/8hC3+ojF9Y/mYFK1pH7GFeyds4d5lW/qqGuNt+fd9a/5tx7p8W7jdo8b4B43x1spsFXX67nzfdt6x8rxoj0VrXR511vKMev9GbbdtL+JrN903/cpTDvcDl8Jsw813D5Gk7H63uEr384Dfee50E+fz1GGH89Ol/vLSizDPm573dGhpuXLJv+s+8rxj/WanSfeycC171/yHuy+7r9N1fXG9NtvbqIMR5v6Oa9kD4+S69mhvyCM0rsdkbEQsOzTK5bKWl5c1OzurtbW1xt8rlYrS6bRSqZTOnDmjdDqtWq3WGL6cy+WUy+WUSCQkaaAxAAAAADBI3DcBAAAgDur1upaXlyXdbP9tV61Wtby8rGQyqXq9rqmpKWWz2Z7WFbsOjWq1qqmpKUnS7Ozsju83NjYkSalUSpVKRQsLC0omk6rValpYWNDMzEwjdpAxAAAAADAo3DcBAACgnRu6RZshP/q/0Sa9crmsfD6vYrHYst1Xq9WUTqdVqVQar0idnJzUlStXemonxq5DI5VKyffd3geSSqVUKBRiEwMAAAAAg8B9EwAAAOIgk8kok8nI87yW38/OziqTyWyZ721hYUGzs7M9dWjE48VXAAAAAAAAAACgbze0R5vaG+rnRg9dCfV6XeVyuTGyOHD06FFJ2vLaVFd0aAAAAAAAAAAAMCY2I+jQ2OyhK+HChQuS1JhfLRCM1iiVSuY0Y/fKKQAAAAAAAAAAEB7/2jX5177X+/Kv/aV5mVqtJklKJBIdv7egQwMAAAAAAAAAgDFx48Zebd7Yu+Vvf/lrv6Wrn/mfB5qP9fV1SdKhQ4dafl+v181p0qGBji4aYk8Y0/6q94wpvux/2hT/IX3ZFP/u+79pin/shY+a4l9+4k5TvJZs4fpRY/zSoin8h/SSLf33Gbd38bItPjthiz9nC5cetC4QHW/CFu9ftoX7xvRli/c8W2X2vFT3oCa+bzv7eN55U7zZXbZjSy9a82Otm4+aon3fln/r/rWlbS0bW92RjhjjLVdFyX5lHG3WumNlrWtR5yfq9AHs9Dfv+WrXmK8fdjw2L5W7x3xtv1ta/8ItzIWX7B4jyS3/ri5ddQg65pSUy7k67PNnmOv0vPDKNdw20tOhpeRSFq55dy/Xwe6jsPM/aMPI1zCO3bDEu77Gs1zjmi9Eb/8//rje+o/sk3AHrv/R8/ov/23WtMzk5KQk6cqVKy2/3/4qKhd0aAAAAAAAAAAAMCY2N/dI17eO0NDe75O+7/t6TtN/6w+Ylwk6LNqNxOilQ4NJwQEAAAAAAAAAQKiOHj0qaedcGcG/0+m0OU06NAAAAAAAAAAAGBOb1/dq8/otIX/2dl/xNolEQqlUSqVSacvfy+WbrxA8deqUOU06NAAAAAAAAAAAQE86Te595swZlcvlLaM0crmccrmcEomEeV3MoQEAAAAAAAAAwJi4sbl35xwaYaTZQrVaVT6flySdPXtWU1NTymQyjc6KVCqlSqWihYUFJZNJ1Wo1LSwsaGamtwnK6dAYgJMnT2r//v0tv5ubm9Pc3NyAcwQAAAD0ZnV1Vaurqy2/u3r16oBzg3HBPRMAAIgz2sDtpVIp5fP5RqdGu5hCoRDK+ujQGIBz584plUoNOxsAAABA3zo9XK5Wqz1N7AdwzwQAAOJs1NrAm5t75Ic+QiMes1fQoYHQ/NB93zLF/8Wf/bAp/imVTfF5zZriZ9W+F7GVx953nyne6sP+V0zx37zxblP8M3ffY4p/+eKdpngVL9vivQlj+udt8dkTxvRt4Xp+wj120Zi2dVvvsm2rF/n16MFIU/e8pUjTl47Ywl807i9dNMbb+L61wllZ9++jzpG+b6zLxrpgLRvPi3ZfRS3q8rGK/tgdbZbyif44B+Lh68mf6h50KcRfSN7rev9xzCnK91uPQGnmfuy7rdPNSmgphXk+8rzw9qXnue1L3884pPW041q77yOX9d1cp0u9cKsTcb3+uu4jqXv5u9bDMMs1zHy5CnNfuuQtrvso7HINM724ttHimi+Ea/P6Xt14PdwOjbA7SHoVj24VAAAAAAAAAACADhihAQAAAAAAAADAmPBv7JW/GfKj/xuM0AAAAAAAAAAAAHDCCA0AAAAAAAAAAMbF9T1S2HNeXI/H2Ih45AIAAAAAAAAAAKADRmgAAAAAAAAAADAuNveGP0Jjkzk0AAAAAAAAAAAAnDBCA6H5Le+HbQs8aQuffMe6Kb6sjG0FVo9P2OL/2BZuzf/LL9xpW8GLl23xmrCF32WMf58tXMWULf6IMf1zE7b49102BD9qS9vqRWP80glb/CPG9FW1hd9ly4//wqIp3vOWTPF2F43x1spp43nnjUtY8/+gMT46vh+3umATdX6s5RO1uOUnbigfoIW0Q8ylMFf4dKhxnnfMIcolRtJhh3uFEMvC993uTdyuZY7b6FiuLudLzys7peUa56Z7/j3PtY5157qP5HCf6V5e4bVd3OuYS7m65SvMuhOmMPMfpmHsozDFtVzDNIxt3A3lOrI2Pem6F36aMUCHBgAAAAAAAAAA42JT0vUI0owBXjkFAAAAAAAAAABijxEaAAAAAAAAAACMi15HaDy+Kj2x2vq7a1f7yVFo6NAAAAAAAAAAAGC3e2Du5qeVF6vSAy6TmkWLDg0AAAAAAAAAAMbFdYU/h0bY6fWIOTQAAAAAAAAAAEDsMUIDAAAAAAAAAIBxcV3S6xGkGQN0aKCjxTvdY7/4rQ+b0n5K3zTmxublJwyZl/TYkY+a4j94/1Om+Gc+c48p/uU9tvzr39vC7/BtA7RevtuWvt5njH/eGL80YYtfvGxcwaO28KVF99hHDLGS9F5buF5cssUvpmzx3oQt3urF86ZwzzOm7xnL37flR3cZ0/+GLVy+cf+aHTHGG48VQ/qeZyx7XTRF+75tX3merezt+Y9W1OVprzvx2l/W9AEM3oHf/U9dY14pHnBLLJvpHlN0S8rZ5xzW+XnHtC65TMr5tGNi810j3M+p3dNyz9cxxzgHhx3K3tUlx/wfdriuXIq6XRc1133Uvcxc69jgr9du+zvMfLmm5XllhyjXfbTSNWIYbaVw1xneOSXM+hpmWmGWV3yPSYAOjYE4efKk9u/f3/K7ubk5zc21mWgFAAAAiJnV1VWtrq62/O7qVZeHrMBO3DMBAIA4G7k28A1JmxGkGQN0aAzAuXPnlEoZfwENAAAAxFCnh8vValXpdHrAOcI44J4JAADE2ci1gTcV/iuiwu4g6RGTggMAAAAAAAAAgNhjhAYAAAAAAAAAAOPiusIfoRGTScEZoQEAAAAAAAAAAGKPERoAAAAAAAAAAIwL5tAAAAAAAAAAAAAYHkZooKPzL7nHfvSHHzOl/affut0Un1LVFP+1+3/CFP8p/TNT/GVNmOI/+PBTpvh3P/xNU/xj0x81xb+sO03xesAWrseN8e8zxv91Y7w3YYt/ZNEYb4j1L9vSft+ELf7FB23x1rIZdf75aNN/ccm4wJGI461SEce78/0JU7znXTTGR72vbPmJmu+fMC5hjbex7i8r37edx631IW7pA7vBKx95e/egw2Gu8Zhb2OH9bnGfvBpeWlpxjHPxtEOMY1k4peUS434etF/P++VYFpcGmy/Pc6hfklzqTthl75Kea1qD3t/uZeFS/m7Hres6fT/jFOcmvH0U1zZMuOUFjABGaAAAAAAAAAAAAAwPIzQAAAAAAAAAABgXYzxCgw4NAAAAAAAAAADGxRh3aPDKKQAAAAAAAAAAEHuM0AAAAAAAAAAAYFxcl/R6BGnGAB0aAAAAAAAAAADsdl9elX5vtfV337s62Ly0QYcGOrpoiD3x+7a037X6HVP8X6z8sCn+I9/6gin+D/78XlP8F9/xYVP8u/VNU/y9L/yBKf4LhY+Y4n/5id81xVvd8cJLpviXp++0reCILfyDN54yxT/jGfNj8fyELf5Hjel7xvRPGtM3lr0eP2GLf/GyLT47YYu3Kl62xXvG7fXPxyt9VY3xKVO0708Y07ekvWiK94wv3vRv2OIl277yvCVj+g8a46Nlzb91f0Ut6vzEbXuBkVRxiEmHuL7s/hATkySH9C6VHdM61ldOtjic6R5zyfUcP+8Q45Z35+vKYYfz6yW3BzC+330feZ7bPgrzvO+2zqdDXJ+1TRJGeiHW6diWhcvxIXleePV1GFzKLM7tIpfjzTX/cS2LuOYLIdtUb3NeZOZuflq5VJX+pzAbW71hDg0AAAAAAAAAABB7jNAAAAAAAAAAAGBcbCr8OS96GfERAUZoAAAAAAAAAACA2GOExgCcPHlS+/e3frfh3Nyc5ubavJcMAAAAiJnV1VWtrraeKPDq1XhMFIjRwz0TAACIs5FrA4/xCA06NAbg3LlzSqVsk6YCAAAAcdTp4XK1WlU6PfyJAjF6uGcCAABxNnJt4DHu0OCVUwAAAAAAAAAAIPYYoQEAAAAAAAAAwLi4rvBHaISdXo/o0IiZxTtt8UsvRZOPnvykLfwj3/qCKX5ybt0WL1u8ztvCn5w7borPa9a2gou28PzdxvSt/tgW/vLdxsr8gC1cRVv4MxfvMa7AWCGWTrjHLtqS1kljfPGyLf7IhC1+0Vg2Mr4+4vEJW/wDl23xqhrjjd47YYt/0Xiw+8Z4HTHGW1/38agp2vMs0Q+a0rbmxcrbYzt4/RsRZaQhyrK3833ryc3G85ZM8VHnB8AQuLzJoRLi+n7HMe6CY1wxxPdrH850j7nket50SCvreE4tuqzzmFtamneK8msuUa3nZ9nO7Vrjli+XtMK9VrmWa/c433crL1ee173uu67TJS3paae0XMrfbX2u63TNl8MxKcnzyiGuc3TbTdY2Yjdu9cJtnWGWa5jnlFHe34BEhwYAAAAAAAAAAOODOTQAAAAAAAAAAACGhxEaAAAAAAAAAACMC0ZoAAAAAAAAAAAADA8jNAAAAAAAAAAAGBfXJb0eQZoxQIcGAAAAAAAAAADjYlPhvyKKV04BAAAAAAAAAAC4YYRGzFx+adg52GrxTvfYJWPef/crv2yK/8h9X4g0ff2JLfyxz3zUFP+Fhz9iin9G95ji361v2tL/Y1v6dzxs28Evy1B5evG4Mf59xnjvhC3emh8Lc94nbPGLS8YVPGgLz07Y4h+4bIvXo8Z4o7sWbfEvnjeu4Igp2vdtddPzrPvXypZ/6aJzpO9PmFL2vKjL0rZvPc99WxG+qOu+7xvPDQD6V7zaPeZr+93Surd7Wn/znt93Surr9/6k2zpd8vaLGbe0Ljmc4z7neJ76vENMseyWlpNjjnFPO0V5nkuc6zpd4tzy5XKd8DzXcg0vXy48L7Sk3uCSN9fr6krXCNdrtFv5h1tfXXheeOt0L4sQ202Hw2sjueVr8PsozHaga9nHte056vkfa0wKDgAAAAAAAAAAMDyM0AAAAAAAAAAAYFz0OkLj2VXpwmrr7647jJYdADo0AAAAAAAAAADY7T4wd/PTyp9Xpf8lPdj8tECHBgAAAAAAAAAA44I5NAAAAAAAAAAAAIaHERoAAAAAAAAAAIyL65JejyDNGKBDYwBOnjyp/fv3t/xubm5Oc3Nt3ksGAAAAxMzq6qpWV1tPFHj1ajwmCsTo4Z4JAADE2ci1gTcV/iuiYvLKKc/3fX/YmRhX1WpV6XRalUpFqVTKaZmn9BOmdXzVe6aXrMXC4ueNC5ywhf/QO75liv8fvR82xVvz733Hdqj5D3mm+Iff8WlT/Jf1IVP8H/z5vaZ4713GU4u/ZAq/w/8lU/zL03ea4nXEFq6/boj9eWPaJ43x54zxjxjjLxrjrfnxLxsXMMpO2OKLtrpprzxu14c3PWqMjzY/vj9hivc8S3ka8+4ZLxTvtYXrxfPGBaz71sZa9hgtlmPF9xcjzIlNL+1f7G6WOuNyXHzF/7LTeu/7v/+77kFfd0pqOIphPjhZcYg5FuL6nnYLyzqe2yoOMZfcysv3W3eqNXM/P887xDiWhUuca3kVyw5BbvvbpbxceZ5rnQ6zvrqUv8t+lNzyFWZakg477HPHuu9eF8Pitr5htHE8z+UYGXR5uZWF6/kpzLRcxam9GoU4tYGDvOjDFemHQs7LX1Slx4a/nYzQAAAAAAAAAABgXDApOAAAAAAAAAAAwPAwQgMAAAAAAAAAgHHBCA0AAAAAAAAAAIDhYYQGAAAAAAAAAADj4rqk1yNIMwYYoQEAAAAAAAAAAGKPERoAAAAAAAAAAIyLTYU/50VM5tCgQyNm7v3MH5jiH5EXUU6id/7jtvgTf2KLL/zmtCn+3ud9U/y/vfspU/w/1T8xxX9EXzDFP/bCR03xVt5FW/l8+MYXTfFl/ZIp/uUn7jTFf7Bg21/P3H2PKV7vM8Q+Yks6covnbfFLJ2zxxSVbvI4Y4y/awovW9CPOj5k1P6lIchHwPOP+9RbdY31j3TTG+y/Y6rJnveR6E7Z431aW5vxEXHd8f8KYfrSsddP3DXUTQGzd99S/Cy+x4lW3uM/td4v7ZPfz0oFrs05JvVJ5e/egS475Pzzg89/HM25xnyw7Jvh09xDHbfQ813WG5Vh4SbnWV4fyOnDtR51S8jyHso+1+a4Rvu92fHuey750Ky/XNom5HT6m3Muh+/6+KcR67XDu8WvhrS5MtI3HAJOCAwAAAAAAAAAADA8jNAAAAAAAAAAAGBdjPEIjlh0a9Xpdy8vLkqRcLrfj+2q1quXlZSWTSdXrdU1NTSmbzQ4tBgAAAAAGjfsmAAAA7Dax69Aol8vK5/MqFouamZnZ8X2tVlM6nValUlEqdfPdzpOTk7py5UojfpAxAAAAADBo3DcBAACgreuSXo8gzRiI3RwamUxGhUKh7fezs7PKZDKNhrIkLSwsaHZ2digxAAAAADBo3DcBAAAgdN9clb58d+vP108OO3eSYtih0Um9Xle5XNbU1NSWvx89elSStLa2NtAYAAAAAIgb7psAAAB2uRu6OeeF9XN4Tsq80PrzE+eGsSU7jFSHxoULFyRJyWRyy9+DXwKVSqWBxgAAAABA3HDfBAAAgHEVuzk0OqnVapKkRCLR9vtBxrh67bXX9OqrrzrFvvIrO/+2b98+7du3r2X80qJzNnqy+GfusUvvtKV94kO2+PP/3Jj+wjOm+C/c/RFT/If0ZVP8l2Xb4F994bOm+A/f/UVTvNVj+qgtfo8t/j/e+EFT/F994IIp/pkHvm2K/7BvK8/H7jZs7xFT0tIjxvj/1RivE7bwxcvG9B+0hXsTxvSN+X+vMflvGOP9VPeYZndN2OJfPG+LV9UYb5Q1XoiKlw3BxrI01h1v2pa8dNEWbqwLvm8rS89bMqZvO1as6UvW/FvrsrH8jezlGW0jLOr027l27ZquXbvW8/KvvfZaiLlBr0bxvsnlnumVV/5R2++CeybvKafVOTlw7RWnuFda36rt8Jt+95urxe+5paVLV7vHfG6/W1pfd4gplt3S0rHuIZ98Ory0JOlwpnuMS3lJklzy5pgvp7RcOawz67i/i/NdQ1zrdLjCrBfhlb3nuUZ2X2f413aXsnCtryuhpeX73Y9J13aX57mce7rX6ZvCPCbd+A6XQNeycKk/w2o/unDZzmHmfyzbwNcV/pwXMZlDY6Q6NNbX1yVJhw4davl9vV4faIyre++91zm2lcXFRT3yyCN9pQEAAAB0s7y8rKUla2cW4mYU75u4ZwIAAMNCG3i0jFSHxuTkpCTpypUrLb9PJpMDjXH1ta99Te9///ud47drNzoDAAAACNPp06f1iU98oufln3vuub4fTKN/o3jfxD0TAAAYlrFsA28q/BEVmyGn16OR6tAIGsPtfuWTTCYHGuPqtttu09ve9jbneAAAAGAYOr3q1MVtt90WYm7Qq1G8b+KeCQAADMtYtoGvS3o9gjRjYKQmBT969Kikne9hDf6dTqcHGgMAAAAAccN9EwAAAMbVSHVoJBIJpVIplUqlLX8vl29OEnTq1KmBxgAAAABA3HDfBAAAsMvd0M1XRIX5uTHQLWgrlh0anSaOO3PmjMrl8pZfAOVyOeVyOSUSiYHHAAAAAMAwcN8EAACA3SZ2c2hUq1Xl83lJ0tmzZzU1NaVMJtNoCKdSKVUqFS0sLCiZTKpWq2lhYUEzMzONNAYZM+6W3hlh4vO28ItftsWfOG+L15wt/F1f+Y4p/kP32TbgjrtfMsUf15Om+NNaNsX7a54p/os3PmyK/6svfNsUr+dt4SpOmMIfu9uY/gOG2MXLtrSfn7DFX7SFa8kYb82P1TeiTd6cvn/ZuEDVFv7io7b4uxaN6Vt3sFHRukDKPdSbsCXtG0/8RevBYnTXhCnc86wXriPG9COuC0a+f8K4hDU+Wtb9Zd9eoDPum9r4Rce4j3cP+de3uh23933t3znF/Yr3m92DDu93SsupAfd5xzbDJYe0so5pFctucS4+51gWnwxznQ7b+cmrbmk570sHLvvo77vuo6cdglxiJN93W6dbG+SYU1pu3B42+H73feR5rvXL+IAjlHW6cNuXbuXvlpbn9OjAdX87rPNwxiklv+YW53ku2+m2v+PW/g641DHfdy0v120M8xiHEyYFH5xUKqV8Pt9onLeLKRQKXdMZVAwAAAAADBL3TQAAANiNYvnKKQAAAAAAAAAA0IPrEX2Mml9JGhY6NAAAAAAAAAAAQF88z9vymZ6eDn0dsXvlFAAAAAAAAAAA6NF1Sa9HkGYHa2trmpmZ0eTkZONvmYzbfCwWdGgAAAAAAAAAADAubij8SbxvdP66UCioVCqFvNKdeOUUAAAAAAAAAADoSbFY1IULFzQ9Pa21tbVI10WHBgAAAAAAAAAA42JT4U8I3mHER6lUUr1eV7FY1OzsrA4ePKhyuRzJpvHKKQzN0nFb/OI/NKb/cVu8Pv6YLf7ztvC/+p+/bYr/j/f/oCk+paopfkKXTfEP/+anTfG/+sRnTfEfvP8pU7zVM7rHtsADxhVk3UPveNjWl/zyE8a8LBnjrdu6aIwvGuO/YYw/aYy3Ojdhiz9pjLeWj9kRW/hdJ2zxxv3ldxmi2szzztsS10VjvLFsrOm/aMu/79vK3rvbFC7/BWP65vK38Tzbycr3bSefqNO31zdr+bvn3553YIxduuoW98nuIT/3cbfz4IGf/E9Oca987u3dg77ulJR0ab57TDrEtCqOaelY95DsfrekPum4L8Pksk7X/BddzuMO5eUad2+Y5eVQJ+R+rXK5TnleiPl33Ede0iHosOO73x3OPe7b+LRjnEv9cU3LZZ+7peX74b0v3/O6r9Ovuabl2rZyKYsVx7Rc9pHbecAt/25puewjzwv7QbRL/Ql/rgUMTj6fVz6fV7VaVT6f19ramqamprS+vq5k0uWE644RGgAAAAAAAAAAjItWIyy+d0269mrvn++91nW1qVRK+XxehUJBkrSwsBD6pjFCAwAAAAAAAACAcfadZenb1td69CabzSqbzapatb1RxgUdGgAAAAAAAAAAjIvrkl7f9rcDp6W3faL3NK89J/3pvc7hU1NTkcyjQYcGAAAAAAAAAADjzNt389Pz8reZFzl69Gjv62uDDo0BOHnypPbvbz0p1dzcnObm5gacIwAAAKA3q6urWl1dbfnd1atDmMQXY4F7JgAAEGcj1wa+IWkzgjQNSqWSZmdnQ84EHRoDce7cOaVSqWFnAwAAAOhbp4fL1WpV6XR6wDnCOOCeCQAAxNnItYE3dfO1U2Gn2UK1WtVDDz2k+++/X/Pz85KkYrGoQ4cOKZvNhpwJOjQAAAAAAAAAAEAPksmkDh06pOXlZZVKJaVSKU1NTSmfz0eyPjo0Rtxf8z9siv//eY9FlJPoLf3zYedgq6fmPmiK/4/6QVP8u/78O6b4wjumTfFlZUzxE7psir/j/pdM8Zc1YYp/+TN3muJ10Rb+wcJTtgUMnrn7HtsCL162xXsTtnirB87b4u86EU0+AueM8e+NOL542biArXL6L9jK0/NM4dKiMb5ojDex/lLXWJa+tSyN+TEei94eW/LybceiOf/G8vQ8a/nbKpvnLY10+lZRpw+MK99v/dqqHf599wtkQn/ulNQrn3+72zpdXiH9ebekpKe7h1Rs7f0wHLj2SteYV/atuCV22PE8eMkl6JhbWi6Kjq8Vccn/Jce0PudQr7/ulpSKDnXHmVu5Ol1jXfe3g79Z+KpT3NeTP9U96FKYk9m6lZdrG8DzHPL2OcdydTr3uObLpV671sPuZWZtw3XnkjfXc0r3tHzf9Vzdvfzdyt6x7jjvI8TWAEdoJBIJlUqlkFfWnvXWGQAAAAAAAAAAYOAYoQEAAAAAAAAAwLgIe3RGVGn2gBEaAAAAAAAAAAAg9hihAQAAAAAAAADAuNiUZJ1T0yXNGGCEBgAAAAAAAAAAiD1GaAAAAAAAAAAAMC6iGE0RkxEadGgAAAAAAAAAADAuNiX5Iad5I+T0ekSHxoj7qH7XFL+kxyLKSfQWP2+L/4m5r5ni/+Ar99pW8OfP2OJztvA//c3bTfH3vvAHpvgv3P0RU/xpLZviZ5U3xVv96l//rCn+ww9/0RT/2J6PmuJ10hD7gC1pacIUfcfDL5niX37iTlO87jphi1+0heuPjfGLl03hd7xge9viy17EV2zPVkDeZ6zpG/fXkjH9b9jCvRcMwXdN2BL/hrEsvfO29K1l6RvTj50jtnBj+ZjL38jzLkeaPoDR5l3pfof/lVv/G6e0/skn3NqlX5/+qe5BaaekdOAbP9o15hXH+6cDH3+la8zdt/6+U1pf957qHvQ5x+v1J6+6xYXqaYeYY+GtLrs/vLSKjo24w9bGeRgy3UMuue7v7vvo37msT5LntE6XOuHKre54Xnhloc+7lYVT+bvW10suQa7HUYjln3Ws+8UQy6LYPf9e0i0pXep+jPu+2zZ6Xnjl6rpOF57ndh4Lc50YTXRoAAAAAAAAAAAwLq4r/EnBwx7x0SMmBQcAAAAAAAAAALHHCA0AAAAAAAAAAMbFphihAQAAAAAAAAAAMCyM0AAAAAAAAAAAYJz0NKJi9Y1PK1d7z0uI6NAAAAAAAAAAAGDXm3vj00pVUnqAeWmNDo0BOHnypPbv39/yu7m5Oc3NtaskAAAAQLysrq5qdbX1r7auXo3Hr7YwerhnAgAAcUYbOD7o0BiAc+fOKZVKDTsbkqTFJ23xS8fdYx+0Ja2Jf2iLX/q4Lf6Jj99rW+DztvCn7vugKb78mxnbCoz8n7HN9PPUt2z5z6hsip9V3hSf16wpPmpfu/ETpvhP6Z85xz4zfY8tM8/bwl9+/E7bAkb/9IV/Yor/1c981hR/x8MvmeJffnzCFn+3Kdw+ida/N8ZnjfGPG+Ojzo9/2Rb/vqp77NIJW9pWi8Zr80lj+kVjvGfcXmvZG/m+LT/etHEF1vIxtzSi5XlLkabv+4uRpt+PTg+Xq9Wq0unh/2oLo2fg90z/onvIz/3keaeklm51O16//vd/qmvMzD3/3Cmti/ob3dd39O1Oab3y+93jjtzzhFNaX886lMVRp6SkbOsOrh3+vsN91r2OD5o+55DWJx3T+h2HmHtdryUudWzeLSmX+2rXe2PH0/1MoXu9XvPe57jS7tzbJE87xBxzSyrrUHeKjvv7sGMbIO0QV3FL6sC1V7rGvLLPLS2nYzfMsrjkuI8cy8JJ0fE84HJOdM3X17qn5XmOz20c0vL//+3dX6wb55nf8R/dVImTwKIkw4hbQJWHu6k3rnsxlNM4bmU4Hl75am3S8maxcLCFSRRymyAGyBUWu7YbFKc8aIIuGl2QRhdqi00jkfZetgCpLOxurKwtEnG8tpNtSNnONg4MW2dkGJAlW3l7cUzmUOQ5fF8e/pkhvx9gcHQ4z7zzcGYO+byaeWcs/9vCep1Wf2/TY1uru9Tc1MDRwUPBAQAAAAAAAABA5HFCAwAAAAAAAAAARB4nNAAAAAAAAAAAQOTxDA0AAAAAAAAAAJbGR5I+nEGbi8cIDQAAAAAAAAAAEHmM0AAAAAAAAAAAYGl8pOmPqGCEBgAAAAAAAAAAgBVGaKyYxL1POMWbgw7xRaem9f+OHXCKf/y3351p+/onbu0fuf8Ft/Zvdgs/csKt/cQXjVP8V/XnTvEpdZzi79czTvEFVZzi9aRbeOGoW/tNBU7xv6WfW8e+cPsRp7aVdQtX3THecVt2lHJb4J+6hb996qDbAg+5hbvmo9sd4x+fcbzr/nWN/6ljfOKQW7zLR9XLbk3rFcd4V3W3zzVnt7qFm1cPOcUnHC9jSSQc32/ifqdwY9ziE4nXneKltlO0MW5/jImE44en84eJPddcXN8rsIxMbXzMl/WaVVuPX7H7G9z7pV+Njakm8nZtXb44NubOI39l1dbZ79wzNqby5jes2jr1F0fHxlz80ees2vpB7ctWcV/JPT8+6NvXW7WlwxYxz1q29TWLmFssP4/rzfExWcv+y1mLmLRdU/q3dmFV7+sWURbvUZJ01/gQm+0l2W2zll1TdnGW/2ly/pJd3EmLY/GcXVN2f5e2+8hiuz5reezfbfP5anFMSNJ5uzCb9mw+gyXp4id/OD7oFsu/3bsttr9lW8bxvySmY/x2NcYuf5val3pXWuZnaHBCAwAAAAAAAACApXFV0z8BcXXK7U2GW04BAAAAAAAAAIDIY4QGAAAAAAAAAABLY3lvOcUIDQAAAAAAAAAAEHmM0AAAAAAAAAAAYGkwQgMAAAAAAAAAAGBhGKGxYox53HEJ13h7/9h1gWOzbT/x5jNuC/yjlx1X4Lgt/6dbuF5xC//edX/oFH/Tr990in87d9Ap/oWnjzjF62/dwu++7m+c4v/rr3/fKb6jlHXsV//0z53abipwin9bbtv+T77wx07xFRWc4vUzt/Cb/tTxWPv3bu9Xdbdw1/y/WnPbv9/Luf0tOnvCMd687hb//UNu8XWH+Kxb085uO+QW/7Rj/IwlEk86LnG74wrud4s3bvkkEg+7ta+2Y7zb93Qi4fi9PuPt6bZ/HXMBYOV53WMXuGeKKzW2gddbxHzOrqlvjg9JJJ6wa+sPKuNjvm3XL/rKf3nebp31S+NjWjbbS1J6fMjev/iVVVMXH7XY/metmpJs+gN3WjZls06bbSrpztqP7Fb5qMXf0lm7Po/N9r/4ybus2rJ6n89aHjvnLGIes2sqb6pWcdXnvj4+6Lt269T55viYb1v2Sx+z2K53Wm7XrMXnRcuuKav3KEnZ8bld/K5t/uM/B+6s/ZVVU2cTFse15XtM5Cz2Zd21r7F7icQPLSOLFm3Z5e/+/6RxclXTH1FxdcrtTYYTGgAAAAAAAAAArLz/Lul/bDPvg3kmsi1OaAAAAAAAAAAAsDQmfYbG7308jfKKpN+dOKNp4YTGHDzwwAO6/vrRw9GOHTumY8cc76UEAAAALMiJEyd04sSJkfMuXbK7TQlwLfpMAAAgyuJXA3PLKezC008/Ld/3F50GAAAAsGs7/edyu91WOm1xE3rgGvSZAABAlFEDRwcnNAAAAAAAAAAAWBqT3nJqXJuLd92iEwAAAAAAAAAAABiHERoAAAAAAAAAACyNjzT9ERXRGKHBCQ3gY8bc77iEa/yMHZ31Cg66hddmk8WkEuZJp/h/nfi84xp+YR/6/cfdmnZLXXrtdafwbz30iFv7v+N4LNzmFu7sZcf422eSRd/3vvCHTvE3vfqmU/zbOcftf6tbuH56yCn8pqOO+T90zj74FcfP2deecYtPOLb/gFu4s/rrjgs87Bb+O4fc4h0/qvSQ6x9X2y3cdX+5fk8bx+PH9cPHuMUb47oDAGB2ov2ZNPph8rPzObuwb44PSSRcC/0dPFacXltat4o6m7M8Llq7SOUaF380fvvvvfwru7ZuHd/WD4582aqtr+j58UFZu2O1+tzXreL2fmn8+7z4qN3xuvfRfza+re9aNaW8qY6NqXp279HKSbuwvV8a/x4ly/dpuS1k8UiFs949dm3dYhHzaGDXlo2W5d/3o5btPdYcH3OLZf7nLdrSXXZtIZY4oQEAAAAAAAAAwNLgGRoAAAAAAAAAAAALwwgNAAAAAAAAAACWxlVNf0TF1Sm3NxlOaAAAAAAAAAAAsDS45RQAAAAAAAAAAMDCMEIDAAAAAAAAAIClsby3nGKEBgAAAAAAAAAAiDxGaABYCcY8vugUJnfUdYFDM0hing46RSfqTzrFm5rbsZBIOLbvfKw5vt9XHJt3TednbuFvn3LLXwmH+J+6Ne3qi79+zin+heuOuK3gCbdw1R3jnzzkuIAj13zku4V//5Bb/O+5hetWx3jd7xb+U7d482u35l0+e1w/dxKJ192S0X9ziP2lY9sAsLqi20eJal62PmcX1h0fkkicsWrKGIu27m5atSUFVlEXv2bxPtN2a/zLb46va3730Wes2nrS4vh5smt3jN38nXBsTP7In1m19ZBOWcX95Ju3j435hipWbe199FdWcTaO7hmf/8v651ZtnfXuGR900qop6e5LdnFZu+PayvnpNZVI2Pxd/tAiJoo1MM/QAAAAAAAAAAAAWBhGaAAAAAAAAAAAsDR4hgYAAAAAAAAAAMDCMEIDAAAAAAAAAIClMekzNP6XpP+9zbwrk6czRZzQmIMHHnhA119//ch5x44d07Fjx+acEQAAADCpFz6eRonGgwIRP/SZAABAtMWtBp70hEbw8TTKeUnHJ85oWjihMQdPP/20fN9fdBoAAADAFHzx42mUX0qqzjEXLAv6TAAAINqogaOCZ2jM0JUrVwZ+AuNcvnxZTzzxhC5fvrzoVBATHDNw8uFlqfbE5k/AxtXL0itPbP4ErGw+KJD6F7boM8Uf9Wj8sQ9jzlyWNp7Y/IlYMpcv64Nv/ScZ/gZjLIo18EczmhYvYYwxi05iWT333HO6++679eyzz+rIkSOLTgcx8N5772nv3r26ePGibrjhhkWngxjgmIELjpdBicSTjkvc7hj/slt49nG3+PozbvGJ+93ib5V09T3p7/ZKn78o/YMxx8xtbs1/sfacU/wLiYNuK/j+Iafwm46+6RT/9inHfH7mFq7HX3dcwJ4xh2bWNvUvXHHMxB/1RfyxD+MtjvsvkWhaRt41vZXeMvq2hkNOjg9560jSqqn79ZdjY27XT3TlvQ90cu8f6WsX/6P23PCpkXFPanxfYe9nL1rlde/7Pxgb8x/0x1Zt2brnb8+OjUl+/i2rti5+cu9u09nih1OKeV3SyUjUM+12W+l0WtK3JN0y5dbPS/oTtVqthY6s5ZZTAAAAAAAAAAAsjUmfoTGuzcXjllMAAAAAAAAAACDyGKEBAAAAAAAAAMDSuKrpj6i4OuX2JsMIDQAAAAAAAAAAEHmM0AAAAAAAAAAAYGnwDA0AAAAAAAAAAICFYYQGAAAAAAAAAABLY3mfocEJjRVy4sQJHTt2bNFpSCKXuIjStiGXeIjStiGXeFjktjHm8Rnncv/ES9rlMnn7tt57T9q7V7r4onTDDdNu/YhbuNn8MatjJnHqoNsCdUk/PyH9lmUu9Wfc2s867N/bJf3NCelf2OWSOOWWih5yyf1Vx8aB+VvEd8+817nstceyb89l33/S8m9T9uHOjAnmur5J7Ly+0KqN562i7tF7ek8n9Uf6M/0b3aDtiu6vj2/qfasV6ux3JP31Celfbr89v/LYGbvGnr3eKuyul7O67di/2jnoit0q/7P5xtiYV/UFvXLi/4xdZy4xvq3Ms2Z8Ui89J/27k+Pj5opbTuFj7XZbuVxOpVJJhUJB9Xp90SlZO3HixKJT6COXeIjStiGXeIjStiGXeIjStiGXeIjUtulEKJcXI5QLVl7U+0yL+ByZ9zoj9Vk5A8u+PZd9/0nLv03Zh6wv8p6f7/t75cRfz3V9i1on5oMRGg663a7S6bRarZZ835ckpVIpXbhwQfl8fsHZAQAAAMBi0WcCAACIguW95RQjNBwUCgUFQdAvzCX1rzoCAAAAgFVHnwkAAACzxAkNS2EYqtlsKpPJDLx++PBhSVK1Wl1EWgAAAAAQCfSZAAAAoqL3DI1pTjxDI1bOnTsnSfI8b+D13pVHjUZj7jkBAAAAQFTQZwIAAMCs8QwNS91uV5KUTCZ3nA8AAAAAq4g+EwAAQFR8pOmPqIjGCA1OaFjqdDqSpP3794+cH4bh0GsffPCBJOmll17a1br37NmjPXv27KoNSbp06ZLa7fau25kGchnt/ffflyT9+Mc/1mc/+9kFZxOtbUMuo3HMbI9chkXteJGis20kchllpY6Z847xG5KuXpI2bHNx/I9c63Yl/VLSh5ekX1ous1NZ+dGVzWnAq/a5fLwhe3UwVktc+kyL+Iyd9zrnub5FfFcs8/ZcxPrYh/Fe36LqtWXepvNe39z34d9rs3b8+53en2Ut93efsgr76NKHeqf9ix1jrn74E6u2fvEP3xkb845+YbXO//vxzx1vpvTSc+OT+vlmHROtGnj8dopGmxMwsFKpVIwk02g0huZJMkEQDL1+8uRJI4mJiYmJiYmJiYlppaaTJ0/Oo0RHxNBnYmJiYmJiYlrlKQo18BtvvGE+/elPz+w97tmzx7zxxhsLfY+M0LDUuw/sqKuKts7f6r777tPJkyd1880361OfsjtjOcq0RmgAAAAAO7ly5YquXLl2hIa9Dz74QG+99Zbuu+++KWaFuKDPBAAA4miZauCDBw/qtdde0zvvzGY0xY033qiDBw/OpG1bnNCwdPjwYUnD933t/Z5Op4eWufHGG/Xwww/PPjkAAAAAWDD6TAAAAIt38ODBhZ90mKXrFp1AXCSTSfm+r0ajMfB6s9mUJD344IOLSAsAAAAAIoE+EwAAAGYtYYwxi04iLtrtttLptDqdTn+4dCqVUqFQULFYXHB2AAAAALBY9JkAAAAwS5zQcNRut7W2tqbPfOYzajabuu2223To0CFlMhlls1nr5T3PUxiG1ssh/ibd9/V6XWtra2q32/J9X+VyWUEQzCFjLNo0Pi+azaZyuZw2NjZmlCWiZBrHTLfbVb1elyTl83klk8kZZIoo2M33UqPRUDKZVLfbled5KpfLc8gYixSGodbW1iTJen9T964u+kzLgz5M/NGniDfq+/ij5o43auCIWugjyWOq0+kYSabVavVf8zzPVCqVmSyH+Jt035fLZRMEgalUKqZYLBpJRpJpNBqzThkLNq3PC8/zTDKZnHZ6iKDdHjOdTsdks1kTBIHpdDqzShMRMenxUqvVjO/7A68FQWCKxeJM8kQ0NBoNk81mjSSTz+etlqHuBX2m+KMPE3/0KeKN+j7+qLnjjRo4ujihMYEgCEwQBAOvVSoVM+780KTLIf4m3ffZbHbg91arZSQNtYXlM43Pi2KxaIIgoPOxInZzzLRaLZNMJq2LNMTfbmqZa4+TcrlsPM+beo6IHpfOHHUv6DPFH32Y+KNPEW/U9/FHzb0cqIGjh4eCOwrDUM1mU5lMZuD1w4cPS5Kq1epUl0P8Tbrvm83m0HA23/fl+7663e5skkUkTOPzotls6sCBA/J9fyY5Ilp2c8yEYah7771XnuepUqnMNE9Ew26OlwsXLvQf7tuz9T75gETdC/pMy4A+TPzRp4g36vv4o+ZePdQx88MJDUfnzp2TpKEPkd4XfKPRmOpyiL9J930QBNt+WfElttym8XlRqVR48OYK2c0xUyqVFIYh92NdIbs5XgqFgrrdrnK5nKTN+8OePn2a4wcDqHtBnyn+6MPEH32KeKO+jz9q7tVDHTM/nNBw1LuqZLuHKG131cmkyyH+pr3vt36pYTnt9pgplUoUOitmN8dM7yqRRqOhdDqtffv2KZPJ8L20xHZzvOTzeeXzedXrdaVSKZVKJZ0/f54rNzGAuhf0meKPPkz80aeIN+r7+KPmXj3UMfPDCQ1HnU5HkrR///6R88MwnOpyiL9p7vt6vS7P85TP56eRGiJqN8dMu93WgQMHuAJuxUx6zLTbbUmbV4wUCgW1Wi21Wi11u12lUim+m5bUbr+XKpVK/9YhzWZzaDg8QN0L+kzxRx8m/uhTxBv1ffxRc68e6pj54YSGo1QqJWnzfnajbPeFP+lyiL9p7vu1tTXVarWp5IXo2s0xs7a2xrDwFTTpMdO7QqRQKPRjtt5rd21tbdqpIgJ2+72UyWRUKBTUaDSUTCaVy+VUr9ennifii7oX9Jnijz5M/NGniDfq+/ij5l491DHz84lFJxA3vYNvu7Nq4+4X6roc4m9a+75UKumpp57iWFkBkx4zpVJpaChx79+9nxw/y2nSY2a7obBBEEhiSOyy2s33UqFQkKT+Vbbnz5/XLbfcokceeUTZbHa6iSK2qHtBnyn+6MPEH32KeKO+jz9q7tVDHTM/jNBw1Hsy/bVfAr3f0+n0VJdD/E1j31erVWUyGe6XuCImPWaazaYKhYJSqVR/qtfrCsNQqVSK+xYvsd1+N/WGxl5ru6GyiLfdfC+dPn164LsomUyqXC4rDMP+LQ4A6l7QZ4o/+jDxR58i3qjv44+ae/VQx8wPJzQcJZNJ+b4/9GT63r3sHnzwwakuh/jb7b7vDSnsXVHRw5fY8pr0mGm1WjLGDEzFYlHJZFLGGLVarZnnjsXYzXdTEARD92PtXVFCwbWcdvO9tH///qErjnrfT9tdEYjVQ90L+kzxRx8m/uhTxBv1ffxRc68e6pg5MnDWarWMJNPpdPqveZ5nyuVy//dOp2M8zzONRsNpOSynSY+ZRqNhfN83lUplYMrn86ZSqcz1PWC+Jj1mrlUsFk0ymZxproiG3X43bX2tXC4b3/fnkzgWYtLjpVwum2QyaTY2NgZe43hZfhsbG0aSyefzQ/OoezEKfab4ow8Tf/Qp4o36Pv6oueOPGjiaeIbGBHzfV6vVUqlUkud56na7KpVK/XvbSZtnvy9cuDBwRtVmOSynSY6ZdrutTCYj6Tf3T9xqY2NjLrljMSb9nMHqmsZ3U61WUzKZVBiGXH235CY9XnpXaOZyuf4w+DAMdebMmXm/BcxRu93uP0z09OnTymQyCoKgf4UgdS9Goc8Uf/Rh4o8+RbxR38cfNXe8UQNHV8IYYxadBAAAAAAAAAAAwE54hgYAAAAAAAAAAIg8TmgAAAAAAAAAAIDI44QGAAAAAAAAAACIPE5oAAAAAAAAAACAyOOEBgAAAAAAAAAAiDxOaAAAAAAAAAAAgMjjhAYAAACwYrrd7qJTAAAAAOaKGng5cEIDAAAAWDG5XE5hGC46DQAAAGBuqIGXAyc0AAAAsBLa7bZKpZLS6bTS6fSi0xlpfX1d+/btUyKRUCKRUCaT6U+pVKr/+m602215nqdkMjn3dQMAAGC+qIE3UQMvj08sOgEAAABgHnzfl7TZaen9O2qKxaI6nY6q1aqKxaLK5fLA/G63q0wms6t1VCoVFQqFhawbAAAA80UNvIkaeHkwQgMAAAArI6qduK3OnTsnSSM7Tp7nKQiCXbXfbDa3bWPW6wYAAMD8UQNTAy+ThDHGLDoJAAAAYF4SiYR831er1Vp0KiP1hrRvV6aHYTg0VN5WvV5Xo9FQpVKZ+7oBAACwONTA1MDLghEaAAAAGNJut5XL5fr3ji2VSv15YRiqWq0qnU6rXq+r2WwqnU4rkUgol8s5tSVtdjAymYyazaaq1ar27ds3NBy8UCioUCgolUopl8up3W735zWbzf59bzOZzMC8arWqRCKh9fX1se85DEMVCgWVSqX+fXObzea2Mb18qtWq9fxxeuu79iqwer3e//duOlOnTp0aOdR+HusGAACIOmpgauBprxszYAAAAIAtWq2WCYKg/3utVjOSTD6fN8YY0+l0TDabNZJMEASmWCyaVqtl8vm8kWTK5bJ1W7VazXie13+tWCwa3/eN7/v9ZXzfN8Visb9uSUaS8Tyv3065XB5ady9+a1vGGCNp6LVWq2WSyaRptVr91yqVylCb2Wy2n0svxmX+OKO24cbGhslms9ZtbGdjY2Pofc9r3QAAAFFHDbyJGpgaOOo4oQEAAIABvu8PdGqMMSaZTBpJZmNjwxjzm07ZtR2VXgfPpa1eR2xrJ6int56tbfQ6HZ1OZ2jdnucNvFYul02lUhmKu7ZT4/v+QN5bX9+6rmQyOZTn1m0wbv44vY5tr0Pb+92lje2M61jOct0AAABRRw08+Do1MDVwVH1iuuM9AAAAEGfdblftdltra2sj5587d25gOPao4dcXLlxwaqvXxh133DEU8+KLLw69lsvlVK1W1W635Xle//V8Pq9qtTrwwL9Tp07pzJkzo9/sx3p5FovFoXm9Yf6VSkXlclme52l9fV0HDhzox29dbtz8nYRhqG63q2Qy2b+3cRiGuvfee6fyIMJKpbLttphk3b3bCbz77ru64447lM1md50jAADAIlADD6IGpgaOMk5oAAAAoK93791arTb3tkZ1DHsdvGazKd/3B+Zd+3upVFK1WlW5XFYQBArDUPv37x97z9ut9xu+1uHDhyVtdvikzfeSTqdVKpVUqVRUq9UG8hg3fyenT5+WpKHOchAE1m1sp9vt7rgtXNedy+XkeV6/o5pOp/vxAAAAcUMNPIgamBo4yngoOAAAAPp6nZbez0W3lc1mFQSB1tbW1Gw2FYahyuWyisXiwJVp0uaVYUEQqNlsqtvtqlqtjnxA43bCMBx6rdf52b9/f38d58+fVxAE6na7SqfTAw88HDd/J41GQ5KUyWQGXj9+/Lj1e9hOpVLZ9kGIruvudruq1+sD7R09elTlcnnXeQIAACwCNfAgamBq4CjjhAYAAAD6eh2ker0+cn6z2Zx7W7VaTUEQqN1u968+267jUCqVJG12XhqNhvL5/Nj2e1dfjcqn18FLpVKS1B+S3mg0+lfdbe3UjJu/k976H3zwwYHXt15RtjXHbrerVCqldDo9kG86nR7a5vV6fcfh8C7r7l3Nt7Uz7ft+v7MNAAAQN9TAg6iBh9dNDRwdnNAAAABAX2+4dKlUGhqGbnuV1bTbyuVyqtVqKhaLKhaLOw49D4Kgfw/fccPsezzPk+/76na7Q1fSnTt3Tslkst8p3NqJzGazqlQqkn5zBd64+dvpdrsKw1Ce522bd7VaHWinVCqpXC4rDMN+R2ttbU1hGA503LbeT3ka637xxReH4npX7/XuHQ0AABAn1MDUwOPWTQ0cHZzQAAAAQF8ymRy4J2wul9P6+roymYw6nU6/U2BTtNu21buiadSVTb0HHPaWrVarqtfrO97zt3eF2tGjR63fd61WUzKZHLiSrDe0/6mnnup3Xk6fPj3Qoep1gnpXao2bv53e1WSj4sIw7D+YcevVY0ePHlU2m1WhUFAYhgrDUOvr6/0OZM+4ofau6+7dl3mUadymAQAAYN6ogamBx62bGjhCDAAAAHCNcrlsPM8zkozneaZSqfTntVot4/t+f16j0TAbGxsmn88bSUaSKZfLVm3VarVt5xljTKfT6c+/dvI8z2xsbAzlvrGxYUaVua1WayjHrctvbGyYbDZrgiAw+Xze5PN502q1BtoIgsB4nmeKxaIpFosmm80OtDFu/nbbeuv78n3fBEFgfN8feO/ZbHbk8o1Gw1Qqlf76ruV53lTXXS6XTTKZHGin1WoZSabT6ez4XgEAAKKMGpgamBo4+hLGGDPtkyQAAADANLTbbZ06dUrHjx/XhQsXFIZh/8q4Wq2mVCrVvwKup9lsqlarDV2ltax626her6vVag0Mha9WqwrDcGgb7Ua9Xlcul9PWbkSz2VQmkxFdCwAAgN2jBh6PGnh1fWLRCQAAAACjdLtdpdNpbWxsKJlMDt2z1vO8kQ8xrFQqOn78+JyyXLxkMqn19fX+LQO2qlQqOnPmzFTX17t/c7fb7Q/Rb7fbO97XGQAAAHaoge1QA68unqEBAACASOrdi/aRRx4ZuF9wt9tVtVpVpVLpP6iw2Wyq2+32f65SxyIMQwVBMPAQRGlzO+3fv9/6wZC2PM9TNpvt33dYkk6dOjXwMEgAAABMhhrYDjXw6uKWUwAAAIis9fV1ra2tDTws0fd9lcvl/gMVe0O9ezqdztgHEC6TUqmkAwcODA2pL5VKuuOOO4Y6edNSKBSUSqX07rvvKpVK9TvWAAAA2B1q4PGogVcXJzQAAAAQeb37Bm/XSSuVSup2uzp+/PjKXZm2b9++gSv1enK5nGq12oIyAwAAwG5RA49GDbzaeIYGAAAAIm/U/YO3WtWh3tVqVZJGdnLpyAEAAMQbNfBo1MCrjWdoAAAAADHVu7VA79YDAAAAwLKjBl5t3HIKAAAAiLEwDKf+0EMAAAAgyqiBVxcnNAAAAAAAAAAAQORxyykAAAAAAAAAABB5nNAAAAAAAAAAAACRxwkNAAAAAAAAAAAQeZzQAAAAAAAAAAAAkccJDQAAAAAAAAAAEHmc0AAAAAAAAAAAAJHHCQ0AAAAAAAAAABB5nNAAAAAAAAAAAACRxwkNAAAAAAAAAAAQef8fjQqFAsNi9IEAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# downstream\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 6))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" down_energyloss_found,\n",
|
|
" down_residual_found,\n",
|
|
" bins=(np.linspace(0, 1, 60), np.linspace(0, 5e4, 60)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=25,\n",
|
|
")\n",
|
|
"ax0.set_ylim(0, 5e4)\n",
|
|
"ax0.set_xlim(0, 1)\n",
|
|
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" down_energyloss_lost,\n",
|
|
" down_residual_lost,\n",
|
|
" bins=(np.linspace(0, 1, 60), np.linspace(0, 5e4, 60)),\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=20,\n",
|
|
")\n",
|
|
"ax1.set_ylim(0, 5e4)\n",
|
|
"ax1.set_xlim(0, 1)\n",
|
|
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
|
|
"\n",
|
|
"fig.colorbar(a0[3], ax=ax1)\n",
|
|
"fig.suptitle(\n",
|
|
" r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, Downstream photons w/ brem_vtx_z$<9500$mm\"\n",
|
|
")\n",
|
|
"\"\"\"\n",
|
|
"\"\"\"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "env1",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|