1065 lines
414 KiB
Plaintext
1065 lines
414 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\t\n",
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"import matplotlib\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from mpl_toolkits import mplot3d\n",
|
|
"import itertools\n",
|
|
"import awkward as ak\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 51,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"10522"
|
|
]
|
|
},
|
|
"execution_count": 51,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
|
|
"\n",
|
|
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
|
|
"allcolumns = file.arrays()\n",
|
|
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
|
|
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
|
|
"\n",
|
|
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
|
|
"#ak.count(found, axis=None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 52,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"eff all = 0.8606728758791105 +/- 0.003375885792719708\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"def t_eff(found, lost, axis = 0):\n",
|
|
" sel = ak.num(found, axis=axis)\n",
|
|
" des = ak.num(lost, axis=axis)\n",
|
|
" return sel/(sel + des)\n",
|
|
"\n",
|
|
"def eff_err(found, lost):\n",
|
|
" n_f = ak.num(found, axis=0)\n",
|
|
" n_all = ak.num(found, axis=0) + ak.num(lost,axis=0)\n",
|
|
" return 1/n_all * np.sqrt(np.abs(n_f*(1-n_f/n_all)))\n",
|
|
"\n",
|
|
"\n",
|
|
"print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{energy: 4.62e+04,\n",
|
|
" photon_length: 10,\n",
|
|
" brem_photons_pe: [3.26e+03, 4.45e+03, 178, ..., 825, 8.99e+03, 3.48e+03],\n",
|
|
" brem_vtx_z: [162, 187, 387, 487, ..., 9.49e+03, 1.21e+04, 1.21e+04, 1.21e+04]}\n",
|
|
"-------------------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" energy: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {energy: 4.62e+04, ...} type='{energy: float64, photon_length: int6...'>"
|
|
]
|
|
},
|
|
"execution_count": 53,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"#try excluding all photons that originate from a vtx @ z>9500mm\n",
|
|
"#ignore all brem vertices @ z>9500mm \n",
|
|
"\n",
|
|
"#found\n",
|
|
"\n",
|
|
"brem_e_f = found[\"brem_photons_pe\"]\n",
|
|
"brem_z_f = found[\"brem_vtx_z\"]\n",
|
|
"e_f = found[\"energy\"]\n",
|
|
"length_f = found[\"brem_vtx_z_length\"]\n",
|
|
"\n",
|
|
"brem_f = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(found,axis=0)):\n",
|
|
" brem_f.begin_record()\n",
|
|
" #[:,\"energy\"] energy\n",
|
|
" brem_f.field(\"energy\").append(e_f[itr])\n",
|
|
" #[:,\"photon_length\"] number of vertices\n",
|
|
" brem_f.field(\"photon_length\").integer(length_f[itr])\n",
|
|
" #[:,\"brem_photons_pe\",:] photon energy \n",
|
|
" brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n",
|
|
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n",
|
|
" brem_f.end_record()\n",
|
|
"\n",
|
|
"brem_f = ak.Array(brem_f)\n",
|
|
"\n",
|
|
"#lost\n",
|
|
"\n",
|
|
"brem_e_l = lost[\"brem_photons_pe\"]\n",
|
|
"brem_z_l = lost[\"brem_vtx_z\"]\n",
|
|
"e_l = lost[\"energy\"]\n",
|
|
"length_l = lost[\"brem_vtx_z_length\"]\n",
|
|
"\n",
|
|
"brem_l = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(lost,axis=0)):\n",
|
|
" brem_l.begin_record()\n",
|
|
" #[:,\"energy\"] energy\n",
|
|
" brem_l.field(\"energy\").append(e_l[itr])\n",
|
|
" #[:,\"photon_length\"] number of vertices\n",
|
|
" brem_l.field(\"photon_length\").integer(length_l[itr])\n",
|
|
" #[:,\"brem_photons_pe\",:] photon energy \n",
|
|
" brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n",
|
|
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n",
|
|
" brem_l.end_record()\n",
|
|
"\n",
|
|
"brem_l = ak.Array(brem_l)\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"brem_f[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"acc_brem_found = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem_f, axis=0)):\n",
|
|
" acc_brem_found.begin_record()\n",
|
|
" acc_brem_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n",
|
|
" \n",
|
|
" acc_brem_found.field(\"brem_photons_pe\")\n",
|
|
" acc_brem_found.begin_list()\n",
|
|
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
|
|
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" acc_brem_found.real(brem_f[itr,\"brem_photons_pe\", jentry])\n",
|
|
" \n",
|
|
" #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
|
|
" acc_brem_found.end_list()\n",
|
|
" \n",
|
|
" acc_brem_found.field(\"brem_vtx_z\")\n",
|
|
" acc_brem_found.begin_list()\n",
|
|
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
|
|
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" acc_brem_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
|
|
" acc_brem_found.end_list()\n",
|
|
" \n",
|
|
"\n",
|
|
" \n",
|
|
" acc_brem_found.end_record()\n",
|
|
"\n",
|
|
"acc_brem_found = ak.Array(acc_brem_found)\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"acc_brem_lost = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem_l, axis=0)):\n",
|
|
" acc_brem_lost.begin_record()\n",
|
|
" acc_brem_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n",
|
|
" \n",
|
|
" acc_brem_lost.field(\"brem_photons_pe\")\n",
|
|
" acc_brem_lost.begin_list()\n",
|
|
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
|
|
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" acc_brem_lost.real(brem_l[itr,\"brem_photons_pe\", jentry])\n",
|
|
" \n",
|
|
" #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
|
|
" acc_brem_lost.end_list()\n",
|
|
" \n",
|
|
" acc_brem_lost.field(\"brem_vtx_z\")\n",
|
|
" acc_brem_lost.begin_list()\n",
|
|
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
|
|
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" acc_brem_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n",
|
|
" acc_brem_lost.end_list()\n",
|
|
" \n",
|
|
" acc_brem_lost.end_record()\n",
|
|
"\n",
|
|
"acc_brem_lost = ak.Array(acc_brem_lost)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 55,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"9056"
|
|
]
|
|
},
|
|
"execution_count": 55,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ak.num(acc_brem_found,axis=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'\\nph_e = found[\"brem_photons_pe\"]\\nevent_cut = ak.all(ph_e<cutoff_energy,axis=1)\\nph_e = ph_e[event_cut]\\n'"
|
|
]
|
|
},
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"ph_e = found[\"brem_photons_pe\"]\n",
|
|
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
|
|
"ph_e = ph_e[event_cut]\n",
|
|
"\"\"\"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 72,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"cutoff energy = 350MeV, sample size: 693\n",
|
|
"eff = 0.9481 +/- 0.0084\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"#finden wir die elektronen die keine bremsstrahlung gemacht haben mit hoher effizienz?\n",
|
|
"#von energie der photonen abmachen\n",
|
|
"#scan ab welcher energie der photonen die effizienz abfällt\n",
|
|
"\n",
|
|
"#abhängigkeit vom ort der emission untersuchen <- noch nicht gemacht\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#idea: we make an event cut st all events that contain a photon of energy > cutoff_energy are not included\n",
|
|
"\"\"\"\n",
|
|
"ph_e = acc_brem_found[\"brem_photons_pe\"]\n",
|
|
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
|
|
"ph_e = ph_e[event_cut]\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"efficiencies_found = []\n",
|
|
"deff_found = []\n",
|
|
"\n",
|
|
"\n",
|
|
"for cutoff_energy in range(0,10050,200):\n",
|
|
"\tnobrem_f = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
|
|
"\tnobrem_l = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
|
|
"\n",
|
|
"\tif ak.num(nobrem_f,axis=0)+ak.num(nobrem_l,axis=0)==0:\n",
|
|
"\t\tefficiencies_found.append(0)\n",
|
|
"\t\tdeff_found.append(0)\n",
|
|
"\t\tcontinue\n",
|
|
"\t\n",
|
|
"\teff = t_eff(nobrem_f, nobrem_l)\n",
|
|
"\tdeff = eff_err(nobrem_f,nobrem_l)\n",
|
|
"\tefficiencies_found.append(eff)\n",
|
|
"\tdeff_found.append(deff)\n",
|
|
"\t#print(\"cutoff = \",str(cutoff_energy) ,\"MeV, sample size: \",ak.num(nobrem_f,axis=0)+ak.num(nobrem_l,axis=0))\n",
|
|
"\t#print(\"eff = \",np.round(t_eff(nobrem_f,nobrem_l),4), \"+/-\", np.round(eff_err(nobrem_f, nobrem_l),4))\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
|
|
"\"\"\"\n",
|
|
"cutoff_energy = 350.0 #MeV\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
|
|
"\"\"\"\n",
|
|
"nobrem_found = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
|
|
"nobrem_lost = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
|
|
"\n",
|
|
"print(\"\\ncutoff energy = 350MeV, sample size:\",ak.num(nobrem_found,axis=0)+ak.num(nobrem_lost,axis=0))\n",
|
|
"print(\"eff = \",np.round(t_eff(nobrem_found, nobrem_lost),4), \"+/-\", np.round(eff_err(nobrem_found, nobrem_lost),4))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 80,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHICAYAAABu/b/IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABr80lEQVR4nO3deVyU1f4H8M8wDMMi4oIiKgJaKoUrpgKaYQqaa2WBmSuYhKlIWfBzNxO1G5fbAuWCXpfU1LSNa2JpqWAoouaSS2p0bRBFBYyEAc7vDy8T4www8zDDjPp5v16+ap75Puc5Zw6MX885z3lkQggBIiIiIjKKjaUrQERERHQ/YhJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkW1OnHiBHJycixdDSIiIqvCJIpqtWLFCnz//feWrgYREZFVYRJFev3444+YPHky8vLyNMdOnz6N5557DlevXrVgzYiIiKwDk6h6kJqaCplMpvWnYcOG8PPzw2effVYv1163bp3W8Zs3b2Lw4MGws7PDhx9+qHOen58f3Nzc0LlzZ3z33Xf48MMPMXDgQAwaNAjNmjUza53vJ/v27dPp28o/hw4d0nvOiRMnEB4ejnbt2sHBwQEODg549NFHMWXKFBw5csToOjz77LNwcHDArVu3qo0ZM2YMFAqFWRPgBQsWQCaT4fr16yYpLz09HQsWLKixXfe78vJyNG/eHP/85z+rjTH153q/eJD7PzMzEyEhIXB2dkaDBg0QFBSEgwcP6sQZ+/1y+/ZtREdHo2XLlrC3t0fXrl2xefNmyXFUO1tLV+BhcPToUQDAF198gebNm0MIgZycHMyfPx+jR49Gx44d0blzZ7Ne28/PT3PsxIkTePbZZ/Hnn3/i+++/R58+fXTOc3JywqJFi1BRUYH4+HjY2Nhg48aNCAsLM0s973dLlixBUFCQ1jFfX1+duE8++QSvvfYaOnTogBkzZuDxxx+HTCbDmTNnsGnTJjzxxBO4cOEC2rVrZ/C1w8PDsXPnTnz66aeIiorSeb+goAA7duzA0KFD4ebmZnzjLCQ9PR0LFy7EhAkT0KhRI0tXxyx+/PFHXLt2Dc8995ylq2J1HtT+P3z4MJ588kn07NkT69evhxACy5cvx9NPP429e/fC399f5xxDv1+ee+45HD58GEuXLkX79u3x6aefYvTo0aioqMBLL71kdBwZQJDZPfvss8LFxUXn+IYNGwQAsXbtWrNe28HBQZSVlQkhhNi0aZNwdHQUvXv3FleuXKn2vBMnToguXbqIkJAQ8cwzz4iIiAjh6+srnnnmGXHt2jWz1bc+5efn17kte/fuFQDE1q1ba409cOCAsLGxEcOGDRMlJSV6Yz777LMa+0WfsrIy0bJlS+Hn56f3/eTkZAFAfPXVV0aVa6z58+cLACb7+Xj33XcFAHHp0iWTlGeNoqKiRI8ePWqMqevn+ueff0o6z9Lu5/7/448/REFBgd73QkJChJubm1a/FBYWCldXVxEQEKAVa8z3yzfffCMAiE8//VTr+MCBA0XLli01fwcYGkeGYRJVD9q0aSP69eunc3zp0qUCgPjpp5+MLjMhIUHs2LHDoGv7+/uLsrIy8frrrwsAYvLkydX+JV7p999/1/ylO3XqVLFmzRpRVlYm1q5dK0pLS6s9b//+/WLgwIGiYcOGolGjRuKZZ54R586dkxxnqKFDhwo/Pz+xYsUK0blzZ2Fvby9at24t5s2bJ8rLy/Wes3fvXmFraysGDRok/v3vf4vCwkKjr2vMl9wzzzwjFAqF+OOPP4y6xrlz58To0aNFs2bNhJ2dnejYsaP48MMPtWLi4uIEAHHixAmd83v27Cnc3d0lfTlW/gV+9OhR8eyzzwpnZ2fRsGFDMWbMGJGXl6c39uTJkyIsLEw0bNhQNG/eXEycOFHcunVLK3b//v2if//+okGDBsLBwUH4+/uLr7/+Wqese//s3bvX4DKMrVNeXp6YPHmyaN26tbCzs9P8pZaWllbt53Py5EkBQHz22WeaY0eOHBEAxGOPPaYVO2zYMNG9e3fN64qKCuHu7i7i4+OrLb9qG4zpg6ysLPH888+LRo0aiRYtWmjeN+RnqbKM48ePi1GjRomGDRuKxo0bi5kzZwq1Wi1++eUXERISIho0aCA8PT3FsmXLaqz/vXbs2CEAiD179ui8l5SUJACIZ599ttr+/+uvv0TXrl1Fu3bttPpQpVIJNzc30a9fP4N/1vVdo/KPscnbjRs3xKpVq8TTTz8tbGxsRHZ2tt64Bg0aiNDQUJ3jzz33nACg9f1gzPdLRESEaNCggVCr1VrHP/30UwFAHDx40Kg4Ier+s2DunyVrwCTKzK5fvy4AiOnTpwu1Wi3UarW4evWqWLdunXB2dhYRERGSyn3ppZeEQqGoMZGqvHZoaKjo37+/UCqVYuXKlUZfqzKJqs38+fOFjY2NmDRpkvjmm2/Etm3bRKdOnYSHh4coKioyOs4Y7u7uwsnJSfj4+Ij169eL3bt3i7CwMAGg2jb/9ddfYuPGjWLYsGHCzs5O2Nvbi1GjRont27eLO3fuGHTdyi+55s2bC7lcLpydnUVwcLDYv3+/VlxZWZnmL3pjnDp1Sri4uIhOnTqJdevWid27d4vXX39d2NjYiAULFmjizp8/L2QymYiOjtY5H4CIjY016rqVKr8EPT09xaxZs8S3334rEhIShJOTk+jWrZtWQl0Z26FDBzFv3jyRlpYmEhIShFKpFBMnTtTE7du3TygUCuHn5ye2bNkidu7cKYKDg4VMJhObN28WQtxN4qdNmyYAiM8//1xkZGSIjIwMzb/uDSnDmDoJcXeEoFmzZmLFihVi3759YufOnWLevHla5enj7u4uXnnlFc3rpUuXCgcHBwFAM6qoVqtFw4YNxZtvvqmJO3DggABQ6z8epPSBp6eneOutt0RaWprYuXOnEMLwn6Wqn9nbb78t0tLSxJtvvikAiNdee0107NhRvP/++yItLU1MnDhRABDbt2+vsQ1VqdVq0bx5czFmzBid93r27Cm6d+9ea/+fO3dOODs7i+eee04IIUR5ebno37+/aN68uVH/SKkst/LP999/L1q1aiVatGhR7UhSVX/++afYvHmzGD58uLCzsxMODg7i+eefF1u3bq32H6p2dnZi3LhxOsdHjx4tAIhvv/1Wc8zQ7xchhOjdu7d44okndI5XJvqffPKJUXFC1P1nwdw/S9aASZSZ7d69W++/cmxtbcXixYsll1tWVlZrIlX12vb29uLQoUOSr1ebr776SgAQy5cv1zp+7tw5AUBs2LDBqDhj/Pe//xUARNu2bbX+ZVpaWipatGghhg4dWmsZN2/eFCkpKSI4OFjY2toKFxcXMWHCBPHtt9/W+K/ao0ePihkzZogdO3aIH3/8UaSkpAgfHx8hl8vFrl27NHG5ubkCgAgLC9Mpo6ysTJNgq9VqUVFRoXkvJCREtG7dWucL/bXXXhP29vbixo0bmmP9+vUTrq6uWn+pVo4+Sh3lq/wSnDlzptbxjRs36vRXZey9fRsVFSXs7e017erdu7do3ry5VsJcVlYmfH19RevWrTVxNU3nGFqGoXUS4u4Iwb1JqCFefvll0bZtW83rAQMGiMmTJ4vGjRuLf//730IIIQ4ePCgAiN27d2vioqOjRadOnWotX0ofzJs3T6ccQ3+WKst47733tOK6du2qSWoqqdVq0axZM00yY6iYmBjh4OCg9ft6+vRpAUB88MEHQojap/O2bNkiAIjExEQxb948YWNjo/X5GqusrEyMGDFCNGjQQGRlZVUbV1paKr7++mvx0ksvCScnJ2FnZyeGDh0qNmzYYNA/Art27Srat2+vNUKuVqtF27ZtdabZDP1+EUKIRx99VISEhOhc748//hAAxJIlS4yKE6LuPwv18bNkaUyizCw+Pl7zw3L48GFx+PBhsWvXLjFixAhhY2OjN+u+du1ajcPM9/5RKBQiNze32muPHTtW718kptStWzfRrl07UVJSopUQqNVq4eDgIBYtWmRUnDEqpwfWrVun816fPn1E7969jSrv2rVrIjk5WfTr10/IZDLRvHlz8euvvxp8/s2bN0Xr1q1F586dNcdqSqK6dOmi1Z/vvvuuEOLuSJmtra2YNm2azmeVmpoqAIjU1FRNOevWrRMAxLZt24QQd7+U3NzcRN++fY1qf1WVX4JHjhzROq5Wq4Wtra0IDw/Xif3ll1+0Yj/++GMBQOTm5orbt28LmUwmoqKidK61bNkyAUCcOXNGCFH9X6LGlGFInSr1799fNGrUSLz99tsiIyOjxmnrqtasWSMAiIsXL4q//vpL2Nvbi+3bt4vnnntOvPzyy0IIIRYuXCiUSqUoLi7WnNemTRutEaDqSOmD48ePa8Ua87NUWcbZs2e1yhg9erSQyWTir7/+0jru7+9f7Xq86ugb9Zg1a5ZQKpUiPz9fCGHYmqhXX31VKBQKYWNjI+bMmWNUHe4VGRkpbG1txX/+859qY44fPy6aNGki5HK5CA4OFqtXrxY3b9406jqrV68WAMSrr74q/vvf/4qcnBwRHh4u5HK5AFDryKe+7xch7iZHgwYN0omvTI4qp40NjROi7j8L9fGzZGm8O8/Mjh49CgcHBwwfPhxyuVxzvF+/fmjYsCFWrlypc2eOs7MzVq5cWWvZu3btwvbt2zFixAg0bdpU77Xt7e2RkpICAIiNjUWHDh0wfPjwOrZKW25uLrKzswEASqVSb0yjRo0MjjPWkSNHoFAo8MILL+i898cff2jdmWiIwsJC3Lp1CwUFBRBCoFGjRrC1NfxXpVGjRhg6dCg+/vhj/PXXX3BwcICrqyscHBzw22+/6cR/+umnKC4uhkql0uqb/Px8lJWV4YMPPsAHH3yg91pVb3sfNWoUpk2bhjVr1uD5559Hamoqrl69imXLlhnRev1atGih9drW1hZNmzZFfn6+Tuy9P4uVff3XX39BrVZDCAF3d3ed81q2bAkAesus6ubNm0aXUVOdKm3ZsgWLFy/GqlWrMHfuXDRo0ADPPvssli9frtP+qgYMGAAA2LNnD7y9vaFWq9G/f39cvXoVb7/9tua9wMBAODg4ALh7i3tOTg6ef/75GttalTF9cO9nY+zPEgA0adJE67WdnR0cHR1hb2+vc7ywsNDgdgDA448/jieeeAJr1qzBK6+8gvLycmzYsAEjRozQuW5NJk2ahOTkZNjZ2WH69OlG1aGqxYsX4+OPP8bq1asxaNCgauMUCgVcXFxw48YNFBQUoKCgALdv3zbqe2vSpEm4du0aFi9ejOTkZACAv78/3njjDSxbtgytWrWq8Xx93y8Aqv1ZuHHjBoC/+9PQuKrq+rNgzp8lS2MSZWZHjx5Fp06dtBIo4O4vo1wu1/oSr6RUKhEREVFjud988w2+/vprjBo1Cps2bdL7l/zRo0fRpUsX2NraYuXKlTh//jxeeuklHDhwAF27dq1Tu6r6/fffAQD//Oc/9W6XAADt2rXDhQsXDIoz1pEjR+Dq6qrzC/nTTz/h4sWLmDt3bq1l/P7779i6dSs2b96Mw4cPo1WrVggNDcXKlSvRo0cPo+skhAAAyGQyAIBcLkf//v2xe/duqFQqrb/kHnvsMQDA5cuXtcpo3Lgx5HI5xo4di6lTp+q9jre3t+b/HRwcMHr0aKxcuRIqlQopKSlwdnbWm1waKzc3V+vLvaysDPn5+XqT95o0btwYNjY2UKlUOu/98ccfAABXV1ezl6GPq6srEhMTkZiYiJycHHz55ZeIjY1FXl4edu3aVe15rVu3Rvv27bFnzx54eXmhR48eaNSoEZ5++mlERUXhp59+wqFDh7Bw4ULNOdu3b0f79u313qZeHWP6oPLnrpKxP0v1YeLEiYiKisKZM2dw8eJFqFQqTJw40eDz//zzT4wdOxbt27fH1atXERERgS+++MLoeqxduxZz587FggULMGnSpBpjfXx8cPHiRWRkZODTTz/F0qVL8frrryMwMBChoaEYNWpUjQl3pbfeegvR0dE4f/48nJ2d4enpiSlTpsDJycmgf/Td+/0CAJ06dcKmTZtQVlam9ffBzz//DODvLREMjSMDWXQc7AF369YtIZPJtBadVtq+fbsAIObOnSup7H79+olRo0bp3GFx77VfffVVzTGVSiU8PDyEh4eHUKlUkq6rz4ULFzRrE0wRZ6ymTZsKW1tbrWH1srIy0a9fP+Hl5VXtAs/CwkLx/vvvi8DAQCGTyUSTJk3E5MmTxffff1/tHX2GuHHjhmjVqpXo2rWr1vHKLQ6GDx+ud6ro0qVLWtN5QtxdX9OlS5da76asdPjwYc36GYVCISZPniy5HULUvh5n/fr1OrH33opfOd1VOS3j7+8vWrRooTW1VV5eLjp16qS1nun9998XAMTp06d16mVoGYbWqTojR44UzZo1qzFGiLtrrFxdXUW3bt20ppXatGkjgoODBQCRmZmpOd6uXTsRFxdXa7lV21CXPhDC8J+l6soYP368cHJy0onv16+fePzxxw1qS1U3b94U9vb24s033xSjRo0SrVq10vq9q6n/hbi7Fs3R0VGcPHlSbNu2TQAQCQkJRtXhP//5j7C1tRWTJk0yuv5C3P2e+fbbb8X48eNFw4YNhY2NjQgKChIff/yx1s9mbX777Tfh4uJi0Jq86r5fKqdl750OHDRokNbWBYbGCVH3n4X6+lmyJI5EmdHRo0chhICTk5Nmd9mbN28iPT0d//znP9G5c2e88cYbksr+6quv4ODgUO00U+W1q/6rpkWLFvjiiy/Qp08fDB8+HD/88INmKLgu2rVrh6CgIMyZMwe3b99Gr169IISASqXC3r17MX78eDz11FMGx1Ulk8nQr18/7Nu3T++1L126hPz8fLRp0wYvvPACXn/9ddy5cwfvv/8+srKysG/fPtjZ2ek9NysrC7GxsRg+fDh27tyJwYMHQ6FQGNX2l156CW3atEGPHj3g6uqK8+fP47333sPVq1exdu1ardjAwEB89NFHmDZtGrp3745XXnkFjz/+uGZUZfv27QCAhg0bas7517/+hT59+qBv37549dVX4eXlhaKiIly4cAFfffWVzjMNe/Togc6dOyMxMRFCCISHh1db99o+26o+//xz2NraYuDAgTh16hTmzp2LLl264MUXXzT8w/qf+Ph4DBw4EEFBQXjjjTdgZ2eHpKQknDx5Eps2bdL867pTp06az2D8+PFQKBTo0KEDnJ2dDS7DUAUFBQgKCsJLL72Ejh07wtnZGYcPH8auXbsM2gjz6aefRlJSEq5fv47ExESt42vWrEHjxo01v4vHjh3Dr7/+atRUHlD3PjD2Z8ncGjVqhGeffRZr167FrVu38MYbb8DG5u+HaNTU/6tWrcKGDRuwZs0aPP7443j88cfx2muv4a233kJgYCB69uxZ6/UvXbqEF154AW3btsXEiRN1dgDv1q1btcsOKsnlcgQHByM4OBgff/wxvvnmG3z66aeIjo5Gr1699I74nzx5Etu3b0ePHj2gVCpx/PhxLF26FI8++qhm+reSMd8vgwcPxsCBA/Hqq6+isLAQjzzyCDZt2oRdu3Zhw4YNmtkQQ+PIQBZN4R5w//jHP3QWgVfelvzOO++YdRO8ymsfPXpU572tW7cKmUwmXnjhBa27k+qioKBAxMXFifbt2wt7e3vRuHFj0aVLFzFt2jStESJD44QQoqioqNrF2JU+++wzAUCkp6eLsWPHioYNGwpnZ2cxYsSIav8FW7Uut2/frkuzRXx8vOjatatwcXERcrlcNGvWTDz77LNaow73OnbsmJg4caLw9vYWSqVS2Nvbi0ceeUSMGzdOfPfddzrxly5dEpMmTRKtWrUSCoVCNGvWTAQEBFR7d+e//vUvAejuU1SVIZ+tENr7Dg0bNkw0aNBAODs7i9GjR4urV6/qjTVk1KdyjycnJyfh4OAgevfurXcz0Li4ONGyZUthY2MjAP37RNVUhqF1unPnjoiMjBSdO3cWDRs2FA4ODqJDhw5i/vz5Bv2e3rx5U9jY2AgnJyetUcbK0aKqdxzNmTNHeHp61lrmvW2oSx9UMuRnqT5HD6reQazvDlJ9/X/ixAnh4OAgxo8frxV7584d4efnJ7y8vAxa7F25fUB1f+qyyWdN3y1nz54VTz75pGjSpImws7MTjzzyiJgzZ47eeGO/X4qKisT06dNFixYthJ2dnejcubPYtGmT5DiORNVOJsT/JleJrExqaiqGDh2K48ePa/5Veq8333wTSUlJKCgo4L+gjGDIZwvcfW7bwoULce3aNUnrjEjXY489hsGDB+O9996zdFWIqI44nUdWa+/evQgLC6vxL/kjR46ge/fuTKCMZMhnS+Zx+vRpS1eBiEyESRRZrXfffbfG94UQOHr0aK131JCu2j5bIinKyspqfN/GxkZr3dPDUhd6cHE6j4iI6uzy5cu1bpMwf/58LFiw4KGqCz3YLJpE/fjjj3j33XeRlZUFlUqFHTt2YOTIkTWe88MPPyAmJganTp1Cy5Yt8eabbyIyMlIrZvv27Zg7dy5+/fVXtGvXDu+88w6effZZM7aEiOjhVlpaihMnTtQY07JlS82GqA9LXejBZtHpvD///BNdunTBxIkTDbrd99KlS3jmmWcwefJkbNiwAQcPHkRUVBSaNWumOT8jIwOhoaF4++238eyzz2LHjh148cUXceDAAfTq1cvcTSIieijZ2dlJ2pjWHKypLvRgs5rpPJlMVutI1FtvvYUvv/wSZ86c0RyLjIzE8ePHkZGRAQAIDQ1FYWEh/vOf/2hiBg0ahMaNG2PTpk1mqz8RERE9XO6rheUZGRkIDg7WOhYSEoLVq1dDrVZDoVAgIyMDM2fO1ImpugHevUpKSlBSUqJ5XVFRgRs3bqBp06ZGb9pHREREliGEQFFREVq2bFkvNw7cV0lUbm4u3NzctI65ubmhrKwM169fh7u7e7Uxubm51ZYbHx+v9VwrIiIiun/9/vvvaN26tdmvc18lUYDugzUrZyOrHtcXU9OIUlxcHGJiYjSvCwoK0KZNG5w7d86oJ4qTaanVauzduxdBQUFGP46FTIt9YR3YD9aB/WAd9PVDUVERvL294ezsXC91uK+SqBYtWuiMKOXl5cHW1lbzJPPqYu4dnapKqVTqfUZSkyZNjH5KPZmOWq2Go6MjmjZtyi8qC2NfWAf2g3VgP1gHff1Q+d/6WopzX+005u/vj7S0NK1ju3fvRo8ePTQfXHUxAQEB9VZPIiIievBZdCTq9u3buHDhgub1pUuXcOzYMTRp0gRt2rRBXFwcrly5gnXr1gG4eyfehx9+iJiYGEyePBkZGRlYvXq11l13M2bMwJNPPolly5ZhxIgR+OKLL7Bnzx4cOHCg3ttHREREDy6LjkQdOXIE3bp1Q7du3QAAMTEx6NatG+bNmwcAUKlUyMnJ0cR7e3sjNTUV+/btQ9euXfH222/j/fff19pjKiAgAJs3b8aaNWvQuXNnrF27Flu2bOEeUURERGRSFh2Jeuqpp1DTNlVr167VOdavXz8cPXq0xnJHjRqFUaNG1bV6RERERNW6r9ZEEREREVkLJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREElg8iUpKSoK3tzfs7e3h5+eH/fv31xj/0UcfwcfHBw4ODujQoQPWrVunE5OYmIgOHTrAwcEBHh4emDlzJu7cuWOuJhAREdFDyNaSF9+yZQuio6ORlJSEwMBAfPLJJxg8eDBOnz6NNm3a6MQnJycjLi4OK1euxBNPPIHMzExMnjwZjRs3xrBhwwAAGzduRGxsLFJSUhAQEIBz585hwoQJAIB//vOf9dk8IiIieoBZdCQqISEB4eHhiIiIgI+PDxITE+Hh4YHk5GS98evXr8eUKVMQGhqKtm3bIiwsDOHh4Vi2bJkmJiMjA4GBgXjppZfg5eWF4OBgjB49GkeOHKmvZhEREdFDwGIjUaWlpcjKykJsbKzW8eDgYKSnp+s9p6SkBPb29lrHHBwckJmZCbVaDYVCgT59+mDDhg3IzMxEz549cfHiRaSmpmL8+PHV1qWkpAQlJSWa14WFhQAAtVoNtVottYlUR5WfPfvA8tgX1oH9YB3YD9ZBXz/Ud59YLIm6fv06ysvL4ebmpnXczc0Nubm5es8JCQnBqlWrMHLkSHTv3h1ZWVlISUmBWq3G9evX4e7ujrCwMFy7dg19+vSBEAJlZWV49dVXdZK1quLj47Fw4UKd43v37oWjo2PdGkp1lpaWZukq0P+wL6wD+8E6sB+sQ9V+KC4urtdrW3RNFADIZDKt10IInWOV5s6di9zcXPTu3RtCCLi5uWHChAlYvnw55HI5AGDfvn145513kJSUhF69euHChQuYMWMG3N3dMXfuXL3lxsXFISYmRvO6sLAQHh4eCAoKQtOmTU3UUjKWWq1GWloaBg4cCIVCYenqPNTYF9aB/WAd2A/WQV8/VM4k1ReLJVGurq6Qy+U6o055eXk6o1OVHBwckJKSgk8++QRXr16Fu7s7VqxYAWdnZ7i6ugK4m2iNHTsWERERAIBOnTrhzz//xCuvvILZs2fDxkZ3GZhSqYRSqdQ5rlAo+AtiBdgP1oN9YR3YD9aB/WAdqvZDffeHxRaW29nZwc/PT2c4NC0tDQEBATWeq1Ao0Lp1a8jlcmzevBlDhw7VJEfFxcU6iZJcLocQAkII0zaCiIiIHloWnc6LiYnB2LFj0aNHD/j7+2PFihXIyclBZGQkgLvTbFeuXNHsBXXu3DlkZmaiV69euHnzJhISEnDy5En8+9//1pQ5bNgwJCQkoFu3bprpvLlz52L48OGaKT8iIiKiurJoEhUaGor8/HwsWrQIKpUKvr6+SE1NhaenJwBApVIhJydHE19eXo733nsPZ8+ehUKhQFBQENLT0+Hl5aWJmTNnDmQyGebMmYMrV66gWbNmGDZsGN555536bh4RERE9wCy+sDwqKgpRUVF631u7dq3Wax8fH2RnZ9dYnq2tLebPn4/58+ebqopEREREOiz+2BciIiKi+xGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJAGTKCIiIiIJLJ5EJSUlwdvbG/b29vDz88P+/ftrjP/oo4/g4+MDBwcHdOjQAevWrdOJuXXrFqZOnQp3d3fY29vDx8cHqamp5moCERERPYRsLXnxLVu2IDo6GklJSQgMDMQnn3yCwYMH4/Tp02jTpo1OfHJyMuLi4rBy5Uo88cQTyMzMxOTJk9G4cWMMGzYMAFBaWoqBAweiefPm2LZtG1q3bo3ff/8dzs7O9d08IiIieoBZNIlKSEhAeHg4IiIiAACJiYn49ttvkZycjPj4eJ349evXY8qUKQgNDQUAtG3bFocOHcKyZcs0SVRKSgpu3LiB9PR0KBQKAICnp2c9tYiIiIgeFhZLokpLS5GVlYXY2Fit48HBwUhPT9d7TklJCezt7bWOOTg4IDMzE2q1GgqFAl9++SX8/f0xdepUfPHFF2jWrBleeuklvPXWW5DL5dWWW1JSonldWFgIAFCr1VCr1XVpJtVB5WfPPrA89oV1YD9YB/aDddDXD/XdJxZLoq5fv47y8nK4ublpHXdzc0Nubq7ec0JCQrBq1SqMHDkS3bt3R1ZWFlJSUqBWq3H9+nW4u7vj4sWL+P777zFmzBikpqbi/PnzmDp1KsrKyjBv3jy95cbHx2PhwoU6x/fu3QtHR8e6N5bqJC0tzdJVoP9hX1gH9oN1YD9Yh6r9UFxcXK/Xtuh0HgDIZDKt10IInWOV5s6di9zcXPTu3RtCCLi5uWHChAlYvny5ZpSpoqICzZs3x4oVKyCXy+Hn54c//vgD7777brVJVFxcHGJiYjSvCwsL4eHhgaCgIDRt2rTObcwrKsG1ohI0c1aiubOyzuU9LNRqNdLS0jBw4EDN1CxZBvvCOrAfrAP7wTro64fKmaT6YrEkytXVFXK5XGfUKS8vT2d0qpKDgwNSUlLwySef4OrVq3B3d8eKFSvg7OwMV1dXAIC7uzsUCoXW1J2Pjw9yc3NRWloKOzs7nXKVSiWUSt3kRqFQ1PgLkld4B3lFJWjurETzhvZ6Y4pLyxC4/AcAQNRT7fDmoI7Vlkf61dYPVH/YF9aB/WAd2A/WoWo/1Hd/WGyLAzs7O/j5+ekMh6alpSEgIKDGcxUKBVq3bg25XI7Nmzdj6NChsLG525TAwEBcuHABFRUVmvhz587B3d1dbwIlVXFpGXou+Q5DPziAtemXDTon9AkPk12fiIiILMui+0TFxMRg1apVSElJwZkzZzBz5kzk5OQgMjISwN1ptnHjxmniz507hw0bNuD8+fPIzMxEWFgYTp48iSVLlmhiXn31VeTn52PGjBk4d+4cvvnmGyxZsgRTp041WzsMTY6acSqPiIjogWHRNVGhoaHIz8/HokWLoFKp4Ovri9TUVM2WBCqVCjk5OZr48vJyvPfeezh79iwUCgWCgoKQnp4OLy8vTYyHhwd2796NmTNnonPnzmjVqhVmzJiBt956y2ztYHJERET08LH4wvKoqChERUXpfW/t2rVar318fJCdnV1rmf7+/jh06JApqkdERESkl8Uf+0JERER0P2ISRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiapHuQV3LF0FIiIiMhEmUWa2Peu/mv8fkPADthzOqSGaiIiI7hdMosxIVfAX5n95SvO6QgD/9/lJqAr+smCtiIiIyBSYRJnRpet/okJoHysXApevF1umQkRERGQyTKLMyNvVCTYy7WNymQxero6WqRARERGZDJMoM3J3ccDC4Y9rXtvIgCXP+cLdxUFvfF7hHZy8UoC8Qi5AJyIisnZMokygprvunvdrrfn/PTH9EPpEG71xxaVl6LnkOwz94ADWpl82dRWJiIjIxJhESSTlrrsWLvYGlR36hIfkehmLo19ERETSMImSwNx33TVzVtb4viGJjyExHP0iIiKSjkmUBJa8686QxEdKclSfo19EREQPAiZREljLXXeGJD6GJke1jX4ZitODRET0sGASJYGxd92ZiyGJT30mR5weJCKihwmTKIkMvevuQWCO6UGOWBER0f2OSZQJGHrX3YPAFNODhiZleUUl+P323f8SERFZG1tLV4DuL6aaHqxUXVJWXFqGwOU/ALDF7ca/IfaZx/XGERERWQpHosiiDEnKRnVvVQ81ISIiMg6TKCtU0w7oD9I1DcU7B4mIyBoxiapH12pY2yNlB/S6ssQ1zYF3DhIRkSUwiTIzRztbzHj6UQDA50ev6I0x5w7o1Y0wmXvX9foa2eKdg0REZClMourBmF5t8PW0PhjTS/82CFJ3QK8uUTFkhMnU1zT0uuZUn3cOEhERWTyJSkpKgre3N+zt7eHn54f9+/fXGP/RRx/Bx8cHDg4O6NChA9atW1dt7ObNmyGTyTBy5EgT19o4zRvaw7eVC5o31L8VgjE7oNeWqBg6wmTKaxpz3XuZcsSqvu4crMQRKyKih5tFk6gtW7YgOjoas2fPRnZ2Nvr27YvBgwcjJ0f/CEZycjLi4uKwYMECnDp1CgsXLsTUqVPx1Vdf6cT+9ttveOONN9C3b19zN6PODN0B3ZBExdARJlNe05jrAsaPWF21UJLCESsiIqqJRZOohIQEhIeHIyIiAj4+PkhMTISHhweSk5P1xq9fvx5TpkxBaGgo2rZti7CwMISHh2PZsmVaceXl5RgzZgwWLlyItm3b1kdT6syQHdANSVSMGWEy1TWNua6hSVnVRGvQ++lWveidD28mIno4WWyzzdLSUmRlZSE2NlbreHBwMNLT0/WeU1JSAnt77SkxBwcHZGZmQq1WQ6FQAAAWLVqEZs2aITw8vNbpwcpyS0r+vnOusLAQAKBWq6FWq/Weo1aXVfl/NdQyoTfOUFXLa+oo13vd1i5K2MigldTYyIBWLnaaeFdHW8wd0hELv/5F8/7bI3zg6mirU6aprmnMdS/kFupNyn69WghXx7s/jqqCOzqJVtznP8PfuzHc79kd3tB+qBr33/wieLs2qDXO0PIa2dtU+3PyoKhs34PeTmvHfrAO7AfroK8f6rtPLJZEXb9+HeXl5XBzc9M67ubmhtzcXL3nhISEYNWqVRg5ciS6d++OrKwspKSkQK1W4/r163B3d8fBgwexevVqHDt2zOC6xMfHY+HChTrH9+7dC0dH3REcACgpByo/vm+/3Q2l3ODL1am857xk2Hbp7psyCLzoXYHsg98ju0qMU5WyYruUwenqCaSmnjDrNQ297q0SQAY5BP4etpJB4Ndjh5B/5u7r8wUyVAjtylQI4LPUvXjURTupqdqGLV/thls1z4DenysDcLfMkH8dRGjbCvi76SZIhn4mpu7/+0VaWpqlq0BgP1gL9oN1qNoPxcU13xxlahZ/7ItMpj0HJITQOVZp7ty5yM3NRe/evSGEgJubGyZMmIDly5dDLpejqKgIL7/8MlauXAlXV1eD6xAXF4eYmBjN68LCQnh4eCAoKAhNmzbVe05xaRnezPweABASEgxHu7p9lIaW91RpGba9fTfu2xmBekdUqpYVOqz6skx5TWOuW9EyR2vEavGIx/FClalFVcEdJJ35UWf068VngnRGojb8lAPgbllLj9ti8YjHtMqqLG/mez9qXgvI8NklOaKee1KnvKpt6Or/pEFtra3/84pKcK2oBM2clWhu4sXv9UWtViMtLQ0DBw7UjPhS/WM/WAf2g3XQ1w+VM0n1xWJJlKurK+Ryuc6oU15ens7oVCUHBwekpKTgk08+wdWrV+Hu7o4VK1bA2dkZrq6uOHHiBC5fvoxhw4ZpzqmoqAAA2Nra4uzZs2jXrp1OuUqlEkql7l9uCoWi2l8QhZDdE1e3j9LQ8qrGtW7qrDdOSll1vaYx5YX29NQkUXti+qFtM+1EpY2rAguHP465X9yd0rORAfHPdUIbV2etOFXBX3j7m180rysEMPeLMwjyaaG1QP6/BQU6U4gVArhSUKpT5pdH/t7La9D76Yh/rpPetWKGtvXvZwACUU+1w5uDOuqNu1/U9DtB9Yf9YB3YD9ahaj/Ud39YbGG5nZ0d/Pz8dIZD09LSEBAQUOO5CoUCrVu3hlwux+bNmzF06FDY2NigY8eO+Pnnn3Hs2DHNn+HDhyMoKAjHjh2Dh4d5FgDXtBM51ayFi/5tH6ouet81PcCqFr3fy9BtGrgAnYjowWLRu/NiYmKwatUqpKSk4MyZM5g5cyZycnIQGRkJ4O4027hx4zTx586dw4YNG3D+/HlkZmYiLCwMJ0+exJIlSwAA9vb28PX11frTqFEjODs7w9fXF3Z2diaruyE7kZNpuNVxfy1Dt3Mw5zYNQM1bJnDPKSKi+49F10SFhoYiPz8fixYtgkqlgq+vL1JTU+Hp6QkAUKlUWntGlZeX47333sPZs2ehUCgQFBSE9PR0eHl5WaT+Y3q1wcDH3O7bdS5VXSsqgWdTiy+RM0plclR12k9fcgTcHdmqjNM3hQj8nZRVTaSMGbF6sn0zvdeuTeWeU8CDMeVHRPSwsPjfmlFRUYiKitL73tq1a7Ve+/j4IDv73nvCanZvGabUvKF9tbuQ3w8qR9P+9d15fH70CmYObG/pKhnNkOToXtVNIRqalNU0YiUliarKkF3S84pK0NxZeV//7BERPQgs/tgXsqzanusnlSXWiVWXHBnDkA1IjdnQtCpD1k5xl3QiovsHkygrZMoEpLayanuunzHlSVknZkhbLbVwv7YRq0o1TSOa66HMXKRORGR5TKKshCkXqpt60bsx5RkysmVIeY52tpgWdPeRPV8cV0mptlkZMmIl9W4/Q5j6YctERGQ8i6+Jor8Zu1C9psXgpl70bmh5hq4TM6S8sCc8oLx+Ds+aeNTF1IvoqxuxkrJ2KrfgjkHruoiIyPI4EmVFDJlaM3RUyNhpOlPUzdTlNXdWwqMBjEoqq2OJLSkMXTtljik/bplARGR+TKLuQ+ZaDH4/MvVUY1V1XYtlyNopc0z5cQE6EVH9YBJ1HzL1qND9ztDkyJQjfYaqbe2UMRt8VsVd0omILI9roui+Z+r9uky5Nq0qfWunDN3gE9Cd9qvuuX5V1bYAnftOERFJx5EoonvU54iVodslWHraL6+oBL/fvvtfIiK6iyNRRBKZ6g5IQ3ZdN+cu6UDN037FpWUIXP4DAFvcbvwbYp95vNpYIqKHCZMoIonM8dif6rZLMGbarypDt0wwdN+pUd1bGRRHRPQw4HQeUT2py91+1rBLOmDYGiturUBEDwsmUURmZMq7/Sy9S3ptuLUCET1sOJ1HZGam3j0eMO0u6YDpd0qvaY0V7wgkogcFR6KIzMyYfb3qusGnobukA5aZ9jPqjkBODRKRlWMSRWRhppzyM/eWCVdNmNDUdkcgpwaJyNoxiSKyAqZ8JI0ha6eM2Sm96ojVoPfTTTZiZegdgbXtus4RKyKyFCZRRFbAXBt81rZlQlX6pv2kjlgZ+lgaQ9SUbHHEiogsiUkU0X3EVA+fNnTaT+qIlanXWBmCI1ZEVN+YRBHdR0z58GlDpv3MOWJlytEqwHQjVky2iMhQTKKIHmCG3u1X3bSfqUespIxWmTrZMsWCdiZaRAQwiSJ64Jjybj9Ae8Rq1/QAySNWxoxWmTPZquuCdq7DIqJKTKKIHkCmWjt1L7dqphENGbEydLTK3MmWoQxJtmpbh0VEDzYmUUQPIGPXTtV1k0+g9jVWhq6vMkeyZS58liDRw41JFNFDytTTflXpW2Nl6PoqUydb9zL1GqvqcNqP6MHHJIroIWbKTT4NYcgdgaZOtgDLL2g31fYLeUUl+P323f8SkeVZPIlKSkqCt7c37O3t4efnh/3799cY/9FHH8HHxwcODg7o0KED1q1bp/X+ypUr0bdvXzRu3BiNGzfGgAEDkJmZac4mEN23DN3kc1pQWwDAF8dVJrt2dXcEAqZNtsy5xsoUi9kNHbEqLi1D4PIf8I+fbbH+0G8GXZeIzMuiSdSWLVsQHR2N2bNnIzs7G3379sXgwYORk6P/iys5ORlxcXFYsGABTp06hYULF2Lq1Kn46quvNDH79u3D6NGjsXfvXmRkZKBNmzYIDg7GlSumna4gepiEPeGBNzqVIczAhdSmWGNVqa7JlqnXWJlzMbuhC9VHdW9lsmsSkXQWTaISEhIQHh6OiIgI+Pj4IDExER4eHkhOTtYbv379ekyZMgWhoaFo27YtwsLCEB4ejmXLlmliNm7ciKioKHTt2hUdO3bEypUrUVFRge+++66+mkX0wGnurIRHg7v/rY4511gZoq6PuDEk2TL3YnZDt18wNI6IzMvWUhcuLS1FVlYWYmNjtY4HBwcjPT1d7zklJSWwt9f+onRwcEBmZibUajUUCoXOOcXFxVCr1WjSpEm1dSkpKUFJyd//ci4sLAQAqNVqqNVqg9tEplX52bMPLM/QvnjRryWC2jdFM2el3li1ukzz/3/cuA3Ppk7VXK+syv+roZYJyXGujraYO6QjFn79C4C7035vj/CBq6OtVh1buyhhI4NWImUjA1q52GniLuQW6k20fr1aCFdH7a/TqnX7b34RvF0bmLCtZTX2RV5RCa4VlaCZs7LGxJek4XeTddDXD/XdJxZLoq5fv47y8nK4ublpHXdzc0Nubq7ec0JCQrBq1SqMHDkS3bt3R1ZWFlJSUqBWq3H9+nW4u7vrnBMbG4tWrVphwIAB1dYlPj4eCxcu1Dm+d+9eODrqLlKl+pWWlmbpKtD/GNoXNa3YGdTaBrv+a4N/bNuPwR4VemNKyoHKr6etX+1GMwe9YVpx3367G0q5/jinKnGxXcrgdPUEUlNP6MQ95yXDtkt3C5FB4EXvCmQf/B7Z/3v/VgkggxwCfw9tySDw67FDyD+jXdb+XBmAu2WF/OsgQttWwN9NN0EytA1V477//vsa497MvBs3oGUFhnnq/4wNVVAKFJYCDe0AF7s6FfXA4XeTdajaD8XFNd+da2oWS6IqyWTa4+xCCJ1jlebOnYvc3Fz07t0bQgi4ublhwoQJWL58OeRy3W+U5cuXY9OmTdi3b5/OCFZVcXFxiImJ0bwuLCyEh4cHgoKC0LRpU4kto7pSq9VIS0vDwIED9Y4yUv0xZV/0KCpBpAGjJL87XcAHey+ioHF7jO//iN6Y4tIyvJn5PQCge0C/ake2qsaFDguGo53+r76nSsuw7e27cd/OCNQ7elTRMkdrVGvxiMfxQpW1WQCgKriDme/9qHktIMNnl+SIeu5JuN8z7Vi1bl39n6x2xKpq3OM9AtHe3aXWuNgX+1b7mQC1j1gVl5ahy/8+j8gnvTB6YPtqy3qY8LvJOujrh8qZpPpisSTK1dUVcrlcZ9QpLy9PZ3SqkoODA1JSUvDJJ5/g6tWrcHd3x4oVK+Ds7AxXV1et2H/84x9YsmQJ9uzZg86dO9dYF6VSCaVS9wtEoVDwF8QKsB+shyn6olUTBVo10Z8oVDXW3xshvi3R3FlZ7TVdFArMePpR/Ou78/jq5zzMrOYveYX4+x9md9ug/6uvalzrps5640J7emqSqD0x/dC2mW5b/ltQoDPtVyGAKwWlaOPqrHX8yyN/rx8b9H464p/rpHeBfNW4Yck/VRtXtQ0tmzSotq2Vd/sBQNRT7fDmoI41ljW6l1eNfZ9XeAd5RSVo7qw0yQOy7wf8brIOVfuhvvvDYgvL7ezs4OfnpzMcmpaWhoCAgBrPVSgUaN26NeRyOTZv3oyhQ4fCxubvprz77rt4++23sWvXLvTo0cMs9Sci8zJ013VzPeLGEHVdzG7oQnVzL2g35K5AU2zTAHAXd3qwWPTuvJiYGKxatQopKSk4c+YMZs6ciZycHERGRgK4O802btw4Tfy5c+ewYcMGnD9/HpmZmQgLC8PJkyexZMkSTczy5csxZ84cpKSkwMvLC7m5ucjNzcXt27frvX1EZH6WeMRNbQzdw8rQ7RfMvTu7Ke/2qykhY7JFDxqLJlGhoaFITEzEokWL0LVrV/z4449ITU2Fp6cnAEClUmntGVVeXo733nsPXbp0wcCBA3Hnzh2kp6fDy8tLE5OUlITS0lKMGjUK7u7umj//+Mc/6rt5RGQlpGy/YEiyVVOMIXtYGTpiZe7d2U3J0ISMyRY9CCy+Y3lUVBQuX76MkpISZGVl4cknn9S8t3btWuzbt0/z2sfHB9nZ2SguLkZBQQF27tyJDh06aJV3+fJlCCF0/ixYsKCeWkRE1siQaT9Dki0pCVl1036GjliZY3f2qgwZsTL1MwfrO9kiMgeLJ1FERPXBlGusTLkOy5ARq3vjdk0PqNPu7IBhI1aWHtUCTJNsEZkLkygioioMSbaMXYdlqJoecVOVWzXXNeWCdnOOahkTZ6jaki1O+5E5MIkiIjKz+ljMDph2QbupR7WMiavKFMkWp/3IXJhEERGZgTmfJVgfC9otuU2DpR7yzNEqMhaTKCIiMzF27VRNyZGjnS2mBbUFAHxxXGVQeXVZ0G6pbRrMPY1Y3bQfR6tICiZRRERmYsjaKWNGrMKe8MAbncoQZoJF1IaMWFlimwZzTCMaq7ZF6nlFJfj99t3/0sONSRQRkYUZOmLV3FkJjwao8ZmDUhiyoL2+tmkw9TTivQwZsaptd/bA5T/gHz/bYv2hmh61TQ8DJlFERBZmrrv96mtBu5RtGqqLM/U0ImC+EatR3VvV+D7XWD34mEQRET1AzLWg3dCEzNBtGmqKM+U0opQRK1M8Lscca6yYlFkfJlFERA8YUy1oN+cdhoaq6zSioSNWlrojEDAsOTI0KWOiVb+YRBERPWBMuaDdlHcYmpqpRqykrq8ylKlHrKpLyniHYf1jEkVE9JAyJEEy9R2GlUydbNVlxMqY9VVVXTXxaI+hj64x5FE4phj9otoxiSIiekiZckG7qR7wfC9TJFu1jVgZur4K0J72G/R+ukmn/Qx9TmBdyzJmxIrJVs2YRBERUZ2Z8gHP5ky29I1YGbq+ytwbgRrKlOXVNGLF6cHaMYkiIqJ6Y+lkqzqGrK8y97YKNSVH5lr4bujol6FTjbUxdGTrfhkBYxJFRERWx5TJlrGqW19ljm0VDEmOzLlNg6FqS7ZMeYfh/TQCxiSKiIjuW8au66rLGitTb6tgaHJkDds01MSUdxgaE2cNj99hEkVERA80c0377ZoeUKeNQA1Njsy5TYOpR6xMeYdhTXHW8vgdJlFERPTAM2baz9DRKrdqRr9M/ZxAU2/TYOr1WlWZ8g5DQ9X2+B1zYhJFREQPvNqm/Uy9O7spnxNoSHmWWq8llaFJWV0fGG1uTKKIiIhgvt3Z6/qcQEPKs9R6rXuZ4g5DS63tkoJJFBEREQzfnX1aUFsAwBfHVSa9vqEPb66OKR/cbOrpQUOTMinJm6l3jjcGkygiIiIjhD3hgTc6lSHMwEXUpn7EjSHl1fXBzaaeHjQ0KZNyJ6Kpd443BpMoIiIiIzR3VsKjwd3/VsfUu67X98aipp4eNDQps4YHRhuDSRQREZEZmHrXdXPcYVjX9VqmvMPQ0DipD4w2ByZRREREZmDqXdfr+w7Dquo6PQgYvojelA+MNjeLJ1FJSUnw9vaGvb09/Pz8sH///hrjP/roI/j4+MDBwQEdOnTAunXrdGK2b9+Oxx57DEqlEo899hh27NhhruoTERHVibG7rtfEXHcY1sRUdxgaGmdM4mZuFk2itmzZgujoaMyePRvZ2dno27cvBg8ejJwc/QvEkpOTERcXhwULFuDUqVNYuHAhpk6diq+++koTk5GRgdDQUIwdOxbHjx/H2LFj8eKLL+Knn36qr2YRERFZhKF3GJpyvVZVdb3D0FCG7BxfH4xOogYMGID//Oc/OsfLy8uNvnhCQgLCw8MREREBHx8fJCYmwsPDA8nJyXrj169fjylTpiA0NBRt27ZFWFgYwsPDsWzZMk1MYmIiBg4ciLi4OHTs2BFxcXF4+umnkZiYaHT9iIiIHkSmXq9lLEOTMkPiqts5vj7YGnvCkSNH4OXlBQC4dOkSvL29AQCrV6/G/v37sX79eoPKKS0tRVZWFmJjY7WOBwcHIz09Xe85JSUlsLfX/rAcHByQmZkJtVoNhUKBjIwMzJw5UysmJCSkxiSqpKQEJSV/d1RhYSEAQK1WQ61WG9QeMr3Kz559YHnsC+vAfrAOD0I/NHaQo7HD3TVENbXjRb+WCGrfFM2cldXGqdVlmv//48ZteDZ10hunkAHTgtrig70Xse1IDqb3f0RyXNVrqtVlFusTo5Oo0tJSODs7AwC6dOmCY8eOoW3btggICMCCBQsMLuf69esoLy+Hm5ub1nE3Nzfk5ubqPSckJASrVq3CyJEj0b17d2RlZSElJQVqtRrXr1+Hu7s7cnNzjSoTAOLj47Fw4UKd43v37oWjY/0vVCNtaWlplq4C/Q/7wjqwH6zDw9QPtT3id1BrG+z6rw3+sW0/BntUVBvXrBR4oxPQsPAcUlPPSY4rKQcqU5idu75Hs/8thyourt879IxOoh555BH89NNPcHZ2xp9//olbt24BAJydnXHjxg2jKyCTaS+xF0LoHKs0d+5c5Obmonfv3hBCwM3NDRMmTMDy5cshl8sllQkAcXFxiImJ0bwuLCyEh4cHgoKC0LRpU6PbRKahVquRlpaGgQMHQqFQWLo6DzX2hXVgP1gH9oOuHkUliCwqQTNnZY37Z5nSZftzSPrxMm40fATjB7YH8PdMUn0xOomKiopCREQEPD090aVLF6xYsQIff/wx9u/frzMCVBNXV1fI5XKdEaK8vLxqy3FwcEBKSgo++eQTXL16Fe7u7lixYgWcnZ3h6uoKAGjRooVRZQKAUqmEUqnb6QqFgr8gVoD9YD3YF9aB/WAd2A9/a9VEgVZNGtTrNcf09oTjzQt4trenph/quz+MXlgeGRmJVatWISwsDGlpafj111/Rtm1bTJ48GS+++KLB5djZ2cHPz09nODQtLQ0BAQE1nqtQKNC6dWvI5XJs3rwZQ4cOhY3N3ab4+/vrlLl79+5ayyQiIqL7hyE7x5ub0SNRAPD8889r/v8///kPduzYgdLSUoSFhRlVTkxMDMaOHYsePXrA398fK1asQE5ODiIjIwHcnWa7cuWKZi+oc+fOITMzE7169cLNmzeRkJCAkydP4t///remzBkzZuDJJ5/EsmXLMGLECHzxxRfYs2cPDhw4IKWpRERERHpJSqK0CrC1xQsvvCDp3NDQUOTn52PRokVQqVTw9fVFamoqPD09AQAqlUprz6jy8nK89957OHv2LBQKBYKCgpCenq65WxAAAgICsHnzZsyZMwdz585Fu3btsGXLFvTq1atO7SQiIiKqqs5JVF1FRUUhKipK73tr167Veu3j44Ps7Oxayxw1ahRGjRpliuoRERER6WXxx74QERER3Y+YRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJYPEkKikpCd7e3rC3t4efnx/2799fY/zGjRvRpUsXODo6wt3dHRMnTkR+fr5WTGJiIjp06AAHBwd4eHhg5syZuHPnjjmbQURERA8ZiyZRW7ZsQXR0NGbPno3s7Gz07dsXgwcPRk5Ojt74AwcOYNy4cQgPD8epU6ewdetWHD58GBEREZqYjRs3IjY2FvPnz8eZM2ewevVqbNmyBXFxcfXVLCIiInoIWDSJSkhIQHh4OCIiIuDj44PExER4eHggOTlZb/yhQ4fg5eWF6dOnw9vbG3369MGUKVNw5MgRTUxGRgYCAwPx0ksvwcvLC8HBwRg9erRWDBEREVFd2VrqwqWlpcjKykJsbKzW8eDgYKSnp+s9JyAgALNnz0ZqaioGDx6MvLw8bNu2DUOGDNHE9OnTBxs2bEBmZiZ69uyJixcvIjU1FePHj6+2LiUlJSgpKdG8LiwsBACo1Wqo1eq6NJPqoPKzZx9YHvvCOrAfrAP7wTro64f67hOLJVHXr19HeXk53NzctI67ubkhNzdX7zkBAQHYuHEjQkNDcefOHZSVlWH48OH44IMPNDFhYWG4du0a+vTpAyEEysrK8Oqrr+oka1XFx8dj4cKFOsf37t0LR0dHiS0kU0lLS7N0Feh/2BfWgf1gHdgP1qFqPxQXF9frtS2WRFWSyWRar4UQOscqnT59GtOnT8e8efMQEhIClUqFWbNmITIyEqtXrwYA7Nu3D++88w6SkpLQq1cvXLhwATNmzIC7uzvmzp2rt9y4uDjExMRoXhcWFsLDwwNBQUFo2rSpiVpKxlKr1UhLS8PAgQOhUCgsXZ2HGvvCOrAfrAP7wTro64fKmaT6YrEkytXVFXK5XGfUKS8vT2d0qlJ8fDwCAwMxa9YsAEDnzp3h5OSEvn37YvHixZpEaezYsZrF5p06dcKff/6JV155BbNnz4aNje4yMKVSCaVSqXNcoVDwF8QKsB+sB/vCOrAfrAP7wTpU7Yf67g+LLSy3s7ODn5+fznBoWloaAgIC9J5TXFyskwTJ5XIAd0ewaooRQmhiiIiIiOrKotN5MTExGDt2LHr06AF/f3+sWLECOTk5iIyMBHB3mu3KlStYt24dAGDYsGGYPHkykpOTNdN50dHR6NmzJ1q2bKmJSUhIQLdu3TTTeXPnzsXw4cM1CRcRERFRXVk0iQoNDUV+fj4WLVoElUoFX19fpKamwtPTEwCgUqm09oyaMGECioqK8OGHH+L1119Ho0aN0L9/fyxbtkwTM2fOHMhkMsyZMwdXrlxBs2bNMGzYMLzzzjv13j4iIiJ6cFl8YXlUVBSioqL0vrd27VqdY9OmTcO0adOqLc/W1hbz58/H/PnzTVVFIiIiIh0Wf+wLERER0f2ISRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBBZPopKSkuDt7Q17e3v4+flh//79NcZv3LgRXbp0gaOjI9zd3TFx4kTk5+drxdy6dQtTp06Fu7s77O3t4ePjg9TUVHM2g4iIiB4yFk2itmzZgujoaMyePRvZ2dno27cvBg8ejJycHL3xBw4cwLhx4xAeHo5Tp05h69atOHz4MCIiIjQxpaWlGDhwIC5fvoxt27bh7NmzWLlyJVq1alVfzSIiIqKHgK0lL56QkIDw8HBNEpSYmIhvv/0WycnJiI+P14k/dOgQvLy8MH36dACAt7c3pkyZguXLl2tiUlJScOPGDaSnp0OhUAAAPD0966E1RERE9DCxWBJVWlqKrKwsxMbGah0PDg5Genq63nMCAgIwe/ZspKamYvDgwcjLy8O2bdswZMgQTcyXX34Jf39/TJ06FV988QWaNWuGl156CW+99RbkcrnecktKSlBSUqJ5XVhYCABQq9VQq9V1bSpJVPnZsw8sj31hHdgP1oH9YB309UN994nFkqjr16+jvLwcbm5uWsfd3NyQm5ur95yAgABs3LgRoaGhuHPnDsrKyjB8+HB88MEHmpiLFy/i+++/x5gxY5Camorz589j6tSpKCsrw7x58/SWGx8fj4ULF+oc37t3LxwdHevQSjKFtLQ0S1eB/od9YR3YD9aB/WAdqvZDcXFxvV5bJoQQ9XrF//njjz/QqlUrpKenw9/fX3P8nXfewfr16/HLL7/onHP69GkMGDAAM2fOREhICFQqFWbNmoUnnngCq1evBgC0b98ed+7cwaVLlzQjTwkJCXj33XehUqn01kXfSJSHhwdUKhWaNm1qymaTEdRqNdLS0jBw4EDN1CxZBvvCOrAfrAP7wTro64fCwkK4urqioKAADRs2NHsdLDYS5erqCrlcrjPqlJeXpzM6VSk+Ph6BgYGYNWsWAKBz585wcnJC3759sXjxYri7u8Pd3R0KhUJr6s7Hxwe5ubkoLS2FnZ2dTrlKpRJKpVLnuEKh4C+IFWA/WA/2hXVgP1gH9oN1qNoP9d0fFrs7z87ODn5+fjrDoWlpaQgICNB7TnFxMWxstKtcmSxVDqgFBgbiwoULqKio0MScO3cO7u7uehMoIiIiIiksusVBTEwMVq1ahZSUFJw5cwYzZ85ETk4OIiMjAQBxcXEYN26cJn7YsGH4/PPPkZycjIsXL+LgwYOYPn06evbsiZYtWwIAXn31VeTn52PGjBk4d+4cvvnmGyxZsgRTp061SBuJiIjowWTRLQ5CQ0ORn5+PRYsWQaVSwdfXF6mpqZotCVQqldaeURMmTEBRURE+/PBDvP7662jUqBH69++PZcuWaWI8PDywe/duzJw5E507d0arVq0wY8YMvPXWW/XePiIiInpwWTSJAoCoqChERUXpfW/t2rU6x6ZNm4Zp06bVWKa/vz8OHTpkiuoRERER6WXxx74QERER3Y+YRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJYPEkKikpCd7e3rC3t4efnx/2799fY/zGjRvRpUsXODo6wt3dHRMnTkR+fr7e2M2bN0Mmk2HkyJFmqDkRERE9zCyaRG3ZsgXR0dGYPXs2srOz0bdvXwwePBg5OTl64w8cOIBx48YhPDwcp06dwtatW3H48GFEREToxP72229444030LdvX3M3g4iIiB5CFk2iEhISEB4ejoiICPj4+CAxMREeHh5ITk7WG3/o0CF4eXlh+vTp8Pb2Rp8+fTBlyhQcOXJEK668vBxjxozBwoUL0bZt2/poChERET1kbC114dLSUmRlZSE2NlbreHBwMNLT0/WeExAQgNmzZyM1NRWDBw9GXl4etm3bhiFDhmjFLVq0CM2aNUN4eHit04MAUFJSgpKSEs3rwsJCAIBarYZarTa2aWQilZ89+8Dy2BfWgf1gHdgP1kFfP9R3n1gsibp+/TrKy8vh5uamddzNzQ25ubl6zwkICMDGjRsRGhqKO3fuoKysDMOHD8cHH3ygiTl48CBWr16NY8eOGVyX+Ph4LFy4UOf43r174ejoaHA5ZB5paWmWrgL9D/vCOrAfrAP7wTpU7Yfi4uJ6vbbFkqhKMplM67UQQudYpdOnT2P69OmYN28eQkJCoFKpMGvWLERGRmL16tUoKirCyy+/jJUrV8LV1dXgOsTFxSEmJkbzurCwEB4eHggKCkLTpk2lNYzqTK1WIy0tDQMHDoRCobB0dR5q7AvrwH6wDuwH66CvHypnkuqLxZIoV1dXyOVynVGnvLw8ndGpSvHx8QgMDMSsWbMAAJ07d4aTkxP69u2LxYsX4+rVq7h8+TKGDRumOaeiogIAYGtri7Nnz6Jdu3Y65SqVSiiVSp3jCoWCvyBWgP1gPdgX1oH9YB3YD9ahaj/Ud39YbGG5nZ0d/Pz8dIZD09LSEBAQoPec4uJi2NhoV1kulwO4O4LVsWNH/Pzzzzh27Jjmz/DhwxEUFIRjx47Bw8PDPI0hIiKih45Fp/NiYmIwduxY9OjRA/7+/lixYgVycnIQGRkJ4O4025UrV7Bu3ToAwLBhwzB58mQkJydrpvOio6PRs2dPtGzZEgDg6+urdY1GjRrpPU5ERERUFxZNokJDQ5Gfn49FixZBpVLB19cXqamp8PT0BACoVCqtPaMmTJiAoqIifPjhh3j99dfRqFEj9O/fH8uWLbNUE4iIiOghZfGF5VFRUYiKitL73tq1a3WOTZs2DdOmTTO4fH1lEBEREdWVxR/7QkRERHQ/YhJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJIHFk6ikpCR4e3vD3t4efn5+2L9/f43xGzduRJcuXeDo6Ah3d3dMnDgR+fn5mvdXrlyJvn37onHjxmjcuDEGDBiAzMxMczeDiIiIHjIWTaK2bNmC6OhozJ49G9nZ2ejbty8GDx6MnJwcvfEHDhzAuHHjEB4ejlOnTmHr1q04fPgwIiIiNDH79u3D6NGjsXfvXmRkZKBNmzYIDg7GlStX6qtZRERE9BCwaBKVkJCA8PBwREREwMfHB4mJifDw8EBycrLe+EOHDsHLywvTp0+Ht7c3+vTpgylTpuDIkSOamI0bNyIqKgpdu3ZFx44dsXLlSlRUVOC7776rr2YRERHRQ8DWUhcuLS1FVlYWYmNjtY4HBwcjPT1d7zkBAQGYPXs2UlNTMXjwYOTl5WHbtm0YMmRItdcpLi6GWq1GkyZNqo0pKSlBSUmJ5nVhYSEAQK1WQ61WG9MsMqHKz559YHnsC+vAfrAO7AfroK8f6rtPLJZEXb9+HeXl5XBzc9M67ubmhtzcXL3nBAQEYOPGjQgNDcWdO3dQVlaG4cOH44MPPqj2OrGxsWjVqhUGDBhQbUx8fDwWLlyoc3zv3r1wdHQ0sEVkLmlpaZauAv0P+8I6sB+sA/vBOlTth+Li4nq9tsWSqEoymUzrtRBC51il06dPY/r06Zg3bx5CQkKgUqkwa9YsREZGYvXq1Trxy5cvx6ZNm7Bv3z7Y29tXW4e4uDjExMRoXhcWFsLDwwNBQUFo2rSpxJZRXanVaqSlpWHgwIFQKBSWrs5DjX1hHdgP1oH9YB309UPlTFJ9sVgS5erqCrlcrjPqlJeXpzM6VSk+Ph6BgYGYNWsWAKBz585wcnJC3759sXjxYri7u2ti//GPf2DJkiXYs2cPOnfuXGNdlEollEqlznGFQsFfECvAfrAe7AvrwH6wDuwH61C1H+q7Pyy2sNzOzg5+fn46w6FpaWkICAjQe05xcTFsbLSrLJfLAdwdwar07rvv4u2338auXbvQo0cPE9eciIiIyMLTeTExMRg7dix69OgBf39/rFixAjk5OYiMjARwd5rtypUrWLduHQBg2LBhmDx5MpKTkzXTedHR0ejZsydatmwJ4O4U3ty5c/Hpp5/Cy8tLM9LVoEEDNGjQwDINJSIiogeORZOo0NBQ5OfnY9GiRVCpVPD19UVqaio8PT0BACqVSmvPqAkTJqCoqAgffvghXn/9dTRq1Aj9+/fHsmXLNDFJSUkoLS3FqFGjtK41f/58LFiwoF7aRURERA8+iy8sj4qKQlRUlN731q5dq3Ns2rRpmDZtWrXlXb582UQ1IyIiIqqexR/7QkRERHQ/YhJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRERGRBEyiiIiIiCRgEkVEREQkAZMoIiIiIgmYRBERERFJwCSKiIiISAImUUREREQSMIkiIiIikoBJFBEREZEETKKIiIiIJGASRURERCQBkygiIiIiCZhEEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJIHFk6ikpCR4e3vD3t4efn5+2L9/f43xGzduRJcuXeDo6Ah3d3dMnDgR+fn5WjHbt2/HY489BqVSicceeww7duwwZxOIiIjoIWTRJGrLli2Ijo7G7NmzkZ2djb59+2Lw4MHIycnRG3/gwAGMGzcO4eHhOHXqFLZu3YrDhw8jIiJCE5ORkYHQ0FCMHTsWx48fx9ixY/Hiiy/ip59+qq9mERER0UPAoklUQkICwsPDERERAR8fHyQmJsLDwwPJycl64w8dOgQvLy9Mnz4d3t7e6NOnD6ZMmYIjR45oYhITEzFw4EDExcWhY8eOiIuLw9NPP43ExMR6ahURERE9DGwtdeHS0lJkZWUhNjZW63hwcDDS09P1nhMQEIDZs2cjNTUVgwcPRl5eHrZt24YhQ4ZoYjIyMjBz5kyt80JCQmpMokpKSlBSUqJ5XVBQAAC4ceOGsc0iE1Kr1SguLkZ+fj4UCoWlq/NQY19YB/aDdWA/WAd9/VBUVAQAEELUSx0slkRdv34d5eXlcHNz0zru5uaG3NxcvecEBARg48aNCA0NxZ07d1BWVobhw4fjgw8+0MTk5uYaVSYAxMfHY+HChTrH27dvb0yTiIiIyAoUFRXBxcXF7NexWBJVSSaTab0WQugcq3T69GlMnz4d8+bNQ0hICFQqFWbNmoXIyEisXr1aUpkAEBcXh5iYGM3rW7duwdPTEzk5ObV2whNPPIHDhw/XGGOpOGuumyFxhYWF8PDwwO+//46GDRtaVd3MEWfNdTN1X1hzWw2NexD6wdA4a+4HU8dZcz8YGmfNn68p4/T1gxACRUVFaNmyZa3lm4LFkihXV1fI5XKdEaK8vDydkaRK8fHxCAwMxKxZswAAnTt3hpOTE/r27YvFixfD3d0dLVq0MKpMAFAqlVAqlTrHXVxcav0FkcvltcZYKs6a62ZMXMOGDR+Ktlpz3SqZqi+sva3W3Aag/n8nrLkfTB1nzf1gaJw1f77miLu3H+pjBKqSxRaW29nZwc/PD2lpaVrH09LSEBAQoPec4uJi2NhoV1kulwP4e/7T399fp8zdu3dXW2ZdTZ061WrjrLluxsRZ4prsL+kehLZacxsM9SC01Zr71VDW3IYHJc6ihAVt3rxZKBQKsXr1anH69GkRHR0tnJycxOXLl4UQQsTGxoqxY8dq4tesWSNsbW1FUlKS+PXXX8WBAwdEjx49RM+ePTUxBw8eFHK5XCxdulScOXNGLF26VNja2opDhw4ZXK+CggIBQBQUFJiusWQ09oP1YF9YB/aDdWA/WAdr6AeLrokKDQ1Ffn4+Fi1aBJVKBV9fX6SmpsLT0xMAoFKptPaMmjBhAoqKivDhhx/i9ddfR6NGjdC/f38sW7ZMExMQEIDNmzdjzpw5mDt3Ltq1a4ctW7agV69eBtdLqVRi/vz5eqf4qP6wH6wH+8I6sB+sA/vBOlhDP8iEqKf7AImIiIgeIBZ/7AsRERHR/YhJFBEREZEETKKIiIiIJGASRURERCQBkyg9kpKS4O3tDXt7e/j5+WH//v2WrtJ9Kz4+Hk888QScnZ3RvHlzjBw5EmfPntWKEUJgwYIFaNmyJRwcHPDUU0/h1KlTWjElJSWYNm0aXF1d4eTkhOHDh+O///2vVszNmzcxduxYuLi4wMXFBWPHjsWtW7fM3cT7Unx8PGQyGaKjozXH2A/148qVK3j55ZfRtGlTODo6omvXrsjKytK8z34wv7KyMsyZMwfe3t5wcHBA27ZtsWjRIlRUVGhi2A/m8eOPP2LYsGFo2bIlZDIZdu7cqfV+fX7uOTk5GDZsGJycnODq6orp06ejtLTUuAZZbHMFK1W5d9XKlSvF6dOnxYwZM4STk5P47bffLF21+1JISIhYs2aNOHnypDh27JgYMmSIaNOmjbh9+7YmZunSpcLZ2Vls375d/PzzzyI0NFS4u7uLwsJCTUxkZKRo1aqVSEtLE0ePHhVBQUGiS5cuoqysTBMzaNAg4evrK9LT00V6errw9fUVQ4cOrdf23g8yMzOFl5eX6Ny5s5gxY4bmOPvB/G7cuCE8PT3FhAkTxE8//SQuXbok9uzZIy5cuKCJYT+Y3+LFi0XTpk3F119/LS5duiS2bt0qGjRoIBITEzUx7AfzSE1NFbNnzxbbt28XAMSOHTu03q+vz72srEz4+vqKoKAgcfToUZGWliZatmwpXnvtNaPawyTqHj179hSRkZFaxzp27ChiY2MtVKMHS15engAgfvjhByGEEBUVFaJFixZi6dKlmpg7d+4IFxcX8fHHHwshhLh165ZQKBRi8+bNmpgrV64IGxsbsWvXLiGEEKdPnxYAtDZVzcjIEADEL7/8Uh9Nuy8UFRWJRx99VKSlpYl+/fppkij2Q/146623RJ8+fap9n/1QP4YMGSImTZqkdey5554TL7/8shCC/VBf7k2i6vNzT01NFTY2NuLKlSuamE2bNgmlUmnU5p2czquitLQUWVlZCA4O1joeHByM9PR0C9XqwVJQUAAAaNKkCQDg0qVLyM3N1frMlUol+vXrp/nMs7KyoFartWJatmwJX19fTUxGRgZcXFy0NlXt3bs3XFxc2HdVTJ06FUOGDMGAAQO0jrMf6seXX36JHj164IUXXkDz5s3RrVs3rFy5UvM++6F+9OnTB9999x3OnTsHADh+/DgOHDiAZ555BgD7wVLq83PPyMiAr6+v1oOKQ0JCUFJSojW9XhuL7lhuba5fv47y8nKdhxW7ubnpPNSYjCeEQExMDPr06QNfX18A0Hyu+j7z3377TRNjZ2eHxo0b68RUnp+bm4vmzZvrXLN58+bsu//ZvHkzjh49qvep6OyH+nHx4kUkJycjJiYG//d//4fMzExMnz4dSqUS48aNYz/Uk7feegsFBQXo2LEj5HI5ysvL8c4772D06NEA+PtgKfX5uefm5upcp3HjxrCzszOqb5hE6SGTybReCyF0jpHxXnvtNZw4cQIHDhzQeU/KZ35vjL549t1dv//+O2bMmIHdu3fD3t6+2jj2g3lVVFSgR48eWLJkCQCgW7duOHXqFJKTkzFu3DhNHPvBvLZs2YINGzbg008/xeOPP45jx44hOjoaLVu2xPjx4zVx7AfLqK/P3RR9w+m8KlxdXSGXy3Wy0Ly8PJ2MlYwzbdo0fPnll9i7dy9at26tOd6iRQsAqPEzb9GiBUpLS3Hz5s0aY65evapz3WvXrrHvcHcIPC8vD35+frC1tYWtrS1++OEHvP/++7C1tdV8RuwH83J3d8djjz2mdczHx0fzjFD+PtSPWbNmITY2FmFhYejUqRPGjh2LmTNnIj4+HgD7wVLq83Nv0aKFznVu3rwJtVptVN8wiarCzs4Ofn5+SEtL0zqelpaGgIAAC9Xq/iaEwGuvvYbPP/8c33//Pby9vbXe9/b2RosWLbQ+89LSUvzwww+az9zPzw8KhUIrRqVS4eTJk5oYf39/FBQUIDMzUxPz008/oaCggH0H4Omnn8bPP/+MY8eOaf706NEDY8aMwbFjx9C2bVv2Qz0IDAzU2eLj3Llzmoeu8/ehfhQXF8PGRvuvP7lcrtnigP1gGfX5ufv7++PkyZNQqVSamN27d0OpVMLPz8/wShu8BP0hUbnFwerVq8Xp06dFdHS0cHJyEpcvX7Z01e5Lr776qnBxcRH79u0TKpVK86e4uFgTs3TpUuHi4iI+//xz8fPPP4vRo0frvaW1devWYs+ePeLo0aOif//+em9p7dy5s8jIyBAZGRmiU6dOD/WtxLWpeneeEOyH+pCZmSlsbW3FO++8I86fPy82btwoHB0dxYYNGzQx7AfzGz9+vGjVqpVmi4PPP/9cuLq6ijfffFMTw34wj6KiIpGdnS2ys7MFAJGQkCCys7M12wjV1+deucXB008/LY4ePSr27NkjWrduzS0OTOGjjz4Snp6ews7OTnTv3l1zOz4ZD4DeP2vWrNHEVFRUiPnz54sWLVoIpVIpnnzySfHzzz9rlfPXX3+J1157TTRp0kQ4ODiIoUOHipycHK2Y/Px8MWbMGOHs7CycnZ3FmDFjxM2bN+uhlfene5Mo9kP9+Oqrr4Svr69QKpWiY8eOYsWKFVrvsx/Mr7CwUMyYMUO0adNG2Nvbi7Zt24rZs2eLkpISTQz7wTz27t2r9++E8ePHCyHq93P/7bffxJAhQ4SDg4No0qSJeO2118SdO3eMao9MCCEMH7ciIiIiIoBrooiIiIgkYRJFREREJAGTKCIiIiIJmEQRERERScAkioiIiEgCJlFEREREEjCJIiIiIpKASRQRmdXOnTvxyCOPQC6XIzo6utpjD7p9+/ZBJpNBJpNh5MiRlq4OJkyYoKnPzp07LV0dovsSkygiqtXatWvRqFEjSedOmTIFo0aNwu+//46333672mMPi7Nnz2Lt2rWa15XJTGRkpE5sVFQUZDIZJkyYYFDZWVlZkMlkOHDggN73Q0JCMHz4cADAv/71L63nhhGR8ZhEEZHZ3L59G3l5eQgJCUHLli3h7Oys95i1EEKgrKzMrNdo3ry5TkLq4eGBzZs346+//tIcu3PnDjZt2oQ2bdoYXLafnx+6dOmCNWvW6Lz3+++/Y8+ePQgPDwcAuLi4oEWLFtIaQUQAmEQRPRQqKiqwbNkyPPLII1AqlWjTpg3eeecdAH9PM926dUsTf+zYMchkMly+fBn79u3DxIkTUVBQoJn+WbBgAQDg5s2bGDduHBo3bgxHR0cMHjwY58+f15RbmSD1798fMpms2mP6FBQU4JVXXkHz5s3RsGFD9O/fH8ePH9e8v2DBAnTt2hXr16+Hl5cXXFxcEBYWhqKiIk2MEALLly9H27Zt4eDggC5dumDbtm2a9yvb/u2336JHjx5QKpXYv38/ioqKMGbMGDg5OcHd3R3//Oc/8dRTT2mmHhctWoROnTrp1NnPzw/z5s0zrnMAdO/eHW3atMHnn3+uOfb555/Dw8MD3bp104qtrU3h4eH47LPP8Oeff2qdt3btWjRr1gxDhgwxun5EpB+TKKKHQFxcHJYtW4a5c+fi9OnT+PTTT+Hm5mbQuQEBAUhMTETDhg2hUqmgUqnwxhtvALg7FXXkyBF8+eWXyMjIgBACzzzzDNRqNQICAnD27FkAwPbt26FSqao9di8hBIYMGYLc3FykpqYiKysL3bt3x9NPP40bN25o4n799Vfs3LkTX3/9Nb7++mv88MMPWLp0qeb9OXPmYM2aNUhOTsapU6cwc+ZMvPzyy/jhhx+0rvfmm28iPj4eZ86cQefOnRETE4ODBw/iyy+/RFpaGvbv34+jR49q4idNmoTTp0/j8OHDmmMnTpxAdna2wVNv95o4caLWCFJKSgomTZqkE1dbm8aMGQO1Wo2tW7dqfZ5r167F+PHjYWtrK6l+RKSHUY8rJqL7TmFhoVAqlWLlypV63698qnrVJ5xnZ2cLAOLSpUtCCCHWrFkjXFxctM47d+6cACAOHjyoOXb9+nXh4OAgPvvsMyGEEDdv3hQAxN69ezUx+o7d67vvvhMNGzbUeaJ6u3btxCeffCKEEGL+/PnC0dFRFBYWat6fNWuW6NWrlxBCiNu3bwt7e3uRnp6uVUZ4eLgYPXq0Vtt37typeb+wsFAoFAqxdetWzbFbt24JR0dHMWPGDM2xwYMHi1dffVXzOjo6Wjz11FPVtknf5yyEEOPHjxcjRowQ165dE0qlUly6dElcvnxZ2Nvbi2vXrokRI0ZonnBvSJuEECI0NFQ8+eSTmtfff/+9ACB++eUXnXoBEDt27Ki23kRUPf6ThOgBd+bMGZSUlODpp582ebm2trbo1auX5ljTpk3RoUMHnDlzpk5lZ2Vl4fbt22jatKnW8b/++gu//vqr5rWXl5fWmip3d3fk5eUBAE6fPo07d+5g4MCBWmWUlpbqTJH16NFD8/8XL16EWq1Gz549NcdcXFzQoUMHrXMmT56MSZMmISEhAXK5HBs3bsR7770nscWAq6srhgwZgn//+9+akThXV1etGEPbFB4ejuDgYFy4cAGPPPIIUlJSEBgYqNMGIqobJlFEDzgHB4ca37exuTurL4TQHFOr1bWWWzX+3uMymcyIGuqqqKiAu7u73vVSVRdlKxQKrfdkMhkqKio0ZQDAN998g1atWmnFKZVKrddOTk6a/69s171tuLe9w4YNg1KpxI4dO6BUKlFSUoLnn3/egNZVb9KkSXjttdcAAB999JHO+4a2acCAAfD09MTatWvx5ptv4vPPP8eHH35Yp7oRkS4mUUQPuEcffRQODg747rvvEBERofN+s2bNAAAqlQqNGzcGcHdheVV2dnYoLy/XOvbYY4+hrKwMP/30k2ZdU35+Ps6dOwcfH5861bl79+7Izc2Fra0tvLy8JJXx2GOPQalUIicnB/369TP4vHbt2kGhUCAzMxMeHh4AgMLCQpw/f16rHFtbW4wfPx5r1qyBUqlEWFgYHB0dJdW10qBBg1BaWgrg7nYEUtskk8kwceJErFq1Cq1bt4aNjQ1efPHFOtWNiHQxiSJ6wNnb2+Ott97Cm2++CTs7OwQGBuLatWs4deoUwsPD8cgjj8DDwwMLFizA4sWLcf78eZ1pKS8vL9y+fRvfffcdunTpAkdHRzz66KMYMWIEJk+ejE8++QTOzs6IjY1Fq1atMGLEiDrVecCAAfD398fIkSOxbNkydOjQAX/88QdSU1MxcuRIrem36jg7O+ONN97AzJkzUVFRgT59+qCwsBDp6elo0KABxo8fX+1548ePx6xZs9CkSRM0b94c8+fPh42Njc7oVEREhCZhPHjwYJ3aDAByuVwzFSqXy+vUpokTJ2LRokX4v//7P4SFhWmNthGRafDuPKKHwNy5c/H6669j3rx58PHxQWhoqGbtkEKhwKZNm/DLL7+gS5cuWLZsGRYvXqx1fkBAACIjIxEaGopmzZph+fLlAIA1a9bAz88PQ4cOhb+/P4QQSE1N1ZlmM5ZMJkNqaiqefPJJTJo0Ce3bt0dYWBguX75s8F2FAPD2229j3rx5iI+Ph4+PD0JCQvDVV1/B29u7xvMSEhLg7++PoUOHYsCAAQgMDISPjw/s7e214h599FEEBASgQ4cOWmvD6qJhw4Zo2LBhndvUpk0bDBgwADdv3tR7lx8R1Z1MVLewgYiIAAB//vknWrVqhffee0+zWSVwd51Ux44dMWXKFMTExNRYxr59+xAUFISbN29K3v3dHGQyGXbs2GEVj6Ihut9wJIqI6B7Z2dnYtGkTfv31Vxw9ehRjxowBAK1pyry8PCQkJODKlSuYOHGiwWW3bt0ao0ePNnmdjRUZGYkGDRpYuhpE9zWORBER3SM7OxsRERE4e/Ys7Ozs4Ofnh4SEBK1dymUyGVxdXfGvf/0LL730Uq1l/vXXX7hy5QoAoEGDBhZ/5EpeXh4KCwsB3N0agmumiIzHJIqIiIhIAk7nEREREUnAJIqIiIhIAiZRRERERBIwiSIiIiKSgEkUERERkQRMooiIiIgkYBJFREREJAGTKCIiIiIJmEQRERERSfD/81ovDpF03acAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"x_ = np.arange(0,10050,step=200)\n",
|
|
"\n",
|
|
"plt.errorbar(x_,efficiencies_found, yerr=deff_found, ls=\"\", capsize=1,fmt=\".\")\t\n",
|
|
"plt.xlabel(\"cutoff energy [MeV]\")\n",
|
|
"plt.ylabel(r\"$\\epsilon$\")\n",
|
|
"plt.title(r'$B\\rightarrow K^\\ast ee$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm')\n",
|
|
"plt.ylim([0.8,1])\n",
|
|
"plt.xlim([0,10100])\n",
|
|
"plt.yticks(np.arange(0.8,1.01,step=0.02),minor=False)\n",
|
|
"plt.xticks(np.arange(0,10100,step=200),minor=True)\n",
|
|
"plt.grid()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"eff = 0.8545 +/- 0.0036\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[{energy: 2.58e+04, brem_photons_pe: [9.97e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 8.03e+04, brem_photons_pe: [4.91e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 5.6e+03, brem_photons_pe: [320, ..., 392], brem_vtx_z: [...]},\n",
|
|
" {energy: 6.36e+03, brem_photons_pe: [273, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 4.67e+04, brem_photons_pe: [8.96e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 7.16e+04, brem_photons_pe: [544, ..., 142], brem_vtx_z: [...]},\n",
|
|
" {energy: 5.15e+04, brem_photons_pe: [384, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 4.07e+04, brem_photons_pe: [2.7e+04, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 2.77e+04, brem_photons_pe: [2.24e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 6.4e+04, brem_photons_pe: [686, ..., 796], brem_vtx_z: [...]},\n",
|
|
" ...,\n",
|
|
" {energy: 5.59e+03, brem_photons_pe: [901, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 2.13e+04, brem_photons_pe: [787, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 9.34e+03, brem_photons_pe: [762, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 5.08e+04, brem_photons_pe: [711, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 6.41e+04, brem_photons_pe: [4.17e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 1.01e+04, brem_photons_pe: [220, ..., 156], brem_vtx_z: [...]},\n",
|
|
" {energy: 1.96e+04, brem_photons_pe: [1.66e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 2.98e+04, brem_photons_pe: [8.32e+03, ...], brem_vtx_z: [...]},\n",
|
|
" {energy: 3.97e+04, brem_photons_pe: [9.36e+03, ...], brem_vtx_z: [...]}]\n",
|
|
"-------------------------------------------------------------------------\n",
|
|
"type: 1430 * {\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [{energy: 2.58e+04, ...}, ..., {...}] type='1430 * {energy: float64,...'>"
|
|
]
|
|
},
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"#wie viel energie relativ zur anfangsenergie verlieren die elektronen durch bremstrahlung und hat das einen einfluss darauf ob wir sie finden oder nicht?\n",
|
|
"#if any photon of an electron has an energy higher the cutoff then it is included\n",
|
|
"cutoff_energy=350\n",
|
|
"\n",
|
|
"brem_found = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
|
|
"energy_found = ak.to_numpy(brem_found[\"energy\"])\n",
|
|
"eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"residual_found = energy_found - eph_found\n",
|
|
"energyloss_found = eph_found/energy_found\n",
|
|
"\n",
|
|
"brem_lost = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
|
|
"energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n",
|
|
"eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"residual_lost = energy_lost - eph_lost\n",
|
|
"energyloss_lost = eph_lost/energy_lost\n",
|
|
"\n",
|
|
"print(\"eff = \", np.round(t_eff(brem_found,brem_lost),4), \"+/-\", np.round(eff_err(brem_found, brem_lost),4))\n",
|
|
"brem_lost"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"mean energyloss relative to initial energy (found): 0.40459562244424735\n",
|
|
"mean energyloss relative to initial energy (lost): 0.7244570697471976\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"mean_energyloss_found = ak.mean(energyloss_found)\n",
|
|
"mean_energyloss_lost = ak.mean(energyloss_lost)\n",
|
|
"print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n",
|
|
"print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 27,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHMCAYAAAD7xYOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3iElEQVR4nO3deXhU5d3G8XuSTDZCAgQCAVJk17CEymbABa2oYMW+tWqLpai4talIsaCI1lDlRWqtVYsbonSRSiuL1KKSWhI22QIuEBREWoIFQ1iyEEmGzHn/8M3UyYQkczIz50zm+7muXDpnzjznNz8Dc/uc55xxGIZhCAAAwIairC4AAADgbAgqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAFps9erVcjgcZ/1ZtGhRQI5TW1urtLQ0PfnkkyE/NgBrxFhdAIDwt2PHDknSG2+8obS0NJ/nMzMzA3KcdevW6ejRo/rud78b8mMDsAZBBUCL7dixQ8nJybrmmmvkcDiCdpzXX39dw4YNU48ePUJ+bADW4NQPgBYrLCxUVlZWUIOCYRhasWKFrrvuupAfG4B1CCoAWuTYsWM6ePCgBg0apDNnzvj8GIYRkONs2rRJhw8f9goqoTo2AOsQVAC0SN0akWeffVZOp9Pnp6ioqMkxDMNQcnKySktLz7rP66+/rkGDBqlv375+H/vo0aO6+uqr1aZNG/Xr1095eXktecsAQog1KgBapLCwUJK0fPlyZWRk+DzfnMWs+/btU6dOndSxY8ez7rN8+XLdeuutpo6dk5OjLl266OjRo/rHP/6hG264QZ9++qlSU1ObrA2AtQgqAFpkx44dio+P14QJExQdHX3W/V544QX99a9/ldPp1JYtW9S1a1f95S9/UWZmpnbs2KEhQ4bozjvv1NKlS9W1a1etWrVKffr0kSRt3bpVBw8e9Fmf0pxjV1ZWauXKldq/f78SExM1YcIEZWVl6Y033vAJPgDsh1M/AFpkx44dGjhwYKMhRZJ27dqlbdu2adq0afriiy80cuRIPfjgg5KknTt3avv27brlllt0/PhxnX/++Vq4cKHntcuWLVO/fv00cOBAv4+9b98+JSUlec24DBo0SLt37zbzdgGEGEEFgGllZWX67LPPlJWV1eS+u3bt0oMPPqgrr7xSTqdTN910k/bu3Svpq6AyZ84cXXDBBYqKilLv3r29FsIuW7bMZzaluceurKxUcnKy17bk5GRVVlY2920CsBCnfgCYtmPHDhmGoTZt2mjz5s0+z3fr1s0zk7F7926vu8SWlJR41qTs3LlTf/rTnzzP7d69W+PHj5ckvf/++9q/f3+Dp32ac+ykpCSVl5d7PVdeXq6kpCST7xpAKDGjAsC0uqtunn76aWVnZ/v8rFmzRtJXoeTo0aNed45dsWKFxo0bp+LiYsXExHg99+GHH2rw4MGSvppN6dGjh4YOHWrq2H379lVlZaUOHTrkee2uXbs0YMCAIHQEQKA5DG40ACDI3n33XV155ZV6/vnnNXnyZP3hD3/QI488og8++EAFBQVasGCB3nnnHUlSVVWV2rVrp7KyMiUkJCgzM1Pjxo3TE088Yfr4119/vVJSUvTMM8/o3Xff1aRJk7Rv375GrzICYA+c+gEQdLt27dKtt96q1157TdOnT9fQoUOVl5enlJQU7dy50zN7In112qd3795KSEiQpGbdh6Upzz77rCZPnqzU1FR169ZNS5cuJaQAYYIZFQBBd/vtt2vYsGG68847rS4FQJhhjQqAoNu1a5fOPfdcq8sAEIaYUQEQdCkpKdq7d686d+5sdSkAwoylMyq5ublyOBxeP126dLGyJABBUFZWRkgBYIrli2kHDBigf/zjH57HTd3dEgAARA7Lg0pMTAyzKAAAoEGWB5V9+/apa9euiouL08iRI/W///u/6tWrV4P7VldXq7q62vPY7Xbr+PHjSk1NlcPhCFXJAACgBQzDUEVFhbp27aqoqMZXoVi6mPatt95SVVWV+vXrpy+++EKPPvqoPv74Y+3evbvBr1/Pzc3VnDlzLKgUAAAEWnFxsbp3797oPra66ufUqVPq3bu3Zs6cqenTp/s8X39GpaysTN/4xjd04MABtW3bNmB1uFwurV27VpdeeqmcTmfAxoU3+hw69Do06HPo0OvQCFafKyoq1LNnT508eVIpKSmN7mv5qZ+va9OmjQYNGqR9+/Y1+HxcXJzi4uJ8tnfo0MHn21FbwuVyKTExUampqfwBCCL6HDr0OjToc+jQ69AIVp/rxmrOsg1b3fCturpae/bsUXp6utWlAAAAG7A0qPz85z9XQUGBDhw4oC1btuh73/ueysvLNXnyZCvLAgAANmHpqZ9Dhw7pBz/4gUpLS9WpUyddcMEF2rx5s3r06GFlWQAAwCYsDSqvvfZaSI5TW1srl8vV7P1dLpdiYmJ0+vRp1dbWBrGy8OZ0OrlBHwAgqGy1mDbQDMPQkSNHdPLkSb9f16VLFxUXF3N/lia0a9dOXbp0oU8AgKBo1UGlLqSkpaUpMTGx2R+mbrdblZWVSkpKavJGNJHKMAxVVVWppKREklgADQAIilYbVGpraz0hpaGbxzXG7XarpqZG8fHxBJVGJCQkSJJKSkqUlpbGaSAAQMC12k/hujUpiYmJFlfSutX11581QAAANFerDSp1WDsRXPQXABBMrT6oAACA8EVQsaExY8Zo2rRpVpcBAIDlWu1i2kZtym30aYdhKL66Wo64OKmlpzZGNX6sYMrPz9ell16qEydOqF27dpbVAQCAWcyoAAAA2yKo2NyJEyf0ox/9SO3bt1diYqLGjRvn9e3S//73v3XNNdeoffv2atOmjQYMGKDVq1frX//6ly699FJJUvv27eVwOHTzzTdb9C4AADAnMk/9hJGbb75Z+/bt06pVq5ScnKz77rtP48ePV1FRkZxOp3JyclRTU6N169apTZs2KioqUlJSkjIyMrRs2TJdd911+uSTT5ScnOy57wkAAOGCoGJjdQFl48aNGjVqlCTp1VdfVUZGhlauXKnrr79eBw8e1HXXXadBgwZJknr16uV5fYcOHSRJaWlprFEBAIQlTv3Y2J49exQTE6ORI0d6tqWmpqp///7as2ePJGnq1Kl69NFHNXr0aD388MP68MMPrSoXAICAI6jYmGEYZ91ed6O12267TZ999pkmTZqkjz76SMOGDdMzzzwTyjIBAAgagoqNZWZm6syZM9qyZYtn27Fjx7R3716dd955nm0ZGRm66667tHz5ct17771auHChJCk2NlbSV997BABAOCKo2Fjfvn117bXX6vbbb9eGDRv0wQcf6Ic//KG6deuma6+9VpI0bdo0vfPOOzpw4IB27Nihf/7zn54Q06NHDzkcDr355ps6evSoKisrrXw7AAD4LTIX0zZxEzbD7dbp8nLFJifLYfG3J7/yyiu655579O1vf1s1NTW6+OKLtXr1ajmdTklfzZbk5OTo0KFDSk5O1lVXXaUnn3xSktStWzfNmTNH999/v2655Rb96Ec/0uLFiy18NwAA+Ccyg4rN5efne/69ffv2+sMf/nDWfZtaj/LQQw/poYceClRpAACEFKd+AACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUbMgwDN1xxx3q0KGDHA6H3n//fctqGTNmjKZNm2bZ8QEAkS0ib6Gfm9v484bhUHV1vOLiHHI4gnushrz99ttavHix8vPz1atXL3Xs2LFlRQAAEKYiMqjY3f79+5Wenq5Ro0ZZXQoAAJYKy1M/CxYsUGZmpoYPH251KQF388036+6779bBgwflcDh0zjnnqLq6WlOnTlVaWpri4+N14YUXatu2bZ7XLF68WO3atfMaZ+XKlXJ8bTooNzdXQ4YM0R//+Eedc845SklJ0fe//31VVFR49jl16pR+9KMfKSkpSenp6XriiSeC/n4BAGhMWAaVnJwcFRUVeX1YtxZPPfWUfvnLX6p79+46fPiwtm3bppkzZ2rZsmX6/e9/rx07dqhPnz668sordfz4cb/G3r9/v1auXKk333xTb775pgoKCvTYY495np8xY4bWrl2rFStWaM2aNcrPz1dhYWGg3yIAAM0WlkGlNUtJSVHbtm0VHR2tLl26KDExUc8995wef/xxjRs3TpmZmVq4cKESEhK0aNEiv8Z2u91avHixBg4cqIsuukiTJk3Su+++K0mqrKzUokWL9Otf/1pjx47VoEGD9Pvf/161tbXBeJsAADQLa1Rsbv/+/XK5XBo9erRnm9Pp1IgRI7Rnzx6/xjrnnHPUtm1bz+P09HSVlJR4jlNTU6Ps7GzP8x06dFD//v1b+A4AALawKdd326gGttkMMyo2ZxiGJHmtN6nbXrctKirKs18dl8vlM5bT6fR67HA45Ha7vY4DAICdEFRsrk+fPoqNjdWGDRs821wul7Zv367zzjtPktSpUydVVFTo1KlTnn38vfdKnz595HQ6tXnzZs+2EydOaO/evS17AwAAtACnfmyuTZs2+vGPf6wZM2aoQ4cO+sY3vqFf/epXqqqq0pQpUyRJI0eOVGJioh544AHdfffd2rp1qxYvXuzXcZKSkjRlyhTNmDFDqamp6ty5s2bPnq2oKLIsAMA6ERlUmroJm9ttqLz8tJKTYxUV1cI7vgXAY489JrfbrUmTJqmiokLDhg3TO++8o/bt20v6ai3Jn/70J82YMUMvvviiLr/8cuXm5uqOO+7w6ziPP/64KisrNWHCBLVt21b33nuvysrKgvGWAABoFocRxosTysvLlZKSorKyMiUnJ3s9d/r0aR04cEA9e/ZUfHy8X+O63W6Vl5crOTmZGYUmtKTPLpdLq1ev1vjx433WzyCw6HVo0OfQodcmmFhMG6w+N/b5XR+fwgAAwLYIKgAAwLYIKgAAwLYIKgAAwLZa/VU/YbxWOCzQXwAIY/UX2NrwTrWtdkalbnVyVVWVxZW0bnX9ZdU9ACAYWu2MSnR0tNq1a+f5LpvExESf29CfjdvtVk1NjU6fPs3lyWdhGIaqqqpUUlKidu3aKTo62uqSAACtUKsNKpLUpUsXSfKEleYyDENffvmlEhISmh1uIlW7du08fQYAINBadVBxOBxKT09XWlpag1/SdzYul0vr1q3TxRdfzCmNRjidTmZSAABB1aqDSp3o6Gi/PlCjo6N15swZxcfHE1QAALAQCzAAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtRcRVPwAARJz6t8cPU8yoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA27JNUJk3b54cDoemTZtmdSkAAMAmbBFUtm3bphdffFGDBw+2uhQAAGAjlgeVyspK3XTTTVq4cKHat29vdTkAAMBGLP+un5ycHF199dW6/PLL9eijjza6b3V1taqrqz2Py8vLJUkul0sulytgNdWNFcgx4Ys+hw69Dg36HDr0uhncJuYi6vUzWH32ZzyHYRhGQI/uh9dee01z587Vtm3bFB8frzFjxmjIkCH67W9/2+D+ubm5mjNnjs/2JUuWKDExMcjVAgCAQKiqqtLEiRNVVlam5OTkRve1LKgUFxdr2LBhWrNmjbKysiSpyaDS0IxKRkaGSktLm3yj/nC5XMrLy9PYsWPldDoDNi680efQodehQZ9Dh143w5Z5/r9m5Cyvh8Hqc3l5uTp27NisoGLZqZ/CwkKVlJRo6NChnm21tbVat26dfve736m6ulrR0dFer4mLi1NcXJzPWE6nMyi/qMEaF97oc+jQ69Cgz6FDrxsR5fb/NWfpZaD77M9YlgWVb33rW/roo4+8tt1yyy0699xzdd999/mEFAAAEHksCypt27bVwIEDvba1adNGqampPtsBAEBksvzyZAAAgLOx/PLkr8vPz7e6BAAAYCPMqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANuKsboAAADQiE25vttGNbCtlWJGBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2Ba30AcAINw1dJv9VoIZFQAAYFsEFQAAYFthGVQWLFigzMxMDR8+3OpSAABAEIVlUMnJyVFRUZG2bdtmdSkAACCIwjKoAACAyEBQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtsWdaQEAsJPm3GW2Fd+Jtj5mVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG35/V0/n3zyif785z9r/fr1+te//qWqqip16tRJ3/zmN3XllVfquuuuU1xcXDBqBQAAEabZMyo7d+7U2LFjlZWVpXXr1mn48OGaNm2aHnnkEf3whz+UYRiaPXu2unbtqvnz56u6ujqYdQMAgAjQ7BmV73znO5oxY4aWLl2qDh06nHW/9957T08++aSeeOIJPfDAAwEpEgAARKZmB5V9+/YpNja2yf2ys7OVnZ2tmpqaFhUGAADQ7FM/zQkpLdkfAACgvmbPqDz99NPNHnTq1KmmigEAAPi6ZgeVJ5980uvx0aNHVVVVpXbt2kmSTp48qcTERKWlpRFUAABAQDT71M+BAwc8P3PnztWQIUO0Z88eHT9+XMePH9eePXt0/vnn65FHHglmvQAAIIKYuuHbQw89pGeeeUb9+/f3bOvfv7+efPJJPfjggwErDgAARDZTQeXw4cNyuVw+22tra/XFF1+0uCgAAADJZFD51re+pdtvv13bt2+XYRiSpO3bt+vOO+/U5ZdfHtACAQBA5DIVVF5++WV169ZNI0aMUHx8vOLi4jRy5Eilp6frpZdeCnSNAAAgQvn9XT+S1KlTJ61evVp79+7Vxx9/LMMwdN5556lfv36Brg8AAEQwU0GlzjnnnCPDMNS7d2/FxLRoKAAAAB+mTv1UVVVpypQpSkxM1IABA3Tw4EFJX93o7bHHHmv2OM8995wGDx6s5ORkJScnKzs7W2+99ZaZkgAAQCtkKqjMmjVLH3zwgfLz8xUfH+/Zfvnll2vp0qXNHqd79+567LHHtH37dm3fvl2XXXaZrr32Wu3evdtMWQAAoJUxdb5m5cqVWrp0qS644AI5HA7P9szMTO3fv7/Z41xzzTVej+fOnavnnntOmzdv1oABA8yUBgAAWhFTQeXo0aNKS0vz2X7q1Cmv4OKP2tpa/fWvf9WpU6eUnZ3d4D7V1dWqrq72PC4vL5ckuVyuBu/rYlbdWIEcE77oc+jQ69Cgz6HTqnvtNnWyIzDq9TNYffZnPIdRdyMUP1xyySX63ve+p7vvvltt27bVhx9+qJ49e+qnP/2pPv30U7399tvNHuujjz5Sdna2Tp8+raSkJC1ZskTjx49vcN/c3FzNmTPHZ/uSJUuUmJjo79sAAAAWqKqq0sSJE1VWVqbk5ORG9zUVVDZt2qSrrrpKN910kxYvXqw777xTu3fv1nvvvaeCggINHTq02WPV1NTo4MGDOnnypJYtW6aXXnpJBQUFyszM9Nm3oRmVjIwMlZaWNvlG/eFyuZSXl6exY8fK6XQGbFx4o8+hQ69Dgz6HTqvu9ZZ51h175Cyvh8Hqc3l5uTp27NisoGLq1M+oUaO0ceNG/frXv1bv3r21Zs0anX/++Xrvvfc0aNAgv8aKjY1Vnz59JEnDhg3Ttm3b9NRTT+mFF17w2TcuLk5xcXE+251OZ1B+UYM1LrzR59Ch16FBn0Mn7Hq9Kdf78ahc332i3KGopGFn6WWg++zPWKZvfjJo0CD9/ve/N/vyszIMw2vWBAAARK4W3aWtpKREJSUlcru909/gwYOb9foHHnhA48aNU0ZGhioqKvTaa68pPz/frzUuAACg9TIVVAoLCzV58mTt2bNH9Ze4OBwO1dbWNmucL774QpMmTdLhw4eVkpKiwYMH6+2339bYsWPNlAUAAFoZU0HllltuUb9+/bRo0SJ17tzZ9CXJixYtMvU6AAAQGUwFlQMHDmj58uWeRbAAAADBYOquMt/61rf0wQcfBLoWAAAAL6ZmVF566SVNnjxZu3bt0sCBA30uM5owYUJAigMAAJHNVFDZtGmTNmzY0OA3HfuzmBYAAKAxpk79TJ061XO1jtvt9vohpAAAgEAxFVSOHTumn/3sZ+rcuXOg6wEAAPAwFVS++93vau3atYGuBQAAwIupNSr9+vXTrFmztGHDBg0aNMhnMe3UqVMDUhwAAIhspq/6SUpKUkFBgQoKCryeczgcBBUAABAQfgcVwzC0du1apaWlKTExMRg1AQAASDKxRsUwDPXr10+ff/55MOoBAADw8DuoREVFqW/fvjp27Fgw6gEAAPAwddXPr371K82YMUO7du0KdD0AAAAephbT/vCHP1RVVZWysrIUGxurhIQEr+ePHz8ekOIAAEBkMxVUfvvb3wa4DAAAAF+mgsrkyZMDXQcAAIAPU0FFkmpra7Vy5Urt2bNHDodDmZmZmjBhgqKjowNZHwAAiGCmgsqnn36q8ePH6/PPP1f//v1lGIb27t2rjIwM/f3vf1fv3r0DXScAAIhApr89uXfv3iouLtaOHTu0c+dOHTx4UD179uSutAAAIGBMzagUFBRo8+bN6tChg2dbamqqHnvsMY0ePTpgxQEAgMhmakYlLi5OFRUVPtsrKysVGxvb4qIAAAAkkzMq3/72t3XHHXdo0aJFGjFihCRpy5YtuuuuuzRhwoSAFggAgO1syvXdNqqBbWgxUzMqTz/9tHr37q3s7GzFx8crPj5eo0ePVp8+ffTUU08FukYAABChTM2otGvXTm+88Yb27dunjz/+WIZhKDMzU3369Al0fQAAIIKZvo+KJPXt21d9+/YNVC0AAABeTAWV2tpaLV68WO+++65KSkrkdru9nv/nP/8ZkOIAAEBkMxVU7rnnHi1evFhXX321Bg4cKIfDEei6AAAAzAWV1157TX/5y180fvz4QNcDAADgYeqqn9jYWBbOAgCAoDMVVO6991499dRTMgwj0PUAAAB4mDr1s2HDBq1du1ZvvfWWBgwYIKfT6fX88uXLA1Lc2SxYsEALFixQbW1tUI8DAACsZfo+Kv/zP/8T6FqaLScnRzk5OSovL1dKSopldQAAgOAyFVReeeWVQNcBAADgw9QaFQAAgFBodlC56qqrtGnTpib3q6io0Pz587VgwYIWFQYAANDsUz/XX3+9brjhBrVt21YTJkzQsGHD1LVrV8XHx+vEiRMqKirShg0btHr1an3729/W448/Hsy6AQBABGh2UJkyZYomTZqk119/XUuXLtXChQt18uRJSZLD4VBmZqauvPJKFRYWqn///sGqFwAABMumXO/H7ihJWVZU4uHXYtrY2FhNnDhREydOlCSVlZXpyy+/VGpqqs8lygAAAC3Vom9PTklJ4fJgAAAQNFz1AwAAbIugAgAAbIugAgAAbKtFa1QAAAh79a90kaRRDWwL1bHhxdSMSnFxsQ4dOuR5vHXrVk2bNk0vvvhiwAoDAAAwFVQmTpyotWvXSpKOHDmisWPHauvWrXrggQf0y1/+MqAFAgCAyGUqqOzatUsjRoyQJP3lL3/RwIEDtWnTJi1ZskSLFy8OZH0AACCCmQoqLpdLcXFxkqR//OMfmjBhgiTp3HPP1eHDhwNXHQAAiGimFtMOGDBAzz//vK6++mrl5eXpkUcekST95z//UWpqakALBAAgLNRfGBuqBbmtnKkZlfnz5+uFF17QmDFj9IMf/EBZWV99D8CqVas8p4QAAABaytSMypgxY1RaWqry8nK1b9/es/2OO+5QmzZtAlYcAACIbKZmVC677DJVVFR4hRRJ6tChg2688caAFAYAAGAqqOTn56umpsZn++nTp7V+/foWFwUAACD5eernww8/9Px7UVGRjhw54nlcW1urt99+W926dQtcdQAA2AF3kLWMX0FlyJAhcjgccjgcuuyyy3yeT0hI0DPPPBOw4gAAQGTzK6gcOHBAhmGoV69e2rp1qzp16uR5LjY2VmlpaYqOjg54kQAAIDL5FVR69OghSXK73UEpBgAA4OtMf3vy3r17lZ+fr5KSEp/g8otf/KLFhQEAAJgKKgsXLtSPf/xjdezYUV26dJHD4fA853A4CCoAgPAWiMWzLMANCFNB5dFHH9XcuXN13333BboeAAAAD1P3UTlx4oSuv/76QNcCAADgxVRQuf7667VmzZpA1wIAAODF1KmfPn366KGHHtLmzZs1aNAgOZ1Or+enTp0akOIAAEBkMxVUXnzxRSUlJamgoEAFBQVezzkcjmYHlXnz5mn58uX6+OOPlZCQoFGjRmn+/Pnq37+/mbIAAEArYyqoHDhwICAHLygoUE5OjoYPH64zZ85o9uzZuuKKK1RUVMS3MAMAAPP3UQmEt99+2+vxK6+8orS0NBUWFuriiy+2qCoAAGAXpoLKrbfe2ujzL7/8sqliysrKJEkdOnQw9XoAANC6mAoqJ06c8Hrscrm0a9cunTx5ssEvK2wOwzA0ffp0XXjhhRo4cGCD+1RXV6u6utrzuLy83HN8l8tl6rgNqRsrkGPCF30OHXodGvQ5dALaa7epC2Ajguv/exPo32l/xnMYhmEE4qBut1s/+clP1KtXL82cOdPv1+fk5Ojvf/+7NmzYoO7duze4T25urubMmeOzfcmSJUpMTPT7mAAAIPSqqqo0ceJElZWVKTk5udF9AxZUJOmTTz7RmDFjdPjwYb9ed/fdd2vlypVat26devbsedb9GppRycjIUGlpaZNv1B8ul0t5eXkaO3asz6XXCBz6HDr0OjToc5Btmef5V5c7SnknBgWm118bF94C2uevKS8vV8eOHZsVVAK6mHb//v06c+ZMs/c3DEN33323VqxYofz8/EZDiiTFxcUpLi7OZ7vT6QzKXwrBGhfe6HPo0OvQoM9BEuX22RSQXjcwLrwF+nfan7FMBZXp06d7PTYMQ4cPH9bf//53TZ48udnj5OTkaMmSJXrjjTfUtm1bHTlyRJKUkpKihIQEM6XZUm5u448BAEDDTAWVnTt3ej2OiopSp06d9MQTTzR5RdDXPffcc5KkMWPGeG1/5ZVXdPPNN5spDQAAtCKmgsratWsDcvAALo8BAACtUIvWqBw9elSffPKJHA6H+vXrp06dOgWqrojD6SEAYWlTrvfjUbkN7WUv9WuGrZm6ePzUqVO69dZblZ6erosvvlgXXXSRunbtqilTpqiqqirQNQIAgAhlejFtQUGB/va3v2n06NGSpA0bNmjq1Km69957PWtPYF5DMyrMsgAAIo2poLJs2TK9/vrrXotgx48fr4SEBN1www0EFQAAEBCmTv1UVVWpc+fOPtvT0tI49QMAAALG1IxKdna2Hn74Yf3hD39QfHy8JOnLL7/UnDlzlJ2dHdACAQAwjYWzYc9UUHnqqad01VVXqXv37srKypLD4dD777+v+Ph4vfPOO4GuEQAARChTQWXgwIHat2+f/vSnP+njjz+WYRj6/ve/r5tuuqlV3VEWAABYy/R9VBISEnT77bcHshYAAAAvphbTzps3Ty+//LLP9pdfflnz589vcVEAAACSyaDywgsv6Nxzz/XZPmDAAD3//PMtLgoAAEAyeernyJEjSk9P99neqVMnHT58uMVFhRMzt77nxm0AADSPqRmVjIwMbdy40Wf7xo0b1bVr1xYXBQAAIJmcUbnttts0bdo0uVwuXXbZZZKkd999VzNnztS9994b0ALDDbMlAAAEjqmgMnPmTB0/flw/+clPVFNTI0mKj4/Xfffdp1mzZgW0QAAAELlMBRWHw6H58+froYce0p49e5SQkKC+ffsqLi4u0PUBAIAIZvo+KpKUlJSk4cOHB6oWBICZxb0AANiVqcW0AAAAodCiGRWEJ2ZdAADhghkVAABgWwQVAABgW5z6CWOcsgEAtHbMqAAAANsiqAAAANsiqAAAANsiqAAAANtiMW0YYfEsANvblOu7bVQD24BmIqi0coQbAEA4I6ggqLgLLgCgJVijAgAAbIugAgAAbCssg8qCBQuUmZmp4cOHW10KAAAIorAMKjk5OSoqKtK2bdusLgUAAAQRi2nR4AJXFr0CAOyAoIIGNedqHa7oAQAEG0EFzUIIAQBYISzXqAAAgMhAUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALbF5ckIGC5hBhAwm3KtrgA2QVABQoQ7AAOA/wgqfuBDBQCA0GKNCgAAsC1mVGA7nCIBANQhqAAAgqv+wthRuQ3tBTSIoIKwwDc1A0BkIqjAcvPmSW631VUAAOyIoIKw1Jx1LKx1AYDwR1BBSH09KERFSVlZlpUCAAgDBBUAQGg1dNdZswtst8yTor527piFuq0O91EBAAC2xYwKWo1IWX/C2hsAkYSggojGh7698d8HAEEFEYUPOQAILwQVoJ5A3VyOUAQALUdQAWAJTuvI2lvLB/LKGyCICCqAhSLpqwFa83sDEDwEFaAJofw/f6tnGcweP5ICF4DQ4j4qAADAtphRAUxgBgEAQsPSoLJu3To9/vjjKiws1OHDh7VixQp95zvfsbIkwBSCCmwlUAtlrVzsC/w/S0/9nDp1SllZWfrd735nZRkAAMCmLJ1RGTdunMaNG2dlCUBEmTdPcn/t+9uYCQJgd6xRAYAAIxACgRNWQaW6ulrV1dWex+Xl5ZIkl8sll8sVsOPUjVV/zCiukQqoqCiX1z/RsPq/2g39Hjb161/3u1y/12bGnjfPd5/6r2uonub8+QnEe7VSc/vs4W5G48yoP25DY5vZp6H6GhrHjObU9/Xd//95V1M1Bqq+COXpc4D/4PkznsMwDCOgRzfJ4XA0uZg2NzdXc+bM8dm+ZMkSJSYmBrE6AAAQKFVVVZo4caLKysqUnJzc6L5hFVQamlHJyMhQaWlpk2/UHy6XS3l5eRo7dqycTqdne0P/JwnzoqJcGjQoTx99NFZut7PpF0SoWbO8H5v5PTxbr5sztpnj13+N2dc1px6z6o8diHHr/u5oqs8eW+oVMTJAb67+uA2NbWafhupraJwQcLmjlHdikMa2/0jOKHfTL4Apnj7X+zxsqfLycnXs2LFZQSWsTv3ExcUpLi7OZ7vT6QxoA882rps/C0HhdjsJKo2o/6vdkt/D+r1uzthmjj93roniTNZjVv2xA/lXSFN99qj/ARuoIhr64K4/tpl9GqrP4pDgjHITVEIg0J+z/oxlaVCprKzUp59+6nl84MABvf/+++rQoYO+8Y1vWFgZYB8sxPQfN+T7r9xFY776lzVf25ZrRSWAOZYGle3bt+vSSy/1PJ4+fbokafLkyVq8eLFFVQEAALuwNKiMGTNGNlkiAwAh45nRKB7z321T8s0P2NCdaFsoN1e+9QXhOEBTuG4LAADYVlgtpgWAYGlo3UZz1nJ8fZ+oKCkrK0AFNUPAZ2YAGyKoAAgrkbJQ1mxwCiXPQt26x1PyrSgDrRynfgAAgG0xowKgUXb7v/hIxn8LRCKCChDB+OAz6etXvxSPkTLGWFRIgNV/X36qfypI4nQQWo6gAiCsBTNsnXVsEx/ikYp1LGgpggoAtCINzWoA4YygAsA2OBUFyfpTSMwC2QtBBQCCrDUEMGZqYBWCSrgqzvfd1loW9AF2Upxvr+MH4c85IQR2RlABAMAinGZqGkEFAIAgIIQEBnemBQAAtsWMCgDYQO6iMdKaEB0rV7a6FwxrZNAYggpgF8X53o9ZHB0wQb/qpjj/q3/GGFKWpM83SOmXBvmgfirOt7qCgJr3x4uUNb5c8/54kdxnHJI4tdJaEVQAAK2S1fdjQWAQVAAAaASBx1oEFQBAxOBKnPBDUAEAhExrXTjbWt+XHRBUAq043/txa1gQWZzvuy1U78vKYyO8FOf7brPT70pxfmD2iVD1g0BUjGFNIQg5gkoj5s2T3G6rqwAAtAbNmXVhPYwvbvgGAABsi6ACAABsi1M/AIBWwcyCVhbB2h8zKgAAwLaYUQm14nzfbcG6MiGUx0LgFec3vY/dfncael2wxmmO+uPw+48AYSYmdJhRAQAAtkVQAQAAtkVQAQAAthWWQWXBggXKzMzU8OHDrS4FAAAEUVgups3JyVFOTo7Ky8uVkpJidTk4m+J878ehXEQZqYrzfbfZfQFpcb7VFXgrzre6gsYV51tdAWyoNX/ZYljOqAAAgMhAUAEAALZFUAEAALZFUAEAALYVlotpbaM4PzjjWL34sTjf2uPbWXG+7zYr/3sV51t37HBUnO/9OJj/7eofC4ApBBUAAFqZhm7xH65XAnHqBwAA2BYzKgAA2FhrvkdKcxBUAAAII5H2zc0EFX8U57eu47REcb59jm32jrf1X9fQPq1Rcb7VFdhHcb7VFQBoAmtUAACAbRFUAACAbRFUAACAbRFUAACAbbGYNtiK8+11rPr7hPKuqvWPHWNIWaE7vI/i/OCMY3Zxr90V53s/Nvu7U38cAGgEMyoAAMC2mFEBACAChOuN45hRAQAAtkVQAQAAtsWpHwAAIlC4fMMyQSXSFedbXUFwFOdH5rFDqTjf6goABFj98DL7lnXWFPI1nPoBAAC2RVABAAC2RVABAAC2RVABAAC2xWJaWO/zDdIZh/nXF+cHqpLWqTj/v19X8PkGSS3oNQCEGDMqAADAtggqAADAtggqAADAtggqAADAtggqAADAtiwPKs8++6x69uyp+Ph4DR06VOvXr7e6JAAAYBOWBpWlS5dq2rRpmj17tnbu3KmLLrpI48aN08GDB60sCwAA2ISlQeU3v/mNpkyZottuu03nnXeefvvb3yojI0PPPfeclWUBAACbsOyGbzU1NSosLNT999/vtf2KK67Qpk2bGnxNdXW1qqurPY/LysokScePH5fL5QpYbS6XS1VVVaqpOSa32/nfJ9yVATsGpCi38VWf3VFyu7kJWTDR69Cgz6FDr0PjWEWNqqqqdOzYMTmdzqZf0EwVFRWSJMMwmtzXsqBSWlqq2tpade7c2Wt7586ddeTIkQZfM2/ePM2ZM8dne8+ePYNSI0LgJasLiCD0OjToc+jQ66Cbtzi441dUVCglJaXRfSy/hb7D4Z2EDcPw2VZn1qxZmj59uuex2+3W8ePHlZqaetbXmFFeXq6MjAwVFxcrOTk5YOMG2/Dhw7Vt2zary2g2+hw69Do06HPo0OvQCFafDcNQRUWFunbt2uS+lgWVjh07Kjo62mf2pKSkxGeWpU5cXJzi4uK8trVr1y5YJSo5OTms/gBER0eHVb116HPo0OvQoM+hQ69DIxh9bmompY5li2ljY2M1dOhQ5eXleW3Py8vTqFGjLKoqvOXk5FhdQkSgz6FDr0ODPocOvfafw2jOSpYgWbp0qSZNmqTnn39e2dnZevHFF7Vw4ULt3r1bPXr0sKoslZeXKyUlRWVlZWGZfMMFfQ4deh0a9Dl06HVo2KHPlq5RufHGG3Xs2DH98pe/1OHDhzVw4ECtXr3a0pAifXWK6eGHH/Y5zYTAos+hQ69Dgz6HDr0ODTv02dIZFQAAgMZYfgt9AACAsyGoAAAA2yKoAAAA2yKoAAAA2yKoAAAA24rIoPLss8+qZ8+eio+P19ChQ7V+/fpG9y8oKNDQoUMVHx+vXr166fnnnw9RpeHPn14vX75cY8eOVadOnZScnKzs7Gy98847Iaw2fPn7O11n48aNiomJ0ZAhQ4JbYCvib6+rq6s1e/Zs9ejRQ3Fxcerdu7defvnlEFUbvvzt86uvvqqsrCwlJiYqPT1dt9xyi44dOxaiasPXunXrdM0116hr165yOBxauXJlk68J+WeiEWFee+01w+l0GgsXLjSKioqMe+65x2jTpo3x73//u8H9P/vsMyMxMdG45557jKKiImPhwoWG0+k0Xn/99RBXHn787fU999xjzJ8/39i6dauxd+9eY9asWYbT6TR27NgR4srDi799rnPy5EmjV69exhVXXGFkZWWFptgwZ6bXEyZMMEaOHGnk5eUZBw4cMLZs2WJs3LgxhFWHH3/7vH79eiMqKsp46qmnjM8++8xYv369MWDAAOM73/lOiCsPP6tXrzZmz55tLFu2zJBkrFixotH9rfhMjLigMmLECOOuu+7y2nbuueca999/f4P7z5w50zj33HO9tt15553GBRdcELQaWwt/e92QzMxMY86cOYEurVUx2+cbb7zRePDBB42HH36YoNJM/vb6rbfeMlJSUoxjx46ForxWw98+P/7440avXr28tj399NNG9+7dg1Zja9ScoGLFZ2JEnfqpqalRYWGhrrjiCq/tV1xxhTZt2tTga9577z2f/a+88kpt375dLpcraLWGOzO9rs/tdquiokIdOnQIRomtgtk+v/LKK9q/f78efvjhYJfYapjp9apVqzRs2DD96le/Urdu3dSvXz/9/Oc/15dffhmKksOSmT6PGjVKhw4d0urVq2UYhr744gu9/vrruvrqq0NRckSx4jPR0lvoh1ppaalqa2t9vp25c+fOPt/iXOfIkSMN7n/mzBmVlpYqPT09aPWGMzO9ru+JJ57QqVOndMMNNwSjxFbBTJ/37dun+++/X+vXr1dMTET9FdAiZnr92WefacOGDYqPj9eKFStUWlqqn/zkJzp+/DjrVM7CTJ9HjRqlV199VTfeeKNOnz6tM2fOaMKECXrmmWdCUXJEseIzMaJmVOo4HA6vx4Zh+Gxrav+GtsOXv72u8+c//1m5ublaunSp0tLSglVeq9HcPtfW1mrixImaM2eO+vXrF6ryWhV/fqfdbrccDodeffVVjRgxQuPHj9dvfvMbLV68mFmVJvjT56KiIk2dOlW/+MUvVFhYqLffflsHDhzQXXfdFYpSI06oPxMj6n+nOnbsqOjoaJ9UXlJS4pMQ63Tp0qXB/WNiYpSamhq0WsOdmV7XWbp0qaZMmaK//vWvuvzyy4NZZtjzt88VFRXavn27du7cqZ/+9KeSvvowNQxDMTExWrNmjS677LKQ1B5uzPxOp6enq1u3bkpJSfFsO++882QYhg4dOqS+ffsGteZwZKbP8+bN0+jRozVjxgxJ0uDBg9WmTRtddNFFevTRR5n5DiArPhMjakYlNjZWQ4cOVV5entf2vLw8jRo1qsHXZGdn++y/Zs0aDRs2TE6nM2i1hjszvZa+mkm5+eabtWTJEs4vN4O/fU5OTtZHH32k999/3/Nz1113qX///nr//fc1cuTIUJUedsz8To8ePVr/+c9/VFlZ6dm2d+9eRUVFqXv37kGtN1yZ6XNVVZWiorw/zqKjoyX99//2ERiWfCYGbZmuTdVd9rZo0SKjqKjImDZtmtGmTRvjX//6l2EYhnH//fcbkyZN8uxfdynWz372M6OoqMhYtGgRlyc3k7+9XrJkiRETE2MsWLDAOHz4sOfn5MmTVr2FsOBvn+vjqp/m87fXFRUVRvfu3Y3vfe97xu7du42CggKjb9++xm233WbVWwgL/vb5lVdeMWJiYoxnn33W2L9/v7FhwwZj2LBhxogRI6x6C2GjoqLC2Llzp7Fz505DkvGb3/zG2Llzp+dScDt8JkZcUDEMw1iwYIHRo0cPIzY21jj//PONgoICz3OTJ082LrnkEq/98/PzjW9+85tGbGyscc455xjPPfdciCsOX/70+pJLLjEk+fxMnjw59IWHGX9/p7+OoOIff3u9Z88e4/LLLzcSEhKM7t27G9OnTzeqqqpCXHX48bfPTz/9tJGZmWkkJCQY6enpxk033WQcOnQoxFWHn7Vr1zb6964dPhMdhsG8GAAAsKeIWqMCAADCC0EFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFQFBdfPHFcjgcPj833XRTk6+9+eabdf/99wdkLADhiTvTAggawzCUkpKihx9+2CdMJCUlKSkp6ayvdbvd6ty5s1atWqXs7OwWjQUgfMVYXQCA1mvfvn2qqKjQxRdfrC5duvj12o0bNyoqKsrzjc4tGQtA+OLUD4CgKSwsVExMjAYPHuz3a1etWqVrrrlGUVFRLR4LQPgiqAAImh07dqi2tlapqame0zNJSUm6/fbbm3ztqlWrdO211/o11ptvvqn+/furb9++eumll4LyngCEFmtUAATNZZddpk6dOmnu3Lle29u3b6/U1NSzvm7Pnj0aNmyYSktLlZCQ0Kyxzpw5o8zMTK1du1bJyck6//zztWXLFnXo0CHwbwxAyDCjAiBodu7cqQsvvFB9+vTx+klNTdWuXbvUu3dvHTlyRJJUWlqqIUOGqKamRqtWrdLYsWM9IaWpsSRp69atGjBggLp166a2bdtq/Pjxeueddyx53wACh6ACICg+++wznTx5Ut/85jcbfH7gwIH6/ve/r3/+85+SpDlz5ui+++5TbGys3njjDU2YMKHZY0nSf/7zH3Xr1s3zuHv37vr8888D9G4AWIWrfgAERWFhoSSpc+fOnlmTOmlpaYqKitKAAQO0d+9effrppyosLNTTTz+tkpISbdu2TStXrvRrrIbOYjscjgC/KwChRlABEBQ7duyQJPXr189ru9PpVEVFheLi4tS3b1+9+eabeuCBBzR37lw5HA797W9/08iRI5WWlubXWN26dfOaQTl06JDn0mYA4YvFtAAsc/LkSfXt21cjR47Um2++KUmaMGGCLrzwQs2cOdOvsc6cOaPzzjtP+fn5nsW0mzdvbnTRLgD7Y0YFgGXatWsnSXrsscc82y688EL94Ac/8HusmJgYPfHEE7r00kvldrs1c+ZMQgrQCjCjAsAyLpdLAwcO1CeffGJ1KQBsiqt+AFjm448/Vv/+/a0uA4CNMaMCAABsixkVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgW/8HLN4O6IqnNRYAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#in abhängigkeit von der energie der elektronen\n",
|
|
"plt.hist(energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
|
|
"plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
|
|
"plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n",
|
|
"plt.yticks(np.arange(0,5.5,0.5), minor=True)\n",
|
|
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"counts (normed)\")\n",
|
|
"plt.title(r'$E_{ph}/E_0$')\n",
|
|
"plt.legend()\n",
|
|
"plt.grid()\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 28,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAJOCAYAAAAUHj4bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADLAUlEQVR4nOzdd3hUVcLH8d8lIYWQDL0E6SJSBUGpSm9LcVVAQRGCHRVRsJfAKkVs7KKIogQFKbIoC6IIiGIDpYgouFYUUJoSEkBawnn/4M0sQ8qcIXeYGfh+nmce5c6Z0++Zc+fk3OsYY4wAAAAAAAAAAAAiQJFQZwAAAAAAAAAAAMAWCxsAAAAAAAAAACBisLABAAAAAAAAAAAiBgsbAAAAAAAAAAAgYrCwAQAAAAAAAAAAIgYLGwAAAAAAAAAAIGKwsAEAAAAAAAAAACIGCxsAAAAAAAAAACBisLABAAAAAAAAAAAiBgsbAAAAAAAAAAAgYrCwAQAAItqgQYM0bdq0UGcDljZs2KAtW7aEOhsAAAAAgAjGwgYAAABOm5deeknLly8PdTYAAAAAABGMhQ0AAHBWmzNnjurVq6f4+Hg5jqP169eHOksFeuedd+Q4js8rKSlJTZo00RtvvHHa0n/ttdd8jqenp6tbt26KiYnRc8895/PeRx99pBtvvFG7du3yHtu0aZOuuOIK7dy5M+h5jiQffvhhrvbNea1atSpX+A0bNuj6669XzZo1FR8fr/j4eNWqVUs333yz1qxZc0p5uPzyyxUfH6+9e/fmG+aaa65R0aJFQ95+06ZNk+M4+uWXX0572iNHjpTjOPrjjz9ci/Ozzz7TyJEjC6z7SJadna1y5crp2WefzTdMMOo1EpzJbf/FF1+oS5cuSkxMVPHixdWuXTt9+umnucIFOv7t379fw4YNU3JysuLi4tSoUSPNnj37lMMBAIDIwsIGAACIOD169FCJEiVUokQJzZw5U0OGDPH+e9y4cdbx7N69WwMGDFDNmjW1ePFirVy5Uuedd14Qc15469atkyT95z//0cqVK/XZZ59pypQpOnDggPr166cNGzaclvSbNGniPbZhwwY1bdpUX375pZYvX67bb7/d5zNNmjRR+fLl1bBhQ73//vt67rnn1KlTJ3Xt2lVly5YNan4j1ZgxY7Ry5UqfV/369X3CvPjii2rSpIk+//xz3XnnnXr77be1aNEiDRs2TBs3btRFF12kn376KeC0r7/+eh06dEgzZ87M8/2MjAy99dZb6tGjh8qXL39K5UPePvvsM40aNeqM/HFbOr7IuXv3bl1xxRWhzkrYOVPbfvXq1br00kt18OBBTZ8+XdOnT9ehQ4fUoUMHrVy5Ms/P2Ix/knTFFVfo1VdfVWpqqt59911ddNFF6tevX66xyzYcAACILNGhzgAAAECg3n77be//Dxo0SG3bttWgQYMCjuf777/X0aNHde2116pNmzb5hvvrr79UrFixU8mq69atWyePx6NevXp5j7Vo0UJZWVm69tpr9eWXX6phw4ZBTT8+Pl7nn3++JGn27Nm6/vrr1bBhQ82bN0/Jycm5PpOQkKB//OMfOnbsmMaOHasiRYro9ddf19VXXx20fIbCnj17dOzYMZUpU6bQcdWqVUvNmzfP9/1PP/1UQ4YMUffu3fXvf/9bMTEx3vfat2+v2267TXPnzlV8fHzAaXfr1k3JycmaOnWqhgwZkuv9WbNm6eDBg7r++usDjhtnt3//+99q2rSpqlatGrQ0wmm8Plts375dCQkJSkpKyvXeI488ohIlSmjx4sXedunYsaNq1KihESNG5Llzw9/4Jx3fPbh06VLNnDlT/fr1kyS1a9dOv/76q+655x5dddVVioqKsg4HAAAiDzs2AABAWPjkk0/UuXNneTwelSxZUt27d9cPP/wQtPQGDRqk1q1bS5KuuuoqOY6jtm3bem+Dsm7dOvXu3VslS5ZUzZo1ffLZoUMHJSYmqlixYmrZsqUWLVrkE3dOHBs2bFCfPn3k8XhUqlQp3X333crKytJ3332nrl27KjExUdWqVdP48eOt87127Vo1atQo1/Ft27ZJkurUqXMKtSE9++yzmj9/fkDpjxgxQv369dM111yjFStW5LmoIUlff/21LrzwQq1bt05/+9vfNHjwYI0ePVrdu3f3e7sZ237hdv/p2bOnmjZtqilTpuiCCy5QfHy8KleurNTUVB07dizPz2zYsEEVK1ZUt27d9Nprr2nfvn2nnL4/Y8aMUVRUlF588UWfRY0T9enTJ1eb/PDDD+rfv7/KlSun2NhY1alTR88//7xPmKioKA0cOFBr167V119/nSvetLQ0bzlPRSDn0MaNG9WvXz95PB6VL19egwcPVkZGRr5xf/zxx3IcR7Nmzcr13muvvSbHcbR69ep8P5+T7pdffqkrrrhCSUlJ8ng8uvbaa7V79+48P7Nz506/ebQt8z333CNJql69uvcWPB9++GFQ6m337t266aabVLlyZcXGxqps2bJq1aqVli1blm/9bNy4UY7jaO7cud5ja9euleM4qlevnk/YXr16+ezsMsborbfe0pVXXplv/CfaunWr3zbwN17b9PdgjteSNH/+fDmOo/fffz/Xey+88IIcx9EVV1yRb9sfOnRIjRs31rnnnuvThjt27FCFChXUtm1bZWdnW+Ulv9s8ncrt3NLT0/XKK6+oY8eOOuecc/Tzzz/nGe7TTz9V27ZtfRabEhMTdemll+qzzz7T9u3bA0o3x1tvvaXixYurT58+PsdTUlL0+++/6/PPPw8onFT4vhDsvgQAAE5iAAAAQiw1NdUUKVLEDB482CxatMj8+9//Ng0aNDCVK1c2+/btC0qaP/74o3n++eeNJDNmzBizcuVKs3HjRpOammokmapVq5r77rvPLF261MyfP98YY8yHH35oihYtapo0aWLmzJlj5s+fbzp37mwcxzGzZ8/2KY8kU7t2bfPYY4+ZpUuXmnvvvddIMrfffrs5//zzzb/+9S+zdOlSk5KSYiSZefPm+c3zH3/8YSSZoUOHmqNHj5qjR4+anTt3mtdee80kJiaaG2644ZTro3///qZo0aLmrbfe8pv+VVddZdq3b29iY2PNlClT/Ma9detWs3DhQmOMMbfddptJS0szWVlZZtq0aebIkSP5fs62XwSj/1SsWNEkJCSYOnXqmOnTp5slS5aYq6++2kjKt8wHDx40r7/+uunZs6eJiYkxcXFxpnfv3mbevHnm0KFDVul+8MEHRpIpV66ciYqKMomJiaZz587m448/9obJysoy8fHxpkWLFgGVaePGjcbj8ZgGDRqY1157zSxZssQMHz7cFClSxIwcOdIn7A8//GAcxzHDhg3LFYckc//99weUdo5TOYceffRRs3TpUvPMM8+Y2NhYk5KS4g2XlpZmJJnNmzd7jzVu3Ni0atUqV9oXXXSRueiiiwrM34nn/z333GPee+8988wzz5iEhATTuHFjn/5qm0fbMm/dutXccccdRpJ58803zcqVK83KlStNRkaG6/VmjDFdunQxZcuWNS+99JL58MMPzfz5882jjz7qE19eKlasaG666Sbvv8eNG2fi4+ONJPPbb78ZY4w5evSoSUpKMvfee6833CeffGIkme+//971NshrvLbt78Ear3McPXrUlCtXzlxzzTW53rv44ovNhRdeWGDbG2PM999/bxITE80VV1xhjDEmOzvbtG/f3pQrV878/vvv1nnJiTfntXz5clOpUiVToUIFb1oFOXDggJk9e7bp1auXiYmJMfHx8ebKK680c+fONYcPH87zMzExMea6667Ldbxfv35Gknnvvfe8x2zGvxzNmzfP83z+5ptvjCTz4osvBhTOmML3hWD3JQAA4IuFDQAAEFILFy40ksz48eN9jn///fdGkpkxY0auz3Tt2tUkJCTk+Ro9erR12jk/osydO9d7LOeHiUcffTRX+ObNm5ty5cr5/FielZVl6tevb8455xxz7Ngxnziefvppn883atTI+8NVjqNHj5qyZct6f7AqyJIlS4ykXK/o6Gjz+OOPW5c7L1lZWX4XN05MPy4uzqxatSrgdHIWNvyx7Ren0n/82bZtm5FkatSoYfbu3es9fuTIEVOhQgXTo0cPv3Gkp6ebqVOnms6dO5vo6Gjj8XjMoEGDzHvvvWeysrLy/dy6devMnXfead566y3z0UcfmalTp5o6deqYqKgos3jxYmOMMTt27DCSzNVXX53r81lZWd5Fr6NHj3r7pDHHf8g+55xzcv2Aefvtt5u4uDizZ88en+Nt2rQxZcqU8fkhefjw4VY/Tucn0HPo5HYdMmSIiYuL84bLa2Ej59iXX37pPfbFF18YSebVV18tMH856d51110+x19//fVc/ck2j7ZlNsaYJ598Mld5glFvxhhTvHjxXAtXNq699lpTo0YN7787duxobrzxRlOyZElv/X766adGklmyZIk33LBhw0yDBg38xn8qbZDXeG3b34M1Xp/o7rvvNvHx8T7jyaZNm4wkM3HiRGNM/m2fY86cOUaSmTBhgnn00UdNkSJFfOo3UFlZWeayyy4zxYsXN2vXrs033JEjR8zbb79t+vfvbxISEkxMTIzp0aOHmTFjhtXCcaNGjcx5551nsrOzvceOHj1qatSoYSSZmTNneo/bjH85atWqZbp06ZIrvd9//937BwuBhDOm8H3hdPQlAADwP9yKCgAAhNSjjz6qmjVr6s4771RWVpb3Vb16dcXHx+d5e4t3331X+/fvz/P14IMPupKvk2+XcuDAAX3++efq3bu3ihcv7j0eFRWlAQMGaNu2bfruu+98PtOjRw+ff9epU0eO4/jcwic6Olrnnnuufv31V795Wrt2rSTpzTff1OrVq7V69WotXrxY3bt316OPPqo333wzz8/98ccfBd6CxHEcRUdHa+bMmTp69Kj69u2rnTt35pv+gAEDdOjQIX300Ud+83yy5557zup5KLb94lT6jz85tyoaOXKkPB6P93jRokV17rnn+r19liSVKFFCKSkpeu+997R9+3aNGzdOmzdvVteuXZWcnJxvvho3bqwJEybo73//uy655BKlpKTos88+U8WKFXXvvff6TbdJkyYqWrSo9/X0009Lkg4dOqT3339fl19+uYoVK+ZTV3/729906NAhrVq1yieu66+/Xn/88YcWLFggScrKytKMGTN0ySWXqFatWn7zcrJTOYdOfJaMJDVs2FCHDh3Srl278k2nX79+KleunM8thyZOnKiyZcvqqquussrrNddc4/Pvvn37Kjo6Wh988EGusAXl8VTKfLJg1dvFF1+sadOm6fHHH9eqVat09OjRAvORo0OHDvr555+1efNmHTp0SJ988om6du2qdu3aaenSpZKkZcuWKTY21nu7P+n4uGV7GyopsDY4Od5T6e9uj9cnGjx4sA4ePKg5c+Z4j6WlpSk2Nlb9+/e3iqNv37669dZbdc899+jxxx/Xgw8+qE6dOgWUjxPdfvvtWrRokebOnasLL7wwzzAbNmxQhQoVdNlll+mPP/7Qv/71L+3cuVMLFy7UNddc49Mf83PHHXfo+++/1+23367ffvtNW7du1S233OKtwyJF/veTRKDjn+M4+aZ74nu24XIUti8Esy8BAID/4eHhAAAgZHbs2KEvv/xSkhQbG5tnmBIlSpzGHP1PxYoVff6dnp4uY0yu45K8zzH4888/fY6XKlXK598xMTEqVqyY4uLich3PzMz0m6ecB3f36tXL52Gnbdq0UVJSkqZMmaIrrrgi1+cSExM1ZcoUv/EvXrxY8+bN02WXXabSpUvnmX5cXJymTp0qSbr//vtVu3btXD+iFpZtvwhW/1mzZo2KFi2a657skvT777/7PDfARmZmpvbu3auMjAwZY1SiRAlFR9tPw0uUKKEePXpo8uTJOnjwoMqUKaP4+Pg8fxCbOXOm/vrrL23fvt2nXf78809lZWVp4sSJmjhxYp7pnLxg07t3b91xxx1KS0vTlVdeqXfeeUc7d+7UE088YZ33E53KOXRyP8xp54MHD+abTmxsrG6++WY9/fTTevLJJ3X06FG98cYbuvvuu/PtJyerUKGCz7+jo6NVunTpXPnzl8ejR48GXOaTBave5syZo8cff1wvv/yyHnnkERUvXlyXX365xo8fn6v8J+rYsaOk44sX1atX19GjR9W+fXvt3LlTjz32mPe9Vq1aeR9e/8UXX2jLli0BLWwE0gYn182p9He3x+sT1atXTxdddJHS0tJ00003KTs7WzNmzNBll12WK92CDB48WC+88IJiYmI0dOjQgPJwoscff1yTJ0/WK6+8oq5du+YbrmjRovJ4PNqzZ48yMjKUkZGh/fv3BzSuDh48WLt379bjjz+uF154QZLUokULjRgxQk888YQqVapU4OdPHv9y+lR+fWHPnj2S/teetuFOVNi+EMy+BAAA/oeFDQAAEDJbt26VdPzB1Sf+Ze+JTnwQ7Ol08l9xlixZUkWKFMnzQae///67JKlMmTJBzdO6devUoEEDn0UN6fiPT1FRUfn+2BsbG6sbbrihwLgXLVqkt99+W71799asWbPy/OF93bp1uuCCCxQdHa0pU6Z4H8z7ySef5PlA81Nl2y9+/PFHq3CBWrNmjcqUKZPrR6jPP/9cP//8sx555BG/cWzdulVz587V7NmztXr1alWqVElXXXWVpkyZoqZNmwacJ2OMpOP9MioqSu3bt9eSJUu0fft2nx9169atK0m5HgRcsmRJ71/433bbbXmmUb16dZ9/x8fHq1+/fpoyZYq2b9+uqVOnKjExMc8FHxun8xy69dZbNW7cOE2dOlWHDh1SVlaWbrnlFuvP79ixw+cH16ysLP355595LvgVxI0yB6veypQpowkTJmjChAnasmWLFixYoPvvv1+7du3S4sWL8/3cOeeco/POO0/Lli1TtWrV1LRpU5UoUUIdOnTQkCFD9Pnnn2vVqlUaNWqU9zPz5s3Teeedp/r161vnL5A2yGu8DrS/B1tKSoqGDBmib7/9Vj///LO2b9+ulJQU688fOHBAAwYM0HnnnaedO3fqhhtu0H/+85+A8zFt2jQ98sgjGjlypAYPHlxg2Dp16ujnn3/WypUrNXPmTI0bN07Dhw9Xq1atdNVVV6l3794FLoLluO+++zRs2DD98MMPSkxMVNWqVXXzzTcrISHBaqH4xPEvR4MGDTRr1ixlZWX5fF99/fXXkuTta7bhAABA5OFWVAAAIGRy/qrRcRw1bdo0z1fJkiVDnMvjEhIS1KxZM7355ps+CwjHjh3TjBkzvD/2BUtGRoZ+/vnnPBcQ/vOf/+jQoUO69NJLTzn+J598Uj179sx3USMn/ZxblsTGxuqtt95SqVKl1KtXL+3YseOU0z6Zbb8IVv9Zs2aNdu/erb1793qPZWdn67777lO1atXyvXXMvn37NHHiRLVu3VpVq1bV6NGj1ahRIy1fvlxbtmzR008/fUqLGunp6Xr77bfVqFEj72LLAw88oOzsbN1yyy1WtxAqVqyY2rVrpy+//FINGzbMs67y+sH4+uuvV3Z2tp588km98847uvrqq1WsWLGAyyCd3nOoYsWK6tOnjyZNmqTJkyerZ8+eqlKlivXnX3/9dZ9/v/HGG8rKylLbtm0DykegZc5rZ8XpqLcqVaro9ttvV6dOnbRu3Tq/4Tt27Kjly5dr6dKl3tshnXfeeapSpYoeffRRHT161LuzQzq+sBHIbg2pcG1wqv09mPr166e4uDhNmzZN06ZNU6VKldS5c2fv+/52I91yyy3asmWL3nzzTb3yyitasGCBnn322YDysHjxYt14440aPHiwUlNTrT/XokULTZw4Ub///rsWL16smjVr6qGHHlKlSpXUvn17vfjiiwXuopKOl69+/fqqWrWqtmzZojlz5ujGG2/07sDIT17jnyRdfvnl2r9/v+bNm+cT/tVXX1VycrKaNWsWUDgAABB52LEBAABCpmbNmmrXrp0efvhh7d+/X82aNZMxRtu3b9cHH3yggQMHBvxDYjCNHTtWnTp1Urt27TRixAjFxMRo0qRJ+uabbzRr1qwC7+NdWOvWrZMxRgkJCd57w6enp+uzzz7Ts88+q4YNG2rEiBGnHP/ChQsVHx+f7y2SctI/8a9rK1SooP/85z9q3bq1evXqpRUrVvj9kcqGbb8ItP84jqM2bdroww8/zDftzZs3688//1SVKlXUp08fDR8+XIcOHdK//vUvrV27Vh9++KFiYmLy/OzatWt1//33q1evXpo/f766deumokWLBlT2/v37q0qVKmratKnKlCmjH374QU8//bR27typadOmecO1atVKzz//vO644w5deOGFuummm1SvXj3vX/bn/IiXlJTk/cw///lPtW7dWpdccoluvfVWVatWTfv27dOPP/6ohQsXavny5bny07RpUzVs2FATJkyQMUbXX399nvm2qVvp9J5Dd955p/dHy7S0tIA+++abbyo6OlqdOnXSxo0b9cgjj+iCCy5Q3759A85HIGVu0KCBpONtNXDgQBUtWlS1a9d2vd4yMjLUrl079e/fX+eff74SExO9z+zJ63Z2J+vQoYMmTZqkP/74QxMmTPA5npaWppIlS3rHivXr1+unn34KeGGjsG1wKv09mEqUKKHLL79c06ZN0969ezVixAif50vk1/aJiYl6+eWXNWPGDKWlpalevXqqV6+ebr/9dt13331q1aqVLr74Yr/pb968WX369FGNGjWUkpKS6xkjjRs39nurtqioKHXu3FmdO3fW5MmTtWjRIs2cOVPDhg1Ts2bN8lx4/+abbzRv3jw1bdpUsbGx+uqrrzRu3DjVqlXLe+uyHLbjnyR169ZNnTp10q233qrMzEyde+65mjVrlhYvXqwZM2Z4dzbahgMAABEoJI8sBwAA+H8ZGRnmgQceMOedd56Ji4szJUuWNBdccIG54447THp6elDT/uCDD4wkM3fuXO+x1NRUI8ns3r07z898/PHHpn379iYhIcHEx8eb5s2bm4ULF/qEyS+OgQMHmoSEhFxxtmnTxtSrV6/AvD711FNGks8rISHBNG7c2IwePdocOHDAttinJCf9devW5Xpv7ty5xnEc06dPH3Ps2DFX0rPtF7bh9u3bZySZq6++usB033jjDSPJfPbZZ2bAgAEmKSnJJCYmmssuu8xs2rTJb573799fmGKbsWPHmkaNGhmPx2OioqJM2bJlzeWXX26++OKLPMOvX7/epKSkmOrVq5vY2FgTFxdnzj33XHPdddeZ999/P1f4zZs3m8GDB5tKlSqZokWLmrJly5qWLVuaxx9/PN88/fOf/zSSTN26dfN837ZucxTmHEpLSzOSzObNm/P898mqVatm6tSpY5WvE9Ndu3at6dmzpylevLhJTEw0/fr1Mzt37jylPNqWOccDDzxgkpOTTZEiRYwk88EHH1jHYZunQ4cOmVtuucU0bNjQJCUlmfj4eFO7dm2TmppqNZakp6ebIkWKmISEBHPkyBHv8ddff91IMldccYX32MMPP2yqVq3qN86Ty1CYNshh09+DMV7nZ8mSJd7x+/vvv8/1fl5tv2HDBhMfH28GDhzoE/bQoUOmSZMmplq1albflTnfd/m98juHbBQ09n333Xfm0ksvNaVKlTIxMTHm3HPPNQ8//HCe4QMd//bt22eGDh1qKlSoYGJiYkzDhg3NrFmzTjlcYfvC6exLAADAGMeY/79hJQAAAHCGeuedd9SjRw999dVX3r+Mzsu9996rSZMmKSMjg7/ktWRbt6fbhg0bdMEFF+j555/XkCFDrD4zcuRIjRo1Srt37w76M3POFnXr1lW3bt309NNPhzorAAAAOINwKyoAAACc8T744ANdffXVfn94X7NmjS688EIWNQJgW7eny08//aRff/1VDz74oCpWrKhBgwaFOktntU2bNoU6CwAAADgDsbABAACAM96TTz7pN4wxRuvWrdPgwYNPQ47OHDZ1ezo99thjmj59uurUqaO5c+ee8sPOAX+ysrIKfL9IkSI+z9E4W/ICAABwOnArKgAAAAAAAvDLL7+oevXqBYZJTU3VyJEjz6q8AAAAnC4sbAAAAAAAEIAjR45ow4YNBYZJTk5WcnLyWZUXAACA04WFDQAAAAAAAAAAEDG4ySYAAAAAAAAAAIgYLGwAAAAAAAAAAICIwcIGAAAAAAAAAACIGCxsAAAAAAAAAACAiMHCBgAAAAAAAAAAiBgsbAAAAAAAAAAAgIjBwgYAAAAAAAAAAIgYLGwAAAAAAAAAAICIwcIGAAAAAAAAAACIGCxsAAAAAAAAAACAiMHCBgAAAAAAAAAAiBgsbAAAAAAAAAAAgIjBwgYAAAAAAAAAAIgYLGwAAAAAAAAAAICIwcIGAAAAAAAAAACIGCxsAAAAAAAAAACAiMHCBgAAAAAAAAAAiBgsbAAAAAAAAAAAgIjBwgYAAAAAAAAAAIgYLGwAOG3mzJmjevXqKT4+Xo7jaP369aHOUp5Gjhwpx3FCnY2wMWjQIFWrVi3U2Qi6d955RyNHjnQ93mnTpslxHP3yyy+uxy1JmzZt0siRI4MWPwAAQCgEew41adIkTZs2LShxR7Jq1app0KBBoc5G0AWr/YN97RSsaxYAiEQsbAA4LXbv3q0BAwaoZs2aWrx4sVauXKnzzjsv1NkCvN555x2NGjUq1NkI2KZNmzRq1CgWNgAAAALAwsbZLVLbP1KvWQAgGFjYAHBafP/99zp69KiuvfZatWnTRs2bN1exYsVCna0zyl9//RXqLESks63ezrbynujgwYMyxoQ6GwAAAIVijNHBgwdDnY2IdDbNhc/2fnI2tTVwtmJhA0DQDRo0SK1bt5YkXXXVVXIcR23btvW+v2DBArVo0ULFihVTYmKiOnXqpJUrV+aKI68tvXndNspxHN1+++2aPn266tSpo2LFiumCCy7Q22+/nevzixYtUqNGjRQbG6vq1avrqaeeCqhsy5YtU4cOHZSUlKRixYqpVatWev/99/PM48aNG9WvXz95PB6VL19egwcPVkZGhk9YY4wmTZqkRo0aKT4+XiVLllTv3r31888/+4Rr27at6tevr48++kgtW7ZUsWLFNHjwYEnStm3b1Lt3byUmJqpEiRK65pprtHr1ajmO4/2rpOnTp8txnFz1LEn/+Mc/VLRoUf3+++/5lvvQoUN64IEHVL16dcXExKhSpUq67bbbtHfvXp9wy5cvV9u2bVW6dGnFx8erSpUquvLKK30mmS+88IIuuOACFS9eXImJiTr//PP14IMPFljvF110kbp37+5zrEGDBnIcR6tXr/Yee/PNN+U4jr7++mtJ/2uLdevWqXfv3ipZsqRq1qypQYMG6fnnn5d0vP/kvPztgrBp/8J+9r///a/69eun8uXLKzY2VlWqVNF1112nw4cPa9q0aerTp48kqV27dt5857RzQf1ky5Ytuvbaa1WuXDnFxsaqTp06evrpp3Xs2DFv2r/88oscx9FTTz2lZ555RtWrV1fx4sXVokULrVq1yqqcO3bs0M0336xzzjlHMTExql69ukaNGqWsrKxTTmfNmjXq1auXSpUqpbi4ODVu3FhvvPGGT5ic21csWbJEgwcPVtmyZVWsWDEdPnxYxhiNGTNGVatWVVxcnJo2baqlS5eqbdu23rFp//79KlGihG6++eZc6f/yyy+KiorSk08+aVUHAADAPVOnTtUFF1yguLg4lSpVSpdffrm+/fZbnzA///yzrr76aiUnJys2Nlbly5dXhw4dvLfCrVatmjZu3KgVK1Z450/+bh8U6Dx99erVuuSSS1SsWDHVqFFD48aN85lnSVJmZqZGjBjhM6ceNmyYDhw44BMu5/pm8uTJqlOnjmJjY/Xqq69Kkj755BO1aNFCcXFxqlSpkh555BG9/PLLPnPZ66+/XqVKlcrzh9727durXr16BZbdZt4o+Z/X//XXX97y5rRf06ZNNWvWrHzTzszMVHR0tM+8648//lCRIkXk8Xh85pRDhw5V2bJlvX/Ikt9cOJjtX9jPLl68WB06dJDH41GxYsVUp04djR07VpL8XrP46ycdOnRQYmKiihUrppYtW2rRokU+aefMnz/44APdeuutKlOmjEqXLq0rrriiwGvDEwUyT7dNZ86cOWrRooUSEhJUvHhxdenSRV9++aVPmEGDBql48eL6+uuv1blzZyUmJqpDhw6SpL1793rPgeLFi6t79+76+eef5TiO97ZeH3/8sRzHybMvvvbaa7muMwGECQMAQfbjjz+a559/3kgyY8aMMStXrjQbN240xhjz+uuvG0mmc+fOZv78+WbOnDmmSZMmJiYmxnz88cfeOAYOHGiqVq2aK+7U1FRz8lAmyVSrVs1cfPHF5o033jDvvPOOadu2rYmOjjY//fSTN9yyZctMVFSUad26tXnzzTfN3LlzzUUXXWSqVKmSK868TJ8+3TiOY/7+97+bN9980yxcuND06NHDREVFmWXLluXKY+3atc2jjz5qli5dap555hkTGxtrUlJSfOK88cYbTdGiRc3w4cPN4sWLzcyZM835559vypcvb3bs2OEN16ZNG1OqVClTuXJlM3HiRPPBBx+YFStWmP3795tzzz3XlCpVyjz//PPmvffeM3fddZepXr26kWTS0tKMMcYcPnzYVKhQwVxzzTU+6R89etQkJyebPn365Fv3x44dM126dDHR0dHmkUceMUuWLDFPPfWUSUhIMI0bNzaHDh0yxhizefNmExcXZzp16mTmz59vPvzwQ/P666+bAQMGmPT0dGOMMbNmzTKSzB133GGWLFlili1bZiZPnmyGDh1aYN3ff//9pnjx4ubIkSPGGGN27NhhJJn4+HgzevRob7hbb73VlC9fPldbVK1a1dx3331m6dKlZv78+ebHH380vXv3NpLMypUrva+csuTFtv3T0tKMJLN58+aAP7t+/XpTvHhxU61aNTN58mTz/vvvmxkzZpi+ffuazMxMs2vXLjNmzBgjyTz//PPefO/atcsYk38/2bVrl6lUqZIpW7asmTx5slm8eLG5/fbbjSRz6623etPfvHmz93zq2rWrmT9/vpk/f75p0KCBKVmypNm7d2+B7bR9+3ZTuXJlU7VqVfPiiy+aZcuWmccee8zExsaaQYMGnVI6y5cvNzExMeaSSy4xc+bMMYsXLzaDBg3y6d8n1nulSpXMTTfdZN59913z73//22RlZZkHHnjASDI33XSTWbx4sZkyZYqpUqWKqVixomnTpo03jrvuusskJCTkKuc999xj4uLizB9//FFg+QEAwKnLaw6VM+/p16+fWbRokXnttddMjRo1jMfjMd9//703XO3atc25555rpk+fblasWGHmzZtnhg8fbj744ANjjDHr1q0zNWrUMI0bN/bOn9atW1dgfgKZp5cuXdrUqlXLTJ482SxdutQMGTLESDKvvvqqN9yBAwdMo0aNTJkyZcwzzzxjli1bZv75z38aj8dj2rdvb44dO+YNmzOnadiwoZk5c6ZZvny5+eabb8xXX31l4uLiTMOGDc3s2bPNggULzN/+9jdTrVo1n7r76quvjCQzZcoUnzJt3LjRO4/MUbVqVTNw4EDvv23njTbz+ptvvtkUK1bMPPPMM+aDDz4wb7/9thk3bpyZOHFigXXfvHlz07lzZ++/Z8+ebeLi4ozjOObTTz/1Hq9Tp47p27evT1vkNRcOZvvndd1q+9mXX37ZOI5j2rZta2bOnGmWLVtmJk2aZIYMGWKMMX6vWfLrJx9++KEpWrSoadKkiZkzZ46ZP3++6dy5s3Ecx8yePdubfs45V6NGDXPHHXeY9957z7z88sumZMmSpl27dgXWjzGBz9Nt0hk9erRxHMcMHjzYvP322+bNN980LVq0MAkJCd7fFHLqvWjRoqZatWpm7Nix5v333zfvvfeeyc7ONq1btzZxcXFm3LhxZsmSJWbUqFGmVq1aRpJJTU31xtG4cWPTqlWrXOW66KKLzEUXXeS3/ABOPxY2AJwWH3zwgZFk5s6d6z2WnZ1tkpOTTYMGDUx2drb3+L59+0y5cuVMy5YtvccCXdgoX768yczM9B7bsWOHKVKkiBk7dqz3WLNmzUxycrI5ePCg91hmZqYpVaqU34WNAwcOmFKlSpmePXv6HM/OzjYXXHCBufjii3Plcfz48T5hhwwZYuLi4rwXLStXrjSSzNNPP+0TbuvWrSY+Pt7ce++93mNt2rQxksz777/vEzZnAendd9/1OX7zzTfnmlCmpqaamJgYs3PnTu+xOXPmGElmxYoV3mMn1/3ixYvzLE/OZ1966SVjjDH//ve/jSSzfv16k5/bb7/dlChRIt/387Ns2TIjyXz00UfGGGNmzJhhEhMTzZAhQ3wmw7Vq1TL9+/f3KbMk8+ijj+aK87bbbrNa0DImsPY/+aI8kM+2b9/elChRwrtQkZe5c+caSd4L9RPl10/uv/9+I8l8/vnnPsdvvfVW4ziO+e6774wx/1twaNCggcnKyvKG++KLL4wkM2vWrHzzZczxfle8eHHz66+/+hx/6qmnjCTvxUgg6Zx//vmmcePG5ujRoz5x9ujRw1SsWNE7luTU+3XXXecTbs+ePSY2NtZcddVVPsdzzr8TFzZ++uknU6RIEfPss896jx08eNCULl0616IkAABw18lzqPT0dBMfH2/+9re/+YTbsmWLiY2N9c75/vjjDyPJTJgwocD469Wr5/O9X5BTmaefPM+qW7eu6dKli/ffY8eONUWKFDGrV6/2CZczh37nnXe8xyQZj8dj9uzZ4xO2T58+JiEhwezevdt7LDs729StWzfXolCbNm1Mo0aNfD5/6623mqSkJLNv3z7vsZMXNmznjTbz+vr165u///3vBYbJy8MPP2zi4+O9P+DfcMMNpmvXrqZhw4Zm1KhRxhhjfvvtN59rkZwy5zUXNiZ47X/ytZPtZ/ft22eSkpJM69atfRa1TlbQNUt+/aR58+amXLlyPu2clZVl6tevb8455xxvejnnXM5CSo7x48cbSWb79u355suYwOfp/tLZsmWLiY6ONnfccYdPuH379pkKFSr4LGINHDjQSDJTp071Cbto0SIjybzwwgs+x8eOHZtrYSMnX19++aX3WM71yImLkgDCB7eiAhAy3333nX7//XcNGDBARYr8bzgqXry4rrzySq1ateqU74vZrl07JSYmev9dvnx5lStXTr/++qsk6cCBA1q9erWuuOIKxcXFecMlJiaqZ8+efuP/7LPPtGfPHg0cOFBZWVne17Fjx9S1a1etXr061xbyXr16+fy7YcOGOnTokHbt2iVJevvtt+U4jq699lqfOCtUqKALLrhAH374oc/nS5Ysqfbt2/scW7FihRITE9W1a1ef4/369ctVhltvvVWSNGXKFO+x5557Tg0aNNCll16ab9mXL18u6fh23xP16dNHCQkJ3tspNWrUSDExMbrpppv06quv5rnV+uKLL9bevXvVr18//ec//9Eff/yRb7onatWqleLi4rRs2TJJ8t5GqGvXrvrss8/0119/aevWrfrhhx/UsWPHXJ+/8sorrdLJz6m0f6Cf/euvv7RixQr17dtXZcuWPeW85tVPli9frrp16+riiy/2OT5o0CAZY7xtnKN79+6Kiory/rthw4aS5D2f8vP222+rXbt2Sk5O9ilrt27dJB3vr4Gk8+OPP+q///2vrrnmGknyifNvf/ubtm/fru+++84nzpPbetWqVTp8+LD69u3rc7x58+a5bkFQo0YN9ejRQ5MmTfLe0mDmzJn6888/dfvttxdYdgAA4K6VK1fq4MGDueaglStXVvv27b1z0FKlSqlmzZp68skn9cwzz+jLL7/MdcukQAU6T69QoUKueVbDhg195k5vv/226tevr0aNGvnE2aVLFzmOkyvO9u3bq2TJkj7HVqxYofbt26tMmTLeY0WKFMk1z5GkO++8U+vXr9enn34q6fgtnqZPn66BAweqePHi+Zbddt5oM6+/+OKL9e677+r+++/Xhx9+aP38hw4dOujgwYP67LPPJB2/pWunTp3UsWNHLV261HtMUq65f15z4UAF2v6n8tnPPvtMmZmZGjJkSK5bLQfi5H5y4MABff755+rdu7dPO0dFRWnAgAHatm1brvlzXtetUsFz/1OZp/tL57333lNWVpauu+46n/ji4uLUpk2bPOv95Ll/zvXGyedEXtfH/fr1U7ly5by3+5KkiRMnqmzZsrrqqqvyLTuA0GFhA0DI/Pnnn5KkihUr5novOTlZx44dU3p6+inFXbp06VzHYmNjvZPn9PR0HTt2TBUqVMgVLq9jJ9u5c6ckqXfv3ipatKjP64knnpAxRnv27CkwT7GxsZLkzdPOnTtljFH58uVzxblq1apcFwd51duff/6p8uXL5zqe37GrrrpKL774orKzs7VhwwZ9/PHHfn+w/fPPPxUdHZ3rx3bHcVShQgVvu9asWVPLli1TuXLldNttt6lmzZqqWbOm/vnPf3o/M2DAAE2dOlW//vqrrrzySpUrV07NmjXzXqDkJy4uTq1atfJewLz//vvq1KmT2rZtq+zsbH388cfeOPJa2Mir7gJxKu0f6GfT09OVnZ2tc845p1B5za+f5Hfe5bx/In99Nz87d+7UwoULc5Uz5z7OJ/dpm3NEkkaMGJErziFDhuQZ58nlzCmb7Xly55136ocffvD2p+eff14tWrTQhRdeWGDZAQCAu/xdO+S87ziO3n//fXXp0kXjx4/XhRdeqLJly2ro0KHat2/fKaUd6Dzd37VITpwbNmzIFV9iYqKMMa7P/S+77DJVq1bN+6PttGnTdODAAd12220Flt123mgzr//Xv/6l++67T/Pnz1e7du1UqlQp/f3vf9cPP/xQYB5yno+xbNky/fjjj/rll1+8Cxuff/659u/fr2XLlqlGjRqqXr26z2cLO++XAm//U/ns7t27Jcn1uX96erqMMUGf+5/KPN127n/RRRflinPOnDm54itWrJiSkpJ8juVcu5YqVcrneF7nSGxsrG6++WbNnDlTe/fu1e7du/XGG2/ohhtu8OYNQHiJDnUGAJy9ciYy27dvz/Xe77//riJFinj/2iQuLk6HDx/OFc72L/xPVrJkSTmOox07duR6L69jJ8v5q6iJEyeqefPmeYbJa7LkL07HcfTxxx/nOXE6+Vhef8lTunRpffHFF7mO51emO++8U9OnT9d//vMfLV682Puw8YKULl1aWVlZ2r17t8/ihjFGO3bs0EUXXeQ9dskll+iSSy5Rdna21qxZo4kTJ2rYsGEqX768rr76aklSSkqKUlJSdODAAX300UdKTU1Vjx499P3336tq1ar55qNDhw569NFH9cUXX2jbtm3q1KmTEhMTddFFF2np0qX6/fffdd5556ly5cq5PluYv4KSCtf+tp/Nzs5WVFSUtm3bVqi85tdP8jvvTsxjYZUpU0YNGzbU6NGj83w/52IqkPgk6YEHHtAVV1yRZ5jatWv7/Pvk8ueMOzkXSifasWNHrl0b7du3V/369fXcc8+pePHiWrdunWbMmBFQvgEAQOH5u3Y4cf5StWpVvfLKK5Kk77//Xm+88YZGjhypI0eOaPLkyQGnHeg83TbO+Ph4TZ06Nd/3T5TfnC6/Oc3JihQpottuu00PPvignn76aU2aNEkdOnTINXfKKw3beaO/eX1CQoJGjRqlUaNGaefOnd7dGz179tR///vffPMQExOj1q1ba9myZTrnnHNUoUIFNWjQQDVq1JAkffjhh3r//ffVo0ePXJ8t7Lw/p4yn2v62n825rnJ77l+yZEkVKVIk6HP/U5mn28b573//u8Drwhz5nSNZWVnas2ePz+JGftfHt956q8aNG6epU6fq0KFDysrK0i233BJQvgGcPixsAAiZ2rVrq1KlSpo5c6ZGjBjhnYgcOHBA8+bNU4sWLVSsWDFJUrVq1bRr1y7t3LnT+4PxkSNH9N57751S2gkJCbr44ov15ptv6sknn/Tejmrfvn1auHCh38+3atVKJUqU0KZNm1y7JU2PHj00btw4/fbbb3luH7fRpk0bvfHGG3r33Xe9t/uRpNmzZ+cZvkmTJmrZsqWeeOIJffPNN7rpppuUkJBQYBodOnTQ+PHjNWPGDN11113e4/PmzdOBAwfUoUOHXJ+JiopSs2bNdP755+v111/XunXrvAsbORISEtStWzcdOXJEf//737Vx48YCJ7AdO3bUgw8+qEceeUTnnHOOzj//fO/xBQsWaMeOHQHdcurEvxCKj48vMGxh2j+Qz7Zp00Zz587V6NGj873gsN09caIOHTpo7NixWrdunc/Og9dee02O46hdu3bWcRWkR48eeuedd1SzZs1ct044FbVr11atWrX01VdfacyYMacUR7NmzRQbG6s5c+b4XHStWrVKv/76a66FDUkaOnSobrnlFmVkZKh8+fLq06fPqRYBAACcohYtWig+Pl4zZszw+S7etm2bli9frt69e+f5ufPOO08PP/yw5s2bp3Xr1nmPn7yDoiBuzNPzinPMmDEqXbp0rl0Gttq0aaN33nlHf/zxh3eueOzYMc2dOzfP8DfccINGjhypa665Rt99952eeOIJv2mcyrzRZl5fvnx5DRo0SF999ZUmTJigv/76y3vtl5eOHTvqgQceUGJiondHdkJCgpo3b66JEyfq999/z3Ondn5OV/vbfrZly5byeDyaPHmyrr766nwXZAK5ZpGO11GzZs305ptv6qmnnvJ+5tixY5oxY4bOOeccnXfeeQGVKS9uzNNP1qVLF0VHR+unn3465VsJt2nTRuPHj9ecOXO8t2KW8r8+rlixovr06aNJkybpyJEj6tmzp6pUqXJKaQMIPhY2AIRMkSJFNH78eF1zzTXq0aOHbr75Zh0+fFhPPvmk9u7dq3HjxnnDXnXVVXr00Ud19dVX65577tGhQ4f0r3/9S9nZ2aec/mOPPaauXbuqU6dOGj58uLKzs/XEE08oISEh39sI5ShevLgmTpyogQMHas+ePerdu7fKlSun3bt366uvvtLu3bv1wgsvBJSfVq1a6aabblJKSorWrFmjSy+9VAkJCdq+fbs++eQTNWjQwGcylpeBAwfq2Wef1bXXXqvHH39c5557rt59913vAtCJzzLJceedd+qqq66S4zjebcIF6dSpk7p06aL77rtPmZmZatWqlTZs2KDU1FQ1btxYAwYMkCRNnjxZy5cvV/fu3VWlShUdOnTI+xdpORcdN954o+Lj49WqVStVrFhRO3bs0NixY+XxeHx2fuSlSZMmKlmypJYsWaKUlBTv8Y4dO+qxxx7zScdGgwYNJElPPPGEunXrpqioKDVs2FAxMTG5wham/QP57DPPPKPWrVurWbNmuv/++3Xuuedq586dWrBggV588UUlJiaqfv36kqSXXnpJiYmJiouLU/Xq1fO8BUKOu+66S6+99pq6d++uf/zjH6pataoWLVqkSZMm6dZbb3Xl4kaS/vGPf2jp0qVq2bKlhg4dqtq1a+vQoUP65Zdf9M4772jy5MkBb7d/8cUX1a1bN3Xp0kWDBg1SpUqVtGfPHn377bdat25dvhfyOUqVKqW7775bY8eOVcmSJXX55Zdr27ZtGjVqlCpWrJjnOXLttdfqgQce0EcffaSHH344zz4BAACCq0SJEnrkkUf04IMP6rrrrlO/fv30559/atSoUYqLi1NqaqokacOGDbr99tvVp08f1apVSzExMVq+fLk2bNig+++/3xtfgwYNNHv2bM2ZM0c1atRQXFycdz54Mjfm6ScbNmyY5s2bp0svvVR33XWXGjZsqGPHjmnLli1asmSJhg8frmbNmhUYx0MPPaSFCxeqQ4cOeuihhxQfH6/Jkyd7n/V28rymRIkSuu666/TCCy+oatWqVs8WtJ032szrmzVrph49eqhhw4YqWbKkvv32W02fPt3nD9ry06FDB2VnZ+v999/Xq6++6j3esWNHpaamynGcgJ6lcbra3/azxYsX19NPP60bbrhBHTt21I033qjy5cvrxx9/1FdffaXnnnvOm2/J7polx9ixY9WpUye1a9dOI0aMUExMjCZNmqRvvvlGs2bNcmVXi1T4efrJqlWrpn/84x966KGH9PPPP6tr164qWbKkdu7cqS+++MK7A6ggXbt2VatWrTR8+HBlZmaqSZMmWrlypV577TVJ+V8f55x7aWlpAeUZwGkWkkeWAzjrfPDBB0aSmTt3bq735s+fb5o1a2bi4uJMQkKC6dChg/n0009zhXvnnXdMo0aNTHx8vKlRo4Z57rnnTGpqqjl5KJNkbrvttlyfr1q1qhk4cKDPsQULFpiGDRuamJgYU6VKFTNu3Lg848zPihUrTPfu3U2pUqVM0aJFTaVKlUz37t19ypkT3+7du30+m5aWZiSZzZs3+xyfOnWqadasmUlISDDx8fGmZs2a5rrrrjNr1qzxhmnTpo2pV69ennnasmWLueKKK0zx4sVNYmKiufLKK80777xjJJn//Oc/ucIfPnzYxMbGmq5du+YZ38CBA03VqlV9jh08eNDcd999pmrVqqZo0aKmYsWK5tZbbzXp6eneMCtXrjSXX365qVq1qomNjTWlS5c2bdq0MQsWLPCGefXVV027du1M+fLlTUxMjElOTjZ9+/Y1GzZsyDMvJ7v88suNJPP66697jx05csQkJCSYIkWK+OTHmPzbIqcebrjhBlO2bFnjOE6ebXMym/bPr51tPmuMMZs2bTJ9+vQxpUuX9vbTQYMGmUOHDnnDTJgwwVSvXt1ERUUZSSYtLc0YU3A/+fXXX03//v1N6dKlTdGiRU3t2rXNk08+abKzs71hNm/ebCSZJ598MtfnJZnU1NQC68cYY3bv3m2GDh1qqlevbooWLWpKlSplmjRpYh566CGzf//+U0rnq6++Mn379jXlypUzRYsWNRUqVDDt27c3kydP9obJqffVq1fnivPYsWPm8ccfN+ecc46JiYkxDRs2NG+//ba54IILzOWXX55nOQYNGmSio6PNtm3b/JYZAAAUXn5zqJdfftk7f/d4POayyy4zGzdu9L6/c+dOM2jQIHP++eebhIQEU7x4cdOwYUPz7LPPmqysLG+4X375xXTu3NkkJiYaSbnmu3kpzDw9rzn1/v37zcMPP2xq167tLU+DBg3MXXfdZXbs2OENl9/1jTHGfPzxx6ZZs2YmNjbWVKhQwdxzzz3miSeeMJLM3r17c4X/8MMPjSQzbty4POPL65rJZt5oM6+///77TdOmTU3JkiVNbGysqVGjhrnrrrvMH3/8kWdeTnTs2DFTpkwZI8n89ttv3uOffvqpkWQuvPDCXJ8paC4crPbPq51tP2vM8WveNm3amISEBFOsWDFTt25d88QTT3jfL+iaxV8/ad++vTf95s2bm4ULF/qEyW/+nHMt/8EHH/ito8LM0/NLZ/78+aZdu3YmKSnJxMbGmqpVq5revXubZcuWecMMHDjQJCQk5JmnPXv2mJSUFFOiRAlTrFgx06lTJ7Nq1Sojyfzzn//M8zPVqlUzderU8VteAKHlGGNM8JdPAAChNGbMGD388MPasmVLrr+QX7hwoXr16qVFixbpb3/7W4hyCITW5s2bdf755ys1NVUPPvigz3tHjhxRtWrV1Lp1a73xxhshyiEAAICdzp0765dfftH333+f673hw4frhRde0NatWwvc4QucyWbOnKlrrrlGn376qVq2bOnz3oYNG3TBBRfo+eeft7qjAYDQ4VZUAHCGydmmfP755+vo0aNavny5/vWvf+naa6/1WdTYtGmTfv31Vw0fPlyNGjXyeSYHcCb76quvNGvWLLVs2VJJSUn67rvvNH78eCUlJen666/3htu9e7e+++47paWlaefOnT63rwAAAAgHd999txo3bqzKlStrz549ev3117V06VLvw9NzrFq1St9//70mTZqkm2++mUUNnDVmzZql3377TQ0aNFCRIkW0atUqPfnkk7r00kt9FjV++ukn/frrr3rwwQdVsWJFDRo0KHSZBmCFhQ0AOMMUK1ZMzz77rH755RcdPnxYVapU0X333aeHH37YJ9yQIUP06aef6sILL9Srr77q2r1VgXCXkJCgNWvW6JVXXtHevXvl8XjUtm1bjR49WuXLl/eGW7RokVJSUlSxYkVNmjTJ54GZAAAA4SA7O1uPPvqoduzYIcdxVLduXU2fPl3XXnutT7ic51j06NFDjz/+eIhyC5x+iYmJmj17th5//HEdOHDAu2hx8nnw2GOPafr06apTp47mzp3r97kvAEKPW1EBAAAAAAAAAICIUSTUGZCkkSNHynEcn1eFChW87xtjNHLkSCUnJys+Pl5t27bVxo0bfeI4fPiw7rjjDpUpU0YJCQnq1auXtm3b5hMmPT1dAwYMkMfjkcfj0YABA7R3716fMFu2bFHPnj2VkJCgMmXKaOjQoTpy5EjQyg4AAAAA/nDNBAAAgEjx0UcfqWfPnkpOTpbjOJo/f77P+zZzV3/CYmFDkurVq6ft27d7X19//bX3vfHjx+uZZ57Rc889p9WrV6tChQrq1KmT9u3b5w0zbNgwvfXWW5o9e7Y++eQT7d+/Xz169FB2drY3TP/+/bV+/XotXrxYixcv1vr16zVgwADv+9nZ2erevbsOHDigTz75RLNnz9a8efM0fPjw01MJAAAAAJAPrpkAAAAQCQ4cOKALLrjA+xzYk9nMXf0Ji1tRjRw5UvPnz9f69etzvWeMUXJysoYNG6b77rtP0vG/NCpfvryeeOIJ3XzzzcrIyFDZsmU1ffp0XXXVVZKk33//XZUrV9Y777yjLl266Ntvv1XdunW1atUqNWvWTNLxh2e1aNFC//3vf1W7dm29++676tGjh7Zu3ark5GRJ0uzZszVo0CDt2rVLSUlJeeb/8OHDOnz4sPffx44d0549e1S6dGnuWQ8AAICzgjFG+/btU3JysooUCZu/nzpjRPo1U06euG4CAABninCb/x46dChou2iNMbnma7GxsYqNjfX7Wcdx9NZbb+nvf/+7Ny5/c1fbTIVcamqqKVasmKlYsaKpVq2aueqqq8xPP/1kjDHmp59+MpLMunXrfD7Tq1cvc9111xljjHn//feNJLNnzx6fMA0bNjSPPvqoMcaYV155xXg8nlxpezweM3XqVGOMMY888ohp2LChz/t79uwxkszy5csLzL8kXrx48eLFixcvXrzO+tfWrVsDuxiAlUi/ZsopQ6j7Jy9evHjx4sWLl9uvcJj/Hjx40BQPYhmLFy+e61hqaqpV3iSZt956y/tvm7mrjWiFgWbNmum1117Teeedp507d+rxxx9Xy5YttXHjRu3YsUOSVL58eZ/PlC9fXr/++qskaceOHYqJiVHJkiVzhcn5/I4dO1SuXLlcaZcrV84nzMnplCxZUjExMd4weXnggQd09913e/+dkZGhKlWqaOvWrQX+xZIkeTxjC3z/f3E+YBUuELZph5JtuUNZj7bs69s2j+63n9v14/mvZbrnW8YXQJ+17zu28Vkn7brQnav2/cG2fiLhXHXbmTTOR8YYaieU9e32d1swuP59cAbVja1I6GNuy8zMVOXKlZWYmBiS9M90kX7NJBXuugkoLH9j6Jk0/wTo7/4Vdj4ZDnUYDu1c2DwE+/M2cRRGOM1/jxw5ov2S7pLkfw9FYA5Lenb//lxzNpvdGnmxmbvaCIuFjW7dunn/v0GDBmrRooVq1qypV199Vc2bN5ekXFtdTB7bX052cpi8wp9KmJPlt+0mKSnJYoIe5+f9/8XlPru0Q8m+3KGsR1u29e1umQPhev0Ut03XNkL7MrtdltBea4fqXLUvtNtteGb9uHHmjPORMYbaCWV9u/3dFgzu18+ZUze2IqOPBQe3FAqOSL9mkgp73QQUVsFjKH0QZxb6u3+Fm0+GRx2GQzsXNg/B/bxdHIUXTvPfBLl/tZSzgOD2nO1U5q4nCv3Nv/KQkJCgBg0a6IcfflCFChUkKddf/+zatcu7qlOhQgUdOXJE6enpBYbZuXNnrrR2797tE+bkdNLT03X06NFcK0gAAAAAECpcMwEAACAS2cxdbYTlwsbhw4f17bffqmLFiqpevboqVKigpUuXet8/cuSIVqxYoZYtW0qSmjRpoqJFi/qE2b59u7755htvmBYtWigjI0NffPGFN8znn3+ujIwMnzDffPONtm/f7g2zZMkSxcbGqkmTJkEtMwAAAADY4poJAAAAJysapJebbOauNsLiVlQjRoxQz549VaVKFe3atUuPP/64MjMzNXDgQDmOo2HDhmnMmDGqVauWatWqpTFjxqhYsWLq37+/JMnj8ej666/X8OHDVbp0aZUqVUojRoxQgwYN1LFjR0lSnTp11LVrV91444168cUXJUk33XSTevToodq1a0uSOnfurLp162rAgAF68skntWfPHo0YMUI33nhjmGwxAwAAAHA24poJAAAAkWL//v368ccfvf/evHmz1q9fr1KlSqlKlSp+5642wmJhY9u2berXr5/++OMPlS1bVs2bN9eqVatUtWpVSdK9996rgwcPasiQIUpPT1ezZs20ZMkSnwezPPvss4qOjlbfvn118OBBdejQQdOmTVNUVJQ3zOuvv66hQ4eqc+fOkqRevXrpueee874fFRWlRYsWaciQIWrVqpXi4+PVv39/PfXUU6epJgAAAAAgN66ZAAAA4E+03P/B/1TiW7Nmjdq1a+f999133y1JGjhwoKZNm2Y1d/XHMcaYU8gbCpCZmSmPxyPpfvl7XIsxqVZxOs4o6/TdjtM2vkDYPgfGtnfaP1fGvh5tuV0/btdNJAhG+7nfLqHrO85gywjT3D2nI2HccbtuAkrb7bJY17f7Y7LbY2MwvjdshfK77UxCPZ5eZ8p3f84cOCMjg7/chxX6DACERmGvb8+EOaC/OjgTyngmcKOd/M21CzPHDqe5TE5eRsv9h4cfkvSQFBblPFFY7NgAAAAAAAAAAACnLlruPxMjy+X43MLCBgAAAAAAAAAAES5cbkV1OhQJdQYAAAAAAAAAAABsheuCCwAAAAAAAAAAsFRUZ8+tqNixAQAAAAAAAAAAIgY7NgAAAAAAAAAAiHBn0zM2wjVfZ4SMjAeUlJRUYBjHGXWacnPqbPNoTKp1nMacam5Oj0DKYt+G9nG6KZA+Zltut/uEbX9wHLtwoRRY37GN0zK+tNC0XyBx2p4H7teNXbhAhOp8CQbHsU3brizB+W6zzaO77RLY2B2atg5lHwvVPCaUZQlG2vbfg+7mMRLGJwDAmcXfdw/fOacH9Vz4OrCZR1HP4cHfXJtxKXKxsAEAAAAAAAAAQISLlvvP2Djqcnxu4RkbAAAAAAAAAAAgYrBjAwAAAAAAAACACMczNgAAAAAAAAAAQMQoKvdvReV2fG7hVlQAAAAAAAAAACBisGMDAAAAAAAAAIAIdzbt2GBhI4g8QyTFuBOXManWYR3HnTQDTdtxRrmbcABpG2MXn23dBFSHKZZtk+Zu/bjdzoEIpD+GKl3b/mjfx4JRZrs8Oo5t2m73sUDic/tctU3b/fZzu+/Yp2sXzrYOA2Efp/vngX19u52uXbjA0g3N2GibbiDndCi/+1GQ0PSxUM45AH/jTKjmpQBODecszhSR0Jfd+A4N9vdwYePneuTsxsIGAAAAAAAAAAAR7mx6eDjP2AAAAAAAAAAAABEjXBdcAAAAAAAAAACApWi5/0yMcF1AYMcGAAAAAAAAAACIGOG64AIAAAAAAAAAACydTc/YcIwxJtSZONNkZmbK4/EoIyNDSUlJBYZ1nFFWcRqTap2+bZySXZzB6CFul9vZZJeuqWsXzr4OA8ij22UOQt+x5Ti2IUPXFwNpQ3fZ17fb55b7fSyQ1EPXH20E1h/c7Y+29WgfX6j6tvvjUzDidLuPnVH1nRLA+DTVOqir3D5fgsHteZYU/t8HtgKZAwMSfQYIlL/xPVRz7XDiRh1Rz4V3JtThmVAGf2zmjP7KWdjrpUivx3Cay+Tk5T1JCS7HfUBSFyksynkibkUFAAAAAAAAAAAiRrjuJAEAAAAAAAAAAJbOpltRsWMDAAAAAAAAAABEjHBdcAEAAAAAAAAAAJaiJRUNQpzhiB0bAAAAAAAAAAAgYoTrggsAAAAAAAAAALB0Nj1jwzHGmFBn4kyTmZkpj8ejjIwMJSUlFRjWcYKQgRS7YGaqXThnsLvxSfbldrt3Os4oy5Cp7iYs+7LY5zES2NZjJJTZ/T5hK1TngTHulzlUaQdyXtmm7XZZgjEuup/H8O87ttxul+Nx2oULxveq20LVd2wF0sdCNecIRCjrx4Z9/g5JGmc1BwakwK6bAABAYPzN4YJx3RaJClNP4TSXycnLp5KKuxz3fkmtpLAo54nCdcEFAAAAAAAAAABYKir3n7Hhdnxu4RkbAAAAAAAAAAAgYrBjAwAAAAAAAACACHc2PWMjXPMFAAAAAAAAAAAsRcv9W0eF6wICt6ICAAAAAAAAAAARI1wXXAAAAAAAAAAAgKWz6eHhjjHGhDoTZ5rMzEx5PB5JGZKSCgxrW/uOM6rQ+cqddmrI0g53tnUj2dePdX0PtkvXTLULF1j72eUxEkYN+3KHrsxu951Qsq7vjZb1XbcQmSkkx7ELFwnngdtC+V1ky/Ux2bI/HOd2/VjWzUbL6OrZ58/t+jmTzpdIGLvdPw9s+84hSeOUkZGhpKSC58CA9L/rJvoMAIQXf9/9kXCNGglCXc82c/lgz+NDXQeFFU5zmZy8fCsp0eW490mqI4VFOU/Ejg0AAAAAAAAAACLc2fTwcJ6xAQAAAAAAAAAAIka4LrgAAAAAAAAAAABL0VFS0YBuqWwRp5GU7W6cbmDHBgAAAAAAAAAAiBjs2AAAAAAAAAAAIMJFR0vRZ8mODRY2gmqspLgCQzibUk9PVvJKe3DIknadMXb16DijXA0XjLQlyz4x1TK6FPs+ZizjdKwHSPt6tGFb14GEtT0PAukTKEA9y3oMoK3dZkzIkrYSjPEpVPFJ9uOJbbu4n0f3z/1g1KNdwvbp2vazUJUllGNyyNovAKE69zMzM+XxjHM1bQD++RsTI2HcAhBeGDdOz9ga6no+Hde+wa5Hm990bH/ryjeNAstwqHCRB0HRINyKqmiY/k7CragAAAAAAAAAAIAr9u3bp2HDhqlq1aqKj49Xy5YttXr1alfTYMcGAAAAAAAAAAARLmi3ogrQDTfcoG+++UbTp09XcnKyZsyYoY4dO2rTpk2qVKmSK/lixwYAAAAAAAAAACi0gwcPat68eRo/frwuvfRSnXvuuRo5cqSqV6+uF154wbV02LEBAAAAAAAAAECEKxolFXV5K0PRY8f/m5mZ6XM8NjZWsbGxucJnZWUpOztbcXG+z56Oj4/XJ5984lq+2LEBAAAAAAAAAADyVblyZXk8Hu9r7NixeYZLTExUixYt9Nhjj+n3339Xdna2ZsyYoc8//1zbt293LT/s2AAAAAAAAAAAINJFyf2tDP//zI6tW7cqKSnJeziv3Ro5pk+frsGDB6tSpUqKiorShRdeqP79+2vdunXuZcsYcwqP/0BBMjMz5fF4lJGR4dPYeXGcUVZxGpNqnX4vzbUKt9DpYx2nHbuyBINt/djWt2Rf326fQcHoE9ZpD7YLZ6a6nrQV+/YLpE/YxmcXLpA82rNta7fTdv88cLt+3D/3g3NuuSk454G7405g7WwXZySMtaEcv8NdJNRNqManYAjdOX1I0jirOTAgBXbdlB9//fNsHHMRHPQ1AHDf6Rhb/f3u4+9as+A8hs/81zuvKiMlubywkXlM8vyhUyrngQMHlJmZqYoVK+qqq67S/v37tWjRIlfyxY4NAAAAAAAAAAAiXbTc37Fx7NQ/mpCQoISEBKWnp+u9997T+PHjXcsWCxsAAAAAAAAAAES6MFnYeO+992SMUe3atfXjjz/qnnvuUe3atZWSkuJatnh4OAAAAAAAAAAAcEVGRoZuu+02nX/++bruuuvUunVrLVmyREWLFnUtDXZsAAAAAAAAAAAQ6cJkx0bfvn3Vt29flzPiix0bAAAAAAAAAAAgYrBjAwAAAAAAAACASFdEUlSoM3F6OMYYE+pMnGkyMzPl8Xgk3S8pruDAKalWcZqp9uk7jl0425Z3nFH2iVuzK3eoBOOssK1HY+zqxr5dAqnrUOXRjm26x9O2jdM2PnfrJhIE1H6WY5nSQtMnAimL23G63SecwQEETnM1abk9RgSD22NjIN8H4T5OBOM8OBsFY14U7uOOrZw5cEZGhpKSkkKSB0QW+szpYTN2MO7DBn3Jjr96oo5gq7DzTvpa8IXTXMablxpSkssLG5nZkudnhUU5T8SODQAAAAAAAAAAIl203N+xYfnHw6cbz9gAAAAAAAAAAAARgx0bAAAAAAAAAABEurNoxwYLGwAAAAAAAAAARLoonTUPD+dWVAAAAAAAAAAAIGKwYyPEzFS7cM6mAOI0lnFabiMyJtUuvsF28UmS0mwDjgogUjfZlVmSHMc2j0Gox7OMfV1L1vXt9nkQQB7djtPtc9U2voBMdTfOYJTF7fp2XZr754GtYJTZ7fq2P6+sgkUEt7+HQimwcd6O2/02GN8HbqcNACdi7IBb6Et2qCe45UzoS4WdE5+OOvB3bWj7O2vYOItuRcWODQAAAAAAAAAAEDHYsQEAAAAAAAAAQKSL0lnziz87NgAAAAAAAAAAQMQ4S9ZvAAAAAAAAAAA4g0XJ/WdshOlzRtixAQAAAAAAAAAAIgY7NgAAAAAAAAAAiHTROmt+8T9Lihm+nMFBiDPNMmCKZXyWeTRTLdOV5KSNsgyZahnOLj5jbOOzZxun41iW2bb9rOsm/LlehwGlbRfONu1A+pjj2IVzu37s47MK9v/cbxs7lvUdwPgUjHHCRnD6mNt9InRjressvwMDizM05Q7GGOo4dnHajqFuC2Ufc3vsDk7aricNAMAZwWY+FBFzWcCCv/5+Ovp6sNNw45w+4+bOZ9HCBreiAgAAAAAAAAAAEeMsWb8BAAAAAAAAAOAMxo4NAAAAAAAAAACA8HOWrN8AAAAAAAAAAHAGKyIpyuU4j7kcn0vYsQEAAAAAAAAAACIGOzYAAAAAAAAAAIh0wXjGhnE5Ppc4xpgwzVrkyszMlMfjkXS/pLgQ5CDVMtwoq1DG2MXnOHbxBRJnqERCWezzGEj+7MsdCsGo60Da2kYgebRNO9zPl2BwHLtwkfANZt3HUizbOc398cntvuj2eRWIUJ4voSy3jTNpfAqsrt2dF9kK5XdWqNolZw6ckZGhpKSkkOQBkeVM6TP+zs2zcS4HILQYl6gDyZ3rk8LWU2Hbwf9vA6EtYzjNZbx56SYlFXU57qOS512FRTlPxI4NAAAAAAAAAAAi3Vm0Y4OFDQAAAAAAAAAAIl2UeHg4AAAAAAAAAABAuGHHBgAAAAAAAAAAke4suhUVOzYAAAAAAAAAAEDEYMdGMH3+gFTcz5Pi652erOQpJdUqmOOMsgpnjF18gbBNO5Qcx+0Y3S2zCWBV1bYstm0dCe3ndr8NRpmdwZYB09w9VwMri209hiaPoRyfXE97qn18bo9PkVDfkSBU4w51WDDHcXccC+T8C+S72i7tUH0fHLIMB5xp3B+TIo2/cSIY4zaA/HHOhUcdhHpsdCP+YJeh8PGHvp3DTpTc/8WfZ2wAAAAAAAAAAAAUTlgubIwdO1aO42jYsGHeY8YYjRw5UsnJyYqPj1fbtm21ceNGn88dPnxYd9xxh8qUKaOEhAT16tVL27Zt8wmTnp6uAQMGyOPxyOPxaMCAAdq7d69PmC1btqhnz55KSEhQmTJlNHToUB05ciRYxQUAAACAgHDNBAAAgFyigvQKQ2G3sLF69Wq99NJLatiwoc/x8ePH65lnntFzzz2n1atXq0KFCurUqZP27dvnDTNs2DC99dZbmj17tj755BPt379fPXr0UHZ2tjdM//79tX79ei1evFiLFy/W+vXrNWDAAO/72dnZ6t69uw4cOKBPPvlEs2fP1rx58zR8+PDgFx4AAAAA/OCaCQAAAGe7sFrY2L9/v6655hpNmTJFJUuW9B43xmjChAl66KGHdMUVV6h+/fp69dVX9ddff2nmzJmSpIyMDL3yyit6+umn1bFjRzVu3FgzZszQ119/rWXLlkmSvv32Wy1evFgvv/yyWrRooRYtWmjKlCl6++239d1330mSlixZok2bNmnGjBlq3LixOnbsqKefflpTpkxRZmbm6a8UAAAAAPh/XDMBAAAgX9FBeoWhsFrYuO2229S9e3d17NjR5/jmzZu1Y8cOde7c2XssNjZWbdq00WeffSZJWrt2rY4ePeoTJjk5WfXr1/eGWblypTwej5o1a+YN07x5c3k8Hp8w9evXV3JysjdMly5ddPjwYa1duzbPfB8+fFiZmZk+LwAAAABwW6ReM0lcNwEAAATdWbSwETbZmj17ttatW6fVq1fnem/Hjh2SpPLly/scL1++vH799VdvmJiYGJ+/WsoJk/P5HTt2qFy5crniL1eunE+Yk9MpWbKkYmJivGFONnbsWI0aNcqmmAAAAABwSiL5mkniugkAAADuCYuFja1bt+rOO+/UkiVLFBcXl284x3F8/m2MyXXsZCeHySv8qYQ50QMPPKC7777b++/MzExVrlxZajZWUv7lkaSepm6B7+dY6PSxCidJ2ug/iCSpnrsXFY4TSHyproYzJoCkLQRUlhTLcGluX8TZ1U0w2sXPaedljG072wmsLJY2WvYxu1NV9n1b1n3HTLWMb6q79R1I+wWlbSzY5jEY+Qtl2m4LZVnCvX5sx7vQsj1X7eva7T7h/veBfVjbOYJtOPvvQLtwgQjVuWqbbmZmpjyeca6mjf+J9GsmqYDrpggXjPM90rg9zgM4s9nMVc6EcSXYZfBXj+FQh4XNg/+5d+HnveFQT64Kxg6LYy7H55KwuBXV2rVrtWvXLjVp0kTR0dGKjo7WihUr9K9//UvR0dHevwY6+a9/du3a5X2vQoUKOnLkiNLT0wsMs3Pnzlzp79692yfMyemkp6fr6NGjuf4qKUdsbKySkpJ8XgAAAADglki/ZpK4bgIAAIB7wmJho0OHDvr666+1fv1676tp06a65pprtH79etWoUUMVKlTQ0qVLvZ85cuSIVqxYoZYtW0qSmjRpoqJFi/qE2b59u7755htvmBYtWigjI0NffPGFN8znn3+ujIwMnzDffPONtm/f7g2zZMkSxcbGqkmTJkGtBwAAAADIC9dMAAAA8KuIpCiXX2GxgpBbWNyKKjExUfXr1/c5lpCQoNKlS3uPDxs2TGPGjFGtWrVUq1YtjRkzRsWKFVP//v0lSR6PR9dff72GDx+u0qVLq1SpUhoxYoQaNGjgfbBenTp11LVrV91444168cUXJUk33XSTevToodq1a0uSOnfurLp162rAgAF68skntWfPHo0YMUI33ngjf1EEAAAAICS4ZgIAAAD+JywWNmzce++9OnjwoIYMGaL09HQ1a9ZMS5YsUWJiojfMs88+q+joaPXt21cHDx5Uhw4dNG3aNEVFRXnDvP766xo6dKg6d+4sSerVq5eee+457/tRUVFatGiRhgwZolatWik+Pl79+/fXU089dfoKCwAAAAAB4poJAADgLBeMZ2xkuxyfS8J2YePDDz/0+bfjOBo5cqRGjhyZ72fi4uI0ceJETZw4Md8wpUqV0owZMwpMu0qVKnr77bcDyS4AAAAAnFZcMwEAACDcZGVlaeTIkXr99de1Y8cOVaxYUYMGDdLDDz+sIkXcu69V2C5sAAAAAAAAAAAAS2GwY+OJJ57Q5MmT9eqrr6pevXpas2aNUlJS5PF4dOedd7qWLRY2Qmzh4D52AVPs4zR17cI59lGGjDF24ZzBlhGmjbIMmGoZLoA4UwKI0ypdd6OTAqhvy85jG8423YBY1rft+WIrkLLY1o+m2sbnbv8OpCzGuNy/LdmWOZD82cZpX9/uOpPKcpxleSy/B63LYjtGBOGcDm1927Efv90994NRN6EqSyDcHstCWRbgTGNzfnLOAUBgGDfdcTrqMfRtVfjrA39lKNw1yKFCfDZIch747XacAVi5cqUuu+wyde/eXZJUrVo1zZo1S2vWrHE1W2H6THMAAAAAAAAAABAOMjMzfV6HDx/OM1zr1q31/vvv6/vvv5ckffXVV/rkk0/0t7/9zdX8sGMDAAAAAAAAAIBIF8RbUVWuXNnncGpqap7PdrvvvvuUkZGh888/X1FRUcrOztbo0aPVr18/V7PFwgYAAAAAAAAAAMjX1q1blZSU5P13bGxsnuHmzJmjGTNmaObMmapXr57Wr1+vYcOGKTk5WQMHDnQtPyxsAAAAAAAAAAAQ6aLk/i/+Wcf/k5SU5LOwkZ977rlH999/v66++mpJUoMGDfTrr79q7Nixri5s8IwNAAAAAAAAAABQaH/99ZeKFPFddoiKitKxY8dcTYcdGwAAAAAAAAAARLpgPGMjwPh69uyp0aNHq0qVKqpXr56+/PJLPfPMMxo8eHAos4VAZGQ8YLU9x4YTQLs7ziircMakuhqfUuzikySl2cXpOAHEacM2j5b5O842Ttv4Aknbv56mrnXYkPUd2zoMgJlqF85xLOMztvEFoe+4zv12sR2j7NvF3TwGo11s+4Qt2zwG8n3gNttzPzCW485Uy7a2HWstwzkBfR+4y/2xNpC0XY/SZfZ90f2yBOE7Kyjnlnvs+9ihoOYDCIVwPz8BBMbmO43zPjz4ayva6fTUUWGvNSKhnQqTx8zMTHk841zMzZlh4sSJeuSRRzRkyBDt2rVLycnJuvnmm/Xoo4+6mg4LGwAAAAAAAAAARLqo/3+5HWcAEhMTNWHCBE2YMMHljPjiGRsAAAAAAAAAACBisGMDAAAAAAAAAIBIFwbP2DhdwjRbAAAAAAAAAADA2lm0sMGtqAAAAAAAAAAAQMQI0/WWs4ezyf04jUm1S3uwZYQpdvGZqZbxSXLSbEOOsks7RGWWJKXZ5TFUFgajk4WMfbv00lyrcMb0sQrnOEFo5xS7YEFJ22W257/jBDcf+QvgnHa5XWzHJ+txLID+EIw4QxFfIHG6XWbb+AKJ07Y/ul9mq2DHw9p+X7r8fW7PPj7bclu3teUYEQnc7mOZmZnyeMYVJktALv76qb/+WdjPuyEc8gDguHA45/1hTDiusON7YeOPBKejDIVNw991hb/fEs6Edjrtisj9h4eH6daIMM0WAAAAAAAAAABAbuzYAAAAAAAAAAAg0vGMDQAAAAAAAAAAgPATpustAAAAAAAAAADAGjs2AAAAAAAAAAAAwk+YrrcAAAAAAAAAAABrUf//cjvOMMTCRqjVswyXYh+ls8kyYJp9nFbppo2yDmtMql2cjl2cjmObsm0e7fInBVIW2/jswrkdXyBs0+5p6rqfuKUF6mMVzraPud1nJbl+DkYGt+vb3XQluT82DrZNN4A82qZtPU64Xd+BjKF24QI6t1wUjHTtx2X7erQTwPf0VMs+4XJ8weB2G5qpoUlXsj9XQxUfEAyF7af+Pu/vXHXjPOFcA84uZ8M5X9ix04150plQz6fjO6gw6Z+OPCAIuBUVAAAAAAAAAABA+AnT9RYAAAAAAAAAAGAtSu7/4h+mt6JixwYAAAAAAAAAAIgY7NgAAAAAAAAAACDS8YwNAAAAAAAAAACA8BOm6y0AAAAAAAAAAMBalNx/JkaYPmODhY0g8gyRFOMv1Ci7yNLs0zVTU63CObZpW7NLV5IcxzLtFPs4bVjXjW3+JDmOXZzGWEdpyS6PjmMfozG29W2X9kLLupF13QTSLpZJW5c5ErjbFwM5D2zPVbfr2/68CmR8sg1pVz9mqmW6ae6ef1Loxp1A2I+h4X+u2ubR9tyyj88qWFDq0Lp/BzKeuM7terQNF/591u2+CASDv35K/wQA94XD2FvYNIJdBpt5lL80zorvsDQ/9WT5O11+3LnO8NdOLiSBoGBhAwAAAAAAAACASHcWPWMjTLMFAAAAAAAAAACsnUULGzw8HAAAAAAAAAAARIwwXW8BAAAAAAAAAADWisj9h32H6daIMM0WAAAAAAAAAABAbuzYCKKMSVJSUsFhnLRUq7iMsU/X2WQf1i5tuzw6zih3E5akNMs4N9rl0VqKfXxmql04Z7BlhGnWSVuxbT/Jvg2t+4RlmR3HLpzkcjufcezaz3Fsxx3369u+rd0eT4LQdwIYJ0LF7XPaXiDx2ba1u3kMTv8OTX3bzhGC8j1tye0yB1KWQOZQbqftNvf7TviPY0Cw+ynnwenhbw7o9lgNoHDOhLE3HMrgb954JnwH2V/jn2r8hZ97+6tn/2lEWDvxjA0AAAAAAAAAAIDwE6brLQAAAAAAAAAAwBo7NgAAAAAAAAAAAMJPmK63AAAAAAAAAAAAa1H//3I7zjDEwgYAAAAAAAAAAJGOW1EBAAAAAAAAAACEH8cYY0KdiTNNZmamPB6PpPslxRUcOCXV/Qyk2QYcZRcsGHkcYRnuKbtgZqpdOMexLHMAjLGrH/u0Les7xTK6IHC7vt2vw0DitI3POmlrbtdPKNN1ux5t47Mdx4JRFusx1JLbffY498c8O/b17fa55Qy2DJgWmvNPCsb5EsqyhPc4dpy7aVu3i21flP33arjLmQNnZGQoKSkp1NlBBKDP4HTy990RjO9JAAimwv7GZTPuFXbsDHYebeIv7Phe8PVbpqTwmMt451UfSknFXY57v+Rpq7Ao54nYsQEAAAAAAAAAACJGmN4hCwAAAAAAAAAAWOMZGwAAAAAAAAAAAOEnTNdbAAAAAAAAAACAtaj/f7kdZxhixwYAAAAAAAAAAIgY7NgAAAAAAAAAACDSnUXP2HCMMSbUmTjTZGZmyuPxKCMjQ0lJSQWGdTbZxWnqupCxk9N2RlmGTLUK9YbpZZ12Hy2wCjdXdnHaxtdLc63CLVAfq3CS5Ay2Dmonzd12CeQMt+8T4c8Yu/qxZVs3bqcbSNr2bPPofn+wrR/b88pMLURm4GU9jqXZBQvGzMJx3E2b8a5goRrzbNtZKQFEavm9Gox6dFsov4tsBDIHBqTw6DP+zqvTcT6FQx7OBMGux9PRTv6+B/n1BkC4KezYWNjrstPzPV3Qu5mSwmP+651XrZOSEl2Oe5/kuVBhUc4TcSsqAAAAAAAAAAAQMcJ0IwkAAAAAAAAAALDGw8MBAAAAAAAAAADsVatWTY7j5HrddtttrqbDjg0AAAAAAAAAACJdGDw8fPXq1crOzvb++5tvvlGnTp3Up4/9M42DkC0AAAAAAAAAAHA2yczM9Pl3bGysYmNjc4UrW7asz7/HjRunmjVrqk2bNq7mxzHGGFdjhPcp9FKGJD9Pit9oGWm9UQHkINUqlG3LO04gaVtKscuj0uyC2ZfFLpwUQJk3WpYloDZ0k2X+JOv+aOrahbOvb1tnUrtIxtjlMSj9NsxZ180mywjrBZK6u/Vo38526drGF6w4w92ZVGbbcz+UM7lIqG+3v4vcn3OEtg3dlDMHzsjIUFKSnzkwIPoMAADB5G+u7sYc3d+c1988t7B5tLkeKWwcBX0+nOYy3rx8JyUluhz3PslTO/fx1NRUjRw5ssDPHjlyRMnJybr77rv14IMPupovdmwAAAAAAAAAAIB8bd261WcBJ6/dGiebP3++9u7dq0GDBrmeHxY2AAAAAAAAAACIdEF8xkZSUlLAO1NeeeUVdevWTcnJyS5nioUNAAAAAAAAAAAinikimSj34zwVv/76q5YtW6Y333zT3Qz9v1PMFgAAAAAAAAAAQG5paWkqV66cunfvHpT42bEBAAAAAAAAAECEy44+/nI7zkAdO3ZMaWlpGjhwoKKjg7MEwY4NAAAAAAAAAADgimXLlmnLli0aPHhw0NJgx0YQZWRI/p6n0ktzreJamJLqQo58OZtsQ9qlbUwAaTujXE3bnm26AagXorJstAxnnT/J1LXLo22/law7mRVjgnAehDJt6/PAjm0ebdMNZZndrptA2NejXXxu13cgdROMON1MNxBu5zESzgPr9rOcJ5qpduECitPl88X6e3qjfbsEMj+xEZzxyf1+ZiOU5wEAAMHg77stHL7TIiGP8M9mHuWvLUN53Xs8fZtQheuvwe7vNp8/2865cNmx0blzZxm3L8ZOwo4NAAAAAAAAAAAQMdixAQAAAAAAAABAhMuKcpQVZb1l3jJOIym4uy9OBTs2AAAAAAAAAABAxGDHBgAAAAAAAAAAES47OlrZ0e7u2MiONpKOuhqnG1jYAAAAAAAAAAAgwmVHRSnb5VtRZUeF58IGt6ICAAAAAAAAAAARgx0bQeTx2ITqYxnbqABSTrULlmYbn13aTkCLgZZ5tOQMdjU6KcU+f2aqXbjA6sdCPbt2McbdupakBZb91rHut+7n0b6+Xe6LAbRzMNomVGzLbVtm18+XgMZQd+O0L7P750v4t4v7cbpd3/btEsg57W59m2A8w81yjuCkudtve5q6VuEWBtAucv0ctEw2CGN8JOQRAICC+PsuK+x3UyR8t0VCHuGOYPf30yO0efT7e5/FdYu/evZ33RWU660gOqYoZcvdC+1jYfjgcIkdGwAAAAAAAAAAIIKwYwMAAAAAAAAAgAiXpShlubxjI4sdGwAAAAAAAAAAAIXDjg0AAAAAAAAAACJctqKU7fJehmwdczU+t7BjAwAAAAAAAAAARAx2bAAAAAAAAAAAEOGCs2PD3Wd2uIWFjSDKyJCSkgoO00tzreJaODjVhRydJG2UZUDLtDfaJ23q2oWzrh9nk126xq4szmCrYAGyq++elpWz0LEsi13VHFfPNqBt37FjgvIMIrs8WvcJx7LMKfbnqnWclueg2/XoBPC9ZZu2/bnlbh8LDnfHZdf7YkBsy2KXdiB9x5rluWWdtu25mmYZX0DcHp8Kk5f80rYN6W6/tZ/v2J8HtuOO2+dgMMbQ0I4TAM5m/sYV2/EJCHZfceM7kP7sH2PC2VFGdxSynqx/uzz1PATnN6nQOZsWNrgVFQAAAAAAAAAAiBjs2AAAAAAAAAAAIMKxYwMAAAAAAAAAACAMsWMDAAAAAAAAAIAIl60oZbFjAwAAAAAAAAAAILw4xoT+2e8vvPCCXnjhBf3yyy+SpHr16unRRx9Vt27dJEnGGI0aNUovvfSS0tPT1axZMz3//POqV6+eN47Dhw9rxIgRmjVrlg4ePKgOHTpo0qRJOuecc7xh0tPTNXToUC1YsECS1KtXL02cOFElSpTwhtmyZYtuu+02LV++XPHx8erfv7+eeuopxcTEWJcnMzNTHo9HGRkZSkpKKjCsY7vglWKdvJQWQFhXjbIPmpJqF26EXTBT1z5pG9btEhDL+rGtG+t2DqBdrFnm0ZpdHo2xT9e6DTdahnvKLpiZahmfJMcJRtv4Z1uPwchfIG0Y7mzrx/X6th0jJNe/D2xnDM7gACIN2VhmV4+BzJLsvzvC+9wPhHVbu9zOwfg+cHtGHMhcIlSzcbfHsUDmwAjcmXbNJNFnIom/8eJMmuMBCD6bOUioxxU3rocLW4YzYez1Nyf2Nw8u7OdtFKaew2kuk5OXVRnVVTzJ3b0M+zOPqblnc1iU80RhsWPjnHPO0bhx47RmzRqtWbNG7du312WXXaaNG4//4jh+/Hg988wzeu6557R69WpVqFBBnTp10r59+7xxDBs2TG+99ZZmz56tTz75RPv371ePHj2UnZ3tDdO/f3+tX79eixcv1uLFi7V+/XoNGDDA+352dra6d++uAwcO6JNPPtHs2bM1b948DR8+/PRVBgAAAACchGsmAAAA4H/C4hkbPXv29Pn36NGj9cILL2jVqlWqW7euJkyYoIceekhXXHGFJOnVV19V+fLlNXPmTN18883KyMjQK6+8ounTp6tjx46SpBkzZqhy5cpatmyZunTpom+//VaLFy/WqlWr1KxZM0nSlClT1KJFC3333XeqXbu2lixZok2bNmnr1q1KTk6WJD399NMaNGiQRo8eHVYrUgAAAADOHlwzAQAAwJ9sFVG2olyOMzyFxY6NE2VnZ2v27Nk6cOCAWrRooc2bN2vHjh3q3LmzN0xsbKzatGmjzz77TJK0du1aHT161CdMcnKy6tev7w2zcuVKeTwe7wRdkpo3by6Px+MTpn79+t4JuiR16dJFhw8f1tq1a/PN8+HDh5WZmenzAgAAAIBgiMRrJonrJgAAALgnbBY2vv76axUvXlyxsbG65ZZb9NZbb6lu3brasWOHJKl8+fI+4cuXL+99b8eOHYqJiVHJkiULDFOuXLlc6ZYrV84nzMnplCxZUjExMd4weRk7dqw8Ho/3Vbly5QBLDwAAAAAFi+RrJonrJgAAgGDLVlRQXuEobBY2ateurfXr12vVqlW69dZbNXDgQG3atMn7vnPS02KMMbmOnezkMHmFP5UwJ3vggQeUkZHhfW3durXAfAEAAABAoCL5mkniugkAACDYshQVlFc4CpuFjZiYGJ177rlq2rSpxo4dqwsuuED//Oc/VaFCBUnK9dc/u3bt8v6lUIUKFXTkyBGlp6cXGGbnzp250t29e7dPmJPTSU9P19GjR3P9VdKJYmNjlZSU5PMCAAAAADdF8jWTxHUTAAAA3BMWDw/PizFGhw8fVvXq1VWhQgUtXbpUjRs3liQdOXJEK1as0BNPPCFJatKkiYoWLaqlS5eqb9++kqTt27frm2++0fjx4yVJLVq0UEZGhr744gtdfPHFkqTPP/9cGRkZatmypTfM6NGjtX37dlWsWFGStGTJEsXGxqpJkyYBl8HjsQiUYhlZWsDJu2ejXTBTN9U+zu0F/zVXDuchYxcubZRlwgHk0ZZlG5qpdmk7gy3js6saOYMDKLN1PdqxzqNdd7AOd5xlWepZ1o/tuRoQ27Zxt10ige154HafDYQxlue043Ieg1LmIIyNbkuxzKN1/diFc5xA6sYuzpD1nSAwUy0DWoYL6DvLZYF9x/hn+x0YSrZ9EeHrTLhmOhP4G6+Dfa6djvQZL4D/CfU574Zgl8HfvMom/kjIY7AVvoz+rif8x1/YOW2w58Q210zBrcdDhYo7GI4p2vVbRx2TyxdLLgmLhY0HH3xQ3bp1U+XKlbVv3z7Nnj1bH374oRYvXizHcTRs2DCNGTNGtWrVUq1atTRmzBgVK1ZM/fv3lyR5PB5df/31Gj58uEqXLq1SpUppxIgRatCggTp27ChJqlOnjrp27aobb7xRL774oiTppptuUo8ePVS7dm1JUufOnVW3bl0NGDBATz75pPbs2aMRI0boxhtv5K+JAAAAAIQM10wAAADA/4TFwsbOnTs1YMAAbd++XR6PRw0bNtTixYvVqVMnSdK9996rgwcPasiQIUpPT1ezZs20ZMkSJSYmeuN49tlnFR0drb59++rgwYPq0KGDpk2bpqio/61Qvf766xo6dKg6d+4sSerVq5eee+457/tRUVFatGiRhgwZolatWik+Pl79+/fXU089dZpqAgAAAABy45oJAAAA/gTjYd/ZrsbmnrBY2HjllVcKfN9xHI0cOVIjR47MN0xcXJwmTpyoiRMn5humVKlSmjFjRoFpValSRW+//XaBYQAAAADgdOKaCQAAAPifsFjYAAAAAAAAAAAAp+5s2rFRJNQZAAAAAAAAAAAAsMWODQAAAAAAAAAAIly2igRhx4ZxNT63OMaY8MxZBMvMzJTH45F0v6Q4P6FTreIMpJWcwZYB00ZZBrTLY0A2WoZz+xmEQSizbdvYtouZ6m589mWWlOJyWweSdoj0NHWtwi10NlmFM8b988UyaVkWRY5jGV8g445j2dYbLeunXuj6jm0bWpc5lOeVZdrW445tmQNiWT8pdsFsy2LL9nyRAjtnQiE47WfH7bExkLLYn9O28dmFC0bfsS136Or7kKRxysjIUFJSkqt5wJkp57qJPhP+/I0DwZgDAzhz2cwtGFeCLxzaobDfL26Uwd/vawVdY4bTXCYnL29lNFdCkrt7GQ5kZulyz6qwKOeJuBUVAAAAAAAAAACIGNyKCgAAAAAAAACACJetaGW7/JM/Dw8HAAAAAAAAAAAoJHZsAAAAAAAAAAAQ4Y4pyvWHhx8L04eHs2MDAAAAAAAAAABEDHZsBFFGxgN+nxTvOKOs4nIGp7qRpaDqaeZah13o9LEMaVc/ktv1Y5uu5Djupu2kuVzmlADyZ522u4yxy6Pt+XKcbblt+61dfL2s45MWOpvsAm50t4+ZYCy02/azerYR2sVnWxbHsU3Xvp/Z9lvXTbVP1/qcCSBOKwGNO3bBzFS7cIGNEzaCUN9BSNtGIH3W9pwJxjkY7uzLEozvrNCw7TuZmZnyeMYFOTcAQiFk8x4X+fuePhPKGGw234FBudZAxHF/Xux+Hs6Ec/7MKGPBefQ37rhRRttrzUiRHYQdG9ns2AAAAAAAAAAAAGey3377Tddee61Kly6tYsWKqVGjRlq7dq2rabBjAwAAAAAAAACACJelIspyecdGlo4FFD49PV2tWrVSu3bt9O6776pcuXL66aefVKJECVfzxcIGAAAAAAAAAAARLlvRynb5J/9Ab0X1xBNPqHLlykpL+9+9p6tVq+ZqniRuRQUAAAAAAAAAAAqQmZnp8zp8+HCe4RYsWKCmTZuqT58+KleunBo3bqwpU6a4nh8WNgAAAAAAAAAAiHA5Dw93+yVJlStXlsfj8b7Gjh2bZx5+/vlnvfDCC6pVq5bee+893XLLLRo6dKhee+01V8vKragAAAAAAAAAAEC+tm7dqqSkJO+/Y2Nj8wx37NgxNW3aVGPGjJEkNW7cWBs3btQLL7yg6667zrX8sLARaimpVsHMVPsoHWeUZUi7tG0tdDZZhzXWt2ZzN4+28TlOIHHa1rcdYyzzaFvd9QLIn8v90bYv2oazrZtAONYVaZfHhQH1HUuWbehYny9BGCNSbAO6e75Yn6sbAyhLPXf7mdtjsv34aR+n6/Gl2bez9ZhnW4+W41jPqXOtwi20br9gcHdsdAbbp2zbz9xuF/u+4/73QWDnlo1g5NHl88XldIFg8Nef6Z/uCHY9h0M70lcKz/3vSpypwuF8K/y45S/+QkXvitNRz6Efv/3Na0Pf18LNiTss3Ivz+MPDk5KSfBY28lOxYkXVrVvX51idOnU0b948V/PFragAAAAAAAAAAEChtWrVSt99953Pse+//15Vq1Z1NR12bAAAAAAAAAAAEOGyFaWsIO3YsHXXXXepZcuWGjNmjPr27asvvvhCL730kl566SVX88WODQAAAAAAAAAAUGgXXXSR3nrrLc2aNUv169fXY489pgkTJuiaa65xNR12bAAAAAAAAAAAEOGyFa1sl3/yz1bgD5Xp0aOHevTo4Wo+TsbCBgAAAAAAAAAAES5bRYLw8PBsV+NzC7eiAgAAAAAAAAAAEYMdG6E2wi5YL821j3Nj6qnlpbDq2Qd1nFFW4d4wa63C9XUWWKZsl65SAqjDNPugrqpnWZYgcAbbhrStR7uy2PabgATS1jYC6g9ul8c2PnfbRZJ1uY1xt76t++JTgcRq2x8DidPNdAOow5RTzEoh4zNT7fPoej2m2dXjAss8Oq6fp/bnge2YF4yx0UkL5dhow77M9n3M3TKbwHdru5i2y2OtdR875Gq6gOR+f45E/s5BN+oo2PVMO9o5HW19pnNjXkQ9+3cm9NXTUQb//bHgNAo7nwyHdir8OelGO/gLEfp6clO2ooKwY8Pd+NzCjg0AAAAAAAAAABAx2LEBAAAAAAAAAECEY8cGAAAAAAAAAABAGGLHBgAAAAAAAAAAES5bUcpixwYAAAAAAAAAAEB4cYwxJtSZONNkZmbK4/EoIyNDSUlJBYZ1NtnF2bPuXOv0F27qYx3WhqlrF84ZHECkaZbhNlqGq2cZLsUyXCBGWIazzaNGWYUyJtUqnOPYxSdJSrGLU2ku59HyPFC9AMriNuu6CSROy3CW9S3Z5dF21Hccy2Ql2fZb2zzax2fLNl0F0C52wdz+lg3onA6ZAOrbUujqMZCyuDs22grsXLXj9jgRytmm+/Vj2XdsvzckmamnmJV8hKpdApkDA5Jdn/E3Xrs9pgbDmVAGnB5nQ18p7Fz2bKiDM6GMCA+no6/5P6f9pRH661t/9VBwGQ9JGhcW89+cedXojBsUlxTjatyHMo/oIc/LYVHOE3ErKgAAAAAAAAAAIhwPDwcAAAAAAAAAAAhD7NgAAAAAAAAAACDCZatIEHZshOfeiPDMFQAAAAAAAAAAQB4KtWNj7969eu+99/Tbb7/JcRxVrFhRXbp0UcmSJd3KHwAAAABENK6bAAAAcDpkKUpZLu/YcDs+t5zyjo1XXnlFF198sVatWqVjx44pOztbq1atUvPmzfXKK6+4mUcAAAAAiEhcNwEAAADuc4wx5lQ+WLt2ba1du1bFixf3Ob5v3z41adJE33//vSsZjESZmZnyeDzKyMhQUlJSgWGdwXZx9pw61zr9hc4m67BWUlLdjU+S0mzTtgw3wjJcPctwGmUb0NobZq1VuL6bFthFGJSyWLa1bbukWaZt2cfMVMt0JTmObbndLXMgeZyrXlbh+g627BOW9W2MXZnt6zAIgtAnbLndd2y/ZYNR36Fqa9t0j6ftatIKxvhty/36dvf7N5AZn+38xO3vc9tz+kw6X4IhkHPQTYHMgc8mXDfljz6DHP7G1lCNayc6HXmMhHoAIkVhz6cz4Xz0d611ar8In15uzL2D2dbhNJfJycv9GcMUlxTratyHMg9rnGdCWJTzRKe8Y8NxHO3fvz/X8f3798tx/1cKAAAAAIg4XDcBAAAA7jvlZ2w89dRTatOmjerXr69KlSpJkrZt26aNGzfq6aefdi2DAAAAABCpuG4CAADA6XJMUcp2+ZkYx8L0GRvWCxsDBgzQiy++qGLFikmSevTooW7duumLL77Q77//LmOMKlWqpIsvvlhRUeFZWAAAAAAIJq6bAAAAECrZQVjYcDs+t1jfimrmzJk+W6hvvvlmZWZmqkWLFrryyit15ZVXqmnTpkzOAQAAAJy1uG4CAAAAgs96YePkZ4zPmjVL6enp3n/v2rVLiYmJ7uUMAAAAACIM100AAAAIlWwV8e7acO91yo/pDqpTztXJE3ZJOnLkSKEyAwAAAABnEq6bAAAAAPed8sPD8+I4jpvR4ZSl2gVLsYwubZRlfJbpSnrD9LIK13fwArsIn7JMeKNluKfsy6I0u2B9bU8Py3bJ4xo5TwGdltZ9IoA4reKz62NOWgDtYnseWPYJU9cuXGDDYBO7tC3bWlPtyuw4lud0UFi2i9t9wrZvSzLGth7t4nO7vm3zdzxtV5MOoG7syxxIeezStgxo+51l+x0YCMu0zVR3k3UG24e1TtsynG2fcCy/XwI7DyzTtj5fLNvPduwOgH1Z7MK5ff7BHtdNp4+/84HzIDxEQjucjjwWNo1w6O+hzkOo03dDOJShsHkIhzJEQh79Cf61eySU0V8eC19H4dDWbspSlKJcfiZGVqQ/Y0M6fr/YdevW6ejRo5KYkAMAAADAybhuAgAAAILLesdG69atlZqaqn379qlo0aLKysrSgw8+qNatW+vCCy9U2bJlg5lPAAAAAAh7XDcBAAAgVLIVrWx3b9Lkenxusc7VRx99JEn64YcftHbtWq1bt05r167VI488or179/JXSAAAAADOelw3AQAAAMEX8HJLrVq1VKtWLV199dXeY5s3b9aaNWv05Zdfupo5AAAAAIhEXDcBAADgdDumKGW7/EyMY2H6jA1X9pFUr15d1atXV58+fdyIDgAAAADOOFw3AQAAIJiyg7Cw4XZ8bnGMMSbUmTjTZGZmyuPxKCMjQ0lJSQWGdQafpkzlwUy1C2edx7QAEk+xDDfCMly9UVbBjEm1Cuc4dvFJklLs4rQvi33SVmzrWpLSAii3qyzrMAhlse8TdskGMqK6fScK27QD6t/Wabtbj1Ko+qI96zJbjqG2Y3IgXG9r2/EuCGNJUMZvF9MNhjOqLC7PJQIaazdZBgzlXMJloWrrQObAgHT29Bl/40Eox2cACIbTMe75v7YM7lzMpgyhHv/dSL+wcYRyTpwjmPUcTnOZnLzckDFaMUlxrsZ9JPOQXvY8FBblPFF4PvkDAAAAAAAAAABYy1KUiri8wyIrTHdsFAl1BgAAAAAAAAAAAGyxYwMAAAAAAAAAgAh3/Bkb7v7kH67P2GDHBgAAAAAAAAAAiBjs2AAAAAAAAAAAIMId37Hh7g4LdmwAAAAAAAAAAAAUEjs2Qqzn1LlW4RY6m+wj3ZhqFcw6yrRRduFS7NINKE4FEKcFx7ENaZ/uG1N7WYXrO3iBdZyuSgtNspJkjMt9sZ5tv5Fs2zCQU8sqPsc+jz1NXatwC9TH9bTd5gy2C9fT2I55hcjMaWJd34GMjW6mGwTW31lpAZQ5xS6Y7fhtPe5YxhdQfVt+/1qe+gGwLXMw+o5tW7uddgB9zPq7w91zNRC2/daWbVu7nS6AvHGuwZa/8TvYfSnU6UcK6sm/01MHhWuH09GO/vPg7/PBTj/415ahHreCH8ehQqfvtrNpxwYLGwAAAAAAAAAARLhjQVjYOBamCxvcigoAAAAAAAAAAEQMdmwAAAAAAAAAABDhshQlx+UdFlns2AAAAAAAAAAAACgcFjYAAAAAAAAAAIhwxx8eHu3yK7AdGyNHjpTjOD6vChUquF5WbkUFAAAAAAAAAABcUa9ePS1btsz776go929nxcJGiC3c1Mf9SJ+yDDfCNsJUu2Bpo2wjlDZaxlnP3fhMXbvoHMcyXUl9nQV2aRvLtK3r0bIOFUC7WMZpXRbbetxoGS4Ab5heVuFs289aim27SAst68dJsY0xRO0nyUy1jHOw5Zhn2ydsx4gAzgNj7NvQTY5jmccA+pj9uGwXp22fte1jUiD9zK4stvHZtrPjBFDftt+/lueLPbu6CVXfPs62vu1icwYXIiv5crePBcL2/A9tGwI4k/kbhxh/To9Q1/PpSD8S+lq459Fm3hDsPPqfDwW/Dv3FEex2tL5+K5TQltGG/3rwkwd/v3f4vaYNfl8qSGZmpjyecYXOg5uyFaUiLj8TI9AdG5IUHR0dlF0aJ+JWVAAAAAAAAAAAIF+ZmZk+r8OHD+cb9ocfflBycrKqV6+uq6++Wj///LPr+WFhAwAAAAAAAACACHf8GRvuvySpcuXK8ng83tfYsWPzzEOzZs302muv6b333tOUKVO0Y8cOtWzZUn/++aerZeVWVAAAAAAAAAAARLgsRclx+VZUWf8f39atW5WUlOQ9Hhsbm2f4bt26ef+/QYMGatGihWrWrKlXX31Vd999t2v5YmEDAAAAAAAAAADkKykpyWdhw1ZCQoIaNGigH374wdX8sLABAAAAAAAAAECEO6ZoZbv8k/+xQsZ3+PBhffvtt7rkkktcytFxPGMDAAAAAAAAAAAU2ogRI7RixQpt3rxZn3/+uXr37q3MzEwNHDjQ1XTYsRFqT1mG2xhAnPUsw40IIE4bKanWQU1du3CORtkFrGeXtmNbjymW4SS9MbWXXdrOAqtwxliWxbGsmwDaRWn2Qe3StgxXz7Issi9LX+v6sYzQ7boJJG2X43Mcd+OTJGeTZUDLejRTLdO1HSMC6DvW55Y1y7Qtz1XbupEkJxj91iZd2z4mqaeZaxVugWU9BpK2DWPsw9qm7Xa72H5vBIPb54v1d+DgQGK1rR+7sth/T1smq8D6mV187s4lQtnHAPjn71y2OYc5zwvPjXYIdzbfG/7KGQn1EO55DIf8+Z+7hEMeC5eHcDinA5vzBs6NMhT6+iutkNcTFr/zFfaaJRzOuUBkB+EZG9kBxrdt2zb169dPf/zxh8qWLavmzZtr1apVqlq1qqv5YmEDAAAAAAAAAAAU2uzZs09LOixsAAAAAAAAAAAQ4bJVJAg7NsLzaRbhmSsAAAAAAAAAAIA8sGMDAAAAAAAAAIAIl6UoyeUdG1kux+cWdmwAAAAAAAAAAICIwY6NUEsbZRkw1TrKN0wvq3B9By+wi3CjZcJPWYaT5GyyDLjRrtw96861CrdwUx+rcG9MtatDSerruFuPjmOZcIpln7DuY5IxdnE6jn2cdizLkhJAlGm24Vw+B23TlSS5ff672y5mqv24E7o+YZ9H19MOqK3dYz1GBCKQc8tGAOPOQsvyOK6fL5bpBlTf7ubRdky2FdB5anluuf294f5YEkge7eKz7xOBlMXdegxd3znkarqA5L//ud3fIxF1EB7OhnawKSPnrH/UUWQIh3YwUwt+3zkN16SFnZ/7r8fTUM9+8hCMa5BQyla0HJd/8s8O0yWE8MwVAAAAAAAAAACwdkxRynb51lHHuBUVAAAAAAAAAABA4bBjAwAAAAAAAACACJcdhIeHu70DxC3s2AAAAAAAAAAAABGDHRsAAAAAAAAAAEQ4dmycZmPHjtVFF12kxMRElStXTn//+9/13Xff+YQxxmjkyJFKTk5WfHy82rZtq40bN/qEOXz4sO644w6VKVNGCQkJ6tWrl7Zt2+YTJj09XQMGDJDH45HH49GAAQO0d+9enzBbtmxRz549lZCQoDJlymjo0KE6cuRIUMoOAAAAAP5wzQQAAAD8T1js2FixYoVuu+02XXTRRcrKytJDDz2kzp07a9OmTUpISJAkjR8/Xs8884ymTZum8847T48//rg6deqk7777TomJiZKkYcOGaeHChZo9e7ZKly6t4cOHq0ePHlq7dq2ioo6vLPXv31/btm3T4sWLJUk33XSTBgwYoIULF0qSsrOz1b17d5UtW1affPKJ/vzzTw0cOFDGGE2cONH9wm9MtQrWs+5c6yj7blpgFzBtlF3aU+tahVuY1scuXUk9p9qVZ+Fguzit097oP4gUQB1KUopdMNs2XJhiWRbL9guE49iFM8au3zqDLRNOswwXBLZlsWVbh5Ksz3/Vs2tr63axzKPjuN/HbMvsbLKMz7rvBKEssu07lmmnWcZnOeYcj9M2XDDqx2UplvVjWRbHcffclxRAHu2CWZ+DtukGwEx1PUpLLp9XQeHumCwFabzFGedsvWZye64WCoU9x8+EOsDZg/7qX2HryGZMoR3819OZUUfB70t+r+Etf684Vf5/v7BJP5j1dKhQcQdDlorIuL5jIyz2RuQSFgsbORPmHGlpaSpXrpzWrl2rSy+9VMYYTZgwQQ899JCuuOIKSdKrr76q8uXLa+bMmbr55puVkZGhV155RdOnT1fHjh0lSTNmzFDlypW1bNkydenSRd9++60WL16sVatWqVmzZpKkKVOmqEWLFvruu+9Uu3ZtLVmyRJs2bdLWrVuVnJwsSXr66ac1aNAgjR49WklJSaexZgAAAACAayYAAADgRGG53JKRkSFJKlWqlCRp8+bN2rFjhzp37uwNExsbqzZt2uizzz6TJK1du1ZHjx71CZOcnKz69et7w6xcuVIej8c7QZek5s2by+Px+ISpX7++d4IuSV26dNHhw4e1du3aPPN7+PBhZWZm+rwAAAAAIFgi7ZpJ4roJAAAg2LIVHZRXOAq7hQ1jjO6++261bv1/7d15dFXlvf/xzwYyIJKU4YZB0GJFaoJSDUpR61ARLm2TutqS3urNhURbrXVAmlKV3l8SbxVLcahSvdZljq3VWtBiE20p9FoGpSJGWNXE2gGtWEGKQgJUIQnP7w/k1DBkf3fOPsMm79daWUvP+eaZn32eh53n7LM1duxYSdLmzZslSUOGDOkUO2TIkPh7mzdvVnZ2tgYMGNBlTEFBwUF5FhQUdIo5MJ8BAwYoOzs7HnOguXPnxr9/Nj8/XyNHjgxabQAAAAAwieKeSWLfBAAAkGwd6p2Un0yUcTc2rrrqKv3hD3/Qz372s4Pe8w74YjXn3EGvHejAmEPFdyfmw2644Qa1tLTEfzZu3NhlmQAAAACgu6K4Z5LYNwEAACA8GXVj4+qrr1Z9fb1+97vfacSIEfHXhw4dKkkH/fXPli1b4n8pNHToUO3Zs0fbtm3rMubtt98+KN9//OMfnWIOzGfbtm1qa2s76K+S9svJyVFeXl6nHwAAAAAIW1T3TBL7JgAAgGTbm4TTGns5sXF4zjldddVV+sUvfqGnn35ao0aN6vT+qFGjNHToUC1btiz+2p49e7RixQqdeeaZkqTi4mJlZWV1itm0aZNefvnleMzEiRPV0tKi559/Ph6zZs0atbS0dIp5+eWXtWnTpnjM0qVLlZOTo+Li4vArDwAAAAA+2DMBAAAA/+I551y6C3HllVfqkUce0S9/+UuNGTMm/np+fr769u0rSfre976nuXPnKhaLafTo0brlllu0fPlyvfrqq+rfv78k6etf/7qefPJJPfjggxo4cKCqqqr0zjvvqLGxUb1777uzNHXqVL311lu67777JElf+9rXdNxxx6mhoUGS1NHRoU984hMaMmSIvv/97+vdd9/VjBkzdNFFF+nuu+821ae1tVX5+flqaWnx/Sskr9nYSPONcZIUqzUGVpui3KCuj67v570TZCgZy1hhK6NZzBhXEW62kuTqbHGlWmSKazAPngBtaK132O1oTC/I1crzwp0HajImV2SMCyDsq7TPt1H8i7XOklRkbW9r3sZ+sV4bzddFyXxtNPaLub2t18UgrO0Y+rgNv71Dbx/r50ugsRO2dI1Fyd7eaeq/IMx9bQtLxsrZ+pnlnK0uYV93rPkGWQMjuCNtzyRFY8xY5qd1jiSrDMnOH9HRE8ZKJtQx3WUI47p0JNTBN49KnwCfdf6RMF/C4L+u9OlLv7W47xo8/f3U9Xh9X9KtGbGW2b+uGtmyVr3yjg417b2tO7Ux//SMqOeHZcQjze+9915J0nnnndfp9VgsphkzZkiSZs+erffee09XXnmltm3bpgkTJmjp0qXxBbok3XHHHerTp4/Kysr03nvv6YILLtCDDz4YX6BL0sMPP6xrrrlGkydPliSVlpZqwYIF8fd79+6tp556SldeeaXOOuss9e3bVxdffLHmzw9yZwEAAAAAwsOeCQAAAPiXjLixYTk04nmeampqVFNTc9iY3Nxc3X333V3+ldDAgQP105/+tMu8jj32WD355JO+ZQIAAACAVGDPBAAAAD8d6i0X8j/584wNAAAAAAAAAACABGXEiQ0AAAAAAAAAANB9+05shHvCIlNPbHBjAwAAAAAAAACAiOtJNzY8Z/myVgSy/yn0lifFe5W2NN3Nnjl/b1u4XVpSuMgUV66HzGmWecW2vF2hKa7Ba7Zl3FRtCjNmK8neh4rV2vJ2tjJaq6wgz3CsCjnNsNMztqEkc1+bGcvo6uxJevZpbRTyGPMCtLeM7d1kCwsyBy0CtXWFMc44vt0AW+becOO121o+SYoZ44z9oiJrxvaxYx+PxgSt7WNtm0Cs9bZen0Ke09bPKylA+wS5TlgYP6cDLHWCXcuODNYxEbYga2BACmfM+M3xdM2HqKEdjwxR6Md0l9GyLsiEMnQlFf2Y+Pqp6zJmwr9EpmIsJppHsssYxnzw36elvw5+EilDJq1/95dlcMvL6pXXP9S097bu0Nb8sRlRzw/jxAYAAAAAAAAAABHXsbe33N6QT2yEnF5YeHg4AAAAAAAAAACIDE5sAAAAAAAAAAAQcR3tvbW3PdwTFi7k9MLCiQ0AAAAAAAAAABAZnNgAAAAAAAAAACDiOtr7yGsP95/8XcjphYUTGwAAAAAAAAAAIDIy83ZLTxKrNYV5Vc6e5nxr3sY4Y9ZllfXGBO0amsNNb2FhqSnO88Kvi5VnrXPY/SyZx6Oaqm1xRcZ8m2xhJXWFxgSlhkpjYJUtbGGdcewEmge29i5xtno3eLZcPc/Yz4EY0zSOCWNVJBnHorV8klRlTNM6B+tsF1FnvNZ61rEtKex+Mauw9ovkmTvbWJeYMW/jdUdFQeaLvd5hMo8J6zVeknO2unheyHOwwphcMljHrfFz1TqnpWRdl8NjL9/7SS0HcCjW69WRzG+OWtoo0XZMtAxh1OFIkGg7JLudLJ8HmV7GTBhLmVCGdLdTGGMpjDy6/v2u3w+y1kuWxNeQ/m2c+FhJtB8T+vUeqaO9l7zQn7GRmWcjuLEBAAAAAAAAAEDEdbT3TsKNDR4eDgAAAAAAAAAAkBBObAAAAAAAAAAAEHHt7b3ltXFiAwAAAAAAAAAAIKNwYgMAAAAAAAAAgIhzHX3kOkL+J/+w0wsJJzYAAAAAAAAAAEBkeM45l+5CHGlaW1uVn5+vlpYW5eXldRlbqkWh518/p8wU511i7Pr5xoxjxjhJJc5W74bKaaa4hXWlpriyynpTXCCxWmNgdfh5WzQFiC1KWim6ZB4Pnm087GPtF6MKY/+Zx0P4SlyhKa6h2diOSRkPtvYx18VrNuabhPlXYQsrqbOOb2NdrGNRkquzxXle2NexAPPAPLdsYdZVjefZ4pLCel0usrWjc2n6fJG9Hc39YpwGxkvEvjTNfR329TvAXA15NW6d02GPnSBrYEBizKBnsVyb0/mZnin82ok2Cof/ePRr5+T3k32P0r0ypGKsJZpHun9/Xxq+IT55JPb7XqVPgOHfYJLZTpm0ltlfFr38jtQ/5LLsaJXGDsqIen4YJzYAAAAAAAAAAEBkZOYXZAEAAAAAAAAAALv23vt+wk4zA3FiAwAAAAAAAACAqOvwpPaQfzoS+06yuXPnyvM8zZw5M5w6foAbGwAAAAAAAAAAIFRr167Vj370I51yyimhp82NDQAAAAAAAAAAoq49ST/a94DyD//s3r27y6Ls3LlTl1xyie6//34NGDAg3HqKZ2ykXYM3zRS30JWa0/Q2OVNcSeEiU1xDla2MQVjrrQpbWFlzffcLcwiuzh7rqdqWZr3t2Ja30tZ/Kqo1hS0sbLSlJ6lMxcZIW50lWxkbKo3pGceDJClmjGuy1sUq7PTs49GrNCZobhtjnCTNtwba2qchsVOOB0vC2LH3i+1654xT3/Ns80qSvLDngfG645x9HnjGvra2j5lxTJTU2T4rJaletr42z9WKcK8n1rZOBnPexuuOuQ0lWT+LrKzjO9Bc9YxrCfM8CLeMQeY0kGp+45jxi0zBWLShnVIj8XZOfj8lWsZM+HzwyyPRMgZbE3eT374p1nUdkr0H4ZqRWiNHjuz0/9XV1aqpqTls/De+8Q199rOf1aRJk/Td73439PJwYwMAAAAAAAAAgKj70AmLUNOUtHHjRuXl5cVfzsnJOeyvPProo3rxxRe1du3akAvzL9zYAAAAAAAAAAAAh5WXl9fpxsbhbNy4Uddee62WLl2q3NzcpJWHGxsAAAAAAAAAAERdEk9sWDU2NmrLli0qLv7XV953dHRo5cqVWrBggXbv3q3evXsnXCxubAAAAAAAAAAAgIRdcMEFeumllzq9VlFRoY9//OP69re/HcpNDYkbGwAAAAAAAAAARF+7pLYkpBlA//79NXbs2E6v9evXT4MGDTro9URwYwMAAAAAAAAAgKjr+OAn7DQzEDc2ImLanAZzbE3Ms8VVOVOcKzRmfLMtX0kqrVtoimvwmm0JxqrNeZsEqItitnb0Kmxxmm/N2FbnskprepKabGElhYtMcQ2erYyuzpbvIpXaAiWVxYr9gySpyJxk6JxxSHhebXILcjhFAeZVhTEuZquLe6vGFOcNNzaiMd9gwh3fnvmyk4R+sc6DClve9rrY50GprNedabYEjW1j/hySZK12iQu3Ll7MmLF1PEgqqbOW0d4+Jtax2BRgHhjbx7mQ1xIBWOeBnfFam8Y6A+FhHCM1/NbkXFNTI9F+sOytEk0j2WOBOuxj3R8kSxh1SJTvXrMu8flQ4vOPgg0J/nuc3zo4jH8P8YL8u1jgMryfWOI9yPLly0NPkxsbAAAAAAAAAABEXQY8PDxVeqW7AAAAAAAAAAAAAFac2AAAAAAAAAAAIOo4sQEAAAAAAAAAAJB5OLEBAAAAAAAAAEDUcWIDAAAAAAAAAAAg83BiI+1qTVHeJmdPsskW5gZ4prhFKjHFTVtgy1eSim8pM8U1VBjrHbO1o5qqTWHe8BpbekGEXEbFjPlWGeMCaPCmGSONdZatzmVesTE9SRUht6O5LnZepbGMxjHhCo35era6uACXHWua1rqUDjNWxni9s44xSVJRuH1tbpskcHXGetfZwrzK7pflsGmax6OtLotcqSku0PXEzFaXBs/YLxXGbI3XMWfs531s13nbSsJ+PUnOfDF+9pvzDnA9CVk6rycADs9vblo/w5DZUtGP/tf5rssQZP2eLInOh2TPpzD6Mdl1CKMNkt2OiaYfRh2SzfNZ6Jrq4Lt/yvyx5CvZ1x2ff0OwjBPfdop1/9ra2tqq/PxbfcuQUh0K/4RFR8jphYQbGwAAAAAAAAAARB1fRQUAAAAAAAAAAJB5OLEBAAAAAAAAAEDUcWIDAAAAAAAAAAAg83BiAwAAAAAAAACAqGv74CfsNDMQJzYAAAAAAAAAAEBkcGIj3SqqTWEL60rNST6kclvgJltYmVdsiitxxnwlNWyaZopzN3u2BIfZwhYVNpriyprqbQlKWlho6xtrvzRUGvN1tnzLPHtdwuacbXx7xm5Wky09SdJ8Y1yFMa7KmHeRMT1JitUa42xhnvF6Ym1Hc78ESNOqwWsONb0St8ietzEuUPuYGNvQOmYVoIzWNI1jUU3GOEkqso5H23xxznbNc84UFqyfje3o6kLO25hv+GPWzpp36J8bCr+vremZ57SCjO9wr7XAkaHr+eM3t8OYV4mm4XcNSMXcz4QyJFsU6pjuMoTRRn4x6e4H2+d9YmVMdz9aypBoP6Sijv51SHYJ/NZnhjao6vptv32BXx09338/Smwc2PiNla5/2/9z2uf3A6y5Dy+Evs4kHR/8hJ1mBuLEBgAAAAAAAAAAiAxObAAAAAAAAAAAEHUdktqTkGYG4sYGAAAAAAAAAABR167wb2yEnV5I+CoqAAAAAAAAAAAQGZzYAAAAAAAAAAAg6nrQiQ3POb/nyyOo1tZW5efnq6WlRXl5eV3Gel6tKU03qMZegJdsYd62kLt+frjJSdLCulJT3DTVh5rvItnylaSHVG6Kq9e00PO2KPPCbRtJUoUxrsoYV2SbByWu0Jig1FBpa++wy6iKamOCAfK2zq2w04sZ6yxJClBvi6ZwkwukKOT0rPPFyNXZY0u1yBTX4DUbU7T2c5CxEy7nbGX0PGuK9rqEnrd17MRsYUFWfNb1iVmTrW2sl/nQy3eEsY7FsAVZAwNSasaM3/UijPmS7DxSUYcolCFRUahDop9vmVCHRGVCPyV/Tnf9fk/4VzrLWE/2tTPR/MOoQ8JrWp9/fwiyd0yWI2FOd/3770u6NSPWv/vXVbqzReobclnea5VmZt46nxMbAAAAAAAAAABEXQ86scEzNgAAAAAAAAAAQGRwYgMAAAAAAAAAgKjrUPgnLDpCTi8knNgAAAAAAAAAAACRwYkNAAAAAAAAAACijmdsAAAAAAAAAAAAZB7POefSXYgjTWtrq/Lz89XS0qK8vLxwEh3smUMXbS0xxZV59aa4ErfIFFeuh0xxklRWacvbqqTOVsYGb5otwaYAmc+3hZnLWGkso1WsNtz0JJW4QlNc6O1tbGtJUswYZ8y7pNDWf0FY+9rV2dLzPGNfV1Tb4qxteISxXvPqZes/rzKR0hzMOh4kqVQ98brTbEuwyTgPAl13wp2DQfrawto0kmRsbnnG5UkUVpvWuRp2v0gBrt8hc844D4ySsgbGEe1IGTN+czjRuZboNSLsuZ4Otjboup5R+CzKdJZ+OBLGG5IvFWMpE66dfmtlv+uS/1rbr46J1+FIuHYm2g9dyaS1zP6yqKZFyg25LO+3SjWZUc8P46uoAAAAAAAAAACIug6F/7BvHh4OAAAAAAAAAACQGE5sAAAAAAAAAAAQdTw8HAAAAAAAAAAAIPNwYgMAAAAAAAAAgKjrUPgnLHjGBgAAAAAAAAAAQGI4sRERpVsXmmPL9ZAtsMkW1lA5zRZYZwuTJMWMccYyWi10paa4suZ6e6JVtrAGz9aOztnS8yptcUG4t2pMcaWyjccSt8gU1+A1m+KCqTZFlRRay2icB6o1xtnbxzZq7f3nbbO1jWL2uqjJlqYrtCUX+vi2XnNkH4+esa+ds7WN55nC5AWoi2SdWyHXJWYcY5JUYQtrMLZPkDloYrzGS7KPM2Ocva+tdbb3i2f8/A37M8sZ1xKeZ+9n67i15p0M1jKGzdqO6SofkAks8yTZc8Qv/SDXxGTxK0Oidegp16FMb4d05y9lRhsluwxhpJ/8MvpFJL+fkn3d8aujZR3sF5Po9du/jgkl/0EaibZz1+kn2ka2sZRoX6f/2hdIu6TeSUgzA3FiAwAAAAAAAAAARAYnNgAAAAAAAAAAiLo2hX+UoS3k9ELCjQ0AAAAAAAAAAKKuQ+E/7JuHhwMAAAAAAAAAACSGExsAAAAAAAAAAERdh8J/2HeGntjgxkZE1G8qM8eWDltoC5zfzcKEYKErNcU9pHJTXEPlNFtclS3ODfBMcZLkbXO2wCZbWKkW2QJjzaawEldoS0/SIpWY4qztrVitOW+Tpmp7rHF8W+eW12TsZ9nLWG+M8zxbO3oylrHCmHEQRbYwz5p3Vbj5WuffvjRtfeiMzW3tP1UYx07MFhYoTWN7e/ZLYxKEfD0xjh1rP0uSZ5z/Jc52nW9oNl5rjWM2COtHh3l8G9vGPMSsY/sIY5+Dtn5xrme2I3oWv+uU3zwIY54kWgY/mTCXj4Q6ZIJMbwf75/7hJXus+H9W+tch0TIm+7pj6Yfkj6XE6mgbS8m/Pnedftfve5Vh5JHcsZYKfnPOtx0TnC9hzIf07nORCL6KCgAAAAAAAACAqGtP0k8A9957r0455RTl5eUpLy9PEydO1K9//euEq3YgbmwAAAAAAAAAAICEjRgxQrfeeqteeOEFvfDCC/r0pz+tz3/+82pqCvJ1Gv74KioAAAAAAAAAAKKuTQG+4zdAmgGUlHT+qvubb75Z9957r5577jkVFVm/U9wfNzYAAAAAAAAAAMBhtba2dvr/nJwc5eTkdPk7HR0dWrRokXbt2qWJEyeGWh6+igoAAAAAAAAAgKjrSNKPpJEjRyo/Pz/+M3fu3MMW46WXXtLRRx+tnJwcXXHFFVq8eLEKCwtDrSonNgAAAAAAAAAAiLp2hX+U4YOHh2/cuFF5eXnxl7s6rTFmzBitX79e27dv1+OPP67p06drxYoVod7c4MZGRHjDa8yxblCZLfByY96bnDlvq7LKeltgLNx8Xb3tS+ZKty60JzrHFlZSt8gU19A8zZag8Xk7Dc22OElqmG/Mu8qYYKzaFldhTC/I1/AZ07TPrdoAmRvzrrC1z0LXaIorC9DXJkHmn7UPrWOnyNbeztna0Ks05ivZx07Y7Z0M5va2JmicB8axLck8zkLv65itLl6g7ya1lbFetmutF95Xj0qSXPgf57LW2Zp3sPY2pmnsayvzWPTC/9yw521LL/wyvh9yekDirPMmEX5zya8Mif5+GJJdhkyoY7L1hDpa6pCMz7/O6Xf9vt+aIxlrjYPLkNw5H04/+KWR3H4MYz4kWseEy2Dax/iUsS6xMviONb+9USjr5K7T8Dw+P44keXl5nW5sdCU7O1snnHCCJGn8+PFau3atfvCDH+i+++4LrTzc2AAAAAAAAAAAIOo6FD9hEWqaCXLOaffu3Ykn9CHc2AAAAAAAAAAAAAm78cYbNXXqVI0cOVI7duzQo48+quXLl2vJkiWh5sONDQAAAAAAAAAAoq4t/Wm+/fbbKi8v16ZNm5Sfn69TTjlFS5Ys0YUXXhhqscJ+lEi3rVy5UiUlJRo+fLg8z9MTTzzR6X3nnGpqajR8+HD17dtX5513npqaOj9kYPfu3br66qs1ePBg9evXT6WlpXrzzTc7xWzbtk3l5eXxp7eXl5dr+/btnWLeeOMNlZSUqF+/fho8eLCuueYa7dmzJxnVBgAAAAAT9kwAAADIdA888IBef/117d69W1u2bNFvf/vb0G9qSBl0Y2PXrl0aN26cFixYcMj3582bp9tvv10LFizQ2rVrNXToUF144YXasWNHPGbmzJlavHixHn30UT3zzDPauXOnPve5z6mj419fBHbxxRdr/fr1WrJkiZYsWaL169ervLw8/n5HR4c++9nPateuXXrmmWf06KOP6vHHH9c3v/nN5FUeAAAAAHywZwIAAECXOpL0k4Ey5quopk6dqqlTpx7yPeec7rzzTs2ZM0df+MIXJEk//vGPNWTIED3yyCO6/PLL1dLSogceeEAPPfSQJk2aJEn66U9/qpEjR+q3v/2tpkyZoldeeUVLlizRc889pwkTJkiS7r//fk2cOFGvvvqqxowZo6VLl6q5uVkbN27U8OHDJUm33XabZsyYoZtvvtn85HcAAAAACBN7JgAAAGCfjLmx0ZXXXntNmzdv1uTJk+Ov5eTk6Nxzz9Xq1at1+eWXq7GxUW1tbZ1ihg8frrFjx2r16tWaMmWKfv/73ys/Pz++QJekT37yk8rPz9fq1as1ZswY/f73v9fYsWPjC3RJmjJlinbv3q3Gxkadf/75B5Vv9+7dnZ7q3traGnYTBOKtdKa4miLPFOdutMVpky1MkryYrYx2tbZ836kxxZUEyTpmy7shVm1M0Jaec7b0FqnUmK9UVlVvC5xvTtLE1dnivKoAiYZdRmN7l2qROc2GZltcWbOtX1yhLT3POKWTwVxGhd3e04xxUkmdLc2GSluaJcZKN3i2uS9j20iSisJN014XY7aSzNdvz1ZGZ/x48WK2OFUEaG9jmuHPQWMbVgaoi5G5vc3j25qvvS729g63fYKUMWxh5x12/yE5Mn3PJKVn3+R/DUh8fCc655J9vQhjDvul4VeHdF4TrRJtJ786htEPUWjHZJfRuvY4/O+nvw0THSuZUIew102H4lV2/X6i7ZD4nLTkn/zrQiIsbZh4GZM7nsPZW3Vdxq7zeD+MAoSrXVLYe872kNMLScZ8FVVXNm/eLEkaMmRIp9eHDBkSf2/z5s3Kzs7WgAEDuowpKCg4KP2CgoJOMQfmM2DAAGVnZ8djDjR37tz498/m5+dr5MiR3aglAAAAAHRPpu+ZJPZNAAAASdeepJ8MFIkbG/t5B9wic84d9NqBDow5VHx3Yj7shhtuUEtLS/xn48aNXZYJAAAAAJIhU/dMEvsmAAAAhCcSNzaGDh0qSQf99c+WLVvifyk0dOhQ7dmzR9u2besy5u233z4o/X/84x+dYg7MZ9u2bWprazvor5L2y8nJUV5eXqcfAAAAAEiVTN8zSeybAAAAkq5dUlvIP5zY6L5Ro0Zp6NChWrZsWfy1PXv2aMWKFTrzzDMlScXFxcrKyuoUs2nTJr388svxmIkTJ6qlpUXPP/98PGbNmjVqaWnpFPPyyy9r06Z/PTBi6dKlysnJUXFxcVLrCQAAAADdwZ4JAAAAPUnGPDx8586d+stf/hL//9dee03r16/XwIEDdeyxx2rmzJm65ZZbNHr0aI0ePVq33HKLjjrqKF188cWSpPz8fF166aX65je/qUGDBmngwIGqqqrSySefrEmTJkmSTjrpJP37v/+7vvrVr+q+++6TJH3ta1/T5z73OY0ZM0aSNHnyZBUWFqq8vFzf//739e6776qqqkpf/epX+YsiAAAAAGnDngkAAABd6lD4Dw/vCDm9kHjOOZfuQkjS8uXLdf755x/0+vTp0/Xggw/KOafa2lrdd9992rZtmyZMmKAf/vCHGjt2bDz2/fff17e+9S098sgjeu+993TBBRfonnvu6fRQunfffVfXXHON6uvrJUmlpaVasGCBPvKRj8Rj3njjDV155ZV6+umn1bdvX1188cWaP3++cnJyTHVpbW1Vfn6+WlpaQlvYe5X2WHezbfQuGlZiintI5aa4cj1kiguizKu3BVYYE6zqdlEOyw0It73Lmo11nm8LCyRWG2pyJa7QFNdQOc0Ut7Cu1Jy3eeyYGdumotqcoquzxZVqkSmuwbO1o1lTgNiQx6O1bayCXEPNQp4v1rFTUmcbD5J9TJQ46xhrtmXcZJ8H5rETs4WFvarx+Vr6JAt5jAXgnK0P7e2TvrpI1vEYhfa2ldGaXtiSsQZGZ0fSnklKzZjxv051Pa8s88lvbqZrTgaR7jqkO/8whFGHZLcD7Wz/LE1mHqkoo5/kz2m//MPII53ry4jw2WNa9t2+7ZxgHpkw3hMrw/uSbs2I9e/+dZU+1SL1Cbks7a3Sqsxb52fMiY3zzjtPXd1j8TxPNTU1qqmpOWxMbm6u7r77bt19992HjRk4cKB++tOfdlmWY489Vk8++aRvmQEAAAAgVdgzAQAAoEvJeB4Gz9gAAAAAAAAAAABITMac2AAAAAAAAAAAAN3Ug05scGMDAAAAAAAAAICoa5cU9hO1M/Th4XwVFQAAAAAAAAAAiAxObAAAAAAAAAAAEHXJOF2RoSc2uLEREa4uQPBgW9hDW8tNcfWDy0xxpVsX2jKWVD/HlqaabGELC0tNcWVevS3BALwK4/muKltYSeEiU1x53UOmuIdk62dJalC1Kc4N80xxXqWtbUrqbHUOUhdV2EMtSuoKTXHlso1FSfIqreNxmi0s5PkyTfb54sWMgcZ+8bxaU5xztjGrmC29YIx5y5i3sQ0bYs3GfGVu74ZK4xizKgo3OUn2sWNtnqKQx5js49Y6dqx5e5W2XIOsJdJVl/QytnfY16ckpQlgH+ezHPVsy9pIs1xjEr2++OfRdfqZcH3zq4NfGaNQB//f7/p9v/kUBv8yJNbOqeinZJcx0X62SHQ+pELC7VThUwef/ZllPqSir7rksw827+O74LfHSLwNEh9riX7WdzXWWltblZ9/a2IZoNu4sQEAAAAAAAAAQNTxjA0AAAAAAAAAAIDMw4kNAAAAAAAAAACijhMbAAAAAAAAAAAAmYcTGwAAAAAAAAAARF27pL0hpxl2eiHhxgYAAAAAAAAAAFHXofC/iipDb2x4zrmwq9rjtba2Kj8/Xy0tLcrLy0t5/otUaoqbtqnBFFc6bKEprsGbZoqTJFXYwtwwzxTnXWIcxkW2MDUZ4yQtLLS1d1llvSmupG6RPXODIP1S4mx5NzQb05xvztqmyh5q7ZeHVG6Ka/Ca7ZmnyULXaIqzjkVXZ8/b3DzWOWi8RihWa0yv2pigpJgtzPrp6dkuY6GnFyRNK3Pe1v6TzO0tGftatr42X++CzP0m4zizzgNznW2cCzAPjMIe3/Z87W2TjHrj0NK9Bkb0RGHMWK5zmb6jTkUd/K7LiV6LLdd9vzwSLWOyfz+sNJLLvx97wlhKt1TUIfHx3nX6lnGSaBq+1z6/PYvPXtPSxonO2cSvCV3/fio+v5I/py1RPu3k8+8FXf3bSCatZfaXRce1SL1CLsveVulvmVHPD+PEBgAAAAAAAAAAUdeu8J+qnaEnNnh4OAAAAAAAAAAAiAxObAAAAAAAAAAAEHWc2AAAAAAAAAAAAMg8nNgAAAAAAAAAACDq2tRjTmxwY+MIVObVGyNrTVHurTJTXKlbaMxXamieZorz5GwJzjdm3GQLcwM8Y4JSqYz1rrKFWdtGRbawIBo8W94lbpEtvSpjXawC1LlMxcZIYxmNY6ek0NY2klRvzNszDseySmPGMdvc92LVxgQDqDDGGcsoGctoTs+epucZ06ywpmdLLghrms54qbXOA/M1ORmMZWzwmm2Bxv6TJBUFGWcW1rzDzjeIcOeqeV4lgT3v8PvFuXCvt6HPfaBH85/L/nOu6zme6Fz0u36FcY1JNA/PZ53q6oKWKDjfMqagHf0k+jnYE+qYaB0sdUx2OyW7nzNBGGsMvzQS3j/57hHT387JH4uWqMTaKdnzxTanfQL8xkJd+scCDo0bGwAAAAAAAAAARN1eyfp34mYZ+gdR3NgAAAAAAAAAACDq2iWF/Y0QGXpjg4eHAwAAAAAAAACAyODEBgAAAAAAAAAAUceJDQAAAAAAAAAAgMzDiQ0AAAAAAAAAAKKuTT3mxIbnnMvQokVXa2ur8vPz1dLSory8vHQX5/A22Ua5t804RObbsy6pW2SKa6icFmp6ydDgNdsCm6ptcUW1trgKY3oxY3qSuYwlhbb2rt9UZoorHbbQFGdua0klrjDkNI3tXWFMLghzHxrLaBWkLqGXMcC4DTVfaaErNcWVecW2BM1z3xaWTtYVgxdoEWXra+ds7eh5IY8d67VWkqsLN+uw62JtwyB5B0kzXdLZjmGzzi37XA23nyOzBkbG6CljJtHrkN8c9L82JH4d9C9D13mk4trp385dlyET/mUk9HXMAVLRj8kf78ltI5vExpLvFtRvX2DZp8V83m/q+m2/7bRvP/itof3KJynRa9eRcO1MtjDmdLKvK5nw+dKVTFrL7C+LerdIXshlca1SR2bU88M4sQEAAAAAAAAAQNR1qMec2OAZGwAAAAAAAAAAIDI4sQEAAAAAAAAAwJEgQ09YhI0TGwAAAAAAAAAAIDK4sQEAAAAAAAAAABI2d+5cnX766erfv78KCgp00UUX6dVXXw09H25sAAAAAAAAAACAhK1YsULf+MY39Nxzz2nZsmVqb2/X5MmTtWvXrlDz4RkbPZi3zfaFazVFni2uIn1f4Fauh0xxD6ncFNdQOc2cd4lbZEzTnKRNlTWu2p5mkS2sQbb28axjIlZri6uw16XBCzlNYxlL6gpt6Ulq8OzjzJS3cSxaNTQHKF/MFrbQlZriyprrbQkWGftZ1jipzCs2x1o465AwThfPOrYlOWcb357tMm+OC8JaRjtrerZ2dHXdL0mqhN+GdtbxGHYZ0zkWrXm7AMuidLUjAH+WOe833/3mrl8eQT77uyvZ1xe/OiTaRpY0EuVXhiDX/aTx2dsk3g/+YzHRfkhFGdPNb3/g+a1TY5Y29mnHwvSPFV8+49lvnZ7ssWAZ616C/w7k285+6Vv/raVL6f18QDQtWbKk0//HYjEVFBSosbFR55xzTmj5cGMDAAAAAAAAAAAcVmtra6f/z8nJUU5Oju/vtbS0SJIGDhwYann4KioAAAAAAAAAAHBYI0eOVH5+fvxn7ty5vr/jnNOsWbN09tlna+zYsaGWhxMbAAAAAAAAAABEXtsHP2GnKW3cuFF5eXnxVy2nNa666ir94Q9/0DPPPBNymbixAQAAAAAAAAAAupCXl9fpxoafq6++WvX19Vq5cqVGjBgRenm4sQEAAAAAAAAAQOS1f/ATdpp2zjldffXVWrx4sZYvX65Ro0aFXJ59uLEBAAAAAAAAAAAS9o1vfEOPPPKIfvnLX6p///7avHmzJCk/P199+/YNLR/POedCSw2S9j0hPj8/Xy0tLYGO50Sd59WaY52rTlPetnyTMSusZbS2TZD2tkpXvySjzmHXpSeKQnt7njUyffMl7HkQRLrmYDrnXxTKCBypeuoaGN3HmMF+fp/fYXxupyIPwCLRsWhZ7yZ7PDOfUtMPtHPmy6S1zP6ySBslhV2WVkkjzfX0DvOPNbFYTDNmzAitVJzYAAAAAAAAAAAg8jLjq6hSoVdKcgEAAAAAAAAAAAgBJzYAAAAAAAAAAIi8dkltSUgz83BiAwAAAAAAAAAARAYnNgAAAAAAAAAAiLw2hX9iI+z0wuG5VD3NowfZ/xR665PiAQAAgKhjDYygGDMAACDKMmkts78sUrOk/iGnvkNSYUbU88M4sQEAAAAAAAAAQOS1K/xnYvCMDQAAAAAAAAAAgIRwYgMAAAAAAAAAgMhrV/jPxMjMExvc2AAAAAAAAAAAIPL4KioAAAAAAAAAAICMw4kNAAAAAAAAAAAir03hfxVV2OmFgxMbAAAAAAAAAAAgMjixAQAAAAAAAABA5PGMDQAAAAAAAAAAgIzDiQ0AAAAAAAAAACKvXeE/E4MTGwAAAAAAAAAAAAnhxAYAAAAAAAAAAJHXc56xwY0NAAAAAAAAAAAir03hfxVV2OmFg6+iAgAAAAAAAAAAkcGJDQAAAAAAAAAAIq/nfBUVJzYAAAAAAAAAAEBkcGIDAAAAAAAAAIDIa1f4z8TgxAYAAAAAAAAAAEBCOLEBAAAAAAAAAEDk8YwNAAAAAAAAAACAjMOJDQAAAAAAAAAAIq9N4T9jI+z0wsGNDQAAAAAAAAAAIq/n3Njgq6gAAAAAAAAAAEBkcGIDAAAAAAAAAIDI4+HhAAAAAAAAAAAAGYcTGwAAAAAAAAAARF67wn8mBic2AAAAAAAAAAAAEsKJDQAAAAAAAAAAIo9nbAAAAAAAAAAAAGQcTmwAAAAAAAAAABB5bQr/n/zDfmZHOLixAQAAAAAAAABA5PFVVAAAAAAAAAAAABmHExsAAAAAAAAAAEReu8L/6ihObAAAAAAAAAAAACSEExsAAAAAAAAAAEQez9gAAAAAAAAAAADIONzYOIx77rlHo0aNUm5uroqLi7Vq1ap0FwkAAAAAMgr7JgAAgEzSlqSfYFauXKmSkhINHz5cnufpiSeeSKhWh8KNjUP4+c9/rpkzZ2rOnDlat26dPvWpT2nq1Kl644030l00AAAAAMgI7JsAAABwKLt27dK4ceO0YMGCpOXhOedc0lKPqAkTJui0007TvffeG3/tpJNO0kUXXaS5c+ceFL97927t3r07/v8tLS069thjtXHjRuXl5aWkzAAAAEA6tba2auTIkdq+fbvy8/PTXRykAPsmAADQk2XS+re1tfWDMlwnKSfk1HdLuuOgNVtOTo5ycvzz8jxPixcv1kUXXRRqqXh4+AH27NmjxsZGXX/99Z1enzx5slavXn3I35k7d65qa2sPen3kyJFJKSMAAACQqd555520b+yQfOybAAAA9smE9W92draGDh2qzZvvSEr6Rx999EFrturqatXU1CQlPwtubBxg69at6ujo0JAhQzq9PmTIEG3evPmQv3PDDTdo1qxZ8f/fvn27jjvuOL3xxhtpH9SIhv13ePlrNVgxZhAUYwZBMWYQ1P6/vh84cGC6i4IUYN8EPieijz6MPvow2ui/6Muk9W9ubq5ee+017dmzJynpO+fkeV6n1yynNZKJGxuHcWBHHarz9jvcsZv8/HwuTAgkLy+PMYNAGDMIijGDoBgzCKpXLx7j15OwbwKfE9FHH0YffRht9F/0Zcr6Nzc3V7m5uekuRspkRqtnkMGDB6t3794H/ZXRli1bDvprJAAAAADoidg3AQAAIJ24sXGA7OxsFRcXa9myZZ1eX7Zsmc4888w0lQoAAAAAMgf7JgAAAKQTX0V1CLNmzVJ5ebnGjx+viRMn6kc/+pHeeOMNXXHFFabfz8nJUXV1ddq/ZwzRwZhBUIwZBMWYQVCMGQTFmOl52Df1bPRf9NGH0UcfRhv9F3304eHt3LlTf/nLX+L//9prr2n9+vUaOHCgjj322FDy8JxzLpSUjjD33HOP5s2bp02bNmns2LG64447dM4556S7WAAAAACQMdg3AQAA4EDLly/X+eeff9Dr06dP14MPPhhKHtzYAAAAAAAAAAAAkcEzNgAAAAAAAAAAQGRwYwMAAAAAAAAAAEQGNzYAAAAAAAAAAEBkcGMDAAAAAAAAAABEBjc2uumee+7RqFGjlJubq+LiYq1atarL+BUrVqi4uFi5ubk6/vjj9b//+78pKikyRZAx84tf/EIXXnih/u3f/k15eXmaOHGifvOb36SwtMgEQa8z+z377LPq06ePPvGJTyS3gMg4QcfM7t27NWfOHB133HHKycnRxz72MdXV1aWotMgEQcfMww8/rHHjxumoo47SsGHDVFFRoXfeeSdFpUU6rVy5UiUlJRo+fLg8z9MTTzzh+zusf8GeKfrYw0Qfe4roY40fbay3o401cIZzCOzRRx91WVlZ7v7773fNzc3u2muvdf369XN/+9vfDhm/YcMGd9RRR7lrr73WNTc3u/vvv99lZWW5xx57LMUlR7oEHTPXXnut+973vueef/5596c//cndcMMNLisry7344ospLjnSJeiY2W/79u3u+OOPd5MnT3bjxo1LTWGREbozZkpLS92ECRPcsmXL3GuvvebWrFnjnn322RSWGukUdMysWrXK9erVy/3gBz9wGzZscKtWrXJFRUXuoosuSnHJkQ6/+tWv3Jw5c9zjjz/uJLnFixd3Gc/6F+yZoo89TPSxp4g+1vjRxno7+lgDZzZubHTDGWec4a644opOr3384x93119//SHjZ8+e7T7+8Y93eu3yyy93n/zkJ5NWRmSWoGPmUAoLC11tbW3YRUOG6u6Y+fKXv+y+853vuOrqajYhPUzQMfPrX//a5efnu3feeScVxUMGCjpmvv/977vjjz++02t33XWXGzFiRNLKiMxk2dSx/gV7puhjDxN97CmijzV+tLHePrKwBs48fBVVQHv27FFjY6MmT57c6fXJkydr9erVh/yd3//+9wfFT5kyRS+88ILa2tqSVlZkhu6MmQPt3btXO3bs0MCBA5NRRGSY7o6ZWCymv/71r6qurk52EZFhujNm6uvrNX78eM2bN0/HHHOMTjzxRFVVVem9995LRZGRZt0ZM2eeeabefPNN/epXv5JzTm+//bYee+wxffazn01FkRExrH97NvZM0cceJvrYU0Qfa/xoY73dM7GeSa0+6S5A1GzdulUdHR0aMmRIp9eHDBmizZs3H/J3Nm/efMj49vZ2bd26VcOGDUtaeZF+3RkzB7rtttu0a9culZWVJaOIyDDdGTN//vOfdf3112vVqlXq04dLe0/TnTGzYcMGPfPMM8rNzdXixYu1detWXXnllXr33Xf5Dt4eoDtj5swzz9TDDz+sL3/5y3r//ffV3t6u0tJS3X333akoMiKG9W/Pxp4p+tjDRB97iuhjjR9trLd7JtYzqcWJjW7yPK/T/zvnDnrNL/5Qr+PIFXTM7Pezn/1MNTU1+vnPf66CgoJkFQ8ZyDpmOjo6dPHFF6u2tlYnnnhiqoqHDBTkOrN37155nqeHH35YZ5xxhj7zmc/o9ttv14MPPshfdPUgQcZMc3OzrrnmGv2///f/1NjYqCVLlui1117TFVdckYqiIoJY/4I9U/Sxh4k+9hTRxxo/2lhv9zysZ1KHW/ABDR48WL179z7o7uqWLVsOuiO339ChQw8Z36dPHw0aNChpZUVm6M6Y2e/nP/+5Lr30Ui1atEiTJk1KZjGRQYKOmR07duiFF17QunXrdNVVV0nat6B1zqlPnz5aunSpPv3pT6ek7EiP7lxnhg0bpmOOOUb5+fnx10466SQ55/Tmm29q9OjRSS0z0qs7Y2bu3Lk666yz9K1vfUuSdMopp6hfv3761Kc+pe9+97v89RE6Yf3bs7Fnij72MNHHniL6WONHG+vtnon1TGpxYiOg7OxsFRcXa9myZZ1eX7Zsmc4888xD/s7EiRMPil+6dKnGjx+vrKyspJUVmaE7Y0ba91dOM2bM0COPPML3KfYwQcdMXl6eXnrpJa1fvz7+c8UVV2jMmDFav369JkyYkKqiI026c50566yz9NZbb2nnzp3x1/70pz+pV69eGjFiRFLLi/Trzpj55z//qV69Oi8de/fuLelff4UE7Mf6t2djzxR97GGijz1F9LHGjzbW2z0T65kUS+WTyo8Ujz76qMvKynIPPPCAa25udjNnznT9+vVzr7/+unPOueuvv96Vl5fH4zds2OCOOuood91117nm5mb3wAMPuKysLPfYY4+lqwpIsaBj5pFHHnF9+vRxP/zhD92mTZviP9u3b09XFZBiQcfMgaqrq924ceNSVFpkgqBjZseOHW7EiBHuS1/6kmtqanIrVqxwo0ePdpdddlm6qoAUCzpmYrGY69Onj7vnnnvcX//6V/fMM8+48ePHuzPOOCNdVUAK7dixw61bt86tW7fOSXK33367W7dunfvb3/7mnGP9i4OxZ4o+9jDRx54i+ljjRxvr7ehjDZzZuLHRTT/84Q/dcccd57Kzs91pp53mVqxYEX9v+vTp7txzz+0Uv3z5cnfqqae67Oxs99GPftTde++9KS4x0i3ImDn33HOdpIN+pk+fnvqCI22CXmc+jE1IzxR0zLzyyitu0qRJrm/fvm7EiBFu1qxZ7p///GeKS410Cjpm7rrrLldYWOj69u3rhg0b5i655BL35ptvprjUSIff/e53Xa5NWP/iUNgzRR97mOhjTxF9rPGjjfV2tLEGzmyec5xlAgAAAAAAAAAA0cAzNgAAAAAAAAAAQGRwYwMAAAAAAAAAAEQGNzYAAAAAAAAAAEBkcGMDAAAAAAAAAABEBjc2AAAAAAAAAABAZHBjAwAAAAAAAAAARAY3NgAAAAAAAAAAQGRwYwMAAAAAAAAAAEQGNzYAAAAAAAAAAEBkcGMDABAp5513nmbOnJnuYgAAAABIM/YGANBzcWMDAIAAzjnnHHmed9DPJZdcYvr9GTNm6Prrrw8tPQAAAADpwd4AANKnT7oLAAA48u3Zs0fZ2dnpLkbCnHNav3695s+ff9Dm4uijj/b9/b179+qpp55SfX19KOkBAAAAUcPeYB/2BgCQGE5sAEAP45zTvHnzdPzxx6tv374aN26cHnvssfj75513nq655hrNnj1bAwcO1NChQ1VTUxM4jauuukqzZs3S4MGDdeGFF0qSduzYoUsuuUT9+vXTsGHDdMcdd3Q6Pv6Tn/xEgwYN0u7duzvl98UvflH/9V//dcj67N69W9dcc40KCgqUm5urs88+W2vXro2//9hjj+nkk09W3759NWjQIE2aNEm7du0yv/9hf/7zn7Vjxw6dc845Gjp0aKcfy2bj2WefVa9evTRhwoRQ0gMAAAASwd6AvQEARBU3NgCgh/nOd76jWCyme++9V01NTbruuuv0n//5n1qxYkU85sc//rH69eunNWvWaN68ebrpppu0bNmywGn06dNHzz77rO677z5J0qxZs/Tss8+qvr5ey5Yt06pVq/Tiiy/Gf2fatGnq6OiI/9WSJG3dulVPPvmkKioqDlmf2bNn6/HHH9ePf/xjvfjiizrhhBM0ZcoUvfvuu9q0aZO+8pWvqLKyUq+88oqWL1+uL3zhC3LOSZLv+wdqbGxUnz59dMopp3Sj5aX6+nqVlJSoV69eoaQHAAAAJIK9AXsDAIgsBwDoMXbu3Olyc3Pd6tWrO71+6aWXuq985SvOOefOPfdcd/bZZ3d6//TTT3ff/va3A6XxiU98otP7ra2tLisryy1atCj+2vbt291RRx3lrr322vhrX//6193UqVPj/3/nnXe6448/3u3duzee9v74nTt3uqysLPfwww/H4/fs2eOGDx/u5s2b5xobG50k9/rrrx+yPfzeP1BVVZXzPM/169ev089ll11m+v0TTzzR1dfXB0qvoaHBnXjiie6EE05w999/vykfAAAAwA97g87YGwBAtPCMDQDoQZqbm/X+++/Hj3/vt2fPHp166qnx/z/wr4SGDRumLVu2BEpj/Pjxnd7fsGGD2tradMYZZ8Rfy8/P15gxYzrFffWrX9Xpp5+uv//97zrmmGMUi8U0Y8YMeZ53UH3++te/qq2tTWeddVb8taysLJ1xxhl65ZVXNGvWLF1wwQU6+eSTNWXKFE2ePFlf+tKXNGDAAEnSuHHjunz/QI2NjZo2bZpuvvnmTq8fLv7DXnnlFb355puaNGmSOb329nbNmjVLv/vd75SXl6fTTjtNX/jCFzRw4EDf/AAAAICusDdgbwAAUcaNDQDoQfbu3StJeuqpp3TMMcd0ei8nJyf+31lZWZ3e8zwv/rvWNPr169fpPffBEe4DNyHugKPdp556qsaNG6ef/OQnmjJlil566SU1NDQcsj5dpel5nnr37q1ly5Zp9erVWrp0qe6++27NmTNHa9as0ahRo3zfP9C6det000036YQTTjhkeV5++WV9/vOf17PPPquhQ4dq69atmjRpkp5//nnV19frwgsvVN++fc3pPf/88yoqKoq382c+8xn95je/0Ve+8pVDxgMAAABW7A3YGwBAlPGMDQDoQQoLC5WTk6M33nhDJ5xwQqefkSNHJjWNj33sY8rKytLzzz8ff621tVV//vOfD4q97LLLFIvFVFdXp0mTJh023RNOOEHZ2dl65pln4q+1tbXphRde0EknnSRp38bmrLPOUm1trdatW6fs7GwtXrw4Hu/3/n4bNmzQ9u3bO/3l2YHGjh2r//iP/9DTTz8tSaqtrdW3v/1tZWdn65e//KVKS0sDpffWW2912iCOGDFCf//73w8bDwAAAFixN2BvAABRxokNAOhB+vfvr6qqKl133XXau3evzj77bLW2tmr16tU6+uijNX369KSl0b9/f02fPl3f+ta3NHDgQBUUFKi6ulq9evU66K+qLrnkElVVVen+++/XT37yk8OWpV+/fvr6178eT/PYY4/VvHnz9M9//lOXXnqp1qxZo//7v//T5MmTVVBQoDVr1ugf//hHfGPj9/6HNTY2SpKGDBmizZs3d3qvoKAg/tC/oqIi/elPf9Jf/vIXNTY26q677tKWLVu0du1aPfHEE4HSO/Av1qSD/wINAAAA6A72BuwNACDKuLEBAD3M//zP/6igoEBz587Vhg0b9JGPfESnnXaabrzxxqSncfvtt+uKK67Q5z73OeXl5Wn27NnauHGjcnNzO8Xl5eXpi1/8op566ilddNFFXaZ56623au/evSovL9eOHTs0fvx4/eY3v9GAAQOUl5enlStX6s4771Rra6uOO+443XbbbZo6dWo8n67e/7AXX3xRknTiiSd2ej0rK0s7duyIH7UfPXq0nnzySd144426+eab5XmeGhoaNGHCBBUUFARK75hjjun0V1hvvvmmJkyY0GV7AAAAAFbsDdgbAEBUee5Qt3wBAEiBXbt26ZhjjtFtt92mSy+9tNN7F154oU466STdddddaSpd92zfvl2jR4/WhAkT9OSTT0qSSktLdfbZZ2v27NmB0mpvb9dJJ52k5cuXxx8Q+Nxzz2nQoEHJKDoAAACQNuwNusbeAAA648QGACBl1q1bpz/+8Y8644wz1NLSoptuukmS9PnPfz4e8+6772rp0qV6+umntWDBgnQVtds+8pGPSNr312L7nX322d16qF+fPn1022236fzzz9fevXs1e/ZsNi4AAAA4IrA3CIa9AQB0xokNAEDKrFu3TpdddpleffVVZWdnq7i4WLfffrtOPvnkeMxHP/pRbdu2Tf/93/+tqqqqNJa2e9ra2jR27Fi9+uqr6S4KAAAAkLHYGwAAEsGJDQBAypx66qnxB+Mdzuuvv56awiTJH//4R40ZMybdxQAAAAAyGnsDAEAiOLEBAAAAAAAAAAAio1e6CwAAAAAAAAAAAGDFjQ0AAAAAAAAAABAZ3NgAAAAAAAAAAACRwY0NAAAAAAAAAAAQGdzYAAAAAAAAAAAAkcGNDQAAAAAAAAAAEBnc2AAAAAAAAAAAAJHBjQ0AAAAAAAAAABAZ3NgAAAAAAAAAAACRwY0NAAAAAAAAAAAQGdzYAAAAAAAAAAAAkfH/AX35JEz4ZtyZAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#energyloss in abh von der energie der elektronen\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
|
|
"\n",
|
|
"a0=ax0.hist2d(energyloss_found, energy_found, bins=(np.linspace(0,1,70), np.linspace(0,5e4,70)), cmap=plt.cm.jet, cmin=1, vmax=10)\n",
|
|
"ax0.set_ylim(0,5e4)\n",
|
|
"ax0.set_xlim(0,1)\n",
|
|
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax0.set_ylabel(r\"$E_0$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
|
|
"\n",
|
|
"a1=ax1.hist2d(energyloss_lost, energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,5e4,70)), cmap=plt.cm.jet, cmin=1, vmax=10) \n",
|
|
"ax1.set_ylim(0,5e4)\n",
|
|
"ax1.set_xlim(0,1)\n",
|
|
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax1.set_ylabel(r\"$E_0$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
|
|
"\n",
|
|
"fig.colorbar(a1[3],ax=ax1)\n",
|
|
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"we can see that high energy electrons are often found even though they emit a lot of their energy through bremsstrahlung\n",
|
|
"\"\"\"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjgAAAJOCAYAAAAK1w6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYe0lEQVR4nOzdeZxN9ePH8fcxuzFzzdjGyJ6dQSpbhezZUlTUZKuUSor2MpQoUkq7ClmrryhLQqQFEco39U19I5RBjLFkmeXz+8Nv7tc1yz0zc+a6M/N6Ph73wZz7OZ/9nHvO/dzP+VjGGCMAAAAAAAAAAIBCpMSFzgAAAAAAAAAAAEBuMcABAAAAAAAAAAAKHQY4AAAAAAAAAABAocMABwAAAAAAAAAAKHQY4AAAAAAAAAAAAIUOAxwAAAAAAAAAAKDQYYADAAAAAAAAAAAUOgxwAAAAAAAAAACAQocBDgAAAAAAAAAAUOgwwAEAAAAAAAAAAAodBjgAAECRMHDgQM2YMeNCZwM2bdu2Tbt3777Q2QAAAAAAFGIMcAAAAMDn3nrrLa1evfpCZwMAAAAAUIgxwAEAACDp/fffV4MGDRQWFibLsvT9999f6CzlaNmyZbIsy+MVGRmpZs2a6YMPPvBZ+u+9957H9qSkJHXt2lXBwcF65ZVXPN778ssvdfvtt+vAgQPubT/99JOuu+467d+/v8DzXJh88cUXmdo347Vhw4ZM4bdt26YhQ4aoZs2aCgsLU1hYmGrVqqWhQ4fqu+++y1MeevfurbCwMB05ciTbMDfffLOCgoIuePvNmDFDlmVp165dPk97zJgxsixLf//9t2Nxrlu3TmPGjMmx7guztLQ0lS9fXi+++GK2YQqiXguDotz2GzduVOfOnRUREaFSpUqpXbt2+uabbzKFy+357/jx4xoxYoRiY2MVGhqqJk2aaP78+XkOBwAAChcGOAAAQKHVvXt3lS5dWqVLl9bcuXM1bNgw99/PPvus7XgOHjyo+Ph41axZU8uXL9f69etVu3btAsx5/m3ZskWS9PHHH2v9+vVat26dpk2bphMnTqhfv37atm2bT9Jv1qyZe9u2bdt06aWXauvWrVq9erXuuecej32aNWumChUqKC4uTp9//rleeeUVdezYUV26dFG5cuUKNL+F1fjx47V+/XqPV8OGDT3CvPnmm2rWrJm+/fZb3XfffVqyZImWLl2qESNGaPv27brsssv03//+N9dpDxkyRKdOndLcuXOzfD85OVkLFy5U9+7dVaFChTyVD1lbt26dxo4dWyS/5JbODnYePHhQ11133YXOit8pqm2/adMmXXXVVTp58qRmzZqlWbNm6dSpU2rfvr3Wr1+f5T52zn+SdN1112nmzJlKSEjQp59+qssuu0z9+vXLdO6yGw4AABQugRc6AwAAAHm1ZMkS9/8HDhyotm3bauDAgbmOZ8eOHUpJSdEtt9yiNm3aZBvun3/+UcmSJfOSVcdt2bJFLpdLPXv2dG9r2bKlUlNTdcstt2jr1q2Ki4sr0PTDwsJUt25dSdL8+fM1ZMgQxcXFacGCBYqNjc20T3h4uJ566imlp6drwoQJKlGihObMmaObbrqpwPJ5IRw+fFjp6ekqW7ZsvuOqVauWWrRoke3733zzjYYNG6Zu3brpX//6l4KDg93vXX311br77rv14YcfKiwsLNdpd+3aVbGxsXr33Xc1bNiwTO/PmzdPJ0+e1JAhQ3IdN4q3f/3rX7r00ktVtWrVAkvDn87XxcW+ffsUHh6uyMjITO89+eSTKl26tJYvX+5ulw4dOqhGjRoaNWpUljM5vJ3/pLOzCVeuXKm5c+eqX79+kqR27drpjz/+0IMPPqgbb7xRAQEBtsMBAIDChxkcAADAr3z99dfq1KmTXC6XoqKi1K1bN/36668Flt7AgQN1xRVXSJJuvPFGWZaltm3buh+PsmXLFvXp00dRUVGqWbOmRz7bt2+viIgIlSxZUq1atdLSpUs94s6IY9u2berbt69cLpeio6P1wAMPKDU1Vb/88ou6dOmiiIgIVatWTRMnTrSd782bN6tJkyaZtu/du1eSVK9evTzUhvTiiy9q0aJFuUp/1KhR6tevn26++WatXbs2y8ENSfr3v/+tSy65RFu2bNE111yjwYMH65lnnlG3bt28PobGbr9wuv/06NFDl156qaZNm6bGjRsrLCxMlStXVkJCgtLT07PcZ9u2bapYsaK6du2q9957T8eOHctz+t6MHz9eAQEBevPNNz0GN87Vt2/fTG3y66+/qn///ipfvrxCQkJUr149vfrqqx5hAgICNGDAAG3evFn//ve/M8U7ffp0dznzIjfH0Pbt29WvXz+5XC5VqFBBgwcPVnJycrZxf/XVV7IsS/Pmzcv03nvvvSfLsrRp06Zs989Id+vWrbruuusUGRkpl8ulW265RQcPHsxyn/3793vNo90yP/jgg5Kk6tWrux/N88UXXxRIvR08eFB33HGHKleurJCQEJUrV06tW7fWqlWrsq2f7du3y7Isffjhh+5tmzdvlmVZatCggUfYnj17esz0MsZo4cKFuv7667ON/1x79uzx2gbeztd2+ntBnq8ladGiRbIsS59//nmm915//XVZlqXrrrsu27Y/deqUmjZtqosvvtijDRMTExUTE6O2bdsqLS3NVl6ye/xTXh7zlpSUpHfeeUcdOnTQRRddpN9//z3LcN98843atm3rMegUERGhq666SuvWrdO+fftylW6GhQsXqlSpUurbt6/H9kGDBumvv/7St99+m6twUv77QkH3JQAAcB4DAADgJxISEkyJEiXM4MGDzdKlS82//vUv06hRI1O5cmVz7NixAknzt99+M6+++qqRZMaPH2/Wr19vtm/fbhISEowkU7VqVfPwww+blStXmkWLFhljjPniiy9MUFCQadasmXn//ffNokWLTKdOnYxlWWb+/Pke5ZFk6tSpY55++mmzcuVK89BDDxlJ5p577jF169Y1L7/8slm5cqUZNGiQkWQWLFjgNc9///23kWSGDx9uUlJSTEpKitm/f7957733TEREhLntttvyXB/9+/c3QUFBZuHChV7Tv/HGG83VV19tQkJCzLRp07zGvWfPHrN48WJjjDF33323mT59uklNTTUzZswwZ86cyXY/u/2iIPpPxYoVTXh4uKlXr56ZNWuWWbFihbnpppuMpGzLfPLkSTNnzhzTo0cPExwcbEJDQ02fPn3MggULzKlTp2ylu2bNGiPJlC9f3gQEBJiIiAjTqVMn89VXX7nDpKammrCwMNOyZctclWn79u3G5XKZRo0amffee8+sWLHCjBw50pQoUcKMGTPGI+yvv/5qLMsyI0aMyBSHJPPII4/kKu0MeTmGRo8ebVauXGleeOEFExISYgYNGuQON336dCPJ7Ny5072tadOmpnXr1pnSvuyyy8xll12WY/7OPf4ffPBB89lnn5kXXnjBhIeHm6ZNm3r0V7t5tFvmPXv2mHvvvddIMh999JFZv369Wb9+vUlOTna83owxpnPnzqZcuXLmrbfeMl988YVZtGiRGT16tEd8WalYsaK544473H8/++yzJiwszEgyf/75pzHGmJSUFBMZGWkeeughd7ivv/7aSDI7duxwvA2yOl/b7e8Fdb7OkJKSYsqXL29uvvnmTO9dfvnl5pJLLsmx7Y0xZseOHSYiIsJcd911xhhj0tLSzNVXX23Kly9v/vrrL9t5yYg347V69WpTqVIlExMT404rJydOnDDz5883PXv2NMHBwSYsLMxcf/315sMPPzSnT5/Ocp/g4GBz6623Ztrer18/I8l89tln7m12zn8ZWrRokeXx/OOPPxpJ5s0338xVOGPy3xcKui8BAABPDHAAAAC/sHjxYiPJTJw40WP7jh07jCQze/bsTPt06dLFhIeHZ/l65plnbKed8WXKhx9+6N6W8QXF6NGjM4Vv0aKFKV++vMeX5qmpqaZhw4bmoosuMunp6R5xTJ482WP/Jk2auL/AypCSkmLKlSvn/uIqJytWrDCSMr0CAwPNuHHjbJc7K6mpqV4HOc5NPzQ01GzYsCHX6WQMcHhjt1/kpf94s3fvXiPJ1KhRwxw5csS9/cyZMyYmJsZ0797daxxJSUnm3XffNZ06dTKBgYHG5XKZgQMHms8++8ykpqZmu9+WLVvMfffdZxYuXGi+/PJL8+6775p69eqZgIAAs3z5cmOMMYmJiUaSuemmmzLtn5qa6h78SklJcfdJY85+oX3RRRdl+iLznnvuMaGhoebw4cMe29u0aWPKli3r8YXyyJEjbX1JnZ3cHkPnt+uwYcNMaGioO1xWAxwZ27Zu3eretnHjRiPJzJw5M8f8ZaR7//33e2yfM2dOpv5kN492y2yMMZMmTcpUnoKoN2OMKVWqVKYBLDtuueUWU6NGDfffHTp0MLfffruJiopy1+8333xjJJkVK1a4w40YMcI0atTIa/x5aYOsztd2+3tBna/P9cADD5iwsDCP88lPP/1kJJmpU6caY7Jv+wzvv/++kWSmTJliRo8ebUqUKOFRv7mVmppqevXqZUqVKmU2b96cbbgzZ86YJUuWmP79+5vw8HATHBxsunfvbmbPnm1rALlJkyamdu3aJi0tzb0tJSXF1KhRw0gyc+fOdW+3c/7LUKtWLdO5c+dM6f3111/uHy7kJpwx+e8LvuhLAADgf3hEFQAA8AujR49WzZo1dd999yk1NdX9ql69usLCwrJ87MWnn36q48ePZ/l67LHHHMnX+Y9ROXHihL799lv16dNHpUqVcm8PCAhQfHy89u7dq19++cVjn+7du3v8Xa9ePVmW5fFon8DAQF188cX6448/vOZp8+bNkqSPPvpImzZt0qZNm7R8+XJ169ZNo0eP1kcffZTlfn///XeOjyaxLEuBgYGaO3euUlJSdMMNN2j//v3Zph8fH69Tp07pyy+/9Jrn873yyiu21kux2y/y0n+8yXiE0ZgxY+Ryudzbg4KCdPHFF3t9rJYklS5dWoMGDdJnn32mffv26dlnn9XOnTvVpUsXxcbGZpuvpk2basqUKbr22mt15ZVXatCgQVq3bp0qVqyohx56yGu6zZo1U1BQkPs1efJkSdKpU6f0+eefq3fv3ipZsqRHXV1zzTU6deqUNmzY4BHXkCFD9Pfff+uTTz6RJKWmpmr27Nm68sorVatWLa95OV9ejqFz15qRpLi4OJ06dUoHDhzINp1+/fqpfPnyHo8imjp1qsqVK6cbb7zRVl5vvvlmj79vuOEGBQYGas2aNZnC5pTHvJT5fAVVb5dffrlmzJihcePGacOGDUpJSckxHxnat2+v33//XTt37tSpU6f09ddfq0uXLmrXrp1WrlwpSVq1apVCQkLcjwGUzp637D6eSspdG5wfb176u9Pn63MNHjxYJ0+e1Pvvv+/eNn36dIWEhKh///624rjhhht011136cEHH9S4ceP02GOPqWPHjrnKx7nuueceLV26VB9++KEuueSSLMNs27ZNMTEx6tWrl/7++2+9/PLL2r9/vxYvXqybb77Zoz9m595779WOHTt0zz336M8//9SePXt05513uuuwRIn/fTWR2/OfZVnZpnvue3bDZchvXyjIvgQAAP6HRcYBAMAFl5iYqK1bt0qSQkJCsgxTunRpH+bofypWrOjxd1JSkowxmbZLcq9zcOjQIY/t0dHRHn8HBwerZMmSCg0NzbT96NGjXvOUscB3z549PRZFbdOmjSIjIzVt2jRdd911mfaLiIjQtGnTvMa/fPlyLViwQL169VKZMmWyTD80NFTvvvuuJOmRRx5RnTp1Mn2Zml92+0VB9Z/vvvtOQUFBmZ7ZLkl//fWXx7oCdhw9elRHjhxRcnKyjDEqXbq0AgPtX46XLl1a3bt31xtvvKGTJ0+qbNmyCgsLy/KLsblz5+qff/7Rvn37PNrl0KFDSk1N1dSpUzV16tQs0zl/4KZPnz669957NX36dF1//fVatmyZ9u/fr+eee8523s+Vl2Po/H6Y0c4nT57MNp2QkBANHTpUkydP1qRJk5SSkqIPPvhADzzwQLb95HwxMTEefwcGBqpMmTKZ8uctjykpKbku8/kKqt7ef/99jRs3Tm+//baefPJJlSpVSr1799bEiRMzlf9cHTp0kHR2EKN69epKSUnR1Vdfrf379+vpp592v9e6dWv3IvcbN27U7t27czXAkZs2OL9u8tLfnT5fn6tBgwa67LLLNH36dN1xxx1KS0vT7Nmz1atXr0zp5mTw4MF6/fXXFRwcrOHDh+cqD+caN26c3njjDb3zzjvq0qVLtuGCgoLkcrl0+PBhJScnKzk5WcePH8/VeXXw4ME6ePCgxo0bp9dff12S1LJlS40aNUrPPfecKlWqlOP+55//MvpUdn3h8OHDkv7XnnbDnSu/faEg+xIAAPgfBjgAAMAFt2fPHklnF7g+95e+5zp3wVhfOv9XnVFRUSpRokSWC6L+9ddfkqSyZcsWaJ62bNmiRo0aeQxuSGe/hAoICMj2S9+QkBDddtttOca9dOlSLVmyRH369NG8efOy/AJ+y5Ytaty4sQIDAzVt2jT3Ar5ff/11lguf55XdfvHbb7/ZCpdb3333ncqWLZvpy6hvv/1Wv//+u5588kmvcezZs0cffvih5s+fr02bNqlSpUq68cYbNW3aNF166aW5zpMxRtLZfhkQEKCrr75aK1as0L59+zy+3K1fv74kZVowOCoqyv2L/7vvvjvLNKpXr+7xd1hYmPr166dp06Zp3759evfddxUREZHlwI8dvjyG7rrrLj377LN69913derUKaWmpurOO++0vX9iYqLHF6+pqak6dOhQlgN/OXGizAVVb2XLltWUKVM0ZcoU7d69W5988okeeeQRHThwQMuXL892v4suuki1a9fWqlWrVK1aNV166aUqXbq02rdvr2HDhunbb7/Vhg0bNHbsWPc+CxYsUO3atdWwYUPb+ctNG2R1vs5tfy9ogwYN0rBhw/Tzzz/r999/1759+zRo0CDb+584cULx8fGqXbu29u/fr9tuu00ff/xxrvMxY8YMPfnkkxozZowGDx6cY9h69erp999/1/r16zV37lw9++yzGjlypFq3bq0bb7xRffr0yXEwLMPDDz+sESNG6Ndff1VERISqVq2qoUOHKjw83NaA8bnnvwyNGjXSvHnzlJqa6vF59e9//1uS3H3NbjgAAFD48IgqAABwwWX8ytGyLF166aVZvqKioi5wLs8KDw9X8+bN9dFHH3kMJKSnp2v27NnuL/0KSnJysn7//fcsBxI+/vhjnTp1SldddVWe4580aZJ69OiR7eBGRvoZjzIJCQnRwoULFR0drZ49eyoxMTHPaZ/Pbr8oqP7z3Xff6eDBgzpy5Ih7W1pamh5++GFVq1Yt20fKHDt2TFOnTtUVV1yhqlWr6plnnlGTJk20evVq7d69W5MnT87T4EZSUpKWLFmiJk2auAddHn30UaWlpenOO++09WihkiVLql27dtq6davi4uKyrKusvjgeMmSI0tLSNGnSJC1btkw33XSTSpYsmesySL49hipWrKi+ffvqtdde0xtvvKEePXqoSpUqtvefM2eOx98ffPCBUlNT1bZt21zlI7dlzmqmhS/qrUqVKrrnnnvUsWNHbdmyxWv4Dh06aPXq1Vq5cqX7MUm1a9dWlSpVNHr0aKWkpLhnekhnBzhyM3tDyl8b5LW/F6R+/fopNDRUM2bM0IwZM1SpUiV16tTJ/b632Ul33nmndu/erY8++kjvvPOOPvnkE7344ou5ysPy5ct1++23a/DgwUpISLC9X8uWLTV16lT99ddfWr58uWrWrKnHH39clSpV0tVXX60333wzx1lV0tnyNWzYUFWrVtXu3bv1/vvv6/bbb3fPyMhOVuc/Serdu7eOHz+uBQsWeISfOXOmYmNj1bx581yFAwAAhQ8zOAAAwAVXs2ZNtWvXTk888YSOHz+u5s2byxijffv2ac2aNRowYECuv1AsSBMmTFDHjh3Vrl07jRo1SsHBwXrttdf0448/at68eTk+5zu/tmzZImOMwsPD3c+OT0pK0rp16/Tiiy8qLi5Oo0aNynP8ixcvVlhYWLaPTspI/9xf28bExOjjjz/WFVdcoZ49e2rt2rVev6yyw26/yG3/sSxLbdq00RdffJFt2jt37tShQ4dUpUoV9e3bVyNHjtSpU6f08ssva/Pmzfriiy8UHByc5b6bN2/WI488op49e2rRokXq2rWrgoKCclX2/v37q0qVKrr00ktVtmxZ/frrr5o8ebL279+vGTNmuMO1bt1ar776qu69915dcskluuOOO9SgQQP3L/0zvsyLjIx07/PSSy/piiuu0JVXXqm77rpL1apV07Fjx/Tbb79p8eLFWr16dab8XHrppYqLi9OUKVNkjNGQIUOyzLedupV8ewzdd9997i8vp0+fnqt9P/roIwUGBqpjx47avn27nnzySTVu3Fg33HBDrvORmzI3atRI0tm2GjBggIKCglSnTh3H6y05OVnt2rVT//79VbduXUVERLjX9MnqMXfna9++vV577TX9/fffmjJlisf26dOnKyoqyn2u+P777/Xf//431wMc+W2DvPT3glS6dGn17t1bM2bM0JEjRzRq1CiP9Seya/uIiAi9/fbbmj17tqZPn64GDRqoQYMGuueee/Twww+rdevWuvzyy72mv3PnTvXt21c1atTQoEGDMq1B0rRpU6+PcAsICFCnTp3UqVMnvfHGG1q6dKnmzp2rESNGqHnz5lkOwP/4449asGCBLr30UoWEhOiHH37Qs88+q1q1arkfaZbB7vlPkrp27aqOHTvqrrvu0tGjR3XxxRdr3rx5Wr58uWbPnu2e6Wg3HAAAKIQuyNLmAAAA50lOTjaPPvqoqV27tgkNDTVRUVGmcePG5t577zVJSUkFmvaaNWuMJPPhhx+6tyUkJBhJ5uDBg1nu89VXX5mrr77ahIeHm7CwMNOiRQuzePFijzDZxTFgwAATHh6eKc42bdqYBg0a5JjX559/3kjyeIWHh5umTZuaZ555xpw4ccJusfMkI/0tW7Zkeu/DDz80lmWZvn37mvT0dEfSs9sv7IY7duyYkWRuuummHNP94IMPjCSzbt06Ex8fbyIjI01ERITp1auX+emnn7zm+fjx4/kptpkwYYJp0qSJcblcJiAgwJQrV8707t3bbNy4Mcvw33//vRk0aJCpXr26CQkJMaGhoebiiy82t956q/n8888zhd+5c6cZPHiwqVSpkgkKCjLlypUzrVq1MuPGjcs2Ty+99JKRZOrXr5/l+3brNkN+jqHp06cbSWbnzp1Z/n2+atWqmXr16tnK17npbt682fTo0cOUKlXKREREmH79+pn9+/fnKY92y5zh0UcfNbGxsaZEiRJGklmzZo3tOOzm6dSpU+bOO+80cXFxJjIy0oSFhZk6deqYhIQEW+eSpKQkU6JECRMeHm7OnDnj3j5nzhwjyVx33XXubU888YSpWrWq1zjPL0N+2iCDnf5eEOfr7KxYscJ9/t6xY0em97Nq+23btpmwsDAzYMAAj7CnTp0yzZo1M9WqVbP1WZnxeZfdK7tjyI6czn2//PKLueqqq0x0dLQJDg42F198sXniiSeyDJ/b89+xY8fM8OHDTUxMjAkODjZxcXFm3rx5eQ6X377gy74EAACMsYz5/wdZAgAAAEXcsmXL1L17d/3www/uX0pn5aGHHtJrr72m5ORkftlrk9269bVt27apcePGevXVVzVs2DBb+4wZM0Zjx47VwYMHC3xNneKifv366tq1qyZPnnyhswIAAIAihEdUAQAAoNhYs2aNbrrpJq9fwH/33Xe65JJLGNzIBbt16yv//e9/9ccff+ixxx5TxYoVNXDgwAudpWLtp59+utBZAAAAQBHEAAcAAACKjUmTJnkNY4zRli1bNHjwYB/kqOiwU7e+9PTTT2vWrFmqV6+ePvzwwzwvig54k5qamuP7JUqU8Fhno7jkBQAAwBd4RBUAAAAAAHmwa9cuVa9ePccwCQkJGjNmTLHKCwAAgK8wwAEAAAAAQB6cOXNG27ZtyzFMbGysYmNji1VeAAAAfIUBDgAAAAAAAAAAUOjw8E0AAAAAAAAAAFDoMMABAAAAAAAAAAAKHQY4AAAAAAAAAABAocMABwAAAAAAAAAAKHQY4AAAAAAAAAAAAIUOAxwAAAAAAAAAAKDQYYADAAAAAAAAAAAUOgxwAAAAAAAAAACAQocBDgAAAAAAAAAAUOgwwAEAAAAAAAAAAAodBjgAAAAAAAAAAEChwwAHAAAAAAAAAAAodBjgAAAAAAAAAAAAhQ4DHAAAAAAAAAAAoNBhgAMAAAAAAAAAABQ6DHAAAAAAAAAAAIBChwEOAAAAAAAAAABQ6DDAAQAAAAAAAAAACh0GOAAAAAAAAAAAQKHDAAdQDLz//vtq0KCBwsLCZFmWvv/++wudpSyNGTNGlmVd6Gz4jYEDB6patWoXOhsFbtmyZRozZsyFzoaHXbt2ybIszZgxw2tYX/Tb3OTHrmrVqmngwIGOxXe+1157zdH8AgAA35gxY4Ysy9KuXbsKJH6uEbJW0Ndm/sIf2z83fb5t27Zq27at3+THjoK4lzjXP//8ozFjxuiLL74okPgBwBsGOIAi7uDBg4qPj1fNmjW1fPlyrV+/XrVr177Q2QLcli1bprFjx17obHioWLGi1q9fr27dul3orBRa/njzCgAALjyuEYo3f2z/bt26af369apYseKFzkqh9M8//2js2LEMcAC4YAIvdAYAFKwdO3YoJSVFt9xyi9q0aXOhs1Mk/fPPPypZsuSFzkah42S9Od0GISEhatGihWPxIWcpKSmyLEuBgcXzsuTkyZMKCwu70NkAAABeGGN06tQpPrfzwKnr9YJog3LlyqlcuXKOxYecFef757S0NKWmpiokJORCZwUoUpjBARRhAwcO1BVXXCFJuvHGG2VZlsd02k8++UQtW7ZUyZIlFRERoY4dO2r9+vWZ4sjqMUlZPZbHsizdc889mjVrlurVq6eSJUuqcePGWrJkSab9ly5dqiZNmigkJETVq1fX888/n6uyrVq1Su3bt1dkZKRKliyp1q1b6/PPP88yj9u3b1e/fv3kcrlUoUIFDR48WMnJyR5hjTF67bXX1KRJE4WFhSkqKkp9+vTR77//7hGubdu2atiwob788ku1atVKJUuW1ODBgyVJe/fuVZ8+fRQREaHSpUvr5ptv1qZNmzymA8+aNUuWZWWqZ0l66qmnFBQUpL/++ivbcp86dUqPPvqoqlevruDgYFWqVEl33323jhw54hFu9erVatu2rcqUKaOwsDBVqVJF119/vf755x93mNdff12NGzdWqVKlFBERobp16+qxxx7Lsd4vu+yyTLMaGjVqJMuytGnTJve2jz76SJZl6d///rek/7XFli1b1KdPH0VFRalmzZoaOHCgXn31VUln+0/GK6fp2Dm1wdGjRzVq1CiP+hkxYoROnDjhEceHH36o5s2by+VyqWTJkqpRo4Y7Din7adx2+m1OU8Aty/J4HNdvv/2mQYMGqVatWipZsqQqVaqkHj16uOstL+zWQX72TU9P19SpU93HS+nSpdWiRQt98sknks4+YmH79u1au3atu00zziNffPGFLMvSrFmzNHLkSFWqVEkhISH67bffJEnvvvuuGjdurNDQUEVHR6t37976+eefPdIfOHCgSpUqpd9++03XXHONSpUqpcqVK2vkyJE6ffq0rXp6//331bJlS4WHh6tUqVLq3Lmztm7dmud0zpw5o3Hjxqlu3boKCQlRuXLlNGjQIB08eNAjXLVq1dS9e3d99NFHatq0qUJDQ90zmLZv365OnTqpZMmSKleunO6++24tXbpUlmW5fxH39NNPKzAwUHv27MlUpsGDB6tMmTI6deqUrToAACA37HxG//7777rpppsUGxurkJAQVahQQe3bt3c/Ijena4Ts5PY6fdOmTbryyivd13jPPvus0tPTPcLavebJuL954403VK9ePYWEhGjmzJmSpK+//lotW7ZUaGioKlWqpCeffFJvv/22x7XskCFDFB0d7XENnuHqq69WgwYNciz77t27dcstt6h8+fIKCQlRvXr1NHny5Ezl8XZd/88//7jLm9F+l156qebNm5dt2kePHlVgYKAmTZrk3vb333+rRIkScrlcSk1NdW8fPny4ypUrJ2OMpOyv1/PS/jm1wa+//qr+/ft71E/GvUWG9PR0jRs3TnXq1HFft8bFxemll15yh8nqkVDGGE2cOFFVq1ZVaGioLrnkEn366aeZ8pfd46QyrnnPndWwcuVK9erVSxdddJFCQ0N18cUXa+jQofr7779zrIOc2KmD/O575MgRjRw5UjVq1FBISIjKly+va665Rv/5z3+0a9cu9+DQ2LFj3e2a8bi17O4DJfv3thnXz8uXL9cll1yisLAw1a1bV++++66tcub2Ot1OOomJiRo6dKguuugiBQcHq3r16ho7dqzHcZFxXzhx4kSNGzdO1atXV0hIiNasWSNJ+vjjjxUXF6eQkBDVqFFDL730UqbvWdq3b6+6deu6j60MxhhdfPHFPHEAyGAAFFm//fabefXVV40kM378eLN+/Xqzfft2Y4wxc+bMMZJMp06dzKJFi8z7779vmjVrZoKDg81XX33ljmPAgAGmatWqmeJOSEgw559CJJlq1aqZyy+/3HzwwQdm2bJlpm3btiYwMND897//dYdbtWqVCQgIMFdccYX56KOPzIcffmguu+wyU6VKlUxxZmXWrFnGsixz7bXXmo8++sgsXrzYdO/e3QQEBJhVq1ZlymOdOnXM6NGjzcqVK80LL7xgQkJCzKBBgzzivP32201QUJAZOXKkWb58uZk7d66pW7euqVChgklMTHSHa9OmjYmOjjaVK1c2U6dONWvWrDFr1641x48fNxdffLGJjo42r776qvnss8/M/fffb6pXr24kmenTpxtjjDl9+rSJiYkxN998s0f6KSkpJjY21vTt2zfbuk9PTzedO3c2gYGB5sknnzQrVqwwzz//vAkPDzdNmzY1p06dMsYYs3PnThMaGmo6duxoFi1aZL744gszZ84cEx8fb5KSkowxxsybN89IMvfee69ZsWKFWbVqlXnjjTfM8OHDc6z7Rx55xJQqVcqcOXPGGGNMYmKikWTCwsLMM8884w531113mQoVKmRqi6pVq5qHH37YrFy50ixatMj89ttvpk+fPkaSWb9+vfuVUZasZNcGJ06cME2aNDFly5Y1L7zwglm1apV56aWXjMvlMldffbVJT083xhizbt06Y1mWuemmm8yyZcvM6tWrzfTp0018fLw7jZ07d3q0mzH2+21W+2aQZBISEtx/r1271owcOdL861//MmvXrjULFy401157rQkLCzP/+c9/bMV5Lrt1YIwxVatWNQMGDMjTvvHx8cayLHPbbbeZjz/+2Hz66afmmWeeMS+99JIxxpgtW7aYGjVqmKZNm7rbdMuWLcYYY9asWWMkmUqVKpk+ffqYTz75xCxZssQcOnTIjB8/3kgy/fr1M0uXLjXvvfeeqVGjhnG5XGbHjh3u9AcMGGCCg4NNvXr1zPPPP29WrVplRo8ebSzLMmPHjs2xjowx5plnnjGWZZnBgwebJUuWmI8++si0bNnShIeHu8+RuUknLS3NdOnSxYSHh5uxY8ealStXmrfffttUqlTJ1K9f3/zzzz8e9V6xYkVTo0YN8+6775o1a9aYjRs3mr/++suUKVPGVKlSxcyYMcMsW7bMxMfHm2rVqhlJZs2aNcYYY/bv329CQkLM448/7lGmQ4cOmbCwMPPggw96LT8AADmZPn26kWR27tzp3mb3M7pOnTrm4osvNrNmzTJr1641CxYsMCNHjnR/juV0jZCd3FynlylTxtSqVcu88cYbZuXKlWbYsGFGkpk5c6Y7XG6ueTKuWeLi4szcuXPN6tWrzY8//mh++OEHExoaauLi4sz8+fPNJ598Yq655hr353ZG3f3www9Gkpk2bZpHmbZv324kmVdffdW97fxrswMHDphKlSqZcuXKmTfeeMMsX77c3HPPPUaSueuuu9zh7FzXDx061JQsWdK88MILZs2aNWbJkiXm2WefNVOnTs2x7lu0aGE6derk/nv+/PkmNDTUWJZlvvnmG/f2evXqmRtuuMGjLbK6Xs9L+2fXBtu3bzcul8s0atTIvPfee2bFihVm5MiRpkSJEmbMmDHu/SdMmGACAgJMQkKC+fzzz83y5cvNlClTPMJk1ecz7l+GDBliPv30U/PWW2+ZSpUqmZiYGNOmTZsc9zXmf9e8GX3fGGNef/11M2HCBPPJJ5+YtWvXmpkzZ5rGjRubOnXquO+vcorzfHbrIKt7Cbv7Hj161DRo0MCEh4ebp556ynz22WdmwYIF5r777jOrV682p06dMsuXL3fXVUa7/vbbbx71eP59oN17W2POHhsXXXSRqV+/vnnvvffMZ599Zvr27WskmbVr1+ZYR7m9TreTzr59+0zlypVN1apVzZtvvmlWrVplnn76aRMSEmIGDhyYqd4rVapk2rVrZ/71r3+ZFStWmJ07d5pPP/3UlChRwrRt29YsXLjQfPjhh6Z58+buc0iGjz/+2EgyK1eu9CjX0qVLjSSzdOnSHMsPFBcMcABFXMaF1YcffujelpaWZmJjY02jRo1MWlqae/uxY8dM+fLlTatWrdzbcjvAUaFCBXP06FH3tsTERFOiRAkzYcIE97bmzZub2NhYc/LkSfe2o0ePmujoaK8DHCdOnDDR0dGmR48eHtvT0tJM48aNzeWXX54pjxMnTvQIO2zYMBMaGuq+eVm/fr2RZCZPnuwRbs+ePSYsLMw89NBD7m1t2rQxksznn3/uETZjIOnTTz/12D506NBMF5MJCQkmODjY7N+/373t/fffz3ThdH7dZ1w4nl+ejH3feustY4wx//rXv4wk8/3335vs3HPPPaZ06dLZvp+dVatWGUnmyy+/NMYYM3v2bBMREWGGDRtm2rVr5w5Xq1Yt079/f48ySzKjR4/OFOfdd99ta2ArQ3ZtMGHCBFOiRAmzadMmj+0Z9bFs2TJjjDHPP/+8kWSOHDmSbRpZ3QTY7be5GeA4X2pqqjlz5oypVauWuf/++23FeS67dWBM5ptou/t++eWXRlKmL9jP16BBA4+bvwwZ56SrrrrKY3tSUpIJCwsz11xzjcf23bt3m5CQEI/+NGDAACPJfPDBBx5hr7nmGlOnTp0c87V7924TGBho7r33Xo/tx44dMzExMR4353bTyfhiYcGCBR7hNm3aZCSZ1157zb2tatWqJiAgwPzyyy8eYR988EFjWZbHAIsxxnTu3DnTzfGAAQNM+fLlzenTp93bnnvuOVOiRAmvN8IAAHhz/perdj+j//77byPJTJkyJcf4s7tGyEpertO//fZbj7D169c3nTt3dv+dm+slScblcpnDhw97hO3bt68JDw83Bw8edG9LS0sz9evXz/TFdJs2bUyTJk089r/rrrtMZGSkOXbsmHvb+ddmjzzySJblueuuu4xlWe5rCTvX9Q0bNjTXXnttjmGy8sQTT5iwsDD3l8233Xab6dKli4mLi3P/2OPPP//0uBfJKHNW1+vG5K79jcm+DTp37mwuuugik5yc7LH9nnvuMaGhoe7w3bt3z1T/58uqz4eGhprevXt7hPvmm2+MpDwPcJwrPT3dpKSkmD/++MNIMh9//LHXOM9ntw6yupewu+9TTz2V5Rfs5zp48GC29znZ3Qfavbc15uyxERoaav744w/3tpMnT5ro6GgzdOjQbPNlTO6v0+2kM3ToUFOqVCmPcMb87z4z43o+o95r1qzpMYBljDGXXXaZqVy5ssf1/LFjx0yZMmU87i3T0tJMjRo1TK9evTz279q1q6lZs6bHgCxQnPGIKqAY+uWXX/TXX38pPj5eJUr87zRQqlQpXX/99dqwYUOW06jtaNeunSIiItx/V6hQQeXLl9cff/whSTpx4oQ2bdqk6667TqGhoe5wERER6tGjh9f4161bp8OHD2vAgAFKTU11v9LT09WlSxdt2rQp09Tynj17evwdFxenU6dO6cCBA5KkJUuWyLIs3XLLLR5xxsTEqHHjxpkWS4uKitLVV1/tsW3t2rWKiIhQly5dPLb369cvUxnuuusuSdK0adPc21555RU1atRIV111VbZlX716tSS5p/tm6Nu3r8LDw92P6GrSpImCg4N1xx13aObMmZmm70vS5ZdfriNHjqhfv376+OOPbU+Lbt26tUJDQ7Vq1SpJZ6dZt23bVl26dNG6dev0zz//aM+ePfr111/VoUOHTPtff/31ttLxJqs2WLJkiRo2bKgmTZp4tGPnzp09podfdtllkqQbbrhBH3zwgf7880+v6eW332YnNTVV48ePV/369RUcHKzAwEAFBwfr119/zfTIBzvs1kF+9s2Ymn/33Xfnpchu5/eF9evX6+TJk5n6d+XKlXX11VdnegSdZVmZ6j4uLs59rsnOZ599ptTUVN16660e5QwNDVWbNm0y1ZGddJYsWaLSpUurR48eHnE2adJEMTExmeKMi4tT7dq1PbatXbtWDRs2VP369T22Z3UOue+++3TgwAF9+OGHks4+euH1119Xt27dvD7mAQCA3LL7GR0dHa2aNWtq0qRJeuGFF7R169ZMj1LKrdxep8fExOjyyy/32JbV53ZurpeuvvpqRUVFeWxbu3atrr76apUtW9a9rUSJErrhhhsyleG+++7T999/r2+++UbS2Uc/zZo1SwMGDFCpUqWyLfvq1atVv379TOUZOHCgjDHuewM71/WXX365Pv30Uz3yyCP64osvdPLkyWzTPVf79u118uRJrVu3TtLZxwR37NhRHTp00MqVK93bJGW69s/qej2vzm+DU6dO6fPPP1fv3r1VsmRJj3a85pprdOrUKW3YsEHS2bL/8MMPGjZsmD777DMdPXrUa3rr16/XqVOndPPNN3tsb9WqlapWrZrnchw4cEB33nmnKleurMDAQAUFBbnjy+21f27qID/7fvrpp6pdu3aW93a5cf61v9172wxNmjRRlSpV3H+Hhoaqdu3aXq/9c3udbiedJUuWqF27doqNjfWIs2vXrpLOnh/O1bNnTwUFBbn/PnHihL777jtde+21Cg4Odm8vVapUpvuOEiVK6J577tGSJUu0e/duSdJ///tfLV++XMOGDcv02HCguGKAAyiGDh06JEmqWLFipvdiY2OVnp6upKSkPMVdpkyZTNtCQkLcF9FJSUlKT09XTExMpnBZbTvf/v37JUl9+vRRUFCQx+u5556TMUaHDx/OMU8ZC3pl5Gn//v0yxqhChQqZ4tywYUOmm4Ss6u3QoUOqUKFCpu3Zbbvxxhv15ptvKi0tTdu2bdNXX32le+65J8eyHzp0SIGBgZkWwLMsSzExMe52rVmzplatWqXy5cvr7rvvVs2aNVWzZk2P58zGx8fr3Xff1R9//KHrr79e5cuXV/Pmzd03KtkJDQ1V69at3Tcyn3/+uTp27Ki2bdsqLS1NX331lTuOrC6Cs6q7vMgqnv3792vbtm2Z2jAiIkLGGHc7XnXVVVq0aJH7S+6LLrpIDRs2zPEZxPntt9l54IEH9OSTT+raa6/V4sWL9e2332rTpk1q3Lix7RvPc9mtg/zse/DgQQUEBOSr3FLmNvR2Xsp4P0PJkiU9Bpuks8e2t/UnMs4hl112Waayvv/++5nqyE46+/fv15EjRxQcHJwpzsTERMfPIU2bNtWVV17pfkbykiVLtGvXLq/nEAAA8sLuZ7RlWfr888/VuXNnTZw4UZdcconKlSun4cOH69ixY3lKO7fX6d7uRTLizM31Un4/t3v16qVq1aq5P7dnzJihEydOeP2xyKFDh7Kt84z3JXvX9S+//LIefvhhLVq0SO3atVN0dLSuvfZa/frrrznmIWP9jFWrVum3337Trl273AMc3377rY4fP65Vq1apRo0aql69use+Tl33ZxXXoUOHlJqaqqlTp2Zqx2uuuUaS3O346KOP6vnnn9eGDRvUtWtXlSlTRu3bt9d3332XbXoZdevktX96ero6deqkjz76SA899JA+//xzbdy40T2QkNtr/9zUQX72PXjwoC666KI8lflcWbWhnXvbDHaO7azk9jrd7jlk8eLFmeLLWFPH2zkkKSnJfV47X1bbBg8erLCwML3xxhuSpFdffVVhYWEea0gCxV3ghc4AAN/L+NDet29fpvf++usvlShRwv0LmdDQ0CwX7c3rQmhRUVGyLEuJiYmZ3stq2/kyfiU1depUtWjRIsswWV0UeIvTsix99dVX7sGPc52/LatfSZQpU0YbN27MtD27Mt13332aNWuWPv74Yy1fvty9KHlOypQpo9TUVB08eNDjQtAYo8TERPfMBEm68sordeWVVyotLU3fffedpk6dqhEjRqhChQq66aabJEmDBg3SoEGDdOLECX355ZdKSEhQ9+7dtWPHjhx/mdS+fXuNHj1aGzdu1N69e9WxY0dFRETosssu08qVK/XXX3+pdu3aqly5cqZ9nfqFSVbxlC1bVmFhYdkuNnfuL+x69eqlXr166fTp09qwYYMmTJig/v37q1q1amrZsmWmfXPTbzO+DD//uDn/Il2SZs+erVtvvVXjx4/32P7333+rdOnSWZYjJ7mpg7zuW65cOaWlpSkxMTFfN67nt6G381JOec+NjHj+9a9/5esXeOfHWaZMGS1fvjzL98+d1SZlfw7JGHw5V3bnkOHDh6tv377asmWLXnnlFdWuXVsdO3bMQ+4BAMhZbj6jq1atqnfeeUeStGPHDn3wwQcaM2aMzpw54/5yLjdye51uN87cXC/l93O7RIkSuvvuu/XYY49p8uTJeu2119S+fXvVqVMnx3yWKVMm2zo/P5/eruvDw8M1duxYjR07Vvv373fP5ujRo4f+85//ZJuH4OBgXXHFFVq1apUuuugixcTEqFGjRqpRo4akswtpf/755+revXumfZ38Zfn5cUVFRSkgIEDx8fHZDhRlDLgEBgbqgQce0AMPPKAjR45o1apVeuyxx9S5c2ft2bNHJUuWzLRvRp/P7tr/3Bmz2V37n3+//OOPP+qHH37QjBkzNGDAAPf23377Lbti5yg3dZCffcuVK6e9e/fmKY/nyura3+69bX7k9jrdbpxxcXF65plnsnw/YxAyQ1b917Is2+cQl8ulAQMG6O2339aoUaM0ffp09e/fP0/3i0BRxQAHUAzVqVNHlSpV0ty5czVq1Cj3B+6JEye0YMECtWzZ0n2hV61aNR04cED79+93DxycOXNGn332WZ7SDg8P1+WXX66PPvpIkyZNcl8QHjt2TIsXL/a6f+vWrVW6dGn99NNPjv1auXv37nr22Wf1559/Zjmt3I42bdrogw8+0KeffuqemipJ8+fPzzJ8s2bN1KpVKz333HP68ccfdccddyg8PDzHNNq3b6+JEydq9uzZuv/++93bFyxYoBMnTqh9+/aZ9gkICFDz5s1Vt25dzZkzR1u2bHEPcGQIDw9X165ddebMGV177bXavn17jl/8dujQQY899piefPJJXXTRRapbt657+yeffKLExMRcPYrq3Bk1YWFhtvc7X/fu3TV+/HiVKVMm24v5rNJu06aNSpcurc8++0xbt27NcoAjN/22QoUKCg0N1bZt2zy2f/zxx5nitSwr04350qVL9eeff+riiy+2VYZz5aUOcrtv165dNWHCBL3++ut66qmnsg1n5xdV52rZsqXCwsI0e/Zs9e3b17197969Wr16tfr06WM7rpx07txZgYGB+u9//+vYI9O6d++u+fPnKy0tTc2bN89THG3atNHzzz+vn376yeMxVdmdQ3r37q0qVapo5MiRWrt2rV588UWmqAMACkReP6Nr166tJ554QgsWLNCWLVvc23NzjeDEdXpWceb1eilDmzZttGzZMv3999/ugYb09HT34yPPd9ttt2nMmDG6+eab9csvv+i5557zmkb79u01YcIEbdmyRZdccol7+3vvvSfLstSuXbtM+9i5rq9QoYIGDhyoH374QVOmTNE///yT5Zf8GTp06KBHH31UERER7hna4eHhatGihaZOnaq//vorV48vyu01YlZKliypdu3aaevWrYqLi/N4zE9OSpcurT59+ujPP//UiBEjtGvXrkyPB5WkFi1aKDQ0VHPmzPG4Xly3bp3++OMPjwGOjP9v27bNY9Dqk08+8Ygz4zrt/Gv/N99801bez5fXOsjtvl27dtXo0aO1evXqbB85dv4TEuzIy71tXjhxnZ5VnMuWLVPNmjUzPb7OjvDwcF166aVatGiRnn/+eXf9Hz9+XEuWLMlyn+HDh+u1115Tnz59dOTIEWZuA+dhgAMohkqUKKGJEyfq5ptvVvfu3TV06FCdPn1akyZN0pEjR/Tss8+6w954440aPXq0brrpJj344IM6deqUXn75ZaWlpeU5/aefflpdunRRx44dNXLkSKWlpem5555TeHh4psdLna9UqVKaOnWqBgwYoMOHD6tPnz4qX768Dh48qB9++EEHDx7U66+/nqv8tG7dWnfccYcGDRqk7777TldddZXCw8O1b98+ff3112rUqJF73YzsDBgwQC+++KJuueUWjRs3ThdffLE+/fRT90DQuWudZLjvvvt04403yrIsDRs2zGs+O3bsqM6dO+vhhx/W0aNH1bp1a23btk0JCQlq2rSp4uPjJUlvvPGGVq9erW7duqlKlSo6deqU+xdqGTcft99+u8LCwtS6dWtVrFhRiYmJmjBhglwul9dfyzRr1kxRUVFasWKFBg0a5N7eoUMHPf300x7p2NGoUSNJ0nPPPaeuXbsqICAg1xfpkjRixAgtWLBAV111le6//37FxcUpPT1du3fv1ooVKzRy5Eg1b95co0eP1t69e9W+fXtddNFFOnLkiF566SUFBQWpTZs22cZvt99mPCf63XffVc2aNdW4cWNt3LhRc+fOzRRn9+7dNWPGDNWtW1dxcXHavHmzJk2alOdp4HbrID/7XnnllYqPj9e4ceO0f/9+de/eXSEhIdq6datKliype++9V9LZdp0/f77ef/991ahRQ6Ghoe62zkrp0qX15JNP6rHHHtOtt96qfv366dChQxo7dqxCQ0OVkJCQpzo5X7Vq1fTUU0/p8ccf1++//64uXbooKipK+/fv18aNG92/cMyNm266SXPmzNE111yj++67T5dffrmCgoK0d+9erVmzRr169VLv3r1zjGPEiBF699131bVrVz311FOqUKGC5s6d6/5V5fnnkICAAN199916+OGHFR4enun5xQAAOMXuZ/S2bdt0zz33qG/fvqpVq5aCg4O1evVqbdu2TY888og7vtxcIzhxnX6+/FwvZXj88ce1ePFitW/fXo8//rj78TEZawGe/7ldunRp3XrrrXr99ddVtWpVW2u43X///XrvvffUrVs3PfXUU6pataqWLl2q1157TXfddZd7PS871/XNmzdX9+7dFRcXp6ioKP3888+aNWuWxw/bstO+fXulpaXp888/18yZM93bO3TooISEBFmWlau1NnJ7jZidl156SVdccYWuvPJK3XXXXapWrZqOHTum3377TYsXL3av8dCjRw81bNhQl156qcqVK6c//vhDU6ZMUdWqVVWrVq0s446KitKoUaM0btw43Xbbberbt6/27NmjMWPGZHpE1WWXXaY6depo1KhRSk1NVVRUlBYuXKivv/7aI1zdunVVs2ZNPfLIIzLGKDo6WosXL/b6iGAn6iA/+44YMULvv/++evXqpUceeUSXX365Tp48qbVr16p79+7uNTirVq2qjz/+WO3bt1d0dLTKli2b49pwdu9t88uJ6/TzPfXUU1q5cqVatWql4cOHq06dOjp16pR27dqlZcuW6Y033vB6P/fUU0+pW7du6ty5s+677z6lpaVp0qRJKlWqVJbfidSuXVtdunTRp59+qiuuuEKNGzfOVZ6BIu/CrG0OwFfWrFljJJkPP/ww03uLFi0yzZs3N6GhoSY8PNy0b9/efPPNN5nCLVu2zDRp0sSEhYWZGjVqmFdeecUkJCSY808hkszdd9+daf+qVauaAQMGeGz75JNPTFxcnAkODjZVqlQxzz77bJZxZmft2rWmW7duJjo62gQFBZlKlSqZbt26eZQzI76DBw967Dt9+nQjyezcudNj+7vvvmuaN29uwsPDTVhYmKlZs6a59dZbzXfffecO06ZNG9OgQYMs87R7925z3XXXmVKlSpmIiAhz/fXXm2XLlhlJ5uOPP84U/vTp0yYkJMR06dIly/gGDBhgqlat6rHt5MmT5uGHHzZVq1Y1QUFBpmLFiuauu+4ySUlJ7jDr1683vXv3NlWrVjUhISGmTJkypk2bNuaTTz5xh5k5c6Zp166dqVChggkODjaxsbHmhhtuMNu2bcsyL+fr3bu3kWTmzJnj3nbmzBkTHh5uSpQo4ZEfY7Jvi4x6uO2220y5cuWMZVlZts25cmqD48ePmyeeeMLUqVPHBAcHG5fLZRo1amTuv/9+k5iYaIwxZsmSJaZr166mUqVKJjg42JQvX95cc8015quvvnLHs3PnTiPJTJ8+3SN+u/02OTnZ3HbbbaZChQomPDzc9OjRw+zatctIMgkJCe5wSUlJZsiQIaZ8+fKmZMmS5oorrjBfffWVadOmjWnTpo3X/OS1DozJ+ri0u29aWpp58cUXTcOGDd3hWrZsaRYvXuwOs2vXLtOpUycTERFhJLn7ck7nJGOMefvtt9117HK5TK9evcz27ds9wgwYMMCEh4dn2jc355BFixaZdu3amcjISBMSEmKqVq1q+vTpY1atWpWndFJSUszzzz9vGjdubEJDQ02pUqVM3bp1zdChQ82vv/7qDle1alXTrVu3LPP0448/mg4dOpjQ0FATHR1thgwZYmbOnGkkmR9++CFT+Iw+deedd9oqMwAAdmR3reztM3r//v1m4MCBpm7duiY8PNyUKlXKxMXFmRdffNGkpqa6w2V3jZCT/FynZ3VNbfeaJ7v7G2OM+eqrr0zz5s1NSEiIiYmJMQ8++KB57rnnjCRz5MiRTOG/+OILI8k8++yzWcaX1bXZH3/8Yfr372/KlCljgoKCTJ06dcykSZNMWlqaO4yd6/pHHnnEXHrppSYqKsqEhISYGjVqmPvvv9/8/fffWeblXOnp6aZs2bJGkvnzzz/d27/55hsjyVxyySWZ9snpej237Z9TG+zcudMMHjzYVKpUyQQFBZly5cqZVq1amXHjxrnDTJ482bRq1cqULVvWfQ0/ZMgQs2vXLneYrPp8enq6mTBhgqlcubIJDg42cXFxZvHixZmu040xZseOHaZTp04mMjLSlCtXztx7771m6dKlRpJZs2aNO9xPP/1kOnbsaCIiIkxUVJTp27ev2b17d6Z7hOyOwbzWQXb3Enb2NebsPct9991nqlSpYoKCgkz58uVNt27dzH/+8x93mFWrVpmmTZuakJAQI8ndl3O6D7Rzb2tM9tfPWbVFVvJ7nZ5VOgcPHjTDhw831atXN0FBQSY6Oto0a9bMPP744+b48ePGmP/V+6RJk7LM18KFC02jRo087i2HDx9uoqKisgw/Y8YMI8nMnz/fa5mB4sYyxpiCHEABgOJs/PjxeuKJJ7R79+5Mv+JYvHixevbsqaVLl7oXcwOAc91xxx2aN2+eDh06lGlW09SpUzV8+HD9+OOP7kUNAQDAhdOpUyft2rVLO3bsyPTeyJEj9frrr2vPnj1ZLmQMoHhLSUlRkyZNVKlSJa1YsSLT+9dff702bNigXbt2KSgo6ALkEPBfPKIKABzyyiuvSDo7/TglJUWrV6/Wyy+/rFtuucVjcOOnn37SH3/8oZEjR6pJkyYea3YAKL6eeuopxcbGqkaNGu5n8L799tt64oknPAY3tm7dqp07d+qpp55Sr169GNwAAOACeOCBB9S0aVNVrlxZhw8f1pw5c7Ry5Ur3IusZNmzYoB07dui1117T0KFDGdwAIEkaMmSIOnbs6H603BtvvKGff/5ZL730kjvM6dOntWXLFm3cuFELFy7UCy+8wOAGkAUGOADAISVLltSLL76oXbt26fTp06pSpYoefvhhPfHEEx7hhg0bpm+++UaXXHKJZs6cycLAACRJQUFBmjRpkvbu3avU1FTVqlVLL7zwgu677z6PcL1791ZiYqKuvPJKvfHGGxcotwAAFG9paWkaPXq0EhMTZVmW6tevr1mzZumWW27xCJexzkX37t01bty4C5RbAP7m2LFjGjVqlA4ePKigoCBdcsklWrZsmcd6lvv27VOrVq0UGRmpoUOHutc7BOCJR1QBAAAAAAAAAIBCp8SFzsD5/vzzT91yyy0qU6aMSpYsqSZNmmjz5s3u940xGjNmjGJjYxUWFqa2bdtq+/btHnGcPn1a9957r8qWLavw8HD17NlTe/fu9QiTlJSk+Ph4uVwuuVwuxcfH68iRIx5hdu/erR49eig8PFxly5bV8OHDdebMmQIrOwAAAAB4wz0TAAAAcJZfDXAkJSWpdevWCgoK0qeffqqffvpJkydPVunSpd1hJk6cqBdeeEGvvPKKNm3apJiYGHXs2FHHjh1zhxkxYoQWLlyo+fPn6+uvv9bx48fVvXt3paWlucP0799f33//vZYvX67ly5fr+++/V3x8vPv9tLQ0devWTSdOnNDXX3+t+fPna8GCBRo5cqRP6gIAAAAAzsc9EwAAAPA/fvWIqkceeUTffPONvvrqqyzfN8YoNjZWI0aM0MMPPyzp7C+PKlSooOeee05Dhw5VcnKyypUrp1mzZunGG2+UJP3111+qXLmyli1bps6dO+vnn39W/fr1tWHDBjVv3lzS2YW/WrZsqf/85z+qU6eOPv30U3Xv3l179uxRbGysJGn+/PkaOHCgDhw4oMjIyEz5O336tE6fPu3+Oz09XYcPH1aZMmV4xj4AAACKPGOMjh07ptjYWJUo4Ve/pSoyuGcCAADwL/52DXzq1KkCm1EbHBys0NDQAok7z4wfqVevnhkxYoTp06ePKVeunGnSpIl566233O//97//NZLMli1bPPbr2bOnufXWW40xxnz++edGkjl8+LBHmLi4ODN69GhjjDHvvPOOcblcmdJ3uVzm3XffNcYY8+STT5q4uDiP9w8fPmwkmdWrV2eZ/4SEBCOJFy9evHjx4sWLF69i/dqzZ0/ubgRgG/dMvHjx4sWLFy9e/vnyh2vgkydPmlIFWMaYmBhz8uTJC11MD4HyI7///rtef/11PfDAA3rssce0ceNGDR8+XCEhIbr11luVmJgoSapQoYLHfhUqVNAff/whSUpMTFRwcLCioqIyhcnYPzExUeXLl8+Ufvny5T3CnJ9OVFSUgoOD3WHO9+ijj+qBBx5w/52cnKwqVapIul9SSA4l75HDexlxNfQaxuWaYCOeR72G8SdFsUx2FcWy2ymTU8cDip/ieswUtjLZVZzLDhRmR48eVeXKlRUREXGhs1JkFdV7pj179mQ54wMAAMDf+dM18JkzZ3Rc3r+NzovTkl5MTNSZM2f8ahaHXw1wpKen69JLL9X48eMlSU2bNtX27dv1+uuv69Zbb3WHO3/qsjHG63Tm88NkFT4vYc4VEhKikJCsuk6IpJwavVQO751l72Lfe8cqfDcNRbFMdhXFsts5+Tl1PKD4KZ7HTOErk13FuexA4cejhgpOUb1nioyM5LwOAAAKNX+6Bg6XvW/hcsOvBhLOceEfCnaOihUrqn79+h7b6tWrp927d0uSYmJiJCnTr4EOHDjg/uVQTEyMzpw5o6SkpBzD7N+/P1P6Bw8e9AhzfjpJSUlKSUnJ9CslAAAAAPAF7pkAAACA//GrAY7WrVvrl19+8di2Y8cOVa1aVZJUvXp1xcTEaOXKle73z5w5o7Vr16pVq1aSpGbNmikoKMgjzL59+/Tjjz+6w7Rs2VLJycnauHGjO8y3336r5ORkjzA//vij9u3b5w6zYsUKhYSEqFmzZg6XHAAAAAC8454JAAAA3gQV0Msf+dXMkvvvv1+tWrXS+PHjdcMNN2jjxo1666239NZbb0k6O81nxIgRGj9+vGrVqqVatWpp/PjxKlmypPr37y9JcrlcGjJkiEaOHKkyZcooOjpao0aNUqNGjdShQwdJZ3/h1KVLF91+++168803JUl33HGHunfvrjp16kiSOnXqpPr16ys+Pl6TJk3S4cOHNWrUKN1+++1MnQYAAABwQXDPBAAAAPyPZYwxFzoT51qyZIkeffRR/frrr6pevboeeOAB3X777e73jTEaO3as3nzzTSUlJal58+Z69dVX1bDh/xYdPnXqlB588EHNnTtXJ0+eVPv27fXaa6+pcuXK7jCHDx/W8OHD9cknn0iSevbsqVdeeUWlS5d2h9m9e7eGDRum1atXKywsTP3799fzzz+fzTobmR09elQul0vSI3L+qWeZGZPgNYxljc13PHbikHrbCLPQkXiMifMaxor2npI57D2MZW1zJD9O8dYWdvpEcebE8WA3HjucOfbyn05x51S/AIDiKOP6Nzk5mS+4C1BRvGeizyA7OV2bcU0GAPAH/nQ9k5GXZ+T8t9GnJD0u+UU5z+V3AxxFCQMc3jDAkV8McOQPAxzICgMcAJB3/nRzh8KBPgNvGOAAAPg7f7qeKY4DHH71iCoAAAAAAAAAAJB3gXJ+zYxUh+NzCgMcAAAAAAAAAAAUEYFy/ot/fx1IKHGhMwAAAAAAAAAAAJBb/jrwAgAAAAAAAAAAcilIPKIKDkpOfjTHhVfsLFxtZ0Fu5xb/zplTC7lZlvcy2VpA3KGFlyXv5fKnBcQlZ9qiOC+o7NQC4r6qH39rB3+qG8m5/PhbPaPo8LdjBgCAwoDPRgAAkBMGOAAAAAAAAAAAKCJYgwMAAAAAAAAAAMCP+evACwAAAAAAAAAAyKVAOb8GR4rD8TmFGRwAAAAAAAAAAKDQYQYHAAAAAAAAAABFRHFag8Nf81XMLPQawpgER1KyrLE2wnjLS5wjefE3durGKXba06k29xU79VfYyiT59tgrbPXjy/wWxfpD8UMfBQDn5fUannMyAAAoyoLk/COqnI7PKTyiCgAAAAAAAAAAFDrM4AAAAAAAAAAAoIhgBgcAAAAAAAAAAIAfYwYHAAAAAAAAAABFRHFaZJwZHAAAAAAAAAAAoNDx14GXYqa31xCWtc1rGGPinMiMpIVe3ncqHe8sa6zXMMYk+CyewsaX5S6K9eekwlY/ds453s8Vzh2fds6ThU1xPS8VZ7Q5ADiP8yYAAEBmgXJ+zQx/HUhgBgcAAAAAAAAAACh0/HXgBQAAAAAAAAAA5FJxWoPDX/MFAAAAAAAAAAByKUjOP6LK6ficwiOqAAAAAAAAAABAocMABwAAAAAAAAAARURgAb1y68svv1SPHj0UGxsry7K0aNGibMMOHTpUlmVpypQpuUqDR1T5gMv1o6RS+YxlodcQluU9jDEJ+cyHZFnb8h2H5Exe/DEtOyxrrNcwdvLsLR4n4rDLqbR82VbFuezeGBNnI5SdMM6wl5/CxZ/aG75BmwMAAAAAipMTJ06ocePGGjRokK6//vpswy1atEjffvutYmNjc50GAxwAAAAAAAAAABQRgXJ+zYy8DCR07dpVXbt2zTHMn3/+qXvuuUefffaZunXr5pN8AQAAAAAAAACAYubo0aMef4eEhCgkJCRPcaWnpys+Pl4PPvigGjRokKc4WIMDAAAAAAAAAIAioiDX4KhcubJcLpf7NWHChDzn87nnnlNgYKCGDx+e5ziYwQEAAAAAAAAAALzas2ePIiMj3X/ndfbG5s2b9dJLL2nLli2yLCvP+WEGBwAAAAAAAAAARURQAb0kKTIy0uOV1wGOr776SgcOHFCVKlUUGBiowMBA/fHHHxo5cqSqVatmOx5mcPhAcnJDj1GtvLCshV7DGJOQrzTsMibOaxjLGmsjJu/x2GFZ27yGcS7P3tlpBzth7JUr53jslMleXpypG3/jq2PG12l541S/cE5vryH8L8++UVzLLRXvsgMAAAAAUNTFx8erQ4cOHts6d+6s+Ph4DRo0yHY8DHAAAAAAAAAAAFBEnLtmhpNx5tbx48f122+/uf/euXOnvv/+e0VHR6tKlSoqU6aMR/igoCDFxMSoTp06BZovAAAAAAAAAADghwL1v0dKORlnbn333Xdq166d++8HHnhAkjRgwADNmDHjguULAAAAAAAAAAAgW23btpUxxnb4Xbt25ToNBjgAAAAAAAAAACgizl0U3Mk4/REDHH7Alws4O7Foq53Fr5F/dhZG9x6HjQXEo/OdzNl4CuFC5L5cxNifFkx2apF7e2l578f2+nr+jwe7Cltb2WGnPZ045ziJBcQLnj/1dcl7fugTAAAAAIDzMcABAAAAAAAAAEAR4S+LjPtCiQudAQAAAAAAAAAAgNzy14EXAAAAAAAAAACQS4EBUpDlcJxGUpqzcTqBGRwAAAAAAAAAAKDQYQYHAAAAAAAAAABFRGCgFFhMZnAwwOEHjElwJB7L2uZIWpY1Nt95caxM/e2kFec9Hhtl8lXdOMlbm9upG3PYTjrewzjV5v7GqTb3r/7V22sIO33HKf5Wx77qy77Miy/bE4WHv523/S0/AIDcy+n6hvO886jvnFE/AIqzoAJ4RFWQcTY+p/CIKgAAAAAAAAAAUOgwgwMAAAAAAAAAgCKiwB5R5YeYwQEAAAAAAAAAAAodZnAAAAAAAAAAAFBEBAVIQQ5PbQhKdzY+pzCDAwAAAAAAAAAAFDqWMcZPn55V+B09elQul0vSI5JCL3R2bDMmIcf3LWusj3Lif7zVTXHmVL+gjv2DZW3zGsaYOBvxeO8XRbHNnSp3ca2/wsipY6Ywop/iXBnXv8nJyYqMjLzQ2UEhQJ/Jn5zOwZx7AQDwDX+6nnHnpawU6fDUhqPpkutv+UU5z8UMDgAAAAAAAAAAUOiwBgcAAAAAAAAAAEVFoJyf2uCna3AwwAEAAAAAAAAAQFFRjAY4eEQVAAAAAAAAAAAodJjBAQAAAAAAAABAUVGMZnAwwOEDycmP5ntlecsa6z1QVIL3MEk24nFEbxthFvosHmO8141lbbORln/x1i/sldtOn/DeDnbSgn+w0+a0Z86cOPbsoB0KD2PiHImnMB6f/pYfAChOOAcDAIDijgEOAAAAAAAAAACKihKSAi50JnyDNTgAAAAAAAAAAEChwwwOAAAAAAAAAACKikA5P4PDcjg+hzCDAwAAAAAAAAAAFDrM4AAAAAAAAAAAoKgoRjM4GODwAZdrgqTQbN83JsGZhJLGeg1iJy3L8hZPbxvpxNlIZ6HXMJL3MI7Vn420JDvlcqYd7PAWjy/zYlnbbKTlvf7speXLcnlPy6ljwlecOQ/Yi8e549O/FNVy+Yo/HcP+1pb+lh8AAAAAQCEUIBYZBwAAAAAAAAAA8FfM4AAAAAAAAAAAoKgoRo+oYgYHAAAAAAAAAAAodJjBAQAAAAAAAABAURGgYvPNPzM4AAAAAAAAAABAoVNMxnH8m2WNvdBZ8BSVkPP7Sd7za9l4JpsxXtKRZFnbvEdkg506tpMff+OtXPbq2Km6WWgjTJyNMN75sq38qV84da6wUybnjk/v/cKpOvan49yf8uKPiusx7BT6FwAA3uX0eVkcPieduFf0B0WlHADgcwFyfg0O43B8DmEGBwAAAAAAAAAAKHT8aoBjzJgxsizL4xUTE+N+3xijMWPGKDY2VmFhYWrbtq22b9/uEcfp06d17733qmzZsgoPD1fPnj21d+9ejzBJSUmKj4+Xy+WSy+VSfHy8jhw54hFm9+7d6tGjh8LDw1W2bFkNHz5cZ86cKbCyAwAAAIA33DMBAADAq8ACevkhvxrgkKQGDRpo37597te///1v93sTJ07UCy+8oFdeeUWbNm1STEyMOnbsqGPHjrnDjBgxQgsXLtT8+fP19ddf6/jx4+revbvS0tLcYfr376/vv/9ey5cv1/Lly/X9998rPj7e/X5aWpq6deumEydO6Ouvv9b8+fO1YMECjRw50jeVAAAAAADZ4J4JAAAAOSpGAxx+l63AwECPXyBlMMZoypQpevzxx3XddddJkmbOnKkKFSpo7ty5Gjp0qJKTk/XOO+9o1qxZ6tChgyRp9uzZqly5slatWqXOnTvr559/1vLly7VhwwY1b95ckjRt2jS1bNlSv/zyi+rUqaMVK1bop59+0p49exQbGytJmjx5sgYOHKhnnnlGkZGRPqoNAAAAAPDEPRMAAABwlt8NcPz666+KjY1VSEiImjdvrvHjx6tGjRrauXOnEhMT1alTJ3fYkJAQtWnTRuvWrdPQoUO1efNmpaSkeISJjY1Vw4YNtW7dOnXu3Fnr16+Xy+VyX6hLUosWLeRyubRu3TrVqVNH69evV8OGDd0X6pLUuXNnnT59Wps3b1a7du2yzPvp06d1+vRp999Hjx6VJCUnP5rjBb6dhXqN8b44s514nFm0u7fXEPby68wiqfbqz5nFtu3wp8VzfbmAfVFcKNouW/UcZWNh78Ne3vezcts5zp1aWL4w9gsUvOLaL4pimQDkTlG8ZwKcVtw/L4tK+YtKOQDA5/x4xoXT/OoRVc2bN9d7772nzz77TNOmTVNiYqJatWqlQ4cOKTExUZJUoUIFj30qVKjgfi8xMVHBwcGKiorKMUz58uUzpV2+fHmPMOenExUVpeDgYHeYrEyYMMH9jFqXy6XKlSvnsgYAAAAAIHvcMwEAAAD/41fjOF27dnX/v1GjRmrZsqVq1qypmTNnqkWLFpIky7I89jHGZNp2vvPDZBU+L2HO9+ijj+qBBx5w/3306FEu2AEAAAA4hnsmAAAAeFVCUoDDcaY7HJ9D/GoGx/nCw8PVqFEj/frrr+5nzJ7/a6ADBw64fzkUExOjM2fOKCkpKccw+/fvz5TWwYMHPcKcn05SUpJSUlIy/UrpXCEhIYqMjPR4AQAAAEBB4Z4JAAAAxZlfD3CcPn1aP//8sypWrKjq1asrJiZGK1eudL9/5swZrV27Vq1atZIkNWvWTEFBQR5h9u3bpx9//NEdpmXLlkpOTtbGjRvdYb799lslJyd7hPnxxx+1b98+d5gVK1YoJCREzZo1K9AyAwAAAIBd3DMBAAAgk8ACevkhv8rWqFGj1KNHD1WpUkUHDhzQuHHjdPToUQ0YMECWZWnEiBEaP368atWqpVq1amn8+PEqWbKk+vfvL0lyuVwaMmSIRo4cqTJlyig6OlqjRo1So0aN1KFDB0lSvXr11KVLF91+++168803JUl33HGHunfvrjp16kiSOnXqpPr16ys+Pl6TJk3S4cOHNWrUKN1+++38wggAAADABcM9EwAAAPA/fjXAsXfvXvXr109///23ypUrpxYtWmjDhg2qWrWqJOmhhx7SyZMnNWzYMCUlJal58+ZasWKFIiIi3HG8+OKLCgwM1A033KCTJ0+qffv2mjFjhgIC/vfQsTlz5mj48OHq1KmTJKlnz5565ZVX3O8HBARo6dKlGjZsmFq3bq2wsDD1799fzz//fAGVfKGNMHEOxeOdMQn5jsOyxjqSjp14pN42wjjDibqRnKsf77zXjTF2+pYzfNkvnGorO+zleZuNmHJui8J5XHk/L/myrXzVd4pimQAA/qH43jMBAADAtoKYcWEcjs8hfjXAMX/+/BzftyxLY8aM0ZgxY7INExoaqqlTp2rq1KnZhomOjtbs2bNzTKtKlSpasmRJjmEAAAAAwJe4ZwIAAIBXAWKRcQAAAAAAAAAAAH/lVzM4AAAAAAAAAABAPhSjR1QxgwMAAAAAAAAAABQ6zOAAAAAAAAAAAKCoCJDz3/z76RocljHGTyeXFH5Hjx6Vy+WS9Iik0AJPz5gEr2Esa6xP0nGKZW1zKKaFNsL09hrCmLj8Z6WIstO3fNl3nOJUuYpq/RRFhe08CQD+JOP6Nzk5WZGRkRc6OygELlSfyenzns9x5BX9CgCKJ3+6Bnbn5UYpMtjhuM9IrvflF+U8FzM4AAAAAAAAAAAoKgL+/+V0nH6INTgAAAAAAAAAAEChwwwOAAAAAAAAAACKikAVmzU4GOAAAAAAAAAAAKCoKEYDHDyiCgAAAAAAAAAAFDrM4PCB5ORHc1xZ3rK22YhloTOZiUrwHiYp5/xY1livURjjPR1fxiP1tpFWnCNp2cmzHU6k5ds69i+Fra3sxONUfp1i59xl57gqjPytLQobf/scAQAUP3w+oCDQrwAAfoMZHAAAAAAAAAAAAHnz5ZdfqkePHoqNjZVlWVq0aJH7vZSUFD388MNq1KiRwsPDFRsbq1tvvVV//fVXrtJggAMAAAAAAAAAgKKihKQAh195GEk4ceKEGjdurFdeeSXTe//884+2bNmiJ598Ulu2bNFHH32kHTt2qGfPnrlKg0dUAQAAAAAAAAAAR3Xt2lVdu3bN8j2Xy6WVK1d6bJs6daouv/xy7d69W1WqVLGVBgMcAAAAAAAAAAAUFQWxBkfa2X+OHj3qsTkkJEQhISGOJJGcnCzLslS6dGnb+/CIKgAAAAAAAAAA4FXlypXlcrncrwkTJjgS76lTp/TII4+of//+ioyMtL0fMzh8wOX6UVKpHEIs9FVWpKRtXoMYE5fj+5blPb+WNdZ2lvIdT1SC9zA2ym0nLWNspOUQO2l5y7MTcZzV20YYO/0i//3PHzlVz77sX974W36d6qd2+pcT5XLqHOhPfcJJRfGYKc5oKwBAYePEfRQAAH6tAGdw7Nmzx2MAwonZGykpKbrpppuUnp6u1157LVf7MsABAAAAAAAAAEBRkbEwuNNxSoqMjMzVDAtvUlJSdMMNN2jnzp1avXp1ruNmgAMAAAAAAAAAAPhUxuDGr7/+qjVr1qhMmTK5joMBDgAAAAAAAAAAiooCfERVbhw/fly//fab+++dO3fq+++/V3R0tGJjY9WnTx9t2bJFS5YsUVpamhITEyVJ0dHRCg4OtpUGAxwAAAAAAAAAAMBR3333ndq1a+f++4EHHpAkDRgwQGPGjNEnn3wiSWrSpInHfmvWrFHbtm1tpcEABwAAAAAAAAAARUWAnP/mPzX3u7Rt21bGmGzfz+k9uxjg8IHk5IY5Lo5iWQu9xmFMgkO58Z6WFOdQWj6SNNZrEDv1Z1nek7KsbTbSKlz151zf8l25Lct7m0u9fRaPHc7Vs2/4W37tHcN22tM3/dSX9Wen3P7WnnYUxjx7Y6+PeudvdeNv+QFQ9OR0/uQchLyg3wAAUHQwwAEAAAAAAAAAQFFREGtw+OlIQokLnQEAAAAAAAAAAIDc8tNxFwAAAAAAAAAAkGsB//9yOk4/xAwOAAAAAAAAAABQ6DCDAwAAAAAAAACAoqIYrcHhp9kqWlyuHyWVKvB0LGusjVC9CzwfdhmT4DWMvTI5ZaFD8cQ5EoudstupQ3/i2zJ5b097fXCbE5mxxVv9OFU3TrWDv8Xjy7ScSMfO+dgY7+cTp/qxnbSQvaJ4znYS9QMgP4rC+cFX13kAcKFwngP8TDEa4OARVQAAAAAAAAAAoNDx03EXAAAAAAAAAACQayXk/KLgfjpVwk+zBQAAAAAAAAAAkD1mcAAAAAAAAAAAUFQUozU4LGOMudCZKKqOHj0ql8sl6RFJodmGs7VAbLSNBJN8uSB3zny5eFRhXLjUd4sz21hUPsrGwsJJdhbadmqRdu/8rT2LouK8KLV/LUTuXVE9Hvzp3E5bFS3+1LeKoozr3+TkZEVGRl7o7KAQoM8A8Dc5XSsUxDUCi3MDhZ8/Xc+48/KiFBnmcNwnJdf98otynstPx10AAAAAAAAAAECuFaMZHKzBAQAAAAAAAAAACh0/HXcBAAAAAAAAAAC5FvD/L6fj9EMMcAAAAAAAAAAAUFTwiCoAAAAAAAAAAAD/5afjLkVLcvKjOa4sb1ljvUcSlWAjpd5eQxgT5zWMZW3Ldxx2eEunsKblFCvaexhj7PQLJ9joN9Hew5jDTuTFObaOPYf4rq2c4dyxZ6eOnTl3OcVXbeVUOk71Yzv5sZNWYevrTvFlexbXOnYK9QcAAHLi62sFrk0AFIgAOf/Nv58+oooZHAAAAAAAAAAAoNBhBgcAAAAAAAAAAEUFa3AAAAAAAAAAAAD4Lz8ddwEAAAAAAAAAALkWIOfXzGANDgAAAAAAAAAAAGcwg8MHXK4JkkJzCNHbeyRJ25zKjlfGxOX4vmWNdSidBK9hnEsr5zL5I3PYexgn6sdOO9iKx0Z+7bAs733dTns61XfsHJ9O9S9veXaqreywU3928uPLPBc2/lbHTuXH39JyglOfVxwzAOC8nM6/nFMBAECxVYzW4PDTbAEAAAAAAAAAgFwrRgMcPKIKAAAAAAAAAAAUOn467gIAAAAAAAAAAHKthJxfFNxPp0r4abYAAAAAAAAAAACyxwwOAAAAAAAAAACKimK0BoefZqt4MSbOaxjL2uZQPGO9ZygqwXsYr3nxHoedvDgVj61y+1RvryGcqh/v6XjvW9JCR/Liyza3w7n+5Uz9ONGedvjf8eAMXx0zzvF+HrCj8JXbv84XTtWNv9WxLxXGPgig6OD8Ajgvp892jjkAgL9hgAMAAAAAAAAAgKKiGM3gYA0OAAAAAAAAAABQ6PjpuAsAAAAAAAAAAMi1gP9/OR2nH2KAAwAAAAAAAACAooJHVAEAAAAAAAAAAPgvPx13KVqSkx9VZGRktu9b1lgbsfT2GsJOPMGH7vca5kyZbTbyk/+8OFUmO/EYE+dIWsYk2IjHe/3Zy89CG2FyzrOd/NrLi9cgttirPztt7l9p2WGnX0g5t7mdMjnFt33dmWPPDl+1uVPHnlNp+bKO7fDlsefLchVX1DEAAEULn+0AUAQEyPlv/v30EVXM4AAAAAAAAAAAAIUOMzgAAAAAAAAAACgqWIMDAAAAAAAAAADAf/npuAsAAAAAAAAAAMi1ADm/ZgZrcAAAAAAAAAAAADiDGRx+obf3IHPivIe5eaHXIGfKvGgjP/lnTIJDMXkvt2WN9R4m2ns8dvJsJy07nMqPrxjjTDs4x/sx41R+fNsONo5zL+yV25n6s3fMbHMoHqfy40w8TqTjFDv59WU/9lUdA3lFHwUA/5PTuZlzMgAAeVCM1uDw02wBAAAAAAAAAIBcC5Dz3/zziCoAAAAAAAAAAABnMIMDAAAAAAAAAICigkXG/cOECRNkWZZGjBjh3maM0ZgxYxQbG6uwsDC1bdtW27dv99jv9OnTuvfee1W2bFmFh4erZ8+e2rt3r0eYpKQkxcfHy+VyyeVyKT4+XkeOHPEIs3v3bvXo0UPh4eEqW7ashg8frjNnzhRUcQEAAAAgV7hnAgAAQHHmtzM4Nm3apLfeektxcZ6L7k6cOFEvvPCCZsyYodq1a2vcuHHq2LGjfvnlF0VEREiSRowYocWLF2v+/PkqU6aMRo4cqe7du2vz5s0KCDg71NS/f3/t3btXy5cvlyTdcccdio+P1+LFiyVJaWlp6tatm8qVK6evv/5ahw4d0oABA2SM0dSpU3NVFpdrgqTQ7AP0s7FAbH/v6Vg328hMlI20DntJx86i3jYWFrbH+8LpTi10bFne07KzOLOdBbntcGKRYn9adNnJePxtAXHfLShtp//5W5s7s0C9rXJF28mPrxap9N25wt8UtuPKufx6/5zx5fGA7FF/KEqK0j0TijfOzQCKgpyu5TnPweeK0SLjfjmD4/jx47r55ps1bdo0RUVFubcbYzRlyhQ9/vjjuu6669SwYUPNnDlT//zzj+bOnStJSk5O1jvvvKPJkyerQ4cOatq0qWbPnq1///vfWrVqlSTp559/1vLly/X222+rZcuWatmypaZNm6YlS5bol19+kSStWLFCP/30k2bPnq2mTZuqQ4cOmjx5sqZNm6ajR49mme/Tp0/r6NGjHi8AAAAAcBr3TAAAAICfDnDcfffd6tatmzp06OCxfefOnUpMTFSnTp3c20JCQtSmTRutW7dOkrR582alpKR4hImNjVXDhg3dYdavXy+Xy6XmzZu7w7Ro0UIul8sjTMOGDRUbG+sO07lzZ50+fVqbN2/OMt8TJkxwT992uVyqXLlyPmsCAAAAADLjngkAAADZCiyglx/yuwGO+fPna8uWLZowYUKm9xITEyVJFSpU8NheoUIF93uJiYkKDg72+BVTVmHKly+fKf7y5ct7hDk/naioKAUHB7vDnO/RRx9VcnKy+7Vnzx47RQYAAAAA27hnAgAAAM7yq3GXPXv26L777tOKFSsUGpr9mhWWZXn8bYzJtO1854fJKnxewpwrJCREISEhOeYDAAAAAPKKeyYAAAB4xRocF8bmzZt14MABNWvWTIGBgQoMDNTatWv18ssvKzAw0P3roPN/DXTgwAH3ezExMTpz5oySkpJyDLN///5M6R88eNAjzPnpJCUlKSUlJdOvlAAAAADAF7hnAgAAgDemhGQCHH751UjC//jVuEv79u3173//22PboEGDVLduXT388MOqUaOGYmJitHLlSjVt2lSSdObMGa1du1bPPfecJKlZs2YKCgrSypUrdcMNN0iS9u3bpx9//FETJ06UJLVs2VLJycnauHGjLr/8cknSt99+q+TkZLVq1cod5plnntG+fftUsWJFSWcX0QsJCVGzZs0KvjLOY/W3E6q39yBJY72nZdmIx6uFDsQhGZPgSDzO5SfOaxjL8l7HtsoVZSOMl/a0kxc7nItnm9cwdurYDjt17Fx+vB8zTpTLTjtY0d7Tceq4cqqv+7at/Idj54oiqrCV3ZfnLgDFG/dMAAD4J19fy+d0T8l9BYoTvxrgiIiIUMOGDT22hYeHq0yZMu7tI0aM0Pjx41WrVi3VqlVL48ePV8mSJdW//9kRAJfLpSFDhmjkyJEqU6aMoqOjNWrUKDVq1Mi9AF+9evXUpUsX3X777XrzzTclSXfccYe6d++uOnXqSJI6deqk+vXrKz4+XpMmTdLhw4c1atQo3X777YqMjPRVlQAAAACAG/dMAAAA8CYt8OzL6Tj9kZ9mK3sPPfSQTp48qWHDhikpKUnNmzfXihUrFBER4Q7z4osvKjAwUDfccINOnjyp9u3ba8aMGQoICHCHmTNnjoYPH65OnTpJknr27KlXXnnF/X5AQICWLl2qYcOGqXXr1goLC1P//v31/PPP+66wAAAAAJBL3DMBAACguLCMMeZCZ6KoOnr0qFwul6RHJGW/AKD6OTRtbJ73R7jYe1STt8ftOPO4Jzt8+SgdO+w9SseZx85Y0TYyZOORY/7FmUc5OVbHDj32yFePT7LVj2082swczndWJPn2EUuF7RFVdvJr51zKtGIAhU3G9W9ycjK/4Ict9BkAAPKGR1T5D3+6nsnIy4F9ktNZOXpUKl9RuSrnl19+qUmTJmnz5s3at2+fFi5cqGuvvdb9vjFGY8eO1VtvveX+Yc6rr76qBg0a2M6Xny4NAgAAAAAAAAAACqsTJ06ocePGHrOAzzVx4kS98MILeuWVV7Rp0ybFxMSoY8eOOnbsmO00Ct0jqgAAAAAAAAAAQNZSAyylBlgOx2kk5e5hUF27dlXXrl2zfM8YoylTpujxxx/XddddJ0maOXOmKlSooLlz52ro0KG20mCAwx/YebRUP/959IqdR+AoyUaZopwpk73HTzn1aCQ7j53xnpatx085wN+mJNppKyvaezs49ogvW49bs5Mf3/RlX7anU491c4xD54vCxpePAXNKYXwkIAAAAAAUNtzr4EI5evSox98hISEKCQnJdTw7d+5UYmKie723jLjatGmjdevW2R7g4BFVAAAAAAAAAAAUEWmBgQXykqTKlSvL5XK5XxMmTMhTHhMTEyVJFSpU8NheoUIF93t2MIMDAAAAAAAAAIAiIi0gQGkOP6IqLcBIStGePXs8FhnPy+yNc1mWZz6NMZm25YQBDgAAAAAAAAAA4FVkZKTHAEdexcTESDo7k6NixYru7QcOHMg0qyMnPKIKAAAAAAAAAIAiIl0BSnP4la4AR/NYvXp1xcTEaOXKle5tZ86c0dq1a9WqVSvb8TCDAwAAAAAAAAAAOOr48eP67bff3H/v3LlT33//vaKjo1WlShWNGDFC48ePV61atVSrVi2NHz9eJUuWVP/+/W2nYRljTEFkHmdXlHe5XEpOTs5x2o5ljbURW28bYRZ6DzInwWsQY7//5Itj5Y6K8xrEHHYqP0WPMd77hJ26sRfPNhs5stGPHePQcWWDnfopbOy0pzHej0//Syv/54Ki2N52+fJc6qt6dqpMTp1vnUoLKAh2r3+BDEWpz+R0Dr8Q52V/yw8AAEWVP13PZORlR3KkIiKdXYPj2FGj2q6juSrnF198oXbt2mXaPmDAAM2YMUPGGI0dO1ZvvvmmkpKS1Lx5c7366qtq2LCh7XwxgwMAAAAAAAAAADiqbdu2yml+hWVZGjNmjMaMGZPnNBjgAAAAAAAAAACgiDi7boazy2+nKd3R+JzCIuMAAAAAAAAAAKDQYQYHAAAAAAAAAABFRMHM4HB2TQ+nMMABAAAAAAAAAEARwQAHfKtfgvcw87bZiKi31xCmv/dYrGgvcRy2EYc11nsgh9jLj536s8N7HUsLvYYwxkab2+DLevbGXh07Uzd2yu1cHXsPY0ycjXjyn2enyu1vbWXnHGinjv2JnTp2qkz2zgM2Ph98WMdOHZ++4sv8Fra6AQBfyOmzzp/Om/6UF8n/8gMA/qKwfK4AsIcBDgAAAAAAAAAAiojiNIODRcYBAAAAAAAAAEChwwwOAAAAAAAAAACKiDQFKJUZHAAAAAAAAAAAAP6JGRwAAAAAAAAAABQRaQosgDU40h2NzykMcPgBM9d7GGt5nPdASdvynxlJShrrJUCCI8kY4z0ey/KWF8myFjqRHcfy41Q8isp/PfuyTHbYaSvLcqYfO1UuY7wfe47lOdpbXpw69uyUyU5b+e54sOZ5DSKpt438eC+7E3m2V8e+O/Z8ybnzhY3zpA2FrQ7tnE+Kc/8CUDz5+nyV0zk0p7zkdA63c+72pbyWEQCKggtxnuO8CxQcBjgAAAAAAAAAACgi0lRCaQpwOE7/xBocAAAAAAAAAACg0GEGBwAAAAAAAAAARUSaAorNDA4GOAAAAAAAAAAAKCJSFaBUhwc4Uh2NzTk8ogoAAAAAAAAAABQ6zODwAZfrR0mlcgix0EYsvR3KTf5Z1jYfpua93MbEOZKSZY21kVaCI2nZiceKdiQpr5wqky1RNtJK8l072GGnv9vrg97DeOuDlmXnPOD9fOLTfmzjuHKOnXNp/ttB8l52W+dJO8eDDc61gzPn0sLGl+d+O+ycT5zKs7+VHQCyk9P5Kq/nqYKI06n7El8o7ud3b5+Bxb1+ADiP8wp8LV2Bjj+iKl2Wo/E5hRkcAAAAAAAAAACg0GEGBwAAAAAAAAAARURxWmScGRwAAAAAAAAAAKDQYQYHAAAAAAAAAABFRHGawcEAhw8kJzdUZGRkDiFsLChqY8Fpc9h7GKu/9zDeF/Z2ZlF0W2WytdiqM4tA+3JBVqcWXnZioWPnFml3Ji3LofWKnFs813t/tywfLezdz0ZbzbNzfNph4xj26QLihY2Ndkiy07e8R+PUYnX+tnC1Py1i78tzqR0sUAiguCmI8x7n0uKN9gdQnHm7j+IcicKGAQ4AAAAAAAAAAIqINJUogBkcxtH4nMIABwAAAAAAAAAARUSqApTq8ABHqp8OcLDIOAAAAAAAAAAAKHSYwQEAAAAAAAAAQBGRpkClOfzVv78uMs4MDgAAAAAAAAAAUOgwg8MHXK4JkkLzF0m/BEfyouU2wkTFeQng7X1JSWNthFnoNYhleY9G6m0jnm1ewxhjo1yO8Z5nO+yUy5E4vPYJ39afFe1QPJb3fmqM92PP6u9MWl7NsxOHnePBoXJb3o9hO/H4n/wfn/bqz5l2sMOp/DiVllOcKJe/9VFffl75W9kBwF/kdC727T0DABSMnK6Rc7pGzOt+8C+0VfGQrgDHFxlPZw0OAAAAAAAAAAAAZzCDAwAAAAAAAACAIiKtAGZwpDGDAwAAAAAAAAAAwBnM4AAAAAAAAAAAoIhIVQmlOjyDI1XpjsbnFAY4AAAAAAAAAAAoItIUqDSHv/r310dUMcDhA8nJjyoyMjLb963+NiKZN9ZrEGt5Qi5ylT1z2Es6lve8SL1thFnoPS/Ge5ksa5uNtJzivVz28uO97H6lS5wj0VjR3sPYaXN77PQdG8eVQ+3pXLlyZu/4dCYep45PY7z3L6fKpSjvebaTH2+cqz/ftYMdTrWDL/uOr449pzjR/wAA+VMQ52Jvn6GF7fMKQOGW13MO5yoA/ogBDgAAAAAAAAAAioiCWWTcPx9RxSLjAAAAAAAAAACg0GEGBwAAAAAAAAAARQQzOHIhNTXViXwAAAAAQJHFfRMAAADgvHwPcFx22WX64IMPnMgLAAAAABRJ3DcBAADAV9IUoFSHX07PCHFKvh9RtWrVKo0dO1Yvv/yynnnmGbVp08aJfBUpLtePkkoVeDrmsDPxWNbYnNMxCfmOw3Zeou2EWuhQWnHeA0XZCGNHkp1ADpQryntbKWmb9zDzbISZa6Nukrz3Cyvae57t9HU7fdCpvmwvHht16DUdZ/qfnfza4VTd2OFUHTvVd7ym43d9y/v5xKm2coqd/u6rPmirT9g43/ry3GVHUU3LnxTXciNr3DcVbxzrAAAABSPfMzjKlCmjl19+WTNnztRrr72mXr166eeff3YibwAAAABQJHDfBAAAAF9JU2CBvPxRvnN14MABrV69Wjt27FBgYKDWr1+vNm3aqEyZMqpTp44WLVrkQDYBAAAAoPDivgkAAAC+kqYSBbDIeJqj8Tkl3wMcrVq1Ur9+/VS/fn1dc801eu211+RyuZSamqr//Oc/TuQRAAAAAAo17psAAAAA5+V7gOPjjz9WgwYNMkccGKiGDRvmN3oAAAAAKPS4bwIAAICvpBXAouD+usi47TU44uPj9c8//2TantVFOgAAAAAUR9w3AQAAAL5jewbH3LlzNXnyZJUsWVKSNHToUD377LOKiopyh0lJSVFQUJDzuSzkkpMbKjIyMtv3rf52YonzGsKyxtrPVE76JXhJZ5sz6diR5FRavb0H6eI9iJnrPYxT9WNMzu1wNi0vbe5Y/S20EcZ7H3WkTJIsy0Z2/Iwx3uvHmXTs1LH3fmEnv3bScooVbSeU//RTO/3YqbayJcqZY8+XbW6Hr/Ljy3IX1bQKG6eOB+q4eOK+qfDL6RzAcZ0z6g4oHDhWgaKPGRxZMMZ4/D1v3jwlJSW5/96/f78iIiKcyxkAAAAAFDLcNwEAAAC+k+c1OM6/cJekM2fO5CszAAAAAFCUcN8EAAAAX0tTgFKZwZF7VmF8bgwAAAAA+BD3TQAAAIAzcjXAMXfuXG3ZskUpKSmSuDAHAAAAgPNx3wQAAIALKU2BBfLyR7ZzdcUVVyghIUHHjh1TUFCQUlNT9dhjj+mKK67QJZdconLlyhVkPgEAAADA73HfBAAAgAutOC0ybpmsHgqbg19//VWbN2/Wli1btHnzZm3dulVHjhxx/yopLS2tQDJaGB09elQul0vJycmKjIzMNpxlbfMeWVSc9zBJNuLRQhthcmZMgtcw1lwbES2xEWaejTL1s1E388baSMyGKO9lN4e9R2P1t5GWnbJ7y4uxUTc22OmjdtJyKh47bB1XDhwPdtk6bqz891M76djhy/pzqm58GU9h40Tfknzbv5w6FyB/iusxg7yze/1bHHDfZA99BgAA/5LTPQDX/lnzp+uZjLw8lTxUoZHBjsZ96ugZjXa96RflPFeu55XUqlVLtWrV0k033eTetnPnTn333XfaunWro5kDAAAAgMKI+yYAAABcKGkqUQAzOBxdztsxjjw4q3r16qpevbr69u3rRHQAAAAAUORw3wQAAAA4yz9XBgEAAAAAAAAAALmWqgClOjyDw+n4nOJX80pef/11xcXFKTIyUpGRkWrZsqU+/fRT9/vGGI0ZM0axsbEKCwtT27ZttX37do84Tp8+rXvvvVdly5ZVeHi4evbsqb1793qESUpKUnx8vFwul1wul+Lj43XkyBGPMLt371aPHj0UHh6usmXLavjw4Tpz5kyBlR0AAAAAvOGeCQAAAIVBamqqnnjiCVWvXl1hYWGqUaOGnnrqKaWnpzuaTr5mcGzZskUNGzZUcLAzC5ZcdNFFevbZZ3XxxRdLkmbOnKlevXpp69atatCggSZOnKgXXnhBM2bMUO3atTVu3Dh17NhRv/zyiyIiIiRJI0aM0OLFizV//nyVKVNGI0eOVPfu3bV582YFBJwdZerfv7/27t2r5cuXS5LuuOMOxcfHa/HixZLOLvjXrVs3lStXTl9//bUOHTqkAQMGyBijqVOnOlJWT94X6g3+rZrXMGfusbPYto3seGFr8WEbC38bGwuRW3by68Bi3JLdBYq9p/X/60bmm61Fu6Pz974kxxantyzvYZyqYzv5sZeWjUWynVpY3oGFeu20p1OLSaufjYXD5tlZZLx3vrNiV2FbDNmXC3/7sty+XEDckePKh/2msPVRyf/yAxRWTt43Fd97JsA/sPgugMIgP+cqzmVFQ5oClebww5vSlJar8M8995zeeOMNzZw5Uw0aNNB3332nQYMGyeVy6b777nMsX/kq5WWXXaaff/5ZtWvXdiQzPXr08Pj7mWee0euvv64NGzaofv36mjJlih5//HFdd911ks5ezFeoUEFz587V0KFDlZycrHfeeUezZs1Shw4dJEmzZ89W5cqVtWrVKnXu3Fk///yzli9frg0bNqh58+aSpGnTpqlly5b65ZdfVKdOHa1YsUI//fST9uzZo9jYWEnS5MmTNXDgQD3zzDN+tUo8AAAAAP/m5H0T90wAAAAoDNavX69evXqpW7dukqRq1app3rx5+u677xxNJ1+PqDLGOJWPTNLS0jR//nydOHFCLVu21M6dO5WYmKhOnTq5w4SEhKhNmzZat26dJGnz5s1KSUnxCBMbG6uGDRu6w6xfv14ul8t9oS5JLVq0kMvl8gjTsGFD94W6JHXu3FmnT5/W5s2bs83z6dOndfToUY8XAAAAgOKtoO6buGcCAABAVtIVoDSHX+n/vwbH+ddyp0+fzjIPV1xxhT7//HPt2LFDkvTDDz/o66+/1jXXXONoWf1qDQ5J+ve//61SpUopJCREd955pxYuXKj69esrMTFRklShQgWP8BUqVHC/l5iYqODgYEVFReUYpnz58pnSLV++vEeY89OJiopScHCwO0xWJkyY4H5GrcvlUuXKlXNZegAAAADIGfdMAAAAyInTgxsZL0mqXLmyx/XchAkTsszDww8/rH79+qlu3boKCgpS06ZNNWLECPXr18/Rsjr7IC4H1KlTR99//72OHDmiBQsWaMCAAVq7dq37feu8BQ6MMZm2ne/8MFmFz0uY8z366KN64IEH3H8fPXqUC3YAAAAAjuKeCQAAABfKnj17PB5HGhISkmW4999/X7Nnz9bcuXPVoEEDff/99xoxYoRiY2M1YMAAx/LjdwMcwcHB7gXzLr30Um3atEkvvfSSHn74YUlnfylUsWJFd/gDBw64fzkUExOjM2fOKCkpyeMXSQcOHFCrVq3cYfbv358p3YMHD3rE8+2333q8n5SUpJSUlEy/UjpXSEhItg0KAAAAAE7gngkAAAA5SVMJ94wLJ+OUpMjISFvrrT344IN65JFHdNNNN0mSGjVqpD/++EMTJkwo2gMc5zPG6PTp06pevbpiYmK0cuVKNW3aVJJ05swZrV27Vs8995wkqVmzZgoKCtLKlSt1ww03SJL27dunH3/8URMnTpQktWzZUsnJydq4caMuv/xySdK3336r5ORk9wV9y5Yt9cwzz2jfvn3uG4MVK1YoJCREzZo1c76Q/RK8BjlzsVOJLfQeJMpLfpLGeo3CzI3zGsaK9p4VzfEej262kR/jvY5t5cdO/TnEsuyk1dvL+87k11b9WdscCWOMjb5jq25smOO9XLrZTrkcOK5ktw86wMY5x8z1Ho01z3sYe+3py2PYO6fy40Qc9o4rh+rPsXLbOT592C+8xOPLunGi3wBAVorFPVMRl9NnDZ8f/sWf2oN+AyA7nAPgD/755x+VKOG5QkZAQIDS09MdTcevBjgee+wxde3aVZUrV9axY8c0f/58ffHFF1q+fLksy9KIESM0fvx41apVS7Vq1dL48eNVsmRJ9e/fX5Lkcrk0ZMgQjRw5UmXKlFF0dLRGjRqlRo0aqUOHDpKkevXqqUuXLrr99tv15ptvSpLuuOMOde/eXXXq1JEkderUSfXr11d8fLwmTZqkw4cPa9SoUbr99tttjU4BAAAAQEHgngkAAADepCpAAQ7P4EjNZXw9evTQM888oypVqqhBgwbaunWrXnjhBQ0ePNjRfPnVAMf+/fsVHx+vffv2yeVyKS4uTsuXL1fHjh0lSQ899JBOnjypYcOGKSkpSc2bN9eKFSsUERHhjuPFF19UYGCgbrjhBp08eVLt27fXjBkzFBDwvwaYM2eOhg8frk6dOkmSevbsqVdeecX9fkBAgJYuXaphw4apdevWCgsLU//+/fX888/7qCYAAAAAIDPumQAAAFAYTJ06VU8++aSGDRumAwcOKDY2VkOHDtXo0aMdTSdfAxwJCQkqW7asU3nRO++8k+P7lmVpzJgxGjNmTLZhQkNDNXXqVE2dOjXbMNHR0Zo9e3aOaVWpUkVLlizJMQwAAAAAeOPkfRP3TAAAAPAmTYFKc3huQ27ji4iI0JQpUzRlyhRH83G+fA9wAAAAAACyx30TAAAAUDD86hFVAAAAAAAAAAAg79IVoDSH1+BIdzg+pzDA4QMu1wRJodkHiLLxi66kbTZSWug9iK20xnoJ0NtrFJblUH5v9p6WHVa0I9HIGO/1Z1ne6s/JtLzUs532tsGp9vRl/dmLx3v/MibORlo2yn7YRna8pmOnHWyY571urHk24nGofznFiTq2y4l+aud4sNP/JDthvLOTH6fisdOXfZUfO21pq0x2Pme8fr7a41TdOMWpOgSA4ozzJPKiqPSbnK4likoZAcDX0gpggMPp+JxS4kJnAAAAAAAAAAAAILeYwQEAAAAAAAAAQBGRqgCVcHjGRaqfzuDI1wDHkSNH9Nlnn+nPP/+UZVmqWLGiOnfurKioKKfyBwAAAACFGvdNAAAAQMHI8yOq3nnnHV1++eXasGGD0tPTlZaWpg0bNqhFixZ65513nMwjAAAAABRK3DcBAADA186uwRHo8KuIzeCYOHGitmzZolKlSnlsf/rpp9WsWTMNGTIk35kDAAAAgMKM+yYAAACg4OR5gMOyLB0/fjzThfrx48dlWVa+M1aUJCc/qsjIyGzft6yxjqRjTILXMFZ/GxHN6+0lwEIbkXiLw8eStjkUUZz3IFHe20FdvAexLDt5zrktzGHv+bWTjjF24vHeL6xor0FssdPX7bCTH3vHp/f+bqs9o3KuZ3vt4D0Z9bPRj+d5L3fwb0e95yc6+3NfBsfa00ZbOZWWP3HqM8ROP7bTB+1wKh5n2Dl+nelbhfHyyLmyF8/jE5C4bwIy5PRZwGdA8Ub7Fx4cx0DhcXYGh7MzLorcDI7nn39ebdq0UcOGDVWpUiVJ0t69e7V9+3ZNnjzZsQwCAAAAQGHFfRMAAABQcGwPcMTHx+vNN99UyZIlJUndu3dX165dtXHjRv31118yxqhSpUq6/PLLFRDgn6M5AAAAAFCQuG8CAADAhcYMjizMnTtXkydPdl+oDx06VM8++6xatmwpSTLGKDU1lYt0AAAAAMUW900AAAC40NILYIAj3U8HOErYDWiM8fh73rx5SkpKcv994MABRUREOJczAAAAAChkuG8CAAAAfCfPa3Ccf+EuSWfOnMlXZgAAAACgKOG+CQAAAL6WqgBZDs+4SPXTGRx5HuDIimVZTkaHc/VL8BrEssZ6jyfKezzSwvzHkWQjL3b0i/MeZp4zSdnhWB3P25b/zNhgJ7/G2Ohb0d7TshWPU/mxvNefMd77jjnsNYgsq7f3QN6OGTlVP97jsFNuOywbx9Xp6Ejv8dg6F/iu7zjFV2n5W7mdYutc6hDv9eP9+PUlp87JSrLzOePMucuOwthPgYLEfVPRlNPnG+dBAHlVEOeWvMbJuQyAP7L9iCrp7PNkt2zZopSUFElcmAMAAADA+bhvAgAAwIV0dpHxQIdfhXwGxxVXXKGEhAQdO3ZMQUFBSk1N1WOPPaYrrrhCl1xyicqVK1eQ+QQAAAAAv8d9EwAAAOA7tgc4vvzyS0nSr7/+qs2bN2vLli3avHmznnzySR05coRfJQEAAAAo9rhvAgD8X3v3Hx1Vfed//HX5MQGpiRm6gAgqLkhVxFpUKliNKyJsqZb+ckmW1a66dZWiIitalsXIIsX6azXVrR5Lf5HoWW1WimuEXQVFKirCl1qtrVUrVqlKYgJIExI+3z+UqYHM/bwzuTO5M3k+zsk5MPc9n9/3M5+bmzsfAOhubeqtXhE/cZH3T3DsM2rUKI0aNUp/93d/l3rt9ddf1/PPP69NmzZFWjgAAAAAyEdcNwEAAADZF8km4yNGjNCIESP09a9/PYrkAAAAAKDgcN0EAACAXOAJDuRW6UJviKv2JxPUGPJq2GII8pjiD3HV/jqdqTpvzBpDvVVTawiKynR/SENlNOlYzPC0c42/LEG5IR9Tnfx9nth+lSGdaARJQ5BlLLux/ryCaMagc+FtGAT+89dWXkt/+tnK4x8XNv5zJqr2sZQ5qjb0iar9clXefBTdGLWIZu539f4Y2zfgRPRZBABZFvY5ltt5PFycyhJHtA/SyZdzvJDQrukxHlEoWtVbQcQ3JFpjeoOjV3cXAAAAAAAAAAAAoLN4ggMAAAAAAAAAgAKxV33UFvGv/vfG9FYCT3AAAAAAAAAAAIC8E8/bLgAAAAAAAAAAoNPasrAHR1w3GecJDgAAAAAAAAAAkHd4giNPBNX+mMT2q7wxLQPfMOQ2PfxwzRZvCoHGGvKZ4g+pMyRj4NxCb0wQVPoTKvXXy9X7Y4LA34ZSrT+kxpCMNw1/vSNrP9/YkiRnGDuGfrBwhvMqsnoZBElfhH9MBIE/xtKfFpa2CcoNfWWYU5xhXJjKE1H7+GL8fSm5en9MLuX0PDeM5VyN06jysYnmHFapZYxGM09GxTJ2ctsX4fKtvECh43wDCltPP8fjtV5FT2hvxlzP0KZeWXiCI57PSsSzVAAAAAAAAAAAACF4ggMAAAAAAAAAgALRqt5SxE9wtLIHBwAAAAAAAAAAQDR4ggMAAAAAAAAAgALRpj4KIv7Vf1tMbyXEs1Q9TZUhZqUhxrBnt4lvA2dLPoZNgyNj2GzVsuGvaWPcBsMG60nLxq7+TWRNm8aPLA4PaDBsVjsjmvazbVBsaL+oNmA3CIJoNgePagNs/xj0l9dUFsv50GApr59lI3dVR1Rmw1xgqZepr5Z78jLMFZJl3BjS8c3ZkYpmDJrqHtE49W4IH9Fm0pa+yuVmfdHVK5p0osgrbuUFkDth53ZPP19z3Ta+zzvbOiA6mdafDXYzx/kYPdoNmbL9nuFAjLmeYa96qy3ir5Tay1dUAQAAAAAAAAAARIMnOAAAAAAAAAAAKBBtWdhkPOonQqLCExwAAAAAAAAAACDv8AQHAAAAAAAAAAAFgic4AAAAAAAAAAAAYixwzrnuLkShampqUklJiRobG1VcXJw2Lgi2+BObMTaaQtV0PS9X7U8iCCqNBQrn3MJI0jG1sYFz/n4IkoZ06v0xQbmhQD6G/o6qTmqw9Pl0Q0xtNOmUGs4ZQ5ktY9A03ksNY3mK53hNNG1s6XML27gwnHvL/eVxUZwPss0FpnPC1+eW/jadM37RzZO5Ox+iKrOFrzyRneMRnXu5/PzMZV/FbVxEoRDrFAXr+hfYhzEDIFvCPqt74mc08hPjOD/EaT2zryzHND6u3sWfijTttqadernkb2JRz0/iCQ4AAAAAAAAAAJB32IMDAAAAAAAAAIAC0aY+ivpX/20xvZUQz1IBAAAAAAAAAIBOY5NxAAAAAAAAAACAGOMJDgAAAAAAAAAACsTeLDzBsTemT3BwgyMWav0hNYZklo81pGPIS+HpBElDEqULvSGu3p/Mv2m+N+YGLTYUyFJvvyDwp+Ocv+6mNmzYYsjL01d1/jERBJWGwkw3xMRMg6FehnFqYepzSzvXhadjyScqtnFhYGnjCkNe5VH1lWGejIJl/EUkCLo+V3wUk4fjyzA3+eplKUtk57jn89WaV1SiqlcuyxwnPbXeQKEIm984v9PzfS709LZjXMVLrtuc/keYTMcHYwfw4wYHAAAAAAAAAAAFolW91auHPMHBHhwAAAAAAAAAACDv8AQHAAAAAAAAAAAFok295SL+1T9PcAAAAAAAAAAAAESEJzgAAAAAAAAAACgQHz3B0TP24OAGRxzMWOiPqdnij6kwxFjUVIYeds5f3iDwlyUILIU53xuxqNSQTKmhjS0awttGstVdpWO9Ic75Y7x5GfKRphtiaiNKJxqmtkka2rg+itJYGdqnKvxwEPjHX1T9YDvPDeUxnDOmOTAipvPTMN597WNqG8O8lMsxamkby7kX2dgxsM2T0eTlY6l3VCx1ymU/RMU/Brt+bgLAPrmeL3xzbqblCUs3G3Vkng1H+/Rs9H/u5XoO7Iq4lQeFryfd4OArqgAAAAAAAAAAQN7hCQ4AAAAAAAAAAApE297ecnsjfoIj4vSiwhMcAAAAAAAAAAAg7/AEBwAAAAAAAAAABaKttbf2tkb7xIWLOL2o8AQHAAAAAAAAAADIOzzBEQOu2h9TVHWkN6ZlVrE/obqx/hiPINnlJD6y3FCWlYZ06gwxUwwxFjXRJOPq/TFBUGlIaXr44YYI0rDGGPrTlfuTCQJDcSwMdQ+SC70x0fWVQUU0yfjVeiOCwB/jnL/9gmCLvziGcziyNjbxj/dI5kHLGA0s56e/r2znuSWdrn+GSLaxY2EZX1HlFSdR1Sm6fvCP5Wjyimb85VLu2gZA3GXrXM9GumFzF3NW7oWtd5zLv8/GfMf5kXu0ee7R5oWhrbWPgtZof/XvMkjvj3/8o+bNm6dHH31Uu3fv1tFHH6377rtP48aNi6xc3OAAAAAAAAAAAACRaWho0MSJE3XmmWfq0Ucf1aBBg/T73/9ehxxySKT5cIMDAAAAAAAAAIAC0dbaS0Hke3B0breLpUuXavjw4Vq2bFnqtSOPPDLSMknswQEAAAAAAAAAQMFoa+2dlR9JampqavfT3NzcYRlWrFihk046SV//+tc1aNAgnXjiibr33nsjrys3OAAAAAAAAAAAgNfw4cNVUlKS+lmyZEmHca+99pruvvtujRo1So899pguvfRSzZ49Wz/5yU8iLQ9fUQUAAAAAAAAAQIFobe2tYE/UX1H1UXpbt25VcXFx6vWioqIO4/fu3auTTjpJN954oyTpxBNP1K9//Wvdfffd+od/+IfIysUNjhgIkoaghjf8MaVjDels8cfM8KRTE0EaklRhSMdSpyp/iCkvk+n+EEPdLX3u3EJ/OkFl6PHE9qu8abQMfMNfGItZ/pCgIry8kq3e+SiK/rSlYRnr/nHsnGEce8orSZrhL7Or9icjGepebkimxjIGDfOOryyBIajU0Db1lrxqDZn5Y3J57pnGTmTC+9NSlkKdlyyimlPyjaXelrmiJ48dAJ0T9nmU67kkW/nFqY75JIq1KaLDWM092hyIn+Li4nY3ONI59NBDdeyxx7Z77ZhjjtFDDz0UaXm4wQEAAAAAAAAAQIFwbX3k2iL+1X8n05s4caJeeeWVdq/99re/1RFHHBFlqdiDAwAAAAAAAAAAROeqq67SM888oxtvvFGvvvqqqqurdc899+jyyy+PNB+e4AAAAAAAAAAAoFC09v7oJ+o0O+Hkk09WbW2trrvuOt1www0aMWKEbr/9dlVUVERaLG5wAAAAAAAAAACASE2bNk3Tpk3Lah7c4AAAAAAAAAAAoFDE4AmOXAmcc667C7HPkiVL9POf/1y/+c1v1L9/f02YMEFLly7V6NGjUzHOOVVWVuqee+5RQ0ODxo8fr+9///s67rjjUjHNzc2aO3euampqtHv3bp111lm66667NGzYsFRMQ0ODZs+erRUrVkiSzj33XN1555065JBDUjFvvvmmLr/8cj3++OPq37+/ysvLdfPNNyuRSJjq09TUpJKSEjU2NobuLB8EW/yJzRjrj6kxpLPckM4sz/GGSn8aFqULo0mnwVBvk1p/yAxDmQ39kNh+pDemZeAb/ry8/HVyzl+noNyQlaHezvnHXxAYxpdl7EQ2LvxM9Uoa0qn3pGGZKyzjWNP9IaX+OvnKK9n60zIGLaLKK5dl9rH1uYVlXEQksvMzh2XOlRy2Ta7GaE9WiHNOFKzrX2SuJ14zhZ0n+XR+ID58cy/jqvAxr6RH26Rn+n1FBnp6uxaCOK2B95VFGxulT0Vclp1N0rh41POTYrXJ+Nq1a3X55ZfrmWee0erVq9Xa2qrJkydr165dqZibbrpJt956q6qqqvTcc89pyJAhOvvss7Vjx45UzJVXXqna2lrdf//9WrdunXbu3Klp06apra0tFVNeXq7Nmzerrq5OdXV12rx5s2bOnJk63tbWpi9+8YvatWuX1q1bp/vvv18PPfSQrr766tw0BgAAAADsh2smAAAA4C9i9RVVdXV17f6/bNkyDRo0SBs3btTpp58u55xuv/12zZ8/X1/5ylckST/+8Y81ePBgVVdX61vf+pYaGxt133336ac//akmTZokSfrZz36m4cOH63//9391zjnn6OWXX1ZdXZ2eeeYZjR8/XpJ077336tRTT9Urr7yi0aNHa9WqVXrppZe0detWDR06VJJ0yy236MILL9TixYs7vEvV3Nys5ubm1P+bmpqy0k4AAAAAeiaumQAAAODV+vFP1GnGUKye4NhfY2OjJCmZ/Oi7XV5//XVt27ZNkydPTsUUFRXpjDPO0Pr16yVJGzdu1J49e9rFDB06VGPGjEnF/PKXv1RJSUlqoS5Jn//851VSUtIuZsyYMamFuiSdc845am5u1saNGzss75IlS1RSUpL6GT58eBTNAAAAAAAd4poJAAAAPVlsb3A45zRnzhyddtppGjNmjCRp27ZtkqTBgwe3ix08eHDq2LZt25RIJFRaWhoaM2jQoAPyHDRoULuY/fMpLS1VIpFIxezvuuuuU2NjY+pn69atna02AAAAAJhwzQQAAIAOtWbpJ4Zi9RVVnzRr1ixt2bJF69atO+BYEATt/u+cO+C1/e0f01F8JjGfVFRUpKKiotBydMyykaphc/AoNhCX/BucmjbaNmy8ZNms3LIhq2EzZFNeyw15VRjSMbRPy8CINg72bT5f40/Csvm1iaEfcrvhtOG8imije9NG0L6+ihnbBuLRjOPoNtL2b56eqzGY202DI9pY3jJGa/x9ZRs7/hjbhtyWTf58dY+o/SzpFOgG4rbNFrvehnGrd1TliVu9kF96yjUT50nhy/WmxowpMAbSo23Si1vbdMeG8GxCjziK5RMc3/72t7VixQo98cQTGjZsWOr1IUOGSNIBfw307rvvpv5yaMiQIWppaVFDQ0NozJ/+9KcD8n3vvffaxeyfT0NDg/bs2XPAXykBAAAAQC5xzQQAAIC0etATHLG6weGc06xZs/Tzn/9cjz/+uEaMGNHu+IgRIzRkyBCtXr069VpLS4vWrl2rCRMmSJLGjRunvn37tot555139OKLL6ZiTj31VDU2NurZZ59NxWzYsEGNjY3tYl588UW98847qZhVq1apqKhI48aNi77yAAAAAODBNRMAAADwF7H6iqrLL79c1dXVevjhh3XwwQen/hqopKRE/fv3VxAEuvLKK3XjjTdq1KhRGjVqlG688UYddNBBKi8vT8VedNFFuvrqqzVw4EAlk0nNnTtXxx9/vCZNmiRJOuaYYzRlyhRdcskl+sEPfiBJ+qd/+idNmzZNo0ePliRNnjxZxx57rGbOnKnvfe97qq+v19y5c3XJJZeouLi4G1oHAAAAQE/HNRMAAAC8WiXtyUKaMRSrGxx33323JKmsrKzd68uWLdOFF14oSbrmmmu0e/duXXbZZWpoaND48eO1atUqHXzwwan42267TX369NE3vvEN7d69W2eddZZ+9KMfqXfv3qmY5cuXa/bs2Zo8ebIk6dxzz1VVVVXqeO/evfXII4/osssu08SJE9W/f3+Vl5fr5ptvzlLtAQAAACAc10wAAADwavv4J+o0YyhWNzicc96YIAh0/fXX6/rrr08b069fP9155526884708Ykk0n97Gc/C83r8MMP18qVK71lAgAAAIBc4JoJAAAA+ItY3eDosZYv9MdYrhkqthiCag0x08MPTzMkUeNJQ5JKx/pjpljyqjQEGcpTEVE6lvaRoe4W3robytsQUb0jEiQNQRGVufG9Im9MyV81G/Lyc9X+mCDwnMOGc8bV+2OCwN9+QWCYK0oNc1eDZc7xc85QL0MbqyKa8vja0DlD25hEU16Tmmg+Qyxjx9I+lnFq4R870czHtnPGkJfhnIlqnoyqH3KVTlRlsfDOx7LNS7a8ohrrUc07AJB7zGHItbDP32yMx1zn5xO21olqjRNnma6/mKtog7ySjU3BY/oVVbHaZBwAAAAAAAAAAMCCJzgAAAAAAAAAACgUPMEBAAAAAAAAAAAQXzzBAQAAAAAAAABAoeAJDgAAAAAAAAAAgPjiCY44mOUPSbza5I1pqRtryMwQMyX88KPlZ3qTmFpR5s+nylAWQ9tI0/0hyw15rbS0n0HFFm+Ic/68gqDSkM7C0ONF9YZxM9DQfqURtU1DrT+mypBOhb/MpjZONhsyi0aQtESFt4+rj6gfLOeMpyySpAb/GLWw9ZUhnXp/TDAr/Jyx5uVrw6DckESNf64w9ZXh/DS1jWHOsfDNS9GyjOWuM7VNqb/eln6QDGM0gs+HKNPJlajKErd6x6mNgXwUdk5nen7lOk2fXOfJvISeINfjPG7nVdg1WDbmwO6QT/XItKxxqwdipk3RP3HRFnF6EeEGBwAAAAAAAAAAhYKvqAIAAAAAAAAAAIgvnuAAAAAAAAAAAKBQ8AQHAAAAAAAAAABAfPEEBwAAAAAAAAAAhWLPxz9RpxlDgXPOdXchClVTU5NKSkrU2Nio4uLitHFBsMWfWOnYaArVYMhrRnheiaombxItdenrm1JR6Y8pXeiPsdRpub/9ElMiqpdFhaHMkag1xEz3Rjjnbz/TODaxlDkqEdW93JBVnT/E1XvyqTbkM6vr+UhSEBjOTxN/G5v63DIXTDFkVRPRfOudd/x1cs5fpyDpL4qtP3NVb5vI5pQIymwpS1Rs82Q0c6BpfBnKk8v28bHMS7Z6xyudQmNd/wL7MGa6Jmwu6olzUC5ko80zXXvnUx8zVgEUsjitZ/aVRT9slA6KuCwfNkn/GI96fhJPcAAAAAAAAAAAUCjaPv6JOs0YYg8OAAAAAAAAAACQd3iCAwAAAAAAAACAQtEmqTULacYQNzgAAAAAAAAAACgUrYr+BkfU6UWEr6gCAAAAAAAAAAB5hyc48kRZfZ03Zn39BG9My6yx3pgF1fNDjy8KEt40pOmGGIMphpg6f51UscUb0jLDkE6NPx2VGtJZHk2ZvWYs9McY6hQEld4Y5/x5WdLRckOZZ/lD1BBB+0kKyiNJxpZX4CmzZYwa6h0E/mRM/Zn0p6MGQ5+XGvrcNBcYYlRriDG0s68vDPOSt7+NgsBQJ8tcYOCqDW0TO+HtY2o/y2eaYe53zjIuDMUpUKbPiAhE9nkFIBbCzlfL+Z7vekId4ybXbR63Pg5bw4atdbqjHnGaH+JUlp6CNkePxxMcAAAAAAAAAAAA8cUTHAAAAAAAAAAAFAqe4AAAAAAAAAAAAIgvnuAAAAAAAAAAAKBQtCn6Jy7aIk4vIjzBAQAAAAAAAAAA8g5PcMRCrTdiff1V3piWkcXemMSrTd6YRcnFnohKbxqaMdYfI0PMNEMyNYbylC40pLPFkI6lXgYVhjIvN5S5wlNmS50M40+a7o0Igoj6waLBUC/LGKzrelEkyVX7Y4rq/edeyyxPmaPqT0M/mPrTMC6ciyivGn9eueTr86jazySq+c0wdoI6f16u3p9TEPjL45z/HLakE8m8M8UQY2pjf51M9U76czK1jaXPA39MVOe5JZ245AMgPjinoxc2l9Le2ZFP7WpZq+BAYX3sW79kOj6ycS53Jc1M32u7toq/bNQ/G+8rJD2+DdiDAwAAAAAAAAAAIL54ggMAAAAAAAAAgEKxR1LvLKQZQ9zgAAAAAAAAAACgULQp+k3B2WQcAAAAAAAAAAAgGjzBkScsG4g/Wn+mN2Zq9RP+zLybqUa0EU9EGzwvcC3emKWWDZ5HGjZLs2xuHdlG5BHk1RDRRseGOrl6y4bAhvLMyuFGT5aNgw0b3Vs2/HX1/nM4MBTHz9CfpnFhYBgXQbkhnRmGPjf0gyqi2VzYMk6DZBTj1LAhfFQbkVtEsRm3otvkOfBs5G5W5TluGTfVhvIaNhC3bYpu+SzK3Sb2tnPGsqG5n3fsGOaKqDYLjGqusLC0Hxu6AumFn0PpP2t7wuaimW6u2hPaJm5yvRl0V9LNJ3HanDtMtvoibmWNW3lyLdOy5vp9haTHtwGbjAMAAAAAAAAAAMQXT3AAAAAAAAAAAFAo2hT9ExfswQEAAAAAAAAAABANnuAAAAAAAAAAAKBQtErqnYU0Y4gnOAAAAAAAAAAAQN7hCY4YcG6hNyao9qczNfmENybxapM3pmVWcXhAlb8sWmmIMaTjyv0xQXKxP6hhiz+mdKw/xsKUl7/PNaXrRZEM+dQZkmmo9IYEgSGd5YbyVBjab7mhryr8ZTapi6avgqQhrwj63Dl/2wRBbdczkmzlrYmoH2qiScbSD6Y52dKfkTD0VUM0Obl6f0wQ+PvT1H6B/zy3jGWVW8a7r8zTI0jDlo6tPyM6P00Mdc/ZWPePHcu4UXU0n+W2PrekE9FYB5ARy2dSIYtb/cPm1riVNRtyXf98atO4jY18aruegP6Inm+NWijr07jNLTm3R9E/2rAn4vQiwg0OAAAAAAAAAAAKRZui3xScTcYBAAAAAAAAAACiwRMcAAAAAAAAAAAUijZFvyk4T3AAAAAAAAAAAABEgyc4AAAAAAAAAAAoFK2K/tGGqJ8IiQg3OGIgCCq9MY+6Nd6YqSuf8MY8nDzPn84UTzorvUno0eozvTHrNcEbE5Qv9mcWlYYt/pjSsdHkVWWIqchReSxlWbnQG5KoavLGtMwy5GURVToWlnEhQz9EkY6hvy3ziTTdH2LIy1X7kwlqDHmZ1PpDZvjHqaZ1vSSSjP3Zdc756xQkDenU+2Ms6ajUUJ6IxqCpPDnqB9PYqrGUJYfngynGoMESFFFeHs5FNQda8rKMdX+fW8oMoGvCzrOwOcFynndWrvPLN5m2QaG0az6VNRttnmmavs/2rrw3kzTDdEcdkZme3lfdsUbNRpv72jtf+gNdxw0OAAAAAAAAAAAKxR5JQRbSjCH24AAAAAAAAAAAAFmzZMkSBUGgK6+8MtJ0eYIDAAAAAAAAAIBC0fbxT9RpZui5557TPffco7Fjo/+KNJ7gAAAAAAAAAACgULRm6ScDO3fuVEVFhe69916VlpZmXKV0uMEBAAAAAAAAAAC8mpqa2v00NzeHxl9++eX64he/qEmTJmWlPIFzzmUlZaipqUklJSVqbGxUcXFxl9IKqv0xC8rne2Oe0he8MWuCoeEBM6J/lCidRFWTN6Zllr9tLenMSy71xiwKzvfGqNTQPlP8IZpmiFkZQRqzDDENWwxB0Shzb3tj1iQNDVhlyKzCUC9Lf1rysrRzrvKJqj8NbZN41XAOj+za/JjSUOmPmbEwmrxqwvNyzp9PUB5NUUzqDDGWcRHV/FaTu3PPedo5SPrTMNXJ0sYGrt4fEwSWc7jWn5dlnOYwr1wJAv9cEafy5pso17/oGbprzITNBd0xB8StPEAh4LyKnmUdlU5Ym+e6r8LWuM5l/juvrrRPOj39MylbYy5qcVoD7yuLvtYo9Y24LHuapAdLDnh54cKFuv766zt8y/3336/FixfrueeeU79+/VRWVqbPfvazuv322yMrFntwAAAAAAAAAAAAr61bt7a7kVNUVJQ27oorrtCqVavUr1+/rJWHGxwAAAAAAAAAABSKPdlLs7i42PSkysaNG/Xuu+9q3Lhxqdfa2tr05JNPqqqqSs3Nzerdu3eXi8UNDgAAAAAAAAAAEJmzzjpLv/rVr9q99s1vflOf+cxnNG/evEhubkjc4AAAAAAAAAAAoHC0SeqVhTQ74eCDD9aYMWPavTZgwAANHDjwgNe7IupqAgAAAAAAAAAAZB1PcOSLWf6QCeXrvTGLyhd7Y5wLPx6U+8tSVl3njVkTDPUnVHWkP2aaP6RlpP974RY1nO+NSWz3l6dlpL88JhVb/DGlY8OP11R6k0hsv8ob01LnyUcyjVGL9fVHRpOQoTyW/pSavBEtA98wpGPg688Kf3/a8lnoj2kwjL9cspTHUi+LCM6bILC0X60hZrohxsA3tiSZyjPFn46r9icT1BjyavCHuHJ/eWx94cmnOqJ8DP0QBJbz3DIu/DGBoa9MY6fBMpb9fHV3LqJzPCJR9ZVzlvMTQNSyMaeEfRb4zvWw8oTNN3GbG5GZTPvY9lnU+XTDZJpnd4xxzo/oFUqbhs3J3XFeZao7zp3cfyalX093ZR3dIz5bWyUFWUizi9asWdP1RPbDDQ4AAAAAAAAAAApFTG9wZANfUQUAAAAAAAAAAPIOT3AAAAAAAAAAAFAosvG0BU9wAAAAAAAAAAAARIMnOAAAAAAAAAAAKBRtin4PjraI04sINzjyxRR/yFLN8wfVbPGGnFn9dnjANH9h1lQbClzqD2kZ6C+vlo/1xzQY0jFoqSv2xpTV13lj1gQb/JktX+gNSUxp8kRc5U2jZeAbhrIY2jgizUl/G59pauOh3piWWRHVq9QyBisNMeGHy9x4bxKmsWU6H2oN6fhjWur849jE0saGaUc1hn7QdG9Ey8jwceqcv7xBYGhj09jy92fiVd9cITUn/X0VJP3FCQLD+Cr15+XqDXmV+2O8Y3mGod7VhmxmGPrK8BlsGX+m89OSzkpDMib+vCzjwrmuzxem8Wcqr3+usJTXko5pLjCIov2AniTs/Aw7nzJ9Xz4Jm0sta5yezDLvdyTTsdMdYy4beRbKuZMp37jJRvvk01yWjTkpW/XPxhzQHX0V3ua5HR9d+dzJp3GOruEGBwAAAAAAAAAAhYI9OAAAAAAAAAAAAOKLJzgAAAAAAAAAACgUPegJDm5wAAAAAAAAAABQKFoluYjTjOkm43xFFQAAAAAAAAAAyDuxeoLjySef1Pe+9z1t3LhR77zzjmpra/XlL385ddw5p8rKSt1zzz1qaGjQ+PHj9f3vf1/HHXdcKqa5uVlz585VTU2Ndu/erbPOOkt33XWXhg0bloppaGjQ7NmztWLFCknSueeeqzvvvFOHHHJIKubNN9/U5Zdfrscff1z9+/dXeXm5br75ZiUSiay3Q0dctT+mqH6CN6bMrffGrCmfEh5QU+kvzIyF/pgqf8iC8ge8MYvKx/oTKvXHlNXXeWPW1x/pjVkTDPWXZ7mhfWb5Q+bVLw09viiIaLxWRJOMc/5+CALD+DKZHk0y/mFhGjtryg19XrMlPI1ggz8Ny9iqsLSxv/0S24/0xrQMNORVGs18oZX+kMT2q7wxzclib4xvnAbVhjpZxmhDNOdDy0h/eQJLXpa+Wu4/zxNTmvzlMfSDjaedDee479yUJM0wfBaZ1EaTjKEfLOeMq/fHBIGhzIZ1gX/+j2hezyHnLHOBX3SfjSgUXDd1XabnZ6bv853HYemGHQuC9J9RlrV3lO/LJ13pj2y8L5+EtV2h1D/Tz91sjZtstHk2+ipb81ymeeY6v+ylG/0auGtry/SfEZl+JmXjs+yj94Z9fhb+XJaVpy14gsNv165dOuGEE1RV1fFvsm666Sbdeuutqqqq0nPPPachQ4bo7LPP1o4dO1IxV155pWpra3X//fdr3bp12rlzp6ZNm6a2tr/0QHl5uTZv3qy6ujrV1dVp8+bNmjlzZup4W1ubvvjFL2rXrl1at26d7r//fj300EO6+uqrs1d5AAAAADDgugkAAAD4SKye4Jg6daqmTp3a4THnnG6//XbNnz9fX/nKVyRJP/7xjzV48GBVV1frW9/6lhobG3Xffffppz/9qSZNmiRJ+tnPfqbhw4frf//3f3XOOefo5ZdfVl1dnZ555hmNHz9eknTvvffq1FNP1SuvvKLRo0dr1apVeumll7R161YNHfrRX+PfcsstuvDCC7V48WIVF0f1V6UAAAAA0DlcNwEAACAUe3DEz+uvv65t27Zp8uTJqdeKiop0xhlnaP36j752aePGjdqzZ0+7mKFDh2rMmDGpmF/+8pcqKSlJLdIl6fOf/7xKSkraxYwZMya1SJekc845R83Nzdq4cWPaMjY3N6upqandDwAAAADkStyvm7hmAgAAQJTy5gbHtm3bJEmDBw9u9/rgwYNTx7Zt26ZEIqHS0tLQmEGDBh2Q/qBBg9rF7J9PaWmpEolEKqYjS5YsUUlJSepn+PDhnawlAAAAAGQu7tdNXDMBAADkQGuWfmIoVl9RZREEQbv/O+cOeG1/+8d0FJ9JzP6uu+46zZkzJ/X/pqamyBbslg2ALJvnejcQl9T406LQ4yXTmr1plJUbNl2u9pfFtkl2NJueW9pmQfV8b8xT7gv+vJL+TZJMG7smF4cHlIYfNvM3jTTNHxK2cVSKYRPjBfX+flhkaOOyasM4NWzsvSawbPplqHsUmwtX+PMpc+O9MZYxOiHpb78nDJtzBeXeEFO9LJs8twx8w18ey+bMvs3cLRu5G+Yl1fhDTBqiOfcsLBuIt4yM5itLyuoj+KyZZcnJcG7WGGJMbWwYf5b+tJwzpf68TPO2hWmjdk/71Fg2Q4xoE0ZDX+Vy4+/oNiv390NP2Fy4p4jrdVM2r5n2l/lmp5ltPJqtDUsLZSPUbNQjdC4Omcvj1m7Z+EzJVh1zvTl1oWzA3RVxKk/X+ipsHZJ+LZ3pZuHZ2Cw+budV5nOHb82c6e8m0r8vCMLSjH4jdZ8evwF5gcmbJziGDBkiSQf8JdC7776b+quhIUOGqKWlRQ0NDaExf/rTnw5I/7333msXs38+DQ0N2rNnzwF/ofRJRUVFKi4ubvcDAAAAALkS9+smrpkAAAByoFXSnoh/YvoER97c4BgxYoSGDBmi1atXp15raWnR2rVrNWHCBEnSuHHj1Ldv33Yx77zzjl588cVUzKmnnqrGxkY9++yzqZgNGzaosbGxXcyLL76od955JxWzatUqFRUVady4cVmtJwAAAABkiusmAAAAqC1LPzEUq6+o2rlzp1599dXU/19//XVt3rxZyWRShx9+uK688krdeOONGjVqlEaNGqUbb7xRBx10kMrLP/p+k5KSEl100UW6+uqrNXDgQCWTSc2dO1fHH3+8Jk2aJEk65phjNGXKFF1yySX6wQ9+IEn6p3/6J02bNk2jR4+WJE2ePFnHHnusZs6cqe9973uqr6/X3Llzdckll/AXRgAAAAC6FddNAAAAwEdidYPj+eef15lnnpn6/77vZr3gggv0ox/9SNdcc412796tyy67TA0NDRo/frxWrVqlgw8+OPWe2267TX369NE3vvEN7d69W2eddZZ+9KMfqXfv3qmY5cuXa/bs2Zo8ebIk6dxzz1VVVVXqeO/evfXII4/osssu08SJE9W/f3+Vl5fr5ptvznYTAAAAAEAorpsAAAAQqlXRf3fT3ojTi0isbnCUlZXJOZf2eBAEuv7663X99denjenXr5/uvPNO3XnnnWljksmkfvazn4WW5fDDD9fKlSu9ZQYAAACAXOK6CQAAAPhI4MJWxuiSpqYmlZSUqLGxMSePaBfVN3ljWur85XAvBKHHg8/5h8yC8vnemEXB+d4YlY71xzRs8YYkth/pjXk4eZ43ZmpQ5i/PjIX+8lRF01ea5Q/xmuIPebT6TG/MefUPR1AYqWWWod41/j63jJ1H6/31mhr8hz+vGYZxWlPpDUlsvyr0eMtIQ9sYzgfn/OUNkv6sEq8axrGlzFX+EJMozgcrX5ktv+eZ5g8pK6/zxqxJGk5iw7iwjOOyakN5gqH+vJb783Ll/mQs49Qyx/mY5uyBtxlSmt71wki2z8aoWMaO6bPaPweq1P/56c8nmvK6en8yQRBNnSLLy8C5CNrYI9frX+S/7hozYZ8hYedl2PmYi3MsF7qjjj2hXTOV6WdAd7RbNvrRV/+wdLPRdpnWMVtjPNfnTlfyC4KwdVptRuUplPmhO86dTGXn/Eg/NsJ+f9GV+SFT6fP8s6TvxmINvG9tpcGNUq+Iy7K3SfpT/Nb6ebPJOAAAAAAAAAAAwD6x+ooqAAAAAAAAAADQBXvUY/bg4AkOAAAAAAAAAACQd3iCAwAAAAAAAACAQrFXUtQ7b8d0J29ucAAAAAAAAAAAUChaJQURpxnTGxyBcy6mRct/+3atz9XO8kGwxR+0fKw3JDGlKfT4w8nzvGmcV/+wN6alztAmK/0hqvHX2zl/vYNyQ14WNZX+mNKF/pgpXS+K6vwhiVfD+1uSWkb6+8qSTnPSn45pHJf6+9OkyhAzyx/S+F6RN6ZkZrMhMw9Df1rGTaLK0OeG89MZzhnLeVVW7a/Yw23+eaekz3P+zAxzoKXPfWPn0fIzvUlMLX/Cn49hfjOZYZj7DeNiQnK9N2ZNMDSS8pjqbpkLGsLTSWw/0puEZQ40zdmWcziX8q3Mnr40s4ybKD6DrQzrBuf864YgiCadrsr1+hf5L45jJux8CjuPwtaxluuRXLLMGZkIb5/M2rUniFvbZKM8mZ9XmY/VOI2rrrRpeBtMD0k3+nmnO+aOfJJp+2Rj7uzKZ1L472VqQ46lH49ha3BXH1aW/BhzcVrP7CuLPtUoBRGXxTVJO+NRz0/iCQ4AAAAAAAAAAApFD3qCg03GAQAAAAAAAABA3uEJDgAAAAAAAAAACsUe8QQHAAAAAAAAAABAXPEEBwAAAAAAAAAAhaJNPeYJjsA5F9Oi5b99u9bnamf5IOmPKauv88Z8QU+FHl8UnG8tUrgZY70hZdX+8q4pn+LPa5qhPBVb/OVxb3tjfO0nSYuqF/vLs9IfoprK8OOlC/1pVPlDFpTP98YsChL+hGYYyuOrkzkdf38+6q7wxkwtf8Kfl3+YSoZh6mUYx4+Wn+mNmZo01MkwLhJTmrwxLQPf8CdkmAsSVYa86iKaZw1zgV+tP2S5YRxX+M+HBa7FG7Oo3D/n5LSNLSxzoOHcc/Xhx4NqfxqmsT7S0DYNhvnNwjIHWhjmycT2I70xLQNvM2Q23RATzvIZvCZpmGwbDOd4qX9essyTmmWIsZTHxD/vOBfR2AmR6/Uv8l++jZkgSD+X5+Icy4W41bE7ypNpnnFru2zIRh27pY9Dfn8Stn4slD7OdT/65D7PsLVp+jWVr5xBELauM1wjdjLPjOeqck+mhuuEjmVWx9D+CPt9gaeczqV/b6Z9la5d47Se2VcWqVEKIi6La5IUj3p+Ek9wAAAAAAAAAABQSHrIYw3swQEAAAAAAAAAAPIONzgAAAAAAAAAAEDe4QYHAAAAAAAAAADIO9zgAAAAAAAAAAAAeSdwzvWQ7UZyb9+u9XHaWT5IGoIatoQeTmw/0ptES52/vokpTf50ZvnTKauu88asSU7xxphElIym+UMs7TMhuT70uKXeZfWG9guGemNM48LQnxYLqud7YxaVL/Yn5K+6XL0/xnReRTB2TPWuNtTbYmU0yagmfD4xmzE2kmQaf1rkjSmZ2exPyDB2vDxzrSRbvWsqDeks9McY5iXNMsRENU9G0cbyz3Frgg2GVKYbYmr9IZZ+sIiobUxjcLlhDFrmC0uZGzxj2dJ+ljnHcl5ZyhvVWLcwzaWGMWjgXNfGaRzXv4i3fBszQWD43M1AV8+9joSXNf1nm3OZr7u6I89cC6tjpv2Y6bjKxrjxyaeyZkMQhH0mp/8s7kr9cz/mwta+mdcxO/WI6HrzE8LmI39+0azHPimsbTL+TCr1tHfYujxsTR5ybRpaj5DfqYT9TsZb/7B6+q490pUnTT3itJ7ZVxapUVLUZWmSFI96fhJPcAAAAAAAAAAAgLzTp7sLAAAAAAAAAAAAorLn45+o04wfnuAAAAAAAAAAAAB5hyc4AAAAAAAAAAAoGK0f/0SdZvzwBAcAAAAAAAAAAMg7gXPOdXchCtW+XevjtLN8kDQEVYUfXlA+35vEouRiW4G6WBZJ0ix/SOLVJm9My0h/Hy2o99d9af08f16z/HmVVdd5Y9aUTwkPmOZNIrr2M9TJVJ6VhvJURVQefxPndgwOfCM8je1HGtK4zV+Y5Qv9MRWV/phSQzoGlraxsPS5ZeyY8vK283RvGgvcA96YRdWGudQw/iLjmXIkmc6ryPq8ruufrYkp0Xw+NL5X5I0peaDZVCYvQ5+X1UfwGWJlmdsrtnQ5G9M5EyT8CVnmwFyeVwau3h8TBP42dm5sBKUJF8f1L+It38ZMEKRfIzmXfn7xnaNh52dYnpkKK2uYbJQlW8L7Izv1yDTPbLzPJ1vpRp1f1/oq/Zo803MuO33s+wyvzUK66dMMvc5ryHzcZNqX8Zqvwq/zsjOuMuvHrp1X/uvZnJnRhfVrTUjblaZPN2ztnb7t/izpu7FYz+xbW0lbJUVdliZJw2NRz0/iK6oAAAAAAAAAACgYfEUVAAAAAAAAAABAbPEEBwAAAAAAAAAABaNV0p4spBk/PMEBAAAAAAAAAADyDk9w9DCmTSrLw4/PPf9mbxqLZNgYN6LNmy2b3j6cPM8bM1VPeGNMG/5aNmee4d8ka02wwZ+OhoYfrgnZOOxjie1XeWN8m19Lts1fLZZOMWzSbtjw17TBbtIweAybnpvGsoFv81ffuSlJC1yLN2ZpvWFT5ag24TU0sWmjaMsGxYbNxywbkTf+1LBZ9AzPZtFhm5l9bFFwvjcmsd3QV1MiqlOf57wxbugJ3phgivPGWPrB0oZa7u/zsvLwueCJVVO9aZxZ/6g3pqTav4G4ZUNzixbDRnGRbSBu6IdE1ZHemBZDXy0onx96fILW+8uy/WF/WUZ6Q6SGrm+KLkll7m1vjKWvgqQhs5CNElPpGDYiD9109GPZ2HwWyB+ZbbzqXedlvBluWHn853NHurL5dK43EQ6TrXrkuqzZeN9H0o+dsM8dy+8UOnxf1j474rOReGibdmk8ZnYuZ7oBdbjMN67u2kbrad5nWSN1JOx3MmGXDyGbrH8ksw2xM94QPtM0fb+Tmpb+kAv5vUToGAjLM+yaI8ONwrvC8ruX/LBH0T/BEXV60eAJDgAAAAAAAAAAkHd4ggMAAAAAAAAAgILRquj3zGAPDgAAAAAAAAAAgEhwgwMAAAAAAAAAgILRqr/swxHVT+ee4FiyZIlOPvlkHXzwwRo0aJC+/OUv65VXXul61fbDDQ4AAAAAAAAAAApGa5Z+7NauXavLL79czzzzjFavXq3W1lZNnjxZu3bt6nr1PiFwzrlIU0RKU1OTSkpK1NjYqOLi4u4uTsEKkoagKYaYmi1dLYokKbH9SG9My8A3DCnV+kNmLDSkkyOW9psx1h8zzZDXLEOMQeLVJm+Mqa8s9arzh6jB04alhnwsY93SxhWG/lxuKM9KQ14WhvHlnL88QeBPp8y97Y1ZE2wIPZ7YfpU3jZY6w+eCof3Kqv2Da025f2AsqJ7vjVkUnO8vkGVcGCSm+M9Pi5aRnnauMiRimHMs88mE5HpvzBNzp3pjgh/6l26m+S2iMWhhGV9L6+d1OZ+Hk+d5Y9ZrgjdmUXKxN8bSxvOSS/15Wc4rE8O6odS/bnD1XSsF6190FmMme8LWPZZ1U2Z5VkaepnPp565M6+hbE2arfdIJb7fpGaZq+FxIIxttHqYr4yasrNnIM9f55RffWA0bk+nfGzauiurTr8dC17qW690OhZ9XmZ47oeka1m8daggZc740wy4fQ6/NQ+qR4e+vwq5311R7rnNDruPC1vIts0LGTtr675Q0MRbrmX1rK+lZSZ+KOPWdkk7JuJ7vvfeeBg0apLVr1+r000+PrFRsMg4AAAAAAAAAQMHY97VSUaf50U2UTyoqKlJRUZH33Y2NjZKkZNLy1+p2fEUVAAAAAAAAAADwGj58uEpKSlI/S5Ys8b7HOac5c+botNNO05gxYyItD09wAAAAAAAAAABQMDq/Z4YtTWnr1q3tvqLK8vTGrFmztGXLFq1bty7iMnGDAwAAAAAAAAAAGBQXF3dqD45vf/vbWrFihZ588kkNGzYs8vJwgwMAAAAAAAAAgILRquj34OjcEyHOOX37299WbW2t1qxZoxEjRkRcno8EzjmXlZSR2rU+053lgXwSBJWGqOmGmNqcpePcQm9MUO7PyVX7Y85UnTdmTfmU8IAaQxvP8NdpQfV8b8yi8sX+vCwiKrOh+SRP80mSphliKrYYgsKVube9MWuCoV3OR5IS24/0xrTM8n8GJaqavDEPJ8/zxpxX/7C/PHX+8pSVG84ZSxvOGBueT7U/n3la6o2ZWv6EN8bSxu+V/JU3pmRmszfm0eozvTGWvoqKZQz6yrxU87xprK+f4I2ZkFzvjbH0+ZQT13hjgmP8y2zLGFyT9E9wZfWWidLvCdNkmh7rX3QWYwbdwXftEnadEATp14rOha87MmG7zupAqWeN3ZBZupZrqI6E1iOsrBmWsyvC+z99eTJtG5/wMWC5Nu5AachYDWvz0L4Kv44KOz8yrWNompnuYRxWj7B2k8LbLuy6t6br16AHWB5S1i5d84b8rmV5+jqGXd+FreEt147pJKb4r786q2XgG2mO7JQ0MRbrmX1rK+n/JA2IOPVdks4y1/Oyyy5TdXW1Hn74YY0ePTr1eklJifr37x9ZqXiCAwAAAAAAAACAgpG9PTis7r77bklSWVlZu9eXLVumCy+8MKIycYMDAAAAAAAAAIACskfRf0VV59LL1RdH9cpJLgAAAAAAAAAAABHiCQ4AAAAAAAAAAApG939FVa7wBAcAAAAAAAAAAMg7gcvVl2H1QPt2rbfuLA8AcREEW6JJqHSsP6bKkM6sLpckUolXm0KPtwx8w5/IckPbWOptab+VhpiaSm/IAtfijVkUnO+NaWw92RtTMrPZG5OoCu8HSWqp83z+WtpmmiHGkM6C6vnemAla7405r/5hb8y85FJvzNL6ed6Yh5PnRVIeSzoT2sLrXjzPP/6Ct/3LWndh4I3RKn/Iv938HW/M3LabvTF/1fiePzMDSxtPrX7Cn5Bl3mkImy/+LOm7rH9hxjUTkF+CIP1ngHMLc5qfL0/fe9MqzbAeoZ+PIWZ0od3qQo6Flmd6hhnWZvg+hdbTVad/W1AekmZN2HVrSFkz7eMp4YfDrk/C1ueLyhenTzSkj8OuS1tGhnymeq4hE1PSpzshmX7NvibYkPZY2LXkomT6+ofVMawskvTE3KlpjzUtTYS+N52SPumuAeKzBt63tpIelHRQxKl/KOlrsajnJ/EEBwAAAAAAAAAAyDvswQEAAAAAAAAAQMFgDw4AAAAAAAAAAIDY4gkOAAAAAAAAAAAKxp6Pf6JOM364wQEAAAAAAAAAQMHoOTc4Auec6+5CFKp9u9bHbWd5AED3C4JKb4xzCyNJx2a6P2TGWH9MjaE8pf56qSGaepW58aHH19dPiCSflln+z/lEVZM/nYFv+NPZfqShRH4tIw1rkymGhKb5QxaUzzckFG6C1ntjpsxd44058+ZHvTFPnDjVn86maNIJ/mBYijds8YaUube9MWuCof68DJxLPxew/kVnMWYA9HT+9bxhnd6BsM/rIBnyxkzX4b41flXIsYqQPGeEpFsXnmU6C+rTr00XJRenf2NYHSSpImTNtjzkWmplSJoh11eJ7VelPTYvuTTtMd+6emr5E2mPuaFB+jf+X/pDdZvK0h5br/TXZL2DG9MeW/jZ9PlJUtPzifR59k6f55QT16Q9Fmz+f2mO7JQ0MRbrmX1rK+mHkg6KOPUPJf1jLOr5STzBAQAAAAAAAABAwWCTcQAAAAAAAAAAgNjiCQ4AAAAAAAAAAApGq6LfM4MnOAAAAAAAAAAAACLBExwAAAAAAAAAABSMnrMHR+Ccc91diEK1b9f6uO0sDwAA4ikItkSSjnNjI0knCCr9QTMW+mPqul4WNRjaZrmh3rP8IQvq53tjFlUv9qdT7k9naf08b8y85FJvTFQWJf31Cu+LnZImsv6FGddMAIAwYetR5wzr0A7TzHTNXes5Pj39obB1atj6dErIsZA1duN7RWmPlTzQHJJouLD17VP6QkZprqlOX0n3QpD22JZbwtMde3X6Y01LE2mP3danJe2xNe7RDl9vbdqldSVfi8V6Zt/aSrpDUv+IU98taXYs6vlJPMEBAAAAAAAAAEDB2KPof/Uf9Z4e0eAGBwAAAAAAAAAABaPnfEUVm4wDAAAAAAAAAIC8wxMcAAAAAAAAAAAUjFZF/5VSPMEBAAAAAAAAAAAQicA557q7EIVq3671cdtZHgAAoBAFSUNQQ6UhaLo/ZPlYf0zFFkNefmXubW/MmuQUb4w7IvDGbNnsL09tyLE/S/quxPoXZlwzAQCQP8LW264+s/eFqsrwfZL+X0X6tW/YejYTcVoD71tbSZWS+kWc+p8lLYxFPT+JJzgAAAAAAAAAAEDe4QaHx1133aURI0aoX79+GjdunJ566qnuLhIAAAAAxArXTQAAAHGyJ0s/8cMNjhAPPPCArrzySs2fP1+bNm3SF77wBU2dOlVvvvlmdxcNAAAAAGKB6yYAAAB0lz7dXYA4u/XWW3XRRRfp4osvliTdfvvteuyxx3T33XdryZIlB8Q3Nzerubk59f/GxkZJH333GQAAALLMtLPcnw0xO/0hH1rWd4Z0DFqbdvmDnL88TW3+ZCwlDmvBfSthtvnrWTpz3cQ1EwAAeSxkiRf6UZ7p0vDDDN+n8HWt5YqgM+K5Bt4lqTXiNJv9Id2AGxxptLS0aOPGjbr22mvbvT558mStX7++w/csWbJElZUHblw5fPjwrJQRAAAA2fBdf8gl2S/FPutKokmn5INo0rHYvn37x5sbotB19rqJayYAAApTVpZ+XVhzT4yuFGZxWAMnEgkNGTJE27bdlpX0hwwZokQikZW0M8UNjjTef/99tbW1afDgwe1eHzx4sLZt29bhe6677jrNmTMn9f8PPvhARxxxhN58881uH9zID01NTRo+fLi2bt2q4uLi7i4O8gBjBp3FmEFnMWbQGY2NjTr88MOVTCa7uyjIkc5eN3HNVHj4nMh/9GH+ow/zG/2X/+K0Bu7Xr59ef/11tbS0ZCX9RCKhfv36ZSXtTHGDwyMIgnb/d84d8No+RUVFKioqOuD1kpISJih0SnFxMWMGncKYQWcxZtBZjBl0Rq9ebPXX01ivm7hmKlx8TuQ/+jD/0Yf5jf7Lf3FZA/fr1y92NyGyKR6tHkOf/vSn1bt37wP+6ujdd9894K+TAAAAAKAn4roJAAAA3YkbHGkkEgmNGzdOq1evbvf66tWrNWHChG4qFQAAAADEB9dNAAAA6E58RVWIOXPmaObMmTrppJN06qmn6p577tGbb76pSy+91PT+oqIiLVy4sMNHsIGOMGbQWYwZdBZjBp3FmEFnMF56pq5cNzFm8h99mP/ow/xHH+Y3+i//0YfdK3DOue4uRJzddddduummm/TOO+9ozJgxuu2223T66ad3d7EAAAAAIDa4bgIAAEB34AYHAAAAAAAAAADIO+zBAQAAAAAAAAAA8g43OAAAAAAAAAAAQN7hBgcAAAAAAAAAAMg73OAAAAAAAAAAAAB5hxscXXTXXXdpxIgR6tevn8aNG6ennnoqNH7t2rUaN26c+vXrp6OOOkr/+Z//maOSIi46M2Z+/vOf6+yzz9Zf/dVfqbi4WKeeeqoee+yxHJYWcdDZeWafp59+Wn369NFnP/vZ7BYQsdLZ8dLc3Kz58+friCOOUFFRkf76r/9aP/zhD3NUWsRBZ8fM8uXLdcIJJ+iggw7SoYceqm9+85vavn17jkqL7vbkk0/qS1/6koYOHaogCPTf//3f3vew/gXXTPmPa5j8xzVFfmONn/9Yc+c31sAx55Cx+++/3/Xt29fde++97qWXXnJXXHGFGzBggPvDH/7QYfxrr73mDjroIHfFFVe4l156yd17772ub9++7sEHH8xxydFdOjtmrrjiCrd06VL37LPPut/+9rfuuuuuc3379nUvvPBCjkuO7tLZMbPPBx984I466ig3efJkd8IJJ+SmsOh2mYyXc889140fP96tXr3avf76627Dhg3u6aefzmGp0Z06O2aeeuop16tXL/cf//Ef7rXXXnNPPfWUO+6449yXv/zlHJcc3eV//ud/3Pz5891DDz3kJLna2trQeNa/4Jop/3ENk/+4pshvrPHzH2vu/McaON64wdEFp5xyirv00kvbvfaZz3zGXXvttR3GX3PNNe4zn/lMu9e+9a1vuc9//vNZKyPipbNjpiPHHnusq6ysjLpoiKlMx8z555/v/vVf/9UtXLiQi5EepLPj5dFHH3UlJSVu+/btuSgeYqizY+Z73/ueO+qoo9q9dscdd7hhw4ZlrYyIL8vFHetfcM2U/7iGyX9cU+Q31vj5jzV3YWENHD98RVWGWlpatHHjRk2ePLnd65MnT9b69es7fM8vf/nLA+LPOeccPf/889qzZ0/Wyop4yGTM7G/v3r3asWOHkslkNoqImMl0zCxbtky///3vtXDhwmwXETGSyXhZsWKFTjrpJN1000067LDDdPTRR2vu3LnavXt3LoqMbpbJmJkwYYLeeust/c///I+cc/rTn/6kBx98UF/84hdzUWTkIda/PRvXTPmPa5j8xzVFfmONn/9Yc/dMrGdyq093FyBfvf/++2pra9PgwYPbvT548GBt27atw/ds27atw/jW1la9//77OvTQQ7NWXnS/TMbM/m655Rbt2rVL3/jGN7JRRMRMJmPmd7/7na699lo99dRT6tOHKb4nyWS8vPbaa1q3bp369eun2tpavf/++7rssstUX1/Pd/T2AJmMmQkTJmj58uU6//zz9ec//1mtra0699xzdeedd+aiyMhDrH97Nq6Z8h/XMPmPa4r8xho//7Hm7plYz+QWT3B0URAE7f7vnDvgNV98R6+jcHV2zOxTU1Oj66+/Xg888IAGDRqUreIhhqxjpq2tTeXl5aqsrNTRRx+dq+IhZjozx+zdu1dBEGj58uU65ZRT9Ld/+7e69dZb9aMf/Yi/8OpBOjNmXnrpJc2ePVv/9m//po0bN6qurk6vv/66Lr300lwUFXmK9S+4Zsp/XMPkP64p8htr/PzHmrvnYT2TO9yKz9CnP/1p9e7d+4C7re++++4Bd+j2GTJkSIfxffr00cCBA7NWVsRDJmNmnwceeEAXXXSR/uu//kuTJk3KZjERI50dMzt27NDzzz+vTZs2adasWZI+Wtw659SnTx+tWrVKf/M3f5OTsiP3MpljDj30UB122GEqKSlJvXbMMcfIOae33npLo0aNymqZ0b0yGTNLlizRxIkT9S//8i+SpLFjx2rAgAH6whe+oH//93/nL5FwANa/PRvXTPmPa5j8xzVFfmONn/9Yc/dMrGdyiyc4MpRIJDRu3DitXr263eurV6/WhAkTOnzPqaeeekD8qlWrdNJJJ6lv375ZKyviIZMxI330V08XXnihqqur+b7FHqazY6a4uFi/+tWvtHnz5tTPpZdeqtGjR2vz5s0aP358roqObpDJHDNx4kS9/fbb2rlzZ+q13/72t+rVq5eGDRuW1fKi+2UyZj788EP16tV++di7d29Jf/mLJOCTWP/2bFwz5T+uYfIf1xT5jTV+/mPN3TOxnsmxXO5oXmjuv/9+17dvX3ffffe5l156yV155ZVuwIAB7o033nDOOXfttde6mTNnpuJfe+01d9BBB7mrrrrKvfTSS+6+++5zffv2dQ8++GB3VQE51tkxU11d7fr06eO+//3vu3feeSf188EHH3RXFZBjnR0z+1u4cKE74YQTclRadLfOjpcdO3a4YcOGua997Wvu17/+tVu7dq0bNWqUu/jii7urCsixzo6ZZcuWuT59+ri77rrL/f73v3fr1q1zJ510kjvllFO6qwrIsR07drhNmza5TZs2OUnu1ltvdZs2bXJ/+MMfnHOsf3EgrpnyH9cw+Y9rivzGGj//sebOf6yB440bHF30/e9/3x1xxBEukUi4z33uc27t2rWpYxdccIE744wz2sWvWbPGnXjiiS6RSLgjjzzS3X333TkuMbpbZ8bMGWec4SQd8HPBBRfkvuDoNp2dZz6Ji5Gep7Pj5eWXX3aTJk1y/fv3d8OGDXNz5sxxH374YY5Lje7U2TFzxx13uGOPPdb179/fHXrooa6iosK99dZbOS41ussTTzwRujZh/YuOcM2U/7iGyX9cU+Q31vj5jzV3fmMNHG+BczzbBAAAAAAAAAAA8gt7cAAAAAAAAAAAgLzDDQ4AAAAAAAAAAJB3uMEBAAAAAAAAAADyDjc4AAAAAAAAAABA3uEGBwAAAAAAAAAAyDvc4AAAAAAAAAAAAHmHGxwAAAAAAAAAACDvcIMDAAAAAAAAAADkHW5wAAAAAAAAAACAvMMNDgBAXiorK9OVV17Z3cUAAAAA0M24NgCAnosbHAAAZOD0009XEAQH/FRUVJjef+GFF+raa6+NLD0AAAAA3YNrAwDoPn26uwAAgJ6jpaVFiUSiu4vRZc45bd68WTfffPMBFxmf+tSnvO/fu3evHnnkEa1YsSKS9AAAAIB8w7XBR7g2AICu4QkOAOihnHO66aabdNRRR6l///464YQT9OCDD6aOl5WVafbs2brmmmuUTCY1ZMgQXX/99Z1OY9asWZozZ44+/elP6+yzz5Yk7dixQxUVFRowYIAOPfRQ3Xbbbe0eK//JT36igQMHqrm5uV1+X/3qV/UP//APHdanublZs2fP1qBBg9SvXz+ddtppeu6551LHH3zwQR1//PHq37+/Bg4cqEmTJmnXrl3m45/0u9/9Tjt27NDpp5+uIUOGtPuxXHQ8/fTT6tWrl8aPHx9JegAAAEBXcG3AtQEA5CtucABAD/Wv//qvWrZsme6++279+te/1lVXXaW///u/19q1a1MxP/7xjzVgwABt2LBBN910k2644QatXr2602n06dNHTz/9tH7wgx9IkubMmaOnn35aK1as0OrVq/XUU0/phRdeSL3n61//utra2lJ/xSRJ77//vlauXKlvfvObHdbnmmuu0UMPPaQf//jHeuGFFzRy5Eidc845qq+v1zvvvKMZM2boH//xH/Xyyy9rzZo1+spXviLnnCR5j+9v48aN6tOnj8aOHZtBy0srVqzQl770JfXq1SuS9AAAAICu4NqAawMAyFsOANDj7Ny50/Xr18+tX7++3esXXXSRmzFjhnPOuTPOOMOddtpp7Y6ffPLJbt68eZ1K47Of/Wy7401NTa5v377uv/7rv1KvffDBB+6ggw5yV1xxReq1f/7nf3ZTp05N/f/22293Rx11lNu7d28q7X3xO3fudH379nXLly9Pxbe0tLihQ4e6m266yW3cuNFJcm+88UaH7eE7vr+5c+e6IAjcgAED2v1cfPHFpvcfffTRbsWKFZ1K7xe/+IU7+uij3ciRI929995rygcAAADw4dqgPa4NACC/sAcHAPRAL730kv785z+nHgvfp6WlRSeeeGLq//v/1dChhx6qd999t1NpnHTSSe2Ov/baa9qzZ49OOeWU1GslJSUaPXp0u7hLLrlEJ598sv74xz/qsMMO07Jly3ThhRcqCIID6vP73/9ee/bs0cSJE1Ov9e3bV6eccopefvllzZkzR2eddZaOP/54nXPOOZo8ebK+9rWvqbS0VJJ0wgknhB7f38aNG/X1r39dixcvbvd6uvhPevnll/XWW29p0qRJ5vRaW1s1Z84cPfHEEyouLtbnPvc5feUrX1EymfTmBwAAAITh2oBrAwDIZ9zgAIAeaO/evZKkRx55RIcddli7Y0VFRal/9+3bt92xIAhS77WmMWDAgHbH3MePdu9/MeL2e+T7xBNP1AknnKCf/OQnOuecc/SrX/1Kv/jFLzqsT1iaQRCod+/eWr16tdavX69Vq1bpzjvv1Pz587VhwwaNGDHCe3x/mzZt0g033KCRI0d2WJ4XX3xR5513np5++mkNGTJE77//viZNmqRnn31WK1as0Nlnn63+/fub03v22Wd13HHHpdr5b//2b/XYY49pxowZHcYDAAAAVlwbcG0AAPmMPTgAoAc69thjVVRUpDfffFMjR45s9zN8+PCspvHXf/3X6tu3r5599tnUa01NTfrd7353QOzFF1+sZcuW6Yc//KEmTZqUNt2RI0cqkUho3bp1qdf27Nmj559/Xsccc4ykjy5wJk6cqMrKSm3atEmJREK1tbWpeN/xfV577TV98MEH7f4SbX9jxozR3/3d3+nxxx+XJFVWVmrevHlKJBJ6+OGHde6553YqvbfffrvdheKwYcP0xz/+MW08AAAAYMW1AdcGAJDPeIIDAHqggw8+WHPnztVVV12lvXv36rTTTlNTU5PWr1+vT33qU7rggguylsbBBx+sCy64QP/yL/+iZDKpQYMGaeHCherVq9cBf2VVUVGhuXPn6t5779VPfvKTtGUZMGCA/vmf/zmV5uGHH66bbrpJH374oS666CJt2LBB//d//6fJkydr0KBB2rBhg957773UBY7v+Cdt3LhRkjR48GBt27at3bFBgwalNgc87rjj9Nvf/lavvvqqNm7cqDvuuEPvvvuunnvuOf33f/93p9Lb/y/YpAP/Ig0AAADIBNcGXBsAQD7jBgcA9FCLFi3SoEGDtGTJEr322ms65JBD9LnPfU7f+c53sp7GrbfeqksvvVTTpk1TcXGxrrnmGm3dulX9+vVrF1dcXKyvfvWreuSRR/TlL385NM3vfve72rt3r2bOnKkdO3bopJNO0mOPPabS0lIVFxfrySef1O23366mpiYdccQRuuWWWzR16tRUPmHHP+mFF16QJB199NHtXu/bt6927NiRegR/1KhRWrlypb7zne9o8eLFCoJAv/jFLzR+/HgNGjSoU+kddthh7f4q66233tL48eND2wMAAACw4tqAawMAyFeB6+jWLwAAObRr1y4ddthhuuWWW3TRRRe1O3b22WfrmGOO0R133NFNpcvMBx98oFGjRmn8+PFauXKlJOncc8/VaaedpmuuuaZTabW2tuqYY47RmjVrUhsJPvPMMxo4cGA2ig4AAAB0G64NwnFtAADt8QQHACDnNm3apN/85jc65ZRT1NjYqBtuuEGSdN5556Vi6uvrtWrVKj3++OOqqqrqrqJm7JBDDpH00V+P7XPaaadltPlfnz59dMstt+jMM8/U3r17dc0113ABAwAAgILAtUHncG0AAO3xBAcAIOc2bdqkiy++WK+88ooSiYTGjRunW2+9Vccff3wq5sgjj1RDQ4MWLFiguXPndmNpM7Nnzx6NGTNGr7zySncXBQAAAIgtrg0AAF3BExwAgJw78cQTUxvopfPGG2/kpjBZ8pvf/EajR4/u7mIAAAAAsca1AQCgK3iCAwAAAAAAAAAA5J1e3V0AAAAAAAAAAACAzuIGBwAAAAAAAAAAyDvc4AAAAAAAAAAAAHmHGxwAAAAAAAAAACDvcIMDAAAAAAAAAADkHW5wAAAAAAAAAACAvMMNDgAAAAAAAAAAkHe4wQEAAAAAAAAAAPIONzgAAAAAAAAAAEDe4QYHAAAAAAAAAADIO9zgAAAAAAAAAAAAeef/A4atnWS7HGpJAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
|
|
"\n",
|
|
"a0=ax0.hist2d(energyloss_found, residual_found, bins=(np.linspace(0,1,80), np.linspace(0,6e4,80)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
|
|
"ax0.set_ylim(0,6e4)\n",
|
|
"ax0.set_xlim(0,1)\n",
|
|
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
|
|
"\n",
|
|
"a1=ax1.hist2d(energyloss_lost, residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,6e4,80)), cmap=plt.cm.jet, cmin=1, vmax=15) \n",
|
|
"ax1.set_ylim(0,6e4)\n",
|
|
"ax1.set_xlim(0,1)\n",
|
|
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
|
|
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
|
|
"\n",
|
|
"fig.colorbar(a1[3],ax=ax1)\n",
|
|
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\"\"\"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#ist die shape der teilspur im scifi anders? (koenntest du zum beispiel durch vergleich der verteilungen der fit parameter studieren,\n",
|
|
"#in meiner thesis findest du das fitmodell -- ist einfach ein polynom dritten grades)\n",
|
|
"z_ref=8520 #mm\n",
|
|
"\n",
|
|
"def scifi_track(z, a, b, c, d):\n",
|
|
" return a + b*(z-z_ref) + c*(z-z_ref)**2 + d*(z-z_ref)**3\n",
|
|
"\n",
|
|
"def z_mag(xv, zv, tx, a, b):\n",
|
|
" \"\"\" optical centre of the magnet is defined as the intersection between the trajectory tangents before and after the magnet\n",
|
|
"\n",
|
|
" Args:\n",
|
|
" xv (double): velo x track\n",
|
|
" zv (double): velo z track\n",
|
|
" tx (double): velo x slope\n",
|
|
" a (double): ax parameter of track fit\n",
|
|
" b (double): bx parameter of track fit\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" double: z_mag\n",
|
|
" \"\"\"\n",
|
|
" return (xv-tx*zv-a+b*z_ref)/(b-tx)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 31,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"scifi_found = found[found[\"scifi_hit_pos_x_length\"]>3]\n",
|
|
"scifi_lost = lost[lost[\"scifi_hit_pos_x_length\"]>3]\n",
|
|
"#should be fulfilled by all candidates\n",
|
|
"\n",
|
|
"scifi_x_found = scifi_found[\"scifi_hit_pos_x\"]\n",
|
|
"scifi_z_found = scifi_found[\"scifi_hit_pos_z\"]\n",
|
|
"\n",
|
|
"tx_found = scifi_found[\"velo_track_tx\"]\n",
|
|
"\n",
|
|
"scifi_x_lost = scifi_lost[\"scifi_hit_pos_x\"]\n",
|
|
"scifi_z_lost = scifi_lost[\"scifi_hit_pos_z\"]\n",
|
|
"\n",
|
|
"tx_lost = scifi_lost[\"velo_track_tx\"]\n",
|
|
"\n",
|
|
"xv_found = scifi_found[\"velo_track_x\"]\n",
|
|
"zv_found = scifi_found[\"velo_track_z\"]\n",
|
|
"\n",
|
|
"xv_lost = scifi_lost[\"velo_track_x\"]\n",
|
|
"zv_lost = scifi_lost[\"velo_track_z\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n",
|
|
"sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n",
|
|
"sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#ak.num(scifi_found[\"energy\"], axis=0)\n",
|
|
"#scifi_found.snapshot()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 0]\n",
|
|
"------------------\n",
|
|
"type: 11 * float32</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float32'>"
|
|
]
|
|
},
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ak.num(scifi_found[\"energy\"], axis=0)\n",
|
|
"scifi_found[\"all_endvtx_types\"][1,:]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 40,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"scifi_fitpars_found = ak.ArrayBuilder()\n",
|
|
"vtx_types_found = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for i in range(0,ak.num(scifi_found, axis=0)):\n",
|
|
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n",
|
|
" scifi_fitpars_found.begin_list()\n",
|
|
" scifi_fitpars_found.real(popt[0])\n",
|
|
" scifi_fitpars_found.real(popt[1])\n",
|
|
" scifi_fitpars_found.real(popt[2])\n",
|
|
" scifi_fitpars_found.real(popt[3])\n",
|
|
" #[:,4] -> energy \n",
|
|
" scifi_fitpars_found.real(sf_energy_found[i])\n",
|
|
" #[:,5] -> photon energy\n",
|
|
" scifi_fitpars_found.real(sf_eph_found[i])\n",
|
|
" scifi_fitpars_found.end_list()\n",
|
|
" \n",
|
|
" vtx_types_found.begin_list()\n",
|
|
" #[:,0] -> endvtx_type\n",
|
|
" vtx_types_found.extend(sf_vtx_type_found[i,:])\n",
|
|
" vtx_types_found.end_list()\n",
|
|
" \n",
|
|
"\n",
|
|
"scifi_fitpars_lost = ak.ArrayBuilder()\n",
|
|
"vtx_types_lost = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for i in range(0,ak.num(scifi_lost, axis=0)):\n",
|
|
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n",
|
|
" scifi_fitpars_lost.begin_list()\n",
|
|
" scifi_fitpars_lost.real(popt[0])\n",
|
|
" scifi_fitpars_lost.real(popt[1])\n",
|
|
" scifi_fitpars_lost.real(popt[2])\n",
|
|
" scifi_fitpars_lost.real(popt[3])\n",
|
|
" #[:,4] -> energy \n",
|
|
" scifi_fitpars_lost.real(sf_energy_lost[i])\n",
|
|
" #[:,5] -> photon energy\n",
|
|
" scifi_fitpars_lost.real(sf_eph_lost[i])\n",
|
|
" scifi_fitpars_lost.end_list()\n",
|
|
" \n",
|
|
" vtx_types_lost.begin_list()\n",
|
|
" #endvtx_type\n",
|
|
" vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n",
|
|
" vtx_types_lost.end_list()\n",
|
|
" \n",
|
|
"\n",
|
|
"\n",
|
|
"scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n",
|
|
"scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n",
|
|
"\n",
|
|
"vtx_types_lost = ak.Array(vtx_types_lost)\n",
|
|
"vtx_types_found = ak.Array(vtx_types_found)\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 0]\n",
|
|
"------------------\n",
|
|
"type: 11 * float64</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float64'>"
|
|
]
|
|
},
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"vtx_types_found[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABbEAAAIhCAYAAABwh/ftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACuWElEQVR4nOzde3xUxf3/8feSkBAiWRMwhCgCKiIIKEWL4AUQuSlitWprFMG2SouIKKhVi4IKFEXUivef9crF9qt4QUVQAaWgIogUa7W2iFRFLAkJUExIMr8/aFaXnDns5WT3bPb1fDz28ZA558zMuezu7Dj5fALGGCMAAAAAAAAAAHyoSbI7AAAAAAAAAACADZPYAAAAAAAAAADfYhIbAAAAAAAAAOBbTGIDAAAAAAAAAHyLSWwAAAAAAAAAgG8xiQ0AAAAAAAAA8C0msQEAAAAAAAAAvsUkNgAAAAAAAADAt5jEBgAAAAAAAAD4FpPYAPTMM8/o6KOPVk5OjgKBgNatW5fsLjmaPHmyAoGAZ/V9/vnnCgQCmjlzpmd1rly5UpMnT9b27ds9qxPJ89VXX2ny5MkRvycef/xxBQIBvf/++w3bsUZs2rRpev7555PdDQBAGqj73v78888bpP77779fjz/+uOf1NsR4Y+7cubr77rs9qw/JFe1vklGjRumAAw5o2E41YtH+ZgAQGyaxgTT37bffasSIETr88MO1aNEirVq1SkceeWSyu5WyVq5cqSlTpjCJ3Uh89dVXmjJlCgPSBGISGwDQWDTUJHZDYBK7ceE3SWLxmwFIjMxkdwBAcn366afas2ePLrroIvXt2zfZ3UEjY4zRd999p5ycnGR3JSo1NTWqrq5OdjcazH//+181b9482d1ImLr7mZ2dneyuAACAFLBnzx4FAgFlZqbWlMnu3bvVrFmzZHejwezevTvlflfEo+5+evnXyEAqYyU2kMZGjRqlk046SZL0s5/9TIFAQP369Qttf/HFF9W7d281b95cLVq00MCBA7Vq1ap6dbRv375e3U6hPwKBgMaOHaunnnpKnTt3VvPmzXXMMcdo4cKF9Y5/+eWXdeyxxyo7O1sdOnSIKuRHv3791LVrV7399ts64YQTlJOTo4MPPliTJk1STU2N4zGzZs1Shw4ddMABB6h3795655136u2zv+sxefJkXXPNNZKkDh06KBAIKBAIaNmyZZKk2tpa3X777TrqqKOUnZ2twsJCXXzxxfr3v//t2P/Vq1fr5JNPVvPmzXXYYYfp97//vWpra/d7/sYY3X///Tr22GOVk5Oj/Px8nXvuufrXv/4VczsVFRWaOHGiOnTooKysLB188MEaP368du3aFbZf3T1+8MEH1blzZ2VnZ+uJJ56QJK1YsUK9e/dWs2bNQvfj//2//xf2Z7y//OUvVVBQoP/+97/1zuvUU0/V0UcfbT3v++67T02aNNHWrVtDZXfeeacCgYAuv/zyUFltba3y8/M1YcIESd+Hlbn99tt12223qUOHDsrOztbSpUt1/PHHS5IuueSS0P2cPHnyfu6AVFZWpksuuUQFBQXKzc3VmWeeWe/6O6l733zwwQc655xzlJeXp2AwqIsuukjffvtt2L7PPPOMBg0apDZt2ignJ0edO3fWb3/723r3pO7PQ//6179q0KBBatGihQYMGCBJWrJkic466ywdcsghatasmY444giNHj1a//nPfxz7tX79ep133nkKBoMqKCjQ1Vdfrerqan3yyScaMmSIWrRoofbt2+v222+vd26RPEOBQEC7du3SE088EbreP/xM2rJli0aPHq1DDjlEWVlZ6tChg6ZMmRL2Pxzc7icAAJH44x//qGOOOUbNmjVTQUGBzj77bH388cdh+/zrX//Sz3/+cxUXFys7O1utW7fWgAEDQisx27dvr48++kjLly8Pfac5jZl/qG4c9dBDD+nII49Udna2unTpovnz5zvuv2PHDv3mN79Rq1at1LJlS51zzjn66quvwvaJZPzZr18/vfzyy9q0aVOorz8cx5eWlmrMmDE6+OCDlZWVpcMOO0w33nijKisrHfsfyVjfSbTjzUja+cc//qGSkhIVFhYqOztbnTt31n333Re2z7JlyxQIBPTUU09pwoQJOvjgg5Wdna3PPvtMkvTII4+E3Y+5c+eG/QYyxqhjx44aPHhwvfZ37typYDAYNhbd13nnnVdvjHvmmWcqEAjoz3/+c6hs7dq1CgQCeumllyR9H1Zm8eLF+sUvfqGDDjpIzZs31/XXX+/6m8TNRx99pAEDBig3N1cHHXSQxo4d6zgu31c0v7+mTJmiXr16qaCgQHl5efrRj36kRx99VMaYsP3at2+vYcOG6bnnnlOPHj3UrFkzTZkyRdLecf8pp5yiwsJC5ebmqlu3brr99tu1Z88ex36tWrVKffr0UU5Ojtq3b6/HHntM0t7fnD/60Y/UvHlzdevWTYsWLap3bvt7hpYtW7bf3wzvv/++hg8froKCAjVr1kw9evTQn/70p7B2bPdz3/cZkNYMgLT12Wefmfvuu89IMtOmTTOrVq0yH330kTHGmDlz5hhJZtCgQeb55583zzzzjOnZs6fJysoyb7/9dqiOkSNHmnbt2tWr++abbzb7fsRIMu3btzc//vGPzZ/+9CfzyiuvmH79+pnMzEzzz3/+M7Tf66+/bjIyMsxJJ51knnvuOfPnP//ZHH/88ebQQw+tV6eTvn37mpYtW5ri4mLzhz/8wbz22mtm3LhxRpK5/PLLQ/tt3Lgx1KchQ4aY559/3jz//POmW7duJj8/32zfvj20byTXY/PmzeaKK64wksxzzz1nVq1aZVatWmXKy8uNMcZcdtllRpIZO3asWbRokXnwwQfNQQcdZNq2bWu+/fbbev3v2LGjefDBB82SJUvMmDFjjCTzxBNP7Pf8L730UtO0aVMzYcIEs2jRIjN37lxz1FFHmdatW5stW7ZE3c6uXbvMsccea1q1amVmzZplXn/9dXPPPfeYYDBoTj31VFNbWxt2jw8++GDTvXt3M3fuXPPmm2+aDRs2mA8//NA0a9bMdO/e3cyfP9+8+OKL5vTTTzft27c3kszGjRuNMcZ8+OGHRpJ55JFHws7po48+MpLMfffdZz3vv//970aSmTt3bqhsyJAhJicnx3Ts2DFU9u677xpJ5pVXXgl7Dg4++GDTv39/83//939m8eLF5sMPPzSPPfaYkWR+97vfhe7n5s2brX2o279t27bmF7/4hXn11VfNww8/bAoLC03btm1NWVmZ672re9+0a9fOXHPNNea1114zs2bNMrm5uaZHjx6mqqoqtO+tt95q7rrrLvPyyy+bZcuWmQcffNB06NDB9O/fP6zOkSNHmqZNm5r27dub6dOnmzfeeMO89tprxhhjHnjgATN9+nTz4osvmuXLl5snnnjCHHPMMaZTp05hbdX1q1OnTubWW281S5YsMddee23oeT7qqKPMH/7wB7NkyRJzySWXGEnm2WefDR0f6TO0atUqk5OTY04//fTQ9a77TPr6669N27ZtTbt27cxDDz1kXn/9dXPrrbea7OxsM2rUqFBbtvtZ94wBAFCn7nv7h98R06ZNM5LMBRdcYF5++WXz5JNPmsMOO8wEg0Hz6aefhvbr1KmTOeKII8xTTz1lli9fbp599lkzYcIEs3TpUmOMMWvXrjWHHXaY6dGjR+g7be3ata79qRtDdOnSxcybN8+8+OKLZsiQIUaS+fOf/1yv34cddpi54oorzGuvvWb+3//7fyY/P7/eOCCS8edHH31kTjzxRFNUVBTq66pVq4wxxuzevdt0797d5ObmmpkzZ5rFixebSZMmmczMTHP66afX638kY30n0Y43I2nno48+MsFg0HTr1s08+eSTZvHixWbChAmmSZMmZvLkyaH9li5dGho7nHvuuebFF180CxcuNNu2bTMPPfSQkWR++tOfmoULF5o5c+aYI4880rRr1y7sN9A999xjAoFA2DNijAn91qobzzh58MEHjSTz1VdfGWOM2bNnj2nRooXJyckxl156aWi/GTNmmMzMTFNRUWGM+f45OPjgg81ll11mXn31VfN///d/5vPPP3f9TeJk5MiRJisryxx66KFm6tSpZvHixWby5MkmMzPTDBs2zPXeGRP57y9jjBk1apR59NFHzZIlS8ySJUvMrbfeanJycsyUKVPC9mvXrp1p06aNOeyww8wf//hHs3TpUvPee+8ZY4y56qqrzAMPPGAWLVpk3nzzTXPXXXeZVq1amUsuucSxX506dTKPPvqoee2118ywYcOMJDNlyhTTrVs3M2/ePPPKK6+YE044wWRnZ5svv/wydHwkz1B5ebnrb4Y333zTZGVlmZNPPtk888wzZtGiRWbUqFFGknnsscdCbdnuZ3V19X6vP5AumMQG0lzdoO2HA+OamhpTXFxsunXrZmpqakLlO3bsMIWFhaZPnz6hsmgnsVu3bh0aeBljzJYtW0yTJk3M9OnTQ2W9evUyxcXFZvfu3aGyiooKU1BQEPEktiTzwgsvhJVfeumlpkmTJmbTpk3GmO8nu7p16xY2OHjvvfeMJDNv3ryor8cdd9xR78eQMcZ8/PHHRpIZM2ZMWHndhOoNN9xQr//vvvtu2L5dunQxgwcPdj33VatWGUnmzjvvDCvfvHmzycnJMddee23U7UyfPt00adLErF69Omy///u//wubDDZm7z0OBoOmtLQ0bN/zzjvP5Obmhk3W19TUmC5dutS7Xn379jXHHnts2PG/+c1vTF5entmxY4fr+R9yyCHmF7/4hTHGmMrKSpObm2uuu+46Iyl036dOnWqaNm1qdu7caYz5/jk4/PDDwyZujTFm9erV9QaYbuoGn2effXZY+V/+8hcjydx2222ux9e9b6666qqw8rr/ifL00087HldbW2v27Nljli9fbiSZDz/8MLRt5MiRRpL54x//6Np2XR2bNm2q9/6p69e+z9Wxxx4b+oFUZ8+ePeaggw4y55xzTqgsmmcoNzfXjBw5sl7/Ro8ebQ444IDQfawzc+bMsB+HbvcTAIAf2ncSu6ysLPQ/U3/oiy++MNnZ2aakpMQYY8x//vMfI8ncfffdrvUfffTRpm/fvhH3R5LJyckJW3RQXV1tjjrqKHPEEUfU6/e+48rbb7/dSDJff/21MSa68ecZZ5zhOKavm2D905/+FFY+Y8YMI8ksXrw4rP+RjPWdRDvejKSdwYMHm0MOOaTe5O3YsWNNs2bNQuPVut9Dp5xySth+NTU1pqioyPTq1SusfNOmTaZp06Zh16uiosK0aNHCXHnllWH7dunSpd7/WNjXZ599ZiSZJ5980hhjzIoVK4wkc+2115oOHTqE9hs4cGDY74665+Diiy+uV6ftN4lN3XjxnnvuCSufOnWqkWRWrFjhenykv7/2VVNTY/bs2WNuueUW07Jly7D/WdGuXTuTkZFhPvnkE9e26+p48sknTUZGRtjvkLp+vf/++6Gybdu2mYyMDJOTkxM2Yb1u3TojyfzhD38IlUX6DLn9ZjjqqKNMjx49zJ49e8LKhw0bZtq0aRP6fel2PwHsRTgRAPV88skn+uqrrzRixAg1afL9x8QBBxygn/70p3rnnXci+rMyJ/3791eLFi1C/27durUKCwu1adMmSdKuXbu0evVqnXPOOWHx3Fq0aKEzzzwz4nZatGih4cOHh5WVlJSotrZWb731Vlj5GWecoYyMjNC/u3fvLkmhPnlxPepCGYwaNSqs/Mc//rE6d+6sN954I6y8qKhIP/7xj8PKunfvHuqTzcKFCxUIBHTRRRepuro69CoqKtIxxxxT788II2ln4cKF6tq1q4499tiwOgcPHuz4p4mnnnqq8vPzw8qWL1+uU089Va1atQqVNWnSROeff369c7jyyiu1bt06/eUvf5G0909Ln3rqKY0cOXK/WdMHDBig119/XdLehDb//e9/dfXVV6tVq1ZasmSJJOn1119X7969lZubG3bs8OHD1bRpU9f6I3XhhReG/btPnz5q165dxCEt9j3+/PPPV2ZmZtjx//rXv1RSUqKioiJlZGSoadOmobj2+/7JsyT99Kc/rVe2detW/frXv1bbtm2VmZmppk2bql27dtY6hg0bFvbvzp07KxAIaOjQoaGyzMxMHXHEEXE9Q04WLlyo/v37q7i4OKyOuraXL18etr+X9xMAkB5WrVql3bt31xuvtW3bVqeeempovFZQUKDDDz9cd9xxh2bNmqUPPvggopBvkRgwYIBat24d+ndGRoZ+9rOf6bPPPqsXgm7fse6+Y9hox59O3nzzTeXm5urcc88NK6+rc9869jfWt4l2rLC/dr777ju98cYbOvvss9W8efOwOk8//XR999139cIH7jtW+uSTT7Rly5Z649VDDz1UJ554YlhZixYtdMkll+jxxx8PhT9588039be//U1jx451PffDDz9c7du3D41hlyxZom7duumiiy7Sxo0b9c9//lOVlZVasWKFTjvttHrHO43xYrXvGLSkpESSIhrDRvr7680339Rpp52mYDAYGsPedNNN2rZtW1hYQGnvM33kkUfWa+uDDz7Q8OHD1bJly1AdF198sWpqavTpp5+G7dumTRv17Nkz9O+CggIVFhbq2GOPVXFxcai8c+fOkhTXM7Svzz77TH//+99D13XfOr7++mt98sknYcd4eT+BxoZJbAD1bNu2TdLeL/x9FRcXq7a2VmVlZTHV3bJly3pl2dnZ2r17t6S9sYRra2tVVFRUbz+nMpsfDv73Pb7u/Gx9qkv+VtcnL67H/urYX5/q+lXXJ5tvvvlGxhi1bt1aTZs2DXu988479WIdR9LON998o/Xr19err0WLFjLG1KvT6Ry3bdvmeE+cys466yy1b98+FGuu7seAWyzBOqeddpq++OIL/eMf/9Drr7+uHj16qLCwUKeeeqpef/117d69WytXrnT8AeDU71jZnt9973Okx2dmZqply5ah43fu3KmTTz5Z7777rm677TYtW7ZMq1ev1nPPPSdJ9Z6T5s2bKy8vL6ystrZWgwYN0nPPPadrr71Wb7zxht57773QYNzpWSsoKAj7d1ZWlpo3b14vgVBWVpa+++670L+jfYacfPPNN3rppZfq1VEXQzKS5xAAADeRjtcCgYDeeOMNDR48WLfffrt+9KMf6aCDDtK4ceO0Y8eOuPrgNgb2egwbybhk27ZtKioqqpfrprCwUJmZmZ6OYaMZK+yvnW3btqm6ulr33ntvvTpPP/10SfsfO9SdW6Rj2CuuuEI7duzQnDlzJEmzZ8/WIYccorPOOsv13KW9//Oi7n8IvP766xo4cKC6deum1q1b6/XXX9df/vIX7d69u0HHsHXjzR+yPXtOIvn99d5772nQoEGS9sYa/8tf/qLVq1frxhtvlFR//Ol0bl988YVOPvlkffnll7rnnnv09ttva/Xq1aHfDvvWse/4Vdo7VnUa10oKjWFjeYb29c0330iSJk6cWK+OMWPGONbBGBawS61UuwASom7w8vXXX9fb9tVXX6lJkyahlbbNmjVzTDYRyaSUk/z8fAUCAW3ZsqXeNqcym7oBg9PxToNeN9Fcj0jqOOSQQ+rV8cMVyvFo1aqVAoGA3n777dAPmR9yKoukzpycHP3xj3+0bv8hp+zZLVu2dL0nP9SkSRNdfvnluuGGG3TnnXfq/vvv14ABA9SpU6f99rUuYeHrr7+uJUuWaODAgaHy3/3ud3rrrbdUWVnp+APAy6zftuf3iCOOiPj4gw8+OPTv6upqbdu2LfQcvfnmm/rqq6+0bNmy0OprSdq+fbtjfU7ntmHDBn344Yd6/PHHNXLkyFB5XRIjL0X7DNn26d69u6ZOneq4/YcraSRv7ycAID3sb8z3w++rdu3a6dFHH5Ukffrpp/rTn/6kyZMnq6qqSg8++GDMfXAbA8czho11/NmyZUu9++67MsaEfbdu3bpV1dXVno5h4x0r/FB+fr4yMjI0YsQI60KIDh06hP1737FD3fWLdAx7xBFHaOjQobrvvvs0dOhQvfjii5oyZUrYX3zaDBgwQI8++qjee+89vfvuu/rd734nae9fOC5ZskSbNm3SAQccoBNOOKHesV6NefYdb0rRPXuR/P6aP3++mjZtqoULF4Ytgnj++ecd63Q6t+eff167du3Sc889F/oLQkmhpKpeieUZ2lfdc3v99dfrnHPOcdxn3984jGEBO1ZiA6inU6dOOvjggzV37tywLNG7du3Ss88+q969e6t58+aS9maN3rp1a9igpaqqSq+99lpMbefm5urHP/6xnnvuubCVnDt27Ahl4o7Ejh079OKLL4aVzZ07V02aNNEpp5wSVZ+iuR77roCpc+qpp0qSnn766bDy1atX6+OPPw5NvsZr2LBhMsboyy+/1HHHHVfv1a1bt5jq/Oc//6mWLVs61lmXmd1N37599eabb4b9z43a2tqwjOs/9Ktf/UpZWVm68MIL9cknn+z3zzDrtGnTRl26dNGzzz6rNWvWhCaxBw4cqG+//VazZs1SXl5eKIP4/tju5/7UrcCps3LlSm3atEn9+vWL6fg//elPqq6uDh1fN7jd939KPPTQQxH30Ys6IhXNM2RbrTVs2DBt2LBBhx9+uGMd+05iAwAQrd69eysnJ6feeO3f//633nzzTet47cgjj9Tvfvc7devWTWvXrg2VR7ICeV9vvPFG2Li6pqZGzzzzjA4//PB6E9H7E83409bXAQMGaOfOnfUmGZ988snQdi94Md78oebNm6t///764IMP1L17d8c69zcx26lTJxUVFelPf/pTWPkXX3yhlStXOh5z5ZVXav369Ro5cqQyMjJ06aWXRtTfAQMGKBAIaNKkSWG/V0477TQtXbpUS5Ys0SmnnBJxqDSvxrBz586VpIjGsJH8/goEAsrMzAyb2N+9e7eeeuqpiPvoNIY1xuiRRx6JuI5IRPMM2a53p06d1LFjR3344YeOxx933HFhYXEAuGMlNoB6mjRpottvv10XXnihhg0bptGjR6uyslJ33HGHtm/frt///vehfX/2s5/ppptu0s9//nNdc801+u677/SHP/xBNTU1Mbd/6623asiQIRo4cKAmTJigmpoazZgxQ7m5uSotLY2ojpYtW+o3v/mNvvjiCx155JF65ZVX9Mgjj+g3v/mNDj300Kj6E831qJskvueeezRy5Eg1bdpUnTp1UqdOnXTZZZfp3nvvVZMmTTR06FB9/vnnmjRpktq2baurrroqqj7ZnHjiibrssst0ySWX6P3339cpp5yi3Nxcff3111qxYoW6deum3/zmN1HVOX78eD377LM65ZRTdNVVV6l79+6qra3VF198ocWLF2vChAnq1auXax033nijXnrpJQ0YMEA33nijcnJy9OCDD4ZiBv4w1rgkHXjggbr44ov1wAMPqF27dlHFQx8wYIDuvfde5eTkhOIVdujQQR06dNDixYs1fPhwZWZG9vV3+OGHKycnR3PmzFHnzp11wAEHqLi4eL8Tpu+//75+9atf6bzzztPmzZt144036uCDDw792eD+PPfcc8rMzNTAgQP10UcfadKkSTrmmGNCMRn79Omj/Px8/frXv9bNN9+spk2bas6cOfrwww8jql+SjjrqKB1++OH67W9/K2OMCgoK9NJLL4Vih3spmmeoW7duWrZsmV566SW1adNGLVq0UKdOnXTLLbdoyZIl6tOnj8aNG6dOnTrpu+++0+eff65XXnlFDz74YNQ/7gEA+KEDDzxQkyZN0g033KCLL75YF1xwgbZt26YpU6aoWbNmuvnmmyVJ69ev19ixY3XeeeepY8eOysrK0ptvvqn169frt7/9bai+bt26af78+XrmmWd02GGHqVmzZvtdUNCqVSudeuqpmjRpknJzc3X//ffr73//u+bPnx/1+UQz/uzWrZuee+45PfDAA+rZs6eaNGmi4447ThdffLHuu+8+jRw5Up9//rm6deumFStWaNq0aTr99NMd/7otFl6MN/d1zz336KSTTtLJJ5+s3/zmN2rfvr127Nihzz77TC+99JLefPNN1+ObNGmiKVOmaPTo0Tr33HP1i1/8Qtu3b9eUKVPUpk2beuNXae/CiS5dumjp0qW66KKLVFhYGFFfCwsL1bVrVy1evFj9+/cPLZA57bTTVFpaqtLSUs2aNSvic7f9JnGbMM3KytKdd96pnTt36vjjj9fKlSt12223aejQoTrppJP222Ykv7/OOOMMzZo1SyUlJbrsssu0bds2zZw5M6q/Fh04cKCysrJ0wQUX6Nprr9V3332nBx54IOZwl24ifYbcfjM89NBDGjp0qAYPHqxRo0bp4IMPVmlpqT7++GOtXbvWuqgHgINkZZQE4A912bj//Oc/19v2/PPPm169eplmzZqZ3NxcM2DAAPOXv/yl3n6vvPKKOfbYY01OTo457LDDzOzZs83NN99s9v2IkWQuv/zyese3a9fOjBw5MqzsxRdfNN27dzdZWVnm0EMPNb///e8d63TSt29fc/TRR5tly5aZ4447zmRnZ5s2bdqYG264ISwr9MaNG40kc8cdd9SrQ5K5+eabY7oe119/vSkuLjZNmjQxkszSpUuNMXszZ8+YMcMceeSRpmnTpqZVq1bmoosuMps3b3bs/75GjhzpmDXeyR//+EfTq1cvk5uba3Jycszhhx9uLr744rDM3NG0s3PnTvO73/3OdOrUyWRlZZlgMGi6detmrrrqKrNly5bQfrZ7bIwxb7/9tunVq5fJzs42RUVF5pprrglltt++fXu9/ZctW2Ykmd///vcRnXOdF154wUgyAwcODCu/9NJL62UcN8b9OTDGmHnz5pmjjjrKNG3a1PG5+KG6rOKLFy82I0aMMAceeKDJyckxp59+uvnHP/6x377XPeNr1qwxZ555pjnggANMixYtzAUXXGC++eabsH1XrlxpevfubZo3b24OOugg86tf/cqsXbu2Xmb0kSNHmtzcXMf2/va3v5mBAweaFi1amPz8fHPeeeeZL774ot551vXr22+/DTveVrfTsxXpM7Ru3Tpz4oknmubNmxtJpm/fvqFt3377rRk3bpzp0KGDadq0qSkoKDA9e/Y0N954o9m5c6cxZv/3EwCAOnXf2xs3bgwr/3//7/+FxqHBYNCcddZZ5qOPPgpt/+abb8yoUaPMUUcdZXJzc80BBxxgunfvbu666y5TXV0d2u/zzz83gwYNMi1atDCS9juOqxtH3X///ebwww83TZs2NUcddZSZM2eOY79Xr14dVl43rq8bexoT+fiztLTUnHvuuebAAw80gUAgbMy9bds28+tf/9q0adPGZGZmmnbt2pnrr7/efPfdd47935fTWN9JvONNp3Y2btxofvGLX5iDDz7YNG3a1Bx00EGmT58+5rbbbqt33Zx+DxljzMMPP2yOOOIIk5WVZY488kjzxz/+0Zx11lmmR48ejvtPnjzZSDLvvPPOfs/5h6666iojyUydOjWsvGPHjkaSWb9+fVi57TmoY/tN4qRuTLd+/XrTr18/k5OTYwoKCsxvfvOb0BjLTaS/v4zZ+zulU6dOJjs72xx22GFm+vTp5tFHH633XmzXrp0544wzHNt76aWXzDHHHGOaNWtmDj74YHPNNdeYV199td552n7v2Op2erYieYaMcf/N8OGHH5rzzz/fFBYWmqZNm5qioiJz6qmnmgcffDC0z/7uJwBjAsb84G/jAaAR6Nevn/7zn/9ow4YNye4K9mPQoEH6/PPP62URl6QJEybogQce0ObNm6OOAZmqJk+erClTpujbb7/1LMYkAABIDYFAQJdffrlmz56d7K7Axfbt23XkkUfqJz/5iR5++OF624877jgFAgGtXr06Cb1LDn5/AUgEwokAABLi6quvVo8ePdS2bVuVlpZqzpw5WrJkSSgpUp133nlHn376qe6//36NHj06bSawAQAA4C9btmzR1KlT1b9/f7Vs2VKbNm3SXXfdpR07dujKK68M7VdRUaENGzZo4cKFWrNmjRYsWJDEXgNA48QkNgAgIWpqanTTTTdpy5YtCgQC6tKli5566ilddNFFYfvVJcocNmyYbrvttiT1FgAAAOkuOztbn3/+ucaMGaPS0lI1b95cJ5xwgh588EEdffTRof3Wrl0bmui++eab9ZOf/CR5nQaARopwIgAAAAAAAAAA36qfTjeJ3nrrLZ155pkqLi5WIBDQ888/H7bdGKPJkyeruLhYOTk56tevnz766KOwfSorK3XFFVeoVatWys3N1fDhw/Xvf/87bJ+ysjKNGDFCwWBQwWBQI0aM0Pbt28P2+eKLL3TmmWcqNzdXrVq10rhx41RVVRW2z1//+lf17dtXOTk5Ovjgg3XLLbeI/ycAAAAAfI8xPgAAAOLlq0nsXbt26ZhjjrEmsrj99ts1a9YszZ49W6tXr1ZRUZEGDhyoHTt2hPYZP368FixYoPnz52vFihXauXOnhg0bppqamtA+JSUlWrdunRYtWqRFixZp3bp1GjFiRGh7TU2NzjjjDO3atUsrVqzQ/Pnz9eyzz2rChAmhfSoqKjRw4EAVFxdr9erVuvfeezVz5kzNmjWrAa4MAAAAkJoY4wMAACBuxqckmQULFoT+XVtba4qKiszvf//7UNl3331ngsGgefDBB40xxmzfvt00bdrUzJ8/P7TPl19+aZo0aWIWLVpkjDHmb3/7m5Fk3nnnndA+q1atMpLM3//+d2OMMa+88opp0qSJ+fLLL0P7zJs3z2RnZ5vy8nJjjDH333+/CQaD5rvvvgvtM336dFNcXGxqa2s9vBIAAABA48AYHwAAALFImcSOGzdu1JYtWzRo0KBQWXZ2tvr27auVK1dq9OjRWrNmjfbs2RO2T3Fxsbp27aqVK1dq8ODBWrVqlYLBoHr16hXa54QTTlAwGNTKlSvVqVMnrVq1Sl27dlVxcXFon8GDB6uyslJr1qxR//79tWrVKvXt21fZ2dlh+1x//fX6/PPP1aFDB8fzqKysVGVlZejftbW1Ki0tVcuWLRUIBDy5VgAAAEg+Y4x27Nih4uJiNWniqz+A9A3G+AAAIBX5YZz33Xff1QuL5pWsrCw1a9asQeqOVcpMYm/ZskWS1Lp167Dy1q1ba9OmTaF9srKylJ+fX2+fuuO3bNmiwsLCevUXFhaG7bNvO/n5+crKygrbp3379vXaqdtmG+BOnz5dU6ZM2e/5AgAAoHHYvHmzDjnkkGR3w5cY4wMAgFSWrHHed999p4NycrSzgeovKirSxo0bfTWRnTKT2HX2XclgjNnv6oZ993Ha34t9zP8Svrj15/rrr9fVV18d+nd5ebkOPfRQbd68WXl5ea7nAQCJEgxOj/qY8vLro67PdkwwuMGlna7RdQxpwe2ZdXs2gYZUUVGhtm3bqkWLFsnuiu8xxgcSz+m7k+9MAIhMssd5VVVV2inpKknZ+9s5SpWS7tqyRVVVVUxix6KoqEjS3hUQbdq0CZVv3bo1tDqiqKhIVVVVKisrC1upsXXrVvXp0ye0zzfffFOv/m+//TasnnfffTdse1lZmfbs2RO2T92KjR+2I9VfSfJD2dnZYX+eWCcvL48BLgAfif6Lyv0zzLk++zEHxNgO0pf9meWZQbIRTsKOMT6QTPW/O3leASA6yR7n5SqWX+/u/DpZnDLB+Tp06KCioiItWbIkVFZVVaXly5eHBq89e/ZU06ZNw/b5+uuvtWHDhtA+vXv3Vnl5ud57773QPu+++67Ky8vD9tmwYYO+/vrr0D6LFy9Wdna2evbsGdrnrbfeCos9s3jxYhUXF9f7E0QAAAAA9THGBwAAiF3TBnr5ka8m13fu3KnPPvss9O+NGzdq3bp1Kigo0KGHHqrx48dr2rRp6tixozp27Khp06apefPmKikpkSQFg0H98pe/1IQJE9SyZUsVFBRo4sSJ6tatm0477TRJUufOnTVkyBBdeumleuihhyRJl112mYYNG6ZOnTpJkgYNGqQuXbpoxIgRuuOOO1RaWqqJEyfq0ksvDf2f6ZKSEk2ZMkWjRo3SDTfcoH/84x+aNm2abrrppqT/XxgAiJcxN1u3BQLrLeVusUDPjqouaYFL+87b3PqMxo/7D/gXY3zAnxrTd6fTOLQhzi9R7QAA6vPVJPb777+v/v37h/5dF1du5MiRevzxx3Xttddq9+7dGjNmjMrKytSrVy8tXrw4LP7MXXfdpczMTJ1//vnavXu3BgwYoMcff1wZGRmhfebMmaNx48aFMpwPHz5cs2fPDm3PyMjQyy+/rDFjxujEE09UTk6OSkpKNHPmzNA+wWBQS5Ys0eWXX67jjjtO+fn5uvrqq8Ni4QEAAADpjjE+AABAw8iU95O7vpos/oGAqctUgqSoqKhQMBhUeXk58ccApIRYVk/bVmLbudXljFUwAPyGcV764t4DicVKbACJluzv+rr2p8r7mNjfSbpR8t04xq+T6wAAAAAAAAAAi0x5H8O62uP6vJIyiR0BAAAAAAAAAOmHldgAAI+4hAzJ7x5dVWVuG51DjbglluTPPAEAQDRs4wrGFP6UqPvC/QfgN+kUE5uV2AAAAAAAAAAA3/Lr5DoAAAAAAAAAwKKp0icmNpPYAAAAAAAAAJBiCCcCAAAAAAAAAIAP+HVyHQCQAG7JEKPnktixbL1zuTXho3PyRsnbhDokgwQAAE4YByBSTuNJnh8AiZIp78OJ7PG4Pq+wEhsAAAAAAAAA4FusxAYAAAAAAACAFENMbAAAAAAAAAAAfMCvk+sAkHISFV/Z1o63sfdc4lu7xKuO+piy6GuK5fwTc80aF64ZAADA/vltbESMbiC9NJX3MbG9rs8rrMQGAAAAAAAAAPgWK7EBAAAAAAAAIMWk00psJrEBAAAAAAAAIMWQ2BEAAAAAAAAAAB/w6+Q6AKScWBKmxJI8LxGJWYzpbt0WKLBsK7MntlS+pc/WY+yJJW19CwTWuxxDMptocc0AAEBj45aIfV+pOhZK1X4DiE2mvA//4dfJYlZiAwAAAAAAAAB8y6+T6wAAAAAAAAAAC2JiAwAAAAAAAADgA36dXAcAAAAAAAAAWDSV9zGxva7PK0xiA0AS2RKvuCWdSXqyljJLAsULXPo1z3I+cyzHXOiWdMc5saNbMkoAAACknkgTMUY6Pk76OBrYD9szz7MLEE4EAAAAAAAAAFJOZgO9ovHWW2/pzDPPVHFxsQKBgJ5//nnrvqNHj1YgENDdd98dZStMYgMAAAAAAABAysnU9yFFvHpFO4m9a9cuHXPMMZo9e7brfs8//7zeffddFRcXR9nCXoQTAQAAAAAAAABEbejQoRo6dKjrPl9++aXGjh2r1157TWeccUZM7TCJDQA+5HXMMy9jq9liTwcClljZMbQTuDCq3fdfXwznn4h4dL6OfQ4AAJBkjIeQbnjmEa1Ywn9EUqckVVRUhJVnZ2crOzs76vpqa2s1YsQIXXPNNTr66KNj7hfhRAAAAAAAAAAAIW3btlUwGAy9pk+fHlM9M2bMUGZmpsaNGxdXf1iJDQAAAAAAAAAppi6Otdd1StLmzZuVl5cXKo9lFfaaNWt0zz33aO3atQoEAnH1i5XYAAAAAAAAAICQvLy8sFcsk9hvv/22tm7dqkMPPVSZmZnKzMzUpk2bNGHCBLVv3z6quliJDQAAAAAAAAAppiFjYnthxIgROu2008LKBg8erBEjRuiSSy5JWr8AAD6V7AQh1gSG+bZ+nR11XW7nGFsCS+djvE2SSeIWAACAhuA0ZmuIsVei2kmExnQuABJn586d+uyzz0L/3rhxo9atW6eCggIdeuihatmyZdj+TZs2VVFRkTp16hRVO0xiAwAAAAAAAECKyZT3MbGjnSx+//331b9//9C/r776aknSyJEj9fjjjyetXwAAAAAAAACAJGvIxI6R6tevn4wxEe//+eefR9nCXiR2BAAAAAAAAAD4FiuxAQAAAAAAACDF+D2xo5f82i8AgIe8TEYYKLBtWeBylCVRY9l6x2JjutvbD7i10/BIbgMAAOB/TmO2hkhc2JjGho3pXAA0PkxiAwAAAAAAAECKycyQmgY8rtNIqvG2Ti8QExsAAAAAAAAA4FusxAYAAAAAAACAFJOZKWWmyUpsJrEBIA0kJr6dJe61JGu87HznftlieAMAAMAbDREfOh5e96exnx8aFvcL8B8msQEAAAAAAAAgxTRtgJjYTY239XmFSWwAAAAAAAAASDENFk7Eh0jsCAAAAAAAAADwLVZiAwAAAAAAAECKaZohNfV4iXLTWm/r8wqT2ACQRLYEhr5OGjLEUr6ou8tBlm1ltgSObkkinbklg4zlegYC6y11uZ0nAACAM78livO67XjPz+v++G087bf+wF0q3C+/faYADY1JbAAAAAAAAABINRnyPli0xzG2vUJMbAAAAAAAAACAb7ESGwAAAAAAAABSTaa8X6Ls05jYrMQGAAAAAAAAAPgWK7EBIIn8mnjDLUmiNelivkvCQ0sCR9v525Iq7j3G1o63CRdJ4JhcKZn0FAAAF439O6yxn58NyfWQLDxnkJRWK7GZxAYAAAAAAACAVJNGk9iEEwEAAAAAAAAA+BYrsQEAAAAAAAAg1TSRlJHsTiQGk9gAkAaijy9siXst2WNfl9njWNvqiyXucbJjJSe7/XTB9QQAAMkUeazr+uNc4mQDgPeYxAYAAAAAAACAVJMp71diBzyuzyPExAYAAAAAAAAA+BYrsQEAAAAAAAAg1bASGwAAAAAAAACA5GMlNgCkmFgSC9q22epyVbYg+mMusPRtXvR1xZIUJ5bztLVDUh4AAIDGL9IxnzH1k54HAjGMlxupVE1ymar9RhrKkPcrsX2KSWwAAAAAAAAASDWEEwEAAAAAAAAAIPlYiQ0AAAAAAAAAqSZDaTO7y0psAAAAAAAAAIBvpclcPYB04Ja8rzEl4UhIYsP8GK5XmUsbi5yLE3VfPE1sCc+ky3sWAAA0rHiS8AUC6x3LnRI2RopxzPdS9Vqkar9JSJmGGiKxo/G4Po+wEhsAAAAAAAAA4FusxAYAAAAAAACAVJOptJndZSU2AAAAAAAAAMC30mSuHkA6cIv1ZYu9my7xwbw8z5jiSJc5xxoMBCz750cfg9CU2rd5Gfs63Z8lL3HNAMB/Io2nStxV+Ek8z2g8sa/9KL744LyvUx33Kw2xEhsAAAAAAAAAgORLk7l6AAAAAAAAAGhE0mgldpqcJgAAAAAAAAA0Ik0kZXhcZ63H9XmEcCIAAAAAAAAAAN9iJTaAtECCi+gEAs6JGN2dbd90gXPCHDM3+lbsSRrt99jL+8+zlN5I7AmgsYv084zPPcAuVRMkpkIf/SZV7zUakYYIJ2I8rs8jrMQGAAAAAAAAAPgWK7EBAAAAAAAAINWwEhsAAAAAAAAAgORjJTYAAAAAAAAApJqM/728VOtxfR5hEhsA0lgsSeoCgQWWLbZySXJO7Bgosew+z5a80d43e8JHb49BeuO5AAA0FvEkpEuFZHbJ7E88bbuNT2NtJxXuV6riOgKJwyQ2AAAAAAAAAKSaNIqJzSQ2AAAAAAAAAKSaDHk/u+vTcCIkdgQAAAAAAAAA+FbKrcSurq7W5MmTNWfOHG3ZskVt2rTRqFGj9Lvf/U5NmuydkzfGaMqUKXr44YdVVlamXr166b777tPRRx8dqqeyslITJ07UvHnztHv3bg0YMED333+/DjnkkNA+ZWVlGjdunF588UVJ0vDhw3XvvffqwAMPDO3zxRdf6PLLL9ebb76pnJwclZSUaObMmcrKykrMBQGABhAIrLdus8eXth9jj3F9dhS9cm/HPY539McAABKHMT6QePGMg1J1DNUQ8aa9Fm+7qXpvAMSoIRI7el2fR1JuJfaMGTP04IMPavbs2fr44491++2364477tC9994b2uf222/XrFmzNHv2bK1evVpFRUUaOHCgduzYEdpn/PjxWrBggebPn68VK1Zo586dGjZsmGpqakL7lJSUaN26dVq0aJEWLVqkdevWacSIEaHtNTU1OuOMM7Rr1y6tWLFC8+fP17PPPqsJEyYk5mIAAAAAjQBjfAAAALgJGGN8Gq7b2bBhw9S6dWs9+uijobKf/vSnat68uZ566ikZY1RcXKzx48fruuuuk7R3RUbr1q01Y8YMjR49WuXl5TrooIP01FNP6Wc/+5kk6auvvlLbtm31yiuvaPDgwfr444/VpUsXvfPOO+rVq5ck6Z133lHv3r3197//XZ06ddKrr76qYcOGafPmzSouLpYkzZ8/X6NGjdLWrVuVl5e33/OpqKhQMBhUeXl5RPsDgJfsq1HsK6SN6W6py2UlthZE2Y5tf/sxtn5Jbiux7ccAQLwY50WOMT6AREiFldgAUkOyv+tD7V8s5Xn8h2IVVVLwSfluHJNyK7FPOukkvfHGG/r0008lSR9++KFWrFih008/XZK0ceNGbdmyRYMGDQodk52drb59+2rlypWSpDVr1mjPnj1h+xQXF6tr166hfVatWqVgMBga3ErSCSecoGAwGLZP165dQ4NbSRo8eLAqKyu1Zs0ax/5XVlaqoqIi7AUAAACkM8b4AAAAcJNyMbGvu+46lZeX66ijjlJGRoZqamo0depUXXDBBZKkLVu2SJJat24ddlzr1q21adOm0D5ZWVnKz8+vt0/d8Vu2bFFhYWG99gsLC8P22bed/Px8ZWVlhfbZ1/Tp0zVlSuT/9xcAAABo7BjjAwAAxCBT3s/u1npcn0dSbhL7mWee0dNPP625c+fq6KOP1rp16zR+/HgVFxdr5MiRof0CgUDYccaYemX72ncfp/1j2eeHrr/+el199dWhf1dUVKht27au/QLQeNn+pDFRf75oT9Jo/yEeKLCF4HAJAZJvOZ8hlv3n2auyt+MSGiQ/+rAhyb43SG88f0g3jPGBxHP6rknV75lIw4REc36N6fokE9cRgFdSbhL7mmuu0W9/+1v9/Oc/lyR169ZNmzZt0vTp0zVy5EgVFRVJUiireZ2tW7eGVlQUFRWpqqpKZWVlYSs1tm7dqj59+oT2+eabb+q1/+2334bV8+6774ZtLysr0549e+qt3qiTnZ2t7OzsWE8fAAAAaHQY4wMAAMQgjVZip1xM7P/+979q0iS82xkZGaqt3XuFO3TooKKiIi1ZsiS0vaqqSsuXLw8NXnv27KmmTZuG7fP1119rw4YNoX169+6t8vJyvffee6F93n33XZWXl4fts2HDBn399dehfRYvXqzs7Gz17NnT4zMHAAAAGifG+AAAADFoIinD41eUs8VvvfWWzjzzTBUXFysQCOj5558PbduzZ4+uu+46devWTbm5uSouLtbFF1+sr776KupTTbmV2GeeeaamTp2qQw89VEcffbQ++OADzZo1S7/4xS8k7f3Tv/Hjx2vatGnq2LGjOnbsqGnTpql58+YqKSmRJAWDQf3yl7/UhAkT1LJlSxUUFGjixInq1q2bTjvtNElS586dNWTIEF166aV66KGHJEmXXXaZhg0bpk6dOkmSBg0apC5dumjEiBG64447VFpaqokTJ+rSSy/1VfZOAAAAwM8Y4wMAAKSmXbt26ZhjjtEll1yin/70p2Hb/vvf/2rt2rWaNGmSjjnmGJWVlWn8+PEaPny43n///ajaSblJ7HvvvVeTJk3SmDFjtHXrVhUXF2v06NG66aabQvtce+212r17t8aMGaOysjL16tVLixcvVosWLUL73HXXXcrMzNT555+v3bt3a8CAAXr88ceVkZER2mfOnDkaN25cKMP58OHDNXv27ND2jIwMvfzyyxozZoxOPPFE5eTkqKSkRDNnzkzAlQAAAAAaB8b4AAAAMWiIcCI10e0+dOhQDR061HFbMBgM+ys5ae+478c//rG++OILHXrooRG3EzDGmOi6Bi9VVFQoGAyqvLyclR0AUkIgsN55QwzJE02ppY25LgddGH3CO5LkAUgGxnnpK5n3nu88pKNEJQ+Mp51IjyUR4vcaImEn4JVkj/NC7Y+V8jxOy1FRKQVnS5s3bw47t0hygAQCAS1YsEA/+clPrPu8/vrrGjRokLZv3x7VtUu5mNgAAAAAAAAAkPYyG+glqW3btgoGg6HX9OnT4+7ud999p9/+9rcqKSmJevI/5cKJAAAAAAAAAAAajtNK7Hjs2bNHP//5z1VbW6v7778/6uOZxAYAAAAAAACAVJPxv5fXdUrKy8vzLFTKnj17dP7552vjxo168803Y6qXSWwAQD2u8ecusMScW2Q/xBr72tZOvj2unS3mnVuf7cdY4ntLMib6GN/RijTO3w8R8w8A4IbvCcTDb/GYI+1PPH2MJo585PGv648xIz2W9/D3uBZA41A3gf2Pf/xDS5cuVcuWLWOqh0lsAAAAAAAAAEg1P4hh7Zma6HbfuXOnPvvss9C/N27cqHXr1qmgoEDFxcU699xztXbtWi1cuFA1NTXasmWLJKmgoEBZWVkRt8MkNgAAAAAAAACkmgx5P7tbHd3u77//vvr37x/699VXXy1JGjlypCZPnqwXX3xRknTssceGHbd06VL169cv4naYxAYAAAAAAAAARK1fv34yxli3u22LBpPYAAAAAAAAAJBqGiKciE9ni33aLQBIb7ElKYz+mJjMsyRDvMCeCNGeQPFs5+Iye8LFQGBBdHW5cEveGE2SH7f93Y4hWQ0AAPATp7FJopI9xpLw2q8SkSA8UfyW7BNA+mISGwAAAAAAAABSTcb/Xl7X6UNNkt0BAAAAAAAAAABsWIkNAAAAAAAAAKkmjWJisxIbAAAAAAAAAOBbPp1bB4D0FkuyFLdjbIkVbUln3OuyJN2ZZ0u4KGVtu8qxvKrl584H5LskwylzLvYySeP+tkW7fyztAwAA+EGixiuNfVzkNB5PhQSQjf2+ACkvjVZi+7RbAAAAAAAAAACrJvI+EaNP43b4tFsAAAAAAAAAALASGwAAAAAAAABSD+FEADQ2xORNb4mIt2eLey1JVUfkWbZY4miX2eNrex0vPBFs7Vvji7scAwAA4MZpfJEK44pk9TsVrg1SX6q+LwE/YRIbAAAAAAAAAFJNGq3EJiY2AAAAAAAAAMC3fDq3DgAAAAAAAACwyvjfy+s6fYiV2AAAAAAAAAAA32IlNpAmSBqRWhKV8M/aTn70bdiTN0oaYimfZyl3ad/t2tjEcs0SkQyV9yUAAPBapOOLQGC9w7ENnwzcprGPi+K5tokYl6JhRf6+5F4jSmkUE9un3QIAAAAAAAAAWGXI+9ldwokAAAAAAAAAABAdVmIDAAAAAAAAQKpJo3AirMQGAAAAAAAAAPiWT+fWASA9xJKkMJZjbGwJQgIFbked7VxsS94oSYss5XMsCUoW2qsycy199vC6SC7XhmQrAACgEUhmEsd4OI3F4hmHJXNsF+m5MM78ntf3328a07kgQTLkfQxrYmIDAAAAAAAAABAdVmIDAAAAAAAAQKohJjYAAAAAAAAAAMnn07l1AIBNtLGa3Y6xKnOJL51vqWveepdjLDEXL7Qds8BaVWCec3mi4scl5PqnoHQ/fwBIRY09tmwycW0bjtfXMVH3pbE/E4mKLd6YrllDaOzPGRyk0Upsn3YLAAAAAAAAAGDVRN4nYvRp3A6fdgsAAAAAAAAAAFZiAwAAAAAAAEDqSaNwIqzEBgAAAAAAAAD4lk/n1gEgPXiZZMOtLreke45syRslTSq90bH81oKp0bUhyZrA0aV9v4rl+jemJCuN6VwAIF3w2d1wuLb+lK5J7xJx3ulwHVMB9yENsRIbAAAAAAAAAIDk8+ncOgAAAAAAAADAKuN/L6/r9CFWYgMAAAAAAAAAfIuV2AAAAAAAAACQatIoJrZPuwUAdumQJM9rXl6bQOBnjuVZ2yqsx1S1vMuz9k2pZ1WlPbeEn7yfAADwN7+NiVMhaWKi+uO3a+G3+wDAQxnyfnaXcCIAAAAAAAAAAESHldgAAAAAAAAAkGrSKJwIK7EBAAAAAAAAAL7l07l1ALAjppt33GIiR6tqkct9yW/4exYIrHfZusCxNFHPkl+fWb/2CwCAdBZpPGW/fY/7rT+J4jQGdboWfouT7bf+AIhRhryPYU1MbAAAAAAAAAAAosNKbAAAAAAAAABINcTEBgAAAAAAAAAg+Xw6tw4AAAAAAAAAsMqQ97O7Po2JzSQ2AKQxW/IW9ySJFgtdts22tF/iXB6wlEtSdmmFc12mu0sHnLe5Jba0X5vok2EmIklOLOfSmNoHAKCx4HsztbiPQf2L5wxAqmESGwAAAAAAAABSTYa8XznNSmwAAAAAAAAAgCdI7AgAAAAAAAAAQPL5dG4dAAAAAAAAAGCVRiuxfdotAICNPYHe2dZjbAln7AkcF0TXKUlaFH1Sm4Btwzx7ksDKubEko3Q+n1gS2vg1CU6y+5Xs9gEAQHI5jVGjSZQdz1jC6/oagt/6AwCphklsAAAAAAAAAEg1abQSm5jYAAAAAAAAAADf8uncOgAAAAAAAADAxjSRTIb3dfoRk9gAkHKcY1/b4l5L9jja9jiFbjGx7bG3rawxri2xAfPtMQMDBdE376Vor2Wi2GOlJ79vAABEIhXiGsMumnvVmO5rKjy3qdBHANgfJrEBAAAAAAAAIMXUZO59eV2nH/m0WwAAAAAAAAAAm3SaxPZplBMAAAAAAAAAgJ+99dZbOvPMM1VcXKxAIKDnn38+bLsxRpMnT1ZxcbFycnLUr18/ffTRR1G3wyQ2AAAAAAAAAKSY6oyAqjOaePwKRNWHXbt26ZhjjtHs2bMdt99+++2aNWuWZs+erdWrV6uoqEgDBw7Ujh07omonYIwxUR0BT1VUVCgYDKq8vFx5eXnJ7g7QaPk1GZ+XAoH1CWlnknkm6mNuDfzMecMFzskozVx7XbGcp1vSy3SQDs8/4EeM89IX9x6pgGR/iRXp9ea+AKkh2d/1de1/tTWgvLzoJp33X7dRcaGJ6dwCgYAWLFign/zkJ5L2rsIuLi7W+PHjdd1110mSKisr1bp1a82YMUOjR4+OuG6fRjkBAAAAAAAAANjUZGaqJtPbSeyaTCNpjyoqKsLKs7OzlZ2dHVVdGzdu1JYtWzRo0KCwevr27auVK1dGNYlNOBEAAAAAAAAAQEjbtm0VDAZDr+nTp0ddx5YtWyRJrVu3Ditv3bp1aFukWIkNAAAAAAAAACmmJiNDNVHGsN5/nXtXYm/evDksnEi0q7B/KBAI76Mxpl7Z/jCJDQAAAAAAAAAIycvLizved1FRkaS9K7LbtGkTKt+6dWu91dn7wyQ2gLRgS4aS7IR3XrbvZfLCQIl9260FlnbKXBIu5luOmed8TEBu57LAsdTre+blvbElo0xUwkmSAQEAgH019vFBPIkUoxHpdfR6PwCQpFplqEbersSulfGsrg4dOqioqEhLlixRjx49JElVVVVavny5ZsyYEVVdTGIDAAAAAAAAQIqpVoaqPZ7Ero5yEnvnzp367LPPQv/euHGj1q1bp4KCAh166KEaP368pk2bpo4dO6pjx46aNm2amjdvrpISl9VzDpjEBgAAAAAAAABE7f3331f//v1D/7766qslSSNHjtTjjz+ua6+9Vrt379aYMWNUVlamXr16afHixWrRokVU7TCJDQAAAAAAAAAppkYZqlETj+usjWr/fv36yRj76u1AIKDJkydr8uTJcfWLSWwAaS3ZMeeS3X6gwLKhLIbYgBe4nIsl9nU/85Vj+bK5LrGi5zkX2+JOS7HFnvby3iQq9nUyucWTTPZzDgBIT5HGRIa7VL2OqRqDOlHXO1XvK4D0xSQ2AAAAAAAAAKSYhlmJ7W2Mba94e5YAAAAAAAAAAHiIldgAAAAAAAAAkGJYiQ0AAAAAAAAAgA+wEhtAWrAlnfMyeYmXie3c6vKSrV+BAo+TulzgnNhwWWCB5YB37XXlW/pWZk/s6OX9T8SzlIrS/fzTBc8/gFSSqM+mxp4gL9JzISHh99wSjv+QU/LvRJ2LUzupcG0BhEunldhMYgMAAAAAAABAiqlRhqrTZBKbcCIAAAAAAAAAAN9iJTYAAAAAAAAApJgaZTZAOJFaT+vzSkquxP7yyy910UUXqWXLlmrevLmOPfZYrVmzJrTdGKPJkyeruLhYOTk56tevnz766KOwOiorK3XFFVeoVatWys3N1fDhw/Xvf/87bJ+ysjKNGDFCwWBQwWBQI0aM0Pbt28P2+eKLL3TmmWcqNzdXrVq10rhx41RVVdVg5w4AAAA0RozxAQAAYJNyK7HLysp04oknqn///nr11VdVWFiof/7znzrwwAND+9x+++2aNWuWHn/8cR155JG67bbbNHDgQH3yySdq0aKFJGn8+PF66aWXNH/+fLVs2VITJkzQsGHDtGbNGmVkZEiSSkpK9O9//1uLFi2SJF122WUaMWKEXnrpJUlSTU2NzjjjDB100EFasWKFtm3bppEjR8oYo3vvvTexFwae8zJJH5IvEfcsFZMEWp9zW/JESRoSQ0PzLMltLrC0syj6JpwS43zPbVvDS/Z9BrzCM4uGwhgfqYzPxr2SmZDQb9zHpf7lnOyx/jg+Vc/Pb/yWSNNv/UFkatRENcrwuE5/SrlJ7BkzZqht27Z67LHHQmXt27cP/bcxRnfffbduvPFGnXPOOZKkJ554Qq1bt9bcuXM1evRolZeX69FHH9VTTz2l0047TZL09NNPq23btnr99dc1ePBgffzxx1q0aJHeeecd9erVS5L0yCOPqHfv3vrkk0/UqVMnLV68WH/729+0efNmFRcXS5LuvPNOjRo1SlOnTlVeXl6CrgoAAACQuhjjAwAAwE3KhRN58cUXddxxx+m8885TYWGhevTooUceeSS0fePGjdqyZYsGDRoUKsvOzlbfvn21cuVKSdKaNWu0Z8+esH2Ki4vVtWvX0D6rVq1SMBgMDW4l6YQTTlAwGAzbp2vXrqHBrSQNHjxYlZWVYX/6+EOVlZWqqKgIewEAAADpjDE+AABA9GqU0SAvP0q5Sex//etfeuCBB9SxY0e99tpr+vWvf61x48bpySeflCRt2bJFktS6deuw41q3bh3atmXLFmVlZSk/P991n8LCwnrtFxYWhu2zbzv5+fnKysoK7bOv6dOnh+LvBYNBtW3bNtpLAAAAADQqjPEBAADgJuXCidTW1uq4447TtGnTJEk9evTQRx99pAceeEAXX3xxaL9AIBB2nDGmXtm+9t3Haf9Y9vmh66+/XldffXXo3xUVFQxyfYrYT7Dxa3xjtzjuVrbY125xr23xqsssca8l6QJL3Lx5McTkLnM+JlDgdoxL3yxssf6SfZ8BoDFijA+4Iy5x4gUK6peZ0gS067O4xDxnDcdvvyv81h9EploZqvZ45XS1p7V5J+VWYrdp00ZdunQJK+vcubO++OILSVJRUZEk1VslsXXr1tCKiqKiIlVVVamsrMx1n2+++aZe+99++23YPvu2U1ZWpj179tRbvVEnOztbeXl5YS8AAAAgnTHGBwAAiF6tMlXj8avWp2ueU24S+8QTT9Qnn3wSVvbpp5+qXbt2kqQOHTqoqKhIS5YsCW2vqqrS8uXL1adPH0lSz5491bRp07B9vv76a23YsCG0T+/evVVeXq733nsvtM+7776r8vLysH02bNigr7/+OrTP4sWLlZ2drZ49e3p85gAAAEDjxBgfAAAAbvw5te7iqquuUp8+fTRt2jSdf/75eu+99/Twww/r4YcflrT3T//Gjx+vadOmqWPHjurYsaOmTZum5s2bq6SkRJIUDAb1y1/+UhMmTFDLli1VUFCgiRMnqlu3bqFM5p07d9aQIUN06aWX6qGHHpIkXXbZZRo2bJg6deokSRo0aJC6dOmiESNG6I477lBpaakmTpyoSy+9lNUXAAAAQIQY4wMAAESvIRIx1nham3dSbhL7+OOP14IFC3T99dfrlltuUYcOHXT33XfrwgsvDO1z7bXXavfu3RozZozKysrUq1cvLV68WC1atAjtc9dddykzM1Pnn3++du/erQEDBujxxx9XRsb3N37OnDkaN25cKMP58OHDNXv27ND2jIwMvfzyyxozZoxOPPFE5eTkqKSkRDNnzkzAlQAAAAAaB8b4AAAAcBMwxphkdyKdVVRUKBgMqry8nJUdAOISU2JHne1cPMclgcvYGJqxsSRpdGfpc769z7YkPE5Jkr63IPIuKbZEKG73jMQqQOpjnJe+uPdA9CIdyyZqjJSIBIuRtmEbs0aadJHEoID3kv1dX9f+K+U9lZvn7UrsXRU1Oj24xnfjmJSLiQ0AAAAAAAAASB8pF04EAAAAAAAAANJdjZo0QExsfwbtYCU2AAAAAAAAAMC3WIkNAAAAAAAAACmmWhmq9ngldrVPV2IziQ0AKcaW9MbTxIIXuhxkS6DokqQxa9tVjuVVLW1HWJI3uimzJ2kMBJzL3RPaOG+LLYGmrX2SNwIAgPSTiKSJ8Yo0wWI8CRIjPedo2vDbtfVbf4DGpkaZqvF4erfG09q8QzgRAAAAAAAAAIBvsRIbAAAAAAAAAFJMrTI8T+xY69NwIqzEBgAAAAAAAAD4FiuxgUbELVYvcce8k4iY1G512ba5xmrOt9VniT1ti3vtxtqG1KdgkWP5sjmWYy60x7eWFkTRqf2J/jzT/b3k5fMPAADqa4gYwpHm9Ii0nXjrS9a4Id5rG0/860Tx25jMb/0BGpuaBliJXcNKbAAAAAAAAAAAosNKbAAAAAAAAABIMdVqomqPV2JXq9bT+rzCSmwAAAAAAAAAgG+xEhsAAAAAAAAAUkyNMlXj8fSuX2NiM4kNNCIkzUgML6+zl8kgXZVFecwQl6Q1wyzlF9rbWBZwTiDZz1gSPl74rr19WzLKGBI+Bgrs20xp1NUlRLITK/I5AwCIRkMkKUxmO4nQEP32uk6urbt4nsdoxvqpeh8AeKdhEjsSTgQAAAAAAAAAgKiwEhsAAAAAAAAAUgwrsQEAAAAAAAAA8AFWYgMAAAAAAABAiqlRhqrTZCU2k9gA4BG3JCy2pCteJulzO8beN0uSxHkuCWUWWdqZ49LnC9c7Fi8rGOK8f76l3JVLMsoy5/bdkjd6eW9iScZpa8fLBD6xPLMAAESDxMNIhIZIpBjPM5WsYyXvk5w2RNLUxpSIFUDiMIkNAAAAAAAAACmmRpmq8Xh6t0bG0/q8QkxsAAAAAAAAAIBvsRIbAAAAAAAAAFJMjZqoxvOY2DWe1ucVJrGBNNEQsd4Qzss41l7HKra2U2I5YN6CqNvQQvumfuYrx/JlBZY41pYY1pKkCyzHuMXxtggEYjjPGPj1febXfrnhswwAkKqIA+wu0hwiXl+zaOqL9B56HaM7mj4mK/51NDlgvL5m8eK9iVRWo4wGmMT2tj6vEE4EAAAAAAAAAOBbrMQGAAAAAAAAgBTDSmwAAAAAAAAAAHyAldgAAAAAAAAAkGJqlKHqNFmJzSQ2kIJiSWyW7MQUJGOLjtt1iSZpyvfOjm73OS735UJb0kVLwkVJy+YOcSyfVHqjY/mtBVPt7c+zte92jtEncOTZ9CfuCwAgVfEd5s5v1yeeZH/xJC5M5nWIp+14++23+9/YkcwSqYhJbAAAAAAAAABIMTXKVI3H07s1qvW0Pq8QExsAAAAAAAAA4FusxAYAAAAAAACAFFOjDM9jWDfamNh///vf9dJLL+nAAw/U0Ucfra5duyovL8+LvgEAAABIAsb4AAAA8JO4J7GHDh2qX/3qV9q+fbseeugh/fWvf9WuXbv0ySefeNE/AA5SMeFCKvbZr2zXMhCwJTyUok5sONaepFFzXLbZLHQuvnWhSwJHK+dzcU+GGcsxtgSatgSS0SePdMN7BkAyMcaHn5GQLL0l6v7Hk5wxUfzWn0j5rd9et53M80uFBKLwVo2aNMBKbH9Gn457ErtNmza68cYbw8pqamrirRYAAABAkjDGBwAA8L9qZaja40lsr+vzSsxT6xMmTNCTTz6p/v3764knngjblpHhz5MFAAAAYMcYHwAAAH4U8yT2Kaecok2bNunTTz/VtGnTdOSRR6qkpETTp0/XwoWWvxsHAAAA4FuM8QEAAFJHjTIb5BWN6upq/e53v1OHDh2Uk5Ojww47TLfccotqa2s9PdeAMcZ4UdHu3bu1YcMGrV+/Xhs2bNBdd93lRbWNXkVFhYLBoMrLy0mWAySBLe5xKsYICxTYt5nS6I6x7e/azmz7MbaY2FmzKxzLq8bG8Hk4zxbDOjH30x5DOzap+AymGrd7xvWHFxrDOI8xfmwaw70HvNCYxtqpwjlPTv3cLZHeA7/Frwb8Itnf9XXt/7Z8vJrlZXta93cVlfp98O6Iz23q1Km666679MQTT+joo4/W+++/r0suuUS33XabrrzySs/6FXdM7L/+9a+6++67VVZWpm7duulXv/qVfvnLX3rRNwAAAABJwBgfAADA/2qV4Xlix9oo61u1apXOOussnXHGGZKk9u3ba968eXr//fc97Vfc6SbPPfdc9e3bV9dff72Ki4s1fPhwvfHGG170DQAAAEASMMYHAABIbxUVFWGvyspKx/1OOukkvfHGG/r0008lSR9++KFWrFih008/3dP+xL0SOxgM6uKLL5YkHX/88TrnnHN02mmn6cMPP4y7cwAAAAASjzE+AACA/9U0wErsuvratm0bVn7zzTdr8uTJ9fa/7rrrVF5erqOOOkoZGRmqqanR1KlTdcEFF3jar7hXYh922GGaNWuW6kJrFxQUqFmzZnF3DAAAAEByMMYHAABIb5s3b1Z5eXnodf311zvu98wzz+jpp5/W3LlztXbtWj3xxBOaOXOmnnjiCU/7E/dK7MrKSt1333266667dPTRR2vTpk06++yz9eWXX+rggw/2oo8A0GD8mpTEPUng2c7F+d1d6nNK8OLS/lx7XSqz1eVyTLSGuWy70Ln9rG1XWQ+xn3/9JDd1on02/PosJUoqJkn0a78AP2CMj1iQAK5xiue+2vaLp85Ik2kn89lL1HvBaYxrjNOYPPZxOu/h9MFneGqqUZMGWIm9d81zXl5eRIkdr7nmGv32t7/Vz3/+c0lSt27dtGnTJk2fPl0jR470rF8RT2KPGDFCDz30kJo3bx5WvmDB3gmAXbt2af369aHXz3/+c3311Vf65z//6VlnAQAAAHiHMT4AAEDqqlaGMjyexK6Osr7//ve/atIkPNhHRkaGamtrvexW5JPYc+fO1Z133hka4I4ePVq///3vlZ+fL0nKzc3Vcccdp969e3vaQQAAAAANgzE+AAAA4nHmmWdq6tSpOvTQQ3X00Ufrgw8+0KxZs/SLX/zC03YijoldFw+vzrx581RWVhb69zfffKMWLVp41zMAAAAADYoxPgAAQOqqUWaDvKJx77336txzz9WYMWPUuXNnTZw4UaNHj9att97q6bnGHBN73wGvJFVVVcXVGQAAAADJwxgfAAAA0WjRooXuvvtu3X333Q3aTtyJHX8oEAh4WR0ApJTEJbazJCMscy6WJF1gSeYyz7nP/Uq+sla1TEOcNyy0Nz9p7o2O5bfOnWppf5G9/YXO7VcdYW/fxu2+RJo0qCHq2l99fhRLf1MxGaRNYzoXYF+M8Rsvr5N48XnXODXEfW3sz1k8fYzmfemcxBENxeuEpH57lp36kwr9Tne1yvA8sWOtx/V5JeJwItLemHlr167Vnj17JDGgBQAAAFIdY3wAAAD4XcQrsU866STdfPPN2rFjh5o2barq6mrdcMMNOumkk/SjH/1IBx10UEP2EwAAAIDHGOMDAACkrpoGWIntdX1eiXgS+6233pIk/eMf/9CaNWu0du1arVmzRpMmTdL27dtZsQEAAACkGMb4AAAASAUB45S9JUobN27U+++/rw8++EDTpk3zol9po6KiQsFgUOXl5crLy0t2d4BGyxavNhXjecUSX1kXRHme9pDUyvqswrG8alH0n2GTSiyxsgucY2VLkmZbyl1icttif7uJ9tlobHGvG9N7xktcF0Qj1cd5jPFjl+r3HmisnL/Hz3bc10/xphl/AP6T7O/6uvZHlf9eWXnNPK27quI7PR78re/GMZ4kduzQoYM6dOig8847z4vqAAAAACQZY3wAAAB/2xtOxJPp3bA6/SiqxI4AAAAAAAAAACSSt1P1AAAAAAAAAIAGl06JHVmJDQAAAAAAAADwLVZiI+lIUpHeEnX/bfWl5vPnnHxG+S7JZ6JNbOiSCPK6ghmO5bcudEnGaDFjyHXOG2zJGyXpwvVRtxOLQIFzuSm1lHv8zAQCzueZqCRD0b5nvGzDz1KxzwAANHbxjE9sY6tI60zI2CA/MeMPp3P229jHaYzspyScQKKxEhsAAAAAAAAAAB9gJTYAAAAAAAAApJjaBliJXctKbAAAAAAAAAAAosNKbAAAAAAAAABIMdXKUMDjldPVPl2JzSQ2ks5viSKQWMm+/16275b8JRFJ8lS2wGWjczLIrG3tLftXWGu6NfAzx/JJ5kb7MQXOSR+rFuU5H7DQWpWVe0KX6BP22BI42sRy/934NUFNst+zAADAXSok54tUpOfiVBbvODueaxZpvyO+V2W2c/H2vqbCc+LXMTKQLDXKUBOPp3dJ7AgAAAAAAAAAQJRYiQ0AAAAAAAAAKWbvSmxvV06zEhsAAAAAAAAAgCixEhtIc7ZYcakQD60heRqr2kVCYmVLkpzjZVcd4dz+pFKX+NZznONbzyhtbz3GVp8tVnb5t9nWuvLmVjqWB0qsh8jMtW+zifYepPt7BgCAxiSVx8ip0EcnXo9/G+I6xBNvPBBYH9GxifodAqBxYCU2AAAAAAAAAAA+wEpsAAAAAAAAAEgx1cpQwOOV09WsxAYAAAAAAAAAIDqsxAYAAAAAAACAFFOrTNV4PL1b69PpYn/2CpB7QotUTVbiR1zL6CXimrm1EUuioWgTxNw61znhoiRprHPxdaUzrIf00UrnDWX1E9xIUjBztb39Cyzl8+znmD37KsuWs63HGNPd3gcHfGYBAOAv8STh47s78SJNchhfcsXYj4123/rHRja2TNVkj6mQDDUV+ghEq6YBwomQ2BEAAAAAAAAAgCixEhsAAAAAAAAAUkyNmjTASmx/rnn2Z68AAAAAAAAAABArsQEAAAAAAAAg5VQrQ/J4JXa1T2NiM4kN3yK5ApLJ68SKXrK1Ewg4J0l0Oya7tMKxvKrlXfYOXOBc19s62X6MRda29pb2P7cftMhSnm+//lUto0+GEwgscCy3XUs+swAA8JdIE+TF+x3eEHV6LRX66MTrPkaTNDERySIjPTYVnlH7bxT/PHup8MwDsGMSGwAAAAAAAABSTI0yFfB4erfGp9PFxMQGAAAAAAAAAPiWP6fWAQAAAAAAAABWtcpQjccxrGuJiQ00HsmOiYzkiuU+R/vM2PaPvX1bvGznuM9u8aX7zXUOSr2sZIj1mJPnvm3d5sQWK1uSqo6Iqqq9LHG8Nc8eR9wmUGDZUObtPQNSidefWQD8z09xbqPREH2Mp85EXcdUuDdeS1S86XiOT1Tc9mTe/3R89oBEqmmAxI5eT4p7hXAiAAAAAAAAAADfYiU2AAAAAAAAAKQYVmKniOnTpysQCGj8+PGhMmOMJk+erOLiYuXk5Khfv3766KOPwo6rrKzUFVdcoVatWik3N1fDhw/Xv//977B9ysrKNGLECAWDQQWDQY0YMULbt28P2+eLL77QmWeeqdzcXLVq1Urjxo1TVVVVQ50uAAAA0OgxxgcAAMC+UnYSe/Xq1Xr44YfVvXv3sPLbb79ds2bN0uzZs7V69WoVFRVp4MCB2rFjR2if8ePHa8GCBZo/f75WrFihnTt3atiwYaqpqQntU1JSonXr1mnRokVatGiR1q1bpxEjRoS219TU6IwzztCuXbu0YsUKzZ8/X88++6wmTJjQ8CcPAAAANEKM8QEAACJXrSaqVobHL39OFweMMSbZnYjWzp079aMf/Uj333+/brvtNh177LG6++67ZYxRcXGxxo8fr+uuu07S3hUZrVu31owZMzR69GiVl5froIMO0lNPPaWf/exnkqSvvvpKbdu21SuvvKLBgwfr448/VpcuXfTOO++oV69ekqR33nlHvXv31t///nd16tRJr776qoYNG6bNmzeruLhYkjR//nyNGjVKW7duVV5eXkTnUlFRoWAwqPLy8oiPAbxEksrEcEt65sTL5JExsSVClDRp7o2O5bfOnWo95tWS/o7lQ+cudSzPGlJhreu6ghnO7RfY27cxpfZtXl5PLxN4Juo9y2eDM64LosE4LzqM8QFEIplJRSNtO54+xnt+Xl+fVE3iCjS0ZH/X17XfufxNZeQd4GndNRU79XHwVN+NY/w5tb4fl19+uc444wyddtppYeUbN27Uli1bNGjQoFBZdna2+vbtq5UrV0qS1qxZoz179oTtU1xcrK5du4b2WbVqlYLBYGhwK0knnHCCgsFg2D5du3YNDW4lafDgwaqsrNSaNWusfa+srFRFRUXYCwAAAEh3jPEBAACiU6PMBnn5kT975WL+/Plau3atVq9eXW/bli1bJEmtW7cOK2/durU2bdoU2icrK0v5+fn19qk7fsuWLSosLKxXf2FhYdg++7aTn5+vrKys0D5Opk+frilTPFwtCQAAAKQ4xvgAAABwk1IrsTdv3qwrr7xSTz/9tJo1a2bdLxAIhP3bGFOvbF/77uO0fyz77Ov6669XeXl56LV582bXfgEAAACNGWN8AACA2NQoo0FefpRSk9hr1qzR1q1b1bNnT2VmZiozM1PLly/XH/7wB2VmZoZWTey7SmLr1q2hbUVFRaqqqlJZWZnrPt9880299r/99tuwffZtp6ysTHv27Km3euOHsrOzlZeXF/YCAAAA0hVjfAAAgNjUNsAEdq1PJ7FTKpzIgAED9Ne//jWs7JJLLtFRRx2l6667TocddpiKioq0ZMkS9ejRQ5JUVVWl5cuXa8aMvYnAevbsqaZNm2rJkiU6//zzJUlff/21NmzYoNtvv12S1Lt3b5WXl+u9997Tj3/8Y0nSu+++q/LycvXp0ye0z9SpU/X111+rTZs2kqTFixcrOztbPXv2bPiLAXjEr0k5Ykl453U7XrbvbZ/XO2/Id2ljSJSNLIpy//0YWmJJ4DjbOWZo1Vj7j/9bF1kSOLqd4zzbfU7uvXSrK9oEgl6/ZxLxPvPr54+bVOwz4HeM8WNHwjVEKtIxb2NKkBiveJJ8O59L/TG8Md0jPDbysZTX16cxfaY0pjEpkI5SahK7RYsW6tq1a1hZbm6uWrZsGSofP368pk2bpo4dO6pjx46aNm2amjdvrpKSEklSMBjUL3/5S02YMEEtW7ZUQUGBJk6cqG7duoWSyHTu3FlDhgzRpZdeqoceekiSdNlll2nYsGHq1KmTJGnQoEHq0qWLRowYoTvuuEOlpaWaOHGiLr30UlZeAAAAABFijA8AABCbamWoiccrp1mJnSDXXnutdu/erTFjxqisrEy9evXS4sWL1aJFi9A+d911lzIzM3X++edr9+7dGjBggB5//HFlZHx/k+bMmaNx48aFMpwPHz5cs2fPDm3PyMjQyy+/rDFjxujEE09UTk6OSkpKNHPmzMSdLAAAAJAGGOMDAACkt5SfxF62bFnYvwOBgCZPnqzJkydbj2nWrJnuvfde3XvvvdZ9CgoK9PTTT7u2feihh2rhwoXRdBcAAADAfjDGBwAA2L8aZch4PL3r15XYAWOMSXYn0llFRYWCwaDKy8v5E8VGIFFxnP0q3c/fTbQx9dxjJTvHxHaKqRc6psCyocy5rqxt7a11VbX83LG8n/nKesyyAueA1VmfOcfE9lrVEZbP17LYYx3uK92f8XTH5x+cMM5LX9z7hpWOscDT8ZyjkarXx3lcv6BeSUOcS6QxuuEuFeK7o2Ek+7u+rv3i8rVqktdi/wdEobZih74K/sh345iUX4kNAAAAAAAAAOlm70rs9IiJ3STZHQAAAAAAAAAAwIaV2AAAAAAAAACQYtJpJTaT2AAAAAAAAACQYmpqM2RqPZ7E9rg+rzCJDXgo3RMzpOL525KxuSdWjP4Yu7OjPyTfOeFKtMkjJUlzbH12Sbh4gXP7ywrsiWBsCRxtCRfdEj5+GzzIsTw4otJ6jC2BpRvb/bQl1vRatM+ZnxMLxpKMNNUk+xoDABo3v33P+C1JXaLajmm8/T/OfYwviWM89yGecVg018Fvz67XIr/e/roOfnsPA5FgEhsAAAAAAAAAUkxNdYZqq71dOW08rs8rJHYEAAAAAAAAAPgWK7EBAAAAAAAAIMXUVGcqUO3t9K7xuD6vsBIbAAAAAAAAABCTL7/8UhdddJFatmyp5s2b69hjj9WaNWs8bcOfU+sAkCCxJK9IRMKLmJLG5Nv7ZUpt7Tgn3HvBXGmtq89TKx3Lg8/YEytakzHOdknGaDEzY6LzhmH2Y16d63w+Q7TUekygwLalfgKevbxNUhjtcxbLc+llMki3hJeNKYEjACD5SD6WfPHeg3iSyiXr2HjbiVQqJNzzW38QPe5h41FT3UQBz2NiR7fmuaysTCeeeKL69++vV199VYWFhfrnP/+pAw880NN+MYkNAAAAAAAAAIjajBkz1LZtWz322GOhsvbt23veDuFEAAAAAAAAACDF1FRnNMhLkioqKsJelZXOf0n94osv6rjjjtN5552nwsJC9ejRQ4888ojn58okNgAAAAAAAACkmOrqDFXv8fj1v0nstm3bKhgMhl7Tp0937MO//vUvPfDAA+rYsaNee+01/frXv9a4ceP05JNPenquhBMB0Gh4Gd83Ueyxgu0xhK3nWWY//0DgbMsW5/jOQ0vssaJtXp3b376xJrq6riuYYd12a8FU5w1l9pjMQ8dGfz52ztfSLSa07Ton+7n0sn0/x722vWeSff0BAIhHvN9vqRB72ev4107juGiuY6SxriM9Nt7rnah2kDiMW+EnmzdvVl5eXujf2dnZjvvV1tbquOOO07Rp0yRJPXr00EcffaQHHnhAF198sWf9YRIbAAAAAAAAAFKMqcmUqfF4evd/9eXl5YVNYtu0adNGXbp0CSvr3Lmznn32WU+7RTgRAAAAAAAAAEDUTjzxRH3yySdhZZ9++qnatWvnaTusxAYAAAAAAACAVFOdsffldZ1RuOqqq9SnTx9NmzZN559/vt577z09/PDDevjhhz3tFiuxAQAAAAAAAABRO/7447VgwQLNmzdPXbt21a233qq7775bF154oaftBIwxxtMaEZWKigoFg0GVl5dHFGcGaGzSJXGFPQmMLeGinS2BnnuiGUs7+ZZkfLNdqhprKXc5pl/JIsfyk/W2Y7k1eWOsbH270C0ZozP79bfXFUvSw2jfG6mY2BRo7BjnpS/uPZIpWYn9/JZQMNLEjrYE3E7iSfaYiPqiaSdSTmPceBN6++kZTVTbaHyS/V1f177WbZdaeNz+jgrp2AN9N45hJTYAAAAAAAAAwLeIiQ0AAAAAAAAAqaYmIFUHvK/Th1iJDQAAAAAAAADwLVZiAwAAAAAAAECqqf7fy+s6fYjEjkmW7EDwALzjZWK/WJL0ubXfz3zlWL4s8K5jeXn1NGtdMzMmOpa/rZOtx7xQc5Zj+VkZLziWL1081FrXTYNucCyfWDPTekzwmUrHclNiPST6ZJy2JJmSVOZ8b+JNipPqvExGmezElsluH/7EOC99ce+947dkgX7SEEnqGiKJH/aKPGFj/bEm9wDwn2R/14cSO/6lXDrA4/Z3Vkgn+m8cQzgRAAAAAAAAAIBvEU4EAAAAAAAAAFJNGoUTYSU2AAAAAAAAAMC3WIkNIKkaIpafFyKPWfe9WPpsj2Ntibsco2UFQxzLXzUzHMtnyjnutSTdWjDVsXxS6Y1R9+uegHPs68Ace7qGflrkWP52hj0mty32tVsccbsFzsVlMRyjxMQ3jDq+txITe9HL93ls7z/v4lgn+zMLABqrVP18TdVY3omKvRzp9fH6OsZbXzzHR35+/op/nahnOZ52Iv3tlgrvQSBq1ZL2NECdPsRKbAAAAAAAAACAb7ESGwAAAAAAAABSTc3/Xl7X6UOsxAYAAAAAAAAA+BYrsQEAAAAAAAAg1VTL+xjWPo2JzSQ24CEvk4Sli0Rdl2gTSLr1K5akj7EcY62rIIZkL855HTU0cI9j+avmSmtV/UotiRVlT6yoDOfiWyZMcywv/1m2tapgYLW9HYvsbRXOG+a4XMsLbckYo+d10sFo27Btc2+j4ZMKJfszk89lAPC/ZCUAjBffY+68T4YY6bWIPHl6pGOxeJ5Rr5O520TatlNSyVR4zlKhj6mgIT5H/fbZ3Cil0SQ24UQAAAAAAAAAAL7FSmwAAAAAAAAASDWsxAYAAAAAAAAAIPlYiQ0AAAAAAAAAqaZG3q+crvG4Po8wiQ14KF0SFESbJNEPEtE31+QvcyztX7jesdgpqUqonQLbFnsiwn5zv3IsX2bJ+Dh07lJrXbaki3nXVVmPCfzROJa/XeqcDHJlaR9rXVnbnMurxuZZj6k6wrLBkvDSVb7lXpY530tJCgSiv8/RPrOJSpLo5fvfr4ldAQDJEU8CMD7Tky9RCdwirTPe/jgnZ6w/pnMaz0WeoNtp/B5PfdGcY6RtR3bO0UjVhK2NXSq/X5EemMQGAAAAAAAAgFRDTGwAAAAAAAAAAJKPldgAAAAAAAAAkGrSaCV2wBjjHKgUCVFRUaFgMKjy8nLl5dnjuQLpJnHxfaOPVRxbO9HF5I0m7t33zrZvmhPd+fQrWWTddp1mOJb3qVlpPWZmxkTH8lvnTo2qX5KUNaTCsdwtJrZsp1Pmcp2tsa8tx9j2d23H5Z5ZYpwn4vnf2050z4zX71niWKMxYJyXvrj3SKZkxRtumLjNTu14G6M5mjGH8771x3PxxcmOrC+NDTGRkWqS/V1f177+WC4197j9/1ZIv/DfOIZwIgAAAAAAAAAA3yKcCAAAAAAAAACkmpr/vbyu04dYiQ0AAAAAAAAA8C1WYgMAAAAAAABAqqmR94kYfboSm0lsAD7llvDOO14mcIwlWYs9sV4M559vPxdbosaT9bZjuVvCxWVjhziWTyq90XqMrb5JJfZjbPrIOYHk0EVL7QeV2RMYenaMW5JIC7fnLxBwTuwYS8LDRCQw9TJ5o9fHkBQIAID6vP5+jKa+yJNPxp7E0Xn8U398FU2i9Uj7GJ/E/A6KR0MkYUzEeI3E4f5AEk/EiklsAAAAAAAAAEg11fJ+JbbX9XmEmNgAAAAAAAAAAN9iJTYAAAAAAAAApJo0WonNJDYAAAAAAAAApJo0msQOGGNMsjuRzioqKhQMBlVeXq68vLxkdwcpzi3hWbonSvAysV1sifVs98aWuMU5qZ8kaY5zO6bEfkigwLn81dL+juUzdJ21rmUlzokdNczeftaQCsfyPgXOSRpXlvax1lV1hPNnZb9S5+SVkrSswNJnN9bEji73xiKahEENoTG9/71M7MhnJhoa47z0xb33TrISgJEAzl3kSQ8Tcx3jSwAZeR+9fh4bYiwYaX9IrgfEJ9nf9XXta2a5lONx+7srpIn+G8ewEhsAAAAAAAAAUk2NvF85XeNxfR4hsSMAAAAAAAAAwLdYiQ0AAAAAAAAAqSaNYmIziQ00IsQws7PFxIslTl9s19k59rW9X/aabPGls0vtx/QrdY49PWTxMsfylYPsMalfeOosx/KDyr+1H1PgfExxwLn9K82r1rpOLn3bsXxGqT2OtzW+9Rx7rERTEv29sbHFZHeT7DjafhXL+8/LOPZ8zgJAYnkfOzmyOMDp8HkfT0xkr/eLRjz9juZY57FA/TF9pPs5j/udfiPUz78STR9T9RmPJ866384FQMNgEhsAAAAAAAAAUs0eSRkNUKcPERMbAAAAAAAAAOBbrMQGAAAAAAAAgFRT87+X13X6EJPYAAAAAAAAAJBqSOwIIFFIHuYdt4R3tuuZuOtcP0GLJAUCzuW2RJCSVDU2L+rWlw0b4ty+jGN5Vqlz8khJUoFz8XUFM6Ltlr4y/RzLV5a6JJYMOieJ7FPgnLxSkmYY56SPywrsiR0DF0aXjNGWpFNySex4gXfPX2P7zPDys9Gv1yaWzywv20n2dUnU+QPAD8X7+dKYksrFkwzR6zaiaTtR19vrpIKxJPren0Rci0TdA7+9j5L17MU7bvPbZ5Tf+oPUxiQ2AAAAAAAAAKSaGnm/ctqn4URI7AgAAAAAAAAA8C1WYgMAAAAAAABAqqmWlNEAdfoQK7EBAAAAAAAAAL4VMMY4Z/VCQlRUVCgYDKq8vFx5edEna4O/pEuSqmQnCUt2+7GINiFO1rarrNuqWt7lvCE/+vN/tbR/1McMLVnqWP7hvID1GFsCx6EB53K386+cFnTeMMh6iAKPW77qhtmP0VhLeZktKY8tSaes98aUurRvkYrPv41bgiNboszGdP5o/Bjnpa90uPck60otqXC/nMYFbomz93es09isIc450msb6e+BaPoYX6LJxDwTiWgnFZ7vVJDM65iK9zDZ3/V17euKcinb4/YrK6R7/TeOYSU2AAAAAAAAAMC3iIkNAAAAAAAAAKmm5n8vr+v0ISaxAQAAAAAAACDV1Mj7RIw+ncQmJnaSJTuGDpIv2ljJsfJrPKlY4tvGcs2iPf9Y4pu79+vsqNp3ja8cSxsXOMcTzJpd4Vj+bfAga1V5b1Q5lt806AbrMRNrZtr7FiVb+4H/xPB1ttBlmy1e9oX2OM52lvvpFse8LLrnPJb3jF8/F9KFl3kU0iUnQ6phnJe+uPepryG+O/0W89Vv/YlUpLGzne9h/fFydHk4Ij8+Eg0TJzv26xNPPG2bZMXoJr4zGlqyv+tDMbFHl0tZHrdfVSE95L9xDCuxAQAAAAAAACDVVMv7jIder+z2CIkdAQAAAAAAAAC+xUpsAAAAAAAAAEg1eyQFGqBOH2IlNgAAAAAAAADAt0jsmGTJDgQP2CQqSZiXiR2TndguUGDflvWZcwLFqpZ3OR9wgUu/FlnKZ9sPsSUw7DfXVpnd0olDHcuzbyiPuq6qRc6fe+U/y7Ye83mmc2LHr0w/6zEzdJ1j+bKCIfbOldkSOMaSpNFSV749EZAptVfnxOuEp16+ZxLy/ktyYsNktw9/YpyXvrj3iEdjSgoX3fjE66SJkSU4jPd4p/2cxovJTJqYTI7n4zBujnbsCyRbsr/rQ4kdL2ygxI5zYju36dOn64YbbtCVV16pu+++29NusRIbAAAAAAAAABCz1atX6+GHH1b37rH/D0g3TGIDAAAAAAAAQKqpbqBXlHbu3KkLL7xQjzzyiPLz8+M6JRsmsQEAAAAAAAAg1dTI+wnsmr1VV1RUhL0qKyut3bj88st1xhln6LTTTvP+HP+HSWwAAAAAAAAAQEjbtm0VDAZDr+nTpzvuN3/+fK1du9a63SuZDVo7kAISkXAsFcWS8M0pGcv3LMnwom4j+Una3M/TWdVYS0woWzJAt3yLllyEWUOck0dK0gslZzmWn1X6gmN55ftBe/uDnIsrp0V/TEDOuYUPKv/WWlUfs9KxfOli54STkjT0P0udN7jkddQ82wbL/XdLrGm5/4lKYBPLe8bL91ki3rPJTuya7t8ZABpeY0r2l0yJuo6RJudzajveBIBOx3t93pHWF00bzufjlEgx0rYdjnVIxG4fjzn9fnEa00WWxDGWJNxu9UUjnucxnmPdyhszPq+RUHsars7NmzeHJXbMzs6ut+vmzZt15ZVXavHixWrWrFkDdOZ7KbcSe/r06Tr++OPVokULFRYW6ic/+Yk++eSTsH2MMZo8ebKKi4uVk5Ojfv366aOPPgrbp7KyUldccYVatWql3NxcDR8+XP/+97/D9ikrK9OIESNC/8dhxIgR2r59e9g+X3zxhc4880zl5uaqVatWGjdunKqqqhrk3AEAAIDGiDE+AACAv+Tl5YW9nCax16xZo61bt6pnz57KzMxUZmamli9frj/84Q/KzMxUTU2NZ/1JuUns5cuX6/LLL9c777yjJUuWqLq6WoMGDdKuXbtC+9x+++2aNWuWZs+erdWrV6uoqEgDBw7Ujh07QvuMHz9eCxYs0Pz587VixQrt3LlTw4YNC7u4JSUlWrdunRYtWqRFixZp3bp1GjFiRGh7TU2NzjjjDO3atUsrVqzQ/Pnz9eyzz2rChAmJuRgAAABAI8AYHwAAIAY1DfSK0IABA/TXv/5V69atC72OO+44XXjhhVq3bp0yMjI8OU0pBcOJLFoU/jf2jz32mAoLC7VmzRqdcsopMsbo7rvv1o033qhzzjlHkvTEE0+odevWmjt3rkaPHq3y8nI9+uijeuqpp0IBx59++mm1bdtWr7/+ugYPHqyPP/5YixYt0jvvvKNevXpJkh555BH17t1bn3zyiTp16qTFixfrb3/7mzZv3qzi4mJJ0p133qlRo0Zp6tSpYUvuAQAAADhjjA8AAJB6WrRooa5du4aV5ebmqmXLlvXK45Vyk9j7Ki8vlyQVFOwNbrVx40Zt2bJFgwZ9H4A1Oztbffv21cqVKzV69GitWbNGe/bsCdunuLhYXbt21cqVKzV48GCtWrVKwWAwNLiVpBNOOEHBYFArV65Up06dtGrVKnXt2jU0uJWkwYMHq7KyUmvWrFH//v3r9beysjIsm2dFhT2GLRIj2bGpUjEmdyx9CwScY2J7eZ7xxJnbl2t83RLLBrc41jZlzn3uZ3o5lkvSsgLnQM5VY+0/qmfMvc6xvHKAJY71DGtVqhiQ5Vi+clAf6zFDFi9zLJ9UcqNj+S09ptk7MMC5uP/MV62HlNfU/7MnSQqOtWdXjtqF6102Oj//gUAM7djiqKe5WOLoe3mMnz+zgVTEGL++RH3ONKZYrvGcSzTjykhjQcczVvXbfWmIuN1OeUc8P++y+uM123jM69jiiYhVblf/2jrFDHcSab/jHSPFG3s7Wfz23vQbrk8CVEuK5Xfl/ur0oZQLJ/JDxhhdffXVOumkk0Kz+1u2bJEktW7dOmzf1q1bh7Zt2bJFWVlZys/Pd92nsLCwXpuFhYVh++zbTn5+vrKyskL77Gv69OlhmT3btm0b7WkDAAAAjRZjfAAAgNS1bNky3X333Z7Xm9KT2GPHjtX69es1b968etsC+/zvVGNMvbJ97buP0/6x7PND119/vcrLy0OvzZs3u/YJAAAASCeM8QEAACJU3UAvH0rZSewrrrhCL774opYuXapDDjkkVF5UVCRJ9VZJbN26NbSioqioSFVVVSorK3Pd55tvvqnX7rfffhu2z77tlJWVac+ePfVWb9TJzs6ul90TAAAAAGN8AACAqFRL2uPxi0lsbxhjNHbsWD333HN688031aFDh7DtHTp0UFFRkZYsWRIqq6qq0vLly9Wnz954rT179lTTpk3D9vn666+1YcOG0D69e/dWeXm53nvvvdA+7777rsrLy8P22bBhg77++uvQPosXL1Z2drZ69uzp/ckDAAAAjRBjfAAAALhJucSOl19+uebOnasXXnhBLVq0CK2SCAaDysnJUSAQ0Pjx4zVt2jR17NhRHTt21LRp09S8eXOVlJSE9v3lL3+pCRMmqGXLliooKNDEiRPVrVu3UCbzzp07a8iQIbr00kv10EMPSZIuu+wyDRs2TJ06dZIkDRo0SF26dNGIESN0xx13qLS0VBMnTtSll17K6osG1pgSa6Vin21iSZIWS12xtBFtfdbkjZI0z5bAzzl5395jbBvqJ1mRpGUlLolWHBLSSNKrc6+0HnJW6QuO5YFrjGN5+QDnRIiStDLDOYHjkInLrMdk31DuWF7ZI/rEkjcNusGxfOniofaDFlvKLYk1JUlzonxvjnXZVubybFhE/56JugkFAvZklLZkP8n+/E12+wAaBmN8/2hMn6cNcS7x1JmsY704fl9eJlSv4zT2cBrfxJMAMNJkhtHUGWniunj2s/1mcPr9Ec95O40NnY6N93mK71r4S6p+ZiYq4WKqXp+UUiPvEzvWeFyfR1JuEvuBBx6QJPXr1y+s/LHHHtOoUaMkSddee612796tMWPGqKysTL169dLixYvVokWL0P533XWXMjMzdf7552v37t0aMGCAHn/8cWVkZIT2mTNnjsaNGxfKcD58+HDNnj07tD0jI0Mvv/yyxowZoxNPPFE5OTkqKSnRzJkzG+jsAQAAgMaHMT4AAADcpNwktjHOqwZ/KBAIaPLkyZo8ebJ1n2bNmunee+/Vvffea92noKBATz/9tGtbhx56qBYuXLjfPgEAAABwxhgfAAAgBg0Rv5qY2AAAAAAAAAAARCflVmIDAAAAAAAAQNpLo5XYARPJ3+6hwVRUVCgYDKq8vDwtEsU4SUSSLi8TDqaLWBK+ed2Ol7zts+15siVcceOc8C9r21XWI6qOsHxWzHYulqRXS/pH0ykNWbzMum3KYOfym19zqfA65+KbPnBO0thHK61V2fqWfZxz8khJeqHgLMfyoSVLrcf0m7vIsXxZoNhyhEvyxnznzxlTaj/E+t7ItzzLloSfkluSRrf3n/P5NKbPTK8TyAL7YpyXvhJ17xOVmCseqdDHhtCYzjviJHwF9Y+1jXXiSc7oPH6JLMFhpIkL9+4bafLByOuMVTRjlkQ8Z6nwfMebFDIRyVD9ds0iRaL1vZI9zqtrX8eXS5ket19dIa323xiWldgAAAAAAAAAkGqqJXm9PLnG4/o8QkxsAAAAAAAAAIBvsRIbAAAAAAAAAFJNQ6ya9ulKbGJiJ1myY+jAv7yO422Pfetd3Fsv++wUUy9Ul0scYWt9JZYN82KJb+0S+zhqtnaij6+sIfZDrPGdS5wPMqMC9spsLHGvJani/SzH8pUZfRzL+9TYY2LnvVHlWB74j/3rrF+J8/lfpxnWY4bOtcTLHutcnPVZhbWuqpafO2+wxbeWXGNcO/M2JrdNLHHsY4kLGW2sPT/Ht7Zds8TE6k+/+IR+wjgvfYXiVOq3kpqFypMVqzbetr2O+Us8VW9Ecx3jiccbz/2P915HGv86UpFem2iOdxJPzO9oRHpvIo/vHc9zkpjnEenD789Jssd5obFGl3Ipw+P2ayqkv/lvDEs4EQAAAAAAAACAbxFOBAAAAAAAAABSDYkdAQAAAAAAAABIPlZiAwAAAAAAAECqqZZU63GdXtfnESaxkRb8kPAq2qQmiUus2PAJ1/YeE11iM7eEc9akj2XRJ3azJkn0sq6YRH9fsmbbEwtaDYv+kJsG3eBYPuM4e2bH1ZlBx/I+1c4JHG3JGyUp8Ljz30q5JaNcpH7WbTa2ZJDLLBk0Xyg4y1rX0HxLkshYXGB5z8y1PzO292zAJX+n/bPJuR33BEbRH+NlAkf3RK0NLxEJHJOd5MYP37OAH5WXX5/whEgN8Z6LJ1Gcc32R99Fvib3iSdgX23eYvb74kwJ6m8SvQe6LQxJsU+r0PEaWANI5EWKinsf645HIE1c6j2UiHWM4P4/xXYt4jk3E+6MhJOK5T9RYL76ErbZE7/Wf3UQ9U0gPTGIDAAAAAAAAQKqpkfcxsX26EpuY2AAAAAAAAAAA32IlNgAAAAAAAACkmmp5v0TZpyuxmcQGAAAAAAAAgFTDJDbgzq+JpWz80C8vk5R5mQwyFrG145SgRLInfLMli4iRp0kXLUninPP97WVJoGhNHlhir+zVuf1dGorO0lZDnTfYczTq1v9MdSwv/1m29Zi815zLb8qY6Fh+y3XTrHWZAc7ZCAP/sQcCyyp1TnrZp8A5saQkLV3sfG1uKnFObDm0JIbkjWVuz7nze8aWwDFRSRKTmWymIdqxt9/w5xnLPfPD95kTv/YLgDe8TmYWzWdsKny+NERCS6/Fl1zNaewRYdJiyxg8vgSZESZDdGjbKXl8QzyP8b0/HAodElzu3TfS30y232L71hfZflElwyxwON7hPkSefNK7hNl+lLjPCad7HWmiUNt+jfveIPmYxAYAAAAAAACAVLNHabMSm8SOAAAAAAAAAADfYiU2AAAAAAAAAKSaWkn2yJqx8bo+jwSMMT7tWnqoqKhQMBhUeXm58vLykt0dpAgv42jHEvfVy1ix9ri33sbTiuWaWc2xnOeFLjHp5ljOZ2z83anTr9Q5vrab6zTDsXyl+kRd1y097HGsF33QL6p2JtbMtNa1MsP5GLc+37LYuW+Bx+1fgbbY40PnWmJfe3gvJdljrM+zPWeRxTAMZ4nv7sYSk9E9vreNl3221+VlTPBo20B6Y5yXvtLh3scTJzsV8uukch+dJKLf8fYnvu9lp/GB09ig/n623x2RPuPx7Bc55/GPU9+d24n8vCOpL5rzi+eaAX6W7O/6uvZ1YLkU8Lh9UyFt9984hpXYAAAAAAAAAJBqqiU5JYSNh0+XOxMTGwAAAAAAAADgW6zEBgAAAAAAAIBUk0YrsZnEBgAAAAAAAIBUs0dpM4lNYsckS3Yg+ERxS2KR7AQOqZC0ZV+Nqc92LgnnLrAkIXHJa2hKncut/bIlb3TjlthvtnNx1pAKx/I+BSutVZ2stx3LbckLJWnKYOfym4+1HOCc71GSVDEgy7E877gq+0EDLOWDomtDku7KdG7HLUXhV6afy1ZnQwP3OJb3M185li8LFLvUZkk66PacLbSUz/MuGas7yxW1vf+sCSelWBI4JiIZbSyS/Tmbip//6Sxdxnmoj3sfm8ae7M0pobnXycz3thNZYj+n72evr3d0yf4iuz6OdebXr89p/B/dmMDbaxbX+UUhvqSSyXlObFL1M8Fv/fa6P4xH90r2d30osWNGAyV2rPHfOIaV2AAAAAAAAACQamqUNiuxSewIAAAAAAAAAPAtVmIDAAAAAAAAQCry6cppr7ESGwAAAAAAAADgWyR2TLJkB4KHXbono4zl/D1NHhcDt8Q4gQLLhjJLnx2Sw3x/jCWB3Rx7+5NKbnQsvzXwM8dy89ox1roC/3H+2Datog+EtWhQP8fyIT2WRV1X9hvl1m03tAw6ll9V7ZzA0Za8UZJ6xZCkccjiZY7ltoSXbmrMDY7ltnspScp3fjb6ldqzkS4rGRJVvzTMZZst6ajtWXYVfZJGL8Xy+ZOIz2ynZE3ft+990i6kBsZ56Yt771+RJjiLZlwb6fGRJwCMr4/xtBNpfQ2RuM75u9TbcUcyExLGx/abKbKki14ndnTSENfW6/drNH1MVCJWpK5kf9eHEjuqXJLX7VdI8t84hpXYAAAAAAAAAADfYhIbAAAAAAAAAOBbTGIDAAAAAAAAAHwrM9kdANKFLV5qbHG1oo8jnYg42jGxxAo2pfZD7DHPXK6lNfav5Vq6xQq29FkL7YfcqqmO5f2Mc0zk7FJ7fOlJBc7xtbXY3r4t9nON6eNYPuOD6+yVWVT2cI57LUk3WeJI3xWY5lh+82v2dipqVkbVL0mqGOAce3uZecF6zAs1ZzmWH1RquTZzoo8VtixQ7LI1yliK89w2Rh5H0T+i+5xL9mdZKsZITHYccQDpId7YwN5/HtX/fok3/nWk+/ktBnU8x0d+fs7f55F/b0Yao7n+fk5tRBN32+vr48Txmjnl5okij098caQji7EdjUhjS7vlF4lF/O+P2Md28dyDaPK/MF5DumESGwAAAAAAAABSzp7/vbyu038IJwIAAAAAAAAA8C1WYgMAAAAAAABAyqn+38vrOv2HldgAAAAAAAAAAN9iJTZg4XWSBC+Tftnq8jZJlz2pWixJIq19syRQDBTYr5en92aOpZ2xLscMib6ZfiXOCRxP1tvO5QXO5ZJ0y0TnZIgVM5yTF+5V5VxXD+e63ExZ51y+yPSzHnPLYud2bE+sLRHlXs7n4saWKPKewUOtx8y0JKOsavm58wG2Z0myJ/10OSZrSHvn9hdZEkheGEsyHPv7PNrPLNdkVU4JiiR7kiJJtiRLgUD0ySijSZAT6zGpmFjHyz6TJBKITDom5mqI84vvOiYmcV1DtFO/Xe+TZnr9jEbzuyXyZIiRjQWiSTTptcgTSDokpHRMcB/5PQgEIkte6nz/IxtPRpqsMd7jYxn3ubcb3zgu0uvYEJ97XvcxVTXE+aX+NSMmNgAAAAAAAAAAScdKbAAAAAAAAABIOekTE5tJbAAAAAAAAABIOdXyPvyHPyexCScCAAAAAAAAAPCtgDHGJLsT6ayiokLBYFDl5eXKy7Mk60LEvEw4GEsg/0QlCbMl3IgleaSn51/gstGWDHGeLXmISxIPW5I4F84JUux9zvqsIuo2rAn3JE0qudGxfEbpdY7lldOC9oYGWcoX2w/pP/NVx/KlE50TG065016XLUmiWzLGmydYjrG0c/Ox9ro0wFJuuy6Sso8rdyx3u87rLX1rX+2cQDP4TKW1rqwhzs9TVcu7rMdojuU5v9D5PdvP9LJWtazA8gacbW8++kSR3iVclBpXAkUvxZLEKxEJHNP9vtgwzktf6XDv40kqGM1nRjwJ6SIdG0d3Lg6J+BwT0sWTuDDeJHyRJRB00jDXzKkdh/NxGJc7jeEjvz6RJna0jGEcfnPE059IRZeQMsJ7ne9wXx0SbEf8nDnWF/nzGM/9TxSvP1Pief9Hc3wypX6CxOgk+7u+rn3pb5JaeFz7DkldfDeOYSU2AAAAAAAAAMC3iIkNAAAAAAAAACknfRI7shIbAAAAAAAAAOBbrMROE7HEak5F0caddjvGy/a9PsYee9Yeo8seMy+G/Z1ioEn2uNeStMi2wflcXGPlusXetuhv68AQ505XjbXHfXp1bn/nDSX29leqj2P5CwVnOZZXzHCOuyxJd2VWOZa7RTpcKufY17a4z7YY1pIk5zDeru1n3+Ack/qGO11if9vYYl9b+iVJN6xzbsctmmMv08+xvH3NSucDFrpUZnlvTDLO91KSbrXFa992lWP5soBLfO18Swfc4l7b3ucO8RP3cnkCLHW5vZfTPY5ztH2OJTZpLN+Nfr5mABLLf58H9ceUgUBksXidRPN5G087kX5+Rxdr1ilGd2TxfSNvJ7LY0tF9bznV6TSGqL9fvDG6Hbn9ttmPeGIDRx7f28bh91WZQ5lDzO+I70uE8bT31ulUFulzX78sUZ89seSb+v7YyK5tvOfi/Js9sjw1DXEdE3Fv0i3udmSqJe1pgDr9h5XYAAAAAAAAAICoTZ8+Xccff7xatGihwsJC/eQnP9Enn3zieTtMYgMAAAAAAABAyqluoFfkli9frssvv1zvvPOOlixZourqag0aNEi7du2K//R+gHAiAAAAAAAAAJBy9sj7cCLR1bdoUXj41scee0yFhYVas2aNTjnlFM96xSQ2AAAAAAAAACCkoqIi7N/Z2dnKzs7e73Hl5XtzYhUUxJDQzEXAGGM8rRFRqaioUDAYVHl5ufLy7Ink/CYVk2RFq7Elw7Qnaows8UM4WwI3t7qcj7ElzHBN9nGB5fpbk0fKnozOIaGJJGV9VuFYLkmV7zsnCQz8x/5xalo5ZCVx45KkcP065/L21dEng1xmXnUuL7Fnspk8z/lcbj7Weoi1z17q7pKMsv9M5/N0s7LUORln5QBLMsoZ9roWDepnOcR+o0/W2/YKneoqdXloYlB1hIffSWXOnz9Z29rb22/5eXRt2BJRSi7JKO2i/Zx3T1AU3ecfGo9UHechfvHe+0iT8KWqRP2WiCcBWDR99DrRWORJGJ2/XyNN2Oh8bBz9dpqrsHwHO15HpyTpDuN7U+rQdoT3IJp75XQ+Tm1HyvEeOP0Wcbpmlt8sjtciwjmjSM8l0mSPMf2ui0E872F78kmXZOdhxyfnveU30dzTxn3e30n6fdLGeXVjDWm5pAM8rn2npL71Sm+++WZNnjzZ9UhjjM466yyVlZXp7bej+027P6zEBgAAAAAAAACEbN68OWyCPpJV2GPHjtX69eu1YsUKz/vDJDYAAAAAAAAApJxqeR8Te29ix7y8vKhWmV9xxRV68cUX9dZbb+mQQw7xuE9MYgMAAAAAAAAAYmCM0RVXXKEFCxZo2bJl6tChQ4O0wyQ2AAAAAAAAAKScatWtnPa2zshdfvnlmjt3rl544QW1aNFCW7ZskSQFg0Hl5OR41isSOyZZY0v4k8wkLbG2E0uiCXtCCC/rcksuYUugaEu4GD235EGOSVck18SK0SZBcU1IYs85aDcsut37ldhP5oWasxzLgwdVWo+ZVHqjY7ktGZ9bUjvz2jGO5VMGWw9RL9PPsfzdwDLHcrckjVPW2bclQo25wbF8Ys1M6zG2xJY3uySDrJjhnCgz7zjnutzc9IFzn/topfWYoQVLHcttSUevK7Bnlrx17lSX3lkstJTb3hqW5I17JSCBrCXhkWT//Inlc9bL7xm3uqL9PnGvK/LEX/BWYxvnIXJ+vPdeJx9sCF4n54sn4VqiEpdFfi7xJfuM5/hIE/s5i/z7NJ4EgHE9JxEmQpQUcbLoSO9hbGOk/ZhTv23j8Pst4vOOOEF2NGO3yBJDxvPsNcQ4J94kl/Xri/yZ8PqzsCGS1Cbq88wvkv1d/31ix9ck5Xpc+y5JgyM+t0Ag4Fj+2GOPadSoUZ71ipXYAAAAAAAAAJBy9sj7mNjR1Zeo9dFMYgMAAAAAAABAykl+OJFEaZLsDgAAAAAAAAAAYENM7CRLdgwdJE4iYpK6xpGzxIu1x4p1i30WQ+ztOZbzvNASkzbf25hYtpjU1ljBY+112WISVx3h8h62xAt+1VzpWD5k8TJrVRUDnGM12+I+S+6xn52sv9O+rftrzuVuMbltcaxtMaGH9Fhmravi/ehjVdvieNv6JUm3TJzmWH7TTOdjzg047y9J3S3Xv//MV63HnKy3Hcvf1snWY2yWlVgCybvFir/Q9hng/P53jaNv+zy5wCXGXkyxt53Z+uYaCzLKdtzPP/rP/0TlmEDDYpyXvpJ57+P9/GgssUrjZR8Lex3/1klkcZKjy9PT8P2OLkZ3HPGqI47RHKnIYzknKtdTXJzGV/Niv95OvxejiZ2crBj2DRHL2WsNcR0bou1IjvXi+FjrS5Zkj/O+j4n9f5Kae1z7fyWd67sxLCuxAQAAAAAAAAC+RUxsAAAAAAAAAEg5xMQGAAAAAAAAACDpWIkNAAAAAAAAAClnz/9eXtfpPyR2TLJkB4JH4iQ7SVfUSUMsiSAlezJI1/ZLLBsckozsr31rwrULXJLJWBLY9SuxZY+zsyXcm1gz03rMQeXfOpZ/GzzIsXxmxkRrXRmWBIJuyRsXzexn3+jg3cCy/9/evcdFWeV/AP+M3K+jeANS0VIRxVqFVaEttAuiy4Yve6UmEZVrUZma265aGlCb6baZ3czLivpq81ZqvcrUdTdQVtC8oNHiPRJKjDQQKrnJ9/dHPybHeZ5xLgwzw/N5v16+as6c8zznnDnz8J2H4XxVn1M7j7kkhSN1YxTL80S5Te6/lOsDwKhE69vsSBypWB5/RTmxJAAEz1ZOFKk2lwWIVz3Wi5OVE4h6v6WcJNQWs0MWWd1GNbGpOZ+olK83k/SpNRO1vqVSrpYkFrYlJHP2NZscz9zPxdZ6nRnnaZcrvvbOSlymBW2RcE0x+aDaz1fFWFkpWaTzkj22dpJL5eSMliVmtCUBs3H71k3OaG9CQmUWrh9Lk2aa+6xmAVs+T7YG9XVnexJPXlut117mzNk/639N7PguHJPYMc2l4hiA38QmIiIiIiIiIiIickPa+SY2b2ITERERERERERERuR0mdiQiIiIiIiIiIiIicjp+E5uIiIiIiIiIiIjI7TSh9bf/cM1vYvMmNlEbcXaiAmvPbz5JiPKxzLZRS/6hVp6kfijvt3orltffqVNt4/PWJcXyvBDlE438QT3hYzzUkwGqUUvgmOLxkWK5WvJIAMj8jXK5z7PKYwSA+iF61eeUJO1Uf+75xGcVy80mY1RJ4Fjwg3IyxJo7vVWPpZYkcoeMVG2zCLOVn/BQbYJcKJ8n6Zk85QbqeT0xf91ziuXmkoGqJfe0Zf2NWZdrdRurEziaS6yqRi2xqxkyWeWaMVn9/LYkXHL2NZscj68xaQ3XvPtQTj6okAjtB7WkiZYlQ7Ql8fGvLEsUaW+iZEvHYnkSRwuTZqr2x9KElq2d2LP1z6N8boVChc9rbZWY0dIEgLoQ07ZKfVRf87a/F3httR7njGzFm9hEREREREREREREbod7YhMREREREREREREROR2/iU1ERERERERERETkdhrR+rd3W3uP7dbBm9hEpMjcPlW6yWrPmNlPTmWPa1mncg6Ffc1aNEwLViwfVaS87zIAzMYi5SdU9nN7MeQl1WPlblDeK9knVn1P6o9CUhTL1faEvi1EfU/s7CPWnQMA1Iavtr+1uX2XX/jXAquOZU58iPJ59JPr1Rvdr1w8H8r7TgPq+3Wb23v7+b8rj+eFIcrjT/lBeX9zQP21UdsTHVDfrx1vKRd7J9WoHmv75FGK5eb2yvZ+S/l4DWp7BiarHgpItX4/TLVrgC17a3LfPSIicqS2+DljzTlaf59kC/cltmIvZ6W9pe3bo1vpHJb12/72lvXb0v247e2jEkv3kVZUpXQO+15/JcrjtmyfdcZ6RNrAm9hEREREREREREREbod7YhMREREREREREREROR2/iU1ERERERERERETkdprQ+ntYu+Y3sXkTm4iIiIiIiIiIiMjtaGc7Ed7EJiKrqSZjXL9VvVGycsITnx+Uk8fN/0ElEyHMJ11UbTNZpY1KMrrtPygnwgMAXYhY3UYt6d/sEOVxqiVPBADde8rnH4kdqm3CR+cplr94v/K8jFynfqwxk1SSAaokHAQAfKJcfOldH8Vy/Q71xI5q82wuseKLF5THud1D/TVTS26pi1Kef1mgUz1WzSLlBJJ5aSrJGwHM/0E9UaW1FmG21W0adignUDWzzNR1sj7ZjqgkXdWpTzMREZHbcdckdY5ImqjTmX6WsDyBpFKCRPsSRdrzOtgzP/YnvTSdC0VVSudRmm/Teo54/ZUojdvSWNBd31tEpI57YreCpUuXok+fPvD19UVMTAzy8/Od3SUiIiIiIrIDY3wiIiJyfY0O+ud6eBPbThs3bsTMmTPx3HPPoaioCLfddhvGjBmDsrIyZ3eNiIiIiIhswBifiIiIyLXwJradFi9ejClTpuCPf/wjoqKisGTJEvTs2RPvvPOOs7tGREREREQ2YIxPRERE7qHJQf9cD/fEtkNDQwMOHTqEOXPmGJUnJiaioEB5L9X6+nrU1/+61+ulS5cAADU1yvsCE7mXOvWnflZe46Ky9us91fdEhii3aar5Sb1No8p77Gfl4p9qzFy0Vc5vro214zQ3FLW5NDf+H9WeUJkXs3OpMn61ufzlPMrFNTXK+0urngPq86w2xwBse53VqMxZjZklqzpOtXUJoN7cAa3UBJXXU2UtmaUyFLN/cabSxrYffcrXGf4cJVfUsi5F1N445IoY41PbMv255nrrxkyMfxXr+m3PMZXamka7zp1He15Xa8Ziz1zYXs/+ddsW8+MO7y1yZ64T57Xe50bHHtN+OnH+bLutc+fO4YYbbsDevXsRHx9vKF+wYAHWrl2LEydOmLTJyspCdrZlSQyIiIiIyP2dOXMGN954o7O7QRZijE9ERESWclacV1dXhz59+uD8+fMOOX5oaChKS0vh6+vrkOPbgt/EbgW6a9LjiohJWYu5c+di1qxZhsfV1dWIiIhAWVkZ9Hq9Q/vZ3tTU1KBnz54oLy9HcHCws7vjVjh39uH82Y5zZzvOne04d/bh/Nnu0qVL6NWrF0JCQpzdFbIBY3zbaP2aoeXxc+zaHDug7fFreeyAtsfv7DjP19cXpaWlaGhocMjxvb29XeoGNsCb2Hbp0qULPDw8TH7rUVlZie7duyu28fHxgY+Pj0m5Xq/X3Bu+tQQHB3PubMS5sw/nz3acO9tx7mzHubMP5892HTowDY07YYzfOrR+zdDy+Dl2bY4d0Pb4tTx2QNvjd2ac5+vr63I3mh2JEbUdvL29ERMTg127dhmV79q1y+hPD4mIiIiIyD0wxiciIiJyPfwmtp1mzZqFtLQ0xMbGIi4uDitWrEBZWRkyMjKc3TUiIiIiIrIBY3wiIiIi18Kb2HaaOHEiLl68iBdeeAEVFRWIjo7Gp59+ioiICIva+/j4IDMzU/HPD8k8zp3tOHf24fzZjnNnO86d7Th39uH82Y5z574Y49tOy2MHtD1+jl2bYwe0PX4tjx3Q9vi1PHZn0YmIOLsTRERERERERERERERKuCc2EREREREREREREbks3sQmIiIiIiIiIiIiIpfFm9hERERERERERERE5LJ4E5uIiIiIiIiIiIiIXBZvYjvYSy+9hPj4ePj7+6Njx44WtRERZGVlITw8HH5+fhg5ciT+97//GdWpr6/HU089hS5duiAgIAD33HMPvvnmGweMwHmqqqqQlpYGvV4PvV6PtLQ0VFdXm22j0+kU/73yyiuGOiNHjjR5ftKkSQ4eTduzZf4eeughk7kZMWKEUR2uPVONjY2YPXs2Bg8ejICAAISHh+PBBx/EuXPnjOq1x7W3dOlS9OnTB76+voiJiUF+fr7Z+rt370ZMTAx8fX1x4403YtmyZSZ1Nm/ejIEDB8LHxwcDBw7E1q1bHdV9p7Nm/rZs2YK7774bXbt2RXBwMOLi4rBz506jOmvWrFG8BtbV1Tl6KG3OmrnLy8tTnJfjx48b1dPK2rNm7pR+Luh0OgwaNMhQRyvrbs+ePfjDH/6A8PBw6HQ6fPjhh9dtw2te+6XlGF/rMbqWY2ytxchajnO1HqNqOc7UapzIOM9NCDnU888/L4sXL5ZZs2aJXq+3qM3ChQslKChINm/eLMXFxTJx4kQJCwuTmpoaQ52MjAy54YYbZNeuXXL48GEZNWqU3HLLLdLU1OSgkbS9pKQkiY6OloKCAikoKJDo6GhJTk4226aiosLoX05Ojuh0Ojlz5oyhTkJCgkydOtWoXnV1taOH0+Zsmb/09HRJSkoympuLFy8a1eHaM1VdXS133XWXbNy4UY4fPy6FhYUyfPhwiYmJMarX3tbehg0bxMvLS1auXCklJSUyY8YMCQgIkLNnzyrW/+qrr8Tf319mzJghJSUlsnLlSvHy8pIPPvjAUKegoEA8PDxkwYIFcuzYMVmwYIF4enrKvn372mpYbcba+ZsxY4YsWrRIPv/8czl58qTMnTtXvLy85PDhw4Y6q1evluDgYJNrYXtj7dzl5uYKADlx4oTRvFx93dLK2rN27qqrq43mrLy8XEJCQiQzM9NQRyvr7tNPP5XnnntONm/eLABk69atZuvzmte+aTnG13qMruUYW0sxspbjXK3HqFqOM7UcJzLOcw+8id1GVq9ebVGA29zcLKGhobJw4UJDWV1dnej1elm2bJmI/HKh8PLykg0bNhjqfPvtt9KhQwfZsWNHq/fdGUpKSgSA0Zu7sLBQAMjx48ctPk5KSorccccdRmUJCQkyY8aM1uqqS7J1/tLT0yUlJUX1ea49y9fe559/LgCMfuC3t7U3bNgwycjIMCobMGCAzJkzR7H+X/7yFxkwYIBR2WOPPSYjRowwPJ4wYYIkJSUZ1Rk9erRMmjSplXrtOqydPyUDBw6U7Oxsw2NLf9a4O2vnruXDRVVVleoxtbL27F13W7duFZ1OJ19//bWhTCvr7mqWfLjhNU8btBbjaz1G13KMrbUYWctxrtZjVC3HmYwTf8E4z3VxOxEXU1paivPnzyMxMdFQ5uPjg4SEBBQUFAAADh06hMbGRqM64eHhiI6ONtRxd4WFhdDr9Rg+fLihbMSIEdDr9RaP8bvvvsO2bdswZcoUk+fee+89dOnSBYMGDcIzzzyD2traVuu7K7Bn/vLy8tCtWzf0798fU6dORWVlpeE5rj3Lx3jp0iXodDqTPzFuL2uvoaEBhw4dMloLAJCYmKg6T4WFhSb1R48ejYMHD6KxsdFsnfayvlrYMn/Xam5uRm1tLUJCQozKf/zxR0RERKBHjx5ITk5GUVFRq/XbFdgzd0OGDEFYWBjuvPNO5ObmGj2nhbXXGutu1apVuOuuuxAREWFU3t7XnS14zaOrtZcYX+sxupZjbC3FyFqOc7Ueo2o5zmScaJ328p53N57O7gAZO3/+PACge/fuRuXdu3fH2bNnDXW8vb3RqVMnkzot7d3d+fPn0a1bN5Pybt26WTzGtWvXIigoCOPHjzcqT01NRZ8+fRAaGoovv/wSc+fOxdGjR7Fr165W6bsrsHX+xowZg/vuuw8REREoLS3F/Pnzcccdd+DQoUPw8fHh2rNwjHV1dZgzZw4mT56M4OBgQ3l7WnsXLlzAlStXFK9VavN0/vx5xfpNTU24cOECwsLCVOu0l/XVwpb5u9arr76Kn376CRMmTDCUDRgwAGvWrMHgwYNRU1OD119/HbfeeiuOHj2Kfv36teoYnMWWuQsLC8OKFSsQExOD+vp6vPvuu7jzzjuRl5eH22+/HYD6+mxPa8/edVdRUYHt27dj3bp1RuVaWHe24DWPrtZeYnytx+hajrG1FCNrOc7Veoyq5TiTcaJ12st73t3wJrYNsrKykJ2dbbbOgQMHEBsba/M5dDqd0WMRMSm7liV1nM3SuQNM5wCwbow5OTlITU2Fr6+vUfnUqVMN/x8dHY1+/fohNjYWhw8fxtChQy06trM4ev4mTpxo+P/o6GjExsYiIiIC27ZtM/mgYc1xXUFbrb3GxkZMmjQJzc3NWLp0qdFz7rz21Fh7rVKqf225Ldc/d2XrWNevX4+srCx89NFHRh8oR4wYYZQo6tZbb8XQoUPx5ptv4o033mi9jrsAa+YuMjISkZGRhsdxcXEoLy/H3//+d8OHC2uP6c5sHeeaNWvQsWNHjBs3zqhcS+vOWrzmuRctx/haj9G1HGMzRlan5ThX6zGqluNMxomWa0/veXfBm9g2mDZt2nWzJffu3dumY4eGhgL45bc6YWFhhvLKykrDb3BCQ0PR0NCAqqoqo9/WV1ZWIj4+3qbzthVL5+6LL77Ad999Z/Lc999/b/KbLCX5+fk4ceIENm7ceN26Q4cOhZeXF06dOuXyNxLbav5ahIWFISIiAqdOnQLAtXe9uWtsbMSECRNQWlqKzz77zOgbJkrcae1dq0uXLvDw8DD5LfLV16prhYaGKtb39PRE586dzdaxZt26A1vmr8XGjRsxZcoUvP/++7jrrrvM1u3QoQN++9vfGt7D7YE9c3e1ESNG4J///KfhsRbWnj1zJyLIyclBWloavL29zdZtj+vOFrzmuR8tx/haj9G1HGMzRjal5ThX6zGqluNMxonWaS/vebfj+G23ScT6pC+LFi0ylNXX1ysmfdm4caOhzrlz51wq8Ye9WhKH7N+/31C2b98+ixOHpKenm2S9VlNcXCwAZPfu3Tb319XYO38tLly4ID4+PrJ27VoR4dozN3cNDQ0ybtw4GTRokFRWVlp0Lndfe8OGDZPHH3/cqCwqKspswpuoqCijsoyMDJPkF2PGjDGqk5SU1C6TX1g7fyIi69atE19f3+smGmnR3NwssbGx8vDDD9vTVZdjy9xd695775VRo0YZHmtl7dk6dy1Ji4qLi697jva67q4GCxP+8JrX/mktxtd6jK7lGFtrMbKW41ytx6hajjMZJ/6CcZ7r4k1sBzt79qwUFRVJdna2BAYGSlFRkRQVFUltba2hTmRkpGzZssXweOHChaLX62XLli1SXFws999/v4SFhUlNTY2hTkZGhvTo0UP+/e9/y+HDh+WOO+6QW265RZqamtp0fI6UlJQkN998sxQWFkphYaEMHjxYkpOTjepcO3ciIpcuXRJ/f3955513TI55+vRpyc7OlgMHDkhpaals27ZNBgwYIEOGDGlXcydi/fzV1tbKn/70JykoKJDS0lLJzc2VuLg4ueGGG7j2rjN3jY2Ncs8990iPHj3kyJEjUlFRYfhXX18vIu1z7W3YsEG8vLxk1apVUlJSIjNnzpSAgABDNuo5c+ZIWlqaof5XX30l/v7+8vTTT0tJSYmsWrVKvLy85IMPPjDU2bt3r3h4eMjChQvl2LFjsnDhQvH09JR9+/a1+fgczdr5W7dunXh6esrbb79ttMaqq6sNdbKysmTHjh1y5swZKSoqkocfflg8PT2NPnC2B9bO3WuvvSZbt26VkydPypdffilz5swRALJ582ZDHa2sPWvnrsUDDzwgw4cPVzymVtZdbW2tIY4DIIsXL5aioiI5e/asiPCapzVajvG1HqNrOcbWUoys5ThX6zGqluNMLceJjPPcA29iO1h6eroAMPmXm5trqANAVq9ebXjc3NwsmZmZEhoaKj4+PnL77beb/Ebr8uXLMm3aNAkJCRE/Pz9JTk6WsrKyNhpV27h48aKkpqZKUFCQBAUFSWpqqlRVVRnVuXbuRESWL18ufn5+Rj80W5SVlcntt98uISEh4u3tLTfddJNMnz5dLl686MCROIe18/fzzz9LYmKidO3aVby8vKRXr16Snp5usq649n5x9dyVlpYqvs+vfq+317X39ttvS0REhHh7e8vQoUONvjGTnp4uCQkJRvXz8vJkyJAh4u3tLb1791b8IPv+++9LZGSkeHl5yYABA4wCwPbGmvlLSEhQXGPp6emGOjNnzpRevXqJt7e3dO3aVRITE6WgoKANR9R2rJm7RYsWyU033SS+vr7SqVMn+d3vfifbtm0zOaZW1p6179vq6mrx8/OTFStWKB5PK+uu5VtGau9BXvO0RcsxvtZjdC3H2FqLkbUc52o9RtVynKnVOJFxnnvQifz/zuNERERERERERERERC6mg7M7QERERERERERERESkhjexiYiIiIiIiIiIiMhl8SY2EREREREREREREbks3sQmIiIiIiIiIiIiIpfFm9hERERERERERERE5LJ4E5uIiIiIiIiIiIiIXBZvYhMRERERERERERGRy+JNbCIiIiIiIiIiIiJyWbyJTUTUxkaOHImZM2c6uxuakJWVBZ1OB51OhyVLljilD7179zb0obq62il9ICIiImoLjHPbDuNcItIa3sQmIiKneeihhzBu3DiHnmPQoEGoqKjAo48+6tDzqDlw4AA2b97slHMTERERkXMwziUial28iU1EpGGNjY3O7kKraGhoUH3O09MToaGh8Pf3b8Me/apr164ICQlxyrmJiIiItIpxruMxziWitsSb2ERETtDU1IRp06ahY8eO6Ny5M+bNmwcRUa2flZWF3/zmN1i+fDl69uwJf39/3HfffUZ/tnfgwAHcfffd6NKlC/R6PRISEnD48GGj4+h0OixbtgwpKSkICAjAX//6V1y5cgVTpkxBnz594Ofnh8jISLz++utG7Vq+SbJgwQJ0794dHTt2RHZ2NpqamvDnP/8ZISEh6NGjB3Jycozaffvtt5g4cSI6deqEzp07IyUlBV9//bVhTGvXrsVHH31k+DPEvLy867a7uj8vv/wywsPD0b9/f6vmX6fTYfny5UhOToa/vz+ioqJQWFiI06dPY+TIkQgICEBcXBzOnDlj8hrk5OSgV69eCAwMxOOPP44rV67gb3/7G0JDQ9GtWze89NJLVvWFiIiIqD1hnMs4l4jIEXgTm4jICdauXQtPT0/s378fb7zxBl577TX84x//MNvm9OnT2LRpEz7++GPs2LEDR44cwZNPPml4vra2Funp6cjPz8e+ffvQr18/jB07FrW1tUbHyczMREpKCoqLi/HII4+gubkZPXr0wKZNm1BSUoLnn38ezz77LDZt2mTU7rPPPsO5c+ewZ88eLF68GFlZWUhOTkanTp2wf/9+ZGRkICMjA+Xl5QCAn3/+GaNGjUJgYCD27NmD//73vwgMDERSUhIaGhrwzDPPYMKECUhKSkJFRQUqKioQHx9/3XYt/vOf/+DYsWPYtWsXPvnkE6tfgxdffBEPPvggjhw5ggEDBmDy5Ml47LHHMHfuXBw8eBAAMG3aNKM2Z86cwfbt27Fjxw6sX78eOTk5+P3vf49vvvkGu3fvxqJFizBv3jzs27fP6v4QERERtQeMcxnnEhE5hBARUZtKSEiQqKgoaW5uNpTNnj1boqKiVNtkZmaKh4eHlJeXG8q2b98uHTp0kIqKCsU2TU1NEhQUJB9//LGhDIDMnDnzun184okn5N577zU8Tk9Pl4iICLly5YqhLDIyUm677Taj8wUEBMj69etFRGTVqlUSGRlpNM76+nrx8/OTnTt3Go6bkpJidG5L23Xv3l3q6+vNjiMzM1NuueUWk3IAMm/ePMPjwsJCASCrVq0ylK1fv158fX2NjuXv7y81NTWGstGjR0vv3r1N5uXll182Ol9ubq4AkKqqKrP9JSIiInJnjHMZ5xIROQq/iU1E5AQjRoyATqczPI6Li8OpU6dw5coV1Ta9evVCjx49jNo0NzfjxIkTAIDKykpkZGSgf//+0Ov10Ov1+PHHH1FWVmZ0nNjYWJNjL1u2DLGxsejatSsCAwOxcuVKk3aDBg1Chw6//tjo3r07Bg8ebHjs4eGBzp07o7KyEgBw6NAhnD59GkFBQQgMDERgYCBCQkJQV1dn9OeL17K03eDBg+Ht7a16nOu5+eabjcbScsyry+rq6lBTU2Mo6927N4KCgozqDBw40GReWuaAiIiISGsY5zLOJSJyBE9nd4CIiGzT8uGg5b8PPfQQvv/+eyxZsgQRERHw8fFBXFycSTKYgIAAo8ebNm3C008/jVdffRVxcXEICgrCK6+8gv379xvV8/LyMjm/UllzczMAoLm5GTExMXjvvfdM+t61a1fVcVna7tpxWOvqvrfMoVJZy3iufb6ljrk5ICIiIiLrMc5lnEtEdC3exCYicoJr95Jr2dvPw8NDtU1ZWRnOnTuH8PBwAEBhYSE6dOhgSPaSn5+PpUuXYuzYsQCA8vJyXLhw4bp9yc/PR3x8PJ544glDmblvkFhq6NCh2LhxI7p164bg4GDFOt7e3ibfyrGkHRERERG5Jsa5v2CcS0TUuridCBGRE5SXl2PWrFk4ceIE1q9fjzfffBMzZsww28bX1xfp6ek4evQo8vPzMX36dEyYMAGhoaEAgL59++Ldd9/FsWPHsH//fqSmpsLPz++6fenbty8OHjyInTt34uTJk5g/fz4OHDhg9xhTU1PRpUsXpKSkID8/H6Wlpdi9ezdmzJiBb775BsAvf7b4xRdf4MSJE7hw4QIaGxstakdERERErolxLuNcIiJH4E1sIiInePDBB3H58mUMGzYMTz75JJ566ik8+uijZtv07dsX48ePx9ixY5GYmIjo6GgsXbrU8HxOTg6qqqowZMgQpKWlYfr06ejWrdt1+5KRkYHx48dj4sSJGD58OC5evGj0bRVb+fv7Y8+ePejVqxfGjx+PqKgoPPLII7h8+bLhmydTp05FZGSkYZ/CvXv3WtSOiIiIiFwT41zGuUREjqATEXF2J4iIyLysrCx8+OGHOHLkiLO74lZcZd7y8vIwatQoVFVVoWPHjk7tCxEREZErcZV4zd24yrwxziWitsJvYhMRUbtWXFyMwMBAo2/ztKVBgwZhzJgxTjk3EREREbVfjHOJSEuY2JGIiNqt6dOn44EHHgBgPlO8I3366adobGwEAP6ZKBERERG1Csa5RKQ13E6EiIiIiIiIiIiIiFwWtxMhIiIiIiIiIiIiIpfFm9hERERERERERERE5LJ4E5uIiIiIiIiIiIiIXBZvYhMRERERERERERGRy+JNbCIiIiIiIiIiIiJyWbyJTUREREREREREREQuizexiYiIiIiIiIiIiMhl8SY2EREREREREREREbms/wNoUWTCCpnujwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1800x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#b parameter des fits [:,1] hat für lost eine breitere Verteilung. Warum?\n",
|
|
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
|
|
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
|
|
"\n",
|
|
"#isolate b parameters for analysis\n",
|
|
"b_found = scifi_fitpars_found[:,1]\n",
|
|
"b_lost = scifi_fitpars_lost[:,1]\n",
|
|
"\n",
|
|
"brem_energy_found = scifi_fitpars_found[:,5]\n",
|
|
"brem_energy_lost = scifi_fitpars_lost[:,5]\n",
|
|
"\n",
|
|
"\n",
|
|
"bs_found, vtxs_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n",
|
|
"bs_found = ak.to_numpy(ak.ravel(bs_found))\n",
|
|
"vtxs_types_found = ak.to_numpy(ak.ravel(vtxs_types_found))\n",
|
|
"\n",
|
|
"bs_lost, vtxs_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n",
|
|
"bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n",
|
|
"vtxs_types_lost = ak.to_numpy(ak.ravel(vtxs_types_lost))\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#Erste Annahme ist Bremsstrahlung\n",
|
|
"\n",
|
|
"fig, axes = plt.subplots(nrows=1,ncols=2,figsize=(18,6))\n",
|
|
"\n",
|
|
"\n",
|
|
"n_bins = (np.linspace(-1,1,100), np.linspace(0,1e5,100))\n",
|
|
"\n",
|
|
"h0 = axes[0].hist2d(b_found, brem_energy_found, bins=n_bins, cmap=plt.cm.jet, cmin=1,vmax=15)\n",
|
|
"axes[0].set_xlim(-1,1)\n",
|
|
"axes[0].set_ylim(0,1e5)\n",
|
|
"axes[0].set_xlabel(\"b parameter [mm]\")\n",
|
|
"axes[0].set_ylabel(r\"$E_{ph}$\")\n",
|
|
"axes[0].set_title(\"found photon energy wrt b parameter\")\n",
|
|
"\n",
|
|
"h1 = axes[1].hist2d(b_lost, brem_energy_lost, bins=n_bins, cmap=plt.cm.jet, cmin=1,vmax=15)\n",
|
|
"axes[1].set_xlim(-1,1)\n",
|
|
"axes[1].set_ylim(0,1e5)\n",
|
|
"axes[1].set_xlabel(\"b parameter [mm]\")\n",
|
|
"axes[1].set_ylabel(r\"$E_{ph}$\")\n",
|
|
"axes[1].set_title(\"lost photon energy wrt b parameter\")\n",
|
|
"\n",
|
|
"fig.colorbar(h1[3], ax=axes[1])\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAAIhCAYAAACrEJ+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFBUlEQVR4nOzdeXQUVdrH8V+TnSUNQUlAEEERDCgCRjbZZB9xXAfcEBAXxjiK6KiMC8R3BNEZRKVRcdS4DMsoq4qDoCwqUSObDnFjRGEwEWEgAWRL575/MGnpdCXpht5S/f2cU+fQlVu3blV19324fesphzHGCAAAAAAAAACiRK1INwAAAAAAAAAAjsWgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCVsb+7cuWrbtq1SUlLkcDi0YcOGSDfJ0sSJE+VwOCLdDC8Oh0MTJ04MeLslS5Yc13bV6d27t3r37l1tue+//14Oh0O5ublBb0N1ZsyYEdB+HQ6HbrvtttA1yOZC9V4DAIRPbm6uHA6Hvv/++5DUH2jfHC4rV66Uw+HQypUrA942VMfkb+wX6mtWmV9++UUTJ070+5yVn+M33ngjtA2zAWIqANGIQUvY2s8//6zhw4fr9NNP1z//+U/l5eXpzDPPjHSzbG/JkiXKyckJer0zZszQjBkzgl5vMEXrf4zsKlTvNQCAfdixbw7VMeXl5enGG28Mer3B8ssvvygnJ+e4BnpRNWIqANEoPtINAELpm2++0ZEjR3TdddepV69ekW4OTlBmZmakm1CpX375RbVr1450M0LiyJEjcjgcio+PnS7DztcTAIDKdOnSJdJNsGSM0cGDByPdjJCxc9xh52MDEHrMtIRtjRw5UhdccIEkadiwYXI4HF63Fi9evFhdu3ZV7dq1Va9ePfXv3195eXk+dZx22mk+dVvdyl1+m++rr76qs846S7Vr11b79u311ltv+Wz/9ttv69xzz1VSUpJatGihv/zlLwEd2/Lly9W3b1+lpqaqdu3a6t69u9577z3LNm7atElXX321nE6n0tPTdcMNN6i4uNirbElJiW666SY1bNhQdevW1aBBg/TNN994lVm4cKEcDofPfiTpmWeekcPh0Oeff66RI0fK5XJ5zkn58v3332vOnDlyOByaPn261/YTJkxQXFycli1bVuVxW90e/uOPP2ro0KGqV6+enE6nhg0bpqKioirrKT/m+Ph4Pf744551O3fuVK1ateR0OlVaWupZf/vtt+vkk0+WMcbTjnbt2mn16tXq1q2bateurRtuuEGnnXaaNm3apFWrVnmO2+r9Y+W5557TmWeeqaSkJGVmZmrOnDnVblN+G/xjjz2mRx55RKeeeqqSk5N13nnn+VynzZs3a9SoUWrVqpVq166tU045RRdffLG++OILr3Llt1G9+uqruuuuu3TKKacoKSlJmzdv1s8//6xbb71VmZmZqlu3rho1aqQLL7xQH3zwgWW7Hn/8cU2ZMkWnnXaaUlJS1Lt3b88PCffdd5+aNGkip9Opyy67TDt27PA5vrlz56pr166qU6eO6tatq4EDB2r9+vWev1f1XpOO/gdnxowZOvfcc5WSkqIGDRroyiuv1Hfffee1n8quJwAgsl588UW1b99eycnJSktL02WXXaYvv/zSq8x3332nq666Sk2aNFFSUpLS09PVt29fTzqg4+mbA+0/8vPz1aNHD9WuXVstW7bUo48+qrKyMq+yX331lQYNGqTatWvrpJNO0pgxY7R3716vMmPHjlWdOnVUUlLi06Zhw4YpPT1dR44cqfKYxowZo+TkZK1du9azbVlZmfr27av09HQVFhZWeexWt4d//PHH6t69u5KTk9WkSRONHz9eR44cqbIe6Wi863A4lJ+f71k3b948ORwOXXTRRV5lzznnHF1xxRVe7bjtttv07LPP6qyzzlJSUpJefvllnXzyyZKknJwcz7GPHDmy2rYcPHhQ48aNU0ZGhlJSUtSrVy+vmKIy5bfBL1u2TKNGjVJaWprq1Kmjiy++2Of9sGzZMl1yySVq2rSpkpOTdcYZZ+iWW27Rzp07vcqVx+jr1q3TlVdeqQYNGuj000+XJH322We66qqrPLHTaaedpquvvlo//PCDZbtWrFih3//+9zrppJPUsGFDXX755frxxx99joOYCkCNZQCb2rx5s3G5XEaSmTRpksnLyzObNm0yxhjz97//3UgyAwYMMAsXLjRz5841nTp1MomJieaDDz7w1DFixAjTvHlzn7onTJhgKn58JJnTTjvNnH/++eYf//iHWbJkiendu7eJj483//73vz3lli9fbuLi4swFF1xg5s+fb15//XWTlZVlTj31VJ86rbz66qvG4XCYSy+91MyfP9+8+eabZsiQISYuLs4sX77cp42tW7c2Dz30kFm2bJmZOnWqSUpKMqNGjfKUKysrM3369DFJSUnmkUceMe+++66ZMGGCadmypZFkJkyYYIwx5siRI6ZRo0bm2muv9WnT+eefbzp27Og571deeaWRZPLy8jzLwYMHjTHGjBkzxiQmJpr8/HxjjDHvvfeeqVWrlnnggQeqPfZevXqZXr16eV7/8ssv5qyzzjJOp9M8/fTTZunSpeb222/3nMuXXnqpyvq6dOliBgwY4Hk9Z84ck5ycbBwOh/noo48868866ywzdOhQr3akpaWZZs2amaefftqsWLHCrFq1yqxbt860bNnSdOjQwXPc69atq7INkkyzZs1MZmammT17tlm8eLEZNGiQkWRef/31KrfdsmWLZ/sLLrjAzJs3z/N+SkhIMGvWrPGUXbVqlbnrrrvMG2+8YVatWmUWLFhgLr30UpOSkmK++uorT7kVK1YYSeaUU04xV155pVm8eLF56623zK5du8xXX31lfv/735s5c+aYlStXmrfeesuMHj3a1KpVy6xYscKnXc2bNzcXX3yxeeutt8xrr71m0tPTzZlnnmmGDx9ubrjhBvPOO++YZ5991tStW9dcfPHFXsf2yCOPGIfDYW644Qbz1ltvmfnz55uuXbuaOnXqeD7H1b3XbrrpJpOQkGDuuusu889//tPMmjXLtGnTxqSnp5uioqJqrycAIDxeeuklI8ls2bLFs27SpElGkrn66qvN22+/bV555RXTsmVL43Q6zTfffOMp17p1a3PGGWeYV1991axatcrMmzfP3HXXXZ5+6Xj65kD6j4YNG5pWrVqZZ5991ixbtszceuutRpJ5+eWXPeWKiopMo0aNzCmnnGJeeukls2TJEnPttdd64pXytm7cuNFIMs8//7xXe3bv3m2SkpLMuHHjqj2mAwcOmHPPPde0bNnS7N692xhjzEMPPWRq1apl3n333WqvxbGxnzHGbNq0ydSuXdsTpyxatMgMHDjQ0/Zjr1lFe/fuNQkJCWbSpEmedWPGjDEpKSmmTp065vDhw8YYY3766SfjcDjMjBkzvNpxyimnmHPOOcfMmjXLvP/++2bDhg3mn//8p5FkRo8e7Tn2zZs3V9qG8rimWbNm5pJLLjFvvvmmee2118wZZ5xhUlNTvWJ0K+XvzWbNmnlil5kzZ5pGjRqZZs2aec6xMcY888wzZvLkyWbx4sVm1apV5uWXXzbt27c3rVu39hyrMb/G6M2bNzf33nuvWbZsmVm4cKExxpjXX3/dPPTQQ2bBggVm1apVZs6cOaZXr17m5JNPNj///LNPu1q2bGn+8Ic/mKVLl5q//e1vpkGDBqZPnz5ex0BMBaAmY9AStlYeqBw7+ON2u02TJk3M2Wefbdxut2f93r17TaNGjUy3bt086wIdtExPTzclJSWedUVFRaZWrVpm8uTJnnWdO3c2TZo0MQcOHPCsKykpMWlpadUOWu7fv9+kpaX5DPC43W7Tvn17c/755/u08bHHHvMqe+utt5rk5GRTVlZmjDHmnXfeMZLMk08+6VXukUce8Qlcx40bZ1JSUsyePXs86woKCowk8/TTT3vWZWdnV3osBw8eNB06dDAtWrQwBQUFJj093fTq1cuUlpZWeezG+A5aPvPMM0aSWbRokVe5m266ya9BywceeMCkpKR4ArIbb7zRDBo0yJxzzjkmJyfHGGPM9u3bjSQzc+ZMr3ZIMu+9955PnW3btvVqY3UkmZSUFK+Ar7S01LRp08acccYZVW5bPjhY2fupX79+lW5bWlpqDh8+bFq1amXuvPNOz/ryz0zPnj2rbXtpaak5cuSI6du3r7nssst82tW+fXuvz9i0adOMJPPb3/7Wq56xY8caSaa4uNgYY8zWrVtNfHy8+cMf/uBVbu/evSYjI8NrALmy91peXp6RZP761796rd+2bZtJSUkx99xzj2ddVdcTABB6FQctd+/ebVJSUsxvfvMbr3Jbt241SUlJ5pprrjHGGLNz504jyUybNq3K+gPpm4+n//jkk0+8ymZmZpqBAwd6Xt97773G4XCYDRs2eJXr37+/16ClMcZ07NjRKxY1xpgZM2YYSeaLL77w65i+/fZbk5qaai699FKzfPlyv38cNsZ30HLYsGGVxinVDVoaY8wFF1xgLrzwQs/rM844w/zxj380tWrV8gxmlU8mOHYwWpJxOp3mv//9r1d9P//8s08bq1Ie13Ts2NET+xpjzPfff28SEhLMjTfeWOX25e/NY+McY4z56KOPjCTz5z//2XK7srIyc+TIEfPDDz/4xKrlMfpDDz1UbftLS0vNvn37TJ06dbxi9fJ23XrrrV7lH3vsMSPJFBYWGmOIqQDUfNwejpjz9ddf68cff9Tw4cNVq9avH4G6devqiiuu0Mcff6xffvnluOru06eP6tWr53mdnp6uRo0aeW7p2L9/v/Lz83X55ZcrOTnZU65evXq6+OKLq61/zZo1+u9//6sRI0aotLTUs5SVlWnQoEHKz8/X/v37vbb57W9/6/X6nHPO0cGDBz23465YsUKSdO2113qVu+aaa3z2f8MNN+jAgQOaO3euZ91LL72kpKQky/JWkpKS9I9//EO7du1Sx44dZYzR7NmzFRcX59f2x1qxYoXq1avnc4z+tqVv3746cOCA1qxZI+nobff9+/dXv379PLeqL1++XJLUr18/r20bNGigCy+8MOA2V9aO9PR0z+u4uDgNGzZMmzdv1n/+859qt6/s/bR69Wq53W5JUmlpqSZNmqTMzEwlJiYqPj5eiYmJ+vbbb31utZPkdYvWsZ599ll17NhRycnJio+PV0JCgt577z3LOn7zm994fcbOOussSfK5Jax8/datWyVJS5cuVWlpqa6//nqv93lycrJ69erlV/L9t956Sw6HQ9ddd51XHRkZGWrfvr1PHcG8ngCAE5OXl6cDBw743PbbrFkzXXjhhZ4UKGlpaTr99NP1+OOPa+rUqVq/fr3PbdmBCrT/yMjI0Pnnn++17pxzzvG6nXfFihVq27at2rdv71XOKl4ZNWqU1qxZo6+//tqz7qWXXlJWVpbatWvn1zGcccYZev7557Vw4UINGTJEPXr0OO6nQq9YsaLSOMUfffv21UcffaQDBw7ohx9+0ObNm3XVVVfp3HPP9Yq1Tj31VLVq1cpr2wsvvFANGjQ4rnZXdM0113ildmrevLm6devmiYOrUzFO7tatm5o3b+61/Y4dOzRmzBg1a9bMEyM1b95ckvyOtfbt26d7771XZ5xxhuLj4xUfH6+6detq//79lnVYxfmSPO8/YioANR2Dlog5u3btkiQ1btzY529NmjRRWVmZdu/efVx1N2zY0GddUlKSDhw4IEnavXu3ysrKlJGR4VPOal1FP/30kyTpyiuvVEJCgtcyZcoUGWP03//+t8o2JSUlSZKnTbt27VJ8fLxPOav2tG3bVllZWXrppZckSW63W6+99pouueQSpaWlVdv+cmeccYZ69OihgwcP6tprr7W8Fv7YtWuXVxBdVdutlOfaWb58uTZv3qzvv//eM2j5ySefaN++fVq+fLlatmypFi1aeG17vG22UtX7ofz9ejzbHz58WPv27ZMkjRs3Tg8++KAuvfRSvfnmm/rkk0+Un5+v9u3be94Lx7I6vqlTp+r3v/+9OnfurHnz5unjjz9Wfn6+Bg0aZFlHxfdEYmJilevLE+yXv8+zsrJ83udz5871yQ1l5aeffpIxRunp6T51fPzxxz51BPN6AgBOTHWxWvnfy3NtDxw4UI899pg6duyok08+WbfffrtPvkh/Bdp/VBf7lR+Pv7Hftddeq6SkJM+TwQsKCpSfn69Ro0YFdBwXXXSR0tPTPbkcj+fH4UDbbqVfv346dOiQPvzwQy1btkwnnXSSOnTooH79+nl+GH7vvfd8fhyWwhNr+RNn+bN9WVmZBgwYoPnz5+uee+7Re++9p08//VQff/yxJPkda11zzTWaPn26brzxRi1dulSffvqp8vPzdfLJJ1vWUV2cT0wFoKaLnUfBAv9T3rlbJSL/8ccfVatWLc+vusnJyTp06JBPOX86eCsNGjSQw+GwfFCMPw+POemkkyRJTz/9dKVPd7QaxKtKw4YNVVpaql27dnkFPpW1Z9SoUbr11lv15Zdf6rvvvlNhYWHAgfTf/vY3vf322zr//PM1ffp0DRs2TJ07dw6ojvK2f/rppz7r/TmX0tHBsgsuuEDLly9X06ZNlZGRobPPPlstW7aUdPShNO+9956GDBnis23FBzGdiKreD1b/GfJ3+8TERNWtW1eS9Nprr+n666/XpEmTvMrt3LlT9evX99ne6vhee+019e7dW88884zX+uP9j2Flyt/nb7zxhmeGwvHU4XA49MEHH3gC+GNVXBfM6wkAODHVxWrl/YR0dMbcCy+8IEn65ptv9I9//EMTJ07U4cOH9eyzzwa870D7D380bNjQ79ivQYMGuuSSS/TKK6/oz3/+s1566SUlJyfr6quvDmif5Q/6adu2rW6//Xb16NHjuGYtBtJ2K507d1bdunW1fPlyff/99+rbt68cDof69u2rv/71r8rPz9fWrVstBy3DEWv5E2dVtf0ZZ5whSfrXv/6ljRs3Kjc3VyNGjPCU2bx5c6V1Vjy+4uJivfXWW5owYYLuu+8+z/pDhw75TErwFzEVgJqOmZaIOa1bt9Ypp5yiWbNmeZ4GLR29dXvevHmeJ4pLR584uWPHDs+vlJJ0+PBhLV269Lj2XadOHZ1//vmaP3++Z1aZdHTQ580336x2++7du6t+/foqKCjQeeedZ7mUz1rzV58+fSRJf//7373Wz5o1y7L81VdfreTkZOXm5io3N1ennHKKBgwY4FWm4q+8x/riiy90++236/rrr9cHH3ygc845R8OGDTuu2a19+vTR3r17tXjxYr/abqVfv35au3at5s2b5wmY69Spoy5duujpp5/Wjz/+aBlIV6bi7Ap/vPfee17vMbfbrblz5+r0009X06ZNq92+svdTjx49PDMrHA6HT1D59ttva/v27X6306qOzz//XHl5eX7X4Y+BAwcqPj5e//73vyt9n5er7L02ZMgQGWO0fft2y+3PPvvsoLYZABA8Xbt2VUpKil577TWv9f/5z3/0/vvvq2/fvpbbnXnmmXrggQd09tlna926dZ71gfTNoeg/+vTpo02bNmnjxo1e6yuLV0aNGqUff/xRS5Ys0WuvvabLLrvM5wfGqo7pb3/7m1577TVNnz5dixcv1p49ewL+gfnYtlcWp/gjISFBPXv21LJly/T++++rf//+kqQePXooPj5eDzzwgGcQ0x9VxZhVmT17tlfc/8MPP2jNmjXq3bu3X9tXjJPXrFmjH374wbN9+UBdxTjpueee87uNDodDxhifOv72t7950v0EipgKQE3HTEvEnFq1aumxxx7TtddeqyFDhuiWW27RoUOH9Pjjj2vPnj169NFHPWWHDRumhx56SFdddZX++Mc/6uDBg3rqqaeOO3CQpP/7v//ToEGD1L9/f911111yu92aMmWK6tSpU+2vqHXr1tXTTz+tESNG6L///a+uvPJKNWrUSD///LM2btyon3/+2WcWXHUGDBignj176p577tH+/ft13nnn6aOPPtKrr75qWb5+/fq67LLLlJubqz179ujuu+/2ylsoyRO8TJkyRYMHD1ZcXJzOOeccHTlyREOHDlWLFi00Y8YMJSYm6h//+Ic6duyoUaNGaeHChQG1/frrr9cTTzyh66+/Xo888ohatWqlJUuWBDSo3LdvX7ndbr333nt6+eWXPev79eunCRMmyOFwBJSX5+yzz9acOXM0d+5ctWzZUsnJydUGcyeddJIuvPBCPfjgg6pTp45mzJihr776SnPmzPFrn3Fxcerfv7/GjRunsrIyTZkyRSUlJcrJyfGUGTJkiHJzc9WmTRudc845Wrt2rR5//HG/BkWPreP//u//NGHCBPXq1Utff/21Hn74YbVo0UKlpaV+11Od0047TQ8//LDuv/9+fffddxo0aJAaNGign376SZ9++qnq1KnjObbK3mvdu3fXzTffrFGjRumzzz5Tz549VadOHRUWFurDDz/U2Wefrd///vdBazMAIHjq16+vBx98UH/60590/fXX6+qrr9auXbuUk5Oj5ORkTZgwQdLRH85uu+02/e53v1OrVq2UmJio999/X59//rnXTLVA+uZQ9B9jx47Viy++qIsuukh//vOflZ6err///e/66quvLMsPGDBATZs21a233qqioiLLAcfKjqn8x+ERI0Z4tnvhhRd05ZVXatq0aRo7dmxAbX/ggQe0ePFiXXjhhXrooYdUu3ZtuVwunxzqVenbt6/uuusuSb/mCE9JSVG3bt307rvv6pxzzlGjRo38qqtevXpq3ry5Fi1apL59+yotLU0nnXSSTjvttCq327Fjhy677DLddNNNKi4u1oQJE5ScnKzx48f7td/PPvtMN954o373u99p27Ztuv/++3XKKafo1ltvlSS1adNGp59+uu677z4ZY5SWlqY333zTk7fTH6mpqerZs6cef/xxzzGtWrVKL7zwguVdMf4gpgJQ40Xm+T9AeFg9PbzcwoULTefOnU1ycrKpU6eO6du3r/noo498yi1ZssSce+65JiUlxbRs2dJMnz690qeHZ2dn+2zfvHlzM2LECK91ixcvNuecc45JTEw0p556qnn00Uct66zMqlWrzEUXXWTS0tJMQkKCOeWUU8xFF13kdZzl9f38889e21Z8QqcxxuzZs8fccMMNpn79+qZ27dqmf//+5quvvqr06YzvvvuukeTzpMdyhw4dMjfeeKM5+eSTjcPh8OzvuuuuM7Vr1zabNm3yKv/6668bSeaJJ56o8rgrPj3cGGP+85//mCuuuMLUrVvX1KtXz1xxxRVmzZo1fj093JijT3c86aSTjCSzfft2z/ryp0J27NjRsh1t27a1rO/77783AwYMMPXq1TOSLJ8+f6zy982MGTPM6aefbhISEkybNm3M3//+92rbXv6U7ilTppicnBzTtGlTk5iYaDp06GCWLl3qVXb37t1m9OjRplGjRqZ27drmggsuMB988IHPOa3qM3Po0CFz9913m1NOOcUkJyebjh07moULF5oRI0Z4HWd5ux5//HGv7Suru/w9mZ+f77V+4cKFpk+fPiY1NdUkJSWZ5s2bmyuvvNIsX77cq01W77VyL774ouncubOpU6eOSUlJMaeffrq5/vrrzWeffeYpU9X1BACEnlVsYowxf/vb3zzxktPpNJdccolXDPHTTz+ZkSNHmjZt2pg6deqYunXrmnPOOcc88cQTprS01FMu0L7ZmBPrPyr2i8YYU1BQYPr372+Sk5NNWlqaGT16tFm0aJHP08PL/elPfzKSTLNmzYzb7fb5u9Ux7du3z7Rp08ZkZmaa/fv3e5XPzs42CQkJPk86r8gq9vvoo49Mly5dTFJSksnIyDB//OMfzcyZM/16ergxxmzcuNFIMq1atfJa/8gjjxhJZty4cZbtsIqrjTFm+fLlpkOHDiYpKclI8omzj1Uee7z66qvm9ttvNyeffLJJSkoyPXr08LqWlSl/b7777rtm+PDhpn79+p4n23/77bdeZcuvcb169UyDBg3M7373O7N161afc1pZjG7Mr3FtgwYNTL169cygQYPMv/71L5//T1QWO5Ufb8X3FDEVgJrKYcwx8+QBADXG999/rxYtWujxxx/X3XffHenmAAAA2Epubq5GjRql/Px8r1upAQDhQU5LAAAAAAAAAFGFQUsAAAAAAAAAUYXbwwEAAAAAAABEFWZaAgAAAAAAADFm8uTJysrKUr169dSoUSNdeuml+vrrr6vdbtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIuH0MWgIAAAAAAAAxZtWqVcrOztbHH3+sZcuWqbS0VAMGDND+/fsr3WbLli36zW9+ox49emj9+vX605/+pNtvv13z5s3zlMnLy9OwYcM0fPhwbdy4UcOHD9fQoUP1ySefBNQ+bg8HAAAAAAAAYtzPP/+sRo0aadWqVerZs6dlmXvvvVeLFy/Wl19+6Vk3ZswYbdy4UXl5eZKkYcOGqaSkRO+8846nzKBBg9SgQQPNnj3b7/bEH+dx2EpZWZl+/PFH1atXTw6HI9LNAQAAQWaM0d69e9WkSRPVqsWNJtGCGAwAAHsjBqvcwYMHdfjw4ZDUbYzxia2SkpKUlJRU5XbFxcWSpLS0tErL5OXlacCAAV7rBg4cqBdeeEFHjhxRQkKC8vLydOedd/qUmTZtWgBHwaClJOnHH39Us2bNIt0MAAAQYtu2bVPTpk0j3Qz8DzEYAACxgRjM28GDB3VySor2haj+unXrat8+79onTJigiRMnVrqNMUbjxo3TBRdcoHbt2lVarqioSOnp6V7r0tPTVVpaqp07d6px48aVlikqKgroOBi0lFSvXj1JRz9EqampEW6N/Tmdk71eFxePj1BLvFVsF4LN6usmocLrI8dRb4of+6lKqcW6inUcDLBOK9UdW8VzcSAI+4xdofhesfqOiMT3V7R+h0a7kpISNWvWzNPnIzpEQwwWLZ/t6sRCOyuLxcJ1nCcSC1q1MTSxZWVxjlU84+/2/m5bmYqxmOR/HBNI3Hai7fRlfd0eP8F9+3eOw/ee8VXZZypc3zPB/p4I5/HUhHMUbYjBrB0+fFj7JN0pqeq5j4E7JOmJfft84qvqZlnedttt+vzzz/Xhhx9Wu4+KszjLM08eu96qTKB31jBoqV9PZGpqKoOWYZHs9Sp6znly9UVwAvwZtIw7jnorXreKdVbHajAx0Dr8Ud2xVdwn6YZPRGi+V3y/IyLz/RWt36E1A7cgR5foiMGi5bNdnVhop3UsFr7jPP5Y0LqNoYgto3HQ0uo4/Y1jIjto6f91C/6gZfjeM74q/0yF63smuN8T4T2emnCOohMxmLU6Cv4nv/xbKJD46g9/+IMWL16s1atXVzsjNiMjw2fG5I4dOxQfH6+GDRtWWabi7MvqkFAAAAAAAAAACLOEEC3+Msbotttu0/z58/X++++rRYsW1W7TtWtXLVu2zGvdu+++q/POO08JCQlVlunWrVsArYvxp4e7XC65XC653W598803Ki4urvG/XgAAAF8lJSVyOp309VGCGAwAgNhADGat/LzkKPgzLQ9KmiD5dc5vvfVWzZo1S4sWLVLr1q09651Op1JSjqb/GD9+vLZv365XXnlFkrRlyxa1a9dOt9xyi2666Sbl5eVpzJgxmj17tq644gpJ0po1a9SzZ0898sgjuuSSS7Ro0SI98MAD+vDDD9W5c2e/jyWmBy3L8SECAMDe6OujE9cFAAB7o6+3Vn5eHlFoBi3vl3+DlpXdtv/SSy9p5MiRkqSRI0fq+++/18qVKz1/X7Vqle68805t2rRJTZo00b333qsxY8Z41fHGG2/ogQce0HfffafTTz9djzzyiC6//PKAjoWclgAAAAAAAECM8WceY25urs+6Xr16ad26dVVud+WVV+rKK6883qZJYtASAAAAAAAACLt4Bf8xsMF/bFnkxPSDeFwulzIzM5WVlRXppgAAAMQMYjAAAABUh5yWIscCAAB2R18fnbguAADYG329tfLz8ldJKUGu+4Cku+RfTstoF9MzLQEAAAAAAABEH3JaAgAAAAAAAGGWIHJaViWmBy1dLpdcLpfcbnekm+IXhyPH67UxEyLUEtQ0kXjvVNxnqAR6LP60i88WAIRWTYvBgOpYxReBxBMnuv2J1BmKfQMA/BOv4A/M2WmgL6ZvD8/OzlZBQYHy8/Mj3RQAAICYQQwGAACA6thpABYAAAAAAACoEeIV/NvDjwS5vkiK6ZmWAAAAAAAAAKIPMy0BAAAAAACAMCOnZdXsdCwBq2lJ4EmIjeMVifdOtL5fo7VdABBLaloMBlTnROOLUMQn/tZJbAQAiFYOY4yJdCMiraSkRE6nU8XFxUpNTY10cwAAQJDR10cnrgsAAPZGX2+t/Ly8Kql2kOv+RdJwyRbnnJyWAAAAAAAAAKJKTN8eDgAAAAAAAERCgoL/9PBg1xdJMT1oWdPyKTkcOVX+PRj5aKrbByoKxkcoFF8p1bWrun1abZ8SYBsqTkO32me9APdxisW6hlVvUq9CnXur2YUkOSq8NgcqrPi+wusjFV7/16LSinWUVtOIEot1FfdT8ZxW3KbiPipub6VinRW3qa7dVttUV6eVivup+J4M9O/Ryep7O9DvYX/qqFgmHP0JUJWKMZjTOVlSsleZQN6HJxK/BLafxyzWVvx+r+xz+YjFtpV9V1n1w1ZlrfpN3/YExt99B7K9VQwQSNut6jyR40yrZL2/bbI6H1blrOIWyb9+sLL9VIydylndXPiLxTqra2EVtwRyjn7ys5yVyq5jK4t1VufNat+VBXtWx2R12+Qui3VW8eZ/KtmP1bFbXUur97VV2/19v0j+X9/K6vS3nSfqRL7PAvmO8vf/NP78B6Hy7Y25x2ed9Xe+7/Wx2vbo9v71a8RsNR8P4qlaTN8enp2drYKCAuXn50e6KQAAADGDGAwAAADVsdMALAAAAAAAAFAjxCv4917aaaAvpmdaAgAAAAAAAIg+DmOMiXQjIuXYfErffPONLR4HDwAAfJWUlMjpdNLXRwliMAAAYgMxmLXy8/KWpDpBrnu/pCGSLc55TA9aluNDBACAvdHXRyeuCwAA9kZfb41BS//Y6VZ3AAAAAAAAoEZIUPBzWga7vkgipyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAADA0dufQ7HYBTktRY4FAADsjr4+OnFdAACwN/p6a+XnZZWkukGue5+kXrJHTsuYnmkJAAAAAAAAIPrYadYoAAAAAAAAUCOE4nZuOw302elYAuZyueRyueR2u0O+L4cjx+u1MROqKf+IxdrSE2qD1T5991PdPupVeL3XokxKhdcHKrz2522XVuH1fyu8rjjF+Ug1bbBS8VgrblOxzoptknyP/7QKr/059vQKr0uqqbNiu5pa1FmNBhWOtV2Fv1vNT+9V4XVxhdfneb90Dinyet0z8QOfKu/VFK/X3XPXeheY6v0y5wuLdkWBoRVen7XYt8yTF9/s9XqNunm9/rfO8Hq9dnV330o2V9OQaRVeV3z7fW+xTcWP9O6KBSpW8lOF1xXfr5K0o5qdVPd5ttpvxTq+rPC64jPyrL4DKtZp1fZjVfyOsPr8Vqyz4rFUPF8V21nx8+xvmWNV3zdU/P6v2Cf5sjpW7/1U148dj0D7StRcFWMwp/NxSckVSvk++9KYeyzrcziesVhrFaN0tFi3zmJdI8v9SL0t1n1isa6zn+UqfoeUa2WxruL3nqSUGy2qtDoeSfrWYl3FGESybnvF7zKp8u8mq7jke4t1Z1Wyvb8s9t/D4nmpeyw2raw/vdZiXWOLdTst1lm9BVdVsp/6Fuusvsr3+a46t+fHllUO16sWu9njs+6GT2b5rNvS2fcgW9xfaLkf3ea7Kr9xxUBS+l4tfNZ9oB4+654aav2ZPrDEd12Kxb7/+Whvn3XNtM2yzgny7fveWHudz7o7O032WbdB5/qsW7m1n+V+zj31M9/tH+riW9DqfZhhsa6y+HeXxTrfSyFtsKqzss+v1c7OsFhn0fjGFt+vhcsr2Y/Fd8pZFh/AL9+0aM7FFs35vpL9fGSx7nKLdVbfm1b/95Osv7umWqyz2k/FGFiStleyH6v9/8dindUbyTe2NuYPlezHPw7HYxZ1VtYnVzwfB09o34htMX17eHZ2tgoKCpSfnx/ppgAAAMQMYjAAAICjP9GGYrGLmB60BAAAAAAAABB9Yvr2cAAAAAAAACASyGlZNWZaAgAAAAAAAIgqDmOMidTOV69erccff1xr165VYWGhFixYoEsvvdTzd2OMcnJyNHPmTO3evVudO3eWy+VS27ZtPWUOHTqku+++W7Nnz9aBAwfUt29fzZgxQ02bVv9wkmOTwH/zzTcqLi5WaqrVAyEAnCirB38E+pCNUNTBgz6A2FBSUiKn00lf/z/EYEDkBCOeAYCaghjMWvl5+Vy+jxw9UXslnSPZ4pxHdKbl/v371b59e02fPt3y74899pimTp2q6dOnKz8/XxkZGerfv7/27v31aZBjx47VggULNGfOHH344Yfat2+fhgwZ4tcTwUkCDwAAYhExGAAAQOTxIJ6qRfRW98GDB2vw4MGWfzPGaNq0abr//vt1+eWXS5Jefvllpaena9asWbrllltUXFysF154Qa+++qr69esnSXrttdfUrFkzLV++XAMHDgzbsQAAANQUxGAAAACIdlGb03LLli0qKirSgAEDPOuSkpLUq1cvrVmzRpK0du1aHTlyxKtMkyZN1K5dO08ZK4cOHVJJSYnXAgAAAGIwAACAcIkP0WIXUXssRUVFkqT09HSv9enp6frhhx88ZRITE9WgQQOfMuXbW5k8ebJycnxzyQAInWDkaoqWOgDAzojBgNAiFgEAwD9RO9OynMPh8HptjPFZV1F1ZcaPH6/i4mLPsm3btqC0FQAAwC6IwQAAAEIrPk5KiA/uEh8X6aMKnqgdtMzIyJAkn1/rd+zY4fnlPyMjQ4cPH9bu3bsrLWMlKSlJqampXgsAAACIwQAAABAdonbQskWLFsrIyNCyZcs86w4fPqxVq1apW7dukqROnTopISHBq0xhYaH+9a9/ecoAAADAf8RgAAAA4REfH5rFLiJ6KPv27dPmzZs9r7ds2aINGzYoLS1Np556qsaOHatJkyapVatWatWqlSZNmqTatWvrmmuukSQ5nU6NHj1ad911lxo2bKi0tDTdfffdOvvssz1PsqyKy+WSy+WS2+0O2TECAABEG2IwAAAARDuHMcZEaucrV65Unz59fNaPGDFCubm5MsYoJydHzz33nHbv3q3OnTvL5XKpXbt2nrIHDx7UH//4R82aNUsHDhxQ3759NWPGDDVr1szvdpSUlMjpdKq4uJjblAAAsCH6em/EYAAAIBzo662Vn5ei2lJq1SnDA6/bSBm/yBbnPKKDltGCDxEAAPZGXx+duC4AANgbfb218vOyMzU0g5Ynldhj0DJqc1oCAAAAAAAAiE02Ss8ZOPIpAQAAhB8xGAAAgJQQJyUEeTphQllw64skbg8X05UBALA7+vroxHUBAMDe6Outec5LAyk1yIOWJWWSc7c9bg+P6ZmWAAAAAAAAQETEKfiJG4OcIzOSyGkJAAAAAAAAIKrE9KCly+VSZmamsrKyIt0UAACAmEEMBgAAoKP3P4diCcDq1at18cUXq0mTJnI4HFq4cGGV5UeOHCmHw+GztG3b1lMmNzfXsszBgwcDaltMD1pmZ2eroKBA+fn5kW4KAABAzCAGAwAAiA779+9X+/btNX36dL/KP/nkkyosLPQs27ZtU1pamn73u995lUtNTfUqV1hYqOTk5IDaRk5LAAAAAAAAINziFfzphP97enhJSYnX6qSkJCUlJfkUHzx4sAYPHux39U6nU06n0/N64cKF2r17t0aNGuVVzuFwKCMjI4CG+4rpmZYAAAAAAABARITw9vBmzZp5BhidTqcmT54ckkN44YUX1K9fPzVv3txr/b59+9S8eXM1bdpUQ4YM0fr16wOum5mWAAAAAAAAgI1s27ZNqampntdWsyxPVGFhod555x3NmjXLa32bNm2Um5urs88+WyUlJXryySfVvXt3bdy4Ua1atfK7/pgetHS5XHK5XHK73ZFuCgAAQMwgBgMAANDR+5/jQlN1amqq16BlKOTm5qp+/fq69NJLvdZ36dJFXbp08bzu3r27OnbsqKefflpPPfWU3/XH9O3hJIEHAAAIP2IwAACAms0YoxdffFHDhw9XYmJilWVr1aqlrKwsffvttwHtI6ZnWgIAAAAAAAAREa/gz7R0BLm+SqxatUqbN2/W6NGjqy1rjNGGDRt09tlnB7QPBi0BAAAAAACAGLRv3z5t3rzZ83rLli3asGGD0tLSdOqpp2r8+PHavn27XnnlFa/tXnjhBXXu3Fnt2rXzqTMnJ0ddunRRq1atVFJSoqeeekobNmyQy+UKqG0xPWhJPiUAAIDwIwYDAABQVMy0/Oyzz9SnTx/P63HjxkmSRowYodzcXBUWFmrr1q1e2xQXF2vevHl68sknLevcs2ePbr75ZhUVFcnpdKpDhw5avXq1zj///MAOxRhjAjsc+ykpKZHT6VRxcXHIk5QCAIDwo6+PTlwXAADsjb7emue8ZEqpQR60LHFLzgLZ4pzH9ExLAAAAAAAAICLiFLKnh9sBg5YAAAAAAABAuEXB7eHRrFakGxBJLpdLmZmZysrKinRTAAAAYgYxGAAAAKpDTkuRYwEAALujr49OXBcAAOyNvt6a57ycJ6UG+R7oklLJ+Zk9clrG9ExLAAAAAAAAANGHnJYAAAAAAABAuIXiQTw2up86pmdakk8JAAAg/IjBAAAAUB1yWoocCwAA2B19fXTiugAAYG/09dY856V7iHJafkROSwAAAAAAAAAIOnJaAgAAAAAAAOEWL0bmqhDTMy3JpwQAABB+xGAAAACoDjktRY4FAADsjr4+OnFdAACwN/p6a57z0jdEOS3fs0dOSyahAgAAAAAAAOFWS1JckOssC3J9ERTTt4cDAAAAAAAAiD7MtAQAAAAAAADCLRQP4rFREsiYnmlJEngAAIDwIwYDAABAdXgQj0gMCwCA3dHXRyeuCwAA9kZfb81zXi6WUhOCXPcRyfmmPR7EE9MzLQEAAAAAAABEH3JaAgAAAAAAAOEWJ54eXoWYnmlJPiUAAIDwIwYDAABAdchpKXIsAABgd/T10YnrAgCAvdHXW/OclytDlNPyDXvktOT2cAAAAAAAACDc4hT8kTluDwcAAAAAAACA0IjpQUvyKQEAAIQfMRgAAIB+fRBPsBebIKelyLEAAIDd0ddHJ64LAAD2Rl9vzXNerpFSE4Nc92HJOYuclgAAAAAAAACOR7zIaVmFmL49HAAAAAAAAED0ielBS/IpAQAAhB8xGAAAgH6daRnsxSbIaSlyLAAAYHf09dGJ6wIAgL3R11vznJcbQpTT8kVyWgIAAAAAAAA4HuS0rBKDlgAAAAAAAEC41ZIUF4I6bcJGhxI48ikBAACEHzEYAAAAqkNOS5FjAQAAu6Ovj05cFwAA7I2+3prnvNwmpSYFue5DknO6PXJaxvRMSwAAAAAAAADRh5yWAAAAAAAAQLiF4kE87iDXF0HMtAQAAAAAAAAQVWJ60JIk8AAAAOFHDAYAAKCjTw4PxWITPIhHJIYFAMDu6OujE9cFAAB7o6+35jkvd4XoQTx/tceDeMhpCQAAAAAAAIQbOS2rxKAlAAAAAAAAEG5xCv7IXGmQ64sgclqSTwkAACCsiMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jzn5SEpNTnIdR+UnA/bI6dlTM+0BAAAAAAAABB9yGkJAAAAAAAAhFvc/5Zg12kTMT3TknxKAAAA4UcMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7fmOS+PhCin5f3ktAQAAAAAAABQQ61evVoXX3yxmjRpIofDoYULF1ZZfuXKlXI4HD7LV1995VVu3rx5yszMVFJSkjIzM7VgwYKA28agJQAAAAAAABBu8SFaArB//361b99e06dPD2i7r7/+WoWFhZ6lVatWnr/l5eVp2LBhGj58uDZu3Kjhw4dr6NCh+uSTTwLaR0w/iMflcsnlcsntdke6KQAAADGDGAwAAEBHpxIG+8E5AU5PHDx4sAYPHhzwbho1aqT69etb/m3atGnq37+/xo8fL0kaP368Vq1apWnTpmn27Nl+7yOmZ1pmZ2eroKBA+fn5kW4KAABAzCAGAwAACK2SkhKv5dChQ0Gtv0OHDmrcuLH69u2rFStWeP0tLy9PAwYM8Fo3cOBArVmzJqB9xPSgJQAAAAAAABARIbw9vFmzZnI6nZ5l8uTJQWly48aNNXPmTM2bN0/z589X69at1bdvX61evdpTpqioSOnp6V7bpaenq6ioKKB9xfTt4QAAAAAAAIDdbNu2zevp4UlJSUGpt3Xr1mrdurXnddeuXbVt2zb95S9/Uc+ePT3rHQ6H13bGGJ911YnpmZYul0uZmZnKysqKdFMAAABiBjEYAACAQjrTMjU11WsJ1qCllS5duujbb7/1vM7IyPCZVbljxw6f2ZfVielBS/IpAQAAhB8xGAAAgH2sX79ejRs39rzu2rWrli1b5lXm3XffVbdu3QKql9vDAQAAAAAAgHCLU/CfHh5gffv27dPmzZs9r7ds2aINGzYoLS1Np556qsaPH6/t27frlVdekXT0yeCnnXaa2rZtq8OHD+u1117TvHnzNG/ePE8dd9xxh3r27KkpU6bokksu0aJFi7R8+XJ9+OGHAbWNQUsAAAAAAAAgBn322Wfq06eP5/W4ceMkSSNGjFBubq4KCwu1detWz98PHz6su+++W9u3b1dKSoratm2rt99+W7/5zW88Zbp166Y5c+bogQce0IMPPqjTTz9dc+fOVefOnQNqm8MYY07w+Gq8kpISOZ1OFRcXeyUpBQAA9kBfH524LgAA2Bt9vTXPeZkppaYEue4DkvNm2eKcR3VOy9LSUj3wwANq0aKFUlJS1LJlSz388MMqKyvzlDHGaOLEiWrSpIlSUlLUu3dvbdq0ya/6SQIPAADgixgMAAAgDOIU/IfwBPt28wiK6kHLKVOm6Nlnn9X06dP15Zdf6rHHHtPjjz+up59+2lPmscce09SpUzV9+nTl5+crIyND/fv31969e6utnyTwAAAAvojBAAAAEGlRndMyLy9Pl1xyiS666CJJ0mmnnabZs2frs88+k3T0F/5p06bp/vvv1+WXXy5Jevnll5Wenq5Zs2bplltuiVjbAQAAaipiMAAAgDAonx0Z7DptIqpnWl5wwQV677339M0330iSNm7cqA8//NCT3HPLli0qKirSgAEDPNskJSWpV69eWrNmTaX1Hjp0SCUlJV4LAAAAjiIGAwAAQKRF9fjrvffeq+LiYrVp00ZxcXFyu9165JFHdPXVV0uSioqKJEnp6ele26Wnp+uHH36otN7JkycrJycndA0HAACowYjBAAAAwiBOwc9BSU7L8Jg7d65ee+01zZo1S+vWrdPLL7+sv/zlL3r55Ze9yjkcDq/XxhifdccaP368iouLPcu2bdtC0n4AAICaiBgMAAAAkRbVMy3/+Mc/6r777tNVV10lSTr77LP1ww8/aPLkyRoxYoQyMjIkHf21v3Hjxp7tduzY4fPL/7GSkpKUlJQU2sYDAADUUMRgAAAAYUBOyypF9UzLX375RbVqeTcxLi5OZWVlkqQWLVooIyNDy5Yt8/z98OHDWrVqlbp16xbWtgIAANgFMRgAAAAiLarHXy+++GI98sgjOvXUU9W2bVutX79eU6dO1Q033CDp6C1JY8eO1aRJk9SqVSu1atVKkyZNUu3atXXNNddUW7/L5ZLL5ZLb7Q71oQAAANQYxGAAAABhwEzLKjmMMSbSjajM3r179eCDD2rBggXasWOHmjRpoquvvloPPfSQEhMTJR3NnZSTk6PnnntOu3fvVufOneVyudSuXTu/91NSUiKn06ni4mKlpqaG6nAAAECE0NcHhhgMAAAEA329Nc95mS+l1gly3fsl5+WyxTmP6kHLcOFDBACAvdHXRyeuCwAA9kZfb41BS//YaNIoAAAAAAAAUENwe3iVovpBPKHmcrmUmZmprKysSDcFAAAgZhCDAQAAoDrcHi6mKwMAYHf09dGJ6wIAgL3R11vznJclIbo9/Df2uD08pmdaAgAAAAAAAIg+NrrTHQAAAAAAAKgh4v63BLtOm4jpmZbkUwIAAAg/YjAAAABUh5yWIscCAAB2R18fnbguAADYG329Nc95eS9EOS372iOnJbeHAwAAAAAAAOEWp+CPzHF7OAAAAAAAAACEBjMtAQAAAAAAgHCLV/BH5mw00hfTMy1JAg8AABB+xGAAAACoDg/iEYlhAQCwO/r66MR1AQDA3ujrrXnOS56UWjfIde+TnF3t8SCemJ5pCQAAAAAAACD62OhOdwAAAAAAAKCGIKdllWJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzXNe1kmp9YJc917J2ZGclgAAAAAAAAAQdDa60x0AAAAAAACoIeL+twS7TpuI6ZmW5FMCAAAIP2IwAAAA/fognmAvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3prnvGwKUU7LtvbIaWmj8VcAAAAAAACghgjFzEgbjfTF9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAARE7LapDTUuRYAADA7ujroxPXBQAAe6Ovt+Y5L/8OUU7L08lpCQAAAAAAAOA4mFqSiQt+nXZho0MBAAAAAAAAYAcxPdPS5XLJ5XLJ7XZHuikAAAAxgxgMAABAcscfXYJdp12Q01LkWAAAwO7o66MT1wUAAHujr7dWfl52FErBPi0lJVKjxvbIacnt4QAAAAAAAACiio0mjQIAAAAAAAA1Q2mcQ6VxjiDXaSTZ46ZqZloCAAAAAAAAiCoxPdOSJPAAAADhRwwGAAAguePj5Y4P7kxLd7yRdCSodUYKD+IRiWEBALA7+vroxHUBAMDe6OutlZ+Xbf9NUGpqcActS0qMmqUdscU5j+mZlgAAAAAAAEAkuOPi5A5yTkt3nH1mWpLTEgAAAAAAAEBUiemZluRTAgAACD9iMAAAAKlMcXIruDMty2zy5HApxmdaZmdnq6CgQPn5+ZFuCgAAQMwgBgMAAJBKFReSJRCrV6/WxRdfrCZNmsjhcGjhwoVVlp8/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEBti+lBSwAAAAAAACBW7d+/X+3bt9f06dP9Kr969Wr1799fS5Ys0dq1a9WnTx9dfPHFWr9+vVe51NRUFRYWei3JyckBtS2mbw8HAAAAAAAAIsGtOLmDPJ/QrbKAyg8ePFiDBw/2u/y0adO8Xk+aNEmLFi3Sm2++qQ4dOnjWOxwOZWRkBNSWimJ6pqXL5VJmZqaysrIi3RQAAICYQQwGAAAQWiUlJV7LoUOHQrKfsrIy7d27V2lpaV7r9+3bp+bNm6tp06YaMmSIz0xMf8T0oCX5lAAAAMKPGAwAAKB8pmXwF0lq1qyZnE6nZ5k8eXJIjuGvf/2r9u/fr6FDh3rWtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21AdXN7OAAAAAAAAGAj27ZtU2pqqud1UlJS0Pcxe/ZsTZw4UYsWLVKjRo0867t06aIuXbp4Xnfv3l0dO3bU008/raeeesrv+hm0BAAAAAAAAMIsNDktHZKOPgjn2EHLYJs7d65Gjx6t119/Xf369auybK1atZSVlRXwTMuYvj2cfEoAAADhRwwGAABQc82ePVsjR47UrFmzdNFFF1Vb3hijDRs2qHHjxgHtJ6ZnWmZnZys7O1slJSVyOp2Rbg4AAEBMIAYDAAAI7UxLf+3bt0+bN2/2vN6yZYs2bNigtLQ0nXrqqRo/fry2b9+uV155RdLRAcvrr79eTz75pLp06aKioiJJUkpKiieuy8nJUZcuXdSqVSuVlJToqaee0oYNG+RyuQJqW0wPWgIAAAAAAACR4FacSiM8aPnZZ5+pT58+ntfjxo2TJI0YMUK5ubkqLCzU1q1bPX9/7rnnVFpa6vkRulx5eUnas2ePbr75ZhUVFcnpdKpDhw5avXq1zj///IDa5jDGmIC2sKHyX/mLi4tDer8/AACIDPr66MR1AQDA3ujrrZWfl/ziZqqbGtxBy30lZcpybrPFOY/pmZYul0sul0tutzvSTQEAAIgZxGAAAACSW/EhuD28LKj1RRIzLcXIPwAAdkdfH524LgAA2Bt9vbXy8/JxcYuQzLTs4txii3Me0zMtAQAAAAAAgEhwq5bcigtynfYR3OFcAAAAAAAAADhBzLQEAAAAAAAAwsytOGZaViGmZ1q6XC5lZmYqKysr0k0BAACIGcRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o662Vn5f3i89S3dTgzrTcV+LWhc4vbXHOuT0cAAAAAAAACLMyxQf99vAyOYJaXyTF9O3hAAAAAAAAAKJPTM+0dLlccrlccrvtlKYUAAAguhGDAQAA8CCe6pDTUuRYAADA7ujroxPXBQAAe6Ovt1Z+XpYWn6s6Qc5pub/ErYHODbY45zE90xIAAAAAAACIBGZaVo2clgAAAAAAAACiSkzPtCSfEgAAQPgRgwEAAEhu1QrBTEv7ZIGM6ZmW2dnZKigoUH5+fqSbAgAAEDOIwQAAAFCdmJ5pCQAAAAAAAERCqeJUGuSZlqU2mmnJoCUAAAAAAAAQZm7Fyx3koTk7Jd+J6dvDXS6XMjMzlZWVFemmAAAAxAxiMAAAAFTHYYyxz7zR41RSUiKn06ni4mKlpqZGujkAACDI6OujE9cFAAB7o6+3Vn5e/lHcS7VTgzvT8peSUg11rrLFOY/pmZYAAAAAAAAAog85LQEAAAAAAIAwcytO7iA/iMcdaw/iadCggRwOh18V/ve//z2hBoWTy+WSy+WS222nNKUAAMAuiMEAAAAQq/watJw2bZrn37t27dKf//xnDRw4UF27dpUk5eXlaenSpXrwwQdD0shQyc7OVnZ2tieXAAAAQDQhBgMAALCvUtVSaZBnWpaqLKj1RVLAD+K54oor1KdPH912221e66dPn67ly5dr4cKFwWxfWJAYFgAAe7NDX08MBgAAahr6emvl5+XV4n6qnZoQ1Lp/KTmi4c7ltjjnAT+IZ+nSpRo0aJDP+oEDB2r58uVBaRQAAAC8EYMBAADYi1vxIVnsIuBBy4YNG2rBggU+6xcuXKiGDRsGpVEAAADwRgwGAABgL+UP4gn2YhcBD1rm5OTovvvu00UXXaQ///nP+vOf/6whQ4Zo/PjxysnJCXoDt2/fruuuu04NGzZU7dq1de6552rt2rWevxtjNHHiRDVp0kQpKSnq3bu3Nm3a5FfdLpdLmZmZysrKCnq7AQAAgokYDAAAALEk4EHLkSNHas2aNapfv77mz5+vefPmyel06qOPPtLIkSOD2rjdu3ere/fuSkhI0DvvvKOCggL99a9/Vf369T1lHnvsMU2dOlXTp09Xfn6+MjIy1L9/f+3du7fa+rOzs1VQUKD8/PygthsAACDYiMEAAADshZmWVQv4QTzhdN999+mjjz7SBx98YPl3Y4yaNGmisWPH6t5775UkHTp0SOnp6ZoyZYpuueUWv/ZDYlgAAOyNvj4wxGAAACAY6OutlZ+XmcW/DcmDeG52LrbFOfdrpmVJSYnXv6tagmnx4sU677zz9Lvf/U6NGjVShw4d9Pzzz3v+vmXLFhUVFWnAgAGedUlJSerVq5fWrFlTab2HDh0KabsBAACCgRgMAADAvtyKU2mQFzvNtPRr0LJBgwbasWOHJKl+/fpq0KCBz1K+Ppi+++47PfPMM2rVqpWWLl2qMWPG6Pbbb9crr7wiSSoqKpIkpaene22Xnp7u+ZuVyZMny+l0epZmzZoFtd0AAADBQAwGAACAWOXXc9Dff/99paWlSZJWrFgR0gYdq6ysTOedd54mTZokSerQoYM2bdqkZ555Rtdff72nnMPh8NrOGOOz7ljjx4/XuHHjPK9LSkoImgEAQNQhBgMAALAvt+Ll9m9oLoA6ozYLZMD8OjO9evWy/HeoNW7cWJmZmV7rzjrrLM2bN0+SlJGRIenor/2NGzf2lNmxY4fPL//HSkpKUlJSUghaDAAAEDzEYAAAAIhVAT89PJy6d++ur7/+2mvdN998o+bNm0uSWrRooYyMDC1btszz98OHD2vVqlXq1q1bWNsKAABgF8RgAAAAoedWrRA8PTyqh/oCEtw5qEF25513qlu3bpo0aZKGDh2qTz/9VDNnztTMmTMlHb0laezYsZo0aZJatWqlVq1aadKkSapdu7auueaaaut3uVxyuVxyu92hPhQAAIAagxgMAAAg9NwheHCOnR7E4zDGRPXN7m+99ZbGjx+vb7/9Vi1atNC4ceN00003ef5ujFFOTo6ee+457d69W507d5bL5VK7du383kf5o+bt8Dh4AADgi74+cMRgAADgRNHXWys/L1OLr1FKamJQ6z5QcljjnLNscc6jftAyHPgQAQBgb/T10YnrAgCAvdHXWys/L48XDw/JoOUfna/a4pwHfKP7pk2bKv3bP//5zxNqDAAAAKwRgwEAACCWBDxoed555+npp5/2Wnfo0CHddtttuuyyy4LWsHBwuVzKzMxUVlZWpJsCAABQJWIwAAAAe3ErTqVBXuyU0zLgQcu///3vysnJ0eDBg1VUVKQNGzaoQ4cOev/99/XRRx+Foo0hk52drYKCAuXn50e6KQAAAFUiBgMAAEAsCXjQ8vLLL9fnn3+u0tJStWvXTl27dlXv3r21du1adezYMRRtBAAAiHnEYAAAAPbiVnxIFrsIeNBSktxutw4fPiy32y23262MjAwlJSUFu20AAAA4BjEYAAAAYkXAg5Zz5szROeecI6fTqW+++UZvv/22Zs6cqR49eui7774LRRtDhnxKAACgpiAGAwAAsBf3/3JQBnuxC4cxxgSyQZ06dfSXv/xFv//97z3rdu/erVtuuUX//Oc/VVJSEvRGhlr5o+bt8Dh4AADgyw59PTEYAACoaejrrZWfl4eLb1FyamJQ6z5YclgPOZ+zxTkP+Eb3devWqXXr1l7rGjRooH/84x969dVXg9YwAAAA/IoYDAAAwF7cqhX0mZHu48sEGZUCPpK5c+fql19+8Vl/4MABbdmyJSiNAgAAgDdiMAAAAHspVVxIFrsIeNAyJydH+/bt81n/yy+/KCcnJyiNAgAAgDdiMAAAAMSSgActjTFyOBw+6zdu3Ki0tLSgNCpcSAIPAABqCmIwAAAAe3ErPiRLIFavXq2LL75YTZo0kcPh0MKFC6vdZtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIqF1SAIOWDRo0UFpamhwOh84880ylpaV5FqfTqf79+2vo0KEBNyCSsrOzVVBQoPz8/Eg3BQAAwBIxGAAAAEJl//79at++vaZPn+5X+S1btug3v/mNevToofXr1+tPf/qTbr/9ds2bN89TJi8vT8OGDdPw4cO1ceNGDR8+XEOHDtUnn3wSUNv8fnr4yy+/LGOMbrjhBk2bNk1Op9Pzt8TERJ122mnq2rVrQDuPFjzNCgAAe6vJfT0xGAAAqKno662Vn5d7iu9SUmpSUOs+VHJIjzn/elzn3OFwaMGCBbr00ksrLXPvvfdq8eLF+vLLLz3rxowZo40bNyovL0+SNGzYMJWUlOidd97xlBk0aJAaNGig2bNn+90ev+eMjhgxQpLUokULde/eXfHxAT94HAAAAAEiBgMAAECgSkpKvF4nJSUpKenEB0jz8vI0YMAAr3UDBw7UCy+8oCNHjighIUF5eXm68847fcpMmzYtoH0FnNNy4sSJevnll1VcXBzoplGHfEoAAKCmIAYDAACwF7fiQrJIUrNmzeR0Oj3L5MmTg9LmoqIipaene61LT09XaWmpdu7cWWWZoqKigPYV8KDl2WefrQceeEAZGRm64oortHDhQh0+fDjQaqIC+ZQAAEBNQQwGAAAAf23btk3FxcWeZfz48UGru+LDIcszTx673qqM1UMlqxLwoOVTTz2l7du3a9GiRapXr55GjBihjIwM3XzzzVq1alWg1QEAAMAPxGAAAAD24latEMy0PDrUl5qa6rUE49ZwScrIyPCZMbljxw7Fx8erYcOGVZapOPuyOgEPWkpSrVq1NGDAAOXm5uqnn37Sc889p08//VQXXnjh8VQHAAAAPxCDAQAA2Eep4kKyhFLXrl21bNkyr3XvvvuuzjvvPCUkJFRZplu3bgHt64QyuRcVFWnOnDl67bXX9Pnnn9e4vEQul0sul0tutzvSTQEAAPAbMRgAAACCYd++fdq8ebPn9ZYtW7RhwwalpaXp1FNP1fjx47V9+3a98sorko4+KXz69OkaN26cbrrpJuXl5emFF17weir4HXfcoZ49e2rKlCm65JJLtGjRIi1fvlwffvhhQG1zmPIbz/1UUlKiefPmadasWVq5cqVatmypa665Rtdee63OOOOMgHYeLcofNX88j4MHAADRzw59PTEYAACoaejrrZWfl98XT1BSanJQ6z5UclDPOHP8PucrV65Unz59fNaPGDFCubm5GjlypL7//nutXLnS87dVq1bpzjvv1KZNm9SkSRPde++9GjNmjNf2b7zxhh544AF99913Ov300/XII4/o8ssvD+hYAh60TElJUYMGDTR06FBde+21Ne6XfSt8iAAAsDc79PXEYAAAoKahr7cWTYOW0Szg28MXLVqkfv36qVat40qHCQAAgONADAYAAGAvZf97eE6w67SLgKPeAQMG2CZYdrlcyszMtMVMBQAAYG/EYAAAAIglft0e3qFDBzkcDr8qXLdu3Qk3KtyYrgwAgL3V1L6eGAwAANRk9PXWys/LjcWPKDHIt4cfLjmovznvt8U59+v28EsvvdTz74MHD2rGjBnKzMxU165dJUkff/yxNm3apFtvvTUkjQQAAIhFxGAAAACIVX4NWk6YMMHz7xtvvFG33367/u///s+nzLZt24LbOgAAgBhGDAYAAGBfpYpTrSDnoCyN5ZyWr7/+uq6//nqf9dddd53mzZsXlEaFC/mUAABATUEMBgAAYC9uxcmt+CAvMTxomZKSog8//NBn/Ycffqjk5ODehx9q2dnZKigoUH5+fqSbAgAAUCViMAAAAMQSv24PP9bYsWP1+9//XmvXrlWXLl0kHc2n9OKLL+qhhx4KegMBAABADAYAAGA3R2daBndmpJ1mWgY8aHnfffepZcuWevLJJzVr1ixJ0llnnaXc3FwNHTo06A0EAAAAMRgAAABiS8CDlpI0dOhQgmMAAIAwIwYDAACwD2ZaVu24Bi0l6fDhw9qxY4fKysq81p966qkn3KhwcblccrlccrvdkW4KAACAX4jBAAAAEAscxhgTyAbffvutbrjhBq1Zs8ZrvTFGDoejRgafJSUlcjqdKi4uVmpqaqSbAwAAgswOfT0xGAAAqGno662Vn5ffFU9XQmpKUOs+UnJArztvs8U5D3im5ciRIxUfH6+33npLjRs3lsPhCEW7AAAAcAxiMAAAAMSSgActN2zYoLVr16pNmzahaA8AAAAsEIMBAADYS6ni5AhyDsrSWM5pmZmZqZ07d4aiLWFHPiUAAFBTEIMBAADYi1txqnX8j5uptE67qBXoBlOmTNE999yjlStXateuXSopKfFaapLs7GwVFBQoPz8/0k0BAACoEjEYAAAAYknAw7n9+vWTJPXt29drfU1OAg8AABDtiMEAAADs5ehMy+DOjLTTTMuABy1XrFgRinYAAACgCsRgAAAAiCUBD1r26tUrFO2ICPIpAQCAmoIYDAAAwF6YaVm1gHNaStIHH3yg6667Tt26ddP27dslSa+++qo+/PDDoDYu1MinBAAAahJiMAAAAMSKgAct582bp4EDByolJUXr1q3ToUOHJEl79+7VpEmTgt5AAAAAEIMBAADYTaniQrLYRcCDln/+85/17LPP6vnnn1dCQoJnfbdu3bRu3bqgNg4AAABHEYMBAAAglgSc0/Lrr79Wz549fdanpqZqz549wWhT2JBPCQAA1BTEYAAAAPZSpni5Ax+aq7ZOuwh4pmXjxo21efNmn/UffvihWrZsGZRGhQv5lAAAQE1BDAYAAGAvbsWFZLGLgActb7nlFt1xxx365JNP5HA49OOPP+rvf/+77r77bt16662haCMAAEDMIwYDAABALAl4zug999yj4uJi9enTRwcPHlTPnj2VlJSku+++W7fddlso2ggAABDziMEAAADsxa1acgR5ZqQ78PmJUcthjDHHs+Evv/yigoIClZWVKTMzU3Xr1g1220Lu2HxK33zzjYqLi5WamhrpZgEAgCArKSmR0+m0RV9PDAYAAGoKO8VgwVR+Xi4ofkPxqXWCWndpyX596LzSFuf8uAct7YQPEQAA9kZfH524LgAA2Bt9vbXy89KleEFIBi0/dl5mi3NunzmjAAAAAAAAAGzBPs9BBwAAAAAAAGoIt+LlCPLQnNtGQ33MtAQAAAAAAAAQVewz/Hocjk0CDwAAgPAgBgMAAJDKFCd3kJ8eXhbk+iKJB/GIxLAAANgdfX104roAAGBv9PXWys/LucVLFRfkB/G4S/Zrg3OgLc45t4cDAAAAAAAAiCoxfXs4AAAAAAAAEAlHbw0P7u3cwb7dPJJieqaly+VSZmamsrKyIt0UAACAmEEMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7dWfl7OKn5fcal1g1q3u2SfvnReaItzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGHmVryCPTTnttFQX0zPtCSfEgAAQPgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OutlZ+X04s/CklOy387u9vinNtnzigAAAAAAABQQ5QpTlJcCOq0h5i+PRwAAAAAAABA9InpmZYul0sul0tutzvSTQEAAIgZxGAAAABSqeJUi5mWlSKnpcixAACA3dHXRyeuCwAA9kZfb638vDQrzletIOe0LCvZp23OLFuc85ieaQkAAAAAAABEgltxMkEemrPTTEtyWgIAAAAAAACIKjE9aOlyuZSZmamsrKxINwUAACBmEIMBAAAcnWkZiiVQM2bMUIsWLZScnKxOnTrpgw8+qLTsyJEj5XA4fJa2bdt6yuTm5lqWOXjwYEDtiulBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAADRYe7cuRo7dqzuv/9+rV+/Xj169NDgwYO1detWy/JPPvmkCgsLPcu2bduUlpam3/3ud17lUlNTvcoVFhYqOTk5oLaR0xIAAAAAAAAIs6M5LSP79PCpU6dq9OjRuvHGGyVJ06ZN09KlS/XMM89o8uTJPuWdTqecTqfn9cKFC7V7926NGjXKq5zD4VBGRsZxHMGvYnqmJQAAAAAAABAJ7rK4kCzS0SeUH7scOnTIZ/+HDx/W2rVrNWDAAK/1AwYM0Jo1a/w6hhdeeEH9+vVT8+bNvdbv27dPzZs3V9OmTTVkyBCtX78+4PPDoCUAAAAAAABgI82aNfPMinQ6nZazJnfu3Cm326309HSv9enp6SoqKqp2H4WFhXrnnXc8szTLtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21Ax1CjBi0nT54sh8OhsWPHetYZYzRx4kQ1adJEKSkp6t27tzZt2uRXfSSBBwAAqB4xGAAAQPC5S+NUGuTFXXp0puW2bdtUXFzsWcaPH19pOxwOh9drY4zPOiu5ubmqX7++Lr30Uq/1Xbp00XXXXaf27durR48e+sc//qEzzzxTTz/9dEDnp8YMWubn52vmzJk655xzvNY/9thjmjp1qqZPn678/HxlZGSof//+2rt3b7V1kgQeAACgasRgAAAANU9qaqrXkpSU5FPmpJNOUlxcnM+syh07dvjMvqzIGKMXX3xRw4cPV2JiYpVla9WqpaysLHvOtNy3b5+uvfZaPf/882rQoIFnvTFG06ZN0/3336/LL79c7dq108svv6xffvlFs2bNimCLAQAAaj5iMAAAgNBxl8aHZPFXYmKiOnXqpGXLlnmtX7Zsmbp161bltqtWrdLmzZs1evToavdjjNGGDRvUuHFjv9sm1ZBBy+zsbF100UXq16+f1/otW7aoqKjIK2FoUlKSevXqVWXC0EOHDvkkJAUAAIA3YjAAAAB7GzdunP72t7/pxRdf1Jdffqk777xTW7du1ZgxYyRJ48eP1/XXX++z3QsvvKDOnTurXbt2Pn/LycnR0qVL9d1332nDhg0aPXq0NmzY4KnTX/4Pv0bInDlztG7dOsvbh8qnr1olDP3hhx8qrXPy5MnKyckJbkMBAABshBgMAAAgtNylteT4Xw7KYDGlgc1PHDZsmHbt2qWHH35YhYWFateunZYsWeJ5GnhhYaG2bt3qtU1xcbHmzZunJ5980rLOPXv26Oabb1ZRUZGcTqc6dOig1atX6/zzzw+obVE9aLlt2zbdcccdevfdd5WcnFxpuUATho4fP17jxo3zvC4pKVGzZs1OvMEAAAA2QAwGAAAQO2699Vbdeuutln/Lzc31Wed0OvXLL79UWt8TTzyhJ5544oTbFdWDlmvXrtWOHTvUqVMnzzq3263Vq1dr+vTp+vrrryUd/bX/2Pviq0sYmpSUZJmAFAAAAMRgAAAA4eAujQvBTMvg1hdJUT1o2bdvX33xxRde60aNGqU2bdro3nvvVcuWLZWRkaFly5apQ4cOkqTDhw9r1apVmjJlSiSaDAAAUOMRgwEAAIReaWmcHEcYtKxMVA9a1qtXzyehZ506ddSwYUPP+rFjx2rSpElq1aqVWrVqpUmTJql27dq65pprqq3f5XLJ5XLJ7XaHpP0AAAA1ETEYAAAAIi2qBy39cc899+jAgQO69dZbtXv3bnXu3Fnvvvuu6tWrV+222dnZys7OVklJiZxOZxhaCwAAYA/EYAAAACfGuONl3EEemgt2fRHkMMaYSDci0soD5uLiYqWmpka6OQAAIMjo66MT1wUAAHujr7fm+eH2qx1SvSCfl70lUptGtjjn9hl+BQAAAAAAAGqK0rijS7DrtIlakW5AJLlcLmVmZiorKyvSTQEAAIgZxGAAAACoDreHi+nKAADYHX19dOK6AABgb/T11jy3h2/YE5rbw8+tb4tzHtMzLQEAAAAAAABEH3JaAgAAAAAAAOHmdkiljuDXaRMxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt+bJaflJsVQ3yOdlX4nU2R7nnNvDAQAAAAAAgHAr/d8S7DptIqZvDwcAAAAAAAAQfZhpCQAAAAAAAIQbMy2rFNMzLUkCDwAAEH7EYAAAAKgOD+IRiWEBALA7+vroxHUBAMDe6OuteR7E816xVCfI52V/idTXHuc8pmdaAgAAAAAAAIg+5LQEAAAAAAAAws39vyXYddpETM+0JJ8SAABA+BGDAQAAoDrktBQ5FgAAsDv6+ujEdQEAwN7o6615clouCVFOy9/Y45xzezgAAAAAAAAQbqX/W4Jdp03E9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAA9OtMy2AvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3ponp+X8EOW0vNwe55yclgAAAAAAAEC4uRX8mZHuINcXQTF9ezgAAAAAAACA6BPTg5bkUwIAAAg/YjAAAACR07Ia5LQUORYAALA7+vroxHUBAMDe6OuteXJazi6Wagf5vPxSIl1tj3NOTksAAAAAAAAg3EIxM9JGMy0ZtAQAAAAAAADC7cj/lmDXaRPktCSfEgAAQFgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OuteXJaPh+inJY32eOcx/RMSwAAAAAAAADRh5yWAAAAAAAAQLi5FfwH57iDXF8EMdMSAAAAAAAAQFSJ6UFLksADAACEHzEYAACAjs6yDMViEzyIRySGBQDA7ujroxPXBQAAe6Ovt+Z5EM/0YiklyOflQIl0mz3OOTktAQAAAAAAgHALxcxIG820ZNASAAAAAAAACDcGLatETkvyKQEAAIQVMRgAAACqQ05LkWMBAAC7o6+PTlwXAADsjb7emien5ZRiKTnI5+VgiXSvPc55TM+0BAAAAAAAABB9yGkJAAAAAAAAhBs5LasU0zMtyacEAAAQfsRgAAAAqA45LUWOBQAA7I6+PjpxXQAAsDf6emuenJYTQ5TTcqI9znlMz7QEAAAAAAAAYtmMGTPUokULJScnq1OnTvrggw8qLbty5Uo5HA6f5auvvvIqN2/ePGVmZiopKUmZmZlasGBBwO1i0BIAAAAAAAAIN3eIlgDMnTtXY8eO1f3336/169erR48eGjx4sLZu3Vrldl9//bUKCws9S6tWrTx/y8vL07BhwzR8+HBt3LhRw4cP19ChQ/XJJ58E1LaYHrQknxIAAED4EYMBAADo1wfxBHsJwNSpUzV69GjdeOONOuusszRt2jQ1a9ZMzzzzTJXbNWrUSBkZGZ4lLi7O87dp06apf//+Gj9+vNq0aaPx48erb9++mjZtWkBti+lBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAAChVVJS4rUcOnTIp8zhw4e1du1aDRgwwGv9gAEDtGbNmirr79Chgxo3bqy+fftqxYoVXn/Ly8vzqXPgwIHV1llRTA9aAgAAAAAAABHhVvBnWf7v9vBmzZrJ6XR6lsmTJ/vsfufOnXK73UpPT/dan56erqKiIssmN27cWDNnztS8efM0f/58tW7dWn379tXq1as9ZYqKigKqszLxAZUGAAAAAAAAENW2bdvm9fTwpKSkSss6HA6v18YYn3XlWrdurdatW3ted+3aVdu2bdNf/vIX9ezZ87jqrExMz7QknxIAAED4EYMBAAAopDktU1NTvRarQcuTTjpJcXFxPjMgd+zY4TNTsipdunTRt99+63mdkZFxwnVKMT5oST4lAACA8CMGAwAAiLzExER16tRJy5Yt81q/bNkydevWze961q9fr8aNG3ted+3a1afOd999N6A6JW4PBwAAAAAAAMLviII/nfBIYMXHjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjJEkjR8/Xtu3b9crr7wi6eiTwU877TS1bdtWhw8f1muvvaZ58+Zp3rx5njrvuOMO9ezZU1OmTNEll1yiRYsWafny5frwww8DahuDlgAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+cOHD+vuu+/W9u3blZKSorZt2+rtt9/Wb37zG0+Zbt26ac6cOXrggQf04IMP6vTTT9fcuXPVuXPngNrmMMaY4BxmzVVSUiKn06ni4mKvJKUAAMAe6OujE9cFAAB7o6+3Vn5edGuxlBTk83KoRJphj3Me0zktSQIPAAAQfsRgAAAAktwK/kN43GE9gpBipqUY+QcAwO7o66MT1wUAAHujr7fmmWl5S7GUGOTzcrhEes4e55yclgAAAAAAAEC4lSr490CXBrm+CIrp28MBAAAAAAAARJ+Ynmnpcrnkcrnkdtvohn8AAIAoRwwGAAAg6YgkRwjqtAlyWoocCwAA2B19fXTiugAAYG/09dY8OS2vD1FOy1fscc5jeqYlAAAAAAAAEBFuBf9p3za6kYWclgAAAAAAAACiSkwPWrpcLmVmZiorKyvSTQEAAIgZxGAAAAA6+qTvUCw2QU5LkWMBAAC7o6+PTlwXAADsjb7emien5ZXFUkKQz8uREukNe5zzmJ5pCQAAAAAAACD68CAeAAAAAAAAINyO1JA6IySmZ1qSTwkAACD8iMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jw5LYeEKKflW/Y45zE90xIAAAAAAABA9CGnJQAAAAAAABBupZIcIajTJmJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzZPTsl+Iclout8c55/ZwAAAAAAAAINxCcSs3t4cDAAAAAAAAQGgw0xIAAAAAAAAIN7eC/yAed5Dri6Conmk5efJkZWVlqV69emrUqJEuvfRSff31115ljDGaOHGimjRpopSUFPXu3VubNm3yq36SwAMAAPgiBgMAAECkRfWg5apVq5Sdna2PP/5Yy5YtU2lpqQYMGKD9+/d7yjz22GOaOnWqpk+frvz8fGVkZKh///7au3dvtfVnZ2eroKBA+fn5oTwMAACAGoUYDAAAIAxKQ7TYRI16evjPP/+sRo0aadWqVerZs6eMMWrSpInGjh2re++9V5J06NAhpaena8qUKbrlllv8qpenWQEAYG/09SeGGAwAABwP+nprnqeHdy2W4oN8XkpLpDx7nPOonmlZUXFxsSQpLS1NkrRlyxYVFRVpwIABnjJJSUnq1auX1qxZU2k9hw4dUklJidcCAAAAa8RgAAAAIcBMyyrVmEFLY4zGjRunCy64QO3atZMkFRUVSZLS09O9yqanp3v+ZmXy5MlyOp2epVmzZqFrOAAAQA1GDAYAAIBIqDGDlrfddps+//xzzZ492+dvDof3o5aMMT7rjjV+/HgVFxd7lm3btgW9vQAAAHZADAYAABAipZKOBHmx0UzL+Eg3wB9/+MMftHjxYq1evVpNmzb1rM/IyJB09Nf+xo0be9bv2LHD55f/YyUlJSkpKSl0DQYAALABYjAAAABESlTPtDTG6LbbbtP8+fP1/vvvq0WLFl5/b9GihTIyMrRs2TLPusOHD2vVqlXq1q1buJsLAABgC8RgAAAAYeAO0WITUT3TMjs7W7NmzdKiRYtUr149T44kp9OplJQUORwOjR07VpMmTVKrVq3UqlUrTZo0SbVr19Y111xTbf0ul0sul0tut42uKAAAwAkiBgMAAAiDUkkmyHXaKLxyGGOCfXqCprKcSC+99JJGjhwp6ehMgJycHD333HPavXu3OnfuLJfL5UkU74/yR83b4XHwAADAF319YIjBAABAMNDXWys/L8osluKCfF7cJVKBPc55VA9ahgsfIgAA7I2+PjpxXQAAsDf6emueQcszQzRo+Y09znlU57QEAAAAAAAAEHuiOqdlqJFPCQAAIPyIwQAAAHQ0p2VZkOsMdn0RxO3hYroyAAB2R18fnbguAADYG329Nc/t4S2LpVpBPi9lJdJ39jjnMT3TEgAAAAAAAIgIt4L/9HAbzbQkpyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAACAjua0DMViE+S0FDkWAACwO/r66MR1AQDA3ujrrXlyWqaHKKflT/Y45zE90xIAAAAAAABA9OFBPAAAAAAAAEC4HVHwpxPyIB4AAAAAAAAACI2YHrQkCTwAAED4EYMBAADo6KxId5AXG8205EE8IjEsAAB2R18fnbguAADYG329Nc+DeOoXS44gnxdTIu2xxzknpyUAAAAAAAAQbqWSHEGu00ZTE2P69nAAAAAAAAAA0SemBy3JpwQAABB+xGAAAAA6OtMyFItNxPSgZXZ2tgoKCpSfnx/ppgAAAMQMYjAAAABJR0K0BGjGjBlq0aKFkpOT1alTJ33wwQeVlp0/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEDtiulBSwAAAAAAACBWzZ07V2PHjtX999+v9evXq0ePHho8eLC2bt1qWX716tXq37+/lixZorVr16pPnz66+OKLtX79eq9yqampKiws9FqSk5MDahsP4gEAAAAAAADCza2IP4hn6tSpGj16tG688UZJ0rRp07R06VI988wzmjx5sk/5adOmeb2eNGmSFi1apDfffFMdOnTwrHc4HMrIyAi4+ceK6ZmW5FMCAAAIP2IwAACA0CopKfFaDh065FPm8OHDWrt2rQYMGOC1fsCAAVqzZo1f+ykrK9PevXuVlpbmtX7fvn1q3ry5mjZtqiFDhvjMxPRHTA9akk8JAAAg/IjBAAAA/scEefmfZs2ayel0eharWZM7d+6U2+1Wenq61/r09HQVFRX51fy//vWv2r9/v4YOHepZ16ZNG+Xm5mrx4sWaPXu2kpOT1b17d3377bd+1VmO28MBAAAAAAAAG9m2bZtSU1M9r5OSkiot63B436NujPFZZ2X27NmaOHGiFi1apEaNGnnWd+nSRV26dPG87t69uzp27Kinn35aTz31lN/HwKAlAAAAAAAAYCOpqaleg5ZWTjrpJMXFxfnMqtyxY4fP7MuK5s6dq9GjR+v1119Xv379qixbq1YtZWVlBTzTMqZvDyefEgAAQPgRgwEAAEReYmKiOnXqpGXLlnmtX7Zsmbp161bpdrNnz9bIkSM1a9YsXXTRRdXuxxijDRs2qHHjxgG1z2GMCfC5QvZTUlIip9Op4uLiakehAQBAzUNfH524LgAA2Bt9vbXy8yIVSwr2eSmR5P85nzt3roYPH65nn31WXbt21cyZM/X8889r06ZNat68ucaPH6/t27frlVdekXR0wPL666/Xk08+qcsvv9xTT0pKyv+OScrJyVGXLl3UqlUrlZSU6KmnntKrr76qjz76SOeff77fR8Lt4QAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+eeee06lpaXKzs5Wdna2Z/2IESOUm5srSdqzZ49uvvlmFRUVyel0qkOHDlq9enVAA5YSMy0lMfIPAIDd0ddHJ64LAAD2Rl9vLZpmWkazmJ5p6XK55HK55Ha7I90UAACAmEEMBgAAIElH/rcEu057YKalGPkHAMDu6OujE9cFAAB7o6+39utMy50KzUzLk2xxzmN6piUAAAAAAAAQGaX/W4Jdpz3UinQDAAAAAAAAAOBYzLQEAAAAAAAAwo6cllWJ6ZmWLpdLmZmZysrKinRTAAAAYgYxGAAAAKrDg3hEYlgAAOyOvj46cV0AALA3+nprvz6IZ4tC8yCeFrY459weDgAAAAAAAIRdqYJ/OzcP4gEAAAAAAACAkIjpmZYul0sul0tutzvSTQEAAIgZxGAAAAASD+KpGjktRY4FAADsjr4+OnFdAACwN/p6a7/mtCyQVC/Ite+VlGmLcx7TMy0BAAAAAACAyChV8HNQktMSAAAAAAAAAEIipmdakk8JAAAg/IjBAAAAJJ4eXjVyWoocCwAA2B19fXTiugAAYG/09dZ+zWm5TlLdINe+T1JHW5zzmJ5pCQAAAAAAAEQGOS2rwqAlAAAAAAAAEHZHFPzbw4NdX+TE9IN4XC6XMjMzlZWVFemmAAAAxAxiMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NarlJoclr2ssU5j+mZlgAAAAAAAACiDzktAQAAAAAAgLArVfBzUNrnQTwxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt/ZrTsulkuoEufb9kgba4pzH9ExLAAAAAAAAANGHnJYAAAAAAABA2B1R8HNaBru+yGHQEgAAAAAAAAi7UgX/wTk8iMcWSAIPAAAQfsRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o6639+iCeNyTVDnLtv0i60hbnPKZnWgIAAAAAAACIPuS0BAAAAAAAAMKOnJZViemZluRTAgAACD9iMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NavqrQ5LQcbotzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGF35H9LsOu0h5ieaUk+JQAAgPAjBgMAAJB+fRBPsBd7IKelyLEAAIDd0ddHJ64LAAD2Rl9v7decljMVmpyWN9vinHN7OAAAAAAAABB2pQr+7dz2mWkZ07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWn5lKSUINd+QNLttjjn5LQEAAAAAAAAwu6Igj80F+wcmZET07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWk5RaHJaXmvLc45OS0BAAAAAACAsCtV8HNQ2memJYOWAAAAAAAAQNiF4nZu+wxaxnROSwAAAAAAAADRxzYzLWfMmKHHH39chYWFatu2raZNm6YePXpUuY3L5ZLL5ZLb7Q55+xyOHK/XxkwIqLzVNlZlqmK1z0DriG3+fFwSglBvxV9FqstvcTwf44rtrFdNGySpulwYFdtZ8XWaxTYV91txHxXqcFic39MqvK5fzes9Fs2oqOI2X1V4XVThtU9m4BKLSn+q8HpvhdcHqnkt+d42UPE6VdxvdeWtVHdrQrjqONF9HA/7/CJZ0Yn2H/7UGQyB9pWIDsGIwZzOyZKSq91XZe8J/9/TVn1mIJ/9YIfOle3bqu+36hes+larPqgyVnHLiZ6jE8nLVdl3u7/xlVXbrdoTyHm3qrNiHy5Zt72y2OlErlvDStZbtd3f4/mvxbrTKtmP1fvQanur82F13k+pZD/+vo+szptVGyXr69bcYt12i3VW70Gr466M1fmwaru/n/3K+PtZrez9ZrUvfz9DgXx3+Pt58fccVbYff4/Hqj2VvQet6rTav7/v4cqu74l+F3s70ZjKn/GJyssePKF9298RSXEhqNMebDHTcu7cuRo7dqzuv/9+rV+/Xj169NDgwYO1devWKrfLzs5WQUGB8vPzw9RSAAAA+yAGAwAAQKjYYtBy6tSpGj16tG688UadddZZmjZtmpo1a6Znnnkm0k0DAACwLWIwAACAE1EaosUeavzt4YcPH9batWt13333ea0fMGCA1qxZY7nNoUOHdOjQIc/r4uJiSUcfOR863lOiq9+X7xRq320Cm2ZtvU+mavvPn4/L8aQaqO728EC390fFfVScju7vLR/HKqvmdWJ1jbJQYVq7sbg1p+JuKl6CiofizyWquE3FffjcDl6R1WdtXzWvK34W/bn1pOLrXwIsbyUYt3ZXV4bbw8PtRPsP/+oMhkD7Sv+V12VMtR9g+CmYMZh0yLJ8RZW/J/x9T9eU28MdFuusjtGqrwjk823VKQb3lsTAVLYff/fv7/WprD6r7werOv1J4VJVe6xSIVTswytTWRqFisGK5P/13W+xzupWasn6/WW1vb+3h1eMh6oqa8Vq+8o+A1bttNreqpzV7eH+XjPJ+nxYvY+s3oOBfKb9PW+V1Wm13ur7KBS3h1ud4xNpTyDbW7XHqlxldVrtv7Lt/alPCvZ38YnHVP6MT1RW9mgfTwxWGf9ioMjXGRk1ftBy586dcrvdSk9P91qfnp6uoqKKieeOmjx5snJyfHMyNGvWLCRttOJ0PhqWbYK5PRCVfoh0A4DoF4rv/3D0KaHYx65du+R0OoNebywKZgwmPeHXPollAAAIXDTEgsRg3hITE5WRkaGiIv9ioEBlZGQoMfF4Jg5Flxo/aFnO4fD+JcMY47Ou3Pjx4zVu3DjP6z179qh58+baunVrzH2ISkpK1KxZM23btk2pqdU9aMV+Yvn4Y/nYpdg+fo49No9diu3jLy4u1qmnnqq0NKsHYOBEEIMdn1j+PMbysUuxffyxfOxSbB8/xx6bxy4Rg1UmOTlZW7Zs0eHDh0NSf2JiopKTq3/IYbSr8YOWJ510kuLi4nx+0d+xY4fPL//lkpKSlJSU5LPe6XTG5JeIJKWmpsbssUuxffyxfOxSbB8/xx6bxy7F9vHXqmWLdN5RgRgsOGL58xjLxy7F9vHH8rFLsX38HHtsHrtEDGYlOTnZFgOLoVTj3zWJiYnq1KmTli1b5rV+2bJl6tatW4RaBQAAYG/EYAAAAAilGj/TUpLGjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjIl00wAAAGyLGAwAAAChYotBy2HDhmnXrl16+OGHVVhYqHbt2mnJkiVq3ry5X9snJSVpwoQJlrcr2V0sH7sU28cfy8cuxfbxc+yxeexSbB9/LB97KBGDHT+OPTaPXYrt44/lY5di+/g59tg8donjx4lxGJ47DwAAAAAAACCK1PiclgAAAAAAAADshUFLAAAAAAAAAFGFQUsAAAAAAAAAUYVBSwAAAAAAAABRJSYGLR955BF169ZNtWvXVv369f3axhijiRMnqkmTJkpJSVHv3r21adMmrzKHDh3SH/7wB5100kmqU6eOfvvb3+o///lPCI7g+O3evVvDhw+X0+mU0+nU8OHDtWfPniq3cTgclsvjjz/uKdO7d2+fv1911VUhPprAHc/xjxw50ufYunTp4lXGjtf+yJEjuvfee3X22WerTp06atKkia6//nr9+OOPXuWi9drPmDFDLVq0UHJysjp16qQPPvigyvKrVq1Sp06dlJycrJYtW+rZZ5/1KTNv3jxlZmYqKSlJmZmZWrBgQaiaf0ICOfb58+erf//+Ovnkk5WamqquXbtq6dKlXmVyc3MtvwMOHjwY6kM5LoEc/8qVKy2P7auvvvIqZ8drb/Xd5nA41LZtW0+ZmnLtV69erYsvvlhNmjSRw+HQwoULq93GTp/5moQYjBiMGIwYrCI7fR/HcgwWy/GXRAxGDIawMTHgoYceMlOnTjXjxo0zTqfTr20effRRU69ePTNv3jzzxRdfmGHDhpnGjRubkpIST5kxY8aYU045xSxbtsysW7fO9OnTx7Rv396UlpaG6EgCN2jQINOuXTuzZs0as2bNGtOuXTszZMiQKrcpLCz0Wl588UXjcDjMv//9b0+ZXr16mZtuusmr3J49e0J9OAE7nuMfMWKEGTRokNex7dq1y6uMHa/9nj17TL9+/czcuXPNV199ZfLy8kznzp1Np06dvMpF47WfM2eOSUhIMM8//7wpKCgwd9xxh6lTp4754YcfLMt/9913pnbt2uaOO+4wBQUF5vnnnzcJCQnmjTfe8JRZs2aNiYuLM5MmTTJffvmlmTRpkomPjzcff/xxuA7LL4Ee+x133GGmTJliPv30U/PNN9+Y8ePHm4SEBLNu3TpPmZdeesmkpqb6fBdEo0CPf8WKFUaS+frrr72O7djPrl2v/Z49e7yOedu2bSYtLc1MmDDBU6amXPslS5aY+++/38ybN89IMgsWLKiyvJ0+8zUNMRgxGDEYMdix7PR9HMsxWCzHX8YQgxGDIZxiYtCy3EsvveRXwFxWVmYyMjLMo48+6ll38OBB43Q6zbPPPmuMOfrFk5CQYObMmeMps337dlOrVi3zz3/+M+htPx4FBQVGkteHPS8vz0gyX331ld/1XHLJJebCCy/0WterVy9zxx13BKupIXG8xz9ixAhzySWXVPr3WLr2n376qZHk1QFH47U///zzzZgxY7zWtWnTxtx3332W5e+55x7Tpk0br3W33HKL6dKli+f10KFDzaBBg7zKDBw40Fx11VVBanVwBHrsVjIzM01OTo7ntb/fldEg0OMvD5p3795daZ2xcu0XLFhgHA6H+f777z3ratK1L+dPwGynz3xNRQxGDEYMRgxmjL2+j2M5Bovl+MsYYrByxGAIh5i4PTxQW7ZsUVFRkQYMGOBZl5SUpF69emnNmjWSpLVr1+rIkSNeZZo0aaJ27dp5ykRaXl6enE6nOnfu7FnXpUsXOZ1Ov9v4008/6e2339bo0aN9/vb3v/9dJ510ktq2bau7775be/fuDVrbg+FEjn/lypVq1KiRzjzzTN10003asWOH52+xcu0lqbi4WA6Hw+eWvmi69ocPH9batWu9rockDRgwoNJjzcvL8yk/cOBAffbZZzpy5EiVZaLlGkvHd+wVlZWVae/evUpLS/Nav2/fPjVv3lxNmzbVkCFDtH79+qC1O1hO5Pg7dOigxo0bq2/fvlqxYoXX32Ll2r/wwgvq16+fmjdv7rW+Jlz7QNnlMx8LiMF+RQxGDEYM5l0mWq6xFNsxWCzHXxIxWKDs8plH5MRHugHRqKioSJKUnp7utT49PV0//PCDp0xiYqIaNGjgU6Z8+0grKipSo0aNfNY3atTI7za+/PLLqlevni6//HKv9ddee61atGihjIwM/etf/9L48eO1ceNGLVu2LChtD4bjPf7Bgwfrd7/7nZo3b64tW7bowQcf1IUXXqi1a9cqKSkpZq79wYMHdd999+maa65RamqqZ320XfudO3fK7XZbfl4rO9aioiLL8qWlpdq5c6caN25caZloucbS8R17RX/961+1f/9+DR061LOuTZs2ys3N1dlnn62SkhI9+eST6t69uzZu3KhWrVoF9RhOxPEcf+PGjTVz5kx16tRJhw4d0quvvqq+fftq5cqV6tmzp6TK3x92uvaFhYV65513NGvWLK/1NeXaB8oun/lYQAz2K2IwYjBiMP/qjIRYjsFiOf6SiMECZZfPPCKnxg5aTpw4UTk5OVWWyc/P13nnnXfc+3A4HF6vjTE+6yryp8yJ8vfYJd9jkAJr44svvqhrr71WycnJXutvuukmz7/btWunVq1a6bzzztO6devUsWNHv+o+XqE+/mHDhnn+3a5dO5133nlq3ry53n77bZ//OARSbzCE69ofOXJEV111lcrKyjRjxgyvv0Xy2lcl0M+rVfmK64/nOyASjreds2fP1sSJE7Vo0SKv/2B16dLF68EH3bt3V8eOHfX000/rqaeeCl7DgySQ42/durVat27ted21a1dt27ZNf/nLXzxBc6B1RtLxtjM3N1f169fXpZde6rW+pl37QNjpMx9pxGDEYFUhBiMGIwaLjRgsluMviRgsEHb6zCP8auyg5W233Vbt0/JOO+2046o7IyND0tFfBRo3buxZv2PHDs8vABkZGTp8+LB2797t9Wvvjh071K1bt+Par7/8PfbPP/9cP/30k8/ffv75Z59fMqx88MEH+vrrrzV37txqy3bs2FEJCQn69ttvQx40hev4yzVu3FjNmzfXt99+K8n+1/7IkSMaOnSotmzZovfff9/rF34r4bz2Vk466STFxcX5/BJ37Oe1ooyMDMvy8fHxatiwYZVlAnnvhNrxHHu5uXPnavTo0Xr99dfVr1+/KsvWqlVLWVlZns9AtDiR4z9Wly5d9Nprr3le2/3aG2P04osvavjw4UpMTKyybLRe+0DZ5TMfLYjBiMGqQgxGDEYMZu8YLJbjL4kYLFB2+cwjgkKfNjN6BJoEfsqUKZ51hw4dskwCP3fuXE+ZH3/8MSoTgX/yySeedR9//LHficBHjBjh89TCynzxxRdGklm1atVxtzfYTvT4y+3cudMkJSWZl19+2Rhj72t/+PBhc+mll5q2bduaHTt2+LWvaLj2559/vvn973/vte6ss86qMgn8WWed5bVuzJgxPgmhBw8e7FVm0KBBUZcQOtBjN8aYWbNmmeTk5GoTZ5crKysz5513nhk1atSJNDUkjuf4K7riiitMnz59PK/tfO2N+TUZ/hdffFHtPqL52peTn0ng7fKZr6mIwYjBiMGIwYyx1/dxLMdgsRx/GUMMVo4YDOEQE4OWP/zwg1m/fr3JyckxdevWNevXrzfr1683e/fu9ZRp3bq1mT9/vuf1o48+apxOp5k/f7754osvzNVXX20aN25sSkpKPGXGjBljmjZtapYvX27WrVtnLrzwQtO+fXtTWloa1uOryqBBg8w555xj8vLyTF5enjn77LPNkCFDvMpUPHZjjCkuLja1a9c2zzzzjE+dmzdvNjk5OSY/P99s2bLFvP3226ZNmzamQ4cOUXXsxgR+/Hv37jV33XWXWbNmjdmyZYtZsWKF6dq1qznllFNsf+2PHDlifvvb35qmTZuaDRs2mMLCQs9y6NAhY0z0Xvs5c+aYhIQE88ILL5iCggIzduxYU6dOHc8T+e677z4zfPhwT/nvvvvO1K5d29x5552moKDAvPDCCyYhIcG88cYbnjIfffSRiYuLM48++qj58ssvzaOPPmri4+O9ngYaDQI99lmzZpn4+Hjjcrm8rvGePXs8ZSZOnGj++c9/mn//+99m/fr1ZtSoUSY+Pt7rP2DRItDjf+KJJ8yCBQvMN998Y/71r3+Z++67z0gy8+bN85Sx67Uvd91115nOnTtb1llTrv3evXs9fbkkM3XqVLN+/XrPU3bt/JmvaYjBiMGIwYjB7Pp9HMsxWCzHX8YQgxGDIZxiYtByxIgRRpLPsmLFCk8ZSeall17yvC4rKzMTJkwwGRkZJikpyfTs2dPnF5EDBw6Y2267zaSlpZmUlBQzZMgQs3Xr1jAdlX927dplrr32WlOvXj1Tr149c+2115rdu3d7lal47MYY89xzz5mUlBSvTrTc1q1bTc+ePU1aWppJTEw0p59+urn99tvNrl27QngkxyfQ4//ll1/MgAEDzMknn2wSEhLMqaeeakaMGOFzXe147bds2WL5OTn2sxLN197lcpnmzZubxMRE07FjR69ZByNGjDC9evXyKr9y5UrToUMHk5iYaE477TTL/xy+/vrrpnXr1iYhIcG0adPGK7CKJoEce69evSyv8YgRIzxlxo4da0499VSTmJhoTj75ZDNgwACzZs2aMB5RYAI5/ilTppjTTz/dJCcnmwYNGpgLLrjAvP322z512vHaG3N0llJKSoqZOXOmZX015dqXz1So7H1s9898TUIMRgxGDEYMZufv41iOwWI5/jKGGIwYDOHiMOZ/WVABAAAAAAAAIArUinQDAAAAAAAAAOBYDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgKIGb1799bYsWMj3QwAAICYQgwGADgeDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAogppaWluu2221S/fn01bNhQDzzwgIwxkW4WAACArRGDAQACxaAlgJjy8ssvKz4+Xp988omeeuopPfHEE/rb3/4W6WYBAADYGjEYACBQDsPPWwBiRO/evbVjxw5t2rRJDodDknTfffdp8eLFKigoiHDrAAAA7IkYDABwPJhpCSCmdOnSxRMsS1LXrl317bffyu12R7BVAAAA9kYMBgAIFIOWAAAAAAAAAKIKg5YAYsrHH3/s87pVq1aKi4uLUIsAAADsjxgMABAoBi0BxJRt27Zp3Lhx+vrrrzV79mw9/fTTuuOOOyLdLAAAAFsjBgMABCo+0g0AgHC6/vrrdeDAAZ1//vmKi4vTH/7wB918882RbhYAAICtEYMBAALF08MBAAAAAAAARBVuDwcAAAAAAAAQVRi0BAAA/9+OHQsAAAAADPK3nsaOwggAAGBFWgIAAAAAK9ISAAAAAFiRlgAAAADAirQEAAAAAFakJQAAAACwIi0BAAAAgBVpCQAAAACsSEsAAAAAYEVaAgAAAAArAQDhtIsc/T1FAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 1800x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
|
|
"\n",
|
|
"a0=ax[0].hist2d(bs_found, vtx_types_found, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n",
|
|
"ax[0].set_ylim(0,110)\n",
|
|
"ax[0].set_xlim(-1,1)\n",
|
|
"ax[0].set_xlabel(\"b\")\n",
|
|
"ax[0].set_ylabel(\"endvtx id\")\n",
|
|
"ax[0].set_title(\"found endvtx id wrt b parameter\")\n",
|
|
"ax[0].set_yticks(np.arange(0,110,1),minor=True)\n",
|
|
"\n",
|
|
"a1=ax[1].hist2d(bs_lost, vtx_types_lost, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n",
|
|
"ax[1].set_ylim(0,110)\n",
|
|
"ax[1].set_xlim(-1,1)\n",
|
|
"ax[1].set_xlabel(\"b\")\n",
|
|
"ax[1].set_ylabel(\"endvtx id\")\n",
|
|
"ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n",
|
|
"ax[1].set_yticks(np.arange(0,110,1), minor=True)\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"vtx_id: 101 - Bremsstrahlung\n",
|
|
"B:\n",
|
|
"wir können nicht wirklich sagen dass bei den lost teilchen jegliche endvertex types überwiegen, im gegensatz zu den found \n",
|
|
"\"\"\"\n",
|
|
"fig.colorbar(a0[3], ax=ax, orientation='vertical')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABPEAAANVCAYAAAAZd2vuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1n0lEQVR4nOzdeVyU5f7/8ffILiqubK5ouacZlkIumIm5ZabHpQ5qqWVmplQmpom22GIeslyyKCtLPeeorWZiCWrSoqJpLpVHxQwy3HBlkfv3Rz/m2zADDjgwA7yej8c8ai4+93Vd9z3D8PEz93XfJsMwDAEAAAAAAABwWVWcPQEAAAAAAAAARaOIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIB5RTq1atUps2beTj4yOTyaRdu3YpNjZWJpPJIm7RokVatmyZcybp4j788EPFxcU5exrXLDExUSaTSYmJic6eit2WLVsmk8mkI0eOWLTPmDFDjRo1kru7u2rWrClJioiIUERExFX7dIX3uslk0sSJE506BwBA+Ueed+2ckedFRESobdu2Du+3SZMmGj16tMP7LU0mk0mxsbEWbV999ZU6duwoX19fmUwmffTRR4XmhAVt27ZNsbGxOnPmTKnN+WpGjx6tatWqOW18QKKIB5RLf/75p6KiotSsWTOtX79eycnJat68ucaOHavk5GSLWJK7wlWUIl551K9fPyUnJysoKMjc9vHHH+u5557TyJEjlZSUpI0bN0r66z28aNGiq/bJex0AUBGQ5zkGeZ5zJScna+zYsebnhmFo6NCh8vDw0CeffKLk5GR1797dZk5oy7Zt2zR79mynFvEAV+Du7AkAKL6ff/5ZOTk5+uc//6nu3bub26tWraoGDRo4cWbWLl26JG9vb6tvjiuyS5cuycfHx9nTKLGLFy+qatWqpTpGvXr1VK9ePYu2vXv3SpImTZokf39/c3vr1q0dPn5OTo5MJpPc3fkzCABwLeR5rq2853lXrlxRbm6uvLy8SnWczp07Wzz//fffderUKQ0aNEg9e/a0+FnBnNARyvvrBBSGM/GAcmb06NHq0qWLJGnYsGEymUzmpYYFl1k0adJEP/30k5KSkmQymWQymdSkSRNJ/7cEc/ny5YqOjlZgYKB8fHzUvXt3paSkWIy5fft2DR8+XE2aNJGPj4+aNGmiESNG6OjRoxZx+afDb9iwQffff7/q1aunqlWrKisrS7/++qvuu+8+XX/99apatarq16+vAQMGaM+ePRZ95M/rww8/1JNPPqmgoCBVq1ZNAwYM0B9//KFz587pgQceUN26dVW3bl3dd999On/+vEUfhmFo0aJFuvHGG+Xj46NatWppyJAh+t///meOiYiI0Oeff66jR4+aj83fj112draeffZZtWzZUl5eXqpXr57uu+8+/fnnnxZjNWnSRP3799eaNWvUoUMHeXt7a/bs2YW+fgkJCRo4cKAaNGggb29vXXfddXrwwQeVkZFR6DZ/d+DAAd1xxx2qWrWq6tatq/Hjx+vcuXM2Yzdu3KiePXuqRo0aqlq1qm699VZ99dVXFjH575mdO3dqyJAhqlWrlpo1a1bo+BcvXtTjjz+ukJAQeXt7q3bt2urYsaNWrFhhEffdd99pwIABqlOnjry9vdWsWTNNnjzZ/POCSyeaNGmiGTNmSJICAgIslmDYs5zWnvf6+++/r8cee0z169eXl5eXfv31V/3555+aMGGCWrdurWrVqsnf31+33XabtmzZYjVGVlaW5syZo1atWsnb21t16tRRjx49tG3btkLnZRiGpk+fLg8PD7355ptF7gMAAOR55TvPy7dlyxZ17txZPj4+ql+/vmbOnKkrV65cdbucnBxNnTpVgYGBqlq1qrp06aLvv//eZmx6eroefPBBNWjQQJ6engoJCdHs2bOVm5trjjly5IhMJpNeeuklPfvsswoJCZGXl5c2bdpU6Bz+85//qFOnTvLz81PVqlXVtGlT3X///RYxZ86c0WOPPaamTZvKy8tL/v7+6tu3rw4cOGCO+XsuFxsbay5AP/nkkxbvVXuW08bGxuqJJ56QJIWEhJhfz/xLyRT1Oi1cuFDdunWTv7+/fH19dcMNN+ill15STk6O1Tjr169Xz549zfveqlUrzZ07t9B5SdI333yjunXrqn///rpw4UKRsYAjcAoCUM7MnDlTt9xyix5++GE9//zz6tGjh2rUqGEzdu3atRoyZIj8/PzMyxELfus2ffp03XTTTXrrrbd09uxZxcbGKiIiQikpKWratKmkvxKAFi1aaPjw4apdu7bS0tK0ePFi3Xzzzdq3b5/q1q1r0ef999+vfv366f3339eFCxfk4eGh33//XXXq1NELL7ygevXq6dSpU3r33XfVqVMnpaSkqEWLFlbz6tGjh5YtW6YjR47o8ccf14gRI+Tu7q727dtrxYoVSklJ0fTp01W9enUtWLDAvO2DDz6oZcuWadKkSXrxxRd16tQpzZkzR+Hh4dq9e7cCAgK0aNEiPfDAAzp06JDWrl1rMXZeXp4GDhyoLVu2aOrUqQoPD9fRo0c1a9YsRUREaPv27Rbf7O3cuVP79+/XjBkzFBISIl9f30Jfv0OHDiksLExjx46Vn5+fjhw5ovnz56tLly7as2ePPDw8Ct32jz/+UPfu3eXh4aFFixYpICBAH3zwgc1rsC1fvlwjR47UwIED9e6778rDw0NvvPGGevfurS+//NLqG9C7775bw4cP1/jx44tMQKKjo/X+++/r2WefVYcOHXThwgXt3btXJ0+eNMd8+eWXGjBggFq1aqX58+erUaNGOnLkiDZs2FBov2vXrtXChQsVHx+v9evXy8/Pr1hnG9jzXo+JiVFYWJiWLFmiKlWqyN/f35ysz5o1S4GBgTp//rzWrl2riIgIffXVV+Z/OOXm5qpPnz7asmWLJk+erNtuu025ubn69ttvlZqaqvDwcKs5ZWVlafTo0fr888/16aef6o477rB7fwAAlRN5XvnO86S/imvDhw/XtGnTNGfOHH3++ed69tlndfr0ab3++utFbjtu3Di99957evzxx9WrVy/t3btXd999t9UXtunp6brllltUpUoVPf3002rWrJmSk5P17LPP6siRI3rnnXcs4hcsWKDmzZtr3rx5qlGjhq6//nqb4ycnJ2vYsGEaNmyYYmNj5e3traNHj+rrr782x5w7d05dunTRkSNH9OSTT6pTp046f/68Nm/erLS0NLVs2dKq37Fjx6p9+/a6++679cgjj+iee+4p1pmAY8eO1alTp/Taa69pzZo15qW3f1+tUdjrdOjQId1zzz0KCQmRp6endu/ereeee04HDhzQ22+/bd4+Pj5e48aNU/fu3bVkyRL5+/vr559/Nq8UseXf//63Ro4cqfvvv1+vvfaa3Nzc7N4noMQMAOXOpk2bDEnGf/7zH4v2WbNmGQV/rdu0aWN079690D5uuukmIy8vz9x+5MgRw8PDwxg7dmyh4+fm5hrnz583fH19jVdffdXc/s477xiSjJEjR151H3Jzc43s7Gzj+uuvN6ZMmWI1rwEDBljET5482ZBkTJo0yaL9rrvuMmrXrm1+npycbEgyXnnlFYu4Y8eOGT4+PsbUqVPNbf369TMaN25sNbcVK1YYkozVq1dbtP/www+GJGPRokXmtsaNGxtubm7GwYMHr7rPBeXl5Rk5OTnG0aNHDUnGxx9/XGT8k08+aZhMJmPXrl0W7b169TIkGZs2bTIMwzAuXLhg1K5d2+oYXrlyxWjfvr1xyy23mNvy3zNPP/20XXNu27atcddddxUZ06xZM6NZs2bGpUuXCo3Jf68cPnzYai5//vmnRWz37t1tvocLutp7vVu3blftIzc318jJyTF69uxpDBo0yNz+3nvvGZKMN998s8jtJRkPP/ywcfLkSaNLly5G/fr1rV4vAACKQp73f8pbnte9e3ebOd24ceOMKlWqGEePHi102/379xuSLI6XYRjGBx98YEgyRo0aZW578MEHjWrVqln1N2/ePEOS8dNPPxmGYRiHDx82JBnNmjUzsrOzrzr//O3PnDlTaMycOXMMSUZCQkKRfUkyZs2aZX6eP5eXX37ZIs5WTmjLyy+/XGicva/TlStXjJycHOO9994z3NzcjFOnThmGYRjnzp0zatSoYXTp0sXi96WgUaNGGb6+voZhGMYLL7xguLm5GS+++GKRYwKOxnJaoJK75557LJYXNG7cWOHh4Ran2Z8/f15PPvmkrrvuOrm7u8vd3V3VqlXThQsXtH//fqs+Bw8ebNWWm5ur559/Xq1bt5anp6fc3d3l6empX375xWYf/fv3t3jeqlUrSX/dEKFg+6lTp8xLLT777DOZTCb985//VG5urvkRGBio9u3b23UH188++0w1a9bUgAEDLPq48cYbFRgYaNVHu3bt1Lx586v2K0knTpzQ+PHj1bBhQ7m7u8vDw0ONGzeWJJvH4e82bdqkNm3aqH379hbt99xzj8Xzbdu26dSpUxo1apTF/PPy8nTHHXfohx9+sDrbztZrZsstt9yiL774QtOmTVNiYqIuXbpk8fOff/5Zhw4d0pgxY+Tt7W1Xn2WlsH1csmSJbrrpJnl7e5tfk6+++sri9fjiiy/k7e1ttZzElsOHDyssLEyZmZn69ttvrV4vAADKCnmetdLM8ySpevXquvPOOy3a7rnnHuXl5Wnz5s2Fbpf/mtx7770W7UOHDrW6hu9nn32mHj16KDg42GIf+vTpI0lKSkqyiL/zzjuLXO2R7+abbzaP+e9//1vHjx+3ivniiy/UvHlz3X777VftrywV9jqlpKTozjvvVJ06deTm5iYPDw+NHDlSV65c0c8//yzpr9w5MzNTEyZMuOr1HQ3D0IMPPqhZs2bpww8/1NSpU0tlf4DCsJwWqOQCAwNttu3evdv8/J577tFXX32lmTNn6uabb1aNGjVkMpnUt29fqyKOJJt3l4qOjtbChQv15JNPqnv37qpVq5aqVKmisWPH2uyjdu3aFs89PT2LbL98+bKqVaumP/74Q4ZhKCAgwOb+5i8dKcoff/yhM2fOmPsuqOD16652N618eXl5ioyM1O+//66ZM2fqhhtukK+vr/Ly8tS5c2ebx+HvTp48qZCQEKv2gq/hH3/8IUkaMmRIoX2dOnXKYjmIvfuwYMECNWjQQKtWrdKLL74ob29v9e7dWy+//LKuv/568/JUV7vwtmR7H+fPn6/HHntM48eP1zPPPKO6devKzc1NM2fOtPhHx59//qng4GBVqXL1776+//57ZWRk6LnnnnPJ4wAAqDzI86yVVp6Xz9bc8l+Hv19+pKD8nxV8zdzd3VWnTh2Ltj/++EOffvppoYW5ku5Dt27d9NFHH2nBggUaOXKksrKy1KZNGz311FMaMWKEpL9yokaNGtnVX1mytY+pqanq2rWrWrRooVdffVVNmjSRt7e3vv/+ez388MPm92Zx8tfs7GytWrVKbdq0MRdNgbJEEQ+o5NLT02225ScLZ8+e1WeffaZZs2Zp2rRp5pisrCydOnXKZp+2vsHKv0bb888/b9GekZGhmjVrXsMeWKpbt65MJpO2bNli81ob9lx/o27duqpTp47Wr19v8+fVq1e3eG7vHdn27t2r3bt3a9myZRo1apS5/ddff7Vr+zp16hT6ev1d/rVrXnvtNas7g+UrmGDauw++vr6aPXu2Zs+erT/++MN8Vt6AAQN04MAB893FfvvtN7v6K0uFvS8jIiK0ePFii/aC156pV6+etm7dqry8vKsW8oYNG6bAwEA99dRTysvLM9+wAwCAskaeZ7uP0sjz8uV/mfp3+a9DwWLc3+X/LD09XfXr1ze35+bmWhX/6tatq3bt2um5556z2VdwcLDF8+Lsw8CBAzVw4EBlZWXp22+/1dy5c3XPPfeoSZMmCgsLU7169cpNnvfRRx/pwoULWrNmjXnliyTt2rXLIq44+Wv+jUF69+6t22+/XevXr1etWrWubfJAMbCcFqjgvLy8ijzDa8WKFTIMw/z86NGj2rZtm/mC/iaTSYZhWCVFb731ll132cpnMpms+vj8889tnqZ/Lfr37y/DMHT8+HF17NjR6nHDDTeYYws7Nv3799fJkyd15coVm30UvDizvfKTi4LH4Y033rBr+x49euinn36y+PZckj788EOL57feeqtq1qypffv22Zx/x44dC/32uTgCAgI0evRojRgxQgcPHtTFixfVvHlzNWvWTG+//baysrKueYziuNp73RZb78sff/xRycnJFm19+vTR5cuXtWzZMrv6nTFjhuLi4vT0008rJiamWHMCAMBe5Hmuk+flO3funD755BOLtg8//FBVqlRRt27dCt0u/zX54IMPLNr//e9/W9xxNn8f9u7dq2bNmtnch4JFvJLw8vJS9+7d9eKLL0qS+a7Gffr00c8//2xxs4uykP/+Kk6uZyv3NgxDb775pkVceHi4/Pz8tGTJEovfl8J06NBBSUlJ+u233xQREaETJ07YPSfgWnEmHlDB3XDDDVq5cqVWrVqlpk2bytvb2yLBOXHihAYNGqRx48bp7NmzmjVrlry9vc2Fhxo1aqhbt256+eWXVbduXTVp0kRJSUmKj48v1jer/fv317Jly9SyZUu1a9dOO3bs0Msvv+zw5Ya33nqrHnjgAd13333avn27unXrJl9fX6WlpWnr1q264YYb9NBDD5mPzZo1a7R48WKFhoaqSpUq6tixo4YPH64PPvhAffv21aOPPqpbbrlFHh4e+u2337Rp0yYNHDhQgwYNKvbcWrZsqWbNmmnatGkyDEO1a9fWp59+qoSEBLu2nzx5st5++23169dPzz77rPnutAcOHLCIq1atml577TWNGjVKp06d0pAhQ8x3Yt29e7f+/PNPqzPP7NWpUyf1799f7dq1U61atbR//369//77CgsLU9WqVSVJCxcu1IABA9S5c2dNmTJFjRo1Umpqqr788kurxNSRrvZet6V///565plnNGvWLHXv3l0HDx7UnDlzFBISYpEwjxgxQu+8847Gjx+vgwcPqkePHsrLy9N3332nVq1aafjw4VZ9P/roo6pWrZoeeOABnT9/XgsWLCj2t/kAABSFPM918rx8derU0UMPPaTU1FQ1b95c69at05tvvqmHHnqoyGWorVq10j//+U/FxcXJw8NDt99+u/bu3Wu+o+zfzZkzRwkJCQoPD9ekSZPUokULXb58WUeOHNG6deu0ZMmSEh37p59+Wr/99pt69uypBg0a6MyZM3r11Vfl4eGh7t27S/orH121apUGDhyoadOm6ZZbbtGlS5eUlJSk/v37q0ePHsUe1x757+tXX31Vo0aNkoeHh1q0aGF15uTf9erVS56enhoxYoSmTp2qy5cva/HixTp9+rRFXLVq1fTKK69o7Nixuv322zVu3DgFBATo119/1e7du23eVbhVq1basmWLbr/9dnXr1k0bN27kMiooG865nwaAa1Gcu5YdOXLEiIyMNKpXr25IMt+lK7+P999/35g0aZJRr149w8vLy+jatauxfft2iz5+++03Y/DgwUatWrWM6tWrG3fccYexd+9eo3HjxhZ3ysq/u9QPP/xgNefTp08bY8aMMfz9/Y2qVasaXbp0MbZs2WJ159HC9q2wvgu7o+nbb79tdOrUyfD19TV8fHyMZs2aGSNHjrTYt1OnThlDhgwxatasaZhMJotjl5OTY8ybN89o37694e3tbVSrVs1o2bKl8eCDDxq//PKLOa5x48ZGv379rPa3MPv27TN69eplVK9e3ahVq5bxj3/8w0hNTbW6g9fVtvf29jZq165tjBkzxvj4448t7k6bLykpyejXr59Ru3Ztw8PDw6hfv77Rr18/i2Nb2PErzLRp04yOHTsatWrVMry8vIymTZsaU6ZMMTIyMizikpOTjT59+hh+fn6Gl5eX0axZM4u7rZXG3Wmv9l4v+J4yDMPIysoyHn/8caN+/fqGt7e3cdNNNxkfffSRMWrUKKs72l26dMl4+umnjeuvv97w9PQ06tSpY9x2223Gtm3bzDH6/3en/bsVK1YY7u7uxn333WdcuXLlqvsBAKjcyPOs97m85Hndu3c32rRpYyQmJhodO3Y0vLy8jKCgIGP69OlGTk7OVbfPysoyHnvsMcPf39/w9vY2OnfubCQnJ1u9FoZhGH/++acxadIkIyQkxPDw8DBq165thIaGGk899ZRx/vx5wzAKvyNsYT777DOjT58+Rv369Q1PT0/D39/f6Nu3r7FlyxaLuNOnTxuPPvqo0ahRI8PDw8Pw9/c3+vXrZxw4cMAcUzC3vda70xqGYcTExBjBwcFGlSpVLHLfol6nTz/91Pw6169f33jiiSeML774wmbuvG7dOqN79+6Gr6+vUbVqVaN169YWd5/9+91p8/32229Gy5YtjSZNmhiHDh266j4A18pkGHacLwqgwklMTFSPHj30n//8p8gbIAAAAKB8Ic8DgIqJa+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAAAAuDjOxAMAAAAAAABcHEU8AAAAAAAAwMVRxAMAAAAAAABcnLuzJ2DLokWL9PLLLystLU1t2rRRXFycunbtWmh8UlKSoqOj9dNPPyk4OFhTp07V+PHjLWJWr16tmTNn6tChQ2rWrJmee+45DRo0qFjjmkwmm+O/9NJLeuKJJ+zat7y8PP3++++qXr16of0BAAD8nWEYOnfunIKDg1WlCt/BuiryPAAAUFzFyvMMF7Ny5UrDw8PDePPNN419+/YZjz76qOHr62scPXrUZvz//vc/o2rVqsajjz5q7Nu3z3jzzTcNDw8P47///a85Ztu2bYabm5vx/PPPG/v37zeef/55w93d3fj222+LNW5aWprF4+233zZMJpNx6NAhu/fv2LFjhiQePHjw4MGDB49iP44dO1aC7AplhTyPBw8ePHjw4FHShz15nsvdnbZTp0666aabtHjxYnNbq1atdNddd2nu3LlW8U8++aQ++eQT7d+/39w2fvx47d69W8nJyZKkYcOGKTMzU1988YU55o477lCtWrW0YsWKEo0rSXfddZfOnTunr776qtD9ycrKUlZWlvn52bNn1ahRIx07dkw1atS42uEAAABQZmamGjZsqDNnzsjPz8/Z00Ehzp49q5o1a5LnAQAAuxUnz3Op5bTZ2dnasWOHpk2bZtEeGRmpbdu22dwmOTlZkZGRFm29e/dWfHy8cnJy5OHhoeTkZE2ZMsUqJi4ursTj/vHHH/r888/17rvvFrlPc+fO1ezZs63aa9SoQXIHAACKhSWari3/9SHPAwAAxWVPnudSF1XJyMjQlStXFBAQYNEeEBCg9PR0m9ukp6fbjM/NzVVGRkaRMfl9lmTcd999V9WrV9fdd99d5D7FxMTo7Nmz5sexY8eKjAcAAAAAAAAKcqkz8fIVrD4ahlFkRdJWfMF2e/oszrhvv/227r33Xnl7exc6L0ny8vKSl5dXkTEAAAAAAABAUVyqiFe3bl25ublZnf124sQJq7Pk8gUGBtqMd3d3V506dYqMye+zuONu2bJFBw8e1KpVq4q3gwAAAAAAAEAJuFQRz9PTU6GhoUpISNCgQYPM7QkJCRo4cKDNbcLCwvTpp59atG3YsEEdO3aUh4eHOSYhIcHiungbNmxQeHh4icaNj49XaGio2rdvX/KdBQCglBmGodzcXF25csXZU8FVuLm5yd3dnWveAQAAu5DnlR+OzPNcqognSdHR0YqKilLHjh0VFhampUuXKjU1VePHj5f01zXmjh8/rvfee0/SX3eiff311xUdHa1x48YpOTlZ8fHx5rvOStKjjz6qbt266cUXX9TAgQP18ccfa+PGjdq6davd4+bLzMzUf/7zH73yyitlcDQAACiZ7OxspaWl6eLFi86eCuxUtWpVBQUFydPT09lTAQAALow8r/xxVJ7nckW8YcOG6eTJk5ozZ47S0tLUtm1brVu3To0bN5YkpaWlKTU11RwfEhKidevWacqUKVq4cKGCg4O1YMECDR482BwTHh6ulStXasaMGZo5c6aaNWumVatWqVOnTnaPm2/lypUyDEMjRowo5SMBAEDJ5OXl6fDhw3Jzc1NwcLA8PT05w8uFGYah7Oxs/fnnnzp8+LCuv/56VaniUvceAwAALoI8r3xxdJ5nMvLvAoEykZmZKT8/P509e1Y1atRw9nQAABXQ5cuXdfjwYTVu3FhVq1Z19nRgp4sXL+ro0aMKCQmxunEW+UP5wOsEACht5Hnlk6PyPL7mBQCgguJsrvKF18txFi9erHbt2qlGjRqqUaOGwsLC9MUXXxQan5iYKJPJZPU4cOBAGc4aAAD7kTeUL456vVxuOS0AAABwLRo0aKAXXnhB1113nSTp3Xff1cCBA5WSkqI2bdoUut3BgwctvgGvV69eqc8VAADAXhTxAAAAUKEMGDDA4vlzzz2nxYsX69tvvy2yiOfv76+aNWuW8uwAAABKhvMvAQAAUGFduXJFK1eu1IULFxQWFlZkbIcOHRQUFKSePXtq06ZNV+07KytLmZmZFg8AAIDSQhEPAABUWIZh6IEHHlDt2rVlMpm0a9cup84nIiJCkydPduocKos9e/aoWrVq8vLy0vjx47V27Vq1bt3aZmxQUJCWLl2q1atXa82aNWrRooV69uypzZs3FznG3Llz5efnZ340bNiwNHYFAIAK5cknn1SfPn2uuZ/KmOexnBYAgEokNrZij1fQ+vXrtWzZMiUmJqpp06aqW7eucyeEMtOiRQvt2rVLZ86c0erVqzVq1CglJSXZLOS1aNFCLVq0MD8PCwvTsWPHNG/ePHXr1q3QMWJiYhQdHW1+npmZSSEPAOA0ZZl3XctYu3btUocOHa55DpUxz6OIBwDXyNYfMGcXLgD85dChQwoKClJ4eLizp4Iy5unpab6xRceOHfXDDz/o1Vdf1RtvvGHX9p07d9by5cuLjPHy8pKXl9c1zxVA5VAwPyRfRGW1e/du3XfffdfcT2XM81hOCwAAXM6cOXN0ww03yNfXVwEBAXrooYeUk5NTrD5Gjx6tRx55RKmpqTKZTGrSpImysrI0adIk+fv7y9vbW126dNEPP/xgsV2TJk0UFxdn0XbjjTcq9m//2oqIiNCkSZM0depU1a5dW4GBgRY/l6QLFy5o5MiRqlatmoKCgvTKK68Ua/5wLMMwlJWVZXd8SkqKgoKCSnFGAABUPunp6frjjz+Ul5enbt26qWrVqurYsaN2795drH5s5XmSrprrlfc8jyIeAABwKYZh6MqVK3rjjTe0b98+LVu2TP/973/11ltvFaufV199VXPmzFGDBg2UlpamH374QVOnTtXq1av17rvvaufOnbruuuvUu3dvnTp1qtjzfPfdd+Xr66vvvvtOL730kubMmaOEhATzz5944glt2rRJa9eu1YYNG5SYmKgdO3YUexwU3/Tp07VlyxYdOXJEe/bs0VNPPaXExETde++9kv5aBjty5EhzfFxcnD766CP98ssv+umnnxQTE6PVq1dr4sSJztoFAAAqpJSUFEl//e19/vnntX37dlWvXl3Dhw8vVj+28jxJDsv1XDXPYzktAABwKSaTSbNnzzY/b9y4sXr16qUDBw4Uqx8/Pz9Vr15dbm5uCgwM1IULF7R48WItW7bMfDHlN998UwkJCYqPj9cTTzxRrP7btWunWbNmSZKuv/56vf766/rqq6/Uq1cvnT9/XvHx8XrvvffUq1cvSX8lgw0aNCjWGCiZP/74Q1FRUUpLS5Ofn5/atWun9evXm1+LtLQ0paammuOzs7P1+OOP6/jx4/Lx8VGbNm30+eefq2/fvs7aBQCVHEtvUVHt2rVL3t7e+uijjxQcHCxJeu6553TrrbcqPT1dgYGBdvVTMM+T5NBcz1XzPIp4AFABcF0+VCRHjx7Vyy+/rMTERB0/flw5OTm6fPmy5s6de039Hjp0SDk5Obr11lvNbR4eHrrlllu0f//+YvfXrl07i+dBQUE6ceKEeazs7GyFhYWZf167dm2Lmyeg9MTHxxf582XLllk8nzp1qqZOnVqKMwIAANJfRbyhQ4eaC3iS5OvrK0nKy8u7pr4dmeu5ap7HcloAAOAyMjIydMsttygjI0Pz58/X1q1blZycLDc3N914442SpE6dOmn79u2SpFGjRmnx4sV29W0YhqS/zvQr2P73tipVqphj89m6Hp+Hh4fFc5PJZE4+C24PAACAv4p4+Tldvp07dyowMFBBQUElzvMk+3K98p7nUcQDAAAuY926dcrNzdWKFSsUGRmpNm3aaPPmzcrOzjYnfDNnztTzzz+vV155RdWqVdNDDz1kV9/XXXedPD09tXXrVnNbTk6Otm/frlatWpnb6tWrp7S0NPPzzMxMHT58uFj7cd1118nDw0Pffvutue306dP6+eefi9UPAABARXHx4kX9+uuvunLlirktLy9Pr732mkaPHi2TyVTiPE+yL9cr73key2kBAIDLqF27tjIzM/XJJ5+odevW+vTTTzV37lzVr19f9erVkyT1799fM2bM0Pnz57Vu3Tq7+/b19dVDDz2kJ554QrVr11ajRo300ksv6eLFixozZow57rbbbtOyZcs0YMAA1apVSzNnzpSbm1ux9qNatWoaM2aMnnjiCdWpU0cBAQF66qmnVKUK358CAIDKaffu3XJzc9M777yjbt26qWbNmpo+fbouXLig6dOnSyp5nifZl+uV9zyPIh4AAHAZ/fr105gxYxQVFSUfHx/985//1NChQ3X06FFzzPfff68zZ86oefPmcncvXirzwgsvKC8vT1FRUTp37pw6duyoL7/8UrVq1TLHxMTE6H//+5/69+8vPz8/PfPMM8X+hlaSXn75ZZ0/f1533nmnqlevrscee0xnz54tdj8AAAAVwe7du9W8eXPNmjVLgwcP1qlTp3TnnXdq27Ztql69uqRry/Okq+d65T3PMxlctKVMZWZmys/PT2fPnlWNGjWcPR0ADuAKN5VwhTnAdVy+fFmHDx9WSEiIvL29nT0dhzp+/Lj69Omjjz/+WHfffbc+/PBDi6Ww5VlRrxv5Q/nA6wSgKMW54yx3p0VhyPPKJ0fleazpAAAA5cKlS5c0ZMgQvf766woJCdHUqVP17LPPOntaAAAAuEbkefZhOS0AACgXfHx8lJycbH4+YsQIjRgxwokzAgAAgCOQ59mHM/EAAAAAAAAAF8eZeAAAAAAAlLG/X+eOa94BsAdn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAAAAAAAqs9hYZ88AQHnAmXgAAAAAAACAi6OIBwAAAAAAALg4ingAAKDCioiI0OTJk509DQAAAPx/Tz75pPr06XPN/VTGPI9r4gEAUJlsiy3b8cLLeLxSFBERoRtvvFFxcXHOngoAAIC1sszzriHH27Vrlzp06OC4uThAecnzOBMPAAAAAAAAZWL37t268cYbnT2NcokiHgCgZLbFWj8AB5kzZ45uuOEG+fr6KiAgQA899JBycnKuqc+srCxNmjRJ/v7+8vb2VpcuXfTDDz9YxPz3v//VDTfcIB8fH9WpU0e33367Lly4oNGjRyspKUmvvvqqTCaTTCaTjhw5ck3zAQAAqGzS09P1xx9/KC8vT926dVPVqlXVsWNH7d69+5r7vlquVxHyPJbTAgAAl2IYhq5cuaI33nhD9evX1759+zRy5Ei1a9dODz30UIn7nTp1qlavXq13331XjRs31ksvvaTevXvr119/Ve3atZWWlqYRI0bopZde0qBBg3Tu3Dlt2bJFhmHo1Vdf1c8//6y2bdtqzpw5kqR69eo5apcBABVQbKyzZwC4npSUFElSXFyc5s+fr9q1a+vhhx/W8OHDtX///mvqu6hcLysrq0LkeRTxAACASzGZTJo9e7b5eePGjdWrVy8dOHCgxH1euHBBixcv1rJly8wXUn7zzTeVkJCg+Ph4PfHEE0pLS1Nubq7uvvtuNW7cWJJ0ww03mPvw9PRU1apVFRgYWOJ5AAAAVGa7du2St7e3PvroIwUHB0uSnnvuOd16661KT08vcZ51tVyvZ8+eFSLPYzktAABwKUePHtXEiRPVtm1b1apVS9WqVdO///1vNWjQoMR9Hjp0SDk5Obr11lvNbR4eHrrlllvM3/q2b99ePXv21A033KB//OMfevPNN3X69Olr3h8AAAD8ZdeuXRo6dKi5gCdJvr6+kqS8vLwS93u1XK+i5HkU8QAAgMvIyMjQLbfcooyMDM2fP19bt25VcnKy3NzczBdA7tSpk7Zv3y5JGjVqlBYvXnzVfg3DkPTXWX4F2/Pb3NzclJCQoC+++EKtW7fWa6+9phYtWujw4cMO3EMAAIDKa9euXVY3tdi5c6cCAwMVFBRUojxPunquV1HyPIp4AADAZaxbt065ublasWKFIiMj1aZNG23evFnZ2dnmhG/mzJl6/vnn9corr6hatWp2XSfvuuuuk6enp7Zu3Wpuy8nJ0fbt29WqVStzm8lk0q233qrZs2crJSVFnp6eWrt2raS/lllcuXLFsTsMAABQSVy8eFG//vqrRT6Vl5en1157TaNHj5bJZCpRnifZl+tVhDzPJYt4ixYtUkhIiLy9vRUaGqotW7YUGZ+UlKTQ0FB5e3uradOmWrJkiVXM6tWr1bp1a3l5eal169bmF6q44+7fv1933nmn/Pz8VL16dXXu3Fmpqakl31kAAGBWu3ZtZWZm6pNPPtEvv/yi+fPnKzY2VvXr1zdfYLh///763//+py+//FKvvvqqXf36+vrqoYce0hNPPKH169dr3759GjdunC5evKgxY8ZIkr777js9//zz2r59u1JTU7VmzRr9+eef5sSvSZMm+u6773TkyBFlZGRc05IPAACAymb37t1yc3PTO++8o++//14///yzhg4dqgsXLmj69OmSSpbnSVfP9SpKnudyRbxVq1Zp8uTJeuqpp5SSkqKuXbuqT58+hRbKDh8+rL59+6pr165KSUnR9OnTNWnSJK1evdock5ycrGHDhikqKkq7d+9WVFSUhg4dqu+++65Y4x46dEhdunRRy5YtlZiYqN27d2vmzJny9vYuvQMCAEAl0q9fP40ZM0ZRUVHq0qWLjh8/rqFDh1osu/j+++915swZ1axZU+7u9t+j64UXXtDgwYMVFRWlm266Sb/++qu+/PJL1apVS5JUo0YNbd68WX379lXz5s01Y8YMvfLKK+aLIz/++ONyc3NT69atVa9ePb7EAwAAKIbdu3erefPmio2N1eDBg9WhQwd5eHho27Ztql69uqSS53lS0bleRcnzTEb+wmEX0alTJ910000W655btWqlu+66S3PnzrWKf/LJJ/XJJ59Y3Ip4/Pjx2r17t5KTkyVJw4YNU2Zmpr744gtzzB133KFatWppxYoVdo87fPhweXh46P333y/x/mVmZsrPz09nz55VjRo1StwPANcRG2tfW4WbwzYbA4SX9qCwx+XLl3X48GHz2eUVyfHjx9WnTx99/PHHuvvuu/Xhhx9aLIctz4p63cgfygdeJwB/58hcrKxzS7gu8rzyyVF5nkudiZedna0dO3YoMjLSoj0yMlLbtm2zuU1ycrJVfO/evbV9+3bl5OQUGZPfpz3j5uXl6fPPP1fz5s3Vu3dv+fv7q1OnTvroo4+K3KesrCxlZmZaPAAAQPFdunRJQ4YM0euvv66QkBBNnTpVzz77rLOnBQAAgGtEnmcflyriZWRk6MqVKwoICLBoDwgIUHp6us1t0tPTbcbn5uYqIyOjyJj8Pu0Z98SJEzp//rxeeOEF3XHHHdqwYYMGDRqku+++W0lJSYXu09y5c+Xn52d+NGzY0I4jAQAACvLx8VFycrK6desmSRoxYoQ++OADJ88KAAAA14o8zz4uVcTLV9gtgYsTX7Ddnj6Lism/qOHAgQM1ZcoU3XjjjZo2bZr69+9v80Ya+WJiYnT27Fnz49ixY4XGAgAAAAAAALYU7yqBpaxu3bpyc3OzOuvuxIkTVmfJ5QsMDLQZ7+7urjp16hQZk9+nPePWrVtX7u7uat26tUVMq1atLG5hXJCXl5e8vLwK/TkAAAAAAABwNS51Jp6np6dCQ0OVkJBg0Z6QkKDw8HCb24SFhVnFb9iwQR07dpSHh0eRMfl92jOup6enbr75Zh08eNAi5ueff1bjxo2LuacAAAAAAACA/VzqTDxJio6OVlRUlDp27KiwsDAtXbpUqampGj9+vKS/lqceP35c7733nqS/7kT7+uuvKzo6WuPGjVNycrLi4+PNd52VpEcffVTdunXTiy++qIEDB+rjjz/Wxo0bLc6gu9q4kvTEE09o2LBh6tatm3r06KH169fr008/VWJiYtkcHAAAAAAAAFRKLlfEGzZsmE6ePKk5c+YoLS1Nbdu21bp168xnu6WlpSk1NdUcHxISonXr1mnKlClauHChgoODtWDBAg0ePNgcEx4erpUrV2rGjBmaOXOmmjVrplWrVqlTp052jytJgwYN0pIlSzR37lxNmjRJLVq00OrVq9WlS5cyODIAABRP/jViUT7wegEAAHuRN5Qvjnq9XK6IJ0kTJkzQhAkTbP5s2bJlVm3du3fXzp07i+xzyJAhGjJkSInHzXf//ffr/vvvLzIGAABnyr+cxMWLF+Xj4+Pk2cBeFy9elPR/rx9KbvHixVq8eLGOHDkiSWrTpo2efvpp9enTp9BtkpKSFB0drZ9++knBwcGaOnWqxYoMAABcAXle+eSoPM8li3gAAKDk3NzcVLNmTZ04cUKSVLVq1SLv8g7nMgxDFy9e1IkTJ1SzZk25ubk5e0rlXoMGDfTCCy/ouuuukyS9++67GjhwoFJSUtSmTRur+MOHD6tv374aN26cli9frm+++UYTJkxQvXr1LFZ3AADgbOR55Yuj8zyKeABQDLGxzp4BYJ/AwEBJMid4cH01a9Y0v264NgMGDLB4/txzz2nx4sX69ttvbRbxlixZokaNGikuLk6S1KpVK23fvl3z5s2jiAcAcDnkeeWPo/I8ingAAFRAJpNJQUFB8vf3V05OjrOng6vw8PDgDLxScuXKFf3nP//RhQsXFBYWZjMmOTlZkZGRFm29e/dWfHy8cnJyCl36kpWVpaysLPPzzMxMx00cAIBCkOeVL47M8yjiAQBQgbm5uVEcQqW0Z88ehYWF6fLly6pWrZrWrl2r1q1b24xNT09XQECARVtAQIByc3OVkZGhoKAgm9vNnTtXs2fPdvjcAQCwB3le5VPF2RMAAAAAHK1FixbatWuXvv32Wz300EMaNWqU9u3bV2h8wesJ5d9FrqjrDMXExOjs2bPmx7FjxxwzeQAAABs4Ew8AAAAVjqenp/nGFh07dtQPP/ygV199VW+88YZVbGBgoNLT0y3aTpw4IXd3d9WpU6fQMby8vOTl5eXYiQMAABSCM/EAAABQ4RmGYXH9ur8LCwtTQkKCRduGDRvUsWPHQq+HBwAAUNYo4gEAAKBCmT59urZs2aIjR45oz549euqpp5SYmKh7771X0l/LYEeOHGmOHz9+vI4eParo6Gjt379fb7/9tuLj4/X44487axcAAACssJwWAEpBbKxjYgAAxffHH38oKipKaWlp8vPzU7t27bR+/Xr16tVLkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCzR48GBn7QIAAIAVingAUJhtsTYabbUBAFxJfHx8kT9ftmyZVVv37t21c+fOUpoRAADAtaOIBwAVlK0z/Tj7DwAAAADKJ66JBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4d2dPAABcVWKis2cAAAAAAMBfOBMPAAAAAAAAcHGciQcAAAAAwDWKjXX2DABUdJyJBwAAAAAAALg4ingAAAAAAACAi2M5LQC4EFvLMFiaAQAAAADgTDwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxbk7ewIAUFnFxjp7BgAAAACA8oIz8QAAAAAAAAAXRxEPAAAAAAAAcHEspwUAJ4nwjLVqS8y2bgMAAAAAgDPxAAAAAAAAABfHmXgAINs3mYjwLPNpAAAAAABgE0U8AHBxtgqM3NkWAACg8iiY+5ELApUTy2kBAAAAAAAAF+eSRbxFixYpJCRE3t7eCg0N1ZYtW4qMT0pKUmhoqLy9vdW0aVMtWbLEKmb16tVq3bq1vLy81Lp1a61du7bY444ePVomk8ni0blz52vbWQAAAAAAAOAqXK6It2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqak24w8fPqy+ffuqa9euSklJ0fTp0zVp0iStXr3aHJOcnKxhw4YpKipKu3fvVlRUlIYOHarvvvuu2OPecccdSktLMz/WrVtXOgcCAAAAAAAA+P9crog3f/58jRkzRmPHjlWrVq0UFxenhg0bavHixTbjlyxZokaNGikuLk6tWrXS2LFjdf/992vevHnmmLi4OPXq1UsxMTFq2bKlYmJi1LNnT8XFxRV7XC8vLwUGBpoftWvXLpXjAAAAAAAAAORzqSJedna2duzYocjISIv2yMhIbdu2zeY2ycnJVvG9e/fW9u3blZOTU2RMfp/FGTcxMVH+/v5q3ry5xo0bpxMnThS5T1lZWcrMzLR4AAAAAAAAAMXhUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQUGZPfp73j9unTRx988IG+/vprvfLKK/rhhx902223KSsrq9B9mjt3rvz8/MyPhg0bXuUoAAAAAAAAAJbcnT0BW0wmk8VzwzCs2q4WX7Ddnj6vFjNs2DDz/7dt21YdO3ZU48aN9fnnn+vuu++2ObeYmBhFR0ebn2dmZlLIAwAAAAAAQLG4VBGvbt26cnNzszrr7sSJE1ZnyeULDAy0Ge/u7q46deoUGZPfZ0nGlaSgoCA1btxYv/zyS6ExXl5e8vLyKvTnAAAAAAAAwNW41HJaT09PhYaGKiEhwaI9ISFB4eHhNrcJCwuzit+wYYM6duwoDw+PImPy+yzJuJJ08uRJHTt2TEFBQfbtIAAAAAAAAFACLlXEk6To6Gi99dZbevvtt7V//35NmTJFqampGj9+vKS/lqeOHDnSHD9+/HgdPXpU0dHR2r9/v95++23Fx8fr8ccfN8c8+uij2rBhg1588UUdOHBAL774ojZu3KjJkyfbPe758+f1+OOPKzk5WUeOHFFiYqIGDBigunXratCgQWVzcAAAAHBVc+fO1c0336zq1avL399fd911lw4ePFjkNomJiTKZTFaPAwcOlNGsAQAAiuZSy2mlv647d/LkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHdXNz0549e/Tee+/pzJkzCgoKUo8ePbRq1SpVr169jI4OAAAAriYpKUkPP/ywbr75ZuXm5uqpp55SZGSk9u3bJ19f3yK3PXjwoGrUqGF+Xq9evdKeLgAAgF1crognSRMmTNCECRNs/mzZsmVWbd27d9fOnTuL7HPIkCEaMmRIicf18fHRl19+WeT2AAAAcL7169dbPH/nnXfk7++vHTt2qFu3bkVu6+/vr5o1a5bi7AAAAErG5ZbTAgAAAI509uxZSVLt2rWvGtuhQwcFBQWpZ8+e2rRpU5GxWVlZyszMtHgAAACUFop4AAAAqLAMw1B0dLS6dOmitm3bFhoXFBSkpUuXavXq1VqzZo1atGihnj17avPmzYVuM3fuXPn5+ZkfDRs2LI1dAAAAkOSiy2kBAKUjNta+NgCoKCZOnKgff/xRW7duLTKuRYsWatGihfl5WFiYjh07pnnz5hW6BDcmJkbR0dHm55mZmRTyAABAqaGIB6BSqgyFqwjPWKu2xGzrNgCoqB555BF98skn2rx5sxo0aFDs7Tt37qzly5cX+nMvLy95eXldyxQBAADsRhEPACo5zs4DUNEYhqFHHnlEa9euVWJiokJCQkrUT0pKioKCghw8OwAAgJKhiAcAAIAK5eGHH9aHH36ojz/+WNWrV1d6erokyc/PTz4+PpL+Wgp7/Phxvffee5KkuLg4NWnSRG3atFF2draWL1+u1atXa/Xq1U7bDwAAgL+jiAcAAIAKZfHixZKkiIgIi/Z33nlHo0ePliSlpaUpNTXV/LPs7Gw9/vjjOn78uHx8fNSmTRt9/vnn6tu3b1lNGwAAoEgU8QAAAFChGIZx1Zhly5ZZPJ86daqmTp1aSjMCAAC4dlWcPQEAAAAAAAAARaOIBwAAAAAAALg4ltMCqHy2xSrC07IpMTvWKVNxRRGesdK2Ao3hsU6YCQAAAAAgH0U8ACiHYmOdPQMAAAAAQFliOS0AAAAAAADg4ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OG1sAAK5uW6yzZwAAAAAAlRpn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAHAFEZ6xJYpLzLZvO0eyNVdnzAMAAAAAUHY4Ew8AAAAAAABwcZyJBwAAAABAORIbW/RzABUTZ+IBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiuLEFAAAAAADFxM0kAJQ1ingAgKtKTLRui4go61kAAAAAQOXFcloAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxXFNPACoACI8Y509BQAAAABAKaKIB6DCK3jnsAhPp0wDAAAAAIASYzktAAAAAAAA4OJcsoi3aNEihYSEyNvbW6GhodqyZUuR8UlJSQoNDZW3t7eaNm2qJUuWWMWsXr1arVu3lpeXl1q3bq21a9de07gPPvigTCaT4uLiir1/AAAAAAAAQHG4XBFv1apVmjx5sp566imlpKSoa9eu6tOnj1JTU23GHz58WH379lXXrl2VkpKi6dOna9KkSVq9erU5Jjk5WcOGDVNUVJR2796tqKgoDR06VN99912Jxv3oo4/03XffKTg42PEHAAAAAAAAACjA5Yp48+fP15gxYzR27Fi1atVKcXFxatiwoRYvXmwzfsmSJWrUqJHi4uLUqlUrjR07Vvfff7/mzZtnjomLi1OvXr0UExOjli1bKiYmRj179rQ4i87ecY8fP66JEyfqgw8+kIeHR6kcAwAAAAAAAODvXKqIl52drR07digyMtKiPTIyUtu2bbO5TXJyslV87969tX37duXk5BQZk9+nvePm5eUpKipKTzzxhNq0aWPXPmVlZSkzM9PiAQAAAAAAABSHS92dNiMjQ1euXFFAQIBFe0BAgNLT021uk56ebjM+NzdXGRkZCgoKKjQmv097x33xxRfl7u6uSZMm2b1Pc+fO1ezZs+2OB1AM22Kt28JttAEAAAAAUM5dUxHvk08+sTv2zjvvtDvWZDJZPDcMw6rtavEF2+3ps6iYHTt26NVXX9XOnTuLnEtBMTExio6ONj/PzMxUw4YN7d4eAACgIiutfBIAAKCiuaYi3l133WXx3GQymQto+c/zXbly5ar91a1bV25ublZn3Z04ccLqLLl8gYGBNuPd3d1Vp06dImPy+7Rn3C1btujEiRNq1KiRxT499thjiouL05EjR2zOz8vLS15eXlfZcwAAgMrJ0fkkAABARXVN18TLy8szPzZs2KAbb7xRX3zxhc6cOaOzZ89q3bp1uummm7R+/Xq7+vP09FRoaKgSEhIs2hMSEhQeHm5zm7CwMKv4DRs2qGPHjuYbTxQWk9+nPeNGRUXpxx9/1K5du8yP4OBgPfHEE/ryyy/t2j8AAABYcnQ+Kf11OZObb75Z1atXl7+/v+666y4dPHjwqtslJSUpNDRU3t7eatq0qZYsWXItuwYAAOBQDrsm3uTJk7VkyRJ16dLF3Na7d29VrVpVDzzwgPbv329XP9HR0YqKilLHjh0VFhampUuXKjU1VePHj5f01/LU48eP67333pMkjR8/Xq+//rqio6M1btw4JScnKz4+XitWrDD3+eijj6pbt2568cUXNXDgQH388cfauHGjtm7dave4derUMZ/Zl8/Dw0OBgYFq0aJFyQ4aAAAAzByVTyYlJenhhx/WzTffrNzcXD311FOKjIzUvn375Ovra3Obw4cPq2/fvho3bpyWL1+ub775RhMmTFC9evU0ePBgh+wfAADAtXBYEe/QoUPy8/Ozavfz8yt0qaktw4YN08mTJzVnzhylpaWpbdu2WrdunRo3bixJSktLU2pqqjk+JCRE69at05QpU7Rw4UIFBwdrwYIFFslWeHi4Vq5cqRkzZmjmzJlq1qyZVq1apU6dOtk9LgBUJomJzp4BgMrIUflkwbP23nnnHfn7+2vHjh3q1q2bzW2WLFmiRo0aKS4uTpLUqlUrbd++XfPmzaOIBwAAXILJ+PtFR65Bt27d5OHhoeXLlysoKEjSX3eOjYqKUnZ2tpKSkhwxTLmXmZkpPz8/nT17VjVq1HD2dIDyzc6708YWaIrwtLGdAyVm29e/PfOw1Vdpz99eERE2Grk7MFAqKkv+UFr55K+//qrrr79ee/bsUdu2bQsdu0OHDnr11VfNbWvXrtXQoUN18eJF82Va/i4rK0tZWVnm5/k3MKvorxOAvxTMMZ3JleYCoHiKk+c57Ey8t99+W4MGDVLjxo3NN39ITU1V8+bN9dFHHzlqGAAAAFRQpZFPGoah6OhodenSpdACnvRXsbDgjdQCAgKUm5urjIwMc1Hx7+bOnavZs2eXaF4A4EgFi3gU9YCKyWFFvOuuu04//vijEhISdODAARmGodatW+v222+3uKsYAAAAYEtp5JMTJ07Ujz/+aHEt5MIUHCN/wUphY8fExCg6Otr8PP9MPAAAgNLgsCKe9FeCExkZqW7dusnLy4viHQAAAIrFkfnkI488ok8++USbN29WgwYNiowNDAxUenq6RduJEyfk7u5udXOzfF5eXvLy8irx/AAAAIqjiqM6ysvL0zPPPKP69eurWrVqOnz4sCRp5syZio+Pd9QwAAAAqKAclU8ahqGJEydqzZo1+vrrrxUSEnLVbcLCwpSQkGDRtmHDBnXs2NHm9fAAAADKmsOKeM8++6yWLVuml156SZ6enub2G264QW+99ZajhgEAAEAF5ah88uGHH9by5cv14Ycfqnr16kpPT1d6erouXbpkjomJidHIkSPNz8ePH6+jR48qOjpa+/fv19tvv634+Hg9/vjjjtk5AACAa+SwIt57772npUuX6t5775Wbm5u5vV27djpw4ICjhgEAAEAF5ah8cvHixTp79qwiIiIUFBRkfqxatcock5aWptTUVPPzkJAQrVu3TomJibrxxhv1zDPPaMGCBRo8eLBjdg4AAOAaOeyaeMePH9d1111n1Z6Xl6ecnBxHDQMAxbMtVhGeVw8DADifo/LJ/BtSFGXZsmVWbd27d9fOnTvtHgcAAKAsOexMvDZt2mjLli1W7f/5z3/UoUMHRw0DAACACop8EgAAoHAOOxNv1qxZioqK0vHjx5WXl6c1a9bo4MGDeu+99/TZZ585ahgAAABUUOSTAAAAhXPYmXgDBgzQqlWrtG7dOplMJj399NPav3+/Pv30U/Xq1ctRwwAAAKCCIp8EAAAonMPOxJOk3r17q3fv3o7sEgAAAJUI+SQAAIBtDi3i5Tt//rzy8vIs2mrUqFEaQwEAAKACIp8EAACw5LDltIcPH1a/fv3k6+srPz8/1apVS7Vq1VLNmjVVq1YtRw0DAACACop8EgAAoHAOOxPv3nvvlSS9/fbbCggIkMlkclTXAAAAqATIJwEAAArnsCLejz/+qB07dqhFixaO6hIAAACVCPkkAABA4RxWxLv55pt17Ngxki4AAACUCPkkAFcWG+vsGQCo7BxWxHvrrbc0fvx4HT9+XG3btpWHh4fFz9u1a+eooQAAAFABkU8CAAAUzmFFvD///FOHDh3SfffdZ24zmUwyDEMmk0lXrlxx1FAAABeQmGjdFhFe5tMAUIGQTwIAABTOYUW8+++/Xx06dNCKFSu4EDEAAACKjXwSAACgcA4r4h09elSffPKJrrvuOkd1CQDFty3W2TMAAJQQ+SQAAEDhqjiqo9tuu027d+92VHcAAACoZMgnAQAACuewM/EGDBigKVOmaM+ePbrhhhusLkR85513OmooAAAAVEDkkwBcCXejBeBqHFbEGz9+vCRpzpw5Vj/jQsQAAAC4GvJJAACAwjmsiJeXl+eorgAAAFAJkU8CAAAUziHXxMvNzZW7u7v27t3riO4AAABQyZBPAgAAFM0hZ+K5u7urcePGLHEAUKYSE63bIiLKehb2ifCMLdPtnKbg3YHDY21FAYAV8kkAAICiOezutDNmzFBMTIxOnTrlqC4BAABQiZBPAgAAFM5h18RbsGCBfv31VwUHB6tx48by9fW1+PnOnTsdNRQAFMrW2XkAgPKBfBIArNlamZGYbd0GoOJzWBHvrrvuclRXAAAAqITIJwEAAArnsCLerFmzHNUVAAAAKiHySQAAgMI5rIiXb8eOHdq/f79MJpNat26tDh06OHoIAAAAVGDkkwAqq3J3UzMAZcphRbwTJ05o+PDhSkxMVM2aNWUYhs6ePasePXpo5cqVqlevnqOGAgCXVpmTr4LXJEzcIMXGOmMmAMoj8kkAcIyC+Rf5GFAxOOzutI888ogyMzP1008/6dSpUzp9+rT27t2rzMxMTZo0yVHDAAAAoIIinwQAACicw87EW79+vTZu3KhWrVqZ21q3bq2FCxcqMjLSUcMAAACggiKfBOBU22ItnkZ4chdYAK7FYWfi5eXlycPDw6rdw8NDeXl5jhoGAAAAFRT5JAAAQOEcVsS77bbb9Oijj+r33383tx0/flxTpkxRz549HTUMAAAAKijySQAAgMI5bDnt66+/roEDB6pJkyZq2LChTCaTjh49qnbt2un999931DAAKilbF+ON8CzzaQAAShH5JAAAQOEcVsRr2LChdu7cqY0bN2r//v0yDEOtW7fW7bff7qghAAAAUIGRTwIAABTOYUU8Sfrqq6/09ddf68SJE8rLy9OuXbv04YcfSpLefvttRw4FACgHIjxjpW0FGsNjnTATAOUF+SQAXF2EZ6xVGzfhACo+h10Tb/bs2YqMjNRXX32ljIwMnT592uJRHIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHHjY2NVcuWLeXr66tatWrp9ttv13fffVesfQMAAIBtjswnAQAAKhqHnYm3ZMkSLVu2TFFRUdfUz6pVqzR58mQtWrRIt956q9544w316dNH+/btU6NGjaziDx8+rL59+2rcuHFavny5vvnmG02YMEH16tXT4MGDJUnJyckaNmyYnnnmGQ0aNEhr167V0KFDtXXrVnXq1MnucZs3b67XX39dTZs21aVLl/Svf/1LkZGR+vXXX1WvXr1r2m8AqKgSEws832D7GocA4Kh8EgAAoCJy2Jl42dnZCg8Pv+Z+5s+frzFjxmjs2LFq1aqV4uLi1LBhQy1evNhm/JIlS9SoUSPFxcWpVatWGjt2rO6//37NmzfPHBMXF6devXopJiZGLVu2VExMjHr27Km4uLhijXvPPffo9ttvV9OmTdWmTRvNnz9fmZmZ+vHHH695vwEAACo7R+WTAAAAFZHDinhjx441X6+kpLKzs7Vjxw5FRkZatEdGRmrbtoIXVfpLcnKyVXzv3r21fft25eTkFBmT32dJxs3OztbSpUvl5+en9u3bF7pPWVlZyszMtHgAAADAmiPySQAAgIrKYctpL1++rKVLl2rjxo1q166dPDw8LH4+f/78q/aRkZGhK1euKCAgwKI9ICBA6enpNrdJT0+3GZ+bm6uMjAwFBQUVGpPfZ3HG/eyzzzR8+HBdvHhRQUFBSkhIUN26dQvdp7lz52r27NlF7zgAAAAckk8CAABUVA4r4v3444+68cYbJUl79+61+JnJZCpWXwXjDcMosg9b8QXb7enTnpgePXpo165dysjI0JtvvqmhQ4fqu+++k7+/v825xcTEKDo62vw8MzNTDRs2LHRfgAplW6x1W8E7k9qKscneOLg67lgLoDCOyic3b96sl19+WTt27FBaWprWrl2ru+66q9D4xMRE9ejRw6p9//79atmypd3jAgAAlCaHFfE2bdp0zX3UrVtXbm5uVme/nThxwuosuXyBgYE2493d3VWnTp0iY/L7LM64vr6+uu6663Tdddepc+fOuv766xUfH6+YmBib8/Py8pKXl9dV9hwAAACOyCcl6cKFC2rfvr3uu+8+843O7HHw4EHVqFHD/JwblwEAAFfisGviOYKnp6dCQ0OVkJBg0Z6QkFDoRY7DwsKs4jds2KCOHTual2AUFpPfZ0nGzWcYhrKysq6+cwAAACgTffr00bPPPqu77767WNv5+/srMDDQ/HBzcyulGQIAABSfw87Ec5To6GhFRUWpY8eOCgsL09KlS5Wamqrx48dL+mt56vHjx/Xee+9JksaPH6/XX39d0dHRGjdunJKTkxUfH68VK1aY+3z00UfVrVs3vfjiixo4cKA+/vhjbdy4UVu3brV73AsXLui5557TnXfeqaCgIJ08eVKLFi3Sb7/9pn/84x9leIQAAABQGjp06KDLly+rdevWmjFjhs0ltn+XlZVl8WUuNzADAAClyeWKeMOGDdPJkyc1Z84cpaWlqW3btlq3bp0aN24sSUpLS1Nqaqo5PiQkROvWrdOUKVO0cOFCBQcHa8GCBRZLJ8LDw7Vy5UrNmDFDM2fOVLNmzbRq1Sp16tTJ7nHd3Nx04MABvfvuu8rIyFCdOnV08803a8uWLWrTpk0ZHR2gYkpMtG6LiCjrWcCZYmPtawOA0hAUFKSlS5cqNDRUWVlZev/999WzZ08lJiaqW7duhW7HDcwAAEBZcrkiniRNmDBBEyZMsPmzZcuWWbV1795dO3fuLLLPIUOGaMiQISUe19vbW2vWrClyewAAAJQ/LVq0UIsWLczPw8LCdOzYMc2bN6/IIh43MAMAAGXJpa6JBwAAALiCzp0765dffikyxsvLSzVq1LB4AAAAlBaKeAAAAEABKSkpCgoKcvY0AAAAzFxyOS0AAABQUufPn9evv/5qfn748GHt2rVLtWvXVqNGjaxulBYXF6cmTZqoTZs2ys7O1vLly7V69WqtXr3aWbsAAABghSIeAKDM2bqZCQA4yvbt2y3uLJt/3bpRo0Zp2bJlVjdKy87O1uOPP67jx4/Lx8dHbdq00eeff66+ffuW+dwBlD8RnrFWbYnZ1m0AcK0o4gEAAKBCiYiIkGEYhf684I3Spk6dqqlTp5byrAAAAK4N18QDAAAAAAAAXBxn4gFwSSy3BAAAQHnlsktst8Vat4XbaAPgkijiASgXbCVCAAAAgKPwJTIAV8dyWgAAAAAAAMDFcSYeAAAAAAB2YHUIAGfiTDwAAAAAAADAxVHEAwAAAAAAAFwcy2kBAAAAALCB5bMAXAlFPACA09lKkGNjbbWV+lQAAAAAwCVRxAMAAAAAVFzbYq3bwm20lXO2vhRNzLZuA1B+cU08AAAAAAAAwMVRxAMAAAAAAABcHMtpAQAAAACowPKvKxzh+f//G+GsmQC4FpyJBwAAAAAAALg4ingAAAAAAACAi2M5LVCZOfJOXbb6siH/VP58+af0A3Yp+D6rgHeWAwAAAABbOBMPAAAAAAAAcHEU8QAAAAAAAAAXx3JaAAAAAAAqkcTE//v/iHAbAY687A4Ah+FMPAAAAAAAAMDFcSYegFLz92/4AAAAAABAyVHEAwBULCz/AAAALijCM9aqLTHbug0ACsNyWgAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFcU08AAAAAEClFBv7f/8f4em0aQCAXTgTDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBx7s6eAAAAAAAAcJJtsc6eAQA7ueSZeIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHGzcnJ0ZNPPqkbbrhBvr6+Cg4O1siRI/X7779f+w4DrmxbrPXDhsRE6wdQ6ux8f5a4PwAAAABwES53Jt6qVas0efJkLVq0SLfeeqveeOMN9enTR/v27VOjRo2s4g8fPqy+fftq3LhxWr58ub755htNmDBB9erV0+DBgyVJycnJGjZsmJ555hkNGjRIa9eu1dChQ7V161Z16tTJrnEvXryonTt3aubMmWrfvr1Onz6tyZMn684779T27dvL9BgBAAAAAHA1EZ6xjuvM1hec4Q7sH8BVuVwRb/78+RozZozGjh0rSYqLi9OXX36pxYsXa+7cuVbxS5YsUaNGjRQXFydJatWqlbZv36558+aZi3hxcXHq1auXYmJiJEkxMTFKSkpSXFycVqxYYde4fn5+SkhIsBj7tdde0y233KLU1FSbBUagoih4Vl3iBik21hkzAQAAAACgcnKp5bTZ2dnasWOHIiMjLdojIyO1bds2m9skJydbxffu3Vvbt29XTk5OkTH5fZZkXEk6e/asTCaTatasWWhMVlaWMjMzLR4AAAAoPZs3b9aAAQMUHBwsk8mkjz766Krb2HN5FgCoiLgkDlB+uNSZeBkZGbpy5YoCAgIs2gMCApSenm5zm/T0dJvxubm5ysjIUFBQUKEx+X2WZNzLly9r2rRpuueee1SjRo1C92nu3LmaPXt2oT8HANjPVmIZEXH1uIjwUpgMAJd14cIFtW/fXvfdd595ZUZR7Lk8CwAAgLO5VBEvn8lksnhuGIZV29XiC7bb06e94+bk5Gj48OHKy8vTokWLitiTv5buRkdHm59nZmaqYcOGRW4DAACAkuvTp4/69Oljd7w9l2cBAABwNpcq4tWtW1dubm5WZ7+dOHHC6iy5fIGBgTbj3d3dVadOnSJj8vsszrg5OTkaOnSoDh8+rK+//rrIs/AkycvLS15eXkXGAAAAwHkKu/RKfHy8cnJy5OHhYXO7rKwsZWVlmZ9z2RQAAFCaXKqI5+npqdDQUCUkJGjQoEHm9oSEBA0cONDmNmFhYfr0008t2jZs2KCOHTuaE66wsDAlJCRoypQpFjHh4eHFGje/gPfLL79o06ZN5iIh4HJK+c5REZ6xUuGXiwQcwqF3UwOAIthzeRZbuGwKAAAoSy5VxJOk6OhoRUVFqWPHjgoLC9PSpUuVmpqq8ePHS/preerx48f13nvvSZLGjx+v119/XdHR0Ro3bpySk5MVHx9vvuusJD366KPq1q2bXnzxRQ0cOFAff/yxNm7cqK1bt9o9bm5uroYMGaKdO3fqs88+05UrV8xn7tWuXVuenp5ldYgAAADgYPZcnqUgLpsCAADKkssV8YYNG6aTJ09qzpw5SktLU9u2bbVu3To1btxYkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCyyuXxIeHq6VK1dqxowZmjlzppo1a6ZVq1apU6dOdo/722+/6ZNPPpEk3XjjjRZz3rRpkyJsXVkdAAAALs+ey7PYwmVTAABAWXK5Ip4kTZgwQRMmTLD5s2XLllm1de/eXTt37iyyzyFDhmjIkCElHrdJkybmb2QBcPt5AEDFYc/lWQC4AEdeMub/9xXh5AVVXD4EQHFUcfYEAAAAAEc6f/68du3apV27dkmSDh8+rF27dplXc8TExGjkyJHm+PHjx+vo0aOKjo7W/v379fbbbys+Pl6PP/64M6YPAABgk0ueiQcAAACU1Pbt29WjRw/z8/zr1o0aNUrLli0r0eVZAAAAnI0iHgCgXLNraXcp37EZgGuJiIgo8jIoJb08C4Dyj0vCACjPWE4LAAAAAAAAuDiKeAAAAAAAAICLYzktAAAAAACQZL3kOCLCGbMAYAtn4gEAAAAAAAAujiIeAAAAAAAA4OJYTgvAkq27eALlnK070SVusG6LjSzQwF1tAQAAClcwVyJPAkoVZ+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAKgQEp+PtXjOnVUBVCQU8QAAAAAAgE0Fry1MYRRwHpbTAgAAAAAAAC6OM/GASiI21kZbwTtxAgAAAAAAl0QRDyhtBW+7LnHrdQAAAKAMFFwKCgDlGUU8ABZIdAAAAAAAcD0U8QAAAAAA5ZOtVS8AUEFxYwsAAAAAAADAxXEmHlBBsSwWAAAATlfwTDmuDV2xcT1woFRRxAMqMQp9AAAAAACUDxTxUPlUtG8D7bwOSISnfXGlzVXmAdhiq7AdEVGggW+YAQAAADgBRTwAAAAAgGvhhhUAYIUbWwAAAAAAAAAujiIeAAAAAAAA4OJYTgsAQBHsuk4eAAAAAJQyzsQDAAAAAAAAXBxn4gEAAAAAyoWCZ8hzdjyAyoQiHmCLrbthhdtoK+9jAnCI2Fj72uzCZwEAAKhIyG0Ah2E5LQAAAAAAAODiOBMPAIBS4NCz8wAAAABUehTxAAAAAABA2bG1xNYWlt0CFlhOCwAAAAAAALg4zsQDAMCJCi6xjfDkTnsAAAAArFHEw//hrkHFxzEDyq0Iz1hnT6H0sVQFAFDBJSY6ewYoVQVzGXIWVHIU8QAXxoXxAQAAALiSgoVTVhAAZYdr4gEAAAAAAAAujjPxAAAAAADXzt7LOAAASsQlz8RbtGiRQkJC5O3trdDQUG3ZsqXI+KSkJIWGhsrb21tNmzbVkiVLrGJWr16t1q1by8vLS61bt9batWuLPe6aNWvUu3dv1a1bVyaTSbt27bqm/QQAAAAAAADs4XJFvFWrVmny5Ml66qmnlJKSoq5du6pPnz5KTU21GX/48GH17dtXXbt2VUpKiqZPn65JkyZp9erV5pjk5GQNGzZMUVFR2r17t6KiojR06FB99913xRr3woULuvXWW/XCCy+U3gEAALi8xETLBwAAAACUNpdbTjt//nyNGTNGY8eOlSTFxcXpyy+/1OLFizV37lyr+CVLlqhRo0aKi4uTJLVq1Urbt2/XvHnzNHjwYHMfvXr1UkxMjCQpJiZGSUlJiouL04oVK+weNyoqSpJ05MiRUtt/OJgjT+l3wvIA23fPtG6jiACUE6V9hzVXWMZk7127HXl3b+4UjkIsWrRIL7/8stLS0tSmTRvFxcWpa9euNmMTExPVo0cPq/b9+/erZcuWpT1VoPLgMxsASsylzsTLzs7Wjh07FBkZadEeGRmpbdu22dwmOTnZKr53797avn27cnJyiozJ77Mk49orKytLmZmZFg8AAACUruKu7sh38OBBpaWlmR/XX399Gc0YAACgaC5VxMvIyNCVK1cUEBBg0R4QEKD09HSb26Snp9uMz83NVUZGRpEx+X2WZFx7zZ07V35+fuZHw4YNr6k/AAAAXN3fV1m0atVKcXFxatiwoRYvXlzkdv7+/goMDDQ/3NzcymjGAFAxcRkSwHFcbjmtJJlMJovnhmFYtV0tvmC7PX0Wd1x7xMTEKDo62vw8MzOTQh5s4g8aAACOkb/KYtq0aRbt9qyy6NChgy5fvqzWrVtrxowZNpfY5svKylJWVpb5OSsuUKm4wiUc4BIK/jsmIqIUB2M5Nio5lyri1a1bV25ublZnv504ccLqLLl8gYGBNuPd3d1Vp06dImPy+yzJuPby8vKSl5fXNfUBAEBJ2fqCoFSTa8AFlGSVRVBQkJYuXarQ0FBlZWXp/fffV8+ePZWYmKhu3brZ3Gbu3LmaPXu2w+cPAOUZJycApcelinienp4KDQ1VQkKCBg0aZG5PSEjQwIEDbW4TFhamTz/91KJtw4YN6tixozw8PMwxCQkJmjJlikVMeHh4iccFAACAayvOKosWLVqoRYsW5udhYWE6duyY5s2bV2gRjxUXqDRK+6w7zuoDALu4VBFPkqKjoxUVFaWOHTsqLCxMS5cuVWpqqsaPHy/pr2Tp+PHjeu+99yRJ48eP1+uvv67o6GiNGzdOycnJio+PN991VpIeffRRdevWTS+++KIGDhyojz/+WBs3btTWrVvtHleSTp06pdTUVP3++++S/rrwsSTzNVMAAADgfI5aZdG5c2ctX7680J+z4gIAAJQllyviDRs2TCdPntScOXOUlpamtm3bat26dWrcuLEkKS0tzeKuYiEhIVq3bp2mTJmihQsXKjg4WAsWLNDgwYPNMeHh4Vq5cqVmzJihmTNnqlmzZlq1apU6depk97iS9Mknn+i+++4zPx8+fLgkadasWYqNjS2tQ1J89nyTxXUDnItvG4EKL8Iz1qrNanlJYqwiPK23tbq2TLh1jK0/O7GR1m0OVfCzq7L8LeH6O+WOo1ZZpKSkKCgoqDSmCAAAUGwuV8STpAkTJmjChAk2f7Zs2TKrtu7du2vnzp1F9jlkyBANGTKkxONK0ujRozV69Ogi+wAAAIDzFXd1R1xcnJo0aaI2bdooOztby5cv1+rVq7V69Wpn7gZgjS8WAKDScskiHgAAKB8KnhEY4cmNM+Aairu6Izs7W48//riOHz8uHx8ftWnTRp9//rn69u3rrF0AAACwQBEPcDB7/0HLXZsAAChdxVndMXXqVE2dOrUMZgWgOMiZAeD/UMQDyhlbRUIAAACgPLK6DmyEM2aBssRrDpQcRTygDPANIgBXYs+NMwAAAAC4Fop4KB3XcvfVghfmtbcvF7mgr607Upan/gEUX2n/XiY+b6v/0h3TJbjyxdtdeW4AAACokCjiAeLC7AAAAADgDH9fIcC/wYCiUcQDCsG1GgAAAAAAgKugiIdyy55rOtm6Fl1Ji3GO7AsAAACorLheNACUDEU8AABgpeBlBiQpNrLMpwEAsIcjr9N5Lde2dgAKfABQuCrOngAAAAAAAACAonEmHgAAAAAAcDquSw4UjSIeKo6Snvq/LVYRng6dCQCUugjPWMd1ZvPzs7T7L2WOXFoGAGWltD+7nLxUFgBwbSjiAQBQQXAdIQAAAKDioogHAADsUrBImLjBKdMAAAAAKiWKeKgwOAMFAAAAZa7gElVXWbrvQktnydNRquxdhs6lNlABUMQDAAAuy9bZf7GxzpgJAAAA4FxVnD0BAAAAAAAAAEXjTLzKyoVOry+o4BkWEZ6OvbW4I0/nZ2kAgIrKoXe/dVUsqwEAoHJzxh2hyTVwDSjioVygWAYApYfPWADAtSj4d8SRX8ADAP4PRTwAAFCqbBUJ+QceAFRcfDkEAKWDIh6KzdYFxbnIOAAgX0n/8WbrcgoAAKDycspZnvbccZplsnASingAAAAAAMDlsXQblR1FPAAAUOZYagUA5QeFE7iqq703/36Wf4lvmGjvTSFLGnctZ/pxRmClQxEP1yzCM1aJz9sRF1HqUwEAlCFn3MHW1t8c/r4AAACgMqji7AkAAAAAAAAAKBpn4sHM5t0Dw8t8GgAAAEDpKe1latfSP4BrYv43bWKspAp2kyxHfmawXLfcooiHIjnyrrM2i4QRjusfAAAAQOnjuqYA4BwspwUAAAAAAABcHGfiAQAAFBOXoABKkSOXb7nKklVXmQeAio/PmwqNIh6cilPxAQCupuClJGIjnTINACgzBXNyLnmDior3Oso7ingoUoRnbKUYEwDgfI78/OdMOQAAAFQ0FPEAAEC5di1ndRfcNnHDtcwEgNNVxGVkTtgnVssAlVBF/PysgCjiAQCASqHgMtkIT/u24x+zAABUTEX9jWepLVwRRTwAAAAAqGT4ggIoGtfPgyuiiFeJ8YcbAAAA5ZYjl37Z2xfLzQA4Gp8rKIYqzp4AAAAAAAAAgKJxJh4AAMD/xx3SAZQXV1tVU3DpH6twgGtT3N85oDRQxAMAAADKi4LLrsJjbUW5rpLOn+VmAFxcpbmGXkk/j8vb3ysXRRGvkuCbNwAAAMC1/D1Hd/Q/+Mn/AeeqNEU9lCmXvCbeokWLFBISIm9vb4WGhmrLli1FxiclJSk0NFTe3t5q2rSplixZYhWzevVqtW7dWl5eXmrdurXWrl1b7HENw1BsbKyCg4Pl4+OjiIgI/fTTT9e2swAAACgVpZFTonJLTLR8AIC9Cn5+FPV5wmcNCuNyZ+KtWrVKkydP1qJFi3TrrbfqjTfeUJ8+fbRv3z41atTIKv7w4cPq27evxo0bp+XLl+ubb77RhAkTVK9ePQ0ePFiSlJycrGHDhumZZ57RoEGDtHbtWg0dOlRbt25Vp06d7B73pZde0vz587Vs2TI1b95czz77rHr16qWDBw+qevXqZXeQAAAAUKTSyCkrpWtZxmrP0qkKtkz2amfeFPWPcf6hDqAwlfp6fLb+Ttj6+2JvnCPHdAKXOxNv/vz5GjNmjMaOHatWrVopLi5ODRs21OLFi23GL1myRI0aNVJcXJxatWqlsWPH6v7779e8efPMMXFxcerVq5diYmLUsmVLxcTEqGfPnoqLi7N7XMMwFBcXp6eeekp333232rZtq3fffVcXL17Uhx9+WKrHpLiuVtUHAACo6EojpwQAoDygHlBxudSZeNnZ2dqxY4emTZtm0R4ZGalt27bZ3CY5OVmRkZEWbb1791Z8fLxycnLk4eGh5ORkTZkyxSomv4hnz7iHDx9Wenq6xVheXl7q3r27tm3bpgcffNDm/LKyspSVlWV+fvbsWUlSZmZmYYfhml24nHX1IAAAKpmsHMu/vRfyHPv3sjT/tuf3bRhGqY1RkZRWTlmQM/I8XSjwvi3NsWyNVxy25majv4KrnLt2LfrnruTz9df2cwDIdy2fF8X9LHLk52zBvgpVyN+ruXP/7/9jYmwE2Po7ZOfflxL/jXRkX3YoTp7nUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQoKCio0Jj8Pu0ZN/+/tmKOHj1a6D7NnTtXs2fPtmpv2LBhodsAAIDS8ELpdv9MKfcv6dy5c/Lz8yv1ccq70sopC3KNPK/033cl58pzAwCUrav/TXjB7j8b9gY68u+Qa+R5LlXEy2cymSyeG4Zh1Xa1+ILt9vTpqJi/i4mJUXR0tPl5Xl6eTp06pTp16hS5HYqWmZmphg0b6tixY6pRo4azp1OhcazLDse67HCsyw7H2jEMw9C5c+cUHBzs7KmUK6WRU/5dZc3zSuv3+uabb9YPP/zgsP4qe5+8To7vszT6reyvU2n1W5lfp9Lqtzz0WV7zzuLkeS5VxKtbt67c3NysviE9ceKE1Tej+QIDA23Gu7u7q06dOkXG5Pdpz7iBgYGS/vqW9u/fxBY1N+mvJbdeXl4WbTVr1iw0HsVTo0aNcvXLWZ5xrMsOx7rscKzLDsf62nEGnv1KK6csqLLneY7+vXZzc3P450Rl7jMfr5NjlVa/lfV1Kq1+K/PrVFr9lpc+pfKZd9qb57nUjS08PT0VGhqqhIQEi/aEhASFh4fb3CYsLMwqfsOGDerYsaP52iWFxeT3ac+4ISEhCgwMtIjJzs5WUlJSoXMDAABA2SutnBKl6+GHH6bPcqC87H9pHdPy8lpV9mNamV+n0uq3vPRZ4RkuZuXKlYaHh4cRHx9v7Nu3z5g8ebLh6+trHDlyxDAMw5g2bZoRFRVljv/f//5nVK1a1ZgyZYqxb98+Iz4+3vDw8DD++9//mmO++eYbw83NzXjhhReM/fv3Gy+88ILh7u5ufPvtt3aPaxiG8cILLxh+fn7GmjVrjD179hgjRowwgoKCjMzMzDI4Mvi7s2fPGpKMs2fPOnsqFR7HuuxwrMsOx7rscKzhLKWRU+Iv/F6XD7xO5QOvU/nA61Q+VIbXyaWW00rSsGHDdPLkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHlaSpU6fq0qVLmjBhgk6fPq1OnTppw4YNql69ehkcGfydl5eXZs2aZbWEBY7HsS47HOuyw7EuOxxrOEtp5JT4C7/X5QOvU/nA61Q+8DqVD5XhdTIZhh33sAUAAAAAAADgNC51TTwAAAAAAAAA1ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OIh5cxpEjRzRmzBiFhITIx8dHzZo106xZs5SdnW0Rl5qaqgEDBsjX11d169bVpEmTrGL27Nmj7t27y8fHR/Xr19ecOXNU8B4uSUlJCg0Nlbe3t5o2baolS5aU+j66kueee07h4eGqWrWqatasaTOGY112Fi1apJCQEHl7eys0NFRbtmxx9pRc3ubNmzVgwAAFBwfLZDLpo48+svi5YRiKjY1VcHCwfHx8FBERoZ9++skiJisrS4888ojq1q0rX19f3Xnnnfrtt98sYk6fPq2oqCj5+fnJz89PUVFROnPmTCnvneuYO3eubr75ZlWvXl3+/v666667dPDgQYsYjjVQsdmTMxRkz+cCHKskn6GjR4+WyWSyeHTu3LlsJlyJFDfPI3d2juK8TomJiVa/OyaTSQcOHCjDGVc+V8v/balov08U8eAyDhw4oLy8PL3xxhv66aef9K9//UtLlizR9OnTzTFXrlxRv379dOHCBW3dulUrV67U6tWr9dhjj5ljMjMz1atXLwUHB+uHH37Qa6+9pnnz5mn+/PnmmMOHD6tv377q2rWrUlJSNH36dE2aNEmrV68u0312puzsbP3jH//QQw89ZPPnHOuys2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqanOnppLu3Dhgtq3b6/XX3/d5s9feuklzZ8/X6+//rp++OEHBQYGqlevXjp37pw5ZvLkyVq7dq1WrlyprVu36vz58+rfv7+uXLlijrnnnnu0a9curV+/XuvXr9euXbsUFRVV6vvnKpKSkvTwww/r22+/VUJCgnJzcxUZGakLFy6YYzjWQMV2tZzBFns+F+BYJf0MveOOO5SWlmZ+rFu3rgxmW3kUN88jd3aOkubjBw8etPj9uf7668toxpXT1fL/girk75MBuLCXXnrJCAkJMT9ft26dUaVKFeP48ePmthUrVhheXl7G2bNnDcMwjEWLFhl+fn7G5cuXzTFz5841goODjby8PMMwDGPq1KlGy5YtLcZ68MEHjc6dO5fm7rikd955x/Dz87Nq51iXnVtuucUYP368RVvLli2NadOmOWlG5Y8kY+3atebneXl5RmBgoPHCCy+Y2y5fvmz4+fkZS5YsMQzDMM6cOWN4eHgYK1euNMccP37cqFKlirF+/XrDMAxj3759hiTj22+/NcckJycbkowDBw6U8l65phMnThiSjKSkJMMwONZAZVJYzlCQPZ8LcKySfoaOGjXKGDhwYBnMsPIqbp5H7uwcxX2dNm3aZEgyTp8+XQazgy0F839bKuLvE2fiwaWdPXtWtWvXNj9PTk5W27ZtFRwcbG7r3bu3srKytGPHDnNM9+7d5eXlZRHz+++/68iRI+aYyMhIi7F69+6t7du3KycnpxT3qPzgWJeN7Oxs7dixw+oYRUZGatu2bU6aVfl3+PBhpaenWxxXLy8vde/e3Xxcd+zYoZycHIuY4OBgtW3b1hyTnJwsPz8/derUyRzTuXNn+fn5VdrX5+zZs5Jk/mzmWAMoyJ7PBTjWtXyGJiYmyt/fX82bN9e4ceN04sSJ0p5upVGSPI/cuexdSz7eoUMHBQUFqWfPntq0aVNpThMlUBF/nyjiwWUdOnRIr732msaPH29uS09PV0BAgEVcrVq15OnpqfT09EJj8p9fLSY3N1cZGRkO35fyiGNdNjIyMnTlyhWbxyj/GKL48o9dUcc1PT1dnp6eqlWrVpEx/v7+Vv37+/tXytfHMAxFR0erS5cuatu2rSSONQBr9nwuwLFK+hnap08fffDBB/r666/1yiuv6IcfftBtt92mrKys0pxupVGSPI/cueyV5HUKCgrS0qVLtXr1aq1Zs0YtWrRQz549tXnz5rKYMuxUEX+fKOKh1MXGxtq86OffH9u3b7fY5vfff9cdd9yhf/zjHxo7dqzFz0wmk9UYhmFYtBeMMf7/jRaKG1PelORYF4VjXXZsHSOOz7UryXG92nvc3n4qookTJ+rHH3/UihUrrH7GsQbKF0fnDLbwt+3aFed1Ksln6LBhw9SvXz+1bdtWAwYM0BdffKGff/5Zn3/+eantU2VU3N8FcmfnKM7r1KJFC40bN0433XSTwsLCtGjRIvXr10/z5s0ri6miGCra75O7syeAim/ixIkaPnx4kTFNmjQx///vv/+uHj16KCwsTEuXLrWICwwM1HfffWfRdvr0aeXk5Jgr7IGBgVbfmOQvC7hajLu7u+rUqWP/zrmY4h7ronCsy0bdunXl5uZm8xgV/NYI9gsMDJT017dvQUFB5va/H9fAwEBlZ2fr9OnTFmeInThxQuHh4eaYP/74w6r/P//8s9K9Po888og++eQTbd68WQ0aNDC3c6yB8smROUNB9nwuwD72vk4//vijQz5Dg4KC1LhxY/3yyy/FniuslSTPI3cue47Kxzt37qzly5c7enq4BhXx94kz8VDq6tatq5YtWxb58Pb2liQdP35cERERuummm/TOO++oShXLt2hYWJj27t2rtLQ0c9uGDRvk5eWl0NBQc8zmzZuVnZ1tERMcHGxORsPCwpSQkGDR94YNG9SxY0d5eHiUxmEoE8U51lfDsS4bnp6eCg0NtTpGCQkJ5uIGii8kJESBgYEWxzU7O1tJSUnm4xoaGioPDw+LmLS0NO3du9ccExYWprNnz+r77783x3z33Xc6e/ZspXl9DMPQxIkTtWbNGn399dcKCQmx+DnHGiifHJkzFGTP5wLsY+/r5KjP0JMnT+rYsWMWxVeUXEnyPHLnsueofDwlJYXfHRdTIX+fyvQ2GkARjh8/blx33XXGbbfdZvz2229GWlqa+ZEvNzfXaNu2rdGzZ09j586dxsaNG40GDRoYEydONMecOXPGCAgIMEaMGGHs2bPHWLNmjVGjRg1j3rx55pj//e9/RtWqVY0pU6YY+/btM+Lj4w0PDw/jv//9b5nuszMdPXrUSElJMWbPnm1Uq1bNSElJMVJSUoxz584ZhsGxLksrV640PDw8jPj4eGPfvn3G5MmTDV9fX+PIkSPOnppLO3funPl9K8mYP3++kZKSYhw9etQwDMN44YUXDD8/P2PNmjXGnj17jBEjRhhBQUFGZmamuY/x48cbDRo0MDZu3Gjs3LnTuO2224z27dsbubm55pg77rjDaNeunZGcnGwkJycbN9xwg9G/f/8y319neeihhww/Pz8jMTHR4nP54sWL5hiONVCxXS1nMAzDaNGihbFmzRrzc3s+F+BY9nyG/v11OnfunPHYY48Z27ZtMw4fPmxs2rTJCAsLM+rXr8/r5EBXy/OmTZtmREVFmePJnZ2juK/Tv/71L2Pt2rXGzz//bOzdu9eYNm2aIclYvXq1s3ahUrha/l8Zfp8o4sFlvPPOO4Ykm4+/O3r0qNGvXz/Dx8fHqF27tjFx4kTj8uXLFjE//vij0bVrV8PLy8sIDAw0YmNjjby8PIuYxMREo0OHDoanp6fRpEkTY/HixaW+j65k1KhRNo/1pk2bzDEc67KzcOFCo3Hjxoanp6dx0003GUlJSc6eksvbtGmTzffwqFGjDMMwjLy8PGPWrFlGYGCg4eXlZXTr1s3Ys2ePRR+XLl0yJk6caNSuXdvw8fEx+vfvb6SmplrEnDx50rj33nuN6tWrG9WrVzfuvfde4/Tp02W0l85X2OfyO++8Y47hWAMVmz05Q0k+F+BY9nyG/v11unjxohEZGWnUq1fP8PDwMBo1amSMGjXK6rMZ166oPG/UqFFG9+7dLeLJnZ2jOK/Tiy++aDRr1szw9vY2atWqZXTp0sX4/PPPnTDryuVq+X9l+H0yGcb/v6ofAAAAAAAAAJfENfEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAACgFERERmjx5srOnAaCCoIgHAAAAAAAAuDiKeAAAAAAAAICLo4gHAE62fv16denSRTVr1lSdOnXUv39/HTp0yNnTAgAAgAPk5uZq4sSJ5lxvxowZMgzD2dMCUA5RxAMAJ7tw4YKio6P1ww8/6KuvvlKVKlU0aNAg5eXlOXtqAAAAuEbvvvuu3N3d9d1332nBggX617/+pbfeesvZ0wJQDpkMvgIAAJfy559/yt/fX3v27FHbtm2dPR0AAACUUEREhE6cOKGffvpJJpNJkjRt2jR98skn2rdvn5NnB6C84Uw8AHCyQ4cO6Z577lHTpk1Vo0YNhYSESJJSU1OdPDMAAABcq86dO5sLeJIUFhamX375RVeuXHHirACUR+7OngAAVHYDBgxQw4YN9eabbyo4OFh5eXlq27atsrOznT01AAAAAICLoIgHAE508uRJ7d+/X2+88Ya6du0qSdq6dauTZwUAAABH+fbbb62eX3/99XJzc3PSjACUVxTxAMCJatWqpTp16mjp0qUKCgpSamqqpk2b5uxpAQAAwEGOHTum6OhoPfjgg9q5c6dee+01vfLKK86eFoByiCIeADhRlSpVtHLlSk2aNElt27ZVixYttGDBAkVERDh7agAAAHCAkSNH6tKlS7rlllvk5uamRx55RA888ICzpwWgHOLutAAAAAAAAICL4+60AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4QDm1atUqtWnTRj4+PjKZTNq1a5diY2NlMpks4hYtWqRly5Y5Z5Iu7sMPP1RcXJyzp3FNli1bJpPJpCNHjjh7Knaz9T7Nzs7W+PHjFRQUJDc3N914442SpCZNmmj06NFX7fP555/XRx995PjJ2unIkSMymUyaN2+e0+YAAKg4yPOunSvleREREYqIiCjx9iaTSbGxsQ6bT2nLz4sKvjftfV/bsm7dOqcfg4iICLVt29apcwAo4gHl0J9//qmoqCg1a9ZM69evV3Jyspo3b66xY8cqOTnZIpbkrnCulNxVJrbep4sXL9Ybb7yhp556Slu3btX7778vSVq7dq1mzpx51T6dXcQDAMBRyPMcgzzPeYKCgpScnKx+/fqZ24rzvrZl3bp1mj17dmlOGygX3J09AQDF9/PPPysnJ0f//Oc/1b17d3N71apV1aBBAyfOzNqlS5fk7e1t1zdsFcWlS5fk4+Pj7GmUyMWLF1W1atVSHaNBgwZW79O9e/fKx8dHEydOtGjv0KGDw8evjO9JAED5QZ7n2spznidJOTk5MplMcncvvVKAl5eXOnfubNFWlu9rwzB0+fLlcv06AYXhTDygnBk9erS6dOkiSRo2bJhMJpP59PyCp6M3adJEP/30k5KSkmQymWQymdSkSRNJUmJiokwmk5YvX67o6GgFBgbKx8dH3bt3V0pKisWY27dv1/Dhw9WkSRP5+PioSZMmGjFihI4ePWoRl7+0c8OGDbr//vtVr149Va1aVVlZWfr1119133336frrr1fVqlVVv359DRgwQHv27LHoI39eH374oZ588kkFBQWpWrVqGjBggP744w+dO3dODzzwgOrWrau6devqvvvu0/nz5y36MAxDixYt0o033igfHx/VqlVLQ4YM0f/+9z9zTEREhD7//HMdPXrUfGz+fuyys7P17LPPqmXLlvLy8lK9evV033336c8//7QYq0mTJurfv7/WrFmjDh06yNvb+6rfEq5fv149e/aUn5+fqlatqlatWmnu3LlFbiNJ3377rW699VZ5e3srODhYMTExysnJsRm7atUqhYWFydfXV9WqVVPv3r2tXtfRo0erWrVq2rNnjyIjI1W9enX17Nmz0PH//PNPPfDAA2rYsKH5mNx6663auHFjsfav4PvUZDLprbfe0qVLl8yvQ/5ZBfYspzWZTLpw4YLeffdd8/b5vxOOeE9K0pkzZ/TYY4+padOm8vLykr+/v/r27asDBw4UOq+cnByNGjVK1apV02effVbkPgAAIJHnlfc8zzAMvfTSS2rcuLG8vb1100036Ysvvig0vqDMzEyNGzdOderUUbVq1XTHHXfo559/thn7yy+/6J577pG/v7+8vLzUqlUrLVy40Obxfv/99/XYY4+pfv368vLy0q+//lroHBYvXqz27durWrVqql69ulq2bKnp06dbxBw/ftycE3p6eio4OFhDhgzRH3/8Icl6OW1x3te2jB492rxvf3898y8nYzKZNHHiRC1ZskStWrWSl5eX3n33XUnS7Nmz1alTJ9WuXVs1atTQTTfdpPj4eBmGYTXOhx9+qLCwMFWrVk3VqlXTjTfeqPj4+CLntnbtWlWtWlVjx45Vbm5ukbGAI3AmHlDOzJw5U7fccosefvhhPf/88+rRo4dq1KhhM3bt2rUaMmSI/Pz8tGjRIkl/fTP2d9OnT9dNN92kt956S2fPnlVsbKwiIiKUkpKipk2bSvrrD3GLFi00fPhw1a5dW2lpaVq8eLFuvvlm7du3T3Xr1rXo8/7771e/fv30/vvv68KFC/Lw8NDvv/+uOnXq6IUXXlC9evV06tQpvfvuu+rUqZNSUlLUokULq3n16NFDy5Yt05EjR/T4449rxIgRcnd3V/v27bVixQqlpKRo+vTpql69uhYsWGDe9sEHH9SyZcs0adIkvfjiizp16pTmzJmj8PBw7d69WwEBAVq0aJEeeOABHTp0SGvXrrUYOy8vTwMHDtSWLVs0depUhYeH6+jRo5o1a5YiIiK0fft2i2/2du7cqf3792vGjBkKCQmRr69voa9ffHy8xo0bp+7du2vJkiXy9/fXzz//rL179xa6jSTt27dPPXv2VJMmTbRs2TJVrVpVixYt0ocffmgV+/zzz2vGjBm67777NGPGDGVnZ+vll19W165d9f3336t169bm2OzsbN1555168MEHNW3atCKTj6ioKO3cuVPPPfecmjdvrjNnzmjnzp06efLkNe1fcnKynnnmGW3atElff/21JKlZs2ZFHo+C2992223q0aOHeeltwd+Ja3lPnjt3Tl26dNGRI0f05JNPqlOnTjp//rw2b96stLQ0tWzZ0mpOZ86c0d133639+/crKSlJoaGhdu8PAKDyIs8r33ne7NmzNXv2bI0ZM0ZDhgzRsWPHNG7cOF25csXqGBRkGIbuuusubdu2TU8//bRuvvlmffPNN+rTp49V7L59+xQeHq5GjRrplVdeUWBgoL788ktNmjRJGRkZmjVrlkV8TEyMwsLCtGTJElWpUkX+/v4257By5UpNmDBBjzzyiObNm6cqVaro119/1b59+8wxx48f180336ycnBxNnz5d7dq108mTJ/Xll1/q9OnTCggIsOq3OO9rW2bOnKkLFy7ov//9r8XS26CgIPP/f/TRR9qyZYuefvppBQYGmvfxyJEjevDBB9WoUSNJf30p/sgjj+j48eN6+umnzds//fTTeuaZZ3T33Xfrsccek5+fn/bu3WtVzP67f/3rX3riiScUGxurGTNm2L0/wDUxAJQ7mzZtMiQZ//nPfyzaZ82aZRT8tW7Tpo3RvXv3Qvu46aabjLy8PHP7kSNHDA8PD2Ps2LGFjp+bm2ucP3/e8PX1NV599VVz+zvvvGNIMkaOHHnVfcjNzTWys7ON66+/3pgyZYrVvAYMGGARP3nyZEOSMWnSJIv2u+66y6hdu7b5eXJysiHJeOWVVyzijh07Zvj4+BhTp041t/Xr189o3Lix1dxWrFhhSDJWr15t0f7DDz8YkoxFixaZ2xo3bmy4ubkZBw8evOo+nzt3zqhRo4bRpUsXi2Nuj2HDhhk+/6+9O4+rouz/P/4+somIR1zYci0TF9xSU9QSU3HJrWy1UMssl/Q2RMtWMo3KJUvvtMVE09K726xMI8lEbxfKjXLLzDBMQcwQlBQU5veHP863I4uAB84BXs/HYx41M9fMfGbO0T59znXN5e5uJCcnW7ZdvnzZaNasmSHJSEhIMAzDMBITEw1nZ2djwoQJea7t6+tr3HfffZZtI0aMMCQZH374YZFiqF69ujFp0qQC9xf1/vL7no4YMcLw8PDI07Zhw4bGiBEjrhmbh4dHvu1s8Z2cPn26IcmIiYkp8NiEhARDkjFr1iwjISHBaNGihdGiRQvj2LFj17wuAAD/RJ73f8pTnpeammpUrVrVuOuuu6y2b9u2zZCU7+f0T19//bUhyeqZG4ZhzJw505BkvPTSS5Ztffr0MerVq2ekpaVZtX3yySeNqlWrGn/99ZdhGP/3vG+//fZrxp97fM2aNQtt8+ijjxouLi7GwYMHC2yTmxctWbLEsq043+v8jB8/vsB2kgyz2Wy574JkZ2cbly5dMqZPn27Url3b8mfjt99+M5ycnIyHHnqo0OO7d+9utGzZ0sjOzjaefPJJw9XV1Vi+fPk1YwdsieG0QCU3bNgwqy7sDRs2VJcuXbRp0ybLtvPnz+vpp59WkyZN5OzsLGdnZ1WvXl0ZGRk6dOhQnnMOHTo0z7bLly/r1VdfVYsWLeTq6ipnZ2e5urrqyJEj+Z5jwIABVuvNmzeXJKsX5OZu/+uvvyxDLb766iuZTCY9/PDDunz5smXx9fVVmzZtFBsbe81n8tVXX6lmzZoaOHCg1Tnatm0rX1/fPOdo3bq1mjZtes3zbt++Xenp6Ro3blyx3x2zadMm9ezZ0+rXTScnJ91///1W7b755htdvnxZw4cPt4q9atWq6t69e773n9/nlZ9bb71VUVFRmjFjhuLi4vIM5b2e+ytt1/Od/Prrr9W0aVP16tXrmtfZs2ePOnfuLB8fH23btk0NGza06X0AKB+2bNmigQMHyt/fXyaTqUQT73zzzTfq3LmzPD09VbduXQ0dOlQJCQm2DxYVGnleXqWV5+3YsUMXL17UQw89ZLW9S5cuRcoHcj+Tq48fNmyY1frFixe1ceNG3XXXXapWrZrVPfTv318XL15UXFyc1THFyfXOnj2rBx98UF988YX+/PPPPG2+/vpr9ejRw/KZOYo77rhDXl5eebZ/99136tWrl8xms5ycnOTi4qIXX3xRZ86cUUpKiiQpJiZG2dnZGj9+/DWvc/HiRQ0ZMkQrVqzQhg0b8nxeQGmjiAdUcr6+vvlu++cQyWHDhmnBggV67LHH9M033+iHH37Qzp07VbduXV24cCHP8f/s2p4rLCxML7zwgoYMGaK1a9fq+++/186dO9WmTZt8z1GrVi2rdVdX10K3X7x4UZJ06tQpGYYhHx8fubi4WC1xcXH5JiNXO3XqlM6ePStXV9c850hOTs5zjvzuNz+571kpyct7z5w5U+BndXXsktSxY8c8sa9atSpP7NWqVSvycIZVq1ZpxIgR+uCDDxQUFKRatWpp+PDhSk5Ovu77K23X8508ffp0ke8pJiZGp06d0mOPPaaaNWvaKnwA5UxGRobatGmjBQsWlOj43377TYMHD9Ydd9yh+Ph4ffPNN/rzzz9199132zhSVHTkeXmVVp6X+0yLkq8VdLyzs7Nq165d6LFnzpzR5cuXNX/+/Dzx9+/fX5JKfA+hoaH68MMP9fvvv2vo0KHy9vZWp06dFBMTY2lTnLyoLOV3jz/88INCQkIkSe+//762bdumnTt36rnnnpMky3ezODlsSkqKvvnmGwUFBalLly62Ch8oMt6JB1RyuQWYq7flJhBpaWn66quv9NJLL+mZZ56xtMnMzNRff/2V7znz64W1fPlyDR8+XK+++qrV9j///NOmxY46derIZDLpf//7X573wkh53xVT0Dlq166t6OjofPd7enparRe111ndunUlSX/88UeR2v9T7dq1C/ys/in3vTX//e9/i/Srb3F6zNWpU0fz5s3TvHnzlJiYqC+//FLPPPOMUlJSFB0dfV33V9qu5ztZt27dIt/TlClTdPToUUtPyOHDh19X3ADKp379+uX7HqtcWVlZev7557VixQqdPXtWgYGBev311y0vet+zZ4+ys7M1Y8YMValy5Tf38PBwDR48WJcuXZKLi0tZ3AYqAPK8/M9RGnle7jMt6JnnTjpS2PGXL1/WmTNnrAp5V5/Py8tLTk5OCg0NLbDnWOPGja3Wi5PvPfLII3rkkUeUkZGhLVu26KWXXtKAAQP0yy+/qGHDhsXKi8pSfve4cuVKubi46KuvvlLVqlUt26/uHf3PHLZ+/fqFXqdBgwaaO3eu7rrrLt1999369NNPrc4NlDZ64gEVnJubW76/gOb65JNPrGZn+v3337V9+3bL/0iYTCYZhpEnKfrggw+UnZ1d5DhMJlOec6xbt04nTpwo8jmKYsCAATIMQydOnFCHDh3yLK1atbK0LejZDBgwQGfOnFF2dna+57jWi4kL0qVLF5nNZi1atCjfGbEK06NHD23cuNHS006SsrOztWrVKqt2ffr0kbOzs44ePZpv7B06dChR7Fdr0KCBnnzySfXu3Vt79uyRdH33d72u9T3PT1G/k/369dMvv/ximXSjMFWqVNG7776rf/3rXxo5cqQWLlxYrJgAVA6PPPKItm3bppUrV+qnn37Svffeq759++rIkSOSpA4dOsjJyUlLlixRdna20tLS9NFHHykkJIQCHqyQ5zlOnte5c2dVrVpVK1assNq+ffv2QidHyNWjRw9JynP81ZOYVatWTT169NDevXvVunXrfO/h6t58JeHh4aF+/frpueeeU1ZWlg4cOCDpSl60adMmHT58+LqvURy536/i5Hsmk0nOzs5ycnKybLtw4YI++ugjq3YhISFycnIqct4WEhKib775Rlu2bNGAAQOUkZFR5JiA60VPPKCCa9WqlVauXKlVq1bpxhtvVNWqVa0SnJSUFN11110aPXq00tLS9NJLL6lq1aqaNm2apCuzfN5+++2aNWuW6tSpo0aNGmnz5s1avHhxsX5ZHTBggKKiotSsWTO1bt1au3fv1qxZs2zeHb9r1656/PHH9cgjj2jXrl26/fbb5eHhoaSkJG3dulWtWrXS2LFjLc/ms88+08KFC9W+fXtVqVJFHTp00AMPPKAVK1aof//++te//qVbb71VLi4u+uOPP7Rp0yYNHjxYd911V7Fjq169uubMmaPHHntMvXr10ujRo+Xj46Nff/1VP/74Y6HDrp5//nl9+eWXuuOOO/Tiiy+qWrVq+ve//50naWjUqJGmT5+u5557Tr/99pv69u0rLy8vnTp1Sj/88IM8PDz08ssvFzv2tLQ09ejRQ8OGDVOzZs3k6empnTt3Kjo62jK863ru73q1atVKsbGxWrt2rfz8/OTp6XnNJLyo38lJkyZp1apVGjx4sJ555hndeuutunDhgjZv3qwBAwZYku5/mjNnjjw9PTVu3DidP39eU6ZMsen9Aii/jh49qk8++UR//PGH/P39JV3pZRcdHa0lS5bo1VdfVaNGjbRhwwbde++9euKJJ5Sdna2goCCtX7/eztHD0ZDnOU6e5+XlpfDwcM2YMUOPPfaY7r33Xh0/flwRERFFGk4bEhKi22+/XVOnTlVGRoY6dOigbdu25Sk4SdJbb72lbt266bbbbtPYsWPVqFEjnTt3Tr/++qvWrl1bpB8e8zN69Gi5u7ura9eu8vPzU3JysiIjI2U2m9WxY0dJ0vTp0/X111/r9ttv17PPPqtWrVrp7Nmzio6OVlhYmJo1a1aia19L7vf69ddfV79+/eTk5KTWrVtbhlzn584779TcuXM1bNgwPf744zpz5oxmz56dp+DcqFEjPfvss3rllVd04cIFPfjggzKbzTp48KD+/PPPfHPnbt26aePGjerbt69CQkK0fv16mc1m2940kB97zagBoOSKM7vTsWPHjJCQEMPT09OQZJmlK/ccH330kTFx4kSjbt26hpubm3HbbbcZu3btsjrHH3/8YQwdOtTw8vIyPD09jb59+xr79+/PM3No7qxlO3fuzBNzamqqMWrUKMPb29uoVq2a0a1bN+N///uf0b17d6vZugq6t4LOnXvPp0+fttr+4YcfGp06dTI8PDwMd3d346abbjKGDx9udW9//fWXcc899xg1a9Y0TCaT1bO7dOmSMXv2bKNNmzZG1apVjerVqxvNmjUznnjiCePIkSOWdg0bNjTuvPPOPPdbmPXr1xvdu3c3PDw8jGrVqhktWrQwXn/99Wset23bNqNz586Gm5ub4evra0yZMsV47733rGanzfX5558bPXr0MGrUqGG4ubkZDRs2NO655x7j22+/tbQpaEbY/Fy8eNEYM2aM0bp1a6NGjRqGu7u7ERAQYLz00ktGRkZGse6vNGanjY+PN7p27WpUq1bNagY4W3wnc9v+61//Mho0aGC4uLgY3t7exp133mn8/PPPhmFYz077T7NmzTIkGS+++OI17wFAxSTJWLNmjWX9P//5jyHJ8PDwsFqcnZ0tM4gnJSUZN998szFlyhRjz549xubNm43u3bsbPXv2LPbs5ih/yPPy3nN5yfNycnKMyMhIo379+oarq6vRunVrY+3atfnmFvk5e/as8eijjxo1a9Y0qlWrZvTu3dv4+eef88xOaxhXco9HH33UuOGGGwwXFxejbt26RpcuXYwZM2ZY2hT0vAuydOlSo0ePHoaPj4/h6upq+Pv7G/fdd5/x008/WbU7fvy48eijjxq+vr6Gi4uLpd2pU6csscnGs9NmZmYajz32mFG3bl3L55mb/0oyxo8fn+9xH374oREQEGC4ubkZN954oxEZGWksXrw43/x52bJlRseOHS3fiXbt2lndQ+7stP+0f/9+w9fX17jlllvyfE+B0mAyjDIe8wTAIcTGxqpHjx769NNPdc8999g7HAAAKiSTyaQ1a9ZoyJAhkq5MEvTQQw/pwIEDVkO8pCs9mn19ffXCCy/o66+/1q5duyz7ct/VtGPHDnXu3LksbwHlEHkeAFRMDKcFAAAAyki7du2UnZ2tlJQU3Xbbbfm2+fvvv/MU+HLXc3JySj1GAADgmJjYAgAAALCh8+fPKz4+XvHx8ZKkhIQExcfHKzExUU2bNtVDDz2k4cOH67PPPlNCQoJ27typ119/3fLOuzvvvFM7d+7U9OnTdeTIEe3Zs0ePPPKIGjZsqHbt2tnxzgAAgD0xnBYAAACwodyhjFcbMWKEoqKidOnSJc2YMUPLli3TiRMnVLt2bQUFBenll1+2vLx95cqVeuONN/TLL7+oWrVqCgoK0uuvv15qL40HAACOjyIeAAAAAAAA4OAYTgsAAAAAAAA4OIp4AAAAAAAAgINjdtoylpOTo5MnT8rT01Mmk8ne4QAAgHLAMAydO3dO/v7+qlKF32AdFXkeAAAoruLkeRTxytjJkydVv359e4cBAADKoePHj6tevXr2DgMFIM8DAAAlVZQ8jyJeGfP09JR05cOpUaOGnaMBAADlQXp6uurXr2/JI+CYyPMAAEBxFSfPs2sRLzIyUp999pl+/vlnubu7q0uXLnr99dcVEBBgaTNy5EgtXbrU6rhOnTopLi7Osp6Zmanw8HB98sknunDhgnr27Kl33nnHqoKZmpqqiRMn6ssvv5QkDRo0SPPnz1fNmjUtbRITEzV+/Hh99913cnd317BhwzR79my5urpa2uzbt09PPvmkfvjhB9WqVUtPPPGEXnjhhSIPmchtV6NGDZI7AABQLAzRdGzkeQAAoKSKkufZ9aUqmzdv1vjx4xUXF6eYmBhdvnxZISEhysjIsGrXt29fJSUlWZb169db7Z80aZLWrFmjlStXauvWrTp//rwGDBig7OxsS5thw4YpPj5e0dHRio6OVnx8vEJDQy37s7OzdeeddyojI0Nbt27VypUrtXr1ak2ePNnSJj09Xb1795a/v7927typ+fPna/bs2Zo7d24pPSEAAAAAAABAMhmGYdg7iFynT5+Wt7e3Nm/erNtvv13SlZ54Z8+e1eeff57vMWlpaapbt64++ugj3X///ZL+730k69evV58+fXTo0CG1aNFCcXFx6tSpkyQpLi5OQUFB+vnnnxUQEKCvv/5aAwYM0PHjx+Xv7y9JWrlypUaOHKmUlBTVqFFDCxcu1LRp03Tq1Cm5ublJkl577TXNnz9ff/zxR5Gqpunp6TKbzUpLS+MXWgAAUCTkD+UDnxMAACiu4uQPDjW9WVpamiSpVq1aVttjY2Pl7e2tpk2bavTo0UpJSbHs2717ty5duqSQkBDLNn9/fwUGBmr79u2SpB07dshsNlsKeJLUuXNnmc1mqzaBgYGWAp4k9enTR5mZmdq9e7elTffu3S0FvNw2J0+e1LFjx/K9p8zMTKWnp1stAAAAAAAAQHE4zMQWhmEoLCxM3bp1U2BgoGV7v379dO+996phw4ZKSEjQCy+8oDvuuEO7d++Wm5ubkpOT5erqKi8vL6vz+fj4KDk5WZKUnJwsb2/vPNf09va2auPj42O138vLS66urlZtGjVqlOc6ufsaN26c5xqRkZF6+eWXi/k0AACwDcMwdPnyZatXTMDxODk5ydnZmXfeAQCAIiHHKz9smec5TBHvySef1E8//aStW7dabc8dIitJgYGB6tChgxo2bKh169bp7rvvLvB8hmFYPaD8HpYt2uSORi7ow5g2bZrCwsIs67mzjgAAUNqysrKUlJSkv//+296hoAiqVasmPz8/qwm1AAAArkaOV/7YKs9ziCLehAkT9OWXX2rLli1WM8rmx8/PTw0bNtSRI0ckSb6+vsrKylJqaqpVb7yUlBR16dLF0ubUqVN5znX69GlLTzpfX199//33VvtTU1N16dIlqza5vfL+eR1JeXrx5XJzc7MafgsAQFnIyclRQkKCnJyc5O/vL1dXV3p5OSjDMJSVlaXTp08rISFBN998s6pUcag3ngAAAAdBjle+2DrPs2sRzzAMTZgwQWvWrFFsbGy+w1GvdubMGR0/flx+fn6SpPbt28vFxUUxMTG67777JElJSUnav3+/3njjDUlSUFCQ0tLS9MMPP+jWW2+VJH3//fdKS0uzFPqCgoI0c+ZMJSUlWc69YcMGubm5qX379pY2zz77rLKysizV0w0bNsjf3z/PMFsAAOwpKytLOTk5ql+/vqpVq2bvcHAN7u7ucnFx0e+//66srCxVrVrV3iEBAAAHRI5X/tgyz7Prz7zjx4/X8uXL9fHHH8vT01PJyclKTk7WhQsXJEnnz59XeHi4duzYoWPHjik2NlYDBw5UnTp1dNddd0mSzGazRo0apcmTJ2vjxo3au3evHn74YbVq1Uq9evWSJDVv3lx9+/bV6NGjFRcXp7i4OI0ePVoDBgxQQECAJCkkJEQtWrRQaGio9u7dq40bNyo8PFyjR4+2zA4ybNgwubm5aeTIkdq/f7/WrFmjV199VWFhYVS+AQAOiR5d5QefFQAAKCryhvLFVp+XXT/1hQsXKi0tTcHBwfLz87Msq1atknTl5X/79u3T4MGD1bRpU40YMUJNmzbVjh075OnpaTnPm2++qSFDhui+++5T165dVa1aNa1du1ZOTk6WNitWrFCrVq0UEhKikJAQtW7dWh999JFlv5OTk9atW6eqVauqa9euuu+++zRkyBDNnj3b0sZsNismJkZ//PGHOnTooHHjxiksLMzqnXcAAAAAAACArZmM3JkZUCbS09NlNpuVlpZm6eEHAICtXbx4UQkJCWrcuDFDM8uJwj4z8ofygc8JAFDayPHKJ1vlefS/BAAAAAAAABwcRTwAAFBhGYahxx9/XLVq1ZLJZFJ8fLxd4wkODtakSZPsGgMAAICjee211xQUFFSsYypjnmfX2WkBAABKU3R0tKKiohQbG6sbb7xRderUsXdIAAAAuMqPP/6oNm3aFOuYypjnUcQDAAcWEWH9T8AWyvr7ZM/v79GjR+Xn56cuXbrYLwgAQKVX0H8LyfFgS2X5fbL1tX788UdNnDixWMdUxjyP4bQAAMAhnT59Wo8//rh8fHzk7u6uNm3aaMuWLUU+fuTIkZowYYISExNlMpnUqFEjSVJmZqYmTpwob29vVa1aVd26ddPOnTstxzVq1Ejz5s2zOlfbtm0V8Y9sNTg4WBMnTtTUqVNVq1Yt+fr6Wu2XpIyMDA0fPlzVq1eXn5+f5syZU9xHAAAAUOEcOnRIwcHBcnd3V7t27bRr1y798ssvxeqJV1nzPIp4AADA4fz+++9q3bq1UlNT9cUXX+inn37ShAkT5OnpWeRzvPXWW5o+fbrq1aunpKQkSwI3depUrV69WkuXLtWePXvUpEkT9enTR3/99VexYly6dKk8PDz0/fff64033tD06dMVExNj2T9lyhRt2rRJa9as0YYNGxQbG6vdu3cX6xoAAAAVyc8//6xOnTqpQ4cO2r9/v1588UUNHjxYhmGodevWRT5PZc3zGE4LAAAcztixY9WsWTP95z//kclkkiTdfPPNxTqH2WyWp6ennJyc5OvrK+nKr6YLFy5UVFSU+vXrJ0l6//33FRMTo8WLF2vKlClFPn/r1q310ksvWWJbsGCBNm7cqN69e+v8+fNavHixli1bpt69e0u6kgzWq1evWPcAAABQkYwfP16DBw/W7NmzJUk33XST/vOf/2jPnj3y8PAo8nkqa55HEQ8AADiUxMREff3119qzZ4+lgGcrR48e1aVLl9S1a1fLNhcXF9166606dOhQsc519a/Ffn5+SklJsVwnKyvLapa1WrVqKSAg4DqiBwAAKL9+//13fffdd9qzZ4/VdhcXl2JPapGfypDnMZwWAAA4lL1798rV1VXt2rXLd3+nTp20a9cuSdKIESO0cOHCIp/bMAxJylMcNAzDsq1KlSqWdrkuXbqU51wuLi5W6yaTSTk5OVbXAQAAwBXx8fFydnZWq1atrLbv2bNHbdu2lUSedy0U8QAAgENxcXHR5cuX9ffff+e7/4UXXtCrr76qOXPmqHr16ho7dmyRz92kSRO5urpq69atlm2XLl3Srl271Lx5c0lS3bp1lZSUZNmfnp6uhISEYt1DkyZN5OLiori4OMu21NRU/fLLL8U6DwAAQEVRpUoV5eTkKCsry7Jt/fr1OnDggKWIR55XOIbTAgAAh9KpUyeZzWaNHTtWzzzzjAzD0JYtWxQcHKxmzZppwIABev7553X+/HmtX7++WOf28PDQ2LFjNWXKFNWqVUsNGjTQG2+8ob///lujRo2SJN1xxx2KiorSwIED5eXlpRdeeEFOTk7Fuk716tU1atQoTZkyRbVr15aPj4+ee+45VanC76cAAKByat++vVxcXBQeHq7w8HDt37/fUqTLHU5Lnlc4ingAAMCh1K5dW2vXrtWUKVPUsWNHubq66tZbb9X9998vSfrhhx909uxZNW3aVM7OxU9lXnvtNeXk5Cg0NFTnzp1Thw4d9M0338jLy0uSNG3aNP32228aMGCAzGazXnnllWL/QitJs2bN0vnz5zVo0CB5enpq8uTJSktLK/Z5AAAAKgJ/f3998MEHmjZtmlauXKl27dppxIgRev/993XDDTdIIs+7FpPBS1vKVHp6usxms9LS0lSjRg17hwPAwUVEWP8TKKqLFy8qISFBjRs3VtWqVe0djs2cOHFC/fr10xdffKG7775bH3/8sWV4RHlX2GdG/lA+8DkBKEhBuRw5HoqrouZ4EnleUfIHxnQAAIBy4cKFC7rnnnu0YMECNW7cWFOnTtWMGTPsHRYAAACuE3le0TCcFgAAlAvu7u7asWOHZf3BBx/Ugw8+aMeIAAAAYAvkeUVDTzwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAABUWJGRkTKZTJo0aVKh7TZv3qz27duratWquvHGG7Vo0aKyCRAAAKCIKOIBQDkQEXFlAQAU3c6dO/Xee++pdevWhbZLSEhQ//79ddttt2nv3r169tlnNXHiRK1evbqMIgUAALg2ingAAACocM6fP6+HHnpI77//vry8vAptu2jRIjVo0EDz5s1T8+bN9dhjj+nRRx/V7NmzyyhaAACAa6OIBwAAgApn/PjxuvPOO9WrV69rtt2xY4dCQkKstvXp00e7du3SpUuXCjwuMzNT6enpVgsAAEBpoYgHAACACmXlypXas2ePIiMji9Q+OTlZPj4+Vtt8fHx0+fJl/fnnnwUeFxkZKbPZbFnq169/XXEDAAAUhiIeAACosIKDg685oQEqluPHj+tf//qXli9frqpVqxb5OJPJZLVuGEa+2/9p2rRpSktLsyzHjx8vWdAAAFRyr732moKCgop1TGXM85ztHQAAAChj2yPK9npdyvh6pSQ4OFht27bVvHnz7B0KCrF7926lpKSoffv2lm3Z2dnasmWLFixYoMzMTDk5OVkd4+vrq+TkZKttKSkpcnZ2Vu3atQu8lpubm9zc3Gx7AwAAlFRZ5ng2zu9+/PFHtWnTxqbnLI7ykudRxAMAAECF0bNnT+3bt89q2yOPPKJmzZrp6aefzlPAk6SgoCCtXbvWatuGDRvUoUMHubi4lGq8ACqeiAh7RwCUPz/++KMmTpxo7zAcHsNpAaAMRUT83wKgcKdPn9bjjz8uHx8fubu7q02bNtqyZct1nTMzM1MTJ06Ut7e3qlatqm7dumnnzp2W/f/973/VqlUrubu7q3bt2urVq5cyMjI0cuRIbd68WW+99ZZMJpNMJpOOHTt2nXeI0uDp6anAwECrxcPDQ7Vr11ZgYKCkK8Nghw8fbjlmzJgx+v333xUWFqZDhw7pww8/1OLFixUeHm6v2wAAoMI6dOiQgoOD5e7urnbt2mnXrl365ZdfrrsnXmXI8yjiAQAAh/P777+rdevWSk1N1RdffKGffvpJEyZMkKen53Wdd+rUqVq9erWWLl2qPXv2qEmTJurTp4/++usvJSUl6cEHH9Sjjz6qQ4cOKTY2VnfffbcMw9Bbb72loKAgjR49WklJSUpKSmISg3IsKSlJiYmJlvXGjRtr/fr1io2NVdu2bfXKK6/o7bff1tChQ+0YJQAAFc/PP/+sTp06qUOHDtq/f79efPFFDR48WIZhqHXr1td17sqQ5zGcFgDsJLc3Hr3ygLzGjh2rZs2a6T//+Y9lYoGbb775us6ZkZGhhQsXKioqSv369ZMkvf/++4qJidHixYvVs2dPXb58WXfffbcaNmwoSWrVqpXleFdXV1WrVk2+vr7XFQfKXmxsrNV6VFRUnjbdu3fXnj17yiYgAAAqqfHjx2vw4MGaPXu2JOmmm27Sf/7zH+3Zs0ceHh4lPm9lyfPoiQcAABxKYmKivv76a82dO7fQmUGL6+jRo7p06ZK6du1q2ebi4qJbb71Vhw4dUps2bdSzZ0+1atVK9957r95//32lpqba7PoAAACV2e+//67vvvtOYWFhVttdXFyueyhtZcnzKOIBAACHsnfvXrm6uqpdu3b57u/UqZN27dolSRoxYoQWLlxYpPMahiFJeQqDhmHIZDLJyclJMTEx+vrrr9WiRQvNnz9fAQEBSkhIuI67AQAAgCTFx8fL2dnZqgecJO3Zs0dt27aVRJ53LRTxAACAQ3FxcdHly5f1999/57v/hRde0Kuvvqo5c+aoevXqGjt2bJHO26RJE7m6umrr1q2WbZcuXdKuXbvUvHlzSVcSv65du+rll1+2FBPXrFkj6cowi+zs7Ou8OwAAgMqpSpUqysnJUVZWlmXb+vXrdeDAAUsRjzyvcLwTDwAAOJROnTrJbDZr7NixeuaZZ2QYhrZs2aLg4GA1a9ZMAwYM0PPPP6/z589r/fr1RT6vh4eHxo4dqylTpqhWrVpq0KCB3njjDf39998aNWqUvv/+e23cuFEhISHy9vbW999/r9OnT1sSv0aNGun777/XsWPHVL16ddWqVUtVqvB7KAAAQFG0b99eLi4uCg8PV3h4uPbv328p0uUOpyXPK5zjRQQAACq12rVra+3atTpy5Ig6duyobt266fPPP5ePj48k6YcfftDZs2dVs2ZNOTsX7/fI1157TUOHDlVoaKhuueUW/frrr/rmm2/k5eWlGjVqaMuWLerfv7+aNm2q559/XnPmzLG8HDk8PFxOTk5q0aKF6tatazW7KQAAAArn7++vDz74QGvXrlWHDh301ltvacSIEapTp45uuOEGSeR512IycgcOo0ykp6fLbDYrLS1NNWrUsHc4AMpYfjPRFjY77dX7mMkWRXXx4kUlJCSocePGqlq1qr3DsZkTJ06oX79++uKLL3T33Xfr448/tvyCWt4V9pmRP5QPfE4ApOLla+R2KK6KmuNJ5HlFyR/oiQcAAMqFCxcu6J577tGCBQvUuHFjTZ06VTNmzLB3WAAAALhO5HlFwzvxAABAueDu7q4dO3ZY1h988EE9+OCDdowIAAAAtkCeVzT0xAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAoAIzDMPeIaCI+KwAAEBRkTeUL7b6vCjiAQBQAbm4uEiS/v77bztHgqLK/axyPzsAAICrkeOVT7bK85xtEQwAAHAsTk5OqlmzplJSUiRJ1apVk8lksnNUyI9hGPr777+VkpKimjVrysnJyd4hAQAAB0WOV77YOs+jiAcAQAXl6+srSZYkD46tZs2als8MAACgIOR45Y+t8jyKeAAAVFAmk0l+fn7y9vbWpUuX7B0OCuHi4kIPPAAAUCTkeOWLLfM8ingAAFRwTk5OFIgAAAAqGHK8yoeJLQAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHB2LeJFRkaqY8eO8vT0lLe3t4YMGaLDhw9btTEMQxEREfL395e7u7uCg4N14MABqzaZmZmaMGGC6tSpIw8PDw0aNEh//PGHVZvU1FSFhobKbDbLbDYrNDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVl1Wbfvn3q3r273N3ddcMNN2j69OkyDMN2DwUAAAAAAAC4il2LeJs3b9b48eMVFxenmJgYXb58WSEhIcrIyLC0eeONNzR37lwtWLBAO3fulK+vr3r37q1z585Z2kyaNElr1qzRypUrtXXrVp0/f14DBgxQdna2pc2wYcMUHx+v6OhoRUdHKz4+XqGhoZb92dnZuvPOO5WRkaGtW7dq5cqVWr16tSZPnmxpk56ert69e8vf3187d+7U/PnzNXv2bM2dO7eUnxQAAAAAAAAqM2d7Xjw6OtpqfcmSJfL29tbu3bt1++23yzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGX49ABUVBER9o4AAMq3hQsXauHChTp27JgkqWXLlnrxxRfVr1+/fNvHxsaqR48eebYfOnRIzZo1K81QAQAAisyh3omXlpYmSapVq5YkKSEhQcnJyQoJCbG0cXNzU/fu3bV9+3ZJ0u7du3Xp0iWrNv7+/goMDLS02bFjh8xms6WAJ0mdO3eW2Wy2ahMYGGgp4ElSnz59lJmZqd27d1vadO/eXW5ublZtTp48aUkSr5aZman09HSrBQAAAKWnXr16eu2117Rr1y7t2rVLd9xxhwYPHpznlSxXO3z4sJKSkizLzTffXEYRAwAAXJvDFPEMw1BYWJi6deumwMBASVJycrIkycfHx6qtj4+PZV9ycrJcXV3l5eVVaBtvb+881/T29rZqc/V1vLy85OrqWmib3PXcNleLjIy0vIfPbDarfv3613gSAAAAuB4DBw5U//791bRpUzVt2lQzZ85U9erVFRcXV+hx3t7e8vX1tSxOTk5lFDEAAMC1OUwR78knn9RPP/2kTz75JM++q4epGoZxzaGrV7fJr70t2uROalFQPNOmTVNaWpplOX78eKFxAwAAwHays7O1cuVKZWRkKCgoqNC27dq1k5+fn3r27KlNmzZd89yMuAAAAGXJIYp4EyZM0JdffqlNmzapXr16lu2+vr6S8vZyS0lJsfSA8/X1VVZWllJTUwttc+rUqTzXPX36tFWbq6+TmpqqS5cuFdomJSVFUt7egrnc3NxUo0YNqwUAAACla9++fapevbrc3Nw0ZswYrVmzRi1atMi3rZ+fn9577z2tXr1an332mQICAtSzZ09t2bKl0Gsw4gIAAJQluxbxDMPQk08+qc8++0zfffedGjdubLW/cePG8vX1VUxMjGVbVlaWNm/erC5dukiS2rdvLxcXF6s2SUlJ2r9/v6VNUFCQ0tLS9MMPP1jafP/990pLS7Nqs3//fiUlJVnabNiwQW5ubmrfvr2lzZYtW5SVlWXVxt/fX40aNbLRUwFQEUVEMGEFAJSlgIAAxcfHKy4uTmPHjtWIESN08ODBAtuOHj1at9xyi4KCgvTOO+/ozjvv1OzZswu9BiMuAABAWbJrEW/8+PFavny5Pv74Y3l6eio5OVnJycm6cOGCpCtDVCdNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGW3nPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAADAwbi6uqpJkybq0KGDIiMj1aZNG7311ltFPr5z5846cuRIoW0YcQEAAMqSsz0vvnDhQklScHCw1fYlS5Zo5MiRkqSpU6fqwoULGjdunFJTU9WpUydt2LBBnp6elvZvvvmmnJ2ddd999+nChQvq2bOnoqKirF5GvGLFCk2cONEyi+2gQYO0YMECy34nJyetW7dO48aNU9euXeXu7q5hw4ZZ/QJrNpsVExOj8ePHq0OHDvLy8lJYWJjCwsJs/WgAAABgQ4ZhKDMzs8jt9+7dKz8/v1KMCAAAoHjsWsTLnRSiMCaTSREREYooZBxa1apVNX/+fM2fP7/ANrVq1dLy5csLvVaDBg301VdfFdqmVatW13w/CgAAAOzn2WefVb9+/VS/fn2dO3dOK1euVGxsrKKjoyVdGQZ74sQJLVu2TJI0b948NWrUSC1btlRWVpaWL1+u1atXa/Xq1fa8DQAAACt2LeIBAAAAtnbq1CmFhoYqKSlJZrNZrVu3VnR0tHr37i3pyvuTExMTLe2zsrIUHh6uEydOyN3dXS1bttS6devUv39/e90CAABAHhTxAAAAUKEsXry40P1RUVFW61OnTtXUqVNLMSIAAIDrZ9eJLQAAAAAAAABcG0U8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AChHIiKuLAAAAACAyoUiHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAKJbg4GBNmjTJ3mEoKipKNWvWtKxHRESobdu2xTrH1ffSqFEjzZs3r9BjTCaTPv/882JdBwCA60URDwAAAECFEB4ero0bNxbrmM8++0yvvPJKKUVkGwcOHNDQoUPVqFEjmUymaxYZiyoiIkImkynP4uHhYZPzAwBsiyIeAAAAgAqhevXqql27drGOqVWrljw9PUspopI7fvy45d///vtv3XjjjXrttdfk6+trs2uEh4crKSnJamnRooXuvfdem10DAGA7FPEAAAAAFCgjI0PDhw9X9erV5efnpzlz5lzzmNxhrR999JEaNWoks9msBx54QOfOnbO0MQxDb7zxhm688Ua5u7urTZs2+u9//2t1ni+//FI333yz3N3d1aNHDy1dulQmk0lnz54t9Lq5Ll++rIkTJ6pmzZqqXbu2nn76aY0YMUJDhgyxtMlvaPC5c+c0bNgwVa9eXf7+/po/f36h93vixAndf//98vLyUu3atTV48GAdO3bsms/pasePH9fMmTPVtGlTTZw40bK9Y8eOmjVrlh544AG5ubnle2xRnufVqlevLl9fX8ty6tQpHTx4UKNGjSp27ACA0kcRDwAAAECBpkyZok2bNmnNmjXasGGDYmNjtXv37msed/ToUX3++ef66quv9NVXX2nz5s167bXXLPuff/55LVmyRAsXLtSBAwf01FNP6eGHH9bmzZslSceOHdM999yjIUOGKD4+Xk888YSee+65YsX++uuva8WKFVqyZIm2bdum9PT0Ir3LbtasWWrdurX27NmjadOm6amnnlJMTEy+bf/++2/16NFD1atX15YtW7R161ZVr15dffv2VVZW1jWv9ffff+ujjz5Sr1691KhRI61fv15hYWH68MMPi3Wv13qeRfHBBx+oadOmuu2224p1bQBA2XC2dwAAAAAAHNP58+e1ePFiLVu2TL1795YkLV26VPXq1bvmsTk5OYqKirIMVQ0NDdXGjRs1c+ZMZWRkaO7cufruu+8UFBQkSbrxxhu1detWvfvuu+revbsWLVqkgIAAzZo1S5IUEBCg/fv3a+bMmUWOf/78+Zo2bZruuusuSdKCBQu0fv36ax7XtWtXPfPMM5Kkpk2batu2bXrzzTctz+CfVq5cqSpVquiDDz6QyWSSJC1ZskQ1a9ZUbGysQkJC8r3G5s2btXTpUn366afy9vbWww8/rHfffVc33XRTke8vV1Ge57VkZmZqxYoVlvsGADgeingAAAAA8nX06FFlZWVZCkPSlXfIBQQEXPPYRo0aWb1rzs/PTykpKZKkgwcP6uLFi3mKYllZWWrXrp0k6fDhw+rYsaPV/ltvvbXIsaelpenUqVNWxzg5Oal9+/bKyckp9Nh/3m/uekGTSezevVu//vprnvfqXbx4UUePHi3wGsHBwXJ3d9fcuXM1ZsyYa9xN4YryPFu2bKnff/9dknTbbbfp66+/tmr72Wef6dy5cxo+fPh1xQIAKD0U8QAAAFChLFy4UAsXLrS8k6xly5Z68cUX1a9fvwKP2bx5s8LCwnTgwAH5+/tr6tSp111YqQgMwyjxsS4uLlbrJpPJUjzL/ee6det0ww03WLXLfeebYRiWnm3XE48tzpHfeXLl5OSoffv2WrFiRZ59devWLfB8a9eu1dKlSzVp0iS99957Cg0N1YMPPliiiSuK8jzXr1+vS5cuSZLc3d3znOODDz7QgAEDbDpxBgDAtijiAQAAoEKpV6+eXnvtNTVp0kTSleGfgwcP1t69e9WyZcs87RMSEtS/f3+NHj1ay5cv17Zt2zRu3DjVrVtXQ4cOLevwHUqTJk3k4uKiuLg4NWjQQJKUmpqqX375pUhDNAvSokULubm5KTExscDzNGvWLM/Q1127dhX5GmazWT4+Pvrhhx8s73jLzs7W3r17rSa/yE9cXFye9WbNmuXb9pZbbtGqVavk7e2tGjVqFDm+AQMGaMCAAUpNTdUnn3yipUuXasqUKerdu7dCQ0M1ZMgQVatWrUjnKsrzbNiwYYHHJyQkaNOmTfryyy+LHD8AoOxRxAMAAECFMnDgQKv1mTNnauHChYqLi8u3iLdo0SI1aNDAMlyyefPm2rVrl2bPnl3pi3jVq1fXqFGjNGXKFNWuXVs+Pj567rnnVKXK9c2P5+npqfDwcD311FPKyclRt27dlJ6eru3bt6t69eoaMWKEnnjiCc2dO1dPP/20Ro0apfj4eEVFRUkquFfc1SZMmKDIyEg1adJEzZo10/z585WamnrN47dt26Y33nhDQ4YMUUxMjD799FOtW7cu37YPPfSQZs2apcGDB2v69OmqV6+eEhMT9dlnn2nKlCnXfH+gl5eXxo0bp3Hjxunnn39WVFSUpk6dqtWrV2v16tWSrgyLPXjwoOXfT5w4ofj4eFWvXl1NmjQp0vMszIcffig/P79Ce6sCAOyPIh4AAAAqrOzsbH366afKyMjI856zXDt27Mgz+UCfPn20ePFiXbp0Kc+w0FyZmZnKzMy0rKenp9sucAcya9YsnT9/XoMGDZKnp6cmT56stLS06z7vK6+8Im9vb0VGRuq3335TzZo1dcstt+jZZ5+VJDVu3Fj//e9/NXnyZL311lsKCgrSc889p7Fjx1qGiF7L008/reTkZA0fPlxOTk56/PHH1adPHzk5ORV63OTJk7V79269/PLL8vT01Jw5c9SnT59821arVk1btmzR008/rbvvvlvnzp3TDTfcoJ49exarZ550pffha6+9pldffVW//vqrZfvJkyct77aTpNmzZ2v27Nnq3r27YmNjJV37eRYkdwKSkSNHXvO5AADsy2Rcz4suUGzp6ekym81KS0sr9n/UAZRfERFF31dY2+K0AVBxkD8U3759+xQUFKSLFy+qevXq+vjjj9W/f/982zZt2lQjR460KnZs375dXbt21cmTJ+Xn55fvcREREXr55ZfzbOdzKj0zZ87UokWLdPz48RIdn5OTo+bNm+u+++7TK6+8YuPogCuKk6eR0wEoTp53ff3gAQAAAAcUEBCg+Ph4xcXFaezYsRoxYoRlOGJ+Cpr8oLBhl9OmTVNaWpplKWlhCQV75513tHPnTv3222/66KOPNGvWrGsODf2n33//Xe+//75++eUX7du3T2PHjlVCQoKGDRtWilEDAFA6GE4LAACACsfV1dUysUWHDh20c+dOvfXWW3r33XfztPX19VVycrLVtpSUFDk7O6t27doFXsPNza3IwzpRMkeOHNGMGTP0119/qUGDBpo8ebKmTZtW5OOrVKmiqKgohYeHyzAMBQYG6ttvv1Xz5s1LMWoAAEoHRTwAAABUeIZhWL2/7p+CgoK0du1aq20bNmxQhw4dCnwfHsrGm2++qTfffLPEx9evX1/btm2zYUQAANgPw2kBAABQoTz77LP63//+p2PHjmnfvn167rnnFBsbq4ceekjSlWGww4cPt7QfM2aMfv/9d4WFhenQoUP68MMPtXjxYoWHh9vrFgAAAPKgJx4AAAAqlFOnTik0NFRJSUkym81q3bq1oqOj1bt3b0lSUlKSEhMTLe0bN26s9evX66mnntK///1v+fv76+2339bQoUPtdQsAAAB5UMQDAABAhbJ48eJC90dFReXZ1r17d+3Zs6eUIgIAALh+DKcFAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBOds7AACoyCIi7B0BAAAAAKAioCceAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOzq5FvC1btmjgwIHy9/eXyWTS559/brV/5MiRMplMVkvnzp2t2mRmZmrChAmqU6eOPDw8NGjQIP3xxx9WbVJTUxUaGiqz2Syz2azQ0FCdPXvWqk1iYqIGDhwoDw8P1alTRxMnTlRWVpZVm3379ql79+5yd3fXDTfcoOnTp8swDJs9DwAAAAAAACA/di3iZWRkqE2bNlqwYEGBbfr27aukpCTLsn79eqv9kyZN0po1a7Ry5Upt3bpV58+f14ABA5SdnW1pM2zYMMXHxys6OlrR0dGKj49XaGioZX92drbuvPNOZWRkaOvWrVq5cqVWr16tyZMnW9qkp6erd+/e8vf3186dOzV//nzNnj1bc+fOteETAQAAAAAAAPJytufF+/Xrp379+hXaxs3NTb6+vvnuS0tL0+LFi/XRRx+pV69ekqTly5erfv36+vbbb9WnTx8dOnRI0dHRiouLU6dOnSRJ77//voKCgnT48GEFBARow4YNOnjwoI4fPy5/f39J0pw5czRy5EjNnDlTNWrU0IoVK3Tx4kVFRUXJzc1NgYGB+uWXXzR37lyFhYXJZDLlG2NmZqYyMzMt6+np6cV+TgAAAAAAAKjcHP6deLGxsfL29lbTpk01evRopaSkWPbt3r1bly5dUkhIiGWbv7+/AgMDtX37dknSjh07ZDabLQU8SercubPMZrNVm8DAQEsBT5L69OmjzMxM7d6929Kme/fucnNzs2pz8uRJHTt2rMD4IyMjLcN4zWaz6tevf30PBAAAAAAAAJWOQxfx+vXrpxUrVui7777TnDlztHPnTt1xxx2Wnm3JyclydXWVl5eX1XE+Pj5KTk62tPH29s5zbm9vb6s2Pj4+Vvu9vLzk6upaaJvc9dw2+Zk2bZrS0tIsy/Hjx4vzCAAAAAAAAAD7Dqe9lvvvv9/y74GBgerQoYMaNmyodevW6e677y7wOMMwrIa35jfU1RZtcie1KGgorXRlOPA/e+8BAAAAAAAAxeXQPfGu5ufnp4YNG+rIkSOSJF9fX2VlZSk1NdWqXUpKiqWXnK+vr06dOpXnXKdPn7Zqc3VvutTUVF26dKnQNrlDe6/uoQcAAAAAAADYUrkq4p05c0bHjx+Xn5+fJKl9+/ZycXFRTEyMpU1SUpL279+vLl26SJKCgoKUlpamH374wdLm+++/V1pamlWb/fv3KykpydJmw4YNcnNzU/v27S1ttmzZoqysLKs2/v7+atSoUandMwAAAAAAAGDXIt758+cVHx+v+Ph4SVJCQoLi4+OVmJio8+fPKzw8XDt27NCxY8cUGxurgQMHqk6dOrrrrrskSWazWaNGjdLkyZO1ceNG7d27Vw8//LBatWplma22efPm6tu3r0aPHq24uDjFxcVp9OjRGjBggAICAiRJISEhatGihUJDQ7V3715t3LhR4eHhGj16tGrUqCFJGjZsmNzc3DRy5Ejt379fa9as0auvvlrozLQAAAAAAACALdj1nXi7du1Sjx49LOthYWGSpBEjRmjhwoXat2+fli1bprNnz8rPz089evTQqlWr5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGmxaxEvODjYMjlEfr755ptrnqNq1aqaP3++5s+fX2CbWrVqafny5YWep0GDBvrqq68KbdOqVStt2bLlmjEBAAAAAAAAtlSu3okHAAAAXEtkZKQ6duwoT09PeXt7a8iQITp8+HChx8TGxspkMuVZfv755zKKGgAAoHBF7on35ZdfFvmkgwYNKlEwAAAAqFxKI8fcvHmzxo8fr44dO+ry5ct67rnnFBISooMHD8rDw6PQYw8fPmx5J7Ik1a1bt8jxAQAAlKYiF/GGDBlitW4ymayGwv5zcofs7OzrjwwAAAAVXmnkmNHR0VbrS5Yskbe3t3bv3q3bb7+90GO9vb1Vs2bNIl0HAACgLBV5OG1OTo5l2bBhg9q2bauvv/5aZ8+eVVpamtavX69bbrklT9IEAAAAFKQscsy0tDRJV96TfC3t2rWTn5+fevbsqU2bNhXaNjMzU+np6VYLAABAaSnRxBaTJk3SokWL1K1bN8u2Pn36qFq1anr88cd16NAhmwUIAACAyqE0ckzDMBQWFqZu3bopMDCwwHZ+fn5677331L59e2VmZuqjjz5Sz549FRsbW2DvvcjISL388svFjgkAAKAkSlTEO3r0qMxmc57tZrNZx44du96YAAAAUAmVRo755JNP6qefftLWrVsLbRcQEKCAgADLelBQkI4fP67Zs2cXWMSbNm2awsLCLOvp6emqX79+ieIEAAC4lhLNTtuxY0dNmjRJSUlJlm3JycmaPHmybr31VpsFBwAAgMrD1jnmhAkT9OWXX2rTpk2qV69esY/v3Lmzjhw5UuB+Nzc31ahRw2oBAAAoLSUq4n344YdKSUlRw4YN1aRJEzVp0kQNGjRQUlKSFi9ebOsYAQAAUAnYKsc0DENPPvmkPvvsM3333Xdq3LhxieLZu3ev/Pz8SnQsAACArZVoOG2TJk30008/KSYmRj///LMMw1CLFi3Uq1cvqxnEAAAAgKKyVY45fvx4ffzxx/riiy/k6emp5ORkSVeG5bq7u0u6MhT2xIkTWrZsmSRp3rx5atSokVq2bKmsrCwtX75cq1ev1urVq21/owAAACVQoiKeJJlMJoWEhOj222+Xm5sbxTsAAABcN1vkmAsXLpQkBQcHW21fsmSJRo4cKUlKSkpSYmKiZV9WVpbCw8N14sQJubu7q2XLllq3bp369+9f4nsBAACwpRIV8XJycjRz5kwtWrRIp06d0i+//KIbb7xRL7zwgho1aqRRo0bZOk4AKFciIsru/KV9LQAoK7bKMQ3DuGabqKgoq/WpU6dq6tSpJQkbAACgTJTonXgzZsxQVFSU3njjDbm6ulq2t2rVSh988IHNggMAAEDlQY4JAABQsBIV8ZYtW6b33ntPDz30kJycnCzbW7durZ9//tlmwQEAAKDyIMcEAAAoWImKeCdOnFCTJk3ybM/JydGlS5euOygAAABUPuSYAAAABStREa9ly5b63//+l2f7p59+qnbt2l13UAAAAKh8yDEBAAAKVqKJLV566SWFhobqxIkTysnJ0WeffabDhw9r2bJl+uqrr2wdIwAAACoBckwAAICClagn3sCBA7Vq1SqtX79eJpNJL774og4dOqS1a9eqd+/eto4RAAAAlQA5JgAAQMFK1BNPkvr06aM+ffrYMhYAAABUcuSYAAAA+StxES/X+fPnlZOTY7WtRo0a13taAAAAVGLkmAAAANZKNJw2ISFBd955pzw8PGQ2m+Xl5SUvLy/VrFlTXl5eto4RAAAAlQA5JgAAQMFK1BPvoYcekiR9+OGH8vHxkclksmlQAAAAqHzIMQFUdMGuEZZ/j82KKLAdAOSnREW8n376Sbt371ZAQICt4wEAAEAlRY4JAABQsBINp+3YsaOOHz9u61gAAABQiZFjAgAAFKxEPfE++OADjRkzRidOnFBgYKBcXFys9rdu3domwQEAAKDyIMcEAAAoWImKeKdPn9bRo0f1yCOPWLaZTCYZhiGTyaTs7GybBQgAAIDKgRwTAACgYCUq4j366KNq166dPvnkE146DAAAAJsgxwQAAChYiYp4v//+u7788ks1adLE1vEAAACgkiLHBAAAKFiJJra444479OOPP9o6FgAAAFRi5JgAAAAFK1FPvIEDB+qpp57Svn371KpVqzwvHR40aJBNggMAXFtEhPU/AaC8IscEAAAoWImKeGPGjJEkTZ8+Pc8+XjoMAACAkiDHBAAAKFiJing5OTm2jgMAAACVHDkmAABAwYr9TrzLly/L2dlZ+/fvL414AAAAUAmRYwIAABSu2EU8Z2dnNWzYkOEMAAAAsBlyTAAAgMKVaHba559/XtOmTdNff/1l63gAAABQSZFjAgAAFKxE78R7++239euvv8rf318NGzaUh4eH1f49e/bYJDgAqAyYXRYAriDHBAAAKFiJinhDhgyxcRgAUP5RhAOA60OOCQAAULASFfFeeuklW8cBAACASo4cEwAAoGAlKuLl2r17tw4dOiSTyaQWLVqoXbt2tooLAAAAlRQ5JgAAQF4lKuKlpKTogQceUGxsrGrWrCnDMJSWlqYePXpo5cqVqlu3rq3jBAAAQAVHjgkAAFCwEs1OO2HCBKWnp+vAgQP666+/lJqaqv379ys9PV0TJ060dYwAAACoBGyVY0ZGRqpjx47y9PSUt7e3hgwZosOHD1/zuM2bN6t9+/aqWrWqbrzxRi1atOh6bgcAAMCmSlTEi46O1sKFC9W8eXPLthYtWujf//63vv76a5sFBwAAgMrDVjnm5s2bNX78eMXFxSkmJkaXL19WSEiIMjIyCjwmISFB/fv312233aa9e/fq2Wef1cSJE7V69erruicAAABbKdFw2pycHLm4uOTZ7uLiopycnOsOCgAAAJWPrXLM6Ohoq/UlS5bI29tbu3fv1u23357vMYsWLVKDBg00b948SVLz5s21a9cuzZ49W0OHDi36TQAAAJSSEvXEu+OOO/Svf/1LJ0+etGw7ceKEnnrqKfXs2dNmwQEAAKDyKK0cMy0tTZJUq1atAtvs2LFDISEhVtv69OmjXbt26dKlS/kek5mZqfT0dKsFAACgtJSoiLdgwQKdO3dOjRo10k033aQmTZqoUaNGOnfunN5++21bxwgAAIBKoDRyTMMwFBYWpm7duikwMLDAdsnJyfLx8bHa5uPjo8uXL+vPP//M95jIyEiZzWbLUr9+/RLFCAAAUBQlGk5bv3597dmzR99++60OHTokwzDUokUL9erVy9bxAQAAoJIojRzzySef1E8//aStW7des63JZLJaNwwj3+25pk2bprCwMMt6eno6hTwAAFBqSlTEk6SNGzfqu+++U0pKinJychQfH6+PP/5YkvThhx/aLEAAAABUHrbMMSdMmKAvv/xSW7ZsUb169Qpt6+vrq+TkZKttKSkpcnZ2Vu3atfM9xs3NTW5ubsWKCQAAoKRKVMR7+eWXNX36dHXo0EF+fn4F/joJAAAAFJWtckzDMDRhwgStWbNGsbGxaty48TWPCQoK0tq1a622bdiwQR06dMh3sg0AAICyVqIi3qJFixQVFaXQ0FBbxwMAAIBKylY55vjx4/Xxxx/riy++kKenp6WHndlslru7u6QrQ2FPnDihZcuWSZLGjBmjBQsWKCwsTKNHj9aOHTu0ePFiffLJJ9d3UwAAADZSooktsrKy1KVLF1vHAgAAgErMVjnmwoULlZaWpuDgYPn5+VmWVatWWdokJSUpMTHRst64cWOtX79esbGxatu2rV555RW9/fbbGjp06HXHAwAAYAsl6on32GOP6eOPP9YLL7xg63gAAABQSdkqx8ydkKIwUVFRebZ1795de/bsua5rAwAAlJYSFfEuXryo9957T99++61at26d5z0hc+fOtUlwAAAAqDzIMQEAAApWoiLeTz/9pLZt20qS9u/fb7WPSS4AAABQEuSYAAAABStREW/Tpk22jgMAAACVHDkmAABAwUo0sQUAAAAAAACAskMRDwAAAAAAAHBwFPEAAAAAAAAAB0cRDwAAAAAAAHBwdi3ibdmyRQMHDpS/v79MJpM+//xzq/2GYSgiIkL+/v5yd3dXcHCwDhw4YNUmMzNTEyZMUJ06deTh4aFBgwbpjz/+sGqTmpqq0NBQmc1mmc1mhYaG6uzZs1ZtEhMTNXDgQHl4eKhOnTqaOHGisrKyrNrs27dP3bt3l7u7u2644QZNnz5dhmHY7HkAAAAAAAAA+bFrES8jI0Nt2rTRggUL8t3/xhtvaO7cuVqwYIF27twpX19f9e7dW+fOnbO0mTRpktasWaOVK1dq69atOn/+vAYMGKDs7GxLm2HDhik+Pl7R0dGKjo5WfHy8QkNDLfuzs7N15513KiMjQ1u3btXKlSu1evVqTZ482dImPT1dvXv3lr+/v3bu3Kn58+dr9uzZmjt3bik8GQAovoiIKwsAAAAAoOJxtufF+/Xrp379+uW7zzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGXwxAAAAAAAji7YNcLeIQCogBz2nXgJCQlKTk5WSEiIZZubm5u6d++u7du3S5J2796tS5cuWbXx9/dXYGCgpc2OHTtkNpstBTxJ6ty5s8xms1WbwMBASwFPkvr06aPMzEzt3r3b0qZ79+5yc3OzanPy5EkdO3aswPvIzMxUenq61QIAAAAAAAAUh8MW8ZKTkyVJPj4+Vtt9fHws+5KTk+Xq6iovL69C23h7e+c5v7e3t1Wbq6/j5eUlV1fXQtvkrue2yU9kZKTlXXxms1n169cv/MYBAAAAAACAqzhsES/X1cNUDcO45tDVq9vk194WbXIntSgsnmnTpiktLc2yHD9+vNDYAQAAAAAAgKs5bBHP19dXUt5ebikpKZYecL6+vsrKylJqamqhbU6dOpXn/KdPn7Zqc/V1UlNTdenSpULbpKSkSMrbW/Cf3NzcVKNGDasFAAAAAAAAKA6HLeI1btxYvr6+iomJsWzLysrS5s2b1aVLF0lS+/bt5eLiYtUmKSlJ+/fvt7QJCgpSWlqafvjhB0ub77//XmlpaVZt9u/fr6SkJEubDRs2yM3NTe3bt7e02bJli7Kysqza+Pv7q1GjRrZ/AAAAAAAAAMD/Z9ci3vnz5xUfH6/4+HhJVyaziI+PV2JiokwmkyZNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGWnnPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAAAAAAAApc7ZnhfftWuXevToYVkPCwuTJI0YMUJRUVGaOnWqLly4oHHjxik1NVWdOnXShg0b5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGkxGbmzM6BMpKeny2w2Ky0tjffjARVERIRtz3O957NVPAAcB/lD+cDnBEC6kosFu0Zcs11sVgR5G4Bi5Q8O+048AAAAAAAAAFfYdTgtAAAAAAAVwvYISVKwq33DAFBx0RMPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPPy+0fWxsrEwmU57l559/LpuAAQAAisDZ3gEAAAAAtpSRkaE2bdrokUce0dChQ4t83OHDh1WjRg3Let26dUsjPAAAgBKhiAcAAIAKpV+/furXr1+xj/P29lbNmjVtHxAAAIANMJwWAAAAkNSuXTv5+fmpZ8+e2rRp0zXbZ2ZmKj093WoBAAAoLRTxAAAAUKn5+fnpvffe0+rVq/XZZ58pICBAPXv21JYtWwo9LjIyUmaz2bLUr1+/jCIGAACVEcNpAQAAUKkFBAQoICDAsh4UFKTjx49r9uzZuv322ws8btq0aQoLC7Osp6enU8gDAAClhp54AFDBRERcWQAAJde5c2cdOXKk0DZubm6qUaOG1QIAAFBaKOIBAAAAV9m7d6/8/PzsHQYAAIAFw2kBAABQoZw/f16//vqrZT0hIUHx8fGqVauWGjRooGnTpunEiRNatmyZJGnevHlq1KiRWrZsqaysLC1fvlyrV6/W6tWr7XULAAAAeVDEA4AK6p9DahleC6Ay2bVrl3r06GFZz31v3YgRIxQVFaWkpCQlJiZa9mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///5lHjsAAEBBKOIBAACgQgkODpZhGAXuj4qKslqfOnWqpk6dWspRAQAAXB/eiQcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AFBMERFXFgAAAAAAyoqzvQMAgPKKQh4AAABKKtg1Qtr+/1e6RNgxEgDlBT3xAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAfnbO8AAKA8iIiwdwQAAAAAgMqMnngAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4JrYAAAAAAMCetkf83793iSioFYBKjp54AFAJREQwwy4AAAAAlGcU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPP7/mMZs3b1b79u1VtWpV3XjjjVq0aFHpBwoAAFAMFPEAAABQoWRkZKhNmzZasGBBkdonJCSof//+uu2227R37149++yzmjhxolavXl3KkQIAABSds70DAABcweyxAGAb/fr1U79+/YrcftGiRWrQoIHmzZsnSWrevLl27dql2bNna+jQoaUUJQAAQPHQEw8AAACV2o4dOxQSEmK1rU+fPtq1a5cuXbpU4HGZmZlKT0+3WgAAAEoLRTwAAABUasnJyfLx8bHa5uPjo8uXL+vPP/8s8LjIyEiZzWbLUr9+/dIOFQAAVGIU8QAAAFDpmUwmq3XDMPLd/k/Tpk1TWlqaZTl+/HipxggAACo33okHAACASs3X11fJyclW21JSUuTs7KzatWsXeJybm5vc3NxKOzwAjmx7hL0jAFCJ0BMPAAAAlVpQUJBiYmKstm3YsEEdOnSQi4uLnaICAACwRk88AChEcWeMDXYt5gH/X2xWyY4DAOR1/vx5/frrr5b1hIQExcfHq1atWmrQoIGmTZumEydOaNmyZZKkMWPGaMGCBQoLC9Po0aO1Y8cOLV68WJ988om9bgEAACAPh+6JFxERIZPJZLX4+vpa9huGoYiICPn7+8vd3V3BwcE6cOCA1TkyMzM1YcIE1alTRx4eHho0aJD++OMPqzapqakKDQ21vJQ4NDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVVavcOAKUpIqL4BUoAKC927dqldu3aqV27dpKksLAwtWvXTi+++KIkKSkpSYmJiZb2jRs31vr16xUbG6u2bdvqlVde0dtvv62hQ4faJX4AAID8OHxPvJYtW+rbb7+1rDs5OVn+/Y033tDcuXMVFRWlpk2basaMGerdu7cOHz4sT09PSdKkSZO0du1arVy5UrVr19bkyZM1YMAA7d6923KuYcOG6Y8//lB0dLQk6fHHH1doaKjWrl0rScrOztadd96punXrauvWrTpz5oxGjBghwzA0f/78snoUAAAAKILg4GDLxBT5iYqKyrOte/fu2rNnTylGBQAAcH0cvojn7Oxs1fsul2EYmjdvnp577jndfffdkqSlS5fKx8dHH3/8sZ544gmlpaVp8eLF+uijj9SrVy9J0vLly1W/fn19++236tOnjw4dOqTo6GjFxcWpU6dOkqT3339fQUFBOnz4sAICArRhwwYdPHhQx48fl7+/vyRpzpw5GjlypGbOnKkaNWqU0dMAgOtD7zsAAAAAKJ8cejitJB05ckT+/v5q3LixHnjgAf3222+SrrzbJDk5WSEhIZa2bm5u6t69u7Zv3y5J2r17ty5dumTVxt/fX4GBgZY2O3bskNlsthTwJKlz584ym81WbQIDAy0FPEnq06ePMjMztXv37kLjz8zMVHp6utUCAAAAAAAAFIdDF/E6deqkZcuW6ZtvvtH777+v5ORkdenSRWfOnFFycrIkycfHx+oYHx8fy77k5GS5urrKy8ur0Dbe3t55ru3t7W3V5urreHl5ydXV1dKmIJGRkZZ37ZnNZtWvX78YTwAAAAAAAABw8CJev379NHToULVq1Uq9evXSunXrJF0ZNpvLZDJZHWMYRp5tV7u6TX7tS9ImP9OmTVNaWpplOX78eKHtAQAAAAAAgKs5/Dvx/snDw0OtWrXSkSNHNGTIEElXesn5+flZ2qSkpFh6zfn6+iorK0upqalWvfFSUlLUpUsXS5tTp07ludbp06etzvP9999b7U9NTdWlS5fy9NC7mpubm9zc3Ip/swAqlWDXiGIfE5tV/GOu9s935PG+PAAAAABwXOWqiJeZmalDhw7ptttuU+PGjeXr66uYmBi1a9dOkpSVlaXNmzfr9ddflyS1b99eLi4uiomJ0X333SdJSkpK0v79+/XGG29IkoKCgpSWlqYffvhBt956qyTp+++/V1pamqXQFxQUpJkzZyopKclSMNywYYPc3NzUvn37Mn0GAMrQ9ggFu9o7CAAAAAAAHLyIFx4eroEDB6pBgwZKSUnRjBkzlJ6erhEjRshkMmnSpEl69dVXdfPNN+vmm2/Wq6++qmrVqmnYsGGSJLPZrFGjRmny5MmqXbu2atWqpfDwcMvwXElq3ry5+vbtq9GjR+vdd9+VJD3++OMaMGCAAgICJEkhISFq0aKFQkNDNWvWLP31118KDw/X6NGjmZkWQLlTYK+/7YUc1KWAYwAAAAAAZcKhi3h//PGHHnzwQf3555+qW7euOnfurLi4ODVs2FCSNHXqVF24cEHjxo1TamqqOnXqpA0bNsjT09NyjjfffFPOzs667777dOHCBfXs2VNRUVFycnKytFmxYoUmTpxomcV20KBBWrBggWW/k5OT1q1bp3Hjxqlr165yd3fXsGHDNHv27DJ6EgCQV0mG4AIAAAAAyieTYRiGvYOoTNLT02U2m5WWlkYvPsDRbY9QbKy9gyg7wcGF7KQnHmBX5A/lA58TUAltj8izqTj5Y775F3kXUKkUJ39w6NlpAQAAAAAAAFDEAwAAAAAAAByeQ78TDwAAAACASuWfQ3QZWgvgH+iJBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg3O2dwAAUCzbI4p/TJcSHAMAAAAAgAOhJx4AAAAAAADg4OiJBwD/EBHxf/8e7Gq3MAAAAAAAsEJPPAAAAAAAAMDB0RMPQMVXjPfo0fuuACV5F6HE+wgBAAAKERubd1twcFlHAaC8oCceAMBKbGz+CSUAAAAAwH4o4gEAAAAAAAAOjuG0AAAAAAAUVUlfMwIA14meeAAAAAAAAICDoycegEqP978BAAAAABwdRTwAQOkpyXATZrQFYCPvvPOOZs2apaSkJLVs2VLz5s3Tbbfdlm/b2NhY9ejRI8/2Q4cOqVmzZqUdKoByih+DAZQlingAAEkkoQAqllWrVmnSpEl655131LVrV7377rvq16+fDh48qAYNGhR43OHDh1WjRg3Let26dcsiXAAAgGvinXgAAACocObOnatRo0bpscceU/PmzTVv3jzVr19fCxcuLPQ4b29v+fr6WhYnJ6cyihgA8rE94v8WAJUeRTwAlU5sLL3OAKAiy8rK0u7duxUSEmK1PSQkRNu3by/02Hbt2snPz089e/bUpk2bCm2bmZmp9PR0qwUAAKC0UMQDAABAhfLnn38qOztbPj4+Vtt9fHyUnJyc7zF+fn567733tHr1an322WcKCAhQz549tWXLlgKvExkZKbPZbFnq169v0/sAAAD4J96JBwAAgArJZDJZrRuGkWdbroCAAAUEBFjWg4KCdPz4cc2ePVu33357vsdMmzZNYWFhlvX09HQKeQAAoNRQxANQaTGkFgAqpjp16sjJySlPr7uUlJQ8vfMK07lzZy1fvrzA/W5ubnJzcytxnAAAAMVBEQ9ApUHRrpwoyYubu5TgGAAVlqurq9q3b6+YmBjdddddlu0xMTEaPHhwkc+zd+9e+fn5lUaIAAAAxUYRDwAAABVOWFiYQkND1aFDBwUFBem9995TYmKixowZI+nKUNgTJ05o2bJlkqR58+apUaNGatmypbKysrR8+XKtXr1aq1evtudtAAAAWFDEA2AfJeltBbv4Zw/G4GB7RQEAxXP//ffrzJkzmj59upKSkhQYGKj169erYcOGkqSkpCQlJiZa2mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///72ugUAAAArFPEAAABQIY0bN07jxo3Ld19UVJTV+tSpUzV16tQyiAoAAKBkKOIBAPLFOwQBAAAAwHFQxAMAAAAAoDC8CgaAA6CIB+D6kdQAAAAAAFCqKOIBqNAYEmpbuc+TCS4AAADKWO4P510i7BkFADuqYu8AAAAAAAAAABSOIh4AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4JjYAgBQbExwAQAAKrzciSQAwEFQxANQITErLQAAAHCVfxYmmeUWKHco4gEAAAAAUF4UVIijQAdUeBTxAPwfhgygsinJd56kGAAAAIAdUMQDUKEwjLZs/fN58348AACAMsaP8EClQhEPAGATTHYBAADKPYpiABxYFXsHAABFFRtLT7vyhM8LAAAAAGyHnnhASZT0FzrepVVqKBYBAAAAACoyeuIBKHfo4QUAAAAAqGzoiQdUVLzPAw6I9+YBAIAyl19ezAgZAOUQRTwA5Ra98RyTXT4XitYAAKCkyCMAlBMU8QAAZa5c98jjnZgAAJR/FO4AlEMU8QBHR4IBVAwl+bNM4Q8AAADA/0cRDyhLFORQCTHsGQAAoOgKyp2KNYKB/+8AKiSKeAAcSn5JS7kccokiKezzLtdDbgEAgH3ZuIjFj5IAHAFFPABAufDP5LnSFPbKw6/oDPkFANjTP/9byX+TAFRwFPFQsZSH/+FFsfHLJ1DBMDkIAAAAUGwU8QCUuquHRTJkFoWhaAsAAArFD/e2V1CPRno6Ag6FIh5KHzMyoggo3KAg+X03rueFz5VyWC4AAEBR2apImnse/t8OsBmKeJUVhTXYAYU6lLbiFuiYPMMG6A0BAED5ZOtincT/MwKljCJeCbzzzjuaNWuWkpKS1LJlS82bN0+33XZb8U7yfaTk4Wa9rSR/4fE/T7AzCnNwVFd/N21VqKPwB5Qfxc3ZNm/erLCwMB04cED+/v6aOnWqxowZU4YRA5WUrYpANvp/I0fNbyv9K2koFgIU8Ypr1apVmjRpkt555x117dpV7777rvr166eDBw+qQYMG9g6vdJVlwbCcFyft/T/5thpqWNDxjprYAIUpzve2KD36Sjost7SKi3AATNjhUIqbsyUkJKh///4aPXq0li9frm3btmncuHGqW7euhg4daoc7AOykKIUSWxRTivJ3JkUbx8LnAdidyTAMw95BlCedOnXSLbfcooULF1q2NW/eXEOGDFFkZOQ1j09PT5fZbFbahmdU4+qeeKgwyvJXsvwKhkUpVlwdT3GOoYiHiqY4k66U9M93Sf5cArnSMzJlDnlNaWlpqlGjhr3DKReKm7M9/fTT+vLLL3Xo0CHLtjFjxujHH3/Ujh07inRNS57H54TyoLgTGRRUdMuvmFPccxR0vjL4Yb8y5bV2yzNKo3dlUQrMtooBKGXFyR/oiVcMWVlZ2r17t5555hmr7SEhIdq+fXu+x2RmZiozM9OynpaWJulKMl4e/e9/V/5Z3NHDVx+fK/c8/9xenHNfHc/V58/vfIW1Kez+inOtjIt5962Lvvbx1yP3/KXVvqTHAOVBYd/tonzvbfVnIz3jyj8L+rsyv31FaVOUv1fz+3u4sL/3CjpnUf4ezq99Uf4eLo6inKcsr3W9cvMGfnstmpLkbDt27FBISIjVtj59+mjx4sW6dOmSXFxc8hxTYJ6Xnl70YL//R0Gx07SiH+co5y/OdcryXvO7TkHXL424bPE8ihLvPxUl9oKOjSng2H9+lwv6/5fcNgWduyjnKEosxWDrPLuiKGq+YvP/nhXlMy3o+3ut711J2l/rz5Aj/H1WlGvlbi/un/3ixlua91qWz9GBY8jNG4qU5xkoshMnThiSjG3btlltnzlzptG0adN8j3nppZcMSSwsLCwsLCws170cPXq0LFKecq8kOdvNN99szJw502rbtm3bDEnGyZMn8z2GPI+FhYWFhYXFVsvx48evmePQE68ETCaT1bphGHm25Zo2bZrCwsIs62fPnlXDhg2VmJgos9lcqnFWRunp6apfv76OHz/OMJZSwPMtXTzf0sXzLV0839KVlpamBg0aqFatWvYOpVwpTs5WUPv8tue6Os/LycnRX3/9pdq1axd6nfKCP9flA59T+cDnVD7wOTm+ivgZGYahc+fOyd/f/5ptKeIVQ506deTk5KTk5GSr7SkpKfLx8cn3GDc3N7m55X33ndlsrjBfOEdUo0YNnm8p4vmWLp5v6eL5li6eb+mqUqWKvUMoF0qSs/n6+ubb3tnZWbVr1873mPzyvJo1a5Y8cAfFn+vygc+pfOBzKh/4nBxfRfuMitrJi0ywGFxdXdW+fXvFxMRYbY+JiVGXLl3sFBUAAAD+qSQ5W1BQUJ72GzZsUIcOHfJ9Hx4AAEBZo4hXTGFhYfrggw/04Ycf6tChQ3rqqaeUmJioMWPG2Ds0AAAA/H/XytmmTZum4cOHW9qPGTNGv//+u8LCwnTo0CF9+OGHWrx4scLDw+11CwAAAFYYTltM999/v86cOaPp06crKSlJgYGBWr9+vRo2bFik493c3PTSSy/lO8QW14/nW7p4vqWL51u6eL6li+dbuni+xXetnC0pKUmJiYmW9o0bN9b69ev11FNP6d///rf8/f319ttva+jQofa6Bbvje1c+8DmVD3xO5QOfk+Or7J+RyTCKMoctAAAAAAAAAHthOC0AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4CjiAQAAAAAAAA6OIp4dDRo0SA0aNFDVqlXl5+en0NBQnTx50t5hVQjHjh3TqFGj1LhxY7m7u+umm27SSy+9pKysLHuHVmHMnDlTXbp0UbVq1VSzZk17h1PuvfPOO2rcuLGqVq2q9u3b63//+5+9Q6owtmzZooEDB8rf318mk0mff/65vUOqMCIjI9WxY0d5enrK29tbQ4YM0eHDh+0dVoWycOFCtW7dWjVq1FCNGjUUFBSkr7/+2t5hoZLLzMxU27ZtZTKZFB8fb+9w8P+R/zou8jzHRj5T/kRGRspkMmnSpEn2DqXMUcSzox49eug///mPDh8+rNWrV+vo0aO655577B1WhfDzzz8rJydH7777rg4cOKA333xTixYt0rPPPmvv0CqMrKws3XvvvRo7dqy9Qyn3Vq1apUmTJum5557T3r17ddttt6lfv35KTEy0d2gVQkZGhtq0aaMFCxbYO5QKZ/PmzRo/frzi4uIUExOjy5cvKyQkRBkZGfYOrcKoV6+eXnvtNe3atUu7du3SHXfcocGDB+vAgQP2Dg2V2NSpU+Xv72/vMHAV8l/HRJ7n+MhnypedO3fqvffeU+vWre0dil2YDMMw7B0Ervjyyy81ZMgQZWZmysXFxd7hVDizZs3SwoUL9dtvv9k7lAolKipKkyZN0tmzZ+0dSrnVqVMn3XLLLVq4cKFlW/PmzTVkyBBFRkbaMbKKx2Qyac2aNRoyZIi9Q6mQTp8+LW9vb23evFm33367vcOpsGrVqqVZs2Zp1KhR9g4FldDXX3+tsLAwrV69Wi1bttTevXvVtm1be4eFApD/2h95XvlDPuO4zp8/r1tuuUXvvPOOZsyYobZt22revHn2DqtM0RPPQfz1119asWKFunTpQgGvlKSlpalWrVr2DgOwkpWVpd27dyskJMRqe0hIiLZv326nqICSSUtLkyT+ri0l2dnZWrlypTIyMhQUFGTvcFAJnTp1SqNHj9ZHH32katWq2TscFAH5r32R55VP5DOOa/z48brzzjvVq1cve4diNxTx7Ozpp5+Wh4eHateurcTERH3xxRf2DqlCOnr0qObPn68xY8bYOxTAyp9//qns7Gz5+PhYbffx8VFycrKdogKKzzAMhYWFqVu3bgoMDLR3OBXKvn37VL16dbm5uWnMmDFas2aNWrRoYe+wUMkYhqGRI0dqzJgx6tChg73DQRGQ/9ofeV75Qz7juFauXKk9e/ZU+h6sFPFsLCIiQiaTqdBl165dlvZTpkzR3r17tWHDBjk5OWn48OFihHPBivt8JenkyZPq27ev7r33Xj322GN2irx8KMnzhW2YTCardcMw8mwDHNmTTz6pn376SZ988om9Q6lwAgICFB8fr7i4OI0dO1YjRozQwYMH7R0WKoii/rd//vz5Sk9P17Rp0+wdcqVD/lv+keeVH+Qzjun48eP617/+peXLl6tq1ar2DseueCeejf3555/6888/C23TqFGjfL94f/zxh+rXr6/t27czTKYAxX2+J0+eVI8ePdSpUydFRUWpShXq1oUpyfeXd+Jdn6ysLFWrVk2ffvqp7rrrLsv2f/3rX4qPj9fmzZvtGF3FwzvxSseECRP0+eefa8uWLWrcuLG9w6nwevXqpZtuuknvvvuuvUNBBVDU//Y/8MADWrt2rVXhITs7W05OTnrooYe0dOnS0g610iL/Lb/I88oX8hnH9fnnn+uuu+6Sk5OTZVt2drZMJpOqVKmizMxMq30VmbO9A6ho6tSpozp16pTo2Nx6amZmpi1DqlCK83xPnDihHj16qH379lqyZAkJTBFcz/cXJePq6qr27dsrJibGKrmLiYnR4MGD7RgZcG2GYWjChAlas2aNYmNjSXjLiGEY5AqwmaL+t//tt9/WjBkzLOsnT55Unz59tGrVKnXq1Kk0Q6z0yH/LL/K88oF8xvH17NlT+/bts9r2yCOPqFmzZnr66acrTQFPoohnNz/88IN++OEHdevWTV5eXvrtt9/04osv6qabbqIXng2cPHlSwcHBatCggWbPnq3Tp09b9vn6+toxsoojMTFRf/31lxITE5Wdna34+HhJUpMmTVS9enX7BlfOhIWFKTQ0VB06dFBQUJDee+89JSYm8g4bGzl//rx+/fVXy3pCQoLi4+NVq1YtNWjQwI6RlX/jx4/Xxx9/rC+++EKenp6W9/uYzWa5u7vbObqK4dlnn1W/fv1Uv359nTt3TitXrlRsbKyio6PtHRoqmav/vsz9b/1NN92kevXq2SMkXIX81zGR5zk+8hnH5+npmecdhblzC1S2dxdSxLMTd3d3ffbZZ3rppZeUkZEhPz8/9e3bVytXrpSbm5u9wyv3NmzYoF9//VW//vprnsSSEeS28eKLL1oNnWnXrp0kadOmTQoODrZTVOXT/fffrzNnzmj69OlKSkpSYGCg1q9fr4YNG9o7tAph165d6tGjh2U9LCxMkjRixAhFRUXZKaqKYeHChZKU58/8kiVLNHLkyLIPqAI6deqUQkNDlZSUJLPZrNatWys6Olq9e/e2d2gAHAz5r2Miz3N85DMoT3gnHgAAAAAAAODgeEkCAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAORjy5YtGjhwoPz9/WUymfT555+X6vUiIiJkMpmsFl9f31K9JgAAQGVU1nne5cuX9fzzz6tx48Zyd3fXjTfeqOnTpysnJ6dY56GIBwAAkI+MjAy1adNGCxYsKLNrtmzZUklJSZZl3759ZXZtAEDZCA4O1qRJk+wdBlCplXWe9/rrr2vRokVasGCBDh06pDfeeEOzZs3S/Pnzi3Ue51KKDwAAoFzr16+f+vXrV+D+rKwsPf/881qxYoXOnj2rwMBAvf766woODi7xNZ2dnel9BwAAUMrKOs/bsWOHBg8erDvvvFOS1KhRI33yySfatWtXsc5DTzwAAIASeOSRR7Rt2zatXLlSP/30k+6991717dtXR44cKfE5jxw5In9/fzVu3FgPPPCAfvvtNxtGDAAAgKKwdZ7XrVs3bdy4Ub/88osk6ccff9TWrVvVv3//Yp2HIh4AOICcnBy9/vrratKkidzc3NSgQQPNnDnT3mEBKMDRo0f1ySef6NNPP9Vtt92mm266SeHh4erWrZuWLFlSonN26tRJy5Yt0zfffKP3339fycnJ6tKli86cOWPj6AEAZSUjI0PDhw9X9erV5efnpzlz5tg7JADXUBp53tNPP60HH3xQzZo1k4uLi9q1a6dJkybpwQcfLNZ5GE4LAA5g2rRpev/99/Xmm2+qW7duSkpK0s8//2zvsAAUYM+ePTIMQ02bNrXanpmZqdq1a0uSjh07psaNGxd6nvHjx1vexfLPIR2tWrVSUFCQbrrpJi1dulRhYWE2vgMAQFmYMmWKNm3apDVr1sjX11fPPvusdu/erbZt29o7NAAFKI08b9WqVVq+fLk+/vhjtWzZUvHx8Zo0aZL8/f01YsSIIsdGEQ8A7OzcuXN66623tGDBAstf4DfddJO6detm58gAFCQnJ0dOTk7avXu3nJycrPZVr15dknTDDTfo0KFDhZ7Hy8urwH0eHh5q1arVdQ3PBQDYz/nz57V48WItW7ZMvXv3liQtXbpU9erVs3NkAApTGnnelClT9Mwzz+iBBx6QdOUH299//12RkZEU8QCgPDl06JAyMzPVs2dPe4cCoIjatWun7OxspaSk6Lbbbsu3jYuLi5o1a1bia2RmZurQoUMFnh8A4NiOHj2qrKwsBQUFWbbVqlVLAQEBdowKwLWURp73999/q0oV6zfaOTk5KScnp1ixUcQDADtzd3e3dwgA8nH+/Hn9+uuvlvWEhATFx8erVq1aatq0qR566CENHz5cc+bMUbt27fTnn3/qu+++U6tWrYr9kmJJCg8P18CBA9WgQQOlpKRoxowZSk9PL9avswAAx2EYhr1DAFCAss7zBg4cqJkzZ6pBgwZq2bKl9u7dq7lz5+rRRx8t1nmY2AIA7Ozmm2+Wu7u7Nm7caO9QAPzDrl271K5dO7Vr106SFBYWpnbt2unFF1+UJC1ZskTDhw/X5MmTFRAQoEGDBun7779X/fr1S3S9P/74Qw8++KACAgJ09913y9XVVXFxcWrYsKHN7gkAUHaaNGkiFxcXxcXFWbalpqZaZqcEYD9lnefNnz9f99xzj8aNG6fmzZsrPDxcTzzxhF555ZVincdk8PMAANjdyy+/rLfeekvz5s1T165ddfr0aR04cECjRo2yd2gAAAAoobFjx2r9+vX68MMP5ePjo+eee07fffedRo0apXnz5tk7PADlDMNpAcABvPDCC3J2dtaLL76okydPys/PT2PGjLF3WAAAALgOs2bN0vnz5zVo0CB5enpq8uTJSktLs3dYAMopeuIBAAAAAAAADo534gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAO7v8Bn0qzJgU3+4YAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1500x1000 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(15,10))\n",
|
|
"\n",
|
|
"ax0.hist(scifi_fitpars_found[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$a_x$ found\")\n",
|
|
"ax0.hist(scifi_fitpars_lost[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$a_x$ lost\")\n",
|
|
"ax0.set_xlabel(\"a\")\n",
|
|
"ax0.set_ylabel(\"normed\")\n",
|
|
"ax0.set_title(\"fitparameter a der scifi track\")\n",
|
|
"ax0.legend()\n",
|
|
"\n",
|
|
"ax1.hist(scifi_fitpars_found[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$b_x$ found\")\n",
|
|
"ax1.hist(scifi_fitpars_lost[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$b_x$ lost\")\n",
|
|
"ax1.set_xticks(np.arange(-1,1,0.1),minor=True)\n",
|
|
"ax1.set_xlabel(\"b\")\n",
|
|
"ax1.set_ylabel(\"normed\")\n",
|
|
"ax1.set_title(\"fitparameter b der scifi track\")\n",
|
|
"ax1.legend()\n",
|
|
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
|
|
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
|
|
"\n",
|
|
"\n",
|
|
"ax2.hist(scifi_fitpars_found[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$c_x$ found\")\n",
|
|
"ax2.hist(scifi_fitpars_lost[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$c_x$ lost\")\n",
|
|
"ax2.set_xlim([-3e-5,3e-5])\n",
|
|
"ax2.set_xticks(np.arange(-3e-5,3.5e-5,1e-5),minor=False)\n",
|
|
"ax2.set_xlabel(\"c\")\n",
|
|
"ax2.set_ylabel(\"normed\")\n",
|
|
"ax2.set_title(\"fitparameter c der scifi track\")\n",
|
|
"ax2.legend()\n",
|
|
"\n",
|
|
"ax3.hist(scifi_fitpars_found[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$d_x$ found\")\n",
|
|
"ax3.hist(scifi_fitpars_lost[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$d_x$ lost\")\n",
|
|
"ax3.set(xlim=(-5e-8,5e-8))\n",
|
|
"ax3.text(-4e-8,3e8,\"d negligible <1e-7\")\n",
|
|
"ax3.set_xlabel(\"d\")\n",
|
|
"ax3.set_ylabel(\"normed\")\n",
|
|
"ax3.set_title(\"fitparameter d der scifi track\")\n",
|
|
"ax3.legend()\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"a_x: virtual hit on the reference plane\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "env1",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.12"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|