Projektpraktikum/B_updown.ipynb
2023-10-09 12:10:28 +02:00

718 lines
357 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import uproot\t\n",
"import numpy as np\n",
"import sys\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits import mplot3d\n",
"import itertools\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10522"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
"allcolumns = file.arrays()\n",
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
"\n",
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
"#ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"eff all = 0.8606728758791105 +/- 0.003375885792719708\n"
]
}
],
"source": [
"def t_eff(found, lost, axis = 0):\n",
" sel = ak.num(found, axis=axis)\n",
" des = ak.num(lost, axis=axis)\n",
" return sel/(sel + des)\n",
"\n",
"def eff_err(found, lost):\n",
" n_f = ak.num(found, axis=0)\n",
" n_all = ak.num(found, axis=0) + ak.num(lost,axis=0)\n",
" return 1/n_all * np.sqrt(np.abs(n_f*(1-n_f/n_all)))\n",
"\n",
"\n",
"print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#try excluding all photons that originate from a vtx @ z>9500mm\n",
"#ignore all brem vertices @ z>9500mm \n",
"\n",
"#found\n",
"\n",
"brem_e_f = found[\"brem_photons_pe\"]\n",
"brem_z_f = found[\"brem_vtx_z\"]\n",
"e_f = found[\"energy\"]\n",
"length_f = found[\"brem_vtx_z_length\"]\n",
"\n",
"brem_f = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(found,axis=0)):\n",
" brem_f.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_f.field(\"energy\").append(e_f[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_f.field(\"photon_length\").integer(length_f[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n",
" brem_f.end_record()\n",
"\n",
"brem_f = ak.Array(brem_f)\n",
"\n",
"#lost\n",
"\n",
"brem_e_l = lost[\"brem_photons_pe\"]\n",
"brem_z_l = lost[\"brem_vtx_z\"]\n",
"e_l = lost[\"energy\"]\n",
"length_l = lost[\"brem_vtx_z_length\"]\n",
"\n",
"brem_l = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(lost,axis=0)):\n",
" brem_l.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_l.field(\"energy\").append(e_l[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_l.field(\"photon_length\").integer(length_l[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n",
" brem_l.end_record()\n",
"\n",
"brem_l = ak.Array(brem_l)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split in Upstream and Downstream Events and analyse separately"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#try to find a split between energy lost before and after the magnet (z~5000mm)\n",
"\n",
"upstream_found = ak.ArrayBuilder()\n",
"downstream_found = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_f, axis=0)):\n",
" upstream_found.begin_record()\n",
" upstream_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n",
" \n",
" downstream_found.begin_record()\n",
" downstream_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n",
" \n",
" upstream_found.field(\"brem_photons_pe\")\n",
" downstream_found.field(\"brem_photons_pe\")\n",
" upstream_found.begin_list()\n",
" downstream_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if (brem_f[itr, \"brem_vtx_z\", jentry]>5000):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]<9500:\n",
" downstream_found.real(brem_f[itr,\"brem_photons_pe\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_found.real(brem_f[itr,\"brem_photons_pe\", jentry]) \n",
" upstream_found.end_list()\n",
" downstream_found.end_list()\n",
" \n",
" upstream_found.field(\"brem_vtx_z\")\n",
" downstream_found.field(\"brem_vtx_z\")\n",
" upstream_found.begin_list()\n",
" downstream_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>5000:\n",
" if brem_f[itr,\"brem_vtx_z\",jentry]<9500:\n",
" downstream_found.real(brem_f[itr,\"brem_vtx_z\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" upstream_found.end_list()\n",
" downstream_found.end_list()\n",
" upstream_found.end_record()\n",
" downstream_found.end_record()\n",
" \n",
"\n",
"upstream_found = ak.Array(upstream_found)\n",
"downstream_found = ak.Array(downstream_found)\n",
"\n",
"\n",
"upstream_lost = ak.ArrayBuilder()\n",
"downstream_lost = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_l, axis=0)):\n",
" upstream_lost.begin_record()\n",
" upstream_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n",
" \n",
" downstream_lost.begin_record()\n",
" downstream_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n",
" \n",
" upstream_lost.field(\"brem_photons_pe\")\n",
" downstream_lost.field(\"brem_photons_pe\")\n",
" upstream_lost.begin_list()\n",
" downstream_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if (brem_l[itr, \"brem_vtx_z\", jentry]>5000):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]<9500:\n",
" downstream_lost.real(brem_l[itr,\"brem_photons_pe\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_lost.real(brem_l[itr,\"brem_photons_pe\", jentry]) \n",
" upstream_lost.end_list()\n",
" downstream_lost.end_list()\n",
" \n",
" upstream_lost.field(\"brem_vtx_z\")\n",
" downstream_lost.field(\"brem_vtx_z\")\n",
" upstream_lost.begin_list()\n",
" downstream_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>5000:\n",
" if brem_l[itr,\"brem_vtx_z\",jentry]<9500:\n",
" downstream_lost.real(brem_l[itr,\"brem_vtx_z\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n",
" upstream_lost.end_list()\n",
" downstream_lost.end_list()\n",
" upstream_lost.end_record()\n",
" downstream_lost.end_record()\n",
" \n",
"\n",
"upstream_lost = ak.Array(upstream_lost)\n",
"downstream_lost = ak.Array(downstream_lost)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"cutoff = 0 MeV, sample size: 880\n",
"eff = 0.9125 +/- 0.0095\n",
"\n",
"cutoff = 100 MeV, sample size: 880\n",
"eff = 0.9125 +/- 0.0095\n",
"\n",
"cutoff = 200 MeV, sample size: 1279\n",
"eff = 0.921 +/- 0.0075\n",
"\n",
"cutoff = 300 MeV, sample size: 1587\n",
"eff = 0.9175 +/- 0.0069\n",
"\n",
"cutoff = 400 MeV, sample size: 1827\n",
"eff = 0.9152 +/- 0.0065\n",
"\n",
"cutoff = 500 MeV, sample size: 2072\n",
"eff = 0.9146 +/- 0.0061\n",
"\n",
"cutoff = 600 MeV, sample size: 2266\n",
"eff = 0.9144 +/- 0.0059\n",
"\n",
"cutoff = 700 MeV, sample size: 2445\n",
"eff = 0.9121 +/- 0.0057\n",
"\n",
"cutoff = 800 MeV, sample size: 2615\n",
"eff = 0.9117 +/- 0.0055\n",
"\n",
"cutoff = 900 MeV, sample size: 2765\n",
"eff = 0.9114 +/- 0.0054\n",
"\n",
"cutoff = 1000 MeV, sample size: 2910\n",
"eff = 0.9096 +/- 0.0053\n",
"\n",
"upstream: cutoff energy = 200MeV, sample size: 1279\n",
"eff = 0.921 +/- 0.008\n"
]
}
],
"source": [
"up_efficiencies = ak.ArrayBuilder()\n",
"\n",
"\n",
"\n",
"for cutoff_energy in range(0,1050,100):\n",
"\tup_nobrem_f = upstream_found[ak.all(upstream_found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\tup_nobrem_l = upstream_lost[ak.all(upstream_lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\n",
"\n",
"\n",
"\tprint(\"\\ncutoff = \",str(cutoff_energy),\"MeV, sample size: \",ak.num(up_nobrem_f,axis=0)+ak.num(up_nobrem_l,axis=0))\n",
"\tprint(\"eff = \",np.round(t_eff(up_nobrem_f,up_nobrem_l),4), \"+/-\", np.round(eff_err(up_nobrem_f, up_nobrem_l),4))\n",
"\n",
"\"\"\"\n",
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
"\"\"\"\n",
"cutoff_energy = 200.0 #MeV\n",
"\n",
"\"\"\"\n",
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
"\"\"\"\n",
"up_nobrem_found = upstream_found[ak.all(upstream_found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"up_nobrem_lost = upstream_lost[ak.all(upstream_lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\n",
"print(\"\\nupstream: cutoff energy = 200MeV, sample size:\",ak.num(up_nobrem_found,axis=0)+ak.num(up_nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(up_nobrem_found, up_nobrem_lost),4), \"+/-\", np.round(eff_err(up_nobrem_found, up_nobrem_lost),3))\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"cutoff = 0 MeV, sample size: 3971\n",
"eff = 0.893 +/- 0.0049\n",
"\n",
"cutoff = 100 MeV, sample size: 3971\n",
"eff = 0.893 +/- 0.0049\n",
"\n",
"cutoff = 200 MeV, sample size: 4634\n",
"eff = 0.8869 +/- 0.0047\n",
"\n",
"cutoff = 300 MeV, sample size: 5096\n",
"eff = 0.8872 +/- 0.0044\n",
"\n",
"cutoff = 400 MeV, sample size: 5414\n",
"eff = 0.886 +/- 0.0043\n",
"\n",
"cutoff = 500 MeV, sample size: 5654\n",
"eff = 0.885 +/- 0.0042\n",
"\n",
"cutoff = 600 MeV, sample size: 5881\n",
"eff = 0.8845 +/- 0.0042\n",
"\n",
"cutoff = 700 MeV, sample size: 6079\n",
"eff = 0.8842 +/- 0.0041\n",
"\n",
"cutoff = 800 MeV, sample size: 6251\n",
"eff = 0.8831 +/- 0.0041\n",
"\n",
"cutoff = 900 MeV, sample size: 6426\n",
"eff = 0.8828 +/- 0.004\n",
"\n",
"cutoff = 1000 MeV, sample size: 6561\n",
"eff = 0.882 +/- 0.004\n",
"\n",
"downstream: cutoff energy = 200MeV, sample size: 4634\n",
"eff = 0.8869 +/- 0.005\n"
]
}
],
"source": [
"down_efficiencies = ak.ArrayBuilder()\n",
"for cutoff_energy in range(0,1050,100):\n",
"\tdown_nobrem_f = downstream_found[ak.all(downstream_found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\tdown_nobrem_l = downstream_lost[ak.all(downstream_lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\n",
"\n",
"\n",
"\tprint(\"\\ncutoff = \",str(cutoff_energy),\"MeV, sample size: \",ak.num(down_nobrem_f,axis=0)+ak.num(down_nobrem_l,axis=0))\n",
"\tprint(\"eff = \",np.round(t_eff(down_nobrem_f,down_nobrem_l),4), \"+/-\", np.round(eff_err(down_nobrem_f, down_nobrem_l),4))\n",
"\n",
"\"\"\"\n",
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
"\"\"\"\n",
"cutoff_energy = 200.0 #MeV\n",
"\n",
"\"\"\"\n",
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
"\"\"\"\n",
"down_nobrem_found = downstream_found[ak.all(downstream_found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"down_nobrem_lost = downstream_lost[ak.all(downstream_lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\n",
"print(\"\\ndownstream: cutoff energy = 200MeV, sample size:\",ak.num(down_nobrem_found,axis=0)+ak.num(down_nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(down_nobrem_found, down_nobrem_lost),4), \"+/-\", np.round(eff_err(down_nobrem_found, down_nobrem_lost),3))\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"upstream eff = 0.852 +/- 0.004\n",
"downstream eff = 0.84 +/- 0.005\n"
]
}
],
"source": [
"cutoff_energy=200\n",
"\n",
"upstream_brem_found = upstream_found[ak.any(upstream_found[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
"up_energy_found = ak.to_numpy(upstream_brem_found[\"energy\"])\n",
"up_eph_found = ak.to_numpy(ak.sum(upstream_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"up_residual_found = up_energy_found - up_eph_found\n",
"up_energyloss_found = up_eph_found/up_energy_found\n",
"\n",
"\n",
"upstream_brem_lost = upstream_lost[ak.any(upstream_lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
"up_energy_lost = ak.to_numpy(upstream_brem_lost[\"energy\"])\n",
"up_eph_lost = ak.to_numpy(ak.sum(upstream_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"up_residual_lost = up_energy_lost - up_eph_lost\n",
"up_energyloss_lost = up_eph_lost/up_energy_lost\n",
"\n",
"\n",
"print(\"upstream eff = \", np.round(t_eff(upstream_brem_found,upstream_brem_lost),3), \"+/-\", np.round(eff_err(upstream_brem_found, upstream_brem_lost),3))\n",
"\n",
"\n",
"downstream_brem_found = downstream_found[ak.any(downstream_found[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
"down_energy_found = ak.to_numpy(downstream_brem_found[\"energy\"])\n",
"down_eph_found = ak.to_numpy(ak.sum(downstream_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"down_residual_found = down_energy_found - down_eph_found\n",
"down_energyloss_found = down_eph_found/down_energy_found\n",
"\n",
"\n",
"downstream_brem_lost = downstream_lost[ak.any(downstream_lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
"down_energy_lost = ak.to_numpy(downstream_brem_lost[\"energy\"])\n",
"down_eph_lost = ak.to_numpy(ak.sum(downstream_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"down_residual_lost = down_energy_lost - down_eph_lost\n",
"down_energyloss_lost = down_eph_lost/down_energy_lost\n",
"\n",
"\n",
"print(\"downstream eff = \", np.round(t_eff(downstream_brem_found,downstream_brem_lost),3), \"+/-\", np.round(eff_err(downstream_brem_found, downstream_brem_lost),3))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"upstream:\n",
"mean energyloss relative to initial energy (found): 0.3207102540525612\n",
"mean energyloss relative to initial energy (lost): 0.5602258293743071\n",
"downstream:\n",
"mean energyloss relative to initial energy (found): 0.17552539358035377\n",
"mean energyloss relative to initial energy (lost): 0.2870828762276071\n"
]
}
],
"source": [
"print(\"upstream:\\nmean energyloss relative to initial energy (found): \",ak.mean(up_energyloss_found))\n",
"print(\"mean energyloss relative to initial energy (lost): \", ak.mean(up_energyloss_lost))\n",
"\n",
"print(\"downstream:\\nmean energyloss relative to initial energy (found): \",ak.mean(down_energyloss_found))\n",
"print(\"mean energyloss relative to initial energy (lost): \", ak.mean(down_energyloss_lost))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABa0AAAJNCAYAAAAyI1mqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJRUlEQVR4nOzdeVxUZf//8fcAwwAKKCYqivuSu5lWLpUrZqmtVlpmaquaGWVGdxqWhcuvssysrLTy1qzbpc0MTNHMLNes9E4rS8p9BUVwgPP7oy9zOzKjjMzO6/l48KhzzTnX9TnzGYdrPpy5jskwDEMAAAAAAAAAAPiBEF8HAAAAAAAAAABAMYrWAAAAAAAAAAC/QdEaAAAAAAAAAOA3KFoDAAAAAAAAAPwGRWsAAAAAAAAAgN+gaA0AAAAAAAAA8BsUrQEAAAAAAAAAfoOiNQAAAAAAAADAb1C0BgAAAAAAAAD4DYrWAADAoa1bt2r37t2+DgMAAAAAUM5QtAYAAA69+eabWrFiha/DAAAAAACUMxStAQCAzerVq3XvvffqwIEDtrZt27bppptu0v79+30YGQAAAACgvKBoDQCAhyxdulQmk8nuJyYmRpdeeqk+/PBDr4z93nvv2bUfPXpUvXv3Vnh4uF599dUSx1166aWqVq2aWrVqpa+++kqvvvqqevbsqWuuuUZVq1b1aMyBJDMzs0Rui3/WrVvn8JitW7dq2LBhatCggSIjIxUZGalGjRrp/vvv14YNG1yO4cYbb1RkZKSOHTvmdJ877rhDZrPZL/7gMGfOHJlMJv3xxx9eHTc1NVUmk0mHDh1yW59r165VamrqOZ/7QFdYWKj4+Hi99NJLTvfxxHMbCII5/99//7169eql6OhoVaxYUV27dtU333xTYj9X3gNPnDih0aNHKyEhQREREWrTpo0++OADh+O7si8AAAhuYb4OAACAYLVp0yZJ0scff6z4+HgZhqHdu3fr6aef1oABA3TxxRerVatWHh370ksvtbVt3bpVN954o06ePKkVK1aoc+fOJY6rUKGCnnnmGRUVFSktLU0hISH697//rdtvv90jcQa6559/Xl27drVra9GiRYn93njjDY0cOVJNmjTRww8/rObNm8tkMmn79u2aP3++2rdvr19//VUNGjQo9djDhg3TkiVLNG/ePA0fPrzE48ePH9fixYvVp08fVatWzfWTg1Nr167VhAkTdPfdd6tSpUq+DscjVq9erYMHD+qmm27ydSh+J1jzv379el111VW67LLL9P7778swDE2ZMkXdu3fXypUr1aFDhxLHlOY98KabbtL69es1adIkNW7cWPPmzdOAAQNUVFSkgQMHXvC+AAAguFG0BgDAQzZt2qTY2Fj169fP1tahQwcVFBTozjvv1ObNmz1atI6MjNTFF18sSfrggw80bNgwtWrVSgsXLlRCQoLD43788UcNGjRI1atX17XXXquEhAQ999xzev/99/Xuu+/qoosu8ki83nTkyBEVFRW55VwaNWqkK6644pz7fPPNNxo+fLiuu+46/ec//1F4eLjtsW7dumnEiBH66KOPFBkZ6dLYvXv3VkJCgt555x2HRev58+fr1KlTGjZsmEv9ApL0n//8R+3atVOdOnU80n9ubq6ioqI80jec27t3rypUqKCYmJgSj40bN06VKlXSsmXLbLnp0aOH6tevr8cee8zhFdfnew9cunSpMjIybMVnSeratav+/PNPjRkzRrfddptCQ0Nd3hcAAAQ/lgcBAMBDNm7cqDZt2pRo/+uvvyRJTZs2dbnPl156SUuWLHFp7Mcee0wDBgzQHXfcoVWrVjktWEtS5cqVNXHiRC1btkz16tVTp06dtGXLFt16662KjY11etyaNWuUlJSk2NhYVa5cWdddd5127tx5wfuVVt++fdWuXTvNmjVLrVu3VmRkpBITE/X000+rqKjI4TFbt25VjRo11Lt3b7333nvKycm54PFL4/nnn1doaKjeeOMNu4L1mfr3718iLzt37tTAgQMVHx8vi8Wipk2basaMGbbHQ0NDNXjwYG3cuFE//vhjiT5nz55tO88LsWbNGnXv3l3R0dGKiopSx44d9fnnn9vtU7w8xM8//6wBAwYoNjZW1apV09ChQ3X8+PFz9v/111/LZDJp/vz5JR577733ZDKZtH79eqfHF4+9efNm3XTTTYqJiVFsbKzuvPNOHTx4sMT++/fvL1WM5zvv1NRUjRkzRpJUr14925IImZmZHnnuDh48qPvuu0+JiYmyWCyqWrWqOnXqpOXLlzt9bn7++WeZTCZ99NFHtraNGzfKZDKpefPmdvv269fP7hsZkmQYhhYvXqybb77Z6RhnysrKOmcOis9106ZNuuWWW1S5cmW7bxWc77V+dj9bt25V//79FRsbq7i4OCUnJ6ugoEC//PKLrrnmGkVHR6tu3bqaMmVKqeKXpCVLlshkMumrr74q8djMmTNt454r/3l5ebrkkkvUsGFDuxzu27dP1atXV5cuXVRYWFiqeJwtvXEhS+wcPXpUb7/9tnr06KFatWrp999/d7jfN998oy5dutj9MSE6OlpXXXWV1q5dq71797o0riQtXrxYFStWVP/+/e3ahwwZoj179ui7775zeV93vA48+VoCAABuYgAAALc7dOiQIckYNWqUYbVaDavVauzfv9947733jOjoaOOee+65oH4HDhxomM1mY/Hixecd+7bbbjO6detmWCwWY9asWS6PNWLECGP27Nnn3e/pp582QkJCjKFDhxqff/658Z///Mdo2bKlkZiYaOTk5Li8nytq1KhhVKhQwWjatKnx/vvvG+np6cbtt99uSHJ6zqdOnTL+/e9/G3379jXCw8ONiIgI45ZbbjEWLlxo5OXllWrclStXGpKM+Ph4IzQ01IiOjjaSkpKMr7/+2m6/goICIzIy0ujQoYNL5/Xzzz8bsbGxRsuWLY333nvPSE9PNx599FEjJCTESE1Nte23c+dOw2QyGaNHjy5xvCTjiSeecGncYpmZmYbZbDYuvfRSY8GCBcaSJUuMpKQkw2QyGR988IFtv6efftqQZDRp0sQYP368kZGRYbz44ouGxWIxhgwZYtfn7NmzDUnGrl27bG2XXHKJ0alTpxLjt2/f3mjfvv05Yyweu06dOsaYMWOML7/80njxxReNChUqGJdccolx+vRpl2MszXlnZWUZDz30kCHJWLRokfHtt98a3377rXH8+HGPPHe9evUyqlatarz55ptGZmamsWTJEmP8+PF2fTlSo0YN47777rNtT5o0yYiMjDQkGX///bdhGIZhtVqNmJgY4/HHH7c7ds2aNYYkY8eOHW7NQZ06dYyxY8caGRkZxpIlSwzDKP1r/ezn7NlnnzUyMjKMxx9/3JBkjBw50rj44ouNV155xcjIyDCGDBliSDIWLlx4znMoZrVajfj4eOOOO+4o8dhll11mtG3b1jCM8+d/x44dRnR0tHHTTTcZhmEYhYWFRrdu3Yz4+Hhjz549pYrFMAxbv8U/K1asMGrWrGlUr17dNta5nDx50vjggw+Mfv36GeHh4UZkZKRx8803Gx999JGRn5/v8Jjw8HDjrrvuKtE+YMAAQ5Lx5Zdf2tpK+x54xRVXOPy3/NNPPxmSjDfeeMPlfd3xOvDkawkAALgHRWsAADwgPT3dkFTiJywszJg4ceIF91tQUHDewvWZY0dERBjr1q274PHO59NPPzUkGVOmTLFr37FjhyHJmDt3rkv7ueKvv/4yJBn169c3jh07Zms/ffq0Ub16daNPnz7n7ePo0aPGO++8YyQlJRlhYWFGbGyscffddxtffvmlUVBQ4PS4TZs2GQ8//LCxePFiY/Xq1cY777xjNG3a1AgNDTWWLVtm22/fvn2GJOP2228v0UdBQYHtDxpWq9UoKiqyPdarVy+jVq1aJYpTI0eONCIiIowjR47Y2q6++mrjoosushUIDcMwHn300VIVHZ254oorjPj4eLs/JhQUFBgtWrQwatWqZYu1uPBzdl6HDx9uRERE2J2To6J1cdvmzZttbd9//70hyXj33XfPGWPx2I888ohd+7///W+715QrMZb2vKdOnVriXFzto7RxVaxYscQfJUrjzjvvNOrXr2/b7tGjh3HvvfcalStXtj2333zzjSHJSE9Ptzt29OjRRsuWLc87hqs5GD9+fIk+XHmtF/fzwgsv2O3bpk0bWxG5mNVqNapWrWorHpdGcnKyERkZafd+sm3bNkOSMX36dFvbufJvGIaxYMECQ5Ixbdo0Y/z48UZISEiJ59gVBQUFxvXXX29UrFjR2Lhxo9P9Tp8+bXz22WfGwIEDjQoVKhjh4eFGnz59jLlz55bqD4Nt2rQxGjdubBQWFtrarFarUb9+fUOSMW/ePFt7ad8DGzVqZPTq1avEWHv27DEkGc8//7zL+7rjdeDp1xIAACg7lgcBAMADNm7cKElatGiR1q9fr/Xr12vZsmW67rrrNH78eC1atKjEMYcOHTrnV8JNJpPCwsI0b948Wa1W3Xrrrdq/f7/TsQcNGqS8vDytXr3aY+c5fvx4NWjQQA8//LAKCgpsP/Xq1VNkZKTta+il3c8VxUtHpKam2i1dYjab1bBhQx06dOi8fVSqVElDhgzRl19+qb1792rSpEnatWuXrrnmGiUkJDiN65JLLtG0adN0ww036Morr9SQIUO0du1a1ahRQ48//nip4r/00ktlNpttPy+88IIkKS8vT1999ZVuvPFGRUVF2T1f1157rfLy8rRu3TpbP8OGDdOhQ4f0ySefSJIKCgo0d+5cXXnllWrUqFGpYjnTyZMn9d133+mWW25RxYoVbe2hoaEaNGiQ/vrrL/3yyy92x5y5brsktWrVSnl5eTpw4MA5xxowYIDi4+PtloKYPn26qlatqttuu61U8d5xxx1227feeqvCwsK0cuVKl2K8kPM+myeeu8suu0xz5szRxIkTtW7dOlmt1nPGUKx79+76/ffftWvXLuXl5WnNmjW65ppr1LVrV2VkZEiSli9fLovFUuKmrIsWLSr10iBS6XNwdp+uvtaL9enTx267adOmMplMdkvhhIWFqWHDhvrzzz9LfR5Dhw7VqVOntGDBAlvb7NmzZbFYXLoJ4K233qoHH3xQY8aM0cSJE/Xkk0+qZ8+epT7+bCNHjtTnn3+ujz76SG3btnW4z9atW1W9enVdf/31OnTokF555RXt379fn376qe644w6716MzDz30kHbs2KGRI0fq77//VlZWlh544AHbcxgS8r+Pjq68B5pMJqdjnv2YK/u643XgqdcSAAAoO4rWAAB4QPGNEPv166d27dqpXbt26tWrlz744AOFhoZq1qxZJY6Jjo7WrFmzzvtTXPi5/vrrVaVKFYdjR0RE6J133tGgQYP0xBNP2Aqa7rRv3z5t3rxZv/32mywWi10B1mw269SpU6pUqVKp93PVhg0bZDabS6x/Kkl79uxRYmKiS/1lZ2fr2LFjOn78uAzDUKVKlRQWVvp7VleqVEl9+vTR1q1bderUKUnSRRddpMjISIfFjnnz5mn9+vUlcnP48GEVFBRo+vTpJZ6ra6+9VpLsCvK33HKLYmNjNXv2bEn/3Mxs//79F3wDxqNHj8owDNWoUaPEY8Xrbh8+fNiu/ezXocVikSTb8+CMxWLR/fffr3nz5unYsWM6ePCgPvzwQ91zzz22Ps6nevXqdtthYWGqUqWKyzFeyHmfzRPP3YIFCzR48GC99dZb6tChg+Li4nTXXXdp375954ylR48ekv4pTK9Zs0ZWq1XdunVTjx49bOs2L1++XJ06dbK7Cej333+v3bt3u1S0Lm0Ozn5eXH2tF4uLi7PbDg8PV1RUlCIiIkq05+Xllfo8mjdvrvbt29v+LRUWFmru3Lm6/vrrS4x5PkOHDpXValVYWJhGjRrl0rFnmjhxol5//XW98cYbuuaaa5zuZzabFRsbq8LCQh0/flzHjx/XiRMnXI550qRJev/991WrVi3Vrl1b27Zt02OPPSZJqlmz5jmPd/Qe6Oh1IP1zQ1zJPpeu7Oto+0JeB556LQEAgLIr/ScxAABQaps2bVLLli0VGhpq1242mxUaGuqwmGexWHTPPfecs9/PP/9cn332mW655RbNnz/fYVF106ZNat26tcLCwjRr1izbTc7WrFnj8MaQFyorK0vSPzeHPPtKzWINGjTQr7/+Wqr9XLVhwwZddNFFJYoL3333nX7//XeNGzfuvH1kZWXpo48+0gcffKD169erZs2auu222zRr1iy1a9fO5ZgMw5D0vysCQ0ND1a1bN6Wnp2vv3r12RbtmzZpJUombqlWuXNl2Ze6IESMcjlOvXj3b/0dGRmrAgAGaNWuW9u7dq3feeUfR0dEOi/mlUblyZYWEhDi86dqePXsk/VOMd5cHH3xQkyZN0jvvvKO8vDwVFBTogQceKPXx+/btsyumFRQU6PDhww7/oHMu7jhvTzx3F110kaZNm6Zp06Zp9+7d+uSTT/TEE0/owIEDWrZsmdPjatWqpcaNG2v58uWqW7eu2rVrp0qVKql79+4aPny4vvvuO61bt04TJkywO27hwoVq3LixWrRoUeoYS5uDs6+UdfW17g1DhgzR8OHDtX37dv3+++/au3evhgwZ4lIfJ0+e1KBBg9S4cWPt379f99xzjz7++GOXY5kzZ47GjRun1NRUDR069Jz7Nm3aVL///ru+/fZbzZs3T5MmTdKjjz6qTp066bbbbtMtt9xS4o8LjowdO1ajR4/Wzp07FR0drTp16uj+++9XhQoVStyw05Gz3wNbtmyp+fPnq6CgwO73VfHNY898nbmyLwAACH5caQ0AgJsdP35cv//+u8MC8ccff6y8vDxdddVVF9T31KlT1bdvX6cF6+Kxi79CbrFYtHjxYsXFxalfv37nvTrTFcVXqJlMJtvV5Gf/VK5cudT7uWrDhg06ePCgjh07ZmsrLCzU2LFjVbduXadf58/JydH06dPVuXNn1alTR88995zatGmjFStWaPfu3XrhhRcuqGB99OhRffbZZ2rTpo1dIT0lJUWFhYV64IEHSrW0Q1RUlLp27arNmzerVatWDp+vs4uBw4YNU2FhoaZOnaqlS5fq9ttvV1RUlMvnIEkVKlTQ5ZdfrkWLFtn9caWoqEhz5861FUPdpUaNGurfv79ee+01vf766+rbt69q165d6uP//e9/221/+OGHKigoUJcuXVyKw5XzdnYluaefu9q1a2vkyJHq2bOnNm3adN79e/TooRUrVigjI8O2PEXjxo1Vu3ZtjR8/Xlar1XZFdrGFCxe6dJW1dOE5uJDXuqcNGDBAERERmjNnjubMmaOaNWsqKSnJbp/zfZPggQce0O7du7Vo0SK9/fbb+uSTT/TSSy+5FMeyZct07733aujQoXr66adLfVyHDh00ffp07dmzR8uWLVODBg30r3/9SzVr1lS3bt30xhtvlOobEC1atFCdOnW0e/duLViwQPfee6/dFfmOOHoPvPHGG3XixAktXLjQbt93331XCQkJuvzyy21truwLAACCH1daAwDgZps2bZJhGKpQoYJtPdajR49q7dq1eumll9SqVSvb161d9emnnyoyMtLpshXFY595RVz16tX18ccfq3PnzurXr59WrVp13uJDaTRo0EBdu3bVU089pRMnTujyyy+XYRjau3evVq5cqcGDB6tLly6l3u9MJpNJV199tTIzMx2OvWvXLh0+fFi1a9dW//799eijjyovL0+vvPKKNm7cqMzMTIWHhzs8duPGjXriiSfUr18/LVmyRL1795bZbHbp3AcOHKjatWurXbt2uuiii7Rz50698MIL2r9/v+bMmWO3b6dOnTRjxgw99NBDatu2re677z41b97cdkVucYEmJibGdszLL7+szp0768orr9SDDz6ounXrKicnR7/++qs+/fRTrVixwm6Mdu3aqVWrVpo2bZoMwzjn0iDne24lKS0tTT179lTXrl312GOPKTw8XK+99pp++uknzZ8//5zrzl6Ihx9+2FaQKl6aobQWLVqksLAw9ezZUz///LPGjRun1q1b69Zbb3U5jtKed8uWLSX9k6fBgwfLbDarSZMmio6Odutzd/z4cXXt2lUDBw7UxRdfrOjoaNv6+DfddNN5j+/evbtee+01HTp0SNOmTbNrnz17tipXrmz3XrFlyxb99ttvLhety5IDV1/rnlapUiXdeOONmjNnjo4dO6bHHnvMbi1n6dz5f+uttzR37lzNnj1bzZs3V/PmzTVy5EiNHTtWnTp10mWXXXbeGHbt2qX+/furfv36GjJkSIl1vS+55JLzLp8TGhqqpKQkJSUl6fXXX9fnn3+uefPmafTo0br88ssd/lH1p59+0sKFC9WuXTtZLBb98MMPmjRpkho1aqRnn33Wbt/Svgf27t1bPXv21IMPPqjs7Gw1bNhQ8+fP17JlyzR37ly7byO5si8AACgHfHQDSAAAgtb/+3//z5Bk91OhQgXjkksuMZ577jnj5MmTHh9706ZNJR776KOPDJPJZPTv398oKipyy3jHjx83UlJSjMaNGxsRERFG5cqVjdatWxsPPfSQcfToUZf3MwzDyMnJMSQZt99+u9NxP/zwQ0OSsXbtWmPQoEFGTEyMER0dbVx//fXGtm3bzhvziRMnynLaRlpamtGmTRsjNjbWCA0NNapWrWrceOONxvfff+/0mC1bthhDhgwx6tWrZ1gsFiMiIsJo2LChcddddxlfffVVif137dplDB061KhZs6ZhNpuNqlWrGh07djQmTpzosP+XX37ZkGQ0a9bMaQyleW6Lff3110a3bt2MChUqGJGRkcYVV1xhfPrpp3b7PP3004Yk4+DBg3bts2fPNiQZu3btOmfbmerWrWs0bdr0vHGdPfbGjRuNvn37GhUrVjSio6ONAQMGGPv377+gGEt73oZhGCkpKUZCQoIREhJiSDJWrlzpUh+liSsvL8944IEHjFatWhkxMTFGZGSk0aRJE+Ppp58u1fvI0aNHjZCQEKNChQrG6dOnbe3//ve/DUnGTTfdZLf/U089ZdSpU+e8/Z59Dheag2Klfa0762fw4MFGhQoVSvR79dVXG82bNy/1+RRLT0+3vXfv2LHD4T6O8r9161YjMjLSGDx4sN2+eXl5xqWXXmrUrVu3xPudIytXrizxO+TMH2f/hkrjXO9/v/zyi3HVVVcZcXFxRnh4uNGwYUPjqaeecri/K++BOTk5xqhRo4zq1asb4eHhRqtWrYz58+c7jKE0+7rjdeCt1xIAALhwJsP4v4XHAAAA/MDSpUvVp08f/fDDD7YrGs/2+OOP67XXXtPx48e5+s4FpXlufWHr1q1q3bq1ZsyYoeHDh5fqmNTUVE2YMEEHDx506xrb5VmzZs3Uu3dvvfDCC74OBQAAAOUcy4MAAAC/snLlSt1+++3nLKpu2LBBbdu2pWDtotI8t97022+/6c8//9STTz6pGjVq6O677/Z1SOXatm3bfB0CAAAAIImiNQAA8DNTp0495+OGYWjTpk0aOnSolyIKHud7br3t2Wef1fvvv6+mTZvqo48+uuCbRwLnU1BQcM7HQ0JCSqxdHcxxAAAA+DuWBwEAAAAQtP744w/Vq1fvnPs8/fTTSk1NLRdxAAAABAKK1gAAAACC1unTp7V169Zz7pOQkKCEhIRyEQcAAEAgoGgNAAAAAAAAAPAbLJgGAAAAAAAAAPAbFK0BAAAAAAAAAH6DojUAAAAAAAAAwG9QtAYAAAAAAAAA+A2K1gAAAAAAAAAAv0HRGgAAAAAAAADgNyhaAwAAAAAAAAD8BkVrAAAAAAAAAIDfoGgNAAAAAAAAAPAbFK0BAAAAAAAAAH6DojUAAAAAAAAAwG9QtAYAAAAAAAAA+A2K1gAAAAAAAAAAv0HRGgAAAAAAAADgNyhaAwAAAAAAAAD8BkVrAAAAAAAAAIDfoGgNAAAAAAAAAPAbFK0BAAAAAAAAAH6DojUAAAAAAAAAwG9QtAaAs6SmpspkMunQoUMOH2/RooW6dOnikbFfe+01zZkzxyN9AwAAAMFizpw5MplMtp+IiAhVr15dXbt2VVpamg4cOODrEC/Y0qVLlZqa6uswAMCnKFoDgB+haA0AAACU3uzZs/Xtt98qIyNDM2bMUJs2bTR58mQ1bdpUy5cv93V4F2Tp0qWaMGGCr8MAAJ8K83UAAIALY7VaZTKZFBbGWzkAAADKpxYtWqhdu3a27ZtvvlmPPPKIOnfurJtuukk7d+5UtWrVfBihZxmGoby8PEVGRvo6FABwK660BoAyyMzMlMlk0ty5c5WcnKzq1asrMjJSV199tTZv3my37++//67bb79dCQkJslgsqlatmrp3764tW7ZIkurWrauff/5Zq1atsn3NsW7dunbjvP/++3r00UdVs2ZNWSwW/frrr5Kk5cuXq3v37oqJiVFUVJQ6deqkr776ym78X3/9VUOGDFGjRo0UFRWlmjVrqm/fvvrxxx8dntO8efM0duxY1ahRQxUrVlTfvn21f/9+5eTk6L777tNFF12kiy66SEOGDNGJEyc88wQDAAAALqpdu7ZeeOEF5eTk6I033rC1f/LJJ+rQoYOioqIUHR2tnj176ttvv7U9/vPPP8tkMumjjz6ytW3cuFEmk0nNmze3G6Nfv3669NJLbdt169ZVnz59tGzZMrVt21aRkZG6+OKL9c4779gdl5ubq8cee0z16tVTRESE4uLi1K5dO82fP1+SdPfdd2vGjBmSZLf8yR9//GFrGzlypF5//XU1bdpUFotF7777riRp586dGjhwoOLj42WxWNS0aVNbX8Xy8vL06KOPqk2bNoqNjVVcXJw6dOigjz/+uMTzWDzW7Nmz1aRJE0VGRqpdu3Zat26dDMPQ1KlTVa9ePVWsWFHdunWzfTYBAHfg8jwAcIMnn3xSbdu21VtvvaXjx48rNTVVXbp00ebNm1W/fn1J0rXXXqvCwkJNmTJFtWvX1qFDh7R27VodO3ZMkrR48WLdcsstio2N1WuvvSZJslgsduOkpKSoQ4cOev311xUSEqL4+HjNnTtXd911l66//nq9++67MpvNeuONN9SrVy99+eWX6t69uyRpz549qlKliiZNmqSqVavqyJEjevfdd3X55Zdr8+bNatKkSYlz6tq1q+bMmaM//vhDjz32mAYMGKCwsDC1bt1a8+fP1+bNm/Xkk08qOjpar7zyioefZQAAAKB0rr32WoWGhmr16tWSpHnz5umOO+5QUlKS5s+fr/z8fE2ZMkVdunTRV199pc6dO6t58+aqUaOGli9frv79+0v65+KQyMhIbdu2TXv27FFCQoIKCgq0atUqPfDAA3Zj/vDDD3r00Uf1xBNPqFq1anrrrbc0bNgwNWzYUFdddZUkKTk5We+//74mTpyoSy65RCdPntRPP/2kw4cPS5LGjRunkydP6j//+Y9dQb1GjRq2/1+yZIm+/vprjR8/XtWrV1d8fLy2bdumjh072gr21atX15dffqlRo0bp0KFDevrppyVJ+fn5OnLkiB577DHVrFlTp0+f1vLly3XTTTdp9uzZuuuuu+zO6bPPPtPmzZs1adIkmUwmjR07Vtddd50GDx6s33//Xa+++qqOHz+u5ORk3XzzzdqyZYtMJpObswmgXDIAAHaefvppQ5Jx8OBBh483b97cuPrqqw3DMIyVK1cakoy2bdsaRUVFtn3++OMPw2w2G/fcc49hGIZx6NAhQ5Ixbdq0c459Zt9nKh7nqquusms/efKkERcXZ/Tt29euvbCw0GjdurVx2WWXOR2roKDAOH36tNGoUSPjkUceKTHW2X2OHj3akGSMGjXKrv2GG24w4uLiznleAAAAgDvNnj3bkGSsX7/e6T7VqlUzmjZtahQWFhoJCQlGy5YtjcLCQtvjOTk5Rnx8vNGxY0db25133mnUr1/ftt2jRw/j3nvvNSpXrmy8++67hmEYxjfffGNIMtLT02371alTx4iIiDD+/PNPW9upU6eMuLg44/7777e1tWjRwrjhhhvOeW4jRowwnJVrJBmxsbHGkSNH7Np79epl1KpVyzh+/Lhd+8iRI42IiIgS+xcrKCgwrFarMWzYMOOSSy4pMVb16tWNEydO2NqWLFliSDLatGlj9/ln2rRphiRj69at5zw3ACgtlgcBADcYOHCg3RUFderUUceOHbVy5UpJUlxcnBo0aKCpU6fqxRdf1ObNm1VUVOTyODfffLPd9tq1a3XkyBENHjxYBQUFtp+ioiJdc801Wr9+vU6ePClJKigo0PPPP69mzZopPDxcYWFhCg8P186dO7V9+/YSY/Xp08duu2nTppKk6667rkT7kSNHWCIEAAAAfsUwDEnSL7/8oj179mjQoEEKCflfGaRixYq6+eabtW7dOuXm5kqSunfvrt9//127du1SXl6e1qxZo2uuuUZdu3ZVRkaGpH+uvrZYLOrcubPdeG3atFHt2rVt2xEREWrcuLH+/PNPW9tll12mL774Qk888YQyMzN16tQpl8+rW7duqly5sm07Ly9PX331lW688UZFRUXZfS649tprlZeXp3Xr1tn2/+ijj9SpUydVrFhRYWFhMpvNevvttx1+JujatasqVKhg2y7+TNC7d2+7zz/F7WeeKwCUBUVrADhL8Y0NCwsLHT5eUFAgs9ls11a9evUS+1WvXt32NT+TyaSvvvpKvXr10pQpU9S2bVtVrVpVo0aNUk5OTqljO/NrgZK0f/9+SdItt9wis9ls9zN58mQZhqEjR45I+ueriOPGjdMNN9ygTz/9VN99953Wr1+v1q1bO5wsx8XF2W2Hh4efsz0vL6/U5wEAAAB40smTJ3X48GElJCTY5uRnz6UlKSEhQUVFRTp69KgkqUePHpL+KUyvWbNGVqtV3bp1U48ePWz3jFm+fLk6depU4uaHVapUKdG/xWKxm2u/8sorGjt2rJYsWaKuXbsqLi5ON9xwg3bu3Fnqczv7PA4fPqyCggJNnz69xGeCa6+9VpJ06NAhSdKiRYt06623qmbNmpo7d66+/fZbrV+/XkOHDnU4n+czAQBfYU1rADhL8d3F//777xJ3GjcMQ3v37rW7Q7kk7du3r0Q/+/bts5u41qlTR2+//bYkaceOHfrwww+Vmpqq06dP6/XXXy9VbGevD3fRRRdJkqZPn64rrrjinOdTvPb1888/b/f4oUOHVKlSpVKNDwAAAASCzz//XIWFherSpYttTr53794S++3Zs0chISG2K5dr1aqlxo0ba/ny5apbt67atWunSpUqqXv37ho+fLi+++47rVu3ThMmTLiguCpUqKAJEyZowoQJ2r9/v+2q6759++q///1vqfo4+zNB5cqVFRoaqkGDBmnEiBEOj6lXr56kfz4T1KtXTwsWLLDrJz8//4LOBwA8haI1AJylW7duMplMWrBggdq2bWv32LJly5SdnW27AqPY/PnzlZycbJv4/fnnn1q7dm2JG5kUa9y4sZ566iktXLhQmzZtsrWffSXG+XTq1EmVKlXStm3bNHLkyHPuazKZStzY8fPPP9fff/+thg0blnpMAAAAwJ/t3r1bjz32mGJjY3X//ferSpUqqlmzpubNm6fHHnvMNmc/efKkFi5cqA4dOigqKsp2fI8ePfThhx8qMTHRtjRe48aNVbt2bY0fP15Wq7XE54ELUa1aNd1999364YcfNG3aNOXm5ioqKso2Zz916lSJq7kdiYqKUteuXbV582a1atXKdtWzIyaTSeHh4XYF63379unjjz8u8/kAgDtRtAaAszRo0EAjR47U1KlTdezYMV177bWKjIzU+vXrNWnSJLVr104DBw60O+bAgQO68cYbde+99+r48eN6+umnFRERoZSUFEnS1q1bNXLkSPXv31+NGjVSeHi4VqxYoa1bt+qJJ56w9dOyZUt98MEHWrBggerXr6+IiAi1bNnSaawVK1bU9OnTNXjwYB05ckS33HKL4uPjdfDgQf3www86ePCgZs6cKemfNarnzJmjiy++WK1atdLGjRs1depU1apVywPPIgAAAOB5P/30k2395gMHDujrr7/W7NmzFRoaqsWLF6tq1aqSpClTpuiOO+5Qnz59dP/99ys/P9823580aZJdn927d9drr72mQ4cOadq0aXbts2fPVuXKlXXppZdeULyXX365+vTpo1atWqly5cravn273n//fbvCefH8f/Lkyerdu7dCQ0PPW4x++eWX1blzZ1155ZV68MEHVbduXeXk5OjXX3/Vp59+qhUrVkj65zPBokWLNHz4cN1yyy3KysrSs88+qxo1ari0RAkAeBpFawBw4OWXX1azZs309ttva+7cuSooKFCdOnU0YsQIPfXUUyUmjM8//7zWr1+vIUOGKDs7W5dddpk++OADNWjQQNI/61s3aNBAr732mrKysmQymVS/fn298MILeuihh2z9TJgwQXv37tW9996rnJwc1alTR3/88cc5Y73zzjtVu3ZtTZkyRffff79ycnIUHx+vNm3a6O6777Y7J7PZrLS0NJ04cUJt27bVokWL9NRTT7nteQMAAAC8aciQIZL+WVO5UqVKatq0qcaOHat77rnHVrCW/rlxeoUKFZSWlqbbbrtNoaGhuuKKK7Ry5Up17NjRrs9u3bopJCREkZGR6tChg629R48emj17trp27Wp3Q0dXdOvWTZ988oleeukl5ebmqmbNmrrrrrv0r3/9yy7Wb775Rq+99pqeeeYZGYahXbt2qW7duk77bdasmTZt2qRnn31WTz31lA4cOKBKlSqpUaNGtnWti5+vAwcO6PXXX9c777yj+vXr64knntBff/11wUueAIAnmIzi2+kCAFyWmZmprl276qOPPtItt9zi63AAAAAAAAAC3oX9aRAAAAAAAAAAAA+gaA0AAAAAAAAA8BsUrQGgDLp06SLDMFgaBABQLqxevVp9+/ZVQkKCTCaTlixZ4nTf+++/XyaTye4mZgAAAEBp+LRonZOTo9GjR6tOnTqKjIxUx44dtX79el+GBAAAAMCJkydPqnXr1nr11VfPud+SJUv03XffKSEhwUuRAQAAIJiE+XLwe+65Rz/99JPef/99JSQkaO7cuerRo4e2bdummjVr+jI0AAAAAGfp3bu3evfufc59/v77b40cOVJffvmlrrvuOi9FBgAAgGDis6L1qVOntHDhQn388ce66qqrJEmpqalasmSJZs6cqYkTJ5Y4Jj8/X/n5+bbtoqIiHTlyRFWqVJHJZPJa7AAAAPAswzCUk5OjhIQEhYSwol2gKCoq0qBBgzRmzBg1b968VMcwxwcAACgfXJnj+6xoXVBQoMLCQkVERNi1R0ZGas2aNQ6PSUtL04QJE7wRHgAAAPxAVlaWatWq5eswUEqTJ09WWFiYRo0aVepjmOMDAACUL6WZ45sMwzC8FE8JHTt2VHh4uObNm6dq1app/vz5uuuuu9SoUSP98ssvJfY/+yqM48ePq3bt2tq1a5eio6M9Hq/VatXKlSvVtWtXmc1mj48HzyKfwYecBhfyGVzIZ3DxRj5zcnJUr149HTt2TLGxsR4ZA2VjMpm0ePFi3XDDDZKkjRs36rrrrtOmTZtsa1nXrVtXo0eP1ujRo532wxwf7kZOgw85DT7kNPiQ0+DjiZy6Msf36ZrW77//voYOHaqaNWsqNDRUbdu21cCBA7Vp0yaH+1ssFlkslhLtcXFxiomJ8XS4slqtioqKUpUqVfgHGATIZ/Ahp8GFfAYX8hlcvJHP4n5ZHiJwfP311zpw4IBq165tayssLNSjjz6qadOm6Y8//nB4HHN8uBs5DT7kNPiQ0+BDToOPJ3Lqyhzfp0XrBg0aaNWqVTp58qSys7NVo0YN3XbbbapXr54vwwIAAADgokGDBqlHjx52bb169dKgQYM0ZMgQH0UFAACAQOTTonWxChUqqEKFCjp69Ki+/PJLTZkyxdchAQAAADjLiRMn9Ouvv9q2d+3apS1btiguLk61a9dWlSpV7PY3m82qXr26mjRp4u1QAQAAEMB8WrT+8ssvZRiGmjRpol9//VVjxoxRkyZNuBIDAAAA8EMbNmxQ165dbdvJycmSpMGDB2vOnDk+igoAAADBxqdF6+PHjyslJUV//fWX4uLidPPNN+u5555j7RsAAOA3CgsLZbVafR2GX7FarQoLC1NeXp4KCwsvuJ/w8HCFhIS4MTJ4WpcuXeTKfdydrWMNAADgS8zxz+9C5vxms1mhoaFuGd+nRetbb71Vt956qy9DAAAAcMgwDO3bt0/Hjh3zdSh+xzAMVa9eXVlZWWW6UWJISIjq1aun8PBwN0YHAAAAOMYcv/QudM5fqVIlVa9evcw3VPeLNa0BAAD8TfFkNj4+XlFRUWWedAWToqIinThxQhUrVrzgK6WLioq0Z88e7d27V7Vr1+b5BQAAgMcxxy89V+f8hmEoNzdXBw4ckCTVqFGjTONTtAYAADhLYWGhbTJ79o3l8M8E9vTp04qIiCjT8h5Vq1bVnj17VFBQwPJwAAAA8Cjm+K65kDl/ZGSkJOnAgQOKj48v01IhLCIIAABwluL17aKionwcSXArXhakLOtiAwAAAKXBHN87ip/fsq4ZTtEaAADACb4u6Fk8vwAAAPA25qCe5a7nl6I1AAAAAAAAAMBvULQGAAAIIl26dNHo0aN9HQYAAAAANymPc3xuxAgAAOCKtaneHa+jl8f7P5mZmeratauOHj2qSpUq+SQGAAAAwCuY4/sdrrQGAAAAAAAAAPgNitYAAABB6ujRo7rrrrtUuXJlRUVFqXfv3tq5c6ft8T///FN9+/ZV5cqVVaFCBTVv3lxLly7VH3/8oa5du0qSKleuLJPJpLvvvttHZwEAAACgWHmZ47M8CAAAQJC6++67tXPnTn3yySeKiYnR2LFjde2112rbtm0ym80aMWKETp8+rdWrV6tChQratm2bKlasqMTERC1cuFA333yzfvnlF8XExCgyMtLXpwMAAACUe+Vljk/RGgAAIAgVT2S/+eYbdezYUZL073//W4mJiVqyZIn69++v3bt36+abb1bLli0lSfXr17cdHxcXJ0mKj4/3+/XuAAAAgPKgPM3xWR4EAAAgCG3fvl1hYWG6/PLLbW1VqlRRkyZNtH37dknSqFGjNHHiRHXq1ElPP/20tm7d6qtwAQAAAJxHeZrjU7QGAAAIQoZhOG03mUySpHvuuUe///67Bg0apB9//FHt2rXT9OnTvRkmAAAAgFIqT3N8itYAAABBqFmzZiooKNB3331nazt8+LB27Nihpk2b2toSExP1wAMPaNGiRXr00Uc1a9YsSVJ4eLgkqbCw0LuBAwAAAHCoPM3xKVoDAAAEoUaNGun666/XvffeqzVr1uiHH37QnXfeqZo1a+r666+XJI0ePVpffvmldu3apU2bNmnFihW2yW6dOnVkMpn02Wef6eDBgzpx4oQvTwcAAAAo98rTHJ+iNQAAQJCaPXu2Lr30UvXp00cdOnSQYRhaunSpzGazpH+usBgxYoSaNm2qa665Rk2aNNFrr70mSapZs6YmTJigJ554QtWqVdPIkSN9eSoAAAAAVH7m+GG+DgAAACCgdEz1dQTnlJmZafv/ypUr67333nO67/nWths3bpzGjRvnrtAAAAAA/8Qc3+9wpTUAAAAAAAAAwG9QtAYAAAAAAAAA+A2K1gAAAAAAAAAAv0HRGgAAAAAAAADgNyhaAwAAAAAAAAD8BkVrAAAAAAAAAIDfoGgNAAAAAAAAAPAbFK0BAAAAAAAAAH6DojUAAAAAn5sxY4aaNWum9u3b+zoUAAAA+BhFawAAgCBiGIbuu+8+xcXFyWQyacuWLT6LpUuXLho9erTPxkdgGTFihLZt26b169f7OhQAAAC/Uh7n+GEeHwEAACCIpKb693jLli3TnDlzlJmZqfr16+uiiy7ySFwAAABAsGCO738oWgMAAASR3377TTVq1FDHjh19HQoAAAAANyiPc3yWBwEAAAgSd999tx566CHt3r1bJpNJdevWVX5+vkaNGqX4+HhFRESoc+fOdssvzJkzR5UqVbLrZ8mSJTKZTLbt1NRUtWnTRu+//77q1q2rypUra+jQocrJybHtc/LkSd11112qWLGiatSooRdeeMHj5wsAAAAEO2/N8WNjY3X77beXmOMPHjzYJ3N8itYAAABB4uWXX9YzzzyjWrVqae/evVq/fr0ef/xxLVy4UO+++642bdqkhg0bqlevXjpy5IhLff/2229asmSJPvvsM33yySdau3atJk+ebHt8zJgxWrlypRYvXqz09HRlZmZq48aN7j5FAAAAoFzx1hz/s88+06pVqzRp0iTb4+PHj1dmZqZP5vgUrQEAAIJEbGysoqOjFRoaqurVqysqKkozZ87U1KlT1bt3bzVr1kyzZs1SZGSk3n77bZf6Lioq0pw5c9SiRQtdeeWVuvXWW7VixQpJ0okTJ/T222/r//2//6eePXuqZcuWevfdd1VYWOiJ0wQAAADKDW/O8QcNGqSvvvpK0j9z/Llz52rKlCk+meNTtAYAAAhSv/32m6xWqzp16mRrM5vNuuyyy7R9+3aX+qpbt66io6Nt29WrV9eBAwds45w+fVodOnSwPR4XF6cmTZqU8QwAAAAAnMmTc/waNWr4zRyfojUAAECQMgxDkuzWrituL24LCQmx7VfMarWW6MtsNtttm0wmFRUV2Y0DAAAAwLPKyxyfojUAAECQatiwocLDw7VmzRpbm9Vq1YYNG9S0aVNJUtWqVZWTk6OTJ0/a9tmyZYvL45jNZq1bt87WdvToUe3YsaNsJwAAAADATnmZ44d5ZRQAAAB4XYUKFfTggw9qzJgxiouLU+3atTVlyhTl5uZq2LBhkqTLL79cUVFRevLJJ/XQQw/p+++/15w5c1wap2LFiho2bJjGjBmjKlWqqFq1avrXv/6lkBCujwAAAADcyZtz/DvvvFNjx45V1apVvT7Hp2gNAAAQxCZNmqSioiINGjRIOTk5ateunb788ktVrlxZ0j/r0s2dO1djxozRm2++qR49eig1NVX33XefS+NMnTpVJ06cUL9+/RQdHa1HH31Ux48f98QpAQAAAOWat+b4zzzzjE6fPu2TOb7J8PUCJWWQnZ2t2NhYHT9+XDExMR4fz2q1aunSpbr22mtLrPmCwEM+gw85DS7kM7gEWj7z8vK0a9cu1atXTxEREb4Ox+8UFRUpOztbMTExZbrS4lzPs7fnefAfzPFRVuQ0+JDT4ENOg08g5JQ5vmsudM7vrjk+39kEAAAAAAAAAPgNitYAAAAAAAAAAL/h06J1QUGBnnrqKdWrV0+RkZGqX7++nnnmGRUVFfkyLAAAAAAAAACAj/j0RoyTJ0/W66+/rnfffVfNmzfXhg0bNGTIEMXGxurhhx/2ZWgAAAAAAAAAAB/wadH622+/1fXXX6/rrrtOklS3bl3Nnz9fGzZs8GVYAAAAAAAAAAAf8WnRunPnznr99de1Y8cONW7cWD/88IPWrFmjadOmOdw/Pz9f+fn5tu3s7GxJ/9yh1Gq1ejze4jG8MRY8j3wGH3IaXMhncAm0fBYUFMgwDBUUFLBsmQOGYdj+W5bnp7Cw0PY8n/3aCJTXCgAAAAIL83vPctfz69Oi9dixY3X8+HFdfPHFCg0NVWFhoZ577jkNGDDA4f5paWmaMGFCifb09HRFRUV5OlybjIwMr40FzyOfwYecBhfyGVwCKZ/VqlXTH3/8obi4OIWF+XTK5LcOHz58wccahqHs7Gzl5ORoxYoVtkJ4sdzc3LKGBwAAANiEh4crJCREe/bsUdWqVRUeHi6TyeTrsPxWUVGRTp8+rby8PIWEnP+2iIZh6PTp0zp48KBCQkIUHh5epvF9+glswYIFmjt3rubNm6fmzZtry5YtGj16tBISEjR48OAS+6ekpCg5Odm2nZ2drcTERCUlJSkmJsbj8VqtVmVkZKhnz54ym80eHw+eRT6DDzkNLuQzuARiPq1Wq/bv369jx475OhS/YxiG8vLyFBERUaaJvslkUpMmTdS2bdsSjxV/ow4AAABwh5CQENWrV0979+7Vnj17fB2O3zMMQ6dOnVJkZKRLc/6oqCjVrl27VIXuc/Fp0XrMmDF64okndPvtt0uSWrZsqT///FNpaWkOi9YWi0UWi6VEu9ls9uoHYG+PB88in8GHnAYX8hlcAimfZrNZdevWVUFBgQoLC30djl+xWq1avXq1rrrqqjLl02w2KzQ01OljAAAAgDuFh4erdu3azPFL4ULm/KGhoQoLC3PLFew+LVrn5uaWqLqHhoaytgwAAPALJpMpoArt3hIaGqqCggJFRETw3AAAACCgMMcvHV/P+X1atO7bt6+ee+451a5dW82bN9fmzZv14osvaujQob4MCwAAAAAAAADgIz4tWk+fPl3jxo3T8OHDdeDAASUkJOj+++/X+PHjfRkWAAAAAAAAAMBHfFq0jo6O1rRp0zRt2jRfhgEAAAAAAAAA8BNlu40jAAAAAAAAAABuRNEaAAAAAAAAAOA3KFoDAAAAAAAAAPwGRWsAAAAApbJ69Wr17dtXCQkJMplMWrJkie0xq9WqsWPHqmXLlqpQoYISEhJ01113ac+ePb4LGAAAAAGJojUAAACAUjl58qRat26tV199tcRjubm52rRpk8aNG6dNmzZp0aJF2rFjh/r16+eDSAEAABDIwnwdAAAAAIDA0Lt3b/Xu3dvhY7GxscrIyLBrmz59ui677DLt3r1btWvX9kaIAAAACAIUrQEAAAB4xPHjx2UymVSpUiWn++Tn5ys/P9+2nZ2dLemf5UasVqunQ7SN4Y2x4B3kNPiQ0+BDToMPOQ0+nsipK31RtAYAAADgdnl5eXriiSc0cOBAxcTEON0vLS1NEyZMKNGenp6uqKgoT4Zo5+yrxBH4yGnwIafBh5wGH3IafNyZ09zc3FLvS9EaAAAAgFtZrVbdfvvtKioq0muvvXbOfVNSUpScnGzbzs7OVmJiopKSks5Z7HYXq9WqjIwM9ezZU2az2ePjwfPIafAhp8GHnAYfchp8PJHT4m/UlQZFawAAAABuY7Vadeutt2rXrl1asWLFeQvPFotFFoulRLvZbPbqh15vjwfPI6fBh5wGH3IafMhp8HFnTl3ph6I1AAAAALcoLljv3LlTK1euVJUqVXwdEgAAAAIQRWsAAAAApXLixAn9+uuvtu1du3Zpy5YtiouLU0JCgm655RZt2rRJn332mQoLC7Vv3z5JUlxcnMLDw30VNgAAAAIMRWsAAAAApbJhwwZ17drVtl28FvXgwYOVmpqqTz75RJLUpk0bu+NWrlypLl26eCtMAAAABDiK1gAAAABKpUuXLjIMw+nj53oMAAAAKK0QXwcAAAAAAAAAAEAxitYAAAAAAAAAAL9B0RoAAAAAAAAA4DcoWgMAAAAAAAAA/AZFawAAAAAAAACA36BoDQAAAAAAAADwGxStAQAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNitYAAAAAAAAAAL9B0RoAAAAAAAAA4DcoWgMAAAAAAAAA/AZFawAAAAAAAACA36BoDQAAAAAAAADwGxStAQAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNitYAAAAAAAAAAL9B0RoAAAAAAAAA4DcoWgMAAAAAAAAA/AZFawAAAAAAAACA36BoDQAAAAAAAADwGxStAQAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNitYAAAAAAAAAAL/h06J13bp1ZTKZSvyMGDHCl2EBAAAA8LIZM2aoWbNmat++va9DAQAAgI/5tGi9fv167d271/aTkZEhSerfv78vwwIAAADgZSNGjNC2bdu0fv16X4cCAAAAHwvz5eBVq1a12540aZIaNGigq6++2kcRAQAAAAAAAAB8yadF6zOdPn1ac+fOVXJyskwmk8N98vPzlZ+fb9vOzs6WJFmtVlmtVo/HWDyGN8aC55HP4ENOgwv5DC7kM7h4I5+8VgAAAIDyy2+K1kuWLNGxY8d09913O90nLS1NEyZMKNGenp6uqKgoD0Znr3gZEwQH8hl8yGlwIZ/BhXwGF0/mMzc312N9AwAAAPBvflO0fvvtt9W7d28lJCQ43SclJUXJycm27ezsbCUmJiopKUkxMTEej9FqtSojI0M9e/aU2Wz2+HjwLPIZfMhpcCGfwYV8Bhdv5LP4G3UAAAAAyh+/KFr/+eefWr58uRYtWnTO/SwWiywWS4l2s9ns1Q/A3h4PnkU+gw85DS7kM7iQz+DiyXzyOgEAAADKrxBfByBJs2fPVnx8vK677jpfhwIAAAAAAAAA8CGfF62Lioo0e/ZsDR48WGFhfnHhNwAAAAAAAADAR3xetF6+fLl2796toUOH+joUAAAAAAAAAICP+fzS5qSkJBmG4eswAAAAAAAAAAB+wOdXWgMAAAAAAAAAUIyiNQAAAAAAAADAb1C0BgAAAAAAAAD4DYrWAAAAAAAAAAC/QdEaAAAAAAAAAOA3KFoDAAAAAAAAAPwGRWsAAAAAAAAAgN+gaA0AAAAAAAAA8BsUrQEAAAAAAAAAfoOiNQAAAAAAAADAb1C0BgAAAAAAAAD4DYrWAAAAAAAAAAC/QdEaAAAAAAAAAOA3KFoDAAAAAAAAAPwGRWsAAAAAAAAAgN+gaA0AAAAAAAAA8BsUrQEAAAAAAAAAfoOiNQAAAAAAAADAb1C0BgAAAFAqq1evVt++fZWQkCCTyaQlS5bYPW4YhlJTU5WQkKDIyEh16dJFP//8s2+CBQAAQMCiaA0AAACgVE6ePKnWrVvr1Vdfdfj4lClT9OKLL+rVV1/V+vXrVb16dfXs2VM5OTlejhQAAACBLMzXAQAAAAAIDL1791bv3r0dPmYYhqZNm6Z//etfuummmyRJ7777rqpVq6Z58+bp/vvv92aoAAAACGAUrQEAAACU2a5du7Rv3z4lJSXZ2iwWi66++mqtXbvWadE6Pz9f+fn5tu3s7GxJktVqldVq9WzQ/zfOmf9F4COnwYecBh9yGnzIafDxRE5d6YuiNQAAAIAy27dvnySpWrVqdu3VqlXTn3/+6fS4tLQ0TZgwoUR7enq6oqKi3BvkOWRkZHhtLHgHOQ0+5DT4kNPgQ06DjztzmpubW+p9KVoDAAAAcBuTyWS3bRhGibYzpaSkKDk52badnZ2txMREJSUlKSYmxmNxFrNarcrIyFDPnj1lNps9Ph48j5wGH3IafMhp8CGnwccTOS3+Rl1pULQGAAAAUGbVq1eX9M8V1zVq1LC1HzhwoMTV12eyWCyyWCwl2s1ms1c/9Hp7PHgeOQ0+5DT4kNPgQ06Djztz6ko/IW4ZEQAAAEC5Vq9ePVWvXt3uK6SnT5/WqlWr1LFjRx9GBgAAgEDDldYAAAAASuXEiRP69ddfbdu7du3Sli1bFBcXp9q1a2v06NF6/vnn1ahRIzVq1EjPP/+8oqKiNHDgQB9GDQAAgEBD0RoAAABAqWzYsEFdu3a1bRevRT148GDNmTNHjz/+uE6dOqXhw4fr6NGjuvzyy5Wenq7o6GhfhQwAAIAARNEaAAAAQKl06dJFhmE4fdxkMik1NVWpqaneCwoAAABBhzWtAQAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNitYAAAAAAAAAAL9B0RoAAAAAAAAA4DcoWgMAAAAAAAAA/AZFawAAAAAAAACA36BoDQAAAAAAAADwG2G+DgAAAAAA/FVqaunaAAAA4D5caQ0AAAAAAAAA8BsUrQEAAAAAAAAAfsPnReu///5bd955p6pUqaKoqCi1adNGGzdu9HVYAAAAAAAAAAAf8Oma1kePHlWnTp3UtWtXffHFF4qPj9dvv/2mSpUq+TIsAAAAAAAAAICP+LRoPXnyZCUmJmr27Nm2trp16/ouIAAAAAAAAACAT/m0aP3JJ5+oV69e6t+/v1atWqWaNWtq+PDhuvfeex3un5+fr/z8fNt2dna2JMlqtcpqtXo83uIxvDEWPI98Bh9yGlzIZ3Ahn8HFG/nktQIAAACUXz4tWv/++++aOXOmkpOT9eSTT+r777/XqFGjZLFYdNddd5XYPy0tTRMmTCjRnp6erqioKG+ELEnKyMjw2ljwPPIZfMhpcCGfwYV8BhdP5jM3N9djfQMAAADwbz4tWhcVFaldu3Z6/vnnJUmXXHKJfv75Z82cOdNh0TolJUXJycm27ezsbCUmJiopKUkxMTEej9dqtSojI0M9e/aU2Wz2+HjwLPIZfMhpcCGfwYV8Bhdv5LP4G3UAAAAAyh+fFq1r1KihZs2a2bU1bdpUCxcudLi/xWKRxWIp0W42m736Adjb48GzyGfwIafBhXwGF/IZXDyZT14nAAAAQPkV4svBO3XqpF9++cWubceOHapTp46PIgIAAAAAAAAA+JJPi9aPPPKI1q1bp+eff16//vqr5s2bpzfffFMjRozwZVgAAAAAAAAAAB/xadG6ffv2Wrx4sebPn68WLVro2Wef1bRp03THHXf4MiwAAAAAAAAAgI/4dE1rSerTp4/69Onj6zAAAAAAAAAAAH7Ap1daAwAAAAAAAABwJorWAAAAAAAAAAC/QdEaAAAAAAAAAOA3KFoDAAAAAAAAAPwGRWsAAAAAPjdjxgw1a9ZM7du393UoAAAA8DGK1gAAAAB8bsSIEdq2bZvWr1/v61AAAADgYxStAQAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNitYAAAAAAAAAAL9B0RoAAAAAAAAA4DcoWgMAAAAAAAAA/AZFawAAAAAAAACA36BoDQAAAAAAAADwGxStAQAAAAAAAAB+g6I1AAAAAAAAAMBvhLmy8y+//KL58+fr66+/1h9//KHc3FxVrVpVl1xyiXr16qWbb75ZFovFU7ECAAAAcBFzeAAAAASaUl1pvXnzZvXs2VOtW7fW6tWr1b59e40ePVrPPvus7rzzThmGoX/9619KSEjQ5MmTlZ+f7+m4AQAAAJwDc3gAAAAEqlJdaX3DDTdozJgxWrBggeLi4pzu9+233+qll17SCy+8oCeffNJtQQIAAABwDXN4AAAABKpSFa137typ8PDw8+7XoUMHdejQQadPny5zYAAAAAAuHHN4AAAABKpSLQ9SmsluWfYHAAAA4F7M4QEAABCoSnWl9SuvvFLqDkeNGnXBwQAAAABwD+bwAAAACFSlKlq/9NJLdtsHDx5Ubm6uKlWqJEk6duyYoqKiFB8fz4QXAAAA8APM4QEAABCoSrU8yK5du2w/zz33nNq0aaPt27fryJEjOnLkiLZv3662bdvq2Wef9XS8AAAAAEqBOTwAAAACVamK1mcaN26cpk+friZNmtjamjRpopdeeklPPfWUW4MDAAAAUHbM4QEAABBIXC5a7927V1artUR7YWGh9u/f75agAAAAALgPc3gAAAAEEpeL1t27d9e9996rDRs2yDAMSdKGDRt0//33q0ePHm4PEAAAAEDZMIcHAABAIHG5aP3OO++oZs2auuyyyxQRESGLxaLLL79cNWrU0FtvveWJGAEAAACUAXN4AAAABJIwVw+oWrWqli5dqh07dui///2vDMNQ06ZN1bhxY0/EBwAAAKCMmMOfX1qaVFTk6ygAAAAgXUDRuljdunVlGIYaNGigsLAL7gYAAACAlzCHBwAAQCBweXmQ3NxcDRs2TFFRUWrevLl2794tSRo1apQmTZrk9gABAAAAlA1zeAAAAAQSl4vWKSkp+uGHH5SZmamIiAhbe48ePbRgwQK3BgcAAACg7JjDAwAAIJC4/J3AJUuWaMGCBbriiitkMpls7c2aNdNvv/3m1uAAAAAAlB1zeAAAAAQSl6+0PnjwoOLj40u0nzx50m4CDAAAAMA/eGsOX1BQoKeeekr16tVTZGSk6tevr2eeeUZF3OEQAAAALnC5aN2+fXt9/vnntu3iSe6sWbPUoUMH90UGAAAAwC28NYefPHmyXn/9db366qvavn27pkyZoqlTp2r69OluGwMAAADBz+XlQdLS0nTNNddo27ZtKigo0Msvv6yff/5Z3377rVatWuWJGAEAAACUgbfm8N9++62uv/56XXfddZKkunXrav78+dqwYYPbxgAAAEDwc7lo3bFjR33zzTf6f//v/6lBgwZKT09X27Zt9e2336ply5aeiBEAAABAGXhrDt+5c2e9/vrr2rFjhxo3bqwffvhBa9as0bRp05wek5+fr/z8fNt2dna2JMlqtcpqtbotNmeKxwgJKf1YzzzjuD0lxR0RoayKc+qN1w+8g5wGH3IafMhp8PFETl3py+WitSS1bNlS77777oUcCgAAAMAHvDGHHzt2rI4fP66LL75YoaGhKiws1HPPPacBAwY4PSYtLU0TJkwo0Z6enq6oqChPhmunZcuMMvexdKkbAoHbZGSUPafwL+Q0+JDT4ENOg487c5qbm1vqfS+oaC1JBw4c0IEDB0rcVKVVq1YX2iUAAAAAD/L0HH7BggWaO3eu5s2bp+bNm2vLli0aPXq0EhISNHjwYIfHpKSkKDk52badnZ2txMREJSUlKSYmxi1xnYvValVGRoZ+/LGniorMZeqLK639Q3FOe/bsKbO5bDmFfyCnwYecBh9yGnw8kdPib9SVhstF640bN2rw4MHavn27DMOwe8xkMqmwsNDVLgEAAAB4kLfm8GPGjNETTzyh22+/XdI/V3f/+eefSktLc1q0tlgsslgsJdrNZrNXP/QWFZnLXLTmM7p/8fZrCJ5HToMPOQ0+5DT4uDOnrvTjctF6yJAhaty4sd5++21Vq1bNdudxAAAAAP7JW3P43NxchYSE2LWFhoaWuLIbAAAAOBeXi9a7du3SokWL1LBhwzIPnpqaWmL9umrVqmnfvn1l7hsAAADAP9w5hz+Xvn376rnnnlPt2rXVvHlzbd68WS+++KKGDh3q0XEBAAAQXFwuWnfv3l0//PCD2ya8zZs31/Lly23boaGhbukXAAAAwD/cPYd3Zvr06Ro3bpyGDx+uAwcOKCEhQffff7/Gjx/v0XEBAAAQXFwuWr/11lsaPHiwfvrpJ7Vo0aLEWiT9+vVzLYCwMFWvXt3VMAAAAACUkrvn8M5ER0dr2rRpmjZtmlv6AwAAQPnkctF67dq1WrNmjb744osSj13ITVx27typhIQEWSwWXX755Xr++edVv359h/vm5+crPz/ftl18x0mr1Sqr1erSuBeieAxvjAXPI5/Bh5wGF/IZXMhncPFGPnmtuJe75/AAAACAJ7lctB41apQGDRqkcePGqVq1amUa/PLLL9d7772nxo0ba//+/Zo4caI6duyon3/+WVWqVCmxf1paWok1sCUpPT1dUVFRZYrFFRkZGV4bC55HPoMPOQ0u5DO4kM/g4sl85ubmeqzv8sidc3gAAADA01wuWh8+fFiPPPKIWya7vXv3tv1/y5Yt1aFDBzVo0EDvvvuukpOTS+yfkpJi156dna3ExEQlJSUpJiamzPGcj9VqVUZGhnr27FniK5UIPOQz+JDT4EI+gwv5DC7eyGfxN+rgHu6cwwMAAACe5nLR+qabbtLKlSvVoEEDtwdToUIFtWzZUjt37nT4uMVikcViKdFuNpu9+gHY2+PBs8hn8CGnwYV8BhfyGVw8mU9eJ+7lyTk8AAAA4G4uF60bN26slJQUrVmzRi1btizxgWLUqFEXHEx+fr62b9+uK6+88oL7AAAAAGDPk3N4AAAAwN1cLlq/9dZbqlixolatWqVVq1bZPWYymVya8D722GPq27evateurQMHDmjixInKzs7W4MGDXQ0LAAAAgBPunMMDAAAAnuZS0dowDK1cuVLx8fFuufHhX3/9pQEDBujQoUOqWrWqrrjiCq1bt0516tQpc98AAAAA3D+HBwAAADzN5aJ148aN9fPPP6tRo0ZlHvyDDz4ocx8AAAAAnHP3HD5o/b1GKjCVbE/s4vVQAAAAyrsQl3YOCVGjRo10+PBhT8UDAAAAwI2YwwMAACDQuFS0lqQpU6ZozJgx+umnnzwRDwAAAAA3Yw4PAACAQOLyjRjvvPNO5ebmqnXr1goPD1dkZKTd40eOHHFbcAAAAADKjjk8AAAAAonLRetp06Z5IAwAAAAAnsIcHgAAAIHE5aL14MGDPREHAAAAAA9hDg8AAIBA4nLRWpIKCwu1ZMkSbd++XSaTSc2aNVO/fv0UGhrq7vgAAAAAuAFzeAAAAAQKl4vWv/76q6699lr9/fffatKkiQzD0I4dO5SYmKjPP/9cDRo08EScAAAAAC4Qc3gAAAAEkhBXDxg1apQaNGigrKwsbdq0SZs3b9bu3btVr149jRo1yhMxAgAAACgD5vAAAAAIJC5fab1q1SqtW7dOcXFxtrYqVapo0qRJ6tSpk1uDAwAAAFB2zOEBAAAQSFy+0tpisSgnJ6dE+4kTJxQeHu6WoAAAAAC4D3N4AAAABBKXi9Z9+vTRfffdp++++06GYcgwDK1bt04PPPCA+vXr54kYAQAAAJQBc3gAAAAEEpeL1q+88ooaNGigDh06KCIiQhEREerUqZMaNmyol19+2RMxAgAAACgD5vAAAAAIJC6vaV2pUiV9/PHH2rlzp/773//KMAw1a9ZMDRs29ER8AAAAAMqIOTwAAAACictF62KNGjVSo0aN3BkLAAAAAA9iDg8AAIBA4HLRurCwUHPmzNFXX32lAwcOqKioyO7xFStWuC04AAAAAGXHHB4AAACBxOWi9cMPP6w5c+bouuuuU4sWLWQymTwRFwAAAAA3YQ4PAACAQOJy0fqDDz7Qhx9+qGuvvdYT8QAAAABwM+bwAAAACCQuF63Dw8O5YQsAAAAQQJjDl0FWpuP2xC5eDAIAAKB8CXH1gEcffVQvv/yyDMPwRDwAAAAA3CwQ5vAzZsxQs2bN1L59e1+HAgAAAB9z+UrrNWvWaOXKlfriiy/UvHlzmc1mu8cXLVrktuAAAAAAlF0gzOFHjBihESNGKDs7W7Gxsb4OBwAAAD7kctG6UqVKuvHGGz0RCwAAAAAPYA4PAACAQOJy0Xr27NmeiAMAAACAhzCHBwAAQCBxeU1rAAAAAAAAAAA8pVRF62uuuUZr16497345OTmaPHmyZsyYUebAAAAAAFw45vAAAAAIVKVaHqR///669dZbFR0drX79+qldu3ZKSEhQRESEjh49qm3btmnNmjVaunSp+vTpo6lTp3o6bgAAAADnwBweAAAAgapURethw4Zp0KBB+s9//qMFCxZo1qxZOnbsmCTJZDKpWbNm6tWrlzZu3KgmTZp4Ml4AAAAApcAcHgAAAIGq1DdiDA8P18CBAzVw4EBJ0vHjx3Xq1ClVqVJFZrPZYwECAAAAuDDM4QEAABCISl20PltsbKxiY2PdGQsAAAAAD2IODwAAgEBQqhsxAgAAAAAAAADgDRStAQAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNl4vWWVlZ+uuvv2zb33//vUaPHq0333zTrYEBAAAAcA/m8AAAAAgkLhetBw4cqJUrV0qS9u3bp549e+r777/Xk08+qWeeecbtAQIAAAAoG+bwAAAACCQuF61/+uknXXbZZZKkDz/8UC1atNDatWs1b948zZkzx93xAQAAACgj5vAAAAAIJC4Xra1WqywWiyRp+fLl6tevnyTp4osv1t69e90bHQAAAIAyYw4PAACAQOJy0bp58+Z6/fXX9fXXXysjI0PXXHONJGnPnj2qUqWK2wMEAAAAUDbM4QEAABBIXC5aT548WW+88Ya6dOmiAQMGqHXr1pKkTz75xPaVQwAAAAD+gzk8AAAAAkmYqwd06dJFhw4dUnZ2tipXrmxrv++++1ShQgW3BgcAAACg7JjDAwAAIJC4fKV1t27dlJOTYzfZlaS4uDjddtttbgsMAAAAgHswhwcAAEAgcblonZmZqdOnT5doz8vL09dff33BgaSlpclkMmn06NEX3AcAAACAkjw1hwcAAAA8odTLg2zdutX2/9u2bdO+ffts24WFhVq2bJlq1qx5QUGsX79eb775plq1anVBxwMAAAAoyZNzeAAAAMBTSl20btOmjUwmk0wmk7p161bi8cjISE2fPt3lAE6cOKE77rhDs2bN0sSJE10+HgAAAIBjnprDAwAAAJ5U6qL1rl27ZBiG6tevr++//15Vq1a1PRYeHq74+HiFhoa6HMCIESN03XXXqUePHuctWufn5ys/P9+2nZ2dLUmyWq2yWq0uj+2q4jG8MRY8j3wGH3IaXMhncCGfwcUb+eS14h6emsMDAAAAnlTqonWdOnUkSUVFRW4b/IMPPtCmTZu0fv36Uu2flpamCRMmlGhPT09XVFSU2+I6n4yMDK+NBc8jn8GHnAYX8hlcyGdw8WQ+c3NzPdZ3eeKJOTwAAADgaaUuWp9px44dyszM1IEDB0pMgMePH1+qPrKysvTwww8rPT1dERERpTomJSVFycnJtu3s7GwlJiYqKSlJMTExpT+BC2S1WpWRkaGePXvKbDZ7fDx4FvkMPuQ0uJDP4EI+g4s38ln8jTq4jzvm8Di31FTX2gEAAOCYy0XrWbNm6cEHH9RFF12k6tWry2Qy2R4zmUylnvBu3LhRBw4c0KWXXmprKyws1OrVq/Xqq68qPz+/xFcVLRaLLBZLib7MZrNXPwB7ezx4FvkMPuQ0uJDP4EI+g4sn88nrxL3cNYcHAAAAvMHlovXEiRP13HPPaezYsWUauHv37vrxxx/t2oYMGaKLL75YY8eOZW09AAAAwE3cNYcvjb///ltjx47VF198oVOnTqlx48Z6++237S5WAQAAAM7F5aL10aNH1b9//zIPHB0drRYtWti1VahQQVWqVCnRDgAAAODCuWsOX5pxOnXqpK5du+qLL75QfHy8fvvtN1WqVMnjYwMAACB4hLh6QP/+/ZWenu6JWAAAAAB4gLfm8JMnT1ZiYqJmz56tyy67THXr1lX37t3VoEEDj48NAACA4OHyldYNGzbUuHHjtG7dOrVs2bLEeoOjRo264GAyMzMv+FgAAAAAjnlyDn+mTz75RL169VL//v21atUq1axZU8OHD9e9997r9Jj8/Hzl5+fbtotvwmm1WmW1Wt0S17kUjxESZrh2YEjpY/PCaeAMxTn1xusH3kFOgw85DT7kNPh4Iqeu9OVy0frNN99UxYoVtWrVKq1atcruMZPJ5LYJLwAAAAD38NYc/vfff9fMmTOVnJysJ598Ut9//71GjRoli8Wiu+66y+ExaWlpmjBhQon29PR0RUVFuSWu0miZlOPiEUtLv2fpd4UbZWRk+DoEuBk5DT7kNPiQ0+Djzpzm5uaWel+Xi9a7du1y9RAAAAAAPuStOXxRUZHatWun559/XpJ0ySWX6Oeff9bMmTOdFq1TUlKUnJxs287OzlZiYqKSkpIUExPj8ZitVqsyMjL0Y3q0igpMpT+wZudS75qScgGB4YIV57Rnz54lvlWAwEROgw85DT7kNPh4IqfF36grDZeL1gAAAADgSI0aNdSsWTO7tqZNm2rhwoVOj7FYLLJYLCXazWazVz/0FhWYXCtaF5U+Nj67+4a3X0PwPHIafMhp8CGnwcedOXWlH5eL1kOHDj3n4++8846rXQIAAADwIG/N4Tt16qRffvnFrm3Hjh2qU6eOW/oHAABA+eBy0fro0aN221arVT/99JOOHTumbt26uS0wAAAAAO7hrTn8I488oo4dO+r555/Xrbfequ+//15vvvmm3nzzTbeNAQAAgODnctF68eLFJdqKioo0fPhw1a9f3y1BAQAAAHAfb83h27dvr8WLFyslJUXPPPOM6tWrp2nTpumOO+5w2xgAAAAIfiFu6SQkRI888oheeukld3QHAAAAwMM8NYfv06ePfvzxR+Xl5Wn79u2699573do/AAAAgp9bitaS9Ntvv6mgoMBd3QEAAADwMObwAAAA8EcuLw+SnJxst20Yhvbu3avPP/9cgwcPdltgAAAAANyDOTwAAAACictF682bN9tth4SEqGrVqnrhhRfOe1dyAAAAAN7HHB4AAACBxOWi9cqVKz0RBwAAAAAPYQ4PAACAQOJy0brYwYMH9csvv8hkMqlx48aqWrWqO+MCAAAA4GbM4QEAABAIXL4R48mTJzV06FDVqFFDV111la688kolJCRo2LBhys3N9USMAAAAAMqAOTwAAAACictF6+TkZK1atUqffvqpjh07pmPHjunjjz/WqlWr9Oijj3oiRgAAAABlwBweAAAAgcTl5UEWLlyo//znP+rSpYut7dprr1VkZKRuvfVWzZw5053xAQAAACgj5vAAAAAIJC5faZ2bm6tq1aqVaI+Pj+erhQAAAIAfYg4PAACAQOJy0bpDhw56+umnlZeXZ2s7deqUJkyYoA4dOrg1OAAAAABlxxweAAAAgcTl5UFefvllXXPNNapVq5Zat24tk8mkLVu2KCIiQl9++aUnYgQAAABQBszhAQAAEEhcLlq3aNFCO3fu1Ny5c/Xf//5XhmHo9ttv1x133KHIyEhPxAgAAACgDJjDAwAAIJC4XLSWpMjISN17773ujgUAAACAhzCHBwAAQKBweU3rtLQ0vfPOOyXa33nnHU2ePNktQQEAAABwH+bwAAAACCQuF63feOMNXXzxxSXamzdvrtdff90tQQEAAABwH+bwAAAACCQuF6337dunGjVqlGivWrWq9u7d65agAAAAALgPc3gAAAAEEpeL1omJifrmm29KtH/zzTdKSEhwS1AAAAAA3Ic5PAAAAAKJyzdivOeeezR69GhZrVZ169ZNkvTVV1/p8ccf16OPPur2AAEAAACUDXN4AAAABBKXi9aPP/64jhw5ouHDh+v06dOSpIiICI0dO1YpKSluDxAAAABA2TCHBwAAQCBxuWhtMpk0efJkjRs3Ttu3b1dkZKQaNWoki8XiifgAAAAAlBFzeAAAAAQSl4vWxSpWrKj27du7MxYAAAAAHsQcHgAAAIHggovWAAAAAIALl5paujYAAIDyhqK1jzibjDJJBQAAAAAAAFCehfg6AAAAAAAAAAAAilG0BgAAAAAAAAD4DZYHcSPWpAMAAAAAAACAsqFoDQAAAMDnZsyYoRkzZqiwsNDXobgdF7IAAAC4huVBAAAAAPjciBEjtG3bNq1fv97XoQAAAMDHuNLazzi7CoOrMwAAAAAAAACUBxStPYxiMwAAAAAAAACUHsuDAAAAAAAAAAD8BkVrAAAAAAAAAIDfoGgNAAAAAAAAAPAbPi1az5w5U61atVJMTIxiYmLUoUMHffHFF74MCQAAAAAAAADgQz4tWteqVUuTJk3Shg0btGHDBnXr1k3XX3+9fv75Z1+GBQAAAAAAAADwkTBfDt63b1+77eeee04zZ87UunXr1Lx5cx9FBQAAAAAAAADwFZ8Wrc9UWFiojz76SCdPnlSHDh0c7pOfn6/8/HzbdnZ2tiTJarXKarV6PMbiMZyNFeLB69a9cHrlzvnyicBDToML+Qwu5DO4eCOfvFYAAACA8svnResff/xRHTp0UF5enipWrKjFixerWbNmDvdNS0vThAkTSrSnp6crKirK06HaZGRkOGxv3dpzYy5d6rm+yztn+UTgIqfBhXwGF/IZXDyZz9zcXI/1DQAAAMC/+bxo3aRJE23ZskXHjh3TwoULNXjwYK1atcph4TolJUXJycm27ezsbCUmJiopKUkxMTEej9VqtSojI0M9e/aU2Wwu8XhamufGTknxXN/l1fnyicBDToML+Qwu5DO4eCOfxd+oAwAAAFD++LxoHR4eroYNG0qS2rVrp/Xr1+vll1/WG2+8UWJfi8Uii8VSot1sNnv1A7Cz8YqKPDmm5/ou77z9+oHnkdPgQj6DC/kMLp7MJ68TAAAAoPzy4CrMF8YwDLt1qwEAAAAAAAAA5YdPr7R+8skn1bt3byUmJionJ0cffPCBMjMztWzZMl+GBQAAAAAAAADwEZ8Wrffv369BgwZp7969io2NVatWrbRs2TL17NnTl2EBAAAAAAAAAHzEp0Xrt99+25fDAwAAAAAAAAD8jN+taQ0AAAAAAAAAKL8oWgMAAAAAAAAA/AZFawAAAAAAAACA36BoDQAAAAAAAADwGz69ESMAAAAAlFtZmSXb1mZKHVO9GwcAAICf4UprAAAAAAAAAIDfoGgNAAAAAAAAAPAbFK0BAAAAAAAAAH6DNa0BAAAAwFVZmY7bE7t4MQgAAIDgxJXWAAAAAAAAAAC/QdEaAAAAAAAAAOA3WB4kQKSmlq4NAAAA8BdpaWl68skn9fDDD2vatGm+DgcAAAABgiutAQAAALjd+vXr9eabb6pVq1a+DgUAAAABhqI1AAAAALc6ceKE7rjjDs2aNUuVK1f2dTgAAAAIMCwPEsCcLQ/CsiEAAADwpREjRui6665Tjx49NHHixHPum5+fr/z8fNt2dna2JMlqtcpqtXo0zuJxJCkkzHBPhyEuxOxgTGtRiOSF8w5mxTn1xusH3kFOgw85DT7kNPh4Iqeu9EXRGgAAAIDbfPDBB9q0aZPWr19fqv3T0tI0YcKEEu3p6emKiopyd3hOtUzKcVNPS0u/a2sHRx9uLS11oQ84lZGR4esQ4GbkNPiQ0+BDToOPO3Oam5tb6n0pWgMAAABwi6ysLD388MNKT09XREREqY5JSUlRcnKybTs7O1uJiYlKSkpSTEyMp0K1sVqtysjI0I/p0SoqMHlmkJqdHbf/vaZEU8qgr6XLUzwTRzlRnNOePXvKbDb7Ohy4ATkNPuQ0+JDT4OOJnBZ/o640KFoDAAAAcIuNGzfqwIEDuvTSS21thYWFWr16tV599VXl5+crNDTU7hiLxSKLxVKiL7PZ7NUPvUUFJs8VrYucnIeD8cwhRRIf9t3C268heB45DT7kNPiQ0+Djzpy60g9FawAAAG9am+q4vaOTdiCAdO/eXT/++KNd25AhQ3TxxRdr7NixJQrWAAAAgCMUrQEAAAC4RXR0tFq0aGHXVqFCBVWpUqVEOwAAAOBMiK8DAAAAAAAAAACgGFdaAwAAAPCYzMxMX4cAAACAAEPRGgAAIFiwXjYAAACAIMDyIAAAAAAAAAAAv0HRGgAAAAAAAADgNyhaAwAAAAAAAAD8BkVrAAAAAAAAAIDfoGgNAAAAAAAAAPAbYb4OAO6XmupaOwAAAAAAAAD4C4rW5QjFbAAAAAAAAAD+juVBAAAAAAAAAAB+g6I1AAAAAAAAAMBvULQGAAAAAAAAAPgNitYAAAAAAAAAAL9B0RoAAAAAAAAA4DcoWgMAAAAAAAAA/AZFawAAAAAAAACA3wjzdQBwICvTcXtiFy8GAQAAAMAtsjJd239tasm2jg7aAAAAghRXWgMAAAAAAAAA/AZXWgMAAACAn0h9u4vj9o7ejQMAAMCXKFpfgLQ0qajI11EAAAAAAAAAQPDxadE6LS1NixYt0n//+19FRkaqY8eOmjx5spo0aeLLsHAOqamutQMAAAAAAACAK3y6pvWqVas0YsQIrVu3ThkZGSooKFBSUpJOnjzpy7AAAAAAAAAAAD7i0yutly1bZrc9e/ZsxcfHa+PGjbrqqqt8FBUAAAAAAAAAwFf8ak3r48ePS5Li4uIcPp6fn6/8/HzbdnZ2tiTJarXKarV6PL7iMUJCPDxWmOG43UPjPvNMybaUFCchOLk23wtPv9sV59Mbrx14BzkNLuQzuJDPMxR58JepJ/u2687z+eS1AgAAAJRfflO0NgxDycnJ6ty5s1q0aOFwn7S0NE2YMKFEe3p6uqKiojwdok3LlhmeHaC1sweWenbcM0dyMlRrJ7E52z8QZGR4OJ/wOnIaXMhncCGfktNf9G75ZerdX9SezGdubq7H+gYAAADg3/ymaD1y5Eht3bpVa9ascbpPSkqKkpOTbdvZ2dlKTExUUlKSYmJiPB6j1WpVRkaGfvyxp4qKzJ4b6G8nz0HNzp4b8yzOrrROS3Ntf39WnM+ePXvKbPZgPuE15DS4kM/gUm7z+Z2TX5yOXO6GX6bOxnNH32fwRj6Lv1EHAAAAoPzxi6L1Qw89pE8++USrV69WrVq1nO5nsVhksVhKtJvNZq9+AC4qMnu2aF1gcjKw987R2dNZVOTa/oHA268feB45DS7kM7iUu3yGOPnF6Yg7nhdn43noOfdkPsvV6wQohdRU19oBAAACmZOFD73DMAyNHDlSixYt0ooVK1SvXj1fhgMAAADAR2bMmKFmzZqpffv2vg4FAAAAPubTK61HjBihefPm6eOPP1Z0dLT27dsnSYqNjVVkZKQvQwMAoPxYm+q4vaOTdn/H+QABacSIERoxYoSys7MVGxvr63AAAADgQz690nrmzJk6fvy4unTpoho1ath+FixY4MuwAAAAAAAAAAA+4tMrrQ3D8OXwAAAAABDQWOsaAAAEI59eaQ0AAAAAAAAAwJl8eqU1AACA13hybWhnfQMAAAAAXMaV1gAAAAAAAAAAv0HRGgAAAAAAAADgN1geBH6Dm8gAAMo1V5cYYUkSAAAAAEGKK60BAAAAAAAAAH6DojUAAAAAAAAAwG9QtAYAAAAAAAAA+A3WtAYAwF2crTHc0Ul7sHF0/u46d0/2XR6U99cmAAAAgIBC0RoOuXrzQ1duosiNFQEAAAAAAAA4w/IgAAAAAAAAAAC/wZXW8HuuXMUNAAAAAAAAILBxpTUAAAAAAAAAwG9wpTUAAAAABBm+rQgAAAIZRWt4VDBNipn4AwAAAAAAAJ7H8iAAAAAAAAAAAL/Blda+lJXp6wgAAEB5tjbVcXtHJ+0AAAAA4AVcaQ0AAAAAAAAA8BsUrQEAAAAAAAAAfoOiNQAAAAAAAADAb7CmNcqF1NSSbSEhUuvWXg8FAAAAAAAAwDlQtEZQcVScBgAAAPAPR/Nl5tAAAMDfULQGAAAAgHLMWdGaYjYAAPAVitZwn6xMx+2JXbwYBAAAbrA21XF7RyftABCEKGYDAABfoWiNci8tTSoqsm9jIg4AAAC/kpXpuN0dF4h4sm8AAIALEOLrAAAAAAAEh7S0NLVv317R0dGKj4/XDTfcoF9++cXXYQEAACDAULQGAAAA4BarVq3SiBEjtG7dOmVkZKigoEBJSUk6efKkr0MDAABAAGF5EAClwp3mAT/lbO1lZ/x9TWZXzsfVcwfgccuWLbPbnj17tuLj47Vx40ZdddVVPooKAAAAgYaiNQKWJwumFGMBAADK7vjx45KkuLg4p/vk5+crPz/ftp2dnS1Jslqtslqtng3w/8aRpJAww+NjeUSIG54jZ+fupG8vpKVMinPqjdcPvIOcBh9yGnzIafDxRE5d6YuiNQAAAAC3MwxDycnJ6ty5s1q0aOF0v7S0NE2YMKFEe3p6uqKiojwZop2WSTleG8u9lpa9i9au9b3UDUN6Q0ZGhq9DgJuR0+BDToMPOQ0+7sxpbm5uqfelaA0AAADA7UaOHKmtW7dqzZo159wvJSVFycnJtu3s7GwlJiYqKSlJMTExng5TVqtVGRkZ+jE9WkUFJo+P53Y1O5e9j7+d5MhJ3ykpZR/Sk4pz2rNnT5nNZl+HAzcgp8GHnAYfchp8PJHT4m/UlQZFa5xbVmbJtsQuXg7CvzlbSoQlRgAvcra2sb+v34zAwzraQKk89NBD+uSTT7R69WrVqlXrnPtaLBZZLJYS7Waz2asfeosKTIFZtC5y8hxlZTpudzSXd3beTvoOlFqEt19D8DxyGnzIafAhp8HHnTl1pR+K1gAAAADcwjAMPfTQQ1q8eLEyMzNVr149X4cEAACAAETRGvAQrsAGAADlzYgRIzRv3jx9/PHHio6O1r59+yRJsbGxioyM9HF0AAAACBQUrQE/4MkCN8VzAADgLTNnzpQkdenSxa599uzZuvvuu70fEAAAAAISRWtvycr0dQSAHYrZAPB/WKcacBvDMHwdAnzJ0fupO+4vwb0rAAAodyhaA17myaIwBWcAAAAAAAAEuhBfBwAAAAAAAAAAQDGutHa3rExfR/CPrEzH7YldvBhEgMvKdNzOcwjA04JpuYricykKkdRa+i5NCiniK90A4C5Zmb6OAAAAwO0oWgPwS6y5DQAAAAAAUD75tGi9evVqTZ06VRs3btTevXu1ePFi3XDDDb4MCYCfo5gNAAAAAAAQ3HxatD558qRat26tIUOG6Oabb/ZlKEBAoUALAAAAAACAYOXTonXv3r3Vu3dvX4YQHLIyfR3BhcnKLNnGetHlEkV4P+JsLWVvrz+8NrXkGsi+iAOeE0zrdgNAsMrKdPJAF8+Nye8HAACgAFvTOj8/X/n5+bbt7OxsSZLVapXVavX4+MVjhIScY6www3MBOBvXlTHPFXtp+3Y1Dlf2dzW+MijOo9N8uno+HuDsZR0S4h9juuufnTvOx2r9379Rb7wfeFpaWsm2lBQvDFzkJBnefk6LQmT9v1isZ8bkLA4/itstcTjrxx0cxeKFuB3mE/7rPLn3xvttMLyXA+VN6ttdSrZ1dLJvqpP2JLeFAwAAAlhAFa3T0tI0YcKEEu3p6emKioryWhwtW2Y4f7C1J0de6oYxnfThjMO+XY3Dlf1djM8NnObT1fPxgKXOnjoPvs5cGdPZvq5yx/mcGUtGxjn+jQYITz7f5xnZcbN3Bj/D/+LIONqyFHH4X9x2XI7D2//IvRe3XT7hv0qZe0++3+bm5nqsbwAAAAD+LaCK1ikpKUpOTrZtZ2dnKzExUUlJSYqJifH4+FarVRkZGfrxx54qKjI73unvNZ4LoGbnso/prA9nHPXtahyu7O9qfGUQEmJVy5bnyKer5+MBzq6sdXQVri/G9EV8zqSk/O/faM+ePWU2O/k36mdcea68cqX1d04Cutwbg9vHYS0KUcbRlupZ+UeZi5cHcRaHH8Xtljic9eMOjmLxQtwO8wn/dZ7ce+P9tvgbdQDgE64smeYvy6sBABBEAqpobbFYZLFYSrSbzWavFqiKiszOi9YFJs8N/Oc3Th5wYUxncTvj6HxcPXdX9nc1PjcoyvpORQ5jd/F8PMDZy7qoSM7XGCzjuuDnHPMszz33f//jKBYvr09+Ztzefk8oC0fPqzNeOSVnxURvP59nxGEOKfpfkdNZHL6I29EHVGcrX7gahyeLuo5icdfzV4q47fIJ/1XK3Hvy/TZQ3seB8oj7kQAAAE8LqKI1UN7wgQAAAAAAAADljU+L1idOnNCvv/5q2961a5e2bNmiuLg41a5d24eRAeUXhXL/5fSGRU7aXemHvAMAAH/g6GaOkpQ6LNObYQAAAB/zadF6w4YN6tq1q227eL3qwYMHa86cOT6KCgDcj6IwAADwC1mZXu2DORAAALgQPi1ad+nSRYZh+DKEC5eV6esILkxWpuN2V9YfdtZHeZaV6bjd1XWdHfXj5bWhAa9zdvMiT/Xt6k2R3BEfN2hCoHHHvx0AAAAAuECsaQ0A5+GuZTkAAAAAAABwfhStAQAAAADelZXpub6/S5PU+p//hhT9r51vjAAAEDAoWgModzx55bQvrr4O1CvBbfFldbFvH5bp3UAAAIDfc3SDxtSO3o8DAAB4B0Vr+JesTPf0U57Xgc7KdNwe5M9JaqoUEiK1bi2lpUlFRf9rd6UPp7IyS7atzfTsFTuOxpSCPpfliifX83bHmKzFDQAAAADwAYrWAIKav19t7O9sVzWln9We6u1IXOPoaiyJq7gBAAgmzuYj/+rh2v7+Pq8BAKA8omgNAHAbRx/6+CAIAAD8mcP5S5KLfTj6g/nbmY7/YM43lvwX3zIDAL9B0RrlR1am/XaYIbV2Qz/lSVamryO4MFmZjttZZiPgOVsXGwAAAAAABC6K1gAAOMCNIgEAAAAA8A2K1gBwgVLf7lJirWd4Ds83AAAAAADlA0VrAAAAAAD8kbM1lp3x5NrLjmJhrefgxhrfAHyIojU8LyvT1xFAcpwHf1rTOSvTcbujGJ3tW7xO+d9rpAKTO6I6P2exuMJdecjKtNtMHebCsWszz7uLtxTfyCgkzFDra7OV9v6VKnJnPkv74a+crJPt8MZROs8yKK5+gAYAwIvS3r/S8Rwi0fuxOPw9m86NqgEAOB+K1gAAeJCjD6vOCsIXVEAGgCAxY8YMzZgxQ4WFhb4OBXD+O7mjd+MAAKC8omgNAHCZK1cHcSVR8HP2wf5MZ145P37wKs8HBSDgjBgxQiNGjFB2drZiY2N9HQ6CUVZmyTZ/+uahO5TnJTzK87kDQBCiaA0AKPdKU3T1Rh+u9s0V2AAABCZHf9TnD/0AAPwPRWv8IyvT1xGUL1mZvo4AUuDmISvT1xH8IyvTcbuzK5ac7Q8AAAAAAHAGitYAAI9eJQwAAAAAAOAKitYAAAQoV27yCABA0MnKdNzOp1ygfHO0vrlUvtc4d+U5cbavM+X5eYVH8escAAAXcFW6d7GeNwDAnzhcdzqri2fHdMPvQmfrZbOONgDAX1G0RnDKyvR1BP/IyvR1BOeWlem43ZN3UXc2JoJHVmZg9u1FFL4BAAAAAHCOojUAAOUAhXIAAHC2gLwC29WlC+B7jnLW/l9eD8Mty4aw9EjZuPr8Odo/2J5rXlNOUbQGAAA4A0uSAABQegFZ+AYA+D2K1gAABBF3XVHtyZs8uqNvCssAAAAAELwoWgMoKSvTP/pwZz8A/BrLlwAA4D+c3XDSHX8cDrYrs4PtfADAX1C0BgCUGxRGyyYQnj9XYuSqbADwgqxMX0cQMBz/XurifH++deQ9rqyrm5X5f8dkuj8Of1nj1hfrirPuL1DuULQGAADlkjuK8BQMAAAAAMD9KFoD/i4r09cRALwOAQAAAACA11C0BgAAcDOuwAYAoOyK14UOCZFat5bS0qSiP92ztjYAwL9RtAYAACiFQFjTGwDgoqxMX0fgeWtTpawubumqxO/CdCc7ZmUqdZiD9kT3xFFuubKWtLO1nv19bWhX18t2x/rarqxZ7g6u5sCV+Hyx3rgjvsijJ/n7v5sgRdEaAAAAAIAgEah/ZC2+qtrXSv38OSvYAwDcgqI1AACAl7BsCAAAAACcH0VrAAAAAADguqxMz/Xj70uJZGW6fIhf//Ha35dn8DZ/WabE09wZd1GIpNbSd2lSSNm7Pe94ZREIy3p4e9kaP0TRGgAAAAAAlDslliRx09rf5Z1fF+cBBAyK1gAAAAGED4IAgPIu2H4X+vv5BMI66f7+HAJwHUVrAPC1rExfRwDAxxx90OJDFgAA8LZAKFADKB8oWgMAAAAAAP+Slfm//w8zpNaS/l4jyeT0kBIF1/RS9B2ASvXHbj9co/rMuEOWS61bS2lp0vjx3hnT1jYs0+/7Pi8/zC/+j7Pc+GI96gBfF5uiNQAAAAAAgBu544plrnoGUJ5RtAYAAPBDrn5QZS1HAACAC+eOuZTL8zcX+vYFd80v/WUpPFscZ30Lo8RNWeEXKFoDAAAEMX/5kAAAQSEr09cRBLasTF9HELQC7o/Xf6/535Iva1eV+rBgu/o84PIW7Dy57Eqg9u1DFK0BAAAAAADKEX8q/no7Fn86d2dcidGTa3QHAi7QCF4UrQEAAAAAAIJQoBYi/Ym/P4f+Hp8zXGWO8/F50fq1117T1KlTtXfvXjVv3lzTpk3TlVde6euwAAAAAFwg5vgAAMCdXLr63I8K+RTnL5xPi9YLFizQ6NGj9dprr6lTp05644031Lt3b23btk21a9f2ZWgAAAAALgBzfAB+IyvT1xEAQclRITYkzFDra7OV9v6VKiowubVvt8vKtN9em+lgJ8fs4nvb0XFdHLSdp58z24edI5YgXbvaGZ8WrV988UUNGzZM99xzjyRp2rRp+vLLLzVz5kylpaX5MjQAAICgxRUf8CTm+AAAIBj4yxXbrs7dzxl3+ln7pl5AQF7is6L16dOntXHjRj3xxBN27UlJSVq7dq3DY/Lz85Wfn2/bPn78uCTpyJEjslqtngv2/1itVuXm5ur06cMqKjrh8fHgWSFFxj/5LApRUdGF/xUQ/oOcBhfyGVzIZ2A4nHP6HA8etv1v8Zzo8OHDMpvNHoklJydHkmQYhkf6h2cE9Byf96eg4fe/c04fdtzOZ0yn/D6ncBk5DT6BnFNnc+DTPnhffnJWOwetjuO4oLjP+h102MmvJMkzc35X5vg+K1ofOnRIhYWFqlatml17tWrVtG/fPofHpKWlacKECSXa69Wr55EYUQ685esA4HbkNLiQz+BCPv1e2pxzPuqlKOzl5OQoNjbWJ2PDdczx4Tf4nRN8yGnwIafBJ0Bzeu45sP9yR9y++hJcaeb4Pr8Ro8lk/9cXwzBKtBVLSUlRcnKybbuoqEhHjhxRlSpV/n979x9TVf3Hcfx1L/eCioGJggjN0vD3/AVJIOlyaptN6o+WlXPaquWqRbUiyhbZcv2abtk0F5n9o+myNHKWsqWGVv5A3EosTcxFSgwaectKkc/3j5KvCILndn8cPjwf2/3D4znH99lrF1/73MO5lz0mlE6fPq1rrrlGP/30kxISEsL+70XTDTfcoH379kV7jLAiT/uQqV3I0y7kaZdI5GmMUSAQ0MCBA8NyfoQXHd+9+BllHzK1D5napTvkKZGpjcKRqZOOH7VF6379+ikmJqbNHRd1dXVt7sy4IC4uTnFxca229enTJ1wjXlZCQoL1b8CYmBjrr/EC8rQPmdqFPO1CnnYJd57cYd310PHdj59R9iFT+5CpXbpTnhKZ2ijUmV5px/eG7F90KDY2VpmZmSorK2u1vaysTLm5uVGaChc8/PDD0R4BIUSe9iFTu5CnXcgT3Rkd3/34GWUfMrUPmdqFPO1DppHhMVH8dpv169dr7ty5WrlypXJycvT222+rpKREhw4d0qBBg6I11mWdPn1aiYmJ+u2337rVJyq2Ik/7kKldyNMu5GkX8kRH6PiINjK1D5nah0ztQ6b2iXamUX2m9ezZs9XQ0KAXX3xRp06d0ujRo7VlyxZXllnpn19dLC4ubvPri+iayNM+ZGoX8rQLedqFPNEROj6ijUztQ6b2IVP7kKl9op1pVO+0BgAAAAAAAADgYlF7pjUAAAAAAAAAAJdi0RoAAAAAAAAA4BosWgMAAAAAAAAAXINFawAAAAAAAACAa7BoDQAAAAAAAABwDRatL7FixQpdd9116tGjhzIzM1VeXt7h/jt37lRmZqZ69OihwYMHa+XKlRGaFFfCSZ4fffSRpk+frv79+yshIUE5OTnaunVrBKdFZ5y+Py/YvXu3fD6fxo0bF94B4ZjTTP/++28tXLhQgwYNUlxcnIYMGaJ33303QtOiM07zXLNmjcaOHatevXopNTVV9957rxoaGiI0LTryxRdfaNasWRo4cKA8Ho82bdrU6TF0IrgZHd8+9Hz70PXtQ9e3D33fHl2i7xu0WLdunfH7/aakpMRUVVWZgoICEx8fb06cONHu/tXV1aZXr16moKDAVFVVmZKSEuP3+82GDRsiPDna4zTPgoIC8+qrr5q9e/eaI0eOmGeeecb4/X5z4MCBCE+O9jjN84LGxkYzePBgM2PGDDN27NjIDIsrEkym+fn5Jjs725SVlZnjx4+bPXv2mN27d0dwalyO0zzLy8uN1+s1b7zxhqmurjbl5eVm1KhR5vbbb4/w5GjPli1bzMKFC82HH35oJJmNGzd2uD+dCG5Gx7cPPd8+dH370PXtQ9+3S1fo+yxaX2TixIlmwYIFrbYNHz7cFBUVtbt/YWGhGT58eKttDz74oLnxxhvDNiOunNM82zNy5EizaNGiUI+GIASb5+zZs81zzz1niouLKbIu4zTTTz/91CQmJpqGhoZIjAeHnOb5+uuvm8GDB7fatmzZMpOenh62GRGcKymxdCK4GR3fPvR8+9D17UPXtw99315u7fs8HuRfZ8+eVUVFhWbMmNFq+4wZM/Tll1+2e8xXX33VZv9bbrlF+/fv17lz58I2KzoXTJ6Xam5uViAQUN++fcMxIhwINs/Vq1fr2LFjKi4uDveIcCiYTEtLS5WVlaXXXntNaWlpGjp0qJ588kn9+eefkRgZHQgmz9zcXNXU1GjLli0yxuiXX37Rhg0bdOutt0ZiZIQYnQhuRce3Dz3fPnR9+9D17UPfRzT6kS8sZ+2C6uvrdf78eaWkpLTanpKSotra2naPqa2tbXf/pqYm1dfXKzU1NWzzomPB5HmpJUuW6I8//tCdd94ZjhHhQDB5Hj16VEVFRSovL5fPx486twkm0+rqau3atUs9evTQxo0bVV9fr4ceeki//vorz7qLsmDyzM3N1Zo1azR79mz99ddfampqUn5+vt58881IjIwQoxPBrej49qHn24eubx+6vn3o+4hGP+JO60t4PJ5WfzbGtNnW2f7tbUd0OM3zgvfff18vvPCC1q9fr+Tk5HCNB4euNM/z58/rnnvu0aJFizR06NBIjYcgOHmPNjc3y+PxaM2aNZo4caJmzpyppUuX6r333uMODJdwkmdVVZUeffRRPf/886qoqNBnn32m48ePa8GCBZEYFWFAJ4Kb0fHtQ8+3D13fPnR9+9D3u7dI9yM+kvxXv379FBMT0+YTorq6ujafJFwwYMCAdvf3+XxKSkoK26zoXDB5XrB+/Xrdd999+uCDDzRt2rRwjokr5DTPQCCg/fv3q7KyUo888oikf0qQMUY+n0/btm3T1KlTIzI72hfMezQ1NVVpaWlKTExs2TZixAgZY1RTU6OMjIywzozLCybPl19+WZMmTdJTTz0lSRozZozi4+N100036aWXXuJOxi6GTgS3ouPbh55vH7q+fej69qHvIxr9iDut/xUbG6vMzEyVlZW12l5WVqbc3Nx2j8nJyWmz/7Zt25SVlSW/3x+2WdG5YPKU/rnzYv78+Vq7di3PWXIRp3kmJCTom2++0cGDB1teCxYs0LBhw3Tw4EFlZ2dHanRcRjDv0UmTJunkyZP6/fffW7YdOXJEXq9X6enpYZ0XHQsmzzNnzsjrbV1DYmJiJP3/E3t0HXQiuBUd3z70fPvQ9e1D17cPfR9R6Udh+4rHLmjdunXG7/ebVatWmaqqKvPYY4+Z+Ph48+OPPxpjjCkqKjJz585t2b+6utr06tXLPP7446aqqsqsWrXK+P1+s2HDhmhdAi7iNM+1a9can89nli9fbk6dOtXyamxsjNYl4CJO87wU3yjuPk4zDQQCJj093dxxxx3m0KFDZufOnSYjI8Pcf//90boEXMRpnqtXrzY+n8+sWLHCHDt2zOzatctkZWWZiRMnRusScJFAIGAqKytNZWWlkWSWLl1qKisrzYkTJ4wxdCJ0LXR8+9Dz7UPXtw9d3z70fbt0hb7PovUlli9fbgYNGmRiY2PNhAkTzM6dO1v+bt68eWbKlCmt9t+xY4cZP368iY2NNddee6156623IjwxOuIkzylTphhJbV7z5s2L/OBol9P358Uosu7kNNPDhw+badOmmZ49e5r09HTzxBNPmDNnzkR4alyO0zyXLVtmRo4caXr27GlSU1PNnDlzTE1NTYSnRnu2b9/e4f+JdCJ0NXR8+9Dz7UPXtw9d3z70fXt0hb7vMYZ78gEAAAAAAAAA7sAzrQEAAAAAAAAArsGiNQAAAAAAAADANVi0BgAAAAAAAAC4BovWAAAAAAAAAADXYNEaAAAAAAAAAOAaLFoDAAAAAAAAAFyDRWsAAAAAAAAAgGuwaA0AAAAAAAAAcA0WrQEAAAAAAAAArsGiNQBE2OTJk+XxeNq85syZ0+mx8+fPV1FRUUjOBQAAACA06PgAEFoeY4yJ9hAA0F0YY5SYmKji4uI2pbN3797q3bv3ZY9tbm5WSkqKSktLlZOT85/OBQAAACA06PgAEHq+aA8AAN3J0aNHFQgENHnyZA0YMMDRsbt375bX61V2dvZ/PhcAAACA0KDjA0Do8XgQAIigiooK+Xw+jRkzxvGxpaWlmjVrlrxe738+FwAAAIDQoOMDQOixaA0AEXTgwAGdP39eSUlJLb/e17t3bz3wwAOdHltaWqrbbrvN0bk2b96sYcOGKSMjQ++8805YrgkAAADozuj4ABB6PNMaACJo6tSp6t+/vxYvXtxq+9VXX62kpKTLHnf48GFlZWWpvr5ePXv2vKJzNTU1aeTIkdq+fbsSEhI0YcIE7dmzR3379g39hQEAAADdFB0fAEKPO60BIIIqKyuVl5en66+/vtUrKSlJ3377rYYMGaLa2lpJUn19vcaNG6ezZ8+qtLRU06dPbymznZ1Lkvbu3atRo0YpLS1NV111lWbOnKmtW7dG5boBAAAAW9HxASD0WLQGgAiprq5WY2Ojxo8f3+7fjx49WnfddZc+//xzSdKiRYv09NNPKzY2Vh9//LHy8/Ov+FySdPLkSaWlpbX8OT09XT///HOIrgYAAAAAHR8AwsMX7QEAoLuoqKiQJKWkpLTcaXFBcnKyvF6vRo0apSNHjuiHH35QRUWFli1bprq6Ou3bt0+bNm1ydK72nv7k8XhCfFUAAABA90XHB4DwYNEaACLkwIEDkqShQ4e22u73+xUIBBQXF6eMjAxt3rxZzz77rBYvXiyPx6NPPvlE2dnZSk5OdnSutLS0Vndd1NTUKDs7O1yXBwAAAHQ7dHwACA++iBEAXKSxsVEZGRnKzs7W5s2bJUn5+fnKy8tTYWGho3M1NTVpxIgR2rFjR8uXtHz99dcdfhkMAAAAgNCi4wOAc9xpDQAu0qdPH0nSK6+80rItLy9Pd999t+Nz+Xw+LVmyRDfffLOam5tVWFhImQUAAAAijI4PAM5xpzUAuMi5c+c0evRoff/999EeBQAAAEAI0PEBwDlvtAcAAPzfd999p2HDhkV7DAAAAAAhQscHAOe40xoAAAAAAAAA4BrcaQ0AAAAAAAAAcA0WrQEAAAAAAAAArsGiNQAAAAAAAADANVi0BgAAAAAAAAC4BovWAAAAAAAAAADXYNEaAAAAAAAAAOAaLFoDAAAAAAAAAFyDRWsAAAAAAAAAgGuwaA0AAAAAAAAAcA0WrQEAAAAAAAAArsGiNQAAAAAAAADANf4HPCmQacntHR0AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#in abhängigkeit von der energie der elektronen\n",
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
"\n",
"\n",
"ax[0].hist(up_energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"ax[0].hist(up_energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
"ax[0].set_xticks(np.arange(0,1.1,0.1), minor=True,)\n",
"ax[0].set_yticks(np.arange(0,10,1), minor=True)\n",
"ax[0].set_xlabel(r\"$E_\\gamma/E_0$\")\n",
"ax[0].set_ylabel(\"counts (normed)\")\n",
"ax[0].set_title(\"Upstream\")\n",
"ax[0].legend()\n",
"ax[0].grid()\n",
"\n",
"ax[1].hist(down_energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"ax[1].hist(down_energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
"ax[1].set_xticks(np.arange(0,1.1,0.1), minor=True,)\n",
"ax[1].set_yticks(np.arange(0,15,1), minor=True)\n",
"ax[1].set_xlabel(r\"$E_\\gamma/E_0$\")\n",
"ax[1].set_ylabel(\"counts (normed)\")\n",
"ax[1].set_title(\"Downstream\")\n",
"ax[1].legend()\n",
"ax[1].grid()\n",
"\n",
"\"\"\"\n",
"\n",
"\"\"\"\n",
"fig.suptitle(r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj8AAAJOCAYAAADoCxXRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADR+klEQVR4nOzde5yN5f7/8fcyZ2NmzJAZI8eShKEoxN7OpxyKjaImVLJTSWiXTkM7h5yyN0lbB3Ku7bCL9oSIhHJItvSldgoxKGMcwpiZ6/dHv1nbMqd7mXtZa9Z6PR+PeZR7fdZ1uq/7Xte9rnXdt8MYYwQAAAAAAAAAAOAnSnm7AAAAAAAAAAAAAHZi8gMAAAAAAAAAAPgVJj8AAAAAAAAAAIBfYfIDAAAAAAAAAAD4FSY/AAAAAAAAAACAX2HyAwAAAAAAAAAA+BUmPwAAAAAAAAAAgF9h8gMAAAAAAAAAAPgVJj8AAAAAAAAAAIBfYfIDAADAx+3atUsHDhzwdjEAAAAAACgxmPwAAADwcf/4xz+0du1abxcDAAAAAIASg8kPAAAAH7RhwwYNHDhQx44dc27bs2ePevTooaNHj3qxZAAAAAAA+D4mPwAAgN/76KOP5HA4XP6io6PVsGFDvffee1cl73fffddle3p6ujp16qTQ0FBNnz49z/saNmyo+Ph4JSUl6ZNPPtH06dPVrl07dezYUddcc41Hy1ySfPrpp3n2be7fli1b8n3Prl279OCDD+q6665TRESEIiIiVLNmTQ0aNEjbtm1zuwzdu3dXRESETp48WWDMvffeq5CQELcnrkaNGiWHw6Fffvkl39fr1q2rli1bupWmOzZt2qRRo0YVWrdAUNR+cFcgtGt2drYqVKigV199tcAYu9u1pPDn/f/ll1+qQ4cOioqKUpkyZdSqVSt9/vnneeLcOXefOXNGQ4cOVWJiosLDw9WgQQMtWrQo3/zdiQUAAP4v2NsFAAAA8LQdO3ZIkv71r3+pQoUKMsbowIEDSklJUZ8+fXTjjTcqKSnJo3k3bNjQuW3Xrl3q3r27zp49q7Vr16p58+Z53hcZGamXXnpJOTk5GjdunEqVKqX58+frnnvu8Ug5S7qxY8eqVatWLtvq1q2bJ+6NN97QY489plq1aumJJ55QnTp15HA49O2332rhwoW69dZb9f333+u6666znPeDDz6o5cuXa8GCBRo8eHCe1zMyMrRs2TJ16dJF8fHx7lfOizZt2qTRo0erf//+Klu2rLeL4zcCoV03bNig48ePq0ePHt4uis/x1/2/detW/fGPf9Rtt92muXPnyhijCRMmqE2bNlq3bp2aNm2a5z1Wzt09evTQ1q1bNX78eN1www1asGCB+vTpo5ycHPXt2/eKYwEAgP9j8gMAAPi9HTt2KCYmRt26dXNua9q0qbKysnTffffpq6++8ujkR0REhG688UZJ0qJFi/Tggw8qKSlJS5YsUWJiYr7v+89//qPk5GQlJCTojjvuUGJiosaMGaO5c+dqzpw5Kl++vEfKezWdOHFCOTk5ttSlZs2aatKkSaExn3/+uQYPHqzOnTvrn//8p0JDQ52vtW7dWo8++qjef/99RUREuJV3p06dlJiYqLfffjvfyY+FCxfq3LlzevDBB91Kt6T57bffVLp0aW8XAz7in//8pxo1aqSqVat6LA/63NV35MgRRUZGKjo6Os9rL7zwgsqWLavU1FTnfmnbtq1q1KihESNG5LsCpKhz90cffaTVq1c7JzEkqVWrVvrpp5/01FNP6e6771ZQUJDbsQAAIDBw2ysAAOD3tm/frgYNGuTZfujQIUlS7dq13U7z1Vdf1fLly93Ke8SIEerTp4/uvfderV+/vsCJD0mKjY3Vyy+/rNTUVFWvXl3NmjXTzp071bt3b8XExBT4vo0bN6p9+/aKiYlRbGysOnfurO++++6K46zq2rWrGjVqpFmzZql+/fqKiIhQ5cqVlZKSopycnHzfs2vXLlWsWFGdOnXSu+++q9OnT19x/laMHTtWQUFBeuONN1wmPi7Vq1evPPvlu+++U9++fVWhQgWFhYWpdu3aeu2115yvBwUFqV+/ftq+fbv+85//5EnznXfecdbT03JvI/TVV1+pR48eio6OVkxMjO677z4dP37cJfb48eN6+OGHVblyZYWFhemaa65Rs2bNtGbNGmdaTz31lCSpevXqzlvSfPrpp858duzYoZ49eyo2NtZltUxRbSZJ33//vQYMGKCaNWuqdOnSqlSpkrp27ZqnDXPz2rVrl3r16qWYmBjFxcVp2LBhysrK0t69e9WxY0dFRUWpWrVqmjBhgu1tlevo0aPq06ePYmJiFB8frwceeEAZGRkuMRs3blSbNm0UFRWl0qVL6/bbb9fKlStd8i2oXa2mcWn5v/nmmyLLVNS+zs8333wjh8Oh999/37lt+/btcjgcqlOnjktst27dXFa3GWO0bNky/elPfyow/UsdPHiwyH1gR5/zVF+SpOXLl8vhcOiTTz7J89rrr7/uzLew/X/+/HndfPPNuv766132YVpamhISEtSyZUtlZ2dbKk9Bt5RyOBz68ccfLddL+v02jW+99Zbatm2ra6+9Vj/88EO+cZ9//rlatmzpMiEVFRWlP/7xj9q0aZOOHDniVr6StGzZMpUpU0a9evVy2T5gwAAdPnxYX3zxxRXFFrcveLIvAQAA+zD5AQAA/Nqvv/6qAwcOqH79+srKylJWVpaOHTumuXPnasyYMXrooYd02223uZ3utm3b1Lt370InQHLzrlKlitq3b6/p06dr1qxZ+sc//lHgl++5rr32WnXp0sVlW+6X7CEhIfm+Z9SoUWrRooUqV66shQsX6s0339TBgwfVpk0bnTlzxu04d2zfvl3/93//p1dffVVPPfWUPvjgAzVv3lwvvfSS3n777Xzf06RJE82ZM0chISEaOHCgKlSooF69emnp0qW6cOGCW/k/+uijCg4OVnR0tDp06KCNGze6vJ6dna1169apUaNGqlixouV09+zZo1tvvVW7d+/W5MmTtWLFCnXu3FlDhgzR6NGjnXEPPPCAHA5Hnrru2bNHX375pfr163dVf3HcvXt3XX/99frnP/+pUaNGafny5erQoYMuXrzojElOTtby5cv14osvatWqVXrzzTfVtm1b/frrr5Kkhx56SI8//rgkaenSpdq8ebM2b96sW265xZlGjx49dP311+v999/XzJkznXW20maHDx9WuXLlNH78eKWmpuq1115TcHCwGjdurL179+apU+/evVW/fn0tWbJEAwcO1Kuvvqonn3xSd911lzp37qxly5apdevWevrpp7V06VJb2yrXn/70J91www1asmSJnnnmGS1YsEBPPvmk8/X169erdevWysjI0FtvvaWFCxcqKipKXbt21eLFiy21q5U03CmTVPS+zk+dOnVUsWJFlwmSNWvWKCIiQnv27NHhw4clSVlZWVq/fr3atm3rjMv9otvq5Ic7+6A4fS6XJ/pSly5dVKFCBb3zzjt5Xps9e7ZuueUWJSUlFbr/w8PD9d577+nYsWN64IEHJEk5OTm69957ZYzRwoULLZ9HctPN/Vu7dq0qVaqkhIQExcXFFfn+3377TYsXL9add96phIQEPf744ypbtqwWL16sm266Kd/3ZGZmKiwsLM/23G35TQ4Xde7evXu3ateureBg15tW5K7W3L179xXF5ipuX/DUeQkAANjEAAAA+LFVq1YZSXn+goODzcsvv3zF6WZlZZm+ffuakJAQs2zZsiLzDg8PN1u2bLni/Iry4YcfGklmwoQJLtv37dtnJJl58+a5FeeOQ4cOGUmmRo0a5uTJk87tmZmZJiEhwXTp0qXINNLT083bb79t2rdvb4KDg01MTIzp37+/+fjjj01WVlaB79uxY4d54oknzLJly8yGDRvM22+/bWrXrm2CgoJMamqqMy4tLc1IMvfcc0+eNLKysszFixedfzk5Oc7XOnToYK699lqTkZHh8p7HHnvMhIeHmxMnTji3tWjRwpQvX95kZmY6tw0fPtxIMvv27SuyDfKTkpJiJJnjx4/n+3qdOnVMixYt8sQ/+eSTLnHz58/Ps3/LlCljhg4dWmj+EydONJLM/v378y3Xiy++mOc97rTZpbKyskxmZqapWbOmS/lz85o8ebJLfIMGDYwks3TpUue2ixcvmmuuucb06NGj0Hpdmq6VtsqNvfy4GTx4sAkPD3f2mSZNmpgKFSqY06dPu9Srbt265tprr3XGFdSu7qRhtUzGWNvX+bnvvvtMjRo1nP9u27atGThwoImNjTVz5swxxhjz+eefG0lm1apVzrihQ4eaevXqFZn+leyD4vQ5T/WlXMOGDTMREREu58E9e/YYSWbatGnObYXtf2OMWbx4sZFkpk6dal588UVTqlQpl/Z1V1ZWlrnzzjtNmTJlzPbt2wuMy8zMNCtWrDB9+/Y1kZGRJjQ01HTp0sXMmzfPpT8WpEGDBuaGG24w2dnZzm0XL140NWrUMJLMggULnNutnrtr1qxpOnTokCevw4cPG0lm7NixVxRb3L7g6b4EAADswcoPAADg17Zv3y7p91/Ybt26VVu3blVqaqo6d+6sF198Md9fYv7yyy+F3jLE4XAoODhYCxYs0MWLF9W7d28dPXq0wLyTk5N1/vx5bdiwwWP1fPHFF3XdddfpiSeecK5wycrKUvXq1RUREeG8TYnVOHds3bpV0u8rSi69JVdISIiuv/56/fLLL0WmUbZsWQ0YMEAff/yxjhw5ovHjx2v//v3q2LGjEhMTCyzXzTffrKlTp+quu+7SH/7wBw0YMECbNm1SxYoV9Ze//MVS+Rs2bKiQkBDn3+TJkyVJ58+f1yeffKLu3burdOnSLu11xx136Pz589qyZYsznQcffFC//PKLPvjgA0m//yJ+3rx5+sMf/qCaNWtaKotd7r33Xpd/9+7dW8HBwVq3bp1z22233abZs2fr5Zdf1pYtW/L9lX1RLv9lvzttlpWVpbFjx+qmm25SaGiogoODFRoaqu+++07ffvttnrwuXwlVu3ZtORwOl9uJBQcH6/rrr9dPP/1kuQ5W2irXpc8Nkn7/Rfn58+d17NgxnT17Vl988YV69uypMmXKOGOCgoKUnJysQ4cO5bui5VJXkkZhZcp1pfu6TZs2+uGHH7R//36dP39eGzduVMeOHdWqVSutXr1a0u+rQcLCwtS8eXPn+5YuXWp51Yfk3j4oTp/L5am+9MADD+jcuXMuK3TeeecdhYWFufWw7d69e+uRRx7RU089pZdfflnPPvus2rVrZ/n9l3vssce0cuVKvf/++y4rty61a9cuJSQk6M4779Qvv/yiv//97zp69Kg+/PBD3XvvvS79sSCPP/649u3bp8cee0w///yzDh48qD//+c/ONixV6n9fP7hz7nY4HAXmeflr7sRKxe8LnupLAADAHkx+AAAAv5b7wPFu3bqpUaNGatSokTp06KBFixYpKChIs2bNyvOeqKgozZo1q8i/3C/h7rzzTpUrVy7fvMPDw/X2228rOTlZzzzzjPOLcTulpaXpq6++0n//+1+FhYW5fJEfEhKic+fOqWzZspbj3LVt2zaFhITkuc+69PutjSpXruxWeqdOndLJkyeVkZEhY4zKli2b5zYmhSlbtqy6dOmiXbt26dy5c5Kk8uXLKyIiIt8vnxYsWKCtW7fm2Te//vqrsrKyNG3atDxtdccdd0iSy8ROz549FRMT47ztzUcffaSjR48W60HnufUu6D7/WVlZ+d4GLSEhIU865cqVc7nN0eLFi9WvXz+9+eabatq0qeLi4nT//fcrLS3Ncvkuv4WYO202bNgwvfDCC7rrrrv04Ycf6osvvtDWrVtVv35953671OW36gkNDVXp0qUVHh6eZ/v58+ct18FKW+W6/DjPvZ3PuXPnlJ6eLmNMvrdVy32OTGG3mZJ0RWkUVqZcV7qvc29ltWbNGm3cuFEXL15U69at1bZtW+ezLdasWaNmzZopIiJCkvTll1/qwIEDbk1+uLMPitPncnmqL9WpU0e33nqr8xyQnZ2tefPm6c4777R0q6lLPfDAA7p48aKCg4M1ZMgQt957qZdfflkzZ87UG2+8oY4dOxYYFxISopiYGGVnZysjI0MZGRlu3wbxgQce0Pjx4zV37lxde+21qlKlivbs2aMRI0ZIkipVqlTo+/M7dxfUD06cOCHJdV+6E5uruH3BU30JAADYw/pVJAAAQAm0Y8cO1atXL8990kNCQhQUFJTvl6xhYWF66KGHCk135cqVWrFihXr27KmFCxfm++X8jh07VL9+fQUHB2vWrFnOB/Ju3Lgx3wewX6mDBw9K+v0h7Jf++vpS1113nb7//ntLce7atm2bypcvn+fLni+++EI//PCDXnjhhSLTOHjwoN5//30tWrRIW7duVaVKlXT33Xdr1qxZatSokdtlMsZI+t8vfYOCgtS6dWutWrVKR44ccfkCNff+9Zc/BDg2Ntb5i/tHH30033yqV6/u/P+IiAj16dNHs2bN0pEjR/T2228rKioq30khq+Lj4yVJP//8s/P/L63jkSNH8m2ftLQ0ly8as7Ky9Ouvv7p8UV6+fHlNnTpVU6dO1YEDB/TBBx/omWee0bFjx5SammqpfJf/ktqdNps3b57uv/9+jR071uX1X3755Yom4a6UlbayIjY2VqVKlcr3oc65z8coX768x9PIz5Xu62uvvVY33HCD1qxZo2rVqqlRo0YqW7as2rRpo8GDB+uLL77Qli1bXJ6rsWTJEt1www2qW7eu5fK5sw+K0+euhgEDBmjw4MH69ttv9cMPP+jIkSMaMGCAW2mcPXtWycnJuuGGG3T06FE99NBD+te//uV2WWbPnq0XXnhBo0aNcj5DpCC1a9fWDz/8oM2bN2vBggUaP368hg8frmbNmunuu+9Wz54980xS5efpp5/W0KFD9d133ykqKkpVq1bVoEGDFBkZqYYNGxb5/svP3fXq1dPChQuVlZXl8jmb+/yQS/uZO7EAACAwsPIDAAD4rYyMDP3www/5TjT861//0vnz5/XHP/7xitKeOHGiunbtWuDER27eubcYCQsL07JlyxQXF6du3bq59ev6ouT+8tThcDhXt1z+FxsbaznOXdu2bdPx48d18uRJ57bs7Gw9/fTTqlatWoG3ezl9+rSmTZum5s2bq2rVqhozZowaNGigtWvX6sCBA5o8efIVTXykp6drxYoVatCggcuEzMiRI5Wdna0///nPlm77U7p0abVq1UpfffWVkpKS8m2vy7+cffDBB5Wdna2JEyfqo48+0j333KPSpUu7XYdcrVu3lsPhyPdB16mpqTp16pTLg6ZzzZ8/3+Xf7733nrKystSyZct886lSpYoee+wxtWvXTjt27HBuz28VQWHcaTOHw5Hn4cgrV67Uzz//bCkvu7jbVgWJjIxU48aNtXTpUpf2ysnJ0bx585wTCVLB7epOGleqoH1dkLZt22rt2rVavXq189ZLN9xwg6pUqaIXX3xRFy9edOmDS5YscWvVh1S8fXAlx6kn9enTR+Hh4Zo9e7Zmz56tSpUqqX379i4xRR1Xf/7zn3XgwAEtXbpUb731lj744AO9+uqrbpUjNTVVAwcO1AMPPKCUlBTL72vatKmmTZumw4cPKzU1Vdddd52ee+45VapUSa1bt9Ybb7xR5PkgLCxMdevWVdWqVXXgwAEtXrxYAwcOdK4OKkh+5+7u3bvrzJkzWrJkiUvsnDlzlJiYqMaNGzu3uRMLAAACAys/AACA39qxY4eMMYqMjHTe8z09PV2bNm3Sq6++qqSkJOftONz14YcfKiIiosDbMeXmfekvXRMSEvSvf/1LzZs3V7du3bR+/foivwyy4rrrrlOrVq30/PPP68yZM2rcuLFzVcC6devUr18/tWzZ0nLcpRwOh1q0aKFPP/0037z379+vX3/9VVWqVFGvXr00fPhwnT9/Xn//+9+1fft2ffrppwoNDc33vdu3b9czzzyjbt26afny5erUqVO+t3AqTN++fVWlShU1atRI5cuX13fffafJkyfr6NGjmj17tktss2bN9Nprr+nxxx/XLbfcoocfflh16tRx/tI+9wuz6Oho53v+9re/qXnz5vrDH/6gRx55RNWqVdPp06f1/fff68MPP9TatWtd8mjUqJGSkpI0depUGWMKveVVUW0r/b5vH3vsMU2cOFEnT57UHXfcoYiICG3dulXjx49Xo0aN8p1cWrp0qYKDg9WuXTt98803euGFF1S/fn317t1b0u+Tc61atVLfvn114403Kioqyvk8nB49ejjTqVevnrMd+vXrp5CQENWqVavA8rrTZl26dNHs2bN14403KikpSdu3b9fEiRN17bXXFpq+3YpqK3eMGzdO7dq1U6tWrTRixAiFhoZqxowZ2r17txYuXOjya3Ypb7tGRUVZTsMqq/u6IG3atNGMGTP0yy+/aOrUqS7b33nnHcXGxjrPczt37tR///tftyc/irsP3D1OPals2bLq3r27Zs+erZMnT2rEiBEuz7qQCt//b775pubNm6d33nlHderUUZ06dfTYY4/p6aefVrNmzXTbbbcVWYb9+/erV69eqlGjhgYMGJDnmSc333xznonHywUFBal9+/Zq3769Zs6cqZUrV2rBggUaOnSoGjdunO+PCnbv3q0lS5aoUaNGCgsL09dff63x48erZs2a+utf/+oSa/Xc3alTJ7Vr106PPPKITp06peuvv14LFy5Uamqq5s2b57Kq051YAAAQILz0oHUAAACPmzRpkpHk8hcZGWluvvlmM2bMGHP27FmP571jx448r73//vvG4XCYXr16mZycHFvyy8jIMCNHjjQ33HCDCQ8PN7GxsaZ+/frm8ccfN+np6W7HGWPM6dOnjSRzzz33FJjve++9ZySZTZs2meTkZBMdHW2ioqLMnXfeafbs2VNkmc+cOVOcaptx48aZBg0amJiYGBMUFGSuueYa0717d/Pll18W+J6dO3eaAQMGmOrVq5uwsDATHh5urr/+enP//febTz75JE/8/v37zQMPPGAqVapkQkJCzDXXXGNuv/128/LLL+eb/t/+9jcjydx0000FlsFK2+bKyckxr7/+umnUqJEpXbq0CQ0NNTVr1jRPP/20OX36tEtsSkqKkWS2b99uunbtasqUKWOioqJMnz59zNGjR51x58+fN3/+859NUlKSiY6ONhEREaZWrVomJSUlz3ExcuRIk5iYaEqVKmUkmXXr1jnzOX78eL5lttJm6enp5sEHHzQVKlQwpUuXNs2bNzefffaZadGihWnRokWeOl2eV79+/UxkZGSevFu0aGHq1KlTZLtabavCyvDOO+8YSWb//v3ObZ999plp3bq1iYyMNBEREaZJkybmww8/zJN/fu3qThpWy+TOvs5Penq6KVWqlImMjDSZmZnO7fPnzzeSTI8ePZzbnn/+eVO1atUi07y8DsXZB7ms9DlP9aXLrVq1yvmZs2/fvnxj8tv/u3btMhEREaZfv34usefPnzcNGzY01apVy3Oezs+6devyfPZd+ndpf3VXYeftvXv3mj/+8Y8mLi7OhIaGmuuvv948//zz+ca7c+4+ffq0GTJkiElISDChoaEmKSnJLFy4MN8yWI0tbl+4Wn0JAAAUj8OY/39TTQAAAOASH330kbp06aKvv/7a+Uvly/3lL3/RjBkzlJGRwa9q3WClba/EqFGjNHr0aB0/fvyKng0RSGgr+910003q1KmTJk+e7O2iAAAAANz2CgAAAPlbt26d7rnnnkK/nN+2bZtuueUWJj7cZKVtgZJmz5493i4CAAAA4MTkBwAAAPI1ceLEQl83xmjHjh164IEHrlKJ/EdRbQvAt2RlZRX6eqlSpfI82yMQygIAAODLuO0VAAAAAAAF+PHHH1W9evVCY1JSUjRq1KiAKgsAAICvY/IDAAAAAIACZGZmateuXYXGJCYmKjExMaDKAgAA4OuY/AAAAAAAAAAAAH6FG4ECAAAAAAAAAAC/wuQHAAAAAAAAAADwK0x+AAAAAAAAAAAAv8LkBwAAAAAAAAAA8CtMfgAAAAAAAAAAAL/C5AcAAAAAAAAAAPArTH4AAAAAAAAAAAC/wuQHAAAAAAAAAADwK0x+AAAAAAAAAAAAv8LkBwAAAAAAAAAA8CtMfgAAAAAAAAAAAL/C5AcAAAAAAAAAAPArTH4AAAAAAAAAAAC/wuQHAAAAAAAAAADwK0x+AAAAAAAAAAAAv8LkBwAAAAAAAAAA8CtMfgAAAAAAAAAAAL/C5AcAAAAAAAAAAPArTH4AAAAAAAAAAAC/wuQHAJ+yePFi1alTRxEREXI4HNq5c6e3i5SvUaNGyeFweLsYPqN///6qVq2at4vhcR999JFGjRple7qzZ8+Ww+HQjz/+aHvakrRnzx6NGjXKY+kDAAB4g6fHUDNmzNDs2bM9knZJVq1aNfXv39/bxfA4T+1/T187eeqaBQBKIiY/APiM48ePKzk5Wdddd51SU1O1efNm3XDDDd4uFuD00UcfafTo0d4uhtv27Nmj0aNHM/kBAADgBiY/AltJ3f8l9ZoFADyByQ8APmPfvn26ePGi7rvvPrVo0UJNmjRR6dKlvV0sv/Lbb795uwglUqC1W6DV91Lnzp2TMcbbxQAAACgWY4zOnTvn7WKUSIE0Fg70fhJI+xoIVEx+APAJ/fv3V/PmzSVJd999txwOh1q2bOl8/YMPPlDTpk1VunRpRUVFqV27dtq8eXOeNPJbPpzfLaocDocee+wxzZ07V7Vr11bp0qVVv359rVixIs/7V65cqQYNGigsLEzVq1fXpEmT3KrbmjVr1KZNG0VHR6t06dJq1qyZPvnkk3zL+M0336hPnz6KiYlRfHy8HnjgAWVkZLjEGmM0Y8YMNWjQQBEREYqNjVXPnj31ww8/uMS1bNlSdevW1YYNG3T77berdOnSeuCBByRJhw4dUs+ePRUVFaWyZcvq3nvv1datW+VwOJy/bpo7d64cDkeedpakl156SSEhITp8+HCB9T5//rxGjhyp6tWrKzQ0VJUqVdKjjz6qkydPusStXbtWLVu2VLly5RQREaEqVaroT3/6k8tA9PXXX1f9+vVVpkwZRUVF6cYbb9Szzz5baLvfeuut6ty5s8u2evXqyeFwaOvWrc5tS5culcPh0H/+8x9J/9sXO3bsUM+ePRUbG6vrrrtO/fv312uvvSbp9/6T+1fUagor+7+47/2///s/9enTR/Hx8QoLC1OVKlV0//3368KFC5o9e7Z69eolSWrVqpWz3Ln7ubB+cuDAAd13332qUKGCwsLCVLt2bU2ePFk5OTnOvH/88Uc5HA5NmjRJU6ZMUfXq1VWmTBk1bdpUW7ZssVTPtLQ0DRo0SNdee61CQ0NVvXp1jR49WllZWVecz7Zt29StWzfFxcUpPDxcN998s9577z2XmNxbZaxatUoPPPCArrnmGpUuXVoXLlyQMUZjx45V1apVFR4erkaNGmn16tVq2bKl89x05swZlS1bVoMGDcqT/48//qigoCBNnDjRUhsAAAD7vP3226pfv77Cw8MVFxen7t2769tvv3WJ+eGHH3TPPfcoMTFRYWFhio+PV5s2bZy33a1WrZq++eYbrV+/3jl+KupWRe6O07du3ao//OEPKl26tGrUqKHx48e7jLMk6dSpUxoxYoTLmHro0KE6e/asS1zu9c3MmTNVu3ZthYWFac6cOZKkjRs3qmnTpgoPD1elSpX0wgsv6M0333QZyz744IOKi4vL98vg1q1bq06dOoXW3cq4USp6XP/bb78565u7/xo1aqSFCxcWmPepU6cUHBzsMu765ZdfVKpUKcXExLiMKYcMGaJrrrnG+WOXgsbCntz/xX1vamqq2rRpo5iYGJUuXVq1a9fWuHHjJKnIa5ai+kmbNm0UFRWl0qVL6/bbb9fKlStd8s4dP69bt06PPPKIypcvr3LlyqlHjx6FXhteyp1xutV8Fi9erKZNmyoyMlJlypRRhw4d9NVXX7nE9O/fX2XKlNF//vMftW/fXlFRUWrTpo0k6eTJk85joEyZMurcubN++OEHORwO5y3EPvvsMzkcjnz74rvvvpvnOhOAjzAA4AO+//5789prrxlJZuzYsWbz5s3mm2++McYYM3/+fCPJtG/f3ixfvtwsXrzYNGzY0ISGhprPPvvMmUa/fv1M1apV86SdkpJiLj/dSTLVqlUzt912m3nvvffMRx99ZFq2bGmCg4PNf//7X2fcmjVrTFBQkGnevLlZunSpef/9982tt95qqlSpkifN/MydO9c4HA5z1113maVLl5oPP/zQdOnSxQQFBZk1a9bkKWOtWrXMiy++aFavXm2mTJliwsLCzIABA1zSHDhwoAkJCTHDhw83qampZsGCBebGG2808fHxJi0tzRnXokULExcXZypXrmymTZtm1q1bZ9avX2/OnDljrr/+ehMXF2dee+018/HHH5snn3zSVK9e3Ugy77zzjjHGmAsXLpiEhARz7733uuR/8eJFk5iYaHr16lVg2+fk5JgOHTqY4OBg88ILL5hVq1aZSZMmmcjISHPzzTeb8+fPG2OM2b9/vwkPDzft2rUzy5cvN59++qmZP3++SU5ONunp6cYYYxYuXGgkmccff9ysWrXKrFmzxsycOdMMGTKk0LZ/5plnTJkyZUxmZqYxxpi0tDQjyURERJgxY8Y44x555BETHx+fZ19UrVrVPP3002b16tVm+fLl5vvvvzc9e/Y0kszmzZudf7l1yY/V/f/OO+8YSWb//v1uv3fnzp2mTJkyplq1ambmzJnmk08+MfPmzTO9e/c2p06dMseOHTNjx441ksxrr73mLPexY8eMMQX3k2PHjplKlSqZa665xsycOdOkpqaaxx57zEgyjzzyiDP//fv3O4+njh07muXLl5vly5ebevXqmdjYWHPy5MlC99ORI0dM5cqVTdWqVc0bb7xh1qxZY/7617+asLAw079//yvKZ+3atSY0NNT84Q9/MIsXLzapqammf//+Lv370navVKmSefjhh82///1v889//tNkZWWZkSNHGknm4YcfNqmpqWbWrFmmSpUqpmLFiqZFixbONJ588kkTGRmZp55PPfWUCQ8PN7/88kuh9QcAAFcuvzFU7rinT58+ZuXKlebdd981NWrUMDExMWbfvn3OuFq1apnrr7/ezJ0716xfv94sWbLEDB8+3Kxbt84YY8yOHTtMjRo1zM033+wcP+3YsaPQ8rgzTi9XrpypWbOmmTlzplm9erUZPHiwkWTmzJnjjDt79qxp0KCBKV++vJkyZYpZs2aN+dvf/mZiYmJM69atTU5OjjM2d0yTlJRkFixYYNauXWt2795tvv76axMeHm6SkpLMokWLzAcffGDuuOMOU61aNZe2+/rrr40kM2vWLJc6ffPNN85xZK6qVauafv36Of9tddxoZVw/aNAgU7p0aTNlyhSzbt06s2LFCjN+/Hgzbdq0Qtu+SZMmpn379s5/L1q0yISHhxuHw2E+//xz5/batWub3r17u+yL/MbCntz/+V23Wn3vm2++aRwOh2nZsqVZsGCBWbNmjZkxY4YZPHiwMcYUec1SUD/59NNPTUhIiGnYsKFZvHixWb58uWnfvr1xOBxm0aJFzvxzj7kaNWqYxx9/3Hz88cfmzTffNLGxsaZVq1aFto8x7o/TreQzZswY43A4zAMPPGBWrFhhli5dapo2bWoiIyOd3ynktntISIipVq2aGTdunPnkk0/Mxx9/bLKzs03z5s1NeHi4GT9+vFm1apUZPXq0qVmzppFkUlJSnGncfPPNplmzZnnqdeutt5pbb721yPoDuPqY/ADgM9atW2ckmffff9+5LTs72yQmJpp69eqZ7Oxs5/bTp0+bChUqmNtvv925zd3Jj/j4eHPq1CnntrS0NFOqVCkzbtw457bGjRubxMREc+7cOee2U6dOmbi4uCInP86ePWvi4uJM165dXbZnZ2eb+vXrm9tuuy1PGSdMmOASO3jwYBMeHu68sNm8ebORZCZPnuwSd/DgQRMREWH+8pe/OLe1aNHCSDKffPKJS2zuJNO///1vl+2DBg3KM+hMSUkxoaGh5ujRo85tixcvNpLM+vXrndsub/vU1NR865P73n/84x/GGGP++c9/Gklm586dpiCPPfaYKVu2bIGvF2TNmjVGktmwYYMxxph58+aZqKgoM3jwYJcBc82aNU3fvn1d6izJvPjii3nSfPTRRy1Nehnj3v6//MLdnfe2bt3alC1b1jmZkZ/333/fSHJezF+qoH7yzDPPGEnmiy++cNn+yCOPGIfDYfbu3WuM+d+kRL169UxWVpYz7ssvvzSSzMKFCwsslzG/97syZcqYn376yWX7pEmTjCTnBYs7+dx4443m5ptvNhcvXnRJs0uXLqZixYrOc0luu99///0ucSdOnDBhYWHm7rvvdtmee/xdOvnx3//+15QqVcq8+uqrzm3nzp0z5cqVyzNxCQAA7HX5GCo9Pd1ERESYO+64wyXuwIEDJiwszDnm++WXX4wkM3Xq1ELTr1OnjsvnfmGuZJx++TjrpptuMh06dHD+e9y4caZUqVJm69atLnG5Y+iPPvrIuU2SiYmJMSdOnHCJ7dWrl4mMjDTHjx93bsvOzjY33XRTnomjFi1amAYNGri8/5FHHjHR0dHm9OnTzm2XT35YHTdaGdfXrVvX3HXXXYXG5Of55583ERERzi/5H3roIdOxY0eTlJRkRo8ebYwx5ueff3a5Fsmtc35jYWM8t/8vv3ay+t7Tp0+b6Oho07x5c5eJr8sVds1SUD9p0qSJqVChgst+zsrKMnXr1jXXXnutM7/cYy53siXXhAkTjCRz5MiRAstljPvj9KLyOXDggAkODjaPP/64S9zp06dNQkKCy0RXv379jCTz9ttvu8SuXLnSSDKvv/66y/Zx48blmfzILddXX33l3JZ7PXLpxCUA38FtrwD4tL179+rw4cNKTk5WqVL/O2WVKVNGf/rTn7Rly5Yrvk9nq1atFBUV5fx3fHy8KlSooJ9++kmSdPbsWW3dulU9evRQeHi4My4qKkpdu3YtMv1NmzbpxIkT6tevn7Kyspx/OTk56tixo7Zu3ZpnuXq3bt1c/p2UlKTz58/r2LFjkqQVK1bI4XDovvvuc0kzISFB9evX16effury/tjYWLVu3dpl2/r16xUVFaWOHTu6bO/Tp0+eOjzyyCOSpFmzZjm3TZ8+XfXq1dMf//jHAuu+du1aSb8vLb5Ur169FBkZ6bx1U4MGDRQaGqqHH35Yc+bMyXdZ92233aaTJ0+qT58++te//qVffvmlwHwv1axZM4WHh2vNmjWS5LxlUceOHbVp0yb99ttvOnjwoL777ju1bds2z/v/9Kc/WcqnIFey/91972+//ab169erd+/euuaaa664rPn1k7Vr1+qmm27Sbbfd5rK9f//+MsY493Guzp07KygoyPnvpKQkSXIeTwVZsWKFWrVqpcTERJe6durUSdLv/dWdfL7//nv93//9n+69915Jcknzjjvu0JEjR7R3716XNC/f11u2bNGFCxfUu3dvl+1NmjTJc7uDGjVqqEuXLpoxY4bz9gkLFizQr7/+qscee6zQugMAAHtt3rxZ586dyzMGrVy5slq3bu0cg8bFxem6667TxIkTNWXKFH311Vd5bs/kLnfH6QkJCXnGWUlJSS5jpxUrVqhu3bpq0KCBS5odOnSQw+HIk2br1q0VGxvrsm39+vVq3bq1ypcv79xWqlSpPOMcSXriiSe0c+dOff7555J+v53U3Llz1a9fP5UpU6bAulsdN1oZ1992223697//rWeeeUaffvqp5edRtGnTRufOndOmTZsk/X772Hbt2qlt27ZavXq1c5ukPGP//MbC7nJ3/1/Jezdt2qRTp05p8ODBeW7r7I7L+8nZs2f1xRdfqGfPni77OSgoSMnJyTp06FCe8XN+161S4WP/KxmnF5XPxx9/rKysLN1///0u6YWHh6tFixb5tvvlY//c643Lj4n8ro/79OmjChUqOG8tJknTpk3TNddco7vvvrvAugPwHiY/APi0X3/9VZJUsWLFPK8lJiYqJydH6enpV5R2uXLl8mwLCwtzDrDT09OVk5OjhISEPHH5bbvc0aNHJUk9e/ZUSEiIy98rr7wiY4xOnDhRaJnCwsIkyVmmo0ePyhij+Pj4PGlu2bIlzwVEfu3266+/Kj4+Ps/2grbdfffdeuONN5Sdna1du3bps88+K/JL3V9//VXBwcF5vpB3OBxKSEhw7tfrrrtOa9asUYUKFfToo4/quuuu03XXXae//e1vzvckJyfr7bff1k8//aQ//elPqlChgho3buy8iClIeHi4mjVr5rzI+eSTT9SuXTu1bNlS2dnZ+uyzz5xp5Df5kV/bueNK9r+7701PT1d2drauvfbaYpW1oH5S0HGX+/qliuq7BTl69Kg+/PDDPPXMva/05X3ayjEiSSNGjMiT5uDBg/NN8/J65tbN6nHyxBNP6LvvvnP2p9dee01NmzbVLbfcUmjdAQCAvYq6dsh93eFw6JNPPlGHDh00YcIE3XLLLbrmmms0ZMgQnT59+orydnecXtS1SG6au3btypNeVFSUjDG2j/3vvPNOVatWzfnF7uzZs3X27Fk9+uijhdbd6rjRyrj+73//u55++mktX75crVq1UlxcnO666y599913hZYh93kda9as0ffff68ff/zROfnxxRdf6MyZM1qzZo1q1Kih6tWru7y3uON+yf39fyXvPX78uCTZPvZPT0+XMcbjY/8rGadbHfvfeuutedJcvHhxnvRKly6t6Ohol225165xcXEu2/M7RsLCwjRo0CAtWLBAJ0+e1PHjx/Xee+/poYcecpYNgG8J9nYBAKAwuYOdI0eO5Hnt8OHDKlWqlPNXK+Hh4bpw4UKeOKsrBS4XGxsrh8OhtLS0PK/lt+1yub+umjZtmpo0aZJvTH4DqqLSdDgc+uyzz/IdXF2+Lb9fBJUrV05ffvllnu0F1emJJ57Q3Llz9a9//UupqanOB6QXply5csrKytLx48ddJkCMMUpLS9Ott97q3PaHP/xBf/jDH5Sdna1t27Zp2rRpGjp0qOLj43XPPfdIkgYMGKABAwbo7Nmz2rBhg1JSUtSlSxft27dPVatWLbAcbdq00Ysvvqgvv/xShw4dUrt27RQVFaVbb71Vq1ev1uHDh3XDDTeocuXKed5bnF9TScXb/1bfm52draCgIB06dKhYZS2onxR03F1axuIqX768kpKSNGbMmHxfz73gcic9SRo5cqR69OiRb0ytWrVc/n15/XPPO7kXU5dKS0vLs/qjdevWqlu3rqZPn64yZcpox44dmjdvnlvlBgAAxVfUtcOl45eqVavqrbfekiTt27dP7733nkaNGqXMzEzNnDnT7bzdHadbTTMiIkJvv/12ga9fqqAxXUFjmsuVKlVKjz76qJ599llNnjxZM2bMUJs2bfKMnfLLw+q4sahxfWRkpEaPHq3Ro0fr6NGjzlUgXbt21f/93/8VWIbQ0FA1b95ca9as0bXXXquEhATVq1dPNWrUkCR9+umn+uSTT9SlS5c87y3uuD+3jle6/62+N/e6yu6xf2xsrEqVKuXxsf+VjNOtpvnPf/6z0OvCXAUdI1lZWTpx4oTLBEhB18ePPPKIxo8fr7ffflvnz59XVlaW/vznP7tVbgBXD5MfAHxarVq1VKlSJS1YsEAjRoxwDlbOnj2rJUuWqGnTpipdurQkqVq1ajp27JiOHj3q/FI5MzNTH3/88RXlHRkZqdtuu01Lly7VxIkTnbe+On36tD788MMi39+sWTOVLVtWe/bsse32N126dNH48eP1888/57tU3YoWLVrovffe07///W/nrYUkadGiRfnGN2zYULfffrteeeUV7d69Ww8//LAiIyMLzaNNmzaaMGGC5s2bpyeffNK5fcmSJTp79qzatGmT5z1BQUFq3LixbrzxRs2fP187duxwTn7kioyMVKdOnZSZmam77rpL33zzTaGD3LZt2+rZZ5/VCy+8oGuvvVY33nijc/sHH3ygtLQ0t25vdekvjSIiIgqNLc7+d+e9LVq00Pvvv68xY8YUeFFidRXGpdq0aaNx48Zpx44dLisY3n33XTkcDrVq1cpyWoXp0qWLPvroI1133XV5btNwJWrVqqWaNWvq66+/1tixY68ojcaNGyssLEyLFy92uTDbsmWLfvrppzyTH5I0ZMgQ/fnPf1ZGRobi4+PVq1evK60CAAC4Qk2bNlVERITmzZvn8ll86NAhrV27Vj179sz3fTfccIOef/55LVmyRDt27HBuv3wlRmHsGKfnl+bYsWNVrly5PKsVrGrRooU++ugj/fLLL86xYk5Ojt5///184x966CGNGjVK9957r/bu3atXXnmlyDyuZNxoZVwfHx+v/v376+uvv9bUqVP122+/Oa/98tO2bVuNHDlSUVFRzpXdkZGRatKkiaZNm6bDhw/nu+K7IFdr/1t97+23366YmBjNnDlT99xzT4GTNu5cs0i/t1Hjxo21dOlSTZo0yfmenJwczZs3T9dee61uuOEGt+qUHzvG6Zfr0KGDgoOD9d///veKb1vcokULTZgwQYsXL3be9lkq+Pq4YsWK6tWrl2bMmKHMzEx17dpVVapUuaK8AXgekx8AfFqpUqU0YcIE3XvvverSpYsGDRqkCxcuaOLEiTp58qTGjx/vjL377rv14osv6p577tFTTz2l8+fP6+9//7uys7OvOP+//vWv6tixo9q1a6fhw4crOztbr7zyiiIjIwu8ZVGuMmXKaNq0aerXr59OnDihnj17qkKFCjp+/Li+/vprHT9+XK+//rpb5WnWrJkefvhhDRgwQNu2bdMf//hHRUZG6siRI9q4caPq1avnMmDLT79+/fTqq6/qvvvu08svv6zrr79e//73v52TRJc+WyXXE088obvvvlsOh8O5JLkw7dq1U4cOHfT000/r1KlTatasmXbt2qWUlBTdfPPNSk5OliTNnDlTa9euVefOnVWlShWdP3/e+cu23AuTgQMHKiIiQs2aNVPFihWVlpamcePGKSYmxmUFSX4aNmyo2NhYrVq1SgMGDHBub9u2rf7617+65GNFvXr1JEmvvPKKOnXqpKCgICUlJSk0NDRPbHH2vzvvnTJlipo3b67GjRvrmWee0fXXX6+jR4/qgw8+0BtvvKGoqCjVrVtXkvSPf/xDUVFRCg8PV/Xq1fO93UKuJ598Uu+++646d+6sl156SVWrVtXKlSs1Y8YMPfLII7ZcAEnSSy+9pNWrV+v222/XkCFDVKtWLZ0/f14//vijPvroI82cOdPtpf1vvPGGOnXqpA4dOqh///6qVKmSTpw4oW+//VY7duwo8GI/V1xcnIYNG6Zx48YpNjZW3bt316FDhzR69GhVrFgx32Pkvvvu08iRI7VhwwY9//zz+fYJAADgWWXLltULL7ygZ599Vvfff7/69OmjX3/9VaNHj1Z4eLhSUlIkSbt27dJjjz2mXr16qWbNmgoNDdXatWu1a9cuPfPMM8706tWrp0WLFmnx4sWqUaOGwsPDnePBy9kxTr/c0KFDtWTJEv3xj3/Uk08+qaSkJOXk5OjAgQNatWqVhg8frsaNGxeaxnPPPacPP/xQbdq00XPPPaeIiAjNnDnT+ey5y8c1ZcuW1f3336/XX39dVatWtfSsQ6vjRivj+saNG6tLly5KSkpSbGysvv32W82dO9flR28FadOmjbKzs/XJJ59ozpw5zu1t27ZVSkqKHA6HW8/2uFr73+p7y5Qpo8mTJ+uhhx5S27ZtNXDgQMXHx+v777/X119/renTpzvLLVm7Zsk1btw4tWvXTq1atdKIESMUGhqqGTNmaPfu3Vq4cKEtq2Ok4o/TL1etWjW99NJLeu655/TDDz+oY8eOio2N1dGjR/Xll186VxIVpmPHjmrWrJmGDx+uU6dOqWHDhtq8ebPeffddSQVfH+cee++8845bZQZwlXnlMesAkI9169YZSeb999/P89ry5ctN48aNTXh4uImMjDRt2rQxn3/+eZ64jz76yDRo0MBERESYGjVqmOnTp5uUlBRz+elOknn00UfzvL9q1aqmX79+Lts++OADk5SUZEJDQ02VKlXM+PHj802zIOvXrzedO3c2cXFxJiQkxFSqVMl07tzZpZ656R0/ftzlve+8846RZPbv3++y/e233zaNGzc2kZGRJiIiwlx33XXm/vvvN9u2bXPGtGjRwtSpUyffMh04cMD06NHDlClTxkRFRZk//elP5qOPPjKSzL/+9a888RcuXDBhYWGmY8eO+abXr18/U7VqVZdt586dM08//bSpWrWqCQkJMRUrVjSPPPKISU9Pd8Zs3rzZdO/e3VStWtWEhYWZcuXKmRYtWpgPPvjAGTNnzhzTqlUrEx8fb0JDQ01iYqLp3bu32bVrV75luVz37t2NJDN//nzntszMTBMZGWlKlSrlUh5jCt4Xue3w0EMPmWuuucY4HI58983lrOz/gvazlfcaY8yePXtMr169TLly5Zz9tH///ub8+fPOmKlTp5rq1auboKAgI8m88847xpjC+8lPP/1k+vbta8qVK2dCQkJMrVq1zMSJE012drYzZv/+/UaSmThxYp73SzIpKSmFto8xxhw/ftwMGTLEVK9e3YSEhJi4uDjTsGFD89xzz5kzZ85cUT5ff/216d27t6lQoYIJCQkxCQkJpnXr1mbmzJnOmNx237p1a540c3JyzMsvv2yuvfZaExoaapKSksyKFStM/fr1Tffu3fOtR//+/U1wcLA5dOhQkXUGAADFV9AY6s0333SO32NiYsydd95pvvnmG+frR48eNf379zc33nijiYyMNGXKlDFJSUnm1VdfNVlZWc64H3/80bRv395ERUUZSXnGu/kpzjg9vzH1mTNnzPPPP29q1arlrE+9evXMk08+adLS0pxxBV3fGGPMZ599Zho3bmzCwsJMQkKCeeqpp8wrr7xiJJmTJ0/mif/000+NJDN+/Ph808vvmsnKuNHKuP6ZZ54xjRo1MrGxsSYsLMzUqFHDPPnkk+aXX37JtyyXysnJMeXLlzeSzM8//+zc/vnnnxtJ5pZbbsnznsLGwp7a//ntZ6vvNeb3a94WLVqYyMhIU7p0aXPTTTeZV155xfl6YdcsRfWT1q1bO/Nv0qSJ+fDDD11iCho/517Lr1u3rsg2Ks44vaB8li9fblq1amWio6NNWFiYqVq1qunZs6dZs2aNM6Zfv34mMjIy3zKdOHHCDBgwwJQtW9aULl3atGvXzmzZssVIMn/729/yfU+1atVM7dq1i6wvAO9yGGOM56dYAAC+buzYsXr++ed14MCBPL+0//DDD9WtWzetXLlSd9xxh5dKCHjX/v37deONNyolJUXPPvusy2uZmZmqVq2amjdvrvfee89LJQQAALCmffv2+vHHH7Vv3748rw0fPlyvv/66Dh48WOhKYcCfLViwQPfee68+//xz3X777S6v7dq1S/Xr19drr71m6c4IALyH214BQADKXRJ944036uLFi1q7dq3+/ve/67777nOZ+NizZ49++uknDR8+XA0aNHB5Rgjgz77++mstXLhQt99+u6Kjo7V3715NmDBB0dHRevDBB51xx48f1969e/XOO+/o6NGjLrfKAAAA8AXDhg3TzTffrMqVK+vEiROaP3++Vq9e7Xzge64tW7Zo3759mjFjhgYNGsTEBwLGwoUL9fPPP6tevXoqVaqUtmzZookTJ+qPf/yjy8THf//7X/3000969tlnVbFiRfXv3997hQZgCZMfABCASpcurVdffVU//vijLly4oCpVqujpp5/W888/7xI3ePBgff7557rllls0Z84c2+71Cvi6yMhIbdu2TW+99ZZOnjypmJgYtWzZUmPGjFF8fLwzbuXKlRowYIAqVqyoGTNmuDzkEwAAwBdkZ2frxRdfVFpamhwOh2666SbNnTtX9913n0tc7nM1unTpopdfftlLpQWuvqioKC1atEgvv/yyzp4965zYuPw4+Otf/6q5c+eqdu3aev/994t8Dg0A7+O2VwAAAAAAAAAAwK+U8nYBAAAAAAAAAAAA7MTkBwAAAAAAAAAA8Cs888NLcnJydPjwYUVFRXEPfQAAAPg9Y4xOnz6txMRElSrFb7BQNK6ZAABASedrY+Dz588rMzPTI2mHhoYqPDzcI2lfKSY/vOTw4cOqXLmyt4sBAAAAXFUHDx7Utdde6+1ioATgmgkAAPgLXxgDnz9/XtdEROiMh9JPSEjQ/v37fWoChMkPL4mKipL0e8ePjo6+6vnHxIyzFthzpKWwjLeKURh4jNX9nJFhbT8DJRHHAQBcOTvPoadOnVLlypWd42CgKN6+ZgIAAJ5X1HizpF+r+9IYODMzU2ckPSkpzOa0L0h6NS1NmZmZTH5AzmXb0dHRXhrIW+yEIdbKxrWIr7K2n7mYhH/jOACAK2f/OZTbF8Eq718zAQAAzyt8vOkvYwBfGgNHyvI3w5b56iSD9280BgAAAAAAAAAAYCNfnZQBAAAAAAAAAAA2Cvn/f3bKtjk9u7DyAwAAAAAAAAAA+BVWfgAAAAAAAAAAEACCZf+kgK9OMvhquXAJh2O0pThjUiyn6U6sFVbLaJXd5XOHJ9rbW0pCGe3mcOyyHGtMkgdLAl/hT8eBP52fSgLaG6B/AwAAwLOKO94s6rqN8WxgY/IDAAAAAAAAAIAAECz7n/mRZXN6dmHyAwAAAAAAAACAABBIt73igecAAAAAAAAAAMCv+OqkDAAAAAAAAAAAsFGIAue2V6z8AAAAAAAAAAAAfoWVHwAAAAAAAAAABIBAeuaHr5YLJYwxKd4ugm2s1sXhGO21vFEwY5K8XQTkw53jheOgYLRN4az2M9oRV8rh2GUpriR8FnG8AAAA+L+ixnz+MNazow6B0E6BiskPAAAAAAAAAAACQLDsf+bHRZvTswvP/AAAAAAAAAAAAH6FlR8AAAAAAAAAAAQAnvkBAAAAAAAAAAD8Sojsv+2V3enZhdteAQAAAAAAAAAAv8LKDwAAAAAAAAAAAkAgrfxg8sPLYmLGSQovNMaYFEtpORyjbSjRleUdiLy5X1AwjgN7WG1Hq20TiG0o2d+OKJzd7ch+weWMSfJ2EWxD/0ZJUtQ1E/0ZAID88RmJQMfkBwAAAAAAAAAAASCQHnjOMz8AAAAAAAAAAIBf8dVJGQAAAAAAAAAAYKNg2f+MDl+dZGDlBwAAAAAAAAAA8Cu+OikDAAAAAAAAAABsFEjP/PCZcm3YsEETJ07U9u3bdeTIES1btkx33XVXvrGDBg3SP/7xD7366qsaOnSoc/uFCxc0YsQILVy4UOfOnVObNm00Y8YMXXvttc6Y9PR0DRkyRB988IEkqVu3bpo2bZrKli3rjDlw4IAeffRRrV27VhEREerbt68mTZqk0NBQZ8x//vMfPfbYY/ryyy8VFxenQYMG6YUXXpDD4XCz5l0llSk0wuEY7WaaRTMmxfY0rbBel+6W0zQm6coKUwCrZbTaht5qa8n+uniCP7W3PykJ7VgS+rfdeZeEOtvNnc9A/6r3Lktxdn8GeoLd4xj/2s/eG+MF4vnEHwTqNVNGxkhFR0e79R4AAIoa7zDO8Q0lYT+VhDK6I0T23/bK7vTs4jO3vTp79qzq16+v6dOnFxq3fPlyffHFF0pMTMzz2tChQ7Vs2TItWrRIGzdu1JkzZ9SlSxdlZ2c7Y/r27audO3cqNTVVqamp2rlzp5KTk52vZ2dnq3Pnzjp79qw2btyoRYsWacmSJRo+fLgz5tSpU2rXrp0SExO1detWTZs2TZMmTdKUKVNsaAkAAAAAyItrJgAAAMA6n1n50alTJ3Xq1KnQmJ9//lmPPfaYPv74Y3Xu3NnltYyMDL311luaO3eu2rZtK0maN2+eKleurDVr1qhDhw769ttvlZqaqi1btqhx48aSpFmzZqlp06bau3evatWqpVWrVmnPnj06ePCg82Jh8uTJ6t+/v8aMGaPo6GjNnz9f58+f1+zZsxUWFqa6detq3759mjJlioYNG3YFqz8AAAAAoHBcMwEAAKC4fOW2V3asai6Kz6z8KEpOTo6Sk5P11FNPqU6dOnle3759uy5evKj27ds7tyUmJqpu3bratGmTJGnz5s2KiYlxDuIlqUmTJoqJiXGJqVu3rsuvpDp06KALFy5o+/btzpgWLVooLCzMJebw4cP68ccf8y3/hQsXdOrUKZc/AAAAALAL10wAAAAoKexY1VyUEjP58corryg4OFhDhgzJ9/W0tDSFhoYqNjbWZXt8fLzS0tKcMRUqVMjz3goVKrjExMfHu7weGxur0NDQQmNy/50bc7lx48YpJibG+Ve5cuWiqgwAAAAAlnHNBAAAgKIE63/P/bDr70pWfnTq1Ekvv/yyevToUWBM7qrm+fPnKyTE/SeLlIjJj+3bt+tvf/ubZs+e7fbyaGOMy3vye78dMcaYAt8rSSNHjlRGRobz7+DBg27VAwAAAAAKwjUTAAAAvO3yVbwXLly44rSKWtVsRYmY/Pjss8907NgxValSRcHBwQoODtZPP/2k4cOHq1q1apKkhIQEZWZmKj093eW9x44dc/7CKCEhQUePHs2T/vHjx11iLv8lUnp6ui5evFhozLFjxyQpz6+bcoWFhSk6OtrlDwAAAADswDUTAAAArAj20J8kVa5c2WUl77hx4664nEWtarbCZx54Xpjk5GTnA/lydejQQcnJyRowYIAkqWHDhgoJCdHq1avVu3dvSdKRI0e0e/duTZgwQZLUtGlTZWRk6Msvv9Rtt90mSfriiy+UkZGh22+/3RkzZswYHTlyRBUrVpQkrVq1SmFhYWrYsKEz5tlnn1VmZqZCQ0OdMYmJic4LC6syMupaGNQnWUrL4RjtVt7eYEyKt4vgF0rCvrbKm33CajtaLaPd6XmCt8roTp+1mncgnk+os2/yxHFljLXP/pLA7nOoP/Fm/y4Jxxbc48/XTAAAXAnGO0Uragx+NdqwJOynklBGX3Hw4EGX77ovff6bO3JXNe/YscPtVc2X8pnJjzNnzuj77793/nv//v3auXOn4uLiVKVKFZUrV84lPiQkRAkJCapVq5YkKSYmRg8++KCGDx+ucuXKKS4uTiNGjFC9evWcFwG1a9dWx44dNXDgQL3xxhuSpIcfflhdunRxptO+fXvddNNNSk5O1sSJE3XixAmNGDFCAwcOdO64vn37avTo0erfv7+effZZfffddxo7dqxefPHFYu0MAAAAACgI10wAAAAortzndNidpiTbVu9euqo5V3Z2toYPH66pU6fqxx9/tJSOz0x+bNu2Ta1atXL+e9iwYZKkfv36afbs2ZbSePXVVxUcHKzevXvr3LlzatOmjWbPnq2goCBnzPz58zVkyBC1b99ektStWzeXJ8oHBQVp5cqVGjx4sJo1a6aIiAj17dtXkyZNcsbExMRo9erVevTRR9WoUSPFxsZq2LBhzjIDAAAAgN24ZgIAAEAgsLKq2Qqfmfxo2bKl8wF4VuQ3uxMeHq5p06Zp2rRpBb4vLi5O8+bNKzTtKlWqaMWKFYXG1KtXTxs2bLBUVgAAAAAoLq6ZAAAAUFyXPqPDzjTdVdxVzZ4qFwAAAAAAAAAAKGGCZf9tr65kksGOVc2eKBcAAAAAAAAAAMAVsWNVc1GY/AAAAAAAAAAAIAB48oHnvobJjxLA4RhtKc6YFK+m6esCsc5WWW0byXr7uJOmnby5/0pC3/FWGUtC28A3eeL8ZDdP5BuIn1n+VBcAcFdR533OkQD8Dec931AS2vlq9JWS0A64Mkx+AAAAAAAAAAAQAHzlgedXQylvFwAAAAAAAAAAAMBOvjopAwAAAAAAAAAAbBQcJIU4bE7TSMq2N007sPIDAAAAAAAAAAD4FVZ+AAAAAAAAAAAQAIKDpeAAWfnhMMYYbxciEJ06dUoxMTFS2QzJEV1orDlxlQqVD4djtK3pGZNia3qS9TJazdvuOrvDE+3jLd5qx0BtQ2/V2+7jz1NpAgC8L3f8m5GRoejowse/gESfsVNR4yvGVbCKvgQA7vGl8UxuWdJKS9E2T36cMlLCb/KJel6K214BAAAAAAAAAAC/wm2vAAAAAAAAAAAIAB677ZUPYuUHAAAAAAAAAADwK6z8AAAAAAAAAAAgAIQESSE2L4kIybE3Pbuw8gMAAAAAAAAAAPgVVn4AAAAAAAAAABAIgmT/kgibnyFiFyY/vO3kbkllighKspSUwzHacrbGpNga5012l9Hu9NzZL3an6c39VxL6jq8L1Db0Vr0djl2WY42xdl62W0k49mEPb+1rT4wl7M7bn/p3INYZgHcUdR4p6nzEeQi5AqEvcDwAgP9g8gMAAAAAAAAAgEAQLPtXfvjoMz+Y/AAAAAAAAAAAIBAE0OQHDzwHAAAAAAAAAAB+hZUfAAAAAAAAAAAEAlZ+AAAAAAAAAAAAlEys/AAAAAAAAAAAIBCUkhTk7UJcHQ5jjPF2IQLRqVOnFBMTI+kZSeGFxhqTYilNh2OX5fyNSbKY5miL6dlbRqvl8ya726aksFpvqbulKOt90f6+E6j7EMVH37l6SsJnGwpHe/smb+yX3PFvRkaGoqOjbUsX/os+AwAAiromtOM7xKLGxsUZE/vSeMZZlhpStM2TH6eypZgf5BP1vBQrPwAAAAAAAAAACATBsn/lh8Pm9GzCMz8AAAAAAAAAAIBfYeUHAAAAAAAAAACBIIBWfjD5AQAAAAAAAABAIAhSwDzwnNteAQAAAAAAAAAAv8LKDz9iTJLlWIdjtAdLcnVZrYsxKbamJ3W3OT3rZbTKE/vZ/na01m+t9m9v9m37++Iuy3m7c/yj+Ow+VlEwT3y2+dO5tiTwp7p4iyfGEuwXAABQklkZHzHe8Q9X4/uOovpKUf2txPW1ALrtFSs/AAAAAAAAAACAX2HlBwAAAAAAAAAAgSBIATMrwMoPAAAAAAAAAADgVwJkjgcAAAAAAAAAgAAXJPuf+WFsTs8mrPwAAAAAAAAAAAB+hZUfAAAAAAAAAAAEgmAFzKxAgFTTd2VkjFR0dLQtaTkcoy3HGpNiS57u5m13vp5gfxmTbE7POm+2t9W87e47nqizt/q3Md7rOyWBP5137ObNz4NARBsWjmO1+NxpG9obAAAEAsYysJM719B+IYAmP7jtFQAAAAAAAAAA8CsBMscDAAAAAAAAAECAY+UHAAAAAAAAAABAyRQgczwAAAAAAAAAAAS4UpKCbE4zx+b0bMLKDwAAAAAAAAAA4FdY+QEAAAAAAAAAQCDwxDM/jM3p2YTJDy+LiRknKbzQGGNSbM/X4Rhta3qeKGNJyNvXORy7LMUZk+S1NK3uP7v7rDt5211G+qw9aMeCBWrbeKveHPuFs7vetHfhArXeAAAAsJ+Vsbe3x59FldGO8nm7jrhyTH4AAAAAAAAAABAIWPkBAAAAAAAAAAD8SpB44DkAAAAAAAAAAEBJxMoPAAAAAAAAAAACQQDd9oqVHwAAAAAAAAAAwK+w8qMEcMRZjezuRqrLLEUZk2IpzuEY7ZX03EmzJLC7HY1JKk5xrlqa1vL1/f3sif5td96ByO7jyhNKQhmt8kT/tsru9vGn/WKVJz5/7f9sC7z29qc6A4A/K+q8zvkcQEnjC+etq3FuLSoNh2NXEe/3zndlVyxI9s8K8MwPAAAAAAAAAAAAz/OZyY8NGzaoa9euSkxMlMPh0PLly52vXbx4UU8//bTq1aunyMhIJSYm6v7779fhw4dd0rhw4YIef/xxlS9fXpGRkerWrZsOHTrkEpOenq7k5GTFxMQoJiZGycnJOnnypEvMgQMH1LVrV0VGRqp8+fIaMmSIMjMzXWL+85//qEWLFoqIiFClSpX00ksvyRgfvbkZAAAAgBKPayYAAAAUW5CH/nyQz0x+nD17VvXr19f06dPzvPbbb79px44deuGFF7Rjxw4tXbpU+/btU7du3Vzihg4dqmXLlmnRokXauHGjzpw5oy5duig7O9sZ07dvX+3cuVOpqalKTU3Vzp07lZyc7Hw9OztbnTt31tmzZ7Vx40YtWrRIS5Ys0fDhw50xp06dUrt27ZSYmKitW7dq2rRpmjRpkqZMmeKBlgEAAAAArpkAAAAAd/jMMz86deqkTp065ftaTEyMVq9e7bJt2rRpuu2223TgwAFVqVJFGRkZeuuttzR37ly1bdtWkjRv3jxVrlxZa9asUYcOHfTtt98qNTVVW7ZsUePGjSVJs2bNUtOmTbV3717VqlVLq1at0p49e3Tw4EElJiZKkiZPnqz+/ftrzJgxio6O1vz583X+/HnNnj1bYWFhqlu3rvbt26cpU6Zo2LBhcjgcHmwpAAAAAIGIayYAAAAUW7B45oevy8jIkMPhUNmyZSVJ27dv18WLF9W+fXtnTGJiourWratNmzZJkjZv3qyYmBjnIF6SmjRpopiYGJeYunXrOgfxktShQwdduHBB27dvd8a0aNFCYWFhLjGHDx/Wjz/+mG95L1y4oFOnTrn8AQAAAICncM0EAACAPII99OeDSuTkx/nz5/XMM8+ob9++io6OliSlpaUpNDRUsbGxLrHx8fFKS0tzxlSoUCFPehUqVHCJiY+Pd3k9NjZWoaGhhcbk/js35nLjxo1z3jM3JiZGlStXdrfaAAAAAGAJ10wAAAAIdD46J1Owixcv6p577lFOTo5mzJhRZLwxxmVJdX7Lq+2IyX1wX0HLt0eOHKlhw4Y5/33q1CnLg3lzwlKYHI5l1gI9wJgUn07PHQ7HaEtxVsvocOyynLc36203+9vR3vRKAn+qizusHjPGJFmM85/zid35eiJvb+br6+cJd/aLVSXj87e7B9L0D4F6nofnBeI1E+ALOK8DuNqKusbwh/NSUXUo+juE4n9f6g/t6ILbXvmmixcvqnfv3tq/f79Wr17t/AWTJCUkJCgzM1Pp6eku7zl27JjzF0YJCQk6evRonnSPHz/uEnP5L5HS09N18eLFQmOOHTsmSXl+3ZQrLCxM0dHRLn8AAAAAYCeumQAAAFASbNiwQV27dlViYqIcDoeWL1/ufO3ixYt6+umnVa9ePUVGRioxMVH333+/Dh8+7FYeJWbyI3cQ/91332nNmjUqV66cy+sNGzZUSEiIy0P+jhw5ot27d+v222+XJDVt2lQZGRn68ssvnTFffPGFMjIyXGJ2796tI0eOOGNWrVqlsLAwNWzY0BmzYcMGZWZmusQkJiaqWrVqttcdAAAAAIrCNRMAAACKVEpSkM1/VzDLcPbsWdWvX1/Tp0/P89pvv/2mHTt26IUXXtCOHTu0dOlS7du3T926dXMrD5+57dWZM2f0/fffO/+9f/9+7dy5U3FxcUpMTFTPnj21Y8cOrVixQtnZ2c5fEcXFxSk0NFQxMTF68MEHNXz4cJUrV05xcXEaMWKE6tWrp7Zt20qSateurY4dO2rgwIF64403JEkPP/ywunTpolq1akmS2rdvr5tuuknJycmaOHGiTpw4oREjRmjgwIHOXx717dtXo0ePVv/+/fXss8/qu+++09ixY/Xiiy8WuIQbAAAAAIqDayYAAAD4i06dOqlTp075vhYTE+Pygx1JmjZtmm677TYdOHBAVapUsZSHz0x+bNu2Ta1atXL+O/der/369dOoUaP0wQcfSJIaNGjg8r5169apZcuWkqRXX31VwcHB6t27t86dO6c2bdpo9uzZCgoKcsbPnz9fQ4YMUfv27SVJ3bp1c5ldCgoK0sqVKzV48GA1a9ZMERER6tu3ryZNmuSMyW38Rx99VI0aNVJsbKyGDRvmcn9aAAAAALAT10wAAAAoNk888yP79/+cOnXKZXNYWJjCwsJsySIjI0MOh0Nly5a1/B6fmfxo2bKl8wF4+SnstVzh4eGaNm2apk2bVmBMXFyc5s2bV2g6VapU0YoVKwqNqVevnjZs2FBkmQAAAADADlwzAQAAwJdVrlzZ5d8pKSkaNWpUsdM9f/68nnnmGfXt29et58L5zOQHAAAAAAAAAADwIA+u/Dh48KDL5IQdqz4uXryoe+65Rzk5OZoxY4Zb72XyowRwxFmLMybFepqOXVdYmoLSG20pzp0y2s1qne0uozFJtqYnlYz2tr8d7a+L1Xa0yu4yulM+q3nb3Xc80xeXWYyzdmx583jx1jFYEo59T+wXb513rB+r3d3I2/7PDm/xp7p4S0n4PAAAAMDVFwhjtaLGrUW3QdHXI0V9Z1j8MviY3IeU252mpOjoaLdWZhTl4sWL6t27t/bv36+1a9e6nTaTHwAAAAAAAAAAwGfkTnx89913WrduncqVK+d2Gkx+AAAAAAAAAAAQCDx42yt3nDlzRt9//73z3/v379fOnTsVFxenxMRE9ezZUzt27NCKFSuUnZ2ttLQ0Sb8/ny40NNRSHkx+AAAAAAAAAACAq2bbtm1q1aqV89/Dhg2TJPXr10+jRo3SBx98IElq0KCBy/vWrVunli1bWsqDyQ8AAAAAAAAAAAJBkOyfFchy/y0tW7aUMabA1wt7zapSxU4BAAAAAAAAAADAh7DyAwAAAAAAAACAQOCJZ3746CyDjxYrkHSVVKbwkPTRllJyxKVYztWYJGtpOqzlbYz1vL3F7jpbz9f32yZQ2b1vvHm8eCtvq+m5d1x1t5jmLktxniijP/UdbykJ+8XufN07Dqx9ZnmTP31e+tMxaH2/WDvXAvANRR3bRZ2fivt+ACULx3zJYGXcxr66Op9xRX9n6PvXZ8gfkx8AAAAAAAAAAASCoP//Z3eaPohnfgAAAAAAAAAAAL/Cyg8AAAAAAAAAAAIBz/wAAAAAAAAAAAB+JYAmP7jtFQAAAAAAAAAA8CsOY4zxdiEC0alTpxQTE6OMjAxFR0cXGuvoazHRhaMt529MiqU4h8N6mpb0sZavWWBvtpL1ulhtG0+gjMXncOyyHGtMkgdLUnzuHH/e7BN2s7oPvbn/vHUceCJfXz+mSwJv7herrH/uWz+HSstszRv+z53xLyDRZwAAQMnnS+MZZ1kmStERNqd9Top5Sj5Rz0ux8gMAAAAAAAAAAPgVH70bFwAAAAAAAAAAsBXP/AAAAAAAAAAAACiZfHROBgAAAAAAAAAA2IqVHwAAAAAAAAAAACWTj87JAAAAAAAAAAAAWwX9/z+70/RBTH54WUxVSY7CY8wJi4ktSClucfLmbexN0+HYZS1wQZLtadpdl0Dl++24zI1Y6/3MTg7HaK/kW1IY45394g5vHQdW8y0JfcwTZfT1/eKe7hbztna8WG1vd+ricFg739q9r33/cwgAAADwD1bG8sUdnxeVB+N/D+C2VwAAAAAAAAAAACWTj87JAAAAAAAAAAAAWwXJ/lkBH73tFSs/AAAAAAAAAACAX2HlBwAAAAAAAAAAgYBnfgAAAAAAAAAAAJRMPjonAwAAAAAAAAAAbBUk+5/R4aPP/GDyw484HLssxxqTZHOayyznbSnfOGvlk6zXxXLejtEW802xNT130vQmu9vHbt5sQ2+2jf391tqxb/fx93vevt3H/I0/HaveOn97oi52H1ueKaNvt2NJ+PzlfAdYExMzTlJ4ga/7wzFS1PnAH+robVbOuZ5uZ/YzYB3Hi2+4Gu1cVB7F7QvWxtzdi3i98O896Y++i8kPAAAAAAAAAAACQQA988NHiwUAAAAAAAAAAGwVQJMfPPAcAAAAAAAAAAD4FR+dkwEAAAAAAAAAALYqJfsfUO6jSyx8tFgAAAAAAAAAAABXhpUfXpbxkxQdXXiMo6+1tIxJspyvwzHaYpopFtNbZjHn7tbyPWExOTdYrXNJYPf+c4+1fegt7uxnu9vH+vFif1+0vy7WzydWOBy7bE3v9zS9eRxYY/e+tloXb9bZqpKw/+w+pj1RF+/mbe249tY+LAnHgTeVhGMQyJWRMVLRRV00lXCePtaKOuYD4Vi3UkdPt1MgtDNgF46XwOHp7+t84fzvc3jmBwAAAAAAAAAAQMnko3MyAAAAAAAAAADAVqz8AAAAAAAAAAAAKJl8dE4GAAAAAAAAAADYKuj//9mdpg9i8gMAAAAAAAAAgEDAba8AAAAAAAAAAABKJh+dkwkcMTG7JZUpNMaYJNvzNSbF9jSt5Wt/XaznbW+dHY7RXsnXU2lat8xinL372pvtbTdPlNFb7eNw7LKYrzv9wff7jvV6W0vTahmtsjs9yf6+43/nxsDjzc90f0GfBXC1cL6xhnYCAN9zNc7NAXf+D5L9swI+etsrVn4AAAAAAAAAAAC/wsoPAAAAAAAAAAACAc/8AAAAAAAAAAAAKJl8dE4GAAAAAAAAAADYKkj2P6ODZ34AAAAAAAAAAAB4His/AAAAAAAAAAAIBAH0zA8fLVYg+VBSeBExSZZScjh2Wc7VGHvTNCbFYnqjLcVJ3S3GWa+L3eyvs/U0rbKatzv52l3GksAT7Whnvp5I03pdllmM885xKpWMY9Vuniift44Dd9j9GWP188UTfcwqX++L3uSJcZHdvHlc0XcAACi5ihpD8DmPkqSo/no1+ntxr9VK3DEXJPtnBbjtFQAAAAAAAAAAgOex8gMAAAAAAAAAgEDAA8+vvg0bNqhr165KTEyUw+HQ8uXLXV43xmjUqFFKTExURESEWrZsqW+++cYl5sKFC3r88cdVvnx5RUZGqlu3bjp06JBLTHp6upKTkxUTE6OYmBglJyfr5MmTLjEHDhxQ165dFRkZqfLly2vIkCHKzMx0ifnPf/6jFi1aKCIiQpUqVdJLL70kY4xt7QEAAAAAl+KaCQAAALDOZyY/zp49q/r162v69On5vj5hwgRNmTJF06dP19atW5WQkKB27drp9OnTzpihQ4dq2bJlWrRokTZu3KgzZ86oS5cuys7Odsb07dtXO3fuVGpqqlJTU7Vz504lJyc7X8/Ozlbnzp119uxZbdy4UYsWLdKSJUs0fPhwZ8ypU6fUrl07JSYmauvWrZo2bZomTZqkKVOmeKBlAAAAAIBrJgAAANgg2EN/PshnitWpUyd16tQp39eMMZo6daqee+459ejRQ5I0Z84cxcfHa8GCBRo0aJAyMjL01ltvae7cuWrbtq0kad68eapcubLWrFmjDh066Ntvv1Vqaqq2bNmixo0bS5JmzZqlpk2bau/evapVq5ZWrVqlPXv26ODBg0pMTJQkTZ48Wf3799eYMWMUHR2t+fPn6/z585o9e7bCwsJUt25d7du3T1OmTNGwYcPkcDjy1OHChQu6cOGC89+nTp2ytf0AAAAA+DeumQAAAADrfGbyozD79+9XWlqa2rdv79wWFhamFi1aaNOmTRo0aJC2b9+uixcvusQkJiaqbt262rRpkzp06KDNmzcrJibGOYiXpCZNmigmJkabNm1SrVq1tHnzZtWtW9c5iJekDh066MKFC9q+fbtatWqlzZs3q0WLFgoLC3OJGTlypH788UdVr149Tx3GjRun0aNH51O7rpLKFK+BroDDkV9ZiiPJ1tSMsTc9T7C/De3P25gUD5fk6rFaF3f2i93t48394k91scruMnr3eOnuxbyt8Vb7eOZcu8xi3tbiSkYfCzyeGEt469zoieOA/uh//PuaCSVBUecqzjsIJJ4+Hor7fitjC45Z+Iqr0ReLysOb3wF6hCdWavjoLIPP3PaqMGlpaZKk+Ph4l+3x8fHO19LS0hQaGqrY2NhCYypUqJAn/QoVKrjEXJ5PbGysQkNDC43J/XduzOVGjhypjIwM59/BgweLrjgAAAAAWMA1EwAAAODKR+dk8nf50mhjTL7LpQuLyS/ejpjcB/cVVJ6wsDCXXz0BAAAAgN24ZgIAAEChWPnhWxISEiTl/YXQsWPHnL8eSkhIUGZmptLT0wuNOXr0aJ70jx8/7hJzeT7p6em6ePFioTHHjh2TlPeXVgAAAADgaVwzAQAAwApTSjJBNv/56CyDjxbLVfXq1ZWQkKDVq1c7t2VmZmr9+vW6/fbbJUkNGzZUSEiIS8yRI0e0e/duZ0zTpk2VkZGhL7/80hnzxRdfKCMjwyVm9+7dOnLkiDNm1apVCgsLU8OGDZ0xGzZsUGZmpktMYmKiqlWrZn8DAAAAAEAhuGYCAAAAXPnM5MeZM2e0c+dO7dy5U9LvD+zbuXOnDhw4IIfDoaFDh2rs2LFatmyZdu/erf79+6t06dLq27evJCkmJkYPPvighg8frk8++URfffWV7rvvPtWrV09t27aVJNWuXVsdO3bUwIEDtWXLFm3ZskUDBw5Uly5dVKtWLUlS+/btddNNNyk5OVlfffWVPvnkE40YMUIDBw5UdHS0JKlv374KCwtT//79tXv3bi1btkxjx47VsGHDilxSDgAAAABXgmsmAAAAFFd2sGf+fJHPFGvbtm1q1aqV89/Dhg2TJPXr10+zZ8/WX/7yF507d06DBw9Wenq6GjdurFWrVikqKsr5nldffVXBwcHq3bu3zp07pzZt2mj27NkKCgpyxsyfP19DhgxR+/btJUndunXT9OnTna8HBQVp5cqVGjx4sJo1a6aIiAj17dtXkyZNcsbExMRo9erVevTRR9WoUSPFxsZq2LBhzjIDAAAAgN24ZgIAAACsc5jcp87hqjp16pRiYmIkfS6pTKGxxiRdlTLlx+HYZTFymcW47ldalAJZbR+rdbGe3miL6aVYinMnTavcydsqu+tt935xhyf2oa+zf/957zjwp/1SEpSE85O3lITPA6tKwn7x5jnCW3lbH49JVsdk3tjXuePfjIwM5+oAoDD0GQAAiqeo8WtRY0Ir49+ScA3hTb40nskty7Ejkt1FOXVKqlBRbtVzw4YNmjhxorZv364jR45o2bJluuuuu5yvG2M0evRo/eMf/3D+sOe1115TnTp1LJfLZ257BQAAAAAAAAAA/N/Zs2dVv359lxXGl5owYYKmTJmi6dOna+vWrUpISFC7du10+vRpy3n4zG2vAAAAAAAAAACA52QFOZQVZO8z2LKCjCT3bjDVqVMnderUKd/XjDGaOnWqnnvuOfXo0UOSNGfOHMXHx2vBggUaNGiQpTxY+QEAAAAAAAAAAIrl1KlTLn8XLly4onT279+vtLQ05zPoJCksLEwtWrTQpk2bLKfD5AcAAAAAAAAAAAEgOzjYI3+SVLlyZcXExDj/xo0bd0VlTEtLkyTFx8e7bI+Pj3e+ZgW3vQIAAAAAAAAAIABkBwUp2+bbXmUHGUkXdfDgQZcHnoeFhRUrXYfDtZzGmDzbCsPkBwAAAAAAAAAAKJbo6GiXyY8rlZCQIOn3FSAVK1Z0bj927Fie1SCFYfLD6z6UFF5ETJKllByOXdazjbWWpnXdLUUZY3e+7lhmMc5qGa3V2eEYbTE9yZgUy7HeYrWMVuttd3ru8PX29mbfsXv/eVNJqIvd/dsTdSkJ+9pu3uw73mpvT5x37G7HktAX7a+zO+Mnb461AOTHyjmhJJzbUPS+LO5+9HT6vsAfjoeSUIdA6Euwprj72hf6StHfdxb+fZ8v1MHX5ChI2bJ35UeOmw87L0r16tWVkJCg1atX6+abb5YkZWZmav369XrllVcsp8PkBwAAAAAAAAAAuGrOnDmj77//3vnv/fv3a+fOnYqLi1OVKlU0dOhQjR07VjVr1lTNmjU1duxYlS5dWn379rWcB5MfAAAAAAAAAAAEgCwFKcvmlR9ZV7DyY9u2bWrVqpXz38OGDZMk9evXT7Nnz9Zf/vIXnTt3ToMHD1Z6eroaN26sVatWKSoqynIeTH4AAAAAAAAAAICrpmXLljKm4EkTh8OhUaNGadSoUVecB5MfAAAAAAAAAAAEgGwFKVulbE4zx9b07GJvLQEAAAAAAAAAALyMlR8AAAAAAAAAAAQAz6z8sPcZInZh8sOvLLMemu5GrI0cDqv5dncjVe/UxSpjUryWt8Mx2vY0vVWfktGOVvuttT7rmTpbK6MxSR7I2xpv7mu7We07VuvsiWPa7jKWBN7aLyWhDd0poz/V25/qAiCvoo5xTx/bnDv8B32l+PyhjiWhDiWhjLA2Bi3uvvT2Z6Adiv5+ovDXPXEdfbmS0I6XCqTJD257BQAAAAAAAAAA/AorPwAAAAAAAAAACACs/AAAAAAAAAAAACihWPkBAAAAAAAAAEAAyFaQslj5AQAAAAAAAAAAUPKw8sPbyo6UHNGFhjgcuzyQcXdLUcYk2ZqrI85iYPpoW/OVJGNSLMU5HNbytjs9d9L0Jnfq4w3uHC9292/r6dmbr2R/v/X1fD2Rtyf6dkk4pu1m9Ri0erx44hwaiPvFE+w/trwzNvk9Te+MEUqCQKwzAAAoegzAZ3/RfKENfWE/Fbcdivt+K23g69912S1bwR545keOrenZhZUfAAAAAAAAAADAr7DyAwAAAAAAAACAAJCtUspWkM1p+iZWfgAAAAAAAAAAAL/Cyg8AAAAAAAAAAAJAtoICZuUHkx8AAAAAAAAAAASALAUpy+bJjyxbU7MPt70CAAAAAAAAAAB+hZUf3nZynKRwW5IyJsVyrCPOYpxjl8W8k6wlmD7aWpwbrNbb4bA/byvc2S/eytsTbWN3va2W0Zvt7a0+Jnmz3t29lK/9dXbrHGrx3Gh3eiWhf3uzjN4SiHV2R0loH2+ev61wr3xWz8vLLEWVhP0HFMUf+nFR5wF/qCMA38J5pfhoQ2vsvr6+EoG2r3IUbPttr3LksDU9u7DyAwAAAAAAAAAA+BVWfgAAAAAAAAAAEAAC6YHnrPwAAAAAAAAAAAB+hZUfAAAAAAAAAAAEAFZ+AAAAAAAAAAAAlFCs/AAAAAAAAAAAIABkq5QHVn4YW9OzC5MfJUGfFG+XwEbdbU/R4Rhta97GJNmarzH27z+78/ZmGT3RJ+xmd/v4V9+x93hxj93H9C7LOVtN01vpudPeVve1Z/Zh0TxxHKBgntjPJWMfWv0sWmYpyhFnLTVzwmKcR9rQ3vMO4MuKOreVjPNU8dAGgHUcL7CKvmJNUe1Q3HYs+lreyhi+8OsBu6/ZvS1LQcqyefIjy0cnP7jtFQAAAAAAAAAA8Cus/AAAAAAAAAAAIABkK1jZNk8L8MBzAAAAAAAAAACAq4CVHwAAAAAAAAAABIAcBdn+wPMcnvkBAAAAAAAAAADgeaz88LayIyVHdOExC0dbSsqxsLvlbI1JspamY5m1uDhr6VnP11qdf08zxXKstbx32ZqvR+oSazHvOIv5nrAWJ7lTH2v90WqfkKzGeY/VtrG7z3oz75JQZ6t9x3pfdO+4tpa3ve3jifb2Fm9+HlhVEo4DT+TtT/3Mnz6LrPJm3wGutuL246KOl6txnBQ3D0+3wdUoA+zhC/3Z1wVCG1g5pgOhHYorENroapz/i/8ZV/gY3cp3m0WnUfh3he58n+ALsj2w8iOblR8AAAAAAAAAAACex8oPAAAAAAAAAAACQJZKKcvmlR9ZyrE1Pbsw+QEAAAAAAAAAQADIVrCybZ4W4LZXAAAAAAAAAAAAVwErPwAAAAAAAAAACACeeeC5b972ipUfAAAAAAAAAADAr7Dyw8syfpKiowuPccSl2J6vwzHaYmR3a2Hpuyyml2QxzjrrdbGb/XWxypywNz1PtKEx1trHct6x1o4Du9tGkhwOq/3b93nreHGvDZd5rBx2Mcbe87LV9rH9uJL9dbHKEWctzlvlk6y3ozfLaJX3Piut82Z725233e3tiTqXhH4L+AqOF9rAV1j5fGFfwQr6ye+KOqb8oZ2KvtYs/vV3cdup+GPnwr+7tFK+QOgLl2LlBwAAAAAAAAAAQAnFyg8AAAAAAAAAAAJAtoKUxcoPAAAAAAAAAACAkqfETH5kZWXp+eefV/Xq1RUREaEaNWropZdeUk7O/2aVjDEaNWqUEhMTFRERoZYtW+qbb75xSefChQt6/PHHVb58eUVGRqpbt246dOiQS0x6erqSk5MVExOjmJgYJScn6+TJky4xBw4cUNeuXRUZGany5ctryJAhyszM9Fj9AQAAAKAwXDMBAACgKNkK9sifLyoxkx+vvPKKZs6cqenTp+vbb7/VhAkTNHHiRE2bNs0ZM2HCBE2ZMkXTp0/X1q1blZCQoHbt2un06dPOmKFDh2rZsmVatGiRNm7cqDNnzqhLly7Kzs52xvTt21c7d+5UamqqUlNTtXPnTiUnJztfz87OVufOnXX27Flt3LhRixYt0pIlSzR8+PCr0xgAAAAAcBmumQAAAFCUbJVyPvTcvj/fnGbwzSmZfGzevFl33nmnOnfuLEmqVq2aFi5cqG3btkn6/RdMU6dO1XPPPacePXpIkubMmaP4+HgtWLBAgwYNUkZGht566y3NnTtXbdu2lSTNmzdPlStX1po1a9ShQwd9++23Sk1N1ZYtW9S4cWNJ0qxZs9S0aVPt3btXtWrV0qpVq7Rnzx4dPHhQiYmJkqTJkyerf//+GjNmjKKjo6928wAAAAAIcFwzAQAAAP9TYiY/mjdvrpkzZ2rfvn264YYb9PXXX2vjxo2aOnWqJGn//v1KS0tT+/btne8JCwtTixYttGnTJg0aNEjbt2/XxYsXXWISExNVt25dbdq0SR06dNDmzZsVExPjHMRLUpMmTRQTE6NNmzapVq1a2rx5s+rWrescxEtShw4ddOHCBW3fvl2tWrXKU/4LFy7owoULzn+fOnVKkhTzoKSQIiqfvstaI/VJshYnSUqxFrbQYt4WOeJsTU6SZIzFutjM4RhtKc6d8llN0yqreXuzjFaZE17J9v9bZmtqnug73joOrHKv33S3GGdtvzgc1s5jxlg/h9q/D632MXfO89ZYbx97+5gnjmlvnUM9wVt18dY5XvJuGa3nbe+4yBN9zJ+OA7jPX6+ZfF1Rx50dx9HVyMPT/KEO3mZHG9HOsIs/HNMloYxFKf5+KP41ZnHL4On9YGV8XFQZ/KG/Xyp3tYbdafqiEjP58fTTTysjI0M33nijgoKClJ2drTFjxqhPnz6SpLS0NElSfHy8y/vi4+P1008/OWNCQ0MVGxubJyb3/WlpaapQoUKe/CtUqOASc3k+sbGxCg0NdcZcbty4cRo92ntfKAAAAADwb1wzAQAAAP/jmzfjysfixYs1b948LViwQDt27NCcOXM0adIkzZkzxyXO4XC4/NsYk2fb5S6PyS/+SmIuNXLkSGVkZDj/Dh48WGiZAAAAAMAdXDMBAACgKPY/78P+lSR2KTErP5566ik988wzuueeeyRJ9erV008//aRx48apX79+SkhIkPT7L4wqVqzofN+xY8ecvzhKSEhQZmam0tPTXX7JdOzYMd1+++3OmKNHj+bJ//jx4y7pfPHFFy6vp6en6+LFi3l+3ZQrLCxMYWFhV1p9AAAAACgU10wAAADA/5SYlR+//fabSpVyLW5QUJBycnIkSdWrV1dCQoJWr17tfD0zM1Pr1693DtIbNmyokJAQl5gjR45o9+7dzpimTZsqIyNDX375pTPmiy++UEZGhkvM7t27deTIEWfMqlWrFBYWpoYNG9pccwAAAAAoGtdMAAAAKEq2gpRl8x8rP4qpa9euGjNmjKpUqaI6deroq6++0pQpU/TAAw9I+n1J9dChQzV27FjVrFlTNWvW1NixY1W6dGn17dtXkhQTE6MHH3xQw4cPV7ly5RQXF6cRI0aoXr16atu2rSSpdu3a6tixowYOHKg33nhDkvTwww+rS5cuqlWrliSpffv2uummm5ScnKyJEyfqxIkTGjFihAYOHKjo6GgvtA4AAACAQMc1EwAAAPA/JWbyY9q0aXrhhRc0ePBgHTt2TImJiRo0aJBefPFFZ8xf/vIXnTt3ToMHD1Z6eroaN26sVatWKSoqyhnz6quvKjg4WL1799a5c+fUpk0bzZ49W0FB/5udmj9/voYMGaL27dtLkrp166bp06c7Xw8KCtLKlSs1ePBgNWvWTBEREerbt68mTZrkdr1CJp6So4ixf2ZqkrXEFnri4YDdLUUZY7GMFjniUqzHOmyud6z1vK1wOHZZjjXG7rx5YOTVZe148QS797XdfdHu9H5n7bxjvW3sPY+5l7fF9OKsRlrvi7afvy3W2WqfCNTzWEn4PPDWeccz5xOrllmMs3YM2n28uBsL/+Ov10wxMeMkhRf4urf7/dXI39t1tIM/1AEoKYoaY9hxPHJM42rxhWtCf+vv2QpWts3TAtnKsTU9u5SYyY+oqChNnTpVU6dOLTDG4XBo1KhRGjVqVIEx4eHhmjZtmqZNm1ZgTFxcnObNm1doeapUqaIVK1YUVWwAAAAAuCq4ZgIAAEBRPPGAcl+97VWJeeYHAAAAAAAAAACAFSVm5QcAAAAAAAAAALhy2SrlgZUfvrnGwjdLBQAAAAAAAAAAcIWKtfLj5MmT+vjjj/Xzzz/L4XCoYsWK6tChg2JjY+0qHwAAAACUaFw3AQAAwFdkKUhZNq/8sDs9u1zxyo+33npLt912m7Zs2aKcnBxlZ2dry5YtatKkid566y07ywgAAAAAJRLXTQAAAICrrKwsPf/886pevboiIiJUo0YNvfTSS8rJybE1nyte+TFhwgTt2LFDZcqUcdn+17/+VQ0bNtSDDz5Y7MIFgotPRUsh0YUHpe+ymFp36xnHJlmLSx9tKczhWGY9byvmp1iPvddqvS2W0WKdrba3MRbbWpLDYXVfW2OMtXZ0L19r7ejoay01q2W0yuGwuv/sz9tq23hiv1hP03r7WEvPWhndOQ7sz9vu/Wyd/f3bm+1tre9Y7otx1vL15v6zyu7jSrL/mC4J7WiVN9vbenrWjkHbx08KzD7h67huAgBcbXZ8zhc1pmAs4Rtt5Av7oagyeL6d3Pg+tABFXWt74hrbm7IVrGybHwWerWy34l955RXNnDlTc+bMUZ06dbRt2zYNGDBAMTExeuKJJ2wr1xXX0uFw6MyZM3kG8WfOnJHD4Sh2wQAAAACgpOO6CQAAAHC1efNm3XnnnercubMkqVq1alq4cKG2bdtmaz5XPPkxadIktWjRQnXr1lWlSpUkSYcOHdI333yjyZMn21ZAAAAAACipuG4CAACAL8lRkLJtfkZHzv9P79SpUy7bw8LCFBYWlie+efPmmjlzpvbt26cbbrhBX3/9tTZu3KipU6faWi7Lkx/Jycl64403VLp0aUlSly5d1KlTJ3355Zc6fPiwjDGqVKmSbrvtNgUF+eYDTgAAAADAk7huAgAAgC/L9sDkR256lStXdtmekpKiUaNG5Yl/+umnlZGRoRtvvFFBQUHKzs7WmDFj1KdPH1vLZXnyY8GCBZo8ebJzED9o0CCNHz9eTZs2lSQZY5SVlcUAHgAAAEDA4roJAAAAgergwYOKjv7f863zW/UhSYsXL9a8efO0YMEC1alTRzt37tTQoUOVmJiofv362VaeUlYDjTEu/164cKHS09Od/z527JiioqJsKxgAAAAAlDRcNwEAAMCXZauUc/WHfX+/TzNER0e7/BU0+fHUU0/pmWee0T333KN69eopOTlZTz75pMaNG2drXS1Pflzu8kG9JGVmZharMAAAAADgT7huAgAAAFz99ttvKlXKdWoiKChIOTk5tuZzxQ88z4/D4bAzucDwz92SytiTVmyS9dj00RbTTLE3PatWuBO8zFKUMRbr4lXW6mKVw2FvepKkPtba0SywP2tL+XpgP1tN0+Gwdhw4HLss5uzO/rN2/Fuvi91ldOP8ZJEx1tK0Wher6bnDap+wul+s19n6Odl63vYeB1Z5ZmjR3VKU1fb2xHnH7nb0J/afx+w/Vr27/6z1b3gX103u6irbrpkAABZ5d0xR1HjKF77jKaoMJaEORbEyri2qHsWt59VoJ3euHfxBloIUZPMzP7LcTK9r164aM2aMqlSpojp16uirr77SlClT9MADD9haLrdWfixYsEA7duzQxYsXJTFoBwAAAIDLcd0EAAAAFGzatGnq2bOnBg8erNq1a2vEiBEaNGiQ/vrXv9qaj+WVH82bN1dKSopOnz6tkJAQZWVl6dlnn1Xz5s11yy236JprrrG1YAAAAABQ0nDdBAAAAF+WrWBl23tDKLfTi4qK0tSpUzV16lRby3E5y6XasGGDJOm7777T9u3btWPHDm3fvl0vvPCCTp48ya+ZAAAAAAQ8rpsAAAAA3+D2FE/NmjVVs2ZN3XPPPc5t+/fv17Zt2/TVV1/ZWjgAAAAAKIm4bgIAAIAvylGQsm1+5keOzenZxZb1LdWrV1f16tXVq1cvO5IDAAAAAL/DdRMAAAC8LdsDkx92p2cXe2/uBc/ok2R/mqkp1uLSR1sKM8Zaeg6HxfQWWAr7Pc2F3S3mvcta3sZae1tNzx3W29HevK3WWZIcbuwbS+lZ7BOKtdY25oT9eVvdL5K1vmi9j1nMVm60o0XW62z/+ckRZy3O+r5eZi1fD9yFxHo7WmP9PGZvvpL1/WKVR8po+Zi2t9/affy5w+7PX6vnsd9ZO7Y8sa+t5evGZ5vDWl1KBqt18cD4EvCQjIy6io6O9nYxgGIr6vPYW5+Z7ihuHayMSUpCOwSCosZSnu7P/tAP/KEO7l0feEZR16JFfTdg5Tra7mtE+A4mPwAAAAAAAAAACABZClIpm1dqZPnoyo9S3i4AAAAAAAAAAACAnVj5AQAAAAAAAABAAPj9mR/2Tgv46jM/WPkBAAAAAAAAAAD8Cis/AAAAAAAAAAAIAL+v/LB3pQYrPwAAAAAAAAAAAK4CVn543YeSwouISbKUUuj0U5Zzzbw+2mJkd0tRDsdoL6UnGZNiLc2+1tJzOHZZzNfafrGannuxyyynaY21ukiSsb0dre0/T7Dcd6zul1irfcJa/3anbRwOq33C3mPQm/vPEWd3inYfV9Z5s73tPudJvn9Me4tbx7TF/u3O56UV1vez5M5nhze48/mrWHs/D6x/vti7/wDgShV1PvL1z1grrJxzPV1Pf2jH4tbBH9oAv2Nf+gc7zv/FTcPTn0HuXeMEhkBa+cHkBwAAAAAAAAAAASDHA5MfOT46+cFtrwAAAAAAAAAAgF9h5QcAAAAAAAAAAAEgS0Fy2LxSI4uVHwAAAAAAAAAAAJ7Hyg8AAAAAAAAAAAJAtoJUyuZpAV994DkrPwAAAAAAAAAAgF9h5Ye3lR0pOaILj1m4y1JSmalJ1vNNt5amYi2mmW4142UW47pbTdC6VHuTczhG25ugG4xJsRRntYwOh8X+IMkYi33CYt+xmrfVfN2pi+X+GGutvZVub59wry5Wjxlrdbbcx+IsZutG21jN2ypHnLX0zAk30rT5+Lf7mHaPB863FnizLp45n1hJz/7jwO7+7ZEyeul4sTyGkTxw/rYW591jHyg5YmLGSQov8HW7xw6BKBDaMBDqWBJY+UxjX0Equq/4Qz+xY4xXVDsUN4+rccwW9/129JVA6G+X+n3lh70rNVj5AQAAAAAAAAAAcBWw8gMAAAAAAAAAgAAQSCs/mPwAAAAAAAAAACAAZClIDpsnK7J8dPKD214BAAAAAAAAAAC/wsoPAAAAAAAAAAACQI6ClW3ztECOj04zsPIDAAAAAAAAAAD4Fd+ckgkkJ3dLKlN4zPwka2ndu6vYxckjfbTFwO62xhljsc6SHA5rZTQmxWJ6yyznbbs+VstocV/HWkvPnLCWnDuspmm1va3GWd3PkuSIs9bPrLeP9bztZrVPWD4O4ixmbPkc4UXpVs+N1s877vQzK6yexzzD6jnPWvvYfU52h9XjwO729kRdLLN4DDoc1pJz6xxq++evzceBB85P3trXXu1jQAAo6vxzNY5BXyhDcflDHYoSCHX0NNoIVgVCX7FSx+KOkQOhHYtipQ0DrZ2yPfDMD1994DkrPwAAAAAAAAAAgF9h5QcAAAAAAAAAAAEgW6U8sPLDN9dY+GapAAAAAAAAAAAArhArPwAAAAAAAAAACABZCpJsXvmRxTM/AAAAAAAAAAAAPI+VH97Ws64UEl14zAprSYX+Ws1ythfiisjz/3PEJVlLsKPFjFOthTkcuywmKCk2xVqafe1NT+mjLSbohoU2p5m+zFKYw+FOot0txlnL22p6xljriw6H/fvFEWetT5gTtmdtmdX2sZyexbo4HFb7g3V270NjLJ4j3MrX3n7rmTJ6h9W6WOVOna3nbe/xYpUn+phVdu+XksCdOlvdN1bjSkJ7+1Nd4P8yMkYqOtra9UtJ5Q/Hmj/UoSiBUEfYo6jP2aL6UnHfj995uh2vxn4qCfu66HFlUdc2hX9/dDXaINCOuWwFy2HztEC2j04z+GapAAAAAAAAAACArXIUpGybb1OVw22vAAAAAAAAAAAAPI+VHwAAAAAAAAAABIBsDzzw3O6VJHZh5QcAAAAAAAAAAPArrPwAAAAAAAAAACAAsPLDR/3888+67777VK5cOZUuXVoNGjTQ9u3bna8bYzRq1CglJiYqIiJCLVu21DfffOOSxoULF/T444+rfPnyioyMVLdu3XTo0CGXmPT0dCUnJysmJkYxMTFKTk7WyZMnXWIOHDigrl27KjIyUuXLl9eQIUOUmZnpsboDAAAAQFG4ZgIAAAB+V2JWfqSnp6tZs2Zq1aqV/v3vf6tChQr673//q7JlyzpjJkyYoClTpmj27Nm64YYb9PLLL6tdu3bau3evoqKiJElDhw7Vhx9+qEWLFqlcuXIaPny4unTpou3btyso6PcZqr59++rQoUNKTU2VJD388MNKTk7Whx9+KEnKzs5W586ddc0112jjxo369ddf1a9fPxljNG3aNLfqFTLxlBzRNjSQpMxyr1qOdai7xchllqJCpz9pKc5yGfukWIuTpIW7LMZZTdBanY2xVkaHY7TVjK2nGWcxwY4W4xa6U8YkS3EOh7V2tMrhsLafrbahO2kq3Vr7OBxWjytrrLb173lb34f2svdc4ok0rbaNe33HantbPV7s7d+OvpbCfk9zgbU4T7Sjv/De8Sf3Pi8tsHxe9ECa1j9X7S+j3Z+/1sto75jj97y92B/hdf56zQQEiqLO4SVhnOUPdbBDcesZKO3kaUW1Y1FjtqKuyX1hPxV37Fd0GxV/bFn0dxvWv/u4svyL3k+BNobOUikZ21d++OYaixIz+fHKK6+ocuXKeuedd5zbqlWr5vx/Y4ymTp2q5557Tj169JAkzZkzR/Hx8VqwYIEGDRqkjIwMvfXWW5o7d67atm0rSZo3b54qV66sNWvWqEOHDvr222+VmpqqLVu2qHHjxpKkWbNmqWnTptq7d69q1aqlVatWac+ePTp48KASExMlSZMnT1b//v01ZswYRUfbNJsBAAAAABZxzQQAAAD8j29OyeTjgw8+UKNGjdSrVy9VqFBBN998s2bNmuV8ff/+/UpLS1P79u2d28LCwtSiRQtt2rRJkrR9+3ZdvHjRJSYxMVF169Z1xmzevFkxMTHOQbwkNWnSRDExMS4xdevWdQ7iJalDhw66cOGCy5LyS124cEGnTp1y+QMAAAAAu3DNBAAAgKJkK9gjf76oxEx+/PDDD3r99ddVs2ZNffzxx/rzn/+sIUOG6N1335UkpaWlSZLi4+Nd3hcfH+98LS0tTaGhoYqNjS00pkKFCnnyr1ChgkvM5fnExsYqNDTUGXO5cePGOe+HGxMTo8qVK7vbBAAAAABQIK6ZAAAAUJRsBXnkzxeVmMmPnJwc3XLLLRo7dqxuvvlmDRo0SAMHDtTrr7/uEudwOFz+bYzJs+1yl8fkF38lMZcaOXKkMjIynH8HDx4stEwAAAAA4A6umQAAAID/KTGTHxUrVtRNN93ksq127do6cOCAJCkhIUGS8vyK6NixY85fHCUkJCgzM1Pp6emFxhw9ejRP/sePH3eJuTyf9PR0Xbx4Mc+vm3KFhYUpOjra5Q8AAAAA7MI1EwAAAIqS44FVHzms/CieZs2aae/evS7b9u3bp6pVq0qSqlevroSEBK1evdr5emZmptavX6/bb79dktSwYUOFhIS4xBw5ckS7d+92xjRt2lQZGRn68ssvnTFffPGFMjIyXGJ2796tI0eOOGNWrVqlsLAwNWzY0OaaAwAAAEDRuGYCAADA/2vv7sOjqs79/3+2CUmAkphgw4OgYEFFEUVQyoOKRwxQKYpt7SEpVY/aWkFEpKBybIhWOOADHqF6lGNRjwT8VZuKWCO0GgSpiBG/qFisohWrFCUhQaUJCev3BxINhNn3ZPZkZjLv13XlumTmnvW011p7Lffs2fia55xzsS6ExYYNGzRkyBAVFRXpkksu0SuvvKKrrrpKDz74oAoKCiRJc+fO1Zw5c7R48WL17t1bs2fPVllZmbZs2aIOHTpIkn7xi19oxYoVevjhh5WTk6Np06Zp586dKi8vV0rK/itUo0eP1scff6wHHnhAkvSzn/1Mxx57rJ5++mlJUn19vU477TR16tRJd9xxhyoqKnTZZZfpoosu0oIFC0z1qa6uVlZWlrSoSmoX+htNaaNsD/qrLQ3jm1EFm4yBJbaw7EJb3EJjtuby2TnXzxTneQHnnW3LV5JchS3OyzEmWGmri7VtJMnzisyxNuMCTs/YZ6PBOg6MxyW8vI3HsDLo42fjnLFtFE4fs/WdcPp30IIfL62JdewHP6at/TGWxy+cMWORCH0x6OMSdBvGUjjHL57rfWD9W1VVxTf6o6S17pnoMwCQfPzWP/G85mlJ8bDO9zsW/mX02RuO99nTl/okH8D/B4mkv8XTeuZAWbpXbdARmd8KNO191Z9rW9YZcVHPb4rPx7A34YwzzlBJSYluuukm3XrrrerZs6fuueeehkW8JE2fPl179uzRNddco8rKSg0aNEgrV65sWMRL0vz585WamqpLLrlEe/bs0XnnnaeHH364YREvSUuWLNHkyZOVl5cnSRo7dqwWLvz6/9qnpKTomWee0TXXXKOhQ4eqbdu2ys/P15133tkCLQEAAAAAh2LPBAAAAHwtYS5+SNKYMWM0ZsyYw77veZ5mzZqlWbNmHTYmIyNDCxYsCPlto5ycHD322GMhy3LMMcdoxYoVvmUGAAAAgJbCngkAAACh1CtFLuDLAjzzAwAAAAAAAAAAoAUk1J0fAAAAAAAAAACgefbf+RHsnRrxeucHFz8AAAAAAAAAAEgCXPxAy/mlJC90SO3CTFtaYfyc7i3ucVPcbfm329IrnmlLL8eWnpb0s8VJ0iRbmJdjT9LCuTDKaOR5m2yB4215u2JbnOcV2fKVJI0zxpUEGze+0BRmrbMURnsbuQprvta2CUOlLU3nbO1obxtbvuG1ta2PBT0GwxsHwbIeF6uw5rvK2NU7eLa+Y+2PgR+XMPqY+RhWBluXoOfF/Xkbz0UBn6fD4eXb4lxxdMsRBHv/Dn4dAyB6/M4hQZ+zgFiiv8eHSI9DpJ+PNP0g0kiGvhYfdfT5/wpLI/1/KP77RNbGrRcXPwAAAAAAAAAASAL1+1Lk9gV850fA6QWFB54DAAAAAAAAAIBWhTs/AAAAAAAAAABIAvV1KdpXF+ydGi7g9ILCnR8AAAAAAAAAAKBV4eIHAAAAAAAAAABJoL4uNSp/4frHP/6hn/zkJ+rYsaPatWun0047TeXl5YHWlZ+9AgAAAAAAAAAALaKyslJDhw7Vueeeq2effVa5ubl67733dOSRRwaaj+ecc4GmCJPq6mplZWXpiaphap8Z+hrUaO+/bYmO7xdAyZqp1BhXWWQKc67QnLWXbwxcusmcpkm2rb1dhT1JL8cWZ03T84x1XhJG31lhjDP3iYCPi0rMkdZ+5nm2fiuNM8ZZy2hNL5w0jcbb2sYV25Iz90XJPJdZ87YyzyVS4POJc7Y6m9vROD9JYcwngc9PUTgfhNPPTAIeV2GxjX973wl6HrPnHbRo9J2gBd3e4bR1PLfPgfVvVVWVMjMzWzx/JJ6g+ozfuIjlfHFAIpQxUrGuo2V+bA3t7CfS4xDr4xgvZUBySIS+FvmYDr2HitWa/5v89qJ+e9Ag9omRtEM8rYEPlCVj2wfyAi6Lq67Wv7r3MNfzxhtv1EsvvaQ1a9YEWo6D8bNXAAAAAAAAAAAkgfq6lKj8SfsvsHzzr6ampskyLF++XAMHDtSPfvQj5ebmqn///lq0aFHgdeXiBwAAAAAAAAAAiEj37t2VlZXV8Ddnzpwm47Zu3ar7779fvXv31nPPPaerr75akydP1qOPPhpoeXjmBwAAAAAAAAAASaCuLkXe3pRA03Rf3fmxbdu2Rj97lZ6e3mT8vn37NHDgQM2ePVuS1L9/f7311lu6//779dOf/jSwcnHnBwAAAAAAAAAAiEhmZmajv8Nd/OjSpYtOOumkRq/16dNHH374YaDl4c4PAAAAAAAAAACSgKtPlasP+LJAmOkNHTpUW7ZsafTaO++8o2OPPTbIUnHnBwAAAAAAAAAAaBnXX3+9Xn75Zc2ePVvvvvuuiouL9eCDD2rixImB5sOdHzH2w//vGaldZsiYtJ3VprRqS+35Ds+3BZcVjzLFuWJbvl5OoTHOll440nb2MMXVdvzAlmDlJlOY55XY0pOk7Ni1T+Aqi2KSrXO2NpQkz7OWcVzzChOp7H5hBBtjjf1WY2xh0eiL5vnEfPyMjONvP+u4tvWdwPui9TgrnDnKOg5sfTGcsRrvrHXxPPtxsfexcOaJIPO15x1evQ2WWNvbPkcE3x+N4yWsed6mNY0twMpvvEd7XMQ6/0QR63aIdf7xItJ2iId2jIcyJLog9lJ+xyER5sbA95QxEHE7+qxHLW0U9b7g+/+XfD5vWXP75hH8uj2m6lL2/wWdZhjOOOMMlZSU6KabbtKtt96qnj176p577lFBQUGgxeLiBwAAAAAAAAAAaDFjxozRmDHGb982Exc/AAAAAAAAAABIBnFw50dL4eIHAAAAAAAAAADJoN6T6rzg04xDPPAcAAAAAAAAAAC0Ktz5AQAAAAAAAABAMqj76i/oNOMQFz9i7ZeSfO4KqlWmLa2F9mzLckbZAiuLTGHepEJbesZso6G2l7Eds/vZ4io3Nb8wh2Ntn9KA8y2wHWdJcs52rL1SY58IuB29fHusuS6esYzmvlNiiwtjvLhiW1x6RQ9TXE2OMWNje3uesc6SvBxjO2qcLcx8XKIwDjxrmkHXJYxxlR3sWLXWOfDxJ0my9jNbe5vLaB0v5vJFo49ZGfui7MfGOVu/NfedfGN6BaawsATd3q7CWBdzH5N5LrP2MQD+ghhPjMnos8zhkR4Hvzxa4jjHQxniXUu0UbwfB0v+ka574mE8Rfs4xLqNWqYM8X+OC2aNbt8HIbFw8QMAAAAAAAAAgGSQRHd+8MwPAAAAAAAAAADQqnDnBwAAAAAAAAAAyYA7PwAAAAAAAAAAABITd34AAAAAAAAAAJAM6iTtjUKacYiLHwAAAAAAAAAAJIP6r/6CTjMOcfEjxob9fZVSM9uHjCnLH2VLbIU93+EVpaa4suLCYPO2ZStVbjIGSs71M8V5OcYEjc0t2fLVGGNcOJYWGQPHBZ615xmPTbax3uONcca+44ptcZLkhRFrUmk9Lkbm4yx5Mo7VpfON6RktMeYbS+bjYh8vnmdL0zlb+5jHVRhzo1nA7WOvc/DHJei8PfNAKDFFWcu3P++gj3Xw5wMr87EeH+zxC6+9g52/YzkOYnmsASAUvznPb+6MdK62zM2RljGcc0+0xLoMQZxTo12HlmijSPOItC8GIdp5+K13g5gTWsNxiFSk7RhEHVti/gYOh4sfAAAAAAAAAAAkAx54DgAAAAAAAAAAkJi48wMAAAAAAAAAgGTAnR8AAAAAAAAAAACJiTs/AAAAAAAAAABIBtz5AQAAAAAAAAAAkJg855yLdSGSUXV1tbKysrStoo0yM72QsVkTakxp3lI805z/tPo7TXFZqRtsCY7vZ4tbuskUlrazhy09SbW9Mk1xrsKWnldszHiSMS4clbb2Ge4+NsWVeesjKU3TsgtNYeb29ooiKEwTjOWTZG5vuxJbmLWMlfa2cc6WZuDtrXHGOGPbRCVvG+eM85js7Wg9LkHnGw3B1yXo8SfZ+5mt71j7xLkqNcWFMyfbx3Sw7ZgI4yAa7O0Ymz4WDbE4fgfWv1VVVcrMtK3fkNyC6jN+YzyWY/EAvzGZCHNppCI9TrRh8uBYx0cbRFqGeKgD/FnWjP7HOtL5PdI9j/8aPpr9LZ7WwAfKot9VSe0CLsuX1dKP4qOe38TPXgEAAAAAAAAAkAz42SsAAAAAAAAAAIDExJ0fAAAAAAAAAAAkA+78AAAAAAAAAAAASEzc+QEAAAAAAAAAQDLY+9Vf0GnGIe78AAAAAAAAAAAArQp3fsTY+JSlSk1pHzLm2eJzTWnN1QxzvmtSzjLFpe3sYYqrLTVmPKafMbDaGCelvWuL9XIybQmOMmZcuckWt8RaZ2l4/semuDKvqy3B7EJbnLXOkrTUVm/PCyPNIIVVF2tgSTMKEkJlkSksbef15iQ9z9gfA2dtm3H2JMcbx4yxLzpnS8/zbMclHPY0w2gfA+eMY1+Sl2OMM/Yxa3tHo+9Y622ti7VtXIVt4vGy7ROUte/Y62xLzyu2n7PC6WexEM6YtrdjsOcD+9wd8HlI8X/8gG/KypojKeOw7/v1Z/u5KXZiPSb95syWKF8iHCf4a4m+FGka8dDfIy1DrOeMIMoQD3VoDeKhP/vxm9/918Sh18J+dQx6Dd8q1H/1F3SacYg7PwAAAAAAAAAAQKvCnR8AAAAAAAAAACSDekl1UUgzDnHxAwAAAAAAAACAZFCn4C9+BJ1eQPjZKwAAAAAAAAAA0Kpw5wcAAAAAAAAAAMkgie78SNiLH3PmzNHNN9+s6667Tvfcc48kyTmnoqIiPfjgg6qsrNSgQYP0m9/8RieffHLD52pqajRt2jQtXbpUe/bs0Xnnnaf77rtP3bp1a4iprKzU5MmTtXz5cknS2LFjtWDBAh155JENMR9++KEmTpyo559/Xm3btlV+fr7uvPNOpaWlhVWPZ2b+UJnpoWPSb64ypVXzapY53/SBtjRrJ2XaEly6yZy3Kd8l/QJNT5JUaSzj0hJjguNMUS7fmJwkL3+UMdJYF2udS6PQ3uONaVrbO7vQmF4YfdHazyYZ4yqLbHHGutR2DKMu2bYyuopgj7Vn7N+uOIw0vWDnk6DTk2Tvj9Y+YTXelm94dbaNQeeikbeBsW+Hk7dzAY+DaPSxwPO2nbNUYK+LV2CLC7q97Yx1luTl2OLs48A29q3pSeGMg4DnHSS01rJnqqq6SZmZxn1JFPiNK7+xbBmXQaQRSfotUQc/kbZza9Aa2oAyJkYZWmJMR1qGlmijWJchiOMQ7bk3CJHnEXpdb13LIzkl5M9ebdiwQQ8++KD69Wu8EZw3b57uvvtuLVy4UBs2bFDnzp11/vnna/fu3Q0xU6ZMUUlJiZYtW6a1a9fq888/15gxY1Rf//VTWfLz8/X666+rtLRUpaWlev311zVhwoSG9+vr63XBBRfoiy++0Nq1a7Vs2TI9+eSTuuGGG6JfeQAAAADwwZ4JAAAATaqL0l8cSriLH59//rkKCgq0aNEiZWdnN7zunNM999yjmTNn6uKLL1bfvn31yCOP6Msvv1Rx8f6vHFdVVemhhx7SXXfdpREjRqh///567LHH9MYbb+hPf/qTJOntt99WaWmp/vd//1eDBw/W4MGDtWjRIq1YsUJbtmyRJK1cuVKbN2/WY489pv79+2vEiBG66667tGjRIlVXV7d8owAAAADAV9gzAQAAAAl48WPixIm64IILNGLEiEavv//++9q+fbvy8vIaXktPT9c555yjdevWSZLKy8u1d+/eRjFdu3ZV3759G2L+8pe/KCsrS4MGDWqI+e53v6usrKxGMX379lXXrl0bYkaOHKmamhqVl5c3We6amhpVV1c3+gMAAACAoLFnAgAAwGHVK/i7PuoVlxLqmR/Lli3Ta6+9pg0bNhzy3vbt2yVJnTp1avR6p06d9Pe//70hJi0trdG3nw7EHPj89u3blZube0j6ubm5jWIOzic7O1tpaWkNMQebM2eOior4DWYAAAAA0cOeCQAAANgvYe782LZtm6677jo99thjysjIOGyc53mN/u2cO+S1gx0c01R8c2K+6aabblJVVVXD37Zt20KWCQAAAADCwZ4JAAAAvnjmR/wpLy/Xjh07NGDAAKWmpio1NVWrV6/Wvffeq9TU1IZvFR38LaIdO3Y0vNe5c2fV1taqsrIyZMw///nPQ/L/9NNPG8UcnE9lZaX27t17yLebDkhPT1dmZmajPwAAAAAICnsmAAAA4GsJ87NX5513nt54441Gr11++eU68cQTNWPGDB133HHq3LmzVq1apf79+0uSamtrtXr1as2dO1eSNGDAALVp00arVq3SJZdcIkn65JNP9Oabb2revHmSpMGDB6uqqkqvvPKKzjzzTEnS+vXrVVVVpSFDhjTE3H777frkk0/UpUsXSfsf6Jeenq4BAwaEVa8Lbn9CqZntQ8bc7GWZ0vKWOHO+abL9fu6zxeea4i5c+JQ5b4vaXmEELzTGZfczhQ2v+NgUt66ihzHjMCzdZItbYquLVhjzHWOMk6RJxrytddE4W9goY3JLjXFREbu6uApbnJdvzdt6/Eps+ZYWGtMLg3FMJ0bfsbWjlhrjxofR3qW2dvS8YPuEc7YyesXGbCWpwBZmHgfGudG5oNswHMY+YbUkjL4zyRYWdN8xyw6jLpXWn9kxphlO3gbh9B3r2ELr1Fr3TH78xojfPO15oecAv3Hln3/k49K/DNH9uTBLHSJtx0jbKYh2jrQOkYqHOTzWbRAPkqENWqIO0Z6XghDrY9kS81aLlCEnss9HfI6rDP02mrBXUkoU0oxDCXPxo0OHDurbt2+j19q3b6+OHTs2vD5lyhTNnj1bvXv3Vu/evTV79my1a9dO+fn7/y9HVlaWrrjiCt1www3q2LGjcnJyNG3aNJ1yyikNDwPs06ePRo0apauuukoPPPCAJOlnP/uZxowZoxNOOEGSlJeXp5NOOkkTJkzQHXfcoYqKCk2bNk1XXXUV304CAAAAEBPsmQAAAOCrXsE/oJwHnkff9OnTtWfPHl1zzTWqrKzUoEGDtHLlSnXo0KEhZv78+UpNTdUll1yiPXv26LzzztPDDz+slJSvL3ctWbJEkydPVl5eniRp7NixWrjw69sLUlJS9Mwzz+iaa67R0KFD1bZtW+Xn5+vOO+9sucoCAAAAQJjYMwEAACBZJPTFj7Kyskb/9jxPs2bN0qxZsw77mYyMDC1YsEALFiw4bExOTo4ee+yxkHkfc8wxWrHC+ptCAAAAANDy2DMBAACgkWg8oJwHngMAAAAAAAAAAERfQt/5AQAAAAAAAAAAjOoV/J0acfrMD+78AAAAAAAAAAAArQp3fsTYFN2j9j6HYa571pSWW+mZ863OSjPFZXk32xLMzrTFLfQPkSRVFhkDJU0qNIWlvVttiisrHmXL1/jzxfajImlJP1vcJGN6xqpY6yJJrsIW5xUb62LNe+kmY2CJMU7SClsZzXUO62D7S9vZwxzr5RgDrX3C2I7O2caf54UxpjXOFmatS6k13zD6zkLrWLW1j1mlcRyY62xP0zlbna3jwNxnrXWWZO63xvnJ82x5ewWmMIXTx6xjy8paFxUEP1btfSfoeSeMvpNtTNPcb23t6HnBtiGA5go9Fv3WMUHP2bEoQ3hrteaVIR7a0U9rqIMf/2NtXIvHUKTHoTUcx0hZxrxvO1rXRc1NvxUcp5aYW6PdDkHUwTcPn76UDH2lxdVJSolCmnGIOz8AAAAAAAAAAECrwp0fAAAAAAAAAAAkg70K/paIvQGnFxAufgAAAAAAAAAAkAzqFfwDynngOQAAAAAAAAAAQPRx5wcAAAAAAAAAAMmgXsE/oDxO7/zg4keMvZq1Vhk+McNVZkrrV+5mc75zK2aY4p51F5riRhcXmuLcUZ4pzlviTHHhqC3NNMXdkj/TFHdbQZot4/G2tomKpZtMYcPdx+YkvZxRzS1N0yptZdT4fsYErXGSlhaZwryl44wJltjCSm1lrJ1k67OSpEpbXbTUmqCtzp5nzDc7CuPA2L9jynpcjJyztaP5uEiyH2tre9vGgauwjQMvJ4wxXWnLO7z2sbDOEcGzHhfnjO1tO02Hxd7eAffF7HD6TozGak6g2QJJLPT873mh3/cbs36fTwR+c7F13gqdR+j5OdI8Iq2D5XwURDvEu9ZQx9ZQh1gLog1dhV9EZHm0huPcEnWIeG/js1e31MF/fe5zHvX5/0KR7lGY/5MbFz8AAAAAAAAAAEgGdQr+YRhB30kSEJ75AQAAAAAAAAAAWhXu/AAAAAAAAAAAIBnslRT0Tx7vDTi9gHDnBwAAAAAAAAAAiIk5c+bI8zxNmTIl0HS58wMAAAAAAAAAgGRQ/9Vf0Gk204YNG/Tggw+qX79+wZXnK9z5AQAAAAAAAABAMqiL0l8zfP755yooKNCiRYuUnZ3d7CodDnd+xNhNv5cy2/sErbSllV4xw5xvzatZ5liL4fmlpjiv2AWaryTdkj/TFHdbzu22uEm2uLSd1aa42o6bTHH72a5wDq+wtXdZ8ShT3LqKHqa4sNiylpYa42xVlirDaO8lhba4gnCOoYG1jNa2kSSNM8aV2MLGW6+22+JcsTE5SV6+Le6W4sdNcbd5P7YlmG3sD5K9T4w3prm0yBTmeQH3xaiw9sUEYD5+8X9cvBxjYHYY37RZaIwrCDbvtHeN599exnwlBT2Hep5tTNuFMT8BCFvwYzZ4zkU6D0R2fra0kV8Z/dOI/zVE5MchMkEch0TgV89I69ga2qg18NvbOBf8N8ATUdT3gJWhx5sX9HMhmuB3rH3bwG8v71NHBKu6uvF+LT09Xenp6YeNnzhxoi644AKNGDFCv/71rwMvDxc/AAAAAAAAAABIBvVq9p0aIdOU1L1790YvFxYWatasWU1+ZNmyZXrttde0YcOGgAvzNS5+AAAAAAAAAACAiGzbtk2ZmZkN/z7cXR/btm3Tddddp5UrVyojIyNq5eHiBwAAAAAAAAAAyWBv9NLMzMxsdPHjcMrLy7Vjxw4NGDCg4bX6+nq9+OKLWrhwoWpqapSSkhJxsbj4AQAAAAAAAAAAWsR5552nN954o9Frl19+uU488UTNmDEjkAsfEhc/AAAAAAAAAABIDvWSjohCmmHo0KGD+vbt2+i19u3bq2PHjoe8HomgqwkAAAAAAAAAABBTnnPOxboQyai6ulpZWVkaVvWEUjPbh4x9YeVoU5pFI+35D3LDTXFD6teZ4r5d9aktvRxbejM01xQnSXM1wxR3ltaY4m7Lud0Ul/ZutSmutpf/79yFnWapMc0VxozHGOMkaZIt7NmKc01xo3NesCW40Bbm8m1xkvQrzbQHG6zRWaa4Mm+9McVx9syz+9ljLSqLbHFLCk1h4RwXzws2bxXY0hvuBtnSUzjH0CjbWBfjOLCO07CMsoWlLQx4bqzcZIuTpCXGcRBw+7gKW5y5b0tyztYn7Gla55MSY1wYaVrnJ+u8E8u6mFnztuXrXMBzfIwcWP9WVVWZfgcYSJQ+4z8X+4/1aI9zvzJazzuxziPRhbMWaC7aOT54Xug1bOsY837rdL/1kN/cGOnn/fkdh0jbsSXOD5GX0ec4Gtby1v3Q4csQ2dwY7/NePK1nDpRFo6qkNgGXZW+1VBof9fwmfvYKAAAAAAAAAIBkUCfJi0KacYifvQIAAAAAAAAAAK0Kd34AAAAAAAAAAJAMonGXBnd+AAAAAAAAAAAARB93fgAAAAAAAAAAkAzqFfwzP+oDTi8gnnPOxboQyai6ulpZWVnSD6ukNpkhY2cttfXGcWHk3+85W1z1eWmmuMw/15rizs171hRXVjzKFCdJWmGMKzXGVW6yxS3pZ0zQLm1UtSmutuMHpriqujNMcVkTakxxkqQxxrgCYzuqxBTlXKEpLr3C1oaSvR1vcY+b4m7Lv90U92zxuaa40cUvmOKkcPrOfFuCS2ztrUm2MC00ximMukwKPXce4Ipt+XrGOEn2eWdpURiJWhhn+uzg5ydV2uoy3A0yxZV5XW35jg+jLub2DueMaWBtb+v5RZJ1brTXxZhetnHsS+Y+YU7TeuoP+nwuyd7eVrbj4lwUxmocO7D+raqqUmambQ5HcmvYM+lGSRnNTse6jmwuzws9H0Y7/yC0RB388vCbO1tizvS80OeOZJu3m+J/HENrifHQGsroV4ZEmHeifRz8xuv+NKI7ZltizvByfAJ81uSR9iUbv7Wvz1o7nD1IE1xFRB+PunhaAzesrc6qklIDLktdtbQmPur5Tdz5AQAAAAAAAABAMuCZHwAAAAAAAAAAAImJOz8AAAAAAAAAAEgGSXTnBxc/AAAAAAAAAABIBnWSgn4KeJw+8JyfvQIAAAAAAAAAAK0Kd34AAAAAAAAAAJAMonGXRpze+cHFjxib/tCtSs9MDx201JZWSRj59jPGzU+tNcUV3mBL76y8Naa4GflzbQlKGvLjdaa4rMdrjCnaWidtVLUpbkaOvS63Fd9uirvFPW6Kyyo21nmMLUyShueXmuLKCrraEhxfaArzcmzJDa+w9QdJKpOxjFZLi0xhc4tnmOKsbS1JZTmjbIHG9nb5tuS8gk22QPOsI9X2yrQFGqvsebbjkrbzeluCkmoL5tsCre1dbEvOWhdV2sIkSdnWYzPOFFXmhXM2MjCeAyXJuaDnE+N859nSC+tMbew71nnHrNI6piVlG8toZZzyXIU1Qfu8k17RwxRX2/EDc5oW5jFtHH+S5Jy93kDrYR8jTbGPxaZZzz+RlMEvj3ioQ7TzaIk6+s2hsW5nz7Ocp0OvNyItQ7T7okWsx4vl835liId29BNpO0e7vwex5vFvZ7/zS+jx5vnuE/z3B/7tGOH87bemr7T0d7+506eehjxCpx/6/ZY4xyF+cfEDAAAAAAAAAIBkwDM/AAAAAAAAAAAAEhN3fgAAAAAAAAAAkAy48wMAAAAAAAAAACAxcecHAAAAAAAAAADJoE7SvoDTDDq9gHDxAwAAAAAAAACAZFCv4H/2iosfaMq19fcqs94LGfOBMa2SMPItGmmLq3c3m+Kq6+80xc2tmGGKG5KzzhQnSTNS5pri3FGh2/mA9IFVprjaSZmmuLkLbXWWpLRR1ebYQE2yh5atGGULzG5eUQ7n2YpzTXEXVjxlT9NdaIobXfyCLcHxtrCyYlvcLfkzbYGSymQ8LkuLTGHe0nG29Jb0s8UV2PKVJI0vNIWlLbSNl1rZ0qvtuMkUF5ZSW5jnWfO2HRfnjMdFkpdjDLQe60nGuEpjnbPDqItn62fO2fqEl2McV0tsYVphr4t1rFrHi8YY8y0IYxxYj+F4Y72X2tLzbKfzKLGttqx9TAqjTwBJrKrqJmVm2tbeTbGeHw7HPqabn79fHn5rhUg/71fGSNvAwm9N0hJl8BN5O/sdx9DnBdsaL7rnFv/+bNxHRJBHpH0h1p+Phzzs+49I8vDpK77rWL91l39fj3o9s0PXwVWE/rjnhfN/8g6XRmTnOL86WMZ0tNs5HuZ/JC4ufgAAAAAAAAAAkAzqFPyTwOP0zg8eeA4AAAAAAAAAAFoV7vwAAAAAAAAAACAZcOcHAAAAAAAAAABAYuLODwAAAAAAAAAAksFeJc2dH1z8iLEFKZOVnpIeMiZFswPPt/A0W9wmz5b3fGO+M9xcU9yt0+x1rp6bZos7zxY3I8VYxstsZSzNGW6Kk6Qh9etMcVk5NbYER9nChleU2gIlleXYErWmWVZsS290/gumuLSF1aY4SRrt/bcpbrgz1sXY4MPzbenNrZhhioultFG29q4dX2hP1NgdazsaZ54lxrxL+9niJN1S8bgpbo2xMusqhpjiajt+YIrz8k1h+1UWmcKezS8zxY2eZBurUokxzn5cZOxnXrExvcpNtrgCY3pLwqjLUmuc7fiZ04vCWDWX0Zq3NT2NM8ZJ9v4YTpoAWorn+c0LfmM39Bzgn37k/PJwLoz5ucnP+52DQr9vaYNIy+i/JokwfQPP8zn3Z4duJ/92TnyRHucW6UsRCmI8Rnte8itDMHNKdPuz81uTFwfRD6xrvMPwG/MVkSVv4eVEmIDPGtvvOHiefxv69sd8n75k/19STacf5XMoEhsXPwAAAAAAAAAASAb7JLmA0ww6vYAkzDM/5syZozPOOEMdOnRQbm6uLrroIm3ZsqVRjHNOs2bNUteuXdW2bVsNHz5cb731VqOYmpoaXXvttTrqqKPUvn17jR07Vh999FGjmMrKSk2YMEFZWVnKysrShAkTtGvXrkYxH374ob7//e+rffv2OuqoozR58mTV1tZGpe4AAAAA4Ic9EwAAAHzVRekvDiXMxY/Vq1dr4sSJevnll7Vq1SrV1dUpLy9PX3zxRUPMvHnzdPfdd2vhwoXasGGDOnfurPPPP1+7d+9uiJkyZYpKSkq0bNkyrV27Vp9//rnGjBmj+vr6hpj8/Hy9/vrrKi0tVWlpqV5//XVNmDCh4f36+npdcMEF+uKLL7R27VotW7ZMTz75pG644YaWaQwAAAAAOAh7JgAAAOBrCfOzV6WljX8AbvHixcrNzVV5ebnOPvtsOed0zz33aObMmbr44oslSY888og6deqk4uJi/fznP1dVVZUeeugh/d///Z9GjBghSXrsscfUvXt3/elPf9LIkSP19ttvq7S0VC+//LIGDRokSVq0aJEGDx6sLVu26IQTTtDKlSu1efNmbdu2TV27dpUk3XXXXbrssst0++23KzMzswVbBgAAAADYMwEAAMCgTpIXcJr87FWwqqqqJEk5Ofuf/PP+++9r+/btysvLa4hJT0/XOeeco3Xr9j9Eury8XHv37m0U07VrV/Xt27ch5i9/+YuysrIaFvGS9N3vfldZWVmNYvr27duwiJekkSNHqqamRuXl5U2Wt6amRtXV1Y3+AAAAACBa2DMBAAAgmSXkxQ/nnKZOnaphw4apb9++kqTt27dLkjp16tQotlOnTg3vbd++XWlpacrOzg4Zk5ube0ieubm5jWIOzic7O1tpaWkNMQebM2dOw+/hZmVlqXv37uFWGwAAAABM2DMBAACgSXuj9BeHEuZnr75p0qRJ2rRpk9auXXvIe57X+J4d59whrx3s4Jim4psT80033XSTpk6d2vDv6upqde/eXfOu+JXUJvQt37M0O+T7zTLXGDcy2GyHaJ0prnpumjnND1JtD028zj1rinth5WhTnDfy/5nihruPTXGSdFbKGlPcLRUzzWlazK2YYY4dXlHqHySprHiUKa7qx+mmuAvznzLFrasYYoqTJHfDqaa4X+lmU9xZ+bbjd1vO7aY4VW6yxUnS+H62uDGF9jQNhuQY+0OprT9Istd7ibEuK2xhae/av126RmeZ4sryjfUeY8w423icbYdlP2M7Dqk3novMh9qWryu2pid5+ba4W/Jtc+htBT+2JWg9Lsa+KEkab+zf4Rxri6VhzDvWelvH6iRjvkGnJ0mjjHVZWmRM0JgeEEWtac+UlTVHUkaI0o0LWfboC52/c9GfEzzPb/4uiXoZ/Hhe6DnUucjWqX7pW0RaBj+RltFSviDaIRJBtGG06+BXxmj3g/15+M0Lod/3H/OR83J8AiojG9MRH+dsw3Hyi/Hbe/rU0fMinP8ta37f9afPOdDn895S/yL48T+WPmW07isOoyXGLBJXwt35ce2112r58uV64YUX1K1bt4bXO3fuLEmHfItox44dDd846ty5s2pra1VZWRky5p///Och+X766aeNYg7Op7KyUnv37j3k200HpKenKzMzs9EfAAAAAASNPRMAAAAOqz5Kf3EoYS5+OOc0adIk/f73v9fzzz+vnj17Nnq/Z8+e6ty5s1atWtXwWm1trVavXq0hQ/Z/E3zAgAFq06ZNo5hPPvlEb775ZkPM4MGDVVVVpVdeeaUhZv369aqqqmoU8+abb+qTTz5piFm5cqXS09M1YMCA4CsPAAAAAD7YMwEAAABfS5ifvZo4caKKi4v11FNPqUOHDg3fIsrKylLbtm3leZ6mTJmi2bNnq3fv3urdu7dmz56tdu3aKT8/vyH2iiuu0A033KCOHTsqJydH06ZN0ymnnKIRI0ZIkvr06aNRo0bpqquu0gMPPCBJ+tnPfqYxY8bohBNOkCTl5eXppJNO0oQJE3THHXeooqJC06ZN01VXXcW3kwAAAADEBHsmAAAAmLhYF6BlJMzFj/vvv1+SNHz48EavL168WJdddpkkafr06dqzZ4+uueYaVVZWatCgQVq5cqU6dOjQED9//nylpqbqkksu0Z49e3Teeefp4YcfVkpKSkPMkiVLNHnyZOXl5UmSxo4dq4ULFza8n5KSomeeeUbXXHONhg4dqrZt2yo/P1933nlnlGoPAAAAAKGxZwIAAAC+ljAXP5zzvxzleZ5mzZqlWbNmHTYmIyNDCxYs0IIFCw4bk5OTo8ceeyxkXsccc4xWrAjnyaUAAAAAED3smQAAAICvJcwzPwAAAAAAAAAAACw8Z/l6EAJXXV2trKwstXl/mzyf37y9uWNWC5XqUIXP2eJK84ab4tZpiCkuxZtty1hSvbvZFPdDY5r9jHXWDFtY+p+rjAlKn2Z92xS3LsXWjnONhXxh2mhTnCSde+ezpriztMYUt0ZnmeLWVdjqXDPbPl6sdSnLH2VO02TpJmNgiT3NJYWmsOH5paa4smJjnQtsdbnFPW5LT9Jt+beb4qr+L90Ud2HKU6Y4ax+TpBk5c01xt3lptgTH246fxtjCNMkYJ0mVxv6Y3c8Wt9A/RJK9jNbySUrb2cMUV1sa7G/Np42qtuXbK4x8re1oFcOxKtu0Y5b2bvDt7SpscZ5XZEvPGcd0kjmw/q2qquKZDzAJqs94OaHft84B0eR5oedp54zn4Silb5n/Ip37/PMY5/N+6LVzEHOzXzuGtX5vUug6RtoPWoL1XBmK37GKNI94OE/71SH648nAb49ZENvj4De3S5IqI2tn/zHvw7qHCiHSc5RvO/nttwx18Fuf13b8wCeFyObOeBjTocTTGvhAWaQqSUGXpVpSfNTzm7jzAwAAAAAAAAAAtCpc/AAAAAAAAAAAAK1KwjzwHAAAAAAAAAAARGLvV39Bpxl/uPMDAAAAAAAAAAC0Ktz5AQAAAAAAAABAUqj76i/oNOMPd34AAAAAAAAAAIBWhTs/Ymxvz99Iyoh1MQ6raKQ1sswUlWKMKzzNmq+0yZttiutRl2aKK0qtNcVZy/hp1rdtgZLWpQwxxQ2pX2eKe2HGaFNc6Z3DTXGSdJbWmOLmVswwxdVOyjTFPVt8rinOO92Z4iTJrfRsaY6xp2mRtrCHKe6pnDJzmqOLC5tXmMNIG1Vtiqtd0s8Ud5utqSVJw12pLbDeFrauwjaurH1Rkm7T7bbA8cYEjVXWGGNcGIa7j01xZfm2Y/1svm2sjp70gilO2bZ8Jam246Zg06y0pWc7a0gab6+LCopMYWk7rzfFRWOsSsb2ttbbOA5qcmxj1TMeP0nyvBJTnHPBzrUAguF5PuPdZw70cnwy8J1PbHNIJLxin7nUeN44PL+5elyE6fsfJ785NvLP+7eR/zwf2bGOvIz+51RLPUPzO9Z+bRDp5y11CJ2Hcz5jPuptJPnVM/K+4NcGkY0nSXL5od/3CnyTiEikbSBJGh/pvBLl84dhX+J7rMLYLzXn867CkojP+tx3TEY2XtAcyfPMDy5+AAAAAAAAAACQFPjZKwAAAAAAAAAAgITEnR8AAAAAAAAAACSFOgX/M1Xc+QEAAAAAAAAAABB13PkBAAAAAAAAAEBS4IHnaCFVVTcpMzMzZEyRN6tlChNP5tpDS0ba4sal1javLIdR9LotrnCgPd8hr64zxd2ZMs0Ud6tmm+LmaoYpTpJmGA/OjBxb3NyFtrxHrSwzxbmjPFOcJHn/7kxxwytKTXFP1V9oirMev3CkjaoONL0hOba+qHxb2LpRQ8x5r6voYYq7M8fWjta6lGmUKU6S0hba2ru2V+j5vUHlJlu+o3rY0nvXFiZJZcXGetuGQVjzSdDSdvYwxdV2LLIlOL6w+YVpylJjvpKkcaao2knGPrbU1sc0vp8tTrLXZ2mJPU0T23FxLoy6KJxYAPEn9Dzj8kOP8XSfdVRtL785IvT7rsLn45I8z2eeLgjnHBI+zwsi/WjPpX7nk5aYy/3Oz0Gf8xrz7ScGzoU+j/rl4fd5P559uxZC6Hb2vAiPQ7ZPHSst4yV0X/Ebc5G3c3TTt6Th15f85x2f8ZZtGPO+61W/4+Qz5nzK4Lce9XJCJ2/it53z2Qf4ljGA84NfXwmiPwKHw8UPAAAAAAAAAACSQp2Cf0YHz/wAAAAAAAAAAACIOi5+AAAAAAAAAACQFOr09XM/gvoL786POXPm6IwzzlCHDh2Um5uriy66SFu2bIm8agfh4gcAAAAAAAAAAEmhLkp/dqtXr9bEiRP18ssva9WqVaqrq1NeXp6++OKLyKv3DTzzAwAAAAAAAAAAtIjS0tJG/168eLFyc3NVXl6us88+O7B8uPgBAAAAAAAAAEBSOPBTVUGnKVVXVzd6NT09Xenp6b6frqqqkiTl5OQEWioufiDhDXLDTXFPaIgpLsWbbYorvMEUJv3ZGCdpXYqtjEO0zpZgni3shZWjbYGSvIedLXCMLeyW/JmmuNK84aa4UdPKbBmHoax4lCnuwvynAs13jc4yx9bMzjLFeXf9P1uC2f1scQttYeEYnl/qHyTptuLbbQmuiKAwh/Fp1rdNcd9+91NT3FM515ni1hnnsbkVM0xxkpQ2qto/SNKMirmmuNvyjcelcpMpLG1nD1t6kmonZRojx9nClhbZ4pYUGtOzhYXFNlzsrHUOg3O29vG84PMGkCxCz+ue53POWRJ63eMqQn/c89mj+70fjNBt4FzoOgZRRt92VolPGXzWn9mhzyf++fvzPxf5rSF8+qJPO/udMy3nSv80QreTb1+J8PN+7+/PI9Lj4GO8TxmWRt6X/OsZ3XaOtC9KMqzXQ49pP5H2Vet+IiS/vuAjbWHovZTnzfdJwdKXfdp5aej3I58TjHsd4Cvdu3dv9O/CwkLNmjUr5Gecc5o6daqGDRumvn37BloeLn4AAAAAAAAAAJAUwn9Ghy1Nadu2bcrM/PqLiZa7PiZNmqRNmzZp7dq1AZeJix8AAAAAAAAAACBCmZmZjS5++Ln22mu1fPlyvfjii+rWrVvg5eHiBwAAAAAAAAAASaFOwT/zI7w7SZxzuvbaa1VSUqKysjL17Nkz4PLsx8UPAAAAAAAAAADQIiZOnKji4mI99dRT6tChg7Zv3y5JysrKUtu2bQPLh4sfAAAAAAAAAAAkheg988Pq/vvvlyQNHz680euLFy/WZZddFlCZuPgBAAAAAAAAAECS2Kvgf/YqvPSccwHn3zQufiSAWZoVaFwiKBoZTnSZKerW52xx1XVptmz/XGuMs4VJUlevzBT3hLvZFLd+pC29MvesKU6S9JktzN3hmeLOzbflPUTrbBmH4ZaKmYHmPap/mS3jubawX+XZjrMk/epOY+zH/Uxhw4tLTXFlOaNs+RrDJKnMGjzJmKA17zHGOEnfrvrUFFfb8QNT3OglL9gyNtY57d1qW6Ck2l62B5HNfXeGOU2LtJ09THG1k+wPStPSIlvc+EJjeiWmMJdvS86bZMxXkqswh9ry9ox1cfYyBi2WeQNIdD5znHXePwwvJ6KPm+Z0r9hnjbbC5/2lm0Kn74V+X+NDp++KQ398fx4+Adk+x6HSp4w+nAtdB9/ySfLtS77vh+Yq/Mro1wbjfPPw76+h65Be0SPk+/7t7FcHQxv6jVmf/u6bh3GNd1h+fVmS54Vel0a67vFLP/I2tAjdH/36SnqFz54l22fei3DOkCT5bXsrQ7dz7ZjYr1/9+lK0+yIQ77j4AQAAAAAAAABAUoj9z161lCNiXQAAAAAAAAAAAIAgcecHAAAAAAAAAABJoU7BP/ODOz8AAAAAAAAAAACijjs/AAAAAAAAAABICsnzzA8ufiQA5wptgStnmdMsGmmLG2dM72M33BS3TkNMcWt0ljFnu8Jpo01xmaq1JbjSFnbuxmdtgWFYV2Frx0/r7jTFlYWT+QpbWPqfq0xxMzTXFGftO6N/+4IpTpJ01yZb3PjbbXGvF9niHraN6eF5pbb0JJXljzLF3VI80xQ3t2KGLWNbttJSY1tL0ph+geadtrDaFFeTk2lLUJJXbI81MY4rVdr6WG1He9bmc4xsdfaM3dbc3sW2MEnylhoDw+mPAXIVMcl2f97m4wwAicdvjvNyIsygMrLzhpdjWNv4rWvsy8KmZfuUwe/cWGxZn5WEfrvSkEQEPM+nDuMtdQgd43zWJZ4Xeq3m974/6w69+WnUdpwf8n3P5/POhW5DL99wHJaGbif/dY1PGfzmBL8190Kfz0sanj/IPygUvzE7KvT7fnugGtOYDs1vzPn398j6s19f28+nL0RYRpfv8/H8INbgkR0r9gFIdlz8AAAAAAAAAAAgKexV8M/8CDq9YHDxAwAAAAAAAACApJA8Fz944DkAAAAAAAAAAGhVuPMDAAAAAAAAAICkkDwPPOfODwAAAAAAAAAA0Kpw5wcAAAAAAAAAAEmhTsE/oyM+7/zwnHMu1oVIRtXV1crKylJVVZUyMzNjXRwAAAAgqlj/Ilz0GQAAkOjiaT1zoCzSfZLaBpz6HknXxEU9v4k7PwAAAAAAAAAASAo88wMAAAAAAAAAACAhcecHAAAAAAAAAABJYa+CvywQ9DNEgsHFDwAAAAAAAAAAkgI/ewUAAAAAAAAAAJCQuPMDAAAAAAAAAICkUKfgf6aKOz8AAAAAAAAAAACijjs/AAAAAAAAAABICjzzAwAAAAAAAAAAICFx8SMC9913n3r27KmMjAwNGDBAa9asiXWRAAAAACCusG8CAACIJ3uj9Bd/uPjRTI8//rimTJmimTNnauPGjTrrrLM0evRoffjhh7EuGgAAAADEBfZNAAAAiBXPOediXYhENGjQIJ1++um6//77G17r06ePLrroIs2ZM+eQ+JqaGtXU1DT8u6qqSsccc4y2bdumzMzMFikzAAAAECvV1dXq3r27du3apaysrFgXBy0knH0TeyYAANDaxNMauLq6+qsyXC8pPeDUayTNV1VVVVyt23jgeTPU1taqvLxcN954Y6PX8/LytG7duiY/M2fOHBUVFR3yevfu3aNSRgAAACAe7dy5M+YbP7SMcPdN7JkAAEBrFQ9r4LS0NHXu3Fnbt8+PSvqdO3dWWlpaVNJuLi5+NMNnn32m+vp6derUqdHrnTp10vbt25v8zE033aSpU6c2/HvXrl069thj9eGHH8a84yMxHLhSzDffYEWfQbjoMwgXfQbhOPAt/pycnFgXBS0k3H0Te6bWh/NE4uMYJj6OYWLj+CW+eFoDZ2Rk6P3331dtbW1U0k9LS1NGRkZU0m4uLn5EwPO8Rv92zh3y2gHp6elKTz/0dqKsrCwmL4QlMzOTPoOw0GcQLvoMwkWfQTiOOILHDiYb676JPVPrxXki8XEMEx/HMLFx/BJfvKyBMzIy4u4CRTTFR6snmKOOOkopKSmHfFtpx44dh3yrCQAAAACSEfsmAAAAxBIXP5ohLS1NAwYM0KpVqxq9vmrVKg0ZMiRGpQIAAACA+MG+CQAAALHEz14109SpUzVhwgQNHDhQgwcP1oMPPqgPP/xQV199tenz6enpKiwsbPK2bqAp9BmEiz6DcNFnEC76DMJBf0lOkeyb6DOJj2OY+DiGiY9jmNg4fomPYxhbnnPOxboQieq+++7TvHnz9Mknn6hv376aP3++zj777FgXCwAAAADiBvsmAAAAxAIXPwAAAAAAAAAAQKvCMz8AAAAAAAAAAECrwsUPAAAAAAAAAADQqnDxAwAAAAAAAAAAtCpc/AAAAAAAAAAAAK0KFz+i6L777lPPnj2VkZGhAQMGaM2aNSHjV69erQEDBigjI0PHHXec/ud//qeFSop4EU6f+f3vf6/zzz9f3/72t5WZmanBgwfrueeea8HSIh6EO88c8NJLLyk1NVWnnXZadAuIuBJuf6mpqdHMmTN17LHHKj09Xd/5znf029/+toVKi3gQbp9ZsmSJTj31VLVr105dunTR5Zdfrp07d7ZQaRFrL774or7//e+ra9eu8jxPf/jDH3w/w/oX7JkSH3uYxMeeIrGxxk98rLkTG2vgOOcQFcuWLXNt2rRxixYtcps3b3bXXXeda9++vfv73//eZPzWrVtdu3bt3HXXXec2b97sFi1a5Nq0aeOeeOKJFi45YiXcPnPddde5uXPnuldeecW988477qabbnJt2rRxr732WguXHLESbp85YNeuXe64445zeXl57tRTT22ZwiLmmtNfxo4d6wYNGuRWrVrl3n//fbd+/Xr30ksvtWCpEUvh9pk1a9a4I444wv33f/+327p1q1uzZo07+eST3UUXXdTCJUes/PGPf3QzZ850Tz75pJPkSkpKQsaz/gV7psTHHibxsadIbKzxEx9r7sTHGji+cfEjSs4880x39dVXN3rtxBNPdDfeeGOT8dOnT3cnnnhio9d+/vOfu+9+97tRKyPiS7h9piknnXSSKyoqCrpoiFPN7TM//vGP3X/+53+6wsJCNipJJNz+8uyzz7qsrCy3c+fOlige4lC4feaOO+5wxx13XKPX7r33XtetW7eolRHxy7LxY/0L9kyJjz1M4mNPkdhY4yc+1tytC2vg+MPPXkVBbW2tysvLlZeX1+j1vLw8rVu3rsnP/OUvfzkkfuTIkXr11Ve1d+/eqJUV8aE5feZg+/bt0+7du5WTkxONIiLONLfPLF68WO+9954KCwujXUTEkeb0l+XLl2vgwIGaN2+ejj76aB1//PGaNm2a9uzZ0xJFRow1p88MGTJEH330kf74xz/KOad//vOfeuKJJ3TBBRe0RJGRgFj/Jjf2TImPPUziY0+R2FjjJz7W3MmJ9UzLSo11AVqjzz77TPX19erUqVOj1zt16qTt27c3+Znt27c3GV9XV6fPPvtMXbp0iVp5EXvN6TMHu+uuu/TFF1/okksuiUYREWea02f+9re/6cYbb9SaNWuUmsr0n0ya01+2bt2qtWvXKiMjQyUlJfrss890zTXXqKKigt8ETgLN6TNDhgzRkiVL9OMf/1j/+te/VFdXp7Fjx2rBggUtUWQkINa/yY09U+JjD5P42FMkNtb4iY81d3JiPdOyuPMjijzPa/Rv59whr/nFN/U6Wq9w+8wBS5cu1axZs/T4448rNzc3WsVDHLL2mfr6euXn56uoqEjHH398SxUPcSacOWbfvn3yPE9LlizRmWeeqe9973u6++679fDDD/PNsCQSTp/ZvHmzJk+erF/96lcqLy9XaWmp3n//fV199dUtUVQkKNa/YM+U+NjDJD72FImNNX7iY82dfFjPtBwu00fBUUcdpZSUlEOu0u7YseOQK3sHdO7cucn41NRUdezYMWplRXxoTp854PHHH9cVV1yh3/3udxoxYkQ0i4k4Em6f2b17t1599VVt3LhRkyZNkrR/4eucU2pqqlauXKl/+7d/a5Gyo+U1Z47p0qWLjj76aGVlZTW81qdPHznn9NFHH6l3795RLTNiqzl9Zs6cORo6dKh++ctfSpL69eun9u3b66yzztKvf/1rvsGEQ7D+TW7smRIfe5jEx54isbHGT3ysuZMT65mWxZ0fUZCWlqYBAwZo1apVjV5ftWqVhgwZ0uRnBg8efEj8ypUrNXDgQLVp0yZqZUV8aE6fkfZ/W+qyyy5TcXExv++YZMLtM5mZmXrjjTf0+uuvN/xdffXVOuGEE/T6669r0KBBLVV0xEBz5pihQ4fq448/1ueff97w2jvvvKMjjjhC3bp1i2p5EXvN6TNffvmljjii8dIyJSVF0tffZAK+ifVvcmPPlPjYwyQ+9hSJjTV+4mPNnZxYz7Swlny6ejJZtmyZa9OmjXvooYfc5s2b3ZQpU1z79u3dBx984Jxz7sYbb3QTJkxoiN+6datr166du/76693mzZvdQw895Nq0aeOeeOKJWFUBLSzcPlNcXOxSU1Pdb37zG/fJJ580/O3atStWVUALC7fPHKywsNCdeuqpLVRaxFq4/WX37t2uW7du7oc//KF766233OrVq13v3r3dlVdeGasqoIWF22cWL17sUlNT3X333efee+89t3btWjdw4EB35plnxqoKaGG7d+92GzdudBs3bnSS3N133+02btzo/v73vzvnWP/iUOyZEh97mMTHniKxscZPfKy5Ex9r4PjGxY8o+s1vfuOOPfZYl5aW5k4//XS3evXqhvcuvfRSd8455zSKLysrc/3793dpaWmuR48e7v7772/hEiPWwukz55xzjpN0yN+ll17a8gVHzIQ7z3wTG5XkE25/efvtt92IESNc27ZtXbdu3dzUqVPdl19+2cKlRiyF22fuvfded9JJJ7m2bdu6Ll26uIKCAvfRRx+1cKkRKy+88ELItQnrXzSFPVPiYw+T+NhTJDbW+ImPNXdiYw0c3zznuCcKAAAAAAAAAAC0HjzzAwAAAAAAAAAAtCpc/AAAAAAAAAAAAK0KFz8AAAAAAAAAAECrwsUPAAAAAAAAAADQqnDxAwAAAAAAAAAAtCpc/AAAAAAAAAAAAK0KFz8AAAAAAAAAAECrwsUPAAAAAAAAAADQqnDxAwAAAAAAAAAAtCpc/AAAtDrDhw/XlClTYl0MAAAAADHG3gAAkhcXPwAACNjZZ58tz/MO+SsoKDB9/rLLLtONN94YWHoAAAAAYoO9AQDETmqsCwAAgCTV1tYqLS0t1sWImHNOr7/+uu68885DNiDf+ta3fD+/b98+PfPMM1q+fHkg6QEAAACJhr3BfuwNACAy3PkBADiEc07z5s3Tcccdp7Zt2+rUU0/VE0880fD+8OHDNXnyZE2fPl05OTnq3LmzZs2aFXYakyZN0tSpU3XUUUfp/PPPlyTt3r1bBQUFat++vbp06aL58+c3ulX90UcfVceOHVVTU9Movx/84Af66U9/2mR9ampqNHnyZOXm5iojI0PDhg3Thg0bGt5/4okndMopp6ht27bq2LGjRowYoS+++ML8/jf97W9/0+7du3X22Werc+fOjf4sG5KXXnpJRxxxhAYNGhRIegAAAEAk2BuwNwCARMXFDwDAIf7zP/9Tixcv1v3336+33npL119/vX7yk59o9erVDTGPPPKI2rdvr/Xr12vevHm69dZbtWrVqrDTSE1N1UsvvaQHHnhAkjR16lS99NJLWr58uVatWqU1a9botddea/jMj370I9XX1zd8+0mSPvvsM61YsUKXX355k/WZPn26nnzyST3yyCN67bXX1KtXL40cOVIVFRX65JNPNH78eP3Hf/yH3n77bZWVleniiy+Wc06SfN8/WHl5uVJTU9WvX79mtLy0fPlyff/739cRRxwRSHoAAABAJNgbsDcAgITlAAD4hs8//9xlZGS4devWNXr9iiuucOPHj3fOOXfOOee4YcOGNXr/jDPOcDNmzAgrjdNOO63R+9XV1a5Nmzbud7/7XcNru3btcu3atXPXXXddw2u/+MUv3OjRoxv+fc8997jjjjvO7du3ryHtA/Gff/65a9OmjVuyZElDfG1trevataubN2+eKy8vd5LcBx980GR7+L1/sGnTpjnP81z79u0b/V155ZWmzx9//PFu+fLlYaX39NNPu+OPP9716tXLLVq0yJQPAAAA4Ie9QWPsDQAgsfDMDwBAI5s3b9a//vWvhlvND6itrVX//v0b/n3wt426dOmiHTt2hJXGwIEDG72/detW7d27V2eeeWbDa1lZWTrhhBMaxV111VU644wz9I9//ENHH320Fi9erMsuu0ye5x1Sn/fee0979+7V0KFDG15r06aNzjzzTL399tuaOnWqzjvvPJ1yyikaOXKk8vLy9MMf/lDZ2dmSpFNPPTXk+wcrLy/Xj370I91+++2NXj9c/De9/fbb+uijjzRixAhzenV1dZo6dapeeOEFZWZm6vTTT9fFF1+snJwc3/wAAACAUNgbsDcAgETGxQ8AQCP79u2TJD3zzDM6+uijG72Xnp7e8N9t2rRp9J7neQ2ftabRvn37Ru+5r24XP3ij4g66jbx///469dRT9eijj2rkyJF644039PTTTzdZn1Bpep6nlJQUrVq1SuvWrdPKlSu1YMECzZw5U+vXr1fPnj193z/Yxo0bdeutt6pXr15NlufNN9/UhRdeqJdeekmdO3fWZ599phEjRuiVV17R8uXLdf7556tt27bm9F555RWdfPLJDe38ve99T88995zGjx/fZDwAAABgxd6AvQEAJDKe+QEAaOSkk05Senq6PvzwQ/Xq1avRX/fu3aOaxne+8x21adNGr7zySsNr1dXV+tvf/nZI7JVXXqnFixfrt7/9rUaMGHHYdHv16qW0tDStXbu24bW9e/fq1VdfVZ8+fSTt3/wMHTpURUVF2rhxo9LS0lRSUtIQ7/f+AVu3btWuXbsafYPtYH379tW///u/6/nnn5ckFRUVacaMGUpLS9NTTz2lsWPHhpXexx9/3GgT2a1bN/3jH/84bDwAAABgxd6AvQEAJDLu/AAANNKhQwdNmzZN119/vfbt26dhw4apurpa69at07e+9S1deumlUUujQ4cOuvTSS/XLX/5SOTk5ys3NVWFhoY444ohDvp1VUFCgadOmadGiRXr00UcPW5b27dvrF7/4RUOaxxxzjObNm6cvv/xSV1xxhdavX68///nPysvLU25urtavX69PP/20YfPj9/43lZeXS5I6deqk7du3N3ovNze34UGFJ598st555x29++67Ki8v17333qsdO3Zow4YN+sMf/hBWegd/80069JtsAAAAQHOwN2BvAACJjIsfAIBD3HbbbcrNzdWcOXO0detWHXnkkTr99NN18803Rz2Nu+++W1dffbXGjBmjzMxMTZ8+Xdu2bVNGRkajuMzMTP3gBz/QM888o4suuihkmv/1X/+lffv2acKECdq9e7cGDhyo5557TtnZ2crMzNSLL76oe+65R9XV1Tr22GN11113afTo0Q35hHr/m1577TVJ0vHHH9/o9TZt2mj37t0Nt/X37t1bK1as0M0336zbb79dnufp6aef1qBBg5SbmxtWekcffXSjb3N99NFHGjRoUMj2AAAAAKzYG7A3AIBE5bmmLgsDABAnvvjiCx199NG66667dMUVVzR67/zzz1efPn107733xqh0zbNr1y717t1bgwYN0ooVKyRJY8eO1bBhwzR9+vSw0qqrq1OfPn1UVlbW8FDDl19+WR07doxG0QEAAICYYW8QGnsDAGiMOz8AAHFl48aN+utf/6ozzzxTVVVVuvXWWyVJF154YUNMRUWFVq5cqeeff14LFy6MVVGb7cgjj5S0/1tnBwwbNqxZDyJMTU3VXXfdpXPPPVf79u3T9OnT2dwAAACgVWBvEB72BgDQGHd+AADiysaNG3XllVdqy5YtSktL04ABA3T33XfrlFNOaYjp0aOHKisrdcstt2jatGkxLG3z7N27V3379tWWLVtiXRQAAAAgbrE3AABEgjs/AABxpX///g0P8zucDz74oGUKEyV//etfdcIJJ8S6GAAAAEBcY28AAIgEd34AAAAAAAAAAIBW5YhYFwAAAAAAAAAAACBIXPwAAAAAAAAAAACtChc/AAAAAAAAAABAq8LFDwAAAAAAAAAA0Kpw8QMAAAAAAAAAALQqXPwAAAAAAAAAAACtChc/AAAAAAAAAABAq8LFDwAAAAAAAAAA0Kpw8QMAAAAAAAAAALQqXPwAAAAAAAAAAACtChc/AAAAAAAAAABAq/L/A9RPVD26cbwTAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#energyloss in abh von der energie der elektronen\n",
"#upstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(up_energyloss_found, up_energy_found, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,70)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0$\")\n",
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
"\n",
"a1=ax1.hist2d(up_energyloss_lost, up_energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,70)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0$\")\n",
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, Upstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAJOCAYAAAAat0B0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADOuklEQVR4nOzdd3hUVf7H8c+kTUJIhgCSEDqIFGkK0tfQixQVAQUNRUVWRETAgooBV0DpK4i4rgLSdSmisAgBBKlSRERcwBUFhQBqSACBkOT8/uCXWYa0O2HCpLxfzzMPzL3fe8q9d+6cmzPnHpsxxggAAAAAAAAAAKCQ8/F2AQAAAAAAAAAAAPICOk0AAAAAAAAAAABEpwkAAAAAAAAAAIAkOk0AAAAAAAAAAAAk0WkCAAAAAAAAAAAgiU4TAAAAAAAAAAAASXSaAAAAAAAAAAAASKLTBAAAAAAAAAAAQBKdJgAAAAAAAAAAAJLoNAEAALjp9u/fr2PHjnm7GAAAAAAA4Dp0mgAAANxk//jHP7RhwwZvFwMAAAAAAFyHThMAAICbYPPmzRowYIBOnz7tXHbw4EF169ZNp06d8mLJAAAAAABAGjpNAABAvrN69WrZbDaXV2hoqOrXr6+PPvropuT94YcfuiyPj49Xx44dFRAQoBkzZqTbrn79+goPD1edOnW0fv16zZgxQ23btlWHDh10yy235GqZ85Mvvvgi3bFNe+3YsSPDbfbv36/HHntMVapUUVBQkIKCglS1alUNHDhQu3fvdrsM999/v4KCgnT27NlMYx5++GH5+/u73eE1Z84clzoFBgYqIiJCLVu21Pjx41061fKjbdu2afTo0Vnuu8Jg9OjRstls+u233zyWZmHYtykpKSpVqpSmTp2aaUxu7Nv8oCAf/6+++krt27dXSEiIihYtqpYtW2rr1q0uMe5+N5w/f15Dhw5VZGSkAgMDVa9ePS1evDjHcQAAoHDx83YBAAAA3LV3715J0ieffKJSpUrJGKNjx44pJiZGvXr1UvXq1VWnTp1czbt+/frOZfv379f999+vCxcuaMOGDWrevHm67YKDg/Xaa68pNTVV48ePl4+PjxYsWKCHHnooV8qZ340bN04tW7Z0WVarVq10ce+++64GDx6satWq6ZlnntHtt98um82m77//XosWLdJdd92lH374QVWqVLGc92OPPaYVK1Zo4cKFGjRoULr1CQkJWr58uTp37qzw8HD3Kydp9uzZql69uq5cuaLTp09ry5YtevPNNzVp0iQtWbJEbdq0yVG63rZt2zaNGTNG/fr1U7FixbxdnAKlMOzbzZs368yZM+rWrZu3i5LnFNTjv2vXLt19991q2LCh5s2bJ2OMJkyYoNatW2vjxo1q0qSJS7zV74Zu3bpp165deuONN3Tbbbdp4cKF6tWrl1JTU9W7d2+34wAAQOFCpwkAAMh39u7dK4fDoa5duzqXNWnSRMnJyXrkkUf09ddf52qnSVBQkKpXry5JWrx4sR577DHVqVNHS5cuVWRkZIbbffvtt4qOjlZERITuueceRUZGauzYsZo3b57mzp2rkiVL5kp5b6Y//vhDqampHqlL1apV1bhx4yxjtm7dqkGDBqlTp07617/+pYCAAOe6Vq1a6amnntLHH3+soKAgt/Lu2LGjIiMj9cEHH2TYabJo0SJdvHhRjz32mFvpXqtWrVpq0KCB8/0DDzygZ599Vs2bN1e3bt105MiRHHfI5Cd//vmnihQp4u1iII/417/+pQYNGqhChQq5kj7n28138uRJBQcHKzQ0NMP1o0aNUrFixbRmzRrnsWnTpo0qV66sESNGpBtxYuW7YfXq1Vq3bp2zA0SSWrZsqZ9//lnPPfecHnzwQfn6+lqOAwAAhQ+P5wIAAPnOnj17VK9evXTLf/nlF0lSjRo13E5z6tSpWrFihVt5jxgxQr169dLDDz+sTZs2ZdphIklhYWF6/fXXtWbNGlWqVEnNmjXTvn371LNnTzkcjky327Jli9q1ayeHw6GwsDB16tRJR44cyXGcVV26dFGDBg303nvvqW7dugoKClK5cuUUExOj1NTUDLfZv3+/SpcurY4dO+rDDz/UuXPncpy/FePGjZOvr6/effddlw6Ta/Xo0SPdcTly5Ih69+6tUqVKyW63q0aNGnr77bed6319fdW3b1/t2bNH3377bbo0Z8+e7aynJ5UvX16TJ0/WuXPn9O6777qs27Jli1q3bq2QkBAVKVJETZs21apVq5zrv/vuO9lsNn388cfOZXv27JHNZtPtt9/uklbXrl1dRkqlPe7ou+++U69eveRwOBQeHq5HH31UCQkJzrgzZ87oiSeeULly5WS323XLLbeoWbNmio2Ndabz3HPPSZIqVarkfHTOF1984ZLP3r171b17d4WFhTlHAGV3TNL88MMP6t+/v6pWraoiRYqoTJky6tKlS7rjlJbX/v371aNHDzkcDhUvXlzDhg1TcnKyDh06pA4dOigkJEQVK1bUhAkTsj0+aWl+/fXX6tatm0JDQ+VwOPTII4/ozJkzGW5z6tSpLPdpmuyOb3b7Nrvtr6/DjR7rjNzIOShJxhgtX75cDzzwQKZ5XOv48eNZHoeszjfJ2jmXG+fRtVasWCGbzab169enW/fOO+84887s+K9Zs0Z33HGHbr31VpfjFxcXp4iICLVo0UIpKSmWypLZo69sNpt++uknt+oVHx+v999/X23atFHZsmX1448/Zhq7detWtWjRwqUzKyQkRHfffbe2bdumkydPupW3JC1fvlxFixZVjx49XJb3799fJ06c0M6dO92Kk278XMjtcwkAAHgWnSYAACBf+f3333Xs2DHVrVtXycnJSk5O1unTpzVv3jyNHTtWjz/+uBo2bOh2urt371bPnj2z7DhJy7t8+fJq166dZsyYoffee0//+Mc/Mv2jfZqyZcuqc+fOLsvS/jjv7++f4TajR49WVFSUypUrp0WLFumf//ynjh8/rtatW+v8+fNux7ljz549+s9//qOpU6fqueee08qVK9W8eXO99tpr+uCDDzLcpnHjxpo7d678/f01YMAAlSpVSj169NCyZct0+fJlt/J/6qmn5Ofnp9DQULVv315btmxxWZ+SkqKNGzeqQYMGKl26tOV0Dx48qLvuuksHDhzQ5MmT9dlnn6lTp04aMmSIxowZ44x79NFHZbPZ0tX14MGD+uqrr9S3b99c+QXyPffcI19fX23evNm5bNOmTWrVqpUSEhL0/vvva9GiRQoJCVGXLl20ZMkSSdLtt9+u0qVLu/xROzY2VkFBQTp48KBOnDghSUpOTtamTZsyfPzXAw88oNtuu01Lly7Viy++qIULF+rZZ591ro+OjtaKFSv06quvau3atfrnP/+pNm3a6Pfff5ckPf7443r66aclScuWLdP27du1fft23XnnnS75dOvWTbfeeqs+/vhjzZo1y/IxkaQTJ06oRIkSeuONN7RmzRq9/fbb8vPzU6NGjXTo0KF0derZs6fq1q2rpUuXasCAAZo6daqeffZZ3XffferUqZOWL1+uVq1a6YUXXtCyZcssHaP7779ft956q/71r39p9OjRWrFihdq3b68rV664vU8la8c3q31rZXt3y5Xdsc7IjZ6DaX8gt9ppYvU4XH++SdavA2ly4zySpM6dO6tUqVKaPXt2unVz5szRnXfeqTp16mR6/Js2baqPPvpIp0+f1qOPPipJSk1N1cMPPyxjjBYtWmT5OpWWZtprw4YNKlOmjCIiIlS8ePFst//zzz+1ZMkS3XvvvYqIiNDTTz+tYsWKacmSJapZs2am2yUlJclut6dbnrbs+g7R7L4bJOnAgQOqUaOG/PxcH6yRNgL1wIEDbsVd60bPhdw6lwAAgIcZAACAfGTt2rVGUrqXn5+fef3113OcbnJysundu7fx9/c3y5cvzzbvwMBAs2PHjhznl51PP/3USDITJkxwWX748GEjycyfP9+tOHf88ssvRpKpXLmyOXv2rHN5UlKSiYiIMJ07d842jfj4ePPBBx+Ydu3aGT8/P+NwOEy/fv3M559/bpKTkzPdbu/eveaZZ54xy5cvN5s3bzYffPCBqVGjhvH19TVr1qxxxsXFxRlJ5qGHHkqXRnJysrly5YrzlZqa6lzXvn17U7ZsWZOQkOCyzeDBg01gYKD5448/nMuioqJMyZIlTVJSknPZ8OHDjSRz+PDhbPdBRmbPnm0kmV27dmUaEx4ebmrUqOF837hxY1OqVClz7tw5lzrWqlXLlC1b1lm/Rx55xFSuXNkZ06ZNGzNgwAATFhZm5s6da4wxZuvWrUaSWbt2rTMuJiYmw3No0KBBJjAw0Jl+0aJFzdChQ7Os38SJE40kc/To0XTr0vJ59dVXXZa7c0yul5ycbJKSkkzVqlXNs88+my6vyZMnu8TXq1fPSDLLli1zLrty5Yq55ZZbTLdu3bKsW1qa1+ZjjDELFixI91mzuk+NsX58M9u3Vrd3p1xWjnVGcnoOGmPM0KFDTe3atbPNw+pxyOx8M8b6OZcb59H1hg0bZoKCglyutQcPHjSSzPTp053LsvpsLVmyxEgy06ZNM6+++qrx8fFJt3/dkZycbO69915TtGhRs2fPnkzjkpKSzGeffWZ69+5tgoODTUBAgOncubOZP3++y/mYlXr16pnbbrvNpKSkOJdduXLFVK5c2UgyCxcuNMZY/24wxpiqVaua9u3bp8vrxIkTRpIZN26cW3HG3Pi5cDPOJQAA4DmMNAEAAPnKnj17JF39te2uXbu0a9curVmzRp06ddKrr76a4S8zf/vttywfPWKz2eTn56eFCxfqypUr6tmzp06dOpVp3tHR0bp06ZLLaABPe/XVV1WlShU988wzzhE1ycnJqlSpkoKCgpyPO7Ea545du3ZJujqC5dpHh/n7++vWW2/Vb7/9lm0axYoVU//+/fX555/r5MmTeuONN3T06FF16NBBkZGRmZbrjjvu0LRp03TffffpL3/5i/r3769t27apdOnSev755y2Vv379+vL393e+Jk+eLEm6dOmS1q9fr/vvv19FihRx2V/33HOPLl26pB07djjTeeyxx/Tbb79p5cqVkq7+Qn7+/Pn6y1/+oqpVq1oqS04YY5z/v3Dhgnbu3Knu3buraNGizuW+vr6Kjo7WL7/84hxh0bp1a/344486evSoLl26pC1btqhDhw5q2bKl1q1bJ+nqL//tdruaN2+eLt9r5wiSrv7a+tKlSzp9+rQkqWHDhpozZ45ef/117dixI8ORFVZcO5LA3WOSnJyscePGqWbNmgoICJCfn58CAgJ05MgRff/99+nyun50V40aNWSz2Vwerebn56dbb71VP//8s6XyP/zwwy7ve/bsKT8/P23cuDFdbHb71J3jm5Gcbp9bx/pGzsFly5ZZHmUiWT8O16fp7jkn5c55lObRRx/VxYsXXUYFzZ49W3a73fJE5D179tSTTz6p5557Tq+//rpeeukltW3b1q1yXGvw4MFatWqVPv7443QjxdLs379fERERuvfee/Xbb7/prbfe0qlTp/Tpp5/q4Ycfdjkfs/L000/r8OHDGjx4sH799VcdP35cf/3rX5370cfn6p8s3P1usNlsmeZ57TqrcWlu9FzIzXMJAAB4Dp0mAAAgX0mbiL1r165q0KCBGjRooPbt22vx4sXy9fXVe++9l26bkJAQvffee9m+0v64du+996pEiRIZ5h0YGKgPPvhA0dHRevHFF51/UPekuLg4ff311/rvf/8ru93u0gHg7++vixcvqlixYpbj3LV79275+/une867dPXxSOXKlXMrvcTERJ09e1YJCQkyxqhYsWLpHoeSlWLFiqlz587av3+/Ll68KEkqWbKkgoKCMvyj0sKFC7Vr1650x+b3339XcnKypk+fnm5f3XPPPZLk0iHUvXt3ORwO56NzVq9erVOnTt3QBPDZuXDhgn7//XfnPCzx8fEyxmT4CLK0mLRHJqU97ig2NlZbtmzRlStX1KpVK7Vp08Y5Z0JsbKyaNWumoKCgdOldf86nPR4nbZ8vWbJEffv21T//+U81adJExYsXV58+fRQXF+dWHa+ti7vHZNiwYRo1apTuu+8+ffrpp9q5c6d27dqlunXrOst5resfKxQQEKAiRYooMDAw3fJLly5ZKn9ERITLez8/P5UoUSLDR1dlt0/dOb4Zyen2uXWsc3oOfvXVVzp27JhbnSZWj8P1+8bdc07KnfMoze2336677rrLeZ1JSUnR/Pnzde+991p6LFaaRx99VFeuXJGfn5+GDBniVhmu9frrr2vWrFl699131aFDh0zj/P395XA4lJKSooSEBCUkJOTocZCPPvqo3njjDc2bN09ly5ZV+fLldfDgQY0YMUKSVKZMmUy3zei7QVKmn8c//vhD0v+Op9W4a93ouZCb5xIAAPAc63erAAAAecDevXtVu3btdM9p9/f3l6+vb4Z/OLXb7Xr88cezTHfVqlX67LPP1L17dy1atCjDP+rv3btXdevWlZ+fn9577z3nRMJbtmzJcGL6nDp+/Likq5PTZzQiQJKqVKmiH374wVKcu3bv3q2SJUum+yPOzp079eOPP2rUqFHZpnH8+HF9/PHHWrx4sXbt2qUyZcrowQcf1HvvvacGDRq4Xaa00Rdpv/z19fVVq1attHbtWp08edLlD6Npz8+/fvLisLAw5y/wn3rqqQzzqVSpkvP/QUFB6tWrl9577z2dPHlSH3zwgUJCQjLsTPKUVatWKSUlRS1atHCW2cfHJ8PJkNPmiChZsqSkq/Pm3HbbbYqNjVXFihXVoEEDFStWTK1bt9agQYO0c+dO7dixI8M5G6woWbKkpk2bpmnTpunYsWNauXKlXnzxRZ0+fVpr1qyxnM61v95295jMnz9fffr00bhx41xifvvttxx1EOZEXFycyx9yk5OT9fvvv2fY0Zodd45vbmyfmZwe65yeg0uXLtVtt92mWrVqWS6j1eNw/WgBd8+5m6F///4aNGiQvv/+e/344486efKk+vfvb3n7CxcuKDo6WrfddptOnTqlxx9/XJ988onb5ZgzZ45GjRql0aNHO+dIyUyNGjX0448/avv27Vq4cKHeeOMNDR8+XM2aNdODDz6o7t27p+vYyswLL7ygoUOH6siRIwoJCVGFChU0cOBABQcHq379+llue/13gyTVrl1bixYtUnJysst3edr8KGnnmdU4AABQ+DDSBAAA5BsJCQn68ccfM+yg+OSTT3Tp0iXdfffdOUp74sSJ6tKlS6YdJml5pz2qxG63a/ny5SpevLi6du3q9q/ts5L2S1SbzeYcTXP9KywszHKcu3bv3q0zZ87o7NmzzmUpKSl64YUXVLFixUwfGXPu3DlNnz5dzZs3V4UKFTR27FjVq1dPGzZs0LFjxzR58uQcdZjEx8frs88+U7169Vw6ckaOHKmUlBT99a9/tfT4oCJFiqhly5b6+uuvVadOnQz31/V/cH3ssceUkpKiiRMnavXq1XrooYdUpEgRt+tgxbFjxzRixAg5HA4NHDhQkhQcHKxGjRpp2bJlLh2Cqampmj9/vvOP1GnatGmjDRs2aN26dc7H89x2220qX768Xn31VV25ciXDSeDdVb58eQ0ePFht27bV3r17ncuvH7GQHXePic1mSzdp9KpVq/Trr7/ecJ2sWrBggcv7jz76SMnJyc6OLne4c3wz2rfunh85kdmxzkxOzsGlS5e6NcpEyvlxyMl1ILf16tVLgYGBmjNnjubMmaMyZcqoXbt2LjFZfbb++te/6tixY1q2bJnef/99rVy5UlOnTnWrDGvWrNGAAQP06KOPKiYmxvJ2TZo00fTp03XixAmtWbNGVapU0csvv6wyZcqoVatWevfddy1dD+x2u2rVqqUKFSro2LFjWrJkiQYMGJDhqLg0mX033H///Tp//ryWLl3qEj937lxFRkaqUaNGbsUBAIDCh5EmAAAg39i7d6+MMQoODnY+cz4+Pl7btm3T1KlTVadOHecjPdz16aefKigoKNPHRqXlfe2vXiMiIvTJJ5+oefPm6tq1qzZt2pTlH3isqlKlilq2bKlXXnlF58+fV6NGjWSM0cmTJ7Vx40b17dtXLVq0sBx3LZvNpqioKH3xxRcZ5n306FH9/vvvKl++vHr06KHhw4fr0qVLeuutt7Rnzx598cUXCggIyHDbPXv26MUXX1TXrl21YsUKdezYUf7+/m7VvXfv3ipfvrwaNGigkiVL6siRI5o8ebJOnTqlOXPmuMQ2a9ZMb7/9tp5++mndeeedeuKJJ3T77bc7f3mf9oew0NBQ5zZ///vf1bx5c/3lL3/Rk08+qYoVK+rcuXP64Ycf9Omnn2rDhg0ueTRo0EB16tTRtGnTZIzJ8tFc2e3bax04cMA5j8Lp06f15Zdfavbs2fL19dXy5ct1yy23OGPHjx+vtm3bqmXLlhoxYoQCAgI0c+ZMHThwQIsWLXL5hXXr1q01c+ZM/fbbb5o2bZrL8tmzZyssLCzbX25nJCEhQS1btlTv3r1VvXp1hYSEOOcT6tatmzOudu3akq7u5759+8rf31/VqlVTSEhIpmm7c0w6d+6sOXPmqHr16qpTp4727NmjiRMnqmzZsm7XKaeWLVsmPz8/tW3bVt99951GjRqlunXrqmfPnjlKz+rxzWzfunN+WGH1WGfG3XNw3759+u9//+t2p8mNHAd3rwO5rVixYrr//vs1Z84cnT17ViNGjHDO5ZEms+O/ZMkSzZ8/X7Nnz9btt9+u22+/XYMHD9YLL7ygZs2aqWHDhtnmf/ToUfXo0UOVK1dW//79083pcscdd6TrrLyer6+v2rVrp3bt2mnWrFlatWqVFi5cqKFDh6pRo0aZjsY8cOCAli5dqgYNGshut+ubb77RG2+8oapVq+pvf/ubM86d74aOHTuqbdu2evLJJ5WYmKhbb71VixYt0po1azR//nznSFWrcQAAoBDyzvzzAAAA7ps0aZKR5PIKDg42d9xxhxk7dqy5cOFCrue9d+/edOs+/vhjY7PZTI8ePUxqaqpH8ktISDAjR440t912mwkMDDRhYWGmbt265umnnzbx8fFuxxljzLlz54wk89BDD2Wa70cffWQkmW3btpno6GgTGhpqQkJCzL333msOHjyYbZnPnz9/I9U248ePN/Xq1TMOh8P4+vqaW265xdx///3mq6++ynSbffv2mf79+5tKlSoZu91uAgMDza233mr69Olj1q9fny7+6NGj5tFHHzVlypQx/v7+5pZbbjFNmzY1r7/+eobp//3vfzeSTM2aNTMtg5V9a4wxs2fPdjl/AwICTKlSpUxUVJQZN26cOX36dIbbffnll6ZVq1YmODjYBAUFmcaNG5tPP/00XVx8fLzx8fExwcHBJikpybl8wYIFRpLp1q1bum1iYmKMJHPmzJkMy3r06FFz6dIl89e//tXUqVPHhIaGmqCgIFOtWjUTExOT7nM3cuRIExkZaXx8fIwks3HjxizzMcb6MYmPjzePPfaYKVWqlClSpIhp3ry5+fLLL01UVJSJiorKtk59+/Y1wcHB6fKPiooyt99+e7rlGe2nPXv2mC5dupiiRYuakJAQ06tXL3Pq1Cm39+m1rB7fzPat1e09fawz4u45+Morr5gKFSpkm+71dcjuOGR1vhlj7ZzLjfMoM2vXrnVeFw4fPpxhzPXH/6233jJBQUGmb9++LnGXLl0y9evXNxUrVkz3PZCRjRs3pvtuvfZ1/fnqjuy+Fw4dOmTuvvtuU7x4cRMQEGBuvfVW88orr6Tbxt3vhnPnzpkhQ4aYiIgIExAQYOrUqWMWLVqU47gbPRdu5rkEAABunM2Y/38IKAAAAAq01atXq3Pnzvrmm2+cv1q+3vPPP6+ZM2cqISGBX9m6wcq+Rf42evRojRkzRmfOnMnRPCHIWM2aNdWxY0dNnjzZ20UBAAAAJPF4LgAAgEJj48aNeuihh7L8o/7u3bt155130mHiJiv7FkB6Bw8e9HYRAAAAABd0mgAAABQSEydOzHK9MUZ79+7Vo48+epNKVHBkt28BFD7JyclZrvfx8Uk3d0lBLgcAAEB+weO5AAAAAADwoJ9++kmVKlXKMiYmJkajR48uFOUAAADIT+g0AQAAAADAg5KSkrR///4sYyIjIxUZGVkoygEAAJCf0GkCAAAAAAAAAAAgiQeXAgAAAAAAAAAAiE4TAAAAAAAAAAAASXSaAAAAAAAAAAAASKLTBAAAAAAAAAAAQBKdJgAAAAAAAAAAAJLoNAEAAAAAAAAAAJBEpwkAAAAAAAAAAIAkOk0AAAAAAAAAAAAk0WkCAAAAAAAAAAAgiU4TAAAAAAAAAAAASXSaAAAAAAAAAAAASKLTBAAAAAAAAAAAQBKdJgAAAAAAAAAAAJLoNAEAAAAAAAAAAJBEpwkAAAAAAAAAAIAkOk0AAAAAAAAAAAAk0WkCAAAAAAAAAAAgiU4TAAAAAAAAAAAASXSaAAAAAAAAAAAASKLTBEAes2TJEt1+++0KCgqSzWbTvn37vF2kDI0ePVo2m83bxcgz+vXrp4oVK3q7GLlu9erVGj16tMfTnTNnjmw2m3766SePpy1JBw8e1OjRo3MtfQAAAG/I7TbUzJkzNWfOnFxJOz+rWLGi+vXr5+1i5LrcOv65fe+UW/csAFCY0GkCIM84c+aMoqOjVaVKFa1Zs0bbt2/Xbbfd5u1iAU6rV6/WmDFjvF0Mtx08eFBjxoyh0wQAAMANdJoUbvn1+OfXexYAyEvoNAGQZxw+fFhXrlzRI488oqioKDVu3FhFihTxdrEKlD///NPbRciXCtt+K2z1vdbFixdljPF2MQAAAG6IMUYXL170djHypcLUFi7s50lhOtYA3EOnCYA8oV+/fmrevLkk6cEHH5TNZlOLFi2c61euXKkmTZqoSJEiCgkJUdu2bbV9+/Z0aWQ0zDmjR2nZbDYNHjxY8+bNU40aNVSkSBHVrVtXn332WbrtV61apXr16slut6tSpUqaNGmSW3WLjY1V69atFRoaqiJFiqhZs2Zav359hmX87rvv1KtXLzkcDoWHh+vRRx9VQkKCS6wxRjNnzlS9evUUFBSksLAwde/eXT/++KNLXIsWLVSrVi1t3rxZTZs2VZEiRfToo49Kkn755Rd1795dISEhKlasmB5++GHt2rVLNpvN+WuqefPmyWazpdvPkvTaa6/J399fJ06cyLTely5d0siRI1WpUiUFBASoTJkyeuqpp3T27FmXuA0bNqhFixYqUaKEgoKCVL58eT3wwAMuDdh33nlHdevWVdGiRRUSEqLq1avrpZdeynK/33XXXerUqZPLstq1a8tms2nXrl3OZcuWLZPNZtO3334r6X/HYu/everevbvCwsJUpUoV9evXT2+//bakq+dP2iu70RtWjv+Nbvuf//xHvXr1Unh4uOx2u8qXL68+ffro8uXLmjNnjnr06CFJatmypbPcacc5q/Pk2LFjeuSRR1SqVCnZ7XbVqFFDkydPVmpqqjPvn376STabTZMmTdKUKVNUqVIlFS1aVE2aNNGOHTss1TMuLk4DBw5U2bJlFRAQoEqVKmnMmDFKTk7OcT67d+9W165dVbx4cQUGBuqOO+7QRx995BKT9kiPtWvX6tFHH9Utt9yiIkWK6PLlyzLGaNy4capQoYICAwPVoEEDrVu3Ti1atHBem86fP69ixYpp4MCB6fL/6aef5Ovrq4kTJ1raBwAAwHM++OAD1a1bV4GBgSpevLjuv/9+ff/99y4xP/74ox566CFFRkbKbrcrPDxcrVu3dj4euGLFivruu++0adMmZ/spu0cqudtO37Vrl/7yl7+oSJEiqly5st544w2XdpYkJSYmasSIES5t6qFDh+rChQsucWn3N7NmzVKNGjVkt9s1d+5cSdKWLVvUpEkTBQYGqkyZMho1apT++c9/urRlH3vsMRUvXjzDPyK3atVKt99+e5Z1t9JulLJv1//555/O+qYdvwYNGmjRokWZ5p2YmCg/Pz+Xdtdvv/0mHx8fORwOlzblkCFDdMsttzh/JJNZWzg3j/+NbrtmzRq1bt1aDodDRYoUUY0aNTR+/HhJyvaeJbvzpHXr1goJCVGRIkXUtGlTrVq1yiXvtPbzxo0b9eSTT6pkyZIqUaKEunXrluW94bXcaadbzWfJkiVq0qSJgoODVbRoUbVv315ff/21S0y/fv1UtGhRffvtt2rXrp1CQkLUunVrSdLZs2edn4GiRYuqU6dO+vHHH2Wz2ZyPOvvyyy9ls9kyPBc//PDDdPeZAPI5AwB5wA8//GDefvttI8mMGzfObN++3Xz33XfGGGMWLFhgJJl27dqZFStWmCVLlpj69eubgIAA8+WXXzrT6Nu3r6lQoUK6tGNiYsz1lztJpmLFiqZhw4bmo48+MqtXrzYtWrQwfn5+5r///a8zLjY21vj6+prmzZubZcuWmY8//tjcddddpnz58unSzMi8efOMzWYz9913n1m2bJn59NNPTefOnY2vr6+JjY1NV8Zq1aqZV1991axbt85MmTLF2O12079/f5c0BwwYYPz9/c3w4cPNmjVrzMKFC0316tVNeHi4iYuLc8ZFRUWZ4sWLm3Llypnp06ebjRs3mk2bNpnz58+bW2+91RQvXty8/fbb5vPPPzfPPvusqVSpkpFkZs+ebYwx5vLlyyYiIsI8/PDDLvlfuXLFREZGmh49emS671NTU0379u2Nn5+fGTVqlFm7dq2ZNGmSCQ4ONnfccYe5dOmSMcaYo0ePmsDAQNO2bVuzYsUK88UXX5gFCxaY6OhoEx8fb4wxZtGiRUaSefrpp83atWtNbGysmTVrlhkyZEiW+/7FF180RYsWNUlJScYYY+Li4owkExQUZMaOHeuMe/LJJ014eHi6Y1GhQgXzwgsvmHXr1pkVK1aYH374wXTv3t1IMtu3b3e+0uqSEavHf/bs2UaSOXr0qNvb7tu3zxQtWtRUrFjRzJo1y6xfv97Mnz/f9OzZ0yQmJprTp0+bcePGGUnm7bffdpb79OnTxpjMz5PTp0+bMmXKmFtuucXMmjXLrFmzxgwePNhIMk8++aQz/6NHjzo/Tx06dDArVqwwK1asMLVr1zZhYWHm7NmzWR6nkydPmnLlypkKFSqYd99918TGxpq//e1vxm63m379+uUonw0bNpiAgADzl7/8xSxZssSsWbPG9OvXz+X8vna/lylTxjzxxBPm3//+t/nXv/5lkpOTzciRI40k88QTT5g1a9aY9957z5QvX96ULl3aREVFOdN49tlnTXBwcLp6PvfccyYwMND89ttvWdYfAADkXEZtqLR2T69evcyqVavMhx9+aCpXrmwcDoc5fPiwM65atWrm1ltvNfPmzTObNm0yS5cuNcOHDzcbN240xhizd+9eU7lyZXPHHXc420979+7NsjzutNNLlChhqlatambNmmXWrVtnBg0aZCSZuXPnOuMuXLhg6tWrZ0qWLGmmTJliYmNjzd///nfjcDhMq1atTGpqqjM2rU1Tp04ds3DhQrNhwwZz4MAB880335jAwEBTp04ds3jxYrNy5Upzzz33mIoVK7rsu2+++cZIMu+9955Lnb777jtnOzJNhQoVTN++fZ3vrbYbrbTrBw4caIoUKWKmTJliNm7caD777DPzxhtvmOnTp2e57xs3bmzatWvnfL948WITGBhobDab2bp1q3N5jRo1TM+ePV2ORUZt4dw8/hndt1rd9p///Kex2WymRYsWZuHChSY2NtbMnDnTDBo0yBhjsr1nyew8+eKLL4y/v7+pX7++WbJkiVmxYoVp166dsdlsZvHixc780z5zlStXNk8//bT5/PPPzT//+U8TFhZmWrZsmeX+Mcb9drqVfMaOHWtsNpt59NFHzWeffWaWLVtmmjRpYoKDg51/U0jb7/7+/qZixYpm/PjxZv369ebzzz83KSkppnnz5iYwMNC88cYbZu3atWbMmDGmatWqRpKJiYlxpnHHHXeYZs2apavXXXfdZe66665s6w8g/6DTBECesXHjRiPJfPzxx85lKSkpJjIy0tSuXdukpKQ4l587d86UKlXKNG3a1LnM3U6T8PBwk5iY6FwWFxdnfHx8zPjx453LGjVqZCIjI83FixedyxITE03x4sWz7TS5cOGCKV68uOnSpYvL8pSUFFO3bl3TsGHDdGWcMGGCS+ygQYNMYGCg84Zo+/btRpKZPHmyS9zx48dNUFCQef75553LoqKijCSzfv16l9i0zql///vfLssHDhyYrrEaExNjAgICzKlTp5zLlixZYiSZTZs2OZddv+/XrFmTYX3Stv3HP/5hjDHmX//6l5Fk9u3bZzIzePBgU6xYsUzXZyY2NtZIMps3bzbGGDN//nwTEhJiBg0a5NLQrlq1qundu7dLnSWZV199NV2aTz31lKXOMmPcO/7X3/C7s22rVq1MsWLFnJ0gGfn444+NJOcfAa6V2Xny4osvGklm586dLsuffPJJY7PZzKFDh4wx/+vMqF27tklOTnbGffXVV0aSWbRoUablMubqeVe0aFHz888/uyyfNGmSkeS80XEnn+rVq5s77rjDXLlyxSXNzp07m9KlSzuvJWn7vU+fPi5xf/zxh7Hb7ebBBx90WZ72+bu20+S///2v8fHxMVOnTnUuu3jxoilRokS6Dk8AAOBZ17eh4uPjTVBQkLnnnntc4o4dO2bsdruzzffbb78ZSWbatGlZpn/77be7fO9nJSft9OvbWTVr1jTt27d3vh8/frzx8fExu3btcolLa0OvXr3auUyScTgc5o8//nCJ7dGjhwkODjZnzpxxLktJSTE1a9ZM1+EUFRVl6tWr57L9k08+aUJDQ825c+ecy67vNLHabrTSrq9Vq5a57777sozJyCuvvGKCgoKcnQOPP/646dChg6lTp44ZM2aMMcaYX3/91eVeJK3OGbWFjcm943/9vZPVbc+dO2dCQ0NN8+bNXTrMrpfVPUtm50njxo1NqVKlXI5zcnKyqVWrlilbtqwzv7TPXFonTZoJEyYYSebkyZOZlssY99vp2eVz7Ngx4+fnZ55++mmXuHPnzpmIiAiXDrK+ffsaSeaDDz5wiV21apWRZN555x2X5ePHj0/XaZJWrq+//tq5LO1+5NoOTwD5H4/nApCnHTp0SCdOnFB0dLR8fP53ySpatKgeeOAB7dixI8fPIW3ZsqVCQkKc78PDw1WqVCn9/PPPkqQLFy5o165d6tatmwIDA51xISEh6tKlS7bpb9u2TX/88Yf69u2r5ORk5ys1NVUdOnTQrl270g2r79q1q8v7OnXq6NKlSzp9+rQk6bPPPpPNZtMjjzzikmZERITq1q2rL774wmX7sLAwtWrVymXZpk2bFBISog4dOrgs79WrV7o6PPnkk5Kk9957z7lsxowZql27tu6+++5M675hwwZJV4dAX6tHjx4KDg52PmKqXr16CggI0BNPPKG5c+dmOPy8YcOGOnv2rHr16qVPPvlEv/32W6b5XqtZs2YKDAxUbGysJDkfrdShQwdt27ZNf/75p44fP64jR46oTZs26bZ/4IEHLOWTmZwcf3e3/fPPP7Vp0yb17NlTt9xyS47LmtF5smHDBtWsWVMNGzZ0Wd6vXz8ZY5zHOE2nTp3k6+vrfF+nTh1Jcn6eMvPZZ5+pZcuWioyMdKlrx44dJV09X93J54cfftB//vMfPfzww5LkkuY999yjkydP6tChQy5pXn+sd+zYocuXL6tnz54uyxs3bpzusQyVK1dW586dNXPmTOdjHhYuXKjff/9dgwcPzrLuAADAs7Zv366LFy+ma4OWK1dOrVq1crZBixcvripVqmjixImaMmWKvv7663SPkXKXu+30iIiIdO2sOnXquLSdPvvsM9WqVUv16tVzSbN9+/ay2Wzp0mzVqpXCwsJclm3atEmtWrVSyZIlnct8fHzStXMk6ZlnntG+ffu0detWSVcfezVv3jz17dtXRYsWzbTuVtuNVtr1DRs21L///W+9+OKL+uKLLyzPt9G6dWtdvHhR27Ztk3T1Mbdt27ZVmzZttG7dOucySena/hm1hd3l7vHPybbbtm1TYmKiBg0alO7x0+64/jy5cOGCdu7cqe7du7scZ19fX0VHR+uXX35J137O6L5Vyrrtn5N2enb5fP7550pOTlafPn1c0gsMDFRUVFSG+/36tn/a/cb1n4mM7o979eqlUqVKOR+BJknTp0/XLbfcogcffDDTugPIf+g0AZCn/f7775Kk0qVLp1sXGRmp1NRUxcfH5yjtEiVKpFtmt9udDfP4+HilpqYqIiIiXVxGy6536tQpSVL37t3l7+/v8nrzzTdljNEff/yRZZnsdrskOct06tQpGWMUHh6eLs0dO3aku/HIaL/9/vvvCg8PT7c8s2UPPvig3n33XaWkpGj//v368ssvs/1j8O+//y4/P790f8i32WyKiIhwHtcqVaooNjZWpUqV0lNPPaUqVaqoSpUq+vvf/+7cJjo6Wh988IF+/vlnPfDAAypVqpQaNWrkvPnJTGBgoJo1a+a8OVq/fr3atm2rFi1aKCUlRV9++aUzjYw6TTLad+7IyfF3d9v4+HilpKSobNmyN1TWzM6TzD53aeuvld25m5lTp07p008/TVfPtOdmX39OW/mMSNKIESPSpTlo0KAM07y+nml1s/o5eeaZZ3TkyBHn+fT222+rSZMmuvPOO7OsOwAA8Kzs7h3S1ttsNq1fv17t27fXhAkTdOedd+qWW27RkCFDdO7cuRzl7W47Pbt7kbQ09+/fny69kJAQGWM83va/9957VbFiRecfhOfMmaMLFy7oqaeeyrLuVtuNVtr1b731ll544QWtWLFCLVu2VPHixXXffffpyJEjWZYhbT6S2NhY/fDDD/rpp5+cnSY7d+7U+fPnFRsbq8qVK6tSpUou295ou19y//jnZNszZ85Iksfb/vHx8TLG5HrbPyftdKtt/7vuuitdmkuWLEmXXpEiRRQaGuqyLO3etXjx4i7LM/qM2O12DRw4UAsXLtTZs2d15swZffTRR3r88cedZQNQMPh5uwAAkJW0RtLJkyfTrTtx4oR8fHycv5IJDAzU5cuX08VZHZlwvbCwMNlsNsXFxaVbl9Gy66X9mmv69Olq3LhxhjEZNcSyS9Nms+nLL7/MsFF2/bKMfoFUokQJffXVV+mWZ1anZ555RvPmzdMnn3yiNWvWOCeOz0qJEiWUnJysM2fOuHScGGMUFxenu+66y7nsL3/5i/7yl78oJSVFu3fv1vTp0zV06FCFh4froYcekiT1799f/fv314ULF7R582bFxMSoc+fOOnz4sCpUqJBpOVq3bq1XX31VX331lX755Re1bdtWISEhuuuuu7Ru3TqdOHFCt912m8qVK5du2xv59ZZ0Y8ff6rYpKSny9fXVL7/8ckNlzew8yexzd20Zb1TJkiVVp04djR07NsP1aTdq7qQnSSNHjlS3bt0yjKlWrZrL++vrn3bdSbsJu1ZcXFy60SatWrVSrVq1NGPGDBUtWlR79+7V/Pnz3So3AAC4cdndO1zbfqlQoYLef/99SdLhw4f10UcfafTo0UpKStKsWbPcztvddrrVNIOCgvTBBx9kuv5ambXpMmvTXM/Hx0dPPfWUXnrpJU2ePFkzZ85U69at07WdMsrDarsxu3Z9cHCwxowZozFjxujUqVPOUSddunTRf/7zn0zLEBAQoObNmys2NlZly5ZVRESEateurcqVK0uSvvjiC61fv16dO3dOt+2NtvvT6pjT429127T7Kk+3/cPCwuTj45Prbf+ctNOtpvmvf/0ry/vCNJl9RpKTk/XHH3+4dJxkdn/85JNP6o033tAHH3ygS5cuKTk5WX/961/dKjeAvI9OEwB5WrVq1VSmTBktXLhQI0aMcDZyLly4oKVLl6pJkyYqUqSIJKlixYo6ffq0Tp065fxjdFJSkj7//PMc5R0cHKyGDRtq2bJlmjhxovMRXefOndOnn36a7fbNmjVTsWLFdPDgQY89pqdz585644039Ouvv2Y4pN6KqKgoffTRR/r3v//tfASSJC1evDjD+Pr166tp06Z68803deDAAT3xxBMKDg7OMo/WrVtrwoQJmj9/vp599lnn8qVLl+rChQtq3bp1um18fX3VqFEjVa9eXQsWLNDevXudnSZpgoOD1bFjRyUlJem+++7Td999l2XjuE2bNnrppZc0atQolS1bVtWrV3cuX7lypeLi4tx6DNe1v2wKCgrKMvZGjr8720ZFRenjjz/W2LFjM72ZsTrq41qtW7fW+PHjtXfvXpcREx9++KFsNptatmxpOa2sdO7cWatXr1aVKlXSPU4iJ6pVq6aqVavqm2++0bhx43KURqNGjWS327VkyRKXG7odO3bo559/TtdpIklDhgzRX//6VyUkJCg8PFw9evTIaRUAAEAONWnSREFBQZo/f77Ld/Evv/yiDRs2qHv37hlud9ttt+mVV17R0qVLtXfvXufy60d+ZMUT7fSM0hw3bpxKlCiRbnSEVVFRUVq9erV+++03Z1sxNTVVH3/8cYbxjz/+uEaPHq2HH35Yhw4d0ptvvpltHjlpN1pp14eHh6tfv3765ptvNG3aNP3555/Oe7+MtGnTRiNHjlRISIhzJHlwcLAaN26s6dOn68SJExmOMM/MzTr+Vrdt2rSpHA6HZs2apYceeijTzh537lmkq/uoUaNGWrZsmSZNmuTcJjU1VfPnz1fZsmV12223uVWnjHiinX699u3by8/PT//9739z/HjlqKgoTZgwQUuWLHE+nlrK/P64dOnS6tGjh2bOnKmkpCR16dJF5cuXz1HeAPIuOk0A5Gk+Pj6aMGGCHn74YXXu3FkDBw7U5cuXNXHiRJ09e1ZvvPGGM/bBBx/Uq6++qoceekjPPfecLl26pLfeekspKSk5zv9vf/ubOnTooLZt22r48OFKSUnRm2++qeDg4EwfrZSmaNGimj59uvr27as//vhD3bt3V6lSpXTmzBl98803OnPmjN555x23ytOsWTM98cQT6t+/v3bv3q27775bwcHBOnnypLZs2aLatWu7NPQy0rdvX02dOlWPPPKIXn/9dd16663697//7excunbumDTPPPOMHnzwQdlsNufQ6ay0bdtW7du31wsvvKDExEQ1a9ZM+/fvV0xMjO644w5FR0dLkmbNmqUNGzaoU6dOKl++vC5duuT8JV3aDc2AAQMUFBSkZs2aqXTp0oqLi9P48ePlcDhcRqxkpH79+goLC9PatWvVv39/5/I2bdrob3/7m0s+VtSuXVuS9Oabb6pjx47y9fVVnTp1FBAQkC72Ro6/O9tOmTJFzZs3V6NGjfTiiy/q1ltv1alTp7Ry5Uq9++67CgkJUa1atSRJ//jHPxQSEqLAwEBVqlQpw8dCpHn22Wf14YcfqlOnTnrttddUoUIFrVq1SjNnztSTTz7pkRsnSXrttde0bt06NW3aVEOGDFG1atV06dIl/fTTT1q9erVmzZrl9iMI3n33XXXs2FHt27dXv379VKZMGf3xxx/6/vvvtXfv3kz/SJCmePHiGjZsmMaPH6+wsDDdf//9+uWXXzRmzBiVLl06w8/II488opEjR2rz5s165ZVXMjwnAABA7ipWrJhGjRqll156SX369FGvXr30+++/a8yYMQoMDFRMTIwkaf/+/Ro8eLB69OihqlWrKiAgQBs2bND+/fv14osvOtOrXbu2Fi9erCVLlqhy5coKDAx0tgev54l2+vWGDh2qpUuX6u6779azzz6rOnXqKDU1VceOHdPatWs1fPhwNWrUKMs0Xn75ZX366adq3bq1Xn75ZQUFBWnWrFnOufWub9cUK1ZMffr00TvvvKMKFSpYmsvRarvRSru+UaNG6ty5s+rUqaOwsDB9//33mjdvnsuP5TLTunVrpaSkaP369Zo7d65zeZs2bRQTEyObzebW3CU36/hb3bZo0aKaPHmyHn/8cbVp00YDBgxQeHi4fvjhB33zzTeaMWOGs9yStXuWNOPHj1fbtm3VsmVLjRgxQgEBAZo5c6YOHDigRYsWeWQ0jnTj7fTrVaxYUa+99ppefvll/fjjj+rQoYPCwsJ06tQpffXVV86RS1np0KGDmjVrpuHDhysxMVH169fX9u3b9eGHH0rK/P447bM3e/Zst8oMIJ/wyvTzAJCBjRs3Gknm448/TrduxYoVplGjRiYwMNAEBweb1q1bm61bt6aLW716talXr54JCgoylStXNjNmzDAxMTHm+sudJPPUU0+l275ChQqmb9++LstWrlxp6tSpYwICAkz58uXNG2+8kWGamdm0aZPp1KmTKV68uPH39zdlypQxnTp1cqlnWnpnzpxx2Xb27NlGkjl69KjL8g8++MA0atTIBAcHm6CgIFOlShXTp08fs3v3bmdMVFSUuf322zMs07Fjx0y3bt1M0aJFTUhIiHnggQfM6tWrjSTzySefpIu/fPmysdvtpkOHDhmm17dvX1OhQgWXZRcvXjQvvPCCqVChgvH39zelS5c2Tz75pImPj3fGbN++3dx///2mQoUKxm63mxIlSpioqCizcuVKZ8zcuXNNy5YtTXh4uAkICDCRkZGmZ8+eZv/+/RmW5Xr333+/kWQWLFjgXJaUlGSCg4ONj4+PS3mMyfxYpO2Hxx9/3Nxyyy3GZrNleGyuZ+X4Z3acrWxrjDEHDx40PXr0MCVKlHCep/369TOXLl1yxkybNs1UqlTJ+Pr6Gklm9uzZxpisz5Off/7Z9O7d25QoUcL4+/ubatWqmYkTJ5qUlBRnzNGjR40kM3HixHTbSzIxMTFZ7h9jjDlz5owZMmSIqVSpkvH39zfFixc39evXNy+//LI5f/58jvL55ptvTM+ePU2pUqWMv7+/iYiIMK1atTKzZs1yxqTt9127dqVLMzU11bz++uumbNmyJiAgwNSpU8d89tlnpm7duub+++/PsB79+vUzfn5+5pdffsm2zgAA4MZl1ob65z//6Wy/OxwOc++995rvvvvOuf7UqVOmX79+pnr16iY4ONgULVrU1KlTx0ydOtUkJyc743766SfTrl07ExISYiSla+9m5Eba6Rm1qc+fP29eeeUVU61aNWd9ateubZ599lkTFxfnjMvs/sYYY7788kvTqFEjY7fbTUREhHnuuefMm2++aSSZs2fPpov/4osvjCTzxhtvZJheRvdMVtqNVtr1L774omnQoIEJCwszdrvdVK5c2Tz77LPmt99+y7As10pNTTUlS5Y0ksyvv/7qXL5161Yjydx5553ptsmqLZxbxz+j42x1W2Ou3vNGRUWZ4OBgU6RIEVOzZk3z5ptvOtdndc+S3XnSqlUrZ/6NGzc2n376qUtMZu3ntHv5jRs3ZruPbqSdnlk+K1asMC1btjShoaHGbrebChUqmO7du5vY2FhnTN++fU1wcHCGZfrjjz9M//79TbFixUyRIkVM27ZtzY4dO4wk8/e//z3DbSpWrGhq1KiRbX0B5E82Y4zJ/a4ZAEBeN27cOL3yyis6duxYul/2f/rpp+ratatWrVqle+65x0slBLzr6NGjql69umJiYvTSSy+5rEtKSlLFihXVvHlzffTRR14qIQAAgDXt2rXTTz/9pMOHD6dbN3z4cL3zzjs6fvx4liOTgYJs4cKFevjhh7V161Y1bdrUZd3+/ftVt25dvf3225aexAAg/+HxXABQCKUN3a5evbquXLmiDRs26K233tIjjzzi0mFy8OBB/fzzzxo+fLjq1avnMgcKUJB98803WrRokZo2barQ0FAdOnRIEyZMUGhoqB577DFn3JkzZ3To0CHNnj1bp06dcnmkBwAAQF4wbNgw3XHHHSpXrpz++OMPLViwQOvWrdP777/vErdjxw4dPnxYM2fO1MCBA+kwQaGxaNEi/frrr6pdu7Z8fHy0Y8cOTZw4UXfffbdLh8l///tf/fzzz3rppZdUunRp9evXz3uFBpCr6DQBgEKoSJEimjp1qn766SddvnxZ5cuX1wsvvKBXXnnFJW7QoEHaunWr7rzzTs2dO9djz7IF8rrg4GDt3r1b77//vs6ePSuHw6EWLVpo7NixCg8Pd8atWrVK/fv3V+nSpTVz5kyXyU8BAADygpSUFL366quKi4uTzWZTzZo1NW/ePD3yyCMucWnzhnTu3Fmvv/66l0oL3HwhISFavHixXn/9dV24cMHZIXL95+Bvf/ub5s2bpxo1aujjjz/Odp4dAPkXj+cCAAAAAAAAAACQ5OPtAgAAAAAAAAAAgMJh/PjxuuuuuxQSEqJSpUrpvvvu06FDh1xijDEaPXq0IiMjFRQUpBYtWui7777LNu2lS5eqZs2astvtqlmzppYvX+52+eg0AQAAAAAAAAAAN8WmTZv01FNPaceOHVq3bp2Sk5PVrl07XbhwwRkzYcIETZkyRTNmzNCuXbsUERGhtm3b6ty5c5mmu337dj344IOKjo7WN998o+joaPXs2VM7d+50q3w8nstLUlNTdeLECYWEhDBHAAAAAAo8Y4zOnTunyMhI+fjw2y1kj3smAACQ3+W1NvClS5eUlJSUK2kbY9K12ex2u+x2e7bbnjlzRqVKldKmTZt09913yxijyMhIDR06VC+88IIk6fLlywoPD9ebb76pgQMHZpjOgw8+qMTERP373/92LuvQoYPCwsK0aNEiy3VhIngvOXHihMqVK+ftYgAAAAA31fHjx1W2bFlvFwP5APdMAACgoMgLbeBLly7plqAgnc+l9IsWLarz511Tj4mJ0ejRo7PdNiEhQZJUvHhxSdLRo0cVFxendu3aOWPsdruioqK0bdu2TDtNtm/frmeffdZlWfv27TVt2jQ3akKnideEhIRIuvqBCQ0Nven5OxzjLcUlJIzM5ZJkzGr53OGtuhRWef0cQ97FuQMABVNiYqLKlSvnbAcD2blZ90zZtT1ocwAAgJzKS23gpKQknZf0rKTsx36457KkqefPp2u3WRllYozRsGHD1Lx5c9WqVUuSFBcXJ0kKDw93iQ0PD9fPP/+caVpxcXEZbpOWnlV0mnhJ2lCl0NBQr3SaSIGWorxTNslq+dzhvboUVnn9HEPexbkDAAUZj1mCVTfvninrtgdtDgAAcKPyUhs4WJ7/y2taJ0NO2m2DBw/W/v37tWXLlnTrrt9vGT0CzBPbXM/7D1IDAAAAAAAAAACFytNPP62VK1dq48aNLo8vi4iIkKR0I0ROnz6dbiTJtSIiItzeJiN0mgAAAAAAAAAAUAj459LLHcYYDR48WMuWLdOGDRtUqVIll/WVKlVSRESE1q1b51yWlJSkTZs2qWnTppmm26RJE5dtJGnt2rVZbpMRHs8FAAAAAAAAAABuiqeeekoLFy7UJ598opCQEOfoEIfDoaCgINlsNg0dOlTjxo1T1apVVbVqVY0bN05FihRR7969nen06dNHZcqU0fjxV+eoe+aZZ3T33XfrzTff1L333qtPPvlEsbGxGT76Kyt0mgAAAAAAAAAAUAj4yfOdAu6m984770iSWrRo4bJ89uzZ6tevnyTp+eef18WLFzVo0CDFx8erUaNGWrt2rUJCQpzxx44dk4/P/x6m1bRpUy1evFivvPKKRo0apSpVqmjJkiVq1KiRW+WzGWOMm3WCByQmJsrhcCghISHbyXFstjGW0jQmxhNFy9W8rabnjtyotye5U+e8XhdkzZufVRQOnGP5G98HhQef1Yy50/4FJM4ZAACQ/+Wl9kxaWcbK8xPBX5L0spQn6ukJjDQBAAAAAAAAAKAQ8JP7c5BkJ9nD6XkbnSYAAAAAAAAAABQCeeHxXHmdT/YhAAAAAAAAAAAABV9B6wQCAAAAAAAAAAAZ8BeP58oOI00AAAAAAAAAAADESBMAAAAAAAAAAAoF5jTJXkGrT77jcGyUFJxN1POW0rLZxljO15gYj8Z5Ot+CpDDWubDiWCO3cY7lbxy/woNjDQAAAAD5F50mAAAAAAAAAAAUAn7y/JwmVzycnrcxpwkAAAAAAAAAAIAYaQIAAAAAAAAAQKHAnCbZK2j1AQAAAAAAAAAAGfCX5x/P5en0vI3HcwEAAAAAAAAAAIiRJgAAAAAAAAAAFAqMNMkenSZet0NSYDYxWy2m1ewGywJ32GxjLMUZE5PLJUFekR/OifxQRgC42bg2AgAAAMhMdvcL3CcUPHSaAAAAAAAAAABQCDARfPaY0wQAAAAAAAAAAEAFrxMIAAAAAAAAAABkwE+en4OkoHUyMNIEAAAAAAAAAABABa8TCAAAAAAAAAAAZIA5TbKXZ+qzefNmTZw4UXv27NHJkye1fPly3XfffRnGDhw4UP/4xz80depUDR061Ln88uXLGjFihBYtWqSLFy+qdevWmjlzpsqWLeuMiY+P15AhQ7Ry5UpJUteuXTV9+nQVK1bMGXPs2DE99dRT2rBhg4KCgtS7d29NmjRJAQEBzphvv/1WgwcP1ldffaXixYtr4MCBGjVqlGw2m1v1viuhmfxCg7OM2V65pbXEjl60nK/NNsZSnDExltMsbPLDvuE431z5YT/mhzICwM3GtRH5RWG9Z3I4xksKzCKiWZbbG9PGrfwAAACuVdDuF/zl+cdzeTo9b8szj+e6cOGC6tatqxkzZmQZt2LFCu3cuVORkZHp1g0dOlTLly/X4sWLtWXLFp0/f16dO3dWSkqKM6Z3797at2+f1qxZozVr1mjfvn2Kjo52rk9JSVGnTp104cIFbdmyRYsXL9bSpUs1fPhwZ0xiYqLatm2ryMhI7dq1S9OnT9ekSZM0ZcoUD+wJAAAAAEiPeyYAAAAg9+WZkSYdO3ZUx44ds4z59ddfNXjwYH3++efq1KmTy7qEhAS9//77mjdvntq0ufpLovnz56tcuXKKjY1V+/bt9f3332vNmjXasWOHGjVqJEl677331KRJEx06dEjVqlXT2rVrdfDgQR0/ftx5kzF58mT169dPY8eOVWhoqBYsWKBLly5pzpw5stvtqlWrlg4fPqwpU6Zo2LBhbv9yCgAAAACywz0TAAAAbhSP58penhlpkp3U1FRFR0frueee0+23355u/Z49e3TlyhW1a9fOuSwyMlK1atXStm3bJEnbt2+Xw+FwNv4lqXHjxnI4HC4xtWrVcvlVVvv27XX58mXt2bPHGRMVFSW73e4Sc+LECf30008Zlv/y5ctKTEx0eQEAAACAp3DPBAAAANy4fNNp8uabb8rPz09DhgzJcH1cXJwCAgIUFhbmsjw8PFxxcXHOmFKlSqXbtlSpUi4x4eHhLuvDwsIUEBCQZUza+7SY640fP14Oh8P5KleuXHZVBgAAAADLuGcCAABAdvz0v3lNPPVipIkX7NmzR3//+981Z84ct4dxG2Nctsloe0/EGGMy3VaSRo4cqYSEBOfr+PHjbtUDAAAAADLDPRMAAADgGfmi0+TLL7/U6dOnVb58efn5+cnPz08///yzhg8frooVK0qSIiIilJSUpPj4eJdtT58+7fxFU0REhE6dOpUu/TNnzrjEXP/Lp/j4eF25ciXLmNOnT0tSul9TpbHb7QoNDXV5AQAAAIAncM8EAAAAK/xy6VWQ5Iv6REdHOycqTNO+fXtFR0erf//+kqT69evL399f69atU8+ePSVJJ0+e1IEDBzRhwgRJUpMmTZSQkKCvvvpKDRs2lCTt3LlTCQkJatq0qTNm7NixOnnypEqXLi1JWrt2rex2u+rXr++Meemll5SUlKSAgABnTGRkpPOGxKpdjq2SArOMMaalxdSCLOfr6XkXbbYxluKMifFsxm7wdBnzQ529mTfyt/xwfgMAgP8pyPdMCQkjC30HSnZtM9pkAAAAnpNnOk3Onz+vH374wfn+6NGj2rdvn4oXL67y5curRIkSLvH+/v6KiIhQtWrVJEkOh0OPPfaYhg8frhIlSqh48eIaMWKEateu7bx5qFGjhjp06KABAwbo3XfflSQ98cQT6ty5szOddu3aqWbNmoqOjtbEiRP1xx9/aMSIERowYICzod67d2+NGTNG/fr100svvaQjR45o3LhxevXVV90eCg8AAAAAVnDPBAAAgBuVNg+Jp9MsSPJMp8nu3bvVsuX/RlQMGzZMktS3b1/NmTPHUhpTp06Vn5+fevbsqYsXL6p169aaM2eOfH19nTELFizQkCFD1K5dO0lS165dNWPGDOd6X19frVq1SoMGDVKzZs0UFBSk3r17a9KkSc4Yh8OhdevW6amnnlKDBg0UFhamYcOGOcsMAAAAAJ7GPRMAAACQ+2wmbTY+3FSJiYlyOBySXlT2j+fy/FDrwvioqsJYZyCnOL8BAJ6W1v5NSEgo9I9agjWcM//D47kAAMif8lJ7Jq0seyUV9XDa5yXdKeWJenpCnhlpAgAAAAAAAAAAco+fPP84rYLWyeDj7QIAAAAAAAAAAADkBQWtEwgAAAAAAAAAAGSAieCzR6eJlyUkjMz2OW9W5xZwh6efeevNeUC8NfcCzw3O/2y2WEtxxrTJ5ZLkPZzfuB7z3OB6nBMAbhaHY7yymgcyt68zeWE+EW9fS61c871dRgAAAE+h0wQAAAAAAAAAgELAT57vFChonQzMaQIAAAAAAAAAAKCC1wkEAAAAAAAAAAAy4Ocr+ds8nKaRlOLZNL2JkSYAAAAAAAAAAABipAkAAAAAAAAAAIWCn5/kx0iTLNmMMcbbhSiMEhMT5XA4JL0oKdBDqTbzUDruM6aNR9Oz2ca4kXeMR/MGAACA56W1fxMSEhQaGurt4iAfsHrOZHfvwP0CgIKG6x6Qf+SlNnBaWeKKSKEe7jRJNFLEn8oT9fQEHs8FAAAAAAAAAAAgHs8FAAAAAAAAAEChkGuP5ypAGGkCAAAAAAAAAAAgRpoAAAAAAAAAAFAo+PtK/h4eSuGf6tn0vI2RJgAAAAAAAAAAAGKkCQAAAAAAAAAAhYOvPD+UwsNzpHgbnSbedu9IyT80yxDz8U0qSwZstjEWI9t4NF9jYjyaHgAAAAAAQEHA30zyh+z+psZxBPIuOk0AAAAAAAAAACgM/OT5kSYFbE4TOk0AAAAAAAAAACgM6DTJFhPBAwAAAAAAAACAm2bz5s3q0qWLIiMjZbPZtGLFCpf1Npstw9fEiRMzTXPOnDkZbnPp0iW3ysZIEwAAAAAAAAAACoM8MtLkwoULqlu3rvr3768HHngg3fqTJ0+6vP/3v/+txx57LMPYa4WGhurQoUMuywIDA90qG50mAAAAAAAAAADgpunYsaM6duyY6fqIiAiX95988olatmypypUrZ5muzWZLt627eDwXAAAAAAAAAACFgY8kXw+//r+XITEx0eV1+fJljxT51KlTWrVqlR577LFsY8+fP68KFSqobNmy6ty5s77++mu382OkST5gs42xFGdMjBtpXvRomlbLaJV7dfFs3la5U0Ygr8iN6wkAAAAAAHDFfTUKo3Llyrm8j4mJ0ejRo2843blz5yokJETdunXLMq569eqaM2eOateurcTERP39739Xs2bN9M0336hq1aqW86PTBAAAAAAAAACAwsBPV0eHeJLt6j/Hjx9XaGioc7HdbvdI8h988IEefvjhbOcmady4sRo3bux836xZM915552aPn263nrrLcv50WkCAAAAAAAAAABuSGhoqEuniSd8+eWXOnTokJYsWeL2tj4+Prrrrrt05MgRt7aj0wQAAAAAAAAAgMIgF0ea5Ib3339f9evXV926dd3e1hijffv2qXbt2m5tR6cJAAAAAAAAAACFQdrk7V52/vx5/fDDD873R48e1b59+1S8eHGVL19e0tWJ5T/++GNNnjw5wzT69OmjMmXKaPz48ZKkMWPGqHHjxqpataoSExP11ltvad++fXr77bfdKhudJgAAAAAAAAAA4KbZvXu3WrZs6Xw/bNgwSVLfvn01Z84cSdLixYtljFGvXr0yTOPYsWPy8fFxvj979qyeeOIJxcXFyeFw6I477tDmzZvVsGFDt8pmM8YYN+sDD0hMTJTD4ZDuTZD8s3nO27/GeDx/Y2IsxdlssRZT3OrRfN1hs120mHeQx/PO62w2a+dObhwXAACAa6W1fxMSEjz+nGMUTIXpnMmu3U57HQCA/CkvtWecZblDCvXwSJPEFMnxtfJEPT3BJ/sQAAAAAAAAAACAgo/HcwEAAAAAAAAAUBj4il6BbDDSBAAAAAAAAAAAQPQpAQAAAAAAAABQOPj+/8uTCtis6Yw0AQAAAAAAAAAAECNNAAAAAAAAAAAoHPxEr0A22D3e9slGScFZhhgTc3PKkmHebSzF2Wxbc7kkWZlgMc47+9FmG2M51tPHOjfOHav18eZ5axV1AZDf8dkHUBg4HOMlBWa6viBc4wpCHQAAQD5Bp0m2eDwXAAAAAAAAAACA6FMCAAAAAAAAAKBwYKRJthhpAgAAAAAAAAAAIPqUAAAAAAAAAAAoHHwk+Xo4zVQPp+dljDQBAAAAAAAAAAAQI00AAAAAAAAAACgccmNOE+Ph9LyMThOvaywp1NuFyJTNNsbbRciWMTHeLkKW8nr5CjNvHRurnyvOHQDZ4ToBoDBISBip0ND8e8/EtRoAACB/odMEAAAAAAAAAIDCgJEm2aLTBAAAAAAAAACAwsBXTASfDSaCBwAAAAAAAAAAECNNAAAAAAAAAAAoHHg8V7YYaQIAAAAAAAAAACBGmuQBOyQFZxlhs221lJIxMZZztdnGWIxsZjHvNh7O1zp36g1cy+r56OlzzGp67nxePJ0mnysgf+AznbncuIYC8A6HY7ykwEzXe/sz7O38AeB62bWDuG4BhZyvPN8rwJwmAAAAAAAAAAAABU+e6TTZvHmzunTposjISNlsNq1YscK57sqVK3rhhRdUu3ZtBQcHKzIyUn369NGJEydc0rh8+bKefvpplSxZUsHBweratat++eUXl5j4+HhFR0fL4XDI4XAoOjpaZ8+edYk5duyYunTpouDgYJUsWVJDhgxRUlKSS8y3336rqKgoBQUFqUyZMnrttddkTAF7eBsAAACAPIN7JgAAANww31x6FSB5ptPkwoULqlu3rmbMmJFu3Z9//qm9e/dq1KhR2rt3r5YtW6bDhw+ra9euLnFDhw7V8uXLtXjxYm3ZskXnz59X586dlZKS4ozp3bu39u3bpzVr1mjNmjXat2+foqOjnetTUlLUqVMnXbhwQVu2bNHixYu1dOlSDR8+3BmTmJiotm3bKjIyUrt27dL06dM1adIkTZkyJRf2DAAAAABwzwQAAADcDHlmTpOOHTuqY8eOGa5zOBxat26dy7Lp06erYcOGOnbsmMqXL6+EhAS9//77mjdvntq0uTq/xvz581WuXDnFxsaqffv2+v7777VmzRrt2LFDjRo1kiS99957atKkiQ4dOqRq1app7dq1OnjwoI4fP67IyEhJ0uTJk9WvXz+NHTtWoaGhWrBggS5duqQ5c+bIbrerVq1aOnz4sKZMmaJhw4bJZrPl4p4CAAAAUBhxzwQAAIAb5ifmNMlGnhlp4q6EhATZbDYVK1ZMkrRnzx5duXJF7dq1c8ZERkaqVq1a2rZtmyRp+/btcjgczsa/JDVu3FgOh8MlplatWs7GvyS1b99ely9f1p49e5wxUVFRstvtLjEnTpzQTz/9lGF5L1++rMTERJcXAAAAAOQW7pkAAACQjl8uvQqQfNlpcunSJb344ovq3bu3QkNDJUlxcXEKCAhQWFiYS2x4eLji4uKcMaVKlUqXXqlSpVxiwsPDXdaHhYUpICAgy5i092kx1xs/frzzmcAOh0PlypVzt9oAAAAAYAn3TAAAAEDO5Ls+oCtXruihhx5SamqqZs6cmW28McZl6HdGw8A9EZM2oWFmw8xHjhypYcOGOd8nJiZevQmo0FLyCc26Dj+2yXL9/8o0xlKcO4yxlrf19GIsxeVGXTydptW6FDSePobe3I95/RjmRvnyep2l/HHuAHkFn4PMsW9QmBW4eyYvy65tUhCuN4WhjkBhwmcWQJZ4PFe28tVIkytXrqhnz546evSo1q1b5/zFlCRFREQoKSlJ8fHxLtucPn3a+YumiIgInTp1Kl26Z86ccYm5/pdP8fHxunLlSpYxp0+flqR0v6ZKY7fbFRoa6vICAAAAAE/ingkAAAC4Mfmm0ySt8X/kyBHFxsaqRIkSLuvr168vf39/l8kPT548qQMHDqhp06aSpCZNmighIUFfffWVM2bnzp1KSEhwiTlw4IBOnjzpjFm7dq3sdrvq16/vjNm8ebOSkpJcYiIjI1WxYkWP1x0AAAAAssM9EwAAALLlI8nXw69808tgTZ6pzvnz57Vv3z7t27dPknT06FHt27dPx44dU3Jysrp3767du3drwYIFSklJUVxcnOLi4pyNcIfDoccee0zDhw/X+vXr9fXXX+uRRx5R7dq11abN1UdM1ahRQx06dNCAAQO0Y8cO7dixQwMGDFDnzp1VrVo1SVK7du1Us2ZNRUdH6+uvv9b69es1YsQIDRgwwPlLp969e8tut6tfv346cOCAli9frnHjxmnYsGGZDjUHAAAAgBvBPRMAAACQ+/LMnCa7d+9Wy5Ytne/TnmXbt29fjR49WitXrpQk1atXz2W7jRs3qkWLFpKkqVOnys/PTz179tTFixfVunVrzZkzR76+vs74BQsWaMiQIWrXrp0kqWvXrpoxY4Zzva+vr1atWqVBgwapWbNmCgoKUu/evTVp0iRnjMPh0Lp16/TUU0+pQYMGCgsL07Bhw1yevwsAAAAAnsQ9EwAAAG5YbsxpkuLh9LzMZtJm48NNlZiYKIfDIVVIsDARvLU0c2cieO9MHuZOXbw1uTwTq2WNybyRU5w7AFAwpbV/ExISmKsCljjvmfSipMBM43K7TVAYJkkvDHUEAMAb8lIb2FmWwVKo3cNpX5YcM5Qn6ukJeWakCQAAAAAAAAAAyEWMNMkWnSbe9oSy+tGUJMlmi/V8vpPz9giS3PglU2H8dZQ3Rx8Vxv0Nz+DcARhxBQA3E6MsCkcdAQDA/0ubvN3TaRYgeWYieAAAAAAAAAAAAG9ipAkAAAAAAAAAAIUBj+fKFiNNAAAAAAAAAAAAxEgTAAAAAAAAAAAKB195vlcg2cPpeRkjTQAAAAAAAAAAAMRIEwAAAAAAAAAACofcmNOkgPUyFLDq5D+hT5ySLfTPLGMShltLy5gYy/nabGOsxXk4b3fK6GlW6+xpuVFnq3XJD3l7+rh48xzzJm+eE3kd+wb5EecjACC/ya7NxXdb9tiHKEw43wHkZXSaAAAAAAAAAABQGPj+/8vTaRYgzGkCAAAAAAAAAAAgRpoAAAAAAAAAAFA4MKdJtgpYdQAAAAAAAAAAQIboNMkWj+cCAAAAAAAAAABQgesDyn8SG4RLPqFZB02OuDmFydDzlqJstjGW4oyJuZHC3BCreXuzLlbz9iZP19vT6eXGPvTWeetOXbz52crr2Dd5U3743gAA5A0JCSMVGprNPdMN4LvGM9iPN459iMKE8x3wIh95fuL2AjY0o4BVBwAAAAAAAAAAIGcYaQIAAAAAAAAAQGHAnCbZYqQJAAAAAAAAAACA6DQBAAAAAAAAAKBw8Mull5s2b96sLl26KDIyUjabTStWrHBZ369fP9lsNpdX48aNs0136dKlqlmzpux2u2rWrKnly5e7XTY6TQAAAAAAAAAAwE1z4cIF1a1bVzNmzMg0pkOHDjp58qTztXr16izT3L59ux588EFFR0frm2++UXR0tHr27KmdO3e6VbYC9rQxAAAAAAAAAACQId//f3k6TTd17NhRHTt2zDLGbrcrIiLCcprTpk1T27ZtNXLkSEnSyJEjtWnTJk2bNk2LFi2ynA6dJl6WsF8KDfVMWjZbrBvRzSxFGRNkMb0YS1E22xiL+VpLLzcUxrzdOXeMaePhvD17TrizD63m7S3ePBeB3Mb5nbX88H0JAIVFdtfkm3EtzgtlAAAABUQuTgSfmJjosthut8tut+c42S+++EKlSpVSsWLFFBUVpbFjx6pUqVKZxm/fvl3PPvusy7L27dtr2rRpbuXL47kAAAAAAAAAAMANKVeunBwOh/M1fvz4HKfVsWNHLViwQBs2bNDkyZO1a9cutWrVSpcvX850m7i4OIWHh7ssCw8PV1xcnFt5M9IEAAAAAAAAAIDCwFee7xX4/8dzHT9+XKHXPFbpRkaZPPjgg87/16pVSw0aNFCFChW0atUqdevWLdPtbDaby3tjTLpl2aHTBAAAAAAAAAAA3JDQ0FCXThNPKl26tCpUqKAjR45kGhMREZFuVMnp06fTjT7JDo/nAgAAAAAAAACgMPDLpVcu+/3333X8+HGVLl0605gmTZpo3bp1LsvWrl2rpk2bupUXI00AAAAAAAAAAMBNc/78ef3www/O90ePHtW+fftUvHhxFS9eXKNHj9YDDzyg0qVL66efftJLL72kkiVL6v7773du06dPH5UpU8Y5d8ozzzyju+++W2+++abuvfdeffLJJ4qNjdWWLVvcKhudJgAAAAAAAAAAFAa+cs5B4tE03bR79261bNnS+X7YsGGSpL59++qdd97Rt99+qw8//FBnz55V6dKl1bJlSy1ZskQhISHObY4dOyYfn/89TKtp06ZavHixXnnlFY0aNUpVqlTRkiVL1KhRI7fKZjPGGPerhBuVmJgoh8MhrU6QgrN5zltUrKU0jWnjgZLlDTbbGMuxxsTkYkluXG7UxWqa3tw3+aGM3sK+QV7C+QhYx+flxqS1fxMSEnLtOccoWJz3THpRUmCO07nRz2R2n30+84Bn3ehnjs9swcBx9Az2o/flpTawsyzzpdAiHk77T8nxiPJEPT2BkSYAAAAAAAAAABQGuTEHSQHrZShg1QEAAAAAAAAAABmi0yRbPtmHAAAAAAAAAAAAFHwFrA8IAAAAAAAAAABkyEeenwi+gA3NKGDVAQAAAAAAAAAAyBmbMcZ4uxCFUWJiohwOh0LPHJYtNCTL2ITqEdYSPTrGcv7GxFiKs9mspWk1PW8qSHWxijpnLa/X22aLdSN6q6WovF5nb/LmuVMYP6tAbitI3wcFRVr7NyEhQaGhod4uDvKB/HLOZHe94RpTcHCsAVyLawKsyEvtGWdZVkqhwR5O+4Lk6Ko8UU9PYKQJAAAAAAAAAACAmNMEAAAAAAAAAIDCwU+e7xUoYL0MjDQBAAAAAAAAAABQgesDAgAAAAAAAAAAGfL9/5en0yxA6DQBAAAAAAAAAKAw4PFc2eLxXAAAAAAAAAAAACpwfUD5T+ItoZJCsw6abC0tMyzmhsuTLk3j+TSROZttjEfTK4zHryDV2Zg2lmNttq25WJK8yernxeo54c1zpyCdt54+LkBOcY4BhUd23z25fT3gelN4cKwBXItrAvItX3m+V6CAPZ6LkSYAAAAAAAAAAABipAkAAAAAAAAAAIUDc5pki5EmAAAAAAAAAAAAKnB9QAAAAAAAAAAAIEO+8vwcJMxpAgAAAAAAAAAAUPAw0gQAAAAAAAAAgMKAOU2yVcCqkx/tkBScdcjwrZZSsg13J99mlqKMaWMtb9sYdzL3CmNiLMXZbLEW07O2b9xhtYzwDKvnLcclb/L0cXHnOsY5AXiPN7+nAXiHw7FRWd0z8b2cP2TX1uI4AgBwk/jK870CPJ4LAAAAAAAAAACg4GGkCQAAAAAAAAAAhQETwWcrz4w02bx5s7p06aLIyEjZbDatWLHCZb0xRqNHj1ZkZKSCgoLUokULfffddy4xly9f1tNPP62SJUsqODhYXbt21S+//OISEx8fr+joaDkcDjkcDkVHR+vs2bMuMceOHVOXLl0UHByskiVLasiQIUpKSnKJ+fbbbxUVFaWgoCCVKVNGr732mowxHtsfAAAAAHAt7pkAAACA3JdnOk0uXLigunXrasaMGRmunzBhgqZMmaIZM2Zo165dioiIUNu2bXXu3DlnzNChQ7V8+XItXrxYW7Zs0fnz59W5c2elpKQ4Y3r37q19+/ZpzZo1WrNmjfbt26fo6Gjn+pSUFHXq1EkXLlzQli1btHjxYi1dulTDh/9vwpDExES1bdtWkZGR2rVrl6ZPn65JkyZpypQpubBnAAAAAIB7JgAAAHiAXy69CpA8U52OHTuqY8eOGa4zxmjatGl6+eWX1a1bN0nS3LlzFR4eroULF2rgwIFKSEjQ+++/r3nz5qlNm6sTf86fP1/lypVTbGys2rdvr++//15r1qzRjh071KhRI0nSe++9pyZNmujQoUOqVq2a1q5dq4MHD+r48eOKjIyUJE2ePFn9+vXT2LFjFRoaqgULFujSpUuaM2eO7Ha7atWqpcOHD2vKlCkaNmyYbDZbujpcvnxZly9fdr5PTEz06P4DAAAAULBxzwQAAADkvjzTaZKVo0ePKi4uTu3atXMus9vtioqK0rZt2zRw4EDt2bNHV65ccYmJjIxUrVq1tG3bNrVv317bt2+Xw+FwNv4lqXHjxnI4HNq2bZuqVaum7du3q1atWs7GvyS1b99ely9f1p49e9SyZUtt375dUVFRstvtLjEjR47UTz/9pEqVKqWrw/jx4zVmzJj0lVvdUgoOzXoH9GtjZTdJR2OtxUmStlqMs5a3MTGW4my2DPbBDaSXG4yxuL8tslrnq3l7r94FRWHd33m9Lu4cF6s8Xee8vg/zC/Yjcpunv6fdkR/aMSi8CvI9U0JCS4WGZnPPhDwvP1wbb7TNmh/qCMC67K4JfOaRb+XGyJB80ctgXZ55PFdW4uLiJEnh4eEuy8PDw53r4uLiFBAQoLCwsCxjSpUqlS79UqVKucRcn09YWJgCAgKyjEl7nxZzvZEjRyohIcH5On78ePYVBwAAAAALuGcCAAAAPCNf9QFdP4TbGJPhsO6sYjKK90RM2oSGmZXHbre7/MoKAAAAADyNeyYAAABkiZEm2coXI00iIiIkpf9F0unTp52/VoqIiFBSUpLi4+OzjDl16lS69M+cOeMSc30+8fHxunLlSpYxp0+flpT+l10AAAAAkNu4ZwIAAIAVxkcyvh5+5YteBuvyRXUqVaqkiIgIrVu3zrksKSlJmzZtUtOmTSVJ9evXl7+/v0vMyZMndeDAAWdMkyZNlJCQoK+++soZs3PnTiUkJLjEHDhwQCdPnnTGrF27Vna7XfXr13fGbN68WUlJSS4xkZGRqlixoud3AAAAAABkgXsmAAAAwDPyTKfJ+fPntW/fPu3bt0/S1YkM9+3bp2PHjslms2no0KEaN26cli9frgMHDqhfv34qUqSIevfuLUlyOBx67LHHNHz4cK1fv15ff/21HnnkEdWuXVtt2lydMLRGjRrq0KGDBgwYoB07dmjHjh0aMGCAOnfurGrVqkmS2rVrp5o1ayo6Olpff/211q9frxEjRmjAgAHOyQd79+4tu92ufv366cCBA1q+fLnGjRunYcOGZTv0HQAAAABygnsmAAAA3KgUv9x5FSR5pjq7d+9Wy5Ytne+HDRsmSerbt6/mzJmj559/XhcvXtSgQYMUHx+vRo0aae3atQoJCXFuM3XqVPn5+alnz566ePGiWrdurTlz5sjX19cZs2DBAg0ZMkTt2rWTJHXt2lUzZsxwrvf19dWqVas0aNAgNWvWTEFBQerdu7cmTZrkjHE4HFq3bp2eeuopNWjQQGFhYRo2bJizzAAAAADgadwzAQAAALnPZtJm48NNlZiYKIfDIVVIkHxCsw4ebDHR4WNuuFzXMybGo+nZbNbK6E6+VtO0ylt19mbens7X23l7S36oM2XMm/L6dQzISwrjNaKgSGv/JiQkOEcjAFlx3jPpRUmBOU6H6wEAAPCWvNQGTivL6ZOSp4uSmCiVKq08UU9PyDOP5wIAAAAAAAAAAPCmPPN4LgAAAAAAAAAAkHuSfW1K9vXsHHPJvkZSwXmgFSNNAAAAAAAAAAAAxEgTAAAAAAAAAAAKhRQ/P6X4eXakSYqfkXTFo2l6E50mAAAAAAAAAAAUAim+vkrx8OO5UnwLVqcJj+cCAAAAAAAAAAAQI0287q79m+UXGpxlzPYeLXMh52aWomy2MZbijIm5kcJkkG+s5VhP5+1p3ixfYczb6jkreb6Mef1clKyX0Vuf/dxKM68rjHUGcorPCwB3Zdeu4bpSMBSG42yljV4Q6on8oTB85m4U+wh5Vap8lSLPjjRJLUCTwEuMNAEAAAAAAAAAAJDESBMAAAAAAAAAAAqFZPkq2cMjTZIZaQIAAAAAAAAAAFDwMNIEAAAAAAAAAIBCIEW+SvHwWIoUpXo0PW9jpAkAAAAAAAAAAIAYaQIAAAAAAAAAQKGQOyNNPDtHirfRaeJlu/rcLfmHZh30r1iLqTVzI+etbsRmz2azWsbnLcZNcCNva3UxJsZiemM8mh5urtw4LvnhnMgPZfSWwrhvrNZZKlj1BgAUTtl9l7nzvVhQZXe/Zkybm1SS3FMY2jSFoY7IPzgfs8c+Ql5Fp0n2eDwXAAAAAAAAAACAGGkCAAAAAAAAAEChwEiT7DHSBAAAAAAAAAAAQHSaAAAAAAAAAABQKKTIV8kefqXI1+1ybN68WV26dFFkZKRsNptWrFjhXHflyhW98MILql27toKDgxUZGak+ffroxIkTWaY5Z84c2Wy2dK9Lly65VTY6TQAAAAAAAAAAwE1z4cIF1a1bVzNmzEi37s8//9TevXs1atQo7d27V8uWLdPhw4fVtWvXbNMNDQ3VyZMnXV6BgYFulY05Tbztk4uS/LOOmdzGWlrDx9xwcdJrZi2sksUyHo21FGZMjLX0coE3884PbDZr55mn96O38r3K2ufAm2X0dJpW0/PucbHGm3l7a//kRp3zw7EGABRUjSUF53jrG/1uyu47MD989xlj8X4NAIB8piB8T99sKfLLhTlNUt3epmPHjurYsWOG6xwOh9atW+eybPr06WrYsKGOHTum8uXLZ5quzWZTRESE2+W5FiNNAAAAAAAAAADADUlMTHR5Xb582WNpJyQkyGazqVixYlnGnT9/XhUqVFDZsmXVuXNnff31127nRacJAAAAAAAAAACFQIp8lPL/85B47nW1m6FcuXJyOBzO1/jx4z1S5kuXLunFF19U7969FRoammlc9erVNWfOHK1cuVKLFi1SYGCgmjVrpiNHjriVH4/nAgAAAAAAAAAAN+T48eMunRp2u/2G07xy5YoeeughpaamaubMmVnGNm7cWI0bN3a+b9asme68805Nnz5db731luU86TQBAAAAAAAAAKAQSBsd4tk0rwoNDc1yJIi7rly5op49e+ro0aPasGGD22n7+PjorrvuYqQJAAAAAAAAAABIL1m+SvZwp0myR1O7Kq3D5MiRI9q4caNKlCjhdhrGGO3bt0+1a9d2azs6TQAAAAAAAAAAwE1z/vx5/fDDD873R48e1b59+1S8eHFFRkaqe/fu2rt3rz777DOlpKQoLi5OklS8eHEFBARIkvr06aMyZco4504ZM2aMGjdurKpVqyoxMVFvvfWW9u3bp7ffftutstFp4mWhZxJlCzVZxiTYt3o8X2NiLMXZbLHW0vvRas5trAZaZrONsRRntc55Pd/cYLUukvfq4839aIzV89ZaXG6cO946H/PD+Z0bCtLn36qCVBfcXIXx8wLA0xpL8txjHtzF9QkAkBPZtYP5fvEM9qP7UuXn8cdzpcrm9ja7d+9Wy5Ytne+HDRsmSerbt69Gjx6tlStXSpLq1avnst3GjRvVokULSdKxY8fk4+PjXHf27Fk98cQTiouLk8Ph0B133KHNmzerYcOGbpWNThMAAAAAAAAAAHDTtGjRQsZkPpggq3VpvvjiC5f3U6dO1dSpU2+0aHSaAAAAAAAAAABQGOTmRPAFhU/2IQAAAAAAAAAAAAUfI00AAAAAAAAAACgEGGmSPUaaAAAAAAAAAAAAiJEmAAAAAAAAAAAUCinyyYWRJtlP2p6f0GniZYn/CJcCQ7MOqhRhLbGjW2+8QDlks42xFGdMjEfTy600vcVbZbS6D91hvS7NLEUZ0ybnhcljcmN/e/pzkBtlzOty47rjLQWpLu7g/M6b2N8AblRCQpBCQ4MyXZ/d9T+769CNbo+Cg3MByD+stP29/Zn1RP5cl5AbkuWrZA93miQXsE4THs8FAAAAAAAAAAAgRpoAAAAAAAAAAFAopMhPKR7uFmAieAAAAAAAAAAAgAKIkSYAAAAAAAAAABQCqfL1+ETwqcxpAgAAAAAAAAAAUPAw0sTb/qHsu67qW0zraLMbLExe4vm6GBPj0fRstjEeTS83eLrOkvV650beVrhzXKyW0dN19uY+9NZxcYe39k9B+rzkh+OcG7x1nS9I+9tmi7Uca0ybXCzJzVUYjzWQnzgcGyUF51r6fLazZ+U6WRD2Y0GoA1BY5IfPa3bXTit1yA/1RP6TkgsjTVIYaQIAAAAAAAAAAFDwMNIEAAAAAAAAAIBCIFk+SvbwSJNkpXo0PW+j0wQAAAAAAAAAgEIgRX5K8XC3AI/nAgAAAAAAAAAAKIAYaQIAAAAAAAAAQCGQOxPBF6zHczHSBAAAAAAAAAAAQIw08b53JAVnE9PP89nabGM8n6gH8zUmxuNpWtfMw+lZ506987rcONbeSM+dNL1V5/zAnc+pp/ePzRZrMXKr5TStltFbx9qb+7sg8ea+8d41tI1H05Pyx7WRzwFQsGV3HbrRa4An0r/RNHK7jnnhOpnbdQRuJm+fz1baZ3ymbhz7sODw9mfW0xhpkj1GmgAAAAAAAAAAAIiRJgAAAAAAAAAAFAop8lUyI02yxEgTAAAAAAAAAAAA5aNOk+TkZL3yyiuqVKmSgoKCVLlyZb322mtKTf1fL5YxRqNHj1ZkZKSCgoLUokULfffddy7pXL58WU8//bRKliyp4OBgde3aVb/88otLTHx8vKKjo+VwOORwOBQdHa2zZ8+6xBw7dkxdunRRcHCwSpYsqSFDhigpKSnX6g8AAAAAWeGeCQAAANlJkV+uvAqSfNNp8uabb2rWrFmaMWOGvv/+e02YMEETJ07U9OnTnTETJkzQlClTNGPGDO3atUsRERFq27atzp0754wZOnSoli9frsWLF2vLli06f/68OnfurJSUFGdM7969tW/fPq1Zs0Zr1qzRvn37FB0d7VyfkpKiTp066cKFC9qyZYsWL16spUuXavjw4TdnZwAAAADAdbhnAgAAQHZS5OOcDN5zr3zTzWBJvukC2r59u+6991516tRJklSxYkUtWrRIu3fvlnT1F1PTpk3Tyy+/rG7dukmS5s6dq/DwcC1cuFADBw5UQkKC3n//fc2bN09t2rSRJM2fP1/lypVTbGys2rdvr++//15r1qzRjh071KhRI0nSe++9pyZNmujQoUOqVq2a1q5dq4MHD+r48eOKjIyUJE2ePFn9+vXT2LFjFRoaerN3DwAAAIBCjnsmAAAA4Mblm06T5s2ba9asWTp8+LBuu+02ffPNN9qyZYumTZsmSTp69Kji4uLUrl075zZ2u11RUVHatm2bBg4cqD179ujKlSsuMZGRkapVq5a2bdum9u3ba/v27XI4HM7GvyQ1btxYDodD27ZtU7Vq1bR9+3bVqlXL2fiXpPbt2+vy5cvas2ePWrZsma78ly9f1uXLl53vExMTJUmHm5VTSKgty7qXHnzW2k7a3sZanCT9q5nFwAkW46ymt9VinDs8m7cxVvejG/vbS2y2MZbijImxnKY7sQVFbuxHT7NaRqs8XRdv7pvc+Ezn9XMiP3xOPX3OSt6rd14/H7ytsNYb8IaCes8kNZaUeSdLdt/1ufGd45r/jV/nbjSNG93eE/sot6/3fJ+gIPH2+ezt/HGVlWsvxypvKGjHIW10iKfTLEjyTafJCy+8oISEBFWvXl2+vr5KSUnR2LFj1atXL0lSXFycJCk8PNxlu/DwcP3888/OmICAAIWFhaWLSds+Li5OpUqVSpd/qVKlXGKuzycsLEwBAQHOmOuNHz9eY8bkbmMdAAAAQOHFPRMAAABw4/LNw8aWLFmi+fPna+HChdq7d6/mzp2rSZMmae7cuS5xNpvrqA1jTLpl17s+JqP4nMRca+TIkUpISHC+jh8/nmWZAAAAAMAd3DMBAAAgO56fz8TzI1e8Ld+MNHnuuef04osv6qGHHpIk1a5dWz///LPGjx+vvn37KiIiQtLVXzSVLl3aud3p06edv3CKiIhQUlKS4uPjXX45dfr0aTVt2tQZc+rUqXT5nzlzxiWdnTt3uqyPj4/XlStX0v2aKo3dbpfdbs9p9QEAAAAgS9wzAQAAADcu34w0+fPPP+Xj41pcX19fpaamSpIqVaqkiIgIrVu3zrk+KSlJmzZtcjbu69evL39/f5eYkydP6sCBA86YJk2aKCEhQV999ZUzZufOnUpISHCJOXDggE6ePOmMWbt2rex2u+rXr+/hmgMAAABA9rhnAgAAQHZS5KtkD78YaeIlXbp00dixY1W+fHndfvvt+vrrrzVlyhQ9+uijkq4O/R46dKjGjRunqlWrqmrVqho3bpyKFCmi3r17S5IcDocee+wxDR8+XCVKlFDx4sU1YsQI1a5dW23aXJ08sEaNGurQoYMGDBigd999V5L0xBNPqHPnzqpWrZokqV27dqpZs6aio6M1ceJE/fHHHxoxYoQGDBig0NDMJygEAAAAgNzCPRMAAABw42zGGOPtQlhx7tw5jRo1SsuXL9fp06cVGRmpXr166dVXX1VAQICkq8/HHTNmjN59913Fx8erUaNGevvtt1WrVi1nOpcuXdJzzz2nhQsX6uLFi2rdurVmzpypcuXKOWP++OMPDRkyRCtXrpQkde3aVTNmzFCxYsWcMceOHdOgQYO0YcMGBQUFqXfv3po0aZLl4eSJiYlyOBzS6gQpOOubhiZ3b7SU5nZbiqU4SdLkNtbihludiPF5i3ETLEUZE2MxPclmy9uTRbpTF6tstliLeVs8zm7lbW1/50a9Cwpv7sOCdPwKUl2QNxXGc8yd79SCVG/cHGnt34SEBP5onksK6j1TdudMbt8PZHe9yy5/K9dLT6QBAAByJje/h/NSGzitLGMTHldgaIBH076UmKSXHf/ME/X0hHzTaVLQ0GmSNTpNskanSf5Gp4lnFKS6IG8qjOcYnSbITXnphhH5A50m7qUBAAByprB1mryWMDBXOk1edbybJ+rpCflmThMAAAAAAAAAAIDclG/mNAEAAAAAAAAAADmXIh+PT9yeUsDGZhSs2gAAAAAAAAAAAOTQDY00OXv2rD7//HP9+uuvstlsKl26tNq3b6+wsDBPlQ8AAAAA8jXumwAAAJBXJMtXyR4eaeLp9LwtxyNN3n//fTVs2FA7duxQamqqUlJStGPHDjVu3Fjvv/++J8sIAAAAAPkS900AAABA/mIzxpicbFitWjXt2bNHRYsWdVl+7tw51a9fX4cPH/ZIAQuqxMREORwOfZpwl4JDsx7w02rzNmuJRsW6UYKtFuOedyPN7BkT5NH0JMlmG2Mx7xiP511Q2GzWzx1j2uRiSW4uT5873krPHQXpc+DN/V2Q9qNVBelaW5DqYlVhrDPynrT2b0JCgkJDQ71dnJuG+6acSztnpDhJWZ0zE3K1HHnh2pjddTwvlBEAAKSXl9rAaWV5MWGoAkPtHk37UuJlveGYlifq6Qk5Hmlis9l0/vz5dMvPnz8vm812Q4UCAAAAgIKA+yYAAAAgf8nxnCaTJk1SVFSUatWqpTJlykiSfvnlF3333XeaPHmyxwoIAAAAAPkV900AAADIS1LlqxQPz0GSWsDmNLHcaRIdHa13331XRYoUkSR17txZHTt21FdffaUTJ07IGKMyZcqoYcOG8vUtWDsJAAAAAKzgvgkAAAB5WUoudJp4Oj1vs/x4roULF7oMKx84cKASExPVpEkTPfDAA3rggQfUoEEDGv4AAAAACi3umwAAAID8zXKnyfXzxS9atEjx8fHO96dPn1ZISIjnSgYAAAAA+Qz3TQAAAMjLUuTjHG3iuVeOp07Pk3Jcm+tvBiQpKSnphgoDAAAAAAUJ900AAABA/pLjieAzYrPZPJlcoVBNhxSibPZb1EWLqTVzI+etlqKMCbIUZ7ONsRhntYzWypcbrNbFmJg8n7c365If5PX9WFiPi9X97Wne3N82m7XrvNVrsnt5F77rTmH8bBXGOgN5GfdN7klICFJoaFbfgYXhGufOvR5yS3btHL5vgYKFzzwKqmT5ytfDc5AkF9Y5TaSrz+fdu3evrly5IonGPgAAAABcj/smAAAAIP+yPNKkefPmiomJ0blz5+Tv76/k5GS99NJLat68ue68807dcsstuVlOAAAAAMjzuG8CAABAXpYiP6V49gFUHk/P2yzXZvPmzZKkI0eOaM+ePdq7d6/27NmjUaNG6ezZs/x6CgAAAEChx30TAAAAkL+53QVUtWpVVa1aVQ899JBz2dGjR7V79259/fXXHi0cAAAAAORH3DcBAAAgL0qVr1I8PAdJamGe0yQzlSpVUo8ePTRu3DhPJAcAAAAABQ73TQAAAPC2lP/vNPH0y12bN29Wly5dFBkZKZvNphUrVrisN8Zo9OjRioyMVFBQkFq0aKHvvvsu23SXLl2qmjVrym63q2bNmlq+fLnbZStYDxvLhw6pmoKzOwybgqwlFhXrRs7NLEXZbO6kmT1j2liMtBpnnfW6WNs31vMd49H0ckNulNGYGI+n6S0FqS7eOh/d2YeFcX97us7uHGdP5+3NulhVkM4xZM6bnwMAnuVwbJQUnOl66/cYGcvuepE3rhFbs1nv+fsnICP54/MCeAbnM5C7Lly4oLp166p///564IEH0q2fMGGCpkyZojlz5ui2227T66+/rrZt2+rQoUMKCQnJMM3t27frwQcf1N/+9jfdf//9Wr58uXr27KktW7aoUaNGlstGpwkAAAAAAAAAAIVAsnzl4+HHaSXnIL2OHTuqY8eOGa4zxmjatGl6+eWX1a1bN0nS3LlzFR4eroULF2rgwIEZbjdt2jS1bdtWI0eOlCSNHDlSmzZt0rRp07Ro0SLLZfPI47kAAAAAAAAAAEDhlZiY6PK6fPlyjtI5evSo4uLi1K5dO+cyu92uqKgobdu2LdPttm/f7rKNJLVv3z7LbTJCpwkAAAAAAAAAAIXA1TlI/Dz8ujrSpFy5cnI4HM7X+PHjc1TGuLg4SVJ4eLjL8vDwcOe6zLZzd5uM8HguAAAAAAAAAABwQ44fP67Q0FDne7vdfkPp2Ww2l/fGmHTLPLHN9eg0AQAAAAAAAACgELg60sSzc5qkpRcaGurSaZJTERERkq6OHCldurRz+enTp9ONJLl+u+tHlWS3TUZ4PBcAAAAAAAAAAMgTKlWqpIiICK1bt865LCkpSZs2bVLTpk0z3a5JkyYu20jS2rVrs9wmI4w0yQ9250Kam9pYi4uKtZhgM0tRNtsYj6Z31VZLUcbEWIqzXkZr+9Bqvt7kzTJa39/W5EZdrJbR8+fY8xbjJGOCLMbl/fPRKu8dF+s8vb89Xef8ID9cnwrS/i5IOHeAgiMhoeUN/WIxN77j3UnfE591rhd5A8eBfQAABUFujjRxx/nz5/XDDz843x89elT79u1T8eLFVb58eQ0dOlTjxo1T1apVVbVqVY0bN05FihRR7969ndv06dNHZcqUcc6d8swzz+juu+/Wm2++qXvvvVeffPKJYmNjtWXLFrfKRqcJAAAAAAAAAACFQGoudJqk5iC93bt3q2XLls73w4YNkyT17dtXc+bM0fPPP6+LFy9q0KBBio+PV6NGjbR27VqFhIQ4tzl27Jh8fP73MK2mTZtq8eLFeuWVVzRq1ChVqVJFS5YsUaNGjdwqG50mAAAAAAAAAADgpmnRooWMMZmut9lsGj16tEaPHp1pzBdffJFuWffu3dW9e/cbKhudJgAAAAAAAAAAFALJ8pXNwyNNkj2cnrcxETwAAAAAAAAAAIAYaQIAAAAAAAAAQKGQIl/5eLhbwNNzpHgbI00AAAAAAAAAAADESBOvu/uFXQq1ZxPUzWJim9pYztfcbS3Opq0WU2xmOW/P83Tenk3PZhvj0fTcYUyM1/L2NKt1sdli3UjT+mfGk6zXxfq5Y7N5Nu/8wJt18VbeuXHuFKRzwtPYN8gpT39WOReBG5PdZ+hG2+sF4TOa3T4oCHWEZ3Cu5A0cBwA34upIE8+ODGGkCQAAAAAAAAAAQAHESBMAAAAAAAAAAAoBRppkj04TAAAAAAAAAAAKgWT5yubhTo7kAtZpwuO5AAAAAAAAAAAAxEgTAAAAAAAAAAAKhVT5KcXD3QKpBaybgZEmAAAAAAAAAAAAYqSJ1znKJUiBoR5Jy9xtPdZW2WpkM2t5mzbW8rVZzXer1UDLPJ+3tTobE2M1Y9lsYyzHejI998oYazFNa/vH03IjX6v7Jzf2t1W5kaYnuXNue6sueX0fuqMg1QW4njevtQC8w+EYLykwx9tndz3Ibn12152bcb3J7TLkh2vmzTgOeeFY53Xsg7yhIFx3cHNwHJGRlFyY06SgTQTPSBMAAAAAAAAAAAAx0gQAAAAAAAAAgEIhRT65MNKkYI3NKFi1AQAAAAAAAAAAyCFGmgAAAAAAAAAA8H/t3Xt8VNW9///3lpAQKRkFDQmKGioiiBcEhRArWkI43mh/FrXFUmkVtV4QgZNKOecL6alySgU5QrXCsaBFiw9BW9QeBI6C5aJixEdFKPWUtIAlUhUmqDQ39u8PytSBMPuzM3syt9fz8ZjHQ2Y+s2577bXXcmfNzgJNaicFvNOkiWeaAAAAAAAAAAAAZB52miRZ+KshFXwpdozziWtKy+kRQIGOss6Wt1MWaHp+uO5UU5zjVAWanpXjHDDHpnpdDrEew/IE5B0sx1lljLTVOej29pNecvtEsPmmel2QPax90Yo+G4xEtGOyxh36BGA1SFLHGJ8Hv8b4Iq9zNejrRWvK4MWrjOkwHrVFGdOhHbJBJvTXTEA7ZwaOI1rSrBw5Ad8WaM6w2wyZVRsAAAAAAAAAANCig2qn5oB/TusgP88FAAAAAAAAAACQedhpAgAAAAAAAABAFmhOwIPgg965kmzsNAEAAAAAAAAAABA7TQAAAAAAAAAAyArsNPGWVjtNPvjgA337299Wly5ddPzxx+uCCy5QdXV15HPXdTVt2jR169ZN+fn5uuyyy/Tee+9FpVFfX6+7775bJ510kjp27KgRI0Zo165dUTF79+7V6NGjFQqFFAqFNHr0aO3bty8qZseOHbrmmmvUsWNHnXTSSRo3bpwaGhoSVncAAAAA8MKaCQAAAIhP2uw02bt3r8rKynT55Zfrf/7nf1RYWKg//elPOuGEEyIxM2bM0KxZs7Rw4UKdddZZ+vGPf6xhw4Zp27Zt6tSpkyRp/PjxeuGFF7R48WJ16dJFEydO1NVXX63q6mq1a3fojtioUaO0a9cuLV++XJJ06623avTo0XrhhRckSc3Nzbrqqqt08skna+3atfr444910003yXVdzZkzx1e9PuxToM8LnNhBs4yJ9feR8ZIDxsBKH4lalNnCSsrNKTo9As47cOt8xFrrHexxcZwqc6zrTg00b2t6jmPrs66b7yNva3vb+6OFn/a2Cvq4JJO9T9jaMZPaJpOkw/Gj77StZPYJjjUyRaaumaTXJXU45qde57D3+BJ7neA1Z2yLMcSrDl5lSIdxLt46Ij1YrvepfqwzoQ4AsluTjpMb+E6TtNqb4Sltbpr85Cc/Uffu3bVgwYLIe2eccUbkv13X1ezZszVlyhRde+21kqQnnnhCXbt21dNPP63bbrtN4XBYjz/+uH75y1+qvPzQxHfRokXq3r27Vq1apeHDh2vr1q1avny5Xn/9dQ0cOFCSNH/+fJWWlmrbtm3q1auXVqxYoS1btmjnzp3q1q2bJGnmzJkaM2aM7r//fhUUFLRRqwAAAADAIayZAAAAgPilzS2gZcuWacCAAbruuutUWFiofv36af78+ZHPa2pqVFtbq4qKish7eXl5GjJkiNavXy9Jqq6uVmNjY1RMt27d1Ldv30jMhg0bFAqFIpN/SRo0aJBCoVBUTN++fSOTf0kaPny46uvro7a+f1F9fb3q6uqiXgAAAAAQFNZMAAAA8NKsnIS8Mkna3DTZvn27Hn30UfXs2VMvv/yybr/9do0bN05PPvmkJKm2tlaS1LVr16jvde3aNfJZbW2tcnNzdeKJJ8aMKSwsPCr/wsLCqJgj8znxxBOVm5sbiTnS9OnTI7/3GwqF1L17d79NAAAAAADHxJoJAAAAXprVLiGvTJI2N00OHjyoCy+8UA888ID69eun2267TWPHjtWjjz4aFec40c8HcV33qPeOdGRMS/GtifmiyZMnKxwOR147d+6MWSYAAAAA8IM1EwAAABC/tLlpUlxcrD59+kS917t3b+3YsUOSVFRUJElH/dXSnj17In/hVFRUpIaGBu3duzdmzIcffnhU/n/729+iYo7MZ+/evWpsbDzqr6kOy8vLU0FBQdQLAAAAAILCmgkAAABeDiZgl8lBdpokR1lZmbZt2xb13h//+EedfvrpkqSSkhIVFRVp5cqVkc8bGhq0Zs0aDR48WJLUv39/tW/fPipm9+7d2rx5cySmtLRU4XBYb775ZiTmjTfeUDgcjorZvHmzdu/eHYlZsWKF8vLy1L9//4BrDgAAAADeWDMBAAAA8XNc13WTXQiLjRs3avDgwaqqqtL111+vN998U2PHjtW8efN04403SpJ+8pOfaPr06VqwYIF69uypBx54QKtXr9a2bdvUqVMnSdL3v/99vfjii1q4cKE6d+6sSZMm6eOPP1Z1dbXatTt0R+yKK67QX//6Vz322GOSpFtvvVWnn366XnjhBUlSc3OzLrjgAnXt2lU//elP9cknn2jMmDH6+te/rjlz5pjqU1dXp1AopPA8qSA/duzgb79iSnNDj8tNcZKkmipjYJk9TQPXLTfFOc4Be6IlHg14OO/ttuQcZ5UtPWNd/HAc23Fx3alJyTcRrHVJVtuki0zqO8k6hn7qkkn9Nh3KmCy0TTBoRxwWmf+Gw+wgSJBMXTPp9LB0XIw+U+Mxfy/xmLd7rI0YnwAAQGul0hz4cFm6hzfquIIvBZr2wbpPtTN0UUrUMwhp81j7iy66SM8//7wmT56sH/3oRyopKdHs2bMjk39Jqqys1IEDB3THHXdo7969GjhwoFasWBGZ/EvSQw89pJycHF1//fU6cOCAhg4dqoULF0Ym/5L01FNPady4caqoqJAkjRgxQnPnzo183q5dO7300ku64447VFZWpvz8fI0aNUoPPvhgG7QEAAAAAByNNRMAAAAQv7TZaZJp2GkSGztNvPJO/d0CVpn0F/vJlEl9h50mbSsdypgstE0waEcclkp/ZYf0wE4TAACQ7lJpDny4LN3Cb+u4gk7eX/DhYN1+/TV0YUrUMwhp80wTAAAAAAAAAACAREqbn+cCAAAAAAAAAACt16x2ctXOO9CHgwGnl2zcNAEAAAAAAAAAIAtw08QbN03SwP2aYopbvP0Gc5rzHGPgSONzO5bYfq/cmWV9DsgMY5zkbrc+W8DHc1JM6dmefeKH/TkJwebt53eak/b8k5JgnyFxiO2ZPYl4fk3QkvWMjUT8xney+lgi6pKsZ8j4yTfVnyGTzN+RT+YzgDLpuTk8CwBA3C6Q1P7YH7vb452rJXacss3d18X8NB3GUq96psOcGkBwvOap6TCuAche3DQBAAAAAAAAACALNB9sJ/dgwDtNAk4v2XgQPAAAAAAAAAAAgNhpAgAAAAAAAABAVmhuaqeDTcHuDHEDTi/Z2GkCAAAAAAAAAAAgdpoAAAAAAAAAAJAVmpty5DQFe1vADTi9ZGOnCQAAAAAAAAAAgNhpknTlN7ygnIKOMWO2NPQ2pRW+scie8Uxj3MQqY2ClMb1VxvTsHMea5rqAczbWWTPMKTpO0GW05ltmDy6ZaourCfZYu9ttcY7jI0233JhmcvqY6xrbOokcxzpGJE8i2tFa73Q4hkFLhz5hFfRxTkR/yMY+lo38nFf0CWSk37wq6dhrJq+5rOvmx5W991ww9hzQdl7Gnpd6jQOpcO5b59ZIb/HO9Sx9Ndn9Pdn5ByGIOsSbRjq0U6JlQl9CZmpuOk5O4M80yay9Gdw0AQAAAAAAAAAgCzQ3tUvATRMeBA8AAAAAAAAAAJBx2GkCAAAAAAAAAEAWaGpqJ6eRnSaxsNMEAAAAAAAAAABA3DQBAAAAAAAAACAruM05Ohjwy23294NWZ5xxhhzHOep15513thi/evXqFuP/8Ic/BNEkR+HnuQAAAAAAAAAAQJvYuHGjmpubI//evHmzhg0bpuuuuy7m97Zt26aCgoLIv08++eSElM9xXddNSMqIqa6uTqFQSC+EL1LHgtj3rgZ9aYMpzeN/6+NQzjHGlRrjJq4yhbluuTFBO2eWLc6dYEzPsdUlmaztaK/LutYX5hhcd2qg6TlOVVLy9SPoMlrT85OmVTrUJR3KmA6S1Y6ZdK5mK9oRfh2e/4bD4aiFDnAsQfUZxzngETEj5qde45jXeMg4eEii28lr7ZOItSj8s8wfOGcAZJJUmgMfLos2fyx1Crgs++ukvl1aXc/x48frxRdf1Pvvvy/HcY76fPXq1br88su1d+9enXDCCQEUODZ+ngsAAAAAAAAAAMSlrq4u6lVfX+/5nYaGBi1atEjf+973Wrxh8kX9+vVTcXGxhg4dqldffTWoYh+FmyYAAAAAAAAAAGSDpnaJeUnq3r27QqFQ5DV9+nTP4vz617/Wvn37NGbMmGPGFBcXa968eVq6dKmee+459erVS0OHDtVrr70WVKtE4ZkmAAAAAAAAAABkg2ZHaoq9o6NVaUrauXNn1M9z5eXleX718ccf1xVXXKFu3bodM6ZXr17q1atX5N+lpaXauXOnHnzwQV166aVxFLxl7DQBAAAAAAAAAABxKSgoiHp53TT5y1/+olWrVumWW27xndegQYP0/vvvt7aoMbHTBAAAAAAAAACAbND0j1fQabbCggULVFhYqKuuusr3dzdt2qTi4uLWZeyBmyZpIP/nxsAhq+yJjiy3xU08YEywzBTlWH9mbkiVMdDOmRh0irY62+Mk1803xTmO7bi4rvE4yxonOU6wx8aanutODTS9RKWZjPQSwdo2iUgvmX0iaEHnnQ51DrrvJOKcDrqMyRT0+eJHJrUjgNQWCk2X1CFGROz5tvecOPZ4lg5zt3jLmBlj+jqPz+1rHiSOpa959efM6K/JZRkzaGcAiXbw4EEtWLBAN910k3Jyom9TTJ48WR988IGefPJJSdLs2bN1xhln6Jxzzok8OH7p0qVaunRpQsrGTRMAAAAAAAAAALJBiuw0WbVqlXbs2KHvfe97R322e/du7dixI/LvhoYGTZo0SR988IHy8/N1zjnn6KWXXtKVV14ZT6mPiZsmAAAAAAAAAACgzVRUVMh13RY/W7hwYdS/KysrVVlZ2QalOoSbJgAAAAAAAAAAZIMU2WmSyo5LdgEAAAAAAAAAAABSATtNAAAAAAAAAADIBk2SGhOQZgbhpgkAAAAAAAAAANmg+R+voNPMINw0SbJ1oY3q4BFz+RBbWqH6vuZ8++S+aorb4LxmS7Bkqi3uLVuY5OfBPutMUa5bbopznKpA85XKjHF+zDBFOU4i8rZxnFWmONe19Z2g0zuUpvVY29rR2scyib0N7fwcw2SkJ9nrbe/fwbZjIuoctKDbMFFpprp0qIt9/A72Op2tfScbxxNkg0GSOh7z03jnYF7njdd54PX9IM5LrzLEW0YvlrHc6zgkejxpi/Eq3r4CG9ox8VKhjeMdl4KoA+d0drD0NY41jsRNEwAAAAAAAAAAsgEPgvfEg+ABAAAAAAAAAADEThMAAAAAAAAAALIDO008sdMEAAAAAAAAAABA7DQBAAAAAAAAACA7sNPEEztNAAAAAAAAAAAAxE6TpPteuECdCpyYMYP1vCmt8Kwic77nTnjGFLdBZeY0jQmauG6+OUmnR7ktzqky5j3Vlt4sU5g0cZUxUHKcdaY4axnt+R4INL1DbHWx1llB90Uloh0D7mPG9PykaZXMujiO9ZxJzvmSiDQTUcag+TmGFulQ52QK/hy0nVeua7um+hF0mulwTidTJtUF+KdBkgqO+anXmJn486LS4/MZnikkuozxpp+I60MqSn5fgkUmHKdMqEO8UqGO8ZaB43hIqrdDsvNPSc0KfmdIc8DpJRk3TQAAAAAAAAAAyAb8PJcnfp4LAAAAAAAAAABA7DQBAAAAAAAAACA7sNPEEztNAAAAAAAAAAAAxE4TAAAAAAAAAACyQ+M/XkGnmUHYaQIAAAAAAAAAACDJcV3XTXYhslFdXZ1CoZD+GC5QpwInZuxmJ2xKc9iaBBzKOQGnVx1wepJUU2UKc92pCcjcm+PYypdprO0dfPuUBZyeJK1LQJrektVnJclxVgWanuuWB5peIvirs61PZNK4E/Q5ndz+nfplzCS0Nw47PP8Nh8MqKChIdnGQBqx9xmuciXd8SXT6bZUHgOzBmJI9ONapL5XmwIfLovlh6fiAy/J5nTQ2NeoZBHaaAAAAAAAAAAAAiGeaAAAAAAAAAACQHZolNSUgzQzCTRMAAAAAAAAAALJBk4K/aRJ0eknGz3MBAAAAAAAAAACInSYAAAAAAAAAAGQHdpp4StubJtOnT9cPf/hD3XPPPZo9e7YkyXVdVVVVad68edq7d68GDhyon/3sZzrnnHMi36uvr9ekSZP0q1/9SgcOHNDQoUP1yCOP6NRTT43E7N27V+PGjdOyZcskSSNGjNCcOXN0wgknRGJ27NihO++8U6+88ory8/M1atQoPfjgg8rNzfVVj65X1qnA4ygUvWtMrMpX1jalxriJB4yB6wKOk1Qy1RTmOMYyluTb4mpWmcJc11Y+yUcZjVzXWBcfHMdW7+CVGePsfcd6bBzHR38MMN9kct3ypOVt7WPBlzH4vhM0x7EN9P7GHVt7JyLvIPPNNMlq70RIhzJmkkzqO4hfpqyZQufJ4zcSKn2l5591Htoyy3nJORk/r3amjbNHvPPHdOgr9Pf0GFvb4jglu45BoD8jFaXlz3Nt3LhR8+bN03nnnRf1/owZMzRr1izNnTtXGzduVFFRkYYNG6b9+/dHYsaPH6/nn39eixcv1tq1a/Xpp5/q6quvVnPzP59WM2rUKL3zzjtavny5li9frnfeeUejR4+OfN7c3KyrrrpKn332mdauXavFixdr6dKlmjhxYuIrDwAAAAAeWDMBAACgRU0JemWQtLtp8umnn+rGG2/U/PnzdeKJJ0bed11Xs2fP1pQpU3Tttdeqb9++euKJJ/T555/r6aefliSFw2E9/vjjmjlzpsrLy9WvXz8tWrRI7777rlatOvSXtlu3btXy5cv13//93yotLVVpaanmz5+vF198Udu2bZMkrVixQlu2bNGiRYvUr18/lZeXa+bMmZo/f77q6uravlEAAAAA4B9YMwEAAACtl3Y3Te68805dddVVKi+P/lmWmpoa1dbWqqKiIvJeXl6ehgwZovXr10uSqqur1djYGBXTrVs39e3bNxKzYcMGhUIhDRw4MBIzaNAghUKhqJi+ffuqW7dukZjhw4ervr5e1dXVLZa7vr5edXV1US8AAAAACBprJgAAABxTs4LfZdKsjJJWzzRZvHix3n77bW3cuPGoz2prayVJXbt2jXq/a9eu+stf/hKJyc3Njfprq8Mxh79fW1urwsLCo9IvLCyMijkynxNPPFG5ubmRmCNNnz5dVVXZ+bvsAAAAANoGayYAAAAgPmmz02Tnzp265557tGjRInXo0OGYcY7jRP3bdd2j3jvSkTEtxbcm5osmT56scDgcee3cuTNmmQAAAADAD9ZMAAAA8MQzTTylzU2T6upq7dmzR/3791dOTo5ycnK0Zs0aPfzww8rJyYn8FdORf7W0Z8+eyGdFRUVqaGjQ3r17Y8Z8+OGHR+X/t7/9LSrmyHz27t2rxsbGo/6a6rC8vDwVFBREvQAAAAAgKKyZAAAAgPilzc9zDR06VO+++27Ue9/97nd19tln6wc/+IF69OihoqIirVy5Uv369ZMkNTQ0aM2aNfrJT34iSerfv7/at2+vlStX6vrrr5ck7d69W5s3b9aMGTMkSaWlpQqHw3rzzTd18cUXS5LeeOMNhcNhDR48OBJz//33a/fu3SouLpZ06EGHeXl56t+/v696vbpO6ugRU/6OLS33lNh/HfZFtbNDprji1/aZ4kL1YVNcOM8UJo2cagyUVGqMm2iMq7H+JEClKcpxVhnTk6QyY9w6W97XlXsHSdKS4H8GwXFsZbS2o7XOfjiOrd6ua+uP/o61Jb3k/TyFtc5WTg8/0dZjbevfQR9nP5KVt5++Y8/bOJ4ELJnHJehz0E9d7ONO8vo3UhPHOrtl6pop/Hsp1v0Tr3mnxyYauW7sa5zX55kgiGtesseftsg/3nZKdhtli0S3s6UfcKwTLx3aOBXGJdoJLWqU1C4BaWaQtLlp0qlTJ/Xt2zfqvY4dO6pLly6R98ePH68HHnhAPXv2VM+ePfXAAw/o+OOP16hRoyRJoVBIN998syZOnKguXbqoc+fOmjRpks4999zIQxJ79+6tf/mXf9HYsWP12GOPSZJuvfVWXX311erVq5ckqaKiQn369NHo0aP105/+VJ988okmTZqksWPH8tdQAAAAAJKCNRMAAAA8NSv4B7fzIPjUVVlZqQMHDuiOO+7Q3r17NXDgQK1YsUKdOnWKxDz00EPKycnR9ddfrwMHDmjo0KFauHCh2rX75+21p556SuPGjVNFRYUkacSIEZo7d27k83bt2umll17SHXfcobKyMuXn52vUqFF68MEH266yAAAAAOATayYAAAAgtrS+abJ69eqofzuOo2nTpmnatGnH/E6HDh00Z84czZkz55gxnTt31qJFi2Lmfdppp+nFF1/0U1wAAAAAaFOsmQAAABAlEQ9u50HwAAAAAAAAAAAAmSetd5oAAAAAAAAAAACjZgW/MyTDnmnCThMAAAAAAAAAAACx0yTpLt8gFXwpmLSc37jm2FK9aooLDao1xYXPLrJlXGKM82Oud8ghM4xxlca4dca4MmOcnzSNllSZwlx3arD5SnKcVbbAknxbXI0tzE9dzGU0ct1yY7624+Kn71jztrKX0cZfHwu6P/o5B22Cbp/g+2Lw53QmyaT2sdbF2meTeT0IehwDkDlCoVcldTzm5/GOH/Fe173Gzra47njVId4yBFEH7+tBwGuhI1jqkOh2THT6qSAV6pgKZfAS9HoiHaXCcUqFMsSLcQmt0iSpXQLSzCDsNAEAAAAAAAAAABA7TQAAAAAAAAAAyA6NCn4rRWPA6SUZN00AAAAAAAAAAMgGzQr+we08CB4AAAAAAAAAACDzsNMEAAAAAAAAAIBs0KzgH9yeYTtNuGmSbO9Kyg8mKfdrjjm2ViFTXPHcfbYEa1bZ4maWm8JKJ7xqS0/SBuc1Y2SZMW6dLWykrS6qNmYrSf2NaVotsdXFcQ74SHRG68pyLDXG9jZy7KeBzMdatuPiOMbzwMh17f3Bmrc1Tdedas47G1nbx3GqjOlZj7W1L9ry9SNZfcLPeWVtR3uatjEi6P7ghzXv5J7T1mtRsO0NIHOEw5eroKDgmJ97j+vWdUDreI3vlnEr3jQSPTZarmHeZfS6Tge8FkpB2XANo45tl0a6i7cNghmXknscgqgDgrkOA0fipgkAAAAAAAAAANmgScE/tCPonStJxjNNAAAAAAAAAAAAxE4TAAAAAAAAAACyQ6MkXz9vb0wzg7DTBAAAAAAAAAAAQOw0AQAAAAAAAAAgOzT/4xV0mhmEnSYAAAAAAAAAAGSDpgS9fJg2bZocx4l6FRUVxfzOmjVr1L9/f3Xo0EE9evTQz3/+c3+Z+sBOk3Tw37awV1eXmpP86mvrbYEbbGGlbjtbcs4qW9yAclvGkqRBxrgZtrA1U21xQ6qM+ZYZ4yTVGGNH5geat+ta05MkW/s4zgFjerbj4rrG4+KD46wzxlmPdbAc4/lyiLUutjgr63Hx1YYjjcd6SQLOwYAlot+mumSdL4fytsW5ru0ak6zzJRGsx8VPGRORpi1f29hoPc4AUl8odEBS+xgRsa/1XnNdx/H6fnzjiWW89BorvdKId6yNN/+2kOg2sKSR6DK0RTunw/w03nZO9HGwpB//sUzsuBSEtjgnE50+dUiNMSET6oDWOeecc7Rq1T/Xd+3aHfv/L9fU1OjKK6/U2LFjtWjRIq1bt0533HGHTj75ZH3jG98IvGzcNAEAAAAAAAAAIBs0y/fOEFOaPuXk5HjuLjns5z//uU477TTNnj1bktS7d2+99dZbevDBBxNy04Sf5wIAAAAAAAAAAHGpq6uLetXX1x8z9v3331e3bt1UUlKib37zm9q+ffsxYzds2KCKioqo94YPH6633npLjY2NgZX/MG6aAAAAAAAAAACQDRoT9JLUvXt3hUKhyGv69OktFmHgwIF68skn9fLLL2v+/Pmqra3V4MGD9fHHH7cYX1tbq65du0a917VrVzU1Nemjjz5qbUscEz/PBQAAAAAAAAAA4rJz504VFBRE/p2Xl9di3BVXXBH573PPPVelpaX68pe/rCeeeEITJkxo8TvOEQ8ydV23xfeDwE0TAAAAAAAAAACyQbOC//2pfzzTpKCgIOqmiVXHjh117rnn6v3332/x86KiItXW1ka9t2fPHuXk5KhLly6+8/PCz3MBAAAAAAAAAICkqK+v19atW1VcXNzi56WlpVq5cmXUeytWrNCAAQPUvn37wMvDTpNke1tSy7uUIqrW2JIqczaYs93tnmCKKx6zzxS34brLbRmX2ML0ljFOkmbm2+Imltni5tjCQvW3meLCeZttCUpSibEuS1YZE7TV2XGs6UkqKTcGrjNFue5UU5zTw5are+xnRrVeia2MqqkKOGNbG0r2drRyHFtdrHF+uM/a4hzH1r9d19pn7az1Dvq4WCUi30Qca4tktWGy8w5aMusSdN9Jh+MS9Bjhpw3ToX0A307Pl46LMU+u8ZrLxp4LeM0VvM7BIM47X/PxVqV/wCNiRsxPLXVMdDulwviWCmXw4lXGtujP8Yq3DPHWMd42tKSRDbKhr6WCTKhDvNKhr6WcJklB/6JVk7/wSZMm6ZprrtFpp52mPXv26Mc//rHq6up00003SZImT56sDz74QE8++aQk6fbbb9fcuXM1YcIEjR07Vhs2bNDjjz+uX/3qVwFX5BBumgAAAAAAAAAAkA1S4KbJrl279K1vfUsfffSRTj75ZA0aNEivv/66Tj/9dEnS7t27tWPHjkh8SUmJfvvb3+ree+/Vz372M3Xr1k0PP/ywvvGNbwRZiwhumgAAAAAAAAAAgDaxePHimJ8vXLjwqPeGDBmit99+O0ElisZNEwAAAAAAAAAAsoHPXSFJSzOJeBA8AAAAAAAAAACA2GkCAAAAAAAAAEB2aFbwzzRpDji9JOOmSZJN/7nUIaC0yu/xEbw5bIu7yxYWuqvWFBe+sciW4MRVtjhJGlluDFxnC1tSZgoLVxvros3GOD+MdTG2jfustQ0lx6kyRlaa0zSpOWAMzA82X0mqsfVH151qirO3oZ01TWsZ7XWxnqu280qSnOtsca5r67dBt43fWAt7n7C3o5W1HYPuE0Efv0NpBn1crP3bNib7KV8y2zFZgj5+fqT6GJrMtrGyteHfE14OZKi/TFfsVVPs62Oyx0DLORxvGb3GE6/rhRP0/zhpBa82SIWxMNFlDKKO3n0hdh7x9sVUOE6JLkMq1LEtZEJf8JIO406yWfpBssc+jhMSgZsmAAAAAAAAAABkA55p4olnmgAAAAAAAAAAAIidJgAAAAAAAAAAZAd2mnjipgkAAAAAAAAAANmgSZIbcJoZ9iB4fp4LAAAAAAAAAABA7DQBAAAAAAAAACA7JGJXSIbtNHFc1w16Mw4M6urqFAqFVHu8VODEjp3xmS3Nyo7xl+tIxZ/sDj5Rgz65W82xWxp6m+LCrxfZEhxywBY3Mt8WV20LkyTVVBkDK41xM3xkblQy1RZXY2xHYxld15av46wy5uvHOlNU8GW05esvb2sfCzZfPxLRPkELut7WOrtueaDp+UvT1neC7ot+2joRaaZyvofyDrrv2MeIRNTHIug6H0ozecfQIuixW0pOXQ7Pf8PhsAoKCto8f6Sfw31G+rWkYy92vM53x/Gal8aej3qdL0Gco/HmEe857V2HMs80vI9DYuvgJRFj6ZESfRySdR36onQoY7xSoY6pUAZ4i/c4WcYljrW3IM6XRJ5zqTQHjsytzgtL7QIuS3Od9PvUqGcQ2GkCAAAAAAAAAEA24JkmnnimCQAAAAAAAAAAgNhpAgAAAAAAAABAdmCniSd2mgAAAAAAAAAAAIidJgAAAAAAAAAAZIcmSQcDTjPo9JKMmyYAAAAAAAAAAGSDZgX/81zcNEGQ8r8j5ed5BP2XLa15n95qzvcGPWMLbLCFhecWmeJKJ7xqitvw2uW2jP0YssoWV1IefN5mZaYo1803xTk9ptqyramyxUlSzQFbXImtjKqx1dlunY/YYPN2HGPbJIDjGPt3kvgrn/U8sJ2rjmPr365rPF98sOYtVRrTs7WjtW0Openj/E/x9II+hkHXJRH8HOvMYRvnHSfBxUhRiRjLgGQLhy9XQUHBMT+Pfw4We+7h9Ij9ba/zznI98YrxzsNrjhB77AyiDpLXNSnoeb8/QYyPiZ5zp8MY3hZljHcOFm9/bps6evWl5J4vmSLR8/m26Gup0F+zAe2II3HTBAAAAAAAAACAbNCk4J90nmE7TXgQPAAAAAAAAAAAgNhpAgAAAAAAAABAdmCniSd2mgAAAAAAAAAAAIidJgAAAAAAAAAAZIdGsdPEAzdNku1CSfnBJLXPmWeOLfqlLa7Pt7ea4jYMKDLFbWnobct4jC1MkrTQGLemPNi8q41xfpTYyug4Vbb0Rk61xdVU2uIkqcTYYfsb06spM4U5zipjgn7Y8rbHrWttQeLMV3JdY/+WNc7GuS7Q5P7B2o62uriu7Tzw08es7R183ra2cRw/fdHWz+x9zMY8jsnH+BQw+/E7EHje9vaxsdbFGifZy2hvx2DT88NxAk/SmG/y6myVDmVE5guFpkvqECPC41rmNceu8bhuenzuOF7XUu9rmevGnmN7n4v2eSNaL+j50JGCvv63xGu89ipDW4z3ic4jFa5Z8falVDhOiS5DW9Qx3vMhHcqYDuc8kIq4aQIAAAAAAAAAQDY4KMkNOM2g00uytHmmyfTp03XRRRepU6dOKiws1Ne//nVt27YtKsZ1XU2bNk3dunVTfn6+LrvsMr333ntRMfX19br77rt10kknqWPHjhoxYoR27doVFbN3716NHj1aoVBIoVBIo0eP1r59+6JiduzYoWuuuUYdO3bUSSedpHHjxqmhoSEhdQcAAAAAL6yZAAAA4KkpQa8MkjY3TdasWaM777xTr7/+ulauXKmmpiZVVFTos88+i8TMmDFDs2bN0ty5c7Vx40YVFRVp2LBh2r9/fyRm/Pjxev7557V48WKtXbtWn376qa6++mo1NzdHYkaNGqV33nlHy5cv1/Lly/XOO+9o9OjRkc+bm5t11VVX6bPPPtPatWu1ePFiLV26VBMnTmybxgAAAACAI7BmAgAAAOKXNj/PtXz58qh/L1iwQIWFhaqurtall14q13U1e/ZsTZkyRddee60k6YknnlDXrl319NNP67bbblM4HNbjjz+uX/7ylyovP/T7kYsWLVL37t21atUqDR8+XFu3btXy5cv1+uuva+DAgZKk+fPnq7S0VNu2bVOvXr20YsUKbdmyRTt37lS3bt0kSTNnztSYMWN0//33q6CgoA1bBgAAAABYMwEAAMCgSVLQz3Xk57lSQzgcliR17txZklRTU6Pa2lpVVFREYvLy8jRkyBCtX79eklRdXa3GxsaomG7duqlv376RmA0bNigUCkUm/5I0aNAghUKhqJi+fftGJv+SNHz4cNXX16u6uuWng9fX16uuri7qBQAAAACJwpoJAAAA8C8tb5q4rqsJEybokksuUd++fSVJtbW1kqSuXbtGxXbt2jXyWW1trXJzc3XiiSfGjCksLDwqz8LCwqiYI/M58cQTlZubG4k50vTp0yO/9xsKhdS9e3e/1QYAAAAAE9ZMAAAAaFFjgl4ZJG1+nuuL7rrrLv3+97/X2rVrj/rMcaL3Frmue9R7RzoypqX41sR80eTJkzVhwoTIv+vq6g4tAs6V9KWYxUuq9Yu+aoob/O1XTHEbrrvclvFdtjBJ0pADprBb3XmmuHn977Hle7ctTG8Z4/wYMDXYvKvzW12U+M2whZXY6uxuL4+jLPFxnDJj5DpjnDU9yXGqTHGua2tHx1llzDn4uljTdJyg87amJ0nB9jPXtaZni7P2Bz9529P0c6y9uW7w45O9LpXGONs45jEdiWI9V4Pmr+9Yx5NgxyerRNQl6LyDbkM/aSLzZdKaKRyeHPPnvE5oaPkmzGHhPI/1wsjY5437bOyve82bLNcy7/Pc65pknFMfM3+vOniPLX7GqpbFN7/yroN3+l518GqHeMuQCmN4KpTBS7zHKdnpB6EtyhD/OR2fbGhnSxsnugyp0M7e7RB7jZkKdUDmSbudJnfffbeWLVumV199Vaeeemrk/aKiIkk66q+W9uzZE/kLp6KiIjU0NGjv3r0xYz788MOj8v3b3/4WFXNkPnv37lVjY+NRf011WF5engoKCqJeAAAAABA01kwAAAA4puYEvTJI2tw0cV1Xd911l5577jm98sorKikpifq8pKRERUVFWrlyZeS9hoYGrVmzRoMHD5Yk9e/fX+3bt4+K2b17tzZv3hyJKS0tVTgc1ptvvhmJeeONNxQOh6NiNm/erN27d0diVqxYoby8PPXv3z/4ygMAAACAB9ZMAAAAQPzS5ue57rzzTj399NP6zW9+o06dOkX+aikUCik/P1+O42j8+PF64IEH1LNnT/Xs2VMPPPCAjj/+eI0aNSoSe/PNN2vixInq0qWLOnfurEmTJuncc89VefmhbbK9e/fWv/zLv2js2LF67LHHJEm33nqrrr76avXq1UuSVFFRoT59+mj06NH66U9/qk8++USTJk3S2LFj+WsoAAAAAEnBmgkAAAAmbrILkNrS5qbJo48+Kkm67LLLot5fsGCBxowZI0mqrKzUgQMHdMcdd2jv3r0aOHCgVqxYoU6dOkXiH3roIeXk5Oj666/XgQMHNHToUC1cuFDt2rWLxDz11FMaN26cKioqJEkjRozQ3LlzI5+3a9dOL730ku644w6VlZUpPz9fo0aN0oMPPpig2gMAAABAbKyZAAAAgPilzU0T1/W+/eU4jqZNm6Zp06YdM6ZDhw6aM2eO5syZc8yYzp07a9GiRTHzOu200/Tiiy96lgkAAAAA2gJrJgAAACB+afNMEwAAAAAAAAAAgERKm50mmar7mX+UU9ApZsy9Kg4+4wtsYbV9Q6a4Da9dborb/ewJprjiWftMcZJ0qzvPFPeuzjOnafKWMW6DjzRLjXFDVpnCbnXfM8XNm7jPmLGkkVNtcUtsZTSrOWAKcxwfaY7Mt8UtseWtEmN6/ctNYe6ztuQkyXEqjXHGugTMdW11PsQW6/QwJldj64uua+zbkhzHmqaxLk6VMT17Ga2CztuanpW1rSUf/azEVhd3uy05+7hTZg0MXCL6mP1YB1vvoPuYnzSt7RP0uZqIcz8d8gaswq8XxQ4YGV/63vOn2OOcZYzxOte8r4deY+06j/z9zNWOlUZ844VXO7tu7Ll2W9TB+zjEbmfrPPfY+QdxDYy3ryT+uuBVz/j7WvBziaDzSIfrb6LL6HW+BXHOJ1pb9LVMkAr9PRvOWfjDThMAAAAAAAAAAABx0wQAAAAAAAAAAEASP88FAAAAAAAAAECWaPzHK+g0Mwc7TQAAAAAAAAAAAMROEwAAAAAAAAAAskTTP15Bp5k52GkCAAAAAAAAAAAgdpokXd3Jv5DUoc3zrTrXFjf13bAp7tZL/8sU94xuMMWF7qo1xUlSH20xxc3rcY8twZpVtrjSclucHxONec+05f2u2hkzbjbGSbrbGLfEGFcy1RZnPS5+WI+hsS7udluc0yPYOF9K8k1h7nZb2zg9jHHOAVPcITOMcZWmKNcN/lwNPs0yU5S9HW3pHbLOmHeVKc51bee0Pb0EjLU1trwlW12CrvMh1nPLmqbtfPHDWu9k5euvvZPDcWzXtoScB0AaCYWmK+aaaaTHuLAkznlkicc5aL6uHJvXmOU19nmNJ57f95h3Wua53vMU6xzvWOnH9XXT9SP+4xB7XhVv+kHwuqbE285e2uL6HPf5EEAZ4z2W8ZYhiDrGm0ay5orpxXvd5n2s/Kz9Wkrf63xJ/jy0Lfpa9vVXnmnihZsmAAAAAAAAAABkBX6eyws/zwUAAAAAAAAAACB2mgAAAAAAAAAAkCWaFPzPabHTBAAAAAAAAAAAIOOw0wQAAAAAAAAAgKzAg+C9OK7ruskuRDaqq6tTKBRSOBxWQUFBzNgqx2mjUh2tzBj3nnurKe48vWuKW6wbjDlLzzTYYsM3FtkSXLLKFFbqtjPFbehxuS1fSao5YAoL1YdNceG8kC3fkfm2OEm62xg3xhhnrLO0zhhn7bWSZhrrvcGY3pIqW9zIqba4amO+kr0dS2x1drfbknMc2/nij/UYzjDGVRrjrH3MHuu6tmPtOMa+Y2XtY5K0xHoOWts7HQTdJ2x91nXtY621TyStj/nK2zpOJO+8sqaZLJlSFz/zX0Cy9xnH8bqWeY0vXuO4nzlC676fyueuZBvLXbc86WWIV7x18B6vfaxVWpDoNrbwqmNb9OV4yxDvvCgVzte2aYPk9td06GtebRTEOes19qVDO2dCHeKRSnPgw2WRtkjqFHDq+yX1Mddz+vTpeu655/SHP/xB+fn5Gjx4sH7yk5+oV69ex/zO6tWrdfnlR/9/1q1bt+rss8+Op/BHYacJAAAAAAAAAABZoUnBP4PEX3pr1qzRnXfeqYsuukhNTU2aMmWKKioqtGXLFnXs2DHmd7dt2xZ1Y+bkk09uVYlj4aYJAAAAAAAAAABoE8uXL4/694IFC1RYWKjq6mpdeumlMb9bWFioE044IYGl40HwAAAAAAAAAABkiSb987kmQb0O7TSpq6uLetXX15tKFA4fehRB586dPWP79eun4uJiDR06VK+++qopfb+4aQIAAAAAAAAAQFZoStBL6t69u0KhUOQ1ffp0z9K4rqsJEybokksuUd++fY8ZV1xcrHnz5mnp0qV67rnn1KtXLw0dOlSvvfZaaxohJn6eCwAAAAAAAAAAxGXnzp1RzxvJy8vz/M5dd92l3//+91q7dm3MuF69ekU9KL60tFQ7d+7Ugw8+6PmTXn5x0wQAAAAAAAAAgKxw+Ce1gk5TKigoiLpp4uXuu+/WsmXL9Nprr+nUU0/1neugQYO0aNEi39/zwk2TNFBmjFuXgLytad6mZwLN95mGG8yx4deLbIF328JKn21nztvile2DzbH/X8NzprjwXGOdtcoWVlpuTE/SHGNcjTHvkca8q41x/W1hkqS5xriaKmNgpS1syQFjeglQY8073xhnHKFKrOlJ7nZr5FRTlONYj591tJVc15a3nbUdjefBEuP5J8k60lvr7DjWvIPN91De1mM9w5ymhevajou9bfy0d8DjU8Bt40fw51Xqsx+/5Am2jH8PMC3gC0Z6zDOWeFxnZ3p8f2Ls77tu7O87jvc1z881omVxrgZLYo/Blmud93gR+1rk1Y5eZQhivLIcq9i85nRe6dvno63l1U5e1+N4r9e2vh67nbzKEG8dvb5v62vWuVfLvM4HL8Fcv+Mc+3p4JO+xzo73OB3iVYfY44pnGbzq6MFSh0Sfc0G0s/e4Ed/4HX8bJL6d4Z/rurr77rv1/PPPa/Xq1SopKWlVOps2bVJxcXHApeOmCQAAAAAAAAAAWeKfzyAJNk27O++8U08//bR+85vfqFOnTqqtrZUkhUIh5ecfuik7efJkffDBB3ryySclSbNnz9YZZ5yhc845Rw0NDVq0aJGWLl2qpUuXBlsVcdMEAAAAAAAAAAC0kUcffVSSdNlll0W9v2DBAo0ZM0aStHv3bu3YsSPyWUNDgyZNmqQPPvhA+fn5Ouecc/TSSy/pyiuvDLx83DQBAAAAAAAAACArNCn4Z5r422niuq5nzMKFC6P+XVlZqcrK+H7+0Oq4NskFAAAAAAAAAAAgxbHTBAAAAAAAAACArJD8Z5qkOm6aAAAAAAAAAACQFRoV/M9zBZ1ecnHTJA0MG+n9G2+SNG2JY05z6j22uKr/ssU9oxtMcfcsmmeKu+Hbz9gyltTn0i2muKkNVaa4Dc4gU1yp+7op7qvXrTfFSVLoqVpb4AZjgiXltri5xvQkaaEx7m5j3mOM6dWsMsYZ05MkrbOFlUz1k6g3a11UZk7SdfNNcY5jOw8c43Diura2seZ7KNb6+5QzTFHWMvrhOAeMkbYymo91jbUd/fzGpy1v+zG09ltbGe1t7YetjK5rHMfMjGOOJMmWd9D923ruH4q1jmXWegfb3n7axs8YFaREjE9W1joHWca6ujqFQv8ZWHrAYe6zsT93enjMkyZ6XGvWxP6+93houOaVeJTRcw7gdW3zGIs90nccy7Uzdox1vnrsMnjNCWK3syX/RF8PvMZUr/wdx89cIjFl0MjY3/c6H4Pg1RfirmMAvPqb97H2Sj++OgZxffca+7zm0n7mnS2n710H72PtVcbEt2OyeV/D7P9f4th5JLYdU+GcR+bhpgkAAAAAAAAAAFmBn+fywoPgAQAAAAAAAAAAxE4TAAAAAAAAAACyRJOCfwYJO00AAAAAAAAAAAAyDjtNAAAAAAAAAADICjzTxAs3TdKA+6wt7r90qznN29THFNdn9hZT3DP6pilu/GmPmeJCDbWmOD/CrxfZAkfawjZcd7kpznr8JMlxbO0jldkTtSgpt8eOMcb1DziuxlrndcY4SSOn2uKWrLKnaeC6tvZ2nCpzmo5TaczbWGdzvra28ZOvn3oHyVoXyX4MpaDb23YeuG5+oPkeytsWZ+/fB4zp2esSfBmD7ou28zQRrHVJxLka9LhjlYixxFqXZI1jfgRdl2QdZ8DC3R77c8/rx5igShJDTex5iNc55nVd9br2eZ7rI72vnV7rHu+5ltc83mMe5LGmscz1Ej2WeZUh3uN8KI3g54FRlsTuK9b5WDy86uh9rL3m1LH7Yltc81LhuhrvfMa7L8T3/zUs5Yu3Hb3PycTP+bzy8K5j7Hb2Pp+86+g4iT1n4m2DVDifkH64aQIAAAAAAAAAQFZoVPDPNAk6veTipgkAAAAAAAAAAFmBmyZeeBA8AAAAAAAAAACA2GkCAAAAAAAAAECW4EHwXthpAgAAAAAAAAAAIHaaAAAAAAAAAACQJZoU/DNIMmunieO6rpvsQmSjuro6hUIhhcNhFRQUJLs4AAAAQEIx/4Vf9BkAAJDuUmk+c7gs0iOS8gNO/YCkO1KinkFgpwkAAAAAAAAAAFmBZ5p44ZkmAAAAAAAAAAAAYqcJAAAAAAAAAABZolHB3xYI+hkpycVNEwAAAAAAAAAAsgI/z+WFn+cCAAAAAAAAAAAQO00AAAAAAAAAAMgSTQr+57TYaQIAAAAAAAAAAJBx2GkCAAAAAAAAAEBW4JkmXthpAgAAAAAAAAAAIG6axOWRRx5RSUmJOnTooP79++t3v/tdsosEAAAAACmFdRMAAEAqaUzQK3Nw06SVnnnmGY0fP15TpkzRpk2b9JWvfEVXXHGFduzYkeyiAQAAAEBKYN0EAACAdOO4rusmuxDpaODAgbrwwgv16KOPRt7r3bu3vv71r2v69OlHxdfX16u+vj7y73A4rNNOO007d+5UQUFBm5QZAAAASJa6ujp1795d+/btUygUSnZx0Eb8rJtYMwEAgEyTSnPgurq6f5ThXkl5AadeL+khhcPhjJi38SD4VmhoaFB1dbXuu+++qPcrKiq0fv36Fr8zffp0VVVVHfV+9+7dE1JGAAAAIBV9/PHHSV8wom34XTexZgIAAJkqFebAubm5KioqUm3tQwlJv6ioSLm5uQlJu61x06QVPvroIzU3N6tr165R73ft2lW1tbUtfmfy5MmaMGFC5N/79u3T6aefrh07diT9hEF6OHxnmr+0gxV9Bn7RZ+AXfQZ+HN410Llz52QXBW3E77qJNVPm4TqR/jiG6Y9jmN44fukvlebAHTp0UE1NjRoaGhKSfm5urjp06JCQtNsaN03i4DhO1L9d1z3qvcPy8vKUl3f0tqdQKMSgB18KCgroM/CFPgO/6DPwiz4DP447jscqZhvruok1U+biOpH+OIbpj2OY3jh+6S9V5sAdOnTImBsbiZQaRyvNnHTSSWrXrt1Rfx21Z8+eo/6KCgAAAACyEesmAAAApCNumrRCbm6u+vfvr5UrV0a9v3LlSg0ePDhJpQIAAACA1MG6CQAAAOmIn+dqpQkTJmj06NEaMGCASktLNW/ePO3YsUO333676ft5eXmaOnVqi9vPgZbQZ+AXfQZ+0WfgF30GftBfslM86yb6TPrjGKY/jmH64ximN45f+uMYpifHdV032YVIV4888ohmzJih3bt3q2/fvnrooYd06aWXJrtYAAAAAJAyWDcBAAAgnXDTBAAAAAAAAAAAQDzTBAAAAAAAAAAAQBI3TQAAAAAAAAAAACRx0wQAAAAAAAAAAEASN00AAAAAAAAAAAAkcdMkoR555BGVlJSoQ4cO6t+/v373u9/FjF+zZo369++vDh06qEePHvr5z3/eRiVFqvDTZ5577jkNGzZMJ598sgoKClRaWqqXX365DUuLVOB3nDls3bp1ysnJ0QUXXJDYAiKl+O0v9fX1mjJlik4//XTl5eXpy1/+sn7xi1+0UWmRCvz2maeeekrnn3++jj/+eBUXF+u73/2uPv744zYqLZLttdde0zXXXKNu3brJcRz9+te/9vwO81+wZkp/rGHSH2uK9MYcP/0x505vzIEzEzdNEuSZZ57R+PHjNWXKFG3atElf+cpXdMUVV2jHjh0txtfU1OjKK6/UV77yFW3atEk//OEPNW7cOC1durSNS45k8dtnXnvtNQ0bNky//e1vVV1drcsvv1zXXHONNm3a1MYlR7L47TOHhcNhfec739HQoUPbqKRIBa3pL9dff73+93//V48//ri2bdumX/3qVzr77LPbsNRIJr99Zu3atfrOd76jm2++We+9956effZZbdy4UbfccksblxzJ8tlnn+n888/X3LlzTfHMf8GaKf2xhkl/rCnSG3P89MecO/0xB85QLhLi4osvdm+//fao984++2z3vvvuazG+srLSPfvss6Peu+2229xBgwYlrIxILX77TEv69OnjVlVVBV00pKjW9pkbbrjB/bd/+zd36tSp7vnnn5/AEiKV+O0v//M//+OGQiH3448/boviIQX57TM//elP3R49ekS99/DDD7unnnpqwsqI1CXJff7552PGMP8Fa6b0xxom/bGmSG/M8dMfc+7Mwhw4c7DTJAEaGhpUXV2tioqKqPcrKiq0fv36Fr+zYcOGo+KHDx+ut956S42NjQkrK1JDa/rMkQ4ePKj9+/erc+fOiSgiUkxr+8yCBQv0pz/9SVOnTk10EZFCWtNfli1bpgEDBmjGjBk65ZRTdNZZZ2nSpEk6cOBAWxQZSdaaPjN48GDt2rVLv/3tb+W6rj788EMtWbJEV111VVsUGWmI+W92Y82U/ljDpD/WFOmNOX76Y86dnZjPpIecZBcgE3300Udqbm5W165do97v2rWramtrW/xObW1ti/FNTU366KOPVFxcnLDyIvla02eONHPmTH322We6/vrrE1FEpJjW9Jn3339f9913n373u98pJ4fhP5u0pr9s375da9euVYcOHfT888/ro48+0h133KFPPvmE3zzOAq3pM4MHD9ZTTz2lG264QX//+9/V1NSkESNGaM6cOW1RZKQh5r/ZjTVT+mMNk/5YU6Q35vjpjzl3dmI+kx7YaZJAjuNE/dt13aPe84pv6X1kLr995rBf/epXmjZtmp555hkVFhYmqnhIQdY+09zcrFGjRqmqqkpnnXVWWxUPKcbPGHPw4EE5jqOnnnpKF198sa688krNmjVLCxcu5C/RsoifPrNlyxaNGzdO/+///T9VV1dr+fLlqqmp0e23394WRUWaYv4L1kzpjzVM+mNNkd6Y46c/5tzZh/lM6uPPAhLgpJNOUrt27Y66K7xnz56j7iQeVlRU1GJ8Tk6OunTpkrCyIjW0ps8c9swzz+jmm2/Ws88+q/Ly8kQWEynEb5/Zv3+/3nrrLW3atEl33XWXpEMTZtd1lZOToxUrVuirX/1qm5Qdba81Y0xxcbFOOeUUhUKhyHu9e/eW67ratWuXevbsmdAyI7la02emT5+usrIy/eu//qsk6bzzzlPHjh31la98RT/+8Y/5iykchflvdmPNlP5Yw6Q/1hTpjTl++mPOnZ2Yz6QHdpokQG5urvr376+VK1dGvb9y5UoNHjy4xe+UlpYeFb9ixQoNGDBA7du3T1hZkRpa02ekQ3+dNWbMGD399NP8fmWW8dtnCgoK9O677+qdd96JvG6//Xb16tVL77zzjgYOHNhWRUcStGaMKSsr01//+ld9+umnkff++Mc/6rjjjtOpp56a0PIi+VrTZz7//HMdd1z01LJdu3aS/vmXU8AXMf/NbqyZ0h9rmPTHmiK9McdPf8y5sxPzmTTRlk+dzyaLFy9227dv7z7++OPuli1b3PHjx7sdO3Z0//znP7uu67r33XefO3r06Ej89u3b3eOPP96999573S1btriPP/642759e3fJkiXJqgLamN8+8/TTT7s5OTnuz372M3f37t2R1759+5JVBbQxv33mSFOnTnXPP//8Niotks1vf9m/f7976qmnuiNHjnTfe+89d82aNW7Pnj3dW265JVlVQBvz22cWLFjg5uTkuI888oj7pz/9yV27dq07YMAA9+KLL05WFdDG9u/f727atMndtGmTK8mdNWuWu2nTJvcvf/mL67rMf3E01kzpjzVM+mNNkd6Y46c/5tzpjzlwZuKmSQL97Gc/c08//XQ3NzfXvfDCC901a9ZEPrvpppvcIUOGRMWvXr3a7devn5ubm+ueccYZ7qOPPtrGJUay+ekzQ4YMcSUd9brpppvavuBIGr/jzBexwMk+fvvL1q1b3fLycjc/P9899dRT3QkTJriff/55G5cayeS3zzz88MNunz593Pz8fLe4uNi98cYb3V27drVxqZEsr776asy5CfNftIQ1U/pjDZP+WFOkN+b46Y85d3pjDpyZHNdl7xYAAAAAAAAAAADPNAEAAAAAAAAAABA3TQAAAAAAAAAAACRx0wQAAAAAAAAAAEASN00AAAAAAAAAAAAkcdMEAAAAAAAAAABAEjdNAAAAAAAAAAAAJHHTBAAAAAAAAAAAQBI3TQAAAAAAAAAAACRx0wQAAAAAAAAAAEASN00AABnosssu0/jx45NdDAAAAABJxtoAAOAXN00AAAjYpZdeKsdxjnrdeOONpu+PGTNG9913X2DpAQAAAEgO1gYAkH5ykl0AAAAkqaGhQbm5uckuRtxc19U777yjBx988KiFy5e+9CXP7x88eFAvvfSSli1bFkh6AAAAQLphbXAIawMASA52mgAAjuK6rmbMmKEePXooPz9f559/vpYsWRL5/LLLLtO4ceNUWVmpzp07q6ioSNOmTfOdxl133aUJEybopJNO0rBhwyRJ+/fv14033qiOHTuquLhYDz30UNSW+ieffFJdunRRfX19VH7f+MY39J3vfKfF+tTX12vcuHEqLCxUhw4ddMkll2jjxo2Rz5csWaJzzz1X+fn56tKli8rLy/XZZ5+ZP/+i999/X/v379ell16qoqKiqJdlIbNu3Todd9xxGjhwYCDpAQAAAPFgbcDaAACyDTdNAABH+bd/+zctWLBAjz76qN577z3de++9+va3v601a9ZEYp544gl17NhRb7zxhmbMmKEf/ehHWrlype80cnJytG7dOj322GOSpAkTJmjdunVatmyZVq5cqd/97nd6++23I9+57rrr1NzcHPlrK0n66KOP9OKLL+q73/1ui/WprKzU0qVL9cQTT+jtt9/WmWeeqeHDh+uTTz7R7t279a1vfUvf+973tHXrVq1evVrXXnutXNeVJM/Pj1RdXa2cnBydd955rWh5admyZbrmmmt03HHHBZIeAAAAEA/WBqwNACDruAAAfMGnn37qdujQwV2/fn3U+zfffLP7rW99y3Vd1x0yZIh7ySWXRH1+0UUXuT/4wQ98pXHBBRdEfV5XV+e2b9/effbZZyPv7du3zz3++OPde+65J/Le97//ffeKK66I/Hv27Nlujx493IMHD0bSPhz/6aefuu3bt3efeuqpSHxDQ4PbrVs3d8aMGW51dbUryf3zn//cYnt4fX6kSZMmuY7juB07dox63XLLLabvn3XWWe6yZct8pffCCy+4Z511lnvmmWe68+fPN+UDAAAAeGFtEI21AQBkB55pAgCIsmXLFv3973+PbIk/rKGhQf369Yv8+8i/biouLtaePXt8pTFgwICoz7dv367GxkZdfPHFkfdCoZB69eoVFTd27FhddNFF+uCDD3TKKadowYIFGjNmjBzHOao+f/rTn9TY2KiysrLIe+3bt9fFF1+srVu3asKECRo6dKjOPfdcDR8+XBUVFRo5cqROPPFESdL5558f8/MjVVdX67rrrtP9998f9f6x4r9o69at2rVrl8rLy83pNTU1acKECXr11VdVUFCgCy+8UNdee606d+7smR8AAAAQC2sD1gYAkI24aQIAiHLw4EFJ0ksvvaRTTjkl6rO8vLzIf7dv3z7qM8dxIt+1ptGxY8eoz9x/bGs/coHjHrHdvV+/fjr//PP15JNPavjw4Xr33Xf1wgsvtFifWGk6jqN27dpp5cqVWr9+vVasWKE5c+ZoypQpeuONN1RSUuL5+ZE2bdqkH/3oRzrzzDNbLM/mzZv1ta99TevWrVNRUZE++ugjlZeX680339SyZcs0bNgw5efnm9N78803dc4550Ta+corr9TLL7+sb33rWy3GAwAAAFasDVgbAEA24pkmAIAoffr0UV5ennbs2KEzzzwz6tW9e/eEpvHlL39Z7du315tvvhl5r66uTu+///5RsbfccosWLFigX/ziFyovLz9mumeeeaZyc3O1du3ayHuNjY1666231Lt3b0mHFk1lZWWqqqrSpk2blJubq+effz4S7/X5Ydu3b9e+ffui/mLuSH379tU3v/lNvfLKK5Kkqqoq/eAHP1Bubq5+85vfaMSIEb7S++tf/xq1+Dz11FP1wQcfHDMeAAAAsGJtwNoAALIRO00AAFE6deqkSZMm6d5779XBgwd1ySWXqK6uTuvXr9eXvvQl3XTTTQlLo1OnTrrpppv0r//6r+rcubMKCws1depUHXfccUf9NdiNN96oSZMmaf78+XryySePWZaOHTvq+9//fiTN0047TTNmzNDnn3+um2++WW+88Yb+93//VxUVFSosLNQbb7yhv/3tb5FFk9fnX1RdXS1J6tq1q2pra6M+KywsjDzA8ZxzztEf//hH/d///Z+qq6v18MMPa8+ePdq4caN+/etf+0rvyL+0k47+yzkAAACgNVgbsDYAgGzETRMAwFH+4z/+Q4WFhZo+fbq2b9+uE044QRdeeKF++MMfJjyNWbNm6fbbb9fVV1+tgoICVVZWaufOnerQoUNUXEFBgb7xjW/opZde0te//vWYaf7nf/6nDh48qNGjR2v//v0aMGCAXn75ZZ144okqKCjQa6+9ptmzZ6uurk6nn366Zs6cqSuuuCKST6zPv+jtt9+WJJ111llR77dv31779++P/PxAz5499eKLL+qHP/yh7r//fjmOoxdeeEEDBw5UYWGhr/ROOeWUqL8e27VrlwYOHBizPQAAAAAr1gasDQAg2zhuS7ehAQBIEZ999plOOeUUzZw5UzfffHPUZ8OGDVPv3r318MMPJ6l0rbNv3z717NlTAwcO1IsvvihJGjFihC655BJVVlb6SqupqUm9e/fW6tWrIw97fP3119WlS5dEFB0AAABIGtYGsbE2AIBgsNMEAJBSNm3apD/84Q+6+OKLFQ6H9aMf/UiS9LWvfS0S88knn2jFihV65ZVXNHfu3GQVtdVOOOEESYf+yu2wSy65pFUPaMzJydHMmTN1+eWX6+DBg6qsrGRRBAAAgIzA2sAf1gYAEAx2mgAAUsqmTZt0yy23aNu2bcrNzVX//v01a9YsnXvuuZGYM844Q3v37tW///u/a9KkSUksbes0Njaqb9++2rZtW7KLAgAAAKQs1gYAgGRgpwkAIKX069cv8pDDY/nzn//cNoVJkD/84Q/q1atXsosBAAAApDTWBgCAZGCnCQAAAAAAAAAAgKTjkl0AAAAAAAAAAACAVMBNEwAAAAAAAAAAAHHTBAAAAAAAAAAAQBI3TQAAAAAAAAAAACRx0wQAAAAAAAAAAEASN00AAAAAAAAAAAAkcdMEAAAAAAAAAABAEjdNAAAAAAAAAAAAJHHTBAAAAAAAAAAAQBI3TQAAAAAAAAAAACRx0wQAAAAAAAAAAECS9P8DyrOF1v1l2pQAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#downstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(down_energyloss_found, down_energy_found, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,70)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0$\")\n",
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
"\n",
"a1=ax1.hist2d(down_energyloss_lost, down_energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,70)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0$\")\n",
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, Downstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk4AAAJOCAYAAADxgPt3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADfLElEQVR4nOzdd3gU1f7H8c+mbUJIltASQgfpXTqoAenSLBRBQxW5AiICFlSqCioIKNiuVw3SVXoRIVTpXQS9AlcQFAKoEIoEUs7vD8n+XFJ2Qzb9/XqefWBnvnPmzJnZyZw9e86xGGOMAAAAAAAAAAAAII+szgAAAAAAAAAAAEB2QcMJAAAAAAAAAADALTScAAAAAAAAAAAA3ELDCQAAAAAAAAAAwC00nAAAAAAAAAAAANxCwwkAAAAAAAAAAMAtNJwAAAAAAAAAAADcQsMJAAAAAAAAAADALTScAAAAAAAAAAAA3ELDCQAAAAAAAAAAwC00nAAAgGylT58+ioiIyOpswEWHDh3SqVOnsjobAAAAAAC4DQ0nAAAAuGP//ve/tWHDhqzOBgAAAAAAbkPDCQAAyFUWLlyoatWqyc/PTxaLRQcPHszqLKVq9erVslgsDq/AwEDVrVtXX3zxRabt//PPP3dYfvHiRbVr104+Pj6aOXOmw7otW7ZowIABOn/+vH3ZDz/8oIcffljnzp3L8DznJJs2bUpyfhNfO3fuTBJ/6NAh9e/fX+XLl5efn5/8/PxUoUIFDRw4UHv37r2jPDz00EPy8/PTpUuXUox57LHH5O3tnebzN27cOFksFv3+++/Jrq9evbqaNWuWpjRdtX37do0bNy7V48oLnJ2DO5EXyjY+Pl5FixbVtGnTUozJiLLNCXLz+d+9e7fatGmjgIAA5c+fX82bN9e2bdscYtJ637569aqGDRum0NBQ+fr6qnbt2lqwYEGy+09LLAAAyFo0nAAAgCzXoUMHFShQQAUKFNC8efM0aNAg+/s33njD5XQuXLig8PBwlS9fXmvWrNGOHTtUsWLFDMx5+u3fv1+StGzZMu3YsUPbt2/Xxx9/rGvXrqlHjx46dOhQpuy/bt269mWHDh1SvXr1dODAAW3YsEFDhgxx2KZu3boKDg5WzZo1tX79es2cOVOtWrVS27ZtVaRIkQzNb041ceJE7dixw+FVvXp1h5iPPvpIdevW1a5du/TMM89o5cqVWrVqlYYNG6YjR46ofv36+t///pfmfffv318xMTGaN29esuujo6O1ZMkSdejQQcHBwXd0fFlh+/btGj9+fK78cjer5YWy3bJliy5cuKCHH344q7OS7eTW879nzx7dd999un79umbPnq3Zs2crJiZGLVq00I4dO5LEu3LflqSHH35Ys2bN0tixY/X111+rfv366tGjR7L33LTEAgCArOWV1RkAAABYuXKl/f99+vRRs2bN1KdPnzSnc/ToUcXGxurxxx9XWFhYinF//fWX8uXLdydZdbv9+/fLZrOpU6dO9mWNGzdWXFycHn/8cR04cEA1a9bM0P37+fmpcuXKkqQFCxaof//+qlmzphYtWqTQ0NAk2/j7+2vChAlKSEjQpEmT5OHhoblz5+rRRx/NsHxmhT///FMJCQkqXLhwutOqUKGCGjVqlOL6bdu2adCgQWrfvr2++uor+fj42Nfdf//9Gjx4sL788kv5+fmled/t2rVTaGioPv30Uw0aNCjJ+vnz5+v69evq379/mtPOSbLT5x5Z76uvvlK9evVUunTpDEmf6y1rnD17Vv7+/goMDEyybvTo0SpQoIDWrFljPzctW7ZUuXLlNHLkyCQ9T5zdt6W/e22uW7dO8+bNU48ePSRJzZs31y+//KLnnntO3bt3l6enZ5pjAQBA1qPHCQAAyBBbt25V69atZbPZFBQUpPbt2+vYsWMZtr8+ffronnvukSR1795dFotFzZo1sw+1sn//fnXp0kVBQUEqX768Qz5btGihgIAA5cuXT02aNNGqVasc0k5M49ChQ+ratatsNpsKFiyo4cOHKy4uTj/99JPatm2rgIAAlSlTRm+99ZbL+d63b59q166dZPmvv/4qSapSpcodlIY0bdo0LV26NE37HzlypHr06KHHHntMmzdvTrbRRJK+//573X333dq/f78eeOAB9evXT6+//rrat2/vdEgbV68Ld18/HTt2VL169fTxxx+rVq1a8vPzU8mSJTV27FglJCQku82hQ4dUrFgxtWvXTp9//rmuXLlyx/t3ZuLEifL09NRHH33k0GjyT127dk1yTo4dO6aePXuqaNGislqtqlKlit577z2HGE9PT/Xu3Vv79u3T999/nyTdzz77zH6cGS3xs3TgwAE9/PDDCgwMlM1m0+OPP64LFy7Y4y5cuKAnn3xSJUuWlNVqVZEiRdS0aVNFRkba03nuueckSWXLlrUPo7Np0yaH/aT0uXel3I4fP66+ffuqQoUKypcvn4oXL66OHTsmKcOMuj+4WlaJzp07px49eshmsyk4OFj9+vVTdHR0kjhn9zxnZevKPfOf+T9y5Eiq+XJ2rpNz5MgRWSwWffnll/Zl+/btk8ViUbVq1RxiO3Xq5NCjTpKMMVqyZIkeeeSRFPfxT6dPn071HLjjesvIvzOStHTpUlksFq1fvz7Jug8++MC+75TO/5o1a1SnTh3dddddDucvKipKISEhatasmeLj413OT0pDYVksFp08eTJNx3bx4kV98sknatmypUqUKKGff/452bht27apWbNmDg1aAQEBuu+++7R9+3adPXs2TfuVpCVLlih//vzq2rWrw/K+ffvqzJkz2rVrV5pj03stZPS1BABAnmEAAADcbOzYscbDw8P069fPrFq1ynz11VemRo0apmTJkubKlSsZss/jx4+b9957z0gyEydONDt27DBHjhwxY8eONZJM6dKlzQsvvGDWrVtnli5daowxZtOmTcbb29vUrVvXLFy40CxdutS0bt3aWCwWs2DBAofjkWQqVapkXn31VbNu3Trz/PPPG0lmyJAhpnLlyubdd98169atM3379jWSzKJFi5zm+ffffzeSzNChQ01sbKyJjY01586dM59//rkJCAgwTzzxxB2XR8+ePY23t7dZsmSJ0/13797d3H///cZqtZqPP/7YadqnT582K1asMMYYM3jwYPPZZ5+ZuLg4ExERYW7evJnidq5eFxlx/RQrVsz4+/ubKlWqmNmzZ5u1a9eaRx991EhK8ZivX79u5s6dazp27Gh8fHyMr6+v6dKli1m0aJGJiYlxab8bN240kkzRokWNp6enCQgIMK1btzbffvutPSYuLs74+fmZxo0bp+mYjhw5Ymw2m6lRo4b5/PPPzdq1a82IESOMh4eHGTdunEPssWPHjMViMcOGDUuShiTz4osvpmnfiRI/GxcuXEh2fbVq1UxYWFiS+NKlS5vnnnvOfPPNN2bq1KnG39/f1KlTx379tGnTxhQpUsT8+9//Nps2bTJLly41Y8aMsX8uT58+bZ5++mkjySxevNjs2LHD7Nixw0RHRyfZz+2fe1fLbfPmzWbEiBHmq6++Mps3bzZLliwxDz74oPHz8zP//e9/kxyTu+8PrpbVP/c/ZswYs27dOjN16lRjtVpN3759HdJ05Z6XWtm6es9MS76cneuUFCtWzDz55JP292+88Ybx8/Mzksxvv/1mjDEmNjbWBAYGmueff95h261btxpJ5ujRo249B+m53jLqOkoUGxtrihYtah577LEk6xo0aGDuvvtuY0zq5//o0aMmICDAPPzww8YYY+Lj4839999vihYtas6cOeNyXowx9nQTXxs2bDDFixc3ISEh9s9xaq5du2YWLFhgOnXqZHx8fIyfn5955JFHzJdffmlu3LiR7DY+Pj6mV69eSZb36NHDSDLffPONMca1+3aiRo0amfr16ydZfvjwYSPJfPTRR2mOTe+1kNHXEgAAeQUNJwAAwK1WrFhhJJm33nrLYfnRo0eNJDNnzpwk27Rt29b4+/sn+3r99ddd3nfilx1ffvmlfVniFwhjxoxJEt+oUSNTtGhRhy/j4+LiTPXq1U2JEiVMQkKCQxpvv/22w/a1a9e2f7mUKDY21hQpUsT+xVJq1q5dayQleXl5eZnXXnvN5eNOTlxcnNPGk3/u39fX1+zcuTPN+0lsOHHG1eviTq4fZ3799VcjyZQrV85cunTJvvzmzZsmJCTEdOjQwWkaFy9eNJ9++qlp3bq18fLyMjabzfTp08d88803Ji4uLsXt9u/fb5555hmzZMkSs2XLFvPpp5+aKlWqGE9PT7NmzRpjjDFRUVFGknn00UeTbB8XF2dvVIuNjbVfk8b8/YVziRIlknzJOGTIEOPr62v+/PNPh+VhYWGmcOHCDo1bI0aMcOkL5JTcacPJs88+6xA3d+5ch/ObP3/+JI08t5s8ebKRZE6cOJFivpL73Ke13BLFxcWZmzdvmgoVKjjkP6PuD66WVWLc7Z+ZQYMGGV9fX4drxtV7Xkpl6+r2acmXK+c6OY8//rgpV66c/X3Lli3NgAEDTFBQkJk1a5Yxxpht27YZSWbt2rUO2w4bNszUqFHD6T7Seg7Sc71l1HX0T8OHDzd+fn4O98EffvjBSDIzZsywL0vts7Vw4UIjyUyfPt2MGTPGeHh4JCnftIqLizOdO3c2+fPnN/v27Usx7ubNm2blypWmZ8+ext/f3/j4+JgOHTqYOXPmuNSoXrt2bVOxYkUTHx9vXxYbG2vKlStnJJl58+YZY1y7byeqUKGCadOmTZJ9nTlzxv5DjrTGpvdayIxrCQCAvIChugAAgFuNGTNG5cuX1zPPPKO4uDj7q2zZsvLz80t2CI2vv/5aV69eTfb10ksvuSVftw/Jcu3aNe3atUtdunRR/vz57cs9PT0VHh6uX3/9VT/99JPDNh06dHB4X6VKFVksFochjry8vHTXXXfpl19+cZqnffv2SZIWL16sPXv2aM+ePVqzZo3at2+vMWPGaPHixclu9/vvv6c6zInFYpGXl5fmzZun2NhYdevWTefOnUtx/+Hh4YqJidGWLVuc5vl2M2fOdGk+Glevizu5fpzZs2ePpL+HL7HZbPbl3t7euuuuu5wOLyZJBQoUUN++ffXNN9/o7NmzeuONN3TixAm1bdtWoaGhKearTp06mj59uh588EHde++96tu3r7Zv365ixYrp+eefd7rfunXrytvb2/56++23JUkxMTFav369HnroIeXLl8+hrB544AHFxMRo586dDmn1799fv//+u5YvXy5JiouL05w5c3TvvfeqQoUKTvPiTo899pjD+27dusnLy0sbN26UJDVo0EARERF67bXXtHPnTsXGxt7Rfm7/3Kel3OLi4jRx4kRVrVpVPj4+8vLyko+Pj44dO6Yff/wxyb7cfX9I5KysEv1zniRJqlmzpmJiYnT+/HlJd3bP+6c73d5Zvu70XLdo0UI///yzTpw4oZiYGG3dulVt27ZV8+bNtW7dOklSZGSkrFarfRjHRIsXL3Z5mC7J9XOQnustUUZdR5LUr18/Xb9+XQsXLrQv++yzz2S1WtWzZ0+X0ujWrZueeuopPffcc3rttdf00ksvqVWrVmnKx+2GDBmiVatW6csvv9Tdd9+dbMyhQ4cUEhKizp076/fff9e7776rc+fOacWKFXrsscccrsmUPP300zp69KiGDBmi3377TadPn9a//vUvezl6ePz99Uha79sWiyXFfd6+Li2x6b0WMvJaAgAgL6DhBAAAuE1UVJQOHDig//3vf7JarQ5f+Hp7e+v69esqUKBAluStWLFiDu8vXrwoY0yS5ZLs80j88ccfDssLFizo8N7Hx0f58uWTr69vkuUxMTFO85Q4MXunTp1Ur1491atXT23atNGCBQvk6empjz/+ONntAgIC9PHHHzt9JX6J17lzZxUqVCjZ/fv6+urTTz9VeHi4XnzxRfuX6u7k6nWRUdfP3r175e3tnWRceUk6c+aMSpYsmab0Ll++rEuXLik6OlrGGBUoUEBeXl4ub1+gQAF16NBBhw4d0vXr11W4cGH5+fkl+8XVvHnztGfPniTn5Y8//lBcXJxmzJiRpJweeOABSUrSINSlSxfZbDZ99tlnkv6eqPjcuXPpmhQ+8bhTmtsgLi5O3t7eSZaHhIQkSadQoUL2z9zChQvVu3dv/ec//1Hjxo1VsGBB9erVS1FRUWnK3+2f77SU2/DhwzV69Gg9+OCDWrFihXbt2qU9e/aoVq1aun79epJ9ufv+kMhZWSW6/TNutVolyZ7XO7nn/dOdbu8sX3d6rlu2bCnp78aRrVu3KjY2Vvfff79atmxpn8cjMjJSTZs2lZ+fn3273bt369SpU2lqOHH1HKTnekuUUdeRJFWrVk3169e33wPi4+M1Z84cde7cOcl+U9OvXz/FxsbKy8tLQ4cOTVMebvfaa6/pww8/1EcffaS2bdumGOft7S2bzab4+HhFR0crOjpaV69eTdO++vXrpzfeeEOzZ89WiRIlVKpUKf3www8aOXKkJKl48eIpbnv7fTtRcteBJP3555+SHM9nWmKTe5/WayEjryUAAPIC12t4AAAATpw+fVrS3xOT3/4L30T/nDA3M93+S86goCB5eHgkOxnsmTNnJEmFCxfO0Dzt379fNWrUkKenp8Nyb29veXp6JvvlrPT3F49PPPFEqmmvWrVKK1euVJcuXTR//vxkv9jfv3+/atWqJS8vL3388cf2CYy3bt2a7IT1d8rV6+L48eMuxaXV3r17Vbhw4SRfFu3atUs///yzRo8e7TSN06dP68svv9SCBQu0Z88eFS9eXN27d9fHH3+sevXqpTlPxhhJf1+Xnp6euv/++7V27VqdPXvW4cvXqlWrSlKSyZKDgoLsv/QfPHhwsvsoW7asw3s/Pz/16NFDH3/8sc6ePatPP/1UAQEByTYouSo4OFiS9Ntvv9n//89jPHv2bLLlExUV5fAlZVxcnP744w/7l+yFCxfW9OnTNX36dJ06dUrLly/Xiy++qPPnz2vNmjUu5y+5z72r5TZnzhz16tVLEydOdFj/+++/Z2oDsLOyclV673kZdc+803NdokQJVaxYUZGRkSpTpozq1aunAgUKqEWLFho0aJB27dqlnTt3avz48Q7bLVq0SBUrVlT16tVdzqOr5yA911tm6du3rwYNGqQff/xRP//8s86ePau+ffu6vP21a9cUHh6uihUr6ty5c3riiSe0bNmyO8pLRESERo8erXHjxqlfv36pxlapUkU///yzduzYoXnz5umNN97QiBEj1LRpU3Xv3l1dunRJ0sCVnBdeeEHDhg3TsWPHFBAQoNKlS2vgwIHy9/dX3bp1U932n/ftRDVq1ND8+fMVFxfn8Hf2+++/lySH6ywtsQAAIOvRcAIAANwm8deNFovljr5Mzkz+/v5q2LChFi9erClTpth/kZyQkKA5c+bYv5TLKNHR0fr555/VokWLJOuWLVummJgY3XfffXec/uTJk9WxY8cUG00S99+6dWtJfzfGLFmyRA0aNFCnTp20e/dul76EcoWr10VGXT979+5VdHS0Ll26ZP/COz4+Xi+88ILKlCmT4hA1V65cUUREhBYuXKjt27crKChIjzzyiN58802FhYXZh3VJq4sXL2rlypWqXbu2vTFn1KhR+vrrr/Wvf/1LX331VbK9NP4pX758at68uQ4cOKCaNWvKx8fHpX33799fH374oSZPnqzVq1erT58+ypcv3x0dhyTdf//9slgsWrhwYZIhdtasWaPLly/bewb809y5cx2+pPziiy8UFxenZs2aJYktVaqUhgwZovXr12vbtm325bf3XHBFWsrNYrHY95Fo1apV+u2333TXXXe5vM/0SktZpSYt97zkyjYz7pkpneuUtGzZUl988YVKliyp9u3bS5IqVqyoUqVKacyYMYqNjU1y/S1atEjdunVLU77u9Bzc6ec0I/Xo0UPDhw9XRESEfv75ZxUvXtz+dyBRap+tf/3rXzp16pR2796t//73v+rSpYumTZumZ599Nk35WLNmjQYMGKB+/fpp7NixLm/XuHFjNW7cWNOnT9f69es1b948vfzyy3rmmWcUFham7t27q1evXg69jG5ntVrtjRSnTp3SwoULNWDAgFS3Se6+LUkPPfSQPv74Yy1atEjdu3e3L581a5ZCQ0PVsGHDO4oFAABZj4YTAADgNuXLl1fz5s31yiuv6OrVq2rYsKH9V+cbN25U79690/xlX0aaNGmSWrVqpebNm2vkyJHy8fHR+++/r8OHD2v+/PmpjkWeXvv375cxRv7+/vYx7i9evKjt27dr2rRpqlmzpn34kDuxYsUK+fn5pTiEVOL+//llYEhIiJYtW6Z77rlHnTp10ubNm1P9IslVrl4Xab1+LBaLwsLCtGnTphT3feLECf3xxx8qVaqUunbtqhEjRigmJkbvvvuu9u3bp02bNqX4Zea+ffv04osvqlOnTlq6dKnatWvntEHjdj179lSpUqVUr149FS5cWMeOHdPbb7+tc+fOKSIiwh7XtGlTvffee3r66ad1991368knn1S1atXsv/BftGiRJCkwMNC+zTvvvKN77rlH9957r5566imVKVNGV65c0fHjx7VixQpt2LAhSX7q1aunmjVravr06TLGpDhMlytlK/19bocMGaLJkyfr0qVLeuCBB+Tn56c9e/bojTfeUL169ZJtmFq8eLG8vLzUqlUrHTlyRKNHj1atWrXUrVs3RUdHq3nz5urZs6cqV66sgIAA+/w/Dz/8sD2NGjVq2Muhd+/e8vb2VqVKlRQQEJBqnl0ttw4dOigiIkKVK1dWzZo1tW/fPk2ePFklSpRINX13S62s0srVe15KZevue6ar5zolLVq00Pvvv6/ff/9d06dPd1j+2WefKSgoyOEed/DgQf3vf/9L0zBdUvrOwZ18TjNSgQIF9NBDDykiIkKXLl3SyJEjkzQCp3T+Fy5cqDlz5uizzz5TtWrVVK1aNQ0ZMkQvvPCCmjZtqgYNGriUhxMnTqhr164qV66c+vbtm2Selzp16iRptLydp6enWrdurdatW+vDDz/UqlWrNG/ePA0bNkwNGzZMttfk4cOHtWjRItWrV09Wq1Xfffed3njjDVWoUEGvvvqqPc7V+7YktWvXTq1atdJTTz2ly5cv66677tL8+fO1Zs0azZkzx6FHaVpiAQBANpAlU9IDAIBcKzo62owaNcpUrFjR+Pr6mqCgIFOrVi3z9NNPm4sXL2bovjdu3GgkmS+//NK+bOzYsUaSuXDhQrLbfPvtt+b+++83/v7+xs/PzzRq1MisWLHCISalNHr37m38/f2TpBkWFmaqVauWal6nTJliJDm8/P39TZ06dczrr79url275uph35HE/e/fvz/Jui+//NJYLBbTtWtXk5CQ4Jb9uXpduBp35coVI8k8+uijqe73iy++MJLM9u3bTXh4uAkMDDQBAQGmc+fO5ocffnCa56tXr6bnsM2kSZNM7dq1jc1mM56enqZIkSLmoYceMrt37042/uDBg6Zv376mbNmyxmq1Gl9fX3PXXXeZXr16mfXr1yeJP3HihOnXr58pXry48fb2NkWKFDFNmjQxr732Wop5euedd4wkU7Vq1WTXu1q2iRISEswHH3xg6tWrZ/Lly2d8fHxMhQoVzAsvvGCuXLniEJv4Wdq3b5/p2LGjyZ8/vwkICDA9evQw586dM8YYExMTY/71r3+ZmjVrmsDAQOPn52cqVapkxo4dm+RzMWrUKBMaGmo8PDyMJLNx40aH/aT0uXel3C5evGj69+9vihYtavLly2fuuece8+2335qwsDATFhaW5JjceX9wtaxS2/9nn31mJJkTJ044LHflnmdMymXr6vau5Cst5zo5Fy9eNB4eHsbf39/cvHnTvnzu3LlGknn44Ycd4l955RVTunRpp+nefgx3eg4SuXK9ZdR1lJy1a9fa/+4cPXo02Zjbz/+7775r/Pz8TO/evR3iYmJiTN26dU2ZMmVc/huf+Lc6pdft12xapHbf/umnn8x9991nChYsaHx8fMxdd91lXnnllSTxab1vX7lyxQwdOtSEhIQYHx8fU7NmTTN//vw7jk3vtZCZ1xIAALmZxZhbA3UCAAAAOcTq1avVoUMHfffdd/ZfRyfn+eef1/vvv6/o6Gh+zesiV8v2TowbN07jx4/XhQsXMnwOoZyOsnK/qlWrql27dnr77bezOisAAADI5hiqCwAAADnOxo0b9eijjzr9Yn/v3r26++67aTRJA1fLFshpfvjhh6zOAgAAAHIIGk4AAACQ40yePNlpjDFG+/fvV79+/TIhR7mHK2ULIHuJi4tLdb2Hh0eSuUxycz4AAADSi6G6AAAAAADIoU6ePKmyZcumGjN27FiNGzcuT+QDAADAHWg4AQAAAAAgh7p586YOHTqUakxoaKhCQ0PzRD4AAADcgYYTAAAAAAAAAACAWxhcFAAAAAAAAAAA4BYaTgAAAAAAAAAAAG6h4QQAAAAAAAAAAOAWGk4AAAAAAAAAAABuoeEEAAAAAAAAAADgFhpOAAAAAAAAAAAAbqHhBAAAAAAAAAAA4BYaTgAAAAAAAAAAAG6h4QQAAAAAAAAAAOAWGk4AAAAAAAAAAABuoeEEAAAAAAAAAADgFhpOAAAAAAAAAAAAbqHhBAAAAAAAAAAA4BYaTgAAAAAAAAAAAG6h4QQAAAAAAAAAAOAWGk4AAAAAAAAAAABuoeEEAAAAAAAAAADgFhpOAAAAAAAAAAAAbqHhBAAAAAAAAAAA4BYaTgBIkhYuXKhq1arJz89PFotFBw8ezOosJWvcuHGyWCxZnY1so0+fPipTpkxWZyPDrV69WuPGjcvqbDg4efKkLBaLIiIinMZmxnWblvy4qkyZMurTp4/b0rvd+++/79b8AgCAzBERESGLxaKTJ09mSPo8IyQvo5/NsovseP7Tcs03a9ZMzZo1yzb5cUVG1CX+6a+//tK4ceO0adOmDEkfADICDScAdOHCBYWHh6t8+fJas2aNduzYoYoVK2Z1tgC71atXa/z48VmdDQfFihXTjh071L59+6zOSo6VHSvFAAAg6/GMkLdlx/Pfvn177dixQ8WKFcvqrORIf/31l8aPH0/DCYAcxSurMwAg6x09elSxsbF6/PHHFRYWltXZyZX++usv5cuXL6uzkeO4s9zcfQ6sVqsaNWrktvSQutjYWFksFnl55c1Hl+vXr8vPzy+rswEAAJwwxigmJoa/23fAXc/rGXEOihQpoiJFirgtPaQuL9ef4+PjFRcXJ6vVmtVZAfI8epwAeVyfPn10zz33SJK6d+8ui8Xi0K14+fLlaty4sfLly6eAgAC1atVKO3bsSJJGcsNFJTc8kcVi0ZAhQzR79mxVqVJF+fLlU61atbRy5cok269atUq1a9eW1WpV2bJlNWXKlDQdW2RkpFq0aKHAwEDly5dPTZs21fr165PN45EjR9SjRw/ZbDYFBwerX79+io6Odog1xuj9999X7dq15efnp6CgIHXp0kU///yzQ1yzZs1UvXp1bdmyRU2aNFG+fPnUr18/SdKvv/6qLl26KCAgQAUKFNBjjz2mPXv2OHSLnj17tiwWS5JylqQJEybI29tbZ86cSfG4Y2JiNGrUKJUtW1Y+Pj4qXry4Bg8erEuXLjnEbdiwQc2aNVOhQoXk5+enUqVK6ZFHHtFff/1lj/nggw9Uq1Yt5c+fXwEBAapcubJeeumlVMu9fv36SXph1KhRQxaLRXv27LEvW7x4sSwWi77//ntJ/38u9u/fry5duigoKEjly5dXnz599N5770n6+/pJfKXWLT21c3D58mWNHDnSoXyGDRuma9euOaTx5ZdfqmHDhrLZbMqXL5/KlStnT0NKuTu7K9dtal3hLRaLw7Bkx48fV9++fVWhQgXly5dPxYsXV8eOHe3ldidcLYP0bJuQkKAZM2bYPy8FChRQo0aNtHz5ckl/DzVx5MgRbd682X5OE+8jmzZtksVi0ezZszVixAgVL15cVqtVx48flyR9+umnqlWrlnx9fVWwYEE99NBD+vHHHx3236dPH+XPn1/Hjx/XAw88oPz586tkyZIaMWKEbty44VI5LVy4UI0bN5a/v7/y58+vNm3a6MCBA3e8n5s3b+q1115T5cqVZbVaVaRIEfXt21cXLlxwiCtTpow6dOigxYsXq06dOvL19bX3uDpy5Ihat26tfPnyqUiRIho8eLBWrVoli8Vi/wXfq6++Ki8vL50+fTrJMfXr10+FChVSTEyMS2UAAEBauPI3+ueff9ajjz6q0NBQWa1WBQcHq0WLFvahglN7RkhJWp/T9+zZo3vvvdf+jPfGG28oISHBIdbVZ57E+s2HH36oKlWqyGq1atasWZKkrVu3qnHjxvL19VXx4sU1evRo/ec//3F4lu3fv78KFizo8Aye6P7771e1atVSPfZTp07p8ccfV9GiRWW1WlWlShW9/fbbSY7H2XP9X3/9ZT/exPNXr149zZ8/P8V9X758WV5eXpo8ebJ92e+//y4PDw/ZbDbFxcXZlw8dOlRFihSRMUZSys/rd3L+UzsHx44dU8+ePR3KJ7FukSghIUGvvfaaKlWqZH9urVmzpt555x17THJDYxlj9NZbb6l06dLy9fXV3Xffra+//jpJ/lIaVivxmfefvTDWrVunzp07q0SJEvL19dVdd92lgQMH6vfff0+1DFLjShmkd9tLly5pxIgRKleunKxWq4oWLaoHHnhA//3vf3Xy5El7o9P48ePt5zVx2LmU6oGS63XbxOfnNWvW6O6775afn58qV66sTz/91KXjTOtzuiv7iYqK0sCBA1WiRAn5+PiobNmyGj9+vMPnIrFe+NZbb+m1115T2bJlZbVatXHjRknSsmXLVLNmTVmtVpUrV07vvPNOku9ZWrRoocqVK9s/W4mMMbrrrrsYIQFIDwMgTzt+/Lh57733jCQzceJEs2PHDnPkyBFjjDFz5841kkzr1q3N0qVLzcKFC03dunWNj4+P+fbbb+1p9O7d25QuXTpJ2mPHjjW332YkmTJlypgGDRqYL774wqxevdo0a9bMeHl5mf/973/2uMjISOPp6Wnuueces3jxYvPll1+a+vXrm1KlSiVJMzmzZ882FovFPPjgg2bx4sVmxYoVpkOHDsbT09NERkYmyWOlSpXMmDFjzLp168zUqVON1Wo1ffv2dUhzwIABxtvb24wYMcKsWbPGzJs3z1SuXNkEBwebqKgoe1xYWJgpWLCgKVmypJkxY4bZuHGj2bx5s7l69aq56667TMGCBc17771nvvnmG/Pss8+asmXLGknms88+M8YYc+PGDRMSEmIee+wxh/3Hxsaa0NBQ07Vr1xTLPiEhwbRp08Z4eXmZ0aNHm7Vr15opU6YYf39/U6dOHRMTE2OMMebEiRPG19fXtGrVyixdutRs2rTJzJ0714SHh5uLFy8aY4yZP3++kWSefvpps3btWhMZGWk+/PBDM3To0FTL/sUXXzT58+c3N2/eNMYYExUVZSQZPz8/8/rrr9vjnnrqKRMcHJzkXJQuXdq88MILZt26dWbp0qXm+PHjpkuXLkaS2bFjh/2VeCzJSekcXLt2zdSuXdsULlzYTJ061URGRpp33nnH2Gw2c//995uEhARjjDHbt283FovFPProo2b16tVmw4YN5rPPPjPh4eH2fZw4ccLhvBnj+nWb3LaJJJmxY8fa32/evNmMGDHCfPXVV2bz5s1myZIl5sEHHzR+fn7mv//9r0tp/pOrZWCMMaVLlza9e/e+o23Dw8ONxWIxTzzxhFm2bJn5+uuvzeuvv27eeecdY4wx+/fvN+XKlTN16tSxn9P9+/cbY4zZuHGjkWSKFy9uunTpYpYvX25Wrlxp/vjjDzNx4kQjyfTo0cOsWrXKfP7556ZcuXLGZrOZo0eP2vffu3dv4+PjY6pUqWKmTJliIiMjzZgxY4zFYjHjx49PtYyMMeb11183FovF9OvXz6xcudIsXrzYNG7c2Pj7+9vvkWnZT3x8vGnbtq3x9/c348ePN+vWrTP/+c9/TPHixU3VqlXNX3/95VDuxYoVM+XKlTOffvqp2bhxo9m9e7c5c+aMKVSokClVqpSJiIgwq1evNuHh4aZMmTJGktm4caMxxphz584Zq9VqXn75ZYdj+uOPP4yfn5957rnnnB4/AACp+eyzz4wkc+LECfsyV/9GV6pUydx1111m9uzZZvPmzWbRokVmxIgR9r9jqT0jpCQtz+mFChUyFSpUMB9++KFZt26dGTRokJFkZs2aZY9LyzNP4jNLzZo1zbx588yGDRvM4cOHzXfffWd8fX1NzZo1zYIFC8zy5cvNAw88YP+7nVh23333nZFkPv74Y4djOnLkiJFk3nvvPfuy25/Nzp8/b4oXL26KFCliPvzwQ7NmzRozZMgQI8k89dRT9jhXnusHDhxo8uXLZ6ZOnWo2btxoVq5cad544w0zY8aMVMu+UaNGpnXr1vb3CxYsML6+vsZisZht27bZl1epUsV069bN4Vwk97x+J+c/pXNw5MgRY7PZTI0aNcznn39u1q5da0aMGGE8PDzMuHHj7NtPmjTJeHp6mrFjx5r169ebNWvWmOnTpzvEJHfNJ9Zf+vfvb77++mvz73//2xQvXtyEhISYsLCwVLc15v+feROvfWOM+eCDD8ykSZPM8uXLzebNm82sWbNMrVq1TKVKlez1q9TSvJ2rZZBcXcLVbS9fvmyqVatm/P39zYQJE8w333xjFi1aZJ555hmzYcMGExMTY9asWWMvq8Tzevz4cYdyvL0e6Grd1pi/PxslSpQwVatWNZ9//rn55ptvTNeuXY0ks3nz5lTLKK3P6a7s5+zZs6ZkyZKmdOnS5qOPPjKRkZHm1VdfNVar1fTp0ydJuRcvXtw0b97cfPXVV2bt2rXmxIkT5uuvvzYeHh6mWbNmZsmSJebLL780DRs2tN9DEi1btsxIMuvWrXM4rlWrVhlJZtWqVakeP4CU0XACwP7A9uWXX9qXxcfHm9DQUFOjRg0THx9vX37lyhVTtGhR06RJE/uytDacBAcHm8uXL9uXRUVFGQ8PDzNp0iT7soYNG5rQ0FBz/fp1+7LLly+bggULOm04uXbtmilYsKDp2LGjw/L4+HhTq1Yt06BBgyR5fOuttxxiBw0aZHx9fe2Voh07dhhJ5u2333aIO336tPHz8zPPP/+8fVlYWJiRZNavX+8Qm9hA9fXXXzssHzhwYJKH1LFjxxofHx9z7tw5+7KFCxcmeSC7vewTH0hvP57Ebf/9738bY4z56quvjCRz8OBBk5IhQ4aYAgUKpLg+JZGRkUaS2bJlizHGmDlz5piAgAAzaNAg07x5c3tchQoVTM+ePR2OWZIZM2ZMkjQHDx7sUoNZopTOwaRJk4yHh4fZs2ePw/LE8li9erUxxpgpU6YYSebSpUsp7iO5yoWr121aGk5uFxcXZ27evGkqVKhgnn32WZfS/CdXy8CYpJVzV7fdsmWLkZTki/vbVatWzaFSmSjxnnTfffc5LL948aLx8/MzDzzwgMPyU6dOGavV6nA99e7d20gyX3zxhUPsAw88YCpVqpRqvk6dOmW8vLzM008/7bD8ypUrJiQkxKHS7+p+Er+wWLRokUPcnj17jCTz/vvv25eVLl3aeHp6mp9++skh9rnnnjMWi8Wh4cYYY9q0aZOk0t27d29TtGhRc+PGDfuyN99803h4eDitYAMA4MztX9q6+jf6999/N5LM9OnTU00/pWeE5NzJc/quXbscYqtWrWratGljf5+W5yVJxmazmT///NMhtmvXrsbf399cuHDBviw+Pt5UrVo1yRfeYWFhpnbt2g7bP/XUUyYwMNBcuXLFvuz2Z7MXX3wx2eN56qmnjMVisT9LuPJcX716dfPggw+mGpOcV155xfj5+dm/xH7iiSdM27ZtTc2aNe0/Ivntt98c6iKJx5zc87oxaTv/xqR8Dtq0aWNKlChhoqOjHZYPGTLE+Pr62uM7dOiQpPxvl9w17+vrax566CGHuG3bthlJd9xw8k8JCQkmNjbW/PLLL0aSWbZsmdM0b+dqGSRXl3B12wkTJiT7xf0/XbhwIcV6Tkr1QFfrtsb8/dnw9fU1v/zyi33Z9evXTcGCBc3AgQNTzJcxaX9Od2U/AwcONPnz53eIM+b/65mJz/OJ5V6+fHmHhjFjjKlfv74pWbKkw/P8lStXTKFChRzqlvHx8aZcuXKmc+fODtu3a9fOlC9f3qGhF0DaMFQXgGT99NNPOnPmjMLDw+Xh8f+3ivz58+uRRx7Rzp07k+1O7ormzZsrICDA/j44OFhFixbVL7/8Ikm6du2a9uzZo4cffli+vr72uICAAHXs2NFp+tu3b9eff/6p3r17Ky4uzv5KSEhQ27ZttWfPniRd7Dt16uTwvmbNmoqJidH58+clSStXrpTFYtHjjz/ukGZISIhq1aqVZJK7oKAg3X///Q7LNm/erICAALVt29ZheY8ePZIcw1NPPSVJ+vjjj+3LZs6cqRo1aui+++5L8dg3bNggSfZuz4m6du0qf39/+1BltWvXlo+Pj5588knNmjUryTAGktSgQQNdunRJPXr00LJly1zuHt60aVP5+voqMjJS0t/dzZs1a6a2bdtq+/bt+uuvv3T69GkdO3ZMLVu2TLL9I4884tJ+nEnuHKxcuVLVq1dX7dq1Hc5jmzZtHLrJ169fX5LUrVs3ffHFF/rtt9+c7i+9121K4uLiNHHiRFWtWlU+Pj7y8vKSj4+Pjh07lmToC1e4Wgbp2TZxiILBgwffySHb3X4t7NixQ9evX09yfZcsWVL3339/kqH4LBZLkrKvWbOm/V6Tkm+++UZxcXHq1auXw3H6+voqLCwsSRm5sp+VK1eqQIEC6tixo0OatWvXVkhISJI0a9asqYoVKzos27x5s6pXr66qVas6LE/uHvLMM8/o/Pnz+vLLLyX9PQTFBx98oPbt2zsd7gIAgLRy9W90wYIFVb58eU2ePFlTp07VgQMHkgwplVZpfU4PCQlRgwYNHJYl93c7Lc9L999/v4KCghyWbd68Wffff78KFy5sX+bh4aFu3bolOYZnnnlGBw8e1LZt2yT9PQTW7Nmz1bt3b+XPnz/FY9+wYYOqVq2a5Hj69OkjY4y9buDKc32DBg309ddf68UXX9SmTZt0/fr1FPf7Ty1atND169e1fft2SX8Pl9yqVSu1bNlS69atsy+TlOTZP7nn9Tt1+zmIiYnR+vXr9dBDDylfvnwO5/GBBx5QTEyMdu7cKenvY//uu+80aNAgffPNN7p8+bLT/e3YsUMxMTF67LHHHJY3adJEpUuXvuPjOH/+vP71r3+pZMmS8vLykre3tz29tD77p6UM0rPt119/rYoVKyZbt0uL25/9Xa3bJqpdu7ZKlSplf+/r66uKFSs6ffZP63O6K/tZuXKlmjdvrtDQUIc027VrJ+nv+8M/derUSd7e3vb3165d0969e/Xggw/Kx8fHvjx//vxJ6h0eHh4aMmSIVq5cqVOnTkmS/ve//2nNmjUaNGhQkuHTAbiOhhMAyfrjjz8kScWKFUuyLjQ0VAkJCbp48eIdpV2oUKEky6xWq/3h/OLFi0pISFBISEiSuOSW3e7cuXOSpC5dusjb29vh9eabb8oYoz///DPVPCVOxJaYp3PnzskYo+Dg4CRp7ty5M0nlI7ly++OPPxQcHJxkeUrLunfvro8++kjx8fE6dOiQvv32Ww0ZMiTVY//jjz/k5eWVZOJCi8WikJAQ+3ktX768IiMjVbRoUQ0ePFjly5dX+fLlHcbxDQ8P16effqpffvlFjzzyiIoWLaqGDRvaK0Ap8fX1VdOmTe0VpPXr16tVq1Zq1qyZ4uPj9e2339rTSO7hOrmyuxPJpXPu3DkdOnQoyTkMCAiQMcZ+Hu+77z4tXbrU/uV5iRIlVL169VTHeE7vdZuS4cOHa/To0XrwwQe1YsUK7dq1S3v27FGtWrVcrtD+k6tlkJ5tL1y4IE9Pz3Qdt5T0HDq7LyWuT5QvXz6HRizp78+2s/k9Eu8h9evXT3KsCxcuTFJGruzn3LlzunTpknx8fJKkGRUV5fZ7SJ06dXTvvffax6BeuXKlTp486fQeAgDAnXD1b7TFYtH69evVpk0bvfXWW7r77rtVpEgRDR06VFeuXLmjfaf1Od1ZXSQxzbQ8L6X373bnzp1VpkwZ+9/tiIgIXbt2zemPUP74448UyzxxveTac/27776rF154QUuXLlXz5s1VsGBBPfjggzp27FiqeUicnyQyMlLHjx/XyZMn7Q0nu3bt0tWrVxUZGaly5cqpbNmyDtu667k/ubT++OMPxcXFacaMGUnO4wMPPCBJ9vM4atQoTZkyRTt37lS7du1UqFAhtWjRQnv37k1xf4ll685n/4SEBLVu3VqLFy/W888/r/Xr12v37t32Boq0PvunpQzSs+2FCxdUokSJOzrmf0ruHLpSt03kymc7OWl9Tnf1HrJixYok6SXOWeTsHnLx4kX7fe12yS3r16+f/Pz89OGHH0qS3nvvPfn5+TnM0Qkg7byyOgMAsqfEh4GzZ88mWXfmzBl5eHjYf9Hj6+ub7GTLdzqBXVBQkCwWi6KiopKsS27Z7RJ/1TVjxgw1atQo2ZjkHjacpWmxWPTtt9/aG1X+6fZlyf2qo1ChQtq9e3eS5Skd0zPPPKPZs2dr2bJlWrNmjX0y+dQUKlRIcXFxunDhgsMDpjFGUVFR9p4UknTvvffq3nvvVXx8vPbu3asZM2Zo2LBhCg4O1qOPPipJ6tu3r/r27atr165py5YtGjt2rDp06KCjR4+m+kuqFi1aaMyYMdq9e7d+/fVXtWrVSgEBAapfv77WrVunM2fOqGLFiipZsmSSbd31i5jk0ilcuLD8/PxSnCTwn78I7Ny5szp37qwbN25o586dmjRpknr27KkyZcqocePGSbZNy3Wb+CX77Z+b2x/+JWnOnDnq1auXJk6c6LD8999/V4ECBZI9jtSkpQzudNsiRYooPj5eUVFR6aoQ334Ond2XUst7WiSm89VXX6XrF4O3p1moUCGtWbMm2fX/7IUnpXwPSWzU+aeU7iFDhw5V165dtX//fs2cOVMVK1ZUq1at7iD3AACkLi1/o0uXLq1PPvlEknT06FF98cUXGjdunG7evGn/0i8t0vqc7mqaaXleSu/fbQ8PDw0ePFgvvfSS3n77bb3//vtq0aKFKlWqlGo+CxUqlGKZ355PZ8/1/v7+Gj9+vMaPH69z587Ze5907NhR//3vf1PMg4+Pj+655x5FRkaqRIkSCgkJUY0aNVSuXDlJf0+Avn79enXo0CHJtu78JfztaQUFBcnT01Ph4eEpNkAlNuR4eXlp+PDhGj58uC5duqTIyEi99NJLatOmjU6fPq18+fIl2Tbxmk/p2f+fPXxTeva/vb58+PBhfffdd4qIiFDv3r3ty48fP57SYacqLWWQnm2LFCmiX3/99Y7y+E/JPfu7WrdNj7Q+p7uaZs2aNfX6668nuz6xcTNRctevxWJx+R5is9nUu3dv/ec//9HIkSP12WefqWfPnndUXwTw/2g4AZCsSpUqqXjx4po3b55Gjhxp/0N+7do1LVq0SI0bN7Y/QJYpU0bnz5/XuXPn7A0SN2/e1DfffHNH+/b391eDBg20ePFiTZ482f6geeXKFa1YscLp9k2bNlWBAgX0ww8/uO3X1R06dNAbb7yh3377Ldnu9a4ICwvTF198oa+//treRVeSFixYkGx83bp11aRJE7355ps6fPiwnnzySfn7+6e6jxYtWuitt97SnDlz9Oyzz9qXL1q0SNeuXVOLFi2SbOPp6amGDRuqcuXKmjt3rvbv329vOEnk7++vdu3a6ebNm3rwwQd15MiRVL9QbtmypV566SWNHj1aJUqUUOXKle3Lly9frqioqDQNyfXPHkB+fn4ub3e7Dh06aOLEiSpUqFCKlYTk9h0WFqYCBQrom2++0YEDB5JtOEnLdRscHCxfX18dOnTIYfmyZcuSpGuxWJJU+FetWqXffvtNd911l0vH8E93UgZp3bZdu3aaNGmSPvjgA02YMCHFOFd+AfZPjRs3lp+fn+bMmaOuXbval//666/asGGDunTp4nJaqWnTpo28vLz0v//9z21Dx3Xo0EELFixQfHy8GjZseEdphIWFacqUKfrhhx8chutK6R7y0EMPqVSpUhoxYoQ2b96sadOm0VUfAJAh7vRvdMWKFfXKK69o0aJF2r9/v315Wp4R3PGcnlyad/q8lCgsLEyrV6/W77//bm/ASEhIsA+jebsnnnhC48aN02OPPaaffvpJb775ptN9tGjRQpMmTdL+/ft1991325d//vnnslgsat68eZJtXHmuDw4OVp8+ffTdd99p+vTp+uuvv5JtPEjUsmVLjRo1SgEBAfYe5f7+/mrUqJFmzJihM2fOpGkYp7Q+IyYnX758at68uQ4cOKCaNWs6DHeUmgIFCqhLly767bffNGzYMJ08eTLJMKmS1KhRI/n6+mru3LkOz4vbt2/XL7/84tBwkvj/Q4cOOTSGLV++3CHNxOe025/9P/roI5fyfrs7LYO0btuuXTuNGTNGGzZsSHHotdtHdHDFndRt74Q7ntOTS3P16tUqX758kmH8XOHv76969epp6dKlmjJlir38r169qpUrVya7zdChQ/X++++rS5cuunTpEj3NATeg4QRAsjw8PPTWW2/pscceU4cOHTRw4EDduHFDkydP1qVLl/TGG2/YY7t3764xY8bo0Ucf1XPPPaeYmBi9++67io+Pv+P9v/rqq2rbtq1atWqlESNGKD4+Xm+++ab8/f2TDLN1u/z582vGjBnq3bu3/vzzT3Xp0kVFixbVhQsX9N133+nChQv64IMP0pSfpk2b6sknn1Tfvn21d+9e3XffffL399fZs2e1detW1ahRwz4vSUp69+6tadOm6fHHH9drr72mu+66S19//bW9gemfc8kkeuaZZ9S9e3dZLBYNGjTIaT5btWqlNm3a6IUXXtDly5fVtGlTHTp0SGPHjlWdOnUUHh4uSfrwww+1YcMGtW/fXqVKlVJMTIz9F3WJlZoBAwbIz89PTZs2VbFixRQVFaVJkybJZrM5/XVP3bp1FRQUpLVr16pv37725S1bttSrr77qsB9X1KhRQ5L05ptvql27dvL09Ezzw78kDRs2TIsWLdJ9992nZ599VjVr1lRCQoJOnTqltWvXasSIEWrYsKHGjBmjX3/9VS1atFCJEiV06dIlvfPOO/L29lZYWFiK6bt63SaOw/3pp5+qfPnyqlWrlnbv3q158+YlSbNDhw6KiIhQ5cqVVbNmTe3bt0+TJ0++4+7wrpZBera99957FR4ertdee03nzp1Thw4dZLVadeDAAeXLl09PP/20pL/P64IFC7Rw4UKVK1dOvr6+9nOdnAIFCmj06NF66aWX1KtXL/Xo0UN//PGHxo8fL19fX40dO/aOyuR2ZcqU0YQJE/Tyyy/r559/Vtu2bRUUFKRz585p9+7d9l9kpsWjjz6quXPn6oEHHtAzzzyjBg0ayNvbW7/++qs2btyozp0766GHHko1jWHDhunTTz9Vu3btNGHCBAUHB2vevHn2X4Hefg/x9PTU4MGD9cILL8jf3z/J+NAAALiLq3+jDx06pCFDhqhr166qUKGCfHx8tGHDBh06dEgvvviiPb20PCO44zn9dul5Xkr08ssva8WKFWrRooVefvll+zA6iXMt3v53u0CBAurVq5c++OADlS5d2qU58p599ll9/vnnat++vSZMmKDSpUtr1apVev/99/XUU0/Z50tz5bm+YcOG6tChg2rWrKmgoCD9+OOPmj17tsMP5lLSokULxcfHa/369Zo1a5Z9ecuWLTV27FhZLJY0zWWS1mfElLzzzju65557dO+99+qpp55SmTJldOXKFR0/flwrVqywz6HRsWNHVa9eXfXq1VORIkX0yy+/aPr06SpdurQqVKiQbNpBQUEaOXKkXnvtNT3xxBPq2rWrTp8+rXHjxiUZqqt+/fqqVKmSRo4cqbi4OAUFBWnJkiXaunWrQ1zlypVVvnx5vfjiizLGqGDBglqxYoXToZLdUQbp2XbYsGFauHChOnfurBdffFENGjTQ9evXtXnzZnXo0ME+x2np0qW1bNkytWjRQgULFlThwoVTnXvP1bpternjOf12EyZM0Lp169SkSRMNHTpUlSpVUkxMjE6ePKnVq1frww8/dFqfmzBhgtq3b682bdromWeeUXx8vCZPnqz8+fMn+51IxYoV1bZtW3399de65557VKtWrTTlGUAysmZOegDZycaNG40k8+WXXyZZt3TpUtOwYUPj6+tr/P39TYsWLcy2bduSxK1evdrUrl3b+Pn5mXLlypmZM2easWPHmttvM5LM4MGDk2xfunRp07t3b4dly5cvNzVr1jQ+Pj6mVKlS5o033kg2zZRs3rzZtG/f3hQsWNB4e3ub4sWLm/bt2zscZ2J6Fy5ccNj2s88+M5LMiRMnHJZ/+umnpmHDhsbf39/4+fmZ8uXLm169epm9e/faY8LCwky1atWSzdOpU6fMww8/bPLnz28CAgLMI488YlavXm0kmWXLliWJv3HjhrFaraZt27bJpte7d29TunRph2XXr183L7zwgildurTx9vY2xYoVM0899ZS5ePGiPWbHjh3moYceMqVLlzZWq9UUKlTIhIWFmeXLl9tjZs2aZZo3b26Cg4ONj4+PCQ0NNd26dTOHDh1KNi+3e+ihh4wkM3fuXPuymzdvGn9/f+Ph4eGQH2NSPheJ5fDEE0+YIkWKGIvFkuy5+afUzsHVq1fNK6+8YipVqmR8fHyMzWYzNWrUMM8++6yJiooyxhizcuVK065dO1O8eHHj4+NjihYtah544AHz7bff2tM5ceKEkWQ+++wzh/RdvW6jo6PNE088YYKDg42/v7/p2LGjOXnypJFkxo4da4+7ePGi6d+/vylatKjJly+fueeee8y3335rwsLCTFhYmNP83GkZGJP859LVbePj4820adNM9erV7XGNGzc2K1assMecPHnStG7d2gQEBBhJ9ms5tXuSMcb85z//sZexzWYznTt3NkeOHHGI6d27t/H390+ybVruIUuXLjXNmzc3gYGBxmq1mtKlS5suXbqYyMjIO9pPbGysmTJliqlVq5bx9fU1+fPnN5UrVzYDBw40x44ds8eVLl3atG/fPtk8HT582LRs2dL4+vqaggULmv79+5tZs2YZSea7775LEp94Tf3rX/9y6ZgBAHBFSs/Kzv5Gnzt3zvTp08dUrlzZ+Pv7m/z585uaNWuaadOmmbi4OHtcSs8IqUnPc3pyz9SuPvOkVL8xxphvv/3WNGzY0FitVhMSEmKee+458+abbxpJ5tKlS0niN23aZCSZN954I9n0kns2++WXX0zPnj1NoUKFjLe3t6lUqZKZPHmyiY+Pt8e48lz/4osvmnr16pmgoCBjtVpNuXLlzLPPPmt+//33ZPPyTwkJCaZw4cJGkvntt9/sy7dt22YkmbvvvjvJNqk9r6f1/Kd2Dk6cOGH69etnihcvbry9vU2RIkVMkyZNzGuvvWaPefvtt02TJk1M4cKF7c/w/fv3NydPnrTHJHfNJyQkmEmTJpmSJUsaHx8fU7NmTbNixYokz+nGGHP06FHTunVrExgYaIoUKWKefvpps2rVKiPJbNy40R73ww8/mFatWpmAgAATFBRkunbtak6dOpWkjpDSZ/BOyyCluoQr2xrzd53lmWeeMaVKlTLe3t6maNGipn379ua///2vPSYyMtLUqVPHWK1WI8l+LadWD3SlbmtMys/PyZ2L5KT3OT25/Vy4cMEMHTrUlC1b1nh7e5uCBQuaunXrmpdfftlcvXrVGPP/5T558uRk87VkyRJTo0YNh7rl0KFDTVBQULLxERERRpJZsGCB02MG4JzFGGMysmEGAJC6iRMn6pVXXtGpU6eS/OpkxYoV6tSpk1atWmWfhA8A/unJJ5/U/Pnz9ccffyTphTVjxgwNHTpUhw8ftk9GCQAAsk7r1q118uRJHT16NMm6ESNG6IMPPtDp06eTnYAaQN4WGxur2rVrq3jx4lq7dm2S9Y888oh27typkydPytvbOwtyCOQuDNUFAJlo5syZkv7uhh0bG6sNGzbo3Xff1eOPP+7QaPLDDz/ol19+0YgRI1S7dm2HOVEA5F0TJkxQaGioypUrZx/j+D//+Y9eeeUVh0aTAwcO6MSJE5owYYI6d+5MowkAAFlg+PDhqlOnjkqWLKk///xTc+fO1bp16/TJJ584xO3cuVNHjx7V+++/r4EDB9JoAkCS1L9/f7Vq1co+xN6HH36oH3/8Ue+884495saNG9q/f792796tJUuWaOrUqTSaAG5CwwkAZKJ8+fJp2rRpOnnypG7cuKFSpUrphRde0CuvvOIQN2jQIG3btk133323Zs2axYTOACRJ3t7emjx5sn799VfFxcWpQoUKmjp1qp555hmHuIceekhRUVG699579eGHH2ZRbgEAyNvi4+M1ZswYRUVFyWKxqGrVqpo9e7Yef/xxh7jEeUQ6dOig1157LYtyCyC7uXLlikaOHKkLFy7I29tbd999t1avXu0wX+jZs2fVpEkTBQYGauDAgfb5JAGkH0N1AQAAAAAAAAAA3OKR1RkAAAAAAAAAAAB5y6RJk1S/fn0FBASoaNGievDBB/XTTz85xBhjNG7cOIWGhsrPz0/NmjXTkSNHnKa9aNEiVa1aVVarVVWrVtWSJUvSlDcaTgAAAAAAAAAAQKbavHmzBg8erJ07d2rdunWKi4tT69atde3aNXvMW2+9palTp2rmzJnas2ePQkJC1KpVK125ciXFdHfs2KHu3bsrPDxc3333ncLDw9WtWzft2rXL5bwxVFcWS0hI0JkzZxQQEMAcBgAAAMj1jDG6cuWKQkND5eHB77jgHHUmAACQ02W3Z+CYmBjdvHkzQ9I2xiR5ZrNarbJarU63vXDhgooWLarNmzfrvvvukzFGoaGhGjZsmF544QVJ0o0bNxQcHKw333xTAwcOTDad7t276/Lly/r666/ty9q2baugoCDNnz/fpeNgcvgsdubMGZUsWTKrswEAAABkqtOnT6tEiRJZnQ3kANSZAABAbpEdnoFjYmJUxM9PVzMo/fz58+vqVcfUx44dq3HjxjndNjo6WpJUsGBBSdKJEycUFRWl1q1b22OsVqvCwsK0ffv2FBtOduzYoWeffdZhWZs2bTR9+nSXj4OGkywWEBBw63/PSnLe6paa6OhR6c4PchabbVKq6911TTjbjzv3BQAAcrfLly+rZMmS/3gOBlKXeK2cPn1agYGBWZwbAACAtMtOz8A3b97UVbnj2+ikbkiadvVqkuc2V3qbGGM0fPhw3XPPPapevbokKSoqSpIUHBzsEBscHKxffvklxbSioqKS3SYxPVfQcJLF/r/bklWSb7rSohKRF6V+zbjvmnB+bXL9AQCAtGDIJbgq8VoJDAzkmRMAAORo2ekZ2F/p/TY6qcTGhjt5bhsyZIgOHTqkrVu3Jll3e7klNxyYO7b5p6wfUA0AAAAAAAAAAORJTz/9tJYvX66NGzc6DGUWEhIiSUl6ipw/fz5Jj5J/CgkJSfM2t6PhBAAAAAAAAACAPMQ7g15pYYzRkCFDtHjxYm3YsEFly5Z1WF+2bFmFhIRo3bp19mU3b97U5s2b1aRJkxTTbdy4scM2krR27dpUt7kdQ3UBAAAAAAAAAIBMNXjwYM2bN0/Lli1TQECAvZeIzWaTn5+fLBaLhg0bpokTJ6pChQqqUKGCJk6cqHz58qlnz572dHr16qXixYtr0qS/52l+5plndN999+nNN99U586dtWzZMkVGRiY7DFhKaDjJJqKjRzFebwayWMY7jTFmbI7bl7vSyS77AQAAAAAAAJDxvOT+xoG0pvfBBx9Ikpo1a+aw/LPPPlOfPn0kSc8//7yuX7+uQYMG6eLFi2rYsKHWrl2rgIAAe/ypU6fk4fH/g2s1adJECxYs0CuvvKLRo0erfPnyWrhwoRo2bJhhxwIAAAAAAAAAAJAuxhinMRaLRePGjdO4ceNSjNm0aVOSZV26dFGXLl3uOG80nAAAAAAAAAAAkId4Ke1zkjgT5+b0shINJwAAAAAAAAAA5CHZYaiu7MzDeQgAAAAAAAAAAEDekJsagQAAAAAAAAAAgBPeYqiu1NBwkkNYLOOdxhgzNhNykjNlZtnktPPAtYW8hOsdAAAAAAAAztBwAgAAAAAAAABAHsIcJ6ljjhMAAAAAAAAAAIBbclMjEAAAAAAAAAAAcMJL7p/jJNbN6WUlepwAAAAAAAAAAADcQo8TAAAAAAAAAADyEOY4SV1uOpZczZixWZ2FNLFYxjuNycxjym75yU7y6nEjb+J6BwAAAAAA+HuYLncP1eXu9LISQ3UBAAAAAAAAAADcQo8TAAAAAAAAAADyEHqcpI4eJwAAAAAAAAAAALfQ4wQAAAAAAAAAgDyEyeFTR48TAAAAAAAAAACAW3JTI1COZrNtlOSfSsQ2p2kYM9ZpjMUy3i3p5DSZeUyulLErstN5yMzrJq9eowAAALgzzp4feXYEAABIykvun5MkNzU20OMEAAAAAAAAAADgltzUCAQAAAAAAAAAAJxgjpPUZaseJ1u2bFHHjh0VGhoqi8WipUuXphg7cOBAWSwWTZ8+3WH5jRs39PTTT6tw4cLy9/dXp06d9OuvvzrEXLx4UeHh4bLZbLLZbAoPD9elS5ccYk6dOqWOHTvK399fhQsX1tChQ3Xz5k2HmO+//15hYWHy8/NT8eLFNWHCBBlj0lMEAAAAAJAq6k0AAABIL+8MeuUW2arh5Nq1a6pVq5ZmzpyZatzSpUu1a9cuhYaGJlk3bNgwLVmyRAsWLNDWrVt19epVdejQQfHx8faYnj176uDBg1qzZo3WrFmjgwcPKjw83L4+Pj5e7du317Vr17R161YtWLBAixYt0ogRI+wxly9fVqtWrRQaGqo9e/ZoxowZmjJliqZOneqGkgAAAACA5FFvAgAAADJWtuo9065dO7Vr1y7VmN9++01DhgzRN998o/bt2zusi46O1ieffKLZs2erZcuWkqQ5c+aoZMmSioyMVJs2bfTjjz9qzZo12rlzpxo2bChJ+vjjj9W4cWP99NNPqlSpktauXasffvhBp0+ftlcy3n77bfXp00evv/66AgMDNXfuXMXExCgiIkJWq1XVq1fX0aNHNXXqVA0fPlwWiyUDSggAAABAXke9CQAAAOnFUF2py1HHkpCQoPDwcD333HOqVq1akvX79u1TbGysWrdubV8WGhqq6tWra/v27WrTpo127Nghm81mf/iXpEaNGslms2n79u2qVKmSduzYoerVqzv8MqtNmza6ceOG9u3bp+bNm2vHjh0KCwuT1Wp1iBk1apROnjypsmXLJnsMN27c0I0bN+zvL1++fOt/OyX5pnjsxox1VjwucSUdi+W6k4i33LKf3Co3HntmHlNuLD8AAIDMlNPrTSnXmZLH8yMAAADcLVsN1eXMm2++KS8vLw0dOjTZ9VFRUfLx8VFQUJDD8uDgYEVFRdljihYtmmTbokWLOsQEBwc7rA8KCpKPj0+qMYnvE2OSM2nSJPsYwTabTSVLlkztkAEAAAAgTXJ6vYk6EwAAQMbzkvvnN8lRvTScyDENJ/v27dM777yjiIiINHfnNsY4bJPc9u6ISZzgMLX8jRo1StHR0fbX6dOnXT8QAAAAAEhFbqg3UWcCAABAVssxDSfffvutzp8/r1KlSsnLy0teXl765ZdfNGLECJUpU0aSFBISops3b+rixYsO254/f97+q6aQkBCdO3cuSfoXLlxwiLn9108XL15UbGxsqjHnz5+XpCS/qPonq9WqwMBAhxcAAAAAuENuqDdRZwIAAMh4Xhn0yi1yTMNJeHi4Dh06pIMHD9pfoaGheu655/TNN99IkurWrStvb2+tW7fOvt3Zs2d1+PBhNWnSRJLUuHFjRUdHa/fu3faYXbt2KTo62iHm8OHDOnv2rD1m7dq1slqtqlu3rj1my5YtunnzpkNMaGiovUICAAAAAJmJehMAAACQftmqEejq1as6fvy4/f2JEyd08OBBFSxYUKVKlVKhQoUc4r29vRUSEqJKlSpJkmw2m/r3768RI0aoUKFCKliwoEaOHKkaNWqoZcuWkqQqVaqobdu2GjBggD766CNJ0pNPPqkOHTrY02ndurWqVq2q8PBwTZ48WX/++adGjhypAQMG2H/t1LNnT40fP159+vTRSy+9pGPHjmnixIkaM2ZMmrvEAwAAAICrqDcBAAAgvRLnJXF3mrlFtmo42bt3r5o3b25/P3z4cElS7969FRER4VIa06ZNk5eXl7p166br16+rRYsWioiIkKenpz1m7ty5Gjp0qFq3bi1J6tSpk2bOnGlf7+npqVWrVmnQoEFq2rSp/Pz81LNnT02ZMsUeY7PZtG7dOg0ePFj16tVTUFCQhg8fbs9zWkVHj0p3F3SLZbzTGGPGuhDj5yTCeRruygvyHq4dAACA1OXlehMAAACQGSwmcWY+ZInLly/LZrMpOjo62zScuEN2ygtyFq4dAAByN3c+/yJv4JoBAAA5XXZ6nknMy35J+d2c9lVJd0vZ4jjTK1v1OAEAAAAAAAAAABnLS+4fWis3NTbkmMnhAQAAAAAAAAAAMlpuagQCAAAAAAAAAABOMDl86mg4ySFcmfdBauqWdJgHBVmJcw4AAAAAAAAgK9FwAgAAAAAAAABAHuIl9zcO5KbGBuY4AQAAAAAAAAAAuCU3NQIBAAAAAAAAAAAnvDwlb4ub0zSS4t2bZlahxwkAAAAAAAAAAMAt9DgBAAAAAAAAACAP8fKSvOhxkiIaTrIJm22jJP8U1xsz1k17aummdNLPfcfknMUS6ZZ0jMm88rNYxjuNycwyRN7C9QcAAAAAAJB7eWfAUF3exr3pZSWG6gIAAAAAAAAAALiFHicAAAAAAAAAAOQhGTZUVy5BjxMAAAAAAAAAAIBb6HECAAAAAAAAAEAe4u0pebu5W4V3gnvTy0r0OAEAAAAAAAAAALiFHifZxk5Jvqmsb+k0BYtlvNMYY8a6nqV0yKz9uMoY5+WX3WS3MsxpstPnISeibNKH6w8AAAAAAGRrnnJ/two3z5mSlehxAgAAAAAAAAAAcAs9TgAAAAAAAAAAyEu85P5uFblojhMaTgAAAAAAAAAAyEtoOEkVQ3UBAAAAAAAAAIBMt2XLFnXs2FGhoaGyWCxaunSpw3qLxZLsa/LkySmmGRERkew2MTExLueLHicAAAAAAAAAAOQl2aTHybVr11SrVi317dtXjzzySJL1Z8+edXj/9ddfq3///snG/lNgYKB++uknh2W+vr4u54uGk2yjkST/dKVgzFinMRbLeLekk1fl1fLLiced3fKDvIXrDwAAAAAAwLl27dqpXbt2Ka4PCQlxeL9s2TI1b95c5cqVSzVdi8WSZNu0YKguAAAAAAAAAADyEg9Jnm5+3WptuHz5ssPrxo0bbsnyuXPntGrVKvXv399p7NWrV1W6dGmVKFFCHTp00IEDB9K0LxpOAAAAAAAAAACAW5QsWVI2m83+mjRpklvSnTVrlgICAvTwww+nGle5cmVFRERo+fLlmj9/vnx9fdW0aVMdO3bM5X0xVBcAAAAAAAAAAHmJl/7uJeJOlr//OX36tAIDA+2LrVarW5L/9NNP9dhjjzmdq6RRo0Zq1KiR/X3Tpk119913a8aMGXr33Xdd2hcNJwAAAAAAAAAAwC0CAwMdGk7c4dtvv9VPP/2khQsXpnlbDw8P1a9fnx4nAAAAAAAAAAAgBRnY4yQjfPLJJ6pbt65q1aqV5m2NMTp48KBq1Kjh8jY0nGQT0dHN090KZ7GMdxpjzNh07cNV2SkvSF1OPFeu5NkV2e24AAAAAAAAgEyROKF7Frt69aqOHz9uf3/ixAkdPHhQBQsWVKlSpST9Pdn8l19+qbfffjvZNHr16qXixYvb51IZP368GjVqpAoVKujy5ct69913dfDgQb333nsu54uGEwAAAAAAAAAAkOn27t2r5s2b298PHz5cktS7d29FRERIkhYsWCBjjHr06JFsGqdOnZKHh4f9/aVLl/Tkk08qKipKNptNderU0ZYtW9SgQQOX80XDCQAAAAAAAAAAeUk2GaqrWbNmMsakGvPkk0/qySefTHH9pk2bHN5PmzZN06ZNS3tm/sHDeQgAAAAAAAAAAEDeQI8TAAAAAAAAAADyEk/ROpAKepwAAAAAAAAAAADcQptSNmGzbZTkn+J6Y1o6TcOYsW7MUfq4Ky8Wy/hM25crslMZu0tOPKacmGcAAAAAAAAg2/CU++c4SX2qkhyFHicAAAAAAAAAAAC30OMEAAAAAAAAAIC8xEu0DqSCogEAAAAAAAAAIC+h4SRVDNUFAAAAAAAAAABwC21K2UR0dHMFBgZm+H4slkinMc4mondHGtlRZk5E7659OUuHSdQBAAAAAAAAJEGPk1TR4wQAAAAAAAAAAOAW2pQAAAAAAAAAAMhLPCR5ujnNBDenl4XocQIAAAAAAAAAAHALPU4AAAAAAAAAAMhLMmKOE+Pm9LIQPU4AAAAAAAAAAABuocdJNmGzTZLkm+J6Y8a6ZT/GtMwWabi+L/ccd27dV2bm2RmLZbzTmOyUXwAAAAAAACDPosdJqmg4AQAAAAAAAAAgL/EUk8OngqG6AAAAAAAAAAAAbqHHCQAAAAAAAAAAeQlDdaWKHicAAAAAAAAAAAC30OMEAAAAAAAAAIC8xFPubx3IRXOc0HCSi1gs492SjjFj070fZ2nkZplZPs72lVn7cee+MlN2Oq7slBcAAABkvtSeB3kOBAAAyFzZaqiuLVu2qGPHjgoNDZXFYtHSpUvt62JjY/XCCy+oRo0a8vf3V2hoqHr16qUzZ844pHHjxg09/fTTKly4sPz9/dWpUyf9+uuvDjEXL15UeHi4bDabbDabwsPDdenSJYeYU6dOqWPHjvL391fhwoU1dOhQ3bx50yHm+++/V1hYmPz8/FS8eHFNmDBBxuSigdwAAAAAZDvUmwAAAJBunhn0yiWyVcPJtWvXVKtWLc2cOTPJur/++kv79+/X6NGjtX//fi1evFhHjx5Vp06dHOKGDRumJUuWaMGCBdq6dauuXr2qDh06KD4+3h7Ts2dPHTx4UGvWrNGaNWt08OBBhYeH29fHx8erffv2unbtmrZu3aoFCxZo0aJFGjFihD3m8uXLatWqlUJDQ7Vnzx7NmDFDU6ZM0dSpUzOgZAAAAADgb9SbAAAAgIyVrYbqateundq1a5fsOpvNpnXr1jksmzFjhho0aKBTp06pVKlSio6O1ieffKLZs2erZcuWkqQ5c+aoZMmSioyMVJs2bfTjjz9qzZo12rlzpxo2bChJ+vjjj9W4cWP99NNPqlSpktauXasffvhBp0+fVmhoqCTp7bffVp8+ffT6668rMDBQc+fOVUxMjCIiImS1WlW9enUdPXpUU6dO1fDhw2WxWDKwpAAAAADkVdSbAAAAkG5eYo6TVGSrHidpFR0dLYvFogIFCkiS9u3bp9jYWLVu3doeExoaqurVq2v79u2SpB07dshms9kf/iWpUaNGstlsDjHVq1e3P/xLUps2bXTjxg3t27fPHhMWFiar1eoQc+bMGZ08eTLFPN+4cUOXL192eAEAAABARslp9SbqTAAAAJnAK4NeuUSObTiJiYnRiy++qJ49eyowMFCSFBUVJR8fHwUFBTnEBgcHKyoqyh5TtGjRJOkVLVrUISY4ONhhfVBQkHx8fFKNSXyfGJOcSZMm2ccIttlsKlmyZFoOGwAAAABclhPrTdSZAAAAkNVyZBtQbGysHn30USUkJOj99993Gm+McegCnlx3cHfEJE5wmFp381GjRmn48OH295cvX1bJkiUVHT3KXpFJjsUSmeK6/9//WKcxFst4pzGZxZW8uHJM7uKu/LjrPLhrX+6QmddWZp7zzNyXM9kpLwAAIHfIqfWmlOpMuR3PgwAAIFMxVFeqclyPk9jYWHXr1k0nTpzQunXrHBobQkJCdPPmTV28eNFhm/Pnz9t/1RQSEqJz584lSffChQsOMbf/+unixYuKjY1NNeb8+fOSlOQXVf9ktVoVGBjo8AIAAAAAd8rJ9SbqTAAAAMhqOarhJPHh/9ixY4qMjFShQoUc1tetW1fe3t4OkyGePXtWhw8fVpMmTSRJjRs3VnR0tHbv3m2P2bVrl6Kjox1iDh8+rLNnz9pj1q5dK6vVqrp169pjtmzZops3bzrEhIaGqkyZMm4/dgAAAABwBfUmAAAAOOUhydPNrxzV2pC6bHUoV69e1cGDB3Xw4EFJ0okTJ3Tw4EGdOnVKcXFx6tKli/bu3au5c+cqPj5eUVFRioqKsj+E22w29e/fXyNGjND69et14MABPf7446pRo4ZatmwpSapSpYratm2rAQMGaOfOndq5c6cGDBigDh06qFKlSpKk1q1bq2rVqgoPD9eBAwe0fv16jRw5UgMGDLD/2qlnz56yWq3q06ePDh8+rCVLlmjixIkaPnx4qkN1AQAAAEB6UG8CAAAAMla2muNk7969at68uf194ri2vXv31rhx47R8+XJJUu3atR2227hxo5o1ayZJmjZtmry8vNStWzddv35dLVq0UEREhDw9Pe3xc+fO1dChQ9W6dWtJUqdOnTRz5kz7ek9PT61atUqDBg1S06ZN5efnp549e2rKlCn2GJvNpnXr1mnw4MGqV6+egoKCNHz4cIexeAEAAADA3ag3AQAAIN0yYo6TeDenl4UsJnFmPmSJy5cvy2azKTo62g2Tw7d0GuOOScndNbF5bp0cPrvtK7PkxMnhAQBA5nP1+RdIxDUDAAByuuz0PGPPyxAp0OrmtG9ItpnKFseZXtmqx0leZrNtlOSfSsQ2p2lYLM5jXOHsC3B3NYq4S2Z+YZ/TGjwyM7+5tZEL6cO5AgAAAAAAyIbocZIqGk4AAAAAAAAAAMhLEid0d3eauUS2mhweAAAAAAAAAAAgK9HjBAAAAAAAAACAvIShulJFjxMAAAAAAAAAAIBb6HECAAAAAAAAAEBe4in3tw7EuTm9LETDSTYRHd1cgYGBKa63WNy1p21OI4wZ666dZQp35ddiGZ9p+8ppZZzdUH45B+cKAAAga6VWz+FZLW/j2gAAIGU0nAAAAAAAAAAAkJdkxBwnuai1gTlOAAAAAAAAAAAAbslFbUAAAAAAAAAAAMApz1svd6eZS9DjBAAAAAAAAAAA4BZ6nAAAAAAAAAAAkJcwx0mqctGh5Gw220ZJ/imuN6alW/ZjsWxzIWZ8uvdjzNh0p5HZXMmzK2WTnY49M/OS08oGuY877l2Se65TPg8AACC74JkDKeHaAIA8joaTVDFUFwAAAAAAAAAAwC25qA0IAAAAAAAAAAA45SH3T+aei7pp5KJDAQAAAAAAAAAASB96nAAAAAAAAAAAkJcwx0mqctGh5GzR0c0VGBiYrjQslutuyUtunCDOXRM158YJ5N0lNx4TcpbsdA1mp7wAAAAAAAAgbRiqCwAAAAAAAACAvMQrg15ptGXLFnXs2FGhoaGyWCxaunSpw/o+ffrIYrE4vBo1auQ03UWLFqlq1aqyWq2qWrWqlixZkqZ80XACAAAAAAAAAAAy3bVr11SrVi3NnDkzxZi2bdvq7Nmz9tfq1atTTXPHjh3q3r27wsPD9d133yk8PFzdunXTrl27XM4XQ3UBAAAAAAAAAJCXeN56uTvNNGrXrp3atWuXaozValVISIjLaU6fPl2tWrXSqFGjJEmjRo3S5s2bNX36dM2fP9+lNOhxAgAAAAAAAABAXpKBQ3VdvnzZ4XXjxo10ZXXTpk0qWrSoKlasqAEDBuj8+fOpxu/YsUOtW7d2WNamTRtt377d5X3ScAIAAAAAAAAAANyiZMmSstls9tekSZPuOK127dpp7ty52rBhg95++23t2bNH999/f6qNMVFRUQoODnZYFhwcrKioKJf3y1Bd2YTNtlGSfyoRTV1IZZtb8mKxjE91vTFj3bIfVzjLi6syM8+ZKTudq+zGlWsnL5ePO1DGAAAAAAAAOZSn3N86cGuortOnTyswMNC+2Gq13nGS3bt3t/+/evXqqlevnkqXLq1Vq1bp4YcfTnE7i8Xi8N4Yk2RZamg4AQAAAAAAAAAAbhEYGOjQcOJOxYoVU+nSpXXs2LEUY0JCQpL0Ljl//nySXiipYaguAAAAAAAAAADykgyc4yQj/fHHHzp9+rSKFSuWYkzjxo21bt06h2Vr165VkyZNXN4PPU4AAAAAAAAAAECmu3r1qo4fP25/f+LECR08eFAFCxZUwYIFNW7cOD3yyCMqVqyYTp48qZdeekmFCxfWQw89ZN+mV69eKl68uH0ulWeeeUb33Xef3nzzTXXu3FnLli1TZGSktm7d6nK+aDgBAAAAAAAAACAv8ZR9ThK3pplGe/fuVfPmze3vhw8fLknq3bu3PvjgA33//ff6/PPPdenSJRUrVkzNmzfXwoULFRAQYN/m1KlT8vD4/8G1mjRpogULFuiVV17R6NGjVb58eS1cuFANGzZ0OV80nAAAAAAAAAAAgEzXrFkzGWNSXP/NN984TWPTpk1JlnXp0kVdunS543zRcJJtNJKU8oQ5xvi5kEZLpxEWyzbXs5QOFst4pzHGjHVLjLu4kufcyF3nyl0y8zxkt2PPaSgbAACA3Cu1Z2WeAwEAyAUyYk6SXNTakIsOBQAAAAAAAAAAOEXDSao8nIcAAAAAAAAAAADkDbmoDQgAAAAAAAAAADjlIfdPDp+LumnkokMBAAAAAAAAAABIH3qcAAAAAAAAAACQlzDHSapy0aHkbNHRfgoM9Mvw/RgzNt1pWCzjM2U/mc1deXalfDJLdsqLq1w5D7n1GgSyEp8rAEB2Z7NNkuSbZDl/nzIG5QoAAPIyGk4AAAAAAAAAAMhL6HGSKuY4AQAAAAAAAAAAuCUXtQEBAAAAAAAAAACnPG+93J1mLkHDCQAAAAAAAAAAeQlDdaWKoboAAAAAAAAAAABuyUVtQLmbxXLdhahtbokxZqwL6SAlrpSfxTLeLem441y5kpfshmsUcD8+VwCA7C46epQCAwOzOhsAAAC5g6fc3zqQi4bqoscJAAAAAAAAAADALfQ4AQAAAAAAAAAgL2GOk1TR4wQAAAAAAAAAAOCWXNQGBAAAAAAAAAAAnPKU++ckYY4TAAAAAAAAAACA3IceJ9mEzTZJkm+60jBmrAtRLZ1GWCzj070fiyXShbw0dRphjJ8L6TjnSn6McV427uLaucoc2Skv7pTdznlmyavHjdQ5u69LmXsvyG75AQAgu3NHHQ0AAMABc5ykKhcdCgAAAAAAAAAAcMpT7m8dYKguAAAAAAAAAACA3IceJwAAAAAAAAAA5CVMDp+qbNXjZMuWLerYsaNCQ0NlsVi0dOlSh/XGGI0bN06hoaHy8/NTs2bNdOTIEYeYGzdu6Omnn1bhwoXl7++vTp066ddff3WIuXjxosLDw2Wz2WSz2RQeHq5Lly45xJw6dUodO3aUv7+/ChcurKFDh+rmzZsOMd9//73CwsLk5+en4sWLa8KECTLGuK08AAAAAOB21JsAAACAjJWtepxcu3ZNtWrVUt++ffXII48kWf/WW29p6tSpioiIUMWKFfXaa6+pVatW+umnnxQQECBJGjZsmFasWKEFCxaoUKFCGjFihDp06KB9+/bJ0/PvJq+ePXvq119/1Zo1ayRJTz75pMLDw7VixQpJUnx8vNq3b68iRYpo69at+uOPP9S7d28ZYzRjxgxJ0uXLl9WqVSs1b95ce/bs0dGjR9WnTx/5+/trxIgRbi+b7DTZn7smn3ZlcmDJPcftrsmwmdA447mrjPPqBOi59bj57KVPdiub7JYfAMhpqDflPfztBAAAbsfk8KnKVofSrl07tWvXLtl1xhhNnz5dL7/8sh5++GFJ0qxZsxQcHKx58+Zp4MCBio6O1ieffKLZs2erZcu/vzycM2eOSpYsqcjISLVp00Y//vij1qxZo507d6phw4aSpI8//liNGzfWTz/9pEqVKmnt2rX64YcfdPr0aYWGhkqS3n77bfXp00evv/66AgMDNXfuXMXExCgiIkJWq1XVq1fX0aNHNXXqVA0fPlwWiyXZ47hx44Zu3Lhhf3/58mW3lR8AAACA3C+315uoMwEAACCrZauhulJz4sQJRUVFqXXr1vZlVqtVYWFh2r59uyRp3759io2NdYgJDQ1V9erV7TE7duyQzWazP/xLUqNGjWSz2Rxiqlevbn/4l6Q2bdroxo0b2rdvnz0mLCxMVqvVIebMmTM6efJkiscxadIke1d3m82mkiVLpqNUAAAAAOD/5YZ6E3UmAACATOCVQa9cIsc0nERFRUmSgoODHZYHBwfb10VFRcnHx0dBQUGpxhQtWjRJ+kWLFnWIuX0/QUFB8vHxSTUm8X1iTHJGjRql6Oho++v06dOpHzgAAAAAuCg31JuoMwEAACCr5bg2oNu7chtjUhwWK6WY5OLdEZM4wWFq+bFarQ6/tgIAAAAAd8vJ9SbqTAAAAJmAOU5SlWN6nISEhEhK+quk8+fP23+xFBISops3b+rixYupxpw7dy5J+hcuXHCIuX0/Fy9eVGxsbKox58+fl5T0110AAAAAkBmoNwEAAMAVxkMynm5+5ZjWBudyTBtQ2bJlFRISonXr1qlOnTqSpJs3b2rz5s168803JUl169aVt7e31q1bp27dukmSzp49q8OHD+utt96SJDVu3FjR0dHavXu3GjRoIEnatWuXoqOj1aRJE3vM66+/rrNnz6pYsWKSpLVr18pqtapu3br2mJdeekk3b96Uj4+PPSY0NFRlypS5gyMcJinwDrb7fxbL+HRtn8iYselOw2KJdENOMpcr5edK2bjrPLjCWX5y4jG5i7uOPbPktPxmtrx87MhYfPYA5Da5v94EAAAAZLxs1QZ09epVHTx4UAcPHpT098SGBw8e1KlTp2SxWDRs2DBNnDhRS5Ys0eHDh9WnTx/ly5dPPXv2lCTZbDb1799fI0aM0Pr163XgwAE9/vjjqlGjhlq2bClJqlKlitq2basBAwZo586d2rlzpwYMGKAOHTqoUqVKkqTWrVuratWqCg8P14EDB7R+/XqNHDlSAwYMUGDg340bPXv2lNVqVZ8+fXT48GEtWbJEEydO1PDhw512gQcAAACAO0W9CQAAAOkV75Uxr9wiWx3K3r171bx5c/v74cOHS5J69+6tiIgIPf/887p+/boGDRqkixcvqmHDhlq7dq0CAgLs20ybNk1eXl7q1q2brl+/rhYtWigiIkKenp72mLlz52ro0KFq3bq1JKlTp06aOXOmfb2np6dWrVqlQYMGqWnTpvLz81PPnj01ZcoUe4zNZtO6des0ePBg1atXT0FBQRo+fLg9zwAAAACQEag3AQAAABnLYhJn5kOWuHz5smw2m6QopTZUlzF+TtPKeUN1bcuUvLgqJw5rlVeH6nJXnrPT8Ds5Lb9AbsFnD8h8ic+/0dHR9l4JQGq4ZgAAQE6XnZ5nEvNy/qzk7qxcviwVLaZscZzpla2G6gIAAAAAAAAAAMhK2WqoLgAAAAAAAAAAkLHiPC2K83TvnHNxnkZS7hjgioaTbGO6JN9U1rsyTEhTpxHGtHQxP+nlfBguV7g25Jcrx+18qLPcOPyTK2XjLjlxWLXstK/sdd3kxGs9Z+YZWY9rAgCQXaT2LJOev1cZlS4AAEBuRsMJAAAAAAAAAAB5SLyXl+K93NvjJN7LSIp1a5pZhYYTAAAAAAAAAADykHhPT8W7eaiueM/c03DC5PAAAAAAAAAAAAC30OMEAAAAAAAAAIA8JEGeipd7e5wk5JKJ4SV6nAAAAAAAAAAAANjR4yQXMaalW9KxWCLTvR9jxrolL9mNK8dlsYx3Szru4K5rwrXjTv26+du29GfGjbLTucpMufW4c2KeAQAAEmXUswzPSAAAIDlx8lScm3ucxNHjBAAAAAAAAAAAIPehxwkAAAAAAAAAAHlIvDwV7+Z+FfFKcGt6WYkeJwAAAAAAAAAAALfQ4wQAAAAAAAAAgDwkY3qcuHfOlKxEwwkAAAAAAAAAAHkIDSepo+EEydiW6lqLC9e/MS3dlJfMY7GMd0s6xox1SzqusFgiU13vrvOQE8vGFdktP5klrx53dpNbP1eZyVkZ5uWyAQAAAAAAd46GEwAAAAAAAAAA8hB6nKSOyeEBAAAAAAAAAABuoeEEAAAAAAAAAIA8JF6einPzK16eac7Hli1b1LFjR4WGhspisWjp0qX2dbGxsXrhhRdUo0YN+fv7KzQ0VL169dKZM2dSTTMiIkIWiyXJKyYmxuV80XACAAAAAAAAAAAy3bVr11SrVi3NnDkzybq//vpL+/fv1+jRo7V//34tXrxYR48eVadOnZymGxgYqLNnzzq8fH19Xc4Xc5wAAAAAAAAAAJCHxMsrA+Y4SUjzNu3atVO7du2SXWez2bRu3TqHZTNmzFCDBg106tQplSpVKsV0LRaLQkJC0pyfRDScZBuNJPmnKwWLZbwLUU3dELPNhbw4j3GN8/wa09ItezJmrFvScYUr58qV/Ljr2J3vxz1l467jtlgiXUjHedm4Kz/AneDaSj/KEAAAAACA7Ofy5csO761Wq6xWq1vSjo6OlsViUYECBVKNu3r1qkqXLq34+HjVrl1br776qurUqePyfhiqCwAAAAAAAACAPCReHoq/NS+J+15/NzeULFlSNpvN/po0aZJb8hwTE6MXX3xRPXv2VGBgYIpxlStXVkREhJYvX6758+fL19dXTZs21bFjx1zeFz1OAAAAAAAAAACAW5w+fdqhYcMdvU1iY2P16KOPKiEhQe+//36qsY0aNVKjRo3s75s2baq7775bM2bM0LvvvuvS/mg4AQAAAAAAAAAgD0nsJeLeNP8WGBiYao+QtIqNjVW3bt104sQJbdiwIc1pe3h4qH79+vQ4AQAAAAAAAAAAyYuTp+Lc3HAS59bU/pbYaHLs2DFt3LhRhQoVSnMaxhgdPHhQNWrUcHkbGk4AAAAAAAAAAECmu3r1qo4fP25/f+LECR08eFAFCxZUaGiounTpov3792vlypWKj49XVFSUJKlgwYLy8fGRJPXq1UvFixe3z6Uyfvx4NWrUSBUqVNDly5f17rvv6uDBg3rvvfdczhcNJ9nGTkm+Ka61WJq6ZS/GtEx3GhaLK1HbXIhxfkzuyK87WSzjncYYMzbH7SuzuCu/2e26cIWz85nTzqU75cZr3RV59bil3HnsufGYACAvSO3+nRfu23n9+AEAyMsS5OX2oboS5NIXxw727t2r5s2b298PHz5cktS7d2+NGzdOy5cvlyTVrl3bYbuNGzeqWbNmkqRTp07Jw8PDvu7SpUt68sknFRUVJZvNpjp16mjLli1q0KCBy/mi4QQAAAAAAAAAAGS6Zs2ayRiT4vrU1iXatGmTw/tp06Zp2rRp6coXDScAAAAAAAAAAOQhGTk5fG7g4TwEAAAAAAAAAAAgb6DHCQAAAAAAAAAAeQg9TlJHw0k2ER09SoGBgelKw10TyFsskU4iXJn43RXO07FYnMdk5qSFruzLlQmC3bWvnMZdkye7bxJm93xmXJE7z6eze4VkTMtMyEnOlBuvCVflxmPPjccEALgzOWnC9eyWHwAAgOyChhMAAAAAAAAAAPKQeHlkQI8T5xO55xQ0nAAAAAAAAAAAkIfEyVNxbm44ictFDSdMDg8AAAAAAAAAAHALPU4AAAAAAAAAAMhD4uWleDc3D+SmyeHpcQIAAAAAAAAAAHALPU6yCZttoyT/VCKaOk3DmJZOYyyW8S7kJvV9GTPWhTQyjzuOSXKt/FyR3conO3FX2biSjivXBecqfXLiZ4brImXuKhvKGACQ3aT2tykj/ibxdw6Zfc0BAHAnEuTp9snhE5jjBAAAAAAAAAAAIPehxwkAAAAAAAAAAHlIfAb0OImnxwkAAAAAAAAAAEDuQ48TAAAAAAAAAADykDh5KM7NPU7ilODW9LISDScAAAAAAAAAAOQh8fJSvJubB3LTUF00nOQYbzmNsFhcSKbsWOcxJyJdSMhZXsa7EPW8CzHbnEYY48IxZSLXjt05dxyXK3lxV/mxr/Sn4479uEtmlnFmyk55zsxry5V0MnNfAABkJv42IbNxzQEAkPPRcAIAAAAAAAAAQB6SMZPD556hupgcHgAAAAAAAAAA4BZ6nAAAAAAAAAAAkIfQ4yR16e5xEhcX5458AAAAAECuRb0JAAAAyDnS3XBSv359ffHFF+7ICwAAAADkStSbAAAAkJ3Ey1Nxbn65uwdLVkr3UF2RkZEaP3683n33Xb3++usKCwtzR77ynOjo5goMDExxvcWyzWkaxox1GmOxjE9TvjIyL65p6TTCYol0y56McWVfrpRfU7fsyx3cdx6yl8w8Lnd9rrLTuchp+ZVyZp6dyYnXVk7MMwBkF9SbAAAAgJwj3T1OChUqpHfffVezZs3S+++/r86dO+vHH390R96SFRcXp1deeUVly5aVn5+fypUrpwkTJigh4f/HTzPGaNy4cQoNDZWfn5+aNWumI0eOOKRz48YNPf300ypcuLD8/f3VqVMn/frrrw4xFy9eVHh4uGw2m2w2m8LDw3Xp0iWHmFOnTqljx47y9/dX4cKFNXToUN28eTPDjh8AAABAzpOZ9SbqTAAAAHAmXl4Z8sot0t1wcv78eS1YsEBz586Vl5eXduzYobCwMFWpUkUPPvigG7Lo6M0339SHH36omTNn6scff9Rbb72lyZMna8aMGfaYt956S1OnTtXMmTO1Z88ehYSEqFWrVrpy5Yo9ZtiwYVqyZIkWLFigrVu36urVq+rQoYPi4+PtMT179tTBgwe1Zs0arVmzRgcPHlR4eLh9fXx8vNq3b69r165p69atWrBggRYtWqQRI0a4/bgBAAAA5FyZWW+izgQAAABn4uVhnyDefa90NzdkG+luAmrSpIl69OihqlWr6oEHHtD7778vm82muLg4/fe//3VHHh3s2LFDnTt3Vvv27SVJZcqU0fz587V3715Jf/9yavr06Xr55Zf18MMPS5JmzZql4OBgzZs3TwMHDlR0dLQ++eQTzZ49Wy1b/j1k0pw5c1SyZElFRkaqTZs2+vHHH7VmzRrt3LlTDRs2lCR9/PHHaty4sX766SdVqlRJa9eu1Q8//KDTp08rNDRUkvT222+rT58+ev3111MdegsAAABA3pGZ9SbqTAAAAED6pLsJaNmyZXr11VfVo0cP1atXTzabTZLk5eWl6tWrpzuDt7vnnnu0fv16HT16VJL03XffaevWrXrggQckSSdOnFBUVJRat25t38ZqtSosLEzbt2+XJO3bt0+xsbEOMaGhoapevbo9ZseOHbLZbPYKgCQ1atRINpvNIaZ69er2CoAktWnTRjdu3NC+ffuSzf+NGzd0+fJlhxcAAACA3C0z603UmQAAAOCM+3ub5K7J4V1uOAkPD9dff/2VZHm1atXcmiFnXnjhBfXo0UOVK1eWt7e36tSpo2HDhqlHjx6SpKioKElScHCww3bBwcH2dVFRUfLx8VFQUFCqMUWLFk2y/6JFizrE3L6foKAg+fj42GNuN2nSJPv4vzabTSVLlkxrEQAAAADIprJDvYk6EwAAAJA+Lg/VNW/ePL399tvKly+fJGngwIF64403HB6kY2Nj5e3t7f5c/sPChQs1Z84czZs3T9WqVdPBgwc1bNgwhYaGqnfv3vY4i8XisJ0xJsmy290ek1z8ncT806hRozR8+HD7+8uXL6tkyZKy1ZSTZqznU83733kZ7zRGauo0wpiWTvYT6cJ+nLNYrrsQ9ZZb9mXMWLek45ptLsSkXsbu4so14b6ycX5tZTfuKh93lKFrn1/nMiu/7uSu85CZZehM5n72spfcelwA4KrsUG/KrXWmzJba33P+3qUsJ5VbTsorAADulhE9RPJkjxNjjMP7+fPn6+LFi/b3586dU0BAgPtyloLnnntOL774oh599FHVqFFD4eHhevbZZzVp0iRJUkhIiCQl+fXS+fPn7b90CgkJ0c2bNx3yn1zMuXPnkuz/woULDjG37+fixYuKjY1N8quqRFarVYGBgQ4vAAAAALlDdqg3UWcCAAAA0ueO5zi5vUIgSTdv3kxXZlzx119/ycPDMduenp5KSEiQJJUtW1YhISFat26dQ742b96sJk2aSJLq1q0rb29vh5izZ8/q8OHD9pjGjRsrOjpau3fvtsfs2rVL0dHRDjGHDx/W2bNn7TFr166V1WpV3bp13XzkAAAAAHKarKg3UWcCAACAM/HyVJybX7mpx4nLQ3W5wlm3bnfo2LGjXn/9dZUqVUrVqlXTgQMHNHXqVPXr18+eh2HDhmnixImqUKGCKlSooIkTJypfvnzq2bOnJMlms6l///4aMWKEChUqpIIFC2rkyJGqUaOGWrb8ewilKlWqqG3bthowYIA++ugjSdKTTz6pDh06qFKlSpKk1q1bq2rVqgoPD9fkyZP1559/auTIkRowYAC/igIAAACQrIyuN1FnAgAAANInTQ0n8+bN03333acaNWpIypyGktvNmDFDo0eP1qBBg3T+/HmFhoZq4MCBGjNmjD3m+eef1/Xr1zVo0CBdvHhRDRs21Nq1ax26xE+bNk1eXl7q1q2brl+/rhYtWigiIkKenv/fKjZ37lwNHTpUrVu3liR16tRJM2fOtK/39PTUqlWrNGjQIDVt2lR+fn7q2bOnpkyZkgklAQAAACA7yup6E3UmAAAAOBMvL8W7t1+F4pXg1vSyksUk13c8Gffdd5++++47XblyRd7e3oqLi1O3bt10zz336O6771aRIkVUqVIlxcfHZ3Sec5XLly/LZrNJpaMlj1R+cXXCXROpZ87k8M7S+DudnDc5fHaafNoVmTlBtbuui8yUnSbwzmnXljsxOXzGpwMA2Uni8290dHSu7HFAvcn9suqaYeLwO5OTyi0n5RUAkLNlp2fgxLxMiB4o30Aft6Ydc/mmxtg+yhbHmV4uN5wkOnbsmPbt26f9+/dr3759OnDggC5dumT/FRUVgLSxN5y8Hi35pnIxjXDlC8Hn3ZSrbZmSRmZ+aeiuL1RdkZ3yk5kP+9ntC173NfBlznFlt/JDyjhXAJA+2anSmJGoN7mPvc6kFyX5JlmfF/7uOnv+yAtlgOyFRicASJvs9AxMw4lr0twXJ3EM3EcffdS+7MSJE9q7d68OHDjg1swBAAAAQE5EvQkAAADZWbw83D6Ze7w83JpeVnLLIGZly5ZV2bJl1bVrV3ckBwAAAAC5DvUmAAAAIGdw7+wvAAAAAAAAAAAgW4uTp+Lc3OPE3ellpdzTdwYAAAAAAAAAACCd0tXjZP/+/apevbp8fNw7iUye9PJ1Sd6pBDR1047cMfG7K9yVX+fpZLeJ3zMzHWcycxLr7DcBoCvXuvPJ4TPruFzZT3ablNxiiXQaY4zzMnYX1+4Fzu8pzvKc/a515DXZ7V4AwDnqTUDOw+TnqaMMACDni5eX4t08IFW84t2aXlZKV4+T+vXr6+TJk27KCgAAAADkPtSbAAAAgJwlXU1Kxhh35QMAAAAAciXqTQAAAMhuEuSpeDfPSZKQi+Y4YXJ4AAAAAAAAAADykPgMaDhxd3pZicnhAQAAAAAAAAAAbqHHCQAAAAAAAAAAeUi8PDKgx0nu6adBw0m2MV2SbzrT2OY0wpixTmMslsh078c1LZ1GGOM8xpV0LJbxLuzLedm4S2blJzOPCalzfs6bOk0ju51P1z6fzmXm59NdeQayUna7FwBAZomOHqXAwMCszoak1J9fMuI+nVH3/sw+jpyEMgcAIG+j4QQAAAAAAAAAgDwkTp7ydHOPkzjmOAEAAAAAAAAAAMh90tXjZOzYsSpcuLC78gIAAAAAuQ71JgAAAGQ38fJSvJsHpHJ3elkp3Q0nAAAAAICUUW8CAAAAcpbc0wQEAAAAAAAAAACcSpCn4t08J0lCLprjhIaTHKOpW1KxWK67JR1njHH+qzrX8vKWCzHuKpvxbknHlWN3JcYdLJZIF6K2OY1w7Xw6Lz93Hbcrx5VZZewqd+QnM8s4M2W36wspy43nITceEwDkVjbbRkn+SZYb0zLT85Jb/jbkluPISShzAEB2EZ8BDSd3kt6WLVs0efJk7du3T2fPntWSJUv04IMP2tcbYzR+/Hj9+9//1sWLF9WwYUO99957qlatWqrpLlq0SKNHj9b//vc/lS9fXq+//roeeughl/PF5PAAAAAAAAAAACDTXbt2TbVq1dLMmTOTXf/WW29p6tSpmjlzpvbs2aOQkBC1atVKV65cSTHNHTt2qHv37goPD9d3332n8PBwdevWTbt27XI5X/Q4AQAAAAAAAAAgD4mTpzzc3OMk7g7Sa9eundq1a5fsOmOMpk+frpdfflkPP/ywJGnWrFkKDg7WvHnzNHDgwGS3mz59ulq1aqVRo0ZJkkaNGqXNmzdr+vTpmj9/vkv5SlfDyaVLl/TNN9/ot99+k8ViUbFixdSmTRsFBQWlJ1kAAAAAyDWoNwEAACAvuXz5ssN7q9Uqq9Wa5nROnDihqKgotW7d2iGtsLAwbd++PcWGkx07dujZZ591WNamTRtNnz7d5X3f8VBdn3zyiRo0aKCdO3cqIeH/2rv38Kiqe//jnw0hIaRkEDQkKGJQRDFoERRCLIhEqNf2WFCLpXKKgFVABE4qpT2BngqVGkSl9YjHghYvPGBtUXsQqAoV4oUIPy8g9UhawJJSFSaoMSFh//4gTA1k9lqZ7JnMZN6v55mnZfZ31n2v2cudPeuI6urq9Nprr2nQoEF69NFHI00WAAAAAFoN1k0AAACIR0f3OEnx+XX0iZPu3bsrEAiEXvPnz4+ojBUVFZKkrl27Nni/a9euoWPhPtfUzxwv4idOFixYoLfeektf+9rXGrz/X//1X+rfv7/Gjx8fadIAAAAA0CqwbgIAAECy2bNnjzIzM0P/juRpk69yHKfBv13XPeE9Pz7zVRHfOHEcR5999tkJC4DPPvusSQXAMYMkZXgcL7BIY5MxwnXTLdIp9DzqOOayOM5ci3xs+FXvYmOMf2U2s8nLpszmNLz78iibGH/41cZ+tI2f/OhPv9omVmMr1hKxzH5wnPXGGLvz3B+tsR9aY50AxBfWTf4JBoc1WIDjX7yuAaPxXRfr/AAAgP+OPnHi7x4nx9LLzMz05botOztb0tEnSHJyckLv79+//4QnSo7/3PFPl5g+c7yIb5zce++9Gjp0qPLy8nTqqadKkvbu3av33ntPJSUlkSYLAAAAAK0G6yYAAAAgMrm5ucrOzta6devUr18/SVJNTY02bNige+65J+zn8vPztW7dugb7nKxdu1aDBw+2ztv6xsnYsWP18MMPq0OHDpKkq6++WldccYXeeOMN/f3vf5frujr11FN18cUXq21bf+9UAQAAAEAiYN0EAACARBDNJ06a4rPPPtP//d//hf5dXl6ubdu2qXPnzjr99NM1bdo0zZs3T7169VKvXr00b948dejQQWPGjAl95vvf/75OPfXU0F4qd9xxh4YMGaJ77rlH3/rWt/SHP/xB69ev16uvvmpdLusbJ08++aRKSkpCC4BJkybpF7/4hfLz8yUd/Y2w2tpaLv4BAAAAJC3WTQAAAEgER6Jw4+RIBOlt2bJFw4YNC/17+vTpkqSbb75Zy5YtU1FRkaqqqnTbbbfpwIEDGjhwoNauXauOHTuGPrN79261adMm9O/Bgwfr6aef1k9+8hP99Kc/1ZlnnqkVK1Zo4MCB1uWyvnHium6Dfz/11FP60Y9+pJNOOknS0d8I69Gjh7788kvrzAEAAACgNWHdBAAAANi79NJLT7iG/irHcTRnzhzNmTMnbMwrr7xywnujRo3SqFGjIi5XxHucNFaZmpqaiAsCAAAAAK0N6yYAAADEo1q1lePzEye1PqfXkiK+cdIYx3H8TC7JvCapvcfxAos0NhkjnNGF5mRWrW92PjZct9gY44y2SGhV7MoTbxzHu69c19zfjjPXIqciY4RVf1rk5Vc6Nvzqcz/Sibf2S8TzoXWymd8s5nW0KpzDQOJj3QS/xXreT/bvGdN3cbK3DwAArUEbc8i/PPnkk3rrrbd0+PBhSVzwAwAAAMDxWDcBAAAg3h3dHD7F51cSPnFyySWXqLi4WIcOHVK7du1UW1urH//4x7rkkkt04YUX6pRTTolmOQEAAAAg7rFuAgAAABKf9Y2TjRs3SpI++OADlZWV6a233lJZWZl++tOf6uDBg/wVFQAAAICkx7oJAAAAiaBObdXG5ydEkvKJk2N69eqlXr166cYbbwy9V15eri1btmjr1q2+Fg4AAAAAEhHrJgAAACBx+bI5fG5urnJzczV6tM1O3gAAAACQfFg3AQAAIF7wxIk3X26cwA/TJGV6HF8Qo3L4w3WLjTGOM9cipYLmF8aS09MiqNyfMtu0j51NnkdtfgnCv7LEjn/jy8xxqowxrpvuQz7+lNdGLPvcpl6JOAZN/Kp3a2ybeJOIYzTeygMAsRIIzJfU/oT3mRfji9d3a2vpq9ZSD3hLhrEMILnVqq0cn2901LaiGydtWroAAAAAAAAAAAAA8YInTgAAAAAAAAAASCJHlKI6n28PHGlFtxt44gQAAAAAAAAAAKBe67kFBAAAAAAAAAAAjOqisMdJa9ocnidOAAAAAAAAAAAA6vHESdxYJKl9+MO5xeYkytebY1ZV2RaoWRxnbkzyOarAl1TcXeYYx7FIxy20SMeir7TJIqb5aTiOH/lIrmsxRhOQ66b7ko7pnPCr/WzOvVj2lU1efpXZv3S8z0+bczyW/WkjEc/PWI3lRGwbAADiGd+tkfO6/qFdY482B9Da1alNFJ44aT3PabSemgAAAAAAAAAAADQTT5wAAAAAAAAAAJBEatVW8vmJk1r2OAEAAAAAAAAAAGh9eOIEAAAAAAAAAIAkUqcUOT7fHqhrRbcbWk9NEl2PWVKbzGYmYrFJeq7FRtflfmwW7s+G7f5skC45jrk8sdoE/GheNpvMmTeg9qMsfvErL9PG3Ef5My5s+NWffmwsaNfG/px7sdyw3UYsN7232fw9VlrrhpQ253lrrTsAIHLB4CxlZjZ3zdQQm3HHlumaLtnbPNnrDwCIrSNqqzqff1rrCD/VBQAAAAAAAAAA0PrwxAkAAAAAAAAAAEmkLgqbw/v9BEtL4okTAAAAAAAAAACAejxxAgAAAAAAAABAEuGJE28J+cTJRx99pO9973vq0qWLOnTooK9//esqKysLHXddV3PmzFG3bt2Unp6uSy+9VO+9916DNKqrqzVlyhSdfPLJysjI0LXXXqu9e/c2iDlw4IDGjh2rQCCgQCCgsWPH6uDBgw1idu/erWuuuUYZGRk6+eSTNXXqVNXU1ESt7gAAAABgwpoJAAAAiFzCPXFy4MABFRQUaNiwYfrf//1fZWVl6cMPP1SnTp1CMQsWLNDChQu1bNkynX322fr5z3+uyy+/XDt37lTHjh0lSdOmTdNzzz2np59+Wl26dNGMGTN09dVXq6ysTG3bHr0zNmbMGO3du1dr1qyRJE2cOFFjx47Vc889J0mqq6vTVVddpVNOOUWvvvqqPvnkE918881yXVcPPvhg0yr2typJ7cIfL0k3p7HYIqZ8rnWRwivwIQ07rltsjHEcmzotsEjHpl7mGNcttEjHzHHWNzsNm/azYdPGfvWVTfs5ziZfyuMXuzHoPXb8Gjd27RfL/vTrHPZn3vGrzPGST6zz8ot/86R33eOt3okoEccXgFa8ZooCrznMaw5k7osM7QYAQPyoVRu5vj9xkpDPaTQq4W6c3HPPPerevbuWLl0aeu+MM84I/X/XdbVo0SLNnj1b1113nSTpscceU9euXfXkk09q0qRJCgaDevTRR/Xb3/5WhYVH/+PN8uXL1b17d61fv14jR47Ujh07tGbNGr322msaOHCgJOmRRx5Rfn6+du7cqd69e2vt2rXavn279uzZo27dukmSSkpKNG7cON19993KzMyMUasAAAAAwFGsmQAAAIDmSbhbQKtXr9aAAQM0evRoZWVlqV+/fnrkkUdCx8vLy1VRUaERI0aE3ktLS9PQoUO1efNmSVJZWZkOHz7cIKZbt27Ky8sLxZSWlioQCIQWAJI0aNAgBQKBBjF5eXmhBYAkjRw5UtXV1Q0eg/+q6upqVVZWNngBAAAAgF9YMwEAAMCkTilRebUWCXfjZNeuXXrooYfUq1cvvfjii7r11ls1depUPf7445KkiooKSVLXrl0bfK5r166hYxUVFUpNTdVJJ53kGZOVlXVC/llZWQ1ijs/npJNOUmpqaijmePPnzw/9/m8gEFD37t2b2gQAAAAAEBZrJgAAAJjUqW1UXq1Fwt04OXLkiC688ELNmzdP/fr106RJkzRhwgQ99NBDDeIcx2nwb9d1T3jveMfHNBYfScxXzZo1S8FgMPTas2ePZ5kAAAAAoClYMwEAAADNk3A3TnJyctSnT58G75177rnavXu3JCk7O1uSTvjrpf3794f+0ik7O1s1NTU6cOCAZ8w//vGPE/L/5z//2SDm+HwOHDigw4cPn/BXVcekpaUpMzOzwQsAAAAA/MKaCQAAACZHovC0yZFW9MRJwv3oWEFBgXbu3Nngvb/85S/q0aOHJCk3N1fZ2dlat26d+vXrJ0mqqanRhg0bdM8990iS+vfvr3bt2mndunW6/vrrJUn79u3Tu+++qwULFkiS8vPzFQwG9cYbb+jiiy+WJL3++usKBoMaPHhwKObuu+/Wvn37lJOTI0lau3at0tLS1L9//ybWbJGk9uEPlxabkyif28Q8I7XJGOG65vI6jrm8juNXXlXGGGmBRYyNQmOE46y3SMdcdzObstiMm6LmF8VXsSuP3fgy96freveFTT/YlMWGX+nYsGsbf9rY7ryKjVi2cSzzijeJVvdYnucAklvrXTP5z2tujvWcHE9lAQAASHYJd+Pkzjvv1ODBgzVv3jxdf/31euONN7RkyRItWbJE0tHHwKdNm6Z58+apV69e6tWrl+bNm6cOHTpozJgxkqRAIKDx48drxowZ6tKlizp37qyZM2eqb9++Kiw8+h83zz33XH3zm9/UhAkT9PDDD0uSJk6cqKuvvlq9e/eWJI0YMUJ9+vTR2LFj9ctf/lKffvqpZs6cqQkTJvBXUQAAAABaBGsmAAAAmNSqrdr4/IQIT5y0oIsuukjPPvusZs2apZ/97GfKzc3VokWLdNNNN4ViioqKVFVVpdtuu00HDhzQwIEDtXbtWnXs2DEUc9999yklJUXXX3+9qqqqNHz4cC1btkxt2/6rc5944glNnTpVI0aMkCRde+21Wrx4ceh427Zt9cILL+i2225TQUGB0tPTNWbMGN17770xaAkAAAAAOBFrJgAAAKB5HNd13ZYuRDKrrKxUIBCQdJc8f6prlMWj2ati9VNdZn79VJd/ecXup7r8+tkhP36qy79+MP80luum+5KXX/1pUx6/JNpPdfnFbuwUGCNMbXM0L79+hsufn/8DItFaz/N4KzPi37Hr32AwyBMHsBLNMRNPP48VT2UBAAD+iqdr4GNl6RZ8S20yO5o/0ARHKg/p74EL46KezZVwm8MDAAAAAAAAAABES8L9VBcAAAAAAAAAAIhcndrKZY+TsLhxEi96zJLaNPPxJauf8/Lr5268OaNtosw//+TXz2f5l475Z4f8+vkiO36kY/NTSrH8Ga7E+1kYm5+aiiex+qk4yb+f4fKvjW3K4z0GYzmOE/F8QHiJ2OfxNL7irW0AtA7xNG/EU1kkfjoMAIDWjhsn3vipLgAAAAAAAAAAgHo8cQIAAAAAAAAAQBKpO9JW7hGfnzjxOb2WxBMnAAAAAAAAAAAA9XjiBAAAAAAAAACAJFJX21ZHav19QsT1Ob2WxBMnAAAAAAAAAAAA9XjiJE5kbvmHnMwvwh4PpgUsUtlkEVNgEbPAcLzInESZRTbGfOzycpwqm8x84k8bu26hMcZxLLIylMdxfCpLT5uymNn0lesW+5OZTxxnvTHGrj/n+lCW5qdxlM08YGbTVzZl9qvP/crLj/LE2zhurUx9noj9kIhljhXaBgBii3kXAIDWra42RU6tv7cHXJ/Ta0k8cQIAAAAAAAAAAFCv9dwCAgAAAAAAAAAARnW1beT4vsdJ63lOgxsnAAAAAAAAAAAkkbratlG4ccLm8AAAAAAAAAAAAK0OT5wAAAAAAAAAAJBEamvbyjnMEyfhcOMkTlSesl1SRvMSGVVojllVZY4pKfY+PmO9RWEsyqIii5hNFjE+yTXU25K7yxzjOHMtUjK3j+t6t7NdPhb1LrdIx6L9bNrGLzZ1d12bPjePQcdp/ji1K0ss2ZzDZjb18quvYtWG/o0tM7/SiWWZYykRywwAiD2v70G+S9AatJYx3lrqgdhj7ACIBn6qCwAAAAAAAACAJOLWpeiIzy+3rmnPaZxxxhlyHOeE1+23395o/CuvvNJo/Pvvv+9HkzTAEycAAAAAAAAAACCm3nzzTdXV1YX+/e677+ryyy/X6NGjPT+3c+dOZWZmhv59yimn+F42bpwAAAAAAAAAAJBMatseffmdZhMcf8PjF7/4hc4880wNHTrU83NZWVnq1KlTU0vXJPxUFwAAAAAAAAAA8EVlZWWDV3V1tfEzNTU1Wr58uX7wgx/IcRzP2H79+iknJ0fDhw/Xyy+/7FexG+DGCQAAAAAAAAAAyeTYEyd+vyR1795dgUAg9Jo/f76xOL///e918OBBjRs3LmxMTk6OlixZomeeeUa/+93v1Lt3bw0fPlwbN270q1VCHNd1Xd9ThbXKykoFAgGpR1Bqk2n+gJfy9eaY3MLm5SFJk5ufhCRpRpVPCZm5brov6TjOXIu8in1JRyqwiPEjjU3GCNc1jxu7OsWOTT/4xXEszj0Dmza2YVcWmz73p/38Omf8ystGrMZOLNsmWdHGQHw6dv0bDAYb/C4xEI5pzJjme+b62PLqj5boi3grTzzxWjv4tT4BABwVT9fAof8eXRaUvuZzWT6rlPoHtGfPngb1TEtLU1pamudHR44cqdTUVD333HNNyvKaa66R4zhavXp1REUOhydOAAAAAAAAAACALzIzMxu8TDdN/va3v2n9+vW65ZZbmpzXoEGD9MEHH0Ra1LDYHB4AAAAAAAAAgGRSW//yO80ILF26VFlZWbrqqqua/NmtW7cqJycnsow9cOMEAAAAAAAAAADE3JEjR7R06VLdfPPNSklpeLti1qxZ+uijj/T4449LkhYtWqQzzjhD5513Xmgz+WeeeUbPPPOM7+XixgkAAAAAAAAAAMkkTp44Wb9+vXbv3q0f/OAHJxzbt2+fdu/eHfp3TU2NZs6cqY8++kjp6ek677zz9MILL+jKK69sTqkbxebwLSy0GY9+LykjfGCJxcZsiy0ytNlAfpQhr1X+bD5tx48N0n3MK9dik/lyfzZ+j6cN2f3bvLvKIi9zG9tsgB7LzQz92Bzerw3bY7lBerzlFbtN3f3ob//GaCz7Ac3j1ziOp/MBiEQ8bYyJxMDm8MlRx2TBZvUAkJzi6Ro49N+jN0Vpc/iC+Khnc/HECQAAAAAAAAAAySROnjiJV21augAAAAAAAAAAAADxgidOAAAAAAAAAABIJrWSDkchzVaCGycAAAAAAAAAACSTuvqX32m2EvxUFwAAAAAAAAAAQD2eOIkX3xomtcsMf3xGlTmNknRzzIxN5piyQkOAOQ3XLTbGOI5FnSzyspJrqpPk7jIn4zhzfSiM5Lrm8lgZZWjnVet9ycaurxYYI2I5LhzHZuwUGCP86itTOo5jTsNm/Nm1sTkdu7HuT/s5jnmc2tTLhl1e3mX2a0z4N5/40+eJyNyf/nxf+SWWefkllvNOIrYPADTGa87zmusi/RwSC32JWGNuARAWm8N74okTAAAAAAAAAACAejxxAgAAAAAAAABAMuGJE088cQIAAAAAAAAAAFCPJ04AAAAAAAAAAEgmPHHiiSdOAAAAAAAAAAAA6vHESZy46PGNSsnMCHu81BlkTqTUIqMNxeaYoVUWCXlzHIs0ctPNMeWbzDGjLOq0aq4xxHEKzOmoyCLGH45jLrO5PBbtZ8F1Cy2izP1gVycz1/UnL5t6+dMPNueEP33lF5s2tuFXn0s2fWWed+zGcnKyO2dszr31FunY9Kcf6cSuv/2qtw2/zs9Y5hXLMpv4NdYBxA/TOet13kfjfGcOaf1M3yWMgdYv0nVOS4yNeBqPsZ6PARjUyf8nROp8Tq8FceMEAAAAAAAAAIBkwk91eeKnugAAAAAAAAAAAOrxxAkAAAAAAAAAAMmEJ0488cQJAAAAAAAAAABAPZ44AQAAAAAAAAAgmRyuf/mdZivhuK7rtnQhklllZaUCgYB0d1Bqnxk+sNQisTKLmGUWMeMsYkzKq3xIxFJuujmmfK45pqTYGOJONyfjOOvNQdpkDsk1l0flprws8ompAp9iFjS3IE1gUx4bpr6wycef/nRd89hyHPM5Y5OODcexmS/MdXfdwuYXRua627WfeR6wKa9NP9iIvz73p14m8VZev8oDJLpj17/BYFCZmR7Xv0C90JpJd0lqf8Jx0/zqNY8zNwORSYbzKhnqiPgSjTHHOI4f8XQNHLq2+k1Q6uBzWb6olH4QH/VsLp44AQAAAAAAAAAgmdTVv/xOs5VgjxMAAAAAAAAAAIB6PHECAAAAAAAAAEAyqZNUG4U0WwlunAAAAAAAAAAAkExq5f+NE7/Ta0H8VBcAAAAAAAAAAEA9njiJF29Iahf+cOCJCmMSwXOyzfk8aA4JvO+dVzAtYE5EmyxifFJuk1eROWSxOcSZUWWRl091L7fJy6TAhzT8y8t1040xjrPep7wKLdIxcxybflhgjHDdYkM+cy1LZGIe63Z5mdvYr3Ts+socYzN27PLyLrN/+diI3ViPJdP5YMtuvjClYR7HfpXXL7EdgwAQP4LBWcrMzGzy5+JtHkd4Xt/L9GN8SYb+SJQ6mq5nE6UeoK/QAnjixFNCP3Eyf/58OY6jadOmhd5zXVdz5sxRt27dlJ6erksvvVTvvfdeg89VV1drypQpOvnkk5WRkaFrr71We/fubRBz4MABjR07VoFAQIFAQGPHjtXBgwcbxOzevVvXXHONMjIydPLJJ2vq1KmqqamJVnUBAAAAoMlYNwEAAABNk7A3Tt58800tWbJE559/foP3FyxYoIULF2rx4sV68803lZ2drcsvv1yHDh0KxUybNk3PPvusnn76ab366qv67LPPdPXVV6uu7l+714wZM0bbtm3TmjVrtGbNGm3btk1jx44NHa+rq9NVV12lzz//XK+++qqefvppPfPMM5oxY0b0Kw8AAAAAFlg3AQAAoFG1UXq1Egl54+Szzz7TTTfdpEceeUQnnXRS6H3XdbVo0SLNnj1b1113nfLy8vTYY4/piy++0JNPPilJCgaDevTRR1VSUqLCwkL169dPy5cv1zvvvKP164/+9MWOHTu0Zs0a/c///I/y8/OVn5+vRx55RM8//7x27twpSVq7dq22b9+u5cuXq1+/fiosLFRJSYkeeeQRVVZWxr5RAAAAAOArWDcBAAAAkUnIGye33367rrrqKhUWNvz97vLyclVUVGjEiBGh99LS0jR06FBt3rxZklRWVqbDhw83iOnWrZvy8vJCMaWlpQoEAho4cGAoZtCgQQoEAg1i8vLy1K1bt1DMyJEjVV1drbKysrBlr66uVmVlZYMXAAAAAPgtUddNrJkAAABioE7+P21Sp1Yj4TaHf/rpp/XWW2/pzTffPOFYRcXRTc27du3a4P2uXbvqb3/7WygmNTW1wV9cHYs59vmKigplZWWdkH5WVlaDmOPzOemkk5SamhqKacz8+fM1d65fm0ADAAAAwIkSed3EmgkAAAAtLaFunOzZs0d33HGH1q5dq/bt24eNcxynwb9d1z3hveMdH9NYfCQxx5s1a5amT58e+ndlZaW6d++uzP/5h5zML8J+Lvhatmf5JemlXYONMZc5fzLGBMsMeY0yJiGp0BwS/sGcf5lsEWP188gLzCHlNukUmUNGFZtjbOpuw1jmAnMauel+lEQqrzKGOM56i4QsymzBcSwW27kWfWUzdizKbCqP69qUxcyujf3hV5ljyXHM49R1vecvm7HlOJusy9Rchq83SeY6HY3xawya28cmL7uxbGrn2NW7tbKaSy3QzkBsJfq6KdyaKZ54zY+RznnRSDPRRKOeraVdW0s9vCRDHaOBtvEW63EVb+OY8QFP0diThD1OWkZZWZn279+v/v37KyUlRSkpKdqwYYMeeOABpaSkhP6S6fi/XNq/f3/oWHZ2tmpqanTgwAHPmH/84x8n5P/Pf/6zQczx+Rw4cECHDx8+4S+qviotLU2ZmZkNXgAAAADgl0RfN7FmAgAAQEtLqBsnw4cP1zvvvKNt27aFXgMGDNBNN92kbdu2qWfPnsrOzta6detCn6mpqdGGDRs0ePDRpzH69++vdu3aNYjZt2+f3n333VBMfn6+gsGg3njjjVDM66+/rmAw2CDm3Xff1b59+0Ixa9euVVpamvr37x/VdgAAAACAcFg3AQAAwOhwlF6tREL9VFfHjh2Vl5fX4L2MjAx16dIl9P60adM0b9489erVS7169dK8efPUoUMHjRkzRpIUCAQ0fvx4zZgxQ126dFHnzp01c+ZM9e3bN7Rp4rnnnqtvfvObmjBhgh5++GFJ0sSJE3X11Verd+/ekqQRI0aoT58+Gjt2rH75y1/q008/1cyZMzVhwgT+IgoAAABAi2HdBAAAAKM6+b+ZO5vDx6+ioiJVVVXptttu04EDBzRw4ECtXbtWHTt2DMXcd999SklJ0fXXX6+qqioNHz5cy5YtU9u2bUMxTzzxhKZOnaoRI0ZIkq699lotXrw4dLxt27Z64YUXdNttt6mgoEDp6ekaM2aM7r333thVFgAAAAAiwLoJAAAACM9xXddt6UIks8rKSgUCAelbQald+L+4yl/5sjGt0o3DzBk+aA4JPFHheTyY9rA5EasNvm02T7bZjN1ic/NV5g2hrTZJt9gA3S4di02Pc82bGqvctGmvuR9sNo32b8Nxmz73Z3N4m3rZ8GeDapk3orcYE37VyYZv9bY5h7XAHGJqP0nuLnMyNvUybw7vT1/5tYm6Df82bPdno3C/JNpGh4nY50A0HLv+DQaDPHEAK6YxY/pujuU1lEm8bRoca6bvJ682SPa2Swb0cXREeg3fWto8kcZVIpUVTRdP18Ch/x49Kyi197ksX1ZK8+Ojns2VUHucAAAAAAAAAAAARFOr+6kuAAAAAAAAAADgoU5SbRTSbCV44gQAAAAAAAAAAKAeT5wAAAAAAAAAAJBMaiW1jUKarQRPnAAAAAAAAAAAANRzXNd1W7oQyayyslKBQED6Y1DKyGxWWoFBFcaYPqk7jDGlziDvgJJ0c2FKzSEqs4ix0d8iZtV6Y4jrFhpjnNH+5KUSc15abJHXZMPxGRZlUYExwnXNfe44/uQlbfIpHRsLfEqnyBhhakPHmetLPnbM9XbdYmOM09Ock7vLHGM3dmzGhU372KRjirE5ZyzmE6fKoiw+9ZXV+PKHTXlixabedu1nM0bN7MaFP30VT/0AHO/Y9W8wGFRmZvOuf5EcTGPGNE97zb/e867Xd77NNUVjZYnO/Bzp94dXebzSjLfvmUjLmkh1BAAktni6Bg799+gpQSnN57JUV0oPxkc9m4uf6gIAAAAAAAAAIJnUyf/N3NkcHgAAAAAAAAAAoPXhiRMAAAAAAAAAAJJJnfzfzJ0nTgAAAAAAAAAAAFofnjgBAAAAAAAAACCZ1Mr/xyr8foKlBXHjJE78ouAOtc9MDXv8jneXGNNwznGNMaWTs82FGWU4PmOuOQ0VmUNK0s0xM6rMMf0t0lGBMcJx1puTyS20yGuTMcKdbk7HmWFRnhmG4zblLTe3seNY9HlusUVeFnWy6Cs7Fv3gmstsNS4s8nIcU71s6m3Oxy929bY5rxb4ko5NX9lwetqcE6Z29muM+tM2dn1lZnc+mOcCv84Zf85Pf/rKdS3mbKu28esc9msMxhdTG/o1D8Qbm7HTWusO+Md7fvWaf73OL6/zM97Oy2iUpyXaxmrd4aN4q2Osx1VLlCWe6g9v8dZX8VaeREG7AZHjxgkAAAAAAAAAAMnksCQnCmm2EuxxAgAAAAAAAAAAUI8nTgAAAAAAAAAASCZ19S+/02wleOIEAAAAAAAAAIBkUhulVxPMmTNHjuM0eGVne+/RvWHDBvXv31/t27dXz5499d///d9Ny9QST5wAAAAAAAAAAICYO++887R+/frQv9u2bRs2try8XFdeeaUmTJig5cuXa9OmTbrtttt0yimn6Dvf+Y6v5XJc13V9TRFNUllZqUAgoMx//kVOZsewce+nnmNMK2f0QWPMopWTjDErdKPn8dLRw4xpaFWVMSRQHTTGBNPeNeelAnNISbo5ptQiq3yLmBnrjSGuW2iMcXpa5NXfkM9KcxKOYy6vVRtrk0WMDb/SsZBbbI4pj1X72NTbJh9zjOuazwfHmWuRV1Fc5WXXhuYY1/UeFzblNaXhJ8cxz7exPK9s5rd4YjcH+tV+/pwzySqW557dvGQWy7kgkRy7/g0Gg8rMzGzp4iABRHPMeH0PeH2nec0T0Tj3mzMvJdJcFI12jXVfxZto1Z++ShyRtiv9gXBM30mMj8bF0zXwsbJoVFBq53NZDldKq+zrOWfOHP3+97/Xtm3brJL/0Y9+pNWrV2vHjh2h92699Vb9v//3/1RaavMfd+3xU10AAAAAAAAAAMAXlZWVDV7V1dVhYz/44AN169ZNubm5uvHGG7Vr166wsaWlpRoxYkSD90aOHKktW7bo8OHDvpVf4sYJAAAAAAAAAADJ5XCUXpK6d++uQCAQes2fP7/RIgwcOFCPP/64XnzxRT3yyCOqqKjQ4MGD9cknnzQaX1FRoa5duzZ4r2vXrqqtrdXHH38caUs0ij1OAAAAAAAAAACAL/bs2dPgp7rS0tIajbviiitC/79v377Kz8/XmWeeqccee0zTp09v9DOO4zT497GdSI5/v7m4cQIAAAAAAAAAQDKpk/+/R1V39H8yMzMj2sslIyNDffv21QcffNDo8ezsbFVUVDR4b//+/UpJSVGXLl2anJ8XfqoLAAAAAAAAAAC0qOrqau3YsUM5OTmNHs/Pz9e6desavLd27VoNGDBA7dq187UsjnvsWRa0iMrKSgUCAelbQald+LtwgScqwh47pk/qDmPM9ppzfUnHpHThMHPQAIuEtljEzKiyCLKwId0cM84infL15phRheaYVRb1yjWU2aYsJRZlWWwOsWJTHr/Y1GvGXIuECppdlKM2eR513WJjCk5Pi2zKLcbNKIuxnm+R1wyL/sy16IdYjgtDP0jmvnAccxu7rrmNHcem3uby+sVqDDo254xfiixiTOeVefzFtk7+sOmreOPHeE/EeqNxx65/g8FgRH+FhuRjGjOmuTwa84dXnrHOr6XyjERLzOWx7isAABoTT9fAof8e/U3v/x4dkcOV0hr7es6cOVPXXHONTj/9dO3fv18///nPtWHDBr3zzjvq0aOHZs2apY8++kiPP/64JKm8vFx5eXmaNGmSJkyYoNLSUt1666166qmn9J3vfMfXqvBTXQAAAAAAAAAAJJNaSf5uC3I0zSbYu3evvvvd7+rjjz/WKaecokGDBum1115Tjx49JEn79u3T7t27Q/G5ubn64x//qDvvvFO/+tWv1K1bNz3wwAO+3zSRuHECAAAAAAAAAABi7Omnn/Y8vmzZshPeGzp0qN56660olehfuHECAAAAAAAAAEAyaeLTIS2WZgthc3gAAAAAAAAAAIB6PHECAAAAAAAAAEAyqZP/e5zU+ZxeC3Jc13VbuhDJrLKyUoFAQNJdktqHjQtUTzKm9X7qOcaYc2reN8YEX8v2PB4YVGFO4xzvNCRJ5evNMSowh5Skm2NKLbJaVWWOyTXn5e4yJ+OMtihPvkXMYosYE7/6waJtrJTPNceUFJtjZlikk2uRjo1yi7GjBYbjRcYUXNfcxo7jU38ay2vLJi+bmE3GCNcttEjHzHEsxo4PXNc8/uzKEl9jxy4vc71s2scPsepvybbPzfOJTRv7JZ76Cq3HsevfYDCozMzMli4OEoDtmimcWM9T3nNn+O9Sv65ljudVnmi0jfc1hfc1Hd8prV80xmOsx3hzJFZZw1+Xel2PJlIdkwH9ET/i6Ro4dG31jaCU4nNZaiulP8dHPZuLJ04AAAAAAAAAAEgm7HHiiT1OAAAAAAAAAAAA6vHECQAAAAAAAAAAyYQnTjxx4wQAAAAAAAAAgGRSK8nv3c9b0ebw/FQXAAAAAAAAAABAPZ44iRuDJGWEPboqLceYQrG7yBgzN7XYGLNiyI2ex0s3DjOmkb/rZWNMac9CY8zEXfcbY5YsvMMYo3xziJRuE2TkjLYIWlVlEWOT2ybvw7nmNtYoixgbq+b6k84o8xjVDJ/yWmYRM9Sir0z9IEkqsIjx5mxsdhL1bMprIdeir2yUr7cIMref49ikY6HEUK8ZfpXXZmzZMPen4/iTk+ua50nH8ef8dHpaBBnHjj9j3XXNY9238WfVn/7MOa7r0/xvwY9xYdcP5nxs0rERy7wAHBUMzlJmZuYJ7/v13RMLsZx7bXh/f4X/vvGa37zqaPoO8+7L8N9t3nmGT9OrHs0ZV9GY/yOtR0uI9TkZb/X3EmlZW6L/va79E2k8JrtEGnNoAdF4OoQnTgAAAAAAAAAAAFofnjgBAAAAAAAAACCZsMeJJ544AQAAAAAAAAAAqMcTJwAAAAAAAAAAJBOeOPHEjZN48a1hUrsTNzo8ZuXKRcYk5sq8OVP2u0FjzPa8Pp7HN3e+zJjG/ZpojNEuc8iS0RYbv9tY5dOmvX5tpG6zYbFFXvkr23oeL7XYXDl/5cvGmM0aZoxxRltsDmbTD6ssNsy22ZS83CKdceYQOzb9aSizTb3H2ZTFZkNomw2+LepU7temj0XmkFxzmVVurrtVX83wo142m3db1NuvvEzjT7I6P/3aDNtqw1Djxu/mDXYdx5yNzTnj3wan5nndZtNgu83h/dpkPpa8+8KvfvArnXjbrB5IbjbXAE3ntXG613wdb+d15OWJbO3TnA2FvT/r11rMTrQ2jo9UvI0rL7Eua7Q2sY6nzbHjrf/jrTytRTTGXKRp0scAN04AAAAAAAAAAEgutZKO+Jym3+m1IG6cAAAAAAAAAACQTOrk/091taIbJ2wODwAAAAAAAAAAUI8nTgAAAAAAAAAASCa18v+xCp44AQAAAAAAAAAAaH144iRB3KgVxpjs5UFf8lpx9g2ex5d8eocxjYm63xhTOnqYuTBl5pDA+xXGmOCUQnNC48whNuVReZU5ZoNFeSyUOnXeASXmNLbXnGuMcdIs6jQq3RxjU++hFnlZWWAOKS8yx+Sa6+XuKjbGOI6hXhb5qL85ROXmEGejRTo2cs31tjofbPpqmUVeQy3SkUWfG23yIQ3LdPxqY5u5y6fyOM5cY4zrWtTLguOsb3Yarmtx7smfevvFpv38Ko9dXjbnuc25530O+zVuYsmvvkrEugOx5Lre15he55n3+eX13ejP9fxXRV5OU7rhvy+92i7S8ngdi+X35THRmENby7zs3R/e391211CxEa3+iDTdaJ3LyS7Sucw7zfjqq1iPuWh8zvRZxBmeOPHEEycAAAAAAAAAAAD1eOIEAAAAAAAAAIBkclg8ceKBJ04AAAAAAAAAAADq8cQJAAAAAAAAAADJ5Igk1+c0/U6vBSXcEyfz58/XRRddpI4dOyorK0vf/va3tXPnzgYxrutqzpw56tatm9LT03XppZfqvffeaxBTXV2tKVOm6OSTT1ZGRoauvfZa7d27t0HMgQMHNHbsWAUCAQUCAY0dO1YHDx5sELN7925dc801ysjI0Mknn6ypU6eqpqYmKnUHAAAAABPWTAAAADCqjdKrlXBc102o+0Df/OY3deONN+qiiy5SbW2tZs+erXfeeUfbt29XRkaGJOmee+7R3XffrWXLlunss8/Wz3/+c23cuFE7d+5Ux44dJUk//OEP9dxzz2nZsmXq0qWLZsyYoU8//VRlZWVq27atJOmKK67Q3r17tWTJEknSxIkTdcYZZ+i5556TJNXV1enrX/+6TjnlFJWUlOiTTz7RzTffrOuuu04PPvigVX0qKysVCASkHkGpTWbYuEW7JhnTumP5EmPMpO8tMsbcqBWexy9buNmYxr7pnYwxOQsPGmNUag4JPFFhjLkh1btOkrRk4x3mzOy61WyKRYxNXvmGw9NfNiZRunCYOZ8Zc40hgWrzGA2mBcx5aYFFTJExwnXTjTHORousbAxdbxG0yftwbrE5ifIqi3xs2s+GT23s+NA2kqQCc0huoUU6FspNZTaX13XN/ek4Nv1p0zYWbNrGWG9JoyzSWWXT5xas8jLPTf4wnw82/DtnbPg1Tm3a2OL8tNL88W5Tp1iy6U/X9WnuSiDHrn+DwaAyM8Nf/yJyrXXNFG7M2M1VjfOaN5qTbrzkZxJ/82ZkbRCNenjN4c2Zu73q6D0+vL5Twn+HxlsfRyrSdmupdP3WEuX0Wq/YXNcmq2jN5YkyHpsjnuoo+X/exdM1cOi/R38tKDk+l8WtlD6Lj3o2V8L9VNeaNWsa/Hvp0qXKyspSWVmZhgwZItd1tWjRIs2ePVvXXXedJOmxxx5T165d9eSTT2rSpEkKBoN69NFH9dvf/laFhUcveJYvX67u3btr/fr1GjlypHbs2KE1a9botdde08CBAyVJjzzyiPLz87Vz50717t1ba9eu1fbt27Vnzx5169ZNklRSUqJx48bp7rvvTvjBAQAAACDxsGYCAACAUa0kx+c0E+oRDW8J91NdxwsGg5Kkzp07S5LKy8tVUVGhESNGhGLS0tI0dOhQbd589EmJsrIyHT58uEFMt27dlJeXF4opLS1VIBAILQAkadCgQQoEAg1i8vLyQgsASRo5cqSqq6tVVlbWaHmrq6tVWVnZ4AUAAAAA0cKaCQAAAGiahL5x4rqupk+frksuuUR5eXmSpIqKoz/b1LVr1waxXbt2DR2rqKhQamqqTjrpJM+YrKysE/LMyspqEHN8PieddJJSU1NDMcebP39+6Pd/A4GAunfv3tRqAwAAAIAV1kwAAABo1OEovVqJhL5xMnnyZL399tt66qmnTjjmOA2fM3Jd94T3jnd8TGPxkcR81axZsxQMBkOvPXv2eJYJAAAAACLFmgkAAABouoS9cTJlyhStXr1aL7/8sk477bTQ+9nZ2ZJ0wl8v7d+/P/SXTtnZ2aqpqdGBAwc8Y/7xj3+ckO8///nPBjHH53PgwAEdPnz4hL+qOiYtLU2ZmZkNXgAAAADgN9ZMAAAACKsuSq9WIuE2h3ddV1OmTNGzzz6rV155Rbm5uQ2O5+bmKjs7W+vWrVO/fv0kSTU1NdqwYYPuueceSVL//v3Vrl07rVu3Ttdff70kad++fXr33Xe1YMECSVJ+fr6CwaDeeOMNXXzxxZKk119/XcFgUIMHDw7F3H333dq3b59ycnIkSWvXrlVaWpr69+/ftIr97WVJGWEPH3SWmNO4wyKf75lD3lZfz+NulsWuQe9alGVGlTHkJXe4MWa27jbGLFlo0TgDzCGLVk4yxhTXzDXGBBdnG2MCTzT+0wVf1Sd1h+fxUsdmtjL3g0YVG0OCaRbpWCnyJZVJut8cNHSiMWSRO80YM23Dw8aYwKA8z+N27bfJHGLRV1plkVduujHE6WlORrmF5phyi3RGWaSTb5FOqUWMqTwWbWzVNn6xaZtV6y0SKrBIx59x6roW49SC4Y+iZTOfuK55rPvFcczfD8o1t427yyYvc39alcdqTl5gjLDpc8fxHjt+jRsbdm1jFssyA1/VWtdMgcB8Se0bOWKa8yy+4xrhdQ47jtd3q8U1m49lMYl0Tov0c82b+8J/70T6ne1VD6+yum74a6zmfE9E2j5e5ZEsrgeTVHP6KtKxE+v8THWMvKxe13iRpek1d3qP8ei0T6RtE+uxEW+SoY5S8tQT4SXcjZPbb79dTz75pP7whz+oY8eOob9eCgQCSk9Pl+M4mjZtmubNm6devXqpV69emjdvnjp06KAxY8aEYsePH68ZM2aoS5cu6ty5s2bOnKm+ffuqsPDoRH3uuefqm9/8piZMmKCHHz76H0UnTpyoq6++Wr1795YkjRgxQn369NHYsWP1y1/+Up9++qlmzpypCRMm8FdRAAAAAFoEayYAAABYcVu6APEr4W6cPPTQQ5KkSy+9tMH7S5cu1bhx4yRJRUVFqqqq0m233aYDBw5o4MCBWrt2rTp27BiKv++++5SSkqLrr79eVVVVGj58uJYtW6a2bduGYp544glNnTpVI0aMkCRde+21Wrx4ceh427Zt9cILL+i2225TQUGB0tPTNWbMGN17771Rqj0AAAAAeGPNBAAAADRPwt04cV3zbTDHcTRnzhzNmTMnbEz79u314IMP6sEHHwwb07lzZy1fvtwzr9NPP13PP/+8sUwAAAAAEAusmQAAAIDmSdjN4QEAAAAAAAAAAPzGjRMAAAAAAAAAAIB6jmvzHDeiprKyUoFAQNJdktqHjZujOb7kV2ARU/iO9/H78yYa05i28WFjTP6Ql40xffW2MeZGrTDGXLZxsy/lKR09zBijfHOIFptDtMwiZpzh+GSLNGZUmWNGpVskFDv5Ky36aqNFX41rflkkSf0tYlZ5t7M7tIMxiU5r9xljgudkG2PcXcYQORvNMdpiETNjvTHEdQvN5VlokZcNm3Ov3LvMgeo8YxI2/WB3fprbz2pmz7U4h30qj1V/OnMtMisyh5jmpjKLbKzOX5/6wcoCc0husTnGt3rZ2GSMcF1zmR3HME+65nFsM7ZsymLDVN6jecXX92e8OHb9GwwG2RwcVqI5Zhwn/Fzo9Z3mNd/4Nc/4xauOXnO4Vz2iVf9Ealcv0ahHvI1Vu+s5f/OE/6IzVuNrbHiXJ/yaI9LruHibxyItT6T9aEo3npjq6Hc94uka+F//PTooye+yVEqKj3o2F0+cAAAAAAAAAAAA1Eu4zeEBAAAAAAAAAEBzHK5/+Z1m68ATJwAAAAAAAAAAAPV44gQAAAAAAAAAgKRSW//yO83WgSdOAAAAAAAAAAAA6vHESZwIBmcpMzMz7PG5zhxjGsXv+FSYyd6Hz3/FnJHb2THGDNZLtiXy9Lb6GmP2DelkjCnWXGPM3StnG2Muc/5kjAlUB40xwcXZxphFuyZ5Hl+hG41plM4YZIzJX/myOZ3Rw4wxVqaYQ0p7WuS1zCIvw1i3tWi6dz9I0rSFD3sed0pdc0av2ZbIm+NUWUQt8CezDcXGEGehP1kFJlcYY4IzvPtBkia6nTyPLzFPb1Ku+fzVjPXGENctNMY4jnnuksz9oBk242KTMcJZaC6zVOBLXiqzycsPNuW1kJtujulv0Vf5FnkttoixaWOf6m43Tr3zchyb8hZZlcfEpryuazG/Of6c5wC8Gc9Zz+sRr7klsvPTbs5rTPh5sDlzhddnvebWyOsRX7zmYu+28ZrDvb+zvL4jvNMN3x823zt+fq456dqtN2KjOeM40raLNM9o9VWkeXrVw+tzkbeb6bop0vPD63wNv+51PNZ90eqrSNs80vkq0vyixebauXE264TG+LTOS2jsceKFGycAAAAAAAAAACQVfqrLCz/VBQAAAAAAAAAAUI8nTgAAAAAAAAAASCq18v+ntXjiBAAAAAAAAAAAoNXhiZMEUZRhEWSx0XXVFnPMtM8WeR6/USuMaVTkBYwxmy+9zBgz+BXzBvJzbTY9ttBH240xw5aXGmPyXfMO3qULzZubvzR9sDHmsoWbPY/bbJZts1G9jcAT5rz8csMu8xhc0vMOY4x7rXmX78GLzGNw2kbzhuMmNu0XPMdiw/H+FpmV22z8brHBconFRtdDzRtDTnSXGGNs+jNYatE+FvVaUWM4J0ZZ5LPKZlM780Z0nWoszqtcnzbts9m4fLJFXjabkudabHBbbt5UM39XW8/jpT3Nc63KzCFWbM6HGRYbpZZb5LXK5hy2YXGej7Ko1yqbTRVtyhzppo7/4roW5bVKx5/zymYzZ782X26JDTyBROEOCX/M8fgejXxz8Mg2MPaaDxynORvY+vW98S/xt+G4V5tbXHc08XPmudtr42yvdE2lanp5orH5d0vk6XU+erVpc+oR6ecirX+kTGlGer5GXo9I5yvvz0XjXJa8zsdINyqPXDTOgeiMOe+2iU5feYm0/t7rD685OfKyxhs2h/fCEycAAAAAAAAAACCm5s+fr4suukgdO3ZUVlaWvv3tb2vnzp2en3nllVfkOM4Jr/fff9/XsvHECQAAAAAAAAAASaVW/u9J0rT0NmzYoNtvv10XXXSRamtrNXv2bI0YMULbt29XRob3TzDt3LlTmZmZoX+fcsopEZU4HG6cAAAAAAAAAACAmFqzZk2Dfy9dulRZWVkqKyvTkCEev7cqKSsrS506dYpa2fipLgAAAAAAAAAAkkqt/rXPiV+vo0+cVFZWNnhVV1dblSgYPLrvbOfOnY2x/fr1U05OjoYPH66XX37ZKv2m4MYJAAAAAAAAAABJpTZKL6l79+4KBAKh1/z5842lcV1X06dP1yWXXKK8vLywcTk5OVqyZImeeeYZ/e53v1Pv3r01fPhwbdy4MZJGCIuf6koQwc8CxpgFTtAYU/xbc16jnWmex4e9Y06j09n7jDF3bsgxJ2Rhh/r4ko6V/zGHbN5ymTHm5UX5xpjLNm62KZGng0XmNnZOd40x2yeb8wq+lm0O2mIOsTLdHDJx1/3GGGehue6BmgpzZkOrzDEl6Z6Hg+dYtF/5XHPM5GJzzBRzzEtDBhtjLltoMUY3eNdbkpb0vMOcjk8mukuMMUtGG8ozxSKjKYXmmHHmkGDaJnNQrsXYsbHMImaoeQy+5L5ojLEaO6XmcVo62hDQ35yNVlmcVyUW59UAi7wM84AkaYZP5VlsDlG5xdxl/rqSVlnEqMAckms4byzmQMdZ3/x8bFm0n+ta9LlF27iuucyOY24f1zWPHb/SAWLJNCY9x3Wu12e9zk+v72iLOa/Jn1sQYZqRn7Ne7eY133rNWaZ52nu+i7QNvMoTvo7Nmeu86+kxdjzHY3iRltXrc6bvg+Z81v/PhW9TU9tEWo9Yt7l3fpHOOdFisYZpjF/XaL7xqkf4skbrvPKeW72uS4s8joWfV52eHh8zjDnvekY4Xj3Gh7srsiTNZQk/Bpoz7ySLPXv2NNh/JC0tzfiZyZMn6+2339arr77qGde7d2/17t079O/8/Hzt2bNH9957r/HnvZqCGycAAAAAAAAAACSVYz+v5XeaUmZmZoMbJyZTpkzR6tWrtXHjRp122mlNznXQoEFavnx5kz/nhRsnAAAAAAAAAAAgplzX1ZQpU/Tss8/qlVdeUW5ubkTpbN26VTk5/vy60THcOAEAAAAAAAAAIKn8a08Sf9O0d/vtt+vJJ5/UH/7wB3Xs2FEVFUd/Mj8QCCg9/ehPH8+aNUsfffSRHn/8cUnSokWLdMYZZ+i8885TTU2Nli9frmeeeUbPPPOMrzXhxgkAAAAAAAAAAIiphx56SJJ06aWXNnh/6dKlGjdunCRp37592r17d+hYTU2NZs6cqY8++kjp6ek677zz9MILL+jKK6/0tWzcOAEAAAAAAAAAIKnUyv89Tpr2xInrusaYZcuWNfh3UVGRioqKmpRPJLhxkiBynH3GGPeODsaY9WPNeb3nTvQ8vslZYkzj4B0Wvyn3jjmkePllxphO15vbJrg42xgzcfr95gLdYg65/3ve7SdJK3SjMSYwqMIYc8OQFZ7HKxQwpvGSBhtjntYNxph3hpxvjNEQc0jpxmHGmBvlXW9JOlfbjTFLZpxnjHl2+n8aYy7bsNkYM3GI9/haUnqHMY3A+5OMMcHXjCHSFnPIZVvMdVKpRV4DLGImm0Nszs+5KjbG5Gw8aIzZt7JTs9OwOX/1vjlEyjNGBM+xSKa/RYzFuFjk/t0Yc9lGi7EzY645ZoO5PzW0yvt4brov+dj0p833jBabQ6zMWO9POhsKjSGmuUuym7+0qsAcY5oLBliMCYtxHJjsU38OMI8vZ6E5GeWa+8FxbPrcvHBwHPO557oW7QzEGbtzpOlcN/x57jibPD4Z/nx0HK/vrvBzpet6zxVebWBz7jcq12M+KPfKz6s/vNpNchyvNoin+cn0vRa+nl718Oorr7YxtWskZTF9r3iPK6/PerVN+HEe6Tg2fc6rDaIx5iKdA7yZzqtIPxtpeSJU7n1t7znvel1PecxXXmOuJeYcr/nT+3vAqx8j+77y7o/I5hzjZ72+dzzWCt7nlQfDdbi7y3ydjtaNGycAAAAAAAAAACSVlt/jJJ5x4wQAAAAAAAAAgKRyWP7/VJff6bWcNi1dAAAAAAAAAAAAgHjBEycAAAAAAAAAACQVfqrLC0+cAAAAAAAAAAAA1OOJkwThuunmoGn+5HXH8iWex6sy/MmnIi9gjFmRd4Mx5uC0HHNmt5hD7tdEY0yn6/eZy/OuuTw35K0wFyjVHHKdnvU8Xqy55kQsLBl9hzko3yJk+svNL4ykt9XXGDPs3dKY5aUHzSErBnmP5UUrJxnTOF/vGGOGdTbX2yl1jTETV95vjHlH5xtjSjcOM8ZogDmkj7YbY0zngyRNHGKulykdmzSWbLQ4ZyzGjc15FXi/whgTfC3bIjMzmzG4aIh5LE8redicmU375Hp/N+bvMs85ffW2McZmrG+fbAyRLGKC5xSbg5ZZ5LXFIsaHuUuS9q3sZIzJce40ZzajyBxjYhgTkhScYb7+UK5FXsssYhZbxNgYVWiOWVVlkVBBs4sCxCPX9T5HHMfjoMfc7DjrPfIMP187jtf5uCn8odzw9fBOU/I+vz3y9PpcuVf9vcrqsQbJNXzPeeTp9PTo53KvdU9k3y9e/e/dppJXu3q2T4T96D0everhZUGEn/P+7xeOE74enudqxN9h3n3l3R/hx45nHXuGTzHStpG85jnTGI+wLz3mJM/yeJ6PHv1ouI5zd1lcDzXCa1x59ZXXfOTJ47rN61yVvM9X73M50u8Aj7FR4lHWGR5JmsrjdV27yquOHp/zGjvlHkka+thxvNo1fNuZ+jm+1Mr/PUl44gQAAAAAAAAAAKDV4YkTAAAAAAAAAACSCnuceOGJEwAAAAAAAAAAgHo8cQIAAAAAAAAAQFI5LP/3OPE7vZbDjRMAAAAAAAAAAJIKN068cOOkFXHun2OMyXeHGGPe09Oex6ed/rAxjcCgCmNMsGe2MUaTzSHTPrIoz9nm8ryvc4wx21P7GGMG571kjLnB0MaStF3mvEo3DvM8fveQ2cY0Llu42RizaOUkY8y0heZ+2F5zrjFm35BOxphizTXG2PRDvmsM0fl6x5zOypeNMX31tudxm/628XZeX1/SWVFzgzEmmPauOaESc0j+dHP72Ywvm3SWjL7DXKAy78N9d3n3pa19KzsZY86ped8YMze12JyZeerXDVphjMnZeNAYs26oY4zJd280xpQu9J7fJElTvA/7Ndfa6JO6wxhjmgckSbvMIe/ofGNM6RZz+9nMXTZtaDNO3aE5xphJr3Qyxpg8/O40Y8zLefnGmH+r+Z0xJniTxXXMMnNI/hBzP5Q6G80J5VrMBeUFxhBntDkZrfL+HnZdi7IAMeS6hWGPOU6VxyfDnzOOsz6iz3mXJbI0zYoi/NwCj2Ph6+FZ1nKvOhp4ftarfTaFP+Q1d5Z7jQ2PNA3HveZIx/GaX8P3o+c4HuXVVx5KDHP5jPBl9RrLnvXv6ZFfxP1vUOLRPl517Ok1drzaxqswkc05XvPK0c96tU9k56v3XOZVGq/8vK8vPNu8v8cHN3i0z1CPc8drbHiZET5NxzHMHbkeeXrV0WsNWx7Zd8DE6feHPbZkxkTvD49KD3/M61J8Svj6e10zb5/s9d+awv/3rOBi7+t5zzYYHcFcdsQzO8QhbpwAAAAAAAAAAJBU2BzeC5vDAwAAAAAAAAAA1OOJEwAAAAAAAAAAkkqt/N+ThCdOAAAAAAAAAAAAWh2eOAEAAAAAAAAAIKmwx4kXx3Vdt6ULkcwqKysVCAQUDAaVmZnZ0sUBWpzjzLWIKjJGuG66L3m5brFFOlXNLo/T05iENNkiZoa5LBplbhvlW+RVahGzyqI8uebyBN6vMMYEb8o25zXFHKIHDcf9ahsbNuUdam7jfPc1Y0ypM8icV4m5ryZOv98Ys6TnHeZ0dpnTWVFzgzHGxGrclJlDbMq7xJloTmiDxfkwyHw+HPxLjjHm/jyL8ljYrj6+pPPwu9M8j1fkBXzJp1jmud9UFsmuPDss2ma27jbGlG4cZoyZOMQ8BufK/J2Ws/GgMUZDbb6rvXwp6Rdc/8Iaaya0BMdZH/aY6xYaPhvZPGmz9mg8v/BllTZ5HAu/rjKuXyJsH++yFngcW+BZnvBl8W5T77WcR54lkfWVFnscK4+wbQzXj/lDXg57rNSpC//BUR7j3Gad11Sm6+BxHseWeRzzWi95rG8Ck8NfcwdfC7+G2DekU9hjOaMPhi+LpJdWDg577LKFm8N/0GP96ZWmF69rVNO1qdeY66u3wx67USvMBWvEsOXhG2DS9xaFPdbNmeaZbvFvIyqOnLHrwhz5XNK34+J65ti1lfSAJIv/RtQkVZKmxkU9m4snTgAAAAAAAAAASCqH5f/tAb/3TGk53DgBAAAAAAAAACCp8FNdXtgcHgAAAAAAAAAAoB5PnAAAAAAAAAAAkFRq5f9Pa/HECQAAAAAAAAAAQKvjuK7rtnQhklllZaUCgYCCwaAyMzNbujgAADSL48w1xrhucQxK4h+/6hRvbZNo5Ymnstjyq8yOs94ir0Jf8ooFrn/RVIwZAEgcXtdRXtdG5uuvAo90/b8Ocpwqj6ObIjxmUuRxbEHYI97tar6ObFz4epiucb3z9GifUR7pror0+tyrTb37ymtceY0P101v9P14up45VhZprqT2Pqf+paTiuKhnc/HECQAAAAAAAAAAQD1unPjg17/+tXJzc9W+fXv1799ff/7zn1u6SAAAAAAQV1g3AQAAxJPDUXq1Dtw4aaYVK1Zo2rRpmj17trZu3apvfOMbuuKKK7R79+6WLhoAAAAAxAXWTQAAAEgkKS1dgES3cOFCjR8/XrfccoskadGiRXrxxRf10EMPaf78+SfEV1dXq7q6OvTvYDAo6ehvywEAkPi+NEYk3neeX3WKt7ZJrPLEU1ls+Vfmz2OYV/QdKytbLSaXpqybWDMBQCILfx3lPY+brr/CXw9F5/vBa48Tr2uz5lxHRtY+3vU3X0f6m58pT4/2Odyc8RFO5G3jXc/w46OysvEnLuLzGvhzSbU+p1ltDkkQbA7fDDU1NerQoYNWrlypf/u3fwu9f8cdd2jbtm3asGHDCZ+ZM2eO5s71Z8NRAAAAIFF9+OGH6tmzZ0sXAzHQ1HUTayYAANBaxcM18Jdffqnc3FxVVFREJf3s7GyVl5erfXu/N56PLZ44aYaPP/5YdXV16tq1a4P3u3btGnbgzZo1S9OnTw/9++DBg+rRo4d2796tQCAQ1fKidaisrFT37t21Z88eZWZmtnRxkAAYM2gqxgyagvGCpgoGgzr99NPVuXPnli4KYqSp6ybWTK0P3xWJjz5MbPRf4qMPE188XQO3b99e5eXlqqmpiUr6qampCX/TROLGiS8cx2nwb9d1T3jvmLS0NKWlpZ3wfiAQYOJDk2RmZjJm0CSMGTQVYwZNwXhBU7Vpw3aLycZ23cSaqfXiuyLx0YeJjf5LfPRh4ouXa+D27du3ipsb0RQfPZWgTj75ZLVt2/aEv5Lav3//CX9NBQAAAADJiHUTAAAAEg03TpohNTVV/fv317p16xq8v27dOg0ePLiFSgUAAAAA8YN1EwAAABINP9XVTNOnT9fYsWM1YMAA5efna8mSJdq9e7duvfVWq8+npaWpuLi40UfRgcYwZtBUjBk0FWMGTcF4QVMxZpJTc9ZNjJnERx8mPvowsdF/iY8+THz0YeJxXNd1W7oQie7Xv/61FixYoH379ikvL0/33XefhgwZ0tLFAgAAAIC4wboJAAAAiYIbJwAAAAAAAAAAAPXY4wQAAAAAAAAAAKAeN04AAAAAAAAAAADqceMEAAAAAAAAAACgHjdOAAAAAAAAAAAA6nHjJAZ+/etfKzc3V+3bt1f//v315z//2TN+w4YN6t+/v9q3b6+ePXvqv//7v2NUUsSLpoyZ3/3ud7r88st1yimnKDMzU/n5+XrxxRdjWFq0tKbOMcds2rRJKSkp+vrXvx7dAiLuNHXMVFdXa/bs2erRo4fS0tJ05pln6je/+U2MSot40NQx88QTT+iCCy5Qhw4dlJOTo3//93/XJ598EqPSoqVt3LhR11xzjbp16ybHcfT73//e+Bmuf8GaKfGxhkl8rCsSG9f4iY9r7sTF9W/rxI2TKFuxYoWmTZum2bNna+vWrfrGN76hK664Qrt37240vry8XFdeeaW+8Y1vaOvWrfrxj3+sqVOn6plnnolxydFSmjpmNm7cqMsvv1x//OMfVVZWpmHDhumaa67R1q1bY1xytISmjpdjgsGgvv/972v48OExKiniRSRj5vrrr9ef/vQnPfroo9q5c6eeeuopnXPOOTEsNVpSU8fMq6++qu9///saP3683nvvPa1cuVJvvvmmbrnllhiXHC3l888/1wUXXKDFixdbxXP9C9ZMiY81TOJjXZHYuMZPfFxzJzauf1spF1F18cUXu7feemuD98455xz3rrvuajS+qKjIPeeccxq8N2nSJHfQoEFRKyPiS1PHTGP69Onjzp071++iIQ5FOl5uuOEG9yc/+YlbXFzsXnDBBVEsIeJNU8fM//7v/7qBQMD95JNPYlE8xKGmjplf/vKXbs+ePRu898ADD7innXZa1MqI+CXJffbZZz1juP4Fa6bExxom8bGuSGxc4yc+rrlbD65/Ww+eOImimpoalZWVacSIEQ3eHzFihDZv3tzoZ0pLS0+IHzlypLZs2aLDhw9HrayID5GMmeMdOXJEhw4dUufOnaNRRMSRSMfL0qVL9eGHH6q4uDjaRUSciWTMrF69WgMGDNCCBQt06qmn6uyzz9bMmTNVVVUViyKjhUUyZgYPHqy9e/fqj3/8o1zX1T/+8Q+tWrVKV111VSyKjATE9W9yY82U+FjDJD7WFYmNa/zExzV38uFaJjGktHQBWrOPP/5YdXV16tq1a4P3u3btqoqKikY/U1FR0Wh8bW2tPv74Y+Xk5EStvGh5kYyZ45WUlOjzzz/X9ddfH40iIo5EMl4++OAD3XXXXfrzn/+slBS+ApJNJGNm165devXVV9W+fXs9++yz+vjjj3Xbbbfp008/5TeQk0AkY2bw4MF64okndMMNN+jLL79UbW2trr32Wj344IOxKDISENe/yY01U+JjDZP4WFckNq7xEx/X3MmHa5nEwBMnMeA4ToN/u657wnum+MbeR+vV1DFzzFNPPaU5c+ZoxYoVysrKilbxEGdsx0tdXZ3GjBmjuXPn6uyzz45V8RCHmjLHHDlyRI7j6IknntDFF1+sK6+8UgsXLtSyZcv4i7Qk0pQxs337dk2dOlX/+Z//qbKyMq1Zs0bl5eW69dZbY1FUJCiuf8GaKfGxhkl8rCsSG9f4iY9r7uTCtUz8488Coujkk09W27ZtT7g7vH///hPuKh6TnZ3daHxKSoq6dOkStbIiPkQyZo5ZsWKFxo8fr5UrV6qwsDCaxUScaOp4OXTokLZs2aKtW7dq8uTJko5eMLuuq5SUFK1du1aXXXZZTMqOlhHJHJOTk6NTTz1VgUAg9N65554r13W1d+9e9erVK6plRsuKZMzMnz9fBQUF+o//+A9J0vnnn6+MjAx94xvf0M9//nP+egon4Po3ubFmSnysYRIf64rExjV+4uOaO/lwLZMYeOIkilJTU9W/f3+tW7euwfvr1q3T4MGDG/1Mfn7+CfFr167VgAED1K5du6iVFfEhkjEjHf0rrXHjxunJJ5/k9yyTSFPHS2Zmpt555x1t27Yt9Lr11lvVu3dvbdu2TQMHDoxV0dFCIpljCgoK9Pe//12fffZZ6L2//OUvatOmjU477bSolhctL5Ix88UXX6hNm4aXmG3btpX0r7+iAr6K69/kxpop8bGGSXysKxIb1/iJj2vu5MO1TIKI5U70yejpp59227Vr5z766KPu9u3b3WnTprkZGRnuX//6V9d1Xfeuu+5yx44dG4rftWuX26FDB/fOO+90t2/f7j766KNuu3bt3FWrVrVUFRBjTR0zTz75pJuSkuL+6le/cvft2xd6HTx4sKWqgBhq6ng5XnFxsXvBBRfEqLSIB00dM4cOHXJPO+00d9SoUe57773nbtiwwe3Vq5d7yy23tFQVEGNNHTNLly51U1JS3F//+tfuhx9+6L766qvugAED3IsvvrilqoAYO3TokLt161Z369atriR34cKF7tatW92//e1vruty/YsTsWZKfKxhEh/risTGNX7i45o7sXH92zpx4yQGfvWrX7k9evRwU1NT3QsvvNDdsGFD6NjNN9/sDh06tEH8K6+84vbr189NTU11zzjjDPehhx6KcYnR0poyZoYOHepKOuF18803x77gaBFNnWO+igVOcmrqmNmxY4dbWFjopqenu6eddpo7ffp094svvohxqdGSmjpmHnjgAbdPnz5uenq6m5OT4950003u3r17Y1xqtJSXX37Z89qE6180hjVT4mMNk/hYVyQ2rvETH9fciYvr39bJcV2e3wIAAAAAAAAAAJDY4wQAAAAAAAAAACCEGycAAAAAAAAAAAD1uHECAAAAAAAAAABQjxsnAAAAAAAAAAAA9bhxAgAAAAAAAAAAUI8bJwAAAAAAAAAAAPW4cQIAAAAAAAAAAFCPGycAAAAAAAAAAAD1uHECAAAAAAAAAABQjxsnAIBW69JLL9W0adNauhgAAAAAWhhrAwBAU3DjBACAKBkyZIgcxznhddNNN1l9fty4cbrrrrt8Sw8AAABAy2BtAACJJaWlCwAAwFfV1NQoNTW1pYvRbK7ratu2bbr33ntPWLx87WtfM37+yJEjeuGFF7R69Wpf0gMAAAASDWuDo1gbAEDs8cQJACAs13W1YMEC9ezZU+np6brgggu0atWq0PFLL71UU6dOVVFRkTp37qzs7GzNmTOnyWlMnjxZ06dP18knn6zLL79cknTo0CHddNNNysjIUE5Oju67774Gj9c//vjj6tKli6qrqxvk953vfEff//73G61PdXW1pk6dqqysLLVv316XXHKJ3nzzzdDxVatWqW/fvkpPT1eXLl1UWFiozz//3Pr4V33wwQc6dOiQhgwZouzs7AYvm8XMpk2b1KZNGw0cONCX9AAAAIDmYG3A2gAAkgk3TgAAYf3kJz/R0qVL9dBDD+m9997TnXfeqe9973vasGFDKOaxxx5TRkaGXn/9dS1YsEA/+9nPtG7duiankZKSok2bNunhhx+WJE2fPl2bNm3S6tWrtW7dOv35z3/WW2+9FfrM6NGjVVdXF/qrK0n6+OOP9fzzz+vf//3fG61PUVGRnnnmGT322GN66623dNZZZ2nkyJH69NNPtW/fPn33u9/VD37wA+3YsUOvvPKKrrvuOrmuK0nG48crKytTSkqKzj///AhaXlq9erWuueYatWnTxpf0AAAAgOZgbcDaAACSigsAQCM+++wzt3379u7mzZsbvD9+/Hj3u9/9ruu6rjt06FD3kksuaXD8oosucn/0ox81KY2vf/3rDY5XVla67dq1c1euXBl67+DBg26HDh3cO+64I/TeD3/4Q/eKK64I/XvRokVuz5493SNHjoTSPhb/2Wefue3atXOfeOKJUHxNTY3brVs3d8GCBW5ZWZkryf3rX//aaHuYjh9v5syZruM4bkZGRoPXLbfcYvX5s88+2129enWT0nvuuefcs88+2z3rrLPcRx55xCofAAAAwIS1QUOsDQCg9WOPEwBAo7Zv364vv/wy9Hj8MTU1NerXr1/o38f/lVNOTo7279/fpDQGDBjQ4PiuXbt0+PBhXXzxxaH3AoGAevfu3SBuwoQJuuiii/TRRx/p1FNP1dKlSzVu3Dg5jnNCfT788EMdPnxYBQUFoffatWuniy++WDt27ND06dM1fPhw9e3bVyNHjtSIESM0atQonXTSSZKkCy64wPP48crKyjR69GjdfffdDd4PF/9VO3bs0N69e1VYWGidXm1traZPn66XX35ZmZmZuvDCC3Xdddepc+fOxvwAAAAAL6wNWBsAQLLhxgkAoFFHjhyRJL3wwgs69dRTGxxLS0sL/f927do1OOY4TuiztmlkZGQ0OObWP+J+/CLHPe7R9379+umCCy7Q448/rpEjR+qdd97Rc88912h9vNJ0HEdt27bVunXrtHnzZq1du1YPPvigZs+erddff125ubnG48fbunWrfvazn+mss85qtDzvvvuuvvWtb2nTpk3Kzs7Wxx9/rMLCQr3xxhtavXq1Lr/8cqWnp1un98Ybb+i8884LtfOVV16pF198Ud/97ncbjQcAAABssTZgbQAAyYY9TgAAjerTp4/S0tK0e/dunXXWWQ1e3bt3j2oaZ555ptq1a6c33ngj9F5lZaU++OCDE2JvueUWLV26VL/5zW9UWFgYNt2zzjpLqampevXVV0PvHT58WFu2bNG5554r6ejCqaCgQHPnztXWrVuVmpqqZ599NhRvOn7Mrl27dPDgwQZ/OXe8vLw83XjjjXrppZckSXPnztWPfvQjpaam6g9/+IOuvfbaJqX397//vcEC9LTTTtNHH30UNh4AAACwxdqAtQEAJBueOAEANKpjx46aOXOm7rzzTh05ckSXXHKJKisrtXnzZn3ta1/TzTffHLU0OnbsqJtvvln/8R//oc6dOysrK0vFxcVq06bNCX8VdtNNN2nmzJl65JFH9Pjjj4ctS0ZGhn74wx+G0jz99NO1YMECffHFFxo/frxef/11/elPf9KIESOUlZWl119/Xf/85z9DCyfT8a8qKyuTJHXt2lUVFRUNjmVlZYU2dTzvvPP0l7/8Rf/3f/+nsrIyPfDAA9q/f7/efPNN/f73v29Sesf/xZ104l/QAQAAAJFgbcDaAACSDTdOAABh/dd//ZeysrI0f/587dq1S506ddKFF16oH//4x1FPY+HChbr11lt19dVXKzMzU0VFRdqzZ4/at2/fIC4zM1Pf+c539MILL+jb3/62Z5q/+MUvdOTIEY0dO1aHDh3SgAED9OKLL+qkk05SZmamNm7cqEWLFqmyslI9evRQSUmJrrjiilA+Xse/6q233pIknX322Q3eb9eunQ4dOhT6KYJevXrp+eef149//GPdfffdchxHzz33nAYOHKisrKwmpXfqqac2+CuyvXv3auDAgZ7tAQAAANhibcDaAACSieM2dhsaAIA48/nnn+vUU09VSUmJxo8f3+DY5ZdfrnPPPVcPPPBAC5UuMgcPHlSvXr00cOBAPf/885Kka6+9VpdccomKioqalFZtba3OPfdcvfLKK6ENIF977TV16dIlGkUHAAAAWgxrA2+sDQCg+XjiBAAQl7Zu3ar3339fF198sYLBoH72s59Jkr71rW+FYj799FOtXbtWL730khYvXtxSRY1Yp06dJB39a7djLrnkkog2bUxJSVFJSYmGDRumI0eOqKioiIURAAAAWgXWBk3D2gAAmo8nTgAAcWnr1q265ZZbtHPnTqWmpqp///5auHCh+vbtG4o544wzdODAAf30pz/VzJkzW7C0kTl8+LDy8vK0c+fOli4KAAAAELdYGwAAYo0nTgAAcalfv36hjQ/D+etf/xqbwkTJ+++/r969e7d0MQAAAIC4xtoAABBrPHECAAAAAAAAAABQr01LFwAAAAAAAAAAACBecOMEAAAAAAAAAACgHjdOAAAAAAAAAAAA6nHjBAAAAAAAAAAAoB43TgAAAAAAAAAAAOpx4wQAAAAAAAAAAKAeN04AAAAAAAAAAADqceMEAAAAAAAAAACgHjdOAAAAAAAAAAAA6nHjBAAAAAAAAAAAoB43TgAAAAAAAAAAAOr9f64wl5uRCHOYAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n",
"#upstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(up_energyloss_found, up_residual_found, bins=(np.linspace(0,1,80), np.linspace(0,1.5e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
"\n",
"a1=ax1.hist2d(up_energyloss_lost, up_residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,1.5e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20) \n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, Upstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk4AAAJOCAYAAADxgPt3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYBklEQVR4nOzdd3hUxf7H8c+mh5AsoSWGDtK7dFAD0iWAhSJoqCJXQETAgkpVQQQFBdvPewVFEFR6lSpIlSqCBbiCgBBAhASQQBLm9wdkL0uS3U2y6e/X8+wDe873zJlTcnZmZ2fGYowxAgAAAAAAAAAAgDyyOgMAAAAAAAAAAADZBQ0nAAAAAAAAAAAAt9BwAgAAAAAAAAAAcAsNJwAAAAAAAAAAALfQcAIAAAAAAAAAAHALDScAAAAAAAAAAAC30HACAAAAAAAAAABwCw0nAAAAAAAAAAAAt9BwAgAAAAAAAAAAcAsNJwAAAAAAAAAAALfQcAIAADJUr169NHPmzKzOBly0f/9+HT9+PKuzAQAAAABAlqHhBAAAADb/93//p/Xr12d1NgAAAAAAyDI0nAAAgGxt3rx5qlq1qvz9/WWxWLRv376szpJDK1askMVisXsFBQWpTp06+uqrrzJt/59//rnd8gsXLqht27by8fHR9OnT7dZt2rRJ/fr109mzZ23Lfv75Zz3yyCM6c+ZMhuc5J/nuu++SXN/E1/bt25PE79+/X3379lW5cuXk7+8vf39/lS9fXv3799euXbvSlIeHH35Y/v7+unjxYooxjz/+uLy9vVN9/WbOnGl3TH5+fgoNDVWzZs00YcIEu3skJ9q6davGjBnj8NzlBWPGjJHFYtFff/3llvTywnlNSEhQ0aJFNWXKlBRj3H1ec4rcfP1/+OEHtW7dWoGBgcqfP7+aNWumLVu2JIlLzWfD5cuXNWTIEIWFhcnPz0+1atXS3Llzk91/amIBAIB70XACAADcLiIiQgUKFFCBAgU0Z84cDRgwwPb+zTffdDmdc+fOKTIyUuXKldOqVau0bds2VahQIQNznn579uyRJC1evFjbtm3T1q1b9cknn+jKlSvq1q2b9u/fnyn7r1Onjm3Z/v37VbduXe3du1fr16/XoEGD7LapU6eOQkJCVKNGDa1bt07Tp09Xy5Yt1aZNGxUpUiRD85tTjR8/Xtu2bbN7VatWzS7m448/Vp06dbRjxw49++yzWrZsmZYvX64hQ4bo4MGDqlevnv773/+met99+/ZVbGys5syZk+z66OhoLVy4UBEREQoJCUnT8c2YMUPbtm3TmjVr9P7776tWrVqaOHGiKleurLVr16Ypzexg69atGjt2bK78gjcr5YXzumnTJp07d06PPPJIVmcl28mt13/nzp26//77dfXqVc2aNUuzZs1SbGysmjdvrm3btiW7jSufDY888og+++wzjR49WitXrlS9evXUrVu3ZJ/pqYkFAADu5ZXVGQAAALnPsmXLbP/v1auXmjZtql69eqU6nUOHDikuLk5PPPGEwsPDU4z7559/lC9fvrRk1e327Nkjq9WqDh062JY1atRI8fHxeuKJJ7R3717VqFEjQ/fv7++vSpUqSZLmzp2rvn37qkaNGpo/f77CwsKSbBMQEKBx48bpxo0bmjBhgjw8PDR79mw99thjGZbPrPD333/rxo0bKly4cLrTKl++vBo2bJji+i1btmjAgAFq166dvvnmG/n4+NjWPfDAAxo4cKC+/vpr+fv7p3rfbdu2VVhYmD799FMNGDAgyfovv/xSV69eVd++fVOddqJq1aqpbt26tvePPvqonnvuOd1777165JFHdPjw4TQ3yuQU2em5gqz3zTffqG7duipVqlSG7YN7LvOdPn1aAQEBCgoKSrJu5MiRKlCggFatWmW7Li1atFDZsmU1fPjwZHueOPtsWLFihdasWaM5c+aoW7dukqRmzZrpjz/+0PPPP6+uXbvK09Mz1bEAAMD96HECAABcsnnzZrVq1UpWq1XBwcFq166dDh8+nGH769Wrl+69915JUteuXWWxWNS0aVPbUCh79uxRp06dFBwcrHLlytnls3nz5goMDFS+fPnUuHFjLV++3C7txDT279+vzp07y2q1qmDBgho6dKji4+P122+/qU2bNgoMDFTp0qX11ltvuZzv3bt3q1atWkmWnzx5UpJUuXLlNJwNacqUKVq0aFGq9j98+HB169ZNjz/+uDZu3Jhso4kk/fTTT7rnnnu0Z88ePfjgg+rTp4/eeOMNtWvXzumQM67eF+6+f9q3b6+6devqk08+Uc2aNeXv768SJUpo9OjRunHjRrLb7N+/X3fddZfatm2rzz//XJcuXUrz/p0ZP368PD099fHHH9s1mtyuc+fOSa7J4cOH1b17dxUtWlS+vr6qXLmy3n//fbsYT09P9ezZU7t379ZPP/2UJN0ZM2bYjtOdSpYsqbfffluXLl3Sxx9/bFvuyt/cwYMHZbFY9PXXX9uW7d69WxaLRVWrVrWL7dChg63HVOLf6sGDB9WtWzdZrVaFhISoT58+io6Ottvu3Llzeuqpp1SiRAn5+vqqSJEiatKkia2HzJgxY/T8889LksqUKWMbRue7775z+lxx5bocOXJEvXv3Vvny5ZUvXz4VK1ZM7du3T3KNMur5k5ju3r179cgjjygoKEhWq1VPPPGEzp07l+w2Z86ccXpenV1fR+fV1TRuz787rnVy0noPSpIxRgsXLtSjjz6aYvq3O3HihNNr4I57LiM/yxYtWiSLxaJ169YlWffhhx/a9uvo+sfGxqp27dq6++677a5hVFSUQkND1bRpUyUkJLiUn5SGwbJYLDp27JjLxyXdHLryP//5j1q0aKHixYvr999/TzZuy5Ytatq0qV1jVmBgoO6//35t3bpVp0+fTtV+JWnhwoXKnz+/OnfubLe8d+/eOnXqlHbs2JGm2PTeCxl5LwEAkGMZAAAAJ0aPHm08PDxMnz59zPLly80333xjqlevbkqUKGEuXbqUIfs8cuSIef/9940kM378eLNt2zZz8OBBM3r0aCPJlCpVyrz44otmzZo1ZtGiRcYYY7777jvj7e1t6tSpY+bNm2cWLVpkWrVqZSwWi5k7d67d8UgyFStWNK+99ppZs2aNeeGFF4wkM2jQIFOpUiXz3nvvmTVr1pjevXsbSWb+/PlO8/zXX38ZSWbw4MEmLi7OxMXFmTNnzpjPP//cBAYGmieffDLN56N79+7G29vbLFy40On+u3btah544AHj6+trPvnkE6dpnzhxwixdutQYY8zAgQPNjBkzTHx8vJk5c6a5fv16itu5el9kxP1z1113mYCAAFO5cmUza9Yss3r1avPYY48ZSSke89WrV83s2bNN+/btjY+Pj/Hz8zOdOnUy8+fPN7GxsS7td8OGDUaSKVq0qPH09DSBgYGmVatW5vvvv7fFxMfHG39/f9OoUaNUHdPBgweN1Wo11atXN59//rlZvXq1GTZsmPHw8DBjxoyxiz18+LCxWCxmyJAhSdKQZF566aVU7TvRjBkzjCSzc+fOZNdfvnzZeHp6mubNmxtjXP+bM+bmNXvqqads7998803j7+9vJJk///zTGGNMXFycCQoKMi+88IIxxv5vddSoUWbNmjXmnXfeMb6+vqZ379526bdu3doUKVLE/N///Z/57rvvzKJFi8yoUaNs+Thx4oR55plnjCSzYMECs23bNrNt2zYTHR3t8Lni6nXZuHGjGTZsmPnmm2/Mxo0bzcKFC81DDz1k/P39za+//mqLy6jnz+3H8Pzzz5tvv/3WvPPOOyYgIMDUrl3b7m/Z1fPqyvV1dF5Tc4+481qnJC33oDHGbN682Ugyhw4dcvs1SM89l1H3UuJ5KFq0qHn88ceTrKtfv7655557jDHOr/+hQ4dMYGCgeeSRR4wxxiQkJJgHHnjAFC1a1Jw6dcqlvBhjbOkmvtavX2+KFStmQkNDbfty5MqVK2bu3LmmQ4cOxsfHx/j7+5tHH33UfP311+batWvJbuPj42N69OiRZHm3bt2MJPPtt9/alrny2WCMMQ0bNjT16tVLkuaBAweMJPPxxx+nKTa990JG3ksAAORUNJwAAACHli5daiSZt956y275oUOHjCTzxRdfJNmmTZs2JiAgINnXG2+84fK+E7+I+Prrr23LEiv3o0aNShLfsGFDU7RoUbsv4+Pj4021atVM8eLFzY0bN+zSePvtt+22r1Wrlu3Ln0RxcXGmSJEiti99HFm9erWRlOTl5eVlXn/9dZePOznx8fFOG09u37+fn5/Zvn17qveT2HDijKv3RVruH2dOnjxpJJmyZcuaixcv2pZfv37dhIaGmoiICKdpXLhwwXz66aemVatWxsvLy1itVtOrVy/z7bffmvj4+BS327Nnj3n22WfNwoULzaZNm8ynn35qKleubDw9Pc2qVauMMcZERUUZSeaxxx5Lsn18fLytUS0uLs52Txpz88vg4sWLJ/kScNCgQcbPz8/8/fffdsvDw8NN4cKF7b6MHTZsmEtf8KbEWcOJMcaEhISYypUrG2Nc/5szxpgnnnjClC1b1va+RYsWpl+/fiY4ONh89tlnxhhjtmzZYiSZ1atXG2P+97d65/0zYMAA4+fnZ5d+/vz5kzQk3WnSpElGkjl69KjdckfPldRel9vPw/Xr10358uXNc889l2Rf7n7+JKZ7+76MMWb27NlJ/tZcPa+uXt+Uzmtq0nD3tU5OWu5BY4wZMmSIqV69utP003IN0nPPZdS9lGjo0KHG39/f7jn7888/G0lm2rRptmWOrr8xxsybN89IMlOnTjWjRo0yHh4educ3teLj403Hjh1N/vz5ze7du1OMu379ulm2bJnp3r27CQgIMD4+PiYiIsJ88cUXLjXa16pVy1SoUMEkJCTYlsXFxZmyZcsaSWbOnDm25a58NhhjTPny5U3r1q2T7OvUqVO2H4qkJTa990JG30sAAOREDNUFAAAcGjVqlMqVK6dnn31W8fHxtleZMmXk7++f7BAXK1eu1OXLl5N9vfzyy27J151Dply5ckU7duxQp06dlD9/fttyT09PRUZG6uTJk/rtt9/stomIiLB7X7lyZVksFrshjry8vHT33Xfrjz/+cJqn3bt3S5IWLFignTt3aufOnVq1apXatWunUaNGacGCBclu99dffzkchsRiscjLy0tz5sxRXFycunTpojNnzqS4/8jISMXGxmrTpk1O83yn6dOnuzQfjav3RVruH2d27twp6ebQIlar1bbc29tbd999t9PhxSSpQIEC6t27t7799ludPn1ab775po4ePao2bdooLCwsxXzVrl1bU6dO1UMPPaT77rtPvXv31tatW3XXXXfphRdecLrfOnXqyNvb2/Z6++23JUmxsbFat26dHn74YeXLl8/uXD344IOKjY3V9u3b7dLq27ev/vrrLy1ZskSSFB8fry+++EL33Xefypcv7zQvaWWMkZT6v7nmzZvr999/19GjRxUbG6vNmzerTZs2atasmdasWSNJWrt2rXx9fW3D9CW6fc4gSapRo4ZiY2N19uxZ27L69etr5syZev3117V9+3bFxcWl+tjufK6k5rrEx8dr/PjxqlKlinx8fOTl5SUfHx8dPnxYv/zyS5J9ufv5k+jxxx+3e9+lSxd5eXlpw4YNSWIdnde0PFPvlJY0MvJap/UeXLBggcvDdEmpuwbpuecSZdS91KdPH129elXz5s2zLZsxY4Z8fX3VvXt3l9Pp0qWLnn76aT3//PN6/fXX9fLLL6tly5Yub3+nQYMGafny5fr66691zz33JBuzf/9+hYaGqmPHjvrrr7/03nvv6cyZM1q6dKkef/xxu/sxJc8884wOHTqkQYMG6c8//9SJEyf0r3/9y3YOPTz+93VKaj4bLBZLivu8c11qYqX03wsZdS8BAJAT0XACAABSFBUVpb179+q///2vfH197b7w9fb21tWrV1WgQIEsydtdd91l9/7ChQsyxiRZLsk2j8T58+ftlhcsWNDuvY+Pj/Llyyc/P78ky2NjY53mKXFi9g4dOqhu3bqqW7euWrdurblz58rT01OffPJJstsFBgbqk08+cfpK/IKtY8eOKlSoULL79/Pz06effqrIyEi99NJLti/V3cnV+yKj7p9du3bJ29s7ybjvknTq1CmVKFEiVenFxMTo4sWLio6OljFGBQoUkJeXl8vbFyhQQBEREdq/f7+uXr2qwoULy9/fP9kvlebMmaOdO3cmuS7nz59XfHy8pk2bluQ8Pfjgg5KUpEGoU6dOslqtmjFjhqSbEwmfOXMmXZPCO3PlyhWdP39eYWFhqf6ba9GihaSbX0xv3rxZcXFxeuCBB9SiRQvbPApr165VkyZN5O/vb5fenfe7r6+vJOnq1au2ZfPmzVPPnj3173//W40aNVLBggXVo0cPRUVFuXx8dx5Laq7L0KFDNXLkSD300ENaunSpduzYoZ07d6pmzZp2+Uzk7udPotDQULv3Xl5eKlSoUJLnn+T4vKblmXqntKSRkdc6LffgDz/8oOPHj6eq4SQ11yA991yijLqXqlatqnr16tmeMQkJCfriiy/UsWPHJPt0pk+fPoqLi5OXl5cGDx6cqm1v9/rrr+ujjz7Sxx9/rDZt2qQY5+3tLavVqoSEBEVHRys6OlqXL19OdZ7ffPNNzZo1S8WLF1fJkiX1888/a/jw4ZKkYsWKOdz+zs8GSSneB3///bck+2uZmthE6b0XMupeAgAgJ3K9RggAAPKcEydOSLo5MfmdvwBPdPtktpnpzl9aBgcHy8PDI9nJWk+dOiVJKly4cIbmac+ePapevbo8PT3tlnt7e8vT0zPZL0+lm18MPvnkkw7TXr58uZYtW6ZOnTrpyy+/TPaL/T179qhmzZry8vLSJ598YptcePPmzclOWJ9Wrt4XR44ccSkutXbt2qXChQsn+SJnx44d+v333zVy5EinaZw4cUJff/215s6dq507d6pYsWLq2rWrPvnkE9WtWzfVeUrshWGxWOTp6akHHnhAq1ev1unTp+2+GK1SpYokJZnMODg42PYr/IEDBya7jzJlyti99/f3V7du3fTJJ5/o9OnT+vTTTxUYGJhsg5K7LF++XAkJCWratGmq/+aKFy+uChUqaO3atSpdurTq1q2rAgUKqHnz5howYIB27Nih7du3a+zYsWnKW+HChTV16lRNnTpVx48f15IlS/TSSy/p7NmzWrVqlUtpJPdccfW6fPHFF+rRo4fGjx9vt/6vv/7K1AbmqKgouy904+Pjdf78+WQbWx1xxzM1o57Lab3WabkH58+frwoVKqhatWou5y811yA991xm6N27twYMGKBffvlFv//+u06fPq3evXunKo0rV64oMjJSFSpU0JkzZ/Tkk09q8eLFqc7LzJkzNXLkSI0ZM0Z9+vRxGFu5cmX9/vvv2rZtm+bMmaM333xTw4YNU5MmTdS1a1d16tQpSQNXcl588UUNGTJEhw8fVmBgoEqVKqX+/fsrICBAderUcbr97Z8NklS9enV9+eWXio+Pt/sc/+mnnyTJ7j5LTSwAAHA/Gk4AAECKEn95aLFY0vRlcmYKCAhQgwYNtGDBAk2ePNn2a+EbN27oiy++sH1hllGio6P1+++/q3nz5knWLV68WLGxsbr//vvTnP6kSZPUvn37FBtNEvffqlUrSTcbYxYuXKj69eurQ4cO+uGHH1z6ksgVrt4XGXX/7Nq1S9HR0bp48aLtC+mEhAS9+OKLKl26dIpDyFy6dEkzZ87UvHnztHXrVgUHB+vRRx/VxIkTFR4ebjfsSmpcuHBBy5YtU61atWyNOSNGjNDKlSv1r3/9S9988428vb0dppEvXz41a9ZMe/fuVY0aNeTj4+PSvvv27auPPvpIkyZN0ooVK9SrVy/ly5cvTcfhzPHjxzV8+HBZrVbbF4ep/Ztr0aKFvvrqK5UoUULt2rWTJFWoUEElS5bUqFGjFBcXZ+sVkB4lS5bUoEGDtG7dOm3ZssW2PLneC46k5rpYLBZb+omWL1+uP//8U3fffXcajiJtZs+ebfeF7ldffaX4+Hg1bdo0Vemk5vqmdF4z47mc0rVOSWrvwfnz56tLly6pylN6rkFanwUZpVu3bho6dKhmzpyp33//XcWKFbN9ziRy9nf1r3/9S8ePH9cPP/ygX3/9VZ06ddKUKVP03HPPuZyPVatWqV+/furTp49Gjx7t8naNGjVSo0aNNHXqVK1bt05z5szRK6+8omeffVbh4eHq2rWrevTokaSX253Hl9hIcfz4cc2bN0/9+vVzuI2U/GfDww8/rE8++UTz589X165dbbGfffaZwsLC1KBBA9uy1MQCAAD3o+EEAACkqFy5cmrWrJleffVVXb58WQ0aNJAxRqdPn9aGDRvUs2fPVH8Zl5EmTJigli1bqlmzZho+fLh8fHz0wQcf6MCBA/ryyy8djhWeXnv27JExRgEBAbbx5y9cuKCtW7dqypQpqlGjhm14j7RYunSp/P39UxxCKnH/t39ZFxoaqsWLF+vee+9Vhw4dtHHjRqdf9LjC1fsitfePxWJReHi4vvvuuxT3ffToUZ0/f14lS5ZU586dNWzYMMXGxuq9997T7t279d1336X4RePu3bv10ksvqUOHDlq0aJHatm3rtEHjTt27d1fJkiVVt25dFS5cWIcPH9bbb7+tM2fOaObMmba4Jk2a6P3339czzzyje+65R0899ZSqVq1q+/X9/PnzJUlBQUG2bd59913de++9uu+++/T000+rdOnSunTpko4cOaKlS5dq/fr1SfJTt25d1ahRQ1OnTpUxJsVhulw5t7c7cOCAbV6Fs2fP6vvvv9eMGTPk6emphQsXqkiRIpJS/zfXvHlzffDBB/rrr780depUu+UzZsxQcHCwS7/ivlN0dLSaNWum7t27q1KlSgoMDLTNMfTII4/Y4qpXry7p5rnu2bOnvL29VbFiRYdpu3pdIiIiNHPmTFWqVEk1atTQ7t27NWnSJBUvXjzVx5MeCxYskJeXl1q2bKmDBw9q5MiRqlmzZqq//Jdcv74pndfAwEC3P5ddvdYpSc09uG/fPv33v/9N1TBdUvqvQVqeBRmlQIECevjhhzVz5kxdvHhRw4cPT9LI7Oj6//vf/9YXX3yhGTNmqGrVqqpataoGDRqkF198UU2aNFH9+vWd5uHo0aPq3LmzypYtq969eyeZ46V27dpJGi3v5OnpqVatWqlVq1b66KOPtHz5cs2ZM0dDhgxRgwYNku2VeeDAAc2fP19169aVr6+vfvzxR7355psqX768XnvtNbtYVz8b2rZtq5YtW+rpp59WTEyM7r77bn355ZdatWqVvvjiC7seq6mJBQAAGSArZqQHAAA5R3R0tBkxYoSpUKGC8fPzM8HBwaZmzZrmmWeeMRcuXMjQfW/YsMFIMl9//bVt2ejRo40kc+7cuWS3+f77780DDzxgAgICjL+/v2nYsKFZunSpXUxKafTs2dMEBAQkSTM8PNxUrVrVYV4nT55sJNm9AgICTO3atc0bb7xhrly54uphp0ni/vfs2ZNk3ddff20sFovp3LmzuXHjhlv25+p94WrcpUuXjCTz2GOPOdzvV199ZSSZrVu3msjISBMUFGQCAwNNx44dzc8//+w0z5cvX07PYZsJEyaYWrVqGavVajw9PU2RIkXMww8/bH744Ydk4/ft22d69+5typQpY3x9fY2fn5+5++67TY8ePcy6deuSxB89etT06dPHFCtWzHh7e5siRYqYxo0bm9dffz3FPL377rtGkqlSpUqy6109t8YYM2PGDLt72MfHxxQtWtSEh4eb8ePHm7NnzybZxpW/uUQXLlwwHh4eJiAgwFy/ft22fPbs2UaSeeSRR+ziU/pbTczn0aNHjTHGxMbGmn/961+mRo0aJigoyPj7+5uKFSua0aNHJ/nbGzFihAkLCzMeHh5GktmwYYPT54or1+XChQumb9++pmjRoiZfvnzm3nvvNd9//70JDw834eHhTo8pPc+f29PdvXu3ad++vcmfP78JDAw03bp1M2fOnEnTeTXG9eub3HlNTRoZca2Tk5p78NVXXzWlSpVymuadx5Cea5DIlXsuo+6lO61evdr2TDh06FCyMcld//379xt/f3/Ts2dPu9jY2FhTp04dU7p0aZfKEYllgZRet9+vqeXoc+G3334z999/vylYsKDx8fExd999t3n11VeTjU/NZ8OlS5fM4MGDTWhoqPHx8TE1atQwX375ZbJ5cDU2vfdCZt1LAADkJBZjbg26CQAAAGSRFStWKCIiQj/++KPt18vJeeGFF/TBBx8oOjqaX9u6yNVzi5xtzJgxGjt2rM6dO5fh8znlFVWqVFHbtm319ttvZ3VWAAAAkMkYqgsAAABZbsOGDXrsscecfrG/a9cu3XPPPTSapIKr5xaAvZ9//jmrswAAAIAsQsMJAAAAstykSZOcxhhjtGfPHvXp0ycTcpR7uHJuAeQt8fHxDtd7eHgkmcskL+QFAAAgEUN1AQAAAACQRxw7dkxlypRxGDN69GiNGTMmT+UFAADgdjScAAAAAACQR1y/fl379+93GBMWFqawsLA8lRcAAIDb0XACAAAAAAAAAABwCwOFAgAAAAAAAAAA3ELDCQAAAAAAAAAAwC00nAAAAAAAAAAAANxCwwkAAAAAAAAAAMAtNJwAAAAAAAAAAADcQsMJAAAAAAAAAADALTScAAAAAAAAAAAA3ELDCQAAAAAAAAAAwC00nAAAAAAAAAAAANxCwwkAAAAAAAAAAMAtNJwAAAAAAAAAAADcQsMJAAAAAAAAAADALTScAAAAAAAAAAAA3ELDCQAAAAAAAAAAwC00nAAAAAAAAAAAANxCwwkAAAAAAAAAAMAtNJwAAAAAAAAAAADcQsMJAAAAAAAAAADALTScAAAAAAAAAAAA3ELDCQBJ0rx581S1alX5+/vLYrFo3759WZ2lZI0ZM0YWiyWrs5Ft9OrVS6VLl87qbGS4FStWaMyYMVmdDTvHjh2TxWLRzJkzncZmxn2bmvy4qnTp0urVq5fb0rvTBx984Nb8AgCAzDFz5kxZLBYdO3YsQ9KnjJC8jC6bZRfZ8fqn5p5v2rSpmjZtmm3y44qMqEvc7p9//tGYMWP03XffZUj6AJARaDgBoHPnzikyMlLlypXTqlWrtG3bNlWoUCGrswXYrFixQmPHjs3qbNi56667tG3bNrVr1y6rs5JjZcdKMQAAyHqUEfK27Hj927Vrp23btumuu+7K6qzkSP/884/Gjh1LwwmAHMUrqzMAIOsdOnRIcXFxeuKJJxQeHp7V2cmV/vnnH+XLly+rs5HjuPO8ufsa+Pr6qmHDhm5LD47FxcXJYrHIyytvFl2uXr0qf3//rM4GAABwwhij2NhYPrfTwF3l9Yy4BkWKFFGRIkXclh4cy8v154SEBMXHx8vX1zerswLkefQ4AfK4Xr166d5775Ukde3aVRaLxa5b8ZIlS9SoUSPly5dPgYGBatmypbZt25YkjeSGi0pueCKLxaJBgwZp1qxZqly5svLly6eaNWtq2bJlSbZfvny5atWqJV9fX5UpU0aTJ09O1bGtXbtWzZs3V1BQkPLly6cmTZpo3bp1yebx4MGD6tatm6xWq0JCQtSnTx9FR0fbxRpj9MEHH6hWrVry9/dXcHCwOnXqpN9//90urmnTpqpWrZo2bdqkxo0bK1++fOrTp48k6eTJk+rUqZMCAwNVoEABPf7449q5c6ddt+hZs2bJYrEkOc+SNG7cOHl7e+vUqVMpHndsbKxGjBihMmXKyMfHR8WKFdPAgQN18eJFu7j169eradOmKlSokPz9/VWyZEk9+uij+ueff2wxH374oWrWrKn8+fMrMDBQlSpV0ssvv+zwvNerVy9JL4zq1avLYrFo586dtmULFiyQxWLRTz/9JOl/12LPnj3q1KmTgoODVa5cOfXq1Uvvv/++pJv3T+LLUbd0R9cgJiZGw4cPtzs/Q4YM0ZUrV+zS+Prrr9WgQQNZrVbly5dPZcuWtaUhpdyd3ZX71lFXeIvFYjcs2ZEjR9S7d2+VL19e+fLlU7FixdS+fXvbeUsLV89Bera9ceOGpk2bZvt7KVCggBo2bKglS5ZIujnUxMGDB7Vx40bbNU18jnz33XeyWCyaNWuWhg0bpmLFisnX11dHjhyRJH366aeqWbOm/Pz8VLBgQT388MP65Zdf7Pbfq1cv5c+fX0eOHNGDDz6o/Pnzq0SJEho2bJiuXbvm0nmaN2+eGjVqpICAAOXPn1+tW7fW3r1707yf69ev6/XXX1elSpXk6+urIkWKqHfv3jp37pxdXOnSpRUREaEFCxaodu3a8vPzs/W4OnjwoFq1aqV8+fKpSJEiGjhwoJYvXy6LxWL7Bd9rr70mLy8vnThxIskx9enTR4UKFVJsbKxL5wAAgNRw5TP6999/12OPPaawsDD5+voqJCREzZs3tw0V7KiMkJLUltN37typ++67z1bGe/PNN3Xjxg27WFfLPIn1m48++kiVK1eWr6+vPvvsM0nS5s2b1ahRI/n5+alYsWIaOXKk/v3vf9uVZfv27auCBQvalcETPfDAA6patarDYz9+/LieeOIJFS1aVL6+vqpcubLefvvtJMfjrFz/zz//2I438frVrVtXX375ZYr7jomJkZeXlyZNmmRb9tdff8nDw0NWq1Xx8fG25YMHD1aRIkVkjJGUcnk9Ldff0TU4fPiwunfvbnd+EusWiW7cuKHXX39dFStWtJVba9SooXfffdcWk9zQWMYYvfXWWypVqpT8/Px0zz33aOXKlUnyl9KwWoll3tt7YaxZs0YdO3ZU8eLF5efnp7vvvlv9+/fXX3/95fAcOOLKOUjvthcvXtSwYcNUtmxZ+fr6qmjRonrwwQf166+/6tixY7ZGp7Fjx9qua+KwcynVAyXX67aJ5edVq1bpnnvukb+/vypVqqRPP/3UpeNMbTndlf1ERUWpf//+Kl68uHx8fFSmTBmNHTvW7u8isV741ltv6fXXX1eZMmXk6+urDRs2SJIWL16sGjVqyNfXV2XLltW7776b5HuW5s2bq1KlSra/rUTGGN19992MkACkhwGQpx05csS8//77RpIZP3682bZtmzl48KAxxpjZs2cbSaZVq1Zm0aJFZt68eaZOnTrGx8fHfP/997Y0evbsaUqVKpUk7dGjR5s7HzOSTOnSpU39+vXNV199ZVasWGGaNm1qvLy8zH//+19b3Nq1a42np6e59957zYIFC8zXX39t6tWrZ0qWLJkkzeTMmjXLWCwW89BDD5kFCxaYpUuXmoiICOPp6WnWrl2bJI8VK1Y0o0aNMmvWrDHvvPOO8fX1Nb1797ZLs1+/fsbb29sMGzbMrFq1ysyZM8dUqlTJhISEmKioKFtceHi4KViwoClRooSZNm2a2bBhg9m4caO5fPmyufvuu03BggXN+++/b7799lvz3HPPmTJlyhhJZsaMGcYYY65du2ZCQ0PN448/brf/uLg4ExYWZjp37pziub9x44Zp3bq18fLyMiNHjjSrV682kydPNgEBAaZ27domNjbWGGPM0aNHjZ+fn2nZsqVZtGiR+e6778zs2bNNZGSkuXDhgjHGmC+//NJIMs8884xZvXq1Wbt2rfnoo4/M4MGDHZ77l156yeTPn99cv37dGGNMVFSUkWT8/f3NG2+8YYt7+umnTUhISJJrUapUKfPiiy+aNWvWmEWLFpkjR46YTp06GUlm27ZttlfisSQnpWtw5coVU6tWLVO4cGHzzjvvmLVr15p3333XWK1W88ADD5gbN24YY4zZunWrsVgs5rHHHjMrVqww69evNzNmzDCRkZG2fRw9etTuuhnj+n2b3LaJJJnRo0fb3m/cuNEMGzbMfPPNN2bjxo1m4cKF5qGHHjL+/v7m119/dSnN27l6DowxplSpUqZnz55p2jYyMtJYLBbz5JNPmsWLF5uVK1eaN954w7z77rvGGGP27NljypYta2rXrm27pnv27DHGGLNhwwYjyRQrVsx06tTJLFmyxCxbtsycP3/ejB8/3kgy3bp1M8uXLzeff/65KVu2rLFarebQoUO2/ffs2dP4+PiYypUrm8mTJ5u1a9eaUaNGGYvFYsaOHevwHBljzBtvvGEsFovp06ePWbZsmVmwYIFp1KiRCQgIsD0jU7OfhIQE06ZNGxMQEGDGjh1r1qxZY/7973+bYsWKmSpVqph//vnH7rzfddddpmzZsubTTz81GzZsMD/88IM5deqUKVSokClZsqSZOXOmWbFihYmMjDSlS5c2ksyGDRuMMcacOXPG+Pr6mldeecXumM6fP2/8/f3N888/7/T4AQBwZMaMGUaSOXr0qG2Zq5/RFStWNHfffbeZNWuW2bhxo5k/f74ZNmyY7XPMURkhJakppxcqVMiUL1/efPTRR2bNmjVmwIABRpL57LPPbHGpKfMklllq1Khh5syZY9avX28OHDhgfvzxR+Pn52dq1Khh5s6da5YsWWIefPBB2+d24rn78ccfjSTzySef2B3TwYMHjSTz/vvv25bdWTY7e/asKVasmClSpIj56KOPzKpVq8ygQYOMJPP000/b4lwp1/fv39/ky5fPvPPOO2bDhg1m2bJl5s033zTTpk1zeO4bNmxoWrVqZXs/d+5c4+fnZywWi9myZYtteeXKlU2XLl3srkVy5fW0XP+UrsHBgweN1Wo11atXN59//rlZvXq1GTZsmPHw8DBjxoyxbT9hwgTj6elpRo8ebdatW2dWrVplpk6daheT3D2fWH/p27evWblypfm///s/U6xYMRMaGmrCw8MdbmvM/8q8ife+McZ8+OGHZsKECWbJkiVm48aN5rPPPjM1a9Y0FStWtNWvHKV5J1fPQXJ1CVe3jYmJMVWrVjUBAQFm3Lhx5ttvvzXz5883zz77rFm/fr2JjY01q1atsp2rxOt65MgRu/N4Zz3Q1bqtMTf/NooXL26qVKliPv/8c/Ptt9+azp07G0lm48aNDs9Rasvpruzn9OnTpkSJEqZUqVLm448/NmvXrjWvvfaa8fX1Nb169Upy3osVK2aaNWtmvvnmG7N69Wpz9OhRs3LlSuPh4WGaNm1qFi5caL7++mvToEED2zMk0eLFi40ks2bNGrvjWr58uZFkli9f7vD4AaSMhhMAtgLb119/bVuWkJBgwsLCTPXq1U1CQoJt+aVLl0zRokVN48aNbctS23ASEhJiYmJibMuioqKMh4eHmTBhgm1ZgwYNTFhYmLl69aptWUxMjClYsKDThpMrV66YggULmvbt29stT0hIMDVr1jT169dPkse33nrLLnbAgAHGz8/PVinatm2bkWTefvttu7gTJ04Yf39/88ILL9iWhYeHG0lm3bp1drGJDVQrV660W96/f/8khdTRo0cbHx8fc+bMGduyefPmJSmQ3XnuEwukdx5P4rb/93//Z4wx5ptvvjGSzL59+0xKBg0aZAoUKJDi+pSsXbvWSDKbNm0yxhjzxRdfmMDAQDNgwADTrFkzW1z58uVN9+7d7Y5Zkhk1alSSNAcOHOhSg1milK7BhAkTjIeHh9m5c6fd8sTzsWLFCmOMMZMnTzaSzMWLF1PcR3KVC1fv29Q0nNwpPj7eXL9+3ZQvX94899xzLqV5O1fPgTFJK+eubrtp0yYjKckX93eqWrWqXaUyUeIz6f7777dbfuHCBePv728efPBBu+XHjx83vr6+dvdTz549jSTz1Vdf2cU++OCDpmLFig7zdfz4cePl5WWeeeYZu+WXLl0yoaGhdpV+V/eT+IXF/Pnz7eJ27txpJJkPPvjAtqxUqVLG09PT/Pbbb3axzz//vLFYLHYNN8YY07p16ySV7p49e5qiRYuaa9eu2ZZNnDjReHh4OK1gAwDgzJ1f2rr6Gf3XX38ZSWbq1KkO00+pjJCctJTTd+zYYRdbpUoV07p1a9v71JSXJBmr1Wr+/vtvu9jOnTubgIAAc+7cOduyhIQEU6VKlSRfeIeHh5tatWrZbf/000+boKAgc+nSJduyO8tmL730UrLH8/TTTxuLxWIrS7hSrq9WrZp56KGHHMYk59VXXzX+/v62L7GffPJJ06ZNG1OjRg3bj0j+/PNPu7pI4jEnV143JnXX35iUr0Hr1q1N8eLFTXR0tN3yQYMGGT8/P1t8REREkvN/p+TueT8/P/Pwww/bxW3ZssVISnPDye1u3Lhh4uLizB9//GEkmcWLFztN806unoPk6hKubjtu3Lhkv7i/3blz51Ks56RUD3S1bmvMzb8NPz8/88cff9iWXb161RQsWND0798/xXwZk/pyuiv76d+/v8mfP79dnDH/q2cmlucTz3u5cuXsGsaMMaZevXqmRIkSduX5S5cumUKFCtnVLRMSEkzZsmVNx44d7bZv27atKVeunF1DL4DUYaguAMn67bffdOrUKUVGRsrD43+Pivz58+vRRx/V9u3bk+1O7opmzZopMDDQ9j4kJERFixbVH3/8IUm6cuWKdu7cqUceeUR+fn62uMDAQLVv395p+lu3btXff/+tnj17Kj4+3va6ceOG2rRpo507dybpYt+hQwe79zVq1FBsbKzOnj0rSVq2bJksFoueeOIJuzRDQ0NVs2bNJJPcBQcH64EHHrBbtnHjRgUGBqpNmzZ2y7t165bkGJ5++mlJ0ieffGJbNn36dFWvXl33339/ise+fv16SbJ1e07UuXNnBQQE2IYqq1Wrlnx8fPTUU0/ps88+SzKMgSTVr19fFy9eVLdu3bR48WKXu4c3adJEfn5+Wrt2raSb3c2bNm2qNm3aaOvWrfrnn3904sQJHT58WC1atEiy/aOPPurSfpxJ7hosW7ZM1apVU61ateyuY+vWre26yderV0+S1KVLF3311Vf6888/ne4vvfdtSuLj4zV+/HhVqVJFPj4+8vLyko+Pjw4fPpxk6AtXuHoO0rNt4hAFAwcOTMsh29x5L2zbtk1Xr15Ncn+XKFFCDzzwQJKh+CwWS5JzX6NGDduzJiXffvut4uPj1aNHD7vj9PPzU3h4eJJz5Mp+li1bpgIFCqh9+/Z2adaqVUuhoaFJ0qxRo4YqVKhgt2zjxo2qVq2aqlSpYrc8uWfIs88+q7Nnz+rrr7+WdHMIig8//FDt2rVzOtwFAACp5epndMGCBVWuXDlNmjRJ77zzjvbu3ZtkSKnUSm05PTQ0VPXr17dbltzndmrKSw888ICCg4Ptlm3cuFEPPPCAChcubFvm4eGhLl26JDmGZ599Vvv27dOWLVsk3RwCa9asWerZs6fy58+f4rGvX79eVapUSXI8vXr1kjHGVjdwpVxfv359rVy5Ui+99JK+++47Xb16NcX93q558+a6evWqtm7dKunmcMktW7ZUixYttGbNGtsySUnK/smV19PqzmsQGxurdevW6eGHH1a+fPnsruODDz6o2NhYbd++XdLNY//xxx81YMAAffvtt4qJiXG6v23btik2NlaPP/643fLGjRurVKlSaT6Os2fP6l//+pdKlCghLy8veXt729JLbdk/NecgPduuXLlSFSpUSLZulxp3lv1drdsmqlWrlkqWLGl77+fnpwoVKjgt+6e2nO7KfpYtW6ZmzZopLCzMLs22bdtKuvl8uF2HDh3k7e1te3/lyhXt2rVLDz30kHx8fGzL8+fPn6Te4eHhoUGDBmnZsmU6fvy4JOm///2vVq1apQEDBiQZPh2A62g4AZCs8+fPS5LuuuuuJOvCwsJ048YNXbhwIU1pFypUKMkyX19fW+H8woULunHjhkJDQ5PEJbfsTmfOnJEkderUSd7e3naviRMnyhijv//+22GeEidiS8zTmTNnZIxRSEhIkjS3b9+epPKR3Hk7f/68QkJCkixPaVnXrl318ccfKyEhQfv379f333+vQYMGOTz28+fPy8vLK8nEhRaLRaGhobbrWq5cOa1du1ZFixbVwIEDVa5cOZUrV85uHN/IyEh9+umn+uOPP/Too4+qaNGiatCgga0ClBI/Pz81adLEVkFat26dWrZsqaZNmyohIUHff/+9LY3kCtfJnbu0SC6dM2fOaP/+/UmuYWBgoIwxtut4//33a9GiRbYvz4sXL65q1ao5HOM5vfdtSoYOHaqRI0fqoYce0tKlS7Vjxw7t3LlTNWvWdLlCeztXz0F6tj137pw8PT3TddxS0mvo7LmUuD5Rvnz57BqxpJt/287m90h8htSrVy/Jsc6bNy/JOXJlP2fOnNHFixfl4+OTJM2oqCi3P0Nq166t++67zzYG9bJly3Ts2DGnzxAAANLC1c9oi8WidevWqXXr1nrrrbd0zz33qEiRIho8eLAuXbqUpn2ntpzurC6SmGZqykvp/dzu2LGjSpcubfvcnjlzpq5cueL0Ryjnz59P8ZwnrpdcK9e/9957evHFF7Vo0SI1a9ZMBQsW1EMPPaTDhw87zEPi/CRr167VkSNHdOzYMVvDyY4dO3T58mWtXbtWZcuWVZkyZey2dVe5P7m0zp8/r/j4eE2bNi3JdXzwwQclyXYdR4wYocmTJ2v79u1q27atChUqpObNm2vXrl0p7i/x3Lqz7H/jxg21atVKCxYs0AsvvKB169bphx9+sDVQpLbsn5pzkJ5tz507p+LFi6fpmG+X3DV0pW6byJW/7eSktpzu6jNk6dKlSdJLnLPI2TPkwoULtufanZJb1qdPH/n7++ujjz6SJL3//vvy9/e3m6MTQOp5ZXUGAGRPiYWB06dPJ1l36tQpeXh42H7R4+fnl+xky2mdwC44OFgWi0VRUVFJ1iW37E6Jv+qaNm2aGjZsmGxMcoUNZ2laLBZ9//33tkaV2925LLlfdRQqVEg//PBDkuUpHdOzzz6rWbNmafHixVq1apVtMnlHChUqpPj4eJ07d86ugGmMUVRUlK0nhSTdd999uu+++5SQkKBdu3Zp2rRpGjJkiEJCQvTYY49Jknr37q3evXvrypUr2rRpk0aPHq2IiAgdOnTI4S+pmjdvrlGjRumHH37QyZMn1bJlSwUGBqpevXpas2aNTp06pQoVKqhEiRJJtnXXL2KSS6dw4cLy9/dPcZLA238R2LFjR3Xs2FHXrl3T9u3bNWHCBHXv3l2lS5dWo0aNkmybmvs28Uv2O/9u7iz8S9IXX3yhHj16aPz48XbL//rrLxUoUCDZ43AkNecgrdsWKVJECQkJioqKSleF+M5r6Oy55CjvqZGYzjfffJOuXwzemWahQoW0atWqZNff3gtPSvkZktioc7uUniGDBw9W586dtWfPHk2fPl0VKlRQy5Yt05B7AAAcS81ndKlSpfSf//xHknTo0CF99dVXGjNmjK5fv2770i81UltOdzXN1JSX0vu57eHhoYEDB+rll1/W22+/rQ8++EDNmzdXxYoVHeazUKFCKZ7zO/PprFwfEBCgsWPHauzYsTpz5oyt90n79u3166+/ppgHHx8f3XvvvVq7dq2KFy+u0NBQVa9eXWXLlpV0cwL0devWKSIiIsm27vwl/J1pBQcHy9PTU5GRkSk2QCU25Hh5eWno0KEaOnSoLl68qLVr1+rll19W69atdeLECeXLly/Jton3fEpl/9t7+KZU9r+zvnzgwAH9+OOPmjlzpnr27GlbfuTIkZQO26HUnIP0bFukSBGdPHkyTXm8XXJlf1frtumR2nK6q2nWqFFDb7zxRrLrExs3EyV3/1osFpefIVarVT179tS///1vDR8+XDNmzFD37t3TVF8E8D80nABIVsWKFVWsWDHNmTNHw4cPt32QX7lyRfPnz1ejRo1sBcjSpUvr7NmzOnPmjK1B4vr16/r222/TtO+AgADVr19fCxYs0KRJk2wFzUuXLmnp0qVOt2/SpIkKFCign3/+2W2/ro6IiNCbb76pP//8M9nu9a4IDw/XV199pZUrV9q66ErS3Llzk42vU6eOGjdurIkTJ+rAgQN66qmnFBAQ4HAfzZs311tvvaUvvvhCzz33nG35/PnzdeXKFTVv3jzJNp6enmrQoIEqVaqk2bNna8+ePbaGk0QBAQFq27atrl+/roceekgHDx50+IVyixYt9PLLL2vkyJEqXry4KlWqZFu+ZMkSRUVFpWpIrtt7APn7+7u83Z0iIiI0fvx4FSpUKMVKQnL7Dg8PV4ECBfTtt99q7969yTacpOa+DQkJkZ+fn/bv32+3fPHixUnStVgsSSr8y5cv159//qm7777bpWO4XVrOQWq3bdu2rSZMmKAPP/xQ48aNSzHOlV+A3a5Ro0by9/fXF198oc6dO9uWnzx5UuvXr1enTp1cTsuR1q1by8vLS//973/dNnRcRESE5s6dq4SEBDVo0CBNaYSHh2vy5Mn6+eef7YbrSukZ8vDDD6tkyZIaNmyYNm7cqClTptBVHwCQIdL6GV2hQgW9+uqrmj9/vvbs2WNbnpoygjvK6cmlmdbyUqLw8HCtWLFCf/31l60B48aNG7ZhNO/05JNPasyYMXr88cf122+/aeLEiU730bx5c02YMEF79uzRPffcY1v++eefy2KxqFmzZkm2caVcHxISol69eunHH3/U1KlT9c8//yTbeJCoRYsWGjFihAIDA209ygMCAtSwYUNNmzZNp06dStUwTqktIyYnX758atasmfbu3asaNWrYDXfkSIECBdSpUyf9+eefGjJkiI4dO5ZkmFRJatiwofz8/DR79my78uLWrVv1xx9/2DWcJP5///79do1hS5YssUszsZx2Z9n/448/dinvd0rrOUjttm3bttWoUaO0fv36FIdeu3NEB1ekpW6bFu4opyeX5ooVK1SuXLkkw/i5IiAgQHXr1tWiRYs0efJk2/m/fPmyli1bluw2gwcP1gcffKBOnTrp4sWL9DQH3ICGEwDJ8vDw0FtvvaXHH39cERER6t+/v65du6ZJkybp4sWLevPNN22xXbt21ahRo/TYY4/p+eefV2xsrN577z0lJCSkef+vvfaa2rRpo5YtW2rYsGFKSEjQxIkTFRAQkGSYrTvlz59f06ZNU8+ePfX333+rU6dOKlq0qM6dO6cff/xR586d04cffpiq/DRp0kRPPfWUevfurV27dun+++9XQECATp8+rc2bN6t69eq2eUlS0rNnT02ZMkVPPPGEXn/9dd19991auXKlrYHp9rlkEj377LPq2rWrLBaLBgwY4DSfLVu2VOvWrfXiiy8qJiZGTZo00f79+zV69GjVrl1bkZGRkqSPPvpI69evV7t27VSyZEnFxsbaflGXWKnp16+f/P391aRJE911112KiorShAkTZLVanf66p06dOgoODtbq1avVu3dv2/IWLVrotddes9uPK6pXry5Jmjhxotq2bStPT89UF/4laciQIZo/f77uv/9+Pffcc6pRo4Zu3Lih48ePa/Xq1Ro2bJgaNGigUaNG6eTJk2revLmKFy+uixcv6t1335W3t7fCw8NTTN/V+zZxHO5PP/1U5cqVU82aNfXDDz9ozpw5SdKMiIjQzJkzValSJdWoUUO7d+/WpEmT0twd3tVzkJ5t77vvPkVGRur111/XmTNnFBERIV9fX+3du1f58uXTM888I+nmdZ07d67mzZunsmXLys/Pz3atk1OgQAGNHDlSL7/8snr06KFu3brp/PnzGjt2rPz8/DR69Og0nZM7lS5dWuPGjdMrr7yi33//XW3atFFwcLDOnDmjH374wfaLzNR47LHHNHv2bD344IN69tlnVb9+fXl7e+vkyZPasGGDOnbsqIcffthhGkOGDNGnn36qtm3baty4cQoJCdGcOXNsvwK98xni6empgQMH6sUXX1RAQECS8aEBAHAXVz+j9+/fr0GDBqlz584qX768fHx8tH79eu3fv18vvfSSLb3UlBHcUU6/U3rKS4leeeUVLV26VM2bN9crr7xiG0Ynca7FOz+3CxQooB49eujDDz9UqVKlXJoj77nnntPnn3+udu3aady4cSpVqpSWL1+uDz74QE8//bRtvjRXyvUNGjRQRESEatSooeDgYP3yyy+aNWuW3Q/mUtK8eXMlJCRo3bp1+uyzz2zLW7RoodGjR8tisaRqLpPUlhFT8u677+ree+/Vfffdp6efflqlS5fWpUuXdOTIES1dutQ2h0b79u1VrVo11a1bV0WKFNEff/yhqVOnqlSpUipfvnyyaQcHB2v48OF6/fXX9eSTT6pz5846ceKExowZk2Sornr16qlixYoaPny44uPjFRwcrIULF2rz5s12cZUqVVK5cuX00ksvyRijggULaunSpU6HSnbHOUjPtkOGDNG8efPUsWNHvfTSS6pfv76uXr2qjRs3KiIiwjbHaalSpbR48WI1b95cBQsWVOHChR3Ovedq3Ta93FFOv9O4ceO0Zs0aNW7cWIMHD1bFihUVGxurY8eOacWKFfroo4+c1ufGjRundu3aqXXr1nr22WeVkJCgSZMmKX/+/Ml+J1KhQgW1adNGK1eu1L333quaNWumKs8AkpE1c9IDyE42bNhgJJmvv/46ybpFixaZBg0aGD8/PxMQEGCaN29utmzZkiRuxYoVplatWsbf39+ULVvWTJ8+3YwePdrc+ZiRZAYOHJhk+1KlSpmePXvaLVuyZImpUaOG8fHxMSVLljRvvvlmsmmmZOPGjaZdu3amYMGCxtvb2xQrVsy0a9fO7jgT0zt37pzdtjNmzDCSzNGjR+2Wf/rpp6ZBgwYmICDA+Pv7m3LlypkePXqYXbt22WLCw8NN1apVk83T8ePHzSOPPGLy589vAgMDzaOPPmpWrFhhJJnFixcnib927Zrx9fU1bdq0STa9nj17mlKlStktu3r1qnnxxRdNqVKljLe3t7nrrrvM008/bS5cuGCL2bZtm3n44YdNqVKljK+vrylUqJAJDw83S5YsscV89tlnplmzZiYkJMT4+PiYsLAw06VLF7N///5k83Knhx9+2Egys2fPti27fv26CQgIMB4eHnb5MSbla5F4Hp588klTpEgRY7FYkr02t3N0DS5fvmxeffVVU7FiRePj42OsVqupXr26ee6550xUVJQxxphly5aZtm3bmmLFihkfHx9TtGhR8+CDD5rvv//els7Ro0eNJDNjxgy79F29b6Ojo82TTz5pQkJCTEBAgGnfvr05duyYkWRGjx5ti7tw4YLp27evKVq0qMmXL5+59957zffff2/Cw8NNeHi40/yk9RwYk/zfpavbJiQkmClTpphq1arZ4ho1amSWLl1qizl27Jhp1aqVCQwMNJJs97KjZ5Ixxvz73/+2nWOr1Wo6duxoDh48aBfTs2dPExAQkGTb1DxDFi1aZJo1a2aCgoKMr6+vKVWqlOnUqZNZu3ZtmvYTFxdnJk+ebGrWrGn8/PxM/vz5TaVKlUz//v3N4cOHbXGlSpUy7dq1SzZPBw4cMC1atDB+fn6mYMGCpm/fvuazzz4zksyPP/6YJD7xnvrXv/7l0jEDAOCKlMrKzj6jz5w5Y3r16mUqVapkAgICTP78+U2NGjXMlClTTHx8vC0upTKCI+kppydXpna1zJNS/cYYY77//nvToEED4+vra0JDQ83zzz9vJk6caCSZixcvJon/7rvvjCTz5ptvJptecmWzP/74w3Tv3t0UKlTIeHt7m4oVK5pJkyaZhIQEW4wr5fqXXnrJ1K1b1wQHBxtfX19TtmxZ89xzz5m//vor2bzc7saNG6Zw4cJGkvnzzz9ty7ds2WIkmXvuuSfJNo7K66m9/o6uwdGjR02fPn1MsWLFjLe3tylSpIhp3Lixef31120xb7/9tmncuLEpXLiwrQzft29fc+zYMVtMcvf8jRs3zIQJE0yJEiWMj4+PqVGjhlm6dGmScroxxhw6dMi0atXKBAUFmSJFiphnnnnGLF++3EgyGzZssMX9/PPPpmXLliYwMNAEBwebzp07m+PHjyepI6T0N5jWc5BSXcKVbY25WWd59tlnTcmSJY23t7cpWrSoadeunfn1119tMWvXrjW1a9c2vr6+RpLtXnZUD3SlbmtMyuXn5K5FctJbTk9uP+fOnTODBw82ZcqUMd7e3qZgwYKmTp065pVXXjGXL182xvzvvE+aNCnZfC1cuNBUr17drm45ePBgExwcnGz8zJkzjSQzd+5cp8cMwDmLMcZkZMMMAMCx8ePH69VXX9Xx48eT/Opk6dKl6tChg5YvX26bhA8AbvfUU0/pyy+/1Pnz55P0wpo2bZoGDx6sAwcO2CajBAAAWadVq1Y6duyYDh06lGTdsGHD9OGHH+rEiRPJTkANIG+Li4tTrVq1VKxYMa1evTrJ+kcffVTbt2/XsWPH5O3tnQU5BHIXhuoCgEw0ffp0STe7YcfFxWn9+vV677339MQTT9g1mvz888/6448/NGzYMNWqVctuThQAede4ceMUFhamsmXL2sY4/ve//61XX33VrtFk7969Onr0qMaNG6eOHTvSaAIAQBYYOnSoateurRIlSujvv//W7NmztWbNGv3nP/+xi9u+fbsOHTqkDz74QP3796fRBIAkqW/fvmrZsqVtiL2PPvpIv/zyi959911bzLVr17Rnzx798MMPWrhwod555x0aTQA3oeEEADJRvnz5NGXKFB07dkzXrl1TyZIl9eKLL+rVV1+1ixswYIC2bNmie+65R5999hkTOgOQJHl7e2vSpEk6efKk4uPjVb58eb3zzjt69tln7eIefvhhRUVF6b777tNHH32URbkFACBvS0hI0KhRoxQVFSWLxaIqVapo1qxZeuKJJ+ziEucRiYiI0Ouvv55FuQWQ3Vy6dEnDhw/XuXPn5O3trXvuuUcrVqywmy/09OnTaty4sYKCgtS/f3/bfJIA0o+hugAAAAAAAAAAAG7xyOoMAAAAAAAAAACAvGXChAmqV6+eAgMDVbRoUT300EP67bff7GKMMRozZozCwsLk7++vpk2b6uDBg07Tnj9/vqpUqSJfX19VqVJFCxcuTFXeaDgBAAAAAAAAAACZauPGjRo4cKC2b9+uNWvWKD4+Xq1atdKVK1dsMW+99ZbeeecdTZ8+XTt37lRoaKhatmypS5cupZjutm3b1LVrV0VGRurHH39UZGSkunTpoh07dricN4bqymI3btzQqVOnFBgYyBwGAAAAyPWMMbp06ZLCwsLk4cHvuOAcdSYAAJDTZbcycGxsrK5fv54haRtjkpTZfH195evr63Tbc+fOqWjRotq4caPuv/9+GWMUFhamIUOG6MUXX5QkXbt2TSEhIZo4caL69++fbDpdu3ZVTEyMVq5caVvWpk0bBQcH68svv3TpOJgcPoudOnVKJUqUyOpsAAAAAJnqxIkTKl68eFZnAzkAdSYAAJBbZIcycGxsrIr4++tyBqWfP39+Xb5sn/ro0aM1ZswYp9tGR0dLkgoWLChJOnr0qKKiotSqVStbjK+vr8LDw7V169YUG062bdum5557zm5Z69atNXXqVJePg4aTLBYYGCjp5h9NUFBQinFW6wS37C86eoRb0nHGlfy6khd3peOKzNwXcCfuPwBAXhETE6MSJUrYysGAM67WmQAAALKr7FQGvn79ui5Lek6S8z4gqXNN0pTLl5OU21zpbWKM0dChQ3XvvfeqWrVqkqSoqChJUkhIiF1sSEiI/vjjjxTTioqKSnabxPRcQcNJFkvsthQUFOSkEuDnlv1lXkXDeX5dy4u70nFFZu4LuBP3HwAgb2HIJbjK9ToTAABA9padysABctc3zv+T2NiQlnLboEGDtH//fm3evDnJujvPW3LDgbljm9tl/YBqAAAAAAAAAAAgT3rmmWe0ZMkSbdiwwW4os9DQUElK0lPk7NmzSXqU3C40NDTV29yJhhMAAAAAAAAAAPIQ7wx6pYYxRoMGDdKCBQu0fv16lSlTxm59mTJlFBoaqjVr1tiWXb9+XRs3blTjxo1TTLdRo0Z220jS6tWrHW5zJ4bqAgAAAAAAAAAAmWrgwIGaM2eOFi9erMDAQFsvEavVKn9/f1ksFg0ZMkTjx49X+fLlVb58eY0fP1758uVT9+7dben06NFDxYoV04QJN+cQfvbZZ3X//fdr4sSJ6tixoxYvXqy1a9cmOwxYSmg4ySGMGZ3VWUgVV/JrsYx1SzruktPOMXIX7j8AAAAAAABkFi+5v3Egtel9+OGHkqSmTZvaLZ8xY4Z69eolSXrhhRd09epVDRgwQBcuXFCDBg20evVqBQYG2uKPHz8uD4//Da7VuHFjzZ07V6+++qpGjhypcuXKad68eWrQoIHLebMYY0wqjwduFBMTI6vVqujo6Dw30WF2azgBAABAxsvL5V+kDfcMAADI6bJTeSYxL2/I/ZPDx0p6RcoWx5le9DgBAAAAAAAAACAP8VLq5yRxJt7N6WUlGk4AAAAAAAAAAMhDssNQXdmZh/MQAAAAAAAAAACAvCE3NQIBAAAAAAAAAAAnvMVQXY7QcIIsw8TvAAAAAAAAAIDshoYTAAAAAAAAAADyEOY4cYw5TgAAAAAAAAAAAG7JTY1AAAAAAAAAAADACS+5f46TODenl5XocQIAAAAAAAAAAHALPU4AAAAAAAAAAMhDmOPEsdx0LDma1bpBUoCDiC1O0zBmtNMYi2WtC+m0cBoDAAAAAAAAAMiZvOX+obrcnV5WYqguAAAAAAAAAACAW+hxAgAAAAAAAABAHkKPE8focQIAAAAAAAAAAHALPU4AAAAAAAAAAMhDmBzeMXqcAAAAAAAAAAAA3JKbGoFyuO2S/Bysf8FN+9niQkwLN+0r97FYxjqNMWZ0JuQEAAAAQEZyVPbP7DK/s3oIdRAAAJBaXnL/nCS5qbGBHicAAAAAAAAAAAC35KZGIAAAAAAAAAAA4ARznDiWrXqcbNq0Se3bt1dYWJgsFosWLVqUYmz//v1lsVg0depUu+XXrl3TM888o8KFCysgIEAdOnTQyZMn7WIuXLigyMhIWa1WWa1WRUZG6uLFi3Yxx48fV/v27RUQEKDChQtr8ODBun79ul3MTz/9pPDwcPn7+6tYsWIaN26cjDHpOQUAAAAA4BD1JgAAAKSXdwa9cots1XBy5coV1axZU9OnT3cYt2jRIu3YsUNhYWFJ1g0ZMkQLFy7U3LlztXnzZl2+fFkRERFKSEiwxXTv3l379u3TqlWrtGrVKu3bt0+RkZG29QkJCWrXrp2uXLmizZs3a+7cuZo/f76GDRtmi4mJiVHLli0VFhamnTt3atq0aZo8ebLeeecdN5wJAAAAAEge9SYAAAAgY2Wr3jNt27ZV27ZtHcb8+eefGjRokL799lu1a9fObl10dLT+85//aNasWWrR4uYE51988YVKlCihtWvXqnXr1vrll1+0atUqbd++XQ0aNJAkffLJJ2rUqJF+++03VaxYUatXr9bPP/+sEydO2CoZb7/9tnr16qU33nhDQUFBmj17tmJjYzVz5kz5+vqqWrVqOnTokN555x0NHTpUFoslA84QAAAAgLyOehMAAADSi6G6HMtRx3Ljxg1FRkbq+eefV9WqVZOs3717t+Li4tSqVSvbsrCwMFWrVk1bt25V69attW3bNlmtVlvhX5IaNmwoq9WqrVu3qmLFitq2bZuqVatm98us1q1b69q1a9q9e7eaNWumbdu2KTw8XL6+vnYxI0aM0LFjx1SmTJlkj+HatWu6du2a7X1MTMzN/7wxQvILSvHYzVDn58diGes8COlizOiszgIAAADgUE6vN6VUZ7JaJ0jySxKfUWX07FT2z055AQAAyAuy1VBdzkycOFFeXl4aPHhwsuujoqLk4+Oj4OBgu+UhISGKioqyxRQtWjTJtkWLFrWLCQkJsVsfHBwsHx8fhzGJ7xNjkjNhwgTbGMFWq1UlSpRwdMgAAAAAkCo5vd5EnQkAACDjecn985vkqF4aTuSYhpPdu3fr3Xff1cyZM1PdndsYY7dNctu7IyZxgkNH+RsxYoSio6NtrxMnTrh+IAAAAADgQG6oN1FnAgAAQFbLMQ0n33//vc6ePauSJUvKy8tLXl5e+uOPPzRs2DCVLl1akhQaGqrr16/rwoULdtuePXvW9qum0NBQnTlzJkn6586ds4u589dPFy5cUFxcnMOYs2fPSlKSX1TdztfXV0FBQXYvAAAAAHCH3FBvos4EAACQ8bwy6JVb5JiGk8jISO3fv1/79u2zvcLCwvT888/r22+/lSTVqVNH3t7eWrNmjW2706dP68CBA2rcuLEkqVGjRoqOjtYPP/xgi9mxY4eio6PtYg4cOKDTp0/bYlavXi1fX1/VqVPHFrNp0yZdv37dLiYsLMxWIQEAAACAzES9CQAAAEi/bNUIdPnyZR05csT2/ujRo9q3b58KFiyokiVLqlChQnbx3t7eCg0NVcWKFSVJVqtVffv21bBhw1SoUCEVLFhQw4cPV/Xq1dWiRQtJUuXKldWmTRv169dPH3/8sSTpqaeeUkREhC2dVq1aqUqVKoqMjNSkSZP0999/a/jw4erXr5/t107du3fX2LFj1atXL7388ss6fPiwxo8fr1GjRqW6SzwAAAAAuIp6EwAAANIrcV4Sd6eZW2SrhpNdu3apWbNmtvdDhw6VJPXs2VMzZ850KY0pU6bIy8tLXbp00dWrV9W8eXPNnDlTnp6etpjZs2dr8ODBatWqlSSpQ4cOmj59um29p6enli9frgEDBqhJkyby9/dX9+7dNXnyZFuM1WrVmjVrNHDgQNWtW1fBwcEaOnSoLc+pFT1IctQD3dLZlVSaOI0wpoXLeUoxL5axLuxndLr34yqLZa3TGHcc9819Za9jBwAAQN6TV+tN0dEjkh22y1l9wF11AQAAAOQdFpM4Mx+yRExMjKxWq6Kjox2O3etSw8k3mdOAkN0aD2g4AQAAyDlcLf8CiZzdMzScAACA7C47lYET87JHUn43p31Z0j1StjjO9MpWPU4AAAAAAAAAAEDG8pL7h9bKTY0NOWZyeAAAAAAAAAAAgIyWmxqBAAAAAAAAAACAE0wO7xgNJ9mE1TpBkl+K612ZN8NicT45vDvm6Mhuc3hk5pjF2e3Yc5rMnI8GAAAAuUtKdSbK6JnPUb2S6wEAAHIDGk4AAAAAAAAAAMhDvOT+xoHc1NjAHCcAAAAAAAAAAAC35KZGIAAAAAAAAAAA4ISXp+RtcXOaRlKCe9PMKvQ4AQAAAAAAAAAAuIUeJwAAAAAAAAAA5CFeXpIXPU5SRMNJNhEdPUJBQUHpSsMYf6cxFjf/MWQ0i2Ws0xhjRmfavqQmTiOMaZH+zORSnBsAAACklTvqTHAPd9XBAABA1vHOgKG6vI1708tKDNUFAAAAAAAAAABwCz1OAAAAAAAAAADIQzJsqK5cgh4nAAAAAAAAAAAAt9DjBAAAAAAAAACAPMTbU/J2c7cK7xvuTS8r0eMEAAAAAAAAAADgFnqcZBNW61VJ3imuN8bfaRoWy1g35ijjuZJfY0azr3Tsy137AQAAALIrysQAAABp4Cn3d6tw85wpWYkeJwAAAAAAAAAAALfQ4wQAAAAAAAAAgLzES+7vVpGL5jih4QQAAAAAAAAAgLyEhhOHGKoLAAAAAAAAAABkuk2bNql9+/YKCwuTxWLRokWL7NZbLJZkX5MmTUoxzZkzZya7TWxsrMv5oscJAAAAAAAAAAB5STbpcXLlyhXVrFlTvXv31qOPPppk/enTp+3er1y5Un379k029nZBQUH67bff7Jb5+fm5nC8aTnIIi2VsttmXMaPdsh93pWOxrHVLOq7ty/l1cNdxuSIz9wUAAAAAAAAA7tS2bVu1bds2xfWhoaF27xcvXqxmzZqpbNmyDtO1WCxJtk0NhuoCAAAAAAAAACAv8ZDk6ebXrdaGmJgYu9e1a9fckuUzZ85o+fLl6tu3r9PYy5cvq1SpUipevLgiIiK0d+/eVO2LhhMAAAAAAAAAAOAWJUqUkNVqtb0mTJjglnQ/++wzBQYG6pFHHnEYV6lSJc2cOVNLlizRl19+KT8/PzVp0kSHDx92eV8M1QUAAAAAAAAAQF7ipZu9RNzJcvOfEydOKCgoyLbY19fXLcl/+umnevzxx53OVdKwYUM1bNjQ9r5Jkya65557NG3aNL333nsu7YuGEwAAAAAAAAAA4BZBQUF2DSfu8P333+u3337TvHnzUr2th4eH6tWrR48TAAAAAAAAAACQggzscZIR/vOf/6hOnTqqWbNmqrc1xmjfvn2qXr26y9vQcJJdvOEv+fmnuNoMHe00CYtlrNMYY9yTTnZiTAsXolyJcWVfzs9fduKua5nTjhsAAAB5B2VVAACANEic0D2LXb58WUeOHLG9P3r0qPbt26eCBQuqZMmSkm5ONv/111/r7bffTjaNHj16qFixYra5VMaOHauGDRuqfPnyiomJ0Xvvvad9+/bp/fffdzlfNJwAAAAAAAAAAIBMt2vXLjVr1sz2fujQoZKknj17aubMmZKkuXPnyhijbt26JZvG8ePH5eHhYXt/8eJFPfXUU4qKipLValXt2rW1adMm1a9f3+V80XACAAAAAAAAAEBekk2G6mratKmMMQ5jnnrqKT311FMprv/uu+/s3k+ZMkVTpkxJfWZu4+E8BAAAAAAAAAAAIG+gxwkAAAAAAAAAAHmJp2gdcIAeJwAAAAAAAAAAALfQppRNRA+SgoJSXm+xrHWahjGj3ZijlFksY92STmblNy/jHOccrvxdcT0BAACSclaOyogylKN9UmYDAAA5gqfcP8eJ46lKchR6nAAAAAAAAAAAANxCjxMAAAAAAAAAAPISL9E64ACnBgAAAAAAAACAvISGE4cYqgsAAAAAAAAAAOAW2pSyCWsNZUozljsmoGYS6/TjHOJOXG8AAADHrNYJkvySLM+KchRlNwAAkOPR48QhepwAAAAAAAAAAADcQpsSAAAAAAAAAAB5iYckTzenecPN6WUhepwAAAAAAAAAAADcQo8TAAAAAAAAAADykoyY48S4Ob0sRI8TAAAAAAAAAACAW+hxkl38cVWSd4qrjWnhNAmLZaxbsuKudNyxH2NGZ0JOMl9uPS4AAAAgo0RHj1BQUFBWZyNLOKs7Ub8AAACpRo8Th2g4AQAAAAAAAAAgL/EUk8M7wFBdAAAAAAAAAAAAt9DjBAAAAAAAAACAvIShuhyixwkAAAAAAAAAAMAt9DgBAAAAAAAAACAv8ZT7Wwdy0RwnNJxkG9slBThY38JpCsaMdltuMoMr+bVYxmbavtzFlTxnVn4yMy/Z6bgBAACQ+1itEyT5JVmeF8qYeeEYAQAAspNsNVTXpk2b1L59e4WFhclisWjRokW2dXFxcXrxxRdVvXp1BQQEKCwsTD169NCpU6fs0rh27ZqeeeYZFS5cWAEBAerQoYNOnjxpF3PhwgVFRkbKarXKarUqMjJSFy9etIs5fvy42rdvr4CAABUuXFiDBw/W9evX7WJ++uknhYeHy9/fX8WKFdO4ceNkTC4ayA0AAABAtkO9CQAAAOnmmUGvXCJbNZxcuXJFNWvW1PTp05Os++eff7Rnzx6NHDlSe/bs0YIFC3To0CF16NDBLm7IkCFauHCh5s6dq82bN+vy5cuKiIhQQkKCLaZ79+7at2+fVq1apVWrVmnfvn2KjIy0rU9ISFC7du105coVbd68WXPnztX8+fM1bNgwW0xMTIxatmypsLAw7dy5U9OmTdPkyZP1zjvvZMCZAQAAAICbqDcBAAAAGctisulPfSwWixYuXKiHHnooxZidO3eqfv36+uOPP1SyZElFR0erSJEimjVrlrp27SpJOnXqlEqUKKEVK1aodevW+uWXX1SlShVt375dDRo0kCRt375djRo10q+//qqKFStq5cqVioiI0IkTJxQWFiZJmjt3rnr16qWzZ88qKChIH374oUaMGKEzZ87I19dXkvTmm29q2rRpOnnypCwWi0vHGRMTI6vVKmmRHA3VZYzzobpyI4bqSh+G6gIAANlNYvk3OjpaQUFBWZ2dHC8v1Jv+V2d6SXl1qC4AAJCzZacysC0vPaQgHzenfV2yfq5scZzpla16nKRWdHS0LBaLChQoIEnavXu34uLi1KpVK1tMWFiYqlWrpq1bt0qStm3bJqvVaiv8S1LDhg1ltVrtYqpVq2Yr/EtS69atde3aNe3evdsWEx4ebiv8J8acOnVKx44dSzHP165dU0xMjN0LAAAAADJKTqs3UWcCAADIBF4Z9MolcmzDSWxsrF566SV1797d1noVFRUlHx8fBQcH28WGhIQoKirKFlO0aNEk6RUtWtQuJiQkxG59cHCwfHx8HMYkvk+MSc6ECRNsYwRbrVaVKFEiNYcNAAAAAC7LifUm6kwAAADIajmyDSguLk6PPfaYbty4oQ8++MBpvDHGrgt4ct3B3RGTOOqZo+7mI0aM0NChQ23vY2JiblUEGkrKGd2XLJa1LkRtcRrhSpf67DbEliuy01AB2SkvAAAAyFw5td6Ucp0JAAAAbpMRPURuuDm9LJTjepzExcWpS5cuOnr0qNasWWM3VlpoaKiuX7+uCxcu2G1z9uxZ26+aQkNDdebMmSTpnjt3zi7mzl8/XbhwQXFxcQ5jzp49K0lJflF1O19fXwUFBdm9AAAAAMCdcnK9iToTAAAAslqOajhJLPwfPnxYa9euVaFChezW16lTR97e3lqzZo1t2enTp3XgwAE1btxYktSoUSNFR0frhx9+sMXs2LFD0dHRdjEHDhzQ6dOnbTGrV6+Wr6+v6tSpY4vZtGmTrl+/bhcTFham0qVLu/3YAQAAAMAV1JsAAADglIckTze/clRrg2PZ6lAuX76sffv2ad++fZKko0ePat++fTp+/Lji4+PVqVMn7dq1S7Nnz1ZCQoKioqIUFRVlK4RbrVb17dtXw4YN07p167R371498cQTql69ulq0aCFJqly5stq0aaN+/fpp+/bt2r59u/r166eIiAhVrFhRktSqVStVqVJFkZGR2rt3r9atW6fhw4erX79+tl87de/eXb6+vurVq5cOHDighQsXavz48Ro6dKjDoboAAAAAID2oNwEAAAAZK1vNcbJr1y41a9bM9j5xXNuePXtqzJgxWrJkiSSpVq1adttt2LBBTZs2lSRNmTJFXl5e6tKli65evarmzZtr5syZ8vT0tMXPnj1bgwcPVqtWrSRJHTp00PTp023rPT09tXz5cg0YMEBNmjSRv7+/unfvrsmTJ9tirFar1qxZo4EDB6pu3boKDg7W0KFD7cbiBQAAAAB3o94EAACAdMuIOU4S3JxeFrKYxJn5kCViYmJktVolRcnR5PDG+GdanpzJzMnhM1NunBw+M7ly/vLquQEAAP+TWP6Njo5m7gq45H91ppck+SVZTxkTAABkd9mpDGzLyyApyNfNaV+TrNOVLY4zvbJVj5O8bbukgBTXWizZqSHCeV5ckd2+aKfClT6cPwAAAGSk6OgROb4CDgAAkG3Q48QhGk4AAAAAAAAAAMhLEid0d3eauUS2mhweAAAAAAAAAAAgK9HjBAAAAAAAAACAvIShuhyixwkAAAAAAAAAAMAt9DgBAAAAAAAAACAv8ZT7Wwfi3ZxeFqLhJLvo2EzyDkp5/TdbnCZhsYx1GmPMaDek08SF/bRwGoOcw2K56jTGGP9MyAkAAADyKqt1giS/JMtdqePkBI7qYbnlGAEAAHIKGk4AAAAAAAAAAMhLMmKOk1zU2sAcJwAAAAAAAAAAALfkojYgAAAAAAAAAADglOetl7vTzCXocQIAAAAAAAAAAHALPU4AAAAAAAAAAMhLmOPEoVx0KDlb0L/PyBL0T4rro79xnoYxo53GWCxjXchNEyfrt7iQRgsXYtzDlWNy5dy4S3bLjzsY45/VWbCTG88xAAAAcg5H5dG0lkMpvwIAgExFw4lDDNUFAAAAAAAAAABwSy5qAwIAAAAAAAAAAE55yP2Tueeibhq56FAAAAAAAAAAAADShx4nAAAAAAAAAADkJcxx4lAuOpScLaZuiOQRlHJAGXdN/O4Kx5PDG5N5E7+7xtlk9u47N65M2Mikjilz16TunGMAAIC8Jzp6hIKCHNSZMlFeL486Ktfn9XMDAAByB4bqAgAAAAAAAAAgL/HKoFcqbdq0Se3bt1dYWJgsFosWLVpkt75Xr16yWCx2r4YNGzpNd/78+apSpYp8fX1VpUoVLVy4MFX5ouEEAAAAAAAAAABkuitXrqhmzZqaPn16ijFt2rTR6dOnba8VK1Y4THPbtm3q2rWrIiMj9eOPPyoyMlJdunTRjh07XM4XQ3UBAAAAAAAAAJCXeN56uTvNVGrbtq3atm3rMMbX11ehoaEupzl16lS1bNlSI0aMkCSNGDFCGzdu1NSpU/Xll1+6lAY9TgAAAAAAAAAAyEsycKiumJgYu9e1a9fSldXvvvtORYsWVYUKFdSvXz+dPXvWYfy2bdvUqlUru2WtW7fW1q1bXd4nDScAAAAAAAAAAMAtSpQoIavVantNmDAhzWm1bdtWs2fP1vr16/X2229r586deuCBBxw2xkRFRSkkJMRuWUhIiKKiolzeL0N1ZRPR+6WgoJTXWyxr3bIfY0Y7jbFYrrplX873M9ZpjCv5lba4KR3n3JfnzJGZ+c1p5wYAAABwxFEdzJgWmZiT7IdyPQAAuYCn3N86cGuorhMnTijoti+7fX1905xk165dbf+vVq2a6tatq1KlSmn58uV65JFHUtzOYrHYvTfGJFnmCA0nAAAAAAAAAADALYKCguwaTtzprrvuUqlSpXT48OEUY0JDQ5P0Ljl79mySXiiOMFQXAAAAAAAAAAB5SQbOcZKRzp8/rxMnTuiuu+5KMaZRo0Zas2aN3bLVq1ercePGLu+HHicAAAAAAAAAACDTXb58WUeOHLG9P3r0qPbt26eCBQuqYMGCGjNmjB599FHdddddOnbsmF5++WUVLlxYDz/8sG2bHj16qFixYra5VJ599lndf//9mjhxojp27KjFixdr7dq12rx5s8v5ouEEAAAAAAAAAIC8xFO2OUncmmYq7dq1S82aNbO9Hzp0qCSpZ8+e+vDDD/XTTz/p888/18WLF3XXXXepWbNmmjdvngIDA23bHD9+XB4e/xtcq3Hjxpo7d65effVVjRw5UuXKldO8efPUoEEDl/NFwwkAAAAAAAAAAMh0TZs2lTEmxfXffvut0zS+++67JMs6deqkTp06pTlfNJxkE9YtkgJSXm9MCxdScSXGFW85WT/aTfvJeYzJWceemfnNaecms1ksYx2ud+X8OUvD1XQAAABwk6PyFeUqAACQq2XEnCS5qLUhFx0KAAAAAAAAAABwioYThzychwAAAAAAAAAAAOQNuagNCAAAAAAAAAAAOOUh908On4u6aeSiQwEAAAAAAAAAAEgfepwAAAAAAAAAAJCXMMeJQ7noUHK4vZL8Ul5tCV/rQiJNXIjZ4qZ00s+Y0U5jLJaxbkkHyGruuE+51wEAAJJypc6QEspXAAAASA4NJwAAAAAAAAAA5CX0OHGIOU4AAAAAAAAAAABuyUVtQAAAAAAAAAAAwCnPWy93p5lL0HACAAAAAAAAAEBewlBdDjFUFwAAAAAAAAAAwC25qA0oh3tlgiS/lNeXGe00CfO7Kztq4TTCYhnrZH0T53kx/q5kxoV0nB83AAAAgLwrK+oMjupM1GEAAECO4Cn3tw7koqG66HECAAAAAAAAAABwCz1OAAAAAAAAAADIS5jjxCF6nAAAAAAAAAAAANySi9qAAAAAAAAAAACAU55y/5wkzHECAAAAAAAAAACQ+9DjJKcY5J5kLJaxTmOMGe2eneUwFstapzHGtHDTvrgOOUVm3heZxV33H/cxAADIDpyVSTKiPEIZBwAA5HjMceJQLjoUAAAAAAAAAADglKfc3zrAUF0AAAAAAAAAAAC5Dz1OAAAAAAAAAADIS5gc3qFs1eNk06ZNat++vcLCwmSxWLRo0SK79cYYjRkzRmFhYfL391fTpk118OBBu5hr167pmWeeUeHChRUQEKAOHTro5MmTdjEXLlxQZGSkrFarrFarIiMjdfHiRbuY48ePq3379goICFDhwoU1ePBgXb9+3S7mp59+Unh4uPz9/VWsWDGNGzdOxhi3nQ8AAAAAuBP1JgAAACBjZaseJ1euXFHNmjXVu3dvPfroo0nWv/XWW3rnnXc0c+ZMVahQQa+//rpatmyp3377TYGBgZKkIUOGaOnSpZo7d64KFSqkYcOGKSIiQrt375an580mr+7du+vkyZNatWqVJOmpp55SZGSkli5dKklKSEhQu3btVKRIEW3evFnnz59Xz549ZYzRtGnTJEkxMTFq2bKlmjVrpp07d+rQoUPq1auXAgICNGzYsDQc/RBJQSmvHuZ8EmYNdT5BYXaaxDC7TSydmRN8Z6frAMdy2sTvruD+AwAgZ8ur9SardYOkgCTLs6Js46guQ1kLAADkCEwO75DFZNOf+lgsFi1cuFAPPfSQpJu/mgoLC9OQIUP04osvSrr5K6mQkBBNnDhR/fv3V3R0tIoUKaJZs2apa9eukqRTp06pRIkSWrFihVq3bq1ffvlFVapU0fbt29WgQQNJ0vbt29WoUSP9+uuvqlixolauXKmIiAidOHFCYWFhkqS5c+eqV69eOnv2rIKCgvThhx9qxIgROnPmjHx9fSVJb775pqZNm6aTJ0/KYrEke1zXrl3TtWvXbO9jYmJUokQJSVFy2HCit5yes5xWQM9uDScAUoe/YQBAWsTExMhqtSo6OlpBQY7Kv3BFbqw3pVxnWqTkG04y/4cuNJwAAIDUyE5lYFteDkpBgW5O+5JkrapscZzpla2G6nLk6NGjioqKUqtWrWzLfH19FR4erq1bt0qSdu/erbi4OLuYsLAwVatWzRazbds2Wa1WW+Ffkho2bCir1WoXU61aNVvhX5Jat26ta9euaffu3baY8PBwW+E/MebUqVM6duxYiscxYcIEW1d3q9V6qwIAAAAAAOmXG+pN1JkAAAAygVcGvXKJHNNwEhUVJUkKCQmxWx4SEmJbFxUVJR8fHwUHBzuMKVq0aJL0ixYtahdz536Cg4Pl4+PjMCbxfWJMckaMGKHo6Gjb68SJE44PHAAAAABclBvqTdSZAAAAkNVyXBvQnV25jTEpDouVUkxy8e6ISRz1zFF+fH197X5tBQAAAADulpPrTdSZAAAAMgFznDiUY3qchIaGSkr6q6SzZ8/afrEUGhqq69ev68KFCw5jzpw5kyT9c+fO2cXcuZ8LFy4oLi7OYczZs2clJf11FwAAAABkBupNAAAAcIXxkIynm185prXBuRzTBlSmTBmFhoZqzZo1ql27tiTp+vXr2rhxoyZOnChJqlOnjry9vbVmzRp16dJFknT69GkdOHBAb711c3L1Ro0aKTo6Wj/88IPq168vSdqxY4eio6PVuHFjW8wbb7yh06dP66677pIkrV69Wr6+vqpTp44t5uWXX9b169fl4+NjiwkLC1Pp0qVTf4Ar/KUA/xRXm/udTzBosaxN/X6TtcXhWndNdpiZkya6Mom1K3LjRI9M8I204r5AbsAzEEBuk5vrTdHRzbLNJKOOPhtyy8TxueU4AAAA0iJbtQFdvnxZ+/bt0759+yTdnNhw3759On78uCwWi4YMGaLx48dr4cKFOnDggHr16qV8+fKpe/fukiSr1aq+fftq2LBhWrdunfbu3asnnnhC1atXV4sWLSRJlStXVps2bdSvXz9t375d27dvV79+/RQREaGKFStKklq1aqUqVaooMjJSe/fu1bp16zR8+HD169fPVlDv3r27fH191atXLx04cEALFy7U+PHjNXToUKdd4AEAAAAgrag3AQAAIL0SvDLmlVtkq0PZtWuXmjVrZns/dOhQSVLPnj01c+ZMvfDCC7p69aoGDBigCxcuqEGDBlq9erUCAwNt20yZMkVeXl7q0qWLrl69qubNm2vmzJny9PS0xcyePVuDBw9Wq1atJEkdOnTQ9OnTbes9PT21fPlyDRgwQE2aNJG/v7+6d++uyZMn22KsVqvWrFmjgQMHqm7dugoODtbQoUNteQYAAACAjEC9CQAAAMhYFpM4Mx+yRExMjKxWq7QiWgpIudu5ud95WjltqK7MxFBdKWOYGgB5Gc9AIPMlln+jo6OzzbBLyN5y2j2TW4a4yi3HAQBAdpCdyjOJeTl7WnJ3VmJipKJ3KVscZ3plq6G6AAAAAAAAAAAAslK2GqoLAAAAAAAAAABkrHhPi+I93TvnXLynkZQ7Brii4SS7eHCDpIAUV1vebuFCIo6H2MqJ3DWEiru6krsyHJoxrlyr7INu9gDyMp6BAJBzWK0TJPmlervMftZnxP6c1YsyYp98RgIAgLyMhhMAAAAAAAAAAPKQBC8vJXi5t8dJgpeRFOfWNLMKDScAAAAAAAAAAOQhCZ6eSnDzUF0Jnrmn4YTJ4QEAAAAAAAAAAG6hxwkAAAAAAAAAAHnIDXkqQe7tcXIjl0wML9HjBAAAAAAAAAAAwIYeJ9nFG80kv6B0JtLEaYQxLdK5j8xlzOiszoKdnHb+kH1YLGMdrs9u9zoAAEBOkRfKUdntGB2VbbNbXgEAQPLi5al4N/c4iafHCQAAAAAAAAAAQO5DjxMAAAAAAAAAAPKQBHkqwc39KhJ0w63pZSV6nAAAAAAAAAAAANxCjxMAAAAAAAAAAPKQjOlx4t45U7ISDScAAAAAAAAAAOQhNJw4RsNJTjHsqgtBW1yIaZHenLjEYhnrNMaY0ZmQE2QWi2Wt0xhjMuf+c1VOzDMAAADsOat7UO9wP84pAADI7Wg4AQAAAAAAAAAgD6HHiWNMDg8AAAAAAAAAAHALDScAAAAAAAAAAOQhCfJUvJtfCfJMdT42bdqk9u3bKywsTBaLRYsWLbKti4uL04svvqjq1asrICBAYWFh6tGjh06dOuUwzZkzZ8pisSR5xcbGupwvGk4AAAAAAAAAAECmu3LlimrWrKnp06cnWffPP/9oz549GjlypPbs2aMFCxbo0KFD6tChg9N0g4KCdPr0abuXn5+fy/lijhMAAAAAAAAAAPKQBHllwBwnN1K9Tdu2bdW2bdtk11mtVq1Zs8Zu2bRp01S/fn0dP35cJUuWTDFdi8Wi0NDQVOcnEQ0n2cUrEyQ5avF6wWkSxox2GmOxrHUhM1vSvR/X8jLWhbw4l9325S7uyrMz7jsmx/fNTS3ctC/3MCbz8pOZ9w6Q3bnyfONvBgCQVENJAUmWOivTOfrc4fMGAADA/WJiYuze+/r6ytfX1y1pR0dHy2KxqECBAg7jLl++rFKlSikhIUG1atXSa6+9ptq1a7u8H4bqAgAAAAAAAAAgD0mQhxJuzUvivtfN5oYSJUrIarXaXhMmTHBLnmNjY/XSSy+pe/fuCgoKSjGuUqVKmjlzppYsWaIvv/xSfn5+atKkiQ4fPuzyvuhxAgAAAAAAAAAA3OLEiRN2DRvu6G0SFxenxx57TDdu3NAHH3zgMLZhw4Zq2LCh7X2TJk10zz33aNq0aXrvvfdc2h8NJwAAAAAAAAAA5CGJvUTcm+ZNQUFBDnuEpFZcXJy6dOmio0ePav369alO28PDQ/Xq1aPHCQAAAAAAAAAASF68PBXv5oaTeLemdlNio8nhw4e1YcMGFSpUKNVpGGO0b98+Va9e3eVtaDgBAAAAAAAAAACZ7vLlyzpy5Ijt/dGjR7Vv3z4VLFhQYWFh6tSpk/bs2aNly5YpISFBUVFRkqSCBQvKx8dHktSjRw8VK1bMNpfK2LFj1bBhQ5UvX14xMTF67733tG/fPr3//vsu54uGk+zijRGSX/q6L1ksa12I2pKufdzcz1inMcaMdiGlJi6k08KFdNzDtTw7567z40qMs31lt2Ny372DvIZ7J3fhWgEAAAAAkLVuyMvtQ3XdkCXV2+zatUvNmjWzvR86dKgkqWfPnhozZoyWLFkiSapVq5bddhs2bFDTpk0lScePH5eHh4dt3cWLF/XUU08pKipKVqtVtWvX1qZNm1S/fn2X80XDCQAAAAAAAAAAyHRNmzaVMSbF9Y7WJfruu+/s3k+ZMkVTpkxJV75oOAEAAAAAAAAAIA/JyMnhcwMP5yEAAAAAAAAAAAB5Az1OAAAAAAAAAADIQ+hx4hgNJ9nF/8lx/5+jmTPxu+R80l7XJqF3ZT/umfg9MyeNzqsTVLvrmHLjuYFj7vqb4d4BAADSdkl+ySx3XK+gHAEAAIDUouEEAAAAAAAAAIA8JEEeGdDjxPlE7jkFDScAAAAAAAAAAOQh8fJUvJsbTuJzUcMJk8MDAAAAAAAAAADcQo8TAAAAAAAAAADykAR5KcHNzQO5aXJ4epwAAAAAAAAAAADcQo+TnKJTC+cx32xxIaEm6c6K5Hw/FosreXnBhZi3XIhxzmIZ6zTGmNFu2Zcr3JUfd+TZXXnJbucYKcvMa5UT/64AAED2FB09QkFBQUmWOysDpPXz31G6lCkAAEBOd0Oebp8c/gZznAAAAAAAAAAAAOQ+9DgBAAAAAAAAACAPSciAHicJ9DgBAAAAAAAAAADIfehxAgAAAAAAAABAHhIvD8W7ucdJvG64Nb2sRMMJAAAAAAAAAAB5SIK8lODm5oHcNFQXDSfZxR9XJXmnvP7oFhcSaeI0wpgWLmcpZS+4IQ1JesstqRgz2i3pZOa+3JWOxTI23ftxJcbZflxNJ7uxWNY6jXHP30z2khOvlSty63EBAICbrNYNkgLcmqajci5lCwAAgLyLhhMAAAAAAAAAAPKQjJkcPvcM1cXk8AAAAAAAAAAAALfQ4wQAAAAAAAAAgDyEHieOpbvHSXx8vDvyAQAAAAC5FvUmAAAAIOdId8NJvXr19NVXX7kjLwAAAACQK1FvAgAAQHaSIE/Fu/nl7h4sWSndQ3WtXbtWY8eO1Xvvvac33nhD4eHh7shX3vOGv+Tnn/L66S2cp1HHPVmxWMY6iWjiNA1jnOfXYnFXOs7yKxkz2mlMZnJXnp3FZNZ+3MmVPLvCteNy4e8KGS4n/g0DAJBa1JvcoFQzySMo6fKjW9KcJGUMAAAAJCfdPU4KFSqk9957T5999pk++OADdezYUb/88os78pas+Ph4vfrqqypTpoz8/f1VtmxZjRs3Tjdu/G/8NGOMxowZo7CwMPn7+6tp06Y6ePCgXTrXrl3TM888o8KFCysgIEAdOnTQyZMn7WIuXLigyMhIWa1WWa1WRUZG6uLFi3Yxx48fV/v27RUQEKDChQtr8ODBun79eoYdPwAAAICcJzPrTdSZAAAA4EyCvDLklVuku+Hk7Nmzmjt3rmbPni0vLy9t27ZN4eHhqly5sh566CE3ZNHexIkT9dFHH2n69On65Zdf9NZbb2nSpEmaNm2aLeatt97SO++8o+nTp2vnzp0KDQ1Vy5YtdenSJVvMkCFDtHDhQs2dO1ebN2/W5cuXFRERoYSEBFtM9+7dtW/fPq1atUqrVq3Svn37FBkZaVufkJCgdu3a6cqVK9q8ebPmzp2r+fPna9iwYW4/bgAAAAA5V2bWm6gzAQAAwJkEedgmiHffK93NDdlGupuAGjdurG7duqlKlSp68MEH9cEHH8hqtSo+Pl6//vqrO/JoZ9u2berYsaPatWsnSSpdurS+/PJL7dq1S9LNX05NnTpVr7zyih555BFJ0meffaaQkBDNmTNH/fv3V3R0tP7zn/9o1qxZatHi5lA9X3zxhUqUKKG1a9eqdevW+uWXX7Rq1Spt375dDRo0kCR98sknatSokX777TdVrFhRq1ev1s8//6wTJ04oLCxMkvT222+rV69eeuONNxQUlEw3cgAAAAB5TmbWm6gzAQAAAOmT7iagxYsX67XXXlO3bt1Ut25dWa1WSZKXl5eqVauW7gze6d5779W6det06NAhSdKPP/6ozZs368EHH5QkHT16VFFRUWrVqpVtG19fX4WHh2vr1q2SpN27dysuLs4uJiwsTNWqVbPFbNu2TVar1VYBkKSGDRvKarXaxVSrVs1WAZCk1q1b69q1a9q9e3ey+b927ZpiYmLsXgAAAAByt8ysN1FnAgAAgDPu722SuyaHd7nhJDIyUv/880+S5VWrVnVrhpx58cUX1a1bN1WqVEne3t6qXbu2hgwZom7dukmSoqKiJEkhISF224WEhNjWRUVFycfHR8HBwQ5jihYtmmT/RYsWtYu5cz/BwcHy8fGxxdxpwoQJtvF/rVarSpQokdpTAAAAACCbyg71JupMAAAAQPq4PFTXnDlz9PbbbytfvnySpP79++vNN9+0K0jHxcXJ29vb/bm8zbx58/TFF19ozpw5qlq1qvbt26chQ4YoLCxMPXv2tMVZLBa77YwxSZbd6c6Y5OLTEnO7ESNGaOjQobb3MTExKlGihA4NKqHAoJTzd9ewbxzmXZJ0dIvzGI12IaaJw7XGtHCagsUy1mmMMa7kxTl3pZMbZea5cdc1z63X09n5yW7Hnd3+hjMzP+6Q0/Ir5cw8A0B2lB3qTbm1zqQ/JkjySyattH8+Ofr8yy2fexbL2hTXuVK3c6ecViYGACA3y4geInmyx4kxxu79l19+qQsXLtjenzlzRoGBge7LWQqef/55vfTSS3rsscdUvXp1RUZG6rnnntOECRMkSaGhoZKU5NdLZ8+etf3SKTQ0VNevX7fLf3IxZ86cSbL/c+fO2cXcuZ8LFy4oLi4uya+qEvn6+iooKMjuBQAAACB3yA71JupMAAAAQPqkeY6TOysEknT9+vV0ZcYV//zzjzw87LPt6empGzduSJLKlCmj0NBQrVmzxi5fGzduVOPGjSVJderUkbe3t13M6dOndeDAAVtMo0aNFB0drR9++MEWs2PHDkVHR9vFHDhwQKdPn7bFrF69Wr6+vqpTp46bjxwAAABATpMV9SbqTAAAAHAmQZ6Kd/MrN/U4cXmoLlc469btDu3bt9cbb7yhkiVLqmrVqtq7d6/eeecd9enTx5aHIUOGaPz48SpfvrzKly+v8ePHK1++fOrevbskyWq1qm/fvho2bJgKFSqkggULavjw4apevbpatLjZVbly5cpq06aN+vXrp48//liS9NRTTykiIkIVK1aUJLVq1UpVqlRRZGSkJk2apL///lvDhw9Xv379+FUUAAAAgGRldL2JOhMAAACQPqlqOJkzZ47uv/9+Va9eXVLmNJTcadq0aRo5cqQGDBigs2fPKiwsTP3799eoUaNsMS+88IKuXr2qAQMG6MKFC2rQoIFWr15t1yV+ypQp8vLyUpcuXXT16lU1b95cM2fOlKfn/1rFZs+ercGDB6tVq1aSpA4dOmj69Om29Z6enlq+fLkGDBigJk2ayN/fX927d9fkyZMz4UwAAAAAyI6yut5EnQkAAADOJMhLCe7tV6EE3XBrelnJYpLrO56M+++/Xz/++KMuXbokb29vxcfHq0uXLrr33nt1zz33qEiRIqpYsaISEhIyOs+5SkxMjKxWqw5FBzmeHN7iwuTwcj45vGuTMKc8eeDNNLLX5PA5UW48P7nxmNwpp02Emd2uZ3bLjzM5Lb9SzswzgJwpsfwbHR2dK3scUG9yv8R7RnpJTA6fekwODwBA1stOZeDEvIyL7i+/IB+3ph0bc12jrB9ni+NML5cbThIdPnxYu3fv1p49e7R7927t3btXFy9etP2KigpA6tgqASuipQAHN9M0FxJr5ELMsKtOQ4zxd7g+M79cc2VfrsjM/FDYT5/sdn/lxuuZV48bAJA9ZKdKY0ai3uQ+zu4ZvowHkNnyQqMrAPfKTmVgGk5ck+q+OIlj4D722GO2ZUePHtWuXbu0d+9et2YOAAAAAHIi6k0AAADIzhLk4fbJ3BPk4db0spJbBjErU6aMypQpo86dO7sjOQAAAADIdag3AQAAADmDe2d/AQAAAAAAAAAA2Vq8PBXv5h4n7k4vK+WevjMAAAAAAAAAAADplK4eJ3v27FG1atXk4+PeSWTyojebPOtwMp4h+th5Ir3ckxd3TMjurknds5vcOMlbdpsoPLvtKzudH3flJTfex5kpO90TAICcgXqTe1itGyQFJFmens9di2VtiuuMaZHGNJk0OrdzVh5M63Xm3sk5uB4AcoMEeSnBzQNSJSjBrellpXT1OKlXr56OHTvmpqwAAAAAQO5DvQkAAADIWdLVpGSMcVc+AAAAACBXot4EAACA7OaGPJXg5jlJbuSiOU6YHB4AAAAAAAAAgDwkIQMaTtydXlZicngAAAAAAAAAAIBb6HECAAAAAAAAAEAekiCPDOhxknv6adBwkk28tOVdKSAoXWmY353HWCxbXEjpBSfrXUnDeYwxo11IJ/NYLGudxhjTwoV0xrqQTvY59uyUl8zmyrXKTly5Vu46prx8XzjDuQEAIKtsl+SXZKlrdZzkOfpcd1SucrRdWssKad0fMl9GXQ+uMwAA2QcNJwAAAAAAAAAA5CHx8pSnm3ucxDPHCQAAAAAAAAAAQO6Trh4no0ePVuHChd2VFwAAAADIdag3AQAAILtJkJcS3DwglbvTy0rpbjgBAAAAAKSMehMAAACQs+SeJiAAAAAAAAAAAODUDXkqwc1zktzIRXOc0HCSTRxqUkKBQZYU199lOe00DUsZfzflZovDtca0cJ6Xzs5j3MViGes0xhhXfuXn+Lhv7st5Kq7tK29y37Vyj9x4rVw5JleuAwAAQE6RnjKdo3JRWtNNa5oZVTbNiGPMbrLTdQQAIKdIyICGk7Skt2nTJk2aNEm7d+/W6dOntXDhQj300EO29cYYjR07Vv/3f/+nCxcuqEGDBnr//fdVtWpVh+nOnz9fI0eO1H//+1+VK1dOb7zxhh5++GGX88Xk8AAAAADw/+3de3hU1b3/8c8mISGkZAQ0FxQ1KCIKtQgCAQtaAtRrexS1hVI4RdSqIAInLdL+AE8FTQX5Ka0VDwWtoj5CbVF7EDhVKBcvRPxVRalH0nIpKVVhgoq5sX9/EKYOZPZameyZzOX9ep55Hpn9nbW+e+81e6/lzpoFAAAAIO4+++wzXXDBBVq0aFGT28vLy7VgwQItWrRIb7zxhgoLCzV8+HAdOnQoYplbtmzRDTfcoLFjx+r//b//p7Fjx+r666/Xa6+9Zp0XM04AAAAAAAAAAEgj9cpQG59nnNRHUd5ll12myy67rMltrutq4cKFmjlzpq655hpJ0mOPPaaCggItX75cN998c5OfW7hwoYYPH64ZM2ZIkmbMmKH169dr4cKFeuqpp6zyatGDk4MHD+qll17S3r175TiOioqKNHLkSHXs2LElxQIAAABAymDcBAAAgHRSXV0d9u/s7GxlZ2c3u5zKykpVVVVpxIgRYWUNHTpUmzdvjvjgZMuWLbrzzjvD3hs5cqQWLlxoXXfUP9W1ZMkS9e/fX6+++qqOHDmihoYGvfrqqxo4cKCWLFkSbbEAAAAAkDIYNwEAACARHV3jJNPn19EZJ127dlUgEAi95s2bF1WOVVVVkqSCgoKw9wsKCkLbIn2uuZ85XtQzTsrLy/Xmm2/qK1/5Stj7//mf/6m+fftqwoQJ0RYNAAAAACmBcRMAAADSze7du5WXlxf6dzSzTb7McZywf7uue8J7fnzmy6J+cOI4jj799NMTBgCffvppsxLAUecs2i21y4scMN+ikGlzfMvHW6k5ZMVhi3JyWpzJUWW+lOK6s4wxjmNzjC2OjwXHWWeMcV1/6ooXm2McTzbnM5Fy9ivfRNonpJ5k+14BQKwxbkpssbgnRVum1z20JXnGYh9jlWu04n0eTf0d+joAgGRwdMaJv2ucHCsvLy8v7MFJtAoLCyUdnUFSVFQUen///v0nzCg5/nPHzy4xfeZ4UT84uf/++zV06FD16tVLp556qiRpz549evfddzV/vs3/5QcAAACA1Ma4CQAAAIhOcXGxCgsLtXbtWvXp00eSVFtbq/Xr1+u+++6L+LmSkhKtXbs2bJ2TNWvWaNCgQdZ1Wz84GTt2rB555BG1b99eknTllVfqsssu0+uvv66///3vcl1Xp556qvr376+MDH+fVAEAAABAMmDcBAAAgGQQyxknzfHpp5/qf//3f0P/rqys1FtvvaVOnTrp9NNP15QpUzR37lx1795d3bt319y5c9W+fXuNHj069Jnvf//7OvXUU0Nrqdxxxx0aMmSI7rvvPn3rW9/S73//e61bt04bN260zsv6wcny5cs1f/780ADg5ptv1r333quSkhJJR38jrL6+ns4/AAAAgLTFuAkAAADJ4EgMHpwciaK8rVu36tJLLw39e+rUqZKkcePGadmyZSorK9Phw4d166236sCBAxowYIDWrFmjDh06hD6za9cutWnTJvTvQYMG6emnn9ZPfvIT/fSnP9VZZ52lZ555RgMGDLDOy/rBieu6Yf9+6qmn9KMf/UgdO3aUdPQ3ws444wx98cUX1pUDAAAAQCph3AQAAADYu+SSS07oQ3+Z4ziaPXu2Zs+eHTHmlVdeOeG9UaNGadSoUVHnFfUaJ03tTG1tbdSJAAAAAECqYdwEAACARFSvDDk+zzip97m81hT1g5OmOI7jZ3Fp5d7b71C7vKyI26d0e8RcSPEsc0zlOotsNnludZw5xhJc1yIX35QbI+LZNP06Pq5b6ktd8RLfc5564vm9SrzvMFIJbQcAzBg3RScYnKG8vLzWTiNmWuMe6tUv9Mon3e/36b7/AACkgzbmkH9Zvny53nzzTdXV1Umiww8AAAAAx2PcBAAAgER3dHH4TJ9faTjj5OKLL9asWbN06NAhtW3bVvX19brrrrt08cUX68ILL9Qpp5wSyzwBAAAAIOExbgIAAACSn/WDkw0bNkiSPvjgA1VUVOjNN99URUWFfvrTn+rgwYP8FRUAAACAtMe4CQAAAMmgQRlq4/MMkbSccXJM9+7d1b17d33nO98JvVdZWamtW7dq27ZtviYHAAAAAMmIcRMAAACQvHxZHL64uFjFxcW67rrr/CgOAAAAAFIO4yYAAAAkCmacePPlwQlabqWuVaZyI26/aef/NZaxuNsd5oqKSy2y8Y5xd5pLcJx1FvXY2GSMcN1ZvtTkOHPiVle8JFu+8ZZsx8evNpps+w0AABAr3v2rwRG3uK7NuMo/pvFVtPnQLwQAIH3VK0OOzw866lPowUmb1k4AAAAAAAAAAAAgUTDjBAAAAAAAAACANHJEmWrw+fHAkRR63MCMEwAAAAAAAAAAgEap8wgIAAAAAAAAAAAYNcRgjZNUWhyeGScAAAAAAAAAAACNmHGSIN5YNERqlxdx+5ZpAy1KOWwOKc4xx1Su89zsOJsscjFz3VkWUaXGCMeZ40tddvmY+ZWPDb/K8UM899umLhuJdM5tcrGpJ57nAYmBcw4ASBeBwDxJ7U54P1b3Odc1j0Wa4nVvjjZXUy6xqDMWZbZEouUDAECya1CbGMw4SZ15GqmzJwAAAAAAAAAAAC3EjBMAAAAAAAAAANJIvTIkn2ec1LPGCQAAAAAAAAAAQOphxgkAAAAAAAAAAGmkQZlyfH480JBCjxtSZ0+S3EW3b1BmXm7kgKnmMrY4G4wx7k6bBajNdZkNtqjHZoFvczl+Laodz3L84jjrDBGbjGXEc6F6c75SPHO2kUjnPJ0XvUyk85Bo0nW/AQCwFe9FxWNRpqkvlCz70RLxzifRFqNPtHwAAMnviDLU4PNPax3hp7oAAAAAAAAAAABSDzNOAAAAAAAAAABIIw0xWBze7xksrYkZJwAAAAAAAAAAAI2YcQIAAAAAAAAAQBphxom3pJxxsnfvXn3ve99T586d1b59e33ta19TRUVFaLvrupo9e7a6dOminJwcXXLJJXr33XfDyqipqdGkSZN08sknKzc3V1dffbX27NkTFnPgwAGNHTtWgUBAgUBAY8eO1cGDB8Nidu3apauuukq5ubk6+eSTNXnyZNXW1sZs3wEAAADAhDETAAAAEL2km3Fy4MABDR48WJdeeqn++7//W/n5+frwww910kknhWLKy8u1YMECLVu2TOecc45+9rOfafjw4dqxY4c6dOggSZoyZYqef/55Pf300+rcubOmTZumK6+8UhUVFcrIOPpkbPTo0dqzZ49Wr14tSbrppps0duxYPf/885KkhoYGXXHFFTrllFO0ceNGffzxxxo3bpxc19VDDz3UrP16UmPUQU7E7UXdDpoLKb7UGOJ0a0ZSLeC6pcYYx9lkUZI5xq4cM8eZ40s58WQ+zubz4Be/jp/rzvKlHL/Y5GOz7/Har0TKxU/JmDMAAK0lVcdM0kBJuSe8a+r/xKIf4VVnLOqjLxR/iXbMEy0fAEDyq1cbub7POEnKeRpNSroHJ/fdd5+6du2qpUuXht4788wzQ//tuq4WLlyomTNn6pprrpEkPfbYYyooKNDy5ct18803KxgMasmSJfrNb36j0tKj/2P5iSeeUNeuXbVu3TqNHDlS7733nlavXq1XX31VAwYMkCQ9+uijKikp0Y4dO9SjRw+tWbNG27dv1+7du9WlSxdJ0vz58zV+/Hjdc889ysvLi9NRAQAAAICjGDMBAAAALZN0j4BWrVqlfv366brrrlN+fr769OmjRx99NLS9srJSVVVVGjFiROi97OxsDR06VJs3b5YkVVRUqK6uLiymS5cu6tWrVyhmy5YtCgQCoQGAJA0cOFCBQCAsplevXqEBgCSNHDlSNTU1YdPgv6ympkbV1dVhLwAAAADwC2MmAAAAmDQoMyavVJF0D0527typhx9+WN27d9dLL72kW265RZMnT9bjjz8uSaqqqpIkFRQUhH2uoKAgtK2qqkpZWVnq2LGjZ0x+fv4J9efn54fFHF9Px44dlZWVFYo53rx580K//xsIBNS1a9fmHgIAAAAAiIgxEwAAAEwalBGTV6pIugcnR44c0YUXXqi5c+eqT58+uvnmmzVx4kQ9/PDDYXGOE75eiOu6J7x3vONjmoqPJubLZsyYoWAwGHrt3r3bMycAAAAAaA7GTAAAAEDLJN2Dk6KiIp133nlh7/Xs2VO7du2SJBUWFkrSCX+9tH///tBfOhUWFqq2tlYHDhzwjPnHP/5xQv3//Oc/w2KOr+fAgQOqq6s74a+qjsnOzlZeXl7YCwAAAAD8wpgJAAAAJkdiMNvkSArNOEm6Hx0bPHiwduzYEfbeX/7yF51xxhmSpOLiYhUWFmrt2rXq06ePJKm2tlbr16/XfffdJ0nq27ev2rZtq7Vr1+r666+XJO3bt0/vvPOOysvLJUklJSUKBoN6/fXX1b9/f0nSa6+9pmAwqEGDBoVi7rnnHu3bt09FRUWSpDVr1ig7O1t9+/Zt1n7N1V3KUrvIAbdbFDLtsDlmVI45pnKTRWXeHGddi8s4arBFTMvzlSTXnWWMcZw5vsT4VZdNOX6wOZ/xysVWIh0/yZyPX7kk2nlINInWLgAAiIVUHTNFy+v+73Xfj/fnAETG9woAEG9J9+Dkzjvv1KBBgzR37lxdf/31ev3117V48WItXrxY0tFp4FOmTNHcuXPVvXt3de/eXXPnzlX79u01evRoSVIgENCECRM0bdo0de7cWZ06ddL06dPVu3dvlZaWSjr6F1nf/OY3NXHiRD3yyCOSpJtuuklXXnmlevToIUkaMWKEzjvvPI0dO1Y///nP9cknn2j69OmaOHEifxUFAAAAoFUwZgIAAIBJvTLUxucZIsw4aUUXXXSRnnvuOc2YMUN33323iouLtXDhQo0ZMyYUU1ZWpsOHD+vWW2/VgQMHNGDAAK1Zs0YdOnQIxTzwwAPKzMzU9ddfr8OHD2vYsGFatmyZMjL+dXKffPJJTZ48WSNGjJAkXX311Vq0aFFoe0ZGhl588UXdeuutGjx4sHJycjR69Gjdf//9cTgSAAAAAHAixkwAAABAyziu67qtnUQ6q66uViAQ0PjgvcrKi/xTXYsX3GEuzK+f6lph/ikbM79+Yiv5fqornnUl1k91lcYhE3vxPH5+tAuml8dHIn2vACBdHev/BoNBZhzAyrE2I/1OUm4TEdGPB/ipLiA58L0CkOwSqQ98LJcuwTfVJq+D+QPNcKT6kP4euDAh9rOlkm5xeAAAAAAAAAAAgFhJup/qAgAAAAAAAAAA0WtQhlzWOImIBycJ4l2dr8wmp503w3qLn+Eab1OQ6eex4vcTWzY//+Q4/vxUV6L9DJcf4rlPiSaeP8MVr3Mez1yS8ZzbSNX9AgAgPQyUFM1PPkQem3j9JG20/YbW+BmvWJTLTyMhkaR7m+P7CCAWeHDijZ/qAgAAAAAAAAAAaMSMEwAAAAAAAAAA0kjDkQy5R3yeceJzea2JGScAAAAAAAAAAACNmHECAAAAAAAAAEAaaajP0JF6f2eIuD6X15qYcQIAAAAAAAAAANCIGScJ4lqtVDtlRdzee+qfjWW8ra8aYzbvvNQY4zibDBFlxjJUnGOOqTSHOM4cY4zrzjIXZMGmLr/Y5ByvfPzKxa/zkGj82i9TOX4d40Qrx4ZfbT1V2yBiK9HaOu0YAJrPdUtb8OnIn/W6bkd7vfb6XEvqi8X9g3sSUoGp/5Us7TxZ8gSQXBrqM+XU+/t4wPW5vNbEjBMAAAAAAAAAAIBGqfMICAAAAAAAAAAAGDXUt5Hj+xonqTNPgwcnAAAAAAAAAACkkYb6jBg8OGFxeAAAAAAAAAAAgJTDjBMAAAAAAAAAANJIfX2GnDpmnETCg5MEsVLXKlO5LSpji9NgjHFGWRRUPMt7e+UcYxHuTkMZkiRzjHOduRSbGK0w5ywNNka4bqlFOfHjON775boWx9hQRrzLSUY2+27i17FJ1WOcqvuVipLtWhDPXBJpvwEgOb0qNTFmchzvT0Xbh4/FddvrPulVX0v6/dHWCaQC2jgAIFr8VBcAAAAAAAAAAGnEbcjUEZ9fbkPz5mmceeaZchznhNdtt93WZPwrr7zSZPz777/vxyEJw4wTAAAAAAAAAAAQV2+88YYaGv71K0rvvPOOhg8fruuu8/6JoR07digvLy/071NOOcX33HhwAgAAAAAAAABAOqnPOPryu8xmOP6Bx7333quzzjpLQ4cO9fxcfn6+TjrppOZm1yz8VBcAAAAAAAAAAPBFdXV12Kumpsb4mdraWj3xxBP6wQ9+IMewiF2fPn1UVFSkYcOG6eWXX/Yr7TA8OAEAAAAAAAAAIJ0cm3Hi90tS165dFQgEQq958+YZ0/nd736ngwcPavz48RFjioqKtHjxYq1cuVK//e1v1aNHDw0bNkwbNmzw66iE8FNdqWR+qTlmUezTkCSnm0VQ5TpjiOua98lxzOVIZRZ15ViUY+Y4cyyiBhsjXHeWD7nYHOOW12Nbjs2x8SsfG37lE8+c/RDP82D3fUgsppyT7XzHG8cHABArweClYb9lbcurT+w13vDqE3jd7+L9OZN0uDfH6thFU1+s6gQAwHcNjlTvPbMjqjIl7d69O6zflp2dbfzokiVLdNlll6lLly4RY3r06KEePXqE/l1SUqLdu3fr/vvv15AhQ1qQ+ImYcQIAAAAAAAAAAHyRl5cX9jI9OPnb3/6mdevW6cYbb2x2XQMHDtQHH3wQbaoRMeMEAAAAAAAAAIB0Ut/48rvMKCxdulT5+fm64oormv3Zbdu2qaioKLqKPfDgBAAAAAAAAAAAxN2RI0e0dOlSjRs3TpmZ4Y8rZsyYob179+rxxx+XJC1cuFBnnnmmzj///NBi8itXrtTKlSt9z4sHJwAAAAAAAAAApJMEmXGybt067dq1Sz/4wQ9O2LZv3z7t2rUr9O/a2lpNnz5de/fuVU5Ojs4//3y9+OKLuvzyy1uSdZMc13Vd30uFterqagUCAd0bHK92eVkR4+54Z7GxLOcTi1M5vhnJRWKxqLuVYovF7Cv9WcTacQ5bJLTJlxi7fGwWbTcfH9N+xXfBe7N4LjieaIubm/JJtGOczljsEwBi61j/NxgMRrXQN9KPqc3Y9K0ji9y/917I3avO6MpE8qC/iGTi1V5pq0D8JFIf+Fgu2hSUvuJzLp9WS4MTYz9bihknAAAAAAAAAACkkwSZcZKo2rR2AgAAAAAAAAAAAImCGScAAAAAAAAAAKSTekl1MSgzRfDgBAAAAAAAAACAdNLQ+PK7zBTBT3UBAAAAAAAAAAA0YsZJgvjh5cuU53E2ql4JmAu5zqKiysPmmOIcw/ZSi3rWGUPcneZiHMcmZo45yDdlxgibfFx3li/lmJnr8YvNPtlwHIu249PxsynHr/3yox6/2rpfxyYZpfO+AwCQ7AKBlyXlNrFlk+fnvO/tFmObJkWuMxZ9CVMfJlX6L177mUj7mEi5ACa019SXLNdOJCAWh/fEjBMAAAAAAAAAAIBGzDgBAAAAAAAAACCdMOPEEzNOAAAAAAAAAAAAGjHjBAAAAAAAAACAdMKME0/MOAEAAAAAAAAAAGjEjJNEMU5STuTN1+g5YxF/fHaQMeYbCzabc9li2L5ijrmM4lnGEOc6czF2yswhxR4H95hKi/1SuUWMOR/HMdfluhbH0FCO46wzlmHDJhcbfu13PNkcQ9ctjUMm/rSJeItXW7ctJ9Hal0kyfmcAAIidgZLyTng3Vn0xr/uw1/032s95Sab7vVf/2XSuEmk/Y3EeASAWuCYhag3yf4ZIg8/ltSIenAAAAAAAAAAAkE74qS5P/FQXAAAAAAAAAABAI2acAAAAAAAAAACQTphx4okZJwAAAAAAAAAAAI2YcQIAAAAAAAAAQDqpa3z5XWaK4MFJgnj4hvFql5cVcfv22p7GMr4xZrM/yaw4bAgYbC6j0lSGpL45VumYlRsj3J2zLMoxxzjOHItyNlnEmNnV1XKuW+pLOY6zzqIum/NgU5f52NjU5d8xbvkxtMulzBjh1zH2i1/5xHO/TOci0Y6xX/z6XgEAECvBYI7y8k4cQ7Tk3u312Vjc96LtfybTPdiv8UVrS6ZjDgAA/MeDEwAAAAAAAAAA0klD48vvMlMEa5wAAAAAAAAAAAA0YsYJAAAAAAAAAADppEFSfQzKTBE8OAEAAAAAAAAAIJ3Uy/8HJ36X14r4qS4AAAAAAAAAAIBGzDhJEHNr75JT2yHi9vezzjWW8cyzNxhjplz3iDmZUTne21dsMpdRXGqO8UvxLGOI48zxqbLBFjEWx8eqHDPX9T7ONvvtOL6k4ts5tztXZb7U5brmtmPDj/Zlk4tf59Ovumz4dYz94jjrjDF+5BzP42dTl005iXauAACwZjEeiCTa+5/3/TdyX9/Uf4+Wf+Odf6FvAC9ebY62AwBJghknnpJ6xsm8efPkOI6mTJkSes91Xc2ePVtdunRRTk6OLrnkEr377rthn6upqdGkSZN08sknKzc3V1dffbX27NkTFnPgwAGNHTtWgUBAgUBAY8eO1cGDB8Nidu3apauuukq5ubk6+eSTNXnyZNXW1sZqdwEAAACg2Rg3AQAAAM2TtA9O3njjDS1evFhf/epXw94vLy/XggULtGjRIr3xxhsqLCzU8OHDdejQoVDMlClT9Nxzz+npp5/Wxo0b9emnn+rKK69UQ8O/Vq8ZPXq03nrrLa1evVqrV6/WW2+9pbFjx4a2NzQ06IorrtBnn32mjRs36umnn9bKlSs1bdq02O88AAAAAFhg3AQAAIAm1cfolSKS8sHJp59+qjFjxujRRx9Vx44dQ++7rquFCxdq5syZuuaaa9SrVy899thj+vzzz7V8+XJJUjAY1JIlSzR//nyVlpaqT58+euKJJ/T2229r3bqjP+Hy3nvvafXq1fqv//ovlZSUqKSkRI8++qheeOEF7dixQ5K0Zs0abd++XU888YT69Omj0tJSzZ8/X48++qiqq6vjf1AAAAAA4EsYNwEAAADRScoHJ7fddpuuuOIKlZaG/z5sZWWlqqqqNGLEiNB72dnZGjp0qDZv3ixJqqioUF1dXVhMly5d1KtXr1DMli1bFAgENGDAgFDMwIEDFQgEwmJ69eqlLl26hGJGjhypmpoaVVRURMy9pqZG1dXVYS8AAAAA8FuyjpsYMwEAAMRBg/yfbdKglJF0i8M//fTTevPNN/XGG2+csK2qqkqSVFBQEPZ+QUGB/va3v4VisrKywv7i6ljMsc9XVVUpPz//hPLz8/PDYo6vp2PHjsrKygrFNGXevHmaM8f/hfsAAAAA4JhkHjcxZgIAAEBrS6oHJ7t379Ydd9yhNWvWqF27dhHjHMcJ+7fruie8d7zjY5qKjybmeDNmzNDUqVND/66urlbXrl31lzPOUZ5HijmveqYvSZqy5hFzkI0V67y3F88yl9HXpp7DFkFl5pBKfwZVrmveL8cxHBvrcsz77ro5Lc7HLhefBqWV5hDH2WSM8StnxxlsUVepMcaGTc7x4lcufpVjc678a6f+nHNTXYl2jP06fsl4zhPpu2cjFfcJQGJK9nFTpDFTIHBYUtsmPlHumbMUi2tr5H6HV3/D617QkntAvO8f0e6HefziT/88vM7YHHMAAJJeLNYkYY2T1lFRUaH9+/erb9++yszMVGZmptavX68HH3xQmZmZob9kOv4vl/bv3x/aVlhYqNraWh04cMAz5h//+McJ9f/zn/8Mizm+ngMHDqiuru6Ev6j6suzsbOXl5YW9AAAAAMAvyT5uYswEAACA1pZUD06GDRumt99+W2+99Vbo1a9fP40ZM0ZvvfWWunXrpsLCQq1duzb0mdraWq1fv16DBg2SJPXt21dt27YNi9m3b5/eeeedUExJSYmCwaBef/31UMxrr72mYDAYFvPOO+9o3759oZg1a9YoOztbffvaTLcAAAAAAP8xbgIAAIBRXYxeKSKpfqqrQ4cO6tWrV9h7ubm56ty5c+j9KVOmaO7cuerevbu6d++uuXPnqn379ho9erQkKRAIaMKECZo2bZo6d+6sTp06afr06erdu3do0cSePXvqm9/8piZOnKhHHjn681c33XSTrrzySvXo0UOSNGLECJ133nkaO3asfv7zn+uTTz7R9OnTNXHiRP4iCgAAAECrYdwEAAAAowb5v5g7i8MnrrKyMh0+fFi33nqrDhw4oAEDBmjNmjXq0KFDKOaBBx5QZmamrr/+eh0+fFjDhg3TsmXLlJGREYp58sknNXnyZI0YMUKSdPXVV2vRokWh7RkZGXrxxRd16623avDgwcrJydHo0aN1//33x29nAQAAACAKjJsAAACAyBzXdd3WTiKdVVdXKxAI6PngRcrNi/wc68/qbSzrjncWG2NOOmefMSY4ptBze+DJKs/tkhTMNi9UH8/Fge0WdW/5otGSpFEWCwxWmEPcneYYPxZX9Gtx+HgurBjPdiH5s6C9ORd/zoONVF0EM74L0be8nlTFAugATI71f4PBIDMOYMXUZsx9usj9uWjvSdEvjh5dPyPR7p3JtOC6V/uIxWL0AKJjuj4m2rUFaK5E6gMfy0UzglI7n3P5olqalxj72VJJtcYJAAAAAAAAAABALKXcT3UBAAAAAAAAAAAPDZLqY1BmimDGCQAAAAAAAAAAQCNmnAAAAAAAAAAAkE7qJWXEoMwUwYwTAAAAAAAAAACARsw4SRArda2y1C7i9vO03VjGSefsM8YExxQaY2569v96bl+84A5jGSqeZQxxupmLseE4h30qZ50v5WjFHGOI61ocH4t8XLfUKiVvZRYxm4wRjmPebxs2x8aGTT5258GPbMziud+Jxq9z5Zd41uWHeB6/RDtXAID0Egi8LCn3hPfNfeLI27363F7lRnu/S5X7ZDLthz9jJiD2vPrayfSdi1Y67COQcOrk/7SKOp/La0U8OAEAAAAAAAAAIJ00yP/F3FkcHgAAAAAAAAAAIPUw4wQAAAAAAAAAgHTSIP8Xc2fGCQAAAAAAAAAAQOphxgkAAAAAAAAAAOmkXv5Pq/B7Bksr4sFJgjhX76udsiJu/6reNpbxfta5xpgiHTTGPPLOFM/ti3WHsQxVHjbHaJM5ZNQsc8wki6rGl5pjKtdZFGRjcNzKcRzvnF3XYr9tzoNv+2Suy3Hm+FSXP+yOoZnpXNkcG9c1fx9sYmyOsU05icavnE3HJ9GOTTzPeaLtOwAgvQSDlyovL6/Zn3Mcr7GJVx8scj/Q697qdb+M9nNILMnWX0wWXmMmv8ZliSxV2k2srnNcPwHEGw9OAAAAAAAAAABIJ3WSnBiUmSJY4wQAAAAAAAAAAKARM04AAAAAAAAAAEgnDY0vv8tMEcw4AQAAAAAAAAAgndTH6NUMs2fPluM4Ya/CwkLPz6xfv159+/ZVu3bt1K1bN/3qV79qXqWWmHECAAAAAAAAAADi7vzzz9e6detC/87IyIgYW1lZqcsvv1wTJ07UE088oU2bNunWW2/VKaecomuvvdbXvHhwkiDO17vK9Tgdl07ZYizjpPJ95opKzCHOHLfFZUibzCGjSs0xkyyqGm8OcXeaY5xu5nzcneYYp5tFXc4cc5AGW8T4weJcWXBdi/Mpmxgzx1lnjLHJx+482Gj5uXLdWcYYm3xtyvGrLr/Y5GMjXsfHv++vzXfPXI5NW/frGAMA0JoCgcOS2jaxxfue6nWvdDwWRPW653vdW6P9XKzEYj+8pEq/I9HOY6JJle9HuovF+YjVeaR9ADHQoGbPELEqs5kyMzONs0yO+dWvfqXTTz9dCxculCT17NlTW7du1f333+/7gxN+qgsAAAAAAAAAAPiiuro67FVTUxMx9oMPPlCXLl1UXFys73znO9q5M/JfwG/ZskUjRowIe2/kyJHaunWr6urqfMtf4sEJAAAAAAAAAADppS5GL0ldu3ZVIBAIvebNm9dkCgMGDNDjjz+ul156SY8++qiqqqo0aNAgffzxx03GV1VVqaCgIOy9goIC1dfX66OPPor2SDSJn+oCAAAAAAAAAAC+2L17t/Ly8kL/zs7ObjLusssuC/137969VVJSorPOOkuPPfaYpk6d2uRnnON+a9V13SbfbykenAAAAAAAAAAAkE4a5P/vUTWucZKXlxf24MRWbm6uevfurQ8++KDJ7YWFhaqqqgp7b//+/crMzFTnzp2bXZ8XfqoLAAAAAAAAAAC0qpqaGr333nsqKipqcntJSYnWrl0b9t6aNWvUr18/tW3b1tdcmHGSIHpohzqoZdOJDo5oukF9mXO326I6JEnTDptj5pdalDPHHDNpljHEjbxeUIjjWNRlwXEGW0RtMocUm/dLlS3P2elmcR7kzz45jjnGdc377Tjr4paPHfPxcV2b45x67M6nuR3bnHObY2yTjx/8q8efdmNzjP06V37tezzrSkV+XSc5xgDShdd9x+taaHe9bW6Z0fXxW3LNjsX1PpnuIdGe/2Tax9YQi+MT7blqDcmUq5dkyjUVmO4BnA/EXb3Uwv8d3XSZzTB9+nRdddVVOv3007V//3797Gc/U3V1tcaNGydJmjFjhvbu3avHH39cknTLLbdo0aJFmjp1qiZOnKgtW7ZoyZIleuqpp3zeER6cAAAAAAAAAACQXhLgwcmePXv03e9+Vx999JFOOeUUDRw4UK+++qrOOOMMSdK+ffu0a9euUHxxcbH+8Ic/6M4779QvfvELdenSRQ8++KCuvfZaP/dCEg9OAAAAAAAAAABAnD399NOe25ctW3bCe0OHDtWbb74Zo4z+hQcnAAAAAAAAAACkk2bODmm1MlsJi8MDAAAAAAAAAAA0YsYJAAAAAAAAAADppEH+r3HS4HN5rYgHJ0ni8H+ZY179tMQY80cNMsb828Dfem4Pbik0J7PFHCKVmUMeMoc4FjFWddkYlWOOqSg1x1Sus6jMIudiQz6Vhy3q2WSMcN1ZxhjHmWMRY7PfNmzOZ7kxwr/9Mh9DabAhF4t2E0c2x8avcvxqF3bl2Jwrb34dm3iyacd+7ZdfdflRTjz3O778uW7HU+qeCwDx9aqk3Cbeb/n9vSle/TOv61r01zPv/qKX2OTjf30294PoRD523F8SS7TnI95t3CTedSba/iM6rXGuaDtA9HhwAgAAAAAAAABAOmGNE0+scQIAAAAAAAAAANCIGScAAAAAAAAAAKQTZpx44sEJAAAAAAAAAADppF6S63OZKbQ4PD/VBQAAAAAAAAAA0MhxXdfv50pohurqagUCAQW3SHlfiRw3p7e5rLJcc8ywT/9ojNle29Nze3BMobmiSeYQDT1sjlmfY455yKKuFXPMMfNnmWMWWdRVabFfKjeHjLLIZ4VNXX4w5+u65nwdxyLfYotzXrnOHKNNFjFmfu2X61rsVwJxHPMxdt1Si3IsvntxZHM+TfzaJz9ySVY2xzCRjk+y5RtvHB80V6j/GwwqLy+vtdNBEjC1GVO/xavPEu19Pd7XNVOeXvnEoj+WDtf1WPVj0+HYpQqvNsB5TCyxOFfRlkm7QSSJ1Ac+lou+GpQyfM6loVr6c2LsZ0sx4wQAAAAAAAAAAKARa5wAAAAAAAAAAJBOWOPEEzNOAAAAAAAAAAAAGjHjBAAAAAAAAACAdMKME08sDt/Kji3G85dgnjrkORHjHnGCxrKGuCXGmJ7abowpWnDQO6CfsQgFBlYZY6wWmbdZ/HyUxaLbVouoWywmPt+8GLam+VSXBptDTAup+7RQvd0C6TYLttswHxu7fGwWc7Q4xnFcZN4k0RYldxxz+3Jd8/cz0c6VH+K56J/Nd89rUdx/lZN8C3ybcza3m1Q9NkAiS6SFMZEcQguY6seS2jURYdNPaD6be0RTYrWouJfoFz+O3I/w2v/WWPw43nWmwz6mCo5bbHBcAX8lUh841Lc6J0aLw/8lMfazpZhxAgAAAAAAAABAOqmXdMTnMv0urxXx4AQAAAAAAAAAgHTSIP9/qiuFHpywODwAAAAAAAAAAEAjZpwAAAAAAAAAAJBO6uX/tApmnAAAAAAAAAAAAKQeZpwkiHM27ZZy8yJuny3HWMaf1dsY840Nm40xbr53Xc5W84/fBbcWGmM0yRxS8uyrxpgtCy41F1SRY465vdQcM+2wOUabzCHFFnXZqJxjqGeWRRnmEMdZZw6y2Cd3p01d5uNnlY8F1zXnbJOPDXPONvWUGSNc19zWHcfQbiS5rrnt2NXlz7myOT42OdswHR+bemyOsV/82m+/yvGLX+3UD36d80Q7xgCQbILBGcrLO3HMZL4Ge/WhyiNucTyHRZH7JrG43rekT+X92cj74b3/8Rfv+6hXfX70F/2sM937GK1xrpJJtG0nHY5NvNEekXCYceKJGScAAAAAAAAAAACNmHECAAAAAAAAAEA6qRMzTjww4wQAAAAAAAAAAKARM04AAAAAAAAAAEgnRySZl7JuHr/La0VJN+Nk3rx5uuiii9ShQwfl5+fr29/+tnbs2BEW47quZs+erS5duignJ0eXXHKJ3n333bCYmpoaTZo0SSeffLJyc3N19dVXa8+ePWExBw4c0NixYxUIBBQIBDR27FgdPHgwLGbXrl266qqrlJubq5NPPlmTJ09WbW1tTPYdAAAAAEwYMwEAAMCoPkavFJF0M07Wr1+v2267TRdddJHq6+s1c+ZMjRgxQtu3b1dubq4kqby8XAsWLNCyZct0zjnn6Gc/+5mGDx+uHTt2qEOHDpKkKVOm6Pnnn9fTTz+tzp07a9q0abryyitVUVGhjIwMSdLo0aO1Z88erV69WpJ00003aezYsXr++eclSQ0NDbriiit0yimnaOPGjfr44481btw4ua6rhx56qFn7lXfRP+Tkfd6iY3PQWWyMKXG/Y4w5qXafd8Aii2RsYpaZQ7Y4A81B6y3qsmGTszaZQ4pLW5rJUZVzLIIGG8pY1/IyJLmueZ+c68w1OY4/+fiWs2NzjMssYsotYvxgbn+OY9FGfWJ3PuOXj3+825dNu3HdWb5kYtdG/SrHn++VDbu2kzjie87Nx8av8wAgdaXqmCkQmCepXRNbDP214pzI2yq9PujRjymOfN33vpZHLtPrXmK69nvV6f3Z6O4p0fY5TfdUr2Pg9Vm/7sO2YlWfX30/2zJbYz/ifa6SSayOW7SfjTYfzj+AVJF0D06OdciPWbp0qfLz81VRUaEhQ4bIdV0tXLhQM2fO1DXXXCNJeuyxx1RQUKDly5fr5ptvVjAY1JIlS/Sb3/xGpaVHO4pPPPGEunbtqnXr1mnkyJF67733tHr1ar366qsaMGCAJOnRRx9VSUmJduzYoR49emjNmjXavn27du/erS5dukiS5s+fr/Hjx+uee+5RXl5eHI8MAAAAADBmAgAAgIV6SY7PZfJTXYkjGAxKkjp16iRJqqysVFVVlUaMGBGKyc7O1tChQ7V582ZJUkVFherq6sJiunTpol69eoVitmzZokAgEBoASNLAgQMVCATCYnr16hUaAEjSyJEjVVNTo4qKiibzrampUXV1ddgLAAAAAGKFMRMAAADQPEn94MR1XU2dOlUXX3yxevXqJUmqqqqSJBUUFITFFhQUhLZVVVUpKytLHTt29IzJz88/oc78/PywmOPr6dixo7KyskIxx5s3b17o938DgYC6du3a3N0GAAAAACuMmQAAANCkuhi9UkRSPzi5/fbb9ec//1lPPfXUCdscJ3yekeu6J7x3vONjmoqPJubLZsyYoWAwGHrt3r3bMycAAAAAiBZjJgAAAKD5kvbByaRJk7Rq1Sq9/PLLOu2000LvFxYWStIJf720f//+0F86FRYWqra2VgcOHPCM+cc//nFCvf/85z/DYo6v58CBA6qrqzvhr6qOyc7OVl5eXtgLAAAAAPzGmAkAAAARNcTolSKSbnF413U1adIkPffcc3rllVdUXFwctr24uFiFhYVau3at+vTpI0mqra3V+vXrdd9990mS+vbtq7Zt22rt2rW6/vrrJUn79u3TO++8o/LycklSSUmJgsGgXn/9dfXv31+S9NprrykYDGrQoEGhmHvuuUf79u1TUVGRJGnNmjXKzs5W3759m7Vf1TcWSG1bNiCY9RuLmCnfMMa8vLDEc/ulI7YYy3AWWawEtNUcIpWbQx6aZY5ZZlHVQxYxlZvMMbeXmmOmHbaobLAxwnW963K6mWtxd5pjHGeOOUhlFjE2+5TjSz6GP5ZsBos2aLFfkkXbiUsZkuuavzM2x9imHMn8ffCvLjPHMX/3TN+reO6TX+fKhnm//WRuy36d83jx75zH7zz413YS51wl2j7F8/oGfFmqjpmCwRlNPkRxNhg+ODTy/T8W30HH8brP2fQbmyrT+3ritR+Os87jc/G8/0vR7r8U/bnyOnbex83rmHvvR7THNfp8ohPtsTGJzfcq2lyjb3Neoj0fXrm2Rp8gFm0gVfo2sfp+xFuq7AfQGpLuwcltt92m5cuX6/e//706dOgQ+uulQCCgnJwcOY6jKVOmaO7cuerevbu6d++uuXPnqn379ho9enQodsKECZo2bZo6d+6sTp06afr06erdu7dKS492cHr27KlvfvObmjhxoh555BFJ0k033aQrr7xSPXr0kCSNGDFC5513nsaOHauf//zn+uSTTzR9+nRNnDiRv4oCAAAA0CoYMwEAAMCKxd++p6uke3Dy8MMPS5IuueSSsPeXLl2q8ePHS5LKysp0+PBh3XrrrTpw4IAGDBigNWvWqEOHDqH4Bx54QJmZmbr++ut1+PBhDRs2TMuWLVNGRkYo5sknn9TkyZM1YsQISdLVV1+tRYsWhbZnZGToxRdf1K233qrBgwcrJydHo0eP1v333x+jvQcAAAAAb4yZAAAAgJZJugcnrmt+DOY4jmbPnq3Zs2dHjGnXrp0eeughPfRQ5N9n6tSpk5544gnPuk4//XS98MILxpwAAAAAIB4YMwEAAAAtk7SLwwMAAAAAAAAAAPiNBycAAAAAAAAAAACNku6nulLW71+WlBvzaqoWBowx/1b7W8/tz/W6xlxRX9uMDNbPMseMtyhnq0VMiUXMijKLIAujcswxJaXGEMdZZ4gYbFGGORWNsjgPKw6bY4rN+23eJ8l1zfnYlGPHfAxd1+J8yvt8+pfvJp/KMbPL2SYfi3bazaKYyjnmmGKLtuwLm++eRb4W5djFmM+D3fm0qavcp3LMTMfQ7lrhz3lwXfM1O53ZHGfT+bI7V2Y27cIv8awLgAePPqhnH6PSq3/rdW+NPGbw6jd6X+e8xyEt+Wwi8dqPaK+psficf33348v1f/+9eO9j9PfdRMq1JbnE+3xEf8y9v+Ne151E6qv40bf3U7zbsRR9G/AqN5HOMZBsmHECAAAAAAAAAADQiBknAAAAAAAAAACklbrGl99lpgZmnAAAAAAAAAAAADRixgkAAAAAAAAAAGmlvvHld5mpgRknAAAAAAAAAAAAjRzXdd3WTiKdVVdXKxAIKBgMKi8vL2LcHMfxpb5ZQ1texs2vLDTGnKftxpjtOs8Ys3jBHcaYwO1Vxpjgq4XGGI03h+h2i5gtFjE2Snwow69cbKyYY46ZP8scM+2wRWWbfIop86mcwRYx3lw3xxjjOBbH2CoXm32y4VNdxRbtoq9FVSvWGUNct9SiIG8258F1LfYpjuzajlk898ufnM1t1I824Se/2leitdN45eM48bkO2ErG71482PZ/gWNMbcbpZiig0uPaUOxxTai06Zc2pTyqT3l9122ub5HLjbyP3uVG7sd55xr52her61lr1Okl2nyivW8k0z6mA+/z6NU/9WucFi5VzgdtDskukfrAx3KRdkvyO5dqSV0TYj9bip/qAgAAAAAAAAAgrfBTXV74qS4AAAAAAAAAAIBGzDgBAAAAAAAAACCt1Euqi0GZqYEZJwAAAAAAAAAAAI2YcZIk/Fruec76lmZiZ8qGR4wxC4fc7EtdN2Q9Y4xZvNW8yLzV4o/TLBIqNi/ybVXXCou6TGd9vcUCuA9ZVLPCIl+bBb6tFqu3WEzTapF5n+qy4bWo6DGGc2634Kd5MXubReYlc75+LWhsdfWyWPjdfdYc4zjmq6BNTCItLOjfQtd+3UXM/Mo5XufBcczXN7vvlT+SceF3G/HKJ54Lv9tItPMApCp3p/d2x/G4D3otHO/J/4XTo63vKJt7fTTlRiNyn9W8/9EtnB3vBdf96yvb1xmtWC1Unyy5mvKMRfuI/tgkVj8m3mLV5mJxjqOtj75hbHDMW6JO/s848bu81sOMEwAAAAAAAAAAEFfz5s3TRRddpA4dOig/P1/f/va3tWPHDs/PvPLKK3Ic54TX+++/72tuzDgBAAAAAAAAACCt1Mv/NUmaV9769et122236aKLLlJ9fb1mzpypESNGaPv27crNzfX87I4dO5SXlxf69ymnnBJVxpHw4AQAAAAAAAAAAMTV6tWrw/69dOlS5efnq6KiQkOGDPH8bH5+vk466aSY5cZPdQEAAAAAAAAAkFbq9a91Tvx6HZ1xUl1dHfaqqamxyigYDEqSOnXqZIzt06ePioqKNGzYML388stW5TcHD04AAAAAAAAAAEgr9TF6SV27dlUgEAi95s2bZ8zGdV1NnTpVF198sXr16hUxrqioSIsXL9bKlSv129/+Vj169NCwYcO0YcOGaA5CRPxUV5IovcMcs+n/mmMG+1DXy3rGWMZ5Q7YbY6Zc94gx5qZnzTv1TO0Nxhj1M4dI5eaQ9bPMMVstqlqUY46pPGyOmV/qublkiPlp65bxl5rrKbbIt685RCss9qnY4hhPm2NRmUVrH2VRl40V64whgZrIF3xJCp7rfS4lSZXm/XYcm2+5DZtybGI2mUMsjp/jWFTlE8fxzsd1/Wk3jmPzfTC3C6tyLM6DX/vluvHL2a4N+lGPzT6Z27HNsbHjz/fcr5wdx3xtsmlf5nLM+x3ffON5zgF4Md9XvK71UV5TR0X+fntfZ6Krz6/7dDy4rtfYwXs/bK7Rfn7O67hGW+ZRfvXJ/8XrvhPt/cbmXhZP0bbzlnw/4v3dir5dRW5TsepvRH8ti3zN9TreLTkXXrkm0/UzFtLh2KTKfqSa3bt3h60/kp2dbfzM7bffrj//+c/auHGjZ1yPHj3Uo0eP0L9LSkq0e/du3X///caf92oOHpwAAAAAAAAAAJBWjv28lt9lSnl5eWEPTkwmTZqkVatWacOGDTrttNOaXevAgQP1xBNPNPtzXnhwAgAAAAAAAAAA4sp1XU2aNEnPPfecXnnlFRUXF0dVzrZt21RUVORrbjw4AQAAAAAAAAAgrfxrTRJ/y7R32223afny5fr973+vDh06qKqqSpIUCASUk3P05z9nzJihvXv36vHHH5ckLVy4UGeeeabOP/981dbW6oknntDKlSu1cuVKX/eEBycAAAAAAAAAACCuHn74YUnSJZdcEvb+0qVLNX78eEnSvn37tGvXrtC22tpaTZ8+XXv37lVOTo7OP/98vfjii7r88st9zY0HJwAAAAAAAAAApJV6+b/GSfNmnLiua4xZtmxZ2L/LyspUVlbWrHqiwYOTJOHsNTei2XKMMZss6iq90Xt7T203lvG0bjDGuN8y53tS7T5jTHBMoTFGk8whGjXLGBIYWGWMOW/Ie8aY7bf3NMYEX7XYL4Mt3S41B93e4moaK/OpnMrDFkGD/YmxaRfjzSGuW2qMcRzDftn8hGOxuY3aHL9ATdAYczDL3P4cZ505Hyvmc+W6OcYY5zrzedAKm/ZV7l2PY76Suq75XFntk9Uxtvk+mPl3Pm3uNP7kbDpXNmzOlfH7K8lmv23ajn8svg92vQJjhF/H0KYcf/jT/myu/QDixXQ989rusW2+x3Vp2pyIm7yuZ44T+XOOeXjkIfJ+eF9fvf6nQ+T7rFe/wev6aOpveB+7aOu0uY83LxeTWJznWNx3vI+b79UZeR03L7E6V7GoM9rPebcp72tg/HONZ5/3qFgc12jri/YeYPqsF69y49fHBlIPD04AAAAAAAAAAEgrrb/GSSLjwQkAAAAAAAAAAGmlTv7/VJff5bWeNq2dAAAAAAAAAAAAQKJgxgkAAAAAAAAAAGmFn+rywowTAAAAAAAAAACARsw4SRLus+aYdY45JsMtMcbMcbZ4bj/JvcFchmYZYwZ974/GmPP0njFmS0mhMeaPQwYZY74x9G5jTHBSqTFGQ8w535D1jDFm8dY7zHV5nyo7iyxibreImWQRs6LcGHKTe5IxZnE3i2NTuc4YEhjYyxgTlLl9Oc5hcz7FOeYYk742QeZ6gtnmUhyZj5802BwyymK/V8wx53Od+ZqiFf7k7LoWdRk4jnmf7FgcY5u2VVlmUZf5+2mVj1WMX7zrcl2La7YVi2NTbNFuKm3ahc3x22SMcByb74M/7Ooy75cf3xub769Nu7DJxaYuv8oB4M30vXa6Rd7u7vT43AKPQj2u+97XRa/rodc287U/Eq98vI6d40SXT7SfOyq6e3f0xzy6Ms33kmj7Q17HNfI2r3tJtPeZlvSjvO5/sbjveZ//6L870bed6Pbfu815fc6vscfx5UbXn4xV3yYWxzUWuXgxHZt4f3eAo7ND/F6ThBknAAAAAAAAAAAAKYcZJwAAAAAAAAAApBXWOPHCjBMAAAAAAAAAAIBGzDgBAAAAAAAAACCt1Mn/NU78Lq/18OAEAAAAAAAAAIC0woMTL47rum5rJ5HOqqurFQgEFAwGlZeX16KyHGedOWh+aYvq8NWWONY1yRwSGFhljAlmB8wFjcoxhrjPmotxnMPmoGJDXZUWZWiTMSJQ08sYEzy30FzO+xbH2KIcKzb7bnGufLNijvf24lnmMiotvuO+MbcLO4N9ijHn47rm65vjGM6DJKnMIsaUi7ltWeVi1S4s2vp8i7a+yByiSnPOrmvO2elmU1fLr19WbWKBRTXTbL57/rRjO/6UY3WubO5FVvn4kbP5u2nz3Us0Nv03m7acTPzs/yI9xLLNeN+Pva7tXtvKo/xcZKbrgPe1JPI12Ote4FnmqMj5eI117PpiEXj1i6z6DSfyum+0KFfP8xyD8+HBq+3E7nxEWe4ojzI9xlPexy36ffQu16vNefR7ij2+y9EetxaJ9joXXd/Ouz1GP96Nvlz/v48t2cdov6/RfgdisY8tqzO6z8Uil1hIpD7wsVykX0tq73Ppn0v6QULsZ0sx4wQAAAAAAAAAgLTC4vBeWBweAAAAAAAAAACgETNOAAAAAAAAAABIK/Xyf00SZpwAAAAAAAAAAACkHGacAAAAAAAAAACQVljjxAsPTlKI65a2dgpJrtAc4sY+i1BVbo4PpdiU4U+7cSrXGWMOZlnUtdOHZCTZ7buZ48zxpRzXndXiekxlHC3HfB7srhXmGJu6pE0WMWY2Odvtux/H0LxPjjPYGCNZxFTatL8yc8gWi2IqD1sEmXO2+s4Um8+Dilt+/bJqo6Nsvg825zN+rNpxN3M5zgIfkpFk9T23OefGNmjx3dtgcT63mkM0zZ9rqd09xOZ7Fb98bNoXkEpi0+bj/z3yvgZE19+PxfgydtcYf/r+Xxa7XCMfV6/rtFc+dv3y5mnJ/nv1hb3aVbRjL8ex6cdGEjlXr+Mai++c9xgicj/Ij7Fm08ojb/Lq23mMYZzrvI5N9GNHx/H6bOTxUvTXOY92Y9EPj/jZ67y2Rt6PaOv0+u605Lsa/fUjFuMur+949PsR7fUayYUHJwAAAAAAAAAApJU6+f94wO81U1oPD04AAAAAAAAAAEgr/FSXFxaHBwAAAAAAAAAAaMSMEwAAAAAAAAAA0kq9/P9pLWacAAAAAAAAAAAApBzHdV23tZNIZ9XV1QoEAgoGg8rLy2vtdAAASAiOM8cY47qz4pCJXS52yowRrpvjS01+5WxzjB1nnUVJgy3q8mffTRznsEXUJp9izPut4lJzTKVNzomk3LD9C0n30v+FNcZMAJAavPuN3n0rr36pV9832jFDtP3paPM8yqvvGPn4eNfpcczne/RDF3mkYuibevXrvfviHm3Aq8/slU+xxxijsiXnIzLXbTrXROrPHMtFmiOpnc+lfyFpVkLsZ0sx4wQAAAAAAAAAAKARD0588Mtf/lLFxcVq166d+vbtqz/96U+tnRIAAAAAJBTGTQAAAImkLkav1MCDkxZ65plnNGXKFM2cOVPbtm3T17/+dV122WXatWtXa6cGAAAAAAmBcRMAAACSSWZrJ5DsFixYoAkTJujGG2+UJC1cuFAvvfSSHn74Yc2bN++E+JqaGtXU1IT+HQwGJR39bTkAAHDMF8aI+N07zbnYMedbXe3XX+f4k7PdMf7MpiSLuuL1l0k264XY7JPNMbYo54jNMU62NU5Mx+ZoX5ilFtNLc8ZNjJkAIFV59Y28+w/e94DIn43+3hFdfzraPI+K7vh41+lR5hcenzviUaShb+rdr/f6rEeunn1mjzKPeOXSkvMRWaTzcez9xOoDfyap3ucya8whSYLF4VugtrZW7du317PPPqt/+7d/C71/xx136K233tL69etP+Mzs2bM1Z45fi8wCAAAAyenDDz9Ut27dWjsNxEFzx02MmQAAQKpKhD7wF198oeLiYlVVVcWk/MLCQlVWVqpdO78Xno8vZpy0wEcffaSGhgYVFBSEvV9QUBCx4c2YMUNTp04N/fvgwYM644wztGvXLgUCgZjmi9RQXV2trl27avfu3crLy2vtdJAEaDNoLtoMmoP2guYKBoM6/fTT1alTp9ZOBXHS3HETY6bUw70i+XEOkxvnL/lxDpNfIvWB27Vrp8rKStXW1sak/KysrKR/aCLx4MQXjuOE/dt13RPeOyY7O1vZ2dknvB8IBLjwoVny8vJoM2gW2gyaizaD5qC9oLnatGG5xXRjO25izJS6uFckP85hcuP8JT/OYfJLlD5wu3btUuLhRiwlxplKUieffLIyMjJO+Cup/fv3n/DXVAAAAACQjhg3AQAAINnw4KQFsrKy1LdvX61duzbs/bVr12rQoEGtlBUAAAAAJA7GTQAAAEg2/FRXC02dOlVjx45Vv379VFJSosWLF2vXrl265ZZbrD6fnZ2tWbNmNTkVHWgKbQbNRZtBc9Fm0By0FzQXbSY9tWTcRJtJfpzD5Mc5TG6cv+THOUx+nMPk47iu67Z2Esnul7/8pcrLy7Vv3z716tVLDzzwgIYMGdLaaQEAAABAwmDcBAAAgGTBgxMAAAAAAAAAAIBGrHECAAAAAAAAAADQiAcnAAAAAAAAAAAAjXhwAgAAAAAAAAAA0IgHJwAAAAAAAAAAAI14cBIHv/zlL1VcXKx27dqpb9+++tOf/uQZv379evXt21ft2rVTt27d9Ktf/SpOmSJRNKfN/Pa3v9Xw4cN1yimnKC8vTyUlJXrppZfimC1aW3OvMcds2rRJmZmZ+trXvhbbBJFwmttmampqNHPmTJ1xxhnKzs7WWWedpV//+tdxyhaJoLlt5sknn9QFF1yg9u3bq6ioSP/+7/+ujz/+OE7ZorVt2LBBV111lbp06SLHcfS73/3O+Bn6v2DMlPwYwyQ/xhXJjT5+8qPPnbzo/6YmHpzE2DPPPKMpU6Zo5syZ2rZtm77+9a/rsssu065du5qMr6ys1OWXX66vf/3r2rZtm+666y5NnjxZK1eujHPmaC3NbTMbNmzQ8OHD9Yc//EEVFRW69NJLddVVV2nbtm1xzhytobnt5ZhgMKjvf//7GjZsWJwyRaKIps1cf/31+p//+R8tWbJEO3bs0FNPPaVzzz03jlmjNTW3zWzcuFHf//73NWHCBL377rt69tln9cYbb+jGG2+Mc+ZoLZ999pkuuOACLVq0yCqe/i8YMyU/xjDJj3FFcqOPn/zocyc3+r8pykVM9e/f373lllvC3jv33HPdH//4x03Gl5WVueeee27YezfffLM7cODAmOWIxNLcNtOU8847z50zZ47fqSEBRdtebrjhBvcnP/mJO2vWLPeCCy6IYYZINM1tM//93//tBgIB9+OPP45HekhAzW0zP//5z91u3bqFvffggw+6p512WsxyROKS5D733HOeMfR/wZgp+TGGSX6MK5IbffzkR587ddD/TR3MOImh2tpaVVRUaMSIEWHvjxgxQps3b27yM1u2bDkhfuTIkdq6davq6upilisSQzRt5nhHjhzRoUOH1KlTp1ikiAQSbXtZunSpPvzwQ82aNSvWKSLBRNNmVq1apX79+qm8vFynnnqqzjnnHE2fPl2HDx+OR8poZdG0mUGDBmnPnj36wx/+INd19Y9//EMrVqzQFVdcEY+UkYTo/6Y3xkzJjzFM8mNckdzo4yc/+tzph75Mcshs7QRS2UcffaSGhgYVFBSEvV9QUKCqqqomP1NVVdVkfH19vT766CMVFRXFLF+0vmjazPHmz5+vzz77TNdff30sUkQCiaa9fPDBB/rxj3+sP/3pT8rM5BaQbqJpMzt37tTGjRvVrl07Pffcc/roo49066236pNPPuE3kNNANG1m0KBBevLJJ3XDDTfoiy++UH19va6++mo99NBD8UgZSYj+b3pjzJT8GMMkP8YVyY0+fvKjz51+6MskB2acxIHjOGH/dl33hPdM8U29j9TV3DZzzFNPPaXZs2frmWeeUX5+fqzSQ4KxbS8NDQ0aPXq05syZo3POOSde6SEBNecac+TIETmOoyeffFL9+/fX5ZdfrgULFmjZsmX8RVoaaU6b2b59uyZPnqz/83/+jyoqKrR69WpVVlbqlltuiUeqSFL0f8GYKfkxhkl+jCuSG3385EefO73Ql0l8/FlADJ188snKyMg44enw/v37T3iqeExhYWGT8ZmZmercuXPMckViiKbNHPPMM89owoQJevbZZ1VaWhrLNJEgmtteDh06pK1bt2rbtm26/fbbJR3tMLuuq8zMTK1Zs0bf+MY34pI7Wkc015iioiKdeuqpCgQCofd69uwp13W1Z88ede/ePaY5o3VF02bmzZunwYMH6z/+4z8kSV/96leVm5urr3/96/rZz37GX0/hBPR/0xtjpuTHGCb5Ma5IbvTxkx997vRDXyY5MOMkhrKystS3b1+tXbs27P21a9dq0KBBTX6mpKTkhPg1a9aoX79+atu2bcxyRWKIps1IR/9Ka/z48Vq+fDm/Z5lGmtte8vLy9Pbbb+utt94KvW655Rb16NFDb731lgYMGBCv1NFKornGDB48WH//+9/16aefht77y1/+ojZt2ui0006Lab5ofdG0mc8//1xt2oR3MTMyMiT966+ogC+j/5veGDMlP8YwyY9xRXKjj5/86HOnH/oySSKeK9Gno6efftpt27atu2TJEnf79u3ulClT3NzcXPevf/2r67qu++Mf/9gdO3ZsKH7nzp1u+/bt3TvvvNPdvn27u2TJErdt27buihUrWmsXEGfNbTPLly93MzMz3V/84hfuvn37Qq+DBw+21i4gjprbXo43a9Ys94ILLohTtkgEzW0zhw4dck877TR31KhR7rvvvuuuX7/e7d69u3vjjTe21i4gzprbZpYuXepmZma6v/zlL90PP/zQ3bhxo9uvXz+3f//+rbULiLNDhw6527Ztc7dt2+ZKchcsWOBu27bN/dvf/ua6Lv1fnIgxU/JjDJP8GFckN/r4yY8+d3Kj/5uaeHASB7/4xS/cM844w83KynIvvPBCd/369aFt48aNc4cOHRoW/8orr7h9+vRxs7Ky3DPPPNN9+OGH45wxWltz2szQoUNdSSe8xo0bF//E0Sqae435MgY46am5bea9995zS0tL3ZycHPe0005zp06d6n7++edxzhqtqblt5sEHH3TPO+88Nycnxy0qKnLHjBnj7tmzJ85Zo7W8/PLLnn0T+r9oCmOm5McYJvkxrkhu9PGTH33u5EX/NzU5rsv8LQAAAAAAAAAAAIk1TgAAAAAAAAAAAEJ4cAIAAAAAAAAAANCIBycAAAAAAAAAAACNeHACAAAAAAAAAADQiAcnAAAAAAAAAAAAjXhwAgAAAAAAAAAA0IgHJwAAAAAAAAAAAI14cAIAAAAAAAAAANCIBycAAAAAAAAAAACNeHACAEhZl1xyiaZMmdLaaQAAAABoZYwNAADNwYMTAABiZMiQIXIc54TXmDFjrD4/fvx4/fjHP/atPAAAAACtg7EBACSXzNZOAACAL6utrVVWVlZrp9Firuvqrbfe0v3333/C4OUrX/mK8fNHjhzRiy++qFWrVvlSHgAAAJBsGBscxdgAAOKPGScAgIhc11V5ebm6deumnJwcXXDBBVqxYkVo+yWXXKLJkyerrKxMnTp1UmFhoWbPnt3sMm6//XZNnTpVJ598soYPHy5JOnTokMaMGaPc3FwVFRXpgQceCJte//jjj6tz586qqakJq+/aa6/V97///Sb3p6amRpMnT1Z+fr7atWuniy++WG+88UZo+4oVK9S7d2/l5OSoc+fOKi0t1WeffWa9/cs++OADHTp0SEOGDFFhYWHYy2Yws2nTJrVp00YDBgzwpTwAAACgJRgbMDYAgHTCgxMAQEQ/+clPtHTpUj388MN69913deedd+p73/ue1q9fH4p57LHHlJubq9dee03l5eW6++67tXbt2maXkZmZqU2bNumRRx6RJE2dOlWbNm3SqlWrtHbtWv3pT3/Sm2++GfrMddddp4aGhtBfXUnSRx99pBdeeEH//u//3uT+lJWVaeXKlXrsscf05ptv6uyzz9bIkSP1ySefaN++ffrud7+rH/zgB3rvvff0yiuv6JprrpHrupJk3H68iooKZWZm6qtf/WoUR15atWqVrrrqKrVp08aX8gAAAICWYGzA2AAA0ooLAEATPv30U7ddu3bu5s2bw96fMGGC+93vftd1XdcdOnSoe/HFF4dtv+iii9wf/ehHzSrja1/7Wtj26upqt23btu6zzz4beu/gwYNu+/bt3TvuuCP03g9/+EP3sssuC/174cKFbrdu3dwjR46Eyj4W/+mnn7pt27Z1n3zyyVB8bW2t26VLF7e8vNytqKhwJbl//etfmzwepu3Hmz59uus4jpubmxv2uvHGG60+f84557irVq1qVnnPP/+8e84557hnn322++ijj1rVAwAAAJgwNgjH2AAAUh9rnAAAmrR9+3Z98cUXoenxx9TW1qpPnz6hfx//V05FRUXav39/s8ro169f2PadO3eqrq5O/fv3D70XCATUo0ePsLiJEyfqoosu0t69e3Xqqadq6dKlGj9+vBzHOWF/PvzwQ9XV1Wnw4MGh99q2bav+/fvrvffe09SpUzVs2DD17t1bI0eO1IgRIzRq1Ch17NhRknTBBRd4bj9eRUWFrrvuOt1zzz1h70eK/7L33ntPe/bsUWlpqXV59fX1mjp1ql5++WXl5eXpwgsv1DXXXKNOnToZ6wMAAAC8MDZgbAAA6YYHJwCAJh05ckSS9OKLL+rUU08N25adnR3677Zt24Ztcxwn9FnbMnJzc8O2uY1T3I8f5LjHTX3v06ePLrjgAj3++OMaOXKk3n77bT3//PNN7o9XmY7jKCMjQ2vXrtXmzZu1Zs0aPfTQQ5o5c6Zee+01FRcXG7cfb9u2bbr77rt19tlnN5nPO++8o29961vatGmTCgsL9dFHH6m0tFSvv/66Vq1apeHDhysnJ8e6vNdff13nn39+6Dhffvnleumll/Td7363yXgAAADAFmMDxgYAkG5Y4wQA0KTzzjtP2dnZ2rVrl84+++ywV9euXWNaxllnnaW2bdvq9ddfD71XXV2tDz744ITYG2+8UUuXLtWvf/1rlZaWRiz37LPPVlZWljZu3Bh6r66uTlu3blXPnj0lHR04DR48WHPmzNG2bduUlZWl5557LhRv2n7Mzp07dfDgwbC/nDter1699J3vfEd//OMfJUlz5szRj370I2VlZen3v/+9rr766maV9/e//z1sAHraaadp7969EeMBAAAAW4wNGBsAQLphxgkAoEkdOnTQ9OnTdeedd+rIkSO6+OKLVV1drc2bN+srX/mKxo0bF7MyOnTooHHjxuk//uM/1KlTJ+Xn52vWrFlq06bNCX8VNmbMGE2fPl2PPvqoHn/88Yi55Obm6oc//GGozNNPP13l5eX6/PPPNWHCBL322mv6n//5H40YMUL5+fl67bXX9M9//jM0cDJt/7KKigpJUkFBgaqqqsK25efnhxZ1PP/88/WXv/xF//u//6uKigo9+OCD2r9/v9544w397ne/a1Z5x//FnXTiX9ABAAAA0WBswNgAANIND04AABH953/+p/Lz8zVv3jzt3LlTJ510ki688ELdddddMS9jwYIFuuWWW3TllVcqLy9PZWVl2r17t9q1axcWl5eXp2uvvVYvvviivv3tb3uWee+99+rIkSMaO3asDh06pH79+umll15Sx44dlZeXpw0bNmjhwoWqrq7WGWecofnz5+uyyy4L1eO1/cvefPNNSdI555wT9n7btm116NCh0E8RdO/eXS+88ILuuusu3XPPPXIcR88//7wGDBig/Pz8ZpV36qmnhv0V2Z49ezRgwADP4wEAAADYYmzA2AAA0onjNvUYGgCABPPZZ5/p1FNP1fz58zVhwoSwbcOHD1fPnj314IMPtlJ20Tl48KC6d++uAQMG6IUXXpAkXX311br44otVVlbWrLLq6+vVs2dPvfLKK6EFIF999VV17tw5FqkDAAAArYaxgTfGBgDQcsw4AQAkpG3btun9999X//79FQwGdffdd0uSvvWtb4ViPvnkE61Zs0Z//OMftWjRotZKNWonnXSSpKN/7XbMxRdfHNWijZmZmZo/f74uvfRSHTlyRGVlZQyMAAAAkBIYGzQPYwMAaDlmnAAAEtK2bdt04403aseOHcrKylLfvn21YMEC9e7dOxRz5pln6sCBA/rpT3+q6dOnt2K20amrq1OvXr20Y8eO1k4FAAAASFiMDQAA8caMEwBAQurTp09o4cNI/vrXv8YnmRh5//331aNHj9ZOAwAAAEhojA0AAPHGjBMAAAAAAAAAAIBGbVo7AQAAAAAAAAAAgETBgxMAAAAAAAAAAIBGPDgBAAAAAAAAAABoxIMTAAAAAAAAAACARjw4AQAAAAAAAAAAaMSDEwAAAAAAAAAAgEY8OAEAAAAAAAAAAGjEgxMAAAAAAAAAAIBGPDgBAAAAAAAAAABoxIMTAAAAAAAAAACARjw4AQAAAAAAAAAAaPT/AYmOZs9JVLstAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#downstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(down_energyloss_found, down_residual_found, bins=(np.linspace(0,1,80), np.linspace(0,1.5e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
"\n",
"a1=ax1.hist2d(down_energyloss_lost, down_residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,1.5e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20) \n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, Downstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env1",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}