Projektpraktikum/B_rework.ipynb
2023-10-09 12:10:28 +02:00

1108 lines
388 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"import uproot\t\n",
"import numpy as np\n",
"import sys\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits import mplot3d\n",
"import itertools\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10522"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
"allcolumns = file.arrays()\n",
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
"\n",
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
"#ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"eff all = 0.8606728758791105 +/- 0.003375885792719708\n"
]
}
],
"source": [
"def t_eff(found, lost, axis = 0):\n",
" sel = ak.num(found, axis=axis)\n",
" des = ak.num(lost, axis=axis)\n",
" return sel/(sel + des)\n",
"\n",
"def eff_err(found, lost):\n",
" n_f = ak.num(found, axis=0)\n",
" n_all = ak.num(found, axis=0) + ak.num(lost,axis=0)\n",
" return 1/n_all * np.sqrt(np.abs(n_f*(1-n_f/n_all)))\n",
"\n",
"\n",
"print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>{energy: 4.62e+04,\n",
" photon_length: 10,\n",
" brem_photons_pe: [3.26e+03, 4.45e+03, 178, ..., 825, 8.99e+03, 3.48e+03],\n",
" brem_vtx_z: [162, 187, 387, 487, ..., 9.49e+03, 1.21e+04, 1.21e+04, 1.21e+04]}\n",
"-------------------------------------------------------------------------------\n",
"type: {\n",
" energy: float64,\n",
" photon_length: int64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_z: var * float64\n",
"}</pre>"
],
"text/plain": [
"<Record {energy: 4.62e+04, ...} type='{energy: float64, photon_length: int6...'>"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#try excluding all photons that originate from a vtx @ z>9500mm\n",
"#ignore all brem vertices @ z>9500mm \n",
"\n",
"#found\n",
"\n",
"brem_e_f = found[\"brem_photons_pe\"]\n",
"brem_z_f = found[\"brem_vtx_z\"]\n",
"e_f = found[\"energy\"]\n",
"length_f = found[\"brem_vtx_z_length\"]\n",
"\n",
"brem_f = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(found,axis=0)):\n",
" brem_f.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_f.field(\"energy\").append(e_f[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_f.field(\"photon_length\").integer(length_f[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n",
" brem_f.end_record()\n",
"\n",
"brem_f = ak.Array(brem_f)\n",
"\n",
"#lost\n",
"\n",
"brem_e_l = lost[\"brem_photons_pe\"]\n",
"brem_z_l = lost[\"brem_vtx_z\"]\n",
"e_l = lost[\"energy\"]\n",
"length_l = lost[\"brem_vtx_z_length\"]\n",
"\n",
"brem_l = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(lost,axis=0)):\n",
" brem_l.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_l.field(\"energy\").append(e_l[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_l.field(\"photon_length\").integer(length_l[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n",
" brem_l.end_record()\n",
"\n",
"brem_l = ak.Array(brem_l)\n",
"\n",
"\n",
"\n",
"\n",
"brem_f[0]"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"acc_brem_found = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_f, axis=0)):\n",
" acc_brem_found.begin_record()\n",
" acc_brem_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n",
" \n",
" acc_brem_found.field(\"brem_photons_pe\")\n",
" acc_brem_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_found.real(brem_f[itr,\"brem_photons_pe\", jentry])\n",
" \n",
" #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_found.end_list()\n",
" \n",
" acc_brem_found.field(\"brem_vtx_z\")\n",
" acc_brem_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_found.end_list()\n",
" \n",
"\n",
" \n",
" acc_brem_found.end_record()\n",
"\n",
"acc_brem_found = ak.Array(acc_brem_found)\n",
"\n",
"\n",
"\n",
"acc_brem_lost = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_l, axis=0)):\n",
" acc_brem_lost.begin_record()\n",
" acc_brem_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n",
" \n",
" acc_brem_lost.field(\"brem_photons_pe\")\n",
" acc_brem_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_lost.real(brem_l[itr,\"brem_photons_pe\", jentry])\n",
" \n",
" #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_lost.end_list()\n",
" \n",
" acc_brem_lost.field(\"brem_vtx_z\")\n",
" acc_brem_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_lost.end_list()\n",
" \n",
" acc_brem_lost.end_record()\n",
"\n",
"acc_brem_lost = ak.Array(acc_brem_lost)\n"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9056"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ak.num(acc_brem_found,axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nph_e = found[\"brem_photons_pe\"]\\nevent_cut = ak.all(ph_e<cutoff_energy,axis=1)\\nph_e = ph_e[event_cut]\\n'"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"\"\"\"\n",
"ph_e = found[\"brem_photons_pe\"]\n",
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
"ph_e = ph_e[event_cut]\n",
"\"\"\"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sample size: 322\n",
"eff (cutoff = 0 ) = 0.9379 +/- 0.0135\n",
"sample size: 322\n",
"eff (cutoff = 25 ) = 0.9379 +/- 0.0135\n",
"sample size: 322\n",
"eff (cutoff = 50 ) = 0.9379 +/- 0.0135\n",
"sample size: 322\n",
"eff (cutoff = 75 ) = 0.9379 +/- 0.0135\n",
"sample size: 322\n",
"eff (cutoff = 100 ) = 0.9379 +/- 0.0135\n",
"sample size: 384\n",
"eff (cutoff = 125 ) = 0.9453 +/- 0.0116\n",
"sample size: 433\n",
"eff (cutoff = 150 ) = 0.9423 +/- 0.0112\n",
"sample size: 485\n",
"eff (cutoff = 175 ) = 0.9443 +/- 0.0104\n",
"sample size: 529\n",
"eff (cutoff = 200 ) = 0.949 +/- 0.0096\n",
"sample size: 581\n",
"eff (cutoff = 225 ) = 0.9501 +/- 0.009\n",
"sample size: 644\n",
"eff (cutoff = 250 ) = 0.9519 +/- 0.0084\n",
"sample size: 705\n",
"eff (cutoff = 275 ) = 0.9475 +/- 0.0084\n",
"sample size: 757\n",
"eff (cutoff = 300 ) = 0.9498 +/- 0.0079\n",
"sample size: 802\n",
"eff (cutoff = 325 ) = 0.9451 +/- 0.008\n",
"sample size: 846\n",
"eff (cutoff = 350 ) = 0.9433 +/- 0.008\n",
"sample size: 876\n",
"eff (cutoff = 375 ) = 0.9452 +/- 0.0077\n",
"sample size: 919\n",
"eff (cutoff = 400 ) = 0.9467 +/- 0.0074\n",
"sample size: 972\n",
"eff (cutoff = 425 ) = 0.9475 +/- 0.0072\n",
"sample size: 1019\n",
"eff (cutoff = 450 ) = 0.949 +/- 0.0069\n",
"sample size: 1067\n",
"eff (cutoff = 475 ) = 0.9475 +/- 0.0068\n",
"sample size: 1117\n",
"eff (cutoff = 500 ) = 0.9418 +/- 0.007\n",
"sample size: 1144\n",
"eff (cutoff = 525 ) = 0.9423 +/- 0.0069\n",
"sample size: 1184\n",
"eff (cutoff = 550 ) = 0.9409 +/- 0.0069\n",
"sample size: 1234\n",
"eff (cutoff = 575 ) = 0.9408 +/- 0.0067\n",
"sample size: 1268\n",
"eff (cutoff = 600 ) = 0.9416 +/- 0.0066\n",
"sample size: 1303\n",
"eff (cutoff = 625 ) = 0.9417 +/- 0.0065\n",
"sample size: 1342\n",
"eff (cutoff = 650 ) = 0.9404 +/- 0.0065\n",
"sample size: 1381\n",
"eff (cutoff = 675 ) = 0.9399 +/- 0.0064\n",
"sample size: 1416\n",
"eff (cutoff = 700 ) = 0.9407 +/- 0.0063\n",
"sample size: 1444\n",
"eff (cutoff = 725 ) = 0.9418 +/- 0.0062\n",
"sample size: 1484\n",
"eff (cutoff = 750 ) = 0.942 +/- 0.0061\n",
"sample size: 1523\n",
"eff (cutoff = 775 ) = 0.9402 +/- 0.0061\n",
"sample size: 1557\n",
"eff (cutoff = 800 ) = 0.939 +/- 0.0061\n",
"sample size: 1593\n",
"eff (cutoff = 825 ) = 0.9379 +/- 0.006\n",
"sample size: 1628\n",
"eff (cutoff = 850 ) = 0.9373 +/- 0.006\n",
"sample size: 1656\n",
"eff (cutoff = 875 ) = 0.9384 +/- 0.0059\n",
"sample size: 1690\n",
"eff (cutoff = 900 ) = 0.9385 +/- 0.0058\n",
"sample size: 1721\n",
"eff (cutoff = 925 ) = 0.9378 +/- 0.0058\n",
"sample size: 1745\n",
"eff (cutoff = 950 ) = 0.9381 +/- 0.0058\n",
"sample size: 1769\n",
"eff (cutoff = 975 ) = 0.9378 +/- 0.0057\n",
"sample size: 1796\n",
"eff (cutoff = 1000 ) = 0.9365 +/- 0.0058\n",
"sample size: 1838\n",
"eff (cutoff = 1025 ) = 0.9374 +/- 0.0056\n",
"\n",
"cutoff energy = 350MeV, sample size: 846\n",
"eff = 0.9433 +/- 0.008\n"
]
}
],
"source": [
"#finden wir die elektronen die keine bremsstrahlung gemacht haben mit hoher effizienz?\n",
"#von energie der photonen abmachen\n",
"#scan ab welcher energie der photonen die effizienz abfällt\n",
"\n",
"#abhängigkeit vom ort der emission untersuchen <- noch nicht gemacht\n",
"\n",
"\n",
"\n",
"#idea: we make an event cut st all events that contain a photon of energy > cutoff_energy are not included\n",
"\"\"\"\n",
"ph_e = acc_brem_found[\"brem_photons_pe\"]\n",
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
"ph_e = ph_e[event_cut]\n",
"\"\"\"\n",
"\n",
"efficiencies_found = ak.ArrayBuilder()\n",
"\n",
"\n",
"\n",
"for cutoff_energy in range(0,1050,25):\n",
"\tnobrem_f = acc_brem_found[ak.all(acc_brem_found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\tnobrem_l = acc_brem_lost[ak.all(acc_brem_lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\n",
"\n",
"\n",
"\tprint(\"sample size: \",ak.num(nobrem_f,axis=0)+ak.num(nobrem_l,axis=0))\n",
"\tprint(\"eff (cutoff = \",str(cutoff_energy),\") = \",np.round(t_eff(nobrem_f,nobrem_l),4), \"+/-\", np.round(eff_err(nobrem_f, nobrem_l),4))\n",
"\n",
"\"\"\"\n",
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
"\"\"\"\n",
"cutoff_energy = 350.0 #MeV\n",
"\n",
"\"\"\"\n",
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
"\"\"\"\n",
"nobrem_found = acc_brem_found[ak.all(acc_brem_found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"nobrem_lost = acc_brem_lost[ak.all(acc_brem_lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
"\n",
"print(\"\\ncutoff energy = 350MeV, sample size:\",ak.num(nobrem_found,axis=0)+ak.num(nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(nobrem_found, nobrem_lost),4), \"+/-\", np.round(eff_err(nobrem_found, nobrem_lost),4))"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"eff = 0.8535 +/- 0.0036\n"
]
},
{
"data": {
"text/html": [
"<pre>[{energy: 2.58e+04, brem_photons_pe: [9.97e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 8.03e+04, brem_photons_pe: [4.91e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 5.6e+03, brem_photons_pe: [320, ..., 392], brem_vtx_z: [...]},\n",
" {energy: 6.36e+03, brem_photons_pe: [273, ...], brem_vtx_z: [...]},\n",
" {energy: 4.67e+04, brem_photons_pe: [8.96e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 7.16e+04, brem_photons_pe: [544, ..., 142], brem_vtx_z: [...]},\n",
" {energy: 5.15e+04, brem_photons_pe: [384, ...], brem_vtx_z: [...]},\n",
" {energy: 4.07e+04, brem_photons_pe: [2.7e+04, ...], brem_vtx_z: [...]},\n",
" {energy: 2.77e+04, brem_photons_pe: [2.24e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 6.4e+04, brem_photons_pe: [686, ..., 796], brem_vtx_z: [...]},\n",
" ...,\n",
" {energy: 5.59e+03, brem_photons_pe: [901, ...], brem_vtx_z: [...]},\n",
" {energy: 2.13e+04, brem_photons_pe: [787, ...], brem_vtx_z: [...]},\n",
" {energy: 9.34e+03, brem_photons_pe: [762, ...], brem_vtx_z: [...]},\n",
" {energy: 5.08e+04, brem_photons_pe: [711, ...], brem_vtx_z: [...]},\n",
" {energy: 6.41e+04, brem_photons_pe: [4.17e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 1.01e+04, brem_photons_pe: [220, ..., 156], brem_vtx_z: [...]},\n",
" {energy: 1.96e+04, brem_photons_pe: [1.66e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 2.98e+04, brem_photons_pe: [8.32e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 3.97e+04, brem_photons_pe: [9.36e+03, ...], brem_vtx_z: [...]}]\n",
"-------------------------------------------------------------------------\n",
"type: 1418 * {\n",
" energy: float64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_z: var * float64\n",
"}</pre>"
],
"text/plain": [
"<Array [{energy: 2.58e+04, ...}, ..., {...}] type='1418 * {energy: float64,...'>"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#wie viel energie relativ zur anfangsenergie verlieren die elektronen durch bremstrahlung und hat das einen einfluss darauf ob wir sie finden oder nicht?\n",
"#if any photon of an electron has an energy higher the cutoff then it is included\n",
"cutoff_energy=350\n",
"\n",
"brem_found = acc_brem_found[ak.any(acc_brem_found[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
"energy_found = ak.to_numpy(brem_found[\"energy\"])\n",
"eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"residual_found = energy_found - eph_found\n",
"energyloss_found = eph_found/energy_found\n",
"\n",
"brem_lost = acc_brem_lost[ak.any(acc_brem_lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
"energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n",
"eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"residual_lost = energy_lost - eph_lost\n",
"energyloss_lost = eph_lost/energy_lost\n",
"\n",
"print(\"eff = \", np.round(t_eff(brem_found,brem_lost),4), \"+/-\", np.round(eff_err(brem_found, brem_lost),4))\n",
"brem_lost"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mean energyloss relative to initial energy (found): 0.4107345449771658\n",
"mean energyloss relative to initial energy (lost): 0.7300783757368142\n"
]
}
],
"source": [
"mean_energyloss_found = ak.mean(energyloss_found)\n",
"mean_energyloss_lost = ak.mean(energyloss_lost)\n",
"print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n",
"print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHMCAYAAAD7xYOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/vklEQVR4nO3deXxTZdr/8W/aphulBQqFApV9kUUYQbG4gWNBUNFnHFxQRHAd+YmIjyButC6D6OO4jaKigqMy4sgioyhUpQVEFgs6siiIKMUBS1naQqVNm/P7AxtJ0yVJk5zT9vN+vfKiuc997nOdq4Fc3GezGYZhCAAAwILCzA4AAACgOhQqAADAsihUAACAZVGoAAAAy6JQAQAAlkWhAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVRqACos2XLlslms1X7eu211wKynfLyciUlJenpp58O+bYBmCPC7AAA1H+bNm2SJL3//vtKSkryWN6rV6+AbGfVqlU6cOCA/vSnP4V82wDMQaECoM42bdqk+Ph4XXrppbLZbEHbznvvvaeBAweqQ4cOId82AHNw6AdAneXk5Khfv35BLRQMw9DixYt1xRVXhHzbAMxDoQKgTg4ePKg9e/aob9++Kisr83gZhhGQ7axdu1b79u1zK1RCtW0A5qFQAVAnFeeIvPjii7Lb7R6vbdu21TqGYRiKj49Xfn5+tX3ee+899e3bV926dfN52wcOHNDFF1+sJk2aqHv37srMzKzLLgMIIc5RAVAnOTk5kqRFixYpJSXFY7k3J7Pu3LlTrVq1UsuWLavts2jRIk2YMMGvbU+cOFFt2rTRgQMH9Mknn+jKK6/U999/r8TExFpjA2AuChUAdbJp0yZFR0dr1KhRCg8Pr7bfyy+/rH/961+y2+1av3692rZtq3fffVe9evXSpk2b1L9/f916661asGCB2rZtq6VLl6pr166SpA0bNmjPnj0e56d4s+2jR49qyZIl2rVrl2JjYzVq1Cj169dP77//vkfhA8B6OPQDoE42bdqkPn361FikSNKWLVu0ceNGTZ48Wb/88osGDRqkBx54QJK0efNmffnllxo/frwOHTqk008/XXPmzHGtu3DhQnXv3l19+vTxeds7d+5UXFyc24xL3759tXXrVn92F0CIUagA8FtBQYF++OEH9evXr9a+W7Zs0QMPPKDhw4fLbrfr2muv1Y4dOySdKFQyMjJ01llnKSwsTF26dHE7EXbhwoUesynebvvo0aOKj493a4uPj9fRo0e93U0AJuLQDwC/bdq0SYZhqEmTJlq3bp3H8nbt2rlmMrZu3ep2l9i8vDzXOSmbN2/WW2+95Vq2detWjRw5UpL01VdfadeuXVUe9vFm23FxcSosLHRbVlhYqLi4OD/3GkAoMaMCwG8VV90899xzSk1N9XitWLFC0omi5MCBA253jl28eLFGjBih3NxcRUREuC37z3/+o9NOO03SidmUDh06aMCAAX5tu1u3bjp69Kj27t3rWnfLli3q3bt3EDICINBsBjcaABBkn376qYYPH66XXnpJ48aN0z/+8Q898sgj+vrrr5Wdna0XXnhBy5cvlyQVFxerWbNmKigoUExMjHr16qURI0boqaee8nv7o0ePVkJCgp5//nl9+umnGjt2rHbu3FnjVUYArIFDPwCCbsuWLZowYYLeeecdTZkyRQMGDFBmZqYSEhK0efNm1+yJdOKwT5cuXRQTEyNJXt2HpTYvvviixo0bp8TERLVr104LFiygSAHqCWZUAATdzTffrIEDB+rWW281OxQA9QznqAAIui1btqhnz55mhwGgHmJGBUDQJSQkaMeOHWrdurXZoQCoZ0ydUSkqKtLkyZPVoUMHxcTEaPDgwdq4caOZIQEIgoKCAooUAH4xtVC56aablJmZqTfffFPffPONhg0bpgsvvFA///yzmWEBAACLMO3Qz6+//qqmTZvq/fff18UXX+xq79+/vy655BI9+uijZoQFAAAsxLTLk8vKylReXq7o6Gi39piYGK1Zs6bKdUpKSlRSUuJ673Q6dejQISUmJspmswU1XgAAEBiGYaioqEht27ZVWFgtB3cME6Wmphrnn3++8fPPPxtlZWXGm2++adhsNqN79+5V9p8xY4YhiRcvXrx48eLVAF65ubm11gqmXvWza9cuTZgwQatWrVJ4eLhOP/10de/eXZs2baryJk+VZ1QKCgp0yimnaPfu3WratGnA4nI4HFq5cqWGDh0qu90esHHhjjyHDrkODfIcOuQ6NIKV56KiInXq1ElHjhxRQkJCjX1NvTNtly5dlJ2drWPHjqmwsFDJycm66qqr1KlTpyr7R0VFKSoqyqO9RYsWHk9HrQuHw6HY2FglJibyFyCIyHPokOvQIM+hQ65DI1h5rhjLm9M2LHHDtyZNmig5OVmHDx/W8uXLddlll5kdEgAAsABTZ1SWL18uwzDUo0cPff/997rnnnvUo0cPjR8/3sywAACARZg6o1JQUKCJEyeqZ8+euv7663XOOedoxYoVTOMBAABJJs+oXHnllbryyivNDAEA0IiVl5fL4XCYHYZlORwORURE6Pjx4yovL/d6PbvdrvDw8IDEYGqhAgCAGQzD0P79+3XkyBGzQ7E0wzDUpk0b5ebm+ny/smbNmqlNmzZ1vs8ZhQoAoNGpKFKSkpIUGxvLTUOr4XQ6dfToUcXFxdV+Y7bfGIah4uJi5eXlSZKSk5PrFAOFCgCgUSkvL3cVKYmJiWaHY2lOp1OlpaWKjo72ulCRTtxlXpLy8vKUlJRUp8NAlrg8GQCAUKk4JyU2NtbkSBq2ivzW9RwgChUAQKPE4Z7gClR+KVQAAIBlUagAAFBPDBkyRJMnTzY7jJDiZFoAACqsTQ/t9gaHeHu/ycrK0tChQ3X48GE1a9bMlBi8xYwKAACwLAoVAADqocOHD+v6669X8+bNFRsbqxEjRmjnzp2u5T/99JMuvfRSNW/eXE2aNFHv3r21bNky/fjjjxo6dKgkqXnz5rLZbLrhhhtM2ovacegHAIB66IYbbtDOnTu1dOlSxcfHa9q0aRo5cqS2bdsmu92uiRMnqrS0VKtWrVKTJk20bds2xcXFKSUlRQsXLtQVV1yh7777TvHx8a77nlgRhQoAAPVMRYHy+eefa/DgwZKkt99+WykpKVqyZIlGjx6tPXv26IorrlDfvn0lSZ07d3at36JFC0lSUlIS56gAAIDA2r59uyIiIjRo0CBXW2Jionr06KHt27dLkiZNmqRHH31UZ599tmbMmKH//Oc/ZoVbJxQqAADUM4ZhVNtecaO1m266ST/88IPGjh2rb775RgMHDtTzzz8fyjADgkIFAIB6plevXiorK9P69etdbQcPHtSOHTt06qmnutpSUlJ02223adGiRbr77rs1Z84cSVJkZKSkE889sjoKFQAA6plu3brpsssu080336w1a9bo66+/1nXXXad27drpsssukyRNnjxZy5cv1+7du7Vp0yZ99tlnriKmQ4cOstls+uCDD3TgwAEdPXrUzN2pESfTAgBQwaQbsPlj7ty5uvPOO3XJJZeotLRU5513npYtWya73S7pxGzJxIkTtXfvXsXHx+uiiy7S008/LUlq166dMjIydO+992r8+PG6/vrrNW/ePBP3pnoUKgAA1BNZWVmun5s3b65//OMf1fat7XyUBx98UA8++GCgQgsaDv0AAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQAQCgnjAMQ7fccotatGghm82mr776yrRYhgwZosmTJwd9O9xCHwCA36SnW3t7H3/8sebNm6esrCx17txZLVu2DEpcVkKhAgBAPbFr1y4lJydr8ODBZocSMqYe+ikrK9MDDzygTp06KSYmRp07d9bDDz8sp9NpZlgAAFjODTfcoDvuuEN79uyRzWZTx44dVVJSokmTJikpKUnR0dE655xztHHjRtc68+bNU7NmzdzGWbJkiWw2m+t9enq6+vfvrzfffFMdO3ZUQkKCrr76ahUVFbn6HDt2TNdff73i4uKUnJysp556Kuj7W8HUQmXWrFl66aWX9Pe//13bt2/XE088oSeffLLWJz4CANDYPPvss3r44YfVvn177du3Txs3btTUqVO1cOFCvfHGG9q0aZO6du2q4cOH69ChQz6NvWvXLi1ZskQffPCBPvjgA2VnZ+vxxx93LZ86dapWrlypxYsXa8WKFcrKylJOTk6gd7FKphYqX3zxhS677DJdfPHF6tixo/785z9r2LBh+vLLL80MCwAAy0lISFDTpk0VHh6uNm3aKDY2VrNnz9aTTz6pESNGqFevXpozZ45iYmL02muv+TS20+nUvHnz1KdPH5177rkaO3asPv30U0nS0aNH9frrr+v//u//lJaWpr59++qNN95QeXl5MHbTg6nnqJxzzjl66aWXtGPHDnXv3l1ff/211qxZo2eeeabK/iUlJSopKXG9LywslCQ5HA45HI6AxVUxViDHhCfyHDrkOjTIc+jUJdcOh0OGYcjpdHqcamAYtmrWCg6n0/Cpv2EYv63n1M6dO+VwOJSamuraj/DwcJ1xxhnatm2b2/6dvJ+V2wzDUMeOHdWkSRNXW5s2bZSXlyfDMLR7926VlpZq0KBBruXNmjVTjx49XHmset+cMgxDDodD4eHhbst8+b2ZWqhMmzZNBQUF6tmzp8LDw1VeXq7HHntM11xzTZX9Z86cqYyMDI/2FStWKDY2NuDxZWZmBnxMeCLPoUOuQ4M8h44/uY6IiFCbNm109OhRlZaWui0rKYkOVGheKSw87lP/48ePy+l0qrCw0HUOydGjR13/cZdOFAFlZWUqLCxUaWmpq//v2yx0+7OkpERhYWFufUpKSlRWVuZ2nkpRUZFbn/LycpWWlrq1nay0tFS//vqrVq1apbKyMrdlxcXFXu+zqYXKggUL9NZbb2n+/Pnq3bu3vvrqK02ePFlt27bVuHHjPPpPnz5dU6ZMcb0vLCxUSkqKhg0bpvj4+IDF5XA4lJmZqbS0NNnt9oCNC3fkOXTIdWiQ59CpS66PHz+u3NxcxcXFKTravTCJigrtjEp8fKRP/aOjoxUWFqb4+Hj1799fkZGR+vrrr9W7d29JJ/Ly9ddf684771R8fLxSUlJ09OhRhYeHq0mTJpKkHTt2/LbtE9+bUVFRCg8Pd/serdhO06ZN1alTJ9ntdm3dutW1ncOHD2vXrl0aOnRotd+/x48fV0xMjM477zyPPFdX3FTF1ELlnnvu0b333qurr75aktS3b1/99NNPmjlzZpWFSlRUlKKiojza7XZ7UP5RCNa4cEeeQ4dchwZ5Dh1/cl1eXi6bzaawsDCFhbmfqmkLbZ2isDDfNlhxtU5FEfGXv/xF06ZNU8uWLXXKKafoiSeeUHFxsW666SaFhYUpNTVVsbGxeuCBB3THHXdow4YNeuONN1xjVB6z8nZsNpvi4uI0YcIETZs2Ta1atVLr1q11//33KywszJXHqvftxPKqfke+/M5MLVSKi4s9djA8PJzLkwEApgj1Dd/q6vHHH5fT6dTYsWNVVFSkgQMHavny5WrevLkkqUWLFnrrrbd0zz336JVXXtGFF16o9PR03XLLLT5t54knntCxY8c0atQoNW3aVHfffbcKCgqCsUsebEbFmTkmuOGGG/TJJ5/o5ZdfVu/evbV582bdcsstmjBhgmbNmlXr+oWFhUpISFBBQUHAD/0sW7ZMI0eO5H9FQUSeQ4dchwZ5Dp265Pr48ePavXu3OnXq5HFIAu4qzm+Jj4+vduakOjXl2Zfvb1NnVJ5//nk9+OCDuv3225WXl6e2bdvq1ltv1UMPPWRmWAAAwCJMLVSaNm2qZ555ptrLkQEAQOPG05MBAIBlUagAAADLolABADRKJl5L0igEKr8UKgCARqXiKiFf7o4K31Xkt65XwJl6Mi0AAKEWHh6uZs2aKS8vT5IUGxvrusEZ3DmdTpWWlur48eNeX55sGIaKi4uVl5enZs2aeTznx1cUKgCARqdNmzaS5CpWUDXDMPTrr78qJibG52KuWbNmrjzXBYUKAKDRsdlsSk5OVlJSEk+7roHD4dCqVat03nnn+XQIx26313kmpQKFCgCg0QoPDw/YF2pDFB4errKyMkVHR5t2t2VOpgUAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZFCoAAMCyKFQAAIBlUagAAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQAQAAlkWhAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLJMLVQ6duwom83m8Zo4caKZYQEAAIuIMHPjGzduVHl5uev9li1blJaWptGjR5sYFQAAsApTC5VWrVq5vX/88cfVpUsXnX/++SZFBAAArMTUQuVkpaWleuuttzRlyhTZbLYq+5SUlKikpMT1vrCwUJLkcDjkcDgCFkvFWIEcE57Ic+iQ69Agz6FDrkMjWHn2ZTybYRhGQLfup3fffVdjxozRnj171LZt2yr7pKenKyMjw6N9/vz5io2NDXaIAAAgAIqLizVmzBgVFBQoPj6+xr6WKVSGDx+uyMhI/fvf/662T1UzKikpKcrPz691R33hcDiUmZmptLQ02e32gI0Ld+Q5dMh1aJDn0CHXoRGsPBcWFqply5ZeFSqWOPTz008/6ZNPPtGiRYtq7BcVFaWoqCiPdrvdHpQParDGhTvyHDrkOjTIc+iQ69AIdJ59GcsS91GZO3eukpKSdPHFF5sdCgAAsBDTCxWn06m5c+dq3LhxioiwxAQPAACwCNMLlU8++UR79uzRhAkTzA4FAABYjOlTGMOGDZNFzucFAAAWY/qMCgAAQHUoVAAAgGVRqAAAAMuiUAEAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZFCoAAMCyKFQAAIBlUagAAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQAQAAlkWhAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVRqAAAAMuiUAEAAJZFoQIAACyLQgUAAFiW6YXKzz//rOuuu06JiYmKjY1V//79lZOTY3ZYAADAAiLM3Pjhw4d19tlna+jQofroo4+UlJSkXbt2qVmzZmaGBQAALMLUQmXWrFlKSUnR3LlzXW0dO3Y0LyAAAGApphYqS5cu1fDhwzV69GhlZ2erXbt2uv3223XzzTdX2b+kpEQlJSWu94WFhZIkh8Mhh8MRsLgqxgrkmPBEnkOHXIcGeQ4dch0awcqzL+PZDMMwArp1H0RHR0uSpkyZotGjR2vDhg2aPHmyXn75ZV1//fUe/dPT05WRkeHRPn/+fMXGxgY9XgAAUHfFxcUaM2aMCgoKFB8fX2NfUwuVyMhIDRw4UGvXrnW1TZo0SRs3btQXX3zh0b+qGZWUlBTl5+fXuqO+cDgcyszMVFpamux2e8DGhTvyHDrkOjTIc+iQ69AIVp4LCwvVsmVLrwoVUw/9JCcnq1evXm5tp556qhYuXFhl/6ioKEVFRXm02+32oHxQgzUu3JHn0CHXoUGeQ4dch0ag8+zLWKZennz22Wfru+++c2vbsWOHOnToYFJEAADASkwtVO666y6tW7dOf/3rX/X9999r/vz5euWVVzRx4kQzwwIAABZhaqFyxhlnaPHixfrnP/+pPn366JFHHtEzzzyja6+91sywAACARZh6jookXXLJJbrkkkvMDgMAAFiQz4XKd999p3/+859avXq1fvzxRxUXF6tVq1b6wx/+oOHDh+uKK66o8oRXAAAAX3l96Gfz5s1KS0tTv379tGrVKp1xxhmaPHmyHnnkEV133XUyDEP333+/2rZtq1mzZrldRgwAAOAPr2dULr/8ct1zzz1asGCBWrRoUW2/L774Qk8//bSeeuop3XfffQEJEgAANE5eFyo7d+5UZGRkrf1SU1OVmpqq0tLSOgUGAADg9aEfb4qUuvQHAACozOsZleeee87rQSdNmuRXMAAAACfzulB5+umn3d4fOHBAxcXFatasmSTpyJEjio2NVVJSEoUKAAAICK8P/ezevdv1euyxx9S/f39t375dhw4d0qFDh7R9+3adfvrpeuSRR4IZLwAAaET8ujPtgw8+qOeff149evRwtfXo0UNPP/20HnjggYAFBwAAGje/CpV9+/bJ4XB4tJeXl+uXX36pc1AAAACSn4XKH//4R91888368ssvZRiGJOnLL7/UrbfeqgsvvDCgAQIAgMbLr0Ll9ddfV7t27XTmmWcqOjpaUVFRGjRokJKTk/Xqq68GOkYAANBI+fVQwlatWmnZsmXasWOHvv32WxmGoVNPPVXdu3cPdHwAAKARq9PTkzt27CjDMNSlSxdFRJj+IGYAANDA+HXop7i4WDfeeKNiY2PVu3dv7dmzR9KJG709/vjjAQ0QAAA0Xn4VKtOnT9fXX3+trKwsRUdHu9ovvPBCLViwIGDBAQCAxs2v4zVLlizRggULdNZZZ8lms7nae/XqpV27dgUsOAAA0Lj5NaNy4MABJSUlebQfO3bMrXABAACoC78KlTPOOEMffvih631FcTJnzhylpqYGJjIAANDo+XXoZ+bMmbrooou0bds2lZWV6dlnn9XWrVv1xRdfKDs7O9AxAgCARsqvGZXBgwfr888/V3Fxsbp06aIVK1aodevW+uKLLzRgwIBAxwgAABopv29+0rdvX73xxhuBjAUAAMBNne7SlpeXp7y8PDmdTrf20047rU5BAQAASH4WKjk5ORo3bpy2b9/ueihhBZvNpvLy8oAEBwAAGje/CpXx48ere/fueu2119S6dWsuSQYAAEHhV6Gye/duLVq0SF27dg10PAAAAC5+XfXzxz/+UV9//XWgYwEAAHDj14zKq6++qnHjxmnLli3q06eP7Ha72/JRo0YFJDgAANC4+VWorF27VmvWrNFHH33ksYyTaQEAsLC16b//PDi9ul6W4dehn0mTJmns2LHat2+fnE6n24siBQAABIpfhcrBgwd11113qXXr1nXaeHp6umw2m9urTZs2dRoTAAA0HH4d+vnTn/6klStXqkuXLnUOoHfv3vrkk09c78PDw+s8JgAAaBj8KlS6d++u6dOna82aNerbt6/HybSTJk3yPoCICGZRAABAlfy+6icuLk7Z2dkeT0u22Ww+FSo7d+5U27ZtFRUVpUGDBumvf/2rOnfuXGXfkpISlZSUuN4XFhZKkhwOhxwOhx97UrWKsQI5JjyR59Ah16FBnkOHXNeB86SzPmrJX7Dy7Mt4NqPyPfBrYRiGfvrpJyUlJSk2Ntbn4E720Ucfqbi4WN27d9cvv/yiRx99VN9++622bt2qxMREj/7p6enKyMjwaJ8/f36dYwEAAKFRXFysMWPGqKCgQPHx8TX29blQcTqdio6O1tatW9WtW7c6BVrZsWPH1KVLF02dOlVTpkzxWF7VjEpKSory8/Nr3VFfOBwOZWZmKi0tzeOwFgKHPIcOuQ4N8hw65LoO1s/8/edB02vsGqw8FxYWqmXLll4VKj4f+gkLC1O3bt108ODBgBcqTZo0Ud++fbVz584ql0dFRSkqKsqj3W63B+WDGqxx4Y48hw65Dg3yHDrk2g9hzt9/9jJ3gc6zL2P5dXnyE088oXvuuUdbtmzxZ/VqlZSUaPv27UpOTg7ouAAAoH7y62Ta6667TsXFxerXr58iIyMVExPjtvzQoUNejfO///u/uvTSS3XKKacoLy9Pjz76qAoLCzVu3Dh/wgIAAA2MX4XKM888E5CN7927V9dcc43y8/PVqlUrnXXWWVq3bp06dOgQkPEBAED95lehEqgZj3feeScg4wAAgDqoeP6PBZ/941ehIknl5eVasmSJtm/fLpvNpl69emnUqFHcWRYAAASMX4XK999/r5EjR+rnn39Wjx49ZBiGduzYoZSUFH344YcBubU+AACA309P7tKli3Jzc7Vp0yZt3rxZe/bsUadOnXy6Ky0AAEBN/JpRyc7O1rp169SiRQtXW2Jioh5//HGdffbZAQsOAAA0bn7NqERFRamoqMij/ejRo4qMjKxzUAAAAJKfhcoll1yiW265RevXr5dhGDIMQ+vWrdNtt92mUaNGBTpGAAAan7Xpv1+N04j5Vag899xz6tKli1JTUxUdHa3o6GidffbZ6tq1q5599tlAxwgAABopv85Radasmd5//33t3LlT3377rQzDUK9evdS1a9dAxwcAABoxv++jIkndunUL+IMJAQAAKvhVqJSXl2vevHn69NNPlZeXJ6fT6bb8s88+C0hwAACgcfOrULnzzjs1b948XXzxxerTp49sNlug4wIAAPCvUHnnnXf07rvvauTIkYGOBwAAwMWvq34iIyM5cRYAAASdX4XK3XffrWeffVaGYQQ6HgAAABe/Dv2sWbNGK1eu1EcffaTevXvLbre7LV+0aFFAggMAAI2b3/dR+Z//+Z9AxwIAAODGr0Jl7ty5gY4DAADAg1/nqAAAAItrIM8K8rpQueiii7R27dpa+xUVFWnWrFl64YUX6hQYAACA14d+Ro8erSuvvFJNmzbVqFGjNHDgQLVt21bR0dE6fPiwtm3bpjVr1mjZsmW65JJL9OSTTwYzbgAA0Ah4XajceOONGjt2rN577z0tWLBAc+bM0ZEjRyRJNptNvXr10vDhw5WTk6MePXoEK14AANCI+HQybWRkpMaMGaMxY8ZIkgoKCvTrr78qMTHR4xJlAACAuqrT05MTEhKUkJAQqFgAAADccNUPAACwLAoVAABgWRQqAADAsihUAACAZflVqOTm5mrv3r2u9xs2bNDkyZP1yiuvBCwwAAAAvwqVMWPGaOXKlZKk/fv3Ky0tTRs2bNB9992nhx9+OKABAgCAxsuvQmXLli0688wzJUnvvvuu+vTpo7Vr12r+/PmaN29eIOMDAACNmF+FisPhUFRUlCTpk08+0ahRoyRJPXv21L59+/wKZObMmbLZbJo8ebJf6wMAgIbHr0Kld+/eeumll7R69WplZmbqoosukiT997//VWJios/jbdy4Ua+88opOO+00f8IBAAANlF+FyqxZs/Tyyy9ryJAhuuaaa9SvXz9J0tKlS12HhLx19OhRXXvttZozZ46aN2/uTzgAAKCB8usW+kOGDFF+fr4KCwvdiotbbrlFTZo08WmsiRMn6uKLL9aFF16oRx99tMa+JSUlKikpcb0vLCyUdOJQlMPh8Gm7NakYK5BjwhN5Dh1yHRrkOXQaRa6dv80l+LuP1a3vPGmOomJZNX2DlWdfxrMZhmH4uoELLrhAixYtUrNmzdzaCwsLdfnll+uzzz7zapx33nlHjz32mDZu3Kjo6GgNGTJE/fv31zPPPFNl//T0dGVkZHi0z58/X7Gxsb7uBgAAMEFxcbHGjBmjgoICxcfH19jXr0IlLCxM+/fvV1JSklt7Xl6e2rVr51WllJubq4EDB2rFihWuQ0e1FSpVzaikpKQoPz+/1h31hcPhUGZmptLS0ngqdBCR59Ah16FBnkOnUeR6/cwTfw6aXrf1K1SMc3J75bZK2wpWngsLC9WyZUuvChWfDv385z//cf28bds27d+/3/W+vLxcH3/8sdq1a+fVWDk5OcrLy9OAAQPcxli1apX+/ve/q6SkROHh4W7rREVFua42Opndbg/KBzVY48IdeQ4dch0a5Dl0GnSuw5wn/vR3/yrWr1Axzsntlduq2Vag8+zLWD4VKv3795fNZpPNZtMFF1zgsTwmJkbPP/+8V2P98Y9/1DfffOPWNn78ePXs2VPTpk3zKFIAAEDj41Ohsnv3bhmGoc6dO2vDhg1q1aqVa1lkZKSSkpK8LjCaNm2qPn36uLU1adJEiYmJHu0AAKBx8qlQ6dChgyTJ6XTW0hMAAKDu/Lo8WZJ27NihrKws5eXleRQuDz30kF9jZmVl+RsOAACoydp079osxq9CZc6cOfrLX/6ili1bqk2bNrLZbK5lNpvN70IFAADgZH4VKo8++qgee+wxTZs2LdDxAAAAuPh1C/3Dhw9r9OjRgY4FAADAjV+FyujRo7VixYpAxwIAAODGr0M/Xbt21YMPPqh169apb9++HjdumTRpUkCCAwAAjZtfhcorr7yiuLg4ZWdnKzs7222ZzWajUAEAIFBqujJncA3LGgi/CpXdu3cHOg4AAAAPfp2jAgAAEAp+zahMmDChxuWvv/66X8EAAACczK9C5fDhw27vHQ6HtmzZoiNHjlT5sEIAAAB/+FWoLF682KPN6XTq9ttvV+fOnescFAAAgFSHZ/1UFhYWprvuuktDhgzR1KlTAzUsAAANR8UVPIG+WqcePLPHXwE9mXbXrl0qKysL5JAAAKAR82tGZcqUKW7vDcPQvn379OGHH2rcuHEBCQwAAMCvQmXz5s1u78PCwtSqVSs99dRTtV4RBAAA4C2/CpWVK1cGOg4AAAAPdTqZ9sCBA/ruu+9ks9nUvXt3tWrVKlBxAQAA+Hcy7bFjxzRhwgQlJyfrvPPO07nnnqu2bdvqxhtvVHFxcaBjBADAGtame15hU1UbAsavQmXKlCnKzs7Wv//9bx05ckRHjhzR+++/r+zsbN19992BjhEAADRSfh36Wbhwod577z0NGTLE1TZy5EjFxMToyiuv1OzZswMVHwAAaMT8mlEpLi5W69atPdqTkpI49AMAAALGr0IlNTVVM2bM0PHjx11tv/76qzIyMpSamhqw4AAAQOPm16GfZ599VhdddJHat2+vfv36yWaz6auvvlJ0dLSWL18e6BgBAEAj5Veh0qdPH+3cuVNvvfWWvv32WxmGoauvvlrXXnutYmJiAh0jAABopPy+j0pMTIxuvvnmQMYCAADgxq9zVGbOnKnXX3/do/3111/XrFmz6hwUAACA5Geh8vLLL6tnz54e7b1799ZLL71U56AAAAAkPwuV/fv3Kzk52aO9VatW2rdvX52DAgAAkPw8RyUlJUWff/65OnXq5Nb++eefq23btgEJDACAkDr5NviD06vrZS2N4Nb9fhUqN910kyZPniyHw6ELLrhAkvTpp59q6tSp3EIfAAAEjF+FytSpU3Xo0CHdfvvtKi0tlSRFR0dr2rRpmj59utfjzJ49W7Nnz9aPP/4o6cQ5Lg899JBGjBjhT1gAAKCB8atQsdlsmjVrlh588EFt375dMTEx6tatm6Kionwap3379nr88cfVtWtXSdIbb7yhyy67TJs3b1bv3r39CQ0AADQgft9HRZLi4uJ0xhln+L3+pZde6vb+scce0+zZs7Vu3ToKFQAAULdCJZDKy8v1r3/9S8eOHav2eUElJSUqKSlxvS8sLJQkORwOORyOgMVSMVYgx4Qn8hw65Do0yHPoBCXXzpMuhK1u3Io+Jy+vqq22bfjSN5QqxRWsz7Qv49kMwzACunUfffPNN0pNTdXx48cVFxen+fPna+TIkVX2TU9PV0ZGhkf7/PnzFRsbG+xQAQBAABQXF2vMmDEqKChQfHx8jX1NL1RKS0u1Z88eHTlyRAsXLtSrr76q7Oxs9erVy6NvVTMqKSkpys/Pr3VHfeFwOJSZmam0tDTZ7faAjQt35Dl0yHVokOfQCUqu18/8/edB1VwYUtHn5OVVtdW2DV/6muG3+IL1mS4sLFTLli29KlRMP/QTGRnpOpl24MCB2rhxo5599lm9/PLLHn2joqKqPGHXbrcH5R+FYI0Ld+Q5dMh1aJDn0AlorsOcJw9cc5+Tl1fVVts2fOlrhkrxBfoz7ctYJhwAq5lhGG6zJgAAoPEydUblvvvu04gRI5SSkqKioiK98847ysrK0scff2xmWAAAwCJMLVR++eUXjR07Vvv27VNCQoJOO+00ffzxx0pLSzMzLAAAYBGmFiqvvfaamZsHAAAWZ7lzVAAAACpQqAAAAMuiUAEAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZFCoAAMCyKFQAAIBlUagAAADLolABAACWRaECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZUWYHQAAAA3e2vSq3w9Or7kNzKgAAADrolABAACWRaECAAAsi0IFAABYFoUKAACwLK76AQDUD4G+Kqam8fzZVuUre7xZt/I68MCMCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVxMi0AoO64/XvgcIKtG2ZUAACAZZlaqMycOVNnnHGGmjZtqqSkJF1++eX67rvvzAwJAABYiKmFSnZ2tiZOnKh169YpMzNTZWVlGjZsmI4dO2ZmWAAAwCJMPUfl448/dns/d+5cJSUlKScnR+edd55JUQEAAKuw1Mm0BQUFkqQWLVpUubykpEQlJSWu94WFhZIkh8Mhh8MRsDgqxgrkmPBEnkOHXIdGo86z87cJ+mDu+0nbCEiuK8fsrOIgQ+Xxq9rPqtbzto9VVcpvoD/TvoxnMwzDCOjW/WQYhi677DIdPnxYq1evrrJPenq6MjIyPNrnz5+v2NjYYIcIAAACoLi4WGPGjFFBQYHi4+Nr7GuZQmXixIn68MMPtWbNGrVv377KPlXNqKSkpCg/P7/WHfWFw+FQZmam0tLSZLfbAzYu3JHn0CHXodGo87x+pmfboOnB2cag6YHJ9Unjub2vSuU+J+9bdet508eqfos9WJ/pwsJCtWzZ0qtCxRKHfu644w4tXbpUq1atqrZIkaSoqChFRUV5tNvt9qD8oxCsceGOPIcOuQ6NRpnnMKdnW6BzULGNk8atU64rj1fVPvy+oWpjqHY9b/pYVaWcBvoz7ctYphYqhmHojjvu0OLFi5WVlaVOnTqZGQ4AALAYUwuViRMnav78+Xr//ffVtGlT7d+/X5KUkJCgmJgYM0MDAAAWYOppyLNnz1ZBQYGGDBmi5ORk12vBggVmhgUAACzC9EM/AAAETVXPzQnE84i8eR5PfX5mT0XszjBJ/cyMhGf9AAAA66JQAQAAlmWJy5PhKT3duzYAABoyChWLoAgBAMAThUoIVC5CKEoAAPAOhQoAwH/+XNly8jr+XIGzNt0SV6MgNChUGhhvZm+Y4QEA1BcUKiagMAAAwDtcngwAACyLGZV6jJkZAEBDx4wKAACwLGZU6sjqsxpmx8eJuwCCav1M6ZyHfFun8pVK9fmZPI0AhUo9wpc8AKCx4dAPAACwLGZUwHOFAACWRaGCKnHjOACAFVCowCsUIQAAM1CoAIBZKq428ed5N4GOQQpeHHXZT67IafQ4mRYAAFgWMyoIGA4PAQACjUIFCBGurgIA31GowHL4QgcAVKBQQb3ApdAA0DhRqMB0M2dKTmfgx2VmBqijmq7WCdbVOFzlg0ooVBBSJxcKYWFSv351H6emNgBA/cblyQAAwLKYUUGD4c+MSn2cmamPMfurMe0rgKpRqKBR8eZLjhN3AcA6KFSAIKHAqVm9mS0JxS3mveHLbeitcGt+yfPE2FCeKMtJuQ0GhQpQi2B+ofozwxNM/u6rP0/bBgBvmFqorFq1Sk8++aRycnK0b98+LV68WJdffrmZIQFe4fAQAISGqYXKsWPH1K9fP40fP15XXHGFmaF4hS8jVIfPBgAEh6mFyogRIzRixAgzQwAalco316PAAmB19eoclZKSEpWUlLjeFxYWSpIcDoccDkfAtlMxVuUxw7jrTECFhTnc/kTVKn+0q/oc1vbxr/gsV861P2PPnOnZp/J6VcXjzd+fQOxrwDlPCqKWjVfkedYsh1tBOH16LWN7s1PB7ltV/5rGcQboH8Tqtlnbar/1czjDghufa4OO4Ixrca48B/gvni/j2QzDMAK6dT/ZbLZaz1FJT09XRkaGR/v8+fMVGxsbxOgAAECgFBcXa8yYMSooKFB8fHyNfetVoVLVjEpKSory8/Nr3VFfOBwOZWZmKi0tTXa73dVe1f8kTfPzmt9/bneOeXHUQViYQ337Zuqbb9LkdNprX6GxqPjdBvD3Wl2uK/9P3/UZP+nzNf3v51TdJwiqjaeGPlWpvF5V63jTR5K0/qSOg2reeMW/HbXl2WPsWsattW/lZSfFPPPNc0/8cNLnyS2eqvZvfaXk1LTNuqo8tpfjOpxhyjzcV2nNv5E9dZpnh0DF18i58lzp+7CuCgsL1bJlS68KlXp16CcqKkpRUVEe7Xa7PaAJrG7cYDw4z29ltt9/rudf8k6nnULlZBW/2yDkpHKuK/+1cX3GT/p8Vf67Fcy/B9XGU0OfqlRer6p1vOkjSQpzetGp8tg159ljbG/Gralv5WUnxeys4vPkNkRV+xfmRXIq9/FX5bF9HNce5qz63/9AxQdJgf+e9WWselWoAEBD4DqJOXfIiT9XWO/E5vTXhvz+xoLxofEwtVA5evSovv/+e9f73bt366uvvlKLFi10yimnmBgZAKsK1j1sAnGzu7o8EbzWbecOUfqNWVX3MangcStmJI/4gEAwtVD58ssvNXToUNf7KVOmSJLGjRunefPmmRQVgJPxP2nrSH9tiLTC7CiA0DK1UBkyZIgsci4vrCo36/efU4aYFIRJcrNO/BnE/W50RYiPz8BJT9fvsxXS70VCblbVK0QYkj8zKrlZ0tqs3+Nam/77dn35/VeMU92yk8fz5Vk4FePWkrfKMyxV9rkxy/vteovn+jRonKMCoF5rdMVWLbwpFoD6hEIFgGU01KKjIeyXx2Gnk2eagrGtym03ZgVte7Vtn3NvzEWhAgCNnOuL2XVoa4hJkTQ+FEW1o1ABACAIKEICg0IFACzA7dBKkGc0PE4SNpnboTELxQVroFBpyHKzfv85EFeOBHq8+iA368SfVtvf3Cz391aJLzfrxJ8V8VR+H8xxauhT1f1GTJWbVfd1g/E7rxg7lE6+wskHM988V/1GFmrmm+e67r7rcZ8Zk891QWBQqAAAGg1/DsdQ8JiLQgUAEDL+Xj5deb2wCGvdg4vLwoOHQgUAgBDw6oZ4zN54CDM7AAAAgOowowIAaBD8OfzCIRvro1AJtdys33/25oqGmpb50seXdQK1TW/61LauWWrb/snLrXLFjWTduGqSm3XiT3+vDPK23dfx6pK/n9dIv12J4vH33Gy5Weas28BQ4IQOh34AAIBlUagAAADL4tAPAAD1XEO+XT8zKgAAwLKYUanBzJmS02l2FAAANF4UKr7IzTrxZ+WrASraq+LNVTGBUjFeoK/2qBjX323XtMyXbVUex99xq/v9BSpvVY3nzTYq+ngztr9xVB7Dl89ybePWNE5V43qzbW/GCZaqthXs7ZuxTTRIDenGcRQqAABYWEM+/8QbFCoAANQjje0eLpxMCwAALItCBQAAWBaFCgAAsCzOUamL3KzA9q3oU9crZ3wZ25tt+rMdb5ZFGFI/nXguSvLQ4Gwj0LmsattVtfkzTiD6Vrd+Ra4DPXagx2mIcrPq17hosOrrSbnMqAAAAMtiRgUAgEbIm6uH7h+/KviB1IIZFQAAYFkUKgAAwLIoVAAAgGVxjoo/crPMG9+bbXvTJxDr1GW9UMnN8n5ZTX2tLjcr9GPXdZt1XT8QcrPMjgBALUyfUXnxxRfVqVMnRUdHa8CAAVq9erXZIQEAAIswtVBZsGCBJk+erPvvv1+bN2/WueeeqxEjRmjPnj1mhgUAACzC1ELlb3/7m2688UbddNNNOvXUU/XMM88oJSVFs2fPNjMsAABgEaado1JaWqqcnBzde++9bu3Dhg3T2rVrq1ynpKREJSUlrvcFBQWSpEOHDsnhcAQsNofDoeLiYpWWHpTTaf99gfOo74OVHvR/3WCwUDxhTuNEnp1hctYlrop1/V3fl234Mn5VcZmUf1euSw/KaYHfvemC9Htw+0w7bQEdG+7IdWgcLCpVcXGxDh48KLvdXvsKXioqKpIkGYZRa1/TCpX8/HyVl5erdevWbu2tW7fW/v37q1xn5syZysjI8Gjv1KlTUGJECLxqdgCNCLkODfIcOuQ66GbOC+74RUVFSkhIqLGP6Vf92GzulbBhGB5tFaZPn64pU6a43judTh06dEiJiYnVruOPwsJCpaSkKDc3V/Hx8QEbN9jOOOMMbdy40ewwvEaeQ4dchwZ5Dh1yHRrByrNhGCoqKlLbtm1r7WtaodKyZUuFh4d7zJ7k5eV5zLJUiIqKUlRUlFtbs2bNghWi4uPj69VfgPDw8HoVbwXyHDrkOjTIc+iQ69AIRp5rm0mpYNrJtJGRkRowYIAyMzPd2jMzMzV48GCToqrfJk6caHYIjQJ5Dh1yHRrkOXTIte9shjdnsgTJggULNHbsWL300ktKTU3VK6+8ojlz5mjr1q3q0KGDWWGpsLBQCQkJKigoqJeVb31BnkOHXIcGeQ4dch0aVsizqeeoXHXVVTp48KAefvhh7du3T3369NGyZctMLVKkE4eYZsyY4XGYCYFFnkOHXIcGeQ4dch0aVsizqTMqAAAANTH9FvoAAADVoVABAACWRaECAAAsi0IFAABYFoUKAACwrEZZqLz44ovq1KmToqOjNWDAAK1evbrG/tnZ2RowYICio6PVuXNnvfTSSyGKtP7zJdeLFi1SWlqaWrVqpfj4eKWmpmr58uUhjLb+8vUzXeHzzz9XRESE+vfvH9wAGxBfc11SUqL7779fHTp0UFRUlLp06aLXX389RNHWX77m+e2331a/fv0UGxur5ORkjR8/XgcPHqxxHUirVq3SpZdeqrZt28pms2nJkiW1rhPy70SjkXnnnXcMu91uzJkzx9i2bZtx5513Gk2aNDF++umnKvv/8MMPRmxsrHHnnXca27ZtM+bMmWPY7XbjvffeC3Hk9Y+vub7zzjuNWbNmGRs2bDB27NhhTJ8+3bDb7camTZtCHHn94mueKxw5csTo3LmzMWzYMKNfv36hCbae8yfXo0aNMgYNGmRkZmYau3fvNtavX298/vnnIYy6/vE1z6tXrzbCwsKMZ5991vjhhx+M1atXG7179zYuv/zyEEde/yxbtsy4//77jYULFxqSjMWLF9fY34zvxEZXqJx55pnGbbfd5tbWs2dP4957762y/9SpU42ePXu6td16663GWWedFbQYGwpfc12VXr16GRkZGYEOrUHxN89XXXWV8cADDxgzZsygUPGSr7n+6KOPjISEBOPgwYOhCK/B8DXPTz75pNG5c2e3tueee85o37590GJsiLwpVMz4TmxUh35KS0uVk5OjYcOGubUPGzZMa9eurXKdL774wqP/8OHD9eWXX8rhcAQt1vrOn1xX5nQ6VVRUpBYtWgQjxAbB3zzPnTtXu3bt0owZM4IdYoPhT66XLl2qgQMH6oknnlC7du3UvXt3/e///q9+/fXXUIRcL/mT58GDB2vv3r1atmyZDMPQL7/8ovfee08XX3xxKEJuVMz4TjT1Fvqhlp+fr/Lyco+nM7du3drjKc4V9u/fX2X/srIy5efnKzk5OWjx1mf+5Lqyp556SseOHdOVV14ZjBAbBH/yvHPnTt17771avXq1IiIa1T8BdeJPrn/44QetWbNG0dHRWrx4sfLz83X77bfr0KFDnKdSDX/yPHjwYL399tu66qqrdPz4cZWVlWnUqFF6/vnnQxFyo2LGd2KjmlGpYLPZ3N4bhuHRVlv/qtrhyddcV/jnP/+p9PR0LViwQElJScEKr8HwNs/l5eUaM2aMMjIy1L1791CF16D48pl2Op2y2Wx6++23deaZZ2rkyJH629/+pnnz5jGrUgtf8rxt2zZNmjRJDz30kHJycvTxxx9r9+7duu2220IRaqMT6u/ERvXfqZYtWyo8PNyjKs/Ly/OoECu0adOmyv4RERFKTEwMWqz1nT+5rrBgwQLdeOON+te//qULL7wwmGHWe77muaioSF9++aU2b96s//f//p+kE1+mhmEoIiJCK1as0AUXXBCS2Osbfz7TycnJateunRISElxtp556qgzD0N69e9WtW7egxlwf+ZPnmTNn6uyzz9Y999wjSTrttNPUpEkTnXvuuXr00UeZ+Q4gM74TG9WMSmRkpAYMGKDMzEy39szMTA0ePLjKdVJTUz36r1ixQgMHDpTdbg9arPWdP7mWTsyk3HDDDZo/fz7Hl73ga57j4+P1zTff6KuvvnK9brvtNvXo0UNfffWVBg0aFKrQ6x1/PtNnn322/vvf/+ro0aOuth07digsLEzt27cParz1lT95Li4uVliY+9dZeHi4pN//t4/AMOU7MWin6VpUxWVvr732mrFt2zZj8uTJRpMmTYwff/zRMAzDuPfee42xY8e6+ldcinXXXXcZ27ZtM1577TUuT/aSr7meP3++ERERYbzwwgvGvn37XK8jR46YtQv1gq95royrfrzna66LioqM9u3bG3/+85+NrVu3GtnZ2Ua3bt2Mm266yaxdqBd8zfPcuXONiIgI48UXXzR27dplrFmzxhg4cKBx5plnmrUL9UZRUZGxefNmY/PmzYYk429/+5uxefNm16XgVvhObHSFimEYxgsvvGB06NDBiIyMNE4//XQjOzvbtWzcuHHG+eef79Y/KyvL+MMf/mBERkYaHTt2NGbPnh3iiOsvX3J9/vnnG5I8XuPGjQt94PWMr5/pk1Go+MbXXG/fvt248MILjZiYGKN9+/bGlClTjOLi4hBHXf/4mufnnnvO6NWrlxETE2MkJycb1157rbF3794QR13/rFy5ssZ/d63wnWgzDObFAACANTWqc1QAAED9QqECAAAsi0IFAABYFoUKAACwLAoVAABgWRQqAADAsihUAACAZVGoAAAAy6JQARBU5513nmw2m8fr2muvrXXdG264Qffee29AxgJQP3FnWgBBYxiGEhISNGPGDI9iIi4uTnFxcdWu63Q61bp1ay1dulSpqal1GgtA/RVhdgAAGq6dO3eqqKhI5513ntq0aePTup9//rnCwsJcT3Suy1gA6i8O/QAImpycHEVEROi0007zed2lS5fq0ksvVVhYWJ3HAlB/UagACJpNmzapvLxciYmJrsMzcXFxuvnmm2tdd+nSpbrssst8GuuDDz5Qjx491K1bN7366qtB2ScAocU5KgCC5oILLlCrVq302GOPubU3b95ciYmJ1a63fft2DRw4UPn5+YqJifFqrLKyMvXq1UsrV65UfHy8Tj/9dK1fv14tWrQI/I4BCBlmVAAEzebNm3XOOeeoa9eubq/ExERt2bJFXbp00f79+yVJ+fn56t+/v0pLS7V06VKlpaW5ipTaxpKkDRs2qHfv3mrXrp2aNm2qkSNHavny5absN4DAoVABEBQ//PCDjhw5oj/84Q9VLu/Tp4+uvvpqffbZZ5KkjIwMTZs2TZGRkXr//fc1atQor8eSpP/+979q166d63379u31888/B2hvAJiFq34ABEVOTo4kqXXr1q5ZkwpJSUkKCwtT7969tWPHDn3//ffKycnRc889p7y8PG3cuFFLlizxaayqjmLbbLYA7xWAUKNQARAUmzZtkiR1797drd1ut6uoqEhRUVHq1q2bPvjgA91333167LHHZLPZ9O9//1uDBg1SUlKST2O1a9fObQZl7969rkubAdRfnEwLwDRHjhxRt27dNGjQIH3wwQeSpFGjRumcc87R1KlTfRqrrKxMp556qrKyslwn065bt67Gk3YBWB8zKgBM06xZM0nS448/7mo755xzdM011/g8VkREhJ566ikNHTpUTqdTU6dOpUgBGgBmVACYxuFwqE+fPvruu+/MDgWARXHVDwDTfPvtt+rRo4fZYQCwMGZUAACAZTGjAgAALItCBQAAWBaFCgAAsCwKFQAAYFkUKgAAwLIoVAAAgGVRqAAAAMuiUAEAAJZFoQIAACyLQgUAAFgWhQoAALAsChUAAGBZ/x8NpWlB1kdT5gAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#in abhängigkeit von der energie der elektronen\n",
"plt.hist(energyloss_lost, bins=200, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
"plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n",
"plt.yticks(np.arange(0,10,1), minor=True)\n",
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
"plt.ylabel(\"counts (normed)\")\n",
"plt.title(r'$E_{ph}/E_0$')\n",
"plt.legend()\n",
"plt.grid()\n",
"\n",
"\"\"\"\n",
"\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAJOCAYAAAAUHj4bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYY0lEQVR4nOzdd3xUxf7/8feSkEJIllBDlKqIVEFQmld6u0SuBVBQpCiigIiCBZVioSiI3gti4SooXS7CVUGkKYpUQUTKFQsKSlVCAkiAJPP7g1/265J2Njmbba/n47EP5ezsnJlz5pyds5OZj8MYYwQAAAAAAAAAABAAivm6AAAAAAAAAAAAAFYxsAEAAAAAAAAAAAIGAxsAAAAAAAAAACBgMLABAAAAAAAAAAACBgMbAAAAAAAAAAAgYDCwAQAAAAAAAAAAAgYDGwAAAAAAAAAAIGAwsAEAAAAAAAAAAAIGAxsAAAAAAAAAACBgMLABAAAAAAAAAAACBgMbAAAg6PXt21ezZs3ydTFg0c6dO3XgwAFfFwMAAAAA4KcY2AAAAIBfefPNN7V27VpfFwMAAAAA4KcY2AAAAMjHwoULVadOHUVHR8vhcGjHjh2+LlKeli9fLofD4faKi4tTo0aN9N577xXZ/t9991237cnJyercubMiIiI0bdo0t/c+//xzDRgwQMeOHXNt27Nnj2699VYdPXrU62UOJJ999lm285v12rRpU7b0O3fu1D333KMrrrhC0dHRio6OVo0aNTRw4EB99dVXBSrDLbfcoujoaJ08eTLXNHfeeaeKFy/u8/M3a9YsORwO/fzzz0W+77Fjx8rhcOj333+3Lc8NGzZo7NixeR77QJaRkaHy5cvr5ZdfzjWNN45rIAjmc79lyxZ17NhRsbGxKlmypFq3bq0vv/wyWzpP73+nT5/WsGHDlJiYqKioKDVo0EALFiwocDoAAOA/GNgAAABBKSkpSaVKlVKpUqU0b948DRo0yPXviRMnWs7n+PHj6t27t6644gqtWLFCGzdu1FVXXeXFkhfe9u3bJUn//e9/tXHjRm3YsEEzZszQmTNn1LNnT+3cubNI9t+oUSPXtp07d6px48b6+uuvtXbtWg0ZMsTtM40aNVKFChVUv359rVmzRtOmTVP79u3VqVMnlStXzqvlDVTjx4/Xxo0b3V5169Z1S/PGG2+oUaNG2rx5sx566CF99NFHWrZsmYYNG6bdu3fruuuu048//ujxvu+55x6lpaVp3rx5Ob6fkpKiJUuWKCkpSRUqVChQ/ZCzDRs26JlnngnKH7eli4Ocx48f16233urrovidYD33W7du1Y033qizZ89q9uzZmj17ttLS0tS2bVtt3Lgxx89Yuf9J0q233qp33nlHY8aM0ccff6zrrrtOPXv2zHbvspoOAAD4j3BfFwAAAMAbPvroI9f/9+3bV61atVLfvn09zmffvn26cOGC7rrrLrVs2TLXdH/++adKlChRkKLabvv27XI6neratatrW7NmzZSenq677rpLX3/9terXr+/V/UdHR+vqq6+WJC1YsED33HOP6tevr8WLFysxMTHbZ2JiYvTss88qMzNTEyZMULFixTR37lzdcccdXiunL5w4cUKZmZkqW7ZsofOqUaOGmjZtmuv7X375pQYNGqQuXbroP//5jyIiIlzvtWnTRoMHD9aiRYsUHR3t8b47d+6sxMREvf322xo0aFC29+fPn6+zZ8/qnnvu8ThvhLb//Oc/aty4sapUqeK1ffjT/TpUHD58WDExMYqLi8v23qhRo1SqVCmtWLHCdV7atWun6tWra8SIETnO3Mjv/iddnD24atUqzZs3Tz179pQktW7dWr/88oseffRR3X777QoLC7OcDgAA+BdmbAAAgICxfv16dejQQU6nU/Hx8erSpYu+//57r+2vb9++uuGGGyRJt99+uxwOh1q1auVaBmX79u3q1q2b4uPjdcUVV7iVs23btoqNjVWJEiXUvHlzLVu2zC3vrDx27typ7t27y+l0qnTp0nrkkUeUnp6u7777Tp06dVJsbKyqVq2qF1980XK5t23bpgYNGmTb/uuvv0qSatWqVYCjIb388staunSpR/sfMWKEevbsqTvvvFPr1q3LcVBDkr799ltde+212r59u/7+97+rf//+GjdunLp06ZLvcjNW24Xd7eemm25S48aNNWPGDF1zzTWKjo5WpUqVNGbMGGVmZub4mZ07d6pixYrq3Lmz3n33XZ06darA+8/P+PHjFRYWpjfeeMNtUOOvunfvnu2cfP/99+rVq5fKly+vyMhI1apVS6+++qpbmrCwMPXp00fbtm3Tt99+my3fmTNnuupZEJ5cQ7t371bPnj3ldDpVoUIF9e/fXykpKbnm/cUXX8jhcGj+/PnZ3nv33XflcDi0devWXD+ftd+vv/5at956q+Li4uR0OnXXXXfp+PHjOX7m6NGj+ZbRap0fffRRSVK1atVcS/B89tlnXjlux48f13333adKlSopMjJS5cqVU4sWLbR69epcj8/u3bvlcDi0aNEi17Zt27bJ4XCoTp06bmm7du3qNrPLGKMlS5botttuyzX/vzp48GC+5yC/+7WV9u7N+7UkLV26VA6HQ2vWrMn23muvvSaHw6Fbb70113Oflpamhg0b6sorr3Q7h0eOHFFCQoJatWqljIwMS2XJbZmngiznlpycrLfeekvt2rXT5Zdfrp9++inHdF9++aVatWrlNtgUGxurG2+8URs2bNDhw4c92m+WJUuWqGTJkurevbvb9n79+unQoUPavHmzR+mkwrcFb7clAABCigEAAAgAY8aMMcWKFTP9+/c3y5YtM//5z39MvXr1TKVKlcypU6e8ss8ffvjBvPrqq0aSGT9+vNm4caPZvXu3GTNmjJFkqlSpYh5//HGzatUqs3TpUmOMMZ999pkpXry4adSokVm4cKFZunSp6dChg3E4HGbBggVu9ZFkatasaZ577jmzatUq89hjjxlJZsiQIebqq682//rXv8yqVatMv379jCSzePHifMv8+++/G0lm6NCh5sKFC+bChQvm6NGj5t133zWxsbHm3nvvLfDx6NWrlylevLhZsmRJvvu//fbbTZs2bUxkZKSZMWNGvnkfPHjQfPjhh8YYYwYPHmxmzpxp0tPTzaxZs8z58+dz/ZzVduGN9lOxYkUTExNjatWqZWbPnm1Wrlxp7rjjDiMp1zqfPXvWzJ0719x0000mIiLCREVFmW7dupnFixebtLQ0S/v99NNPjSRTvnx5ExYWZmJjY02HDh3MF1984UqTnp5uoqOjTbNmzTyq0+7du43T6TT16tUz7777rlm5cqUZPny4KVasmBk7dqxb2u+//944HA4zbNiwbHlIMk888YRH+85SkGto9OjRZtWqVWbKlCkmMjLS9OvXz5Vu5syZRpLZv3+/a1vDhg1NixYtsu37uuuuM9ddd12e5fvr9f/oo4+aTz75xEyZMsXExMSYhg0burVXq2W0WueDBw+aBx980Egy77//vtm4caPZuHGjSUlJsf24GWNMx44dTbly5cybb75pPvvsM7N06VIzevRot/xyUrFiRXPfffe5/j1x4kQTHR1tJJnffvvNGGPMhQsXTFxcnHnsscdc6davX28kmX379tl+DnK6X1tt7966X2e5cOGCKV++vLnzzjuzvXf99deba6+9Ns9zb4wx+/btM7GxsebWW281xhiTkZFh2rRpY8qXL28OHTpkuSxZ+Wa91q5day677DKTkJDg2ldezpw5YxYsWGC6du1qIiIiTHR0tLntttvMokWLzLlz53L8TEREhLn77ruzbe/Zs6eRZD755BPXNiv3vyxNmzbN8XretWuXkWTeeOMNj9IZU/i24O22BABAKGFgAwAA+L0PP/zQSDIvvvii2/Z9+/YZSWbOnDnZPtOpUycTExOT42vcuHGW9531I8qiRYtc27J+mBg9enS29E2bNjXly5d3+7E8PT3d1K1b11x++eUmMzPTLY+XXnrJ7fMNGjRw/XCV5cKFC6ZcuXKuH6zysnLlSiMp2ys8PNw8//zzluudk/T09HwHN/66/6ioKLNp0yaP95M1sJEfq+2iIO0nP7/++quRZKpXr25Onjzp2n7+/HmTkJBgkpKS8s0jOTnZvP3226ZDhw4mPDzcOJ1O07dvX/PJJ5+Y9PT0XD+3fft289BDD5klS5aYzz//3Lz99tumVq1aJiwszKxYscIYY8yRI0eMJHPHHXdk+3x6erpr0OvChQuuNmnMxR+yL7/88mw/YA4ZMsRERUWZEydOuG1v2bKlKVu2rNsPycOHD7f043RuPL2GLj2vgwYNMlFRUa50OQ1sZG37+uuvXdu2bNliJJl33nknz/Jl7ffhhx922z537txs7clqGa3W2RhjJk2alK0+3jhuxhhTsmTJbANXVtx1112mevXqrn+3a9fODBgwwMTHx7uO75dffmkkmZUrV7rSDRs2zNSrVy/f/AtyDnK6X1tt7966X//VI488YqKjo93uJ3v27DGSzNSpU40xuZ/7LAsXLjSSzCuvvGJGjx5tihUr5nZ8PZWenm7+8Y9/mJIlS5pt27blmu78+fPmo48+Mr169TIxMTEmIiLCJCUlmTlz5lgaOG7QoIG56qqrTEZGhmvbhQsXTPXq1Y0kM2/ePNd2K/e/LDVq1DAdO3bMtr9Dhw65/mDBk3TGFL4tFEVbAgAgVLAUFQAA8HujR4/WFVdcoYceekjp6emuV7Vq1RQdHZ3j8hYff/yxTp8+nePrySeftKVcly6XcubMGW3evFndunVTyZIlXdvDwsLUu3dv/frrr/ruu+/cPpOUlOT271q1asnhcLgt4RMeHq4rr7xSv/zyS75l2rZtmyTp/fff19atW7V161atWLFCXbp00ejRo/X+++/n+Lnff/89zyVIHA6HwsPDNW/ePF24cEE9evTQ0aNHc91/7969lZaWps8//zzfMl9q2rRpluKhWG0XBWk/+claqmjs2LFyOp2u7cWLF9eVV16Z7/JZklSqVCn169dPn3zyiQ4fPqyJEydq//796tSpkxITE3MtV8OGDfXKK6/o5ptv1t/+9jf169dPGzZsUMWKFfXYY4/lu99GjRqpePHirtdLL70kSUpLS9OaNWt0yy23qESJEm7H6u9//7vS0tK0adMmt7zuuece/f777/rggw8kSenp6ZozZ47+9re/qUaNGvmW5VIFuYb+GktGkurXr6+0tDQdO3Ys1/307NlT5cuXd1tyaOrUqSpXrpxuv/12S2W988473f7do0cPhYeH69NPP82WNq8yFqTOl/LWcbv++us1a9YsPf/889q0aZMuXLiQZzmytG3bVj/99JP279+vtLQ0rV+/Xp06dVLr1q21atUqSdLq1asVGRnpWu5PunjfsroMleTZObg034K0d7vv13/Vv39/nT17VgsXLnRtmzlzpiIjI9WrVy9LefTo0UMPPPCAHn30UT3//PN68skn1b59e4/K8VdDhgzRsmXLtGjRIl177bU5ptm5c6cSEhL0j3/8Q7///rv+9a9/6ejRo/rwww915513urXH3Dz44IPat2+fhgwZot9++00HDx7U/fff7zqGxYr9388Wnt7/HA5Hrvv963tW02UpbFvwZlsCACBUEDwcAAD4tSNHjujrr7+WJEVGRuaYplSpUkVYov9TsWJFt38nJyfLGJNtuyRXHIM//vjDbXvp0qXd/h0REaESJUooKioq2/bU1NR8y5QVuLtr165uwU5btmypuLg4zZgxQ7feemu2z8XGxmrGjBn55r9ixQotXrxY//jHP1SmTJkc9x8VFaW3335bkvTEE0+oZs2a2X5ELSyr7cJb7eerr75S8eLFs63JLkmHDh1yixtgRWpqqk6ePKmUlBQZY1SqVCmFh1vvqpcqVUpJSUl6/fXXdfbsWZUtW1bR0dE5/iA2b948/fnnnzp8+LDbefnjjz+Unp6uqVOnaurUqTnu59IBm27duunBBx/UzJkzddttt2n58uU6evSoXnjhBctl/6uCXEOXtsOs83z27Nlc9xMZGamBAwfqpZde0qRJk3ThwgW99957euSRR3JtJ5dKSEhw+3d4eLjKlCmTrXz5lfHChQse1/lS3jpuCxcu1PPPP69///vfGjVqlEqWLKlbbrlFL774Yrb6/1W7du0kXRy8qFatmi5cuKA2bdro6NGjeu6551zvtWjRwhW8fsuWLTpw4IBHAxuenINLj01B2rvd9+u/qlOnjq677jrNnDlT9913nzIyMjRnzhz94x//yLbfvPTv31+vvfaaIiIiNHToUI/K8FfPP/+8Xn/9db311lvq1KlTrumKFy8up9OpEydOKCUlRSkpKTp9+rRH99X+/fvr+PHjev755/Xaa69Jkpo1a6YRI0bohRde0GWXXZbn5y+9/2W1qdzawokTJyT93/m0mu6vCtsWvNmWAAAIFQxsAAAAv3bw4EFJFwNX//Uve//qr4Fgi9Klf8UZHx+vYsWK5Rjo9NChQ5KksmXLerVM27dvV7169dwGNaSLPz6FhYXl+mNvZGSk7r333jzzXrZsmT766CN169ZN8+fPz/GH9+3bt+uaa65ReHi4ZsyY4QrMu379+hwDmheU1Xbxww8/WErnqa+++kply5bN9iPU5s2b9dNPP2nUqFH55nHw4EEtWrRICxYs0NatW3XZZZfp9ttv14wZM9S4cWOPy2SMkXSxXYaFhalNmzZauXKlDh8+7Pajbu3atSUpWyDg+Ph411/4Dx48OMd9VKtWze3f0dHR6tmzp2bMmKHDhw/r7bffVmxsbI4DPlYU5TX0wAMPaOLEiXr77beVlpam9PR03X///ZY/f+TIEbcfXNPT0/XHH3/kOOCXFzvq7K3jVrZsWb3yyit65ZVXdODAAX3wwQd64okndOzYMa1YsSLXz11++eW66qqrtHr1alWtWlWNGzdWqVKl1LZtWw0aNEibN2/Wpk2b9Mwzz7g+s3jxYl111VWqW7eu5fJ5cg5yul972t69rV+/fho0aJD27t2rn376SYcPH1a/fv0sf/7MmTPq3bu3rrrqKh09elT33nuv/vvf/3pcjlmzZmnUqFEaO3as+vfvn2faWrVq6aefftLGjRs1b948TZw4UcOHD1eLFi10++23q1u3bnkOgmV5/PHHNWzYMH3//feKjY1VlSpVNHDgQMXExFgaKP7r/S9LvXr1NH/+fKWnp7t9X3377beS5GprVtMBAAD/wlJUAADAr2X9VaPD4VDjxo1zfMXHx/u4lBfFxMSoSZMmev/9990GEDIzMzVnzhzXj33ekpKSop9++inHAYT//ve/SktL04033ljg/CdNmqSbbrop10GNrP1nLVkSGRmpJUuWqHTp0uratauOHDlS4H1fymq78Fb7+eqrr3T8+HGdPHnStS0jI0OPP/64qlatmuvSMadOndLUqVN1ww03qEqVKho3bpwaNGigtWvX6sCBA3rppZcKNKiRnJysjz76SA0aNHANtowcOVIZGRm6//77LS0hVKJECbVu3Vpff/216tevn+OxyukH43vuuUcZGRmaNGmSli9frjvuuEMlSpTwuA5S0V5DFStWVPfu3TV9+nS9/vrruummm1S5cmXLn587d67bv9977z2lp6erVatWHpXD0zrnNLOiKI5b5cqVNWTIELVv317bt2/PN327du20du1arVq1yrUc0lVXXaXKlStr9OjRunDhgmtmh3RxYMOT2RpS4c5BQdu7N/Xs2VNRUVGaNWuWZs2apcsuu0wdOnRwvZ/fbKT7779fBw4c0Pvvv6+33npLH3zwgV5++WWPyrBixQoNGDBA/fv315gxYyx/rlmzZpo6daoOHTqkFStW6IorrtBTTz2lyy67TG3atNEbb7yR5ywq6WL96tatqypVqujAgQNauHChBgwY4JqBkZuc7n+SdMstt+j06dNavHixW/p33nlHiYmJatKkiUfpAACAf2HGBgAA8GtXXHGFWrduraefflqnT59WkyZNZIzR4cOH9emnn6pPnz4e/5DoTRMmTFD79u3VunVrjRgxQhEREZo+fbp27dql+fPn57mOd2Ft375dxhjFxMS41oZPTk7Whg0b9PLLL6t+/foaMWJEgfP/8MMPFR0dnesSSVn7/+tf1yYkJOi///2vbrjhBnXt2lXr1q3L90cqK6y2C0/bj8PhUMuWLfXZZ5/luu/9+/frjz/+UOXKldW9e3cNHz5caWlp+te//qVt27bps88+U0RERI6f3bZtm5544gl17dpVS5cuVefOnVW8eHGP6t6rVy9VrlxZjRs3VtmyZfX999/rpZde0tGjRzVr1ixXuhYtWujVV1/Vgw8+qGuvvVb33Xef6tSp4/rL/qwf8eLi4lyf+ec//6kbbrhBf/vb3/TAAw+oatWqOnXqlH744Qd9+OGHWrt2bbbyNG7cWPXr19crr7wiY4zuueeeHMtt5dhKRXsNPfTQQ64fLWfOnOnRZ99//32Fh4erffv22r17t0aNGqVrrrlGPXr08LgcntS5Xr16ki6eqz59+qh48eKqWbOm7cctJSVFrVu3Vq9evXT11VcrNjbWFbMnp+XsLtW2bVtNnz5dv//+u1555RW37TNnzlR8fLzrXrFjxw79+OOPHg9sFPYcFKS9e1OpUqV0yy23aNasWTp58qRGjBjhFl8it3MfGxurf//735ozZ45mzpypOnXqqE6dOhoyZIgef/xxtWjRQtdff32++9+/f7+6d++u6tWrq1+/ftlijDRs2DDfpdrCwsLUoUMHdejQQa+//rqWLVumefPmadiwYWrSpEmOA++7du3S4sWL1bhxY0VGRuqbb77RxIkTVaNGDdfSZVms3v8kqXPnzmrfvr0eeOABpaam6sorr9T8+fO1YsUKzZkzxzWz0Wo6AADgZ3wSshwAAMADKSkpZuTIkeaqq64yUVFRJj4+3lxzzTXmwQcfNMnJyV7d96effmokmUWLFrm2jRkzxkgyx48fz/EzX3zxhWnTpo2JiYkx0dHRpmnTpubDDz90S5NbHn369DExMTHZ8mzZsqWpU6dOnmWdPHmykeT2iomJMQ0bNjTjxo0zZ86csVrtAsna//bt27O9t2jRIuNwOEz37t1NZmamLfuz2i6spjt16pSRZO6444489/vee+8ZSWbDhg2md+/eJi4uzsTGxpp//OMfZs+ePfmW+fTp04WptpkwYYJp0KCBcTqdJiwszJQrV87ccsstZsuWLTmm37Fjh+nXr5+pVq2aiYyMNFFRUebKK680d999t1mzZk229Pv37zf9+/c3l112mSlevLgpV66cad68uXn++edzLdM///lPI8nUrl07x/etHtsshbmGZs6caSSZ/fv35/jvS1WtWtXUqlXLUrn+ut9t27aZm266yZQsWdLExsaanj17mqNHjxaojFbrnGXkyJEmMTHRFCtWzEgyn376qeU8rJYpLS3N3H///aZ+/fomLi7OREdHm5o1a5oxY8ZYupckJyebYsWKmZiYGHP+/HnX9rlz5xpJ5tZbb3Vte/rpp02VKlXyzfPSOhTmHGSx0t69cb/OzcqVK13373379mV7P6dzv3PnThMdHW369OnjljYtLc00atTIVK1a1dJ3Zdb3XW6v3K4hK/K693333XfmxhtvNKVLlzYRERHmyiuvNE8//XSO6T29/506dcoMHTrUJCQkmIiICFO/fn0zf/78AqcrbFsoyrYEAECwcxjz/xejBAAAAELY8uXLlZSUpG+++cb1l9E5eeyxxzR9+nSlpKTwl7wWWT22RW3nzp265ppr9Oqrr2rQoEGWPjN27Fg988wzOn78uNdj5oSK2rVrq3PnznrppZd8XRQAAAAECJaiAgAAACR9+umnuuOOO/L94f2rr77Stddey6CGB6we26Ly448/6pdfftGTTz6pihUrqm/fvr4uUkjbs2ePr4sAAACAAMPABgAAAKCLwdHzY4zR9u3b1b9//yIoUfCwcmyL0nPPPafZs2erVq1aWrRoUYGDnQP5SU9Pz/P9YsWKucXRCJWyAAAAFBZLUQEAAAAAYLOff/5Z1apVyzPNmDFjNHbs2JAqCwAAgB0Y2AAAAAAAwGbnz5/Xzp0780yTmJioxMTEkCoLAACAHRjYAAAAAAAAAAAAAYMFNAEAAAAAAAAAQMBgYAMAAAAAAAAAAAQMBjYAAAAAAAAAAEDAYGADAAAAAAAAAAAEDAY2AAAAAAAAAABAwGBgAwAAAAAAAAAABAwGNgAAAAAAAAAAQMBgYAMAAAAAAAAAAAQMBjYAAAAAAAAAAEDAYGADAAAAAAAAAAAEDAY2AAAAAAAAAABAwGBgAwAAAAAAAAAABAwGNgAAAAAAAAAAQMBgYAMAAAAAAAAAAAQMBjYAAAAAAAAAAEDAYGADAAAAAAAAAAAEDAY2AAAAAAAAAABAwGBgAwAAAAAAAAAABAwGNgAAAAAAAAAAQMBgYAOAX1m4cKHq1Kmj6OhoORwO7dixw9dFytHYsWPlcDh8XQy/0bdvX1WtWtXXxfC65cuXa+zYsbbnO2vWLDkcDv3888+25y1Je/bs0dixY72WPwAAgC94uw81ffp0zZo1yyt5B7KqVauqb9++vi6G13nr/Hv72clbzywA4G8Y2ADgN44fP67evXvriiuu0IoVK7Rx40ZdddVVvi4W4LJ8+XI988wzvi6Gx/bs2aNnnnmGgQ0AAAAPMLAR2gL1/AfqMwsAeIqBDQB+Y9++fbpw4YLuuusutWzZUk2bNlWJEiV8Xayg8ueff/q6CAEp1I5bqNX3r86ePStjjK+LAQAAUCjGGJ09e9bXxQhIodQXDvV2EkrnGghGDGwA8At9+/bVDTfcIEm6/fbb5XA41KpVK9f7H3zwgZo1a6YSJUooNjZW7du318aNG7PlkdOU3pyWjXI4HBoyZIhmz56tWrVqqUSJErrmmmv00UcfZfv8smXL1KBBA0VGRqpatWqaPHmyR3VbvXq12rZtq7i4OJUoUUItWrTQmjVrcizj7t271bNnTzmdTlWoUEH9+/dXSkqKW1pjjKZPn64GDRooOjpa8fHx6tatm3766Se3dK1atVLdunX1+eefq3nz5ipRooT69+8vSfr111/VrVs3xcbGqlSpUrrzzju1detWORwO118lzZ49Ww6HI9txlqRnn31WxYsX16FDh3Ktd1pamkaOHKlq1aopIiJCl112mQYPHqyTJ0+6pVu7dq1atWqlMmXKKDo6WpUrV9Ztt93m1sl87bXXdM0116hkyZKKjY3V1VdfrSeffDLP437dddepS5cubtvq1asnh8OhrVu3ura9//77cjgc+vbbbyX937nYvn27unXrpvj4eF1xxRXq27evXn31VUkX20/WK79ZEFbOf2E/+7///U89e/ZUhQoVFBkZqcqVK+vuu+/WuXPnNGvWLHXv3l2S1Lp1a1e5s85zXu3kwIEDuuuuu1S+fHlFRkaqVq1aeumll5SZmena988//yyHw6HJkydrypQpqlatmkqWLKlmzZpp06ZNlup55MgRDRw4UJdffrkiIiJUrVo1PfPMM0pPTy/wfr766it17dpVpUuXVlRUlBo2bKj33nvPLU3W8hUrV65U//79Va5cOZUoUULnzp2TMUbjx49XlSpVFBUVpcaNG2vVqlVq1aqV6950+vRplSpVSgMHDsy2/59//llhYWGaNGmSpWMAAADs8/bbb+uaa65RVFSUSpcurVtuuUV79+51S/PTTz/pjjvuUGJioiIjI1WhQgW1bdvWtRRu1apVtXv3bq1bt87Vf8pv+SBP++lbt27V3/72N5UoUULVq1fXxIkT3fpZkpSamqoRI0a49amHDRumM2fOuKXLer55/fXXVatWLUVGRuqdd96RJK1fv17NmjVTVFSULrvsMo0aNUr//ve/3fqy99xzj0qXLp3jD71t2rRRnTp18qy7lX6jlH+//s8//3TVN+v8NW7cWPPnz89136mpqQoPD3frd/3+++8qVqyYnE6nW59y6NChKleunOsPWXLrC3vz/Bf2sytWrFDbtm3ldDpVokQJ1apVSxMmTJCkfJ9Z8msnbdu2VWxsrEqUKKHmzZtr2bJlbvvO6j9/+umneuCBB1S2bFmVKVNGt956a57Phn/lST/d6n4WLlyoZs2aKSYmRiVLllTHjh319ddfu6Xp27evSpYsqW+//VYdOnRQbGys2rZtK0k6efKk6xooWbKkunTpop9++kkOh8O1rNcXX3whh8ORY1t89913sz1nAigCBgD8wA8//GBeffVVI8mMHz/ebNy40ezevdsYY8zcuXONJNOhQwezdOlSs3DhQtOoUSMTERFhvvjiC1ceffr0MVWqVMmW95gxY8yltztJpmrVqub666837733nlm+fLlp1aqVCQ8PNz/++KMr3erVq01YWJi54YYbzPvvv28WLVpkrrvuOlO5cuVseeZk9uzZxuFwmJtvvtm8//775sMPPzRJSUkmLCzMrF69OlsZa9asaUaPHm1WrVplpkyZYiIjI02/fv3c8hwwYIApXry4GT58uFmxYoWZN2+eufrqq02FChXMkSNHXOlatmxpSpcubSpVqmSmTp1qPv30U7Nu3Tpz+vRpc+WVV5rSpUubV1991XzyySfm4YcfNtWqVTOSzMyZM40xxpw7d84kJCSYO++8023/Fy5cMImJiaZ79+65HvvMzEzTsWNHEx4ebkaNGmVWrlxpJk+ebGJiYkzDhg1NWlqaMcaY/fv3m6ioKNO+fXuzdOlS89lnn5m5c+ea3r17m+TkZGOMMfPnzzeSzIMPPmhWrlxpVq9ebV5//XUzdOjQPI/9E088YUqWLGnOnz9vjDHmyJEjRpKJjo4248aNc6V74IEHTIUKFbKdiypVqpjHH3/crFq1yixdutT88MMPplu3bkaS2bhxo+uVVZecWD3/M2fONJLM/v37Pf7sjh07TMmSJU3VqlXN66+/btasWWPmzJljevToYVJTU82xY8fM+PHjjSTz6quvusp97NgxY0zu7eTYsWPmsssuM+XKlTOvv/66WbFihRkyZIiRZB544AHX/vfv3++6njp16mSWLl1qli5daurVq2fi4+PNyZMn8zxPhw8fNpUqVTJVqlQxb7zxhlm9erV57rnnTGRkpOnbt2+B9rN27VoTERFh/va3v5mFCxeaFStWmL59+7q1778e98suu8zcd9995uOPPzb/+c9/THp6uhk5cqSRZO677z6zYsUKM2PGDFO5cmVTsWJF07JlS1ceDz/8sImJiclWz0cffdRERUWZ33//Pc/6AwCAgsupD5XV7+nZs6dZtmyZeffdd0316tWN0+k0+/btc6WrWbOmufLKK83s2bPNunXrzOLFi83w4cPNp59+aowxZvv27aZ69eqmYcOGrv7T9u3b8yyPJ/30MmXKmBo1apjXX3/drFq1ygwaNMhIMu+8844r3ZkzZ0yDBg1M2bJlzZQpU8zq1avNP//5T+N0Ok2bNm1MZmamK21Wn6Z+/fpm3rx5Zu3atWbXrl3mm2++MVFRUaZ+/fpmwYIF5oMPPjB///vfTdWqVd2O3TfffGMkmRkzZrjVaffu3a5+ZJYqVaqYPn36uP5ttd9opV8/cOBAU6JECTNlyhTz6aefmo8++shMnDjRTJ06Nc9j37RpU9OhQwfXvxcsWGCioqKMw+EwX375pWt7rVq1TI8ePdzORU59YW+e/5yeW61+9t///rdxOBymVatWZt68eWb16tVm+vTpZtCgQcYYk+8zS27t5LPPPjPFixc3jRo1MgsXLjRLly41HTp0MA6HwyxYsMC1/6xrrnr16ubBBx80n3zyifn3v/9t4uPjTevWrfM8PsZ43k+3sp9x48YZh8Nh+vfvbz766CPz/vvvm2bNmpmYmBjXbwpZx7148eKmatWqZsKECWbNmjXmk08+MRkZGeaGG24wUVFRZuLEiWblypXmmWeeMTVq1DCSzJgxY1x5NGzY0LRo0SJbva677jpz3XXX5Vt/APZiYAOA3/j000+NJLNo0SLXtoyMDJOYmGjq1atnMjIyXNtPnTplypcvb5o3b+7a5unARoUKFUxqaqpr25EjR0yxYsXMhAkTXNuaNGliEhMTzdmzZ13bUlNTTenSpfMd2Dhz5owpXbq0uemmm9y2Z2RkmGuuucZcf/312cr44osvuqUdNGiQiYqKcj20bNy40UgyL730klu6gwcPmujoaPPYY4+5trVs2dJIMmvWrHFLmzWA9PHHH7ttHzhwYLYO5ZgxY0xERIQ5evSoa9vChQuNJLNu3TrXtkuP/YoVK3KsT9Zn33zzTWOMMf/5z3+MJLNjxw6TmyFDhphSpUrl+n5uVq9ebSSZzz//3BhjzJw5c0xsbKwZNGiQW2e4Ro0aplevXm51lmRGjx6dLc/BgwdbGtAyxrPzf+lDuSefbdOmjSlVqpRroCInixYtMpJcD+p/lVs7eeKJJ4wks3nzZrftDzzwgHE4HOa7774zxvzfgEO9evVMenq6K92WLVuMJDN//vxcy2XMxXZXsmRJ88svv7htnzx5spHkehjxZD9XX321adiwoblw4YJbnklJSaZixYque0nWcb/77rvd0p04ccJERkaa22+/3W171vX314GNH3/80RQrVsy8/PLLrm1nz541ZcqUyTYoCQAA7HVpHyo5OdlER0ebv//9727pDhw4YCIjI119vt9//91IMq+88kqe+depU8ftez8vBemnX9rPql27tunYsaPr3xMmTDDFihUzW7dudUuX1Ydevny5a5sk43Q6zYkTJ9zSdu/e3cTExJjjx4+7tmVkZJjatWtnGxRq2bKladCggdvnH3jgARMXF2dOnTrl2nbpwIbVfqOVfn3dunXNzTffnGeanDz99NMmOjra9QP+vffeazp16mTq169vnnnmGWOMMb/99pvbs0hWnXPqCxvjvfN/6bOT1c+eOnXKxMXFmRtuuMFtUOtSeT2z5NZOmjZtasqXL+92ntPT003dunXN5Zdf7tpf1jWXNZCS5cUXXzSSzOHDh3MtlzGe99Pz28+BAwdMeHi4efDBB93SnTp1yiQkJLgNYvXp08dIMm+//bZb2mXLlhlJ5rXXXnPbPmHChGwDG1nl+vrrr13bsp5H/jooCaBosBQVAL/23Xff6dChQ+rdu7eKFfu/W1bJkiV12223adOmTQVeF7N169aKjY11/btChQoqX768fvnlF0nSmTNntHXrVt16662KiopypYuNjdVNN92Ub/4bNmzQiRMn1KdPH6Wnp7temZmZ6tSpk7Zu3ZptCnnXrl3d/l2/fn2lpaXp2LFjkqSPPvpIDodDd911l1ueCQkJuuaaa/TZZ5+5fT4+Pl5t2rRx27Zu3TrFxsaqU6dObtt79uyZrQ4PPPCAJGnGjBmubdOmTVO9evV044035lr3tWvXSro43fevunfvrpiYGNdySg0aNFBERITuu+8+vfPOOzlOtb7++ut18uRJ9ezZU//973/1+++/57rfv2rRooWioqK0evVqSXItI9SpUydt2LBBf/75pw4ePKjvv/9e7dq1y/b52267zdJ+clOQ8+/pZ//880+tW7dOPXr0ULly5Qpc1pzaydq1a1W7dm1df/31btv79u0rY4zrHGfp0qWLwsLCXP+uX7++JLmup9x89NFHat26tRITE93q2rlzZ0kX26sn+/nhhx/0v//9T3feeackueX597//XYcPH9Z3333nluel53rTpk06d+6cevTo4ba9adOm2ZYgqF69upKSkjR9+nTXkgbz5s3TH3/8oSFDhuRZdwAAYK+NGzfq7Nmz2fqglSpVUps2bVx90NKlS+uKK67QpEmTNGXKFH399dfZlkzylKf99ISEhGz9rPr167v1nT766CPVrVtXDRo0cMuzY8eOcjgc2fJs06aN4uPj3batW7dObdq0UdmyZV3bihUrlq2fI0kPPfSQduzYoS+//FLSxSWeZs+erT59+qhkyZK51t1qv9FKv/7666/Xxx9/rCeeeEKfffaZ5fgPbdu21dmzZ7VhwwZJF5d0bd++vdq1a6dVq1a5tknK1vfPqS/sKU/Pf0E+u2HDBqWmpmrQoEHZllr2xKXt5MyZM9q8ebO6devmdp7DwsLUu3dv/frrr9n6zzk9t0p59/0L0k/Pbz+ffPKJ0tPTdffdd7vlFxUVpZYtW+Z43C/t+2c9b1x6TeT0fNyzZ0+VL1/etdyXJE2dOlXlypXT7bffnmvdAXgHAxsA/Noff/whSapYsWK29xITE5WZmank5OQC5V2mTJls2yIjI12d5+TkZGVmZiohISFbupy2Xero0aOSpG7duql48eJurxdeeEHGGJ04cSLPMkVGRkqSq0xHjx6VMUYVKlTIluemTZuyPRzkdNz++OMPVahQIdv23LbdfvvteuONN5SRkaGdO3fqiy++yPcH2z/++EPh4eHZfmx3OBxKSEhwndcrrrhCq1evVvny5TV48GBdccUVuuKKK/TPf/7T9ZnevXvr7bff1i+//KLbbrtN5cuXV5MmTVwPKLmJiopSixYtXA8wa9asUfv27dWqVStlZGToiy++cOWR08BGTsfOEwU5/55+Njk5WRkZGbr88ssLVdbc2klu113W+3+VX9vNzdGjR/Xhhx9mq2fWOs6Xtmkr14gkjRgxIluegwYNyjHPS+uZVTer18lDDz2k77//3tWeXn31VTVr1kzXXnttnnUHAAD2yu/ZIet9h8OhNWvWqGPHjnrxxRd17bXXqly5cho6dKhOnTpVoH172k/P71kkK8+dO3dmyy82NlbGGNv7/v/4xz9UtWpV14+2s2bN0pkzZzR48OA8626132ilX/+vf/1Ljz/+uJYuXarWrVurdOnSuvnmm/X999/nWYas+BirV6/WDz/8oJ9//tk1sLF582adPn1aq1evVvXq1VWtWjW3zxa23y95fv4L8tnjx49Lku19/+TkZBljvN73L0g/3Wrf/7rrrsuW58KFC7PlV6JECcXFxblty3p2LV26tNv2nK6RyMhIDRw4UPPmzdPJkyd1/Phxvffee7r33ntdZQNQdMJ9XQAAyEtWR+bw4cPZ3jt06JCKFSvm+muTqKgonTt3Lls6q3/hf6n4+Hg5HA4dOXIk23s5bbtU1l9FTZ06VU2bNs0xTU6dpfzydDgc+uKLL3LsOF26Lae/5ClTpoy2bNmSbXtudXrooYc0e/Zs/fe//9WKFStcwcbzUqZMGaWnp+v48eNugxvGGB05ckTXXXeda9vf/vY3/e1vf1NGRoa++uorTZ06VcOGDVOFChV0xx13SJL69eunfv366cyZM/r88881ZswYJSUlad++fapSpUqu5Wjbtq1Gjx6tLVu26Ndff1X79u0VGxur6667TqtWrdKhQ4d01VVXqVKlStk+W5i/gpIKd/6tfjYjI0NhYWH69ddfC1XW3NpJbtfdX8tYWGXLllX9+vU1bty4HN/PepjyJD9JGjlypG699dYc09SsWdPt35fWP+u+k/Wg9FdHjhzJNmujTZs2qlu3rqZNm6aSJUtq+/btmjNnjkflBgAAhZffs8Nf+y9VqlTRW2+9JUnat2+f3nvvPY0dO1bnz5/X66+/7vG+Pe2nW80zOjpab7/9dq7v/1Vufbrc+jSXKlasmAYPHqwnn3xSL730kqZPn662bdtm6zvltA+r/cb8+vUxMTF65pln9Mwzz+jo0aOu2Rs33XST/ve//+VahoiICN1www1avXq1Lr/8ciUkJKhevXqqXr26JOmzzz7TmjVrlJSUlO2zhe33Z9WxoOff6meznqvs7vvHx8erWLFiXu/7F6SfbjXP//znP3k+F2bJ7RpJT0/XiRMn3AY3cns+fuCBBzRx4kS9/fbbSktLU3p6uu6//36Pyg3AHgxsAPBrNWvW1GWXXaZ58+ZpxIgRro7ImTNntHjxYjVr1kwlSpSQJFWtWlXHjh3T0aNHXT8Ynz9/Xp988kmB9h0TE6Prr79e77//viZNmuRajurUqVP68MMP8/18ixYtVKpUKe3Zs8e2JWmSkpI0ceJE/fbbbzlOH7eiZcuWeu+99/Txxx+7lvuRpAULFuSYvlGjRmrevLleeOEF7dq1S/fdd59iYmLy3Efbtm314osvas6cOXr44Ydd2xcvXqwzZ86obdu22T4TFhamJk2a6Oqrr9bcuXO1fft218BGlpiYGHXu3Fnnz5/XzTffrN27d+fZgW3Xrp2efPJJjRo1Spdffrmuvvpq1/YPPvhAR44c8WjJqb/+hVB0dHSeaQtz/j35bMuWLbVo0SKNGzcu1wcOq7Mn/qpt27aaMGGCtm/f7jbz4N1335XD4VDr1q0t55WXpKQkLV++XFdccUW2pRMKombNmqpRo4a++eYbjR8/vkB5NGnSRJGRkVq4cKHbQ9emTZv0yy+/ZBvYkKShQ4fq/vvvV0pKiipUqKDu3bsXtAoAAKCAmjVrpujoaM2ZM8ftu/jXX3/V2rVr1a1btxw/d9VVV+npp5/W4sWLtX37dtf2S2dQ5MWOfnpOeY4fP15lypTJNsvAqpYtW2r58uX6/fffXX3FzMxMLVq0KMf09957r8aOHas777xT3333nV544YV891GQfqOVfn2FChXUt29fffPNN3rllVf0559/up79ctKuXTuNHDlSsbGxrhnZMTExatq0qaZOnapDhw7lOFM7N0V1/q1+tnnz5nI6nXr99dd1xx135Dog48kzi3TxGDVp0kTvv/++Jk+e7PpMZmam5syZo8svv1xXXXWVR3XKiR399Et17NhR4eHh+vHHHwu8lHDLli314osvauHCha6lmKXcn48rVqyo7t27a/r06Tp//rxuuukmVa5cuUD7BlA4DGwA8GvFihXTiy++qDvvvFNJSUkaOHCgzp07p0mTJunkyZOaOHGiK+3tt9+u0aNH64477tCjjz6qtLQ0/etf/1JGRkaB9//cc8+pU6dOat++vYYPH66MjAy98MILiomJyXUZoSwlS5bU1KlT1adPH504cULdunVT+fLldfz4cX3zzTc6fvy4XnvtNY/K06JFC913333q16+fvvrqK914442KiYnR4cOHtX79etWrV8+tM5aTPn366OWXX9Zdd92l559/XldeeaU+/vhj1wDQX2OZZHnooYd0++23y+FwuKYJ56V9+/bq2LGjHn/8caWmpqpFixbauXOnxowZo4YNG6p3796SpNdff11r165Vly5dVLlyZaWlpbn+Ii3roWPAgAGKjo5WixYtVLFiRR05ckQTJkyQ0+l0m/mRk0aNGik+Pl4rV65Uv379XNvbtWun5557zm0/VtSrV0+S9MILL6hz584KCwtT/fr1FRERkS1tYc6/J5+dMmWKbrjhBjVp0kRPPPGErrzySh09elQffPCB3njjDcXGxqpu3bqSpDfffFOxsbGKiopStWrVclwCIcvDDz+sd999V126dNGzzz6rKlWqaNmyZZo+fboeeOABWx5uJOnZZ5/VqlWr1Lx5cw0dOlQ1a9ZUWlqafv75Zy1fvlyvv/66x9Pt33jjDXXu3FkdO3ZU3759ddlll+nEiRPau3evtm/fnuuDfJbSpUvrkUce0YQJExQfH69bbrlFv/76q5555hlVrFgxx2vkrrvu0siRI/X555/r6aefzrFNAAAA7ypVqpRGjRqlJ598Unfffbd69uypP/74Q88884yioqI0ZswYSdLOnTs1ZMgQde/eXTVq1FBERITWrl2rnTt36oknnnDlV69ePS1YsEALFy5U9erVFRUV5eoPXsqOfvqlhg0bpsWLF+vGG2/Uww8/rPr16yszM1MHDhzQypUrNXz4cDVp0iTPPJ566il9+OGHatu2rZ566ilFR0fr9ddfd8V6u7RfU6pUKd1999167bXXVKVKFUuxBa32G63065s0aaKkpCTVr19f8fHx2rt3r2bPnu32B225adu2rTIyMrRmzRq98847ru3t2rXTmDFj5HA4PIqlUVTn3+pnS5YsqZdeekn33nuv2rVrpwEDBqhChQr64Ycf9M0332jatGmuckvWnlmyTJgwQe3bt1fr1q01YsQIRUREaPr06dq1a5fmz59vy6wWqfD99EtVrVpVzz77rJ566in99NNP6tSpk+Lj43X06FFt2bLFNQMoL506dVKLFi00fPhwpaamqlGjRtq4caPeffddSbk/H2ddezNnzvSozABs5JOQ5QCQg08//dRIMosWLcr23tKlS02TJk1MVFSUiYmJMW3btjVffvlltnTLly83DRo0MNHR0aZ69epm2rRpZsyYMebS250kM3jw4Gyfr1KliunTp4/btg8++MDUr1/fREREmMqVK5uJEyfmmGdu1q1bZ7p06WJKly5tihcvbi677DLTpUsXt3pm5Xf8+HG3z86cOdNIMvv373fb/vbbb5smTZqYmJgYEx0dba644gpz9913m6+++sqVpmXLlqZOnTo5lunAgQPm1ltvNSVLljSxsbHmtttuM8uXLzeSzH//+99s6c+dO2ciIyNNp06dcsyvT58+pkqVKm7bzp49ax5//HFTpUoVU7x4cVOxYkXzwAMPmOTkZFeajRs3mltuucVUqVLFREZGmjJlypiWLVuaDz74wJXmnXfeMa1btzYVKlQwERERJjEx0fTo0cPs3Lkzx7Jc6pZbbjGSzNy5c13bzp8/b2JiYkyxYsXcymNM7uci6zjce++9ply5csbhcOR4bi5l5fzndp6tfNYYY/bs2WO6d+9uypQp42qnffv2NWlpaa40r7zyiqlWrZoJCwszkszMmTONMXm3k19++cX06tXLlClTxhQvXtzUrFnTTJo0yWRkZLjS7N+/30gykyZNyvZ5SWbMmDF5Hh9jjDl+/LgZOnSoqVatmilevLgpXbq0adSokXnqqafM6dOnC7Sfb775xvTo0cOUL1/eFC9e3CQkJJg2bdqY119/3ZUm67hv3bo1W56ZmZnm+eefN5dffrmJiIgw9evXNx999JG55pprzC233JJjPfr27WvCw8PNr7/+mm+dAQBA4eXWh/r3v//t6r87nU7zj3/8w+zevdv1/tGjR03fvn3N1VdfbWJiYkzJkiVN/fr1zcsvv2zS09Nd6X7++WfToUMHExsbayRl6+/mpDD99Jz61KdPnzZPP/20qVmzpqs+9erVMw8//LA5cuSIK11uzzfGGPPFF1+YJk2amMjISJOQkGAeffRR88ILLxhJ5uTJk9nSf/bZZ0aSmThxYo755fTMZKXfaKVf/8QTT5jGjRub+Ph4ExkZaapXr24efvhh8/vvv+dYlr/KzMw0ZcuWNZLMb7/95tr+5ZdfGknm2muvzfaZvPrC3jr/OZ1nq5815uIzb8uWLU1MTIwpUaKEqV27tnnhhRdc7+f1zJJfO2nTpo1r/02bNjUffvihW5rc+s9Zz/KffvppvseoMP303PazdOlS07p1axMXF2ciIyNNlSpVTLdu3czq1atdafr06WNiYmJyLNOJEydMv379TKlSpUyJEiVM+/btzaZNm4wk889//jPHz1StWtXUqlUr3/oC8B6HMcZ4f/gEAODvxo8fr6effloHDhzI9hfyH374obp27aply5bp73//u49KCPjW/v37dfXVV2vMmDF68skn3d47f/68qlatqhtuuEHvvfeej0oIAABgTYcOHfTzzz9r37592d4bPny4XnvtNR08eDDPGb5AMJs3b57uvPNOffnll2revLnbezt37tQ111yjV1991dKKBgC8g6WoACAEZU1Tvvrqq3XhwgWtXbtW//rXv3TXXXe5DWrs2bNHv/zyi4YPH64GDRq4xeQAgtk333yj+fPnq3nz5oqLi9N3332nF198UXFxcbrnnntc6Y4fP67vvvtOM2fO1NGjR92WrwAAAPAHjzzyiBo2bKhKlSrpxIkTmjt3rlatWuUKnp5l06ZN2rdvn6ZPn66BAwcyqIGQMX/+fP3222+qV6+eihUrpk2bNmnSpEm68cYb3QY1fvzxR/3yyy968sknVbFiRfXt29d3hQbAwAYAhKISJUro5Zdf1s8//6xz586pcuXKevzxx/X000+7pRs0aJC+/PJLXXvttXrnnXdsW1sV8HcxMTH66quv9NZbb+nkyZNyOp1q1aqVxo0bpwoVKrjSLVu2TP369VPFihU1ffp0t4CZAAAA/iAjI0OjR4/WkSNH5HA4VLt2bc2ePVt33XWXW7qsOBZJSUl6/vnnfVRaoOjFxsZqwYIFev7553XmzBnXoMWl18Fzzz2n2bNnq1atWlq0aFG+cV8AeBdLUQEAAAAAAAAAgIBRzNcFAAAAAAAAAAAAoaFq1apyOBzZXoMHD7acB0tRAQAAAAAAAACAIrF161ZlZGS4/r1r1y61b99e3bt3t5wHS1H5SGZmpg4dOqTY2FjWrAcAAEDQM8bo1KlTSkxMVLFiTBxH/nhmAgAAgc7f+sBpaWk6f/68V/I2xmTrs0VGRioyMjLfzw4bNkwfffSRvv/+e8v9PmZs+MihQ4dUqVIlXxcDAAAAKFIHDx7U5Zdf7utiIADwzAQAAIKFP/SB09LSVC46Wqe9lH/JkiV1+rR77mPGjNHYsWPz/Nz58+c1Z84cPfLIIx79MQsDGz4SGxsr6WKjjouL83Fpcud0TrCULiVlpJdLErisHkOJ4wgECu6N8Be0RXibnW0sNTVVlSpVcvWDgfwEyjMTAAAIbPn1eQvzPOVPfeDz58/rtKSHJeU/h8Iz5yS9fPp0tn6bldkaS5cu1cmTJ9W3b1+P9snAho9kjT7FxcX5eSc9ylIq/66Dr1k7hhLHEQgc3BvhL2iL8Db72xhLCsGqwHlmAgAAgS3vPq8d/RB/6gPHyJNfK63JGmQoSL/trbfeUufOnZWYmFigfQIAAAAAAAAAABSJX375RatXr9b777/v8WcZ2AAAAAAAAAAAIAQU//8vO2UU8HMzZ85U+fLl1aVLF48/y8AG8mTMGFvzczie8cl+PREIZbQqmOoC+BOumcLj/mQPjk/RsrvdOmpb26/ZYy2dN9DGAAAAEOzo8/pGZmamZs6cqT59+ig83PNhCgY2AAAAAAAAAAAIAeGyf1CgIPmtXr1aBw4cUP/+/YtsnwAAAAAAAAAAAAXSoUMHGWMK/HkGNgAAAAAAAAAACAHhsj/GRrrN+VnBwAaKVCCsWWd3GX1ZZ2KV5C0QymhVMNUFoSEU26LV61QKzeMTCGzvI/gwdgYAAAAQDPJ7zuLZKjt/WYqqsIr5YJ8AAAAAAAAAAAAFwowNAAAAAAAAAABCQHEFx1JUzNgAAAAAAAAAAAABgxkbAAAAAAAAAACEgGCJscHARgAgKLB/8iQIrFXBdA4DoS6BUEar/L0uBE1GUfD370tP9uvvdYE9OM8AAADwplAIrG1HHULhOAUjBjYAAAAAAAAAAAgB4bI/xsYFm/OzghgbAAAAAAAAAAAgYDBjAwAAAAAAAACAEECMDdjC6ZwgKcrXxUABsL4eYB3XC4qCr9qZN+IkcM0EtmCKnRFMdQEAAAg19NGsCbXjVFz2L0Vld35WsBQVAAAAAAAAAAAIGMzYAAAAAAAAAAAgBDBjAwAAAAAAAAAAoIgxYwMAAAAAAAAAgBBA8HDYIiVlpOLi4nxdjEIjsCQQXALhmg7FMgZCnUMRxxvBjPYNAACAYJffs3Z+feK8P59WgBLBCgY2AAAAAAAAAAAIAeGyPyaGLwYZiLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIAcTYsNnnn3+uSZMmadu2bTp8+LCWLFmim2++Oce0AwcO1JtvvqmXX35Zw4YNc20/d+6cRowYofnz5+vs2bNq27atpk+frssvv9yVJjk5WUOHDtUHH3wgSerataumTp2qUqVKudIcOHBAgwcP1tq1axUdHa1evXpp8uTJioiIcKX59ttvNWTIEG3ZskWlS5fWwIEDNWrUKDkcDo/q7XROkBSVZxrWh7cnT6tCcS1pT46hvx+fYKqLLwXCsbG7jN5oO4FwHIMJMUhCQyCc50C4PzlqW8xvj+VdowiE6jMTAADeUNi4CrCHP5yHwsXQyPvzqampcjonFqhc3lJc9i9FZXd+VvjNUlRnzpzRNddco2nTpuWZbunSpdq8ebMSExOzvTds2DAtWbJECxYs0Pr163X69GklJSUpIyPDlaZXr17asWOHVqxYoRUrVmjHjh3q3bu36/2MjAx16dJFZ86c0fr167VgwQItXrxYw4cPd6VJTU1V+/btlZiYqK1bt2rq1KmaPHmypkyZYsORAAAAAIDseGYCAAAALvKbGRudO3dW586d80zz22+/aciQIfrkk0/UpUsXt/dSUlL01ltvafbs2WrXrp0kac6cOapUqZJWr16tjh07au/evVqxYoU2bdqkJk2aSJJmzJihZs2a6bvvvlPNmjW1cuVK7dmzRwcPHnQ9CLz00kvq27evxo0bp7i4OM2dO1dpaWmaNWuWIiMjVbduXe3bt09TpkzRI488wl8gAQAAALAdz0wAAAAorGBZispvZmzkJzMzU71799ajjz6qOnXqZHt/27ZtunDhgjp06ODalpiYqLp162rDhg2SpI0bN8rpdLo66JLUtGlTOZ1OtzR169Z1++umjh076ty5c9q2bZsrTcuWLRUZGemW5tChQ/r5559zLP+5c+eUmprq9gIAAAAAu/DMBAAAgFARMAMbL7zwgsLDwzV06NAc3z9y5IgiIiIUHx/vtr1ChQo6cuSIK0358uWzfbZ8+fJuaSpUqOD2fnx8vCIiIvJMk/XvrDSXmjBhgpxOp+tVqVKl/KoMAAAAAJbxzAQAAID8hOv/4mzY9Qrp4OF52bZtm/75z39q+/btHk9ZNsa4fSanz9uRxhiT62claeTIkXrkkUdc/05NTVWlSpWUkjJScXFxedbBanBH7fX/wLfeCPjjq2BOgRC81KpAKKNVwVQXFK1AaDuBUEZf4vgULbu/B4Ppe9VuXqmz5X5j6B3vQBXMz0wAAHhDKPYr/ZE/nAerzyLwLwExY+OLL77QsWPHVLlyZYWHhys8PFy//PKLhg8frqpVq0qSEhISdP78eSUnJ7t99tixY66/DEpISNDRo0ez5X/8+HG3NJf+BVFycrIuXLiQZ5pjx45JUra/SsoSGRmpuLg4txcAAAAA2IFnJgAAAFgR7qVXUQuIgY3evXtr586d2rFjh+uVmJioRx99VJ988okkqVGjRipevLhWrVrl+tzhw4e1a9cuNW/eXJLUrFkzpaSkaMuWLa40mzdvVkpKiluaXbt26fDhw640K1euVGRkpBo1auRK8/nnn+v8+fNuaRITE10PDQAAAABQVHhmAgAAQCjxm6WoTp8+rR9++MH17/3792vHjh0qXbq0KleurDJlyrilL168uBISElSzZk1JktPp1D333KPhw4erTJkyKl26tEaMGKF69eqpXbt2kqRatWqpU6dOGjBggN544w1J0n333aekpCRXPh06dFDt2rXVu3dvTZo0SSdOnNCIESM0YMAA118M9erVS88884z69u2rJ598Ut9//73Gjx+v0aNHezztGwAAAACs4JkJAAAAhZUVF8PuPIua3wxsfPXVV2rdurXr31lrq/bp00ezZs2ylMfLL7+s8PBw9ejRQ2fPnlXbtm01a9YshYWFudLMnTtXQ4cOVYcOHSRJXbt21bRp01zvh4WFadmyZRo0aJBatGih6Oho9erVS5MnT3alcTqdWrVqlQYPHqzGjRsrPj5ejzzyiNt6sHYye6ym9P2adMGANb5Dh7+fa0/WePT3MnK9+C9/P4dcB/4r2OoTajh/gYlnJgAAgKJH39k/OUxWBDcUqdTUVDmdTqWkpLB2rJ8J1R+oQpG/n2t+0EVR8PdzyHUQOjiOwY/+LzxFmwEAAEUhv2eRwjyD+FN/Jqss2yWVtDnv05KulYq0nn4zYwMAAAAAAAAAAHhPuOxfOorg4QAAAAAAAAAAAHlgxgZwCavTy4JpyYxQXerF38+Nv5dPsv968STPQBBM9wlf8caxsfu8BEIZA0Ew1QUAEJy8uVQJEGq4nuBPCtve8m7PaYXK2xuCJXg4MzYAAAAAAAAAAEDAYMYGAAAAAAAAAAAhIFz2DwoQYwMAAAAAAAAAACAPzNgAAAAAAAAAACAEhIdJxR0252kkZdibZ34cxhhTtLuEJKWmpsrpdEp6QlJUnml9GTApFIOXBoJAOC+O2hYT7vX/uoQiX7axQGjfgLeF4nUQinUONVn935SUFMXFxfm6OAgAtBkAABDo/Kk/k1WW/WFSnM0DG6lGqpahIq0nMzYAAAAAAAAAAAgB4eFSeBDM2GBgAwAAAAAAAACAEFDcC0tRFffBmlAEDwcAAAAAAAAAAAGDGRs+lpIy0ufrq9nB7nWxrebniWBak9vu4+iNY2P2WEvnqE0Mmdx4ch3YXUZftrFgulaBggrF6yAU6wwA/iK/Ph33aAAAcpf392hakZXDKq8tRVXEmLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIAcXDpOI2T3conmlvflYwYwMAAAAAAAAAAAQMZmwAAAAAAAAAABAKwmT/dAebY3ZY2qUxxgehPZCamiqn06mUlBTbgof7MtAwipa/B70GLsX9CUB+QvG7LdTq7I3+L4IbbQaAP7Ly/R0s390ACs+f+jOuspSV4mwe2EjNlJy/q0jryYwNAAAAAAAAAABCQbjsn7HhgxgbDGwAAAAAAAAAABAKgmRgg+DhAAAAAAAAAAAgYDBjw8eczgmSomzJizUc8+arday9EVuAc+2fPDnXVnjjPPvqOgiENhsIcUActa2lM3u8W46iFAjnxRuC6TvLV/kFglCsMwAAgY7vb6Bo5feMkt81acdvNUF33TNjAwAAAAAAAAAAoGgxYwMAAAAAAAAAgFBQTFKYrwtReMzYAAAAAAAAAAAAAYMZGwAAAAAAAAAAhIJw2T9jw2FzfhYwsOFjKSkjFRcXZ0tevgz4aXeQ00AIuO2NwK6+ChbrDdTFPwVCGX0lEK7VYAoK7kt2BI/7K29cV766VrlH2COYvjeCqS4AAAAIPIUNDk4/NXgxsAEAAAAAAAAAQChgxgYAAAAAAAAAAAgYYSJ4OAAAAAAAAAAAQFFyGGOMrwsRilJTU+V0OiU9ISkqz7TBtBacL9dpdtS2ls7qGvZ2r9Eu+e5c+zI+iy/5KjZMMB1DAKGLe17RCZbv6az+b0pKim0x5hDcaDMAAOSN+BJFozDH2Z/6M66yNJTibJ6xkZohOb9WkdaTGRsAAAAAAAAAACBgEGMDAAAAAAAAAIBQEKagGBVgxgYAAAAAAAAAAAgYQTA2E9hSUkb6fH21vATT+tlWY2cEE5/GNAmitmNVMNUlEFhec76WtfMSiveIQBBM8YwCQbDEcgg2nhzrUPz+BQAACFX06YpG0B3nsP//spMPongzYwMAAAAAAAAAAAQMBjYAAAAAAAAAAAgF4V56eei3337TXXfdpTJlyqhEiRJq0KCBtm3b5lE1AAAAAAAAAABAsCvgQISdkpOT1aJFC7Vu3Voff/yxypcvrx9//FGlSpWynAcDGwAAAAAAAAAAoEi88MILqlSpkmbOnOnaVrVqVY/ycBhjfBDaA6mpqXI6nUpJSfHr4OGAtxHk1B6heBxDsc7Im92Bxmk7/olr3z9ZOy9pkibS/4VlPDMBAICiUNhnybyePfypP+MqS1spzubpDqnpknONdPDgQbd6RkZGKjIyMlv62rVrq2PHjvr111+1bt06XXbZZRo0aJAGDBhgeZ/E2AAAAAAAAAAAAIVSqVIlOZ1O12vChAk5pvvpp5/02muvqUaNGvrkk090//33a+jQoXr33Xct74ulqAAAAAAAAAAACAXFJIXZnGfmxf/kNGMjx+SZmWrcuLHGjx8vSWrYsKF2796t1157TXfffbelXTJjAwAAAAAAAAAAFEpcXJzbK7eBjYoVK6p27dpu22rVqqUDBw5Y3hczNoKIJ+vBse50aPDlOuSBsAa63WX0ZZ3tzjMQzl8wtR1/32+gCNV6hxrOs3+ycl4uruk7sQhKAwAAgFCR33OylX5qyD1jhMv+UQEPo3i3aNFC3333ndu2ffv2qUqVKpbzYMYGAAAAAAAAAAAoEg8//LA2bdqk8ePH64cfftC8efP05ptvavDgwZbzYMYGAAAAAAAAAAChwA9mbFx33XVasmSJRo4cqWeffVbVqlXTK6+8ojvvvNNyHgxsAAAAAAAAAAAQCsLkteDhnkhKSlJSUlKBd8lSVAAAAAAAAAAAIGAwYyOIeBLoxpNA43bvG7mzOzBwMAV2dtS2uN891vO0u4zBFMzaV0GvvbFvb/BVGQPh2IQiq/cn7fXddWD3977ku/Zo9/0OAAAAgP/yxrOMp/sIumcLP1iKyg7M2AAAAAAAAAAAAAGDGRsAAAAAAAAAAISCMNk/KlCAGBuFxYwNAAAAAAAAAAAQMPxmxsbnn3+uSZMmadu2bTp8+LCWLFmim2++WZJ04cIFPf3001q+fLl++uknOZ1OtWvXThMnTlRiYqIrj3PnzmnEiBGaP3++zp49q7Zt22r69Om6/PLLXWmSk5M1dOhQffDBB5Kkrl27aurUqSpVqpQrzYEDBzR48GCtXbtW0dHR6tWrlyZPnqyIiAhXmm+//VZDhgzRli1bVLp0aQ0cOFCjRo2Sw+Hw7oHKg8MLsQWKYh07/J+gW7PPRp7EzghF/t52gin+iDcEQhlDkf3nxf/PXyC0MW/0YezO01f5eYL7TmDimQkAAMCdHf3V/PLIL65iwP1mFfb/X3bnWcT8ZsbGmTNndM0112jatGnZ3vvzzz+1fft2jRo1Stu3b9f777+vffv2qWvXrm7phg0bpiVLlmjBggVav369Tp8+raSkJGVkZLjS9OrVSzt27NCKFSu0YsUK7dixQ71793a9n5GRoS5duujMmTNav369FixYoMWLF2v48OGuNKmpqWrfvr0SExO1detWTZ06VZMnT9aUKVO8cGQAAAAAgGcmAAAAIIvfzNjo3LmzOnfunON7TqdTq1atcts2depUXX/99Tpw4IAqV66slJQUvfXWW5o9e7batWsnSZozZ44qVaqk1atXq2PHjtq7d69WrFihTZs2qUmTJpKkGTNmqFmzZvruu+9Us2ZNrVy5Unv27NHBgwddf9n00ksvqW/fvho3bpzi4uI0d+5cpaWladasWYqMjFTdunW1b98+TZkyRY888gh/gQQAAADAdjwzAQAAoNDCRYwNX0pJSZHD4XBNh962bZsuXLigDh06uNIkJiaqbt262rBhgyRp48aNcjqdrg66JDVt2lROp9MtTd26dd2ma3fs2FHnzp3Ttm3bXGlatmypyMhItzSHDh3Szz//nGN5z507p9TUVLcXAAAAAHgLz0wAAADIJtxLryIWkAMbaWlpeuKJJ9SrVy/FxcVJko4cOaKIiAjFx8e7pa1QoYKOHDniSlO+fPls+ZUvX94tTYUKFdzej4+PV0RERJ5psv6dleZSEyZMkNPpdL0qVarkabUBAAAAwBKemQAAABDM/GYpKqsuXLigO+64Q5mZmZo+fXq+6Y0xbtOcc5rybEcaY0yun5WkkSNH6pFHHnH9OzU11XJH3RvBHYMpYKS/1yW/AEN/5atgQwRYhT+x+1wHQpuwu4zeuKbt3rcvgyFbZfux8eD7QHtD7zoIBHYfR1+eF9pEcAvFZyYAABCc8g3snc9zoJV+b+GfJQOsb81SVEXvwoUL6tGjh/bv369Vq1a5/vJIkhISEnT+/HklJye7febYsWOuvwxKSEjQ0aNHs+V7/PhxtzSX/gVRcnKyLly4kGeaY8eOSVK2v0rKEhkZqbi4OLcXAAAAANiJZyYAAACEgoAZ2MjqoH///fdavXq1ypQp4/Z+o0aNVLx4cbeAeYcPH9auXbvUvHlzSVKzZs2UkpKiLVu2uNJs3rxZKSkpbml27dqlw4cPu9KsXLlSkZGRatSokSvN559/rvPnz7ulSUxMVNWqVW2vOwAAAADkh2cmAAAA5KuYpDCbXz4YZfCbgY3Tp09rx44d2rFjhyRp//792rFjhw4cOKD09HR169ZNX331lebOnauMjAwdOXJER44ccXWUnU6n7rnnHg0fPlxr1qzR119/rbvuukv16tVTu3btJEm1atVSp06dNGDAAG3atEmbNm3SgAEDlJSUpJo1a0qSOnTooNq1a6t37976+uuvtWbNGo0YMUIDBgxw/cVQr169FBkZqb59+2rXrl1asmSJxo8fr0ceeSTXadUAAAAAUBg8MwEAAAAXOUzWQqc+9tlnn6l169bZtvfp00djx45VtWrVcvzcp59+qlatWkm6GCDv0Ucf1bx583T27Fm1bdtW06dPd1uX9cSJExo6dKg++OADSVLXrl01bdo0lSpVypXmwIEDGjRokNauXavo6Gj16tVLkydPVmRkpCvNt99+q8GDB2vLli2Kj4/X/fffr9GjR1vupKempsrpdColJYUp1gGKmA8oqEBoO4FQRquCqS7BJBDOSyCU0Sqr8T28EevJl/uGf6H/W3g8MwEAAHjGynNdYZ/p8t5HmqSJftGfcfWthkhxkfmn9yjvc5Jzmoq0nn4zsBFq6KQHvmD6wQtFKxDaTiCU0apgqkswCYTzEghltIqBDfgD+r/wFG0GAAAUFgMb/yfYBjbsjn8OAAAAAAAAAAD8UbjsHxXIsDk/CxjYAAAAAAAAAAAgFGQF/LY7zyLmN8HDAQAAAAAAAAAA8sOMDR9zOidIisozjdV13qyuBe6NPO1eXzwQ6uKNNdU9qbcVgbDuu1XeWKM9qNbP91H7DoRjSIwG/xQIdQ6EMtr9vSHZX2diZxSeN/pFAAAAQCiw0j/Ot7+9O+888trHxbgWE/MtQ5EKkqWomLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIBWGyf1Qg3eb8LGDGBgAAAAAAAAAACBjM2ECR8uV6875ac9rhwdri3oinEiy8sUa7r9pEILRvX16rwRSXIhDKCP8UCNcBcaGKjlfutRa/V43FGFfW2kOatcwAIEDldy/kuw4A7GfHvTfk7s/eiLHhg1EGZmwAAAAAAAAAAICAwYwNAAAAAAAAAABCQdj/f9mdZxFjxgYAAAAAAAAAAAgYzNjwsZSUkYqLi8szjS/jKdgd88EbMSR8FjsjBOOFeMJX7TYQjk0g8FXMDm/kGQj3HWKa2COY6uKrmEueHBuug6LjjXtoIFwHABBouLcC8DeOfOKleSOeKQJAkMTYYGADAAAAAAAAAIBQECQDGyxFBQAAAAAAAAAAAgYzNgAAAAAAAAAACAXFZH+wbx9Mn2DGBgAAAAAAAAAACBjM2AhRdgfJtBzkNJ+gRd7kqzqHqkA4Pr4KPu3LYxMIZQyEtmOVNwL++oovg1TbnWcwXft2l9GT82x3fXwVjNwb+7abv5dPslbG1NRUOZ0Ti6A0AAAAkEIjOHgg9JX9DjE2AAAAAAAAAAAAihYzNgAAAAAAAAAACAXM2AAAAAAAAAAAAChazNgIAEG1Hv9e+9chtxq3gzX3cKlAWD/fbr4qozf2Gwhxc3x1vIMptoAnfHWteqV9W/1us3nNXI++f/08VkkwtW0AAAAA3lPYmJIB9+wR9v9fdudZxBjYAAAAAAAAAAAgFLAUFQAAAAAAAAAAQNFixgYAAAAAAAAAAKEgTPaPCvhgKSpmbAAAAAAAAAAAgIDBjI0AUNgANjkJpgDCdgdOBS5lOfCtxbZoLAYFBgrKGwGg7d53MH23eYMvg4LbzVdB3QEAAADAjmfPoHtWIcYGAAAAAAAAAABA0WLGBgAAAAAAAAAAoSBM9sfEIMYGAAAAAAAAAABA7pixEQACYb1y2/e92/radf4er8CTYxNMa/b5at1+n6pjsc5eqEtIrmFfK4jq4kPBFHPJ368Db3wf+LLOvuyf2L3fQDjeAADAHvl9n/M9DqsK25as9C1pjzaw8tvB3sI9s+R9LtMKlbdXBEmMDQY2AAAAAAAAAAAIBUEysMFSVAAAAAAAAAAAIGAwYwMAAAAAAAAAgFBQTPYH+/bB9AlmbAAAAAAAAAAAgIDBjI0A4LAYHNuXgVjt5o2A4L4K+OlJfsEUlNRnwXk9aDtmj7379uV5sXvfDovHxuq16qt7yUW+Oy921zsQrn2772O+bTv2CoTz5w2+CswdTN+/3giEbve+Q7V9AwACD99ZsEth2xJt0ZrCBmm38tuPo3aInQtibAAAAAAAAAAAABQtZmwAAAAAAAAAABAKmLEBAAAAAAAAAABQtJixEQDsjgPg0b59tE6zN/hqjW9PBEIZ/Z0vrxdfsn1tei/EuQlFtt9DrZ6Xvfbfa+2Oa+CN+5ivvmMC4bvNKm/UxRsxMezm77EzQvHYAAAQygobUwCAZwr7W1Je12RqaqqczomF24Hdwv7/y+48ixgDGwAAAAAAAAAAhAKWogIAAAAAAAAAAChazNgAAAAAAAAAACAUhMn+UQEfLEXFjA0AAAAAAAAAABAwmLGBIhUIAa58GYg1EAKs2s3uwKneON4oPF8e60AIzmuV9YBmvgu47cvj7atzGAj3p2C6DoJJIBxv2g4AAEWP71Xg/+R3PeTXX+V6ygExNgAAAAAAAAAAAIoWMzYAAAAAAAAAAAgFYbI/JgYxNgAAAAAAAAAAAHLnMMYYXxciFKWmpsrpdColJUVxcXG+Lo7f8ek65LUt7tfyWvdA8PLl9RII675bvpfVshhfh/tOkfJlGwvF7yK74714wt/X3fXGsfFFnen/wlO0GQAA4A8xNApTBn/qz7jKslWKK2lz3qcl53Uq0nqyFBUAAAAAAAAAAKEgTPaPCrAUFQAAAAAAAAAAQO6YsQEAAAAAAAAAQCgIkuDhfjOw8fnnn2vSpEnatm2bDh8+rCVLlujmm292vW+M0TPPPKM333xTycnJatKkiV599VXVqVPHlebcuXMaMWKE5s+fr7Nnz6pt27aaPn26Lr/8clea5ORkDR06VB988IEkqWvXrpo6dapKlSrlSnPgwAENHjxYa9euVXR0tHr16qXJkycrIiLClebbb7/VkCFDtGXLFpUuXVoDBw7UqFGj5HA4vHeQ/FggrHVvldX1ygNhvetgOi/eYPc59NX582TfdrcJb1wvlvfto/g6kvV6231epNC8Vn3Fp/fGvaHXJuy/XvyfN76ng+n4IDuemQAACB5W+m2h+nvNX/nDMcivDHmfyzR7CxMkxo4dq2eecT9uFSpU0JEjRyzn4TdLUZ05c0bXXHONpk2bluP7L774oqZMmaJp06Zp69atSkhIUPv27XXq1ClXmmHDhmnJkiVasGCB1q9fr9OnTyspKUkZGRmuNL169dKOHTu0YsUKrVixQjt27FDv3r1d72dkZKhLly46c+aM1q9frwULFmjx4sUaPny4K01qaqrat2+vxMREbd26VVOnTtXkyZM1ZcoULxwZAAAAAOCZCQAAADYI99LLQ3Xq1NHhw4ddr2+//dbjaviFzp07q3Pnzjm+Z4zRK6+8oqeeekq33nqrJOmdd95RhQoVNG/ePA0cOFApKSl66623NHv2bLVr106SNGfOHFWqVEmrV69Wx44dtXfvXq1YsUKbNm1SkyZNJEkzZsxQs2bN9N1336lmzZpauXKl9uzZo4MHDyoxMVGS9NJLL6lv374aN26c4uLiNHfuXKWlpWnWrFmKjIxU3bp1tW/fPk2ZMkWPPPJIjn+BdO7cOZ07d87179TUVFuPHwAAAIDgxjMTAAAA/Nml/bfIyEhFRkbmmDY8PFwJCQkF3pffzNjIy/79+3XkyBF16NDBtS0yMlItW7bUhg0bJEnbtm3ThQsX3NIkJiaqbt26rjQbN26U0+l0ddAlqWnTpnI6nW5p6tat6+qgS1LHjh117tw5bdu2zZWmZcuWbielY8eOOnTokH7++ecc6zBhwgQ5nU7Xq1KlSoU8KgAAAABwEc9MAAAAsMSLMzYqVark1p+bMGFCrsX4/vvvlZiYqGrVqumOO+7QTz/95FE1AmJgI2ttrQoVKrht/+u6W0eOHFFERITi4+PzTFO+fPls+ZcvX94tzaX7iY+PV0RERJ5psv6d2zpgI0eOVEpKiut18ODB/CsOAAAAABbwzAQAAABfO3jwoFt/buTIkTmma9Kkid5991198sknmjFjho4cOaLmzZvrjz/+sLwvv1mKyopLpysbY/INPHdpmpzS25HGGJPrZ6W8p93YxRvBeYMlv0Dh78Gsg42/B6r1RrBYn7WJWvbv1/Y6Ww7WLNkdsNlXwd8DgUfXn8V2ZnfQe28c72A6h3YLpmPjy7bjqG0xP4vXC/wHz0wAAAQGf+jX5vfMUxRl9HYZ7AjSXpgypqamyumcmG8ZilQBY2Lkm6ekuLg4xcXF5Zv8r8ur1qtXT82aNdMVV1yhd955R4888oilXQbEjI2stbYu/cueY8eOuf7qJyEhQefPn1dycnKeaY4ePZot/+PHj7uluXQ/ycnJunDhQp5pjh07Jin7X0gBAAAAgLfxzAQAAAArTDHJhNn8KuQoQ0xMjOrVq6fvv//e8mcCYmCjWrVqSkhI0KpVq1zbzp8/r3Xr1ql58+aSpEaNGql48eJuaQ4fPqxdu3a50jRr1kwpKSnasmWLK83mzZuVkpLilmbXrl06fPiwK83KlSsVGRmpRo0audJ8/vnnOn/+vFuaxMREVa1a1f4DAAAAAAB54JkJAAAAgercuXPau3evKlasaPkzfjOwcfr0ae3YsUM7duyQdDH43Y4dO3TgwAE5HA4NGzZM48eP15IlS7Rr1y717dtXJUqUUK9evSRJTqdT99xzj4YPH641a9bo66+/1l133aV69eqpXbt2kqRatWqpU6dOGjBggDZt2qRNmzZpwIABSkpKUs2aNSVJHTp0UO3atdW7d299/fXXWrNmjUaMGKEBAwa4ptH06tVLkZGR6tu3r3bt2qUlS5Zo/PjxeuSRR/Kd5g0AAAAABcEzEwAAAAorI9w7L0+MGDFC69at0/79+7V582Z169ZNqamp6tOnj+U8/CbGxldffaXWrVu7/p21llafPn00a9YsPfbYYzp79qwGDRqk5ORkNWnSRCtXrlRsbKzrMy+//LLCw8PVo0cPnT17Vm3bttWsWbMUFhbmSjN37lwNHTpUHTp0kCR17dpV06ZNc70fFhamZcuWadCgQWrRooWio6PVq1cvTZ482ZXG6XRq1apVGjx4sBo3bqz4+Hg98sgjltf/+ivn/ySVzDuNsbgGsjcEU8wHX60l7Q9rJubHGzEkgqnegVAXX5UxmGIQBMJ5DkWBcF6C6V4STLwReywgYi5Z7TdajCtk9fdn2nfRCNVnJgAA4L8KGyPD2/1IO/Knr2u/X3/9VT179tTvv/+ucuXKqWnTptq0aZOqVKliOQ+HyYrghiJ1MXCMU9qcIpXMO6CK1YGNQHiAD6aBjWD6IYuBjbwFQl18hWNYtDjeRSuYvgNDUSD0i6zy5cCGVVbKmNX/TUlJsRRQEKDNAADgXXYE7vaHAOT+zJ/6M1llOXZYsrsoqalS+Yoq0nr6zVJUAAAAAAAAAAAA+fGbpagAAAAAAAAAAID3pIc5lB5mb8yz9DAjqWgXhmLGBgAAAAAAAAAACBjM2PCxlKvtW9PMo/WXfbROu+W1qWtZ36/VmBihGBTcKm+0Hdvzs9gmPDnPwXQO7eaz8yz717oPhPMcTHUJBIFwvO0uYyDU2Spv1MXfj0+oxsICACAnrOcP2IfA2vbI+76UVmTlsCojPFwZ4fbO2MgIN5Iu2JpnfhjYAAAAAAAAAAAgBGSEhSnD5qWoMsKKfmCDpagAAAAAAAAAAEDAYMYGAAAAAAAAAAAhIFNhypC9MzYyizhwuCQ5jDFFv1coNTVVTqdTKSkpissnyIajtrU8PYkt4I21mq0IhHX37D42wbRGeyCwer1I9sddCSa+Wt/fkzztFkxl5L5TtEKxzpL/x+vy6XXghb5bMPCk/wtItBkA/slKXyTY+n05IdZJcLDjNzBvn+v8+tb+3qf2p/5MVll+SolRbJy9AxunUo2qO88UaT2ZsQEAAAAAAAAAQAhIV5jSbZ6xke6DGRvE2AAAAAAAAAAAAAGDGRsAAAAAAAAAAISADIUpw+b5DhnKtDU/K5ixAQAAAAAAAAAAAgYzNnzM6ZwgKSrPND4NuFTL4r73+iYYueRBoCOLdQmmAFfBVBfLPGqLPgoAHQhBZXcHT9txWDyOnlwvvgqu7o1r2u72GEyBy32Vnyd5+pKvykgbAwAAvsT38kUch+AQCOcxv2dROwLZFzaIeiAcx7/yzowNe2N2WMHABgAAAAAAAAAAISBYBjZYigoAAAAAAAAAAAQMZmwAAAAAAAAAABACgmXGBgMbPpaSMlJxcXG25OXLtbsdFtuuL9eStjtegTfq4qvjE0zrvvt7+SR5EAfEC/EUgmh9eJ/eT2zO05fH26exXGzm79e/v5cP+fPVtQ/Av9mxtjcAAMHK29+T+X2+sPEzCr+PtELvHzljYAMAAAAAAAAAgBCQoTClB8GMDWJsAAAAAAAAAACAgMGMDQAAAAAAAAAAQkCGwr0QYyPT1vysYMYGAAAAAAAAAAAIGMzYCAA+Dc5b21o6y4FvLQapDYRg1oEQBNCXbccqO4I4FZSvAjb78nhbrrPd174XrumAuAYtHkerAeW9cby12+JxrOP/9xO72V0Xy+1BwRXU3Sqf9nds/i6y/V7rw/YQCH0JwNdo/wCCkbcDPocCjuFFvq6nlf3nd67y+z0zr32kpqbK6ZyYbxmKUoaKKUNhNudZ9JixAQAAAAAAAAAAAgYzNgAAAAAAAAAACAEZCguKGRsMbAAAAAAAAAAAEALSFaZ0mwc20m3NzRqHMcb4YL8h7+L6ak6lpKQoLi6uyPfvq7WkfSkU6+wNvlprOxDWXvdVzA5v5WlpvwGwPrw3cD/JXTC1CWILwNu8EWfKl99F+fF1/xeBhzYDAEDgK2yskUCPVeJP/ZmssqxNqaWScfYObJxOzVAb594irSczNgAAAAAAAAAACAGZCrd9KapMOWzNzwqChwMAAAAAAAAAgIDBjA0AAAAAAAAAAEIAwcMR2Gr5Jv6BVd5YH8/uNacDgeW6eNAefLV2oS/XTLR7395oi/6+pmSwsft4j9ZTltI9q3GW0nmj7dgea8ZiLA7t9d114M+xCmAvX51DX8aFsrsvCAAAABREYX+Hs+N3PJ7VAhMDGwAAAAAAAAAAhIBgmbFBjA0AAAAAAAAAABAwmLEBAAAAAAAAAEAIyFAxL8zYMLbmZwUDGwAAAAAAAAAAhIB0hSnd5oGNdAY2kBNvBLQ0ewpamtz4Lhh5KAb4sRp01zsB031zrkeZ85bSWQ2u7Anbgyb7MNCw7fu2GNjZ4bCWnSe80759te8IS6metdhP8KTteOP4WGH9e8j/7/HB9D3ky+/fQAjCbndgbqvXAf0ioHDyu4a4bgAABVEU3y+FfV7zh++4/MrgD9/T3n0uTvNi3qGNgQ0AAAAAAAAAAEJAhsKVYfOwAMHDAQAAAAAAAAAA8sCMDQAAAAAAAAAAQkCmwmwPHp7pgxgbDmNM0e8VSk1NldPpVEpKiuLi4nxdnFz5KraARyyuY201FkAgrN3ty1gOtpfRarwQ2+PCWBcI677bjTrnLRRjCwQCXx3HQIjjYvc9WfLtfdkKb1zTdp/rYOpzWBEo/V/4D9oM4Dl/WKsewYG2BKvye4bw9XODr+JK/p80SRP9oj+T1bd6L6WlSsTZO9/hz9R09XCuK9J6MmMDAAAAAAAAAIAQkOGFGRsZPpixQYwNAAAAAAAAAAAQMJixAQAAAAAAAABACEhXMaXbPGMjXZm25mcFAxsAAAAAAAAAAISADIUrw+ZhAV8sRcXAho85nRMkReWZxqcBmXbbu2/fBpfyUSBWHwYvDaYy+lIg1Nnfj3cwBVf2hkAIIGyVL88LQd1tsNeT9uDf9fbkvIRi4HkA1hFAF4Ekv/ZIe4ZVtAVYlu8zhHfbUlHc1woTIP1iwO6JhS4DsmNgAwAAAAAAAACAEOCd4OFFvxQVwcMBAAAAAAAAAEDAYMYGAAAAAAAAAAAhIFhmbDCw4WMpKSMVFxeXZ5r81nFz8WhdbHs5fLZn66yuqeeNuBR2s3utS2+snRkI63FaPoe17G07gcCXbcxXMR88YXfbsVte63tmY7V9W8zT7mPjjRhAvsrPGwIh1kwgXNPeaI92CoS2CAQzrkEEE9ozALt5+75S2Bgalvrw+T0P/Cf/LFD0GNgAAAAAAAAAACAEZChM6UEwY4MYGwAAAAAAAAAAIGAEzMBGenq6nn76aVWrVk3R0dGqXr26nn32WWVm/t9okDFGY8eOVWJioqKjo9WqVSvt3r3bLZ9z587pwQcfVNmyZRUTE6OuXbvq119/dUuTnJys3r17y+l0yul0qnfv3jp58qRbmgMHDuimm25STEyMypYtq6FDh+r8+fNeqz8AAAAA5IVnJgAAAOQnQ+FeeRW1gBnYeOGFF/T6669r2rRp2rt3r1588UVNmjRJU6dOdaV58cUXNWXKFE2bNk1bt25VQkKC2rdvr1OnTrnSDBs2TEuWLNGCBQu0fv16nT59WklJScrIyHCl6dWrl3bs2KEVK1ZoxYoV2rFjh3r37u16PyMjQ126dNGZM2e0fv16LViwQIsXL9bw4cOL5mAAAAAAwCV4ZgIAAEB+MlTMFUDcvlfRDzM4jDGmyPdaAElJSapQoYLeeust17bbbrtNJUqU0OzZs2WMUWJiooYNG6bHH39c0sW/NKpQoYJeeOEFDRw4UCkpKSpXrpxmz56t22+/XZJ06NAhVapUScuXL1fHjh21d+9e1a5dW5s2bVKTJk0kSZs2bVKzZs30v//9TzVr1tTHH3+spKQkHTx4UImJiZKkBQsWqG/fvjp27Fi+wcAlKTU1VU6nUykpKX4dPNxXQUm9ESzW9kDRngTnRa58GdDWbnZfqwFRZy8E0rW73g6L16qxev68wKeBnS3W21f3PF8Fa5aC6xr0ZV0CoYx2s/u6Coh7raUypkmaaKn/i4IJ5WemUFfYwKoAYDfuS7Cq0MHB8+l7W+lze7O9+lN/Jqss/0y5XdFxEbbmfTb1vB5yLizSegbMjI0bbrhBa9as0b59+yRJ33zzjdavX6+///3vkqT9+/fryJEj6tChg+szkZGRatmypTZs2CBJ2rZtmy5cuOCWJjExUXXr1nWl2bhxo5xOp6uDLklNmzaV0+l0S1O3bl1XB12SOnbsqHPnzmnbtm05lv/cuXNKTU11ewEAAACAXXhmAgAAQH7sn61x8VXUin7xqwJ6/PHHlZKSoquvvlphYWHKyMjQuHHj1LNnT0nSkSNHJEkVKlRw+1yFChX0yy+/uNJEREQoPj4+W5qszx85ckTly5fPtv/y5cu7pbl0P/Hx8YqIiHCludSECRP0zDO++6tTAAAAAMGNZyYAAACEioCZsbFw4ULNmTNH8+bN0/bt2/XOO+9o8uTJeuedd9zSORwOt38bY7Jtu9SlaXJKX5A0fzVy5EilpKS4XgcPHsyzTAAAAADgCZ6ZAAAAkB9mbBSxRx99VE888YTuuOMOSVK9evX0yy+/aMKECerTp48SEhIkXfzLoIoVK7o+d+zYMddfCiUkJOj8+fNKTk52+wukY8eOqXnz5q40R48ezbb/48ePu+WzefNmt/eTk5N14cKFbH+VlCUyMlKRkZHZtjudEyRFWT0MebMYG0Lywlrpu21eG9Hu/OSFtaS9sC59KK5DHkx1sRznxoNr1Vcst29vxHyweS35QCij1TZhd6wgyf41/u0+3qEaG8KXsUWsCoQy+rtg+t63UsaLa/pOLILShK5gfWZC/gLhPuFtrOcP+BeuOWTJNwZGfjE0iuD+Xtg4Hnn/HpTmcXlgTcDM2Pjzzz9VrJh7ccPCwpSZmSlJqlatmhISErRq1SrX++fPn9e6detcHfBGjRqpePHibmkOHz6sXbt2udI0a9ZMKSkp2rJliyvN5s2blZKS4pZm165dOnz4sCvNypUrFRkZqUaNGtlccwAAAADIH89MAAAAyE+GwpRu84sZG3m46aabNG7cOFWuXFl16tTR119/rSlTpqh///6SLk5zHjZsmMaPH68aNWqoRo0aGj9+vEqUKKFevXpJkpxOp+655x4NHz5cZcqUUenSpTVixAjVq1dP7dq1kyTVqlVLnTp10oABA/TGG29Iku677z4lJSWpZs2akqQOHTqodu3a6t27tyZNmqQTJ05oxIgRGjBggM+j2wMAAAAITTwzAQAAIFQEzMDG1KlTNWrUKA0aNEjHjh1TYmKiBg4cqNGjR7vSPPbYYzp79qwGDRqk5ORkNWnSRCtXrlRsbKwrzcsvv6zw8HD16NFDZ8+eVdu2bTVr1iyFhf3fqNLcuXM1dOhQdejQQZLUtWtXTZs2zfV+WFiYli1bpkGDBqlFixaKjo5Wr169NHny5CI4EgAAAACQHc9MAAAAyE+GwpVh87BAhjJtzc+KgBnYiI2N1SuvvKJXXnkl1zQOh0Njx47V2LFjc00TFRWlqVOnaurUqbmmKV26tObMmZNneSpXrqyPPvoov2IDAAAAQJHgmQkAAAD58Uawb5aiCkEpKSPznYptNYivJyznaTUYslVWA/rU8WC/FvO0O0DnqD1PWdxvhKV0vuRJG7M78Lw3grD7vf9YS+ZJYF7bAzb78Hj7KsicNwIh210XR20vBKn2YaB4K7xxHQRC0Gu76xIQ7TsAAmn7qu348vsAAAIF9z8gtFjpH3Ff8A+F/X2hKM6jI58y5lcHh8O+ssA6BjYAAAAAAAAAAAgBGSrmhRkbxWzNz4qi3yMAAAAAAAAAAEABFWrGxsmTJ/XJJ5/ot99+k8PhUMWKFdWxY0fFx8fbVT4AAAAACGg8NwEAAMBfpCtM6TbP2LA7PyscxhhTkA++9dZbeuGFF9SlSxdddtllkqRff/1VH3/8sR577DHdc889thY02KSmpsrpdEp6QlKUr4uTq0BYP9vuGA12r5/tUV1sPj5eOd4BUEYUnfzWoXTxJG6OVbuttQnjhThFvuLL68X2az8A4uv4qs6S/d9Zvow/EorfB8HUl7BTVv83JSUl3xhzwYTnpoKz+swUCPcFAAAuRZwQe+T7u0S3/PPIP4ZG3ucqr/PkT33grLI8lTJEUXGRtuadlnpO45zTClzPCRMm6Mknn9RDDz2kV155xdJnCjxj48UXX9T27dtVsmRJt+3PPfecGjVqRAcdAAAAQMjjuQkAAAD+JEPhyrA59HaGMgr82a1bt+rNN99U/fr1PfpcgWNsOBwOnT59Otv206dPy0EoeAAAAADguQkAAADIxenTp3XnnXdqxowZHi/TWuChmcmTJ6tly5aqW7eu25Tq3bt366WXXipotgAAAAAQNHhuAgAAgD/JVJgybI6Jkfn/80tNTXXbHhkZqcjI3Je9Gjx4sLp06aJ27drp+eef92iflgc2evfurTfeeEMlSpSQJCUlJalz587asmWLDh06JGOMLrvsMl1//fUKCyv6YCGQRpnzltM+q3GW0tm9TnMgrA0YiuuQe1SXWvavJW8nT+pi+/GxeGx8Fe9F8sI16IXYGVbLOFpPWczR2v3OE75aw94b17Sv7t+WrwMvxKWwnJ/d18te6+fFUdv/v1d91b6t8uU91Jd1CYS+VrDjucl+KSkjfb4mNQAg9BQmroIVodJv8/pxzOeZ0WHpOSw0zkWWDC8MbGTlV6lSJbftY8aM0dixY3P8zIIFC7R9+3Zt3bq1QPu0PLAxb948vfTSS64O+sCBAzVx4kQ1a9ZMkmSMUXp6Op1zAAAAACGL5yYAAACEqoMHD7r9QUpuszUOHjyohx56SCtXrlRUVFSB9mU5xoYxxu3f8+fPV3Jysuvfx44dU2xsbIEKAQAAAADBgOcmAAAA+LMMFXPN2rDvdXGYIS4uzu2V28DGtm3bdOzYMTVq1Ejh4eEKDw/XunXr9K9//Uvh4eHKyMg/GHmBY2xc2mGXpPPnrS+FBAAAAADBjucmAAAAwF3btm317bffum3r16+frr76aj3++OOWZjcXeGAjJw6Hw87sAAAAACDo8NwEAAAAX0lXmMJsjrGR7mF+sbGxqlu3rtu2mJgYlSlTJtv23Hg0sDFv3jzdeOONqlevniQ65EXFG8GEfBZ8erfFunSzlkySB8FY/TvIqS95UherAZufc0TYvm9f5OdJntaDu/ouKLDtgdB9eB08azEouNXg03YHnvaE3WX05LzYHWDZ8vViNSi4JwG3LXZLAuL+bbHeloOM+7DtBMTxtpkv77WcF//Ac5O9nM4JknJfe5n2DAD283bA50AQCnUsCoU9joVti3acR9qCf7I8sHHDDTdozJgxOnXqlIoXL6709HQ9+eSTuuGGG3TttdeqXLly3iwnAAAAAPg9npsAAADgzzIUrgx7F3KyJb/PPvvMo/SW9/j5559Lkr7//ntt27ZN27dv17Zt2zRq1CidPHmSv0ICAAAAEPJ4bgIAAAC8z+OhlBo1aqhGjRq64447XNv279+vr776Sl9//bWthQMAAACAQMRzEwAAAPxRpsKUYXOMjUyb87PCYYwxRb5XKDU1VU6nUykpKYqLi8szrcPquu8exKWwuta23Wuve4XV9al9tH6+5XXkZf95sT82hP15eqOMVtm9RmIgxHLwFY/On59f077ky7Xzbb+mvXC92B23w1f3Oykw7ifEcsidr2LX+Hrf+fGk/wtItBkEn2CIWRAMdUBwsNLn8XVsh2Bg5bnE288khT0PlvrH+f0Okc8zZF5l8Kf+TFZZ7k0Zp4i43OOXFcT51DT92/lUkdazWJHsBQAAAAAAAAAAwAb2RgkBAAAAAAAAAAB+KV1hKmbz0lHpPliKihkbAAAAAAAAAAAgYDBjAwAAAAAAAACAEJChMGXYPCxgdzByKwge7iNZwVqkJyTlHazFK0FgbQ6wapUvA9paFQjBrH0alNRq2/mPxX17EFzdbv4cYFXyUlB3mwMS+zJosi/vT8F0HdgtmAJKe+M+b5Wv7iceXQcW7xOB0L4tn+v8ggp6yPK91oNj6MuA8vnxp8CJCAy0GQAAgp+3n7usPOPkW4Z8ngPy6oP7U38mqyy9UyYpIi7a1rzPp57VbOejRVpPZmwAAAAAAAAAABACLs7YsHeGhS9mbBBjAwAAAAAAAAAABAxmbAAAAAAAAAAAEAKCZcYGAxsBwCvrlVtcm97udfut8sr6ervtjV8RCPFCvMHutbt9uh6/xTahOvaeF5/W2eK173BYzM/m9eYl2R47wyqr8QIkWb+H1rY5bo7F4+3JdRqKMTGs1iUg6mz1+9fqd2AAxHLwSpu1ei+z+f5k+V7rEf+PzwIgNOV3P/H2fcTK/Yx7GQB4rrD3d3+49xa2DHkfg7RC5e0NmV4Y2MhkKSoAAAAAAAAAAIDcMWMDAAAAAAAAAIAQkK4wOWyeYZHOjA0AAAAAAAAAAIDcMWMDAAAAAAAAAIAQkKEwFbN5WIDg4SEoJWWk4uLifF2MwrMakNhiIF1PgvbYHbjccsB0LwTT9IeASfnx9+C8vgzAbve+7W7bnvDpebE5iK9Xriub8/Tl8bb7nmeVL69Vq3wZ1N1uxur9xIdl9OU91Oq5ceyxeK3W8d39yd+/pwGELl/fT3y9fwD+p7BBr4tCYctYFHX0h+Pka3kdg9TUVDmdE4uwNKGDgQ0AAAAAAAAAAELAxRkb9s6w8MWMDWJsAAAAAAAAAACAgMGMDQAAAAAAAAAAQkCwzNhgYCOIjNZTHqSO8Fo58mRzLA7Jg3WxLa617bC8Z9+xe913q+dF8mA9frtjn1hd991qnSWP6m2F7fFZPFjr3vY2YTcvnBe726Iv4x/YzaM4RTbHNfBlnCJfxe2w+3vII1a/Vy1+uXkjxpXV42N7vBcP7vF2Hx+rfQlvXAfazRrHAFBQgbDePiDRVu0SCMepsGUsbAwOK8/yvn6WtuN6yO/Zxtd1tFu6wuSweSAinaWoAAAAAAAAAAAAcseMDQAAAAAAAAAAQkCmwpVh87BApg+GGZixAQAAAAAAAAAAAgYzNgAAAAAAAAAACAEZXoixQfDwEOR0TpAUZUtexoyznPY5+SbAqmVeCPhpNXix5SCwPowybnuAVQ8CO9sd6NR6sF97z9/FfVtPay0/e68rT/KzO+jZaD1lKd2zsn7fscqX7dtXvBJA2GaBEFjPqoA43pbvZfaW0eHBPdTuAHq+CmQv2R/Y3e6248vvAyAYEGQXVtEWAASawn7HBcV9z45n/nx/hyxMEPY0j4sDaxjYAAAAAAAAAAAgBGSomBdmbBR9xAtibAAAAAAAAAAAgIDBjA0AAAAAAAAAAEJAusIkm2dspBNjA4Xh0frQFtef8108BS+wHLcjeNbF9sZaiY7avll/0Wr7tnvNd28IhOvFauwMX8YqCIS1QH11D/Xk2PjqOHplv1bXVvUgjpOdfHl/8kbbsRqPw1i9f1u9Dizm543vX1/dl73yfR4AsWYAu9COiTMCBBuuWWTxdluw0mfMrwze/g4qiueswtQhNTVVTudEu4sEMbABAAAAAAAAAEBIyFC4HDYPC2T4YJiBgQ0AAAAAAAAAAEJApsKUYfPSUZk+WIqK4OEAAAAAAAAAACBgMGMjmHiyZvhuq+vX2bzmtMX1zz1ZH8/qGt/qZm9+3liPOxBimvgqFoDV/Bx7fLfWqC/jJPhsrXSL9xKvrHVv9dqv47vrwFf79WV8FruPjXfiJBS0NLnlFzz3Wk9YjZ1h9/GxXhf/j+3jjbZD7AwAOeGaBwILcXHgL6y0tcL2ab3d3j2KSVzAMuRdh7TCF8BmGV4IHm73DBArmLEBAAAAAAAAAAACBjM2AAAAAAAAAAAIAczY8IHffvtNd911l8qUKaMSJUqoQYMG2rZtm+t9Y4zGjh2rxMRERUdHq1WrVtq9e7dbHufOndODDz6osmXLKiYmRl27dtWvv/7qliY5OVm9e/eW0+mU0+lU7969dfLkSbc0Bw4c0E033aSYmBiVLVtWQ4cO1fnz571WdwAAAADID89MAAAACAUBM7CRnJysFi1aqHjx4vr444+1Z88evfTSSypVqpQrzYsvvqgpU6Zo2rRp2rp1qxISEtS+fXudOnXKlWbYsGFasmSJFixYoPXr1+v06dNKSkpSRkaGK02vXr20Y8cOrVixQitWrNCOHTvUu3dv1/sZGRnq0qWLzpw5o/Xr12vBggVavHixhg8fXiTHAgAAAAAuxTMTAAAA8pOuYkpXmM2voh9mcBhjTJHvtQCeeOIJffnll/riiy9yfN8Yo8TERA0bNkyPP/64pIt/aVShQgW98MILGjhwoFJSUlSuXDnNnj1bt99+uyTp0KFDqlSpkpYvX66OHTtq7969ql27tjZt2qQmTZpIkjZt2qRmzZrpf//7n2rWrKmPP/5YSUlJOnjwoBITEyVJCxYsUN++fXXs2DHFxcXlW5/U1FQ5nU7pqhQpLJ/0/7F4kDwJkGtzEG/bg19aLJ8k7xwfG3kjqJfvArFaD9g8qvZTltI9q3HW9msx2JNHged9FGDZ9uDYsj+IbzAFqLd7v5L97dH28+JBcDRfldEbvHGfsLRfX14HFuti9R7hCcv13m2xTXSzuOO9Nu9XXgiE7st+ltU+lNXjaKs0SROVkpJiqb8MzwXrM1Nh20xh79ME6QWA4OTrIO1Wvp98/R1k6Ts0n/6n3c9fnrL0nJhP37jwwcP9ow+c1beqlbJWYXElbc07I/W09jrbFGk9A2bGxgcffKDGjRure/fuKl++vBo2bKgZM2a43t+/f7+OHDmiDh06uLZFRkaqZcuW2rBhgyRp27ZtunDhgluaxMRE1a1b15Vm48aNcjqdrg66JDVt2lROp9MtTd26dV0ddEnq2LGjzp075zbN+6/OnTun1NRUtxcAAAAA2IVnJgAAAOQnQ+FeeRW1gBnY+Omnn/Taa6+pRo0a+uSTT3T//fdr6NChevfddyVJR44ckSRVqFDB7XMVKlRwvXfkyBFFREQoPj4+zzTly5fPtv/y5cu7pbl0P/Hx8YqIiHCludSECRNc6886nU5VqlTJ00MAAAAAALnimQkAAAD5yVCYV15FLWAGNjIzM3Xttddq/PjxatiwoQYOHKgBAwbotddec0vncDjc/m2MybbtUpemySl9QdL81ciRI5WSkuJ6HTx4MM8yAQAAAIAneGYCAABAqCj6OSIFVLFiRdWu7b4oWq1atbR48WJJUkJCgqSLfxlUsWJFV5pjx465/lIoISFB58+fV3JysttfIB07dkzNmzd3pTl69Gi2/R8/ftwtn82bN7u9n5ycrAsXLmT7q6QskZGRioyMzP7GvgmSovKqulQn77ddPIlLYXldZYt5Wl3H2mqcC6txMzzgq3X7PcnPahm9sc6+ZRbP4bPGWuwMu3lUZ7vXQLf7eHsSF6bjWIsJraWzuy4+XRfUg3X2rfLVGqHeiQtj733Hbh61Rbu/2ywKhFhKDl/GXbB6L7N6T/bh/cTXaxxbYf3+VPR1ubim78Qi328oCdpnpkIKhGsXABB6gub7Kd9niMLVsyjioxb2XOT1eX/sA2cqTLJ5hkUmMzZy16JFC3333Xdu2/bt26cqVapIkqpVq6aEhAStWrXK9f758+e1bt06Vwe8UaNGKl68uFuaw4cPa9euXa40zZo1U0pKirZs2eJKs3nzZqWkpLil2bVrlw4fPuxKs3LlSkVGRqpRo0Y21xwAAAAA8sczEwAAAEJFwMzYePjhh9W8eXONHz9ePXr00JYtW/Tmm2/qzTfflHRxmvOwYcM0fvx41ahRQzVq1ND48eNVokQJ9erVS5LkdDp1zz33aPjw4SpTpoxKly6tESNGqF69emrXrp2ki3/R1KlTJw0YMEBvvPGGJOm+++5TUlKSatasKUnq0KGDateurd69e2vSpEk6ceKERowYoQEDBvg8uj0AAACA0MQzEwAAAPKTrjAVC4IZGwEzsHHddddpyZIlGjlypJ599llVq1ZNr7zyiu68805Xmscee0xnz57VoEGDlJycrCZNmmjlypWKjY11pXn55ZcVHh6uHj166OzZs2rbtq1mzZqlsLD/O/hz587V0KFD1aFDB0lS165dNW3aNNf7YWFhWrZsmQYNGqQWLVooOjpavXr10uTJk4vgSAAAAABAdjwzAQAAIFQEzMCGJCUlJSkpKSnX9x0Oh8aOHauxY8fmmiYqKkpTp07V1KlTc01TunRpzZkzJ8+yVK5cWR999FG+ZQYAAACAosIzEwAAAPKSoTAZm4cFmLGBHI0y5y2le84LwXTsDtBjtS7PepCn1TJaDpxqc0Bpb7B8XjwJKG+VzYGY7W5jngR8clgNCm53EN/aXgg0fMBYS1jLWjJfBp+1erytnmvL9whLqbyzb9v3a3cgew/ytNp2LJfRg2DWPgtwbvV6sRpE2wN219nhyYVgM8ttx+Z7RCAIproAAAD4i2DoYxX2mTO/Y2DlGBW2DPl+Pp/foUbVfirP95/VuMKXIR/B0JYCEQMbAAAAAAAAAACEgIszNoixAQAAAAAA8P/au/8oq6r6/+OvC/MLR+YG8hl+CJomIgNKiEIo+SN+mkosMyv98BG/WpopEhGpBFxmUgwD/ajpx/gY2keNVhiFWAhZoIihjrBShrDCAgIkFWYAdX5xvn8gN4eBOe8zd59775n7fKw1a+nMnn32OWefc/fmzNkvAAAQAW3lwUa7tG8RAAAAAAAAAACglXhjI8Oqq29TSUlJi2XCyFOYXtXy+nOHVMQKnG67wrh+dkUY65A/Z1s4PDbcllWQyTXVzefavDZ9gLUAL7cVixm3bc4MCCMPI4wMEoMw8itcZzlYtx1GloNrYax1aT7e1kwa43VlFiCXwpqp4Pw4LjKW6+d2s1IIGQ3W8xfgnuM6x8l5n5XM++06O8N6HMP4PHC+LyGw55n5rzUMAABwNH7jnWzIHAi7jdmQy+BXh18bXRyj0M+1z7+rlXsOxrU+84FM5uyGofFAe3kHHL+x4bg+C97YAAAAAAAAAAAAkcEbGwAAAAAAAAAA5IDGhvY60OD2DQvPcX0WvLEBAAAAAAAAAAAigzc2AAAAAAAAAADIAY0NeYo1uH0s4Dmuz4IHG1FgDRu1BrHKHgpuDaC0hoKbg7SDhDob9zu22/FxNO5LkBAlcxBzBkN3zcGpZY7Dp637HEI4r3VfrIHN5n0OEABtDmF3HfYdoI1W5n1xHM4b5FrNVBvNfTGDrH3MfP0F2bb1s8gYkO08ADpIMLeReZ+tAgTZZyxAL4z7TqZCwa2fWQH22RoKbt0Xt/e7D011AQCA7JcN4eB+wm5jOsLHUw0Hz4o2+s0RsyC4228bfvvQ1sLFo4IHGwAAAAAAAAAA5IDGhnaKOc/YSH/iBQ82AAAAAAAAAADIAY0N7UN4sEF4OAAAAAAAAAAAwFHxxkaGxeOzJRW1WCaUtdyNazpXmNdfNm43jH253O361Ob1BzO4nqRnzUnIUA5AGDxrZkcY27auvV5l7BMB1rB3zbzu4w7rkUy0siVHZ85ocNy/w7iHmjMVrJk95nU7A2T7ZPn1HyinyLovxvNizZmyZhoEkakMGec5PMpcLkUY69y6XqfZdc5FWHW6qq+mpkbx+F1Otwsgd4S9jjyyB+caFi6yHzLN0r5MXw8u6k91XD5D01r8uTVHuEU+c0TfDI4Wz1P25cw1NLRXrJ43NgAAAAAAAAAAANKGNzYAAAAAAAAAAMgBXmOevEbHjwVc12fAGxsAAAAAAAAAACAyeGMjAmLWteisa7kHML3Mtr54GGtyO2ddE9/IvM/GbA/Jvp57rMy2nnsm1xc3r6luPC/W6yDIPrtuo1mAPmHlfg17Y3BOX7eblWQ+PjFjDEgoOUXWc2jNADLyW1v0ECdrjB4mU+v2ZzIDxHV2hvX8HWQ7h6H0bzNj1oXrPmH8/A0lN8d67Vvrc/35ouxfSxrIRplevzxb2pDtOAa5oy2ca65puBJ2X/EdWzv494tU98FvXlbu888Xln9PMmfZHu33W9jHrMyZa2h/8Mt1nWnGGxsAAAAAAAAAACAyeGMDAAAAAAAAAIBcwBsbAAAAAAAAAAAgMhpjUoPjr0bjeuEfeeihh3TGGWeopKREJSUlGjp0qH77298GqoMHGwAAAAAAAAAAIC169uypu+66S6+++qpeffVVfe5zn9MXvvAFbdiwwVxHzPM8Y0IsXDoYHBNXdXW1SkpKWiwbRki1mTWQ/HJjfSG00Rycag2fDiOU1DFryHiFMWQ8lL5jDESdXmUL07WG+IZyXhyHyoYR9mvuE1XGPmG8pq3nz7xdSern9hxaj43roOggrPd5z3gfC7Rtaz/L0HUQRKbuy5kN8M5BroO+w+A6FHxRgLLGe2gmQkuDjH8BiT6D9CPwGbnCMi6lv6cerJ0NxzDVOYhlH8LeRqr3ZtO/B/r8G0gqc/FsGs8caovWVkvHOm7LvhppSFxbt25tsp+FhYUqLCw0VdG5c2fdfffduvbaa03leWMDAAAAAAAAAACkpFevXorH48mv2bNn+/5OY2OjFi5cqP3792vo0KHmbREeDgAAAAAAAABALmj46Mt1ndIR39g4mtdff11Dhw7Vhx9+qGOPPVaLFy9WWZl16SIebAAAAAAAAAAAgBQdCgO36NOnj9avX689e/boqaee0tVXX61Vq1aZH26QsZEhyTXNdKukopYLu16nWfa14Vzne5jXIbc/nLPvi3U9vAzmhVjPtfdczFQu1iORQmOOsm3Ha8mH0SfMMpiJYWLNuJHs/dYqk2vTB9lvA3NuThj3nUxlKoTwuWFe4z8C91DzvljzXkLIfHC9Hm8YOS7ZnhkSSo5LBvNwrDL2+Wvq3x9Kuisr1hdGNGTTmtQA0oesk+yQjmyGbJdytgN92Qnfvug3HzOMU33Ppc+YuKXxfzaNZ5L/Hr0qpIyN81PbzxEjRuhTn/qUHn74YVN5MjYAAAAAAAAAAEDGeJ6n2tpac3mWogIAAAAAAAAAIBc0SKoPoc4Abr/9dl100UXq1auX9u7dq4ULF2rlypVatmyZuQ4ebAAAAAAAAAAAkAsaP/pyXWcAb7/9tsaPH68dO3YoHo/rjDPO0LJlyzRy5EhzHTzYAAAAAAAAAAAAafHII4+kXAcPNqLAGjYaICx2hqbZCi66w1aun62YOXzKcXiwJE0vs+1zxcYCW4XG4z29ynisJVVYAzq7e8aCGQx2NR4fc5+wBqsHCr61lnPbRmufKLdtVZJk3BX3QrhWrWHfzgUIdo5VOd5v63EMI5jb+tlhDNI2BxJnrNMGCJS3VhhCEHqmQqrN4wNJnmcbIzgPGQ/hvuM8cDuDn23W4+M+ZNxQrrFGevMuU31AEISzAv/WFq6HsNsYdiC0pY4oyPbzkA65EA7uO+8IYa4TVOrH0f/328K5DKRBgZeOMtWZZoSHAwAAAAAAAACAyOCNDQAAAAAAAAAAcgFvbAAAAAAAAAAAAKQXb2xEQYDsDOeMa6pP9+pM5SpixvyKAOxrd7vNzrCqKDPmlEj2tQt3JIwV2spZz58kxRyv525eK93YFwOt228914uM9RnbWC7juvQBjrXrdfatx9GcVRBkjf3RCVu5ZdasmRAYsy5cr8Np7d7hrP9pXWff8WYD3JOt14E5v8J6HHfYzkysR8JWn2S+71j3xZrtE+RzusKa42Q9h9bPQOvnga22QFznhZj7bIDtmjMxzDUamc7fh663Ckhqg+teAyngevCX6jHiGB+UaiZBWziO6diHsLMf/Majlhw11/8e0awNWZCL0+YyOHhjAwAAAAAAAAAAIL14YwMAAAAAAAAAgFzQKPdvWDQ6rs+ABxsAAAAAAAAAAOQClqICAAAAAAAAAABIL97YyLDq6ttUUlLScqExxnjHIEG6Y+60lfNuNxUzB2T3tRWzBvMerNNxKKk1KNrIGq58kDWc1xpKZNvnQKHuG4zljMfbM+5LzPV5DlDW65QwlYsZw9qdhysrQAhskONj2W4Y+7LFeC8zhumGEeIVdjhaqtsNFDxvDYC3Bm6bw5Bt5cLgOrDZ84x91voZqACfHeZzbfucLg8wlDAfH8d9Ioxr2nUouHVsYu9j9n12vi9AG9DmAj9bgWOQHhxnjkEu4Vymp79n+jinY+4b+vjVMDb3m+/6hou39PsZWKLJF29sAAAAAAAAAAAApBdvbAAAAAAAAAAAkAvqP/pyXWea8cYGAAAAAAAAAACIDN7YyLB4fLakopYL9bUteO3tsC9Ybl7D3vH6+dOrppnKVVQZMzuCuNy4LqEx38P1Gu2SpA3GNppzQGz1TS+znRdJqrCus29cB9Kc0eA4G0KS+XjHhrvNNDFne4Swprr5vFjX0exn3Gdr31aAzAfjLW+GrP3bnjXjeg1Q83mxbjfA8TYfn0W2+7I5i8P1Pksy5xRZr5ftCafbzaQw+o5r4fQJt9t2LYysmUzti2W7NTU1isfvSkNrgKYyvT55NvBdG5xcBCc4ThwDK665tiEbzlOqY+Ns2IewucgJ8c3gaGEbNTVSPJ56G5xqlPvsjwxkifDGBgAAAAAAAAAAiAze2AAAAAAAAAAAIBc0SmoIoc4048EGAAAAAAAAAAC5oEHuH2y4rs+ApagAAAAAAAAAAEBk8MZGpp16m9S+pMUi3nO2ZMkZ3W+3b9cYPm0Nla4os4XKVsSs4bwBwo/6GoOOHAc2hxFeag0udx6kbcySD8J8fKznLwyuj7dxX8zB80ECrqxB6K5Dxq3nz3qsJcWsx9u4zxWO9zkMzoOdraHukirMoekZuocGuEc4Dy4vc3tNWz/PJSkWS5jLmoRwrWb0/u2Yte+YGcdZYdx3rJ8dnut9BnBUls+8TIe3Znr7QDZJR7B3pq+5KNyX0qEthLin2kbfcbCDf39KtY1+v+9kLO+zn1HoC4HwxkZmzZ49W7FYTJMmTUp+z/M8JRIJ9ejRQx06dNAFF1ygDRs2NPm92tpa3XzzzerSpYuKi4s1duxYbdu2rUmZ3bt3a/z48YrH44rH4xo/frz27NnTpMyWLVt06aWXqri4WF26dNHEiRNVV1cX1u4CAAAAQCDMmQAAANBWRfLBxiuvvKIf//jHOuOMM5p8f86cOZo3b54eeOABvfLKK+rWrZtGjhypvXv3JstMmjRJixcv1sKFC7V69Wrt27dPl1xyiRob/51wcuWVV2r9+vVatmyZli1bpvXr12v8+PHJnzc2Nuriiy/W/v37tXr1ai1cuFBPPfWUvv3tb4e/8wAAAADggzkTAAAAjqghpK80i9yDjX379umqq67S/Pnz1alTp+T3Pc/Tvffeq2nTpumyyy5T//799dhjj+n999/Xk08+KUmqrq7WI488orlz52rEiBEaOHCgHn/8cb3++uv63e9+J0nauHGjli1bpv/93//V0KFDNXToUM2fP19Lly7Vpk2bJEnLly9XVVWVHn/8cQ0cOFAjRozQ3LlzNX/+fNXU1KT/oAAAAADAR5gzAQAAoK2LXMbGN7/5TV188cUaMWKEvv/97ye//9Zbb2nnzp0aNWpU8nuFhYU6//zztWbNGl1//fWqrKxUfX19kzI9evRQ//79tWbNGo0ePVovvfSS4vG4hgwZkizzmc98RvF4XGvWrFGfPn300ksvqX///urRo0eyzOjRo1VbW6vKykpdeOGFzdpdW1ur2tra5P8nB/P/J+nYlvd5Vo+Wf54UICfBm2xc53uBrViFbBkb5vW4jWtTB+N43XfjWvfWnBJJqjBnKrhd28+aQSBJ2uBfRJJ0udvsk0ya7tmWTCg31mde/7yTfT1+dbfdAALUaOM4fyRIWev68NZ9DiU3x7rf1nIBsjPMrLkdxuwF9zkXtvrCYM7DsbZxY8K+bcdruGbyOLrO9gmj75jPtfU+YfwMNN+TQ/istGYkuT02H9oqQ8ra3Jwp6tpQJlEq2sJa9sgNudAXo7CPZJ0clHKGRsrH0X/7ocylg9Tv9zkbgX93SrtGuX/DotG/iGuRerCxcOFCvfbaa3rllVea/Wznzp2SpK5duzb5fteuXfWPf/wjWaagoKDJXy0dKnPo93fu3KnS0tJm9ZeWljYpc/h2OnXqpIKCgmSZw82ePVuzZnEhAQAAAAgPcyYAAADkgsgsRbV161bdcsstevzxx1VUVHTUcrFY07998zyv2fcOd3iZI5VvTZmPu+2221RdXZ382rp1a4ttAgAAAIAgmDMBAADAFxkb6VVZWaldu3Zp0KBBysvLU15enlatWqX77rtPeXl5yb8GOvyvf3bt2pX8Wbdu3VRXV6fdu3e3WObtt99utv1//etfTcocvp3du3ervr6+2V8lHVJYWKiSkpImXwAAAADgCnMmAAAA5IrILEU1fPhwvf76602+d8011+i0007Td7/7XZ188snq1q2bVqxYoYEDB0qS6urqtGrVKv3gBz+QJA0aNEj5+flasWKFrrjiCknSjh079MYbb2jOnDmSpKFDh6q6ulovv/yyBg8eLElau3atqqurdc455yTL3HHHHdqxY4e6d+8u6WA4XmFhoQYNGhRov6pPk3zH69uNlY2507zd2LMJW8HhGcrEMK7lHoixjd7ohKlczLh+dsUiY/6I7JkKsd0BAlUs2zXusyTF+hkLWtcSNq7vb85TMOeU2FWU2c5huXXb1qyCRfbz7HU3FjSelxmyZcN4nu3YBDkv5nPtOA8nyH1nepXt+FhzV6xiZSHck6377XhdUp8/DP63ENYlN+eAPGdspDU7w9oXFSS3I4ScG8fMmRjWazqEvC7XOSDmLCVzDkj2r4ON7NBW50zZjuwIG44DooJrOjv4Hed05FOELdvb50qqGRl+mW++cyfD/MF3GynliGRhzly9pPYh1JlmkXmw0bFjR/Xv37/J94qLi3Xcccclvz9p0iTdeeed6t27t3r37q0777xTxxxzjK688kpJUjwe17XXXqtvf/vbOu6449S5c2dNmTJFp59+ukaMGCFJ6tu3r8aMGaOvfe1revjhhyVJX//613XJJZeoT58+kqRRo0aprKxM48eP191336333ntPU6ZM0de+9jX+qggAAABARjBnAgAAgK9GuQ/7Jjw8NVOnTtUHH3ygG2+8Ubt379aQIUO0fPlydezYMVnmnnvuUV5enq644gp98MEHGj58uB599FG1b//vx1RPPPGEJk6cqFGjRkmSxo4dqwceeCD58/bt2+uZZ57RjTfeqHPPPVcdOnTQlVdeqR/+8Ifp21kAAAAACIg5EwAAANqCSD/YWLlyZZP/j8ViSiQSSiQSR/2doqIi3X///br//vuPWqZz5856/PHHW9z2CSecoKVLlwZpLgAAAACkFXMmAAAANBFG2Dfh4QAAAAAAAAAAAEcX6Tc2coU1KNpbYE1ilaZ3rzOVqzCGX04vswXpWkOYA4XUBghjtYhtMR5vY6hsbLg9ADomY1nj8Znu2c6zdZ8PMp4ba1j7ZGO/XeY2MF0K0G83FpjKmcOQjbzJCXPZYOfQX0XMts8Vxv4QJBTNdQC8+TzLeH+SVFFlK1thDea2hhxb742XZzCEznWwc4BQdyu/YLhDYmXG66qvccP9Any2OQ77tu+z080etMN2c/Q82/E2B/f1sxWTlLFw9dRCCI/MdQiltU9YtltTU6N4/K4UWwQ0l2rQb8qhpg6uO8KKgeyRjust1TFANtwTwt4HF+PSXDjOfm1MdR/SEdI+Q35z9pbn39a5TkvC/BzOyjFwo9y/YZGBjA3e2AAAAAAAAAAAAJHBGxsAAAAAAAAAAOSCBkntQ6gzzXhjAwAAAAAAAAAAREbMsy5oDKcOrq8Wl06tltqXtFg2jCwH53Va1313vfa6JK+TMdjgGlux2LMJUzlrfoU1q0CSPS/Euua86/Mi2bMzrOthGtdet/bF6VW2PAXJnpNgXRffuuaiea3QANeBuU84zjUwr9sfZM1L15kKIVwHQfqZRbkx38N/7dGDzH1bylz/DoGLtVU/zromr/nYZDBPwXxegmRcZbswcjOs99AgeSqOZcNa0EdzaPxbXV2tkpKWx7+AZO8z5FO0DX6fVa4/5wEg7M8PF+P/sD/DUs2Zkvzvz6nOEX3rT8c++Py8pX8Dy6YxcPLfo2+ulgodt6W2Rro/vfvJUlQAAAAAAAAAAOSCRrkP+yY8HAAAAAAAAAAA4Oh4YwMAAAAAAAAAgFzQKPdh37yxAQAAAAAAAAAAcHS8sZFh1a9IvnkqO9xvN0jQuIW3PWEqN6uHrVxC9vbN6mErN9Oz1elZw6xjCVM5a8i4JJVbt73IuC+dErb6jMdQkqaX2fYnZg1N7+s2oD5QWLvchrtGIWhY/YzljEH2YQShW4MhXQdpmwPvJcXKAoRzG1QY+7fn2bZbEUJwsfV4a5Hx2DgOqJfs/dEc/t7Xti+hXKvWa9DxtoOEE2Zq287Ps+z3CWsouHlfjP070P3J8WcREAWZDlZNx/WUDW0IW9jh4OkI8Q09iNjweUDIOmAX9r0zG+7N6fj8CGU+9PH6y1Jso2m+7bMNn3nAjBb+7a9WtYbtp1mD3L/u4PoNEAPe2AAAAAAAAAAAAJHBGxsAAAAAAAAAAOSCekm2RWOC1ZlmvLEBAAAAAAAAAAAigzc2Mix+tqT2LZfxnrPVFWQt6fIdd5rKzeh+u6lcrMqaiWFc97mT/bFhbINt2wnrmn/G+rTBVkzWdellP97TuxvrtOazGNdyl6QK4zrf3nbbOZzR3ZbZ4Xr9c8mef+J62+ZciiCs59B6fBznHwTZZ/PVv9GWp2Lui7Jdf0G2bT8vtmLmtUv7ul/LtcJ8D7UVM/edIOu1GvfbnsWTuawC8zVjPdcBcm7MHN93wsjsMTPe86zHO6P74hiZHUB29O9saEPUpeMYhr5eP/kZTkQhsyYKbYS/sLMnXAjl3ycO5zeG9svA8Pt5qvUr3GuuRjWao7mt/v1QNH705brONOPBBgAAAAAAAAAAuYDwcAAAAAAAAAAAgPTijQ0AAAAAAAAAAHJBo9y/YZGBpah4YwMAAAAAAAAAAEQGb2xEwKwetnLl222B4JI9pNo1b3vCVC7Ww1ZOkhLGqOGENRTcGHJq3RfJGqxuD21KbDTGK2+3FZteZg84r5AtSDvIOTTpaysWJNApU+Gu06tsx9secCx72Lfx+FiPjfkYGsK6ksxh9sZ9Md5Dg3B9HF3XF6jPWkOTraxB0dbQ6yBB6Nb9vtxWp/ec7V4bqzLWl45gvqMxnmfjp0s4jOcv0c/4ud/X/vkbyn3Zst2yOmNJ22evlLn7EwD43VcIvoZVpoOzM739dG0jbKkex2w4D35SDQd3sQ/ZcZxS24bffMpvHuU7rjX8G0Oq24jcZ1x9ROr0wRsbAAAAAAAAAAAgMnhjAwAAAAAAAACAXNAo9687kLEBAAAAAAAAAABwdLyxkWlvzpZU1GIRazZEY3d7ToJVRZVtTWdvsnEd8mcTpnIJ2cpJ0szRtnIJ47rv9vXcE7ZiOwKsWL7RVqe1TyR62PZ5umdd49vOWqe1j5nXhw+yhr1xPXdrBkl72XJuZhpzVyo2mIodFMbxccmcmyFzRkOgOh1LdS3VZvUZMxrsWSX2Y2POFrB+Hlj7mPHeGEYmlDkraLg9o8FUX5DsE+u5DpJBYhDG2rDm/m28j1k/A4NkmsSsn0XGvCercrfVSbLfn8xZHI7rA3KR5TpqC5kBkVtfHFkr7OshHZ9Z2ZF7kJpU98E3QyPFuWk67q2+uQop5oS4kPI++rXRMN9I+f7vNw/wqd9vTltRZhjr++2Dz1yu5eP4of/2061B7gMWGxzXZ8CDDQAAAAAAAAAAckEbebDBUlQAAAAAAAAAACAyeGMDAAAAAAAAAIBcEMbbFbyxAQAAAAAAAAAAcHQxz/PcJmPCpKamRvF4XNXV1SopKWmxbCyEEDZz2Pc8W/cwhyvHjOHK203FJNmDZct32LZtDou1hsAaw1AlyXvOeF56JGz1jbaV0wJbMcl9kK8pxEkKJ0jXeA4T/WznJdHXGGjr+DxLUsIYZj/T8S3fHIYWIOjb62Q8PruN+xJGGLm1TtesbQzSPmOd1iBmawig9ToIcs+xBpwHuS9bmAPYYwVuNyw5Dw8PxPo56PoadHz+JHvg4QwZz7X1s814DAMFoTsOqXQbMv6hpLtM419ACjZnQuYRlgzJELZMyDw+kuqYxcX1mAvXfKr7aJnfhX1d+/67qM/8wEX7Urm3ZdN45lBb9NlqKc9xWxpqpBfSu5+8sQEAAAAAAAAAACKDjA0AAAAAAAAAAHIBGRsAAAAAAAAAAADpxRsbEWDNr7BmSEgyZyp4sq2BrjG2YjM821rpsQDrkFuzBWLG/AMr63mpWGRcZ1sBsjOs611XGdeD7GFf29J6vBMbHMf3hJEt0M9WzLov1j4RqzIem762YpKU2Ggs53rtS+P6/tZjI0mxWMJY0naup3t1pnLtY8b7naRG473MnKngOichQH3WTBMpQxkyYWRIGHMNzPd5a55CgGvanCvkuD7r9SIF2W+394kKuc2vkOzZMNMd30ODZGeY63S8FrTrzA4A4Qh7nXjLvSDsbaRjrftsX08/HechVVHI0MiGbIdckA3XtB/ffAm/vuIzzvW7Hkx9McVtpLyPBn5T6ZTb4PfvQQHG/Udtg9+43Hc+lfn+HEgbeWODBxsAAAAAAAAAAOSCBln/dtGu0XF9BixFBQAAAAAAAAAAIoMHGwAAAAAAAAAA5ILGkL4CmD17ts4++2x17NhRpaWlGjdunDZt2hSojpjnea5fPIFBTU2N4vG4qqurVVJS0mLZmHGNykQ/+/rwM7cbC15jKxab5zaDoH3Mnhcyc7S5qMmMZba188vH2NporU+y77d1n2Nb3F/e06vsWQkW1gwCb3TCVC7QPjtYh/HjvMnGbAHj9RLkmjZnPlQZ16a3ZpVYs08utxWT5D7/wJpzYd2XAMwZScbMAPP6p2HkUriWycwH16z3kiAZQFbW/Arjvdt8vUjma8Z8rRrvT9ZcikDrBRv3xbxtc2ZHCOfFyth3XK6VHmT8C0jp6zPZsA58NrQh20XhGIWedWL4fIlCxoUfMjA4BumS6jUbhfuSnxlqeTxqnau2JNWskrRwnXHYxIeS7sqKMfChsZXOqJbaO25LY430J/u4bcyYMfrKV76is88+Ww0NDZo2bZpef/11VVVVqbi42LRJMjYAAAAAAAAAAMgFWZCxsWzZsib/v2DBApWWlqqyslLnnXeeqQ4ebAAAAAAAAAAAgJTU1NQ0+f/CwkIVFhb6/l51dbUkqXPnzuZtkbEBAAAAAAAAAEAuaAjpS1KvXr0Uj8eTX7Nnz/Ztjud5mjx5soYNG6b+/fubd4M3NgAAAAAAAAAAQEq2bt3aJGPD8rbGTTfdpD/96U9avXp1oG3xYCMCvE7GAGHHIdqS+1Bwa+B2GPsSJMTbwhpSnYi5D3Wf0d24L8bgOHMfkzRDbo+jNSRqxjJbgPB0n+Crj7MGDVvDXc3B5cYAYWsguGTfF2uYoLlHWEPBAwRxTS+znWtzUPQG86btjOewoq+xjcY+JtkChIOERsasZa3n2hqkfbnt2q8whjBLAfq3MYzRGlweSrCzNczeeF7MbbRuV0FCvG3bnu4Z77XWkPEAYY1+oYlBt22VyVBw+305C8IcgZBFIdwV0ThPYbfRRTB4psOOLeOwTLchG/paNrTBT8rB2z5jSSf9PcBcIozf963fwfWQatC83xyzQqmHaoe+D35zGMOcKcyg+IOB3Xf5NyKdGiQdcFznR/WVlJQECkm/+eabtWTJEj3//PPq2bNnoE3yYAMAAAAAAAAAgFzQKPfh4QEflHiep5tvvlmLFy/WypUrddJJJwXeJA82AAAAAAAAAABAWnzzm9/Uk08+qV//+tfq2LGjdu7cKUmKx+Pq0KGDqQ4ebAAAAAAAAAAAkAsaJLVzXGfANzYeeughSdIFF1zQ5PsLFizQhAkTTHXEPM9z/eIJDA6urxZXdXW177pjs4wZDUHW428fM2ZdGFm3XWFdFztA5oNrsd22SyKMNlqzM6zH0cy6dr7seRPlsrXRur5/op/teCf62m9piY22OmcaM19c57iYM2nkPg/Huu67OYMgQJ+1nmtrJo31mg7EdbaINdfAmO1hPS+S+3Nt/XyxXqvWe44UoJ8Zj6M5q8CYK+JNDvC5scx2fMzr0TruY4G4znwIkANi5jpDxnocQzgv1jW5rWtGu1jf+pAg419Aos9kk2zIRUB2nId05FNkewZG6pkGbeM8+bbBb6zhM/ZLR19KVfj5F/IdL/rl3qWchWLZB7/xvt84P9Xxvc9Y2due8K+je2r/btDycfpQ0l1ZMZ45NLbS8dVSO8dtOVAj/TO94zbe2AAAAAAAAAAAIBdkwRsbLrjeBQAAAAAAAAAAgNDwxgYAAAAAAAAAALmgXryxAQAAAAAAAAAAkE6Eh2dIkCC8GTKGNe+wBw3P6mErZw3ndb3dIEHo1oDlWc+aq8x6YYTuWlmDhs0ch8AGCXWPDc/McbReq9Yw+SB1Og/SNgbueifYz4s1hN0aUG+9hwZhDam2hrVbWe931jB5SeZzaL0OXPfFIIHbsWcTpnLWIHRrH7OGMJuDp2W/l8V6JOyVuma8f/sFGh5iPo7GkHHreZakijJj8LyV9VxbQ8utweoBmEPGreHhpoDz7AlORDRY50zZEJKb7ThG2SEXzkMUgrWjIBf6SluQDefJd6zmM970rGO9VNrgxzSOTIFfuLnkP972qaOl4xjk34DDlgwP/0S1FHPcFq9G2pPe/YzMGxuzZ8/W2WefrY4dO6q0tFTjxo3Tpk2bmpTxPE+JREI9evRQhw4ddMEFF2jDhg1NytTW1urmm29Wly5dVFxcrLFjx2rbtm1NyuzevVvjx49XPB5XPB7X+PHjtWfPniZltmzZoksvvVTFxcXq0qWLJk6cqLo6+wQaAAAAAFxizgQAAABfDSF9pVlkHmysWrVK3/zmN/XHP/5RK1asUENDg0aNGqX9+/cny8yZM0fz5s3TAw88oFdeeUXdunXTyJEjtXfv3mSZSZMmafHixVq4cKFWr16tffv26ZJLLlFjY2OyzJVXXqn169dr2bJlWrZsmdavX6/x48cnf97Y2KiLL75Y+/fv1+rVq7Vw4UI99dRT+va3v52egwEAAAAAh2HOBAAAgFwRmfDwZcuWNfn/BQsWqLS0VJWVlTrvvPPkeZ7uvfdeTZs2TZdddpkk6bHHHlPXrl315JNP6vrrr1d1dbUeeeQR/d///Z9GjBghSXr88cfVq1cv/e53v9Po0aO1ceNGLVu2TH/84x81ZMgQSdL8+fM1dOhQbdq0SX369NHy5ctVVVWlrVu3qkePg2srzZ07VxMmTNAdd9yR8deKAAAAAOQe5kwAAADw1SDJvuqzTQbCLiLzYONw1dXVkqTOnTtLkt566y3t3LlTo0aNSpYpLCzU+eefrzVr1uj6669XZWWl6uvrm5Tp0aOH+vfvrzVr1mj06NF66aWXFI/HkwN0SfrMZz6jeDyuNWvWqE+fPnrppZfUv3//5ABdkkaPHq3a2lpVVlbqwgsvbNbe2tpa1dbWJv+/pqbGvK/W9cqt+RWSPcMiZlxHPtHPdjUkNhjXVB/j+uoKkBdyja2YNbNj5mjjdmVfF998vKvc31W80cZ13437Yl0/35q7EAuyz8Y10K15CtY18a3ZGdY8BcmeLSC5XZu+/DljnkKAHIDpsm17Vsx2vMuN177z/BEFWLff2hfnOc4BkOQ9Z+y3svVbczbMcFux2CL7ebFmmljPS7kxG2Z6lT0PxypWZswA8tzuc5AcEOtauDHLmrZBGLM9KqyZHVKw/TYw54qEkJ1h5TrTBNkpV+ZMmV5r3sUa6y5yCVJtQ0ss7cv0eYiCbDhGYWcC5MI+pqMNKV+zPp/zllyFTB/HdGzfL4/RbwydDf3db9yZ6r+uWe7/fv9+4DsX8Rvf++XS+Y3lLfMWvzmLz5g4VtbC7zce/UdITWSWovo4z/M0efJkDRs2TP3795ck7dy5U5LUtWvXJmW7du2a/NnOnTtVUFCgTp06tVimtLS02TZLS0ublDl8O506dVJBQUGyzOFmz56dXH82Ho+rV69eQXcbAAAAAEyYMwEAAOCI6kP6SrNIPti46aab9Kc//Uk/+9nPmv0sdthf8Hqe1+x7hzu8zJHKt6bMx912222qrq5Ofm3durXFNgEAAABAazFnAgAAQFsWuQcbN998s5YsWaI//OEP6tmzZ/L73bp1k6Rmf/2za9eu5F8KdevWTXV1ddq9e3eLZd5+++1m2/3Xv/7VpMzh29m9e7fq6+ub/VXSIYWFhSopKWnyBQAAAACuMWcCAADAUTWG9JVmkXmw4XmebrrpJv3yl7/U73//e5100klNfn7SSSepW7duWrFiRfJ7dXV1WrVqlc455xxJ0qBBg5Sfn9+kzI4dO/TGG28kywwdOlTV1dV6+eWXk2XWrl2r6urqJmXeeOMN7dixI1lm+fLlKiws1KBBg9zvPAAAAAD4YM4EAACAXBHzPC8DmeXB3XjjjXryySf161//Wn369El+Px6Pq0OHDpKkH/zgB5o9e7YWLFig3r17684779TKlSu1adMmdezYUZL0jW98Q0uXLtWjjz6qzp07a8qUKXr33XdVWVmp9u3bS5Iuuugibd++XQ8//LAk6etf/7pOPPFEPf3005KkxsZGffrTn1bXrl11991367333tOECRM0btw43X///ab9qampUTweV3V1te9fIvmFGR3SPmYPGrayBl9bg7StrCHjkj1I2xqYbj2O5iB0Y6C0JMWGG+s0hv1ag9ADWWArZg2zd93HgoS1W7nu39a+aA0tlwIEyithrtPEGgocIJjXes2YA8ldBxdLSmxMNYKtldvta7xHGEOvJSk2zxhSbQzmds0cei2Z+1mQ+7KFNXg+jGNYESuwFTQGbgdpo/XcTK9yG3Bu/gzsbh9LWIO0zftivH+bQ8aDBKEbWUJDg7AFH38o6S7T+Betk8tzJrQs0yHALtqQDfuQaS5C3MM+ji7qz3Qb/WTD9eLHRRtTbYOvFMOaLVK9Hnz57IPfeMsyxku5jlSPo2Ue4Rfu7cenjb7nMYSxcrM2pDB2zqbxzKG2SNWSXLelRlJ69zMvLVtx4KGHHpIkXXDBBU2+v2DBAk2YMEGSNHXqVH3wwQe68cYbtXv3bg0ZMkTLly9PDtAl6Z577lFeXp6uuOIKffDBBxo+fLgeffTR5ABdkp544glNnDhRo0aNkiSNHTtWDzzwQPLn7du31zPPPKMbb7xR5557rjp06KArr7xSP/zhD0PaewAAAABoGXMmAAAA5IrIPNiwvFgSi8WUSCSUSCSOWqaoqEj3339/i38l1LlzZz3++OMtbuuEE07Q0qVLfdsEAAAAAOnAnAkAAAC5IjIZGwAAAAAAAAAAAJHJ2GhrgqyvZl3zz/na+SEII7MjUxkNsS3GNdWN63FL9nyPmdvNVZpY8zAk+xr/QTIVTNs1ZkgEOTauM02sx9GazxJorXvjOvvW+4TzrBJjNoskzeie/Xk41jZaMwOsmR3W8zfdqzOVk+x9x9tu27b1urKu9WrdbpBtm9dHHeM4i+PZhLms+Vq13vOMeROhrE9r/Twwrs1rvV6seUZSgEwj6/rB1rWMjdknQdYttvbvmPU66Ge8Vg1reWfT+sKIBld9hmwGRAV91YbjlB6+/xaVYkZGOvJgMr0PfkLPMZH8x5s+40zL2NIvG9h3rG0cbx6N3/zXnEvYkhTyVLJpDNzWMjZ4YwMAAAAAAAAAAEQGDzYAAAAAAAAAAEBkRCY8HAAAAAAAAAAApKL+oy/XdaYXb2wAAAAAAAAAAIDIIDw8QwKFhxuDPK0Bx1KwsGiLMELBzds2Bqe6DiS2ChJm7Tw02Rj0bQ1iDYM52Nl4HcyK2fclSLCshTUo2hoobw6zlT34OtYjYavQL0QtIOs+S1L5GFv/tt5PzEHoAQLOXYdUm0PjrEHDGRQkhN3C3GdlDxq3fgZa70/mYGdriLYkb7LtOM5Y5vg+FsZ9Z7fj42gU5LPNfK6twYaO76HmwHsFuJ8Y2xhk236yKTgR0eAsPNynH1vHma3evuG6JOy4bQg71Np0j08h4DYd0hKW7CMrQqt9pNrGdEjHcUylfknyRidaruPZln/uu49+nx8+4eN+oddS6sHbKfclw5jR798jrfPno9bvd9/a4bN9y5zSbz/95nItnocPJd2VFWPgf4eH71Q44eHdCA8HAAAAAAAAAAA4EjI2AAAAAAAAAADICW0jY4MHGwAAAAAAAAAA5ISGj75c15leZGxkSBgZG5nMSbDmSLjO9ghDJvclU1klrrMmMsl1RkoQQfJUXMtUhow5I8WYFyApUNaFyTW2YkGuK+t+Ty+zZ4tYlO+wnT9zpoGkRD/bucnUfSJI5oOVdS31GXKfh+Oa80yTIOvfBsgMsTDvS3dbG/3W1G/CdXaGz3rKgQXJ7DBuOxPr+ZOxgaDS1WeyYh34kNfTT0u2Q8htSAe/uXdbyKcIuy+k4zyHfs06yN1Jta+kmt3g4jxk+lw7yTrxO44p5SY4YMlQ9GuDX67OCT75E/N8xtYujoHfWNZv/JpidpDpmnY9fm8iGzM23lI4GRsnpXU/eWMDAAAAAAAAAICc0CD3S0el/40NwsMBAAAAAAAAAEBk8MYGAAAAAAAAAAA5gfBwpIl1bcZZIURsZCpvIkhWgettRyEHxLrWvTVPIcj68Nb1+F2z7nOQHADrflv32dp3wriuykfbznXIK4QefbtB8iuMa/x7z7nti0H6jjfGtu3YswlbhZa1VSWVdzJmpFxuKybZs31ijnMkrPkjQXJKrPe8mDkbxlZf+2dt5RJ97fkV06ts+x0rM9ZpzV0Ybb+uZpTZrpmKMlvfiS0ynpfupmKBrgPrGtHW3A6vzO2a0y7WVA+7ziisnQ8cTTbkT/hJNYMj1eyIbFivP+XjbMgrynSGhgth349TPU8u2hd6GxzkV6TaBt/MgBSnQi6yf3y3kWJOiBN+2+jn8/tBcs6OwPc8urjn+OSExPolUqvfQQ6IfwZGqteDg2u2yqeM3z62sI2DuRZ3+bYBwfFgAwAAAAAAAACAnNAg95kYZGwAAAAAAAAAAAAcFW9sAAAAAAAAAACQExrkPhMj/W9s8GADAAAAAAAAAICc0DaWouLBRhtiDYCV7EG+mQrSDmO7rgO3w2A9L9Y2Wvc5kWryWAoSxhDf6bIF6ZaPsZ+/crkN3A4Sem9hPTaSJGPAeZD7hEXCGM4bJJjbdX+MbbEdx0DbNR7H6V6dqVyFNTTuGuN2jcHTkjTLuNsJYx+z9tvyHe7vtTElnNY3Y5kxHDtWYCoX5LxYj0/5CbZyM6ps+2IOI5cka4jrBmN91rDv52x9cbpxnyUpZjyHZtYw8jACh1MMuWzGGOxp25cPU2sLEJJUr0UXoddhtyFVLoKGsyF0OtNSDpRuC8fAL1BaDkLcfT4LLW1ImV8bsuC+4yfl8G+fY5DqPsww/RuBzxjPb9yUasD5mETLP5/nP/ZOOcTd5+fTy1o+jhVld/hvxK+/p3hNp3rNuvgMm2Gc2yO9eLABAAAAAAAAAEBOqJf7pahc1+eP8HAAAAAAAAAAABAZvLEBAAAAAAAAAEBOIGMDWSb2bMJeeINtjT7rmuqZZM01mOG4vkzlj0jB8gpcc50joR62PmbdZ2tOiWTfl8bu1rXpDWtPSkpsNK4P79nX47ey5k1YswC8HcZ7xBhbMUmaYTzX1uNt3ZeZAdoYpJ9ZeJ1sx9Ga+RAkK8iaieFNNua4GMtpga3YDOP1J8n82aZ+trVyyz1bHyvfbjx/su+Ldb8r5tnaKOO6tEFyQEzr7Ur27Ayj2HBjDkiQNZGtfcfIdXZGkLWVrdu215nBvBAgXVJcY91F/890doLvPhjye8LOj8iGDI6w73UuzkOq+RRRyAEJP58i3O1b+LYx1ZwQ15lcreC3D+nIEUk1J8T388E4/26xjtDPdcvjf8s9xa+NvjkeGx3n3R3OMNb3P84tz30qWvpho+/m0Uo82AAAAAAAAAAAICc0yH0mRvrf2CBjAwAAAAAAAAAARAZvbAAAAAAAAAAAkBPI2AAAAAAAAAAAAJFRL/dLUbmuz1/M87zUk2wQWE1NjeLxuKqrq1VSUpL27c/yS8MKSVsK5i4fYwvndR0y3NbMHG0rF4Xj6HpfwgiJDxIqbTHT+hEyxn7PsQZkW1XEbEFk0706e51VbkOTrYHN5rDmRbZiYbAGoVsFCg83Kt9hvA6usRWLPZswlfO228pJAcLDHffvcp9QvI+zBjaGsW2LIIGSroNOXQd4Z3JfXMr0+BfRky19JtUw5SiEi8d8wmE9Q3iti+DrFtvg00YX4eJhh0KnJQzZT6qh0X7jTJ/xb6rh5pIhdDrDAerZwDcI2S80W6kHmPudhxk+odV+Y0NLqLbvfcPv3je55blNbF7L82G/e2fKweBS6gHoftd0v/A/w1Lurz77aJlv+83x/QLQW+qv2TKe+XhbpKWSih3Xvl/SJWndT97YAAAAAAAAAAAgJ7SNpagIDwcAAAAAAAAAAJHBGxsAAAAAAAAAAOSEBrnPxEj/GxtkbGRINq2v1hK/NQ8Pcb1uf1tizRWR7Nki5jqt68P7rAv5cX5rTB6SqUyMILkU1nX2Y7ttx8eaLWA9z4kN7m/P1ja63mdrfYHqHG6sM4S8iUQ/WxsTfY3H8QRbfa7zR4Jwne8RRt+xrv/qjU7Ytr3F7fmzZnEEssG4xrMx7yXImtSu1wEPI2/CuVTXJT+cYX1rKdha3k7Wav44h22MyvgX2SMqfcbFWva+9xefOkJfv9wg5fwIn88037XqXXw+hHwe/ISdUyLJybluiZMckRTPQ8q/78fBefAdc+3wyXYIMkY+EsPY0C+XwJr1dlR+41i/NlrOY6rbSHUu6SCfIuX+lgX93VfIn3GWOU6qnyEttTGbxjP/zthYJOkYx7W/L+lyMjYAAAAAAAAAAIBrZGwAAAAAAAAAAACkFW9sAAAAAAAAAACQE+rlPmPDdX3+eLABAAAAAAAAAEBO4MEGcoA1LHa6MbfKdfisJOdhsdbQa2uw80zZQmUle/B1zBjSNd2rM5XzfILJmmzbGKarvrZifoFkh5iDyarswVYV/Yx1brAVi/VImMp5223lEsNt25VkDwQzBs9bg53NgoSmjbYVM/edKuN9xxiuLNlDwa3nJbYxYSrnKYPhysZr2soa/h4kzFrW8Oky433Cel1VGffFVlsg1nOdaphpNjGHjAcJ0bYGZBv7o3XbYQSmuz7XMccfB0CbFHKgtOR/LYby2f8xafkc8Rkv+t6OfAJuXYTHhh1g6yR4249fmLLPeUi1jem4HvyOc8qfbZZxQ4qBy/5zS582+J1nwz6Uq+V5VIVfG/ykGqztt4+SPJ9rMuZ3HPoFaE9rGPYh9OPkd81b7p0p3vvC/4wz9JU2NF/KJTzYAAAAAAAAAAAgJxAeDgAAAAAAAAAAkFa8sQEAAAAAAAAAQE5okPtMjPS/sRHzPC+MJZ/ho6amRvF4XNXV1SopKcl0cwAAAIBQMf5FUPQZAAAQddk0njnUFulBSR0c1/6BpBvTup+8sQEAAAAAAAAAQE4gYwMAAAAAAAAAACCteGMDAAAAAAAAAICcUC/3jwVcZ3b448EGAAAAAAAAAAA5gaWoAAAAAAAAAAAA0oo3NgAAAAAAAAAAyAkNcr90FG9sAAAAAAAAAAAAHBVvbAAAAAAAAAAAkBPI2AAAAAAAAAAAAEgrHmyk4MEHH9RJJ52koqIiDRo0SC+88EKmmwQAAAAAWYV5EwAAQDapD+krmOeff16XXnqpevTooVgspl/96leBfp8HG63085//XJMmTdK0adO0bt06ffazn9VFF12kLVu2ZLppAAAAAJAVmDcBAADgSPbv368BAwbogQceaNXvxzzP8xy3KScMGTJEZ555ph566KHk9/r27atx48Zp9uzZzcrX1taqtrY2+f/V1dU64YQTtHXrVpWUlKSlzQAAAECm1NTUqFevXtqzZ4/i8Ximm4M0CTJvYs4EAADammwaA9fU1HzUhm9JKnRce62ke5qN2woLC1VY6L+tWCymxYsXa9y4ceYtEh7eCnV1daqsrNStt97a5PujRo3SmjVrjvg7s2fP1qxZs5p9v1evXqG0EQAAAMhG7777bsYndUiPoPMm5kwAAKCtyoYxcEFBgbp166adO+8Jpf5jjz222bht5syZSiQSoWyPBxut8M4776ixsVFdu3Zt8v2uXbtq586dR/yd2267TZMnT07+/549e3TiiSdqy5YtGe/UiIZDT3j5izVY0WcQFH0GQdFnEMShv77v3LlzppuCNAk6b2LO1PbwORF9nMPo4xxGG+cv+rJpDFxUVKS33npLdXV1odTveZ5isViT71ne1mgtHmyk4PATdaSTd8jRXruJx+PcmBBISUkJfQaB0GcQFH0GQdFnEES7dsT85RrrvIk5U9vF50T0cQ6jj3MYbZy/6MuWMXBRUZGKiooy3QwnsuOIRkyXLl3Uvn37Zn9ltGvXrmZ/jQQAAAAAuYh5EwAAAMLCg41WKCgo0KBBg7RixYom31+xYoXOOeecDLUKAAAAALIH8yYAAACEhaWoWmny5MkaP368zjrrLA0dOlQ//vGPtWXLFt1www2m3y8sLNTMmTNDXWcMbQt9BkHRZxAUfQZB0WcQBP0lN6Uyb6LPRB/nMPo4h9HHOYw2zl/0cQ6Pbt++ffrrX/+a/P+33npL69evV+fOnXXCCSf4/n7M8zwvzAa2ZQ8++KDmzJmjHTt2qH///rrnnnt03nnnZbpZAAAAAJA1mDcBAADgcCtXrtSFF17Y7PtXX321Hn30Ud/f58EGAAAAAAAAAACIDDI2AAAAAAAAAABAZPBgAwAAAAAAAAAARAYPNgAAAAAAAAAAQGTwYAMAAAAAAAAAAEQGDzZC9OCDD+qkk05SUVGRBg0apBdeeKHF8qtWrdKgQYNUVFSkk08+Wf/zP/+TppYiWwTpM7/85S81cuRI/cd//IdKSko0dOhQPfvss2lsLbJB0PvMIS+++KLy8vL06U9/OtwGIqsE7S+1tbWaNm2aTjzxRBUWFupTn/qUfvKTn6SptcgGQfvME088oQEDBuiYY45R9+7ddc011+jdd99NU2uRac8//7wuvfRS9ejRQ7FYTL/61a98f4fxL5gzRR9zmOhjThFtjPGjjzF3tDEGziAPoVi4cKGXn5/vzZ8/36uqqvJuueUWr7i42PvHP/5xxPKbN2/2jjnmGO+WW27xqqqqvPnz53v5+fneokWL0txyZErQPnPLLbd4P/jBD7yXX37Ze/PNN73bbrvNy8/P91577bU0txyZErTPHLJnzx7v5JNP9kaNGuUNGDAgPY1FxrWmv4wdO9YbMmSIt2LFCu+tt97y1q5d67344otpbDUyKWifeeGFF7x27dp5//3f/+1t3rzZe+GFF7x+/fp548aNS3PLkSm/+c1vvGnTpnlPPfWUJ8lbvHhxi+UZ/4I5U/Qxh4k+5hTRxhg/+hhzRx9j4MzhwUZIBg8e7N1www1Nvnfaaad5t9566xHLT5061TvttNOafO/666/3PvOZz4TWRmSXoH3mSMrKyrxZs2a5bhqyVGv7zJe//GXve9/7njdz5kwmITkkaH/57W9/68Xjce/dd99NR/OQhYL2mbvvvts7+eSTm3zvvvvu83r27BlaG5G9LJM6xr9gzhR9zGGijzlFtDHGjz7G3G0LY+D0YimqENTV1amyslKjRo1q8v1Ro0ZpzZo1R/ydl156qVn50aNH69VXX1V9fX1obUV2aE2fOdyBAwe0d+9ede7cOYwmIsu0ts8sWLBAf/vb3zRz5sywm4gs0pr+smTJEp111lmaM2eOjj/+eJ166qmaMmWKPvjgg3Q0GRnWmj5zzjnnaNu2bfrNb34jz/P09ttva9GiRbr44ovT0WREEOPf3MacKfqYw0Qfc4poY4wffYy5cxPjGXfyMt2Atuidd95RY2Ojunbt2uT7Xbt21c6dO4/4Ozt37jxi+YaGBr3zzjvq3r17aO1F5rWmzxxu7ty52r9/v6644oowmogs05o+85e//EW33nqrXnjhBeXlcfvPJa3pL5s3b9bq1atVVFSkxYsX65133tGNN96o9957jzV4c0Br+sw555yjJ554Ql/+8pf14YcfqqGhQWPHjtX999+fjiYjghj/5jbmTNHHHCb6mFNEG2P86GPMnZsYz7jDGxshisViTf7f87xm3/Mrf6Tvo+0K2mcO+dnPfqZEIqGf//znKi0tDat5yELWPtPY2Kgrr7xSs2bN0qmnnpqu5iHLBLnHHDhwQLFYTE888YQGDx6sz3/+85o3b54effRR/qIrhwTpM1VVVZo4caJmzJihyspKLVu2TG+99ZZuuOGGdDQVEcX4F8yZoo85TPQxp4g2xvjRx5g79zCecYPH6yHo0qWL2rdv3+zp6q5du5o9kTukW7duRyyfl5en4447LrS2Iju0ps8c8vOf/1zXXnutfvGLX2jEiBFhNhNZJGif2bt3r1599VWtW7dON910k6SDg1rP85SXl6fly5frc5/7XFrajvRrzT2me/fuOv744xWPx5Pf69u3rzzP07Zt29S7d+9Q24zMak2fmT17ts4991x95zvfkSSdccYZKi4u1mc/+1l9//vf5y+P0Azj39zGnCn6mMNEH3OKaGOMH32MuXMT4xl3eGMjBAUFBRo0aJBWrFjR5PsrVqzQOeecc8TfGTp0aLPyy5cv11lnnaX8/PzQ2ors0Jo+Ix38K6cJEyboySefZD3FHBO0z5SUlOj111/X+vXrk1833HCD+vTpo/Xr12vIkCHpajoyoDX3mHPPPVfbt2/Xvn37kt9788031a5dO/Xs2TPU9iLzWtNn3n//fbVr13Ro2b59e0n//gsk4OMY/+Y25kzRxxwm+phTRBtj/OhjzJ2bGM84lM6k8lyycOFCLz8/33vkkUe8qqoqb9KkSV5xcbH397//3fM8z7v11lu98ePHJ8tv3rzZO+aYY7xvfetbXlVVlffII494+fn53qJFizK1C0izoH3mySef9PLy8rwf/ehH3o4dO5Jfe/bsydQuIM2C9pnDzZw50xswYECaWotMC9pf9u7d6/Xs2dO7/PLLvQ0bNnirVq3yevfu7V133XWZ2gWkWdA+s2DBAi8vL8978MEHvb/97W/e6tWrvbPOOssbPHhwpnYBabZ3715v3bp13rp16zxJ3rx587x169Z5//jHPzzPY/yL5pgzRR9zmOhjThFtjPGjjzF39DEGzhwebIToRz/6kXfiiSd6BQUF3plnnumtWrUq+bOrr77aO//885uUX7lypTdw4ECvoKDA++QnP+k99NBDaW4xMi1Inzn//PM9Sc2+rr766vQ3HBkT9D7zcUxCck/Q/rJx40ZvxIgRXocOHbyePXt6kydP9t5///00txqZFLTP3HfffV5ZWZnXoUMHr3v37t5VV13lbdu2Lc2tRqb84Q9/aHFswvgXR8KcKfqYw0Qfc4poY4wffYy5o40xcObEPI/3lAAAAAAAAAAAQDSQsQEAAAAAAAAAACKDBxsAAAAAAAAAACAyeLABAAAAAAAAAAAigwcbAAAAAAAAAAAgMniwAQAAAAAAAAAAIoMHGwAAAAAAAAAAIDJ4sAEAAAAAAAAAACKDBxsAAAAAAAAAACAyeLABAAAAAAAAAAAigwcbAIA254ILLtCkSZMy3QwAAAAAGcbcAADaJh5sAADg2HnnnadYLNbs66qrrjL9/oQJE3Trrbc6qw8AAABAZjA3AIBw5GW6AQAASFJdXZ0KCgoy3YyUeZ6n9evX64c//GGzycWxxx7r+/sHDhzQM888oyVLljipDwAAAIga5gYHMTcAgKPjjQ0AQDOe52nOnDk6+eST1aFDBw0YMECLFi1K/vyCCy7QxIkTNXXqVHXu3FndunVTIpEIXMdNN92kyZMnq0uXLho5cqQkae/evbrqqqtUXFys7t2765577mny+vhPf/pTHXfccaqtrW2yvS9+8Yv6r//6ryPuT21trSZOnKjS0lIVFRVp2LBheuWVV5I/X7RokU4//XR16NBBxx13nEaMGKH9+/ebf/5xf/nLX7R3716dd9556tatW5Mvy2TjxRdfVLt27TRkyBAn9QEAAACpYG7A3AAAshEPNgAAzXzve9/TggUL9NBDD2nDhg361re+pf/8z//UqlWrkmUee+wxFRcXa+3atZozZ47Ky8u1YsWKwHXk5eXpxRdf1MMPPyxJmjx5sl588UUtWbJEK1as0AsvvKDXXnst+Ttf+tKX1NjYmPyrJUl65513tHTpUl1zzTVH3J+pU6fqqaee0mOPPabXXntNp5xyikaPHq333ntPO3bs0Fe/+lX9v//3/7Rx40atXLlSl112mTzPkyTfnx+usrJSeXl5OuOMM1px5KUlS5bo0ksvVbt27ZzUBwAAAKSCuQFzAwDISh4AAB+zb98+r6ioyFuzZk2T71977bXeV7/6Vc/zPO/888/3hg0b1uTnZ599tvfd7343UB2f/vSnm/y8pqbGy8/P937xi18kv7dnzx7vmGOO8W655Zbk977xjW94F110UfL/7733Xu/kk0/2Dhw4kKz7UPl9+/Z5+fn53hNPPJEsX1dX5/Xo0cObM2eOV1lZ6Uny/v73vx/xePj9/HBTpkzxYrGYV1xc3OTruuuuM/3+qaee6i1ZsiRQfU8//bR36qmneqeccoo3f/5803YAAAAAP8wNmmJuAADZg4wNAEATVVVV+vDDD5Ovfx9SV1engQMHJv//8L8S6t69u3bt2hWojrPOOqvJzzdv3qz6+noNHjw4+b14PK4+ffo0Kfe1r31NZ599tv75z3/q+OOP14IFCzRhwgTFYrFm+/O3v/1N9fX1Ovfcc5Pfy8/P1+DBg7Vx40ZNnjxZw4cP1+mnn67Ro0dr1KhRuvzyy9WpUydJ0oABA1r8+eEqKyv1pS99SXfccUeT7x+t/Mdt3LhR27Zt04gRI8z1NTQ0aPLkyfrDH/6gkpISnXnmmbrsssvUuXNn3+0BAAAALWFuwNwAALIVDzYAAE0cOHBAkvTMM8/o+OOPb/KzwsLC5H/n5+c3+VksFkv+rrWO4uLiJj/zPnqF+/BJiHfYq90DBw7UgAED9NOf/lSjR4/W66+/rqeffvqI+9NSnbFYTO3bt9eKFSu0Zs0aLV++XPfff7+mTZumtWvX6qSTTvL9+eHWrVun8vJynXLKKUdszxtvvKEvfOELevHFF9WtWze98847GjFihF5++WUtWbJEI0eOVIcOHcz1vfzyy+rXr1/yOH/+85/Xs88+q69+9atHLA8AAABYMTdgbgAA2YqMDQBAE2VlZSosLNSWLVt0yimnNPnq1atXqHV86lOfUn5+vl5++eXk92pqavSXv/ylWdnrrrtOCxYs0E9+8hONGDHiqPWecsopKigo0OrVq5Pfq6+v16uvvqq+fftKOjixOffcczVr1iytW7dOBQUFWrx4cbK8388P2bx5s/bs2dPkL88O179/f33lK1/R73//e0nSrFmz9N3vflcFBQX69a9/rbFjxwaqb/v27U0miD179tQ///nPo5YHAAAArJgbMDcAgGzFGxsAgCY6duyoKVOm6Fvf+pYOHDigYcOGqaamRmvWrNGxxx6rq6++OrQ6OnbsqKuvvlrf+c531LlzZ5WWlmrmzJlq165ds7+quuqqqzRlyhTNnz9fP/3pT4/aluLiYn3jG99I1nnCCSdozpw5ev/993Xttddq7dq1eu655zRq1CiVlpZq7dq1+te//pWc2Pj9/OMqKyslSV27dtXOnTub/Ky0tDQZ+tevXz+9+eab+utf/6rKykrdd9992rVrl1555RX96le/ClTf4X+xJjX/CzQAAACgNZgbMDcAgGzFgw0AQDMVFRUqLS3V7NmztXnzZn3iE5/QmWeeqdtvvz30OubNm6cbbrhBl1xyiUpKSjR16lRt3bpVRUVFTcqVlJToi1/8op555hmNGzeuxTrvuusuHThwQOPHj9fevXt11lln6dlnn1WnTp1UUlKi559/Xvfee69qamp04oknau7cubrooouS22np5x/32muvSZJOPfXUJt/Pz8/X3r17k6/a9+7dW0uXLtXtt9+uO+64Q7FYTE8//bSGDBmi0tLSQPUdf/zxTf4Ka9u2bRoyZEiLxwMAAACwYm7A3AAAslHMO9LjXAAAssT+/ft1/PHHa+7cubr22mub/GzkyJHq27ev7rvvvgy1rnX27Nmj3r17a8iQIVq6dKkkaezYsRo2bJimTp0aqK6Ghgb17dtXK1euTAYE/vGPf9Rxxx0XRtMBAACAjGFu0DLmBgByCW9sAACyyrp16/TnP/9ZgwcPVnV1tcrLyyVJX/jCF5Jl3nvvPS1fvly///3v9cADD2Sqqa32iU98QtLBvxY7ZNiwYa0K9cvLy9PcuXN14YUX6sCBA5o6dSoTFwAAALQJzA2CYW4AIJfwxgYAIKusW7dO1113nTZt2qSCggINGjRI8+bN0+mnn54s88lPflK7d+/W9OnTNWXKlAy2tnXq6+vVv39/bdq0KdNNAQAAALIWcwMAwNHwxgYAIKsMHDgwGYx3NH//+9/T05iQ/PnPf1afPn0y3QwAAAAgqzE3AAAcDW9sAAAAAAAAAACAyGiX6QYAAAAAAAAAAABY8WADAAAAAAAAAABEBg82AAAAAAAAAABAZPBgAwAAAAAAAAAARAYPNgAAAAAAAAAAQGTwYAMAAAAAAAAAAEQGDzYAAAAAAAAAAEBk8GADAAAAAAAAAABEBg82AAAAAAAAAABAZPBgAwAAAAAAAAAARAYPNgAAAAAAAAAAQGT8fy830gP9dvFnAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#energyloss in abh von der energie der elektronen\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(energyloss_found, energy_found, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,105)), cmap=plt.cm.jet, cmin=1, vmax=7)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0$\")\n",
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
"\n",
"a1=ax1.hist2d(energyloss_lost, energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,105)), cmap=plt.cm.jet, cmin=1, vmax=7) \n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0$\")\n",
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"we can see that high energy electrons are often found even though they emit a lot of their energy through bremsstrahlung\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk4AAAJOCAYAAADxgPt3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADVm0lEQVR4nOzdd3hUxf7H8c+mh5CEUEOQLr03aSogXZooRdBIU1FEQMGCCgFFEJCiYLteBUSaXKQXIVRFkC5X9AoqCCoBVAhFShLm9wdkfywpe5KchE3yfj3PPrpn58x8Z87Zw5zMzhmHMcYIAAAAAAAAAAAA8rrVAQAAAAAAAAAAAHgKBk4AAAAAAAAAAACuY+AEAAAAAAAAAADgOgZOAAAAAAAAAAAArmPgBAAAAAAAAAAA4DoGTgAAAAAAAAAAAK5j4AQAAAAAAAAAAOA6Bk4AAAAAAAAAAACuY+AEAAAAAAAAAADgOgZOAAAAAAAAAAAArmPgBAAA5Bq9e/fWzJkzb3UYsGj//v06evTorQ4DAAAAAJDLMHACAAAAj/Svf/1LGzZsuNVhAAAAAAByGQZOAAAALFqwYIGqVKmiwMBAORwO7du371aHlKpVq1bJ4XC4vEJCQlSnTh199tlnWVb+J5984rL99OnTatu2rfz8/DR9+nSXz7Zs2aLHHntMJ0+edG77/vvvdf/99+vEiROZHnN2smnTpiTHN/G1ffv2JOn379+vfv36qWzZsgoMDFRgYKDKlSun/v37a9euXemKoXPnzgoMDNSZM2dSTPPQQw/J19f3lh+/mTNnyuFw6MiRI1le9qhRo+RwOPTnn3/alufXX3+tUaNGpdr22VlCQoIKFy6sKVOmpJgmM9o1O8jJx37Hjh1q3bq1goODlTdvXjVr1kxbt25Nki6t17/z589ryJAhioiIUEBAgGrWrKn58+enOx0AAMj5GDgBAAA5Wvv27ZUvXz7ly5dPc+fO1YABA5zv33jjDcv5nDp1SpGRkSpbtqzWrFmjbdu2qXz58pkYecbt2bNHkrR06VJt27ZNX3/9tT788ENduHBBPXr00P79+7Ok/Dp16ji37d+/X3Xr1tXevXu1YcMGDRw40GWfOnXqqEiRIqpevbrWr1+v6dOnq2XLlmrTpo0KFSqUqfFmV2PHjtW2bdtcXlWrVnVJ88EHH6hOnTr65ptvNHjwYK1YsUIrV67UkCFDdODAAdWrV08///xzmsvu16+fLl26pLlz5yb7eWxsrBYvXqz27durSJEi6aofkvf1119r9OjROfKP59K1QdRTp07p/vvvv9WheJyceux37typu+++WxcvXtTs2bM1e/ZsXbp0Sc2bN9e2bduS3cfK9U+S7r//fs2aNUtRUVFavXq16tWrpx49eiS5dllNBwAAcj6fWx0AAABAZlqxYoXz/3v37q2mTZuqd+/eac7n4MGDiouL08MPP6wmTZqkmO6ff/5Rnjx50hOq7fbs2aPQ0FB17NjRua1hw4aKj4/Xww8/rL1796p69eqZWn5gYKAqVqwoSZo/f7769eun6tWra9GiRYqIiEiyT1BQkF599VVdvXpV48aNk5eXl+bMmaMHH3ww0+K8Ff7++29dvXpVBQsWzHBe5cqVU4MGDVL8fOvWrRowYIDatWun//znP/Lz83N+ds899+ipp57SwoULFRgYmOay27Ztq4iICH388ccaMGBAks/nzZunixcvql+/fmnOG7nbf/7zH9WtW1clS5bMtDI86XqdWxw/flxBQUEKCQlJ8tmIESOUL18+rVmzxnlcWrRooTJlymjYsGHJzjxxd/2Trs1+XLdunebOnasePXpIkpo1a6Zff/1Vzz33nLp37y5vb2/L6QAAQO7AjBMAAJDtfPXVV2rVqpVCQ0MVFhamdu3a6dChQ5lWXu/evXXnnXdKkrp37y6Hw6GmTZs6HxOzZ88edenSRWFhYSpbtqxLnM2bN1dwcLDy5MmjRo0aaeXKlS55J+axf/9+de3aVaGhocqfP7+effZZxcfH68cff1SbNm0UHBysUqVKacKECZbj3r17t2rWrJlk+2+//SZJqlSpUjpaQ5oyZYqWLFmSpvKHDRumHj166KGHHtLmzZuTHTSRpP/+97+qXbu29uzZo3vvvVd9+/bV66+/rnbt2rl9HI/V88Lu86dDhw6qW7euPvzwQ9WoUUOBgYEqXry4oqKidPXq1WT32b9/v4oWLaq2bdvqk08+0blz59Jdvjtjx46Vt7e3PvjgA5dBkxt17do1yTE5dOiQevbsqcKFC8vf31+VKlXSO++845LG29tbvXr10u7du/Xf//43Sb4zZsxw1jM90vIdOnDggHr06KHQ0FAVKVJEffv2VWxsbIp5f/nll3I4HJo3b16Szz755BM5HA7t3Lkzxf0Ty927d6/uv/9+hYSEKDQ0VA8//LBOnTqV7D4nTpxwG6PVOj/33HOSpNKlSzsfUbRp06ZMabdTp07p8ccfV/HixeXv769ChQqpcePGio6OTrF9Dhw4IIfDoYULFzq37d69Ww6HQ1WqVHFJ27FjR5eZacYYLV68WA888ECK+d/o2LFjbo+Bu+u1lfM9M6/XkrRkyRI5HA6tX78+yWfvvfeeHA6H7r///hSP/aVLl1SrVi3dfvvtLscwJiZG4eHhatq0qRISEizFktJjsNLzuLvTp0/ro48+UosWLXTbbbfpl19+STbd1q1b1bRpU5fBrODgYN199936+uuvdfz48TSVm2jx4sXKmzevunbt6rK9T58++uOPP/TNN9+kKZ2U8XMhs88lAABgAwMAAJCNREVFGS8vL9O3b1+zcuVK85///MdUq1bNFC9e3Jw7dy5Tyvzpp5/MO++8YySZsWPHmm3btpkDBw6YqKgoI8mULFnSvPDCC2bdunVmyZIlxhhjNm3aZHx9fU2dOnXMggULzJIlS0yrVq2Mw+Ew8+fPd6mPJFOhQgXz2muvmXXr1pnnn3/eSDIDBw40FStWNG+//bZZt26d6dOnj5FkFi1a5DbmP//800gygwYNMnFxcSYuLs6cOHHCfPLJJyY4ONg8+uij6W6Pnj17Gl9fX7N48WK35Xfv3t3cc889xt/f33z44Ydu8z527JhZvny5McaYp556ysyYMcPEx8ebmTNnmitXrqS4n9XzIjPOn6JFi5qgoCBTqVIlM3v2bLN27Vrz4IMPGkkp1vnixYtmzpw5pkOHDsbPz88EBASYLl26mEWLFplLly5ZKnfjxo1GkilcuLDx9vY2wcHBplWrVubLL790pomPjzeBgYGmYcOGaarTgQMHTGhoqKlWrZr55JNPzNq1a83QoUONl5eXGTVqlEvaQ4cOGYfDYYYMGZIkD0nmxRdfTFPZidLzHRo5cqRZt26dmTx5svH39zd9+vRxppsxY4aRZA4fPuzcVqtWLdO4ceMkZderV8/Uq1cv1fhu/P4/99xz5osvvjCTJ082QUFBplatWi7nq9UYrdb52LFj5umnnzaSzOeff262bdtmtm3bZmJjY21vN2OMad26tSlUqJD517/+ZTZt2mSWLFliRo4c6ZJfcooWLWoef/xx5/s33njDBAYGGknm999/N8YYExcXZ0JCQszzzz/vTPfVV18ZSebgwYO2H4PkrtdWz/fMul4niouLM4ULFzYPPfRQks/uuOMOU7t27VSPvTHGHDx40AQHB5v777/fGGNMQkKCueeee0zhwoXNH3/8YTmWxHwTXxs2bDDFihUz4eHhzrJSc+HCBTN//nzTsWNH4+fnZwIDA80DDzxgFi5caC5fvpzsPn5+fuaRRx5Jsr1Hjx5Gkvniiy+c26xc/xI1aNAg2e/zd999ZySZDz74IE3pjMn4uZDZ5xIAAMg4Bk4AAEC2sXz5ciPJTJgwwWX7wYMHjSTz6aefJtmnTZs2JigoKNnX66+/brnsxD/SLFy40Lkt8Q8fI0eOTJK+QYMGpnDhwi5/jI+PjzdVq1Y1t912m7l69apLHpMmTXLZv2bNms4/jCWKi4szhQoVcv5BLDVr1641kpK8fHx8zJgxYyzXOznx8fFuB09uLD8gIMBs3749zeUkDpy4Y/W8SM/5485vv/1mJJkyZcqYM2fOOLdfuXLFhIeHm/bt27vN4/Tp0+bjjz82rVq1Mj4+PiY0NNT07t3bfPHFFyY+Pj7F/fbs2WMGDx5sFi9ebLZs2WI+/vhjU6lSJePt7W3WrFljjDEmJibGSDIPPvhgkv3j4+Odg2pxcXHOc9KYa38ov+2225L8gXTgwIEmICDA/P333y7bmzRpYgoWLOjyh+qhQ4da+uN3StL6Hbr5uA4YMMAEBAQ40yU3cJK4be/evc5tO3bsMJLMrFmzUo0vsdxnnnnGZfucOXOSnE9WY7RaZ2OMmThxYpL6ZEa7GWNM3rx5kwyMWfHwww+bMmXKON+3aNHCPPbYYyYsLMzZvlu3bjWSzNq1a53phgwZYqpVq+Y2//Qcg+Su11bP98y6Xt/o2WefNYGBgS7Xk++//95IMtOmTTPGpHzsEy1YsMBIMlOnTjUjR440Xl5eLu2bVvHx8aZTp04mb968Zvfu3Smmu3LlilmxYoXp2bOnCQoKMn5+fqZ9+/bm008/tTQwXbNmTVO+fHmTkJDg3BYXF2fKlCljJJm5c+c6t1u5/iUqV66cad26dZLy/vjjD+cPItKSzpiMnwtZcS4BAICM4VFdAAAg2xg5cqTKli2rwYMHKz4+3vkqXbq0AgMDk338x+rVq3X+/PlkXy+99JItcd38OJkLFy7om2++UZcuXZQ3b17ndm9vb0VGRuq3337Tjz/+6LJP+/btXd5XqlRJDofD5RFHPj4+uv322/Xrr7+6jWn37t2SpM8//1w7d+7Uzp07tWbNGrVr104jR47U559/nux+f/75Z6qPaHE4HPLx8dHcuXMVFxenbt266cSJEymWHxkZqUuXLmnLli1uY77Z9OnTLa1HY/W8SM/5407io5xGjRql0NBQ53ZfX1/dfvvtbh8vJkn58uVTnz599MUXX+j48eN64403dPjwYbVp00YREREpxlWrVi1NnTpV9913n+666y716dNHX3/9tYoWLarnn3/ebbl16tSRr6+v8zVp0iRJ0qVLl7R+/Xp17txZefLkcWmre++9V5cuXdL27dtd8urXr5/+/PNPLVu2TJIUHx+vTz/9VHfddZfKlSvnNpabpec7dONaPpJUvXp1Xbp0SSdPnkyxnB49eqhw4cIuj2SaNm2aChUqpO7du1uK9aGHHnJ5361bN/n4+Gjjxo1J0qYWY3rqfLPMarc77rhDM2fO1JgxY7R9+3bFxcWlGkei5s2b65dfftHhw4d16dIlffXVV2rTpo2aNWumdevWSZKio6Pl7+/vfByidO26ZfUxXVLajsHN+abnfLf7en2jvn376uLFi1qwYIFz24wZM+Tv76+ePXtayqNbt2568skn9dxzz2nMmDF66aWX1LJlyzTFcaOBAwdq5cqVWrhwoWrXrp1smv379ys8PFydOnXSn3/+qbffflsnTpzQ8uXL9dBDD7mcjyl5+umndfDgQQ0cOFC///67jh07pieeeMLZhl5e///ni7Re/xwOR4rl3viZ1XSJMnouZOa5BAAAMobF4QEAQLYQExOjvXv3SpL8/f2TTZMvX74sjOj/FS1a1OX96dOnZYxJsl2Scx2Jv/76y2V7/vz5Xd77+fkpT548CggISLL97NmzbmNKXJi9Y8eOLovZNmnSRCEhIfrwww91//33J9kvODhYH374odv816xZo0WLFqlTp04qUKBAsuUHBATo448/liS9+OKLqlChQpI/0maU1fMis86fXbt2ydfXN8kz8SXpjz/+cFm3wYqzZ8/qzJkzio2NlTFG+fLlk4+P9S57vnz51L59e73//vu6ePGiChYsqMDAwGT/4DZ37lz9888/On78uMtx+euvvxQfH69p06Zp2rRpyZZz84BQly5d9PTTT2vGjBl64IEHtGrVKp04cULjx4+3HPuN0vMduvk8TDzOFy9eTLEcf39/9e/fX5MmTdLEiRMVFxenzz77TM8++2yK58nNwsPDXd77+PioQIECSeJzF2NcXFya63yzzGq3BQsWaMyYMfr3v/+tESNGKG/evOrcubMmTJiQpP43atGihaRrgyOlS5dWXFyc7rnnHp04cUKvvfaa87PGjRsrMDBQkrRjxw4dPXo0TQMnaTkGN7dNes53u6/XN6pSpYrq1aunGTNm6PHHH1dCQoI+/fRTderUKUm5qenbt6/ee+89+fn5adCgQWmK4UZjxozR+++/r48++kht2rRJMZ2vr69CQ0P1999/KzY2VrGxsTp//nyarqt9+/bVqVOnNGbMGL333nuSpIYNG2rYsGEaP368ihUrlur+N1//Es+plM6Fv//+W9L/H0+r6W6U0XMhM88lAACQMQycAACAbOHYsWOSri1MfuMvk29040K/WenmX6GGhYXJy8sr2YVs//jjD0lSwYIFMzWmPXv2qFq1ai6DJtK1P255e3un+Mdkf39/Pfroo6nmvXLlSq1YsUJdunTRvHnzkv3D/p49e1SjRg35+Pjoww8/dC68/NVXXyW7YH16WT0vfvrpJ0vp0mrXrl0qWLBgkj9yffPNN/rll180YsQIt3kcO3ZMCxcu1Pz587Vz504VK1ZM3bt314cffqi6deumOSZjjKRr56W3t7fuuecerV27VsePH3f5o3HlypUlKclCz2FhYc4ZCk899VSyZZQuXdrlfWBgoHr06KEPP/xQx48f18cff6zg4OBkB5SsyMrv0JNPPqk33nhDH3/8sS5duqT4+Hg98cQTlvePiYlx+YNufHy8/vrrr2QHFFNjR50zq90KFiyoqVOnaurUqTp69KiWLVumF198USdPntSaNWtS3O+2225T+fLlFR0drVKlSqlu3brKly+fmjdvrgEDBuibb77R9u3bNXr0aOc+ixYtUvny5VW1alXL8aXlGCR3vU7r+Z7Z+vTpowEDBuiHH37QL7/8ouPHj6tPnz6W979w4YIiIyNVvnx5nThxQo8++qiWLl2a5jhmzpypESNGaNSoUerbt2+qaStVqqRffvlF27Zt09y5c/XGG29o6NChaty4sbp3764uXbqkOsiW6IUXXtCQIUN06NAhBQcHq2TJkurfv7+CgoIsDUTfeP1LVK1aNc2bN0/x8fEu/17997//lSTnuWY1HQAAyB14VBcAAMgWEn+V6XA4VLdu3WRfYWFhtzjKa4KCglS/fn19/vnnLgMUV69e1aeffur8Y2JmiY2N1S+//JLsAMXSpUt16dIl3X333enOf+LEierQoUOKgyaJ5Sc+0sXf31+LFy9W/vz51bFjR8XExKS77JtZPS8y6/zZtWuXTp06pTNnzji3JSQk6IUXXlCpUqVSfLTOuXPnNG3aNN15550qWbKkXn/9ddWsWVMbNmzQ0aNHNWnSpHQNmpw+fVorVqxQzZo1nYM5w4cPV0JCgp544glLj1jKkyePmjVrpr1796p69erJtlVyf5Du16+fEhISNHHiRK1atUoPPvig8uTJk+Y6SFn7HSpatKi6du2qd999V++//746dOigEiVKWN5/zpw5Lu8/++wzxcfHq2nTpmmKI611Tm5mSFa0W4kSJTRw4EC1bNlSe/bscZu+RYsW2rBhg9atW+d8XFT58uVVokQJjRw5UnFxcc6ZKdK1gZO0zDaRMnYM0nu+Z6YePXooICBAM2fO1MyZM1WsWDG1atXK+bm72VRPPPGEjh49qs8//1wfffSRli1bpilTpqQphjVr1uixxx5T3759FRUVZXm/hg0batq0afrjjz+0Zs0alS1bVi+//LKKFSume+65Rx988EGqs8Cka/WrWrWqSpYsqaNHj2rBggV67LHHnDNIUpLc9U+SOnfurPPnz2vRokUu6WfNmqWIiAjVr18/TekAAEDuwIwTAACQLZQtW1bNmjXTK6+8ovPnz6t+/foyxuj48ePauHGjevXqleY/VGamcePGqWXLlmrWrJmGDRsmPz8/vfvuu/ruu+80b968VJ+jnlF79uyRMUZBQUHOZ/OfPn1aX3/9taZMmaLq1atr2LBh6c5/+fLlCgwMTPERUonl3/jr4PDwcC1dulR33nmnOnbsqM2bN7v9I5gVVs+LtJ4/DodDTZo00aZNm1Is+/Dhw/rrr79UokQJde3aVUOHDtWlS5f09ttva/fu3dq0aZP8/PyS3Xf37t168cUX1bFjRy1ZskRt27aVr69vmures2dPlShRQnXr1lXBggV16NAhTZo0SSdOnNDMmTOd6Ro3bqx33nlHTz/9tGrXrq3HH39cVapUcc5MSPwjYUhIiHOft956S3feeafuuusuPfnkkypVqpTOnTunn376ScuXL9eGDRuSxFO3bl1Vr15dU6dOlTFG/fr1SzZuK20rZe13aPDgwc4/is6YMSNN+37++efy8fFRy5YtdeDAAY0YMUI1atRQt27d0hxHWupcrVo1SdeOVa9eveTr66sKFSrY3m6xsbFq1qyZevbsqYoVKyo4ONi5ZlJyj/u7WfPmzfXuu+/qzz//1NSpU122z5gxQ2FhYc5rxb59+/Tzzz+neeAko8cgPed7ZsqXL586d+6smTNn6syZMxo2bJjL+h4pHfvg4GD9+9//1qeffqoZM2aoSpUqqlKligYOHKgXXnhBjRs31h133OG2/MOHD6tr164qU6aM+vTpk2SNl1q1arl9lJ23t7datWqlVq1a6f3339fKlSs1d+5cDRkyRPXr1092YP+7777TokWLVLduXfn7++vbb7/VG2+8oXLlyjkf7ZbI6vVPktq2bauWLVvqySef1NmzZ3X77bdr3rx5WrNmjT799FPnzEyr6QAAQC5xS5akBwAASIfY2FgzfPhwU758eRMQEGDCwsJMjRo1zNNPP21Onz6dqWVv3LjRSDILFy50bouKijKSzKlTp5Ld58svvzT33HOPCQoKMoGBgaZBgwZm+fLlLmlSyqNXr14mKCgoSZ5NmjQxVapUSTXWN99800hyeQUFBZlatWqZ119/3Vy4cMFqtdMlsfw9e/Yk+WzhwoXG4XCYrl27mqtXr9pSntXzwmq6c+fOGUnmwQcfTLXczz77zEgyX3/9tYmMjDQhISEmODjYdOrUyXz//fduYz5//nxGqm3GjRtnatasaUJDQ423t7cpVKiQ6dy5s9mxY0ey6fft22f69OljSpcubfz9/U1AQIC5/fbbzSOPPGLWr1+fJP3hw4dN3759TbFixYyvr68pVKiQadSokRkzZkyKMb311ltGkqlcuXKyn1tt20QZ+Q7NmDHDSDKHDx9O9v3NSpUqZSpVqmQprhvL3b17t+nQoYPJmzevCQ4ONj169DAnTpxIV4xW65xo+PDhJiIiwnh5eRlJZuPGjZbzsBrTpUuXzBNPPGGqV69uQkJCTGBgoKlQoYKJioqydC05ffq08fLyMkFBQebKlSvO7XPmzDGSzP333+/c9sorr5iSJUu6zfPmOmTkGCSycr5nxvU6JWvXrnVevw8ePJjk8+SO/f79+01gYKDp1auXS9pLly6ZOnXqmFKlSln6tzLx37uUXil9h6xI7dr3448/mrvvvtvkz5/f+Pn5mdtvv9288soryaZP6/Xv3LlzZtCgQSY8PNz4+fmZ6tWrm3nz5qU7XUbPhaw8lwAAQPo4jLn+EFAAAAAAWrVqldq3b69vv/3W+cvu5Dz//PN69913FRsbyy+RLbLatllt//79qlGjht555x0NGDDA0j6jRo3S6NGjderUqUxfsyi3qFy5stq2batJkybd6lAAAACQy/GoLgAAAOAGGzdu1IMPPuj2D/u7du1S7dq1GTRJA6ttm1V+/vln/frrr3rppZdUtGhR9e7d+1aHlKt9//33tzoEAAAAQBIDJwAAAICLiRMnuk1jjNGePXvUt2/fLIgo57DStlnptdde0+zZs1WpUiUtXLgw3YvZA+7Ex8en+rmXl5fLOia5JRYAAABPxaO6AAAAAADIJEeOHFHp0qVTTRMVFaVRo0blqlgAAAA8GQMnAAAAAABkkitXrmj//v2ppomIiFBERESuigUAAMCTMXACAAAAAAAAAABwHQ8uBQAAAAAAAAAAuI6BEwAAAAAAAAAAgOsYOAEAAAAAAAAAALiOgRMAAAAAAAAAAIDrGDgBAAAAAAAAAAC4joETAAAAAAAAAACA6xg4AQAAAAAAAAAAuI6BEwAAAAAAAAAAgOsYOAEAAAAAAAAAALiOgRMAAAAAAAAAAIDrGDgBAAAAAAAAAAC4joETAAAAAAAAAACA6xg4AQAAAAAAAAAAuI6BEwAAAAAAAAAAgOsYOAEAAAAAAAAAALiOgRMAAAAAAAAAAIDrGDgBAAAAAAAAAAC4joETAAAAAAAAAACA6xg4AQAAAAAAAAAAuI6BEwCSpAULFqhKlSoKDAyUw+HQvn37bnVIyRo1apQcDsetDsNj9O7dW6VKlbrVYWS6VatWadSoUbc6DBdHjhyRw+HQzJkz3abNivM2LfFYVapUKfXu3du2/G727rvv2hovAADIGjNnzpTD4dCRI0cyJX/6CMnL7L6Zp/DE45+Wc75p06Zq2rSpx8RjRWbcS9zon3/+0ahRo7Rp06ZMyR8AMgMDJwB06tQpRUZGqmzZslqzZo22bdum8uXL3+qwAKdVq1Zp9OjRtzoMF0WLFtW2bdvUrl27Wx1KtuWJN8UAAODWo4+Qu3ni8W/Xrp22bdumokWL3upQsqV//vlHo0ePZuAEQLbic6sDAHDrHTx4UHFxcXr44YfVpEmTWx1OjvTPP/8oT548tzqMbMfOdrP7GPj7+6tBgwa25YfUxcXFyeFwyMcnd3ZdLl68qMDAwFsdBgAAcMMYo0uXLvHvdjrY1V/PjGNQqFAhFSpUyLb8kLrcfP+ckJCg+Ph4+fv73+pQgFyPGSdALte7d2/deeedkqTu3bvL4XC4TCtetmyZGjZsqDx58ig4OFgtW7bUtm3bkuSR3OOikns8kcPh0MCBAzV79mxVqlRJefLkUY0aNbRixYok+69cuVI1a9aUv7+/SpcurTfffDNNdYuOjlbz5s0VEhKiPHnyqHHjxlq/fn2yMR44cEA9evRQaGioihQpor59+yo2NtYlrTFG7777rmrWrKnAwECFhYWpS5cu+uWXX1zSNW3aVFWrVtWWLVvUqFEj5cmTR3379pUk/fbbb+rSpYuCg4OVL18+PfTQQ9q5c6fLtOjZs2fL4XAkaWdJevXVV+Xr66s//vgjxXpfunRJw4cPV+nSpeXn56dixYrpqaee0pkzZ1zSbdiwQU2bNlWBAgUUGBioEiVK6IEHHtA///zjTPPee++pRo0ayps3r4KDg1WxYkW99NJLqbZ7vXr1kszCqFatmhwOh3bu3Onc9vnnn8vhcOi///2vpP8/Fnv27FGXLl0UFhamsmXLqnfv3nrnnXckXTt/El+pTUtP7RicPXtWw4YNc2mfIUOG6MKFCy55LFy4UPXr11doaKjy5MmjMmXKOPOQUp7ObuW8TW0qvMPhcHks2U8//aQ+ffqoXLlyypMnj4oVK6YOHTo42y09rLZBRva9evWqpk2b5vy+5MuXTw0aNNCyZcskXXvUxIEDB7R582bnMU28jmzatEkOh0OzZ8/W0KFDVaxYMfn7++unn36SJH388ceqUaOGAgIClD9/fnXu3Fk//PCDS/m9e/dW3rx59dNPP+nee+9V3rx5Vbx4cQ0dOlSXL1+21E4LFixQw4YNFRQUpLx586p169bau3dvusu5cuWKxowZo4oVK8rf31+FChVSnz59dOrUKZd0pUqVUvv27fX555+rVq1aCggIcM64OnDggFq1aqU8efKoUKFCeuqpp7Ry5Uo5HA7nL/hee+01+fj46NixY0nq1LdvXxUoUECXLl2y1AYAAKSFlX+jf/nlFz344IOKiIiQv7+/ihQpoubNmzsfFZxaHyElae2n79y5U3fddZezj/fGG2/o6tWrLmmt9nkS72/ef/99VapUSf7+/po1a5Yk6auvvlLDhg0VEBCgYsWKacSIEfr3v//t0pft16+f8ufP79IHT3TPPfeoSpUqqdb96NGjevjhh1W4cGH5+/urUqVKmjRpUpL6uOvX//PPP876Jh6/unXrat68eSmWffbsWfn4+GjixInObX/++ae8vLwUGhqq+Ph45/ZBgwapUKFCMsZISrm/np7jn9oxOHTokHr27OnSPon3FomuXr2qMWPGqEKFCs5+a/Xq1fXWW2850yT3aCxjjCZMmKCSJUsqICBAtWvX1urVq5PEl9JjtRL7vDfOwli3bp06deqk2267TQEBAbr99tvVv39//fnnn6m2QWqstEFG9z1z5oyGDh2qMmXKyN/fX4ULF9a9996r//3vfzpy5Ihz0Gn06NHO45r42LmU7gMl6/e2if3nNWvWqHbt2goMDFTFihX18ccfW6pnWvvpVsqJiYlR//79ddttt8nPz0+lS5fW6NGjXb4XifeFEyZM0JgxY1S6dGn5+/tr48aNkqSlS5eqevXq8vf3V5kyZfTWW28l+TtL8+bNVbFiRed3K5ExRrfffjtPSAAywgDI1X766SfzzjvvGElm7NixZtu2bebAgQPGGGPmzJljJJlWrVqZJUuWmAULFpg6deoYPz8/8+WXXzrz6NWrlylZsmSSvKOioszNlxlJplSpUuaOO+4wn332mVm1apVp2rSp8fHxMT///LMzXXR0tPH29jZ33nmn+fzzz83ChQtNvXr1TIkSJZLkmZzZs2cbh8Nh7rvvPvP555+b5cuXm/bt2xtvb28THR2dJMYKFSqYkSNHmnXr1pnJkycbf39/06dPH5c8H3vsMePr62uGDh1q1qxZY+bOnWsqVqxoihQpYmJiYpzpmjRpYvLnz2+KFy9upk2bZjZu3Gg2b95szp8/b26//XaTP39+884775gvvvjCPPPMM6Z06dJGkpkxY4YxxpjLly+b8PBw89BDD7mUHxcXZyIiIkzXrl1TbPurV6+a1q1bGx8fHzNixAizdu1a8+abb5qgoCBTq1Ytc+nSJWOMMYcPHzYBAQGmZcuWZsmSJWbTpk1mzpw5JjIy0pw+fdoYY8y8efOMJPP000+btWvXmujoaPP++++bQYMGpdr2L774osmbN6+5cuWKMcaYmJgYI8kEBgaa119/3ZnuySefNEWKFElyLEqWLGleeOEFs27dOrNkyRLz008/mS5duhhJZtu2bc5XYl2Sk9IxuHDhgqlZs6YpWLCgmTx5somOjjZvvfWWCQ0NNffcc4+5evWqMcaYr7/+2jgcDvPggw+aVatWmQ0bNpgZM2aYyMhIZxmHDx92OW7GWD9vk9s3kSQTFRXlfL9582YzdOhQ85///Mds3rzZLF682Nx3330mMDDQ/O9//7OU542stoExxpQsWdL06tUrXftGRkYah8NhHn30UbN06VKzevVq8/rrr5u33nrLGGPMnj17TJkyZUytWrWcx3TPnj3GGGM2btxoJJlixYqZLl26mGXLlpkVK1aYv/76y4wdO9ZIMj169DArV640n3zyiSlTpowJDQ01Bw8edJbfq1cv4+fnZypVqmTefPNNEx0dbUaOHGkcDocZPXp0qm1kjDGvv/66cTgcpm/fvmbFihXm888/Nw0bNjRBQUHOa2RayklISDBt2rQxQUFBZvTo0WbdunXm3//+tylWrJipXLmy+eeff1zavWjRoqZMmTLm448/Nhs3bjQ7duwwf/zxhylQoIApUaKEmTlzplm1apWJjIw0pUqVMpLMxo0bjTHGnDhxwvj7+5uXX37ZpU5//fWXCQwMNM8995zb+gMAkJoZM2YYSebw4cPObVb/ja5QoYK5/fbbzezZs83mzZvNokWLzNChQ53/jqXWR0hJWvrpBQoUMOXKlTPvv/++WbdunRkwYICRZGbNmuVMl5Y+T2KfpXr16mbu3Llmw4YN5rvvvjPffvutCQgIMNWrVzfz5883y5YtM/fee6/z3+3Etvv222+NJPPhhx+61OnAgQNGknnnnXec227um508edIUK1bMFCpUyLz//vtmzZo1ZuDAgUaSefLJJ53prPTr+/fvb/LkyWMmT55sNm7caFasWGHeeOMNM23atFTbvkGDBqZVq1bO9/PnzzcBAQHG4XCYrVu3OrdXqlTJdOvWzeVYJNdfT8/xT+kYHDhwwISGhppq1aqZTz75xKxdu9YMHTrUeHl5mVGjRjn3HzdunPH29jZRUVFm/fr1Zs2aNWbq1KkuaZI75xPvX/r162dWr15t/vWvf5lixYqZ8PBw06RJk1T3Neb/+7yJ574xxrz33ntm3LhxZtmyZWbz5s1m1qxZpkaNGqZChQrO+6vU8ryZ1TZI7l7C6r5nz541VapUMUFBQebVV181X3zxhVm0aJEZPHiw2bBhg7l06ZJZs2aNs60Sj+tPP/3k0o433wdavbc15tp347bbbjOVK1c2n3zyifniiy9M165djSSzefPmVNsorf10K+UcP37cFC9e3JQsWdJ88MEHJjo62rz22mvG39/f9O7dO0m7FytWzDRr1sz85z//MWvXrjWHDx82q1evNl5eXqZp06Zm8eLFZuHChaZ+/frOa0iipUuXGklm3bp1LvVauXKlkWRWrlyZav0BpIyBEwDODtvChQud2xISEkxERISpVq2aSUhIcG4/d+6cKVy4sGnUqJFzW1oHTooUKWLOnj3r3BYTE2O8vLzMuHHjnNvq169vIiIizMWLF53bzp49a/Lnz+924OTChQsmf/78pkOHDi7bExISTI0aNcwdd9yRJMYJEya4pB0wYIAJCAhw3hRt27bNSDKTJk1ySXfs2DETGBhonn/+eee2Jk2aGElm/fr1LmkTB6hWr17tsr1///5JOqlRUVHGz8/PnDhxwrltwYIFSTpkN7d9Yof05vok7vuvf/3LGGPMf/7zHyPJ7Nu3z6Rk4MCBJl++fCl+npLo6GgjyWzZssUYY8ynn35qgoODzYABA0yzZs2c6cqVK2d69uzpUmdJZuTIkUnyfOqppywNmCVK6RiMGzfOeHl5mZ07d7psT2yPVatWGWOMefPNN40kc+bMmRTLSO7mwup5m5aBk5vFx8ebK1eumHLlyplnnnnGUp43stoGxiS9Obe675YtW4ykJH+4v1mVKlVcbioTJV6T7r77bpftp0+fNoGBgebee+912X706FHj7+/vcj716tXLSDKfffaZS9p7773XVKhQIdW4jh49anx8fMzTTz/tsv3cuXMmPDzc5abfajmJf7BYtGiRS7qdO3caSebdd991bitZsqTx9vY2P/74o0va5557zjgcDpeBG2OMad26dZKb7l69epnChQuby5cvO7eNHz/eeHl5ub3BBgDAnZv/aGv13+g///zTSDJTp05NNf+U+gjJSU8//ZtvvnFJW7lyZdO6dWvn+7T0lySZ0NBQ8/fff7uk7dq1qwkKCjKnTp1ybktISDCVK1dO8gfvJk2amJo1a7rs/+STT5qQkBBz7tw557ab+2YvvvhisvV58sknjcPhcPYlrPTrq1atau67775U0yTnlVdeMYGBgc4/Yj/66KOmTZs2pnr16s4fkfz+++8u9yKJdU6uv25M2o6/MSkfg9atW5vbbrvNxMbGumwfOHCgCQgIcKZv3759kva/WXLnfEBAgOncubNLuq1btxpJ6R44udHVq1dNXFyc+fXXX40ks3TpUrd53sxqGyR3L2F131dffTXZP9zf6NSpUyne56R0H2j13taYa9+NgIAA8+uvvzq3Xbx40eTPn9/0798/xbiMSXs/3Uo5/fv3N3nz5nVJZ8z/32cm9ucT271s2bIuA2PGGFOvXj1TvHhxl/78uXPnTIECBVzuLRMSEkyZMmVMp06dXPZv27atKVu2rMtAL4C04VFdAJL1448/6o8//lBkZKS8vP7/UpE3b1498MAD2r59e7LTya1o1qyZgoODne+LFCmiwoUL69dff5UkXbhwQTt37tT999+vgIAAZ7rg4GB16NDBbf5ff/21/v77b/Xq1Uvx8fHO19WrV9WmTRvt3LkzyRT7jh07uryvXr26Ll26pJMnT0qSVqxYIYfDoYcfftglz/DwcNWoUSPJIndhYWG65557XLZt3rxZwcHBatOmjcv2Hj16JKnDk08+KUn68MMPndumT5+uatWq6e67706x7hs2bJAk57TnRF27dlVQUJDzUWU1a9aUn5+fHn/8cc2aNSvJYwwk6Y477tCZM2fUo0cPLV261PL08MaNGysgIEDR0dGSrk03b9q0qdq0aaOvv/5a//zzj44dO6ZDhw6pRYsWSfZ/4IEHLJXjTnLHYMWKFapatapq1qzpchxbt27tMk2+Xr16kqRu3brps88+0++//+62vIyetymJj4/X2LFjVblyZfn5+cnHx0d+fn46dOhQkkdfWGG1DTKyb+IjCp566qn0VNnp5nNh27ZtunjxYpLzu3jx4rrnnnuSPIrP4XAkafvq1as7rzUp+eKLLxQfH69HHnnEpZ4BAQFq0qRJkjayUs6KFSuUL18+dejQwSXPmjVrKjw8PEme1atXV/ny5V22bd68WVWrVlXlypVdtid3DRk8eLBOnjyphQsXSrr2CIr33ntP7dq1c/u4CwAA0srqv9H58+dX2bJlNXHiRE2ePFl79+5N8kiptEprPz08PFx33HGHy7bk/t1OS3/pnnvuUVhYmMu2zZs365577lHBggWd27y8vNStW7ckdRg8eLD27dunrVu3Srr2CKzZs2erV69eyps3b4p137BhgypXrpykPr1795YxxnlvYKVff8cdd2j16tV68cUXtWnTJl28eDHFcm/UvHlzXbx4UV9//bWka49LbtmypVq0aKF169Y5t0lK0vdPrr+eXjcfg0uXLmn9+vXq3Lmz8uTJ43Ic7733Xl26dEnbt2+XdK3u3377rQYMGKAvvvhCZ8+edVvetm3bdOnSJT300EMu2xs1aqSSJUumux4nT57UE088oeLFi8vHx0e+vr7O/NLa909LG2Rk39WrV6t8+fLJ3tulxc19f6v3tolq1qypEiVKON8HBASofPnybvv+ae2nWylnxYoVatasmSIiIlzybNu2raRr14cbdezYUb6+vs73Fy5c0K5du3TffffJz8/PuT1v3rxJ7ju8vLw0cOBArVixQkePHpUk/fzzz1qzZo0GDBiQ5PHpAKxj4ARAsv766y9JUtGiRZN8FhERoatXr+r06dPpyrtAgQJJtvn7+zs756dPn9bVq1cVHh6eJF1y22524sQJSVKXLl3k6+vr8ho/fryMMfr7779TjSlxIbbEmE6cOCFjjIoUKZIkz+3btye5+Uiu3f766y8VKVIkyfaUtnXv3l0ffPCBEhIStH//fn355ZcaOHBgqnX/66+/5OPjk2ThQofDofDwcOdxLVu2rKKjo1W4cGE99dRTKlu2rMqWLevyHN/IyEh9/PHH+vXXX/XAAw+ocOHCql+/vvMGKCUBAQFq3Lix8wZp/fr1atmypZo2baqEhAR9+eWXzjyS61wn13bpkVw+J06c0P79+5Mcw+DgYBljnMfx7rvv1pIlS5x/PL/ttttUtWrVVJ/xnNHzNiXPPvusRowYofvuu0/Lly/XN998o507d6pGjRqWb2hvZLUNMrLvqVOn5O3tnaF6S0mPobvrUuLnifLkyeMyiCVd+267W98j8RpSr169JHVdsGBBkjayUs6JEyd05swZ+fn5JckzJibG9mtIrVq1dNdddzmfQb1ixQodOXLE7TUEAID0sPpvtMPh0Pr169W6dWtNmDBBtWvXVqFChTRo0CCdO3cuXWWntZ/u7l4kMc+09Jcy+u92p06dVKpUKee/2zNnztSFCxfc/gjlr7/+SrHNEz+XrPXr3377bb3wwgtasmSJmjVrpvz58+u+++7ToUOHUo0hcX2S6Oho/fTTTzpy5Ihz4OSbb77R+fPnFR0drTJlyqh06dIu+9rV708ur7/++kvx8fGaNm1akuN47733SpLzOA4fPlxvvvmmtm/frrZt26pAgQJq3ry5du3alWJ5iW1rZ9//6tWratWqlT7//HM9//zzWr9+vXbs2OEcoEhr3z8tbZCRfU+dOqXbbrstXXW+UXLH0Mq9bSIr3+3kpLWfbvUasnz58iT5Ja5Z5O4acvr0aed17WbJbevbt68CAwP1/vvvS5LeeecdBQYGuqzRCSDtfG51AAA8U2Jn4Pjx40k+++OPP+Tl5eX8RU9AQECyiy2ndwG7sLAwORwOxcTEJPksuW03S/xV17Rp09SgQYNk0yTX2XCXp8Ph0JdffukcVLnRzduS+1VHgQIFtGPHjiTbU6rT4MGDNXv2bC1dulRr1qxxLiafmgIFCig+Pl6nTp1y6WAaYxQTE+OcSSFJd911l+666y4lJCRo165dmjZtmoYMGaIiRYrowQcflCT16dNHffr00YULF7RlyxZFRUWpffv2OnjwYKq/pGrevLlGjhypHTt26LffflPLli0VHBysevXqad26dfrjjz9Uvnx5FS9ePMm+dv0iJrl8ChYsqMDAwBQXCbzxF4GdOnVSp06ddPnyZW3fvl3jxo1Tz549VapUKTVs2DDJvmk5bxP/yH7z9+bmzr8kffrpp3rkkUc0duxYl+1//vmn8uXLl2w9UpOWNkjvvoUKFVJCQoJiYmIydEN88zF0d11KLfa0SMznP//5T4Z+MXhzngUKFNCaNWuS/fzGWXhSyteQxEGdG6V0DRk0aJC6du2qPXv2aPr06SpfvrxatmyZjugBAEhdWv6NLlmypD766CNJ0sGDB/XZZ59p1KhRunLlivOPfmmR1n661TzT0l/K6L/bXl5eeuqpp/TSSy9p0qRJevfdd9W8eXNVqFAh1TgLFCiQYpvfHKe7fn1QUJBGjx6t0aNH68SJE87ZJx06dND//ve/FGPw8/PTnXfeqejoaN12220KDw9XtWrVVKZMGUnXFkBfv3692rdvn2RfO38Jf3NeYWFh8vb2VmRkZIoDUIkDOT4+Pnr22Wf17LPP6syZM4qOjtZLL72k1q1b69ixY8qTJ0+SfRPP+ZT6/jfO8E2p73/z/fJ3332nb7/9VjNnzlSvXr2c23/66aeUqp2qtLRBRvYtVKiQfvvtt3TFeKPk+v5W720zIq39dKt5Vq9eXa+//nqynycObiZK7vx1OByWryGhoaHq1auX/v3vf2vYsGGaMWOGevbsma77RQD/j4ETAMmqUKGCihUrprlz52rYsGHOf8gvXLigRYsWqWHDhs4OZKlSpXTy5EmdOHHCOSBx5coVffHFF+kqOygoSHfccYc+//xzTZw40dnRPHfunJYvX+52/8aNGytfvnz6/vvvbft1dfv27fXGG2/o999/T3Z6vRVNmjTRZ599ptWrVzun6ErS/Pnzk01fp04dNWrUSOPHj9d3332nxx9/XEFBQamW0bx5c02YMEGffvqpnnnmGef2RYsW6cKFC2revHmSfby9vVW/fn1VrFhRc+bM0Z49e5wDJ4mCgoLUtm1bXblyRffdd58OHDiQ6h+UW7RooZdeekkjRozQbbfdpooVKzq3L1u2TDExMWl6JNeNM4ACAwMt73ez9u3ba+zYsSpQoECKNwnJld2kSRPly5dPX3zxhfbu3ZvswElaztsiRYooICBA+/fvd9m+dOnSJPk6HI4kN/wrV67U77//rttvv91SHW6UnjZI675t27bVuHHj9N577+nVV19NMZ2VX4DdqGHDhgoMDNSnn36qrl27Orf/9ttv2rBhg7p06WI5r9S0bt1aPj4++vnnn217dFz79u01f/58JSQkqH79+unKo0mTJnrzzTf1/fffuzyuK6VrSOfOnVWiRAkNHTpUmzdv1pQpU5iqDwDIFOn9N7p8+fJ65ZVXtGjRIu3Zs8e5PS19BDv66cnlmd7+UqImTZpo1apV+vPPP50DGFevXnU+RvNmjz76qEaNGqWHHnpIP/74o8aPH++2jObNm2vcuHHas2ePateu7dz+ySefyOFwqFmzZkn2sdKvL1KkiHr37q1vv/1WU6dO1T///JPs4EGiFi1aaPjw4QoODnbOKA8KClKDBg00bdo0/fHHH2l6jFNa+4jJyZMnj5o1a6a9e/eqevXqLo87Sk2+fPnUpUsX/f777xoyZIiOHDmS5DGpktSgQQMFBARozpw5Lv3Fr7/+Wr/++qvLwEni/+/fv99lMGzZsmUueSb2027u+3/wwQeWYr9Zetsgrfu2bdtWI0eO1IYNG1J89NrNT3SwIj33tulhRz89uTxXrVqlsmXLJnmMnxVBQUGqW7eulixZojfffNPZ/ufPn9eKFSuS3WfQoEF699131aVLF505c4aZ5oANGDgBkCwvLy9NmDBBDz30kNq3b6/+/fvr8uXLmjhxos6cOaM33njDmbZ79+4aOXKkHnzwQT333HO6dOmS3n77bSUkJKS7/Ndee01t2rRRy5YtNXToUCUkJGj8+PEKCgpK8pitm+XNm1fTpk1Tr1699Pfff6tLly4qXLiwTp06pW+//VanTp3Se++9l6Z4GjdurMcff1x9+vTRrl27dPfddysoKEjHjx/XV199pWrVqjnXJUlJr169NGXKFD388MMaM2aMbr/9dq1evdo5wHTjWjKJBg8erO7du8vhcGjAgAFu42zZsqVat26tF154QWfPnlXjxo21f/9+RUVFqVatWoqMjJQkvf/++9qwYYPatWunEiVK6NKlS85f1CXe1Dz22GMKDAxU48aNVbRoUcXExGjcuHEKDQ11++ueOnXqKCwsTGvXrlWfPn2c21u0aKHXXnvNpRwrqlWrJkkaP3682rZtK29v7zR3/iVpyJAhWrRoke6++24988wzql69uq5evaqjR49q7dq1Gjp0qOrXr6+RI0fqt99+U/PmzXXbbbfpzJkzeuutt+Tr66smTZqkmL/V8zbxOdwff/yxypYtqxo1amjHjh2aO3dukjzbt2+vmTNnqmLFiqpevbp2796tiRMnpns6vNU2yMi+d911lyIjIzVmzBidOHFC7du3l7+/v/bu3as8efLo6aeflnTtuM6fP18LFixQmTJlFBAQ4DzWycmXL59GjBihl156SY888oh69Oihv/76S6NHj1ZAQICioqLS1SY3K1WqlF599VW9/PLL+uWXX9SmTRuFhYXpxIkT2rFjh/MXmWnx4IMPas6cObr33ns1ePBg3XHHHfL19dVvv/2mjRs3qlOnTurcuXOqeQwZMkQff/yx2rZtq1dffVVFihTR3Llznb8Cvfka4u3traeeekovvPCCgoKCkjwfGgAAu1j9N3r//v0aOHCgunbtqnLlysnPz08bNmzQ/v379eKLLzrzS0sfwY5++s0y0l9K9PLLL2v58uVq3ry5Xn75ZedjdBLXWrz53+18+fLpkUce0XvvvaeSJUtaWiPvmWee0SeffKJ27drp1VdfVcmSJbVy5Uq9++67evLJJ53rpVnp19evX1/t27dX9erVFRYWph9++EGzZ892+cFcSpo3b66EhAStX79es2bNcm5v0aKFoqKi5HA40rSWSVr7iCl56623dOedd+quu+7Sk08+qVKlSuncuXP66aeftHz5cucaGh06dFDVqlVVt25dFSpUSL/++qumTp2qkiVLqly5csnmHRYWpmHDhmnMmDF69NFH1bVrVx07dkyjRo1K8qiuevXqqUKFCho2bJji4+MVFhamxYsX66uvvnJJV7FiRZUtW1YvvviijDHKnz+/li9f7vZRyXa0QUb2HTJkiBYsWKBOnTrpxRdf1B133KGLFy9q8+bNat++vXON05IlS2rp0qVq3ry58ufPr4IFC6a69p7Ve9uMsqOffrNXX31V69atU6NGjTRo0CBVqFBBly5d0pEjR7Rq1Sq9//77bu/nXn31VbVr106tW7fW4MGDlZCQoIkTJypv3rzJ/k2kfPnyatOmjVavXq0777xTNWrUSFPMAJJxa9akB+BJNm7caCSZhQsXJvlsyZIlpn79+iYgIMAEBQWZ5s2bm61btyZJt2rVKlOzZk0TGBhoypQpY6ZPn26ioqLMzZcZSeapp55Ksn/JkiVNr169XLYtW7bMVK9e3fj5+ZkSJUqYN954I9k8U7J582bTrl07kz9/fuPr62uKFStm2rVr51LPxPxOnTrlsu+MGTOMJHP48GGX7R9//LGpX7++CQoKMoGBgaZs2bLmkUceMbt27XKmadKkialSpUqyMR09etTcf//9Jm/evCY4ONg88MADZtWqVUaSWbp0aZL0ly9fNv7+/qZNmzbJ5terVy9TsmRJl20XL140L7zwgilZsqTx9fU1RYsWNU8++aQ5ffq0M822bdtM586dTcmSJY2/v78pUKCAadKkiVm2bJkzzaxZs0yzZs1MkSJFjJ+fn4mIiDDdunUz+/fvTzaWm3Xu3NlIMnPmzHFuu3LligkKCjJeXl4u8RiT8rFIbIdHH33UFCpUyDgcjmSPzY1SOwbnz583r7zyiqlQoYLx8/MzoaGhplq1auaZZ54xMTExxhhjVqxYYdq2bWuKFStm/Pz8TOHChc29995rvvzyS2c+hw8fNpLMjBkzXPK3et7GxsaaRx991BQpUsQEBQWZDh06mCNHjhhJJioqypnu9OnTpl+/fqZw4cImT5485s477zRffvmladKkiWnSpInbeNLbBsYk/720um9CQoKZMmWKqVq1qjNdw4YNzfLly51pjhw5Ylq1amWCg4ONJOe5nNo1yRhj/v3vfzvbODQ01HTq1MkcOHDAJU2vXr1MUFBQkn3Tcg1ZsmSJadasmQkJCTH+/v6mZMmSpkuXLiY6Ojpd5cTFxZk333zT1KhRwwQEBJi8efOaihUrmv79+5tDhw4505UsWdK0a9cu2Zi+++4706JFCxMQEGDy589v+vXrZ2bNmmUkmW+//TZJ+sRz6oknnrBUZwAArEipr+zu3+gTJ06Y3r17m4oVK5qgoCCTN29eU716dTNlyhQTHx/vTJdSHyE1GemnJ9enttrnSen+xhhjvvzyS1O/fn3j7+9vwsPDzXPPPWfGjx9vJJkzZ84kSb9p0yYjybzxxhvJ5pdc3+zXX381PXv2NAUKFDC+vr6mQoUKZuLEiSYhIcGZxkq//sUXXzR169Y1YWFhxt/f35QpU8Y888wz5s8//0w2lhtdvXrVFCxY0Egyv//+u3P71q1bjSRTu3btJPuk1l9P6/FP7RgcPnzY9O3b1xQrVsz4+vqaQoUKmUaNGpkxY8Y400yaNMk0atTIFCxY0NmH79evnzly5IgzTXLn/NWrV824ceNM8eLFjZ+fn6levbpZvnx5kn66McYcPHjQtGrVyoSEhJhChQqZp59+2qxcudJIMhs3bnSm+/77703Lli1NcHCwCQsLM127djVHjx5Nco+Q0ncwvW2Q0r2ElX2NuXbPMnjwYFOiRAnj6+trChcubNq1a2f+97//OdNER0ebWrVqGX9/fyPJeS6ndh9o5d7WmJT7z8kdi+RktJ+eXDmnTp0ygwYNMqVLlza+vr4mf/78pk6dOubll18258+fN8b8f7tPnDgx2bgWL15sqlWr5nJvOWjQIBMWFpZs+pkzZxpJZv78+W7rDMA9hzHGZObADAAgdWPHjtUrr7yio0ePJvnVyfLly9WxY0etXLnSuQgfANzo8ccf17x58/TXX38lmYU1bdo0DRo0SN99951zMUoAAHDrtGrVSkeOHNHBgweTfDZ06FC99957OnbsWLILUAPI3eLi4lSzZk0VK1ZMa9euTfL5Aw88oO3bt+vIkSPy9fW9BRECOQuP6gKALDR9+nRJ16Zhx8XFacOGDXr77bf18MMPuwyafP/99/r11181dOhQ1axZ02VNFAC516uvvqqIiAiVKVPG+Yzjf//733rllVdcBk327t2rw4cP69VXX1WnTp0YNAEA4BZ49tlnVatWLRUvXlx///235syZo3Xr1umjjz5ySbd9+3YdPHhQ7777rvr378+gCQBJUr9+/dSyZUvnI/bef/99/fDDD3rrrbecaS5fvqw9e/Zox44dWrx4sSZPnsygCWATBk4AIAvlyZNHU6ZM0ZEjR3T58mWVKFFCL7zwgl555RWXdAMGDNDWrVtVu3ZtzZo1iwWdAUiSfH19NXHiRP3222+Kj49XuXLlNHnyZA0ePNglXefOnRUTE6O77rpL77///i2KFgCA3C0hIUEjR45UTEyMHA6HKleurNmzZ+vhhx92SZe4jkj79u01ZsyYWxQtAE9z7tw5DRs2TKdOnZKvr69q166tVatWuawXevz4cTVq1EghISHq37+/cz1JABnHo7oAAAAAAAAAAACu87rVAdxoy5Yt6tChgyIiIuRwOLRkyRKXz40xGjVqlCIiIhQYGKimTZvqwIEDLmkuX76sp59+WgULFlRQUJA6duyo3377zSXN6dOnFRkZqdDQUIWGhioyMlJnzpxxSXP06FF16NBBQUFBKliwoAYNGqQrV664pPnvf/+rJk2aKDAwUMWKFdOrr74qxqEAAAAAZCbumwAAAJATjBs3TvXq1VNwcLAKFy6s++67Tz/++KNLGit92+QsWrRIlStXlr+/vypXrqzFixenKTaPGji5cOGCatSo4VwD4GYTJkzQ5MmTNX36dO3cuVPh4eFq2bKlzp0750wzZMgQLV68WPPnz9dXX32l8+fPq3379kpISHCm6dmzp/bt26c1a9ZozZo12rdvnyIjI52fJyQkqF27drpw4YK++uorzZ8/X4sWLdLQoUOdac6ePauWLVsqIiJCO3fu1LRp0/Tmm29q8uTJmdAyAAAAAHAN900AAADICTZv3qynnnpK27dv17p16xQfH69WrVrpwoULzjRW+rY327Ztm7p3767IyEh9++23ioyMVLdu3fTNN99Yjs1jH9XlcDi0ePFi3XfffZKujSxFRERoyJAheuGFFyRd+5VUkSJFNH78ePXv31+xsbEqVKiQZs+ere7du0uS/vjjDxUvXlyrVq1S69at9cMPP6hy5cravn276tevL+naQmwNGzbU//73P1WoUEGrV69W+/btdezYMUVEREiS5s+fr969e+vkyZMKCQnRe++9p+HDh+vEiRPy9/eXJL3xxhuaNm2afvvttxTXI7h8+bIuX77sfH/16lX9/fffKlCgAGsYAAAAIMczxujcuXOKiIiQl5dH/Y4rW8qJ903cMwEAgJzG0/rAly5dSjJL2C7GmCR9Nn9/f2dfMDWnTp1S4cKFtXnzZt19992W+rbJ6d69u86ePavVq1c7t7Vp00ZhYWGaN2+e5Yp4JElm8eLFzvc///yzkWT27Nnjkq5jx47mkUceMcYYs379eiPJ/P333y5pqlevbkaOHGmMMeajjz4yoaGhScoLDQ01H3/8sTHGmBEjRpjq1au7fP73338bSWbDhg3GGGMiIyNNx44dXdLs2bPHSDK//PJLivWKiooyknjx4sWLFy9evHjxytWvY8eOpXI3AKuknHffxD0TL168ePHixSunvjyhD3zx4kWTNxPrmDdv3iTboqKiLMV26NAhI8n897//NcZY69smp3jx4mby5Mku2yZPnmxKlChhuZ18lE3ExMRIkooUKeKyvUiRIvr111+dafz8/BQWFpYkTeL+MTExKly4cJL8Cxcu7JLm5nLCwsLk5+fnkqZUqVJJykn8rHTp0snWY/jw4Xr22Wed72NjY1WiRAkdO3ZMISEhKTeABwkNHWdLPrGxw20py0o+8Aw59Xjm1HrZgbYBANzs7NmzKl68uIKDg291KDlSTrhvygn3TAAAADfypD7wlStXdF7SM5LczwFJm8uSppw/n6TfZmW2iTFGzz77rO68805VrVpVkrW+bXKS66fe2Ne1ItsMnCS6eZqPSWbqz81uTpNcejvSmOtPPUstnpSmJYWEhGSjm4AAW3KxVl/3ZWWfdkPOPZ45tV52oG0AAMnjkUuZKzvfN+WMeyYAAICkPKkPHCS7/sr7/xIHG9LTbxs4cKD279+vr776Ksln6enbpmefG936B6pZFB4eLklJRoVOnjzpHD0KDw/XlStXdPr06VTTnDhxIkn+p06dcklzczmnT59WXFxcqmlOnjwpKekIGAAAAABkBe6bAAAAkN08/fTTWrZsmTZu3KjbbrvNud1K3zY5KfVB09L/zDYDJ6VLl1Z4eLjWrVvn3HblyhVt3rxZjRo1kiTVqVNHvr6+LmmOHz+u7777zpmmYcOGio2N1Y4dO5xpvvnmG8XGxrqk+e6773T8+HFnmrVr18rf31916tRxptmyZYvLIjpr165VREREkqnoAAAAAJAVuG8CAACAFb6Z9EoLY4wGDhyozz//XBs2bEjyGFcrfdvkNGzY0GUf6VofNLV9buZRAyfnz5/Xvn37tG/fPknS4cOHtW/fPh09elQOh0NDhgzR2LFjtXjxYn333Xfq3bu38uTJo549e0qSQkND1a9fPw0dOlTr16/X3r179fDDD6tatWpq0aKFJKlSpUpq06aNHnvsMW3fvl3bt2/XY489pvbt26tChQqSpFatWqly5cqKjIzU3r17tX79eg0bNkyPPfaYc4pRz5495e/vr969e+u7777T4sWLNXbsWD377LMeNeUKAAAAQM7CfRMAAABygqeeekqffvqp5s6dq+DgYMXExCgmJkYXL16UJEt9W0l65JFHNHz4/6+hO3jwYK1du1bjx4/X//73P40fP17R0dEaMmSI5dg8ao2TXbt2qVmzZs73iQsC9urVSzNnztTzzz+vixcvasCAATp9+rTq16+vtWvXuiyqM2XKFPn4+Khbt266ePGimjdvrpkzZ8rb29uZZs6cORo0aJBatWolSerYsaOmT5/u/Nzb21srV67UgAED1LhxYwUGBqpnz5568803nWlCQ0O1bt06PfXUU6pbt67CwsL07LPPuiximFMZE2VLPg7H6Cwryy52xZxVdc+ObZyVPKl9PCkWO2XHmAEA8HTcNwEAACCjfGT/4EBa83vvvfckSU2bNnXZPmPGDPXu3VuSLPVtjx49Ki+v/58j0qhRI82fP1+vvPKKRowYobJly2rBggWqX7++5dgcJnFlPtwSZ8+eVWhoqGJjY3PdQofZ8Q/FDJxkTE6Nx458PK1tAADILLm5/4v04ZwBAADZnSf1ZxJjeV32Lw5/SdLLkkfUM6M8asYJAAAAAAAAAADIXD5K+5ok7sTbnN+txMAJAAAAAAAAAAC5iCc8qsuTedTi8AAAAAAAAAAAALdSThoEAgAAAAAAAAAAbviKR3WlhoETDxEaulFSUIqfG9Mi64KxgcMR7TaNXYtu28VKPNlt4XK74rVr4fKsWmjdqqzMx129WPgdAAAAAAAA8AwMnAAAAAAAAAAAkIuwxknqWOMEAAAAAAAAAADgupw0CAQAAAAAAAAAANzwkf1rnMTZnN+txIwTAAAAAAAAAACA65hxAgAAAAAAAABALsIaJ6nLSXXJ1mJjmykkJCTFzx2O0baUY0yULfm4L6eFTTk1tqUsu9rPLll1HKzU20osWRWvVXbVy658rPC0NgQAAACQPu7uI+j7AwCyA1/Z/6guu/O7lXhUFwAAAAAAAAAAwHXMOAEAAAAAAAAAIBdhxknqmHECAAAAAAAAAABwHTNOAAAAAAAAAADIRVgcPnXMOAEAAAAAAAAAALguJw0C5WjGRLlN43CMzoJI7GMlXiv1tsKufOyK2VHGfVnmFysRZTwWu2TH45mV7QMAAAAgZ+A+AgCQE/jI/jVJctJgAzNOAAAAAAAAAAAArstJg0AAAAAAAAAAAMAN1jhJXU6qCwAAAAAAAAAAcMNX9j+qy+78biUe1QUAAAAAAAAAAHAdM04AAAAAAAAAAMhFeFRX6nJSXXI0h2O02zTGRGVBJPbFklXx2smumM0vtmTjUWxrmyw8Lzzpe+Vp7Gob2hgAAAAAAADZDQMnAAAAAAAAAADkIj6yf02SnDTYwBonAAAAAAAAAAAA1+WkQSAAAAAAAAAAAOAGa5ykjhknAAAAAAAAAAAA1+WkQSAAAAAAAAAAAOCGr+xf48Tu/G4lBk48RGjoOEkBKX5uTJTbPByO0W7TWMknK/KAPRyO6FQ/N6aFhTyy5rzJ6rKs4FxOmV1tQxunzMr3wQraGAAAAAAAwF4MnAAAAAAAAAAAkIuwxknqclJdAAAAAAAAAACAGz6y/9FaOWmwgcXhAQAAAAAAAAAArstJg0AAAAAAAAAAAMANFodPHQMnHiI2drhCQkIylIddC8jbITsuJu5pC5dbYWXxd/d55N72Q86SVeegXeXwfQAAAAAAAPBMDJwAAAAAAAAAAJCLsDh86ljjBAAAAAAAAAAA4LqcNAgEAAAAAAAAAADc8PGWfB0252kkJdib563CjBMAAAAAAAAAAIDrmHECAAAAAAAAAEAu4uMj+TDjJEUMnCAJY6IynIfDMdqWcqykyY5l5UQ5td659Zhnx3pnVTxZWe/seBw8Ce0HAAAAAEDyfDPhUV2+xt78biUe1QUAAAAAAAAAAHAdM04AAAAAAAAAAMhFMu1RXTkEM04AAAAAAAAAAACuY8YJAAAAAAAAAAC5iK+35GvztArfq/bmdysx4wQAAAAAAAAAAOA6ZpxkEw7HaFvyMSYqw3lYicWOcqzKjmV5Wht6Ek9rm+x2HOxqv+xW75wqNx8HT7sWuJPd4gUAAAAA5HLesn9ahc1rptxKzDgBAAAAAAAAAAC4jhknAAAAAAAAAADkJj6yf1pFDlrjhIETAAAAAAAAAAByEwZOUsWjugAAAAAAAAAAQJbbsmWLOnTooIiICDkcDi1ZssTlc4fDkexr4sSJKeY5c+bMZPe5dOmS5biYcQIAAAAAAAAAQG7iITNOLly4oBo1aqhPnz564IEHknx+/Phxl/erV69Wv379kk17o5CQEP34448u2wICAizHxcBJNmFMVJaV5XCM9og8pKyttxVW6mUlZk+rlyex0jZ2HYecyNPqnVOvBch8dhzzrDxvOEcBAAByj9Tuc+gXAkDatG3bVm3btk3x8/DwcJf3S5cuVbNmzVSmTJlU83U4HEn2TQse1QUAAAAAAAAAQG7iJcnb5tf10YazZ8+6vC5fvmxLyCdOnNDKlSvVr18/t2nPnz+vkiVL6rbbblP79u21d+/eNJXFwAkAAAAAAAAAALBF8eLFFRoa6nyNGzfOlnxnzZql4OBg3X///ammq1ixombOnKlly5Zp3rx5CggIUOPGjXXo0CHLZfGoLgAAAAAAAAAAchMfXZslYifHtf8cO3ZMISEhzs3+/v62ZP/xxx/roYcecrtWSYMGDdSgQQPn+8aNG6t27dqaNm2a3n77bUtlMXACAAAAAAAAAABsERIS4jJwYocvv/xSP/74oxYsWJDmfb28vFSvXj1mnAAAAAAAAAAAgBRk4oyTzPDRRx+pTp06qlGjRpr3NcZo3759qlatmuV9GDjJZRyO0W7TGBPlMeVYyccKO+pkp5xaL3ey6vyzk8MR7TaNMS2yIJLsydOOZ1bJymugp7Vxdow5q9A2AAAAOQN9NgA5QuKC7rfY+fPn9dNPPznfHz58WPv27VP+/PlVokQJSdcWm1+4cKEmTZqUbB6PPPKIihUr5lxLZfTo0WrQoIHKlSuns2fP6u2339a+ffv0zjvvWI6LgRMAAAAAAAAAAJDldu3apWbNmjnfP/vss5KkXr16aebMmZKk+fPnyxijHj16JJvH0aNH5eXl5Xx/5swZPf7444qJiVFoaKhq1aqlLVu26I477rAcFwMnAAAAAAAAAADkJh7yqK6mTZvKGJNqmscff1yPP/54ip9v2rTJ5f2UKVM0ZcqUtAdzAy/3SQAAAAAAAAAAAHIHZpwAAAAAAAAAAJCbeIvRgVQw4wQAAAAAAAAAAOA6xpSQhMMRnernxrTIokgkY6Jsycddna6Vlf3qld3YVe+sbb+tblM4HO7T2BGzwzE6S8rJybKqDbPnuW6P7BhzVqFtAODWSO3f/8y4Nmd1eQAAAOniLfvXOEl9qZJshRknAAAAAAAAAAAA1zHjBAAAAAAAAACA3MRHjA6kgqYBAAAAAAAAACA3YeAkVTyqCwAAAAAAAAAA4DrGlDxEaOg4SQEpfm5lEUG7Fj22spC6PeVk3ULXdi38bt9i9blzkW/7zlHPaj8Wfs98drWPJ7VhdjzmWRlzdmwfAIBnyup/L/j3CQAAZAvMOEkVM04AAAAAAAAAAACuY0wJAAAAAAAAAIDcxEuSt815XrU5v1uIGScAAAAAAAAAAADXMeMEAAAAAAAAAIDcJDPWODE253cLMeMEAAAAAAAAAADgOmaceIjY2OEKCQnJUB7GRNkUzdZUP3U4Uv/ceizPW4wndQ7HaFvysav9rMRj37FKnSfFYrUsa8ezccaDsSgrzwtPkh3PnewmO9aJY54xnva9AgAAAADkYsw4SRUDJwAAAAAAAAAA5CbeYnH4VPCoLgAAAAAAAAAAgOuYcQIAAAAAAAAAQG7Co7pSxYwTAAAAAAAAAACA65hxAgAAAAAAAABAbuIt+0cHctAaJwycZBMOx2i3aYyJyoJIrJXjSfHaWZaVetmVjx0xZ2Ub28Wu80tqkfFgbJTdjoWnxetwRLtNY4xnHXPgZp72vQIAAAAAAMnLdo/qio+P1yuvvKLSpUsrMDBQZcqU0auvvqqrV/9/OMsYo1GjRikiIkKBgYFq2rSpDhw44JLP5cuX9fTTT6tgwYIKCgpSx44d9dtvv7mkOX36tCIjIxUaGqrQ0FBFRkbqzJkzLmmOHj2qDh06KCgoSAULFtSgQYN05cqVTKs/AAAAAKSGeyYAAAC45Z1Jrxwi2w2cjB8/Xu+//76mT5+uH374QRMmTNDEiRM1bdo0Z5oJEyZo8uTJmj59unbu3Knw8HC1bNlS586dc6YZMmSIFi9erPnz5+urr77S+fPn1b59eyUkJDjT9OzZU/v27dOaNWu0Zs0a7du3T5GRkc7PExIS1K5dO124cEFfffWV5s+fr0WLFmno0KFZ0xgAAAAAcBPumQAAAICMyXaP6tq2bZs6deqkdu3aSZJKlSqlefPmadeuXZKu/XJq6tSpevnll3X//fdLkmbNmqUiRYpo7ty56t+/v2JjY/XRRx9p9uzZatHi2qNdPv30UxUvXlzR0dFq3bq1fvjhB61Zs0bbt29X/fr1JUkffvihGjZsqB9//FEVKlTQ2rVr9f333+vYsWOKiIiQJE2aNEm9e/fW66+/rpCQkKxuHgAAAAC5HPdMAAAAcMtHrHGSimw34+TOO+/U+vXrdfDgQUnSt99+q6+++kr33nuvJOnw4cOKiYlRq1atnPv4+/urSZMm+vrrryVJu3fvVlxcnEuaiIgIVa1a1Zlm27ZtCg0Ndd4ASFKDBg0UGhrqkqZq1arOGwBJat26tS5fvqzdu3cnG//ly5d19uxZlxcAAAAA2IV7JgAAALjlk0mvHCLbVeWFF15QbGysKlasKG9vbyUkJOj1119Xjx49JEkxMTGSpCJFirjsV6RIEf3666/ONH5+fgoLC0uSJnH/mJgYFS5cOEn5hQsXdklzczlhYWHy8/NzprnZuHHjNHq0PQuMAwAAAMDNuGcCAAAAMibbDZwsWLBAn376qebOnasqVapo3759GjJkiCIiItSrVy9nOofD4bKfMSbJtpvdnCa59OlJc6Phw4fr2Wefdb4/e/asihcvnmpc1zR2m8LhcH9zYUyULWnsyMOueK3wpLaRrMWTE3nacchK7uqeHeuUlYxpYUs+WXndsUN2ixcA4Bly7z0T4BlS68PRdwMAeAwe1ZWqbDdw8txzz+nFF1/Ugw8+KEmqVq2afv31V40bN069evVSeHi4pGu/bCpatKhzv5MnTzp/6RQeHq4rV67o9OnTLr+gOnnypBo1auRMc+LEiSTlnzp1yiWfb775xuXz06dPKy4uLsmvqhL5+/vL398/vdUHAAAAgFRxzwQAAABkTLZb4+Sff/6Rl5dr2N7e3rp69dpwVunSpRUeHq5169Y5P79y5Yo2b97s7ODXqVNHvr6+LmmOHz+u7777zpmmYcOGio2N1Y4dO5xpvvnmG8XGxrqk+e6773T8+HFnmrVr18rf31916tSxueYAAAAA4B73TAAAAHDLS5K3za9sN9qQsmw346RDhw56/fXXVaJECVWpUkV79+7V5MmT1bdvX0nXpoEPGTJEY8eOVbly5VSuXDmNHTtWefLkUc+ePSVJoaGh6tevn4YOHaoCBQoof/78GjZsmKpVq6YWLa49DqZSpUpq06aNHnvsMX3wwQeSpMcff1zt27dXhQoVJEmtWrVS5cqVFRkZqYkTJ+rvv//WsGHD9NhjjykkJOQWtA4AAACA3I57JgAAACBjst3AybRp0zRixAgNGDBAJ0+eVEREhPr376+RI0c60zz//PO6ePGiBgwYoNOnT6t+/fpau3atgoODnWmmTJkiHx8fdevWTRcvXlTz5s01c+ZMeXt7O9PMmTNHgwYNUqtWrSRJHTt21PTp052fe3t7a+XKlRowYIAaN26swMBA9ezZU2+++WYWtAQAAAAAJMU9EwAAANzKjDVOEmzO7xZyGGPMrQ4iNzt79qxCQ0MVGxub6i+uHI5oC7ltdZvCkxais2vRY7sWWs/KtsmtCz7n1npLLA7vKbLbOZjd4gUAK6z2f4FEnDPIblgcHgBwM0/qzzhjGSiF2Lys3NnLUuh0eUQ9MyrbzTjJvRq7TWFMC1tKcjdIY1c5dnUYPa3jmZV/6LRj0Cgr28+ugbCsbL+cep66w3HwDNktXgAAcgv+MI7UcA4AALIFZpykioETAAAAAAAAAAByk8QF3e3OM4fIQevcAwAAAAAAAAAAZAwzTgAAAAAAAAAAyE14VFeqmHECAAAAAAAAAABwHTNOAAAAAAAAAADITbxl/+hAvM353UIMnGQTxgS6TeNwXLQlH2mrm3Lc52BMC7dpHI7RFvKJcl+YBXaVlZUxW5GVZWWVnFgnT+Np3weOOQAAyG7ovwAAAORsDJwAAAAAAAAAAJCbZMYaJzlotIE1TgAAAAAAAAAAAK7LQWNAAAAAAAAAAADALe/rL7vzzCGYcQIAAAAAAAAAAHAdM04AAAAAAAAAAMhNWOMkVTmoKtlbaOg4SQGppGjsNg9jWtgWT1aUY0yU2zQOR7SFnLbaVNZoW/JB9pFbj6dd9c6O7Wfle+5OVtbb065LnhYPAAAAAABIJwZOUsWjugAAAAAAAAAAAK7LQWNAAAAAAAAAAADALS/Zv5h7DpqmkYOqAgAAAAAAAAAAkDHMOAEAAAAAAAAAIDdhjZNU5aCq5HTuF0B3ONznklULyNuxAHNO5kkLLHtSLBLxZFRWxmtXWVkZsycdKys8LV5PiwcAkLuEho6TFJBkO/8+AQAAwG48qgsAAAAAAAAAgNzEJ5NeabRlyxZ16NBBERERcjgcWrJkicvnvXv3lsPhcHk1aNDAbb6LFi1S5cqV5e/vr8qVK2vx4sVpiouBEwAAAAAAAAAAkOUuXLigGjVqaPr06SmmadOmjY4fP+58rVq1KtU8t23bpu7duysyMlLffvutIiMj1a1bN33zzTeW4+JRXQAAAAAAAAAA5Cbe119255lGbdu2Vdu2bVNN4+/vr/DwcMt5Tp06VS1bttTw4cMlScOHD9fmzZs1depUzZs3z1IezDgBAAAAAAAAACA3ycRHdZ09e9bldfny5QyFumnTJhUuXFjly5fXY489ppMnT6aaftu2bWrVqpXLttatW+vrr7+2XCYDJwAAAAAAAAAAwBbFixdXaGio8zVu3Lh059W2bVvNmTNHGzZs0KRJk7Rz507dc889qQ7GxMTEqEiRIi7bihQpopiYGMvl8qguDxEbO1whISEpfu5wjLaQy1a3KRwO92nc52EllufdpjAmMMOxZFfGRGVJOVaOlZVY7MrHCrvysXaeupd1xyrabRpjWmRBJNZ52rmD3Mfd+cW5BQA5i7t7JgAAAKSBt+wfHbj+qK5jx4659Nv8/f3TnWX37t2d/1+1alXVrVtXJUuW1MqVK3X//fenuJ/D4XB5b4xJsi01DJwAAAAAAAAAAABbhISEZNoPXooWLaqSJUvq0KFDKaYJDw9PMrvk5MmTSWahpIZHdQEAAAAAAAAAkJtk4honmemvv/7SsWPHVLRo0RTTNGzYUOvWrXPZtnbtWjVq1MhyOcw4AQAAAAAAAAAAWe78+fP66aefnO8PHz6sffv2KX/+/MqfP79GjRqlBx54QEWLFtWRI0f00ksvqWDBgurcubNzn0ceeUTFihVzrqUyePBg3X333Ro/frw6deqkpUuXKjo6Wl999ZXluBg4AQAAAAAAAAAgN/GWc00SW/NMo127dqlZs2bO988++6wkqVevXnrvvff03//+V5988onOnDmjokWLqlmzZlqwYIGCg4Od+xw9elReXv//cK1GjRpp/vz5euWVVzRixAiVLVtWCxYsUP369S3HxcAJAAAAAAAAAADIck2bNpUxJsXPv/jiC7d5bNq0Kcm2Ll26qEuXLumOi4ETDxEaOk5SQIqfGxPlNg+HY7SNEaXMWizRFnJqYSEfe+pkJWZPY6Xu7uqVHettF0+ru7vjaVe8duVjx/lnNY0VuflaYAe7jqenyY4xu5NTjxUA2CGleyauiwAAAOmQGWuS5KDRhhxUFQAAAAAAAAAA4BYDJ6nycp8EAAAAAAAAAAAgd8hBY0AAAAAAAAAAAMAtL9m/OHwOmqaRg6oCAAAAAAAAAACQMcw4AQAAAAAAAAAgN2GNk1TloKrkbA5HtNs0xkTZlE8LSzFldh7XPG+hrEBbSrLWfqNtyccKu/JxJyvrlJWysl5WvldZxa56e9ox97R4kHN42jWQcx0AUhYbO1whISG3OgyPlNq/Z/zbAmQPfI8BwLMwcAIAAAAAAAAAQG7CjJNUscYJAAAAAAAAAADAdTloDAgAAAAAAAAAALjlff1ld545BAMnAAAAAAAAAADkJjyqK1U8qgsAAAAAAAAAAOC6HDQGlL3Fxg5XSEhIip87HKPd5uFwbHWbxpioNMWV3lislJNT8/EknlanrIwnK+tlTAu3aax8P+2Q3c7RnCorr0tWcF6kjLYBAOQE/HsGZH98jwFkOW/ZPzqQgx7VxYwTAAAAAAAAAACA65hxAgAAAAAAAABAbsIaJ6lixgkAAAAAAAAAAMB1OWgMCAAAAAAAAAAAuOUt+9ckYY0TAAAAAAAAAACAnIcZJx4iNHScpIAM5WFMlNs0DsdoW/LxlHLszMcKK/XyLI1vdQAu7DpWdp1fOfU8tUNWtk1O5GnnX1bKqfUCAAAAACBHYY2TVOWgqgAAAAAAAAAAALe8Zf/oAI/qAgAAAAAAAAAAyHmYcQIAAAAAAAAAQG7C4vCpYsYJAAAAAAAAAADAdcw48RCxscMVEhKSBSW5XyzcjgXQrS2MHG0hnxYW8rloIZ9At2msyG6Lm1trv6xb8N7TFoTOrQt4Z+Uxz4nsOiey23ljVXarV078jgMAAAAA4BaLw6eKGScAAAAAAAAAAADX5aAxIAAAAAAAAAAA4BYzTlLFjBMAAAAAAAAAAIDrctAYEAAAAAAAAAAAcIsZJ6nKQVUBAAAAAAAAAADuGC/JeNufZ07BwEkuY0wLC6lST+NwjLYnGG11m8LhcJ/GmCg7grEtH0eZrCvLXT5WjpWVWDwtn6wsS2psIU32Ytf5ZxdPO7+yUyxZXVZOxHEAAAAAAAA3Y+AEAAAAAAAAAIBcJMHn2svuPHOKHDR5BgAAAAAAAAAAIGNy0BgQAAAAAAAAAABwhxknqWPGCQAAAAAAAAAAwHU5aAwIAAAAAAAAAAC4E+/tULy3w+Y8jSRja563CgMn2YTDEW0h1Va3KYyJslDWaAtlZZXGblNYaRtjWtgRjG3HwWHTNcnd8bRyvO0oJ6vzsYuVc93TYnbH0+rkefFk/DtsJd7sdt4g4zztmHvadw8AAAAAgOyEgRMAAAAAAAAAAHKRBB8fJfjYO+MkwcdIirM1z1uFgRMAAAAAAAAAAHKRBG9vJdj8qK4E75wzcMLi8AAAAAAAAAAAANcx4wQAAAAAAAAAgFzkqryVIHtnnFzNIQvDS8w4AQAAAAAAAAAAcGLGSTZhTAsLqdyncTguZjwYNbZQzmi3aYyJsiEWyeGItiUfK6wcB4djq4V87Kl7VrFyPK3IymOe3drYLjm13ll5TbFyLfUk9n2vsrKN7eEuZk+LNyvl5roDAABkttT6ofTDAGQX8fJWvM0zTuKZcQIAAAAAAAAAAJDzMOMEAAAAAAAAAIBcJEHeSrB5XkWCrtqa363EjBMAAAAAAAAAAIDrmHECAAAAAAAAAEAukjkzTuxdM+VWYuAEAAAAAAAAAIBchIGT1DFw4iFCQ8dJCsj0coyJspDKShp3WrhN4XCMtqEcq9zH42mstI+145lxVsqx63g6HNEWUm21kI/7NFnVfnbJ2u9MY7cpjLHne+VJ57pdcmKd7ET7AAA8RWr/JvFvEYCUcH0AgJyPgRMAAAAAAAAAAHIRZpykjsXhAQAAAAAAAAAArmPgBAAAAAAAAACAXCRB3oq3+ZUg7zTHsWXLFnXo0EERERFyOBxasmSJ87O4uDi98MILqlatmoKCghQREaFHHnlEf/zxR6p5zpw5Uw6HI8nr0qVLluNi4AQAAAAAAAAAAGS5CxcuqEaNGpo+fXqSz/755x/t2bNHI0aM0J49e/T555/r4MGD6tixo9t8Q0JCdPz4cZdXQID1Ncaz5cDJ77//rocfflgFChRQnjx5VLNmTe3evdv5uTFGo0aNUkREhAIDA9W0aVMdOHDAJY/Lly/r6aefVsGCBRUUFKSOHTvqt99+c0lz+vRpRUZGKjQ0VKGhoYqMjNSZM2dc0hw9elQdOnRQUFCQChYsqEGDBunKlSuZVncAAAAAcId7JgAAAKQmQT6Z8kqrtm3basyYMbr//vuTfBYaGqp169apW7duqlChgho0aKBp06Zp9+7dOnr0aKr5OhwOhYeHu7zSItstDn/69Gk1btxYzZo10+rVq1W4cGH9/PPPypcvnzPNhAkTNHnyZM2cOVPly5fXmDFj1LJlS/34448KDg6WJA0ZMkTLly/X/PnzVaBAAQ0dOlTt27fX7t275e19bUpRz5499dtvv2nNmjWSpMcff1yRkZFavny5JCkhIUHt2rVToUKF9NVXX+mvv/5Sr169ZIzRtGnT0lizBpKCUvl8axrzS57DEW0hVeplGRNloZzRFiNKnV1lWUljpSwr7Monu7Gv3lbO9efdpjAmMOOheBhPO7ey8ntlV1lZGXNWsatOnnasrPCkY5UTzy0A2VfOvWeyH9dmAAAA+509e9blvb+/v/z9/W3JOzY2Vg6Hw6Vvm5zz58+rZMmSSkhIUM2aNfXaa6+pVq1alsvJdgMn48ePV/HixTVjxgzntlKlSjn/3xijqVOn6uWXX3aOUs2aNUtFihTR3Llz1b9/f8XGxuqjjz7S7Nmz1aJFC0nSp59+quLFiys6OlqtW7fWDz/8oDVr1mj79u2qX7++JOnDDz9Uw4YN9eOPP6pChQpau3atvv/+ex07dkwRERGSpEmTJql37956/fXXFRISkkWtAgAAAADXcM8EAAAAdxLkla41SVLP85rixYu7bI+KitKoUaMynP+lS5f04osvqmfPnqn2IytWrKiZM2eqWrVqOnv2rN566y01btxY3377rcqVK2eprGz3qK5ly5apbt266tq1qwoXLqxatWrpww8/dH5++PBhxcTEqFWrVs5t/v7+atKkib7++mtJ0u7duxUXF+eSJiIiQlWrVnWm2bZtm0JDQ503AJLUoEEDhYaGuqSpWrWq8wZAklq3bq3Lly+7TIO/0eXLl3X27FmXFwAAAADYhXsmAAAA3ErHjh1TbGys8zV8+PAM5xkXF6cHH3xQV69e1bvvvptq2gYNGujhhx9WjRo1dNddd+mzzz5T+fLl0zTjOdsNnPzyyy967733VK5cOX3xxRd64oknNGjQIH3yySeSpJiYGElSkSJFXPYrUqSI87OYmBj5+fkpLCws1TSFCxdOUn7hwoVd0txcTlhYmPz8/JxpbjZu3Djn839DQ0OTjL4BAAAAQEZwzwQAAAB3EuSdKS/p2sLsN74y+piuuLg4devWTYcPH9a6devSPGvZy8tL9erV06FDh6zvk9Ygb7WrV6+qdu3aGjt2rGrVqqX+/fvrscce03vvveeSzuFwuLw3xiTZdrOb0ySXPj1pbjR8+HCX0bZjx46lGhMAAAAApAX3TAAAAHAnXt6Z8rJb4qDJoUOHFB0drQIFCqQ5D2OM9u3bp6JFi1reJ9sNnBQtWlSVK1d22VapUiUdPXpUkhQeHi5JSX69dPLkSecvncLDw3XlyhWdPn061TQnTpxIUv6pU6dc0txczunTpxUXF5fkV1WJ/P39k4y4AQAAAIBduGcCAABAdnH+/Hnt27dP+/btk3TtsbL79u3T0aNHFR8fry5dumjXrl2aM2eOEhISFBMTo5iYGF25csWZxyOPPOLyOLDRo0friy++0C+//KJ9+/apX79+2rdvn5544gnLcWW7xeEbN26sH3/80WXbwYMHVbJkSUlS6dKlFR4ernXr1qlWrVqSpCtXrmjz5s0aP368JKlOnTry9fXVunXr1K1bN0nS8ePH9d1332nChAmSpIYNGyo2NlY7duzQHXfcIUn65ptvFBsbq0aNGjnTvP766zp+/LhztGrt2rXy9/dXnTp10liz7ZICUvn8eQt5TLCQZquFNI0tpLGD+3Icjmhb8jGmhYWyLlrIJ9BCPu5jthKPMVEWyhrtNk1WlWMlHyvsyscudtXdk46VXWVl5bHypPMiK78P2VFW1t3dscit5ygA5Nx7JiB5qfUJ+DcaAIDkXZWP7YvDX1Xqs5eTs2vXLjVr1sz5/tlnn5Uk9erVS6NGjdKyZcskSTVr1nTZb+PGjWratKkk6ejRo/Ly+v85ImfOnNHjjz+umJgYhYaGqlatWtqyZYuzz2pFths4eeaZZ9SoUSONHTtW3bp1044dO/Svf/1L//rXvyRdmwY+ZMgQjR07VuXKlVO5cuU0duxY5cmTRz179pQkhYaGql+/fho6dKgKFCig/Pnza9iwYapWrZpatLj2B+1KlSqpTZs2euyxx/TBBx9Ikh5//HG1b99eFSpUkCS1atVKlStXVmRkpCZOnKi///5bw4YN02OPPcavogAAAADcEtwzAQAAILto2rSpjDEpfp7aZ4k2bdrk8n7KlCmaMmVKhuLKdgMn9erV0+LFizV8+HC9+uqrKl26tKZOnaqHHnrImeb555/XxYsXNWDAAJ0+fVr169fX2rVrFRwc7EwzZcoU+fj4qFu3brp48aKaN2+umTNnytv7/0fZ5syZo0GDBqlVq1aSpI4dO2r69OnOz729vbVy5UoNGDBAjRs3VmBgoHr27Kk333wzC1oCAAAAAJLingkAAADu3LiYu3155hwOY2XIBpnm7NmzCg0NlfSisuZRXVak/ugra4+9svK4oKx6JFj2fFSXFZ70+KecOgWeR3XlLHYcT0/7PnhaPFnJkx7VBcC6xP5vbGwsMw5gCecM3OFRXQAAT+dJ/ZnEWL6IramgEHsHTi6cTVDr0H0eUc+MynYzTgAAAAAAAAAAQPox4yR1DJx4iNjY4amOwllbJN09a79YT70sazMq7PlVj32/9ren/RyOrVmWjx1t6Gm/rsqOv4zPqhk5OXWmSFYe86wqy9Pa2NPiyUo5se7Z8ToJAJ4uvf0srrfZB8cKAADYjYETAAAAAAAAAABykQR5ZcKMk5yzKggDJwAAAAAAAAAA5CLx8la8zQMn8Tlo4MTrVgcAAAAAAAAAAADgKZhxAgAAAAAAAABALpIgHyXYPDyQkxaHZ8YJAAAAAAAAAADAdcw48RChoeMkBaSSorGFXNyncThGWw0pQxyOLCnmelnu62RMVJblk5XcxZNVx9tqWZ7WflZkVRtmz7aJ9rCyrFwns5ec+r0CACAr8W8lAABAUlflbfvi8FdZ4wQAAAAAAAAAACDnYcYJAAAAAAAAAAC5SEImzDhJYMYJAAAAAAAAAABAzsOMEwAAAAAAAAAAcpF4eSne5hkn8bpqa363EgMnAAAAAAAAAADkIgnyUYLNwwM56VFdDJx4iNjY4QoJCUnxc4djtIVcnnebwpgWaYgqc1mpkzFRNpUVbUtZVvKRttpUlpVj3jiLyrEi9Visl+U+H086jyV7ztOs/D5YYVc8Dof774N9rJSV8XMnK4+VXd/hrMwnK7mL2dPitSI7xgwAAAAAQE7DwAkAAAAAAAAAALlI5iwOn3Me1cXi8AAAAAAAAAAAANcx4wQAAAAAAAAAgFyEGSepy/CMk/j4eDviAAAAAIAci/smAAAAIPvI8MBJvXr19Nlnn9kRCwAAAADkSNw3AQAAwJMkyFvxNr/snsFyK2X4UV3R0dEaPXq03n77bb3++utq0qSJHXEhHYwJdJvG4Yi2kNPWjAej523IwxpHGZvycYx2m8aYKAv52BGNtbLcsXK8rdXJnvPGWlnuj4PUwkKarGMt5uxTzjWN3aawdl7YxY7rkjXu2tmO76ZVdl2XcqrcXPes4knnoCfFAqQH902AZ/WzcovU2pz2pn0AACnL8IyTAgUK6O2339asWbP07rvvqlOnTvrhhx/siA0AAAAAcgTumwAAAOBJEuSTKa+cIsM1OXnypDZs2KCDBw/Kx8dH27ZtU5MmTVSgQAFVqFBBS5YssSFMAAAAAMi+uG8CAACAJ0mQVyYsDp9ga363UoYHTho1aqQePXqocuXKuvfee/Xuu+8qNDRU8fHx+t///mdHjAAAAACQrXHfBAAAAGQfGR44Wbp0qapUqZI0Yx8fVa1aNaPZAwAAAEC2x30TAAAAPElCJizmnpMWh7e8xklkZKT++eefJNuT6/wDAAAAQG7EfRMAAACQ/TmMMcZKQm9vbx0/flyFCxeWJPXv319vvPGGwsLCnGni4uLk6+ubOZHmUGfPnlVoaKikFyUFZDC3xu6TlG7hPs3h0al+bEyU2ywcjmj35ViJV1uzMB8radyz0j7ZjcOR+jmR1XJiG2dHVr7nxri/5tiVT3Zj5Xtl7XprTz7IfPZ9Z7LfMc+OMSPzJPZ/Y2NjFRIScqvDsR33TfbL6edMZkvtGsy1FwCArOFJ/ZnEWCbGRiowxM/WvC+evaLnQmd7RD0zyvKMk5vHV+bNm6fTp0873584cULBwcH2RQYAAAAA2Qz3TQAAAED2l+41TpKbqHLlypUMBQMAAAAAOQn3TQAAAPBECfJWPGucpMjyjBMrHA6HndkBAAAAQI7DfRMAAADg2dI0cDJ37lzt2bNHcXFxkujwAwAAAMDNuG8CAACAp0uQT6a8cgrLNbnzzjsVFRWlc+fOydfXV/Hx8XrppZd05513qnbt2ipUqFBmxgkAAAAAHo/7JgAAAGQHCfK2/dFaOelRXQ6T3EN3U3Ho0CHt3r1be/bs0e7du7V3716dOXPG+SuqhISETAk0pzp79qxCQ0MVGxurkJCQFNM5HKOzMCo7PG8hzYQsK8uYQFtKcjgu2lKWleNpTJSlmDJajhVWYrFWVlYeq6xpY6tlSY3dxNLClljsYt81J/V6X7PVbYqsPFZZ9d2zq045FccKyLms9n+zO+6b7JNbzhkgq6XWD6L/AwD28qT+TGIsr8b2V0CIn615Xzp7RSNDP/CIemZUmufOlCtXTuXKldODDz7o3Hb48GHt2rVLe/futTU4AAAAAMiOuG8CAACAJ0uQVybMOLF1SfVbypaHjpUuXVqlS5dW165d7cgOAAAAAHIc7psAAACA7CHnrNYCAAAAAAAAAADcipe34m2ecWJ3frdSzpk7AwAAAAAAAAAAkEEZmnGyZ88eVa1aVX5+9i4ikxuFho6TFJBKCnsWWLa2aLubfLpYWMT6P9EWyrGHtcXYrcRjpf3cu77eZ45ipf2ycvFAT1vM2UpZ7mJ2ONx/x62d6/Ys6p61i0FauKZY4EnnhbVzwsr3yp62yY5Y+D1jcnPdAU/EfRPgmXL74ug5pY65/TgCQHolyEcJNj+QKkEJtuZ3K2Voxkm9evV05MgRm0IBAAAAgJyH+yYAAAAge8nQkJIxxq44AAAAACBH4r4JAAAAnuaqvJVg85okV3PQGicsDg8AAAAAAAAAQC6SkAkDJ3bndyuxODwAAAAAAAAAAMB1zDgBAAAAAAAAACAXSZBXJsw4yTnzNBg4yXUmZDgHs7CFhVTu0zgcW92XZaIs5BNtIZ7GFtK4j8dKPsZYaR/3HI7RFspKvX3sar+srJMV1uqV8fazyo6yrJ3H9hwHu9rP2vfKCnuuBXax6zx1x9PqlJXxIPNxPAEAcI9/L3MGjiMAIDMwcAIAAAAAAAAAQC4SL2952zzjJJ41TgAAAAAAAAAAAHKeDM04iYqKUsGCBe2KBQAAAAByHO6bAAAA4GkS5KMEmx9IZXd+t1KGB04AAAAAACnjvgkAAADIXnLOEBAAAAAAAAAAAHDrqryVYPOaJFdz0BonDJxkG1ttycUY9792c3R187njooWS3MdrKRZHtC1lWdPYllwcjtFu01ipu7X2Sb0sK3lYa78WGY7lGvdtbIz7sqyw6/yyFo/7ellrH3d52PO9ssKufKy1cdbFbMf3067vuBVZeT3xNFnZzgAAJCe1f4v4NwjpxXkFAPAUCZkwcJKe/LZs2aKJEydq9+7dOn78uBYvXqz77rvP+bkxRqNHj9a//vUvnT59WvXr19c777yjKlWqpJrvokWLNGLECP38888qW7asXn/9dXXu3NlyXCwODwAAAAAAAAAAstyFCxdUo0YNTZ8+PdnPJ0yYoMmTJ2v69OnauXOnwsPD1bJlS507dy7FPLdt26bu3bsrMjJS3377rSIjI9WtWzd98803luNixgkAAAAAAAAAALlIvLzlZfOMk/h05Ne2bVu1bds22c+MMZo6dapefvll3X///ZKkWbNmqUiRIpo7d6769++f7H5Tp05Vy5YtNXz4cEnS8OHDtXnzZk2dOlXz5s2zFFeGBk7OnDmjL774Qr///rscDoeKFi2q1q1bKywsLCPZAgAAAECOwX0TAAAAcpOzZ8+6vPf395e/v3+a8zl8+LBiYmLUqlUrl7yaNGmir7/+OsWBk23btumZZ55x2da6dWtNnTrVctnpflTXRx99pDvuuEPbt2/X1atXlZCQoO3bt6tBgwb66KOP0pstAAAAAOQY3DcBAADAE11b48TH5te1GSfFixdXaGio8zVu3Lh0xRgTEyNJKlKkiMv2IkWKOD9Lab+07nOzdM84mTBhgvbs2aO8efO6bH/ttddUp04d9evXL71ZAwAAAECOwH0TAAAAcptjx44pJCTE+T49s01u5HA4XN4bY5Jss2OfG6V74MThcOj8+fNJbgDOnz+fpgBwTWzscJeT6WYOR7SFXLbaE8x/Ui/LmBZus3A43Mdi7TSxUqfG7pOUdh+zDltpYyssxGMTY6JS/dzKeeMuj2v5jLYQjft6Wzt3rMRsJR97Yrav7u6OlftyrByrrORpMdt1rNyxq05Z2X6edqyssOPa5Gl1ssLaeeyep9U9O56DgF24b8p8mfXvAdel3C218yoj5wbnFQDAU1ybcWLvGieJ+YWEhKT6t26rwsPDJV2bQVK0aFHn9pMnTyaZUXLzfjfPLnG3z83SPXDy5ptvqkmTJqpataqKFSsmSfrtt9904MABTZo0Kb3ZAgAAAECOwX0TAAAAkD6lS5dWeHi41q1bp1q1akmSrly5os2bN2v8+PEp7tewYUOtW7fOZZ2TtWvXqlGjRpbLtjxwEhkZqQ8++EB58uSRJLVv315t27bVjh079Mcff8gYo2LFiumOO+6Qt7e9I1UAAAAAkB1w3wQAAIDsIDNnnKTF+fPn9dNPPznfHz58WPv27VP+/PlVokQJDRkyRGPHjlW5cuVUrlw5jR07Vnny5FHPnj2d+zzyyCMqVqyYcy2VwYMH6+6779b48ePVqVMnLV26VNHR0frqq68sx2V54GTu3LmaNGmS8wagf//+euONN9SwYUNJ154RFh8fT+cfAAAAQK7FfRMAAACyg6uZMHByNR357dq1S82aNXO+f/bZZyVJvXr10syZM/X888/r4sWLGjBggE6fPq369etr7dq1Cg4Odu5z9OhReXl5Od83atRI8+fP1yuvvKIRI0aobNmyWrBggerXr285LssDJ8YYl/fz5s3TCy+8oLCwMEnXnhFWsmRJXbp0yXLhAAAAAJCTcN8EAAAAWNe0adMkfegbORwOjRo1SqNGjUoxzaZNm5Js69Kli7p06ZLuuNK9xklylbly5Uq6AwEAAACAnIb7JgAAAHiieHnLYfOMk3ib87uV0j1wkhyHw2FndrlKaOg4SQEZzOV5tykcjtEW8mmc6Xlcs9VtCmOi3KaxFM9h90mMaWFPWZa4L8sKO+Kx9rW1cjytlOVZ7WffORid4UjsOtet5GOFXcfKrpizW93ti8XKuZV157GV62RWsqud7WDXv42eVCc72fE9z8q2ycprDnIn7pvslVO+j6lde3JKHbMT2hypyerva065PuSUegDIHbzcJ/l/c+fO1Z49exQXFyeJDj8AAAAA3Iz7JgAAAHi6a4vD+9j8yoUzTu68805FRUXp3Llz8vX1VXx8vF566SXdeeedql27tgoVKpSZcQIAAACAx+O+CQAAAMj+LA+cbNmyRZJ06NAh7d69W3v27NHu3bs1YsQInTlzhl9RAQAAAMj1uG8CAABAdpAgb3nZPEMkV844SVSuXDmVK1dODz74oHPb4cOHtWvXLu3du9fW4AAAAAAgO+K+CQAAAMi+bFkcvnTp0ipdurS6du1qR3YAAAAAkONw3wQAAABPwYyT1DmMMeZWB5GbnT17VqGhoYqNjVVISEiK6RyO0e4zKx1lT1CH3ZXV2G0WxrSwJRSHI9pCqq22lJWV9bLC4biY4TyMCbRQjoVzy1JZ7s8/a3WakPFgZC0eK+xqH3fsijcrWWkba+eFlTb2rO9nVsnaNnbPrrKy6rzI2mu2PfX2tLKAzGC1/wsk4pwBAADZnSf1ZxJjaRE7W74heWzNO+7sP4oOjfSIemaU160OAAAAAAAAAAAAwFPY8qguAAAAAAAAAACQPVyVjxJsHh64moOGG5hxAgAAAAAAAAAAcF3OGQICAAAAAAAAAABuJchbDhaHTxEzTgAAAAAAAAAAAK5jxomHCA0dJykglRSN3Wdy+KKFkiZYjCg17mNxOKIt5LM146FIMibKbRq74nE47InZGgvH3E3MDof7HOxqP4djtE1luU0ia+eg+3istbEVz1tIk/Hvnl1tbFdZdrWfXTFbkZVtaA8r55Y97LoW2NV+1uJxdzxb2JCHtVjside+sjxN9vvuAchJUrsGce0B0ofvFfB/7d19fFTVve/x75aQECkZBA0BH0NVfEAtBcWAgpYIx8fTKmirh0rr41FUCpTWeu4J6amlhxZKhdqK10K9aPVF0Ba1V4GqIA8+EPF1VJR6S1rEklorTFAxIWHdPwypkcxev0z2TGYyn/frNa+XzP7NWr+19tpr9nZnzwKyX5MOSsETJ13nOY2u0xIAAAAAAAAAAIAO4okTAAAAAAAAAABySKO6SRE/cdLIGicAAAAAAAAAAABdD0+cAAAAAAAAAACQQ5qUpyDi2wNNXeh2Q9dpSZaLx29XUVFRwu2mxc1LC/0xNYZkVnsWchudvoXfo1sE3LLAcjoXfs+0fMI5Z1lgOQ2JtIimb6JrVxQLv1uOq3SyLPzu3w+2/sucsS5Z55RMklkLl0clXfshnW3K5YVSc7ntADofcxAQPY4rAMh++9RNTRH/tNY+fqoLAAAAAAAAAACg6+GJEwAAAAAAAAAAckhTChaHj/oJls7EEycAAAAAAAAAAADNeOIEAAAAAAAAAIAcwhMn4bL6iZNZs2YpCAJNmTKl5T3nnGbOnKkBAwaosLBQ55xzjl5//fVWn6uvr9ctt9yiQw89VD179tQll1yi7du3t4rZuXOnJk6cqFgsplgspokTJ2rXrl2tYrZt26aLL75YPXv21KGHHqpbb71VDQ0NqWouAAAAALQb100AAABA+2TtEycvvfSSFi5cqFNPPbXV+7Nnz9bcuXO1ePFiHX/88frBD36g8847T1u2bFGvXr0kSVOmTNFjjz2mhx56SH379tW0adN00UUXqbq6Wt26fXJX7Morr9T27dv15JNPSpKuv/56TZw4UY899pgkqampSRdeeKEOO+wwrV27Vv/4xz909dVXyzmn+fPnt7s9sdgsST0SB5RW+AsZaqioZqQ/ZpKhHC9DPWnkXKE3Jhho6OOaSkNt/rab8gnW+avyjQtTvn5B4C/HOX//BcGeKNIxmuGNCIJVhnL8+8HWdl8fGva3QVRtso3jKNodnejG4OwO12Nh2VfOlRvKieb4jKpdFtHNKeHlRDX+uuo+R2L0MbqSrnbdhNwVNjczJwPIBr5zzFTMZcydCNOog+Qif+Ikq5/TaCUrW/LBBx/oqquu0r333qtDDjmk5X3nnObNm6c77rhDl156qQYPHqxf//rX+uijj/Tggw9KkuLxuO677z7NmTNH5eXlGjJkiJYsWaJXX31Vq1Z98j803njjDT355JP63//7f6usrExlZWW699579fjjj2vLli2SpBUrVmjz5s1asmSJhgwZovLycs2ZM0f33nuv6urq0t8pAAAAAPApXDcBAAAAycnKGyc333yzLrzwQpWXt/6rzJqaGtXW1mrs2LEt7xUUFGj06NFav369JKm6ulp79+5tFTNgwAANHjy4JWbDhg2KxWIaPnx4S8yZZ56pWCzWKmbw4MEaMGBAS8y4ceNUX1+v6urqhLnX19errq6u1QsAAAAAopat101cMwEAAKRek/JS8uoqsq4lDz30kF5++WW99NJLB2yrra2VJPXr16/V+/369dNf/vKXlpj8/PxWf3G1P2b/52tra1VcXHxA+cXFxa1iPlvPIYccovz8/JaYtsyaNUuVlen76RoAAAAAuSebr5u4ZgIAAEg9FocPl1VPnLz99tu67bbbtGTJEvXokXg9kCAIWv3bOXfAe5/12Zi24pOJ+azbb79d8Xi85fX222+H5gUAAAAA7ZHt101cMwEAAKCzZdWNk+rqar377rsaOnSo8vLylJeXp9WrV+uuu+5SXl5ey18yffYvl959992WbSUlJWpoaNDOnTtDY/72t78dUP/f//73VjGfrWfnzp3au3fvAX9R9WkFBQUqKipq9QIAAACAqGT7dRPXTAAAAKm3T93UFPFrXxd64iSrfqprzJgxevXVV1u9941vfEMnnHCCvvOd72jgwIEqKSnRypUrNWTIEElSQ0ODVq9erf/+7/+WJA0dOlTdu3fXypUrdfnll0uSduzYoddee02zZ8+WJJWVlSkej+vFF1/UGWecIUl64YUXFI/HNWLEiJaYO++8Uzt27FD//v0lfbLwYUFBgYYOHRp94y1Flhliqsv9MTW+x+Jn+MsoLTTUsyeSctxWf5uCwPKov6FdEQkCQ9st+Xj7cKQhl2h+BsFSjnMVhnL8OVvaJc02xKRvn/tydi6qcbzOEONvt3P+Yy+qsWMZFxbBBEtdhrlJ0eTjVWrZ56vSkEhmimJOiWpeiorlOLeVk76ccxV9jGyX09dN6LKYmwFku86Yx5g7geRl1Y2TXr16afDgwa3e69mzp/r27dvy/pQpU/TDH/5Qxx13nI477jj98Ic/1MEHH6wrr7xSkhSLxXTNNddo2rRp6tu3r/r06aPp06frlFNOaVk08cQTT9S//Mu/6LrrrtM999wjSbr++ut10UUXadCgQZKksWPH6qSTTtLEiRP14x//WO+//76mT5+u6667jr+IAgAAANBpuG4CAACAT6O66aCInxDhiZMMNmPGDO3Zs0c33XSTdu7cqeHDh2vFihXq1atXS8xPf/pT5eXl6fLLL9eePXs0ZswYLV68WN26/XPHPvDAA7r11ls1duxYSdIll1yiBQsWtGzv1q2bnnjiCd10000aOXKkCgsLdeWVV+onP/lJ+hoLAAAAAEngugkAAABILOtvnDz77LOt/h0EgWbOnKmZM2cm/EyPHj00f/58zZ8/P2FMnz59tGTJktC6jzrqKD3++OPtSRcAAAAA0o7rJgAAAHxak7rJRXx7oCs9cZJVi8MDAAAAAAAAAACkUtY/cQIAAAAAAAAAAOw+eeKENU4SCZxzrrOTyGV1dXWKxWKKx+OhiyMGAw2F1awyBI30h4wvDN9e5a/HuXJvTBBU+nOx5Fvqr0s1ewx1rTPEpFMU+Rj6z8C2Py3jz9ImS86ZVo5Fx/encxUR5JFe6R0Xfpax7BPZ3GUQRb5WlnZFNQajGxfh0nnM2MaFnyXndNYFpIL1/BfYzzdmfPNiJs13Ybl2Rp6Zlg8AZArmR0Qtk86B9+dyaPw1HVTUy/+BdthXt1vvxQZnRDs7ip/qAgAAAAAAAAAAaMZPdQEAAAAAAAAAkEOa9nWT2xfxT3VFXF5n4okTAAAAAAAAAACAZjxxAgAAAAAAAABADmlq7KZ9jdE+IeIiLq8z8cQJAAAAAAAAAABAM544yRY1q/wxc8r9MdP85bil4eUEgb+aIKj0Bxk4529TVHVZOFfhjQkCQx+b2rXOn9B4Tz5VUeXi72Nb3xjapJERxcw2xPjZ+sdwfHpz9vdNMNBQjWGuiK5NFv522cbOHkNd/n0eBP6x41yhoS4fy1j3s8y30e3PGYaYaFhyljrerujmrmjKiY5lHKdvbgeAztYZc1XYHBqej+U8Nn3Cck2+jQCQ/bLruwVITlNjnoLGaG8PuIjL60w8cQIAAAAAAAAAANCs69wCAgAAAAAAAAAAXk2NBymIfI2TrvOcBjdOAAAAAAAAAADIIU2N3VJw44TF4QEAAAAAAAAAALocnjgBAAAAAAAAACCHNDZ2U7CXJ04S4cZJhojFZknqkXC7cxXeMoKB0eTiL2dkNBUZygmCPZGUY+FcuTcmCCojqUvy12VStSp0s61N4WV8Uo5//NlY9tW6SGJMx0xk+9MiPOfI8h1vKceyzy1jx3J8+veVJR8by/iabYjx9aG/nqiOPds86R8XtvHlzycI0nfsWcrx9XMQeIuITFTHlUVU31dRjYuo2gUAyfLNecmey4aVm2yZ2TRnRncNkJ1Ssf8BIEwmzS3MgQA/1QUAAAAAAAAAQE5xTXnaF/HLNbXvOY1jjjlGQRAc8Lr55pvbjH/22WfbjH/zzTej6JJWeOIEAAAAAAAAAACk1UsvvaSmpqaWf7/22ms677zzNGHChNDPbdmyRUVFRS3/PuywwyLPjRsnAAAAAAAAAADkksZun7yiLrMdPnvD40c/+pE+//nPa/To0aGfKy4uVu/evdubXbvwU10AAAAAAAAAACASdXV1rV719fXezzQ0NGjJkiX65je/qcCzaOmQIUPUv39/jRkzRs8880xUabfCjRMAAAAAAAAAAHLJ/idOon5JOvLIIxWLxVpes2bN8qbz29/+Vrt27dKkSZMSxvTv318LFy7UsmXL9Mgjj2jQoEEaM2aM1qxZE1WvtAiccy7yUmFWV1enWCymeDze6nfZPisIVvkLG1/uj6na448pLQzfXhNBGZJUY2iTyTp/SGlFJDW5rf4Y074yGRlROVEw9LFh/Lml/mJs/WfIRzMMMbMNMRHtB1//VFVGU4+JpW8sfWyJ8XMumuPTIggs/ezrH3+7nTPMxwa2fP0sfRzVsZdJ+9PWbn8fp7NNFpZ9FdUYBFLBev4L7JeJYyZsLk52Dg77Tsq07yIAXV+ycxJzGdC2TDqf2Z+LquPS5yLO5YM6aWhMb7/9dqt2FhQUqKCgIPSj48aNU35+vh577LF2VXnxxRcrCAItX748qZQT4YkTAAAAAAAAAAAQiaKiolYv302Tv/zlL1q1apWuvfbadtd15pln6q233ko21YRYHB4AAAAAAAAAgFzS2PyKuswkLFq0SMXFxbrwwgvb/dlNmzapf//+yVUcghsnAAAAAAAAAAAg7fbt26dFixbp6quvVl5e69sVt99+u9555x3df//9kqR58+bpmGOO0cknn9yymPyyZcu0bNmyyPPixgkAAAAAAAAAALkkQ544WbVqlbZt26ZvfvObB2zbsWOHtm3b1vLvhoYGTZ8+Xe+8844KCwt18skn64knntAFF1zQkazbxOLwnaxlMR79VlLPxIGlhgUGDYu2O+dftN2/6Kx/sWxbPYZF5k2Ld0e1CLjBHMNCZgsM5Rj2lU0E7SqNaHG2of6Q6BaHtyzYHs3C75bFPaNYqNnWbj9bvulbDNu2uHn69kMU81dUbbLxL8ZuYjnOa6JZHD4qUS3sHkU9FrZc/N9Xtu/PzDqG01VXV11MNJ19nCkyaWFMZAfGTNeRq3M9AACZdD7T8v+j16VocfiRmdHOjuKJEwAAAAAAAAAAckmGPHGSqQ7q7AQAAAAAAAAAAAAyBU+cAAAAAAAAAACQSxol7U1BmV0EN04AAAAAAAAAAMglTc2vqMvsIvipLgAAAAAAAAAAgGY8cZIh4vFzVVRUlHB7EOzxFzK+0BtiKicCQbDKHzS+3FBShT+k2lDMUEM5VYa+mWZol0YaYtb5Qyz9U+Wry5BLTaU/xqLG0m7LPreY7Y1wzr/PLeM0CKLpnyAI3+e2fP25+Oqx12UZ61ExHA+mseMfg85Z5snwfrb0X3T87baMC7fVX1MQWI5hP+eiOc4tYzC9+yJcOnPJtLpMYzCD9lVUomp3V+wbIBeEzQEc14nRN0D2YJ5DIpl1zYwOYXH4UDxxAgAAAAAAAAAA0IwnTgAAAAAAAAAAyCU8cRKKJ04AAAAAAAAAAACa8cQJAAAAAAAAAAC5hCdOQvHECQAAAAAAAAAAQLPAOec6O4lcVldXp1gspng8rqKiooRxQbDHW1asPu6NiT9f4k9qtKeu0kJ/GTX+fG3lrPLHzCn3x0wz5KPZhpgZhph1hpiRhhg/58L7MBhoKMSyr0ws/WcRTd9YOOcfO6Y+HGqIqar0BEQ0tkzHgy8XyZSP6Ri21GXZ55bjysJfl29cBIG/Tc5VmDPqaF22seM/PqPK2SII/HO76fg09U/msPRxOscX0Fms57/AfowZ//cD3w2ZJWx/pXtfZVIuADIL80N6ZdL5zP5ctDQuHRxxLh/VSRMyo50dxU91AQAAAAAAAACQS/iprlD8VBcAAAAAAAAAAEAznjgBAAAAAAAAACCX8MRJKJ44AQAAAAAAAAAAaMYTJwAAAAAAAAAA5JK9za+oy+wiuHGSLUoLvSHxE/wxqqk01FVhSCgCNasMQSP9IQsslc32h0TV7pp10ZRjEAS+CEP/GcaWSY2lrnJDOYYxammX/PshCAz7arxhXFRZcvaxjBtDu6dZjqsZ/hDLuLAcw5bjyrTP/Zzz1xUEeyKpy19P+tpkE005QeDf584ZjnPT8ekvJbr+CRdVu6Maf5bxla6+scrGnAEgkzBHZpdM2l+ZlEtHhJ1LdJU2dhXsq+zB/gDCceMEAAAAAAAAAIBc0tT8irrMLoI1TgAAAAAAAAAAAJrxxAkAAAAAAAAAALmkSVJjCsrsIrhxAgAAAAAAAABALmlU9DdOoi6vE/FTXQAAAAAAAAAAAM144iRLuK3+mGBgRJVN9myfVmkoZIYhZqQhZrY/ZGiFP6bGkE/NHn9MVMaXR1NOlS/ndf4yagwxJv4+No3jwFCOKzSU46/LOf9+CIJV/oJMY9kXYxjrBrY2GY5hyzFjGV+TDWN9WlT73N8u5wzzhZdlf0d1XPmZ9mda+fe5ZT9Y2hUEHe/naMaEba6wHZ/RjK8gsHynWfovmrEcxT6Pal8BQGcKm+uY58K/Ty3fo+i6OD4SS9U5VLLzFfsKyCI8cRKKJ04AAAAAAAAAAACa8cQJAAAAAAAAAAC5hCdOQvHECQAAAAAAAAAAQDOeOAEAAAAAAAAAIJc0KfonRJoiLq8T8cQJAAAAAAAAAABAM544yRJBsCeagsZX+GOm+eqaYain0B9T5W/TPPdXb8yUNf6qVDXbEBQRSx9XVfpjSg3laJ2njHJ/ETWGakzl+NsUBIa6VlvabTHSGxEMNBQTUdt9+8o5f7uDYJUhJqK5QhEdM975RFKpf74IAksfG/a5oQ+j2VeeY1OSLV9/uy35WNj62FKOpY/9bc8kzhnmgchY+sYyviwxFv580ts/AJDdovre7qr4TkEiYeequXBcRXWu3h650K/JyoXxmAtthFjjxIMnTgAAAAAAAAAAAJrxxAkAAAAAAAAAALlkr6RuKSizi+DGCQAAAAAAAAAAuaRJ0S/mzuLwAAAAAAAAAAAAXQ9PnHQlhgWWy5Y+443ZMPDcKLKJxJRggiHKsvh0GheuqrIsjDzDH2JZcDyKhdRHG2KGGmJq/G1yzrIIuH9/BpZFj8cbFpas9oeoJqrF1sMXWDYt9jfesL+rosrXMEZNC8gb9lWNZRFrSz4GhnnSl09k+8rALfWP4+gWY49mEXBLPra5wBsi/7jwj9H0LrQZzTwp+cdXVO2yLPxoqctSji8mqnoyrRwASLV0L/Abdi7QGYu/J9t+FkZOXir6Ltf7PNfbn2myaX8ke12QTW1EB7A4fCieOAEAAAAAAAAAAGjGEycAAAAAAAAAAOSSJkX/hAhrnAAAAAAAAAAAAHQ9PHECAAAAAAAAAEAuaZTULQVldhE8cQIAAAAAAAAAANCMJ06yxjp/yORyb8iGNef6y6lZFb59tb8ejd7jjyktNOTib3esfrA3Zle+v64g8LTbzLCvNNIQM8MfstGzfZqhTaWG/VlV6Y8ZX+ENMfWxJZ8af4iqLPvTsh/8nLO03dOHpf4ybLlYxnr6yjH1sWWfG7itkRSjIAjP2Tl/vrb5xN83QWCZTyz85dja5Z8LbMdDVPPtbM92yzEeTR9H1+5o9oNFJHNXhHz9Y8nXIp3lRHXMAOgcYcdwNh276c817Ls1mvO+9ki2/anqt64yrsJkUzvSvT9yYf8jecmOD8YVkrZX0T9WsTfi8joRN04AAAAAAAAAAMglTYp+MXcWhwcAAAAAAAAAAOh6eOIEAAAAAAAAAIBc0qToF3PniRMAAAAAAAAAAICuhydOAAAAAAAAAADIJY2K/rGKqJ9g6UTcOMkaI6MpZn4EdY3eE0UmUo2hnPEV3pD4Vf5igjJDPqXl/pjJhnKmWeoq9MdY+mdapSdghiEZg1L/flDVKn/MakMfjzaUY+Ccv65goKGgGks+hnZ56zHs78X+cRMEvjEh0/4MAn8+zlnKMeRTYxinhmPGUpclZ98caGqTac5e5w+xzEs1lnz8gsASFc13ken4DAz9k2Us7baVE9Gxl0ZR5GMbo/5xY5sHohHVvkpnzgD+Kd3HXth80JFcUlFuqnLNBanoH/ZH8tgfXUOy55qZtj+SzSeTvq+kzOtXIFncOAEAAAAAAAAAIJfslWT6A7V2ltlFsMYJAAAAAAAAAABAM544AQAAAAAAAAAglzQ1v6Ius4vgiRMAAAAAAAAAAHJJY4pe7TBz5kwFQdDqVVJSEvqZ1atXa+jQoerRo4cGDhyoX/7yl+2r1IgnTgAAAAAAAAAAQNqdfPLJWrVqVcu/u3XrljC2pqZGF1xwga677jotWbJE69at00033aTDDjtMl112WaR5ceOkK5m2xx8zvtAfU+qJGWrIpWqVP2ZOuT9mg6GuqCw2xIw29LFG+kMsfVjjD3GuInR7EBjyXWzIZbRhf1raPclQjNZZgryCwFKOIedSwziNxGx/yOiIqqqJZn8GQWXHc5H8c44k1fjHsu94kKRggiUh374wjJuIxrFqLHWlMR9TOek6ZqJhGjeGsW6JsdQVlajqsvWPZU6x1BXF2Enf+LO029KmdI4LAJktbD7wfc+EfTYV80yq5q6wdjJfIlswVtMvk/q8I/MYcyDSrkntfkLEVGY75eXleZ8y2e+Xv/yljjrqKM2bN0+SdOKJJ2rjxo36yU9+EvmNE36qCwAAAAAAAAAARKKurq7Vq76+PmHsW2+9pQEDBqi0tFRf/epXtXXr1oSxGzZs0NixY1u9N27cOG3cuFF79+6NLH+JGycAAAAAAAAAAOSWvSl6STryyCMVi8VaXrNmzWozheHDh+v+++/XU089pXvvvVe1tbUaMWKE/vGPf7QZX1tbq379+rV6r1+/fmpsbNR7772XbE+0KetunMyaNUunn366evXqpeLiYn35y1/Wli1bWsU45zRz5kwNGDBAhYWFOuecc/T666+3iqmvr9ctt9yiQw89VD179tQll1yi7du3t4rZuXOnJk6c2LKDJ06cqF27drWK2bZtmy6++GL17NlThx56qG699VY1NDSkpO0AAAAA4MM1EwAAADrT22+/rXg83vK6/fbb24w7//zzddlll+mUU05ReXm5nnjiCUnSr3/964RlB0HQ6t/OuTbf76isu3GyevVq3XzzzXr++ee1cuVKNTY2auzYsfrwww9bYmbPnq25c+dqwYIFeumll1RSUqLzzjtPu3fvbomZMmWKHn30UT300ENau3atPvjgA1100UVqavrnD7FdeeWVeuWVV/Tkk0/qySef1CuvvKKJEye2bG9qatKFF16oDz/8UGvXrtVDDz2kZcuWadq0aenpDAAAAAD4DK6ZAAAA4NWUopekoqKiVq+CggJTSj179tQpp5yit956q83tJSUlqq2tbfXeu+++q7y8PPXt29facpOsWxz+ySefbPXvRYsWqbi4WNXV1Ro1apScc5o3b57uuOMOXXrppZI+uUPVr18/Pfjgg7rhhhsUj8d133336f/8n/+j8vJPFu1csmSJjjzySK1atUrjxo3TG2+8oSeffFLPP/+8hg8fLkm69957VVZWpi1btmjQoEFasWKFNm/erLffflsDBgyQJM2ZM0eTJk3SnXfeqaKiojT2DAAAAABwzQQAAIDsVF9frzfeeENnn312m9vLysr02GOPtXpvxYoVGjZsmLp37x5pLll34+Sz4vG4JKlPnz6SpJqaGtXW1rZaJKagoECjR4/W+vXrdcMNN6i6ulp79+5tFTNgwAANHjxY69ev17hx47RhwwbFYrGWCwBJOvPMMxWLxbR+/XoNGjRIGzZs0ODBg1suAKRPFqOpr69XdXW1zj333APyra+vb7UYTl1dnamdzhV6Y4I1hoI2GmJu8WyfbyhjfLk/ZlqloaAZhrr8faMFhqpqDPnMqYimLoNYfdwbEwz0tN3SN6NXGbIZ6Q9ZbahrkqGqyBhythjqDwkmWAry5DPHf8y4qYZcBhpSqbHscwvD8al1/pCI8rE9kRnFuPC3yTn/XBEE/jnHNPcHljZZYgz7arylXXsMdRmUGuZbH8O8Hl3/+QWBYaxbvj+rLH082xthGacWzvlztox3/zEczbEXlajaHd18kb62I/t09Wsm3zHSFY6PrtAGi7B2hu3nVPRPuuvriEzLp6vIpjGQbvRNYsnOY77PJisV+8r3OcZHFmmUFO2vW31SZjtMnz5dF198sY466ii9++67+sEPfqC6ujpdffXVkqTbb79d77zzju6//35J0o033qgFCxZo6tSpuu6667Rhwwbdd999+s1vfhNxQ7Lwp7o+zTmnqVOn6qyzztLgwYMlqeVRnbYWidm/rba2Vvn5+TrkkENCY4qLiw+os7i4uFXMZ+s55JBDlJ+ff8AjQ/vNmjWr1cI4Rx55ZHubDQAAAAAmXDMBAACgTY0perXD9u3b9bWvfU2DBg3SpZdeqvz8fD3//PM6+uijJUk7duzQtm3bWuJLS0v1+9//Xs8++6y+8IUv6L/+679011136bLLLkuyExLL6idOJk+erP/5n//R2rVrD9jW1iIxvgViPhvTVnwyMZ92++23a+rUf/7ZeF1dHRcCAAAAAFKCayYAAABkqoceeih0++LFiw94b/To0Xr55ZdTlNE/Ze0TJ7fccouWL1+uZ555RkcccUTL+yUlJZLU5iIx+//SqaSkRA0NDdq5c2dozN/+9rcD6v373//eKuaz9ezcuVN79+494K+q9isoKDhgcRwAAAAAiBrXTAAAAEioUdLeiF/tfOIkk2XdjRPnnCZPnqxHHnlETz/9tEpLS1ttLy0tVUlJiVauXNnyXkNDg1avXq0RI0ZIkoYOHaru3bu3itmxY4dee+21lpiysjLF43G9+OKLLTEvvPCC4vF4q5jXXntNO3bsaIlZsWKFCgoKNHSoYWEEAAAAAIgY10wAAABAx2TdT3XdfPPNevDBB/W73/1OvXr1avnrpVgspsLCQgVBoClTpuiHP/yhjjvuOB133HH64Q9/qIMPPlhXXnllS+w111yjadOmqW/fvurTp4+mT5+uU045ReXlnyz0eeKJJ+pf/uVfdN111+mee+6RJF1//fW66KKLNGjQIEnS2LFjddJJJ2nixIn68Y9/rPfff1/Tp0/Xddddx19FAQAAAOgUXDMBAADAq0nRLw7fFHF5nShwzrnOTqI9Ev0O7qJFizRp0iRJn/yFVWVlpe655x7t3LlTw4cP189//vOWxRAl6eOPP9a3v/1tPfjgg9qzZ4/GjBmju+++u9Vv577//vu69dZbtXz5cknSJZdcogULFqh3794tMdu2bdNNN92kp59+WoWFhbryyiv1k5/8RAUFBab21NXVKRaLKR6Ph144BHMNhS0wVelXsyp8e2m5t4int47wxnwp+IM/lzmF/phh/hCNrjTUVeGPsfSx5Q/nygwxUdRVFVG7p3nGhCSN948LVe3xx2i2oS5Dzqa61nkjnnb/6Y350oT1Hc7HOf9YDwJLm/yiq8vff5b5QjWGcaqR0cSMN8wp1Z7tvjnSmkupIRdT38wwxFgY9qdpP1jK8cc45z/Og8C3L/z5Wo6HqER1DJvmyVLDPGkYX7b9kJ5yMimXT1jGl2EONLDl42dpezpYz3+RvFy9ZkqnsOMy2WOtI8d6uuvMlPkESKVUHOeZVJ9P2Ll2VOc4nS2qc6xPy7T5MdPGVS7LpPOZ/bno7LiUF3EujXXSc5nRzo7KuidOLPd5giDQzJkzNXPmzIQxPXr00Pz58zV//vyEMX369NGSJUtC6zrqqKP0+OOPe3MCAAAAgHTgmgkAAABeqViPhDVOAAAAAAAAAAAAup6se+IEAAAAAAAAAAB0AE+chOLGCQAAAAAAAAAAuaRRUtSrn3ehxeH5qS4AAAAAAAAAAIBmPHGSLaat8oZc7173xixcc5u/rvnl4dtv8RfxlYZH/EGrC/0xk/whmmyIGV/hjxlmKGexIcZioyGmxr/PVTPSE+DbLmmBIRdDOW6pv5RgoGGf18zwx5T5Q1S1zhDkb9eXJqw31OXfV7H6waHbgzWGvtFsQz03eGOCwFCVLP1niKmx1GXY54a2q9Qzd0lStaEq37E33lCPYUzY+sag1HJcGfKxsMzboy0FGeamKIz35xsE/r5xzr/Pg6DSkJBlrFuOPUM5Nf58nPN/NwbBnkjKiYKtj9PHNi6iGV/p6mMAdqk4LlN1rIfNn8wvqZGKPk/2ezCb9nGmjdV015lp+yrsHCXT9lWysinXZPs8m9qITpCKp0N44gQAAAAAAAAAAKDr4YkTAAAAAAAAAAByCWuchOKJEwAAAAAAAAAAgGY8cQIAAAAAAAAAQC7hiZNQ3DjJEqYFSCcYFiw2KFv6TOj2U/Q/3jIWBif7KyotsabUcVX+xW1VbVj02LIQvWWxdUs5cyLYnwsMZQw1lGNYxNqygLBtgW//wmWxybXemLil7RaWsbPaX1e8IHwxR8ui7vHx/r6JF1j2g4Vl8W7DItaWBdsNi1hbxoVpLFtEsWi7qd2GfRVVOZb9Ocey8Hs0C6A7F82i7V6W49fQx8FAQ11zDGN0mmWh9WjmrmCCZeF3Sx/7x45lsdooFqW0LWbvzyWqfG39Z5gnFdH3FYCEusoixslKRRtzvU99cn1R8bDvyLBznc5oR7K5poLlHKUtHem3VCw4nmyZvvZ35LOJJT7XTff+l1LTd6n4XFfRkTGH3MCNEwAAAAAAAAAAckmjpH0Rlxl1eZ2IGycAAAAAAAAAAOSSJkX/U11d6MYJi8MDAAAAAAAAAAA044kTAAAAAAAAAABySaOif6yCJ04AAAAAAAAAAAC6nsA5F/UvmaEd6urqFIvFFI/HVVRUlDAuCCr9hZVWeEOu3/ozb8yrOjV0+4Y15/pz2egPiU2u9cbEF5T4C1rgD5m39QZvTEWDv4/jVxnyqfaHmNTs8ceML+x4PZZ8h0ZUTo1hHI/3j+NME3sggrE8bZW/ovHl/hjTfjDUFZVSQ86W8WVRZoix9LPWdTQT03wc3X4Y6Q+xzBVVhjknMrMNMZZ2ecZXlaGP5xjG6DR/3zjn7+Ngrr8q0xi1HFeW+dbSx1Ex5exru+HYnOM/9txUfzFRCYKo5hz/vnLO0McZwnr+C+zX0TETfiwmPgady77z0vYKu87sjPZnWj7pZrrub0OyfZPr/d0R9F1mYX9EL+y7M5vOOzNJJp0D789F/eLSQRHnsq9O+ltmtLOjeOIEAAAAAAAAAACgGWucAAAAAAAAAACQS/aKNU5C8MQJAAAAAAAAAABAM544AQAAAAAAAAAgl+yTFPXq511oNXVunAAAAAAAAAAAkEsaJQURl9mFbpwEzrku1JzsU1dXp1gspng8rqKiog6VFcyNJqenp44I3f6lgeu9ZcTerPXGVOZXmHMKM2XCPf6gakNBNXu8IbH6uDcmflWJoTK/2AP+Powv8NS1IZJUpFsMMfMjKmejIWaBIWaoIaZqlSFonSFmpD9kfLknl4jGn29MSNI0f10mpYX+GMNxZerjUk//Wesa78/5+qU/C92+MDjZX48p30p/jGYYYmb7Q0oN822N4XiwtMsiqnHhO65Mc79lPxiO8dWGvhkdzRg1zV1RHTNRzYGWcerhXDTnDUFg2edRsfSNv4+janumiPL8F7khlWMmbE5IxbGX7vpyBf2afqno81R8R/tySbbOVLQxrMxsGuPZlGuYIEh8ruxc4nP2VLU/k/rVd9yk//hIfH3kXOLrolS1I5FMOgfen4s+F5eCiHNxddIHmdHOjuKJEwAAAAAAAAAAcglPnIRicXgAAAAAAAAAAIBmPHECAAAAAAAAAEAu2SueOAnBEycAAAAAAAAAAADNeOIEAAAAAAAAAIBc0iSeOAkROOe6UHOyT11dnWKxmOLxuIqKijpUVjDQH7Nja29vzAkNb4Zujxe85q9odbk3pGzUM96YDRPO9cbMW3qDN6aiodIbYxG/qsQfVGYoaIMhxlLOAs/2xYYy5htibjHEbDTE+PI1mrfVv8+nzL3HX9Awf0jszFpvzEn5b3hjNqzxjGXLfrCo2mMIWucPKfUfw6ox1DWn0Bvy9NQR3pgvDVwfTT4W4z05W/p4tb/dGr3KkMxIf4gv3yhVGXI2zP+RtT0ShuNhvKFNlr6xHFcWNZbvNEv/pXF8GfrHufD+CQJ/u52rMKcUXlfH8/2knGj2laWubBLl+S9yQ1caM2HzS9ixbptPEpUbzdyIzhU2BsL2cbJjpyPjJhV1Jtt+n1SVi7Z1pL+TnT9ToSNzcrKSHY+dMcbTXWf4uXvi6z3/mIu2HZl0PrM/FykuBRHn4uokZUY7O4onTgAAAAAAAAAAyDU8UpEQa5wAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQLPAOccSMJ2orq5OsVhM8XhcRUVFHSorCPZ4Y2L1cW9M/KqS8DIeqPWXsSC8DEmKTY6mHG3wh5hyPsFQ11B/yPVLf+aNebjhikjyib0Z3q4380/wltF/zS5vjEav8sesLvfHTPKHqMY/jp0r9Mb0bohon1ss9odcPyp8XCwceFvacolqP0jr/CHjDePCoswQMyyaqrz9U2M4HjTSHzLeP45VFVFdBmXueW/Mep3rjQkGGipbbMhn1DPemA3BmvCA8RX+iix9PMcwji3jb6MhZprl2LNI4/FZFVHOnmPCLfUXEQSV/qBSw7gwHef+PnbOX5cpZxP/XOBcRPu8g6I8/0Vu6KwxE3Z8hh3f6f6c77NhLPNU2/UlniczZa7pqI7sj2TLDdOROhG99B9zqRmP6a4zdfNc2HlQ4nO2dM/lnSEV48P3/x8t/8+m/XVG/73TkX2VTL9m0jnw/lykuKSoc6mTlBnt7CieOAEAAAAAAAAAAGiW19kJAAAAAAAAAACAdNrb/Iq6zK6BJ04AAAAAAAAAAACa8cQJAAAAAAAAAAA5pbH5FXWZXQNPnAAAAAAAAAAAADQLnHOus5PIZXV1dYrFYorH4yoqKupQWUFQ6Q8aX+GPqQ7f7L4feIvoffkOb8wV+Q97Yxauuc0bYzJ6lTekzHXzxjyir3hjKuTfD6/qVG/MhrnnemO0wLN9sr8IbTDElEVTTtnSZ/zFBE3+gsaXe0NiD9R6Y+InlHhjdmzt7Y3pH1R5Y7w5e467tFtsiJnkD3l66whvzJeC7/sLMuxz0zgdZojZ6NluOWZuMcQY5iXNMbTbwjdXSFLNHn/MnEJ/TFRzioWnrnlLb/AWMWXuPR2uR5JUZei/UkP/WVj2laWuoYa6TGPZkI/WGWJGhm+2jL+oxnpk+8pwbhYR5wzneAZB4J+bnOvY3BTl+S9yQyaOGdO1Vzt15DhONp+o5o6opKId4WXOCCkzou+CiGTamAsTlmuydaai/R2RSceOr2/SnWuy+z8IfOdoic8nkz036TpzZ9j5m+U8vC2J50dpdugnk9/PYeVm1nydzDjPpPOZ/blIb0uKOpc6SUdmRDs7ip/qAgAAAAAAAAAgp/BTXWH4qS4AAAAAAAAAAIBmPHECAAAAAAAAAEBOaZS0NwVldg08cQIAAAAAAAAAANCMJ066kMgWBR0Yvn3Evz3tLSO+xr/otkYZE/LxLeQsSaX+hcI2GBZDPaH+TW+MZcFxi9ibhsXNN3jqsixobFiU3LLQeuVU//h7WF/1V2ZZDNvQrvhVhv1gWBj5DZ3kDzKML98i1VMGGhaoXuwPsSzYrsmGGMNxZRmjXwr+4C/IsODzvKn+Rb5P1avR5LO64wvLlY16xhtzp/tPb8xXGgZ7Y+ILDGPdshj2eH+7Y5P9+3zX2P7emOAS58/HMk6rwudt03FlqKdsqX9/blhzrr+gSf4Q04LtQw1j1DC3m5i+Yy0L0Rvmdl/Olu80y1i3sIw/y0L04w3nZrcYyhntX7jUtrjpSG9ERxd+B7oS/0LFbQtfFNd/zRF1nckKn1fC5pOwBZyTzzPZz2baIs5dRfILgEe/GHdHFo5P97GT7PzQke/nsLksNYtqJ54fkp9Xwvsg2T5P9/zQkbGarHQv1P5JuWHtDPtscgvSB0FYNsl9X0nJj53E7f84tL7OsVfRP3ESdXmdhydOAAAAAAAAAABAWs2aNUunn366evXqpeLiYn35y1/Wli1bQj/z7LPPKgiCA15vvun/g/f24IkTAAAAAAAAAABySqOiX5OkfeWtXr1aN998s04//XQ1Njbqjjvu0NixY7V582b17Nkz9LNbtmxRUVFRy78PO+ywpDJOhBsnAAAAAAAAAAAgrZ588slW/160aJGKi4tVXV2tUaPC13koLi5W7969U5YbP9UFAAAAAAAAAEBOadQ/1zmJ6vXJEyd1dXWtXvX19aaM4vG4JKlPnz7e2CFDhqh///4aM2aMnnnGvzZpe3HjBAAAAAAAAACAnNKYopd05JFHKhaLtbxmzZrlzcY5p6lTp+qss87S4MGDE8b1799fCxcu1LJly/TII49o0KBBGjNmjNasWZNMJyQUOOdcpCWiXerq6hSLxRSPx1v9JluqBEGlP2h8Rfj2MkNFwwwx8w0xt/hDrh/1M0NBfg83XOGNiZ9Q4o25fms0+Vj4co4v8OerDf6QeUtv8Oeir/qrCs70xsTq496YeEEsmnKu8vePpe1TBt7jjfEaaogxHHvXT/WPv5O02RszZa6hTYbjvGyU/46/ZVxoTqG/rqn+ujY3nOiNeTP/hNDt/efu8pahBf4Q1azyx8wpj6Su2Ju13hjL8WCZky0s48Kyr+LPe3K2fM9UG2ImG2Is33uj9xiCDEr9x4MpZwvLWF5siJlkiPHNg1X+/itzz3tjNkw415BMRCzHzKRUJ/EplnlH67wRznnOFT3Sff6L7JcrYybsWq2jx10ydUojQ7YlnivCcvVfjyau07nE50Xp7jvTdXUSku27VI2PZAVB4u+bsP0YXmZnHB+Jzz2cS3w+Ftb+ZI+dzpBsO1Il2f4J24/Jmx2yLWzuDNsmhfdrqubdBML+32CV55yyNOQ4Dz0fDWv/jJD6Qq6Pkq7PU2fo/mi7/Zl0PrM/F+lFSZ+LuPQPJJ2ht99+u1U7CwoKVFBQEPrJm2++WU888YTWrl2rI444ol21XnzxxQqCQMuXL08m6TaxxgkAAAAAAAAAADll/89rRV2mVFRU1K4bRLfccouWL1+uNWvWtPumiSSdeeaZWrJkSbs/F4YbJwAAAAAAAAAAIK2cc7rlllv06KOP6tlnn1VpaWlS5WzatEn9+/ePNDdunAAAAAAAAAAAkFP+uSZJtGXa3XzzzXrwwQf1u9/9Tr169VJt7Sc/NR6LxVRY+MnPsN1+++165513dP/990uS5s2bp2OOOUYnn3yyGhoatGTJEi1btkzLli2LtCXcOAEAAAAAAAAAAGn1i1/8QpJ0zjnntHp/0aJFmjRpkiRpx44d2rZtW8u2hoYGTZ8+Xe+8844KCwt18skn64knntAFF1wQaW7cOAEAAAAAAAAAIKc0Kvo1Ttr3xIlzzhuzePHiVv+eMWOGZsyY0a56khE4S3ZImbq6OsViMcXj8XYtmJNKQbDKEzHSW0asPu6NiS8o8SczzB9iMskfUrb1GW/MhgnnemOuX/ozb8zDDVd4Y+JX+funbGl4zhvm+vONjGFfzRt1gzdmypp7vDGxM2u9MZX5Fd6YioZKb4xpnEZgx9Te3pj+A3f5y9lqKGeNvxyTjYaYDYaYMkOMYXxZxkX8ecNxNSr8uDpF/+MtY2FwsjdG48v9uXiOcUna3HCiNyZ+gr/d12+NZu66Iv9hb8zCNbd5Y0wsY9AjNtk/bkxtmuBv09NLR3hj7tCd3hjTPo/gO0Syfe+Zyllj+D6a7w/xsXwHLwyu9xc0p9Afs8CQ0GR/yPVTDTlbjpnR/u80yzmchXP++StMJp7/IrNl25gJv55aF7It8THqO+6CwDIHRFtncrl0ZB4K67vkOJf4miH5Pu2MOtO9H8Oloo3Jl5lZYy5MeBt9/58mrNzEYyDp+ao05Hq7JvH+6Iw2hgkdO6FtTC7Xjs3l0ZzHmZV27HwvoZo9IRvDxlyS+YSdj/v+f0V14k1ua+Jtiffjx5J+lBHnM/vPraQ/SOoZcekfShqTEe3sKJ44AQAAAAAAAAAgp3T+GieZjBsnAAAAAAAAAADklL2K/qe6oi6v8xzU2QkAAAAAAAAAAABkCp44AQAAAAAAAAAgp/BTXWF44gQAAAAAAAAAAKAZT5zgAM6Vh24Pgj3eMuIFrxlquscQM9IQYzAnvE1mVf62L5x7m7+cYRHkImlD0BQeMMdSiD8k9kCtNya+oMQbM8Wwz68f9TNvzKs61V/XBMP4usUfYtpX8/0hvj7sP2GXv5CaVd6Q/sEOb0yZe8Ybc4Ue8sZMmWTo48X+EG30h8TONIzBgpihMn8fbhgfPl88svQr3jIWjt/lT8Uw/jasOdcbY+mbeVtv8MZs1knemJPy3/DGWI5PyzFTttQ/TjefeWLo9sr8Cn8ZhnZ/VQ97Y15d6m/3Q7rCG2M59m6bsdAbE8h5Yyws8/+GCf5xatmfp4z6n9DtJ2mzt4zblvj7ptL5x8XDhn01ZYNhDjR8h1japUn+EJX622VS4z/XCYLK0O3O0MdA17Yu4ZaucnyEzQNhbfTNH8kKrzPx+V94PmHXoon3sS+f1Eica/j1e1g7ZnjqTPzZsD5Ptm86Y18FQfhnkxO2r8KuVcJyCf//Jsn3XYia5I7l5Mej5B+TbRuhkPPQOSHjcUFIoaUh14yG6/bEwtoY0j9h+YQJ24+TE5cZmxx+jRD+/wQTtyNWn/i6NR6yP8qmJt7HodfUYftYUuzNxO3s3RD2yUT7sU7Sj8IrTbtGRb8mCU+cAAAAAAAAAAAAdDk8cQIAAAAAAAAAQE5hjZMwPHECAAAAAAAAAADQjCdOAAAAAAAAAADIKXsV/RonUZfXebhxAgAAAAAAAABATuHGSZjAOec6O4lcVldXp1gspng8rqKios5OB0ipIKg0RI00xKxLWznOVXhjgoH+mtxWTxlr/GVokiGmxtDHpf42xd6s9cbEF5QYEjJY4A8p2/qMN2bD3HP9BW0w5HOLZ/v8CMqQVDYqfW0qWxpRXcP8Ie6RwBsTXOo/9Zg36gZvzGadFLp94YTbvGXEHvCPdYs380/wxvRfs8sbY2n3bUsWemN6X77DG7Prj/29MSMGP+2NuUIPeWN8+0qSTtLm0O2WdusL/pAbBs/zxtwzZYq/IMPxUDnRH9PbXe8PMpgy9x5vzI6pvb0xFfJ/jywMTg7d7lx56HbOf9FejBl0hrBrF981QhCsCvls+ByZDNt1VltmhGybnWSZ4cL6LrwdYbmGXdf5rvks141RslzLtiUkz1LPmKrZk2SdYULaEZZPaC6+vgnZPj7kmKxKclyNLwwpM6Qdc0I+Ny3x3CBJ17vXE24LvbYJyyesHWHXrZNCtk0O2SaFX+OHfDbsXPWEhjc9lbaf5RoukUv1aMJtG4IzE2ypk1SSEecz+8+tpF9JOjji0j+S9M2MaGdH8cQJAAAAAAAAAAA5hcXhw7A4PAAAAAAAAAAAQDOeOAEAAAAAAAAAIKc0Kvo1SXjiBAAAAAAAAAAAoMvhiRMAAAAAAAAAAHIKa5yECZxzrrOTyGV1dXWKxWKKx+MqKirq7HQAoEsLglWGqHWhW52rMNRT6Y2xlePP17lyQzl7vDE24X0jSRrvz0dVhv2w2lDOaE85pf4yYm/WemNOyn/DG7NhzbneGM33h5QtfcYbs7nhRG/MFfkPe2Ne1anemA1z/e2KTfb3ocWb+SeEbi95Le4v5JVIUtGIf3vaGzMu+JI3ZpQr88asCTZ4Y2aujuZ0fd6oG7wxUybc4y+oyjenzPZs/1jSjzj/hRnXTAAyTfj5/siEWyzn7m3X14Hz+dLChJvc1pA6J4SUGXo+H3bNMCPxptWJ85QkjQ7p8zkh11YLwotNZN7WxOdNU9YYzpfaEDsz/Lw57Loj9Lw8pI3Xb/1Zwm2VStxvYefevY/fkbhCSTv69E+4rfD5xJ+rHRxLuK1Ciff/gGBKaD6JzOgZvr3w2sTbKhN3q2ZqZYItH0r6ckacz+w/t5LukuQ59tptj6RbM6KdHcUTJwAAAAAAAAAA5JS9iv72QNRrpnQebpwAAAAAAAAAAJBT+KmuMCwODwAAAAAAAAAA0IwnTgAAAAAAAAAAyCmNiv6ntXjiBAAAAAAAAAAAoMsJnHOus5PIZXV1dYrFYorH4yoqKursdAAAANolCCoNUTO8Ec4VRlCPwfgKf0y1oZzJHc4kUjum9vbGVMjfhwOCKf5yRodv37MxfHudk0o+Eue/MOOaCQDQFfjPZ8POmdeFbBuZ3OfmlCfeNm1PSJnhytzzCbdtmHtuwm2xybUJt8WfL0m4zf1nkDiZLyTeVPmzxNtS4WNJP1JmnAPvP7eSKiX1iLj0jyVVZEQ7O4onTgAAAAAAAAAAAJpx4yQCd999t0pLS9WjRw8NHTpUzz33XGenBAAAAAAZhesmAACATLI3Ra+ugRsnHfTwww9rypQpuuOOO7Rp0yadffbZOv/887Vt27bOTg0AAAAAMgLXTQAAAMgmeZ2dQLabO3eurrnmGl177bWSpHnz5umpp57SL37xC82aNeuA+Pr6etXX17f8Ox6PS/rkt+UAAACyz8eGGP95Tl2d7y+TLPUY7DWcc+0zlBNROlHZXedftrDBkLRpbzaGb9/jSWV383aWWswt7blu4poJANA1+c60wr7nPoz+cx+HfS75NU4a65Kr09XtTvy5Dw9OuCn03LQ+8aZ0n87vTyWzzoE/lOQ5uW+3kE7PMiwO3wENDQ06+OCDtXTpUn3lK19pef+2227TK6+8otWrVx/wmZkzZ6qyMqLFTQEAAIAs9ac//UkDBw7s7DSQBu29buKaCQAAdFWZcA788ccfq7S0VLW1tSkpv6SkRDU1NerRI+qF59OLJ0464L333lNTU5P69evX6v1+/folHHi33367pk6d2vLvXbt26eijj9a2bdsUi8VSmi+6hrq6Oh155JF6++23VVRU1NnpIAswZtBejBm0B+MF7RWPx3XUUUepT58+nZ0K0qS9101cM3U9fFdkP/ZhdmP/ZT/2YfbLpHPgHj16qKamRg0NDSkpPz8/P+tvmkjcOIlEEASt/u2cO+C9/QoKClRQUHDA+7FYjIkP7VJUVMSYQbswZtBejBm0B+MF7XXQQSy3mGus101cM3VdfFdkP/ZhdmP/ZT/2YfbLlHPgHj16dImbG6mUGXsqSx166KHq1q3bAX8l9e677x7w11QAAAAAkIu4bgIAAEC24cZJB+Tn52vo0KFauXJlq/dXrlypESNGdFJWAAAAAJA5uG4CAABAtuGnujpo6tSpmjhxooYNG6aysjItXLhQ27Zt04033mj6fEFBgSoqKtp8FB1oC2MG7cWYQXsxZtAejBe0F2MmN3Xkuokxk/3Yh9mPfZjd2H/Zj32Y/diH2SdwzrnOTiLb3X333Zo9e7Z27NihwYMH66c//alGjRrV2WkBAAAAQMbgugkAAADZghsnAAAAAAAAAAAAzVjjBAAAAAAAAAAAoBk3TgAAAAAAAAAAAJpx4wQAAAAAAAAAAKAZN04AAAAAAAAAAACaceMkDe6++26VlpaqR48eGjp0qJ577rnQ+NWrV2vo0KHq0aOHBg4cqF/+8pdpyhSZoj1j5pFHHtF5552nww47TEVFRSorK9NTTz2VxmzR2do7x+y3bt065eXl6Qtf+EJqE0TGae+Yqa+v1x133KGjjz5aBQUF+vznP69f/epXacoWmaC9Y+aBBx7QaaedpoMPPlj9+/fXN77xDf3jH/9IU7bobGvWrNHFF1+sAQMGKAgC/fa3v/V+hvNfcM2U/biGyX5cV2Q3zvGzH+fc2Yvz366JGycp9vDDD2vKlCm64447tGnTJp199tk6//zztW3btjbja2pqdMEFF+jss8/Wpk2b9L3vfU+33nqrli1blubM0VnaO2bWrFmj8847T7///e9VXV2tc889VxdffLE2bdqU5szRGdo7XvaLx+P6+te/rjFjxqQpU2SKZMbM5Zdfrj/84Q+67777tGXLFv3mN7/RCSeckMas0ZnaO2bWrl2rr3/967rmmmv0+uuva+nSpXrppZd07bXXpjlzdJYPP/xQp512mhYsWGCK5/wXXDNlP65hsh/XFdmNc/zsxzl3duP8t4tySKkzzjjD3Xjjja3eO+GEE9x3v/vdNuNnzJjhTjjhhFbv3XDDDe7MM89MWY7ILO0dM2056aSTXGVlZdSpIQMlO16uuOIK9x//8R+uoqLCnXbaaSnMEJmmvWPm//7f/+tisZj7xz/+kY70kIHaO2Z+/OMfu4EDB7Z676677nJHHHFEynJE5pLkHn300dAYzn/BNVP24xom+3Fdkd04x89+nHN3HZz/dh08cZJCDQ0Nqq6u1tixY1u9P3bsWK1fv77Nz2zYsOGA+HHjxmnjxo3au3dvynJFZkhmzHzWvn37tHv3bvXp0ycVKSKDJDteFi1apD/96U+qqKhIdYrIMMmMmeXLl2vYsGGaPXu2Dj/8cB1//PGaPn269uzZk46U0cmSGTMjRozQ9u3b9fvf/17OOf3tb39TVVWVLrzwwnSkjCzE+W9u45op+3ENk/24rshunONnP865cw/nMtkhr7MT6Mree+89NTU1qV+/fq3e79evn2pra9v8TG1tbZvxjY2Neu+999S/f/+U5YvOl8yY+aw5c+boww8/1OWXX56KFJFBkhkvb731lr773e/queeeU14eXwG5Jpkxs3XrVq1du1Y9evTQo48+qvfee0833XST3n//fX4DOQckM2ZGjBihBx54QFdccYU+/vhjNTY26pJLLtH8+fPTkTKyEOe/uY1rpuzHNUz247oiu3GOn/045849nMtkB544SYMgCFr92zl3wHu++LbeR9fV3jGz329+8xvNnDlTDz/8sIqLi1OVHjKMdbw0NTXpyiuvVGVlpY4//vh0pYcM1J45Zt++fQqCQA888IDOOOMMXXDBBZo7d64WL17MX6TlkPaMmc2bN+vWW2/Vf/7nf6q6ulpPPvmkampqdOONN6YjVWQpzn/BNVP24xom+3Fdkd04x89+nHPnFs5lMh9/FpBChx56qLp163bA3eF33333gLuK+5WUlLQZn5eXp759+6YsV2SGZMbMfg8//LCuueYaLV26VOXl5alMExmiveNl9+7d2rhxozZt2qTJkydL+uSE2TmnvLw8rVixQl/60pfSkjs6RzJzTP/+/XX44YcrFou1vHfiiSfKOaft27fruOOOS2nO6FzJjJlZs2Zp5MiR+va3vy1JOvXUU9WzZ0+dffbZ+sEPfsBfT+EAnP/mNq6Zsh/XMNmP64rsxjl+9uOcO/dwLpMdeOIkhfLz8zV06FCtXLmy1fsrV67UiBEj2vxMWVnZAfErVqzQsGHD1L1795TlisyQzJiRPvkrrUmTJunBBx/k9yxzSHvHS1FRkV599VW98sorLa8bb7xRgwYN0iuvvKLhw4enK3V0kmTmmJEjR+qvf/2rPvjgg5b3/vjHP+qggw7SEUcckdJ80fmSGTMfffSRDjqo9Slmt27dJP3zr6iAT+P8N7dxzZT9uIbJflxXZDfO8bMf59y5h3OZLJHOlehz0UMPPeS6d+/u7rvvPrd582Y3ZcoU17NnT/fnP//ZOefcd7/7XTdx4sSW+K1bt7qDDz7Yfetb33KbN2929913n+vevburqqrqrCYgzdo7Zh588EGXl5fnfv7zn7sdO3a0vHbt2tVZTUAatXe8fFZFRYU77bTT0pQtMkF7x8zu3bvdEUcc4caPH+9ef/11t3r1anfccce5a6+9trOagDRr75hZtGiRy8vLc3fffbf705/+5NauXeuGDRvmzjjjjM5qAtJs9+7dbtOmTW7Tpk1Okps7d67btGmT+8tf/uKc4/wXB+KaKftxDZP9uK7IbpzjZz/OubMb579dEzdO0uDnP/+5O/roo11+fr774he/6FavXt2y7eqrr3ajR49uFf/ss8+6IUOGuPz8fHfMMce4X/ziF2nOGJ2tPWNm9OjRTtIBr6uvvjr9iaNTtHeO+TQucHJTe8fMG2+84crLy11hYaE74ogj3NSpU91HH32U5qzRmdo7Zu666y530kknucLCQte/f3931VVXue3bt6c5a3SWZ555JvTchPNftIVrpuzHNUz247oiu3GOn/04585enP92TYFzPL8FAAAAAAAAAAAgscYJAAAAAAAAAABAC26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQDNunAAAAAAAAAAAADTjxgkAAAAAAAAAAEAzbpwAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQDNunAAAuqxzzjlHU6ZM6ew0AAAAAHQyrg0AAO3BjRMAAFJk1KhRCoLggNdVV11l+vykSZP03e9+N7LyAAAAAHQOrg0AILvkdXYCAAB8WkNDg/Lz8zs7jQ5zzumVV17RT37ykwMuXj73uc95P79v3z498cQTWr58eSTlAQAAANmGa4NPcG0AAOnHEycAgIScc5o9e7YGDhyowsJCnXbaaaqqqmrZfs455+jWW2/VjBkz1KdPH5WUlGjmzJntLmPy5MmaOnWqDj30UJ133nmSpN27d+uqq65Sz5491b9/f/30pz9t9Xj9/fffr759+6q+vr5VfZdddpm+/vWvt9me+vp63XrrrSouLlaPHj101lln6aWXXmrZXlVVpVNOOUWFhYXq27evysvL9eGHH5q3f9pbb72l3bt3a9SoUSopKWn1slzMrFu3TgcddJCGDx8eSXkAAABAR3BtwLUBAOQSbpwAABL6j//4Dy1atEi/+MUv9Prrr+tb3/qW/u3f/k2rV69uifn1r3+tnj176oUXXtDs2bP1/e9/XytXrmx3GXl5eVq3bp3uueceSdLUqVO1bt06LV++XCtXrtRzzz2nl19+ueUzEyZMUFNTU8tfXUnSe++9p8cff1zf+MY32mzPjBkztGzZMv3617/Wyy+/rGOPPVbjxo3T+++/rx07duhrX/uavvnNb+qNN97Qs88+q0svvVTOOUnybv+s6upq5eXl6dRTT02i56Xly5fr4osv1kEHHRRJeQAAAEBHcG3AtQEA5BQHAEAbPvjgA9ejRw+3fv36Vu9fc8017mtf+5pzzrnRo0e7s846q9X2008/3X3nO99pVxlf+MIXWm2vq6tz3bt3d0uXLm15b9euXe7ggw92t912W8t7//7v/+7OP//8ln/PmzfPDRw40O3bt6+l7P3xH3zwgevevbt74IEHWuIbGhrcgAED3OzZs111dbWT5P785z+32R++7Z81ffp0FwSB69mzZ6vXtddea/r88ccf75YvX96u8h577DF3/PHHu2OPPdbde++9pnoAAAAAH64NWuPaAAC6PtY4AQC0afPmzfr4449bHo/fr6GhQUOGDGn592f/yql///56991321XGsGHDWm3funWr9u7dqzPOOKPlvVgspkGDBrWKu+6663T66afrnXfe0eGHH65FixZp0qRJCoLggPb86U9/0t69ezVy5MiW97p3764zzjhDb7zxhqZOnaoxY8bolFNO0bhx4zR27FiNHz9ehxxyiCTptNNOC93+WdXV1ZowYYLuvPPOVu8niv+0N954Q9u3b1d5ebm5vMbGRk2dOlXPPPOMioqK9MUvflGXXnqp+vTp460PAAAACMO1AdcGAJBruHECAGjTvn37JElPPPGEDj/88FbbCgoKWv67e/furbYFQdDyWWsZPXv2bLXNNT/i/tmLHPeZR9+HDBmi0047Tffff7/GjRunV199VY899lib7QkrMwgCdevWTStXrtT69eu1YsUKzZ8/X3fccYdeeOEFlZaWerd/1qZNm/T9739fxx57bJv5vPbaa/rXf/1XrVu3TiUlJXrvvfdUXl6uF198UcuXL9d5552nwsJCc3kvvviiTj755JZ+vuCCC/TUU0/pa1/7WpvxAAAAgBXXBlwbAECuYY0TAECbTjrpJBUUFGjbtm069thjW72OPPLIlJbx+c9/Xt27d9eLL77Y8l5dXZ3eeuutA2KvvfZaLVq0SL/61a9UXl6esNxjjz1W+fn5Wrt2bct7e/fu1caNG3XiiSdK+uTCaeTIkaqsrNSmTZuUn5+vRx99tCXet32/rVu3ateuXa3+cu6zBg8erK9+9at6+umnJUmVlZX6zne+o/z8fP3ud7/TJZdc0q7y/vrXv7a6AD3iiCP0zjvvJIwHAAAArLg24NoAAHINT5wAANrUq1cvTZ8+Xd/61re0b98+nXXWWaqrq9P69ev1uc99TldffXXKyujVq5euvvpqffvb31afPn1UXFysiooKHXTQQQf8VdhVV12l6dOn695779X999+fMJeePXvq3//931vKPOqoozR79mx99NFHuuaaa/TCCy/oD3/4g8aOHavi4mK98MIL+vvf/95y4eTb/mnV1dWSpH79+qm2trbVtuLi4pZFHU8++WT98Y9/1P/7f/9P1dXVuuuuu/Tuu+/qpZde0m9/+9t2lffZv7iTDvwLOgAAACAZXBtwbQAAuYYbJwCAhP7rv/5LxcXFmjVrlrZu3arevXvri1/8or73ve+lvIy5c+fqxhtv1EUXXaSioiLNmDFDb7/9tnr06NEqrqioSJdddpmeeOIJffnLXw4t80c/+pH27duniRMnavfu3Ro2bJieeuopHXLIISoqKtKaNWs0b9481dXV6eijj9acOXN0/vnnt9QTtv3TXn75ZUnS8ccf3+r97t27a/fu3S0/RXDcccfp8ccf1/e+9z3deeedCoJAjz32mIYPH67i4uJ2lXf44Ye3+iuy7du3a/jw4aH9AQAAAFhxbcC1AQDkksC1dRsaAIAM8+GHH+rwww/XnDlzdM0117Tadt555+nEE0/UXXfd1UnZJWfXrl067rjjNHz4cD3++OOSpEsuuURnnXWWZsyY0a6yGhsbdeKJJ+rZZ59tWQDy+eefV9++fVOROgAAANBpuDYIx7UBAHQcT5wAADLSpk2b9Oabb+qMM85QPB7X97//fUnSv/7rv7bEvP/++1qxYoWefvppLViwoLNSTVrv3r0lffLXbvudddZZSS3amJeXpzlz5ujcc8/Vvn37NGPGDC6MAAAA0CVwbdA+XBsAQMfxxAkAICNt2rRJ1157rbZs2aL8/HwNHTpUc+fO1SmnnNISc8wxx2jnzp36X//rf2n69OmdmG1y9u7dq8GDB2vLli2dnQoAAACQsbg2AACkG0+cAAAy0pAhQ1oWPkzkz3/+c3qSSZE333xTgwYN6uw0AAAAgIzGtQEAIN144gQAAAAAAAAAAKDZQZ2dAAAAAAAAAAAAQKbgxgkAAAAAAAAAAEAzbpwAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANOPGCQAAAAAAAAAAQDNunAAAAAAAAAAAADTjxgkAAAAAAAAAAEAzbpwAAAAAAAAAAAA048YJAAAAAAAAAABAM26cAAAAAAAAAAAANPv/SoXUIn0BteoAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(energyloss_found, residual_found, bins=(np.linspace(0,1,80), np.linspace(0,1e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax0.set_ylim(0,1e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
"\n",
"a1=ax1.hist2d(energyloss_lost, residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,1e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20) \n",
"ax1.set_ylim(0,1e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"#ist die shape der teilspur im scifi anders? (koenntest du zum beispiel durch vergleich der verteilungen der fit parameter studieren,\n",
"#in meiner thesis findest du das fitmodell -- ist einfach ein polynom dritten grades)\n",
"z_ref=8520 #mm\n",
"\n",
"def scifi_track(z, a, b, c, d):\n",
" return a + b*(z-z_ref) + c*(z-z_ref)**2 + d*(z-z_ref)**3\n",
"\n",
"def z_mag(xv, zv, tx, a, b):\n",
" \"\"\" optical centre of the magnet is defined as the intersection between the trajectory tangents before and after the magnet\n",
"\n",
" Args:\n",
" xv (double): velo x track\n",
" zv (double): velo z track\n",
" tx (double): velo x slope\n",
" a (double): ax parameter of track fit\n",
" b (double): bx parameter of track fit\n",
"\n",
" Returns:\n",
" double: z_mag\n",
" \"\"\"\n",
" return (xv-tx*zv-a+b*z_ref)/(b-tx)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"scifi_found = found[found[\"scifi_hit_pos_x_length\"]>3]\n",
"scifi_lost = lost[lost[\"scifi_hit_pos_x_length\"]>3]\n",
"#should be fulfilled by all candidates\n",
"\n",
"scifi_x_found = scifi_found[\"scifi_hit_pos_x\"]\n",
"scifi_z_found = scifi_found[\"scifi_hit_pos_z\"]\n",
"\n",
"tx_found = scifi_found[\"velo_track_tx\"]\n",
"\n",
"scifi_x_lost = scifi_lost[\"scifi_hit_pos_x\"]\n",
"scifi_z_lost = scifi_lost[\"scifi_hit_pos_z\"]\n",
"\n",
"tx_lost = scifi_lost[\"velo_track_tx\"]\n",
"\n",
"xv_found = scifi_found[\"velo_track_x\"]\n",
"zv_found = scifi_found[\"velo_track_z\"]\n",
"\n",
"xv_lost = scifi_lost[\"velo_track_x\"]\n",
"zv_lost = scifi_lost[\"velo_track_z\"]\n",
"\n",
"\n",
"\n",
"sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n",
"sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n",
"\n",
"\n",
"sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n",
"sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n",
"\n",
"\n",
"\n",
"#ak.num(scifi_found[\"energy\"], axis=0)\n",
"#scifi_found.snapshot()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>[101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 0]\n",
"------------------\n",
"type: 11 * float32</pre>"
],
"text/plain": [
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float32'>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ak.num(scifi_found[\"energy\"], axis=0)\n",
"scifi_found[\"all_endvtx_types\"][1,:]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"scifi_fitpars_found = ak.ArrayBuilder()\n",
"vtx_types_found = ak.ArrayBuilder()\n",
"\n",
"for i in range(0,ak.num(scifi_found, axis=0)):\n",
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n",
" scifi_fitpars_found.begin_list()\n",
" scifi_fitpars_found.real(popt[0])\n",
" scifi_fitpars_found.real(popt[1])\n",
" scifi_fitpars_found.real(popt[2])\n",
" scifi_fitpars_found.real(popt[3])\n",
" #[:,4] -> energy \n",
" scifi_fitpars_found.real(sf_energy_found[i])\n",
" #[:,5] -> photon energy\n",
" scifi_fitpars_found.real(sf_eph_found[i])\n",
" scifi_fitpars_found.end_list()\n",
" \n",
" vtx_types_found.begin_list()\n",
" #[:,0] -> endvtx_type\n",
" vtx_types_found.extend(sf_vtx_type_found[i,:])\n",
" vtx_types_found.end_list()\n",
" \n",
"\n",
"scifi_fitpars_lost = ak.ArrayBuilder()\n",
"vtx_types_lost = ak.ArrayBuilder()\n",
"\n",
"for i in range(0,ak.num(scifi_lost, axis=0)):\n",
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n",
" scifi_fitpars_lost.begin_list()\n",
" scifi_fitpars_lost.real(popt[0])\n",
" scifi_fitpars_lost.real(popt[1])\n",
" scifi_fitpars_lost.real(popt[2])\n",
" scifi_fitpars_lost.real(popt[3])\n",
" #[:,4] -> energy \n",
" scifi_fitpars_lost.real(sf_energy_lost[i])\n",
" #[:,5] -> photon energy\n",
" scifi_fitpars_lost.real(sf_eph_lost[i])\n",
" scifi_fitpars_lost.end_list()\n",
" \n",
" vtx_types_lost.begin_list()\n",
" #endvtx_type\n",
" vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n",
" vtx_types_lost.end_list()\n",
" \n",
"\n",
"\n",
"scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n",
"scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n",
"\n",
"vtx_types_lost = ak.Array(vtx_types_lost)\n",
"vtx_types_found = ak.Array(vtx_types_found)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>[101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 0]\n",
"------------------\n",
"type: 11 * float64</pre>"
],
"text/plain": [
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float64'>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vtx_types_found[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABfkAAAIhCAYAAAD96rC5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACyQUlEQVR4nOzde3wU1fnH8e+SyxJisoZLEoIIUTGCBEWwXLQGBIIoYMVbG41ELVJBKAZKC1YJVoIiohYUrT8rXqDYVrFeMQEEpBAMCAqoiC0IFAIUQwI05Mb5/YEZdpNNsgmb7G74vF+vfbE7++ycM7MDnDn7zDM2Y4wRAAAAAAAAAAAIOM183QEAAAAAAAAAAFA/TPIDAAAAAAAAABCgmOQHAAAAAAAAACBAMckPAAAAAAAAAECAYpIfAAAAAAAAAIAAxSQ/AAAAAAAAAAABikl+AAAAAAAAAAACFJP8AAAAAAAAAAAEKCb5AQAAAAAAAAAIUEzyA2ehN998U5deeqnCwsJks9m0efNmX3fJrYyMDNlsNq+tb9euXbLZbJo9e7bX1rl27VplZGToyJEjXlsnfGffvn3KyMjw+O/EggULZLPZtGHDhobtWBOWmZmpd955x9fdAACgwVSMF3bt2tUg63/++ee1YMECr6+3IcY5ixYt0jPPPOO19cG36noulJaWpnPOOadhO9WE1fVcBcDZhUl+4Cxz6NAhpaam6sILL9TSpUu1bt06XXzxxb7uVsBau3atpk+fziR/E7Fv3z5Nnz6dgXMjYpIfAIAz01CT/A2BSf6mhXOhxsW5CoCaBPu6AwAa17fffqvS0lLdeeedSkpK8nV30MQYY3TixAmFhYX5uit1Ul5errKyMl93o8H873//U4sWLXzdjUZT8X3a7XZfdwUAAKBapaWlstlsCg4OrKmZoqIiNW/e3NfdaDBFRUUBdz5zJiq+T29eRQ+g8ZHJD5xF0tLSdPXVV0uSbr/9dtlsNvXr1896/91331WfPn3UokULRUREaNCgQVq3bl2VdXTs2LHKut2V1rHZbHrggQf0+uuvq3PnzmrRooUuu+wyvf/++1U+/8EHH+jyyy+X3W5XfHx8nUrq9OvXT127dtWnn36q3r17KywsTO3atdPDDz+s8vJyt5+ZM2eO4uPjdc4556hPnz7KycmpElPb/sjIyNBvfvMbSVJ8fLxsNptsNptWrlwpSTp58qRmzZqlSy65RHa7XdHR0brrrru0d+9et/3Pzc3VT3/6U7Vo0UIXXHCBHn/8cZ08ebLW7TfG6Pnnn9fll1+usLAwRUVF6ZZbbtG///3verdTWFioSZMmKT4+XqGhoWrXrp0mTJig48ePu8RVfMcvvPCCOnfuLLvdrldffVWStGbNGvXp00fNmze3vo//+7//c7lc/d5771XLli31v//9r8p2XXvttbr00kur3e7nnntOzZo108GDB61lTz31lGw2m8aOHWstO3nypKKiojRx4kRJp8s2zZo1S4899pji4+Nlt9v1ySef6Morr5Qk3X333db3mZGRUcs3IOXn5+vuu+9Wy5YtFR4ermHDhlXZ/+5U/L3ZtGmTRowYocjISDkcDt155506dOiQS+ybb76p5ORktW3bVmFhYercubN+97vfVflOKi6D3rJli5KTkxUREaEBAwZIkrKzs3XjjTfqvPPOU/PmzXXRRRdp9OjR+u9//+u2X19++aVuvfVWORwOtWzZUunp6SorK9P27dt13XXXKSIiQh07dtSsWbOqbJsnx5DNZtPx48f16quvWvvb+d+kvLw8jR49Wuedd55CQ0MVHx+v6dOnu/wgU9P3CQCAP/vzn/+syy67TM2bN1fLli1100036euvv3aJ+fe//62f//zniouLk91uV0xMjAYMGGBl8nbs2FHbtm3TqlWrrP9L3Y3VnVWM31588UVdfPHFstvt6tKlixYvXuw2/ujRo7r//vvVunVrtWrVSiNGjNC+fftcYjwZ9/br108ffPCBvv/+e6uvzucPP/zwg8aMGaN27dopNDRUF1xwgR566CEVFxe77b8n5xju1HWc60k7O3bsUEpKiqKjo2W329W5c2c999xzLjErV66UzWbT66+/rokTJ6pdu3ay2+367rvvJEkvvfSSy/exaNEil3MvY4w6deqkwYMHV2n/2LFjcjgcLmPgym699dYqY+thw4bJZrPpb3/7m7Xs888/l81m03vvvSfpdNmmrKws3XPPPWrTpo1atGihKVOm1HguVJNt27ZpwIABCg8PV5s2bfTAAw+4PR+orC7nfdOnT1evXr3UsmVLRUZG6oorrtDLL78sY4xLXMeOHTV06FC9/fbb6t69u5o3b67p06dLOnW+cc011yg6Olrh4eFKTEzUrFmzVFpa6rZf69atU9++fRUWFqaOHTvqlVdekXTqXPeKK65QixYtlJiYqKVLl1bZttqOoZUrV9Z6rrJhwwYNHz5cLVu2VPPmzdW9e3f99a9/dWmnuu+z8t8zAAHIADhrfPfdd+a5554zkkxmZqZZt26d2bZtmzHGmIULFxpJJjk52bzzzjvmzTffND169DChoaHm008/tdYxcuRI06FDhyrrnjZtmqn8T4ok07FjR/OTn/zE/PWvfzUffvih6devnwkODjb/+te/rLhly5aZoKAgc/XVV5u3337b/O1vfzNXXnmlOf/886us052kpCTTqlUrExcXZ/74xz+ajz/+2IwfP95IMmPHjrXidu7cafXpuuuuM++884555513TGJioomKijJHjhyxYj3ZH3v27DHjxo0zkszbb79t1q1bZ9atW2cKCgqMMcbcd999RpJ54IEHzNKlS80LL7xg2rRpY9q3b28OHTpUpf+dOnUyL7zwgsnOzjZjxowxksyrr75a6/aPGjXKhISEmIkTJ5qlS5eaRYsWmUsuucTExMSYvLy8Ordz/Phxc/nll5vWrVubOXPmmGXLlplnn33WOBwOc+2115qTJ0+6fMft2rUz3bp1M4sWLTIrVqwwW7duNV988YVp3ry56datm1m8eLF59913zfXXX286duxoJJmdO3caY4z54osvjCTz0ksvuWzTtm3bjCTz3HPPVbvd33zzjZFkFi1aZC277rrrTFhYmOnUqZO1bP369UaS+fDDD12Og3bt2pn+/fubv//97yYrK8t88cUX5pVXXjGSzO9//3vr+9yzZ0+1faiIb9++vbnnnnvMRx99ZP70pz+Z6Oho0759e5Ofn1/jd1fx96ZDhw7mN7/5jfn444/NnDlzTHh4uOnevbspKSmxYv/whz+Yp59+2nzwwQdm5cqV5oUXXjDx8fGmf//+LuscOXKkCQkJMR07djQzZ840y5cvNx9//LExxpj58+ebmTNnmnfffdesWrXKvPrqq+ayyy4zCQkJLm1V9CshIcH84Q9/MNnZ2Wby5MnW8XzJJZeYP/7xjyY7O9vcfffdRpJ56623rM97egytW7fOhIWFmeuvv97a3xX/Ju3fv9+0b9/edOjQwbz44otm2bJl5g9/+IOx2+0mLS3Naqu677PiGAMAwNcqxgvO/zdlZmYaSeYXv/iF+eCDD8xrr71mLrjgAuNwOMy3335rxSUkJJiLLrrIvP7662bVqlXmrbfeMhMnTjSffPKJMcaYzz//3FxwwQWme/fu1v+ln3/+eY39qRi7dOnSxfzlL38x7777rrnuuuuMJPO3v/2tSr8vuOACM27cOPPxxx+b//u//zNRUVFVxh+ejHu3bdtmrrrqKhMbG2v1dd26dcYYY4qKiky3bt1MeHi4mT17tsnKyjIPP/ywCQ4ONtdff32V/ntyjuFOXce5nrSzbds243A4TGJionnttddMVlaWmThxomnWrJnJyMiw4j755BNrzHLLLbeYd99917z//vvm8OHD5sUXXzSSzM0332zef/99s3DhQnPxxRebDh06uJx7Pfvss8Zms7kcI8YY6xyvYhzlzgsvvGAkmX379hljjCktLTUREREmLCzMjBo1yop74oknTHBwsCksLDTGnD4O2rVrZ+677z7z0Ucfmb///e9m165dNZ4LuTNy5EgTGhpqzj//fDNjxgyTlZVlMjIyTHBwsBk6dGiN350xnp/3GWNMWlqaefnll012drbJzs42f/jDH0xYWJiZPn26S1yHDh1M27ZtzQUXXGD+/Oc/m08++cR89tlnxhhjHnzwQTN//nyzdOlSs2LFCvP000+b1q1bm7vvvtttvxISEszLL79sPv74YzN06FAjyUyfPt0kJiaav/zlL+bDDz80vXv3Nna73fznP/+xPu/JMVRQUFDjucqKFStMaGio+elPf2refPNNs3TpUpOWlmYkmVdeecVqq7rvs6ysrNb9D8C/MckPnGUqBpfOA/jy8nITFxdnEhMTTXl5ubX86NGjJjo62vTt29daVtdJ/piYGGuAaIwxeXl5plmzZmbmzJnWsl69epm4uDhTVFRkLSssLDQtW7b0eJJfkvnHP/7hsnzUqFGmWbNm5vvvvzfGnJ4MTExMdBnEfPbZZ0aS+ctf/lLn/fHkk09WOWkzxpivv/7aSDJjxoxxWV4x4Tx16tQq/V+/fr1LbJcuXczgwYNr3PZ169YZSeapp55yWb5nzx4TFhZmJk+eXOd2Zs6caZo1a2Zyc3Nd4v7+97+7TJYbc+o7djgc5ocffnCJvfXWW014eLjLjxnl5eWmS5cuVfZXUlKSufzyy10+f//995vIyEhz9OjRGrf/vPPOM/fcc48xxpji4mITHh5ufvvb3xpJ1vc+Y8YMExISYo4dO2aMOX0cXHjhhS4T28YYk5ubW2UgXJOKQfJNN93ksvyf//ynkWQee+yxGj9f8ffmwQcfdFle8SPTG2+84fZzJ0+eNKWlpWbVqlVGkvniiy+s90aOHGkkmT//+c81tl2xju+//77K35+KflU+ri6//HLrRK5CaWmpadOmjRkxYoS1rC7HUHh4uBk5cmSV/o0ePdqcc8451vdYYfbs2S4nsTV9nwAA+IPKk/z5+fnWj9zOdu/ebex2u0lJSTHGGPPf//7XSDLPPPNMjeu/9NJLTVJSksf9kWTCwsJckkHKysrMJZdcYi666KIq/a48np01a5aRZPbv32+Mqdu494YbbnB7LlExAf3Xv/7VZfkTTzxhJJmsrCyX/ntyjuFOXce5nrQzePBgc95551WZ3H7ggQdM8+bNrXFyxXnYNddc4xJXXl5uYmNjTa9evVyWf//99yYkJMRlfxUWFpqIiAjz61//2iW2S5cuVX54qey7774zksxrr71mjDFmzZo1RpKZPHmyiY+Pt+IGDRrkcr5TcRzcddddVdZZ3blQdSrGqc8++6zL8hkzZhhJZs2aNTV+3tPzvsrKy8tNaWmpefTRR02rVq1cfszp0KGDCQoKMtu3b6+x7Yp1vPbaayYoKMjl/KeiXxs2bLCWHT582AQFBZmwsDCXCf3NmzcbSeaPf/yjtczTY6imc5VLLrnEdO/e3ZSWlrosHzp0qGnbtq11XlvT9wkgsFGuB4C2b9+uffv2KTU1Vc2anf5n4ZxzztHNN9+snJwcjy6fdKd///6KiIiwXsfExCg6Olrff/+9JOn48ePKzc3ViBEjXOo6RkREaNiwYR63ExERoeHDh7ssS0lJ0cmTJ7V69WqX5TfccIOCgoKs1926dZMkq0/e2B8VpULS0tJclv/kJz9R586dtXz5cpflsbGx+slPfuKyrFu3blafqvP+++/LZrPpzjvvVFlZmfWIjY3VZZddVuVyWU/aef/999W1a1ddfvnlLuscPHiw20twr732WkVFRbksW7Vqla699lq1bt3aWtasWTPddtttVbbh17/+tTZv3qx//vOfkk5dQv36669r5MiROuecc2rc/gEDBmjZsmWSTt3463//+5/S09PVunVrZWdnS5KWLVumPn36KDw83OWzw4cPV0hISI3r99Qdd9zh8rpv377q0KGDxyVjKn/+tttuU3BwsMvn//3vfyslJUWxsbEKCgpSSEiIdV+Nypf2S9LNN99cZdnBgwf1q1/9Su3bt1dwcLBCQkLUoUOHatcxdOhQl9edO3eWzWbTkCFDrGXBwcG66KKLzugYcuf9999X//79FRcX57KOirZXrVrlEu/N7xMAgIa0bt06FRUVVRkntm/fXtdee601TmzZsqUuvPBCPfnkk5ozZ442bdrkUSlHTwwYMEAxMTHW66CgIN1+++367rvvqpSWrDzGrjx2ruu4150VK1YoPDxct9xyi8vyinVWXkdt5xjVqesYpbZ2Tpw4oeXLl+umm25SixYtXNZ5/fXX68SJE1XKglYeo23fvl15eXlVxsnnn3++rrrqKpdlERERuvvuu7VgwQKrvNCKFSv01Vdf6YEHHqhx2y+88EJ17NjRGjtnZ2crMTFRd955p3bu3Kl//etfKi4u1po1azRw4MAqn3c3tqyvymPflJQUSfJo7Ozped+KFSs0cOBAORwOa+z8yCOP6PDhwy7lPqVTx/TFF19cpa1NmzZp+PDhatWqlbWOu+66S+Xl5fr2229dYtu2basePXpYr1u2bKno6GhdfvnliouLs5Z37txZks7oGKrsu+++0zfffGPt18rr2L9/v7Zv3+7yGW9+nwD8A5P8AHT48GFJpwYmlcXFxenkyZPKz8+v17pbtWpVZZndbldRUZGkU7XMT548qdjY2Cpx7pZVx/kkpfLnK7avuj5V3Jyzok/e2B+1raO2PlX0q6JP1Tlw4ICMMYqJiVFISIjLIycnp0qtdU/aOXDggL788ssq64uIiJAxpso63W3j4cOH3X4n7pbdeOON6tixo1VzsuKkpaaaohUGDhyo3bt3a8eOHVq2bJm6d++u6OhoXXvttVq2bJmKioq0du1atycq7vpdX9Udv5W/Z08/HxwcrFatWlmfP3bsmH76059q/fr1euyxx7Ry5Url5ubq7bfflqQqx0mLFi0UGRnpsuzkyZNKTk7W22+/rcmTJ2v58uX67LPPrJMGd8day5YtXV6HhoaqRYsWVW60FhoaqhMnTliv63oMuXPgwAG99957VdZRUUvWk+MQAAB/5Ok40Wazafny5Ro8eLBmzZqlK664Qm3atNH48eN19OjRM+pDTWNvb4+dPRkPHT58WLGxsVXu8RUdHa3g4GCvjp3rMkaprZ3Dhw+rrKxMc+fOrbLO66+/XlLtY5aKbfN07Dxu3DgdPXpUCxculCTNmzdP5513nm688cYat1069eNOxQ8my5Yt06BBg5SYmKiYmBgtW7ZM//znP1VUVNSgY+eKca6z6o49dzw57/vss8+UnJws6dS9Dv75z38qNzdXDz30kKSq415327Z792799Kc/1X/+8x89++yz+vTTT5Wbm2uds1ReR+Vxs3RqjOxuPC3JGjvX5xiq7MCBA5KkSZMmVVnHmDFj3K6DsTPQ9ATWLdwBNIiKQdb+/furvLdv3z41a9bMytRu3ry525vyeDJp505UVJRsNpvy8vKqvOduWXUqBjbuPu9ucF6TuuwPT9Zx3nnnVVmHc4b7mWjdurVsNps+/fRT64TLmbtlnqwzLCxMf/7zn6t931nlkzHp1PbX9J04a9asmcaOHaupU6fqqaee0vPPP68BAwYoISGh1r5W3FB22bJlys7O1qBBg6zlv//977V69WoVFxe7PVFx1+/6qu74veiiizz+fLt27azXZWVlOnz4sHUcrVixQvv27dPKlSut7H1JOnLkiNv1udu2rVu36osvvtCCBQs0cuRIa3nFzd68qa7HUHUx3bp104wZM9y+75wRJXn3+wQAoCHVNtZ0/n+yQ4cOevnllyVJ3377rf76178qIyNDJSUleuGFF+rdh5rG3mcydq7vuLdVq1Zav369jDEu/6cfPHhQZWVlXh07n+kYxVlUVJSCgoKUmppabYJKfHy8y+vKY5aK/efp2Pmiiy7SkCFD9Nxzz2nIkCF69913NX36dJcrlaszYMAAvfzyy/rss8+0fv16/f73v5d06src7Oxsff/99zrnnHPUu3fvKp/11lir8jhXqtux58l53+LFixUSEqL333/fJTnlnXfecbtOd9v2zjvv6Pjx43r77betK18lWTe99pb6HEOVVRy3U6ZM0YgRI9zGVD63YuwMND1k8gNQQkKC2rVrp0WLFskYYy0/fvy43nrrLfXp00ctWrSQJHXs2FEHDx50GVyVlJTo448/rlfb4eHh+slPfqK3337bJRP46NGjeu+99zxez9GjR/Xuu++6LFu0aJGaNWuma665pk59qsv+qJzJVOHaa6+VJL3xxhsuy3Nzc/X1119bk9NnaujQoTLG6D//+Y969uxZ5ZGYmFivdf7rX/9Sq1at3K6zY8eOta4jKSlJK1ascPnx5+TJk/rb3/7mNv6Xv/ylQkNDdccdd2j79u21Xm5coW3bturSpYveeustbdy40ZrkHzRokA4dOqQ5c+YoMjJSV155pUfrq+77rE1FJlWFtWvX6vvvv1e/fv3q9fm//vWvKisrsz5fMQiv/KPNiy++6HEfvbEOT9XlGKou627o0KHaunWrLrzwQrfrqDzJDwBAoOjTp4/CwsKqjBP37t2rFStWVDtOvPjii/X73/9eiYmJ+vzzz63lnmSwV7Z8+XKX8Xx5ebnefPNNXXjhhVUm6mtTl3FvdX0dMGCAjh07VmUS9rXXXrPe9wZvjHOdtWjRQv3799emTZvUrVs3t+usbeI6ISFBsbGx+utf/+qyfPfu3Vq7dq3bz/z617/Wl19+qZEjRyooKEijRo3yqL8DBgyQzWbTww8/7HKeNHDgQH3yySfKzs7WNddc43EJRG+NnRctWiRJHo2dPTnvs9lsCg4Odvnho6ioSK+//rrHfXQ3djbG6KWXXvJ4HZ6oyzFU3f5OSEhQp06d9MUXX7j9fM+ePV3KTgFomsjkB6BmzZpp1qxZuuOOOzR06FCNHj1axcXFevLJJ3XkyBE9/vjjVuztt9+uRx55RD//+c/1m9/8RidOnNAf//hHlZeX17v9P/zhD7ruuus0aNAgTZw4UeXl5XriiScUHh6uH374waN1tGrVSvfff792796tiy++WB9++KFeeukl3X///Tr//PPr1J+67I+KSfRnn31WI0eOVEhIiBISEpSQkKD77rtPc+fOVbNmzTRkyBDt2rVLDz/8sNq3b68HH3ywTn2qzlVXXaX77rtPd999tzZs2KBrrrlG4eHh2r9/v9asWaPExETdf//9dVrnhAkT9NZbb+maa67Rgw8+qG7duunkyZPavXu3srKyNHHiRPXq1avGdTz00EN67733NGDAAD300EMKCwvTCy+8YNUOdb7XgSSde+65uuuuuzR//nx16NChTvdjGDBggObOnauwsDCrbml8fLzi4+OVlZWl4cOHKzjYs//uLrzwQoWFhWnhwoXq3LmzzjnnHMXFxdU6obxhwwb98pe/1K233qo9e/booYceUrt27azLY2vz9ttvKzg4WIMGDdK2bdv08MMP67LLLrNqs/bt21dRUVH61a9+pWnTpikkJEQLFy7UF1984dH6JemSSy7RhRdeqN/97ncyxqhly5Z67733rHsXeFNdjqHExEStXLlS7733ntq2bauIiAglJCTo0UcfVXZ2tvr27avx48crISFBJ06c0K5du/Thhx/qhRdeqPMkBAAA/uDcc8/Vww8/rKlTp+quu+7SL37xCx0+fFjTp09X8+bNNW3aNEnSl19+qQceeEC33nqrOnXqpNDQUK1YsUJffvmlfve731nrS0xM1OLFi/Xmm2/qggsuUPPmzWtN9GjdurWuvfZaPfzwwwoPD9fzzz+vb775RosXL67z9tRl3JuYmKi3335b8+fPV48ePdSsWTP17NlTd911l5577jmNHDlSu3btUmJiotasWaPMzExdf/31bq/KrA9vjHMre/bZZ3X11Vfrpz/9qe6//3517NhRR48e1Xfffaf33ntPK1asqPHzzZo10/Tp0zV69Gjdcsstuueee3TkyBFNnz5dbdu2rTJulk4ltHTp0kWffPKJ7rzzTkVHR3vU1+joaHXt2lVZWVnq37+/lbg0cOBA/fDDD/rhhx80Z84cj7e9unOhmiaUQ0ND9dRTT+nYsWO68sortXbtWj322GMaMmSIrr766lrb9OS874YbbtCcOXOUkpKi++67T4cPH9bs2bPrdJXzoEGDFBoaql/84heaPHmyTpw4ofnz59e7jG1NPD2GajpXefHFFzVkyBANHjxYaWlpateunX744Qd9/fXX+vzzz6tNtgLQhPjqjr8AfOOTTz4xkszf/va3Ku+98847plevXqZ58+YmPDzcDBgwwPzzn/+sEvfhhx+ayy+/3ISFhZkLLrjAzJs3z0ybNs1U/idFkhk7dmyVz3fo0MGMHDnSZdm7775runXrZkJDQ835559vHn/8cbfrdCcpKclceumlZuXKlaZnz57Gbrebtm3bmqlTp5rS0lIrbufOnUaSefLJJ6usQ5KZNm1avfbHlClTTFxcnGnWrJmRZD755BNjjDHl5eXmiSeeMBdffLEJCQkxrVu3NnfeeafZs2eP2/5XNnLkSNOhQ4dat98YY/785z+bXr16mfDwcBMWFmYuvPBCc9ddd5kNGzbUq51jx46Z3//+9yYhIcGEhoYah8NhEhMTzYMPPmjy8vKsuOq+Y2OM+fTTT02vXr2M3W43sbGx5je/+Y154oknjCRz5MiRKvErV640kszjjz/u0TZX+Mc//mEkmUGDBrksHzVqlJFk/vjHP7osr+k4MMaYv/zlL+aSSy4xISEhbo8LZ6+88oqRZLKyskxqaqo599xzTVhYmLn++uvNjh07au17xTG+ceNGM2zYMHPOOeeYiIgI84tf/MIcOHDAJXbt2rWmT58+pkWLFqZNmzbml7/8pfn888+NJPPKK69YcSNHjjTh4eFu2/vqq6/MoEGDTEREhImKijK33nqr2b17d5XtrOjXoUOHXD5f3brdHVueHkObN282V111lWnRooWRZJKSkqz3Dh06ZMaPH2/i4+NNSEiIadmypenRo4d56KGHzLFjx4wxtX+fAAD4WsV4YefOnS7L/+///s8a/zocDnPjjTeabdu2We8fOHDApKWlmUsuucSEh4ebc845x3Tr1s08/fTTpqyszIrbtWuXSU5ONhEREUZSrePHivHb888/by688EITEhJiLrnkErNw4UK3/c7NzXVZXnE+UTHmNcbzce8PP/xgbrnlFnPuuecam83mMtY/fPiw+dWvfmXatm1rgoODTYcOHcyUKVPMiRMn3Pa/MnfnGO6c6TjXXTs7d+4099xzj2nXrp0JCQkxbdq0MX379jWPPfZYlf3m7jzMGGP+9Kc/mYsuusiEhoaaiy++2Pz5z382N954o+nevbvb+IyMDCPJ5OTk1LrNzh588EEjycyYMcNleadOnYwk8+WXX7osr+44qFDduZA7FWPJL7/80vTr18+EhYWZli1bmvvvv98a29XE0/M+Y06dHyUkJBi73W4uuOACM3PmTPPyyy9X+bvYoUMHc8MNN7ht77333jOXXXaZad68uWnXrp35zW9+Yz766KMq21ndeVZ163Z3bHlyDBlT87nKF198YW677TYTHR1tQkJCTGxsrLn22mvNCy+8YMXU9n0CCFw2Y5xqUQBAAOrXr5/++9//auvWrb7uCmqRnJysXbt26dtvv63y3sSJEzV//nzt2bOnzrVgA1VGRoamT5+uQ4cOea3WLAAAQE1sNpvGjh2refPm+borqMGRI0d08cUX62c/+5n+9Kc/VXm/Z8+estlsys3N9UHvfIPzPgCoHuV6AAANIj09Xd27d1f79u31ww8/aOHChcrOzrZuHlchJydH3377rZ5//nmNHj36rJngBwAAAKRTN46dMWOG+vfvr1atWun777/X008/raNHj+rXv/61FVdYWKitW7fq/fff18aNG7VkyRIf9hoA4E+Y5AcANIjy8nI98sgjysvLk81mU5cuXfT666/rzjvvdImruJHx0KFD9dhjj/motwAAAIBv2O127dq1S2PGjNEPP/ygFi1aqHfv3nrhhRd06aWXWnGff/659UPAtGnT9LOf/cx3nQYA+BXK9QAAAAAAAAAAEKCq3qYdAAAAAAAAAACckfnz56tbt26KjIxUZGSk+vTpo48++sh63xijjIwMxcXFKSwsTP369dO2bdvq3I5fTfJ37NhRNputymPs2LGSPNvo4uJijRs3Tq1bt1Z4eLiGDx+uvXv3usTk5+crNTVVDodDDodDqampOnLkiEvM7t27NWzYMIWHh6t169YaP368SkpKXGK2bNmipKQkhYWFqV27dnr00UfFhREAAAAAAAAAgPPOO0+PP/64NmzYoA0bNujaa6/VjTfeaM1pz5o1S3PmzNG8efOUm5ur2NhYDRo0SEePHq1TO341yZ+bm6v9+/dbj+zsbEnSrbfeKsmzjZ4wYYKWLFmixYsXa82aNTp27JiGDh2q8vJyKyYlJUWbN2/W0qVLtXTpUm3evFmpqanW++Xl5brhhht0/PhxrVmzRosXL9Zbb72liRMnWjGFhYUaNGiQ4uLilJubq7lz52r27NmaM2dOQ+8mAAAAAAAAAICfGzZsmK6//npdfPHFuvjiizVjxgydc845ysnJkTFGzzzzjB566CGNGDFCXbt21auvvqr//e9/WrRoUZ3a8eua/BMmTND777+vHTt2SJLi4uI0YcIE/fa3v5V0Kms/JiZGTzzxhEaPHq2CggK1adNGr7/+um6//XZJ0r59+9S+fXt9+OGHGjx4sL7++mt16dJFOTk56tWrlyQpJydHffr00TfffKOEhAR99NFHGjp0qPbs2aO4uDhJ0uLFi5WWlqaDBw8qMjJS8+fP15QpU3TgwAHZ7XZJ0uOPP665c+dq7969stlsHm3jyZMntW/fPkVERHj8GQAAAPgHY4yOHj2quLg4NWvmV/kzZyXG1gAAAIGpLuPqEydOVKm40piMMVXGmna73Zojrk55ebn+9re/aeTIkdq0aZOaN2+uCy+8UJ9//rm6d+9uxd14440699xz9eqrr3rcp+C6bULjKSkp0RtvvKH09HTZbDb9+9//Vl5enpKTk60Yu92upKQkrV27VqNHj9bGjRtVWlrqEhMXF6euXbtq7dq1Gjx4sNatWyeHw2FN8EtS79695XA4tHbtWiUkJGjdunXq2rWrNcEvSYMHD1ZxcbE2btyo/v37a926dUpKSnL58gYPHqwpU6Zo165dio+Pd7tdxcXFKi4utl7/5z//UZcuXbyyzwAAAOAbe/bs0Xnnnefrbpx1GFsDAAA0LbWNq0+cOKE2YWE61oh9quycc87RsWOuPZg2bZoyMjLcxm/ZskV9+vTRiRMndM4552jJkiXq0qWL1q5dK0mKiYlxiY+JidH3339fpz757ST/O++8oyNHjigtLU2SlJeXJ6nmjc7Ly1NoaKiioqKqxFR8Pi8vT9HR0VXai46Odomp3E5UVJRCQ0NdYjp27FilnYr3qpvknzlzpqZPn15l+Z49exQZGen2MwAAAPBPhYWFat++vSIiInzdlbMSY2sAqD+HY6bL64KCKT7qCQB4Pq4uKSnRMUkPSqo5b75hFEt6+tixKuPNmrL4ExIStHnzZh05ckRvvfWWRo4cqVWrVlnvV74qwN2VArXx20n+l19+WUOGDHHJppfqt9GVY9zFeyOmovJRTf2ZMmWK0tPTrdcVB3DFHZYBAAAQeCgN4xuMrQGg/oyZWXsQADQyT8fV4ZKaN2xX3KqYTK/LeDM0NFQXXXSRJKlnz57Kzc3Vs88+a5Wkz8vLU9u2ba34gwcPVklAr41fFg79/vvvtWzZMv3yl7+0lsXGxko6ndFfwXmjY2NjVVJSovz8/BpjDhw4UKXNQ4cOucRUbic/P1+lpaU1xhw8eFBS1asNnNntdusg4OQDAAAAqD/G1gAAAGenEB8+zpQxRsXFxYqPj1dsbKyys7Ot90pKSrRq1Sr17du3Tuv0y0n+V155RdHR0brhhhusZZ5sdI8ePRQSEuISs3//fm3dutWK6dOnjwoKCvTZZ59ZMevXr1dBQYFLzNatW7V//34rJisrS3a7XT169LBiVq9e7XKTh6ysLMXFxVUp4wMAAAAAAAAAOLtMnTpVn376qXbt2qUtW7booYce0sqVK3XHHXfIZrNpwoQJyszM1JIlS7R161alpaWpRYsWSklJqVM7fleu5+TJk3rllVc0cuRIBQef7p7zRnfq1EmdOnVSZmamy0Y7HA7de++9mjhxolq1aqWWLVtq0qRJSkxM1MCBAyVJnTt31nXXXadRo0bpxRdflCTdd999Gjp0qBISEiRJycnJ6tKli1JTU/Xkk0/qhx9+0KRJkzRq1CgrOyglJUXTp09XWlqapk6dqh07digzM1OPPPIIl2sDAAAAAAAAQAMJlm8mtuva5oEDB5Samqr9+/fL4XCoW7duWrp0qQYNGiRJmjx5soqKijRmzBjl5+erV69eysrKqvM9v/xukn/ZsmXavXu37rnnnirvebLRTz/9tIKDg3XbbbepqKhIAwYM0IIFCxQUFGTFLFy4UOPHj1dycrIkafjw4Zo3b571flBQkD744AONGTNGV111lcLCwpSSkqLZs2dbMQ6HQ9nZ2Ro7dqx69uypqKgopaenu9QEBQAAAAAAAACcnV5++eUa37fZbMrIyFBGRsYZtWMzFXeLhU8UFhbK4XCooKCAGqIAAAABhrGcf+H7AAAACEyejuMq4p6QFNZ43bMUSfqt5HfjTb+syQ8AAAAAAAAAAGrnd+V6AAAAAAAAAACoTqDU5G8sZPIDAAAAAAAAABCg/PXHBwAAAAAAAAAAqgj58dHYynzQpieY5AcAAAAAAAAABAzK9biiXA8AAAAAAAAAAAHKX398AAAAAAAAAACgimD5plxPqQ/a9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAAYOa/K7I5AcAAAAAAAAAIED5648PAIAAZrNNt54bM82HPQEAAAAAAE1NiHxTk98XbXqCTH4AAAAAAAAAAAIUmfwAAK8jex8AAAAAADQUMvldMckPAAAAAAAAAAgY3HjXFeV6AAAAAAAAAAAIUP764wMAAAAAAAAAAFUEyzelc/x1Mp1MfgAAAAAAAAAAApS//vgAAAAAAAAAAEAV1OR3RSY/AAAAAAAAAAAByl9/fAAAAAAAAAAAoIoQ+aYmvy/a9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAAYOa/K78tV8AAAAAAAAAAFQRLN+UzvHXyXTK9QAAAAAAAAAAEKD89ccHAAAAAAAAAACqoFyPKzL5AQAAAAAAAAAIUP764wMAAAAAAAAAAFWEyDc1+X3RpifI5AcAAAAAAAAAIECRyQ8AAAAAAAAACBjU5HdFJj8AAAAAAAAAAAHKX398AAAAAAAAAACgimD5pj6+v06m+2u/AAAAAAAAAACoghvvuqJcDwAAAAAAAAAAAYpMfgAAAAAAAABAwODGu67I5AcAAAAAAAAAIED5648PAAAAAAAAAABUERwkhdh80K6RVN747daGTH4AAAAAAAAAAAIUmfwAAAAAAAAAgIARHCwFk8lvIZMfAAAAAAAAAIAARSY/AAAAAAAAACBghPioJn+Iafw2PcEkPwAAAAAAAAAgYPi0XI8folwPAAAAAAAAAAABikx+AAAAAAAAAEDACAmSQnyQvh5ysvHb9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAgSNIvklf98F9ADxBJj8AAAAAAAAAAAGKTH4AAAAAAAAAQOAIlm/S16nJDwAAAAAAAAAAvIlMfgAAAAAAAABA4CCT3wWT/AAAAAAAAACAwMEkvwvK9QAAAAAAAAAAEKDI5AcAAAAAAAAABI5mkoJ83Qn/QSY/AAAAAAAAAAABikx+AAAAAAAAAEDgCJZvMvltPmjTA2TyAwAAAAAAAAAQoPxukv8///mP7rzzTrVq1UotWrTQ5Zdfro0bN1rvG2OUkZGhuLg4hYWFqV+/ftq2bZvLOoqLizVu3Di1bt1a4eHhGj58uPbu3esSk5+fr9TUVDkcDjkcDqWmpurIkSMuMbt379awYcMUHh6u1q1ba/z48SopKXGJ2bJli5KSkhQWFqZ27drp0UcflTHGuzsFAAAAAAAAAHBKsA8ffsivJvnz8/N11VVXKSQkRB999JG++uorPfXUUzr33HOtmFmzZmnOnDmaN2+ecnNzFRsbq0GDBuno0aNWzIQJE7RkyRItXrxYa9as0bFjxzR06FCVl5dbMSkpKdq8ebOWLl2qpUuXavPmzUpNTbXeLy8v1w033KDjx49rzZo1Wrx4sd566y1NnDjRiiksLNSgQYMUFxen3NxczZ07V7Nnz9acOXMadkcBAAAAAAAAACDJZvwo7fx3v/ud/vnPf+rTTz91+74xRnFxcZowYYJ++9vfSjqVtR8TE6MnnnhCo0ePVkFBgdq0aaPXX39dt99+uyRp3759at++vT788EMNHjxYX3/9tbp06aKcnBz16tVLkpSTk6M+ffrom2++UUJCgj766CMNHTpUe/bsUVxcnCRp8eLFSktL08GDBxUZGan58+drypQpOnDggOx2uyTp8ccf19y5c7V3717ZbLUXaSosLJTD4VBBQYEiIyPPeB8CAACg8TCW8y98HwAAAIHJ03GcFZcoRfqgJn9hueTYIr8bb/pVJv+7776rnj176tZbb1V0dLS6d++ul156yXp/586dysvLU3JysrXMbrcrKSlJa9eulSRt3LhRpaWlLjFxcXHq2rWrFbNu3To5HA5rgl+SevfuLYfD4RLTtWtXa4JfkgYPHqzi4mKrfNC6deuUlJRkTfBXxOzbt0+7du1yu43FxcUqLCx0eQAAAACoO8bWAAAAZynK9bjwq0n+f//735o/f746deqkjz/+WL/61a80fvx4vfbaa5KkvLw8SVJMTIzL52JiYqz38vLyFBoaqqioqBpjoqOjq7QfHR3tElO5naioKIWGhtYYU/G6IqaymTNnWvcBcDgcat++fS17BQAAAIA7jK0BAAAAP5vkP3nypK644gplZmaqe/fuGj16tEaNGqX58+e7xFUug2OMqbU0TuUYd/HeiKmoflRdf6ZMmaKCggLrsWfPnhr7DQAAAMA9xtYAAABnqSD5JovfByWCPOFXk/xt27ZVly5dXJZ17txZu3fvliTFxsZKqpolf/DgQSuDPjY2ViUlJcrPz68x5sCBA1XaP3TokEtM5Xby8/NVWlpaY8zBgwclVb3aoILdbldkZKTLAwAAAEDdMbYGAAAA/GyS/6qrrtL27dtdln377bfq0KGDJCk+Pl6xsbHKzs623i8pKdGqVavUt29fSVKPHj0UEhLiErN//35t3brViunTp48KCgr02WefWTHr169XQUGBS8zWrVu1f/9+KyYrK0t2u109evSwYlavXq2SkhKXmLi4OHXs2NEbuwQAAAAAAAAA4CzIhw8/5FeT/A8++KBycnKUmZmp7777TosWLdKf/vQnjR07VtKpEjgTJkxQZmamlixZoq1btyotLU0tWrRQSkqKJMnhcOjee+/VxIkTtXz5cm3atEl33nmnEhMTNXDgQEmnrg647rrrNGrUKOXk5CgnJ0ejRo3S0KFDlZCQIElKTk5Wly5dlJqaqk2bNmn58uWaNGmSRo0aZWUIpaSkyG63Ky0tTVu3btWSJUuUmZmp9PT0WssHAQAAAAAAAABwpvzqfsBXXnmllixZoilTpujRRx9VfHy8nnnmGd1xxx1WzOTJk1VUVKQxY8YoPz9fvXr1UlZWliIiIqyYp59+WsHBwbrttttUVFSkAQMGaMGCBQoKOv1Ty8KFCzV+/HglJydLkoYPH6558+ZZ7wcFBemDDz7QmDFjdNVVVyksLEwpKSmaPXu2FeNwOJSdna2xY8eqZ8+eioqKUnp6utLT0xtyNwEAAAAAAADA2auiRj4kSTZTcadY+ERhYaEcDocKCgqoIQoAABBgGMv5F74PAACAwOTpOM6Ku0qK9MEkf2GZ5Pin/G68ye8dAAAAAAAAAIDAQSa/C7+qyQ8AAAAAAAAAQFMwc+ZMXXnllYqIiFB0dLR+9rOfafv27S4xaWlpstlsLo/evXvXqR0m+QEAAAAAAAAAgSPYh486WLVqlcaOHaucnBxlZ2errKxMycnJOn78uEvcddddp/3791uPDz/8sM67AwAAAAAAAACAwNBMUpAP2j1Zt/ClS5e6vH7llVcUHR2tjRs36pprrrGW2+12xcbG1rtbTPIDAAAAAIAGY7NNt54bM82HPQEAwDsKCwtdXtvtdtnt9lo/V1BQIElq2bKly/KVK1cqOjpa5557rpKSkjRjxgxFR0d73B/K9QAAAAAAAAAAAoePy/W0b99eDofDesycObPWLhtjlJ6erquvvlpdu3a1lg8ZMkQLFy7UihUr9NRTTyk3N1fXXnutiouL67Q7AAAAAAAAAACAB/bs2aPIyEjrtSdZ/A888IC+/PJLrVmzxmX57bffbj3v2rWrevbsqQ4dOuiDDz7QiBEjPOoPk/wAAAAAAKDBUKIHAOB19bgJrleYU39ERka6TPLXZty4cXr33Xe1evVqnXfeeTXGtm3bVh06dNCOHTs8Xj+T/AAAAAAAAAAAeJkxRuPGjdOSJUu0cuVKxcfH1/qZw4cPa8+ePWrbtq3H7TDJDwAAAAAAAAAIHEE/PhrbybqFjx07VosWLdI//vEPRUREKC8vT5LkcDgUFhamY8eOKSMjQzfffLPatm2rXbt2aerUqWrdurVuuukmj9thkh8AAAAAAAAAAC+bP3++JKlfv34uy1955RWlpaUpKChIW7Zs0WuvvaYjR46obdu26t+/v958801FRER43A6T/AAAAAAAAACAwOHjmvweh5uaPxAWFqaPP/74DDp0CpP8AAAAAAAAAIDAESTfzGzXsVxPY2nm6w4AAAAAAAAAAID6IZMfAAAAAAAAABA4fHXjXV+06QEy+QEAAAAAAAAACFBk8gMAAAAAAAAAAoevbrxLTX4AAAAAAAAAAOBNZPIDAAAAAAAAAAIHmfwuyOQHAAAAAAAAACBAkckPAAAAAAAAAAgcZPK7YJIfAAAAAAAAABA4mkkK8lG7fshPuwUAAAAAAAAAAGpDJj8AAAAAAAAAIHD4qlxPuQ/a9ACZ/AAAAAAAAAAABCgy+QEAAAAAAAAAgYNMfhdk8gMAAAAAAAAAEKDI5AcAAAAAAAAABI6gHx++aNcPkckPAAAAAAAAAECAIpMfAAAAAAAAABA4qMnvgkl+AAAAAAAAAEDgCJJvZrbLfNCmByjXAwAAAAAAAABAgCKTHwAAAAAAAAAQOHxVrsdPZ9PJ5AcAAAAAAAAAIED56W8PAAAAAAAAAAC4EfTjwxft+iEy+QEAAAAAAAAACFBk8gMAAAAAAAAAAgc1+V2QyQ8AAAAAAAAAQIDy098eAAAAAAAAAABwg0x+F37aLQAAAAAAAAAA3Ggm39wE10/r4vhptwAAAAAAAAAAQG3I5AcAAAAAAAAABA7K9bggkx8AAAAAAAAAgADlp789AAAAAAAAAADgBpn8LsjkBwAAAAAAAAAgQPnpbw8AAAAAAAAAALgR9OPDF+36ISb5AQAAAAAA0OTZbNOt58ZM82FPAMC7mOQHAAAAAAAAAAQOavK78NNuAQAAAAAAAN5D9j7QhATJNzPbflquhxvvAgAAAAAAAAAQoMjkBwAAAAAAAAAEDsr1uCCTHwAAAAAAAACAAOWnvz0AAAAAAAAAAOBGkHxTH5+a/AAAAAAAAAAAwJvI5AcAAAAAAAAABA5q8rvwq0z+jIwM2Ww2l0dsbKz1vjFGGRkZiouLU1hYmPr166dt27a5rKO4uFjjxo1T69atFR4eruHDh2vv3r0uMfn5+UpNTZXD4ZDD4VBqaqqOHDniErN7924NGzZM4eHhat26tcaPH6+SkhKXmC1btigpKUlhYWFq166dHn30URljvLtTAAAAAAAAAACohl9N8kvSpZdeqv3791uPLVu2WO/NmjVLc+bM0bx585Sbm6vY2FgNGjRIR48etWImTJigJUuWaPHixVqzZo2OHTumoUOHqry83IpJSUnR5s2btXTpUi1dulSbN29Wamqq9X55ebluuOEGHT9+XGvWrNHixYv11ltvaeLEiVZMYWGhBg0apLi4OOXm5mru3LmaPXu25syZ08B7CAAAAAAAAADOYsE+fPghv+tWcHCwS/Z+BWOMnnnmGT300EMaMWKEJOnVV19VTEyMFi1apNGjR6ugoEAvv/yyXn/9dQ0cOFCS9MYbb6h9+/ZatmyZBg8erK+//lpLly5VTk6OevXqJUl66aWX1KdPH23fvl0JCQnKysrSV199pT179iguLk6S9NRTTyktLU0zZsxQZGSkFi5cqBMnTmjBggWy2+3q2rWrvv32W82ZM0fp6emy2WyNtMcAAAAAAAAajs023eW1MdN81BMA+FEz+eYmuH6XMn+K33Vrx44diouLU3x8vH7+85/r3//+tyRp586dysvLU3JyshVrt9uVlJSktWvXSpI2btyo0tJSl5i4uDh17drVilm3bp0cDoc1wS9JvXv3lsPhcInp2rWrNcEvSYMHD1ZxcbE2btxoxSQlJclut7vE7Nu3T7t27ap2+4qLi1VYWOjyAAAAAFB3jK0BAAAAP5vk79Wrl1577TV9/PHHeumll5SXl6e+ffvq8OHDysvLkyTFxMS4fCYmJsZ6Ly8vT6GhoYqKiqoxJjo6ukrb0dHRLjGV24mKilJoaGiNMRWvK2LcmTlzpnUvAIfDofbt29e8UwAAAAC4xdgaAADgLEW5Hhd+1a0hQ4ZYzxMTE9WnTx9deOGFevXVV9W7d29JqlIGxxhTa2mcyjHu4r0RU3HT3Zr6M2XKFKWnp1uvCwsLORkBAAAA6oGxNQA0DsrzAIB/86tM/srCw8OVmJioHTt2WHX6K2fJHzx40Mqgj42NVUlJifLz82uMOXDgQJW2Dh065BJTuZ38/HyVlpbWGHPw4EFJVa82cGa32xUZGenyAAAAAFB3jK0BAADOUmTyu/DrSf7i4mJ9/fXXatu2reLj4xUbG6vs7Gzr/ZKSEq1atUp9+/aVJPXo0UMhISEuMfv379fWrVutmD59+qigoECfffaZFbN+/XoVFBS4xGzdulX79++3YrKysmS329WjRw8rZvXq1SopKXGJiYuLU8eOHb2/MwAAAAAAAAAAqMSvJvknTZqkVatWaefOnVq/fr1uueUWFRYWauTIkbLZbJowYYIyMzO1ZMkSbd26VWlpaWrRooVSUlIkSQ6HQ/fee68mTpyo5cuXa9OmTbrzzjuVmJiogQMHSpI6d+6s6667TqNGjVJOTo5ycnI0atQoDR06VAkJCZKk5ORkdenSRampqdq0aZOWL1+uSZMmadSoUVZ2UEpKiux2u9LS0rR161YtWbJEmZmZSk9Pr7V8EAAAAAAAAACgnoJ8+PBDfnWBwd69e/WLX/xC//3vf9WmTRv17t1bOTk56tChgyRp8uTJKioq0pgxY5Sfn69evXopKytLERER1jqefvppBQcH67bbblNRUZEGDBigBQsWKCjo9DewcOFCjR8/XsnJyZKk4cOHa968edb7QUFB+uCDDzRmzBhdddVVCgsLU0pKimbPnm3FOBwOZWdna+zYserZs6eioqKUnp7uUhMUAAAAAAAAAICGZDMVd4uFTxQWFsrhcKigoIAaogAAAAGGsZx/4fsAAAAITJ6O46y45VJkeCN2sKL945JjgPxuvOlXmfwAAAAAAAAAANQoSL6Z2fbTcj1+VZMfAAAAAAAAAAB4jkx+AAAAAAAAAEDgCJZvZrb9dDadTH4AAAAAAAAAAAKUn/72AAAAAAAAAACAG0HyTX18avIDAAAAAAAAAABvIpMfAAAAAAAAABA4qMnvgkx+AAAAAAAAAAAClJ/+9gAAAAAAAAAAgBtB8s3MNjX5AQAAAAAAAACAN5HJDwAAAAAAAAAIHEHyTVa9n2byM8kPAAAAAAAAAAgc3HjXBeV6AAAAAAAAAAAIUH762wMAAAAAAAAAAG6Qye+CTH4AAAAAAAAAAAIUk/wAAAAAAAAAgMAR7MNHHcycOVNXXnmlIiIiFB0drZ/97Gfavn27S4wxRhkZGYqLi1NYWJj69eunbdu21akdJvkBAAAAAAAAAPCyVatWaezYscrJyVF2drbKysqUnJys48ePWzGzZs3SnDlzNG/ePOXm5io2NlaDBg3S0aNHPW7HT6sIAQAAAAAAAABQlWkmmSDftFsXS5cudXn9yiuvKDo6Whs3btQ111wjY4yeeeYZPfTQQxoxYoQk6dVXX1VMTIwWLVqk0aNHe9QOmfwAAAAAAAAAAHiosLDQ5VFcXOzR5woKCiRJLVu2lCTt3LlTeXl5Sk5OtmLsdruSkpK0du1aj/tDJj8AAAAAAAAChs023XpuzDQf9gSAr5QHn3r4ol1Jat++vcvyadOmKSMjo8bPGmOUnp6uq6++Wl27dpUk5eXlSZJiYmJcYmNiYvT999973C8m+QEAAAAAAAAAAcPXk/x79uxRZGSktdxut9f62QceeEBffvml1qxZU+U9m83m8toYU2VZTZjkBwAAAAAAQMAgex+Ar0VGRrpM8tdm3Lhxevfdd7V69Wqdd9551vLY2FhJpzL627Ztay0/ePBglez+mlCTHwAAAAAAAAAQMMqCbCoLauaDh+fZ9dKpjPwHHnhAb7/9tlasWKH4+HiX9+Pj4xUbG6vs7GxrWUlJiVatWqW+fft63A6Z/AAAAAAAAAAAeNnYsWO1aNEi/eMf/1BERIRVg9/hcCgsLEw2m00TJkxQZmamOnXqpE6dOikzM1MtWrRQSkqKx+0wyQ8AAAAAAAAACBjlwcEqD65bVr132jWSSj2Onz9/viSpX79+LstfeeUVpaWlSZImT56soqIijRkzRvn5+erVq5eysrIUERHhcTtM8gMAAAAAAAAA4GXGmFpjbDabMjIylJGRUe92mOQHAAAAAAAAAASM8qAgldexPr532q1bJn9j4ca7AAAAAAAAAAAEKDL5AQAAAAAAAHiVzTbdem7MNB/2BE3RSQWpXI2fyX9StZff8QUm+QEAAAAAAAAAAaNMQSrzwSR/mZ9O8lOuBwAAAAAAAACAAEUmPwAAAAAAAACvokQPGlK5glTug/z1cp1s9DY9QSY/AAAAAAAAAAABikx+AAAAAAAABCTnm7tKZI8DZwvfZfI3/n0APEEmPwAAAAAAAAAAAYpMfgAAAAAAAAQkMveBsxOZ/K7I5AcAAAAAAAAAIECRyQ8AAAAAAAAACBhk8rtikh8AAAAAAAAAEDDKFaQyJvktlOsBAAAAAAAAACBAkckPAAAAAAAAAAgY5Qr2Ubmek43epifI5AcAAAAAAAAAIECRyQ8AAAAAAAAACBjlaqZyBfmgXf9EJj8AAAAAAAAAAAGKTH4AAAAAAAAAQMAoVxCZ/E7I5AcAAAAAAAAAIECRyQ8AAAAAAAAACBhlClKZDzL5yxq9Rc8wyQ8AAAAAAAAACBgnFeyTcj0nZWv0Nj1BuR4AAAAAAAAAAAIUmfwAAAAAAAAAgIDBjXddkckPAAAAAAAAAECAIpMfAAAAAAAAABAwyOR3RSY/AAAAAAAAAAABikx+AAAAAAAAAEDAKFczH2Xym0Zv0xNM8gMAAAAAgLOSzTbdem7MNB/2BACA+vPrcj0zZ86UzWbThAkTrGXGGGVkZCguLk5hYWHq16+ftm3b5vK54uJijRs3Tq1bt1Z4eLiGDx+uvXv3usTk5+crNTVVDodDDodDqampOnLkiEvM7t27NWzYMIWHh6t169YaP368SkpKXGK2bNmipKQkhYWFqV27dnr00UdljH/+ogMAAAAAAAAAga5MQT57+CO/neTPzc3Vn/70J3Xr1s1l+axZszRnzhzNmzdPubm5io2N1aBBg3T06FErZsKECVqyZIkWL16sNWvW6NixYxo6dKjKy0/fGiElJUWbN2/W0qVLtXTpUm3evFmpqanW++Xl5brhhht0/PhxrVmzRosXL9Zbb72liRMnWjGFhYUaNGiQ4uLilJubq7lz52r27NmaM2dOA+4ZAAAAAADgDcZMsx4AgMBRrmCfPfyRX/bq2LFjuuOOO/TSSy/pscces5YbY/TMM8/ooYce0ogRIyRJr776qmJiYrRo0SKNHj1aBQUFevnll/X6669r4MCBkqQ33nhD7du317JlyzR48GB9/fXXWrp0qXJyctSrVy9J0ksvvaQ+ffpo+/btSkhIUFZWlr766ivt2bNHcXFxkqSnnnpKaWlpmjFjhiIjI7Vw4UKdOHFCCxYskN1uV9euXfXtt99qzpw5Sk9Pl81mq7JtxcXFKi4utl4XFhY22H4EAAAAmjLG1gAAAICfZvKPHTtWN9xwgzVJX2Hnzp3Ky8tTcnKytcxutyspKUlr166VJG3cuFGlpaUuMXFxceratasVs27dOjkcDmuCX5J69+4th8PhEtO1a1drgl+SBg8erOLiYm3cuNGKSUpKkt1ud4nZt2+fdu3a5XbbZs6caZUIcjgcat++fX12EQA0KpttuvUAAMBfMLYGAAA4O51UkMp98DhJuR7PLF68WJ9//rlmzpxZ5b28vDxJUkxMjMvymJgY6728vDyFhoYqKiqqxpjo6Ogq64+OjnaJqdxOVFSUQkNDa4ypeF0RU9mUKVNUUFBgPfbs2eM2DgAAAEDNGFsDAAAAflauZ8+ePfr1r3+trKwsNW/evNq4ymVwjDFuS+PUFOMu3hsxFTfdra4/drvdJfMfAAIBNUoBAP6IsTUAAMDZqSKzvvHbNY3epif8KpN/48aNOnjwoHr06KHg4GAFBwdr1apV+uMf/6jg4OBqs+QPHjxovRcbG6uSkhLl5+fXGHPgwIEq7R86dMglpnI7+fn5Ki0trTHm4MGDkqpebQAAAAAAAAAAgLf51ST/gAEDtGXLFm3evNl69OzZU3fccYc2b96sCy64QLGxscrOzrY+U1JSolWrVqlv376SpB49eigkJMQlZv/+/dq6dasV06dPHxUUFOizzz6zYtavX6+CggKXmK1bt2r//v1WTFZWlux2u3r06GHFrF69WiUlJS4xcXFx6tixo/d3EAAAAAAAAACc5crUTGUK8sHDr6bTLX5VriciIkJdu3Z1WRYeHq5WrVpZyydMmKDMzEx16tRJnTp1UmZmplq0aKGUlBRJksPh0L333quJEyeqVatWatmypSZNmqTExETrRr6dO3fWddddp1GjRunFF1+UJN13330aOnSoEhISJEnJycnq0qWLUlNT9eSTT+qHH37QpEmTNGrUKEVGRkqSUlJSNH36dKWlpWnq1KnasWOHMjMz9cgjj9RaPggAAAAAAAAAgDPlV5P8npg8ebKKioo0ZswY5efnq1evXsrKylJERIQV8/TTTys4OFi33XabioqKNGDAAC1YsEBBQafrNC1cuFDjx49XcnKyJGn48OGaN2+e9X5QUJA++OADjRkzRldddZXCwsKUkpKi2bNnWzEOh0PZ2dkaO3asevbsqaioKKWnpys9Pb0R9gQQeGy26dZzarwDAAAAAACgPsoVrHIfTG37a01+m6m4Uyx8orCwUA6HQwUFBdYVAkBTxSQ/AKCpYSznX/g+AAAAApOn47iKuJcLblCLyJBG7OEp/yss1b2OD/xuvBlwmfwAAhcT+wAAAAAAAIB3MckPAAAAAAAAAAgY5QpSuYJqD/R6uycbvU1P+OftgAEAAAAAAAAAQK3I5AcAAAAAAAAABIxyBamMTH4LmfwAAAAAAAAAAAQoMvkBAAAAAAAAAAGjXMEq98HUdrlMo7fpCTL5AQAAAAAAAAAIUGTyAwAAAAAAAAACRrmaqdwnNfnLG71NTzDJDwAAAAAAAAAIGOUK8tEkf+O36Qkm+QEAjc5mm249N2aaD3sCAAAAAAAQ2JjkBwAAAAAAAAAEDDL5XXHjXQAAAAAAAAAAAhSZ/ACARkeJHgAAAAAAUF/lClIZmfwWMvkBAAAAAAAAAAhQZPIDAAAAAAAAAAJGuYJV7oOp7XKdbPQ2PUEmPwAAAAAAAAAAAYpMfgAAAAAAAABAwChXkE/q4/trTf4znuT/5ptv9N577+ncc8/VpZdeqq5duyoyMtIbfQMAAAAAAAAAADU440n+IUOG6Je//KWOHDmiF198UVu2bNHx48e1fft2b/QPAAAAAAAATZzNNt16bsw0H/YEQCAoVzMfZfL7Z/X7M57kb9u2rR566CGXZeXl5We6WgAAAAAAAAAAqihTkMp8MMnvizY9Ue9J/okTJ+qyyy5T//799eqrr2rkyJHWe0FB/rmxAAAAAAAAcM2cl3yfPe/r9gEgkNV7kv+aa67Rl19+qW+//VZ///vfNWPGDPXs2VOJiYlKTEzU0KFDvdlPAAAAAAAAAABUrmCVn3mRmnq0658VbOq9J2688UbdeOON1uuioiJt3bpVX375pZYvX84kPwAAAAAAgJ8icx4Amo4z/rljy5YteuaZZ5Sfn6/ExET98pe/1L333uuNvgEAAAAAAAAA4OKkgnxy492TflqT/4xvB3zLLbcoKSlJU6ZMUVxcnIYPH67ly5d7o28AAAAAAAAAAKAGZ5zJ73A4dNddd0mSrrzySo0YMUIDBw7UF198ccadAwAEJuebeHnjMmBvrw8AAAAAAASuch9l8vuiTU+ccSb/BRdcoDlz5sgYI0lq2bKlmjdvfsYdAwAAAAAAAAAANTvjTP7i4mI999xzevrpp3XppZfq+++/10033aT//Oc/ateunTf6CAAIMN7Otid7HwAAAAAAVChXMx9l8p9xznyD8HiSPzU1VS+++KJatGjhsnzJkiWSpOPHj+vLL7+0Hj//+c+1b98+/etf//JujwEAAAAAAAAAZ60yBSnIB5P8ZYFermfRokU6duyY9Xr06NHKz8+3XoeHh6tnz54aPXq0nnvuOX366adM8AMAAAAAAAAAzkqrV6/WsGHDFBcXJ5vNpnfeecfl/bS0NNlsNpdH796969yOx5P8FTX3K/zlL39xmeQ/cOCAIiIi6twBAAAAAAAAAAA8Va5gnz3q4vjx47rssss0b968amOuu+467d+/33p8+OGHdd4f9a7JX3nSX5JKSkrquzoAAAAAAAAAAJqMIUOGaMiQITXG2O12xcbGnlE7Z3zjXWc2m82bqwMAAAAAAAACks023eW1MdN81BOg6TmpIJ/cePfkj20WFha6LLfb7bLb7fVa58qVKxUdHa1zzz1XSUlJmjFjhqKjo+u0jjrdDnjRokX6/PPPVVpaKolJfQAAAAAAAADA2aV9+/ZyOBzWY+bMmfVaz5AhQ7Rw4UKtWLFCTz31lHJzc3XttdequLi4TuvxOJP/6quv1rRp03T06FGFhISorKxMU6dO1dVXX60rrrhCbdq0qfNGAAAAAAAAAE0RmftAwyn3USZ/RZt79uxRZGSktby+Wfy333679bxr167q2bOnOnTooA8++EAjRozweD0eT/KvXr1akrRjxw5t3LhRn3/+uTZu3KiHH35YR44cIasfAAAAAAAAANDkRUZGukzye0vbtm3VoUMH7dixo06fq3NN/k6dOqlTp076+c9/bi3buXOnNmzYoE2bNtV1dQCAAONcV5LMFAAAAKBpqlxP3hnnAQB8rUxBauaDTP6yBm7z8OHD2rNnj9q2bVunz3nlxrvx8fGKj4/Xrbfe6o3VAQAAAAAAAADg1qlyPV6Z2q5zu3Vx7Ngxfffdd9brnTt3avPmzWrZsqVatmypjIwM3XzzzWrbtq127dqlqVOnqnXr1rrpppvq1E7j7wkAQECrLmuHDH8AAAAAAIDTNmzYoP79+1uv09PTJUkjR47U/PnztWXLFr322ms6cuSI2rZtq/79++vNN99UREREndphkh8AAAAAAAAuSNwB4M98feNdT/Xr10/GmGrf//jjj8+0S5KY5AcAeAkZ/gAAAAAAAI2PSX4AAAAAAAAAQMAIlEz+xtLM1x0AAAAAAAAAAAD1QyY/AKBBUaIHAAAAAAB400kfZfKfJJMfAAAAAAAAAAB4E5n8AIBGx814AQAAAABAfZUpSDYfZNWX+WkmP5P8AAAAAAAAAICAUa4gNfPB1La/3niXSX4AQKMjex8AAAAAAMA7mOQHAAAAAAAAAASMU5n8jZ9VTyY/AKBJo84+AAAAAABA42OSHwAAAAAAAAAQMMjkd9XM1x0AAAAAAAAAAAD1QyY/AKDeKNEDAAAAAAAaW5mCZPNBVn0ZmfwAAAAAAAAAAMCb/GqSf/78+erWrZsiIyMVGRmpPn366KOPPrLeN8YoIyNDcXFxCgsLU79+/bRt2zaXdRQXF2vcuHFq3bq1wsPDNXz4cO3du9clJj8/X6mpqXI4HHI4HEpNTdWRI0dcYnbv3q1hw4YpPDxcrVu31vjx41VSUuISs2XLFiUlJSksLEzt2rXTo48+KmOMd3cKAPgxY6ZZDwAAAAAAgMZwUsEq98HjpJ8WxvGrSf7zzjtPjz/+uDZs2KANGzbo2muv1Y033mhN5M+aNUtz5szRvHnzlJubq9jYWA0aNEhHjx611jFhwgQtWbJEixcv1po1a3Ts2DENHTpU5eXlVkxKSoo2b96spUuXaunSpdq8ebNSU1Ot98vLy3XDDTfo+PHjWrNmjRYvXqy33npLEydOtGIKCws1aNAgxcXFKTc3V3PnztXs2bM1Z86cRthTAAAAAAAAAHB2KleQzx7+yGb8PPW8ZcuWevLJJ3XPPfcoLi5OEyZM0G9/+1tJp7L2Y2Ji9MQTT2j06NEqKChQmzZt9Prrr+v222+XJO3bt0/t27fXhx9+qMGDB+vrr79Wly5dlJOTo169ekmScnJy1KdPH33zzTdKSEjQRx99pKFDh2rPnj2Ki4uTJC1evFhpaWk6ePCgIiMjNX/+fE2ZMkUHDhyQ3W6XJD3++OOaO3eu9u7dK5vN5tH2FRYWyuFwqKCgQJGRkd7efQAAAGhAjOX8C98HAABAYPJ0HFcRl1TwVwVHtmjEHp5SVvg/rXLc5nfjTb/K5HdWXl6uxYsX6/jx4+rTp4927typvLw8JScnWzF2u11JSUlau3atJGnjxo0qLS11iYmLi1PXrl2tmHXr1snhcFgT/JLUu3dvORwOl5iuXbtaE/ySNHjwYBUXF2vjxo1WTFJSkjXBXxGzb98+7dq1q9rtKi4uVmFhocsDAAAAQN0xtgYAADg7lauZjzL5/XM63e96tWXLFp1zzjmy2+361a9+pSVLlqhLly7Ky8uTJMXExLjEx8TEWO/l5eUpNDRUUVFRNcZER0dXaTc6OtolpnI7UVFRCg0NrTGm4nVFjDszZ8607gXgcDjUvn37mncIAAAAALcYWwMAAAB+OMmfkJCgzZs3KycnR/fff79Gjhypr776ynq/chkcY0ytpXEqx7iL90ZMReWjmvozZcoUFRQUWI89e/bU2HcAAAAA7jG2BgD/Y7NNtx4A0FDKFOSzhz/yu9sBh4aG6qKLLpIk9ezZU7m5uXr22WetOvx5eXlq27atFX/w4EErgz42NlYlJSXKz893yeY/ePCg+vbta8UcOHCgSruHDh1yWc/69etd3s/Pz1dpaalLTOWM/YMHD0qqerWBM7vd7lLiBwCaIucBvTHTfNgTAEBTxtgaAAAA8MNM/sqMMSouLlZ8fLxiY2OVnZ1tvVdSUqJVq1ZZE/g9evRQSEiIS8z+/fu1detWK6ZPnz4qKCjQZ599ZsWsX79eBQUFLjFbt27V/v37rZisrCzZ7Xb16NHDilm9erVKSkpcYuLi4tSxY0fv7wgAAAAAAAAAgMoV7LOHP/KrXk2dOlVDhgxR+/btdfToUS1evFgrV67U0qVLZbPZNGHCBGVmZqpTp07q1KmTMjMz1aJFC6WkpEiSHA6H7r33Xk2cOFGtWrVSy5YtNWnSJCUmJmrgwIGSpM6dO+u6667TqFGj9OKLL0qS7rvvPg0dOlQJCQmSpOTkZHXp0kWpqal68skn9cMPP2jSpEkaNWqUddfklJQUTZ8+XWlpaZo6dap27NihzMxMPfLII7WWDwIAAAAA4GwRqFd5Bkq/K5fF8XVffd0+AJyN/GqS/8CBA0pNTdX+/fvlcDjUrVs3LV26VIMGDZIkTZ48WUVFRRozZozy8/PVq1cvZWVlKSIiwlrH008/reDgYN12220qKirSgAEDtGDBAgUFna6XtHDhQo0fP17JycmSpOHDh2vevHnW+0FBQfrggw80ZswYXXXVVQoLC1NKSopmz55txTgcDmVnZ2vs2LHq2bOnoqKilJ6ervT09IbeTQDg97wxsA+UkyoAAAAAANC4TipI5T6oj3/ST2vy20zF3WLhE4WFhXI4HCooKLCuEgAAMMkPIDAwlvMvfB8A0DT429UJABqep+O4irjLCz5WUGR4I/bwlPLC49rsGOx3402/yuQHAJwdPJnAZyAPAAAAAABQOyb5AQAAAAAA4DdI+AFQm1Olehq/dI4vSgR5gkl+AIAPXGQ9oywPAAAAAABA/THJDwAAAAAAAAAIGGVqJuOTTP5mjd6mJ5jkBwA0moqsfTL2AQAAAAAAvINJfgAAAAAAAABAwChXsHwxtV3up9Pp/tkrAECTRAY/AAAAAACAdzHJDwAAAAAAAAAIGOUKknxSk7/x2/QEk/wAAAAAAAAAgIBx0keT/CeZ5AcA4JSKG/BKlPABAAAAAAA4E0zyAwAAAAAAAAACRpmC1IxMfguT/ACARlORwU/2PgAAAAAAgHcwyQ8AAAAAAAAACBjlCpLxwdQ2mfwAgCaBevoAAAAAAAD+g0l+AAAAAAAAAEDAOJXJT03+CkzyAwDqpLrsfU8y/P098597BgAAAABAw3M+f5Q4BwPOFJP8AAAAAAAAAICAQSa/Kyb5AQAAAAAAADQaMvdxpspPBsmc9MEkvw/a9AST/AAAr2gKg7SmsA0AAAAAAODswiQ/AAAAAAAAACBglJcF6WRZ42fVGx+06Qkm+QEAfs+Tm/oCAAAATQljYACAp5jkBwAAAAAAAAAEjPKyYNnKGn9q2/igTU/4Z68AAAAAAADOYmTvAwA8xSQ/AAAAAAAAACBglJc1k80nNfmbNXqbnmCSHwDQoLxRS5QsJgAAAAAAAPeY5AcAAAAAAAAABIzysiAfZfI3fpueYJIfANCgyMIHAAAAAADeVFYWJFspk/wVmOQHAAAAAAB+zbkEpBS4iSRNZTsAAP6FSX4AAAAAAAAAQMAw5cEy5T6Y2vZFmx7wz14BAAKOJzfYrYghYwkAAAB10VTGj01lOwAA/oVJfgAAAAAAAABA4CgLOvXwRbt+iEl+AIBX1Ja9X1MMAAAA4Av+PFb1574BAPwLk/wAAAAAAAAAgMBBJr8LJvkBAA2KrCMAAAAAAICGwyQ/AAAAAAA4K3makOJcOqcunzsTZ1uyjLfKE1HmCDhLlNukMptv2vVDTPIDAOqtvgNom22h0+fu8Fk/AAAAAAAAAh2T/AAAAAAAADUgkaTheWsf810BZ4myHx++aNcPMckPAAAAAAAAAAgcTPK7YJIfAFDvcjfOsXVZhzdK9FTXDwAAAACBhxKcAFB/TPIDAAAAAAAAAAIHmfwumOQHAHglU4ZsGwAAAAAAgMbHJD8AAAAAAIAPUKLmtLN9+wHUUZmkUh+164eY5AcAeF11JysVy6sbwHOSAwAAAAAAUDfNfN0BAAAAAACAs5Ex06wHAKAOyn34qIPVq1dr2LBhiouLk81m0zvvvOPyvjFGGRkZiouLU1hYmPr166dt27bVrRGRyQ8AOAPVZd5Xd5JS28mLu6z/mj5X25UBAAAAAAAAvnL8+HFddtlluvvuu3XzzTdXeX/WrFmaM2eOFixYoIsvvliPPfaYBg0apO3btysiIsLjdpjkBwAAAAAAZyXKRQJAgCqTb+rj17HNIUOGaMiQIW7fM8bomWee0UMPPaQRI0ZIkl599VXFxMRo0aJFGj16tMftMMkPAKg3b5wI2WwLnV59V6d1N9UTMU42AQAAAACogY8n+QsLC10W2+122e32Oq1q586dysvLU3Jysst6kpKStHbt2jpN8lOTHwAAAAAAAAAAD7Vv314Oh8N6zJw5s87ryMvLkyTFxMS4LI+JibHe8xSZ/AAAAAAA4KzEVZMAEKB8nMm/Z88eRUZGWovrmsXvzGazubw2xlRZVhsm+QEAPmXMHXWKPxtK2TTV7QIAAAAAoCmIjIx0meSvj9jYWEmnMvrbtm1rLT948GCV7P7aMMkPAAAAAADQBDknyEgkkwBoQsrlm0z+cu+tKj4+XrGxscrOzlb37t0lSSUlJVq1apWeeOKJOq2LSX4AgFdUl2Hv7cx7TkwAAAAAAEAgOHbsmL777jvr9c6dO7V582a1bNlS559/viZMmKDMzEx16tRJnTp1UmZmplq0aKGUlJQ6tcMkPwAAAAAAQBNEggyAJsvHNfk9tWHDBvXv3996nZ6eLkkaOXKkFixYoMmTJ6uoqEhjxoxRfn6+evXqpaysLEVERNSpHSb5AQBewQkEAAAAAADAaf369ZMxptr3bTabMjIylJGRcUbtMMkPAAAAAABQA2rbA4CfCZBM/sbSzNcdcDZz5kxdeeWVioiIUHR0tH72s59p+/btLjHGGGVkZCguLk5hYWHq16+ftm3b5hJTXFyscePGqXXr1goPD9fw4cO1d+9el5j8/HylpqbK4XDI4XAoNTVVR44ccYnZvXu3hg0bpvDwcLVu3Vrjx49XSUmJS8yWLVuUlJSksLAwtWvXTo8++miNv84AQFNis013+wAAAAAAAGgwpT58+CG/muRftWqVxo4dq5ycHGVnZ6usrEzJyck6fvy4FTNr1izNmTNH8+bNU25urmJjYzVo0CAdPXrUipkwYYKWLFmixYsXa82aNTp27JiGDh2q8vLTtz9OSUnR5s2btXTpUi1dulSbN29Wamqq9X55ebluuOEGHT9+XGvWrNHixYv11ltvaeLEiVZMYWGhBg0apLi4OOXm5mru3LmaPXu25syZ08B7CgAAAAAAAAAAyWb8OO380KFDio6O1qpVq3TNNdfIGKO4uDhNmDBBv/3tbyWdytqPiYnRE088odGjR6ugoEBt2rTR66+/rttvv12StG/fPrVv314ffvihBg8erK+//lpdunRRTk6OevXqJUnKyclRnz599M033yghIUEfffSRhg4dqj179iguLk6StHjxYqWlpengwYOKjIzU/PnzNWXKFB04cEB2u12S9Pjjj2vu3Lnau3evbDZbrdtYWFgoh8OhgoICRUZGNsRuBIAGU13WvvPly84xXNYMoKlhLOdf+D6AumOsVj/sN89Q5giApzwdx1XE6aUCqYUPxnv/K5RG+d94068y+SsrKCiQJLVs2VKStHPnTuXl5Sk5OdmKsdvtSkpK0tq1ayVJGzduVGlpqUtMXFycunbtasWsW7dODofDmuCXpN69e8vhcLjEdO3a1Zrgl6TBgweruLhYGzdutGKSkpKsCf6KmH379mnXrl1ut6m4uFiFhYUuDwAIVMZMsx71jaHMDwCgvhhbAwAAAH58411jjNLT03X11Vera9eukqS8vDxJUkxMjEtsTEyMvv/+eysmNDRUUVFRVWIqPp+Xl6fo6OgqbUZHR7vEVG4nKipKoaGhLjEdO3as0k7Fe/Hx8VXamDlzpqZPZyILAAAAOFOMrYEzR2Z1/bDfPMN+AtBgyuWbm+CW1x7iC347yf/AAw/oyy+/1Jo1a6q8V7kMjjGm1tI4lWPcxXsjpqL6UXX9mTJlitLT063XhYWFat++fY19B9D0+evlvhX98qRP1WfqL3R69V2VWH/aXgBAYGFsDQAAAPjpJP+4ceP07rvvavXq1TrvvPOs5bGxsZJOZcm3bdvWWn7w4EErgz42NlYlJSXKz893yeY/ePCg+vbta8UcOHCgSruHDh1yWc/69etd3s/Pz1dpaalLTEVWv3M7UtWrDSrY7XaX8j4AAAAA6oexNYBA0xRr1DfFbQIQAMrkm0x+X7TpAb+a5DfGaNy4cVqyZIlWrlxZpdxNfHy8YmNjlZ2dre7du0uSSkpKtGrVKj3xxBOSpB49eigkJETZ2dm67bbbJEn79+/X1q1bNWvWLElSnz59VFBQoM8++0w/+clPJEnr169XQUGB9UNAnz59NGPGDO3fv9/6QSErK0t2u109evSwYqZOnaqSkhKFhoZaMXFxcVXK+ABATXwxEPbk6gF3yz2pne+aqX/HGa8DAAAAAAAA7vnVjXfHjh2rN954Q4sWLVJERITy8vKUl5enoqIiSadK4EyYMEGZmZlasmSJtm7dqrS0NLVo0UIpKSmSJIfDoXvvvVcTJ07U8uXLtWnTJt15551KTEzUwIEDJUmdO3fWddddp1GjRiknJ0c5OTkaNWqUhg4dqoSEBElScnKyunTpotTUVG3atEnLly/XpEmTNGrUKOvOySkpKbLb7UpLS9PWrVu1ZMkSZWZmKj09vdbyQQAAAAAAAACAeijz4cMP+VUm//z58yVJ/fr1c1n+yiuvKC0tTZI0efJkFRUVacyYMcrPz1evXr2UlZWliIgIK/7pp59WcHCwbrvtNhUVFWnAgAFasGCBgoKCrJiFCxdq/PjxSk5OliQNHz5c8+bNs94PCgrSBx98oDFjxuiqq65SWFiYUlJSNHv2bCvG4XAoOztbY8eOVc+ePRUVFaX09HSXuqAA4K/qkilf13sGuKvD7+0+AQAAAPA9xvDe4a/3aQP8FuV6XNhMxZ1i4ROFhYVyOBwqKCiwrhAAAH/DJD8AuMdYzr/wfQDwd9SvR3WY5MfZztNxXEWcZhdIYT4Y7xUVSpP8b7zpV5n8AAD/VNdBprs6/NLpgavz+jypzw8AAAA0BUzeojocG0Adlcs3WfXlPmjTA35Vkx8AAAAAAAAAAHiOTH4AAAAAAAA0KkoXATgj1OR3wSQ/AMCFN2pBVleCh4E7AAAAAACAdzHJDwAAAAAAAAAIHKWSgnzUrh9ikh8A4KIu2fbV3zT3Iqf1nb4Jr7v46m7CS9Y/AAAA0HQx3q8epYwA1BWT/AAAAAAAAACAwFH+48MX7fohJvkBANWqyCCpLnOkrhkltcVXl9V/Jm3WhqsHAAAAAPgTzksAD3DjXRfNfN0BAAAAAAAAAABQP2TyAwCqVZFBYrMtdFrmXGO/uuU1Z8e7Zum7r9/fWNkrZMkAAAB/RV1unK049hEouDLch8rlm6x6Py3XQyY/AAAAAAAAAAABikx+AAAAAAAAAEDgKJMU5KN2/RCT/ACAWjmX0fFsee030D3tu/p2CwAAoEmj9MPZxdclanzdvr+0DdQFxyr8BZP8AAAAAAAAAIDAUSrfFKIv9UGbHmCSHwBQJ2dyYyH3N+Fd6CYSAAAACEz1HS/7OiPY1+0j8Pn6ahBftw/4EpP8AAAAAAAAAIDAUf7jwxft+iEm+QHAD5xJdnxjrM+Z99d3uq5/Q/bbWWO105AqtiFQ+w8AANBU+HP2cE19a4x++/O+gff5+vv1dftoZOXyzU1w/XSS3xeViwAAAAAAAAAAgBeQyQ8AfsCfsu3rkuVeXWxt66ic0VNbe3VZnyfb3hQyPJrCNgAA4E1N4Uq9s12gZn03VD/re0w73/Oqps8Fyv4FALfK5Jv0dV9cPeABMvkBAAAAAAAAAAhQZPIDQBPXWFnuzhlD1S13rr9/2jCnWPd9ra1P9b0CAAAAAAAABKBSSTYfteuHmOQHAAAAAAQ8ftBveNWVXJS8s//5Dl3Vd3+4T6zxDb5TAGgcTPIDAAAAAAAAAAJH+Y8PX7Trh5jkB4AmzpPsmfqWtXG92a77G3y5K+NTfRtXVLO++mUjkTkEAADgPYyt6s7XNxP2dfs1qUvf/Hk7AMAfMMkPAAAAAAAAAAgcZZKa+ahdP8QkPwCg1kwYzzL9O1ez7tNZ+BXraWo3yg3UfgMAANSE7Okz5+t95uv2a1LfK4gBQNKpsjm+mHD303I9vvi9AwAAAAAAAAAAeAGZ/ABwlqqcmVXBXZaMJ5n3rqqrrT/tx2WfOy27osr7Z9JXX/CXfpxtuIICAAAAAM5SpWdZu7Vgkh8AAAAAAFTBj+hNG+WYAKDpYJIfAM5QoGYTe9LX2mroOy93ztivbp9UZPA7Z+/X1rYnfa2+vcD8buAZvlMAAAAAOEuVyzeF6P20Jj+T/AAAAAAAwO+QsFE9b+wb9ikANB1M8gPAGfL3wbEnWe7OnGNqz6B3rrd/h9t1u2vHZnuvxvXWlSdXGgAAAAAAgCaiTJLNR+36ISb5AQAAAAANitrfTU9jfKeNfZz423FaU7a+p33zt23yNa4OAdBUMckPAAAAAAAAAAgcZPK7YJIfAOqhKWSAVNdvd+V1XMv8FDktdy7Rs1Du1GX/eLJfqyszVJ/2AAAAAABAAPLVZDuT/AAAAACAsxE/wiMQNMRxeiYJKt4oycPfPVfsDwBNFZP8AFAPgTQ4rGtfa4s3Jsx67snNe525jx/m9Pyieq27tpMnAAAAAADQhJTLN+V6yn3QpgeY5AcAAAAAAHUSSEkvvtQY+4nvonrceDgw8b0BdcckPwCgWqcHV6cz7J3r8Nf+OdfPVjyvfh1X1Kl/p/vEoA8AAAAAgLMGNfldMMkPAAAAAADQRDgn3JztyTBn+/YHKr43oO6Y5AdwVvP3AXB9++et7ar4rPP6qq9/73m2v8220OnVdx73o3L73vjO/P0YAAAAAAAAlZDJ76KZrzsAAAAAAAAAAADqh0x+AAAAAECTwk0bq8e+qV5T2TeB2m+usEVTwzHdwMokGR+0W+6DNj3AJD+As5q//0db3/55a7uqL81TtZ3qYt0td/1ckdM7bzs9/84ppuZ+eKK6AZa/HwMAAAAAAAA1YZIfAAAAANCk8CN+9dg31atp3/hbln9NSTD17Zuvt9HX+xRNj68z6TmmG5ivMurJ5AcABALnm+KevvGu+xvl2myfOy2/yGn5dLfL3d1k15gwp8+5vwmva+b/QrcxtWGABQAAAABAE0G5HhdM8gMAAABAE+TrDEYEPl9ndvvTMezr9ivzpGzmmawTDcOfjumzAfsYZxMm+QGgCTqzwaO7WvjO2fjOz99zej7Mqc073Pbl9DL3VwY4q+7ExR8Hav7ePwAAAAAAmhQy+V0wyQ8AAAAATVBD//Ds6yxvNDxvfaeeJkTU95jy1rFY03oC6XhviHr99W3f3/aTr/vmb/sDQNPBJD+As4KvB3ONz7k+vnON/TvcBVfLXU1+1yx9T+rjX+Tx+3Xtn79orGOqLsfx2XfMAwAAAADOGmWSTvqgXV+06YFmvu4AAAAAAAAAAACoH5sxxhfVi/CjwsJCORwOFRQUKDIy0tfdAc5qZD6f4i5r32YrcoqYVc0nhzk97+y0jjCndU//cZnzpc+fO33Ouca/8xUAtdftBwBfYCznX/g+gDMTSCVpcFpTKTME4Ozm6TiuIk4dCqRmPhjvnSyUvve/8SaZ/AAAAAAAAAAABChq8gMAAAAAUEe+vklsQ/CnvjQWb1zN21A3uvW0b5Xfq+lz/nT1sj//XaiLprIdQMApk2/S1/20Jj+T/ADwo4YcjJ3JzW/r1577wXt1JyDVbfvpUjrOZXROl+Ux5gqnWOeb8L7ntHxylXbq2g/XPk2v8pyBdMPwp5NAAAAAAAAsTPK78KtJ/tWrV+vJJ5/Uxo0btX//fi1ZskQ/+9nPrPeNMZo+fbr+9Kc/KT8/X7169dJzzz2nSy+91IopLi7WpEmT9Je//EVFRUUaMGCAnn/+eZ133nlWTH5+vsaPH693331XkjR8+HDNnTtX5557rhWze/dujR07VitWrFBYWJhSUlI0e/ZshYaGWjFbtmzRAw88oM8++0wtW7bU6NGj9fDDD8tmszXcTgIAAAAA+Fx9fwBvqB/O+XHedxpqf9e03vpePeCtvnrjeKvL5/w5W96f+gLg7OVXk/zHjx/XZZddprvvvls333xzlfdnzZqlOXPmaMGCBbr44ov12GOPadCgQdq+fbsiIiIkSRMmTNB7772nxYsXq1WrVpo4caKGDh2qjRs3KigoSJKUkpKivXv3aunSpZKk++67T6mpqXrvvVOZp+Xl5brhhhvUpk0brVmzRocPH9bIkSNljNHcuXMlnbrJw6BBg9S/f3/l5ubq22+/VVpamsLDwzVx4sTG2F0AAkhjZO+7tud+oOma1b/QbYzrTW7d3fDWOUv/9PParwaQbLav3URc5PS+c5+8e7Pdxr6aoinghAUAAAAA4JdKRSa/E7+a5B8yZIiGDBni9j1jjJ555hk99NBDGjFihCTp1VdfVUxMjBYtWqTRo0eroKBAL7/8sl5//XUNHDhQkvTGG2+offv2WrZsmQYPHqyvv/5aS5cuVU5Ojnr16iVJeumll9SnTx9t375dCQkJysrK0ldffaU9e/YoLi5OkvTUU08pLS1NM2bMUGRkpBYuXKgTJ05owYIFstvt6tq1q7799lvNmTNH6enpZPMDAAAAAAAAwFksIyND06e7Xo0UExOjvLw8r7bjV5P8Ndm5c6fy8vKUnJxsLbPb7UpKStLatWs1evRobdy4UaWlpS4xcXFx6tq1q9auXavBgwdr3bp1cjgc1gS/JPXu3VsOh0Nr165VQkKC1q1bp65du1oT/JI0ePBgFRcXa+PGjerfv7/WrVunpKQk2e12l5gpU6Zo165dio+Pd7sdxcXFKi4utl4XFhZ6Zf8AQF05Z7O7Zrk7Z/t/rqrcZeNXjnWO6VyHXlUXezqrv7ZLg6t7n+z9poeyBADOhrG1P5eogH/xxrFRl+OtqRybNd2/yp+3ydd9a+z2fb29APzQSUnGB+3Wo81LL71Uy5Yts15XVJvxJl9c1FAvFb9uxMTEuCx3/uUjLy9PoaGhioqKqjEmOjq6yvqjo6NdYiq3ExUVpdDQ0BpjKl7X9EvMzJkz5XA4rEf79u1r3nAAAAAAbjG2BgAAgL8LDg5WbGys9WjTpo332/D6GhtY5TI4xphaS+NUjnEX740YY0y1n60wZcoUpaenW68LCws5GQECXF2ziSvi65qN4o2sZdfspNO18KvL6j+dQT/MaZlztn11Gfvus/1Pc1pf9ytOP9/kviZ/dRlW7m44Vl2sJ8vPZvU9Ln0pkPoKoGGcDWNr/q1reIGUvd3Q6rLtTXE/eWeM7b2rA2oaswbKeJa/XwAaTJkkX1RL/zGTv/IVpHa73aXii7MdO3YoLi5OdrtdvXr1UmZmpi644AKvditgMvljY2MlVc2SP3jwoJVBHxsbq5KSEuXn59cYc+DAgSrrP3TokEtM5Xby8/NVWlpaY8zBgwclVb3awJndbldkZKTLAwAAAEDdMbYGAACAL7Rv397litKZM2e6jevVq5dee+01ffzxx3rppZeUl5envn376vDhw17tT8Bk8sfHxys2NlbZ2dnq3r27JKmkpESrVq3SE088IUnq0aOHQkJClJ2drdtuu02StH//fm3dulWzZs2SJPXp00cFBQX67LPP9JOf/ESStH79ehUUFKhv375WzIwZM7R//361bdtWkpSVlSW73a4ePXpYMVOnTlVJSYlCQ0OtmLi4OHXs2LFxdgoAAAAA4IyQWdz01Tcj3tNs+fq+dyYC5bgNlH6i8XGVB86YjzP59+zZ45JgUl0W/5AhQ6zniYmJ6tOnjy688EK9+uqrLleknim/muQ/duyYvvvudHmGnTt3avPmzWrZsqXOP/98TZgwQZmZmerUqZM6deqkzMxMtWjRQikpKZIkh8Ohe++9VxMnTlSrVq3UsmVLTZo0SYmJiRo4cKAkqXPnzrruuus0atQovfjii5Kk++67T0OHDlVCQoIkKTk5WV26dFFqaqqefPJJ/fDDD5o0aZJGjRplfXkpKSmaPn260tLSNHXqVO3YsUOZmZl65JFHai0fBKBpqetgpC43iz2Tdmpbt7tSN6di7qgSY8wVTsucS+qMqKbV06V7XD9bUcbHqZzPJufPfef0fHI163bu6zSXflZ+Xt99Wf2+8e7A058us/Z1+wAAAAAAeKxUPp3kr+9VpOHh4UpMTNSOHTu82i2/muTfsGGD+vfvb72u+DVj5MiRWrBggSZPnqyioiKNGTNG+fn56tWrl7KyshQREWF95umnn1ZwcLBuu+02FRUVacCAAVqwYIHLXYsXLlyo8ePHKzk5WZI0fPhwzZs3z3o/KChIH3zwgcaMGaOrrrpKYWFhSklJ0ezZs60Yh8Oh7OxsjR07Vj179lRUVJTS09O9+gsMAAAAAAAAAKBpKC4u1tdff62f/vSnXl2vzVTcLRY+UVhYKIfDoYKCAmqIAmeZhsziPpN1u81i7+60jk2fO71R3Y13q1MR87bTstNXAxgT5tQP5ysGqrsywLs3i63tRr5oeP50dQPgCcZy/oXvA/4iUMtQ+KLf3vi/vzH63VA3120ITXE85W/7uCkI1H0aqP1G7Twdx1XESQWSzQfjPVMoyfPx5qRJkzRs2DCdf/75OnjwoB577DGtWrVKW7ZsUYcOHbzWLb/K5AcAAAAAAAAAoCnYu3evfvGLX+i///2v2rRpo969eysnJ8erE/wSmfw+R7YRAE/VNyPHs5r8FznFONfkL/rx2azToRGn12EKndo5nWAvbSpyeuGc7V/RxhVVlp1qb6FTzB3VxHi+H7xRW78pZkL5CvsSTRFjOf/C9wHA37henVp1jOvpjX+dx+uV11NbG6i7syFb/GzYRgSWemXyyxfjvbpl8jeWZr7uAAAAAAAAAAAAqB/K9QBoEmqrzd4UMoi9n73vvO7qsn0qsvCdMoeOnq7Jb7M51+F3yvbX5NNPI5yy9i9y1w/nrKTvqunrRdU8r5+6ZPhXt/8C9TjypUDdZ3zvAPyZp1nA/PsFT3grszdQM4SrGyO64+k21ZZVX9N6PN9v39Ue4oGatr9u5yLOVxa49q2+9zJo7GMqUI7ZM+FP+9tbArXfgDeQyQ8AAAAAAAAAQIAikx9Ak1DbL/T+9At+bVcdeEN16/Ykq99mO52pX1E732Z7zylixOmnEWGnnx91XotTHf6jTs83VXx2mNM6nDL9jzrX8n/bbf9c+1p1Xzr336Udpz7VllFVXeajPx1HaDwN+b2TZQsAAAAAOFNM8gMAAABAA2iMH/K8U+oDOKXmG796XmrFn4+9xijnUVO5msrqW77GVfXlLM9ke+u7bzy98W9j9KUuvPVvtqfr8efSMv7Ul7oI1H4D3kC5HgAAAAAAAAAAApTNGGN83YmzWWFhoRwOhwoKChQZGenr7qAJaYySMGh4dckm8eRGYZ4cD+5veDvCXah0k1O5niVOpXZcyvg4l8+p4FTCp9ryP6fXZ8zp5e72ibsSQ9XFesKTz3kjprosL/7eAoGDsZx/4fsATvF1hnDjZMt7fpNYX5bHcx3veZ7l7s02G7v9xkDJQ//k6397ENg8HcdVxEn/leSL8V6hpNZ+N94kkx8AAAAAAAAAgABFJr+PkW0EnH3cZR1VX4vzIqeYO6qJqVlds8xdb1zb+cc/nTPvndzkdNPcJU4ZQzfd4X559x+Xb3K+wa7z+k5n7Bun++56Y3vrorr2yEQBUBljOf/SFL8PsiIDR1PILK5tzBWo21WThvjefH0seDp2rsuVwk1x35yN7fszb+wb/s8MbHXP5M+T7zL5Y/1uvEkmPwAAAAAAAAAAASrY1x0AgLpoCpkPtfXbk+3yRn356rP3v676vLtTZv53cu9Fp5jR1dQBtTL4ndL0rasFJD3gXE/feR0XOT13itd71XSmYh31O17qeu8C13250Gl5w9U89cZ9N7z996kp/P0EAAAAAASC0h8fvmjX/zDJDwAAAAB+ih9NA0dj3FzW0zbq+7nGON78rZyGr9uvSU0JFJ7eePhMbvzbEPumpnU2RsKIr79vX7fvz7yxb9i/OJsxyQ8goPCf9ik22+ma9saE/bjMeQD/ndP71dXkry573zlVf9ipP6qrob/rdA19veC0vLrM/4E//rnEORvf6fkA9/cjUMTp9ZnC04tttop+d3Za5v6Exzs1Hqu5QsFJQ2bvexvZ+wAAAACAwFT248MX7fofJvkBAAAAAF7HD8Fnrr77rSFukuqt9daUke5plre3+lJbGzW1V1O/G/umoTXHVVdr03vt10VD7DcAZ6sy+aZ0jn9O8nPjXQAAAAAAAAAAAhSZ/ACarOoycVxrVHqjhEvd1lGXG6ZWdxPXihI9de2fVX5HkutNayeffhrhtO6jbsrT3HT65rhaVk2jA52eb3Jax7IftyHiCrk10GmfLDldTsilRI/LRyvK9DiXGzqtrt9p7d+NJ2WQGufGu7VtG9mTqC+OHQDe0tD/hvi6truv228Mddmmhv7/ozGuTqhLG/W9P0JN66lv+zXX3b9InqrvVRZ14a2a/K771XUbA6l85tnMn/8NZTwcKLjxrjMy+QEAAAAAAAAACFA2Y4zxdSfOZoWFhXI4HCooKFBkZKSvuwM3+AUX7nj7Jq7eyDap7sa7rqrL5HG6+W1tmfrOWfrO7x91ujmvy9UAzjf4rWhn1ulF3Z3236ZqtqHaGOcb+FY4ndVf3X51zRo5fRXD6ZsYu88M8uR7qu0KEv5NAZoWxnL+he8DTV1dasb7E29fPVvbevx5P9lsRZWWzHIbJzV+Tfya9nHNVwvUv43q2vMFxumAb3k6jquIk76UFNFo/TvtqKRufjfeJJMfAAAAAAAAAIAARU1+oBaB9As+mQcNy5P9W5eY+taLP+V0bX1jKjLvq8ve96AOv94+/XSJ0+KKrH7njP1dTs9dsvSdvON0NcDP3NTfH+207cud3xjhvk+bnLY9wumzVvvONflP7wfXTCnnLCnn7Pwwp/j6fTfVcbeeM/nefVlrmH9TAAAAAAD+o0y+qY9f5oM2a8ckPwAAAADA4k8/8vrzjRlrcib9rmn/+1P5lrpwLftSv3XWtzxPXdqoS0mamtqv2/ZWH1uXNmtuw7P3ar5Jb3UJRXVT3xsW1+X7r//37f2bKftaoP4bCqDumOQHAoQnJ1u1/Yft6xM2X7d/pjzp8/+3d+/RUVR5HsC/DSSEQBLeJAgJKAgIyEKyA0FXFB1EB4fHKuAwGHdcMevwkgXEXR3CzKoIiI7sMIAL6nEUUCF4XBUX5SGSgJAExQERMJI4hEE5gUQlEMjdP5KuutVdVV1VXf1Kvp9zOFSqb1Xdul1dfbv7d3/XTplAudvN1ssdUo/nnQBl5Wj7u/zK+pPy3H/T8L+cb7+HlG//uBSlv0XaxVxp+SFpubfO4xpS9P546UOVJve/XrsZfSDZbLBejvb3vy6N5kuw8pyZfagz2y6YMoE4fe1F+nUa6/cMIiIiIiIiCpXLiExUPSP5iYiIiIiIKAqEO1rczvHDXZdQCKbe4T7ncLe/WxHZToMBzI7hG7lvFPjhy04bhmN0hPZ41kcn2DlH87YxHhHg1mvfjWAQqyM13DpeYxXNbWN1pFK01ZusqkVk0vVE4piB8Ut+ohjhxptOpN+4ojGfuNtv7Hb2Z6Vjbu2DhTc6X43A13Tmkwy20+TTl4bfDpYi9Xt4/5fWyVH1cv/9fWm5RM6Fr247Y+lSAMCKufPUh29TFzM391CWi+R8+uOl4+dLcwl46yofL0ktK6rU1Xai840et3IdBWL0vIfy9eH2vu3W2+lcB5Gud7j3R0REREREROQEv+QnIiIiIiKKIuH4ETHSP05G+vjkPnciq0OfVjBQZL1RWfO8+9poeaf5651GGps/Zj1a3Zf2vOyck3FZt3LyR9OIF6fCkS8/FHMZOD1GJO77Tl834ZirhNzAdD2yZpGuABEREREREREREREROcNIfooakf6FtymLZNuH8tiRSNFjp7zRZK1a8gSxxQZlvORJZqXJc+W0PEnSRLnjpeVrpOXV0m5ubfj/hLRui7Qsp+iZIf2avVpKr7NFXb9iQkOaHilFz4zNS9XHk6U0PvLkvMvkKKIJ6qKSpueIuq5anojYXnodtY3VfQSTosdOyibtvq3lfw2WndeClfM12l+03NOd5ut1Otk5ERERERERhcplRCY/fnRG8vNLfiIiIiIioijCHxGNhWISxaaQeqGxp4DyD0bwnfhVDZxxnvbGeOJZ3/Q0VtP8+HJ6LfqnC1IDfoQYAiOBgzh6GSw7n4jYqlBdT1bTM4XqeG4EwoQjzY5bYvV+2hgnhKfGj1/yU9SIxGSUboiluhqJZL2jLS+fl/5krPp5N+3uz3nE9Du6a70dbI9H7syrkfSaTn+1FOEvTYiLZdIxB0v1+6jh/x4GVZIj/LdKbynL1MUl6XOU5fnXvOC3nRLdDwDVUl1XSx8cBkvLJXojGvrpLnuS5TIToE8dAeH9EOTxqG2tHUHhToR/IKGM3tcex928t7F6D9TTmM4lFBrDex8REREREcUy5uSX8Ut+IiIiIiKiEIjmH8SiuW5mQhFdGe5o2kiMHDCbJNYsuCDSoxzcmHjWdz/ucTY6wK26WE3vaCdy3ezacFrvUEXOO72HNYYJe90axUREjQu/5KeoFEtvTOHK+x5KbtQ1WvYRimPqrbcfaX2X7jH1jmE8vPcuafkdnTLyMaTI9iSprnJ+/nwpj/146Ry/8asecI26mDlyj7Jc9P4N6gOrpPJStP18vKCu793wv5T3f1zVBmV5S9kk9YEMqa5brleXj0tDjm9tKPORNCpBzuVf4jt0uZ72A4s874Fe+SM664w/WNn5kGl3NIBeebdeN3pzRQQj0HUe7ew+T7F0bm5oaudLRERERETRphaRyckfiWMGxi/5iYiIiIiIQiCafxCLprrZiSyPJpHIg+3GD8zhaN9Q5AwPJiLcao58O485ZScnv/XH7LyGzIKPfOcykPdpfUSC1bzzbj2nZpw+37Ek3HMJuLVdNLV/NNWF7GC6Hhm/5CcKkVh6U4jkxEjRGoXsRsS0tqOgdpi928qdcaO871ryejmqXy/SXM0zj2qD3Y2XOv/50vFXq5HyadNKAQAVZd2VdUVrpOh9WckFZXGG+EhZfgvtlOWKNT3r91tVqqzbMmSyuo9bpf19JE8SJr2J3irVNamhjHauM+lx/VEMHs8FqZDOCIkk6fmVRz9ohmXLowEuSOvl+RD8rxk3ovfNytvhzgicwCMaQjNE3rce7kbVN7U5CIiIiIiIiCh28Ut+IiIiIiIiIiIiIoohlxGZ1DmM5CciIiIiIqImwvqkqbGRnieQcMzVYj5STh45qm1TtyYptTrZq51jhGICVadpYOw9b2p7m49a1KbAMXtu7DC7FvTnmfIyGh3s+5iWnbQ3bqTysUM7KhoQYoi07M7zHaoJhK0ez63UVVaFIx1ZNI2Kjaa6EDnFL/mJgtSUJ16MJk4nO7Wfdsd4nRltahe9baWJcjUfBOQ8NPoT7+rmzhwsfXiQU+Asu+BXFICa9gZA5jR1Yt3hKAAArBg3T1m3pHimsvwcHlGWK070VJa7o1xZ7opTyvLQafv8Dj28+DlleSPUiXc1aYGOS29Xq+U0Pm5raONq/VRLMo+mGkvU9R55vXFe0/qyzid3dXrNm3/os8/KFzNqiip7KYkCCSaFlhv3a97/iYiIiIiIIoU5+WX8kp+IiIiIiIhCwPzHbitiaTLEcNfNaSS7HeFpf+PrxK0f1M3bqlgqN8TnMbOIaf35meot0S0XaJ+aeaHgO3LC+sS35oJ/Xfoe315EvBxwYjSxlj/zY/jOURZ8UFAwIxfcmNzXvREn5EQ4gnmcv4YYaET6+CU/UZCa2k01XJNbmnW2gz2O3WhivYlyA0fmAxhsdMz5DfuQJ2g16uzK0ftStP9gqU1KXvN7PK1Yndi2YoIaYS9PyDtjsxph/xbuVpaLhqgR9EW5DcvLpNqveUE9zjT1OJ9szlKWbxxyQN1AGkmw94n6MPe4A0JZt+W4NPHuaOkX8WPqYtpSg/PJb/hAlaS2JaqlD1njpfX50CVfX+rzMF8qoTexMYASeViw/GFJHpXhv63RhzUrw98Dvf6MovQDTQJthfHIgOCH2Ft5bbkR7e+2pnb/JyIiIiIiih61iExO/kgcMzB+yU9ERERERESuMwuKcCOa1Uyg4zX2SMhQtZsb+/ENSnB6nbgRBetfN+vzHGgtMXksEOkYVdpHPJ7j0rJv3YxSeQKmEfJJ0nlU+waIaKP8zUYSGJXzPb7vdm7cF3y3tTOqJRSR9HZy5LuRTz8c7RYJoQjwCcfcAqFg1haRrhtFL37JT+Qip/mh3ZtwKLyTfYWSlej9wFHNgSN47UUe63fsDT8YlBjlPt/cUFbufMsdaqnDLuXK1xQpkaPVG+r1obqqYogU7S5F4WO6eg7l2KCW366WH1esrt+yRoqy95Ki7eXtlo2cqyzPKF6qLMujBOLmNUTw91Z3N26adLzt0vHuUBfvxltqvTd3l86hfrmobKha+LgUvX+rwXMgtatnjX4RPdoPJUajL+RI/glSee2EYL7r7E46qH//MP5AFaxAI12C24dRu1rfXzD5/vW2DeW9LpT36mj84BaNdSIiIiIioljHSH4Zv+QnIiIiIiIiIiIiohjCiXdlHiGECFyMQqWqqgopKSk4f/48kpOTI12dJidaoguDyXUdTPSqnXoFOobdc7CXJ1sOYTePVA5Fbm91n0bDXuX6TdAvMliKLvfuptp3gi4vgxzw8vrBUtR3D52i30D/8Wuk5RnqG1Nm+j5leW/VjcrysORPAADDUaCs645yZXkjJinLc6UhA8ugRvXLUfbe4xTNU/P+y/n2h0Kth3ycAgxXlidhI3zJ9Shao+7bMK+/p1LaWoq89+b21wxdlp9T+bnR2c5vWz36+zMavRLoNW4353yg69+t+6Kd+4fbx4j2KPzg7kfujgCj4LEvF10i8XxES38ykFiawDbcQjFpptPjuVU2mPQ1Vo9nhxupVcxS6WhHUgK+6Wusfg7xT61ifYShlvFnFt/RnfrzQ/nvR5uex3c7s36X70S71ie7NWP1dWInlY/ZpLxupaSx+pgv7Tld8HmslW9x2/X0P0bs3LNj5X3Qjmg+p2iuW7Cs9uO85YA1ABLDVj/VTwCmRV3/n5H8RERERERERERERBRDLiMyqXMYyU86GP3lTlSinV8yo+lXz2iMyLQTGRva6H2jiaR8I1G8x5nScAyj6I/AowG09dNGytQziOK2RNrWO9lVtXS8JKl95armSssPSeUHL9Qv47VVWn5efQNakj5HWZ6//QVlWXTwKMuev6hvC+uXjgegjcw/8Jka6b900AxlWc6bL7u6rEzdX/o9ALSR9/IoASu8efgBNcJfjt7/elpXZfkU1OUbJxxQd5IvRd8k6UTePCQtfyQtl/jn1a9nJarfe93pX8NaxlFb/tTXh1HUlLWc98f99iGL9L1T7/hG56jdTn7O9NvK7BhWj0NNF/ty0SXano9Q3DvDEd0Z6Xu+mVBMtmmnj2p9YkzfPoP5e5BVoZiYUhaq51t7zPk+x2xlUA4wm/hWW9Y8Wt08slzu1xuPADDjG9ltNlrTrZEEZn0S82h142h5s/q49TqxHi3v/HhWzzFUI15C8RpzYwRCMCJ9/FCIpvfoWBq5EUr2I/lXAnA2kiY4FwA8HDX9TS9G8hMRERERERERERFRDGFOfhm/5CciIiIiokYp0hHpocivbB4ha5bP2/p+3IjCDbRdKM7f6f7ttKnVa8o/evsdadmdnPxO29ROtLjzHPlmx9dGXZpH5PczKOe7T98o/ws+f5tFhcuR/Nrje6SnUfgMzjAaLei7H4/HaL6thv06fE7No9Xl4zudC818BIaW9hydjoI0nwNBWzfz/ZrP46Yez85cBvKxrUeym7WpW/cp96LQjZ+3cBxfW5dwRLYbv07cGuVhVk4+hlsjs5rqCACqxy/5yTG3PjS5cROK9huZvXRC9jpEdifd1KuH0xQ9xqlzjPatnzLH3nYyvZQ5Rml09CfE9R9aq0enY54k9fg1E+ge0S/TS1ouaXiOV0vtu0raRYm0v63Sh6C5UvneUvnRDb8iD1Bv6ZlVe5RlOWWNPIGtbPyg9cryjEFLleXJ+VsAAPdmvqms8+yTsrz9RV185IkVyvI9yer+Pkkf5ne8LWV3K8uT0tWJdO+u2qIsP5espgKS671l+2S1riPr61p0TE3Xc/X2U8rykpEz1YNKkw5nSp/S5EmAM5fu8VuHLdKv9Ful53G0tF5qe02qn2V6190SaVn+sGT+AbCeen17PyB71ExLJil6jNLQFPuVN37t6b8O5deQ0aRj6nECpxYy/lDWy6+8tcm1jxisl+sX6D4aeII6vX0Ek/ooUNqzaEmZREREREREFBm1iMxX25GYByAwfslPRERERESNUjT9IBWOuljN0R0cqznS3YlStMP5KAPjERDuRXMat5tbzIKFrAYSBXOdWN2vb3sbBSDUM57LQN6PeQQ4oA1W8A0K0pk7y6tEPobvPo3m/9Iyey7q/w4+17l/ObP5ncwCS8zmHfPdzmw/6vH9nxtrIz78aYNnrObdd35NG8/rEJi117u9kTJO6+J7TLNofWf3JqvXsFsjF5wKVdS71dEioTinaOrnUOTxS35yzO7NJFoiAIOZINZ5vQNHvKvrjCaPNHqTN+9AWGl3K+elRs6aTVplXj/9jrDREFyjyUb1O5NqXYw6tJvNKqlD6uAOHuK/69vkslL08odSpPcWqYi87dyG50mO3pcsEY8qy/PLlusX2qrevr2T6c7brUbSX67S32xOshpFvn7keGX53jI1Un9cujqBbun4NABAGsqVdY9Me05ZlifQLUeaspy//F5lec+cTGXZO4GvqIxT1mWlf6JWUJqzRp6Qd16+em5Z49WJd72T8C5ZqkbsP1Kllp0jR83P0M+b543eB4BJqB9VMHypeuy3oI46qEBPdcNx0luoPJpjmXTMuTqvLXkEh/zy6CFdO/nyByz5mlevY/WDplx2gvS4/CF5vrReP1JfHUpu8MErSY6al/d9RFovX+jqMb0pC+Th6tr7hzxCIfCHC71RB3bv7fr338D3SDfeHyIx+s2N92B+iCAiIiIioujBnPyyZpGuABEREREREREREREROcNI/iYqElH14TqO3rnZjbx0o65OI0mN6Ufsa4e+mu/bKILXaH96w1q10bcGUcNyLnp5yGu1XvSvHKUs5ydXo6G17ScVGSznufdGAhsMG9XUQ4q6HqyfQxw9/FelFZcqyxVlajS5JqL7C+kX3eNStP00NdK8YFp9fnk5t/y4kRt0qyFH1S/HHGW5Z6cKZXkP6iPlSwepkfQ9P1Mf3zBonLLsjXwHgO5SdL6cN/+G/CJleen4+rz4p2Zcra5boebKP5B/o1pZtQhmzlGfPzkiPz+/PsL/NWm07V1Q9zH5WXW95241z52AGvmvd8w9g9TRAi3UpwmTBqn5/l8oUq+v0nSprcZKbfX2OADaOQC6Qs3xr4nkvxUS6TrqIb327pCK/HfD/3LO/tXQd1I9X4yTrvNcaXluw//y9ZwkX88G80aMl+qX77+tkEaBaO4H1Ub5/uUh7tK+pde7//B2QL5/yLn8rdyn7HB6LzZ6PJg8+25sp5eTP5Tv6cHMH0AUbTg5nXVuzPlUvx9n6WPM0nBYn/hVu51/ihhr7yvWRq76cz7ZJ6B9/zNL32In7YlZ+hSzFC2+7ehsgkmrz43/tfCObjl/vvMgLdEtVc/3fKX6VPumCzIjjxo2TgHk1xZJPtdGtbNrzOq16TsJtNxH9N+H8QTCvp+ztP1B33nO5FHUvm0j/+37PMmfB7Ujsf0nbDa7buXrwXdEt9lcS8bHN29vo1HozoWyPxnsfuxMum01BZGdsv73RXmeMd9Jz91KVRf7nL4P2jtGuD8XXEZk8uNHZyQ/v+QnIiIiIiIiIiIiohjCdD0yjxBCRLoSTVlVVRVSUlJw/vx5JCcnB94gCuhFEeo9blbGzXoEcxxrEYrWJqky25/Rr/6BcuhrywZuby3vr+lyFIMafSH/wi1HXmgjauVIFm9Uh1GUghz1IUVAyJHF1XqRRwYTVg2W2kaa8EoTkS8HDJQ0nMN46Xijpce36tUZwIfS8jJp+Zi03Lv+v7Rpaoj4I1Dz0s9PfkEtu0Xa7r/VxbTN0iiA7fXR4J+MzFLWyRH29ybnK8vrq9S8+XJ0uXx8r57XqxHplz/xexgAcE/yemXZm38eAO6u2qJTGkhP/hqANpIfZeri+LfV/b3eRs3DX/yDGlmvNzJANu8zNYf+hRvU9fI+5Nz/cr297Sa3nzxyQI7C716lto/cDvKIitqs+pDzuD+ob41yvn/5OHI9ZMuUEHvt6Iur59XXZdxSddTGljI13788z4KGfJ33UjsTmen7AACn0FVZVzFPGmnQW9pOvp4/kpb1Xn5Gc8iVyPcDozkDAtwH5FEMy6T7wWDp/lZiFCUl3cu8+6vWu0dZu59r743eKDL5/uYbyea/b+N7vrdeVuoU+J5v5/3O/TllYlM4o4hisS/XmIXq+bDTHzTeh9kEi9aj60I1GaNVTu9Jbk3GaDUq09790iwi3jjq13m9ffvT+u85+mXl45tFrJpNtuob9a5GLNuZTNmXeTStb6S3Ud3M2kLLdMLeJJ/odYM+Qz2rz7+2TbWfp8xGR/hGnPtElmtGHNtpb2sTz/qfn/7nw3q+bWMc2a7lc3x5XqqPtA+hxOl1ajzRr//1ZtRvBbTn4dtuZhM0W782zUaumH9PIB9TezzrkfW+z7fZtWGH+lyZ3XucTnIeiFmUvxsT39qZBNneqDWnE8Lrf0fjX65xjFJUz6MGwOKA/Thvfw9YBCAhDDX0VQNgYdT1/5mT3wUrV65Ez549kZCQgMzMTOzevTvSVSIiIiIiIiIiIiJqpGoj+C/6MF1PkDZu3IjZs2dj5cqVuOGGG7B69WrccccdOHz4MNLT0yNdPSIiIiIiCpIbeWvNouvs7D/SUXp2jm9+zs7Ow63zd2MksJ0ISvOITTsRu69Jy2aRxcaP+ec2l/P1B5O/Ws6fbydaXo1eNouQ9Y3sNs2RXm2WP963sMFIRADanPG+56RGM5vPK2EeAS7PhwRYzzVuPK8aYDavkfkIAO3zpL1WzCKUfZ7fZVaPYWfkgM9+kkxGcmj2a3YtmkW9G9fbzgh/32No2994tIDz0U/GIwdCxeox3MoB79b7kNVygfZhdl7O3+uMo/fd2H+08Z5HfYT+4gjXJnbxS/4gLV++HA888AD+9V//FQDw/PPP44MPPsCf//xnPP300xGuXWgEvsHFzkS+VvbhxoeuUH5wC2aYtLpeTtFjddgnYGnIoqZPI6fk8HbEpM76R9Ib2ThpMzl1T67BcbbWbztj81Jl1Yp589THp6uLmSP3KMtFE6T8MKOlvGqrzG+PcvqYtKpS3TLLR6qpWuZgufrA+/X/3TPyTWXV3VAn2B1XpaZzubdMLfO1wQ+HV5fV588Z97m6jzer1NQ5zyWrKXLkyXbv3a6mBVomtYmsrKo+TY9nnvpLtTdNjO/+Eg9Lv2ZLKX3wndSWDZ9NZhSrz1PWIDW3UNG16vOxHmqqohUT1Oey+2b1mPPX1KdKGjdNbbP589T0STOWqscpT1ZT7ezDULXMyKXS+voUQXJKHfkcn8Mj6v6k1D3ysuweqM8fZtRfX3J6IO+1AEAzlHlcsZTSZ4haPq1YrYs3TY9mEmh5ol8ptQ96Sc+BURof7yTActqqudKy/CFETsPVS54AG/plvEPklxncM0qMPuzIH9ClD9nV9TcW7b3Vd1K5etZSbOjdG/X3JzO+p3q3db4Pu2WclG3M2A5ERERERI0dc/LL+CV/EC5duoSioiIsWLBAs37UqFEoKCjQ3ebixYu4ePGi8vf58+cB1P9aRRQaNcqStevsJ91tVT8EeBwApONcMRrG5N2PVPZHqaw8W8gVadkonWfDppeqpDpdlPct7a5K+qNWKlMt3aivSLfHhpdsXVW1VCV1H3VQ18t+koZwaco01Eve3yWpLWvl56C6Slqs0z2Ot0xtlbqd/FTX4JLucfCjWkjTJhJlP9X6ZY3qqnFBasuG51J+nq5onxxl8acq6XqQnqeaKvV8cMH/3OXnXT6OXFf5+ZDb5MeGCspljZ5HuYzmHIx42+dH/2urYSfqvuXzkdpEvmb89uu7b/l6ltfLryH5+ELncc2sPdIDQnpu5NenfH/QhKV51xvdM+T7zg8G62v81tu9p/G9lkLBe11xmqvIYN+aws/ovSyY6067T/P9BOqrB+a/f+v7Ma+b2X5+MnlMfe/337+8ndlj5rT7/cHnUbne1tvGrefJfD9mbSPzPYZZ/8esbto2tX5Ms+fC7Bi+j1UZlNMpq9vXNNqv0fF9Wdsu8GvdatsY19vsdWrnNcz3Q4ol9vvVFwMXCYlIHdccJ94NwqlTp3DVVVdhz549GD5cnRDzqaeewiuvvIKjR4/6bZOXl4dFi4IZAklERERE0ebEiRO4+uqrAxckV7FvTURERNS4BOpX19TUoGfPnjh9+nQYa6WVmpqK0tJSJCREYuJfffySPwjeL/kLCgqQnZ2trH/yySfx6quv4ssvv/Tbxjfa6Ny5c8jIyEBZWVnDzNBkRVVVFbp3747y8vKomsk6FrDtnGG7OcN2c45t5wzbzRm2m3Pnz59Heno6Kisr0bZt20hXp8lh39odvAc4w3Zzjm3nDNvNGbabc2w7Z9huztjpV9fU1ODSpUumZUIpPj4+qr7gB5iuJygdO3ZE8+bN/X45OnPmDLp06aK7TcuWLdGyZUu/9SkpKXzhO5CcnMx2c4ht5wzbzRm2m3NsO2fYbs6w3Zxr1qxZpKvQJLFv7S7eA5xhuznHtnOG7eYM2805tp0zbDdnrPSrExISou5L9kjjp5EgxMfHIzMzE9u2bdOs37ZtmyZ9DxERERERERERERFRKDCSP0hz5szB1KlTkZWVhezsbKxZswZlZWXIzc2NdNWIiIiIiIiIiIiIqJHjl/xBmjRpEs6ePYvf//73qKiowIABA/Dee+8hIyPD0vYtW7bEwoULdYcZkzG2m3NsO2fYbs6w3Zxj2znDdnOG7eYc2y668Plwhu3mDNvNObadM2w3Z9huzrHtnGG7OcN2Cw4n3iUiIiIiIiIiIiIiilHMyU9EREREREREREREFKP4JT8RERERERERERERUYzil/xERERERERERERERDGKX/ITEREREREREREREcUofskfYk8++SSGDx+OxMREtG3b1tI2Qgjk5eWha9euaNWqFW6++Wb89a9/1ZS5ePEiZsyYgY4dO6J169b45S9/iW+//TYEZxAZlZWVmDp1KlJSUpCSkoKpU6fi3Llzptt4PB7df0uXLlXK3HzzzX6PT548OcRnE15O2u7+++/3a5dhw4ZpyvCa06qtrcWjjz6KgQMHonXr1ujatSvuu+8+nDp1SlOuMV5zK1euRM+ePZGQkIDMzEzs3r3btPyuXbuQmZmJhIQEXH311Vi1apVfmU2bNuG6665Dy5Ytcd111yE/Pz9U1Y8YO+22efNm/PznP0enTp2QnJyM7OxsfPDBB5oyL7/8su49r6amJtSnElZ22m3nzp26bfLll19qyjWF6w2w13Z67wMejwf9+/dXyjSFa+7jjz/GXXfdha5du8Lj8WDLli0Bt+E9LrzYt3aGfWvn2Ld2hn1ra9ivdo59a2fYt3aOfWv72LcOM0Eh9bvf/U4sX75czJkzR6SkpFjaZvHixSIpKUls2rRJHDp0SEyaNEmkpaWJqqoqpUxubq646qqrxLZt20RxcbG45ZZbxKBBg8Tly5dDdCbhNXr0aDFgwABRUFAgCgoKxIABA8SYMWNMt6moqND8W7dunfB4POLEiRNKmREjRogHH3xQU+7cuXOhPp2wctJ2OTk5YvTo0Zp2OXv2rKYMrzmtc+fOidtuu01s3LhRfPnll6KwsFAMHTpUZGZmaso1tmtuw4YNIi4uTrz44ovi8OHDYtasWaJ169bi5MmTuuW//vprkZiYKGbNmiUOHz4sXnzxRREXFyfeeustpUxBQYFo3ry5eOqpp8SRI0fEU089JVq0aCH27t0brtMKObvtNmvWLPHMM8+ITz/9VHz11VfiscceE3FxcaK4uFgp89JLL4nk5GS/e19jYrfdduzYIQCIo0ePatpEvk81hetNCPttd+7cOU2blZeXi/bt24uFCxcqZZrCNffee++J//zP/xSbNm0SAER+fr5ped7jwo99a2fYt3aOfWtn2LcOjP1q59i3doZ9a+fYt3aGfevw4pf8YfLSSy9Z+iBSV1cnUlNTxeLFi5V1NTU1IiUlRaxatUoIUX+ziIuLExs2bFDK/O1vfxPNmjUTW7dudb3u4Xb48GEBQPMCLSwsFADEl19+aXk/Y8eOFSNHjtSsGzFihJg1a5ZbVY06TtsuJydHjB071vBxXnPWfPrppwKA5o2+sV1zP/vZz0Rubq5mXd++fcWCBQt0y8+fP1/07dtXs+6hhx4Sw4YNU/6eOHGiGD16tKbM7bffLiZPnuxSrSPPbrvpue6668SiRYuUv62+r8Qyu+3m/SBSWVlpuM+mcL0JEfw1l5+fLzwej/jmm2+UdU3hmpNZ+SDCe1zksG9tHfvWzrFv7Qz71tawX+0c+9bOsG/tHPvWwWPfOvSYrifKlJaW4vTp0xg1apSyrmXLlhgxYgQKCgoAAEVFRaitrdWU6dq1KwYMGKCUiWWFhYVISUnB0KFDlXXDhg1DSkqK5fP7+9//jnfffRcPPPCA32OvvfYaOnbsiP79+2Pu3Lmorq52re6RFkzb7dy5E507d8a1116LBx98EGfOnFEe4zVnzfnz5+HxePzSBzSWa+7SpUsoKirSXAcAMGrUKMN2Kiws9Ct/++2348CBA6itrTUt0xiuLcBZu/mqq6tDdXU12rdvr1n/ww8/ICMjA926dcOYMWNQUlLiWr0jLZh2Gzx4MNLS0nDrrbdix44dmsca+/UGuHPNrV27FrfddhsyMjI06xvzNecE73HRj31r9q2Dwb61M+xbB8Z+tXPsWzvDvrVz7FuHD+9zwWkR6QqQ1unTpwEAXbp00azv0qULTp48qZSJj49Hu3bt/Mp4t49lp0+fRufOnf3Wd+7c2fL5vfLKK0hKSsKECRM066dMmYKePXsiNTUVX3zxBR577DF89tln2LZtmyt1jzSnbXfHHXfgnnvuQUZGBkpLS/HEE09g5MiRKCoqQsuWLXnNWVBTU4MFCxbgV7/6FZKTk5X1jema+/7773HlyhXd+5NRO50+fVq3/OXLl/H9998jLS3NsExjuLYAZ+3m69lnn8WPP/6IiRMnKuv69u2Ll19+GQMHDkRVVRX++Mc/4oYbbsBnn32G3r17u3oOkeCk3dLS0rBmzRpkZmbi4sWLePXVV3Hrrbdi586duOmmmwAYX5ON5XoDgr/mKioq8P777+P111/XrG/s15wTvMdFP/at2bcOBvvWzrBvHRj71c6xb+0M+9bOsW8dPrzPBYdf8juQl5eHRYsWmZbZv38/srKyHB/D4/Fo/hZC+K3zZaVMJFltN8D//AF757du3TpMmTIFCQkJmvUPPvigsjxgwAD07t0bWVlZKC4uxpAhQyztOxJC3XaTJk1SlgcMGICsrCxkZGTg3Xff9fswZ2e/kRaua662thaTJ09GXV0dVq5cqXksVq85M3bvT3rlfdc7uefFGqfnuH79euTl5eHtt9/WfGAeNmyYZhK/G264AUOGDMGKFSvwwgsvuFfxCLPTbn369EGfPn2Uv7Ozs1FeXo5ly5YpH0Ts7jOWOT3Pl19+GW3btsW4ceM065vKNWcX73HBY9/aGfatnWPf2hn2rd3HfrVz7Fs7w761c+xbhwfvc87xS34Hpk+fjsmTJ5uW6dGjh6N9p6amAqj/9SotLU1Zf+bMGeWXqtTUVFy6dAmVlZWa6I8zZ85g+PDhjo4bDlbb7fPPP8ff//53v8e+++47v1/r9OzevRtHjx7Fxo0bA5YdMmQI4uLicOzYsajuFIar7bzS0tKQkZGBY8eOAeA1Z6a2thYTJ05EaWkptm/frok00hMr15yejh07onnz5n6/kMv3J1+pqam65Vu0aIEOHTqYlrFzzUYzJ+3mtXHjRjzwwAN48803cdttt5mWbdasGf7xH/9Red3GumDaTTZs2DD85S9/Uf5u7NcbEFzbCSGwbt06TJ06FfHx8aZlG9s15wTvce5g39oZ9q2dY9/aGfat3cN+tXPsWzvDvrVz7FuHD+9zwWFOfgc6duyIvn37mv7zjXKxyjv0UB5ueOnSJezatUvp8GVmZiIuLk5TpqKiAl988UVUdwqttlt2djbOnz+PTz/9VNl23759OH/+vKXzW7t2LTIzMzFo0KCAZf/617+itrZW86EvGoWr7bzOnj2L8vJypV14zenzfgg5duwYPvzwQ+VNx0ysXHN64uPjkZmZ6Tccetu2bYbtlJ2d7Vf+//7v/5CVlYW4uDjTMtF8bdnhpN2A+iij+++/H6+//jp+8YtfBDyOEAIHDx6MyWtLj9N281VSUqJpk8Z+vQHBtd2uXbtw/Phx3bzbvhrbNecE73HuYN/aGfatnWPf2hn2rd3DfrVz7Fs7w761c+xbhw/vc0EK7by+dPLkSVFSUiIWLVok2rRpI0pKSkRJSYmorq5WyvTp00ds3rxZ+Xvx4sUiJSVFbN68WRw6dEjce++9Ii0tTVRVVSllcnNzRbdu3cSHH34oiouLxciRI8WgQYPE5cuXw3p+oTJ69Ghx/fXXi8LCQlFYWCgGDhwoxowZoynj225CCHH+/HmRmJgo/vznP/vt8/jx42LRokVi//79orS0VLz77ruib9++YvDgwY2m3YSw33bV1dXi3//930VBQYEoLS0VO3bsENnZ2eKqq67iNWfSbrW1teKXv/yl6Natmzh48KCoqKhQ/l28eFEI0TivuQ0bNoi4uDixdu1acfjwYTF79mzRunVr8c033wghhFiwYIGYOnWqUv7rr78WiYmJ4pFHHhGHDx8Wa9euFXFxceKtt95SyuzZs0c0b95cLF68WBw5ckQsXrxYtGjRQuzduzfs5xcqdtvt9ddfFy1atBB/+tOfNNfWuXPnlDJ5eXli69at4sSJE6KkpET8y7/8i2jRooXYt29f2M8vVOy223PPPSfy8/PFV199Jb744guxYMECAUBs2rRJKdMUrjch7Led169//WsxdOhQ3X02hWuuurpa6asBEMuXLxclJSXi5MmTQgje46IB+9bOsG/tHPvWzrBvHRj71c6xb+0M+9bOsW/tDPvW4cUv+UMsJydHAPD7t2PHDqUMAPHSSy8pf9fV1YmFCxeK1NRU0bJlS3HTTTeJQ4cOafZ74cIFMX36dNG+fXvRqlUrMWbMGFFWVhamswq9s2fPiilTpoikpCSRlJQkpkyZIiorKzVlfNtNCCFWr14tWrVqpXmz9iorKxM33XSTaN++vYiPjxfXXHONmDlzpjh79mwIzyT87LbdTz/9JEaNGiU6deok4uLiRHp6usjJyfG7nnjNaduttLRU97Utv74b6zX3pz/9SWRkZIj4+HgxZMgQsWvXLuWxnJwcMWLECE35nTt3isGDB4v4+HjRo0cP3S8K3nzzTdGnTx8RFxcn+vbtq+k4NhZ22m3EiBG611ZOTo5SZvbs2SI9PV3Ex8eLTp06iVGjRomCgoIwnlF42Gm3Z555RlxzzTUiISFBtGvXTtx4443i3Xff9dtnU7jehLD/Wj137pxo1aqVWLNmje7+msI1t2PHDtPXHu9xkce+tTPsWzvHvrUz7Ftbw361c+xbO8O+tXPsW9vHvnV4eYRomMGAiIiIiIiIiIiIiIhiCnPyExERERERERERERHFKH7JT0REREREREREREQUo/glPxERERERERERERFRjOKX/EREREREREREREREMYpf8hMRERERERERERERxSh+yU9EREREREREREREFKP4JT8RERERERERERERUYzil/xERERERERERERERDGKX/ITEYXBzTffjNmzZ0e6Gk1CXl4ePB4PPB4Pnn/++YjUoUePHkodzp07F5E6EBERETVG7FeHD/vVRESxg1/yExFRWN1///0YN25cSI/Rv39/VFRUYNq0aSE9jpH9+/dj06ZNETk2ERERETUN7FcTEZEXv+QnImpiamtrI10FV1y6dMnwsRYtWiA1NRWJiYlhrJGqU6dOaN++fUSOTUREREThwX516LFfTURkDb/kJyIKk8uXL2P69Olo27YtOnTogMcffxxCCMPyeXl5+Id/+AesXr0a3bt3R2JiIu655x7NMNX9+/fj5z//OTp27IiUlBSMGDECxcXFmv14PB6sWrUKY8eORevWrfFf//VfuHLlCh544AH07NkTrVq1Qp8+ffDHP/5Rs503Muipp55Cly5d0LZtWyxatAiXL1/GvHnz0L59e3Tr1g3r1q3TbPe3v/0NkyZNQrt27dChQweMHTsW33zzjXJOr7zyCt5++21l2O3OnTsDbifX5+mnn0bXrl1x7bXX2mp/j8eD1atXY8yYMUhMTES/fv1QWFiI48eP4+abb0br1q2RnZ2NEydO+D0H69atQ3p6Otq0aYN/+7d/w5UrV7BkyRKkpqaic+fOePLJJ23VhYiIiIicY7+a/WoiItLil/xERGHyyiuvoEWLFti3bx9eeOEFPPfcc/if//kf022OHz+ON954A++88w62bt2KgwcP4re//a3yeHV1NXJycrB7927s3bsXvXv3xp133onq6mrNfhYuXIixY8fi0KFD+M1vfoO6ujp069YNb7zxBg4fPozf/e53+I//+A+88cYbmu22b9+OU6dO4eOPP8by5cuRl5eHMWPGoF27dti3bx9yc3ORm5uL8vJyAMBPP/2EW265BW3atMHHH3+MTz75BG3atMHo0aNx6dIlzJ07FxMnTsTo0aNRUVGBiooKDB8+POB2Xh999BGOHDmCbdu24X//939tPwd/+MMfcN999+HgwYPo27cvfvWrX+Ghhx7CY489hgMHDgAApk+frtnmxIkTeP/997F161asX78e69atwy9+8Qt8++232LVrF5555hk8/vjj2Lt3r+36EBEREZF97FezX01ERD4EERGF3IgRI0S/fv1EXV2dsu7RRx8V/fr1M9xm4cKFonnz5qK8vFxZ9/7774tmzZqJiooK3W0uX74skpKSxDvvvKOsAyBmz54dsI4PP/yw+Od//mfl75ycHJGRkSGuXLmirOvTp4/4p3/6J83xWrduLdavXy+EEGLt2rWiT58+mvO8ePGiaNWqlfjggw+U/Y4dO1ZzbKvbdenSRVy8eNH0PBYuXCgGDRrktx6AePzxx5W/CwsLBQCxdu1aZd369etFQkKCZl+JiYmiqqpKWXf77beLHj16+LXL008/rTnejh07BABRWVlpWl8iIiIiso79avariYjIHyP5iYjCZNiwYfB4PMrf2dnZOHbsGK5cuWK4TXp6Orp166bZpq6uDkePHgUAnDlzBrm5ubj22muRkpKClJQU/PDDDygrK9PsJysry2/fq1atQlZWFjp16oQ2bdrgxRdf9Nuuf//+aNZMfavo0qULBg4cqPzdvHlzdOjQAWfOnAEAFBUV4fjx40hKSkKbNm3Qpk0btG/fHjU1NZrhur6sbjdw4EDEx8cb7ieQ66+/XnMu3n3K62pqalBVVaWs69GjB5KSkjRlrrvuOr928bYBEREREYUW+9XsVxMRkVaLSFeAiIis836Y8f5///3347vvvsPzzz+PjIwMtGzZEtnZ2X6TZ7Vu3Vrz9xtvvIFHHnkEzz77LLKzs5GUlISlS5di3759mnJxcXF+x9dbV1dXBwCoq6tDZmYmXnvtNb+6d+rUyfC8rG7nex52yXX3tqHeOu/5+D7uLWPWBkREREQU/divZr+aiKgx4Zf8RERh4ptb0pvrs3nz5obblJWV4dSpU+jatSsAoLCwEM2aNVMmx9q9ezdWrlyJO++8EwBQXl6O77//PmBddu/ejeHDh+Phhx9W1plFBFk1ZMgQbNy4EZ07d0ZycrJumfj4eL8oKyvbEREREREB7Fd7sV9NREReTNdDRBQm5eXlmDNnDo4ePYr169djxYoVmDVrluk2CQkJyMnJwWeffYbdu3dj5syZmDhxIlJTUwEAvXr1wquvvoojR45g3759mDJlClq1ahWwLr169cKBAwfwwQcf4KuvvsITTzyB/fv3B32OU6ZMQceOHTF27Fjs3r0bpaWl2LVrF2bNmoVvv/0WQP0w3c8//xxHjx7F999/j9raWkvbEREREREB7FezX01ERL74JT8RUZjcd999uHDhAn72s5/ht7/9LWbMmIFp06aZbtOrVy9MmDABd955J0aNGoUBAwZg5cqVyuPr1q1DZWUlBg8ejKlTp2LmzJno3LlzwLrk5uZiwoQJmDRpEoYOHYqzZ89qoo+cSkxMxMcff4z09HRMmDAB/fr1w29+8xtcuHBBiSR68MEH0adPHyVv6Z49eyxtR0REREQEsF/NfjUREfnyCCFEpCtBRET+8vLysGXLFhw8eDDSVYkp0dJuO3fuxC233ILKykq0bds2onUhIiIiasqipX8Ya6Kl3divJiIKjJH8RETU6Bw6dAht2rTRRGeFU//+/XHHHXdE5NhERERERG5hv5qIKDZw4l0iImpUZs6ciV//+tcAgE6dOkWkDu+99x5qa2sBgMOiiYiIiCgmsV9NRBQ7mK6HiIiIiIiIiIiIiChGMV0PEREREREREREREVGM4pf8REREREREREREREQxil/yExERERERERERERHFKH7JT0REREREREREREQUo/glPxERERERERERERFRjOKX/EREREREREREREREMYpf8hMRERERERERERERxSh+yU9EREREREREREREFKP+HwD8EWK7nOh+AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1800x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#b parameter des fits [:,1] hat für lost eine breitere Verteilung. Warum?\n",
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
"\n",
"#isolate b parameters for analysis\n",
"b_found = scifi_fitpars_found[:,1]\n",
"b_lost = scifi_fitpars_lost[:,1]\n",
"\n",
"brem_energy_found = scifi_fitpars_found[:,5]\n",
"brem_energy_lost = scifi_fitpars_lost[:,5]\n",
"\n",
"\n",
"bs_found, vtx_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n",
"bs_found = ak.to_numpy(ak.ravel(bs_found))\n",
"vtx_types_found = ak.to_numpy(ak.ravel(vtx_types_found))\n",
"\n",
"bs_lost, vtx_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n",
"bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n",
"vtx_types_lost = ak.to_numpy(ak.ravel(vtx_types_lost))\n",
"\n",
"\n",
"\n",
"\n",
"#Erste Annahme ist Bremsstrahlung\n",
"\n",
"fig = plt.figure(figsize=(18,6))\n",
"axes = ImageGrid(fig, 111, # similar to subplot(111)\n",
" nrows_ncols=(1, 2), # creates 2x2 grid of axes\n",
" axes_pad=1, # pad between axes in inch.\n",
" cbar_mode=\"single\",\n",
" cbar_location=\"right\",\n",
" cbar_pad=0.1,\n",
" aspect=False\n",
" )\n",
"\n",
"\n",
"h0 = axes[0].hist2d(b_found, brem_energy_found, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n",
"axes[0].set_xlim(-1,1)\n",
"axes[0].set_xlabel(\"b parameter [mm]\")\n",
"axes[0].set_ylabel(r\"$E_{ph}$\")\n",
"axes[0].set_title(\"found photon energy wrt b parameter\")\n",
"\n",
"h1 = axes[1].hist2d(b_lost, brem_energy_lost, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n",
"axes[1].set_xlim(-1,1)\n",
"axes[1].set_xlabel(\"b parameter [mm]\")\n",
"axes[1].set_ylabel(r\"$E_{ph}$\")\n",
"axes[1].set_title(\"lost photon energy wrt b parameter\")\n",
"\n",
"fig.colorbar(h0[3], cax=axes.cbar_axes[0], orientation='vertical')\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAAIhCAYAAACrEJ+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFBUlEQVR4nOzdeXQUVdrH8V+TnSUNQUlAEEERDCgCRjbZZB9xXAfcEBAXxjiK6KiMC8R3BNEZRKVRcdS4DMsoq4qDoCwqUSObDnFjRGEwEWEgAWRL575/MGnpdCXpht5S/f2cU+fQlVu3blV19324fesphzHGCAAAAAAAAACiRK1INwAAAAAAAAAAjsWgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCVsb+7cuWrbtq1SUlLkcDi0YcOGSDfJ0sSJE+VwOCLdDC8Oh0MTJ04MeLslS5Yc13bV6d27t3r37l1tue+//14Oh0O5ublBb0N1ZsyYEdB+HQ6HbrvtttA1yOZC9V4DAIRPbm6uHA6Hvv/++5DUH2jfHC4rV66Uw+HQypUrA942VMfkb+wX6mtWmV9++UUTJ070+5yVn+M33ngjtA2zAWIqANGIQUvY2s8//6zhw4fr9NNP1z//+U/l5eXpzDPPjHSzbG/JkiXKyckJer0zZszQjBkzgl5vMEXrf4zsKlTvNQCAfdixbw7VMeXl5enGG28Mer3B8ssvvygnJ+e4BnpRNWIqANEoPtINAELpm2++0ZEjR3TdddepV69ekW4OTlBmZmakm1CpX375RbVr1450M0LiyJEjcjgcio+PnS7DztcTAIDKdOnSJdJNsGSM0cGDByPdjJCxc9xh52MDEHrMtIRtjRw5UhdccIEkadiwYXI4HF63Fi9evFhdu3ZV7dq1Va9ePfXv3195eXk+dZx22mk+dVvdyl1+m++rr76qs846S7Vr11b79u311ltv+Wz/9ttv69xzz1VSUpJatGihv/zlLwEd2/Lly9W3b1+lpqaqdu3a6t69u9577z3LNm7atElXX321nE6n0tPTdcMNN6i4uNirbElJiW666SY1bNhQdevW1aBBg/TNN994lVm4cKEcDofPfiTpmWeekcPh0Oeff66RI0fK5XJ5zkn58v3332vOnDlyOByaPn261/YTJkxQXFycli1bVuVxW90e/uOPP2ro0KGqV6+enE6nhg0bpqKioirrKT/m+Ph4Pf744551O3fuVK1ateR0OlVaWupZf/vtt+vkk0+WMcbTjnbt2mn16tXq1q2bateurRtuuEGnnXaaNm3apFWrVnmO2+r9Y+W5557TmWeeqaSkJGVmZmrOnDnVblN+G/xjjz2mRx55RKeeeqqSk5N13nnn+VynzZs3a9SoUWrVqpVq166tU045RRdffLG++OILr3Llt1G9+uqruuuuu3TKKacoKSlJmzdv1s8//6xbb71VmZmZqlu3rho1aqQLL7xQH3zwgWW7Hn/8cU2ZMkWnnXaaUlJS1Lt3b88PCffdd5+aNGkip9Opyy67TDt27PA5vrlz56pr166qU6eO6tatq4EDB2r9+vWev1f1XpOO/gdnxowZOvfcc5WSkqIGDRroyiuv1Hfffee1n8quJwAgsl588UW1b99eycnJSktL02WXXaYvv/zSq8x3332nq666Sk2aNFFSUpLS09PVt29fTzqg4+mbA+0/8vPz1aNHD9WuXVstW7bUo48+qrKyMq+yX331lQYNGqTatWvrpJNO0pgxY7R3716vMmPHjlWdOnVUUlLi06Zhw4YpPT1dR44cqfKYxowZo+TkZK1du9azbVlZmfr27av09HQVFhZWeexWt4d//PHH6t69u5KTk9WkSRONHz9eR44cqbIe6Wi863A4lJ+f71k3b948ORwOXXTRRV5lzznnHF1xxRVe7bjtttv07LPP6qyzzlJSUpJefvllnXzyyZKknJwcz7GPHDmy2rYcPHhQ48aNU0ZGhlJSUtSrVy+vmKIy5bfBL1u2TKNGjVJaWprq1Kmjiy++2Of9sGzZMl1yySVq2rSpkpOTdcYZZ+iWW27Rzp07vcqVx+jr1q3TlVdeqQYNGuj000+XJH322We66qqrPLHTaaedpquvvlo//PCDZbtWrFih3//+9zrppJPUsGFDXX755frxxx99joOYCkCNZQCb2rx5s3G5XEaSmTRpksnLyzObNm0yxhjz97//3UgyAwYMMAsXLjRz5841nTp1MomJieaDDz7w1DFixAjTvHlzn7onTJhgKn58JJnTTjvNnH/++eYf//iHWbJkiendu7eJj483//73vz3lli9fbuLi4swFF1xg5s+fb15//XWTlZVlTj31VJ86rbz66qvG4XCYSy+91MyfP9+8+eabZsiQISYuLs4sX77cp42tW7c2Dz30kFm2bJmZOnWqSUpKMqNGjfKUKysrM3369DFJSUnmkUceMe+++66ZMGGCadmypZFkJkyYYIwx5siRI6ZRo0bm2muv9WnT+eefbzp27Og571deeaWRZPLy8jzLwYMHjTHGjBkzxiQmJpr8/HxjjDHvvfeeqVWrlnnggQeqPfZevXqZXr16eV7/8ssv5qyzzjJOp9M8/fTTZunSpeb222/3nMuXXnqpyvq6dOliBgwY4Hk9Z84ck5ycbBwOh/noo48868866ywzdOhQr3akpaWZZs2amaefftqsWLHCrFq1yqxbt860bNnSdOjQwXPc69atq7INkkyzZs1MZmammT17tlm8eLEZNGiQkWRef/31KrfdsmWLZ/sLLrjAzJs3z/N+SkhIMGvWrPGUXbVqlbnrrrvMG2+8YVatWmUWLFhgLr30UpOSkmK++uorT7kVK1YYSeaUU04xV155pVm8eLF56623zK5du8xXX31lfv/735s5c+aYlStXmrfeesuMHj3a1KpVy6xYscKnXc2bNzcXX3yxeeutt8xrr71m0tPTzZlnnmmGDx9ubrjhBvPOO++YZ5991tStW9dcfPHFXsf2yCOPGIfDYW644Qbz1ltvmfnz55uuXbuaOnXqeD7H1b3XbrrpJpOQkGDuuusu889//tPMmjXLtGnTxqSnp5uioqJqrycAIDxeeuklI8ls2bLFs27SpElGkrn66qvN22+/bV555RXTsmVL43Q6zTfffOMp17p1a3PGGWeYV1991axatcrMmzfP3HXXXZ5+6Xj65kD6j4YNG5pWrVqZZ5991ixbtszceuutRpJ5+eWXPeWKiopMo0aNzCmnnGJeeukls2TJEnPttdd64pXytm7cuNFIMs8//7xXe3bv3m2SkpLMuHHjqj2mAwcOmHPPPde0bNnS7N692xhjzEMPPWRq1apl3n333WqvxbGxnzHGbNq0ydSuXdsTpyxatMgMHDjQ0/Zjr1lFe/fuNQkJCWbSpEmedWPGjDEpKSmmTp065vDhw8YYY3766SfjcDjMjBkzvNpxyimnmHPOOcfMmjXLvP/++2bDhg3mn//8p5FkRo8e7Tn2zZs3V9qG8rimWbNm5pJLLjFvvvmmee2118wZZ5xhUlNTvWJ0K+XvzWbNmnlil5kzZ5pGjRqZZs2aec6xMcY888wzZvLkyWbx4sVm1apV5uWXXzbt27c3rVu39hyrMb/G6M2bNzf33nuvWbZsmVm4cKExxpjXX3/dPPTQQ2bBggVm1apVZs6cOaZXr17m5JNPNj///LNPu1q2bGn+8Ic/mKVLl5q//e1vpkGDBqZPnz5ex0BMBaAmY9AStlYeqBw7+ON2u02TJk3M2Wefbdxut2f93r17TaNGjUy3bt086wIdtExPTzclJSWedUVFRaZWrVpm8uTJnnWdO3c2TZo0MQcOHPCsKykpMWlpadUOWu7fv9+kpaX5DPC43W7Tvn17c/755/u08bHHHvMqe+utt5rk5GRTVlZmjDHmnXfeMZLMk08+6VXukUce8Qlcx40bZ1JSUsyePXs86woKCowk8/TTT3vWZWdnV3osBw8eNB06dDAtWrQwBQUFJj093fTq1cuUlpZWeezG+A5aPvPMM0aSWbRokVe5m266ya9BywceeMCkpKR4ArIbb7zRDBo0yJxzzjkmJyfHGGPM9u3bjSQzc+ZMr3ZIMu+9955PnW3btvVqY3UkmZSUFK+Ar7S01LRp08acccYZVW5bPjhY2fupX79+lW5bWlpqDh8+bFq1amXuvPNOz/ryz0zPnj2rbXtpaak5cuSI6du3r7nssst82tW+fXuvz9i0adOMJPPb3/7Wq56xY8caSaa4uNgYY8zWrVtNfHy8+cMf/uBVbu/evSYjI8NrALmy91peXp6RZP761796rd+2bZtJSUkx99xzj2ddVdcTABB6FQctd+/ebVJSUsxvfvMbr3Jbt241SUlJ5pprrjHGGLNz504jyUybNq3K+gPpm4+n//jkk0+8ymZmZpqBAwd6Xt97773G4XCYDRs2eJXr37+/16ClMcZ07NjRKxY1xpgZM2YYSeaLL77w65i+/fZbk5qaai699FKzfPlyv38cNsZ30HLYsGGVxinVDVoaY8wFF1xgLrzwQs/rM844w/zxj380tWrV8gxmlU8mOHYwWpJxOp3mv//9r1d9P//8s08bq1Ie13Ts2NET+xpjzPfff28SEhLMjTfeWOX25e/NY+McY4z56KOPjCTz5z//2XK7srIyc+TIEfPDDz/4xKrlMfpDDz1UbftLS0vNvn37TJ06dbxi9fJ23XrrrV7lH3vsMSPJFBYWGmOIqQDUfNwejpjz9ddf68cff9Tw4cNVq9avH4G6devqiiuu0Mcff6xffvnluOru06eP6tWr53mdnp6uRo0aeW7p2L9/v/Lz83X55ZcrOTnZU65evXq6+OKLq61/zZo1+u9//6sRI0aotLTUs5SVlWnQoEHKz8/X/v37vbb57W9/6/X6nHPO0cGDBz23465YsUKSdO2113qVu+aaa3z2f8MNN+jAgQOaO3euZ91LL72kpKQky/JWkpKS9I9//EO7du1Sx44dZYzR7NmzFRcX59f2x1qxYoXq1avnc4z+tqVv3746cOCA1qxZI+nobff9+/dXv379PLeqL1++XJLUr18/r20bNGigCy+8MOA2V9aO9PR0z+u4uDgNGzZMmzdv1n/+859qt6/s/bR69Wq53W5JUmlpqSZNmqTMzEwlJiYqPj5eiYmJ+vbbb31utZPkdYvWsZ599ll17NhRycnJio+PV0JCgt577z3LOn7zm994fcbOOussSfK5Jax8/datWyVJS5cuVWlpqa6//nqv93lycrJ69erlV/L9t956Sw6HQ9ddd51XHRkZGWrfvr1PHcG8ngCAE5OXl6cDBw743PbbrFkzXXjhhZ4UKGlpaTr99NP1+OOPa+rUqVq/fr3PbdmBCrT/yMjI0Pnnn++17pxzzvG6nXfFihVq27at2rdv71XOKl4ZNWqU1qxZo6+//tqz7qWXXlJWVpbatWvn1zGcccYZev7557Vw4UINGTJEPXr0OO6nQq9YsaLSOMUfffv21UcffaQDBw7ohx9+0ObNm3XVVVfp3HPP9Yq1Tj31VLVq1cpr2wsvvFANGjQ4rnZXdM0113ildmrevLm6devmiYOrUzFO7tatm5o3b+61/Y4dOzRmzBg1a9bMEyM1b95ckvyOtfbt26d7771XZ5xxhuLj4xUfH6+6detq//79lnVYxfmSPO8/YioANR2Dlog5u3btkiQ1btzY529NmjRRWVmZdu/efVx1N2zY0GddUlKSDhw4IEnavXu3ysrKlJGR4VPOal1FP/30kyTpyiuvVEJCgtcyZcoUGWP03//+t8o2JSUlSZKnTbt27VJ8fLxPOav2tG3bVllZWXrppZckSW63W6+99pouueQSpaWlVdv+cmeccYZ69OihgwcP6tprr7W8Fv7YtWuXVxBdVdutlOfaWb58uTZv3qzvv//eM2j5ySefaN++fVq+fLlatmypFi1aeG17vG22UtX7ofz9ejzbHz58WPv27ZMkjRs3Tg8++KAuvfRSvfnmm/rkk0+Un5+v9u3be94Lx7I6vqlTp+r3v/+9OnfurHnz5unjjz9Wfn6+Bg0aZFlHxfdEYmJilevLE+yXv8+zsrJ83udz5871yQ1l5aeffpIxRunp6T51fPzxxz51BPN6AgBOTHWxWvnfy3NtDxw4UI899pg6duyok08+WbfffrtPvkh/Bdp/VBf7lR+Pv7Hftddeq6SkJM+TwQsKCpSfn69Ro0YFdBwXXXSR0tPTPbkcj+fH4UDbbqVfv346dOiQPvzwQy1btkwnnXSSOnTooH79+nl+GH7vvfd8fhyWwhNr+RNn+bN9WVmZBgwYoPnz5+uee+7Re++9p08//VQff/yxJPkda11zzTWaPn26brzxRi1dulSffvqp8vPzdfLJJ1vWUV2cT0wFoKaLnUfBAv9T3rlbJSL/8ccfVatWLc+vusnJyTp06JBPOX86eCsNGjSQw+GwfFCMPw+POemkkyRJTz/9dKVPd7QaxKtKw4YNVVpaql27dnkFPpW1Z9SoUbr11lv15Zdf6rvvvlNhYWHAgfTf/vY3vf322zr//PM1ffp0DRs2TJ07dw6ojvK2f/rppz7r/TmX0tHBsgsuuEDLly9X06ZNlZGRobPPPlstW7aUdPShNO+9956GDBnis23FBzGdiKreD1b/GfJ3+8TERNWtW1eS9Nprr+n666/XpEmTvMrt3LlT9evX99ne6vhee+019e7dW88884zX+uP9j2Flyt/nb7zxhmeGwvHU4XA49MEHH3gC+GNVXBfM6wkAODHVxWrl/YR0dMbcCy+8IEn65ptv9I9//EMTJ07U4cOH9eyzzwa870D7D380bNjQ79ivQYMGuuSSS/TKK6/oz3/+s1566SUlJyfr6quvDmif5Q/6adu2rW6//Xb16NHjuGYtBtJ2K507d1bdunW1fPlyff/99+rbt68cDof69u2rv/71r8rPz9fWrVstBy3DEWv5E2dVtf0ZZ5whSfrXv/6ljRs3Kjc3VyNGjPCU2bx5c6V1Vjy+4uJivfXWW5owYYLuu+8+z/pDhw75TErwFzEVgJqOmZaIOa1bt9Ypp5yiWbNmeZ4GLR29dXvevHmeJ4pLR584uWPHDs+vlJJ0+PBhLV269Lj2XadOHZ1//vmaP3++Z1aZdHTQ580336x2++7du6t+/foqKCjQeeedZ7mUz1rzV58+fSRJf//7373Wz5o1y7L81VdfreTkZOXm5io3N1ennHKKBgwY4FWm4q+8x/riiy90++236/rrr9cHH3ygc845R8OGDTuu2a19+vTR3r17tXjxYr/abqVfv35au3at5s2b5wmY69Spoy5duujpp5/Wjz/+aBlIV6bi7Ap/vPfee17vMbfbrblz5+r0009X06ZNq92+svdTjx49PDMrHA6HT1D59ttva/v27X6306qOzz//XHl5eX7X4Y+BAwcqPj5e//73vyt9n5er7L02ZMgQGWO0fft2y+3PPvvsoLYZABA8Xbt2VUpKil577TWv9f/5z3/0/vvvq2/fvpbbnXnmmXrggQd09tlna926dZ71gfTNoeg/+vTpo02bNmnjxo1e6yuLV0aNGqUff/xRS5Ys0WuvvabLLrvM5wfGqo7pb3/7m1577TVNnz5dixcv1p49ewL+gfnYtlcWp/gjISFBPXv21LJly/T++++rf//+kqQePXooPj5eDzzwgGcQ0x9VxZhVmT17tlfc/8MPP2jNmjXq3bu3X9tXjJPXrFmjH374wbN9+UBdxTjpueee87uNDodDxhifOv72t7950v0EipgKQE3HTEvEnFq1aumxxx7TtddeqyFDhuiWW27RoUOH9Pjjj2vPnj169NFHPWWHDRumhx56SFdddZX++Mc/6uDBg3rqqaeOO3CQpP/7v//ToEGD1L9/f911111yu92aMmWK6tSpU+2vqHXr1tXTTz+tESNG6L///a+uvPJKNWrUSD///LM2btyon3/+2WcWXHUGDBignj176p577tH+/ft13nnn6aOPPtKrr75qWb5+/fq67LLLlJubqz179ujuu+/2ylsoyRO8TJkyRYMHD1ZcXJzOOeccHTlyREOHDlWLFi00Y8YMJSYm6h//+Ic6duyoUaNGaeHChQG1/frrr9cTTzyh66+/Xo888ohatWqlJUuWBDSo3LdvX7ndbr333nt6+eWXPev79eunCRMmyOFwBJSX5+yzz9acOXM0d+5ctWzZUsnJydUGcyeddJIuvPBCPfjgg6pTp45mzJihr776SnPmzPFrn3Fxcerfv7/GjRunsrIyTZkyRSUlJcrJyfGUGTJkiHJzc9WmTRudc845Wrt2rR5//HG/BkWPreP//u//NGHCBPXq1Utff/21Hn74YbVo0UKlpaV+11Od0047TQ8//LDuv/9+fffddxo0aJAaNGign376SZ9++qnq1KnjObbK3mvdu3fXzTffrFGjRumzzz5Tz549VadOHRUWFurDDz/U2Wefrd///vdBazMAIHjq16+vBx98UH/60590/fXX6+qrr9auXbuUk5Oj5ORkTZgwQdLRH85uu+02/e53v1OrVq2UmJio999/X59//rnXTLVA+uZQ9B9jx47Viy++qIsuukh//vOflZ6err///e/66quvLMsPGDBATZs21a233qqioiLLAcfKjqn8x+ERI0Z4tnvhhRd05ZVXatq0aRo7dmxAbX/ggQe0ePFiXXjhhXrooYdUu3ZtuVwunxzqVenbt6/uuusuSb/mCE9JSVG3bt307rvv6pxzzlGjRo38qqtevXpq3ry5Fi1apL59+yotLU0nnXSSTjvttCq327Fjhy677DLddNNNKi4u1oQJE5ScnKzx48f7td/PPvtMN954o373u99p27Ztuv/++3XKKafo1ltvlSS1adNGp59+uu677z4ZY5SWlqY333zTk7fTH6mpqerZs6cef/xxzzGtWrVKL7zwguVdMf4gpgJQ40Xm+T9AeFg9PbzcwoULTefOnU1ycrKpU6eO6du3r/noo498yi1ZssSce+65JiUlxbRs2dJMnz690qeHZ2dn+2zfvHlzM2LECK91ixcvNuecc45JTEw0p556qnn00Uct66zMqlWrzEUXXWTS0tJMQkKCOeWUU8xFF13kdZzl9f38889e21Z8QqcxxuzZs8fccMMNpn79+qZ27dqmf//+5quvvqr06YzvvvuukeTzpMdyhw4dMjfeeKM5+eSTjcPh8OzvuuuuM7Vr1zabNm3yKv/6668bSeaJJ56o8rgrPj3cGGP+85//mCuuuMLUrVvX1KtXz1xxxRVmzZo1fj093JijT3c86aSTjCSzfft2z/ryp0J27NjRsh1t27a1rO/77783AwYMMPXq1TOSLJ8+f6zy982MGTPM6aefbhISEkybNm3M3//+92rbXv6U7ilTppicnBzTtGlTk5iYaDp06GCWLl3qVXb37t1m9OjRplGjRqZ27drmggsuMB988IHPOa3qM3Po0CFz9913m1NOOcUkJyebjh07moULF5oRI0Z4HWd5ux5//HGv7Suru/w9mZ+f77V+4cKFpk+fPiY1NdUkJSWZ5s2bmyuvvNIsX77cq01W77VyL774ouncubOpU6eOSUlJMaeffrq5/vrrzWeffeYpU9X1BACEnlVsYowxf/vb3zzxktPpNJdccolXDPHTTz+ZkSNHmjZt2pg6deqYunXrmnPOOcc88cQTprS01FMu0L7ZmBPrPyr2i8YYU1BQYPr372+Sk5NNWlqaGT16tFm0aJHP08PL/elPfzKSTLNmzYzb7fb5u9Ux7du3z7Rp08ZkZmaa/fv3e5XPzs42CQkJPk86r8gq9vvoo49Mly5dTFJSksnIyDB//OMfzcyZM/16ergxxmzcuNFIMq1atfJa/8gjjxhJZty4cZbtsIqrjTFm+fLlpkOHDiYpKclI8omzj1Uee7z66qvm9ttvNyeffLJJSkoyPXr08LqWlSl/b7777rtm+PDhpn79+p4n23/77bdeZcuvcb169UyDBg3M7373O7N161afc1pZjG7Mr3FtgwYNTL169cygQYPMv/71L5//T1QWO5Ufb8X3FDEVgJrKYcwx8+QBADXG999/rxYtWujxxx/X3XffHenmAAAA2Epubq5GjRql/Px8r1upAQDhQU5LAAAAAAAAAFGFQUsAAAAAAAAAUYXbwwEAAAAAAABEFWZaAgAAAAAAADFm8uTJysrKUr169dSoUSNdeuml+vrrr6vdbtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIuH0MWgIAAAAAAAAxZtWqVcrOztbHH3+sZcuWqbS0VAMGDND+/fsr3WbLli36zW9+ox49emj9+vX605/+pNtvv13z5s3zlMnLy9OwYcM0fPhwbdy4UcOHD9fQoUP1ySefBNQ+bg8HAAAAAAAAYtzPP/+sRo0aadWqVerZs6dlmXvvvVeLFy/Wl19+6Vk3ZswYbdy4UXl5eZKkYcOGqaSkRO+8846nzKBBg9SgQQPNnj3b7/bEH+dx2EpZWZl+/PFH1atXTw6HI9LNAQAAQWaM0d69e9WkSRPVqsWNJtGCGAwAAHsjBqvcwYMHdfjw4ZDUbYzxia2SkpKUlJRU5XbFxcWSpLS0tErL5OXlacCAAV7rBg4cqBdeeEFHjhxRQkKC8vLydOedd/qUmTZtWgBHwaClJOnHH39Us2bNIt0MAAAQYtu2bVPTpk0j3Qz8DzEYAACxgRjM28GDB3VySor2haj+unXrat8+79onTJigiRMnVrqNMUbjxo3TBRdcoHbt2lVarqioSOnp6V7r0tPTVVpaqp07d6px48aVlikqKgroOBi0lFSvXj1JRz9EqampEW6N/Tmdk71eFxePj1BLvFVsF4LN6usmocLrI8dRb4of+6lKqcW6inUcDLBOK9UdW8VzcSAI+4xdofhesfqOiMT3V7R+h0a7kpISNWvWzNPnIzpEQwwWLZ/t6sRCOyuLxcJ1nCcSC1q1MTSxZWVxjlU84+/2/m5bmYqxmOR/HBNI3Hai7fRlfd0eP8F9+3eOw/ee8VXZZypc3zPB/p4I5/HUhHMUbYjBrB0+fFj7JN0pqeq5j4E7JOmJfft84qvqZlnedttt+vzzz/Xhhx9Wu4+KszjLM08eu96qTKB31jBoqV9PZGpqKoOWYZHs9Sp6znly9UVwAvwZtIw7jnorXreKdVbHajAx0Dr8Ud2xVdwn6YZPRGi+V3y/IyLz/RWt36E1A7cgR5foiMGi5bNdnVhop3UsFr7jPP5Y0LqNoYgto3HQ0uo4/Y1jIjto6f91C/6gZfjeM74q/0yF63smuN8T4T2emnCOohMxmLU6Cv4nv/xbKJD46g9/+IMWL16s1atXVzsjNiMjw2fG5I4dOxQfH6+GDRtWWabi7MvqkFAAAAAAAAAACLOEEC3+Msbotttu0/z58/X++++rRYsW1W7TtWtXLVu2zGvdu+++q/POO08JCQlVlunWrVsArYvxp4e7XC65XC653W598803Ki4urvG/XgAAAF8lJSVyOp309VGCGAwAgNhADGat/LzkKPgzLQ9KmiD5dc5vvfVWzZo1S4sWLVLr1q09651Op1JSjqb/GD9+vLZv365XXnlFkrRlyxa1a9dOt9xyi2666Sbl5eVpzJgxmj17tq644gpJ0po1a9SzZ0898sgjuuSSS7Ro0SI98MAD+vDDD9W5c2e/jyWmBy3L8SECAMDe6OujE9cFAAB7o6+3Vn5eHlFoBi3vl3+DlpXdtv/SSy9p5MiRkqSRI0fq+++/18qVKz1/X7Vqle68805t2rRJTZo00b333qsxY8Z41fHGG2/ogQce0HfffafTTz9djzzyiC6//PKAjoWclgAAAAAAAECM8WceY25urs+6Xr16ad26dVVud+WVV+rKK6883qZJYtASAAAAAAAACLt4Bf8xsMF/bFnkxPSDeFwulzIzM5WVlRXppgAAAMQMYjAAAABUh5yWIscCAAB2R18fnbguAADYG329tfLz8ldJKUGu+4Cku+RfTstoF9MzLQEAAAAAAABEH3JaAgAAAAAAAGGWIHJaViWmBy1dLpdcLpfcbnekm+IXhyPH67UxEyLUEtQ0kXjvVNxnqAR6LP60i88WAIRWTYvBgOpYxReBxBMnuv2J1BmKfQMA/BOv4A/M2WmgL6ZvD8/OzlZBQYHy8/Mj3RQAAICYQQwGAACA6thpABYAAAAAAACoEeIV/NvDjwS5vkiK6ZmWAAAAAAAAAKIPMy0BAAAAAACAMCOnZdXsdCwBq2lJ4EmIjeMVifdOtL5fo7VdABBLaloMBlTnROOLUMQn/tZJbAQAiFYOY4yJdCMiraSkRE6nU8XFxUpNTY10cwAAQJDR10cnrgsAAPZGX2+t/Ly8Kql2kOv+RdJwyRbnnJyWAAAAAAAAAKJKTN8eDgAAAAAAAERCgoL/9PBg1xdJMT1oWdPyKTkcOVX+PRj5aKrbByoKxkcoFF8p1bWrun1abZ8SYBsqTkO32me9APdxisW6hlVvUq9CnXur2YUkOSq8NgcqrPi+wusjFV7/16LSinWUVtOIEot1FfdT8ZxW3KbiPipub6VinRW3qa7dVttUV6eVivup+J4M9O/Ryep7O9DvYX/qqFgmHP0JUJWKMZjTOVlSsleZQN6HJxK/BLafxyzWVvx+r+xz+YjFtpV9V1n1w1ZlrfpN3/YExt99B7K9VQwQSNut6jyR40yrZL2/bbI6H1blrOIWyb9+sLL9VIydylndXPiLxTqra2EVtwRyjn7ys5yVyq5jK4t1VufNat+VBXtWx2R12+Qui3VW8eZ/KtmP1bFbXUur97VV2/19v0j+X9/K6vS3nSfqRL7PAvmO8vf/NP78B6Hy7Y25x2ed9Xe+7/Wx2vbo9v71a8RsNR8P4qlaTN8enp2drYKCAuXn50e6KQAAADGDGAwAAADVsdMALAAAAAAAAFAjxCv4917aaaAvpmdaAgAAAAAAAIg+DmOMiXQjIuXYfErffPONLR4HDwAAfJWUlMjpdNLXRwliMAAAYgMxmLXy8/KWpDpBrnu/pCGSLc55TA9aluNDBACAvdHXRyeuCwAA9kZfb41BS//Y6VZ3AAAAAAAAoEZIUPBzWga7vkgipyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAADA0dufQ7HYBTktRY4FAADsjr4+OnFdAACwN/p6a+XnZZWkukGue5+kXrJHTsuYnmkJAAAAAAAAIPrYadYoAAAAAAAAUCOE4nZuOw302elYAuZyueRyueR2u0O+L4cjx+u1MROqKf+IxdrSE2qD1T5991PdPupVeL3XokxKhdcHKrz2522XVuH1fyu8rjjF+Ug1bbBS8VgrblOxzoptknyP/7QKr/059vQKr0uqqbNiu5pa1FmNBhWOtV2Fv1vNT+9V4XVxhdfneb90Dinyet0z8QOfKu/VFK/X3XPXeheY6v0y5wuLdkWBoRVen7XYt8yTF9/s9XqNunm9/rfO8Hq9dnV330o2V9OQaRVeV3z7fW+xTcWP9O6KBSpW8lOF1xXfr5K0o5qdVPd5ttpvxTq+rPC64jPyrL4DKtZp1fZjVfyOsPr8Vqyz4rFUPF8V21nx8+xvmWNV3zdU/P6v2Cf5sjpW7/1U148dj0D7StRcFWMwp/NxSckVSvk++9KYeyzrcziesVhrFaN0tFi3zmJdI8v9SL0t1n1isa6zn+UqfoeUa2WxruL3nqSUGy2qtDoeSfrWYl3FGESybnvF7zKp8u8mq7jke4t1Z1Wyvb8s9t/D4nmpeyw2raw/vdZiXWOLdTst1lm9BVdVsp/6Fuusvsr3+a46t+fHllUO16sWu9njs+6GT2b5rNvS2fcgW9xfaLkf3ea7Kr9xxUBS+l4tfNZ9oB4+654aav2ZPrDEd12Kxb7/+Whvn3XNtM2yzgny7fveWHudz7o7O032WbdB5/qsW7m1n+V+zj31M9/tH+riW9DqfZhhsa6y+HeXxTrfSyFtsKqzss+v1c7OsFhn0fjGFt+vhcsr2Y/Fd8pZFh/AL9+0aM7FFs35vpL9fGSx7nKLdVbfm1b/95Osv7umWqyz2k/FGFiStleyH6v9/8dindUbyTe2NuYPlezHPw7HYxZ1VtYnVzwfB09o34htMX17eHZ2tgoKCpSfnx/ppgAAAMQMYjAAAICjP9GGYrGLmB60BAAAAAAAABB9Yvr2cAAAAAAAACASyGlZNWZaAgAAAAAAAIgqDmOMidTOV69erccff1xr165VYWGhFixYoEsvvdTzd2OMcnJyNHPmTO3evVudO3eWy+VS27ZtPWUOHTqku+++W7Nnz9aBAwfUt29fzZgxQ02bVv9wkmOTwH/zzTcqLi5WaqrVAyEAnCirB38E+pCNUNTBgz6A2FBSUiKn00lf/z/EYEDkBCOeAYCaghjMWvl5+Vy+jxw9UXslnSPZ4pxHdKbl/v371b59e02fPt3y74899pimTp2q6dOnKz8/XxkZGerfv7/27v31aZBjx47VggULNGfOHH344Yfat2+fhgwZ4tcTwUkCDwAAYhExGAAAQOTxIJ6qRfRW98GDB2vw4MGWfzPGaNq0abr//vt1+eWXS5Jefvllpaena9asWbrllltUXFysF154Qa+++qr69esnSXrttdfUrFkzLV++XAMHDgzbsQAAANQUxGAAAACIdlGb03LLli0qKirSgAEDPOuSkpLUq1cvrVmzRpK0du1aHTlyxKtMkyZN1K5dO08ZK4cOHVJJSYnXAgAAAGIwAACAcIkP0WIXUXssRUVFkqT09HSv9enp6frhhx88ZRITE9WgQQOfMuXbW5k8ebJycnxzyQAInWDkaoqWOgDAzojBgNAiFgEAwD9RO9OynMPh8HptjPFZV1F1ZcaPH6/i4mLPsm3btqC0FQAAwC6IwQAAAEIrPk5KiA/uEh8X6aMKnqgdtMzIyJAkn1/rd+zY4fnlPyMjQ4cPH9bu3bsrLWMlKSlJqampXgsAAACIwQAAABAdonbQskWLFsrIyNCyZcs86w4fPqxVq1apW7dukqROnTopISHBq0xhYaH+9a9/ecoAAADAf8RgAAAA4REfH5rFLiJ6KPv27dPmzZs9r7ds2aINGzYoLS1Np556qsaOHatJkyapVatWatWqlSZNmqTatWvrmmuukSQ5nU6NHj1ad911lxo2bKi0tDTdfffdOvvssz1PsqyKy+WSy+WS2+0O2TECAABEG2IwAAAARDuHMcZEaucrV65Unz59fNaPGDFCubm5MsYoJydHzz33nHbv3q3OnTvL5XKpXbt2nrIHDx7UH//4R82aNUsHDhxQ3759NWPGDDVr1szvdpSUlMjpdKq4uJjblAAAsCH6em/EYAAAIBzo662Vn5ei2lJq1SnDA6/bSBm/yBbnPKKDltGCDxEAAPZGXx+duC4AANgbfb218vOyMzU0g5Ynldhj0DJqc1oCAAAAAAAAiE02Ss8ZOPIpAQAAhB8xGAAAgJQQJyUEeTphQllw64skbg8X05UBALA7+vroxHUBAMDe6Outec5LAyk1yIOWJWWSc7c9bg+P6ZmWAAAAAAAAQETEKfiJG4OcIzOSyGkJAAAAAAAAIKrE9KCly+VSZmamsrKyIt0UAACAmEEMBgAAoKP3P4diCcDq1at18cUXq0mTJnI4HFq4cGGV5UeOHCmHw+GztG3b1lMmNzfXsszBgwcDaltMD1pmZ2eroKBA+fn5kW4KAABAzCAGAwAAiA779+9X+/btNX36dL/KP/nkkyosLPQs27ZtU1pamn73u995lUtNTfUqV1hYqOTk5IDaRk5LAAAAAAAAINziFfzphP97enhJSYnX6qSkJCUlJfkUHzx4sAYPHux39U6nU06n0/N64cKF2r17t0aNGuVVzuFwKCMjI4CG+4rpmZYAAAAAAABARITw9vBmzZp5BhidTqcmT54ckkN44YUX1K9fPzVv3txr/b59+9S8eXM1bdpUQ4YM0fr16wOum5mWAAAAAAAAgI1s27ZNqampntdWsyxPVGFhod555x3NmjXLa32bNm2Um5urs88+WyUlJXryySfVvXt3bdy4Ua1atfK7/pgetHS5XHK5XHK73ZFuCgAAQMwgBgMAANDR+5/jQlN1amqq16BlKOTm5qp+/fq69NJLvdZ36dJFXbp08bzu3r27OnbsqKefflpPPfWU3/XH9O3hJIEHAAAIP2IwAACAms0YoxdffFHDhw9XYmJilWVr1aqlrKwsffvttwHtI6ZnWgIAAAAAAAAREa/gz7R0BLm+SqxatUqbN2/W6NGjqy1rjNGGDRt09tlnB7QPBi0BAAAAAACAGLRv3z5t3rzZ83rLli3asGGD0tLSdOqpp2r8+PHavn27XnnlFa/tXnjhBXXu3Fnt2rXzqTMnJ0ddunRRq1atVFJSoqeeekobNmyQy+UKqG0xPWhJPiUAAIDwIwYDAABQVMy0/Oyzz9SnTx/P63HjxkmSRowYodzcXBUWFmrr1q1e2xQXF2vevHl68sknLevcs2ePbr75ZhUVFcnpdKpDhw5avXq1zj///MAOxRhjAjsc+ykpKZHT6VRxcXHIk5QCAIDwo6+PTlwXAADsjb7emue8ZEqpQR60LHFLzgLZ4pzH9ExLAAAAAAAAICLiFLKnh9sBg5YAAAAAAABAuEXB7eHRrFakGxBJLpdLmZmZysrKinRTAAAAYgYxGAAAAKpDTkuRYwEAALujr49OXBcAAOyNvt6a57ycJ6UG+R7oklLJ+Zk9clrG9ExLAAAAAAAAANGHnJYAAAAAAABAuIXiQTw2up86pmdakk8JAAAg/IjBAAAAUB1yWoocCwAA2B19fXTiugAAYG/09dY856V7iHJafkROSwAAAAAAAAAIOnJaAgAAAAAAAOEWL0bmqhDTMy3JpwQAABB+xGAAAACoDjktRY4FAADsjr4+OnFdAACwN/p6a57z0jdEOS3fs0dOSyahAgAAAAAAAOFWS1JckOssC3J9ERTTt4cDAAAAAAAAiD7MtAQAAAAAAADCLRQP4rFREsiYnmlJEngAAIDwIwYDAABAdXgQj0gMCwCA3dHXRyeuCwAA9kZfb81zXi6WUhOCXPcRyfmmPR7EE9MzLQEAAAAAAABEH3JaAgAAAAAAAOEWJ54eXoWYnmlJPiUAAIDwIwYDAABAdchpKXIsAABgd/T10YnrAgCAvdHXW/OclytDlNPyDXvktOT2cAAAAAAAACDc4hT8kTluDwcAAAAAAACA0IjpQUvyKQEAAIQfMRgAAIB+fRBPsBebIKelyLEAAIDd0ddHJ64LAAD2Rl9vzXNerpFSE4Nc92HJOYuclgAAAAAAAACOR7zIaVmFmL49HAAAAAAAAED0ielBS/IpAQAAhB8xGAAAgH6daRnsxSbIaSlyLAAAYHf09dGJ6wIAgL3R11vznJcbQpTT8kVyWgIAAAAAAAA4HuS0rBKDlgAAAAAAAEC41ZIUF4I6bcJGhxI48ikBAACEHzEYAAAAqkNOS5FjAQAAu6Ovj05cFwAA7I2+3prnvNwmpSYFue5DknO6PXJaxvRMSwAAAAAAAADRh5yWAAAAAAAAQLiF4kE87iDXF0HMtAQAAAAAAAAQVWJ60JIk8AAAAOFHDAYAAKCjTw4PxWITPIhHJIYFAMDu6OujE9cFAAB7o6+35jkvd4XoQTx/tceDeMhpCQAAAAAAAIQbOS2rxKAlAAAAAAAAEG5xCv7IXGmQ64sgclqSTwkAACCsiMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jzn5SEpNTnIdR+UnA/bI6dlTM+0BAAAAAAAABB9yGkJAAAAAAAAhFvc/5Zg12kTMT3TknxKAAAA4UcMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7fmOS+PhCin5f3ktAQAAAAAAABQQ61evVoXX3yxmjRpIofDoYULF1ZZfuXKlXI4HD7LV1995VVu3rx5yszMVFJSkjIzM7VgwYKA28agJQAAAAAAABBu8SFaArB//361b99e06dPD2i7r7/+WoWFhZ6lVatWnr/l5eVp2LBhGj58uDZu3Kjhw4dr6NCh+uSTTwLaR0w/iMflcsnlcsntdke6KQAAADGDGAwAAEBHpxIG+8E5AU5PHDx4sAYPHhzwbho1aqT69etb/m3atGnq37+/xo8fL0kaP368Vq1apWnTpmn27Nl+7yOmZ1pmZ2eroKBA+fn5kW4KAABAzCAGAwAACK2SkhKv5dChQ0Gtv0OHDmrcuLH69u2rFStWeP0tLy9PAwYM8Fo3cOBArVmzJqB9xPSgJQAAAAAAABARIbw9vFmzZnI6nZ5l8uTJQWly48aNNXPmTM2bN0/z589X69at1bdvX61evdpTpqioSOnp6V7bpaenq6ioKKB9xfTt4QAAAAAAAIDdbNu2zevp4UlJSUGpt3Xr1mrdurXnddeuXbVt2zb95S9/Uc+ePT3rHQ6H13bGGJ911YnpmZYul0uZmZnKysqKdFMAAABiBjEYAACAQjrTMjU11WsJ1qCllS5duujbb7/1vM7IyPCZVbljxw6f2ZfVielBS/IpAQAAhB8xGAAAgH2sX79ejRs39rzu2rWrli1b5lXm3XffVbdu3QKql9vDAQAAAAAAgHCLU/CfHh5gffv27dPmzZs9r7ds2aINGzYoLS1Np556qsaPH6/t27frlVdekXT0yeCnnXaa2rZtq8OHD+u1117TvHnzNG/ePE8dd9xxh3r27KkpU6bokksu0aJFi7R8+XJ9+OGHAbWNQUsAAAAAAAAgBn322Wfq06eP5/W4ceMkSSNGjFBubq4KCwu1detWz98PHz6su+++W9u3b1dKSoratm2rt99+W7/5zW88Zbp166Y5c+bogQce0IMPPqjTTz9dc+fOVefOnQNqm8MYY07w+Gq8kpISOZ1OFRcXeyUpBQAA9kBfH524LgAA2Bt9vTXPeZkppaYEue4DkvNm2eKcR3VOy9LSUj3wwANq0aKFUlJS1LJlSz388MMqKyvzlDHGaOLEiWrSpIlSUlLUu3dvbdq0ya/6SQIPAADgixgMAAAgDOIU/IfwBPt28wiK6kHLKVOm6Nlnn9X06dP15Zdf6rHHHtPjjz+up59+2lPmscce09SpUzV9+nTl5+crIyND/fv31969e6utnyTwAAAAvojBAAAAEGlRndMyLy9Pl1xyiS666CJJ0mmnnabZs2frs88+k3T0F/5p06bp/vvv1+WXXy5Jevnll5Wenq5Zs2bplltuiVjbAQAAaipiMAAAgDAonx0Z7DptIqpnWl5wwQV677339M0330iSNm7cqA8//NCT3HPLli0qKirSgAEDPNskJSWpV69eWrNmTaX1Hjp0SCUlJV4LAAAAjiIGAwAAQKRF9fjrvffeq+LiYrVp00ZxcXFyu9165JFHdPXVV0uSioqKJEnp6ele26Wnp+uHH36otN7JkycrJycndA0HAACowYjBAAAAwiBOwc9BSU7L8Jg7d65ee+01zZo1S+vWrdPLL7+sv/zlL3r55Ze9yjkcDq/XxhifdccaP368iouLPcu2bdtC0n4AAICaiBgMAAAAkRbVMy3/+Mc/6r777tNVV10lSTr77LP1ww8/aPLkyRoxYoQyMjIkHf21v3Hjxp7tduzY4fPL/7GSkpKUlJQU2sYDAADUUMRgAAAAYUBOyypF9UzLX375RbVqeTcxLi5OZWVlkqQWLVooIyNDy5Yt8/z98OHDWrVqlbp16xbWtgIAANgFMRgAAAAiLarHXy+++GI98sgjOvXUU9W2bVutX79eU6dO1Q033CDp6C1JY8eO1aRJk9SqVSu1atVKkyZNUu3atXXNNddUW7/L5ZLL5ZLb7Q71oQAAANQYxGAAAABhwEzLKjmMMSbSjajM3r179eCDD2rBggXasWOHmjRpoquvvloPPfSQEhMTJR3NnZSTk6PnnntOu3fvVufOneVyudSuXTu/91NSUiKn06ni4mKlpqaG6nAAAECE0NcHhhgMAAAEA329Nc95mS+l1gly3fsl5+WyxTmP6kHLcOFDBACAvdHXRyeuCwAA9kZfb41BS//YaNIoAAAAAAAAUENwe3iVovpBPKHmcrmUmZmprKysSDcFAAAgZhCDAQAAoDrcHi6mKwMAYHf09dGJ6wIAgL3R11vznJclIbo9/Df2uD08pmdaAgAAAAAAAIg+NrrTHQAAAAAAAKgh4v63BLtOm4jpmZbkUwIAAAg/YjAAAABUh5yWIscCAAB2R18fnbguAADYG329Nc95eS9EOS372iOnJbeHAwAAAAAAAOEWp+CPzHF7OAAAAAAAAACEBjMtAQAAAAAAgHCLV/BH5mw00hfTMy1JAg8AABB+xGAAAACoDg/iEYlhAQCwO/r66MR1AQDA3ujrrXnOS56UWjfIde+TnF3t8SCemJ5pCQAAAAAAACD62OhOdwAAAAAAAKCGIKdllWJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzXNe1kmp9YJc917J2ZGclgAAAAAAAAAQdDa60x0AAAAAAACoIeL+twS7TpuI6ZmW5FMCAAAIP2IwAAAA/fognmAvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3prnvGwKUU7LtvbIaWmj8VcAAAAAAACghgjFzEgbjfTF9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAARE7LapDTUuRYAADA7ujroxPXBQAAe6Ovt+Y5L/8OUU7L08lpCQAAAAAAAOA4mFqSiQt+nXZho0MBAAAAAAAAYAcxPdPS5XLJ5XLJ7XZHuikAAAAxgxgMAABAcscfXYJdp12Q01LkWAAAwO7o66MT1wUAAHujr7dWfl52FErBPi0lJVKjxvbIacnt4QAAAAAAAACiio0mjQIAAAAAAAA1Q2mcQ6VxjiDXaSTZ46ZqZloCAAAAAAAAiCoxPdOSJPAAAADhRwwGAAAguePj5Y4P7kxLd7yRdCSodUYKD+IRiWEBALA7+vroxHUBAMDe6OutlZ+Xbf9NUGpqcActS0qMmqUdscU5j+mZlgAAAAAAAEAkuOPi5A5yTkt3nH1mWpLTEgAAAAAAAEBUiemZluRTAgAACD9iMAAAAKlMcXIruDMty2zy5HApxmdaZmdnq6CgQPn5+ZFuCgAAQMwgBgMAAJBKFReSJRCrV6/WxRdfrCZNmsjhcGjhwoVVlp8/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEBti+lBSwAAAAAAACBW7d+/X+3bt9f06dP9Kr969Wr1799fS5Ys0dq1a9WnTx9dfPHFWr9+vVe51NRUFRYWei3JyckBtS2mbw8HAAAAAAAAIsGtOLmDPJ/QrbKAyg8ePFiDBw/2u/y0adO8Xk+aNEmLFi3Sm2++qQ4dOnjWOxwOZWRkBNSWimJ6pqXL5VJmZqaysrIi3RQAAICYQQwGAAAQWiUlJV7LoUOHQrKfsrIy7d27V2lpaV7r9+3bp+bNm6tp06YaMmSIz0xMf8T0oCX5lAAAAMKPGAwAAKB8pmXwF0lq1qyZnE6nZ5k8eXJIjuGvf/2r9u/fr6FDh3rWtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21AdXN7OAAAAAAAAGAj27ZtU2pqqud1UlJS0Pcxe/ZsTZw4UYsWLVKjRo0867t06aIuXbp4Xnfv3l0dO3bU008/raeeesrv+hm0BAAAAAAAAMIsNDktHZKOPgjn2EHLYJs7d65Gjx6t119/Xf369auybK1atZSVlRXwTMuYvj2cfEoAAADhRwwGAABQc82ePVsjR47UrFmzdNFFF1Vb3hijDRs2qHHjxgHtJ6ZnWmZnZys7O1slJSVyOp2Rbg4AAEBMIAYDAAAI7UxLf+3bt0+bN2/2vN6yZYs2bNigtLQ0nXrqqRo/fry2b9+uV155RdLRAcvrr79eTz75pLp06aKioiJJUkpKiieuy8nJUZcuXdSqVSuVlJToqaee0oYNG+RyuQJqW0wPWgIAAAAAAACR4FacSiM8aPnZZ5+pT58+ntfjxo2TJI0YMUK5ubkqLCzU1q1bPX9/7rnnVFpa6vkRulx5eUnas2ePbr75ZhUVFcnpdKpDhw5avXq1zj///IDa5jDGmIC2sKHyX/mLi4tDer8/AACIDPr66MR1AQDA3ujrrZWfl/ziZqqbGtxBy30lZcpybrPFOY/pmZYul0sul0tutzvSTQEAAIgZxGAAAACSW/EhuD28LKj1RRIzLcXIPwAAdkdfH524LgAA2Bt9vbXy8/JxcYuQzLTs4txii3Me0zMtAQAAAAAAgEhwq5bcigtynfYR3OFcAAAAAAAAADhBzLQEAAAAAAAAwsytOGZaViGmZ1q6XC5lZmYqKysr0k0BAACIGcRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o662Vn5f3i89S3dTgzrTcV+LWhc4vbXHOuT0cAAAAAAAACLMyxQf99vAyOYJaXyTF9O3hAAAAAAAAAKJPTM+0dLlccrlccrvtlKYUAAAguhGDAQAA8CCe6pDTUuRYAADA7ujroxPXBQAAe6Ovt1Z+XpYWn6s6Qc5pub/ErYHODbY45zE90xIAAAAAAACIBGZaVo2clgAAAAAAAACiSkzPtCSfEgAAQPgRgwEAAEhu1QrBTEv7ZIGM6ZmW2dnZKigoUH5+fqSbAgAAEDOIwQAAAFCdmJ5pCQAAAAAAAERCqeJUGuSZlqU2mmnJoCUAAAAAAAAQZm7Fyx3koTk7Jd+J6dvDXS6XMjMzlZWVFemmAAAAxAxiMAAAAFTHYYyxz7zR41RSUiKn06ni4mKlpqZGujkAACDI6OujE9cFAAB7o6+3Vn5e/lHcS7VTgzvT8peSUg11rrLFOY/pmZYAAAAAAAAAog85LQEAAAAAAIAwcytO7iA/iMcdaw/iadCggRwOh18V/ve//z2hBoWTy+WSy+WS222nNKUAAMAuiMEAAAAQq/watJw2bZrn37t27dKf//xnDRw4UF27dpUk5eXlaenSpXrwwQdD0shQyc7OVnZ2tieXAAAAQDQhBgMAALCvUtVSaZBnWpaqLKj1RVLAD+K54oor1KdPH912221e66dPn67ly5dr4cKFwWxfWJAYFgAAe7NDX08MBgAAahr6emvl5+XV4n6qnZoQ1Lp/KTmi4c7ltjjnAT+IZ+nSpRo0aJDP+oEDB2r58uVBaRQAAAC8EYMBAADYi1vxIVnsIuBBy4YNG2rBggU+6xcuXKiGDRsGpVEAAADwRgwGAABgL+UP4gn2YhcBD1rm5OTovvvu00UXXaQ///nP+vOf/6whQ4Zo/PjxysnJCXoDt2/fruuuu04NGzZU7dq1de6552rt2rWevxtjNHHiRDVp0kQpKSnq3bu3Nm3a5FfdLpdLmZmZysrKCnq7AQAAgokYDAAAALEk4EHLkSNHas2aNapfv77mz5+vefPmyel06qOPPtLIkSOD2rjdu3ere/fuSkhI0DvvvKOCggL99a9/Vf369T1lHnvsMU2dOlXTp09Xfn6+MjIy1L9/f+3du7fa+rOzs1VQUKD8/PygthsAACDYiMEAAADshZmWVQv4QTzhdN999+mjjz7SBx98YPl3Y4yaNGmisWPH6t5775UkHTp0SOnp6ZoyZYpuueUWv/ZDYlgAAOyNvj4wxGAAACAY6OutlZ+XmcW/DcmDeG52LrbFOfdrpmVJSYnXv6tagmnx4sU677zz9Lvf/U6NGjVShw4d9Pzzz3v+vmXLFhUVFWnAgAGedUlJSerVq5fWrFlTab2HDh0KabsBAACCgRgMAADAvtyKU2mQFzvNtPRr0LJBgwbasWOHJKl+/fpq0KCBz1K+Ppi+++47PfPMM2rVqpWWLl2qMWPG6Pbbb9crr7wiSSoqKpIkpaene22Xnp7u+ZuVyZMny+l0epZmzZoFtd0AAADBQAwGAACAWOXXc9Dff/99paWlSZJWrFgR0gYdq6ysTOedd54mTZokSerQoYM2bdqkZ555Rtdff72nnMPh8NrOGOOz7ljjx4/XuHHjPK9LSkoImgEAQNQhBgMAALAvt+Ll9m9oLoA6ozYLZMD8OjO9evWy/HeoNW7cWJmZmV7rzjrrLM2bN0+SlJGRIenor/2NGzf2lNmxY4fPL//HSkpKUlJSUghaDAAAEDzEYAAAAIhVAT89PJy6d++ur7/+2mvdN998o+bNm0uSWrRooYyMDC1btszz98OHD2vVqlXq1q1bWNsKAABgF8RgAAAAoedWrRA8PTyqh/oCEtw5qEF25513qlu3bpo0aZKGDh2qTz/9VDNnztTMmTMlHb0laezYsZo0aZJatWqlVq1aadKkSapdu7auueaaaut3uVxyuVxyu92hPhQAAIAagxgMAAAg9NwheHCOnR7E4zDGRPXN7m+99ZbGjx+vb7/9Vi1atNC4ceN00003ef5ujFFOTo6ee+457d69W507d5bL5VK7du383kf5o+bt8Dh4AADgi74+cMRgAADgRNHXWys/L1OLr1FKamJQ6z5QcljjnLNscc6jftAyHPgQAQBgb/T10YnrAgCAvdHXWys/L48XDw/JoOUfna/a4pwHfKP7pk2bKv3bP//5zxNqDAAAAKwRgwEAACCWBDxoed555+npp5/2Wnfo0CHddtttuuyyy4LWsHBwuVzKzMxUVlZWpJsCAABQJWIwAAAAe3ErTqVBXuyU0zLgQcu///3vysnJ0eDBg1VUVKQNGzaoQ4cOev/99/XRRx+Foo0hk52drYKCAuXn50e6KQAAAFUiBgMAAEAsCXjQ8vLLL9fnn3+u0tJStWvXTl27dlXv3r21du1adezYMRRtBAAAiHnEYAAAAPbiVnxIFrsIeNBSktxutw4fPiy32y23262MjAwlJSUFu20AAAA4BjEYAAAAYkXAg5Zz5szROeecI6fTqW+++UZvv/22Zs6cqR49eui7774LRRtDhnxKAACgpiAGAwAAsBf3/3JQBnuxC4cxxgSyQZ06dfSXv/xFv//97z3rdu/erVtuuUX//Oc/VVJSEvRGhlr5o+bt8Dh4AADgyw59PTEYAACoaejrrZWfl4eLb1FyamJQ6z5YclgPOZ+zxTkP+Eb3devWqXXr1l7rGjRooH/84x969dVXg9YwAAAA/IoYDAAAwF7cqhX0mZHu48sEGZUCPpK5c+fql19+8Vl/4MABbdmyJSiNAgAAgDdiMAAAAHspVVxIFrsIeNAyJydH+/bt81n/yy+/KCcnJyiNAgAAgDdiMAAAAMSSgActjTFyOBw+6zdu3Ki0tLSgNCpcSAIPAABqCmIwAAAAe3ErPiRLIFavXq2LL75YTZo0kcPh0MKFC6vdZtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIqF1SAIOWDRo0UFpamhwOh84880ylpaV5FqfTqf79+2vo0KEBNyCSsrOzVVBQoPz8/Eg3BQAAwBIxGAAAAEJl//79at++vaZPn+5X+S1btug3v/mNevToofXr1+tPf/qTbr/9ds2bN89TJi8vT8OGDdPw4cO1ceNGDR8+XEOHDtUnn3wSUNv8fnr4yy+/LGOMbrjhBk2bNk1Op9Pzt8TERJ122mnq2rVrQDuPFjzNCgAAe6vJfT0xGAAAqKno662Vn5d7iu9SUmpSUOs+VHJIjzn/elzn3OFwaMGCBbr00ksrLXPvvfdq8eLF+vLLLz3rxowZo40bNyovL0+SNGzYMJWUlOidd97xlBk0aJAaNGig2bNn+90ev+eMjhgxQpLUokULde/eXfHxAT94HAAAAAEiBgMAAECgSkpKvF4nJSUpKenEB0jz8vI0YMAAr3UDBw7UCy+8oCNHjighIUF5eXm68847fcpMmzYtoH0FnNNy4sSJevnll1VcXBzoplGHfEoAAKCmIAYDAACwF7fiQrJIUrNmzeR0Oj3L5MmTg9LmoqIipaene61LT09XaWmpdu7cWWWZoqKigPYV8KDl2WefrQceeEAZGRm64oortHDhQh0+fDjQaqIC+ZQAAEBNQQwGAAAAf23btk3FxcWeZfz48UGru+LDIcszTx673qqM1UMlqxLwoOVTTz2l7du3a9GiRapXr55GjBihjIwM3XzzzVq1alWg1QEAAMAPxGAAAAD24latEMy0PDrUl5qa6rUE49ZwScrIyPCZMbljxw7Fx8erYcOGVZapOPuyOgEPWkpSrVq1NGDAAOXm5uqnn37Sc889p08//VQXXnjh8VQHAAAAPxCDAQAA2Eep4kKyhFLXrl21bNkyr3XvvvuuzjvvPCUkJFRZplu3bgHt64QyuRcVFWnOnDl67bXX9Pnnn9e4vEQul0sul0tutzvSTQEAAPAbMRgAAACCYd++fdq8ebPn9ZYtW7RhwwalpaXp1FNP1fjx47V9+3a98sorko4+KXz69OkaN26cbrrpJuXl5emFF17weir4HXfcoZ49e2rKlCm65JJLtGjRIi1fvlwffvhhQG1zmPIbz/1UUlKiefPmadasWVq5cqVatmypa665Rtdee63OOOOMgHYeLcofNX88j4MHAADRzw59PTEYAACoaejrrZWfl98XT1BSanJQ6z5UclDPOHP8PucrV65Unz59fNaPGDFCubm5GjlypL7//nutXLnS87dVq1bpzjvv1KZNm9SkSRPde++9GjNmjNf2b7zxhh544AF99913Ov300/XII4/o8ssvD+hYAh60TElJUYMGDTR06FBde+21Ne6XfSt8iAAAsDc79PXEYAAAoKahr7cWTYOW0Szg28MXLVqkfv36qVat40qHCQAAgONADAYAAGAvZf97eE6w67SLgKPeAQMG2CZYdrlcyszMtMVMBQAAYG/EYAAAAIglft0e3qFDBzkcDr8qXLdu3Qk3KtyYrgwAgL3V1L6eGAwAANRk9PXWys/LjcWPKDHIt4cfLjmovznvt8U59+v28EsvvdTz74MHD2rGjBnKzMxU165dJUkff/yxNm3apFtvvTUkjQQAAIhFxGAAAACIVX4NWk6YMMHz7xtvvFG33367/u///s+nzLZt24LbOgAAgBhGDAYAAGBfpYpTrSDnoCyN5ZyWr7/+uq6//nqf9dddd53mzZsXlEaFC/mUAABATUEMBgAAYC9uxcmt+CAvMTxomZKSog8//NBn/Ycffqjk5ODehx9q2dnZKigoUH5+fqSbAgAAUCViMAAAAMQSv24PP9bYsWP1+9//XmvXrlWXLl0kHc2n9OKLL+qhhx4KegMBAABADAYAAGA3R2daBndmpJ1mWgY8aHnfffepZcuWevLJJzVr1ixJ0llnnaXc3FwNHTo06A0EAAAAMRgAAABiS8CDlpI0dOhQgmMAAIAwIwYDAACwD2ZaVu24Bi0l6fDhw9qxY4fKysq81p966qkn3KhwcblccrlccrvdkW4KAACAX4jBAAAAEAscxhgTyAbffvutbrjhBq1Zs8ZrvTFGDoejRgafJSUlcjqdKi4uVmpqaqSbAwAAgswOfT0xGAAAqGno662Vn5ffFU9XQmpKUOs+UnJArztvs8U5D3im5ciRIxUfH6+33npLjRs3lsPhCEW7AAAAcAxiMAAAAMSSgActN2zYoLVr16pNmzahaA8AAAAsEIMBAADYS6ni5AhyDsrSWM5pmZmZqZ07d4aiLWFHPiUAAFBTEIMBAADYi1txqnX8j5uptE67qBXoBlOmTNE999yjlStXateuXSopKfFaapLs7GwVFBQoPz8/0k0BAACoEjEYAAAAYknAw7n9+vWTJPXt29drfU1OAg8AABDtiMEAAADs5ehMy+DOjLTTTMuABy1XrFgRinYAAACgCsRgAAAAiCUBD1r26tUrFO2ICPIpAQCAmoIYDAAAwF6YaVm1gHNaStIHH3yg6667Tt26ddP27dslSa+++qo+/PDDoDYu1MinBAAAahJiMAAAAMSKgAct582bp4EDByolJUXr1q3ToUOHJEl79+7VpEmTgt5AAAAAEIMBAADYTaniQrLYRcCDln/+85/17LPP6vnnn1dCQoJnfbdu3bRu3bqgNg4AAABHEYMBAAAglgSc0/Lrr79Wz549fdanpqZqz549wWhT2JBPCQAA1BTEYAAAAPZSpni5Ax+aq7ZOuwh4pmXjxo21efNmn/UffvihWrZsGZRGhQv5lAAAQE1BDAYAAGAvbsWFZLGLgActb7nlFt1xxx365JNP5HA49OOPP+rvf/+77r77bt16662haCMAAEDMIwYDAABALAl4zug999yj4uJi9enTRwcPHlTPnj2VlJSku+++W7fddlso2ggAABDziMEAAADsxa1acgR5ZqQ78PmJUcthjDHHs+Evv/yigoIClZWVKTMzU3Xr1g1220Lu2HxK33zzjYqLi5WamhrpZgEAgCArKSmR0+m0RV9PDAYAAGoKO8VgwVR+Xi4ofkPxqXWCWndpyX596LzSFuf8uAct7YQPEQAA9kZfH524LgAA2Bt9vbXy89KleEFIBi0/dl5mi3NunzmjAAAAAAAAAGzBPs9BBwAAAAAAAGoIt+LlCPLQnNtGQ33MtAQAAAAAAAAQVewz/Hocjk0CDwAAgPAgBgMAAJDKFCd3kJ8eXhbk+iKJB/GIxLAAANgdfX104roAAGBv9PXWys/LucVLFRfkB/G4S/Zrg3OgLc45t4cDAAAAAAAAiCoxfXs4AAAAAAAAEAlHbw0P7u3cwb7dPJJieqaly+VSZmamsrKyIt0UAACAmEEMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7dWfl7OKn5fcal1g1q3u2SfvnReaItzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGHmVryCPTTnttFQX0zPtCSfEgAAQPgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OutlZ+X04s/CklOy387u9vinNtnzigAAAAAAABQQ5QpTlJcCOq0h5i+PRwAAAAAAABA9InpmZYul0sul0tutzvSTQEAAIgZxGAAAABSqeJUi5mWlSKnpcixAACA3dHXRyeuCwAA9kZfb638vDQrzletIOe0LCvZp23OLFuc85ieaQkAAAAAAABEgltxMkEemrPTTEtyWgIAAAAAAACIKjE9aOlyuZSZmamsrKxINwUAACBmEIMBAAAcnWkZiiVQM2bMUIsWLZScnKxOnTrpgw8+qLTsyJEj5XA4fJa2bdt6yuTm5lqWOXjwYEDtiulBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAADRYe7cuRo7dqzuv/9+rV+/Xj169NDgwYO1detWy/JPPvmkCgsLPcu2bduUlpam3/3ud17lUlNTvcoVFhYqOTk5oLaR0xIAAAAAAAAIs6M5LSP79PCpU6dq9OjRuvHGGyVJ06ZN09KlS/XMM89o8uTJPuWdTqecTqfn9cKFC7V7926NGjXKq5zD4VBGRsZxHMGvYnqmJQAAAAAAABAJ7rK4kCzS0SeUH7scOnTIZ/+HDx/W2rVrNWDAAK/1AwYM0Jo1a/w6hhdeeEH9+vVT8+bNvdbv27dPzZs3V9OmTTVkyBCtX78+4PPDoCUAAAAAAABgI82aNfPMinQ6nZazJnfu3Cm326309HSv9enp6SoqKqp2H4WFhXrnnXc8szTLtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21Ax1CjBi0nT54sh8OhsWPHetYZYzRx4kQ1adJEKSkp6t27tzZt2uRXfSSBBwAAqB4xGAAAQPC5S+NUGuTFXXp0puW2bdtUXFzsWcaPH19pOxwOh9drY4zPOiu5ubmqX7++Lr30Uq/1Xbp00XXXXaf27durR48e+sc//qEzzzxTTz/9dEDnp8YMWubn52vmzJk655xzvNY/9thjmjp1qqZPn678/HxlZGSof//+2rt3b7V1kgQeAACgasRgAAAANU9qaqrXkpSU5FPmpJNOUlxcnM+syh07dvjMvqzIGKMXX3xRw4cPV2JiYpVla9WqpaysLHvOtNy3b5+uvfZaPf/882rQoIFnvTFG06ZN0/3336/LL79c7dq108svv6xffvlFs2bNimCLAQAAaj5iMAAAgNBxl8aHZPFXYmKiOnXqpGXLlnmtX7Zsmbp161bltqtWrdLmzZs1evToavdjjNGGDRvUuHFjv9sm1ZBBy+zsbF100UXq16+f1/otW7aoqKjIK2FoUlKSevXqVWXC0EOHDvkkJAUAAIA3YjAAAAB7GzdunP72t7/pxRdf1Jdffqk777xTW7du1ZgxYyRJ48eP1/XXX++z3QsvvKDOnTurXbt2Pn/LycnR0qVL9d1332nDhg0aPXq0NmzY4KnTX/4Pv0bInDlztG7dOsvbh8qnr1olDP3hhx8qrXPy5MnKyckJbkMBAABshBgMAAAgtNylteT4Xw7KYDGlgc1PHDZsmHbt2qWHH35YhYWFateunZYsWeJ5GnhhYaG2bt3qtU1xcbHmzZunJ5980rLOPXv26Oabb1ZRUZGcTqc6dOig1atX6/zzzw+obVE9aLlt2zbdcccdevfdd5WcnFxpuUATho4fP17jxo3zvC4pKVGzZs1OvMEAAAA2QAwGAAAQO2699Vbdeuutln/Lzc31Wed0OvXLL79UWt8TTzyhJ5544oTbFdWDlmvXrtWOHTvUqVMnzzq3263Vq1dr+vTp+vrrryUd/bX/2Pviq0sYmpSUZJmAFAAAAMRgAAAA4eAujQvBTMvg1hdJUT1o2bdvX33xxRde60aNGqU2bdro3nvvVcuWLZWRkaFly5apQ4cOkqTDhw9r1apVmjJlSiSaDAAAUOMRgwEAAIReaWmcHEcYtKxMVA9a1qtXzyehZ506ddSwYUPP+rFjx2rSpElq1aqVWrVqpUmTJql27dq65pprqq3f5XLJ5XLJ7XaHpP0AAAA1ETEYAAAAIi2qBy39cc899+jAgQO69dZbtXv3bnXu3Fnvvvuu6tWrV+222dnZys7OVklJiZxOZxhaCwAAYA/EYAAAACfGuONl3EEemgt2fRHkMMaYSDci0soD5uLiYqWmpka6OQAAIMjo66MT1wUAAHujr7fm+eH2qx1SvSCfl70lUptGtjjn9hl+BQAAAAAAAGqK0rijS7DrtIlakW5AJLlcLmVmZiorKyvSTQEAAIgZxGAAAACoDreHi+nKAADYHX19dOK6AABgb/T11jy3h2/YE5rbw8+tb4tzHtMzLQEAAAAAAABEH3JaAgAAAAAAAOHmdkiljuDXaRMxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt+bJaflJsVQ3yOdlX4nU2R7nnNvDAQAAAAAAgHAr/d8S7DptIqZvDwcAAAAAAAAQfZhpCQAAAAAAAIQbMy2rFNMzLUkCDwAAEH7EYAAAAKgOD+IRiWEBALA7+vroxHUBAMDe6OuteR7E816xVCfI52V/idTXHuc8pmdaAgAAAAAAAIg+5LQEAAAAAAAAws39vyXYddpETM+0JJ8SAABA+BGDAQAAoDrktBQ5FgAAsDv6+ujEdQEAwN7o6615clouCVFOy9/Y45xzezgAAAAAAAAQbqX/W4Jdp03E9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAA9OtMy2AvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3ponp+X8EOW0vNwe55yclgAAAAAAAEC4uRX8mZHuINcXQTF9ezgAAAAAAACA6BPTg5bkUwIAAAg/YjAAAACR07Ia5LQUORYAALA7+vroxHUBAMDe6OuteXJazi6Wagf5vPxSIl1tj3NOTksAAAAAAAAg3EIxM9JGMy0ZtAQAAAAAAADC7cj/lmDXaRPktCSfEgAAQFgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OuteXJaPh+inJY32eOcx/RMSwAAAAAAAADRh5yWAAAAAAAAQLi5FfwH57iDXF8EMdMSAAAAAAAAQFSJ6UFLksADAACEHzEYAACAjs6yDMViEzyIRySGBQDA7ujroxPXBQAAe6Ovt+Z5EM/0YiklyOflQIl0mz3OOTktAQAAAAAAgHALxcxIG820ZNASAAAAAAAACDcGLatETkvyKQEAAIQVMRgAAACqQ05LkWMBAAC7o6+PTlwXAADsjb7emien5ZRiKTnI5+VgiXSvPc55TM+0BAAAAAAAABB9yGkJAAAAAAAAhBs5LasU0zMtyacEAAAQfsRgAAAAqA45LUWOBQAA7I6+PjpxXQAAsDf6emuenJYTQ5TTcqI9znlMz7QEAAAAAAAAYtmMGTPUokULJScnq1OnTvrggw8qLbty5Uo5HA6f5auvvvIqN2/ePGVmZiopKUmZmZlasGBBwO1i0BIAAAAAAAAIN3eIlgDMnTtXY8eO1f3336/169erR48eGjx4sLZu3Vrldl9//bUKCws9S6tWrTx/y8vL07BhwzR8+HBt3LhRw4cP19ChQ/XJJ58E1LaYHrQknxIAAED4EYMBAADo1wfxBHsJwNSpUzV69GjdeOONOuusszRt2jQ1a9ZMzzzzTJXbNWrUSBkZGZ4lLi7O87dp06apf//+Gj9+vNq0aaPx48erb9++mjZtWkBti+lBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAAChVVJS4rUcOnTIp8zhw4e1du1aDRgwwGv9gAEDtGbNmirr79Chgxo3bqy+fftqxYoVXn/Ly8vzqXPgwIHV1llRTA9aAgAAAAAAABHhVvBnWf7v9vBmzZrJ6XR6lsmTJ/vsfufOnXK73UpPT/dan56erqKiIssmN27cWDNnztS8efM0f/58tW7dWn379tXq1as9ZYqKigKqszLxAZUGAAAAAAAAENW2bdvm9fTwpKSkSss6HA6v18YYn3XlWrdurdatW3ted+3aVdu2bdNf/vIX9ezZ87jqrExMz7QknxIAAED4EYMBAAAopDktU1NTvRarQcuTTjpJcXFxPjMgd+zY4TNTsipdunTRt99+63mdkZFxwnVKMT5oST4lAACA8CMGAwAAiLzExER16tRJy5Yt81q/bNkydevWze961q9fr8aNG3ted+3a1afOd999N6A6JW4PBwAAAAAAAMLviII/nfBIYMXHjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjJEkjR8/Xtu3b9crr7wi6eiTwU877TS1bdtWhw8f1muvvaZ58+Zp3rx5njrvuOMO9ezZU1OmTNEll1yiRYsWafny5frwww8DahuDlgAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+cOHD+vuu+/W9u3blZKSorZt2+rtt9/Wb37zG0+Zbt26ac6cOXrggQf04IMP6vTTT9fcuXPVuXPngNrmMMaY4BxmzVVSUiKn06ni4mKvJKUAAMAe6OujE9cFAAB7o6+3Vn5edGuxlBTk83KoRJphj3Me0zktSQIPAAAQfsRgAAAAktwK/kN43GE9gpBipqUY+QcAwO7o66MT1wUAAHujr7fmmWl5S7GUGOTzcrhEes4e55yclgAAAAAAAEC4lSr490CXBrm+CIrp28MBAAAAAAAARJ+Ynmnpcrnkcrnkdtvohn8AAIAoRwwGAAAg6YgkRwjqtAlyWoocCwAA2B19fXTiugAAYG/09dY8OS2vD1FOy1fscc5jeqYlAAAAAAAAEBFuBf9p3za6kYWclgAAAAAAAACiSkwPWrpcLmVmZiorKyvSTQEAAIgZxGAAAAA6+qTvUCw2QU5LkWMBAAC7o6+PTlwXAADsjb7emien5ZXFUkKQz8uREukNe5zzmJ5pCQAAAAAAACD68CAeAAAAAAAAINyO1JA6IySmZ1qSTwkAACD8iMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jw5LYeEKKflW/Y45zE90xIAAAAAAABA9CGnJQAAAAAAABBupZIcIajTJmJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzZPTsl+Iclout8c55/ZwAAAAAAAAINxCcSs3t4cDAAAAAAAAQGgw0xIAAAAAAAAIN7eC/yAed5Dri6Conmk5efJkZWVlqV69emrUqJEuvfRSff31115ljDGaOHGimjRpopSUFPXu3VubNm3yq36SwAMAAPgiBgMAAECkRfWg5apVq5Sdna2PP/5Yy5YtU2lpqQYMGKD9+/d7yjz22GOaOnWqpk+frvz8fGVkZKh///7au3dvtfVnZ2eroKBA+fn5oTwMAACAGoUYDAAAIAxKQ7TYRI16evjPP/+sRo0aadWqVerZs6eMMWrSpInGjh2re++9V5J06NAhpaena8qUKbrlllv8qpenWQEAYG/09SeGGAwAABwP+nprnqeHdy2W4oN8XkpLpDx7nPOonmlZUXFxsSQpLS1NkrRlyxYVFRVpwIABnjJJSUnq1auX1qxZU2k9hw4dUklJidcCAAAAa8RgAAAAIcBMyyrVmEFLY4zGjRunCy64QO3atZMkFRUVSZLS09O9yqanp3v+ZmXy5MlyOp2epVmzZqFrOAAAQA1GDAYAAIBIqDGDlrfddps+//xzzZ492+dvDof3o5aMMT7rjjV+/HgVFxd7lm3btgW9vQAAAHZADAYAABAipZKOBHmx0UzL+Eg3wB9/+MMftHjxYq1evVpNmzb1rM/IyJB09Nf+xo0be9bv2LHD55f/YyUlJSkpKSl0DQYAALABYjAAAABESlTPtDTG6LbbbtP8+fP1/vvvq0WLFl5/b9GihTIyMrRs2TLPusOHD2vVqlXq1q1buJsLAABgC8RgAAAAYeAO0WITUT3TMjs7W7NmzdKiRYtUr149T44kp9OplJQUORwOjR07VpMmTVKrVq3UqlUrTZo0SbVr19Y111xTbf0ul0sul0tut42uKAAAwAkiBgMAAAiDUkkmyHXaKLxyGGOCfXqCprKcSC+99JJGjhwp6ehMgJycHD333HPavXu3OnfuLJfL5UkU74/yR83b4XHwAADAF319YIjBAABAMNDXWys/L8osluKCfF7cJVKBPc55VA9ahgsfIgAA7I2+PjpxXQAAsDf6emueQcszQzRo+Y09znlU57QEAAAAAAAAEHuiOqdlqJFPCQAAIPyIwQAAAHQ0p2VZkOsMdn0RxO3hYroyAAB2R18fnbguAADYG329Nc/t4S2LpVpBPi9lJdJ39jjnMT3TEgAAAAAAAIgIt4L/9HAbzbQkpyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAACAjua0DMViE+S0FDkWAACwO/r66MR1AQDA3ujrrXlyWqaHKKflT/Y45zE90xIAAAAAAABA9OFBPAAAAAAAAEC4HVHwpxPyIB4AAAAAAAAACI2YHrQkCTwAAED4EYMBAADo6KxId5AXG8205EE8IjEsAAB2R18fnbguAADYG329Nc+DeOoXS44gnxdTIu2xxzknpyUAAAAAAAAQbqWSHEGu00ZTE2P69nAAAAAAAAAA0SemBy3JpwQAABB+xGAAAAA6OtMyFItNxPSgZXZ2tgoKCpSfnx/ppgAAAMQMYjAAAABJR0K0BGjGjBlq0aKFkpOT1alTJ33wwQeVlp0/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEDtiulBSwAAAAAAACBWzZ07V2PHjtX999+v9evXq0ePHho8eLC2bt1qWX716tXq37+/lixZorVr16pPnz66+OKLtX79eq9yqampKiws9FqSk5MDahsP4gEAAAAAAADCza2IP4hn6tSpGj16tG688UZJ0rRp07R06VI988wzmjx5sk/5adOmeb2eNGmSFi1apDfffFMdOnTwrHc4HMrIyAi4+ceK6ZmW5FMCAAAIP2IwAACA0CopKfFaDh065FPm8OHDWrt2rQYMGOC1fsCAAVqzZo1f+ykrK9PevXuVlpbmtX7fvn1q3ry5mjZtqiFDhvjMxPRHTA9akk8JAAAg/IjBAAAA/scEefmfZs2ayel0eharWZM7d+6U2+1Wenq61/r09HQVFRX51fy//vWv2r9/v4YOHepZ16ZNG+Xm5mrx4sWaPXu2kpOT1b17d3377bd+1VmO28MBAAAAAAAAG9m2bZtSU1M9r5OSkiot63B436NujPFZZ2X27NmaOHGiFi1apEaNGnnWd+nSRV26dPG87t69uzp27Kinn35aTz31lN/HwKAlAAAAAAAAYCOpqaleg5ZWTjrpJMXFxfnMqtyxY4fP7MuK5s6dq9GjR+v1119Xv379qixbq1YtZWVlBTzTMqZvDyefEgAAQPgRgwEAAEReYmKiOnXqpGXLlnmtX7Zsmbp161bpdrNnz9bIkSM1a9YsXXTRRdXuxxijDRs2qHHjxgG1z2GMCfC5QvZTUlIip9Op4uLiakehAQBAzUNfH524LgAA2Bt9vbXy8yIVSwr2eSmR5P85nzt3roYPH65nn31WXbt21cyZM/X8889r06ZNat68ucaPH6/t27frlVdekXR0wPL666/Xk08+qcsvv9xTT0pKyv+OScrJyVGXLl3UqlUrlZSU6KmnntKrr76qjz76SOeff77fR8Lt4QAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+eeee06lpaXKzs5Wdna2Z/2IESOUm5srSdqzZ49uvvlmFRUVyel0qkOHDlq9enVAA5YSMy0lMfIPAIDd0ddHJ64LAAD2Rl9vLZpmWkazmJ5p6XK55HK55Ha7I90UAACAmEEMBgAAIElH/rcEu057YKalGPkHAMDu6OujE9cFAAB7o6+39utMy50KzUzLk2xxzmN6piUAAAAAAAAQGaX/W4Jdpz3UinQDAAAAAAAAAOBYzLQEAAAAAAAAwo6cllWJ6ZmWLpdLmZmZysrKinRTAAAAYgYxGAAAAKrDg3hEYlgAAOyOvj46cV0AALA3+nprvz6IZ4tC8yCeFrY459weDgAAAAAAAIRdqYJ/OzcP4gEAAAAAAACAkIjpmZYul0sul0tutzvSTQEAAIgZxGAAAAASD+KpGjktRY4FAADsjr4+OnFdAACwN/p6a7/mtCyQVC/Ite+VlGmLcx7TMy0BAAAAAACAyChV8HNQktMSAAAAAAAAAEIipmdakk8JAAAg/IjBAAAAJJ4eXjVyWoocCwAA2B19fXTiugAAYG/09dZ+zWm5TlLdINe+T1JHW5zzmJ5pCQAAAAAAAEQGOS2rwqAlAAAAAAAAEHZHFPzbw4NdX+TE9IN4XC6XMjMzlZWVFemmAAAAxAxiMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NarlJoclr2ssU5j+mZlgAAAAAAAACiDzktAQAAAAAAgLArVfBzUNrnQTwxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt/ZrTsulkuoEufb9kgba4pzH9ExLAAAAAAAAANGHnJYAAAAAAABA2B1R8HNaBru+yGHQEgAAAAAAAAi7UgX/wTk8iMcWSAIPAAAQfsRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o6639+iCeNyTVDnLtv0i60hbnPKZnWgIAAAAAAACIPuS0BAAAAAAAAMKOnJZViemZluRTAgAACD9iMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NavqrQ5LQcbotzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGF35H9LsOu0h5ieaUk+JQAAgPAjBgMAAJB+fRBPsBd7IKelyLEAAIDd0ddHJ64LAAD2Rl9v7decljMVmpyWN9vinHN7OAAAAAAAABB2pQr+7dz2mWkZ07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWn5lKSUINd+QNLttjjn5LQEAAAAAAAAwu6Igj80F+wcmZET07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWk5RaHJaXmvLc45OS0BAAAAAACAsCtV8HNQ2memJYOWAAAAAAAAQNiF4nZu+wxaxnROSwAAAAAAAADRxzYzLWfMmKHHH39chYWFatu2raZNm6YePXpUuY3L5ZLL5ZLb7Q55+xyOHK/XxkwIqLzVNlZlqmK1z0DriG3+fFwSglBvxV9FqstvcTwf44rtrFdNGySpulwYFdtZ8XWaxTYV91txHxXqcFic39MqvK5fzes9Fs2oqOI2X1V4XVThtU9m4BKLSn+q8HpvhdcHqnkt+d42UPE6VdxvdeWtVHdrQrjqONF9HA/7/CJZ0Yn2H/7UGQyB9pWIDsGIwZzOyZKSq91XZe8J/9/TVn1mIJ/9YIfOle3bqu+36hes+larPqgyVnHLiZ6jE8nLVdl3u7/xlVXbrdoTyHm3qrNiHy5Zt72y2OlErlvDStZbtd3f4/mvxbrTKtmP1fvQanur82F13k+pZD/+vo+szptVGyXr69bcYt12i3VW70Gr466M1fmwaru/n/3K+PtZrez9ZrUvfz9DgXx3+Pt58fccVbYff4/Hqj2VvQet6rTav7/v4cqu74l+F3s70ZjKn/GJyssePKF9298RSXEhqNMebDHTcu7cuRo7dqzuv/9+rV+/Xj169NDgwYO1devWKrfLzs5WQUGB8vPzw9RSAAAA+yAGAwAAQKjYYtBy6tSpGj16tG688UadddZZmjZtmpo1a6Znnnkm0k0DAACwLWIwAACAE1EaosUeavzt4YcPH9batWt13333ea0fMGCA1qxZY7nNoUOHdOjQIc/r4uJiSUcfOR863lOiq9+X7xRq320Cm2ZtvU+mavvPn4/L8aQaqO728EC390fFfVScju7vLR/HKqvmdWJ1jbJQYVq7sbg1p+JuKl6CiofizyWquE3FffjcDl6R1WdtXzWvK34W/bn1pOLrXwIsbyUYt3ZXV4bbw8PtRPsP/+oMhkD7Sv+V12VMtR9g+CmYMZh0yLJ8RZW/J/x9T9eU28MdFuusjtGqrwjk823VKQb3lsTAVLYff/fv7/WprD6r7werOv1J4VJVe6xSIVTswytTWRqFisGK5P/13W+xzupWasn6/WW1vb+3h1eMh6oqa8Vq+8o+A1bttNreqpzV7eH+XjPJ+nxYvY+s3oOBfKb9PW+V1Wm13ur7KBS3h1ud4xNpTyDbW7XHqlxldVrtv7Lt/alPCvZ38YnHVP6MT1RW9mgfTwxWGf9ioMjXGRk1ftBy586dcrvdSk9P91qfnp6uoqKKieeOmjx5snJyfHMyNGvWLCRttOJ0PhqWbYK5PRCVfoh0A4DoF4rv/3D0KaHYx65du+R0OoNebywKZgwmPeHXPollAAAIXDTEgsRg3hITE5WRkaGiIv9ioEBlZGQoMfF4Jg5Flxo/aFnO4fD+JcMY47Ou3Pjx4zVu3DjP6z179qh58+baunVrzH2ISkpK1KxZM23btk2pqdU9aMV+Yvn4Y/nYpdg+fo49No9diu3jLy4u1qmnnqq0NKsHYOBEEIMdn1j+PMbysUuxffyxfOxSbB8/xx6bxy4Rg1UmOTlZW7Zs0eHDh0NSf2JiopKTq3/IYbSr8YOWJ510kuLi4nx+0d+xY4fPL//lkpKSlJSU5LPe6XTG5JeIJKWmpsbssUuxffyxfOxSbB8/xx6bxy7F9vHXqmWLdN5RgRgsOGL58xjLxy7F9vHH8rFLsX38HHtsHrtEDGYlOTnZFgOLoVTj3zWJiYnq1KmTli1b5rV+2bJl6tatW4RaBQAAYG/EYAAAAAilGj/TUpLGjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjIl00wAAAGyLGAwAAAChYotBy2HDhmnXrl16+OGHVVhYqHbt2mnJkiVq3ry5X9snJSVpwoQJlrcr2V0sH7sU28cfy8cuxfbxc+yxeexSbB9/LB97KBGDHT+OPTaPXYrt44/lY5di+/g59tg8donjx4lxGJ47DwAAAAAAACCK1PiclgAAAAAAAADshUFLAAAAAAAAAFGFQUsAAAAAAAAAUYVBSwAAAAAAAABRJSYGLR955BF169ZNtWvXVv369f3axhijiRMnqkmTJkpJSVHv3r21adMmrzKHDh3SH/7wB5100kmqU6eOfvvb3+o///lPCI7g+O3evVvDhw+X0+mU0+nU8OHDtWfPniq3cTgclsvjjz/uKdO7d2+fv1911VUhPprAHc/xjxw50ufYunTp4lXGjtf+yJEjuvfee3X22WerTp06atKkia6//nr9+OOPXuWi9drPmDFDLVq0UHJysjp16qQPPvigyvKrVq1Sp06dlJycrJYtW+rZZ5/1KTNv3jxlZmYqKSlJmZmZWrBgQaiaf0ICOfb58+erf//+Ovnkk5WamqquXbtq6dKlXmVyc3MtvwMOHjwY6kM5LoEc/8qVKy2P7auvvvIqZ8drb/Xd5nA41LZtW0+ZmnLtV69erYsvvlhNmjSRw+HQwoULq93GTp/5moQYjBiMGIwYrCI7fR/HcgwWy/GXRAxGDIawMTHgoYceMlOnTjXjxo0zTqfTr20effRRU69ePTNv3jzzxRdfmGHDhpnGjRubkpIST5kxY8aYU045xSxbtsysW7fO9OnTx7Rv396UlpaG6EgCN2jQINOuXTuzZs0as2bNGtOuXTszZMiQKrcpLCz0Wl588UXjcDjMv//9b0+ZXr16mZtuusmr3J49e0J9OAE7nuMfMWKEGTRokNex7dq1y6uMHa/9nj17TL9+/czcuXPNV199ZfLy8kznzp1Np06dvMpF47WfM2eOSUhIMM8//7wpKCgwd9xxh6lTp4754YcfLMt/9913pnbt2uaOO+4wBQUF5vnnnzcJCQnmjTfe8JRZs2aNiYuLM5MmTTJffvmlmTRpkomPjzcff/xxuA7LL4Ee+x133GGmTJliPv30U/PNN9+Y8ePHm4SEBLNu3TpPmZdeesmkpqb6fBdEo0CPf8WKFUaS+frrr72O7djPrl2v/Z49e7yOedu2bSYtLc1MmDDBU6amXPslS5aY+++/38ybN89IMgsWLKiyvJ0+8zUNMRgxGDEYMdix7PR9HMsxWCzHX8YQgxGDIZxiYtCy3EsvveRXwFxWVmYyMjLMo48+6ll38OBB43Q6zbPPPmuMOfrFk5CQYObMmeMps337dlOrVi3zz3/+M+htPx4FBQVGkteHPS8vz0gyX331ld/1XHLJJebCCy/0WterVy9zxx13BKupIXG8xz9ixAhzySWXVPr3WLr2n376qZHk1QFH47U///zzzZgxY7zWtWnTxtx3332W5e+55x7Tpk0br3W33HKL6dKli+f10KFDzaBBg7zKDBw40Fx11VVBanVwBHrsVjIzM01OTo7ntb/fldEg0OMvD5p3795daZ2xcu0XLFhgHA6H+f777z3ratK1L+dPwGynz3xNRQxGDEYMRgxmjL2+j2M5Bovl+MsYYrByxGAIh5i4PTxQW7ZsUVFRkQYMGOBZl5SUpF69emnNmjWSpLVr1+rIkSNeZZo0aaJ27dp5ykRaXl6enE6nOnfu7FnXpUsXOZ1Ov9v4008/6e2339bo0aN9/vb3v/9dJ510ktq2bau7775be/fuDVrbg+FEjn/lypVq1KiRzjzzTN10003asWOH52+xcu0lqbi4WA6Hw+eWvmi69ocPH9batWu9rockDRgwoNJjzcvL8yk/cOBAffbZZzpy5EiVZaLlGkvHd+wVlZWVae/evUpLS/Nav2/fPjVv3lxNmzbVkCFDtH79+qC1O1hO5Pg7dOigxo0bq2/fvlqxYoXX32Ll2r/wwgvq16+fmjdv7rW+Jlz7QNnlMx8LiMF+RQxGDEYM5l0mWq6xFNsxWCzHXxIxWKDs8plH5MRHugHRqKioSJKUnp7utT49PV0//PCDp0xiYqIaNGjgU6Z8+0grKipSo0aNfNY3atTI7za+/PLLqlevni6//HKv9ddee61atGihjIwM/etf/9L48eO1ceNGLVu2LChtD4bjPf7Bgwfrd7/7nZo3b64tW7bowQcf1IUXXqi1a9cqKSkpZq79wYMHdd999+maa65RamqqZ320XfudO3fK7XZbfl4rO9aioiLL8qWlpdq5c6caN25caZloucbS8R17RX/961+1f/9+DR061LOuTZs2ys3N1dlnn62SkhI9+eST6t69uzZu3KhWrVoF9RhOxPEcf+PGjTVz5kx16tRJhw4d0quvvqq+fftq5cqV6tmzp6TK3x92uvaFhYV65513NGvWLK/1NeXaB8oun/lYQAz2K2IwYjBiMP/qjIRYjsFiOf6SiMECZZfPPCKnxg5aTpw4UTk5OVWWyc/P13nnnXfc+3A4HF6vjTE+6yryp8yJ8vfYJd9jkAJr44svvqhrr71WycnJXutvuukmz7/btWunVq1a6bzzztO6devUsWNHv+o+XqE+/mHDhnn+3a5dO5133nlq3ry53n77bZ//OARSbzCE69ofOXJEV111lcrKyjRjxgyvv0Xy2lcl0M+rVfmK64/nOyASjreds2fP1sSJE7Vo0SKv/2B16dLF68EH3bt3V8eOHfX000/rqaeeCl7DgySQ42/durVat27ted21a1dt27ZNf/nLXzxBc6B1RtLxtjM3N1f169fXpZde6rW+pl37QNjpMx9pxGDEYFUhBiMGIwaLjRgsluMviRgsEHb6zCP8auyg5W233Vbt0/JOO+2046o7IyND0tFfBRo3buxZv2PHDs8vABkZGTp8+LB2797t9Wvvjh071K1bt+Par7/8PfbPP/9cP/30k8/ffv75Z59fMqx88MEH+vrrrzV37txqy3bs2FEJCQn69ttvQx40hev4yzVu3FjNmzfXt99+K8n+1/7IkSMaOnSotmzZovfff9/rF34r4bz2Vk466STFxcX5/BJ37Oe1ooyMDMvy8fHxatiwYZVlAnnvhNrxHHu5uXPnavTo0Xr99dfVr1+/KsvWqlVLWVlZns9AtDiR4z9Wly5d9Nprr3le2/3aG2P04osvavjw4UpMTKyybLRe+0DZ5TMfLYjBiMGqQgxGDEYMZu8YLJbjL4kYLFB2+cwjgkKfNjN6BJoEfsqUKZ51hw4dskwCP3fuXE+ZH3/8MSoTgX/yySeedR9//LHficBHjBjh89TCynzxxRdGklm1atVxtzfYTvT4y+3cudMkJSWZl19+2Rhj72t/+PBhc+mll5q2bduaHTt2+LWvaLj2559/vvn973/vte6ss86qMgn8WWed5bVuzJgxPgmhBw8e7FVm0KBBUZcQOtBjN8aYWbNmmeTk5GoTZ5crKysz5513nhk1atSJNDUkjuf4K7riiitMnz59PK/tfO2N+TUZ/hdffFHtPqL52peTn0ng7fKZr6mIwYjBiMGIwYyx1/dxLMdgsRx/GUMMVo4YDOEQE4OWP/zwg1m/fr3JyckxdevWNevXrzfr1683e/fu9ZRp3bq1mT9/vuf1o48+apxOp5k/f7754osvzNVXX20aN25sSkpKPGXGjBljmjZtapYvX27WrVtnLrzwQtO+fXtTWloa1uOryqBBg8w555xj8vLyTF5enjn77LPNkCFDvMpUPHZjjCkuLja1a9c2zzzzjE+dmzdvNjk5OSY/P99s2bLFvP3226ZNmzamQ4cOUXXsxgR+/Hv37jV33XWXWbNmjdmyZYtZsWKF6dq1qznllFNsf+2PHDlifvvb35qmTZuaDRs2mMLCQs9y6NAhY0z0Xvs5c+aYhIQE88ILL5iCggIzduxYU6dOHc8T+e677z4zfPhwT/nvvvvO1K5d29x5552moKDAvPDCCyYhIcG88cYbnjIfffSRiYuLM48++qj58ssvzaOPPmri4+O9ngYaDQI99lmzZpn4+Hjjcrm8rvGePXs8ZSZOnGj++c9/mn//+99m/fr1ZtSoUSY+Pt7rP2DRItDjf+KJJ8yCBQvMN998Y/71r3+Z++67z0gy8+bN85Sx67Uvd91115nOnTtb1llTrv3evXs9fbkkM3XqVLN+/XrPU3bt/JmvaYjBiMGIwYjB7Pp9HMsxWCzHX8YQgxGDIZxiYtByxIgRRpLPsmLFCk8ZSeall17yvC4rKzMTJkwwGRkZJikpyfTs2dPnF5EDBw6Y2267zaSlpZmUlBQzZMgQs3Xr1jAdlX927dplrr32WlOvXj1Tr149c+2115rdu3d7lal47MYY89xzz5mUlBSvTrTc1q1bTc+ePU1aWppJTEw0p59+urn99tvNrl27QngkxyfQ4//ll1/MgAEDzMknn2wSEhLMqaeeakaMGOFzXe147bds2WL5OTn2sxLN197lcpnmzZubxMRE07FjR69ZByNGjDC9evXyKr9y5UrToUMHk5iYaE477TTL/xy+/vrrpnXr1iYhIcG0adPGK7CKJoEce69evSyv8YgRIzxlxo4da0499VSTmJhoTj75ZDNgwACzZs2aMB5RYAI5/ilTppjTTz/dJCcnmwYNGpgLLrjAvP322z512vHaG3N0llJKSoqZOXOmZX015dqXz1So7H1s9898TUIMRgxGDEYMZufv41iOwWI5/jKGGIwYDOHiMOZ/WVABAAAAAAAAIArUinQDAAAAAAAAAOBYDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgKIGb1799bYsWMj3QwAAICYQgwGADgeDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAogppaWluu2221S/fn01bNhQDzzwgIwxkW4WAACArRGDAQACxaAlgJjy8ssvKz4+Xp988omeeuopPfHEE/rb3/4W6WYBAADYGjEYACBQDsPPWwBiRO/evbVjxw5t2rRJDodDknTfffdp8eLFKigoiHDrAAAA7IkYDABwPJhpCSCmdOnSxRMsS1LXrl317bffyu12R7BVAAAA9kYMBgAIFIOWAAAAAAAAAKIKg5YAYsrHH3/s87pVq1aKi4uLUIsAAADsjxgMABAoBi0BxJRt27Zp3Lhx+vrrrzV79mw9/fTTuuOOOyLdLAAAAFsjBgMABCo+0g0AgHC6/vrrdeDAAZ1//vmKi4vTH/7wB918882RbhYAAICtEYMBAALF08MBAAAAAAAARBVuDwcAAAAAAAAQVRi0BAAA/9+OHQsAAAAADPK3nsaOwggAAGBFWgIAAAAAK9ISAAAAAFiRlgAAAADAirQEAAAAAFakJQAAAACwIi0BAAAAgBVpCQAAAACsSEsAAAAAYEVaAgAAAAArAQDhtIsc/T1FAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1800x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
"\n",
"a0=ax[0].hist2d(bs_found, vtx_types_found, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n",
"ax[0].set_ylim(0,110)\n",
"ax[0].set_xlim(-1,1)\n",
"ax[0].set_xlabel(\"b\")\n",
"ax[0].set_ylabel(\"endvtx id\")\n",
"ax[0].set_title(\"found endvtx id wrt b parameter\")\n",
"ax[0].set_yticks(np.arange(0,110,1),minor=True)\n",
"\n",
"a1=ax[1].hist2d(bs_lost, vtx_types_lost, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n",
"ax[1].set_ylim(0,110)\n",
"ax[1].set_xlim(-1,1)\n",
"ax[1].set_xlabel(\"b\")\n",
"ax[1].set_ylabel(\"endvtx id\")\n",
"ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n",
"ax[1].set_yticks(np.arange(0,110,1), minor=True)\n",
"\n",
"\"\"\"\n",
"vtx_id: 101 - Bremsstrahlung\n",
"B:\n",
"wir können nicht wirklich sagen dass bei den lost teilchen jegliche endvertex types überwiegen, im gegensatz zu den found \n",
"\"\"\"\n",
"fig.colorbar(a0[3], ax=ax, orientation='vertical')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABPEAAANVCAYAAAAZd2vuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1n0lEQVR4nOzdeVyU5f7/8ffILiqubK5ouacZlkIumIm5ZabHpQ5qqWVmplQmpom22GIeslyyKCtLPeeorWZiCWrSoqJpLpVHxQwy3HBlkfv3Rz/m2zADDjgwA7yej8c8ai4+93Vd9z3D8PEz93XfJsMwDAEAAAAAAABwWVWcPQEAAAAAAAAARaOIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIB5RTq1atUps2beTj4yOTyaRdu3YpNjZWJpPJIm7RokVatmyZcybp4j788EPFxcU5exrXLDExUSaTSYmJic6eit2WLVsmk8mkI0eOWLTPmDFDjRo1kru7u2rWrClJioiIUERExFX7dIX3uslk0sSJE506BwBA+Ueed+2ckedFRESobdu2Du+3SZMmGj16tMP7LU0mk0mxsbEWbV999ZU6duwoX19fmUwmffTRR4XmhAVt27ZNsbGxOnPmTKnN+WpGjx6tatWqOW18QKKIB5RLf/75p6KiotSsWTOtX79eycnJat68ucaOHavk5GSLWJK7wlWUIl551K9fPyUnJysoKMjc9vHHH+u5557TyJEjlZSUpI0bN0r66z28aNGiq/bJex0AUBGQ5zkGeZ5zJScna+zYsebnhmFo6NCh8vDw0CeffKLk5GR1797dZk5oy7Zt2zR79mynFvEAV+Du7AkAKL6ff/5ZOTk5+uc//6nu3bub26tWraoGDRo4cWbWLl26JG9vb6tvjiuyS5cuycfHx9nTKLGLFy+qatWqpTpGvXr1VK9ePYu2vXv3SpImTZokf39/c3vr1q0dPn5OTo5MJpPc3fkzCABwLeR5rq2853lXrlxRbm6uvLy8SnWczp07Wzz//fffderUKQ0aNEg9e/a0+FnBnNARyvvrBBSGM/GAcmb06NHq0qWLJGnYsGEymUzmpYYFl1k0adJEP/30k5KSkmQymWQymdSkSRNJ/7cEc/ny5YqOjlZgYKB8fHzUvXt3paSkWIy5fft2DR8+XE2aNJGPj4+aNGmiESNG6OjRoxZx+afDb9iwQffff7/q1aunqlWrKisrS7/++qvuu+8+XX/99apatarq16+vAQMGaM+ePRZ95M/rww8/1JNPPqmgoCBVq1ZNAwYM0B9//KFz587pgQceUN26dVW3bl3dd999On/+vEUfhmFo0aJFuvHGG+Xj46NatWppyJAh+t///meOiYiI0Oeff66jR4+aj83fj112draeffZZtWzZUl5eXqpXr57uu+8+/fnnnxZjNWnSRP3799eaNWvUoUMHeXt7a/bs2YW+fgkJCRo4cKAaNGggb29vXXfddXrwwQeVkZFR6DZ/d+DAAd1xxx2qWrWq6tatq/Hjx+vcuXM2Yzdu3KiePXuqRo0aqlq1qm699VZ99dVXFjH575mdO3dqyJAhqlWrlpo1a1bo+BcvXtTjjz+ukJAQeXt7q3bt2urYsaNWrFhhEffdd99pwIABqlOnjry9vdWsWTNNnjzZ/POCSyeaNGmiGTNmSJICAgIslmDYs5zWnvf6+++/r8cee0z169eXl5eXfv31V/3555+aMGGCWrdurWrVqsnf31+33XabtmzZYjVGVlaW5syZo1atWsnb21t16tRRjx49tG3btkLnZRiGpk+fLg8PD7355ptF7gMAAOR55TvPy7dlyxZ17txZPj4+ql+/vmbOnKkrV65cdbucnBxNnTpVgYGBqlq1qrp06aLvv//eZmx6eroefPBBNWjQQJ6engoJCdHs2bOVm5trjjly5IhMJpNeeuklPfvsswoJCZGXl5c2bdpU6Bz+85//qFOnTvLz81PVqlXVtGlT3X///RYxZ86c0WOPPaamTZvKy8tL/v7+6tu3rw4cOGCO+XsuFxsbay5AP/nkkxbvVXuW08bGxuqJJ56QJIWEhJhfz/xLyRT1Oi1cuFDdunWTv7+/fH19dcMNN+ill15STk6O1Tjr169Xz549zfveqlUrzZ07t9B5SdI333yjunXrqn///rpw4UKRsYAjcAoCUM7MnDlTt9xyix5++GE9//zz6tGjh2rUqGEzdu3atRoyZIj8/PzMyxELfus2ffp03XTTTXrrrbd09uxZxcbGKiIiQikpKWratKmkvxKAFi1aaPjw4apdu7bS0tK0ePFi3Xzzzdq3b5/q1q1r0ef999+vfv366f3339eFCxfk4eGh33//XXXq1NELL7ygevXq6dSpU3r33XfVqVMnpaSkqEWLFlbz6tGjh5YtW6YjR47o8ccf14gRI+Tu7q727dtrxYoVSklJ0fTp01W9enUtWLDAvO2DDz6oZcuWadKkSXrxxRd16tQpzZkzR+Hh4dq9e7cCAgK0aNEiPfDAAzp06JDWrl1rMXZeXp4GDhyoLVu2aOrUqQoPD9fRo0c1a9YsRUREaPv27Rbf7O3cuVP79+/XjBkzFBISIl9f30Jfv0OHDiksLExjx46Vn5+fjhw5ovnz56tLly7as2ePPDw8Ct32jz/+UPfu3eXh4aFFixYpICBAH3zwgc1rsC1fvlwjR47UwIED9e6778rDw0NvvPGGevfurS+//NLqG9C7775bw4cP1/jx44tMQKKjo/X+++/r2WefVYcOHXThwgXt3btXJ0+eNMd8+eWXGjBggFq1aqX58+erUaNGOnLkiDZs2FBov2vXrtXChQsVHx+v9evXy8/Pr1hnG9jzXo+JiVFYWJiWLFmiKlWqyN/f35ysz5o1S4GBgTp//rzWrl2riIgIffXVV+Z/OOXm5qpPnz7asmWLJk+erNtuu025ubn69ttvlZqaqvDwcKs5ZWVlafTo0fr888/16aef6o477rB7fwAAlRN5XvnO86S/imvDhw/XtGnTNGfOHH3++ed69tlndfr0ab3++utFbjtu3Di99957evzxx9WrVy/t3btXd999t9UXtunp6brllltUpUoVPf3002rWrJmSk5P17LPP6siRI3rnnXcs4hcsWKDmzZtr3rx5qlGjhq6//nqb4ycnJ2vYsGEaNmyYYmNj5e3traNHj+rrr782x5w7d05dunTRkSNH9OSTT6pTp046f/68Nm/erLS0NLVs2dKq37Fjx6p9+/a6++679cgjj+iee+4p1pmAY8eO1alTp/Taa69pzZo15qW3f1+tUdjrdOjQId1zzz0KCQmRp6endu/ereeee04HDhzQ22+/bd4+Pj5e48aNU/fu3bVkyRL5+/vr559/Nq8UseXf//63Ro4cqfvvv1+vvfaa3Nzc7N4noMQMAOXOpk2bDEnGf/7zH4v2WbNmGQV/rdu0aWN079690D5uuukmIy8vz9x+5MgRw8PDwxg7dmyh4+fm5hrnz583fH19jVdffdXc/s477xiSjJEjR151H3Jzc43s7Gzj+uuvN6ZMmWI1rwEDBljET5482ZBkTJo0yaL9rrvuMmrXrm1+npycbEgyXnnlFYu4Y8eOGT4+PsbUqVPNbf369TMaN25sNbcVK1YYkozVq1dbtP/www+GJGPRokXmtsaNGxtubm7GwYMHr7rPBeXl5Rk5OTnG0aNHDUnGxx9/XGT8k08+aZhMJmPXrl0W7b169TIkGZs2bTIMwzAuXLhg1K5d2+oYXrlyxWjfvr1xyy23mNvy3zNPP/20XXNu27atcddddxUZ06xZM6NZs2bGpUuXCo3Jf68cPnzYai5//vmnRWz37t1tvocLutp7vVu3blftIzc318jJyTF69uxpDBo0yNz+3nvvGZKMN998s8jtJRkPP/ywcfLkSaNLly5G/fr1rV4vAACKQp73f8pbnte9e3ebOd24ceOMKlWqGEePHi102/379xuSLI6XYRjGBx98YEgyRo0aZW578MEHjWrVqln1N2/ePEOS8dNPPxmGYRiHDx82JBnNmjUzsrOzrzr//O3PnDlTaMycOXMMSUZCQkKRfUkyZs2aZX6eP5eXX37ZIs5WTmjLyy+/XGicva/TlStXjJycHOO9994z3NzcjFOnThmGYRjnzp0zatSoYXTp0sXi96WgUaNGGb6+voZhGMYLL7xguLm5GS+++GKRYwKOxnJaoJK75557LJYXNG7cWOHh4Ran2Z8/f15PPvmkrrvuOrm7u8vd3V3VqlXThQsXtH//fqs+Bw8ebNWWm5ur559/Xq1bt5anp6fc3d3l6empX375xWYf/fv3t3jeqlUrSX/dEKFg+6lTp8xLLT777DOZTCb985//VG5urvkRGBio9u3b23UH188++0w1a9bUgAEDLPq48cYbFRgYaNVHu3bt1Lx586v2K0knTpzQ+PHj1bBhQ7m7u8vDw0ONGzeWJJvH4e82bdqkNm3aqH379hbt99xzj8Xzbdu26dSpUxo1apTF/PPy8nTHHXfohx9+sDrbztZrZsstt9yiL774QtOmTVNiYqIuXbpk8fOff/5Zhw4d0pgxY+Tt7W1Xn2WlsH1csmSJbrrpJnl7e5tfk6+++sri9fjiiy/k7e1ttZzElsOHDyssLEyZmZn69ttvrV4vAADKCnmetdLM8ySpevXquvPOOy3a7rnnHuXl5Wnz5s2Fbpf/mtx7770W7UOHDrW6hu9nn32mHj16KDg42GIf+vTpI0lKSkqyiL/zzjuLXO2R7+abbzaP+e9//1vHjx+3ivniiy/UvHlz3X777VftrywV9jqlpKTozjvvVJ06deTm5iYPDw+NHDlSV65c0c8//yzpr9w5MzNTEyZMuOr1HQ3D0IMPPqhZs2bpww8/1NSpU0tlf4DCsJwWqOQCAwNttu3evdv8/J577tFXX32lmTNn6uabb1aNGjVkMpnUt29fqyKOJJt3l4qOjtbChQv15JNPqnv37qpVq5aqVKmisWPH2uyjdu3aFs89PT2LbL98+bKqVaumP/74Q4ZhKCAgwOb+5i8dKcoff/yhM2fOmPsuqOD16652N618eXl5ioyM1O+//66ZM2fqhhtukK+vr/Ly8tS5c2ebx+HvTp48qZCQEKv2gq/hH3/8IUkaMmRIoX2dOnXKYjmIvfuwYMECNWjQQKtWrdKLL74ob29v9e7dWy+//LKuv/568/JUV7vwtmR7H+fPn6/HHntM48eP1zPPPKO6devKzc1NM2fOtPhHx59//qng4GBVqXL1776+//57ZWRk6LnnnnPJ4wAAqDzI86yVVp6Xz9bc8l+Hv19+pKD8nxV8zdzd3VWnTh2Ltj/++EOffvppoYW5ku5Dt27d9NFHH2nBggUaOXKksrKy1KZNGz311FMaMWKEpL9yokaNGtnVX1mytY+pqanq2rWrWrRooVdffVVNmjSRt7e3vv/+ez388MPm92Zx8tfs7GytWrVKbdq0MRdNgbJEEQ+o5NLT02225ScLZ8+e1WeffaZZs2Zp2rRp5pisrCydOnXKZp+2vsHKv0bb888/b9GekZGhmjVrXsMeWKpbt65MJpO2bNli81ob9lx/o27duqpTp47Wr19v8+fVq1e3eG7vHdn27t2r3bt3a9myZRo1apS5/ddff7Vr+zp16hT6ev1d/rVrXnvtNas7g+UrmGDauw++vr6aPXu2Zs+erT/++MN8Vt6AAQN04MAB893FfvvtN7v6K0uFvS8jIiK0ePFii/aC156pV6+etm7dqry8vKsW8oYNG6bAwEA99dRTysvLM9+wAwCAskaeZ7uP0sjz8uV/mfp3+a9DwWLc3+X/LD09XfXr1ze35+bmWhX/6tatq3bt2um5556z2VdwcLDF8+Lsw8CBAzVw4EBlZWXp22+/1dy5c3XPPfeoSZMmCgsLU7169cpNnvfRRx/pwoULWrNmjXnliyTt2rXLIq44+Wv+jUF69+6t22+/XevXr1etWrWubfJAMbCcFqjgvLy8ijzDa8WKFTIMw/z86NGj2rZtm/mC/iaTSYZhWCVFb731ll132cpnMpms+vj8889tnqZ/Lfr37y/DMHT8+HF17NjR6nHDDTeYYws7Nv3799fJkyd15coVm30UvDizvfKTi4LH4Y033rBr+x49euinn36y+PZckj788EOL57feeqtq1qypffv22Zx/x44dC/32uTgCAgI0evRojRgxQgcPHtTFixfVvHlzNWvWTG+//baysrKueYziuNp73RZb78sff/xRycnJFm19+vTR5cuXtWzZMrv6nTFjhuLi4vT0008rJiamWHMCAMBe5Hmuk+flO3funD755BOLtg8//FBVqlRRt27dCt0u/zX54IMPLNr//e9/W9xxNn8f9u7dq2bNmtnch4JFvJLw8vJS9+7d9eKLL0qS+a7Gffr00c8//2xxs4uykP/+Kk6uZyv3NgxDb775pkVceHi4/Pz8tGTJEovfl8J06NBBSUlJ+u233xQREaETJ07YPSfgWnEmHlDB3XDDDVq5cqVWrVqlpk2bytvb2yLBOXHihAYNGqRx48bp7NmzmjVrlry9vc2Fhxo1aqhbt256+eWXVbduXTVp0kRJSUmKj48v1jer/fv317Jly9SyZUu1a9dOO3bs0Msvv+zw5Ya33nqrHnjgAd13333avn27unXrJl9fX6WlpWnr1q264YYb9NBDD5mPzZo1a7R48WKFhoaqSpUq6tixo4YPH64PPvhAffv21aOPPqpbbrlFHh4e+u2337Rp0yYNHDhQgwYNKvbcWrZsqWbNmmnatGkyDEO1a9fWp59+qoSEBLu2nzx5st5++23169dPzz77rPnutAcOHLCIq1atml577TWNGjVKp06d0pAhQ8x3Yt29e7f+/PNPqzPP7NWpUyf1799f7dq1U61atbR//369//77CgsLU9WqVSVJCxcu1IABA9S5c2dNmTJFjRo1Umpqqr788kurxNSRrvZet6V///565plnNGvWLHXv3l0HDx7UnDlzFBISYpEwjxgxQu+8847Gjx+vgwcPqkePHsrLy9N3332nVq1aafjw4VZ9P/roo6pWrZoeeOABnT9/XgsWLCj2t/kAABSFPM918rx8derU0UMPPaTU1FQ1b95c69at05tvvqmHHnqoyGWorVq10j//+U/FxcXJw8NDt99+u/bu3Wu+o+zfzZkzRwkJCQoPD9ekSZPUokULXb58WUeOHNG6deu0ZMmSEh37p59+Wr/99pt69uypBg0a6MyZM3r11Vfl4eGh7t27S/orH121apUGDhyoadOm6ZZbbtGlS5eUlJSk/v37q0ePHsUe1x757+tXX31Vo0aNkoeHh1q0aGF15uTf9erVS56enhoxYoSmTp2qy5cva/HixTp9+rRFXLVq1fTKK69o7Nixuv322zVu3DgFBATo119/1e7du23eVbhVq1basmWLbr/9dnXr1k0bN27kMiooG865nwaAa1Gcu5YdOXLEiIyMNKpXr25IMt+lK7+P999/35g0aZJRr149w8vLy+jatauxfft2iz5+++03Y/DgwUatWrWM6tWrG3fccYexd+9eo3HjxhZ3ysq/u9QPP/xgNefTp08bY8aMMfz9/Y2qVasaXbp0MbZs2WJ159HC9q2wvgu7o+nbb79tdOrUyfD19TV8fHyMZs2aGSNHjrTYt1OnThlDhgwxatasaZhMJotjl5OTY8ybN89o37694e3tbVSrVs1o2bKl8eCDDxq//PKLOa5x48ZGv379rPa3MPv27TN69eplVK9e3ahVq5bxj3/8w0hNTbW6g9fVtvf29jZq165tjBkzxvj4448t7k6bLykpyejXr59Ru3Ztw8PDw6hfv77Rr18/i2Nb2PErzLRp04yOHTsatWrVMry8vIymTZsaU6ZMMTIyMizikpOTjT59+hh+fn6Gl5eX0axZM4u7rZXG3Wmv9l4v+J4yDMPIysoyHn/8caN+/fqGt7e3cdNNNxkfffSRMWrUKKs72l26dMl4+umnjeuvv97w9PQ06tSpY9x2223Gtm3bzDH6/3en/bsVK1YY7u7uxn333WdcuXLlqvsBAKjcyPOs97m85Hndu3c32rRpYyQmJhodO3Y0vLy8jKCgIGP69OlGTk7OVbfPysoyHnvsMcPf39/w9vY2OnfubCQnJ1u9FoZhGH/++acxadIkIyQkxPDw8DBq165thIaGGk899ZRx/vx5wzAKvyNsYT777DOjT58+Rv369Q1PT0/D39/f6Nu3r7FlyxaLuNOnTxuPPvqo0ahRI8PDw8Pw9/c3+vXrZxw4cMAcUzC3vda70xqGYcTExBjBwcFGlSpVLHLfol6nTz/91Pw6169f33jiiSeML774wmbuvG7dOqN79+6Gr6+vUbVqVaN169YWd5/9+91p8/32229Gy5YtjSZNmhiHDh266j4A18pkGHacLwqgwklMTFSPHj30n//8p8gbIAAAAKB8Ic8DgIqJa+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAAAAuDjOxAMAAAAAAABcHEU8AAAAAAAAwMVRxAMAAAAAAABcnLuzJ2DLokWL9PLLLystLU1t2rRRXFycunbtWmh8UlKSoqOj9dNPPyk4OFhTp07V+PHjLWJWr16tmTNn6tChQ2rWrJmee+45DRo0qFjjmkwmm+O/9NJLeuKJJ+zat7y8PP3++++qXr16of0BAAD8nWEYOnfunIKDg1WlCt/BuiryPAAAUFzFyvMMF7Ny5UrDw8PDePPNN419+/YZjz76qOHr62scPXrUZvz//vc/o2rVqsajjz5q7Nu3z3jzzTcNDw8P47///a85Ztu2bYabm5vx/PPPG/v37zeef/55w93d3fj222+LNW5aWprF4+233zZMJpNx6NAhu/fv2LFjhiQePHjw4MGDB49iP44dO1aC7AplhTyPBw8ePHjw4FHShz15nsvdnbZTp0666aabtHjxYnNbq1atdNddd2nu3LlW8U8++aQ++eQT7d+/39w2fvx47d69W8nJyZKkYcOGKTMzU1988YU55o477lCtWrW0YsWKEo0rSXfddZfOnTunr776qtD9ycrKUlZWlvn52bNn1ahRIx07dkw1atS42uEAAABQZmamGjZsqDNnzsjPz8/Z00Ehzp49q5o1a5LnAQAAuxUnz3Op5bTZ2dnasWOHpk2bZtEeGRmpbdu22dwmOTlZkZGRFm29e/dWfHy8cnJy5OHhoeTkZE2ZMsUqJi4ursTj/vHHH/r888/17rvvFrlPc+fO1ezZs63aa9SoQXIHAACKhSWari3/9SHPAwAAxWVPnudSF1XJyMjQlStXFBAQYNEeEBCg9PR0m9ukp6fbjM/NzVVGRkaRMfl9lmTcd999V9WrV9fdd99d5D7FxMTo7Nmz5sexY8eKjAcAAAAAAAAKcqkz8fIVrD4ahlFkRdJWfMF2e/oszrhvv/227r33Xnl7exc6L0ny8vKSl5dXkTEAAAAAAABAUVyqiFe3bl25ublZnf124sQJq7Pk8gUGBtqMd3d3V506dYqMye+zuONu2bJFBw8e1KpVq4q3gwAAAAAAAEAJuFQRz9PTU6GhoUpISNCgQYPM7QkJCRo4cKDNbcLCwvTpp59atG3YsEEdO3aUh4eHOSYhIcHiungbNmxQeHh4icaNj49XaGio2rdvX/KdBQCglBmGodzcXF25csXZU8FVuLm5yd3dnWveAQAAu5DnlR+OzPNcqognSdHR0YqKilLHjh0VFhampUuXKjU1VePHj5f01zXmjh8/rvfee0/SX3eiff311xUdHa1x48YpOTlZ8fHx5rvOStKjjz6qbt266cUXX9TAgQP18ccfa+PGjdq6davd4+bLzMzUf/7zH73yyitlcDQAACiZ7OxspaWl6eLFi86eCuxUtWpVBQUFydPT09lTAQAALow8r/xxVJ7nckW8YcOG6eTJk5ozZ47S0tLUtm1brVu3To0bN5YkpaWlKTU11RwfEhKidevWacqUKVq4cKGCg4O1YMECDR482BwTHh6ulStXasaMGZo5c6aaNWumVatWqVOnTnaPm2/lypUyDEMjRowo5SMBAEDJ5OXl6fDhw3Jzc1NwcLA8PT05w8uFGYah7Oxs/fnnnzp8+LCuv/56VaniUvceAwAALoI8r3xxdJ5nMvLvAoEykZmZKT8/P509e1Y1atRw9nQAABXQ5cuXdfjwYTVu3FhVq1Z19nRgp4sXL+ro0aMKCQmxunEW+UP5wOsEACht5Hnlk6PyPL7mBQCgguJsrvKF18txFi9erHbt2qlGjRqqUaOGwsLC9MUXXxQan5iYKJPJZPU4cOBAGc4aAAD7kTeUL456vVxuOS0AAABwLRo0aKAXXnhB1113nSTp3Xff1cCBA5WSkqI2bdoUut3BgwctvgGvV69eqc8VAADAXhTxAAAAUKEMGDDA4vlzzz2nxYsX69tvvy2yiOfv76+aNWuW8uwAAABKhvMvAQAAUGFduXJFK1eu1IULFxQWFlZkbIcOHRQUFKSePXtq06ZNV+07KytLmZmZFg8AAIDSQhEPAABUWIZh6IEHHlDt2rVlMpm0a9cup84nIiJCkydPduocKos9e/aoWrVq8vLy0vjx47V27Vq1bt3aZmxQUJCWLl2q1atXa82aNWrRooV69uypzZs3FznG3Llz5efnZ340bNiwNHYFAIAK5cknn1SfPn2uuZ/KmOexnBYAgEokNrZij1fQ+vXrtWzZMiUmJqpp06aqW7eucyeEMtOiRQvt2rVLZ86c0erVqzVq1CglJSXZLOS1aNFCLVq0MD8PCwvTsWPHNG/ePHXr1q3QMWJiYhQdHW1+npmZSSEPAOA0ZZl3XctYu3btUocOHa55DpUxz6OIBwDXyNYfMGcXLgD85dChQwoKClJ4eLizp4Iy5unpab6xRceOHfXDDz/o1Vdf1RtvvGHX9p07d9by5cuLjPHy8pKXl9c1zxVA5VAwPyRfRGW1e/du3XfffdfcT2XM81hOCwAAXM6cOXN0ww03yNfXVwEBAXrooYeUk5NTrD5Gjx6tRx55RKmpqTKZTGrSpImysrI0adIk+fv7y9vbW126dNEPP/xgsV2TJk0UFxdn0XbjjTcq9m//2oqIiNCkSZM0depU1a5dW4GBgRY/l6QLFy5o5MiRqlatmoKCgvTKK68Ua/5wLMMwlJWVZXd8SkqKgoKCSnFGAABUPunp6frjjz+Ul5enbt26qWrVqurYsaN2795drH5s5XmSrprrlfc8jyIeAABwKYZh6MqVK3rjjTe0b98+LVu2TP/973/11ltvFaufV199VXPmzFGDBg2UlpamH374QVOnTtXq1av17rvvaufOnbruuuvUu3dvnTp1qtjzfPfdd+Xr66vvvvtOL730kubMmaOEhATzz5944glt2rRJa9eu1YYNG5SYmKgdO3YUexwU3/Tp07VlyxYdOXJEe/bs0VNPPaXExETde++9kv5aBjty5EhzfFxcnD766CP98ssv+umnnxQTE6PVq1dr4sSJztoFAAAqpJSUFEl//e19/vnntX37dlWvXl3Dhw8vVj+28jxJDsv1XDXPYzktAABwKSaTSbNnzzY/b9y4sXr16qUDBw4Uqx8/Pz9Vr15dbm5uCgwM1IULF7R48WItW7bMfDHlN998UwkJCYqPj9cTTzxRrP7btWunWbNmSZKuv/56vf766/rqq6/Uq1cvnT9/XvHx8XrvvffUq1cvSX8lgw0aNCjWGCiZP/74Q1FRUUpLS5Ofn5/atWun9evXm1+LtLQ0paammuOzs7P1+OOP6/jx4/Lx8VGbNm30+eefq2/fvs7aBQCVHEtvUVHt2rVL3t7e+uijjxQcHCxJeu6553TrrbcqPT1dgYGBdvVTMM+T5NBcz1XzPIp4AFABcF0+VCRHjx7Vyy+/rMTERB0/flw5OTm6fPmy5s6de039Hjp0SDk5Obr11lvNbR4eHrrlllu0f//+YvfXrl07i+dBQUE6ceKEeazs7GyFhYWZf167dm2Lmyeg9MTHxxf582XLllk8nzp1qqZOnVqKMwIAANJfRbyhQ4eaC3iS5OvrK0nKy8u7pr4dmeu5ap7HcloAAOAyMjIydMsttygjI0Pz58/X1q1blZycLDc3N914442SpE6dOmn79u2SpFGjRmnx4sV29W0YhqS/zvQr2P73tipVqphj89m6Hp+Hh4fFc5PJZE4+C24PAACAv4p4+Tldvp07dyowMFBBQUElzvMk+3K98p7nUcQDAAAuY926dcrNzdWKFSsUGRmpNm3aaPPmzcrOzjYnfDNnztTzzz+vV155RdWqVdNDDz1kV9/XXXedPD09tXXrVnNbTk6Otm/frlatWpnb6tWrp7S0NPPzzMxMHT58uFj7cd1118nDw0Pffvutue306dP6+eefi9UPAABARXHx4kX9+uuvunLlirktLy9Pr732mkaPHi2TyVTiPE+yL9cr73key2kBAIDLqF27tjIzM/XJJ5+odevW+vTTTzV37lzVr19f9erVkyT1799fM2bM0Pnz57Vu3Tq7+/b19dVDDz2kJ554QrVr11ajRo300ksv6eLFixozZow57rbbbtOyZcs0YMAA1apVSzNnzpSbm1ux9qNatWoaM2aMnnjiCdWpU0cBAQF66qmnVKUK358CAIDKaffu3XJzc9M777yjbt26qWbNmpo+fbouXLig6dOnSyp5nifZl+uV9zyPIh4AAHAZ/fr105gxYxQVFSUfHx/985//1NChQ3X06FFzzPfff68zZ86oefPmcncvXirzwgsvKC8vT1FRUTp37pw6duyoL7/8UrVq1TLHxMTE6H//+5/69+8vPz8/PfPMM8X+hlaSXn75ZZ0/f1533nmnqlevrscee0xnz54tdj8AAAAVwe7du9W8eXPNmjVLgwcP1qlTp3TnnXdq27Ztql69uqRry/Okq+d65T3PMxlctKVMZWZmys/PT2fPnlWNGjWcPR0ADuAKN5VwhTnAdVy+fFmHDx9WSEiIvL29nT0dhzp+/Lj69Omjjz/+WHfffbc+/PBDi6Ww5VlRrxv5Q/nA6wSgKMW54yx3p0VhyPPKJ0fleazpAAAA5cKlS5c0ZMgQvf766woJCdHUqVP17LPPOntaAAAAuEbkefZhOS0AACgXfHx8lJycbH4+YsQIjRgxwokzAgAAgCOQ59mHM/EAAAAAAAAAF8eZeAAAAAAAlLG/X+eOa94BsAdn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAAAAAAAqs9hYZ88AQHnAmXgAAAAAAACAi6OIBwAAAAAAALg4ingAAKDCioiI0OTJk509DQAAAPx/Tz75pPr06XPN/VTGPI9r4gEAUJlsiy3b8cLLeLxSFBERoRtvvFFxcXHOngoAAIC1sszzriHH27Vrlzp06OC4uThAecnzOBMPAAAAAAAAZWL37t268cYbnT2NcokiHgCgZLbFWj8AB5kzZ45uuOEG+fr6KiAgQA899JBycnKuqc+srCxNmjRJ/v7+8vb2VpcuXfTDDz9YxPz3v//VDTfcIB8fH9WpU0e33367Lly4oNGjRyspKUmvvvqqTCaTTCaTjhw5ck3zAQAAqGzS09P1xx9/KC8vT926dVPVqlXVsWNH7d69+5r7vlquVxHyPJbTAgAAl2IYhq5cuaI33nhD9evX1759+zRy5Ei1a9dODz30UIn7nTp1qlavXq13331XjRs31ksvvaTevXvr119/Ve3atZWWlqYRI0bopZde0qBBg3Tu3Dlt2bJFhmHo1Vdf1c8//6y2bdtqzpw5kqR69eo5apcBABVQbKyzZwC4npSUFElSXFyc5s+fr9q1a+vhhx/W8OHDtX///mvqu6hcLysrq0LkeRTxAACASzGZTJo9e7b5eePGjdWrVy8dOHCgxH1euHBBixcv1rJly8wXUn7zzTeVkJCg+Ph4PfHEE0pLS1Nubq7uvvtuNW7cWJJ0ww03mPvw9PRU1apVFRgYWOJ5AAAAVGa7du2St7e3PvroIwUHB0uSnnvuOd16661KT08vcZ51tVyvZ8+eFSLPYzktAABwKUePHtXEiRPVtm1b1apVS9WqVdO///1vNWjQoMR9Hjp0SDk5Obr11lvNbR4eHrrlllvM3/q2b99ePXv21A033KB//OMfevPNN3X69Olr3h8AAAD8ZdeuXRo6dKi5gCdJvr6+kqS8vLwS93u1XK+i5HkU8QAAgMvIyMjQLbfcooyMDM2fP19bt25VcnKy3NzczBdA7tSpk7Zv3y5JGjVqlBYvXnzVfg3DkPTXWX4F2/Pb3NzclJCQoC+++EKtW7fWa6+9phYtWujw4cMO3EMAAIDKa9euXVY3tdi5c6cCAwMVFBRUojxPunquV1HyPIp4AADAZaxbt065ublasWKFIiMj1aZNG23evFnZ2dnmhG/mzJl6/vnn9corr6hatWp2XSfvuuuuk6enp7Zu3Wpuy8nJ0fbt29WqVStzm8lk0q233qrZs2crJSVFnp6eWrt2raS/lllcuXLFsTsMAABQSVy8eFG//vqrRT6Vl5en1157TaNHj5bJZCpRnifZl+tVhDzPJYt4ixYtUkhIiLy9vRUaGqotW7YUGZ+UlKTQ0FB5e3uradOmWrJkiVXM6tWr1bp1a3l5eal169bmF6q44+7fv1933nmn/Pz8VL16dXXu3Fmpqakl31kAAGBWu3ZtZWZm6pNPPtEvv/yi+fPnKzY2VvXr1zdfYLh///763//+py+//FKvvvqqXf36+vrqoYce0hNPPKH169dr3759GjdunC5evKgxY8ZIkr777js9//zz2r59u1JTU7VmzRr9+eef5sSvSZMm+u6773TkyBFlZGRc05IPAACAymb37t1yc3PTO++8o++//14///yzhg4dqgsXLmj69OmSSpbnSVfP9SpKnudyRbxVq1Zp8uTJeuqpp5SSkqKuXbuqT58+hRbKDh8+rL59+6pr165KSUnR9OnTNWnSJK1evdock5ycrGHDhikqKkq7d+9WVFSUhg4dqu+++65Y4x46dEhdunRRy5YtlZiYqN27d2vmzJny9vYuvQMCAEAl0q9fP40ZM0ZRUVHq0qWLjh8/rqFDh1osu/j+++915swZ1axZU+7u9t+j64UXXtDgwYMVFRWlm266Sb/++qu+/PJL1apVS5JUo0YNbd68WX379lXz5s01Y8YMvfLKK+aLIz/++ONyc3NT69atVa9ePb7EAwAAKIbdu3erefPmio2N1eDBg9WhQwd5eHho27Ztql69uqSS53lS0bleRcnzTEb+wmEX0alTJ910000W655btWqlu+66S3PnzrWKf/LJJ/XJJ59Y3Ip4/Pjx2r17t5KTkyVJw4YNU2Zmpr744gtzzB133KFatWppxYoVdo87fPhweXh46P333y/x/mVmZsrPz09nz55VjRo1StwPANcRG2tfW4WbwzYbA4SX9qCwx+XLl3X48GHz2eUVyfHjx9WnTx99/PHHuvvuu/Xhhx9aLIctz4p63cgfygdeJwB/58hcrKxzS7gu8rzyyVF5nkudiZedna0dO3YoMjLSoj0yMlLbtm2zuU1ycrJVfO/evbV9+3bl5OQUGZPfpz3j5uXl6fPPP1fz5s3Vu3dv+fv7q1OnTvroo4+K3KesrCxlZmZaPAAAQPFdunRJQ4YM0euvv66QkBBNnTpVzz77rLOnBQAAgGtEnmcflyriZWRk6MqVKwoICLBoDwgIUHp6us1t0tPTbcbn5uYqIyOjyJj8Pu0Z98SJEzp//rxeeOEF3XHHHdqwYYMGDRqku+++W0lJSYXu09y5c+Xn52d+NGzY0I4jAQAACvLx8VFycrK6desmSRoxYoQ++OADJ88KAAAA14o8zz4uVcTLV9gtgYsTX7Ddnj6Lism/qOHAgQM1ZcoU3XjjjZo2bZr69+9v80Ya+WJiYnT27Fnz49ixY4XGAgAAAAAAALYU7yqBpaxu3bpyc3OzOuvuxIkTVmfJ5QsMDLQZ7+7urjp16hQZk9+nPePWrVtX7u7uat26tUVMq1atLG5hXJCXl5e8vLwK/TkAAAAAAABwNS51Jp6np6dCQ0OVkJBg0Z6QkKDw8HCb24SFhVnFb9iwQR07dpSHh0eRMfl92jOup6enbr75Zh08eNAi5ueff1bjxo2LuacAAAAAAACA/VzqTDxJio6OVlRUlDp27KiwsDAtXbpUqampGj9+vKS/lqceP35c7733nqS/7kT7+uuvKzo6WuPGjVNycrLi4+PNd52VpEcffVTdunXTiy++qIEDB+rjjz/Wxo0bLc6gu9q4kvTEE09o2LBh6tatm3r06KH169fr008/VWJiYtkcHAAAAAAAAFRKLlfEGzZsmE6ePKk5c+YoLS1Nbdu21bp168xnu6WlpSk1NdUcHxISonXr1mnKlClauHChgoODtWDBAg0ePNgcEx4erpUrV2rGjBmaOXOmmjVrplWrVqlTp052jytJgwYN0pIlSzR37lxNmjRJLVq00OrVq9WlS5cyODIAABRP/jViUT7wegEAAHuRN5Qvjnq9XK6IJ0kTJkzQhAkTbP5s2bJlVm3du3fXzp07i+xzyJAhGjJkSInHzXf//ffr/vvvLzIGAABnyr+cxMWLF+Xj4+Pk2cBeFy9elPR/rx9KbvHixVq8eLGOHDkiSWrTpo2efvpp9enTp9BtkpKSFB0drZ9++knBwcGaOnWqxYoMAABcAXle+eSoPM8li3gAAKDk3NzcVLNmTZ04cUKSVLVq1SLv8g7nMgxDFy9e1IkTJ1SzZk25ubk5e0rlXoMGDfTCCy/ouuuukyS9++67GjhwoFJSUtSmTRur+MOHD6tv374aN26cli9frm+++UYTJkxQvXr1LFZ3AADgbOR55Yuj8zyKeABQDLGxzp4BYJ/AwEBJMid4cH01a9Y0v264NgMGDLB4/txzz2nx4sX69ttvbRbxlixZokaNGikuLk6S1KpVK23fvl3z5s2jiAcAcDnkeeWPo/I8ingAAFRAJpNJQUFB8vf3V05OjrOng6vw8PDgDLxScuXKFf3nP//RhQsXFBYWZjMmOTlZkZGRFm29e/dWfHy8cnJyCl36kpWVpaysLPPzzMxMx00cAIBCkOeVL47M8yjiAQBQgbm5uVEcQqW0Z88ehYWF6fLly6pWrZrWrl2r1q1b24xNT09XQECARVtAQIByc3OVkZGhoKAgm9vNnTtXs2fPdvjcAQCwB3le5VPF2RMAAAAAHK1FixbatWuXvv32Wz300EMaNWqU9u3bV2h8wesJ5d9FrqjrDMXExOjs2bPmx7FjxxwzeQAAABs4Ew8AAAAVjqenp/nGFh07dtQPP/ygV199VW+88YZVbGBgoNLT0y3aTpw4IXd3d9WpU6fQMby8vOTl5eXYiQMAABSCM/EAAABQ4RmGYXH9ur8LCwtTQkKCRduGDRvUsWPHQq+HBwAAUNYo4gEAAKBCmT59urZs2aIjR45oz549euqpp5SYmKh7771X0l/LYEeOHGmOHz9+vI4eParo6Gjt379fb7/9tuLj4/X44487axcAAACssJwWAEpBbKxjYgAAxffHH38oKipKaWlp8vPzU7t27bR+/Xr16tVLkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCzR48GBn7QIAAIAVingAUJhtsTYabbUBAFxJfHx8kT9ftmyZVVv37t21c+fOUpoRAADAtaOIBwAVlK0z/Tj7DwAAAADKJ66JBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4d2dPAABcVWKis2cAAAAAAMBfOBMPAAAAAAAAcHGciQcAAAAAwDWKjXX2DABUdJyJBwAAAAAAALg4ingAAAAAAACAi2M5LQC4EFvLMFiaAQAAAADgTDwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxbk7ewIAUFnFxjp7BgAAAACA8oIz8QAAAAAAAAAXRxEPAAAAAAAAcHEspwUAJ4nwjLVqS8y2bgMAAAAAgDPxAAAAAAAAABfHmXgAINs3mYjwLPNpAAAAAABgE0U8AHBxtgqM3NkWAACg8iiY+5ELApUTy2kBAAAAAAAAF+eSRbxFixYpJCRE3t7eCg0N1ZYtW4qMT0pKUmhoqLy9vdW0aVMtWbLEKmb16tVq3bq1vLy81Lp1a61du7bY444ePVomk8ni0blz52vbWQAAAAAAAOAqXK6It2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqak24w8fPqy+ffuqa9euSklJ0fTp0zVp0iStXr3aHJOcnKxhw4YpKipKu3fvVlRUlIYOHarvvvuu2OPecccdSktLMz/WrVtXOgcCAAAAAAAA+P9crog3f/58jRkzRmPHjlWrVq0UFxenhg0bavHixTbjlyxZokaNGikuLk6tWrXS2LFjdf/992vevHnmmLi4OPXq1UsxMTFq2bKlYmJi1LNnT8XFxRV7XC8vLwUGBpoftWvXLpXjAAAAAAAAAORzqSJedna2duzYocjISIv2yMhIbdu2zeY2ycnJVvG9e/fW9u3blZOTU2RMfp/FGTcxMVH+/v5q3ry5xo0bpxMnThS5T1lZWcrMzLR4AAAAAAAAAMXhUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQUGZPfp73j9unTRx988IG+/vprvfLKK/rhhx902223KSsrq9B9mjt3rvz8/MyPhg0bXuUoAAAAAAAAAJbcnT0BW0wmk8VzwzCs2q4WX7Ddnj6vFjNs2DDz/7dt21YdO3ZU48aN9fnnn+vuu++2ObeYmBhFR0ebn2dmZlLIAwAAAAAAQLG4VBGvbt26cnNzszrr7sSJE1ZnyeULDAy0Ge/u7q46deoUGZPfZ0nGlaSgoCA1btxYv/zyS6ExXl5e8vLyKvTnAAAAAAAAwNW41HJaT09PhYaGKiEhwaI9ISFB4eHhNrcJCwuzit+wYYM6duwoDw+PImPy+yzJuJJ08uRJHTt2TEFBQfbtIAAAAAAAAFACLlXEk6To6Gi99dZbevvtt7V//35NmTJFqampGj9+vKS/lqeOHDnSHD9+/HgdPXpU0dHR2r9/v95++23Fx8fr8ccfN8c8+uij2rBhg1588UUdOHBAL774ojZu3KjJkyfbPe758+f1+OOPKzk5WUeOHFFiYqIGDBigunXratCgQWVzcAAAAHBVc+fO1c0336zq1avL399fd911lw4ePFjkNomJiTKZTFaPAwcOlNGsAQAAiuZSy2mlv647d/LkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHdXNz0549e/Tee+/pzJkzCgoKUo8ePbRq1SpVr169jI4OAAAAriYpKUkPP/ywbr75ZuXm5uqpp55SZGSk9u3bJ19f3yK3PXjwoGrUqGF+Xq9evdKeLgAAgF1crognSRMmTNCECRNs/mzZsmVWbd27d9fOnTuL7HPIkCEaMmRIicf18fHRl19+WeT2AAAAcL7169dbPH/nnXfk7++vHTt2qFu3bkVu6+/vr5o1a5bi7AAAAErG5ZbTAgAAAI509uxZSVLt2rWvGtuhQwcFBQWpZ8+e2rRpU5GxWVlZyszMtHgAAACUFop4AAAAqLAMw1B0dLS6dOmitm3bFhoXFBSkpUuXavXq1VqzZo1atGihnj17avPmzYVuM3fuXPn5+ZkfDRs2LI1dAAAAkOSiy2kBAKUjNta+NgCoKCZOnKgff/xRW7duLTKuRYsWatGihfl5WFiYjh07pnnz5hW6BDcmJkbR0dHm55mZmRTyAABAqaGIB6BSqgyFqwjPWKu2xGzrNgCoqB555BF98skn2rx5sxo0aFDs7Tt37qzly5cX+nMvLy95eXldyxQBAADsRhEPACo5zs4DUNEYhqFHHnlEa9euVWJiokJCQkrUT0pKioKCghw8OwAAgJKhiAcAAIAK5eGHH9aHH36ojz/+WNWrV1d6erokyc/PTz4+PpL+Wgp7/Phxvffee5KkuLg4NWnSRG3atFF2draWL1+u1atXa/Xq1U7bDwAAgL+jiAcAAIAKZfHixZKkiIgIi/Z33nlHo0ePliSlpaUpNTXV/LPs7Gw9/vjjOn78uHx8fNSmTRt9/vnn6tu3b1lNGwAAoEgU8QAAAFChGIZx1Zhly5ZZPJ86daqmTp1aSjMCAAC4dlWcPQEAAAAAAAAARaOIBwAAAAAAALg4ltMCqHy2xSrC07IpMTvWKVNxRRGesdK2Ao3hsU6YCQAAAAAgH0U8ACiHYmOdPQMAAAAAQFliOS0AAAAAAADg4ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OG1sAAK5uW6yzZwAAAAAAlRpn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAHAFEZ6xJYpLzLZvO0eyNVdnzAMAAAAAUHY4Ew8AAAAAAABwcZyJBwAAAABAORIbW/RzABUTZ+IBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiuLEFAAAAAADFxM0kAJQ1ingAgKtKTLRui4go61kAAAAAQOXFcloAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxXFNPACoACI8Y509BQAAAABAKaKIB6DCK3jnsAhPp0wDAAAAAIASYzktAAAAAAAA4OJcsoi3aNEihYSEyNvbW6GhodqyZUuR8UlJSQoNDZW3t7eaNm2qJUuWWMWsXr1arVu3lpeXl1q3bq21a9de07gPPvigTCaT4uLiir1/AAAAAAAAQHG4XBFv1apVmjx5sp566imlpKSoa9eu6tOnj1JTU23GHz58WH379lXXrl2VkpKi6dOna9KkSVq9erU5Jjk5WcOGDVNUVJR2796tqKgoDR06VN99912Jxv3oo4/03XffKTg42PEHAAAAAAAAACjA5Yp48+fP15gxYzR27Fi1atVKcXFxatiwoRYvXmwzfsmSJWrUqJHi4uLUqlUrjR07Vvfff7/mzZtnjomLi1OvXr0UExOjli1bKiYmRj179rQ4i87ecY8fP66JEyfqgw8+kIeHR6kcAwAAAAAAAODvXKqIl52drR07digyMtKiPTIyUtu2bbO5TXJyslV87969tX37duXk5BQZk9+nvePm5eUpKipKTzzxhNq0aWPXPmVlZSkzM9PiAQAAAAAAABSHS92dNiMjQ1euXFFAQIBFe0BAgNLT021uk56ebjM+NzdXGRkZCgoKKjQmv097x33xxRfl7u6uSZMm2b1Pc+fO1ezZs+2OB1AM22Kt28JttAEAAAAAUM5dUxHvk08+sTv2zjvvtDvWZDJZPDcMw6rtavEF2+3ps6iYHTt26NVXX9XOnTuLnEtBMTExio6ONj/PzMxUw4YN7d4eAACgIiutfBIAAKCiuaYi3l133WXx3GQymQto+c/zXbly5ar91a1bV25ublZn3Z04ccLqLLl8gYGBNuPd3d1Vp06dImPy+7Rn3C1btujEiRNq1KiRxT499thjiouL05EjR2zOz8vLS15eXlfZcwAAgMrJ0fkkAABARXVN18TLy8szPzZs2KAbb7xRX3zxhc6cOaOzZ89q3bp1uummm7R+/Xq7+vP09FRoaKgSEhIs2hMSEhQeHm5zm7CwMKv4DRs2qGPHjuYbTxQWk9+nPeNGRUXpxx9/1K5du8yP4OBgPfHEE/ryyy/t2j8AAABYcnQ+Kf11OZObb75Z1atXl7+/v+666y4dPHjwqtslJSUpNDRU3t7eatq0qZYsWXItuwYAAOBQDrsm3uTJk7VkyRJ16dLF3Na7d29VrVpVDzzwgPbv329XP9HR0YqKilLHjh0VFhampUuXKjU1VePHj5f01/LU48eP67333pMkjR8/Xq+//rqio6M1btw4JScnKz4+XitWrDD3+eijj6pbt2568cUXNXDgQH388cfauHGjtm7dave4derUMZ/Zl8/Dw0OBgYFq0aJFyQ4aAAAAzByVTyYlJenhhx/WzTffrNzcXD311FOKjIzUvn375Ovra3Obw4cPq2/fvho3bpyWL1+ub775RhMmTFC9evU0ePBgh+wfAADAtXBYEe/QoUPy8/Ozavfz8yt0qaktw4YN08mTJzVnzhylpaWpbdu2WrdunRo3bixJSktLU2pqqjk+JCRE69at05QpU7Rw4UIFBwdrwYIFFslWeHi4Vq5cqRkzZmjmzJlq1qyZVq1apU6dOtk9LgBUJomJzp4BgMrIUflkwbP23nnnHfn7+2vHjh3q1q2bzW2WLFmiRo0aKS4uTpLUqlUrbd++XfPmzaOIBwAAXILJ+PtFR65Bt27d5OHhoeXLlysoKEjSX3eOjYqKUnZ2tpKSkhwxTLmXmZkpPz8/nT17VjVq1HD2dIDyzc6708YWaIrwtLGdAyVm29e/PfOw1Vdpz99eERE2Grk7MFAqKkv+UFr55K+//qrrr79ee/bsUdu2bQsdu0OHDnr11VfNbWvXrtXQoUN18eJF82Va/i4rK0tZWVnm5/k3MKvorxOAvxTMMZ3JleYCoHiKk+c57Ey8t99+W4MGDVLjxo3NN39ITU1V8+bN9dFHHzlqGAAAAFRQpZFPGoah6OhodenSpdACnvRXsbDgjdQCAgKUm5urjIwMc1Hx7+bOnavZs2eXaF4A4EgFi3gU9YCKyWFFvOuuu04//vijEhISdODAARmGodatW+v222+3uKsYAAAAYEtp5JMTJ07Ujz/+aHEt5MIUHCN/wUphY8fExCg6Otr8PP9MPAAAgNLgsCKe9FeCExkZqW7dusnLy4viHQAAAIrFkfnkI488ok8++USbN29WgwYNiowNDAxUenq6RduJEyfk7u5udXOzfF5eXvLy8irx/AAAAIqjiqM6ysvL0zPPPKP69eurWrVqOnz4sCRp5syZio+Pd9QwAAAAqKAclU8ahqGJEydqzZo1+vrrrxUSEnLVbcLCwpSQkGDRtmHDBnXs2NHm9fAAAADKmsOKeM8++6yWLVuml156SZ6enub2G264QW+99ZajhgEAAEAF5ah88uGHH9by5cv14Ycfqnr16kpPT1d6erouXbpkjomJidHIkSPNz8ePH6+jR48qOjpa+/fv19tvv634+Hg9/vjjjtk5AACAa+SwIt57772npUuX6t5775Wbm5u5vV27djpw4ICjhgEAAEAF5ah8cvHixTp79qwiIiIUFBRkfqxatcock5aWptTUVPPzkJAQrVu3TomJibrxxhv1zDPPaMGCBRo8eLBjdg4AAOAaOeyaeMePH9d1111n1Z6Xl6ecnBxHDQMAxbMtVhGeVw8DADifo/LJ/BtSFGXZsmVWbd27d9fOnTvtHgcAAKAsOexMvDZt2mjLli1W7f/5z3/UoUMHRw0DAACACop8EgAAoHAOOxNv1qxZioqK0vHjx5WXl6c1a9bo4MGDeu+99/TZZ585ahgAAABUUOSTAAAAhXPYmXgDBgzQqlWrtG7dOplMJj399NPav3+/Pv30U/Xq1ctRwwAAAKCCIp8EAAAonMPOxJOk3r17q3fv3o7sEgAAAJUI+SQAAIBtDi3i5Tt//rzy8vIs2mrUqFEaQwEAAKACIp8EAACw5LDltIcPH1a/fv3k6+srPz8/1apVS7Vq1VLNmjVVq1YtRw0DAACACop8EgAAoHAOOxPv3nvvlSS9/fbbCggIkMlkclTXAAAAqATIJwEAAArnsCLejz/+qB07dqhFixaO6hIAAACVCPkkAABA4RxWxLv55pt17Ngxki4AAACUCPkkAFcWG+vsGQCo7BxWxHvrrbc0fvx4HT9+XG3btpWHh4fFz9u1a+eooQAAAFABkU8CAAAUzmFFvD///FOHDh3SfffdZ24zmUwyDEMmk0lXrlxx1FAAABeQmGjdFhFe5tMAUIGQTwIAABTOYUW8+++/Xx06dNCKFSu4EDEAAACKjXwSAACgcA4r4h09elSffPKJrrvuOkd1CQDFty3W2TMAAJQQ+SQAAEDhqjiqo9tuu027d+92VHcAAACoZMgnAQAACuewM/EGDBigKVOmaM+ePbrhhhusLkR85513OmooAAAAVEDkkwBcCXejBeBqHFbEGz9+vCRpzpw5Vj/jQsQAAAC4GvJJAACAwjmsiJeXl+eorgAAAFAJkU8CAAAUziHXxMvNzZW7u7v27t3riO4AAABQyZBPAgAAFM0hZ+K5u7urcePGLHEAUKYSE63bIiLKehb2ifCMLdPtnKbg3YHDY21FAYAV8kkAAICiOezutDNmzFBMTIxOnTrlqC4BAABQiZBPAgAAFM5h18RbsGCBfv31VwUHB6tx48by9fW1+PnOnTsdNRQAFMrW2XkAgPKBfBIArNlamZGYbd0GoOJzWBHvrrvuclRXAAAAqITIJwEAAArnsCLerFmzHNUVAAAAKiHySQAAgMI5rIiXb8eOHdq/f79MJpNat26tDh06OHoIAAAAVGDkkwAqq3J3UzMAZcphRbwTJ05o+PDhSkxMVM2aNWUYhs6ePasePXpo5cqVqlevnqOGAgCXVpmTr4LXJEzcIMXGOmMmAMoj8kkAcIyC+Rf5GFAxOOzutI888ogyMzP1008/6dSpUzp9+rT27t2rzMxMTZo0yVHDAAAAoIIinwQAACicw87EW79+vTZu3KhWrVqZ21q3bq2FCxcqMjLSUcMAAACggiKfBOBU22ItnkZ4chdYAK7FYWfi5eXlycPDw6rdw8NDeXl5jhoGAAAAFRT5JAAAQOEcVsS77bbb9Oijj+r33383tx0/flxTpkxRz549HTUMAAAAKijySQAAgMI5bDnt66+/roEDB6pJkyZq2LChTCaTjh49qnbt2un999931DAAKilbF+ON8CzzaQAAShH5JAAAQOEcVsRr2LChdu7cqY0bN2r//v0yDEOtW7fW7bff7qghAAAAUIGRTwIAABTOYUU8Sfrqq6/09ddf68SJE8rLy9OuXbv04YcfSpLefvttRw4FACgHIjxjpW0FGsNjnTATAOUF+SQAXF2EZ6xVGzfhACo+h10Tb/bs2YqMjNRXX32ljIwMnT592uJRHIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHHjY2NVcuWLeXr66tatWrp9ttv13fffVesfQMAAIBtjswnAQAAKhqHnYm3ZMkSLVu2TFFRUdfUz6pVqzR58mQtWrRIt956q9544w316dNH+/btU6NGjaziDx8+rL59+2rcuHFavny5vvnmG02YMEH16tXT4MGDJUnJyckaNmyYnnnmGQ0aNEhr167V0KFDtXXrVnXq1MnucZs3b67XX39dTZs21aVLl/Svf/1LkZGR+vXXX1WvXr1r2m8AqKgSEws832D7GocA4Kh8EgAAoCJy2Jl42dnZCg8Pv+Z+5s+frzFjxmjs2LFq1aqV4uLi1LBhQy1evNhm/JIlS9SoUSPFxcWpVatWGjt2rO6//37NmzfPHBMXF6devXopJiZGLVu2VExMjHr27Km4uLhijXvPPffo9ttvV9OmTdWmTRvNnz9fmZmZ+vHHH695vwEAACo7R+WTAAAAFZHDinhjx441X6+kpLKzs7Vjxw5FRkZatEdGRmrbtoIXVfpLcnKyVXzv3r21fft25eTkFBmT32dJxs3OztbSpUvl5+en9u3bF7pPWVlZyszMtHgAAADAmiPySQAAgIrKYctpL1++rKVLl2rjxo1q166dPDw8LH4+f/78q/aRkZGhK1euKCAgwKI9ICBA6enpNrdJT0+3GZ+bm6uMjAwFBQUVGpPfZ3HG/eyzzzR8+HBdvHhRQUFBSkhIUN26dQvdp7lz52r27NlF7zgAAAAckk8CAABUVA4r4v3444+68cYbJUl79+61+JnJZCpWXwXjDcMosg9b8QXb7enTnpgePXpo165dysjI0JtvvqmhQ4fqu+++k7+/v825xcTEKDo62vw8MzNTDRs2LHRfgAplW6x1W8E7k9qKscneOLg67lgLoDCOyic3b96sl19+WTt27FBaWprWrl2ru+66q9D4xMRE9ejRw6p9//79atmypd3jAgAAlCaHFfE2bdp0zX3UrVtXbm5uVme/nThxwuosuXyBgYE2493d3VWnTp0iY/L7LM64vr6+uu6663Tdddepc+fOuv766xUfH6+YmBib8/Py8pKXl9dV9hwAAACOyCcl6cKFC2rfvr3uu+8+843O7HHw4EHVqFHD/JwblwEAAFfisGviOYKnp6dCQ0OVkJBg0Z6QkFDoRY7DwsKs4jds2KCOHTual2AUFpPfZ0nGzWcYhrKysq6+cwAAACgTffr00bPPPqu77767WNv5+/srMDDQ/HBzcyulGQIAABSfw87Ec5To6GhFRUWpY8eOCgsL09KlS5Wamqrx48dL+mt56vHjx/Xee+9JksaPH6/XX39d0dHRGjdunJKTkxUfH68VK1aY+3z00UfVrVs3vfjiixo4cKA+/vhjbdy4UVu3brV73AsXLui5557TnXfeqaCgIJ08eVKLFi3Sb7/9pn/84x9leIQAAABQGjp06KDLly+rdevWmjFjhs0ltn+XlZVl8WUuNzADAAClyeWKeMOGDdPJkyc1Z84cpaWlqW3btlq3bp0aN24sSUpLS1Nqaqo5PiQkROvWrdOUKVO0cOFCBQcHa8GCBRZLJ8LDw7Vy5UrNmDFDM2fOVLNmzbRq1Sp16tTJ7nHd3Nx04MABvfvuu8rIyFCdOnV08803a8uWLWrTpk0ZHR2gYkpMtG6LiCjrWcCZYmPtawOA0hAUFKSlS5cqNDRUWVlZev/999WzZ08lJiaqW7duhW7HDcwAAEBZcrkiniRNmDBBEyZMsPmzZcuWWbV1795dO3fuLLLPIUOGaMiQISUe19vbW2vWrClyewAAAJQ/LVq0UIsWLczPw8LCdOzYMc2bN6/IIh43MAMAAGXJpa6JBwAAALiCzp0765dffikyxsvLSzVq1LB4AAAAlBaKeAAAAEABKSkpCgoKcvY0AAAAzFxyOS0AAABQUufPn9evv/5qfn748GHt2rVLtWvXVqNGjaxulBYXF6cmTZqoTZs2ys7O1vLly7V69WqtXr3aWbsAAABghSIeAKDM2bqZCQA4yvbt2y3uLJt/3bpRo0Zp2bJlVjdKy87O1uOPP67jx4/Lx8dHbdq00eeff66+ffuW+dwBlD8RnrFWbYnZ1m0AcK0o4gEAAKBCiYiIkGEYhf684I3Spk6dqqlTp5byrAAAAK4N18QDAAAAAAAAXBxn4gFwSSy3BAAAQHnlsktst8Vat4XbaAPgkijiASgXbCVCAAAAgKPwJTIAV8dyWgAAAAAAAMDFcSYeAAAAAAB2YHUIAGfiTDwAAAAAAADAxVHEAwAAAAAAAFwcy2kBAAAAALCB5bMAXAlFPACA09lKkGNjbbWV+lQAAAAAwCVRxAMAAAAAVFzbYq3bwm20lXO2vhRNzLZuA1B+cU08AAAAAAAAwMVRxAMAAAAAAABcHMtpAQAAAACowPKvKxzh+f//G+GsmQC4FpyJBwAAAAAAALg4ingAAAAAAACAi2M5LVCZOfJOXbb6siH/VP58+af0A3Yp+D6rgHeWAwAAAABbOBMPAAAAAAAAcHEU8QAAAAAAAAAXx3JaAAAAAAAqkcTE//v/iHAbAY687A4Ah+FMPAAAAAAAAMDFcSYegFLz92/4AAAAAABAyVHEAwBULCz/AAAALijCM9aqLTHbug0ACsNyWgAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFcU08AAAAAEClFBv7f/8f4em0aQCAXTgTDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBx7s6eAAAAAAAAcJJtsc6eAQA7ueSZeIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHGzcnJ0ZNPPqkbbrhBvr6+Cg4O1siRI/X7779f+w4DrmxbrPXDhsRE6wdQ6ux8f5a4PwAAAABwES53Jt6qVas0efJkLVq0SLfeeqveeOMN9enTR/v27VOjRo2s4g8fPqy+fftq3LhxWr58ub755htNmDBB9erV0+DBgyVJycnJGjZsmJ555hkNGjRIa9eu1dChQ7V161Z16tTJrnEvXryonTt3aubMmWrfvr1Onz6tyZMn684779T27dvL9BgBAAAAAHA1EZ6xjuvM1hec4Q7sH8BVuVwRb/78+RozZozGjh0rSYqLi9OXX36pxYsXa+7cuVbxS5YsUaNGjRQXFydJatWqlbZv36558+aZi3hxcXHq1auXYmJiJEkxMTFKSkpSXFycVqxYYde4fn5+SkhIsBj7tdde0y233KLU1FSbBUagoih4Vl3iBik21hkzAQAAAACgcnKp5bTZ2dnasWOHIiMjLdojIyO1bds2m9skJydbxffu3Vvbt29XTk5OkTH5fZZkXEk6e/asTCaTatasWWhMVlaWMjMzLR4AAAAoPZs3b9aAAQMUHBwsk8mkjz766Krb2HN5FgCoiLgkDlB+uNSZeBkZGbpy5YoCAgIs2gMCApSenm5zm/T0dJvxubm5ysjIUFBQUKEx+X2WZNzLly9r2rRpuueee1SjRo1C92nu3LmaPXt2oT8HANjPVmIZEXH1uIjwUpgMAJd14cIFtW/fXvfdd595ZUZR7Lk8CwAAgLO5VBEvn8lksnhuGIZV29XiC7bb06e94+bk5Gj48OHKy8vTokWLitiTv5buRkdHm59nZmaqYcOGRW4DAACAkuvTp4/69Oljd7w9l2cBAABwNpcq4tWtW1dubm5WZ7+dOHHC6iy5fIGBgTbj3d3dVadOnSJj8vsszrg5OTkaOnSoDh8+rK+//rrIs/AkycvLS15eXkXGAAAAwHkKu/RKfHy8cnJy5OHhYXO7rKwsZWVlmZ9z2RQAAFCaXKqI5+npqdDQUCUkJGjQoEHm9oSEBA0cONDmNmFhYfr0008t2jZs2KCOHTuaE66wsDAlJCRoypQpFjHh4eHFGje/gPfLL79o06ZN5iIh4HJK+c5REZ6xUuGXiwQcwqF3UwOAIthzeRZbuGwKAAAoSy5VxJOk6OhoRUVFqWPHjgoLC9PSpUuVmpqq8ePHS/preerx48f13nvvSZLGjx+v119/XdHR0Ro3bpySk5MVHx9vvuusJD366KPq1q2bXnzxRQ0cOFAff/yxNm7cqK1bt9o9bm5uroYMGaKdO3fqs88+05UrV8xn7tWuXVuenp5ldYgAAADgYPZcnqUgLpsCAADKkssV8YYNG6aTJ09qzpw5SktLU9u2bbVu3To1btxYkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCyyuXxIeHq6VK1dqxowZmjlzppo1a6ZVq1apU6dOdo/722+/6ZNPPpEk3XjjjRZz3rRpkyJsXVkdAAAALs+ey7PYwmVTAABAWXK5Ip4kTZgwQRMmTLD5s2XLllm1de/eXTt37iyyzyFDhmjIkCElHrdJkybmb2QBcPt5AEDFYc/lWQC4AEdeMub/9xXh5AVVXD4EQHFUcfYEAAAAAEc6f/68du3apV27dkmSDh8+rF27dplXc8TExGjkyJHm+PHjx+vo0aOKjo7W/v379fbbbys+Pl6PP/64M6YPAABgk0ueiQcAAACU1Pbt29WjRw/z8/zr1o0aNUrLli0r0eVZAAAAnI0iHgCgXLNraXcp37EZgGuJiIgo8jIoJb08C4Dyj0vCACjPWE4LAAAAAAAAuDiKeAAAAAAAAICLYzktAAAAAACQZL3kOCLCGbMAYAtn4gEAAAAAAAAujiIeAAAAAAAA4OJYTgvAkq27eALlnK070SVusG6LjSzQwF1tAQAAClcwVyJPAkoVZ+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAKgQEp+PtXjOnVUBVCQU8QAAAAAAgE0Fry1MYRRwHpbTAgAAAAAAAC6OM/GASiI21kZbwTtxAgAAAAAAl0QRDyhtBW+7LnHrdQAAAKAMFFwKCgDlGUU8ABZIdAAAAAAAcD0U8QAAAAAA5ZOtVS8AUEFxYwsAAAAAAADAxXEmHlBBsSwWAAAATlfwTDmuDV2xcT1woFRRxAMqMQp9AAAAAACUDxTxUPlUtG8D7bwOSISnfXGlzVXmAdhiq7AdEVGggW+YAQAAADgBRTwAAAAAgGvhhhUAYIUbWwAAAAAAAAAujiIeAAAAAAAA4OJYTgsAQBHsuk4eAAAAAJQyzsQDAAAAAAAAXBxn4gEAAAAAyoWCZ8hzdjyAyoQiHmCLrbthhdtoK+9jAnCI2Fj72uzCZwEAAKhIyG0Ah2E5LQAAAAAAAODiOBMPAIBS4NCz8wAAAABUehTxAAAAAABA2bG1xNYWlt0CFlhOCwAAAAAAALg4zsQDAMCJCi6xjfDkTnsAAAAArFHEw//hrkHFxzEDyq0Iz1hnT6H0sVQFAFDBJSY6ewYoVQVzGXIWVHIU8QAXxoXxAQAAALiSgoVTVhAAZYdr4gEAAAAAAAAujjPxAAAAAADXzt7LOAAASsQlz8RbtGiRQkJC5O3trdDQUG3ZsqXI+KSkJIWGhsrb21tNmzbVkiVLrGJWr16t1q1by8vLS61bt9batWuLPe6aNWvUu3dv1a1bVyaTSbt27bqm/QQAAAAAAADs4XJFvFWrVmny5Ml66qmnlJKSoq5du6pPnz5KTU21GX/48GH17dtXXbt2VUpKiqZPn65JkyZp9erV5pjk5GQNGzZMUVFR2r17t6KiojR06FB99913xRr3woULuvXWW/XCCy+U3gEAALi8xETLBwAAAACUNpdbTjt//nyNGTNGY8eOlSTFxcXpyy+/1OLFizV37lyr+CVLlqhRo0aKi4uTJLVq1Urbt2/XvHnzNHjwYHMfvXr1UkxMjCQpJiZGSUlJiouL04oVK+weNyoqSpJ05MiRUtt/OJgjT+l3wvIA23fPtG6jiACUE6V9hzVXWMZk7127HXl3b+4UjkIsWrRIL7/8stLS0tSmTRvFxcWpa9euNmMTExPVo0cPq/b9+/erZcuWpT1VoPLgMxsASsylzsTLzs7Wjh07FBkZadEeGRmpbdu22dwmOTnZKr53797avn27cnJyiozJ77Mk49orKytLmZmZFg8AAACUruKu7sh38OBBpaWlmR/XX399Gc0YAACgaC5VxMvIyNCVK1cUEBBg0R4QEKD09HSb26Snp9uMz83NVUZGRpEx+X2WZFx7zZ07V35+fuZHw4YNr6k/AAAAXN3fV1m0atVKcXFxatiwoRYvXlzkdv7+/goMDDQ/3NzcymjGAFAxcRkSwHFcbjmtJJlMJovnhmFYtV0tvmC7PX0Wd1x7xMTEKDo62vw8MzOTQh5s4g8aAACOkb/KYtq0aRbt9qyy6NChgy5fvqzWrVtrxowZNpfY5svKylJWVpb5OSsuUKm4wiUc4BIK/jsmIqIUB2M5Nio5lyri1a1bV25ublZnv504ccLqLLl8gYGBNuPd3d1Vp06dImPy+yzJuPby8vKSl5fXNfUBAEBJ2fqCoFSTa8AFlGSVRVBQkJYuXarQ0FBlZWXp/fffV8+ePZWYmKhu3brZ3Gbu3LmaPXu2w+cPAOUZJycApcelinienp4KDQ1VQkKCBg0aZG5PSEjQwIEDbW4TFhamTz/91KJtw4YN6tixozw8PMwxCQkJmjJlikVMeHh4iccFAACAayvOKosWLVqoRYsW5udhYWE6duyY5s2bV2gRjxUXqDRK+6w7zuoDALu4VBFPkqKjoxUVFaWOHTsqLCxMS5cuVWpqqsaPHy/pr2Tp+PHjeu+99yRJ48eP1+uvv67o6GiNGzdOycnJio+PN991VpIeffRRdevWTS+++KIGDhyojz/+WBs3btTWrVvtHleSTp06pdTUVP3++++S/rrwsSTzNVMAAADgfI5aZdG5c2ctX7680J+z4gIAAJQllyviDRs2TCdPntScOXOUlpamtm3bat26dWrcuLEkKS0tzeKuYiEhIVq3bp2mTJmihQsXKjg4WAsWLNDgwYPNMeHh4Vq5cqVmzJihmTNnqlmzZlq1apU6depk97iS9Mknn+i+++4zPx8+fLgkadasWYqNjS2tQ1J89nyTxXUDnItvG4EKL8Iz1qrNanlJYqwiPK23tbq2TLh1jK0/O7GR1m0OVfCzq7L8LeH6O+WOo1ZZpKSkKCgoqDSmCAAAUGwuV8STpAkTJmjChAk2f7Zs2TKrtu7du2vnzp1F9jlkyBANGTKkxONK0ujRozV69Ogi+wAAAIDzFXd1R1xcnJo0aaI2bdooOztby5cv1+rVq7V69Wpn7gZgjS8WAKDScskiHgAAKB8KnhEY4cmNM+Aairu6Izs7W48//riOHz8uHx8ftWnTRp9//rn69u3rrF0AAACwQBEPcDB7/0HLXZsAAChdxVndMXXqVE2dOrUMZgWgOMiZAeD/UMQDyhlbRUIAAACgPLK6DmyEM2aBssRrDpQcRTygDPANIgBXYs+NMwAAAAC4Fop4KB3XcvfVghfmtbcvF7mgr607Upan/gEUX2n/XiY+b6v/0h3TJbjyxdtdeW4AAACokCjiAeLC7AAAAADgDH9fIcC/wYCiUcQDCsG1GgAAAAAAgKugiIdyy55rOtm6Fl1Ji3GO7AsAAACorLheNACUDEU8AABgpeBlBiQpNrLMpwEAsIcjr9N5Lde2dgAKfABQuCrOngAAAAAAAACAonEmHgAAAAAAcDquSw4UjSIeKo6Snvq/LVYRng6dCQCUugjPWMd1ZvPzs7T7L2WOXFoGAGWltD+7nLxUFgBwbSjiAQBQQXAdIQAAAKDioogHAADsUrBImLjBKdMAAAAAKiWKeKgwOAMFAAAAZa7gElVXWbrvQktnydNRquxdhs6lNlABUMQDAAAuy9bZf7GxzpgJAAAA4FxVnD0BAAAAAAAAAEXjTLzKyoVOry+o4BkWEZ6OvbW4I0/nZ2kAgIrKoXe/dVUsqwEAoHJzxh2hyTVwDSjioVygWAYApYfPWADAtSj4d8SRX8ADAP4PRTwAAFCqbBUJ+QceAFRcfDkEAKWDIh6KzdYFxbnIOAAgX0n/8WbrcgoAAKDycspZnvbccZplsnASingAAAAAAMDlsXQblR1FPAAAUOZYagUA5QeFE7iqq703/36Wf4lvmGjvTSFLGnctZ/pxRmClQxEP1yzCM1aJz9sRF1HqUwEAlCFn3MHW1t8c/r4AAACgMqji7AkAAAAAAAAAKBpn4sHM5t0Dw8t8GgAAAEDpKe1latfSP4BrYv43bWKspAp2kyxHfmawXLfcooiHIjnyrrM2i4QRjusfAAAAQOnjuqYA4BwspwUAAAAAAABcHGfiAQAAFBOXoABKkSOXb7nKklVXmQeAio/PmwqNIh6cilPxAQCupuClJGIjnTINACgzBXNyLnmDior3Oso7ingoUoRnbKUYEwDgfI78/OdMOQAAAFQ0FPEAAEC5di1ndRfcNnHDtcwEgNNVxGVkTtgnVssAlVBF/PysgCjiAQCASqHgMtkIT/u24x+zAABUTEX9jWepLVwRRTwAAAAAqGT4ggIoGtfPgyuiiFeJ8YcbAAAA5ZYjl37Z2xfLzQA4Gp8rKIYqzp4AAAAAAAAAgKJxJh4AAMD/xx3SAZQXV1tVU3DpH6twgGtT3N85oDRQxAMAAADKi4LLrsJjbUW5rpLOn+VmAFxcpbmGXkk/j8vb3ysXRRGvkuCbNwAAAMC1/D1Hd/Q/+Mn/AeeqNEU9lCmXvCbeokWLFBISIm9vb4WGhmrLli1FxiclJSk0NFTe3t5q2rSplixZYhWzevVqtW7dWl5eXmrdurXWrl1b7HENw1BsbKyCg4Pl4+OjiIgI/fTTT9e2swAAACgVpZFTonJLTLR8AIC9Cn5+FPV5wmcNCuNyZ+KtWrVKkydP1qJFi3TrrbfqjTfeUJ8+fbRv3z41atTIKv7w4cPq27evxo0bp+XLl+ubb77RhAkTVK9ePQ0ePFiSlJycrGHDhumZZ57RoEGDtHbtWg0dOlRbt25Vp06d7B73pZde0vz587Vs2TI1b95czz77rHr16qWDBw+qevXqZXeQAAAAUKTSyCkrpWtZxmrP0qkKtkz2amfeFPWPcf6hDqAwlfp6fLb+Ttj6+2JvnCPHdAKXOxNv/vz5GjNmjMaOHatWrVopLi5ODRs21OLFi23GL1myRI0aNVJcXJxatWqlsWPH6v7779e8efPMMXFxcerVq5diYmLUsmVLxcTEqGfPnoqLi7N7XMMwFBcXp6eeekp333232rZtq3fffVcXL17Uhx9+WKrHpLiuVtUHAACo6EojpwQAoDygHlBxudSZeNnZ2dqxY4emTZtm0R4ZGalt27bZ3CY5OVmRkZEWbb1791Z8fLxycnLk4eGh5ORkTZkyxSomv4hnz7iHDx9Wenq6xVheXl7q3r27tm3bpgcffNDm/LKyspSVlWV+fvbsWUlSZmZmYYfhml24nHX1IAAAKpmsHMu/vRfyHPv3sjT/tuf3bRhGqY1RkZRWTlmQM/I8XSjwvi3NsWyNVxy25majv4KrnLt2LfrnruTz9df2cwDIdy2fF8X9LHLk52zBvgpVyN+ruXP/7/9jYmwE2Po7ZOfflxL/jXRkX3YoTp7nUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQoKCio0Jj8Pu0ZN/+/tmKOHj1a6D7NnTtXs2fPtmpv2LBhodsAAIDS8ELpdv9MKfcv6dy5c/Lz8yv1ccq70sopC3KNPK/033cl58pzAwCUrav/TXjB7j8b9gY68u+Qa+R5LlXEy2cymSyeG4Zh1Xa1+ILt9vTpqJi/i4mJUXR0tPl5Xl6eTp06pTp16hS5HYqWmZmphg0b6tixY6pRo4azp1OhcazLDse67HCsyw7H2jEMw9C5c+cUHBzs7KmUK6WRU/5dZc3zSuv3+uabb9YPP/zgsP4qe5+8To7vszT6reyvU2n1W5lfp9Lqtzz0WV7zzuLkeS5VxKtbt67c3NysviE9ceKE1Tej+QIDA23Gu7u7q06dOkXG5Pdpz7iBgYGS/vqW9u/fxBY1N+mvJbdeXl4WbTVr1iw0HsVTo0aNcvXLWZ5xrMsOx7rscKzLDsf62nEGnv1KK6csqLLneY7+vXZzc3P450Rl7jMfr5NjlVa/lfV1Kq1+K/PrVFr9lpc+pfKZd9qb57nUjS08PT0VGhqqhIQEi/aEhASFh4fb3CYsLMwqfsOGDerYsaP52iWFxeT3ac+4ISEhCgwMtIjJzs5WUlJSoXMDAABA2SutnBKl6+GHH6bPcqC87H9pHdPy8lpV9mNamV+n0uq3vPRZ4RkuZuXKlYaHh4cRHx9v7Nu3z5g8ebLh6+trHDlyxDAMw5g2bZoRFRVljv/f//5nVK1a1ZgyZYqxb98+Iz4+3vDw8DD++9//mmO++eYbw83NzXjhhReM/fv3Gy+88ILh7u5ufPvtt3aPaxiG8cILLxh+fn7GmjVrjD179hgjRowwgoKCjMzMzDI4Mvi7s2fPGpKMs2fPOnsqFR7HuuxwrMsOx7rscKzhLKWRU+Iv/F6XD7xO5QOvU/nA61Q+VIbXyaWW00rSsGHDdPLkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHlaSpU6fq0qVLmjBhgk6fPq1OnTppw4YNql69ehkcGfydl5eXZs2aZbWEBY7HsS47HOuyw7EuOxxrOEtp5JT4C7/X5QOvU/nA61Q+8DqVD5XhdTIZhh33sAUAAAAAAADgNC51TTwAAAAAAAAA1ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OIh5cxpEjRzRmzBiFhITIx8dHzZo106xZs5SdnW0Rl5qaqgEDBsjX11d169bVpEmTrGL27Nmj7t27y8fHR/Xr19ecOXNU8B4uSUlJCg0Nlbe3t5o2baolS5aU+j66kueee07h4eGqWrWqatasaTOGY112Fi1apJCQEHl7eys0NFRbtmxx9pRc3ubNmzVgwAAFBwfLZDLpo48+svi5YRiKjY1VcHCwfHx8FBERoZ9++skiJisrS4888ojq1q0rX19f3Xnnnfrtt98sYk6fPq2oqCj5+fnJz89PUVFROnPmTCnvneuYO3eubr75ZlWvXl3+/v666667dPDgQYsYjjVQsdmTMxRkz+cCHKskn6GjR4+WyWSyeHTu3LlsJlyJFDfPI3d2juK8TomJiVa/OyaTSQcOHCjDGVc+V8v/balov08U8eAyDhw4oLy8PL3xxhv66aef9K9//UtLlizR9OnTzTFXrlxRv379dOHCBW3dulUrV67U6tWr9dhjj5ljMjMz1atXLwUHB+uHH37Qa6+9pnnz5mn+/PnmmMOHD6tv377q2rWrUlJSNH36dE2aNEmrV68u0312puzsbP3jH//QQw89ZPPnHOuys2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqanOnppLu3Dhgtq3b6/XX3/d5s9feuklzZ8/X6+//rp++OEHBQYGqlevXjp37pw5ZvLkyVq7dq1WrlyprVu36vz58+rfv7+uXLlijrnnnnu0a9curV+/XuvXr9euXbsUFRVV6vvnKpKSkvTwww/r22+/VUJCgnJzcxUZGakLFy6YYzjWQMV2tZzBFns+F+BYJf0MveOOO5SWlmZ+rFu3rgxmW3kUN88jd3aOkubjBw8etPj9uf7668toxpXT1fL/girk75MBuLCXXnrJCAkJMT9ft26dUaVKFeP48ePmthUrVhheXl7G2bNnDcMwjEWLFhl+fn7G5cuXzTFz5841goODjby8PMMwDGPq1KlGy5YtLcZ68MEHjc6dO5fm7rikd955x/Dz87Nq51iXnVtuucUYP368RVvLli2NadOmOWlG5Y8kY+3atebneXl5RmBgoPHCCy+Y2y5fvmz4+fkZS5YsMQzDMM6cOWN4eHgYK1euNMccP37cqFKlirF+/XrDMAxj3759hiTj22+/NcckJycbkowDBw6U8l65phMnThiSjKSkJMMwONZAZVJYzlCQPZ8LcKySfoaOGjXKGDhwYBnMsPIqbp5H7uwcxX2dNm3aZEgyTp8+XQazgy0F839bKuLvE2fiwaWdPXtWtWvXNj9PTk5W27ZtFRwcbG7r3bu3srKytGPHDnNM9+7d5eXlZRHz+++/68iRI+aYyMhIi7F69+6t7du3KycnpxT3qPzgWJeN7Oxs7dixw+oYRUZGatu2bU6aVfl3+PBhpaenWxxXLy8vde/e3Xxcd+zYoZycHIuY4OBgtW3b1hyTnJwsPz8/derUyRzTuXNn+fn5VdrX5+zZs5Jk/mzmWAMoyJ7PBTjWtXyGJiYmyt/fX82bN9e4ceN04sSJ0p5upVGSPI/cuexdSz7eoUMHBQUFqWfPntq0aVNpThMlUBF/nyjiwWUdOnRIr732msaPH29uS09PV0BAgEVcrVq15OnpqfT09EJj8p9fLSY3N1cZGRkO35fyiGNdNjIyMnTlyhWbxyj/GKL48o9dUcc1PT1dnp6eqlWrVpEx/v7+Vv37+/tXytfHMAxFR0erS5cuatu2rSSONQBr9nwuwLFK+hnap08fffDBB/r666/1yiuv6IcfftBtt92mrKys0pxupVGSPI/cueyV5HUKCgrS0qVLtXr1aq1Zs0YtWrRQz549tXnz5rKYMuxUEX+fKOKh1MXGxtq86OffH9u3b7fY5vfff9cdd9yhf/zjHxo7dqzFz0wmk9UYhmFYtBeMMf7/jRaKG1PelORYF4VjXXZsHSOOz7UryXG92nvc3n4qookTJ+rHH3/UihUrrH7GsQbKF0fnDLbwt+3aFed1Ksln6LBhw9SvXz+1bdtWAwYM0BdffKGff/5Zn3/+eantU2VU3N8FcmfnKM7r1KJFC40bN0433XSTwsLCtGjRIvXr10/z5s0ri6miGCra75O7syeAim/ixIkaPnx4kTFNmjQx///vv/+uHj16KCwsTEuXLrWICwwM1HfffWfRdvr0aeXk5Jgr7IGBgVbfmOQvC7hajLu7u+rUqWP/zrmY4h7ronCsy0bdunXl5uZm8xgV/NYI9gsMDJT017dvQUFB5va/H9fAwEBlZ2fr9OnTFmeInThxQuHh4eaYP/74w6r/P//8s9K9Po888og++eQTbd68WQ0aNDC3c6yB8smROUNB9nwuwD72vk4//vijQz5Dg4KC1LhxY/3yyy/FniuslSTPI3cue47Kxzt37qzly5c7enq4BhXx94kz8VDq6tatq5YtWxb58Pb2liQdP35cERERuummm/TOO++oShXLt2hYWJj27t2rtLQ0c9uGDRvk5eWl0NBQc8zmzZuVnZ1tERMcHGxORsPCwpSQkGDR94YNG9SxY0d5eHiUxmEoE8U51lfDsS4bnp6eCg0NtTpGCQkJ5uIGii8kJESBgYEWxzU7O1tJSUnm4xoaGioPDw+LmLS0NO3du9ccExYWprNnz+r77783x3z33Xc6e/ZspXl9DMPQxIkTtWbNGn399dcKCQmx+DnHGiifHJkzFGTP5wLsY+/r5KjP0JMnT+rYsWMWxVeUXEnyPHLnsueofDwlJYXfHRdTIX+fyvQ2GkARjh8/blx33XXGbbfdZvz2229GWlqa+ZEvNzfXaNu2rdGzZ09j586dxsaNG40GDRoYEydONMecOXPGCAgIMEaMGGHs2bPHWLNmjVGjRg1j3rx55pj//e9/RtWqVY0pU6YY+/btM+Lj4w0PDw/jv//9b5nuszMdPXrUSElJMWbPnm1Uq1bNSElJMVJSUoxz584ZhsGxLksrV640PDw8jPj4eGPfvn3G5MmTDV9fX+PIkSPOnppLO3funPl9K8mYP3++kZKSYhw9etQwDMN44YUXDD8/P2PNmjXGnj17jBEjRhhBQUFGZmamuY/x48cbDRo0MDZu3Gjs3LnTuO2224z27dsbubm55pg77rjDaNeunZGcnGwkJycbN9xwg9G/f/8y319neeihhww/Pz8jMTHR4nP54sWL5hiONVCxXS1nMAzDaNGihbFmzRrzc3s+F+BY9nyG/v11OnfunPHYY48Z27ZtMw4fPmxs2rTJCAsLM+rXr8/r5EBXy/OmTZtmREVFmePJnZ2juK/Tv/71L2Pt2rXGzz//bOzdu9eYNm2aIclYvXq1s3ahUrha/l8Zfp8o4sFlvPPOO4Ykm4+/O3r0qNGvXz/Dx8fHqF27tjFx4kTj8uXLFjE//vij0bVrV8PLy8sIDAw0YmNjjby8PIuYxMREo0OHDoanp6fRpEkTY/HixaW+j65k1KhRNo/1pk2bzDEc67KzcOFCo3Hjxoanp6dx0003GUlJSc6eksvbtGmTzffwqFGjDMMwjLy8PGPWrFlGYGCg4eXlZXTr1s3Ys2ePRR+XLl0yJk6caNSuXdvw8fEx+vfvb6SmplrEnDx50rj33nuN6tWrG9WrVzfuvfde4/Tp02W0l85X2OfyO++8Y47hWAMVmz05Q0k+F+BY9nyG/v11unjxohEZGWnUq1fP8PDwMBo1amSMGjXK6rMZ166oPG/UqFFG9+7dLeLJnZ2jOK/Tiy++aDRr1szw9vY2atWqZXTp0sX4/PPPnTDryuVq+X9l+H0yGcb/v6ofAAAAAAAAAJfENfEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAACgFERERmjx5srOnAaCCoIgHAAAAAAAAuDiKeAAAAAAAAICLo4gHAE62fv16denSRTVr1lSdOnXUv39/HTp0yNnTAgAAgAPk5uZq4sSJ5lxvxowZMgzD2dMCUA5RxAMAJ7tw4YKio6P1ww8/6KuvvlKVKlU0aNAg5eXlOXtqAAAAuEbvvvuu3N3d9d1332nBggX617/+pbfeesvZ0wJQDpkMvgIAAJfy559/yt/fX3v27FHbtm2dPR0AAACUUEREhE6cOKGffvpJJpNJkjRt2jR98skn2rdvn5NnB6C84Uw8AHCyQ4cO6Z577lHTpk1Vo0YNhYSESJJSU1OdPDMAAABcq86dO5sLeJIUFhamX375RVeuXHHirACUR+7OngAAVHYDBgxQw4YN9eabbyo4OFh5eXlq27atsrOznT01AAAAAICLoIgHAE508uRJ7d+/X2+88Ya6du0qSdq6dauTZwUAAABH+fbbb62eX3/99XJzc3PSjACUVxTxAMCJatWqpTp16mjp0qUKCgpSamqqpk2b5uxpAQAAwEGOHTum6OhoPfjgg9q5c6dee+01vfLKK86eFoByiCIeADhRlSpVtHLlSk2aNElt27ZVixYttGDBAkVERDh7agAAAHCAkSNH6tKlS7rlllvk5uamRx55RA888ICzpwWgHOLutAAAAAAAAICL4+60AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4QDm1atUqtWnTRj4+PjKZTNq1a5diY2NlMpks4hYtWqRly5Y5Z5Iu7sMPP1RcXJyzp3FNli1bJpPJpCNHjjh7Knaz9T7Nzs7W+PHjFRQUJDc3N914442SpCZNmmj06NFX7fP555/XRx995PjJ2unIkSMymUyaN2+e0+YAAKg4yPOunSvleREREYqIiCjx9iaTSbGxsQ6bT2nLz4sKvjftfV/bsm7dOqcfg4iICLVt29apcwAo4gHl0J9//qmoqCg1a9ZM69evV3Jyspo3b66xY8cqOTnZIpbkrnCulNxVJrbep4sXL9Ybb7yhp556Slu3btX7778vSVq7dq1mzpx51T6dXcQDAMBRyPMcgzzPeYKCgpScnKx+/fqZ24rzvrZl3bp1mj17dmlOGygX3J09AQDF9/PPPysnJ0f//Oc/1b17d3N71apV1aBBAyfOzNqlS5fk7e1t1zdsFcWlS5fk4+Pj7GmUyMWLF1W1atVSHaNBgwZW79O9e/fKx8dHEydOtGjv0KGDw8evjO9JAED5QZ7n2spznidJOTk5MplMcncvvVKAl5eXOnfubNFWlu9rwzB0+fLlcv06AYXhTDygnBk9erS6dOkiSRo2bJhMJpP59PyCp6M3adJEP/30k5KSkmQymWQymdSkSRNJUmJiokwmk5YvX67o6GgFBgbKx8dH3bt3V0pKisWY27dv1/Dhw9WkSRP5+PioSZMmGjFihI4ePWoRl7+0c8OGDbr//vtVr149Va1aVVlZWfr1119133336frrr1fVqlVVv359DRgwQHv27LHoI39eH374oZ588kkFBQWpWrVqGjBggP744w+dO3dODzzwgOrWrau6devqvvvu0/nz5y36MAxDixYt0o033igfHx/VqlVLQ4YM0f/+9z9zTEREhD7//HMdPXrUfGz+fuyys7P17LPPqmXLlvLy8lK9evV033336c8//7QYq0mTJurfv7/WrFmjDh06yNvb+6rfEq5fv149e/aUn5+fqlatqlatWmnu3LlFbiNJ3377rW699VZ5e3srODhYMTExysnJsRm7atUqhYWFydfXV9WqVVPv3r2tXtfRo0erWrVq2rNnjyIjI1W9enX17Nmz0PH//PNPPfDAA2rYsKH5mNx6663auHFjsfav4PvUZDLprbfe0qVLl8yvQ/5ZBfYspzWZTLpw4YLeffdd8/b5vxOOeE9K0pkzZ/TYY4+padOm8vLykr+/v/r27asDBw4UOq+cnByNGjVK1apV02effVbkPgAAIJHnlfc8zzAMvfTSS2rcuLG8vb1100036Ysvvig0vqDMzEyNGzdOderUUbVq1XTHHXfo559/thn7yy+/6J577pG/v7+8vLzUqlUrLVy40Obxfv/99/XYY4+pfv368vLy0q+//lroHBYvXqz27durWrVqql69ulq2bKnp06dbxBw/ftycE3p6eio4OFhDhgzRH3/8Icl6OW1x3te2jB492rxvf3898y8nYzKZNHHiRC1ZskStWrWSl5eX3n33XUnS7Nmz1alTJ9WuXVs1atTQTTfdpPj4eBmGYTXOhx9+qLCwMFWrVk3VqlXTjTfeqPj4+CLntnbtWlWtWlVjx45Vbm5ukbGAI3AmHlDOzJw5U7fccosefvhhPf/88+rRo4dq1KhhM3bt2rUaMmSI/Pz8tGjRIkl/fTP2d9OnT9dNN92kt956S2fPnlVsbKwiIiKUkpKipk2bSvrrD3GLFi00fPhw1a5dW2lpaVq8eLFuvvlm7du3T3Xr1rXo8/7771e/fv30/vvv68KFC/Lw8NDvv/+uOnXq6IUXXlC9evV06tQpvfvuu+rUqZNSUlLUokULq3n16NFDy5Yt05EjR/T4449rxIgRcnd3V/v27bVixQqlpKRo+vTpql69uhYsWGDe9sEHH9SyZcs0adIkvfjiizp16pTmzJmj8PBw7d69WwEBAVq0aJEeeOABHTp0SGvXrrUYOy8vTwMHDtSWLVs0depUhYeH6+jRo5o1a5YiIiK0fft2i2/2du7cqf3792vGjBkKCQmRr69voa9ffHy8xo0bp+7du2vJkiXy9/fXzz//rL179xa6jSTt27dPPXv2VJMmTbRs2TJVrVpVixYt0ocffmgV+/zzz2vGjBm67777NGPGDGVnZ+vll19W165d9f3336t169bm2OzsbN1555168MEHNW3atCKTj6ioKO3cuVPPPfecmjdvrjNnzmjnzp06efLkNe1fcnKynnnmGW3atElff/21JKlZs2ZFHo+C2992223q0aOHeeltwd+Ja3lPnjt3Tl26dNGRI0f05JNPqlOnTjp//rw2b96stLQ0tWzZ0mpOZ86c0d133639+/crKSlJoaGhdu8PAKDyIs8r33ne7NmzNXv2bI0ZM0ZDhgzRsWPHNG7cOF25csXqGBRkGIbuuusubdu2TU8//bRuvvlmffPNN+rTp49V7L59+xQeHq5GjRrplVdeUWBgoL788ktNmjRJGRkZmjVrlkV8TEyMwsLCtGTJElWpUkX+/v4257By5UpNmDBBjzzyiObNm6cqVaro119/1b59+8wxx48f180336ycnBxNnz5d7dq108mTJ/Xll1/q9OnTCggIsOq3OO9rW2bOnKkLFy7ov//9r8XS26CgIPP/f/TRR9qyZYuefvppBQYGmvfxyJEjevDBB9WoUSNJf30p/sgjj+j48eN6+umnzds//fTTeuaZZ3T33Xfrsccek5+fn/bu3WtVzP67f/3rX3riiScUGxurGTNm2L0/wDUxAJQ7mzZtMiQZ//nPfyzaZ82aZRT8tW7Tpo3RvXv3Qvu46aabjLy8PHP7kSNHDA8PD2Ps2LGFjp+bm2ucP3/e8PX1NV599VVz+zvvvGNIMkaOHHnVfcjNzTWys7ON66+/3pgyZYrVvAYMGGARP3nyZEOSMWnSJIv2u+66y6hdu7b5eXJysiHJeOWVVyzijh07Zvj4+BhTp041t/Xr189o3Lix1dxWrFhhSDJWr15t0f7DDz8YkoxFixaZ2xo3bmy4ubkZBw8evOo+nzt3zqhRo4bRpUsXi2Nuj2HDhhk+/6+9O4+rouz/P/4+somIR1zYci0TF9xSU9QSU3HJrWy1UMssl/Q2RMtWMo3KJUvvtMVE09K726xMI8lEbxfKjXLLzDBMQcwQlBQU5veHP863I4uAB84BXs/HYx41M9fMfGbO0T59znXN5e5uJCcnW7ZdvnzZaNasmSHJSEhIMAzDMBITEw1nZ2djwoQJea7t6+tr3HfffZZtI0aMMCQZH374YZFiqF69ujFp0qQC9xf1/vL7no4YMcLw8PDI07Zhw4bGiBEjrhmbh4dHvu1s8Z2cPn26IcmIiYkp8NiEhARDkjFr1iwjISHBaNGihdGiRQvj2LFj17wuAAD/RJ73f8pTnpeammpUrVrVuOuuu6y2b9u2zZCU7+f0T19//bUhyeqZG4ZhzJw505BkvPTSS5Ztffr0MerVq2ekpaVZtX3yySeNqlWrGn/99ZdhGP/3vG+//fZrxp97fM2aNQtt8+ijjxouLi7GwYMHC2yTmxctWbLEsq043+v8jB8/vsB2kgyz2Wy574JkZ2cbly5dMqZPn27Url3b8mfjt99+M5ycnIyHHnqo0OO7d+9utGzZ0sjOzjaefPJJw9XV1Vi+fPk1YwdsieG0QCU3bNgwqy7sDRs2VJcuXbRp0ybLtvPnz+vpp59WkyZN5OzsLGdnZ1WvXl0ZGRk6dOhQnnMOHTo0z7bLly/r1VdfVYsWLeTq6ipnZ2e5urrqyJEj+Z5jwIABVuvNmzeXJKsX5OZu/+uvvyxDLb766iuZTCY9/PDDunz5smXx9fVVmzZtFBsbe81n8tVXX6lmzZoaOHCg1Tnatm0rX1/fPOdo3bq1mjZtes3zbt++Xenp6Ro3blyx3x2zadMm9ezZ0+rXTScnJ91///1W7b755htdvnxZw4cPt4q9atWq6t69e773n9/nlZ9bb71VUVFRmjFjhuLi4vIM5b2e+ytt1/Od/Prrr9W0aVP16tXrmtfZs2ePOnfuLB8fH23btk0NGza06X0AKB+2bNmigQMHyt/fXyaTqUQT73zzzTfq3LmzPD09VbduXQ0dOlQJCQm2DxYVGnleXqWV5+3YsUMXL17UQw89ZLW9S5cuRcoHcj+Tq48fNmyY1frFixe1ceNG3XXXXapWrZrVPfTv318XL15UXFyc1THFyfXOnj2rBx98UF988YX+/PPPPG2+/vpr9ejRw/KZOYo77rhDXl5eebZ/99136tWrl8xms5ycnOTi4qIXX3xRZ86cUUpKiiQpJiZG2dnZGj9+/DWvc/HiRQ0ZMkQrVqzQhg0b8nxeQGmjiAdUcr6+vvlu++cQyWHDhmnBggV67LHH9M033+iHH37Qzp07VbduXV24cCHP8f/s2p4rLCxML7zwgoYMGaK1a9fq+++/186dO9WmTZt8z1GrVi2rdVdX10K3X7x4UZJ06tQpGYYhHx8fubi4WC1xcXH5JiNXO3XqlM6ePStXV9c850hOTs5zjvzuNz+571kpyct7z5w5U+BndXXsktSxY8c8sa9atSpP7NWqVSvycIZVq1ZpxIgR+uCDDxQUFKRatWpp+PDhSk5Ovu77K23X8508ffp0ke8pJiZGp06d0mOPPaaaNWvaKnwA5UxGRobatGmjBQsWlOj43377TYMHD9Ydd9yh+Ph4ffPNN/rzzz9199132zhSVHTkeXmVVp6X+0yLkq8VdLyzs7Nq165d6LFnzpzR5cuXNX/+/Dzx9+/fX5JKfA+hoaH68MMP9fvvv2vo0KHy9vZWp06dFBMTY2lTnLyoLOV3jz/88INCQkIkSe+//762bdumnTt36rnnnpMky3ezODlsSkqKvvnmGwUFBalLly62Ch8oMt6JB1RyuQWYq7flJhBpaWn66quv9NJLL+mZZ56xtMnMzNRff/2V7znz64W1fPlyDR8+XK+++qrV9j///NOmxY46derIZDLpf//7X573wkh53xVT0Dlq166t6OjofPd7enparRe111ndunUlSX/88UeR2v9T7dq1C/ys/in3vTX//e9/i/Srb3F6zNWpU0fz5s3TvHnzlJiYqC+//FLPPPOMUlJSFB0dfV33V9qu5ztZt27dIt/TlClTdPToUUtPyOHDh19X3ADKp379+uX7HqtcWVlZev7557VixQqdPXtWgYGBev311y0vet+zZ4+ys7M1Y8YMValy5Tf38PBwDR48WJcuXZKLi0tZ3AYqAPK8/M9RGnle7jMt6JnnTjpS2PGXL1/WmTNnrAp5V5/Py8tLTk5OCg0NLbDnWOPGja3Wi5PvPfLII3rkkUeUkZGhLVu26KWXXtKAAQP0yy+/qGHDhsXKi8pSfve4cuVKubi46KuvvlLVqlUt26/uHf3PHLZ+/fqFXqdBgwaaO3eu7rrrLt1999369NNPrc4NlDZ64gEVnJubW76/gOb65JNPrGZn+v3337V9+3bL/0iYTCYZhpEnKfrggw+UnZ1d5DhMJlOec6xbt04nTpwo8jmKYsCAATIMQydOnFCHDh3yLK1atbK0LejZDBgwQGfOnFF2dna+57jWi4kL0qVLF5nNZi1atCjfGbEK06NHD23cuNHS006SsrOztWrVKqt2ffr0kbOzs44ePZpv7B06dChR7Fdr0KCBnnzySfXu3Vt79uyRdH33d72u9T3PT1G/k/369dMvv/ximXSjMFWqVNG7776rf/3rXxo5cqQWLlxYrJgAVA6PPPKItm3bppUrV+qnn37Svffeq759++rIkSOSpA4dOsjJyUlLlixRdna20tLS9NFHHykkJIQCHqyQ5zlOnte5c2dVrVpVK1assNq+ffv2QidHyNWjRw9JynP81ZOYVatWTT169NDevXvVunXrfO/h6t58JeHh4aF+/frpueeeU1ZWlg4cOCDpSl60adMmHT58+LqvURy536/i5Hsmk0nOzs5ycnKybLtw4YI++ugjq3YhISFycnIqct4WEhKib775Rlu2bNGAAQOUkZFR5JiA60VPPKCCa9WqlVauXKlVq1bpxhtvVNWqVa0SnJSUFN11110aPXq00tLS9NJLL6lq1aqaNm2apCuzfN5+++2aNWuW6tSpo0aNGmnz5s1avHhxsX5ZHTBggKKiotSsWTO1bt1au3fv1qxZs2zeHb9r1656/PHH9cgjj2jXrl26/fbb5eHhoaSkJG3dulWtWrXS2LFjLc/ms88+08KFC9W+fXtVqVJFHTp00AMPPKAVK1aof//++te//qVbb71VLi4u+uOPP7Rp0yYNHjxYd911V7Fjq169uubMmaPHHntMvXr10ujRo+Xj46Nff/1VP/74Y6HDrp5//nl9+eWXuuOOO/Tiiy+qWrVq+ve//50naWjUqJGmT5+u5557Tr/99pv69u0rLy8vnTp1Sj/88IM8PDz08ssvFzv2tLQ09ejRQ8OGDVOzZs3k6empnTt3Kjo62jK863ru73q1atVKsbGxWrt2rfz8/OTp6XnNJLyo38lJkyZp1apVGjx4sJ555hndeuutunDhgjZv3qwBAwZYku5/mjNnjjw9PTVu3DidP39eU6ZMsen9Aii/jh49qk8++UR//PGH/P39JV3pZRcdHa0lS5bo1VdfVaNGjbRhwwbde++9euKJJ5Sdna2goCCtX7/eztHD0ZDnOU6e5+XlpfDwcM2YMUOPPfaY7r33Xh0/flwRERFFGk4bEhKi22+/XVOnTlVGRoY6dOigbdu25Sk4SdJbb72lbt266bbbbtPYsWPVqFEjnTt3Tr/++qvWrl1bpB8e8zN69Gi5u7ura9eu8vPzU3JysiIjI2U2m9WxY0dJ0vTp0/X111/r9ttv17PPPqtWrVrp7Nmzio6OVlhYmJo1a1aia19L7vf69ddfV79+/eTk5KTWrVtbhlzn584779TcuXM1bNgwPf744zpz5oxmz56dp+DcqFEjPfvss3rllVd04cIFPfjggzKbzTp48KD+/PPPfHPnbt26aePGjerbt69CQkK0fv16mc1m2940kB97zagBoOSKM7vTsWPHjJCQEMPT09OQZJmlK/ccH330kTFx4kSjbt26hpubm3HbbbcZu3btsjrHH3/8YQwdOtTw8vIyPD09jb59+xr79+/PM3No7qxlO3fuzBNzamqqMWrUKMPb29uoVq2a0a1bN+N///uf0b17d6vZugq6t4LOnXvPp0+fttr+4YcfGp06dTI8PDwMd3d346abbjKGDx9udW9//fWXcc899xg1a9Y0TCaT1bO7dOmSMXv2bKNNmzZG1apVjerVqxvNmjUznnjiCePIkSOWdg0bNjTuvPPOPPdbmPXr1xvdu3c3PDw8jGrVqhktWrQwXn/99Wset23bNqNz586Gm5ub4evra0yZMsV47733rGanzfX5558bPXr0MGrUqGG4ubkZDRs2NO655x7j22+/tbQpaEbY/Fy8eNEYM2aM0bp1a6NGjRqGu7u7ERAQYLz00ktGRkZGse6vNGanjY+PN7p27WpUq1bNagY4W3wnc9v+61//Mho0aGC4uLgY3t7exp133mn8/PPPhmFYz077T7NmzTIkGS+++OI17wFAxSTJWLNmjWX9P//5jyHJ8PDwsFqcnZ0tM4gnJSUZN998szFlyhRjz549xubNm43u3bsbPXv2LPbs5ih/yPPy3nN5yfNycnKMyMhIo379+oarq6vRunVrY+3atfnmFvk5e/as8eijjxo1a9Y0qlWrZvTu3dv4+eef88xOaxhXco9HH33UuOGGGwwXFxejbt26RpcuXYwZM2ZY2hT0vAuydOlSo0ePHoaPj4/h6upq+Pv7G/fdd5/x008/WbU7fvy48eijjxq+vr6Gi4uLpd2pU6csscnGs9NmZmYajz32mFG3bl3L55mb/0oyxo8fn+9xH374oREQEGC4ubkZN954oxEZGWksXrw43/x52bJlRseOHS3fiXbt2lndQ+7stP+0f/9+w9fX17jlllvyfE+B0mAyjDIe8wTAIcTGxqpHjx769NNPdc8999g7HAAAKiSTyaQ1a9ZoyJAhkq5MEvTQQw/pwIEDVkO8pCs9mn19ffXCCy/o66+/1q5duyz7ct/VtGPHDnXu3LksbwHlEHkeAFRMDKcFAAAAyki7du2UnZ2tlJQU3Xbbbfm2+fvvv/MU+HLXc3JySj1GAADgmJjYAgAAALCh8+fPKz4+XvHx8ZKkhIQExcfHKzExUU2bNtVDDz2k4cOH67PPPlNCQoJ27typ119/3fLOuzvvvFM7d+7U9OnTdeTIEe3Zs0ePPPKIGjZsqHbt2tnxzgAAgD0xnBYAAACwodyhjFcbMWKEoqKidOnSJc2YMUPLli3TiRMnVLt2bQUFBenll1+2vLx95cqVeuONN/TLL7+oWrVqCgoK0uuvv15qL40HAACOjyIeAAAAAAAA4OAYTgsAAAAAAAA4OIp4AAAAAAAAgINjdtoylpOTo5MnT8rT01Mmk8ne4QAAgHLAMAydO3dO/v7+qlKF32AdFXkeAAAoruLkeRTxytjJkydVv359e4cBAADKoePHj6tevXr2DgMFIM8DAAAlVZQ8jyJeGfP09JR05cOpUaOGnaMBAADlQXp6uurXr2/JI+CYyPMAAEBxFSfPs2sRLzIyUp999pl+/vlnubu7q0uXLnr99dcVEBBgaTNy5EgtXbrU6rhOnTopLi7Osp6Zmanw8HB98sknunDhgnr27Kl33nnHqoKZmpqqiRMn6ssvv5QkDRo0SPPnz1fNmjUtbRITEzV+/Hh99913cnd317BhwzR79my5urpa2uzbt09PPvmkfvjhB9WqVUtPPPGEXnjhhSIPmchtV6NGDZI7AABQLAzRdGzkeQAAoKSKkufZ9aUqmzdv1vjx4xUXF6eYmBhdvnxZISEhysjIsGrXt29fJSUlWZb169db7Z80aZLWrFmjlStXauvWrTp//rwGDBig7OxsS5thw4YpPj5e0dHRio6OVnx8vEJDQy37s7OzdeeddyojI0Nbt27VypUrtXr1ak2ePNnSJj09Xb1795a/v7927typ+fPna/bs2Zo7d24pPSEAAAAAAABAMhmGYdg7iFynT5+Wt7e3Nm/erNtvv13SlZ54Z8+e1eeff57vMWlpaapbt64++ugj3X///ZL+730k69evV58+fXTo0CG1aNFCcXFx6tSpkyQpLi5OQUFB+vnnnxUQEKCvv/5aAwYM0PHjx+Xv7y9JWrlypUaOHKmUlBTVqFFDCxcu1LRp03Tq1Cm5ublJkl577TXNnz9ff/zxR5Gqpunp6TKbzUpLS+MXWgAAUCTkD+UDnxMAACiu4uQPDjW9WVpamiSpVq1aVttjY2Pl7e2tpk2bavTo0UpJSbHs2717ty5duqSQkBDLNn9/fwUGBmr79u2SpB07dshsNlsKeJLUuXNnmc1mqzaBgYGWAp4k9enTR5mZmdq9e7elTffu3S0FvNw2J0+e1LFjx/K9p8zMTKWnp1stAAAAAAAAQHE4zMQWhmEoLCxM3bp1U2BgoGV7v379dO+996phw4ZKSEjQCy+8oDvuuEO7d++Wm5ubkpOT5erqKi8vL6vz+fj4KDk5WZKUnJwsb2/vPNf09va2auPj42O138vLS66urlZtGjVqlOc6ufsaN26c5xqRkZF6+eWXi/k0AACwDcMwdPnyZatXTMDxODk5ydnZmXfeAQCAIiHHKz9smec5TBHvySef1E8//aStW7dabc8dIitJgYGB6tChgxo2bKh169bp7rvvLvB8hmFYPaD8HpYt2uSORi7ow5g2bZrCwsIs67mzjgAAUNqysrKUlJSkv//+296hoAiqVasmPz8/qwm1AAAArkaOV/7YKs9ziCLehAkT9OWXX2rLli1WM8rmx8/PTw0bNtSRI0ckSb6+vsrKylJqaqpVb7yUlBR16dLF0ubUqVN5znX69GlLTzpfX199//33VvtTU1N16dIlqza5vfL+eR1JeXrx5XJzc7MafgsAQFnIyclRQkKCnJyc5O/vL1dXV3p5OSjDMJSVlaXTp08rISFBN998s6pUcag3ngAAAAdBjle+2DrPs2sRzzAMTZgwQWvWrFFsbGy+w1GvdubMGR0/flx+fn6SpPbt28vFxUUxMTG67777JElJSUnav3+/3njjDUlSUFCQ0tLS9MMPP+jWW2+VJH3//fdKS0uzFPqCgoI0c+ZMJSUlWc69YcMGubm5qX379pY2zz77rLKysizV0w0bNsjf3z/PMFsAAOwpKytLOTk5ql+/vqpVq2bvcHAN7u7ucnFx0e+//66srCxVrVrV3iEBAAAHRI5X/tgyz7Prz7zjx4/X8uXL9fHHH8vT01PJyclKTk7WhQsXJEnnz59XeHi4duzYoWPHjik2NlYDBw5UnTp1dNddd0mSzGazRo0apcmTJ2vjxo3au3evHn74YbVq1Uq9evWSJDVv3lx9+/bV6NGjFRcXp7i4OI0ePVoDBgxQQECAJCkkJEQtWrRQaGio9u7dq40bNyo8PFyjR4+2zA4ybNgwubm5aeTIkdq/f7/WrFmjV199VWFhYVS+AQAOiR5d5QefFQAAKCryhvLFVp+XXT/1hQsXKi0tTcHBwfLz87Msq1atknTl5X/79u3T4MGD1bRpU40YMUJNmzbVjh075OnpaTnPm2++qSFDhui+++5T165dVa1aNa1du1ZOTk6WNitWrFCrVq0UEhKikJAQtW7dWh999JFlv5OTk9atW6eqVauqa9euuu+++zRkyBDNnj3b0sZsNismJkZ//PGHOnTooHHjxiksLMzqnXcAAAAAAACArZmM3JkZUCbS09NlNpuVlpZm6eEHAICtXbx4UQkJCWrcuDFDM8uJwj4z8ofygc8JAFDayPHKJ1vlefS/BAAAAAAAABwcRTwAAFBhGYahxx9/XLVq1ZLJZFJ8fLxd4wkODtakSZPsGgMAAICjee211xQUFFSsYypjnmfX2WkBAABKU3R0tKKiohQbG6sbb7xRderUsXdIAAAAuMqPP/6oNm3aFOuYypjnUcQDAAcWEWH9T8AWyvr7ZM/v79GjR+Xn56cuXbrYLwgAQKVX0H8LyfFgS2X5fbL1tX788UdNnDixWMdUxjyP4bQAAMAhnT59Wo8//rh8fHzk7u6uNm3aaMuWLUU+fuTIkZowYYISExNlMpnUqFEjSVJmZqYmTpwob29vVa1aVd26ddPOnTstxzVq1Ejz5s2zOlfbtm0V8Y9sNTg4WBMnTtTUqVNVq1Yt+fr6Wu2XpIyMDA0fPlzVq1eXn5+f5syZU9xHAAAAUOEcOnRIwcHBcnd3V7t27bRr1y798ssvxeqJV1nzPIp4AADA4fz+++9q3bq1UlNT9cUXX+inn37ShAkT5OnpWeRzvPXWW5o+fbrq1aunpKQkSwI3depUrV69WkuXLtWePXvUpEkT9enTR3/99VexYly6dKk8PDz0/fff64033tD06dMVExNj2T9lyhRt2rRJa9as0YYNGxQbG6vdu3cX6xoAAAAVyc8//6xOnTqpQ4cO2r9/v1588UUNHjxYhmGodevWRT5PZc3zGE4LAAAcztixY9WsWTP95z//kclkkiTdfPPNxTqH2WyWp6ennJyc5OvrK+nKr6YLFy5UVFSU+vXrJ0l6//33FRMTo8WLF2vKlClFPn/r1q310ksvWWJbsGCBNm7cqN69e+v8+fNavHixli1bpt69e0u6kgzWq1evWPcAAABQkYwfP16DBw/W7NmzJUk33XST/vOf/2jPnj3y8PAo8nkqa55HEQ8AADiUxMREff3119qzZ4+lgGcrR48e1aVLl9S1a1fLNhcXF9166606dOhQsc519a/Ffn5+SklJsVwnKyvLapa1WrVqKSAg4DqiBwAAKL9+//13fffdd9qzZ4/VdhcXl2JPapGfypDnMZwWAAA4lL1798rV1VXt2rXLd3+nTp20a9cuSdKIESO0cOHCIp/bMAxJylMcNAzDsq1KlSqWdrkuXbqU51wuLi5W6yaTSTk5OVbXAQAAwBXx8fFydnZWq1atrLbv2bNHbdu2lUSedy0U8QAAgENxcXHR5cuX9ffff+e7/4UXXtCrr76qOXPmqHr16ho7dmyRz92kSRO5urpq69atlm2XLl3Srl271Lx5c0lS3bp1lZSUZNmfnp6uhISEYt1DkyZN5OLiori4OMu21NRU/fLLL8U6DwAAQEVRpUoV5eTkKCsry7Jt/fr1OnDggKWIR55XOIbTAgAAh9KpUyeZzWaNHTtWzzzzjAzD0JYtWxQcHKxmzZppwIABev7553X+/HmtX7++WOf28PDQ2LFjNWXKFNWqVUsNGjTQG2+8ob///lujRo2SJN1xxx2KiorSwIED5eXlpRdeeEFOTk7Fuk716tU1atQoTZkyRbVr15aPj4+ee+45VanC76cAAKByat++vVxcXBQeHq7w8HDt37/fUqTLHU5Lnlc4ingAAMCh1K5dW2vXrtWUKVPUsWNHubq66tZbb9X9998vSfrhhx909uxZNW3aVM7OxU9lXnvtNeXk5Cg0NFTnzp1Thw4d9M0338jLy0uSNG3aNP32228aMGCAzGazXnnllWL/QitJs2bN0vnz5zVo0CB5enpq8uTJSktLK/Z5AAAAKgJ/f3998MEHmjZtmlauXKl27dppxIgRev/993XDDTdIIs+7FpPBS1vKVHp6usxms9LS0lSjRg17hwPAwUVEWP8TKKqLFy8qISFBjRs3VtWqVe0djs2cOHFC/fr10xdffKG7775bH3/8sWV4RHlX2GdG/lA+8DkBKEhBuRw5HoqrouZ4EnleUfIHxnQAAIBy4cKFC7rnnnu0YMECNW7cWFOnTtWMGTPsHRYAAACuE3le0TCcFgAAlAvu7u7asWOHZf3BBx/Ugw8+aMeIAAAAYAvkeUVDTzwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAABUWJGRkTKZTJo0aVKh7TZv3qz27duratWquvHGG7Vo0aKyCRAAAKCIKOIBQDkQEXFlAQAU3c6dO/Xee++pdevWhbZLSEhQ//79ddttt2nv3r169tlnNXHiRK1evbqMIgUAALg2ingAAACocM6fP6+HHnpI77//vry8vAptu2jRIjVo0EDz5s1T8+bN9dhjj+nRRx/V7NmzyyhaAACAa6OIBwAAgApn/PjxuvPOO9WrV69rtt2xY4dCQkKstvXp00e7du3SpUuXCjwuMzNT6enpVgsAAEBpoYgHAACACmXlypXas2ePIiMji9Q+OTlZPj4+Vtt8fHx0+fJl/fnnnwUeFxkZKbPZbFnq169/XXEDAAAUhiIeAACosIKDg685oQEqluPHj+tf//qXli9frqpVqxb5OJPJZLVuGEa+2/9p2rRpSktLsyzHjx8vWdAAAFRyr732moKCgop1TGXM85ztHQAAAChj2yPK9npdyvh6pSQ4OFht27bVvHnz7B0KCrF7926lpKSoffv2lm3Z2dnasmWLFixYoMzMTDk5OVkd4+vrq+TkZKttKSkpcnZ2Vu3atQu8lpubm9zc3Gx7AwAAlFRZ5ng2zu9+/PFHtWnTxqbnLI7ykudRxAMAAECF0bNnT+3bt89q2yOPPKJmzZrp6aefzlPAk6SgoCCtXbvWatuGDRvUoUMHubi4lGq8ACqeiAh7RwCUPz/++KMmTpxo7zAcHsNpAaAMRUT83wKgcKdPn9bjjz8uHx8fubu7q02bNtqyZct1nTMzM1MTJ06Ut7e3qlatqm7dumnnzp2W/f/973/VqlUrubu7q3bt2urVq5cyMjI0cuRIbd68WW+99ZZMJpNMJpOOHTt2nXeI0uDp6anAwECrxcPDQ7Vr11ZgYKCkK8Nghw8fbjlmzJgx+v333xUWFqZDhw7pww8/1OLFixUeHm6v2wAAoMI6dOiQgoOD5e7urnbt2mnXrl365ZdfrrsnXmXI8yjiAQAAh/P777+rdevWSk1N1RdffKGffvpJEyZMkKen53Wdd+rUqVq9erWWLl2qPXv2qEmTJurTp4/++usvJSUl6cEHH9Sjjz6qQ4cOKTY2VnfffbcMw9Bbb72loKAgjR49WklJSUpKSmISg3IsKSlJiYmJlvXGjRtr/fr1io2NVdu2bfXKK6/o7bff1tChQ+0YJQAAFc/PP/+sTp06qUOHDtq/f79efPFFDR48WIZhqHXr1td17sqQ5zGcFgDsJLc3Hr3ygLzGjh2rZs2a6T//+Y9lYoGbb775us6ZkZGhhQsXKioqSv369ZMkvf/++4qJidHixYvVs2dPXb58WXfffbcaNmwoSWrVqpXleFdXV1WrVk2+vr7XFQfKXmxsrNV6VFRUnjbdu3fXnj17yiYgAAAqqfHjx2vw4MGaPXu2JOmmm27Sf/7zH+3Zs0ceHh4lPm9lyfPoiQcAABxKYmKivv76a82dO7fQmUGL6+jRo7p06ZK6du1q2ebi4qJbb71Vhw4dUps2bdSzZ0+1atVK9957r95//32lpqba7PoAAACV2e+//67vvvtOYWFhVttdXFyueyhtZcnzKOIBAACHsnfvXrm6uqpdu3b57u/UqZN27dolSRoxYoQWLlxYpPMahiFJeQqDhmHIZDLJyclJMTEx+vrrr9WiRQvNnz9fAQEBSkhIuI67AQAAgCTFx8fL2dnZqgecJO3Zs0dt27aVRJ53LRTxAACAQ3FxcdHly5f1999/57v/hRde0Kuvvqo5c+aoevXqGjt2bJHO26RJE7m6umrr1q2WbZcuXdKuXbvUvHlzSVcSv65du+rll1+2FBPXrFkj6cowi+zs7Ou8OwAAgMqpSpUqysnJUVZWlmXb+vXrdeDAAUsRjzyvcLwTDwAAOJROnTrJbDZr7NixeuaZZ2QYhrZs2aLg4GA1a9ZMAwYM0PPPP6/z589r/fr1RT6vh4eHxo4dqylTpqhWrVpq0KCB3njjDf39998aNWqUvv/+e23cuFEhISHy9vbW999/r9OnT1sSv0aNGun777/XsWPHVL16ddWqVUtVqvB7KAAAQFG0b99eLi4uCg8PV3h4uPbv328p0uUOpyXPK5zjRQQAACq12rVra+3atTpy5Ig6duyobt266fPPP5ePj48k6YcfftDZs2dVs2ZNOTsX7/fI1157TUOHDlVoaKhuueUW/frrr/rmm2/k5eWlGjVqaMuWLerfv7+aNm2q559/XnPmzLG8HDk8PFxOTk5q0aKF6tatazW7KQAAAArn7++vDz74QGvXrlWHDh301ltvacSIEapTp45uuOEGSeR512IycgcOo0ykp6fLbDYrLS1NNWrUsHc4AMpYfjPRFjY77dX7mMkWRXXx4kUlJCSocePGqlq1qr3DsZkTJ06oX79++uKLL3T33Xfr448/tvyCWt4V9pmRP5QPfE4ApOLla+R2KK6KmuNJ5HlFyR/oiQcAAMqFCxcu6J577tGCBQvUuHFjTZ06VTNmzLB3WAAAALhO5HlFwzvxAABAueDu7q4dO3ZY1h988EE9+OCDdowIAAAAtkCeVzT0xAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAoAIzDMPeIaCI+KwAAEBRkTeUL7b6vCjiAQBQAbm4uEiS/v77bztHgqLK/axyPzsAAICrkeOVT7bK85xtEQwAAHAsTk5OqlmzplJSUiRJ1apVk8lksnNUyI9hGPr777+VkpKimjVrysnJyd4hAQAAB0WOV77YOs+jiAcAQAXl6+srSZYkD46tZs2als8MAACgIOR45Y+t8jyKeAAAVFAmk0l+fn7y9vbWpUuX7B0OCuHi4kIPPAAAUCTkeOWLLfM8ingAAFRwTk5OFIgAAAAqGHK8yoeJLQAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHB2LeJFRkaqY8eO8vT0lLe3t4YMGaLDhw9btTEMQxEREfL395e7u7uCg4N14MABqzaZmZmaMGGC6tSpIw8PDw0aNEh//PGHVZvU1FSFhobKbDbLbDYrNDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVl1Wbfvn3q3r273N3ddcMNN2j69OkyDMN2DwUAAAAAAAC4il2LeJs3b9b48eMVFxenmJgYXb58WSEhIcrIyLC0eeONNzR37lwtWLBAO3fulK+vr3r37q1z585Z2kyaNElr1qzRypUrtXXrVp0/f14DBgxQdna2pc2wYcMUHx+v6OhoRUdHKz4+XqGhoZb92dnZuvPOO5WRkaGtW7dq5cqVWr16tSZPnmxpk56ert69e8vf3187d+7U/PnzNXv2bM2dO7eUnxQAAAAAAAAqM2d7Xjw6OtpqfcmSJfL29tbu3bt1++23yzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGX49ABUVBER9o4AAMq3hQsXauHChTp27JgkqWXLlnrxxRfVr1+/fNvHxsaqR48eebYfOnRIzZo1K81QAQAAisyh3omXlpYmSapVq5YkKSEhQcnJyQoJCbG0cXNzU/fu3bV9+3ZJ0u7du3Xp0iWrNv7+/goMDLS02bFjh8xms6WAJ0mdO3eW2Wy2ahMYGGgp4ElSnz59lJmZqd27d1vadO/eXW5ublZtTp48aUkSr5aZman09HSrBQAAAKWnXr16eu2117Rr1y7t2rVLd9xxhwYPHpznlSxXO3z4sJKSkizLzTffXEYRAwAAXJvDFPEMw1BYWJi6deumwMBASVJycrIkycfHx6qtj4+PZV9ycrJcXV3l5eVVaBtvb+881/T29rZqc/V1vLy85OrqWmib3PXcNleLjIy0vIfPbDarfv3613gSAAAAuB4DBw5U//791bRpUzVt2lQzZ85U9erVFRcXV+hx3t7e8vX1tSxOTk5lFDEAAMC1OUwR78knn9RPP/2kTz75JM++q4epGoZxzaGrV7fJr70t2uROalFQPNOmTVNaWpplOX78eKFxAwAAwHays7O1cuVKZWRkKCgoqNC27dq1k5+fn3r27KlNmzZd89yMuAAAAGXJIYp4EyZM0JdffqlNmzapXr16lu2+vr6S8vZyS0lJsfSA8/X1VVZWllJTUwttc+rUqTzXPX36tFWbq6+TmpqqS5cuFdomJSVFUt7egrnc3NxUo0YNqwUAAACla9++fapevbrc3Nw0ZswYrVmzRi1atMi3rZ+fn9577z2tXr1an332mQICAtSzZ09t2bKl0Gsw4gIAAJQluxbxDMPQk08+qc8++0zfffedGjdubLW/cePG8vX1VUxMjGVbVlaWNm/erC5dukiS2rdvLxcXF6s2SUlJ2r9/v6VNUFCQ0tLS9MMPP1jafP/990pLS7Nqs3//fiUlJVnabNiwQW5ubmrfvr2lzZYtW5SVlWXVxt/fX40aNbLRUwFQEUVEMGEFAJSlgIAAxcfHKy4uTmPHjtWIESN08ODBAtuOHj1at9xyi4KCgvTOO+/ozjvv1OzZswu9BiMuAABAWbJrEW/8+PFavny5Pv74Y3l6eio5OVnJycm6cOGCpCtDVCdNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGW3nPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAADAwbi6uqpJkybq0KGDIiMj1aZNG7311ltFPr5z5846cuRIoW0YcQEAAMqSsz0vvnDhQklScHCw1fYlS5Zo5MiRkqSpU6fqwoULGjdunFJTU9WpUydt2LBBnp6elvZvvvmmnJ2ddd999+nChQvq2bOnoqKirF5GvGLFCk2cONEyi+2gQYO0YMECy34nJyetW7dO48aNU9euXeXu7q5hw4ZZ/QJrNpsVExOj8ePHq0OHDvLy8lJYWJjCwsJs/WgAAABgQ4ZhKDMzs8jt9+7dKz8/v1KMCAAAoHjsWsTLnRSiMCaTSREREYooZBxa1apVNX/+fM2fP7/ANrVq1dLy5csLvVaDBg301VdfFdqmVatW13w/CgAAAOzn2WefVb9+/VS/fn2dO3dOK1euVGxsrKKjoyVdGQZ74sQJLVu2TJI0b948NWrUSC1btlRWVpaWL1+u1atXa/Xq1fa8DQAAACt2LeIBAAAAtnbq1CmFhoYqKSlJZrNZrVu3VnR0tHr37i3pyvuTExMTLe2zsrIUHh6uEydOyN3dXS1bttS6devUv39/e90CAABAHhTxAAAAUKEsXry40P1RUVFW61OnTtXUqVNLMSIAAIDrZ9eJLQAAAAAAAABcG0U8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AChHIiKuLAAAAACAyoUiHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAKJbg4GBNmjTJ3mEoKipKNWvWtKxHRESobdu2xTrH1ffSqFEjzZs3r9BjTCaTPv/882JdBwCA60URDwAAAECFEB4ero0bNxbrmM8++0yvvPJKKUVkGwcOHNDQoUPVqFEjmUymaxYZiyoiIkImkynP4uHhYZPzAwBsiyIeAAAAgAqhevXqql27drGOqVWrljw9PUspopI7fvy45d///vtv3XjjjXrttdfk6+trs2uEh4crKSnJamnRooXuvfdem10DAGA7FPEAAAAAFCgjI0PDhw9X9erV5efnpzlz5lzzmNxhrR999JEaNWoks9msBx54QOfOnbO0MQxDb7zxhm688Ua5u7urTZs2+u9//2t1ni+//FI333yz3N3d1aNHDy1dulQmk0lnz54t9Lq5Ll++rIkTJ6pmzZqqXbu2nn76aY0YMUJDhgyxtMlvaPC5c+c0bNgwVa9eXf7+/po/f36h93vixAndf//98vLyUu3atTV48GAdO3bsms/pasePH9fMmTPVtGlTTZw40bK9Y8eOmjVrlh544AG5ubnle2xRnufVqlevLl9fX8ty6tQpHTx4UKNGjSp27ACA0kcRDwAAAECBpkyZok2bNmnNmjXasGGDYmNjtXv37msed/ToUX3++ef66quv9NVXX2nz5s167bXXLPuff/55LVmyRAsXLtSBAwf01FNP6eGHH9bmzZslSceOHdM999yjIUOGKD4+Xk888YSee+65YsX++uuva8WKFVqyZIm2bdum9PT0Ir3LbtasWWrdurX27NmjadOm6amnnlJMTEy+bf/++2/16NFD1atX15YtW7R161ZVr15dffv2VVZW1jWv9ffff+ujjz5Sr1691KhRI61fv15hYWH68MMPi3Wv13qeRfHBBx+oadOmuu2224p1bQBA2XC2dwAAAAAAHNP58+e1ePFiLVu2TL1795YkLV26VPXq1bvmsTk5OYqKirIMVQ0NDdXGjRs1c+ZMZWRkaO7cufruu+8UFBQkSbrxxhu1detWvfvuu+revbsWLVqkgIAAzZo1S5IUEBCg/fv3a+bMmUWOf/78+Zo2bZruuusuSdKCBQu0fv36ax7XtWtXPfPMM5Kkpk2batu2bXrzzTctz+CfVq5cqSpVquiDDz6QyWSSJC1ZskQ1a9ZUbGysQkJC8r3G5s2btXTpUn366afy9vbWww8/rHfffVc33XRTke8vV1Ge57VkZmZqxYoVlvsGADgeingAAAAA8nX06FFlZWVZCkPSlXfIBQQEXPPYRo0aWb1rzs/PTykpKZKkgwcP6uLFi3mKYllZWWrXrp0k6fDhw+rYsaPV/ltvvbXIsaelpenUqVNWxzg5Oal9+/bKyckp9Nh/3m/uekGTSezevVu//vprnvfqXbx4UUePHi3wGsHBwXJ3d9fcuXM1ZsyYa9xN4YryPFu2bKnff/9dknTbbbfp66+/tmr72Wef6dy5cxo+fPh1xQIAKD0U8QAAAFChLFy4UAsXLrS8k6xly5Z68cUX1a9fvwKP2bx5s8LCwnTgwAH5+/tr6tSp111YqQgMwyjxsS4uLlbrJpPJUjzL/ee6det0ww03WLXLfeebYRiWnm3XE48tzpHfeXLl5OSoffv2WrFiRZ59devWLfB8a9eu1dKlSzVp0iS99957Cg0N1YMPPliiiSuK8jzXr1+vS5cuSZLc3d3znOODDz7QgAEDbDpxBgDAtijiAQAAoEKpV6+eXnvtNTVp0kTSleGfgwcP1t69e9WyZcs87RMSEtS/f3+NHj1ay5cv17Zt2zRu3DjVrVtXQ4cOLevwHUqTJk3k4uKiuLg4NWjQQJKUmpqqX375pUhDNAvSokULubm5KTExscDzNGvWLM/Q1127dhX5GmazWT4+Pvrhhx8s73jLzs7W3r17rSa/yE9cXFye9WbNmuXb9pZbbtGqVavk7e2tGjVqFDm+AQMGaMCAAUpNTdUnn3yipUuXasqUKerdu7dCQ0M1ZMgQVatWrUjnKsrzbNiwYYHHJyQkaNOmTfryyy+LHD8AoOxRxAMAAECFMnDgQKv1mTNnauHChYqLi8u3iLdo0SI1aNDAMlyyefPm2rVrl2bPnl3pi3jVq1fXqFGjNGXKFNWuXVs+Pj567rnnVKXK9c2P5+npqfDwcD311FPKyclRt27dlJ6eru3bt6t69eoaMWKEnnjiCc2dO1dPP/20Ro0apfj4eEVFRUkquFfc1SZMmKDIyEg1adJEzZo10/z585WamnrN47dt26Y33nhDQ4YMUUxMjD799FOtW7cu37YPPfSQZs2apcGDB2v69OmqV6+eEhMT9dlnn2nKlCnXfH+gl5eXxo0bp3Hjxunnn39WVFSUpk6dqtWrV2v16tWSrgyLPXjwoOXfT5w4ofj4eFWvXl1NmjQp0vMszIcffig/P79Ce6sCAOyPIh4AAAAqrOzsbH366afKyMjI856zXDt27Mgz+UCfPn20ePFiXbp0Kc+w0FyZmZnKzMy0rKenp9sucAcya9YsnT9/XoMGDZKnp6cmT56stLS06z7vK6+8Im9vb0VGRuq3335TzZo1dcstt+jZZ5+VJDVu3Fj//e9/NXnyZL311lsKCgrSc889p7Fjx1qGiF7L008/reTkZA0fPlxOTk56/PHH1adPHzk5ORV63OTJk7V79269/PLL8vT01Jw5c9SnT59821arVk1btmzR008/rbvvvlvnzp3TDTfcoJ49exarZ550pffha6+9pldffVW//vqrZfvJkyct77aTpNmzZ2v27Nnq3r27YmNjJV37eRYkdwKSkSNHXvO5AADsy2Rcz4suUGzp6ekym81KS0sr9n/UAZRfERFF31dY2+K0AVBxkD8U3759+xQUFKSLFy+qevXq+vjjj9W/f/982zZt2lQjR460KnZs375dXbt21cmTJ+Xn55fvcREREXr55ZfzbOdzKj0zZ87UokWLdPz48RIdn5OTo+bNm+u+++7TK6+8YuPogCuKk6eR0wEoTp53ff3gAQAAAAcUEBCg+Ph4xcXFaezYsRoxYoRlOGJ+Cpr8oLBhl9OmTVNaWpplKWlhCQV75513tHPnTv3222/66KOPNGvWrGsODf2n33//Xe+//75++eUX7du3T2PHjlVCQoKGDRtWilEDAFA6GE4LAACACsfV1dUysUWHDh20c+dOvfXWW3r33XfztPX19VVycrLVtpSUFDk7O6t27doFXsPNza3IwzpRMkeOHNGMGTP0119/qUGDBpo8ebKmTZtW5OOrVKmiqKgohYeHyzAMBQYG6ttvv1Xz5s1LMWoAAEoHRTwAAABUeIZhWL2/7p+CgoK0du1aq20bNmxQhw4dCnwfHsrGm2++qTfffLPEx9evX1/btm2zYUQAANgPw2kBAABQoTz77LP63//+p2PHjmnfvn167rnnFBsbq4ceekjSlWGww4cPt7QfM2aMfv/9d4WFhenQoUP68MMPtXjxYoWHh9vrFgAAAPKgJx4AAAAqlFOnTik0NFRJSUkym81q3bq1oqOj1bt3b0lSUlKSEhMTLe0bN26s9evX66mnntK///1v+fv76+2339bQoUPtdQsAAAB5UMQDAABAhbJ48eJC90dFReXZ1r17d+3Zs6eUIgIAALh+DKcFAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBOds7AACoyCIi7B0BAAAAAKAioCceAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOzq5FvC1btmjgwIHy9/eXyWTS559/brV/5MiRMplMVkvnzp2t2mRmZmrChAmqU6eOPDw8NGjQIP3xxx9WbVJTUxUaGiqz2Syz2azQ0FCdPXvWqk1iYqIGDhwoDw8P1alTRxMnTlRWVpZVm3379ql79+5yd3fXDTfcoOnTp8swDJs9DwAAAAAAACA/di3iZWRkqE2bNlqwYEGBbfr27aukpCTLsn79eqv9kyZN0po1a7Ry5Upt3bpV58+f14ABA5SdnW1pM2zYMMXHxys6OlrR0dGKj49XaGioZX92drbuvPNOZWRkaOvWrVq5cqVWr16tyZMnW9qkp6erd+/e8vf3186dOzV//nzNnj1bc+fOteETAQAAAAAAAPJytufF+/Xrp379+hXaxs3NTb6+vvnuS0tL0+LFi/XRRx+pV69ekqTly5erfv36+vbbb9WnTx8dOnRI0dHRiouLU6dOnSRJ77//voKCgnT48GEFBARow4YNOnjwoI4fPy5/f39J0pw5czRy5EjNnDlTNWrU0IoVK3Tx4kVFRUXJzc1NgYGB+uWXXzR37lyFhYXJZDLlG2NmZqYyMzMt6+np6cV+TgAAAAAAAKjcHP6deLGxsfL29lbTpk01evRopaSkWPbt3r1bly5dUkhIiGWbv7+/AgMDtX37dknSjh07ZDabLQU8SercubPMZrNVm8DAQEsBT5L69OmjzMxM7d6929Kme/fucnNzs2pz8uRJHTt2rMD4IyMjLcN4zWaz6tevf30PBAAAAAAAAJWOQxfx+vXrpxUrVui7777TnDlztHPnTt1xxx2Wnm3JyclydXWVl5eX1XE+Pj5KTk62tPH29s5zbm9vb6s2Pj4+Vvu9vLzk6upaaJvc9dw2+Zk2bZrS0tIsy/Hjx4vzCAAAAAAAAAD7Dqe9lvvvv9/y74GBgerQoYMaNmyodevW6e677y7wOMMwrIa35jfU1RZtcie1KGgorXRlOPA/e+8BAAAAAAAAxeXQPfGu5ufnp4YNG+rIkSOSJF9fX2VlZSk1NdWqXUpKiqWXnK+vr06dOpXnXKdPn7Zqc3VvutTUVF26dKnQNrlDe6/uoQcAAAAAAADYUrkq4p05c0bHjx+Xn5+fJKl9+/ZycXFRTEyMpU1SUpL279+vLl26SJKCgoKUlpamH374wdLm+++/V1pamlWb/fv3KykpydJmw4YNcnNzU/v27S1ttmzZoqysLKs2/v7+atSoUandMwAAAAAAAGDXIt758+cVHx+v+Ph4SVJCQoLi4+OVmJio8+fPKzw8XDt27NCxY8cUGxurgQMHqk6dOrrrrrskSWazWaNGjdLkyZO1ceNG7d27Vw8//LBatWplma22efPm6tu3r0aPHq24uDjFxcVp9OjRGjBggAICAiRJISEhatGihUJDQ7V3715t3LhR4eHhGj16tGrUqCFJGjZsmNzc3DRy5Ejt379fa9as0auvvlrozLQAAAAAAACALdj1nXi7du1Sjx49LOthYWGSpBEjRmjhwoXat2+fli1bprNnz8rPz089evTQqlWr5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGmxaxEvODjYMjlEfr755ptrnqNq1aqaP3++5s+fX2CbWrVqafny5YWep0GDBvrqq68KbdOqVStt2bLlmjEBAAAAAAAAtlSu3okHAAAAXEtkZKQ6duwoT09PeXt7a8iQITp8+HChx8TGxspkMuVZfv755zKKGgAAoHBF7on35ZdfFvmkgwYNKlEwAAAAqFxKI8fcvHmzxo8fr44dO+ry5ct67rnnFBISooMHD8rDw6PQYw8fPmx5J7Ik1a1bt8jxAQAAlKYiF/GGDBlitW4ymayGwv5zcofs7OzrjwwAAAAVXmnkmNHR0VbrS5Yskbe3t3bv3q3bb7+90GO9vb1Vs2bNIl0HAACgLBV5OG1OTo5l2bBhg9q2bauvv/5aZ8+eVVpamtavX69bbrklT9IEAAAAFKQscsy0tDRJV96TfC3t2rWTn5+fevbsqU2bNhXaNjMzU+np6VYLAABAaSnRxBaTJk3SokWL1K1bN8u2Pn36qFq1anr88cd16NAhmwUIAACAyqE0ckzDMBQWFqZu3bopMDCwwHZ+fn5677331L59e2VmZuqjjz5Sz549FRsbW2DvvcjISL388svFjgkAAKAkSlTEO3r0qMxmc57tZrNZx44du96YAAAAUAmVRo755JNP6qefftLWrVsLbRcQEKCAgADLelBQkI4fP67Zs2cXWMSbNm2awsLCLOvp6emqX79+ieIEAAC4lhLNTtuxY0dNmjRJSUlJlm3JycmaPHmybr31VpsFBwAAgMrD1jnmhAkT9OWXX2rTpk2qV69esY/v3Lmzjhw5UuB+Nzc31ahRw2oBAAAoLSUq4n344YdKSUlRw4YN1aRJEzVp0kQNGjRQUlKSFi9ebOsYAQAAUAnYKsc0DENPPvmkPvvsM3333Xdq3LhxieLZu3ev/Pz8SnQsAACArZVoOG2TJk30008/KSYmRj///LMMw1CLFi3Uq1cvqxnEAAAAgKKyVY45fvx4ffzxx/riiy/k6emp5ORkSVeG5bq7u0u6MhT2xIkTWrZsmSRp3rx5atSokVq2bKmsrCwtX75cq1ev1urVq21/owAAACVQoiKeJJlMJoWEhOj222+Xm5sbxTsAAABcN1vkmAsXLpQkBQcHW21fsmSJRo4cKUlKSkpSYmKiZV9WVpbCw8N14sQJubu7q2XLllq3bp369+9f4nsBAACwpRIV8XJycjRz5kwtWrRIp06d0i+//KIbb7xRL7zwgho1aqRRo0bZOk4AKFciIsru/KV9LQAoK7bKMQ3DuGabqKgoq/WpU6dq6tSpJQkbAACgTJTonXgzZsxQVFSU3njjDbm6ulq2t2rVSh988IHNggMAAEDlQY4JAABQsBIV8ZYtW6b33ntPDz30kJycnCzbW7durZ9//tlmwQEAAKDyIMcEAAAoWImKeCdOnFCTJk3ybM/JydGlS5euOygAAABUPuSYAAAABStREa9ly5b63//+l2f7p59+qnbt2l13UAAAAKh8yDEBAAAKVqKJLV566SWFhobqxIkTysnJ0WeffabDhw9r2bJl+uqrr2wdIwAAACoBckwAAICClagn3sCBA7Vq1SqtX79eJpNJL774og4dOqS1a9eqd+/eto4RAAAAlQA5JgAAQMFK1BNPkvr06aM+ffrYMhYAAABUcuSYAAAA+StxES/X+fPnlZOTY7WtRo0a13taAAAAVGLkmAAAANZKNJw2ISFBd955pzw8PGQ2m+Xl5SUvLy/VrFlTXl5eto4RAAAAlQA5JgAAQMFK1BPvoYcekiR9+OGH8vHxkclksmlQAAAAqHzIMQFUdMGuEZZ/j82KKLAdAOSnREW8n376Sbt371ZAQICt4wEAAEAlRY4JAABQsBINp+3YsaOOHz9u61gAAABQiZFjAgAAFKxEPfE++OADjRkzRidOnFBgYKBcXFys9rdu3domwQEAAKDyIMcEAAAoWImKeKdPn9bRo0f1yCOPWLaZTCYZhiGTyaTs7GybBQgAAIDKgRwTAACgYCUq4j366KNq166dPvnkE146DAAAAJsgxwQAAChYiYp4v//+u7788ks1adLE1vEAAACgkiLHBAAAKFiJJra444479OOPP9o6FgAAAFRi5JgAAAAFK1FPvIEDB+qpp57Svn371KpVqzwvHR40aJBNggMAXFtEhPU/AaC8IscEAAAoWImKeGPGjJEkTZ8+Pc8+XjoMAACAkiDHBAAAKFiJing5OTm2jgMAAACVHDkmAABAwYr9TrzLly/L2dlZ+/fvL414AAAAUAmRYwIAABSu2EU8Z2dnNWzYkOEMAAAAsBlyTAAAgMKVaHba559/XtOmTdNff/1l63gAAABQSZFjAgAAFKxE78R7++239euvv8rf318NGzaUh4eH1f49e/bYJDgAqAyYXRYAriDHBAAAKFiJinhDhgyxcRgAUP5RhAOA60OOCQAAULASFfFeeuklW8cBAACASo4cEwAAoGAlKuLl2r17tw4dOiSTyaQWLVqoXbt2tooLAAAAlRQ5JgAAQF4lKuKlpKTogQceUGxsrGrWrCnDMJSWlqYePXpo5cqVqlu3rq3jBAAAQAVHjgkAAFCwEs1OO2HCBKWnp+vAgQP666+/lJqaqv379ys9PV0TJ060dYwAAACoBGyVY0ZGRqpjx47y9PSUt7e3hgwZosOHD1/zuM2bN6t9+/aqWrWqbrzxRi1atOh6bgcAAMCmSlTEi46O1sKFC9W8eXPLthYtWujf//63vv76a5sFBwAAgMrDVjnm5s2bNX78eMXFxSkmJkaXL19WSEiIMjIyCjwmISFB/fv312233aa9e/fq2Wef1cSJE7V69erruicAAABbKdFw2pycHLm4uOTZ7uLiopycnOsOCgAAAJWPrXLM6Ohoq/UlS5bI29tbu3fv1u23357vMYsWLVKDBg00b948SVLz5s21a9cuzZ49W0OHDi36TQAAAJSSEvXEu+OOO/Svf/1LJ0+etGw7ceKEnnrqKfXs2dNmwQEAAKDyKK0cMy0tTZJUq1atAtvs2LFDISEhVtv69OmjXbt26dKlS/kek5mZqfT0dKsFAACgtJSoiLdgwQKdO3dOjRo10k033aQmTZqoUaNGOnfunN5++21bxwgAAIBKoDRyTMMwFBYWpm7duikwMLDAdsnJyfLx8bHa5uPjo8uXL+vPP//M95jIyEiZzWbLUr9+/RLFCAAAUBQlGk5bv3597dmzR99++60OHTokwzDUokUL9erVy9bxAQAAoJIojRzzySef1E8//aStW7des63JZLJaNwwj3+25pk2bprCwMMt6eno6hTwAAFBqSlTEk6SNGzfqu+++U0pKinJychQfH6+PP/5YkvThhx/aLEAAAABUHrbMMSdMmKAvv/xSW7ZsUb169Qpt6+vrq+TkZKttKSkpcnZ2Vu3atfM9xs3NTW5ubsWKCQAAoKRKVMR7+eWXNX36dHXo0EF+fn4F/joJAAAAFJWtckzDMDRhwgStWbNGsbGxaty48TWPCQoK0tq1a622bdiwQR06dMh3sg0AAICyVqIi3qJFixQVFaXQ0FBbxwMAAIBKylY55vjx4/Xxxx/riy++kKenp6WHndlslru7u6QrQ2FPnDihZcuWSZLGjBmjBQsWKCwsTKNHj9aOHTu0ePFiffLJJ9d3UwAAADZSooktsrKy1KVLF1vHAgAAgErMVjnmwoULlZaWpuDgYPn5+VmWVatWWdokJSUpMTHRst64cWOtX79esbGxatu2rV555RW9/fbbGjp06HXHAwAAYAsl6on32GOP6eOPP9YLL7xg63gAAABQSdkqx8ydkKIwUVFRebZ1795de/bsua5rAwAAlJYSFfEuXryo9957T99++61at26d5z0hc+fOtUlwAAAAqDzIMQEAAApWoiLeTz/9pLZt20qS9u/fb7WPSS4AAABQEuSYAAAABStREW/Tpk22jgMAAACVHDkmAABAwUo0sQUAAAAAAACAskMRDwAAAAAAAHBwFPEAAAAAAAAAB0cRDwAAAAAAAHBwdi3ibdmyRQMHDpS/v79MJpM+//xzq/2GYSgiIkL+/v5yd3dXcHCwDhw4YNUmMzNTEyZMUJ06deTh4aFBgwbpjz/+sGqTmpqq0NBQmc1mmc1mhYaG6uzZs1ZtEhMTNXDgQHl4eKhOnTqaOHGisrKyrNrs27dP3bt3l7u7u2644QZNnz5dhmHY7HkAAAAAAAAA+bFrES8jI0Nt2rTRggUL8t3/xhtvaO7cuVqwYIF27twpX19f9e7dW+fOnbO0mTRpktasWaOVK1dq69atOn/+vAYMGKDs7GxLm2HDhik+Pl7R0dGKjo5WfHy8QkNDLfuzs7N15513KiMjQ1u3btXKlSu1evVqTZ482dImPT1dvXv3lr+/v3bu3Kn58+dr9uzZmjt3bik8GQAovoiIKwsAAAAAoOJxtufF+/Xrp379+uW7zzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGXwxAAAAAAAji7YNcLeIQCogBz2nXgJCQlKTk5WSEiIZZubm5u6d++u7du3S5J2796tS5cuWbXx9/dXYGCgpc2OHTtkNpstBTxJ6ty5s8xms1WbwMBASwFPkvr06aPMzEzt3r3b0qZ79+5yc3OzanPy5EkdO3aswPvIzMxUenq61QIAAAAAAAAUh8MW8ZKTkyVJPj4+Vtt9fHws+5KTk+Xq6iovL69C23h7e+c5v7e3t1Wbq6/j5eUlV1fXQtvkrue2yU9kZKTlXXxms1n169cv/MYBAAAAAACAqzhsES/X1cNUDcO45tDVq9vk194WbXIntSgsnmnTpiktLc2yHD9+vNDYAQAAAAAAgKs5bBHP19dXUt5ebikpKZYecL6+vsrKylJqamqhbU6dOpXn/KdPn7Zqc/V1UlNTdenSpULbpKSkSMrbW/Cf3NzcVKNGDasFAAAAAAAAKA6HLeI1btxYvr6+iomJsWzLysrS5s2b1aVLF0lS+/bt5eLiYtUmKSlJ+/fvt7QJCgpSWlqafvjhB0ub77//XmlpaVZt9u/fr6SkJEubDRs2yM3NTe3bt7e02bJli7Kysqza+Pv7q1GjRrZ/AAAAAAAAAMD/Z9ci3vnz5xUfH6/4+HhJVyaziI+PV2JiokwmkyZNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGWnnPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAAAAAAAApc7ZnhfftWuXevToYVkPCwuTJI0YMUJRUVGaOnWqLly4oHHjxik1NVWdOnXShg0b5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGkxGbmzM6BMpKeny2w2Ky0tjffjARVERIRtz3O957NVPAAcB/lD+cDnBEC6kosFu0Zcs11sVgR5G4Bi5Q8O+048AAAAAAAAAFfYdTgtAAAAAAAVwvYISVKwq33DAFBx0RMPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPPy+0fWxsrEwmU57l559/LpuAAQAAisDZ3gEAAAAAtpSRkaE2bdrokUce0dChQ4t83OHDh1WjRg3Let26dUsjPAAAgBKhiAcAAIAKpV+/furXr1+xj/P29lbNmjVtHxAAAIANMJwWAAAAkNSuXTv5+fmpZ8+e2rRp0zXbZ2ZmKj093WoBAAAoLRTxAAAAUKn5+fnpvffe0+rVq/XZZ58pICBAPXv21JYtWwo9LjIyUmaz2bLUr1+/jCIGAACVEcNpAQAAUKkFBAQoICDAsh4UFKTjx49r9uzZuv322ws8btq0aQoLC7Osp6enU8gDAAClhp54AFDBRERcWQAAJde5c2cdOXKk0DZubm6qUaOG1QIAAFBaKOIBAAAAV9m7d6/8/PzsHQYAAIAFw2kBAABQoZw/f16//vqrZT0hIUHx8fGqVauWGjRooGnTpunEiRNatmyZJGnevHlq1KiRWrZsqaysLC1fvlyrV6/W6tWr7XULAAAAeVDEA4AK6p9DahleC6Ay2bVrl3r06GFZz31v3YgRIxQVFaWkpCQlJiZa9mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///5lHjsAAEBBKOIBAACgQgkODpZhGAXuj4qKslqfOnWqpk6dWspRAQAAXB/eiQcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AFBMERFXFgAAAAAAyoqzvQMAgPKKQh4AAABKKtg1Qtr+/1e6RNgxEgDlBT3xAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAfnbO8AAKA8iIiwdwQAAAAAgMqMnngAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4JrYAAAAAAMCetkf83793iSioFYBKjp54AFAJREQwwy4AAAAAlGcU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPP7/mMZs3b1b79u1VtWpV3XjjjVq0aFHpBwoAAFAMFPEAAABQoWRkZKhNmzZasGBBkdonJCSof//+uu2227R37149++yzmjhxolavXl3KkQIAABSds70DAABcweyxAGAb/fr1U79+/YrcftGiRWrQoIHmzZsnSWrevLl27dql2bNna+jQoaUUJQAAQPHQEw8AAACV2o4dOxQSEmK1rU+fPtq1a5cuXbpU4HGZmZlKT0+3WgAAAEoLRTwAAABUasnJyfLx8bHa5uPjo8uXL+vPP/8s8LjIyEiZzWbLUr9+/dIOFQAAVGIU8QAAAFDpmUwmq3XDMPLd/k/Tpk1TWlqaZTl+/HipxggAACo33okHAACASs3X11fJyclW21JSUuTs7KzatWsXeJybm5vc3NxKOzwAjmx7hL0jAFCJ0BMPAAAAlVpQUJBiYmKstm3YsEEdOnSQi4uLnaICAACwRk88AChEcWeMDXYt5gH/X2xWyY4DAOR1/vx5/frrr5b1hIQExcfHq1atWmrQoIGmTZumEydOaNmyZZKkMWPGaMGCBQoLC9Po0aO1Y8cOLV68WJ988om9bgEAACAPh+6JFxERIZPJZLX4+vpa9huGoYiICPn7+8vd3V3BwcE6cOCA1TkyMzM1YcIE1alTRx4eHho0aJD++OMPqzapqakKDQ21vJQ4NDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVVavcOAKUpIqL4BUoAKC927dqldu3aqV27dpKksLAwtWvXTi+++KIkKSkpSYmJiZb2jRs31vr16xUbG6u2bdvqlVde0dtvv62hQ4faJX4AAID8OHxPvJYtW+rbb7+1rDs5OVn+/Y033tDcuXMVFRWlpk2basaMGerdu7cOHz4sT09PSdKkSZO0du1arVy5UrVr19bkyZM1YMAA7d6923KuYcOG6Y8//lB0dLQk6fHHH1doaKjWrl0rScrOztadd96punXrauvWrTpz5oxGjBghwzA0f/78snoUAAAAKILg4GDLxBT5iYqKyrOte/fu2rNnTylGBQAAcH0cvojn7Oxs1fsul2EYmjdvnp577jndfffdkqSlS5fKx8dHH3/8sZ544gmlpaVp8eLF+uijj9SrVy9J0vLly1W/fn19++236tOnjw4dOqTo6GjFxcWpU6dOkqT3339fQUFBOnz4sAICArRhwwYdPHhQx48fl7+/vyRpzpw5GjlypGbOnKkaNWqU0dMAgOtD7zsAAAAAKJ8cejitJB05ckT+/v5q3LixHnjgAf3222+SrrzbJDk5WSEhIZa2bm5u6t69u7Zv3y5J2r17ty5dumTVxt/fX4GBgZY2O3bskNlsthTwJKlz584ym81WbQIDAy0FPEnq06ePMjMztXv37kLjz8zMVHp6utUCAAAAAAAAFIdDF/E6deqkZcuW6ZtvvtH777+v5ORkdenSRWfOnFFycrIkycfHx+oYHx8fy77k5GS5urrKy8ur0Dbe3t55ru3t7W3V5urreHl5ydXV1dKmIJGRkZZ37ZnNZtWvX78YTwAAAAAAAABw8CJev379NHToULVq1Uq9evXSunXrJF0ZNpvLZDJZHWMYRp5tV7u6TX7tS9ImP9OmTVNaWpplOX78eKHtAQAAAAAAgKs5/Dvx/snDw0OtWrXSkSNHNGTIEElXesn5+flZ2qSkpFh6zfn6+iorK0upqalWvfFSUlLUpUsXS5tTp07ludbp06etzvP9999b7U9NTdWlS5fy9NC7mpubm9zc3Ip/swAqlWDXiGIfE5tV/GOu9s935PG+PAAAAABwXOWqiJeZmalDhw7ptttuU+PGjeXr66uYmBi1a9dOkpSVlaXNmzfr9ddflyS1b99eLi4uiomJ0X333SdJSkpK0v79+/XGG29IkoKCgpSWlqYffvhBt956qyTp+++/V1pamqXQFxQUpJkzZyopKclSMNywYYPc3NzUvn37Mn0GAMrQ9ggFu9o7CAAAAAAAHLyIFx4eroEDB6pBgwZKSUnRjBkzlJ6erhEjRshkMmnSpEl69dVXdfPNN+vmm2/Wq6++qmrVqmnYsGGSJLPZrFGjRmny5MmqXbu2atWqpfDwcMvwXElq3ry5+vbtq9GjR+vdd9+VJD3++OMaMGCAAgICJEkhISFq0aKFQkNDNWvWLP31118KDw/X6NGjmZkWQLlTYK+/7YUc1KWAYwAAAAAAZcKhi3h//PGHHnzwQf3555+qW7euOnfurLi4ODVs2FCSNHXqVF24cEHjxo1TamqqOnXqpA0bNsjT09NyjjfffFPOzs667777dOHCBfXs2VNRUVFycnKytFmxYoUmTpxomcV20KBBWrBggWW/k5OT1q1bp3Hjxqlr165yd3fXsGHDNHv27DJ6EgCQV0mG4AIAAAAAyieTYRiGvYOoTNLT02U2m5WWlkYvPsDRbY9QbKy9gyg7wcGF7KQnHmBX5A/lA58TUAltj8izqTj5Y775F3kXUKkUJ39w6NlpAQAAAAAAAFDEAwAAAAAAAByeQ78TDwAAAACASuWfQ3QZWgvgH+iJBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg3O2dwAAUCzbI4p/TJcSHAMAAAAAgAOhJx4AAAAAAADg4OiJBwD/EBHxf/8e7Gq3MAAAAAAAsEJPPAAAAAAAAMDB0RMPQMVXjPfo0fuuACV5F6HE+wgBAAAKERubd1twcFlHAaC8oCceAMBKbGz+CSUAAAAAwH4o4gEAAAAAAAAOjuG0AAAAAAAUVUlfMwIA14meeAAAAAAAAICDoycegEqP978BAAAAABwdRTwAQOkpyXATZrQFYCPvvPOOZs2apaSkJLVs2VLz5s3Tbbfdlm/b2NhY9ejRI8/2Q4cOqVmzZqUdKoByih+DAZQlingAAEkkoQAqllWrVmnSpEl655131LVrV7377rvq16+fDh48qAYNGhR43OHDh1WjRg3Let26dcsiXAAAgGvinXgAAACocObOnatRo0bpscceU/PmzTVv3jzVr19fCxcuLPQ4b29v+fr6WhYnJ6cyihgA8rE94v8WAJUeRTwAlU5sLL3OAKAiy8rK0u7duxUSEmK1PSQkRNu3by/02Hbt2snPz089e/bUpk2bCm2bmZmp9PR0qwUAAKC0UMQDAABAhfLnn38qOztbPj4+Vtt9fHyUnJyc7zF+fn567733tHr1an322WcKCAhQz549tWXLlgKvExkZKbPZbFnq169v0/sAAAD4J96JBwAAgArJZDJZrRuGkWdbroCAAAUEBFjWg4KCdPz4cc2ePVu33357vsdMmzZNYWFhlvX09HQKeQAAoNRQxANQaTGkFgAqpjp16sjJySlPr7uUlJQ8vfMK07lzZy1fvrzA/W5ubnJzcytxnAAAAMVBEQ9ApUHRrpwoyYubu5TgGAAVlqurq9q3b6+YmBjdddddlu0xMTEaPHhwkc+zd+9e+fn5lUaIAAAAxUYRDwAAABVOWFiYQkND1aFDBwUFBem9995TYmKixowZI+nKUNgTJ05o2bJlkqR58+apUaNGatmypbKysrR8+XKtXr1aq1evtudtAAAAWFDEA2AfJeltBbv4Zw/G4GB7RQEAxXP//ffrzJkzmj59upKSkhQYGKj169erYcOGkqSkpCQlJiZa2mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///72ugUAAAArFPEAAABQIY0bN07jxo3Ld19UVJTV+tSpUzV16tQyiAoAAKBkKOIBAPLFOwQBAAAAwHFQxAMAAAAAoDC8CgaAA6CIB+D6kdQAAAAAAFCqKOIBqNAYEmpbuc+TCS4AAADKWO4P510i7BkFADuqYu8AAAAAAAAAABSOIh4AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4JjYAgBQbExwAQAAKrzciSQAwEFQxANQITErLQAAAHCVfxYmmeUWKHco4gEAAAAAUF4UVIijQAdUeBTxAPwfhgygsinJd56kGAAAAIAdUMQDUKEwjLZs/fN58348AACAMsaP8EClQhEPAGATTHYBAADKPYpiABxYFXsHAABFFRtLT7vyhM8LAAAAAGyHnnhASZT0FzrepVVqKBYBAAAAACoyeuIBKHfo4QUAAAAAqGzoiQdUVLzPAw6I9+YBAIAyl19ezAgZAOUQRTwA5Ra98RyTXT4XitYAAKCkyCMAlBMU8QAAZa5c98jjnZgAAJR/FO4AlEMU8QBHR4IBVAwl+bNM4Q8AAADA/0cRDyhLFORQCTHsGQAAoOgKyp2KNYKB/+8AKiSKeAAcSn5JS7kccokiKezzLtdDbgEAgH3ZuIjFj5IAHAFFPABAufDP5LnSFPbKw6/oDPkFANjTP/9byX+TAFRwFPFQsZSH/+FFsfHLJ1DBMDkIAAAAUGwU8QCUuquHRTJkFoWhaAsAAArFD/e2V1CPRno6Ag6FIh5KHzMyoggo3KAg+X03rueFz5VyWC4AAEBR2apImnse/t8OsBmKeJUVhTXYAYU6lLbiFuiYPMMG6A0BAED5ZOtincT/MwKljCJeCbzzzjuaNWuWkpKS1LJlS82bN0+33XZb8U7yfaTk4Wa9rSR/4fE/T7AzCnNwVFd/N21VqKPwB5Qfxc3ZNm/erLCwMB04cED+/v6aOnWqxowZU4YRA5WUrYpANvp/I0fNbyv9K2koFgIU8Ypr1apVmjRpkt555x117dpV7777rvr166eDBw+qQYMG9g6vdJVlwbCcFyft/T/5thpqWNDxjprYAIUpzve2KD36Sjost7SKi3AATNjhUIqbsyUkJKh///4aPXq0li9frm3btmncuHGqW7euhg4daoc7AOykKIUSWxRTivJ3JkUbx8LnAdidyTAMw95BlCedOnXSLbfcooULF1q2NW/eXEOGDFFkZOQ1j09PT5fZbFbahmdU4+qeeKgwyvJXsvwKhkUpVlwdT3GOoYiHiqY4k66U9M93Sf5cArnSMzJlDnlNaWlpqlGjhr3DKReKm7M9/fTT+vLLL3Xo0CHLtjFjxujHH3/Ujh07inRNS57H54TyoLgTGRRUdMuvmFPccxR0vjL4Yb8y5bV2yzNKo3dlUQrMtooBKGXFyR/oiVcMWVlZ2r17t5555hmr7SEhIdq+fXu+x2RmZiozM9OynpaWJulKMl4e/e9/V/5Z3NHDVx+fK/c8/9xenHNfHc/V58/vfIW1Kez+inOtjIt5962Lvvbx1yP3/KXVvqTHAOVBYd/tonzvbfVnIz3jyj8L+rsyv31FaVOUv1fz+3u4sL/3CjpnUf4ezq99Uf4eLo6inKcsr3W9cvMGfnstmpLkbDt27FBISIjVtj59+mjx4sW6dOmSXFxc8hxTYJ6Xnl70YL//R0Gx07SiH+co5y/OdcryXvO7TkHXL424bPE8ihLvPxUl9oKOjSng2H9+lwv6/5fcNgWduyjnKEosxWDrPLuiKGq+YvP/nhXlMy3o+3ut711J2l/rz5Aj/H1WlGvlbi/un/3ixlua91qWz9GBY8jNG4qU5xkoshMnThiSjG3btlltnzlzptG0adN8j3nppZcMSSwsLCwsLCws170cPXq0LFKecq8kOdvNN99szJw502rbtm3bDEnGyZMn8z2GPI+FhYWFhYXFVsvx48evmePQE68ETCaT1bphGHm25Zo2bZrCwsIs62fPnlXDhg2VmJgos9lcqnFWRunp6apfv76OHz/OMJZSwPMtXTzf0sXzLV0839KVlpamBg0aqFatWvYOpVwpTs5WUPv8tue6Os/LycnRX3/9pdq1axd6nfKCP9flA59T+cDnVD7wOTm+ivgZGYahc+fOyd/f/5ptKeIVQ506deTk5KTk5GSr7SkpKfLx8cn3GDc3N7m55X33ndlsrjBfOEdUo0YNnm8p4vmWLp5v6eL5li6eb+mqUqWKvUMoF0qSs/n6+ubb3tnZWbVr1873mPzyvJo1a5Y8cAfFn+vygc+pfOBzKh/4nBxfRfuMitrJi0ywGFxdXdW+fXvFxMRYbY+JiVGXLl3sFBUAAAD+qSQ5W1BQUJ72GzZsUIcOHfJ9Hx4AAEBZo4hXTGFhYfrggw/04Ycf6tChQ3rqqaeUmJioMWPG2Ds0AAAA/H/XytmmTZum4cOHW9qPGTNGv//+u8LCwnTo0CF9+OGHWrx4scLDw+11CwAAAFYYTltM999/v86cOaPp06crKSlJgYGBWr9+vRo2bFik493c3PTSSy/lO8QW14/nW7p4vqWL51u6eL6li+dbuni+xXetnC0pKUmJiYmW9o0bN9b69ev11FNP6d///rf8/f319ttva+jQofa6Bbvje1c+8DmVD3xO5QOfk+Or7J+RyTCKMoctAAAAAAAAAHthOC0AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4CjiAQAAAAAAAA6OIp4dDRo0SA0aNFDVqlXl5+en0NBQnTx50t5hVQjHjh3TqFGj1LhxY7m7u+umm27SSy+9pKysLHuHVmHMnDlTXbp0UbVq1VSzZk17h1PuvfPOO2rcuLGqVq2q9u3b63//+5+9Q6owtmzZooEDB8rf318mk0mff/65vUOqMCIjI9WxY0d5enrK29tbQ4YM0eHDh+0dVoWycOFCtW7dWjVq1FCNGjUUFBSkr7/+2t5hoZLLzMxU27ZtZTKZFB8fb+9w8P+R/zou8jzHRj5T/kRGRspkMmnSpEn2DqXMUcSzox49eug///mPDh8+rNWrV+vo0aO655577B1WhfDzzz8rJydH7777rg4cOKA333xTixYt0rPPPmvv0CqMrKws3XvvvRo7dqy9Qyn3Vq1apUmTJum5557T3r17ddttt6lfv35KTEy0d2gVQkZGhtq0aaMFCxbYO5QKZ/PmzRo/frzi4uIUExOjy5cvKyQkRBkZGfYOrcKoV6+eXnvtNe3atUu7du3SHXfcocGDB+vAgQP2Dg2V2NSpU+Xv72/vMHAV8l/HRJ7n+MhnypedO3fqvffeU+vWre0dil2YDMMw7B0Ervjyyy81ZMgQZWZmysXFxd7hVDizZs3SwoUL9dtvv9k7lAolKipKkyZN0tmzZ+0dSrnVqVMn3XLLLVq4cKFlW/PmzTVkyBBFRkbaMbKKx2Qyac2aNRoyZIi9Q6mQTp8+LW9vb23evFm33367vcOpsGrVqqVZs2Zp1KhR9g4FldDXX3+tsLAwrV69Wi1bttTevXvVtm1be4eFApD/2h95XvlDPuO4zp8/r1tuuUXvvPOOZsyYobZt22revHn2DqtM0RPPQfz1119asWKFunTpQgGvlKSlpalWrVr2DgOwkpWVpd27dyskJMRqe0hIiLZv326nqICSSUtLkyT+ri0l2dnZWrlypTIyMhQUFGTvcFAJnTp1SqNHj9ZHH32katWq2TscFAH5r32R55VP5DOOa/z48brzzjvVq1cve4diNxTx7Ozpp5+Wh4eHateurcTERH3xxRf2DqlCOnr0qObPn68xY8bYOxTAyp9//qns7Gz5+PhYbffx8VFycrKdogKKzzAMhYWFqVu3bgoMDLR3OBXKvn37VL16dbm5uWnMmDFas2aNWrRoYe+wUMkYhqGRI0dqzJgx6tChg73DQRGQ/9ofeV75Qz7juFauXKk9e/ZU+h6sFPFsLCIiQiaTqdBl165dlvZTpkzR3r17tWHDBjk5OWn48OFihHPBivt8JenkyZPq27ev7r33Xj322GN2irx8KMnzhW2YTCardcMw8mwDHNmTTz6pn376SZ988om9Q6lwAgICFB8fr7i4OI0dO1YjRozQwYMH7R0WKoii/rd//vz5Sk9P17Rp0+wdcqVD/lv+keeVH+Qzjun48eP617/+peXLl6tq1ar2DseueCeejf3555/6888/C23TqFGjfL94f/zxh+rXr6/t27czTKYAxX2+J0+eVI8ePdSpUydFRUWpShXq1oUpyfeXd+Jdn6ysLFWrVk2ffvqp7rrrLsv2f/3rX4qPj9fmzZvtGF3FwzvxSseECRP0+eefa8uWLWrcuLG9w6nwevXqpZtuuknvvvuuvUNBBVDU//Y/8MADWrt2rVXhITs7W05OTnrooYe0dOnS0g610iL/Lb/I88oX8hnH9fnnn+uuu+6Sk5OTZVt2drZMJpOqVKmizMxMq30VmbO9A6ho6tSpozp16pTo2Nx6amZmpi1DqlCK83xPnDihHj16qH379lqyZAkJTBFcz/cXJePq6qr27dsrJibGKrmLiYnR4MGD7RgZcG2GYWjChAlas2aNYmNjSXjLiGEY5AqwmaL+t//tt9/WjBkzLOsnT55Unz59tGrVKnXq1Kk0Q6z0yH/LL/K88oF8xvH17NlT+/bts9r2yCOPqFmzZnr66acrTQFPoohnNz/88IN++OEHdevWTV5eXvrtt9/04osv6qabbqIXng2cPHlSwcHBatCggWbPnq3Tp09b9vn6+toxsoojMTFRf/31lxITE5Wdna34+HhJUpMmTVS9enX7BlfOhIWFKTQ0VB06dFBQUJDee+89JSYm8g4bGzl//rx+/fVXy3pCQoLi4+NVq1YtNWjQwI6RlX/jx4/Xxx9/rC+++EKenp6W9/uYzWa5u7vbObqK4dlnn1W/fv1Uv359nTt3TitXrlRsbKyio6PtHRoqmav/vsz9b/1NN92kevXq2SMkXIX81zGR5zk+8hnH5+npmecdhblzC1S2dxdSxLMTd3d3ffbZZ3rppZeUkZEhPz8/9e3bVytXrpSbm5u9wyv3NmzYoF9//VW//vprnsSSEeS28eKLL1oNnWnXrp0kadOmTQoODrZTVOXT/fffrzNnzmj69OlKSkpSYGCg1q9fr4YNG9o7tAph165d6tGjh2U9LCxMkjRixAhFRUXZKaqKYeHChZKU58/8kiVLNHLkyLIPqAI6deqUQkNDlZSUJLPZrNatWys6Olq9e/e2d2gAHAz5r2Miz3N85DMoT3gnHgAAAAAAAODgeEkCAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAORjy5YtGjhwoPz9/WUymfT555+X6vUiIiJkMpmsFl9f31K9JgAAQGVU1nne5cuX9fzzz6tx48Zyd3fXjTfeqOnTpysnJ6dY56GIBwAAkI+MjAy1adNGCxYsKLNrtmzZUklJSZZl3759ZXZtAEDZCA4O1qRJk+wdBlCplXWe9/rrr2vRokVasGCBDh06pDfeeEOzZs3S/Pnzi3Ue51KKDwAAoFzr16+f+vXrV+D+rKwsPf/881qxYoXOnj2rwMBAvf766woODi7xNZ2dnel9BwAAUMrKOs/bsWOHBg8erDvvvFOS1KhRI33yySfatWtXsc5DTzwAAIASeOSRR7Rt2zatXLlSP/30k+6991717dtXR44cKfE5jxw5In9/fzVu3FgPPPCAfvvtNxtGDAAAgKKwdZ7XrVs3bdy4Ub/88osk6ccff9TWrVvVv3//Yp2HIh4AOICcnBy9/vrratKkidzc3NSgQQPNnDnT3mEBKMDRo0f1ySef6NNPP9Vtt92mm266SeHh4erWrZuWLFlSonN26tRJy5Yt0zfffKP3339fycnJ6tKli86cOWPj6AEAZSUjI0PDhw9X9erV5efnpzlz5tg7JADXUBp53tNPP60HH3xQzZo1k4uLi9q1a6dJkybpwQcfLNZ5GE4LAA5g2rRpev/99/Xmm2+qW7duSkpK0s8//2zvsAAUYM+ePTIMQ02bNrXanpmZqdq1a0uSjh07psaNGxd6nvHjx1vexfLPIR2tWrVSUFCQbrrpJi1dulRhYWE2vgMAQFmYMmWKNm3apDVr1sjX11fPPvusdu/erbZt29o7NAAFKI08b9WqVVq+fLk+/vhjtWzZUvHx8Zo0aZL8/f01YsSIIsdGEQ8A7OzcuXN66623tGDBAstf4DfddJO6detm58gAFCQnJ0dOTk7avXu3nJycrPZVr15dknTDDTfo0KFDhZ7Hy8urwH0eHh5q1arVdQ3PBQDYz/nz57V48WItW7ZMvXv3liQtXbpU9erVs3NkAApTGnnelClT9Mwzz+iBBx6QdOUH299//12RkZEU8QCgPDl06JAyMzPVs2dPe4cCoIjatWun7OxspaSk6Lbbbsu3jYuLi5o1a1bia2RmZurQoUMFnh8A4NiOHj2qrKwsBQUFWbbVqlVLAQEBdowKwLWURp73999/q0oV6zfaOTk5KScnp1ixUcQDADtzd3e3dwgA8nH+/Hn9+uuvlvWEhATFx8erVq1aatq0qR566CENHz5cc+bMUbt27fTnn3/qu+++U6tWrYr9kmJJCg8P18CBA9WgQQOlpKRoxowZSk9PL9avswAAx2EYhr1DAFCAss7zBg4cqJkzZ6pBgwZq2bKl9u7dq7lz5+rRRx8t1nmY2AIA7Ozmm2+Wu7u7Nm7caO9QAPzDrl271K5dO7Vr106SFBYWpnbt2unFF1+UJC1ZskTDhw/X5MmTFRAQoEGDBun7779X/fr1S3S9P/74Qw8++KACAgJ09913y9XVVXFxcWrYsKHN7gkAUHaaNGkiFxcXxcXFWbalpqZaZqcEYD9lnefNnz9f99xzj8aNG6fmzZsrPDxcTzzxhF555ZVincdk8PMAANjdyy+/rLfeekvz5s1T165ddfr0aR04cECjRo2yd2gAAAAoobFjx2r9+vX68MMP5ePjo+eee07fffedRo0apXnz5tk7PADlDMNpAcABvPDCC3J2dtaLL76okydPys/PT2PGjLF3WAAAALgOs2bN0vnz5zVo0CB5enpq8uTJSktLs3dYAMopeuIBAAAAAAAADo534gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAO7v8Bn0qzJgU3+4YAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1500x1000 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(15,10))\n",
"\n",
"ax0.hist(scifi_fitpars_found[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$a_x$ found\")\n",
"ax0.hist(scifi_fitpars_lost[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$a_x$ lost\")\n",
"ax0.set_xlabel(\"a\")\n",
"ax0.set_ylabel(\"normed\")\n",
"ax0.set_title(\"fitparameter a der scifi track\")\n",
"ax0.legend()\n",
"\n",
"ax1.hist(scifi_fitpars_found[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$b_x$ found\")\n",
"ax1.hist(scifi_fitpars_lost[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$b_x$ lost\")\n",
"ax1.set_xticks(np.arange(-1,1,0.1),minor=True)\n",
"ax1.set_xlabel(\"b\")\n",
"ax1.set_ylabel(\"normed\")\n",
"ax1.set_title(\"fitparameter b der scifi track\")\n",
"ax1.legend()\n",
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
"\n",
"\n",
"ax2.hist(scifi_fitpars_found[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$c_x$ found\")\n",
"ax2.hist(scifi_fitpars_lost[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$c_x$ lost\")\n",
"ax2.set_xlim([-3e-5,3e-5])\n",
"ax2.set_xticks(np.arange(-3e-5,3.5e-5,1e-5),minor=False)\n",
"ax2.set_xlabel(\"c\")\n",
"ax2.set_ylabel(\"normed\")\n",
"ax2.set_title(\"fitparameter c der scifi track\")\n",
"ax2.legend()\n",
"\n",
"ax3.hist(scifi_fitpars_found[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$d_x$ found\")\n",
"ax3.hist(scifi_fitpars_lost[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$d_x$ lost\")\n",
"ax3.set(xlim=(-5e-8,5e-8))\n",
"ax3.text(-4e-8,3e8,\"d negligible <1e-7\")\n",
"ax3.set_xlabel(\"d\")\n",
"ax3.set_ylabel(\"normed\")\n",
"ax3.set_title(\"fitparameter d der scifi track\")\n",
"ax3.legend()\n",
"\n",
"\"\"\"\n",
"a_x: virtual hit on the reference plane\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env1",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}