778 lines
298 KiB
Plaintext
778 lines
298 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\n",
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"import matplotlib\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from mpl_toolkits import mplot3d\n",
|
|
"import itertools\n",
|
|
"import awkward as ak\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"9056"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
|
|
"\n",
|
|
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
|
|
"allcolumns = file.arrays()\n",
|
|
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
|
|
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
|
|
"\n",
|
|
"ak.num(found, axis=0)\n",
|
|
"#ak.count(found, axis=None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.8606728758791105"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"def t_eff(found, lost, axis = 0):\n",
|
|
" sel = ak.num(found, axis=axis)\n",
|
|
" des = ak.num(lost, axis=axis)\n",
|
|
" return sel/(sel + des)\n",
|
|
"\n",
|
|
"t_eff(found, lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"sample size: 32\n",
|
|
"eff (cutoff = 0 ) = 0.96875\n",
|
|
"sample size: 32\n",
|
|
"eff (cutoff = 50 ) = 0.96875\n",
|
|
"sample size: 32\n",
|
|
"eff (cutoff = 100 ) = 0.96875\n",
|
|
"sample size: 43\n",
|
|
"eff (cutoff = 150 ) = 0.9767441860465116\n",
|
|
"sample size: 65\n",
|
|
"eff (cutoff = 200 ) = 0.9692307692307692\n",
|
|
"sample size: 97\n",
|
|
"eff (cutoff = 250 ) = 0.9587628865979382\n",
|
|
"sample size: 129\n",
|
|
"eff (cutoff = 300 ) = 0.9457364341085271\n",
|
|
"sample size: 150\n",
|
|
"eff (cutoff = 350 ) = 0.9533333333333334\n",
|
|
"sample size: 169\n",
|
|
"eff (cutoff = 400 ) = 0.9408284023668639\n",
|
|
"sample size: 197\n",
|
|
"eff (cutoff = 450 ) = 0.9390862944162437\n",
|
|
"sample size: 227\n",
|
|
"eff (cutoff = 500 ) = 0.920704845814978\n",
|
|
"sample size: 257\n",
|
|
"eff (cutoff = 550 ) = 0.9260700389105059\n",
|
|
"sample size: 297\n",
|
|
"eff (cutoff = 600 ) = 0.9326599326599326\n",
|
|
"sample size: 334\n",
|
|
"eff (cutoff = 650 ) = 0.9281437125748503\n",
|
|
"sample size: 366\n",
|
|
"eff (cutoff = 700 ) = 0.9289617486338798\n",
|
|
"sample size: 400\n",
|
|
"eff (cutoff = 750 ) = 0.925\n",
|
|
"sample size: 436\n",
|
|
"eff (cutoff = 800 ) = 0.9151376146788991\n",
|
|
"sample size: 468\n",
|
|
"eff (cutoff = 850 ) = 0.9102564102564102\n",
|
|
"sample size: 500\n",
|
|
"eff (cutoff = 900 ) = 0.912\n",
|
|
"sample size: 533\n",
|
|
"eff (cutoff = 950 ) = 0.9136960600375235\n",
|
|
"sample size: 562\n",
|
|
"eff (cutoff = 1000 ) = 0.9163701067615658\n",
|
|
"\n",
|
|
"sample size: 150\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.9533333333333334"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"#finden wir die elektronen die keine bremsstrahlung gemacht haben mit hoher effizienz?\n",
|
|
"#von energie der photonen abmachen\n",
|
|
"#scan ab welcher energie der photonen die effizienz abfällt\n",
|
|
"\n",
|
|
"#abhängigkeit vom ort der emission untersuchen <- noch nicht gemacht\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#idea: we make an event cut st all events that contain a photon of energy > cutoff_energy are not included\n",
|
|
"\"\"\"\n",
|
|
"ph_e = found[\"brem_photons_pe\"]\n",
|
|
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
|
|
"ph_e = ph_e[event_cut]\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"for cutoff_energy in range(0,1050,50):\n",
|
|
"\tnobrem_f = found[ak.all(found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
|
|
"\tnobrem_l = lost[ak.all(lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
|
|
"\tprint(\"sample size: \",ak.num(nobrem_f,axis=0)+ak.num(nobrem_l,axis=0))\n",
|
|
"\tprint(\"eff (cutoff = \",str(cutoff_energy),\") = \",str(t_eff(nobrem_f,nobrem_l)))\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"we see that a cutoff energy of 350MeV is ideal because the efficiency drops significantly for higher values\n",
|
|
"\"\"\"\n",
|
|
"cutoff_energy = 350.0 #MeV\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"better statistics: cutoff=350MeV - sample size: 150 events and efficiency=0.9533\n",
|
|
"\"\"\"\n",
|
|
"nobrem_found = found[ak.all(found[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
|
|
"nobrem_lost = lost[ak.all(lost[\"brem_photons_pe\"]<cutoff_energy,axis=1)]\n",
|
|
"\n",
|
|
"print(\"\\nsample size: \",ak.num(nobrem_found,axis=0)+ak.num(nobrem_lost,axis=0))\n",
|
|
"t_eff(nobrem_found, nobrem_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def weird_div(n,d):\n",
|
|
" return n/d if d else 0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.8593328191284226"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"#wie viel energie relativ zur anfangsenergie verlieren die elektronen durch bremstrahlung und hat das einen einfluss darauf ob wir sie finden oder nicht?\n",
|
|
"#if any photon of an electron has an energy higher the cutoff then it is included\n",
|
|
"cutoff_energy=350\n",
|
|
"\n",
|
|
"brem_found = found[ak.any(found[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
|
|
"energy_found = ak.to_numpy(brem_found[\"energy\"])\n",
|
|
"eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"energyloss_found = eph_found/energy_found\n",
|
|
"\n",
|
|
"brem_lost = lost[ak.any(lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n",
|
|
"energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n",
|
|
"eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"energyloss_lost = eph_lost/energy_lost\n",
|
|
"\n",
|
|
"t_eff(brem_found,brem_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"mean energyloss relative to initial energy (found): 0.6551043170507098\n",
|
|
"mean energyloss relative to initial energy (lost): 0.8273131179948844\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"mean_energyloss_found = ak.mean(energyloss_found)\n",
|
|
"mean_energyloss_lost = ak.mean(energyloss_lost)\n",
|
|
"print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n",
|
|
"print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHMCAYAAAAgfimTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA51klEQVR4nO3deXhU9d3+8XuSTDZCAgTCmrIGNAFBASngglZQUbFPfVyKIiJuNT8hxbK5JlYakaooD0JBlC5SaRWQKgqpkgAiWwhWDAIClaDQsCaBSBgy5/cHZkrINnMy20ner+vKFebMWT7zadq5+z3fc47NMAxDAAAAFhUS6AIAAADqgzADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADwC9WrFghm81W48+CBQu8cpzy8nIlJCTolVde8fuxAQRGWKALANA4bN26VZL0/vvvKyEhocr7ycnJXjnOmjVrdPjwYf3iF7/w+7EBBAZhBoBfbN26VbGxsbrllltks9l8dpx3331X/fr1U8eOHf1+bACBwWkmAH6Rm5ur3r17+zRMGIahpUuX6rbbbvP7sQEEDmEGgM8dPXpU+/fvV69evXT27NkqP4ZheOU469ev18GDByuFGX8dG0DgEGYA+FzFnJXXX39ddru9yk9+fn6d+zAMQ7GxsTpy5EiN67z77rvq1auXkpKSPD724cOHddNNN6lJkybq3r27srKy6vORAfgRc2YA+Fxubq4kacmSJUpMTKzyvjsTcHfv3q1WrVqpZcuWNa6zZMkS3X///aaOnZqaqjZt2ujw4cP65z//qTvuuEPffPON4uPj66wNQGARZgD43NatWxUZGakRI0YoNDS0xvX+8Ic/6O9//7vsdrs2btyodu3a6W9/+5uSk5O1detW9enTRw8//LAWL16sdu3aafny5erWrZskadOmTdq/f3+V+TLuHPvkyZNatmyZ9uzZo+joaI0YMUK9e/fW+++/XyUcAQg+nGYC4HNbt25Vz549aw0ykrR9+3Zt3rxZaWlp+s9//qMBAwboqaeekiTl5eVpy5YtGjNmjI4dO6bLLrtM8+fPd2373nvvqXv37urZs6fHx969e7diYmIqjdz06tVLX331lZmPC8DPCDMAfKqoqEh79+5V796961x3+/bteuqpp3T99dfLbrfr7rvv1q5duySdCzMZGRn66U9/qpCQEHXt2rXS5N333nuvyqiMu8c+efKkYmNjKy2LjY3VyZMn3f2YAAKI00wAfGrr1q0yDENNmjTRhg0bqrzfvn1714jIV199VeluvIWFha45Mnl5efrLX/7ieu+rr77S8OHDJUnbtm3Tnj17qj3F5M6xY2JiVFxcXOm94uJixcTEmPzUAPyJkRkAPlVxNdFrr72mgQMHVvlZtWqVpHPB5fDhw5Xu0Lt06VLdeOONKigoUFhYWKX3/vWvf+mSSy6RdG5UpmPHjurbt6+pYyclJenkyZM6cOCAa9vt27crJSXFBx0B4G02g5ssAAgCn3zyia6//nrNnTtXo0eP1p/+9Cf99re/1RdffKGcnBzNnj1bK1eulCSVlpaqWbNmKioqUlRUlJKTk3XjjTfqpZdeMn3822+/XXFxcZo1a5Y++eQTjRo1Srt376716ikAwYHTTACCwvbt23X//ffrnXfe0YQJE9S3b19lZWUpLi5OeXl5rlEY6dwppq5duyoqKkqS3LpPTV1ef/11jR49WvHx8Wrfvr0WL15MkAEsgpEZAEHhwQcfVL9+/fTwww8HuhQAFsOcGQBBYfv27brooosCXQYAC2JkBkBQiIuL065du9S6detAlwLAYggzAADA0jjNBAAALI0wAwAALC2gl2avWbNGM2bMUG5urg4ePKilS5fq5z//uet9wzCUkZGhefPm6fjx4xowYIBmz57t0Y2snE6nvv/+ezVt2lQ2m80HnwIAAHibYRgqKSlRu3btFBJS+9hLQMPMqVOn1Lt3b40ZM6bKbcgl6cUXX9TLL7+shQsXqnv37nr++ec1dOhQ7dy5U02bNnXrGN9//32lh8cBAADrKCgoUIcOHWpdJ2gmANtstkojM4ZhqF27dkpLS9PkyZMlSWVlZWrdurWmT5/u9r0oioqK1KxZMxUUFFR5kJy7HA6HVq1apWHDhslut5vaB9xDr/2HXvsX/fYfeu1fvup3cXGxEhMTdeLECcXFxdW6btDeAXjfvn06dOiQhg0b5loWERGhq6++WuvXr68xzJSVlamsrMz1uqSkRJIUFRXluluop8LCwhQdHa2oqCj+i+Fj9Np/6LV/0W//odf+5at+OxwOSXJrikjQhplDhw5JUpV7TrRu3VrffvttjdtlZmYqIyOjyvJVq1YpOjq6XjVlZWXVa3u4j177D732L/rtP/Tav7zd79LSUrfXDdowU+HCRGYYRq0pberUqZowYYLrdcUw1bBhw+p1mikrK0tDhw4l5fsYvfYfeu1f9Nt/6LV/+arfxcXFbq8btGGmTZs2ks6N0LRt29a1vLCwsNY7hEZERCgiIqLKcrvdXu8me2MfcA+99h967V/023/otX95u9+e7Ctow0znzp3Vpk0bZWVl6dJLL5UknTlzRjk5OZo+fbrXj1deXu46P3chh8OhsLAwnT59WuXl5V4/dkNmt9sVGhoa6DIAAA1YQMPMyZMn9c0337he79u3T9u2bVOLFi30k5/8RGlpafrd736npKQkJSUl6Xe/+52io6M1cuRIr9VgGIYOHTqkEydO1LpOmzZtVFBQwL1qTGjWrJnatGlD7wAAPhHQMLNlyxZdc801rtcVc11Gjx6thQsXatKkSfrhhx/06KOPum6at2rVKrfvMeOOiiCTkJCg6Ojoar9wnU6nTp48qZiYmDpv3IP/MgxDpaWlKiwslKRKpwsBAPCWgIaZIUOGqLbb3NhsNqWnpys9Pd0nxy8vL3cFmfj4+BrXczqdOnPmjCIjIwkzHqq4HL6wsFAJCQmccgIAeF2j/maumCNT30u2UbuK/tY0JwkAgPpo1GGmAnM5fIv+AgB8iTADAAAsjTBjUUOGDFFaWlqgywAAIOCC9j4zAbc+3fVPm2EosqxMtogIyRenTAal17mKr2RnZ+uaa67R8ePH1axZs4DVAQCAWYzMAAAASyPMNADHjx/Xvffeq+bNmys6Olo33nijdu/e7Xr/22+/1S233KLmzZurSZMmSklJ0YoVK/Tvf//bdZ+f5s2by2az6b777gvQpwAAwBxOMzUA9913n3bv3q3ly5crNjZWkydP1vDhw5Wfny+73a7U1FSdOXNGa9asUZMmTZSfn6+YmBglJibqvffe02233aadO3cqNjbWdV8YAEAjVDHFIoDTH8wgzFhcRYj57LPPNGjQIEnS22+/rcTERC1btky333679u/fr9tuu029evWSJHXp0sW1fYsWLSRJCQkJzJkBAFgSp5ksbseOHQoLC9OAAQNcy+Lj49WjRw/t2LFDkjRu3Dg9//zzGjx4sJ599ln961//ClS5AAB4HWHG4mp6HIRhGK6b1T3wwAPau3evRo0apS+//FL9+vXTrFmz/FkmAAA+Q5ixuOTkZJ09e1YbN250LTt69Kh27dqliy++2LUsMTFRjzzyiJYsWaLHH39c8+fPlySFh4dLOvecKgAArIgwY3FJSUm69dZb9eCDD2rdunX64osvdM8996h9+/a69dZbJUlpaWlauXKl9u3bp61bt+rTTz91BZ2OHTvKZrPpgw8+0OHDh3Xy5MlAfhwAADzGBOCanDeT23A6dbq4WOGxsbIF4VOz33rrLY0fP14333yzzpw5o6uuukorVqyQ3W6XdG7UJTU1VQcOHFBsbKxuuOEGvfLKK5Kk9u3bKyMjQ1OmTNGYMWN07733auHChQH8NAAAeIYwY1HZ2dmufzdv3lx/+tOfaly3rvkxTz/9tJ5++mlvlQYAgF8F3zADAACABwgzAADA0ggzAADA0pgzAwAAalbxiIMKQfioA0ZmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmLMowDD300ENq0aKFbDabtm3bFrBahgwZorS0tIAdHwDQuHFpdg3S0//7b8OwqawsUhERNtlsvj2Wuz7++GMtXLhQ2dnZ6tKli1q2bOn1ugAAsALCjEXt2bNHbdu21aBBgwJdCgAAAcVpJgu677779Nhjj2n//v2y2Wzq1KmTysrKNG7cOCUkJCgyMlJXXHGFNm/e7Npm4cKFatasWaX9LFu2TLbzhprS09PVp08f/fnPf1anTp0UFxenu+66SyUlJa51Tp06pXvvvVcxMTFq27atXnrpJZ9/XgAAakOYsaBXX31Vzz33nDp06KCDBw9q8+bNmjRpkt577z398Y9/1NatW9WtWzddf/31OnbsmEf73rNnj5YtW6YPPvhAH3zwgXJycvTCCy+43p84caJWr16tpUuXatWqVcrOzlZubq63PyIAAG4jzFhQXFycmjZtqtDQULVp00bR0dGaM2eOZsyYoRtvvFHJycmaP3++oqKitGDBAo/27XQ6tXDhQvXs2VNXXnmlRo0apU8++USSdPLkSS1YsEC///3vNXToUPXq1Ut//OMfVV5e7ouPCQCAWxpsmJk9e7aSk5PVv3//QJfic3v27JHD4dDgwYNdy+x2uy6//HLt2LHDo3116tRJTZs2db1u27atCgsLXcc5c+aMBg4c6Hq/RYsW6tGjRz0/AQAA5jXYMJOamqr8/PxK80YaKsMwJKnS/JeK5RXLQkJCXOtVcDgcVfZlt9srvbbZbHI6nZWOAwBAMGmwYaYx6datm8LDw7Vu3TrXMofDoS1btujiiy+WJLVq1UolJSU6deqUax1P703TrVs32e12bdiwwbXs+PHj2rVrV/0+AAAA9cCl2Q1AkyZN9Ktf/UoTJ05UixYt9JOf/EQvvviiSktLNXbsWEnSgAEDFB0drSeeeEKPPfaYNm3apIULF3p0nJiYGI0dO1YTJ05UfHy8WrdurSeffFIhIWRiAEDgEGZqcP6N7JxOQ8XFpxUbG66QEB/cNc8LXnjhBTmdTo0aNUolJSXq16+fVq5cqebNm0s6N7flL3/5iyZOnKh58+bpuuuuU3p6uh566CGPjjNjxgydPHlSI0aMUNOmTfX444+rqKjIFx8JAAC32IwGPhGiuLhYcXFxKioqUmxsbKX3Tp8+rX379qlz586KjIyscR9Op1PFxcWKjY1lFMIEd/ssnTs9tmLFCg0fPrzK/B14F732L/rtP/S6Htann/s9KL3qsgqDKr/2Vb9r+/6+EN/MAADA0ggzAADA0ggzAADA0ggzAADA0ggz4mZwvkZ/AQC+1KjDTMWs69LS0gBX0rBV9JerCgAAvtCo7zMTGhqqZs2auZ49FB0dXeWRANK5S7PPnDmj06dPc2m2BwzDUGlpqQoLC9WsWTOFhoYGuiQAQAPUqMOMJLVp00aSXIGmOoZh6IcfflBUVFS1YQe1a9asmavPAAB4W6MPMzabTW3btlVCQkK1D16Uzt0QaM2aNbrqqqs4VeIhu93OiAwAwKcafZipEBoaWuOXbmhoqM6ePavIyEjCDAAAQYYJIAAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNKCOsycPXtWTz31lDp37qyoqCh16dJFzz33nJxOZ6BLAwAAQSIs0AXUZvr06Zo7d67++Mc/KiUlRVu2bNGYMWMUFxen8ePHB7o8AAAQBII6zHz++ee69dZbddNNN0mSOnXqpL/+9a/asmVLgCsDAKABW59e93uDalnHz4I6zFxxxRWaO3eudu3ape7du+uLL77QunXrNHPmzBq3KSsrU1lZmet1cXGxJMnhcMjhcJiqo2I7s9vDffTaf+i1f9Fv/6HX9eD0YPbJBX32dr892Z/NMAzDq0f3IsMw9MQTT2j69OkKDQ1VeXm5pk2bpqlTp9a4TXp6ujIyMqosX7RokaKjo31ZLgAA8JLS0lKNHDlSRUVFio2NrXXdoA4z77zzjiZOnKgZM2YoJSVF27ZtU1paml5++WWNHj262m2qG5lJTEzUkSNH6mxGTRwOh7KysjR06FDZ7XZT+4B76LX/0Gv/ot/+Q6/rYWOm++sOODew4Kt+FxcXq2XLlm6FmaA+zTRx4kRNmTJFd911lySpV69e+vbbb5WZmVljmImIiFBERESV5Xa7vd5N9sY+4B567T/02r/ot//QaxNCPLha+ILeervfnuwrqC/NLi0tVUhI5RJDQ0O5NBsAALgE9cjMLbfcomnTpuknP/mJUlJSlJeXp5dffln3339/oEsDAABBIqjDzKxZs/T000/r0UcfVWFhodq1a6eHH35YzzzzTKBLAwAAQSKow0zTpk01c+bMWi/FBgAAjVtQz5kBAACoC2EGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYWoMNM7Nnz1ZycrL69+8f6FIAAIAPNdgwk5qaqvz8fG3evDnQpQAAAB9qsGEGAAA0DoQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAAAasvXp534aMMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwtDBPN9i5c6f++te/au3atfr3v/+t0tJStWrVSpdeeqmuv/563XbbbYqIiPBFrQAAAFW4PTKTl5enoUOHqnfv3lqzZo369++vtLQ0/fa3v9U999wjwzD05JNPql27dpo+fbrKysp8WTcAAIAkD0Zmfv7zn2vixIlavHixWrRoUeN6n3/+uV555RW99NJLeuKJJ7xSJAAAQE3cDjO7d+9WeHh4nesNHDhQAwcO1JkzZ+pVGAAAgDvcPs3kTpCpz/oAAABmuD0y89prr7m903HjxpkqBgAAwFNuh5lXXnml0uvDhw+rtLRUzZo1kySdOHFC0dHRSkhIIMwAAAC/cfs00759+1w/06ZNU58+fbRjxw4dO3ZMx44d044dO3TZZZfpt7/9rS/rBQAAqMTUTfOefvppzZo1Sz169HAt69Gjh1555RU99dRTXisOAACgLqbCzMGDB+VwOKosLy8v13/+8596FwUAAOAuU2HmZz/7mR588EFt2bJFhmFIkrZs2aKHH35Y1113nVcLBAAAqI2pMPPmm2+qffv2uvzyyxUZGamIiAgNGDBAbdu21RtvvOHtGgEAAGrk8bOZJKlVq1ZasWKFdu3apa+//lqGYejiiy9W9+7dvV0fAABArUyFmQqdOnWSYRjq2rWrwsLqtSsAAABTTJ1mKi0t1dixYxUdHa2UlBTt379f0rmb5b3wwgteLRAAAKA2psLM1KlT9cUXXyg7O1uRkZGu5dddd50WL17steIk6bvvvtM999yj+Ph4RUdHq0+fPsrNzfXqMQAAgHWZOje0bNkyLV68WD/96U9ls9lcy5OTk7Vnzx6vFXf8+HENHjxY11xzjT766CMlJCRoz549rrsOAwAAmAozhw8fVkJCQpXlp06dqhRu6mv69OlKTEzUW2+95VrWqVMnr+0fAACYtD793O/+Twa0DMnkaab+/fvrww8/dL2uCDDz58/XwIEDvVOZpOXLl6tfv366/fbblZCQoEsvvVTz58/32v4BAID1mRqZyczM1A033KD8/HydPXtWr776qr766it9/vnnysnJ8Vpxe/fu1Zw5czRhwgQ98cQT2rRpk8aNG6eIiAjde++91W5TVlamsrIy1+vi4mJJksPhqPauxe6o2M7s9nAfvfYfeu1f9Nt/6PUFnD+OW7jTD6fnYxy+6rcn+7MZFbfw9dCXX36p3//+98rNzZXT6dRll12myZMnq1evXmZ2V63w8HD169dP69evdy0bN26cNm/erM8//7zabdLT05WRkVFl+aJFixQdHe212gAAgO+UlpZq5MiRKioqUmxsbK3rmg4z/tCxY0cNHTq00l2F58yZo+eff17fffddtdtUNzKTmJioI0eO1NmMmjgcDmVlZWno0KGy2+2m9gH30Gv/odf+Rb/9h15fYGPmud8Dprq/rgccl/3GJ/0uLi5Wy5Yt3Qoz9brTXWFhoQoLC+V0Oistv+SSS+qzW5fBgwdr586dlZbt2rVLHTt2rHGbiIgIRUREVFlut9vr3WRv7APuodf+Q6/9i377D73+UciP39Hu9CLEWfc6F/pxv97utyf7MhVmcnNzNXr0aO3YsUMXDuzYbDaVl5eb2W0Vv/71rzVo0CD97ne/0x133KFNmzZp3rx5mjdvnlf2DwAArM9UmBkzZoy6d++uBQsWqHXr1l69HPt8/fv319KlSzV16lQ999xz6ty5s2bOnKm7777bJ8cDAADWYyrM7Nu3T0uWLFG3bt28XU8VN998s26++WafHwcAAFiTqfvM/OxnP9MXX3zh7VoAAAA8Zmpk5o033tDo0aO1fft29ezZs8oknREjRnilOAAA4AcVd/O1KFNhZv369Vq3bp0++uijKu95cwIwAABAXUydZho3bpxGjRqlgwcPyul0VvohyAAAAH8yFWaOHj2qX//612rdurW36wEAAPCIqTDzi1/8QqtXr/Z2LQAAAB4zNWeme/fumjp1qtatW6devXpVmQA8btw4rxQHAABQF9NXM8XExCgnJ6fKU7JtNhthBgAA+I3HYcYwDK1evVoJCQk8hRoAAAScx3NmDMNQ9+7da3xqNQAAgD95HGZCQkKUlJSko0eP+qIeAAAAj5i6munFF1/UxIkTtX37dm/XAwAA4BFTE4DvuecelZaWqnfv3goPD1dUVFSl948dO+aV4gAAgJed/+iCQek1rWUppsLMzJkzvVwGAACAOabCzOjRo71dBwAAgCmmwowklZeXa9myZdqxY4dsNpuSk5M1YsQIhYaGerM+AACAWpkKM998842GDx+u7777Tj169JBhGNq1a5cSExP14YcfqmvXrt6uEwAAoFqmn5rdtWtXFRQUaOvWrcrLy9P+/fvVuXNn7v4LAAD8ytTITE5OjjZs2KAWLVq4lsXHx+uFF17Q4MGDvVYcAABAXUyNzERERKikpKTK8pMnTyo8PLzeRQEAALjLVJi5+eab9dBDD2njxo0yDEOGYWjDhg165JFHNGLECG/XCAAAUCNTYea1115T165dNXDgQEVGRioyMlKDBw9Wt27d9Oqrr3q7RgAAgBqZmjPTrFkzvf/++9q9e7e+/vprGYah5ORkdevWzdv1AQAAXzn/bsAWZvo+M5KUlJSkpKQkb9UCAADgMVNhpry8XAsXLtQnn3yiwsJCOZ3OSu9/+umnXikOAACgLqbCzPjx47Vw4ULddNNN6tmzp2w2m7frAgAAcIupMPPOO+/ob3/7m4YPH+7tegAAADxi6mqm8PBwJvsCAICgYCrMPP7443r11VdlGIa36wEAAPCIqdNM69at0+rVq/XRRx8pJSVFdru90vtLlizxSnEAAAB1MX2fmf/5n//xdi1eNXv2bM2ePVvl5eWBLgUAAPiQqTDz1ltvebsOr0tNTVVqaqqKi4sVFxcX6HIAAICPmJozAwAAgsD69AZzF9/6cDvM3HDDDVq/fn2d65WUlGj69OmaPXt2vQoDAABwh9unmW6//Xbdcccdatq0qUaMGKF+/fqpXbt2ioyM1PHjx5Wfn69169ZpxYoVuvnmmzVjxgxf1g0AACDJgzAzduxYjRo1Su+++64WL16s+fPn68SJE5Ikm82m5ORkXX/99crNzVWPHj18VS8AAEAlHk0ADg8P18iRIzVy5EhJUlFRkX744QfFx8dXuTwbAADAH+r11Oy4uDiuFAIAwAoa8ERhrmYCAACWRpgBAACWRpgBAACWRpgBAACWZirMFBQU6MCBA67XmzZtUlpamubNm+e1wgAAANxhKsyMHDlSq1evliQdOnRIQ4cO1aZNm/TEE0/oueee82qBAAAAtTEVZrZv367LL79ckvS3v/1NPXv21Pr167Vo0SItXLjQm/UBAADUylSYcTgcioiIkCT985//1IgRIyRJF110kQ4ePOi96gAAAOpgKsykpKRo7ty5Wrt2rbKysnTDDTdIkr7//nvFx8d7tUAAAIDamAoz06dP1x/+8AcNGTJEv/zlL9W7d29J0vLly12nnwAAAPzB1OMMhgwZoiNHjqi4uFjNmzd3LX/ooYfUpEkTrxUHAADccP6jCgal17RWg2VqZObaa69VSUlJpSAjSS1atNCdd97plcIAAADcYSrMZGdn68yZM1WWnz59WmvXrq13UQAAAO7y6DTTv/71L9e/8/PzdejQIdfr8vJyffzxx2rfvr33qgMAAKiDR2GmT58+stlsstlsuvbaa6u8HxUVpVmzZnmtOAAAgLp4FGb27dsnwzDUpUsXbdq0Sa1atXK9Fx4eroSEBIWGhnq9SAAA4KbzJwM3Eh6FmY4dO0qSnE6nT4oBAADwlKlLsyVp165dys7OVmFhYZVw88wzz9S7MAAAAHeYCjPz58/Xr371K7Vs2VJt2rSRzWZzvWez2QgzAADAb0yFmeeff17Tpk3T5MmTvV0PAACAR0zdZ+b48eO6/fbbvV0LAACAx0yFmdtvv12rVq3ydi0AAAAeM3WaqVu3bnr66ae1YcMG9erVS3a7vdL748aN80pxAAAAdTEVZubNm6eYmBjl5OQoJyen0ns2m40wAwAA/MZUmNm3b5+36wAAADDF1JyZQMnMzJTNZlNaWlqgSwEAAEHC1MjM/fffX+v7b775pqliarN582bNmzdPl1xyidf3DQAArMv0pdnn/xQWFurTTz/VkiVLdOLECS+XKJ08eVJ333235s+fr+bNm3t9/wAAwLpMjcwsXbq0yjKn06lHH31UXbp0qXdRF0pNTdVNN92k6667Ts8//3yt65aVlamsrMz1uri4WJLkcDjkcDhMHb9iO7Pbw3302n/otX/Rb/9pVL12Bn62iK/67cn+bIZhGN468M6dOzVkyBAdPHjQW7vUO++8o2nTpmnz5s2KjIzUkCFD1KdPH82cObPa9dPT05WRkVFl+aJFixQdHe21ugAAgO+UlpZq5MiRKioqUmxsbK3rmn7QZHX27Nmjs2fPem1/BQUFGj9+vFatWqXIyEi3tpk6daomTJjgel1cXKzExEQNGzaszmbUxOFwKCsrS0OHDq1yTx14F732H3rtX/TbfxpVrzdmBroCOS77jU/6XXFmxR2mwsz5YUGSDMPQwYMH9eGHH2r06NFmdlmt3NxcFRYWqm/fvq5l5eXlWrNmjf7v//5PZWVlCg0NrbRNRESEIiIiquzLbrfXu8ne2AfcQ6/9h177F/32n0bR6xBnoCuQfuyxt/vtyb5MhZm8vLxKr0NCQtSqVSu99NJLdV7p5Imf/exn+vLLLystGzNmjC666CJNnjy5SpABAACNj6kws3r1am/XUa2mTZuqZ8+elZY1adJE8fHxVZYDAIDGqV5zZg4fPqydO3fKZrOpe/fuatWqlbfqAgAAcIupMHPq1Ck99thj+tOf/iSn89z5utDQUN17772aNWuWT68ays7O9tm+AQCA9Zi6QH3ChAnKycnRP/7xD504cUInTpzQ+++/r5ycHD3++OPerhEAAKBGpkZm3nvvPb377rsaMmSIa9nw4cMVFRWlO+64Q3PmzPFWfQAAALUyNTJTWlqq1q1bV1mekJCg0tLSehcFAADgLlNhZuDAgXr22Wd1+vRp17IffvhBGRkZGjhwoNeKAwAAqIup00yvvvqqbrjhBnXo0EG9e/eWzWbTtm3bFBkZqZUrV3q7RgAAgBqZCjM9e/bU7t279Ze//EVff/21DMPQXXfdpbvvvltRUVHerhEAgMZjffq534PSA1mFpZi+z0xUVJQefPBBb9YCAADgMVNzZjIzM/Xmm29WWf7mm29q+vTp9S4KAADAXabCzB/+8AdddNFFVZanpKRo7ty59S4KAADAXabCzKFDh9S2bdsqy1u1aqWDBw/WuygAAAB3mQoziYmJ+uyzz6os/+yzz9SuXbt6FwUAAOAuUxOAH3jgAaWlpcnhcOjaa6+VJH3yySeaNGkSjzMAAAB+ZSrMTJo0SceOHdOjjz6qM2fOSJIiIyM1efJkTZ061asFAgAA1MZUmLHZbJo+fbqefvpp7dixQ1FRUUpKSlJERIS36wMAAKiV6fvMSFJMTIz69+/vrVoAAAA8ZmoCMAAAQLAgzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAEIzWp5/7QZ0IMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIabJiZPXu2kpOT1b9//0CXAgAAfCgs0AX4SmpqqlJTU1VcXKy4uLhAlwMAgOWkLxhSddnYbH+XUacGOzIDAAAahwY7MgMAADxT3UiMFTAyAwAALI0wAwAALI0wAwAALI05MwAAWM369EBXEFQYmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGBGAAADxRMfl2ULpv9guPMTIDAAAsjTADAAAsjTADAAAsjTADAAAsjQnAAABcyFeTfM04f2JwMNQThAgzAAA0QukLhgS6BK8hzAAA0MBUF1TSx2b7uwy/Yc4MAACwNMIMAACwNE4zAQAQSNz5t94YmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGBGAAACzOnRvgNaSb5F2IMAMA8L9gelyAPzWAK5cuDEVP9g9MHefjNBMAALA0wgwAALA0wgwAALA05swAABAkGtsDIr0lqMNMZmamlixZoq+//lpRUVEaNGiQpk+frh49egS6NAAAAiI9XVLBkABXEVyC+jRTTk6OUlNTtWHDBmVlZens2bMaNmyYTp06FejSAABAkAjqkZmPP/640uu33npLCQkJys3N1VVXXRWgqgAAQDAJ6jBzoaKiIklSixYtalynrKxMZWVlrtfFxcWSJIfDIYfDYeq4FduZ3R7uo9f+Q6/9i35fwPnjiQEf9MMrva6tvvrU7qz9hEhImFFlmeP8bRwOhYRIqma9QPHV37Yn+7MZhhE8HamFYRi69dZbdfz4ca1du7bG9dLT05WRkVFl+aJFixQdHe3LEgEAgJeUlpZq5MiRKioqUmxsbK3rWibMpKam6sMPP9S6devUoUOHGterbmQmMTFRR44cqbMZNXE4HMrKytLQoUNlt9tN7QPuodf+Q6/9i35fYGPmud8Dpnp9117pdW311VV7xfvVrXP+e9XI/POVVZZNHbW2znUC6TevDPDJ33ZxcbFatmzpVpixxGmmxx57TMuXL9eaNWtqDTKSFBERoYiIiCrL7XZ7vZvsjX3APfTaf+i1f9HvH4U4z/32YS/q1eva6qur9or3q1vn/Peq4Txrq7LMfsE21a0TSBU99vbftif7CuowYxiGHnvsMS1dulTZ2dnq3LlzoEsCAMCvGvIDIr0lqMNMamqqFi1apPfff19NmzbVoUOHJElxcXGKiooKcHUAACAYBPV9ZubMmaOioiINGTJEbdu2df0sXrw40KUBAIAgEdQjMxaZmwwAsKL16f/996D0mtZyfz+17WN9Le+h3oJ6ZAYAAKAuQT0yAwCAFaQvGCKt+vHFj89N4gGR/kOYAQDAQ9WFFwQOp5kAAIClMTIDALAGb03Y9ZMLR2847eQ7jMwAAABLI8wAAABLI8wAAABLI8wAAABLYwIwAKBh2ph57inVtUwWdj3EcdV5y2peHUGKMAMAgB9U9/RrrnDyDsIMAAABUl3AgecIMwCABinzz1fKedbGKaRGgDADAMB50tP130cUrCIAWQFhBgAQVKoLDwQK1IYwAwDwvYpHEXjrMQTnP9rAm/styHbveNWtW922Ne0PXkWYAQB4RaBHVCqOFRIi9e7tv+Mi8LhpHgAAsDRGZgAAllPlkuZV1a6GRoIwAwBoNCqd9qq4YgmWR5gBAFTl7Qm7/lKQLYUZkqdzZgqyvV4K/IcwAwAwhculESwIMwDgRYG+osdbLnwAo9nP4Nrux1M66YPM1wTUhDADAEGooYSihqDSHYERlAgzAAC/uXCkhscFwBsIMwDQWNQwqbdBhImC7MCvi4AhzABAEHAnUFy4TiDurhuofXOqB7UhzABAA1bdfVWYhIuGhjADADXw1khIevp/nxeUmSk980w9CwNQCWEGABqZBjFHBjhPgw0zs2fP1uzZs1VeXh7oUgA0EA3ucumC7HO/E4fUbx0zx/SnimN66zMg6DTYp2anpqYqPz9fmzdvDnQpAADAhxrsyAwA62twIyFeRn+AcwgzACzFzKTcYPuCD/RlzkBDQ5gB0ODwhQ40LoQZoDY13DG1MQvkjduCkVufvyBbCjOk3pK+WyedtQV2MmpBtvlt3Knbk/1Xt98Lt2fiLupAmAECqLEEA3c/l5nP31B7BsB9hBmgDukLhkirLliWHohK/K+xfE4A1kaYAXwk2J6jc+GyzMz/3pHW6fT98QHAVwgzQJAL9lNRwVYPgMaHMAOYEOyjLlbVUD4HAP8izKBRCbYQYmadeh+/IFuSFNJxcN0b/bhug72apCD73G8zn68+2wb62L5SkG2t/aLBaLCPMwAAAI0DIzPwq4Z8iiSQ6CGAxoyRGQAAYGmMzMBrzI66nL9OSEj1lwv7auTBWyNFjIwAQOAQZlAtdybKevwFvj5dKhhy7t/1nLjoy9NVlfZTUa+3FWSf+x1sEzitqiD73O/a+unOOmaOUbH8fIGc1HvhfipeB7uC7IZxDAQEYQYNRrDfjwUA4BuEmQamoX6hN5TPAQDwPsJMI+TPwOOXUzbuHBsA0GBxNRMAALA0RmYaOI+uJirIPve7mgmINe6nYpsatqtTLcf0Cl/v351jB+r4waAg+9xvf33+iuPVdszz1/E1d47lyTq+7mPFcdxZ5/xa3NkO8CFGZgAAgKUxMhOkmO8BAIB7GJkBAACWRpgBAACWxmkmX1qfXvn1oPTq1qq8bm3rmFGQXfl1sExELciu/f3v1klnbef+7c5ETnfuylrT9t6+42p9Xbg/d/ZfsU4Fd2r5bp3U28Oazt93xTJ3jnX+9hduc+F+6rNubcesTU3HrG4f7uzXk2PXZ9vz163P358nx6zPNoCPEGYCoNr5MBX3YFnlx0IAAGgAOM0EAAAsjTADAAAsjTADAAAsjTkzfpC+YMi5fyzIPvfbncmF9Z3sWd2+a1teVw3ubFfb9u5uE2ZUnZR64bHrc6dhd9+rz4RiT9apbRt31vX2XW7NbFexjZn/vM2u68n2DUlBtvvv1bYu0MBYIsy8/vrrmjFjhg4ePKiUlBTNnDlTV155ZaDLqlYgH6wIAEBjFPSnmRYvXqy0tDQ9+eSTysvL05VXXqkbb7xR+/fvD3RpAAAgCAT9yMzLL7+ssWPH6oEHHpAkzZw5UytXrtScOXOUmZkZ4Op47AAAAIEW1GHmzJkzys3N1ZQpUyotHzZsmNavX1/tNmVlZSorK3O9LioqkiQdO3ZMDofDVB0Oh0OlpaU6evSo7Hb7BTXWsqHzZPXLzxyt/f3z13Fnv9WtW9u+3XX+ft3Z34Wf68K63NhHiNNQaWmpzjhD5HTa3DuOyWPVyp3/jAK5Py/s19XrM0fldNrd309Nx6zv36GvemSGD2px628bXkGv/evo0aM1fkfWR0lJiSTJMIw61w3qMHPkyBGVl5erdevWlZa3bt1ahw4dqnabzMxMZWRkVFneuXNnn9QIH3gj0AU0IvTav+i3/9Brv8lc6Nv9l5SUKC4urtZ1gjrMVLDZKidrwzCqLKswdepUTZgwwfXa6XTq2LFjio+Pr3GbuhQXFysxMVEFBQWKjY01tY9A6N+/vzZv3hzoMjxi1V5L1us3vfYv+u0/9Nq/fNVvwzBUUlKidu3a1bluUIeZli1bKjQ0tMooTGFhYZXRmgoRERGKiIiotKxZs2ZeqSc2NtZS/8UIDQ21VL3ns1qvJev2m177F/32H3rtX77od10jMhWC+mqm8PBw9e3bV1lZWZWWZ2VladCgQQGqyjpSU1MDXUKjQr/9h177F/32H3ptjs1wZ2ZNAC1evFijRo3S3LlzNXDgQM2bN0/z58/XV199pY4dO/qlhuLiYsXFxamoqMiyidkq6LX/0Gv/ot/+Q6/9Kxj6HdSnmSTpzjvv1NGjR/Xcc8/p4MGD6tmzp1asWOG3ICOdO3X17LPPVjl9Be+j1/5Dr/2LfvsPvfavYOh30I/MAAAA1Cao58wAAADUhTADAAAsjTADAAAsjTADAAAsjTADAAAsjTAj6fXXX1fnzp0VGRmpvn37au3atbWun5OTo759+yoyMlJdunTR3Llz/VRpw+BJv5csWaKhQ4eqVatWio2N1cCBA7Vy5Uo/Vmttnv5tV/jss88UFhamPn36+LbABsbTfpeVlenJJ59Ux44dFRERoa5du+rNN9/0U7XW5mmv3377bfXu3VvR0dFq27atxowZo6NHa3mgLyRJa9as0S233KJ27drJZrNp2bJldW4TkO9Io5F75513DLvdbsyfP9/Iz883xo8fbzRp0sT49ttvq11/7969RnR0tDF+/HgjPz/fmD9/vmG32413333Xz5Vbk6f9Hj9+vDF9+nRj06ZNxq5du4ypU6cadrvd2Lp1q58rtx5Pe13hxIkTRpcuXYxhw4YZvXv39k+xDYCZfo8YMcIYMGCAkZWVZezbt8/YuHGj8dlnn/mxamvytNdr1641QkJCjFdffdXYu3evsXbtWiMlJcX4+c9/7ufKrWfFihXGk08+abz33nuGJGPp0qW1rh+o78hGH2Yuv/xy45FHHqm07KKLLjKmTJlS7fqTJk0yLrrookrLHn74YeOnP/2pz2psSDztd3WSk5ONjIwMb5fW4Jjt9Z133mk89dRTxrPPPkuY8YCn/f7oo4+MuLg44+jRo/4or0HxtNczZswwunTpUmnZa6+9ZnTo0MFnNTZE7oSZQH1HNurTTGfOnFFubq6GDRtWafmwYcO0fv36arf5/PPPq6x//fXXa8uWLXI4HD6rtSEw0+8LOZ1OlZSUqEWLFr4oscEw2+u33npLe/bs0bPPPuvrEhsUM/1evny5+vXrpxdffFHt27dX9+7d9Zvf/EY//PCDP0q2LDO9HjRokA4cOKAVK1bIMAz95z//0bvvvqubbrrJHyU3KoH6jgz6xxn40pEjR1ReXl7lCdytW7eu8qTuCocOHap2/bNnz+rIkSNq27atz+q1OjP9vtBLL72kU6dO6Y477vBFiQ2GmV7v3r1bU6ZM0dq1axUW1qj/p8FjZvq9d+9erVu3TpGRkVq6dKmOHDmiRx99VMeOHWPeTC3M9HrQoEF6++23deedd+r06dM6e/asRowYoVmzZvmj5EYlUN+RjXpkpoLNZqv02jCMKsvqWr+65aiep/2u8Ne//lXp6elavHixEhISfFVeg+Jur8vLyzVy5EhlZGSoe/fu/iqvwfHkb9vpdMpms+ntt9/W5ZdfruHDh+vll1/WwoULGZ1xgye9zs/P17hx4/TMM88oNzdXH3/8sfbt26dHHnnEH6U2OoH4jmzU//erZcuWCg0NrZLmCwsLqyTLCm3atKl2/bCwMMXHx/us1obATL8rLF68WGPHjtXf//53XXfddb4ss0HwtNclJSXasmWL8vLy9P/+3/+TdO7L1jAMhYWFadWqVbr22mv9UrsVmfnbbtu2rdq3b6+4uDjXsosvvliGYejAgQNKSkryac1WZabXmZmZGjx4sCZOnChJuuSSS9SkSRNdeeWVev755xlR96JAfUc26pGZ8PBw9e3bV1lZWZWWZ2VladCgQdVuM3DgwCrrr1q1Sv369ZPdbvdZrQ2BmX5L50Zk7rvvPi1atIhz3G7ytNexsbH68ssvtW3bNtfPI488oh49emjbtm0aMGCAv0q3JDN/24MHD9b333+vkydPupbt2rVLISEh6tChg0/rtTIzvS4tLVVISOWvu9DQUEn/HTWAdwTsO9Kn04stoOISvwULFhj5+flGWlqa0aRJE+Pf//63YRiGMWXKFGPUqFGu9SsuO/v1r39t5OfnGwsWLODSbA942u9FixYZYWFhxuzZs42DBw+6fk6cOBGoj2AZnvb6QlzN5BlP+11SUmJ06NDB+N///V/jq6++MnJycoykpCTjgQceCNRHsAxPe/3WW28ZYWFhxuuvv27s2bPHWLdundGvXz/j8ssvD9RHsIySkhIjLy/PyMvLMyQZL7/8spGXl+e6DD5YviMbfZgxDMOYPXu20bFjRyM8PNy47LLLjJycHNd7o0ePNq6++upK62dnZxuXXnqpER4ebnTq1MmYM2eOnyu2Nk/6ffXVVxuSqvyMHj3a/4VbkKd/2+cjzHjO037v2LHDuO6664yoqCijQ4cOxoQJE4zS0lI/V21Nnvb6tddeM5KTk42oqCijbdu2xt13320cOHDAz1Vbz+rVq2v93+Bg+Y60GQZjbAAAwLoa9ZwZAABgfYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAAF31VVXyWazVfm5++6769z2vvvu05QpU7yyLwDWxB2AAQSUYRiKi4vTs88+WyVwxMTEKCYmpsZtnU6nWrdureXLl2vgwIH12hcA6woLdAEAGrfdu3erpKREV111ldq0aePRtp999plCQkJcT/Wuz74AWBenmQAEVG5ursLCwnTJJZd4vO3y5ct1yy23KCQkpN77AmBdhBkAAbV161aVl5crPj7edSooJiZGDz74YJ3bLl++XLfeeqtH+/rggw/Uo0cPJSUl6Y033vDJZwLgX8yZARBQ1157rVq1aqVp06ZVWt68eXPFx8fXuN2OHTvUr18/HTlyRFFRUW7t6+zZs0pOTtbq1asVGxuryy67TBs3blSLFi28/8EA+A0jMwACKi8vT1dccYW6detW6Sc+Pl7bt29X165ddejQIUnSkSNH1KdPH505c0bLly/X0KFDXUGmrn1J0qZNm5SSkqL27duradOmGj58uFauXBmQzw3AewgzAAJm7969OnHihC699NJq3+/Zs6fuuusuffrpp5KkjIwMTZ48WeHh4Xr//fc1YsQIt/clSd9//73at2/vet2hQwd99913Xvo0AAKFq5kABExubq4kqXXr1q7RlwoJCQkKCQlRSkqKdu3apW+++Ua5ubl67bXXVFhYqM2bN2vZsmUe7au6s+o2m83LnwqAvxFmAATM1q1bJUndu3evtNxut6ukpEQRERFKSkrSBx98oCeeeELTpk2TzWbTP/7xDw0YMEAJCQke7at9+/aVRmIOHDjguqwbgHUxARhAUDtx4oSSkpI0YMAAffDBB5KkESNG6IorrtCkSZM82tfZs2d18cUXKzs72zUBeMOGDbVONAYQ/BiZARDUmjVrJkl64YUXXMuuuOIK/fKXv/R4X2FhYXrppZd0zTXXyOl0atKkSQQZoAFgZAZAUHM4HOrZs6d27twZ6FIABCmuZgIQ1L7++mv16NEj0GUACGKMzAAAAEtjZAYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFja/wdRS8SJa7x3ewAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#in abhängigkeit von der energie der elektronen\n",
|
|
"plt.hist(energyloss_lost, bins=200, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
|
|
"plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
|
|
"plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n",
|
|
"plt.yticks(np.arange(0,10,1), minor=True)\n",
|
|
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"counts (normed)\")\n",
|
|
"plt.title(r'$E_{ph}/E_0$')\n",
|
|
"plt.legend()\n",
|
|
"plt.grid()\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAIhCAYAAADtvIOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADbq0lEQVR4nOzde1xVVf7/8fcR5IgIJ7wAHsNLjZEKVqOFaDNoCuiIzkxTViRJF3PCyQydym5eJsFMyflqWTlOmpds+jb6rSwCrTRHUfLSiDlak9cUsUJQU1BYvz/6sesIKthBDsfX8/HYjzx7f87aa+9zoPVh7bWWzRhjBAAAAAAAAAAA0AA0qu8KAAAAAAAAAAAA1BQdGwAAAAAAAAAAoMGgYwMAAAAAAAAAADQYdGwAAAAAAAAAAIAGg44NAAAAAAAAAADQYNCxAQAAAAAAAAAAGgw6NgAAAAAAAAAAQINBxwYAAAAAAAAAAGgw6NgAAAAAAAAAAAANBh0bQD1544031KVLF/n7+8tms2nLli31XaVqTZgwQTabrb6r4TFSUlLUvn37+q5GnXvvvfc0YcIEt5c7b9482Ww27d692+1lS9Lnn3+uCRMm1Fn5AAAA8Bx13bZ88cUXNW/evDopuyFr3769UlJS6rsada6uPv+6zinrKpcDAE9DxwZQDw4fPqzk5GRdeeWVysrK0rp163TVVVfVd7UAy3vvvaeJEyfWdzVq7fPPP9fEiRPp2AAAAMDPRsfGpa2hfv4NNZcDgNqiYwOoBzt37tSpU6c0dOhQxcbGqkePHmratGl9V8urfP/99/VdhQbpUrtvl9r1/tSJEydkjKnvagAAAKAOGGN04sSJ+q5Gg3Qp5QiX+vfkUvqsAW9ExwZwkaWkpOjGG2+UJN12222y2Wzq3bu3dfztt99WTEyMmjZtqsDAQMXFxWndunVVyqhu6Gp100bZbDb96U9/0oIFC9SpUyc1bdpU11xzjd59990q71++fLmuvfZa2e12dejQQdOmTavVta1YsUJ9+/ZVUFCQmjZtql69emnlypXV1nHbtm2644475HA4FBoaqnvuuUfFxcUuscYYvfjii7r22mvl7++v4OBg3XLLLfrqq69c4nr37q3IyEitXr1aPXv2VNOmTXXPPfdIkvbv369bbrlFgYGBuuyyy3TnnXcqLy9PNpvNevpmwYIFstlsVe6zJE2aNEmNGzfWgQMHznrdJ0+e1Lhx49ShQwf5+fmpTZs2GjlypI4cOeIS9+GHH6p3795q0aKF/P391bZtW/3hD39waUzNnj1b11xzjZo1a6bAwEBdffXVevzxx89536+//noNHDjQZV9UVJRsNpvy8vKsff/85z9ls9m0detWST9+Fps2bdItt9yi4OBgXXnllUpJSdELL7wg6YfvT+V2vlEQNfn8f+57//Of/+iOO+5QaGio7Ha72rZtq7vuukulpaWaN2+ebr31VklSnz59rHpXfs7n+p7s3btXQ4cOVUhIiOx2uzp16qTp06eroqLCOvfu3btls9k0bdo0ZWZmqkOHDmrWrJliYmKUm5tbo+ssKCjQiBEjdPnll8vPz08dOnTQxIkTdfr06Qs+z6effqrBgwerefPmatKkia677jr94x//cImpnKYhOztb99xzj1q1aqWmTZuqtLRUxhilp6erXbt2atKkibp3766cnBz17t3b+t107NgxXXbZZRoxYkSV8+/evVs+Pj567rnnanQPAAAA6trf//53XXPNNWrSpImaN2+u3//+99q+fbtLzFdffaXbb79dTqdTdrtdoaGh6tu3rzVFcPv27bVt2zatWrXKaleeb/qg2uYveXl5+tWvfqWmTZvqiiuu0JQpU1zan5JUUlKisWPHuuQao0eP1vHjx13iKvO+l156SZ06dZLdbtf8+fMlSWvWrFFMTIyaNGmiNm3a6KmnntLf/vY3lzb+vffeq+bNm1f7h96bbrpJXbp0Oee116Q9LZ0/3/n++++t6638/Lp3767XX3/9rOcuKSmRr6+vS3v0m2++UaNGjeRwOFza2qNGjVKrVq2sB3zOliPU5ef/c9+blZWlvn37yuFwqGnTpurUqZMyMjIk6by53Pm+J3379lVgYKCaNm2qnj17avny5S7nrswrPvroIz3wwANq2bKlWrRooZtvvvmcOfNP1SZ/qel53njjDcXExCggIEDNmjVTQkKCNm/e7BKTkpKiZs2aaevWrYqPj1dgYKD69u0rSTpy5Ij1M9CsWTMNHDhQX331lWw2mzWt1yeffCKbzVbtd/G1116rkn8DuAgMgIvqyy+/NC+88IKRZNLT0826devMtm3bjDHGLFq0yEgy8fHxZtmyZeaNN94w3bp1M35+fuaTTz6xyhg2bJhp165dlbLHjx9vzvyxlmTat29vbrjhBvOPf/zDvPfee6Z3797G19fX/Pe//7XiVqxYYXx8fMyNN95o/vnPf5o333zTXH/99aZt27ZVyqzOggULjM1mM7/73e/MP//5T/POO++YxMRE4+PjY1asWFGljhEREebpp582OTk5JjMz09jtdnP33Xe7lDl8+HDTuHFjM2bMGJOVlWUWL15srr76ahMaGmoKCgqsuNjYWNO8eXMTHh5uZs6caT766COzatUqc+zYMfOLX/zCNG/e3Lzwwgvmgw8+MA8//LDp0KGDkWReffVVY4wxpaWlJiwszNx5550u5z916pRxOp3m1ltvPeu9r6ioMAkJCcbX19c89dRTJjs720ybNs0EBASY6667zpw8edIYY8yuXbtMkyZNTFxcnFm2bJn5+OOPzaJFi0xycrIpKioyxhjz+uuvG0nmwQcfNNnZ2WbFihXmpZdeMqNGjTrnvX/sscdMs2bNTFlZmTHGmIKCAiPJ+Pv7m8mTJ1txDzzwgAkNDa3yWbRr1848+uijJicnxyxbtsx8+eWX5pZbbjGSzLp166yt8lqqU9PP/9VXXzWSzK5du2r93i1btphmzZqZ9u3bm5deesmsXLnSLFy40AwZMsSUlJSYwsJCk56ebiSZF154wap3YWGhMebs35PCwkLTpk0b06pVK/PSSy+ZrKws86c//clIMg888IB1/l27dlk/T/379zfLli0zy5YtM1FRUSY4ONgcOXLknJ/TwYMHTXh4uGnXrp15+eWXzYoVK8xf/vIXY7fbTUpKygWd58MPPzR+fn7mV7/6lXnjjTdMVlaWSUlJcfl+//S+t2nTxtx///3m/fffN//7v/9rTp8+bcaNG2ckmfvvv99kZWWZOXPmmLZt25rWrVub2NhYq4yHH37YBAQEVLnOP//5z6ZJkybmm2++Oef1AwAAuFt1bcvK9uAdd9xhli9fbl577TVzxRVXGIfDYXbu3GnFRUREmF/84hdmwYIFZtWqVeatt94yY8aMMR999JExxphNmzaZK664wlx33XVWu3LTpk3nrE9t8pcWLVqYjh07mpdeesnk5OSY1NRUI8nMnz/fijt+/Li59tprTcuWLU1mZqZZsWKF+etf/2ocDoe56aabTEVFhRVb2dbr2rWrWbx4sfnwww9Nfn6++eyzz0yTJk1M165dzZIlS8zbb79tfvOb35j27du73LvPPvvMSDJz5sxxuaZt27ZZ7etK7dq1M8OGDbNe17Q9XZN8Z8SIEaZp06YmMzPTfPTRR+bdd981U6ZMMTNnzjznve/Ro4eJj4+3Xi9ZssQ0adLE2Gw2869//cva36lTJzNkyBCXz6K6HKEuP//q8vmavvdvf/ubsdlspnfv3mbx4sVmxYoV5sUXXzSpqanGGHPeXO5s35OPP/7YNG7c2HTr1s288cYbZtmyZSY+Pt7YbDazZMkS6/yVP3NXXHGFefDBB80HH3xg/va3v5ng4GDTp0+fc94fY2qfv9TkPJMnTzY2m83cc8895t133zX//Oc/TUxMjAkICLD+1lJ53xs3bmzat29vMjIyzMqVK80HH3xgysvLzY033miaNGlipkyZYrKzs83EiRNNx44djSQzfvx4q4zrrrvO9OrVq8p1XX/99eb6668/7/UDcC86NoB68NFHHxlJ5s0337T2lZeXG6fTaaKiokx5ebm1/+jRoyYkJMT07NnT2lfbjo3Q0FBTUlJi7SsoKDCNGjUyGRkZ1r7o6GjjdDrNiRMnrH0lJSWmefPm5+3YOH78uGnevLkZNGiQy/7y8nJzzTXXmBtuuKFKHadOneoSm5qaapo0aWI1ztetW2ckmenTp7vE7du3z/j7+5tHHnnE2hcbG2skmZUrV7rEVnYgvf/++y77R4wYUaXhNH78eOPn52cOHTpk7XvjjTeMJLNq1Spr35n3Pisrq9rrqXzvK6+8Yowx5n//93+NJLNlyxZzNn/605/MZZdddtbjZ7NixQojyaxevdoYY8zChQtNYGCgSU1NdWn0dezY0SQlJblcsyTz9NNPVylz5MiRNerQMqZ2n/+ZyWdt3nvTTTeZyy67zOqoqM6bb75pJFkJ6U+d7Xvy2GOPGUlm/fr1LvsfeOABY7PZzI4dO4wxP3Y4REVFmdOnT1txGzZsMJLM66+/ftZ6GfPD965Zs2Zmz549LvunTZtmJFmN7tqc5+qrrzbXXXedOXXqlEuZiYmJpnXr1tbvksr7ftddd7nEfffdd8Zut5vbbrvNZX/lz99POzb++9//mkaNGpnnn3/e2nfixAnTokWLKp2SAAAAF8OZbcuioiLj7+9vfvOb37jE7d2719jtdqst/M033xhJZsaMGecsv0uXLi7toXO5kPzlzPZn586dTUJCgvU6IyPDNGrUyOTl5bnEVeYW7733nrVPknE4HOa7775zib311ltNQECAOXz4sLWvvLzcdO7cuUqnUGxsrLn22mtd3v/AAw+YoKAgc/ToUWvfmR0bNW1P1yTfiYyMNL/73e/OGVOdJ5980vj7+1t/wL/vvvtM//79TdeuXc3EiRONMcZ8/fXXLjla5TVXlyMYU3ef/5k5ZU3fe/ToURMUFGRuvPFGl06tM50rlzvb96RHjx4mJCTE5XM+ffq0iYyMNJdffrl1vsqfucqOlEpTp041kszBgwfPWi9jap+/nO88e/fuNb6+vubBBx90iTt69KgJCwtz6cQaNmyYkWT+/ve/u8QuX77cSDKzZ8922Z+RkVGlY6OyXps3b7b2VeZpP+2UBHBxMBUV4CF27NihAwcOKDk5WY0a/fij2axZM/3hD39Qbm7uBc//2KdPHwUGBlqvQ0NDFRISoj179kiSjh8/rry8PN18881q0qSJFRcYGKhBgwadt/y1a9fqu+++07Bhw3T69Glrq6ioUP/+/ZWXl1dlqPTgwYNdXnft2lUnT55UYWGhJOndd9+VzWbT0KFDXcoMCwvTNddco48//tjl/cHBwbrppptc9q1atUqBgYHq37+/y/477rijyjU88MADkqQ5c+ZY+2bNmqWoqCj9+te/Puu1f/jhh5J+GNb6U7feeqsCAgKs6ZSuvfZa+fn56f7779f8+fOrHVJ8ww036MiRI7rjjjv0f//3f/rmm2/Oet6f6tWrl5o0aaIVK1ZIkjWNUP/+/bV27Vp9//332rdvn7744gv169evyvv/8Ic/1Og8Z3Mhn39t3/v9999r1apVGjJkiFq1anXBda3ue/Lhhx+qc+fOuuGGG1z2p6SkyBhjfcaVBg4cKB8fH+t1165dJcn6eTqbd999V3369JHT6XS51gEDBkj64ftam/N8+eWX+s9//qM777xTklzK/M1vfqODBw9qx44dLmWe+Vnn5uaqtLRUQ4YMcdnfo0ePKkPtr7jiCiUmJurFF1+0hu4vXrxY3377rf70pz+d89oBAAAuhnXr1unEiRNV2ubh4eG66aabrLZ58+bNdeWVV+q5555TZmamNm/eXGXKpNqqbf4SFhZWpf3ZtWtXlzblu+++q8jISF177bUuZSYkJMhms1Up86abblJwcLDLvlWrVummm25Sy5YtrX2NGjWq0v6TpIceekhbtmzRv/71L0k/TPG0YMECDRs2TM2aNTvrtde0PV2TfOeGG27Q+++/r8cee0wff/xxjdd/6Nu3r06cOKG1a9dK+mGq27i4OPXr1085OTnWPklVcqLqcoTaqu3nfyHvXbt2rUpKSpSamlplCuraOPN7cvz4ca1fv1633HKLy+fs4+Oj5ORk7d+/v0peUV0+L507J7qQ/OV85/nggw90+vRp3XXXXS7lNWnSRLGxsdXe9zNzoso87Myfier+bnDHHXcoJCTEmu5LkmbOnKlWrVrptttuO+u1A6gbdGwAHuLbb7+VJLVu3brKMafTqYqKChUVFV1Q2S1atKiyz263W43EoqIiVVRUKCwsrEpcdfvOdOjQIUnSLbfcosaNG7tszz77rIwx+u67785ZJ7vdLklWnQ4dOiRjjEJDQ6uUmZubW6URXN19+/bbbxUaGlpl/9n23XbbbXr55ZdVXl6uf//73/rkk0/O+wfbb7/9Vr6+vlX+2G6z2RQWFmZ9rldeeaVWrFihkJAQjRw5UldeeaWuvPJK/fWvf7Xek5ycrL///e/as2eP/vCHPygkJETR0dFWQ/xsmjRpol69elkN9ZUrVyouLk69e/dWeXm5PvnkE6uM6jo2qrt3tXEhn39t31tUVKTy8nJdfvnlP6uuZ/uenO3nrvL4T53vu3s2hw4d0jvvvFPlOivnKz7zO12TnxFJGjt2bJUyU1NTqy3zzOusvLaa/pw89NBD+uKLL6zv0wsvvKCYmBj98pe/POe1AwAAXAzny6kqj9tsNq1cuVIJCQmaOnWqfvnLX6pVq1YaNWqUjh49ekHnrm3+cr4crbLMf//731XKCwwMlDHG7TnRb3/7W7Vv3976o+28efN0/PhxjRw58pzXXtP2dE3ynf/5n//Ro48+qmXLlqlPnz5q3ry5fve73+mLL744Zx0q18dYsWKFvvzyS+3evdvq2Fi/fr2OHTumFStW6IorrlCHDh1c3vtz8yGp9p//hbz38OHDkuT2nKioqEjGmDrPiS4kf6lpTnT99ddXKfONN96oUl7Tpk0VFBTksq8yp2/evLnL/up+Rux2u0aMGKHFixfryJEjOnz4sP7xj3/ovvvus+oG4OLxre8KAPhB5f+wDx48WOXYgQMH1KhRI+upiiZNmqi0tLRKXE2f8D9TcHCwbDabCgoKqhyrbt+ZKp/+mTlzpnr06FFtTHWNgvOVabPZ9Mknn1TbQDhzX3VPrLRo0UIbNmyosv9s1/TQQw9pwYIF+r//+z9lZWVZi42fS4sWLXT69GkdPnzYpXPDGKOCggJdf/311r5f/epX+tWvfqXy8nJ9+umnmjlzpkaPHq3Q0FDdfvvtkqS7775bd999t44fP67Vq1dr/PjxSkxM1M6dO9WuXbuz1qNv3756+umntWHDBu3fv19xcXEKDAzU9ddfr5ycHB04cEBXXXWVwsPDq7z35zztI/28z7+m7y0vL5ePj4/279//s+p6tu/J2X7uflrHn6tly5bq2rWrJk+eXO3xyqShNuVJ0rhx43TzzTdXGxMREeHy+szrr/y9U5kQ/FRBQUGVURs33XSTIiMjNWvWLDVr1kybNm3SwoULa1VvAACAunK+nOqn7bp27dpp7ty5kqSdO3fqH//4hyZMmKCysjK99NJLtT53bfOXmpbp7++vv//972c9/lNna+uera13pkaNGmnkyJF6/PHHNX36dL344ovq27dvlTZldeeoaXv6fPlOQECAJk6cqIkTJ+rQoUPW6I1BgwbpP//5z1nr4OfnpxtvvFErVqzQ5ZdfrrCwMEVFRemKK66QJH388cdauXKlEhMTq7z35+ZDldd4oZ9/Td9bmW+6OycKDg5Wo0aN6jwnupD8paZl/u///u858+VKZ/sZOX36tL777juXzo2z/d3ggQce0JQpU/T3v/9dJ0+e1OnTp/XHP/6xVvUG4B50bAAeIiIiQm3atNHixYs1duxY63+4x48f11tvvaWYmBg1bdpUktS+fXsVFhbq0KFD1h+My8rK9MEHH1zQuQMCAnTDDTfon//8p5577jlrOqqjR4/qnXfeOe/7e/Xqpcsuu0yff/6526akSUxM1JQpU/T1119XO0y6JmJjY/WPf/xD77//vjXdjyQtWbKk2vhu3bqpZ8+eevbZZ5Wfn6/7779fAQEB5zxH3759NXXqVC1cuFAPP/ywtf+tt97S8ePH1bdv3yrv8fHxUXR0tK6++motWrRImzZtsjo2KgUEBGjAgAEqKyvT7373O23btu2cDbV+/frp8ccf11NPPaXLL79cV199tbX/7bffVkFBQa2mnPrpkzD+/v7njP05n39t3hsbG6s333xTkydPPmvDuqajJ36qb9++ysjI0KZNm1xGHrz22muy2Wzq06dPjcs6l8TERL333nu68sorq0wRcCEiIiLUsWNHffbZZ0pPT7+gMqKjo2W32/XGG2+4JBe5ubnas2dPlY4NSRo1apT++Mc/qri4WKGhobr11lsv9BIAAADcKiYmRv7+/lq4cKFLG2X//v368MMPdcstt1T7vquuukpPPvmk3nrrLW3atMnaf+YIinNxR/5SXZnp6elq0aJFlVEGNRUbG6v33ntP33zzjdWGrqio0Jtvvllt/H333acJEybozjvv1I4dO/Tss8+e9xwX0p6uSb4TGhqqlJQUffbZZ5oxY4a+//57KyeuTr9+/TRu3DgFBgZaI9UDAgLUo0cPzZw5UwcOHKh2BPvZXKzPv6bv7dmzpxwOh1566SXdfvvtZ+2QqU0uJ/1wj6Kjo/XPf/5T06ZNs95TUVGhhQsX6vLLL9dVV11Vq2uqjjvylzMlJCTI19dX//3vfy94iuXY2FhNnTpVb7zxhjVFtXT2vxu0bt1at956q1588UWVlZVp0KBBatu27QWdG8DPQ8cG4CEaNWqkqVOn6s4771RiYqJGjBih0tJSPffcczpy5IimTJlixd522216+umndfvtt+vPf/6zTp48qf/5n/9ReXn5BZ//L3/5i/r376+4uDiNGTNG5eXlevbZZxUQEHDWaYQqNWvWTDNnztSwYcP03Xff6ZZbblFISIgOHz6szz77TIcPH9bs2bNrVZ9evXrp/vvv1913361PP/1Uv/71rxUQEKCDBw9qzZo1ioqKcml0VGfYsGF6/vnnNXToUD3zzDP6xS9+offff9/qAPrpWiaVHnroId12222y2WzWcNhziYuLU0JCgh599FGVlJSoV69e+ve//63x48fruuuuU3JysiTppZde0ocffqiBAweqbdu2OnnypPXkVWXjevjw4fL391evXr3UunVrFRQUKCMjQw6Hw2XkR3W6deum4OBgZWdn6+6777b29+vXT3/5y19czlMTUVFRkqRnn31WAwYMkI+Pj7p27So/P78qsT/n86/NezMzM3XjjTcqOjpajz32mH7xi1/o0KFDevvtt/Xyyy8rMDBQkZGRkqRXXnlFgYGBatKkiTp06FDtUP9KDz/8sF577TUNHDhQkyZNUrt27bR8+XK9+OKLeuCBB9zSiJekSZMmKScnRz179tSoUaMUERGhkydPavfu3Xrvvff00ksv1XpY+csvv6wBAwYoISFBKSkpatOmjb777jtt375dmzZtOmvCWql58+ZKS0tTRkaGgoOD9fvf/1779+/XxIkT1bp162p/RoYOHapx48Zp9erVevLJJ6v9TgAAANSHyy67TE899ZQef/xx3XXXXbrjjjv07bffauLEiWrSpInGjx8vSfr3v/+tP/3pT7r11lvVsWNH+fn56cMPP9S///1vPfbYY1Z5UVFRWrJkid544w1dccUVatKkidVOPpM78pczjR49Wm+99ZZ+/etf6+GHH1bXrl1VUVGhvXv3Kjs7W2PGjFF0dPQ5y3jiiSf0zjvvqG/fvnriiSfk7++vl156yVoD78z23mWXXaa77rpLs2fPVrt27Wq05mJN29M1yXeio6OVmJiorl27Kjg4WNu3b9eCBQtcHvQ7m759+6q8vFwrV67U/Pnzrf39+vXT+PHjZbPZarWWxsX6/Gv63mbNmmn69Om677771K9fPw0fPlyhoaH68ssv9dlnn2nWrFlWvaWa5XKVMjIyFBcXpz59+mjs2LHy8/PTiy++qPz8fL3++utuGdUi/fz85Uzt27fXpEmT9MQTT+irr75S//79FRwcrEOHDmnDhg3WCKBz6d+/v3r16qUxY8aopKRE3bp107p16/Taa69JOvvfDSp/9l599dVa1RmAG9XLkuXAJe6jjz4yksybb75Z5diyZctMdHS0adKkiQkICDB9+/Y1//rXv6rEvffee+baa681/v7+5oorrjCzZs0y48ePN2f+WEsyI0eOrPL+du3amWHDhrnse/vtt03Xrl2Nn5+fadu2rZkyZUq1ZZ7NqlWrzMCBA03z5s1N48aNTZs2bczAgQNdrrOyvMOHD7u899VXXzWSzK5du1z2//3vfzfR0dEmICDA+Pv7myuvvNLcdddd5tNPP7ViYmNjTZcuXaqt0969e83NN99smjVrZgIDA80f/vAH89577xlJ5v/+7/+qxJeWlhq73W769+9fbXnDhg0z7dq1c9l34sQJ8+ijj5p27dqZxo0bm9atW5sHHnjAFBUVWTHr1q0zv//97027du2M3W43LVq0MLGxsebtt9+2YubPn2/69OljQkNDjZ+fn3E6nWbIkCHm3//+d7V1OdPvf/97I8ksWrTI2ldWVmYCAgJMo0aNXOpjzNk/i8r7cN9995lWrVoZm81W7Wdzppp8/mf7nGvyXmOM+fzzz82tt95qWrRoYX1PU1JSzMmTJ62YGTNmmA4dOhgfHx8jybz66qvGmHN/T/bs2WOSkpJMixYtTOPGjU1ERIR57rnnTHl5uRWza9cuI8k899xzVd4vyYwfP/6c98cYYw4fPmxGjRplOnToYBo3bmyaN29uunXrZp544glz7NixCzrPZ599ZoYMGWJCQkJM48aNTVhYmLnpppvMSy+9ZMVU3ve8vLwqZVZUVJhnnnnGXH755cbPz8907drVvPvuu+aaa64xv//976u9jpSUFOPr62v2799/3msGAACoK2drW/7tb3+z8hqHw2F++9vfmm3btlnHDx06ZFJSUszVV19tAgICTLNmzUzXrl3N888/b06fPm3F7d6928THx5vAwEAjqUoeUJ2fk79Ul2scO3bMPPnkkyYiIsK6nqioKPPwww+bgoICK+5seZ8xxnzyyScmOjra2O12ExYWZv785z+bZ5991kgyR44cqRL/8ccfG0lmypQp1ZZXXS5Zk/Z0TfKdxx57zHTv3t0EBwcbu91urrjiCvPwww+bb775ptq6/FRFRYVp2bKlkWS+/vpra/+//vUvI8n88pe/rPKec+UIdfX5V/c51/S9xvzwt4DY2FgTEBBgmjZtajp37myeffZZ6/i5crnzfU9uuukm6/w9evQw77zzjkvM2fKKyr9xfPTRR+e9Rz8nfznbeZYtW2b69OljgoKCjN1uN+3atTO33HKLWbFihRUzbNgwExAQUG2dvvvuO3P33Xebyy67zDRt2tTExcWZ3NxcI8n89a9/rfY97du3N506dTrv9QKoOzZjjKn77hMA8Bzp6el68skntXfv3ipPyL/zzjsaPHiwli9frt/85jf1VEOgfu3atUtXX321xo8fr8cff9zlWFlZmdq3b68bb7xR//jHP+qphgAAAPg54uPjtXv3bu3cubPKsTFjxmj27Nnat2/fOUc+A95s8eLFuvPOO/Wvf/1LPXv2dDn273//W9dcc41eeOGFGs30AKBuMBUVAK9WORz36quv1qlTp/Thhx/qf/7nfzR06FCXTo3PP/9ce/bs0ZgxY3Tttde6rMkBeLPPPvtMr7/+unr27KmgoCDt2LFDU6dOVVBQkO69914r7vDhw9qxY4deffVVHTp0yGWaBgAAAHiutLQ0XXfddQoPD9d3332nRYsWKScnx1o8vVJubq527typF198USNGjKBTA5eM119/XV9//bWioqLUqFEj5ebm6rnnntOvf/1rl06N//73v9qzZ48ef/xxtW7dWikpKfVXaQB0bADwbk2bNtXzzz+v3bt3q7S0VG3bttWjjz6qJ5980iUuNTVV//rXv/TLX/5S8+fPd9scooCnCwgI0Keffqq5c+fqyJEjcjgc6t27tyZPnqzQ0FArbvny5br77rvVunVrvfjiiy4LQwIAAMBzlZeX6+mnn1ZBQYFsNps6d+6sBQsWaOjQoS5xletYJCYm6plnnqmn2gIXX2BgoJYsWaJnnnlGx48ftzotzvw5+Mtf/qIFCxaoU6dOevPNN8+77guAusVUVAAAAAAAAAAAoMFoVN8VAAAAAAAAAAAAl4bTp0/rySefVIcOHeTv768rrrhCkyZNUkVFRY3LYCoqAAAAAAAAAABwUTz77LN66aWXNH/+fHXp0kWffvqp7r77bjkcDj300EM1KoOODQAAAAAAAAAAcFGsW7dOv/3tbzVw4EBJUvv27fX666/r008/rXEZdGzUk4qKCh04cECBgYEsUgwAABokY4yOHj0qp9OpRo3qf4bTkydPqqysrE7K9vPzU5MmTeqkbADVI2cCAAAN3aWUMxljqrTZ7Ha77HZ7ldgbb7xRL730knbu3KmrrrpKn332mdasWaMZM2bU+Hx0bNSTAwcOKDw8vL6rAQAA8LPt27dPl19+eb3W4eTJk2rl769jdVR+WFiYdu3aRecGcBGRMwEAAG9xKeRMzZo107FjrqWPHz9eEyZMqBL76KOPqri4WFdffbV8fHxUXl6uyZMn64477qjx+ejYqCeBgYGSfvhSBwUF1XNtALiDw5Fh/bu4eFw91gQALo6SkhKFh4db7Zr6VFZWpmOSHpZU9Xmgn6dU0vMFBSorK6NjA7iIyJkAAEBDUPn3oOr+FnRJ5UzHjlVpt1U3WkOS3njjDS1cuFCLFy9Wly5dtGXLFo0ePVpOp1PDhg2r0Tnp2KgnlcNygoKCaKQDXsKYjPMHAYAX8qQpYgIkubvrgQYzPEX79u21Z8+eKvtTU1P1wgsvyBijiRMn6pVXXlFRUZGio6P1wgsvqEuXLlZsaWmpxo4dq9dff10nTpxQ37599eKLL7o8QVhUVKRRo0bp7bffliQNHjxYM2fO1GWXXWbF7N27VyNHjtSHH34of39/JSUladq0afLz87Nitm7dqj/96U/asGGDmjdvrhEjRuipp56q8e8MciYAANAQ1OTvQZdKzlTTdtuf//xnPfbYY7r99tslSVFRUdqzZ48yMjJq3LFR/xN7AQAAAG7SuI42wBPk5eXp4MGD1paTkyNJuvXWWyVJU6dOVWZmpmbNmqW8vDyFhYUpLi5OR48etcoYPXq0li5dqiVLlmjNmjU6duyYEhMTVV5ebsUkJSVpy5YtysrKUlZWlrZs2aLk5GTreHl5uQYOHKjjx49rzZo1WrJkid566y2NGTPGiikpKVFcXJycTqfy8vI0c+ZMTZs2TZmZmXV9mwAAAHAOnpAzff/991XWHPHx8VFFRUWNy+ABNAAAAABoAFq1auXyesqUKbryyisVGxsrY4xmzJihJ554QjfffLMkaf78+QoNDdXixYs1YsQIFRcXa+7cuVqwYIH69esnSVq4cKHCw8O1YsUKJSQkaPv27crKylJubq6io6MlSXPmzFFMTIx27NihiIgIZWdn6/PPP9e+ffvkdDolSdOnT1dKSoomT56soKAgLVq0SCdPntS8efNkt9sVGRmpnTt3KjMzU2lpaR711CIAAAAurkGDBmny5Mlq27atunTpos2bNyszM1P33HNPjctgxAYAAAC8hm8dbYCnKSsr08KFC3XPPffIZrNp165dKigoUHx8vBVjt9sVGxurtWvXSpI2btyoU6dOucQ4nU5FRkZaMevWrZPD4bA6NSSpR48ecjgcLjGRkZFWp4YkJSQkqLS0VBs3brRiYmNjXeZVTkhI0IEDB7R79+5qr6m0tFQlJSUuGwAAANzLE3KmmTNn6pZbblFqaqo6deqksWPHasSIEfrLX/5S4zLo2AAAAACABmbZsmU6cuSIUlJSJEkFBQWSpNDQUJe40NBQ61hBQYH8/PwUHBx8zpiQkJAq5wsJCXGJOfM8wcHB8vPzO2dM5evKmDNlZGTI4XBYW3h4+LlvAgAAABqkwMBAzZgxQ3v27NGJEyf03//+V88884zLem3nQ8cGAAAAvIav3D9XLCM24Inmzp2rAQMGuIyakKouTGmMOe+0T2fGVBfvjhhjzFnfK0njxo1TcXGxte3bt++c9QYAAEDteUvORMcGAAAAADQge/bs0YoVK3TfffdZ+8LCwiRVHQ1RWFhojZQICwtTWVmZioqKzhlz6NChKuc8fPiwS8yZ5ykqKtKpU6fOGVNYWCip6qiSSna7XUFBQS4bAAAAUB06NgAAAOA1PGG+WKCuvfrqqwoJCdHAgQOtfR06dFBYWJhycnKsfWVlZVq1apV69uwpSerWrZsaN27sEnPw4EHl5+dbMTExMSouLtaGDRusmPXr16u4uNglJj8/XwcPHrRisrOzZbfb1a1bNytm9erVKisrc4lxOp1q3769G+8GAAAAasNbciY6NgAAAACggaioqNCrr76qYcOGydf3xxTSZrNp9OjRSk9P19KlS5Wfn6+UlBQ1bdpUSUlJkiSHw6F7771XY8aM0cqVK7V582YNHTpUUVFR6tevnySpU6dO6t+/v4YPH67c3Fzl5uZq+PDhSkxMVEREhCQpPj5enTt3VnJysjZv3qyVK1dq7NixGj58uDXKIikpSXa7XSkpKcrPz9fSpUuVnp6utLS0806NBQAAAJwPD6ABAADAa1TO8epOp91cHvBzrFixQnv37tU999xT5dgjjzyiEydOKDU1VUVFRYqOjlZ2drYCAwOtmOeff16+vr4aMmSITpw4ob59+2revHny8fGxYhYtWqRRo0YpPj5ekjR48GDNmjXLOu7j46Ply5crNTVVvXr1kr+/v5KSkjRt2jQrxuFwKCcnRyNHjlT37t0VHBystLQ0paWl1cVtAQAAQA15S85kM5UruOGiKikpkcPhUHFxMXPHAgCABsmT2jOVdXlRkr+byz4hKVXyiOsELiWe9DsGAADgQnhSe8bbciamogIAAAAAAAAAAA0GU1EBAADAa/jK/cOqT7m5PAAAAACoL96SMzFiAwAAAAAAAAAANBiM2AAAAIDX8JX7G7g0mAEAAAB4C2/JmRixAQAAAAAAAAAAGgyP6Nho3769bDZblW3kyJGSJGOMJkyYIKfTKX9/f/Xu3Vvbtm1zKaO0tFQPPvigWrZsqYCAAA0ePFj79+93iSkqKlJycrIcDoccDoeSk5N15MgRl5i9e/dq0KBBCggIUMuWLTVq1CiVlZW5xGzdulWxsbHy9/dXmzZtNGnSJBlj3H9jAAAAUCuN62gDAAAAAG/gLTmTR3Rs5OXl6eDBg9aWk5MjSbr11lslSVOnTlVmZqZmzZqlvLw8hYWFKS4uTkePHrXKGD16tJYuXaolS5ZozZo1OnbsmBITE1VeXm7FJCUlacuWLcrKylJWVpa2bNmi5ORk63h5ebkGDhyo48ePa82aNVqyZIneeustjRkzxoopKSlRXFycnE6n8vLyNHPmTE2bNk2ZmZl1fZsAAAAAAAAAALjkecSUwa1atXJ5PWXKFF155ZWKjY2VMUYzZszQE088oZtvvlmSNH/+fIWGhmrx4sUaMWKEiouLNXfuXC1YsED9+vWTJC1cuFDh4eFasWKFEhIStH37dmVlZSk3N1fR0dGSpDlz5igmJkY7duxQRESEsrOz9fnnn2vfvn1yOp2SpOnTpyslJUWTJ09WUFCQFi1apJMnT2revHmy2+2KjIzUzp07lZmZqbS0NNlstot45wAAAPBTdfG0ECM2AAAAAHgLb8mZPGLExk+VlZVp4cKFuueee2Sz2bRr1y4VFBQoPj7eirHb7YqNjdXatWslSRs3btSpU6dcYpxOpyIjI62YdevWyeFwWJ0aktSjRw85HA6XmMjISKtTQ5ISEhJUWlqqjRs3WjGxsbGy2+0uMQcOHNDu3bvPel2lpaUqKSlx2QAAAC4Gm22itXk73zraAAAAAMAbeEvO5HEdG8uWLdORI0eUkpIiSSooKJAkhYaGusSFhoZaxwoKCuTn56fg4OBzxoSEhFQ5X0hIiEvMmecJDg6Wn5/fOWMqX1fGVCcjI8Na28PhcCg8PPzsNwEAAAAAAAAAAFTL4x5Amzt3rgYMGOAyakJSlSmejDHnnfbpzJjq4t0RU7lw+LnqM27cOKWlpVmvS0pK6NwAAAAXhTHj67sKF42v3D8M2uMazAAAAABwgbwlZ/KoERt79uzRihUrdN9991n7wsLCJFUdDVFYWGiNlAgLC1NZWZmKiorOGXPo0KEq5zx8+LBLzJnnKSoq0qlTp84ZU1hYKKnqqJKfstvtCgoKctkAAAAAAAAAAEDteFTHxquvvqqQkBANHDjQ2tehQweFhYUpJyfH2ldWVqZVq1apZ8+ekqRu3bqpcePGLjEHDx5Ufn6+FRMTE6Pi4mJt2LDBilm/fr2Ki4tdYvLz83Xw4EErJjs7W3a7Xd26dbNiVq9erbKyMpcYp9Op9u3bu/FuAAAAoLa8Zb5YAAAAAKgL3pIzeUzHRkVFhV599VUNGzZMvr4/3gqbzabRo0crPT1dS5cuVX5+vlJSUtS0aVMlJSVJkhwOh+69916NGTNGK1eu1ObNmzV06FBFRUWpX79+kqROnTqpf//+Gj58uHJzc5Wbm6vhw4crMTFRERERkqT4+Hh17txZycnJ2rx5s1auXKmxY8dq+PDh1giLpKQk2e12paSkKD8/X0uXLlV6errS0tLOOzUWAAAAAAAAAAD4eTzmAbQVK1Zo7969uueee6oce+SRR3TixAmlpqaqqKhI0dHRys7OVmBgoBXz/PPPy9fXV0OGDNGJEyfUt29fzZs3Tz4+PlbMokWLNGrUKMXHx0uSBg8erFmzZlnHfXx8tHz5cqWmpqpXr17y9/dXUlKSpk2bZsU4HA7l5ORo5MiR6t69u4KDg5WWluayfgYAAADqR2O5f75Yd5cHAAAAAPXFW3Imm6lc+RoXVUlJiRwOh4qLi1lvAwAANEie1J6prMsHkgLcXPZxSQmSR1wncCnxpN8xAAAAF8KT2jPeljN5zFRUAAAAwM/lCfPFrl69WoMGDZLT6ZTNZtOyZcvOGjtixAjZbDbNmDGjlmcBAAAAgNrzhJzJHejYAAAAgNfw1Y9Dq9211baRfvz4cV1zzTUuU55WZ9myZVq/fr2cTmctzwAAAAAAF8YTciZ38Jg1NgAAAABvMGDAAA0YMOCcMV9//bX+9Kc/6YMPPtDAgQMvUs0AAAAAwDvQsQEAAACvURfDoCvLKykpcdlvt9tlt9trXV5FRYWSk5P15z//WV26dHFDDQEAAACgZuoyZ7qYmIoKAAAAqIHw8HA5HA5ry8jIuKBynn32Wfn6+mrUqFFuriEAAAAAXBoYsQEAAACvUTnHq7vLlKR9+/YpKCjI2n8hozU2btyov/71r9q0aZNsNpubaggAAAAANVOXOdPFxIgNAAAAoAaCgoJctgvp2Pjkk09UWFiotm3bytfXV76+vtqzZ4/GjBmj9u3bu7/SAAAAAOCFGLEBAAAAr+Hp88UmJyerX79+LvsSEhKUnJysu+++241nAgAAAICqPD1n8uRzAgAAAF7r2LFj+vLLL63Xu3bt0pYtW9S8eXO1bdtWLVq0cIlv3LixwsLCFBERcbGrCgAAAAANEh0bAAAA8Bq+cv/8rrVtMH/66afq06eP9TotLU2SNGzYMM2bN899FQMAAACAWvKEnKmhnhMAAACoE56wEF7v3r1ljKlx/O7du2t5BgAAAAC4MJ6QM7kDi4cDAAAAAAAAAIAGgxEbAAAA8BreshAeAAAAANQFb8mZGLEBAAAAAAAAAAAaDB5AAwAAgNfw9ZEa29xcppFU7t4yAQAAAKA+eEvOxIgNAAAAAAAAAADQYDBiAwAAAF7D11fy9YKnjwAAAACgLnhLzsSIDQAAAAAAAAAA0GAwYgMAAABeo3EdzBfb2Li3PAAAAACoL96SM9GxAQAAAK9RZ8OqAQAAAMALeEvOxFRUAAAAAAAAAACgwWDEBgAAALxGYx+psZsf3Wlc4d7yAAAAAKC+eEvOxIgNAAAAAAAAAADQYDBiAwAAAN7DR+5/dMfN888CAAAAQL3xkpyJERsAAAAAAAAAAKDBYMQGAAAAvIev3P/oDmtsAAAAAPAWXpIzMWIDAAAAAAAAAAA0GIzYAAAAgPfwkqePAAAAAKBOeEnORMcGAAAAvIeXNNIBAAAAoE54Sc7EVFQAAAAAAAAAAKDBYMQGAAAAvEcjST71XQkAAAAA8FBekjMxYgMAAAAAAAAAADQYjNgAAACA9/CV+58+srm5PAAAAACoL16SMzFiAwAAAAAAAAAAXBTt27eXzWarso0cObLGZTBiAwAAAN7DS54+AgAAAIA64QE5U15ensrLy63X+fn5iouL06233lrjMujYAAAAAAAAAAAAF0WrVq1cXk+ZMkVXXnmlYmNja1wGHRsAAADwHj5y/9NHAAAAAOAt6jBnKikpcXltt9tlt9vP+Z6ysjItXLhQaWlpstlqPvSDNTYAAADgPXzraAMAAAAAb1CHOVN4eLgcDoe1ZWRknLc6y5Yt05EjR5SSklLrywAAAAAAAAAAALhg+/btU1BQkPX6fKM1JGnu3LkaMGCAnE5nrc7FiA0AAAB4Dx+5/8kjpraCh/j66681dOhQtWjRQk2bNtW1116rjRs3WseNMZowYYKcTqf8/f3Vu3dvbdu2zaWM0tJSPfjgg2rZsqUCAgI0ePBg7d+/3yWmqKhIycnJ1pN2ycnJOnLkiEvM3r17NWjQIAUEBKhly5YaNWqUysrKXGK2bt2q2NhY+fv7q02bNpo0aZKMMe69KQAAAKidOsyZgoKCXLbzdWzs2bNHK1as0H333Vfry6BjAwAAAAA8XFFRkXr16qXGjRvr/fff1+eff67p06frsssus2KmTp2qzMxMzZo1S3l5eQoLC1NcXJyOHj1qxYwePVpLly7VkiVLtGbNGh07dkyJiYkqLy+3YpKSkrRlyxZlZWUpKytLW7ZsUXJysnW8vLxcAwcO1PHjx7VmzRotWbJEb731lsaMGWPFlJSUKC4uTk6nU3l5eZo5c6amTZumzMzMur1RAAAAaDBeffVVhYSEaODAgbV+L1NRAQAAwHvUxUJ4PGAOD/Dss88qPDxcr776qrWvffv21r+NMZoxY4aeeOIJ3XzzzZKk+fPnKzQ0VIsXL9aIESNUXFysuXPnasGCBerXr58kaeHChQoPD9eKFSuUkJCg7du3KysrS7m5uYqOjpYkzZkzRzExMdqxY4ciIiKUnZ2tzz//XPv27bOmDJg+fbpSUlI0efJkBQUFadGiRTp58qTmzZsnu92uyMhI7dy5U5mZmbVeGBIAAABu5CE5U0VFhV599VUNGzZMvr6176ZgxAYAAAAAeLi3335b3bt316233qqQkBBdd911mjNnjnV8165dKigoUHx8vLXPbrcrNjZWa9eulSRt3LhRp06dcolxOp2KjIy0YtatWyeHw2F1akhSjx495HA4XGIiIyNd5kFOSEhQaWmpNTXWunXrFBsb6zL9QEJCgg4cOKDdu3dXe42lpaUqKSlx2QAAAOCdVqxYob179+qee+65oPfTsQEAAADv4e65Yis3oJ599dVXmj17tjp27KgPPvhAf/zjHzVq1Ci99tprkqSCggJJUmhoqMv7QkNDrWMFBQXy8/NTcHDwOWNCQkKqnD8kJMQl5szzBAcHy8/P75wxla8rY86UkZFhrevhcDgUHh5+nrsCAACAWvOQnCk+Pl7GGF111VUXdBl0bAAAAACAh6uoqNAvf/lLpaen67rrrtOIESM0fPhwzZ492yXuzCmejDHnnfbpzJjq4t0RU7lw+NnqM27cOBUXF1vbvn37zllvAAAAXLro2AAAAID38JCnjwB3a926tTp37uyyr1OnTtq7d68kKSwsTFLV0RCFhYXWSImwsDCVlZWpqKjonDGHDh2qcv7Dhw+7xJx5nqKiIp06deqcMYWFhZKqjiqpZLfbFRQU5LIBAADAzbwkZ6JjAwAAAAA8XK9evbRjxw6XfTt37lS7du0kSR06dFBYWJhycnKs42VlZVq1apV69uwpSerWrZsaN27sEnPw4EHl5+dbMTExMSouLtaGDRusmPXr16u4uNglJj8/XwcPHrRisrOzZbfb1a1bNytm9erVKisrc4lxOp0ui54DAAAAF4KODQAAAHgPL3n6CDjTww8/rNzcXKWnp+vLL7/U4sWL9corr2jkyJGSfpjeafTo0UpPT9fSpUuVn5+vlJQUNW3aVElJSZIkh8Ohe++9V2PGjNHKlSu1efNmDR06VFFRUerXr5+kH0aB9O/fX8OHD1dubq5yc3M1fPhwJSYmKiIiQtIP8yF37txZycnJ2rx5s1auXKmxY8dq+PDh1iiLpKQk2e12paSkKD8/X0uXLlV6errS0tLOOzUWAAAA6pCX5EykaQAAAPAejST5uLnMCjeXB1yA66+/XkuXLtW4ceM0adIkdejQQTNmzNCdd95pxTzyyCM6ceKEUlNTVVRUpOjoaGVnZyswMNCKef755+Xr66shQ4boxIkT6tu3r+bNmycfnx9/cBYtWqRRo0YpPj5ekjR48GDNmjXLOu7j46Ply5crNTVVvXr1kr+/v5KSkjRt2jQrxuFwKCcnRyNHjlT37t0VHBystLQ0paWl1eVtAgAAwPl4Sc5kM5UruOGiKikpkcPhUHFxMXPHAgCABsmT2jNWXeKkoMZuLvuU5MiRR1wncCnxpN8xAAAAF8KT2jPeljMxYgMAAADeoy6GQfMYEAAAAABv4SU5E2tsAAAAAAAAAACABsNjOja+/vprDR06VC1atFDTpk117bXXauPGjdZxY4wmTJggp9Mpf39/9e7dW9u2bXMpo7S0VA8++KBatmypgIAADR48WPv373eJKSoqUnJyshwOhxwOh5KTk3XkyBGXmL1792rQoEEKCAhQy5YtNWrUKJWVlbnEbN26VbGxsfL391ebNm00adIkMasXAABAPfOShfAAAAAANFw220TZbBPlcGTUd1Wq8pKcySM6NoqKitSrVy81btxY77//vj7//HNNnz5dl112mRUzdepUZWZmatasWcrLy1NYWJji4uJ09OhRK2b06NFaunSplixZojVr1ujYsWNKTExUeXm5FZOUlKQtW7YoKytLWVlZ2rJli5KTk63j5eXlGjhwoI4fP641a9ZoyZIleuuttzRmzBgrpqSkRHFxcXI6ncrLy9PMmTM1bdo0ZWZm1u2NAgAAAAAAAADgEucRi4c/9thj+te//qVPPvmk2uPGGDmdTo0ePVqPPvqopB9GZ4SGhurZZ5/ViBEjVFxcrFatWmnBggW67bbbJEkHDhxQeHi43nvvPSUkJGj79u3q3LmzcnNzFR0dLUnKzc1VTEyM/vOf/ygiIkLvv/++EhMTtW/fPjmdTknSkiVLlJKSosLCQgUFBWn27NkaN26cDh06JLvdLkmaMmWKZs6cqf3798tms533mj1p4RgAAIAL4UntGasuv6ujhfCWsXg4cLF50u8YAACAC+FJ7Rlvy5k8YsTG22+/re7du+vWW29VSEiIrrvuOs2ZM8c6vmvXLhUUFCg+Pt7aZ7fbFRsbq7Vr10qSNm7cqFOnTrnEOJ1ORUZGWjHr1q2Tw+GwOjUkqUePHnI4HC4xkZGRVqeGJCUkJKi0tNSaGmvdunWKjY21OjUqYw4cOKDdu3dXe42lpaUqKSlx2QAAAAAAAAAAQO14RMfGV199pdmzZ6tjx4764IMP9Mc//lGjRo3Sa6+9JkkqKCiQJIWGhrq8LzQ01DpWUFAgPz8/BQcHnzMmJCSkyvlDQkJcYs48T3BwsPz8/M4ZU/m6MuZMGRkZ1roeDodD4eHh57krAAAAqDUvmS8WAAAAAOqEl+RMHpGmVVRUqHv37kpPT5ckXXfdddq2bZtmz56tu+66y4o7c4onY8x5p306M6a6eHfEVM7odbb6jBs3TmlpadbrkpISOjcAAADczUfub+FWuLk8AAAAAKgvXpIzecSIjdatW6tz584u+zp16qS9e/dKksLCwiRVHQ1RWFhojZQICwtTWVmZioqKzhlz6NChKuc/fPiwS8yZ5ykqKtKpU6fOGVNYWCip6qiSSna7XUFBQS4bAAAAAAAAAACoHY/o2OjVq5d27Njhsm/nzp1q166dJKlDhw4KCwtTTk6OdbysrEyrVq1Sz549JUndunVT48aNXWIOHjyo/Px8KyYmJkbFxcXasGGDFbN+/XoVFxe7xOTn5+vgwYNWTHZ2tux2u7p162bFrF69WmVlZS4xTqdT7du3d8ctAQAAwIXwqaMNAAAAALyBl+RMHtGx8fDDDys3N1fp6en68ssvtXjxYr3yyisaOXKkpB+mdxo9erTS09O1dOlS5efnKyUlRU2bNlVSUpIkyeFw6N5779WYMWO0cuVKbd68WUOHDlVUVJT69esn6YdRIP3799fw4cOVm5ur3NxcDR8+XImJiYqIiJAkxcfHq3PnzkpOTtbmzZu1cuVKjR07VsOHD7dGWSQlJclutyslJUX5+flaunSp0tPTlZaWdt6psQAAAAAAAAAAwIXziDU2rr/+ei1dulTjxo3TpEmT1KFDB82YMUN33nmnFfPII4/oxIkTSk1NVVFRkaKjo5Wdna3AwEAr5vnnn5evr6+GDBmiEydOqG/fvpo3b558fH7sMlq0aJFGjRql+Ph4SdLgwYM1a9Ys67iPj4+WL1+u1NRU9erVS/7+/kpKStK0adOsGIfDoZycHI0cOVLdu3dXcHCw0tLSXNbQAAAAQD2oi4XrWGMDAAAAgLfwkpzJZipXvcZFVVJSIofDoeLiYtbbAAAADZIntWesutwlBfm5uewyyfGaPOI6gUuJJ/2OAQAAuBCe1J7xtpzJI0ZsAAAAAG7hJU8fAQAAAECd8JKcySPW2AAAAAAAAAAAAKgJRmwAAADAe3jJ00cAAAAAUCe8JGdixAYAAAC8RyNJPm7eatliXr16tQYNGiSn0ymbzaZly5ZZx06dOqVHH31UUVFRCggIkNPp1F133aUDBw5c8CUDAAAAQI15QM7kDnRsAAAAAG50/PhxXXPNNZo1a1aVY99//702bdqkp556Sps2bdI///lP7dy5U4MHD66HmgIAAABAw8RUVAAAAPAedTGsurx24QMGDNCAAQOqPeZwOJSTk+Oyb+bMmbrhhhu0d+9etW3b9kJrCQAAAADn5wE5kzvQsQEAAADUQElJictru90uu93+s8stLi6WzWbTZZdd9rPLAgAAAIBLAVNRAQAAwHv41tEmKTw8XA6Hw9oyMjJ+dnVPnjypxx57TElJSQoKCvrZ5QEAAADAOdVhznQxMWIDAAAAqIF9+/a5dD783NEap06d0u23366Kigq9+OKLP7d6AAAAAHDJoGMDAAAA3sPn/2/uLlNSUFCQ20ZVnDp1SkOGDNGuXbv04YcfMloDAAAAwMVRhznTxUTHBgAAAHARVXZqfPHFF/roo4/UokWL+q4SAAAAADQodGwAAADAe9TF/K7ltQs/duyYvvzyS+v1rl27tGXLFjVv3lxOp1O33HKLNm3apHfffVfl5eUqKCiQJDVv3lx+fn7urDkAAAAAuPKAnMkd6NgAAACA9/CR+1u4p2sX/umnn6pPnz7W67S0NEnSsGHDNGHCBL399tuSpGuvvdblfR999JF69+79c2oKAAAAAOfmATmTO9CxAQAAALhR7969ZYw56/FzHQMAAAAAnB8dGwAAAPAedTGsmhYzAAAAAG/hJTlTo4t/SgAAAAAAAAAAgAvD82cAAADwHj7/f3N3mQAAAADgDbwkZ2LEBgAAAAAAAAAAaDAYsQEAAADv4SXzxQIAAABAnfCSnIkRGwAAAAAAAAAAoMHg+TMAAAB4Dy95+ggAAAAA6oSX5EykaQAAAPAejeT+hesY4wwAAADAW3hJzkSaBgAAAAAAAAAAGgxGbAAAAMB7eMmwagAAAACoE16SMzFiAwAAAAAAAAAANBg8fwYAAADv4SVPHwEAAABAnfCSnIkRGwAAAAAAAAAAoMHg+TMAAAB4D5//v7m7TAAAAADwBl6SMzFiAwAAAAAAAKhDNttE2WwT67saAOA1GLEBAAAA7+El88UCAAAAQJ3wkpyJNA0AgHry0ye2jBlfjzUBvIiP3N/CZSoqAADwM9HeB7xfg8nxvSRnYioqAAAAAAAAAADQYDBiAwCAeuLRT3AADZWXDKsGAAAA0LA0mBzfS3ImRmwAAAAAAAAAAIAGg+fPAAAA4D185P75XVljAwAAAIC38JKciREbAAAAAAAAAACgwaBjAwAAAN7Dt442AAAAAPAGHpIzff311xo6dKhatGihpk2b6tprr9XGjRtrdRkAAAAAAAAAAAB1rqioSL169VKfPn30/vvvKyQkRP/973912WWX1bgMOjYAAADgPepihAUtZgAAAADewgNypmeffVbh4eF69dVXrX3t27evVRlMRQUAAADv0Ug/Lobnro0WMwAAAABvUYc5U0lJictWWlpabRXefvttde/eXbfeeqtCQkJ03XXXac6cObW+DAAAAAAAAAAAgAsWHh4uh8NhbRkZGdXGffXVV5o9e7Y6duyoDz74QH/84x81atQovfbaazU+Fx0bAAAA8B4eshAe4G4TJkyQzWZz2cLCwqzjxhhNmDBBTqdT/v7+6t27t7Zt2+ZSRmlpqR588EG1bNlSAQEBGjx4sPbv3+8SU1RUpOTkZCsZTU5O1pEjR1xi9u7dq0GDBikgIEAtW7bUqFGjVFZW5hKzdetWxcbGyt/fX23atNGkSZNkjHHvTQEAAEDt1WHOtG/fPhUXF1vbuHHjqq1CRUWFfvnLXyo9PV3XXXedRowYoeHDh2v27Nk1vgw6NgAAAACgAejSpYsOHjxobVu3brWOTZ06VZmZmZo1a5by8vIUFhamuLg4HT161IoZPXq0li5dqiVLlmjNmjU6duyYEhMTVV5ebsUkJSVpy5YtysrKUlZWlrZs2aLk5GTreHl5uQYOHKjjx49rzZo1WrJkid566y2NGTPGiikpKVFcXJycTqfy8vI0c+ZMTZs2TZmZmXV8hwAAAFCfgoKCXDa73V5tXOvWrdW5c2eXfZ06ddLevXtrfC6ePwMAAID38ICF8IC64uvr6zJKo5IxRjNmzNATTzyhm2++WZI0f/58hYaGavHixRoxYoSKi4s1d+5cLViwQP369ZMkLVy4UOHh4VqxYoUSEhK0fft2ZWVlKTc3V9HR0ZKkOXPmKCYmRjt27FBERISys7P1+eefa9++fXI6nZKk6dOnKyUlRZMnT1ZQUJAWLVqkkydPat68ebLb7YqMjNTOnTuVmZmptLQ02Wy2i3THAAAAUIUH5Ey9evXSjh07XPbt3LlT7dq1q3EZjNgAAAAAgAbgiy++kNPpVIcOHXT77bfrq6++kiTt2rVLBQUFio+Pt2LtdrtiY2O1du1aSdLGjRt16tQplxin06nIyEgrZt26dXI4HFanhiT16NFDDofDJSYyMtLq1JCkhIQElZaWauPGjVZMbGysyxN6CQkJOnDggHbv3n3W6ystLa2y4CQAAEBDZLNNlM02UQ5H9WtMXOoefvhh5ebmKj09XV9++aUWL16sV155RSNHjqxxGXRsAAAAwHv41NEG1LPo6Gi99tpr+uCDDzRnzhwVFBSoZ8+e+vbbb1VQUCBJCg0NdXlPaGiodaygoEB+fn4KDg4+Z0xISEiVc4eEhLjEnHme4OBg+fn5nTOm8nVlTHUyMjJcFpsMDw8/900BAABA7XlAznT99ddr6dKlev311xUZGam//OUvmjFjhu68884al8HAegAAAADwcAMGDLD+HRUVpZiYGF155ZWaP3++evToIUlVpngyxpx32qczY6qLd0dM5cLh56rPuHHjlJaWZr0uKSmhcwMAADRIxoyX9EN7xuGYUs+18UyJiYlKTEy84PczYgMAAADew7eONsDDBAQEKCoqSl988YW17saZoyEKCwutkRJhYWEqKytTUVHROWMOHTpU5VyHDx92iTnzPEVFRTp16tQ5YwoLCyVVHVXyU3a7vcqCkwAAAHAzL8mZ6NgAAACA9/CR+xvoTEUFD1RaWqrt27erdevW6tChg8LCwpSTk2MdLysr06pVq9SzZ09JUrdu3dS4cWOXmIMHDyo/P9+KiYmJUXFxsTZs2GDFrF+/XsXFxS4x+fn5OnjwoBWTnZ0tu92ubt26WTGrV69WWVmZS4zT6VT79u3dfzMAAABQc16SM9GxAQAAAAAebuzYsVq1apV27dql9evX65ZbblFJSYmGDRsmm82m0aNHKz09XUuXLlV+fr5SUlLUtGlTJSUlSZIcDofuvfdejRkzRitXrtTmzZs1dOhQRUVFqV+/fpKkTp06qX///ho+fLhyc3OVm5ur4cOHKzExUREREZKk+Ph4de7cWcnJydq8ebNWrlypsWPHavjw4dYIi6SkJNntdqWkpCg/P19Lly5Venq60tLSzjs1FgAAAFATDKwHAACA96iLYdC0mOEB9u/frzvuuEPffPONWrVqpR49eig3N1ft2rWTJD3yyCM6ceKEUlNTVVRUpOjoaGVnZyswMNAq4/nnn5evr6+GDBmiEydOqG/fvpo3b558fH58xG7RokUaNWqU4uPjJUmDBw/WrFmzrOM+Pj5avny5UlNT1atXL/n7+yspKUnTpk2zYhwOh3JycjRy5Eh1795dwcHBSktLc1k/AwAAAPXES3Imm6lcxQ0X1Q8LxzhUXFzM3LEAAKBB8qT2jFWXNVJQMzeXfUxy3CiPuE7gUuJJv2MAAAAuhCe1Z7wtZ/KIqagmTJggm83mslUugCdJxhhNmDBBTqdT/v7+6t27t7Zt2+ZSRmlpqR588EG1bNlSAQEBGjx4sPbv3+8SU1RUpOTkZDkcDjkcDiUnJ+vIkSMuMXv37tWgQYMUEBCgli1batSoUS5zw0rS1q1bFRsbK39/f7Vp00aTJk0S/UMAAAAewKeONgAAAADwBl6SM3lEx4YkdenSRQcPHrS2rVu3WsemTp2qzMxMzZo1S3l5eQoLC1NcXJyOHj1qxYwePVpLly7VkiVLtGbNGh07dkyJiYkqLy+3YpKSkrRlyxZlZWUpKytLW7ZsUXJysnW8vLxcAwcO1PHjx7VmzRotWbJEb731lsaMGWPFlJSUKC4uTk6nU3l5eZo5c6amTZumzMzMOr5DAAAAAAAAAADAY2YM9vX1dRmlUckYoxkzZuiJJ57QzTffLEmaP3++QkNDtXjxYo0YMULFxcWaO3euFixYYC18t3DhQoWHh2vFihVKSEjQ9u3blZWVpdzcXEVHR0uS5syZo5iYGO3YsUMRERHKzs7W559/rn379snpdEqSpk+frpSUFE2ePFlBQUFatGiRTp48qXnz5slutysyMlI7d+5UZmYmi+EBAADUNy+ZLxYAAAAA6oSX5EweM2Ljiy++kNPpVIcOHXT77bfrq6++kiTt2rVLBQUF1uJ1kmS32xUbG6u1a9dKkjZu3KhTp065xDidTkVGRlox69atk8PhsDo1JKlHjx5yOBwuMZGRkVanhiQlJCSotLRUGzdutGJiY2Nlt9tdYg4cOKDdu3ef9fpKS0tVUlLisgEAAAAAAAAAgNrxiI6N6Ohovfbaa/rggw80Z84cFRQUqGfPnvr2229VUFAgSQoNDXV5T2hoqHWsoKBAfn5+Cg4OPmdMSEhIlXOHhIS4xJx5nuDgYPn5+Z0zpvJ1ZUx1MjIyrLU9HA6HwsPDz31TAAAAUHs++vEJJHdtrLEBAAAAwFt4Sc7kER0bAwYM0B/+8AdFRUWpX79+Wr58uaQfppyqdOYUT8aY8077dGZMdfHuiKlcOPxc9Rk3bpyKi4utbd++feesOwAAAAAAAAAAqMojOjbOFBAQoKioKH3xxRfWuhtnjoYoLCy0RkqEhYWprKxMRUVF54w5dOhQlXMdPnzYJebM8xQVFenUqVPnjCksLJRUdVTJT9ntdgUFBblsAAAAcDOfOtoAAAAAwBt4Sc7kkR0bpaWl2r59u1q3bq0OHTooLCxMOTk51vGysjKtWrVKPXv2lCR169ZNjRs3dok5ePCg8vPzrZiYmBgVFxdrw4YNVsz69etVXFzsEpOfn6+DBw9aMdnZ2bLb7erWrZsVs3r1apWVlbnEOJ1OtW/f3v03AwAAADXn7iHVdbGwHgAAAADUFy/JmTyiY2Ps2LFatWqVdu3apfXr1+uWW25RSUmJhg0bJpvNptGjRys9PV1Lly5Vfn6+UlJS1LRpUyUlJUmSHA6H7r33Xo0ZM0YrV67U5s2bNXToUGtqK0nq1KmT+vfvr+HDhys3N1e5ubkaPny4EhMTFRERIUmKj49X586dlZycrM2bN2vlypUaO3ashg8fbo2wSEpKkt1uV0pKivLz87V06VKlp6crLS3tvFNjAQAAAAAAAACAn8cjnj/bv3+/7rjjDn3zzTdq1aqVevToodzcXLVr106S9Mgjj+jEiRNKTU1VUVGRoqOjlZ2drcDAQKuM559/Xr6+vhoyZIhOnDihvn37at68efLx+XEczKJFizRq1CjFx8dLkgYPHqxZs2ZZx318fLR8+XKlpqaqV69e8vf3V1JSkqZNm2bFOBwO5eTkaOTIkerevbuCg4OVlpamtLS0ur5NAAAAOJ+6eFrII1rMAAAAAOAGXpIz2Uzlyte4qEpKSuRwOFRcXMx6GwAAoEHypPaMVZcdUlDg+eNrVfZRyREhj7hO4FLiSb9jAAAALoQntWe8LWfi+TMAAAB4Dy95+ggAAAAA6oSX5EwescYGAAAAAAAAAABATfD8GQAAALyGaSQZn/PH1bZMAAAAAPAG3pIzkaYBAAAAAAAAAIAGgxEbAAAA8Brlvj9s7i4TAAAAALyBt+RMpGkAAADwGt7SSAcAAACAuuAtORNTUQHAJcxmm2htAAD3WL16tQYNGiSn0ymbzaZly5a5HDfGaMKECXI6nfL391fv3r21bdu2+qksAAAAALfgbywXFx0bAAAA8BqnfWw67dPIzZutVnU4fvy4rrnmGs2aNava41OnTlVmZqZmzZqlvLw8hYWFKS4uTkePHnXHLQAAAACAs/KEnMkdGFgPAAAAuNGAAQM0YMCAao8ZYzRjxgw98cQTuvnmmyVJ8+fPV2hoqBYvXqwRI0ZczKoCAAAAQINExwYAXMKMGV/fVQAAtyr39VW5r3ufFir3NZJOqaSkxGW/3W6X3W6vVVm7du1SQUGB4uPjXcqJjY3V2rVr6dgAAAAAGqiG8jeWusyZLiamogIAAABqIDw8XA6Hw9oyMjJqXUZBQYEkKTQ01GV/aGiodQwAAAAAcG6M2AAAAIDXKPfxUbmb53ct9/nh6aN9+/YpKCjI2l/b0Ro/ZbO51tEYU2UfAAAAALhbXeZMFxMdGwAAAEANBAUFuXRsXIiwsDBJP4zcaN26tbW/sLCwyigOAAAAAED1mIoKAAAAXqNCPip381YhH7fVr0OHDgoLC1NOTo61r6ysTKtWrVLPnj3ddh4AAAAAqI6n50w1xYgNAAAAeI3T8tFpuXdY9WmZWsUfO3ZMX375pfV6165d2rJli5o3b662bdtq9OjRSk9PV8eOHdWxY0elp6eradOmSkpKcmu9AQAAAOBMnpAzuQMdGwAAAIAbffrpp+rTp4/1Oi0tTZI0bNgwzZs3T4888ohOnDih1NRUFRUVKTo6WtnZ2QoMDKyvKgMAAABAg0LHBgAAALzGD0Oh3TvbarkqahXfu3dvGXP2J5ZsNpsmTJigCRMm/MyaAQAAAPAUNttE69/GjK/HmpybJ+RM7sAaGwAAAAAAAAAAoMFgxAYAAAC8Rt08feTe+WcBAAAAoL54S87EiA0AAAAAAAAAANBgMGIDAAAAXsNbnj4CAAAA0LB48roaP+UtORMjNgAAAAAAAAAAQIPBiA0AAAB4DW95+ggAAAAA6oK35Ex0bAAAAMBrlMtHp72gkQ4AAAAAdcFbciamogIAAAAAAAAAAA0GIzYAAADgNcrlWwfDqivcWh4AAAAA1BdvyZkYsQEAAAAAAAAAABoMRmwAAADAa5Srkcrl4+YyAQANkc020fq3MePrsSYAAHgOb8mZGLEBAAAAAAAAAAAaDEZsAAAAwGuUy8crnj4CAAAAgLrgLTkTHRsAAEkM1QcAAIB3oU0LAID3omMDAAAAXuO0fHTazU8fnXZraQAAAABQf7wlZ6JjA9CPT6rzRA8uZXz/AXiDCvm6fVh1hWxuLQ8AAAAA6ou35EwsHg4AAAAAAAAAABoMRmwA4kl1AD8P65MAnsNbFsIDAAAAgLrgLTkTIzYAAAAAAAAAAECDwYgNAAB+JkZpAJ7DW54+AgAAAIC64C05EyM2AAAAAAAAAABAg8GIDQAAAHiNcjWqg6ePjFvLAwAAAID64i05EyM2AAAAAAAAAADARTFhwgTZbDaXLSwsrFZlMGIDAAAAXuO0fHTazU8fnWbEBgAAAAAv4Sk5U5cuXbRixQrrtY9P7epExwYAAAC8Rrl8Ve7mJi6LhwMAAAA4H5ttovVvY8bXY03OzVNyJl9f31qP0vgppqICAAAAAAAAAAA/S0lJictWWlp61tgvvvhCTqdTHTp00O23366vvvqqVudixAYAAAC8RoV83L4QXgVTUQEAAAA4D08epfFTdZkzhYeHu+wfP368JkyYUCU+Ojpar732mq666iodOnRIzzzzjHr27Klt27apRYsWNTonIzYAAAAAoIHJyMiQzWbT6NGjrX3GGE2YMEFOp1P+/v7q3bu3tm3b5vK+0tJSPfjgg2rZsqUCAgI0ePBg7d+/3yWmqKhIycnJcjgccjgcSk5O1pEjR1xi9u7dq0GDBikgIEAtW7bUqFGjVFZW5hKzdetWxcbGyt/fX23atNGkSZNkDB2FAAAA3mrfvn0qLi62tnHjxlUbN2DAAP3hD39QVFSU+vXrp+XLl0uS5s+fX+Nz0bEBAAAAr1H+/58+cvcGeJK8vDy98sor6tq1q8v+qVOnKjMzU7NmzVJeXp7CwsIUFxeno0ePWjGjR4/W0qVLtWTJEq1Zs0bHjh1TYmKiyst/nBk5KSlJW7ZsUVZWlrKysrRlyxYlJydbx8vLyzVw4EAdP35ca9as0ZIlS/TWW29pzJgxVkxJSYni4uLkdDqVl5enmTNnatq0acrMzKzDOwMAAIDzqcucKSgoyGWz2+01qlNAQICioqL0xRdf1Pg66NgAAAAAgAbi2LFjuvPOOzVnzhwFBwdb+40xmjFjhp544gndfPPNioyM1Pz58/X9999r8eLFkqTi4mLNnTtX06dPV79+/XTddddp4cKF2rp1q1asWCFJ2r59u7KysvS3v/1NMTExiomJ0Zw5c/Tuu+9qx44dkqTs7Gx9/vnnWrhwoa677jr169dP06dP15w5c1RSUiJJWrRokU6ePKl58+YpMjJSN998sx5//HFlZmYyagMAAAAuSktLtX37drVu3brG76FjAwAAAF7jtBrptHzcvNFkhucYOXKkBg4cqH79+rns37VrlwoKChQfH2/ts9vtio2N1dq1ayVJGzdu1KlTp1xinE6nIiMjrZh169bJ4XAoOjraiunRo4ccDodLTGRkpJxOpxWTkJCg0tJSbdy40YqJjY11eUovISFBBw4c0O7du6u9ttLS0ioLTgIAAMC9PCFnGjt2rFatWqVdu3Zp/fr1uuWWW1RSUqJhw4bVuAyyNAAAAABoAJYsWaJNmzYpIyOjyrGCggJJUmhoqMv+0NBQ61hBQYH8/PxcRnpUFxMSElKl/JCQEJeYM88THBwsPz+/c8ZUvq6MOVNGRoa1rofD4aiy+CQAAAC8w/79+3XHHXcoIiJCN998s/z8/JSbm6t27drVuAzfOqwfAAAAcFGVy1flbm7ilotpc1D/9u3bp4ceekjZ2dlq0qTJWeNsNpvLa2NMlX1nOjOmunh3xFROQXW2+owbN05paWnW65KSEjo3AAAA3MwTcqYlS5b87HPSsQEAAACvUReLfZerwq3lARdi48aNKiwsVLdu3ax95eXlWr16tWbNmmWtf1FQUOAyN3FhYaE1UiIsLExlZWUqKipyGbVRWFionj17WjGHDh2qcv7Dhw+7lLN+/XqX40VFRTp16pRLzJkjMwoLCyVVHVVSyW6313iBSQAAAFwYb8mZmIoKAAAAADxc3759tXXrVm3ZssXaunfvrjvvvFNbtmzRFVdcobCwMOXk5FjvKSsr06pVq6xOi27duqlx48YuMQcPHlR+fr4VExMTo+LiYm3YsMGKWb9+vYqLi11i8vPzdfDgQSsmOztbdrvd6niJiYnR6tWrVVZW5hLjdDrVvn17998gAAAAXFIYsQEAAACv4S1PHwFnCgwMVGRkpMu+gIAAtWjRwto/evRopaenq2PHjurYsaPS09PVtGlTJSUlSZIcDofuvfdejRkzRi1atFDz5s01duxYRUVFWYuRd+rUSf3799fw4cP18ssvS5Luv/9+JSYmKiIiQpIUHx+vzp07Kzk5Wc8995y+++47jR07VsOHD1dQUJAkKSkpSRMnTlRKSooef/xxffHFF0pPT9fTTz993qmxAAAAUHe8JWfyyBEbGRkZstlsGj16tLXPGKMJEybI6XTK399fvXv31rZt21zeV1paqgcffFAtW7ZUQECABg8erP3797vEFBUVKTk52VqQLjk5WUeOHHGJ2bt3rwYNGqSAgAC1bNlSo0aNcnnSSJK2bt2q2NhY+fv7q02bNpo0aZI1ZywAAAAAXGyPPPKIRo8erdTUVHXv3l1ff/21srOzFRgYaMU8//zz+t3vfqchQ4aoV69eatq0qd555x35+PyY3C5atEhRUVGKj49XfHy8unbtqgULFljHfXx8tHz5cjVp0kS9evXSkCFD9Lvf/U7Tpk2zYhwOh3JycrR//351795dqampSktLc1lDAwAAALhQHjdiIy8vT6+88oq6du3qsn/q1KnKzMzUvHnzdNVVV+mZZ55RXFycduzYYTXUR48erXfeeUdLlixRixYtNGbMGCUmJmrjxo1WQz0pKUn79+9XVlaWpB+ePkpOTtY777wj6Yd5agcOHKhWrVppzZo1+vbbbzVs2DAZYzRz5kxJPyxiFxcXpz59+igvL087d+5USkqKAgICNGbMmIt1qwAAAHCGcvnotBc8fQTUxMcff+zy2mazacKECZowYcJZ39OkSRPNnDnTym2q07x5cy1cuPCc527btq3efffdc8ZERUVp9erV54wBAADAxeUtOZNHdWwcO3ZMd955p+bMmaNnnnnG2m+M0YwZM/TEE0/o5ptvliTNnz9foaGhWrx4sUaMGKHi4mLNnTtXCxYssIZRL1y4UOHh4VqxYoUSEhK0fft2ZWVlKTc3V9HR0ZKkOXPmKCYmRjt27FBERISys7P1+eefa9++fXI6nZKk6dOnKyUlRZMnT1ZQUJAWLVqkkydPat68ebLb7YqMjNTOnTuVmZmptLQ0hlYDAACvY7NNtP5tzPh6rAkAAAAA4FLnUVNRjRw5UgMHDrQ6Jirt2rVLBQUFio+Pt/bZ7XbFxsZq7dq1kqSNGzfq1KlTLjFOp1ORkZFWzLp16+RwOKxODUnq0aOHHA6HS0xkZKTVqSFJCQkJKi0t1caNG62Y2NhY2e12l5gDBw5o9+7d1V5baWmpSkpKXDYAAAC4V7l862QDAAAAAG/gLTmTx2RpS5Ys0aZNm5SXl1flWEFBgSQpNDTUZX9oaKj27Nljxfj5+Sk4OLhKTOX7CwoKFBISUqX8kJAQl5gzzxMcHCw/Pz+XmPbt21c5T+WxDh06VDlHRkaGJk6cWGU/AABAQ8AoDQAAAACAp/CIjo19+/bpoYceUnZ2tpo0aXLWuDOneDLGnHfapzNjqot3R0zlwuFnq8+4ceNcFsorKSlReHj4OesOAACA2ilXI5W7fb7YcreWBwAAAAD1xVtyJo/o2Ni4caMKCwvVrVs3a195eblWr16tWbNmaceOHZJ+GA3RunVrK6awsNAaKREWFqaysjIVFRW5jNooLCxUz549rZhDhw5VOf/hw4ddylm/fr3L8aKiIp06dcolpnL0xk/PI1UdVVLJbre7TF0FAAAA9yuXTx000t1bHgAAAADUF2/JmTxijY2+fftq69at2rJli7V1795dd955p7Zs2aIrrrhCYWFhysnJsd5TVlamVatWWZ0W3bp1U+PGjV1iDh48qPz8fCsmJiZGxcXF2rBhgxWzfv16FRcXu8Tk5+fr4MGDVkx2drbsdrvV8RITE6PVq1errKzMJcbpdFaZogoAAAAAAAAAALiPR4zYCAwMVGRkpMu+gIAAtWjRwto/evRopaenq2PHjurYsaPS09PVtGlTJSUlSZIcDofuvfdejRkzRi1atFDz5s01duxYRUVFWYuRd+rUSf3799fw4cP18ssvS5Luv/9+JSYmKiIiQpIUHx+vzp07Kzk5Wc8995y+++47jR07VsOHD1dQUJAkKSkpSRMnTlRKSooef/xxffHFF0pPT9fTTz993qmxAAAAUHe85ekjAAAAAKgL3pIzeUTHRk088sgjOnHihFJTU1VUVKTo6GhlZ2crMDDQinn++efl6+urIUOG6MSJE+rbt6/mzZsnH58fb+yiRYs0atQoxcfHS5IGDx6sWbNmWcd9fHy0fPlypaamqlevXvL391dSUpKmTZtmxTgcDuXk5GjkyJHq3r27goODlZaW5rKGBgAAgLey2Sb+/3+drNd6AAAAAAAuTTZTueo1LqqSkhI5HA4VFxdbI0EAAAAaAteOjSke0Z6pbFtNKU5RkyA/t5Z9sqRMjznmecR1ApcSciYAANDQeVJ7xttypgYzYgMAAACewZjxkiobxlPquTYAAAAAgEsNHRsAAADwGuXyVbmbm7jlqnBreQAAAABQX7wlZ2p00c8IAAAAAAAAAABwgRixAQAAAK9RLh+Vy8ftZQIAAACAN/CWnIkRGwAAAAAAAAAAoMFgxAYAAAC8Rrka1cHTRzwLBAAAAMA7eEvO9LM6No4cOaIPPvhAX3/9tWw2m1q3bq2EhAQFBwe7q34AAABAjZ2Wj067uZHu7vJw6SFvAgAAgKfwlpzpgrtS5s6dqxtuuEG5ubmqqKhQeXm5cnNz1aNHD82dO9eddQQAAACABom8CQAAwLvZbBOrbKh7FzxiY+rUqdq0aZOaNWvmsv8vf/mLunXrpnvvvfdnVw4AAACojXL5qtzNs62Wq7xW8adPn9aECRO0aNEiFRQUqHXr1kpJSdGTTz6pRo2Y1upSQ94EAAAAT+IJOZM7XPAV2Gw2HTt2rEoD/dixY7LZbD+7YgBwIX7aK27M+HqsCQDgUvXss8/qpZde0vz589WlSxd9+umnuvvuu+VwOPTQQw/Vd/VwkZE3AQAAeDf+/lQ/LrhjY9q0aYqNjVVkZKTatGkjSdq/f7+2bdum6dOnu62CAAAAQE1VyMftC+FV1LK8devW6be//a0GDhwoSWrfvr1ef/11ffrpp26tFxoG8iYAAAB4Ek/Imdyhxh0bycnJevnll9W0aVNJUmJiogYMGKANGzbowIEDMsaoTZs2uuGGG+TjwwKLAAAA8C4lJSUur+12u+x2e5W4G2+8US+99JJ27typq666Sp999pnWrFmjGTNmXKSaoj6RNwEAAAB1r8YdG4sXL9b06dOtBvqIESM0ZcoUxcTESJKMMTp9+jSNcwD1iuF/AHBpK6+Dp48qywsPD3fZP378eE2YMKFK/KOPPqri4mJdffXV8vHxUXl5uSZPnqw77rjDrfWCZyJvAgAAgCery5zpYqrx6oXGGJfXr7/+uoqKiqzXhYWFCgwMdF/NAAAAAA+yb98+FRcXW9u4ceOqjXvjjTe0cOFCLV68WJs2bdL8+fM1bdo0zZ8//yLXGPWBvAkAAACoexe8xsaZDXZJKisr+1mVAQDUHAulAzgTvxekcjWqg6ePfngWKCgoSEFBQeeN//Of/6zHHntMt99+uyQpKipKe/bsUUZGhoYNG+bWusHzkTcBAADAk9RlznQxXXDHRnVsNps7iwMAAABq5bR85OPmRvrpWpb3/fffq1Ej14a9j4+PKioq3FktNGDkTQAAAKgvnpAzuUOtOjYWL16sX//614qKipJEgxwA6tOl+jQ2gLPj94JnGDRokCZPnqy2bduqS5cu2rx5szIzM3XPPffUd9VwkZA3AQAAAHWrxh0bN954o8aPH6+jR4+qcePGOn36tB5//HHdeOON+uUvf6lWrVrVZT0BAACA8yqXr8rdOyi51uXNnDlTTz31lFJTU1VYWCin06kRI0bo6aefdmu94JnImwAAAODJPCFncocan3H16tWSpC+++EIbN27Upk2btHHjRj311FM6cuQITyEBAAAAkgIDAzVjxgzNmDGjvquCekDeBAAAANS9WneldOzYUR07drQWQ5SkXbt26dNPP9XmzZvdWjkAAACgNirk4/aF8CrqYb5YNHzkTQAAAPBE3pIzuWWMSIcOHdShQwfdeuut7igOAAAAALwOeRMAAADgHhd/8isAAAD8bDbbROvfLBr+o/I6ePrI3eUBAAAA8D4NJUfzlpyp0UU/IwAAAAAAAAAAwAVixAYAAEADVJ9PAP34JNLJeqvD2ZyWjxq5+Wmh04zYAAAAAHAenjxK46e8JWeiYwMAAABe44dh1e5t4jIVFQAAAABv4S05E1NRAQAAAAAAAACABoMRGwAAAKiVyiHWJSUlcjim1HNtXHnLQngAAAAAUBe8JWdixAYAAAAAAAAAAGgwGLEBAAAAr+EtTx8BAAAAaLhszf//P0y9VqNa3pIzMWIDAAAAAAAAAAA0GIzYAAAAgNeoqIOnjyoYsQEAAAA3stkmWv+uXL8O3sV898N/S0okh6N+63Imb8mZGLEBAAAAAAAAAAAaDEZsAAAAwGuclo9sbn5a6DQjNgAAAAB4CW/JmejYAAAAXoeh3TVTeZ+86R6Vy0eN3NzEZfFwAAAAuJM3tb/R8HhLzsRUVAAAAAAAAAAAoMFgxAYAAPA6PAFVM954n354+si9TwsxYgMAAACAt/CWnIkRGwAAAAAAAAAAoMFgxAYAAPAa3rhmBGrHW54+AgAAAIC64C05EyM2AAAAAAAAAABAg8GIDQDAJafyqX6JJ/u9DZ+nezXEn5XT8pHNzU8LnWbEBgAAAAAv4S05EyM2AAAAAAAAAABAg0HHBgAAALxGhXxV7uatgkHOAAAAALyEJ+ZMGRkZstlsGj16dI3fQ5YGAPA655s+p6FMqQPP1xCnaqqNhnhN5XUwrJrFwwEAAAB4C0/LmfLy8vTKK6+oa9eutXofIzYAAAAAAAAAAMBFdezYMd15552aM2eOgoODa/VeRmwAALxOQ3zK/KcqRwE09Ou4FFxKn1FDGZ1SrkZ18PQRzwIBAAAA8A51mTOVlJS47Lfb7bLb7Wd938iRIzVw4ED169dPzzzzTK3OSZYGAAAAAB5u9uzZ6tq1q4KCghQUFKSYmBi9//771nFjjCZMmCCn0yl/f3/17t1b27ZtcymjtLRUDz74oFq2bKmAgAANHjxY+/fvd4kpKipScnKyHA6HHA6HkpOTdeTIEZeYvXv3atCgQQoICFDLli01atQolZWVucRs3bpVsbGx8vf3V5s2bTRp0iQZY9x7UwAAAOBRwsPDrXakw+FQRkbGWWOXLFmiTZs2nTPmXBixAQCAh/Hkp+Hh/c42MqOhfC9Py0dy89NHp1ljAx7g8ssv15QpU/SLX/xCkjR//nz99re/1ebNm9WlSxdNnTpVmZmZmjdvnq666io988wziouL044dOxQYGChJGj16tN555x0tWbJELVq00JgxY5SYmKiNGzfKx+eH73lSUpL279+vrKwsSdL999+v5ORkvfPOO5Kk8vJyDRw4UK1atdKaNWv07bffatiwYTLGaObMmZJ+eFIvLi5Offr0UV5ennbu3KmUlBQFBARozJgxF/vWAQAA4CfqMmfat2+fgoKCrP1nG62xb98+PfTQQ8rOzlaTJk0u6Jw2w2Mz9aKkpEQOh0PFxcUuHzYAAEB9qs2UU57UnqmsS4/ipfINCnBr2adLjivX8XuPuE7gp5o3b67nnntO99xzj5xOp0aPHq1HH31U0g+jM0JDQ/Xss89qxIgRKi4uVqtWrbRgwQLddtttkqQDBw4oPDxc7733nhISErR9+3Z17txZubm5io6OliTl5uYqJiZG//nPfxQREaH3339fiYmJ2rdvn5xOp6QfnrZLSUlRYWGhgoKCNHv2bI0bN06HDh2yktkpU6Zo5syZ2r9/v2w2W42uz5N+xwAAAFwIT2rPeFLOtGzZMv3+97+3Hq6RfniAxmazqVGjRiotLXU5Vh2mogIAAIDXKJdvnWyAJykvL9eSJUt0/PhxxcTEaNeuXSooKFB8fLwVY7fbFRsbq7Vr10qSNm7cqFOnTrnEOJ1ORUZGWjHr1q2Tw+GwOjUkqUePHnI4HC4xkZGRVqeGJCUkJKi0tFQbN260YmJjY12e0EtISNCBAwe0e/fus15XaWmpSkpKXDYAAAC4lyfkTH379tXWrVu1ZcsWa+vevbvuvPNObdmy5bydGhJTUQEAAHiEmoyUuBgLeDeUKaeAS9HWrVsVExOjkydPqlmzZlq6dKk6d+5sdTqEhoa6xIeGhmrPnj2SpIKCAvn5+Sk4OLhKTEFBgRUTEhJS5bwhISEuMWeeJzg4WH5+fi4x7du3r3KeymMdOnSo9voyMjI0ceLEao8BAAB4KlvzH/5rvqvfejQkgYGBioyMdNkXEBCgFi1aVNl/NnRsAAAAwGtUyEflbp4vtoI1NuAhIiIitGXLFh05ckRvvfWWhg0bplWrVlnHz5ziyRhz3mmfzoypLt4dMZUzIJ+rPuPGjVNaWpr1uqSkROHh4eesPwAAAGrHW3ImOjYAAADcoHI0xYWOeKjJ+xhNcX7ldbAQnrsb/cCF8vPzsxYP7969u/Ly8vTXv/7VWlejoKBArVu3tuILCwutkRJhYWEqKytTUVGRy6iNwsJC9ezZ04o5dOhQlfMePnzYpZz169e7HC8qKtKpU6dcYipHb/z0PFLVUSU/Zbfbz7rAJAAAgMcqqhxx2jDyNU/NmT7++ONaxXvEGhuzZ89W165dFRQUpKCgIMXExOj999+3jhtjNGHCBDmdTvn7+6t3797atm2bSxmlpaV68MEH1bJlSwUEBGjw4MHav3+/S0xRUZGSk5PlcDjkcDiUnJysI0eOuMTs3btXgwYNUkBAgFq2bKlRo0aprKzMJWbr1q2KjY2Vv7+/2rRpo0mTJok12AEAAABcTMYYlZaWqkOHDgoLC1NOTo51rKysTKtWrbI6Lbp166bGjRu7xBw8eFD5+flWTExMjIqLi7VhwwYrZv369SouLnaJyc/P18GDB62Y7Oxs2e12devWzYpZvXq1Sx6VnZ0tp9NZZYoqAAAA4EJ4xIiNyy+/XFOmTLGePpo/f75++9vfavPmzerSpYumTp2qzMxMzZs3T1dddZWeeeYZxcXFaceOHQoMDJQkjR49Wu+8846WLFmiFi1aaMyYMUpMTNTGjRutxUaSkpK0f/9+ZWVlSZLuv/9+JScn65133pH0wyJ8AwcOVKtWrbRmzRp9++23GjZsmIwxmjlzpqQfhkPHxcWpT58+ysvL086dO5WSkqKAgACNGTPmYt86AADqzcVY76Ehacj3wJs+S099+gj4uR5//HENGDBA4eHhOnr0qJYsWaKPP/5YWVlZstlsGj16tNLT09WxY0d17NhR6enpatq0qZKSkiRJDodD9957r8aMGaMWLVqoefPmGjt2rKKiotSvXz9JUqdOndS/f38NHz5cL7/8sqQfcqbExERFRERIkuLj49W5c2clJyfrueee03fffaexY8dq+PDhCgoKkvRD3jVx4kSlpKTo8ccf1xdffKH09HQ9/fTT550aCwAAAHXLW3Imj+jYGDRokMvryZMna/bs2crNzVXnzp01Y8YMPfHEE7r55psl/dDxERoaqsWLF2vEiBEqLi7W3LlztWDBAqtRvnDhQoWHh2vFihVKSEjQ9u3blZWVpdzcXEVHR0uS5syZo5iYGO3YsUMRERHKzs7W559/rn379snpdEqSpk+frpSUFE2ePFlBQUFatGiRTp48qXnz5slutysyMlI7d+5UZmam0tLSaKgDAAAAcLtDhw4pOTlZBw8elMPhUNeuXZWVlaW4uDhJ0iOPPKITJ04oNTVVRUVFio6OVnZ2tvUgmCQ9//zz8vX11ZAhQ3TixAn17dtX8+bNsx4Ek6RFixZp1KhRio+PlyQNHjxYs2bNso77+Pho+fLlSk1NVa9eveTv76+kpCRNmzbNinE4HMrJydHIkSPVvXt3BQcHKy0tzWX9DAAAAODn8IiOjZ8qLy/Xm2++qePHjysmJka7du1SQUGB1bCWfph7NTY2VmvXrtWIESO0ceNGnTp1yiXG6XQqMjJSa9euVUJCgtatWyeHw2F1akhSjx495HA4tHbtWkVERGjdunWKjIy0OjUkKSEhQaWlpdq4caP69OmjdevWKTY21mXu14SEBI0bN067d+9Whw4dqr2u0tJSlZaWWq9LSkrccr8AAADwo9NqJOP2p488YvZWXOLmzp17zuM2m00TJkzQhAkTzhrTpEkTzZw50xqNXp3mzZtr4cKF5zxX27Zt9e67754zJioqSqtXrz5nDAAAAC4+b8mZPKZjY+vWrYqJidHJkyfVrFkzLV26VJ07d9batWslVV1kLjQ0VHv27JH0wyJ5fn5+LovgVcZULlpXUFCgkJCQKucNCQlxiTnzPMHBwfLz83OJOXNe2Mr3FBQUnLVjIyMjQxMnTqz2GAAADVFDn7IIP+KzBAAAAIALQz5VPzymYyMiIkJbtmzRkSNH9NZbb2nYsGFatWqVdfzMKZ6MMeed9unMmOri3RFTuXD4ueozbtw4l6HXJSUlCg8PP2f9AQAAUDvl8pW7m7jlntNkBgAAAICfxVtyJo/J0vz8/KzFw7t37668vDz99a9/1aOPPirph9EQrVu3tuILCwutkRJhYWEqKytTUVGRy6iNwsJC9ezZ04o5dOhQlfMePnzYpZz169e7HC8qKtKpU6dcYipHb/z0PFLVUSU/ZbfbXaavAgAAly5vWqwbAAAAAICLzWMnDDbGqLS0VB06dFBYWJhycnKsY2VlZVq1apXVadGtWzc1btzYJebgwYPKz8+3YmJiYlRcXKwNGzZYMevXr1dxcbFLTH5+vg4ePGjFZGdny263q1u3blbM6tWrVVZW5hLjdDqrTFEFAACAi6tcPnWyAQAAAIA38JacySNGbDz++OMaMGCAwsPDdfToUS1ZskQff/yxsrKyZLPZNHr0aKWnp6tjx47q2LGj0tPT1bRpUyUlJUmSHA6H7r33Xo0ZM0YtWrRQ8+bNNXbsWEVFRalfv36SpE6dOql///4aPny4Xn75ZUnS/fffr8TEREVEREiS4uPj1blzZyUnJ+u5557Td999p7Fjx2r48OEKCgqSJCUlJWnixIlKSUnR448/ri+++ELp6el6+umnzzs1FgDAO/H0PWqL70ndqZCP5OZGdQUdGwAAAAC8hLfkTB7RsXHo0CElJyfr4MGDcjgc6tq1q7KyshQXFydJeuSRR3TixAmlpqaqqKhI0dHRys7OVmBgoFXG888/L19fXw0ZMkQnTpxQ3759NW/ePPn4/HhTFy1apFGjRik+Pl6SNHjwYM2aNcs67uPjo+XLlys1NVW9evWSv7+/kpKSNG3aNCvG4XAoJydHI0eOVPfu3RUcHKy0tDSX9TMAAAAAAAAAAEDdsJnKla9xUZWUlMjhcKi4uNgaDQIAaJgYsYFLlSe1ZyrrEl6cp0ZBzdxadkXJMe1zXO8R1wlcSjzpdwwAAMCF8KT2jLflTB4xYgMAgIbsp50ZF9rJQecIAAAAAABAzdCxAQAAAK9RLh8ZNzdxWWMDAAAAgLfwlpyJjg0AANzoQkdbMErj/BjV4qqu7gf3GQAAAADg6ejYAAAAgNf44ekj9z4txIgNAAAAAN7CW3ImOjYAAKgnPBlfOxfjHjWkz6Su6ufp1w0AAAAAAB0bAAAA8Bre8vQRAAAAANQFb8mZ6NgAPFxDenoYQPXO9nPMz7Tn4TNp+MorfGQq3NxId3N5AAAAALxPQ/kbnrfkTI0u+hkBAAAAAAAAAAAuECM2AAAA4DXKT/uo4rR7nxYybi4PAAAAAOqLt+RMdGwAHs6Th64BqBl+juFJqhse3VCGTAMAAACApyKXurjo2AAAAIDXKD/tK9tp9zZxjZvLAwAAAID64i05E1kagIuGJ4I9A5/D2XFvcCmo7rvN9939vv76az366KN6//33deLECV111VWaO3euunXrVt9VAwAAAIAGj44NAAAAeI3y041kc/t8sY1qFV9UVKRevXqpT58+ev/99xUSEqL//ve/uuyyy9xaLwAAAACoLU/ImdyBjg0AFw1PBHsGd38O3jTKoaHXHz/ypu8lGp5nn31W4eHhevXVV6197du3r78KAQAA4P+1d//hUpX1/v9fW5ANInsEFRDFX4mEIWZiBKSCCsgJf+QpTPiQu8uoDqiHwDL1CtEI1NQ6B09kHoOOAnpVomJKoAnIQRRJv/4qLJPEo6gJ7i0ov7br+wd7Zu7F3Pdea81eM7Nm7efjuvblMLPmXvf6Nc49636/3wBShhsbAAAASI2mPe1KMPtob3uNjY2+52tra1VbW1uw/EMPPaRRo0bpq1/9qlauXKnDDz9ckyZN0sSJE2PtFwAAAABEVcoxUzmVP0YEAAAAKJE9e9ppz+6Y/5q/pPfu3VuZTCb3N3v2bGsf/v73v2vu3Lnq06eP/vCHP+g73/mOrrjiCv3P//xPOXcFAAAAABQo5ZipnIjYAAC0SinT/GTTCSUxlRCpjpKtGo8J51Tybdq0SXV1dbl/26I1JOmTTz7RwIEDNWvWLEnSySefrJdffllz587V17/+9bL0FQAAAADSjBsbAAAASA2vqb28ppi/4ja3V1dX57ux4XLYYYfphBNO8D3Xr18//e53v4u3XwAAAAAQUSnHTOXEjQ0AQGLZZq0nZVY7M+oRt2o6p/LX4Y6K9iOphg4dqg0bNviee/XVV3XUUUdVqEcAAAAASs38vSKPMVOpcGMDAAAA6bGn3d6/uNuM4Lvf/a6GDBmiWbNmaezYsXrmmWf0y1/+Ur/85S/j7RcAAAAARJWAMVMcuLEBAKgqrlntSYnkAOIQx/nMNVE5p556qhYvXqyrr75aN9xwg4455hj97Gc/0/jx4yvdNQAAAAAlYht3NTY2KpO5sQK9ST9ubAAAACA9EjL7aMyYMRozZky8/QAAAACA1krImKm19iv7GgEAAAAAAAAAAIpExAaA1CINS9vCMS6/JF5j2T4lpT/FiqP/pdwH2bYTGVbdVCPtqYm/TQAAAABtmmsMXHXj0JSMmYjYAAAAAAAAAAAAVYOIDQCpVTV3yoEqlZRrLImRI1lx9y3J25oYe5r/4m4TAAAAQJvmGoNlnzfHa+ravKxX6l4VISVjJm5sAAAAID1S8iUdAAAAAEoiJWMmbmwASAxmIgPxqbocn62Q5G109a3Yz7ugZfkcBQAAAIDKsI3BGhulTKYCnWkDuLEBAACA9EjJ7CMAAAAAKImUjJkoHg4AAAAAAAAAAKoGERsAEoO0KSiFtpSSydTWtrfalOr4cNy1d6bQ7hK0CQAAAAAWVfe7Q0rGTERsAAAAAAAAAACAqkHEBgAg1apmxgRy0lQAO03bUjWamv/ibhMAAAAA0iAlYyYiNgAAAAAAAAAAQNUgYgMAEAozz1EuaTq/it2WMNcb16TDHsWf35UaGwAAAAAMVT0eS8mYiRsbAAAASI+UfEkHAAAAgJJIyZiJVFQAAAAAAAAAAKBqELEBAAilEqGV2dDOqgvrBCyihCqHOefjTHNV1WHU+0rJ7CMAAAAAlRFmfFTV46aUjJmI2AAAAAAAAAAAAFWDiA0AKCMiEKJJwn5K1Uz2hEvC9VHK452U88fWj6T0LRZNin+2UFPM7QEAAABIrFSNj2xSMmYiYgMAAAAAAAAAAFQNIjYAoIxSf9c/hThm5RNnzYhy9yFNqj5KKSX5YgEAAACgJFIyZiJiAwAAAAAAAAAAVA0iNgAAQFWrlqiCaomECNO3/LbsKG1nipGS2UcAAAAAkqtaxndWKRkzEbEBAACA9Nhdoj8AAAAASIMEjJnmzp2rAQMGqK6uTnV1dRo8eLAeffTRSG1wYwMAAAAAAAAAAJTFEUccoRtvvFHPPvusnn32WZ155pk6//zz9fLLL4dug1RUAFABVR2yCKAoabrWs9vS2NioTObGCvdmH03Nf3G3CQAAAKBNS81vOQkYM5177rm+f//4xz/W3LlztXbtWn3mM58J1QY3NgAAAAAAAAAAQKs0Njb6/l1bW6va2toW39PU1KTf/OY32r59uwYPHhx6XaSiAoAK8Lzrcn/Vrqbm+twf0q8cxzvudVTyHK2peSH3V/51t9Frs0n5Ynhx/RGxgQSYPXu2Tj31VHXp0kXdu3fXBRdcoA0bNviW8TxPM2bMUK9evdSpUycNGzasIJx/586duvzyy3XIIYeoc+fOOu+88/Tmm2/6ltm6dasmTJigTCajTCajCRMm6IMPPvAt88Ybb+jcc89V586ddcghh+iKK67Qrl27fMu8+OKLOuOMM9SpUycdfvjhuuGGG+R5Xnw7BQAAoIxcv+XUdNv7VzVKOGbq3bt37jtkJpPR7Nmznd148cUXdeCBB6q2tlbf+c53tHjxYp1wwgmhN4MbGwAAAACQcCtXrtTkyZO1du1aLV++XHv27NHIkSO1ffv23DI333yzbrvtNt1+++1at26devbsqREjRujDDz/MLTNlyhQtXrxY9957r1avXq1t27ZpzJgxamrK38EbN26cnn/+eS1dulRLly7V888/rwkTJuReb2pq0pe+9CVt375dq1ev1r333qvf/e53mjZtWm6ZxsZGjRgxQr169dK6des0Z84c3XLLLbrttttKvKcAAABQKZs2bVJDQ0Pu7+qrr3Yu27dvXz3//PNau3at/u3f/k2XXHKJXnnlldDrqvGYMlMRe3NSZ9TQ0KC6urpKdwdotdTkGQRQFeL+zMm2x+eXmz3yY4ekGxPxfSb73Uq3N0idYu7Lx43SZXxvQ7K899576t69u1auXKnTTz9dnuepV69emjJliq666ipJe6MzevTooZtuuknf/va31dDQoEMPPVR33323LrroIknSW2+9pd69e+uRRx7RqFGj9Oc//1knnHCC1q5dq0GDBkmS1q5dq8GDB+svf/mL+vbtq0cffVRjxozRpk2b1KtXL0nSvffeq/r6er377ruqq6vT3LlzdfXVV+udd97JpR+48cYbNWfOHL355puqqakJ3EbGTAAAIElc0fAtjSOT9H0m6WOms88+W5/61Kd0xx13hFqeiA0AAAAAqDINDQ2SpG7d9uY9eP3117V582aNHDkyt0xtba3OOOMMrVmzRpK0fv167d6927dMr1691L9//9wyTz31lDKZTO6mhiR94QtfUCaT8S3Tv3//3E0NSRo1apR27typ9evX55Y544wzfDmVR40apbfeeksbN260btPOnTvV2Njo+wMAAEDb4Hmedu7cGXr5RNzYIF8sAAAAYhF3rtjsH5Agnudp6tSp+uIXv6j+/ftLkjZv3ixJ6tGjh2/ZHj165F7bvHmzOnTooK5du7a4TPfu3QvW2b17d98y+66na9eu6tChQ4vLZP+dXWZfs2fP9uVk7t27d8CeAAAAQGQJGDNdc801evLJJ7Vx40a9+OKLuvbaa7VixQqNHz8+dBvto62yNLL5Yk899VTt2bNH1157rUaOHKlXXnlFnTt3lpTPFzt//nwdf/zxmjlzpkaMGKENGzaoS5cukvbmi12yZInuvfdeHXzwwZo2bZrGjBmj9evXq127dpL25ot98803tXTpUknSt771LU2YMEFLliyRlM8Xe+ihh2r16tV6//33dckll8jzPM2ZM0dSPl/s8OHDtW7dOr366quqr69X586dfXllgbYkzlQwcbWH8uMYolziPr/a0vlqC58Os/22ZfaGMt8YS79iU4obEdzYQMJcdtlleuGFF7R69eqC1/ZN8eR5XmDap32XsS0fxzLZiWCu/lx99dWaOnVq7t+NjY3c3AAAAImRmnFjAsZM77zzjiZMmKC3335bmUxGAwYM0NKlSzVixIjQbSTixkb2JkPWvHnz1L17d61fvz6XL/ZnP/uZrr32Wl144YWSpF//+tfq0aOHFi5cmMsXe9ddd+nuu+/W2WefLUm655571Lt3bz322GO5fLFLly715Yu98847NXjwYG3YsEF9+/bVsmXL9Morr/jyxd56662qr6/Xj3/8Y9XV1WnBggXasWOH5s+fr9raWvXv31+vvvqqbrvtNk2dOjVUvlgAAAAAiOryyy/XQw89pFWrVumII47IPd+zZ09Je6MhDjvssNzz7777bi5SomfPntq1a5e2bt3qi9p49913NWTIkNwy77zzTsF633vvPV87Tz/9tO/1rVu3avfu3b5l9o3MePfddyUVRpVk1dbW+lJXAQAAIJ3uuuuuVreRiFRU+yJfLNA2ed51uT8Eq6m5PveXFBxDoDJsnwXmZ4T5Z16nqbxemxR/SHVTWbcAsPI8T5dddpnuv/9+/fGPf9Qxxxzje/2YY45Rz549tXz58txzu3bt0sqVK3M3LU455RTtv//+vmXefvttvfTSS7llBg8erIaGBj3zzDO5ZZ5++mk1NDT4lnnppZf09ttv55ZZtmyZamtrdcopp+SWWbVqlS+l77Jly9SrVy8dffTRMe0VAACAykvabzOBUjJmStyNDfLFAgAAAIDf5MmTdc8992jhwoXq0qWLNm/erM2bN+vjjz+WtDe905QpUzRr1iwtXrxYL730kurr63XAAQdo3LhxkqRMJqNLL71U06ZN0+OPP67nnntO/+///T+deOKJuaj3fv366ZxzztHEiRO1du1arV27VhMnTtSYMWPUt29fSdLIkSN1wgknaMKECXruuef0+OOP68orr9TEiRNVV1cnaW8K4NraWtXX1+ull17S4sWLNWvWLCLcAQAAEItEpKIykS8WSL7sXehSzvINqtVALYfkbDfHwr0PynGtID1acy3Zlne1EWUmUVWeuwnIFwuUwty5cyVJw4YN8z0/b9481dfXS5K+//3v6+OPP9akSZO0detWDRo0SMuWLcvVJJSkn/70p2rfvr3Gjh2rjz/+WGeddZbmz5+fq0koSQsWLNAVV1yRi4Y/77zzdPvtt+deb9eunX7/+99r0qRJGjp0qDp16qRx48bplltuyS2TyWS0fPlyTZ48WQMHDlTXrl01depU35gIAAAg6cKM01r+3WpHKbrVOikZMyXqxgb5YgEAAACgUHYiVUtqamo0Y8YMzZgxw7lMx44dNWfOHM2ZM8e5TLdu3XTPPfe0uK4jjzxSDz/8cIvLnHjiiVq1alWLywAAAADFSEQqKvLFAgAAIBa7S/QHAAAAAGmQkjFTIiI2Jk+erIULF+rBBx/M5YuV9oYvd+rUyZcvtk+fPurTp49mzZrlzBd78MEHq1u3brryyiud+WLvuOMOSdK3vvUtZ77Yn/zkJ9qyZYs1X+z111+v+vp6XXPNNfrrX/+qWbNmafr06eSLRZtQjtQkVZn+JAZxp3UiTVR5RAlHRTTlPodral4w1jegrP2wpTErxfo4LwEAANKDMR9QWsVeV9n3NTY2KpO5Mc4uoVkibmyQLxYAAACxaGr+i7tNAAAAAEiDlIyZarwwyVoRu7136zJqaGjIRYIAKA8KOpdHkmcOJblv1cpWkLqU+7baj2Ec/Y/SRqn2V5K+z2T7oqsbpI4x92VHozQ7GdsJtCVJ+owBAAAIYht3Jen7TNrGTImosQEAAAAAAAAAABBGIlJRAXGr9pm8xWqr2x1VNe+bajrGSe5flL5V0z6vpPLUvyjdsbBFnJiSWOciShtxR3Tka5FsC92HsmmStKcEbQIAAABAC6rmN4OUjJmI2AAAAAAAAAAAAFWDiA0AAACkxx5J7UrQJgAAAACkQUrGTNzYQCpVTehXzNrqdrcl5TrGpF/Ka+vb3xpxn0elTD+VhOMcPR1UfAXIXe93rcPzBkjKFp8ratUAAABAm5K08UcaJGWf2lIbc4xLjxsbAAAASI/dij/Z6u6Y2wMAAACASknJmIkbGwAiC5rhi+rHsY1XUmaRxMFVZNu2XUnf1qT1L2p/WhulYbaRpnMUAAAASCK+Z/vFMQZJyj61javyj3dUoEdtAzc2AAAAkB5NzX9xtwkAAAAAaZCSMRM3NoAqV4lZtkm5Ix6EGchojTgjk6K2Uey6y3HOcy0h8ZoUf+E6bmwAAAAAsaqWsaVrnO3LZrDguoLXs/bWJbyxdB0sRkrGTHFn0wIAAAAAAAAAACgZIjaAKlctd7grIe59U+21Raq9/+VWyf1U7flFi1WOc9RVIySrWvdhlH0XpR5KVe6PPYp/6k7cs5kAAAAAJIorMiPUGGtcy20kTkrGTERsAAAAAAAAAACAqkHEBgAAANJjt6SaErQJAAAAAGmQkjETNzYAoMTiDEVsTVuJDoOENUVSJY9Za861YlNK2ZaPO5S3Wq6DMNttWybq+4pZtqXlAQAAgHKompQ/SIygc8Y5JupmLLOl5XXYi4vvCN1HREMqKgAAAKRHU4n+ijR79mzV1NRoypQpxTcCAAAAAHFJ2JipWERsACnF7IX4RdmPcex/Wxscy+Il/ZpIWp9a0584tyVp+yWqYs+7qEXAg6Jk3EXTvxxhHS9Y2mP2UUvWrVunX/7ylxowYECluwIAAJAq1T5OQPkVe864ojQCx2Ndmx97jdIHNxa1brSMiA0AAACkx54S/UW0bds2jR8/Xnfeeae6du3aqk0CAAAAgNgkZMzUWkRsABVQjpnjzF6orGqpBZD0KIYgUfofZvuK3R9xv6/YGhVRlHtb41COdSfxmgjTpzjO/yjrrqlZXFR7ZdGk+L9UN4dVNzY2+p6ura1VbW2t9S2TJ0/Wl770JZ199tmaOXNmzB0CAAAAUElhax42NkqZTHn7FqiEY6ZyImIDAAAACKF3797KZDK5v9mzZ1uXu/fee/WnP/3J+ToAAAAAoHWI2AAAAEB67C5dm5s2bVJdXV3uaVu0xqZNm/Tv//7vWrZsmTp27FiCzgAAAABAK5RwzFRONZ7neeVfLRobG5XJZNTQ0OAbIANhlSNVDdqusCGVLT1fSUnsU7Vo658tlTh3bIW9o15jtuMW7n3ZguCLQyxr9jNbdHybpKGJ+D6T/W6l8xuk/WPuy+5G6cFw39seeOABffnLX1a7du1yzzU1Nammpkb77befdu7c6XsNgBtjJgAAkFQ13fKPXQXGpWR9n0nKmCkuRGwAAAAgPZoUf7LVCPlizzrrLL344ou+577xjW/o05/+tK666ipuagAAAACorAqPmeLCjQ2gSqVxNnUpZ0ozgz8a2z4qtmixKe7jUO7jWk3nUXYmvucNiPS+chTldq0vSrRI0LGIGmFU7kiVuPsfFFnlkj0/whQDt7W3d8ZP4FvblC5duqh///6+5zp37qyDDz644HkAAAAAlVXsWLClKA2UBzc2AAAAkB57JNWUoE0AAAAASIOUjJmosVEhScqvhvKrplnfKE6xx9g1qz2oLSIX0JZV8vy3idqHYmcIxd2PXLshc8VKyfo+k8sXe06J8sUuTcZ2Am1Jkj5jAABIC8bz8Qgfhb9D0o2J+D6TtjETERsAAABIj5TMPgIAAACAkkjJmIkbGwAAAEiPUnyh5sYGAAAAgLRIyZiJGxtABRDqB5diz41SnlO2NDnlWF9r1lPJ0Nq2lBasHOsOs44oxbfj5irsXWwbQYpPc/eC8b6AgvJbze0ISn+3I3QfAAAAAFReW/1NKnzqKPc4r63uu6TixgYAAADSo0nxh1U3xdweAAAAAFRKSsZMFA+vEArhoa1I+53tpG+fbQZ5EvtZjSLNgPe9L9nnTLmxP1pTPLzwHIw6y8hsI29xYBvSl5v/u03S0ER8n8kVwjutQWofc1/2NEpP8r0NKDfGTAAARFfs+KKta83Y1LbPa7plG2uUPkjG95m0jZmI2AAAAEB6pCRfLAAAAACURErGTNzYAFBSpcpLmJQ6DEmfAVGNNSqqhRmlUWyuziSrRI2KOIXpfxzHrVSfI+HaXWw8HtDiskGfxfbIjeB+7J3x4+geAACqzu9BANqeNH1WVXv/K6U1+8363lztQuoSlgo3NgAAAJAeKZl9BAAAAAAlkZIx037lXyUAAAAAAAAAAEBxKB5eIRTCS75iwxDDFBSuZIijPQVJMkIuk9KPYkVJW1ON21dKUY59WzhPqr0frT3PbUXv9xVU1DpKQfcw/ShlWjfb9roKfMexXUGiFCBP0veZXCG8kxukdjH3palRei4Z2wm0JUn6jAEAAMlWqt9bckXAJSO9VPj1JOn7TNrGTERsAAAAAAAAAACAqkHERoUk6W5dsZIy6xhIunJcK2m9HoNmsse9jiREUMXdRtzbV64ohmLXl4SoKFfESZRIrrgLl/uLg+eLjgdF7gU/v0PSjYn4PpObfTSgRLOPXqju721ANUrDmAkAgGqRhLFUNQmOvGfMVGoUDwcAAEB67JEU97SdppjbAwAAAIBKScmYiYiNCqn07KNyz7gFWiPu8zXOtqLOsG6t1qwjaPZFUF2DKLPlwy5fKW3hMzD4eLc8gz/udZeyTkTxNZFarjlkqmS0S7mjblzHylbLRNomaWiyZh+dUKLZR68waxwot0qPmQAAQHWLoxZq68dxCYzYSMmYiYgNAAAApEdKZh8BAAAAQEmkZMxExEaFMPsIlZL0WeZJUO59FPcM8aTMCk+atG9fElUiuinOvLBh+m+K83qL+zq2R1sUHz2Tj+pIYMTG8SWaffQq39uAcmPMBAAAWqPocVW3/GNvS/DzLb2epO8zaRszEbEBAACA9Ngj6ZOY24y7PQAAAAColJSMmfYr/yoBAAAAAAAAAACKQ8QG0MakMQVP3EWJy72P4l5fsQWxin2fbdmwy1dKKQtZR+tHyymNggq6m8tWK9s2Flvg3nxv1DRStmWjXitBgtZdruvHVxA8Gyq9NVoKq3zB+R2x96/VmhR/vlgiNgAAAGJTLeNGVL+iz6+t5jjoOuvzNd0Kn7ePpRgzlQoRGwAAAAAAAAAAoGpQPLxCWiocE2fhU1u7pWg7yZK43UnsU5yqffui9L/atzWJqmX/V8uxL0eh7n1FOW7FvD8Md8RGcdE6zvYCisdFaS9qge9i121rw1cQL8S25hdolD5IWCG8wxuk/WLuyyeN0v8lYzuBtiRJxTYBAEDplWucHcdYKqwkfZ9J25iJVFQAAABIjz2KPyaZVFQAAAAA0iIlYyZubCRQkmf+VqMk7s+k9SnuO+Ku/Oxx5KWPs41i2/XP+C7hDIKA/sV93IrfH/FGWETZ1jjOtaBaDHHXWYjapyjrtm1LKc+NoNoVYSI67NfmC8bSiwteD8O97GLjcfiIjbjPtWD2fsb+uZDLERuirsnFlmV2S/pt8GoAAAAAhFctGQLiVrZtNWtl1BSuO9RY1hL14Xtf1+ZlyZVkNXv2bN1///36y1/+ok6dOmnIkCG66aab1Ldv39BtUGMDAAAA6bG7RH8AAAAAkAYJGDOtXLlSkydP1tq1a7V8+XLt2bNHI0eO1Pbt20O3QcQGAAAAAAAAAAAoi6VLl/r+PW/ePHXv3l3r16/X6aefHqoNbmxUWCYzW1LHsoRaVUvoWtkKBbXRsD6bUm5/UvZtPClssq+HT1/TGsH9iHfflir9VLHriON9LsWmxIpbUIqnoDRZrvdJRljs1mhpnWwpuOI4bmHSMOVTUNn7GcfndtQ+2d4XnHItuEB5lOu7sv+/yhcx1yLb/tpRtp6E9oniD/cmfBwAAKAqpOW3nqh9T8t2l0vQuDBK+mdXG/l0V21rzNTY2Oh7ura2VrW1tYFvb2hokCR169YtYMk8UlEBAAAAQBVYtWqVzj33XPXq1Us1NTV64IEHfK97nqcZM2aoV69e6tSpk4YNG6aXX37Zt8zOnTt1+eWX65BDDlHnzp113nnn6c033/Qts3XrVk2YMEGZTEaZTEYTJkzQBx984FvmjTfe0LnnnqvOnTvrkEMO0RVXXKFdu3b5lnnxxRd1xhlnqFOnTjr88MN1ww03yPO4UwgAAJBWvXv3zn2HzGQymj17duB7PM/T1KlT9cUvflH9+/cPvS4iNiqsoeFq1dXVRXpP2u/Clmub0rjvTHEX3DaVe9+Van1JiQhKyn6OImmF4FtqL8rsC//7Xmhe1j7jPko0RbHFz8PM2ne2nSteFhz9YLIV8Db3QbHna5h9nl9PcVEOLsX2OVqxb3u0S804+/ps+zdM9FDwtnzZ+noQf3/sBfG01ShovqB5mY8apYk3FrXOktkjqSbmNvkdFgmxfft2nXTSSfrGN76hf/3Xfy14/eabb9Ztt92m+fPn6/jjj9fMmTM1YsQIbdiwQV26dJEkTZkyRUuWLNG9996rgw8+WNOmTdOYMWO0fv16tWvXTpI0btw4vfnmm7kUAd/61rc0YcIELVmyRJLU1NSkL33pSzr00EO1evVqvf/++7rkkkvkeZ7mzJkjae9svREjRmj48OFat26dXn31VdXX16tz586aNm1aOXYXAKANSvI4upQqOUZPCtt4LIw4t7vYDAFlV8Ix06ZNm3y/dYeJ1rjsssv0wgsvaPXq1ZFWmZiIDWYfAQAAAIDb6NGjNXPmTF144YUFr3mep5/97Ge69tprdeGFF6p///769a9/rY8++kgLFy6UtDfE/6677tKtt96qs88+WyeffLLuuecevfjii3rsscckSX/+85+1dOlS/fd//7cGDx6swYMH684779TDDz+sDRs2SJKWLVumV155Rffcc49OPvlknX322br11lt155135tIPLFiwQDt27ND8+fPVv39/XXjhhbrmmmt02223OcdNO3fuVGNjo+8PAAAA1aOurs73F3Rj4/LLL9dDDz2kJ554QkcccUSkdSUmYoPZR+FV+x1UlEcc9RI410pXS6KSsyIqGSESLlKi5QiLUtZW8K9nQMGyYfphez5ctEJxEQ9xvM++P4zZ+UYERSVnoIS5bqLUCIlyrkWNmMk9t9BcX3DtjSCB29LVHhXiP56mLxe8bkb5mBEg9u1OYL5YIjbQRr3++uvavHmzRo4cmXuutrZWZ5xxhtasWaNvf/vbWr9+vXbv3u1bplevXurfv7/WrFmjUaNG6amnnlImk9GgQYNyy3zhC19QJpPRmjVr1LdvXz311FPq37+/evXqlVtm1KhR2rlzp9avX6/hw4frqaee0hlnnOEbzI4aNUpXX321Nm7cqGOOOaZgG2bPnq3rr0/w7EYAAFKmGn/3ifKbRimzmQTJrq+xsVGZDFHuBYt7ni6//HItXrxYK1assH43DJKYGxujR4/W6NGjra/tO/tIkn7961+rR48eWrhwob797W/nZh/dfffdOvvssyVJ99xzj3r37q3HHntMo0aNys0+Wrt2be6L+p133qnBgwdrw4YN6tu3b2720aZNm3Jf1G+99VbV19frxz/+serq6nyzj2pra9W/f3+9+uqruu222zR16lTV1MR9ZgAAACCU3ar4l3SgEjZv3ixJ6tGjh+/5Hj166B//+EdumQ4dOqhr164Fy2Tfv3nzZnXv3r2g/e7du/uW2Xc9Xbt2VYcOHXzLHH300QXryb5mG7xeffXVmjp1au7fjY2N6t27d8sbDgAAgGgSMGaaPHmyFi5cqAcffFBdunTJfYfMZDLq1KlTqDYSk4qqJUGzjyQFzj6SFDj7KLtMS7OPssvYZh+99dZb2rhxo3UbCKsGAAAAUGr7TrLyPC9w4tW+y9iWj2OZbAoqV39qa2sL0hcAAAAgfebOnauGhgYNGzZMhx12WO7vvvvuC91GYiI2WpKG2UdtPay62ELKSQ+JK7YwUdKESdMSxzZW07HNihLKGGX7om5/HOdanOdrEo+lK81PsamhgpYtR0qv1pxrQYWstSgghVKYAuUVCuWNq09B13fQsmHWF8fnRbGF6l399BUEP6f5v4vs6af8Kapa7GZyNKnis4+ASujZs6ekveORww47LPf8u+++mxur9OzZU7t27dLWrVt946Z3331XQ4YMyS3zzjvvFLT/3nvv+dp5+umnfa9v3bpVu3fv9i2THT+Z65EKx3UAgPRKy+8mSZTMcXnLxzuOcVAltzVKaubcuCuJY4kEjJniqFVdFREbWdU8++jqq69WQ0ND7m/Tpk0t9hsAAAAAwjrmmGPUs2dPLV++PPfcrl27tHLlytxNi1NOOUX777+/b5m3335bL730Um6ZwYMHq6GhQc8880xumaeffloNDQ2+ZV566SW9/fbbuWWWLVum2tpanXLKKbllVq1apV27dvmW6dWrV8EkMQAAACCqqojYSMPso9ra2sAq8GkWZ9HlJImjQHeSBd89j1YIt1TRD+VW7Mxtl2K31VUYOO7+lbqtMG27zxNXceTiCjPHEXUT57nbmkLdgYWsF9nfV2zx7SjHzbVd2eNZ7OeJ2V6xkTZRt9V/DmbZr8egNpzb3TV8Gy7O13ORGvYojaqVxFlRQAy2bdumv/3tb7l/v/7663r++efVrVs3HXnkkZoyZYpmzZqlPn36qE+fPpo1a5YOOOAAjRu3N2Qvk8no0ksv1bRp03TwwQerW7duuvLKK3XiiSfm6hT269dP55xzjiZOnKg77rhDkvStb31LY8aMUd++fSVJI0eO1AknnKAJEyboJz/5ibZs2aIrr7xSEydOzKWPGjdunK6//nrV19frmmuu0V//+lfNmjVL06dPpyYhALQhSRvPJ1FQJHa1/FYitT57RdzbF6aNwKiirsX1w9uy97+NjVImU1QTpZWCMVNVRGww+wgAAABAW/fss8/q5JNP1sknnyxJmjp1qk4++WRNnz5dkvT9739fU6ZM0aRJkzRw4ED93//9n5YtW6YuXbrk2vjpT3+qCy64QGPHjtXQoUN1wAEHaMmSJWrXrl1umQULFujEE0/UyJEjNXLkSA0YMEB333137vV27drp97//vTp27KihQ4dq7NixuuCCC3TLLbfklslkMlq+fLnefPNNDRw4UJMmTdLUqVN9xcEBAACAYtV4cSS0ioE5++jkk0/WbbfdpuHDh+dmH910002aPXu25s2bl5t9tGLFCm3YsCH3Rf3f/u3f9PDDD2v+/Pm52Ufvv/++1q9fn/uiPnr0aL311lu+2UdHHXWUlixZIklqamrSZz/7WfXo0SM3+6i+vl4XXHCB5syZI0lqaGhQ3759deaZZ+ZmH9XX12v69OmaNm1aqO1tbGxUJpNRQ0NDSYviRb3TSe7DeCX9TrpNKWcFVMv+qGRtkWJnwIdpr9j3lftYVfJcS9o5Gq6WRrTIqdK1Udx5HqSUdSls64lSv8TVdtRjlW8vOGoiaiRK6PddbETULLS8LkkLjDbGZ5/fIenGkn+fCSP73UpqkBR3Xxollf57GwC/co2ZAADVIWnjNUQX++8tRv3AbIREqLqDMYxfnXUMCxZslD5IxveZtI2ZEpOK6tlnn9Xw4cNz/87O5Lnkkks0f/58ff/739fHH3+sSZMmaevWrRo0aJB19lH79u01duxYffzxxzrrrLM0f/78gtlHV1xxhUaOHClJOu+883T77bfnXs/OPpo0aZKGDh2qTp06ady4cdbZR5MnT9bAgQPVtWtXZh8BAAAAAAAAAFAGibmxMWzYsBarodfU1GjGjBmaMWOGc5mOHTtqzpw5ucgKm27duumee+5psS9HHnmkHn744RaXOfHEE7Vq1aoWlwEAAAAAAAAAAPFKTCqqtibpYdVtKe0QiletxzhKceGkpDGKkiYuSlohW9hmUB/27Ucc6cuipA0q1b6N2naYcNQ43+dqI5aw2YBzpvhtbX2Kq6j9iHatBKV+C0odZe+Hq6h9cEqsLxvLmuuzt2dbt8m/ji8XvC5Jurh5PYtc22qsu6txDLeSigpA6SV9zITkq9bxClAszvnKYv8Xr9hxnKm1+9zXrlEw3PVbSdDvFbnfW0hFVTJVUTwcAAAAAAAAAABAImKjYqLOPirXXd84i4cnpXB5nIWby9UPuMU7G7v4IsHlECVaIe4oqzDrLKbtuAuel6PQe2sKtpc74ieWNppnlZizUlwz/11RGMVGRWWjA4LaLXxf6yN7AmfbOItzF+4P10wfbS0ugiVMxEa+3RDRVAEF9lzRPLnoDklaml04ibOP/qnSzD46JBHbCbQlRGwAQPXgN494sT/d4s9g0LzMAiNKY5yjDWOZYeOW5h4/oXOcfUvS95m0jZmI2AAAAAAAAAAAAFWDiI0KCXO3jruz0bSF/dUWtjFOpYxAKJX4axK0PNO7lJFJ/pz+iwvWF3dkQ5QIHVOxMzyKbyM44iGKKNtVrqg02zr856K5jFHPwRYtYsyU0aLWb2uUa8K9bMu1MNz1OBx1LrK1K7a6zjXjfWbUxCJL20YdDGcuWCNiI79OR99cESIXN++n3Y3Sb5M2+2izSjP7qGcithNoS5I0wxEIg/EaAJRecM3DaGN4W8YB35jJtDXg9whfxH6S6xKmY8xExAYAAAAAAAAAAKga7SvdAQAAACA+u5v/4m4TAAAAANIgHWMmbmwkWLGFT5MY8lqOkNw4UtyEUe3hxXGnOsq3W/oizlHFXYA5WgHs8Ps5ShHz6EW0Wy40HPdxi3IdhipyHMPnWlAYavA+iDd1lP+YhD83zJBWV4ohW+isMx1RUOouS4Hpgj651m1bxkiRZIbv1owL2KeLijtH3f35suNxdtngQt3FXtPOc3Frdj0tp7gqYCtMbhQor6lp+fr3s6fachU/zx+XHRHWAQBAulXj+BBA+VT770lJ4RpjRfndJPD3ihBjYGu6Kkuqqr3pn260toHW4cYGAAAAUmRP81/cbQIAAABAGqRjzETx8AqpdCG8Ut0lLuWsfVPxs+jD9y+OAsXx74PWzxwPKvAbpY3o7yuMYihlge9SRQG05hjbigvHLf5zML4+h7umWx9VZNsH4Wbi2671wiLo+y5brCjXd5hlbdvoKoDmjuTItmHf1iifjcV/jtrPgXD7IPwsHX9kgqWAt7Xwm1/w/0uCi6bb+2ZYYETrGMXUo3ym+rbF7MeWgHU7+qHxSS6E91dJXWJu/UNJfRKxnUBbUukxE4DKYFY7EM91kJRrKdw4NL5sDeHGgobmsZKrb842LONF6/jba5Q+SMb3mbSNmSgeDgAAAAAAAAAAqgYRGxUS1+yjpNx9taHORWnZ7kSHq9XQ8ozucOsunMFf7MzsqJJQSybUzOYgjnoJUSJYio12iXvmh1/L0Q3Frru0fc4rtk9BbUSuuZDbj9EiRKJEZLn7ZLm+nfU27FEwUaJkbJEXxUfXRDv/be358qRudfTDEclhbcNch7nvbOtx1CEJEzmii5uXWWq2Gxy9kYvYMCJBQrWRO27bJA1N2OyjV1Sa2UcnJGI7gbaEiA20FYxvAZRC7L/HhBjnVFLQmD+O3yCKqVWZpO8zaRszEbEBAAAAAAAAAACqBhEbFZKku3WVVC0zU6oxt2EcM+NNUSIGgt7naqNc50DQrPZSHu/c846IjaA2wtSfKP7Yl6a2RZhlXZEeQW256he4owMK24u79k7Q+qK0HW595r4zLba8Hj4CJEo9CzfH+wIjQFofqeLaL0H9d9UkcUZvWAUdkxBRMua5HSaSw9pPw8VGG0str2+1X//DjYVX1PQy3pDdliTW2HhBpZl9NCAR2wm0JZUeM1XLWAUAqhmftfFLQqaLcgmq3xGqzme2DUs0/r5tBP4OYI22Z8xUKkRsAAAAAAAAAACAqtG+0h0AAAAA4rNH0u4StAkAAAAAaZCOMROpqCokalh1uQozxylq32ypOKKtx57yJEyfShWmV46UQGVJm+RoOyjkL8x6QoUFVjCNV5jzqvi2s+2GT7VjS1+zV3DqnijnuX0fREsPZG3Xl9onhiLshuAi2S2nuwrbXhB7eqzg9dkFp5FypUvKF+Iu7hpzpfkKk4qq+JRe4VNRRfk8j5LCLVzas5ZTSvlc7PjcWORINZUVWLR7H9k2QoRP+/t3Xcv9OcdYdpHtcyGJxcP/JOnAmFvfJulzobdz9uzZuv/++/WXv/xFnTp10pAhQ3TTTTepb9++MfcLSLdKp6ICgGIk+XeaOKR9+0yVTJ1dbDrjalfKbQoavzp/r7Cmlwoebw3zBkmS9jRu1+rMVxLxfSZJY6Y4kIoKAAAAKbKnRH/hrVy5UpMnT9batWu1fPly7dmzRyNHjtT27dtbv3kAAAAA0CqVHzPFgYiNCinF7KMkFAeKOvM/nmiDliM94igMHNyH4PfFUZjZts7WHO/WtuGawRxHlEMlCzoHzSYPc6651hM8KzwgSibUuRalALz9vCy+kLV9fbZiXKEKUjfPjPAXmI4WJZDbRmMWuru94s7daPumuGLe/vVFKWRtuNhYh1lA2jHrJL++aFEfuRktAe3ufV9hlIOr0HioAt6WCAR3lImryHeEfiwwzqtxtnWYWj6/gouqS0GftTULjZcfNh67IjKyx8hWiFzyR2yMsbz+UaM0MRmzqfOzj/5XpZl9VHxkynvvvafu3btr5cqVOv3002PuG5BeRGwAAKpVEn6ji6pUvzPFnWnEyTKmMcdVw41B8BO+gU7r1uGSXXeSvs8kecxUDGpsAAAAACE0Njb6/l1bW6va2trA9zU0NEiSunXrFrAkAAAAACAMbmykSLlrD9jW5+pD1Odt6wua5eyedR3hbmrEKJMo7/PPsrXM1A1zZ9ixzmLZcukHzdoP1274Ntz1AaLUS3D1o7ioG9fzQZELYdZtr18QPOM+jhob9v6Ej0oIs63mvrHvO/t1XFPT8rqt0QCSLyIg6PPC22KffR+lJkn0fV5Yn6T4eht5/uNmXm+F/XP236z9sEjGMuE/45z925Jd1mg3TOTFxZb9uLUwoqPF/jVHTZhRCa56If59ULiM85wyIx4uMxbJrdvYjttlXdb6uXu7+bqxbt9+sfc5HxXl2NYF9mt92Li9eV+v0vDcc6PHPWFdh5aakR7Z57fZ11dRpQiD3tte7969fc9ed911mjFjRovv9DxPU6dO1Re/+EX1798/5n4BAOKSxlz1APYq1/Wd5M+RYn/HCFNbNcpvhXHsoyi/Jbp+a6jR0/l/ZMdvC/LtZqPxJXftDWuWCnP8l2ilGzOVEzc2AAAAgBA2bdrkC6sOE61x2WWX6YUXXtDq1atL2TUAAAAAaFO4sQEAAIAU2SNpdwnalOrq6iLli7388sv10EMPadWqVTriiCNi7hMAAAAAFKN0Y6Zy4sZGFYqjuHCc6yvl+0z+9EYtp3IpZcFqd1qa8O+zrTNqIejg94VPmePaX0Hhgu50OOGLxftDGYML/NpTOUVjKwIeJtVOfp3BabDs7zPXaT8mQWl+oqZcKz6dWOk/W5x97lZY5NsXPrq15X20l/EZEVBAzBVWmn2fO1Wb0YYjVVZ+eUfBeUe6fVtaIf+67c8HpbkKkybOdm35nusa/nyNmjIuu56aRa7tsLdn2x9hjpuvgHo2LdUi+7b6UjyZdeYWmfvAck6Pd6RRM1NlZcOcfcW5jW11FHrv8P53c493Hbf3vz/07ss996NuPy7sj+RLibXi4b0bs2JRr/yTC4xlx+T7+cNx1xa27TVKH9hX05Z5nqfLL79cixcv1ooVK3TMMcdUuksAgABJSxtTTZKcfgfRJe14hulPsWnTi1236/ly/GZWrFCp15vHoeZ42ZV+ytV20Dpc8mPgaMfb1g/fNi00FnCNzbLrHG+s47IIfZb524WRBivX3o7AtlAcbmwAAAAgRSqfL3by5MlauHChHnzwQXXp0kWbN2+WJGUyGXXq1CnmvgEAAABAFJUfM8WhxvM8r+xrhRobG5XJZNTQ0BAppYGUvLvncbFHP0QoQu2cwWwu0/Ls4qgFjeJuL2gdtvbimKnv3A6zYO0i24zoiHfgA46xs0+OYtE24QrAZ/thnxUeqVCyOTvfjAIIcT7aBBbADtE3awEr2WdahCti3twPs2Cy6zi4Zrjn2rbPuHdFI9gFF+22Fy4P3taga8x9PkSI4ulaGJHi6p9z+4xCZv6IgZb74d7Phfs0VOFss23ntljW7ex/dh3hr/mC5W3vM183oi063N6Ye7zruOb/FzuKb3d4/+j8spfl/7/tGTOActtlKUQuyV+s3JSNyHBFYxz80/z6AorZD/MG5Z5ZUWMUxPOxHE+zyN3Dlr5J+uGWfMTGkzpNkrSncbtWZ75S1PeZuGW/W0l/kNQ55ta3SxoVejtrHFUK582bp/r6+ni7BqTYvmOmYr/fpmnMhNLhnAknaBwKxK3ar804+p+UNqKsJ/LvaF1tWT1av+5Qvy1FWLcv64I5hhrf0rh1h6QbGTOVABEbAAAASJHdij9fbLT2mDcEAAAAILkqP2aKAzc2Esh29zJKzr5iZ4qH6U+UOhHu/OYtzzL35aOrKZxF7OqTbx2OvPW29bnlZ7SGmRlvE1QfI0wb0dYRnH/eP1P9ywXr8PXNnIls5LzPTkSNEhmw77qDo26Ky+MfvGxesfkaXREFUfJvhqmBYq91ELwOX59ttSS22s+ZwPac73N9ztjq4gRHW1ijB3x1MFquI7Fv2/nogOIidFozs8W6z7cWXkt7FV6/5rrNGfxatDH/2BUlY6kZYUZKuOoW5WvQOPbLOUbEifkZERBp44zSCIjOsB/LfZi1KcY398MXcWa0uzT/vBkJEWTXwY4+WY7RrkUynjs638ZxRoO2iBJjX/iWNT/jzGvBF0W19xiuGGcWADEjNozza0H+fcPG7Q3JWNHNeJ8x88iMavnRQqNmR25GUhLzxaYjrBpAodbWCwNawjkTTtL2U7lrgqL6lTv6r5T1KU1xRnW0Zn3x/sYV/L6gMXwY1uwWjt8V/ZkKLL/1WH4b2xslcWOkPpVeOsZM+5V9jQAAAAAAAAAAAEUiYgMAAAApskfxh0ETsQEAAAAgLdIxZqJ4eIW0VDw8SsHaYsPmoqSziRLuFUeIXbiQsZaLKschXEHt7DLBaXmiFRpvOXWUuZ5wx7Jwf/meD1MU2tHX4D5HYe+nfX1RC5fb9keY1ETFFbKOUuzexZbCLUy6N5egounBBbDDpJFqed3RioTLmk7JmdrOUew+8H0+rmvF9rqL8b6LLfvJVizb1bar0Lgr3Z5ZvOyygPdtDdp3xnbYinPvy5aqzPfZEv6c950brs8nV6qpXIo9R7Fyoxi2WUg8u93OtIZbHZ+1RjqunIctz7Ugm+4pV8Bc8u8vcx+YfbZti/mcYdiW/Atm2qkOf2te98Eb888Z6bN2PpvJPa75p/GV0ZeKKmmF8H4r6YCYW/9IUjKKpANtSUtjJqQLBamRdOU4R9tSeqxq2dZwKbdLtO6Iv+cV216xiu6HY59af/MIMx6ztGeO0TxjLDjcGCw94RtY+fuwL2efzGW2uNeRpO8zaRszEbEBAACAFElHvlgAAAAAKI10jJmI2KiQfe/W2YsLF3d3tjXFw20zuuOOHHHNeLZFIIQrUFy4jlAz+F0zl619sxevzRbODTP7OyiSwxkZE9DPqAWwg6JdIkV6BESTtNyn8NEi0QqJu97X+oiSoOLh/mVd+yAokqDl67f4SAPlZ90bExM822xzOWY9uKIEtobYt9l1u641c/a9OeM823aYyAXXDHfb+yzX8b5yszzGu6JFQkScBEV9XOz4XMvuA1uB6X2fDxD1M9y6jKtAuWU/+5ZxRRpYImqcHPvIX7jcUsDbLAzuiuYx2rZGTRiykQ2StOsyYxlHhIT1fUsds1aao2vMiJtsUW9JWlHTy1i45YigYQvtkRm+guDnGH3Kbq/5ufDnfFX7mn75r4m+tnN92iZpaMJmH92r0sw++loithNoS5I0wzGtKjkbOSmSHC1SLbPaqx372S8pEQGlWl/ckRDFrq+UAn9nCtgHzgj18a3fd87fNJrHnGH+X+SM+sg+HyK6I3BMbYyBH90yPPd49MIn8stcln+YjZBfsdAYWCU6yj0dYyYiNgAAAJAiuxV/vti42wMAAACASknHmImIjQoJU2PDFK2GgH3mvGvGetDd2eD12aNMTHHfPbdrORKkpfXkZr06ZhE7c643z4A1c/aFiSgI3q6gSAlHLnrHsr4Zz4ts211sJE6IPPgB7YWbQR4wu9u3fcHRA9bIC1dEQIRIjzARIq29VlwRHc5oChtXFEDg+0LUuTDZZsmHqufSckSDM8KixrFdWwNydUaKJHDMlrfUePAvHyKixlzGFgkRJjImiCvywmSpa+KMLHFeb4VRXa7rY5j3Vu5xNsLAVQ/Cf6wc9TYsfYt0rVjqlBSuu+WoFTNKw8UWGeKL7nDV21hgRJkYkRfvZQ6VJGXu25lf1uy/uV1GDZBsFMZpejKwzz8a9+P8P3L7P4mzj+5WaWYfTUjEdgJtCREblRFm5i0z3IHiVfL64fouv3LVyoijvWLeX9CGJVtDqAwl2WXD1Ig0lw9R/8LaRkBGBF+flxkR7V8zfkYP+m1lK2OmUiNiAwAAACmSjtlHAAAAAFAa6RgzcWMDAAAAKZKOQngAAAAAUBrpGDORiqpC8qE/P5DUsaLhh3bhi3bvbS8ozYwrPVZ8oXJ+9rRUgSlgikyn5OIMETRSV7nSQFnfF5j+KzjdjT0djCOFlfl8UGofZxogezqbXOH1iAULs312p0JyHHtXOi6LwFRhRtobfwHj4lIFuUIn/SmxCvuRLZIsSbsO3uho3dIPV8jlAuP58RG2xWzPTNczxnicK5plTzPl3o+Fy/rbdaRLMpd52LaOCGmwbMXMFS69kbXw+jnWRe1FqI31dXj/6NxjZ5oiVzHvLDMd0XjHdRPUhmt9tlRNjhRW2ULdkrSzW35bbMXezOvthwuvzT32p0Uq3E/OAt+O/mfTQD3Y7fzcc6PH5QvD2Qtn72vvtTLMG5Rf1igeZ6aOuqrbTfltWbh3W344zrF9xvnsWqbh7lpJUqb9uvzCRtoqXzHyccbByn4eGvs525YkrWk3JP9Y+cc/qrmo+VESi4f/UqUJq/5WIrYTaEtIRYWwkpg6J2qK4iRL4v5t66KmI4qSdrxUSpm6PA7FFsCOc1kpPyYK8/tI0Hri2F/Fpi9z/Ubk2i7rWNAQJp1VroC3mc7YaM83Tqt5Or9M828hzjTz5m8lrnS/lxU+l20vSd9n0jZmImIDAAAAKbJH8YdBE7EBAAAAIC3SMWYiYqNCWi4eXjgj3fZ6ocXN74tW+DsoOiNofZKsRahdhWKdBc2txXKDZ7m4ozMs/SxaUDFvxzocd6UDi2GHUliU2DWD3D3zP3z/7YWGHe8LNfM/6Li51rP3fc7zyMUXjVMYqeKeeRAQueDYR7aCyL5lnBEkjv2S7b+jALB/RnpQNIIrEifEtV7QlvzbYos6MNs2ZpD7+u8qxpzddUGFovddt7XQs+P8c0Uo2Pajs8CY47hlt3e847PRjN6yRRW4inYbzEiU2i1G8enmiAV3pIq9z9aIBxfXedd8jHwRFguNCATz2Fuia3zH2/F54r7GWo4OcslGkexaamx30GycfZ/P9s8VyWJsqxlBYWNGekSJ5Lhpy1W553zb4tjn2SiSdQdncs/9u/do7vETV47OPa75la1QXhIL4f1cUqeYW/9Y0qREbCfQluw7ZirlDFlUpyTMQo9DWztf4zxuce+7pByLpPQjCeIoeB5HtIhLlCiZuAuGh1m+pb619Hwx/QzVH8eYOhfpYWY7cGYcMNiiKVyZKcxxnCGXacEVaWe0YY7jrtJNBYuO7paP+mfMVHpEbAAAACBF0pEvFgAAAABKIx1jJiI2KqQ1s49MtruersgA3wz3CDUe3ILqOQTMPJesM55dM/HdM/QDIhci7YPgKAJrVIRrhrw5szzUjPqW27DVIXDWmujqOI/C3PG2rNtnkWVWcmCUgOSMFAjom30GgdHuAsdsbPNuvG8Gf3MbCxzbZ7wvm3dfkoZ0WyNpn9nh1siAFtiiA8w2nOeJpQ6Mow3fLPlcHnwpt//NfW+bbe7imvXuqF/gqwmRnf3vjKpwRGQEXpsB55TRJ2t/pBaO2+LC/rgm2bvOg+bjlc31KfnPH/P8MuukZK9r32yVrY7r2ziGZg2HXB0OxzExWetRuM6pbkbEgBnl44rGya7bVVfD/Cw2ozea+WpDGFEMtnWYfTXPfVd9Et/+t52jUaI0pNw14vusNrfPZGzro+OGS5JGLzRm9xjre3TL8NzjIU1rco8PbXgv93jns3sjLmq+ZnytM3aXuf/fyxyae3x+uwcl+SMzTMNvyUdv+PLQ5iRx9tF/qjSzj65IxHYCbUmSclKHUews9KTNzE5af1qjXPnl06JatrWUx7Uc+6CU0QNJFrW+Zu59FYzKCXOsim4vIHLB9b4wtSZsEQhhol2irMO3vOV4OseyAb/D+MbOljoY5rL7tp3t93DZ23jUW5F7fI7yY6+lah6P1QzLt2tmYLm3Jr/syPwyvugMi+x+SdL3mbSNmYjYAAAAQIrsVvxfcePOPwsAAAAAlZKOMRMRGxVSELFR5J1rU5QcevYZ0VJQxEJQDQf/HdmIdTWc+f0trJECLdcK2Zf9bnbhzFtJ/lnE1lntlnojskdY7Lu8NY+gIye7L8Iie/d4q31/+mYiGzOUbbPkfeeJ4xha89mbbZkWOfajbWa/Kxd9mPZs7bqiH2zPu9ZnvM8asVHTy94f1/pM2eM5PsR1YGvbVWPD5KpXkX2vq+6JszbKXr5Z7yFy9wcaH/zZkz3vfDP1HRE1ZsSDKVczwtFncya771rJ7i9jff7ZI8Z5YEQr+KImmvvk3HeOmhHZXJ03KV8vwVyfuaxpxThjP9nONeOc8m230ads/83nfFET3Rwnd4jIkNz6zP1s+wxzrOLRhfnIhTUaknts1p3w6vfOphk+0ow0yO+7R71/zz327d/svnOcw77j6qg/MmzhUn9b+7SXjcyQpNHjjNk9zbu34b3a3FOZQ3fm2zXOuyeWGTUv/ln4Fc5cxznLVuQe1w5syD3OfpZJ0rCave0N8oblnutVk3/fqe/n32fKRt0kc/bRrSrN7KNpidhOoC3JXdcHNUg1dUWPk1A9qiVioC2oxmNRyj7HWS+h2HWbKtGP1oqjTkQYxdbYsPUv6vsC+xGmFqolE4Hr/3+RIiiM36c8R1S5tb0wGUd8vyWEv1bMPlnrY5hcGRoM2XGTPdJ8H5bIEe+QaJEZZmT9OSevkCTVPD8j317ztjJmKh0iNgAAAJAi6cgXCwAAAAClkY4x035lXyMAAAAAAAAAAECRiNhICGuYWOQiP4WpXPzpj4zXFzmez6ZTMQvxGMwCPLo9n2ojGz7mC6XrNqDg9QK2tDtmGhAzxY3ZZ186peb/Gqlg/NttMIvbGm04i7tmmalcbAVylxrPGam9am//bv55X9Hn/OPaLdn0JmYxY+O4jjGOvSX0zpciqiafVmjXcWYhKqP/i/IPs2mznOnBjLQ1K8ZZ0iUZbflS7YxxFBEOON5mOKT/mOS3a9jC5tRERqoXXzoiM81PQKFnMxWPmZrFbHvXwT/NP28r4G2er+b6zOfN68lWeD2MbJ/NdDjjN+ZfN9OQ+YpkW/pxsf1c9PXTWCafXseexsi8lswUPeYyV3Xbm1rJV3g6RAHsFc2fI2aI5+iH82Gg/pRARlot43Mtd064ismbbMWijed8aZgWONow5fZjfpvM7ZNxrMz9+0T93vRAo+cbIa8Xmw0b1/04x8Y09/+H3n25p27akl+fq4h2IGN/+FJUGf24qltzAe+FxvE2PwuMNhouOjX3OFsM27zuhnmDco/N9E1mQXPzXKs5rjk9k7lbfPsuz+xzw921vj5I/s8T87G57id1WmF7xv+vHl2YT311/pYH8ys3PiOy/TfX/cMt+XVc2XRL7rGZYsu7Mh8qPf2WayT5C5B7f8q/vlOZ/LIjr8n32dvbXpOezG+Tl0/RtWuhPXWaQqR8rJw9ij+/KxEbQCU1/EPaN6NBscVaS5WephRtl1s2BUncKb+SUvi33Osuh1L2J+g3iDC/URTbRhDXOlrTp7Dva80+L3q7m8dNUa/NYotJB7Ybc0qpoONZyhRWvn1kS9HtKPBtCjrvzPGMtj5tvG4sHLAec1nf+sxlu1r6b7zu64cKf8+TjFROvlTQIfaB8fvN8HGDmvvs6JsrJVbzY99+MTnWbW5Xrt9dXQP+PF+a4JphkqSlRnpe37Lm7xFGWioz9W/N95rHoePDn3+VlY4xEzc2AAAAkCLpCKsGAAAAgNJIx5iJ4uEVErVwjDMyI6j4tjkz25hB6pvRfZxl/UGFjyX/7FtLMWZf4WwzYsNWAFtyFDY25Wdjd3j/uwWvWrdD8u8XI9rCWgzXFwkSobizY1l/YeP8DGRrlIwrKsQxyzw7i37NlnwBXV+0govtuBl3vh/1VuQeZ+9a79vnXDFmx4xv3yx6RyHuXF8dhY1d55q1OK8ZKWHOuHe1nT1etugb83W1UPQ5t44Qha0sRZV954NRcN5X0NlYJnvO+/Zt0PUo+0z8bPSEJN20xZiZ7TqetmPlupaMmR0/HJefcf6jmouat+Noaz+ss96VP96nGbPJfVEfjuvbeeybeb2MomC3DMs9NotJZ68tsyi5L0LK2FZzH1ivScd17DvetmNrvs84t/37tkPusXn9+qIDmr2XObTgOUnKTMgXqrZ9nocqCm8rIm/031UY25Q973yF4B3/H/P+cFLusbVQ+ILC475vP/+/Rfnz4N+9RwsWNSN0whT2tv6/xOSIIstuty9yzDi/Gi6qLXiPJNU9viv3uPGsvedB5r5833yzkIxIDrO9Ne2GFLzuu6aNwuvmscj+Pz6ZhfCul9Qx5tZ3SLouEdsJtCVJ+oyJQ5QCs2HasM0uLleB9VJFQsQ94z5ursK/udfLXEw6TAFjH2OMEuVcCdruODjP7RijLfZ93ibwHHTsw0gFpIssZO0Sqb2Yz4FI67YUmHYuazzvPGYhtiWw8LoZrWD5jchXHFr2AtLO9WX7Z8sKsK+tLW935Gs9u69dv78ZfOMZW9Ft87gZ/beOg6Tctvh+WzKLbwdEXoQq/G3wrWeh5RgZfTaPpylb+Hv4c4VjQkl64uTRucdLnxuWX5+5Xc3H2VaYPUnfZ9I2ZqLGBgAAAFJkd4n+AAAAACANkjFmWrVqlc4991z16tVLNTU1euCBByK9n1RUVSJcHsHsso5ZqgsdNSh80QjNd06XOmYhuGpRZN9n1IPwLeuLaDBmp9tmhZv9MWe9GnUsdh1n60N+HeasapOZw37NOflZ1bZZwubMcjM//q7jjP7lblCbuf3Nfhp3KJ3bnX3dcdwcd/ezs9p9tQ6M18387L5Z+bLMCle+b6PHGf183z6bfJdrlkH2fa7aFcad9x96e2ca33ROvm++/Wysz4z+qTVmw1vXbdagMF+wRGH4tsOMcnBFaVi224weckaqGO1l98cKc7aEMRv+wW7n5x6PXmDUksi2Z874Nh6bsyV8EQO+SKG9fnTxjwuek+SvlWFsd26f+iK98suuuMycnZHfzz+SsZ4Fhe/70TnG6+ZnhFEPITtrfcX4/LnjOy/N+jbm8TFm62dnra9Rfr/UbmnIL2t8xvn2/3FPFLS1wsz3afbT3Ae2yK+LbZ8b+1wfYyzT/B21R0zmOTh6oeX/FcZ+ydyen83vai9fQ8eIkjPqBfmuCVuUhvm8sUmZ9uvy/zBrXtiiGBzRVOa1lKulsc96sm37PgvMCBDDSQuMNppnoZnXkvn40C35+hfevfkToaZbvo1sVMct7a7MPef7/DXrdBhRN9kaGrco/76rxuUjmjIL7cftwZH58zUbbeT9xOibjO0zzoM14/LXgm+WUTPzevMxzgnZzjUASIDW5u5vTRu2GdG2WbgF7zNmQmeXDzNz2z5rN9qM76Ac/C5B/Yi674JmZhc9k92yb1tqO2gdQVEarhnRzuUt6yhlDRFzdnqcUT5F10AIsb8qyXqsjP013BGOG+X8N5f1tdc14Fo3952jdqGt1qm/LqqjT7aIjAX2bXKdu9Z9Z9bUNOo2LJU5i35Yy/1zRH2Yn31B/fQx2lhxWeF+tM3Il+SMrLdFkYSJOLHWoHDVpbDVAtlHdl/XGPvFF81tbNcTZr2NBZYxqSNLxYpuQbU+VuSeMsdVT5jHapmRSaH52A8z3rfCMyPz82MUs67GTTJrh+xlbutN464yls0/9tUR+Ufzf439afY5Vz9D0qO+8zXPFqmBYNu3b9dJJ52kb3zjG/rXf/3XyO/nxgYAAABSJB35YgEAAACgNJIxZho9erRGjx4dvKADNzYqJFvapLHRMWO2KNsitLnN6Iy5/I6C53zNOaOKmt/3kbGwb1n7+jyz8Y+yTzrWF1gNJr+OPY3b7Yvsdqzb0ob9dVc/dhivB+//wO3+SHaWfeNry3h9Z2N+hq91fS7GPve9z3bsjfW59tee9uaxyO+nnY27W3yfuT7fJmb/4Tg3/O0Z550sy4Rp4yP7MtZlQ7SX2x+efR3bG43/EXxk2TeO68A85/37YEfhwrtDfEYYfbIeI+f1aOzzoP67PiN22/ZNfjtCHR/LPt0pxzVh2N7e2P/ZY+S7Zhz9DNoux7K+zyrb/jKYfd7ZPsL17dgv7us7u40h9rn5PtfzBe3KuT9y63G05fq8s60vzGeBb583t+f6/4fZnm8R3/8v9zays13w8TE/oxubCt+3XfbPArM983zdo+3NbRl9s2yftM/njPX/WZbPjX1kv2tk/5uskm32Gi7JaxNAkOLGTDuKeE9cbRSOpczPVGd7vo9Q27pdbRR+Xod7n33d+UXC/38gXD+isK878nZlWfZty20XsQ7HWND9thiOW7H73PLdOdShsp4n9v6EO/ZRrpWobYdvzybKuZ39/tXy+sL3zdeeY9/YXzc4x/uWzxbH1zd/9wt/64lybvvbDfHd1Ho9Gc99VNy1Eupaso3RXb/ThHg+8DM16Bg61uHblKBj6PqtwfVZZT1/wvS/cD+a6zPP7UYjU4d5ymeXN9fmH5vtcDxv+KjldduW3dvnwpddY/VQ+3EfbW3MtO/1Vltbq9pae93I1qJ4eIW8+eab6t27d6W7AQAA0GqbNm3SEUccUdE+7NixQ8ccc4w2b95ckvZ79uyp119/XR07xl1kD4ALYyYAAJAWbWHMdOCBB2rbNv/Ewuuuu04zZswIfG9NTY0WL16sCy64IPT6iNiokF69emnTpk3q0qWLampqgt+AimlsbFTv3r21adMm1dXVBb8BicRxTAeOY3pwLNPB8zx9+OGH6tWrV6W7oo4dO+r111/Xrl27ghcuQocOHbipAZQZY6Zk4f/d6cLxTBeOZ7pwPNOlLY2ZPM8r+M5WqmgNiRsbFbPffvtV/C4doqmrq+N/KCnAcUwHjmN6cCyrXyaTqXQXcjp27MjNByBFGDMlE//vTheOZ7pwPNOF45kejJlKY79KdwAAAAAAAAAAACAsIjYAAAAAAAAAAEDZbNu2TX/7299y/3799df1/PPPq1u3bjryyCMD38+NDSBAbW2trrvuupLmhEPpcRzTgeOYHhxLAACqC//vTheOZ7pwPNOF44m24tlnn9Xw4cNz/546daok6ZJLLtH8+fMD31/jeZ5Xqs4BAAAAAAAAAADEiRobAAAAAAAAAACganBjAwAAAAAAAAAAVA1ubAAAAAAAAAAAgKrBjQ0AAAAAAAAAAFA1uLGBNu/nP/+5jjnmGHXs2FGnnHKKnnzySeey999/v0aMGKFDDz1UdXV1Gjx4sP7whz+UsbdoSZRjafrf//1ftW/fXp/97GdL20GEEvU47ty5U9dee62OOuoo1dbW6lOf+pR+9atflam3cIl6HBcsWKCTTjpJBxxwgA477DB94xvf0Pvvv1+m3gIAAImxUdowPkoXxknpwngJaD1ubKBNu++++zRlyhRde+21eu6553Taaadp9OjReuONN6zLr1q1SiNGjNAjjzyi9evXa/jw4Tr33HP13HPPlbnn2FfUY5nV0NCgr3/96zrrrLPK1FO0pJjjOHbsWD3++OO66667tGHDBi1atEif/vSny9hr7CvqcVy9erW+/vWv69JLL9XLL7+s3/zmN1q3bp2++c1vlrnnAAC0XYyN0oXxUbowTkoXxktAPGo8z/Mq3QmgUgYNGqTPfe5zmjt3bu65fv366YILLtDs2bNDtfGZz3xGF110kaZPn16qbiKEYo/l1772NfXp00ft2rXTAw88oOeff74MvYVL1OO4dOlSfe1rX9Pf//53devWrZxdRQuiHsdbbrlFc+fO1WuvvZZ7bs6cObr55pu1adOmsvQZAIC2jrFRujA+ShfGSenCeAmIBxEbaLN27dql9evXa+TIkb7nR44cqTVr1oRq45NPPtGHH37IF4UKK/ZYzps3T6+99pquu+66UncRIRRzHB966CENHDhQN998sw4//HAdf/zxuvLKK/Xxxx+Xo8uwKOY4DhkyRG+++aYeeeQReZ6nd955R7/97W/1pS99qRxdBgCgzWNslC6Mj9KFcVK6MF4C4tO+0h0AKuWf//ynmpqa1KNHD9/zPXr00ObNm0O1ceutt2r79u0aO3ZsKbqIkIo5ln/961/1gx/8QE8++aTat+ejMAmKOY5///vftXr1anXs2FGLFy/WP//5T02aNElbtmwhf2yFFHMchwwZogULFuiiiy7Sjh07tGfPHp133nmaM2dOOboMAECbx9goXRgfpQvjpHRhvATEh4gNtHk1NTW+f3ueV/CczaJFizRjxgzdd9996t69e6m6hwjCHsumpiaNGzdO119/vY4//vhydQ8hRbkmP/nkE9XU1GjBggX6/Oc/r3/5l3/Rbbfdpvnz5zMbqcKiHMdXXnlFV1xxhaZPn67169dr6dKlev311/Wd73ynHF0FAADNGBulC+OjdGGclC6Ml4DW4zY82qxDDjlE7dq1K7gj/u677xbcOd/Xfffdp0svvVS/+c1vdPbZZ5eymwgh6rH88MMP9eyzz+q5557TZZddJmnvFz/P89S+fXstW7ZMZ555Zln6jrxirsnDDjtMhx9+uDKZTO65fv36yfM8vfnmm+rTp09J+4xCxRzH2bNna+jQofre974nSRowYIA6d+6s0047TTNnztRhhx1W8n4DANCWMTZKF8ZH6cI4KV0YLwHxIWIDbVaHDh10yimnaPny5b7nly9friFDhjjft2jRItXX12vhwoXkM0yIqMeyrq5OL774op5//vnc33e+8x317dtXzz//vAYNGlSursNQzDU5dOhQvfXWW9q2bVvuuVdffVX77befjjjiiJL2F3bFHMePPvpI++3n/0rSrl07SXtnLgEAgNJibJQujI/ShXFSujBeAmLkAW3Yvffe6+2///7eXXfd5b3yyivelClTvM6dO3sbN270PM/zfvCDH3gTJkzILb9w4UKvffv23n/91395b7/9du7vgw8+qNQmoFnUY7mv6667zjvppJPK1Fu4RD2OH374oXfEEUd4X/nKV7yXX37ZW7lypdenTx/vm9/8ZqU2AV704zhv3jyvffv23s9//nPvtdde81avXu0NHDjQ+/znP1+pTQAAoM1hbJQujI/ShXFSujBeAuJBKiq0aRdddJHef/993XDDDXr77bfVv39/PfLIIzrqqKMkSW+//bbeeOON3PJ33HGH9uzZo8mTJ2vy5Mm55y+55BLNnz+/3N2HIeqxRDJFPY4HHnigli9frssvv1wDBw7UwQcfrLFjx2rmzJmV2gQo+nGsr6/Xhx9+qNtvv13Tpk3TQQcdpDPPPFM33XRTpTYBAIA2h7FRujA+ShfGSenCeAmIR43nEbMEAAAAAAAAAACqAzU2AAAAAAAAAABA1eDGBgAAAAAAAAAAqBrc2AAAAAAAAAAAAFWDGxsAAAAAAAAAAKBqcGMDAAAAAAAAAABUDW5sAAAAAAAAAACAqsGNDQAAAAAAAAAAUDW4sQEAAAAAAAAAAKoGNzYAAJKk+fPn66CDDqp0NwAAAAAgkRgzAUBycGMDAAAAAAAAAABUDW5sAECV2717d6W7AAAAAACJxZgJANKHGxsAECPP83TzzTfr2GOPVadOnXTSSSfpt7/9rSRpxYoVqqmp0eOPP66BAwfqgAMO0JAhQ7RhwwZfG0uWLNEpp5yijh076thjj9X111+vPXv25F6vqanRL37xC51//vnq3LmzZs6cKUmaOXOmunfvri5duuib3/ymfvCDH+izn/2sJGnVqlXaf//9tXnzZt+6pk2bptNPP925PXPnztWnPvUpdejQQX379tXdd9/te33GjBk68sgjVVtbq169eumKK67Ivfbzn/9cffr0UceOHdWjRw995Stfib5DAQAAAKQKYybGTAAQCw8AEJtrrrnG+/SnP+0tXbrUe+2117x58+Z5tbW13ooVK7wnnnjCk+QNGjTIW7Fihffyyy97p512mjdkyJDc+5cuXerV1dV58+fP91577TVv2bJl3tFHH+3NmDEjt4wkr3v37t5dd93lvfbaa97GjRu9e+65x+vYsaP3q1/9ytuwYYN3/fXXe3V1dd5JJ52Ue9/xxx/v3Xzzzbl/79692+vevbv3q1/9yvM8z5s3b56XyWRyr99///3e/vvv7/3Xf/2Xt2HDBu/WW2/12rVr5/3xj3/0PM/zfvOb33h1dXXeI4884v3jH//wnn76ae+Xv/yl53met27dOq9du3bewoULvY0bN3p/+tOfvP/4j/8oxS4HAAAAUEUYMzFmAoA4cGMDAGKybds2r2PHjt6aNWt8z1966aXexRdfnPuS/thjj+Ve+/3vf+9J8j7++GPP8zzvtNNO82bNmuV7/9133+0ddthhuX9L8qZMmeJbZtCgQd7kyZN9zw0dOtT3Jf2mm27y+vXrl/v3Aw884B144IHetm3bPM8r/JI+ZMgQb+LEib42v/rVr3r/8i//4nme5916663e8ccf7+3atatgX/zud7/z6urqvMbGxoLXAAAAALRNjJnyGDMBQOuQigoAYvLKK69ox44dGjFihA488MDc3//8z//otddeyy03YMCA3OPDDjtMkvTuu+9KktavX68bbrjB9/6JEyfq7bff1kcffZR738CBA33r3rBhgz7/+c/7ntv33/X19frb3/6mtWvXSpJ+9atfaezYsercubN1e/785z9r6NChvueGDh2qP//5z5Kkr371q/r444917LHHauLEiVq8eHEu/HvEiBE66qijdOyxx2rChAlasGCBr/8AAAAA2h7GTIyZACAu7SvdAQBIi08++USS9Pvf/16HH36477Xa2trcF/X9998/93xNTY3vvZ988omuv/56XXjhhQXtd+zYMffY9sU621aW53m+f3fv3l3nnnuu5s2bp2OPPVaPPPKIVqxY0eI22drMPte7d29t2LBBy5cv12OPPaZJkybpJz/5iVauXKkuXbroT3/6k1asWKFly5Zp+vTpmjFjhtatW6eDDjqoxXUCAAAASCfGTIyZACAuRGwAQExOOOEE1dbW6o033tBxxx3n++vdu3eoNj73uc9pw4YNBe8/7rjjtN9+7o/svn376plnnvE99+yzzxYs981vflP33nuv7rjjDn3qU58qmF1k6tevn1avXu17bs2aNerXr1/u3506ddJ5552n//zP/9SKFSv01FNP6cUXX5QktW/fXmeffbZuvvlmvfDCC9q4caP++Mc/htoPAAAAANKHMRNjJgCICxEbABCTLl266Morr9R3v/tdffLJJ/riF7+oxsZGrVmzRgceeKCOOuqowDamT5+uMWPGqHfv3vrqV7+q/fbbTy+88IJefPFFzZw50/m+yy+/XBMnTtTAgQM1ZMgQ3XfffXrhhRd07LHH+pYbNWqUMpmMZs6cqRtuuKHFvnzve9/T2LFj9bnPfU5nnXWWlixZovvvv1+PPfaYJGn+/PlqamrSoEGDdMABB+juu+9Wp06ddNRRR+nhhx/W3//+d51++unq2rWrHnnkEX3yySfq27dviD0JAAAAII0YMzFmAoC4ELEBADH60Y9+pOnTp2v27Nnq16+fRo0apSVLluiYY44J9f5Ro0bp4Ycf1vLly3XqqafqC1/4gm677bbAL/jjx4/X1VdfrSuvvFKf+9zn9Prrr6u+vt4Xii1J++23n+rr69XU1KSvf/3rLbZ5wQUX6D/+4z/0k5/8RJ/5zGd0xx13aN68eRo2bJgk6aCDDtKdd96poUOHasCAAXr88ce1ZMkSHXzwwTrooIN0//3368wzz1S/fv30i1/8QosWLdJnPvOZUPsBAAAAQDoxZmLMBABxqPH2TSgIAEiFESNGqGfPnrr77rt9z0+cOFHvvPOOHnrooQr1DAAAAAAqjzETAFQvUlEBQAp89NFH+sUvfqFRo0apXbt2WrRokR577DEtX748t0xDQ4PWrVunBQsW6MEHH6xgbwEAAACgvBgzAUC6cGMDAFKgpqZGjzzyiGbOnKmdO3eqb9+++t3vfqezzz47t8z555+vZ555Rt/+9rc1YsSICvYWAAAAAMqLMRMApAupqAAAAAAAAAAAQNWgeDgAAAAAAAAAAKga3NgAAAAAAAAAAABVgxsbAAAAAAAAAACganBjAwAAAAAAAAAAVA1ubAAAAAAAAAAAgKrBjQ0AAAAAAAAAAFA1uLEBAAAAAAAAAACqBjc2AAAAAAAAAABA1fj/AfV1DLS5s/9uAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#energyloss in abh von der energie der elektronen\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
|
|
"\n",
|
|
"a0=ax0.hist2d(energyloss_found, energy_found, bins=200, cmap=plt.cm.jet, cmin=1)\n",
|
|
"ax0.set_xlabel(\"energyloss\")\n",
|
|
"ax0.set_ylabel(r\"$E_0$\")\n",
|
|
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
|
|
"plt.colorbar(a0[3],ax=ax0)\n",
|
|
"\n",
|
|
"a1=ax1.hist2d(energyloss_lost, energy_lost, bins=200, cmap=plt.cm.jet, cmin=1) \n",
|
|
"ax1.set_xlabel(\"energyloss\")\n",
|
|
"ax1.set_ylabel(r\"$E_0$\")\n",
|
|
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
|
|
"plt.colorbar(a1[3],ax=ax1)\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\"\"\"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#ist die shape der teilspur im scifi anders? (koenntest du zum beispiel durch vergleich der verteilungen der fit parameter studieren,\n",
|
|
"#in meiner thesis findest du das fitmodell -- ist einfach ein polynom dritten grades)\n",
|
|
"z_ref=8520 #mm\n",
|
|
"\n",
|
|
"def scifi_track(z, a, b, c, d):\n",
|
|
" return a + b*(z-z_ref) + c*(z-z_ref)**2 + d*(z-z_ref)**3\n",
|
|
"\n",
|
|
"def z_mag(xv, zv, tx, a, b):\n",
|
|
" \"\"\" optical centre of the magnet is defined as the intersection between the trajectory tangents before and after the magnet\n",
|
|
"\n",
|
|
" Args:\n",
|
|
" xv (double): velo x track\n",
|
|
" zv (double): velo z track\n",
|
|
" tx (double): velo x slope\n",
|
|
" a (double): ax parameter of track fit\n",
|
|
" b (double): bx parameter of track fit\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" double: z_mag\n",
|
|
" \"\"\"\n",
|
|
" return (xv-tx*zv-a+b*z_ref)/(b-tx)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"scifi_found = found[found[\"scifi_hit_pos_x_length\"]>3]\n",
|
|
"scifi_lost = lost[lost[\"scifi_hit_pos_x_length\"]>3]\n",
|
|
"#should be fulfilled by all candidates\n",
|
|
"\n",
|
|
"scifi_x_found = scifi_found[\"scifi_hit_pos_x\"]\n",
|
|
"scifi_z_found = scifi_found[\"scifi_hit_pos_z\"]\n",
|
|
"\n",
|
|
"tx_found = scifi_found[\"velo_track_tx\"]\n",
|
|
"\n",
|
|
"scifi_x_lost = scifi_lost[\"scifi_hit_pos_x\"]\n",
|
|
"scifi_z_lost = scifi_lost[\"scifi_hit_pos_z\"]\n",
|
|
"\n",
|
|
"tx_lost = scifi_lost[\"velo_track_tx\"]\n",
|
|
"\n",
|
|
"xv_found = scifi_found[\"velo_track_x\"]\n",
|
|
"zv_found = scifi_found[\"velo_track_z\"]\n",
|
|
"\n",
|
|
"xv_lost = scifi_lost[\"velo_track_x\"]\n",
|
|
"zv_lost = scifi_lost[\"velo_track_z\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n",
|
|
"sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"brem_vtx_type_found = scifi_found[scifi_found[\"endvtx_type\"]==101]\n",
|
|
"\n",
|
|
"sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n",
|
|
"sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
|
|
"sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n",
|
|
"brem_vtx_type_lost = scifi_lost[scifi_lost[\"endvtx_type\"]==101]\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#ak.num(scifi_found[\"energy\"], axis=0)\n",
|
|
"#scifi_found.snapshot()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 0]\n",
|
|
"------------------\n",
|
|
"type: 11 * float32</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float32'>"
|
|
]
|
|
},
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ak.num(scifi_found[\"energy\"], axis=0)\n",
|
|
"scifi_found[\"all_endvtx_types\"][1,:]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"scifi_fitpars_found = ak.ArrayBuilder()\n",
|
|
"vtx_types_found = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for i in range(0,ak.num(scifi_found, axis=0)):\n",
|
|
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n",
|
|
" scifi_fitpars_found.begin_list()\n",
|
|
" scifi_fitpars_found.real(popt[0])\n",
|
|
" scifi_fitpars_found.real(popt[1])\n",
|
|
" scifi_fitpars_found.real(popt[2])\n",
|
|
" scifi_fitpars_found.real(popt[3])\n",
|
|
" #[:,4] -> energy \n",
|
|
" scifi_fitpars_found.real(sf_energy_found[i])\n",
|
|
" #[:,5] -> photon energy\n",
|
|
" scifi_fitpars_found.real(sf_eph_found[i])\n",
|
|
" scifi_fitpars_found.end_list()\n",
|
|
" \n",
|
|
" vtx_types_found.begin_list()\n",
|
|
" #[:,0] -> endvtx_type\n",
|
|
" vtx_types_found.extend(sf_vtx_type_found[i,:])\n",
|
|
" vtx_types_found.end_list()\n",
|
|
" \n",
|
|
"\n",
|
|
"scifi_fitpars_lost = ak.ArrayBuilder()\n",
|
|
"vtx_types_lost = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for i in range(0,ak.num(scifi_lost, axis=0)):\n",
|
|
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n",
|
|
" scifi_fitpars_lost.begin_list()\n",
|
|
" scifi_fitpars_lost.real(popt[0])\n",
|
|
" scifi_fitpars_lost.real(popt[1])\n",
|
|
" scifi_fitpars_lost.real(popt[2])\n",
|
|
" scifi_fitpars_lost.real(popt[3])\n",
|
|
" #[:,4] -> energy \n",
|
|
" scifi_fitpars_lost.real(sf_energy_lost[i])\n",
|
|
" #[:,5] -> photon energy\n",
|
|
" scifi_fitpars_lost.real(sf_eph_lost[i])\n",
|
|
" scifi_fitpars_lost.end_list()\n",
|
|
" \n",
|
|
" vtx_types_lost.begin_list()\n",
|
|
" #[:,6] -> endvtx_type\n",
|
|
" vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n",
|
|
" vtx_types_lost.end_list()\n",
|
|
" \n",
|
|
"\n",
|
|
"\n",
|
|
"scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n",
|
|
"scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n",
|
|
"\n",
|
|
"vtx_types_lost = ak.Array(vtx_types_lost)\n",
|
|
"vtx_types_found = ak.Array(vtx_types_found)\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 101,\n",
|
|
" 0]\n",
|
|
"------------------\n",
|
|
"type: 11 * float64</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float64'>"
|
|
]
|
|
},
|
|
"execution_count": 49,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"vtx_types_found[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 35,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABpQAAAIhCAYAAABAEVl4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0qklEQVR4nOzde3wU1d3H8e+SyxJisoZLEoIIUSGCBEWwELQGBAIoYIu3NhqJWqSCUARKC9YarARFRC0oWh8rqFBsq1ivmAACUggGFAWqiC0IFAIUQwI05LKc5w+aMZtkNxty2Ql83q/XvJ7szG/mnJld+szxN78zDmOMEQAAAAAAAAAAAOBFs0B3AAAAAAAAAAAAAPZGQgkAAAAAAAAAAAA+kVACAAAAAAAAAACATySUAAAAAAAAAAAA4BMJJQAAAAAAAAAAAPhEQgkAAAAAAAAAAAA+kVACAAAAAAAAAACATySUAAAAAAAAAAAA4BMJJQAAAAAAAAAAAPhEQgmAbbz++uu67LLLFBYWJofDoS1btgS6S9XKyMiQw+Got+Pt3r1bDodDc+bMqbdjrl+/XhkZGTp69Gi9HROBs3//fmVkZPj9b2LhwoVyOBzatGlTw3bsLJaZmam33nor0N0AAAA2UH5vtXv37gY5/nPPPaeFCxfW+3Eb4p5wyZIlevrpp+vteAis2o4b09PTdd555zVsp85itR3XAYAdkVACYAuHDx9WWlqaLr74Yi1fvlwbNmxQ586dA92tJmv9+vWaMWMGCaWzxP79+zVjxgwGHo2IhBIAAGgsDZVQaggklM4ujBsbF+M6AGeD4EB3AAAk6euvv1ZpaanuuOMOJScnB7o7OMsYY3Ty5EmFhYUFuiu14na7VVZWFuhuNJj//ve/atGiRaC70WjKv0+n0xnorgAAAKAelJaWyuFwKDi4af3ntaKiIjVv3jzQ3WgwRUVFTW7sVxfl32d9zqQCAN5QoQQg4NLT03XNNddIkm677TY5HA7169fP2v72228rKSlJLVq0UEREhAYNGqQNGzZUOUbHjh2rHLu66ekcDofuv/9+vfrqq+rSpYtatGihyy+/XO+++26V/d977z1dccUVcjqdio+Pr9W0dP369VO3bt308ccfq0+fPgoLC1O7du300EMPye12V7vP3LlzFR8fr/POO09JSUnKycmpElPT9cjIyNAvf/lLSVJ8fLwcDoccDodWr14tSTp16pRmz56tSy+9VE6nU9HR0brzzju1b9++avufm5urH/7wh2rRooUuuugiPfbYYzp16lSN52+M0XPPPacrrrhCYWFhioqK0s0336x//etfZ9xOYWGhpkyZovj4eIWGhqpdu3aaOHGiTpw44RFX/h0///zz6tKli5xOpxYtWiRJWrdunZKSktS8eXPr+/i///s/j2lM7rnnHrVs2VL//e9/q5zXddddp8suu8zreT/77LNq1qyZDh06ZK178skn5XA4NG7cOGvdqVOnFBUVpcmTJ0v6furD2bNn69FHH1V8fLycTqc++ugjXXXVVZKku+66y/o+MzIyavgGpPz8fN11111q2bKlwsPDNXz48CrXvzrl/24+++wzjRw5UpGRkXK5XLrjjjt0+PBhj9jXX39dKSkpatu2rcLCwtSlSxf9+te/rvKdlE+PsXXrVqWkpCgiIkIDBgyQJGVnZ+vGG2/UBRdcoObNm+uSSy7RmDFj9J///Kfafn3xxRe65ZZb5HK51LJlS02aNEllZWXasWOHhgwZooiICHXs2FGzZ8+ucm7+/IYcDodOnDihRYsWWde74v8m5eXlacyYMbrgggsUGhqq+Ph4zZgxwyP55+v7BAAAZ4c//vGPuvzyy9W8eXO1bNlSP/7xj/Xll196xPzrX//ST37yE8XFxcnpdComJkYDBgywKhQ6duyo7du3a82aNdZ9R3XjmorK73VfeOEFde7cWU6nU127dtXSpUurjT927Jjuu+8+tW7dWq1atdLIkSO1f/9+jxh/xgj9+vXTe++9p2+//dbqa8Wx1nfffaexY8eqXbt2Cg0N1UUXXaQHH3xQxcXF1fbfn/FYdWo7JvCnnZ07dyo1NVXR0dFyOp3q0qWLnn32WY+Y1atXy+Fw6NVXX9XkyZPVrl07OZ1OffPNN5KkF1980eP7WLJkicc41RijTp06afDgwVXaP378uFwul8d4obJbbrmlyjhk+PDhcjgc+stf/mKt+/TTT+VwOPTOO+9I+n7qw6ysLN19991q06aNWrRooWnTpvkcN/qyfft2DRgwQOHh4WrTpo3uv//+asdOldVmjDxjxgz17t1bLVu2VGRkpK688kq99NJLMsZ4xHXs2FHDhg3Tm2++qR49eqh58+aaMWOGpNNjs2uvvVbR0dEKDw9XYmKiZs+erdLS0mr7tWHDBvXt21dhYWHq2LGjXn75ZUmn/7vAlVdeqRYtWigxMVHLly+vcm41/YZWr15d47hu06ZNGjFihFq2bKnmzZurR48e+vOf/+zRjrfvs/K/MwBoMAYAAuybb74xzz77rJFkMjMzzYYNG8z27duNMcYsXrzYSDIpKSnmrbfeMq+//rrp2bOnCQ0NNR9//LF1jFGjRpkOHTpUOfbDDz9sKv9PnSTTsWNH84Mf/MD8+c9/Nu+//77p16+fCQ4ONv/85z+tuBUrVpigoCBzzTXXmDfffNP85S9/MVdddZW58MILqxyzOsnJyaZVq1YmLi7O/P73vzcffvihmTBhgpFkxo0bZ8Xt2rXL6tOQIUPMW2+9Zd566y2TmJhooqKizNGjR61Yf67H3r17zfjx440k8+abb5oNGzaYDRs2mIKCAmOMMffee6+RZO6//36zfPly8/zzz5s2bdqY9u3bm8OHD1fpf6dOnczzzz9vsrOzzdixY40ks2jRohrPf/To0SYkJMRMnjzZLF++3CxZssRceumlJiYmxuTl5dW6nRMnTpgrrrjCtG7d2sydO9esWLHCPPPMM8blcpnrrrvOnDp1yuM7bteunenevbtZsmSJWbVqldm2bZv5/PPPTfPmzU337t3N0qVLzdtvv22uv/5607FjRyPJ7Nq1yxhjzOeff24kmRdffNHjnLZv324kmWeffdbreX/11VdGklmyZIm1bsiQISYsLMx06tTJWrdx40Yjybz//vsev4N27dqZ/v37m7/+9a8mKyvLfP755+bll182ksxvfvMb6/vcu3ev1z6Ux7dv397cfffd5oMPPjB/+MMfTHR0tGnfvr3Jz8/3+d2V/7vp0KGD+eUvf2k+/PBDM3fuXBMeHm569OhhSkpKrNjf/e535qmnnjLvvfeeWb16tXn++edNfHy86d+/v8cxR40aZUJCQkzHjh3NrFmzzMqVK82HH35ojDFmwYIFZtasWebtt982a9asMYsWLTKXX365SUhI8GirvF8JCQnmd7/7ncnOzjZTp061fs+XXnqp+f3vf2+ys7PNXXfdZSSZN954w9rf39/Qhg0bTFhYmLn++uut613+v0kHDhww7du3Nx06dDAvvPCCWbFihfnd735nnE6nSU9Pt9ry9n2W/8YAAEDTUX5vVfH/j2dmZhpJ5qc//al57733zCuvvGIuuugi43K5zNdff23FJSQkmEsuucS8+uqrZs2aNeaNN94wkydPNh999JExxphPP/3UXHTRRaZHjx7Wfcenn37qsz/l93ldu3Y1f/rTn8zbb79thgwZYiSZv/zlL1X6fdFFF5nx48ebDz/80Pzf//2fiYqKqnKv5s8YYfv27ebqq682sbGxVl83bNhgjDGmqKjIdO/e3YSHh5s5c+aYrKws89BDD5ng4GBz/fXXV+m/P+Ox6tR2TOBPO9u3bzcul8skJiaaV155xWRlZZnJkyebZs2amYyMDCvuo48+su7vbr75ZvP222+bd9991xw5csS88MILRpK56aabzLvvvmsWL15sOnfubDp06OAxTn3mmWeMw+Hw+I0YY6zxcPk9Z3Wef/55I8ns37/fGGNMaWmpiYiIMGFhYWb06NFW3OOPP26Cg4NNYWGhMeb730G7du3Mvffeaz744APz17/+1ezevdvnuLE6o0aNMqGhoebCCy80M2fONFlZWSYjI8MEBwebYcOG+fzujPF/jGyMMenp6eall14y2dnZJjs72/zud78zYWFhZsaMGR5xHTp0MG3btjUXXXSR+eMf/2g++ugj88knnxhjjHnggQfMggULzPLly82qVavMU089ZVq3bm3uuuuuavuVkJBgXnrpJfPhhx+aYcOGGUlmxowZJjEx0fzpT38y77//vunTp49xOp3m3//+t7W/P7+hgoICn+O6VatWmdDQUPPDH/7QvP7662b58uUmPT3dSDIvv/yy1Za377OsrKzG6w8A9YGEEgBbKL85rzgAcrvdJi4uziQmJhq3222tP3bsmImOjjZ9+/a11tU2oRQTE2PdYBtjTF5enmnWrJmZNWuWta53794mLi7OFBUVWesKCwtNy5Yt/U4oSTJ/+9vfPNaPHj3aNGvWzHz77bfGmO//w3NiYqLHTeAnn3xiJJk//elPtb4eTzzxRJVBrzHGfPnll0aSGTt2rMf68uTG9OnTq/R/48aNHrFdu3Y1gwcP9nnuGzZsMJLMk08+6bF+7969JiwszEydOrXW7cyaNcs0a9bM5ObmesT99a9/9UjMGHP6O3a5XOa7777ziL3llltMeHi4R+LM7Xabrl27VrleycnJ5oorrvDY/7777jORkZHm2LFjPs//ggsuMHfffbcxxpji4mITHh5ufvWrXxlJ1vc+c+ZMExISYo4fP26M+f53cPHFF3skUYwxJjc3t8pAwpfyQcaPf/xjj/V///vfjSTz6KOP+ty//N/NAw884LG+PKH52muvVbvfqVOnTGlpqVmzZo2RZD7//HNr26hRo4wk88c//tFn2+XH+Pbbb6v8+ynvV+Xf1RVXXGENhMuVlpaaNm3amJEjR1rravMbCg8PN6NGjarSvzFjxpjzzjvP+h7LzZkzx+M/Avj6PgEAQNNSOaGUn59vPXxS0Z49e4zT6TSpqanGGGP+85//GEnm6aef9nn8yy67zCQnJ/vdH0kmLCzM4yGtsrIyc+mll5pLLrmkSr8r3/vPnj3bSDIHDhwwxtRujHDDDTdUO+4qT3b8+c9/9lj/+OOPG0kmKyvLo//+jMeqU9sxgT/tDB482FxwwQVVEin333+/ad68uTWmKB+zXnvttR5xbrfbxMbGmt69e3us//bbb01ISIjH9SosLDQRERHmF7/4hUds165dqyT5Kvvmm2+MJPPKK68YY4xZt26dkWSmTp1q4uPjrbhBgwZ5jA3Lfwd33nlnlWN6Gzd6U35P/8wzz3isnzlzppFk1q1b53N/f8fIlbndblNaWmoeeeQR06pVK4/EYYcOHUxQUJDZsWOHz7bLj/HKK6+YoKAgj7Fieb82bdpkrTty5IgJCgoyYWFhHsmjLVu2GEnm97//vbXO39+Qr3HdpZdeanr06GFKS0s91g8bNsy0bdvW+m8Avr5PAGgMTHkHwLZ27Nih/fv3Ky0tTc2aff8/V+edd55uuukm5eTk+FVWX53+/fsrIiLC+hwTE6Po6Gh9++23kqQTJ04oNzdXI0eO9JhbOiIiQsOHD/e7nYiICI0YMcJjXWpqqk6dOqW1a9d6rL/hhhsUFBRkfe7evbskWX2qj+tRPt1Wenq6x/of/OAH6tKli1auXOmxPjY2Vj/4wQ881nXv3t3qkzfvvvuuHA6H7rjjDpWVlVlLbGysLr/88irTKPjTzrvvvqtu3brpiiuu8Djm4MGDq52a4brrrlNUVJTHujVr1ui6665T69atrXXNmjXTrbfeWuUcfvGLX2jLli36+9//Lun01BqvvvqqRo0apfPOO8/n+Q8YMEArVqyQdPpFt//97381adIktW7dWtnZ2ZKkFStWKCkpSeHh4R77jhgxQiEhIT6P76/bb7/d43Pfvn3VoUMHv6ddq7z/rbfequDgYI/9//Wvfyk1NVWxsbEKCgpSSEiI9R60ylO+SNJNN91UZd2hQ4f085//XO3bt1dwcLBCQkLUoUMHr8cYNmyYx+cuXbrI4XBo6NCh1rrg4GBdcskldfoNVefdd99V//79FRcX53GM8rbXrFnjEV+f3ycAALCHDRs2qKioqMo9dfv27XXddddZ99QtW7bUxRdfrCeeeEJz587VZ5995tfU0f4YMGCAYmJirM9BQUG67bbb9M0331SZyrryeKTyOKO2Y4TqrFq1SuHh4br55ps91pcfs/IxahqPeVPb+7ma2jl58qRWrlypH//4x2rRooXHMa+//nqdPHmyyjTkle9nd+zYoby8vCpjigsvvFBXX321x7qIiAjdddddWrhwoTVF36pVq/SPf/xD999/v89zv/jii9WxY0drnJGdna3ExETdcccd2rVrl/75z3+quLhY69at08CBA6vsX919+JmqPE5ITU2VJL/GGf6OkVetWqWBAwfK5XJZ44zf/va3OnLkiMf04tLp33Tnzp2rtPXZZ59pxIgRatWqlXWMO++8U263W19//bVHbNu2bdWzZ0/rc8uWLRUdHa0rrrhCcXFx1vouXbpIUp1+Q5V98803+uqrr6zrWvkYBw4c0I4dOzz2qc/vEwBqg4QSANs6cuSIpNM3dpXFxcXp1KlTys/PP6Njt2rVqso6p9OpoqIiSaffPXPq1CnFxsZWiatunTcVB3mV9y8/P299cjqdkmT1qT6uR03HqKlP5f0q75M3Bw8elDFGMTExCgkJ8VhycnKqvBvHn3YOHjyoL774osrxIiIiZIypcszqzvHIkSPVfifVrbvxxhvVsWNHa97r8kGfr3nNyw0cOFB79uzRzp07tWLFCvXo0UPR0dG67rrrtGLFChUVFWn9+vXVDvSq6/eZ8vb7rfw9+7t/cHCwWrVqZe1//Phx/fCHP9TGjRv16KOPavXq1crNzdWbb74pSVV+Jy1atFBkZKTHulOnTiklJUVvvvmmpk6dqpUrV+qTTz6xBl3V/dZatmzp8Tk0NFQtWrSo8mLh0NBQnTx50vpc299QdQ4ePKh33nmnyjHK57P353cIAACaNn/vqR0Oh1auXKnBgwdr9uzZuvLKK9WmTRtNmDBBx44dq1MffI1T6nuc4c+945EjRxQbG1vl/bXR0dEKDg6u13FGbe7namrnyJEjKisr07x586oc8/rrr5dU8/1d+bn5O84YP368jh07psWLF0uS5s+frwsuuEA33nijz3OXTicSy5NzK1as0KBBg5SYmKiYmBitWLFCf//731VUVNSg44zyMUFF3n571fFnjPzJJ58oJSVF0ul3U/39739Xbm6uHnzwQUlVxwjVnduePXv0wx/+UP/+97/1zDPP6OOPP1Zubq41vqt8jMpjDOn0eKK6sYcka5xxJr+hyg4ePChJmjJlSpVjjB07ttpjMM4AECjBge4AAHhTfpN64MCBKtv279+vZs2aWRUozZs3r/YllP78B+LqREVFyeFwKC8vr8q26tZ5U35jWN3+1Q1ufKnN9fDnGBdccEGVY1Ss3KmL1q1by+Fw6OOPP7YGrBVVt86fY4aFhemPf/yj1+0VVR7MSqfP39d3UlGzZs00btw4TZ8+XU8++aSee+45DRgwQAkJCTX2dcCAAZJOD/Kys7M1aNAga/1vfvMbrV27VsXFxdUO9Krr95ny9vu95JJL/N6/Xbt21ueysjIdOXLE+h2tWrVK+/fv1+rVq62qJEk6evRotcer7ty2bdumzz//XAsXLtSoUaOs9eUvN65Ptf0NeYvp3r27Zs6cWe32ik8vSvX7fQIAAHuo6b684j1Fhw4d9NJLL0mSvv76a/35z39WRkaGSkpK9Pzzz59xH3yNU+oyzjjTMUKrVq20ceNGGWM87n8OHTqksrKyeh1n1PV+rqKoqCgFBQUpLS3N64Nj8fHxHp8r39+VXz9/xxmXXHKJhg4dqmeffVZDhw7V22+/rRkzZnjMVuHNgAED9NJLL+mTTz7Rxo0b9Zvf/EbS6dkZsrOz9e233+q8885Tnz59quxbX/ellccEUu1+e/6MkZcuXaqQkBC9++67Hg+NvfXWW9Ues7pze+utt3TixAm9+eab1uwHkrRly5Ya+1gbZ/Ibqqz8dztt2jSNHDmy2pjK41DGGQAChQolALaVkJCgdu3aacmSJTLGWOtPnDihN954Q0lJSWrRooUkqWPHjjp06JDHzWlJSYk+/PDDM2o7PDxcP/jBD/Tmm296VDgcO3ZM77zzjt/HOXbsmN5++22PdUuWLFGzZs107bXX1qpPtbkelZ86LHfddddJkl577TWP9bm5ufryyy+tREhdDRs2TMYY/fvf/1avXr2qLImJiWd0zH/+859q1apVtcfs2LFjjcdITk7WqlWrPBKNp06d0l/+8pdq43/2s58pNDRUt99+u3bs2FHjNBTl2rZtq65du+qNN97Q5s2brYTSoEGDdPjwYc2dO1eRkZG66qqr/Dqet++zJuVPPZZbv369vv32W/Xr1++M9v/zn/+ssrIya//yQUzlBOELL7zgdx/r4xj+qs1vyNsTssOGDdO2bdt08cUXV3uMygklAABw9klKSlJYWFiVe+p9+/Zp1apVXu+pO3furN/85jdKTEzUp59+aq33pzKnspUrV3qMfdxut15//XVdfPHFVZJCNanNGMFbXwcMGKDjx49X+Q/+r7zyirW9PtTHmKCiFi1aqH///vrss8/UvXv3ao9ZU5IkISFBsbGx+vOf/+yxfs+ePVq/fn21+/ziF7/QF198oVGjRikoKEijR4/2q78DBgyQw+HQQw895DGmHDhwoD766CNlZ2fr2muv9XvK5foaZyxZskSS/Bpn+DNGdjgcCg4O9kiyFRUV6dVXX/W7j9WNM4wxevHFF/0+hj9q8xvydr0TEhLUqVMnff7559Xu36tXL4+pGwEgkKhQAmBbzZo10+zZs3X77bdr2LBhGjNmjIqLi/XEE0/o6NGjeuyxx6zY2267Tb/97W/1k5/8RL/85S918uRJ/f73v5fb7T7j9n/3u99pyJAhGjRokCZPniy3263HH39c4eHh+u677/w6RqtWrXTfffdpz5496ty5s95//329+OKLuu+++3ThhRfWqj+1uR7lCZtnnnlGo0aNUkhIiBISEpSQkKB7771X8+bNU7NmzTR06FDt3r1bDz30kNq3b68HHnigVn3y5uqrr9a9996ru+66S5s2bdK1116r8PBwHThwQOvWrVNiYqLuu+++Wh1z4sSJeuONN3TttdfqgQceUPfu3XXq1Cnt2bNHWVlZmjx5snr37u3zGA8++KDeeecdDRgwQA8++KDCwsL0/PPPW/OXV3w3lSSdf/75uvPOO7VgwQJ16NChVu/PGjBggObNm6ewsDBr7vT4+HjFx8crKytLI0aMUHCwf/9v+OKLL1ZYWJgWL16sLl266LzzzlNcXFyNyYtNmzbpZz/7mW655Rbt3btXDz74oNq1a2dNm1CTN998U8HBwRo0aJC2b9+uhx56SJdffrk1P3zfvn0VFRWln//853r44YcVEhKixYsX6/PPP/fr+JJ06aWX6uKLL9avf/1rGWPUsmVLvfPOO9a7pupTbX5DiYmJWr16td555x21bdtWERERSkhI0COPPKLs7Gz17dtXEyZMUEJCgk6ePKndu3fr/fff1/PPP1/r/4gDAACalvPPP18PPfSQpk+frjvvvFM//elPdeTIEc2YMUPNmzfXww8/LEn64osvdP/99+uWW25Rp06dFBoaqlWrVumLL77Qr3/9a+t4iYmJWrp0qV5//XVddNFFat68eY0PYLVu3VrXXXedHnroIYWHh+u5557TV199paVLl9b6fGozRkhMTNSbb76pBQsWqGfPnmrWrJl69eqlO++8U88++6xGjRql3bt3KzExUevWrVNmZqauv/76aivzz0R9jAkqe+aZZ3TNNdfohz/8oe677z517NhRx44d0zfffKN33nlHq1at8rl/s2bNNGPGDI0ZM0Y333yz7r77bh09elQzZsxQ27Ztq4wxpNMPmnXt2lUfffSR7rjjDkVHR/vV1+joaHXr1k1ZWVnq37+/9UDhwIED9d133+m7777T3Llz/T53b+NGX8mL0NBQPfnkkzp+/LiuuuoqrV+/Xo8++qiGDh2qa665psY2/Rkj33DDDZo7d65SU1N177336siRI5ozZ06tZroYNGiQQkND9dOf/lRTp07VyZMntWDBgjOeNt8Xf39DvsZ1L7zwgoYOHarBgwcrPT1d7dq103fffacvv/xSn376qdeHIAGg0RkAsIGPPvrISDJ/+ctfqmx76623TO/evU3z5s1NeHi4GTBggPn73/9eJe799983V1xxhQkLCzMXXXSRmT9/vnn44YdN5f+pk2TGjRtXZf8OHTqYUaNGeax7++23Tffu3U1oaKi58MILzWOPPVbtMauTnJxsLrvsMrN69WrTq1cv43Q6Tdu2bc306dNNaWmpFbdr1y4jyTzxxBNVjiHJPPzww2d0PaZNm2bi4uJMs2bNjCTz0UcfGWOMcbvd5vHHHzedO3c2ISEhpnXr1uaOO+4we/furbb/lY0aNcp06NChxvM3xpg//vGPpnfv3iY8PNyEhYWZiy++2Nx5551m06ZNZ9TO8ePHzW9+8xuTkJBgQkNDjcvlMomJieaBBx4weXl5Vpy379gYYz7++GPTu3dv43Q6TWxsrPnlL39pHn/8cSPJHD16tEr86tWrjSTz2GOP+XXO5f72t78ZSWbQoEEe60ePHm0kmd///vce6339Dowx5k9/+pO59NJLTUhISLW/i4pefvllI8lkZWWZtLQ0c/7555uwsDBz/fXXm507d9bY9/Lf+ObNm83w4cPNeeedZyIiIsxPf/pTc/DgQY/Y9evXm6SkJNOiRQvTpk0b87Of/cx8+umnRpJ5+eWXrbhRo0aZ8PDwatv7xz/+YQYNGmQiIiJMVFSUueWWW8yePXuqnGd5vw4fPuyxv7djV/fb8vc3tGXLFnP11VebFi1aGEkmOTnZ2nb48GEzYcIEEx8fb0JCQkzLli1Nz549zYMPPmiOHz9ujKn5+wQAAE1H+b3Vrl27PNb/3//9nzVWcLlc5sYbbzTbt2+3th88eNCkp6ebSy+91ISHh5vzzjvPdO/e3Tz11FOmrKzMitu9e7dJSUkxERERRlKN99rl97rPPfecufjii01ISIi59NJLzeLFi6vtd25ursf68rFX+fjAGP/HCN999525+eabzfnnn28cDofHuOjIkSPm5z//uWnbtq0JDg42HTp0MNOmTTMnT56stv+VVTceq05dxwTVtbNr1y5z9913m3bt2pmQkBDTpk0b07dvX/Poo49WuW7VjVmNMeYPf/iDueSSS0xoaKjp3Lmz+eMf/2huvPFG06NHj2rjMzIyjCSTk5NT4zlX9MADDxhJZubMmR7rO3XqZCSZL774wmO9t99BOW/jxuqU33d/8cUXpl+/fiYsLMy0bNnS3HfffdZ9sC/+jpGNOT2WTEhIME6n01x00UVm1qxZ5qWXXqryb7FDhw7mhhtuqLa9d955x1x++eWmefPmpl27duaXv/yl+eCDD6qcp7cxqbdjV/fb8uc3ZIzvcd3nn39ubr31VhMdHW1CQkJMbGysue6668zzzz9vxdT0fQJAQ3MYU2HeJABAvenXr5/+85//aNu2bYHuCmqQkpKi3bt36+uvv66ybfLkyVqwYIH27t1b6/nom6qMjAzNmDFDhw8frrf57gEAAFA/HA6Hxo0bp/nz5we6K/Dh6NGj6ty5s370ox/pD3/4Q5XtvXr1ksPhUG5ubgB6FxiMkQGg6WPKOwDAOWXSpEnq0aOH2rdvr++++06LFy9Wdna29bLkcjk5Ofr666/13HPPacyYMedMMgkAAABA7eTl5WnmzJnq37+/WrVqpW+//VZPPfWUjh07pl/84hdWXGFhobZt26Z3331Xmzdv1rJlywLYawAAao+EEgDgnOJ2u/Xb3/5WeXl5cjgc6tq1q1599VXdcccdHnFJSUlq0aKFhg0bpkcffTRAvQUAAABgd06nU7t379bYsWP13XffqUWLFurTp4+ef/55XXbZZVbcp59+aiWdHn74Yf3oRz8KXKcBADgDTHkHAAAAAAAAAAAAn5oFugMAAAAAAAAAAAA4MwsWLFD37t0VGRmpyMhIJSUl6YMPPrC2G2OUkZGhuLg4hYWFqV+/ftq+fXut27FVQqljx45yOBxVlnHjxkny76SLi4s1fvx4tW7dWuHh4RoxYoT27dvnEZOfn6+0tDS5XC65XC6lpaXp6NGjHjF79uzR8OHDFR4ertatW2vChAkqKSnxiNm6dauSk5MVFhamdu3a6ZFHHhEFXwAAAAAAAAAAoLFccMEFeuyxx7Rp0yZt2rRJ1113nW688UYrfzJ79mzNnTtX8+fPV25urmJjYzVo0CAdO3asVu3YKqGUm5urAwcOWEt2drYk6ZZbbpHk30lPnDhRy5Yt09KlS7Vu3TodP35cw4YNk9vttmJSU1O1ZcsWLV++XMuXL9eWLVuUlpZmbXe73brhhht04sQJrVu3TkuXLtUbb7yhyZMnWzGFhYUaNGiQ4uLilJubq3nz5mnOnDmaO3duQ18mAAAAAAAAAAAASdLw4cN1/fXXq3PnzurcubNmzpyp8847Tzk5OTLG6Omnn9aDDz6okSNHqlu3blq0aJH++9//asmSJbVqx9bvUJo4caLeffdd7dy5U5IUFxeniRMn6le/+pWk09VIMTExevzxxzVmzBgVFBSoTZs2evXVV3XbbbdJkvbv36/27dvr/fff1+DBg/Xll1+qa9euysnJUe/evSVJOTk5SkpK0ldffaWEhAR98MEHGjZsmPbu3au4uDhJ0tKlS5Wenq5Dhw4pMjJSCxYs0LRp03Tw4EE5nU5J0mOPPaZ58+Zp3759cjgcfp3jqVOntH//fkVERPi9DwAAANDUGGN07NgxxcXFqVkzWz3Xdk5iHAIAAIBzRW3GIidPnqwyU1mgGGOq3Ks7nU4rH+GN2+3WX/7yF40aNUqfffaZmjdvrosvvliffvqpevToYcXdeOONOv/887Vo0SK/+xRcu1NoPCUlJXrttdc0adIkORwO/etf/1JeXp5SUlKsGKfTqeTkZK1fv15jxozR5s2bVVpa6hETFxenbt26af369Ro8eLA2bNggl8tlJZMkqU+fPnK5XFq/fr0SEhK0YcMGdevWzUomSdLgwYNVXFyszZs3q3///tqwYYOSk5M9vrzBgwdr2rRp2r17t+Lj46s9r+LiYhUXF1uf//3vf6tr1671cs0AAAAAu9u7d68uuOCCQHfjnMM4BAAAAOe6msYiJ0+eVJuwMB1vxD75ct555+n4cc/ePPzww8rIyKg2fuvWrUpKStLJkyd13nnnadmyZeratavWr18vSYqJifGIj4mJ0bffflurPtk2ofTWW2/p6NGjSk9PlyTl5eVJ8n3SeXl5Cg0NVVRUVJWY8v3z8vIUHR1dpb3o6GiPmMrtREVFKTQ01COmY8eOVdop3+YtoTRr1izNmDGjyvq9e/cqMjKy2n0AAACApq6wsFDt27dXREREoLtyTmIcAgBnN5drlsfngoJpAeoJANiPv2ORkpISHZf0gCTfNUANr1jSU8ePV7lf91WdlJCQoC1btujo0aN64403NGrUKK1Zs8baXrnaqboKqJrYNqH00ksvaejQoR5VQtKZnXTlmOri6yOmfPZAX/2ZNm2aJk2aZH0u/zFHRkYykAMAAMBZj+nVAoNxCACc3YyZVXMQAJzj/B2LhEtq3rBdqVF54qY29+uhoaG65JJLJEm9evVSbm6unnnmGesVQnl5eWrbtq0Vf+jQoSqFNTWx5eTl3377rVasWKGf/exn1rrY2FhJ31cqlat40rGxsSopKVF+fr7PmIMHD1Zp8/Dhwx4xldvJz89XaWmpz5hDhw5JqlpFVZHT6bR+BAzeAAAAADQGxiEAAACAf0JsstSVMUbFxcWKj49XbGyssrOzrW0lJSVas2aN+vbtW6tj2jKh9PLLLys6Olo33HCDtc6fk+7Zs6dCQkI8Yg4cOKBt27ZZMUlJSSooKNAnn3xixWzcuFEFBQUeMdu2bdOBAwesmKysLDmdTvXs2dOKWbt2rccLurKyshQXF1dlKjwAAAAAAAAAAICGMH36dH388cfavXu3tm7dqgcffFCrV6/W7bffLofDoYkTJyozM1PLli3Ttm3blJ6erhYtWig1NbVW7dhuyrtTp07p5Zdf1qhRoxQc/H33Kp50p06d1KlTJ2VmZnqctMvl0j333KPJkyerVatWatmypaZMmaLExEQNHDhQktSlSxcNGTJEo0eP1gsvvCBJuvfeezVs2DAlJCRIklJSUtS1a1elpaXpiSee0HfffacpU6Zo9OjR1pN8qampmjFjhtLT0zV9+nTt3LlTmZmZ+u1vf8s0HgAAAAAAAAAANEHBCnzipLbtHzx4UGlpaTpw4IBcLpe6d++u5cuXa9CgQZKkqVOnqqioSGPHjlV+fr569+6trKysWr/jNtDXpYoVK1Zoz549uvvuu6ts8+ekn3rqKQUHB+vWW29VUVGRBgwYoIULFyooKMiKWbx4sSZMmKCUlBRJ0ogRIzR//nxre1BQkN577z2NHTtWV199tcLCwpSamqo5c+ZYMS6XS9nZ2Ro3bpx69eqlqKgoTZo0yWNecgAAAAAAAAAAgIb00ksv+dzucDiUkZGhjIyMOrXjMMaYOh0BdVJYWCiXy6WCggLmMQcAAMBZi/tee+H7AAAAwLnC33vf8rjHJYU1XveqVSTpV5Lt7tdt+Q4lAAAAAAAAAAAA2IftprwDAAAAAAAAAAAIhKb4DqXGQoUSAAAAAAAAAAAAfLJrogsAAAAAAAAAAKBRhfxvCaSyALfvDQklAAAAAAAAAAAAMeWdL0x5BwAAAAAAAAAAAJ/smugCAAAAAAAAAABoVMEK/JR3pQFu3xsqlAAAAAAAAAAAAOATFUoAAAAAAAAAAADiHUq+UKEEAAAAAAAAAAAAn+ya6AIAoF45HDOsv415OIA9AQAAAAAAgF2FKPDvUAp0+95QoQQAAAAAAAAAAACfqFACAJwTqEoCAAAAAABATahQ8o6EEgAAAAAAAAAAgE4nTQKdOAl0+94w5R0AAAAAAAAAAAB8smuiCwAAAAAAAAAAoFEFK/BTztk1cUOFEgAAAAAAAAAAAHyya6ILAAAAAAAAAACgUfEOJe+oUAIAAAAAAAAAAIBPdk10AQAAAAAAAAAANKoQBf4dSoFu3xsqlAAAAAAAAAAAAOATFUoAAAAAAAAAAADiHUq+2LVfAAAAAAAAAAAAjSpYgZ9yzq6JG6a8AwAAAAAAAAAAgE92TXQBAAAAAAAAAAA0Kqa8844KJQAAAAAAAAAAAPhk10QXAAAAAAAAAABAowpR4N+hFOj2vaFCCQAAAAAAAAAAAD5RoQQAAAAAAAAAACDeoeQLFUoAAAAAAAAAAADwya6JLgAAAAAAAAAAgEYVrMC/w8iuiRu79gsAAAAAAAAAAKBRhSjwCaVAt+8NU94BAAAAAAAAAADAJyqUAAAAAAAAAAAAdDppEujESaDb94YKJQAAAAAAAAAAAPhk10QXAAAAAAAAAABAowoOkkIcAe6DkeQObB+qQ4USAAAAAAAAAAAAfKJCCQAAAAAAAAAAQFJwsBRMhVK1qFACAAAAAAAAAACAT1QoAQAAAAAAAAAASAqxwTuUQkxg2/eGhBIAAAAAAAAAAIBsNOWdDTHlHQAAAAAAAAAAAHyiQgkAAAAAAAAAAED/m/IuwKU4IacC2743VCgBAAAAAAAAAADAJyqUAAAAAAAAAAAAJClIgS/FCfA7nLwJ9GUBAAAAAAAAAACAzVGhBAAAAAAAAAAAIJ3OmgS6FId3KAEAAAAAAAAAAKApokIJAAAAAAAAAABAokLJBxJKAAAAAAAAAAAAEgklHwJ9WQAAAAAAAAAAAGBzVCgBAAAAAAAAAABIp8twggLdCXuiQgkAAAAAAAAAAAA+UaEEAAAAAAAAAAAgnc6aBLpCyRHg9r2gQgkAAAAAAAAAAAA+2S6h9O9//1t33HGHWrVqpRYtWuiKK67Q5s2bre3GGGVkZCguLk5hYWHq16+ftm/f7nGM4uJijR8/Xq1bt1Z4eLhGjBihffv2ecTk5+crLS1NLpdLLpdLaWlpOnr0qEfMnj17NHz4cIWHh6t169aaMGGCSkpKPGK2bt2q5ORkhYWFqV27dnrkkUdkjKnfiwIAAAAAAAAAABpesE0WG7JVQik/P19XX321QkJC9MEHH+gf//iHnnzySZ1//vlWzOzZszV37lzNnz9fubm5io2N1aBBg3Ts2DErZuLEiVq2bJmWLl2qdevW6fjx4xo2bJjcbrcVk5qaqi1btmj58uVavny5tmzZorS0NGu72+3WDTfcoBMnTmjdunVaunSp3njjDU2ePNmKKSws1KBBgxQXF6fc3FzNmzdPc+bM0dy5cxv2QgEAAAAAAAAAADQih7FROc2vf/1r/f3vf9fHH39c7XZjjOLi4jRx4kT96le/knS6GikmJkaPP/64xowZo4KCArVp00avvvqqbrvtNknS/v371b59e73//vsaPHiwvvzyS3Xt2lU5OTnq3bu3JCknJ0dJSUn66quvlJCQoA8++EDDhg3T3r17FRcXJ0launSp0tPTdejQIUVGRmrBggWaNm2aDh48KKfTKUl67LHHNG/ePO3bt08OR80THRYWFsrlcqmgoECRkZF1voYAAACAHXHfay98HwAAADhX+Hvva8UlSpEBfodSoVtybZXt7tdtVaH09ttvq1evXrrlllsUHR2tHj166MUXX7S279q1S3l5eUpJSbHWOZ1OJScna/369ZKkzZs3q7S01CMmLi5O3bp1s2I2bNggl8tlJZMkqU+fPnK5XB4x3bp1s5JJkjR48GAVFxdbU/Bt2LBBycnJVjKpPGb//v3avXt3tedYXFyswsJCjwUAAAAAGhLjEAAAAMBPgZ7qjinv/POvf/1LCxYsUKdOnfThhx/q5z//uSZMmKBXXnlFkpSXlydJiomJ8dgvJibG2paXl6fQ0FBFRUX5jImOjq7SfnR0tEdM5XaioqIUGhrqM6b8c3lMZbNmzbLe2+RyudS+ffsargoAAAAA1A3jEAAAAAB1ZauE0qlTp3TllVcqMzNTPXr00JgxYzR69GgtWLDAI67yVHLGmBqnl6scU118fcSUzyDorT/Tpk1TQUGBtezdu9dnvwEAAACgrhiHAAAAAH4KUuCrkwI85Z43tkootW3bVl27dvVY16VLF+3Zs0eSFBsbK6lq9c+hQ4esyqDY2FiVlJQoPz/fZ8zBgwertH/48GGPmMrt5Ofnq7S01GfMoUOHJFWtoirndDoVGRnpsQAAAABAQ2IcAgAAAKCubJVQuvrqq7Vjxw6PdV9//bU6dOggSYqPj1dsbKyys7Ot7SUlJVqzZo369u0rSerZs6dCQkI8Yg4cOKBt27ZZMUlJSSooKNAnn3xixWzcuFEFBQUeMdu2bdOBAwesmKysLDmdTvXs2dOKWbt2rUpKSjxi4uLi1LFjx/q4JAAAAAAAAAAAoLEE2WSxIVsllB544AHl5OQoMzNT33zzjZYsWaI//OEPGjdunKTT08hNnDhRmZmZWrZsmbZt26b09HS1aNFCqampkiSXy6V77rlHkydP1sqVK/XZZ5/pjjvuUGJiogYOHCjpdNXTkCFDNHr0aOXk5CgnJ0ejR4/WsGHDlJCQIElKSUlR165dlZaWps8++0wrV67UlClTNHr0aOtpvtTUVDmdTqWnp2vbtm1atmyZMjMzNWnSpBqn4AMAAAAAAAAAAGgqggPdgYquuuoqLVu2TNOmTdMjjzyi+Ph4Pf3007r99tutmKlTp6qoqEhjx45Vfn6+evfuraysLEVERFgxTz31lIKDg3XrrbeqqKhIAwYM0MKFCxUU9H1ab/HixZowYYJSUlIkSSNGjND8+fOt7UFBQXrvvfc0duxYXX311QoLC1NqaqrmzJljxbhcLmVnZ2vcuHHq1auXoqKiNGnSJE2aNKkhLxMAAAAAAAAAAGgI5e8xQhUOY4wJdCfOZYWFhXK5XCooKGAecwAAAJy1uO+1F74PAAAAnCv8vfe14q6WIgOcUCosk1x/l+3u18mzAQAAAAAAAAAASFQo+WCrdygBAAAAAAAAAADAf7NmzdJVV12liIgIRUdH60c/+pF27NjhEZOeni6Hw+Gx9OnTp1btkFACAAAAAAAAAACQvq9QCvRSC2vWrNG4ceOUk5Oj7OxslZWVKSUlRSdOnPCIGzJkiA4cOGAt77//fq3aoXALAAAAAAAAAABAOl2GExTgPpyqXfjy5cs9Pr/88suKjo7W5s2bde2111rrnU6nYmNjz7hbJJQAAAAAAADOQQ7HDI/PxjwcoJ4AAIDqFBYWenx2Op1yOp017ldQUCBJatmypcf61atXKzo6Wueff76Sk5M1c+ZMRUdH+90fprwDAAAAAAAAAACQAj/VXYUp79q3by+Xy2Uts2bNqrH7xhhNmjRJ11xzjbp162atHzp0qBYvXqxVq1bpySefVG5urq677joVFxfX6tIAAAAAAAAAAADARvbu3avIyEjrsz/VSffff7+++OILrVu3zmP9bbfdZv3drVs39erVSx06dNB7772nkSNH+tUfEkoAAAAAAADnIKa4AwCgGhUqhALGnP4/kZGRHgmlmowfP15vv/221q5dqwsuuMBnbNu2bdWhQwft3LnT7+MH+rIAAAAAAAAAAADgDBljNH78eC1btkyrV69WfHx8jfscOXJEe/fuVdu2bf1uh4QSAAAAAAAAAACAJAX9bwmkU7ULHzdunJYsWaK//e1vioiIUF5eniTJ5XIpLCxMx48fV0ZGhm666Sa1bdtWu3fv1vTp09W6dWv9+Mc/9rsdEkoAAAAAAAAAAABN1IIFCyRJ/fr181j/8ssvKz09XUFBQdq6dateeeUVHT16VG3btlX//v31+uuvKyIiwu92SCgBAAAAAAAAAABItnqHkt/hxvcOYWFh+vDDD+vQodMCfVkAAAAAAAAAAADsIUiBz5zUcsq7xtIs0B0AAAAAAAAAAACAvQU6zwYAAAAAAAAAAGAPQf9bAt0HG6JCCQAAAAAAAAAAAD5RoQQAAAAAAAAAACCdzpoEOnPCO5QAAAAAAAAAAADQFAU6zwYAAAAAAAAAAGAPVCh5RYUSAAAAAAAAAAAAfAp0ng0AAAAAAAAAAMAeqFDyKtCXBQAAAAAAAAAAwB6aSQqyQR9syKbdAgAAAAAAAAAAgF1QoQQAAAAAAAAAACDZY8o7d4Db94IKJQAAAAAAAAAAAPgU6DwbAAAAAAAAAACAPVCh5BUVSgAAAAAAAAAAAPAp0Hk2AAAAAAAAAAAAewj63xLoPtgQFUoAAAAAAAAAAADwiQolAAAAAAAAAAAAiXco+RDoywIAAAAAAAAAAGAPQQp85qQswO17wZR3AAAAAAAAAAAA8CnQeTYAAAAAAAAAAAB7sMOUd4Fu3wsqlAAAAAAAAAAAAOCTTfNcAAAAAAAAAAAAjSzof0ug+2BDVCgBAAAAAAAAAADAJyqUAAAAAAAAAAAAJN6h5AMVSgAAAAAAAAAAAPDJpnkuAAAAAAAAAACARkaFklc27RYAAAAAAAAAAEAjayYpyAZ9sCGbdgsAAAAAAAAAAAB2QYUSAAAAAAAAAACAxJR3PlChBAAAAAAAAAAAAJ9smucCAAAAAAAAAABoZFQoeUWFEgAAAAAAAAAAAHyyaZ4LAAAAAAAAAACgkQX9bwl0H2yIhBIAAAAAAACAs4bDMcPjszEPB6gnAHB2IaEEAAAAAAAAAAAg8Q4lH2zaLQAAAAAAAACoPSqSANRJkAKfObHplHfNAt0BAAAAAAAAAAAA2Fug82wAAAAAAAAAAAD2wJR3XlGhBAAAAAAAAAAAAJ9smucCAAAAAAAAAABoZEEK/DuMAt2+F1QoAQAAAAAAAAAAwCcqlAAAAAAAAAAAACTeoeSDrSqUMjIy5HA4PJbY2FhruzFGGRkZiouLU1hYmPr166ft27d7HKO4uFjjx49X69atFR4erhEjRmjfvn0eMfn5+UpLS5PL5ZLL5VJaWpqOHj3qEbNnzx4NHz5c4eHhat26tSZMmKCSkhKPmK1btyo5OVlhYWFq166dHnnkERlj6veiAAAAAAAAAAAABJitEkqSdNlll+nAgQPWsnXrVmvb7NmzNXfuXM2fP1+5ubmKjY3VoEGDdOzYMStm4sSJWrZsmZYuXap169bp+PHjGjZsmNxutxWTmpqqLVu2aPny5Vq+fLm2bNmitLQ0a7vb7dYNN9ygEydOaN26dVq6dKneeOMNTZ482YopLCzUoEGDFBcXp9zcXM2bN09z5szR3LlzG/gKAQAAAAAAAACABhFsk8WGbNet4OBgj6qkcsYYPf3003rwwQc1cuRISdKiRYsUExOjJUuWaMyYMSooKNBLL72kV199VQMHDpQkvfbaa2rfvr1WrFihwYMH68svv9Ty5cuVk5Oj3r17S5JefPFFJSUlaceOHUpISFBWVpb+8Y9/aO/evYqLi5MkPfnkk0pPT9fMmTMVGRmpxYsX6+TJk1q4cKGcTqe6deumr7/+WnPnztWkSZPkcDga6YoBAAAAAAAA/nM4Znh8NubhAPUEAGyomaQgG/TBhmzXrZ07dyouLk7x8fH6yU9+on/961+SpF27dikvL08pKSlWrNPpVHJystavXy9J2rx5s0pLSz1i4uLi1K1bNytmw4YNcrlcVjJJkvr06SOXy+UR061bNyuZJEmDBw9WcXGxNm/ebMUkJyfL6XR6xOzfv1+7d+/2en7FxcUqLCz0WAAAAACgITEOAQAAAFBXtkoo9e7dW6+88oo+/PBDvfjii8rLy1Pfvn115MgR5eXlSZJiYmI89omJibG25eXlKTQ0VFFRUT5joqOjq7QdHR3tEVO5naioKIWGhvqMKf9cHlOdWbNmWe9ucrlcat++ve+LAgAAAAB1xDgEAAAA8FOgp7pjyjv/DB061Po7MTFRSUlJuvjii7Vo0SL16dNHkqpMJWeMqXF6ucox1cXXR4wxxuu+5aZNm6ZJkyZZnwsLCxnMAQAAAGhQjEMAABUxxR0A4EzYqkKpsvDwcCUmJmrnzp3We5UqV/8cOnTIqgyKjY1VSUmJ8vPzfcYcPHiwSluHDx/2iKncTn5+vkpLS33GHDp0SFLVKqqKnE6nIiMjPRYAAAAAaEiMQwAAAAA/BboyycYVSrZOKBUXF+vLL79U27ZtFR8fr9jYWGVnZ1vbS0pKtGbNGvXt21eS1LNnT4WEhHjEHDhwQNu2bbNikpKSVFBQoE8++cSK2bhxowoKCjxitm3bpgMHDlgxWVlZcjqd6tmzpxWzdu1alZSUeMTExcWpY8eO9X8xAAAAAAAAAAAAAsRWCaUpU6ZozZo12rVrlzZu3Kibb75ZhYWFGjVqlBwOhyZOnKjMzEwtW7ZM27ZtU3p6ulq0aKHU1FRJksvl0j333KPJkydr5cqV+uyzz3THHXcoMTFRAwcOlCR16dJFQ4YM0ejRo5WTk6OcnByNHj1aw4YNU0JCgiQpJSVFXbt2VVpamj777DOtXLlSU6ZM0ejRo60n+VJTU+V0OpWenq5t27Zp2bJlyszM1KRJk2qcgg8AAAAAAAAAANhQkE0WG7JV4dS+ffv005/+VP/5z3/Upk0b9enTRzk5OerQoYMkaerUqSoqKtLYsWOVn5+v3r17KysrSxEREdYxnnrqKQUHB+vWW29VUVGRBgwYoIULFyoo6PtvYPHixZowYYJSUlIkSSNGjND8+fOt7UFBQXrvvfc0duxYXX311QoLC1NqaqrmzJljxbhcLmVnZ2vcuHHq1auXoqKiNGnSJI95yQEAAAAAAAAAAM4GDmOMCXQnzmWFhYVyuVwqKChgHnMAAACctbjvtRe+DwAAAJwr/L33teJWSpHhjdjB6vpyQnINkO3u121VoQQAAAAAAAAAABAwQQp85sSmU97Z6h1KAAAAAAAAAAAAsJ9A59kAAAAAAAAAAADsIViBz5wEun0vqFACAAAAAAAAAACATzbNcwEAAAAAAAAAADSyIAX+HUaBbt8LKpQAAAAAAAAAAADgExVKAAAAAAAAAAAAEu9Q8oEKJQAAAAAAAAAAAPhk0zwXAAAAAAAAAABAIwtS4DMnvEMJAAAAAAAAAAAATVGg82wAAAAAAAAAAAD2EKTAVwgFun0vSCgBAAAAAAAAAABIp7Mmgc6cBLp9L5jyDgAAAAAAAAAAAD7ZNM8FAAAAAAAAAADQyKhQ8ooKJQAAAAAAAAAAAPhEQgkAAAAAAAAAAED6vkIp0EstzJo1S1dddZUiIiIUHR2tH/3oR9qxY4dHjDFGGRkZiouLU1hYmPr166ft27fXqh0SSgAAAAAAAAAAAE3UmjVrNG7cOOXk5Cg7O1tlZWVKSUnRiRMnrJjZs2dr7ty5mj9/vnJzcxUbG6tBgwbp2LFjfrdj05n4AAAAAAAAAAAAGpdpJpmgwPehNpYvX+7x+eWXX1Z0dLQ2b96sa6+9VsYYPf3003rwwQc1cuRISdKiRYsUExOjJUuWaMyYMX61Q4USAAAAAAAAAACAzRQWFnosxcXFfu1XUFAgSWrZsqUkadeuXcrLy1NKSooV43Q6lZycrPXr1/vdHyqUAAAAAAAAANiGwzHD47MxDweoJwDORe7g00ug+yBJ7du391j/8MMPKyMjw+e+xhhNmjRJ11xzjbp16yZJysvLkyTFxMR4xMbExOjbb7/1u18klAAAAAAAAAAAAGSvhNLevXsVGRlprXc6nTXue//99+uLL77QunXrqmxzOBwen40xVdb5QkIJAAAAAAAAgG1QkQQAp0VGRnoklGoyfvx4vf3221q7dq0uuOACa31sbKyk05VKbdu2tdYfOnSoStWSL7xDCQAAAAAAAAAAQFJZkENlQc0CvPhfNSSdrjS6//779eabb2rVqlWKj4/32B4fH6/Y2FhlZ2db60pKSrRmzRr17dvX73aoUAIAAAAAAAAAAGiixo0bpyVLluhvf/ubIiIirHcmuVwuhYWFyeFwaOLEicrMzFSnTp3UqVMnZWZmqkWLFkpNTfW7HRJKAAAAAAAAAAAAktzBwXIH165CqP77YCSV+h2/YMECSVK/fv081r/88stKT0+XJE2dOlVFRUUaO3as8vPz1bt3b2VlZSkiIsLvdkgoAQAAAAAAAAAANFHGmBpjHA6HMjIylJGRccbtkFACAAAAAAAAAACQ5A4KkruW7zCq/z7UrkKpsTQLdAcAAAAAAAAAAABgb1QoAQAAAAAAAAAanMMxw+OzMQ8HqCeAd6cUJLcCW6F0SjVPYRcIJJQAAAAAAAAAAAAklSlIZQFOKJXZNKHElHcAAAAAAAAAAADwiQolAAAAAAAAAECDY4o7NAVuBckd4Foct04FtH1vqFACAAAAAAAAAACAT1QoAQAAAAAAALAth2OGx2eqXAA0JHtUKAX2HU7eUKEEAAAAAAAAAAAAn6hQAgAAAAAAAGBbVCQBaExUKHlHhRIAAAAAAAAAAAB8okIJAAAAAAAAAABAVCj5QkIJAAAAAAAAAABApxNKZSSUqsWUdwAAAAAAAAAAAPCJCiUAAAAAAAAAAABJbgXbYMq7UwFt3xsqlAAAAAAAAAAAAOATFUoAAAAAAAAAAACS3Gomt4IC3Ad7okIJAAAAAAAAAAAAPlGhBAAAAAAAAAAAIMmtICqUvKBCCQAAAAAAAAAAAD5RoQQAAAAAAAAAACCpTEEqC3CFUllAW/eOhBIAAAAAAAAAAICkUwoO+JR3p+QIaPveMOUdAAAAAAAAAAAAfKJCCQAAAAAAAAAAQJJbQQGvUHIHtHXvqFACAAAAAAAAAACAT1QoAQAAAAAAAAAAiAolX6hQAgAAAAAAAAAAgE9UKAEAAAAAAAAAAEhyq5kNKpRMQNv3hoQSAAAAAAAAbM/hmOHx2ZiHA9QTAADOTbae8m7WrFlyOByaOHGitc4Yo4yMDMXFxSksLEz9+vXT9u3bPfYrLi7W+PHj1bp1a4WHh2vEiBHat2+fR0x+fr7S0tLkcrnkcrmUlpamo0ePesTs2bNHw4cPV3h4uFq3bq0JEyaopKTEI2br1q1KTk5WWFiY2rVrp0ceeUTG2DN7CAAAAAAAAAAAvCtTkC0WO7JthVJubq7+8Ic/qHv37h7rZ8+erblz52rhwoXq3LmzHn30UQ0aNEg7duxQRESEJGnixIl65513tHTpUrVq1UqTJ0/WsGHDtHnzZgUFnf4iUlNTtW/fPi1fvlySdO+99yotLU3vvPOOJMntduuGG25QmzZttG7dOh05ckSjRo2SMUbz5s2TJBUWFmrQoEHq37+/cnNz9fXXXys9PV3h4eGaPHlyY10qAAAAAACAsx4VSQCAxuBWsNwBTp24A9q6d7ZMKB0/fly33367XnzxRT366KPWemOMnn76aT344IMaOXKkJGnRokWKiYnRkiVLNGbMGBUUFOill17Sq6++qoEDB0qSXnvtNbVv314rVqzQ4MGD9eWXX2r58uXKyclR7969JUkvvviikpKStGPHDiUkJCgrK0v/+Mc/tHfvXsXFxUmSnnzySaWnp2vmzJmKjIzU4sWLdfLkSS1cuFBOp1PdunXT119/rblz52rSpElyOBxVzq24uFjFxcXW58LCwga7jgAAAAAgMQ4BAAAAUHe2nPJu3LhxuuGGG6yEULldu3YpLy9PKSkp1jqn06nk5GStX79ekrR582aVlpZ6xMTFxalbt25WzIYNG+RyuaxkkiT16dNHLpfLI6Zbt25WMkmSBg8erOLiYm3evNmKSU5OltPp9IjZv3+/du/eXe25zZo1y5pmz+VyqX379mdyiQDgnOZwzPBYAACAb4xDAAAAAP+cUpDcAV5O2XTKO9sllJYuXapPP/1Us2bNqrItLy9PkhQTE+OxPiYmxtqWl5en0NBQRUVF+YyJjo6ucvzo6GiPmMrtREVFKTQ01GdM+efymMqmTZumgoICa9m7d2+1cQAAAABQXxiHAAAAAKgrW015t3fvXv3iF79QVlaWmjdv7jWu8lRyxphqp5fzFVNdfH3EGGO87iudrqiqWNEEAKg95k4HAKB2GIcAAAAA/imvEgpsH0xA2/fGVhVKmzdv1qFDh9SzZ08FBwcrODhYa9as0e9//3sFBwd7rf45dOiQtS02NlYlJSXKz8/3GXPw4MEq7R8+fNgjpnI7+fn5Ki0t9Rlz6NAhSVWrqAAAAAAAAAAAAJoqWyWUBgwYoK1bt2rLli3W0qtXL91+++3asmWLLrroIsXGxio7O9vap6SkRGvWrFHfvn0lST179lRISIhHzIEDB7Rt2zYrJikpSQUFBfrkk0+smI0bN6qgoMAjZtu2bTpw4IAVk5WVJafTqZ49e1oxa9euVUlJiUdMXFycOnbsWP8XCAAAAAAAAAAANJgyNVOZggK82Cp1Y7HVlHcRERHq1q2bx7rw8HC1atXKWj9x4kRlZmaqU6dO6tSpkzIzM9WiRQulpqZKklwul+655x5NnjxZrVq1UsuWLTVlyhQlJiZq4MCBkqQuXbpoyJAhGj16tF544QVJ0r333qthw4YpISFBkpSSkqKuXbsqLS1NTzzxhL777jtNmTJFo0ePVmRkpCQpNTVVM2bMUHp6uqZPn66dO3cqMzNTv/3tb2ucgg8AAAAAAAAAAKCpsFVCyR9Tp05VUVGRxo4dq/z8fPXu3VtZWVmKiIiwYp566ikFBwfr1ltvVVFRkQYMGKCFCxcqKOj7eQ8XL16sCRMmKCUlRZI0YsQIzZ8/39oeFBSk9957T2PHjtXVV1+tsLAwpaamas6cOVaMy+VSdna2xo0bp169eikqKkqTJk3SpEmTGuFKACjncMyw/ubdOgAAAAAAAADOlFvBcgc4dWLXdyg5jDH27Nk5orCwUC6XSwUFBVblE4DaIaEEAID9cd9rL3wfAAAAOFf4e+9bHvdSwQ1qERnSiD2s6r+FpbrH9Z7t7tebXIUSAFRGEgkAAAAAAAAAGhYJJQAAAAAAAAAAAEluBcmtoJoDG7QPpwLavjfNAt0BAAAAAAAAAAAA2BsVSgAAAAAAAAAAADpdoVRGhVK1qFACAAAAAAAAAACAT1QoAQAAAAAAAAAASHIrWO4Ap07cMgFt3xsqlAAAAAAAAAAAAOATFUoAAAAAAAAAAACS3Gomd8DfoeQOaPvekFACAAAAAAAAAACQ5FaQDRJKgW3fGxJKAABU4HDMsP425uEA9gQAAAAAAACwDxJKAAAAAAAAAAAAokLJl2aB7gAAAAAAAAAAAADsjQolAAAqYJo7AAAAAACAc5dbQSqjQqlaVCgBAAAAAAAAAADAJyqUAAAAAAAAAAAAJLkVLHeAUydunQpo+95QoQQAAAAAAAAAAACfqFACAAAAAAAAAADQ6fcXBfodRoFu35s6J5S++uorvfPOOzr//PN12WWXqVu3boqMjKyPvgEAAAAAAAAAAMAG6pxQGjp0qH72s5/p6NGjeuGFF7R161adOHFCO3bsqI/+AQAAAAAAAGjCHI4ZHp+NeThAPQGAmrnVLOAVQm6bvq2ozgmltm3b6sEHH/RY53a763pYAAAAAAAAAACARlWmIJUFOKEU6Pa9OeOE0uTJk3X55Zerf//+WrRokUaNGmVtCwqy58kCAAAAAAAAZxu7VwDZrT8AgDNzxgmla6+9Vl988YW+/vpr/fWvf9XMmTPVq1cvJSYmKjExUcOGDavPfgIAAAAAAAAAADQot4LlrvvkbnXsgz1ngTvjq3LjjTfqxhtvtD4XFRVp27Zt+uKLL7Ry5UoSSgAAAAAAAEAjoAIIANAY6pxm27p1q55++mnl5+crMTFRP/vZz3TPPffUR98AAAAAAAAAAAAazSkFyR3gdxidsuk7lJrV9QA333yzkpOTNW3aNMXFxWnEiBFauXJlffQNAAAAAAAAAAAANlDnCiWXy6U777xTknTVVVdp5MiRGjhwoD7//PM6dw4AgPpS8SW19T0dREMeGwAAAAAAAI3HbYMKpUC3702dK5QuuugizZ07V8YYSVLLli3VvHnzOncMAAAAAAAAAAAA9lDnCqXi4mI9++yzeuqpp3TZZZfp22+/1Y9//GP9+9//Vrt27eqjjwAA1FlDVg5RlQQAAAAAAHB2cKtZwCuE3HWvBWoQfieU0tLS9MILL6hFixYe65ctWyZJOnHihL744gtr+clPfqL9+/frn//8Z/32GAAAAAAAAAAAoAGUKUhBAU4olTX1Ke+WLFmi48ePW5/HjBmj/Px863N4eLh69eqlMWPG6Nlnn9XHH39MMgkAAAAAAAAAAKABrV27VsOHD1dcXJwcDofeeustj+3p6elyOBweS58+fWrdjt8JpfJ3JJX705/+5JFQOnjwoCIiImrdAQAAAAAAAAAAADtwK9gWS22cOHFCl19+uebPn+81ZsiQITpw4IC1vP/++7W+Nmf8DqXKCSZJKikpOdPDAQAAAAAAAAAAoJaGDh2qoUOH+oxxOp2KjY2tUztnnFCqjsPhqM/DAQAAAAAAAECT4nDMsP425uEA9gTAmTilILkD/A6jU/9rv7Cw0GO90+mU0+k8o2OuXr1a0dHROv/885WcnKyZM2cqOjq6Vsfwe8o76fR7lD799FOVlpZKIoEEAAAAAAAAAADQENq3by+Xy2Uts2bNOqPjDB06VIsXL9aqVav05JNPKjc3V9ddd52Ki4trdRy/K5SuueYaPfzwwzp27JhCQkJUVlam6dOn65prrtGVV16pNm3a1PokAAAAAAAAAOBsQlUS0LS5bVChVN7+3r17FRkZaa0/0+qk2267zfq7W7du6tWrlzp06KD33ntPI0eO9Ps4fieU1q5dK0nauXOnNm/erE8//VSbN2/WQw89pKNHj1KtBAAAAAAAAAAAUE8iIyM9Ekr1pW3bturQoYN27txZq/1q/Q6lTp06qVOnTvrJT35irdu1a5c2bdqkzz77rLaHAwCgzpifGgAAAAC8qzhmqg7jKAD4XpmC1CzAFUplDdz+kSNHtHfvXrVt27ZW+9U6oVSd+Ph4xcfH65ZbbqmPwwEAAAAAAAAAADS601Pe1UvqpE59qI3jx4/rm2++sT7v2rVLW7ZsUcuWLdWyZUtlZGTopptuUtu2bbV7925Nnz5drVu31o9//ONatRPYqwIAQD3w9jQdlUsAAAAAAAA4223atEn9+/e3Pk+aNEmSNGrUKC1YsEBbt27VK6+8oqNHj6pt27bq37+/Xn/9dUVERNSqHRJKAAAAAAAAwFmMB+wAwH+nK5QCO+Vdbdvv16+fjDFet3/44Yd17ZIkEkoAgLOYP5VLvuIAAAAAAAAAnEZCCQAAAAAAAAAAQE2zQqmxNAt0BwAAAAAAAAAAAGBvVCgBAM45THEHAAAAAACA6pyyQYXSKSqUAAAAAAAAAAAA0BRRoQQAQAUOxwzrbyqZAAAAAAAAzi1lCpIjwBVCZTatUCKhBAAAAAAAAAAAIMmtIDULcOok0FPueUNCCQCACqhKAgAAAAAAAKoioQQAAAAAAAAAAKDyCqXAVghRoQQAQCPjfUgAAAAAAABA/SChBAAAAAAAAAAAICqUfGkW6A4AAAAAAAAAAADA3qhQAgCcVZjmDgAAAAAAAGeqTEFyBLhCqIwKJQAAAAAAAAAAADRFtkooLViwQN27d1dkZKQiIyOVlJSkDz74wNpujFFGRobi4uIUFhamfv36afv27R7HKC4u1vjx49W6dWuFh4drxIgR2rdvn0dMfn6+0tLS5HK55HK5lJaWpqNHj3rE7NmzR8OHD1d4eLhat26tCRMmqKSkxCNm69atSk5OVlhYmNq1a6dHHnlExpj6vSgAgFox5mFrAQAAAAAAAGrjlILlDvByyqaTy9kqoXTBBRfoscce06ZNm7Rp0yZdd911uvHGG62k0ezZszV37lzNnz9fubm5io2N1aBBg3Ts2DHrGBMnTtSyZcu0dOlSrVu3TsePH9ewYcPkdrutmNTUVG3ZskXLly/X8uXLtWXLFqWlpVnb3W63brjhBp04cULr1q3T0qVL9cYbb2jy5MlWTGFhoQYNGqS4uDjl5uZq3rx5mjNnjubOndsIVwoAAAAAAAAAANQ3t4JssdiRw9i8pKZly5Z64okndPfddysuLk4TJ07Ur371K0mnq5FiYmL0+OOPa8yYMSooKFCbNm306quv6rbbbpMk7d+/X+3bt9f777+vwYMH68svv1TXrl2Vk5Oj3r17S5JycnKUlJSkr776SgkJCfrggw80bNgw7d27V3FxcZKkpUuXKj09XYcOHVJkZKQWLFigadOm6eDBg3I6nZKkxx57TPPmzdO+ffvkcDj8Or/CwkK5XC4VFBQoMjKyvi8fAAAAYAvc99oL3wcAAADOFf7e+5bHJRf8WcGRLRqxh1WVFf5Xa1y32u5+3VYVShW53W4tXbpUJ06cUFJSknbt2qW8vDylpKRYMU6nU8nJyVq/fr0kafPmzSotLfWIiYuLU7du3ayYDRs2yOVyWckkSerTp49cLpdHTLdu3axkkiQNHjxYxcXF2rx5sxWTnJxsJZPKY/bv36/du3d7Pa/i4mIVFhZ6LAAAAADQkBiHAAAAAP5xq1nAq5PcNk3d2K5XW7du1XnnnSen06mf//znWrZsmbp27aq8vDxJUkxMjEd8TEyMtS0vL0+hoaGKioryGRMdHV2l3ejoaI+Yyu1ERUUpNDTUZ0z55/KY6syaNct6d5PL5VL79u19XxAAAAAAqCPGIQAAAADqynZvdkpISNCWLVt09OhRvfHGGxo1apTWrFljba88lZwxpsbp5SrHVBdfHzHlswf66s+0adM0adIk63NhYSGDOQAAAAANinEIAKAuHI4ZHp+NeThAPQGAhlemICnA7zAqs+k7lGyXUAoNDdUll1wiSerVq5dyc3P1zDPPWO9NysvLU9u2ba34Q4cOWZVBsbGxKikpUX5+vkeV0qFDh9S3b18r5uDBg1XaPXz4sMdxNm7c6LE9Pz9fpaWlHjGVK5EOHTokqWoVVUVOp9NjmjwAQOOoOABi8AMAONcwDgEAAABQV7ab8q4yY4yKi4sVHx+v2NhYZWdnW9tKSkq0Zs0aK1nUs2dPhYSEeMQcOHBA27Zts2KSkpJUUFCgTz75xIrZuHGjCgoKPGK2bdumAwcOWDFZWVlyOp3q2bOnFbN27VqVlJR4xMTFxaljx471fyEAAAAAAAAAAECDcivYFosd2apX06dP19ChQ9W+fXsdO3ZMS5cu1erVq7V8+XI5HA5NnDhRmZmZ6tSpkzp16qTMzEy1aNFCqampkiSXy6V77rlHkydPVqtWrdSyZUtNmTJFiYmJGjhwoCSpS5cuGjJkiEaPHq0XXnhBknTvvfdq2LBhSkhIkCSlpKSoa9euSktL0xNPPKHvvvtOU6ZM0ejRoxUZGSlJSk1N1YwZM5Senq7p06dr586dyszM1G9/+9sap+ADAAAAAAAItLNtGrOmfD5277vd+gMACAxbJZQOHjyotLQ0HThwQC6XS927d9fy5cs1aNAgSdLUqVNVVFSksWPHKj8/X71791ZWVpYiIiKsYzz11FMKDg7WrbfeqqKiIg0YMEALFy5UUND3cw4uXrxYEyZMUEpKiiRpxIgRmj9/vrU9KChI7733nsaOHaurr75aYWFhSk1N1Zw5c6wYl8ul7OxsjRs3Tr169VJUVJQmTZrkMS85AMA+6nMAZPfBHgAAAAAAAM7MKQXJHeB3GJ2y6TuUHMYYE+hOnMsKCwvlcrlUUFBgVT8BAOyNhBIA1B73vfbC9wEACCTGVAAak7/3vuVxVxR8qKDI8EbsYVXuwhPa4hpsu/t1W1UoAQAQaBUHNt4GNQx2AAAAAAAAcK4hoQQAAAAAAACg0fCQHgA7Oz3dXWCnnAv0lHvekFACAMDDJdZf/lQrAQAAAAAAAOcCEkoAAAAAAAAAAACSytRMJuAVSs0C2r43JJQAAOc8KpEAAAAAAAAA30goAQAAAAAAAAAASHIrWIFOnbhtmrqxZ68AAGhEVCUBAAAAAAAAvpFQAgAAAAAAAAAAkORWkBTwdygFtn1vSCgBAAAAAAAAAABIOmWDhNIpEkoAANifwzHD+pup8AAAAAAAAIDTSCgBAAAAAAAAAABIKlOQmlGhVC0SSgCAcx5VSQAAAAAAAIBvJJQAAAAAAAAAAAAkuRUkE+DUCRVKAAA0ECqMAAAAAAAAgIZFQgkAAAAAAAAAAEDlFUq8Q6k6JJQAAE2et6okfyuXmmJVE1VZAAAAAICzTcWxrsR4F7AbEkoAAAAAAAAAAACiQskXEkoAAAAAAAAAgICjIgl24D4VJHMqwAmlALfvDQklAMBZ62y+ET2bzw0AAAAAAAD2Q0IJAAAAAAAAAABAkrssSKfKAlshZALcvjcklAAAqKOKLw2lcggAAABAxTGCxDgBAHB2IKEEAAAAAAAAAAAgyV0WLEdZYFMnJsDte2PPXgEAAAAAAABNFBVJAICzEQklAAAAAAAAAAAASe6yZnIE/B1KzQLavjcklAAA55z6ns+cpw8BAAAAAABwtiOhBAAAAAAAAAAAIMldFmSDCqXAtu8NCSUAwDmHiiIAAAAAAABUp6wsSI5SEkrVIaEEAAAAAACAOqvvqaXtpuL5nW3nBgCAP0goAQAAAAAAAAAASDLuYBl3gFMngW7fC3v2CgCAeuDvE4Q8aQgAAADU3dl+L322nx8AADUhoQQAAAAAAAAAACBJZUGnl0D3wYZIKAEAzlreniA82+d2BwAAAM5GTek+vin1FQAAf5FQAgAAAAAAAAAAkKhQ8oGEEgDgnMPTgQAAAAAAAEDtkFACAAAAAACA7dX2wbBATjvHQ2ye6vu7YEpBAA3K7ZDKHIHvgw2RUAIAnFUqDizOZFDhcCyusP/t9dKn08dlwAMAAAAAAICmi4QSAAAAAAAAzjo8xGUf9f1d8N0CaFBl/1sC3QcbIqEEAAAAAAAAAAAgkVDygYQSAMBW6jplXcV9zuRY9TnNnedxeYIOAAAAwLmJKcAB4OxAQgkAAAAAAAAAAECiQskHEkoAAFupzyfVeOoNAAAAAAAAqB8klAAAAAAAAIBaYAq32uH6AGhSyiSV2qAPNkRCCQBwTvD1PiV/3rVU13c7AQAAAAAAAE1Zs0B3AAAAAAAAAGhKjHnYYwEAnEXcNllqYe3atRo+fLji4uLkcDj01ltveWw3xigjI0NxcXEKCwtTv379tH379to1IiqUAABnGW+VRL4Gef4MACvG+Du9BVVNAAAAAAAAaGgnTpzQ5Zdfrrvuuks33XRTle2zZ8/W3LlztXDhQnXu3FmPPvqoBg0apB07digiIsLvdkgoAQAAAAAAwPZ4bxEAoFGUKfDvMKpl+0OHDtXQoUOr3WaM0dNPP60HH3xQI0eOlCQtWrRIMTExWrJkicaMGeN3OySUAABnlfocVDociyt8+qbWbZyLA1yqsgAAAAAAQJNmo4RSYWGhx2qn0ymn01mrQ+3atUt5eXlKSUnxOE5ycrLWr19fq4QS71ACAAAAAAAAAACwmfbt28vlclnLrFmzan2MvLw8SVJMTIzH+piYGGubv6hQAgAAAAAAgO1RAQ8AaBQ2qlDau3evIiMjrdW1rU6qyOFweHw2xlRZVxMSSgAAeGHM7bXe51yf8u1cPGcAAAAAAICGEBkZ6ZFQOhOxsbGSTlcqtW3b1lp/6NChKlVLNSGhBAAAAAAAANhYxQfXJB7kAoAG5VbgK5Tc9Xeo+Ph4xcbGKjs7Wz169JAklZSUaM2aNXr88cdrdSwSSgCAs5a3aqGGHIwxsAMAAAAAAEBjOn78uL755hvr865du7Rlyxa1bNlSF154oSZOnKjMzEx16tRJnTp1UmZmplq0aKHU1NRatUNCCQAAAAAAALAxHlwDgEZko3co+WvTpk3q37+/9XnSpEmSpFGjRmnhwoWaOnWqioqKNHbsWOXn56t3797KyspSRERErdohoQQAOGsx6AIAAAAAAMDZrl+/fjLGeN3ucDiUkZGhjIyMOrVDQgkAAAAAAABnHd47BAA4I02wQqmxNAt0ByqaNWuWrrrqKkVERCg6Olo/+tGPtGPHDo8YY4wyMjIUFxensLAw9evXT9u3b/eIKS4u1vjx49W6dWuFh4drxIgR2rdvn0dMfn6+0tLS5HK55HK5lJaWpqNHj3rE7NmzR8OHD1d4eLhat26tCRMmqKSkxCNm69atSk5OVlhYmNq1a6dHHnnEZyYQANCwHI4Z1S4AAAAAAABAjUptstiQrRJKa9as0bhx45STk6Ps7GyVlZUpJSVFJ06csGJmz56tuXPnav78+crNzVVsbKwGDRqkY8eOWTETJ07UsmXLtHTpUq1bt07Hjx/XsGHD5Ha7rZjU1FRt2bJFy5cv1/Lly7VlyxalpaVZ291ut2644QadOHFC69at09KlS/XGG29o8uTJVkxhYaEGDRqkuLg45ebmat68eZozZ47mzp3bwFcKAAAAAAAAAACg8TiMjctpDh8+rOjoaK1Zs0bXXnutjDGKi4vTxIkT9atf/UrS6WqkmJgYPf744xozZowKCgrUpk0bvfrqq7rtttskSfv371f79u31/vvva/Dgwfryyy/VtWtX5eTkqHfv3pKknJwcJSUl6auvvlJCQoI++OADDRs2THv37lVcXJwkaenSpUpPT9ehQ4cUGRmpBQsWaNq0aTp48KCcTqck6bHHHtO8efO0b98+ORyOGs+xsLBQLpdLBQUFioyMbIjLCADnFG/VSBWnt2DqCwBofNz32gvfB2BP3Kc2LK5v/eFaAmhK/L33LY/TiwVSiwDfI/+3UBptv/t1W1UoVVZQUCBJatmypSRp165dysvLU0pKihXjdDqVnJys9evXS5I2b96s0tJSj5i4uDh169bNitmwYYNcLpeVTJKkPn36yOVyecR069bNSiZJ0uDBg1VcXKzNmzdbMcnJyVYyqTxm//792r17d7XnVFxcrMLCQo8FAFB/jHnYWvyJ8RXHlHkAgLMF4xAAAAAAdRUc6A54Y4zRpEmTdM0116hbt26SpLy8PElSTEyMR2xMTIy+/fZbKyY0NFRRUVFVYsr3z8vLU3R0dJU2o6OjPWIqtxMVFaXQ0FCPmI4dO1Zpp3xbfHx8lTZmzZqlGTP4D5MAAAAAGg/jEKBpoMqjYXF96w/XEsBZzS2pzAZ9sCHbJpTuv/9+ffHFF1q3bl2VbZWnkjPG1Di9XOWY6uLrI6Z8BkFv/Zk2bZomTZpkfS4sLFT79u199h0AGlJTmaqgYj/97aO3OIdjcaU131S7j12vBQAAtcU4BAAAAEBd2TKhNH78eL399ttau3atLrjgAmt9bGyspNPVP23btrXWHzp0yKoMio2NVUlJifLz8z2qlA4dOqS+fftaMQcPHqzS7uHDhz2Os3HjRo/t+fn5Ki0t9Ygpr1aq2I5UtYqqnNPp9JgiDwAAAAAaGuMQAKi7M3nIralqKg8eAkCDKFPgK5QC3b4XtkooGWM0fvx4LVu2TKtXr64yZVx8fLxiY2OVnZ2tHj16SJJKSkq0Zs0aPf7445Kknj17KiQkRNnZ2br11lslSQcOHNC2bds0e/ZsSVJSUpIKCgr0ySef6Ac/+IEkaePGjSooKLCSTklJSZo5c6YOHDhgJa+ysrLkdDrVs2dPK2b69OkqKSlRaGioFRMXF1dlKjwAsCs7DAz8GZjV9K6jmnhWHt1eb8cCAAAAAAAAzgXNAt2BisaNG6fXXntNS5YsUUREhPLy8pSXl6eioiJJp6eRmzhxojIzM7Vs2TJt27ZN6enpatGihVJTUyVJLpdL99xzjyZPnqyVK1fqs88+0x133KHExEQNHDhQktSlSxcNGTJEo0ePVk5OjnJycjR69GgNGzZMCQkJkqSUlBR17dpVaWlp+uyzz7Ry5UpNmTJFo0ePVmRkpCQpNTVVTqdT6enp2rZtm5YtW6bMzExNmjSpxin4AAAAAAAAAACAzZTZZLEhW1UoLViwQJLUr18/j/Uvv/yy0tPTJUlTp05VUVGRxo4dq/z8fPXu3VtZWVmKiIiw4p966ikFBwfr1ltvVVFRkQYMGKCFCxcqKCjIilm8eLEmTJiglJQUSdKIESM0f/58a3tQUJDee+89jR07VldffbXCwsKUmpqqOXPmWDEul0vZ2dkaN26cevXqpaioKE2aNMljbnIAQM1qW/FzJtMveL436Ruvcd5QlQQAAADgXMH4p/EwvSBgQ3ZI6AS6fS8cxhgT6E6cywoLC+VyuVRQUGBVPgEAfCOhBABND/e99sL3AQC1dy69QwmNh4QS0PD8vfctj9OcAikswPfIRYXSFPvdr9uqQgkAAH+cyQ22v+9Nqnhsf96nBAAAAODcwH/oR0PgdwXYkFuBrxByB7h9L2z1DiUAAAAAAAAAAADYDxVKAAAAAAAAAOoN07gBaNJ4h5JXJJQAALZVn3OU+5q+jsENAAAAAAAA4BsJJQAAAAAAAAAAAEkqlRRkgz7YEAklAIBtnUnlkPdKpEsqHPd2v/ap2H59VksBAAAAwNmMMdOZY7pAAHZGQgkAAAAAAAAAAECS3P9bAt0HGyKhBABoEvytEDqTp7f82cdbtVJ9tO8PnlIDAAAAgLMfYz3ABsr+twS6DzbULNAdAAAAAAAAAAAAgL1RoQQAaBI8K4QWV9p2e7XbPNf7V+HkWQlU/XuXAvHEGE+pAQAAND6qxIGGwb8tnKv47TcRbgW+QsimU95RoQQAAAAAAAAAAACfqFACAAAAAAAAAACQTlcnBdmgDzZEQgkA0ORUnH7O322eU+bNqDamqm9q0y0AAACcZZiKCP6y2zRWdutPZXbrD9BY+O2jqSOhBAAAAAAAAAAAIEmlCvzLgkoD3L4XJJQAAE1exafvzuRpH2/7OByLz7hPAAAAAJqWulT12K3qwG79wbnLbtVydusP0NSQUAIAAAAAAAAAAJAk9/+WQPfBhkgoAcA5riGfzqlr5ZC/GurYFd/H1FjnUlEg2mwsZ/O5AQAAoGloSpUKNfW1sc+lKV07BJbdfht26w9syi2pzAZ9sKFAzwQIAAAAAAAAAAAAm6NCCQDOcXauHDqTKhZv+/h7rMpP2tV2H+/vY6r9E3xn85NTZ/O5AQBwtqMy4dx1tn33Ddn/ul6ryu9zrWn/pv5dAICtlCnwpTiBrpDyItCXBQAAAAAAAAAAADZHhRIAoFGcSbVR3SucFvu1vuK7kjwNr7CP9/7XtdqI9wkBAAAAAADYRKkkhw36YEMklAAAAAAAgN94AMY+vE3XXK6+vyu+e//V9Vp5f+jNHvgtAMC5iYQSAAAAAAAAAACAJLn/twS6DzZEQgkA0Cj8fYKtrtO/Vdyn4tR23tb72t/TlV73r+vTgzzdBwAAgDPBfWTDqlwBFsjrbae++KO2/W1q5wcA5yoSSgAAAAAAAAAAAJJUJqmZDfpgQySUAAC24s+TaP4/vdbFSxueFUX+VEXVtXLKbs628wEAADgXUMXRuOx0fe3UF3/Utr9N7fwAnOXcCnxCx6ZT3gU6zwYAAAAAAAAAAACbo0IJABBwlZ+0LOftKTVfT695O5bvdyBVfL/SpxXWX1ltjL9t2vkpOzv3DafxBDIAAAAAAAFQGugOyB59qAYJJQAAAAAAgCaAB0zgDQ8jAQAaAwklAGiCzrb339T2vUm+4j2rjRZX+Nv7/t6qkvzpS0398Wefs+37RP3gtwAAAAAAQAC4FfiXBdn0HUoklAAAAAAAAFBrVMWcufq+dlx7AEBjIKEEAE1QUxws+K4QqvkdRP6ec8WqJGNur7YN7+9ZkhyOd/xqp7b8raoCAAAAAABAAJVJctigDzZEQgkAAAAAgCaMKhGUa+zfQqB/a3b+7dfUt9r21c7nakdcLwBoGCSUAAAAAAAAAAAAJCqUfCChBABNhK8p45o6b+fjz1R4p+OKKmyrOM3dYlXnTK6fv9ff13R6de0DAAAAAAAAGpgdkjl26EM1SCgBAAAAANCE8aAKzlUN/dv39bBYTW3X95R2/DuvHa4XADQMEkoA0EQ09RviM+m/v/sYE2b97W9VU0XeB4rDK/x9iR/xta+2AgAAAAAAgI24Ffgp79wBbt8LEkoAAAAAAABngab+EJrdNOb15Lurm5oqvHD24LsGAouEEgCgSfC8abzEY1vF9yadyf4VP3s/1pU1tuELN7kAAAAAAABNgB3eX2SHPlSDhBIAAAAAAABgI1Rh1A7X59zBdw0EFgklAGgkFQcETeUGqK59rs9zrrh/5cGV9/cT+VN55MnhWFzh0zd16lt9fs8MKAEAAAAAABqBHaqD7NCHajQLdAcAAAAAAAAAAABgb1QoAQAAAACAM0Yl9Znj2tXN2Xz9zqZzkc7u7wqoT01xdpuzUpkkE+A+uAPcvhcklACgkTTFG4H6nKaurrxPa+e9TW/7+DqW5/5FFba8WeFvz6nw/O2bP7zdPDbF3w8AAAAAAADOHiSUAAAAAADAGePBlzPHtaubmq6fnatianoora59tdu5B7p9wBv+raBadqgOskMfqkFCCQBgWw7HYutvz8qhxZUiv6mw7dMK6y+psH5Gtesr71+RMWEV9q8+pua+1Q43jwAAAAAAAAHElHdekVACAAAAAMAHuz29jHOX3X6LdutPZXbrT0WV+1af02hXd3wEjt3/nZzr+D6A2iGhBABoMHV/mWTFyiNfFUYVP79T4e/hFdq/3cuxPHlWGHmrXPI++GsqN6NNsc8AAAAAAAANjgolr0goAQAAAADgQ2M/fMHT7PCmvn8Ltf2t1fW3Wd+/7ZqO15T/LTX0O5Zqq6ldSzv11+7XCgBqg4QSANQzKj8qqvgOo4rvQ7q9umCffL2nyLP6yJ93GFWucKo57kz6bGdNYQBqp0EgAAAAAAA4R5RJOhXgPgS6fS+aBboDAAAAAAAAAAAAsDeHMSbQswGe0woLC+VyuVRQUKDIyMhAdwdAI6GKyT/eqpocjqJKkbO9HGF4hb+7VDhWWKV2qv8+HI5PK0RVfDdT5Qon/961BADnMu577YXvA2gaqNg+d5zN0/cBQKD5e+9bHqcOBVKzAN8jnyqUvrXf/ToVSgAAAAAAAAAAAPCJdygBAAAAAIAmo66VGk1ptgC796+x1XeVTuXjVVaX49e2r7WtSLJ7xZLd+1dXZ/v5Aee8MgW+FMem71AioQQAAdBYN5vepoxrLN6nkvM+cPN2bbxPPydVnNrOmCsr7LO4Qsw7FdZP9dqmt775+51V3L8p/ceKcwHfBwAAAAAAqBEJJa9slVBau3atnnjiCW3evFkHDhzQsmXL9KMf/cjabozRjBkz9Ic//EH5+fnq3bu3nn32WV122WVWTHFxsaZMmaI//elPKioq0oABA/Tcc8/pggsusGLy8/M1YcIEvf3225KkESNGaN68eTr//POtmD179mjcuHFatWqVwsLClJqaqjlz5ig0NNSK2bp1q+6//3598sknatmypcaMGaOHHnpIDoej4S4SAAAAAADnsLo+GNKQD5ZQtdC0NOT3U9Ox61odVd99r+/fbl0qB+uj/YZm9/4BQEOxVULpxIkTuvzyy3XXXXfppptuqrJ99uzZmjt3rhYuXKjOnTvr0Ucf1aBBg7Rjxw5FRERIkiZOnKh33nlHS5cuVatWrTR58mQNGzZMmzdvVlBQkCQpNTVV+/bt0/LlyyVJ9957r9LS0vTOO6efXne73brhhhvUpk0brVu3TkeOHNGoUaNkjNG8efMknX5B16BBg9S/f3/l5ubq66+/Vnp6usLDwzV58uTGuFwAUKNAVCV5tl/9TXbV6RoWVxsnfePl78oqVh99/7d/1U6Sw/Gll+Ne4qWP3vtS92k3AltVdjZj0AcAAAAAAGpUKiqUvLBVQmno0KEaOnRotduMMXr66af14IMPauTIkZKkRYsWKSYmRkuWLNGYMWNUUFCgl156Sa+++qoGDhwoSXrttdfUvn17rVixQoMHD9aXX36p5cuXKycnR71795Ykvfjii0pKStKOHTuUkJCgrKws/eMf/9DevXsVFxcnSXryySeVnp6umTNnKjIyUosXL9bJkye1cOFCOZ1OdevWTV9//bXmzp2rSZMmUaUEAAAAAAAAAAAaXEZGhmbM8Kz2jImJUV5eXr22Y6uEki+7du1SXl6eUlJSrHVOp1PJyclav369xowZo82bN6u0tNQjJi4uTt26ddP69es1ePBgbdiwQS6Xy0omSVKfPn3kcrm0fv16JSQkaMOGDerWrZuVTJKkwYMHq7i4WJs3b1b//v21YcMGJScny+l0esRMmzZNu3fvVnx8fLXnUVxcrOLiYutzYWFhvVwfAGjKKlbieFboVHy3kWdVkafqK4w896kY06WWPaxpn+8rlvx9T4+3OKqSUK6pTfsBwN7O9XEI/5uKxhLoacjO9t961ZkOmu752q2vge5PoNsHAA+nJJkA9+EM2r/sssu0YsUK63P5jG31KdCFW34rz6TFxMR4rK+YZcvLy1NoaKiioqJ8xkRHR1c5fnR0tEdM5XaioqIUGhrqM6b8s6+s36xZs+Ryuaylffv2vk8cAAAAAOqIcQgAAABwdgsODlZsbKy1tGnTpv7bqPcjNrDKU8kZY2qcXq5yTHXx9RFjjPG6b7lp06Zp0qRJ1ufCwkIGcwBqzd8qmLruU5/7ezvWad+/q8hbtZLne4uGV9q/YvWQt0okb+9JqqzCsXtc+f3fn3l/h5JnJdWMav+uzNs+/qyHd2fTNWvq/QdgL+f6OIT/TbWXplxV0thqe23OtWtZ3+OS+qyAashj20FT7z8A+FQmKdBvtPlfhVLlmQWcTqfHrGkV7dy5U3FxcXI6nerdu7cyMzN10UUX1Wu3mkyFUmxsrKSq1T+HDh2yKoNiY2NVUlKi/Px8nzEHDx6scvzDhw97xFRuJz8/X6WlpT5jDh06JKlqFVVFTqdTkZGRHgsAAAAANCTGIQAAAEDT0759e4+ZBmbNmlVtXO/evfXKK6/oww8/1Isvvqi8vDz17dtXR44cqdf+NJkKpfj4eMXGxio7O1s9evSQJJWUlGjNmjV6/PHHJUk9e/ZUSEiIsrOzdeutt0qSDhw4oG3btmn27NmSpKSkJBUUFOiTTz7RD37wA0nSxo0bVVBQoL59+1oxM2fO1IEDB9S2bVtJUlZWlpxOp3r27GnFTJ8+XSUlJQoNDbVi4uLi1LFjx8a5KAAAAAAANDFUMsCbulb11LZqpq7b66Kp/zto6v2HfVH9BluwUYXS3r17PR4G81adNHToUOvvxMREJSUl6eKLL9aiRYs8ZiqoK1sllI4fP65vvvl+GqFdu3Zpy5YtatmypS688EJNnDhRmZmZ6tSpkzp16qTMzEy1aNFCqampkiSXy6V77rlHkydPVqtWrdSyZUtNmTJFiYmJGjhwoCSpS5cuGjJkiEaPHq0XXnhBknTvvfdq2LBhSkhIkCSlpKSoa9euSktL0xNPPKHvvvtOU6ZM0ejRo60vLzU1VTNmzFB6erqmT5+unTt3KjMzU7/97W9rnIIPAOrqTG6ovO3j781afU4nUdPA7/u426uNMeZKjzjPqfFGeunB99PfVd2/4nR4Ff7+rGJUxWnupnppw5O36esqf67rNfd+/RruxtuuU8vZqS8AAAAAAKAJKpVtEkpnOrtAeHi4EhMTtXPnznrtlq0SSps2bVL//v2tz+WZs1GjRmnhwoWaOnWqioqKNHbsWOXn56t3797KyspSRESEtc9TTz2l4OBg3XrrrSoqKtKAAQO0cOFCBQUFWTGLFy/WhAkTlJKSIkkaMWKE5s+fb20PCgrS/7d372FSVGfix98GhvvMIHIXZ0BRQFEWho2AiSgaRIPhslFQgrhxRVZFlAWiuybAJioCQaO/EMEF9TGKeAHyuCouKiByU2E0GBAFUTCMIfIAM0YuA5zfH4SqU9Vdt+6q7uqZ7+d5fKyuPqfq1KnqmjrUec959dVX5bbbbpOLL75YGjVqJDfccIPMmjXLSFNcXCzLly+X22+/XXr16iWnnXaaTJgwIdS3fQAAAAAAAAAAAEEcOXJEtm7dKj/4wQ9C3W5CKaVC3SICqayslOLiYjl48CDjmAPImmxFl2S6H6fIG+lh21b5Ju2DHm3UVfzR0y3Wls1oJ6UaaeXSI6Ks+fXopyjrORdRSchMXKO6gGzhuTdeOB+oyWrScEm5Ppaw95/t4wl7iLxsinPZolDbjjdOalrd17TjQTj8PvueSidyUCSR42dkVSki/p/XJ06cKNdcc42UlJTI3r175de//rWsWrVKNm/eLKWlpaEVK1YRSgAAAAAAAAAAAPDvq6++kuuvv16++eYbadmypfTu3VvWr18f6sskESKUco6egQDyRZjRRu49Aztp6fQ5lA5paWZYN15obk9VatvVp0oq1/PrUUxW9vmVzP0/q6UZmTLNyXTB6ynMaCOiYLKPOgf84bk3XjgfAODNPjKB0xyvJ7/zmie2k+WTvU3hti9ErzZHtdTmY0ftkVaEkuT6GTlYhFK21Ml1AQAAAAAAAAAAABBvDHkHAD75jUKoqdEKYUbLOM6NJG498fSoImvvPqky51BKJPT5kPRIpsnmYqEtCknbnFO0lMh2hzT2dLayZcC9nlKfD6d6rknXYtzUpLqldyKA2iqf51lBzZbvcxhFze15OZWgx+sWJeS1reB1u907SQBedRO0fMnzyFrLm+l9M9fXZr7/FjIR93MTtpp2PEC2EaEEAAAAAAAAAAAAV0QoAYBPfnutxLV3Sy6iVfxE0Yg4955LJMzII31uo0TiFVvKYeZiYSNzuUpPo0U4VdnmUCrX8ss12ra0SKYqfQ6mxSnLa+c+b9Qm7ZO2T62cfsdNd9pPXK9FxFe2rhmi5wAAAAAAyD+8UAIAAAAAxE42h6QJf+gqIBxBhxHz+j7fruVsD03lNaybW1kyL6v70NmZbj/TuvPb2S3d/WX72szlcJL5NuRa3MsXVE07HiDbGPIOAAAAAAAAAAAArhJKKZXrQtRmlZWVUlxcLAcPHpSioqJcFwdIwrBEtVs659/PxLjpbUvvsTfMntQ0VBvybok2TJ1lKDx9uDk7fTg8p6H09OHvRJQyv3OqM+sQd/Yh/DL7nfnJ77cXnN+yWHtvmj03uU8AcMJzb7xwPoDsiFskQvYjftzbBuFH+YTLHrEUNEonzH3bZbMsuRC3awHp41wiDvw++55KJ/KNiOT6GblSRFrE7nmdCCUAAAAAAAAAAAC4IkIpx+gZCCBbnHoHuvcK7KSlG+mQxh+/Y0g7R/V01Zb1KCKboWbkjyzRevUNHZl6vYhID+27cmv0kZnfjEJSi61fhV0fQfk9twCQSzz3xkttOx/0jq7ZavL5DRrhU9NFfa7jdC0FbWN4lbU21Z1IvMoTp7Lko1zOd4WaI3iE0tcSjwilNrF7XidCCQAAAAAAAAAAAK7q5boAABA3NXXeKL/H4idd2PP8OEclbU293MM2Xvh2SW2ulu5WlzHILVFJeviRFhV1hz7nkX1b+vxOeiTVK8771GR6zfnJ49YLSz+ebI3FHubvLKrfLD3XAAAAAACojar/8V+uyxA/vFACAAAAANRodAqo2aI8v5l2MMk0f7av3bh3qIlbedx41WXQ4QztndqCdgSLuu5yPeSeXZyulTiVJR+FXX+cDyAzvFACABseLrwlEtZ5hpRqpH2nN3S2a2nc5lByikrSQ4+uMRed5jkSEfnCLIs8rq3Xo5rsEU1XaMtL9Agjbfny1HNLiYhIobltVWmuTiT0Y9G369yADDdyxyUqS5OtqKSoRBWVxL0AAAAAAIDa6Ng//st1GeKHF0oAAAAAAOSRuEeR1CSZ1m3Y5ybqc+8VRRO3KJTgUT7u5cukvNFHozmN8x1NeYKKsm4BIPuOSe6HnIvnC6U6uS4AAAAAAAAAAAAA4o0IJQDIkFuvOL0XVrhDmQXfVnp5zCHT9GHR9CHu/LLW0zW2b1/Rliebi4Xafqpchm8b2tNcftMhjT6sXbltW29qQ74V9pSUrtDqbMkmy1eWYe4s2fVh7vTh76zSuR78nU+/Qw6mPs9R8nPM9L5GrjEEIoC4qu3z6sStPNmU7Tmcgsp2RFbUc1L5beuFURbvOZJsw24H3n52o9vsMo12sx9/vg/bDWf5do/Pt/LCr2rJfYRSrvefGhFKAAAAAAAAAAAAcJVQSqlcF6I2q6yslOLiYjl48KAUFRXlujgIAb2ZEZVwI5yii0ix9qxzGufbrXedFtXjJ/JIxBp9pKerOmQuW6KdrBFG1kiiGeZiD62ey12OyzFdV3FmRiw5nQNrT6fJlu/0KDFruk5aGn/n1qnnpVOEnf07APCD59544XwA6Qk6Z0/chf2Ml3kUilXc6jOR0NoXershhVzPWeT9vVdEVGb7s4vfuaR9A9Qmfp99T6UT+ZOIFGatfKlViciFsXteJ0IJAAAAAAAAAAAArphDCQhZvvdqoZdOvPiJSvJ7zjKNcHKbA0kpfeIgp6gkPc8rtu/06JvF5uISbbVbtNIX2nJS9NE/LNXyD3GYJ0lE5Fatbt7SvxiWuowiIuVa3RRq+S1lsc+hZNaTc09HPdrIOm9VVNGQTtuKbp6n7IlbeQAAAAAAQBwdk9zPYXQsx/tPjRdKAAAAAABEKO6dtuJevqAyOR6vvHEfxiyosLef7SHugg7b5lWeYPURbMg3r33bedWFd125DTMu4twRMD3Bz11mwyNmfq1kVl67ON83a9o9HkBu8UIJqEX89M73+2ARp57+cSpL2Pwcj99jdpsPx8/2rPmtD+OJhD3iKFUePVrnmuTEKWlzEH2hrdbnRhIR6aBF72zXoo+Wamkmasu32nZzjkM6Cy0qaaitoWqZt8mpbt0adIsd1utRTM6NAKc5sfyeZ7/XhlP+TNIEkelvPU73h5p83wIAAAAAIL8dk9xHCOV6/6nxQgkAAAAAgAzkOqrFLmhv9JrWuSGT48l1XeT6XIUdJZJ5VInXb8va0StoxFLQ+g6zU5BXNJRd8GMLduze23ePeAr7vhN+NF640Wtwlm91l+3IUOSLasn9kHe53n9qvFACapFszLOSC7kuS7bmMMp0/05p3BouTpEvyfSIIzOqyNIoKXTJb5lrSBt6oYcWedRBS9LBOp+QJUJIb+e8ri2X61FN1vzjZs40lh+bOMn84gpzsWyxWYCNCVuE1FBte0u0+aD08pfb8hSa36lKc3V60Uap07ldC0GH5IiyMZ1uGcKSzrHENVoqyvNCVBUAAAAAALUbL5QAAAAAADVKtnsTx+1Fe9zKg9yJes6lsNN75Q86j4135IE1KieTeYUyjWrw/j5YhI1d5sfqnj786LN4RwtmIm5/o7J9n4hbxE/U0XRxO174xZB3TurkugAAAAAAAAAAAACINyKUkFcYbif+4tbzIhvXjN9hxaIc5i5oHr0s7uUye6ElEptc0ukWa8vm8HeWYe0Ke1qzDNU+n60tz9XSXK4t77Dtcqm2rA9zN07rzTFXG35uqbWXx2PDUg9zN26xNhRekZZmom3/s/TefsPMRcswd1uteape0T54D5OY/J1+Psxt+Rly0Y3f69R5P36HSQxPpkPW+U3j/3eTO+mUy2/9xfWYAQAAAAAI1zHJ/RxG8YxQ4oUSAAAAAKBG4SV4ZqIevidundCyKW5DXWVbcqeeTrbP1mHVMh8mLtgQd5lc65n/Luxl62r5pJStU57H/pPZ69r62aszWNjXUtTXZtDhEaPcf9jD+eV6KMtMxe2+lKlM71NAvuGFEvKKfhPO92ilfC+/k7gdS67L42f/bg+61mv+2ZTr/W4788iNVxzWWxsfiURXbX0jbb3WQKqyNo5EtOihWdr+e2hlfktL3sGxKNbopWXan7lZ5uKMkgmWLJPPfjRlfkvkUpVW/rm2xlYP7XO5UySX/ZjNz4kiff0wSW2x5ZPeoEwkXtGWg0UuncwTPOLNSbaikqz7DP4795Mn1/ePbKktxxmV2vyPogAAAABQMzGHkhNeKAEAAAAAYiefXtjmU1n9iLq3da575+eyc59XxIxX55y4XWtByxN0cvvwZRYBFWb5Mj33dkGvrUyPJeoIoEyv9Vz/NqLcf9hRowAQBC+UkLfy/Q+kn3lO8vEYw36QCbM+cl23mc5Tkl7kxzUp9++2P6dIQH1b9mglp3R6tJIUauWvskXxLNHmFxqqleeLlEUWOdv6saz/GmN54+sXm188riXSIocmixaRJCJyjraszds0pPJ5Y3npruHmF6W28i+90Fzerg1FcbmW7i0tCkvEOg9TuX14i5OskV/Wxm/ykBinbE251q1BmU4kXdC5mrI111iUv/N0ji0f+K2zXN9D44q6AAAAAICaplpyP4dSrvefGi+UAAAAAACxk08vbONe1qCREHGXywip8Ocuye65iHrulUyjVoJGXgT9PlOZDCPt/X3Q3+k1lk/e81NZZXruMo02CzsSMuq53+Is2/NRRT1vXtzPVdzLh7Aw5J0TXigBMZPvf4jiNlFnPkQ+hB0RYH24MRsRTvMxWefcEXGeK0lff43tu9RRMZZ5f6ockoiIDNUaS0u08sw1o33ajtlpLFfsOtOSfeO8iyWl8kPG4jhlTsL0kpxmSVYxr6O5n0pzP0t7jjATXa5leMs+Ia72R16PSirU0lkDjKwcorcSiUNaInuda+ejULs2LNFf5k6Th7g4pH2nz3WV+ppLp/GcrXmbwv2d63OVWevMOXovO3JxD0onHQAAAAAAqJl4oQQAAAAAAAAAACAiJzsO53rIOSKUAAAAAABAhoIOt5PvQ9x5yebwQ97DhFmHGUuOEs+srMn7DzZMWtRDVQXdX7aHRbOfH++oc+fzmWnEute15Dxn6in2kSVcRjRIIegQcWEPiReUfWQNpXraPkc7hF6m28tk32EPLRlUtocZjfvICHEvHxA1XigBOcLk5vknnSHn/A4Z5pTfz3o3/ho8XW2f9UaTPk6b3kCxN04cxufuoTVo9SHjZh1KSmrQhokrG7PGWO4ra43lx4ZMsmSZselOY/lhudtYrthhDmV3puw2ltvJHkv+i8ZsSFmUvpseNpYXyXBjOWmIve3an9O59uHwoqKdj6rUwxzqEknFmmF+l9DXu4+1bubxvoe5pfHze3BrSHk3sNPj9x/c/Ax/F+Ywm363F+XfFv5uAQAAAABqB+ZQcsILJQAAAAAA8oq/DiB+5fsE47ksb6YROEFl/1y5X2thl8e7Pt2jVLwjN5znFT1phuWTV4SZRaE9isQePRYsysRbvO4DyR2+3CaRTea9P/u8veF25Ms0YsstfdgROvl2j67psnlfzvx3mt9/7xEPvFACcoSbtinKXu/OkRObtDThPohmGrngFIXhe3iFHk77n6xtq1HKfZzkFJWkRTL1sNVZ+bMp07XdtNNYrhjWUUuz2JJ93GIzYugl+YmxvLGnGQm0cawWFTTLuvvJ8x419znG3Oe7i3sZy9/v+YGZQY+WEpH1vzBDdAo+UMby0u0jzEQDtZ4hn1nzt53pcJxLtAZqYSOxqNK+G6p9t0RSSm4s63U+WVu2N7T+oXyTbYXeANWj1FLnd2sQO12n1vz+HlzdIo+s2zDLn859w+m+k+n9yC2Kyuk3HHYkU1T4uwUAAAAAqB2qJfdzKOV6/6nxQgkAAAAAgDwS9bw8QQXt2V+bOinkYgjcTLbnNSdT0PJE3Zs+6BxWyWZ4fO/Gtq9K67eJxHbbZ3tZveY88ojwKbQdW5W9Y5Z9vij3iCk7r4ij5CGtw70vZftaCxoVFGQeo7DnPKptUSrZvg8GFaf68zq2OJUV+YsXSkAMpNNTPaqonlw8WOTiD5rfqKSg88S47zOdaIfUDSDXh9NypwgPMyrI2rixD5WgNWy0+YwsycptQ0MM1cr5prlY0VOL1tGjiu6wHtdued7M87aZZ8gmc/3SeSPEkRY9pOef1X+isTxu00xjWY+CEhEpmGRGJck55uKQMdr+39b2f5V19z+Rl4zl3YvPNJfFXN646yJrpu1aVNLlDudMq//EvNRJ3FgjYtwahHqE0jAtjz2qSVJ+l85E386/re0O68PltO1Mo5Ks6+2N6mDzPvlttGY6P1u27sHZmIMpXxrHzEcFAAAAAHFGhJITXigBAAAAAAAAAACIiMixf/yX6zLET0IppbyTISqVlZVSXFwsBw8elKKiolwXBx7i2qPYrVyZRthEGf3kZ39B5zlJby4Re4SOd4SE25wxmV4n1igGp2EO9DIPc0gjIj20KBh9U1X2yWd1DnPw6Ot72CJSOjhk+cIhzdm2dOPMP5JlJRuM5fWV3zeWexe9ayz3lbWW7GfKbmN5kQw3lidqYVGzxIxWskcL6fvcOMmcq0mfG+kiMdPo+xMRWSt9jeXhskhS0cslIrJxnjYnlDYnk2U+psR+LYceRSTWOZksw1vo14N+Lv3md2K/zsxtO0X8+b23pPO79fPbinpohFSydc/Mx6iizO+N8fwbDP947o2XOJyPfIkqTCWfyx4HuR4iL8jflFwP8WYXZV342X6mQ9AlPZPahnnLZFixk+mDRYQncx/WzW0uXq8h4uxD3CXn93rWdG63hiHo7zDokHhB03vJ9D4S/No6ZPveNkduALm+B0Yt38sfVD4dbz6VNWx+n31PpROZJyKNs1a+1L4TkTGxaz8RoQQAAAAAAAAAACAiJ6ODcj3kHBFKSCEOPQPjLMre5bno3R6mfOmpHXTODrc6DzcqSe8dZp/81N7z69Q+neajsfcM65TyO+cy2ydj1blEmPii5dcnba3S9l9oOxd68cdqy7dqeXrY8oyV1JZpy4+YfwhnlEywJJv89qPGsjo9YSwn/mD+iVo4c6ixrEcbiYh88JEZyTSz+zhjWZ/bSHfWrl2WzwtLrjWW9UgieySUH/q8SXrkkiUiSUQ+H9POWN4j5vL3h31gJlqi9YIrdOkBd6u2/Ja2XO48B5LlenKMVnKba8uJnsft2taZv0Hr78R5Umjn3qf+5mCK0z3U+d7mPim2mU4/z6nrMux9AunguTde8uF8RPksnu3n/Di3K1KJOion6PN78MgF+zOQexRMsG1nNwI629emyGTb/q3PoF4RSG6jN6RKHzyqJViEkxd71Il9tIYgUURBo6W8nrMyjRDyLl+4v8PgET+Z7T/T4/cS5vGEfZ/INNoqU3ErT9SyGTUbdPv59nyRS8EjlOaISPqRiOE4JCK3xe55nQglAAAAAAAAAAAAEWEOJWe8UAIAAAAAxK6Xa5RzSnj3tA+353vYPfu98md67oLmDzu9vf6DHl9yVMkrts/hzaGUad0HjWrJfA4jr/IEi0iyRwx5X8v2CKZDts9eUSv2CCVreRK2qT2VLVjNK3otaXsJp/llM78WvO8z9rIEHZnDK/9kcWc99kwj2b3nt3KPdksWbA6m4HNUWQWPsDK3F/Z9Iuj3QXmd62yXxy77zyvuv6Wwo9+C7Cvq6DcgFV4oIXRhDiMU9o0s326M6dzY03nIS2/IOH0f/oaf8zfMnfNDnPN+Ug8xl15+O6dh5tyGnxuWcm3ycApOHBothVrrqErf1lbndJ205XLt2pirnYvHbfsp17a9TGtQTtTynGPLM1DrNdHN/NNSVrnGWNaHddOHgrMb2n2hsTyu+0xjecSSpcby9WUvWvIkNmijt/7BXLz7F48Zy9cWmdt9t6S34/6X7vqJsTy8ZJGx/JNKc/8PF43Ts1iOZ+nbI8zy9zfLv/Ez65B3Z729x1ie0f9O84uzzcUyrQW8cZI1f9nMNam/W6qdi2Xa+R9o69minSfLkHmzUl+/IjNsn/UGqHND22T9zej/WJEwRzm03MPchkyx/p43pczj/g8gqX/3+u/UbaJdP8PMuf0jgfV+qDc2gx+/Xv9+h7lz5m9y56DDmdrzhDnsaS7EqSwAAAAAgLBVS+5fneR6DqfUcl0rAAAAAIAYiPsL0myWL+jcJpkLNg9N2D2Ug8o8oso9MiP83t5BIx/S59XBL2gHwMw7/wXbfnL57FEZweanSo42CxalktyRz96ZznZ85fb92bfvHgVk53b+wp5HJjm9vaz2+Um9OnV5zcFrz++1PWt5ks9lsGi4ZNaObUEjRTO/L2d2Hwpyn8n1HETeEUiZ3SOzHdkZtqijdoJE00V9rHF/9kM88UIJoUvnZhTXnr5uf/T8ROVkfiz+onWs6/0/tKTaj9/8zvv3d8zWXvhuPfqdOEUlOTdArMdvfxjXpX6QtpZN36d9W4tdtp2K7UG/hxZVou/mCj2RFjnxpm1ch6Xasp5/onZu7VFJmhnq58by5F2zUydaZv3zMaNkgrE8abUZFXSsMnX2CUXWaJeF/Ycay9fvMqOPhpS8ZCzvHNrWWG4ruy357x7zsLG8SIYby7vFzLNk9vXG8poJZZb8s2Sisaz2FxjLvUreNRNp8x/2lbWW/JOWmMfca+iZ2v7N5Rkz77TkubvSzDNBj/4Zl3qMXD0iSURkuJjRU31nmuV5ScwIqwrpaGYYYvuTr0e5zdL2P9HhNzzXtl7/qXXQrsEl+vWs/5asvwtr417PM0xLY/8Hi8nad6mjDK3Dkrg0agv1SCZ9P1u19fZGq7l/fSgdfZ/W+4Q9Ksu7YeYWYeUnWsfv31O/9/Aw/77lOmo5zhHUAAAAAIA4YQ4lJ3VyXQAAAAAAAAAAAADEGxFKEJHcRwjlYp9Bo43s6fysD7NcXt/5kzoSSd+u39Bep+gA9+E59GgBPXJI79FvD3PXIgf0uYH0oQ2qUkcXJH/W53wxIzKS61n7oEcLlTtFXthYyqZFgfRwmI+lg/Om2m7aaSxX7DKjXSzRJh/beixsN7+bMcaMilk7JvU8P0P6P++4fz1CaLaYUUgdW1ZY0q0RM+JnZ3czKqjjR2a657sPMZb1yB0RkTO1iCN9fqOLl2w0lmcONect2jPuLEv+mY+Z332w5PvmF1qyOyeY59weYbRkiRm99Kx2CV4j5rZG/MZcn/iJdRxbJWZUk9P+13S3RkXVM0+tDO9uRhs9utG8TneWaHU52Frnz/9xiLGsz+HUTsy5mSwRSpeLjXY9dtB+A1dpSf6ftqzPsyQiMte+vX/40qwLGaL9fsbaIukmasv676RQ/53Y8ujphmplXpI6v7JFyFnuR1Wp5yqyRDgV2u5/2r0mefiUU8wLyH1Sa3+RoX74/Xvm537udwilTP8epZM/06isTPndT66fqYAwMVFzeMKcs/Tk9jIbVi3okHPu8xIm509nXlf38gUTZDihZPZhq4LWhRevYcO8himz5w92bYV9LhOJV2yfvc6dfb5O+zyddvb6sEWQV9kj2r3YR5dwH1Ivqb7058OqzK7ToNe5HiF/kvVz8vZesX22n2vrsSafW/scwPaROOx1Z//sNgdr8vaSn529fgv2a8lePq+5Qd3L431+3EY9yUymw36GGdnvZ3tB74vhDw/plX6T7Xv7byfsYWxrrkz/vgffXy6fRY9J7ucwimeEEi+UAAAAAAAAAAAARIQh75wllFIq14WozSorK6W4uFgOHjwoRUVF3hliyk9v3Fy8VY6yl4bzcabu9Z7Odt16xDhtO50IK/899PQeQGZvJutcItZeTHovI2uvEL23lFvPHj2d1oNIj2KocoqCEnGcX6mHVn+2iVstEUb65sr16Aht/wNtu1wmqb2pLc/Slj+zpTvHXGw7xgxjuVvMeYImFz1qJlpqy69FlbRdrEU4vW1Gq7zbv5exbI8Wur5oibG8sNKc20iPgtHLYtfxQjOS5ti7qdNcW7TQ8lmfD+gnlUtT5ikp+txYtkcoyS5zcegfzW0/19SMPNr0rRkhpEc+iVijn3STPjLnOTp0sble35aIdd4m/Vj0urXXsx4lpUcVnVlp1p9eT3pUmYhIdS8zRKbgV+afcn2uJn2ferns9Dmk9Ei0syaZ5Roy0xrJtnSXOVeTfU4tg/776WR9ECor2WAs75F2xnLFJC2q6hyx0n8rb2nLTtOouc25XK7fj5yiD+29Oh3uQXr01iztftTDds+132sM2r3Vcm9znvTaz98g9x7A+n3Xfpwmf/M2Od3bg//dyTQyN52/gbVRrqKoaspzb02RjfMRdi9W70m+/T+HRz3heVCZ9gYPe8LzoL21w+697hVZkPnx+Ps7mJw2VVm8errb89tHOnCPsnAfAcJP3Xv1zLdHodjZy+tVX1ZekQKWUShEXJ9/Tgp67VjrP/n4vSLE7J+181Nou89UBT037pGCyezHbr92vM6Ve0ROMlt57HOtvmX9KOWZXvsuo4BIqnNnv1ZczpWIuDcOUuUPdq27/VuEV5Sp174zv8d6XVtBef2uov4tWGX6NzDbf4O9Iz/Tb9O4/Ztc6vQ1OxrdenyHRWS657PvqWdkkWki0jDiEno5LCJTYtd+Yg6lEMyZM0c6duwoDRs2lLKyMlm9enWuiwQAAAAAAAAAAAKrjsl/8cOQdxlatGiR3HXXXTJnzhy5+OKLZe7cuXLVVVfJli1bpKSkJNfFAwAAAICcCHtcfa9es0H2F7ceuEHL410XmR1f2PUT9nweQXtUu899FzQS4FnbZ68oBvfvk+eNyWyOJK/9J5fXK+LHGjnhHWlhnxPXYx6aKq95fOwZvKJu7PP22NNbIym85xdzieSutK8JNm+Ld1SCfT6vYHOhJee3RyoE27/MCra/4BFStu0VekS3JW3f69r2itrxqr+gka+dtO8yi0gKHkXiPi9e1IL/Tcvu80LU6TN9XsnkfHlFJIW5r3ygH9/JyKPpOSxNzcELpQzNnj1bbr75Zvm3f/s3ERF55JFH5I033pDf//738uCDD+a4dNnj5waUi5tULhpC6fwhdNpumNsKI4+fIXKSG0T6g5OfsGWfYeWWZzutLOX2h0ytQfOWVrYhWpIetnoe67DPZWb+cYtnGsuPTZpkTXeHuVjWf42xvHGYNmbaQG34r8f93Yr1YdXaVu50TDe7vzlk2QSZbX7xurl4bf8XjeWfyEuW/EMqzaHNrt9lpvvc5SX5WbvMMeeG/Mnc3ouV5pBzDxeZw8qdKbst+a9/2xxmb5ZWZ7pdleYwd4lJ1l4a+vBp+rYbb9HSacPiyd9sda617cZtMs9tr+7mmH0bzzXP30IxhwIUEXlsmHkNnLnY3P/keebQhEPGWIeMmzzJ/G7cTHOfu4vMYeo2yEVmmv5mmpPfmcPu6cPR6cf/sNxtbtc25J798ynXinnOZZx5ndqH3NOvJ324iyGbzLIs7WnmabvJes4tw9zt0spylZbINkyedNLOmz4cnj4U3lxtWR9aUkS0kf3E0ojTh5nrpF0M5bb8TsPRzXK4byUNcec0tJ72Dx9V5s0t+W+AfSLmk/wP8eR0r0+9XTvn+76eP7NtpZsu3fS1FfUEAAAAAG6YQ8kJL5QycPToUdm4caPcc889lvUDBgyQtWvXpsxz5MgROXLkiPH54MGDInLyLSkQf4eNJf/X7Hcp81t96yONiIi2z+NOYZ/f2j5ref6u5dFnjztuy+I0jLiW/WilVs4jtrr4u7bpSu1DtZauSvujcNx2KzZvEXKiskorprmtE1IlTr7TCmpJp5VT3+5RW51X6+esqlJbPOG4Tz1ddaWZX79MDstRx33K382EljrTWC65Kmud63mcym9xyFbn2jWgn9vj1pNpLH5Xabv+tHN7uNI8TjmUul5ExHI+9H3q5dfPn73O/q4VWs/jdP4t9SK2Y3Oi19/fna9Tvf4sx3k89TXnez9Vtocn/Tv9d6qXRf9t23/LllkjtS+Vdj4t9wPb/cTSDdXPfct2zi15nO6N+u8n+H2W5wnE2anrkylcc4N2CPKbWxsh0+vYum3vbdn/vruXzUvy/oJtz7u8XtuzH4+d9XkoeX/2/F7fu0vevr19Zz+eYPUX5vn13pZX3dnZ92Uti3fdB80fbP/B03udK4/0SSFgXteCXdDyu+cPt/7cj8XrvhD0vsHfeiCdtsgR7ySRi0MZkiUULbq07dmzR8444wxZs2aN9O1rTlb/wAMPyNNPPy3btm1LyjN16lSZNi3TkHUAAAAgP+3YsUPOOuss74QIFe0QAAAA1HZebZHDhw9Lx44d5euvv85iqZy1adNGdu7cKQ0bNsx1UQy8UMrAqRdKa9eulT59+hjr77//fnnmmWfkk08+Scpj7xl44MABKS0tlV27dklxcXFWyl2bVFZWyplnnim7d++WoqKiXBenRqFuo0X9Rov6jRb1Gy3qNzrUbbQOHjwoJSUlsn//fmnWrFmui1Pr0A7JLu4n0aJ+o0X9Roe6jRb1Gy3qN1rUb7SCtEUOHz4sR48edU2TLfXr14/VyyQRhrzLSIsWLaRu3bpJbyz37t0rrVu3TpmnQYMG0qBBg6T1xcXF3CwiVFRURP1GhLqNFvUbLeo3WtRvtKjf6FC30apTp06ui1Ar0Q7JDe4n0aJ+o0X9Roe6jRb1Gy3qN1rUb7T8tEUaNmwYu5c4cUJrLgP169eXsrIyWb58uWX98uXLLUPgAQAAAAAAAAAA5DMilDI0YcIEGTVqlPTq1Uv69Okj8+bNk127dsnYsWNzXTQAAAAAAAAAAIBQ8EIpQ8OHD5d9+/bJf//3f0tFRYV069ZNXnvtNSktLfWVv0GDBjJlypSUw08gc9RvdKjbaFG/0aJ+o0X9Rov6jQ51Gy3qN144H9GifqNF/UaL+o0OdRst6jda1G+0qN9oUb/hSSilVK4LAQAAAAAAAAAAgPhiDiUAAAAAAAAAAAC44oUSAAAAAAAAAAAAXPFCCQAAAAAAAAAAAK54oQQAAAAAAAAAAABXvFCK2P333y99+/aVxo0bS7NmzXzlUUrJ1KlTpV27dtKoUSO59NJL5c9//rMlzZEjR2TcuHHSokULadKkifz4xz+Wr776KoIjiLf9+/fLqFGjpLi4WIqLi2XUqFFy4MAB1zyJRCLlfzNnzjTSXHrppUnfjxgxIuKjiZ906vemm25KqrvevXtb0nD9Bq/b6upq+fnPfy4XXHCBNGnSRNq1ayc33nij7Nmzx5Kutl67c+bMkY4dO0rDhg2lrKxMVq9e7Zp+1apVUlZWJg0bNpSzzjpLHn/88aQ0L7/8spx33nnSoEEDOe+882TJkiVRFT/2gtTv4sWL5Yc//KG0bNlSioqKpE+fPvLGG29Y0jz11FMp78OHDx+O+lBiKUj9rly5MmXdffLJJ5Z0XL+mIPWb6m9YIpGQ888/30jD9XvSO++8I9dcc420a9dOEomELF261DMP997soh0SLdoh0aIdEi3aIuGiLRIt2iLRoR0SLdoh0aEtkmMKkfrlL3+pZs+erSZMmKCKi4t95Zk+fboqLCxUL7/8stq8ebMaPny4atu2raqsrDTSjB07Vp1xxhlq+fLlatOmTeqyyy5T3bt3V8eOHYvoSOJp4MCBqlu3bmrt2rVq7dq1qlu3bmrQoEGueSoqKiz/LViwQCUSCbVjxw4jTb9+/dQtt9xiSXfgwIGoDyd20qnf0aNHq4EDB1rqbt++fZY0XL/B6/bAgQPqiiuuUIsWLVKffPKJWrdunbroootUWVmZJV1tvHaff/55VVBQoJ544gm1ZcsWNX78eNWkSRP15Zdfpkz/+eefq8aNG6vx48erLVu2qCeeeEIVFBSol156yUizdu1aVbduXfXAAw+orVu3qgceeEDVq1dPrV+/PluHFRtB63f8+PHqoYceUu+995769NNP1b333qsKCgrUpk2bjDRPPvmkKioqSrof10ZB63fFihVKRNS2bdssdaffP7l+TUHr98CBA5Z63b17t2revLmaMmWKkYbr96TXXntN/dd//Zd6+eWXlYioJUuWuKbn3pt9tEOiRTskWrRDokVbJDy0RaJFWyQ6tEOiRTskWrRFcosXSlny5JNP+mrInThxQrVp00ZNnz7dWHf48GFVXFysHn/8caXUyZtMQUGBev755400f/nLX1SdOnXUsmXLQi97XG3ZskWJiOWHvW7dOiUi6pNPPvG9ncGDB6v+/ftb1vXr10+NHz8+rKLmpXTrd/To0Wrw4MGO33P9hnftvvfee0pELA8ktfHa/d73vqfGjh1rWdelSxd1zz33pEw/efJk1aVLF8u6W2+9VfXu3dv4fN1116mBAwda0lx55ZVqxIgRIZU6fwSt31TOO+88NW3aNOOz37+JtUHQ+j3VkNu/f7/jNrl+TZlev0uWLFGJREJ98cUXxjqu32R+GnHce3OHdkj4aIdEi3ZItGiLhIu2SLRoi0SHdki0aIdkD22R7GPIu5jZuXOnfP311zJgwABjXYMGDaRfv36ydu1aERHZuHGjVFdXW9K0a9dOunXrZqSpDdatWyfFxcVy0UUXGet69+4txcXFvuvhr3/9q7z66qty8803J3337LPPSosWLeT888+XiRMnSlVVVWhlzweZ1O/KlSulVatWcu6558ott9wie/fuNb7j+g3n2hUROXjwoCQSiaRhbGrTtXv06FHZuHGj5XoSERkwYIBjXa5bty4p/ZVXXikffPCBVFdXu6apLdfoKenUr92JEyekqqpKmjdvbln/7bffSmlpqbRv314GDRok5eXloZU7X2RSvz169JC2bdvK5ZdfLitWrLB8x/V7UhjX7/z58+WKK66Q0tJSy3qu3+C498Yf7RD/aIdEi3ZItGiLhIe2SLRoi0SHdki0aIfED/fecNXLdQFg9fXXX4uISOvWrS3rW7duLV9++aWRpn79+nLaaaclpTmVvzb4+uuvpVWrVknrW7Vq5bsenn76aSksLJRhw4ZZ1o8cOVI6duwobdq0kY8//ljuvfde+eijj2T58uWhlD0fpFu/V111lVx77bVSWloqO3fulF/84hfSv39/2bhxozRo0IDrV8K5dg8fPiz33HOP3HDDDVJUVGSsr23X7jfffCPHjx9Pec90qsuvv/46Zfpjx47JN998I23btnVMU1uu0VPSqV+73/zmN/L3v/9drrvuOmNdly5d5KmnnpILLrhAKisr5be//a1cfPHF8tFHH8k555wT6jHEWTr127ZtW5k3b56UlZXJkSNH5JlnnpHLL79cVq5cKZdccomIOF/jXL8n+a2LiooKef311+W5556zrOf6TQ/33vijHeIf7ZBo0Q6JFm2R8NAWiRZtkejQDokW7ZD44d4bLl4opWHq1Kkybdo01zTvv/++9OrVK+19JBIJy2elVNI6Oz9p8oHf+hVJrieRYPWwYMECGTlypDRs2NCy/pZbbjGWu3XrJuecc4706tVLNm3aJD179vS17biKun6HDx9uLHfr1k169eolpaWl8uqrryY1mINsNx9k69qtrq6WESNGyIkTJ2TOnDmW72rytesm6D0zVXr7+nTuwzVVunWxcOFCmTp1qvzxj3+0/MNF7969LZNkX3zxxdKzZ0957LHH5NFHHw2v4HkiSP127txZOnfubHzu06eP7N69W2bNmmU05IJus6ZLty6eeuopadasmQwZMsSynus3fdx7M0c7JFq0Q6JFOyRatEVyh7ZItGiLRId2SLRoh8QL997w8EIpDXfccYeMGDHCNU2HDh3S2nabNm1E5OSb07Zt2xrr9+7da7wlbdOmjRw9elT2799v6V21d+9e6du3b1r7jRO/9funP/1J/vrXvyZ997e//S3pjXIqq1evlm3btsmiRYs80/bs2VMKCgrks88+y/sH4WzV7ylt27aV0tJS+eyzz0SkZl+/2ajb6upque6662Tnzp3y9ttvW3oEplKTrt1UWrRoIXXr1k3qMaLfM+3atGmTMn29evXk9NNPd00T5NqvCdKp31MWLVokN998s7z44otyxRVXuKatU6eO/PM//7Nxn6gtMqlfXe/eveUPf/iD8Znr96RM6lcpJQsWLJBRo0ZJ/fr1XdPW1us3KO694aAdEi3aIdGiHRIt2iLZR1skWrRFokM7JFq0Q+KHe2+4mEMpDS1atJAuXbq4/mfvaebXqfBwPST86NGjsmrVKuMht6ysTAoKCixpKioq5OOPP64RD8J+67dPnz5y8OBBee+994y8GzZskIMHD/qqh/nz50tZWZl0797dM+2f//xnqa6utjSu81W26veUffv2ye7du426q8nXb9R1e6oB99lnn8mbb75p/NFzU5Ou3VTq168vZWVlScNoLF++3LEu+/Tpk5T+//7v/6RXr15SUFDgmibfr9Gg0qlfkZO9AW+66SZ57rnn5Ec/+pHnfpRS8uGHH9bY69RJuvVrV15ebqk7rt+TMqnfVatWyfbt21PObWJXW6/foLj3hoN2SLRoh0SLdki0aItkH22RaNEWiQ7tkGjRDokf7r0hU4jUl19+qcrLy9W0adNU06ZNVXl5uSovL1dVVVVGms6dO6vFixcbn6dPn66Ki4vV4sWL1ebNm9X111+v2rZtqyorK400Y8eOVe3bt1dvvvmm2rRpk+rfv7/q3r27OnbsWFaPL9cGDhyoLrzwQrVu3Tq1bt06dcEFF6hBgwZZ0tjrVymlDh48qBo3bqx+//vfJ21z+/btatq0aer9999XO3fuVK+++qrq0qWL6tGjB/XrUb9VVVXqP/7jP9TatWvVzp071YoVK1SfPn3UGWecwfVrE7Ruq6ur1Y9//GPVvn179eGHH6qKigrjvyNHjiilau+1+/zzz6uCggI1f/58tWXLFnXXXXepJk2aqC+++EIppdQ999yjRo0aZaT//PPPVePGjdXdd9+ttmzZoubPn68KCgrUSy+9ZKRZs2aNqlu3rpo+fbraunWrmj59uqpXr55av3591o8v14LW73PPPafq1aunfve731mu0wMHDhhppk6dqpYtW6Z27NihysvL1b/+67+qevXqqQ0bNmT9+HItaP0+/PDDasmSJerTTz9VH3/8sbrnnnuUiKiXX37ZSMP1awpav6f89Kc/VRdddFHKbXL9nlRVVWU814qImj17tiovL1dffvmlUop7bxzQDokW7ZBo0Q6JFm2R8NAWiRZtkejQDokW7ZBo0RbJLV4oRWz06NFKRJL+W7FihZFGRNSTTz5pfD5x4oSaMmWKatOmjWrQoIG65JJL1ObNmy3bPXTokLrjjjtU8+bNVaNGjdSgQYPUrl27snRU8bFv3z41cuRIVVhYqAoLC9XIkSPV/v37LWns9auUUnPnzlWNGjWyPFScsmvXLnXJJZeo5s2bq/r166uzzz5b3XnnnWrfvn0RHkk8Ba3f7777Tg0YMEC1bNlSFRQUqJKSEjV69Oika5PrN3jd7ty5M+W9RL+f1OZr93e/+50qLS1V9evXVz179lSrVq0yvhs9erTq16+fJf3KlStVjx49VP369VWHDh1S/qPOiy++qDp37qwKCgpUly5dLA/KtU2Q+u3Xr1/K63T06NFGmrvuukuVlJSo+vXrq5YtW6oBAwaotWvXZvGI4iVI/T700EPq7LPPVg0bNlSnnXaa+v73v69effXVpG1y/ZqC3h8OHDigGjVqpObNm5dye1y/J61YscL1t869N/doh0SLdki0aIdEi7ZIuGiLRIu2SHRoh0SLdkh0aIvkVkKpf8xABQAAAAAAAAAAAKTAHEoAAAAAAAAAAABwxQslAAAAAAAAAAAAuOKFEgAAAAAAAAAAAFzxQgkAAAAAAAAAAACueKEEAAAAAAAAAAAAV7xQAgAAAAAAAAAAgCteKAEAAAAAAAAAAMAVL5QAAAAAAAAAAADgihdKAFBLXXrppXLXXXfluhi1wtSpUyWRSEgikZBHHnkkJ2Xo0KGDUYYDBw7kpAwAAACACG2RbKItAgAIEy+UAAC13k033SRDhgyJdB/nn3++VFRUyJgxYyLdj5P3339fXn755ZzsGwAAAEBqtEUAAPmEF0oAgJyrrq7OdRFCcfToUcfv6tWrJ23atJHGjRtnsUSmli1bSvPmzXOybwAAACCuaItEj7YIANQcvFACgFrs2LFjcscdd0izZs3k9NNPl/vuu0+UUo7pp06dKv/0T/8kc+fOlTPPPFMaN24s1157rWXYgvfff19++MMfSosWLaS4uFj69esnmzZtsmwnkUjI448/LoMHD5YmTZrIr3/9azl+/LjcfPPN0rFjR2nUqJF07txZfvvb31ryneq998ADD0jr1q2lWbNmMm3aNDl27JhMmjRJmjdvLu3bt5cFCxZY8v3lL3+R4cOHy2mnnSann366DB48WL744gvjmJ5++mn54x//aAzDsHLlSs98enkefPBBadeunZx77rmB6j+RSMjcuXNl0KBB0rhxY+natausW7dOtm/fLpdeeqk0adJE+vTpIzt27Eg6BwsWLJCSkhJp2rSp/Pu//7scP35cZsyYIW3atJFWrVrJ/fffH6gsAAAAQDbRFqEtAgDIP7xQAoBa7Omnn5Z69erJhg0b5NFHH5WHH35Y/ud//sc1z/bt2+WFF16QV155RZYtWyYffvih3H777cb3VVVVMnr0aFm9erWsX79ezjnnHLn66qulqqrKsp0pU6bI4MGDZfPmzfKzn/1MTpw4Ie3bt5cXXnhBtmzZIr/85S/lP//zP+WFF16w5Hv77bdlz5498s4778js2bNl6tSpMmjQIDnttNNkw4YNMnbsWBk7dqzs3r1bRES+++47ueyyy6Rp06byzjvvyLvvvitNmzaVgQMHytGjR2XixIly3XXXycCBA6WiokIqKiqkb9++nvlOeeutt2Tr1q2yfPly+d///d/A5+BXv/qV3HjjjfLhhx9Kly5d5IYbbpBbb71V7r33Xvnggw9EROSOO+6w5NmxY4e8/vrrsmzZMlm4cKEsWLBAfvSjH8lXX30lq1atkoceekjuu+8+Wb9+feDyAAAAANlAW4S2CAAgDykAQK3Ur18/1bVrV3XixAlj3c9//nPVtWtXxzxTpkxRdevWVbt37zbWvf7666pOnTqqoqIiZZ5jx46pwsJC9corrxjrRETdddddnmW87bbb1L/8y78Yn0ePHq1KS0vV8ePHjXWdO3dWP/jBDyz7a9KkiVq4cKFSSqn58+erzp07W47zyJEjqlGjRuqNN94wtjt48GDLvv3ma926tTpy5IjrcUyZMkV17949ab2IqPvuu8/4vG7dOiUiav78+ca6hQsXqoYNG1q21bhxY1VZWWmsu/LKK1WHDh2S6uXBBx+07G/FihVKRNT+/ftdywsAAABEibYIbREAQH4iQgkAarHevXtLIpEwPvfp00c+++wzOX78uGOekpISad++vSXPiRMnZNu2bSIisnfvXhk7dqyce+65UlxcLMXFxfLtt9/Krl27LNvp1atX0rYff/xx6dWrl7Rs2VKaNm0qTzzxRFK+888/X+rUMf98tW7dWi644ALjc926deX000+XvXv3iojIxo0bZfv27VJYWChNmzaVpk2bSvPmzeXw4cOW4Rvs/Oa74IILpH79+o7b8XLhhRdajuXUNvV1hw8flsrKSmNdhw4dpLCw0JLmvPPOS6qXU3UAAAAAxA1tEdoiAID8Uy/XBQAA5LdTjcBT/7/pppvkb3/7mzzyyCNSWloqDRo0kD59+iRNEtukSRPL5xdeeEHuvvtu+c1vfiN9+vSRwsJCmTlzpmzYsMGSrqCgIGn/qdadOHFCREROnDghZWVl8uyzzyaVvWXLlo7H5Tef/TiC0st+qg5TrTt1PPbvT6VxqwMAAACgJqItQlsEAJBdvFACgFrMPq71qXHG69at65hn165dsmfPHmnXrp2IiKxbt07q1KljTAK7evVqmTNnjlx99dUiIrJ792755ptvPMuyevVq6du3r9x2223GOrdee3717NlTFi1aJK1atZKioqKUaerXr5/UE9JPPgAAAADpoS1yEm0RAEA+Ycg7AKjFdu/eLRMmTJBt27bJwoUL5bHHHpPx48e75mnYsKGMHj1aPvroI1m9erXceeedct1110mbNm1ERKRTp07yzDPPyNatW2XDhg0ycuRIadSokWdZOnXqJB988IG88cYb8umnn8ovfvELef/99zM+xpEjR0qLFi1k8ODBsnr1atm5c6esWrVKxo8fL1999ZWInBy24U9/+pNs27ZNvvnmG6murvaVDwAAAEB6aIvQFgEA5B9eKAFALXbjjTfKoUOH5Hvf+57cfvvtMm7cOBkzZoxrnk6dOsmwYcPk6quvlgEDBki3bt1kzpw5xvcLFiyQ/fv3S48ePWTUqFFy5513SqtWrTzLMnbsWBk2bJgMHz5cLrroItm3b5+lh2C6GjduLO+8846UlJTIsGHDpGvXrvKzn/1MDh06ZPT2u+WWW6Rz587GmOlr1qzxlQ8AAABAemiL0BYBAOSfhFJK5boQAID8MHXqVFm6dKl8+OGHuS5KXolLva1cuVIuu+wy2b9/vzRr1iynZQEAAACCiMszdb6JS73RFgGAmoEIJQAAsmDz5s3StGlTSw/KbDr//PPlqquuysm+AQAAAOQObREAQFjq5boAAADUdHfeeaf89Kc/FRGRli1b5qQMr732mlRXV4uIMEwGAAAAUEvQFgEAhIkh7wAAAAAAAAAAAOCKIe8AAAAAAAAAAADgihdKAAAAAAAAAAAAcMULJQAAAAAAAAAAALjihRIAAAAAAAAAAABc8UIJAAAAAAAAAAAArnihBAAAAAAAAAAAAFe8UAIAAAAAAAAAAIArXigBAAAAAAAAAADA1f8HeZs+rFFUs8wAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2000x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#b parameter des fits [:,1] hat für lost eine breitere Verteilung. Warum?\n",
|
|
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
|
|
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
|
|
"\n",
|
|
"#isolate b parameters for analysis\n",
|
|
"b_found = scifi_fitpars_found[:,1]\n",
|
|
"b_lost = scifi_fitpars_lost[:,1]\n",
|
|
"\n",
|
|
"brem_energy_found = scifi_fitpars_found[:,5]\n",
|
|
"brem_energy_lost = scifi_fitpars_lost[:,5]\n",
|
|
"\n",
|
|
"\n",
|
|
"bs_found, vtx_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n",
|
|
"bs_found = ak.to_numpy(ak.ravel(bs_found))\n",
|
|
"vtx_types_found = ak.to_numpy(ak.ravel(vtx_types_found))\n",
|
|
"\n",
|
|
"bs_lost, vtx_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n",
|
|
"bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n",
|
|
"vtx_types_lost = ak.to_numpy(ak.ravel(vtx_types_lost))\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#Erste Annahme ist Bremsstrahlung\n",
|
|
"\n",
|
|
"fig = plt.figure(figsize=(20,6))\n",
|
|
"axes = ImageGrid(fig, 111, # similar to subplot(111)\n",
|
|
" nrows_ncols=(1, 2), # creates 2x2 grid of axes\n",
|
|
" axes_pad=1, # pad between axes in inch.\n",
|
|
" cbar_mode=\"single\",\n",
|
|
" cbar_location=\"right\",\n",
|
|
" cbar_pad=0.1,\n",
|
|
" aspect=False\n",
|
|
" )\n",
|
|
"\n",
|
|
"\n",
|
|
"h0 = axes[0].hist2d(b_found, brem_energy_found, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n",
|
|
"axes[0].set_xlim(-1,1)\n",
|
|
"axes[0].set_xlabel(\"b parameter [mm]\")\n",
|
|
"axes[0].set_ylabel(r\"$E_{ph}$\")\n",
|
|
"axes[0].set_title(\"found photon energy wrt b parameter\")\n",
|
|
"\n",
|
|
"h1 = axes[1].hist2d(b_lost, brem_energy_lost, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n",
|
|
"axes[1].set_xlim(-1,1)\n",
|
|
"axes[1].set_xlabel(\"b parameter [mm]\")\n",
|
|
"axes[1].set_ylabel(r\"$E_{ph}$\")\n",
|
|
"axes[1].set_title(\"lost photon energy wrt b parameter\")\n",
|
|
"\n",
|
|
"fig.colorbar(h0[3], cax=axes.cbar_axes[0], orientation='vertical')\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 52,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.08902698999847938 101.0\n"
|
|
]
|
|
}
|
|
],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 55,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABTEAAAIhCAYAAACWgv7sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1yUlEQVR4nO3deXgUVbrH8V+TPSFpCJCEaETQyCKLLArBBRQIOCLuqCCiouKgMhlgEMcFmKtB8A46I4O7woCI4yCIyyBBMYosRhYXVNQrKiohiCFhCVk65/7BpKXpArpJd6fS+X6ep56HnD51+lR1derlzVtVDmOMEQAAAAAAAADYVKO6ngAAAAAAAAAAHA1JTAAAAAAAAAC2RhITAAAAAAAAgK2RxAQAAAAAAABgayQxAQAAAAAAANgaSUwAAAAAAAAAtkYSEwAAAAAAAICtkcQEAAAAAAAAYGskMQEAAAAAAADYGklMhL2XXnpJp59+uuLi4uRwOLRp06a6npKlKVOmyOFw1PU0PDgcDk2ZMsXv9d58883jWu9Y+vbtq759+x6z33fffSeHw6E5c+YEfA7HMnv2bL/e1+Fw6I477gjehMJcsI41AEDozJkzRw6HQ999911Qxvf33Bwq7777rhwOh959912/1w3WNvka+wX7MzuS/fv3a8qUKT7vs5p9/O9//zu4EwsDxFQA6gOSmAhrO3fu1IgRI3TKKado2bJlWrNmjU477bS6nlbYe/PNNzV16tSAjzt79mzNnj074OMGkl3/oxSugnWsAQDCRziem4O1TWvWrNHNN98c8HEDZf/+/Zo6depxJX5xdMRUAOqDyLqeABBMX331lSorK3XdddepT58+dT0d1FKHDh3qegpHtH//fsXHx9f1NIKisrJSDodDkZEN55QRzp8nAABH0qtXr7qegiVjjA4cOFDX0wiacI47wnnbAIQelZgIWzfccIPOOeccSdLVV18th8PhcSny0qVLlZWVpfj4eCUmJmrAgAFas2aN1xgnn3yy19hWl37XXBY8b948tW/fXvHx8erSpYtef/11r/XfeOMNnXHGGYqJiVHr1q31v//7v35t24oVK9SvXz8lJSUpPj5eZ599tt5++23LOW7evFnXXnutnE6nUlNTddNNN6mkpMSjb2lpqW655RY1a9ZMjRs31qBBg/TVV1959FmyZIkcDofX+0jS448/LofDoU8++UQ33HCD/vGPf7j3Sc3y3XffaeHChXI4HJo1a5bH+pMnT1ZERITy8vKOut1Wl5P//PPPGjp0qBITE+V0OnX11VersLDwqOPUbHNkZKQefvhhd9svv/yiRo0ayel0qqqqyt0+duxYtWjRQsYY9zw6duyo9957T71791Z8fLxuuukmnXzyydq8ebPy8/Pd2211/Fh58sknddpppykmJkYdOnTQwoULj7lOzWXzM2bM0IMPPqiTTjpJsbGx6tGjh9fn9M033+jGG29UZmam4uPjdcIJJ+jiiy/Wp59+6tGv5rKrefPmafz48TrhhBMUExOjb775Rjt37tSYMWPUoUMHNW7cWCkpKbrgggv0/vvvW87r4Ycf1vTp03XyyScrLi5Offv2df9hYdKkSUpPT5fT6dRll12moqIir+176aWXlJWVpYSEBDVu3FgDBw7Uxo0b3a8f7ViTDv6HZ/bs2TrjjDMUFxenpk2b6sorr9S3337r8T5H+jwBAHXrueeeU5cuXRQbG6vk5GRddtll+uKLLzz6fPvtt7rmmmuUnp6umJgYpaamql+/fu7bBx3Pudnf80dBQYHOPfdcxcfHq02bNnrooYdUXV3t0ffLL7/UoEGDFB8fr+bNm+u2227Tnj17PPrk5OQoISFBpaWlXnO6+uqrlZqaqsrKyqNu02233abY2FitX7/evW51dbX69eun1NRUbd++/ajbbnU5+dq1a3X22WcrNjZW6enpuvvuu1VZWXnUcaSD8a7D4VBBQYG7bdGiRXI4HLrooos8+nbu3FlXXHGFxzzuuOMOPfHEE2rfvr1iYmI0d+5ctWjRQpI0depU97bfcMMNx5zLgQMHNG7cOKWlpSkuLk59+vTxiCmOpOay+by8PN14441KTk5WQkKCLr74Yq/jIS8vT5dccolOPPFExcbG6tRTT9Xo0aP1yy+/ePSridE3bNigK6+8Uk2bNtUpp5wiSfroo490zTXXuGOnk08+Wddee62+//57y3mtXLlSv//979W8eXM1a9ZMl19+uX7++Wev7SCmAhA2DBCmvvnmG/OPf/zDSDK5ublmzZo1ZvPmzcYYY1544QUjyWRnZ5slS5aYl156yXTv3t1ER0eb999/3z3GyJEjTatWrbzGnjx5sjn86yPJnHzyyeass84y//rXv8ybb75p+vbtayIjI83//d//ufutWLHCREREmHPOOce88sor5uWXXzZnnnmmOemkk7zGtDJv3jzjcDjMpZdeal555RXz2muvmcGDB5uIiAizYsUKrzm2bdvW3H///SYvL8/MnDnTxMTEmBtvvNHdr7q62px//vkmJibGPPjgg2b58uVm8uTJpk2bNkaSmTx5sjHGmMrKSpOSkmKGDx/uNaezzjrLdOvWzb3fr7zySiPJrFmzxr0cOHDAGGPMbbfdZqKjo01BQYExxpi3337bNGrUyNx7773H3PY+ffqYPn36uH/ev3+/ad++vXE6neaxxx4zb731lhk7dqx7Xz7//PNHHa9Xr14mOzvb/fPChQtNbGyscTgc5oMPPnC3t2/f3gwdOtRjHsnJySYjI8M89thjZuXKlSY/P99s2LDBtGnTxnTt2tW93Rs2bDjqHCSZjIwM06FDB/Piiy+apUuXmkGDBhlJ5uWXXz7qulu3bnWvf84555hFixa5j6eoqCizevVqd9/8/Hwzfvx48+9//9vk5+ebxYsXm0svvdTExcWZL7/80t1v5cqVRpI54YQTzJVXXmmWLl1qXn/9dbNr1y7z5Zdfmt///vdm4cKF5t133zWvv/66GTVqlGnUqJFZuXKl17xatWplLr74YvP666+b+fPnm9TUVHPaaaeZESNGmJtuusn85z//MU888YRp3Lixufjiiz227cEHHzQOh8PcdNNN5vXXXzevvPKKycrKMgkJCe7v8bGOtVtuucVERUWZ8ePHm2XLlpkFCxaYdu3amdTUVFNYWHjMzxMAEBrPP/+8kWS2bt3qbsvNzTWSzLXXXmveeOMN889//tO0adPGOJ1O89VXX7n7tW3b1px66qlm3rx5Jj8/3yxatMiMHz/efV46nnOzP+ePZs2amczMTPPEE0+YvLw8M2bMGCPJzJ07192vsLDQpKSkmBNOOME8//zz5s033zTDhw93xys1c/3444+NJPP00097zKe4uNjExMSYcePGHXObysrKzBlnnGHatGljiouLjTHG3H///aZRo0Zm+fLlx/wsDo39jDFm8+bNJj4+3h2nvPrqq2bgwIHuuR/6mR1uz549JioqyuTm5rrbbrvtNhMXF2cSEhJMRUWFMcaYHTt2GIfDYWbPnu0xjxNOOMF07tzZLFiwwLzzzjtm06ZNZtmyZUaSGTVqlHvbv/nmmyPOoSauycjIMJdccol57bXXzPz5882pp55qkpKSPGJ0KzXHZkZGhjt2eeqpp0xKSorJyMhw72NjjHn88cfNtGnTzNKlS01+fr6ZO3eu6dKli2nbtq17W435LUZv1aqVueuuu0xeXp5ZsmSJMcaYl19+2dx///1m8eLFJj8/3yxcuND06dPHtGjRwuzcudNrXm3atDF33nmneeutt8wzzzxjmjZtas4//3yPbSCmAhBOSGIirNUELocmg1wul0lPTzedOnUyLpfL3b5nzx6TkpJievfu7W7zN4mZmppqSktL3W2FhYWmUaNGZtq0ae62nj17mvT0dFNWVuZuKy0tNcnJycdMYu7bt88kJyd7JXxcLpfp0qWLOeuss7zmOGPGDI++Y8aMMbGxsaa6utoYY8x//vMfI8n87W9/8+j34IMPegWy48aNM3FxcWb37t3uts8//9xIMo899pi77fbbbz/ithw4cMB07drVtG7d2nz++ecmNTXV9OnTx1RVVR11243xTmI+/vjjRpJ59dVXPfrdcsstPiUx7733XhMXF+cO0G6++WYzaNAg07lzZzN16lRjjDE//fSTkWSeeuopj3lIMm+//bbXmKeffrrHHI9FkomLi/MIAKuqqky7du3MqaeeetR1a5KFRzqe+vfvf8R1q6qqTEVFhcnMzDR//OMf3e0135nzzjvvmHOvqqoylZWVpl+/fuayyy7zmleXLl08vmOPPvqokWSGDBniMU5OTo6RZEpKSowxxvzwww8mMjLS3HnnnR799uzZY9LS0jwSykc61tasWWMkmb/+9a8e7du2bTNxcXFm4sSJ7rajfZ4AgOA7PIlZXFxs4uLizO9+9zuPfj/88IOJiYkxw4YNM8YY88svvxhJ5tFHHz3q+P6cm4/n/LFu3TqPvh06dDADBw50/3zXXXcZh8NhNm3a5NFvwIABHklMY4zp1q2bRyxqjDGzZ882ksynn37q0zZ9/fXXJikpyVx66aVmxYoVPv+x2BjvJObVV199xDjlWElMY4w555xzzAUXXOD++dRTTzV/+tOfTKNGjdzJrZrigkOT05KM0+k0v/76q8d4O3fu9Jrj0dTENd26dXPHvsYY891335moqChz8803H3X9mmPz0DjHGGM++OADI8k88MADlutVV1ebyspK8/3333vFqjUx+v3333/M+VdVVZm9e/eahIQEj1i9Zl5jxozx6D9jxgwjyWzfvt0YQ0wFIPxwOTkanC1btujnn3/WiBEj1KjRb1+Bxo0b64orrtDatWu1f//+4xr7/PPPV2Jiovvn1NRUpaSkuC8B2bdvnwoKCnT55ZcrNjbW3S8xMVEXX3zxMcdfvXq1fv31V40cOVJVVVXupbq6WoMGDVJBQYH27dvnsc6QIUM8fu7cubMOHDjgvnx35cqVkqThw4d79Bs2bJjX+990000qKyvTSy+95G57/vnnFRMTY9nfSkxMjP71r39p165d6tatm4wxevHFFxUREeHT+odauXKlEhMTvbbR17n069dPZWVlWr16taSDl+kPGDBA/fv3d1/avmLFCklS//79PdZt2rSpLrjgAr/nfKR5pKamun+OiIjQ1VdfrW+++UY//vjjMdc/0vH03nvvyeVySZKqqqqUm5urDh06KDo6WpGRkYqOjtbXX3/tdWmeJI9Lug71xBNPqFu3boqNjVVkZKSioqL09ttvW47xu9/9zuM71r59e0nyuoSspv2HH36QJL311luqqqrS9ddf73Gcx8bGqk+fPj7dzP/111+Xw+HQdddd5zFGWlqaunTp4jVGID9PAEDtrFmzRmVlZV6XCWdkZOiCCy5w3zIlOTlZp5xyih5++GHNnDlTGzdu9LqM21/+nj/S0tJ01llnebR17tzZ4/LflStX6vTTT1eXLl08+lnFKzfeeKNWr16tLVu2uNuef/55nXnmmerYsaNP23Dqqafq6aef1pIlSzR48GCde+65x/3U6ZUrVx4xTvFFv3799MEHH6isrEzff/+9vvnmG11zzTU644wzPGKtk046SZmZmR7rXnDBBWratOlxzftww4YN87gVVKtWrdS7d293HHwsh8fJvXv3VqtWrTzWLyoq0m233aaMjAx3jNSqVStJ8jnW2rt3r+666y6deuqpioyMVGRkpBo3bqx9+/ZZjmEV50tyH3/EVADCDUlMNDi7du2SJLVs2dLrtfT0dFVXV6u4uPi4xm7WrJlXW0xMjMrKyiRJxcXFqq6uVlpamlc/q7bD7dixQ5J05ZVXKioqymOZPn26jDH69ddfjzqnmJgYSXLPadeuXYqMjPTqZzWf008/XWeeeaaef/55SZLL5dL8+fN1ySWXKDk5+Zjzr3Hqqafq3HPP1YEDBzR8+HDLz8IXu3bt8giqjzZ3KzX36lmxYoW++eYbfffdd+4k5rp167R3716tWLFCbdq0UevWrT3WPd45Wzna8VBzvB7P+hUVFdq7d68kady4cbrvvvt06aWX6rXXXtO6detUUFCgLl26uI+FQ1lt38yZM/X73/9ePXv21KJFi7R27VoVFBRo0KBBlmMcfkxER0cftb3mhv01x/mZZ57pdZy/9NJLXveWsrJjxw4ZY5Samuo1xtq1a73GCOTnCQConWPFajWv19yre+DAgZoxY4a6deumFi1aaOzYsV73m/SVv+ePY8V+Ndvja+w3fPhwxcTEuJ88/vnnn6ugoEA33nijX9tx0UUXKTU11X0vyOP5Y7G/c7fSv39/lZeXa9WqVcrLy1Pz5s3VtWtX9e/f3/2H4rffftvrj8VSaGItX+IsX9avrq5Wdna2XnnlFU2cOFFvv/22PvzwQ61du1aSfI61hg0bplmzZunmm2/WW2+9pQ8//FAFBQVq0aKF5RjHivOJqQCEm4bzqFngv2pO9lY3Nv/555/VqFEj9199Y2NjVV5e7tXPlxO+laZNm8rhcFg+eMaXh9E0b95ckvTYY48d8emRVkm9o2nWrJmqqqq0a9cuj0DoSPO58cYbNWbMGH3xxRf69ttvtX37dr8D62eeeUZvvPGGzjrrLM2aNUtXX321evbs6dcYNXP/8MMPvdp92ZfSweTZOeecoxUrVujEE09UWlqaOnXqpDZt2kg6+JCbt99+W4MHD/Za9/AHO9XG0Y4Hq/8c+bp+dHS0GjduLEmaP3++rr/+euXm5nr0++WXX9SkSROv9a22b/78+erbt68ef/xxj/bj/Y/ikdQc5//+97/dFQzHM4bD4dD777/vDugPdXhbID9PAEDtHCtWqzlPSAcr6p599llJ0ldffaV//etfmjJliioqKvTEE0/4/d7+nj980axZM59jv6ZNm+qSSy7RP//5Tz3wwAN6/vnnFRsbq2uvvdav96x5cNDpp5+usWPH6txzzz2uqkZ/5m6lZ8+eaty4sVasWKHvvvtO/fr1k8PhUL9+/fTXv/5VBQUF+uGHHyyTmKGItXyJs462/qmnnipJ+uyzz/Txxx9rzpw5GjlypLvPN998c8QxD9++kpISvf7665o8ebImTZrkbi8vL/cqUvAVMRWAcEMlJhqctm3b6oQTTtCCBQvcT5uWDl7qvWjRIvcTy6WDT7QsKipy/xVTkioqKvTWW28d13snJCTorLPO0iuvvOKuOpMOJoFee+21Y65/9tlnq0mTJvr888/Vo0cPy6Wmqs1X559/viTphRde8GhfsGCBZf9rr71WsbGxmjNnjubMmaMTTjhB2dnZHn0O/yvwoT799FONHTtW119/vd5//3117txZV1999XFVv55//vnas2ePli5d6tPcrfTv31/r16/XokWL3AF0QkKCevXqpccee0w///yzZWB9JIdXX/ji7bff9jjGXC6XXnrpJZ1yyik68cQTj7n+kY6nc88911154XA4vILMN954Qz/99JPP87Qa45NPPtGaNWt8HsMXAwcOVGRkpP7v//7viMd5jSMda4MHD5YxRj/99JPl+p06dQronAEAgZOVlaW4uDjNnz/fo/3HH3/UO++8o379+lmud9ppp+nee+9Vp06dtGHDBne7P+fmYJw/zj//fG3evFkff/yxR/uR4pUbb7xRP//8s958803Nnz9fl112mdcfHI+2Tc8884zmz5+vWbNmaenSpdq9e7fff3A+dO5HilN8ERUVpfPOO095eXl65513NGDAAEnSueeeq8jISN17773upKYvjhZjHs2LL77oEfd///33Wr16tfr27evT+ofHyatXr9b333/vXr8mcXd4nPTkk0/6PEeHwyFjjNcYzzzzjPv2QP4ipgIQbqjERIPTqFEjzZgxQ8OHD9fgwYM1evRolZeX6+GHH9bu3bv10EMPufteffXVuv/++3XNNdfoT3/6kw4cOKC///3vxx1ISNL//M//aNCgQRowYIDGjx8vl8ul6dOnKyEh4Zh/ZW3cuLEee+wxjRw5Ur/++quuvPJKpaSkaOfOnfr444+1c+dOryq5Y8nOztZ5552niRMnat++ferRo4c++OADzZs3z7J/kyZNdNlll2nOnDnavXu3JkyY4HHfQ0nuYGb69Om68MILFRERoc6dO6uyslJDhw5V69atNXv2bEVHR+tf//qXunXrphtvvFFLlizxa+7XX3+9HnnkEV1//fV68MEHlZmZqTfffNOvJHO/fv3kcrn09ttva+7cue72/v37a/LkyXI4HH7d16dTp05auHChXnrpJbVp00axsbHHDO6aN2+uCy64QPfdd58SEhI0e/Zsffnll1q4cKFP7xkREaEBAwZo3Lhxqq6u1vTp01VaWqqpU6e6+wwePFhz5sxRu3bt1LlzZ61fv14PP/ywT0nSQ8f4n//5H02ePFl9+vTRli1b9Je//EWtW7dWVVWVz+Mcy8knn6y//OUvuueee/Ttt99q0KBBatq0qXbs2KEPP/xQCQkJ7m070rF29tln69Zbb9WNN96ojz76SOedd54SEhK0fft2rVq1Sp06ddLvf//7gM0ZABA4TZo00X333ac///nPuv7663Xttddq165dmjp1qmJjYzV58mRJB/+Qdscdd+iqq65SZmamoqOj9c477+iTTz7xqGTz59wcjPNHTk6OnnvuOV100UV64IEHlJqaqhdeeEFffvmlZf/s7GydeOKJGjNmjAoLCy0TkEfappo/Fo8cOdK93rPPPqsrr7xSjz76qHJycvya+7333qulS5fqggsu0P3336/4+Hj94x//8LoH+9H069dP48ePl/TbPcbj4uLUu3dvLV++XJ07d1ZKSopPYyUmJqpVq1Z69dVX1a9fPyUnJ6t58+Y6+eSTj7peUVGRLrvsMt1yyy0qKSnR5MmTFRsbq7vvvtun9/3oo490880366qrrtK2bdt0zz336IQTTtCYMWMkSe3atdMpp5yiSZMmyRij5ORkvfbaa+77fvoiKSlJ5513nh5++GH3NuXn5+vZZ5+1vGrGF8RUAMJO3TxPCAgNq6eT11iyZInp2bOniY2NNQkJCaZfv37mgw8+8Or35ptvmjPOOMPExcWZNm3amFmzZh3x6eS333671/qtWrUyI0eO9GhbunSp6dy5s4mOjjYnnXSSeeihhyzHPJL8/Hxz0UUXmeTkZBMVFWVOOOEEc9FFF3lsZ814O3fu9Fj38CeAGmPM7t27zU033WSaNGli4uPjzYABA8yXX355xKc/Ll++3EjyepJkjfLycnPzzTebFi1aGIfD4X6/6667zsTHx5vNmzd79H/55ZeNJPPII48cdbsPfzq5Mcb8+OOP5oorrjCNGzc2iYmJ5oorrjCrV6/26enkxhx8emTz5s2NJPPTTz+522ueOtmtWzfLeZx++umW43333XcmOzvbJCYmGkmWT7c/VM1xM3v2bHPKKaeYqKgo065dO/PCCy8cc+41TwGfPn26mTp1qjnxxBNNdHS06dq1q3nrrbc8+hYXF5tRo0aZlJQUEx8fb8455xzz/vvve+3To31nysvLzYQJE8wJJ5xgYmNjTbdu3cySJUvMyJEjPbazZl4PP/ywx/pHGrvmmCwoKPBoX7JkiTn//PNNUlKSiYmJMa1atTJXXnmlWbFihcecrI61Gs8995zp2bOnSUhIMHFxceaUU04x119/vfnoo4/cfY72eQIAgs8qNjHGmGeeecYdLzmdTnPJJZd4xBA7duwwN9xwg2nXrp1JSEgwjRs3Np07dzaPPPKIqaqqcvfz99xsTO3OH4efF40x5vPPPzcDBgwwsbGxJjk52YwaNcq8+uqrXk8nr/HnP//ZSDIZGRnG5XJ5vW61TXv37jXt2rUzHTp0MPv27fPof/vtt5uoqCivJ6kfzir2++CDD0yvXr1MTEyMSUtLM3/605/MU0895dPTyY0x5uOPPzaSTGZmpkf7gw8+aCSZcePGWc7DKq42xpgVK1aYrl27mpiYGCPJK84+VE3sMW/ePDN27FjTokULExMTY84991yPz/JIao7N5cuXmxEjRpgmTZqYuLg487vf/c58/fXXHn1rPuPExETTtGlTc9VVV5kffvjBa58eKUY35re4tmnTpiYxMdEMGjTIfPbZZ17/nzhS7FSzvYcfU8RUAMKFw5hD6uoBAPXGd999p9atW+vhhx/WhAkT6no6AAAAYWXOnDm68cYbVVBQ4HHpNQCgbnBPTAAAAAAAAAC2RhITAAAAAAAAgK1xOTkAAAAAAAAAW6MSEwAAAAAAAICtkcQEAAAAAAAAYGskMQEAAAAAAADYWmRdT8AOqqur9fPPPysxMVEOh6OupwMAAALMGKM9e/YoPT1djRrxN1y7IAYDACC8EYMd2YEDB1RRURGUsaOjoxUbG+tT3ylTpmjq1KkebampqSosLJR08DOcOnWqnnrqKRUXF6tnz576xz/+odNPP93dv7y8XBMmTNCLL76osrIy9evXT7Nnz9aJJ57o7lNcXKyxY8dq6dKlkqQhQ4boscceU5MmTXzeLpKYkn7++WdlZGTU9TQAAECQbdu2zSOYQt0iBgMAoGEgBvN04MABtYiL094gjZ+WlqatW7f6nMg8/fTTtWLFCvfPERER7n/PmDFDM2fO1Jw5c3TaaafpgQce0IABA7RlyxYlJiZKknJycvTaa69p4cKFatasmcaPH6/Bgwdr/fr17rGGDRumH3/8UcuWLZMk3XrrrRoxYoRee+01n7eLJKbk3unbtm1TUlJSHc/GfpzOaV5tJSV318FM/GM1b9Q1q185VT72sxJVi7lIUqWPY1r1qw1ft9mqH4IhGL/T7PS7005zqSulpaXKyMhwn/NhD3UZg9Xl98Lu30m7za828wnFttQm5rSaS3BiWF/jjDiLtrJavG9txqvtf1V9i6N8/wzqZ6zm6/bV5nsRiu9oML7LdtoP4YwYzFpFRYX2SvqjpJgAj10u6ZHCQlVUVPicxIyMjFRaWppXuzFGjz76qO655x5dfvnlkqS5c+cqNTVVCxYs0OjRo1VSUqJnn31W8+bNU//+/SVJ8+fPV0ZGhlasWKGBAwfqiy++0LJly7R27Vr17NlTkvT0008rKytLW7ZsUdu2bX2bp0+9wlzN5UtJSUkkMS15H/T1Yz/59mVFKNktiRlh0WY1plW/2iCJaTfB+Z1mp9+ddppL3eKSZXup2xisLr8Xdv9O2m1+tZlPKLbl+GNO67kEI4b1Nc6wem9Ti/etzXihSWL6/hnUz1jN1+2r3fciFN/RYHyX7bQfwh8xmLUEBf63fs1vq9LSUo/2mJgYxcRYp0y//vprpaenKyYmRj179lRubq7atGmjrVu3qrCwUNnZ2R7j9OnTR6tXr9bo0aO1fv16VVZWevRJT09Xx44dtXr1ag0cOFBr1qyR0+l0JzAlqVevXnI6nVq9erXPSUxuSAAAAAAAAACEWFSQFknKyMiQ0+l0L9OmWVf69+zZU//85z/11ltv6emnn1ZhYaF69+6tXbt2ue+LmZqa6rHOoffMLCwsVHR0tJo2bXrUPikpKV7vnZKS4u7jCyoxcUzGTK7rKRyX+jpvAOHBTr+D7DQXwC7q8nth9++k3eZXm/mEYlsC/R522/8NUbh/BnY6Zn1dNxifiZ32AxAMh9+u50hVmBdeeKH73506dVJWVpZOOeUUzZ07V7169ZLkXUlrjDlmde3hfaz6+zLOoajEBAAAAAAAAEIsMkiL9NvtemqWIyUxD5eQkKBOnTrp66+/dt8n8/BqyaKiInd1ZlpamioqKlRcXHzUPjt27PB6r507d3pVeR4NSUwAAAAAAAAAKi8v1xdffKGWLVuqdevWSktLU15envv1iooK5efnq3fv3pKk7t27KyoqyqPP9u3b9dlnn7n7ZGVlqaSkRB9++KG7z7p161RSUuLu4wsuJwcAAAAAAABCLFK1f1zt4fx95NiECRN08cUX66STTlJRUZEeeOABlZaWauTIkXI4HMrJyVFubq4yMzOVmZmp3NxcxcfHa9iwYZIkp9OpUaNGafz48WrWrJmSk5M1YcIEderUyf208vbt22vQoEG65ZZb9OSTT0qSbr31Vg0ePNjnh/pIJDEBAAAAAACABunHH3/Utddeq19++UUtWrRQr169tHbtWrVq1UqSNHHiRJWVlWnMmDEqLi5Wz549tXz5ciUmJrrHeOSRRxQZGamhQ4eqrKxM/fr105w5cxQREeHu88ILL2js2LHup5gPGTJEs2bN8muuDmOMCcA212ulpaVyOp0qKSnxuOkpAAAID5zr7YnPBQCA8Ma53lrNfvmrpLgAj10mabwUlvuce2ICAAAAAAAAsDUuJwcAAAAAAABCLEp1f0/M+oQkJgAAAAAAABBikQp8Yi6cE31cTg4AAAAAAADA1sI5QVunHI6pXm3GTK6DmaChsDrmpNAcd0d672Dzddv8mR/fUwAAECq1/T9DoP/P4WvMRLwEAIERqcBfTl4Z4PHshEpMAAAAAAAAALZGJSYAAAAAAAAQYtwT0z9UYgIAAAAAAACwtXBO0NYp7hODUKvLY87ux7vd5wcAABqm2sYogY5xiJkAILSiFPh7YgZ6PDuhEhMAAAAAAACArVGJCQAAAAAAAIQYlZj+IYkJAAAAAAAAhBgP9vEPl5MDAAAAAAAAsLVwTtDWKYdjqk/9anvzbF/fx9f3rs144c/q61LlY79QqG3ReFwt1rXaZqv5+PoeST6ua/W+qRZtpT6+r2Q97199HLPMoq3Sos3quLHqZ8VqXStW41nNz5/jxtc5WvH1u+Lr9iFUjnSeCtV5Dg2D0zlNUqz757o6bqyOa1/nUtsYyjoue9Cip6+/J2sTt1j1szoPW51XfHWkeMnXOVrNx+qcZjVHX7fZ6rxn9b5WcYsVq/H2WLS1OsL6vp7Hrd7nZIu27yzaMi3avrZoa2bRVhtWcVWyj22S9b75yaLN6rOyGvNHizarGNMqRvQ1Xor38X19PdYl68/USm3+D+Pr98xq3rWJd339PWD1nTqSQG+zN1//z0281HBFKvCXf4dzoo9KTAAAAAAAAAC2Fs4JWgAAAAAAAMCWuCemf6jEBAAAAAAAAGBrDmOMqetJ1LXS0lI5nU6VlJQoKcnXe9oAAID6gnO9PfG5AAAQ3jjXW6vZL29JSgjw2PskDZTCcp9TiQkAAAAAAADA1sL5UnkAAAAAAADAlrgnpn/CedsAAAAAAAAAW4qUFBWEMcMVl5MDAAAAAAAAsLVwTtACAAAAAAAAtsTl5P6hEhMAAAAAAACArYVzghYAAAAAAACwpSgF/p6YgR7PTqjEBAAAAAAAAGBrVGICAAAAAAAAIcY9Mf0TztvmN6dzmqRY98/GTPbq43BMDeGMAinOoq3Mos3qkKjysZ9V0XJlLfpZzflIrObo6/q+bnNigPsl+TgXq+2wGi/Fok2S2lu0/erd1DzVu22fxaonW7S1s2jr4d3UbNJPXm2dGn3q1XaznvFqGz55kfeAT3g3TS3ybjvSnjnbom2FRdu4td5tS3tme7dpiFfbsz+M9l55vsXnXGzxxuss2n60aNtj0fbLDotGq++Z1e8ByfoYsxrTisXxpVKLNl9/F1ixWtfqPXz9/XUkVju3Nr8nrfpZsfpcrH4XWO0vX9/Dt/lZnQulwJ8Pj/Q+x8t7fgcCOj4Cy+l8Qoce48bcGfT3tD6GfYtvjJloMd7jFuta/Q6RrM9AH1i0DbNoszpT9bVos/qd6H3OlU71rV/izd5te76zWNf7XG85l+YXWvST9Mt/LN7bou8eq3NNsneTryFwa4u2NB/brHbrdIu27yzavEMe6d8WbZIan/yLV5urKsKrrUnSbq+2hbrGq22SHvJqW935Au83tjpcL7Nos4pbrNa1CMymdrzLu9HhvRMHWQwnST1P8m4r/Tbaq+0vEfd5tf3vJd5tE179H6+2RO31avtKp3m1/fvXK73aKl63iPu/8W7Sbos2q+P1SNeKWq3/skVb1QaLxm4WbRbfsziL71nZJxbrWn35Mr2bulp022gV8G60aLM6Iqx2rCRZ/F/H8vekFV9jW4t9I6t9bTWe1bnm+M+FDscMi/G8z10H+8606DuuFu/94GEtxGAInDq9nPy9997TxRdfrPT0dDkcDi1ZssTjdWOMpkyZovT0dMXFxalv377avHmzR5/y8nLdeeedat68uRISEjRkyBD9+KPVLz0AAABIxGAAAAB2EKnf7osZqCWcqxXrNIm5b98+denSRbNmzbJ8fcaMGZo5c6ZmzZqlgoICpaWlacCAAdqz57e/aufk5Gjx4sVauHChVq1apb1792rw4MFyuVyh2gwAAIB6hRgMAACg7gU6gRmMBwXZSZ0maC+88EJdeKH1pSTGGD366KO65557dPnll0uS5s6dq9TUVC1YsECjR49WSUmJnn32Wc2bN0/9+/eXJM2fP18ZGRlasWKFBg4cGLJtAQAAqC+IwQAAAFDfOIwxpq4nIUkOh0OLFy/WpZdeKkn69ttvdcopp2jDhg3q2vW3G2VccsklatKkiebOnat33nlH/fr106+//qqmTZu6+3Tp0kWXXnqppk61vl9XeXm5ysvL3T+XlpYqIyNDJSUlSkqyuk8hAH9Z3WvM13ve1WZdX8er7ZgA6pfS0lI5nU7O9RaIwYD6IdDxEQCEAjGYtZr98rWsn6pRG3t08A604bjP6/Ry8qMpLCyUJKWmet6ANzU11f1aYWGhoqOjPYLnw/tYmTZtmpxOp3vJyMgI8OwBAADqJ2IwAAAA2JFtk5g1HA6Hx8/GGK+2wx2rz913362SkhL3sm3btoDMFQAAIFwQgwEAAARXZIQUFRnYJTKirrcqeGybxExLS5Mkr7/mFxUVuSsD0tLSVFFRoeLi4iP2sRITE6OkpCSPBQAAAMRgAAAAsCfbJjFbt26ttLQ05eXludsqKiqUn5+v3r17S5K6d++uqKgojz7bt2/XZ5995u4DAAAA3xGDAQAAhEZkZHCWcFWnm7Z3715988037p+3bt2qTZs2KTk5WSeddJJycnKUm5urzMxMZWZmKjc3V/Hx8Ro2bJgkyel0atSoURo/fryaNWum5ORkTZgwQZ06dXI/KRNA3ajNjeYDfZN6bnoPAJ6IwYD6h3gGANDQ1WkS86OPPtL555/v/nncuHGSpJEjR2rOnDmaOHGiysrKNGbMGBUXF6tnz55avny5EhN/e3bTI488osjISA0dOlRlZWXq16+f5syZo4iIML4JAAAAQC0QgwEAANS9qAgp6ui3HPd/TBPY8ezEYYwJ483zTc2j7cPx8fMAAIBzvV3xuQAAEN4411ur2S+/JElJAU5ilhqpeanCcp/b9p6YAAAAAAAAACDV8eXkAAAAAAAAQEMUFSFFBbi8MKo6sOPZCZWYAAAAAAAAAGyNSkwAAAAAAAAg1CIU+PLCAN9j006oxAQAAAAAAABga1RiAgAAAAAAAKEWqcCXF3JPTAAAAAAAAACoG1RiAgAAAAAAAKFGJaZfSGICAAAAAAAAoUYS0y9cTg4AAAAAAADA1qjEBAAAAAAAAEKtkaSIup5E/UElJgAAAAAAAABboxITAAAAAAAACLVIBb4S0xHg8WyESkwAAAAAAAAAtkYlJgAAAAAAABBqVGL6hUpMAAAAAAAAALZGJSYAAAAAAAAQahHi6eR+IIkJAAAAAAAAhBqXk/uFy8kBAAAAAAAA2BqVmAAAAAAAAECoRYjMnB+oxAQAAAAAAABga+R7AQAAAAAAgFALxoN9TIDHsxEqMQEAAAAAAADYGpWYAAAAAAAAQKhFisycH6jEBAAAAAAAAGBr5HsBAAAAAACAUKMS0y9UYgIAAAAAAACwNfK9AAAAAAAAQKhRiekXdhUAAAAAAAAQao0kRQR4zOoAj2cjXE4OAAAAAAAAwNaoxAQAAAAAAABCLRiXk5sAj2cjVGICAAAAAAAAsDUqMQEAAAAAAIBQoxLTL1RiAgAAAAAAALA1KjEBAAAAAACAUIsQTyf3A5WYAAAAAAAAAGyNSkwAAAAAAAAg1Lgnpl9IYgIAAAAAAAChFqHAZ+a4nBwAAAAAAAAA6gaVmAAAAAAAAECoBePBPoEez0aoxAQAAAAAAABga1RiAgAAAAAAAKEWjAf7cE9MAAAAAAAAAOFq2rRpcjgcysnJcbcZYzRlyhSlp6crLi5Offv21ebNmz3WKy8v15133qnmzZsrISFBQ4YM0Y8//ujRp7i4WCNGjJDT6ZTT6dSIESO0e/duv+ZHEhMAAAAAAAAItcggLcehoKBATz31lDp37uzRPmPGDM2cOVOzZs1SQUGB0tLSNGDAAO3Zs8fdJycnR4sXL9bChQu1atUq7d27V4MHD5bL5XL3GTZsmDZt2qRly5Zp2bJl2rRpk0aMGOHXHEliAgAAAAAAAA3U3r17NXz4cD399NNq2rSpu90Yo0cffVT33HOPLr/8cnXs2FFz587V/v37tWDBAklSSUmJnn32Wf31r39V//791bVrV82fP1+ffvqpVqxYIUn64osvtGzZMj3zzDPKyspSVlaWnn76ab3++uvasmWLz/MkiQkAAAAAAACEWhArMUtLSz2W8vLyI07j9ttv10UXXaT+/ft7tG/dulWFhYXKzs52t8XExKhPnz5avXq1JGn9+vWqrKz06JOenq6OHTu6+6xZs0ZOp1M9e/Z09+nVq5ecTqe7jy9IYgIAAAAAAACh1khSRICX/2b6MjIy3PefdDqdmjZtmuUUFi5cqA0bNli+XlhYKElKTU31aE9NTXW/VlhYqOjoaI8KTqs+KSkpXuOnpKS4+/iCp5MDAAAAAAAAYWTbtm1KSkpy/xwTE2PZ5w9/+IOWL1+u2NjYI47lcDg8fjbGeLUd7vA+Vv19GedQVGICAAAAAAAAoRbEy8mTkpI8Fqsk5vr161VUVKTu3bsrMjJSkZGRys/P19///ndFRka6KzAPr5YsKipyv5aWlqaKigoVFxcftc+OHTu83n/nzp1eVZ5HQxITAAAAAAAAaGD69eunTz/9VJs2bXIvPXr00PDhw7Vp0ya1adNGaWlpysvLc69TUVGh/Px89e7dW5LUvXt3RUVFefTZvn27PvvsM3efrKwslZSU6MMPP3T3WbdunUpKStx9fMHl5AAAAAAAAECoHVI5GTAu37smJiaqY8eOHm0JCQlq1qyZuz0nJ0e5ubnKzMxUZmamcnNzFR8fr2HDhkmSnE6nRo0apfHjx6tZs2ZKTk7WhAkT1KlTJ/eDgtq3b69Bgwbplltu0ZNPPilJuvXWWzV48GC1bdvW5/mSxAQAAAAAAADgZeLEiSorK9OYMWNUXFysnj17avny5UpMTHT3eeSRRxQZGamhQ4eqrKxM/fr105w5cxQREeHu88ILL2js2LHup5gPGTJEs2bN8msuDmOMCcxm1V+lpaVyOp0qKSnxuOkpAAAID5zr7YnPBQCA8Ma53pp7v4yXkrxvVVm7scsl518Vlvuce2ICAAAAAAAAsDUuJwcAAAAAAABCrY7viVnfkMQEAAAAAAAAQi1Cgc/MVQV4PBvhcnIAAAAAAAAAtkYlJgAAAAAAABBqwbicPIwzfVRiAgAAAAAAALC1MM7PAgAAAAAAADYV8d8l0GOGKSoxAQAAAAAAANgalZgAAAAAAABAqHFPTL9QiQkAAAAAAADA1sI4PwsAAAAAAADYFJWYfgnjTQMAAAAAAABsqpEC/yCeML7mOow3DQAAAAAAAEA4oBITAAAAAAAACDUuJ/cLlZgAAAAAAAAAbC2M87MAAAAAAACATVGJ6RcqMQEAAAAAAADYWhjnZwEAAAAAAACbilDgn04e6PFshEpMAAAAAAAAALZGJSYAAAAAAAAQatwT0y+2rsSsqqrSvffeq9atWysuLk5t2rTRX/7yF1VXV7v7GGM0ZcoUpaenKy4uTn379tXmzZvrcNYAAAD1GzEYAABACETot0RmoBYuJ68b06dP1xNPPKFZs2bpiy++0IwZM/Twww/rsccec/eZMWOGZs6cqVmzZqmgoEBpaWkaMGCA9uzZU4czBwAAqL+IwQAAAGA3ti4yXbNmjS655BJddNFFkqSTTz5ZL774oj766CNJBysAHn30Ud1zzz26/PLLJUlz585VamqqFixYoNGjR9fZ3AEAAOorYjAAAIAQ4HJyv9i6EvOcc87R22+/ra+++kqS9PHHH2vVqlX63e9+J0naunWrCgsLlZ2d7V4nJiZGffr00erVq484bnl5uUpLSz0WAAAAHEQMBgAAALuxdX72rrvuUklJidq1a6eIiAi5XC49+OCDuvbaayVJhYWFkqTU1FSP9VJTU/X9998fcdxp06Zp6tSpwZs4AABAPUYMBgAAEAIRCvw9LLknZt146aWXNH/+fC1YsEAbNmzQ3Llz9b//+7+aO3euRz+Hw+HxszHGq+1Qd999t0pKStzLtm3bgjJ/AACA+ogYDAAAAHZj60rMP/3pT5o0aZKuueYaSVKnTp30/fffa9q0aRo5cqTS0tIkHawGaNmypXu9oqIir8qAQ8XExCgmJia4kwcAAKiniMEAAABCgHti+sXWlZj79+9Xo0aeU4yIiFB1dbUkqXXr1kpLS1NeXp779YqKCuXn56t3794hnSsAAEC4IAYDAACA3dg6P3vxxRfrwQcf1EknnaTTTz9dGzdu1MyZM3XTTTdJOngJU05OjnJzc5WZmanMzEzl5uYqPj5ew4YNq+PZAwAA1E/EYAAAACFAJaZfbL1pjz32mO677z6NGTNGRUVFSk9P1+jRo3X//fe7+0ycOFFlZWUaM2aMiouL1bNnTy1fvlyJiYl1OHMAAID6ixgMAAAgBBop8A/isfU117XjMMaYup5EXSstLZXT6VRJSYmSkpLqejoAACDAONfbE58LAADhjXO9Nfd+eUVKSgjw2Psk5+UKy31u60pMAAAAAAAAICxxOblfwrjIFAAAAAAAAEA4COP8LAAAAAAAAGBTVGL6hUpMAAAAAAAAALYWxvlZAAAAAAAAwKYiFPinkwd6PBuhEhMAAAAAAACArVGJCQAAAAAAAIQa98T0SxhvGgAAAAAAAGBTEQp8Zo7LyQEAAAAAAACgblCJCQAAAAAAAIQal5P7hUpMAAAAAAAAALYWxvlZAAAAAAAAwKYiFPh7WHJPTAAAAAAAAACoG1RiAgAAAAAAAKHGPTH9QiUmAAAAAAAAAFsL4/wsAAAAAAAAYFMRCnxmjntiAgAAAAAAAEDdoBITAAAAAAAACDWeTu4XkpgAAAAAAABAqPFgH79wOTkAAAAAAAAAWwvj/CwAAAAAAABgU1Ri+oVKTAAAAAAAAAC2Fsb5WQAAAAAAAMCmqMT0C5WYAAAAAAAAAGwtjPOzAAAAAAAAgD2ZRpKJCPyY4SqMNw0AAAAAAABAOKASEwAAAAAAAAgxV+TBJdBjhqsw3jQAAAAAAADAnkhi+ofLyQEAAAAAAADYWhjnZwEAAAAAAAB7qopwqCrCEeAxjSQT0DHtgkpMAAAAAAAAALZGJSYAAAAAAAAQYq7ISLkiA1uJ6Yo0kioDOqZdUIkJAAAAAAAAwNaoxAQAAAAAAABCzBURIVeA74npiqASEwAAAAAAAADqBJWYAAAAAAAAQIhVK0IuBbYSszpMn0wukcQEAAAAAAAAQq5KEaoKcBKzKoyTmFxODgAAAAAAAMDWqMQEAAAAAAAAQsylCLkCXF/oUnVAx7MTKjEBAAAAAAAA2BqVmAAAAAAAAECIBacSM7D32LQTKjEBAAAAAAAA2BqVmAAAAAAAAECIUYnpHyoxAQAAAAAAANgalZgAAAAAAABAiFGJ6R+SmAAAAAAAAECIuRShKpKYPuNycgAAAAAAAAC2RiUmAAAAAAAAEGIuRQbhcvLqgI5nJ1RiAgAAAAAAALA1KjEBAAAAAACAEHOpkVyKCPCY4YtKTAAAAAAAAKABevzxx9W5c2clJSUpKSlJWVlZ+s9//uN+3RijKVOmKD09XXFxcerbt682b97sMUZ5ebnuvPNONW/eXAkJCRoyZIh+/PFHjz7FxcUaMWKEnE6nnE6nRowYod27d/s1V5KYAAAAAAAAQIi5FBGUxR8nnniiHnroIX300Uf66KOPdMEFF+iSSy5xJypnzJihmTNnatasWSooKFBaWpoGDBigPXv2uMfIycnR4sWLtXDhQq1atUp79+7V4MGD5XL9Vhc6bNgwbdq0ScuWLdOyZcu0adMmjRgxwq+5Oowxxq81wlBpaamcTqdKSkqUlJRU19MBAAABxrnenvhcAAAIb5zrrdXsl/dKTlPjpMBeTr631KXznF/Vap8nJyfr4Ycf1k033aT09HTl5OTorrvuknSw6jI1NVXTp0/X6NGjVVJSohYtWmjevHm6+uqrJUk///yzMjIy9Oabb2rgwIH64osv1KFDB61du1Y9e/aUJK1du1ZZWVn68ssv1bZtW5/mRSUmAAAAAAAAEGJVigjKIh1MlB66lJeXH3M+LpdLCxcu1L59+5SVlaWtW7eqsLBQ2dnZ7j4xMTHq06ePVq9eLUlav369KisrPfqkp6erY8eO7j5r1qyR0+l0JzAlqVevXnI6ne4+viCJCQAAAAAAAIRYtSLlCvBS/d9neGdkZLjvP+l0OjVt2rQjzuPTTz9V48aNFRMTo9tuu02LFy9Whw4dVFhYKElKTU316J+amup+rbCwUNHR0WratOlR+6SkpHi9b0pKiruPL3g6OQAAAAAAABBGtm3b5nE5eUxMzBH7tm3bVps2bdLu3bu1aNEijRw5Uvn5+e7XHQ6HR39jjFfb4Q7vY9Xfl3EORRITAAAAAAAACLHjeRDPscc8qOZp476Ijo7WqaeeKknq0aOHCgoK9Le//c19H8zCwkK1bNnS3b+oqMhdnZmWlqaKigoVFxd7VGMWFRWpd+/e7j47duzwet+dO3d6VXkeDZeTAwAAAAAAAJB0sEKyvLxcrVu3VlpamvLy8tyvVVRUKD8/352g7N69u6Kiojz6bN++XZ999pm7T1ZWlkpKSvThhx+6+6xbt04lJSXuPr6gEhMAAAAAAAAIsWBWYvrqz3/+sy688EJlZGRoz549Wrhwod59910tW7ZMDodDOTk5ys3NVWZmpjIzM5Wbm6v4+HgNGzZMkuR0OjVq1CiNHz9ezZo1U3JysiZMmKBOnTqpf//+kqT27dtr0KBBuuWWW/Tkk09Kkm699VYNHjzY5yeTSyQxAQAAAAAAgAZpx44dGjFihLZv3y6n06nOnTtr2bJlGjBggCRp4sSJKisr05gxY1RcXKyePXtq+fLlSkxMdI/xyCOPKDIyUkOHDlVZWZn69eunOXPmKCLitwTtCy+8oLFjx7qfYj5kyBDNmjXLr7k6jDEmANtcr5WWlsrpdKqkpMTn+wUAAID6g3O9PfG5AAAQ3jjXW6vZL6+VnKmEpMDWF+4rrdLFzoKw3OfcExMAAAAAAACArXE5OQAAAAAAABBiVYpQVYDviVml8L3gmiQmAAAAAAAAEGIuRcoV4NScvw/2qU+4nBwAAAAAAACArVGJCQAAAAAAAIRYtSLkCvDl5NVhfDk5lZgAAAAAAAAAbI1KTAAAAAAAACDEXEGoxHSFcSWmT0nMpk2byuFw+DTgr7/+WqsJAQAA4CBiMAAAAOAgn5KYjz76qPvfu3bt0gMPPKCBAwcqKytLkrRmzRq99dZbuu+++4IySQAAgIaIGAwAACB8VamRqgJciVml6oCOZycOY4xfdaZXXHGFzj//fN1xxx0e7bNmzdKKFSu0ZMmSQM4vJEpLS+V0OlVSUqKkpKS6ng4AAAiwcDjXE4MBAID6hnO9tZr9Mq+kv+KTogI69v7SSo1wrgjLfe73g33eeustDRo0yKt94MCBWrFiRUAmBQAAAE/EYAAAAOHFpcigLOHK7yRms2bNtHjxYq/2JUuWqFmzZgGZFAAAADwRgwEAAISXmgf7BHoJV34nMadOnapJkybpoosu0gMPPKAHHnhAgwcP1t13362pU6cGfII//fSTrrvuOjVr1kzx8fE644wztH79evfrxhhNmTJF6enpiouLU9++fbV58+aAzwMAAKAuEYMBAACgIfM7iXnDDTdo9erVatKkiV555RUtWrRITqdTH3zwgW644YaATq64uFhnn322oqKi9J///Eeff/65/vrXv6pJkybuPjNmzNDMmTM1a9YsFRQUKC0tTQMGDNCePXsCOhcAAIC6RAwGAAAQXqjE9I/fD/YJpUmTJumDDz7Q+++/b/m6MUbp6enKycnRXXfdJUkqLy9Xamqqpk+frtGjR/v0PtxoFgCA8Ma53j/EYAAAIBA411ur2S9PlQwJyoN9bnUuDct97lMlZmlpqce/j7YE0tKlS9WjRw9dddVVSklJUdeuXfX000+7X9+6dasKCwuVnZ3tbouJiVGfPn20evXqI45bXl4e1HkDAAAEAjEYAABA+HIpQlUBXsK5EtOnJGbTpk1VVFQkSWrSpImaNm3qtdS0B9K3336rxx9/XJmZmXrrrbd02223aezYsfrnP/8pSSosLJQkpaameqyXmprqfs3KtGnT5HQ63UtGRkZA5w0AABAIxGAAAADAQT49d/2dd95RcnKyJGnlypVBndChqqur1aNHD+Xm5kqSunbtqs2bN+vxxx/X9ddf7+7ncDg81jPGeLUd6u6779a4cePcP5eWlhJEAwAA2yEGAwAACF8uRcrlW2rOjzFte9fIWvNpT/Xp08fy38HWsmVLdejQwaOtffv2WrRokSQpLS1N0sFqgJYtW7r7FBUVeVUGHComJkYxMTFBmDEAAEDgEIMBAAAAB/n9dPJQOvvss7VlyxaPtq+++kqtWrWSJLVu3VppaWnKy8tzv15RUaH8/Hz17t07pHMFAAAIF8RgAAAAwedSoyA8ndzWqb5aCWzNaoD98Y9/VO/evZWbm6uhQ4fqww8/1FNPPaWnnnpK0sFLmHJycpSbm6vMzExlZmYqNzdX8fHxGjZsWB3PHgAAoH4iBgMAAAg+VxAexBPOD/axdRLzzDPP1OLFi3X33XfrL3/5i1q3bq1HH31Uw4cPd/eZOHGiysrKNGbMGBUXF6tnz55avny5EhMT63DmAAAA9RcxGAAAAOzGYYwJ3zt++qi0tFROp1MlJSVKSkqq6+kAAIAA41xvT3wuAACEN8711mr2y8MlIxSXFB3QsctKK/Qn57yw3Od+Xyi/efPmI762bNmyWk0GAAAA1ojBAAAA0JD5ncTs0aOHHnvsMY+28vJy3XHHHbrssssCNjEAAAD8hhgMAAAgvLgUoaoAL+F8T0y/k5gvvPCCpk6dqgsvvFCFhYXatGmTunbtqnfeeUcffPBBMOYIAADQ4BGDAQAAoCHzO4l5+eWX65NPPlFVVZU6duyorKws9e3bV+vXr1e3bt2CMUcAAIAGjxgMAAAgvLgUGZQlXPmdxJQkl8uliooKuVwuuVwupaWlKSYmJtBzAwAAwCGIwQAAANBQ+Z3EXLhwoTp37iyn06mvvvpKb7zxhp566imde+65+vbbb4MxRwAAgAaPGAwAACC8uP57D8tAL+HK7yTmqFGjlJubq6VLl6pFixYaMGCAPv30U51wwgk644wzgjBFAAAAEIMBAACgIfP7QvkNGzaobdu2Hm1NmzbVv/71L82bNy9gEwMAAMBviMEAAADCi0uNAl456Tq+O0fWC35v2UsvvaT9+/d7tZeVlWnr1q0BmRQAAAA8EYMBAACElypFBGUJV34nMadOnaq9e/d6te/fv19Tp04NyKQAAADgiRgMAAAADZnfl5MbY+RwOLzaP/74YyUnJwdkUgAAAPBEDAYAABBeXIqUy//U3DHGdAV0PDvxeU81bdpUDodDDodDp512mkcQ7XK5tHfvXt12221BmSQAAEBDRQwGAAAA+JHEfPTRR2WM0U033aSpU6fK6XS6X4uOjtbJJ5+srKysoEwSAACgoSIGAwAACE/Vigj4g32qw/iemD4nMUeOHClJat26tc4++2xFRga23BUAAADeiMEAAACA43iwz5QpUzR37lyVlJQEYz4AAACwQAwGAAAQXlz/rcQM9BKu/E5idurUSffee6/S0tJ0xRVXaMmSJaqoqAjG3AAAAPBfxGAAAABoyPxOYv7973/XTz/9pFdffVWJiYkaOXKk0tLSdOuttyo/Pz8YcwQAAGjwiMEAAADCi0uNglCJ6Xeqr944ri1r1KiRsrOzNWfOHO3YsUNPPvmkPvzwQ11wwQWBnh8AAAD+ixgMAAAgfFQpIihLuKrVneELCwu1cOFCzZ8/X5988onOPPPMQM0LAAAAR0AMBgAAgIbG7yRmaWmpFi1apAULFujdd99VmzZtNGzYMC1cuFCnnnpqMOYIAADQ4BGDAQAAhBeXIuWqXX2h5Zjhyu8tS01NVdOmTTV06FDl5ubyl38AAIAQIAYDAABAQ+Z3EvPVV19V//791ahR+N4oFAAAwG6IwQAAAMJL9X8fxhPoMcOV30nM7OzsYMwDAAAAR0EMBgAAgIbMpyRm165d5XA4fBpww4YNtZoQAAAADiIGAwAACF+uIFRiBno8O/EpiXnppZe6/33gwAHNnj1bHTp0UFZWliRp7dq12rx5s8aMGROUSQIAADRExGAAAADAQT4lMSdPnuz+980336yxY8fqf/7nf7z6bNu2LbCzAwAAaMCIwQAAAMJXlSLUKMCVk1VhXInp953hX375ZV1//fVe7dddd50WLVoUkEkBAADAEzEYAABAeDl4OXlkgBeSmG5xcXFatWqVV/uqVasUGxsbkEkBAADAEzEYAAAAGjK/n06ek5Oj3//+91q/fr169eol6eD9mJ577jndf//9AZ8gAAAAiMEAAADCDQ/28Y/fScxJkyapTZs2+tvf/qYFCxZIktq3b685c+Zo6NChAZ8gAAAAiMEAAADQsPmdxJSkoUOHEiwDAACEGDEYAABA+KAS0z/HlcSUpIqKChUVFam6utqj/aSTTqr1pAAAAGCNGAwAAAANkd9JzK+//lo33XSTVq9e7dFujJHD4ZDL5QrY5AAAAHAQMRgAAEB4qQ5CJWY1lZi/ueGGGxQZGanXX39dLVu2lMPhCMa8AAAAcAhiMAAAADRkficxN23apPXr16tdu3bBmA8AAAAsEIMBAACElypFyBHgyskqKjF/06FDB/3yyy/BmAsAAACOgBgMAAAgvLgUoUbH/7iaI44Zrhr5u8L06dM1ceJEvfvuu9q1a5dKS0s9FgAAAAQeMRgAAAAaMr/Tvf3795ck9evXz6Odm8oDAAAEDzEYAABAeDlYiRnYyslwrsT0O4m5cuXKYMwDAAAAR0EMBgAAgIbM7yRmnz59gjEPAAAAHAUxGAAAQHihEtM/ft8TU5Lef/99XXfdderdu7d++uknSdK8efO0atWqgE4OAAAAvyEGAwAAQEPldxJz0aJFGjhwoOLi4rRhwwaVl5dLkvbs2aPc3NyATxAAAADEYAAAAOGmShFBWcKV30nMBx54QE888YSefvppRUVFudt79+6tDRs2BHRyAAAAOIgYDAAAAA2Z3/fE3LJli8477zyv9qSkJO3evTsQcwIAAMBhiMEAAADCS7Ui5fI/NXfMMcOV35WYLVu21DfffOPVvmrVKrVp0yYgkwIAAIAnYjAAAIDw4lJEUJZw5XcSc/To0frDH/6gdevWyeFw6Oeff9YLL7ygCRMmaMyYMcGYIwAAQINHDAYAAICGzO8a04kTJ6qkpETnn3++Dhw4oPPOO08xMTGaMGGC7rjjjmDMEQAAoMEjBgMAAAgvLjWSI8CVky7/6xXrDYcxxhzPivv379fnn3+u6upqdejQQY0bNw703EKmtLRUTqdTJSUlSkpKquvpAACAAAuncz0xGAAAqC8411ur2S/nlPxbkUkJAR27qnSfVjmvDMt9ftx3+4yPj1ePHj0CORcAAAAcAzEYAABAeKhShBTgSswq7okJAAAAAAAAAHUjfJ+7DgAAAAAAANiUS5FyBDg15wrjVB+VmAAAAAAAAABsLXzTswAAAAAAAIBNVStCrgDfw7I6jO+JSRITAAAAAAAACDFXEB7sE+ikqJ1wOTkAAAAAAAAAW6MSEwAAAAAAAAgxKjH9QyUmAAAAAAAAAFsjiQkAAAAAAACEWJUaqUoRAV58T/VNmzZNZ555phITE5WSkqJLL71UW7Zs8ehjjNGUKVOUnp6uuLg49e3bV5s3b/boU15erjvvvFPNmzdXQkKChgwZoh9//NGjT3FxsUaMGCGn0ymn06kRI0Zo9+7dfu0vkpgAAAAAAABAA5Ofn6/bb79da9euVV5enqqqqpSdna19+/a5+8yYMUMzZ87UrFmzVFBQoLS0NA0YMEB79uxx98nJydHixYu1cOFCrVq1Snv37tXgwYPlcrncfYYNG6ZNmzZp2bJlWrZsmTZt2qQRI0b4NV+HMcbUfrPrt9LSUjmdTpWUlCgpKamupwMAAAKMc7098bkAABDeONdbq9kvp5W8p4ikxgEd21W6V185zzuufb5z506lpKQoPz9f5513nowxSk9PV05Oju666y5JB6suU1NTNX36dI0ePVolJSVq0aKF5s2bp6uvvlqS9PPPPysjI0NvvvmmBg4cqC+++EIdOnTQ2rVr1bNnT0nS2rVrlZWVpS+//FJt27b1aX5UYgIAAAAAAABhpLS01GMpLy8/5jolJSWSpOTkZEnS1q1bVVhYqOzsbHefmJgY9enTR6tXr5YkrV+/XpWVlR590tPT1bFjR3efNWvWyOl0uhOYktSrVy85nU53H1+QxAQAAAAAAABCzKWIoCySlJGR4b7/pNPp1LRp0446F2OMxo0bp3POOUcdO3aUJBUWFkqSUlNTPfqmpqa6XyssLFR0dLSaNm161D4pKSle75mSkuLu44tIn3sCAAAAAAAACIhqRUj/TToGdkxp27ZtHpeTx8TEHHW9O+64Q5988olWrVrl9ZrD4fD42Rjj1Xa4w/tY9fdlnENRiQkAAAAAAACEkaSkJI/laEnMO++8U0uXLtXKlSt14oknutvT0tIkyatasqioyF2dmZaWpoqKChUXFx+1z44dO7zed+fOnV5VnkdDEhMAAAAAAAAIsSpFBGXxlTFGd9xxh1555RW98847at26tcfrrVu3VlpamvLy8txtFRUVys/PV+/evSVJ3bt3V1RUlEef7du367PPPnP3ycrKUklJiT788EN3n3Xr1qmkpMTdxxdcTg4AAAAAAAA0MLfffrsWLFigV199VYmJie6KS6fTqbi4ODkcDuXk5Cg3N1eZmZnKzMxUbm6u4uPjNWzYMHffUaNGafz48WrWrJmSk5M1YcIEderUSf3795cktW/fXoMGDdItt9yiJ598UpJ06623avDgwT4/mVwiiQkAAAAAAACEnEsRMgFOzVX7UYn5+OOPS5L69u3r0f7888/rhhtukCRNnDhRZWVlGjNmjIqLi9WzZ08tX75ciYmJ7v6PPPKIIiMjNXToUJWVlalfv36aM2eOIiJ+m8sLL7ygsWPHup9iPmTIEM2aNcuvbXMYY4xfa4Sh0tJSOZ1OlZSUeNz0FAAAhAfO9fbE5wIAQHjjXG+tZr+kl2xQo6TEY6/gh+rSPfrZ2S0s9zmVmAAAAAAAAECIHazEDM7TycMRD/YBAAAAAAAAYGtUYgIAAAAAAAAhRiWmf0hiAgAAAAAAACHmqo6QqQ5wEjPA49kJl5MDAAAAAAAAsLV6lcScNm2aHA6HcnJy3G3GGE2ZMkXp6emKi4tT3759tXnz5rqbJAAAQJghBgMAAAg8V1WEqgK8uKqoxKxzBQUFeuqpp9S5c2eP9hkzZmjmzJmaNWuWCgoKlJaWpgEDBmjPnj11NFMAAIDwQQwGAAAAO6gXScy9e/dq+PDhevrpp9W0aVN3uzFGjz76qO655x5dfvnl6tixo+bOnav9+/drwYIFdThjAACA+o8YDAAAIHhcVZFBWcJVvUhi3n777brooovUv39/j/atW7eqsLBQ2dnZ7raYmBj16dNHq1evPuJ45eXlKi0t9VgAAADgiRgMAAAAdmH79OzChQu1YcMGFRQUeL1WWFgoSUpNTfVoT01N1ffff3/EMadNm6apU6cGdqIAAABhhBgMAAAguFxVjeQI8D0sTVW9qFc8Lrbesm3btukPf/iD5s+fr9jY2CP2czgcHj8bY7zaDnX33XerpKTEvWzbti1gcwYAAKjviMEAAABgN7auxFy/fr2KiorUvXt3d5vL5dJ7772nWbNmacuWLZIOVgO0bNnS3aeoqMirMuBQMTExiomJCd7EAQAA6jFiMAAAgOBzVUUEoRIzfJ9ObuskZr9+/fTpp596tN14441q166d7rrrLrVp00ZpaWnKy8tT165dJUkVFRXKz8/X9OnT62LKAAAA9R4xGAAAQPBVVUXIUUkS01e2TmImJiaqY8eOHm0JCQlq1qyZuz0nJ0e5ubnKzMxUZmamcnNzFR8fr2HDhtXFlAEAAOo9YjAAAADYja2TmL6YOHGiysrKNGbMGBUXF6tnz55avny5EhMT63pqAAAAYYsYDAAAoHaMK1LGFeDUXKDHsxGHMcbU9STqWmlpqZxOp0pKSpSUlFTX0wEAAAHGud6e+FwAAAhvnOut1ewXfVkkJQZ4v+wpldqlhOU+D9/0LAAAAAAAAGBXVREHl0CPGaYa1fUEAAAAAAAAAOBoqMQEAAAAAAAAQo1KTL9QiQkAAAAAAADA1qjEBAAAAAAAAELN5ZCqHIEfM0xRiQkAAAAAAADA1qjEBAAAAAAAAEKt6r9LoMcMUyQxAQAAAAAAgFAjiekXLicHAAAAAAAAYGtUYgIAAAAAAAChRiWmX6jEBAAAAAAAAGBrVGICAAAAAAAAoVYlqTIIY4YpKjEBAAAAAAAA2BqVmAAAAAAAAECouf67BHrMMEUlJgAAAAAAAABboxITAAAAAAAACDWeTu4XkpgAAAAAAABAqJHE9AuXkwMAAAAAAACwNSoxAQAAAAAAgFCjEtMvVGICAAAAAAAAsDUqMQEAAAAAAIBQcynwlZOuAI9nI1RiAgAAAAAAALA1KjEBAAAAAACAUOOemH6hEhMAAAAAAACArVGJCQAAAAAAAIQalZh+IYkJAAAAAAAAhFrlf5dAjxmmuJwcAAAAAAAAgK1RiQkAAAAAAACEmuu/S6DHDFNUYgIAAAAAAACwNSoxAQAAAAAAgFBzKfAP4qESEwAAAAAAAADqBpWYAAAAAAAAQKhVKfCVmIEez0aoxAQAAAAAAABga1RiAgAAAAAAAKFGJaZfSGICAAAAAAAAoUYS0y9cTg4AAAAAAADA1qjEBAAAAAAAAELNpcBXTroCPJ6NUIkJAAAAAAAAwNaoxAQAAAAAAABCjXti+oVKTAAAAAAAAAC2RiUmAAAAAAAAEGqVkiKCMGaYohITAAAAAAAAgK1RiQkAAAAAAACEmkuBf5p4GD+dnCQmAAAAAAAAEGo82McvXE4OAAAAAAAAwNaoxAQAAAAAAABCzaXAV06G8eXkVGICAAAAAAAAsDUqMQEAAAAAAIBQq5IUEYQxwxSVmAAAAAAAAABsjUpMAAAAAAAAINQqFfjywsoAj2cjVGICAAAAAAAAsDUqMQEAAAAAAIBQcynwTxMP46eTk8QEAAAAAAAAQs2lwD+IJ4yTmFxODgAAAAAAAMDWqMQEAAAAAAAAQq1KgS8vDHRlp41QiQkAAAAAAADA1qjEBAAAAAAAAEKtUpIjCGOGKSoxAQAAAAAAANgalZgAAAAAAABAqLkU+KeJ83RyAAAAAAAAAKgbVGICAAAAAAAAocbTyf1CEhMAAAAAAAAINZcCn3TkcnIAAAAAAAAAqBtUYgIAAAAAAAChVllPxrQJKjEBAAAAAAAA2BpJTAAAAAAAACDUXEFa/PDee+/p4osvVnp6uhwOh5YsWeLxujFGU6ZMUXp6uuLi4tS3b19t3rzZo095ebnuvPNONW/eXAkJCRoyZIh+/PFHjz7FxcUaMWKEnE6nnE6nRowYod27d/s1V5KYAAAAAAAAQAO0b98+denSRbNmzbJ8fcaMGZo5c6ZmzZqlgoICpaWlacCAAdqzZ4+7T05OjhYvXqyFCxdq1apV2rt3rwYPHiyX67eM6rBhw7Rp0yYtW7ZMy5Yt06ZNmzRixAi/5so9MQEAAAAAAIBQq5LkCMKYfrjwwgt14YUXWr5mjNGjjz6qe+65R5dffrkkae7cuUpNTdWCBQs0evRolZSU6Nlnn9W8efPUv39/SdL8+fOVkZGhFStWaODAgfriiy+0bNkyrV27Vj179pQkPf3008rKytKWLVvUtm1bn+ZKJSYAAAAAAAAQRkpLSz2W8vJyv8fYunWrCgsLlZ2d7W6LiYlRnz59tHr1aknS+vXrVVlZ6dEnPT1dHTt2dPdZs2aNnE6nO4EpSb169ZLT6XT38QVJTAAAAAAAACDUqoK0SMrIyHDff9LpdGratGl+T6+wsFCSlJqa6tGemprqfq2wsFDR0dFq2rTpUfukpKR4jZ+SkuLu4wsuJwcAAAAAAABCzc9Lv/0Zc9u2bUpKSnI3x8TEHPeQDofnNe/GGK+2wx3ex6q/L+McikpMAAAAAAAAIIwkJSV5LMeTxExLS5Mkr2rJoqIid3VmWlqaKioqVFxcfNQ+O3bs8Bp/586dXlWeR0MSEwAAAAAAAAg1V5CWAGndurXS0tKUl5fnbquoqFB+fr569+4tSerevbuioqI8+mzfvl2fffaZu09WVpZKSkr04YcfuvusW7dOJSUl7j6+sHUSc9q0aTrzzDOVmJiolJQUXXrppdqyZYtHH2OMpkyZovT0dMXFxalv377avHlzHc0YAACg/iMGAwAAaBj27t2rTZs2adOmTZIOPsxn06ZN+uGHH+RwOJSTk6Pc3FwtXrxYn332mW644QbFx8dr2LBhkiSn06lRo0Zp/Pjxevvtt7Vx40Zdd9116tSpk/tp5e3bt9egQYN0yy23aO3atVq7dq1uueUWDR482Ocnk0s2T2Lm5+fr9ttv19q1a5WXl6eqqiplZ2dr37597j4zZszQzJkzNWvWLBUUFCgtLU0DBgzQnj176nDmAAAA9RcxGAAAQAgE8cE+vvroo4/UtWtXde3aVZI0btw4de3aVffff78kaeLEicrJydGYMWPUo0cP/fTTT1q+fLkSExPdYzzyyCO69NJLNXToUJ199tmKj4/Xa6+9poiICHefF154QZ06dVJ2drays7PVuXNnzZs3z6+5Oowxxr/Nqzs7d+5USkqK8vPzdd5558kYo/T0dOXk5Oiuu+6SJJWXlys1NVXTp0/X6NGjfRq3tLRUTqdTJSUlHjc9BQAA4YFzfe0QgwEAgOPBud5azX5RVokUGeD9UlUqrQnPfW7rSszDlZSUSJKSk5MlHSxxLSwsVHZ2trtPTEyM+vTpo9WrVx9xnPLycpWWlnosAAAAsEYMBgAAEAQ2qMSsT+pNEtMYo3Hjxumcc85Rx44dJf32dKTDn2SUmprq9eSkQ02bNk1Op9O9ZGRkBG/iAAAA9RgxGAAAAOyg3iQx77jjDn3yySd68cUXvV5zOBwePxtjvNoOdffdd6ukpMS9bNu2LeDzBQAACAfEYAAAAEFSJakywEsYV2JG1vUEfHHnnXdq6dKleu+993TiiSe629PS0iQdrAZo2bKlu72oqMirMuBQMTExiomJCd6EAQAAwgAxGAAAAOzC1pWYxhjdcccdeuWVV/TOO++odevWHq+3bt1aaWlpysvLc7dVVFQoPz9fvXv3DvV0AQAAwgIxGAAAQAi4grSEKVtXYt5+++1asGCBXn31VSUmJrrvseR0OhUXFyeHw6GcnBzl5uYqMzNTmZmZys3NVXx8vIYNG1bHswcAAKifiMEAAABCoEqSCfCYJDHrxuOPPy5J6tu3r0f7888/rxtuuEGSNHHiRJWVlWnMmDEqLi5Wz549tXz5ciUmJoZ4tgAAAOGBGAwAAAB24zDGBDrnW++UlpbK6XSqpKRESUlJdT0dAAAQYJzr7YnPBQCA8Ma53lrNftFpJVJEgPeLq1T6Kjz3ua3viQkAAAAAAAAAtr6cHAAAAAAAAAhLVZKqAzxmoMezESoxAQAAAAAAANgalZgAAAAAAABAqLkU+KeTU4kJAAAAAAAAAHWDSkwAAAAAAAAg1KoU+PLCMK7EJIkJAAAAAAAAhBpJTL9wOTkAAAAAAAAAW6MSEwAAAAAAAAi1SlGJ6QcqMQEAAAAAAADYGpWYAAAAAAAAQKhVSzIBHjPQ49kIlZgAAAAAAAAAbI1KTAAAAAAAACDUqiQ5AjwmlZgAAAAAAAAAUDeoxAQAAAAAAABCjUpMv5DEBAAAAAAAAEKtUiQx/cDl5AAAAAAAAABsjUpMAAAAAAAAINRcohLTD1RiAgAAAAAAALA1KjEBAAAAAACAuhDGlZOBRiUmAAAAAAAAAFsjiQkAAAAAAADA1khiAgAAAAAAALA1kpgAAAAAAAAAbI0kJgAAAAAAAABbI4kJAAAAAAAAwNYi63oCAAAAAAAAQMNT+d8l0GOGJyoxAQAAAAAAANgalZgAAAAAAABAyFX9dwn0mOGJSkwAAAAAAAAAtkYlJgAAAAAAABBy3BPTH1RiAgAAAAAAALA1KjEBAAAAAACAkOOemP4giQkAAAAAAACEXJUCf/l3+CYxuZwcAAAAAAAAgK1RiQkAAAAAAACEHA/28QeVmAAAAAAAAABsjUpMAAAAAAAAIOR4sI8/qMQEAAAAAAAAYGtUYgIAAAAAAAAhx9PJ/UElJgAAAAAAAABboxITAAAAAAAACDnuiekPkpgAAAAAAABAyFUq8JeTB3o8++BycgAAAAAAAAC2RiUmAAAAAAAAEHJcTu4PKjEBAAAAAAAA2BqVmAAAAAAAAEDIVSnw97CkEhMAAAAAAAAA6gSVmAAAAAAAAEDIcU9Mf1CJCQAAAAAAAMDWqMQEAAAAAAAAQq5Sgb8nZqDHsw+SmAAAAAAAAEDIcTm5P7icHAAAAAAAAICtUYkJAAAAAAAAhFyVAn/5N5WYAAAAAAAAAFAnqMQEAAAAAAAAQo57YvqDSkwAAAAAAAAAtkYlJgAAAAAAABBylQr8PTEDPZ59UIkJAAAAAAAAwNaoxAQAAAAAAABCjkpMf5DEBAAAAAAAAEKOB/v4g8vJAQAAAAAAANgalZgAAAAAAABAyFUp8Jd/U4kJAAAAAAAAAHWCSkwAAAAAAAAg5Lgnpj+oxAQAAAAAAABga1RiAgAAAAAAACFXqcCn5gJ9j037oBITAAAAAAAAgK1RiQkAAAAAAACEHPfE9AeVmAAAAAAAAABsjUpMAAAAAAAAIOSqFPh7WIZvJSZJTAAAAAAAACDkuJzcHyQxD+F0TpMU6/7ZmMlefRyOqT6NVZt1EWpWXwOrL32gvy5RPvar7fzifFzfqp+v87Fa12r7kmoxXqqP41mt689ftqzm/aNF2x6LtjKLtlIf26xYjWfF6vO0Wre2f+Hz9biz6ldXT8gL3xO4PwJ9PvNnfV8d6X2Ol/f8DgR0fASWLzFYKIQuzvP1d6ev61qxOp9ZnRuszptW/ZJ97Gf1+95qLkeKO6zOkVbvbaU2v/N9jUd81cyibZdFm9WcE/0Y09dYoZVF268WbadatFnFPFb7y9djzuoYKbJo6+TjexxpTKtjyep9rPbN9xZtVseD1XtY7S+r+fkaG/lzXFvtb1/jU6u4ujZzrM3/YXyNbWvzHZV83z6r4y4Yn5+n2pwLrc5J/sR0gX1vYjAETtjcE3P27Nlq3bq1YmNj1b17d73//vt1PSUAAICwRwwGAABwvCqDtISnsEhivvTSS8rJydE999yjjRs36txzz9WFF16oH374oa6nBgAAELaIwQAAABAqYZHEnDlzpkaNGqWbb75Z7du316OPPqqMjAw9/vjjdT01AACAsEUMBgAAUBtVQVrCU72/J2ZFRYXWr1+vSZMmebRnZ2dr9erVluuUl5ervLzc/XNJSUnNKx79Skut7hXi2/0carMuQq2u7onp8rFfMOYX6HtGGYs2q3vHRPg4XrVFm9X9hazU5p5DkvW89/rYZvUd3+9jmxVff2f4et+g2p7MuCdmfRX485nv6/vqyO9zvA6f38FzvDFWv69wPEIfg4VCqOK8UNwT0yrOsJqjw8d+VucVq35Wv+99jXn8eW8rgY5vasPqXO/rudkqXpIOvW/sb3w97qziln0WbVbxltW6VvvLqs3XY8TXuRzpc7Laj7XZZqt+VsexVT+rzz5U98SszXfXKgb29b1DcU9MX39/+cPXz8Dqsw/+PTFrdy703l/+xHSBfW9isKMrP3YXW4xpD/U+ifnLL7/I5XIpNdXzoR+pqakqLCy0XGfatGmaOtXq5uuPePzkdD503POqzboAAARSfTifhep99uzZI6fTGZL3Cnd2jcFCwe7zAwDUf4E+1/gzXjDOc8RgnqKjo5WWlqbCwkeO3fk4pKWlKTo6Oihj16V6n8Ss4XB4/hXGGOPVVuPuu+/WuHHj3D9XV1fr119/VbNmzY64jl2UlpYqIyND27ZtU1KS1RPkGib2izf2iTf2iTX2izf2ibX6vF+MMdqzZ4/S09PreiphJ1xisPp8fOMgPsP6jc+vfuPzq9+C+fkRg1mLjY3V1q1bVVFREZTxo6OjFRtrVcFfv9X7JGbz5s0VERHh9Rf/oqIir8qAGjExMYqJifFoa9KkSbCmGBRJSUmcHCywX7yxT7yxT6yxX7yxT6zV1/3CX/8DK1xjsPp6fOM3fIb1G59f/cbnV78F6/MjBrMWGxsblonGYKr3D/aJjo5W9+7dlZeX59Gel5en3r1719GsAAAAwhsxGAAAAEKp3ldiStK4ceM0YsQI9ejRQ1lZWXrqqaf0ww8/6LbbbqvrqQEAAIQtYjAAAACESlgkMa+++mrt2rVLf/nLX7R9+3Z17NhRb775plq1alXXUwu4mJgYTZ482etSrIaO/eKNfeKNfWKN/eKNfWKN/YLDhVMMxvFd//EZ1m98fvUbn1/9xueH+sJheM49AAAAAAAAABur9/fEBAAAAAAAABDeSGICAAAAAAAAsDWSmAAAAAAAAABsjSQmAAAAAAAAAFsjiWkzxcXFGjFihJxOp5xOp0aMGKHdu3cfdR2Hw2G5PPzww+4+ffv29Xr9mmuuCfLWBM7x7JcbbrjBa5t79erl0ae8vFx33nmnmjdvroSEBA0ZMkQ//vhjELckcPzdJ5WVlbrrrrvUqVMnJSQkKD09Xddff71+/vlnj3717ViZPXu2WrdurdjYWHXv3l3vv//+Ufvn5+ere/fuio2NVZs2bfTEE0949Vm0aJE6dOigmJgYdejQQYsXLw7W9IPCn33yyiuvaMCAAWrRooWSkpKUlZWlt956y6PPnDlzLH/HHDhwINibElD+7Jd3333Xcpu//PJLj34N6Vix+p3qcDh0+umnu/uEy7GChuPBBx9U7969FR8fryZNmvi0jjFGU6ZMUXp6uuLi4tS3b19t3rw5uBOFpWDFhwiOYMRsCK1gxFIIvvfee08XX3yx0tPT5XA4tGTJkmOuw/cPdkUS02aGDRumTZs2admyZVq2bJk2bdqkESNGHHWd7du3eyzPPfecHA6HrrjiCo9+t9xyi0e/J598MpibElDHs18kadCgQR7b/Oabb3q8npOTo8WLF2vhwoVatWqV9u7dq8GDB8vlcgVrUwLG332yf/9+bdiwQffdd582bNigV155RV999ZWGDBni1be+HCsvvfSScnJydM8992jjxo0699xzdeGFF+qHH36w7L9161b97ne/07nnnquNGzfqz3/+s8aOHatFixa5+6xZs0ZXX321RowYoY8//lgjRozQ0KFDtW7dulBtVq34u0/ee+89DRgwQG+++abWr1+v888/XxdffLE2btzo0S8pKcnrd01sbGwoNikg/N0vNbZs2eKxzZmZme7XGtqx8re//c1jX2zbtk3Jycm66qqrPPrV92MFDUtFRYWuuuoq/f73v/d5nRkzZmjmzJmaNWuWCgoKlJaWpgEDBmjPnj1BnCmsBCs+ROAFI2ZDaAUjlkJo7Nu3T126dNGsWbN86s/3D7ZmYBuff/65kWTWrl3rbluzZo2RZL788kufx7nkkkvMBRdc4NHWp08f84c//CFQUw2p490vI0eONJdccskRX9+9e7eJiooyCxcudLf99NNPplGjRmbZsmUBmXuwBOpY+fDDD40k8/3337vb6tOxctZZZ5nbbrvNo61du3Zm0qRJlv0nTpxo2rVr59E2evRo06tXL/fPQ4cONYMGDfLoM3DgQHPNNdcEaNbB5e8+sdKhQwczdepU98/PP/+8cTqdgZpinfB3v6xcudJIMsXFxUccs6EfK4sXLzYOh8N899137rZwOFbQMPl67FZXV5u0tDTz0EMPudsOHDhgnE6neeKJJ4I4QxwuWPEhgiMYMRtCKxixFEJPklm8ePFR+/D9g51RiWkja9askdPpVM+ePd1tvXr1ktPp1OrVq30aY8eOHXrjjTc0atQor9deeOEFNW/eXKeffromTJhQbyoGarNf3n33XaWkpOi0007TLbfcoqKiIvdr69evV2VlpbKzs91t6enp6tixo8/7u64E4liRpJKSEjkcDq9L6OrDsVJRUaH169d7fH6SlJ2dfcR9sGbNGq/+AwcO1EcffaTKysqj9rH7MSEd3z45XHV1tfbs2aPk5GSP9r1796pVq1Y68cQTNXjwYK9KTTurzX7p2rWrWrZsqX79+mnlypUerzX0Y+XZZ59V//791apVK4/2+nysAMeydetWFRYWenx3YmJi1KdPn3rx3Q8nwYoPEXjBitkQOsGKpWBPfP9gZ5F1PQH8prCwUCkpKV7tKSkpKiws9GmMuXPnKjExUZdffrlH+/Dhw9W6dWulpaXps88+0913362PP/5YeXl5AZl7MB3vfrnwwgt11VVXqVWrVtq6davuu+8+XXDBBVq/fr1iYmJUWFio6OhoNW3a1GO91NRUn/d3XQnEsXLgwAFNmjRJw4YNU1JSkru9vhwrv/zyi1wul1JTUz3aj/b5FRYWWvavqqrSL7/8opYtWx6xj92PCen49snh/vrXv2rfvn0aOnSou61du3aaM2eOOnXqpNLSUv3tb3/T2WefrY8//rheXBJ0PPulZcuWeuqpp9S9e3eVl5dr3rx56tevn959912dd955ko58PDWEY2X79u36z3/+owULFni01/djBTiWmu+H1Xfn+++/r4spNVjBig8ReMGK2RA6wYqlYE98/2BnJDFDYMqUKZo6depR+xQUFEg6+JCewxljLNutPPfccxo+fLjX/cduueUW9787duyozMxM9ejRQxs2bFC3bt18GjvQgr1frr76ave/O3bsqB49eqhVq1Z64403vJK8/owbTKE6ViorK3XNNdeourpas2fP9njNjsfK0Ry+vcfaB1b9D2/3d0y7Od75v/jii5oyZYpeffVVj/8Y9urVy+OhB2effba6deumxx57TH//+98DN/Eg82e/tG3bVm3btnX/nJWVpW3btul///d/PQLvhnqszJkzR02aNNGll17q0R4uxwrqN1/PpT169Dju96jv3307s2t8iNoLRsyG0ApGLAV74vsHuyKJGQJ33HHHMZ/ufPLJJ+uTTz7Rjh07vF7buXOn119CrLz//vvasmWLXnrppWP27datm6KiovT111/XWWIqVPulRsuWLdWqVSt9/fXXkqS0tDRVVFSouLjYoxqzqKhIvXv39nncQArFPqmsrNTQoUO1detWvfPOOx5VmFbscKxYad68uSIiIrz++ltUVHTEfZCWlmbZPzIyUs2aNTtqH3+OtbpyPPukxksvvaRRo0bp5ZdfVv/+/Y/at1GjRjrzzDPd3yW7q81+OVSvXr00f/58988N9Vgxxui5557TiBEjFB0dfdS+9e1YQXjw9Vx6PNLS0iQdrFI5tBKlvnz364O6jg8ReMGK2RA6wYqlYE98/2BnJDFDoHnz5mrevPkx+2VlZamkpEQffvihzjrrLEnSunXrVFJS4lNS7dlnn1X37t3VpUuXY/bdvHmzKisr67QUPFT7pcauXbu0bds29zZ3795dUVFRysvLc186u337dn322WeaMWPGcWxR7QV7n9QkML/++mutXLnSp5OQHY4VK9HR0erevbvy8vJ02WWXudvz8vJ0ySWXWK6TlZWl1157zaNt+fLl6tGjh6Kiotx98vLy9Mc//tGjT10ltv1xPPtEOliBedNNN+nFF1/URRdddMz3McZo06ZN6tSpU0DmHWzHu18Ot3HjRo/vQUM8ViQpPz9f33zzjeW9lw9X344VhAdfz6XHo+Z2K3l5eerataukg/eKy8/P1/Tp04Pyng1NXceHCLxgxWwInWDFUrAnvn+wtdA+RwjHMmjQINO5c2ezZs0as2bNGtOpUyczePBgjz5t27Y1r7zyikdbSUmJiY+PN48//rjXmN98842ZOnWqKSgoMFu3bjVvvPGGadeunenataupqqoK6vYEir/7Zc+ePWb8+PFm9erVZuvWrWblypUmKyvLnHDCCaa0tNS9zm233WZOPPFEs2LFCrNhwwZzwQUXmC5dutSL/eLvPqmsrDRDhgwxJ554otm0aZPZvn27eykvLzfG1L9jZeHChSYqKso8++yz5vPPPzc5OTkmISHB/bTkSZMmmREjRrj7f/vttyY+Pt788Y9/NJ9//rl59tlnTVRUlPn3v//t7vPBBx+YiIgI89BDD5kvvvjCPPTQQyYyMtLj6ad25u8+WbBggYmMjDT/+Mc/PI6J3bt3u/tMmTLFLFu2zPzf//2f2bhxo7nxxhtNZGSkWbduXci373j5u18eeeQRs3jxYvPVV1+Zzz77zEyaNMlIMosWLXL3aWjHSo3rrrvO9OzZ03LMcDhW0LB8//33ZuPGjWbq1KmmcePGZuPGjWbjxo1mz5497j6Hx10PPfSQcTqd5pVXXjGffvqpufbaa03Lli094guERrDiQwReMGI2hFYwYimExp49e9znN0lm5syZZuPGjeb77783xvD9Q/1CEtNmdu3aZYYPH24SExNNYmKiGT58uCkuLvboI8k8//zzHm1PPvmkiYuL80g81Pjhhx/MeeedZ5KTk010dLQ55ZRTzNixY82uXbuCuCWB5e9+2b9/v8nOzjYtWrQwUVFR5qSTTjIjR440P/zwg8c6ZWVl5o477jDJyckmLi7ODB482KuPXfm7T7Zu3WokWS4rV640xtTPY+Uf//iHadWqlYmOjjbdunUz+fn57tdGjhxp+vTp49H/3XffNV27djXR0dHm5JNPtkz8v/zyy6Zt27YmKirKtGvXrt4FW/7skz59+lgeEyNHjnT3ycnJMSeddJKJjo42LVq0MNnZ2Wb16tUh3KLA8Ge/TJ8+3ZxyyikmNjbWNG3a1JxzzjnmjTfe8BqzIR0rxhize/duExcXZ5566inL8cLlWEHDMXLkyKOeF43xjruqq6vN5MmTTVpamomJiTHnnXee+fTTT0M/eQQtPkRwBCNmQ2gFI5ZC8K1cufKo8T7fP9QnDmP+e4dWAAAAAAAAALChRnU9AQAAAAAAAAA4GpKYAAAAAAAAAGyNJCYAAAAAAAAAWyOJCQAAAAAAAMDWSGICAAAAAAAAsDWSmAAAAAAAAABsjSQmAAAAAAAAAFsjiQkAAAAAAADA1khiAmgw+vbtq5ycnLqeBgAAQINCDAYACASSmAAAAAAAAABsjSQmAAAAAAAAAFsjiQmgQamqqtIdd9yhJk2aqFmzZrr33ntljKnraQEAAIQ1YjAAQG2RxATQoMydO1eRkZFat26d/v73v+uRRx7RM888U9fTAgAACGvEYACA2nIY/vwFoIHo27evioqKtHnzZjkcDknSpEmTtHTpUn3++ed1PDsAAIDwRAwGAAgEKjEBNCi9evVyB8+SlJWVpa+//loul6sOZwUAABDeiMEAALVFEhMAAAAAAACArZHEBNCgrF271uvnzMxMRURE1NGMAAAAwh8xGACgtkhiAmhQtm3bpnHjxmnLli168cUX9dhjj+kPf/hDXU8LAAAgrBGDAQBqK7KuJwAAoXT99derrKxMZ511liIiInTnnXfq1ltvretpAQAAhDViMABAbfF0cgAAAAAAAAC2xuXkAAAAAAAAAGyNJCYAAAAAAAAAWyOJCQAAAAAAAMDWSGICAAAAAAAAsDWSmAAAAAAAAABsjSQmAAAAAAAAAFsjiQkAAAAAAADA1khiAgAAAAAAALA1kpgAAAAAAAAAbI0kJgAAAAAAAABbI4kJAAAAAAAAwNb+H7Q/00oBD8xRAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 1800x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
|
|
"\n",
|
|
"a0=ax[0].hist2d(b_found, vtx_types_found, bins=100, cmap=plt.cm.jet, cmin=1)\n",
|
|
"ax[0].set_xlabel(\"b\")\n",
|
|
"ax[0].set_ylabel(\"endvtx id\")\n",
|
|
"ax[0].set_title(\"found endvtx id wrt b parameter\")\n",
|
|
"\n",
|
|
"a1=ax[1].hist2d(b_lost, vtx_types_lost, bins=100, cmap=plt.cm.jet, cmin=1) \n",
|
|
"ax[1].set_xlabel(\"b\")\n",
|
|
"ax[1].set_ylabel(\"endvtx id\")\n",
|
|
"ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"B:\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"fig.colorbar(a0[3], ax=ax, orientation='vertical')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABPEAAANVCAYAAAAZd2vuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1JklEQVR4nOzdeVyU5f7/8ffI7oYrmyuau2mGpZALZmJumelRq4NaapGZKZWJaaItZpmHLJcsyspSzzlqq5lYgnqkTiqa5lJ5VMwgww1XFrl/f/Rjvg0z4IADM8Dr+XjMo+bic1/Xdd8zDB8/c1/3bTIMwxAAAAAAAAAAl1XF2RMAAAAAAAAAUDSKeAAAAAAAAICLo4gHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAAAAAAuDiKeEA5tXr1arVr104+Pj4ymUzavXu3YmNjZTKZLOIWL16s5cuXO2eSLu6jjz5SXFycs6dx3RITE2UymZSYmOjsqdht+fLlMplMOnr0qEX7jBkz1LhxY7m7u6tWrVqSpPDwcIWHh1+zT1d4r5tMJk2cONGpcwAAlH/kedfPGXleeHi42rdv7/B+mzZtqjFjxji839JkMpkUGxtr0fb111+rc+fOqlatmkwmkz7++ONCc8KCtm/frtjYWJ09e7bU5nwtY8aMUfXq1Z02PiBRxAPKpT/++EORkZFq3ry5NmzYoOTkZLVs2VLjxo1TcnKyRSzJXeEqShGvPBowYICSk5MVGBhobvvkk0/0wgsvaNSoUUpKStKmTZsk/fkeXrx48TX75L0OAKgIyPMcgzzPuZKTkzVu3Djzc8MwNHz4cHl4eOjTTz9VcnKyevbsaTMntGX79u2aPXu2U4t4gCtwd/YEABTfTz/9pJycHP39739Xz549ze1Vq1ZVw4YNnTgza5cvX5a3t7fVN8cV2eXLl+Xj4+PsaZTYpUuXVLVq1VIdo379+qpfv75F2759+yRJkyZNkp+fn7m9bdu2Dh8/JydHJpNJ7u78GQQAuBbyPNdW3vO8q1evKjc3V15eXqU6TteuXS2e//bbbzp9+rSGDBmi3r17W/ysYE7oCOX9dQIKw5l4QDkzZswYdevWTZI0YsQImUwm81LDgsssmjZtqh9//FFJSUkymUwymUxq2rSppP9bgrlixQpFR0crICBAPj4+6tmzp1JSUizG3LFjh0aOHKmmTZvKx8dHTZs21b333qtjx45ZxOWfDr9x40Y9+OCDql+/vqpWraqsrCz98ssveuCBB9SiRQtVrVpVDRo00KBBg7R3716LPvLn9dFHH+npp59WYGCgqlevrkGDBun333/X+fPn9dBDD6levXqqV6+eHnjgAV24cMGiD8MwtHjxYt10003y8fFR7dq1NWzYMP3vf/8zx4SHh+uLL77QsWPHzMfmr8cuOztbzz//vFq3bi0vLy/Vr19fDzzwgP744w+LsZo2baqBAwdq7dq16tSpk7y9vTV79uxCX7+EhAQNHjxYDRs2lLe3t2644QY9/PDDysjIKHSbvzp48KDuvPNOVa1aVfXq1VNUVJTOnz9vM3bTpk3q3bu3atasqapVq+q2227T119/bRGT/57ZtWuXhg0bptq1a6t58+aFjn/p0iU9+eSTCg4Olre3t+rUqaPOnTtr5cqVFnHfffedBg0apLp168rb21vNmzfX5MmTzT8vuHSiadOmmjFjhiTJ39/fYgmGPctp7Xmvf/DBB3riiSfUoEEDeXl56ZdfftEff/yhCRMmqG3btqpevbr8/Px0++23a+vWrVZjZGVlac6cOWrTpo28vb1Vt25d9erVS9u3by90XoZhaPr06fLw8NBbb71V5D4AAECeV77zvHxbt25V165d5ePjowYNGmjmzJm6evXqNbfLycnR1KlTFRAQoKpVq6pbt27673//azM2PT1dDz/8sBo2bChPT08FBwdr9uzZys3NNcccPXpUJpNJL7/8sp5//nkFBwfLy8tLmzdvLnQO//rXv9SlSxf5+vqqatWqatasmR588EGLmLNnz+qJJ55Qs2bN5OXlJT8/P/Xv318HDx40x/w1l4uNjTUXoJ9++mmL96o9y2ljY2P11FNPSZKCg4PNr2f+pWSKep0WLVqkHj16yM/PT9WqVdONN96ol19+WTk5OVbjbNiwQb179zbve5s2bTR37txC5yVJ//nPf1SvXj0NHDhQFy9eLDIWcAROQQDKmZkzZ+rWW2/Vo48+qhdffFG9evVSzZo1bcauW7dOw4YNk6+vr3k5YsFv3aZPn66bb75Zb7/9ts6dO6fY2FiFh4crJSVFzZo1k/RnAtCqVSuNHDlSderUUVpampYsWaJbbrlF+/fvV7169Sz6fPDBBzVgwAB98MEHunjxojw8PPTbb7+pbt26eumll1S/fn2dPn1a7733nrp06aKUlBS1atXKal69evXS8uXLdfToUT355JO699575e7uro4dO2rlypVKSUnR9OnTVaNGDS1cuNC87cMPP6zly5dr0qRJmjdvnk6fPq05c+YoLCxMe/bskb+/vxYvXqyHHnpIhw8f1rp16yzGzsvL0+DBg7V161ZNnTpVYWFhOnbsmGbNmqXw8HDt2LHD4pu9Xbt26cCBA5oxY4aCg4NVrVq1Ql+/w4cPKzQ0VOPGjZOvr6+OHj2qBQsWqFu3btq7d688PDwK3fb3339Xz5495eHhocWLF8vf318ffvihzWuwrVixQqNGjdLgwYP13nvvycPDQ2+++ab69u2rr776yuob0HvuuUcjR45UVFRUkQlIdHS0PvjgAz3//PPq1KmTLl68qH379unUqVPmmK+++kqDBg1SmzZttGDBAjVu3FhHjx7Vxo0bC+133bp1WrRokeLj47Vhwwb5+voW62wDe97rMTExCg0N1dKlS1WlShX5+fmZk/VZs2YpICBAFy5c0Lp16xQeHq6vv/7a/A+n3Nxc9evXT1u3btXkyZN1++23Kzc3V99++61SU1MVFhZmNaesrCyNGTNGX3zxhT777DPdeeeddu8PAKByIs8r33me9GdxbeTIkZo2bZrmzJmjL774Qs8//7zOnDmjN954o8htx48fr/fff19PPvmk+vTpo3379umee+6x+sI2PT1dt956q6pUqaJnn31WzZs3V3Jysp5//nkdPXpU7777rkX8woUL1bJlS82fP181a9ZUixYtbI6fnJysESNGaMSIEYqNjZW3t7eOHTumb775xhxz/vx5devWTUePHtXTTz+tLl266MKFC9qyZYvS0tLUunVrq37HjRunjh076p577tFjjz2m++67r1hnAo4bN06nT5/W66+/rrVr15qX3v51tUZhr9Phw4d13333KTg4WJ6entqzZ49eeOEFHTx4UO+88455+/j4eI0fP149e/bU0qVL5efnp59++sm8UsSWf/7znxo1apQefPBBvf7663Jzc7N7n4ASMwCUO5s3bzYkGf/6178s2mfNmmUU/LVu166d0bNnz0L7uPnmm428vDxz+9GjRw0PDw9j3LhxhY6fm5trXLhwwahWrZrx2muvmdvfffddQ5IxatSoa+5Dbm6ukZ2dbbRo0cKYMmWK1bwGDRpkET958mRDkjFp0iSL9rvvvtuoU6eO+XlycrIhyXj11Vct4o4fP274+PgYU6dONbcNGDDAaNKkidXcVq5caUgy1qxZY9H+/fffG5KMxYsXm9uaNGliuLm5GYcOHbrmPheUl5dn5OTkGMeOHTMkGZ988kmR8U8//bRhMpmM3bt3W7T36dPHkGRs3rzZMAzDuHjxolGnTh2rY3j16lWjY8eOxq233mpuy3/PPPvss3bNuX379sbdd99dZEzz5s2N5s2bG5cvXy40Jv+9cuTIEau5/PHHHxaxPXv2tPkeLuha7/UePXpcs4/c3FwjJyfH6N27tzFkyBBz+/vvv29IMt56660it5dkPProo8apU6eMbt26GQ0aNLB6vQAAKAp53v8pb3lez549beZ048ePN6pUqWIcO3as0G0PHDhgSLI4XoZhGB9++KEhyRg9erS57eGHHzaqV69u1d/8+fMNScaPP/5oGIZhHDlyxJBkNG/e3MjOzr7m/PO3P3v2bKExc+bMMSQZCQkJRfYlyZg1a5b5ef5cXnnlFYs4WzmhLa+88kqhcfa+TlevXjVycnKM999/33BzczNOnz5tGIZhnD9/3qhZs6bRrVs3i9+XgkaPHm1Uq1bNMAzDeOmllww3Nzdj3rx5RY4JOBrLaYFK7r777rNYXtCkSROFhYVZnGZ/4cIFPf3007rhhhvk7u4ud3d3Va9eXRcvXtSBAwes+hw6dKhVW25url588UW1bdtWnp6ecnd3l6enp37++WebfQwcONDieZs2bST9eUOEgu2nT582L7X4/PPPZTKZ9Pe//125ubnmR0BAgDp27GjXHVw///xz1apVS4MGDbLo46abblJAQIBVHx06dFDLli2v2a8knTx5UlFRUWrUqJHc3d3l4eGhJk2aSJLN4/BXmzdvVrt27dSxY0eL9vvuu8/i+fbt23X69GmNHj3aYv55eXm688479f3331udbWfrNbPl1ltv1Zdffqlp06YpMTFRly9ftvj5Tz/9pMOHD2vs2LHy9va2q8+yUtg+Ll26VDfffLO8vb3Nr8nXX39t8Xp8+eWX8vb2tlpOYsuRI0cUGhqqzMxMffvtt1avFwAAZYU8z1pp5nmSVKNGDd11110Wbffdd5/y8vK0ZcuWQrfLf03uv/9+i/bhw4dbXcP3888/V69evRQUFGSxD/369ZMkJSUlWcTfddddRa72yHfLLbeYx/znP/+pEydOWMV8+eWXatmype64445r9leWCnudUlJSdNddd6lu3bpyc3OTh4eHRo0apatXr+qnn36S9GfunJmZqQkTJlzz+o6GYejhhx/WrFmz9NFHH2nq1Kmlsj9AYVhOC1RyAQEBNtv27Nljfn7ffffp66+/1syZM3XLLbeoZs2aMplM6t+/v1URR5LNu0tFR0dr0aJFevrpp9WzZ0/Vrl1bVapU0bhx42z2UadOHYvnnp6eRbZfuXJF1atX1++//y7DMOTv729zf/OXjhTl999/19mzZ819F1Tw+nXXuptWvry8PEVEROi3337TzJkzdeONN6patWrKy8tT165dbR6Hvzp16pSCg4Ot2gu+hr///rskadiwYYX2dfr0aYvlIPbuw8KFC9WwYUOtXr1a8+bNk7e3t/r27atXXnlFLVq0MC9PdbULb0u293HBggV64oknFBUVpeeee0716tWTm5ubZs6cafGPjj/++ENBQUGqUuXa333997//VUZGhl544QWXPA4AgMqDPM9aaeV5+WzNLf91+OvlRwrK/1nB18zd3V1169a1aPv999/12WefFVqYK+k+9OjRQx9//LEWLlyoUaNGKSsrS+3atdMzzzyje++9V9KfOVHjxo3t6q8s2drH1NRUde/eXa1atdJrr72mpk2bytvbW//973/16KOPmt+bxclfs7OztXr1arVr185cNAXKEkU8oJJLT0+32ZafLJw7d06ff/65Zs2apWnTppljsrKydPr0aZt92voGK/8abS+++KJFe0ZGhmrVqnUde2CpXr16MplM2rp1q81rbdhz/Y169eqpbt262rBhg82f16hRw+K5vXdk27dvn/bs2aPly5dr9OjR5vZffvnFru3r1q1b6Ov1V/nXrnn99det7gyWr2CCae8+VKtWTbNnz9bs2bP1+++/m8/KGzRokA4ePGi+u9ivv/5qV39lqbD3ZXh4uJYsWWLRXvDaM/Xr19e2bduUl5d3zULeiBEjFBAQoGeeeUZ5eXnmG3YAAFDWyPNs91EaeV6+/C9T/yr/dShYjPur/J+lp6erQYMG5vbc3Fyr4l+9evXUoUMHvfDCCzb7CgoKsnhenH0YPHiwBg8erKysLH377beaO3eu7rvvPjVt2lShoaGqX79+ucnzPv74Y128eFFr1641r3yRpN27d1vEFSd/zb8xSN++fXXHHXdow4YNql279vVNHigGltMCFZyXl1eRZ3itXLlShmGYnx87dkzbt283X9DfZDLJMAyrpOjtt9+26y5b+Uwmk1UfX3zxhc3T9K/HwIEDZRiGTpw4oc6dO1s9brzxRnNsYcdm4MCBOnXqlK5evWqzj4IXZ7ZXfnJR8Di8+eabdm3fq1cv/fjjjxbfnkvSRx99ZPH8tttuU61atbR//36b8+/cuXOh3z4Xh7+/v8aMGaN7771Xhw4d0qVLl9SyZUs1b95c77zzjrKysq57jOK41nvdFlvvyx9++EHJyckWbf369dOVK1e0fPlyu/qdMWOG4uLi9OyzzyomJqZYcwIAwF7kea6T5+U7f/68Pv30U4u2jz76SFWqVFGPHj0K3S7/Nfnwww8t2v/5z39a3HE2fx/27dun5s2b29yHgkW8kvDy8lLPnj01b948STLf1bhfv3766aefLG52URby31/FyfVs5d6GYeitt96yiAsLC5Ovr6+WLl1q8ftSmE6dOikpKUm//vqrwsPDdfLkSbvnBFwvzsQDKrgbb7xRq1at0urVq9WsWTN5e3tbJDgnT57UkCFDNH78eJ07d06zZs2St7e3ufBQs2ZN9ejRQ6+88orq1aunpk2bKikpSfHx8cX6ZnXgwIFavny5WrdurQ4dOmjnzp165ZVXHL7c8LbbbtNDDz2kBx54QDt27FCPHj1UrVo1paWladu2bbrxxhv1yCOPmI/N2rVrtWTJEoWEhKhKlSrq3LmzRo4cqQ8//FD9+/fX448/rltvvVUeHh769ddftXnzZg0ePFhDhgwp9txat26t5s2ba9q0aTIMQ3Xq1NFnn32mhIQEu7afPHmy3nnnHQ0YMEDPP/+8+e60Bw8etIirXr26Xn/9dY0ePVqnT5/WsGHDzHdi3bNnj/744w+rM8/s1aVLFw0cOFAdOnRQ7dq1deDAAX3wwQcKDQ1V1apVJUmLFi3SoEGD1LVrV02ZMkWNGzdWamqqvvrqK6vE1JGu9V63ZeDAgXruuec0a9Ys9ezZU4cOHdKcOXMUHBxskTDfe++9evfddxUVFaVDhw6pV69eysvL03fffac2bdpo5MiRVn0//vjjql69uh566CFduHBBCxcuLPa3+QAAFIU8z3XyvHx169bVI488otTUVLVs2VLr16/XW2+9pUceeaTIZaht2rTR3//+d8XFxcnDw0N33HGH9u3bZ76j7F/NmTNHCQkJCgsL06RJk9SqVStduXJFR48e1fr167V06dISHftnn31Wv/76q3r37q2GDRvq7Nmzeu211+Th4aGePXtK+jMfXb16tQYPHqxp06bp1ltv1eXLl5WUlKSBAweqV69exR7XHvnv69dee02jR4+Wh4eHWrVqZXXm5F/16dNHnp6euvfeezV16lRduXJFS5Ys0ZkzZyziqlevrldffVXjxo3THXfcofHjx8vf31+//PKL9uzZY/Ouwm3atNHWrVt1xx13qEePHtq0aROXUUHZcM79NABcj+Lctezo0aNGRESEUaNGDUOS+S5d+X188MEHxqRJk4z69esbXl5eRvfu3Y0dO3ZY9PHrr78aQ4cONWrXrm3UqFHDuPPOO419+/YZTZo0sbhTVv7dpb7//nurOZ85c8YYO3as4efnZ1StWtXo1q2bsXXrVqs7jxa2b4X1XdgdTd955x2jS5cuRrVq1QwfHx+jefPmxqhRoyz27fTp08awYcOMWrVqGSaTyeLY5eTkGPPnzzc6duxoeHt7G9WrVzdat25tPPzww8bPP/9sjmvSpIkxYMAAq/0tzP79+40+ffoYNWrUMGrXrm387W9/M1JTU63u4HWt7b29vY06deoYY8eONT755BOLu9PmS0pKMgYMGGDUqVPH8PDwMBo0aGAMGDDA4tgWdvwKM23aNKNz585G7dq1DS8vL6NZs2bGlClTjIyMDIu45ORko1+/foavr6/h5eVlNG/e3OJua6Vxd9prvdcLvqcMwzCysrKMJ5980mjQoIHh7e1t3HzzzcbHH39sjB492uqOdpcvXzaeffZZo0WLFoanp6dRt25d4/bbbze2b99ujtH/vzvtX61cudJwd3c3HnjgAePq1avX3A8AQOVGnme9z+Ulz+vZs6fRrl07IzEx0ejcubPh5eVlBAYGGtOnTzdycnKuuX1WVpbxxBNPGH5+foa3t7fRtWtXIzk52eq1MAzD+OOPP4xJkyYZwcHBhoeHh1GnTh0jJCTEeOaZZ4wLFy4YhlH4HWEL8/nnnxv9+vUzGjRoYHh6ehp+fn5G//79ja1bt1rEnTlzxnj88ceNxo0bGx4eHoafn58xYMAA4+DBg+aYgrnt9d6d1jAMIyYmxggKCjKqVKlikfsW9Tp99tln5te5QYMGxlNPPWV8+eWXNnPn9evXGz179jSqVatmVK1a1Wjbtq3F3Wf/enfafL/++qvRunVro2nTpsbhw4evuQ/A9TIZhh3niwKocBITE9WrVy/961//KvIGCAAAAChfyPMAoGLimngAAAAAAACAi6OIBwAAAAAAALg4ltMCAAAAAAAALo4z8QAAAAAAAAAXRxEPAAAAAAAAcHEU8QAAAAAAAAAX5+7sCdiyePFivfLKK0pLS1O7du0UFxen7t27FxqflJSk6Oho/fjjjwoKCtLUqVMVFRVlEbNmzRrNnDlThw8fVvPmzfXCCy9oyJAhxRrXZDLZHP/ll1/WU089Zde+5eXl6bffflONGjUK7Q8AAOCvDMPQ+fPnFRQUpCpV+A7WVZHnAQCA4ipWnme4mFWrVhkeHh7GW2+9Zezfv994/PHHjWrVqhnHjh2zGf+///3PqFq1qvH4448b+/fvN9566y3Dw8PD+Pe//22O2b59u+Hm5ma8+OKLxoEDB4wXX3zRcHd3N7799ttijZuWlmbxeOeddwyTyWQcPnzY7v07fvy4IYkHDx48ePDgwaPYj+PHj5cgu0JZIc/jwYMHDx48eJT0YU+e53J3p+3SpYtuvvlmLVmyxNzWpk0b3X333Zo7d65V/NNPP61PP/1UBw4cMLdFRUVpz549Sk5OliSNGDFCmZmZ+vLLL80xd955p2rXrq2VK1eWaFxJuvvuu3X+/Hl9/fXXhe5PVlaWsrKyzM/PnTunxo0b6/jx46pZs+a1DgcAAIAyMzPVqFEjnT17Vr6+vs6eDgpx7tw51apVizwPAADYrTh5nkstp83OztbOnTs1bdo0i/aIiAht377d5jbJycmKiIiwaOvbt6/i4+OVk5MjDw8PJScna8qUKVYxcXFxJR73999/1xdffKH33nuvyH2aO3euZs+ebdVes2ZNkjsAAFAsLNF0bfmvD3keAAAoLnvyPJe6qEpGRoauXr0qf39/i3Z/f3+lp6fb3CY9Pd1mfG5urjIyMoqMye+zJOO+9957qlGjhu65554i9ykmJkbnzp0zP44fP15kPAAAAAAAAFCQS52Jl69g9dEwjCIrkrbiC7bb02dxxn3nnXd0//33y9vbu9B5SZKXl5e8vLyKjAEAAAAAAACK4lJFvHr16snNzc3q7LeTJ09anSWXLyAgwGa8u7u76tatW2RMfp/FHXfr1q06dOiQVq9eXbwdBAAAAAAAAErApYp4np6eCgkJUUJCgoYMGWJuT0hI0ODBg21uExoaqs8++8yibePGjercubM8PDzMMQkJCRbXxdu4caPCwsJKNG58fLxCQkLUsWPHku8sAAClzDAM5ebm6urVq86eCq7Bzc1N7u7uXPMOAADYhTyv/HBknudSRTxJio6OVmRkpDp37qzQ0FAtW7ZMqampioqKkvTnNeZOnDih999/X9Kfd6J94403FB0drfHjxys5OVnx8fHmu85K0uOPP64ePXpo3rx5Gjx4sD755BNt2rRJ27Zts3vcfJmZmfrXv/6lV199tQyOBgAAJZOdna20tDRdunTJ2VOBnapWrarAwEB5eno6eyoAAMCFkeeVP47K81yuiDdixAidOnVKc+bMUVpamtq3b6/169erSZMmkqS0tDSlpqaa44ODg7V+/XpNmTJFixYtUlBQkBYuXKihQ4eaY8LCwrRq1SrNmDFDM2fOVPPmzbV69Wp16dLF7nHzrVq1SoZh6N577y3lIwEAQMnk5eXpyJEjcnNzU1BQkDw9PTnDy4UZhqHs7Gz98ccfOnLkiFq0aKEqVVzq3mMAAMBFkOeVL47O80xG/l0gUCYyMzPl6+urc+fOqWbNms6eDgCgArpy5YqOHDmiJk2aqGrVqs6eDux06dIlHTt2TMHBwVY3ziJ/KB94nQAApY08r3xyVJ7H17wAAFRQnM1VvvB6Oc6SJUvUoUMH1axZUzVr1lRoaKi+/PLLQuMTExNlMpmsHgcPHizDWQMAYD/yhvLFUa+Xyy2nBQAAAK5Hw4YN9dJLL+mGG26QJL333nsaPHiwUlJS1K5du0K3O3TokMU34PXr1y/1uQIAANiLIh4AAAAqlEGDBlk8f+GFF7RkyRJ9++23RRbx/Pz8VKtWrVKeHQAAQMlw/iUAAAAqrKtXr2rVqlW6ePGiQkNDi4zt1KmTAgMD1bt3b23evPmafWdlZSkzM9PiAQAAUFoo4gEAgArLMAw99NBDqlOnjkwmk3bv3u3U+YSHh2vy5MlOnUNlsXfvXlWvXl1eXl6KiorSunXr1LZtW5uxgYGBWrZsmdasWaO1a9eqVatW6t27t7Zs2VLkGHPnzpWvr6/50ahRo9LYFQAAKpSnn35a/fr1u+5+KmOex3JaAAAqkdjYij1eQRs2bNDy5cuVmJioZs2aqV69es6dEMpMq1attHv3bp09e1Zr1qzR6NGjlZSUZLOQ16pVK7Vq1cr8PDQ0VMePH9f8+fPVo0ePQseIiYlRdHS0+XlmZiaFPACA05Rl3nU9Y+3evVudOnW67jlUxjyPIh4AXCdbf8CcXbgA8KfDhw8rMDBQYWFhzp4Kypinp6f5xhadO3fW999/r9dee01vvvmmXdt37dpVK1asKDLGy8tLXl5e1z1XAJVDwfyQfBGV1Z49e/TAAw9cdz+VMc9jOS0AAHA5c+bM0Y033qhq1arJ399fjzzyiHJycorVx5gxY/TYY48pNTVVJpNJTZs2VVZWliZNmiQ/Pz95e3urW7du+v777y22a9q0qeLi4izabrrpJsX+5V9b4eHhmjRpkqZOnao6deooICDA4ueSdPHiRY0aNUrVq1dXYGCgXn311WLNH45lGIaysrLsjk9JSVFgYGApzggAgMonPT1dv//+u/Ly8tSjRw9VrVpVnTt31p49e4rVj608T9I1c73ynudRxAMAAC7FMAxdvXpVb775pvbv36/ly5fr3//+t95+++1i9fPaa69pzpw5atiwodLS0vT9999r6tSpWrNmjd577z3t2rVLN9xwg/r27avTp08Xe57vvfeeqlWrpu+++04vv/yy5syZo4SEBPPPn3rqKW3evFnr1q3Txo0blZiYqJ07dxZ7HBTf9OnTtXXrVh09elR79+7VM888o8TERN1///2S/lwGO2rUKHN8XFycPv74Y/3888/68ccfFRMTozVr1mjixInO2gUAACqklJQUSX/+7X3xxRe1Y8cO1ahRQyNHjixWP7byPEkOy/VcNc9jOS0AAHApJpNJs2fPNj9v0qSJ+vTpo4MHDxarH19fX9WoUUNubm4KCAjQxYsXtWTJEi1fvtx8MeW33npLCQkJio+P11NPPVWs/jt06KBZs2ZJklq0aKE33nhDX3/9tfr06aMLFy4oPj5e77//vvr06SPpz2SwYcOGxRoDJfP7778rMjJSaWlp8vX1VYcOHbRhwwbza5GWlqbU1FRzfHZ2tp588kmdOHFCPj4+ateunb744gv179/fWbsAoJJj6S0qqt27d8vb21sff/yxgoKCJEkvvPCCbrvtNqWnpysgIMCufgrmeZIcmuu5ap5HEQ8AKgCuy4eK5NixY3rllVeUmJioEydOKCcnR1euXNHcuXOvq9/Dhw8rJydHt912m7nNw8NDt956qw4cOFDs/jp06GDxPDAwUCdPnjSPlZ2drdDQUPPP69SpY3HzBJSe+Pj4In++fPlyi+dTp07V1KlTS3FGAABA+rOIN3z4cHMBT5KqVasmScrLy7uuvh2Z67lqnsdyWgAA4DIyMjJ06623KiMjQwsWLNC2bduUnJwsNzc33XTTTZKkLl26aMeOHZKk0aNHa8mSJXb1bRiGpD/P9CvY/te2KlWqmGPz2boen4eHh8Vzk8lkTj4Lbg8AAIA/i3j5OV2+Xbt2KSAgQIGBgSXO8yT7cr3ynudRxAMAAC5j/fr1ys3N1cqVKxUREaF27dppy5Ytys7ONid8M2fO1IsvvqhXX31V1atX1yOPPGJX3zfccIM8PT21bds2c1tOTo527NihNm3amNvq16+vtLQ08/PMzEwdOXKkWPtxww03yMPDQ99++6257cyZM/rpp5+K1Q8AAEBFcenSJf3yyy+6evWquS0vL0+vv/66xowZI5PJVOI8T7Iv1yvveR7LaQEAgMuoU6eOMjMz9emnn6pt27b67LPPNHfuXDVo0ED169eXJA0cOFAzZszQhQsXtH79erv7rlatmh555BE99dRTqlOnjho3bqyXX35Zly5d0tixY81xt99+u5YvX65Bgwapdu3amjlzptzc3Iq1H9WrV9fYsWP11FNPqW7duvL399czzzyjKlX4/hQAAFROe/bskZubm95991316NFDtWrV0vTp03Xx4kVNnz5dUsnzPMm+XK+853kU8QAAgMsYMGCAxo4dq8jISPn4+Ojvf/+7hg8frmPHjplj/vvf/+rs2bNq2bKl3N2Ll8q89NJLysvLU2RkpM6fP6/OnTvrq6++Uu3atc0xMTEx+t///qeBAwfK19dXzz33XLG/oZWkV155RRcuXNBdd92lGjVq6IknntC5c+eK3Q8AAEBFsGfPHrVs2VKzZs3S0KFDdfr0ad11113avn27atSoIen68jzp2rleec/zTAYXbSlTmZmZ8vX11blz51SzZk1nTweAA7jCTSVcYQ5wHVeuXNGRI0cUHBwsb29vZ0/HoU6cOKF+/frpk08+0T333KOPPvrIYilseVbU60b+UD7wOgEoSnHuOMvdaVEY8rzyyVF5Hms6AABAuXD58mUNGzZMb7zxhoKDgzV16lQ9//zzzp4WAAAArhN5nn1YTgsAAMoFHx8fJScnm5/fe++9uvfee504IwAAADgCeZ59OBMPAAAAAAAAcHGciQcAAAAAQBn763XuuOYdAHtwJh4AAAAAAADg4ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC7O3dkTAAAAAACgMouNdfYMAJQHnIkHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAqrPDwcE2ePNnZ0wAAAMD/9/TTT6tfv37X3U9lzPO4Jh4AAJXJ9tiyHS+sjMcrReHh4brpppsUFxfn7KkAAABYK8s87zpyvN27d6tTp06Om4sDlJc8jzPxAAAAAAAAUCb27Nmjm266ydnTKJco4gEASmZ7rPUDcJA5c+boxhtvVLVq1eTv769HHnlEOTk519VnVlaWJk2aJD8/P3l7e6tbt276/vvvLWL+/e9/68Ybb5SPj4/q1q2rO+64QxcvXtSYMWOUlJSk1157TSaTSSaTSUePHr2u+QAAAFQ26enp+v3335WXl6cePXqoatWq6ty5s/bs2XPdfV8r16sIeR7LaQEAgEsxDENXr17Vm2++qQYNGmj//v0aNWqUOnTooEceeaTE/U6dOlVr1qzRe++9pyZNmujll19W37599csvv6hOnTpKS0vTvffeq5dffllDhgzR+fPntXXrVhmGoddee00//fST2rdvrzlz5kiS6tev76hdBgBUQLGxzp4B4HpSUlIkSXFxcVqwYIHq1KmjRx99VCNHjtSBAweuq++icr2srKwKkedRxAMAAC7FZDJp9uzZ5udNmjRRnz59dPDgwRL3efHiRS1ZskTLly83X0j5rbfeUkJCguLj4/XUU08pLS1Nubm5uueee9SkSRNJ0o033mjuw9PTU1WrVlVAQECJ5wEAAFCZ7d69W97e3vr4448VFBQkSXrhhRd02223KT09vcR51rVyvd69e1eIPI/ltAAAwKUcO3ZMEydOVPv27VW7dm1Vr15d//znP9WwYcMS93n48GHl5OTotttuM7d5eHjo1ltvNX/r27FjR/Xu3Vs33nij/va3v+mtt97SmTNnrnt/AAAA8Kfdu3dr+PDh5gKeJFWrVk2SlJeXV+J+r5XrVZQ8jyIeAABwGRkZGbr11luVkZGhBQsWaNu2bUpOTpabm5v5AshdunTRjh07JEmjR4/WkiVLrtmvYRiS/jzLr2B7fpubm5sSEhL05Zdfqm3btnr99dfVqlUrHTlyxIF7CAAAUHnt3r3b6qYWu3btUkBAgAIDA0uU50nXzvUqSp5HEQ8AALiM9evXKzc3VytXrlRERITatWunLVu2KDs725zwzZw5Uy+++KJeffVVVa9e3a7r5N1www3y9PTUtm3bzG05OTnasWOH2rRpY24zmUy67bbbNHv2bKWkpMjT01Pr1q2T9Ocyi6tXrzp2hwEAACqJS5cu6ZdffrHIp/Ly8vT6669rzJgxMplMJcrzJPtyvYqQ57lkEW/x4sUKDg6Wt7e3QkJCtHXr1iLjk5KSFBISIm9vbzVr1kxLly61ilmzZo3atm0rLy8vtW3b1vxCFXfcAwcO6K677pKvr69q1Kihrl27KjU1teQ7CwAAzOrUqaPMzEx9+umn+vnnn7VgwQLFxsaqQYMG5gsMDxw4UP/73//01Vdf6bXXXrOr32rVqumRRx7RU089pQ0bNmj//v0aP368Ll26pLFjx0qSvvvuO7344ovasWOHUlNTtXbtWv3xxx/mxK9p06b67rvvdPToUWVkZFzXkg8AAIDKZs+ePXJzc9O7776r//73v/rpp580fPhwXbx4UdOnT5dUsjxPunauV1HyPJcr4q1evVqTJ0/WM888o5SUFHXv3l39+vUrtFB25MgR9e/fX927d1dKSoqmT5+uSZMmac2aNeaY5ORkjRgxQpGRkdqzZ48iIyM1fPhwfffdd8Ua9/Dhw+rWrZtat26txMRE7dmzRzNnzpS3t3fpHRAAACqRAQMGaOzYsYqMjFS3bt104sQJDR8+3GLZxX//+1+dPXtWtWrVkru7/ffoeumllzR06FBFRkbq5ptv1i+//KKvvvpKtWvXliTVrFlTW7ZsUf/+/dWyZUvNmDFDr776qvniyE8++aTc3NzUtm1b1a9fny/xAAAAimHPnj1q2bKlYmNjNXToUHXq1EkeHh7avn27atSoIankeZ5UdK5XUfI8k5G/cNhFdOnSRTfffLPFuuc2bdro7rvv1ty5c63in376aX366acWtyKOiorSnj17lJycLEkaMWKEMjMz9eWXX5pj7rzzTtWuXVsrV660e9yRI0fKw8NDH3zwQYn3LzMzU76+vjp37pxq1qxZ4n4AuI7YWPvaKtwcttsYIKy0B4U9rly5oiNHjpjPLq9ITpw4oX79+umTTz7RPffco48++shiOWx5VtTrRv5QPvA6AfgrR+ZiZZ1bwnWR55VPjsrzXOpMvOzsbO3cuVMREREW7REREdq+fbvNbZKTk63i+/btqx07dignJ6fImPw+7Rk3Ly9PX3zxhVq2bKm+ffvKz89PXbp00ccff1zkPmVlZSkzM9PiAQAAiu/y5csaNmyY3njjDQUHB2vq1Kl6/vnnnT0tAAAAXCfyPPu4VBEvIyNDV69elb+/v0W7v7+/0tPTbW6Tnp5uMz43N1cZGRlFxuT3ac+4J0+e1IULF/TSSy/pzjvv1MaNGzVkyBDdc889SkpKKnSf5s6dK19fX/OjUaNGdhwJAABQkI+Pj5KTk9WjRw9J0r333qsPP/zQybMCAADA9SLPs49LFfHyFXZL4OLEF2y3p8+iYvIvajh48GBNmTJFN910k6ZNm6aBAwfavJFGvpiYGJ07d878OH78eKGxAAAAAAAAgC3Fu0pgKatXr57c3Nyszro7efKk1Vly+QICAmzGu7u7q27dukXG5Pdpz7j16tWTu7u72rZtaxHTpk0bi1sYF+Tl5SUvL69Cfw4AAAAAAABci0udiefp6amQkBAlJCRYtCckJCgsLMzmNqGhoVbxGzduVOfOneXh4VFkTH6f9ozr6empW265RYcOHbKI+emnn9SkSZNi7ikAAAAAAABgP5c6E0+SoqOjFRkZqc6dOys0NFTLli1TamqqoqKiJP25PPXEiRN6//33Jf15J9o33nhD0dHRGj9+vJKTkxUfH2++66wkPf744+rRo4fmzZunwYMH65NPPtGmTZsszqC71riS9NRTT2nEiBHq0aOHevXqpQ0bNuizzz5TYmJi2RwcAAAAAAAAVEouV8QbMWKETp06pTlz5igtLU3t27fX+vXrzWe7paWlKTU11RwfHBys9evXa8qUKVq0aJGCgoK0cOFCDR061BwTFhamVatWacaMGZo5c6aaN2+u1atXq0uXLnaPK0lDhgzR0qVLNXfuXE2aNEmtWrXSmjVr1K1btzI4MgAAFE/+NWJRPvB6AQAAe5E3lC+Oer1crognSRMmTNCECRNs/mz58uVWbT179tSuXbuK7HPYsGEaNmxYicfN9+CDD+rBBx8sMgYAAGfKv5zEpUuX5OPj4+TZwF6XLl2S9H+vH0puyZIlWrJkiY4ePSpJateunZ599ln169ev0G2SkpIUHR2tH3/8UUFBQZo6darFigwAAFwBeV755Kg8zyWLeAAAoOTc3NxUq1YtnTx5UpJUtWrVIu/yDucyDEOXLl3SyZMnVatWLbm5uTl7SuVew4YN9dJLL+mGG26QJL333nsaPHiwUlJS1K5dO6v4I0eOqH///ho/frxWrFih//znP5owYYLq169vsboDAABnI88rXxyd51HEA4BiiI119gwA+wQEBEiSOcGD66tVq5b5dcP1GTRokMXzF154QUuWLNG3335rs4i3dOlSNW7cWHFxcZKkNm3aaMeOHZo/fz5FPACAyyHPK38cledRxAMAoAIymUwKDAyUn5+fcnJynD0dXIOHhwdn4JWSq1ev6l//+pcuXryo0NBQmzHJycmKiIiwaOvbt6/i4+OVk5NT6NKXrKwsZWVlmZ9nZmY6buIAABSCPK98cWSeRxEPAIAKzM3NjeIQKqW9e/cqNDRUV65cUfXq1bVu3Tq1bdvWZmx6err8/f0t2vz9/ZWbm6uMjAwFBgba3G7u3LmaPXu2w+cOAIA9yPMqnyrOngAAAADgaK1atdLu3bv17bff6pFHHtHo0aO1f//+QuMLXk8o/y5yRV1nKCYmRufOnTM/jh8/7pjJAwAA2MCZeAAAAKhwPD09zTe26Ny5s77//nu99tprevPNN61iAwIClJ6ebtF28uRJubu7q27duoWO4eXlJS8vL8dOHAAAoBCciQcAAIAKzzAMi+vX/VVoaKgSEhIs2jZu3KjOnTsXej08AACAskYRDwAAABXK9OnTtXXrVh09elR79+7VM888o8TERN1///2S/lwGO2rUKHN8VFSUjh07pujoaB04cEDvvPOO4uPj9eSTTzprFwAAAKywnBYASkFsrGNiAADF9/vvvysyMlJpaWny9fVVhw4dtGHDBvXp00eSlJaWptTUVHN8cHCw1q9frylTpmjRokUKCgrSwoULNXToUGftAgAAgBWKeABQmO2xNhpttQEAXEl8fHyRP1++fLlVW8+ePbVr165SmhEAAMD1o4gHABWUrTP9OPsPAAAAAMonrokHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAAAAAAuDiKeAAAAAAAAICLo4gHAAAAAAAAuDh3Z08AAFxVYqKzZwAAAAAAwJ84Ew8AAAAAAABwcZyJBwAAAADAdYqNdfYMAFR0nIkHAAAAAAAAuDiKeAAAAAAAAICLYzktALgQW8swWJoBAAAAAOBMPAAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFuTt7AgBQWcXGOnsGAAAAAIDygjPxAAAAAAAAABdHEQ8AAAAAAABwcSynBQAnCfeMtWpLzLZuAwAAAACAM/EAAAAAAAAAF8eZeAAg2zeZCPcs82kAAAAAAGATRTwAcHG2Cozc2RYAAKDyKJj7kQsClRPLaQEAAAAAAAAX55JFvMWLFys4OFje3t4KCQnR1q1bi4xPSkpSSEiIvL291axZMy1dutQqZs2aNWrbtq28vLzUtm1brVu3rtjjjhkzRiaTyeLRtWvX69tZAAAAAAAA4Bpcroi3evVqTZ48Wc8884xSUlLUvXt39evXT6mpqTbjjxw5ov79+6t79+5KSUnR9OnTNWnSJK1Zs8Yck5ycrBEjRigyMlJ79uxRZGSkhg8fru+++67Y4955551KS0szP9avX186BwIAAAAAAAD4/1yuiLdgwQKNHTtW48aNU5s2bRQXF6dGjRppyZIlNuOXLl2qxo0bKy4uTm3atNG4ceP04IMPav78+eaYuLg49enTRzExMWrdurViYmLUu3dvxcXFFXtcLy8vBQQEmB916tQpleMAAAAAAAAA5HOpIl52drZ27typiIgIi/aIiAht377d5jbJyclW8X379tWOHTuUk5NTZEx+n8UZNzExUX5+fmrZsqXGjx+vkydPFrlPWVlZyszMtHgAAAAAAAAAxeFSRbyMjAxdvXpV/v7+Fu3+/v5KT0+3uU16errN+NzcXGVkZBQZk9+nveP269dPH374ob755hu9+uqr+v7773X77bcrKyur0H2aO3eufH19zY9GjRpd4ygAAAAAAAAAltydPQFbTCaTxXPDMKzarhVfsN2ePq8VM2LECPP/t2/fXp07d1aTJk30xRdf6J577rE5t5iYGEVHR5ufZ2ZmUsgDAAAAAABAsbhUEa9evXpyc3OzOuvu5MmTVmfJ5QsICLAZ7+7urrp16xYZk99nScaVpMDAQDVp0kQ///xzoTFeXl7y8vIq9OcAAAAAAADAtbjUclpPT0+FhIQoISHBoj0hIUFhYWE2twkNDbWK37hxozp37iwPD48iY/L7LMm4knTq1CkdP35cgYGB9u0gAAAAAAAAUAIuVcSTpOjoaL399tt65513dODAAU2ZMkWpqamKioqS9Ofy1FGjRpnjo6KidOzYMUVHR+vAgQN65513FB8fryeffNIc8/jjj2vjxo2aN2+eDh48qHnz5mnTpk2aPHmy3eNeuHBBTz75pJKTk3X06FElJiZq0KBBqlevnoYMGVI2BwcAAADXNHfuXN1yyy2qUaOG/Pz8dPfdd+vQoUNFbpOYmCiTyWT1OHjwYBnNGgAAoGgutZxW+vO6c6dOndKcOXOUlpam9u3ba/369WrSpIkkKS0tTampqeb44OBgrV+/XlOmTNGiRYsUFBSkhQsXaujQoeaYsLAwrVq1SjNmzNDMmTPVvHlzrV69Wl26dLF7XDc3N+3du1fvv/++zp49q8DAQPXq1UurV69WjRo1yujoAAAA4FqSkpL06KOP6pZbblFubq6eeeYZRUREaP/+/apWrVqR2x46dEg1a9Y0P69fv35pTxcAAMAuLlfEk6QJEyZowoQJNn+2fPlyq7aePXtq165dRfY5bNgwDRs2rMTj+vj46KuvvipyewAAADjfhg0bLJ6/++678vPz086dO9WjR48it/Xz81OtWrVKcXYAAAAl43LLaQEAAABHOnfunCSpTp0614zt1KmTAgMD1bt3b23evLnI2KysLGVmZlo8AAAASgtFPAAAAFRYhmEoOjpa3bp1U/v27QuNCwwM1LJly7RmzRqtXbtWrVq1Uu/evbVly5ZCt5k7d658fX3Nj0aNGpXGLgAAAEhy0eW0AIDSERtrXxsAVBQTJ07UDz/8oG3bthUZ16pVK7Vq1cr8PDQ0VMePH9f8+fMLXYIbExOj6Oho8/PMzEwKeQAAoNRQxANQKVWGwlW4Z6xVW2K2dRsAVFSPPfaYPv30U23ZskUNGzYs9vZdu3bVihUrCv25l5eXvLy8rmeKAAAAdqOIBwCVHGfnAahoDMPQY489pnXr1ikxMVHBwcEl6iclJUWBgYEOnh0AAEDJUMQDAABAhfLoo4/qo48+0ieffKIaNWooPT1dkuTr6ysfHx9Jfy6FPXHihN5//31JUlxcnJo2bap27dopOztbK1as0Jo1a7RmzRqn7QcAAMBfUcQDAABAhbJkyRJJUnh4uEX7u+++qzFjxkiS0tLSlJqaav5Zdna2nnzySZ04cUI+Pj5q166dvvjiC/Xv37+spg0AAFAkingAAACoUAzDuGbM8uXLLZ5PnTpVU6dOLaUZAQAAXL8qzp4AAAAAAAAAgKJRxAMAAAAAAABcHMtpAVQ+22MV7mnZlJgd65SpuKJwz1hpe4HGsFgnzAQAAAAAkI8iHgCUQ7Gxzp4BAAAAAKAssZwWAAAAAAAAcHEU8QAAAAAAAAAXRxEPAAAAAAAAcHEU8QAAAAAAAAAXx40tAADXtj3W2TMAAAAAgEqNM/EAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBx7s6eAAC4gnDP2BLFJWbbt50j2ZqrM+YBAAAAACg7nIkHAAAAAAAAuDjOxAMAAAAAoByJjS36OYCKiTPxAAAAAAAAABdHEQ8AAAAAAABwcRTxAAAAAAAAABdHEQ8AAAAAAABwcdzYAgAAAACAYuJmEgDKGkU8AMA1JSZat4WHl/UsAAAAAKDyYjktAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OK4Jh4AVADhnrHOngIAAAAAoBRRxANQ4RW8c1i4p1OmAQAAAABAibGcFgAAAAAAAHBxLlnEW7x4sYKDg+Xt7a2QkBBt3bq1yPikpCSFhITI29tbzZo109KlS61i1qxZo7Zt28rLy0tt27bVunXrrmvchx9+WCaTSXFxccXePwAAAAAAAKA4XK6It3r1ak2ePFnPPPOMUlJS1L17d/Xr10+pqak2448cOaL+/fure/fuSklJ0fTp0zVp0iStWbPGHJOcnKwRI0YoMjJSe/bsUWRkpIYPH67vvvuuRON+/PHH+u677xQUFOT4AwAAAAAAAAAU4HJFvAULFmjs2LEaN26c2rRpo7i4ODVq1EhLliyxGb906VI1btxYcXFxatOmjcaNG6cHH3xQ8+fPN8fExcWpT58+iomJUevWrRUTE6PevXtbnEVn77gnTpzQxIkT9eGHH8rDw6NUjgEAAAAAAADwVy5VxMvOztbOnTsVERFh0R4REaHt27fb3CY5Odkqvm/fvtqxY4dycnKKjMnv095x8/LyFBkZqaeeekrt2rWza5+ysrKUmZlp8QAAAAAAAACKw6XuTpuRkaGrV6/K39/fot3f31/p6ek2t0lPT7cZn5ubq4yMDAUGBhYak9+nvePOmzdP7u7umjRpkt37NHfuXM2ePdvueADFsD3Wui3MRhsAAAAAAOXcdRXxPv30U7tj77rrLrtjTSaTxXPDMKzarhVfsN2ePouK2blzp1577TXt2rWryLkUFBMTo+joaPPzzMxMNWrUyO7tAQAAKrLSyicBAAAqmusq4t19990Wz00mk7mAlv8839WrV6/ZX7169eTm5mZ11t3JkyetzpLLFxAQYDPe3d1ddevWLTImv097xt26datOnjypxo0bW+zTE088obi4OB09etTm/Ly8vOTl5XWNPQcAAKicHJ1PAgAAVFTXdU28vLw882Pjxo266aab9OWXX+rs2bM6d+6c1q9fr5tvvlkbNmywqz9PT0+FhIQoISHBoj0hIUFhYWE2twkNDbWK37hxozp37my+8URhMfl92jNuZGSkfvjhB+3evdv8CAoK0lNPPaWvvvrKrv0DAACAJUfnk9KflzO55ZZbVKNGDfn5+enuu+/WoUOHrrldUlKSQkJC5O3trWbNmmnp0qXXs2sAAAAO5bBr4k2ePFlLly5Vt27dzG19+/ZV1apV9dBDD+nAgQN29RMdHa3IyEh17txZoaGhWrZsmVJTUxUVFSXpz+WpJ06c0Pvvvy9JioqK0htvvKHo6GiNHz9eycnJio+P18qVK819Pv744+rRo4fmzZunwYMH65NPPtGmTZu0bds2u8etW7eu+cy+fB4eHgoICFCrVq1KdtAAAABg5qh8MikpSY8++qhuueUW5ebm6plnnlFERIT279+vatWq2dzmyJEj6t+/v8aPH68VK1boP//5jyZMmKD69etr6NChDtk/AACA6+GwIt7hw4fl6+tr1e7r61voUlNbRowYoVOnTmnOnDlKS0tT+/bttX79ejVp0kSSlJaWptTUVHN8cHCw1q9frylTpmjRokUKCgrSwoULLZKtsLAwrVq1SjNmzNDMmTPVvHlzrV69Wl26dLF7XACoTBITnT0DAJWRo/LJgmftvfvuu/Lz89POnTvVo0cPm9ssXbpUjRs3VlxcnCSpTZs22rFjh+bPn08RDwAAuAST8deLjlyHHj16yMPDQytWrFBgYKCkP+8cGxkZqezsbCUlJTlimHIvMzNTvr6+OnfunGrWrOns6QDlm513p40t0BTuaWM7B0rMtq9/e+Zhq6/Snr+9wsNtNHJ3YKBUVJb8obTyyV9++UUtWrTQ3r171b59+0LH7tSpk1577TVz27p16zR8+HBdunTJfJmWv8rKylJWVpb5ef4NzCr66wTgTwVzTGdypbkAKJ7i5HkOOxPvnXfe0ZAhQ9SkSRPzzR9SU1PVsmVLffzxx44aBgAAABVUaeSThmEoOjpa3bp1K7SAJ/1ZLCx4IzV/f3/l5uYqIyPDXFT8q7lz52r27NklmhcAOFLBIh5FPaBiclgR74YbbtAPP/yghIQEHTx4UIZhqG3btrrjjjss7ioGAAAA2FIa+eTEiRP1ww8/WFwLuTAFx8hfsFLY2DExMYqOjjY/zz8TDwAAoDQ4rIgn/ZngREREqEePHvLy8qJ4BwAAgGJxZD752GOP6dNPP9WWLVvUsGHDImMDAgKUnp5u0Xby5Em5u7tb3dwsn5eXl7y8vEo8PwAAgOKo4qiO8vLy9Nxzz6lBgwaqXr26jhw5IkmaOXOm4uPjHTUMAAAAKihH5ZOGYWjixIlau3atvvnmGwUHB19zm9DQUCUkJFi0bdy4UZ07d7Z5PTwAAICy5rAi3vPPP6/ly5fr5Zdflqenp7n9xhtv1Ntvv+2oYQAAAFBBOSqffPTRR7VixQp99NFHqlGjhtLT05Wenq7Lly+bY2JiYjRq1Cjz86ioKB07dkzR0dE6cOCA3nnnHcXHx+vJJ590zM4BAABcJ4cV8d5//30tW7ZM999/v9zc3MztHTp00MGDBx01DAAAACooR+WTS5Ys0blz5xQeHq7AwEDzY/Xq1eaYtLQ0paammp8HBwdr/fr1SkxM1E033aTnnntOCxcu1NChQx2zcwAAANfJYdfEO3HihG644Qar9ry8POXk5DhqGAAonu2xCve8dhgAwPkclU/m35CiKMuXL7dq69mzp3bt2mX3OAAAAGXJYWfitWvXTlu3brVq/9e//qVOnTo5ahgAAABUUOSTAAAAhXPYmXizZs1SZGSkTpw4oby8PK1du1aHDh3S+++/r88//9xRwwAAAKCCIp8EAAAonMPOxBs0aJBWr16t9evXy2Qy6dlnn9WBAwf02WefqU+fPo4aBgAAABUU+SQAAEDhHHYmniT17dtXffv2dWSXAAAAqETIJwEAAGxzaBEv34ULF5SXl2fRVrNmzdIYCgAAABUQ+SQAAIAlhy2nPXLkiAYMGKBq1arJ19dXtWvXVu3atVWrVi3Vrl3bUcMAAACggiKfBAAAKJzDzsS7//77JUnvvPOO/P39ZTKZHNU1AAAAKgHySQAAgMI5rIj3ww8/aOfOnWrVqpWjugQAAEAlQj4JAABQOIcV8W655RYdP36cpAsAAAAlQj4JwJXFxjp7BgAqO4cV8d5++21FRUXpxIkTat++vTw8PCx+3qFDB0cNBQAAgAqIfBIAAKBwDivi/fHHHzp8+LAeeOABc5vJZJJhGDKZTLp69aqjhgIAuIDEROu28LAynwaACoR8EgAAoHAOK+I9+OCD6tSpk1auXMmFiAEAAFBs5JMAAACFc1gR79ixY/r00091ww03OKpLACi+7bHOngEAoITIJwEAAApXxVEd3X777dqzZ4+jugMAAEAlQz4JAABQOIediTdo0CBNmTJFe/fu1Y033mh1IeK77rrLUUMBAACgAiKfBOBKuBstAFfjsCJeVFSUJGnOnDlWP+NCxAAAALgW8kkAAIDCOayIl5eX56iuAAAAUAmRTwIAABTOIdfEy83Nlbu7u/bt2+eI7gAAAFDJkE8CAAAUzSFn4rm7u6tJkyYscQBQphITrdvCw8t6FvYJ94wt0+2cpuDdgcNibUUBgBXySQAAgKI57O60M2bMUExMjE6fPu2oLgEAAFCJkE8CAAAUzmHXxFu4cKF++eUXBQUFqUmTJqpWrZrFz3ft2uWooQCgULbOzgMAlA/kkwBgzdbKjMRs6zYAFZ/Dinh33323o7oCAABAJUQ+CQAAUDiHFfFmzZrlqK4AAABQCZFPAgAAFM5hRbx8O3fu1IEDB2QymdS2bVt16tTJ0UMAAACgAiOfBFBZlbubmgEoUw4r4p08eVIjR45UYmKiatWqJcMwdO7cOfXq1UurVq1S/fr1HTUUALi0ypx8FbwmYeJGKTbWGTMBUB6RTwKAYxTMv8jHgIrBYXenfeyxx5SZmakff/xRp0+f1pkzZ7Rv3z5lZmZq0qRJjhoGAAAAFRT5JAAAQOEcdibehg0btGnTJrVp08bc1rZtWy1atEgRERGOGgYAAAAVFPkkAKfaHmvxNNyTu8ACcC0OOxMvLy9PHh4eVu0eHh7Ky8tz1DAAAACooMgnAQAACuewIt7tt9+uxx9/XL/99pu57cSJE5oyZYp69+7tqGEAAABQQZFPAgAAFM5hy2nfeOMNDR48WE2bNlWjRo1kMpl07NgxdejQQR988IGjhgFQSdm6GG+4Z5lPAwBQisgnAQAACuewIl6jRo20a9cubdq0SQcOHJBhGGrbtq3uuOMORw0BAACACox8EgAAoHAOK+JJ0tdff61vvvlGJ0+eVF5ennbv3q2PPvpIkvTOO+84cigAQDkQ7hkrbS/QGBbrhJkAKC/IJwHg2sI9Y63auAkHUPE57Jp4s2fPVkREhL7++mtlZGTozJkzFo/iWLx4sYKDg+Xt7a2QkBBt3bq1yPikpCSFhITI29tbzZo109KlS61i1qxZo7Zt28rLy0tt27bVunXrij1ubGysWrdurWrVqql27dq644479N133xVr3wAAAGCbI/NJAACAisZhZ+ItXbpUy5cvV2Rk5HX1s3r1ak2ePFmLFy/WbbfdpjfffFP9+vXT/v371bhxY6v4I0eOqH///ho/frxWrFih//znP5owYYLq16+voUOHSpKSk5M1YsQIPffccxoyZIjWrVun4cOHa9u2berSpYvd47Zs2VJvvPGGmjVrpsuXL+sf//iHIiIi9Msvv6h+/frXtd8AUFElJhZ4vtH2NQ4BwFH5JAAAQEXksDPxsrOzFRYWdt39LFiwQGPHjtW4cePUpk0bxcXFqVGjRlqyZInN+KVLl6px48aKi4tTmzZtNG7cOD344IOaP3++OSYuLk59+vRRTEyMWrdurZiYGPXu3VtxcXHFGve+++7THXfcoWbNmqldu3ZasGCBMjMz9cMPP1z3fgMAAFR2jsonAQAAKiKHFfHGjRtnvl5JSWVnZ2vnzp2KiIiwaI+IiND27QUvqvSn5ORkq/i+fftqx44dysnJKTImv8+SjJudna1ly5bJ19dXHTt2LHSfsrKylJmZafEAAACANUfkkwAAABWVw5bTXrlyRcuWLdOmTZvUoUMHeXh4WPx8wYIF1+wjIyNDV69elb+/v0W7v7+/0tPTbW6Tnp5uMz43N1cZGRkKDAwsNCa/z+KM+/nnn2vkyJG6dOmSAgMDlZCQoHr16hW6T3PnztXs2bOL3nEAAAA4JJ8EAACoqBxWxPvhhx900003SZL27dtn8TOTyVSsvgrGG4ZRZB+24gu229OnPTG9evXS7t27lZGRobfeekvDhw/Xd999Jz8/P5tzi4mJUXR0tPl5ZmamGjVqVOi+ABXK9ljrtoJ3JrUVY5O9cXB13LEWQGEclU9u2bJFr7zyinbu3Km0tDStW7dOd999d6HxiYmJ6tWrl1X7gQMH1Lp1a7vHBQAAKE0OK+Jt3rz5uvuoV6+e3NzcrM5+O3nypNVZcvkCAgJsxru7u6tu3bpFxuT3WZxxq1WrphtuuEE33HCDunbtqhYtWig+Pl4xMTE25+fl5SUvL69r7DkAAAAckU9K0sWLF9WxY0c98MAD5hud2ePQoUOqWbOm+Tk3LgMAAK7EYdfEcwRPT0+FhIQoISHBoj0hIaHQixyHhoZaxW/cuFGdO3c2L8EoLCa/z5KMm88wDGVlZV175wAAAFAm+vXrp+eff1733HNPsbbz8/NTQECA+eHm5lZKMwQAACg+h52J5yjR0dGKjIxU586dFRoaqmXLlik1NVVRUVGS/lyeeuLECb3//vuSpKioKL3xxhuKjo7W+PHjlZycrPj4eK1cudLc5+OPP64ePXpo3rx5Gjx4sD755BNt2rRJ27Zts3vcixcv6oUXXtBdd92lwMBAnTp1SosXL9avv/6qv/3tb2V4hAAAAFAaOnXqpCtXrqht27aaMWOGzSW2f5WVlWXxZS43MAMAAKXJ5Yp4I0aM0KlTpzRnzhylpaWpffv2Wr9+vZo0aSJJSktLU2pqqjk+ODhY69ev15QpU7Ro0SIFBQVp4cKFFksnwsLCtGrVKs2YMUMzZ85U8+bNtXr1anXp0sXucd3c3HTw4EG99957ysjIUN26dXXLLbdo69atateuXRkdHaBiSky0bgsPL+tZwJliY+1rA4DSEBgYqGXLlikkJERZWVn64IMP1Lt3byUmJqpHjx6FbscNzAAAQFlyuSKeJE2YMEETJkyw+bPly5dbtfXs2VO7du0qss9hw4Zp2LBhJR7X29tba9euLXJ7AAAAlD+tWrVSq1atzM9DQ0N1/PhxzZ8/v8giHjcwAwAAZcmlrokHAAAAuIKuXbvq559/LjLGy8tLNWvWtHgAAACUFop4AAAAQAEpKSkKDAx09jQAAADMXHI5LQAAAFBSFy5c0C+//GJ+fuTIEe3evVt16tRR48aNrW6UFhcXp6ZNm6pdu3bKzs7WihUrtGbNGq1Zs8ZZuwAAAGCFIh4AoMzZupkJADjKjh07LO4sm3/dutGjR2v58uVWN0rLzs7Wk08+qRMnTsjHx0ft2rXTF198of79+5f53AGUP+GesVZtidnWbQBwvSjiAQAAoEIJDw+XYRiF/rzgjdKmTp2qqVOnlvKsAAAArg/XxAMAAAAAAABcHGfiAXBJLLcEAABAeeWyS2y3x1q3hdloA+CSKOIBKBdsJUIAAACAo/AlMgBXx3JaAAAAAAAAwMVxJh4AAAAAAHZgdQgAZ+JMPAAAAAAAAMDFUcQDAAAAAAAAXBzLaQEAAAAAsIHlswBcCUU8AIDT2UqQY2NttZX6VAAAAADAJVHEAwAAAABUXNtjrdvCbLSVc7a+FE3Mtm4DUH5xTTwAAAAAAADAxVHEAwAAAAAAAFwcy2kBAAAAAKjA8q8rHO75//8b7qyZALgenIkHAAAAAAAAuDiKeAAAAAAAAICLYzktUJk58k5dtvqyIf9U/nz5p/QDdin4PquAd5YDAAAAAFs4Ew8AAAAAAABwcRTxAAAAAAAAABfHcloAAAAAACqRxMT/+//wMBsBjrzsDgCH4Uw8AAAAAAAAwMVxJh6AUvPXb/gAAAAAAEDJUcQDAFQsLP8AAAAuKNwz1qotMdu6DQAKw3JaAAAAAAAAwMVRxAMAAAAAAABcHEU8AAAAAAAAwMVxTTwAAAAAQKUUG/t//x/u6bRpAIBdOBMPAAAAAAAAcHEU8QAAAAAAAAAXRxEPAAAAAAAAcHEU8QAAAAAAAAAXRxEPAAAAAAAAcHEU8QAAAAAAAAAXRxEPAAAAAAAAcHHuzp4AAAAAAABwku2xzp4BADu55Jl4ixcvVnBwsLy9vRUSEqKtW7cWGZ+UlKSQkBB5e3urWbNmWrp0qVXMmjVr1LZtW3l5ealt27Zat25dscbNycnR008/rRtvvFHVqlVTUFCQRo0apd9+++36dxhwZdtjrR82JCZaP4BSZ+f7s8T9AQAAAICLcLkz8VavXq3Jkydr8eLFuu222/Tmm2+qX79+2r9/vxo3bmwVf+TIEfXv31/jx4/XihUr9J///EcTJkxQ/fr1NXToUElScnKyRowYoeeee05DhgzRunXrNHz4cG3btk1dunSxa9xLly5p165dmjlzpjp27KgzZ85o8uTJuuuuu7Rjx44yPUYAAAAAAFxLuGes4zqz9QVnmAP7B3BNLlfEW7BggcaOHatx48ZJkuLi4vTVV19pyZIlmjt3rlX80qVL1bhxY8XFxUmS2rRpox07dmj+/PnmIl5cXJz69OmjmJgYSVJMTIySkpIUFxenlStX2jWur6+vEhISLMZ+/fXXdeuttyo1NdVmgRGoKAqeVZe4UYqNdcZMAAAAAAConFxqOW12drZ27typiIgIi/aIiAht377d5jbJyclW8X379tWOHTuUk5NTZEx+nyUZV5LOnTsnk8mkWrVqFRqTlZWlzMxMiwcAAABKz5YtWzRo0CAFBQXJZDLp448/vuY29lyeBQAqIi6JA5QfLnUmXkZGhq5evSp/f3+Ldn9/f6Wnp9vcJj093WZ8bm6uMjIyFBgYWGhMfp8lGffKlSuaNm2a7rvvPtWsWbPQfZo7d65mz55d6M8BAPazlViGh187LjysFCYDwGVdvHhRHTt21AMPPGBemVEUey7PAgAA4GwuVcTLZzKZLJ4bhmHVdq34gu329GnvuDk5ORo5cqTy8vK0ePHiIvbkz6W70dHR5ueZmZlq1KhRkdsAAACg5Pr166d+/frZHW/P5VkAAACczaWKePXq1ZObm5vV2W8nT560OksuX0BAgM14d3d31a1bt8iY/D6LM25OTo6GDx+uI0eO6JtvvinyLDxJ8vLykpeXV5ExAAAAcJ7CLr0SHx+vnJwceXh42NwuKytLWVlZ5udcNgUAAJQmlyrieXp6KiQkRAkJCRoyZIi5PSEhQYMHD7a5TWhoqD777DOLto0bN6pz587mhCs0NFQJCQmaMmWKRUxYWFixxs0v4P3888/avHmzuUgIuJxSvnNUuGesVPjlIgGHcOjd1ACgCPZcnsUWLpsCAADKkksV8SQpOjpakZGR6ty5s0JDQ7Vs2TKlpqYqKipK0p/LU0+cOKH3339fkhQVFaU33nhD0dHRGj9+vJKTkxUfH2++66wkPf744+rRo4fmzZunwYMH65NPPtGmTZu0bds2u8fNzc3VsGHDtGvXLn3++ee6evWq+cy9OnXqyNPTs6wOEQAAABzMnsuzFMRlUwAAQFlyuSLeiBEjdOrUKc2ZM0dpaWlq37691q9fryZNmkiS0tLSlJqaao4PDg7W+vXrNWXKFC1atEhBQUFauHChxfVLwsLCtGrVKs2YMUMzZ85U8+bNtXr1anXp0sXucX/99Vd9+umnkqSbbrrJYs6bN29WuK0rqwMAAMDl2XN5Flu4bAoAAChLLlfEk6QJEyZowoQJNn+2fPlyq7aePXtq165dRfY5bNgwDRs2rMTjNm3a1PyNLABuPw8AqDjsuTwLABfgyEvG/P++wp28oIrLhwAojirOngAAAADgSBcuXNDu3bu1e/duSdKRI0e0e/du82qOmJgYjRo1yhwfFRWlY8eOKTo6WgcOHNA777yj+Ph4Pfnkk86YPgAAgE0ueSYeAAAAUFI7duxQr169zM/zr1s3evRoLV++vESXZwEAAHA2ingAgHLNrqXdpXzHZgCuJTw8vMjLoJT08iwAyj8uCQOgPGM5LQAAAAAAAODiKOIBAAAAAAAALo7ltAAAAAAAQJL1kuPwcGfMAoAtnIkHAAAAAAAAuDiKeAAAAAAAAICLYzktAEu27uIJlHO27kSXuNG6LTaiQAN3tQUAAChcwVyJPAkoVZyJBwAAAAAAALg4ingAAAAAAACAi2M5LQAAAACgQkh8MdbiOXdWBVCRUMQDAAAAAAA2Fby2MIVRwHlYTgsAAAAAAAC4OM7EAyqJ2FgbbQXvxAkAAAAAAFwSRTygtBW87brErdcBAACAMlBwKSgAlGcU8QBYINEBAAAAAMD1UMQDAAAAAJRPtla9AEAFxY0tAAAAAAAAABfHmXhABcWyWAAAADhdwTPluDZ0xcb1wIFSRREPqMQo9AEAAAAAUD5QxEPlU9G+DbTzOiDhnvbFlTZXmQdgi63Cdnh4gQa+YQYAAADgBBTxAAAAAACuhRtWAIAVbmwBAAAAAAAAuDiKeAAAAAAAAICLYzktAABFsOs6eQAAAABQyjgTDwAAAAAAAHBxnIkHAAAAACgXCp4hz9nxACoTiniALbbuhhVmo628jwnAIWJj7WuzC58FAACgIiG3ARyG5bQAAAAAAACAi+NMPAAASoFDz84DAAAAUOlRxAMAAAAAAGXH1hJbW1h2C1hgOS0AAAAAAADg4jgTDwAAJyq4xDbckzvtAQAAALBGEQ//h7sGFR/HDCi3wj1jnT2F0sdSFQBABZeY6OwZoFQVzGXIWVDJUcQDXBgXxgcAAADgSgoWTllBAJQdrokHAAAAAAAAuDjOxAMAAAAAXD97L+MAACgRlzwTb/HixQoODpa3t7dCQkK0devWIuOTkpIUEhIib29vNWvWTEuXLrWKWbNmjdq2bSsvLy+1bdtW69atK/a4a9euVd++fVWvXj2ZTCbt3r37uvYTAAAAAAAAsIfLFfFWr16tyZMn65lnnlFKSoq6d++ufv36KTU11Wb8kSNH1L9/f3Xv3l0pKSmaPn26Jk2apDVr1phjkpOTNWLECEVGRmrPnj2KjIzU8OHD9d133xVr3IsXL+q2227TSy+9VHoHAADg8hITLR8AAAAAUNpcbjntggULNHbsWI0bN06SFBcXp6+++kpLlizR3LlzreKXLl2qxo0bKy4uTpLUpk0b7dixQ/Pnz9fQoUPNffTp00cxMTGSpJiYGCUlJSkuLk4rV660e9zIyEhJ0tGjR0tt/+Fgjjyl3wnLA2zfPdO6jSICUE6U9h3WXGEZk7137Xbk3b25UzgKsXjxYr3yyitKS0tTu3btFBcXp+7du9uMTUxMVK9evazaDxw4oNatW5f2VIHKg89sACgxlzoTLzs7Wzt37lRERIRFe0REhLZv325zm+TkZKv4vn37aseOHcrJySkyJr/Pkoxrr6ysLGVmZlo8AAAAULqKu7oj36FDh5SWlmZ+tGjRooxmDAAAUDSXKuJlZGTo6tWr8vf3t2j39/dXenq6zW3S09Ntxufm5iojI6PImPw+SzKuvebOnStfX1/zo1GjRtfVHwAAAK7tr6ss2rRpo7i4ODVq1EhLliwpcjs/Pz8FBASYH25ubmU0YwComLgMCeA4LrecVpJMJpPFc8MwrNquFV+w3Z4+izuuPWJiYhQdHW1+npmZSSEPNvEHDQAAx8hfZTFt2jSLdntWWXTq1ElXrlxR27ZtNWPGDJtLbPNlZWUpKyvL/JwVF6hUXOESDnAJBf8dEx5eioOxHBuVnEsV8erVqyc3Nzers99OnjxpdZZcvoCAAJvx7u7uqlu3bpEx+X2WZFx7eXl5ycvL67r6AACgpGx9QVCqyTXgAkqyyiIwMFDLli1TSEiIsrKy9MEHH6h3795KTExUjx49bG4zd+5czZ492+HzB4DyjJMTgNLjUkU8T09PhYSEKCEhQUOGDDG3JyQkaPDgwTa3CQ0N1WeffWbRtnHjRnXu3FkeHh7mmISEBE2ZMsUiJiwsrMTjAgAAwLUVZ5VFq1at1KpVK/Pz0NBQHT9+XPPnzy+0iMeKC1QapX3WHWf1AYBdXKqIJ0nR0dGKjIxU586dFRoaqmXLlik1NVVRUVGS/kyWTpw4offff1+SFBUVpTfeeEPR0dEaP368kpOTFR8fb77rrCQ9/vjj6tGjh+bNm6fBgwfrk08+0aZNm7Rt2za7x5Wk06dPKzU1Vb/99pukPy98LMl8zRQAAAA4n6NWWXTt2lUrVqwo9OesuAAAAGXJ5Yp4I0aM0KlTpzRnzhylpaWpffv2Wr9+vZo0aSJJSktLs7irWHBwsNavX68pU6Zo0aJFCgoK0sKFCzV06FBzTFhYmFatWqUZM2Zo5syZat68uVavXq0uXbrYPa4kffrpp3rggQfMz0eOHClJmjVrlmJjY0vrkBSfPd9kcd0A5+LbRqDCC/eMtWqzWl6SGKtwT+ttra4tE2YdY+vPTmyEdZtDFfzsqix/S7j+TrnjqFUWKSkpCgwMLI0pAgAAFJvLFfEkacKECZowYYLNny1fvtyqrWfPntq1a1eRfQ4bNkzDhg0r8biSNGbMGI0ZM6bIPgAAAOB8xV3dERcXp6ZNm6pdu3bKzs7WihUrtGbNGq1Zs8aZuwFY44sFAKi0XLKIBwAAyoeCZwSGe3LjDLiG4q7uyM7O1pNPPqkTJ07Ix8dH7dq10xdffKH+/fs7axcAAAAsUMQDHMzef9By1yYAAEpXcVZ3TJ06VVOnTi2DWQEoDnJmAPg/FPGAcsZWkRAAAAAoj6yuAxvujFmgLPGaAyVHEQ8oA3yDCMCV2HPjDAAAAACuhSIeSsf13H214IV57e3LRS7oa+uOlOWpfwDFV9q/l4kv2uq/dMd0Ca588XZXnhsAAAAqJIp4gLgwOwAAAAA4w19XCPBvMKBoFPGAQnCtBgAAAAAA4Coo4qHcsueaTrauRVfSYpwj+wIAAAAqK64XDQAlQxEPAABYKXiZAUmKjSjzaQAA7OHI63Rez7WtHYACHwAUroqzJwAAAAAAAACgaJyJBwAAAAAAnI7rkgNFo4iHiqOkp/5vj1W4p0NnAgClLtwz1nGd2fz8LO3+S5kjl5YBQFkp7c8uJy+VBQBcH4p4AABUEFxHCAAAAKi4KOIBAAC7FCwSJm50yjQAAACASokiHioMzkABAABAmSu4RNVVlu670NJZ8nSUKnuXoXOpDVQAFPEAAIDLsnX2X2ysM2YCAAAAOFcVZ08AAAAAAAAAQNE4E6+ycqHT6wsqeIZFuKdjby3uyNP5WRoAoKJy6N1vXRXLagAAqNyccUdocg1cB4p4KBcolgFA6eEzFgBwPQr+HXHkF/AAgP9DEQ8AAJQqW0VC/oEHABUXXw4BQOmgiIdis3VBcS4yDgDIV9J/vNm6nAIAAKi8nHKWpz13nGaZLJyEIh4AAAAAAHB5LN1GZUcRDwAAlDmWWgFA+UHhBK7qWu/Nv57lX+IbJtp7U8iSxl3PmX6cEVjpUMTDdQv3jFXii3bEhZf6VAAAZcgZd7C19TeHvy8AAACoDKo4ewIAAAAAAAAAisaZeDCzeffAsDKfBgAAAFB6SnuZ2vX0D+C6mP9NmxgrqYLdJMuRnxks1y23KOKhSI6866zNImG44/oHAAAAUPq4rikAOAfLaQEAAAAAAAAXx5l4AAAAxcQlKIBS5MjlW66yZNVV5gGg4uPzpkKjiAen4lR8AICrKXgpidgIp0wDAMpMwZycS96gouK9jvKOIh6KFO4ZWynGBAA4nyM//zlTDgAAABUNRTwAAFCuXc9Z3QW3Tdx4PTMB4HQVcRmZE/aJ1TJAJVQRPz8rIIp4AACgUii4TDbc077t+McsAAAVU1F/41lqC1dEEQ8AAAAAKhm+oACKxvXz4Ioo4lVi/OEGAABAueXIpV/29sVyMwCOxucKiqGKsycAAAAAAAAAoGiciQcAAPD/cYd0AOXFtVbVFFz6xyoc4PoU93cOKA0U8QAAAIDyouCyq7BYW1Guq6TzZ7kZABdXaa6hV9LP4/L298pFUcSrJPjmDQAAAHAtf83RHf0PfvJ/wLkqTVEPZcolr4m3ePFiBQcHy9vbWyEhIdq6dWuR8UlJSQoJCZG3t7eaNWumpUuXWsWsWbNGbdu2lZeXl9q2bat169YVe1zDMBQbG6ugoCD5+PgoPDxcP/744/XtLAAAAEpFaeSUqNwSEy0fAGCvgp8fRX2e8FmDwrjcmXirV6/W5MmTtXjxYt12221688031a9fP+3fv1+NGze2ij9y5Ij69++v8ePHa8WKFfrPf/6jCRMmqH79+ho6dKgkKTk5WSNGjNBzzz2nIUOGaN26dRo+fLi2bdumLl262D3uyy+/rAULFmj58uVq2bKlnn/+efXp00eHDh1SjRo1yu4gAQAAoEilkVNWStezjNWepVMVbJnstc68Keof4/xDHUBhKvX1+Gz9nbD198XeOEeO6QQudybeggULNHbsWI0bN05t2rRRXFycGjVqpCVLltiMX7p0qRo3bqy4uDi1adNG48aN04MPPqj58+ebY+Li4tSnTx/FxMSodevWiomJUe/evRUXF2f3uIZhKC4uTs8884zuuecetW/fXu+9954uXbqkjz76qFSPSXFdq6oPAABQ0ZVGTgkAQHlAPaDicqkz8bKzs7Vz505NmzbNoj0iIkLbt2+3uU1ycrIiIiIs2vr27av4+Hjl5OTIw8NDycnJmjJlilVMfhHPnnGPHDmi9PR0i7G8vLzUs2dPbd++XQ8//LDN+WVlZSkrK8v8/Ny5c5KkzMzMwg7Ddbt4JevaQQAAVDJZOZZ/ey/mOfbvZWn+bc/v2zCMUhujIimtnLIgZ+R5uljgfVuaY9karzhszc1GfwVXOXfvXvTPXckXG67v5wCQ73o+L4r7WeTIz9mCfRWqkL9Xc+f+3//HxNgIsPV3yM6/LyX+G+nIvuxQnDzPpYp4GRkZunr1qvz9/S3a/f39lZ6ebnOb9PR0m/G5ubnKyMhQYGBgoTH5fdozbv5/bcUcO3as0H2aO3euZs+ebdXeqFGjQrcBAACl4aXS7f65Uu5f0vnz5+Xr61vq45R3pZVTFuQaeV7pv+9KzpXnBgAoW9f+m/CS3X827A105N8h18jzXKqIl89kMlk8NwzDqu1a8QXb7enTUTF/FRMTo+joaPPzvLw8nT59WnXr1i1yOxQtMzNTjRo10vHjx1WzZk1nT6dC41iXHY512eFYlx2OtWMYhqHz588rKCjI2VMpV0ojp/yryprn8XtdPvA6lQ+8TuUDr1P5UF5fp+LkeS5VxKtXr57c3NysviE9efKk1Tej+QICAmzGu7u7q27dukXG5Pdpz7gBAQGS/vyW9q/fxBY1N+nPJbdeXl4WbbVq1So0HsVTs2bNcvXLWZ5xrMsOx7rscKzLDsf6+nEGnv1KK6csqLLnefxelw+8TuUDr1P5wOtUPpTH18nePM+lbmzh6empkJAQJSQkWLQnJCQoLCzM5jahoaFW8Rs3blTnzp3N1y4pLCa/T3vGDQ4OVkBAgEVMdna2kpKSCp0bAAAAyl5p5ZQAAADO5FJn4klSdHS0IiMj1blzZ4WGhmrZsmVKTU1VVFSUpD+XLZw4cULvv/++JCkqKkpvvPGGoqOjNX78eCUnJys+Pl4rV6409/n444+rR48emjdvngYPHqxPPvlEmzZt0rZt2+we12QyafLkyXrxxRfVokULtWjRQi+++KKqVq2q++67rwyPEAAAAK6lNHJKAAAAZ3K5It6IESN06tQpzZkzR2lpaWrfvr3Wr1+vJk2aSJLS0tKUmppqjg8ODtb69es1ZcoULVq0SEFBQVq4cKGGDh1qjgkLC9OqVas0Y8YMzZw5U82bN9fq1avVpUsXu8eVpKlTp+ry5cuaMGGCzpw5oy5dumjjxo2qUaNGGRwZ/JWXl5dmzZpltYQFjsexLjsc67LDsS47HGs4S2nklPgTv9flA69T+cDrVD7wOpUPleF1Mhn23MMWAAAAAAAAgNO41DXxAAAAAAAAAFijiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4cBlHjx7V2LFjFRwcLB8fHzVv3lyzZs1Sdna2RVxqaqoGDRqkatWqqV69epo0aZJVzN69e9WzZ0/5+PioQYMGmjNnjgrewyUpKUkhISHy9vZWs2bNtHTp0lLfR1fywgsvKCwsTFWrVlWtWrVsxnCsy87ixYsVHBwsb29vhYSEaOvWrc6eksvbsmWLBg0apKCgIJlMJn388ccWPzcMQ7GxsQoKCpKPj4/Cw8P1448/WsRkZWXpscceU7169VStWjXddddd+vXXXy1izpw5o8jISPn6+srX11eRkZE6e/ZsKe+d65g7d65uueUW1ahRQ35+frr77rt16NAhixiONVCx2ZMzFGTP5wIcqySfoWPGjJHJZLJ4dO3atWwmXIkUN88jd3aO4rxOiYmJVr87JpNJBw8eLMMZVz7Xyv9tqWi/TxTx4DIOHjyovLw8vfnmm/rxxx/1j3/8Q0uXLtX06dPNMVevXtWAAQN08eJFbdu2TatWrdKaNWv0xBNPmGMyMzPVp08fBQUF6fvvv9frr7+u+fPna8GCBeaYI0eOqH///urevbtSUlI0ffp0TZo0SWvWrCnTfXam7Oxs/e1vf9Mjjzxi8+cc67KzevVqTZ48Wc8884xSUlLUvXt39evXT6mpqc6emku7ePGiOnbsqDfeeMPmz19++WUtWLBAb7zxhr7//nsFBASoT58+On/+vDlm8uTJWrdunVatWqVt27bpwoULGjhwoK5evWqOue+++7R7925t2LBBGzZs0O7duxUZGVnq++cqkpKS9Oijj+rbb79VQkKCcnNzFRERoYsXL5pjONZAxXatnMEWez4X4Fgl/Qy98847lZaWZn6sX7++DGZbeRQ3zyN3do6S5uOHDh2y+P1p0aJFGc24crpW/l9Qhfx9MgAX9vLLLxvBwcHm5+vXrzeqVKlinDhxwty2cuVKw8vLyzh37pxhGIaxePFiw9fX17hy5Yo5Zu7cuUZQUJCRl5dnGIZhTJ061WjdurXFWA8//LDRtWvX0twdl/Tuu+8avr6+Vu0c67Jz6623GlFRURZtrVu3NqZNm+akGZU/kox169aZn+fl5RkBAQHGSy+9ZG67cuWK4evrayxdutQwDMM4e/as4eHhYaxatcocc+LECaNKlSrGhg0bDMMwjP379xuSjG+//dYck5ycbEgyDh48WMp75ZpOnjxpSDKSkpIMw+BYA5VJYTlDQfZ8LsCxSvoZOnr0aGPw4MFlMMPKq7h5HrmzcxT3ddq8ebMhyThz5kwZzA62FMz/bamIv0+ciQeXdu7cOdWpU8f8PDk5We3bt1dQUJC5rW/fvsrKytLOnTvNMT179pSXl5dFzG+//aajR4+aYyIiIizG6tu3r3bs2KGcnJxS3KPyg2NdNrKzs7Vz506rYxQREaHt27c7aVbl35EjR5Senm5xXL28vNSzZ0/zcd25c6dycnIsYoKCgtS+fXtzTHJysnx9fdWlSxdzTNeuXeXr61tpX59z585JkvmzmWMNoCB7PhfgWNfzGZqYmCg/Pz+1bNlS48eP18mTJ0t7upVGSfI8cueydz35eKdOnRQYGKjevXtr8+bNpTlNlEBF/H2iiAeXdfjwYb3++uuKiooyt6Wnp8vf398irnbt2vL09FR6enqhMfnPrxWTm5urjIwMh+9LecSxLhsZGRm6evWqzWOUfwxRfPnHrqjjmp6eLk9PT9WuXbvIGD8/P6v+/fz8KuXrYxiGoqOj1a1bN7Vv314SxxqANXs+F+BYJf0M7devnz788EN98803evXVV/X999/r9ttvV1ZWVmlOt9IoSZ5H7lz2SvI6BQYGatmyZVqzZo3Wrl2rVq1aqXfv3tqyZUtZTBl2qoi/TxTxUOpiY2NtXvTzr48dO3ZYbPPbb7/pzjvv1N/+9jeNGzfO4mcmk8lqDMMwLNoLxhj//0YLxY0pb0pyrIvCsS47to4Rx+f6leS4Xus9bm8/FdHEiRP1ww8/aOXKlVY/41gD5YujcwZb+Nt2/YrzOpXkM3TEiBEaMGCA2rdvr0GDBunLL7/UTz/9pC+++KLU9qkyKu7vArmzcxTndWrVqpXGjx+vm2++WaGhoVq8eLEGDBig+fPnl8VUUQwV7ffJ3dkTQMU3ceJEjRw5ssiYpk2bmv//t99+U69evRQaGqply5ZZxAUEBOi7776zaDtz5oxycnLMFfaAgACrb0zylwVcK8bd3V1169a1f+dcTHGPdVE41mWjXr16cnNzs3mMCn5rBPsFBARI+vPbt8DAQHP7X49rQECAsrOzdebMGYszxE6ePKmwsDBzzO+//27V/x9//FHpXp/HHntMn376qbZs2aKGDRua2znWQPnkyJyhIHs+F2Afe1+nH374wSGfoYGBgWrSpIl+/vnnYs8V1kqS55E7lz1H5eNdu3bVihUrHD09XIeK+PvEmXgodfXq1VPr1q2LfHh7e0uSTpw4ofDwcN1888169913VaWK5Vs0NDRU+/btU1pamrlt48aN8vLyUkhIiDlmy5Ytys7OtogJCgoyJ6OhoaFKSEiw6Hvjxo3q3LmzPDw8SuMwlIniHOtr4ViXDU9PT4WEhFgdo4SEBHNxA8UXHBysgIAAi+OanZ2tpKQk83ENCQmRh4eHRUxaWpr27dtnjgkNDdW5c+f03//+1xzz3Xff6dy5c5Xm9TEMQxMnTtTatWv1zTffKDg42OLnHGugfHJkzlCQPZ8LsI+9r5OjPkNPnTql48ePWxRfUXIlyfPIncueo/LxlJQUfndcTIX8fSrT22gARThx4oRxww03GLfffrvx66+/GmlpaeZHvtzcXKN9+/ZG7969jV27dhmbNm0yGjZsaEycONEcc/bsWcPf39+49957jb179xpr1641atasacyfP98c87///c+oWrWqMWXKFGP//v1GfHy84eHhYfz73/8u0312pmPHjhkpKSnG7NmzjerVqxspKSlGSkqKcf78ecMwONZladWqVYaHh4cRHx9v7N+/35g8ebJRrVo14+jRo86emks7f/68+X0ryViwYIGRkpJiHDt2zDAMw3jppZcMX19fY+3atcbevXuNe++91wgMDDQyMzPNfURFRRkNGzY0Nm3aZOzatcu4/fbbjY4dOxq5ubnmmDvvvNPo0KGDkZycbCQnJxs33nijMXDgwDLfX2d55JFHDF9fXyMxMdHic/nSpUvmGI41ULFdK2cwDMNo1aqVsXbtWvNzez4X4Fj2fIb+9XU6f/688cQTTxjbt283jhw5YmzevNkIDQ01GjRowOvkQNfK86ZNm2ZERkaa48mdnaO4r9M//vEPY926dcZPP/1k7Nu3z5g2bZohyVizZo2zdqFSuFb+Xxl+nyjiwWW8++67hiSbj786duyYMWDAAMPHx8eoU6eOMXHiROPKlSsWMT/88IPRvXt3w8vLywgICDBiY2ONvLw8i5jExESjU6dOhqenp9G0aVNjyZIlpb6PrmT06NE2j/XmzZvNMRzrsrNo0SKjSZMmhqenp3HzzTcbSUlJzp6Sy9u8ebPN9/Do0aMNwzCMvLw8Y9asWUZAQIDh5eVl9OjRw9i7d69FH5cvXzYmTpxo1KlTx/Dx8TEGDhxopKamWsScOnXKuP/++40aNWoYNWrUMO6//37jzJkzZbSXzlfY5/K7775rjuFYAxWbPTlDST4X4Fj2fIb+9XW6dOmSERERYdSvX9/w8PAwGjdubIwePdrqsxnXr6g8b/To0UbPnj0t4smdnaM4r9O8efOM5s2bG97e3kbt2rWNbt26GV988YUTZl25XCv/rwy/TybD+P9X9QMAAAAAAADgkrgmHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAApSA8PFyTJ0929jQAVBAU8QAAAAAAAAAXRxEPAAAAAAAAcHEU8QDAyTZs2KBu3bqpVq1aqlu3rgYOHKjDhw87e1oAAABwgNzcXE2cONGc682YMUOGYTh7WgDKIYp4AOBkFy9eVHR0tL7//nt9/fXXqlKlioYMGaK8vDxnTw0AAADX6b333pO7u7u+++47LVy4UP/4xz/09ttvO3taAMohk8FXAADgUv744w/5+flp7969at++vbOnAwAAgBIKDw/XyZMn9eOPP8pkMkmSpk2bpk8//VT79+938uwAlDeciQcATnb48GHdd999atasmWrWrKng4GBJUmpqqpNnBgAAgOvVtWtXcwFPkkJDQ/Xzzz/r6tWrTpwVgPLI3dkTAIDKbtCgQWrUqJHeeustBQUFKS8vT+3bt1d2drazpwYAAAAAcBEU8QDAiU6dOqUDBw7ozTffVPfu3SVJ27Ztc/KsAAAA4Cjffvut1fMWLVrIzc3NSTMCUF5RxAMAJ6pdu7bq1q2rZcuWKTAwUKmpqZo2bZqzpwUAAAAHOX78uKKjo/Xwww9r165dev311/Xqq686e1oAyiGKeADgRFWqVNGqVas0adIktW/fXq1atdLChQsVHh7u7KkBAADAAUaNGqXLly/r1ltvlZubmx577DE99NBDzp4WgHKIu9MCAAAAAAAALo670wIAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gHl1OrVq9WuXTv5+PjIZDJp9+7dio2NlclksohbvHixli9f7pxJuriPPvpIcXFxzp7GdVm+fLlMJpOOHj3q7KnYzdb7NDs7W1FRUQoMDJSbm5tuuukmSVLTpk01ZsyYa/b54osv6uOPP3b8ZO109OhRmUwmzZ8/32lzAABUHOR518+V8rzw8HCFh4eXeHuTyaTY2FiHzae05edFBd+b9r6vbVm/fr3Tj0F4eLjat2/v1DkAFPGAcuiPP/5QZGSkmjdvrg0bNig5OVktW7bUuHHjlJycbBFLclc4V0ruKhNb79MlS5bozTff1DPPPKNt27bpgw8+kCStW7dOM2fOvGafzi7iAQDgKOR5jkGe5zyBgYFKTk7WgAEDzG3FeV/bsn79es2ePbs0pw2UC+7OngCA4vvpp5+Uk5Ojv//97+rZs6e5vWrVqmrYsKETZ2bt8uXL8vb2tusbtori8uXL8vHxcfY0SuTSpUuqWrVqqY7RsGFDq/fpvn375OPjo4kTJ1q0d+rUyeHjV8b3JACg/CDPc23lOc+TpJycHJlMJrm7l14pwMvLS127drVoK8v3tWEYunLlSrl+nYDCcCYeUM6MGTNG3bp1kySNGDFCJpPJfHp+wdPRmzZtqh9//FFJSUkymUwymUxq2rSpJCkxMVEmk0krVqxQdHS0AgIC5OPjo549eyolJcVizB07dmjkyJFq2rSpfHx81LRpU9177706duyYRVz+0s6NGzfqwQcfVP369VW1alVlZWXpl19+0QMPPKAWLVqoatWqatCggQYNGqS9e/da9JE/r48++khPP/20AgMDVb16dQ0aNEi///67zp8/r4ceekj16tVTvXr19MADD+jChQsWfRiGocWLF+umm26Sj4+PateurWHDhul///ufOSY8PFxffPGFjh07Zj42fz122dnZev7559W6dWt5eXmpfv36euCBB/THH39YjNW0aVMNHDhQa9euVadOneTt7X3Nbwk3bNig3r17y9fXV1WrVlWbNm00d+7cIreRpG+//Va33XabvL29FRQUpJiYGOXk5NiMXb16tUJDQ1WtWjVVr15dffv2tXpdx4wZo+rVq2vv3r2KiIhQjRo11Lt370LH/+OPP/TQQw+pUaNG5mNy2223adOmTcXav4LvU5PJpLfffluXL182vw75ZxXYs5zWZDLp4sWLeu+998zb5/9OOOI9KUlnz57VE088oWbNmsnLy0t+fn7q37+/Dh48WOi8cnJyNHr0aFWvXl2ff/55kfsAAIBEnlfe8zzDMPTyyy+rSZMm8vb21s0336wvv/yy0PiCMjMzNX78eNWtW1fVq1fXnXfeqZ9++slm7M8//6z77rtPfn5+8vLyUps2bbRo0SKbx/uDDz7QE088oQYNGsjLy0u//PJLoXNYsmSJOnbsqOrVq6tGjRpq3bq1pk+fbhFz4sQJc07o6empoKAgDRs2TL///rsk6+W0xXlf2zJmzBjzvv319cy/nIzJZNLEiRO1dOlStWnTRl5eXnrvvfckSbNnz1aXLl1Up04d1axZUzfffLPi4+NlGIbVOB999JFCQ0NVvXp1Va9eXTfddJPi4+OLnNu6detUtWpVjRs3Trm5uUXGAo7AmXhAOTNz5kzdeuutevTRR/Xiiy+qV69eqlmzps3YdevWadiwYfL19dXixYsl/fnN2F9Nnz5dN998s95++22dO3dOsbGxCg8PV0pKipo1aybpzz/ErVq10siRI1WnTh2lpaVpyZIluuWWW7R//37Vq1fPos8HH3xQAwYM0AcffKCLFy/Kw8NDv/32m+rWrauXXnpJ9evX1+nTp/Xee++pS5cuSklJUatWrazm1atXLy1fvlxHjx7Vk08+qXvvvVfu7u7q2LGjVq5cqZSUFE2fPl01atTQwoULzds+/PDDWr58uSZNmqR58+bp9OnTmjNnjsLCwrRnzx75+/tr8eLFeuihh3T48GGtW7fOYuy8vDwNHjxYW7du1dSpUxUWFqZjx45p1qxZCg8P144dOyy+2du1a5cOHDigGTNmKDg4WNWqVSv09YuPj9f48ePVs2dPLV26VH5+fvrpp5+0b9++QreRpP3796t3795q2rSpli9frqpVq2rx4sX66KOPrGJffPFFzZgxQw888IBmzJih7OxsvfLKK+revbv++9//qm3btubY7Oxs3XXXXXr44Yc1bdq0IpOPyMhI7dq1Sy+88IJatmyps2fPateuXTp16tR17V9ycrKee+45bd68Wd98840kqXnz5kUej4Lb33777erVq5d56W3B34nreU+eP39e3bp109GjR/X000+rS5cuunDhgrZs2aK0tDS1bt3aak5nz57VPffcowMHDigpKUkhISF27w8AoPIizyvfed7s2bM1e/ZsjR07VsOGDdPx48c1fvx4Xb161eoYFGQYhu6++25t375dzz77rG655Rb95z//Ub9+/axi9+/fr7CwMDVu3FivvvqqAgIC9NVXX2nSpEnKyMjQrFmzLOJjYmIUGhqqpUuXqkqVKvLz87M5h1WrVmnChAl67LHHNH/+fFWpUkW//PKL9u/fb445ceKEbrnlFuXk5Gj69Onq0KGDTp06pa+++kpnzpyRv7+/Vb/FeV/bMnPmTF28eFH//ve/LZbeBgYGmv//448/1tatW/Xss88qICDAvI9Hjx7Vww8/rMaNG0v680vxxx57TCdOnNCzzz5r3v7ZZ5/Vc889p3vuuUdPPPGEfH19tW/fPqti9l/94x//0FNPPaXY2FjNmDHD7v0BrosBoNzZvHmzIcn417/+ZdE+a9Yso+Cvdbt27YyePXsW2sfNN99s5OXlmduPHj1qeHh4GOPGjSt0/NzcXOPChQtGtWrVjNdee83c/u677xqSjFGjRl1zH3Jzc43s7GyjRYsWxpQpU6zmNWjQIIv4yZMnG5KMSZMmWbTffffdRp06dczPk5OTDUnGq6++ahF3/Phxw8fHx5g6daq5bcCAAUaTJk2s5rZy5UpDkrFmzRqL9u+//96QZCxevNjc1qRJE8PNzc04dOjQNff5/PnzRs2aNY1u3bpZHHN7jBgxwvDx8THS09PNbbm5uUbr1q0NScaRI0cMwzCM1NRUw93d3Xjsscesxg74f+3deVwVZf//8feRTUQ84sJWbmXigltqilpiKi65la0Wapnlkt6GaNlKplG5ZOmdlqloWnp3m5VpJJno7UK5UW6ZGYYpiBWCkoLC/P7wx/l2ZBHwwDnA6/l4zKNm5pqZz8w52qfPua65fH2N+++/37Jt+PDhhiRjyZIlRYqhevXqxsSJEwvcX9T7y+97Onz4cMPDwyNP2wYNGhjDhw+/ZmweHh75trPFd3LatGmGJCMmJqbAYxMSEgxJxsyZM42EhASjefPmRvPmzY3jx49f87oAAPwTed7/KU95XmpqqlG1alXj7rvvttq+fft2Q1K+n9M/ffXVV4Ykq2duGIYxY8YMQ5Lx8ssvW7b17t3buPHGG420tDSrtk899ZRRtWpV46+//jIM4/+e9x133HHN+HOPr1mzZqFtHnvsMcPFxcU4dOhQgW1y86KlS5dathXne52fcePGFdhOkmE2my33XZDs7Gzj0qVLxrRp04zatWtb/mz8+uuvhpOTk/Hwww8Xeny3bt2MFi1aGNnZ2cZTTz1luLq6GitWrLhm7IAtMZwWqOSGDh1q1YW9QYMG6ty5szZv3mzZdv78eT3zzDNq3LixnJ2d5ezsrOrVqysjI0OHDx/Oc84hQ4bk2Xb58mW99tprat68uVxdXeXs7CxXV1cdPXo033P079/far1Zs2aSZPWC3Nztf/31l2WoxZdffimTyaRHHnlEly9ftiy+vr5q3bq1YmNjr/lMvvzyS9WsWVMDBgywOkebNm3k6+ub5xytWrVSkyZNrnneHTt2KD09XWPHji32u2M2b96sHj16WP266eTkpAceeMCq3ddff63Lly9r2LBhVrFXrVpV3bp1y/f+8/u88nPbbbcpKipK06dPV1xcXJ6hvNdzf6Xter6TX331lZo0aaKePXte8zp79+5Vp06d5OPjo+3bt6tBgwY2vQ8A5cPWrVs1YMAA+fv7y2QylWjina+//lqdOnWSp6en6tatqyFDhighIcH2waJCI8/Lq7TyvJ07d+rixYt6+OGHrbZ37ty5SPlA7mdy9fFDhw61Wr948aI2bdqku+++W9WqVbO6h379+unixYuKi4uzOqY4ud7Zs2f10EMP6fPPP9cff/yRp81XX32l7t27Wz4zR3HnnXfKy8srz/Zvv/1WPXv2lNlslpOTk1xcXPTSSy/pzz//VEpKiiQpJiZG2dnZGjdu3DWvc/HiRQ0ePFgrV67Uxo0b83xeQGmjiAdUcr6+vvlu++cQyaFDh2r+/Pl6/PHH9fXXX+v777/Xrl27VLduXV24cCHP8f/s2p4rLCxML774ogYPHqx169bpu+++065du9S6det8z1GrVi2rdVdX10K3X7x4UZJ0+vRpGYYhHx8fubi4WC1xcXH5JiNXO336tM6ePStXV9c850hOTs5zjvzuNz+571kpyct7//zzzwI/q6tjl6QOHTrkiX316tV5Yq9WrVqRhzOsXr1aw4cP1wcffKCgoCDVqlVLw4YNU3Jy8nXfX2m7nu/kmTNninxPMTExOn36tB5//HHVrFnTVuEDKGcyMjLUunVrzZ8/v0TH//rrrxo0aJDuvPNOxcfH6+uvv9Yff/yhe+65x8aRoqIjz8urtPK83GdalHytoOOdnZ1Vu3btQo/9888/dfnyZc2bNy9P/P369ZOkEt9DaGiolixZot9++01DhgyRt7e3OnbsqJiYGEub4uRFZSm/e/z+++8VEhIiSVq0aJG2b9+uXbt26fnnn5cky3ezODlsSkqKvv76awUFBalz5862Ch8oMt6JB1RyuQWYq7flJhBpaWn68ssv9fLLL+vZZ5+1tMnMzNRff/2V7znz64W1YsUKDRs2TK+99prV9j/++MOmxY46derIZDLpf//7X573wkh53xVT0Dlq166t6OjofPd7enparRe111ndunUlSb///nuR2v9T7dq1C/ys/in3vTX//e9/i/Srb3F6zNWpU0dz587V3LlzlZiYqC+++ELPPvusUlJSFB0dfV33V9qu5ztZt27dIt/T5MmTdezYMUtPyGHDhl1X3ADKp759++b7HqtcWVlZeuGFF7Ry5UqdPXtWgYGBeuONNywvet+7d6+ys7M1ffp0Valy5Tf38PBwDRo0SJcuXZKLi0tZ3AYqAPK8/M9RGnle7jMt6JnnTjpS2PGXL1/Wn3/+aVXIu/p8Xl5ecnJyUmhoaIE9xxo1amS1Xpx879FHH9Wjjz6qjIwMbd26VS+//LL69++vn3/+WQ0aNChWXlSW8rvHVatWycXFRV9++aWqVq1q2X517+h/5rD16tUr9Dr169fXnDlzdPfdd+uee+7RJ598YnVuoLTREw+o4Nzc3PL9BTTXxx9/bDU702+//aYdO3ZY/kfCZDLJMIw8SdEHH3yg7OzsIsdhMpnynGP9+vU6efJkkc9RFP3795dhGDp58qTat2+fZ2nZsqWlbUHPpn///vrzzz+VnZ2d7zmu9WLignTu3Flms1kLFy7Md0aswnTv3l2bNm2y9LSTpOzsbK1evdqqXe/eveXs7Kxjx47lG3v79u1LFPvV6tevr6eeekq9evXS3r17JV3f/V2va33P81PU72Tfvn31888/WybdKEyVKlX03nvv6V//+pdGjBihBQsWFCsmAJXDo48+qu3bt2vVqlX68ccfdd9996lPnz46evSoJKl9+/ZycnLS0qVLlZ2drbS0NH344YcKCQmhgAcr5HmOk+d16tRJVatW1cqVK62279ixo9DJEXJ1795dkvIcf/UkZtWqVVP37t21b98+tWrVKt97uLo3X0l4eHiob9++ev7555WVlaWDBw9KupIXbd68WUeOHLnuaxRH7verOPmeyWSSs7OznJycLNsuXLigDz/80KpdSEiInJycipy3hYSE6Ouvv9bWrVvVv39/ZWRkFDkm4HrREw+o4Fq2bKlVq1Zp9erVuummm1S1alWrBCclJUV33323Ro0apbS0NL388suqWrWqpk6dKunKLJ933HGHZs6cqTp16qhhw4basmWLFi9eXKxfVvv376+oqCg1bdpUrVq10p49ezRz5kybd8fv0qWLnnjiCT366KPavXu37rjjDnl4eCgpKUnbtm1Ty5YtNWbMGMuz+fTTT7VgwQK1a9dOVapUUfv27fXggw9q5cqV6tevn/71r3/ptttuk4uLi37//Xdt3rxZgwYN0t13313s2KpXr67Zs2fr8ccfV8+ePTVq1Cj5+Pjol19+0Q8//FDosKsXXnhBX3zxhe6880699NJLqlatmv7973/nSRoaNmyoadOm6fnnn9evv/6qPn36yMvLS6dPn9b3338vDw8PvfLKK8WOPS0tTd27d9fQoUPVtGlTeXp6ateuXYqOjrYM77qe+7teLVu2VGxsrNatWyc/Pz95enpeMwkv6ndy4sSJWr16tQYNGqRnn31Wt912my5cuKAtW7aof//+lqT7n2bPni1PT0+NHTtW58+f1+TJk216vwDKr2PHjunjjz/W77//Ln9/f0lXetlFR0dr6dKleu2119SwYUNt3LhR9913n5588kllZ2crKChIGzZssHP0cDTkeY6T53l5eSk8PFzTp0/X448/rvvuu08nTpxQREREkYbThoSE6I477tCUKVOUkZGh9u3ba/v27XkKTpL09ttvq2vXrrr99ts1ZswYNWzYUOfOndMvv/yidevWFemHx/yMGjVK7u7u6tKli/z8/JScnKzIyEiZzWZ16NBBkjRt2jR99dVXuuOOO/Tcc8+pZcuWOnv2rKKjoxUWFqamTZuW6NrXkvu9fuONN9S3b185OTmpVatWliHX+bnrrrs0Z84cDR06VE888YT+/PNPzZo1K0/BuWHDhnruuef06quv6sKFC3rooYdkNpt16NAh/fHHH/nmzl27dtWmTZvUp08fhYSEaMOGDTKbzba9aSA/9ppRA0DJFWd2p+PHjxshISGGp6enIckyS1fuOT788ENjwoQJRt26dQ03Nzfj9ttvN3bv3m11jt9//90YMmSI4eXlZXh6ehp9+vQxDhw4kGfm0NxZy3bt2pUn5tTUVGPkyJGGt7e3Ua1aNaNr167G//73P6Nbt25Ws3UVdG8FnTv3ns+cOWO1fcmSJUbHjh0NDw8Pw93d3bj55puNYcOGWd3bX3/9Zdx7771GzZo1DZPJZPXsLl26ZMyaNcto3bq1UbVqVaN69epG06ZNjSeffNI4evSopV2DBg2Mu+66K8/9FmbDhg1Gt27dDA8PD6NatWpG8+bNjTfeeOOax23fvt3o1KmT4ebmZvj6+hqTJ0823n//favZaXN99tlnRvfu3Y0aNWoYbm5uRoMGDYx7773X+OabbyxtCpoRNj8XL140Ro8ebbRq1cqoUaOG4e7ubgQEBBgvv/yykZGRUaz7K43ZaePj440uXboY1apVs5oBzhbfydy2//rXv4z69esbLi4uhre3t3HXXXcZP/30k2EY1rPT/tPMmTMNScZLL710zXsAUDFJMtauXWtZ/89//mNIMjw8PKwWZ2dnywziSUlJxi233GJMnjzZ2Lt3r7FlyxajW7duRo8ePYo9uznKH/K8vPdcXvK8nJwcIzIy0qhXr57h6upqtGrVyli3bl2+uUV+zp49azz22GNGzZo1jWrVqhm9evUyfvrppzyz0xrGldzjscceM2644QbDxcXFqFu3rtG5c2dj+vTpljYFPe+CLFu2zOjevbvh4+NjuLq6Gv7+/sb9999v/Pjjj1btTpw4YTz22GOGr6+v4eLiYml3+vRpS2yy8ey0mZmZxuOPP27UrVvX8nnm5r+SjHHjxuV73JIlS4yAgADDzc3NuOmmm4zIyEhj8eLF+ebPy5cvNzp06GD5TrRt29bqHnJnp/2nAwcOGL6+vsatt96a53sKlAaTYZTxmCcADiE2Nlbdu3fXJ598onvvvdfe4QAAUCGZTCatXbtWgwcPlnRlkqCHH35YBw8etBriJV3p0ezr66sXX3xRX331lXbv3m3Zl/uupp07d6pTp05leQsoh8jzAKBiYjgtAAAAUEbatm2r7OxspaSk6Pbbb8+3zd9//52nwJe7npOTU+oxAgAAx8TEFgAAAIANnT9/XvHx8YqPj5ckJSQkKD4+XomJiWrSpIkefvhhDRs2TJ9++qkSEhK0a9cuvfHGG5Z33t11113atWuXpk2bpqNHj2rv3r169NFH1aBBA7Vt29aOdwYAAOyJ4bQAAACADeUOZbza8OHDFRUVpUuXLmn69Olavny5Tp48qdq1aysoKEivvPKK5eXtq1at0ptvvqmff/5Z1apVU1BQkN54441Se2k8AABwfBTxAAAAAAAAAAfHcFoAAAAAAADAwVHEAwAAAAAAABwcs9OWsZycHJ06dUqenp4ymUz2DgcAAJQDhmHo3Llz8vf3V5Uq/AbrqMjzAABAcRUnz6OIV8ZOnTqlevXq2TsMAABQDp04cUI33nijvcNAAcjzAABASRUlz6OIV8Y8PT0lXflwatSoYedoAABAeZCenq569epZ8gg4JvI8AABQXMXJ8+xaxIuMjNSnn36qn376Se7u7urcubPeeOMNBQQEWNqMGDFCy5YtszquY8eOiouLs6xnZmYqPDxcH3/8sS5cuKAePXro3XfftapgpqamasKECfriiy8kSQMHDtS8efNUs2ZNS5vExESNGzdO3377rdzd3TV06FDNmjVLrq6uljb79+/XU089pe+//161atXSk08+qRdffLHIQyZy29WoUYPkDgAAFAtDNB0beR4AACipouR5dn2pypYtWzRu3DjFxcUpJiZGly9fVkhIiDIyMqza9enTR0lJSZZlw4YNVvsnTpyotWvXatWqVdq2bZvOnz+v/v37Kzs729Jm6NChio+PV3R0tKKjoxUfH6/Q0FDL/uzsbN11113KyMjQtm3btGrVKq1Zs0aTJk2ytElPT1evXr3k7++vXbt2ad68eZo1a5bmzJlTSk8IAAAAAAAAkEyGYRj2DiLXmTNn5O3trS1btuiOO+6QdKUn3tmzZ/XZZ5/le0xaWprq1q2rDz/8UA888ICk/3sfyYYNG9S7d28dPnxYzZs3V1xcnDp27ChJiouLU1BQkH766ScFBAToq6++Uv/+/XXixAn5+/tLklatWqURI0YoJSVFNWrU0IIFCzR16lSdPn1abm5ukqTXX39d8+bN0++//16kqml6errMZrPS0tL4hRYAABQJ+UP5wOcEAACKqzj5g0NNb5aWliZJqlWrltX22NhYeXt7q0mTJho1apRSUlIs+/bs2aNLly4pJCTEss3f31+BgYHasWOHJGnnzp0ym82WAp4kderUSWaz2apNYGCgpYAnSb1791ZmZqb27NljadOtWzdLAS+3zalTp3T8+PF87ykzM1Pp6elWCwAAAAAAAFAcDjOxhWEYCgsLU9euXRUYGGjZ3rdvX913331q0KCBEhIS9OKLL+rOO+/Unj175ObmpuTkZLm6usrLy8vqfD4+PkpOTpYkJScny9vbO881vb29rdr4+PhY7ffy8pKrq6tVm4YNG+a5Tu6+Ro0a5blGZGSkXnnllWI+DQAAbMMwDF2+fNnqFRNwPE5OTnJ2duaddwAAoEjI8coPW+Z5DlPEe+qpp/Tjjz9q27ZtVttzh8hKUmBgoNq3b68GDRpo/fr1uueeewo8n2EYVg8ov4dliza5o5EL+jCmTp2qsLAwy3rurCMAAJS2rKwsJSUl6e+//7Z3KCiCatWqyc/Pz2pCLQAAgKuR45U/tsrzHKKIN378eH3xxRfaunWr1Yyy+fHz81ODBg109OhRSZKvr6+ysrKUmppq1RsvJSVFnTt3trQ5ffp0nnOdOXPG0pPO19dX3333ndX+1NRUXbp0yapNbq+8f15HUp5efLnc3Nysht8CAFAWcnJylJCQICcnJ/n7+8vV1ZVeXg7KMAxlZWXpzJkzSkhI0C233KIqVRzqjScAAMBBkOOVL7bO8+xaxDMMQ+PHj9fatWsVGxub73DUq/355586ceKE/Pz8JEnt2rWTi4uLYmJidP/990uSkpKSdODAAb355puSpKCgIKWlpen777/XbbfdJkn67rvvlJaWZin0BQUFacaMGUpKSrKce+PGjXJzc1O7du0sbZ577jllZWVZqqcbN26Uv79/nmG2AADYU1ZWlnJyclSvXj1Vq1bN3uHgGtzd3eXi4qLffvtNWVlZqlq1qr1DAgAADogcr/yxZZ5n1595x40bpxUrVuijjz6Sp6enkpOTlZycrAsXLkiSzp8/r/DwcO3cuVPHjx9XbGysBgwYoDp16ujuu++WJJnNZo0cOVKTJk3Spk2btG/fPj3yyCNq2bKlevbsKUlq1qyZ+vTpo1GjRikuLk5xcXEaNWqU+vfvr4CAAElSSEiImjdvrtDQUO3bt0+bNm1SeHi4Ro0aZZkdZOjQoXJzc9OIESN04MABrV27Vq+99prCwsKofAMAHBI9usoPPisAAFBU5A3li60+L7t+6gsWLFBaWpqCg4Pl5+dnWVavXi3pysv/9u/fr0GDBqlJkyYaPny4mjRpop07d8rT09NynrfeekuDBw/W/fffry5duqhatWpat26dnJycLG1Wrlypli1bKiQkRCEhIWrVqpU+/PBDy34nJyetX79eVatWVZcuXXT//fdr8ODBmjVrlqWN2WxWTEyMfv/9d7Vv315jx45VWFiY1TvvAAAAAAAAAFszGbkzM6BMpKeny2w2Ky0tzdLDDwAAW7t48aISEhLUqFEjhmaWE4V9ZuQP5QOfEwCgtJHjlU+2yvPofwkAAAAAAAA4OIp4AACgwjIMQ0888YRq1aolk8mk+Ph4u8YTHBysiRMn2jUGAAAAR/P6668rKCioWMdUxjzPrrPTAgAAlKbo6GhFRUUpNjZWN910k+rUqWPvkAAAAHCVH374Qa1bty7WMZUxz6OIBwAOLCLC+p+ALZT198me399jx47Jz89PnTt3tl8QAIBKr6D/FpLjwZbK8vtk62v98MMPmjBhQrGOqYx5HsNpAQCAQzpz5oyeeOIJ+fj4yN3dXa1bt9bWrVuLfPyIESM0fvx4JSYmymQyqWHDhpKkzMxMTZgwQd7e3qpataq6du2qXbt2WY5r2LCh5s6da3WuNm3aKOIf2WpwcLAmTJigKVOmqFatWvL19bXaL0kZGRkaNmyYqlevLj8/P82ePbu4jwAAAKDCOXz4sIKDg+Xu7q62bdtq9+7d+vnnn4vVE6+y5nkU8QAAgMP57bff1KpVK6Wmpurzzz/Xjz/+qPHjx8vT07PI53j77bc1bdo03XjjjUpKSrIkcFOmTNGaNWu0bNky7d27V40bN1bv3r31119/FSvGZcuWycPDQ999953efPNNTZs2TTExMZb9kydP1ubNm7V27Vpt3LhRsbGx2rNnT7GuAQAAUJH89NNP6tixo9q3b68DBw7opZde0qBBg2QYhlq1alXk81TWPI/htAAAwOGMGTNGTZs21X/+8x+ZTCZJ0i233FKsc5jNZnl6esrJyUm+vr6SrvxqumDBAkVFRalv376SpEWLFikmJkaLFy/W5MmTi3z+Vq1a6eWXX7bENn/+fG3atEm9evXS+fPntXjxYi1fvly9evWSdCUZvPHGG4t1DwAAABXJuHHjNGjQIM2aNUuSdPPNN+s///mP9u7dKw8PjyKfp7LmeRTxAACAQ0lMTNRXX32lvXv3Wgp4tnLs2DFdunRJXbp0sWxzcXHRbbfdpsOHDxfrXFf/Wuzn56eUlBTLdbKysqxmWatVq5YCAgKuI3oAAIDy67ffftO3336rvXv3Wm13cXEp9qQW+akMeR7DaQEAgEPZt2+fXF1d1bZt23z3d+zYUbt375YkDR8+XAsWLCjyuQ3DkKQ8xUHDMCzbqlSpYmmX69KlS3nO5eLiYrVuMpmUk5NjdR0AAABcER8fL2dnZ7Vs2dJq+969e9WmTRtJ5HnXQhEPAAA4FBcXF12+fFl///13vvtffPFFvfbaa5o9e7aqV6+uMWPGFPncjRs3lqurq7Zt22bZdunSJe3evVvNmjWTJNWtW1dJSUmW/enp6UpISCjWPTRu3FguLi6Ki4uzbEtNTdXPP/9crPMAAABUFFWqVFFOTo6ysrIs2zZs2KCDBw9ainjkeYVjOC0AAHAoHTt2lNls1pgxY/Tss8/KMAxt3bpVwcHBatq0qfr3768XXnhB58+f14YNG4p1bg8PD40ZM0aTJ09WrVq1VL9+fb355pv6+++/NXLkSEnSnXfeqaioKA0YMEBeXl568cUX5eTkVKzrVK9eXSNHjtTkyZNVu3Zt+fj46Pnnn1eVKvx+CgAAKqd27drJxcVF4eHhCg8P14EDByxFutzhtOR5haOIBwAAHErt2rW1bt06TZ48WR06dJCrq6tuu+02PfDAA5Kk77//XmfPnlWTJk3k7Fz8VOb1119XTk6OQkNDde7cObVv315ff/21vLy8JElTp07Vr7/+qv79+8tsNuvVV18t9i+0kjRz5kydP39eAwcOlKenpyZNmqS0tLRinwcAAKAi8Pf31wcffKCpU6dq1apVatu2rYYPH65FixbphhtukESedy0mg5e2lKn09HSZzWalpaWpRo0a9g4HgIOLiLD+J1BUFy9eVEJCgho1aqSqVavaOxybOXnypPr27avPP/9c99xzjz766CPL8IjyrrDPjPyhfOBzAlCQgnI5cjwUV0XN8STyvKLkD4zpAAAA5cKFCxd07733av78+WrUqJGmTJmi6dOn2zssAAAAXCfyvKJhOC0AACgX3N3dtXPnTsv6Qw89pIceesiOEQEAAMAWyPOKhp54AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAqLAiIyNlMpk0ceLEQttt2bJF7dq1U9WqVXXTTTdp4cKFZRMgAABAEVHEA4ByICLiygIAKLpdu3bp/fffV6tWrQptl5CQoH79+un222/Xvn379Nxzz2nChAlas2ZNGUUKAABwbRTxAAAAUOGcP39eDz/8sBYtWiQvL69C2y5cuFD169fX3Llz1axZMz3++ON67LHHNGvWrDKKFgAA4Noo4gEAAKDCGTdunO666y717Nnzmm137typkJAQq229e/fW7t27denSpQKPy8zMVHp6utUCAABQWijiAQAAoEJZtWqV9u7dq8jIyCK1T05Olo+Pj9U2Hx8fXb58WX/88UeBx0VGRspsNluWevXqXVfcAAAAhaGIBwAAKqzg4OBrTmiAiuXEiRP617/+pRUrVqhq1apFPs5kMlmtG4aR7/Z/mjp1qtLS0izLiRMnShY0AACV3Ouvv66goKBiHVMZ8zxnewcAAADK2I6Isr1e5zK+XikJDg5WmzZtNHfuXHuHgkLs2bNHKSkpateunWVbdna2tm7dqvnz5yszM1NOTk5Wx/j6+io5OdlqW0pKipydnVW7du0Cr+Xm5iY3Nzfb3gAAACVVljmejfO7H374Qa1bt7bpOYujvOR5FPEAAABQYfTo0UP79++32vboo4+qadOmeuaZZ/IU8CQpKChI69ats9q2ceNGtW/fXi4uLqUaL4CKJyLC3hEA5c8PP/ygCRMm2DsMh8dwWgAoQxER/7cAKNyZM2f0xBNPyMfHR+7u7mrdurW2bt16XefMzMzUhAkT5O3trapVq6pr167atWuXZf9///tftWzZUu7u7qpdu7Z69uypjIwMjRgxQlu2bNHbb78tk8kkk8mk48ePX+cdojR4enoqMDDQavHw8FDt2rUVGBgo6cow2GHDhlmOGT16tH777TeFhYXp8OHDWrJkiRYvXqzw8HB73QYAABXW4cOHFRwcLHd3d7Vt21a7d+/Wzz//fN098SpDnkcRDwAAOJzffvtNrVq1Umpqqj7//HP9+OOPGj9+vDw9Pa/rvFOmTNGaNWu0bNky7d27V40bN1bv3r31119/KSkpSQ899JAee+wxHT58WLGxsbrnnntkGIbefvttBQUFadSoUUpKSlJSUhKTGJRjSUlJSkxMtKw3atRIGzZsUGxsrNq0aaNXX31V77zzjoYMGWLHKAEAqHh++ukndezYUe3bt9eBAwf00ksvadCgQTIMQ61atbquc1eGPI/htABgJ7m98eiVB+Q1ZswYNW3aVP/5z38sEwvccsst13XOjIwMLViwQFFRUerbt68kadGiRYqJidHixYvVo0cPXb58Wffcc48aNGggSWrZsqXleFdXV1WrVk2+vr7XFQfKXmxsrNV6VFRUnjbdunXT3r17yyYgAAAqqXHjxmnQoEGaNWuWJOnmm2/Wf/7zH+3du1ceHh4lPm9lyfPoiQcAABxKYmKivvrqK82ZM6fQmUGL69ixY7p06ZK6dOli2ebi4qLbbrtNhw8fVuvWrdWjRw+1bNlS9913nxYtWqTU1FSbXR8AAKAy++233/Ttt98qLCzMaruLi8t1D6WtLHkeRTwAAOBQ9u3bJ1dXV7Vt2zbf/R07dtTu3bslScOHD9eCBQuKdF7DMCQpT2HQMAyZTCY5OTkpJiZGX331lZo3b6558+YpICBACQkJ13E3AAAAkKT4+Hg5Oztb9YCTpL1796pNmzaSyPOuhSIeAABwKC4uLrp8+bL+/vvvfPe/+OKLeu211zR79mxVr15dY8aMKdJ5GzduLFdXV23bts2y7dKlS9q9e7eaNWsm6Uri16VLF73yyiuWYuLatWslXRlmkZ2dfZ13BwAAUDlVqVJFOTk5ysrKsmzbsGGDDh48aCnikecVjnfiAQAAh9KxY0eZzWaNGTNGzz77rAzD0NatWxUcHKymTZuqf//+euGFF3T+/Hlt2LChyOf18PDQmDFjNHnyZNWqVUv169fXm2++qb///lsjR47Ud999p02bNikkJETe3t767rvvdObMGUvi17BhQ3333Xc6fvy4qlevrlq1aqlKFX4PBQAAKIp27drJxcVF4eHhCg8P14EDByxFutzhtOR5hXO8iAAAQKVWu3ZtrVu3TkePHlWHDh3UtWtXffbZZ/Lx8ZEkff/99zp79qxq1qwpZ+fi/R75+uuva8iQIQoNDdWtt96qX375RV9//bW8vLxUo0YNbd26Vf369VOTJk30wgsvaPbs2ZaXI4eHh8vJyUnNmzdX3bp1rWY3BQAAQOH8/f31wQcfaN26dWrfvr3efvttDR8+XHXq1NENN9wgiTzvWkxG7sBhlIn09HSZzWalpaWpRo0a9g4HQBnLbybawmanvXofM9miqC5evKiEhAQ1atRIVatWtXc4NnPy5En17dtXn3/+ue655x599NFHll9Qy7vCPjPyh/KBzwmAVLx8jdwOxVVRczyJPK8o+QM98QAAQLlw4cIF3XvvvZo/f74aNWqkKVOmaPr06fYOCwAAANeJPK9oeCceAAAoF9zd3bVz507L+kMPPaSHHnrIjhEBAADAFsjzioaeeAAAAAAAAICDo4gHAAAAAAAAODiKeAAAAAAAAICDo4gHAAAAAAAAODiKeAAAVGCGYdg7BBQRnxUAACgq8obyxVafF0U8AAAqIBcXF0nS33//bedIUFS5n1XuZwcAAHA1crzyyVZ5nrMtggEAAI7FyclJNWvWVEpKiiSpWrVqMplMdo4K+TEMQ3///bdSUlJUs2ZNOTk52TskAADgoMjxyhdb53kU8QAAqKB8fX0lyZLkwbHVrFnT8pkBAAAUhByv/LFVnkcRDwCACspkMsnPz0/e3t66dOmSvcNBIVxcXOiBBwAAioQcr3yxZZ5HEQ8AgArOycmJAhEAAEAFQ45X+TCxBQAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADs6uRbzIyEh16NBBnp6e8vb21uDBg3XkyBGrNoZhKCIiQv7+/nJ3d1dwcLAOHjxo1SYzM1Pjx49XnTp15OHhoYEDB+r333+3apOamqrQ0FCZzWaZzWaFhobq7NmzVm0SExM1YMAAeXh4qE6dOpowYYKysrKs2uzfv1/dunWTu7u7brjhBk2bNk2GYdjuoQAAAAAAAABXsWsRb8uWLRo3bpzi4uIUExOjy5cvKyQkRBkZGZY2b775pubMmaP58+dr165d8vX1Va9evXTu3DlLm4kTJ2rt2rVatWqVtm3bpvPnz6t///7Kzs62tBk6dKji4+MVHR2t6OhoxcfHKzQ01LI/Oztbd911lzIyMrRt2zatWrVKa9as0aRJkyxt0tPT1atXL/n7+2vXrl2aN2+eZs2apTlz5pTykwIAAAAAAEBl5mzPi0dHR1utL126VN7e3tqzZ4/uuOMOGYahuXPn6vnnn9c999wjSVq2bJl8fHz00Ucf6cknn1RaWpoWL16sDz/8UD179pQkrVixQvXq1dM333yj3r176/Dhw4qOjlZcXJw6duwoSVq0aJGCgoJ05MgRBQQEaOPGjTp06JBOnDghf39/SdLs2bM1YsQIzZgxQzVq1NDKlSt18eJFRUVFyc3NTYGBgfr55581Z84chYWFyWQyleHTA1BRRUTYOwIAKN8WLFigBQsW6Pjx45KkFi1a6KWXXlLfvn3zbR8bG6vu3bvn2X748GE1bdq0NEMFAAAoMod6J15aWpokqVatWpKkhIQEJScnKyQkxNLGzc1N3bp1044dOyRJe/bs0aVLl6za+Pv7KzAw0NJm586dMpvNlgKeJHXq1Elms9mqTWBgoKWAJ0m9e/dWZmam9uzZY2nTrVs3ubm5WbU5deqUJUm8WmZmptLT060WAAAAlJ4bb7xRr7/+unbv3q3du3frzjvv1KBBg/K8kuVqR44cUVJSkmW55ZZbyihiAACAa3OYIp5hGAoLC1PXrl0VGBgoSUpOTpYk+fj4WLX18fGx7EtOTparq6u8vLwKbePt7Z3nmt7e3lZtrr6Ol5eXXF1dC22Tu57b5mqRkZGW9/CZzWbVq1fvGk8CAAAA12PAgAHq16+fmjRpoiZNmmjGjBmqXr264uLiCj3O29tbvr6+lsXJyamMIgYAALg2hyniPfXUU/rxxx/18ccf59l39TBVwzCuOXT16jb5tbdFm9xJLQqKZ+rUqUpLS7MsJ06cKDRuAAAA2E52drZWrVqljIwMBQUFFdq2bdu28vPzU48ePbR58+ZrnpsRFwAAoCw5RBFv/Pjx+uKLL7R582bdeOONlu2+vr6S8vZyS0lJsfSA8/X1VVZWllJTUwttc/r06TzXPXPmjFWbq6+TmpqqS5cuFdomJSVFUt7egrnc3NxUo0YNqwUAAACla//+/apevbrc3Nw0evRorV27Vs2bN8+3rZ+fn95//32tWbNGn376qQICAtSjRw9t3bq10Gsw4gIAAJQluxbxDMPQU089pU8//VTffvutGjVqZLW/UaNG8vX1VUxMjGVbVlaWtmzZos6dO0uS2rVrJxcXF6s2SUlJOnDggKVNUFCQ0tLS9P3331vafPfdd0pLS7Nqc+DAASUlJVnabNy4UW5ubmrXrp2lzdatW5WVlWXVxt/fXw0bNrTRUwFQEUVEMGEFAJSlgIAAxcfHKy4uTmPGjNHw4cN16NChAtuOGjVKt956q4KCgvTuu+/qrrvu0qxZswq9BiMuAABAWbJrEW/cuHFasWKFPvroI3l6eio5OVnJycm6cOGCpCtDVCdOnKjXXntNa9eu1YEDBzRixAhVq1ZNQ4cOlSSZzWaNHDlSkyZN0qZNm7Rv3z498sgjatmypWW22mbNmqlPnz4aNWqU4uLiFBcXp1GjRql///4KCAiQJIWEhKh58+YKDQ3Vvn37tGnTJoWHh2vUqFGW3nNDhw6Vm5ubRowYoQMHDmjt2rV67bXXmJkWAADAwbi6uqpx48Zq3769IiMj1bp1a7399ttFPr5Tp046evRooW0YcQEAAMqSsz0vvmDBAklScHCw1falS5dqxIgRkqQpU6bowoULGjt2rFJTU9WxY0dt3LhRnp6elvZvvfWWnJ2ddf/99+vChQvq0aOHoqKirF5GvHLlSk2YMMEyi+3AgQM1f/58y34nJyetX79eY8eOVZcuXeTu7q6hQ4da/QJrNpsVExOjcePGqX379vLy8lJYWJjCwsJs/WgAAABgQ4ZhKDMzs8jt9+3bJz8/v1KMCAAAoHjsWsTLnRSiMCaTSREREYooZBxa1apVNW/ePM2bN6/ANrVq1dKKFSsKvVb9+vX15ZdfFtqmZcuW13w/CgAAAOznueeeU9++fVWvXj2dO3dOq1atUmxsrKKjoyVdGQZ78uRJLV++XJI0d+5cNWzYUC1atFBWVpZWrFihNWvWaM2aNfa8DQAAACt2LeIBAAAAtnb69GmFhoYqKSlJZrNZrVq1UnR0tHr16iXpyvuTExMTLe2zsrIUHh6ukydPyt3dXS1atND69evVr18/e90CAABAHhTxAAAAUKEsXry40P1RUVFW61OmTNGUKVNKMSIAAIDrZ9eJLQAAAAAAAABcG0U8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AChHIiKuLAAAAACAyoUiHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAKJbg4GBNnDjR3mEoKipKNWvWtKxHRESoTZs2xTrH1ffSsGFDzZ07t9BjTCaTPvvss2JdBwCA60URDwAAAECFEB4erk2bNhXrmE8//VSvvvpqKUVkGwcPHtSQIUPUsGFDmUymaxYZiyoiIkImkynP4uHhYZPzAwBsiyIeAAAAgAqhevXqql27drGOqVWrljw9PUspopI7ceKE5d///vtv3XTTTXr99dfl6+trs2uEh4crKSnJamnevLnuu+8+m10DAGA7FPEAAAAAFCgjI0PDhg1T9erV5efnp9mzZ1/zmNxhrR9++KEaNmwos9msBx98UOfOnbO0MQxDb775pm666Sa5u7urdevW+u9//2t1ni+++EK33HKL3N3d1b17dy1btkwmk0lnz54t9Lq5Ll++rAkTJqhmzZqqXbu2nnnmGQ0fPlyDBw+2tMlvaPC5c+c0dOhQVa9eXf7+/po3b16h93vy5Ek98MAD8vLyUu3atTVo0CAdP378ms/paidOnNCMGTPUpEkTTZgwwbK9Q4cOmjlzph588EG5ubnle2xRnufVqlevLl9fX8ty+vRpHTp0SCNHjix27ACA0kcRDwAAAECBJk+erM2bN2vt2rXauHGjYmNjtWfPnmsed+zYMX322Wf68ssv9eWXX2rLli16/fXXLftfeOEFLV26VAsWLNDBgwf19NNP65FHHtGWLVskScePH9e9996rwYMHKz4+Xk8++aSef/75YsX+xhtvaOXKlVq6dKm2b9+u9PT0Ir3LbubMmWrVqpX27t2rqVOn6umnn1ZMTEy+bf/++291795d1atX19atW7Vt2zZVr15dffr0UVZW1jWv9ffff+vDDz9Uz5491bBhQ23YsEFhYWFasmRJse71Ws+zKD744AM1adJEt99+e7GuDQAoG872DgAAAACAYzp//rwWL16s5cuXq1evXpKkZcuW6cYbb7zmsTk5OYqKirIMVQ0NDdWmTZs0Y8YMZWRkaM6cOfr2228VFBQkSbrpppu0bds2vffee+rWrZsWLlyogIAAzZw5U5IUEBCgAwcOaMaMGUWOf968eZo6daruvvtuSdL8+fO1YcOGax7XpUsXPfvss5KkJk2aaPv27Xrrrbcsz+CfVq1apSpVquiDDz6QyWSSJC1dulQ1a9ZUbGysQkJC8r3Gli1btGzZMn3yySfy9vbWI488ovfee08333xzke8vV1Ge57VkZmZq5cqVlvsGADgeingAAAAA8nXs2DFlZWVZCkPSlXfIBQQEXPPYhg0bWr1rzs/PTykpKZKkQ4cO6eLFi3mKYllZWWrbtq0k6ciRI+rQoYPV/ttuu63Isaelpen06dNWxzg5Oaldu3bKyckp9Nh/3m/uekGTSezZs0e//PJLnvfqXbx4UceOHSvwGsHBwXJ3d9ecOXM0evToa9xN4YryPFu0aKHffvtNknT77bfrq6++smr76aef6ty5cxo2bNh1xQIAKD0U8QAAAFChLFiwQAsWLLC8k6xFixZ66aWX1Ldv3wKP2bJli8LCwnTw4EH5+/trypQp111YqQgMwyjxsS4uLlbrJpPJUjzL/ef69et1ww03WLXLfeebYRiWnm3XE48tzpHfeXLl5OSoXbt2WrlyZZ59devWLfB869at07JlyzRx4kS9//77Cg0N1UMPPVSiiSuK8jw3bNigS5cuSZLc3d3znOODDz5Q//79bTpxBgDAtijiAQAAoEK58cYb9frrr6tx48aSrgz/HDRokPbt26cWLVrkaZ+QkKB+/fpp1KhRWrFihbZv366xY8eqbt26GjJkSFmH71AaN24sFxcXxcXFqX79+pKk1NRU/fzzz0UaolmQ5s2by83NTYmJiQWep2nTpnmGvu7evbvI1zCbzfLx8dH3339vecdbdna29u3bZzX5RX7i4uLyrDdt2jTftrfeeqtWr14tb29v1ahRo8jx9e/fX/3791dqaqo+/vhjLVu2TJMnT1avXr0UGhqqwYMHq1q1akU6V1GeZ4MGDQo8PiEhQZs3b9YXX3xR5PgBAGWPIh4AAAAqlAEDBlitz5gxQwsWLFBcXFy+RbyFCxeqfv36luGSzZo10+7duzVr1qxKX8SrXr26Ro4cqcmTJ6t27dry8fHR888/rypVrm9+PE9PT4WHh+vpp59WTk6OunbtqvT0dO3YsUPVq1fX8OHD9eSTT2rOnDl65plnNHLkSMXHxysqKkpSwb3irjZ+/HhFRkaqcePGatq0qebNm6fU1NRrHr99+3a9+eabGjx4sGJiYvTJJ59o/fr1+bZ9+OGHNXPmTA0aNEjTpk3TjTfeqMTERH366aeaPHnyNd8f6OXlpbFjx2rs2LH66aefFBUVpSlTpmjNmjVas2aNpCvDYg8dOmT595MnTyo+Pl7Vq1dX48aNi/Q8C7NkyRL5+fkV2lsVAGB/FPEAAABQYWVnZ+uTTz5RRkZGnvec5dq5c2eeyQd69+6txYsX69KlS3mGhebKzMxUZmamZT09Pd12gTuQmTNn6vz58xo4cKA8PT01adIkpaWlXfd5X331VXl7eysyMlK//vqratasqVtvvVXPPfecJKlRo0b673//q0mTJuntt99WUFCQnn/+eY0ZM8YyRPRannnmGSUnJ2vYsGFycnLSE088od69e8vJyanQ4yZNmqQ9e/bolVdekaenp2bPnq3evXvn27ZatWraunWrnnnmGd1zzz06d+6cbrjhBvXo0aNYPfOkK70PX3/9db322mv65ZdfLNtPnTplebedJM2aNUuzZs1St27dFBsbK+naz7MguROQjBgx4prPBQBgXybjel50gWJLT0+X2WxWWlpasf+jDqD8iogo+r7C2hanDYCKg/yh+Pbv36+goCBdvHhR1atX10cffaR+/frl27ZJkyYaMWKEVbFjx44d6tKli06dOiU/P798j4uIiNArr7ySZzufU+mZMWOGFi5cqBMnTpTo+JycHDVr1kz333+/Xn31VRtHB1xRnDyNnA5AcfK86+sHDwAAADiggIAAxcfHKy4uTmPGjNHw4cMtwxHzU9DkB4UNu5w6darS0tIsS0kLSyjYu+++q127dunXX3/Vhx9+qJkzZ15zaOg//fbbb1q0aJF+/vln7d+/X2PGjFFCQoKGDh1ailEDAFA6GE4LAACACsfV1dUysUX79u21a9cuvf3223rvvffytPX19VVycrLVtpSUFDk7O6t27doFXsPNza3IwzpRMkePHtX06dP1119/qX79+po0aZKmTp1a5OOrVKmiqKgohYeHyzAMBQYG6ptvvlGzZs1KMWoAAEoHRTwAAABUeIZhWL2/7p+CgoK0bt06q20bN25U+/btC3wfHsrGW2+9pbfeeqvEx9erV0/bt2+3YUQAANgPw2kBAABQoTz33HP63//+p+PHj2v//v16/vnnFRsbq4cffljSlWGww4YNs7QfPXq0fvvtN4WFhenw4cNasmSJFi9erPDwcHvdAgAAQB70xAMAAECFcvr0aYWGhiopKUlms1mtWrVSdHS0evXqJUlKSkpSYmKipX2jRo20YcMGPf300/r3v/8tf39/vfPOOxoyZIi9bgEAACAPingAAACoUBYvXlzo/qioqDzbunXrpr1795ZSRAAAANeP4bQAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4Z3sHAAAVWUSEvSMAAAAAAFQE9MQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDB2bWIt3XrVg0YMED+/v4ymUz67LPPrPaPGDFCJpPJaunUqZNVm8zMTI0fP1516tSRh4eHBg4cqN9//92qTWpqqkJDQ2U2m2U2mxUaGqqzZ89atUlMTNSAAQPk4eGhOnXqaMKECcrKyrJqs3//fnXr1k3u7u664YYbNG3aNBmGYbPnAQAAAAAAAOTHrkW8jIwMtW7dWvPnzy+wTZ8+fZSUlGRZNmzYYLV/4sSJWrt2rVatWqVt27bp/Pnz6t+/v7Kzsy1thg4dqvj4eEVHRys6Olrx8fEKDQ217M/OztZdd92ljIwMbdu2TatWrdKaNWs0adIkS5v09HT16tVL/v7+2rVrl+bNm6dZs2Zpzpw5NnwiAAAAAAAAQF7O9rx437591bdv30LbuLm5ydfXN999aWlpWrx4sT788EP17NlTkrRixQrVq1dP33zzjXr37q3Dhw8rOjpacXFx6tixoyRp0aJFCgoK0pEjRxQQEKCNGzfq0KFDOnHihPz9/SVJs2fP1ogRIzRjxgzVqFFDK1eu1MWLFxUVFSU3NzcFBgbq559/1pw5cxQWFiaTyZRvjJmZmcrMzLSsp6enF/s5AQAAAAAAoHJz+HfixcbGytvbW02aNNGoUaOUkpJi2bdnzx5dunRJISEhlm3+/v4KDAzUjh07JEk7d+6U2Wy2FPAkqVOnTjKbzVZtAgMDLQU8Serdu7cyMzO1Z88eS5tu3brJzc3Nqs2pU6d0/PjxAuOPjIy0DOM1m82qV6/e9T0QAAAAAAAAVDoOXcTr27evVq5cqW+//VazZ8/Wrl27dOedd1p6tiUnJ8vV1VVeXl5Wx/n4+Cg5OdnSxtvbO8+5vb29rdr4+PhY7ffy8pKrq2uhbXLXc9vkZ+rUqUpLS7MsJ06cKM4jAAAAAAAAAOw7nPZaHnjgAcu/BwYGqn379mrQoIHWr1+ve+65p8DjDMOwGt6a31BXW7TJndSioKG00pXhwP/svQcAAAAAAAAUl0P3xLuan5+fGjRooKNHj0qSfH19lZWVpdTUVKt2KSkpll5yvr6+On36dJ5znTlzxqrN1b3pUlNTdenSpULb5A7tvbqHHgAAAAAAAGBL5aqI9+eff+rEiRPy8/OTJLVr104uLi6KiYmxtElKStKBAwfUuXNnSVJQUJDS0tL0/fffW9p89913SktLs2pz4MABJSUlWdps3LhRbm5uateunaXN1q1blZWVZdXG399fDRs2LLV7BgAAAAAAAOxaxDt//rzi4+MVHx8vSUpISFB8fLwSExN1/vx5hYeHa+fOnTp+/LhiY2M1YMAA1alTR3fffbckyWw2a+TIkZo0aZI2bdqkffv26ZFHHlHLli0ts9U2a9ZMffr00ahRoxQXF6e4uDiNGjVK/fv3V0BAgCQpJCREzZs3V2hoqPbt26dNmzYpPDxco0aNUo0aNSRJQ4cOlZubm0aMGKEDBw5o7dq1eu211wqdmRYAAAAAAACwBbu+E2/37t3q3r27ZT0sLEySNHz4cC1YsED79+/X8uXLdfbsWfn5+al79+5avXq1PD09Lce89dZbcnZ21v33368LFy6oR48eioqKkpOTk6XNypUrNWHCBMsstgMHDtT8+fMt+52cnLR+/XqNHTtWXbp0kbu7u4YOHapZs2ZZ2pjNZsXExGjcuHFq3769vLy8FBYWZokZAAAAAAAAKC12LeIFBwdbJofIz9dff33Nc1StWlXz5s3TvHnzCmxTq1YtrVixotDz1K9fX19++WWhbVq2bKmtW7deMyYAAAAAAADAlsrVO/EAAACAa4mMjFSHDh3k6ekpb29vDR48WEeOHCn0mNjYWJlMpjzLTz/9VEZRAwAAFK7IPfG++OKLIp904MCBJQoGAAAAlUtp5JhbtmzRuHHj1KFDB12+fFnPP/+8QkJCdOjQIXl4eBR67JEjRyzvRJakunXrFjk+AACA0lTkIt7gwYOt1k0mk9VQ2H9O7pCdnX39kQEAAKDCK40cMzo62mp96dKl8vb21p49e3THHXcUeqy3t7dq1qxZpOsAAACUpSIPp83JybEsGzduVJs2bfTVV1/p7NmzSktL04YNG3TrrbfmSZoAAACAgpRFjpmWlibpynuSr6Vt27by8/NTjx49tHnz5kLbZmZmKj093WoBAAAoLSWa2GLixIlauHChunbtatnWu3dvVatWTU888YQOHz5sswABAABQOZRGjmkYhsLCwtS1a1cFBgYW2M7Pz0/vv/++2rVrp8zMTH344Yfq0aOHYmNjC+y9FxkZqVdeeaXYMQEAAJREiYp4x44dk9lszrPdbDbr+PHj1xsTAAAAKqHSyDGfeuop/fjjj9q2bVuh7QICAhQQEGBZDwoK0okTJzRr1qwCi3hTp05VWFiYZT09PV316tUrUZwAAADXUqLZaTt06KCJEycqKSnJsi05OVmTJk3SbbfdZrPgAAAAUHnYOsccP368vvjiC23evFk33nhjsY/v1KmTjh49WuB+Nzc31ahRw2oBAAAoLSUq4i1ZskQpKSlq0KCBGjdurMaNG6t+/fpKSkrS4sWLbR0jAAAAKgFb5ZiGYeipp57Sp59+qm+//VaNGjUqUTz79u2Tn59fiY4FAACwtRINp23cuLF+/PFHxcTE6KeffpJhGGrevLl69uxpNYMYAAAAUFS2yjHHjRunjz76SJ9//rk8PT2VnJws6cqwXHd3d0lXhsKePHlSy5cvlyTNnTtXDRs2VIsWLZSVlaUVK1ZozZo1WrNmje1vFAAAoARKVMSTJJPJpJCQEN1xxx1yc3OjeAcAAIDrZoscc8GCBZKk4OBgq+1Lly7ViBEjJElJSUlKTEy07MvKylJ4eLhOnjwpd3d3tWjRQuvXr1e/fv1KfC8AAAC2VKIiXk5OjmbMmKGFCxfq9OnT+vnnn3XTTTfpxRdfVMOGDTVy5EhbxwkA5UpERNmdv7SvBQBlxVY5pmEY12wTFRVltT5lyhRNmTKlJGEDAACUiRK9E2/69OmKiorSm2++KVdXV8v2li1b6oMPPrBZcAAAAKg8yDEBAAAKVqIi3vLly/X+++/r4YcflpOTk2V7q1at9NNPP9ksOAAAAFQe5JgAAAAFK1ER7+TJk2rcuHGe7Tk5Obp06dJ1BwUAAIDKhxwTAACgYCUq4rVo0UL/+9//8mz/5JNP1LZt2+sOCgAAAJUPOSYAAEDBSjSxxcsvv6zQ0FCdPHlSOTk5+vTTT3XkyBEtX75cX375pa1jBAAAQCVAjgkAAFCwEvXEGzBggFavXq0NGzbIZDLppZde0uHDh7Vu3Tr16tXL1jECAACgEiDHBAAAKFiJeuJJUu/evdW7d29bxgIAAIBKjhwTAAAgfyUu4uU6f/68cnJyrLbVqFHjek8LAACASowcEwAAwFqJhtMmJCTorrvukoeHh8xms7y8vOTl5aWaNWvKy8vL1jECAACgEiDHBAAAKFiJeuI9/PDDkqQlS5bIx8dHJpPJpkEBAACg8iHHBFDRBbtGWP49NiuiwHYAkJ8SFfF+/PFH7dmzRwEBAbaOBwAAAJUUOSYAAEDBSjSctkOHDjpx4oStYwEAAEAlRo4JAABQsBL1xPvggw80evRonTx5UoGBgXJxcbHa36pVK5sEBwAAgMqDHBMAAKBgJSrinTlzRseOHdOjjz5q2WYymWQYhkwmk7Kzs20WIAAAACoHckwAAICClaiI99hjj6lt27b6+OOPeekwAAAAbIIcEwAAoGAlKuL99ttv+uKLL9S4cWNbxwMAAIBKihwTAACgYCWa2OLOO+/UDz/8YOtYAAAAUImRYwIAABSsRD3xBgwYoKefflr79+9Xy5Yt87x0eODAgTYJDgBwbRER1v8EgPKKHBMAAKBgJSrijR49WpI0bdq0PPt46TAAAABKghwTAACgYCUq4uXk5Ng6DgAAAFRy5JgAAAAFK/Y78S5fvixnZ2cdOHCgNOIBAABAJUSOCQAAULhiF/GcnZ3VoEEDhjMAAADAZsgxAQAAClei2WlfeOEFTZ06VX/99Zet4wEAAEAlRY4JAABQsBK9E++dd97RL7/8In9/fzVo0EAeHh5W+/fu3WuT4ACgMmB2WQC4ghwTAACgYCUq4g0ePNjGYQBA+UcRDgCuDzkmAABAwUpUxHv55ZdtHQcAAAAqOXJMAACAgpWoiJdrz549Onz4sEwmk5o3b662bdvaKi4AAABUUuSYAAAAeZWoiJeSkqIHH3xQsbGxqlmzpgzDUFpamrp3765Vq1apbt26to4TAAAAFRw5JgAAQMFKNDvt+PHjlZ6eroMHD+qvv/5SamqqDhw4oPT0dE2YMMHWMQIAAKASsFWOGRkZqQ4dOsjT01Pe3t4aPHiwjhw5cs3jtmzZonbt2qlq1aq66aabtHDhwuu5HQAAAJsqUREvOjpaCxYsULNmzSzbmjdvrn//+9/66quvbBYcAAAAKg9b5ZhbtmzRuHHjFBcXp5iYGF2+fFkhISHKyMgo8JiEhAT169dPt99+u/bt26fnnntOEyZM0Jo1a67rngAAAGylRMNpc3Jy5OLikme7i4uLcnJyrjsoAAAAVD62yjGjo6Ot1pcuXSpvb2/t2bNHd9xxR77HLFy4UPXr19fcuXMlSc2aNdPu3bs1a9YsDRkypOg3AQAAUEpK1BPvzjvv1L/+9S+dOnXKsu3kyZN6+umn1aNHD5sFBwAAgMqjtHLMtLQ0SVKtWrUKbLNz506FhIRYbevdu7d2796tS5cu5XtMZmam0tPTrRYAAIDSUqIi3vz583Xu3Dk1bNhQN998sxo3bqyGDRvq3Llzeuedd2wdIwAAACqB0sgxDcNQWFiYunbtqsDAwALbJScny8fHx2qbj4+PLl++rD/++CPfYyIjI2U2my1LvXr1ShQjAABAUZRoOG29evW0d+9effPNNzp8+LAMw1Dz5s3Vs2dPW8cHAACASqI0csynnnpKP/74o7Zt23bNtiaTyWrdMIx8t+eaOnWqwsLCLOvp6ekU8gAAQKkpURFPkjZt2qRvv/1WKSkpysnJUXx8vD766CNJ0pIlS2wWIAAAACoPW+aY48eP1xdffKGtW7fqxhtvLLStr6+vkpOTrbalpKTI2dlZtWvXzvcYNzc3ubm5FSsmAACAkipREe+VV17RtGnT1L59e/n5+RX46yQAAABQVLbKMQ3D0Pjx47V27VrFxsaqUaNG1zwmKChI69ats9q2ceNGtW/fPt/JNgAAAMpaiYp4CxcuVFRUlEJDQ20dDwAAACopW+WY48aN00cffaTPP/9cnp6elh52ZrNZ7u7ukq4MhT158qSWL18uSRo9erTmz5+vsLAwjRo1Sjt37tTixYv18ccfX99NAQAA2EiJJrbIyspS586dbR0LAAAAKjFb5ZgLFixQWlqagoOD5efnZ1lWr15taZOUlKTExETLeqNGjbRhwwbFxsaqTZs2evXVV/XOO+9oyJAh1x0PAACALZSoJ97jjz+ujz76SC+++KKt4wEAAEAlZascM3dCisJERUXl2datWzft3bv3uq4NAABQWkpUxLt48aLef/99ffPNN2rVqlWe94TMmTPHJsEBAACg8iDHBAAAKFiJing//vij2rRpI0k6cOCA1T4muQAAAEBJkGMCAAAUrERFvM2bN9s6DgAAAFRy5JgAAAAFK9HEFgAAAAAAAADKDkU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMHZtYi3detWDRgwQP7+/jKZTPrss8+s9huGoYiICPn7+8vd3V3BwcE6ePCgVZvMzEyNHz9ederUkYeHhwYOHKjff//dqk1qaqpCQ0NlNptlNpsVGhqqs2fPWrVJTEzUgAED5OHhoTp16mjChAnKysqyarN//35169ZN7u7uuuGGGzRt2jQZhmGz5wEAAAAAAADkx65FvIyMDLVu3Vrz58/Pd/+bb76pOXPmaP78+dq1a5d8fX3Vq1cvnTt3ztJm4sSJWrt2rVatWqVt27bp/Pnz6t+/v7Kzsy1thg4dqvj4eEVHRys6Olrx8fEKDQ217M/OztZdd92ljIwMbdu2TatWrdKaNWs0adIkS5v09HT16tVL/v7+2rVrl+bNm6dZs2Zpzpw5pfBkAKD4IiKuLAAAAACAisfZnhfv27ev+vbtm+8+wzA0d+5cPf/887rnnnskScuWLZOPj48++ugjPfnkk0pLS9PixYv14YcfqmfPnpKkFStWqF69evrmm2/Uu3dvHT58WNHR0YqLi1PHjh0lSYsWLVJQUJCOHDmigIAAbdy4UYcOHdKJEyfk7+8vSZo9e7ZGjBihGTNmqEaNGlq5cqUuXryoqKgoubm5KTAwUD///LPmzJmjsLAwmUymMnhiAAAAAABHF+waYe8QAFRADvtOvISEBCUnJyskJMSyzc3NTd26ddOOHTskSXv27NGlS5es2vj7+yswMNDSZufOnTKbzZYCniR16tRJZrPZqk1gYKClgCdJvXv3VmZmpvbs2WNp061bN7m5uVm1OXXqlI4fP17gfWRmZio9Pd1qAQAAAAAAAIrDYYt4ycnJkiQfHx+r7T4+PpZ9ycnJcnV1lZeXV6FtvL2985zf29vbqs3V1/Hy8pKrq2uhbXLXc9vkJzIy0vIuPrPZrHr16hV+4wAAAAAAAMBVHLaIl+vqYaqGYVxz6OrVbfJrb4s2uZNaFBbP1KlTlZaWZllOnDhRaOwAAAAAAADA1Ry2iOfr6yspby+3lJQUSw84X19fZWVlKTU1tdA2p0+fznP+M2fOWLW5+jqpqam6dOlSoW1SUlIk5e0t+E9ubm6qUaOG1QIAAAAAAAAUh8MW8Ro1aiRfX1/FxMRYtmVlZWnLli3q3LmzJKldu3ZycXGxapOUlKQDBw5Y2gQFBSktLU3ff/+9pc13332ntLQ0qzYHDhxQUlKSpc3GjRvl5uamdu3aWdps3bpVWVlZVm38/f3VsGFD2z8AAAAAAAAA4P+zaxHv/Pnzio+PV3x8vKQrk1nEx8crMTFRJpNJEydO1Guvvaa1a9fqwIEDGjFihKpVq6ahQ4dKksxms0aOHKlJkyZp06ZN2rdvnx555BG1bNnSMltts2bN1KdPH40aNUpxcXGKi4vTqFGj1L9/fwUEBEiSQkJC1Lx5c4WGhmrfvn3atGmTwsPDNWrUKEvPuaFDh8rNzU0jRozQgQMHtHbtWr322mvMTAsAAAAAAIBS52zPi+/evVvdu3e3rIeFhUmShg8frqioKE2ZMkUXLlzQ2LFjlZqaqo4dO2rjxo3y9PS0HPPWW2/J2dlZ999/vy5cuKAePXooKipKTk5OljYrV67UhAkTLLPYDhw4UPPnz7fsd3Jy0vr16zV27Fh16dJF7u7uGjp0qGbNmmVpYzabFRMTo3Hjxql9+/by8vJSWFiYJWYAAAAAAACgtJiM3NkZUCbS09NlNpuVlpbG+/GACiIiwrbnud7z2SoeAI6D/KF84HMCIF3JxYJdI67ZLjYrgrwNQLHyB4d9Jx4AAAAAAACAK+w6nBYAAAAAgAphR4QkKdjVvmEAqLjoiQcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAIAKZevWrRowYID8/f1lMpn02WefFdo+NjZWJpMpz/LTTz+VTcAAAABF4GzvAAAAAABbysjIUOvWrfXoo49qyJAhRT7uyJEjqlGjhmW9bt26pREeAABAiVDEAwAAQIXSt29f9e3bt9jHeXt7q2bNmrYPCAAAwAYYTgsAAABIatu2rfz8/NSjRw9t3rz5mu0zMzOVnp5utQAAAJQWingAAACo1Pz8/PT+++9rzZo1+vTTTxUQEKAePXpo69athR4XGRkps9lsWerVq1dGEQMAgMqI4bQAAACo1AICAhQQEGBZDwoK0okTJzRr1izdcccdBR43depUhYWFWdbT09Mp5AEAgFJDTzwAqGAiIq4sAICS69Spk44ePVpoGzc3N9WoUcNqAQAAKC0U8QAAAICr7Nu3T35+fvYOAwAAwILhtAAAAKhQzp8/r19++cWynpCQoPj4eNWqVUv169fX1KlTdfLkSS1fvlySNHfuXDVs2FAtWrRQVlaWVqxYoTVr1mjNmjX2ugUAAIA8KOIBQAX1zyG1DK8FUJns3r1b3bt3t6znvrdu+PDhioqKUlJSkhITEy37s7KyFB4erpMnT8rd3V0tWrTQ+vXr1a9fvzKPHQAAoCAU8QAAAFChBAcHyzCMAvdHRUVZrU+ZMkVTpkwp5agAAACuD+/EAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAKKaIiCsLAAAAAABlxdneAQBAeUUhDwAAACUV7Boh7fj/K50j7BgJgPKCnngAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg3O2dwAAUB5ERNg7AgAAAABAZUZPPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBwTWwAAAAAAYE87Iv7v3ztHFNQKQCVHTzwAqAQiIphhFwAAAADKM4p4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAIAKZevWrRowYID8/f1lMpn02WefXfOYLVu2qF27dqpatapuuukmLVy4sPQDBQAAKAaKeAAAAKhQMjIy1Lp1a82fP79I7RMSEtSvXz/dfvvt2rdvn5577jlNmDBBa9asKeVIAQAAis7Z3gEAAK5g9lgAsI2+ffuqb9++RW6/cOFC1a9fX3PnzpUkNWvWTLt379asWbM0ZMiQUooSAACgeOiJBwAAgEpt586dCgkJsdrWu3dv7d69W5cuXSrwuMzMTKWnp1stAAAApYUiHgAAACq15ORk+fj4WG3z8fHR5cuX9ccffxR4XGRkpMxms2WpV69eaYcKAAAqMYp4AAAAqPRMJpPVumEY+W7/p6lTpyotLc2ynDhxolRjBAAAlRvvxAMAAECl5uvrq+TkZKttKSkpcnZ2Vu3atQs8zs3NTW5ubqUdHgBHtiPC3hEAqEToiQcAAIBKLSgoSDExMVbbNm7cqPbt28vFxcVOUQEAAFijJx4AFKK4M8YGuxbzgP8vNqtkxwEA8jp//rx++eUXy3pCQoLi4+NVq1Yt1a9fX1OnTtXJkye1fPlySdLo0aM1f/58hYWFadSoUdq5c6cWL16sjz/+2F63AAAAkIdD98SLiIiQyWSyWnx9fS37DcNQRESE/P395e7uruDgYB08eNDqHJmZmRo/frzq1KkjDw8PDRw4UL///rtVm9TUVIWGhlpeShwaGqqzZ89atUlMTNSAAQPk4eGhOnXqaMKECcrKyiq1eweA0hQRUfwCJQCUF7t371bbtm3Vtm1bSVJYWJjatm2rl156SZKUlJSkxMRES/tGjRppw4YNio2NVZs2bfTqq6/qnXfe0ZAhQ+wSPwAAQH4cvideixYt9M0331jWnZycLP/+5ptvas6cOYqKilKTJk00ffp09erVS0eOHJGnp6ckaeLEiVq3bp1WrVql2rVra9KkSerfv7/27NljOdfQoUP1+++/Kzo6WpL0xBNPKDQ0VOvWrZMkZWdn66677lLdunW1bds2/fnnnxo+fLgMw9C8efPK6lEAAACgCIKDgy0TU+QnKioqz7Zu3bpp7969pRgVAADA9XH4Ip6zs7NV77tchmFo7ty5ev7553XPPfdIkpYtWyYfHx999NFHevLJJ5WWlqbFixfrww8/VM+ePSVJK1asUL169fTNN9+od+/eOnz4sKKjoxUXF6eOHTtKkhYtWqSgoCAdOXJEAQEB2rhxow4dOqQTJ07I399fkjR79myNGDFCM2bMUI0aNcroaQDA9aH3HQAAAACUTw49nFaSjh49Kn9/fzVq1EgPPvigfv31V0lX3m2SnJyskJAQS1s3Nzd169ZNO3bskCTt2bNHly5dsmrj7++vwMBAS5udO3fKbDZbCniS1KlTJ5nNZqs2gYGBlgKeJPXu3VuZmZnas2dPofFnZmYqPT3dagEAAAAAAACKw6GLeB07dtTy5cv19ddfa9GiRUpOTlbnzp31559/Kjk5WZLk4+NjdYyPj49lX3JyslxdXeXl5VVoG29v7zzX9vb2tmpz9XW8vLzk6upqaVOQyMhIy7v2zGaz6tWrV4wnAAAAAAAAADh4Ea9v374aMmSIWrZsqZ49e2r9+vWSrgybzWUymayOMQwjz7arXd0mv/YlaZOfqVOnKi0tzbKcOHGi0PYAAAAAAADA1Rz+nXj/5OHhoZYtW+ro0aMaPHiwpCu95Pz8/CxtUlJSLL3mfH19lZWVpdTUVKveeCkpKercubOlzenTp/Nc68yZM1bn+e6776z2p6am6tKlS3l66F3Nzc1Nbm5uxb9ZAJVKsGtEsY+JzSr+MVf75zvyeF8eAAAAADiuclXEy8zM1OHDh3X77berUaNG8vX1VUxMjNq2bStJysrK0pYtW/TGG29Iktq1aycXFxfFxMTo/vvvlyQlJSXpwIEDevPNNyVJQUFBSktL0/fff6/bbrtNkvTdd98pLS3NUugLCgrSjBkzlJSUZCkYbty4UW5ubmrXrl2ZPgMAZWhHhIJd7R0EAAAAAAAOXsQLDw/XgAEDVL9+faWkpGj69OlKT0/X8OHDZTKZNHHiRL322mu65ZZbdMstt+i1115TtWrVNHToUEmS2WzWyJEjNWnSJNWuXVu1atVSeHi4ZXiuJDVr1kx9+vTRqFGj9N5770mSnnjiCfXv318BAQGSpJCQEDVv3lyhoaGaOXOm/vrrL4WHh2vUqFHMTAug3Cmw19+OQg7qXMAxAAAAAIAy4dBFvN9//10PPfSQ/vjjD9WtW1edOnVSXFycGjRoIEmaMmWKLly4oLFjxyo1NVUdO3bUxo0b5enpaTnHW2+9JWdnZ91///26cOGCevTooaioKDk5OVnarFy5UhMmTLDMYjtw4EDNnz/fst/JyUnr16/X2LFj1aVLF7m7u2vo0KGaNWtWGT0JAMirJENwAQAAAADlk8kwDMPeQVQm6enpMpvNSktLoxcf4Oh2RCg21t5BlJ3g4EJ20hMPsCvyh/KBzwmohHZE5NlUnPwx3/yLvAuoVIqTPzj07LQAAAAAAAAAKOIBAAAAAAAADs+h34kHAAAAAECl8s8hugytBfAP9MQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBOds7AAAolh0RxT+mcwmOAQAAAADAgdATDwAAAAAAAHBw9MQDgH+IiPi/fw92tVsYAAAAAABYoSceAAAAAAAA4ODoiQeg4ivGe/TofVeAkryLUOJ9hAAAAIWIjc27LTi4rKMAUF7QEw8AYCU2Nv+EEgAAAABgPxTxAAAAAAAAAAfHcFoAAAAAAIqqpK8ZAYDrRE88AAAAAAAAwMHREw9Apcf73wAAAAAAjo4iHgCg9JRkuAkz2gKwkXfffVczZ85UUlKSWrRooblz5+r222/Pt21sbKy6d++eZ/vhw4fVtGnT0g4VQDnFj8EAyhJFPACAJJJQABXL6tWrNXHiRL377rvq0qWL3nvvPfXt21eHDh1S/fr1CzzuyJEjqlGjhmW9bt26ZREuAADANfFOPAAAAFQ4c+bM0ciRI/X444+rWbNmmjt3rurVq6cFCxYUepy3t7d8fX0ti5OTUxlFDAD52BHxfwuASo8iHoBKJzaWXmcAUJFlZWVpz549CgkJsdoeEhKiHTt2FHps27Zt5efnpx49emjz5s2Fts3MzFR6errVAgAAUFoo4gEAAKBC+eOPP5SdnS0fHx+r7T4+PkpOTs73GD8/P73//vtas2aNPv30UwUEBKhHjx7aunVrgdeJjIyU2Wy2LPXq1bPpfQAAAPwT78QDAABAhWQymazWDcPIsy1XQECAAgICLOtBQUE6ceKEZs2apTvuuCPfY6ZOnaqwsDDLenp6OoU8AABQaijiAai0GFILABVTnTp15OTklKfXXUpKSp7eeYXp1KmTVqxYUeB+Nzc3ubm5lThOAACA4qCIB6DSoGhXTpTkxc2dS3AMgArL1dVV7dq1U0xMjO6++27L9piYGA0aNKjI59m3b5/8/PxKI0QAAIBio4gHAACACicsLEyhoaFq3769goKC9P777ysxMVGjR4+WdGUo7MmTJ7V8+XJJ0ty5c9WwYUO1aNFCWVlZWrFihdasWaM1a9bY8zYAAAAsKOIBsI+S9LaCXfyzB2NwsL2iAIDieeCBB/Tnn39q2rRpSkpKUmBgoDZs2KAGDRpIkpKSkpSYmGhpn5WVpfDwcJ08eVLu7u5q0aKF1q9fr379+tnrFgAAAKxQxAMAAECFNHbsWI0dOzbffVFRUVbrU6ZM0ZQpU8ogKgAAgJKhiAcAyBfvEAQAAAAAx0ERDwAAAACAwvAqGAAOgCIegOtHUgMAAAAAQKmiiAegQmNIqG3lPk8muAAAAChjuT+cd46wZxQA7KiKvQMAAAAAAAAAUDiKeAAAAAAAAICDo4gHAAAAAAAAODiKeAAAAAAAAICDY2ILAECxMcEFAACo8HInkgAAB0ERD0CFxKy0AAAAwFX+WZhkllug3KGIBwAAAABAeVFQIY4CHVDhUcQD8H8YMoDKpiTfeZJiAAAAAHZAEQ9AhcIw2rL1z+fN+/EAAADKGD/CA5UKRTwAgE0w2QUAACj3KIoBcGBV7B0AABRVbCw97coTPi8AAAAAsB164gElUdJf6HiXVqmhWAQAAAAAqMjoiQeg3KGHFwAAAACgsqEnHlBR8T4POCDemwcAAMpcfnkxI2QAlEMU8QCUW/TGc0x2+VwoWgMAgJIijwBQTlDEAwCUuXLdI493YgIAUP5RuANQDlHEAxwdCQZQMZTkzzKFPwAAAAD/H0U8oCxRkEMlxLBnAACAoisodyrWCAb+vwOokCjiAXAo+SUt5XLIJYqksM+7XA+5BQAA9mXjIhY/SgJwBBTxAADlwj+T50pT2CsPv6Iz5BcAYE///G8l/00CUMFRxEPFUh7+hxfFxi+fQAXD5CAAAABAsVHEA1Dqrh4WyZBZFIaiLQAAKBQ/3NteQT0a6ekIOBSKeCh9zMiIIqBwg4Lk9924nhc+V8phuQAAAEVlqyJp7nn4fzvAZijiVVYU1mAHFOpQ2opboGPyDBugNwQAAOWTrYt1Ev/PCJQyingl8O6772rmzJlKSkpSixYtNHfuXN1+++3FO8l3kZKHm/W2kvyFx/88wc4ozMFRXf3dtFWhjsIfUH4UN2fbsmWLwsLCdPDgQfn7+2vKlCkaPXp0GUYMVFK2KgLZ6P+NHDW/rfSvpKFYCFDEK67Vq1dr4sSJevfdd9WlSxe999576tu3rw4dOqT69evbO7zSVZYFw3JenLT3/+TbaqhhQcc7amIDFKY439ui9Ogr6bDc0iouwgEwYYdDKW7OlpCQoH79+mnUqFFasWKFtm/frrFjx6pu3boaMmSIHe4AsJOiFEpsUUwpyt+ZFG0cC58HYHcmwzAMewdRnnTs2FG33nqrFixYYNnWrFkzDR48WJGRkdc8Pj09XWazWWkbn1WNq3viocIoy1/J8isYFqVYcXU8xTmGIh4qmuJMulLSP98l+XMJ5ErPyJQ55HWlpaWpRo0a9g6nXChuzvbMM8/oiy++0OHDhy3bRo8erR9++EE7d+4s0jUteR6fE8qD4k5kUFDRLb9iTnHPUdD5yuCH/cqU19otzyiN3pVFKTDbKgaglBUnf6AnXjFkZWVpz549evbZZ622h4SEaMeOHfkek5mZqczMTMt6WlqapCvJeHn0v/9d+WdxRw9ffXyu3PP8c3txzn11PFefP7/zFdamsPsrzrUyLubdtz762sdfj9zzl1b7kh4DlAeFfbeL8r231Z+N9Iwr/yzo78r89hWlTVH+Xs3v7+HC/t4r6JxF+Xs4v/ZF+Xu4OIpynrK81vXKzRv47bVoSpKz7dy5UyEhIVbbevfurcWLF+vSpUtycXHJc0yBeV56etGD/e4fBcWOU4t+nKOcvzjXKct7ze86BV2/NOKyxfMoSrz/VJTYCzo2poBj//ldLuj/X3LbFHTuopyjKLEUg63z7IqiqPmKzf97VpTPtKDv77W+dyVpf60/Q47w91lRrpW7vbh/9osbb2nea1k+RweOITdvKFKeZ6DITp48aUgytm/fbrV9xowZRpMmTfI95uWXXzYksbCwsLCwsLBc93Ls2LGySHnKvZLkbLfccosxY8YMq23bt283JBmnTp3K9xjyPBYWFhYWFhZbLSdOnLhmjkNPvBIwmUxW64Zh5NmWa+rUqQoLC7Osnz17Vg0aNFBiYqLMZnOpxlkZpaenq169ejpx4gTDWEoBz7d08XxLF8+3dPF8S1daWprq16+vWrVq2TuUcqU4OVtB7fPbnuvqPC8nJ0d//fWXateuXeh1ygv+XJcPfE7lA59T+cDn5Pgq4mdkGIbOnTsnf3//a7aliFcMderUkZOTk5KTk622p6SkyMfHJ99j3Nzc5OaW9913ZrO5wnzhHFGNGjV4vqWI51u6eL6li+dbuni+patKlSr2DqFcKEnO5uvrm297Z2dn1a5dO99j8svzatasWfLAHRR/rssHPqfygc+pfOBzcnwV7TMqaicvMsFicHV1Vbt27RQTE2O1PSYmRp07d7ZTVAAAAPinkuRsQUFBedpv3LhR7du3z/d9eAAAAGWNIl4xhYWF6YMPPtCSJUt0+PBhPf3000pMTNTo0aPtHRoAAAD+v2vlbFOnTtWwYcMs7UePHq3ffvtNYWFhOnz4sJYsWaLFixcrPDzcXrcAAABgheG0xfTAAw/ozz//1LRp05SUlKTAwEBt2LBBDRo0KNLxbm5uevnll/MdYovrx/MtXTzf0sXzLV0839LF8y1dPN/iu1bOlpSUpMTEREv7Ro0aacOGDXr66af173//W/7+/nrnnXc0ZMgQe92C3fG9Kx/4nMoHPqfygc/J8VX2z8hkGEWZwxYAAAAAAACAvTCcFgAAAAAAAHBwFPEAAAAAAAAAB0cRDwAAAAAAAHBwFPEAAAAAAAAAB0cRz44GDhyo+vXrq2rVqvLz81NoaKhOnTpl77AqhOPHj2vkyJFq1KiR3N3ddfPNN+vll19WVlaWvUOrMGbMmKHOnTurWrVqqlmzpr3DKffeffddNWrUSFWrVlW7du30v//9z94hVRhbt27VgAED5O/vL5PJpM8++8zeIVUYkZGR6tChgzw9PeXt7a3BgwfryJEj9g6rQlmwYIFatWqlGjVqqEaNGgoKCtJXX31l77BQyWVmZqpNmzYymUyKj4+3dzj4/8h/HRd5nmMjnyl/IiMjZTKZNHHiRHuHUuYo4tlR9+7d9Z///EdHjhzRmjVrdOzYMd177732DqtC+Omnn5STk6P33ntPBw8e1FtvvaWFCxfqueees3doFUZWVpbuu+8+jRkzxt6hlHurV6/WxIkT9fzzz2vfvn26/fbb1bdvXyUmJto7tAohIyNDrVu31vz58+0dSoWzZcsWjRs3TnFxcYqJidHly5cVEhKijIwMe4dWYdx44416/fXXtXv3bu3evVt33nmnBg0apIMHD9o7NFRiU6ZMkb+/v73DwFXIfx0TeZ7jI58pX3bt2qX3339frVq1sncodmEyDMOwdxC44osvvtDgwYOVmZkpFxcXe4dT4cycOVMLFizQr7/+au9QKpSoqChNnDhRZ8+etXco5VbHjh116623asGCBZZtzZo10+DBgxUZGWnHyCoek8mktWvXavDgwfYOpUI6c+aMvL29tWXLFt1xxx32DqfCqlWrlmbOnKmRI0faOxRUQl999ZXCwsK0Zs0atWjRQvv27VObNm3sHRYKQP5rf+R55Q/5jOM6f/68br31Vr377ruaPn262rRpo7lz59o7rDJFTzwH8ddff2nlypXq3LkzBbxSkpaWplq1atk7DMBKVlaW9uzZo5CQEKvtISEh2rFjh52iAkomLS1Nkvi7tpRkZ2dr1apVysjIUFBQkL3DQSV0+vRpjRo1Sh9++KGqVatm73BQBOS/9kWeVz6RzziucePG6a677lLPnj3tHYrdUMSzs2eeeUYeHh6qXbu2EhMT9fnnn9s7pArp2LFjmjdvnkaPHm3vUAArf/zxh7Kzs+Xj42O13cfHR8nJyXaKCig+wzAUFhamrl27KjAw0N7hVCj79+9X9erV5ebmptGjR2vt2rVq3ry5vcNCJWMYhkaMGKHRo0erffv29g4HRUD+a3/keeUP+YzjWrVqlfbu3Vvpe7BSxLOxiIgImUymQpfdu3db2k+ePFn79u3Txo0b5eTkpGHDhokRzgUr7vOVpFOnTqlPnz6677779Pjjj9sp8vKhJM8XtmEymazWDcPIsw1wZE899ZR+/PFHffzxx/YOpcIJCAhQfHy84uLiNGbMGA0fPlyHDh2yd1ioIIr63/558+YpPT1dU6dOtXfIlQ75b/lHnld+kM84phMnTuhf//qXVqxYoapVq9o7HLvinXg29scff+iPP/4otE3Dhg3z/eL9/vvvqlevnnbs2MEwmQIU9/meOnVK3bt3V8eOHRUVFaUqVahbF6Yk31/eiXd9srKyVK1aNX3yySe6++67Ldv/9a9/KT4+Xlu2bLFjdBUP78QrHePHj9dnn32mrVu3qlGjRvYOp8Lr2bOnbr75Zr333nv2DgUVQFH/2//ggw9q3bp1VoWH7OxsOTk56eGHH9ayZctKO9RKi/y3/CLPK1/IZxzXZ599prvvvltOTk6WbdnZ2TKZTKpSpYoyMzOt9lVkzvYOoKKpU6eO6tSpU6Jjc+upmZmZtgypQinO8z158qS6d++udu3aaenSpSQwRXA931+UjKurq9q1a6eYmBir5C4mJkaDBg2yY2TAtRmGofHjx2vt2rWKjY0l4S0jhmGQK8Bmivrf/nfeeUfTp0+3rJ86dUq9e/fW6tWr1bFjx9IMsdIj/y2/yPPKB/IZx9ejRw/t37/fatujjz6qpk2b6plnnqk0BTyJIp7dfP/99/r+++/VtWtXeXl56ddff9VLL72km2++mV54NnDq1CkFBwerfv36mjVrls6cOWPZ5+vra8fIKo7ExET99ddfSkxMVHZ2tuLj4yVJjRs3VvXq1e0bXDkTFham0NBQtW/fXkFBQXr//feVmJjIO2xs5Pz58/rll18s6wkJCYqPj1etWrVUv359O0ZW/o0bN04fffSRPv/8c3l6elre72M2m+Xu7m7n6CqG5557Tn379lW9evV07tw5rVq1SrGxsYqOjrZ3aKhkrv77Mve/9TfffLNuvPFGe4SEq5D/OibyPMdHPuP4PD0987yjMHdugcr27kKKeHbi7u6uTz/9VC+//LIyMjLk5+enPn36aNWqVXJzc7N3eOXexo0b9csvv+iXX37Jk1gygtw2XnrpJauhM23btpUkbd68WcHBwXaKqnx64IEH9Oeff2ratGlKSkpSYGCgNmzYoAYNGtg7tAph9+7d6t69u2U9LCxMkjR8+HBFRUXZKaqKYcGCBZKU58/80qVLNWLEiLIPqAI6ffq0QkNDlZSUJLPZrFatWik6Olq9evWyd2gAHAz5r2Miz3N85DMoT3gnHgAAAAAAAODgeEkCAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAORj69atGjBggPz9/WUymfTZZ5+V6vUiIiJkMpmsFl9f31K9JgAAQGVU1nne5cuX9cILL6hRo0Zyd3fXTTfdpGnTpiknJ6dY56GIBwAAkI+MjAy1bt1a8+fPL7NrtmjRQklJSZZl//79ZXZtAEDZCA4O1sSJE+0dBlCplXWe98Ybb2jhwoWaP3++Dh8+rDfffFMzZ87UvHnzinUe51KKDwAAoFzr27ev+vbtW+D+rKwsvfDCC1q5cqXOnj2rwMBAvfHGGwoODi7xNZ2dnel9BwAAUMrKOs/buXOnBg0apLvuukuS1LBhQ3388cfavXt3sc5DTzwAAIASePTRR7V9+3atWrVKP/74o+677z716dNHR48eLfE5jx49Kn9/fzVq1EgPPvigfv31VxtGDAAAgKKwdZ7XtWtXbdq0ST///LMk6YcfftC2bdvUr1+/Yp2HIh4AOICcnBy98cYbaty4sdzc3FS/fn3NmDHD3mEBKMCxY8f08ccf65NPPtHtt9+um2++WeHh4eratauWLl1aonN27NhRy5cv19dff61FixYpOTlZnTt31p9//mnj6AEAZSUjI0PDhg1T9erV5efnp9mzZ9s7JADXUBp53jPPPKOHHnpITZs2lYuLi9q2bauJEyfqoYceKtZ5GE4LAA5g6tSpWrRokd566y117dpVSUlJ+umnn+wdFoAC7N27V4ZhqEmTJlbbMzMzVbt2bUnS8ePH1ahRo0LPM27cOMu7WP45pKNly5YKCgrSzTffrGXLliksLMzGdwAAKAuTJ0/W5s2btXbtWvn6+uq5557Tnj171KZNG3uHBqAApZHnrV69WitWrNBHH32kFi1aKD4+XhMnTpS/v7+GDx9e5Ngo4gGAnZ07d05vv/225s+fb/kL/Oabb1bXrl3tHBmAguTk5MjJyUl79uyRk5OT1b7q1atLkm644QYdPny40PN4eXkVuM/Dw0MtW7a8ruG5AAD7OX/+vBYvXqzly5erV69ekqRly5bpxhtvtHNkAApTGnne5MmT9eyzz+rBBx+UdOUH299++02RkZEU8QCgPDl8+LAyMzPVo0cPe4cCoIjatm2r7OxspaSk6Pbbb8+3jYuLi5o2bVria2RmZurw4cMFnh8A4NiOHTumrKwsBQUFWbbVqlVLAQEBdowKwLWURp73999/q0oV6zfaOTk5KScnp1ixUcQDADtzd3e3dwgA8nH+/Hn98ssvlvWEhATFx8erVq1aatKkiR5++GENGzZMs2fPVtu2bfXHH3/o22+/VcuWLYv9kmJJCg8P14ABA1S/fn2lpKRo+vTpSk9PL9avswAAx2EYhr1DAFCAss7zBgwYoBkzZqh+/fpq0aKF9u3bpzlz5uixxx4r1nmY2AIA7OyWW26Ru7u7Nm3aZO9QAPzD7t271bZtW7Vt21aSFBYWprZt2+qll16SJC1dulTDhg3TpEmTFBAQoIEDB+q7775TvXr1SnS933//XQ899JACAgJ0zz33yNXVVXFxcWrQoIHN7gkAUHYaN24sFxcXxcXFWbalpqZaZqcEYD9lnefNmzdP9957r8aOHatmzZopPDxcTz75pF599dVincdk8PMAANjdK6+8orfffltz585Vly5ddObMGR08eFAjR460d2gAAAAooTFjxmjDhg1asmSJfHx89Pzzz+vbb7/VyJEjNXfuXHuHB6CcYTgtADiAF198Uc7OznrppZd06tQp+fn5afTo0fYOCwAAANdh5syZOn/+vAYOHChPT09NmjRJaWlp9g4LQDlFTzwAAAAAAADAwfFOPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDB/T/IWHzviibAzAAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1500x1000 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(15,10))\n",
|
|
"\n",
|
|
"ax0.hist(scifi_fitpars_found[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$a_x$ found\")\n",
|
|
"ax0.hist(scifi_fitpars_lost[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$a_x$ lost\")\n",
|
|
"ax0.set_xlabel(\"a\")\n",
|
|
"ax0.set_ylabel(\"normed\")\n",
|
|
"ax0.set_title(\"fitparameter a der scifi track\")\n",
|
|
"ax0.legend()\n",
|
|
"\n",
|
|
"ax1.hist(scifi_fitpars_found[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$b_x$ found\")\n",
|
|
"ax1.hist(scifi_fitpars_lost[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$b_x$ lost\")\n",
|
|
"ax1.set_xlabel(\"b\")\n",
|
|
"ax1.set_ylabel(\"normed\")\n",
|
|
"ax1.set_title(\"fitparameter b der scifi track\")\n",
|
|
"ax1.legend()\n",
|
|
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
|
|
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
|
|
"\n",
|
|
"\n",
|
|
"ax2.hist(scifi_fitpars_found[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$c_x$ found\")\n",
|
|
"ax2.hist(scifi_fitpars_lost[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$c_x$ lost\")\n",
|
|
"ax2.set_xlim([-3e-5,3e-5])\n",
|
|
"ax2.set_xticks(np.arange(-3e-5,3.5e-5,1e-5),minor=False)\n",
|
|
"ax2.set_xlabel(\"c\")\n",
|
|
"ax2.set_ylabel(\"normed\")\n",
|
|
"ax2.set_title(\"fitparameter c der scifi track\")\n",
|
|
"ax2.legend()\n",
|
|
"\n",
|
|
"ax3.hist(scifi_fitpars_found[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$d_x$ found\")\n",
|
|
"ax3.hist(scifi_fitpars_lost[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$d_x$ lost\")\n",
|
|
"ax3.set(xlim=(-5e-8,5e-8))\n",
|
|
"ax3.text(-4e-8,3e8,\"d negligible <1e-7\")\n",
|
|
"ax3.set_xlabel(\"d\")\n",
|
|
"ax3.set_ylabel(\"normed\")\n",
|
|
"ax3.set_title(\"fitparameter d der scifi track\")\n",
|
|
"ax3.legend()\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"a_x: virtual hit on the reference plane\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "env1",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.5"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|