715 lines
175 KiB
Plaintext
715 lines
175 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import uproot\n",
|
||
"import numpy as np\n",
|
||
"import sys\n",
|
||
"import os\n",
|
||
"import matplotlib\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import mplhep\n",
|
||
"from mpl_toolkits import mplot3d\n",
|
||
"import itertools\n",
|
||
"import awkward as ak\n",
|
||
"from scipy.optimize import curve_fit\n",
|
||
"import pandas as pd\n",
|
||
"import seaborn as sns\n",
|
||
"from matplotlib import colormaps\n",
|
||
"\n",
|
||
"mplhep.style.use([\"LHCbTex2\"])\n",
|
||
"plt.rcParams[\"savefig.dpi\"] = 600\n",
|
||
"%matplotlib inline"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"file = uproot.open(\n",
|
||
" \"/work/cetin/LHCb/reco_tuner/data_matching/resolutions_and_effs_B_default_thesis.root:Track/MatchTrackChecker_8319528f/Match;1\",\n",
|
||
")\n",
|
||
"\n",
|
||
"P_recoed = file[\"07_long_electrons_P_reconstructed;1\"].to_numpy()\n",
|
||
"P_recoable = file[\"07_long_electrons_P_reconstructible;1\"].to_numpy()\n",
|
||
"\n",
|
||
"Pt_recoed = file[\"07_long_electrons_Pt_reconstructed;1\"].to_numpy()\n",
|
||
"Pt_recoable = file[\"07_long_electrons_Pt_reconstructible;1\"].to_numpy()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"control eff: 0.6145546589237905\n",
|
||
"new eff: 0.6155293168395326\n",
|
||
"control eff: 0.6173168233870217\n",
|
||
"new eff: 0.6176270902698983\n",
|
||
"212152\n",
|
||
"130379.0\n",
|
||
"213171.0\n",
|
||
"131213.0\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"P_Velo_recoed = file[\"07_long_electrons_EndVelo_P_reconstructed;1\"].to_numpy()\n",
|
||
"P_Velo_recoable = file[\n",
|
||
" \"07_long_electrons_EndVelo_P_reconstructible;1\"].to_numpy()\n",
|
||
"\n",
|
||
"print(\"control eff: \", np.sum(P_recoed[0]) / np.sum(P_recoable[0]))\n",
|
||
"print(\"new eff: \", np.sum(P_Velo_recoed[0]) / np.sum(P_Velo_recoable[0]))\n",
|
||
"\n",
|
||
"Pt_Velo_recoed = file[\"07_long_electrons_EndVelo_Pt_reconstructed;1\"].to_numpy(\n",
|
||
")\n",
|
||
"Pt_Velo_recoable = file[\n",
|
||
" \"07_long_electrons_EndVelo_Pt_reconstructible;1\"].to_numpy()\n",
|
||
"\n",
|
||
"print(\"control eff: \", np.sum(Pt_recoed[0]) / np.sum(Pt_recoable[0]))\n",
|
||
"print(\"new eff: \", np.sum(Pt_Velo_recoed[0]) / np.sum(Pt_Velo_recoable[0]))\n",
|
||
"\n",
|
||
"print(np.sum(P_recoable[0], dtype=int))\n",
|
||
"print(np.sum(P_recoed[0]))\n",
|
||
"print(np.sum(P_Velo_recoable[0]))\n",
|
||
"print(np.sum(P_Velo_recoed[0]))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(array([[0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 0.0000e+00, 0.0000e+00,\n",
|
||
" 0.0000e+00],\n",
|
||
" [4.1620e+03, 2.4200e+02, 8.7000e+01, ..., 0.0000e+00, 0.0000e+00,\n",
|
||
" 0.0000e+00],\n",
|
||
" [2.3471e+04, 2.7160e+03, 1.4720e+03, ..., 0.0000e+00, 0.0000e+00,\n",
|
||
" 0.0000e+00],\n",
|
||
" ...,\n",
|
||
" [1.3000e+01, 0.0000e+00, 0.0000e+00, ..., 0.0000e+00, 1.0000e+00,\n",
|
||
" 0.0000e+00],\n",
|
||
" [1.3000e+01, 1.0000e+00, 1.0000e+00, ..., 0.0000e+00, 0.0000e+00,\n",
|
||
" 0.0000e+00],\n",
|
||
" [9.0000e+00, 3.0000e+00, 1.0000e+00, ..., 0.0000e+00, 0.0000e+00,\n",
|
||
" 0.0000e+00]]),\n",
|
||
" array([ 0., 1000., 2000., 3000., 4000., 5000., 6000.,\n",
|
||
" 7000., 8000., 9000., 10000., 11000., 12000., 13000.,\n",
|
||
" 14000., 15000., 16000., 17000., 18000., 19000., 20000.,\n",
|
||
" 21000., 22000., 23000., 24000., 25000., 26000., 27000.,\n",
|
||
" 28000., 29000., 30000., 31000., 32000., 33000., 34000.,\n",
|
||
" 35000., 36000., 37000., 38000., 39000., 40000., 41000.,\n",
|
||
" 42000., 43000., 44000., 45000., 46000., 47000., 48000.,\n",
|
||
" 49000., 50000., 51000., 52000., 53000., 54000., 55000.,\n",
|
||
" 56000., 57000., 58000., 59000., 60000., 61000., 62000.,\n",
|
||
" 63000., 64000., 65000., 66000., 67000., 68000., 69000.,\n",
|
||
" 70000., 71000., 72000., 73000., 74000., 75000., 76000.,\n",
|
||
" 77000., 78000., 79000., 80000., 81000., 82000., 83000.,\n",
|
||
" 84000., 85000., 86000., 87000., 88000., 89000., 90000.,\n",
|
||
" 91000., 92000., 93000., 94000., 95000., 96000., 97000.,\n",
|
||
" 98000., 99000., 100000.]),\n",
|
||
" array([ 0., 100., 200., 300., 400., 500., 600., 700.,\n",
|
||
" 800., 900., 1000., 1100., 1200., 1300., 1400., 1500.,\n",
|
||
" 1600., 1700., 1800., 1900., 2000., 2100., 2200., 2300.,\n",
|
||
" 2400., 2500., 2600., 2700., 2800., 2900., 3000., 3100.,\n",
|
||
" 3200., 3300., 3400., 3500., 3600., 3700., 3800., 3900.,\n",
|
||
" 4000., 4100., 4200., 4300., 4400., 4500., 4600., 4700.,\n",
|
||
" 4800., 4900., 5000., 5100., 5200., 5300., 5400., 5500.,\n",
|
||
" 5600., 5700., 5800., 5900., 6000., 6100., 6200., 6300.,\n",
|
||
" 6400., 6500., 6600., 6700., 6800., 6900., 7000., 7100.,\n",
|
||
" 7200., 7300., 7400., 7500., 7600., 7700., 7800., 7900.,\n",
|
||
" 8000., 8100., 8200., 8300., 8400., 8500., 8600., 8700.,\n",
|
||
" 8800., 8900., 9000., 9100., 9200., 9300., 9400., 9500.,\n",
|
||
" 9600., 9700., 9800., 9900., 10000.]))"
|
||
]
|
||
},
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"PdP_Velo_recoed = file[\"07_long_electrons_EndVelo_PdP_reconstructed;1\"].to_numpy()\n",
|
||
"PdP_Velo_recoable = file[\"07_long_electrons_EndVelo_PdP_reconstructible;1\"].to_numpy()\n",
|
||
"\n",
|
||
"PdP_Velo_recoable"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/tmp/ipykernel_733517/2776815717.py:1: RuntimeWarning: invalid value encountered in divide\n",
|
||
" effs = np.divide(PdP_Velo_recoed[0], PdP_Velo_recoable[0])\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>0</th>\n",
|
||
" <th>1</th>\n",
|
||
" <th>2</th>\n",
|
||
" <th>3</th>\n",
|
||
" <th>4</th>\n",
|
||
" <th>5</th>\n",
|
||
" <th>6</th>\n",
|
||
" <th>7</th>\n",
|
||
" <th>8</th>\n",
|
||
" <th>9</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>90</th>\n",
|
||
" <th>91</th>\n",
|
||
" <th>92</th>\n",
|
||
" <th>93</th>\n",
|
||
" <th>94</th>\n",
|
||
" <th>95</th>\n",
|
||
" <th>96</th>\n",
|
||
" <th>97</th>\n",
|
||
" <th>98</th>\n",
|
||
" <th>99</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>0.297453</td>\n",
|
||
" <td>0.351240</td>\n",
|
||
" <td>0.298851</td>\n",
|
||
" <td>0.466667</td>\n",
|
||
" <td>0.312500</td>\n",
|
||
" <td>0.000000</td>\n",
|
||
" <td>0.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>0.377146</td>\n",
|
||
" <td>0.362297</td>\n",
|
||
" <td>0.348505</td>\n",
|
||
" <td>0.342369</td>\n",
|
||
" <td>0.369942</td>\n",
|
||
" <td>0.291339</td>\n",
|
||
" <td>0.326471</td>\n",
|
||
" <td>0.328205</td>\n",
|
||
" <td>0.208333</td>\n",
|
||
" <td>0.237500</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>0.532556</td>\n",
|
||
" <td>0.543753</td>\n",
|
||
" <td>0.547119</td>\n",
|
||
" <td>0.547350</td>\n",
|
||
" <td>0.505400</td>\n",
|
||
" <td>0.514877</td>\n",
|
||
" <td>0.485997</td>\n",
|
||
" <td>0.444846</td>\n",
|
||
" <td>0.426966</td>\n",
|
||
" <td>0.346939</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>0.595858</td>\n",
|
||
" <td>0.616777</td>\n",
|
||
" <td>0.618738</td>\n",
|
||
" <td>0.601467</td>\n",
|
||
" <td>0.636095</td>\n",
|
||
" <td>0.606115</td>\n",
|
||
" <td>0.554913</td>\n",
|
||
" <td>0.496689</td>\n",
|
||
" <td>0.591224</td>\n",
|
||
" <td>0.518625</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>95</th>\n",
|
||
" <td>0.666667</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>96</th>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>97</th>\n",
|
||
" <td>0.923077</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>0.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>0.000000</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>98</th>\n",
|
||
" <td>0.846154</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>99</th>\n",
|
||
" <td>0.777778</td>\n",
|
||
" <td>0.666667</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>100 rows × 100 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" 0 1 2 3 4 5 6 \\\n",
|
||
"0 NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"1 0.297453 0.351240 0.298851 0.466667 0.312500 0.000000 0.000000 \n",
|
||
"2 0.377146 0.362297 0.348505 0.342369 0.369942 0.291339 0.326471 \n",
|
||
"3 0.532556 0.543753 0.547119 0.547350 0.505400 0.514877 0.485997 \n",
|
||
"4 0.595858 0.616777 0.618738 0.601467 0.636095 0.606115 0.554913 \n",
|
||
".. ... ... ... ... ... ... ... \n",
|
||
"95 0.666667 1.000000 1.000000 1.000000 1.000000 NaN NaN \n",
|
||
"96 1.000000 NaN 1.000000 NaN 1.000000 NaN NaN \n",
|
||
"97 0.923077 NaN NaN 1.000000 1.000000 NaN 0.000000 \n",
|
||
"98 0.846154 1.000000 1.000000 NaN NaN 1.000000 1.000000 \n",
|
||
"99 0.777778 0.666667 1.000000 1.000000 1.000000 1.000000 1.000000 \n",
|
||
"\n",
|
||
" 7 8 9 ... 90 91 92 93 94 95 96 97 98 \\\n",
|
||
"0 NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"1 NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"2 0.328205 0.208333 0.237500 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"3 0.444846 0.426966 0.346939 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"4 0.496689 0.591224 0.518625 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
".. ... ... ... ... .. .. ... .. ... .. .. .. ... \n",
|
||
"95 NaN 1.000000 1.000000 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"96 NaN NaN NaN ... NaN NaN NaN NaN 1.0 NaN NaN NaN NaN \n",
|
||
"97 1.000000 1.000000 0.000000 ... NaN NaN NaN NaN NaN NaN NaN NaN 1.0 \n",
|
||
"98 NaN 1.000000 1.000000 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
|
||
"99 NaN 1.000000 1.000000 ... NaN NaN 1.0 NaN NaN NaN NaN NaN NaN \n",
|
||
"\n",
|
||
" 99 \n",
|
||
"0 NaN \n",
|
||
"1 NaN \n",
|
||
"2 NaN \n",
|
||
"3 NaN \n",
|
||
"4 NaN \n",
|
||
".. .. \n",
|
||
"95 NaN \n",
|
||
"96 NaN \n",
|
||
"97 NaN \n",
|
||
"98 NaN \n",
|
||
"99 NaN \n",
|
||
"\n",
|
||
"[100 rows x 100 columns]"
|
||
]
|
||
},
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"effs = np.divide(PdP_Velo_recoed[0], PdP_Velo_recoable[0])\n",
|
||
"\n",
|
||
"df = pd.DataFrame(effs)\n",
|
||
"df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9EUlEQVR4nOz9f3gj13ng+b7o9u/IJMj2TCKTGYug5dyEnnE32Eqcmd2dtQhayqq1jt1At+5mM7FHIiDpTmYmdESIvrtks2evu0HJzMxk1hbYUqLMJM+TblCy86h1EzfQ0vzY2fGMSFjZTftmLAHdzpBpx4kINOWMHNti3T/agEESPKeAU4UqoL6f5+EjNk/VOaeqThXIV6fOG7IsyxIAAAAAAACgxx3wugMAAAAAAABAJxAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDAAAAAABAIBAIAwAAAAAAQCAQCAMAAAAAAEAgEAgDEHjVatXrLgAAAAAAOoBAGIBAKhaLkk6nZWBgQKamprzuDgAAAACgA97idQcAYLdisSjnz5+XYrEo5XJZNjc3pVqtSjgclkgkIoODgxKNRmVyclJisdie/ROJhJTLZVlbW6v/rFqtSqFQkPPnz0uhUGAWGAAAAAAEUMiyLMvrTgC9Znl5WVKpVMv7RaPRHcGbdoVCoZb3CYfDUqlUmpYlEglZWVlpuc58Pt80UNVMtVqVM2fOyOLiYsvtRKNRicViMjo6Kvl8XlZWVvacy1pwrFgs7tk/Ho9LLpdruV0AAAAAQHfh1UjABclkUiqViqytrUk8HlduG4vFJJ/P17d3gmVZUiqVJJvNSjgc3ne7SCQi2WxWSqXSvkEwEZFcLieVSsVWYGtmZkbW1takUqnYDoLVXlHcHQSrBahq9dWOK5/PSzKZrB9bsViUxcVFSaVS9YDd7hlftXosy5JIJGKrXwAAAACA3sKMMKADUqmULC8v7/l5J2YilctlGR0dbVpWqVSUgbL9jI+PN51Zlc1mJZlMttS3yclJKZfLO36eTCYlm83aqmNxcVHS6fSen0ciESmVSk332X09mBEGAAAAAMHAjDCgA/Z7TbKd1ydbFYlEJBqN7vl5PB5vKwgmsn+/WwmCFQoFGR0d3REEC4fDsra2ZjsIJnJzBlqpVNpzLJubm/vu0+5xAwAAAAC6G4EwoAP2exWvU6/oNWvHpO1m+7YSXCoWizI5Obln/8uXLzcN2tnpz9WrV3f0gcXwAQAAAAC7EQgDOmC/INHg4GBnO+ID5XJZJiYm9vw8l8u1FQSrqc0m6zUrKyt7Xh3FDxUKBa+7AAAAAKCLEAgDAqBZwO3QoUOO1mc3qJdIJPbM1komk7YX1leJRCIyMzNjXE8nFItFSaVSMjo6KqFQSAYGBmR0dFTGx8frWTpXVlZkampKG+wpFAr1/Xs9MFQul2V5eVkmJyclFArtmVnotSBdCwAAAKAbvcXrDgAIjkKh0HSR/Uwm41gbs7Oz9eyT1WrVd+uBVatVmZqaqme3jEQi9cyi5XJZisWiFIvFenltH5VacLFarUoqldo3SUA3K5fLkkgkpFwu+/q11yBcCwAAAKCbMSMMQMc0W2TfZNH+ZsLhcEuL9ndabbaXyM0sm6VSSXK5nORyOVlbW5NSqbRndpwumBKEV2wjkYisra1JpVLx9ay/IFwLAAAAoJsRCAPQEYVCoelaV7Ozs463lUgkRESdOVKlUChIIpHY8dri5OSkLC8vG/VrcXGx/rrczMxM04BdJBKRfD6/Y5acbo2wbDYrkUhEIpGI5HI5oz52A7+9DtkoaNcCAAAA6Da8GgmgI/YLCpgskL+fWCwmmUym5dk51WpVJiYm9ry+Wa1WpVAoSKFQkEwm0/bC/mfOnKl/32x2XKOZmRl57bXXZHFxURvQi8VigXoFz6tZV6lUSrLZrHKboF0LAAAAoNswIwxARzRbONyJBfL3MzMz09Irl+VyWUZGRpquYbZ7u/Hx8ZYXQm9nbatMJiPRaJSskT6wvLxsPCMQAAAAgPcIhAFwXblcbhrMcWM2WDuq1Wp9kfN4PC7ZbFbW1tYkn8/vux7V5ORkSwGq3UEwu4G02dlZXy8OHwTlclk7gw8AAABAd+DVSACu2y9gNDo62uGeNFcLSuXz+T2z1GKxmKRSqaaBr0QiIWtra7baiEQiO/6dTqflxIkT2llrtYySfsyAGQTVatXXa5IBAAAAaA0zwgC4br9AmJ8y7DULgtXUFrDfrVgs2p7ZFQ6HdwSyqtWqjI+P25pVZlkWQTAP1NaM49VUAAAAoHcQCAMCKp1OSygUautrfHy8pbb2e7XPL8GdcDisXa8sEonsyORY0+xn+9m9bblcltHRUUfWnioWi5JKpbSz7KrVqiwvL8v4+PiOdmuv/w0MDEgoFJLR0VFZXFzcs3+5XJZ0Ol3PqDk6OiqpVKrpNa61s3v87DY5OVmvr/HLyVdCl5eXd7QzMDAg4+PjTY9R5Ob5bLZmXGP/9jvXdq9FTbValcXFRZmcnKyf/1r/0um0rUBcuVyWxcVFGR0d3dHnxmswOjpafwUYAAAACCwLQEeIyJ6vSqXSkbaTyWTT9p38ikQiLbefz+c7cvy7zczM7OhHLBazvW84HN5zHK2IxWJNz0U0GrXW1tZaqmttbc1KJpM7+hQOh/dsV6lUrEwmY0Wj0R1tZrNZy7L2no/Gr2QyWa9HtV0kEtl3PO++/vvJZDK27o+1tTXb5z+Xy9XPSy6X21FHJBLZt++VSsVaW1vb06e1tbUdX4312bkWu2Wz2fr2mUzGWltbs0qlkpXL5XZcr3g8vmffSqVizczM1I+jsY+VSmXP9W7sV6lU0vYNAAAA6EXMCAMCKplMytraWltf2Wy2pbb2m/nll5kprcxMazZzTJdpslE+n6+v+7W7jvHxcdszdsrlspw/f972rKNoNLpnwfe1tTUZHx+XYrEouVxOSqWSVCqVHQkClpeXpVgsyuTkpBQKBcnn81KpVKRSqUg+n6+fu3K5LGfOnGnadiKRsNXHZufFRKFQqLc9Ozu7o/5oNCq5XE5EbvZ9ampqx77hcFii0eiehA61nzWWtXotatLptKRSKQmHw1IqlWRmZkai0ahEIhGJx+OytrZW7/PKyoqMjo7uGBubm5syOTm5Z0yurq7KyMhI/ZXeUqkk2Wy2fq2q1SqL/wMAACC4vI7EAUEhPpsRlslk2q5v94wc0cwI2z2rpvZVm5HUabtnNjWbbbOf2gwj0+PY75y0U2djXbpZSLtnCe03K2/3zLXGmWGNGs/Hfm3n83lbM7gqlYqjM8Li8bh2vOvqsdv3GrvXonEmmO5aN8742m/2YmMfw+Fw0+u6e+x26vkDAAAA+AkzwgC4zu8zwlqxO/ujSHvHMTMzI5VKZd9ZULVMlXbqbtan/TQmKEgmk/uujbY7U+J+swAb+1+tVn17Tfcbg40/d2JRfLvXIp1O19tPJpO2thW5OcutWYKGxuM4d+5c0+u6e6ytrq7a6isAAADQSwiEAXDdfsGBUqnU4Z6YaxZQee2119quK5fLydra2p5X8ERuBj0mJiYcDS7ZfQ208Zq18uqonzIsnjt3TjKZjORyOW2wSaRzgdnl5eV6W3YCZ8lkcsc1aCVBw26N7fnpWgEAAACdQiAMgOv2m3XUbGaL3zULXBw6dMiozmg0uu/aa8Vicc/6VZ3QbkbPzc1NZztiIBwOy8zMzL5rsrWytpuT8vl8/Xu7M8ga76FuvG8AAAAAvyAQBqAjms14KpfLvn2VrhWtvJqokkwmpVQq7QlCrays+Dr40W7QrNPK5bIsLy9LoVBouhB+J/vRqt1jrBfuGwAAAMALBMIAdMTJkyeb/tzPAZ797A78OBUIq9W1tra2p41WM3Xih2pZL7PZrHJdtE5pDGLZDYrtzkjpp5l3AAAAQDchEAb0gGKxKIlEwutuKO23RlM3Bnh2z8bRzSwqFAoyPj5uu/5IJCLnzp3b8TOvXuPrdqlUSsbHxyUSiRitreWkdhbob0xyIOJs8BUAAAAIEgJhQA+Ympry/atS4XC46VpNhUKhq4I8u8+zndlFkUhEisViS7Pfdp8rFjZvXSqVkuXlZRExW2DeaY1BLLuZNhtngBEEAwAAANpHIAzocrVA0uTk5L7bOP0aVbv17ReMSKfTJt1pyq3A4Orq6o5/p1Ip7T61wIWdbffj1XpWneTkOC0Wi/UgWCQS8dU6ZrtfE671U6Uxw2qzgDIAAAAAewiEAV2sWq3WX4ls9Y/j1157zdG+2Ali7Pd6WqFQkMXFRcf6Ui6XZXx83CjwtJ/dGf/snvdIJCLlctl20G/3DLD91ljrBrtf69svSOnkrLfG2Xeqer2YSRmPx3cE5uy8Htx4PLOzs250CwAAAAgEAmFAB7jxx3a1WpWJiQmpVqsSDodbfl3K6T7ZrW9mZqbp64TpdNqRhfMLhUJ9YXE3XodbWVmpf9/K+ma167O4uGhrBlBj3ZFIRGZmZlro5f7sXqfG7XT76Mp3z2ZrdvzNgoROzhBrvG41dtrbfV/tDqq1ex81rgFXLpeVY79YLNZfH85kMr6a3QYAAAB0GwJhQAfsNyOl3T/0a4uv1/44PnHiRMvtmwQZTGfu5PP5pjOpJicn254ZVq1WJZVKyeTk5L6ZF1X72rG8vFw/9lazDzYGVFKplKRSqX3bXV5e3nEeGmehNdN4Lb1eK26/9hvPVTqdllQqJYVCQVZWViSVSsno6OieII/d+6ZZm7uDb4lEQhYXF+uzD0dHR6VcLu+4LtlsVgqFgqTT6XqduwNhtetWLpd3rEHWrG+qaxGPx3cEahOJRNPtq9WqTE1NicjNMbdfQNTudW88p16PFQAAAD8ql8syOTnZ9H+kumFxcVEmJydlYGBAQqGQjI6OSiKRcGSSAPZhAXBdMpm0RGTPVywWs0qlknb/SqVi5fN5a2ZmxopEInvqyeVy++5bKpWati0iVqVSaet4otFo0/qy2WxL9czMzDStJxqNWvl83lYdlUrFymQyVjgcrp9T3XHtbjccDmvbaTyPsVjMVt8aZbPZpscaj8etmZkZK5vNWslkcsf1tTs+dl+P/cZDpVLZc573E4/HbV3bfD6/Y7tkMrlv27VrtPsrHA7Xr3fjNtFo1CqVSnuup92+7d6u8SuTyViW1fzejMfjO+rZb5w2O1a716Iml8vVjzkcDlvZbNYqlUpWqVSystlsfTzU+tuM3Wuwe7t2xjEAAECvqlQqO35/bPVvm1bl8/kdf8Pk83mrVCpZuVyu/jugnb9t0DoCYYCL1tbWlH+MO/XV7OFYqVSsbDa7b/BBRKxIJGJls1nbD9e1tTUrFosp+zIzM2MreFOTz+f3DayFw2ErHo9b2WzWyufz1trampXP561sNmtlMpkd+4XDYW3QoaZZcDASiewbfGsMVuwOkrRynLU+5nI5K5lMWrFYzIpGozuuUe2YdYHA2tja7/pGo9F68ES1bSQSseLxeH0M7A7G7Q6c1OrM5/P7joVIJNI0GFOpVHbUH41GrZmZmR3b1H62ewzVfjFRHW+zNjOZTL29SCRizczM7BjvlUqlfhyN52y3xiB0NBrdMdZauRb7yWazViwW2xEUq+233/2puh8br0GpVFJup+sbAABAL6tUKk3/x6ebgbDG/0G53//ErP2tE4lECIY5LGRZliUAHLW8vOzKQu3NRKNRWVtb2/GzUCjUcj3hcFgqlUrTskQi0dbU4Hw+b/v1wZWVFTlz5kz9dU+7IpGIpFIpSSaTLa2dVFuTavdxhcNhOXr0qITDYalWq7K6ulpfhy2Xy7X0OiQAAAAA/1pcXJRsNiuRSGTPq4jZbFaSyaTjbVarVRkZGZFqtSqRSGRHdvBG5XK5vvZxLBbTLpcC+wiEAfCVarUqhUJBzp8/L+Vyub4ek8jNoFctMcAdd9wh8Xi85SQBuvZqbdbaOXr0qCQSCQJgAAAAQA+p/Q/42tqyuyczuBUIm5ycrAfddG00Tkhwqz9BRCAMAAAAAAAEWrFYlPHx8fq/3Qg8Nc7yEhGpVCrKt1pWVlYkkUiIiPoNHrSGrJEAAAAAACDQWllmpV2NWcNjsZi2zXg8Xv++Wq12LJNlryMQBgAAAAAA4LLl5eX697VXMnUal4I5f/68430KIgJhDiiXyzI5OWkcnV1cXJTJyUkZGBiQUCgko6Ojkkgk9izaR53e1QkAAAAAQKt2JwW74447bO3XGDBjRpgzCIQZqFarkkgkZHR0VAqFgmxubrZVT6FQkIGBAUmn0yIiksvlpFQqSSaTkWKxKJOTkzI5OSnVapU6PaoTAAAAAIB27Z6QYTfp1+7tdgfU0AYLLatUKtbMzIwlIju+stlsy3Xl8/n6/slksuk20WjUEhErEolYlUqFOjtcJwAAAACgt5VKJeO/71Xi8fiO+kulkq39MpmMq/0KImaEtWhxcVHGx8cdicLWZpSJ3IzyZrPZptvlcjkRufkKZm176uxMnQAAAAAAmCqXyzv+3e6MsFKp5FifgopAWAuKxaLEYjEplUqSz+f3DbTYlUgk6q/n1V7jayYSidSzRRQKhR0L7FGnu3UCAAAAAGBqdyCsXSzxY45AWAui0eiOheqOHj3adl3lcnnHO8InTpxQbn/y5Mn69/sFeajT2ToBAAAAAHBCuwGscDi849/trk2OH3qL1x3oZrsHZCsymUz9+1gspq2rNoNJ5OYNtLKysuNn1Ol8ne04evSofPOb3zSuBwAAAADc8GM/9mOyurrqaR+WlpZkaWnJkbqmp6dlenrakbq6ATPCzBEI80jj63iNs8xUIpFIfTrl+fPn9wRuqNPZOtvxyiuvyK/cOSx973yrTP/cT+y73ZW/81PKesZGTxn3ZbclEdkSkT4RMf2YCGnKrRbqcrJfjXR99DvdObRz3tw+B8362NivT7vcvhN059l0rJteA7fr17WxJObXsRPH4KZTNp5op3x/FP43L94+z0x1+zgPCt04M+HE5zLjqDM4z02EOn/UWyKy4VRdW1sO1eSucDjsSBDLZEIObiIQ5oHdC+3fcccdtvaLRqP1wM3Kygp1ulhnu7797W/Lwpe+JgdCIkt/8PV9t/v+239f/t7f/1n5pfv/tiPt2rEkNz9shsT8F8ChoSH1Bhv2P9ac7FcjbR9tuH79umxvb8uBAwfk1ltvdaBXLdCcQzvnzYlzoNSkj439cr39FjW9nprzbDrW7ZwD5ThzoH4tRRu1/0+73z1g6x5x4Rg6em/aeJw1HoOnzw0Fv/ZL5GbfFra3236euXVsLdXbiXu1gV+vp1/7JWJvnJlo93O58ZzJ9rayjU5/rvr1ehr3y8X71ctz9vrrr+8ICB048MNVkLY1Y8sLfXLzfnGkrr4+h2py1+DgoCOBsMHBQfPO7HL77bfLK6+84ni9fkUgzAONa1mJtJ8tolgs1mc/UaezdZratkQ2Km8ot/n2t//Kkba8sL6+rt7Ag/+rtJu2jzYMDw/LxsaG3HrrrY7U1xIHzqHrfdb0sePnTKPp9TQ9BgfOgXKcdeIc2xhr+90Dtu4RF46hk/fmgo1bsbEPnj43FPzaL5Ef9k1F1We3jq2lejv8PPTr9fRrv0TsjTO36Z6jugBNp8+pX6+ncb9cvF+9PGenTp2ShYWF+r/9GPxqNC0OBqW75LXIdmdy7Q6euTEjrFQqyWc+8xn57Gc/63jdfuRpIOz222/3svkdQqGQfP3r+8/gcdJLL7204992B/KhQ4d2/Ht1dbUeuKFOZ+s0dSAkcmv4nfuWf//tb5Fbbnm7I20BAAAACLa+vj45cOBA0xlptZlq+zpIDr1OOHr06I63marVqq2/XXcvjj86Oup010Tk5rrb2WxWUqmUJJNJue2221xpxw88DYSVSiUJhUJiWa2sKOSsWvuhDs5g2Z02td0ZTKVSiTpdqtPUreF3yvo/u3ffct0aYQAAAABg1/T0tCwtLTWdkVabqVYLlMEb4+PjO/5dLpdtTcTY/XdqLBZztF81/f39UqlU5OzZs5LJZGR0dFTS6bQkEomuef3UrsCHfr0Iwu0O3LSrcYokdTpbJwAAAAAEwsFQd391iaNHj+74t92/Yxv/Tg2Hw7YnfrQiHA7L5uambG9vy4ULF+TOO++UV199VaampmRgYEDuu+8+efHFFx1v1yuerxFmWZbE43FXLqYd1Wp1R8bBTrXZjt3TJhunSFKns3Waul59Q4b/0XP7ln//7b+v3L92Yzr67jwAAACArrO0tCRLS0va7a5fv17/7/Dw8J6fMxvMW9FodEfmyJdeekni8bh2v9XV1fr3u4NpTmmsNx6PSzwelxs3bsj58+cll8vJhQsXJJfLSTgc7olXJz0PhC0vL8sDDzzgaR/i8bjcddddnvahHW7MYKJOZ9hZLN+OfRMBtzOTcXj45iKsQ0MtZXX0Lbdncza+Lr2xsXdhVdP2da9j6+pvvJ5eLWDbrI+N/dLQLUI+70AC89PWxfr3r8t36v89Lc+LiMic6XX08NV+x6iOoXY93aq/C8x3d/c7w87yEnbGgZfPM9UxOPGZ6dQ58pLp55ZfuDXOnPhc7pZzqGK63EwnzkEXnuetra2Wkj1sb297nhwCzZ04caI+EadxvTCVxu3S6bQr/bp06dKen/X390symZRkMik3btyQbDYr58+fr786GYlE5NFHH+3KVyc9fzXSrfdbW3HHHXd0tD2nsjw01kOdztZp6kBIZOiWt+3/JWLrq7seJwAAAACc1tfXJ0NDQ9qvAwdu/nl/4MCBpj/f18ED3f3VRVKpVP37QqGg3b5xm0gk4ln8pL+/X2ZmZmRtbU1KpZKcOXNGtre3JZlM1l+dfOGFFzzpWzs8nxE2ODjodRc6bnBw0JHZR43njjqdrdPUrT/yNll/+Gf232Dx3znWFgAAAIDeNT09LdPT+gVTaovis1h+e5z4m3J5eVlKpZKkUqmmyz9Fo1GJxWL1ANfKyory9chcLlf/3q3ZYK0aGRmRmZkZSaVSkkgkpFAoSC6X2/Hq5IkTJ+Tw4cNed3VfngbCOpmp0U/anXm0+8Z0YlYUdTavsxdNT0/L1tbWzWmrn/60192pm5abr4D6cfabn/vmVzvGmc/87PTPy19t/Vd5e9+7vO7KDn4+Z37tm1/7JeLfvvm1XyL+7ZufPwN8e8582i8R//bNr/0S8W/f/NovEf/2rdavX/u1X5OtrX0XXwm83YvXtxoYm5ycrAe4FhcXpVKpNP0bM5vNyujoqIiInDlzZt9AWON65rFYTJLJZEv9ccu1a9cknU7LysqKiPwwrmNZ1o6sk+Pj45JKpeT+++/3srtNeRoI8yJj43462ZejR4/ueM+3Wq3aCsLsXsy9dvNQp/N19qId/xfJZ4Ewv/Jz3/zKzv+t9Mrfnv64111oys/nzK9982u/RPzbN7/2S8S/ffNnr27y7Tnzab9E/Ns3v/ZLxL9982u/RPzbt1q/nnzyyeaBsLcEc4JKo2q1umfG1fnz52VmZsZ2Hbtfdbxw4ULT4FUkEpFcLieJREKKxaIsLi42bWdiYkJEbk7YaJwZ5pUXXnhBMplM/Tgty9oRBItEIhKPx2V0dFQuXbokzzzzjKytrdVnjz366KO+CRJ7+kJtJpPxxYno7++XTCbTsfbGx8d3/Ntu2tRSqbTj343vB1Ons3UCAAAAAHpXtVqVRCIhk5OTMjAwsOfvyGKxKKFQSCYnJ+tBK5XdkzGavRpZE4/HJZ/PSzgclnQ6Xa+/Wq1KoVCQ8fFxKRaLEo1G5erVq66/vTQ7O7tv2bPPPiu33357fcZbbRJRKBQSy7JkZGREcrmcvPrqq3L27FmZmpqSXC4n29vb8oUvfEHC4bCcPXtWRkZG5KmnnnL1OOzyNBD2yCOPeNn8Dp3sy+6Up3YDN41TM8Ph8I4bizqdrRMAAAAA0LtqM63y+bxYlrXvVz6fl1wuJ9FoVFlfLpeTSCQi4XBYZmZmtBMtYrGYVCoVyWQyUi6XZWJiQgYGBiSRSMjg4KDkcjlZW1vryBI+tdcca7a2tuTxxx+XQ4cOSSKRkFKptOMtuloALJvNyquvvirHjx9vWm8ymZRSqSRnz56VSqUiyWRS7rvvPlePxQ7PF8sPomg0KuFwuB6Ieemll5QL5NWsrq7Wv98d/KFOZ+s09t03Rf79N/YvN30V1+XU1Aua6ucN218Q/fHPS5dP0e7UGogbG+615fIr4/Pa6jUb2DjuudAx2/1p3gWPX+H3un27VOPQ9Hljegp046RbzrGfOXEOnbhOBuPQ9Bh0n2vG49gOt8e617+72MH9bDwOjJ/Jbo8TrrE791KXZV70q1gstuetIztmZmZaegXTDaVSSb74xS/WA3+1tcl2z/6yLEui0ajMzs7uG/xqZmZmRsLhsDz44IP11zx/93d/1/kDscnTEX/HHXd42bynTpw4Uf9eN8Wy2XbNMkZQp7N1AgAAAAAQBPF4XBKJhCwvL9eDXo1rgMViMVlbW5PV1dWWgmA1J0+erNeVy+XkhRdecLT/rfA0ELa2tiavv/66l13wTCqVqn+/e1G9Zhq3iUQiTadZUqezdQIAAAAAEBSNM8Bq/6693njp0iU5cuRI23XX3siq1e1lAgDP50AmEomuTeHaajrVRtFodEfwZfc7ubs1DpL9Zi9Rp7N1AgAAAEDPOxjq7i84pvEVyJmZGalUKvLEE0/IyMiIcd35fH7Hvzc3N43rbJfngbB8Pu+r7AGt2L0oe6uBsWw2W//+zJkz+25XrVbr7+jGYrGmKVip0506AQAAAADodZZlSX9/v2QyGdne3pazZ89Kf3+/Y/XXsnDWeJmszvNAmMjNwEQymZRDhw7JZz7zGbl27ZrXXdKqVqt7ZhKdP3++pToikUh9ZlKxWJTFxcWm201MTIjID7NaUGfn6mzVLbfcIvM/3ifT7323o/UCu01PT8u8iEx73REEGuMQfsA4hB9MT0/L/Py8TE8zEuGdaZH2xuHBA939BUekUinZ3NyURx55xJX6R0ZG6rPNau15JWRZ3qXeOHBg76CtRQjHx8dldnZWPv7xj3e6W/uqVqsyNTUl1WpVuQ5VLBaTcDgss7Oz2hSrIjfXq0okElKtViUej8vs7KxEIhFZXV2VdDotxWJRotGoXL582XbqVOp0tk67hoeHZf22g/oN/w9FRkk7vM4aaZjR0ZGskW4/ukyzFrl8jRxpw4k+eIkMZP7gdYYyHTKQdQe3n7kuX2fXx7Edfh/rPLM7w+/PZB2/j2M/MDhHw8PDsrGxIUNDQ7K+vv7Dgh+9xaHOeeTPvu11D7re4OBgR15VTKfTcuPGDUmlUkbrjZnyPBCWSqXk7Nmzsrm5KcViUZ544gm5fPnyzc794CZPpVKSTCbl8OHDXnW1IxYXF+X8+fNSLpelWq1KOByWo0ePSiqVkng8Tp0+qFNneHhY1jc29Bu6/Qt9EH6J8HugqhOBMFNe97ET49Tv94Lb/bNxjXWBadPAd9efYzv3STfcC35u3w5NH7XjWHMIngdk7WAcAP7QxfcKgTDs5/Lly/U3p4LA00DYwYMHpVKpSF9f346f37hxQ7LZrCwvL0u5XN4xSyyVSsn999/vRXcBLQJhHUQgzJzXfSQQRiCsEwiE+b99OwiEMQ4Av+jie2XfQNh7+/bfqRv8aXcm3/OjF154QfL5vIyOjsoDDzyg3PaZZ56RRx99VBYXF331Jp8dnr5Q29/fvycIVvv5zMyMvPrqq5LP5+UTn/iEWJYlq6urkkwm5eDBg3LffffJyy+/3PlOAwAAAAAA9JCTJ0/K5OSkLC4uSiqVks997nPK7Y8fPy7nz5+X+++/X376p39avvENw+V/OsjTQFjtFUiViYkJyeVyUqlU5OzZs/UF1i5cuCDj4+Ny++23y+c+9znZ2iIKDAAAAAAA0IoHH3xQcrncjsXsL126pN0vGo1KuVyWV155RcbHx+UP//AP3e6qIzwNhLWyOFrjLLG1tTU5fvy4WJYlpVJJZmZmZGBgQO677z554YUXXOwxAAAAAAA95GCou79g5MaNG7K8vCyhUKi+LJVlWZJIJGztHw6HZW1tTTY3N7smGNaVuUaPHDlSnyX2xBNPyG233VafJTY5OcksMQAAAAAAAI0zZ86IyM3gV39/vySTSSmVSto1whpFIhGZmpqS7e1t2wE0L3VlIKym8SKtrq42nSV29913y4svvuh1VwEAAAAAAHylUCjIwMCA5PN52dzclCeeeEJGRkZaruejH/2oiIiUSiV56qmnnO6mo7o6ENYoGo1KLpeTXC5X/5llWZLP5yUWi8mhQ4fkM5/5jFy7ds27TgIAAAAA4CcHD3T3F4yUy2WZnZ2ViYkJo3oikUj9+wsXLph2y1Vv8boDTnnyySclk8lIuVyuv9fa+H5rbbH9bDYrr732mpddRY+7Ujql3WbMNI26E2nY3dQNaeK9Tm3dgfZPy/PK8jnTPpimD9eVO5Ge3OvrrOODcT6vr8SJnnjH72NAxPs+et2+HZo+6sex2rzbp6AHzrExJ57pXrdh+vtNJ9rvhrHW7TjH6DHVanVHEKtdm5ubInIz/rK6umpcn5u6Ony6tbUljz/+uBw6dEhSqZSUSqUdWQ5EpP59JBIhCAYAAAAAAPADkUikHsQykc/n699Xq1Xj+tzUlTPCrl27JplMRpaXl0Xkh8GuUMP/Jan9LBaLSTqdNp7mBwAAAABAzyHzYqDVlplqZXH8ZmqZJy3LknA47EznXNJVM8JeeOEFueuuu2R0dFSWl5frs792p/m0LKu+iP6lS5cIggEAAAAAAOySTCalUCgYJRk8efJkfRZYKBSSo0ePOtQ7d3gaCHvyySdtb3f77bfL5OSkFAqFfQNg/f39MjMzI5VKpe1MBwAAAAAABMZbDnT3F4zEYjE5fPiwxGKxloNhW1tbcvLkScnlcvXZYCIiiUTCja46xtNRk06n9y3b2tqS2dnZput/1QJgtX+PjIxINpuVzc1NOXv2rPT393fwKAAAAAAAALrTuXPnxLIsicVicvfdd2sDYltbW/LQQw/JwMCArKys1H8eCoUkEokYv2bpNk/XCKtUKnt+9vLLL8uZM2fqJ5P1v9Btfuup/1P+5W/8B+U2bxGR6R98AQAAAICJpaUlWVpaUm5z/fr1DvXGGUuVN2Sp8h3tdtNLSzI9zV9WJqLRqFy4cEFOnDgh+Xxe8vm8hMNhiUQi9S8RkXK5LMViUcrlsojsjNfUJi3lcjnPjsMuzxfLf/jhhyWZTMrq6qpks1kpFosiog6AJZNJSafTvPoIX3rXZy/Jn9nYbmt+XuTUqeaFpum5Na6UF5TlYxFNIvpOpEDX0bVh2keXr0EnzMk9ZhV4fJ0XRF2/ZpTa4/Yxdnv9neD1MXjdfif64IdjDDo7nyndfh18MM5c/9zw+hp53b6ILGgu87yuiz4YJ77ogwu2trZkY2OjvZ19ulj+lmXJxve39dttbXWgN70vHo/L6uqqTExMyI0bN6RarUqxWKzHaGqshnukcamqcDgsly9flsOHD3ey223xPBCWzWYlm82KSPMTWvt5OByWZDIps7OzvPoIX+sTkSHdRkND0tfX14HeAAAAAOh1fX19MjSk/ivk+vXrsr2tDyz5Rd+BAzJkYw0w/q5yTjQalWvXrslnP/tZeeyxx/aUN0tUKHJzslImk+maWE3IsrwLeR84cGDHgmoiOyOKIiKRSETS6bRMTU150kegFcPDw7Ju5//EeDwb6UrplLK8K2aE6fh9RpgfzpGO1zPCTP+vsx3dPhOnG+5FHa+Pwev2O9EHPxxj0DEjrDMzwjrxuRFwzAjrbsPDw7KxsSFDQ0Oyvr7+w4Kf+mvedcoJX/tzr3vQsy5fviz5fF6KxaJsbm5KuVyWwcFBCYfDcvToUZmcnJRYLNY1AbAaz2eEibD+FwAAAAAAnjhI5kU0NzEx0ZMxGd+M+Nq0ung8LqVSSS5dutSTJxwAAAAAAKAXPfvss153QcsXgbDGANiFCxdYBB8AAAAAAKDLpNNpr7ug5fmrkeFwWC5cuMDsLwAAAAAAOo1XI+GQZ555Rsrlstfd0PI8EHbu3DmCYOgpuoXoRUTGdIt0/vKH1eW//hV1uWaRT237csqofh3dQqsiIvHSgrJcu6C/6UKnXi+U6oeFld1OKKCpvyOLGnf7IuQO1B/4xaW9vtc70QeXn9m+SFzh9b2o43X7Ir1/jsWBsdgFx+g143Psh3Pohz4APvXyyy9LoVCQUqnUUkBrc3NTqtVqVwTBRHwQCPvEJz7hdRcAAAAAAAAC6dq1a5JKpaRQKLS1v9UQYA6Z/s/yDvA0EJbP571sHgAAAACAYDvo/8AF3BWLxeTq1atiWVZbgazaPlaXzLj0NBDGK5EAAAAAAADeePDBB6VcLksoFJJQKNQ1wSwTPbkq3uzsrHzjG9/wuhsAAAAAAAC+tbq6Wv9+ZGREcrmcVCoV2d7ebulrbW1Njh8/7uGR2Nd1gbBnn31WHnroIbnjjjvk2WefbbrN+Pi4HDlyRO677z4CYgAAAAAA7Ofgge7+gpFisSihUEjC4bAUi0U5fvy49Pf3t1zPkSNHJJfLtbVvp3XNqHn88cfl0KFDkkgkZHl5WYrFomxubjbdNh6PS7lclldeeUUikYh88Ytf7HBvAQAAAAAA/C0cDouIyIkTJ6Svr8+4vmQyaVyH2zzPGqlz48YNOXr0qJTL5ZYyEYTDYVlbW5Px8XGJx+OyvLws999/v9vdBWTsa9fMK/n1r5jt73b6b039C6Kuf15sLMAYMevjgqYJbfpv02M0rL8ruDyOHElvbnqedX1wew2FDoyTebevY7frxPH5fC0O7fPMCabnwOfn0Bc4x3pBOEagGRbLD7REIiFPPvmkjI6OOlLf2bNnHanHTb6fEZZIJKRUKomI1Bdva8Xly5fFsixJJpPy4osvutFFAAAAAACArvPoo4+KZVk71gozsbW15Ug9bvJ1IOzy5ctSKBTqmQssy5L+/n6JxWK26wiHw/LII4+IZVmSSqVc7C0AAAAAAED3GBkZkSeeeEJyuZz84R/+oXF9ExMTDvTKXb4OhGWzWRGR+oyuUqkkm5ubcunSpZZSet53330iIlIqleSpp55ypa8AAAAAAHQdrxe7Z7F8zyWTSXnggQckHo/L66+/blRXsVh0qFfu8fUaYbXZYNlsVh544IG264lEIvXvL126xFphAAAAAAAg8GqvMj766KOytrYmd955p2QyGRkcHLRdx+bmplSr1fpkJr/zdSCsWq3K6OioURBMRHZkl+yG6CQAAAAAAIDbbrvtNrlx48aOn01OTrZVl2VZLa/r7gVfzyMMh8MSjUaN66kFvyzLknK5bFwfAAAAAAA94WCou79gZGpqqr4me20JqsZ/t/LVLXw9IywSiUi1WjWu58yZM/Xvw+GwcX2A0kvf0G+je0i4HUU3rV/T/3ld/U48JDVtzGv315TrjlGz+4Kmfm3/7HD5Omrr93oc29FFH8hNdUH/F0Rzr+gOwQ/jRMXONfD6XumCcWLM7XEShHMIz2l/N/DDMDR8nhkfYyeep6b3u9t95HmEDrvvvvvkscce25GksNf5OhA2MTEhTz75pFEdjz32mBSLxfpFbVwvDAAAAAAAIKiOHDkikUhErl69KrFYTKLRqBw6dKilOl577TWpVquyvLzsUi+d5etA2OzsrDz22GPyuc99Tj796U+3tf/i4mI9CBYKheTkyZMu9BQAAAAAgC5E5sXAi8fj8tWvflW+/OUvG9UzMzMjt99+u0O9co+vR3w4HJZHHnlEZmZm5DOf+Uw9m4HK1taWPPnkk3L77bfL4uLinml9yWTSre4CAAAAAAB0lZMnT0p/f79xPZFIRI4cOeJAj9zl6xlhIiKZTEaKxaKcPXtWMpmMTE5OSiwWExGRtbU1GRwclM3NTSmVSlIoFHYsjC8iOzIWPPHEE9LX19f5gwAAAAAAAPChI0eOyOzsrCN15XI5R+pxk+8DYSIi+XxeUqmUnDt3TvL5vOTzeQmFQrK8vLznHdTdAbDav7PZrExNTXW24wAAAAAA+BmZFyHi2EyukZERR+pxk69fjWyUzWZldXVV7rzzTmWazsYAmGVZEovFpFQqEQQDAAAAAABwwOzsrHzjG9/wuhtt6YoZYTXRaFTy+bxcvXpVCoWC5PN5KZfLUq1WZXNzUwYHByUcDkskEpHJyUk5ceKEI++5Ai354z83ruK0dVFZPhc6ZtaAJiXuaXle0767qbVFROalA+mzXaRPgR6A9N86AUjN7HqKdB+kYNfeq5qxvqApn/f6GD1+loiI+b3YC/daLxxDr/PDZ4LP7wX97wY+YHiOjI/R9Bp14hr34jOZxfKxy7PPPiv5fF5WV1dldnZWPvGJT+zZZnx8XI4cOSIf/ehHJZPJyPve9z4PetqergqE1YyMjMjU1BSzvAAAAAAAABzw+OOPy5kzZ6RardZ/trm52XTbeDwusVhMJiYmJBKJyMrKinz84x/vUE/NeBr6vXbtWk+3BwAAAAAA4Gc3btyQ22+/XdLptFQqlT1LUO0nHA7L2tqaHD58WOLxuDz11FMd6K05T2eEjY6Oyptvvtmx9sbHx+W1117rWHsAAAAAAPgar0YGXiKRkFKpJKFQaE/iQTsuX74sg4ODkkwmJRKJyEc+8hG3uuoIT0e8ZVmytbXVkbZu3LghlUqlI20BAAAAAAD43eXLl6VQKEgoFKrPBOvv75dYLGa7jnA4LI888ohYliWpVMrF3jrD89DvuXPnOtLO8vJyPbIJuGnpP/+FDD/3x+qv4WFZWlryuqsAAAAAesDS0pIMDw8rv65fv+51N+FD2WxWRG5OVEomk1IqlWRzc1MuXbrU0qyw++67T0RESqWS71+R9Hyx/JmZGflP/+k/yeTkZD3ro1Nq2STz+bzkcjkCYeiIre+9KRtvfF+90cZGx2ZDAgAAAOhtW1tbsrGx0d7OB/k7Ochqs8Gy2aw88MADbdcTiUTq31+6dEnuv/9+J7rnCs8DYSIiKysrsrKy4nU3AEf0vfWgDL1Tc2sN/qj09fV1pkMAAAAAelpfX58MDQ0pt7l+/bpsb293qEfmlkqbslTWL280vbQk09PTHehRb6pWqzI6OmoUBBPZmV2yWCyadstVvgiEtTLdDvC76f81JtrHcPy3RT796ZtfTcw53qtdNLMj5wzvydPyvLJ8Xo4Z1S8i2mMQ3TF4PUPUtP9OMD1HPLv13D5HmvoXbAzzeV0XXb7X5rX7q4u1TPvfDePc7eddN5wDv7NzDfx+nnvhM8HrY/C6fXSGR9dxenpaGwwaHh5uf9aYB7a+vy0b39G8aSPCmzaGwuGwRKNR43pqwS/LsqRcLhvX5yZfBMI68coiwTYAAAAAAHbxadbIvrcdlKF36EMWvGljJhKJSLVaNa7nzJkz9e+dXPLKDb4IhIkQqAIAAAAAADdNv/+QTL//kI0NeS3SxMTEhDz55JNGdTz22GNSLBbrmScb1wvzI08DYSMjI3L16lURuTkrLBaLSTqdlpGREeO6axHNzc1NuXDhQseyUwIAAAAAAHSD2dlZeeyxx+Rzn/ucfHqfpXt0+y8uLtaDYKFQSE6ePOlCT53jaSCsVCpJoVCQTCYjly9flkKhIIVCQRKJhMzOzsqHPvQhR9qZmJiQ8fFxeeihhxypDwAAAACAnkDWyEALh8PyyCOPyMzMjLz22mvy6KOPal833drakgsXLkgmk5FyuVwPgNUkk0m3u23E85eBY7GY5PN5efXVV+UTn/iEWJYlFy5ckGg0Knfffbe8+OKLjrTj9wsBAAAAAADQaZlMRu688045e/asDAwMyN133y2PP/64iIisra3Js88+K08++aTMzs7KHXfcIQMDA5JKpaRUKu0Jgj3xxBO+X7ctZPlsca4bN27IZz/7WTl37pxUq1UJhUIyOjoq6XRa7r//fqO6BwcHd6T0BJw2PDws6//sI/oN47/tfmdMGGYgO21dVJbPhRzIGqnj94yIXrdvRzf0EUrdkDXS9/t3gtt9JGuk98ga2Rl+H+vdcA7R02pZI4eGhmR9ff2HBSf/pnedcsL5/9vrHvSMVCol586d0yY0rIWRatvV/p3NZmVqasrdTjrAd4GwRsvLy5LJZOTq1asSCoVkYGBAZmdnZWpqqq0I49WrVx1ZfwzYz/DwsKx/4se12y38+n9Qloes55XlrgeSvP7D1A63/zD076PRP7wOUNgYR9qgrNxj1obhONEFqrRBKif4/V7we/86wet7zQlBD1A4EQjz+znsBD+MZb/rhecFXEMgDHYUi0VJp9Ny+fLlPWWNAbLGUFIsFpNsNts18RbPX41USSaTUiqV5NKlS3LnnXfK5uamzMzMyMDAgDz88MNy7dq1lurrlosCAAAAAADQadFoVPL5vJRKJclmsxKPxyUajUokEpH+/n4ZGRmRI0eOSDwel2w2K5VKRS5dutRV8RZPF8u3KxaLSSwWk6tXr8rZs2fl3Llz8sQTT0g2m3V8YX0AAAAAAAKDxfLRxMjIiExNTXXFq46t8vWMsN1GRkbqEcezZ89KX19ffWH9n/7pn5YvfvGLXncRAAAAAAAgkFp9c88LXRUIq+nv75eZmRmpVCpy4cIFOXz4sKyurko8HpcPfOAD8tRTT3ndRQAAAAAAgEBJJBJed0GrKwNhjeLxuKytrcnq6qrceeed8uqrr0oymZRDhw7JZz7zGdna2vK6iwAAAAAA+NPBA939BV8pl8ted0GrZ0ZNbUG3TCYjlmVJpVKRTCbT9sL6AAAAAAAA0Nva2pIHH3xQqtWq113RCllWb+TAffLJJyWTyeyIPtYOrZbiMxaLyZe//GVP+odgGB4elvWNDa+70Zk07ybs9M/tPphyO829E33odqRwlwXNKQhZzyvL5+QeB3vTnK6P87rLZHqvuPy8WxB9/dpjNOX1OYI/8Ez0ntvXgGsMEfNxoNk/JCJDQ0Oyvr7+wx/+4mFbXfOtf/Wy1z3wratXr8qJEyekXC5LKpWSz372s3u2OXr0qFy9etWonVrwy7IsCYVC8uabbxrV57auyBqp8vjjj8uZM2ekWq1KY0wvFArVA2CWZUkkEpFkMulVNwEAAAAA8B+yRvasRCIhxWJRREQymYwcPXpUPvGJT+zYZnx8vL5NUHTlq5FbW1syOzsrBw8elHQ6LZVKpR55rH1ZliWWZcmRI0ckn8/Lq6++KsePH/e66wAAAAAAAK4rFov1CUIizdfvevDBB0VEdsRTQi3MRm9nH6911Yywa9euSSaTkeXlZRHZ++pj48/i8bjMzs7KkSNHOt9RAAAAAAAAD01NTcm5c+fq/47H43u2OXLkiITDYblx44ZYliXhcFgGBwclHA7baqNarcrm5mZXrA1W0xWBsJdfflnOnDkjKysrIqIOgCWTSUmn0zIyMtL5jgIAAAAA0E3IvNizstmsTE5OyurqqqRSKbntttuabjc1NSWPP/64FItFOXz4cNvtpdNpefzxx9vev1N8PeJfeOEFueOOO2R8fFxWVlbqrzvuXv+rv79fZmZmpFKpyBNPPEEQDAAAAAAABF48HpezZ88q4yT33XefRCIRoyCYyM11yPr7+43q6ARfzgh79tlnJZ1O199f3W8GWDgcltnZWXnkkUc86ScAAAAAAF2NxfID78iRI44FsCKRiCP1uClkWf7Jw6vKACnyw4BYJBKRTCbD4vfwneHhYVn/lb+l3/BXf9/djhimVfZFem5NHxdE3cd53SGYLuboh3Ps9oKUfjhGt/XCMfQ6t+/VIPDDOQz4vbZg4xJoP7d0An6ObfHDvQAzjHMjw8PDsrGxIUNDQ7K+vv7DguRR7zrlhOVVr3vQE27cuOFIMOyrX/2q79dq93xG2NbWlpw5c0aWl5d3BMCarf8Vi8UknU7LxMREW23dfvvt8sorr5h3GgAAAAAAoEc4NSPM70EwEY8DYQ899FBHM0CWSiWj/QEAAAAA6Ckslo+A8XTEZ7PZPQvg1/5tWZYkk0kplUpy4cIF4yDYuXPndgTZAAAAAAAAcNMLL7wgs7Oz8uSTT2q3feaZZ+T222+XL37xix3ombM8fzVy9wywgYEBSSaTMjs7K319fY608eSTT0oqlSIQBgAAAAAAsMvJkydlZWWl/u8bN27Ipz/96X23P378uIyMjEgsFpMzZ85ILpeT973vfZ3oqjHPA2GNQqGQRCIRKRQKUigUjOurVqv1zJMAAAAAAGAXXo0MvIceekhyuVz936FQSC5duqQMhImIRKNRKZfLMjIyIuPj43L58mX50Ic+5HZ3jfkiENaYIXJtbc3DngAAAAAAAATDjRs3JJvN1t+gqy1VlUgkbO0fDodlbW1N3v/+98v4+Lisra35Phjmi0DYzMyMTE5OyuDgoITDYeP6qtWqiIhsbm5KuVyWbDYrxWLRuF7Alv53et0DbZr2eV1qacPXiBdEXf+8mL+mbJpmXttH0+zbLp9jO22clueV5XNyj7JcO47UxXodSGNvfC+YcjvNu6Z+3TgXcWCsmx6j2/u7Xb+dOkyZHoPL48xW/W6fI5+zdZ95fZ2DwO/3qmn9nWjD6/qduIZuH6Pf2wd2OXPmjIjcDICFw2E5ceKEpNNpGRkZsV1HJBKRqakpOXfunCQSCfn617/uVncd4XkgLJvNygMPPOBa/RMTEzI1NSWJREKeffZZ19oBAAAAAKDrHGAt7SArFAoyMDAgFy5ckImJibbr+ehHPyrnzp2TUqkkTz31lNx///0O9tJZnr4MHAqF5MSJEx1pK5PJdKQdAAAAAACAblAul2V2dtYoCCZyc1ZYzYULF0y75SpPZ4T19/c7lhlSJxKJSH9/f0faQrAtXXpFlvKvaLeb/sEXAAAAAJhYWlqSpaUl5TbXr1/vUG/QTarV6o4gVrs2NzdF5OYrlqurq8b1ucnTQNi5c+c62h6zwtAJW9/5nmxUv6PfrgN9AQAAAND7tra2ZGNjo72dyRoZaJFIpB7EMpHP5+vf19Zt9ytPA2HHjx/vaHtTU1MdbQ/B1PeOt8pQ+B3qjarfkc7MhQQAAADQ6/r6+mRoaEi5zfXr12V7e7tDPUK3iEajksvljNduX15ellAoVF903888DYS9/PLLcvjwYS+7UOenvqC7TX/0dpn+6O3qjaZI3AAAAADAGdPT0zI9rV54ZXh4uPmssYP+XCx/aXVDltb+VLvd9I8vaY8d+0smk3LXXXfJiy++KB/5yEfaquPkyZNSrVYlFApJKBSSo0ePOtxLZ3kaCBsfH5dKpdKxdcL2c+PGDRkfH5c333zT036gR/ggyBWyntdscMzb9sVGWmg7KcINaFPZu53aWre/nePXbGPpzrOmeF48PgcaCzZOkfYY7IxFFa9ToGvqn7d1H3k8lj0eR57X70Qfuv0ci5g/80376PI5PC26z0WROd0GXj9vdPzQPz/0wYQf+u/288YP18DrPnjdfhfZ+u6bsvHt7+q322LRGROxWEwOHz4ssVhMCoVCS8Gwra0tmZqaklwuV58NFgqFJJFIuNhjc56+DGz56CHgp74AAAAAABBkfW87KEO3vE375fXEml5w7tw5sSxLYrGY3H333fLiiy8qt9/a2pKHHnpIBgYGZGVlpf7zUCgkkUjE+DVLt3k6Iyzk8oyPVvipLwAAAAAAdIRPF8uf/pkfl+mf+XEbG/JapKloNCoXLlyQEydOSD6fl3w+L+FwWCKRSP1LRKRcLkuxWJRyuSwiP5xQ1DgbLJfLeXYcdnkaCGMWFgAAAAAAgLfi8bisrq7KxMSE3LhxQ6rVqhSLRSkWizu2a4zj1CYU1RbIv3z5clesve556Pfq1ated0FWV1e97gIAAAAAAIBnotGoXLt2TR555BGxLGvPl4jUF8QXkfrPk8mkXL16VY4cOeJl923zdEaYiMjU1JQ8+uijEg6HZXBwsKNtb25uSrlclpmZmY62CwAAAACAL/g0ayS80d/fL5lMRjKZjFy+fFny+bwUi8V6/GRwcFDC4bAcPXpUJicnJRaLSX9/v9fdbonngbC1tTXPMwrU3mUFAAAAAACAyMTEhExMTHjdDcd5Hgir8Wq9MAJgAAAAAAAAweB5IMzrBfO9bh896MPD+m2+sm7Whmbcznkc4J2Te9Qb2Omf7t40PUbDe39B0/y8aDZw4tmjqWPe5frdpj3Htrrn8jH4/TPE7/1zgu5ZYPosceAcnpbnleXaZ2YQuD1W/f65aIff72e/988Jbo8jP5zDDjwTu57X58iN9g94vnQ40FGeBsIqlYqXzQMAAAAAAMAhd911l3z5y1/2uhtKngbCum1BNQAAAAAAADS3urrqdRe0PH81EgAAAAAAeISskYF37do1GRwcrP+7r6/P9r5bW1siIlIul2VmZkaq1arT3XMcgTAAAAAAAIAetLW1JWfOnJH3vOc98ulPf3pP+blz5+TBBx90pC3LsroiISGBMAAAAAAAguogi+X3smg0KlevXq3/e3cwLBKJBC6JICMeAAAAAACgxzz66KNSLpfrga6/+Iu/2LNN7ZXIUChkNJurG2aC1TAjDHDazJ36bT7xL5XFp62LyvK5VvrTxIKoI/7zYvgQ64aHoGHq6Xm3U2c78X9lvE7vbShkPa/Z4h4HGunyFOhe998Ot/vgh3tNY86JsarSC+PE7/dCJ85h0J83dn530LXh8XVe0Ozu+u8OIubXyQ/PAxXN8el+xxURmTc9RL/fq0CDQqEgoVBILMuSWCwmZ86c2bNNOByufz8yMiLRaLTldqrVqmxubkqxWDTpbscQCAMAAAAAIKhYLL9nFYtFCYVCkkql5Atf+ELTbUZGRkTk5iuSr7zyilF7hUJB7rrrLqM6OoFXIwEAAAAAAHpQPB7fNwi2eztTsVisHljzMwJhAAAAAAAAPSiTyXS0vVQq1dH22sGrkQAAAAAABNUB5sf0sttuu83WdocOHXKkvUceecSRetzEiAcAAAAAAOgx0WhUXn75ZVvbNi6ab2Jra8uRetxEIAwAAAAAAKDHHD16tGmmSDclEomOttcOXo0EnPbSNf02cx9RF4eOqfc3TJusTRutSxzjdYp1OzxOoW6a3ttWam8/pLJ3sX1H7gPTYzDd321+SKHu9Tj0Oo19J/oQBH7/XPFD/0zb0JSflueV5XPq2jvD7fNs+vuV7hcoP4yjHmfr9ydTbv9+5MV1JmvkHouLi5LP52V1dVWq1apEIhGJRqOSSqUkFou51m61WpUzZ85IsViUcrks5XK53vbk5KQkk8mW6puZmZH3v//98tGPflTuv/9+l3q90+rqakfaMcGMMAAAAAAAEHiFQkEGBgYknU6LiEgul5NSqSSZTEaKxaJMTk7K5OSkVKtVx9teXFyUgYEBWV5elsnJSclms7K2tibpdFrK5bKkUikZHR2VQqFgu85IJCLHjx+XZDIpd999tzz77LNy7dq1ptveuHFDtra22v56+eWX5aMf/agr58ZpIcvyz/9aePbZZyWfz0u5XJZwOCyRSEROnjwphw8f9rprgC3Dw8Oy/vdG9Ru+9aC6/PSL6nK3/4+i1/vb4fdZKMwI8/4a2KnD7/zzEb0/r8chM8L0vD6HTvD7MfTA5552RpjLs9UdeV53+zjoxOee1+fIlB+Oz+vfjwwMDw/LxsaGDA0Nyfr6+g8LFu/2rE+OmPkDR6opFAoyOTkpIiLJZFKy2eyebcbHx6VYLEokEpG1tTXH1tVKJBKysrIi0WhU1tbWmm6TSqVkeXlZRETW1tYkGo3aqvvq1asyOjoqIcXYtSxLWW5XrZ4333zTuC43+eLVyJdfflkSiYSUy+U9ZYuLizI+Pi65XE7e9773edA7AAAAAAB61EFeFKtWq/W1rSKRSNMgmMjNGWKjo6NSLpclkUhIPp83bntxcVFWVlZEROTy5cv7bpfNZqVQKEi5XJaJiQmpVCraum/cuCEf/ehH60Eu1TwoH82Rcp3nI/7q1asSjUalXC6LZVlNv1ZXVyUSicgXv/hFr7sLAAAAAAB6SCKRqL/SV3stsplIJCLxeFxEbs4gq83QMlFrLxqNameY1dquVqv14JnKmTNnpFQq7djfrTXOnJhR1imezwhLpVL173VT9eLxuBQKBfnIR9QLjQMAAAAAABsOdE8Aww3lcnnHulsnTpxQbn/y5Ml6ECqdTre8gH2jxnYjkYh2+zvuuKP+/UsvvVQPjKnqD4VCYlmWjI+Py4ULF+plly9flnK5LK+++qo89thjEo1GbfVhP+VyWYrFYtv7d5KngbCvfvWrOy6MiEg4HJbBwUERkR2vSta2SSQS8hd/8Ree9BcAAAAAAPSOTCZT/z4Wi9melSXyw5lZuoDUfhpjHq0GkQ4dOqTdplgsSigUklQqJV/4whd2lE1MTMjExISIiDz22GPy4IMPygMPPNBSH5q11xis8ytPA2Hnz58XkZuzvZLJpGQyGenv79+xzVe/+lV54okn5Ny5cxIKhaRSqcjnPvc5+fSnP+1Fl13ndLrUGjfSvwa5TqVnrui3+fprymLtQuqGC4V6niLdgWmzp62LynLtMZj2wfAazJu1bqsN02PUn+N7jOo3b98Grxdv7vaF4h3ow4Jmd11iCO3zUL27ngPnWPdMtULqe0WbHMP0ma+7l9xe4NuJOgK0bsm+XD4Hbj/TtTpwjU2fR1qmx+DEOQj6vdKJBCdBP8c9qPH1RrsL0EcikXoQ6/z5820HwmqTgERkx9//+3nppZd29EHlxo0bInIzcLc7COaWaDQqR44c6UhbJjxdI6wWnVxcXJQnnnhiTxBMROTIkSOSzWbl0qVL9Vljv/u7v9vprnaEG+lS3Uj/GuQ67ViqvCHD5Yr6S0SWHG0VAAAAQFAtLS3J8PCw8uv69evNdz54oLu/DOyehWV3NlNjwMzOWl372R3Malw6qplaW+FwWBt8q8VXZmdn2+5fOzrdXjs8nRG2uroq4XBYfvVXf1W7bSwWkwsXLsiJEyekWCzK1taW9PX1daCXnaFKlxqNRiWZTNbTpU5OTtpKl6pK/1pb5G98fFwKhYKMj4/bSv8a5Drt2nrTko3vb+u3c6Q1AAAAAEG3tbUlGxsbXnej6+yeZGJ3jazd2xWLRduzyRpFo1GJRqP1gFyhUJBEIiG5XG7PtsvLy/VZaI2vc+ocPny45X6ZOH78eEfba4enM8Kq1ap2IbpG8Xi8PuBWV1fd6lbHtZIutXb8tXd599NK+lcRqad/pU5zfQdDMvSWA+ovEemdMC4AAAAAL/X19cnQ0JDy68ABT//896XGVw1FxPbkiN3rc5nEJ86dO7fj3ysrK3v+Pi0UCvXZYtls1vaSSZFIRP7wD/+w7b61Y2vL/1M+PL8TRkdHW9q+Fl3slmwEdriRLtWN9K9BrrMV0wPvlPXIgPpLRKYdaQ0AAABA0E1PT8v6+rry69Zbb22+84FQd38ZaFysXqT9GWGlUqntPkSj0T0zwFZWVmR0dFSKxaIsLi7K5OSkRCIRyefzLa0bHo/H5bOf/WzbfWuHk5NM3OJ5IKzV9Jz33XefWJYlr72mXmy8W5imS22mnfSvNfsFjoJcJwAAAACg9+wOhLXLdN3peDy+502mcrks4+Pjkk6nZWZmRkqlUsvJ3pLJpORyOXnqqaeM+teKbnh7z9M1wkRErl692tL2tWCR0wuce8WNdKlupH8Ncp0AAAAAAOcsvVCSpRedCUJNf3dJpqfbe9+m3bjC7r8zNzc326qnUW2mV7MF8wuFglSr1ZbXtY5EInL8+PF6QCwej0ssFpPBwcE9a67fuHGj7dcaNzc3pVqtyszMTFfEajwPhH32s5+VSCQiH//4x21tX8t84MRA8wM30qW6kf41yHW27PiYdpMrD9yp3kDzxvBp66KyfO7ip9Tl9z6tLF8QdVroeTupqU1pUlPP6fqgS22tKzet3/Qc2UjNfVqeV1ehu46aJua0PXDXXOiYegM/pC93exyZ6sS9qqEbZ7o+zhueowXNKTCtX8T/Y3VO7lFvYNo/O/v7YCwa6fb+i5g/j0zHidfPQ7HxPDLlg2M05vdj8Lp9Efd/R/TiGA0zL7Zj66/elI3qd5ypywdrUjkV/Ekmk7K2trZn2Z5isSgjIyNy+fLllhflz+VyMj4+LpcuXZJ8Pr/vdjMzMzIzM9NWv2ssy5JQF3xmev5qZLValXg8LgcPHpS77rpLnnzySbl27Zp2v8YAUjdzOl2qG+lfg1wnAAAAAMBZfe98iwyF3+HI1+6ZTa1odYaV2/WkUilZXl6WZDK5J1ZQrVZlfHx8T6ZLO1544QU5fvy4WJbV9EtE9i1r5atbeD4jTETqJ6xQKNQvaiQSkVgsJolEQu68c+/sGacGmtecTpfqRvrXINcJAAAAAHDW9MT7ZXri/c5U9lD7acgGBwcdmc3lxESdyclJKRQKMjMzU/97vxYY271dPp9vab2w/v5+yeVyUigUJJPJyOXLl437u1soFOqaYJgvAmGNU+dqJ65UKkm5XK5f9FgsVs+UINJ6tkk/O3funIyPj9f/XUuX2hgMs5su1cn0r7VgUJDrBAAAAICeZph5sZu1O8Fmd/DMdKLO+Pi4FItFicViOya9ZLNZmZyc3JOJMZFIyNWrV1tuNxaL1QNoly9flnK5LK+++qo89thjEo1G5ejRoy33vbZsVblcbnndc6/4IhDWGDVsFhQT2TlbLBQKSS6Xk8HBQYnFYranQp48eVLOnz/vUK+dU0uX2ji4a+lSa1HbdDotkUhEstmsMvLrRvrXINcJAAAAAOhNR48e3RG8sbsg/e41y00m6iQSiXofdmeOFLmZ4G1tbU0mJibqAbhqtSrpdLrp9nZNTEzIxMSEiIg89thj8uCDD8oDDzzQdn0iN9+usrtEkZc8XyNsZGREMpmMzMzMSCwW2/N+aSgUqgfHGstqrxAODAzI7bffLrOzs/LCCy8o22rnXdpOcSpdqhvpX4NcJwAAAAD0tIMHuvvLQOObWSL2/6bcPXmildcUd7dXW6c6Go3uO5kjGo3K2trajp8tLy/77m/XaDQqR44c8bobWp7PCCsUCnLbbbft+NlXv/pVOX/+vBQKhR3R2f1mi5VKJVlcXJTFxUURkfraYrFYrF735cuXfTdIdnMiXaob6V+DXGc7lv7Tuiz9p3XlNt//za8qy/+rnBMRkZ+Vafnb0v477wAAAAC629LSkiwtLRnXc/36dQd601t2vwpYLpdtLZPT+LdnOBy2/TbSbo2TYXSvJdbeEGuMF6yurrYdhGsUj8fbPobddAkA/cDTQFg4HN4TBBMROXLkSD2KeOPGDSkUCpLP5+XChQs7Bpyd1yjD4bAMDg46NlvIbW6kS22HG0HDoNT52tCAbLyuGW+vf1dTy+siIvKz8mmZl0/vLTZ9jV+ziOG8YVrn0/K8snwudExdv4j/U1ObpgU27b+IzJm24XcO9N90LJ62Lmr29/k4dYLbx+By/fOdOIVuX6cgjCONBc0haq+z1+PUD7weB163L+L+veKHYzTl9u9Hfq+/E220sf/W1pZsbGyYtYumotGohMPh+t+AL730ksTjce1+q6ur9e/bWVerpvFvTzuvVyaTyR2BJqfiHBcuXHCkHhGRqakpx+pyi6eBsP0yHzbq7++X48ePy/Hjx+WJJ56Qq1evysrKiuTz+R2vOoZ2PbBqgbFKpSKVSqXpNn7UmC61UCjsGNi1dKmqDBGNN7GJxllSQa6zHX0/8jZ573t+RLlN6C/+0l5dRj0BAAAA0O36+vpkaGjIuJ7r16/L9vb23oIAL5YvInLixIn6RBS7i703bpdOp9tuu/FtJLtrVUejUc8Xpd/a2pLNzc2mE5u6gaeBsHYihSMjI/LII4/II488IiI3X3nM5/OysrKyI2i0X2DMz5xIl+pG+tcg19mOf5j4kPzDxIeU27zzzieM2gAAAAAQDNPT0zI9bb5cyvDwMDPLmmj8m9vOuuKN20QiEaNXExtfR2xndpdTrzO2Kp/P19dsn5yclBMnTrSUyNBrni+Wb2piYkLOnj0rr776qlQqFclmsxKPx6W/v3/Hovt+Nz4+LoVCoWm61Fwut2f7RCLRNOjjRvrXINcJAAAAAOhd0Wh0RzCrtnj9fhr/PtfNBlteXpZ0Or1vkOvkyZP171dXV21N7Gisq5Ug3NbW1o4vE8ePH5dLly5JOByWCxcu1INid9xxh3zmM58xqrsTuj4Q1qi/v1+mpqbkwoULsrm5KWtra/LII49If3+/111TspsutTFAU0uXutvu95PtzpBSpX8Ncp0AAAAA0NO8zvroYdbImsa/w8+cObPvdtVqtT57LBaL1RPeNTM5OSmpVEoWFxdldHS06d+njUG4arWqbFvkh0n0ROwtNSUicvDgQTl48KAMDAzs+Hr22Wdt7b+fWCwmpVJJHnnkkfokpLW1Ndv98lJPBcJ2O3LkiGQyGdnc3PTtgm1Op0t1I/1rkOsEAAAAAPS2SCRSn+lVLBZlcXGx6XYTExMicvMtomZvbjXa/ZrlfgvS53K5+qSXxcXFPUsj1ZTLZUkkEiJy82/WmZkZZfs1tSCVZVnS398vTzzxhLz66qvyiU98wtb+OplMRs6ePetIXZ3S04GwRs1mWvlBO+lSGzVmq2hWh91gkCr9a5DrBAAAAAD0vng8Lvl8XsLhsKTT6fqbW9VqVQqFgoyPj0uxWJRoNCpXr17VLqmzu3y/vzPD4bBcvXq1PrsslUrJ5OSkLC8vS7FYlEKhIOl0uj6rLJPJSD6fb+nYQqGQjI+Py9WrV2VqakpGRkbqZTdu3JCHHnpI+zU7O7tv/TMzMxKNRlvqk5cCEwgTuTlDzG/aSZfaaHewp5b+teall16y1Q9V+tcg1wkAAAAAPe1AqLu/HBSLxaRSqUgmk5FyuSwTExMyMDAgiURCBgcHJZfL7Vm2aD+5XE4ikYiEw2GZmZlRvnkUDoclm83K2tqaJJNJKZfLkkqlZHx8XFKplJTLZZmZmZFKpWJ7Jliz/uy3bJRlWfLSSy9JNpuV5eXlHV/ZbNZWRstHH320rX55wdOskZ22e/aUH7iRLtWN9K9BrrNV7/yDK/qNdEkcQs4+0He7Ul5Qlo8ZJpmYk3uM9rfF9ByZ7u92Ig4n6tcc44Ko25gXzTnyOhmJjWs4p+ujpnxO14DhOdBeA90xduIauPw8cl0nzqHLbSxoqp93vX6j6u3RnEPtMXp9r3j9PLTD63PUDfei1+cI7l9DO3VwnSE3Zzi1G3Cqqa2h1YpoNOrK22zhcFhuu+22pmW11yVFbv5tHIvF6hN2xsfH5cKFCztmkO0nHo871V3XBWpGmB+5kS41lUrVv3cq/WuQ6wQAAAAAoFvZXf4nGo3W1/sKhUJy7tw5W0GwVtvxGoEwj7mRLtWN9K9BrhMAAAAAepbXWR99kDWy1w0ODtrednJyUkRuziI7fPhwS+0QCIMtbqVLdSP9a5DrBAAAAACg19VmgLUSPKuxs3aaHxAI8wE30qW6kf41yHUCAAAAQE/yerF7Hy2W36u6JUDVKQTCfMCtdKlOp38Nep0AAAAAAKC7EQjzCbfSpTqZ/pU6AQAAAABANwtZFvlhAacMDw/L+j/8oH7DtQ11+YU/Uhafti4qy+dCx/R9UAlCenGvU6xr9tddY5EOXGeNK+UFZflYZF5dQQfG0YKmiXnpQJp2k/p1euFe1HH5HJ+W55Xlc3KPWft+EIRxouP1veqEbr+OTvTf6+vo9TWwc/yaPmg/F30+jIzHgB1+HycG9Q8PD8vGxoYMDQ3J+vr6Dwsu/M9mffLaid/2uge+duDAAUkkEnL+/PmW9hkdHZVXXnmlpbZOnDghzzzzjLz55putdrOjmBEGAAAAAAAAI7XEfn5HIAwAAAAAAKBHdSpAtbm52ZF2TL3F6w4AAAAAAACPHCTzYq8rl8uut7G1tSXFYlFCnXiF2RCBMAAAAAAAgB5VLpfl4MGDLSWKK5fLcujQIdvbd8trkSIEwgAAAAAAAHqaZVlSqVRc276bEAgDHLb0b6/J0r+7pt7oe2/K9AfeI9M/8Z6O9AkAAABA71r6wZcMD++7zfXr15sXHGDp8CDoxCuLlt8zGP8AgTDAYVt//m3Z2Por7XbP/fxH5NunfqFp2dyFY8p950Lq8tPWRaP9u8FpeV5ZbnyMph8Uhqmz5xxIke62sci8p+3bMS+GKczdToGuY9q+E7/weP0Ljcvtz8k9rtYvIrKguQzzbp9iP4xzr+8lt+8Vr4/PiT64fQxOnAOvn0des3H8rj9vTO8VzTHo+++DMeD1+kf7nIOtU6dkY2FBZGOjwx1CN3EzUNUNa4PVEAgDHNb3trfI0I+8TbnN6+F3y9v73tWhHgEAAADoZX19fTI0NKTc5vr167K9vd2hHsFv+vv75ejRoxIOh2VwcNCxejc3N6Varcrq6mrXrBNGIAxw2PSRW2X6yK3KbU7/8/+lQ70BAAAA0Oump6dlenpauc3w8LBsNJsxdqB7ZvKgPbFYTL785S+73s7k5KS88MILrrdjipeBAQAAAAAAelQmk+lIO9lstiPtmGJGGAAAAAAAQXWQGWG97vDhwx1pJxKJdMWC+cwIAwAAAAAA6EGdnqXVDbPCmBEGAAAAAAB8ZelLV2TpS1e0201/5m9q10cLsqmpqZ5urx0EwgCnVd7QbjL3hXPK8tPWRfX+oWNG5Vpup761U79mSu2c3GO0v+vH2In2vU5RbDrt2etrZIfXU7vdPsfdwHQcmJ4DB55X86Krw+U+6s5BJ8aJz8figuYazOsq4Bx2hulYN9UF12De7S66fA5cf146QXMOFjSHoH2eeOGAP18U23rje7Lx2n/Vb7e11YHeoJcQCAMAAAAAAL7S9663ydChd+m36+vrQG/QSwiEAQAAAAAAX5n++Adl+uMf1G/4P/BaJFpDIAwAAAAAgIDaPuCD5SgM+PPFTvgZYwYAAAAAAACBQCAMAAAAAAAAgcCrkQAAAAAABNS2T7NG2tXdvYcXCIQBTvvoT+i3+XsXlMXWw19ypi/7NmCYelqXvlxX7kQbOrpj1JWbtu/EOTDl9XU2bb8TaerdPgZThuNowUaa+XndJi6fI22aeZfH8WnrorJ8zusxYMOV0ill+ZiuAreft3ba8Pg8a++DTujEdXBTJ/rv9jEaHoP2XozMG9XfE0yfBT5/loj45HkCQIngKQAAAAAAAAKBGWEAAAAAAARUt2eNBFrFjDAAAAAAAAAEAjPCAAAAAAAIqDcPMj8GwcKIBwAAAAAAQCAQCAMAAAAAAEAg8GokAAAAAAABxWL5CBoCYYDTXvoT7SanrYvK8vmQ4YfRc580298PLEtdrjtHunJd/aY09Z+W59W7h+7RNjGvOwSvz4Fp+w70X3ueRV2H9l70eBwtaLqnHSMi+vPs8v7zbp9DjTnR3Gt2js/wGEyv41hk3qh918exnTa8vtfg/TnuwL3m9jgbM9rbH3Sfm9pnpts6MU55HgE9j1cjAQAAAAAAEAjMCAMAAAAAIKCsA8yPQbAw4gEAAAAAABAIBMIAAAAAAAAQCLwaCQAAAABAQJE1EkHDjDAAAAAAAAAEAjPCAKeN/7h2k7nQMXf7cO/T6nLrN11t/rR1UVlu5/ivlBeU5a6nKHc5Rfuctn4b/2dOs8mCqNuY17eg1gXpw7Vp3k0vg8cp1ue1/Xfg//AaHsOCpgvzfk9T34H2tdfRlOk46MQ1cLsNv48zO33QHYPLx6i9l037b6d/pnW4/Nmu1YlzZEj7uen1NXCAL8YyAE8RCAMAAAAAIKB4NRJBw6uRAAAAAAAACARmhAEAAAAAEFDbB5gfg2AhEAY4bOkPvi5LX/66drvpH3wBAAAAgImlpSVZWlpSbnP9+vUO9QbwNwJhgMO23viebFTe0G/Xgb4AAAAA6H1bW1uysbHhdTeArkAgDHBY3zvfKkMD71RvVHlD+jrTHQAAAAA9rq+vT4aGhpTbXL9+Xba3t/f8nMXyETQhyyK/K+CU4eFhWf9wv37DZ76mLL74+ueV5cfe/XAr3UI3ciKNvGkbbqcHd7v/NuhSqOvM67rg8Tm8UjqlrWJsVLMNvyaYc3scmPLBvdj1/HCNTa+jTjdcZz9cBwXdZ472M8UJPj9HneD6dfDxOR4eHpaNjQ0ZGhqS9fX1+s//4qVf8axPTnjPHb/mdRfQZVgVDwAAAAAAAIHAq5EAAAAAAATUmyHmxyBYGPEAAAAAAAAIBAJhAAAAAAAACARejQQAAAAAIKDIGomgIRAGAAAAAAB8Jfvbq7L8O2va7X41/V6Znp7uQI/QKwiEAU77W7fqt3nma8riY+9+WFl+pXRKWT42qi5fEHXa5nnx/v8KnbYuKsvnQsc61BOP6FJvi5in3zZM7+16+nHd8dk4R9qxruujtg1NBabHYHiNxyLz+o0szTZ2xqKyfvPraFS/jmn7dvpg2kcdJ47B7fbdPgce03+udkCPn2NfMHxma3+/cuJW9vp51AWMfz/xmsEzf12cGWad8vpffleuf+vb2u22trY60Bv0EgJhAAAAAAAElF9fjbzllrfLj/31W7Tb9fX1daA36CUEwgAAAAAAgK8kf/GoJH/xqHa7ocO8FonWEAgDAAAAACCgrAMHvO4C0FGMeAAAAAAAAAQCgTAAAAAAAAAEAq9GAgAAAAAQUH5dLB9wS8iyyKELOGV4eFjW7/+AeUWnX1SX625bg7TKnaBLMy9iI7W128doeo5NH61OHJ/bfejycSgirl/nK+UFZfnK6Lyy3Pg+6MRHvOl19vrXECfOoWEdp+V5Zflc6JhR/V2h15/pDtCOE7lHXYHL9+qCpvp58f85RgcE4V7zseHhYdnY2JChoSFZX1+v//xP/uhRD3tl7m988KzXXUCX4dVIAAAAAAAABAKvRgIAAAAAEFDbZI1EwDDiAQAAAAAAEAgEwgAAAAAAABAIvBoJAAAAAEBAbXdDgiPAQcwIAwAAAAAAQCAwIwxwWuQ9+m0+mTNqQp+i3FtXSqeU5fOjNv6vk24TXXpt0/+zpdn/tHVRWT7XBenBr5QXlOVjugrcPkYn/u+k2+NEYyyivhvHNN3T3utOHJ/XY7EL7hUtwz4eL6+6Wr+WH65BN1xnEw48a+Y05+i0PG+0v2kf53Uf3J24xqbn2e/3Wiee6W4/D7w+xzYY3yteP88U/VsX/a/YQBAQCAMAAAAAIKC2DxAeQ7DwaiQAAAAAAAACgRlhAAAAAAAE1PYB5scgWBjxAAAAAAAACAQCYQAAAAAAAAgEXo0EAAAAACCg3nQ5izbgN8wIAwAAAAAAQCAwIwzwobFSSVl+MvK8snwhZCnL50X9f31OWxeV5abGnKhE93+uLPU5MN1/Tr23vn0fGIvMqzewNOW6c2j4fxevlE4py7X9t8N0nLhMd6+KaPpvZxya3kumTOv3uv8OGBs9pdlCU645xgXNKZp3+XnpCLef+W7rwDmak3tcb0PJ7XvZThte3+8e/27iSB3GzxN1ueu8HgNOcPEaDg8Pi2xstNEpoLcQCAMAAAAAIKDIGomgIRAGOGzpD74uS1/+una76R98AQAAAICJpaUlWVpaUm5z/fr1DvUG8DcCYYDDtt74nmxU3tBv14G+AAAAAOh9W1tbssFrj4AtBMIAh/W9860yNPBO9UaVN6SvM90BAAAA0OP6+vpkaGhIuc3169dle3t7z88tr9dRBDqMQBjgsOm7PyDTd39AvdEnc53pDAAAAICeNz09LdPT6oVXhoeHmTUGiAir4gEAAAAAACAQmBEGOO3//lPjKq587Z+oN4j8pqYGzfTm5z6pLJ4LHdPU3wWcSEHupk5MQTds47R1UVk+Z5piXTNOx0ZPqSsQXbmNY5B7tHW4ynQcdGKcu92Gi2niReyMQx/QHaPuHGnK502vUSfGkd/r70T7Xn8uedz+gujb196vps8T0+vo9r1mp38uP5N1zxPtM9fjYS7iQB9Nr5Ph55obtg/waiSChRlhAAAAAAAACARmhAEAAAAAEFDbIebHIFgY8QAAAAAAAAgEAmEAAAAAAAAIBF6NBAAAAAAgoFgsH0FDIAwAAAAAAPjKby//H/I75/69drv0I++Q6enpDvQIvYJAGOC0v/hL4yqu/NRtyvIx0/Te9z5ttr8faFJLn5bnleVzhufwtHVRU/8xo/odSZ1tmL5bd450qe7nxeM09CIimnFgKxW9yf4+TJHuyz4oaNPca8bZvPb4zJ4lIiJzco96A9NxpjkG7TkyHac6do5P14Yf+mjC9PgcoP3cMx2nLj8r5v3wKHJ7nPlgnGgZngPdM3khpPndoQPjQNuGx/eClsE4WRcx/e2so/7y238l3/rmlna7rS39NkAjAmEAAAAAAATUth+CsE28693vkL/+Y33a7fr69NsAjQiEAQAAAAAAX/mF5H8jv5D8b7TbHR3itUi0hqyRAAAAAAAACARmhAEAAAAAEFBvHmB+DIKFEQ8AAAAAAIBAIBAGAAAAAACAQODVSMBp0WH9Nr/1srt96Ib03KY0x3C8dMqo+gXRpPc2PYeaa3RantdWMRc6ZtYHQ7oU6Vqac7Cgqd5O+3Ot9KcdpinU3b4XnUjx7nEaeeNxZsjWfebyOdCZ1zbvcv/sHL/pOHL5matl2v8OnCPjzwTDz6U5uUddfyeeJW7fi17//tSJZ80Xfl5d/tCXjKrXP698wPA8n7YuKstd/92kDX7NGgm4hRlhAAAAAAAACARmhAEAAAAAEFDMCEPQMCMMAAAAAAAAgUAgDAAAAAAAAIHAq5EAAAAAAASUdYD5MQgWRjwAAAAAAAACgRlhgNO+/uf6bZ77pLJ47GvX1Pv/8ofV5Rc/pe+DgQVRp5WeF/WCm7r97dShMzZ6Sr2BJjV2SJMmfiFkdg50KdgtG+fIOI266cKomvYXNNXPa6o3HQMioj9HunPg83Osrd+JxW/dPgdu1+92+3a4fIzaZ7LpIfpgHBkfo9sLQXfDQtOG18AK3aPZogP3mtfP1E48L0y5fY5M9/f6Gtqpw9Bc6Jin7QPQIxAGAAAAAEBAkTUSQcOrkQAAAAAAAAgEAmEAAAAAAAAIBF6NBAAAAAAgoHg1EkHDjDAAAAAAAAAEAoEwAAAAAAAABELIssjfCjhleHhY1n/lb+k3/EZFXT7wTnX56RfV5YappU9bF5Xlc6JJod6J9OOmbfghfbcp0/Podh/d/njxQYp043vJ7RTrTlxj07Hu8b24oKl+XrrgdRA/jAOvef08cfs+6AZ+OEa3++CHY/Sa33836IZr5OM+Dg8Py8bGhgwNDcn6+nr95y9s/lPP+uSEOwf/seN1Li4uSj6fl9XVValWqxKJRCQajUoqlZJYLOZ4e60oFotSLpelXC5LNBr1vD/diDXCAIct/ZursvRvr6o3+r4l00dulekjt3amUwAAAAB61tLSkiwtLSm3uX79eod6070KhYIkEgmpVqsSi8Ukl8tJJBKRYrEo6XRaJicn6z8Ph8Md6VO1WpXl5WU5f/68FItFCYfDkkwmZXJyUo4ePdqRPvQaAmGAw7a+833ZuPFX+u2++/0O9AYAAABAr9va2pKNjY229t0OsWKSyM0g2OTkpIiIJJNJyWaz9bJIJCLxeFzGx8elUCjI+Pi4rK2tuRoMq1arkk6nZXl5WUREotGo5PN5ZoA5gEAY4LC+d7xFhvrfrt7o+5b0vY3bDwAAAIC5vr4+GRoaUm5z/fp12d7e7lCPuku1WpVEIiEiN4NejUGwRrlcTkZHR6VcLksikZB8Pu9Kf5aXlyWdTku1WhURkWw2K8lk0pW2goi/xAGHTf/dEZn+uyPqjXRrhAEAAACATdPT0zI9Pa3cprZGGPaqvQ4pIpJOp/fdrjYzbGVlRQqFgiwvLzseoEqn07K4uFhvL5/PSyQScbSNoGMOJAAAAAAAAbUdCnX1l6lyuSyFQqH+7xMnTii3P3nyZP17VdCsHYlEoh4EC4fDsra2RhDMBQTCAAAAAABAIGUymfr3sVhMu+5XPB6vf1+tVmVlZcWRfkxOTu6oy+01yIKMQFiXKhaLsrKyIouLizui1yqLi4syOTkpAwMDEgqFZHR0VBKJhO39qRMAAAAA0Etqi9GL3FyQ3o7GWVrnz593pA+Nf5tms1lmgrmINcK6hEnKVDdSwAa5Tq3X/lK/zZ99W1l85R/frSwfO/2iun7NFOEFsZTl8w5MMVY5Lc8b1zFnqY/hSnlBWT6m2V93DrXlz31SXX7v0+pyO3R90B2jxxY03Z8X83GoHQejp9QVaM6h7l66UC4ry3XjuCNM++D2MRjWrx1HTvTf5Wemcft+GGcaus+FOV0FpufA7XPkxBjR9FF/Du8x74OK6TWwc45Mr1MP3Ctabt8LpmPZ7/2zw+0+ejAO3zzg8eeYh4rF4o5/33HHHbb2i0ajUv7B73mmM8LK5bKkUqkddbMwvrsIhPmcacpUN1LABrlOAAAAAEBv2P2GkN1ZWLu3KxaLtmeT7VbLVlkzOzvbVj2wj1cjfWx5eVlGRkbqQbBsNitra2u2g2CtpIAVkXoKWOoEAAAAAPS6l156ace/7U6MOHTo0I5/r66uttV+uVzeMSstHA7vWIMM7iAQ5lPpdFpSqZRUq1WJRCJSKpVanh7ZagpYEamngKVOAAAAAOh926EDXf1lorxrGYt2Z4SVSqW22t89YaM26WVlZUUSiYSMjo5KKBSSgYEBGR8fl8XFxfrfuWgfgTAfciJlqhspYINcJwAAAACgt+wOhLWr3eDU7okYg4ODMj4+LolEQlZWVur9q1ar9XWuBwYGHMtUGVQEwnzGqZSpbqSADXKdAAAAAIDe0m4Aa/ffmJubmy3XUS6X97R/4cIFSaVSUqlUxLIssSyr6dthtUAZ2sNi+T7iZMrUdlPA1iLO58+f3/NucpDrBAAAAIBeZHmQ/fhLv35ZvvQvLjtS12c+/R2Znp52pK52tRNQ2z0bLRwOy9WrV/cE2WprXo+Pj+/ILjk1NWVr4gf2IhDmE06mTHUjBWyQ62zZWw/qt/nRW5TFY6OnjLpw8fXPK8vn363+sLtSUrev7Z8m7fNcBz5sx7xOgX7v02b72+m/7jx68EtNK+bFsH82ztGYaYpyzf7zmv3nQ6Outu9IinXDcXLauqgst0L3KMvnjVq3wfQc2Tk/bl9Hj/c/Lc8ry+dEfY1FRBY0XZiXY+oNdMfo9jPf7WvgQB1zbo91t8+xE597bo8T08/VTjzz3W7DD59bXtbfCW6PM5/4r6+/Ia/9adWRura2ttreNxwOO7LmVjvBqN2BsGQyqawnmUzK2tpafeJHtVqVM2fO7HgjCvbwaqRPOJky1ckUsNQJAAAAAL1rW0Id/3rnu98ph94bduSrr6+v7WMfHBx05By2U8/uBfbtTOLYvaZ1bW1xtIYZYT7gdMpUJ1PA1l4tDHKdAAAAAADnfOyXY/KxX445Utf/eMuDbe/b7muFu2eRtVNPO3VEIhGJRqM74gfFYpG/XVvEjDAfcDplqhspYINcJwAAAACg9xw9enTHv+2+Jrl7cfzRUc1yGE20s4/I3j47lfkySJgR5gP7pUzd/XpeLWVqLW1qLpdrOnPMjRSwQa4TAAAAAHrVts/XlXXT+Pj4jn+Xy2Vbs6t2T5yoTWZpxe4ZYHb/Bt0dQGsnY2XQMSPMY26kTHUjBWyQ6wQAAAAA9J52Z1c1/t0ZDodtv4nkRNu7/3Z1ap2zIGFGmMf8nDLVjVlRQahz6T/8iSx9ZV290ba9bC7TP/gCAAAAEExLP/iyZXh436Lr16870Z2eEo1Gd2SOfOmll2yt1726ulr/fndAq5W2G7W7PE87QbigIxDmMTdSprqRAjbIdbZqq/od2Xj9r4z7ICKyXyLgK6VTyv1GvvUto3afiagf5s9YF5Xlcw5Mrz6ta0PuUVfgcnrw0/K8slzbv04wTXFuyus0807U4XIK8gVN8/OmDdjpv+F1mgsdM+yDv6+RE+dwQXOM2uvs9jjW7D/nwDme11bh8vPK7XHSiXHq9jF4TPe5KuLMWDTpw5yrrTukG56ZKn6/153QRh+3Tp2SjYUFextvbLRc/3Yo2C+KnThxov739e7lifbTuN3uTI6tiMViUigURETq/9XZ/fcuC+W3Ltgj3gfcSJnqRgrYINfZqr63HZShH3mr+kvE1lf7iYABAAAA9IK+vj4ZGhqSoaEhebeov3R/X2Cvxjeu7ASjGreJRCJtrQ9W0/i3fbNlk5ppjCGYtB1kzAjzmBspU91IARvkOls1ffhWmT58q3qj//0/tl0/AAAAgOCYnp6W6embC6boZ5OrNwjusvj7i0ajO2ZmraysKF+PzOVy9e91s8GWl5elVCpJKpVq+gpjLBaTSCRSf1Ns99tezTQG4nTbojlmhHnMjZSpbqSADXKdAAAAANCrtkOhrv5yQjabrX9/5syZfberVqv11yhjsdiehHaNJicnJZVKyeLiooyOju77t2ljYG1xcVG5aH6hUKiXJ5NJXotsE4Ewj7mRMrVZClg7VClgg1wnAAAAAKB3RSKRekCqWCzuWX6oZmJiQkRu/h3fGMBqZvdrlhcuXGi6XTQa3RGIm5ycbBoXqFar9dc4d++D1hAI85gbKVPdSAEb5DoBAAAAAL0tHo9LPp+XcDgs6XRaEomEFItFqVarUigUZHx8vL4k0dWrV7XL6ewuV/2NmUwm622Xy2UZGRmRxcVFKRaL9cDcyMiIlMvlegI9tI9AmMfcSJlaSwFb89JLL9mqQ5UCNsh1AgAAAECvejMU6uovJ8ViMalUKpLJZKRcLsvExIQMDAxIIpGQwcFByeVysra2ZmtN6VwuJ5FIRMLhsMzMzGjfOqq1nc1m5ejRo3LmzBkZHx+XiYkJOX/+vCSTSSmVSswEcwCL5fuAGylT3UgBG+Q6W3JA/zDe/Mo/UpYP/vkNZfnY166pGzj2m+ry59T7z4WOqffXWBB1Wuh5G1mj5xz+UNtDU/9p66Ky3PQcXSmdUpaPReaN6hcR8xTkhnTHqDPmTDfUdCnMDc+h8b1geAl1C+qKiDgw0tR059Aw1b120WDtOVZXYGcc68aqbuFi7XU2PEeuPwvs1G96r7l8r2qZXgNozck9+o1cHidzptfZ6/3t0JwDJ36HM2nfD+fA9T4Ytq+/BvtvMDw8LLKxoasAIjIzMyMzMzNGdcRisbYmuiSTSeXaYzDHjDAfcCNlqhspYINcJwAAAAD0Iq8Xu/fDYvkIFgJhPlBLmVqjylJRo0uZWksBW7OysqKsz04K2CDXCQAAAAAAuh+BMJ9wI2WqGylgg1wnAAAAAADobgTCfMKNlKlupIANcp0AAAAA0Gu25UBXfwGtYtT4iBspU51OARv0OgEAAAAAQPcia6TP1FKmLi8vSy6XkzNnzkg6nZZwOCyRSESSyaSkUqkda4rZrXNxcVHOnz8vExMTUq1WJRwOy9GjRyWXy0k8Hm+rn0GsU2fpq9dl6avXldts/+4fycP/zyPy8P/U/LVWAAAAALBraWlJlpaWlNtcv67+GwUIipBlkQ8acMrw8LA8cMtfycJ//gvttvMicsr1HrnjSumUsnzsa9fUFdz7tHknDFOku+20dVFZbitNvMaC5hDnRb2Bto+hY+oGvL4Gdj6+vM4k5PU5ssO0j6a/Rvi9fjvXyO3r7Pavaob9WxB9/3TPIy2fjwPdOZj3w2/bnbgXTOq3oxeOQcWJ56HXx+j2M11D97uRSAfuR4/OwalTp2RhYcHWtkNDQ7K+vl7/929/97dc6VOn/M9v+yWvu4Auw4wwwGF9bz0gQ+/Q3Frf+b70daY7AAAAAHpcX1+fDA0NKbe5fv26bG9vd6hHgH8RCAMcNv3+QzL9/kPqjb70/+tMZwAAAAD0vOnpaZmenlZuMzw8LBsbGx3qEeBfBMIAAAAAAAiobT8s1QB0EFkjAQAAAAAAEAgEwgAAAAAAABAIvBoJAAAAAEBAbZtm9gW6DIEwwGl/7V36bTJ3qcvTXzbqwpXSKWX52Ki6XLt/ZF7dgVH1h+lp66J6fxGZk3vUG3i8lsGCqFNfa86QnJbnleVzoWPaPsxr08Sri62Q+hzrrtOc22nsTff3Qx/cHqdOnCOvr6OOR2nonaS9l3z+vNOZd+APKNNnquv1a8bZvPYaOTBOTe8Fj+/lBU318364ld1+nnTic0+nx5/ptsaR28fo9e8eXfC5CHiNQBgAAAAAAAG1HWLFJAQLIx4AAAAAAACBQCAMAAAAAAAAgcCrkQAAAAAABBSL5SNomBEGAAAAAACAQCAQBgAAAAAAgEDg1UgAAAAAAAJqO+TPVyPzv/a8FP7p72u325r+pkxPT3egR+gVBMIAp40c0m+T/rK6/MQH1eW/eFRZPDZ6St8Hg/2vlDT7a+qfCx1rqT+usCx1ueYXgnntWgrq+h05B7pfWjTHOK/b3+vfiRz4pWxBU8V8B/qgctq6qCyfk3vMGtCNcwcsaMa69hwb3ovG16gDv/xrr6NpH9y+zobPGju048S0frdvBdNx3AGn5Xll+ZzLxzDvxDg17aPX++t04F5zncfPdN1nkohDY9FL3d7/Fnxn6w2pbmxqt9va2upAb9BLCIQBAAAAAABfeUffOyU8NKjdrq+vrwO9QS8hEAYAAAAAQEC96flrAM3d+SvH5M5f0b9F8dDB+zrQG/QSFssHAAAAAABAIBAIAwAAAAAAQCDwaiQAAAAAAAHl16yRgFuYEQYAAAAAAIBAYEYY4EcX/sis3NRzn1QWj42eMtv/p/5XbReujI6qN/B76mg//J810z4YpkA/Lc8ry+da7U8b4qUF9QaaYWZMcw6Nz4HmGthKI69bIFdzDNr9NX3QjhPDcWj8rLj4KbP9neD1OejA83bB5UfmvO4QdM8z66JR+9pxbKMPpuZCmgWnDa+z7nkz7/Y4tcPwOs+5/dnuh99tTJ83hvXrf3e4R12/E5fIdKyaniPD9q+U9//d58v/dko+2OT3eMuni+UDbmFGGAAAAAAAAAKBQBgAAAAAAAACgVcjAQAAAAAIqO0Q82MQLIx4AAAAAAAABAKBMAAAAAAAAAQCr0YCAAAAABBQ22SNRMCELMsPeXqB3jA8PCzrH/oR/Ya3vE1d/qO3qMt//Sv2O+WG5z6pLr/3aeMm9CnMNWng3WaYOvtK6ZSyfCwyr++D22ncTWnO0YKm+/O6X8rsfHwZnqMFUbcx3wufoIZp2s1T3Xucpt7t+jvVhoLx89SJ/pvW4ff9dToxjjTcfuZqnwVOfG57fR09pjvHIg48c3XcPoed6J/Lz1zt7w5O/H7TpuHhYdnY2JChoSFZX1+v//yfWs+41mYn/OPQca+7gC7Dq5EAAAAAAAAIBF6NBAAAAAAgoHg1EkHDjDAAAAAAAAAEAjPCAIctlSuydK2i3igkMv2B98j0T7ynM50CAAAA0LOWlpZkaWlJuc3169c71BvA3wiEAQ7b+v6bsvGd7+u3+96bHegNAAAAgF63tbUlGxsbbe3Lq5EIGgJhgMP63nJQht6hubVCIn1vPdiZDgEAAADoaX19fTI0NKTc5vr167K9vd2hHgH+FbKsLs8jDPjI8PCwrC/99/oNT/6OuvzBO9Tl94ypy+99Wl3+S4fV5b/1srv7P/dJdbmIyH/RvF768O/p6zBw2rqoLLdC6vTk2tTY3cD048Hl9OROpEi/UjqlLB8bVZf7Po28HV7/GqA7Rl3//DDOdEzHYWReWb6gOQXzmkM4Lc8ry+dE/bzriXFqeAy6z4y50DF9JW6P9W6/1zvRBw3tddbdK7r6Te9FEf8/E/3wzO/y32+0z3zN76AhERkaGpL19fX6zzLyJZud86e0/LzXXUCXYbF8AAAAAAAABAKBMAAAAAAAAAQCa4QBAAAAABBQLJaPoGFGGAAAAAAAAAKBQBgAAAAAAAACgVcjAQAAAAAIqG3mxyBgCIQBDqv++KB2m/AvHVZv8MRL6vK/9V51+dxH1OWVN5TFV0qnlOVjo+pyR9LIGxorlZTlV0ZHleXaPupSb1/8pLr82G+qy22k5l4QdR906bO1PE51rz0+O+nLNX0cczsFutv1a+juZRGRMd0GpsfgdZp6w/Z1aepFROY1TWjH8qimkeeuaXqgeZ5ozMk96g0010B3fCI2zpHmFNi631V048BwnMwZ7W2Tro8eP8+0n/2a/l8pL2i7oPv9w+3PJePfXzT9096LDrTh+me72+OwE/eB6Tky7YNm/3nd/or+DQ8Pi2xstN4noMcQ+gUAAAAAAEAgMCMMAAAAAICAssgaiYBhRhgAAAAAAAACgUAYAAAAAAAAAoFXIwEAAAAACKhtXo1EwBAIAwAAAAAAvvJ/Ln1R/sPSl7Tb3TL9GZmenna/Q+gZBMIAh4W/9LJ+o595n7p88w11+e//sbr85/4fyuKLjySU5cfe/bCyfKxUUpZfCY0qyxdEn5o7ZD2vLNelML8yqu6DqdOi6d+9T2tq0JV3AZdTpM/rhomd5j1Oga4b6/Om/wdW0/8xG1Vox3IL3WlKcw5PWxfV7WvudWOmaepFREyvs24caujvFXfHmZ1zdKW8oKnjlFEf3H4eaWnat/O5N+/yddIybF97r+qeVxEbI8myd0e22wctn48zEdEfo+k58Dk795rukRzSfi55+7uFG/w6I+w7W2/I1sZr2u22trY60Bv0EgJhAAAAAADAV97e9y5599Ah7XZ9fX0d6A16CYEwAAAAAADgKz87/XH52emPa7eblv+hA71BLyEQBgAAAABAQPn11UjALQe87gAAAAAAAADQCQTCAAAAAAAAEAi8GgkAAAAAQEC9yauRCBhmhAEAAAAAACAQQpZlWV53AugVw8PDsv6hH9Fv+P/9urp85r9VFp/OpJXlo3/158ryX/iNL6nbf/j31OWm7Dx2Qob/Z0rXxsVPKYtPH4sbNT8XOma0f1fQnWPTa+gHpsfo9f5O8LgPC6Juf970/2Jrjm/BRvXaPnj9q5bb48SJ49P0UTsOdF1w+zPFiXNseh49fuZeKZ1Slo+Nqss9v09EXH8mn7YuKsvn5B6j+kXE/XFkWL/umer6vSwduA4ej+XT8ryyfD50TIaGhmR9fb3+s/+3/IHb3XLV/0fu9roL6DK8GgkAAAAAQEBZvBqJgOHVSAAAAAAAAAQCgTAAAAAAAAAEAq9GAgAAAAAQUNu8GomAYUYYAAAAAAAAAoFAGAAAAAAAAAIhZFl+yFUM9Ibh4WFZP/N39BsOvEtdfumP1eVb31GX/9bLyuKLr39eWX7s3Q8ry7Vppy+uKMvl3qfV5XCE9jqFjqkrMEwTr2Vav52PLz+ksu91pr9GuHwOF0Tdv3lN93Vp6O0wHkdu34tdwPhedZsTzyu3+6ChvVdMX53qwDm4Ul5Qlo+NnjJrwOs/m+xcY7c/W/0+zuzQHKPuuW/8+5Mpw2sQEpGhoSFZX1+v/+wRK2/YKW89Fpr0ugvoMswIAwAAAAAAQCCwWD7gsKXf/8+y9AdfV290ICTTPz8m0z8/1plOAQAAAOhZSz/4ageL5SNoCIQBDtt643uyUXlDv91//W4HegMAAACg122JyIbXnQC6BIEwwGF973yrDA28U73RgZD0vettnekQAAAAgJ7WJyJDNrYjWAYQCAMcN/1zPyHTP/cT6o10i+UDAAAAgE3TP/jSafYSpMWrkQgYFssHAAAAAABAIDAjDHDYd28Na7d525+8pt7g17+iLv/lD9vvUBMj3/qW0f7atNEam1/5R9ptBj/8z4zaMPb5j6nLH/49o+pPWxeV5XNyj1H9IiJzhinStenDdR3wQ/rwuY+oiy+uqPe/12ysa3mcpl7ERqr65z5p1AdjhuNoXncONcXacW6H5hh010l7DG7fa04wHMumnztjpZKy/Eokoiy/+O0vKMu1vbNz/KbPA8P9dc+CK6VTyvKxUXW5zpXygnYbXRuepyBy+Ro5cq973Afd80z7+5HuWWCnf5o+zOnq6IZnLgAlAmEAAAAAAATUNi+KIWAY8QAAAAAAAAgEAmEAAAAAAAAIBF6NBAAAAAAgoLatLs8a2eXdR+cxIwwAAAAAAACBQCAMAAAAAAAAgRCyLPK/Ak4ZHh6W9Yd+Ur/h739dXf7dN9XlP/cBdXnlDX0fVH79K+ryuY+oy0+/qC53ILW1jjb9ttxj1v5zn1SX3/u0ulzn8x/TbrLw8JeMmoiX1KnqdWnqvaa7xiI20qx7TXMvXClrrtHXrqnrNx2HdujuZ8N72ThNvWn7HaB9XmnG8YKoz9G86W96TpxDw+uovRe8fl458eu01/eKjtv9c2CcXSmdUpYbjxO/n2MR95+ZmvoXNLsbP490OnEOvb4XDK7x8PCwbGxsyNDQkKyvr9d//v/a/jdt1+kH//uBv+t1F9BlmBEGAAAAAACAQGCxfAAAAAAAAsrq9sXygRYxIwwAAAAAAACBQCAMAAAAAAAAgcCrkQAAAAAABNS28GokgoVAGAAAAAAA8JX/69fOy//1Ty9ot/vA9KMyPT3dgR6hVxAIA5z2jrfqt/n3f6Iuf+6T6vKVl9Xlv6Up//zH1OU6p19UF1sXleVzTqS21hzDXOiYeRsuGiuVlOVXIhFtHaGHnleWz33hnLqC0d9Tl+vG4b1Pq8td5sQ11o9VwzYM09iPRebVG4ya30u6c2CF7lGWz5umedft78TzwsCC6K/hvNv/J11zDrXXQFOsfR6ZXkO72yiMae+lU8rSKyV1+dioulx3DU6L5nks6vvIDt1YdPte1LUfstTnQHTnyM7zUtNH7TPT0pSbMr0GneiDjuE40Z9hw3PQiXPs8jlc0FQ/78Qzdx/rov1I8JXvbv2l/OXGn2u329ra6kBv0EsIhAEAAAAAEFBv+jRr5Fve/SPyrqG/pt2ur6+vA71BLyEQBgAAAAAAfOVv/sp98jd/5T7tdtNv+W860Bv0ErJGAgAAAAAAIBCYEQYAAAAAQECRNRJBw4wwAAAAAAAABAKBMAAAAAAAAAQCr0YCAAAAABBQlk+zRgJuIRAGOO0739NvM/cRdfm9T6vLT3xQWfw73/lNZfkvvONT6vo//zF1+cO/pyye+1f/Ur1/N7AsdXnI7BeGK6OjRvuLiMwZXqdA0FzHObfb14yTK6VTyvKxyLxR86eti9pt5kLHjNrQ0t0rLt9rC6Kuf16zLoqu3BbNMR4vL6j3H3X3Gl2JRNQbGF4DP1gZVd9LY5bZvTYn9xjtb8e85lbRDdXT8rx6A83zYl47DnQddN+Cpova+9nt55Guf7r2O8Hr+70D7evHibu047D7H7mA7xEIAwAAAAAgoFgsH0HDGmEAAAAAAAAIBAJhAAAAAAAACARejQQAAAAAIKC2WSwfAcOMMAAAAAAAAAQCgTAAAAAAAAAEAq9GAg5bulySpZc21BtZItNHbpXpI7c2L7/3J5S7XzkTV5b/wjs+pW7/8x9Tl5v6exeUxZtf+UfaKgY//M/UG/z4QCs9at0Xft7d+h1w5a4jyvJnrCll+dzFFXUD9z7dYo92WhB1Gvh5TZb4K+UFZfnY6Cl9JzxOA3/auqgsnwsd09RwSl1sqU/inBPHr2nDmK6PuvY1+2vT1BvWL2LjOmv2141lXf1W6B5l+fxz6s8E7b2mLO0Qw3Ey73L9xvs7oRPPA5VOnAPddTY9Rt3+z31SWXzlp25TVx95XtO+5jPBzjk0PQcOPBON9ne7fbHz+8cpZflYRPtEUTM8xrFSqenPX3vqKXntN35DfvSb32y5S2/yaiQChkAY4LCtv3pTNr79Xf123/1+B3oDAAAAoNe9+e1vy/e/+U3R/O94AEIgDHBc39sPytAtb1NvZIn0vY3bDwAAAIC5g7fcIm/5sR/TzggjUAYQCAMcN33HsEzfMaze6I3vdaYzAAAAAHreofvvl0P33y9XRkeV2zV7CdLSLSMA9BgWywcAAAAAAEAgEAgDAAAAAABAIPBqJAAAAAAAAbVN1kgEDIEwwGlvPajfZvxvaDZonhbZtl/+sLr8xwfU5f9qVV3++Y+pyx/+PWXx4If/mXp/Oyr/VVl88fXPK8uPvfthdf2aY3DbfqmxG12Qf6Usn9OlYdekgdc5bV1UlmuTi2vSg6+IOr34mJzStdCRNOwqc3KPq/WflufV7euOX0Tk4qfU5S6foyulU8ryMV37do5RxeXjc6IN7b2ssXCv+hzNm64NY+caGJ4D3fNmzuX2dftr+2enfY/Hsv4cq59n2ueRrgOduBd1DK+B7nk1ZnqNbVjQfHbO67pg+sx1eX/dZ8YzmnEooh/LYxHNbzCmY9VwHFyJRNquf3h4WGSD5fLtWFxclHw+L6urq1KtViUSiUg0GpVUKiWxWMyTPo2Ojkq5XJZcLifxeNyTPvQKXo0EAAAAACCg3rRCXf3lpEKhIAMDA5JOp0VEJJfLSalUkkwmI8ViUSYnJ2VyclKq1aqj7eqk02kpl8sdbbOXMSMMAAAAAAAEWqFQkMnJSRERSSaTks1m62WRSETi8biMj49LoVCQ8fFxWVtbk3A43JF+LS4uut5OkDAjDAAAAAAABFa1WpVEIiEiN4NejUGwRrlcTkREyuVyfftO9QvOIRAGAAAAAEBAbVvd/eWERCJRf92x9lpkM7WZYSI3Z2otLy8704F9TE1NyeDgYEdmngUJgTAAAAAAABBI5XJZCoVC/d8nTpxQbn/y5Mn696qgmanl5WVZWVmpz0KDcwiEAQAAAACAQMpkMvXvY7GYdvZVY8bGarUqKysrjvepXC5LKpWSmZkZiUajjtcfdCyW34VM0qa6kQY2yHU29a3X9du89m11+eEhZfHY6Cll+W9877eV5X//v/+Muv3oe9Xl//Eb6nInnPigsvjK3/kpZfmxL/5rBzvTxOc/piy+ctcRZbnuGp4Y1aTGFpEVUaf3HhN1G1d+6jbN/mrnyz+pLP8Hf/6PleWDmvrnxYEsQBc/Zbb7659Xlh9798PqClxOIz8XOqbe3465j5jXoaI5xjHTNPQ6hvUviP6di5A8b9TGaeuisvx4edWo/vlRf59jO+a+cE69wcNm94LuOuueR47ci5rzqBsnltvHoHteGbpSOqXdRvfZqT1HoXuU5fOmY9nwme6EeXcvkyxoDkH9m4mebhzoxsCYnXFq+NmsG2fae8mwfd01UJmSdTnV5FlgOZx5sds0vt5oN+gUiUTqWRzPnz/f8t/lOolEQqLR6I4gHZzDjLAu027aVDfSwAa5TgAAAABAdysWizv+fccdd9jarzFg5vSMsHQ6LcVikVciXcSMsC7SbtpUN9LABrlOAAAAAED3a1wbTOTm34h27N6uWCw68gpjsViUxcVFyWaztvuC1jEjrEu0mzbVjTSwQa4TAAAAAHrJthXq6i8TL7300o5/250UcejQoR3/Xl01W8agZmJiQuLxuCSTSUfqQ3MEwrpEu2lT3UgDG+Q6AQAAAAC9YfeyQ+3OCCuVSsZ9qU3KOHdOsy4mjBEI6wLtpk11Iw1skOsEAAAAAPSOdtbfbsZ0vemVlZX63/ws1eM+1gjzOZO0qU6kgd2d/SLIdQIAAABAr9l2IlN3i0q//ttS/hfqTPd2LX06LdPT023t224Aa/ffl5ubm23VU+tDIpGQZDIpsVis7XpgH4EwnzNJm+pGGtgg12nbj7y9vf0a/OXoX1c38fM/qSz/mT95Vd3A4DvV5T/5o8ri3/n7P68s/4Wf+ZK6/t//Y3W5iFw5oz7/YxF1gu4rsqDef+4jyvKF0y8oyy/cpf6/R1dGR5XlOro09yIi8vmPqcsfVhfrUpBffP3zyvIr7zY7xo6492mj3Y+9W30S3U6hPqaZZn9B/pV6f801FhGRBfVYXzit3l07VnVp4l22IOo09Lr+z6t3v0lznY3HiaXuxGl5Xlk+pq5dT9O+rWusq+Pip9TlhveyTshSn0PdMDe+xjYcL6vXnxkTdRum94LuOs8ZjpMx3f4iIpb6s39OW4HmGA2PQXcvWqbXwAm6+1VzDuYN99eOA/XeztD0cUFziPPWPUbN658Xus8ls/77xfdf/7Z850+/5UhdW1tbjtRjwmRG2MTEhHJNaziPQJiP1dKmtvO+sUka2FowaHca2CDXCQAAAAC96E3DBefbceDdt8g73qv+n/929fX1tb1vOBw2fq2xVk87FhcXpVgsytramnEfYB+BMJ8yTZvqRhrYINcJAAAAAHBG5B/8okT+wS86Utf0uw+3ve/g4KAjgbDBwcGW9ykWi5JOpyWTyfB3Z4exWL5PmaZNdSMNbJDrBAAAAAD0lnZncu0OnrVTT20ZpJmZmbb6gPYxI8yHnEib6kYa2CDXCQAAAAC9yPLg1Ui/OHr06I6ldarVqq2g1u7F8UdbXB94cXFRyuWyxGKx+t//Ko2BtzNnzsj58+fr/z558iSJ3lpEIMxnamlT8/m8UdpUN9LABrlOAAAAAEBvGR8f3/Hvcrls6zXF3ZMmWs32+Nprr4nI3mV97CgWizuCd5FIhEBYiwiE+YiTaVPdSAMb5DpbsVT8U1kq/ql6o7eo30q23nJQRER++cSH5JdPfKitfgAAAADofks/+BIRkeFh5bbe50/sLkePHt3xb7uBsMa/OcPhcFvresM7BMJ8xI9pU92YFdXrdW4Nvks2vv1dR/rwnX9Xkh/Z+su9bfzqhHK/sdFT6oqf+6S6XJOm/he+qfmIPf2isvgv//VD6v3FxjGIunzslz+sLP+3c+opyPOnNamrdbOfDc+xHacfmlKWzz38e0b1H3v3w+oNPv8xdflDX1KX61Kwa1wpndJuMxaZd7UPc6FjRvvrXPnaP1FvoBtHujT2NszrqnD5bQrddR7TXMO4bpy09iZDU6eti8py43GiOcbjNu4FJd04MbxPRESulBeU5WPHflNTw9PqYsNj0F0j169xB9pw/V7WjRPdNbr4KX0bpp+dhuNkQdT7h+R5Zfm85iSbPu9ERH+Mbt/vmv3HNEuPXNEFExx4HunqmDc9R5r959R7N91/69Qp2Vj4wXN0Y0NXQ8u2t4P7amQ0Gt2ROfKll16yNbuqcT3p3cE0OzKZjGQyGdvbj46O1t98yuVyzAAzRCDMJ5xOm+pGGtgg19mKvne+VYYG3qne6I3vqcsP3Pww6nvrwbb6AAAAAKA39PX1ydDQkK1tv/+m+n9Y/9k3X3eiSz3lxIkTsry8LCKy45VDlcbt0um0K/2CewiE+YAbaVPdSAMb5DpbMf1zPyHTP/cT6o1+92VN45pAGgAAAIBAmJ6elunpaVvb6mbgflD71kXwpFKpeiDMzppdjdtEIhHjZY3QeeqFitARbqRNdSMNbJDrBAAAAIBe9KYV6uovU9FodEcwa2VlRbl9Lperf6+bDba8vCzpdNqxhG5wBjPCPOZW2lQ30sAGuU4AAAAAQG/KZrP1v//OnDmz7xpc1Wq1PnssFotJMpnct87Jycn67LHFxUWpVCpMtvAJAmEecyttqhtpYINcJwAAAACgN0UiEcnlcpJIJKRYLMri4mLTN7YmJm4mLQuHwztmhjWz+2/8CxcuKANn6BxejexRzdLA2qFKAxvkOgEAAACgF21boa7+cko8Hpd8Pi/hcFjS6XQ9KFatVqVQKMj4+LgUi0WJRqNy9epV7eyu3eX8fekfzAjzmFtpU91IAxvkOlux9Pv/WZb+4Ovqjd74nkzfNiDTkYG22wEAAAAAEZGlpSVZWlrSZo2EWiwWk0qlIouLi3L+/HmZmJioL7Vz9OhR5d/gu+VyOUmlUrK5uSnJZNLojaPdby/BDIGwHuZGGtgg12nXVvk12ai8od/uyHtF/qcjzQvvfVq571/+ivoh2vfhYWX5lZ+6TVk+piwVkTvep9tC6Uc+/++M9hcRkbmPqMs11+Bfv0ed2fO/a7U/Tnvuk9pNrNA97vdD4cpd+4zfGk3WIimdUhaPOZHVKGT4fwktS11+8VPqcs29fNq62Fp/dpmzflO9ga5/Ito+as+BrlxzDa64PA6Mx5GNMTRn1oLxOdCVL4j6Gs0b3ie6+kVEQpHnleVjpveqnbFuYC50TFmuu5d1+9vZxs55Vpk32tsBumuse5aIiMjTylL9dTAbZ/O6Ltq4zipjEd1VOmVUv4iYXwfN/rprcCXkgzV4DY/R7XM0J5rf7/apf0tENtR77stycFZVr5iZmTFOZheLxQhg+RSvRvawVCpV/96pNLBBrtOuvre/RYZueZv669C7pO9db2u7DQAAAACo6RORIREZGhra9+vAAf78B0SYEdbTamlga0GelZUV5TROO2lgg1ynXdPR98p09L3qjSY+YNQGAAAAANRM/+BL1tf33WZ4eFg2NtqdNwb0DkLCPS6bzda/P3PmzL7btZIGNsh1AgAAAEAv8Xqxe78slo/gIBDW42ppYEWknga2mVbSwAa5TgAAAAAA0L0IhAWA02lgg14nAAAAAADoTqwR1mXazTrhZBpY6gQAAACA3rBtlpQW6Dohy7KVqxiADcPDw7L+aFS/4R9/S12+plnE8iv7L4IpIiL3/oS6/E9uqMv/8Jvq8uc+qS4/+4K6/NE71eUicv29h5Tlt/7HV9UVPPx76vITH1SXX/gjZbE29fX855TlV37p7yrLx0ZPKctFRK6U1Ns8EzmqLD9eXlX3QZfGXZdeXDdO7n1aXe4DunM89uWvqivQjMMFUX8Ez4v7615oj1E3Fl2+ztp7LXTMbP8209Q7SvermKYPumO0Qupj1I0z02vQFUx/HXZinBiOA9f3N+VA+1fKC8py7fNK04Zx/Tqm16gbuHyMHXkeuX2dPL7XQ3Izs+R6w6L6/92ff01dp8/927/2U153AV2GVyMBAAAAAAAQCLwaCQAAAABAQL253QOzEYEWMCMMAAAAAAAAgUAgDAAAAAAAAIHAq5EAAAAAAASUZfFqJIKFGWEAAAAAAAAIBGaEAU67tqnf5mfepy4f+zF1+VfW1eXP/WdlsTb19D/839T1/5eKuvz9g+rye59Wl4vIZumUsvzWh39PXcFznzTug8rx8qp6g9MvKovH7tCMARtOyC8qyzPf/rK6D9o08LpyDcNzfEUzBozT2IvIxdc/rywv3vI31H142KwP8+Ly/4Gd+4h2E9151F0Hbf1Ge4vMhY6pN9CkkZ8zTHP/O9/5Te02v/COTxm1Yep8+SeV5VfUp0hEdBs830p32qL7XNI9c7XPA804Ec040T6P1LXLgvYci8xr+qD97NaNdcNz4AduX+cx3f6mn4ua9nXjZF4/jMyvo+k4cbn9jkxcMr2XTOs3pejf8PCwyMbGnp9vMyMMAcOMMAAAAAAAAAQCgTAAAAAAAAAEAq9GAgAAAAAQUG9u82okgoUZYQAAAAAAAAgEAmEAAAAAAAAIBF6NBAAAAAAgoPyaNfLPln9DvnVOn7156ZEZmZ6e7kCP0CtClmWa/xVAzfDwsKw/GtVveOWb6vK3HlSXF/9UXf4//qS6/Gt/pi7/rZfV5b90WF3+xvfV5Rf+SF1ux4kPutvG5z+mLn/495TFV0qnlOXaFPCdcNf71eU/dou6XDdOdOY+oixeOP2CstyRNPK//GFl8el//r8oy4+XV5Xlz0SOqtvXmAsdM9rfDtOx6vpY1/2aYprm3ok09p1ow8Bp66KyfE7uUVfgRP+f+6S6/N6nzerXXIMFzSHMiz//CPSTBVGfY1+cQ6/Hgab9sXJZWX5ldNSsfRt011HH1meviukz27R+O3TPq2PqwMxpeV5ZrnvmavfX/G6ge+bPh47J0NCQrK+v1382vv6Kch+v/OnSP5dv/tq/0G43Pz8vp06dcr9D6BnMCAMAAAAAAL5y8JZb5K0/9qPa7fr6+jrQG/QSAmEAAAAAAASUte11D5r76w/8ffnrD/x97XbTf+P2DvQGvYTF8gEAAAAAABAIBMIAAAAAAAAQCLwaCQAAAABAQPk1ayTgFmaEAQAAAAAAIBCYEQY47Zuv67eJ/YS6/N+8qi7/h/+tsnjzfe9Rlg9e3VTXr3Fl7ueV5WNf/qq6ggt/pG9El7pa50dvUZf/+lfU5Q//nlHz2nPghH95Ql3+9y6oyz+gHifac2Tqjvcpi7Vp7E9+UNvEWKmkLL/ytX+irUNZ/+gpZfnV1z+vLB/51reM2tfeJ/c+ra1Cdwxu768VMvy/1Jr9dWnmdWnqneB2H0z3v1I6pSy3NQZ0Y/HzH1MWLzz8JWX5vOY6z6tbN2dZyuIr5QVtFWNfu6YsX7j3N5Xlumem6XWcVx+i6B7ZWppzKCIyVi4ry6/oxoGuDc0xaM+hene5Mjqq3kDbP/1J1vVxftT0mWq2u85peV5ZPif3KMsXRD+O9GNZd5BPK0vnNHvr+jhvqY9Rxwq1vv/2NjPCECzMCAMAAAAAAEAgEAgDAAAAAABAIPBqJAAAAAAAAfUmi+UjYJgRBgAAAAAAgEBgRhjgsKX/+F9k6T/+F/VG///27j2+zfK+//9HzvlgIzuEHGxCkDnGlAY5ATpaDo1d2uI0rNjJNtpC6bB/ZKXt3M7+0n3nJN46ZnfNSulCbdaWw/h1id0VmtBBLY4FGpZYpIDDUUoITkJCYgs7IWfr+weVKsvy55Isydat+/V8PMwD533f131Z96Vb0qXrvq4J46V26QVSu3TB6FQKAAAAQNZa+8efPika66oAGY+OMCDF+o6dlN39xw1bHZe+D0+MSn0AAAAAZLc+EdktEv5vIoKsGgmbcQSDcaxVDCAuRUVFUnu5U9Y+4dM3HD9OvvnFi+Rvb7g4drzpFX1/X4+eV1yo508b6jdrup7fvVnPR8P/t1jPrzMsYr70Pj1ft0zP3+vT89l5ye3f+JSex2PjzXpueAxMS7DvOOMMNa/IXZlU+SXbd6q58RzGwViHx1/SC3htn55/5gI9f7dXjRtvu1XNGxwV+v7BTfrxxbzM+ipJ8s1xwzV6nmxbN72NcSRZ/3jeJiV5jDWiH8N4DkzXq5WP6Lnhb2yUR9Xc1A7jkubzuKl/nZqbrlem+q0xVM8R1B9DEZEG0Z+LSbflJJmul790LVLzhk3t+gFScE1PlulvbC9elVT5yV5PTfUTieM8ZHg7S9ooXLNNr61pf10d5m9cu3atrF27VmS33hG2W0QKCwulu7s7/G8L3t6RXJ3G2PZzzh7rKsBiGBEGpFjtknOkdsk56jYni/UOBAAAAACIV21trdTW1ho7+ize1QmkBB1hAAAAAADY1AD3iMFmWDUSAAAAAAAAtkBHGAAAAAAAAGyBWyMBAAAAALCpU6waCZthRBgAAAAAAABsgRFhAAAAAADY1AAjwmAzjmAwyBoRQIoUFRVJd90l5g1/tlWNf+y9S82/Pm6FXv7S8/X8oll6fui4ni+eZ9j/mBo/dMv1+v4icuPkr+obLL/IWIamp3aJmhdcrp+DrLDxZjXuWjBfzUuKVyd1+C6fvr+x/HXLzAd5bZ+e371ZjZOuY7Juv1zPDfWPS8M1er74LDVOdztpDG5Kav+Ge+5V865r9Wt22s/xKFgj+lu9Vcm+E3SYP0CN+XMpSUnXP56324bH0XgeJckPsqY6xnGek1Hi8xm36XK59A2SfQxNp8lQvul61eCoSGr/oOM6NReJox0ke54N7x1KFvyDmncVF+vlj4YxbutGaa6fQ0QKCwulu7s7/G/Fr72TVJljzXeh/l4FiMatkQAAAAAAALAFbo0EAAAAAMCmgkFujYS9MCIMAAAAAAAAtkBHGAAAAAAAAGyBWyMBAAAAALCpgYGxrgEwuhgRBgAAAAAAAFtwBIPxrOcMIB5FRUXS/bcXmzc8f5ae/9/H9LzmMjXet1hfmnrWa91qLpu26/ms6Wrcc6Nev70z8/XyRaRk+041b6yoVPOGBx/QD5A/VY0P505R8x9cpS9h3vCNf1Lzrm99Vs1L7n9GzUVEZHaenr+2T8/v3qznhiXSZYthqe3FhqWsTfs3PqXnNy3UcxEpafilmndt/0e9gKX36fm6ZXq+8hE9t4DG4CY1b3BUqPmm/nVqXpG7MuE6ReryrVbzkmI9T7Z8EZGSx1/SN7jtYT13JDlJcbrboelaYHqeiMga0d9urjK8G22UR9U86NCvyaby1xhOwQafX827ivXX3dFgeq55p89T8wbRH8Okz4EYHmRTOxMxtzXTxxrTcy3Z/a0gyeezqZ115t6m5qZ2YHrNMWnY1G7cpmvBfDX/pWuRmt/g36rmJa5Vxjqo0txOHSJSWFgo3d1/+jww/9VdcVYuM+28SL++AdG4NRIAAAAAAJsaGMiCTl4gAdwaCQAAAAAAAFugIwwAAAAAAAC2wK2RAAAAAADY1ClujYTNMCIMAAAAAAAAtsCIMAAAAAAAbCpTJ8s//J+tcvihVuN2a+v/Tmpra0ehRsgWdIQBKdbzyfOM2xS88q6+wbev1POfb1HjWdMn6fu/9p6eVyzQ89++ocYF33tMz6s+rpcvIvLEm2rc8NvX9f3fPKDns6er8bSz8tX81typevl3b1bjEkMuDdfouYjI0z49/7K+/Lepjkaz8/T8QX15cdnwqp4nucS7iMiK+17TN2jcZixDZToHWaDhG/+U1P4VuSvVfFP/On3/p/9XzUuKV6t5l0/PTfub8nh0XbtGzZf79HbU5XLpB3DoH2BMj/HZ+/ereSoeg1Vi+JC1Sr/mNTQ+ldTx1ziC+uFN9SvW9zdes5OsfzxMz7UKw/6m54q49NcU42MYNDyGhnYsItIY3KTmN/j151qJ6QBx1CEpKXgMTJK95plUTL9Nzc/2mc6Bfr1bIfrrdoNcp+ay1NTSze2gxHSetrfreXGS53EU2olVDBzul4H9hs8tItLX1zcKtUE2oSMMAAAAAABklJxpuZJzxmzjdnl5hi9ngSh0hAEAAAAAYFPBgbGuQWxT/6papv5VtXG72kWFo1AbZBMmywcAAAAAAIAt0BEGAAAAAAAAW+DWSAAAAAAAbOpU0D4T8AMijAgDAAAAAACATTiCQdP6rADiVVRUJN3fuMi84a6Anl95jp5PnaDn61/S8//8g56bLD1fjZ/9mT6p5ZVfusd8jE/N1/O3Duj5gll6njtZz198R8/v36bnt1+u5/lT1Ljrpqv0/UWk5IeP6RsUnabn9Y/r+U0L9dz0GKxbpufvGZa6bnxKz1PBcJ66vvVZNTctQ7+pf52aV+SuVPPG4CY1b3CYl4k3GY1jJKPLtzqp/Uu279TLXzBf399wjkXS/xiaHgNjHU1v9Rz6SICkjx+PJOtotPFmPV96X3LljwbDY7TG8BCtkgwf8ZGKjyTJthODtD8XTO204ufmMgyPgel1qTP3NjVPdztaI3o7WGVoJo3yqPEYxmtymq9H6W5HptekVY4KKSwslO7u7vC/zdyyJ6ljjrX3F88d6yrAYrg1EgAAAAAAmxoYyPCOciDFuDUSAAAAAAAAtsCIMCDF1j67U9b+bqe+0akBqV04R2oXzhmVOgEAAADIXmv/+NNfdNNYVwXIeHSEASnWd+yk7O47Zt7u+KlRqA0AAACAbNcnIrtFRHYfTHjfgYFU1wbIbHSEASmWN2m8FOZN0jc6NSB5E8eNToUAAAAAZLU8ESkUkf7CGep2fSPoKAOyDR1hQIrVXjlfaq+cr29kWjUSAAAAAOJU+8efxu771e1WxVg1M8hk+bAZRzCYirWKAYiIFBUVSfe3P27e8OCHen7GdMP+h+OvVCyPvKbnN7n1/CmfnhdM0fPKhXouIvLgVj2/uljPX9un51u69XyeU88vmKnnjU/p+QPL1XhvyZn6/iIy6cRJvYyZ+Wpe8sPH9ANcOEvPVz6i5yamZeKX3pdc+SIi65bpueFvMC0zf/b+/WpuXAI9zUu0p4ThMey69hI1L2l8WC///m2J1SdB6V6mPhXGuo6NwU1q3hDjQ9Mgt19uPsjdmxOo0VCmOpo0bGrXN0jyepP0YxhHGSamYxjrKNfpBzBcj0zl3+DXX9d/6VqkH1/Mf+NYP5dMMuExGmvGc+RapeaN8qiaN9xzr7kStz1s3iYZmfDarXCISGFhoXR3/+m9sPP598auQikQuGL2WFcBFsOqkQAAAAAAALAFbo0EAAAAAMCmBrg1EjbDiDAAAAAAAADYAh1hAAAAAAAAsAVujQQAAAAAwKZODYx1DYDRxYgwAAAAAAAA2IIjGDSt3Q4gXkVFRdJdfYF5w6f9ej7OMGHlrZ/Q8yPH9fw3r+n5jl49r7xIzxfM0fN/eVLPRUSmT9Tzx9/W89sv1/N9h/R8w6tqfPjp29R82tX36OUvNzyGHxzVcxHjY/Ds+z9Q86dPP1/NGza168ff8o6ez87T8zPz1bhn5mlqXnD5XXr5qXDTQj2/f1ty5a9bpsZd116i5iXFq/Xy43iJNy5F76gwlqGWH9yk5u+cdKr5WeMDap5sO21c8229fLlOL19ExJHkJMMbb1bjrgXz1dzYDpJlqJ8svS/5YzRco+eLz1LjxopKvfhV+vVQGp/SY0M7dh/apeZn79+vH19ESlyrjNuokm2HFtDlW63mJXcYrgeG1/ak27rpmpvkOTL9/SLmdmS65pvc4N+a1P5JX69S8BivEb2MVZLm51Kyf4Np/01f1Ytfep8UFhZKd3d3+N+mPbNPLzPDHb5q1lhXARbDrZEAAAAAANgUq0bCbrg1EgAAAAAAALZARxgAAAAAAABsgVsjAQAAAACwqeApbo2EvTAiDAAAAAAAALbAiDAAAAAAAGzq1MBY1wAYXYwIAwAAAAAAgC04gsFgcKwrAWSLoqIi6b7rGvOGL3XreeFpev7iO3r+8bl6vqNHz0+c0vPrStS4e94Zal60a79evojI73xq/LPv1aj59Z1b1LzAu1PNu669RM1LileruWy8Wc8/PKHnKx7ScxGRmxbqec8RNX6o7f+o+Y0dz+jlt2/T8/sNucntl+v5hbPMZby2T8/v3hx/fWIx1XHfITX+wk8fUPNfP/0jNe9aMF/NS+5oV3MREdnwqnmbZDQYromLz9Lzpfcld3zTc3GL4Xpqqp+IrFn6czVfJemde6UxuEnNGxwVaT1+JujyrVbzpK/ZJoZ2ajpHIubzZDzPmwzP9ySfSyU+/XW5a/s/pvX4o2GN6B+LHMFH1TzouC6p/ZNtA/GUYXmm5+potDPDx+cu/5qkijder5LkEJHCwkLp7v7T55EJv30/rcdMtxOfmTnWVYDFcGskAAAAAAA2NTDAZPmwF26NBAAAAAAAgC3QEQYAAAAAAABb4NZIAAAAAABsaoBVI2EzjAgDAAAAAACALTAiDAAAAAAAZJZf3fPRj8Ha735HamtrR6FCyBZ0hAGptr/fvM25hiV+H39dzxfO1fMTp9S461ufVfPz396t5uOvvVfN85++Tc1l/Ut6LiLiKlDjWx74lb7/GblqfHiB/hiW3P+MXr5h+e6uBfP1/Q1K4tim57ar1LzAu1PNb1z2Pf0Aj7+tH3/zN/Xj66WL3L9Nz+/erOfXnmM6gsjXP6nGpueCcQnzxfP08q9YoObVYvgb3+3Vc0M767qzUt9fREo2vGrcJimNT+m54blU4vOpedfjhje+S+/Tc4PG4CbjNqskydW2Gq4xVEJ/DBvu0a/JJqa/scFRoRdw++Xmg5iezwamOt7g36oXYGhnpnbS5Vut5qZrtvExFDHWMa4ykii/sUK/XnQ5itXc+FyV+9Rc1i3TcxGRlY+Yt0mC6bncKHo7XLXxq/oBHPfpueExiKcNJP18NgkG9dyR5tUHk7ymi8TxfN6+Uy/A8DfG8x5Os0b0x9j4mqOco6KiIpHdQ9/nOzJ01cjg4X6Rg3uN2/X19Y1CbZBN6AgDAAAAAACZZWquyIw5xs3y8vJGoTLIJnSEAQAAAACAjOK4fqXI9SuN29VWzBiF2iCb0BEGAAAAAIBNjTuVmbdGAunCqpEAAAAAAACwBUaEAQAAAABgUzkDY10DYHQxIgwAAAAAAAC2wIgwINXeP2TeZsI4Pb/8LDXe92fnqfmsx19W85I/+PXj/0+Xnl94uhpP6z+i7x+Piwv1/P4tSRU/beMbam5cWvtJ/TGeM7NXzQsuv0vNpeEaPReRgnueUfO931ii5nMMy9Affvo2/fimv+Hjs/XcYG/nt9V8Tte75kLe1c9DiWkZ9psW6vnb7+vl5+/U9zfouvYSvfz79TYgjU+Zj2Fq6z98TM0f+n6Nmn9u2zY13zszX827Gm9QczlL3z9ZDY4K80a3X57UMbpuukrNS2YbVsM6M72Pgcnem68wbjPn7s36BuuWqXFc5yGNSrbvVPOezd9Uc9P1WkRETNejjTer8aarL1Vz7/R5at6wqV0/vuEcdRUX67npWlOs5yIiEgzquSPJeY4M5TckW77hHHYtmK/mJaK/bouIrPdfqOYNxhJ0awwPwSrT+5c1T6b3+GI+R8vly2q+YcGDal5iPIKBoZ1V+tfo++tPNfV50C0SxyMEZD86woAUW/vCLln7+13G7Wo/eZbUfnJ++isEAAAAIKut/ePPSOQM0D0Ge6EjDEixvmMnZXffMfN2R0+OQm0AAAAAZLs+Edk91pUALIKOMCDF8iaNl8K8SebtJvP0AwAAAJC8PBExTCwiInSWASJ0hAEpV/tn86T2z/R5OIxzhAEAAABAnGr/+GMS6yZIx6kUVwbIcKwaCQAAAAAAAFugIwwAAAAAAAC24AgGTesQA4hXUVGRdK+92rzhb7r0fMoENQ585XI1d27ZoZf//Wf1/JZSPc+brOenBtR436fNC0+/feZsNb9idZtewE+2qHH3H+rUvOhbhvK/uljPH/Lq+eNvq/Gz7/9A319EZvT1q3nJ9p16Ab0f6vkWw+qnhnbaVbNEzUuKV+vlX3uOXv66L+n7x3GMNaK/BK5q+qx+gO4P9PzuzXqerOUX6fmGV81l3K5fT5L9GxqDm9S84Z579QJWPpJc+Y4KNTe2gXXXq7mIiLzXp+eNT5nL0JjeqjnSu9qX6TG+wb/VWIbxerTlHUMlDI9hwzV6vvgsNe5aMF/NTdeSTf3r1Lzi+4bXFBGR19/X8/WvqHGXf435GArjNdmgy6fvX/L4S3oBhud6Smy8WY2TbQdj/VxNCcNj1FhRqeama66J8Zq+qV0vYOl9xmOY2uovXYv0OiT5N8q6ZXp+28N6bmhHpr/vouLVUlhYKN3d3eF/y/2vgH7MDNf/F86xrgIshhFhAAAAAAAAsAU6wgAAAAAAAGALrBoJAAAAAIBN5eizmgBZhxFhAAAAAAAAsAVGhAEAAAAAYFM5pyywkAOQQowIAwAAAAAAgC04gkHTOr8A4lVUVCTddxmWcBcR2XlQz885Q88HDE/bTa/q+ZETel4yS88nT1DjQ5e61Hy6Z7tevoh5GfndfXp++Zl6Ps7wPcC+fj1/44Ce/32Znr/bq+c/36rnIiKVF+l5/ePmMjTLDeWXFur59n1q/LP/+I6a31KxWi//8bf1XERk6fl6/rkL9Pw1/W+Quzfr+e2X6/mF+nOtxz1fzQve3KuX3/YHPY9DyQ9/o+Yb5MHkyi9ereab+tep+TWdr6j5tO179AqsfESNezZ/U99fRAp+87K+QeNTehzcpObuQ7vU/Oz9+9Xc9BgbGZ5HXT/8S2MRy+XLam5qRyWuVfoBHEmOZmgwvHbPztNzQzuSdcuMVei69hI1L7n/Gb2AxWfpuel1x8BUP9M57iouTur4IiKy8WY9N/2NpvNkYLoemVTkrtQ3MLWTOOpvup40OCrSXoekGD6aNsqjam78+ySOx2jVDwwF6Nf0NZLcx+tVkt7RWQ4RKSwslO7u7vC/5T/4QVqPmW69Xz4t5WU2NzdLR0eHbN26VQKBgLhcLnG73VJTUyNlZYb3+Unwer3S0tIiHo9H/H6/iIi4XC6prKyUO+64Q5xOZ9qObSeMCAMAAAAAwKYcAw5L/6SSx+OR/Px8qa+vFxGRtrY28fl80tTUJF6vV8rLy6W8vFwCgUBKjxsIBKSqqkpKS0ultbU13AkmIuL3+6W5uVny8/OltbU1pce1K+YIAwAAAAAAtubxeKS8vFxERKqrq6WlpSWchUZllZaWisfjkdLSUuns7EzJCK1AICClpaWDOr+GU1NTI52dnYPqhsQxIgwAAAAAANhWaESWyEedXsN1NLW1tYnIR6O0Qtsnq6qqSvx+v7jd7vAINJ/PJ21tbVJXVzdk+9bWVmlvb0/Jse2KjjAAAAAAAGxq3Clr/6RCVVVV+HbH0G2RsYRGhol8NIIs2VsVW1tbxePxSF1dnXR2dkplZaW4XK7wcZqamsTn84nb7R6036233prUce2OjjAAAAAAAGBLfr9fPB5P+Pfly5er269YsSL8/1qnWTyampqkrKxMmpqaht3G5XKFR6KFBAKBQXVGYugIAwAAAAAAthTZCVVWVmac9ys0Ikzkow6pkd6m6PV6xe/3D+nkisXlcg3pLPN6vSM6LpgsPyOla8nUdCwBa+cyh3UqjiWTT5ui56/u1vOLCvX8SsMS5fdv1fOy8/R8r77E8vRXu9VczszXcxHZu8yt5nN27NML+PC4nk+dqMZ9s51qPuH4STWf8pPn9OMfOaHnt1+h5yLSdcUCNV9eqS/z3vV4rX6A1wyP8ZM+PT+kn4NbbvwXff/j+lj3eJaxNy1Vv/Wem9R8Uf8z+gEartFzwxLrJj82LfH+vuGNV4HhWiMiUrlQjbuK9etJl2+1mpf88DH9+BtvVmPTOTSdg57PX6zmBTct1PPL79KPLyJy++XmbRQ3+PVrcknxar2AB/RvrmXdMj1f+Yieb3xDjUs2rtb3F5GujTvV/KHyq/RjfNplPIZ6fFM7bXxY3/8mQ/02Gl7Xlt6n5yJS0tCnb5Dk9cTI0I5Lztyp5l1LDe89UnC93HT1pWpuvF4YnguNt+m3GjVsMlxzt7yT1PG7rr1EzXf0X6uXL+brSc/mb6q58ZqX7Hk0XY8c+gqADfreKVFy03/oG+hvHaTLdLm653o9P/NmNf70J76j5k+efpGhAkPlpHjlRauJvL0x+hbE4bhcrvBn9fXr1w/qHIvX+vXrpbq6Ou7P99GfWw8ePJjwMfERRoRlkHQtmZqOJWDtXCYAAAAAwPqiR1UtXrw4rv0iO8xGOiJsxYoV6i2R2jFFRIoNX1ZieIwIyxDpWjI1HUvA2rlMAAAAAEB2iJ5ny+WKbwRy9HZerzfu0WQhiW4fPXgj3rpiKEaEZYh0LJmajiVg7VwmAAAAAGSbnFPW/knGli1bBv0e78CIGTNmDPp961bD1DMpED1oJuVT/NgIHWEZIF1LpqZjCVg7lwkAAAAAyB7RnUsjHRHm8xnmzk2ByM626urqtB8vm9ERlgHSsWRqOpaAtXOZAAAAAJCNHAMOS/8kI56pieIxGnNOR97lxOfW5NARNsbStWRqOpaAtXOZAAAAAIDsMtIOrOjPmD09PclXRuH3+8Of/ZuampgfLElMlj/G0rVkajqWgLVzmQAAAACA1Dj0xN1y+Ikfp6SstUe+LbW1tSkpa6TSPSIsNNjD5XLFnEMciaEjbIytWLEiod7ceJZMTWYJ2FBnUPSoKDuXmagjM3ON20z5/Q59g2kT9XxPQI13XrVAzec/bxgCfOiYnp8+XY27yheqeckm82SSc5oe1ze4eLaef7xIz+95QY3z/mKhvv/b76tx1516Z2rJF3+i73+Ffg5FREruf0Yvo3G1XsDGm43HUF08V40b//oWNW/49O16+ZefqcYVDxraiIj0bP6mmi+q/f/1Av78Y3r+4+f1/AH91mxp2azGDY4Kff+Ga/S854iei0jXgvlqfvD9H6j5ubv26Ae4cFZSx7/oUf25FrxuppoXND6l5rL0fDXu8q3W9xfzc9G4/8r/1DcwPVeX3pfc/uuWqXHJtWvVvGv7P+rli4g8qF/3bzTs/um2jWr+5Le/pOYlxav1A9x+uRpvKzxLzduLV6l5af+l+vFFpFX0Ovy60fDlXtO1er59n57frV+PjLlB45pvq3nD6/pzXUSkM/c2Na+QlXoB7/WpsfvQLn1/03PNxHDNNrXTkniOcdNCPb9/mxqbrnklP3xMzb/QH/tulZBf5xraseF6tGblw2ruCD6qly8iN/j169ENouem82R8DFY+ouYmT67rVfM1EjSUMPRWwnFJTjg/Ih/2y0DA8B4iTn19+nNb43Q6U9KJFe/AlpHwer3S2toqTqdTOjo60nYcO6EjbIylY8nUdCwBa+cyAQAAAACpkzM5V8Y59S9V45WXlzfifQsKClLSEVZQUJB0GcMJLZL3xBNPcEtkitARZjHxLJmayiVgQ51Bdi4TAAAAAJA6uZ++XXJNdwfEqfbr+t0qmpGO5IruPEvXiLCamhrxer3S1tbG59MUYrJ8i4lnydR0LAFr5zIBAAAAIFvlDFj7JxmLFi0a9Hu8o8OiJ8ePNWVRslpbW6W1tVVaWlqYwzrF6AizmHiWTE3HErB2LhMAAAAAkH1KS0sH/R7v58nogROx7tRKhsfjkZqaGmlpaRl2AAxGjo4wC4l3ydR0LAFr5zIBAAAAANknekRYvB1hkZ87nU5nSufu8nq9Ul5eLk1NTXSCpQlzhFnIaC+Zmo5RUXYo80dtf5Aftb2sbuM4ekIv5I+LudRedqbUXqavnAcAAAAge63944+IiHxXXzW7Twwrp8eQc2roSpJ24Xa7B60cuWXLlrhuQ4ycsii6My0Zfr9flixZInV1daPymd+u6AiziESWTE3HErB2LjNRRwIfyp4Dh5Oug4hI39SJIq4ZQ4O39SXG56/Xlzg/cOun1Pz0PfqyzPLoq2pcMmGcvv9B8+Nz8mufUPPxvv16AY2GpYUvNbxJyJ+q5xfOVuOS/3hSzU82L9X3/9Yv9OOLSF99uZrnvfyemnctmK/X4UF9+XCZor+E/NkN+lx7PXd+Qc0L3v9AP/5vX9dzESlIcolyuVqf76HnB3+u5v+zcKGaL7xigZrPf3efmk970vAYFEzRcxEpaXlC32Cyfp6PXH2+vr/hHCz3rVXzVy/4d738mxbqeaUhf1e/3pXc/4y+v4h03XSVXkbjU3oBX/+kni+9T417Nn9TzW8uuUnNf125XM27pt+h5rJpu56LSE/tEjUvuEd/nJ/87V/rVfix/o259755al58TH9dvXHyV9W8Z/M2NS942nA9E5EPyvXn697Ob6v5nBffVvNn//XLan6lmorIZWfp+Xt9atyw6gf6/l82f5BcNUt/b1DyLf11p8swh0+F6bm6bpka97jnq7nxudhomAg7GNRzERGH3qHR5Vut5stFbycrfqSfp1LHJWq+RvS/ofLaNWo+GkqKV6u56bn469wkJzRfftGQf+p7dZ/s3v7H61TgqKGA3ckd34aWL18ura2tIiLhO7BMIrcbbsqiRPn9fiktLZXq6urwIJh49mlvb6fTLEF0hFlEIkumpmMJWDuXmai8qROlcIahE+X4KT0f/9Fdy3mGD6AAAAAAslvehHFSGPoC8shJdds+KVTzfjrKhqipqQl3hHk8HuP2kdu4XK6UzA8WCASkvLxcli9fHncnmIhIVVWV3HvvvUkf3274lG0BiS6Zmo4lYO1cZqJqry+R2utL9I22vKPnZ428Iw4AAABA9qg9/3SpPf/0j37ZoN+ZsUa61Xy1DB016Ehy5UWrc7vdUlZWFu7gam9vV2+PbGtrC/+/aTRYa2ur+Hw+qampUef4Li0tFZfLJfX19XHNU+b3+8PHjqePAIPREZbhRrJk6qJFiwYN1QwEAnF17GhLwNq5TAAAAABA9mppaQl/BrzzzjuH/ewdCATCo8fKysrUyezLy8vDnWvNzc3S29sb87PpkiVLxO/3i9/vT/hzaEtLS0Lb4yOsGpnBRrpkajqWgLVzmQAAAACQrcadclj6JxVcLld4pJfX65Xm5uaY2y1Z8tGcl06nc9DIsFiib7PcsGHDkG1KS0vjnpcsFlaVHBk6wjJUMkumpmMJWDuXCQAAAADIbpWVldLR0SFOp1Pq6+ulqqpKvF6vBAIB8Xg84U4rt9stO3bsMN55FJ1Hf8YMlT9SdIKNHB1hGSjZJVNDS8CGbNmyJa79tCVg7VwmAAAAACD7lZWVSW9vrzQ1NYU/l+fn50tVVZUUFBRIW1ubdHZ2xjX9Tltbm7hcLnE6nVJXVzfkrqO2tjYJBoMj/uG2yJFzBIPxrMOL0ZKqJVMjV74oKyuTjo4OYzmOiOWWOzo6hjxR7VxmvIqKimTnzz5v3G7863v1DY6e0PMFc/T8hGHGy4OH1Pjl8oVqftFr+mT/OS+9q+YnSw1LsIvI+F9tU/O+L12m5nl/8YB+gHu+qOc/fVHPv6Yf37SM/JHiM9R836x8vXwRmf+1B/UNvlKqxsfPnaXmE48e18vv/VDPn3hTjbsartf3NygI9Bu3mfPdR/QNbjRMLnromJ6v1Mvv/oP+ZUbRW3vUvOuSc9TctMR7XGIs0z7IFMN0okvO0/MkH0O5/XI17rlRfy4W3POMXr5BPO30ly79C5SGVT/QC5idp+emx8jkpoVqbPob57zfq+YPly42VqF7vFPNGxwVegEPLNfzrwy93SRSl2+1mpueS43BTWpuqr9p/3jKMFq3TI0fuuV6Nb9x8lfV3PQYGp8H9xhWNUu2nYuINFyT3P7TJqpxV+Un1Nz0GNzg36rmJfcbrlfnzNRzEeNz4aGjP1fzG//Z8P6p8Sk933izGjtyvq/mwevi+BuTZWoni83vU1VL71PjTf3r1Lwid2VyxzdwiEhhYaF0d/9pUv3z7zS8p8twb9wxdayrAIthRFgGSWbJ1FidQSGpWgLWzmUCAAAAAADroyMsQ8RaMtX0E7pPWWTokqmhJWBD2tvb1ePHswSsncsEAAAAAADWZ7jfAaMlHUumpmMJWDuXCQAAAADZJmcgNSsvAlbBiLAMkK4lU9OxBKydywQAAAAAANZGR9gYS/eSqaleAtbuZQIAAAAAAOvi1sgxNhqjkEJLwDY3N8v69etlyZIlEggExOl0yqJFi6StrW3YWwcpEwAAAACyl+PUWNcAGF2OYDAYHOtKANmiqKhIdv3HZ43b5Rw5oeYHigrU/HTPdv0A+w+p8Zsrl6j5eZ1v6+X3GpZYXm1YrbPuSj0XEZkwTs9f3avnZReo8d5zZqv5qfH68Yuef0M//tM+NT688lNqPm37Hr18EZF3e/X8YUM7qfqYGj/39evU/OI3d6p5nn+/fvyfb9GPv/5v1Hz/tDy9fBH54uPP6RscOqrnx07q+QdH9PxXXWr8203fUfMFu7rV/GcX68+lhpv/r5qLiMiS8/T80DE1brztVr0OzXfr5dc/rucPLNfzr2xQ44eO/lzNb+x4Ri9/u+FaIyLdn/24mhft0p8LjRX6FzK3ep9S8zmeV9Xc+BivW6bGD91yvZqfdsLwPBCRii98X83v6fhnNb/yHf2aW1K8Ws1f3PMvaj79iOFaYFCy8j/1DR43vK6KiCy/SM9nTdfzPsPfsGCWnhvaSYlPf13rMsxx27P5m2pecPldai5iPo+Xzf0/xjI0Pzuhn8dbJnxJzRuDm9T8Bv9WNS+533A9atSvBSKS9PP5S09UqHnwsaVqXvKth9Tc1E429a9T84qn/1fNZel9ei7m82R67dz0Y/2OHO/0eXr5Dv0xNjKcY1n5iBo7RKSwsFC6u//0HmNBo/k6nsm2N0wZ6yrAYrg1EgAAAAAAALbArZEAAAAAANjUuFOsGgl7YUQYAAAAAAAAbIERYQAAAAAA2FQOk+XDZhgRBgAAAAAAAFugIwwAAAAAAAC24AgGg8GxrgSQLYqKisR/33XG7SZu2alv8PEiPX9xh57PztPzfn2J9cOXudR8mm+/Xv5A8peVI8VnqPmUe59Xc2/zX6h54XsH1XzWf72o5jIvX41fXnapml98R5tefkWJnovIzoVnq/n8Z7areY97vprvnan/jSVPvqzmxnNYv1HNpfIiNX7xy9fo+4tI6Ss+NR9/7b16Af/6OT2fOlGNd161QM1fnXemmlc8/oKa9xTNUPOC9z9QcxER6f1QjXddorczk3m/2abmXZWfUPP57+5T82m/fEmvQNFper6jR8/zJuu5iMj5elvvKdGv6QXPvK6Xf1A/R4c/rz9XpvUfUfOemfpjVPC9x9RcLpmr5yIi0/TninTrbdWz5i/VvKzgm2p++Onb1Lwvd6qaz9mjv2Z0LZiv5iU/NDyGIiKL56lxe2W5ml/xmt6O5rz4tn78M/VrvtHS+9T4+fea1fyKbzxgPsaGV9XYdJ6fKv2Ymnun6+egwVGh5pv616l5Re5KNZeNN6uxqZ2JiJRs32ncRmO6Hvz4Mr0dmnz9xQ41N733OJiXq+ZPzaw11mGVGCaGv/YcPX/c8FwyWbdMjRtvu1XNk22HS3NXSmFhoXR3d4f/7ZLv6p8NMt1L/xzHazUQgRFhAAAAAAAAsAU6wgAAAAAAAGALrBoJAAAAAIBNOU4ZbhcFsgwjwgAAAAAAAGALdIQBAAAAAADAFrg1EgAAAAAAmxp3aqxrAIwuOsIAAAAAAEBGeW/rXbKv80fG7dbOrZXa2tpRqBGyBR1hQIqdmDDOuE1O6VlJHWP8RP0Y+xYXq/msd/ar+bQX/Wp+3K3Xf+LhY2p+2DlVzUVEjk2eqOY9ddequXv9c/oB1r+s50dO6PnKT6jxxf+yUd//+ov1/Gcv6rmIzD81oG/Qf1SNCy6/S8/Xfl7NT5YUqvnvLlmg5p9p0OsnX39YjS+bc5q+v4gcn+PUN7jjSj3veEuN239Vr+aV9T9V85k3XKIfv3OXGhf43lfz7s9+XC9fRIoefUrN53UH1Pz5W8rUfP+NV6n5zoKZal7S/ns1f7ahSs3HndK/5r7imT+o+a4FRWouIjKv7X/VvOBHz+sF1Fymxi9++Ro1v+xh/THqvuJ8NS9a+1t9/39altT+IiJyVr6ev3lAjacc119X9nZ+W83nrNfP0bbapfr+pT9Q85LbL1fzr639VzUXEfnpY/+h5hfu3a3mc7re1Q+w8hE9f2C5nr+tX28eOvpzNf/ctm16+Rte1XMR6fKtVvOLXv8bNV8q+mN0p//XegVuWqjGFd9vU/PuP9Sp+TbXfP34cfj3s/TrxXe7HlXzZ86/UM0bHnxAzRu//BU1f6FEvx5V5K5U803969R81cavqrmIiOhPd2l87IdqvmTfdjVvmqa/Li6avkfNGza1q3ljcJO+v6NCza3k1PE+OXFIv/aJiPT19Y1CbZBN6AgDAAAAAMCmcjL01sjxE/JkwnT9i1cRkby8vFGoDbIJHWEAAAAAACCjzHF/U+a4v2ncrrZ20ijUBtmEjjAAAAAAAGwq55RjrKsAjCo6woAUu3vDH+TuDfqcMw4R+eYXL5K/vcEwTxQAAAAAGLyw9lfy+7UPS+tYVwSwADrCgBTrO3xc9hw4bNyu/0PDZOwAAAAAEIdjfR9K3+6DwrTxgBkdYUCK5U2bKHNPn6Zu4xCR3KkTRqdCAAAAALLapLypklc4Q3J3H1S3i7UGo8OwEDmQbegIA1LsO8tK5DvLStRtPpz20YSOHw6T570X0A9ywWw1ntXp1/cvdOr5/kNqfCh3ipoX9Ogj4k5MNF96jk3Qtyn82XN6AZ8s1vMphjpUXqTnZ+br+Wn6YyS7e/X8lsv0XERk5wE9N5xH+cVfqvHhOU41n/aCT80/c9czav78z/5aza9wPqbmfa4z1FxE5MFPfFLNF37sHD1/fYeaV7Z3qPnxL+i3P097a5+a715+qZoXbtWf6zMOxvG9cM8RPT9juhpf8dzL+v6T9OdazsKgvv+COWp85cxvq3nPZsMkuwf158m8l/Q2ICIieZPVeO/PblTzXXNmqvnjc/Tr0WWTtqj55nPPVfPK87ep+TPnX6jmNy7ZqeYiIl1XLFDzg7fnGsvQzPG8quab/kG/3p29f79+gI036/nS+9R487f0diwiIr3DvSv4SMnjL6n51279OzX/6d4P1PwbN96m5ive19vZjf/8gJrL4rP0fN0yPReRgkC/mgff0V9X9r6pX/Pn7NE7EGTBLD2fc5oajzupL81X8eDjav7QLdfrxxeRdeOvUnPHo++r+XOzfq7mpufy0wfnq3nD6RVqbqrfmukvqvnOz89QcxGR/z7wHTW/29+u5i/O09tR7qnjav6Te/RzdHXVG2resGmY+p0nIj9Zqu4rIuIwXK8AO8gZ6woAAAAAAAAAo4ERYQAAAAAA2NQ4fbAikHUYEQYAAAAAAABboCMMAAAAAAAAtsCtkQAAAAAA2FTOKcdYVwEYVYwIAwAAAAAAgC04gsGgYd1yAPEqKiqSl39ZadyuoKtb32C2vvz2QI7+rU3OsZN6+eMM3/qcMlwW+o6o8a5Lzlbzef+9VS9fRGTmdD2fpA9o7br6Y2pesn2nXv7Bw2rs+cIn1bzsV8+q+ZGzZ6r5qfHj1FxE5OjkCWp++u/fVvOuikVqXvKtX+gVmG04R9ddpMb/+blr1PxLv3hUzR+uXKIfX0Suf2qzvsGHJ9R42+UXqvnC//qdXv4c/bnsX6QvwX56T5+av3LOPDW/4oVX1VxERN77QM+P6o+RbN6l51cX6/lr+9S4b4XeTvM2+/TyH31djZ/d8HU1v/J+j16+iDzwjb9Q8xte0NvhzjNnqXnJ/c+o+T0N1Wp+5TtvqPmRSRPV/Lyde9Q87yeG54GI/Pj+76r51//yH/UCTO1o5SNq/Px7zWpeffgGNe8q1o+/qX+dmh8dp1+vRUQ+/bL+fC1454Ca37jsdjU/f5K+f7Ie3+dS8+e/d4uaf+OHdxqPcWHwPTV/7qT+/qOm/3k1n9HXr+am9w6NFfp7wIYHH1Bz2bRdzy/Q3zuIiHTddJWa/9KlX1MPDExT81d79Tp8Mb9LzZ85preTiTn6rO3nTb5MzTv7X1JzEZFfP/0jNZ8z95/U/N7zfq3mZ+/fr+btxavUfIPPr+bbX89T89XXna7n4pDCwkLp7v7T55Grqg2v9RnumVbzNRaIxK2RAAAAAADYlKH/Ecg63BoJAAAAAAAAW2BEGAAAAAAANsWIMNgNI8IAAAAAAABgC3SEAQAAAAAAwBa4NRIAAAAAAJvKOWVYUR7IMnSEASmWMzBg3ui0KXp+5Lh+DFP5k/Sn9q75s9R8nk9fnlxO6BMJ5PV/qOb7Pv9xvXwRmfVat77Ba3odS7p/p+9/jr7899MVn1Dz83bvUfO+8+eo+c6iM9T84m0+NRcRCZytn0fZ8q4aT/jcJfr+1fpj8PA1l6v5pFP6Utx/9aR+jn59w6fV/Nx9hnYqIrLqcTU+vPZ6NX97pv4YL5wwTs0PXDBXzaccOabmee1eNb/iqXY13/Rcg5qLiDiP6M/XuQd61Ny1Q8/lJf25/Pa3P6vm57S/qOYv3lKm5pe1v6LmfZP16/FDX1+u5iIiX1n1U32DGdPUuOTJ19X82dsr1Pz9cblqPuf9XjV/oeR8NZ8yR39NkjV/ruci8vVfbVTzb/zibjUf79Bfd752rX49cx7W23nrtF+q+S+O6ud4wPDK/Llt29RcROTh0sVq/pkpL6v5zkCemh/P069X//ZWm5o/c/6Fav6l0/vVXO7erMZNf75e319E+nKnqvniOTvUvHDfQTWvLPyamn/ts/o1ueGee9V805evVfOKQ/prQuNtt6q5iEjRyYCa3/WiW81nzzyi5suLXWr+SI/+PvhT+bvU/Cf3XKXmk088r+Ybf6tfz0REHDnfV/PL79OfS51336bnxhroTI/xKjF0WgWDw0ZFRUUiu0dSKyC7cGskAAAAAAAAbIERYQAAAAAA2BSrRsJuGBEGAAAAAAAAW6AjDAAAAAAAALbArZEAAAAAANgUt0bCbhgRBgAAAAAAAFtwBIPK+qoAElJUVCQvbvpL43YzD/Sp+YfTJql53gf6MvA5L3ereeBT56m5s/ewmu+eW6Dm40/qS2dPOGX+2qngnQP6Br731fjlv/qkmjv79b/x3Zkz1HzxK2+r+asXnKXm5+3Yo+aTjxxXcxGR90/Xl/fect45av6FXz2lH6A7oMZvf3Gxmg/k6N+1nPfkK2r+7A2fUvPpR4+quYjIgENfYnzRk9vU/O1Lz1XzPTP058Lcgz1qXrjnoJr35E/X939qu5p3L7lIzUVEinbtV/Mj0yaruf+s2Wq+z3mamp+z5z01Pz5BH7w+7bDeDp4s0R+DG+/6LzWXgml6LiJrv3ajmu8M6u2k7tX/UfP9Bfpj+Nbps9R8woB+Td47Wb+W/M1dD6i5t+oKNRcRKXxPb+u1H1uu5t/d/Zia/9K1SM3/7qlNav7E4ovV3GS/4TFc+N47xjLO6PlAzX+7QK/j/zrmqfnB41PUfN7kgJpPcOjtaIrjM2q+68TzSZUvIjJnvP66cOaJh9S8e7xTzf/nG+VqnvP3PjUPHDa8f/thkZofKDqp5l+uM7xui8jWQ3PV/M79v1bzHWecoeYV029T8zX6y66sEsMGyeKjraqoqEh2794thYWF0t39p88Ln1uht71M9z/rudENiaHFAAAAAABgU9waCbvh1kgAAAAAAADYAiPCAAAAAACwqZxTab5lFcgwjAgDAAAAAACALdARBgAAAAAAAFvg1kgAAAAAAGwqUyfL9/n+TXz+Hxq3W7u2Vmpra9NfIWQNOsKAFAvmmAdaTvzgw6SOcShXXwI9b8EcNXe+c0DN3yw9R83P2/yGmu+65Gw175+g119EZM8ZBWo+96zT1fzwJH0Jc9eufWo+42CfmncX6sc/MD1XzedMm6zm0196R81FRI6V6XWoeG6rmj/7ucvU/CLfLjU/563dan5gllPN5YT+rst5+LCaF3xwSC9fRPxzZ6n578tL1fziN3aqubNPr+Ppr7yr5nLomBq/dMvn9fwcl5pXbHhCP76I/PdfXKvm83veV3P3g8+o+ZxPX6jmhwzPhdcLC9U8/7DeDmYe6Vfzr9X+g5r/9K7vqbmIyLyjPWo+K0e/npjaaWnX22r+g5lL1LwquE3NP9ajP5cb/3almn/7mUfVXETk0jO/o+Yv/a5JzX/zCbeaX/ThHjWfM3GVmjdMe0HNH+09T82vmq5fswOF5te9N+fMVPOPi36e9hyZrua/3Vyk5k6n/t7htsX6c7Fpfa+aH/nt+Wq+8co2NRcRqffpdSg+ukDNS3MvUfPPGo6/6kf69Uwc+jxLaySolx+caKjBdYZcRPRmIDJdfwxKzEdQrdL/RBHDYwBEOnGyT44e1a99IiJ9ffrrLBCNjjAAAAAAAJBRJozPk8mT9Q5wEZG8vLxRqA2yCR1hAAAAAADYVKbeGnnu/L+Vc+f/rXG72tpxo1AbZBM6woAUa31gi9z74BZ1m3EnB6R26QVSu1Qfwg8AAAAAJmvXrpW1a9eq2+zdu3eUagNkNjrCgBQ7dPiYvLffPHdR34cnRqE2AAAAALJdX1+f7N5tnk8LAB1hQMpNnzZJZp+hz1Q67uSA5E2dMEo1AgAAAJDN8vLypNCwwMzevXtlYGBgyL9n6q2RQLrQEQakWPVXFkv1Vxar2xS9pa9uBQAAAADxqq2tldraWnWboqIiRo0BIpIz1hUAAAAAAAAARoMjGAwGx7oSQLYoKiqSJ5+6xbjd7P29at6XO1XNHTGGNEfqPS1XP/4B/finv/Wemh8/Q1+iOGdAv6y8NztfzUVEJh87ruanv+hTc/+Sj6l5T55++6qre5+aF+zRH0Pxv6/G7Su/qOZXv9qlly8ib8ybq+bOwx+qecnru9T86csuUvOrn92m5rvOnaPmRydNVHPT88TUzkREHr5MH5156Tt6O3q18Ew1n3RKn+tvzgcBPd/fo+ZvGc7xvP0H1HzA4VBzEZGHLyhV8zNO9Kt5/7hJat43brKazz96UM1POvSVoHJPHFXzt6edoebf6HhMzf/zmk+puYjIr4/rC5/8+xu/UPMVZ+qvG5Wnb1fzbSf1dnJ0QL8B4IJJ+vXqd73z1Dx3on69FhHJM2yz/rliNf/8Zfr1qvfIFDXvP6pPR+Dv1l83J3n1fNGX31Lz0txL1FxEpGWdPr/ojPf089h9zjE1/9ZXTlPzDT6/mi8vdqn5KtMl2XQ94iMJkHahEWGFhYXS3d0d/veqcv2zRaZr62B8DxJDiwEAAAAAAIAtMEcYAAAAAAA2xWT5sBtGhAEAAAAAAMAW6AgDAAAAAACALXBrJAAAAAAANsWtkbAbRoQBAAAAAADAFhgRBqTY+JPmr1QGcvQlxPunTlbzYxMnqvnUY/oS6qcceh/4gXNnq3nf9Klq7vLtUfPph4+ouYjI9P6jar7r6gVqPuWI/hjkjR+n5qZzdLhgmpqfOiNPzUt2v6vmzy24QM1FRE7/8JCaTzuqPwY7589S86uf3abm/3r99Wp+6cEdav7JrdvVfP01f6bm8wIH1VxEZOHud4zbaC57800175o/T81fmHuOmh8tnKDme0RvRytObFXz7+V+Rs1FRCpPvmLcRvNGjt6O5gd71PzdSQVqPlH0a6pv0kw1v/4dr5r/389UqvlUOaHmIiJvvJuv5k+WXKTmL/5Gv+Yeeb5YzZ1/r7fTzY+fqeZ/uPR0Nd+xVf/7Pv6cfj0UEXkrf0DN9WeKyHsL9GN8ZvaFar760QNqHrxOb0cSDOq5XGLY37C7iKyS6eaNVPp7B/my6fgufYM4/gZ9/2QLAAAgNegIAwAAAADAprg1EnbDrZEAAAAAAACwBTrCAAAAAAAAYAvcGgkAAAAAgE1xayTshhFhAAAAAAAAsAU6wgAAAAAAAGALjmCQtYyBVCkqKpJNL9xm3G7qsWNqPvHESTWfcPyEmp8aP07Ne/Jy1Xwgx6HmBX2H1Hz3jHw1nxX4QM1FRN4/LU/NX5xVrOYrXvq9mr81b66aTz96VM27nQVq7jz6oZrvypuh5hfv3aXmIiLHx+t3t5/K0b/rODBdbwdtky9R839/4UE1v+NTy9X8iuM+NR9neHnaN0mvv4iIe/87av7+dL2d7Z7iVPNZx/rVfEPOQjVf5nhFzf2TZqr5f3dfoOafLtyp5iIiG+7+hJp/6RvPqfl92y5S85NbT1PzK/7yTTXf+Pw8NZ/cM0HNL9g6Rc3nvqk/j7Z87oiai4jUrJxu3CYZG3x+Ne8q1q+HRrwVBABbKCoqkt27d0thYaF0d3eH//2mS639OnD//+qfXYBojAgDAAAAAACALTBZPgAAAAAANsVk+bAbRoQBAAAAAADAFugIAwAAAAAAgC1wayQAAAAAADbFrZGwG0aEAQAAAAAAwBYcwSBrZgOpUlRUJG1bv2HcbtLJk2p+Ytw4NR9w6EsETzl+Qs0nmI4/Xh8sGpg2Vc1nftCn5u+flqfmIiJvOmer+cQB/W+YfvKYmrsO7lfzwFT9bzw0cbKavzs1X81zDJfewzmT1FxE5O2B09X8ghz9b8w7dVTNd44vUPMDp6apef64D9W8MzBXzY+f0p8Hl8/oVnMREW9gjpoXTNEfg3cCucZjaA726e1k0v16/d64ul/NP1X6npr79p6m5iIin7r5TDV3bdGvNxt8fjVfXuwy1iEZq3gXAwBAXIqKimT37t1SWFgo3d1/eh/1tYXWfjH96Tb9vQoQjVsjAQAAAACwKW6NhN1wayQAAAAAAABsgY4wAAAAAAAA2AK3RgIAAAAAYFPcGgm7YUQYAAAAAAAAbIERYQAAAAAAIKO8fHCtvNLzb8btzl9bK7W1taNQI2QLOsKAFHt/ep5xm6knjqt5TnBAzT+cOEnN8w8fUvM+52lqvndqvprvGq/nCye/q+ZvTJul5iIipb279DrkzlDznonT1PytohI13zugP0Yng/qA2g9O6Odo9sR+Ne/64Aw1FxHZ8sZMNS88Y66aHzk+Ts3zpp1Q85nTj6j51An6OejYrNcv55j+GO991aXmIiKvX3JYzRdc0Kfmy4v1Yzx2u/5cfv1uvR0Y/ZNpOXO9DYj+VP3I/8ZbmdhWieE8WHtFdgAAsl6m3hp54mSfHD6527hdX5/+fg6IRkcYkGKP3O2RR378hLqNIxiUG1ZeI5V/c80o1QoAAABAtlq7dq2sXbtW3Wbv3r2jVJvUmDguT6aNLzRul5dnHogARKIjDEixD/uPysE9gbi2AwAAAIBk9fX1ye7d5tFTseScTHFlUuSS3Fq5JNd8y2NtrWMUaoNsQkcYkGJTcyfLjLlOdRtHMChTcyePToUAAAAAZLW8vDwpLNRHT+3du1cGBvQpWAA7oCMMSLFlt5fJstvL1G1Mc4QBAAAAQLxqa80TxhcVFY141BiQTegIAwAAAADApnJOcWsh7EVfkgsAAAAAAADIEowIA1Js57TTjdtMGNBnpBwnwaTqsG36mYby9TWS+0Wfv2zfyelq/tb4GWr+2q4CNRcR+cOsuWq+bedMNc+bpt9+erBvkpo7pyd3++ruX+v1/+ptz6n5M0/o51BE5Kol76r5uz36eXrbp+err9PbsiP4qJoHHdep+X8n18xFlsWz0RRDbni+Guq4SibqG/wo2T8SAAAAQCrREQYAAAAAgE3l6N+RA1mHWyMBAAAAAABgC3SEAQAAAAAAwBa4NRIAAAAAAJvi1kjYDSPCAAAAAAAAYAt0hAEAAAAAAMAWuDUSAAAAAACb4tZI2A0dYUCKPdxzoXGboyfGqfmxk3p+6pRDzfOmHlfz13Y61XyG85ia5+iHl4NPn67mffkn9QJEZOehWWp+wbV71HzhzP1qPmvulWpe6Vuj5iWuVWout+mxyGfV9Hs3mPYXEcnXY6dhd5chD5qOf12S+wMAAADA6OLWSAAAAAAAANgCI8KAFOrv75cdTf8u43Kny7yVN411dZDF1q5dK319fZKXlye1tbVjXR3YFO0QmYB2iExAO0QmGGk75NZI2I0jGAxy8wqQIuPGjZOBgQGZNGeW/NkrTwy7HbdGmm+NnHJIfwySvjVyfJpvjUyzoqIi2b17txQWFkp3d/eY1gX2RTtEJqAdIhPQDpEJTO1wuPzv9LfuGe/7B8a6BrAaRoQBAAAAAGBTjAiD3TBHGAAAAAAAAGyBjjAAAAAAAADYArdGwhaam5ulo6NDtm7dKoFAQFwul7jdbqmpqZGysrKUH+/EKYe89o5z2HzuGR+q++/ZP1XNV1zyppr/+rViNf/6pXPV3GSVaWbBc5IqPk55hvwCPTbOjji2c4ABAAAAo4FbI2E3jAhDVvN4PJKfny/19fUiItLW1iY+n0+amprE6/VKeXm5lJeXSyAQGNuKAgAAAACAtGNEGLKWx+OR8vJyERGprq6WlpaWcOZyuaSyslJKS0vF4/FIaWmpdHZ2itPpHKPaAgAAAACAdGNEGLJSIBCQqqoqEfmo0yuyEyxSW1ubiIj4/f7w9gAAAABgFzknrf0DJIoRYchKVVVV4dsdQ7dFxhIaGdbe3i4ej0daW1ulurp6lGo5uj64714ZOHxIcqZNF5F/HOvqhK1du1b6+vokLy9Pamtrx7o6g2Ry3TJVJj9mmVq3TK2XSObWLVPrJZK5dcvUeolkbt0ytV4imVu3TK2XSObWLVPrJZK5dcvUeolkbt1C9erv7x/rqgAZwREMBo1TRgNW4vf7pbj4T5PF9/b2qrc8tre3h0eDOZ1O6e3tHfGxx40bJwMDA5Jzxmw543+2DrvdWEyWv+vTl8mpfe/JuFmz5R/27VX3NzFOlp+AoqIi2b17txQWFkp3d3fqCk4B6pa4TK2XSObWLVPrJWKu21jV3cqP2VjJ1HqJJF+3dP1t2fyYpUum1ksk/XUbafl2fsxGKlPrJTL2dRvu+KF/z8nJkYGBgSH53+sfPTLe9/SPVsAQ3BqJrNPU1BT+/7KyMuO8X5WVleH/DwQC0t7enq6qAQAAAEBGyTll7R8gUdwaiazT2toa/n+32x3XPi6XS/x+v4iIrF+/flDn2Igc2C973YUj37/ItIFe9g8XxChy/DjZLSKzx49L6YguAAAAAACsghFhyCper3fQ74sXL45rv8gOM0aEAQAAAACQnRgRhqzi8XgG/e5yueLaL3o7r9cb92gyAAAAALAqbi+E3TAiDFlly5Ytg343zQ8WMmPGjEG/b906/ET3AAAAAADAmhgRhqwSmucrZKQjwnw+X8rqBAAAAACZihFhsBtGhCGrRHeEjVQgEEhJOQAAAAAAIHM4gsEg68chazgcjkG/x9u8PR6PlJeXh3+vrKyUtra2hI8/btw4GRgYEBGRnJzk+5mnT58uubm5SZcjIrJ3714ZGBiQnJwcmTNnTkrKTIVMrZcIdRuJTK2XSObWLVPrJWKu21jV3cqP2VjJ1HqJJF+3dP1t2fyYpUum1ksk/XUbafl2fsxGKlPrJZK+uvX398uhQ4eM24U+h4gM/iwS+e8iIoWFhdLd3R3+fc3gj1AZ4wVZK7+XtcbtVv+gVmpra0ehRsgWdIQhq6SqI6ysrEw6OjoSPv5pp50mfX19Ce8HAAAAAKMhuiMsU61evVrWrFlj3G7VqlWyevXq9FcIWYM5wpBVnE5nSm5rjHeS/WjnnnuuvPXWW3F9YxOPVI4IAwAAAGA98Y4Ii8f06dNl9uzZKSkr3fLy8qSwsDCu7YBE0BGGrFJQUJCSjrCCgoIR7cdqkwAAAACQvNpabnlEejBZPrLKSEdyRXeejbQcAAAAAACQuegIQ1ZZtGjRoN/jHR3W09Mz6Pfi4uJUVQkAAAAAAGQIOsKQVUpLSwf97vf749rP5/MN+r2srCxldQIAAAAAAJmBjjBklegRYfF2hEWOHHM6neJyuVJZLQAAAAAAkAHoCENWcbvdg+b32rJlS1z7RU5yH92ZBgAAAAAAsgMdYcg6y5cvD/+/1+uNa5/I7err61NeJwAAAAAAMPYcwWAwONaVAFLJ6/UOmivM1MQ9Ho+Ul5eLiIjL5RoyXxgAAAAAAMgOjAhD1nG73YMmu29vb1e3b2trC/8/o8EAAAAAAMhejAhDVvL7/VJcXCwiH3WMdXZ2xtwuEAhIfn6+iHy0UmRHR8eo1REAAAAAAIwuRoQhK7lcrvBIL6/XK83NzTG3W7JkiYh8tFJk5MgwAAAAAACQfegIQ9aqrKyUjo4OcTqdUl9fL1VVVeL1eiUQCIjH45HS0lLxer3idrtlx44dg1abBAAAAAAA2YeOMGS1srIy6e3tlaamJvH7/bJkyRLJz8+XqqoqKSgokLa2Nuns7Ey6E6y5uVnKy8slPz9fHA6HFBcXS1VVlXg8ntT8IRhzXq9XampqpLi4WBwOR/g819fXSyAQGHG56Wg7VikTqRdqn6a5EWOxSruhLVqD1+uV9vZ2aW5ujvvcWKW90AYzQyAQkPr6eikvLw9f+0LnorW1dcTlWqXN0A7Tz+/3S3l5+YheUyNZ5fxbpUwgJYIARqyjoyPodDqDIhIsKysLdnR0BH0+X7CtrS3ocrnC/97b2zvWVcUI9fb2BisrK4Miov60tLQkVG462o5VykR61NXVhdtjW1tb3PtZpd3QFjNbb29vsKmpKeh2u4MiEnQ6ncG6urpgR0eH8ZxYpb3QBjNHU1NTuJ01NTUFOzo6gp2dncGWlpZwG3S5XMGOjo64y7RKm6Edpl/0e79E3+OFWOX8W6VMIJXoCANGqKOjI/wCWV1dHXObyDdjXOitp7e3N/xiHc/PcO0gWjrajlXKRHpEnqtEOsKs0m5oi5mrt7c3WF1dHT4/brc74c4HK7QX2mDmCHVQuN3uYbeJbJOdnZ3GMq3SZmiH6dXb2zvoS6VkOsKscv6tUiaQanSEASPQ29sb/pbD5XINu53P5wu/EJSVlY1iDZEKZWVl4TfbbW1tQZ/PF/42K9YbpXg6INLRdqxSJtIj8lwl0hFmlXZDW8xcLS0tg9peoh8WrdJeaIOZIzQSTESMH55DX2Q5nU51O6u0GdphejU1NQVdLlf4vV8yHWFWOf9WKRNIBzrCgBGIfJE0vTimYmg1Rl9LS0tQRIJ1dXXDbuPz+cLfaIV+TG+409F2rFIm0qOysjLocrkGdUjE0xFmlXZDW8xMkV8GuFyuoM/nS7gMq7QX2mDmCD222miwkHhvF7dKm6Edpk9nZ+egkYOh94AjfQytcv6tUiaQDnSEAQmK/AYjnm8k29ra4u4kQeYIfStoEt0eRGTY24LS0XasUibSI/RmvbOzM6GOMKu0G9piZor88OJ0Okd0W4tV2gttMHNE3m5VWVlp3D7yXAz3pZZV2gztcHR1dnaOuCPMKuffKmUC6UJHGJCgyHkn4h3KG/mikMgk1hgboTdA8X64i7xVQ0SCTU1NMbdLR9uxSplIvdAbztAHvEQ6wqzSbmiLmSf6tqGRjAQLBq3TXmiDmSNylI52y1VI5IdsXpdph4mI7tBJpCPMKuffKmUC6ZIjABISuSS32+2Oax+XyxX+//Xr16e8Tkit9evXS3V1tTidzri2LysrG/T7wYMHY26XjrZjlTKRelVVVeJ2u6WpqSnhfa3SbmiLmaW1tXXQkvctLS2DHu9EywrJ5PZCG8wcBQUF4f/3+/3i9/vV7bds2RL+/+HaqVXaDO3QOqxy/q1SJpAudIQBCfB6vYN+X7x4cVz7Rb4YtLe3p7ROSL0VK1Yk1LkQ/WJfXFw8ZJt0tB2rlInUq6+vF6/XK21tbQnva5V2Q1vMLH6/X2pqasK/u91uqa6uHlFZVmkvtMHMEt2ZFdkeYwk99k6nUyorK4fkVmkztEPrsMr5t0qZQDrREQYkIPKbcJHhv2GMFr1d9IsFMovb7Y57NJiISCAQGPR7rHaRjrZjlTKRWl6vV5qbm0c8Gscq7Ya2mFmqqqoG/X7HHXeMuCyrtBfaYGZxu92DPjR7PJ4h7TKktbU1PGJsuC+2rNJmaIfWYZXzb5UygXSiIwxIQOQwexGJu7NkxowZg37funVrqqqEDBB9e0b0rZIi6Wk7VikTqbVkyRKprKwc8Wgcq7Qb2mLm8Pv9gz6cDDfCJl5WaS+0wcxz7733Dvq9vb19SGeYx+MJjxZraWkZ9lpplTZDO7QOq5x/q5QJpBMdYUACojs8Rvpth8/nS1mdMPYiX7SHe8OdjrZjlTKROqEPfNEfBhNhlXZDW8wcLS0tg34PdfaHOiGKi4vF4XBIfn6+lJaWSnNz85CRspGs0l5og5nH7XYPuSW8vb1diouLw6Nly8vLxeVySUdHh/qFgVXaDO3QOqxy/q1SJpBO48e6AoCVmCZmjZf2AQHWE/khsb6+PuY26Wg7VikTqdHe3i7t7e3S0dGR0K270azSbmiLmSNyAmSRjyYtLy0tHXILSyAQEK/XK16vV+rr66WtrS3myDGrtBfaYGaqrKyUlpaWQXOE+f1+KS0tFRGRurq6uOb5tEqboR1ah1XOv1XKBNKJEWFAAkZ6cY7+0NrT05N8ZZARIm8ZampqGvYbsHS0HauUieQFAgGpqqqS6urqmLfeJlrWSNAW7cnv9w85Fxs2bJCamhrp7e2VYDAowWBQfD7fkNE3VVVVMSc/tkp7oQ1mrurq6iEjFUM8Hk9c584qbYZ2aB1WOf9WKRNIJzrCgDHAtx3ZI/Sts8vlkrq6urQfLx1txypl2tmSJUvE5XIN+8FvLFil3dAWkxP9Lb/T6ZQdO3ZIdXX1oA8wofYZ3UZvvfXWtJ0Dq7QX2mB6VFdXx7z10ev1ytlnnz1qk25bpc3QDq3DKuffKmUCsdARBiQgmduR0lEOxpbX65XW1lZxOp3S0dGhbpuOtmOVMpGc5uZm8Xq9Q+bFGSmrtBvaYmaI7giL7gCLFt05EQgE5M477xy0jVXaC20ws9XU1Ehra6tUV1cPGY0dCASktLR0yEp2kazSZmiH1mGV82+VMoF0oiMMSEBBQUFGlYOxdeutt4qIyBNPPGGcFDQdbccqZWLkQnMtNTU1idvtTkmZVmk3tMXMED1x8eLFi437RM+V2NzcPOh3q7QX2mDmKi8vl9bWVqmrq5OWlpaYt+aGthuuM8wqbYZ2aB1WOf9WKRNIJzrCgASM9FuK6GG+fNthfTU1NeFROvF0UKSj7VilTIxcVVWVuN3ulN52a5V2Q1vMDCN5PF0u15DrYuRtalZpL7TBzBQa6VVWVjZoUvyWlpaYI2erqqpi3m5llTZDO7QOq5x/q5QJpBMdYUACFi1aNOj3eO9jj574sbi4OFVVwhhobW2V1tZWaWlpibkiWizpaDtWKRMj09zcLH6/XwoKCqSqqsr4E3mu7rzzzkFZ5ITlVmk3tMXMMNLHL/r8Rd5iaZX2QhvMPFVVVeFO1VhzJlZWVkpnZ+egD9OBQCDmis5WaTO0Q+uwyvm3SplAOtERBiQgtDR3SLxLBUffWpLsqm8YOx6PR2pqaqSlpSXmbRjDSUfbsUqZGJmDBw+KyEdtrr293fgTyev1Dsq2bNkSzqzSbmiLmSH62/l4P9xEf5iJ/LBjlfZCG8wsfr8/fK1zu93DTkngdruls7Nz0L+1trYOabtWaTO0Q+uwyvm3SplAOtERBiRA+4ZbE/nmy+l0GueTQmbyer1SXl4uTU1NCXWCiaSn7VilTGQWq7Qb2mJmGOl5iO5Ai5z3xSrthTaYWSJHgEWfm2ixVtndunXroN+t0mZoh9ZhlfNvlTKBdKIjDEiA2+0e9OY+cpSFJvLNl+nNGzKT3++XJUuWSF1d3Yjma0pH27FKmRiZpqYmCQaDcf9Evnlsa2sblEXOo2OVdkNbzAzRc31Ff3sfr8j2aZX2QhvMLJEfmOO5fSr6C6voD+ZWaTO0Q+uwyvm3SplAOtERBiRo+fLl4f+PnPxXE7ldrHkqkNn8fr+UlpZKdXX1oA4F0z7RK6Wlo+1YpUxkFqu0G9piZoi8VWW4FfiiRd+GFt2hZpX2QhvMHJG318bbIWtazMYqbYZ2aB1WOf9WKRNImyCAhHR2dgZFJPxj0tHREd7W5XKNQg2RSr29vUGXyxWsrq5OaD+32x3s7Owc9G/paDtWKRPp53K5wuehra1N3dYq7Ya2mBkiH1cRCfb29hr3qa6uDm9fVlY2JLdKe6ENZo66ujq1TcXidrvD+3R0dAzJrdJmaIejy+fzDXq8W1pa4t7XKuffKmUC6cKIMCBBbrd70Lfj0ZNUR4tcyptvOqwlEAhIaWmpuFwuqa+vF7/fb/zxeDzhCUOjv4lOR9uxSpnILFZpN7TFzFBWVjbo1sY777zTuE/kyLFYI2mt0l5og5ljxYoV4f/funVrXAs3RN4OGWsSbqu0Gdrh6Ip3UZBYrHL+rVImkDZj3RMHWFHkN0Vut3vY7Xp7exP+9hKZI/Kb5ER/hvv2MB1txyplIr0SGREWDFqn3dAWM0P0N/0+n2/YbSO/5ddG01qlvdAGM0dZWVn4Ma6rq1O3jWyHTU1Nw25nlTZDOxw9bW1tg653WvuJxSrn3yplAulARxgwQpEvksO9QIY6UpxOZ1y3kiBzJNMJZvqOIR1txyplIn0S7QgLBq3TbmiLmaGlpSV8HlwuV8zHOXQ7uelDUIhV2gttMDP09vYGnU5n+FxoXzqFtovnQ7ZV2gztMP0ir2HxdOgMxyrn3yplAqlGRxiQhI6OjvAbrcrKymBnZ2ewt7c32NHREb7Au91uLvAWU1lZmVQnWDzziaWj7VilTKTHSDrCgkHrtBvaYmaIPA9OpzPY1NQU7OzsDHZ2dgabmprCWSLzKlqlvdAGM0Nvb++QOehaWlqCnZ2dwY6OjkFziSUykscqbYZ2mHq9vb3BysrKQSMOY/2UlZWFH/N4WOX8W6VMIJXoCANSoKmpKeh2uwd9OCgrK0vowyjsKR1txyplIrNYpd3QFjNDS0tLsKysbNB5cLvdwbq6OvW2SY1V2gttMDN0dnYGq6urB30J4HK5gpWVlcG6uroRf8C2SpuhHVqHVc6/VcoEUsERDAaDAgAAAAAAAGQ5Vo0EAAAAAACALdARBgAAAAAAAFugIwwAAAAAAAC2QEcYAAAAAAAAbIGOMAAAAAAAANgCHWEAAAAAAACwBTrCAAAAAAAAYAt0hAEAAAAAAMAW6AgDAAAAAACALdARBgAAAAAAAFugIwwAAAAAAAC2QEcYAAAAAAAAbIGOMAAAAABIQH5+vvj9/rGuBgBgBOgIAwAAAIA4NTc3SyAQkJaWlpSW29raKvn5+eJwOOL+yc/Pl/Lycqmvrxev15uyugQCgbiOHzpme3u7se41NTUpq5+ISHFxsbF+6eis9Hg8CZ2f1tZWY5ler9f4+JWWloa3b25uNh67uLg45X87kC0cwWAwONaVAAAAAAArKC4uFr/fL06nU3p7e1Nevt/vl/Ly8iGdOE6nU+644w5xuVzi9/vF5/PJhg0bJBAIhLcpKyuTlpYWcblcSdUhEAhIfn5++He32y333nvvkHKdTueQ/TZs2DBsp1dvb++QfUbC4/FIeXl5zKypqUmqq6tTchxNe3u73HrrrYMe/5Dq6uoRdZQGAgGpr68f1HlWVlYmbW1tMR/rkJ6eHvF4PIMed5fLJT6fL+E6AHZARxgAAAAAxKG9vV2qqqrCv7e1tUllZWXKj9Pc3Cz19fWD/m24Y8XatrOzU9xu94iPH90RlujfWV9fL83NzUP+va6uTpqamkZcr5Dy8nLxeDxD/r2yslLa2tqSLj9ew3XIJfP4Rz72TqdTduzYEXenXlVVlbS3t4sIHWGAhlsjAQAAACAOd955p/p7qhw8eHDIvw3XEVVXVyfV1dWD/i2ysy4VEh1dNdxorXhuEzTx+/0xO8G046ZLWVlZzPOydevWEZfZ09MT/v+mpqaEHvtkRwICdkFHGAAAAAAYeL3eIfNwxfq3VB0rUllZmbp99Cgrv98fHhmUCgUFBSnZPhAIxBwplojQ6LdYj0mi9UyFWCPckpk/LnTunU7nkA5OAKlBRxgAAAAAGAw3+ivVk+aLyJART6YRXk6nc8jIoY6OjlRXK26hurjd7iH1SmYUXSAQCHfwRd8OGnnc0eRyuYaMCkumgzTUnugEA9KHjjAAAAAAUER2wETPQZWK2/0ixepAMY0IExk6GiodKyaORHSHTuRjmahQJ1plZWVG3QYYa1TYSDr8AoFAuBM01atsAvgTOsIAAAAAQBHq1Kiuro7ZCZPKzrD169cP+t3lco2o02csRkfFcscddwz5t1ijueIRepxjlTmWXC7XkM7K9vb2mCtKakJ/n9vtzqiOPiDb0BEGAAAAAIpQB0WoAye6IycVKyGGRN8WGc9oMJGhI8AypSMl1lxX2oT3w2ltbZVAICBlZWVJrYgZEggEpL6+XkpLSyU/P18cDofk5+dLVVVVwnUTid25l+iosNBtkZnW0QdkGzrCAAAAAGAYkR0woc6lVHTsxBIIBIbcGhnPCpCxbqdcsWJF0vVJlVidRImOCgt1No50NFn0sfPz86W1tVUKCgrC5zZ022Z5ebmUl5cnNKIrsn2EJDJS0OPxhDszh1shFEBq0BEGAAAAAMMYrgMmujMsFZPmx+pMi2dEWPSx3W53SkZNpUqyE8qHOoli3YKYqPLycmlubpampibp7e2Vjo4OaWtrE5/PN+hx9Hg8UlpamlDZ0W0kEAjE3RnGJPnA6KEjDAAAAABi0DpgoiczH8mcUNGiV3qMp9PH4/EM6WyJntA/E8S63S/eWwdTNRqspqZGPB6P1NXVSV1d3ZC8urp6UEeU3++X5ubmuMuvrq4eMjdbPLfNRi4gwCT5QPrREQYAAAAAMWgdMLFGXSU7af6GDRsG/V5eXq5uH7qNL1JbW1vGzA8Wye12x5xQ3rS6Zei201hzjSXC6/XGNdl+9LlOdJ6vkdw2GzlJfiaN5AOyFR1hAAAAABAlng6Y6NE7iXaaRB8vekRZdIdWaA6x+vp6KS4uHjR/mNPplI6OjoyeXypWh6JpxFQoT3YC+dCxy8rK1BU1XS7XoDxytFY8YtXT9DeGbotkNBgwOugIAwAAAIAooc4LbRRS9K1wiXaaRIq1X1VVlTgcjvBPfn6+lJaWSnNzc3gkldvtDs93lez8Wek23ITyw91SGjnHVjKjwSJHZZlG2YmILFq0aNDv0besamJ1nEZOhB/N6/WGM+YHA0bH+LGuAAAAAABkksgOGNNIpOXLlw+6JbKlpWVEo7JizQ9WVVUlPp9PAoGA9PT0SEFBgTidTpkxY4a43W5ZtGiROropEzU1NQ1ZCfPOO++MOWoqshMsmb8z8tbE+vr6hOca27p1a0Lb19fXD7lNtqmpKeaCCqFRhJk8kg/INnSEAQAAAECEUCdGZWWlsQMmutMjcoL9RETPI1VTU5OVnSOhxzRyFFhoFcdooU6iZCfJj+xkrK6uTng1yIKCgoS2Dy2uEHlOW1tbpampadgRhMne+gkgfnSEAQAAAECEUAdMPJ0TLpdL3G63eL3e8L8NN/pnOLEmU8/02xyTcccddwzp3Gpubh60kmNoFc7KysqkJ/+PvC2xvLx8VDoY6+vrh5zX1tbWQX9jaHGEUBsCMDqYIwwAAAAA/ijUAZPICn7RHWaJrh4ZfVtk9ITt2aaurm7I3xe90EAinZEmkaPPenp6ki4vHrHmQ4v+G0Oj4JgkHxhddIQBAAAAwB+NpAMm1i2UiXSGRU+Un423REaLnhg+cl42r9crXq83oc5ITWTnl8/nS7q8eEWPeov+G5kkHxgbdIQBAAAAgPypA8bpdCbcGRXdmRHvrZGBQGDIioLxrGxodbE6GkMjpEIdSKmaNytyjq9Yt6GmS6xJ/kN/Y+Qk+dk8+g/IRHSEAQAAAIAkdzte9O1toU41k9A8UZGyeX6wEKfTOaTz0O/3S3Nzs3g8HnG5XCkbGRfZ0eT1egfdKplusf7G9vb28ChAbosERh8dYQAAAABsL3IFv5HcqhZaKTBS9JxQsUTPD5YNnWDxdjTFWg0y9G/JrhQZKXqurlidj5r29vYR1ydWp2pVVVW4XtlwvgGroSMMAAAAgO2FOq1i3c4Wr+jRPaGJ9zXRt+qFOknsYLhRX7FGi0VLZFRX9K2modsT4xEIBOTWW28d8cgt7W9hNBgwNugIAwAAAGB7oUnMkxmJlOik+bFu08uGEUKhyenj6ayKNWJqpJPHD3e85cuXD/rd7/fHfZ6XLFkScwXIRAx3LCbJB8YGHWEAAAAAbK21tVUCgUDSHR4iiU2av379+kG/O53OpI+fCUKT/0cvAhBLrJUh45mjLXIlSO3fRD56XKM7GJubm6W5uXnY8gOBgJSWlorX601oBFkssW6BLCsrY5J8YIzQEQYAAADA1qJXK0xGdCeO3+8fdqXC6NFikasbWllk5582Ii4ksqMp3ltT29rahvxb9Hxrw9UppL6+XkpLS6W9vV38fr8EAgHxer1SX18v+fn54vV6pa2tLSWdk9FtK5VzoAFIzPixrgAAAAAAjBWPxxMeuZSuOZuampqGjAiqqakZcitfqNPMqrdHhm45jFwtM/SYarcBhkbixXvLYmtra8wOtvb2dmlubo7ZmeZyuaSlpSXm6p7DzcvW0tKSspUrI//GWCPUAIweRzAYDI51JQAAAABgLJSXlw87YiuVfD6fuFyu8O12mlBHSaxRT6MhEAhIfn5++PfOzs4hty9Gam1tlfr6euOcYC6XS3w+X8ysvb1dWlpahh3V5ff7pbS0NO5J8p1Op3R2dg4ZzdXa2mrs8Ax1mqW6syp07Lq6uqRvt4ylvr4+fLun9lgDdkdHGAAAAAAgLNGOMKsJBALS2toq69evD98S6XK5xO12S3l5eVonsc/Pz4/ZQZcKdIQB8eHWSAAAAACAbTidTqmrq5O6urpRP3Zvb++oHxPAYEyWDwAAAAAAAFugIwwAAAAAMKyenp6xrgIApAwdYQAAAACAYYVW1URmi3chAcDumCMMAAAAADCs+vp6cblcsmjRokH/7nQ6x6ZCGNLptXXrVmltbR2bygAWQ0cYAAAAAGBYgUBAysvLh/x7tq0maRXNzc1SX18/1tUALMsRDAaDY10JAAAAAAAAIN2YIwwAAAAAAAC2QEcYAAAAAAAAbIGOMAAAAAAAANgCHWEAAAAAAACwBTrCAAAAAAAAYAt0hAEAAAAAAMAW6AgDAAAAAACALdARBgAAAAAAAFugIwwAAAAAAAC2QEcYAAAAAAAAbIGOMAAAAAAAANgCHWEAAAAAAACwBTrCAAAAAAAAYAt0hAEAAAAAAMAW6AgDAAAAAACALdARBgAAAAAAAFugIwwAAAAAAAC2QEcYAAAAAAAAbIGOMAAAAAAAANgCHWEAAAAAAACwBTrCAAAAAAAAYAt0hAEAAAAAAMAW6AgDAAAAAACALdARBgAAAAAAAFugIwwAAAAAAAC2QEcYAAAAAAAAbIGOMAAAAAAAANgCHWEAAAAAAACwBTrCAAAAAAAAYAt0hAEAAAAAAMAW6AgDAAAAAACALdARBgAAAAAAAFv4fzkVLiLiI/CHAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1200x900 with 2 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# fig = plt.figure(figsize=(15, 7))\n",
|
||
"ax = sns.heatmap(\n",
|
||
" effs,\n",
|
||
" robust=True,\n",
|
||
" square=False,\n",
|
||
" cmap=colormaps[\"rainbow\"],\n",
|
||
" xticklabels=False,\n",
|
||
" yticklabels=False,\n",
|
||
" vmax=1,\n",
|
||
" cbar_kws={\n",
|
||
" \"label\": \"Efficiency\",\n",
|
||
" \"pad\": 0.005,\n",
|
||
" \"shrink\": 1,\n",
|
||
" \"ticks\": [0.2, 0.4, 0.6, 0.8, 1.0],\n",
|
||
" \"aspect\": 15,\n",
|
||
" },\n",
|
||
")\n",
|
||
"ax.set_ylabel(f\"$P$ [MeV]\")\n",
|
||
"ax.set_xlabel(f\"$\\Delta P$ [MeV]\")\n",
|
||
"ax.patch.set_edgecolor(\"black\")\n",
|
||
"\n",
|
||
"ax.set_yticks([0, 19, 39, 59, 79, 99], [0, 20000, 40000, 60000, 80000, 100000])\n",
|
||
"ax.set_xticks([0, 19, 39, 59, 79, 99], [0, 2000, 4000, 6000, 8000, 10000])\n",
|
||
"ax.invert_yaxis()\n",
|
||
"# ax.set_ylim(0, 59)\n",
|
||
"# ax.set_xlim(0, 59)\n",
|
||
"\n",
|
||
"ax.patch.set_linewidth(2)\n",
|
||
"# ax.set_yticklabels([])\n",
|
||
"# ax.set_title(\"EndVELO to EndUT $x/X_0$\", size=35)\n",
|
||
"mplhep.lhcb.text(\"Simulation\", loc=0)\n",
|
||
"plt.show()\n",
|
||
"# plt.savefig(\n",
|
||
"# \"/work/cetin/Projektpraktikum/thesis/Efficiency_PdP_Velo_hist2d.pdf\",\n",
|
||
"# format=\"PDF\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 58,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(array([6.4927e+04, 8.7210e+03, 5.4020e+03, 4.0560e+03, 3.3500e+03,\n",
|
||
" 2.8240e+03, 2.3990e+03, 2.0600e+03, 1.8280e+03, 1.5610e+03,\n",
|
||
" 1.5130e+03, 1.3480e+03, 1.2090e+03, 1.1250e+03, 1.0270e+03,\n",
|
||
" 9.3000e+02, 9.0200e+02, 8.2300e+02, 7.8100e+02, 6.7500e+02,\n",
|
||
" 6.8700e+02, 6.5400e+02, 6.6000e+02, 6.2300e+02, 5.3100e+02,\n",
|
||
" 5.1900e+02, 5.1200e+02, 4.4000e+02, 4.7200e+02, 4.6700e+02,\n",
|
||
" 4.1100e+02, 4.1300e+02, 3.7700e+02, 3.4600e+02, 3.5400e+02,\n",
|
||
" 3.3100e+02, 3.3400e+02, 2.8600e+02, 3.0600e+02, 2.8800e+02,\n",
|
||
" 2.7000e+02, 2.8100e+02, 2.5100e+02, 2.2500e+02, 2.7100e+02,\n",
|
||
" 2.3000e+02, 2.4100e+02, 2.1700e+02, 2.2900e+02, 2.0700e+02,\n",
|
||
" 2.2500e+02, 1.8500e+02, 1.9000e+02, 1.8600e+02, 1.9100e+02,\n",
|
||
" 1.9900e+02, 1.8400e+02, 1.8500e+02, 1.7200e+02, 1.5700e+02,\n",
|
||
" 1.5300e+02, 1.7100e+02, 1.3700e+02, 1.5200e+02, 1.4500e+02,\n",
|
||
" 1.4600e+02, 1.2900e+02, 1.3900e+02, 1.4300e+02, 1.3700e+02,\n",
|
||
" 1.1600e+02, 1.2200e+02, 1.2600e+02, 1.1900e+02, 1.1800e+02,\n",
|
||
" 1.3100e+02, 1.1400e+02, 1.0700e+02, 1.1700e+02, 1.1700e+02,\n",
|
||
" 1.1500e+02, 1.3000e+02, 8.7000e+01, 1.0300e+02, 9.9000e+01,\n",
|
||
" 1.0100e+02, 7.7000e+01, 8.6000e+01, 1.0500e+02, 7.6000e+01,\n",
|
||
" 8.5000e+01, 8.6000e+01, 7.4000e+01, 8.6000e+01, 7.9000e+01,\n",
|
||
" 6.8000e+01, 7.1000e+01, 7.9000e+01, 6.9000e+01, 6.3000e+01]),\n",
|
||
" array([ 0., 100., 200., 300., 400., 500., 600., 700.,\n",
|
||
" 800., 900., 1000., 1100., 1200., 1300., 1400., 1500.,\n",
|
||
" 1600., 1700., 1800., 1900., 2000., 2100., 2200., 2300.,\n",
|
||
" 2400., 2500., 2600., 2700., 2800., 2900., 3000., 3100.,\n",
|
||
" 3200., 3300., 3400., 3500., 3600., 3700., 3800., 3900.,\n",
|
||
" 4000., 4100., 4200., 4300., 4400., 4500., 4600., 4700.,\n",
|
||
" 4800., 4900., 5000., 5100., 5200., 5300., 5400., 5500.,\n",
|
||
" 5600., 5700., 5800., 5900., 6000., 6100., 6200., 6300.,\n",
|
||
" 6400., 6500., 6600., 6700., 6800., 6900., 7000., 7100.,\n",
|
||
" 7200., 7300., 7400., 7500., 7600., 7700., 7800., 7900.,\n",
|
||
" 8000., 8100., 8200., 8300., 8400., 8500., 8600., 8700.,\n",
|
||
" 8800., 8900., 9000., 9100., 9200., 9300., 9400., 9500.,\n",
|
||
" 9600., 9700., 9800., 9900., 10000.]))"
|
||
]
|
||
},
|
||
"execution_count": 58,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"dP_Velo_recoed = file[\"07_long_electrons_EndVelo_dP_reconstructed;1\"].to_numpy()\n",
|
||
"dP_Velo_recoable = file[\"07_long_electrons_EndVelo_dP_reconstructible;1\"].to_numpy()\n",
|
||
"\n",
|
||
"dP_Velo_recoed"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 57,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABL0AAAOWCAYAAAAKjeDaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDeklEQVR4nOz9XXBbZ57f+/4gv0zv3WkSpPZJRSGr2lwcXZ1TM+Ii5UoqORdjAnZXzVyctADKU7unUmdbBOzJRRL1iBSdXPTFiSXQ3epxcnpsQHZNsjuVRARlnz21J9UtQPaM3dOTHhOQXenJTRtL6rPF5lxsgxCdVOQjmetcqIEBQLwsAAtYC8D3U8USKS4868EbQfz4f/5PwLZtWwAAAAAAAMAIOeb1BAAAAAAAAAC3EXoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEjrlQqeT0FAAAAAAAGjtALGEH5fF7r6+uamprS6uqq19MBAAAAAGDgHvd6AsC4yefzunbtmvL5vCzLUrFYVKlUUjAYlGEYmp6elmmaCofDCoVCRy4fjUZlWZZyuVzl/0qlkrLZrK5du6ZsNkt1FwAAAABg7AVs27a9ngSGSyqVUjwe7/hypmnWBDXdCgQCHV8mGAxqf3+/4fei0ai2t7c7HjOTyTQMpRoplUq6dOmSNjc3Oz6PaZoKhUKan59XJpPR9vb2kduyHITl8/kjl49EIkqn0x2fFwAAAACAYcbyRnQsFotpf39fuVxOkUik5bGhUEiZTKZyvBts21ahUFAymVQwGGx6nGEYSiaTKhQKTQMvSUqn09rf33cUYq2trSmXy2l/f99x4FVeZlgfeJXDqPJ45euVyWQUi8Uq1y2fz2tzc1PxeLwSztVXcpXHsW1bhmE4mhcAAAAAAKOMSi/0LB6PK5VKHfn/QVQYWZal+fn5ht/b399vGYo1s7i42LBiKplMKhaLdTS3cDgsy7Jq/j8WiymZTDoaY3NzU+vr60f+3zAMFQqFhpepvz+o9AIAAAAAjCMqvdCzZksdu1kC2SnDMGSa5pH/j0QiXQVeUvN5dxJ4ZbNZzc/P1wRewWBQuVzOceAlPaosKxQKR65LsVhseplurzcAAAAAAKOE0As9a7acblDL7Bqdp5dzN7psJ0FSPp9XOBw+cvmbN282DOiczOf27ds1c6BRPQAAAAAArRF6oWfNAqHp6enBTsQHLMvS8vLykf9Pp9NdBV5l5SqxUbO9vX1k+Sf+Wjab9XoKAAAAADC0CL0w9BqFa8ePH3d1PKcBXjQaPVKFFYvFHDe9b8UwDK2trfU8ziDk83nF43HNz88rEAhoampK8/PzWlxcrOyWub29rdXV1bbBTjabrVx+1EMgy7KUSqUUDocVCASOVAx6bZzuCwAAAADD73GvJwCMimw227ABfiKRcO0cGxsblV0gS6WS7/p3lUolra6uVnaZNAyjssOnZVnK5/PK5/OV75cv00o5SCyVSorH400b+A8zy7IUjUZlWZavl66Ow30BAAAAYHRQ6QW4pFED/F4a6jcSDAY7aqg/aOUqLunRbpeFQkHpdFrpdFq5XE6FQuFI1Vu74GQclskahqFcLqf9/X1fV/ONw30BAAAAYHQQegEuyGazDXtTbWxsuH6uaDQqqfUOjq1ks1lFo9GapYfhcFipVKqneW1ublaWvK2trTUM5wzDUCaTqal+a9fTK5lMyjAMGYahdDrd0xyHgd+WNFYbt/sCAAAAwHBjeSPggmYBQC/N65sJhUJKJBIdV92USiUtLy8fWYJZKpWUzWaVzWaVSCS6brp/6dKlyueNqt6qra2t6dNPP9Xm5mbb8C4UCo3VMjqvqqni8biSyWTLY8btvgAAAAAw3Kj0AlzQqKm3G83rm1lbW+to2aRlWZqbm2vYc6z+uMXFxY6blHfTiyqRSMg0TXZv9IFUKtVzpR8AAAAA+A2hF9Ajy7IaBjf9qPLqRqlUqjQgj0QiSiaTyuVyymQyTftHhcPhjsKo+sDLaWi2sbHh68bt48CyrLaVeQAAAAAwjFjeCPSoWTg0Pz8/4Jk0Vg6gMpnMkeqzUCikeDzeMOSKRqPK5XKOzmEYRs3X6+vrWllZaVuNVt7Z0Y87UY6DUqnk6x5iAAAAANALKr2AHjULvfy0012jwKus3Fy+Xj6fd1yxFQwGa0KrUqmkxcVFR9Vitm0TeHmg3OON5aUAAAAARhWhF0bS+vq6AoFAVx+Li4sdnavZ8jy/BDnBYLBtfzHDMGp2VCxr9H/N1B9rWZbm5+dd6RWVz+cVj8fbVs+VSiWlUiktLi7WnLe8hG9qakqBQEDz8/Pa3Nw8cnnLsrS+vl7Z2XJ+fl7xeLzhfVw+T/3jp144HK6MV/3h5rLOVCpVc56pqSktLi42vI7So9uzUY+36vk1u62d3hdlpVJJm5ubCofDldu/PL/19XVHoZtlWdrc3NT8/HzNnKvvg/n5+coyXgAAAACQJNmACyQd+djf3x/IuWOxWMPzu/lhGEbH589kMgO5/vXW1tZq5hEKhRxfNhgMHrkenQiFQg1vC9M07Vwu19FYuVzOjsViNXMKBoNHjtvf37cTiYRtmmbNOZPJpG3bR2+P6o9YLFYZp9VxhmE0fTzX3//NJBIJR8+PXC7n+PZPp9OV2yWdTteMYRhG07nv7+/buVzuyJxyuVzNR/V4Tu6LeslksnJ8IpGwc7mcXSgU7HQ6XXN/RSKRI5fd39+319bWKtejeo77+/tH7u/qeRUKhbZzAwAAADD6qPTCSIrFYsrlcl19JJPJjs7VrKLLLxUnnVScNaoIa7fjY7VMJlPp01U/xuLiouNKHMuydO3aNcfVRKZpHmnGnsvltLi4qHw+r3Q6rUKhoP39/Zrm/alUSvl8XuFwWNlsVplMRvv7+9rf31cmk6ncdpZl6dKlSw3PHY1GHc2x0e3Si2w2Wzn3xsZGzfimaSqdTkt6NPfV1dWaywaDQZmmeWSzhfL/VX+v0/uibH19XfF4XMFgUIVCQWtrazJNU4ZhKBKJKJfLVea8vb2t+fn5msdGsVhUOBw+8pjc2dnR3NxcZVluoVBQMpms3FelUonG/AAAAAAe8Tp1w2iQzyq9EolE1+PVV9qoTaVXfbVM+aNcaTRo9RVLjapomilXDvV6PZrdJt2MWT1Wu+qi+uqfZtV29RVp1RVf1apvj2bnzmQyjiqz9vf3Xa30ikQibR/v7cZxOvcyp/dFdYVXu/u6upKrWVVi9RyDwWDD+7X+sTuonz8AAAAA/ItKL6BHfq/06kT9LoxSd9djbW1N+/v7TaubyjtGOhm70Zyaqd48IBaLNe1lVr9jYbPqvur5l0ol396nzR6D1f/vRsN6p/fF+vp65fyxWMzRsdKj6rVGmydUX4+rV682vF/rH2s7OzuO5goAAABgdBF6AT1qFgQUCoUBz6R3jcKTTz/9tOux0um0crnckWV00qOAY3l52dUgyelSzur7rJPln37a6fDq1atKJBJKp9NtgyVpcCFsKpWqnMtJSBaLxWrug042T6hXfT4/3VcAAAAAvEHoBfSoWTVRo4oVv2sUUhw/frynMU3TbNorLZ/PH+k3NQjd7qxZLBbdnUgPgsGg1tbWmvZQ66QXm5symUzlc6eVYdXPoWF83gAAAADwJ0IvwAWNKpksy/LtcrhOdLK8sJVYLKZCoXAkcNre3vZ10NFtQDZolmUplUopm802bFI/yHl0qv4xNgrPGwAAAADeI/QCXHD27NmG/+/nMKeZ+pDHrdCrPFYulztyjk53zMRfK+8+mUwmW/YxG5TqwMppAFa/M6SfKuoAAAAADC9CL/hePp9XNBr1ehotNeupNIxhTn2VTbuKoWw2q8XFRcfjG4ahq1ev1vyfV0vxhl08Htfi4qIMw+ipF5abummeX70BgeRu0AoAAABgfBF6wfdWV1d9v9wpGAw27K2UzWaHKtCpv52dVA0ZhqF8Pt9RVVv9bUXT8c7F43GlUilJvTV/d1t1YOV0x8vqyi4CLwAAAABuIfSCr5VDo3A43PQYt5dCdTtes+BhfX29l+k01K8QcGdnp+breDze9jLlkMLJsc141X9qkNx8nObz+UrgZRiGr/qO1S/1Lc+zleqdThuFxwAAAADQDUIv+FapVKosa+z0jfCnn37q6lycBBbNlphls1ltbm66NhfLsrS4uNhTyNRM/c57Tm93wzBkWZbjgK++sqtZT7RhUL80r1kg6WY1W3VVXatxvaiQjEQiNSGckyW+1ddnY2OjH9MCAAAAMIYIvdCzfryxLpVKWl5eVqlUUjAY7HjJk9tzcjre2tpawyWB6+vrrjS1z2azlabf/VjStr29Xfm8k35k5ftnc3PTUWVP9diGYWhtba2DWTbn9H6qPq7dZdp9v75KrdH1bxQIuln5VX2/lTk5X/3zqj5A6/Z5VN2zzbKslo/9fD5fWQKcSCR8VbUGAAAAYLgRernAsiyFw+GGbzz7YXNzU+FwWFNTUwoEApqfn1c0GvVsp8BmlSbdvqkvN0YvvxFeWVnp+Py9BAq9VuRkMpmGFVLhcLjriq9SqaR4PK5wONx0B8RWl3UilUpVrnunuwBWhyfxeFzxeLzpeVOpVM3tUF1d1kj1fel1b7dm56++rdbX1xWPx5XNZrW9va14PK75+fkjgY7T502jc9YHbdFoVJubm5Wqwvn5eVmWVXO/JJNJZbNZra+vV8asD73K95tlWTU9wxrNrdV9EYlEakLZaDTa8PhSqaTV1VVJjx5zzcJPp/d79W3q9WMFAAAAgA/Y6Nr+/r4diURsSbYkO5lM9vV8mUzGDgaDtiQ7FArZmUzGLhQKdjqdtg3DqPz//v5+X+dRLxaLVW6D6o9QKGQXCoW2l9/f37czmYy9trZWuR7VH+l0uullC4VCw3NL6vp2ME2z4Xid3r9ra2sNxzFN085kMo7G2N/ftxOJRM393u561Z83GAy2PU/17RgKhRzNrVoymWx4XSORiL22tmYnk0k7FovV3L9OHx/190ezx8P+/v6R27mZ6udtq/s2k8nUHBeLxZqeu3wf1X8Eg8HK/V19jGmadqFQOHJ/Op1b/XHVH4lEwrbtxs/NSCRSM06zx2mj6+r0vihLp9OV6xwMBu1kMmkXCgW7UCjYyWSy8ngoz7cRp/dB/XHdPI4BAAAAjBZCry7s7+83fKPYz9Cr+g1dszd95TekhmEMJPjK5XIt33i79dHouuzv79vJZLJp0FC+HZLJpOPbIpfL2aFQqOVc1tbWHAU1ZZlMpmmIFgwG7UgkYieTSTuTydi5XM7OZDJ2Mpm0E4lEzeWCwWDbgKGsURBoGEbToK06mKgPRDq5nuU5ptNpOxaL2aFQyDZNs+Y+Kl/ndqFf+bHV7P41TbMSlLQ61jAMOxKJVB4D9cFbfUhSHjOTyTR9LBiG0fA5uL+/XzO+aZr22tpazTHl/6t/DJUD9FbXt9E5E4lE5XyGYdhra2s1j/f9/f3K9ai+zepVB86madY81jq5L5pJJpN2KBSqCcDKl2v2/Gz1fKy+DwqFQsvj2s0NAAAAwOgK2LZtC45tbm4qmUzKMIwjywmTyaRisZjr5yyVSpqbm1OpVJJhGDU7nVWzLKvS7ykUCrVdNtatVCrVlybqjZimqVwuV/N/gUCg43GCwaD29/cbfi8ajXa1NDWTyTheAri9va1Lly5Vlmw6ZRiG4vG4YrFYR72Oyj2k6q9XMBjU0tKSgsGgSqWSdnZ2Kn3T0ul0R0saAQAAAADwM0KvDpQDi3I/nfrwp1+hVzgcrgRs7c5RHeD0az7oXqlUUjab1bVr12RZVqV/kvQo4Co37T99+rQikUjHDfzbna98zvJ5lpaWFI1GCbsAAAAAACOH0KsH+Xxei4uLla/7ETJVV29J0v7+fsuKn+3tbUWjUUmtq5sAAAAAAABGGbs39qCT5Wbdqt4BLRQKtT1n9a6BpVJpYDtKAgAAAAAA+Amhl8+lUqnK5+Vlle1UL4m7du2a63MCAAAAAADwO0IvH6tven769GlHl6sOx6j0AgAAAAAA44jQy8fqd4d02tS8/rhOdwwEAAAAAAAYdoRePvbhhx/WfO20h9jx48drvt7Z2XFrSgAAAAAAAEOB0MvHLMuq+brbSq9CoeDanAAAAAAAAIYBoZeP1Yde3SqVSq6MAwAAAAAAMCwIvXys27CqfhlksVjsfTIAAAAAAABD5HGvJ4D+c7PS68tf/rL++3//77JtW8eO9Z6ZfuUrX9Hf+Bt/w4WZAQAAAACAbvzX//pf9dlnn/U8zuHhoQKBgP6H/+F/0H/7b//NhZn1htDLx4LBoCuBldMG+E7cv39ftm1LevRg7tW9e/d07969nscBAAAAAADes21b9+/f93oakkY09Lpz547y+byCwaCWlpY0MTHh9ZS6Mj097UroNT093ftkfumxxx6rhF1+qvTa29vT4eGhjh07phMnTvQ83iAN89wl5u+lYZ67xPy9NMxzl4Z7/sM8d4n5e2mY5y4xfy8N89yl4Z7/MM9dYv5e8mLublZ6SY+yAz8YqdDrzp07ikajyufzNf+/uLiodDqtr371qx7NrDvdVmjVB2VuVnr9zb/5N7W7u6uZmRndvXvXtXF7NTs7q93dXZ04ccJX83JimOcuMX8vDfPcJebvpWGeuzTc8x/muUvM30vDPHeJ+XtpmOcuDff8h3nuEvP30ijM/W/+zb/p9VQkDUEj+2effVanT5/WyZMndfLkSR0/flxnz549ctytW7e0uLiofD4v27ZrPnZ2djQ/P6/33nvPg2vQvaWlpZqvnVZ91Teun5+fd2tKAAAAAAAAQ8H3oVcwGFQul9Onn36qWCymnZ0dXbt2reaYe/fuaXl5Wfv7+5KkQCBQuWwoFJJhGDo8PFQ0Gh34/HuxuLhY87VlWY4uVygUar4OhUKuzQkAAAAAAGAY+D70yufzWl9fV7FY1IULFzQ3N3fkmNXVVZVKJQUCgUp1VyKRULFY1I0bN/TJJ5/oxo0bOjw81Msvv+zBtehOfaWX09CruiIsGAzKMAw3pwUAAAAAAOB7vg69Xn31VZmmqUuXLjU95vr169re3q4EXoFAQIlEQhcuXKg5LhQK6fLly8rlcv2etmtM06zpx/Xhhx86utzOzk7l8/rgDAAAAAAAYBz4OvRKpVJtK7NWV1cryxkDgYBM0zwSeJWdPXu2JhAaBisrK5XP6xv0N1N93Pr6uutzAgAAAAAA8Dtfh16FQkGnTp1q+v2XXnqpspTPtm1J0tWrV5sePzk5WTluWMTj8crn2Wy27fHVxxiGQT8vAAAAAAAwlnwdehmGoTt37jT83q1bt5RMJmuWNcZisZYh2a1bt1xd7ud0N8VWUqmU1tfXm/brMk2zJrja3t5uOV46na58TpUXAAAAAAAYV497PYFWDMNQKpXSK6+8UvP/9+7dq9mJMRAIyDAMvf766y3Hu3nzpqtBUH1Q1WkIFg6HK5VZm5ub2t/fr+nhVZZMJjU/Py9JunTpkiKRSMPxSqWSUqmUpEc9zGKxWEfzgTfOnz+vg4MDTUxMeD2VrjB/dGvYb/thnv8wz33YDfttz/zRrWG/7Yd5/sM892E37Lc988coCNg+Xu+3vb2tlZUVXbx4URcvXpT0aPne+vq6CoVCTZVXLpdrW+UVCoX06aefujK3UqmkxcXFmuDLNM2OGuWXe5GVJZPJpkHV9vZ2JehLJBJaW1s7cszi4qLy+byCwaBu377dMEDr1ezsrHZ3dzUzM6O7d++6Pn63/DovoJ943GNc8djHOOJxj3HFYx/jaJgf936bu6+XN0YiES0vLyuRSGhqakpTU1OKRqM1gZckvfHGGy0DrzfffNOV3lalUknRaFThcFhTU1NHKr3y+bwCgYDC4bCi0WjbxvP1oZRhGE2PjUQiymQyCgaDWl9fr4xfKpWUzWYrgZdpmn0LvAAAAAAAAIaFr5c3So8qnM6dO6fr16/X/L9t2woGg7p69arOnDlz5HIfffSRrl27pu3tbVmWVakIe+edd/QP/sE/6GouwWCwpmdWr9LptOLxuIrFomKxWNtgLhQKaX9/X5ubm7p27ZqWl5dVKpUUDAa1tLSkdDrddOkjAAAAAADAOPF96DU5Oal0Oq2bN28qk8lUlu+dPn1asVhMk5OTRy5z9erVSjg1Nzenubm5yvf+4i/+ouvQy22hUEiFQqHjy62trTVc3ggAAAAAAIBHfB96lS0vL2t5ednRsaurq1pdXe3zjAAAAAAAAOBXvu7p5baPPvrI6ykAAAAAAABgAHwfet25c8e1saj+AgAAAAAAGA++D73i8bgr49y+fbvtbooAAAAAAAAYDb7v6WVZlivjrK+vuzIO/On8+fM6ODjQxMSE11MBBobHPcYVj32MIx73GFc89jGOeNy7J2Dbtu31JFp57LHHVCqV9JWvfKXrMb797W9rbW1NgUBAX3zxhYuzGz+zs7Pa3d3VzMyM7t696/V0AAAAAACAT/gtM/D98kbbtnuq0trY2KDKCwAAAAAAYMz4PvSSpGQyqffee6/jy509e1abm5vyeTEbAAAAAAAAXDYUoZdt24pGo/rss88cHX/nzh2dPHlS29vbsm1bgUCgzzMEAAAAAACAnwxF6BWJRFQsFrW8vNz22OvXr2t+fr7SAD8QCMi2bUUikX5PEwAAAAAAAD7h+9ArFAppa2tLOzs72tnZ0fPPP9/02I2NDa2srFSWM9q2rcnJSeXzeW1tbenMmTODmjYAAAAAAAA89LjXE2jHNM3Kvzs7O1paWpJhGHrllVcqxxwcHGh5eVn5fL6ynNG2bYVCIaXTaU1OTkp6FIoBAAAAAABg9Pm+0uvy5cuVz03T1NbWli5fvqy33npLknTr1i3Nzc0dCbwSiYRu3LhRCbwkaWFhYeDzBwAAAAAAwOD5PvSqF4lE9MYbbygWi+mll17S0tKS9vf3K9+fnJxULpfThQsXjlz229/+9iCnCgAAAAAAAI8MXeglSbFYTL/3e7+nZDJ5ZDnj7du3m1Z0ZTKZAc8UAAAAAAAAXhjK0EuSEolEpTG9bdva3Nw8spyx3s7OzqCmBwAAAAAAAA950sj+3r17unnzZs/jPP/887p586bi8bgMw9Dbb7/d8LhisahkMqlSqdTzOQEAAAAAAOB/nu3eGIlEFAgEXBlrc3Oz7THlZZAAAAAAAAAYfZ4sb5ycnJRpmrJtu+cPSY6OAQAAAAAAwPjwrKdXKBSSpJ6rr5yEWgRfAAAAAAAA4yVge5QI3bp1S4uLiwoEArpw4YLm5+c1PT3t+nmKxaJKpZLeeOMN3blzR1988YXr5xgns7Oz2t3d1bFjx3TixImWx54/f17nz58f0MwAAAAAAEC/XLlyRVeuXGl5zN7eng4PDzUzM6O7d+8OaGbNedbTa2FhQcFgUJubmzp37lzfz3fmzBmdPHmy7+cZF4eHh9rd3W15zMHBwYBmAwAAAAAA+ung4KBtDuA3noVe0qMljoZhDORchmFobm5uIOcaB04qvSYmJgY0GwAAAAAA0E8TExOamZlpeUy50ssvPA29zp4925cljc1EIpGBnWvUnThxwheligAAAAAAoP+ctDAqt0TyC09DrzNnzgz0fJcvXx7o+QAAAAAAAOANz3ZvBAAAAAAAAPplaEKvd999VxsbG3rzzTfbHnv9+nWdPHlS77zzzgBmBgAAAAAAAL/xdHmjU2fPntX29nbl63v37umb3/xm0+PPnDmjubk5hUIhXbp0Sel0Wl/96lcHMVUAAAAAAAD4gO8rvV566SWl02nZti3btiVJN27caHs50zRlWZZ+9rOfaXFxUR9//HG/pwoAAAAAAACf8HXode/ePSWTSQUCAQUCAUmSbduKRqOOLh8MBpXL5VQsFgm+AAAAAAAAxoivQ69Lly5JehR0TU5OKhaLqVAo6Ny5c47HMAxDq6urOjw8dByWAQAAAAAAYLj5OvTKZrOamppSJpNRsVjUG2+8obm5uY7HefbZZyVJhUJBb731ltvTBAAAAAAAgM/4OvSyLEsbGxtaXl7uaRzDMCqfb21t9TotAAAAAAAA+JyvQ69SqVQTWHWrWCxKerRMcmdnp+fxAAAAAAAA4G++Dr0Mw6gEVr3IZDKVz0ulUs/jAQAAAAAAwN98HXqZpql0Ot3zOKlUqrL7YzAY7Hk8AAAAAAAA+JuvQ69YLKZsNqv33nuv6zHOnj1bqe4KBAJaWlpyaXYAAAAAAADwK1+HXqFQSKdOnVIoFOo4+Do4ONDZs2eVTqcVCARk27YkKRqN9mOqAAAAAAAA8BFfh16SdPXqVdm2rVAopK997Wttw6+DgwO99NJLmpqa0vb2duX/A4GADMPQuXPn+j1lAAAAAAAAeOxxryfQjmma2tra0srKijKZjDKZjILBoAzDqHxIkmVZyufzsixLkiqVXeUqr0Ag4Ep/MAAAAAAA+iGbzSqdTiubzapYLKpUKlXe98bjcUUiEUmPNmhLpVL68MMPK++FpUebwYVCISUSCfpZA5ICdjkd8rl8Pq/l5WXdu3ev0pS+XvVVKR9j27aCwaBu3ryphYWFgcx1lM3Ozmp3d1czMzO6e/eu19MBAAAAANekUimtr69X+kK7wclb7lKppGg0qp2dHV29elWhUEiStLW1pXg8XjkuEono7NmzikajikQiSiQSMgxDlmUpGo1Wwi9JyuVyMk3TtevRSDabVTQa1fT0tJLJZGXeGF9+ywyGJvSSpHv37umVV17Rq6++euR71UFY9VWKxWJKJBKanJwcyBxHnd8ewAAAAADgtnw+r2g0WllJVBaLxTQ/P9/wMp9++qlKpZKy2WzN5dq95S6VSlpcXFSxWFQul6usZirb3t4+0ps6FospmUweGWtxcbESfDU7xk1TU1OVgNAwDBUKhb6eD/7nt8xgqEKvajdv3lQmk1E+n1exWJRlWZqenlYwGNTS0pLC4bBCoRBhl8v89gAGAAAAgH5IpVI1VVamaSqXyzm6bD6f1+LioqT2oVc0GtX29rYSiYTW1tYaHrO+vq7Nzc3K183GtCxLi4uLKpVKSqfTleWQ/TI/P18J+Ai9IPkvM/B9T69mlpeXtby87PU0AAAAAAAjaGlpqevLmqapRCJRWSrZrL+WZVmVDdhaLQ1MJBLK5/PKZrMtjzMMQ/v7+y3P6aZkMlkJBumhDT/y/e6Nbrh37542Nja8ngYAAAAAYEj0GhrFYrG2x1QvP6xf1litvGyy3XFlg2piHwqFVCgUVCgU+t4/DOjGWIRek5OTymQyevrpp72eCgAAAAB47v6DB3rtRx/otR99oM8fPvR6OiMpGAw2Xa5YVt14vlVQVQ682h0HoNZYhF7So9LUXC6nl19+2eupAAAAAICnvp/P61uZjL6Vyej7VcEL3JVIJFqGVDs7O47GqW+oD8CZoevpdefOHZVKJRWLRceXyefzSqfTsm1byWRSr7zySh9nCAAAAAD+df/BA/3+jz6ofP3dD97X75imfuXxoXt76Fv5fN7Rcr/yzoftOG0QX36vXCqVZFlW3xvZA343FD/V3n77bSWTyZqSzm45/aECAAAAAKPo+/m8fnFwUPn6FwcH+n4+r3O0g3GFZVmKRqNNg6rFxcWaZY1lgUDA0fibm5s1Ozm2sr+/z3JIjDXfL2989dVXFY1Glc1mZdt21x/Sox8iNNcDAAAAMK7qq7zKvvvB+/T2ckm7Yo2rV68ql8vVNLGXpEwmo1wu1/Cj+n1sJBKp+V4mk1E6nVYymXTU5L6R7e1thcNhTU1NKRAIaH5+XuFwuLKzZCv5fF7xeFzz8/OOzlUqlbS+vq75+XkFAoHK+dbX19te1rIsbW5uan5+viY4TKVSWlxcrIwVjUY7Knjp5Ppns9nKcfUf4XC44f0fj8drLjM1NeVKUQ/aC9jlRMiHbt26VXngNppms/9vdpxhGNre3tapU6f6MNvxMDs7q93dXc3MzOju3bteTwcAAABAB67+5Cda+49/3PB7r/7mb1HtVcWyrJogxzRN5XK5tpdZXFzU9PR02yWJ9eO3qsqKRqOVAGZtbU2JRKLhcdvb24pGo47GlB4FVqurq7IsSxsbGzJNU4ZhKJvNKh6PS3q0W2Qmk6kJ1PL5vJLJpLa2tirhUjAY1P7+fsvrnEqltL6+rlAopNOnT0t6FPZV70yZTqdrQr5SqaRLly5pe3u7prdZLpeTYRhaXl5uWDkXDAYrx7h9/SUdCbjS6XTL5aSlUklTU1OObqdh5rfMwNfLG8vJ9+TkpGKxmObn5ysPtP39fa2srGhqakpbW1sNL18qlXTjxg29+eabyufzhF0AAAAAxlazKq8yenu1ZllWJQhp9v1yCDI9PT2oadWoD2ZaBV6pVErxeFymaer27ds1x8ZiMWUymUrQtLi4WAlqLMvStWvXHFd2lcXjcaVSKWUyGYVCocr/r62taXNzU+vr65VzFQqFynUpFosKh8MqlUpKpVKVy+3s7Gh5eVmhUEiJRKISVq2vr6tUKqlUKikejyuTybh6/cuSyWTNbdBus4HypgUbGxvObjC4wteVXr/6q7+qQCCgn/3sZw2/H4/H9eabb6pQKOipp55qOk48HtfPf/5z/eAHP+jTTMeH31JbAAAAAM60qvIqo9rrr9VXYnXCMAxPKr3y+bwWFxcrXzd7u19dEdbsvNlsVuFwuPJ1fVglqRJWSa0rvcoBU6u5z8/PV4KjUCjUMKyq7nsWDAaVTqePzMlJtZtb17/6fml3n5dDv1Hvs+a3zMDXPb0syzqyzrnaxYsXZdt22yZ+6+vrunHjhr7zne+4PUUAAAAA8L3PHz5sWeVVRm+v5kzTbNlHulAoaG1tzetpOrK6uipJSiQSTQOYUChUCXmCwWDDZYJOe4iVg7FWlXLVgVI2m21YOVU916tXrx4JoSQdWWJYrrCq5tb1r67asiyrZQ+0VCqlSCQy0oGXH/k69JKkpaWlpt+bm5vT8vKyksmkDqp2H6lnGIYWFha0trbW8jgAAAAAGEX1OzY284uDA/3bBv2R0J5hGEokEi37OvlBKpWq9OFqFBpVy2QyKhQK2t/f77pJfvX5SqWS8vl8w4/6MKiXRu/Vc60Pz9y8/qZp1oxx6dKlhuOUw7BWoR/6w9ehl2maKhaLLY9ZX1+Xbdu6ePFiy+NOnz4t27Z1+fJlN6cIAAAAAL72+cOH+u4H7zs+/grVXj3xe7CRTqcrn1c3jG+m27Cr0fkWFxebftSv4Gq3aYAb83Hj+lcv18zn8w3DumQyqWAw2DZkg/t8HXoZhlHTqK6RUCikhYUFJZNJffzxx02PK5c0Vj/A0b29vT3Nzs62/Lhy5YrX0wQAAADGntMqrzKqvXqztLTUc1DUT42W+w3ifO2Wh9Z/tGp15MZ83GKaZk14Vt+zrFQqKZvNjkQD+ytXrrTNAfb29ryeZg1fb8uxsrKis2fP6vjx4zpz5kylLPGZZ56pOW5jY0MrKysyTVPb29v6B//gH9R8/9VXX61sYdpuRwU4c3h4qN3d3ZbHsJQUAAAA8FanVV5lVz54X99gJ8euBIPBpjsG+kF5aV/58373mKpe2ugH/bj+iUSi0vQ+m80qn89XgrCtrS1Jj3aEHHYHBwdtcwC/8fVPsEgkoomJCa2trdU0BFxcXNRf/MVf1By3vLysmzdvKhKJyDTNSi+w+gZ4fk7ch8mxY8d04sSJlsdMTEwMaDYAAAAAGum0yqusXO31Ajs5jrSdnZ2BLbmzLGsgIVsn3Lr+oVBIpmlWim0uXbpUWWWWTCYVCoV8db27NTExoZmZmZbH7O3t6fDwcEAzas/XyxulRzsylLdZLZc55nI5ffTRRzXHVZc+5vN5pVIppVIpFQqFyuUDgYCjNbto78SJE7p7927Lj/Pnz3s9TQAAAGBsdVvlVUZvL3eUSiVFo1Gvp1FRHb4Muv1PuerJS/26/tXLF7e3t2VZlizLUj6f932fN6fOnz/fNgdoVxwzaL4PvSKRiLa2tirBlfToQXrq1Kma4wzD0I0bN2qOkx4FXYFAoHK5q1ev9n3OAAAAAOC1bqu8yujt5Y719XVftdmprmxKpVKO5mZZVtfBXfX56vtdtbK4uNiX261f1z8SidSsLEskEpUG9n7f0XOU+Xp5Y1kkEtH+/r62trZUKpWaroUNhUL65JNPFI/HdfPmzZrvmaapdDrNkjsAAAAAY+EbCwv67bpigU499ssCAnTHsiylUqmadj1ei8fj2t7ernwdjUZ18+bNpsvvLMtSOBzuuioqGo1WdjS0LEvxeLxtk/poNKpQKNSX9kT9vP6JRKISjqVSKQWDwZHo5TXMfF/pVTY5OanV1VVduHBBk5OTTY8zDEOZTEb7+/vKZDLKZDIqFAra2dnR3NzcAGcMAAAAAN750hNP6MtPPtnTx5eeeMLrq+GZXhuvW5alxcVFSao0Oe92/Prm691criwUCtVUHuXzec3NzdUEQWWpVEqLi4uKx+NdtwqKxWI14VUqlVI0Gm1YYZXNZrW4uKh8Pt9RVVgn+nn966u9SqXSyCxtHFZDE3p1anJyUsvLy1peXibsAgAAAAB0ZGdnp+brTsKm7e1tLS4uVi7TqFl6sVhs+XWz7zk9rtWxV69eralsKvcdCwQCmp+f1/z8vAKBgOLxuEKhUNNKterxW90+9ZVd29vblfOEw2GFw2FNTU0pHA6rVCopl8s1HMfpfVAdqDW6jFvXv5HqsM40TTbT85ivlzceHBxU1j8/++yz+uY3v+n1lAAAAAAAI86yrCOVRuVlbqZp6vjx45L+uil6qVTSp59+qnw+X1nKV9Zsd8D65XLJZLJhdVOpVKrsCig9qoZqtgui0zGDwaByuZzC4fCRiqvqrxOJRMvAp1GY1ah/VSgUUi6X0/Lyck0IVW72Xn1cOp1ueN3qb9dMJtPwXI2Oq78Obl3/RiKRiILBIFVefmH7WDgcto8dO2YHAgH72LFj9vXr172e0tibmZmxJdkzMzNeTwUAAAAAXJVMJu1gMGhLcu0jkUjUnCORSNimaTY81jTNyvH7+/t2JBJpOJ9gMGhHIhG7UCjYtm3bsVjMNgyj6ZjJZLLldTZNs3Ie0zTtWCxWGbteLpdrOq/669DI2tpazfU3TdOORCJ2Lpdrer5QKNTwXIZh2LFYzLZt2y4UCi2PazanTq+/E+XrN478lhkEbLtuu0MfOXbsmAKBgGzbViAQUCaT0TPPPOP1tMba7Oysdnd3NTMzo7t373o9HQAAAAAAfCUQCCgWi7Vt2D+K/JYZ+LqnV3ntayAQUCQSIfACAAAAAAC+lUqlJImljT7h69ArFoupXIh27dq1nsd76aWXeh4DAAAAAACgkUQiIdM0u97tEu7ydei1tram5eVlSdLPf/7znserb2gHAAAAAADghlQqJcuytLGx4fVU8Eu+3r1RerTTQjQaVSQS0bvvvquvfOUrXY1z+/btI7syAAAAAAAAdKJUKunSpUuSpNOnTysUCimbzSoej8s0zYa7SsIbvg+9JOmtt97StWvXZJqmLl68qGg0qomJibaXOzg4kCTt7Ox0vM0oAAAAAABAvdXVVW1vbzf83tWrVwc8G7Ti69DrV3/1V3X79u3K17ZtKxaLKRaLdTxWeQdIAAAAAACAbpVKpYb/n0wm6eXlM77u6VVuZF/+CAQCNV938gEAAAAAANCrZDIpwzAqXweDQWUyma4KdNBfvg69ylt8BgKBSuDVDSq8AAAAAACAGwzDUKFQUC6XU6FQ0P7+vkKhkNfTQgO+Xt44OTmpM2fO6Pr165KkUCikYDDY8TiWZSmfz7s8OwAAAAAAMK5Yyuh/vg69pEfVXm+//bZyuZxOnTrV9TipVEovvfSSexMDAAAAAACAbwVsnzS8Ku+0WCwWJUnT09OVHRqnp6cr/9+LY8eO6fDwsOdxxtns7Kx2d3c1MzOju3fvej0dAAAAAADgE37LDDzt6fXYY49VPqampjQ1NaX5+XnNz89ra2urctzGxkYlFOsFTeUAAAAAAADGg6fLG+uLzEKhkOLxuEKhkCYnJyv/f+HCBVfO98Ybb7gyDgAAAAAAAPzN855e5Z0VM5mMnnnmGY9nAwAAAAAAgFHg6fLGskQiQeAFAAAAAAAA1/gi9IpEIl5PAQAAAAAAACPEF6HXU0895fUUAAAAAAAAMEI8D72CweDAznXy5MmBnQsAAAAAAADe8Tz0mp6eHti5CoXCwM4FAAAAAAAA73geeg3KrVu3KjtFAgAAAAAAYLSNReh1cHCg9fV1r6cBAAAAAACAAXnc6wlYlqXnnnuuL2MXi0WVSiVZliXbtqn0AgAAAAAAGBOeh16SlM1m+zKubdt9GRcAAAAAAAD+5ovQq1+qK7sIwAAAAAAAAMaHL0KvfgZSLGnsj729Pc3OzrY85vz58zp//vyAZgQAAAAAAPrlypUrunLlSstj9vb2BjQbZ3wRepmm2bexyz294K7Dw0Pt7u62PObg4GBAswEAAAAAAP10cHDQNgfwG89DL8MwtLOz09dzWJalaDSqjz76qK/nGSfHjh3TiRMnWh4zMTExoNkAAAAAAIB+mpiY0MzMTMtj9vb2dHh4OKAZtRewPWx2dezYMc3Pz+tnP/tZ38+Vz+d1+vRpffHFF30/1yibnZ3V7u6uZmZmdPfuXa+nAwAAAAAAfMJvmcExrycwKP1cQgkAAAAAAAB/8Tz0KhaLAzvXwsLCwM4FAAAAAAAA73geepVKpYGdq9+9wwAAAAAAAOAPnodekmgwDwAAAAAAAFf5IvRKpVJeTwEAAAAAAAAjxBehVzKZ1DvvvOP1NAAAAAAAADAifBF6SVIkEtHXvvY1vfPOOzo4OPB6OgAAAAAAABhinodetm1XPm7cuKEzZ85oampKb775ptdTAwAAAAAAwJB63MuTHx4eSpLu3bsnSSoWi5Ie7ehoGIZn8wIAAAAAAMBw8zT0KpucnKz5FwAAAAAAAOiF58sbAQAAAAAAALcRegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6AQAAAAAAYOQQegEAAAAAAGDkEHoBAAAAAABg5BB6uWRzc1PhcFhTU1MKBAKan59XNBpVNpvt63lLpZLW19cVDoc1Pz9fc+5UKtXXcwMAAAAAAPgVoVePstmspqamtL6+LklKp9MqFApKJBLK5/MKh8MKh8MqlUqun3tzc1NTU1NKpVIKh8NKJpPK5XJaX1+XZVmKx+Oan5/ve/AGAAAAAADgNwHbtm2vJzGsstmswuGwJCkWiymZTB45ZnFxUfl8XoZhKJfLKRgMunLuaDSq7e1tmaapXC7X8Jh4PF6p9srlcjJNs+fzzs7Oand3VzMzM7p7927P4wEAAAAAgNHgt8xgKCq9Tp8+rd/93d91ZayDgwO9++67evvtt3Xnzp2uxymVSopGo5IkwzAaBl7So8ovSbIsq3J8rzY3N7W9vS1JunnzZtPjksmkDMOQJC0vL7tybgAAAAAAgGEwFKFXLpdToVDoeZyNjQ1NTU0pHA7r3LlzMgxDX/va1/TZZ591PFY0Gq0sWSwvbWzEMAxFIhFJjyrD3OizVT6faZptK8fK5y6VSpWgDAAAAAAAYNQNRejlho2NDSUSCUnShQsXVCwWdXh4qF//9V/XU0891VHwZVlWTZ+slZWVlsefPXu28nmrgMyJ6vOWq7haOX36dOXzDz/8sKdzAwAAAMAwuv/ggV770Qd67Ucf6POHD72eDoABGZrQq1gs6u2339Zzzz2nkydP6vjx4zp58qSef/55ffzxxy0ve/v27UrgJUmXL1+ufJ5IJBSJRDpa/lc9VigUclxtJfVecWVZVuXzfD7f0WWPHz/e9XkBAAAAYFh9P5/XtzIZfSuT0fc7fB8FYHj5PvS6deuWpEcBTzQaVTabVaFQ0P7+vizLUjqdlmmaevnll5uOUa6OCgQCDZu5JxIJ7ezs6Dvf+Y6jOVUvUXTaHL66KuvatWuOLtPI9PR05XPLsmpCsEaqq7ucVIYBAAAAwCi5/+CBfv9HH1S+/u4H71PtBYwJ34dely5dqnxe3mgyEAhUvi5/JBKJpqFVJpOpfN4o+AkGg1peXtba2lrb+dRXV1UvH2ylOhzrpdKrfv7xeLzl8eVzBYPBmoozAAAAABgH38/n9YuDg8rXvzg4oNoLGBO+Dr1u376t7e3tSsglPQq65ubmFIlEtLa2prW1NUUiEdm2rbW1NR1U/TArKzecl2orpaqtrKzItm299dZbLedU3VNLcl49VX9cp0sTy0zTrAnQstls010hU6lUpRKsekkmAAAAAIyD+iqvMqq9gPHg69CruiJqcnJSa2trKhQK+uSTT7S1taXLly/r8uXL2tra0ieffKLJyUldvHjxyDjFYrHtuZaWliRJyWSy5XH1zeDb9fMqq++ntbOz4+hyjVy9erXm6+3t7SPBVzabrVSBJZNJxWKxrs8HAAAAAMOovsqrjGovYDz4OvQqL0tcWFhQLpfT5cuXNTc31/BYwzC0tbVVs5SxrLrSq1lIVf7/XC7Xck71PbS6rfQqFAqOLteIaZpKp9M1/7e9va35+Xnl83ltbm4qHA7LMAxlMhkCLwAAAABjp1mVVxnVXsDo83XotbOzo8XFRe3s7DQNu6qFQqGGjd2LxWLNEslGqsd/9913mx7XrnG8U9VBXDcikciRqjTLsrS4uKj19fVKVVwoFOrpPAAAAAAwjJpVeZVR7QWMvse9nkArpVJJGxsbjo+/d++eJOng4EATExMNj6lfZtiIZVl65plnms6pG/UVZk6WXLZTruBq1Mw+m82qVCo5Xn7Zqb29Pc3OzvY8zvnz53X+/HkXZgQAAAAAj3z+8GHLKq+y737wvn7HNPUrj/v6rTHQd1euXNGVK1d6Hmdvb8+F2bjH18/sYDCo/f19x8eXd3qsD7xKpVKl0qtZCFQOzMrH95tb54jFYsrlckqlUjX/n8/nNTc3p5s3b9Y0vnfL4eGhdnd3ex6n0cYDAAAAANCLdlVeZb84ONC/zef1wtNPD2BW3rv/4IGSP/lPkqQX/87fJexDxcHBgSvv8f3G14/wUCikN954Qy+88ELbY998801tbm62XcbYrAeX02WLwWDQlcDKrQqseDyuVCqlWCymbDZbcz1KpZIWFxeVyWRcX+Z47NgxnThxoudxmlXkAQAAAEA3Pn/4UN/94H3Hx1/54H19Y0yqvb6fz+tbv+yD/eUnf0XnxiTsQ3sTExOamZnpeZy9vT0dHh66MCN3+PpZHYvF9Oyzz+prX/uaEomEfv3Xf/3IMe+++64SiYSy2awkybZtfec739E3v/lNSdLt27cr/x8IBJqGXtW7KbZqTj89Pe1K6DU9Pd3zGOFwWNlsVmtra0okEpL+OgSrP87t4OvEiRO6e/eua+MBAAAA8K9hqhByWuVVNi7VXvWN/VnaiWputR6anZ31VcWYrxvZh0Ihra6u6saNGzJNU8ePH9fp06d1+vRpHT9+XI899lgl+CmHWrlcTv/+3/97fec735GkI83em1WCVe+G2KoKq9sKrfqgrNdKr8XFRWWzWYVCoUrgJT26vvU7O0pSNBodyLJNAAAAAKOnXCH0rUzG183fO63yKrsyBjs51oeBNPLHOPB16CU9CnEWFhZk27ZKpZLy+bzy+bz29/dl23blIxAI6PLly1pYWFA2m9Xrr7+uxx57TK+++qoCgYACgYDm5uYUCoX03nvv1Zzj+vXrlUoxSVpaWmo6n/rvOQ2S6hvXz8/PO7pcI9FoVPlf/nCqD/WkRzs75nK5mmCtVCppfX2963MCAAAAGE+NKoT8GhB1WuVVVq72GlX192GZn+9LwA2+D70kKZfL6cKFC5WAS1IlyCqLxWK6cOGCpEdVVDs7O3rqqadqLpNKpfT6669reXlZzz//vN5++2299NJLWllZqYwZiURa9plaXFys+dppL7BCoVDzdbdLDS3L0vb2tiTJNM2mSzFN01Qul6v5v1QqRbUXAAAAgI4MS4VQt1VeZaNc7dUsDPTrfQm4ZShCL0lKJBLK5XKKxWKam5vT5ORkpXIrk8no9ddfrzk+GAyqUCjowoULlYb4zzzzjEKhkC5fvqytrS1Fo1GlUqlKKCZJGxsbLedRX+nlNPSqDpuCwWDLvmGtVFd2tapIkx71JquvBKvuXQYAAAAArQxThVC3VV5lo1rt1ew+LPPjfQm4Zag61i0sLOiNN97o6DLV/a7K1tbWJEkXL16s+f/Lly/r1KlTLcczTbNmB8cPP/xQkUik7Tyqw6Z2YVUr1eGZkyWSsVhM8Xi88rXTkA4AAAAA2lUI+Wn3v28sLOi327yfa+exJj2gh1m7MNCP9yXglqGp9HLb2tpapXIsFAopmUxWlke2U14OKanSW6ud6uN66a1V3RusfslkM6Zpdn0+AAAAAONp2CqEvvTEE/ryk0/29PGlJ57w+mq46vOHD1veh2V+uy8Bt4xt6CX9deXYjRs3tLq66vhy1ZVT1Q3wm6k+xjCMrvt5lS9f1k3VVrfLKgEAAACMF6cVQvAvp0s+R3VpJzBWodfbb7/tyjimadYEV+XG8s2k0+nK5+2qvFKplNbX15sGWmfPnq18vrOz46gxffVYvQRuAAAAAMZDPyuE7j94oNd+9IFe+9EHVBf1UaeN/Ue5kT/G11iFXr0sK6xX3SD+0qVLTY8rlUpKpVKSHgVOsVis6bHhcFjxeFybm5uan59vGGhVB26lUqnluaVHVWblcRr1NwMAAACAev2sEPp+Pq9vZTL6ViZDpVgfddrYn2ovjKKxCb2uX7/uahN3wzAqFVz5fF6bm5sNj1teXpb0aMfG6oqvRuqXSm5tbTU8Lp1OKxgMSpI2NzcroVo9y7IUjUYlPQrcyg38AQAAAKCZflYI1fcJo5dUf3R6H5ZR7YVRMzS7N3700UfKZrMqFAodhVfFYlGlUqkvuxZGIhFlMhlFo1Gtr6/rww8/1MbGhgzD0M7OjtbX15XP52Wapm7evFkJqpqp3hVSat5/KxgM6vbt21pfX1cqlVI8Hlc6nVY0GtXS0pKKxaIymUwliEskEgReAAAAABzptkLoBQe7/9WPzc6B/dHpfVjWyX0JDIOAbdu215No5c6dO4rH444axjdSffUCgYC++OILt6ZWY3NzU9euXZNlWSqVSgoGg1paWlI8HlckEnE0RjabVTweV7FYVCwWc7QcMZ/PK5lMKpvNVoI9wzBkmqYMw9DGxkbbsK0Ts7Oz2t3d1czMjO7evevauAAAAAC89/nDhzJf+/2OA5O/PTGh/D/+J/qVx5vXVdx/8ECL//K1I2M7uewg3H/wQMmf/CdJ0ot/5+96Pp9udXsflvnl/sBw8ltm4PtHcSgU0u3bt2XbtgKBQMeXL1+m39ne2tpaz9VUoVBIhUKho8uYplnTXwwAAAAAutXPCqFmY/ul2qvca0ySvvzkrzSdj9/DsW7vwzKqvTBK/PXsrPPiiy/KsiwFAgEFAoG+B1cAAAAAMK667QNVduWD9/UN02wYAtX38qr33Q/e1+80uewgNOo11mw+TsMxr3xjYUG/fepUT2M81kXBiZ8MOpj0exA6znzdyH5nZ6fy+dzcnNLptPb393V4eNjRRy6X05kzZzy8JgAAAADgT/cfPNBrP/pA/0t6y5UKoUbaVR+Vq7280qzXWL1haMT/pSee0JeffLKnjy898YTXV6Mng94hlB1J/cvX8WM+n1cgEFAwGFQ+n9fExERX4ywsLCidTmt6etrlGQIAAADAcKuuXPoXz31N/3BpqeuxGlUIff7wYcsqrzKvqr2aVaE1mg+N+P2vk6q9YTwfOuPrSq9yA/aVlZWuA69qsVis5zEAAAAAYFTUv2H/3p//WI8fO+ZqhZDTHlOtKsX6qV2vsbJW4Zjfqr3GmdOqvWE9Hzrj69ArGo1Kkubn510Z7/Lly66MAwAAAACjoN9v2DvtE3ZlwAGSk15j5fk4DcfgnUEHkwSh/ufr0OvixYuybbumt1cvDnpYnw4AAAAAo2QQb9g73Ulw0NVeTnuNdRKOwTuDDiYJQv3P16HX3Nyc3njjDaXTaX388cc9j7e8vOzCrAAAAABg+PX7DXu3u0EOqtqrk15jf7iz4+tG/Oisam8Yz4fu+Dr0kh714Tp37pwikYg+++yznsbK80MIAAAAAAbyhr3TKq+yQVV7ddJrLPEn77U9jpDDW4PeIdTvO5LiEV9vJ1Bejnjx4kXlcjk988wzSiQSHe3CWCwWVSqVlEwm+zVNAAAAABgqTt+wd7srYbdVXmVXPnhf3+jjDnidzu/e/fttjymHdS+wk+PADXqHUL/vSIq/5utb/qmnntK9e/dq/i8cDnc1lm3bCjTYPhcAAAAA/OL+gwdK/uQ/SZJe/Dt/ty9vlgfxhr3bKq+yfgdIvc6vmX6HdWis0x1Ce31cDfp86J6vn4mrq6t69dVXK18HAgHZtu3hjAAAAACgf76fz+tbmYwk6ctP/krXlVbtztHvN+zfWFjQb5861cXs/tpjfSpa6LUKrRVCjsHrZofQXoLJQZ8PvfF1T6/nn39ekioVWgReAABg1N1/8ECv/egDvfajD+gNA4yZ+j5b/egR1c0b9m7m8KUnntCXn3yyp48vPfFEx+d1ol9VXmWDasSPRwa9Q6jfdyRFLV9HjQsLCzIMQ7dv31YoFJJpmjp+/HhHY3z66acqlUpKpVJ9miUAAIB7BlHlAcCf6t9M99pXy8k52hm1yqV+VnmVjdpt5me97BDaTfXVoM+H3vn+Fo9EIrp165Z++MMf9jTO2tqaTp486dKsAAAA3NeoyoMGuBgHg+hj5XfNdlNs9nOgm9uMN+z9r/IqG6XbzM963SG002By0OdD73z/DDx79qwsy+p5HMMwtLCw4MKMAAAA+mMQVR6AH1Hh2PzNdLOfA93cZrxhd95r7N/s7Oif/fAHXZ9nlG4zv+q1au877/+pSvf/ux4/dsxRcOz3HUnRmO9v7YWFBW1sbLgyVjqddmUcAAAAt3Va5QGMCiocmz//y+pvk25uM96wP+K0T9j/cvq0/uHSUk/n6lcjfjzSa9Xe3mef6f9186YkZ8Gx33ckRWND8RPLrQqtubk5V8YBAABwW6dVHsCooMKx/Zvp+tukm9tsGN+we7nstV9N9OGeXnYIvf/wof7+H3xPf/XZZ5KcBcd+3pEUzQ1F6FXv4OBA2WxWmUxGxWJRlmVpenpahmFofn5ekUhETz31lNfTBAAAcKTTKg9gVFDh+KgCq9Xzv6x8m9i23dVtNoxv2Fn2ilZ6CSb/3a1blcBLchYcE4QOp6F6Fblz547W19e1vb1d8/+2bStQ9QN4fX1dhmHo4sWLeuGFFwY9TQAAgI50WuWB/qCZ+uBR4ei8AqtcaXVo213dZsP2hp1lr+gXL8N2XmcG75jXE3Dq6tWrmp+f1/b2tmzbrnxIqgm8pEchWKFQUCwW09NPP62f//znXkx5pO3t7Wl2drblx5UrV7yeJgAAvtdJlcfnDx8OYEbjq1xV8q1MRt/P572ezshzUuE46o/5Tvtsfef9P215/CjdZs2WcAK9ahe29/vcw/w6c+XKlbY5wN7entfTrDEUoderr76qF198sSbkKgdd1QFYdRBW/t7Ozo7m5+f18ccfezL3UXV4eKjd3d2WHwcD2AoYAIBh12mVB/qjUVXJqIQHfuW0wnGUddpna++zz7RXtSSr3qjcZq0qcYbleXn/wQO99qMP9NqPPhiaOXdj2K6nl2H7KLzOHBwctM0BDg8PvZ5mDd/X0l2/fl3r6+uVoKscapmmqaWlJc3PzysYDMowDE1PT8uyLBWLRRUKBW1vb8uyLB0eHmp5eVk7Ozv0+nLJsWPHdOLEiZbHTExMDGg2AAAMp06rPEZl9zQ/8nMz9VFcDtNpH6tRuM71et1NsZlRuM1GYdnruPQjG7br6WU7AT+/zjg1MTGhmZmZlsfs7e35KvgK2NWlUT70q7/6q7p9+7Zs21YwGFQikdDKyoomJycdXf7WrVt65ZVXdP36dT377LP6wQ9+0OcZj7bZ2Vnt7u5qZmZGd+/e9Xo6AAAMtTf/4i904Y//944u8+3f/C22O3fZ/QcPtPgvXzvyRuhvT0wo/4//iefhwdWf/ERr//GPJUmv/uZvDdUbpGY6eeyP6mO+m+e/U8N8mzV7Ppb55XnZSv11GIY5d2PYrufnDx/KfO3321ZX9uN6+P11xk1+ywx8vbzx+vXrsixLtm0rHo+rWCxqdXXVceAlSQsLC0qn07p8+bIymYzee++9Ps4YAADAmW6rPK4M4XIIv/Oyv0s7o7Acpl43FY7Dfp3r9avKq2yYb7NRWPY6Lv3Ihu16etlOwM+vM6PO16HXtWvXFAgEtLm5qddff72nsdbW1rS8vKytrS2XZgcAANC9Tnv5lNHby11+b6Y+bG8qnej0sT+Kj/lun/9ODettNgobe4xCPzInhu16ehm2+/11ZtT5uoYun8/LNE393u/9nivjxeNxXbx40ZWxAAAAutVrlYfbvb1GsWeUU172d2mn1ZvKYe3Z1EuF4yj1s/vGwoJ++9QpR8d+/vCh/t4ffE9/1aKBfSPDeJt1WonjxyWco9CPzIlhu57dhu0vPP10z6+Rnb7OjPNrcj/4utLLsizF43HXxgsGg7Isy7XxAAAAutFrlYfbVRzDvoV6t/xeVTKKy2GocHzkS088oS8/+aSjj7d/+tOOAy9p+G6zUVj2Oi4VPcN2PXttJ9DLa2Q3rzPj+prcL76PDA3DcG0sAi8AAOAHnVR5NPNYIODKXBr1jBrWKqJO+bmqxMmbymG7n/xW4TgMxuk266USxy/8XDnqpmG7nr2E7X/44Yf6Vz/+s8r/dfqzt9PXmf95YWFsX5P7xdeVXoZhuBpUJZNJV0M0AACAbnRS5dHs40tPPOHKXEaxZ5QTfq8qGYVm3vX8VuE4DMblNuulEufe/ft67Ucf6LUffeBpdZHfK0fdMmzXs9fg+PKfvNf1a2Q3rzN/uLMzlq/J/eTruNA0TaXTaZ07d67nsS5evKh8Pq9oNOrCzAAAAIbfKPaMcsrPVSWdvKkcpvvJTxWOw2JcbrNeKnH+6R/9kd75y59Kkr785K94Vl3k58pRNw3b9ew1OL53//6R/3P6s7eb15nEn7zX9fnQmK9vtZWVFa2srOjll1/WK6+80tUYBwcHWl1dVTqdViAQcLVHGAAAwDAbtkbEbvF7M/Vhe1PplFvVieNkHG6zXitx/rf/8peVz70KB7qp6BmWZafVhvF69hIc/+udHf3zH/7gyP87eY3s9nHdKGQb9dfkfvP18sZIJKK5uTklEgn97u/+ru7cueP4su+++67Onj2rqakpbW9vKxAIyDRNPfPMM/2bMAAAwJAYtkbEzdx/8KDjpU1+bqbu92WXGC7dPD8GrddKnEPbrnzu1VKwbitHh80wXs9u2wk8FgjoD/78x03Hbfca2evjutPzoTnfR8vJZFLPPvusksmkksmkQqGQTNPU/Px8pT9XqVRSsVhULpfTzs6O8lVPLPuXPwQDgYCuXr3qyXUAAGDYsF326Bu2RsTNlHe5kpwtbfJ7Y3A/L7vE8On0+eGFbitx7j98qL//B987srPloKu9/F456pZxuZ5lvbxG9vo60+n50JrvH3mhUEhvvPGGXnzxRQUCAWWzWWWz2abH21VJfyAQUCAQkG3b2tra0qke18MDADAuhuGNEro3Kj2jutl50q3G4P0ImcbtTSX6a1h2Zu12Cee/u3XrSOAlDT4c6LVydFgC63G5nlLvr5FuV3m1Ox9aG4pbKxaLaXp6WrFYTKVSSYFfNmOsDrjKAlWNGm3bVjAY1M2bN7WwsDCw+QIAMMyG5Y3SOOu1Em9UekY123my1ZtdPzcGH6c3lei/bp4fw8LJ8uxBvG75vXLULeNyPct6fY3s9HXm3+zs6J816B3m9Hxozdc9vapFIhHdvn1bFy5ckG3bDQMvSZXvTU5OKpFIqFgsEngBANCBZm+U4B/lSrxvZTId3zej0jOq1c6TrebbbX+X6o9+NBd3402lk/tpGHo8oXfdPj/cOne/H2NOl571m1uVo343LtdTcuc1spPXmcePHdP3WvQOc3I+tDYcUesvlYOsRCKhmzdvKp/Pq1AoqFgsSpKmp6c1Pz+vUChE0AUAQBdavVGi2ssfeq3EG5WeUaO28+Sgll26uXTZi95/9Bt0xsvnR7+Xx/tpebafK0fdNC7XUxr8a+SovCb72dC+SiwvL2t5ednraQAAMFJGLUgYRb0sWRqVnlF+WdrkpkG8qXR76bIXvf/oN9iel8+PQSyP99Py7H5UffrRuFzPQb9Gjsprst8NzfJGpz766CMd9KFpHAAAo87JGyVK6r3V65KlXntG+YVflja10ukSr0Esu3Rz6XKjcGMQy+YGfc5h5OXzo9/L40dleTb8adCvkaPymux3Ixd6/Yf/8B8UDAZ18uRJbWxs6N133/V6SgCAETOqPXGGIUgYd+0q8VoZlZ5RnSxt8vL52UvftX5wu8eTF73/6DfYnpfPj0H0Eet2KdiwG9XfO/xkUK+RXp1vnI1c6HX58mXt7OxoYmJCiURC4XBYjz32mJ577jl95zvf8Xp6AIAR4Lc3s24YliBhnPVaiTeoRsT9fn50urTJC36sSOolMK3nRZN0LxuzDxMvnx9uPsYa6WUp2LA/Rob9945hCO0G3ax/nDYH8NpILgI1TVO5XE7r6+t69dVXJUmZTEbZbFbf/OY3PZ4dAGCYud2vxC9Nmf3UIwWNOa3Ea9bjaBh7RtXrZmmTF31Peum71g9u93jyovcf/Qbb8/L5MYg+Yr0uBRvW161B9Enrt2HoxTfoZv3jtDmA10au0qtaIpHQhQsXvJ4GAGCEuL28xg9/ve22R8ow/OV2VLhRiTdsPaOcjN+OF38J92NFkptLl73o/Ue/QWe8fH70e3n8OC8FG/ZlvX6sfG1kEK+RXp5vnI106CU9Cr4Mw/B6GgCAEeD2m1m//CLY7RslPwR242IYl/SVufW49tPSplaBb7+XeHXK7aXLXvT+o99ge14+PwaxPH5cl4L5MUTv1LCHdhh+w1MT2YO1tTW9+OKLXk8DADDk3F5e44clUN2+UfrO+39a8/WoLPPsp26v47Au6Stz63Htp6VNzZbqDGKJV6fcXLrcSbjh1vX04pzDyMvnxyCWx4/yUrBWrw3Dvqy3VWg3zs9XDNbIV3pJUjgc9noKAIAh5/byGr/89bbbN0p7n32mvc8+q3w9Css8+63b6zjMS/rKen1c+2lpU6sKTb9VJHW7dLkZLyoOh6HK0WtePj/cfow1M8pLwZq9NozCsl6/Vb5iPI1F6DU3N6dgMOj1NAAAQ8ztN7N++EWw1zdK9YZ9mWc/dXsd/bSkr5V+hz1+WtrUrELTjzuguhmYDirc8Pqcw8jL58cwhPJ+NkwheqdGIbTDaBibesLp6Wndu3fP62kAAIaQ28tr/LIEqtc3SvWGeZlnv3V7Hf20pK+ZQSw/88vSplYVmg8Pv/DVDqi9BKaNlsd2G24MYtlct+cclWXVXj0/3H6MjaNmrw2/Y5pDv6y31x2HAbf479nRJ1R6AQC65Xa/Er/8ItjNG6X7Dx/q7//B9/RXVUsbq3X6C/g49Pvo9jq6sWRpEG8sB9HPxy/LklpVaF5+7z3H4wzivnEzMO013LBtu+NwaRCBSrPebMPGq+fHMITyfjZMIXqn6MUHPxmL5Y3So0ovAAA65fbyGj8tgeqmR8rb//k/Nw28pOFc5tlv3V5HPy3pa2aclp+1q9C8d/++47H6fd+43eOp13Cjm352vZ6znU6WHLfarXNc+anP3rByM0T3221JLz74CZEqAAAtuL28ZhBVMf0yqss83dBsmVQv19EvS/pa8WLJm1fcXg7cz2ovtwLTF55+uudwo5udXgdR5djJkuNRqQhzk5uPsXHUjxDdL7flsOw4jPHBIwsAgCbcXl4z7L8IDssyTy/69DR7U9zLdfTLkr5mxqmfj9PAtxP9fKPqZmDaa7ixV1cZ6uR53e9ApZMlx40qwoYljO+nYQjl/WyYQvROjdMfQzAcPH1WHD9+XJ9++qmXUwAAoCm3+5UM8y+Cbgd2/ez3MeiqjGZviiWNdE+Tcern4/Yb1LJ+vVF1MzDtJdxo1gOw3WO+34FKuyXH1T8zxmGjjW74PZT3s2EL0TsxTn8MwfDwtKfX/v7+wM5VLBYHdi4AwPBzu19JL78I+qFXh9vb0ver30cnfXqcjteul0+zN8Wj3NNknPr59HpdWxmG+76b3n/tegC262fXyznLH81CGSdLjsuPzVYVYcPy+IX/9DNE9/px2e9efBI99tA5z6PU9957T7/xG7/R9/OUSqW+nwMAMDrcXl4zzFUxw7TM0+2qjHZVY83eFF+p62PUzrD9lXuc+vl0c13/xXNf0z9cWnJ07Kgu8fJrz75Olhx3UhEGODGIEN2rn6tu/DEk8mu/pn+986Gk5u0J6LGHTnn+m1U8Hlc6ndav//qv9+0cH330kSzLUmBEf6nwwt7enmZnZ1sec/78eZ0/f35AMwLgB272UvKiL1M1N5fXDKIpcz8NyzLPTvr0OOGkl0+z61Lfx6gdr9+sdGpc+vl0+9z93p//WC88/fTQhJj90K+efb3oZFl19Nd+zZehHYbbMIXonf4e5sYfQ/7pH/2R3vnLn0py9ocmnoeDd+XKFV25cqXlMXt7ewOajTOePzoKhYLMX/a9CAaDfTkHVV7uOzw81O7ubstjDvpQtgvA39z865vXf8lzs1/JMFfFuB3Y9bPfh9tVGe2qxtpVsnTK63CzE+PSz2eYKzS91M+efb3oZMnxP/2jPxqZjTbgD8MWonf6e1ivfwy5//Ch/u9/8L3K107+0ETV5eAdHBy0zQH8xhc/ZW3bljTYHl/ozbFjx3TixImWx0xMTAxoNgD8wM2/vo3aX/KGuSpmWJZ5ur2UyknVmNt9WcY9KPGbYa/Q9JLbO726odP783/7L3/Z9phh2GgD/jFMIXo3v4f1+seQf3frVk2VtNM/NA3774jDZmJiQjMzMy2P2dvb0+Hh4YBm1J4vHhmDWHZYDtbgjhMnTuju3bteTwOAj7j517dR+0veMFfFDMsyT7eXUrWrGvsd03R99y1pvIMSvxnmCk0v9bNnXy86vT8PHbx36PQ+HrU/6MC5YQvRB/17WC9/aBr23xGHjZMWRrOzs76qBvPNT9h+hlL08gKA/nLzr2/8Jc9f/LbM8w8//FCff/Fot6by0iC3l1I5qRp7ePhFX3bfGtegxI+GuULTS/3q2deLfjYP93KjDQyPYQrRvfg9rF2g9Y2FBXrsoWu+eFRMTk5qaWlJwWBQ09PTro1bLBZVKpW0s7NDXy8A6CM3//rGX/JGlxshwv+a2zmyNMjtpVROqsYuv/ee4zn/ra98RX/2u//I8S/j4xiU+NEwV2h6pZ89+3rh9lLkal5ttIHhMkwh+qB/D3Pyh6YHX7T+QxO/I6IVz3+6hkIh/fCHP+z7ecLhsN59992+nwcAxo2bvZT8usU93NFriHD/wQP9v3/848rX3/3gfa382q91vZSqUUNpp1Vj9+7fd3zOv/rsM73z059SveUxGoj3n196FlXf1//PpdN9q/Iq82KjDQyXYQnRvfg9zMkfmhJ/0v4PTfyOiGaOeT2BRCIxkPMkk8mBnAcA/OT+gwd67Ucf6LUffaDPHz7syzmc9lIa9FgYPY2WBv2TNjus1Su/uS6P961MRt/KZCqPq35VhFz54P2+PQfhTKP7G+5xo2eRW8+R6vu6058R3aj+udKIkyCBnw/wg0H/HubmH5raPQ8xvjyPQU/1WObplGEYNLMHMHb6vUuUm72U/LrFPfyh2ZtGJzus1bvywfuK/NqvHWko3WnVWCfo1eUtGoj3n196FtXf1//p//tzFdYvtr2vP3/4UH/vD76nv6raPa4Tg9xoA+gHL34Pc/sPTWwGg0Y8fTQMuvqKai8A42QQb/Lc7KXkxy3u4R/NHh9Odlir94uDA/3TuuqPbqrGOsUv439t0EsNaSDef37pWVR/X+999pne/ulP297X//6jj7oOvKTmr038QQfDYtC/h/Vjgwl+R0Qjnv5UXV1dHenzAYCX+v0mz81t6f26xT38od3SoG40qhDrpmqsE178Mu7XPlb9rkKtRgPxwfBDz6Je7ut+hXb8QQfDwIvfw/rZToDfEVGNRwIAjKBBvMlzc1v6QWxxP+g3/34NG4ZRP34xblQh1k3VmCT9i+e+pn+4tOTo2EHvzDjIcMmpQS81pIH4+Ojlvu5HaMcfdDAsBvF7WLV+VHmVESCjHj9RAWAE9ftNnpvb0g9qi/tBv/n3Y9gwjJwuDfpbX/mK/ux3/1Hbx8P9hw/193vo29PI9/78x3rh6ad990bVr32sOqlC7TU8ZkfY8eHH+3rQQQLQjUH9HlatX1VeZQTIqOb57o0AAHcNYpeoXrel79dYzTR689/PnbLcPp/TXTgHsVvnoDl9fPzVZ5/pnZ/+VF9+8smWH2//5//sauAl+XfHqGbhkpdaVaE2esz2uuPiMOwIO4rPWy/47b7uJUjgcYBBGsTvYdX6WeVV5tfXZXiD6BMARky/d4lyY1v68l/f3ByrlUE3sXb7fE6rxkatusztpUFuV41VG/SyxXb82seqkyrUXivVhqWB+Kg9b73gx/u61yCBai8MwqB+D6vmRpWXk7YCfntdhncIvQBghPTzF//yMqO/+D/+D9e2pR/EFveDfvPv9vmcvvH361K2Xri9NKjTqrFhftPpxz5WnS4/6zU8HoYG4qP4vPWC3+5rL4IEoBuD+D2snlubRvhh8wwMB36SAoDP9NLDpp+/+FdXI3TSuLuR8l/fBrHF/aDf/Lt9Pqdv/AddzdZvbvcYGaeG0n7sbSR1VoXaa3g8LPe3289bNzfQGJbNOPx4X3sRJADdGMTvYfUIqzBo/nz1AoAx1u1Sl37+4l//BtStxt39/sVn0G/+3T6f0zf+fl3K1gu3lwaNU0Ppfi9x7kanVai9hsfDcH/343nr5lLJYVl26cf72osgAegGARTGAY3sAcBHemmA3u0v/k6aKPuxIbYTg25s7Pb52r3x7/Q4aTiaZruxNKj6uo1TQ+lOwqVBXrdOqlD/8MMPe9qMY1ju706et064uYHGoDf/6JZf7+svPfFE20012n0QRgCAOzwNvd58802dPHlSzz//vJfTAADf6DZc6uUX/z/c2Wm5O1qnu635xaDf/Lt9Pqe7cHa6W2evu+ENgltLg3odbxh3f+p0ifMgdPrz6fKfvNdTeDwM93c/dtl1848Tw/KHjmG4rwEA3vJsvcOtW7cUi8UkSZZlaWVlRV//+te9mg6AETIsfUjq9bLUpZdf/BN/8l7Lc/mxIbYTg25s7Pb5nFaN2bbddZ8kvy5/dHNp0Dg1lPZjbyOp859P9+7fb3tMs8fusNzfbi9BdXOp5LAslx6W+xoA4C3PKr0uXbokSQr88pfSYDDo1VQAjJhhqGRppNulLr3+4l/9BrP+XP2oRhiEbt7893I93D6f06qxK+//qaPzlu+nYanecHNpkNtVY37W7RLnfur151MzzeY+DPd3P6pQ3Vwq6fayy34ZhvsaAOA9z/60kf/li4xt20qlUnrmmWcaHnf27FnF4/Gm3weAasNSyVKvlwbovf7i3+pcfmyIXa9RZV+3b/7/54WFrqoE3W6k7HS8vc8+c3y+P/zwQ/2rH//Zke8Ny3OkW+PSUNrt3S7d4vbPp2qN5j4M97fbVaFubqDh150/G/HbfT2sVeYAMOo8+2lsWZampqaUzWa1sLDQ9Lh0Oq1wOOxK6PXRRx/pVI8vjgD8ze3t3well3Cp21/8//XOjv75D3/Q9Fy/Y5od7bbm1S/49TuM/Y5pdv3m///3xRcd71bmdtjQr8qYy3/yXsNlY8PyHOnWuDSDdnu3Szf067Fc1mjufr+/+7EE1c0/TgzDHzrK/HZfD8tulwAwbjxb3hgMBrWxsdEy8HLb+vr6wM4F4K8Nare4cW243s1SsMcCAf3Bn/+45bn+cOfDvjXEdusx0aiyz+m86zXqb+Zkbm43Uu5XZUyrPkl+f46gNbd3u2ym0+dtP6u8yoZth023l6C6uVTSrzt/DoNh2e0So28YdmgGBs2zSi/DMGQYxkDPaVnWQM8H4JFB/fXTy4brTpY1NDtm0A3XnZzzFwcHuvzee02/X6/TJVJuPSYaVfZ1Mu96jfqbtZqb242U+10Z04yfqjfQObd6GznZXKGT520nVaj/ZmdH/6xB5Wk7/axUc1s/lqC6+frhxWvRqBjWKnOMHioOgaM8C73Onj2ra9euDWzHxlu3bhF6AR4YVI8tr/uQOPklo9ExXuy25vSv+U52UCvr5E2QW4+JZvd5J/Nup93c3A4bBlEZ04zXy1TRvUH0Nurmeet0+dnnDx/qey0qT9sZll343F6C6ubrh193/hwGw7LbJUbfsPa1BfrNs2dALBbT+vq6bt++rVgsJsMwND093fDYXC7XdVVYqVSSZVl65ZVXepkugC65/dfPbqul+vlXVye/ZDQ7xu0G6E70K1hx+ibIrcdEq+vxL577mv7h0pLjsdr1N2s2NzfDBq+qvMr6Wb1Bg+f+GkRvo35WsgyqUs1LbleFSu5uoOHFa9Go8LLKHKhGxSHQmGe/dU5OTmpra0srKyvK5XItj02lUkqlUj2dz7ZtBYZg9yVglPTjr5/NqqW6abju1htxJ79kNDqm2W567fTyF/Z+BitO3gS59ZhoV9n3vT//sV54+mnHu5W162/WbG5uhg1eVnmV9at6g+UWw63flSx+24WvH9wO9txcKunXnT+HgddV5kAZFYdAc54++iORSCX4asW27QHNCICb3P7rZ6/VUo2WkvX6RtzJLxnNjmm2m147vfyFvd/BSrs3QW49JkZxtzKnb/zvP3yow8PDht97LBDQr1QFcZ32SepH9QbLLYZfvytZ/LYLXz+4Hey5uVTSjzt/Dgu/vH4AVBwCzXm2e2NZJBLR/v6+VldXFQwGvZ4OAJc4+etnp7vKNKuW6rQPyecPHzreaandLjjtfslodUwvvae62bFsEMvnWu005tZjYlR3K3O6C+fx//F/1P/lb/yNhh/TX/5y5bjHjx3rqk+S27vhNauExHDox8/ycdTNLrv1H+Vw0M3dOge18+co8tPrB8YbP6eB1nzxZ9bJyUklk0klk0ndvn1b+XxexWJRtm3rxRdfVDQa1VIHvVmqffrpp7IsS9vb2y7PGkArbv/1061qqXIoc2jbjvoetKoGc/JLRvTXfs3RL8Wd6uYv7L1UeXXSI6vZMiO3HhPsVuaMH6o3WG4x/Khk8R83l0qOQz+1fhnl1w8MF35OA60FbJ+vHTx27JhSqZTOnTvX0zjZbFbPPfecvvjiC5dmNp5mZ2e1u7urmZkZ3b171+vpwKc+f/hQ5mu/3/aXwb89MaH8P/4njt74Xv3JT7T2H//Ylfmd+MpXJEl7n33Wcj73HzzQ4r98rXI96r/vZE7/j//r/03/n7/8actjOm26XvZYINDR7mhO7pNmOrmvejl/u/N0ej1ajefmWH7j9f1d1uo58upv/ha/gPtcP36Wo3f3HzzQFz3++l5+/XBzrHEyyq8fGC78nIYf+S0z8Hx546CEQiHNzc15PQ1gLHT618922lVUdWrvs8+OBF7l+VQvu2q1LMvpsoY/+i9/2faY7/35j/X4sWNdL3Vxwq2/5nfLrcdEtzuM9Xssv/H6/pZYbjEK3P5ZDne4uVTSzbHGySi/fmC48HMaaG+sol7DMLyeAjDyOu0PUm58btt2050UB7mrXXnZlW3bLZdlOZ3ToYO/oA9i6YOXu6N1+5io/2sku5U554fd8FhuMdzcet4Co2bUXz8wPPg5DTjj+0f8/v6+JicnXRkrnU67Mg4wDu4/eNA0hGql279+Htp2w95ZTiuq3FJ+I27X9fyq/v4ffvih/tWP/8zV8/b7FxEv/xLf7WOiPgRktzLnvK686KTBM729/Mmt5y0wakb99QPDg5/TgDO+/y3TrcDL7bHG3d7enmZnZ1sec/78eZ0/f35AM4LbWjVwb6bbv35+5/0/rfm6+o1wJy/o7Xpjff7wof7eH3xPf9VgaWO1K3Xzqddp83wnRvUXEbf+Iu7GDmPl8dwcC43R4Hm4UckCNMbrB/yCn9PwypUrV3TlypWWx+zt7Q1oNs4MZU+vg4MDvf3223rppZd09uxZnT59Ws8995xeeuklffvb39adO3e8nuLIOzw81O7ubsuPgwEtR4P76nvxOO290+1fP+t7bJWrrTp9QW/XG+vtn/60beDVaD713A68ykZx6/de/yLe6ziNxvNDv6tR1s1yi1F73A87t563wKjh9QN+wc9peOXg4KBtDnB4eOj1NGsMVcR7584dra+va3t7u+b/bdtWoKr3yPr6ugzD0MWLF/XCCy8Meppj4dixYzpx4kTLYyYmJgY0G5R1uySxXrMG7q2qvXr962e9737wvh4efuFa2bbb8+uHUat6cfMv4m72qPJDv6tRxnKL4UYlC9Acrx/wA35Ow0sTExOamZlpecze3p6vgq+heaRfvXpVL774oqRHIVdZIBCoCbzK3y8UCorFYkomk0qn0/rqV7860PmOuhMnTvhi+1HU6mZJYr1mO661673jdrP5Xxwc6PJ773V8uWYv5INsht+LUfpFxK2/iL/w9NOu9qjyut/VKGO5xfBz83kLjBpeP+AH/JyGl5y0MJqdndXu7u6AZtRewLYdbC3msVdffVUXL148UtHldOrHjh1TLpfTr//6r/drimOj/ACemZkh9HKBW5VZ5bEW/+VrlRfBvz0xofw//icdj3n1Jz/R2n/844bfe/U3f6tpkHb/wQN90eGPk/sPH+rvO+ix1alv/+Zv1byQf/7woczXfn8oQi/p6PyHVTePiXqPBQK8yRgib/7FX+jCH//vXV12VB73w47nLQD4Gz+n4Xd+ywx8/yfV69eva319vVLRVQ66TNPU0tKS5ufnFQwGZRiGpqenZVmWisWiCoWCtre3ZVmWDg8Ptby8rJ2dHT311FPeXiGgihuVWdVjOVmS2Cpoa1blVdaq2qubF85/d+uW64GXdLRqpJ9VXvXN8+8/fNiynPexQEC/0ua2GpWlD/wyNV5YbjEaeN4CgL/xcxrojO9/sywHXrZtKxgMKpFIaGVlpelOjAsLC5XPL1++rFu3bumVV17R9evX9eKLL+oHP/jBoKYOtNSoWXyzQKldRVgnSxJbBW3twiEnvb2c+vzhw5YBWy+qy7b73cvre3/+Y73w9NOV2/jLTz7Zt3MBfsZyCwAAAPiNr0Ov69evy7IsSVI8Htfrr7/e8RgLCwtKp9Pa3NzUxsaG3nvvPf3Gb/yG21MFOtZJs/h2FWHN3mzWj9kqaHMaQrXr7eVUJ2+Q66upnChXS/W7lxdv1IFHaPAMAAAAv/F16HXt2jUFAgElEgn93u/9Xk9jra2tKZvNamtri9ALnuukMqtdRVgnSxJbBW1OwyE3Qp5Oq6/qq6k64eSN+OcPH+rv9dBbjGVZAMstAAAA4D/HvJ5AK/l8XqZp9hx4lcXjcWWzWVfGAnrRrjKr1bH1xzhdktgqaDu4f7+jEOrKB+/r84cPHR9fr9Pqq3LQ1o0vPfGEvvzkky0/3v7pT3vqLdbL/AAAAAAA/eHrsgTLspRKpVwbLxgMVpZLAl7ppDKrXUWYJMdLEh988UXToO2f/NEfdRVCdVPt1W2PrX5WU7EsCwAAAABGj68rvSTJMAzXxiLwgh84rcxqdWz5mE6WJCb+5L2m3//f/stfOph5rW6rvbrtsdXPaion1WDtPljaBQAAAAD+4uvQyzAMV4OqZDLpaogGdKqTZvH37t9veeyV9/9UV97/U8fnvnf/ftPvHdq243HKfnFwoD/88EO99qMP9NqPPnAUgPW6k2KvyyoBAAAAAOPD16GXaZpKp9OujHXx4sVKjzBgEO4/eHAkEOqkMuuftllyuPfZZ9rroQ+VGy7/yXv6Viajb2UyR3qRNdLrTor0zgIAAAAAOOXrnl4rKytaWVnRyy+/rFdeeaWrMQ4ODrS6uqp0Oq1AIKB4PO7yLIHGvp/P61uZjCTpy0/+in7HNDuqcupmyeGgVVePNdp5sh69swAAAAAAg+Lr0CsSiWhubk6JREKlUklra2t66qmnHF323XffVTKZ1Pb2tiQpEAjINE0988wzfZwx8Eh9A/rvfvC+Hh42biTfTDdLDnv1t77yFf3Z7/4jR83i//XOjv75D39Q+brcZ+xci+b29L1yz/0HD5T8yX+SJL34d/5uXxr8AwAAAMAw8/27pGQyqWeffVbJZFLJZFKhUEimaWp+fr7Sn6tUKqlYLCqXy2lnZ0f5quVP9i+Dg0AgoKtXr3pyHTB+6pfx/eLgQJffa95I3i/+6rPP9M5Pf9p2V8b7Dx7oD/78x0f+30m1F9xRX0nYKmwEAAAAgHHk+3emoVBIb7zxhl588UUFAgFls1lls9mmx9tV1TGBQECBQEC2bWtra0unelxWBUjtK2zqq7zKWjWS95MrH7yvb7QJrtrtKkkA01+NKgkJGwEAAACg1lC8Q4rFYpqenlYsFlOpVFLglz197AbLvwJV/X5s21YwGNTNmze1sLAwsPlitLWrsOm1WXs3Gi1L/Dc7O/pnVcsPnSo3i29W7dUs1CsjgOm/RpWEhI0AAAAAUMvXuzdWi0Qiun37ti5cuCDbthsGXpIq35ucnFQikVCxWCTwgmONdlys/359hU31ce0CoX4pL0v88pNP6stPPqnHjx3T9xosP3TqSt31qtYu1CsHMOiPZo+x+sciAAAAAIy7oSrFKAdZiURCN2/eVD6fV6FQULFYlCRNT09rfn5eoVCIoAtd6bSKq77CxkmV17947mv6h0tLR/7/84cP9ff+4Hv6q88+62ru1csSe602a1bt9fnDh45CPaq9+oelpQAAAADgzNC+I11eXtby8rLX08AIadcnqVWFze+YpiQ5CoS+9+c/1gtPP30kEPr3H33UdeAl1QZV31hY0G/32MPusaqlwmVOw7R2SyTRHZaWAgAAAIBzvDNyyebmpjKZjHZ2dlQqlWQYhkzTVDweVygU8nRu+XxelmXJsiyZpun5fPyq2yqu6uV8vQRCbgZVX3riiZ7GaeTzhw/13Q/ed3y8k4b46IzTpaVUewEAAADAEPX08qtsNqupqSmtr69LktLptAqFghKJhPL5vMLhsMLhsEql0sDmVCqVtLm5qcXFRQUCAS0vL+vDDz+UaZpaarCsDu37JLWrsLny/p/qyvt/6vh8jXpmfemJJyo9ubr96EfYVdbpkslyuAd3dLK0lN5eAAAAAEClV0+y2azC4bCkRztMJpPJyvcMw1AkEtHi4qKy2awWFxeVy+UUDAb7Np9SqaT19XWlUilJkmmaymQyVHY50K6Ky7btloHPXofLEodt+V+nVV5lVHu5h6WlAAAAANAZKr26VCqVFI1GJT0KuKoDr2rpdFqSZFlW5fh+SKVSmpubqwReyWRSuVyOwMsBJ1Vc3QQ+7bTaIdFvum2MT7WXO7pZWjosjy0AAAAA6BdCry5Fo9HKksXy0sZGyhVf0qPKsHIo5ab19XXF4/FKL7FCoaBYLOb6eUZVu0Bn77PPOq7kcmJYAqFuq7zKCGB6x9JSAAAAAOgcoVcXLMtSNputfL2ystLy+LNnz1Y+bxWQdSMajWpzc1OSFAwGlcvlZBiGq+cYZU77JPXLMARC3VZ5lRHA9KaXpaV+f2wBAAAAQD/RaKcLiUSi8nkoFGrbp6tc6SU9Wha5vb1d83/dCofDNeFbv3uGjaJeA51eDUP/JTd3lUTnel1a6ufHFgAAAAD0E6FXF6qXKJqm6egyhmHIsixJ0rVr13oOvVKpVE3glUwmqfDqUK/L9pr5W1/5iv7sd/+R4+btfg+E+rkjJFpzY2kpGwkAAAAAGFcsb+xQvm6Z1unTpx1drjoc297e7mkOlmUpHo/XjE0Pr871q8rrrz77TO/89Kf68pNPOvogVEIzLC0FAAAAgO7x5/8OVVdXSXJcXVV/XD6fd1wlVq9+F8iNjY2uxhln/aryKqPCBm5gaSkAAAAAdI935B368MMPa7522kPr+PHjNV/v7Ox0FXpZllVTbRYMBl3pDzZu+t3Li35KcANVgAAAAADQPUKvDpX7cpV1W+lVKBS6On8ymaz5OhQKSXq0ZPLatWvK5/OyLEvBYFCGYejs2bOKxWI0uK/Sa5WX055dVNgAAAAAAOAd3/f0OnnypNdTqFEfenWrVCp1dbnqJvqSND09rcXFRUWjUW1vb1fmVyqVlM/ntb6+rqmpqZ77iI2SXqu8nPbsokoHAAAAAADv+L7Sq1Ao6OWXX9Yrr7zi9VQkdR9W1VdaFYvFjsewLOvI+be2tpRIJLSyslI5h2VZSiQSNQFZNBpVOp1mKaTokwQAAAAAwDjwfeglSYlEQslkUvF4XLFYTE899ZTXU+pZN+FZfZVZMBjU7du3jwRqhmEomUxqcXGxZpfH1dVVhUIhV5Y67u3taXZ2tudxzp8/r/Pnz/c8TieowAIAAAAA4K9duXJFV65c6Xmcvb09F2bjnqEIvSYnJ7W/v6/Lly8rkUhofn5e6+vrikajmpiYGOhcgsFg19Ve9eN0qj70aterKxaLKZfLVSq+SqWSLl26pEQi0fG56x0eHmp3d7fncQ762EweAAAAAAC0d3Bw4Mp7fL/xfegVDAYrSwG3t7eVTCZ18+ZNra6uKhaLKRqNKh6P6zd+4zcGMp/p6WlXQq/p6emOL1Pf/P706dNtL7O+vl6zzHFzc9OV0OvYsWM6ceJEz+MMOrQEAAAAAAC1JiYmNDMz0/M4e3t7Ojw8dGFG7vB96LW0tFT5PBKJKBKJ6N69e7p27ZrS6bS2traUTqcVDAYHsvyx26WB9UFZN+N0M4ZhGDJNU/l8vvJ/+Xxepml2fP5qJ06c0N27d3saAwAAAAAAeM+t1kOzs7O+qhjz/e6NN27cOPJ/k5OTisViymQy2t/f16VLl/TUU0/p8uXLmp+f18mTJ/XWW2/1ZelcdQgnOe/NVd+4fn5+vuNzd3MZ6eic3dqBEgAAAAAAwK98H3q1Mzk5qbW1NeVyORUKBV26dEmHh4eKxWKamprS888/r3fffde18y0uLtZ87TRAql+aGAqFOj53fWWX08CtPizrZudIAAAAAACAYTL0oVe1ubk5ra2tKZ/Pa3l5WbZtK51OKxwO6/jx43r55Zf10Ucf9XSObqumqgOqYDAowzAGdu76sKybfmIAAAAAAADDZKRCrzt37ujs2bOanp7WzZs3FQgEJEm2bVd2f1xcXNTTTz+tt956q6tzmKZZEyJ9+OGHji63s7NT+bw+vOrk3NXqq8ec6iZwAwAAAAAAGCYjEXq9++67eu655zQ/P6/t7W3Ztl35nm3bMgxDa2trSiaT+vrXv66dnR3FYrFK9Venvb9WVlYqn1c3iG+l+rj19fWOzletellkNpt1dJn6ZZC9NrEfRvcfPNBrP/pAr/3oA33+8KHX0wEAAAAAAH3m+9BrY2Oj6ffefvttnTx5UuFwWNlsthJ2BQIB2batubk5pdNpffLJJ7p8+bJWV1eVTqd1eHio119/XcFgUJcvX9bc3FxHlV/xeLzyuZPgqfoYwzC66udVVh2YWZblqK9XdUVYL+ceZt/P5/WtTEbfymT0fYdBJQAAAAAAGF6+D722t7drvj44ONC3v/1tHT9+XNFoVIVC4Uhl19zcnJLJpD755BOdOXOm4bixWEyFQkGXL1/W/v6+YrGYnn/+eUdzMk2zJjyqn2O9dDpd+bxdlVcqldL6+nrTfl2hUKhmeeKlS5fazrc6dEskEm2PHzX3HzzQ7//og8rX3/3gfaq9AAAAAAAYcQG7OjHyoWPHjun69euybVuZTEapVEqSjlR1SY/CqI2NjaZBVzOpVEovvviiAoGAotGo/sN/+A9tL2NZVmVXRNM0lcvlGh5XKpU0NTUl6VFglclkmo5Zrlgr29/fP9KEXnq0VLJ6F8lCodC0T1c2m1U4HJb0KOhLJpOtr1gbs7Oz2t3d1czMjO7evdvTWINy9Sc/0dp//OOa/3v1N39L555+2qMZAQAAAAAwevyWGfi+0kuSIpGIotGoUqmUbNuWbds1TepDoZByuZx2dnY6Drwk6ezZs5Wx0um03n333baXMQyjUsGVz+e1ubnZ8Ljl5WVJj3ZQrK74aqR+qeTW1lbD40zTrAmvwuFww2WOpVKpshSz/jLjor7Kq4xqLwAAAAAARttQhF5SbWVX+evyEsUbN25oYWGh67HLOyuWx24XTpVFIhFlMhkFg0Gtr68rGo0qn8+rVCopm81qcXFR+Xxepmnq9u3bDau2qtV/v9Uui7FYrHJuy7I0Nzenzc1N5fP5Sgg3Nzcny7IUi8WaVqKNuu/n8/pFg40KfnFwQG8vAAAAAABG2NCEXuVljLZta21tTfv7+3rjjTc0NzfX89j1Sw6LxaLjy4ZCIe3v7yuRSMiyLC0vL2tqakrRaFTT09NKp9PK5XJtAy/pUdhmGIaCwaDW1tbaNp0vnzuZTGppaUmXLl3S4uKilpeXde3atUooOI4VXlLzKq8yqr0AAAAAABhdj3s9ASds21YwGNTGxoYuXLjg+vj5fL5S5SW1rrBqZm1tTWtraz3NIxQK1ey06FQsFlMsFuvp3KOoWZVXWbnai95eAAAAAACMnqGo9IrH4yoWi30JvCRpbm6uUkVWPh+G2+cPH7as8iqj2gsAAAAAgNHk+0qvYDCo119/va/nSCaTCgaDunfvnuLxuJ566qm+ng/9167Kq+wXBwf6t/m8XqDaCwAAAACAkeL70MtpU/leJRKJgZwH/ff5w4f67gfvOz7+ygfv6xumqV953PdPBwAAAAAA4JDvlzcuLy9Lkt59911tbGzozTffbHuZ69ev6+TJk3rnnXf6PT34kNMqr7JytRcAAAAAABgdQ1HacvbsWW1vb1e+vnfvnr75zW82Pf7MmTOam5tTKBTSpUuXlE6n9dWvfnUQU4XHOq3yKqPaCwAAAACA0eL7Sq8XX3xR6XS6ptH8jRs32l7ONE1ZlqWf/exnWlxc1Mcff9zvqcIHOq3yKqPaCwAAAACA0eLr0OvevXtKpVIKBAIKBAKSJNu2FY1GHV0+GAwql8upWCwSfI2Bbqu8yq6wkyMAAAAAACPD16HXpUuXJD0KuiYnJxWLxVQoFHTu3DnHYxiGodXVVR0eHjoOyzCcuq3yKqPaCwAAAACA0eHrBkbZbFZTU1Pa2tqqNLTvxrPPPqurV6+qUCjorbfe0gsvvODiLOEX31hY0G+fOtXTGI/9sqIQAAAAAAAMN1+HXpZl6eWXX+4p8JIeVXuVbW1tEXqNqC898YTXUwAAAAAAAD7h6+WNpVKpJrDqVrFYlPRomeTOzk7P4wEAAAAAAMDffB16GYZRCax6kclkKp+XSqWexwMAAAAAAIC/+Tr0Mk1T6XS653HKO0BKj3Z0BAAAAAAAwGjzdegVi8WUzWb13nvvdT3G2bNnK9VdgUBAS0tLLs0OAAAAAAAAfuXr0CsUCunUqVMKhUIdB18HBwc6e/as0um0AoGAbNuWJEWj0X5MFQAAAAAAAD7i69BLkq5evSrbthUKhfS1r32tbfh1cHCgl156SVNTU9re3q78fyAQkGEYOnfuXL+nDAAAAAAAAI897vUE2jFNU1tbW1pZWVEmk1Emk1EwGJRhGJUPSbIsS/l8XpZlSVKlsqtc5RUIBFzpDwYAAAAAAAD/833oJUmRSEQ7OztaXl7WvXv3VCqVlM/nlc/na44rB12SKo3rbdtWMBjUzZs3derUqUFOGwAAAAAAAB7x/fLGMtM0defOHV24cEG2bR/5kB4FXdVhl23bisViun37thYWFrycPgAAAAAAAAYoYFeXRw2RmzdvKpPJKJ/Pq1gsyrIsTU9PKxgMamlpSeFwWKFQSJOTk15PdaTMzs5qd3dXMzMzunv3rtfTAQAAAAAAPuG3zGBoQy94o/wAPnbsmE6cONHy2PPnz+v8+fMDmhkAAAAAAOiXK1eu6MqVKy2P2dvb0+HhoW9Cr6Ho6eWWt99+W1//+te9nsZIODw81O7ubstjDg4OBjQbAAAAAADQTwcHB21zAL8Zq9BrfX2d0MslTiq9JiYmBjQbAAAAAADQTxMTE5qZmWl5TLnSyy/GZnnj9evXtbKyoi+++MLrqQw1v63PBQAAAAAA/uC3zGBoKr0++ugjZbNZFQoFWZbl+HLFYlGlUqmjywAAAAAAAGC4+T70unPnjuLxuLLZbFeXry5kCwQCbk0LAAAAAAAAPub70CsUCun27duybbur0Kp8mTFZxQkAAAAAAAD5PPR68cUXZVmWAoGAAoEAwRUAAAAAAAAcOeb1BFrZ2dmpfD43N6d0Oq39/X0dHh529JHL5XTmzBkPrwkAAAAAAAAGydeVXvl8XoFAQMFgUPl8XhMTE12Ns7CwoHQ6renpaZdnCAAAAAAAAD/ydaVXMBiUJK2srHQdeFWLxWI9jwEAAAAAAAD/83XoFY1GJUnz8/OujHf58mVXxgEAAAAAAIC/+Tr0unjxomzbrunt1YuDgwNXxgEAAAAAAIC/+Tr0mpub0xtvvKF0Oq2PP/645/GWl5ddmBUAAAAAAAD8ztehl/SoD9e5c+cUiUT02Wef9TRWPp93aVYAAAAAAADwM1/v3lhejnjx4kXlcjk988wzSiQSHe3CWCwWVSqVlEwm+zVNAAAAAAAA+IyvQ6+nnnpK9+7dq/m/cDjc1Vi2bSsQCLgxLQAAAAAAAPicr5c3rq6uyrbtyoekmq87+QAAAAAAAMD48HXo9fzzz0tSpUKL8AoAAAAAAABO+Hp548LCggzD0O3btxUKhWSapo4fP97RGJ9++qlKpZJSqVSfZgkAAAAAAAC/8XXoJUmRSES3bt3SD3/4w57GWVtb08mTJ12aFQAAAAAAAPzM18sbJens2bOanJzseRzDMLSwsODCjAAAAAAAAOB3vg+9FhYWtLGx4cpY6XTalXEAAAAAAADgb74PvSS5VqE1NzfnyjgAAAAAAADwt6EIvTq1sbGhn//8515PAwAAAAAAAB4ZutDr7bff1ksvvaTTp0/r7bffbnjM4uKiFhYW9PzzzxN+AQAAAAAAjKGhCb2+/e1v6/jx44pGo0qlUsrn8yoWiw2PjUQisixLP/vZz2QYht55550BzxYAAAAAAABe8n3ode/ePZ08eVLr6+va39+Xbduybbvt5YLBoHK5nE6dOqVIJKK33nprALMFAAAAAACAH/g+9IpGoyoUCpKkQCCgQCDQ0eVv3rwp27YVi8X03nvv9WOKAAAAAAAA8Blfh143b95UNptVIBCoVHhNTk4qFAo5HiMYDOrChQuybVvxeLyPswUAAAAAAIBf+Dr0SiaTklSp1CoUCioWi7px44ajJY5lzz//vCSpUCiwzBEAAAAAAGAM+Dr0Kld5pVIpvfHGG5qbm+tqHMMwKp/fuHHDrekBAAAAAADAp3wdepVKJRmGoXPnzvU0TvUuj/l8vtdpAQAAAAAAwOd8HXoFg0GZptnzOOWgy7ZtWZbV83gAAAAAAADwN1+HXoZhqFQq9TzOpUuXKp8Hg8GexwMAAAAAAIC/Pe71BFpZXl7Wm2++2dMYr776qvL5fGUHyOr+Xuje3t6eZmdnWx5z/vx5nT9/fkAzAgAAAAAA/XLlyhVduXKl5TF7e3sDmo0zvg69NjY29Oqrr+o73/mOvvnNb3Z1+c3NzUrgFQgEdPbs2T7MdPwcHh5qd3e35TEHBwcDmg0AAAAAAOing4ODtjmA3/g69AoGg7pw4YLW1tb06aef6uLFi5qYmGh5mYODA21tbSmRSMiyrErYVRaLxfo97bFw7NgxnThxouUx7e4rAAAAAAAwHCYmJjQzM9PymL29PR0eHg5oRu0FbNu2vZ5EO+FwWDdv3lQgEFA4HFYoFNLa2pri8bjC4bCKxaIKhYKy2WxN03pJlcDLtm0lk0mtrq56dj1GwezsrHZ3dzUzM6O7d+96PR0AAAAAAOATfssMhiL0kqR4PK6rV6/WVG010ijskkTg5RK/PYABAAAAAIA/+C0z8PXujdWSyaR2dnb0zDPPyLbtIx9l1WGXbdsKhUIqFAoEXgAAAAAAAGPE1z296pmmqUwmo9u3byubzSqTyciyLJVKJRWLRU1PTysYDMowDIXDYa2srGhyctLraQMAAAAAAGDAhmZ5I/zBb6WKAAAAAADAH/yWGQzN8kY33Llzx+spAAAAAAAAYADGKvSKRqNeTwEAAAAAAAADMFahl2VZXk8BAAAAAAAAAzAWodfBwYFefPFFlUolr6cCAAAAAACAAfBs98bbt29rZWVFlmUpHo/rlVdeOXLM0tKSbt++3dN5ykGXbdsKBAI9jQUAAAAAAIDh4FnoFY1Glc/nJUmJREJLS0v6+te/XnPM4uJi5RgAAAAAAADAKc+WN+bz+ZrKq0b9tl588UVJUiAQqPlwqpvLAAAAAAAAYPh5Vum1urqqq1evVr6ORCJHjllYWFAwGNS9e/dk27aCwaCmp6cVDAYdnaNUKqlYLNLLCwAAAAAAYMx4Fnolk0mFw2Ht7OwoHo/rqaeeanjc6uqqvv3tbyufz+vUqVNdn299fV3f/va3u748AAAAAAAAhkfAtm3b60m0cuvWLa2srOhnP/tZz2NNT0+rWCy6MKvxNTs7q93dXc3MzOju3bteTwcAAAAAAPiE3zIDz3p6ObWwsKDJyUlXxjIMw5VxAAAAAAAA4G++D70k6ebNm66MU91DDAAAAAAAAKNrKEIvtyq9FhYWXBkHAAAAAAAA/jYUoRcAAAAAAADQiaEJvd59911tbGzozTffbHvs9evXdfLkSb3zzjsDmBkAAAAAAAD85nGvJ+DE2bNntb29Xfn63r17+uY3v9n0+DNnzmhubk6hUEiXLl1SOp3WV7/61UFMFQAAAAAAAD7g+0qvl156Sel0WrZty7ZtSdKNGzfaXs40TVmWpZ/97GdaXFzUxx9/3O+pAgAAAAAAwCd8HXrdu3dPyWRSgUBAgUBAkmTbtqLRqKPLB4NB5XI5FYtFgi8AAAAAAIAx4uvQ69KlS5IeBV2Tk5OKxWIqFAo6d+6c4zEMw9Dq6qoODw8dh2UAAAAAAAAYbr4OvbLZrKamppTJZFQsFvXGG29obm6u43GeffZZSVKhUNBbb73l9jQBAAAAAADgM74OvSzL0sbGhpaXl3saxzCMyudbW1u9TgsAAAAAAAA+5+vQq1Qq1QRW3SoWi5IeLZPc2dnpeTwAAAAAAAD4m69DL8MwKoFVLzKZTOXzUqnU83gAAAAAAADwN1+HXqZpKp1O9zxOKpWq7P4YDAZ7Hg8AAAAAAAD+5uvQKxaLKZvN6r333ut6jLNnz1aquwKBgJaWllyaHQAAAAAAAPzK16FXKBTSqVOnFAqFOg6+Dg4OdPbsWaXTaQUCAdm2LUmKRqP9mCoAAAAAAAB8xNehlyRdvXpVtm0rFArpa1/7Wtvw6+DgQC+99JKmpqa0vb1d+f9AICDDMHTu3Ll+TxkAAAAAAAAee9zrCbRjmqa2tra0srKiTCajTCajYDAowzAqH5JkWZby+bwsy5KkSmVXucorEAi40h8MAAAAAAAA/hewy+mQz+XzeS0vL+vevXuVpvT1qq9K+RjbthUMBnXz5k0tLCwMZK6jbHZ2Vru7uzp27JhOnDjR8tjz58/r/PnzA5oZAAAAAADolytXrujKlSstj9nb29Ph4aFmZmZ09+7dAc2sOd9XepWZpqk7d+7olVde0auvvnrk+4FAoCboKgdgsVhMiURCk5OTA53vqDs8PNTu7m7LYw4ODgY0GwAAAAAA0E8HBwdtcwC/GZrQS5ImJyeVSCSUSCR08+ZNZTIZ5fN5FYtFWZal6elpBYNBLS0tKRwOKxQKEXb1iZNKr4mJiQHNBgAAAAAA9NPExIRmZmZaHlOu9PKLoVneCH8oL2/0S6kiAAAAAADwB79lBr7fvREAAAAAAADoFKEXAAAAAAAARs5YhV7PPfec11MAAAAAAADAAIxV6LWzs+P1FAAAAAAAADAAvg+97ty5o4ODg8pHJ8qX+eijj/Tss8+qVCr1Z5IAAAAAAADwlce9PPnBwYEuXbqk/+l/+p/0zW9+88j3r169qhdffNGVc9m2rUAg4MpYAAAAAAAA8DdPQy/TNHX79u3K1/XBl2EYsm170NMCAAAAAADAkPNseePFixdlWVYl1Po//8//88gx09PTkqRAINBTlRYVXgAAAAAAAOPFs0qvbDarQCAg27YVCoV06dKlI8cEg8HK53NzczJNs+PzlEolFYtF5fP5XqYLAAAAAACAIeJZ6JXP5xUIBBSPx/X66683PGZubk7So2WOP/vZz3o6Xzab1XPPPdfTGAAAAAAAABgOnu7eGIlEmgZe9cf1KhQKVUI0AAAAAAAAjDZPQ69EIjHQ88Xj8YGeDwAAAAAAAN7wNPR66qmnHB13/PhxV8534cIFV8YBAAAAAACAv3kWepmmqY8++sjRsdUN7XtxcHDgyjgAAAAAAADwN89Cr6WlpYY7NvZTNBod6PkAAAAAAADgDc9Cr7W1NaXTab311lsDO+fOzs7AzgUAAAAAAADvPO7ViQ3D0JkzZxSLxZROpxWLxWSaZsM+X/fu3etpaaJlWVpbW1OpVOp+wgAAAAAAABgaAdu2ba9Ofvv2bc3PzysQCDQ9xrbtlt93qjzOF1980fNY42x2dla7u7uamZnR3bt3vZ4OAAAAAADwCb9lBp5Vet27d0/PPvtsJdBqlb15mMsBAAAAAABgCHnW0+vSpUsqFAqVryORiEKhUF/O5UalWDubm5sKh8OamppSIBDQ/Py8otGostls38/dTLmKbnt727M5AAAAAAAAeMGzSq9sNqtAICDbtrW4uKitra3K927evCnLsvTJJ5/o1VdflWmaMgyj63NZlqV8Pu/GtI/IZrOKRqMqlUoKhUJKp9MyDEP5fF7r6+sKh8OV/w8Gg32ZQyPr6+uyLGtg5wMAAAAAAPATz3p6HTt2TIFAQLFYTK+//nrL41KplM6dO9fT+fL5vE6fPu1qT69sNqtwOCxJisViSiaTR45ZXFxUPp+XYRjK5XIDCb6q5yVJ6XRakUjElbH9tj4XAAAAAAD4g98yA0+WN967d0/SoyWNrQIvN5mmqYWFBdfGK5VKikajkh7tRNko8JIeBU7So2qz8vH9VD0vAAAAAACAceVJ6DU5OSlJ2tjYGOh53TxfeUmj9GgpYTOGYVSqrLLZrFKplGtzaGR1dVXT09MDXUoJAAAAAADgN541spekU6dODfR8Z86ccWUcy7JqGtSvrKy0PP7s2bOVz1sFZL1KpVLa3t6uVJcBAAAAAACMK89CL8Mw9PHHHw/0nAcHB66Mk0gkKp+HQqG2VVXV/bRKpVJfdlO0LEvxeFxra2syTdP18QEAAAAAAIaJZ6FXJBLRK6+8MtBzutXrqnqJotOAqXr3yWvXrrkyj2rRaFSmadYEcgAAAAAAAOPKs9ArFospnU7rrbfeGtg5d3Z2eh4jn8/XfH369GlHl6sOx9yu9FpfX1c+n2dZIwAAAAAAwC897tWJDcPQmTNnKuFXJBJRKBTS9PS0JiYmao69d+9e10sTi8WiSqWS1tbWKo3ne1Hdy0uqreBqpf64fD7vyjLEfD6vzc1NJZNJx3MBAAAAAAAYdZ6FXpKUTqe1uLioGzduKJPJND1ubW1Na2trPZ3Ltm0FAoGexpCkDz/8sOZrp7skHj9+vObrnZ0dV0Kv5eVlRSIRxWKxnscCAAAAAAAYFZ7u3ihJ7777rs6cOSPbtht+SGr6vU4+3GJZVs3X3VZ6FQqFnudS7lF29erVnscCAAAAAAAYJZ6HXpOTk0qn07px44aWl5f7cg43KrzK6kOvbvW61HJ7e1vb29tKp9OOq80AAAAAAADGhafLG6uFQiGFQiFJ0s2bN2VZlj755BO9+uqrMk1TS0tLHY9ZLBYlPQqq6hvQd6vbsKo+mCrPrds5RKNRxWKxym02aHt7e5qdne15nPPnz+v8+fMuzAgAAAAAAHTjypUrunLlSs/j7O3tuTAb9/gm9Kq2vLxcqfp69dVX9eKLL+rcuXM9jZnP5x3vtDgIvVR6LS8vyzAMJZNJ9ybUocPDQ+3u7vY8TrcbFAAAAAAAAHccHBy48h7fb3wZevWDaZpaWFjoeZxgMOjKLpDdLknc3NxUPp9XLpfreQ69OHbsmE6cONHzOPU7dQIAAAAAgMGamJjQzMxMz+Ps7e3p8PDQhRm5w/ehVyQScdwsvp14PN7zGNPT066EXtPT0x1fJp/Pa319XYlEwpWdH3tx4sQJ3b1719M5AAAAAACA3rnVemh2dtZXFWO+D722trZcG2t1dbXnMbqt0KoPyroZJxqNyjRNra2tdTUHAAAAAACAceH70KtTBwcHKhaLeuqpp/oy/tLSUk1T/FKp5CjAqm9cPz8/39F5Nzc3ZVmWQqGQotFo2+OrQ7ZLly7p2rVrla/Pnj2rSCTS0fkBAAAAAACGyciFXplMRtFoVFNTUwqHw1pZWVEoFHKtd9Ti4mLN15ZlOVpqWCgUar7udNfFTz/9VJKUzWY7upz0aFlkdVBnGAahFwAAAAAAGGnHvJ6A9Kg6q/qjF2fOnNGNGzcUDAa1tbVVCcBOnz6tl19+uee5Li0t1XxtWZajy1VXXgWDQdf6lAEAAAAAAOAoT0Ovxx57TI899pimpqZqPt5+++2exg2FQioUCrpw4YJs25Zt28rlckokEj3P2TTNmuWMH374oaPL7ezsVD6vD86cSCQSlevi5KM6VEun0zXfc+N2AAAAAAAA8DNPQ6/qIGZyclJvvPGGPvnkE3396193ZfxEIqHLly+7Mla1lZWVyufVywZbqT5ufX3d9TkBAAAAAADgr3ne0ysQCMg0TWWzWU1OTtZ87969e7p48WLbMYLBoC5dutTwe2tra9ra2nIcTjkRj8eVSqUkOeuxVX2MYRgd9/MCAAAAAABAZzwPvaRHy+/qA68y27a1s7OjfD6vQCBw5HuhUOhIc/l6Fy9erKnO6pVpmgqFQpUwa3t7u2Vj+HQ6Xfm8XZVXKpVSoVBQPB6n7xcAAAAAAECXArZt216d/NixY5qamqrsTNhKPp9XKBSqNIRfXFzU1taW5ubmHJ8rEAjoiy++6GXKFZZlaX5+XtKjECyXyzU8rlQqaWpqStKjXmOZTKbpmOFwuKYqbH9/v6Z/WCfm5+crTfbT6bRruzXOzs5qd3dXMzMzunv3ritjAgAAAACA4ee3zMDz3RudVjOZplnpzxUIBHT16lXHgVcn5+lkvHIFVz6f1+bmZsPjlpeXJT1aglld8dVI/VLJra0tF2YKAAAAAAAwfjwPvaanpx0fGw6HJT0KkE6dOtXRefqxVDASiSiTySgYDGp9fV3RaFT5fF6lUknZbFaLi4vK5/MyTVO3b99uW7VV/32WNwIAAAAAAHTH89CrE+XKrk6CsrJulwm2EwqFtL+/r0QiIcuytLy8rKmpKUWjUU1PTyudTiuXyzk6fzqdlmEY///27iA3sWy9A/jnep3oDRIHV49K9uThDURQvYKCHZh+Kyh77gGoV9DCA8/NW0E13kAEnQ1UwQ6gJ2V59ArkJIqUKCaDEggwxoCN4V5+P8kS2Jdzj83nKvPnO+dGJpOJcrn8rA3vO53O6MqYL7W0EQAAACApNr6R/brCqNdWLpejXC4/a4xCoRCdTueFZgQAAACwuxLV6QUAAAAAixB6AQAAAJA6Qi8AAAAAUmdnQq9+v7/pKQAAAADwSjYeer1WGPXt27dXOQ8AAAAAm7fx0Kvb7a79HHd3d9Fut9d+HgAAAAC2ww+bnkC3240//elPkclklnrMjz/+uPDxljYCAAAA7JaNh14REYPBIHq93tqOBwAAAGC3bEXotbe3t/ZzDAaDtZ8DAAAAgO2wFaFXxHpDqdcI1QAAAADYHlsRev3Lv/xLvH//PjKZTLx9+/bFxv327Vv0+/348uWLfb0AAAAAdsjGQ69CoRD/9m//tvbzFIvF+Pd///e1nwcAAACAzXuz6QlUq9VXOc/V1dWrnAcAAACAzdt46PWv//qvr3KebDZrM3sAAACAHbHR0Ou1u690ewEAAADsho2GXh8/fkz1+QAAAADYjI0vbwQAAACAlyb0AgAAACB1hF4AAAAApM4Pm54AyXR7extHR0dzjzk/P4/z8/NXmhEAAACwLpeXl3F5eTn3mNvb21eazWKEXqzk/v4+bm5u5h5zd3f3SrMBAAAA1unu7u7JHGDbCL1YyZs3b+Ldu3dzj9nf33+l2QAAAADrtL+/H4eHh3OPub29jfv7+1ea0dP2BoPBYNOTIDmOjo7i5uYmDg8P4+vXr5ueDgAAALAlti0zsJE9AAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXoBAAAAkDpCLwAAAABSR+gFAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASJ0fNj0Bkun29jaOjo7mHnN+fh7n5+evNCMAAABgXS4vL+Py8nLuMbe3t680m8UIvVjJ/f193NzczD3m7u7ulWYDAAAArNPd3d2TOcC2EXqxkjdv3sS7d+/mHrO/v/9KswEAAADWaX9/Pw4PD+cec3t7G/f39680o6ftDQaDwaYnQXIcHR3Fzc1NHB4extevXzc9HQAAAGBLbFtmYCN7AAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXoBAAAAkDpCLwAAAABSR+gFAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXoBAAAAkDo/bHoCJNPt7W0cHR3NPeb8/DzOz89faUYAAADAulxeXsbl5eXcY25vb19pNosRerGS+/v7uLm5mXvM3d3dK80GAAAAWKe7u7snc4BtI/RiJW/evIl3797NPWZ/f/+VZgMAAACs0/7+fhweHs495vb2Nu7v719pRk/bGwwGg01PguQ4OjqKm5ubODw8jK9fv256OgAAAMCW2LbMwEb2AAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXq9kIuLiygWi3FwcBB7e3txfHwcpVIpms3mWs/bbrfj7Owsjo+PY29vb3TuSqUS/X5/recGAAAA2FZCr2dqNptxcHAQlUolIiLq9Xp0Op2oVqvRbrejWCxGsVh88QCq3+9HqVSKfD4ftVotut3u6GvdbjcuLi7i4OAgarXai54XAAAAIAl+2PQEkqzZbEaxWIyIiNPT07i6uhp9LZvNxsnJSeTz+Wg2m5HP56PVakUmk3n2efv9fuTz+Ymg6zFnZ2fRarUm5gYAAACQdjq9VjTstIr4HnA9FirV6/WI+N59NTz+uUqlUnS73cjlcqPOsk6nE/V6Pcrl8oPja7VaXF9fv8i5AQAAAJJA6LWiUqk0WrI4XNo4y7DjK+J7Z9hzlxvWarVoNptRLpej1WrFyclJZLPZ0Xmq1Wp0Op3I5XITj/v48eOzzgsAAACQJHuDwWCw6UkkTbfbjePj49H9Xq83d9ni9fX1qMsrk8lEr9db+dzHx8eRzWaj0WgsNceIiEajEYVCYeVzR0QcHR3Fzc1NHB4extevX581FgAAAJAe25YZ6PRaQbVaHd0uFApP7tM17PSK+L4sctWlhu12O7rd7mjJ5DzZbHZinsPHAwAAAOwCodcKxpcoTi8jfEw2mx3d/vTp00rn/fTpU5yeni68Gf50V9ff//73lc4LAAAAkDSu3rik6W6pn376aaHH5XK50dUWV+30+utf/zoRni1yznHTyx0BAAAA0kqn15KazebE/UVDqOnjVllqmMvlFu7yiojRRvuPzQEAAAAgrYReS/r8+fPE/UVDqB9//HHi/pcvX15qSo8adpYNPXcTewAAAICkEHotaTpIWrXTq9PpvNicHjMerJ2enq79fAAAAADbQui1pOnQa1XTSw/X4erqanS7Uqms/XwAAAAA20LotaRVw6rpZZDfvn17/mTm6Ha7o33DqtWq/bwAAACAneLqjRuy7k6varUaEd+XVZbL5Rcf//b2No6Ojp49zvn5eZyfn7/AjAAAAIBVXF5exuXl5bPHub29fYHZvByh15IymcyLBFbLXIVxWe12O2q1WmQymWg0Gms5x/39fdzc3Dx7nLu7uxeYDQAAALCqu7u7F3mNv22EXkt6+/bti4Reb9++ff5kHvHx48eIiPj999/XtqzxzZs38e7du2ePs7+//wKzAQAAAFa1v78fh4eHzx7n9vY27u/vX2BGL0PotaRVO7Smg7J1dXqdnZ1Fu92Oer0euVxuLeeIiHj37l18/fp1beMDAAAAr+Olth46Ojraqo4xG9kv6f379xP3F+36mt64/vj4+KWmNFKr1aJWq8XV1VWcnJy8+PgAAAAASSH0WlI+n5+43+12F3pcp9OZuF8oFF5sThERzWYzzs7O4urqKk5PT190bAAAAICkEXotabrTa9HQa7wjLJPJvOheW+12O4rFYlSrVYEXAAAAQAi9lpbL5Sb24/r8+fNCj/vy5cvo9nRw9hzdbjc+fPgQ5XI5yuXyi40LAAAAkGRCrxX8/PPPo9vtdnuhx4wfV6lUXmQe3W438vl8nJ6eRrVaXfgxFxcXL3J+AAAAgG0l9FrB2dnZ6Haz2Xzy+PFjstnsi+zn1e/3o1gsxs8//7xw4BURUSqVXnw/MQAAAIBt88OmJ5BEuVwuCoXCKMy6vr6ee7XEer0+uv1Ul1etVotOpxNnZ2eP7vvV7/cjn89HNpuNSqWy0L5i3W53dO5cLvfk8QAAAABJtjcYDAabnkQSdbvdOD4+jojvIVKr1Zp5XL/fj4ODg4j4fsXGRqPx6JjFYnGiK6zX603sHzaUz+cXXlY57blXdzw6Ooqbm5s4PDyMr1+/rjwOAAAAkC7blhlY3riibDY76uBqt9uP7pP14cOHiPh+xcbxjq9ZppdK/vbbbw+OeU7gFRGu7ggAAADsBKHXM5ycnESj0YhMJhOVSiVKpVK02+3o9/vRbDZHAVUul4s//vhjZtfWuOmvTy9vHI6/KoEXAAAAsCvs6fVMhUIher1eXFxcxKdPn+LDhw/R7/cjk8nE+/fvo16vz93va1y9Xo+zs7P49u1bnJ6ePthw/qlOMQAAAAC+s6cXS9m29bkAAADAdti2zMDyRgAAAABSR+gFAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqfPDpidAMt3e3sbR0dHcY87Pz+P8/PyVZgQAAACsy+XlZVxeXs495vb29pVmsxihFyu5v7+Pm5ubucfc3d290mwAAACAdbq7u3syB9g2Qi9W8ubNm3j37t3cY/b3919pNgAAAMA67e/vx+Hh4dxjbm9v4/7+/pVm9LS9wWAw2PQkSI6jo6O4ubmJw8PD+Pr166anAwAAAGyJbcsMbGQPAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXoBAAAAkDpCLwAAAABSR+gFAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6P2x6AiTT7e1tHB0dzT3m/Pw8zs/PX2lGAAAAwLpcXl7G5eXl3GNub29faTaLEXqxkvv7+7i5uZl7zN3d3SvNBgAAAFinu7u7J3OAbSP0YiVv3ryJd+/ezT1mf3//lWYDAAAArNP+/n4cHh7OPeb29jbu7+9faUZP2xsMBoNNT4LkODo6ipubmzg8PIyvX79uejoAAADAlti2zMBG9gAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXoBAAAAkDpCLwAAAABSR+gFAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1ftj0BEim29vbODo6mnvM+fl5nJ+fv9KMAAAAgHW5vLyMy8vLucfc3t6+0mwWI/RiJff393FzczP3mLu7u1eaDQAAALBOd3d3T+YA20boxUrevHkT7969m3vM/v7+K80GAAAAWKf9/f04PDyce8zt7W3c39+/0oyetjcYDAabngTJcXR0FDc3N3F4eBhfv37d9HQAAACALbFtmYGN7AEAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOj9segLwEi4vL+Pu7i729/fj/Px809OBV6Hu2VVqn12k7tlVap9dpO5fzt5gMBhsehIkx9HRUdzc3MTh4WF8/fp109MZ2dZ5wTqpe3aV2mcXqXt2ldpnFyW57rdt7pY3AgAAAJA6Qi8AAAAAUkfoBQAAAEDqCL1eyMXFRRSLxTg4OIi9vb04Pj6OUqkUzWYz1ecGAAAA2EZCr2dqNptxcHAQlUolIiLq9Xp0Op2oVqvRbrejWCxGsViMfr+fqnMDAAAAbLMfNj2BJGs2m1EsFiMi4vT0NK6urkZfy2azcXJyEvl8PprNZuTz+Wi1WpHJZBJ/bgAAAIBtp9NrRf1+P0qlUkR8D5nGQ6dx9Xo9IiK63e7o+CSfGwAAACAJdHqtqFQqjZYNDpcXzjLsurq+vo5msxm1Wi1OT08Te25e3uXlZdzd3cX+/n6cn59vejpLM39WlfSffZLnn+S5J13Sf/bmz6qS/rNP8vyTPPekS/rP3vxJhQFL63Q6g4gYffR6vbnH1+v10bGZTCax5x4MBoPDw8NBRAwODw+fPdZL2tZ5LSLJcx8MzH+Tkjz3wcD8NynJcx8Mkj3/JM99MDD/TUry3AcD89+kJM99MEj2/JM898HA/DfJ3F+O5Y0rqFaro9uFQuHJvbJOTk5Gt/v9flxfXyfy3AAAAABJIfRaQa1WG93O5XILPSabzY5uf/r0KZHnBgAAAEgKodeS2u32xP2ffvppoceNB1Srdltt8twAAAAASSL0WlKz2Zy4P95FNc/0cdMB1rafGwAAACBJhF5L+vz588T9p/bUGvrxxx8n7n/58iVR5wYAAABIEqHXkrrd7sT9VbutOp1Oos4NAAAAkCRCryVNB0+r6vf7iTo3AAAAQJLsDQaDwaYnkSR7e3sT9xf98TWbzSgWi6P7JycnUa/XE3PuoX/8x3+M//3f/42IiDdvnp+Z/vM//3P80z/907PHub29jfv7+3jz5k28e/fu2eO9piTPPcL8NynJc48w/01K8twjkj3/JM89wvw3KclzjzD/TUry3COSPf8kzz3C/DdpE3P/z//8z/iP//iPZ49zf38fERH/8A//EP/zP//z7PGeS+i1pJcKngqFQjQajcSce+hPf/rTqIgBAAAApr158yb+7//+b9PTiB82PYGkyWQyL7I8cNFN6Lfl3EN//vOf47//+79jMBhsVacXAAAAsJqX7PTa29uLP//5zy8wq+cTei3p7du3LxI8vX37NlHnHvqv//qvZ58fAAAAYN1sZL+kVbukpsOqVTu9NnVuAAAAgCQRei3p/fv3E/cX7bz69u3bxP3j4+NEnRsAAAAgSYReS8rn8xP3u93uQo/rdDoT9wuFQqLODQAAAJAkQq8lTXdbLRo8jXdlZTKZyGaziTo3AAAAQJIIvZaUy+Um9sT6/PnzQo/78uXL6PZ0eJWEcwMAAAAkidBrBT///PPodrvdXugx48dVKpVEnhsAAAAgKfYGg8Fg05NImna7PbG/1lM/wmazGcViMSIistnsgz22knJuAAAAgKTQ6bWCXC43sRn89fX13OPr9fro9lOdVrVaLSqVyqP7da3z3AAAAABpodNrRd1uN46PjyPiexDVarVmHtfv9+Pg4CAivl81sdFoPDpmsViMZrM5ut/r9Sb28FrnuQEAAADSRKfXirLZ7KiLqt1ux8XFxczjPnz4EBHfr5o43nU1y3jgFRHx22+/vdq5AQAAANJE6PUMJycn0Wg0IpPJRKVSiVKpFO12O/r9fjSbzcjn89FutyOXy8Uff/wxs2tr3PTXs9nsq50bAAAAIE2EXs9UKBSi1+tFtVqNbrcbHz58iIODgyiVSvH27duo1+vRarUWCp3q9Xpks9nIZDJRLpcn9u5a97mT6OLiIorFYhwcHMTe3l4cHx9HqVR60DEHL6ndbsfZ2VkcHx/H3t7eqPYqlUr0+/2Vx11HPSdlTJJv+Pvw1D6TsySlTtU+j2m323F9fR0XFxcL10NSalTd755+vx+VSiWKxeLo3/bh816r1VYeNyn1qebTqdvtRrFYXOnvlHFJqbmkjPlqBpAwjUZjkMlkBhExKBQKg0ajMeh0OoN6vT7IZrOjz/d6vU1PlRTp9XqDk5OTQUTM/bi6ulpq3HXUc1LGJB3K5fKo/uv1+sKPS0qdqn2m9Xq9QbVaHeRyuUFEDDKZzKBcLg8ajcaTdZCUGlX3u6larY5qulqtDhqNxqDVag2urq5G9Z7NZgeNRmPhMZNSn2o+nab/fl/27/ShpNRcUsZ8bUIvEqXRaIz+0To9PZ15zPh/ytv8y0dy9Hq90T/qi3w8VpvT1lHPSRmTdBivjWVCr6TUqdpnXK/XG5yeno5qIpfLLf3iPwk1qu530zAYyOVyjx4zXv+tVuvJMZNSn2o+fXq93sSbcs8JvZJSc0kZcxOEXiRGr9cbpczZbPbR4zqdzuiXs1AovOIMSatCoTD6Q7Berw86nc7oHY5Z/6Eu8uJ/HfWclDFJh/HaWCb0Skqdqn3GXV1dTdT7si+cklKj6n43DTu8IuLJF63DNwEzmczc45JSn2o+farV6iCbzY7+fn9O6JWUmkvKmJsi9CIxxv/heuofrJdoY4XB4PsLnYgYlMvlR4/pdDqjdzmGH0/9MbiOek7KmKTDycnJIJvNTgQBi4ReSalTtc/Q+Jsb2Wx20Ol0lh4jKTWq7nfT8Hmc1+U1tOiS9qTUp5pPl1arNdGFOPw7ftXnLSk1l5QxN0XoRSKMJ8iLvAtVr9cXDh9gnuE7RU+ZrtGIeHTZyzrqOSljkg7DPyJbrdZSoVdS6lTtMzT+h3wmk1lp6UZSalTd76bx5UsnJydPHj/+vD/2hmBS6lPNp1+r1Vo59EpKzSVlzE0SepEI43sILNo2Of6LuszmyjA0/I9y0Rc548sDImJQrVZnHreOek7KmCTf8A+h4YudZUKvpNSp2mcwGDxYGrNKh9dgkJwaVfe7abwTZt4SpqHxF7f+zlHz2246vFkm9EpKzSVlzE16E5AA45dIzuVyCz0mm82Obn/69OnF50T6ffr0KU5PTyOTySx0fKFQmLj/97//feZx66jnpIxJ8pVKpcjlclGtVpd+bFLqVO1Tq9UmLsN+dXU18RwvO9bQNteout9Nb9++Hd3udrvR7XbnHv/58+fR7cd+J5JSn2qeeZJSc0kZc5OEXmy9drs9cf+nn35a6HHjv6DX19cvOid2w1//+telXthP/6dwfHz84Jh11HNSxiT5KpVKtNvtqNfrSz82KXWq9ul2u3F2dja6n8vl4vT0dKWxklKj6n53TQdX47U/y/B5zmQycXJy8uDrSalPNc88Sam5pIy5aUIvtt74O60Rj7+rNG36uOlfYHhKLpdbuMsrIqLf70/cn1Wr66jnpIxJsrXb7bi4uFi54yUpdar2KZVKE/d/+eWXlcdKSo2q+92Vy+UmXqw2m80HvwNDtVpt1An22JuCSalPNc88Sam5pIy5aUIvtt54G3VELBxC/PjjjxP3v3z58lJTgpmmlwRML3eMWE89J2VMku3Dhw9xcnKycsdLUupU7e+2brc78Yf6Y90si0pKjar73fa3v/1t4v719fWD4KvZbI66wK6urh79vyAp9anmmScpNZeUMTdN6MXWmw4SVk2bO53Oi80JZhn/x/2xPwbXUc9JGZPkGr74mX5htIyk1Kna321XV1cT94dvXgxDgOPj49jb24uDg4PI5/NxcXHxoMt3XFJqVN3vtlwu92DZ+vX1dRwfH4+6fIvFYmSz2Wg0GnPf/EhKfap55klKzSVlzE37YdMTgKc8taHmoub9UQovYfzFUqVSmXnMOuo5KWOSTNfX13F9fR2NRmOp5b7TklKnan+3jW/eG/F9k+98Pv9gmUa/3492ux3tdjsqlUrU6/WZHWFJqVF1z8nJSVxdXU3s6dXtdiOfz0dERLlcXmif06TUp5pnnqTUXFLG3DSdXmy9VX9hpl+cffv27fmTgUeML4mpVquPviuyjnpOypgkT7/fj1KpFKenpzOX6y471irUPq+l2+0+eP5/++23ODs7i16vF4PBIAaDQXQ6nQedLqVSaebGvUmpUXVPxPcu9elux6Fms7lQnSSlPtU88ySl5pIy5qYJvdgZ25Q2kz7Ddz+z2WyUy+W1n28d9ZyUMXk9Hz58iGw2++iLoE1ISp2q/eSZfnc7k8nEH3/8EaenpxN/zA9/J6Z/Lz5+/Li25z0pNaruk+/09HTm8sV2ux1/+ctfXm1z6qTUp5pnnqTUXFLGXJXQi633nOU06xgHprXb7ajVapHJZKLRaMw9dh31nJQxSZaLi4tot9sP9nlZVVLqVO3vrunQazrsmjYdDvT7/fj1118njklKjap7hs7OzqJWq8Xp6emDrvV+vx/5fP7B1d3GJaU+1TzzJKXmkjLmpgm92Hpv377dqnFg2sePHyMi4vfff39ys8d11HNSxiQ5hvsUVavViUvZP0dS6lTt767pTXd/+umnJx8zvX/jxcXFxP2k1Ki6JyKiWCxGrVaLcrkcV1dXM5fyDo97LPhKSn2qeeZJSs0lZcxNE3qx9VZNiadbKrcpbSY9zs7ORt0wi4QD66jnpIxJcpRKpcjlci+6VDcpdar2d9cqz2E2m33wb//48q+k1Ki6Z9jBVSgUJjasv7q6mtnxWyqVZi5fSkp9qnnmSUrNJWXMTRN6sfXev38/cX/R9cHTm+cdHx+/1JQgIr5f5atWq8XV1dXMq3bNso56TsqYJMPFxUV0u914+/ZtlEqlJz/Ga+PXX3+d+Nr4xt5JqVO1v7tWfc6ma2Z8mWRSalTd77ZSqTQKa2ft4XhychKtVmviRWy/3595peqk1KeaZ56k1FxSxtw0oRdbb3ip5KFFL6M6vUzhuVceg3HNZjPOzs7i6upqZuv/Y9ZRz0kZk2T4+9//HhHfa/z6+vrJj3Htdnvia58/fx59LSl1qvZ31/S70ov+oT/9h/34H/5JqVF1v7u63e7o3/JcLvfoNg25XC5ardbE52q12oPfk6TUp5pnnqTUXFLG3DShF1tv3juo84z/J5zJZJ7cawkW1W63o1gsRrVaXSrwilhPPSdlTHZbUupU7e+uVZ/76bBsfB+TpNSout9d451d03UwbdbVfL98+TJxPyn1qeaZJyk1l5QxN03oxdbL5XITf1COdw7MM/6f8FP/icOiut1ufPjwIcrl8kr7Ha2jnpMyJslQrVZjMBgs/DH+R029Xp/42vi+MEmpU7W/u6b35pp+13pR478TSalRdb+7xl+oLrIcafrNvukXxEmpTzXPPEmpuaSMuWlCLxLh559/Ht0e3yB2nvHjZu05AMvqdruRz+fj9PR04sX8U4+ZvprXOuo5KWOy25JSp2p/d40vx3js6nTTppd3TYdnSalRdb+bxpfjLhr0PnXhnqTUp5pnnqTUXFLG3KgBJECr1RpExOjjKY1GY3RsNpt9hRmSdr1eb5DNZgenp6dLPS6Xyw1ardbE59ZRz0kZk/TJZrOj571er889Nil1qvZ31/hzGRGDXq/35GNOT09HxxcKhQdfT0qNqvvdVC6X59bvLLlcbvSYRqPx4OtJqU81n36dTmfiOb66ulr4sUmpuaSMuUk6vUiEXC438e7r9ObJ08Yvrbx1STOJ0+/3I5/PRzabjUqlEt1u98mPZrM52ghy+h3RddRzUsZktyWlTtX+7ioUChPLE3/99dcnHzPeETarCzgpNarud9Nf//rX0e0vX74sdAGH8SWNszarTkp9qvn0W/SCJLMkpeaSMuZGbTp1g0WNJ/W5XO7R43q93tLvWME84+9oLvvx2DtK66jnpIxJuizT6TUYJKdO1f7umn6Hu9PpPHrs+Lvb8zqBk1Kj6n43FQqF0fNZLpfnHjte89Vq9dHjklKfaj7d6vX6xL/n82p2lqTUXFLG3BShF4ky/g/XY/9oDQOKTCaz0LIEmOc5gddT7yuso56TMibpsWzoNRgkp07V/u66uroaPffZbHbmcztc9v7UC4KhpNSout89vV5vkMlkRs/7vDfshsct8uI2KfWp5tNp/N/oRcKbxySl5pIy5iYIvUicRqMx+g/35ORk0Gq1Br1eb9BoNEa/dLlcbmt/6UiOk5OTZwVei+z/tY56TsqYpMMqoddgkJw6Vfu7a/y5z2Qyg2q1Omi1WoNWqzWoVqujry2z12NSalTd755er/dgf7qrq6tBq9UaNBqNib2/lumWSUp9qvl06PV6g5OTk4nuxVkfhUJh9DwvIik1l5QxX5vQi8SqVquDXC438QdpoVBY6kUXbIt11HNSxmS3JaVO1f7uurq6GhQKhYnnPpfLDcrl8tylj/MkpUbV/e5ptVqD09PTiTc0stns4OTkZFAul1d+YZuU+lTzzJOUmkvKmK9lbzAYDAIAAAAAUsTVGwEAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAJAi7XY7arVanJ2dRbfb3fR0YGP2BoPBYNOTAAAAAFZzcXERnz59im63G/1+f+JrXvKzy3R6AQAAQIKdnp5GvV6Pv/3tbxOfz+VyG5rR4vr9fuzt7T350W63IyLi+vo6Dg4O5h57dnb2onM8Pj5+cn7r6KhrNpsL/Wz29vbi4OAgarXak2O22+0nf375fH50/MXFxZPnPj4+fvHv/aUIvQAAACDBMplMZLPZODk5mfh8oVDY0IxWl8vlotVqRa/Xm/gYBngnJyejz11dXc0co1arPeh4W1Wz2Xw00KpWq9Hr9WIwGEQ2m32R840rFAoxGAyiXq9HJpOZeczp6WkMBoPo9Xpxenr65Ji5XG7085s+vlAoRK/Xi1arNfpcuVyeeB46nc6jP/dtZHkjAAAApEC3253oumk0GlsffPX7/Tg4OBjdr9frD8K7eSqVSlxcXDz4fLlcjmq1+uz5FYvFaDabDz5/cnIS9Xr92eMvqtlsRrFYfPD5Vqu1ckff+M8+k8nEH3/88Wi4Nq1UKsX19XVERGSz2eh0OivNYd10egEAAEAKTIcz2x54zbJo6DI0KwiKiIWW+j2l2+3ODLzmnXddCoXCzDDwy5cvK4/57du30e1qtbrUz34dnW3rIPQCAACAFGg0GqPbSdjPa5a3b9++yPH9fn9mB9gyKpVKRMwOD5ed50uY1bn2nKWGw33SMpnMQksjk0joBQAAACkw3pWUxC6vVQy7k3K53INOpV9//XXlcfv9/mj53jD8mnXe1zRr37Z2uz0Kr5Y1DMzSGnhFCL0AAAAg8brd7sTm7a+9/G4bTIc348HVsoaB2cnJyVYt5ZvV7bVKuNfv90ch6Utf7XKbCL0AAAAg4abDnV3p9Br3yy+/PPjcrC6tRQz3BJs15iZls9kHz+319fXSV6scfn+5XG6rQr2XJvQCAACAhBvfz2sXA6+I2XtTzduM/jG1Wi36/X4UCoUX2Rut3+9HpVKJfD4fBwcHsbe3FwcHB1EqlZaeW8TsIG/Zbq/h0sZtC/VemtALAAAAEqDb7cbZ2Vnk8/nY29uL4+PjUYfXeHiyyNLGbrcb19fXcXFxMRrz4OBg4qqH3W43SqVSHB8fj85XKpWi2+2+/Df3QmYFQst2ew2XEK7aJTZ97uHP9e3bt1EoFCKbzY6WXhaLxSgWi0t1ag3HGLfM1SqbzeboOZx1Rcg0+WHTEwAAAAAe1+/3Z3YFDUOper0+8fmnOr1qtVo0Go1ot9sPAqyff/45Ir6HNdNXP+x2u6OwrNFobGVH2XCz9/HlnsPN3hfp2hoGQrOWES6rWCxGs9mMarUa5XJ54mu1Wm20l1az2Yx8Ph+dTmfhsSuVysReXP1+P2q12kKb0u/CBvZDOr0AAABgSzWbzfjLX/4yCrwKhUK0Wq3o9XrRaDQik8nEx48fR8dnMpknw53T09Oo1+vR6XQmOoay2WxkMplRwNZoNKLX60Wv13uwgfo2b34+a8neosv/XqrL6+zsLJrNZpTL5QeBV8T352A8dOp2uw9CxnlOT08fXEFy1ib308Y399/m5/ClCL0AAABgC9VqtYmlb1dXV9FoNCKXy0Umk4lCoRDVanViadyy3UnjwUmhUIizs7N4+/ZttFqtKBQKkclkIpPJRLlcnhh72PG1jXK53MzN3p9aljnc/2vW3mDLaLfbC22EPx2sLbsv1yr7l41vYP8S+5VtO6EXAAAAbJnr6+uJTpxGozEziJne22mR/bzGtdvt0e1v377Ft2/fRsvfppVKpYn7nz9/Xupcr2lWp9ZTnVDDrz93c/fhuYeh4WOGnXVD411Yi5g1z6e+x+FzuwtdXhFCLwAAANgq7XZ7ImCa7rIaN70B+jKdXuOBV8T3pZTT+4ONmw7YtnlD+8c2e39sw/jhnlgRz9vrarzbapEA8v379xP3x6/C+ZRZHWnjm9RPG9/DbRf284oQegEAAMBWGQ+8crnc3O6db9++jW5ns9kHQc8800vhntvhtG1m/dweW0I4HnjN6856yvjPtFKpxN7e3tyP6efgy5cvS51vmY624fee9is2jnP1RgAAANgSZ2dnE506f/vb3+Ye32q1RreX3c9rennirA3Xx013EC0TsG3CyclJZDKZie6ui4uLuWHYczewH+/UOj09jXw+v9Tj3759u9Txw6tMjodntVotqtXqo0sn0xZuziP0AgAAgC3Q7XZHHUcR30ObpzYbH+8Mmt5z6ynjQcki3T+dTmfi/vHx8VLn24RffvnlQZB1cXExEfBdX19Hv9+Pk5OTZwd548FgsVh8la6qSqXyoGOsVqtNfI+//fZbRHwPyXZhA/shyxsBAABgC0xvLv7UpuQRk/tyLdPp1e12JzqgFtnYfHoPsGU7yzahXC4/WK44vcRxeP8lOqDGf6bjS0/Xadb+ZdPf47CWdmUD+yGhFwAAAGzY+AboEbODjGnjV/pbtntnujNokQBr/DHL7h+2SdObto9vWt9ut6Pdbkcul3uRDqjxoGu6M26dprvZpr/HXdvAfkjoBQAAABt2dXU1cX+RpYrjj1m262p876llA6+IZHUMzergGnY+DcOil9rnanxPrumf2TrN2oB/+D2Ob2D/nE36k0joBQAAABs23rUVEfHzzz/PPX66M6xYLC51vvHHLhKwjS+1zGQyT256v00ymcyDDqdutxsXFxfRbDYjm82+2N5b46FSu92eWO64brO+x+vr61FtJSmofClCLwAAANigfr8/sQF6Npt9siNnOsB4zn5eTz223+9PhGSL7DX2WhYNlWZdlXH4uedesXHc9JLP4Qbyi7q+vl55PrO61YaB5vAqj7tG6AUAAAAbNB54RTwMTqY1m80H+38tY/yxmUzmyfONhzC5XC6R+0I91s01qwts2jLdWtMdd8sEhP1+Pz5+/LhyR9a872UXu7wihF4AAACwUdNX+Zu3oXq/349qtTrRCTZ9/FN7SS2zn1e32x1tiJ7JZOL333+fe/xrG/7sFgmmZnVCrRrgPXa+6WWp3W534c6tDx8+LHQBg3keO1cSg8qXIPQCAACADRrf/DxifoBTKpWiUqlMHDPeXXRxcRH1en3u+cZDsZ9++mnuseP7ff3+++9btxH6sEtuultulllXaFxkA/vpUPKxz0V8Dwang8SLi4u4uLh4dPx+vx/5fD7a7fazl47OWsZYKBS27nl7LUIvAAAA2KDpzp5ZnVr9fj+KxWIUi8UHIdn79+8j4vt+UI1G48GVIMdN7+c1r6usVCpFu92OiIhWqzX32E0Z/16HHWnzjIdKs654OMusEHG8W27enIYqlUrk8/m4vr4ePQftdjsqlUocHBxEu92Oer3+rC6v8XPNu79LhF4AAACwQdPdQd1uN4rFYrTb7Wi323FxcRF/+ctfIpfLRblcftBlVKvV4uLiIn799delurwiHnaZDZVKpbi+vo5cLhedTmfrAq9utzsRykV837fqqeBrfPngImFQrVabOeb19XVcXFzM7MrLZrMzg692ux2lUimOj4/j4OAg8vn8qAPs6urqxa4gOf49zuo82yVCLwAAANiw6ZCk2WxGPp+PfD4flUolfvnll1GX0nRQValUotFoRKvVerJzabpD6ddff50Ibq6vr+P4+Diur6+jXC5Hq9V6ke6jl1Kr1eLg4GA0x2lnZ2ext7cXx8fHj45RrVbn7p3V7Xbj4OAg9vb25m4AP+zSOjg4eLC88vT0dG7H3VA2m41Go/Hie24NA71d3ctraG8wGAw2PQkAAADYdcOr97Xb7eh2u6P9mSqVyoOAZrwT65dfflm4S+jg4GAUcg0f02w2R0FaNpuNUqn0amFJv9+Pg4OD0f1tXUa5qn6/H7VaLT59+jRa1pjNZiOXy0WxWFzrz/ng4GBtoWWlUhl1qWWz2eh0Oi9+jpcg9AIAAIAd0O12JzqgtiFgSnvolVZJCb0sbwQAAIAdML2fl3CJtBN6AQAAwA4Y389rWzc3n96kH55D6AUAAAA7YLzTq1gsbnAmj5veEJ7tNOuqldvoh01PAAAAAFiv4SbqQ9u6tHG4af/79+8nPv/UVSlZn+mA68uXL1Gr1TYzmSUJvQAAACDlpvfzmg6VtkW/35/ZhWaD+824uLiISqWy6WmszNUbAQAAIOXy+Xy02+3RfVEAu8CeXgAAAJBS7XY7zs7OJgKviO8dPNNLHiFtdHoBAABACrXb7bi6upp7zPHxcZTL5VeaEbwuoRcAAAAAqWN5IwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOkIvAAAAAFJH6AUAAABA6gi9AAAAAEgdoRcAAAAAqSP0AgAAACB1hF4AAAAApI7QCwAAAIDUEXoBAAAAkDpCLwAAAABSR+gFAAAAQOoIvQAAAABIHaEXAAAAAKkj9AIAAAAgdYReAAAAAKSO0AsAAACA1BF6AQAAAJA6Qi8AAAAAUkfoBQAAAEDqCL0AAAAASB2hFwAAAACpI/QCAAAAIHWEXgAAAACkjtALAAAAgNQRegEAAACQOv8PXDEuwHzXwh8AAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1200x900 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"fig = plt.figure()\n",
|
||
"# plt.bar(\n",
|
||
"# dP_Velo_recoable[1][1:],\n",
|
||
"# dP_Velo_recoable[0] / np.max(dP_Velo_recoable[0]),\n",
|
||
"# alpha=0.5,\n",
|
||
"# color=\"#107E7D\",\n",
|
||
"# label=\"p distribution, e\",\n",
|
||
"# )\n",
|
||
"plt.errorbar(\n",
|
||
" dP_Velo_recoable[1][1:],\n",
|
||
" dP_Velo_recoed[0] / dP_Velo_recoable[0],\n",
|
||
" color=\"#107E7D\",\n",
|
||
" label=\"Efficiency\",\n",
|
||
" fmt=\"^\",\n",
|
||
" ms=10,\n",
|
||
")\n",
|
||
"plt.ylim(0, 1)\n",
|
||
"plt.xlabel(r\"$dp$ [MeV]\")\n",
|
||
"plt.ylabel(\"Efficiency of Long Tracks\")\n",
|
||
"plt.legend(loc=\"best\")\n",
|
||
"mplhep.lhcb.text(\"Simulation\", loc=0)\n",
|
||
"plt.show()\n",
|
||
"# plt.savefig(\"/work/cetin/Projektpraktikum/thesis/Efficiency_dP_Velo.pdf\",\n",
|
||
"# format=\"PDF\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "tuner",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.12"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|