1103 lines
149 KiB
Plaintext
1103 lines
149 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 65,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import uproot\t\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from mpl_toolkits import mplot3d\n",
|
|
"import awkward as ak\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 66,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"40402 10099\n",
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"#file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
|
|
"file = uproot.open(\n",
|
|
" \"tracking_losses_ntuple_B_default.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n",
|
|
")\n",
|
|
"\n",
|
|
"# selektiere nur elektronen von B->K*ee\n",
|
|
"allcolumns = file.arrays()\n",
|
|
"found = allcolumns[\n",
|
|
" (allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromB)\n",
|
|
"] # B: 9056\n",
|
|
"lost = allcolumns[\n",
|
|
" (allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromB)\n",
|
|
"] # B: 1466\n",
|
|
"\n",
|
|
"electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n",
|
|
"\n",
|
|
"print(ak.num(found, axis=0), ak.num(lost, axis=0))\n",
|
|
"print(ak.num(electrons,axis=0))\n",
|
|
"# ak.count(found, axis=None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 67,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{all_endvtx_types_length: 7,\n",
|
|
" all_endvtx_types: [101, 101, 101, 101, 101, 101, 0],\n",
|
|
" all_endvtx_x_length: 7,\n",
|
|
" all_endvtx_x: [-6.97, -52.9, -52.9, ..., -1.71e+03, -2.14e+03, -3.57e+03],\n",
|
|
" all_endvtx_y_length: 7,\n",
|
|
" all_endvtx_y: [-0.89, -6.75, -6.75, -7.08, -66.1, -72.6, -39.5],\n",
|
|
" all_endvtx_z_length: 7,\n",
|
|
" all_endvtx_z: [112, 859, 859, 895, 8.7e+03, 9.68e+03, 1.26e+04],\n",
|
|
" brem_photons_pe_length: 6,\n",
|
|
" brem_photons_pe: [2.62e+03, 812, 2.54e+03, 1.86e+03, 3.12e+03, 241],\n",
|
|
" brem_photons_px_length: 6,\n",
|
|
" brem_photons_px: [-161, -49.7, -156, -114, -1.18e+03, -101],\n",
|
|
" brem_photons_py_length: 6,\n",
|
|
" brem_photons_py: [-18.9, -6.92, -21.6, -16.8, -20.9, -0.26],\n",
|
|
" brem_photons_pz_length: 6,\n",
|
|
" brem_photons_pz: [2.61e+03, 810, 2.54e+03, 1.86e+03, 2.89e+03, 219],\n",
|
|
" brem_vtx_x_length: 6,\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -52.9, -55.2, -1.71e+03, -2.14e+03],\n",
|
|
" brem_vtx_y_length: 6,\n",
|
|
" ...}\n",
|
|
"---------------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" all_endvtx_types_length: int32,\n",
|
|
" all_endvtx_types: var * float32,\n",
|
|
" all_endvtx_x_length: int32,\n",
|
|
" all_endvtx_x: var * float32,\n",
|
|
" all_endvtx_y_length: int32,\n",
|
|
" all_endvtx_y: var * float32,\n",
|
|
" all_endvtx_z_length: int32,\n",
|
|
" all_endvtx_z: var * float32,\n",
|
|
" brem_photons_pe_length: int32,\n",
|
|
" brem_photons_pe: var * float32,\n",
|
|
" brem_photons_px_length: int32,\n",
|
|
" brem_photons_px: var * float32,\n",
|
|
" brem_photons_py_length: int32,\n",
|
|
" brem_photons_py: var * float32,\n",
|
|
" brem_photons_pz_length: int32,\n",
|
|
" brem_photons_pz: var * float32,\n",
|
|
" brem_vtx_x_length: int32,\n",
|
|
" brem_vtx_x: var * float32,\n",
|
|
" brem_vtx_y_length: int32,\n",
|
|
" brem_vtx_y: var * float32,\n",
|
|
" brem_vtx_z_length: int32,\n",
|
|
" brem_vtx_z: var * float32,\n",
|
|
" endvtx_type: int32,\n",
|
|
" endvtx_x: float64,\n",
|
|
" endvtx_y: float64,\n",
|
|
" endvtx_z: float64,\n",
|
|
" energy: float64,\n",
|
|
" eta: float64,\n",
|
|
" event_count: int32,\n",
|
|
" fromB: bool,\n",
|
|
" fromD: bool,\n",
|
|
" fromDecay: bool,\n",
|
|
" fromHadInt: bool,\n",
|
|
" fromPV: bool,\n",
|
|
" fromPairProd: bool,\n",
|
|
" fromSignal: bool,\n",
|
|
" fromStrange: bool,\n",
|
|
" ideal_state_770_qop: float64,\n",
|
|
" ideal_state_770_tx: float64,\n",
|
|
" ideal_state_770_ty: float64,\n",
|
|
" ideal_state_770_x: float64,\n",
|
|
" ideal_state_770_y: float64,\n",
|
|
" ideal_state_770_z: float64,\n",
|
|
" ideal_state_9410_qop: float64,\n",
|
|
" ideal_state_9410_tx: float64,\n",
|
|
" ideal_state_9410_ty: float64,\n",
|
|
" ideal_state_9410_x: float64,\n",
|
|
" ideal_state_9410_y: float64,\n",
|
|
" ideal_state_9410_z: float64,\n",
|
|
" isElectron: bool,\n",
|
|
" isKaon: bool,\n",
|
|
" isMuon: bool,\n",
|
|
" isPion: bool,\n",
|
|
" isProton: bool,\n",
|
|
" lost: bool,\n",
|
|
" lost_in_track_fit: bool,\n",
|
|
" match_fraction: float32,\n",
|
|
" mc_chi2: float32,\n",
|
|
" mc_dSlope: float32,\n",
|
|
" mc_dSlopeY: float32,\n",
|
|
" mc_distX: float32,\n",
|
|
" mc_distY: float32,\n",
|
|
" mc_teta2: float32,\n",
|
|
" mc_zMag: float32,\n",
|
|
" mcp_idx: int32,\n",
|
|
" mother_id: int32,\n",
|
|
" mother_key: int32,\n",
|
|
" originvtx_type: int32,\n",
|
|
" originvtx_x: float64,\n",
|
|
" originvtx_y: float64,\n",
|
|
" originvtx_z: float64,\n",
|
|
" p: float64,\n",
|
|
" phi: float64,\n",
|
|
" pid: int32,\n",
|
|
" pt: float64,\n",
|
|
" px: float64,\n",
|
|
" py: float64,\n",
|
|
" pz: float64,\n",
|
|
" quality: int32,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" scifi_hit_pos_x_length: int32,\n",
|
|
" scifi_hit_pos_x: var * float32,\n",
|
|
" scifi_hit_pos_y_length: int32,\n",
|
|
" scifi_hit_pos_y: var * float32,\n",
|
|
" scifi_hit_pos_z_length: int32,\n",
|
|
" scifi_hit_pos_z: var * float32,\n",
|
|
" track_p: float64,\n",
|
|
" track_pt: float64,\n",
|
|
" tx: float64,\n",
|
|
" ty: float64,\n",
|
|
" ut_hit_pos_x_length: int32,\n",
|
|
" ut_hit_pos_x: var * float32,\n",
|
|
" ut_hit_pos_y_length: int32,\n",
|
|
" ut_hit_pos_y: var * float32,\n",
|
|
" ut_hit_pos_z_length: int32,\n",
|
|
" ut_hit_pos_z: var * float32,\n",
|
|
" velo_hit_pos_x_length: int32,\n",
|
|
" velo_hit_pos_x: var * float32,\n",
|
|
" velo_hit_pos_y_length: int32,\n",
|
|
" velo_hit_pos_y: var * float32,\n",
|
|
" velo_hit_pos_z_length: int32,\n",
|
|
" velo_hit_pos_z: var * float32,\n",
|
|
" velo_track_idx: int32,\n",
|
|
" velo_track_tx: float64,\n",
|
|
" velo_track_ty: float64,\n",
|
|
" velo_track_x: float64,\n",
|
|
" velo_track_y: float64,\n",
|
|
" velo_track_z: float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {all_endvtx_types_length: 7, ...} type='{all_endvtx_types_length: i...'>"
|
|
]
|
|
},
|
|
"execution_count": 67,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"electrons[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 68,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{lost: True,\n",
|
|
" rad_length_frac: 0.129,\n",
|
|
" energy: 1.17e+04,\n",
|
|
" photon_length: 6,\n",
|
|
" brem_photons_pe: [2.62e+03, 812, 2.54e+03, 1.86e+03, 3.12e+03, 241],\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -52.9, -55.2, -1.71e+03, -2.14e+03],\n",
|
|
" brem_vtx_z: [112, 859, 859, 895, 8.7e+03, 9.68e+03]}\n",
|
|
"---------------------------------------------------------------------\n",
|
|
"type: {\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {lost: True, rad_length_frac: ..., ...} type='{lost: bool, rad_leng...'>"
|
|
]
|
|
},
|
|
"execution_count": 68,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"lost_e = electrons[\"lost\"]\n",
|
|
"e = electrons[\"energy\"]\n",
|
|
"brem_pe = electrons[\"brem_photons_pe\"]\n",
|
|
"brem_z = electrons[\"brem_vtx_z\"]\n",
|
|
"brem_x = electrons[\"brem_vtx_x\"]\n",
|
|
"length = electrons[\"brem_vtx_z_length\"]\n",
|
|
"rad_length = electrons[\"rad_length_frac\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"brem = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(electrons, axis=0)):\n",
|
|
" brem.begin_record()\n",
|
|
" brem.field(\"lost\").boolean(lost_e[itr])\n",
|
|
" brem.field(\"rad_length_frac\").append(rad_length[itr])\n",
|
|
" # [:,\"energy\"] energy\n",
|
|
" brem.field(\"energy\").append(e[itr])\n",
|
|
" # [:,\"photon_length\"] number of vertices\n",
|
|
" brem.field(\"photon_length\").integer(length[itr])\n",
|
|
" # [:,\"brem_photons_pe\",:] photon energy\n",
|
|
" brem.field(\"brem_photons_pe\").append(brem_pe[itr])\n",
|
|
" # [:,\"brem_vtx_z\",:] brem vtx z\n",
|
|
" brem.field(\"brem_vtx_x\").append(brem_x[itr])\n",
|
|
" brem.field(\"brem_vtx_z\").append(brem_z[itr])\n",
|
|
" brem.end_record()\n",
|
|
"\n",
|
|
"brem = ak.Array(brem)\n",
|
|
"brem[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 69,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"photon_cut = 0\n",
|
|
"photon_cut_ratio = 0.1\n",
|
|
"\n",
|
|
"cut_brem = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for itr in range(ak.num(brem, axis=0)):\n",
|
|
" cut_brem.begin_record()\n",
|
|
" cut_brem.field(\"event_id\").integer(itr)\n",
|
|
" cut_brem.field(\"lost\").boolean(brem[itr, \"lost\"])\n",
|
|
" cut_brem.field(\"rad_length_frac\").real(brem[itr, \"rad_length_frac\"])\n",
|
|
" cut_brem.field(\"energy\").real(brem[itr, \"energy\"])\n",
|
|
"\n",
|
|
" ph_length = brem[itr, \"photon_length\"]\n",
|
|
" \n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_photons_pe\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (\n",
|
|
" brem[itr, \"brem_vtx_z\", jentry] > 3000\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut_ratio * tmp_energy\n",
|
|
" ):\n",
|
|
" ph_length -= 1\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_photons_pe\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_vtx_x\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (\n",
|
|
" brem[itr, \"brem_vtx_z\", jentry] > 3000\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut_ratio * tmp_energy\n",
|
|
" ):\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_vtx_x\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
"\n",
|
|
" tmp_energy = brem[itr, \"energy\"]\n",
|
|
"\n",
|
|
" cut_brem.field(\"brem_vtx_z\")\n",
|
|
" cut_brem.begin_list()\n",
|
|
" for jentry in range(brem[itr, \"photon_length\"]):\n",
|
|
" if (\n",
|
|
" brem[itr, \"brem_vtx_z\", jentry] > 3000\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut\n",
|
|
" or brem[itr, \"brem_photons_pe\", jentry] < photon_cut_ratio * tmp_energy\n",
|
|
" ):\n",
|
|
" continue\n",
|
|
" else:\n",
|
|
" cut_brem.real(brem[itr, \"brem_vtx_z\", jentry])\n",
|
|
" tmp_energy -= brem[itr, \"brem_photons_pe\", jentry]\n",
|
|
" cut_brem.end_list()\n",
|
|
" \n",
|
|
" cut_brem.field(\"photon_length\").integer(ph_length)\n",
|
|
"\n",
|
|
" cut_brem.end_record()\n",
|
|
"\n",
|
|
"ntuple = ak.Array(cut_brem)\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 70,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"44163\n",
|
|
"50501\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{event_id: 0,\n",
|
|
" lost: True,\n",
|
|
" rad_length_frac: 0.129,\n",
|
|
" energy: 1.17e+04,\n",
|
|
" brem_photons_pe: [2.62e+03, 2.54e+03, 1.86e+03],\n",
|
|
" brem_vtx_x: [-6.97, -52.9, -55.2],\n",
|
|
" brem_vtx_z: [112, 859, 895],\n",
|
|
" photon_length: 3}\n",
|
|
"-------------------------------------------------\n",
|
|
"type: {\n",
|
|
" event_id: int64,\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64,\n",
|
|
" photon_length: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {event_id: 0, lost: True, ...} type='{event_id: int64, lost: bool, ...'>"
|
|
]
|
|
},
|
|
"execution_count": 70,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"print(ak.sum(ak.num(ntuple[\"brem_photons_pe\"], axis=1)))\n",
|
|
"print(ak.num(ntuple,axis=0))\n",
|
|
"ntuple[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 71,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# nulltuple = ntuple[:7000]\n",
|
|
"# onetuple = ntuple[7000:14000]\n",
|
|
"# twotuple = ntuple[14000:21000]\n",
|
|
"# threetuple = ntuple[21000:28000]\n",
|
|
"# fourtuple = ntuple[28000:35000]\n",
|
|
"# fivetuple = ntuple[35000:42000]\n",
|
|
"# sixtuple = ntuple[42000:49000]\n",
|
|
"# seventuple = ntuple[49000:]\n",
|
|
"\n",
|
|
"# ntuple.nbytes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 72,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# cut = \"tenCut\"\n",
|
|
"# tree = \"Tree10\"\n",
|
|
"# with uproot.update(\"trackinglosses_B_photon_cuts.root\") as outFile:\n",
|
|
"# #outFile[\"README\"] = \"The Cuts are placed on the photons. noCut: 0*E, first: 0.05*E, second: 0.1*E, etc.\"\n",
|
|
"# outFile.mktree(tree, {cut + \"_event_id\": ntuple[\"event_id\"].type, cut + \"_lost\": ntuple[\"lost\"].type, cut + \"_rad_length_frac\": ntuple[\"rad_length_frac\"].type, cut + \"_energy\": ntuple[\"energy\"].type, cut + \"_brem_photons_pe\": ntuple[\"brem_photons_pe\"].type, cut + \"_brem_vtx_x\": ntuple[\"brem_vtx_x\"].type, cut + \"_brem_vtx_z\": ntuple[\"brem_vtx_z\"].type, cut + \"_photon_length\": ntuple[\"photon_length\"].type} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": nulltuple[\"event_id\"], cut + \"_lost\": nulltuple[\"lost\"], cut + \"_rad_length_frac\": nulltuple[\"rad_length_frac\"], cut + \"_energy\": nulltuple[\"energy\"], cut + \"_brem_photons_pe\": nulltuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": nulltuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": nulltuple[\"brem_vtx_z\"], cut + \"_photon_length\": nulltuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": onetuple[\"event_id\"], cut + \"_lost\": onetuple[\"lost\"], cut + \"_rad_length_frac\": onetuple[\"rad_length_frac\"], cut + \"_energy\": onetuple[\"energy\"], cut + \"_brem_photons_pe\": onetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": onetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": onetuple[\"brem_vtx_z\"], cut + \"_photon_length\": onetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": twotuple[\"event_id\"], cut + \"_lost\": twotuple[\"lost\"], cut + \"_rad_length_frac\": twotuple[\"rad_length_frac\"], cut + \"_energy\": twotuple[\"energy\"], cut + \"_brem_photons_pe\": twotuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": twotuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": twotuple[\"brem_vtx_z\"], cut + \"_photon_length\": twotuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": threetuple[\"event_id\"], cut + \"_lost\": threetuple[\"lost\"], cut + \"_rad_length_frac\": threetuple[\"rad_length_frac\"], cut + \"_energy\": threetuple[\"energy\"], cut + \"_brem_photons_pe\": threetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": threetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": threetuple[\"brem_vtx_z\"], cut + \"_photon_length\": threetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": fourtuple[\"event_id\"], cut + \"_lost\": fourtuple[\"lost\"], cut + \"_rad_length_frac\": fourtuple[\"rad_length_frac\"], cut + \"_energy\": fourtuple[\"energy\"], cut + \"_brem_photons_pe\": fourtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fourtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fourtuple[\"brem_vtx_z\"], cut + \"_photon_length\": fourtuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": fivetuple[\"event_id\"], cut + \"_lost\": fivetuple[\"lost\"], cut + \"_rad_length_frac\": fivetuple[\"rad_length_frac\"], cut + \"_energy\": fivetuple[\"energy\"], cut + \"_brem_photons_pe\": fivetuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": fivetuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": fivetuple[\"brem_vtx_z\"], cut + \"_photon_length\": fivetuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": sixtuple[\"event_id\"], cut + \"_lost\": sixtuple[\"lost\"], cut + \"_rad_length_frac\": sixtuple[\"rad_length_frac\"], cut + \"_energy\": sixtuple[\"energy\"], cut + \"_brem_photons_pe\": sixtuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": sixtuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": sixtuple[\"brem_vtx_z\"], cut + \"_photon_length\": sixtuple[\"photon_length\"]} )\n",
|
|
"# outFile[tree].extend( {cut + \"_event_id\": seventuple[\"event_id\"], cut + \"_lost\": seventuple[\"lost\"], cut + \"_rad_length_frac\": seventuple[\"rad_length_frac\"], cut + \"_energy\": seventuple[\"energy\"], cut + \"_brem_photons_pe\": seventuple[\"brem_photons_pe\"], cut + \"_brem_vtx_x\": seventuple[\"brem_vtx_x\"], cut + \"_brem_vtx_z\": seventuple[\"brem_vtx_z\"], cut + \"_photon_length\": seventuple[\"photon_length\"]} )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 73,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"50501\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{event_id: 1,\n",
|
|
" lost: False,\n",
|
|
" rad_length_frac: 0.148,\n",
|
|
" energy: 1.28e+04,\n",
|
|
" brem_photons_pe: [7.42e+03],\n",
|
|
" brem_vtx_x: [-3.61],\n",
|
|
" brem_vtx_z: [35.6],\n",
|
|
" photon_length: 1}\n",
|
|
"-----------------------------------\n",
|
|
"type: {\n",
|
|
" event_id: int64,\n",
|
|
" lost: bool,\n",
|
|
" rad_length_frac: float64,\n",
|
|
" energy: float64,\n",
|
|
" brem_photons_pe: var * float64,\n",
|
|
" brem_vtx_x: var * float64,\n",
|
|
" brem_vtx_z: var * float64,\n",
|
|
" photon_length: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {event_id: 1, lost: False, ...} type='{event_id: int64, lost: bool,...'>"
|
|
]
|
|
},
|
|
"execution_count": 73,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# data in cut_brem_found and cut_brem_lost\n",
|
|
"\n",
|
|
"length_found = ak.num(ntuple[~ntuple.lost][\"brem_photons_pe\"], axis=0)\n",
|
|
"length_lost = ak.num(ntuple[ntuple.lost][\"brem_photons_pe\"], axis=0)\n",
|
|
"print(length_found+length_lost)\n",
|
|
"ntuple[1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 74,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"Z_found = ak.to_numpy(\n",
|
|
" ak.sum(ntuple[~ntuple.lost][\"brem_photons_pe\"], axis=-1, keepdims=False)\n",
|
|
") / ak.to_numpy(ntuple[~ntuple.lost][\"energy\"])\n",
|
|
"Z_lost = ak.to_numpy(\n",
|
|
" ak.sum(ntuple[ntuple.lost][\"brem_photons_pe\"], axis=-1, keepdims=False)\n",
|
|
") / ak.to_numpy(ntuple[ntuple.lost][\"energy\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 75,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHOCAYAAABttoiYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtaUlEQVR4nO3dT2wjWWLf8Z/Wk5UFN7op9ebgAAGmi6edU6NK44MRYBZo0nPJIQnJ7sMu4ACbJrHRbQCr0r6M5kRT8JWASWGBQTA5SKISIMhlzWpjBgEMxC2W+7QG7Kh6gTlsgJ1h1zS0pjXZLHPQVI34VxT/P/H7AYhpsapevX7TTf76vVfvrbXb7bYAAAAM9Z1FVwAAAGAShBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwBuvSAIFl0FADNEmAFw6+VyOYVhuOhqAJgRwgyAmdjf39fm5qbW1ta0tramdDodv5LJZPz+rPm+L8uylEgklrJ+ACb31qIrAOB22t3d1dnZmarVqnZ3d1UqlTqOB0GgdDo983pUKhUVCoWlrR+AydEzA2BmTk9PJalvKLAsS6lUauZ18Dxv4H2WoX4AJrfGrtkAZiUaphn0MROGYc/wzzTVajXV63VVKpW+xxddPwDTQc8MgJnwPE+Seno3arVa/OtZB4XDw8O+Q0zSctQPwHQQZgDMxPHxsaTOIZwwDHV4eDiX+4dhqCAIZNv2UtYPwPQQZgDMRNTzcXh4KMdxlEwmtbm5qXfffXcu9z86OtKTJ0+Wtn4ApoenmQBMXdQrkkgk1Gg04vcePXo09qTaMAx1dHSkRqOhUql07RBQpVLR8+fPp1a/QqGgZDKpL7/8Uu+++66y2exYvw8A00eYATB1R0dHkjrnoyQSCaVSqYHDPtdJJBLa2trS0dHRwAm9kSAItLW1NTDw3LR+uVxOlmVpd3dXkuQ4Tnw+gMVjmAnA1NXrdUm9jzw/e/ZsonJfvHihx48fX3veoLVlxqlfEASq1Wod5T158qRnXRoAi0OYATB10XyU7uBxtackOuem5Y6ykF2tVhs6DHST+vm+L+ly3ZmIbdvyPI8tEoAlQZgBMFVBECgMw75bCESq1WrP5o/R9gK1Wk37+/tKJpNyXTc+HoahfN9XKpVSrVZTMpns2/sybJG8cer34sWLnvO2trYkSc1mc+B9AMwPYQbAVEXrtFztyYiEYahCoaBCodDTK2LbdtzTsbu7q0qlov39/fg9z/NkWZZOT09lWZZc141X8L3quiGmm9YvDMM4vHRjN25gOTABGMDU7O/vx70pnufJcRxtbW2p2WzGTxBJUjab7entqNfrsm174PBQvV6XZVna2tqSbdsqFova3t7uOc/3/YGTjMepXzKZjCcMd+sXiADMH2EGwNTs7u7GT/zclOd5HevCdO92HQ0fRUHF87x44btItVod2iszTv0sy+qZGxMNLxFmgOXA3kwAlsLa2prOzs7igJBMJlWpVJRKpRSGoTY3N+PjQRAomUz27KnkOI6eP38+1W0Iontdrdv+/r4ODw/jNWoALBZzZgAsnOd5SiQSHWEhm83GE3k9z5Nt2/HxqJfG9/241+S6tWXGZVmWstlsx55Nh4eHPJoNLBGGmQAsXL1e19bWljzPUxAEHQvUSZdPFF0dggrDUM1mU81mMx52um7i7ySOj49VKBS0v7+vL7/8UoVCgQXzgCXCMBOAhXMcR4VCQfl8fuwycrlczxwaAKuBMANg4brnywDATTBnBsBCRUND0Uq7AHBTK9Ez88UXX+hnP/uZ3n77bW1sbCy6OgAAYAStVku/+MUv9P777+t73/vewPNWYgLwz372M/3oRz9adDUAAMAYPvnkE/3whz8ceHwlwszbb78t6bIxvv/970+t3PPzc7333nv67LPPdOfOnamVG8lkMjo5OTGm3FmVTTvPr+xZtrWJ7UE7z6ds2tnssmfZzn/3d3+nH/3oR/H3+CArEWaioaXvf//7A5c5H8ebN28kSQ8fPtTdu3enVm5kY2NjqvWddbmzKpt2nl/Zs2xrE9uDdp5P2bSz2WXP+jNa0rVTRGY2AfgnP/mJfvrTn86qeAAAAEkzCjOvXr1SpVIZe48WAACAUc1kmOnBgweqVCpLt2ZEJpMZ2FW1s7OjnZ2dOdcIAIDVVi6XVS6X+x5rtVojlTGzOTNPnz6dVdFjOzk5mdk4JAAAuLlhnQm+78txnGvLmNmcmffff18vX76cVfEAAACSJuiZubrpW7cwDOV5no6OjvTw4cNxb7HyZjXsNcvhNBOH6mjn+TCxPWjn+ZRNO9+Oshdp7BWAv/Od6zt1ksmk/uEf/mGc4qcq6qZqNBpTfzT73r17+uqrr2b2OBpo53mireeDdp4P2nk+ZtnOo35/jz3MlM1mdXZ2ptevX/e8Tk9Plc/nlyLIAACA223sMFMoFPTgwQPdu3ev52XbthzH0Z/+6Z9Os64AAAA9xg4zjx49GnrcsixVKpVxiwcAABjJ2BOAhz2pFASBXNcdt2gAAICRjR1mbNvW2trawOPtdlv7+/vjFg8AADCSscNMIpHQ48ePlUgkeo7dv39ftm1fOxQFAAAwqbHDzMHBgTKZzDTrAgAAcGNjTwAmyEjr6+v68MMPtb6+vuiq3Gq08/zQ1vNBO88H7Twfy9DOYy+ad52f/OQn2t7e1o9//ONZFH8js1o0T5L29kZ7DwAA3MzMF80b5tWrV6pUKtrd3Z1F8QAAALGZ7Jr94MEDVSoVWZY1i+IBAABiMwkzkvT48WPdu3dvVsWPJZPJaGNjo++xYVuQAwCA2SiXyyqXy32PtVqtkcqYWZh5/vy5Xrx4oWKxOKtb3NjJycnU58wAAIDxDetMiObMXGeiMPNXf/VXqtfrCsOw4/1msynf99VsNpcqzAAAgNtnonVmCoXC0HPy+fy4xQMAAIxk7KeZKpWK6vW6Xr9+rb/8y79UqVTSb3/7W/32t79Vs9lUPp/XX/zFX0yzrgAAAD3GDjOpVEqPHj3SvXv3lEqldHp6Gh9LJBJyHEfPnj2bSiUBAAAGGTvMfPXVVx0/P378WH/+53/e8V6tVhu3eAAAgJGMPWfGsiz9zu/8jjY3N3V6eqpMJqPt7W3V63UlEgnVarW+m1ACAABM09hh5k/+5E/0xRdf6G//9m+1tbUlSTo6OlI6ndarV68kSaVSaTq1BADcXn+9t+gaXO8P9xZdAwwx0aPZ3WHFsiydnZ3p1atX2traWrpF8wAAwO0zs+0MAADAt3zf1+HhoTzPkyQ1Go0F1+j2mMlGkwAAoJNt23ry5Il835/pfYIg6FnM9rYjzAAAMCfz2FInl8up2WzO/D7LhDADAMAtkcvlZt7zs4xmttEkAAAYXRiGcl1XiUQiDiSu6yqVSvU9JwxDeZ4n13WVz+dVq9Xi6wqFghKJhJ49e7YSGywTZgAAWDDf9/Xo0SM9f/48Dh/ValXpdFqlUkm7u7uSpKdPn8qyrPhp4mq1Gs+PyWazevHihfb391WpVGRZ1kJ+L4uwUsNMmUxG77zzTt9XuVxedPUAACvq6dOn2t7e7uhFyefzsm1brusqCAJJip+EunqO6crl8sDv5kwmM1IZK9Uzc3JyshLdbQAAcwRBIN/3496XqwqFggqFgiqVikqlkizL0v7+vu7fvx+f3+86k+zs7GhnZ6fvMd/35TjOtWWsVM8MAADLZtiE3e3tbUmKe2aOj4+VSCTkuq6SyeRKTvbthzADAMAS6Lc2TLTHYbRtkGVZevXqlVKplIIgkOM4qlarc6zlciLMAACwQNH0h+75MNK3ASeZTEq67KFJJBKq1+s6Pj6WdDkUteoIMwAALJBlWbJtW0EQxMNJkdPTUyUSiXii79U9EbPZrCqViiT1XMcKwAAAYK6iuTBXe1nCMFSpVNLBwUE83HR0dNQRXMIwlGVZ8WPYUQ9OpVJREASq1Wrz+00s0Eo9zQQAWEJ/uLfoGsyF7/txT4rv+9rf31c+n1cikYjnwjx9+lTpdDoOJ8fHxx1P4W5vbyudTiubzUq67JG5umFlPp9XpVLR0dGRJMX3u+0IMwAAzIFt26pUKgMDRiKRiOfBDFKv16+9zyruxs0wEwAAMNpShxnP87S5udnzvu/7yuVycl1XhUJhZcYEAQBAr6UeZur3uFn0XH2j0YjHEZPJpJrN5q1Y1hkAANzM0vbMuK7bd5OsQqGgVCrVMSEq6qEBAACrZynDjOd5un//fs8+StF25+l0uuP9aLlnVkEEAGD1LGWYqVQqfTfOOj09laSeHpso9IwyyxsAANwuSzdnxnXdjhUOr4oWCooWDxp0fJDz83O9efNm7Lqtr69rfX197OsBAFglFxcXuri4GPv68/Pzkc5bqjDj+77u37/fd66MJJ2dnUn6dsOtbtct3/zee+9NVL8PP/xQe3t7E5UBAMCqKBaL+uijj2Z+n6UKM8ViceiCQdEyzc1ms+/xQSEo8tlnn+nhw4dj149eGQAARvfs2TN98MEHY1//8uXLkToilibMuK6rdDrdMVQU/Tr6bxRWBvXAXBdm7ty5o7t3706htgAA4DqTTs+4c+fOSOctTZjxPE/7+/t9jyWTSdm2refPn0vqnRsT/ew4zmwrCQAAls7SPM3UaDTUbrc7Xru7u0okEmq322o0GkokErJtu+epJc/zJEmPHz9eRNUBAMACLU2YGdXBwYE8z+vonSmVSiqVSgOfcgIAALfX0gwzjcq2bTUajXiF4CAI5LouWxkAgKFMeEjUhDpOm+/7Oj09NeL7danDTNTj0s227Wu3SQcAYFn5vq/Dw0MFQSDf91UoFPouFrsIUSdBrVaTbduEGQAA0Mn3fT169EivX7+WdPk0b7SO2jKwLEvHx8daW1tbdFVGRpgBAGCOisVix+Kvg1a9x+iMmwAMAIDJfN9fdBVuHcIMAABzUK1WlcvlFASBgiBQLpdTLpeLlxeRLheFLRQK8UKy6XS643itVtPm5qbW1tbiUOR5nnK5nNbW1pTL5eJyqtWqHMdRrVaT53lyHKfjnKui+0avQeu+LSvCDAAAc5DP53V8fCzLsuJ5KcfHx0qlUpIue2wePHigQqGgUqmker2uXC6ndDodh4tsNtuzploqleoZqmo2m6rX6/J9X5VKRfV6XQcHB8rn86rVah1hJQgCPXjwQLlcTpVKRZVKZcYtMX2EGQAAlsDTp0+1vb0t27bj9/L5vGzbluu68fpq/dZU696A2bIsPXnyRJKUTqdVKpVk23YcVK4uPuu6rra3t+NQJWlpnqwaFWEGAIAFix7RvhpkIoVCQZLG7jHpF36iDZuDIFCtVlM6nR6r7GWxUk8zZTIZbWxs9D22s7OjnZ2dOdcIAIDhk4K3t7cl9e5LOA3dGzkvQrlcVrlc7nus1WqNVMZKhZmTk5O+qRcAgGUQhmHPe1HPSvdQ0jREYSbqqVmEYZ0Jvu+PtIk0w0wAACxY9A/tq08uRaKAk0wmp37fqEem0WhMvex5IswAADBHzWazpyfEsizZth0/tn3V6empEolEvK3A/fv3JXUOO0W/7tezM0w0hFWtVvtee9PyFoUwAwDAEjg+PlYikYgn/EqXYaJUKung4CAebop6cVzXled5qlar8eRgz/PiybyjDB0lEon4ySXHceR5Xrw3k3QZkkxYc2al5swAAJbPquxIHa35EvV2FAoF5XK5+JFoy7L06tUrPX36VOl0Oh4COj4+7pjvGa0rUywWlcvllM/nValU5Hmestmsnjx5Et9LutwuwbIsbW9vxyHF933t7+9rd3dXpVJJyWRSpVJJ6XQ63sy5Vqspm80qm83OsZXGs9Zut9uLrsSsRROIGo3G1CcA9/tLuCp/MQEAmKVRv78ZZgIAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjMYKwJP6/NM+b/5gvnUAAGCFrVSYyWQy2tjY6Hts2BbkAABgNsrlssrlct9jrVZrpDJWKsycnJxMfTsDAAAwvmGdCdF2BtdhzgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0d5adAXmKZPJaGNjo++xYVuQAwCA2SiXyyqXy32PtVqtkcpYqTBzcnIi27YXXQ0AAPCNYZ0Jvu/LcZxry2CYCQAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoby26AvOUyWS0sbHR99iwLcgBAMBslMtllcvlvsdardZIZaxUmDk5OZFt24uuBgAA+MawzgTf9+U4zrVlMMwEAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABht6cJMrVaT4zhaW1tTMpmU53k95/i+r1wuJ9d1VSgUVKvVFlBTAACwDJZqBeBqtapGo6FSqSRJcl1X6XRaZ2dnsixLkhQEgRzHUaPRiFfzTSaTajabyufzC6s7AABYjKXqmQnDUJVKRalUSqlUSgcHB5Iue2IihUJBqVSqY1uCqIcGAACsnqUKM7u7ux0/JxIJSYqDSxiG8jxP6XS647zt7W1Jlz07AABgtSxVmOlWq9VUKpXiIabT01NJin+ORGGnXq/Pt4IAAGDhlmrOzFWu66parcZDTdLlfBnp2x6bbtHxQc7Pz/XmzZux67S+vq719fWxrwcAYJVcXFzo4uJi7OvPz89HOm8pw8z+/r6CIFAYhsrlcqpUKsrn8zo7O5MkbW1t9b0uDMOh5b733nsT1evDDz/U3t7eRGUAALAqisWiPvroo5nfZynDTDR3xvM85XI5lUol5fN5JZNJSVKz2ex7XffwU7fPPvtMDx8+HLte9MoAADC6Z8+e6YMPPhj7+pcvX47UEbGUYSaSSqWUz+e1v78v6duwMqgH5rowc+fOHd29e3eqdQQAAP1NOj3jzp07I5231BOAJendd9+NQ0r01FL33JjoZ8dx5ls5AACwcEsfZoIgUCqVknQ58de27Z6nlqJVgh8/fjz3+gEAgMVamjATTfa9ujVBEASq1+uqVCrxewcHB/I8r6N3plQqqVQqDXzKCQAA3F5LM2cmkUgoDEM9ffpUlUpF6XRalmX19MLYtq1GoyHXdWVZloIgkOu6bGUAAMCKWpowI42+6J1t2zo+Pp5xbQAAgAmWZpgJAABgHIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRlmrRvFnLZDLa2Njoe2xnZ0c7OztzrhEAAKutXC6rXC73PdZqtUYqY6XCzMnJiWzbXnQ1AADAN4Z1Jvi+L8dxri2DYSYAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAo7216ArMUyaT0cbGRt9jw7YgBwAAs1Eul1Uul/sea7VaI5WxUmHm5OREtm0vuhoAAOAbwzoTfN+X4zjXlsEwEwAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjrdSu2ZlMRhsbG32PDdu1EwAAzEa5XFa5XO57rNVqjVTGSoWZk5MT2ba96GoAAIBvDOtM8H1fjuNcWwbDTAAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGe2vRFZinTCajjY2NvseGbUEOAABmo1wuq1wu9z3WarVGKmOlwszJyYls2150NQAAwDeGdSb4vi/Hca4tg2EmAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoSxdmarWaHMfR2tqaHMeR53k95/i+r1wuJ9d1VSgUVKvVFlBTAACwDJZqBeD9/X3V63UVCgWdnZ1pf39f6XRa9XpdqVRKkhQEgRzHUaPRiFfzTSaTajabyufzi6w+AABYgKXqmXnx4oXq9bry+bxKpZIajYYkqVQqxecUCgWlUqmObQmiHhoAALB6libMeJ7XEVokybZt2batIAgkSWEYyvM8pdPpjvO2t7clSdVqdT6VBQAAS2NpwkwqlZJlWX2PRe+fnp52/ByJemnq9foMawgAAJbRUs2Z6ScIgngIKeqhSSQSA88d5vz8XG/evBm7Luvr61pfXx/7egAAVsnFxYUuLi7Gvv78/Hyk85Y6zNRqNVmWFU/sPTs7kyRtbW31PT8Mw6HlvffeexPV58MPP9Te3t5EZQAAsCqKxaI++uijmd9nqcNMsVjU8fFx/HMymZQkNZvNvucPGqaKfPbZZ3r48OHY9aFXBgCA0T179kwffPDB2Ne/fPlypI6IpQ0zruvq4OCgI6BEvx7UA3NdmLlz547u3r07tToCAIDBJp2ecefOnZHOW5oJwFdVq1Wl0+mOx6+lb59a6p4bE/3sOM58KggAAJbG0oWZaDXfaJG8iO/7SiQSsm2756mlaJXgx48fz6eSAABgaSzVMJPneSoWiyoUCh1rxjQaDTmOI9u2dXBwIMdxFARBPKxUKpVUKpUGPuUEAABur6UJM77vx4vh9VvN9/Xr15Iu15RpNBpyXVeWZSkIArmuy1YGAACsqKUJM7Ztq91uj3zu1aecAADA6lq6OTMAAAA3QZgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABhtaRbNm4dMJqONjY2+x3Z2drSzszPnGgEAsNrK5bLK5XLfY61Wa6QyVirMnJyc9OzEDQAAFmdYZ4Lv+3Ic59oyGGYCAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMNpbi67APGUyGW1sbPQ9NmwLcgAAMBvlclnlcrnvsVarNVIZKxVmTk5OZNv2oqsBAAC+Mawzwfd9OY5zbRkMMwEAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAY7a1FV2CeMpmMNjY2+h4btgU5AACYjXK5rHK53PdYq9UaqYyVCjMnJyeybXvR1QAAAN8Y1png+74cx7m2DIaZAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABhtpXbNzmQy2tjY6Hts2K6dAABgNsrlssrlct9jrVZrpDJWKsycnJzItu1FVwMAAHxjWGeC7/tyHOfaMhhmAgAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGW6oVgMMwVLFYlCSVSqWe477vq1gsyrIshWGodDqtbDY772oCAIAlsjRhxvM8VSoV1Wo15fP5nuNBEMhxHDUajXhLgmQyqWaz2fd8AACwGpZmmCmVSun4+Hjg8UKhoFQq1bG3kuu6KhQK86geAABYUksTZoYJw1Ce5ymdTne8v729LUmqVquLqBYAAFgCSzPMNMzp6akkybKsjvejXpp6vT7SUNP5+bnevHkzdj3W19e1vr4+9vUAAKySi4sLXVxcjH39+fn5SOcZEWaCIJAkJRKJocev8957701Ujw8//FB7e3sTlQEAwKooFov66KOPZn4fI8LM2dmZJGlra6vv8TAMRyrns88+08OHD8euB70yAACM7tmzZ/rggw/Gvv7ly5cjdUQYEWaSyaQkqdls9j3ePfw0yJ07d3T37t2p1QsAAAw26fSMO3fujHSeEROAo7AyqAdm1DADAABuHyPCTPTUUvfcmOhnx3HmXicAALAcjAgziURCtm2rXq93vO95niTp8ePHi6gWAABYAksVZoZN5D04OJDneR29M6VSSaVSaeBTTgAA4PZbmgnAvu+rUqlIko6OjpROp5VKpeKgYtu2Go2GXNeVZVkKgkCu67KVAQAAK25pwoxt26pUKnGgGXTOsC0PAADA6lmqYSYAAICbIswAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABhtadaZmYdMJqONjY2+x3Z2drSzszPnGgEAsNrK5bLK5XLfY61Wa6QyVirMnJycyLbtRVcDAAB8Y1hngu/7I20mzTATAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNHeWnQF5imTyWhjY6PvsWFbkAMAgNkol8sql8t9j7VarZHKWKkwc3JyItu2F10NAADwjWGdCb7vy3Gca8tgmAkAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaG8tugLzlMlktLGx0ffYsC3IAQDAbJTLZZXL5b7HWq3WSGWsVJg5OTmRbduLrgYAAPjGsM4E3/flOM61ZTDMBAAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohJkJXFxc6FP/Y/3m/3296KrcahcXF9rb29PFxcWiq3Lr0dbzQTvPB+08H8vQzmvtdru9sLvPSbSF+Ntvv62NjY2+5wzbgnyQN2/e6N69e/pPP/ofWv/u78Xv7/30B5NUd+b29kZ7b1lE7fzVV1/p7t27i67OrUZbzwftPB+083xM2s7lclnlcrnvsVarpV/84hdqNBqybXtgGW/d+K4GOzk5GdoYq6w7zCxzuAEA3B7DOhOizojrrFSYwehM670BAKwuwswq+vzT3vf+5Q+uvYzeGwDAMmICMAAAMBo9M7j0+aedP4/RUzPuOQAATIIwg/4+/7T3vRECTu91I1wDAMAECDMY3eef3viSvR+PcE2fkLT3R3vf/vDry7ULikVpff3KOXsdl4w9aZm5QABgNsLMEiuXyzde+2YUf/Pz/6Y/eOffTr3cscv+/NOet66u1XPx9a/7XtYTOvqVs/eDnve6/c3flPUHf3BNO/91183+sPvmvWb1/2/WZc+Kie1BO8+n7KmV2/339NezW8RtpDp310fis2NGVmrRvOsW3bmpWS+a98477+jnP//5VMq66p9vvq2df/fx1MuVpPJ//fdTL/vi61/rzz751z3t3NOj8/mnvRePcE75v/9H7ez8fOg5I+m6V7n8Tme5U3R01Ptno6cXrF+P197wckdd/KqnN+uP9vqd1uGd/3A0kz/P0uz+rsyq3Kku5tb1hfnOD8v6+X/p+rIa4Qt0FEvfzl1t8ebXF7r3R39283YeIYSMVOd+5fQzTtljmkXZs1yccNTvbyN7ZnzfV7FYlGVZCsNQ6XRa2Wx20dXCvH3+6XTO+c0/jh9ght2rX7mjBLAR/OqX/zjaEF6X666JesGKO/+zMzh2G2WCeFeo/9Wvjq4d0us7VDhCUOpuj76/z+4v9FG/aLqN0Us3sMfgfxWl31sfv5xRjXNdv/q0ftVZVr9zxmmffkYpZ9Tf19V2Hlf3vbrbYpr6lT2lQHpbGRdmgiDoSWnJZFLNZlP5fH7BtQOu8fmnt+NeXWWP2xs5SiAbreyPr7/mp933ur7cX/3y4z517Lqup9xeez++9pQRw+kPrj1D6r8s/EyM8mU+yjmjBINZBYdlME47zjJIGsi4MFMoFJRKpTq6m1zXVaFQIMwAy2xaPWAG6g5XcQ/Yf/5Xw3vAxvCr8PemM9Q9Skgb4T6jhLR+dR6n53GQq+08zXIXalpB8pYwKsyEYSjP81QqlTre397eliRVq1UCDQDMyDhBaZyetdGvG67fwwPTmtP4q/DjmQawmRmlF8zAHh2jwszp6akkybKsjvejXpp6vU6YAQAsxK0JSgYOVxkVZoIgkCQlEomhx7u1Wi1JlxOHz8/Px77/d7/7XX33u9+Nf47K+j9f/m99959txO/7/nRmc7daLfm+P5WyrvrNby70yy/+furlzqrsr//v5f+/7naellm1h2ntLM22rU1sD9p5PmXTzteXXSj9i6mU/csv3rpxWYV/Uxh6/Lz1tSTp5cuXunPnTsexr7/+Wl9//fXNKnnF3//9ZTtE3+MDtQ2yu7vbltRuNBo9xyS1Lcvqe90nn3zSlsSLFy9evHjxMvD1ySefDM0HRvXMJJNJSVKz2ex7vHv4KfL+++/r448/1u///u/rd3/3d8e+f3fPDAAAGGzSnpl/+qd/0i9/+Uu9//77Q88zKsxEYSUMw6HHu33ve9/TH//xH8+qWgAAYIG+s+gK3ET01FL33JjoZ8dx5l4nAACwWEaFmUQiIdu2Va/XO973PE+S9Pjx40VUCwAALJBxezNF+zScnZ3Fw0rJZFKFQkG7u7tTvc84Wyaw1cLNjNtetVpNxWJRvu/Ltm2VSiWlUqk51Nhc0/iz6XmecrmcXr9+PaNamm8a7RwEgWq1miQpn88PfIJzlU3y2VGv15VIJBQEgSzL6lm7DJfCMFSxWJSkkdtoYd+BU3jIaO4ajUY7m822d3d329lstl2pVKZa/tnZWVvqfGrKsqxr7zPudatq3PYqlUrtVCrVrlQq8RNuktr1en3WVTbWtP5sWpbVTiQS067erTFpO5+dnbWz2Ww7lUq1z87OZlVN443bzsfHx23btjveS6VS7d3d3ZnU02T1er2dzWbbktr5fH6kaxb5HWhkmJm1VCrVTqVSHe9VKpX2ddlv3OtW1bjtlc1mO35uNBptST1l4VvT+LO5u7vbTqVShJkhJmnnRqPRTiQSI39xrLJJPqO727dUKg1c1gPtG4WZRX4HGjVnZh6iLRPS6XTH+1e3TJjmdatq3Pbqt52FbduybXvgoomrbhp/Nj3P0/379zv2REOnSdo5DEM9evRIlmWpUqnMtJ6mm6Sdm81mPMcycnXKAsa36O9AwkyXUbZMmOZ1q2rc9kqlUgM/ePhA6m8afzYrlcpU56TdRpO0s+u6CsOQuRsjmKSdC4WCgiBQLpeTdDm/4+joiHafgkV/BxJmuoy7ZcK4162qabfX1Q8odJq0rV3X5cN+BJO0c/Sv1nq9LsdxtLm5qXQ6zedGH5O0cz6fVz6fV61WUzKZlOu6evXqFT2OU7Do70DCTJezszNJ0tbWVt/jgxbsG/e6VTXN9qrVarIsi01GB5ikrX3f1/379+n1GsG47Rztv2bbtgqFghqNhhqNhoIgUDKZ5LOjy6SfHZVKJR6W9jyvZ9gJ41n0dyBhpsu4WyaMe92qmmZ7FYtFHR8fT6Vet9EkbV0sFhleGtG47Rz9i7VQKMTnXJ07Ez0ai0uTfnak02kVCoX48excLhc/Bo/xLfo70KjtDOZh3C0Txr1uVU2rvVzX1cHBAe07xLht7bpuz1BH9Ovov7T7t8Zt50Hd8tG6SQw1dZrks6NQuNz9OerFffXqlR48eKCnT5+yHtiEFv0dSM9Ml3G3TGCrhZuZRntVq1Wl02nGu68xblt7nqdCoaBkMhm/arWawjBUMplkjlKXST87om76boO67VfVJJ8dR0dHHZ8XiURCpVJJYRjGw30Yz6K/AwkzXcbdMoGtFm5m0vaKuoW7V/3lA6nXuG3daDTUvlyLKn7t7u4qkUio3W6r0WjMvO4mmeSzI5VK9czdiP6Fyz+EOk3y2bG1tdXTcxB9hrDK8mQW/h0485VsDBQtwnZ1BU7LstqlUin++ezsrG1ZVseqs6Nch2+N2871er1t23a7Uql0vPL5PKstDzBuW3fb3d1l0bwhJv3suPpeqVTqWa0Wl8Zt51Kp1E4kEu3Xr193vEc79/f69euBi+Yt23cgc2b6sG1bjUZDruvKsiwFQSDXdTuelgnDUM1msyPlj3IdvjVOO/u+Hy/KFI1/X8WeQf2N+2caNzONz47j42MlEgmFYUjv1wDjtnPUs5jL5eLhpjAM9fz583n/Fpae7/vxJPSjoyOl02mlUqm4B2vZvgON22gSAADgKubMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAAATW+SmqIQZAAAwsVwut7AVxAkzAADcYvv7+9rc3NTa2prW1taUTqfjVzKZjN+fhO/7siyrZ8POedxbktibCQCAW2x3d1dnZ2eqVqva3d1VqVTqOB4EQbzn3bgqlUrf/fLmcW+JnhkAAG6909NTSeobHCzLUiqVmqh8z/MGljHre0tsNAkAwK0XDeUM+soPw7BniGhUtVpN9Xo93mV7nveO0DMDAMAt5nmeJPX0gNRqtfjXk4SJw8PDvkNM87h3hDADAMAtdnx8LKlzmCcMQx0eHk5cdhiGCoJAtm3P/d5XEWYAALjFot6Rw8NDOY6jZDKpzc1NvfvuuxOXfXR0pCdPnizk3lfxNBMAALdU1HOSSCTUaDTi9x49ejSVibeVSkXPnz+f2r0LhYKSyaS+/PJLvfvuu8pmsyPVgzADAMAtdXR0JKlzzkoikVAqlRo4NDSqIAi0tbU1cM7LTe+dy+VkWZZ2d3clSY7jxOdfh2EmAABuqXq9Lqn3sehnz55NXPagtWXGuXcQBKrVah3lPXnypGddmkEIMwAA3FLRnJXHjx93vH+1NyU6R7oMFclkUo7jxO+FYSjHcTqeQJIun0gaNgx0k3v7vi/pct2ZiG3b8jxvpC0SCDMAANxCQRAoDMO+2wxEqtVqxwaRruuqVCopDMM4aBSLRYVh2BFchi2SN869X7x40XPe1taWJKnZbF73W2XODAAAt1HUk3K1tyMShqFc11W1WtXr16/j9588eaJsNhuHkTAMtb+/Hw8ZRSqVytChqpveOwzDOLx0C4KgbzlXEWYAALhl9vf35bqupMteFMdxtLW1pWazGT9lJEnZbLajRyTqfbFtW0EQqFgsKpvN9vTC+L4/cALxOPdOJpPxhOFu1wUZie0MAABAF9/3dXh4qFqtpkaj0RF4qtWqwjCMnzqahlqtplwu17Hlged5SqfTA7dBuIqeGQAA0CGRSGh/f1/Hx8c9c1mGrS0zrqiX5+qQ0rDen25MAAYAAB3CMFQqlep5Wum6tWXGZVmWstlsxxNTh4eHIz+azTATAADo4Lqu7t+/3zOU5LrujVbmvamrKwAnk0nl8/mRriPMAACAWBiG2tzcVKVS6QkTuVwu3jxymTDMBAAAYtVqVVL/p4iWMchIhBkAAHDF2dmZLMuaykaU88IwEwAA6BCG4dQn+c4SYQYAABiNYSYAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGj/HyNhBgmm/u/dAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xlim=0\n",
|
|
"\n",
|
|
"plt.hist(\n",
|
|
" Z_lost,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"darkorange\",\n",
|
|
" label=\"lost\",\n",
|
|
" range=[xlim,1]\n",
|
|
")\n",
|
|
"plt.hist(\n",
|
|
" Z_found,\n",
|
|
" bins=100,\n",
|
|
" density=True,\n",
|
|
" alpha=0.5,\n",
|
|
" histtype=\"bar\",\n",
|
|
" color=\"blue\",\n",
|
|
" label=\"found\",\n",
|
|
" range=[xlim,1]\n",
|
|
")\n",
|
|
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.title(r\"$E_{ph}/E_0$\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 76,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found: 32898 , lost: 11265\n",
|
|
"0.34242203173445196\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>[-3.61,\n",
|
|
" -33.8,\n",
|
|
" -133,\n",
|
|
" 65.2,\n",
|
|
" -5.73,\n",
|
|
" -26.6,\n",
|
|
" -4.26,\n",
|
|
" 6.83,\n",
|
|
" 10.7,\n",
|
|
" 26.2,\n",
|
|
" ...,\n",
|
|
" -11.6,\n",
|
|
" -13.1,\n",
|
|
" -25.6,\n",
|
|
" -4.27,\n",
|
|
" -4.27,\n",
|
|
" -103,\n",
|
|
" 8.82,\n",
|
|
" 12.8,\n",
|
|
" -17.8]\n",
|
|
"---------------------\n",
|
|
"type: 32898 * float64</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Array [-3.61, -33.8, -133, ..., 8.82, 12.8, -17.8] type='32898 * float64'>"
|
|
]
|
|
},
|
|
"execution_count": 76,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"tuple_found = ntuple[~ntuple.lost]\n",
|
|
"tuple_lost = ntuple[ntuple.lost]\n",
|
|
"\n",
|
|
"brem_x_found = ak.to_numpy(ak.flatten(tuple_found[\"brem_vtx_x\"]))\n",
|
|
"brem_z_found = ak.to_numpy(ak.flatten(tuple_found[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"brem_x_lost = ak.to_numpy(ak.flatten(tuple_lost[\"brem_vtx_x\"]))\n",
|
|
"brem_z_lost = ak.to_numpy(ak.flatten(tuple_lost[\"brem_vtx_z\"]))\n",
|
|
"\n",
|
|
"n_found = len(brem_x_found)\n",
|
|
"n_lost = len(brem_x_lost)\n",
|
|
"print(\"found: \", n_found, \", lost: \", n_lost)\n",
|
|
"stretch_factor = n_lost / n_found\n",
|
|
"print(stretch_factor)\n",
|
|
"ak.flatten(tuple_found[\"brem_vtx_x\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 77,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAALACAYAAADYJP6YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw50lEQVR4nOz9f3wc133f+7+HlMQglqgl5FKNnR/SQnaqfK98pVnUSaq2SmNsUrcP95sKAN0krZMmFrYskuZajblWdHsh5JaFwfjK328bVFlQvnXjpL0SQPW2/iZOsisn6o3S2MaOZKvXjiNjRfvGbMXK4IpkDVMiON8/wF0B3HMOdmZ3Z3+9no8HHgvMZ+acz/zY2XNwdma8MAxDAQAAAAAAAAAADJF93U4AAAAAAAAAAAAgaQyQAAAAAAAAAACAocMACQAAAAAAAAAAGDoMkAAAAAAAAAAAgKHDAAkAAAAAAAAAABg6DJAAQA+rVqvdTgEAAABAn6D/AABANAyQAEAPK5VKKpVK3U4DAAAAQB+g/wAAQDQMkAAAAAAAAAAAgKHDAAkAoKuCINDy8vKe81UqFS0vL3PbAAAAAGCA0e4HACSJARIAGGBBECifz2t6elpjY2M6ceJEt1Oqq1Qqmp6eViaTUaFQcM574sQJjY2NKZfLaWNjI6EMB0ulUtGhQ4eaGowCAADA8Kj1GTKZjDKZTFdzod3fOtr9ABDNdd1OAADwhlwut+vvSqUiSVpZWdk1fa8BBWm7o/Oud71L586dkyTl83mtr6+3KdPWpdNpraysyPO8Pec9duyYPve5z2l1dTWBzPpfpVLR6OioUqlUfVq1WlW1Wu2pYwAAAACtaUf/wfd9SduDE7XfO8HURr0W7f5oaPcDQOsYIAGAHnJtx2V1dVWpVEoTExORy1pYWNDo6Gj978XFxZbz66ad6wK36elprays7Ooo+b6vMAy7lxQAAADarl39h04OjNSY2qgmtPubR7sfAFrHLbYAYEAFQdDtFNAF09PT7HsAAAD0FNqo7cc2BYD2YIAEAAbM8vKypqenValU6s/5mJ6eVqlUqs9TrVaVy+WUz+eVzWaVzWZ3xVdXV3Xo0CF5nldvdJdKJU1PT8vzPE1PT9fLWV5eViaT0erqqkqlkjKZzK55dqrVW/uJ80yUWhmHDh3SoUOHGm4rsLq6Wl+f5eXlhnmCIND09LSy2azGxsaUz+d3lb28vKxsNqvl5WVVKhVls1kdOnRI2Wy2/qDI2r2RDx06tGt5myAI6tszk8nUb30gbd/6zPO8XdvClaNrHVdXV+v7K5fL7eo0ra6u1o8F2zbN5XL14+HaztZeOe08pnK5nMbGxrjvMQAAwADYq+9w7TzXtgVdbdRm6qXdT7sfADoqBAAkbmVlJZyZmQmPHTsW+r4frq+vW+crFoux6kin02E6nW6YXi6Xw1QqFZbL5fq0QqEQSgoXFxfr02ZmZkJJu+ZbX18PJYVTU1P1v6empkJJ4cTERHjs2LGwXC7Xl91Z3vr6ephKpXatz+LiYigp9H1/z/WplTkxMRHOzMyEhUIh9H2/Pi0Mt7dXOp0OJe3avrXyy+Vyfd7a/LV5aznurKe2PsVicVfdxWJx17rv3EY2tbpq227ndtmZ01457rWOx44dCyXtOqbW19fr23pn2bVYOp3eNX8qlQpTqVTTOYVhGE5NTYXHjh2r/10oFHbtfwAAAMSXRP/B1C5vtu+wV1vQ1Ea1od1Pux8AksQACQAkbGZmZldjOZVKhYVCoR7b+TMxMVFvnO/8aYZtgMT3/YbGcm36zgZ2rcG9sxNw7ty5hsZ+rdF8baP42kb51NSUsd6oAyQrKysN6ymp3hGsdQh2Ntp3ruO1nZpUKhVKCs+dOxeG4Xan4NpOQG3ZazsgtXmb7RDUct1pcXFx1zo1k6NrHV2dT1NHyff9hvxr5dfqayanVCrVkA8dJQAAgNYl1X8wtcub7Tvs1RaMM0BCu592PwAkgYe0A0CCstms1tbW9NJLL0navvy5Wq3WH6J47UMW261SqSgIAh07dqwhVrvUulAoxHqgu+lhixsbG/V6V1dX2/Kg+GsfIFm7vLtYLGpiYqKex1/8i39x13y1dV9YWDCWu7a2tuthlteuTzqdVhAEux4amU6nJUnr6+tN5V7LdXV1VVNTU5KkJ554QuVyOVKOtnWMqlbfyZMnd00/duxY/RhpNqd0Oq0TJ07olltuqS9rOs4AAADQvG72H6L0HTrRFqTdT7sfAJLAAAkAJGR5eVmlUkkrKytKpVJaXl7W4uKiisVivcHdaa57/Y6Pj0vSrvvktkutzE6sZ61zc23e13Z0auu+srLS9hyaNTMzo3w+r0KhoKmpKQVBUN/uUvQcTYNSUdTqc5XTbE4rKyvKZDL19VtZWWno1AIAAKB53e4/ROk7JNEWpN0fH+1+ALDjIe0AkJDaAwMrlUr9QXfr6+u7vr2UlNpDB3eqNZZ3flOqXWqdmNoVJe1Uy3uvTmIth04MADUrlUppampKpVJJlUpFTzzxxK4HSSadYzP1NZtTOp3WSy+9pImJCVUqFWUyGR7WCAAA0IJe6T8003dIoi1Iuz8+2v0AYMcACQAkoFQqSdr+JtGxY8e0uLiomZmZxPOofbOnls9OtY7P2NhY2+utdWJql5S3Uy3vvS47r+WwurpqjJu2SSc89NBDkrZvhxAEwa5vWyWdY61u27fEKpVK0zlVKhWlUikVi8V6eTs7gQAAAGheL/QfovQdkmgL0u6Pj3Y/ANgxQAIACTINPnTqW0MbGxsNV2yk02n5vq9KpdJQ79ramlKpVL3jdcsttzTkV/vd9C0yl9rl5MvLy8Zlo5a3U6lUUjqdrt/b16b2Tbt8Pt9wu4Akv/Hk+379vr3T09Mdy7GZbbpzv1zbCcvn8xodHW06p53Pl5mamqrfD7ub39wDAADod0n2H64Vpe/QbFuQdn/7c6TdDwCtYYAEABJQa5DWvj0kbd/j9cSJEx25pZVL7R7GO7/lU61Wtbi4qJMnT9YvXa99yyifz6tUKml5ebne+C2VSspms5Kau21WKpWqP7gvk8nULzWv3SqgUqnoxIkTe5ZRm7emUqnU73u7c112vtpymJ6e1okTJ5TNZnfdqsC2PrXydsZrv0e9dVht2x85ciRWjrZ1lN7oRBcKBVUqlfo3wEz5p1Kpegcnm81qenpa+XxemUxGY2NjSqVSTef05JNP7to31WpV6XQ6sefrAAAADJJe6T8023fYqy1oa6Oa0O6n3Q8AiQoBAIkoFothOp0OJYW+74eFQqEj9ZTL5XBmZiaUFEoKZ2ZmwmKxuGuec+fOhVNTU+HExEQ4MzMTzszMhOVyuaGsxcXFMJVKhalUKjx27FgYhmGYTqfDY8eOheVyOSyXy6Hv+6GkMJ1Oh8ViMTx37tyu+hcXF+vlFQqFXdtgfX29Xt76+rpzvc6dOxceO3YsnJiY2JX3uXPn6vOsrKzUy0+n08ZtvLi4aJ2nXC6HExMToaQwlUqFKysr9bxr6zM1NRWWy+VwfX09nJqaqs8bZX/WtpGNK8dm1tH3/TCVStXrKJfL9Vxr++Ta7Vbbj77vNxwve+UUhmE4MTFR35fHjh0Lp6amdtUBAACAaLrVf7i2rdhM36GZtuC1bVQb2v3NryPtfgBonReGYdjpQRgAAAAAAAAAAIBewi22AAAAAAAAAADA0Lmu2wm0S7Va1cLCgqTdD4yqCYJACwsLSqfTqlarymazDQ/2atc8AAAAANBr6DMBAAAAuw3EAEmpVFKhUNDq6qpmZmYa4pVKRZlMRuVyuf7Q4bGxMW1sbNTnb9c8AAAAANBr6DMBAAAAjQbqGSSe52lmZkaFQmHX9Gw2K0kqFov1acvLy8rlcqqtfrvmAQAAAIBeRZ8JAAAAeMPAP4OkWq2qVCrVG+o14+PjkrYb6+2aBwAAAAD6DX0mAAAADKuBHyBZW1uTJKXT6V3Ta5d7F4vFts0DAAAAAP2GPhMAAACG1UA8g8SlUqlIklKplDXernlcXnnlFf3Wb/2WvuM7vkPf9m3ftnfiFjfccINuuOGG2MsDAAAAzXjttdf02muvxV7+W9/6lv7Lf/kv+pt/82/qzW9+cxszQ7vRZwIAANg2aG3gr33ta3rllVe6Uveb3/xmffd3f3dX6o5i4AdI1tfXJUmjo6PGeLVabds8Lr/7u7+rn/7pn24iYwAAAGBwfPzjH9dP/dRPdTsNONBnAgAAaK9eaAN/7Wtf0x3f8z16vUv133DDDXrxxRd7fpBk4AdIxsbGJEkbGxvGeDqdbts8Lrfddpsk6eTJk3r729++Z942pm9DTU5O6tSpU7HLNLl48aLuu+8+PfPMM7rxxhvbWnYn8qXcbUO13770Jenv/l3pN35DuvPO9pW7h7aWe3UdvnnypP7KAw8Mx34boHKH6v02QOWy3/qz3L7bb3t8RrUiyf3W6rfnPv/5z+sf/aN/pO/4ju9oNT102CD2mX78x3+85fdKu8497XrftqOcXsqlr7ev5TzfE9u3zX2MnlinNpcz9Mdvh8th+3a2nIHbvm1sN7dr+/7bf/tvB6YN/Morr+h1SfdLSvpallckPfXaa3rllVcGZ4Dk/PnzLVd28ODBlsuIqtYIt31bKZ1Ot20el5GREUnb99+t3YO3XUZGRtpeZm1/33333W3fb53Il3K3DeV+u/NOybB8z+ZrcPHqPwCGar8NQLlD+X4bgHLZb/1Zbj/uN0nWz6hW9NN+q2nlVkn9qB/7TYPYZ2rHMd2uc0+73l/tKKeXchmI7XvNeb6Xtm+7+hi9tE7tKofjt7PlsH07W84gbl9JbWk3t2v7/sAP/EBLZdT0Uhv4zZLe0u0keljTAySpVEqe58WuyPM8Xb58OfbycY2Pj0tqvN9t7e9MJtO2eQAAAAAMt37sN9FnAgAAGFzXKfnbSPXTbasiDZDMzMzolltuiVzJK6+8opMnT0Zerh1SqZR831exWNSxY8fq00ulkiTpyJEjbZsHAAAAwHDrx34TfSYAAAAMq6YHSI4cOaIPf/jDsStq5VtUzXA98O/kyZPKZDKqVCr1y7oXFxe1uLioVCrV1nkAAAAADK9e7jfRZwIAABg+10m6vgt19otIV5D0qiAIVCgUJElPPvmkstmsJiYm6jn7vq9yuax8Pq90Oq1KpaJ8Pq+ZmZl6Ge2aBwAAAMDw6tV+E30mAAAAoFHTAyS5XK6lilpd3sX3fRUKhXqD3zbPysrKnuW0Yx4AAAAAw6lX+030mQAAAIBG+5qd8fbbb49c+OOPP97S8mjO7Oxst1OIpFP5Um5n9dt26LdyO6XftkO/ldsp/bYd+q3cTum37dBv5XYK+Xa23GFEv6k39NIx3a5c2lFOL+XSLr20Tr2US7v02jr10n5qh17aLu0qh+3b2XIGcfu2y6Bt33barzce1J7Uz/5E1qw9vDAMw7gLP//88yqVSlpfX2+IbWxsqFQq6Rvf+EZLCQ6KIAiUyWRULpfl+36309nT+fPndfPNN+vVV1/VwYMHu50OmjRU+y0IpExGKpelPnhPGV1dh4vPPKOb7rtvOPbbABmq99sAYb/1p77bb4PwGdUG//E//kfdd999euaZZ/RX/+pf7XY6XUW/qTm91mfqu3NPn+nr7dvL53n6GIno6+O3D7B9O6untm8vn09j6qU2cK1t9QFJ35lw3X8m6aNSz7TrXGI/L+VDH/qQfuVXfkWu8ZVOP5gdAAAAAHoZ/SYAAAB0Ew9pd2v6FlvXWl5e1uTkpMrlss6dO9fw85WvfEWTk5PtzBUAAAAA+gr9JgAAAKB3xR7MGR0d1YkTJ3TbbbcZ4zfffLMWFxfjFg8AAAAAfY9+EwAAALqp9gySpOvsF7G3TS6XU6VSsTb0JenVV1+NWzwAAADQNzxvvv77PTqjQJKfKeg5vUVhONe9xNB19JsAAACA3hX7Flsf/OAHtbKyoq9+9as6f/58w8/p06e1sLDQzlwBAAAAoK/QbwIAAAB6V+wrSM6fP6/19XWl0+l25gMAAAAAA4N+EwAAALqJh7S7xc51ampKpVJJvu8bG/vnzp3Tpz/96ZaSG0STk5MaGRkxxmZnZzU7O5twRgAAAEA8S0tLWlpaMsa++c1vJpxNb6LfFB19JgAA0MtoAw+W2AMka2trKpVK+uEf/mHrPCdPnoxb/MA6deqUfN/vdhp7OnDggObm5nTgwIFup4II2G/96YYbbmC/9SHeb/2J/daf2G+9y/XP6j/+4z/WD/7gD+qGG25IOKveQr8pul7pM3Hu6Sy2b2fRx+gsjt/OYvt2Ftu3df3WBuYh7W6xt834+LhGR0ed8zzwwANxi0eXHThwQI888ki300BE7Lf+dMMNN7Df+hDvt/7EfutP7Lf+VOsU9lLnsBvoN/Uvzj2dxfbtLPoYncXx21ls385i+3YWbeD+E/sh7YVCQU888YRznqeeeipu8QAAAEDfCMO5+k9QzkmSgnJOYTjX5czQbfSbAAAAgN4V+wqSp59+WkEQ6OjRo0qlUsZ5lpeXdf/998etAgAAAAD6Gv0mAAAAdBMPaXeLneuTTz6pUqnknMfzvLjFAwAAAEDfo98EAACAQVS8+mPyWpKJtCj2AMn09LTS6bRyuZwx/o1vfEMnTpyInRgAAAAA9Dv6TQAAAOim69SZKzreffXH5CVJD3Wgzk6IvW2OHDmiiYkJ3X777dZ5brnllrjFAwAAAEDfo98EAAAA9K7YD2m/+eabnY18SSqXy3GLBwAAAIC+R78JAAAA3VR7BkmSP0PxDBJJev7551UqlbS+vt4Q29jYUKlU0vvf//5WqgAAAACAvka/CQAAAOhNsQdIPvShD+lXfuVXFIahdR4eNggAAABgmNFvAgAAAHpX7FtsLS8va3JyUuVyWefOnWv4+cpXvqLJycl25goAAAAAfYV+EwAAALqJW2y5xc51dHRUJ06c0G233WaM33zzzVpcXIxbPAAAAAD0PfpNAAAAQO+KfQVJLpdTpVJxzvPqq6/GLR4AAAAA+h79JgAAAHTTfm1fJZHkz/5E1qw9Yg+QfPCDH9TKyoq++tWv6vz58w0/p0+f1sLCQjtzBQAAAIC+Qr8JAAAA6F2xb7F1/vx5ra+vK51OtzOfgTc5OamRkRFjbHZ2VrOzswlnBAAAus3z5q2xMJxLMBPEtXMf3qMzCiT5mYKe01sGeh8uLS1paWnJGNvc3Ew4m95Evyk6+kwAAKCX0QYeLLEHSKamplQqleT7vrGxf+7cOX36059uKblBdOrUKfm+3+00AAAAgJa5/lkdBIEymUzCGfUe+k3R0WcCAAC9rN/awLWHtCddZ7+Ineva2ppKpZJ++Id/2DrPyZMn4xYPAAAAAH2PfhMAAADQu2IPkIyPj2t0dNQ5zwMPPBC3eAAAAADoe/SbAAAA0E21h7QnXWe/iP2Q9kKhoCeeeMI5z1NPPRW3eAAAAADoe/SbAAAAgDdUq1Xl83nl8/k95y2VSjp06FDD9CAIND09rXw+r1wup9XV1dj5xB48evrppxUEgY4ePapUKmWcZ3l5Wffff3/cKgAAAACgr9FvAgAAQDf10jNISqWSCoWCVldXNTMzs2c5uVyuYVqlUlEmk1G5XK4/t25sbEwbGxtNldlsrnt68sknVSqVnPN4nhe3eAAAgKERhnPdTgEt2rUPg0DKLCso5yQeND306DcBAAAA2yYmJjQxMdFU+zefzyudTmtjY2PX9Fwup4mJifrgSG3eXC6X7ADJ9PS00um0cRRHkr7xjW/oxIkTcYsHAAAAgL5HvwkAAACIplQq6ZZbbpHv+1pbW6tPr1arKpVKWlxc3DX/+Pi4pO0rs6MOksQeIDly5IgmJiZ0++23W+e55ZZb4hYPAAAAAH2PfhMAAAC6qR8f0l4oFLSystLwnJLaYEk6nd41vXY1SbFYjDxA0vRD2s+fP7/r75tvvtnZyJeke+65x7o8AAAAAAwa+k0AAABAfPl8vuEKkZpKpSJJ1mf71eJRND1AsrCwELnwdi4PAAAAAL2OfhMAAAB6Se0h7VF+QkmXWvh5PWauQRDolltuabhCpGZ9fV2SNDo6aoxXq9XIdSZ9dQ0AAAAAAAAAAOhR/0rSchfqXVhY0MrKijU+NjYmSQ0Pbq+xDay4ND1Asrq6qjvuuENhGEaupFqtanl5mW9DAQAAABho9JsAAMAg87z5hmlhONeFTNBJf1/ST7aw/J9KeiDiMvl8Xtlsdtdtsmq/115rAyC2K0U6OkCyvr6uBx6Iulpv8Dwv9rIAAAAA0A/oNwEAAKCXXKfot5G6TtK3t1DnTTGWKZVKOnHihDE2NjYm3/f19NNPS2p81kjt70wmE7neSAMkAAAAAAA7+k0AAABAdOVyuWFaPp/X8vKyzp07V5/m+76KxaKOHTtWn1YqlSRJR44ciVxv0wMkt99+e+TCAQAAAGCY0G8CAABAL6k9pD3pOm3iPEh9p5MnTyqTyahSqdRvqbW4uKjFxUWlUqnI5fGQ9oRNTk5qZGTEGJudndXs7GzCGQEAAADxLC0taWlpyRjb3NxMOBsMCvpMAACgl9EGji8IAhUKBUnSk08+qWw2q4mJiUgDG77vq1wuK5/PK51Oq1KpKJ/Pa2ZmJlZODJAk7NSpU/J9v9tpAAAAAC1z/bM6CIJY9wAG6DMBAIBe1m9t4P1KfhBgv2W67/sqFAr1QZK91K4MMZWzsrLSQoZv2NeWUgAAAAAAAAAAAPoIV5AAAAAMIM+bt8bCcC7BTHoP2wYAAACIpx3t5Vp7/B6dUSDJzxQUhM1dUQC0GwMkAAAAAAAAAAAMoF57SHuv6egtth5//PFOFg8AAAAAfY9+EwAAANAdsQdIPvKRjzjjp06dUi6Xi1s8AAAAAPQ9+k0AAADoptoVJEn+DMUVJAsLC/r85z/fMP306dP60R/9UR05cqSlxAAAAACg39FvAgAAAHpX7AES3/f1wQ9+UA899FB92kc+8hGNjY2pWCzqXe96lyYnJ9uSJAAAAAD0I/pNAAAAQO+KfbXL6uqqbr75Zp08eVJve9vbJEmVSkW33367CoWC3vWud+nVV19tW6IAAABoXhjOdTuFnsW2QZLoNwEAAOxWb48HgZRZVlDmdqOdtF/J3/Jqf8L1tSL2tnn66afl+76KxaLW19clSalUSqVSSbfddpsk6eabb25LkgAAAADQj+g3AQAAAL0r9i22pqamNDY2ptXVVc3MzOjcuXMqlUqampqqP4jw/PnzbUsUAAAAAPoN/SYAAAB003X7peuvS/bnuj66hCT2AIkk3X777SqXy/q1X/s13XzzzfJ9X2trawrDUHfccQcPHAQAAAAw9Og3AQAAAL0p9i22JiYm9Hu/93vG2Ac/+EFNTk7qR37kR2InBgAAAAD9jn4TAAAAumn/fum6li6TiFHnFUlbydYZV+xNUygUnPF0Or3nPAAAAAAwyOg3AQAAAL0r9hUkt99++57zvOtd74pb/MCanJzUyMiIMTY7O6vZ2dmEMwIAAIPI8+atsTCcSzATDLKlpSUtLS0ZY5ubmwln05voN0VHnwkAgMFW66vcozMKJPmZgoKwf74wQht428nL0knLVSLfCpPNpRWxB0gQz6lTp+T7frfTAAAAAFrm+md1EATKZDIJZ4RBQJ8JAAD0sn5rA1+3T7q+Aw9N/4f7pX9oiT23Jd37rfbX2QkJ330MAAAAAAAAAACg+7iCBAAAAAAAAACAAXTdddJ1HbiCxFmnl2x9reAKEgAAAAAAAAAAMHQYIAEAAAAAAAAAAEOHW2wBAAAALfK8+frv9+iMAkl+pqDn9BaF4Vz3EgMAAAB6TL19HARSZllBOdfdhAbcdful6xMeBeinQQeuIAEAAAAAAAAAAEOHAZImVSqVbqcAAAAAAD2LPhMAAEAP2idpf8I/fTTq0Eepti6bzcrzPONPqVTaNe+18enp6V3xIAg0PT2tfD6vXC6n1dXVJFcFAAAAANqOPhMAAACGST/dDqwllUpFlUpFi4uLSqVS9enr6+s6ceKEJiYm6tOWl5c1MzOjsbGx+rSd8Uqlokwmo3K5LN/3JUljY2Pa2NjQzMxM51cGAAAAANqMPhMAAMAA2q/kRwGuJFxfC4ZmgKRUKqlcLu9q6EtqaOhL0srKiorForWsXC6niYmJekNfUv1bUTT2AQAAAPQj+kwAAAAYNkMzQGJrhD/xxBPK5XL1v1dXV7W2tqbp6Wlls9mG5arVqkqlkhYXF3dNHx8fl/TGN6kAAAB6lefNW2NhOJdgJt3hWn8X17bZFQsCKbOsoJyTdvxzGOh19JkAAGiNrZ05DG1soF8N1TNIrlWtVhUEgY4cOVKfViwWVa1Wtbq6qlwup0OHDu261+7a2pokKZ1O7yqr9s0o17eoAAAAAKCf0GcCAADoc9d16adP9FGq7ffkk0/K9/1dl5AXCgUVCgUFQaBCoaDl5WVls1mtr68rnU6rUqlIUsNl5zW1uM3Fixd1/vz52DkfOHBABw4ciL08AAAA0IxLly7p0qVLsZe/ePFiG7NBt9BnAgAAw4Q28PAZ6gGSlZUVvfe97zXGfN9XoVBQNpvV9PS08vm8VlZWtL6+LkkaHR01LletVp113nfffS3lPDc3p0ceeaSlMgAAAIC9LCwsaH4+3u3IMDjoMwEAgGEykG3gbjykfSvh+lowtAMktfviFgoF53xTU1OamppSEASSpLGxMUnSxsaGcf5rLyO/1jPPPKO77747esJX8U0oAAAAJOGhhx7Sgw8+GHv5559/vuV/dKO76DMBAIBhQxt4+AztAEmpVFI6nd6zcS5J2Wy2fk/d2vy2bz3tVd6NN96ogwcPRksWAAAASFirtym68cYb25gNuoE+EwAAGDa0gYfP0A6QPPHEE5qammp6/vHx8V2v1943t/Z3JpNpU4YAAKAXeZ79cuswnEswk+R53nFnPAwfTiiTVt1kjYRhvG+L7Twu7tEZBZL8TEHP6S0Df1xgcNFnAgAgGlu7z9aH6Md2omldoq53zc52cxC6r1hFC/Zp+zZbSdfZJ/oo1fZaXV213kv3WsViUblcTtL2gwZ931exWNw1T+3bUkeOHGlvogAAAADQBfSZAAAAMOiGcoBkdXW13mjfKQgCZTIZnThxYte8o6Oju745dfLkSZVKpV3fiFpcXNTi4qJSqVTH8wcAAACATqLPBAAAMCBqD2lP8ifpK1ZaMJS32HriiSeM31pKp9MaHR3VwsKCisWifN9XNptteCih7/sql8vK5/NKp9OqVCrK5/OamZlJahUAAAAAoGPoMwEAAMBlaUNaOmeObV5JNpdWDOUAycrKinF6KpVquAzcxvd9azkAAAAA0M/oMwEAAMBldnT7xyTYlDKnE00ntqEcIAEAAAAAAAAAYODVbnuVdJ19YiifQQIAAAAAAAAAAIZbH43lAAAAdF8YznU7hTrPm4+5ZLwmYBg+HLO+3hKGD8ZazrW9dx0XQSBllhWUc9I1D7gGAADA8OmlPkQvqG+Pne1mdM4+Jf/Q9D66LKOPUgUAAAAAAAAAAGgPriABAAAAAAAAAGAQ7VfyowBJX7HSAq4gAQAAAAAAAAAAQ4cBEgAAAAAAAAAAMHS4xRYAAAAAAAAAAIPoOiU/CtBHow59lOpgmJyc1MjIiDE2Ozur2dnZhDMCAAD9KgznYi3neY/GXO64Mx6GD8cqN2mu9XCtQ9ztPciWlpa0tLRkjG1ubiacDQYFfSYAQL/yvHnj9CjtyHaU0TsOd6TUbm8j2sCDhQGShJ06dUq+73c7DQAAAKBlrn9WB0GgTCaTcEYYBPSZAABAL+u7NvA+Jf/Q9D56sEcfpQoAAAAAAAAAANAeDJAAAAAAAAAAAIChwy22AAAAAAAAAAAYRPuV/ChA0rf0agFXkAAAAAAAAAAAgKHDFSQAAABD50KspcLw4Tbn0Xs8b94aC8O5ppa7R2cUSPIzBT2ntziXAwAAwOCwtftsbUzT/IPVdjzbkVIHaxslgCtInLiCBAAAAAAAAAAADB2uIAEAAAAAAAAAYBBdp+RHAfpo1IErSAAAAAAAAAAAwNBhgAQAAAAAAAAAAAydPrrYBQAAAAAAAAAANG2fOvLQ9KXT0tLXzLHNrfbX1ykMkAAAAAwgz5u3xsJwLsFMetFla8S1bVzbdNBxPAEAALTicLcTaKO7Wp631ra8R2cUSPIzBQVhofXUkKjZ27Z/TIJXpcyzSWYTHwMkAAAAAAAAAAAMov1KfhSgA1esdArPIAEAAAAAAAAAAEOHK0gSNjk5qZGREWNsdnZWs7OzCWcEAAAAxPVZfd/3fZ8xsrm5mXAuGBT0mQAAQC9bWlrS0tKSMUYbuP8wQJKwU6dOyff9bqcBAAAAtME79cUv/pYxEgSBMplMwvlgENBnAgAAvcz1hY2ebANziy0nbrEFAAAAAAAAAACGDleQAAAAtInnzVtjYTiXYCZucfP0vMec5Ybh0dg5obf10vELAADQC0xtalubydZOjlJG73jBMO1+y7y3RigDHbNfyV/RwRUkAAAAAAAAAAAAvYsrSAAAAAAAAAAAGEQ8g8SJK0gAAAAAAAAAAMDQYYAEAAAAAAAAAAAMHW6xBQAAAAAAAADAIOIWW04MkAAAAFzD8+atsTCcixXrhLh5upZzOxtzucG3a3sHgZRZVlDOSb7fvaQAAADQMab2tq2dbWubJ91/SF6p2wkAe+IWWwAAAAAAAAAADKL9XfqxqFaryufzyufzxvjq6qoymYw8z1Mmk1Gp1DjQFgSBpqenlc/nlcvltLq6GmGD7MYVJAAAAAAAAAAAoKNKpZIKhYJWV1c1MzPTED9x4oSKxaJyuZzW19d14sQJZbNZFYtFTUxMSJIqlYoymYzK5bL8q1fsj42NaWNjw1jmXriCBAAAAAAAAAAAdNTExIRWVlas8c997nMqFouamZnR4uKiyuWyJGlxcbE+Ty6X08TERH1wRFL9SpI4GCABAAAAAAAAAGAQ1R7SnuRPjIe0l0qlXQMhkuT7vnzfV6VSkbR9e65SqaRsNrtrvvHxcUnS8vJy5HoZIAEAAAAAAAAAAF0zMTGhdDptjNWmr62t7fq7pnY1SbFYjFwvzyABAAAAAAAAAGAQ1a4gieDS1vZPXBevxF/2WpVKpX77rNqVJKlUyjpvVAyQJGxyclIjIyPG2OzsrGZnZxPOCAAAXCsM57qdQlP6Jc/eE7cJTNP5WktLS1paWjLGNjc3E84Gg4I+EwCgl3jevHG6qS1ua59HKaPXtSPnehlBIGWWFZTjPTuiW4ahDbwQSPPlbmchra6uKp1O1x++vr6+LkkaHR01zl+tViPXQS8vYadOndr1ABkAAACgX7n+WR0EgTKZTMIZYRDQZwIAAL2s79rAMa4geeid0oMtrMbzr0j3PRV/+ZqFhYVdD3UfGxuTJG1sbBjnt92iy4UBEgAAAAAAAAAAIEk6sH/7J64b2zDqkM/ndfLkyV2DHrXfbVeKxBkg4SHtAAAAAAAAAACgJywvLyubzTZcVTw+Pi6p8Vkjtb/jXL3DAAkAAAAAAAAAAINof5d+YlpdXZUkTUxM7JoeBIFSqZR831exWNwVK5VKkqQjR45Ero9bbAEAAAAAAAAAgI5zPUi9VCppYWFBuVxOy8vL9enlclmZTEa+7+vkyZPKZDKqVCr1W2otLi5qcXFRqVQqcj4MkAAAAETgefPWWBjOJZhJK26yRlzrNzhNxxFrxL3+djuXu0dnFEjyMwU9p7c4j4vBOJ4AAAAGV9JtMlv7sJfbhknn3I/bqKtiPKS9LXUaBEGgQqEgSXryySeVzWY1MTGhVCqlIAiUzWYlSblcrmHZc+fOSZJ831e5XFY+n1c6nValUlE+n9fMzEysVAellwsAAAAAAAAAAHqU7/sqFAr1QZJrY2EYNl3OyspKW3LiGSQAAAAAAAAAAGDocAUJAAAAAAAAAACDqIdusdWLuIIEAAAAAAAAAAAMHa4gAQAAAAAAAABgEO1X8ld09NEVJAyQAAAARBCGc91Ooc7z5mMuaW8CutbP8x6NWV+vudMaCcN3t158EEiZZQXlnOT7zlnjHk+ufd9LxygAAACiOtztBJw876kI85rbrK22V2nvop0YIAEAAAAAAAAAYBDxDBInnkECAAAAAAAAAACGDleQJGxyclIjIyPG2OzsrGZnZxPOCAAAAIhnaWlJS0tLxtjm5mbC2WBQ0GcCAAC9jDbwYGGAJGGnTp2Sv8e9qAEAAIB+4PpndRAEymQyCWeEQUCfCQAA9LK+awNziy0nbrEFAAAAAAAAAACGDleQAADQBzxv3hoLw7kEM+mcpNdxELapK0/X+knmW9fsbVAuF/+SNeJ5gTUWhg87ljte//0enVEgyc98TM/pU87l4kr6GB2E9wsAAP3K9jnMZ3Ayomz/9uyrsxHm7YaXDdMOW+bt9XUZElxB4sQVJAAAAAAAAAAAYOgwQAIAAAAAAAAAAIYOt9gCAAAAAAAAAGAQ7VdHbnm19EfS0n8yxzZfb399ncIACQAAAAAAAAAAaNrsX9r+MQm+LmX+ebL5xMUttiRVKpVupwAAAAAAPYs+EwAAQJ+qPaQ9yZ8+ekj7UF5B4nnerr9931e5XK7/HQSBFhYWlE6nVa1Wlc1mNTU1tWuZZuYBAKBdwnCu2yl0XCfW0fPmY9UXd7necpMjthmzzJGYy/WTUWvEdVzsdnnH62XXjH2jf457tAt9JgDoHYP0OWxrT/XyOkbJzTZvtPU+3HR93XFrw5QwvN84p+c9Zpm+vT3u0RkFkvxMQUFYaFuGQBRDN0CyvLysmZkZjY2N1adNTEzUf69UKspkMiqXy/J9X5I0NjamjY0NzczMND0PAAAAAPQj+kwAAAADpHYFSdJ19omhGyBZWVlRsVi0xnO5nCYmJuqNeEnK5/PK5XL1hnwz8wAAAABAP6LPBAAAgGExVM8gWV1d1dramqanp7W8vNwQr1arKpVKymazu6aPj49L2v4mVTPzAAAAAEA/os8EAACAYTJUAyTFYlHValWrq6vK5XI6dOiQSqVSPb62tiZJSqfTu5arfeupWCw2NQ8AAAAA9CP6TAAAAANmf5d++sRQ3WKrUCioUCgoCAIVCgUtLy8rm81qfX1d6XRalUpFkpRKpYzLVyqVpuZxuXjxos6fPx97HQ4cOKADBw7EXh4AAABoxqVLl3Tp0qXYy1+8eLGN2SAp9JkAAMAwow08fIZqgKTG930VCgVls1lNT08rn89rZWVF6+vrkqTR0VHjctVqtal5XO677774iUuam5vTI4880lIZAIDWed68NRaGcwlm0nvibhvXci6uMuPui6T3Ydx1d7vJERvpQH39ZDNWzH38PrrjrzfteHXth85o1/lpYWFB8/OdODbRD+gzAQA6YZD6SqY2V3vW72wbyuiklxum2Nqftu3Rmf5PewxkG5iHtDsN5QBJzdTUlKamphQEgSRpbGxMkrSxsWGcP51ONzWPyzPPPKO77747Zsbim1AAAABIxEMPPaQHH3ww9vLPP/98y//oRvfRZwIAAMOENvDwGeoBEknKZrP1e+rWGuq2bzSl0+mm5nG58cYbdfDgwXjJAgAAAAlp9TZFN954YxuzQTfRZwIAAMOCNvDwGfoBEkkaHx/f9XrtPXFrf2cymabmAQAAAIBBQp8JAACgT3GLLad93U6g24rFonK5nKTthwj6vq9isbhrntq3pY4cOdLUPAAAAAAwKOgzAQAAYFANzQBJEATKZDI6ceJEfdrq6qpGR0c1NTVVn3by5EmVSqVd33ZaXFzU4uKiUqlU0/MAAAAAQD+hzwQAADCA9mn7io4kf/po1GFobrGVTqc1OjqqhYUFFYtF+b6vbDarQqGwaz7f91Uul5XP55VOp1WpVJTP5zUzMxNpHgDAYAvDubaX6XnzHamvU+XGKTPpXFxcubiaSGH4cNtzibvu7nVw1Rf3oYPJPxMg/jq6tumtjuXeHzOXwzt+P7DjdcSxTGck/V7C4KDPBADJsbUronyOm8roZDugHTkPkijr3al5u+NswxRbzp73rHF6ff4gkDLLCsq5tmUHRDU0AySpVKrhEm8b3/e1srLS8jwAAAAA0C/oMwEAAGDYDM0ACQAAAAAAAAAAQ+U6JT8K0EejDn10NzAAAAAAAAAAAID26KOxHAAAAAAAAAAA0LT9Sn4UYH/C9bWAK0gAAAAAAAAAAMDQ4QoSAAAAAAAAAAAGUYeuIFn6ne0fk83X2l9fpzBAAgBInOfNW2NhOJdgJr2lU+veS9u0E7m4jieXXtounXlPbDrqe8yx3FlH7HDMXOLrzH4ajbncHY7Y6R2/n9/xusE5DwAANGhHGyDpdkQ/tlts7bBOrUs76ks656ii5fEF41TP255+j76mQJKfWVEQ+q0nh0TN/vXtH5OgImXyyeYTF7fYAgAAAAAAAAAAQ4crSAAAAAAAAAAAGET7lPxD0/vosgwGSBI2OTmpkZERY2x2dlazs7MJZwQAAADEs7S0pKWlJWNsc9N+mzfAhT4TAADoZbSBBwsDJAk7deqUfJ976gEAAKD/uf5ZHQSBMplMwhlhENBnAgAAvazv2sDXKflRgD4adeiji10AAAAAAAAAAADao4/GcgAAgyIM56wxz5uPtRzaj31h1pntErdJ5lrOfHuavbjfn8djldl74l72ftoRG93x+8WrrwcljSoMj8asDwAA9CJbe9DUjooybzt0sr6k16UdOpmbaXtErc+8Te+KmVEyPO+xhmm29u6e7eAgkDIfVlCebkdqQCwMkAAAAAAAAAAAMIj2K/lRgKQfCt8CbrEFAAAAAAAAAACGDleQAAAAAAAAAAAwiPYp+Ss6+uiyjD5KFQAAAAAAAAAAoD24ggQAAAAAAAAAgEHEM0icGCABACTO8+atsTCcSzCT3sql1/TS+rv2k0tn1qETzafLbS8xDB+0xjzv8ZiljsRcrtfea+djLndrk2Ve2vG6GbOu+DqxrXtr/wEAbOflsPyehDMZTlE++5L+nOxkfb3SV+vltkfUnHt5XezONj1nP+5DDB9usQUAAAAAAAAAAIYOV5AAAAAAAAAAADCIrlPyowB9NOrAFSQAAAAAAAAAAGDo9NFYDgAAAAAAAAAAaNo+Jf/Q9D66LKOPUgUAAAAAAAAAAGgPriBJ2OTkpEZGRoyx2dlZzc7OJpwRAAw+z5u3xsJwri/qS3odulVnu+vrxDqE4cMxczne9lyky476Hncsd96xnH2bSe/cOyWLpI8Zt9usEc971LHcDzliwY7f37Tj9WCzSRlyiXf8dmJb28pcWlqS5/05y1L24xNwoc8E7M16rg8C83SgD3Wy/WhqZ7WjPlsZtnadaX7Pe8wy79H4ibXVRIR5Dxun1rbHPTqjQJKfKSgIC62nlpClpSUtLS0ZY5ubmwlng1YxQJKwU6dOyff9bqcBAAAAtGx2dlY/93OvWKJnJC0nmQ4GBH0mAADQy1xf2AiCQJlMJuGM9rBfHRkFWFrd/jHZvNT++jqFARIAAAAAAAAAANC02antH5PgT6TMTyeaTmwMkAAAAAAAAAAAMIiuU/KjAH006sBD2gEAAAAAAAAAwNDpo7EcAAAAAAAAAADQtA49g2TPOvsEAyQAgMSF4Vzf1+d584nW5yrTlUun6nTxvOOO6OVEc0n6WHMJw4etsc4cT+cdsTsd9b3bGvO8Usxces1pR2zEEfukNbJrPwWBlPmnCsp/W2rhQdO9dPy62PLcfkAlD2kHAHSHrX3VL5+v6Kz2HAeHG6a0p292axvK6KTGPoHnfcE4ZxgeNU73vKeu/vamq69va0NeQDzcYgsAAAAAAAAAAAwdriABAAAAAAAAAGAQ7VPyt7zqo8sy+ihVAAAAAAAAAACA9uAKEgAAAAAAAAAABhEPaXfiChIAAAAAAAAAADB0uIIEwNDwvOPWWBg+nGAmw8Hz5q2xMJxLMBO3fsnTpZU8XesfVy+9nzqxf+OW2YnlpMOO2GbMmMsX9ohPxCw3aa48v+qIbVgjnvdU/fd7VFEgyc98Ws/ptMLw/sgZ9ho+QwEgHs97rGFaGB7tQiaDwdYuMrWlutGWN+XXL32KYdOefXW2Pcn0HVcfZDfTOXBbbdudufr6YisJAS1hgAQAAAAAAAAAgEF0nZIfBeijUQdusQUAAAAAAAAAAIZOH43lAAAAAAAAAACApu1T8g9N76PLMhggSdjk5KRGRkaMsdnZWc3OziacEQAAABDXH+v7vu/7jJHNzbjPusGwo88EAAB62dLSkpaWlowx2sB7q1arWlhYkCQtLi42xIMg0MLCgtLptKrVqrLZrKampiLP0ywGSBJ26tQp+b7f7TQAAACANvgBffGLnzRGgiBQJpNJOB8MAvpMAACgl7m+sNGTbeD9Sn4UwHLFSqlUUqFQ0OrqqmZmZhrilUpFmUxG5XK53h4cGxvTxsZGff5m5omijy52AQAAAAAAAAAA/WhiYkIrKyvWeC6X08TExK4vy+TzeeVyuUjzRMEVJADQIZ533BkPy+9OKJPuCMO5bqfQlLh5xl3O8+bbXmav1ek+9i/HysVVZhg+3ExabdOJY8a9fq7lSo4aP+OIHXTEXN4Tc7le49puLvbjV9rY8furO143DPM2p7eO+2TrA4BBEYZHu53CgDnc7QScTO02W1u8X/pLzTCtY6+vX6/n18tM5zVXnxNoVrVaValUarjt1vj4uCRpeXlZR44c2XOeqFeRcAUJAAAAAAAAAACDqHaLrSR/YjwUfm1tTZKUTqd3Ta9dKVIsFpuaJyquIAEAAAAAAAAAAJKkS5ekS6/FX/7iN6MvU6lUJEmpVMoab2aeqBggAQAAAAAAAABgENWu6ohg4VFp/iMdycZqfX1dkjQ6OmqMV6vVpuaJigESAAAAAAAAAAAgSXroF6QHW3iM1vP/Wbrv/x1tmbGxMUnSxob5OY7pdLqpeaJigAQAAAAAAAAAAEiSDhzY/onrxjdFX6Y2uGG7CiSdTjc1T1QMkAAYGmH4cG/VFwTJJNJBnnfcEb1sjYThXAdymR/o+lrRS+vvWs4Vi5uLeznX8TsSq0zpgjXi3g/294vbaUfsVkfs5Zj1PbNH/G0xy03aOxyxL1kj7mP70R1//fcdr+ejJHZNfcl+bgEAuitKm6bX2putsK33oKzjoKyHyzCsY7Ns28Lznk04k2RFPQbi9uEQT7hPCmM8NL3VOqMaHx+X1PgckdrfmUymqXmiipEqAAAAAAAAAABAe6RSKfm+r2KxuGt6qVSSJB05cqSpeaLiChIAAAAAAAAAAAbQ1n5pK+FRgC3HFSuuB6mfPHlSmUxGlUqlfrusxcVFLS4uKpVKNT1PFAyQAAAAAAAAAACAjgqCQIVCQZL05JNPKpvNamJioj6w4fu+yuWy8vm80um0KpWK8vm8ZmZm6mU0M08UDJAAAAAAAAAAADCArnThCpIrlitIfN9XoVCoD5LY5llZWXGW38w8zeIZJAAAAAAAAAAAYOhwBUnCJicnNTIyYozNzs5qdnY24YyA/uN5x3WPziiQ5Gc+puf0qR3R2xxLblojYfh+R33zjuXmHPUNvjB8ONZyrm3qrs++vTuxLzzveKz63Os3KB+97V+PuNs0/r647IhdcMTskj8njDpiG7GWc2+zn98roT7xJUfsNmvE8x53LHfrjt+/efV19Jrpg2dpaUlLS0vG2Oam/XMXcKHPhEHieU81TAvD+yOVMeh9jijrF4ZHO5jJYLC15XrlOIqSX6+si+c9ZokcNswbra/reV9omNbJ49yUX9Tt6XnnDWUctMxr23b9jTbwYBmU/9L0jVOnTsn3/W6nAQAAALTM9c/qIAiUyWQSzgiDgD4TAADoZf3WBt7a7+nyfi/hOkNJYaJ1xsUttgAAAAAAAAAAwNDhChIAAAAAAAAAAAbQ1v792rou2esktvZfkfu21r2DK0gAAAAAAAAAAMDQYYAEAAAAAAAAAAAMHW6xBaDvhOHDUhBImX+poPyz0o6HeHres44lvxSzxsMxlxsMnjdvjYXhXKwyXct53vG25xJ3uTB82FGmPU8Xd5n2PF0f2a4yW+Fax7jr0Zlj5tFYZcavL96+78TxK93kiL3DEfuCI+ZqHgaOmCRN7BHvFaPWSBja18H9GfPyjt+/bcfrSJTEAAB9yvMes0TOGqbd38lUBoa7DRRf3PboTrbc2lF2q7qRg2l72PKwTY9SRtLC8GjT89qPW9v/FRrPEZ73lCWP1s8d7dmmLzRM8bySZV7betemf+vqq719jtZd2b9fW/uTvU7iyn5P3GILAAAAAAAAAACgRzFA0qRKpdLtFAAAAACgZ9FnAgAA6D1b2qct7U/4p3+GHfon0zZZXV1VJpOR53nKZDIqlcyXgHmet+tnenp6VzwIAk1PTyufzyuXy2l1dTWJ9AEAAACgo+gzAQAAYFgM1TNITpw4oWKxqFwup/X1dZ04cULZbFbFYlETE2/cb3p5eVkzMzMaGxurT9sZr1QqymQyKpfL8q8++2BsbEwbGxuamZlJboUAAAAAoI3oMwEAAAyWLe3XZe1PuM7+MVQDJJ/73OdULBbrf7/3ve9VJpPR4uLirsb8ysrKrvmulcvlNDExUW/oS6p/K4rGPgAAAIB+RZ8JAAAAw2RoBkhKpZIWFxd3TfN9X77v77pX7urqqtbW1jQ9Pa1sNtvQeK9Wq8ayxsfHJb3xTSoA3RGG9zqirpjLrTGXi8/z5q2xMJxLMBPJ9VHRiTzD8OFYy7nLbP8260Senaov7n5y1el5j8YqM24unve4Y7kHY9Xn0pnl4jW73NvlKceShx2xdzhin3HEvscRS/7cFb++g7HKlO5wxHZ+Vrxpx6u9rr0kvz2PO+pL9pyH7qDPBMQXhkc7Vrbp8yD5PoGZ7bOqHfn1yjqatCO3Tm67VuuLmlvS+7tT74mo6+15j0Uo/WzTZbvb+L3Jvo326ldtXPOKfvKvli7pXy29Zox9azNMOJv4huYZJBMTE0qn08bYzunFYlHValWrq6vK5XI6dOjQrnvurq2tNSwjqf7NKNe3qAAAAACgV9FnAgAAGDxXtF9buq7tP++bfZN+/4uHjD/Lp+J/USxpQ3MFiU2lUlEul6v/XSgUVCgUFASBCoWClpeXlc1mtb6+rnQ6Xf/mVCqVspbncvHiRZ0/fz52vgcOHNCBAwdiLw8AAAA05/LVH8Vqv168eLHN+aBb6DMBAIBhcenSJV26dCn28rSB+89QD5Csrq4qnU4bL+/2fV+FQkHZbFbT09PK5/NaWVnR+vq6JGl0dNRYZrVaddZ53333tZTz3NycHnnkkZbKAAAAAPb2jKTflyTdfPM/7W4q6Br6TAAAYJgsLCxofj7eLZd71Zb2aSvxh7RfSbS+Vgz1AMnCwoJWVlac80xNTWlqakpBEEiSxsbGJEkbG+Z749kuSa955plndPfdd0dP9iq+CQUAAIBk3Kfa87teffWDkZd+/vnnW/5HN7qPPhMAABgmDz30kB580P6cy73QBu4/QztAks/ndfLkyT0b55KUzWbr99StzW/71tNe5d144406eLB/7sEGAACAYXWdat2FOO3XG2+8sc35IGn0mQAAwLBp9VadtIH7z1AOkNTukVt7SGAzxsfHd71ee9/c2t+ZTKZNWQLoHeZvP0qS59kvuwzDudg1xl02bj6u5dzifYx0Yrt1Yt3jbzP7dgnDh2Mt1wr3ehx3LDniiF2ImY19HePvC9c62HVi/7rrc+37TnjBETPf9mbbZUfsFmeNrZz3bDpznp1wxJ51xG5zxL5nx++v75j/LzSXkkEntqe7Pvsx2qnPO/Qu+kxANLbzpOkcGbXtnfR51pSfLYde+QyIknOr5bar7E5tu3bk3Cv71SZKflG2R3vW+65I0835HW5DHp30coR5f8IyvXT19VtXX+39k3a8vzt1jugX2w9pT/YWW1f66BZb+7qdQNJWV1clSRMTuzvGtcvBTYrFYv2hhKlUSr7vq1gs7pqn9m2pI0eOtDNdAAAAAEgUfSYAAAAMi6G6gqRUKmlhYUG5XE7Ly8v16eVyuf4tpgceeEDvfe97dezYMUnbnYPR0VFNTU3V5z958qQymYwqlUr98vDFxUUtLi4qlUolt0IAAAAA0Eb0mQAAAAbLlS48pP2KthKtrxVDM0ASBIGy2awk1b/ZtNO5c+ckSaOjo1pYWFCxWJTv+8pmsyoUCrvm9X1f5XJZ+Xxe6XRalUpF+XxeMzMznV8RAAAAAOgA+kwAAAAYNkMzQOL7vsIw3HO+ay8Dd5W3srLSaloAAAAA0BPoMwEAAGDYDM0ACQAAAAAAAAAAw+Sy9ulywrfYutxHjz7vn0wBAAAAAAAAAADahCtIALTM8+atsTCcSzCT+DzvKUf0fMwy7dtFku7RGQWS/ExBz+ktu2Ku7bZXufbljltjcfeTK5e4x4XnPeao8WwzaSXCvQ72be2KucRdbtvlmMttxlrKfYwm3fR4qzXi3qb2PMPwYUeZv9lMUpG4t+c7HbERR8y+XaTDjtg3HTFJGt0jHl1HPkcOOWLnXAvGe0/EFf882v7P5Xj1nYlVFwD0CtP5zXY+bMfnVa/0nUx52M71Seccty8UV6/skyh6PedeOZY6JQzvN063/c/B/H5z9Yl7wV0R5rX14WvTN655bdSOc9KgHF9xXdF12kq4L95PD2nnChIAAAAAAAAAADB0uIIEAAAAAAAAAIABdEX7tJXwM0iu9NF1Gf2TKQAAAAAAAAAAQJswQAIAAAAAAAAAAIYOt9gCAAAAAAAAAGAAbXXhFltbfXRdBgMkCZucnNTIyIgxNjs7q9nZ2YQzQr/yvHlrLAznEszEXZ8rz87U97hjufc7Sr3NEXvZUeaDjuXcfK/2fr9OUU7Hcbd3GD7sWO54rOXcudjL9LzHrDFpM2Z97T/WPO9RRy6ufW8+z2+7EDsfm73e83H3r2u5+E2Iy45c4p67Rh2xr7e9vqSPNfe2vjVmje+wRsLQHvO8P4tZX/Kc+8lz7fuJmDXuPHdd2vFqP6e1olfaAUtLS5J+1RK1v98BF/pMsDGd+6Kc82znTlsZnSv7rqbL7RW2bRF1myadRy9oxzaKUkbS+ySqTuXRnfU+a8jjvHnWm+6PUK69PZ4k+/vqsGHeF4xzhqF5vT2vFDetq+W2vl+jHjO75/+spM/qzjv/XMN8m5udaf+jcxggSdipU6fk+3630wAAAABaNjs7q5/7uVcs0TOSlpNMBwOCPhMAAOht75T0Tn3xi42DKUEQKJPJJJ+Sw5b263IHriBZWfqGVpc2jLFLm1faXl+nMEACAAAAAAAAAACaNj17i6ZnbzHG/iTY1Psy6wlnFE//3AwMAAAAAAAAAACgTbiCBAAAAAAAAACAAXRF+7WV8DDAlYQfCt8KriABAAAAAAAAAABDhytIgL7V/rev581bY2HY+OCpZriW87zjjuUejlWf9HrM5VwPAv1UzDLdgvLPSpl/uf16zYNIO7EvXNtbuhyzTHuebuaHeG2z5+J5j8asL64L1ojnPRZrOfd7177u7vfSXvvBXqd72U7kat+H7mN01BFzHU/xzpXu/etyk6PMuNvaJXDEHOe174pZnb4z7oJOiX/+uE75z93rCLqOi/fs+P3AjtcRxzLxjwvX52Tc7Rl3OVts+wGVPKQdwDbTOSbqOT7K/O2oL4poZd9lnGprf4Th0RgZtZftM6KT2zRKHklrRx5RtqltO7fjOI9SRiePg9bXpXPvq2h9g5J58oUXLPMb1vHdrvZocuzHwVOGqbdGLP0nrr7+35KWJb074vKt6+RnUK/Z0n5tJXxFR9L1tYIrSAAAAAAAAAAAwNDhChIAAAAAAAAAAAbQFe1L/IqOK310XUb/ZAoAAAAAAAAAANAmDJAAAAAAAAAAAIChwy22AAAAAAAAAAAYQFtduMXWVh9dl8EACdC3Lre9xDCca3uZ7voetsY873HHcu93lLoZL5k320Phf3PledxRqHsf3aOzCiT5mY/pOX3Knd+uOh9ret7m8zkcs0zXx8iII3bBEbspViau49e9n+z1heGDsXLxvHlH1LVdDjrKfDRWLttc+z7e9na919y52vd93HOQe/+6lnPl6TqXvNURe9kRs79f3OdDV573OWK32kN/5ljMxXX47sH9vkjYc67ghiN21hH7TsN8t14zvVEnPnvjluk+j8bZf2di5QFgMLXjfGc6F9nKTbpvY2ujh+FRw9R/Y5nXnLOpbHO50djO7aY8kt6eNlHyiLJ+w5BHlDLsx3NvrLe53Psj5RHtfGJ+v3nes4aptv7AXZbpBp96yhIwr2PyJgzTzH1Z+/8vfvLq63+5+joaKYNo59xoorR7e+XciNYwQAIAAAAAAAAAwADa0n5dTvwKkmTra0X/XOsCAAAAAAAAAADQJlxBkrDJyUmNjJjvTzE7O6vZ2dmEMwIAAADi+uzVH5P23w4Uw4E+EwAA6G3bbeDv+74nGiKbmzFv/Y6uYYAkYadOnZLv+91OAwAAAGiDd179MTkjaTnBXDAo6DMBAIDett0G/uIXG59BEgSBMplM8ik5XNF+bSU8DHCFW2wBAAAAAAAAAAD0Lq4gAXqY5807ooc7UOZNjtiFDiznOgWNWiOeN697dEaBJD9T0HN6y47oHY4yHX7IHvK8R+OVuecp9vKO12tvQ+Laptc7YnH3xVlrxH3MuMTd9y7m223szX6blzB80BrzvONtz8Vd32OOJV2X6br2+17L2vdTGDZ+G6bG/b6It23c628/Rt3HUyf2/XlHzH7ucr/PXPW5blP0VUfMsR9uOehYzmEi3mKS+3hK3HscsT907MNzjmPtu3b8/pqklyXdKumGSJnt4jouwvDh+AXHEGf/bX97jitIAERna3/21GfJNcLwaPMzj5vXw94WcrWDdvMzhYZ+Uje2m2kfJp1HrxwvncwjWl/N9j+ExuOrGzmb6oz2nrir6XJtebTn3GPOY7th2FoZvfC+2vaCYVrzx9e2l6++blzz2pxI51yLfvysiWtL+xJ/aPpWH12X0T+ZAgAAAAAAAAAAtAlXkAAAAAAAAAAAMIC2n0GS7BUkPIMEAAAAAAAAAACgh3EFCQAAAAAAAAAAaNpvLX1Nv730/xhjr21uJZxNfAyQAAAAAAAAAAAwgLa0T5c7cMurH529XT86e7sxVgle1Qczf9T2OjuBARIMHc+bd8bDcK4DdT7miJ6NlYvnHY+Vi7vMxx1LXnDERhz1Peio7zcdZW46ypyTgkDKLCso5yTf31Gmax0c7nQFXev+Vkfs5Xi57OnrjthNMct0LWffF26+IxY4YvbjycW97+3r53mPOpa77IjduldKlvpc791RR8y1XeLuI0k6bI24c42bjyt2myPmEm/93Z8HrveEa9+fdsTe44h9xhHbsIe8CXvsFkeRdzmKdG2XkfZ/RrZir890q6OO9Th33rGgY9+bvjjV8seA65xg59ounWjnABh8Uc637TjPJH2usq9fYzspDI9GKsO4Lmu2/qG9b9isoJwz9pM6Jcq2i/65bWqnNr+Noh5Hpn67bX+3Q6Rjpg2irEvsNlZTeURZP/P+NpVhz/n+CGU81XRm275gmPYOy7y2Y/dewzRzmzPKetu2s2n+yMfcuCHntRejlaHS1devXX39jKQfi1hGa2gXo4YBEgAAAAAAAAAABtCW9msr4WGApB8K3woe0g4AAAAAAAAAAIYOAyQAAAAAAAAAAGDocIstAAAAAAAAAAAG0BXtT/yWV1e4xRYAAAAAAAAAAEDv4goSAAAAAAAAAAAG0Jb2JX4FyVYfXZfBAEnCJicnNTIyYozNzs5qdnY24Yx6m+fNO6Kuw/eyI/YTMbORPO91aywMr3csedSxXMxk3vywNRR7ux2yl6lzj9ljd9rXz5nLP5mzx/6CPeT21lhL3f3Lf2yNPf+/3uFY8mVHzPxef8PojtfD18TOOpaLe+p2LXfQEbsQs77Tjphr22w6Yq5cbnJmEy8Xl/MxlxvdexYjV557rYPr/ORaD1eunSjztCPmOi5c6+86tuOW6eJav0+1v74fcMRedMR+0RH7fcd76X92p+M654eh45yfdJl/yxV90h6aeL899vUdv29q+3C+TXvuWvdn9rWfDc0t14ltbffZqz8mrvYYYEefKR7PM5/4w/BtjfOmzWWEFVvpE4Zy720ys6t1ek8ZyrjfMq+t7/GOpvPwvGebnlf6gGX6C4Zy53WPziiQ5GcKek5vsSzrMG7pP62Zz8Nxz+s1tvN7lHKjf0Y09mds9dnLNvWJbJ+NjfNGXe8wbNwv9mPR1V+7ljln+/Yw1XmrpezG96b0BUu5nTm+OilabubtHK99cy3zuUr6ycZJt1v6H7eYJxvz+/fNr3fU/de5/d14vpQkPWup7xeuvv73QPrSh6U7p60lm7ZRt4/bpaUlLS0tGWObm65+JnoRAyQJO3XqlHzf73YaAAAAQBu88+qPyRlJywnmgkFBnwkAAPQy1xc2giBQJpNJOCO3Le3X5cSvIOEZJAAAAAAAAAAAAD2LARIAAAAAAAAAADB0uMUWAAAAAAAAAAAD6Ir2ayvhYYArfXSLLQZIAAAAAAAAAABAx62urqpYLCqVSqlSqSidTmtxcXHXPEEQaGFhQel0WtVqVdlsVlNTUx3JhwESdJ3nPeqI3hSz1Nscsc2YZUrS9S0s22ZbrqDrrX3ZHjr3omO52+yhD9lD4fvmrDHvbY7qvsse8n5yXvfojAJJfqag5/SWN4Ij9vpc3q/HrbGf0w84lnyHI/aFPWp9047Xg9fEXMfa63uUazPiiJ13xO5wxF6OmYuLK89rt1Ozy406YqdjlnlrzDLPOmL3OmKu/e6qT3LvpzsdsY09yrW54Ii5tqkr5nqvuY7fThyjcT9HbnPEXHk6lvtPjsVcb91fcMRc++HvhK4FpYfd4TjCMN553emiq773W2PeTzjK/Hq8VFzr52ojuZebj7Vcu7f19gMqeUg70ArPe8wSMbUn7rLMa2h0v/SUpT7b55Hrc7hZE03PGYZHjdM9rzFv+zZytdWurc/cxvQ807xzUhBImWUF5Zzk+1fntZ97G5hXT/rZD1jyMK2juU15j751tZ+0ouf0mTdybtlhy3Rb27bxeDTtv+hs9Znyc7W7G5n2oW3b2fd363mY57eV8UKTOdinm9fFPK/9vdn8MWo/DhrXxb79mz+Wou/D1urT79xvnv5rlvnXDNv6zc1X1xW/aZj2vaZjUdKfWLZHBKZ9aNt/Uc537SijX2xpX+IPTd+yPNljdXVVCwsLKpfL9WnZbFb5fL4+SFKpVJTJZFQul+Vf/ZwdGxvTxsaGZmZm2p4rzyABAAAAAAAAAAAdVSgUND4+vmtaNpvV6upq/e9cLqeJiYn64Igk5fN55XK5juTEAAkAAAAAAAAAAOiojY0NlUqlXdPW19eVTqclSdVqVaVSSdlsdtc8tUGV5eX2X6HOAAkAAAAAAAAAAANo+yHtyf7YHtKey+VUqVQ0PT0tafu2vE8++WT99lpra2uSVB8wqaldTVIsFtu+fXgGCQAAAAAAAAAA6KiZmRmVy2UtLy9rbGxM6XRaL730klKplKTt549Iqv99rVq8nRggAQAAAAAAAABgAF2J8ZD21y9t6fKlrdh1fvOifdlCoaC1tTUFQaBKpaJSqaSpqSlJ27fbkqTR0VHjstVqNXZONgyQIBLPm4+55GFH7P2O2HlH7FZ76Aevt4Z+6I9+x1GmJL3DHvqtPRa1eGf4Hx3RvxqrzP9h43PW2At62BrzvOP2Qt/zNnts0x77y++zX97meZ+1Vxe+3Rr75FPT9lx+/zq9cfra+bukH7Mv5vKK9zFH9IQjZj5hb3Mdv5L0RUdsxBF73RFzvC+cvuSIudbxNkfstCPmeJ85fSbmcvZzgvT9Met72RE7GDPm2u+u+m5zxCRpM2a5ru3mOg7vcMTudMRcx6GrPhfXsXbaEYu7L1z1udbPdVw49t+bHYv9vCP2fzhiX7nNHvuW51hQCsM5a8zVhnAt5xK7zMdDV6n20Ecu2WO/eOCN3ze0fXh9r6TRvdpPv2QPfdeDjuUAdIPp/Ww739jf+x8wTHvBMu+EZbqhbT7eOMnufst0W873NkyJ3De8Pd65fjfT9vioedYPHG26VO8vWgI3Na63XfPr92c/a/6s+U79oWWJxvUOQ3P/zPceajqPKPvQfpw/1XQZ9uPcxvR/BFtbq7F9FobmY8Cec2N99m10l3FqGDa+t2z1ed5jkcpufl7bdra1YZsvw/OebSKn9rHXZ+r3mtfP8160lPEThmm2/3vYjgNDGd9rqe/fW8r+qOGY/jXzrN697XjPNv85FoW1vv9gnv/tn/uCJOl7gheljPQ9v/GiJN84r/e+xmnL4bp5Xst71pRfO9bbXN+ZlsvtBb+38Hl9av65jpSdzWaVy+WUTqc1PT2t6elpraysaGpqSmNjY5K2n1Vicu2tt9qBARIAAAAAAAAAAAbQZe3X5YhXkLzrIV/3Pfg/xq7z689/Q//ivk82TM/lcpK2b7UlSS+99JJuv/12PfDAA5qamtr1sHaTTgyQ8JB2AAAAAAAAAAAgSbruwH5928EbYv/ccKP5jhRPPvlk/YHr0vazRhYXF1WtVhUEgcbHty+JvfZZI7W/M5lM+9e17SXCaXJyUiMj5tt2zM7OanZ2NuGMAAAAgHiWlpa0tLRkjG1uum7vB9jRZwIAAL3sjTbwfzNELyedTl8ZHR1tuDpkYmL7VpKpVEqpVEq+76tYLOrYsWP1eUqlkiTpyJEjbc+JAZKEnTp1atcoGQAAANCvXP+sDoKgI9/wwuCjzwQAAHpZrQ1sfwbJctIpOV3Rfm0lPAxwxXJLr1wup4WFBS0uLiqVSkmSVldX5ft+/fZZJ0+eVCaTUaVSqU9bXFzctUw7MUACAAAAAAAAAAA66tixY0qlUpqenq5/IaZarerpp5+uz+P7vsrlsvL5vNLptCqVivL5fP25Je3GAAkaeN6jjugvOWLme8tJkqbsofDtnjX2K8d/3hq7W89ZY9mv/KE1Nm+vTpLk6betsaL+hmO5U9bYazdP2pd79U/dCVl8Xu905PINx5JHrZH3/IcVa+wf6l9aYy95f2CN/aHK1th/+JjjW6Vvsoc8/W+SDlz964CkN27BcPe/+WP7gvoBR8zun+oWa6yVCyf/vT4j6Z9I+hFJ9+wOHnK8n865Si05Yq87Yu9xxL7iqtDBdWuVmxyxs47YOxyxlx0x8206tn3JEZtwxBofNvaGex2xZx0x1zq4bMRcTnLtpzC0ny887/FYZUqfccQcx71OO2IHY+ZyPmZ9rm81u96DruPexbF+rwT22B878vwHjur+k2M/fMSxnCT9766gff3N37zaFoZzsWKuMvX37cs51+HjB+yx0zt+v3j19Yyk83vl+aI19rNf+z3Hco5c9FbHco5jxnHch+H9juWAweN5jzU/r+1ZoR8zv/d/6Wf+l4ZpH9n4ReO8r71i/gw48vZ/3TDtiZ/4aXN+XmPf6MXw7xjnfZv3fxinfza8q2HaO13nWYMjlcacPe+0Ze7D5skfMLRNpszbOTzQ2PHzvFeN8/5e+DeN07P/vHHbed4jukdnFEjyMwU9p7dsBz7s+Gxp0iP6y03Pa+3XvqUsnfmw9JZp6cB2W8B6jL7bkvN9jZM8z9aGbTw2tt3aOOmmiJ8lF0xtNVt7ubH97Xmutp6JoR9yk2UbXXjKONn8uf6Cpb4PWKab1tGwPSWZ24m29qitDEN+t1vW+yXbcWDqp9n2le2YMc1vW5efMEyz9SNtZZjmt/X/LDn/vbc1TrO0s0/8pX9knH7spn/eMO3IrzeeLyXpyU+YjhnzdvY88zFq2nb2eS3r/THDer/dPOvb/9YXjNP/dHH7mHnT17f/q/LVj7/N2s1a/vX3NUw7433COG9YMU6W96eNx/Qj37vHPwivnV+mzxDT59W3IpWbhC3t01bEh7S3o06bmZmZPQc7fN/Xyor9/5TtxEPaAQAAAAAAAADA0GGABAAAAAAAAAAADB1usQUAAAAAAAAAwADafkh7srfYsj2kvRdxBQkAAAAAAAAAABg6XEECAAAAAAAAAMAA2tI+Xe6hh7T3GgZIWhAEgRYWFpROp1WtVpXNZjU1NdX2ejzvMUf0rD30XXPW0Hd87SVr7M/0j62xxx0xp1V7aN613D/7F9bQHzkWc8X2Ej71N6yx+fvty716+cetsX/meKcth/9rM2k1+HeePfb28M+sse/Vl62xjHfEGvvrd9rrc+3DK9/I2Je7xbGg089Lek7SRyX9HUn31CP/Wv+DdSnvi/Z1f8RR22VHbG7RHpvPOxaU9MYp+DpJ1+8O3eZY7FzJERx1xFyFftMR+yFHzMX1EfNZR8x3xE47Yi/HXG7TEXPledAR+6Qj5lq/rztiLnstd0esUj3vUUfUtf6u49C1n1zr4VqH047YeUfsekfsNkfMlafruB9xxFzHoWO573IcT3/eUeTdjpgO20N7NHPcbZYL1kgY2tss7voej1Vm6rX/6ijzP9sr/MCEPbbzo/e1q69nJVUlz3N9Uv68NfLbsrdJ3K0d1/vsM44Y0H5J9Zma4XmGz4RnzZ9nT4afMk7/omf4jH/pEXOFP2tJxDD9lxSvT7CT7UwT/vhfbpzX0pc4ET5hnP7bhnPjcvh/GuetKmWc/k2vsW8XfsKcx8N/958Yp9/gGRL/qLkM0/YIf/xm87yW7WE80940J20F0jeXpW/PSfu3P4sf+ZC5kM/lG/snv22urj3ulnTm6mutv/V/Wub9E8v0Tz3bOO0D95rntWx/6UXDNEv78YKtvWbo9/w9S6fceCzZ2qu2jv0LjZMuPGWZ1/ZZe6tluomtX2cq21auIWfdFWFe8/xhxTKrzMeBuw3YbB6ONug1wvBthhxs7TTzdja1Fe1tNkvZhuNu5tf/v8ZZbedGvb9xUkpV87zjhmN6zfX/ARPT/xFtx5f5f46/9DONK+5532Gc90j47cbppx+4TZJ0/ecvSv9Cuv5vX7TkIH1Ev9gw7SfMb3rlbv//GKe/XV9omDb3v1gqtPyv6pFfaDzhmY6jIAiUyXzYUjh6EQMkMVUqFWUyGZXLZfn+doNobGxMGxsbmpmZ6XJ2AAAAANBd9JkAAAC6b0v7tZXwMEDSzzxpRf9c69JjcrmcJiYm6g19Scrn88rlcl3MCgAAAAB6A30mAAAA9DoGSGKoVqsqlUrKZrO7po+Pj0uSlpeXu5EWAAAAAPQE+kwAAADoBwyQxLC2tiZJSqfTu6bXvhlVLBYTzwkAAAAAegV9JgAAgN5wRfuv3mYruZ8rfXSLLZ5BEkOlsv20qlQq5YybXLx4UefPux4Ya7Lzwa2GhzkDAAAAbfe6pMuSFKP9ut3uxfBKvs/0hgMHDujAgQOxlwcAAMPr0uXtn0bfaphiaq/QBu4/DJDEsL6+LkkaHR01xqvVqnXZ++67r6W65+bm9Mgjj9T/9rx5+8x32EN5fdgae+vfcyTwCUdsQMzfH2+5g196LdZyn9H3W2Pfr8/EKvN79WVrLKVqrDLf/8Vftca+y/s5a+yXb7GXmQrtD+eseq7bLpQkfeXq75+R9A3HvG/4nu/7k6bmu9bcT9tjj+VjFbltXNLa1debrok971rwnY7YZx2xayvZ6YIj9iVH7C5H7KwjZj5/bnvCEbvXEbvVEXvREXMNOo84Yi63OWJx99Gdjlj8fyJJLztit3WgzIMxY5uOmGs/uZZzxVzHqIsrF9f63eaIbdhDrrb3V+yh73mH/Xz4Vf07a+zuv/FNR4XS8873vZ3nHXdEjb2Tq94aq75XXzlkDx6dsMc++qw9dueO81Pt0BrZ/gnDOetinvcpa+y//Pq77fXJ9Znmeg9G8buSfluSdPPN/7hNZWJY9FKf6Q2N740X/9L/y1jG39RvGaf/hD7ZQmZd4vgYuZatr2A6+z/w182dw/f+zseN07/PNPGwOY8f0u8bp/+RYdrc75rLmP9Rw7R/a57328OfN07/pvcvGif+jqQvS/oZSb8q6XuvTrc0U6tKmQMGtn/QmFq5X7cVktrx+uarv/9Y0ylse8WwMv+XZV5b8/WCIWtrl6NkmW4o4xO2dr1pK9nKtfVhTNNt89raC6Y6P2CZ96PGqaZ2g/N/P02zvOEMPM/W5omyTW3tEVsepnZk8zlH3d/mdbTV9wXz5PHG98of6K8ZZ7X+L8bw3jqu/9k46/KXf8Ew1badf9Iy3bCdbrL8I+yC+Tj4Z3/6y40TLf9LfPJ9ljT+cPvl9Us3br/+3RvlnXnMPO+/P2oppNHS+f/JOP0nD368ceJvm8tY+AvS/G+YIo3/S735Zvv/V3vJFe1L/KHpV/roxlUMkMQwNjYmSdrYMLc0r72MfKdnnnlGd999d8P0m2/+Fesyr776wfrvfBMKAAAAyfhRSe+SJL366vsjL/3888+3/I9u9K9O9JmaRZ8JAADE9dB7pQcNY0Y33/+hJkv4r5I+3saM0GkMkMRQa8zbvvXkauzfeOONOnjQ9A3Sb7MuY54fAAAA6KTrVbvKLk579MYbb2xzPugnnekzAQAAdNaBG7Z/Gtn/d7ubceGBtLb0OZWX1oyxy5uuOwH0FgZIYhgfH5fUeN/c2t+ZTCbxnAAAAACgV9BnAgAA6A1bHbrF1j2zP6B7Zn/AGPuvwRn964zr9vm9o39uBtZDUqmUfN9XsVjcNb1U2r6P35EjR7qRFgAAAAD0BPpMAAAA6AdcQRLTyZMnlclkVKlU6peHLy4uanFxUalUqrvJAQAAAECX0WcCAADovi3t1+WEH9Ke9EPhW8EASUy+76tcLiufzyudTqtSqSifz2tmZiZWeWH4cMzl5mIt53nfa439T/oNx5KOB22++TutoRu+fN4ae+foZ6yxKa1aY1XPfpnWzzuO7NE/tMckyftIaI2Fpz37cnf9tjX2iP6GNfYx70fsMd1tjZ3SJ+z1eT9ojUn2+zmH/5v9+PVGZ+3L/erP2av7pD3keb9iL/N37ft37kfeLQWBlJGC8r2S79djqdfusS5XveHPW2Pz9jQ1/3FHsBVrr+54vfYBpjfZlzvkuCf3udcdFZ5tMrFrub7h+YIjZn/fu2Pvcadj9awj9v0xyzztiN3liH3FEZuIWd+mI3anI7aXEUfMtX/vcMRudcROO7Oxc+XpirlycXFtb9fx67pn/ssx63unPeR6xINjF331t/+CY0H7h+jzZ+zn2G1PWyOuto7nHY+Vj3ubOvyx4wHOd7sWPG0PvfXeN34/f3XWw3IfEpJc55L3vG/FGvvkTx1ylBn3fHG9NeJ59k/KuO1RDL5295laFYZva5jmee+3zP3vjFMfkaGv8DFLEX9gmf4PDNP+xDzrL/3M/2Kcvqqphmm/qI8Y5/W8H2uYdjgcN877sr7bOP3AN361Ydojt1jaCd4XjJNPhD9vyM12TjJ/fv+38HlDGb9jnPezYeOGvt1yHv9zljyWw7/XMC2U6rehD/5HSVe7It67zf1I09Qfutncr/xnrxon6+vmyWbP7Xh909Xf1140z3tT43vCas3W/rF80P09w/Qv2cq2fRYajoObLPVdMPUFDE9ZliTz4S99OcL2uND8rPY29QeMUz3vMcNUWx/isGFaqYmcdjK932xtLFN9UcqVwtC8X8xtDXMf1ryNbMeRbfubplu28+33mqf/lcZJf7r4DuOsR/L/2jj9s2t3N0yrKmWu78JThom2/o5tvQ371vj+scwr6fDbv9Yw7eybzZ8f+qhpX0m66ej269bVv6uS9X8Wb7akZ3Ddu8zTnzj+0w3T5s2PzpB+1DL9psY2b2g4NQZBoEyf3FoK2xggaYHv+1pZsXdcAQAAAGCY0WcCAABAL2OABAAAAAAAAACAAXRF+7WV8DDAlT66xRYPaQcAAAAAAAAAAEOHK0gAAAAAAAAAABhAW9qX+EPTt/rouoz+yRQAAAAAAAAAAKBNuIIEAAAAAAAAAIABtP0MkmSvIOmnZ5AwQDKkwvDBWMt53rw9+MpN1tBrt7zDGvtD3eqI/Yq9vl8sWEOP/Hf7Ylp3xCRp9XVryPvXoTUWvs9epPdp+3J61/E9EjKbfMZR5n2PWkOufX+XPmsv8x/b9/2BH3/VGnvn7GfsueigNfZX9HvW2P9ljUiv/uSftwdXHAs6PCLHttZ5R+w3neXeo09f/e3Tajwwb7MveO60o9QRR+zrjtioI/ZJR2wzZpmuXH7HEbvTEXP5kiP2cswyXcvd5oj9gSPmO2KubX29IyZJX3DE7Odg6S5HzHWsubiWc+Xi2ocurm3jOg7/tiNWcsTs5zXprY6Ya/9ecMQcPuGI3e1a8LI9VDrgrDIMH7bGnG0IZ5lzsZZz1vd5R5m/6ir1Nnvo6R2/1z42PivJc5Xn9sm3TTuirs96+36Ib6IDZQLdF/ccs5PnPWaJWN43n3ih6Xn/2T/9ZXMZrzROmrnwg5Y8Gp09+N3mgKVp+9ptjZ9vYXivcV7PM39OHjv4zw1lmOuz8dL3N12G5z3bOPF28+e0tYz3HW2Y9sCvW5L7Q8t0g+t/wTz9kV8+ZVnC1Cb7N8Y57/nS1U7Pl1Yk2ftikqQL5jLM9ZmOW/t7yPy+OOvOp5k8Ltja4KayLW3gNVsejfWFYeMxJ0me95SljMb8opfRXLnbTO+3wxHKdZVtYtt2ze9bz9o2Mh13ttwaz5lh+DZLfc2XYTvOTedcSdJHG0+a7wyfN85a1SHj9DBsPC/dKsP5S1IYWs7dkZjP3VF4/6Fx2uFHv2ac9+xHLf8P/MtXX1+V9EeS7pbCZy3nE8Op+4vhx83zeub/TYY/0vg+nIv4GdR6iwG9iltsAQAAAAAAAACAocMVJAAAAAAAAAAADKAt7dNlHtJuxQBJwiYnJzUyYr69yOzsrGZnZxPOCAAAAIhnaWlJS0tLxtjmpuvWcYAdfSYAANDLaAMPFgZIEnbq1Cn5vuse8wAAAEB/cP2zOggCZTKZhDPCIKDPBAAAelm/tYG3dJ22Eh4GSLq+VvTPtS4AAAAAAAAAAABt0j9DOegJYTgXaznPO+6IXo5Vn+d9ylHml+yhx251LCdJL9tDP/VD9tj7HN9ye5ervpjr7/xSXbzL+f6zd7cj+tvWyGt3H7TG/vBi1hrzzj1qr+7vP2iP/e/2kFYdMYd7wh+xB73H4xXaki84YuZbTmwbjbncC47YYUfMxZWLK7bhiLm2i/04dL8nXMu5ttl5R8xxDnKuuysX13bZ6z3vOu85znm64Ijd4Yi5ts1tjljgiLm2W9xLmF3r8BVH7DZHLO576fp4Zf4/d9pjdzi22XfaQ87Pnqfsy+3N1ex0vdfica7HBx0L3ugq1fHevvveN37/pqQvS/peSd/uKk8KQ/vO8LzfdCzn+JwEkKgwPGqc7nnzEcq4P2IZE4Zpts97w+fIBdtni/ncGbo+2pt1wfQhYl5vq5deNEx8m2VmQxvnFVdby+AThpx/3ZLzhWcthdzbMMW7EFrmfcw41XR8eJ6tXfH81dcNSd92dflo/XjTcRf9fwGNx2PU94p5vW3zNuYX5T24zfS+MO9v23u29frMbNsuynvI88zHl7k/cNaSR7z/Ce3OI+p+MWnMz/Ns29O8LqbtH3W/en+x8Zzy2ff9VfPMP2Qp5GcaJ539G99tntf+b5lkvdI46exBS85aM0/+B1df1yX9kaQpe3WmzyDPM/flwrDxnGsT9Vhs/jxzJlK56D4GSAAAAAAAAAAAGEBXtE9bCT+k/Uof3biqfzIFAAAAAAAAAABoE64gAQAAAAAAAABgAG114QqSrT66LoMBEgAAAAAAAAAA0LQvL/2+vrz0B8bY1ubrySbTAgZIAAAAAAAAAAAYQFe0vyNXkNwxO6E7ZieMsY3gq/qdzC+3vc5OYIAEiQjDhxOucdMRe/ceywaO2CcdMd8R27BGwnDOGvO8eXuRR+3LhUHM7f2D19tj/8lxunivo8zT9lC48qA15mXty3nevO7RGQWS/ExBz+ktO6J3OJL5SWvkP+hvOZZ72REbccRudcQk6cWrr/9d0vk95t3JfnyH4f0RynmD5512RF3r8SVHzH7cS6MdqM9x/CbuoCPm2tefccRc22Wv48e1L1xucsTivi9c+zDuOrrO+XZh+H5rzPMedSzpytPVtHLth8uOmGM/3OF4L33FUeS3HDGX5/eIO05BnWgLuD4nXZ+v+rij0Fdc33RyrOCf7Pj9ytXX05L2tZCn49iOX6Zd3DLty52JlQcwKGzvG2cbv8FdlulfiFBG4z8uwvDeCMtLnvds02XY1ztKe9fmrGHa28yzftgw/UPmHDzvo5b6mj+fRtqmr9jKOGqcbj5mDhvnDco5KbO8/eq7+qiuY7GxbNu89s+HFwxlNE5zMdUZ7TPOvI3s9uq/dU+084Ztvd9hnBrl2PW8xyxlmI9d87zNnxvt85ryMJ0fXHk033e2b39DfmsvNk6TpD+0nKt+puk0Ion+no1g1TDtxyzzfsKynWvdwq9ffX0pahIl41TPM0+PIso2Ms0bBIEymeWW80By+udmYAAAAAAAAAAAAG3CFSQAAAAAAAAAAAygLe3TZR7SbtU/mQIAAAAAAAAAALQJV5AAAAAAAAAAADCAtrRfWwkPA3TiofCdwhUkAAAAAAAAAABg6HAFScImJyc1MjJijM3Ozmp2djbhjPpXGL7bEbXHPG9+j3LnHNEJd1JWTzhiR+MV+ZhjPf6lax0c/tNjjuBle+gjxx3LjTpijnUvuXK5Tm+cvnb+LkmbjuXsPvZF13vPtX4HHbHTsXLZu9zXrRH38X1TzFxc29R8PtvmWgeX046Y63iyb5f46/ByzFxcZcZ12hFzvD/35GoKuLbbrY5Y3OPCtb1d7PsiDO3nGc971FGma/3O751SW12wh74S2GMjvj32U/aQ98rj9uDR99tje3Cdn9yfvXZxl3MdomF4vTXm/UPH+/7/t+P317R9OKck3SCFX4u7fvG2d9xt7YrZy/ys7rzzJWNkc3NTp09biwSsBr3PFOXcFYb3t1yf+f17b6QywjDa/GYfNUyLdn6MkkeYb5zmfciUg32fmLedbd6nLGUb9uEnLG2JXze3kyJ93gWNbQN7bjE/R3eVbf58MJUdZV57fbZ+4tmmy7BxtRubtdf/G3bX1/xxF23e1tfDJkrZ7dhX0Y6vaPWZyz7cdH3bZbzYdH16yZbHFxon3tT6PmzH8WX1J4b6KuZZPVsZhauvl66+npL0z6MkcZdxajs+N5uxtLSkpaUlY2xzM97/pdA9DJAk7NSpU/J9xz8sAAAAgL7xTn3xi79ljARBoEwmk3A+GAT0mQAAQC9zfWGjF9vAV7Q/8VteXeEWWwAAAAAAAAAAAL2LK0gAAAAAAAAAABhAW9qX+BUkW310XUb/ZAoAAAAAAAAAANAmXEECAAAAAAAAAMAA2tJ+XU78CpL+eQYJAyQYOmE414U6j8Zczp6r583HirnKdOXpKtNtM2aZrtPT5as/1/4uSa83ndku98VbTPq6I7bXKfbAjteRXZEwfL91Kc87HqvOMHzQUaZrX4w4YhdixdzH9m86yjztiI06Yq512HDEXM7GXO56R+xlR+yyI3bTHnW69sXD1pjnPbpHuTau9XAdM671iHesudnPT+5jxrV+t8Wsz3UucXGUuek4tjdd5yfHefTX9kjnX9pDcT/TOrGc3mwPOc+HI022Ia5cfa1K2tfK+tnP9673bifaOt1oPwFoj155/yadh+nc244cPG9e9+iMAkl+pqDn9JY9lri/LXVeK8q6hGG0HDzvMcNUc9s3Wh7Rtn/8Pmj78oiag6nsdpQRha0+W7nt2N9RjtEo2yNaztHKMJdrzs2e82HDtImm65PM/4fx3hepiIj1teFcnIsw7ydsgRevvn5t++XM1yT5xjmjvYc6c86VeufzFO3HLbYAAAAAAAAAAMDQ4QoSAAAAAAAAAAAG0BXt11bCwwBX+ugWW1xBAgAAAAAAAAAAhg5XkAAAAAAAAAAAMIC2tC/xh6Zv9dF1Gf2TKQAAAAAAAAAAQJtwBQkwgMJwLtEyPW/esdyDsZaTRtxlBoGUWVZQzkm+v6PM444yHV457wh+vyP2GUfs8h6Vbux4/bZdEfe2sZ+6w/Bha8xd5mFHbNNRn+u4eDxmLp1Yv7gfd6596NpmG9aIex0ec5Tp2g/299l2uTHfF473ofS6I3bBEXPti3jLubfpo44yXQ46YvZ9IX3FEbvDEXNtF9d+uClmzLWtHet3i2OxFsT93Ir9efd8vDI9z1Xoszt+//L2y6XnJW22sH7xznmdaAcAQLNs56d2nJtMZdvKbUd91jIMfRF3O+5aLxunet5Ho+XRIlvOYXi0Q/V17tjoFFtu7r5Hc+zHzNmm8zBNj3YsStKtTeXgYs4j2v42zR9lXWzHbZQ8oh6LnvdihLnN29TzSoaplnX5RPPnwI760LON0/L3Wma2baN/c/X1zNXXT0n6MeOcSa9jL5+T0BkMkAAAAAAAAAAAMIC2H9Le/ltsfX3pk/r60ifNdW6+1vb6OoUBEgAAAAAAAAAA0LS3zr5Hb519jzF2IfiKypmfTzijeBggAQAAAAAAAABgAG1pny7zkHYrBkgSNjk5qZER873EZ2dnNTs7m3BGAAAAQDxLS0taWloyxjY3Xc/rAezoMwEAgF5GG3iwMECSsFOnTsnf8UBpAAAAoF+5/lkdBIEymUzCGWEQ0GcCAAC9rN/awFvar62EhwE68cyTTumfa10AAAAAAAAAAADahCtIgD4VhnNtL9PzjjvqezhmmfOOMu3r4FrO8+Z1j84okORnCnpOb9kRvSlGlpLuOGiPfeUzjgUvWyN77SPfyzmihx3lHrXGXNvNfcrfcNRn3/dJHzPx2feTi/sYta+7q76428y13F7bLP754qwj5jqe7Mevu8x4PO9RR/SCNeLev64yzbd92dtXYi5nXwe3047YLY6Y45Lw73LXGPecn7i/EHO5Q47YuTt3/PHa1dfbJd1pmLk5ruMw7vaMe46N95l9JlZdAPpblPOT7fxhK8M0PUoZnveUZd77bSk2zdVGb/RvLNNdbajm+JlCQz/Jvj2j5GwWZftH/ewy78PHLPO2vi6dYlvvzvR7pKjtbdPx73kvRCrDtC6dbPtF2d+dbYOattPLlnnfYZxqWhf7uapX2tMRzlUfeJt5+kcnrv7yZUnLkr6/xZyA+BggAQAAAAAAAABgAF3R/sRveXWFW2wBAAAAAAAAAAD0Lq4gAQAAAAAAAABgAF3Rvi5cQdI/12X0T6YAAAAAAAAAAABtwgAJAAAAAAAAAAAYOtxiCxgynjfviHbilBCvzDCcc88QBFJmWUE5J/l+fbLnHY9Vn74SOIIjjtiFePVJkkZ3vB6+JrbRQrlmYfhw28uULlsjnveoI5cHHTH7vo9//NrzjF+fnbtM+3Zx13eHo76fdObjfl+MOmJxnXXE4p5n4r4Pr31vvSHu/o3vJkdsM2aZzzpiE46Yfb+7zhWe584m7vtpz3N+u71uD3mea5ued8Tu3fH7/h2v8T9bXefK+GW2f1vbygyCQJnMctvrAzA4op6TTJ8lUcoIw/ubLtdehrk+Wxnm+T9gKf03m87DJijnjP2kTom6PaKUYWZuZ3reY03P247PwihlmHNLvv0T5RiNmptp/mjvCVu5RyPlEUWr55Pt+RvPKfa2pL1f0ujlSHn0AttxLt0acTo6YasLD2lPur5WcAUJAAAAAAAAAAAYOlxBAgAAAAAAAADAANrSPl1O/AqS5q/LqFQqWl1dlSTNzMwolUpJ2r4ifWFhQel0WtVqVdlsVlNTU23PlQESAAAAAAAAAACQmEqlonw+r2q1qkKhoHQ6vSuWyWRULpflX71l5NjYmDY2NjQzM9PWPLjFFgAAAAAAAAAAA2j7GSTXJfzjvmJl+3mFGY2OjqpYLO4aHJGkXC6niYmJ+uCIJOXzeeVyubZvHwZIAAAAAAAAAABAx1WrVb3rXe9SOp1WoVAwxkulkrLZ7K7p4+PjkqTl5eW25sMtthI2OTmpkZERY2x2dlazs7MJZ4RhE4ZziZbpefNtr8/tcszl/sARu2CNtLLuYXlaynxYQXla2jEivhdXuZ3ZF3E/Ksznutb00seWPZdObOsw/MmYZUru98VZR8yVz8OxMunE8ete7nis5Vzc+9d1jNrPJW6HHbGDMev7M0fsOx2x846Y5MqnE58/sX3ldUfwexyxJx2x0zt+/9rV109J+r8lHW0urwiS/ny17b+lpSUtLS0ZY5ubm51MCQOMPhNsOvVZ0o5yo5Xx0Zbr63Wm7WH77LJNj7JNw7D9n7XtknRutu3WjrZDO/aVTZQyPO+xCCW7+jvXlhtt/aJt07ss098WoYxecath2juMc4bhvcbpnlf7rfZ5f3eLOSWLNnBrarfVWlxcNMbX1tYkqeGqktrVJMVisa232eql/zQNhVOnTu26NAgAAADoV65/Vtcumweios8EAAB6Wb+1ga9o/563vGpY5tJrCi+9FrvOyxcvWWO1K0CKxaLy+bwqlYrGx8frzyGpVCqSVH9Y+7Vq8XZhgAQAAAAAAAAAAEiSNhY+po35X2t7uUEQSNq+GiSXy2lxcVGVSkXZbFZjY2M6d+6c1tfXJUmjo6PGMqrValtzYoAEAAAAAAAAAIABdEX7Il9BknpoRjc/+NOx67z0/J/ozH2Ny9eu/sjlcvVbaNWeRZLNZrWwsKCxsTFJ0sbGhrHsa2+91SoGSAAAAAAAAAAAgCTJO3CDvAM3xF5+343fbpxuu23WxMSEJNWvJpHsV4q0e4BkX1tLAwAAAAAAAAAAuMb4+Lgk1W+jda3R0dH6PNc+a6T2d7uf8cIVJAA6KgznYi3nefMxy4x7Wtt0xN4aq8S91t33cgok+ZmCntNb2lJu/O1m5yrT7ayjzEcdy12IWZ9d3HXvBPf+O96hWl3vi8uxYvGPi7js6+A+nuKug70+9z58zFGm/T3h5lruNkfMtd/Nlypv+05H7GVHTJIO7hE3i3s8xX9vX++IfdYRc52f7tzxe+24e4vc+yi+XjqvAcCgMn0+teP8ayvD855tuewobJ+/UdYxShmd3HbYW2eP3c68V+x5HG0qB1ceUdqfUcpuTz/p1jaU0Um/aZhm7rN4XslSxl1XX2v/AP+0JL+1tGB1Wfu0P+ItttpRp0kqldLExIRKpd3HRu1qkUwmo1QqJd/3VSwWdezYsfo8tWWOHDnS1ly5ggQAAAAAAAAAAHTc4uKigiDYNUiyvLws3/c1MzMjSTp58qRKpdKuq0gWFxe1uLhovU1XXFxB0oRKpdL2e5sBAAAAwCCh3wQAANB7rug6bSU8DHDFUZ/v+yqXy8rn81pZWVEqlVK1WlW5XDbOk06nValUlM/n6wMo7TRUAySrq6taWFhQEATyfV+Li4v1B8Ds5Hnerr9rO6QmCAItLCwonU6rWq0qm81qamqq4/kDAAAAQKfRbwIAAEAn1W6htdc8KysrHc9laAZITpw4oWKxqFwup/X1dZ04cULZbFbFYnFXY395eVkzMzMaGxurT9sZr1QqymQyKpfL8v3te+ONjY1pY2OjIyNYAAAAAJAU+k0AAACD5Yr2aSvhZ5Bc6aMnewzNAMnnPve5XaNS733ve5XJZBq+DbWysuIcvcrlcpqYmKg38iUpn88rl8vR0AcAAADQ1+g3AQAAYJgMxQBJqVTS4uLirmm+78v3/V0PelldXdXa2pqmp6eVzWYbGu7VatVY1vj4uKQ3vkUFoHVhOBdzyZGY9T1sjXneb8bMxS0o56TM8vbrjn8edIrnHbfGXOsff1+4cplPtD6XTuTieY+1vb7W8rycaJ2uY83Ftd1cx2hc7jzt26wzx0zcbf2Uo9Szjth5R+wdjtgtjlh8cY/D+J51xN7piH3JEbt1x+8bV19Hr5k+mOz76EyieaB19JuA3ZJul0oly/R7G6bYzr1h+T1N19aO9euVtnun8ki6vnboRs5Ryu5Ufrblo7QlO/mecPV1+k9jPyPq9g/D+7d/CQIpIwXlH25bdkBU/XOtSwsmJiasDwvcOb1YLKparWp1dVW5XE6HDh1SqfRGA2Vtba1hGUn1b0Xtdd80AAAAAOhV9JsAAAAGz9bVW2wl+9M/ww5DcQWJTaVSUS6Xq/9dKBRUKBQUBIEKhYKWl5eVzWa1vr6udDpd/9ZUKpWylreXixcv6vx517c23Q4cOKADBw7EXh4AAABoxqVLl3Tp0qUm5vyWZfpr7UwHXZR0v4k+EwAA6Jbm28BmFy9ebGM2SMLQDpCsrq4qnU4bL+32fV+FQkHZbFbT09PK5/NaWVnR+vq6JGl0dNRYZrVa3bPe++67r6W85+bm9Mgjj7RUBgAAALCXhYUFzc934hZn6Cfd6DfRZwIAAN0yiG3gK1f2a+tKwg9pT7i+VgztAMnCwoJWVlac80xNTWlqakpBEEiSxsbGJEkbGxvG+W2Xo+/0zDPP6O67746W7A58EwoAAABJeOihh/Tggw/uOd/NNy9YIv9V0sfbmRK6oBv9JvpMAACgW5ptA9s8//zzLX/ZA8nqqwGSIAiUz+ebmjedTqtQKBhj+XxeJ0+ebGpAI5vN1u+nW5vf9o2nZsq78cYbdfDgwT3nAwAAALqp+dsUfZtl+g3tTAcR9Hu/iT4TAADollZv1XnjjTe2MRskoa8GSHzfb/mBfrX749YeENiM8fHxXa/X3jO39ncmk2kpNwDN8bx53aMzCiT5mYKe01t2RN/jXM4mDOccNZ6OmuKe9UlSWG5/rq6Yq0zPO26NSZcdMRf7R4x7eycr7jZz74ejscrc65iJy72Oj3agRvsxE3ffd+YYdYnXRHLnaRf3OJQOO2Kufy7G/cfjY3vEH45Zrl1Hzhcj99pjm886FjTfLmjbzm/Kn9/xav4GfbfEPc/E+ewJgkCZzHKs+tAa+k2A5HlPNUwLw/vbUO5jukdfu9oXWdFz+szVyDssS9xlyMP8ORzlM88679UruVph+qzopfZ7q2yfhaZ1tK13lM/TpLddr+yrKNu5kzpZX7R21USEeV+OmkrCGs9rpnOubd7t+be33c7/7QSh+QsbruWvFWV/98oxmoStrX3S5WRvebW11T8Pae+fTNtgdXVVkjQxsfukFDgaEMVisf5AwlQqZexs1L4pdeTIkXamCwAAAACJo98EAACAYdFXV5C0olQqaWFhQblcTsvLb3yTrVwu17/B9MADD+i9732vjh07Jmm7YzA6Oqqpqan6/CdPnlQmk1GlUqlfGr64uKjFxUWlUqnkVggAAAAA2ox+EwAAwGDZurxfupzsMMBWwlestGIoBkiCIFA2m5Wk+readjp37pwkaXR0VAsLCyoWi/J9X9lstuF+vL7vq1wuK5/PK51Oq1KpKJ/Pa2ZmpvMrAgAAAAAdQr8JAAAAw2YoBkh831cYhnvO1+x9en3f18rKSqtpAQAAAEDPoN8EAACAYTMUAyQAAAAAAAAAAAybK1v7O/KQ9ssnH9flk48bY+G3vtX2+jqFARIAAAAAAAAAANC06x54v6574P3G2JXnP69L9/21hDOKhwESAAPmZUfsb8cqMQwftsY8b96x3Jy74CCIv2wMrjLjrod7Oft26wRXLnG51/24YznXurs+ei/HymUvLR2nMcp0rWP8/WQvszPr4GLfTy6deF9LtzpiX3DEJqwR93aJdx7tOZufcgS/5IgddMR2bu8/u/r6oqRNubZ30jpxHNqPmTNtrwsAmhWG93eo3KPb7fjMhxWUpyXflyR53rOWJV4wTLvXOGeUtkln2hXtK7tT69KO3DpZhuc91nLZg6KTx2ivGIZ1bJ7pXCdJdxmn1rddEEiZZQXlxmefufTKuaBfbG3tU5jwQ9OvbO1LtL5W9E+mAAAAAAAAAAAAbcIVJAAAAAAAAAAADKCty/t15fVkryBJ+oqVVnAFCQAAAAAAAAAAGDoMkAAAAAAAAAAAgKHDLbYAAAAAAAAAABhA4ZX9CrcSHga40j+32GKAJGGTk5MaGRkxxmZnZzU7O5twRsCg+awj5jrlvcMa8bz5WJnstdw9OqNAkp8p6Dm9ZVcsDOdi1RmXqz7XeiSdZydyibt/pcsxl7OLux+6oRPHjOc96ljuweYSi+SmWPXFzTPuPox/XLzVEXsh5nJnHbHO6MR2k+5wLPduRy6farL2N+14PdjkMqb6euf8a7O0tKQ773zCGNvc3NTp08nmg8FAnwn9KAzvNU73vMcMU83zRmH7jAjL72m57Hbohc8p6zbqYG5heLQj5XZyXUxl98L+k6Ktdzf2d5RtZz4X2I6Z5Nvc0bzcMMW+3ub94nnb/ZGd/xcJwkLbMuy0paUlLS0tGWObm5sJZ4NWMUCSsFOnTsn3/W6nAQAAALTM9c/qIAiUyWQSzgiDgD4TAADoZX3XBr68T0r6oemX++fJHv2TKQAAAAAAAAAAQJswQAIAAAAAAAAAAIYOt9gCAAAAAAAAAGAQbe1P/hZbW/3zkHauIAEAAAAAAAAAAEOHK0gA9J0wnJOCQMosKyjnpCYf4ul5j8avLwbPm3fGg3Iu8jp0Q9z174RO5OIqc699GM/lDpTp/jgPw4djlepaf9d2i7+fLjhyOe5Yzr5N3bm46ou37u48b2p7Lu4yX3bERqyRMHzQkUvJUWZndOYc9IIj9jZH7A5HLNjx+8aO129rNqkGvXT+BQDEdbbpOdty3g+CvecZErbtaWtb9fLnbpR1iboe/bjevczznrJEmj8X9L4o63LYODUMj27/svN/O+icLU+67CVfZ5/gChIAAAAAAAAAADB0uIIEAAAAAAAAAIBBtKXO3Mxirzr7BFeQAAAAAAAAAACAocMACQAAAAAAAAAAGDrcYgsAAAAAAAAAgEHELbacGCABMDTC8MGE65tzzxAEySQyQDxv3hpzbe+4y7nEXa4zOtPS6aVt6nnHYy4X95ix1+cShg93IBf7ctIFR+ywI/b9Meu7yxHrjE4ca9JIzOVKTZZ5YMdr3Lo6te4AAAwe02em7bMyymeo7bO4Vz6He2Vdomz/wdLYNg7D+41zet4LnU4mQa5+xm5heLSDeQDtwQAJAAAAAAAAAACD6LI6873KJ5e2f0wubXagws5ggAQAAAAAAAAAADTvyOz2j8mXAunvZpLNJyYGSBI2OTmpkRHzrRZmZ2c1O2s5qAAAAIAes7S0pKUl87fGNjf751tj6C30mQAAQC+jDTxYGCBJ2KlTp+T7frfTAAAAAFrm+md1EATKZPrjW2PoLfSZAABAL+u7NvBlSa93oc4+sa/bCQAAAAAAAAAAACSNK0gAAH0jDOf6YrlOlNmJXCTJ8+Zj1emKed5xx3IPN5dYm5aLz/51l05sMzdXc82eZxgetcZc+6jXdObYj3vZ+22O2JeskeSPGQBAr2jHudz0OTJInxG2z8ko6xhl3ij1dWM7t7q/27E9ozKV7Wr/tFJuO+ZtnxcM0+63zHu4k4n0LPtxMCFJukdfViDJzzyvIEz26tFuvFe65oqkrS7U2Se4ggQAAAAAAAAAAAwdriABAAAAAAAAAGAQbSn5Z4IkfcVKC7iCBAAAAAAAAAAADB0GSAAAAAAAAAAAwNDhFlsAAAAAAAAAAAyiy0r+FltJ19cCBkgAAPK8eWssDOcSzKR/xN1mndjWnnd8jznsLZPO7N/2t4TibrdOrJ97/9r3RRg+7Fgu7vFkr8/zHrXGpFsd9b3fUeZjjjL7iX39Pa/kWO6zjtjhHb8f2PE6ojB8sPnUAAC4xqC3x5Nev17fnqb8bG2wMDza1PLd0Ct5dFK0dTxrnGrqB/T+tptomGLrz9jW5Y35z1x9/Yykn2k9tQh6fzsjKQyQAAAAAAAAAAAwiHhIuxPPIAEAAAAAAAAAAEOHARIAAAAAAAAAADB0uMUWAAAAAAAAAACDiFtsOXEFCQAAAAAAAAAAGDpcQQIAAAAAAAAAwCDiChInBkgSNjk5qZGREWNsdnZWs7OzCWcEoN943rw1FoZzscqMu9wwS3qbtbLfXcu6lzvuqPPh2Pn0g/jvJft26cR7VzK3KbZdcMQ2Y9Z3MOZyveYPHLFRR8zVdL51x+///errLddMHzxLS0taWloyxjY34x5nGHb0mQAMElsbMEr7LwyPtisddM1h41TTvvW8pyzz3t/WjOIrGaaZ18++LleP/yCQMssKyrk25ZYM2sCDhQGShJ06dUq+73c7DQAAAKBlrn9WB0GgTCaTcEYYBPSZAABAL+u7NjBXkDgxQAIAAAAAAAAAAJr3qSXpd8xX0ui1/rmShgESAAAAAAAAAADQvHfPbv+YVALpgz12JY0FAyQAAAAAAAAAAAyiy5Je70KdfWJftxMAAAAAAAAAAABIGleQAECfCcO5bqdQ53nz1lgv5dkvOrU94y4bhg/HrtPGtY4urnXol+Mw6XVw13c8VpnSSMzles33O2KnY5b58o7fv7Hj9U0xywMAAHCL0raO0qa0ldtLbetm9cq6hOHRCHO/YJl+fztSaVmUdfG8xzqYCZq2peQfmt5HD2nnChIAAAAAAAAAADB0GCABAAAAAAAAAABDh1tsAQAAAAAAAAAwiLaU/EPTucUWAAAAAAAAAABA7+IKEgAAAAAAAAAABhFXkDgxQAIAiC0M57qdQt8Zhm3mefPWWCfWP26ZcfPsxPrFX+5Ba8yVp3Q4Vn3SC3vE749ZbtJe7HYCAABgSLSj/Wtr13Wqb9HJPks71sVUhm35pPtf7dlXcdvqvScMjxqn17bTPTqjQJKfKSgICwlmBryBARIAAAAAAAAAAAYRV5A48QwSAAAAAAAAAAAwdLiCJGGTk5MaGRkxxmZnZzU7O5twRgAAAEA8S0tLWlpaMsY2NzcTzgaDgj4TAADoZbSBBwsDJAk7deqUfN/vdhoAAABAy1z/rA6CQJlMJuGMMAjoMwEAgF7Wd23gy0r+FltJ19cCbrEFAAAAAAAAAAASVyqVdOjQoYbpQRBoenpa+XxeuVxOq6urHamfK0gAAICR581bY2E4FyvWiVxcOpFnJ9avM1zNvLMdKLOf3OqIvRCrxDA8+sYfQSBlPqygPC3xLXgAANCi/ml/7q0d69KOMkz9i/Zs57vaUEbctnoy4vbN0EU9/pD2XC7XMK1SqSiTyahcLtevLB4bG9PGxoZmZmbalaUkriABAAAAAAAAAAAJy+fzSqfTDdNzuZwmJiZ23Xa1diVJuzFAAgAAAAAAAAAAElMqlXTLLbc0PHuuWq2qVCopm83umj4+Pi5JWl5ebmseDJAAAAAAAAAAADCIarfYSvKniVtsFQoFHTt2rGH62tqaJDVcWVIbSCkWi02tdrMG5UbSAAAAAAAAAACgVZcvbf/EdemiM5zP57W4uGiMVSoVSVIqlXLG22XoB0gqlYrxPmcAAAAAgG30mwAAAPrUZUmvR1ymuCA9Pd+JbBQEgW655RZr23J9fV2SNDo6aoxXq9W25jN0AySe5+362/d9lcvl+t9BEGhhYUHpdFrValXZbFZTU1O7lmlmHgDAYPM8e0MhDOcSzGRvcXPtpfVw5eJ5x2OV6doucXOJK+4+ir/co80lNrBOWyNxt/fObXqP/kyBJD/zG3pOf6AwfDBOkkBX0W8CgOFgat/0Uj+gWbZ2mm1dOrWOYXi/cXq0/O5qY0adMNEwJQzvNc6553oHgZRZVlBu/4O3221Q3itN+2sPSX+lhX7Mmeel5fuMoYWFBa2srFgXHRsbkyRtbGwY4+3+0s5QDZAsLy9rZmamvpElaWLijTd1pVJRJpNRuVyu39NsbGxMGxsbmpmZaXoeAAAAAOhX9JsAAAAGyJaaeibILt4B6foD8eu87kbj5Hw+r2w2u+s2WbXfa6+1ARDblSIMkLRgZWXF+RCXXC6niYmJegNe2t5puVyu3ohvZh4AAAAA6Ff0mwAAANAJpVJJJ06cMMbGxsbk+76efvppSY3PGqn9nclk2prTvraW1sNWV1e1tram6elpLS8vN8Sr1apKpZKy2eyu6ePj45K2v0XVzDwAAAAA0K/oNwEAAKBTyuWywjDc9XPs2DGlUimFYahyuaxUKiXf9xu+sFMqlSRJR44caWtOQzNAUiwWVa1Wtbq6qlwup0OHDtU3qiStra1JarxEp/aNp2Kx2NQ8AAAAANCv6DcBAAAMmC1tP6g9yZ+ot/S6xsmTJ1UqlXZdRbK4uKjFxUWlUqnWCr/G0Nxiq1AoqFAoKAgCFQoFLS8vK5vNan19Xel0ur6xbRu4Uqk0Nc9eLl68qPPnz8daB0k6cOCADhxo4f5vAAAAQBMuXbqkS5cuxV7+4sWLbcwGSemFfhN9JgAA0C32NvC3GqaY2iu0gdvD932V///t3U9sHNmZGPCvjcXYcsY2R2sssAkyh+Yht8Cu1p58GARgZw8L5LAiZy4BfHITBm9zUEMYIBoBMRjy4JwIp6kYmMNexqSS3PbQBAIvsMAiK5ZnFwEMLMAGnD/eRbArdeyJNZIlVw4atkWpu9VqVlVXd/1+QIFi1euqr+tVtb7H16/e6Wl0u91RDtrtdgt5VGttOkjOJUkSvV4v2u12bG1tRbfbjaOjozg7O4uIiKtXr4593XA4nKnMq7zzzjvzBf65W7duxYcffnipfQBweVl2a9EhzGyZYp2k0bg9cdu8769K56WIWBqN70053gdz7nV8DkRExC+f+/f/e+7nL8eUXQ67u7tx+/bke4/Vtsh2kzYTUHWTctMq5ZezWsaYx53/qryPPK6NLPvjvMIpyF+PWfet0qMoyuvkwF/72r8rOJqcnI8gKfuYMzofGfKiJEni6Ogox6DGq10HybnNzc3Y3NyMNE0j4tkkMBER9+/fH1u+2WzOVOZVfvzjH8c3vvGNOSJ+xjehAAAow82bN+P9999/ZbmvfW13wpa/i4iP8gyJBVhEu0mbCQBYlFlz4Ek++eSTS3/Zg3ItVQdJmqbR7XZnKttsNqPX600t0263R8/TPU/SJ32bqdlszlTmVd5888346le/+spyAACwSLM/puhLE9a/kWc4vIZlbzdpMwEAi3LZR3W++eabOUZDGZaqg2Tc7PWXde3atQs/X3we7vnvrVZrpjIAAACLpN0EAMBIxR+xtWhfWHQAi9Tv92N7ezsink0gOK4hcf5NqXfffXemMgAAAKtEuwkAgFVViw6SNE2j1WrF/v7+aN3x8XFcvXo1Njc3R+vu3LkTJycnF77pdD5JzNra2sxlAAAAlo12EwDACnoSEb8ueSl7xMolLNUjtubVbDbj6tWrsbu7G/1+P5IkiXa7/dKzdpMkidPT0+h2u9FsNmMwGES3241Op/NaZQCgShqN2xO3ZdmtEiOZ37LEWbZp56XR+EEBR3xYwD6Xye/NWO6zz39efY3XLK9J1+GzP7YflhwNl6HdBDAbueli5XH+x7WR8tjvpH00Gv9pQvk/HlN2fPutOtfdP5+5ZHVihslq0UGytrY28zN4kySJo6OjS5cBAABYJtpNAADUTS06SAAAAAAAoHaeRvmTppukHQAAAAAAoLqMIAEAAAAAgFX0NMqfNN0IEgAAAAAAgOoyggQAAAAAAFaRESRT6SABgBWXZbdy32ejcbvU481r3jiX5f1Nk2Xfnbit0fj+lNe9P2Wvv7xERFUy3/uYfk6fv2buP/fzS3MdCwCA4pSd02fZH79G2aq3N07GrPvW2JKNxp+PXZ9l48vDIuggAQAAAAAAZvffD54t4zx5WG4sl6CDBAAAAAAAVtGTiPh1Afv9ZzvPlnH+Po34L60CDpo/HSQlu379ely5cmXstp2dndjZmXBRAQBAxRwcHMTBwfhvjT18uDzfGqNatJkAgCqTA68WHSQlu3v3biRJsugwAADg0qb9sTpN02i1luNbY1SLNhMAUGVLlwM/jfInTV+iSdq/sOgAAAAAAAAAymYECQDw2rLs1qJDmMm8cS7L+2s0bk/ZKs2b7J9M3NJo/GDK6/7PlG1fee7f/+i5n18ZUxYAYLxx+d2y5Ka8Kj9/2bi6nbSPZbwOsuxbiw4BXknLGQAAAAAAVtHTeDZRe9nHXBIesQUAAAAAANSOESQAAAAAALCKjCCZyggSAAAAAACgdowgAQAAAACAVfQkIn69gGMuCR0kAEAlNBq3J27LslslRrI8pp2XaedTCvi/p2ybfG6mn+/vXyIeAIBn5L3LLY/6q/418HuLDgBy5RFbAAAAAABA7dT964MAAAAAALCafhPlT5r+m5KPdwlGkAAAAAAAALVjBAkAAAAAAKyiJ1H+pOlLNEm7ESQAAAAAAEDtGEFSsuvXr8eVK1fGbtvZ2YmdnZ2SIwKAasiyW4sOYek0Grcnbpt2Pqe9bprVqaOvTNn2y4lbZj7faRrR+veRnv7riCSZI77lcXBwEAcHB2O3PXz4sORoWBXaTACsmkbjB2PXZ9l3x5Qdn3NWORdvNP58wpaTsWur/F5mIQdeLTpISnb37t1IVryhDABAPUz7Y3WaptFqtUqOiFWgzQQAVNnS5cBPo/xHXpU9KfwleMQWAAAAAABQO0aQAAAAAADAKnoSEb8uYL//8yDif41/1Fg8XZ5HjekgAQAAAAAAZvdPd54t4/wijfhvFXvU2AQ6SAAAAAAAYBX9JsqfE+Q3JR/vEnSQAACUoNG4PXFblt2ac69SuflMG+49+Zxm2QcTtzUa3xv9+5vx80gjImn9MH4Sfzr1dWUr5joEAMjfpLxlXM7yOmUX4//MXLI6MU/y8nvJsm+NLdlonExY/4OIiPhm/I/P8+ajSLMktwjhdZikHQAAAAAAqB1fOwQAAAAAgFX0NJ5N1F72MZeEESQAAAAAAEDtGEECAAAAAACr6EmUP4Kk7ONdghEkAAAAAABA7RhBAgCQk0bj9sRtWXYr9+Nl2QelxtJofG/ueFbBtHN60ZPnflbrq1NFXIcAAEV4nbyl6jlO1eN7HXnUy2/z6vsv/ITy6SABAAAAAIBV9CQifr2AYy4Jj9gCAAAAAABqxwgSAAAAAABYRb+JiKcLOOaS0EFSsuvXr8eVK1fGbtvZ2YmdnZ2SIwIAgPkcHBzEwcHB2G0PHz4sORpWhTYTAFBlcuDVooOkZHfv3o0kSRYdBgAAXNq0P1anaRqtVqvkiFgF2kwAQJUtXQ78NMqfE6TsESuXYA4SAAAAAACgdowgAQBYUo3G7YnbsuxWAUcs+2tHxciyD+Z6XaPx/SlbfzlfMAAAsKIajR8sOgR4JR0kAAAAAACwip5E+d91W6Lv1nnEFgAAAAAAUDtGkAAAAAAAwCp6EhG/XsAxl4QRJAAAAAAAQO0YQQIAAAAAAMxueBDxfw/Gb8selhvLJeggAQBqqdG4PXFblt2aa5/zvm5e045XxPtbldSx0fj+xG1Z9v5c+7xwTtM0onUY6el2RJLMtT8AAJbPpBy87HZCVWTZd6cXeD5vpji/iYinBez3KzvPlnEepRE/bxVw0Px5xBYAAAAAAFA7q/E1QAAAAAAA4KKnUf6k6UWMWCmIESQAAAAAAEDtGEECAAAAAACryAiSqYwgAQAAAAAAascIkpJdv349rly5Mnbbzs5O7OzslBwRANRTlt1adAiFmvb+Go3vT3nd+0WEUzG/nPN1DyduaTS+N/r3N+PnkUZE0vph/CT+NLLsgzmPV30HBwdxcHAwdtvDh5PPF0yjzQTAMmg0br+0blIOPq7stPKr7vx8/DZv7kWa9RYb1GuQA68WHSQlu3v3biRJsugwAADg0qb9sTpN02i1WiVHxCrQZgIAqmzpcuCyH6+1qGPOySO2AAAAAACA2jGCBAAAAAAAVtHTiGgs4JhLwggSAAAAAACgdnSQAAAAAAAAteMRWwAAK6jR+N6UrfPNmJdlH8wXTOXMlwJPe/+Nxu3nfnvy3M/p5/ri61483q3Zg8tBlWIBAKi618mP6ppLNRo/GLt+dD7SNKJ1GOnpdolR1dAiHnflEVsAAAAAAAAXHR8fR6vVikajEa1WK05OTl4qk6ZpbG1tRbfbje3t7Tg+Pi4kFiNIZjAYDKLZbC46DAAAgMrSbgIAqKCnEZGVfMzfTN60v78f/X4/tre34+zsLPb396Pdbke/34+NjY2IeJZXtlqtOD09jSRJIiJifX097t+/H51OJ9dQazOCpN1uR6PRGLu82EP14vatra0L28vqvQIAACiTdhMAAEX6y7/8y+j3+9HpdGJvby9OT08jImJvb29UZnt7OzY2NkadIxExyinzVosRJIPBIAaDQezt7cXa2tpo/XkP1XnPVETE4eFhdDqdWF9fH617fnuZvVcAAABl0W4CAFhBTyKiUfIxJ4xYOTk5udAREhGRJEkkSRKDwSAiIobD4dhy165di4jf5qF5qUUHycnJSZyenl5I8iPipSQ/IuLo6Cj6/f7EfU3rvZLoAwAAy0q7CQCAIr2YUz7v/FGt9+7du/D7ufO88nz0SV5q0UEy6YR9/PHHF4blHB8fx71792Jrayva7fZLryu79woAYJpG4/bEbVl2a67XMdnM5ztNI1qHkZ5uRzz3x+FXvm7B5o1l8nn5+fzBsBDaTQDAq4zL/SblkVn23aLDYUUMBoNRvnk+kuTFL+08XzZPtZmD5EXD4TDSNI133313tK7f78dwOIzj4+PY3t6Ot95668JzdmfpvQIAAFgV2k0AAEvu6RzLk0cRT34x//L005nDOz4+jmazOfoCzdnZWUREXL16dWz54XA4z1mYqBYjSMb50Y9+FEmSXOiJ6vV60ev1Ik3T6PV6cXh4GO12O87OzqLZbObSe/Xpp5/GL37xi7nj/uIXvxhf/OIX5349AADM4tGjR/Ho0aMZSn42Yf3jPMNhQRbRbtJmAgAWZfYceLxPP529Y6DadiOinCcP7O7uxtHR0ej38znu7t+/P7b8i1/CuazadpAcHR3Fe++9N3ZbkiTR6/Wi3W7H1tZWdLvdODo6yqX36p133pk75oiIW7duxYcffnipfQAAwKvs7u7G7dsex1Z3i2g3aTMBAIuysjnwhEnTJ7sZEe9f4oCfRMSrc7putxt37ty50Olx/u9JOaMOkhycPxO31+tNLbe5uRmbm5uRpmlE5NN79eMf/zi+8Y1vvF7Az/FNKAAAynDz5s14//1XN4q+9rXdCVv+LiI+yjMkSraodpM2EwCwKLPmwJN88sknl/6yRzV88fNlXm++ssT5KOTkhXkbz+ete3HU8fnvrVbrEnG9bKk6SNI0jW63O1PZZrM5MZE/OTmJZrM5U4dGu90ePU83j96rN998M7761a++shwAACzS7I8p+tKE9W/kGQ6vYdnbTdpMAMCiXPZRnW+++eqOAZ7NOxIRsbGxcWF9mqaRJEkkSRL9fj9u3Lgx2naeaz4/N14elqqD5PzEXNbHH38cm5ubM5c/77Uqu/cKAGCaLLtV6utWRZZ9MHFbozF5OP208/b8674ZP480IpJWL34S/3jlz/ek95emabRahyVHQ4R2EwBQnKJy20l5+Krn0nV0cnISu7u7sb29HYeHv20vnJ6eRqvViiRJ4s6dO9FqtWIwGIy+XLO3txd7e3sT57mb11J1kOTl+Pg4Tk9PZyrb7/dje3s7Ip5NMlhm7xUAAMCiaDcBAJCnNE2j3W5HRIxyx+c9ePAgIp594ef09DS63W40m80YDAbR7Xaj0+nkHlPtOkiOj49HCfvz0jSN73znO/Hee++Nkvjj4+O4evXqhW9Nldl7BQAAsAjaTQAA5C1Jksiy2WaMT5Ikjo6OCo6ohh0kH3/88dhvLDWbzbh69Wrs7u5Gv9+PJEmi3W6/9DzeMnuvAAAAFkG7CQCAOqhdB8mkXqe1tbWZn9NbVu8VAADAImg3AQBQB19YdAAAAAAAAABl00ECAAAAAADUTu0esQUAAJNk2a3Lvy5NI1qHkZ5uR7wwwTUAACyzRuP2zGVfJ7eeNw9nFk8i4tcLOOZyMIIEAAAAAACoHSNIAAAAAABgJT2J8kd0GEECAAAAAABQWTpIAAAAAACA2vGILQAAAAAAWEkmaZ9GB0nJrl+/HleuXBm7bWdnJ3Z2dkqOCACguhqN2xO3ZdmtOff5vSn7/ODS+/xm/DzSiEhaP4yfxJ/Ovc9lcHBwEAcHB2O3PXz4sORoWBXaTACwXObNy5eVHHi16CAp2d27dyNJkkWHAQAAlzbtj9Vpmkar1So5IlaBNhMAUGXLlwM/jfJHdDwt+XjzMwcJAAAAAABQO0aQAAAAAAAAr+E/RsQPJ2z7rMxALkUHCQAAAAAArKSiJmn/9ufLOH8dEf+ygGPmzyO2AAAAAACA2jGCBACAysqyWwXs84OJ2xqN2zkc4clzP8ueDBEAAIpTRH5O0YoaQfKqYy4HI0gAAAAAAIDaMYIEAAAAAABW0tMof0TH05KPNz8jSAAAAAAAgNrRQQIAAAAAANSOR2wBAAAAAMBKMkn7NDpIAABgBll2a7aCaRrROoz0dDsiSYoNCgAAlkyjcTsiIr4ZP480IpJWL9Kst9igqC0dJAAAAAAAsJJM0j6NOUgAAAAAAIDaMYKkZNevX48rV66M3bazsxM7OzslRwQAAPM5ODiIg4ODsdsePnxYcjSsCm0mAKDK5MCrRQdJye7evRuJZ1EDALACpv2xOk3TaLVaJUfEKtBmAgCqbPlyYJO0T+MRWwAAAAAAQO0YQQIAAJ/LsluLDgEAAJZKo3F77PpJufVofZpGtA4jPd0uKjQi4tlojrJHdBhBAgAAAAAAUFlGkAAAAAAAwEoyB8k0RpAAAAAAAAC1o4MEAAAAAACoHY/YAgAAAACAlfQ0yn/k1dOSjzc/HSQAAAAAAMwly24tOgQW4m5E/OcJ2x6VGcil6CABAAAAAICVVNQk7f/q82Wcv4mI7QKOmT9zkAAAAAAAALWjgwQAAAAAAKgdj9gCAAAAAICVZJL2aYwgAQAAAAAAascIEgAAAAAAWElFTdL+qmMuBx0kJbt+/XpcuXJl7LadnZ3Y2dkpOSIAAIhoNG5P3JZlt8auPzg4iIODg7HbHj58mEtc1I82EwBQZXLg1aKDpGR3796NJEkWHQYAAFzatD9Wp2karVar5IhYBdpMAECVLV8ObA6SacxBAgAAAAAA1I4OEgAAAAAAoHY8YgsAAAAAAFaSSdqnMYIEAAAAAACoHSNIAACAyLJbiw4BAADInREk0xhBAgAAAAAA1I4OEgAAAAAAoHY8YgsAAAAAAFbSkyj/kVcesQUAAAAAAFBZRpAAAAAAAMBKMkn7NEaQAAAAAAAAtaODhLEePXoUH374YTx69GjRofAa1Ntyevz4sXpbQu635aTelpN6W06PHz++8BOWjc+eYjm/xdLGKJbrt1jOb7Gc32JVMwd+Gr+dh6Ss5Wkp7ywPOkgY69GjR3H79m0flktGvS2nx48fq7cl5H5bTuptOam35VTNxiHMzmdPsZzfYmljFMv1Wyznt1jOb7HqlQP/14j4NxOW/7DAuF6POUhKdv369bhy5crYbTs7O7Gzs1NyRAAAMJ+Dg4M4ODgYu+1Xv/pVydGwKrSZAIAqkwOf+xefL+P8LCL+bYmxzE8HScnu3r0bSZIsOgwAALi0aX+s/rM/+7N45513So6IVaDNBABU2fLlwCZpn8YjtgAAAAAAgNoxggQAAAAAAFbS+STtZR9zORhBAgAAAAAA1I4OEgAAAAAAoHY8YgsAAAAAAFaSSdqnMYJkBRwcHCw6hNdSVLz2W6xlOw/Ltt+iLNt5WLb9FmXZzsOy7bcoy3Yelm2/RRFvsfuFRanSNZ1XLHnsp0qx5KVK76lKseSlau+pSvWUhyqdl7z24/wWu59VPL95WbXzS3l0kKyAZbt5l61hv2z7LcqynYdl229Rlu08LNt+i7Js52HZ9luUZTsPy7bfooi32P3ColTpml7FP6w5v8XtI8/95KFq76lK9ZSHKp2XvPbj/Ba7n1U8v3lZtfObr/NJ2stclmeS9pV6xNZwOIzd3d2IiNjb23tpe5qmsbu7G81mM4bDYbTb7djc3CykDAAAQBVpNwEAwDMr00FycnISvV4vjo+Po9PpvLR9MBhEq9WK09PTSJIkIiLW19fj/v37o/J5lQEAAKgi7SYAgLoxB8k0K/OIrY2NjTg6Opq4fXt7OzY2NkbJeUREt9uN7e3t3MsAAABUkXYTAAD81sp0kEwzHA7j5OQk2u32hfXXrl2LiIjDw8PcygAAACwj7SYAAOqmFh0k9+7di4iIZrN5Yf35t5n6/X5uZQAAAJaRdhMAwCoqe4L282U5rMwcJNMMBoOIiFhbW5u4Pa8ykzx8+DAink1U+Omnn84Q9XhvvPFGvPHGGy/tO03Tufc5znmMn3zySbz55pu57ruIeO33mVrV209/evFnXvt9hVz3+3nsv/qbv4mImtTbCu23VvfbCu1XvS3nfpeu3l7xf9RllFlvjx8/jsePH8+9z7/6q7+KiIjPPvvsUrFRnkW3m/JsM+Vxr+T12ZPXfZvHfqoUy1Kf3wmf85U4vzm3MSrxnnLeT+2v34L34/wWu5+VO7855s15nd+/+Iu/WMEc+O9rcsw5ZSsmIrJOp3Nh3Y0bN7KIyE5PT8eWbzabuZWZ5E/+5E+yiLBYLBaLxWKxWGq1fPTRR3Nk9RQtonrtJm0mi8VisVgsq7JUIQf+2c9+ln35y19e2Dn48pe/nP3sZz9b9Gl4pVqMIFlfX4+IiPv374/d3mw2cyszyR/+4R/GRx99FL//+78fX/rSl2aO/UXjRpAAAEDeLjuC5LPPPou//du/jT/6oz/KMSqKtOh2kzYTALBoq5QDv/322/HTn/40/v7vFzOa4+tf/3q8/fbbCzn266hMB0maptHtdmcq22w2o9frzbzv8wR8OBxO3J5XmUm+/vWvx7e//e3ZAgYAABhjldtN2kwAAPl6++23l6KTYpEq00GSJElhk/Vdu3YtIl5+1u35761WK7cyAAAARdFuAgCA/Hxh0QGUYW1tbWxD4uTkJCIi3n333dzKQBkmTWwJFMd9B4vh3oPyaDdRBJ/jrALXMavAdQzjVWYESR4mDeGOiLhz5060Wq0YDAajId17e3uxt7cXa2truZZZZmmaxu7ubjSbzRgOh9Fut2Nzc3PRYdVeo9G48HuSJHF6ejr6fZZ6U7fFGA6Hsbu7GxHPPgtelFfdqL98vareItx3VXZ8fBy7u7uRpmkkSRJ7e3uxsbFxoYx7r3pmqbcI917VPF9v549rcr8tP+2m6VyLl+Nz/PK0MYqlLVA8+Xqx5NXFkv/W0KJnic/L6elp1ul0sojI1tbWsqOjo+zBgwcvldnc3Mxu3LiRbW5uZr1eb+x+8iizjM7OzrKIyE5PT0frms3myry/ZdXr9bJOp5Pt7e2NlufraJZ6U7fF6Pf72ebmZhYRWafTeWl7XnWj/vL1qnrLMvddle3t7WUbGxtZr9fLbty4kUVEFhFZv98flXHvVc8s9ZZl7r2qOa+Pfr+f9fv9LEmSLCKys7OzURn32/LRbprOtXg5PscvTxujWNoCxZOvF0teXSz5bz2tTAcJl7exsZFtbGxcWNfr9bIV6kdbSi/Wybjtr6o3dVusScl1XnWj/ooxrVHkvquuzc3NC7+fnp5mEXHhXLv3qmeWessy917V7O3tXfj9vN6Ojo5G69xvrBrX4uX4HM+PNkaxtAWKI18vlry6WPLfeqrFHCS82nA4jJOTk2i32xfWn0+weHh4uIiwau/4+Dju3bsXW1tbY+tglnpTt4uRV92ov/K576rr5OTkpccgJEkSSZKMnqfr3queWeotwr1XRTdu3Ljw+/ljkZIkiQj3G6vHtXg5PseL53O3eK7jy5GvF0teXTz5bz3pICEiIu7duxcRMXo+8LnzD4AXJ1ikHP1+P4bDYRwfH8f29na89dZbo8ktI2arN3W7GHnVjforn/uuujY2Nl46p+fO17v3qmeWeotw7y2D4+Pj2Nvbc7+xslyLl+NzvHg+d4vnOr4c+Xqx5NXlk//Wgw4SIiJGPc2TJkx8viea8vR6vciyLE5PT6PT6YwmbDqvj1nqTd0uRl51o/7K575bPoPBILa2tkb/jnDvLYPn6y3CvVd13W53NIHkOfcbq8a1eDk+x4vnc7d4ruNiyNeLJa8uhvy3PnSQEBERZ2dnERFx9erVsduHw2GJ0fCiJEmi1+vF0dFRRDz7kI6Yrd7U7WLkVTfqb3Hcd8vh+Pg4ms1mdDqdiHDvLYsX6+157r3q2d/fj8FgEMPh8MKjGtxvrBrXYj58jhfH5255XMf5ka8XS15dDPlvveggISIi1tfXIyLi/v37Y7dPGsJHuTY3N2NzczPSNI2I2epN3S5GXnWj/hbPfVdtu7u7o4Q/wr23LF6st3Hce9Vx48aNODo6in6/H2tra6NnX7vfWDWuxXz5HM+fz93yuY4vT75eLHl1MeS/9aKDhIj47Y03qYfSjVkd7XZ79AE6S72p28XIq27UXzW476qp2+3GnTt3LpxP9171jau3Sdx71bKxsRGdTmc05N/9xqpxLebP53i+fO4uhut4fvL1Ysmriyf/rQcdJERExLVr1yLi5Wfcnf/earVKj4nJzutrlnpTt4uRV92ov+pw31XL4eFhtNvt0SR259x71Tap3qZx71XLH/zBH4wabO43Vo1rsRg+x/Pjc3dxXMevT75eLHl1eeS/q08HCRHxbFKgJEmi3+9fWH9ychIREe++++4iwmKMfr8f29vbETFbvanbxcirbtRfNbjvquX4+Dginn2b53lpmrr3KmxavU3i3quewWAwqkP3G6vGtZg/n+P58rm7GK7j1ydfL5a8ulzy3xrI4HOnp6dZRGRnZ2ejdc1mM9vb21tgVPV1enqaJUly4fwfHR1lnU7npXKvqjd1W5wHDx5kEfFSvWRZfnWj/vI3qd7cd9XX7/ezJEmyXq93Yel0Olmv18uyzL1XRa+qN/de9Tx48CDb3NzMjo6ORuvOzs6yjY2NC+Xcb6wa1+J8fI7nSxujWNoCxZKvF0teXRz5b301sizLiu2CYZmkaRq7u7vRbDZjMBhEu92OTqez6LBqaTgcxtbWVty7dy+uXbsWSZJEu91+6RsCEbPVm7rNX5qm0ev14vDwMNbW1uLOnTuxsbERa2trF8rkUTfqLz/T6s19V21pmk4davzgwYPR/efeq45Z6i0i3HsV1G63R3XSbrej2WzG5ubmS+Xcb6wa1+Lrk0PlRxujWNoCxZKvF0teXTz5bz3pIAEAAAAAAGrHHCQAAAAAAEDt6CABAAAAAABqRwcJAAAAAABQOzpIAAAAAACA2tFBAgAAAAAA1I4OEgAAAAAAoHZ0kAAAAAAAALWjgwQAAAAAAKgdHSQAAAAAAEDt/M6iAwAAAF5tMBjE+vp6NJvN2NzcjIiImzdvxtra2sLj6vV6MRwO40c/+lEMh8N48ODBwuMCAGC5yX8pgw4SAABYIt1uNzqdzqLDGGk2m7G3txcREWtra7G/v7/giAAAWCXyX4rkEVsAAEAufvd3f3fRIQAAQGnkv8tPBwkAAAAAAFA7OkgAAKBE6+vr0W63Y2trK7a3t2NraysajUY0Go1I0/S19zccDuPw8DDa7XYcHh7GYDCIdrsdb731VrTb7RgOhxERsb+/H+vr6/HWW29Ft9vN7fUAADCN/JcqMwcJAACUaGNjI3q93uj3/f39OD4+jk6nE0mSvPb+7t+/H6enp3FychIREWdnZ7G3txf3798fNUSbzWZsbW1Fv9+Pbrcb+/v78d5770WSJJd+PQAATCP/pcp0kAAAQIm2trZG/x4Oh9HtdmNtbW000ePrajabsb29HYeHhxcmjIyISJIkTk5O4uzsLJrNZkRE3Lx5M46Pj+Pk5CSSJLn06wEAYBr5L1XmEVsAAFCijY2N0b+/853vRETE3t5erK2tXXrfL+7jvFF39erVl9adnZ3l/noAAHiR/Jcq00ECAAALcHJyEsfHx5EkSXQ6nUWHAwAAhZL/UkU6SAAAYAG2t7cjIuLo6GjBkQAAQPHkv1SRDhIAAChZt9uNwWAQN27cGA3ZBwCAVSX/pap0kAAAQIkGg0Hs7++PnZhyf39/QVEBAEAx5L9UmQ4SAAAo0aRHC6RpGv/wD/8w1z7v378/dv1wOHxp+/m/x62b9/UAADCJ/Jcq00ECAAAlOTk5iZOTk4h41kDc3t6O7e3taLfb0Wq1Yn19/bX3mabp6Jt4h4eHcXx8PPr3+bG63W6kaRqDwSC63e4olsPDw0u/HgAAJpH/UnWNLMuyRQcBAABMNxgMYn19PXq9XnQ6nUWHM9b+/n50u9148OBBrK2tLTocAACWmPyXMhhBAgAAS+R82H8VzfuIBAAAmET+S5F+Z9EBAAAAs9vd3R01xG7evLnwb6oNBoPo9XoRER45AABA7uS/FMkjtgAAAAAAgNrxiC0AAAAAAKB2dJAAAAAAAAC1o4MEAAAAAACoHR0kAAAAAABA7eggAQAAAAAAakcHCQAAAAAAUDs6SAAAAAAAgNrRQQIAAAAAANSODhIAAAAAAKB2dJAAAAAAAAC18/8BYluXnNPZgLUAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2000x800 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"vmax = 150\n",
|
|
"nbins = 100\n",
|
|
"\n",
|
|
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n",
|
|
"\n",
|
|
"a0 = ax0.hist2d(\n",
|
|
" brem_z_found,\n",
|
|
" brem_x_found,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax,\n",
|
|
" range=[[-200, 3000], [-1000, 1000]],\n",
|
|
")\n",
|
|
"ax0.vlines([770, 990, 2700], -1000, 1000,colors=\"red\")\n",
|
|
"ax0.set_ylim(-1000, 1000)\n",
|
|
"ax0.set_xlim(-200, 3000)\n",
|
|
"ax0.set_xlabel(\"z [mm]\")\n",
|
|
"ax0.set_ylabel(\"x [mm]\")\n",
|
|
"ax0.set_title(r\"$e^\\pm$ found brem vertices\")\n",
|
|
"\n",
|
|
"a1 = ax1.hist2d(\n",
|
|
" brem_z_lost,\n",
|
|
" brem_x_lost,\n",
|
|
" density=False,\n",
|
|
" bins=nbins,\n",
|
|
" cmap=plt.cm.jet,\n",
|
|
" cmin=1,\n",
|
|
" vmax=vmax * stretch_factor,\n",
|
|
" range=[[-200, 3000], [-1000, 1000]],\n",
|
|
")\n",
|
|
"ax1.vlines([770, 990, 2700], -1000, 1000, colors=\"red\")\n",
|
|
"ax1.set_ylim(-1000, 1000)\n",
|
|
"ax1.set_xlim(-200, 3000)\n",
|
|
"ax1.set_xlabel(\"z [mm]\")\n",
|
|
"ax1.set_ylabel(\"x [mm]\")\n",
|
|
"ax1.set_title(r\"$e^\\pm$ lost brem vertices\")\n",
|
|
"# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n",
|
|
"\n",
|
|
"plt.colorbar(a0[3], ax=ax1)\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 78,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"energy_emissions = ak.ArrayBuilder()\n",
|
|
"\n",
|
|
"for jelec in range(ak.num(ntuple, axis=0)):\n",
|
|
" energy_emissions.begin_record()\n",
|
|
" energy_emissions.field(\"lost\").boolean(ntuple[jelec, \"lost\"])\n",
|
|
" energy_emissions.field(\"energy\").real(ntuple[jelec, \"energy\"])\n",
|
|
"\n",
|
|
" tmp_velo = 0\n",
|
|
" tmp_richut = 0\n",
|
|
" tmp_neither = 0\n",
|
|
" tmp_velo_length = 0\n",
|
|
" tmp_richut_length = 0\n",
|
|
" tmp_neither_length = 0\n",
|
|
" \n",
|
|
" for jphoton in range(ak.num(ntuple[jelec][\"brem_photons_pe\"], axis=0)):\n",
|
|
" if ntuple[jelec, \"brem_vtx_z\", jphoton] <= 770:\n",
|
|
" tmp_velo += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_velo_length += 1\n",
|
|
" elif (ntuple[jelec, \"brem_vtx_z\", jphoton] > 770) and (\n",
|
|
" ntuple[jelec, \"brem_vtx_z\", jphoton] <= 2700\n",
|
|
" ):\n",
|
|
" tmp_richut += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_richut_length += 1\n",
|
|
" else:\n",
|
|
" tmp_neither += ntuple[jelec, \"brem_photons_pe\", jphoton]\n",
|
|
" tmp_neither_length += 1\n",
|
|
"\n",
|
|
" energy_emissions.field(\"velo_length\").integer(tmp_velo_length)\n",
|
|
" energy_emissions.field(\"velo\").real(tmp_velo)\n",
|
|
"\n",
|
|
" energy_emissions.field(\"rich_length\").integer(tmp_richut_length)\n",
|
|
" energy_emissions.field(\"rich\").real(tmp_richut)\n",
|
|
" \n",
|
|
" energy_emissions.field(\"neither_length\").integer(tmp_neither_length)\n",
|
|
" energy_emissions.field(\"downstream\").real(tmp_neither)\n",
|
|
" \n",
|
|
" energy_emissions.field(\"photon_length\").integer(tmp_neither_length+tmp_richut_length+tmp_velo_length)\n",
|
|
" \n",
|
|
" if (tmp_velo==0) and (tmp_richut==0):\n",
|
|
" energy_emissions.field(\"quality\").integer(0)\n",
|
|
" else:\n",
|
|
" energy_emissions.field(\"quality\").integer(1)\n",
|
|
"\n",
|
|
" energy_emissions.end_record()\n",
|
|
"\n",
|
|
"energy_emissions = ak.Array(energy_emissions)\n",
|
|
"\n",
|
|
"print(ak.num(energy_emissions,axis=0))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 79,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<pre>{lost: False,\n",
|
|
" energy: 5.09e+04,\n",
|
|
" velo_length: 0,\n",
|
|
" velo: 0,\n",
|
|
" rich_length: 0,\n",
|
|
" rich: 0,\n",
|
|
" neither_length: 0,\n",
|
|
" downstream: 0,\n",
|
|
" photon_length: 0,\n",
|
|
" quality: 0}\n",
|
|
"--------------------------\n",
|
|
"type: {\n",
|
|
" lost: bool,\n",
|
|
" energy: float64,\n",
|
|
" velo_length: int64,\n",
|
|
" velo: float64,\n",
|
|
" rich_length: int64,\n",
|
|
" rich: float64,\n",
|
|
" neither_length: int64,\n",
|
|
" downstream: float64,\n",
|
|
" photon_length: int64,\n",
|
|
" quality: int64\n",
|
|
"}</pre>"
|
|
],
|
|
"text/plain": [
|
|
"<Record {lost: False, energy: 5.09e+04, ...} type='{lost: bool, energy: flo...'>"
|
|
]
|
|
},
|
|
"execution_count": 79,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"energy_emissions[3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 80,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found: 40402\n",
|
|
"lost: 10099\n",
|
|
"50501\n",
|
|
"VELO energy emission, eff: 0.2624700500980179\n",
|
|
"RICH1+UT energy emission, eff: 0.17696679273677748\n",
|
|
"Neither, eff: 0.3605869190709095\n",
|
|
"total efficiency: 0.8000237619057049\n",
|
|
"efficiency: 0.8000237619057048\n",
|
|
"\n",
|
|
"found in velo/(found + lost in velo)\n",
|
|
"VELO energy emission, eff: 0.807739183424741\n",
|
|
"RICH1+UT energy emission, eff: 0.7549417131272175\n",
|
|
"eff von e die nicht strahlen: 0.8183166314654204\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# efficiency berechnen als found in velo oder rich über alle elektronen\n",
|
|
"# dann kann man zusammenrechnen mit velo, rich, und allen anderen elektronen\n",
|
|
"# expected eff = 81.19%\n",
|
|
"\n",
|
|
"electrons_found = energy_emissions[~energy_emissions.lost]\n",
|
|
"electrons_lost = energy_emissions[energy_emissions.lost]\n",
|
|
"\n",
|
|
"anz_found = ak.num(electrons[~electrons.lost],axis=0)\n",
|
|
"anz_lost = ak.num(electrons[electrons.lost],axis=0)\n",
|
|
"print(\"found: \",anz_found)\n",
|
|
"print(\"lost: \", anz_lost)\n",
|
|
"\n",
|
|
"num_velo_found = 0\n",
|
|
"num_rich_found = 0\n",
|
|
"num_no_up_rad_found = 0\n",
|
|
"for itr in range(ak.num(electrons_found, axis=0)):\n",
|
|
" if (electrons_found[itr, \"quality\"]==1):\n",
|
|
" if (electrons_found[itr, \"velo\"] >= electrons_found[itr, \"rich\"]):\n",
|
|
" num_velo_found += 1\n",
|
|
" else:\n",
|
|
" num_rich_found += 1\n",
|
|
" else:\n",
|
|
" num_no_up_rad_found += 1\n",
|
|
"\n",
|
|
"num_velo_lost = 0\n",
|
|
"num_rich_lost = 0\n",
|
|
"num_no_up_rad_lost = 0\n",
|
|
"for itr in range(ak.num(electrons_lost, axis=0)):\n",
|
|
" if (electrons_lost[itr, \"quality\"]==1):\n",
|
|
" if (electrons_lost[itr, \"velo\"] >= electrons_lost[itr, \"rich\"]):\n",
|
|
" num_velo_lost += 1\n",
|
|
" else:\n",
|
|
" num_rich_lost += 1\n",
|
|
" else:\n",
|
|
" num_no_up_rad_lost += 1\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"denom = ak.num(electrons,axis=0)\n",
|
|
"print(denom)\n",
|
|
"\n",
|
|
"\n",
|
|
"eff_velo = num_velo_found/denom\n",
|
|
"\n",
|
|
"eff_rich = num_rich_found/denom\n",
|
|
"\n",
|
|
"eff_other = ak.num(electrons_found[electrons_found.quality==0],axis=0)/denom\n",
|
|
"\n",
|
|
"print(\"VELO energy emission, eff: \", eff_velo)\n",
|
|
"\n",
|
|
"print(\"RICH1+UT energy emission, eff: \", eff_rich)\n",
|
|
"\n",
|
|
"print(\"Neither, eff: \", eff_other)\n",
|
|
"\n",
|
|
"print(\"total efficiency: \", eff_velo + eff_rich + eff_other)\n",
|
|
"\n",
|
|
"print(\"efficiency: \", anz_found/(anz_found+anz_lost))\n",
|
|
"\n",
|
|
"print(\"\\nfound in velo/(found + lost in velo)\")\n",
|
|
"\n",
|
|
"eff_velo = num_velo_found/(num_velo_found+num_velo_lost)\n",
|
|
"eff_rich = num_rich_found/(num_rich_found+num_rich_lost)\n",
|
|
"\n",
|
|
"eff_no_rad = num_no_up_rad_found/(num_no_up_rad_found+num_no_up_rad_lost)\n",
|
|
"\n",
|
|
"print(\"VELO energy emission, eff: \", eff_velo)\n",
|
|
"\n",
|
|
"print(\"RICH1+UT energy emission, eff: \", eff_rich)\n",
|
|
"\n",
|
|
"print(\"eff von e die nicht strahlen: \", eff_no_rad )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 81,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"40402\n",
|
|
"10099\n",
|
|
"50501\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(ak.num(electrons[~electrons.lost],axis=0))\n",
|
|
"print(ak.num(electrons[electrons.lost],axis=0))\n",
|
|
"print(ak.num(electrons,axis=0))\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 82,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHJCAYAAADjF8/HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/JUlEQVR4nO3dX2greX73+Y+TSXucHLp1fAZCX4SlSxCWsDCHkueBNGy64ag2F3OxBEunb5JMoDkSw4GwNInFCYR270WETK4CgpHMQG9y1ZZM2Ithl0gdfPLAwD5tVU5uHsLD4zo8eKGfixm55nA27tPpGe2Fu2osqySXS6VSufR+gel21e9X9ftV2db3/P6ujUajkQAAAHCr/cqyCwAAAID5EdQBAABkAEEdAABABhDUAQAAZABBHQAAQAYQ1AEAAGQAQR0AAEAGENQBAABkAEEdsMJs21a73V52MW4NnheWwXVdtdttOY6z7KIg5QjqgCVxHEd3795dSpDgOI7K5bIKhYJarVbi979tpj2v696hbduq1Woql8vK5/Pa29sLdQ7hec+xUCioUCgsuzhTRf19b7fbeuutt1StVuW67mIKh8z4xrILAKwq13Xluq5OTk4mzjmOo83NTeVyuVDHb8owDHU6Ha2trc11nVUx7XnNeoe2bevBgwc6OzuTJNVqNT/drHO4GdM0JUl7e3v+/6fRrJ+VWSqVik5OTgj6EQpBHbAkpmlq2tbL5XJZnU5nInibdhzLMesd1ut1bW5u+t83Go1Q53BzaQ7mPLN+Vq5z7969mEuDrKL7FUiZcrks27ZDH0c6zXpXvEcAi0BQB0xh27bK5bIsy1I+n1etVvPPeQOXLcvyBzBblqW7d+/Ksix/7Mve3p7y+bzu3r07ll+Sut2uyuWyyuXy2DHvA79arfqB3LTjYcp6uczVatX/ukl3TphnUSgU1O121e/3VSgUtLa2Nla3sGXtdruyLEv9fl/tdlt3795VtVqduI5Xj3w+P/E8+v2+7t69q7W1NVmWNXau3W5rbW3t2vqHeV5B77DdbqtcLstxHH8sXrlc9usz7VwczybO93T1GViWNfEsw5Q5iG3b/vspFApjEwBqtdrE+4lyj6t1qNVqfh285x23We8n6GflahlnPWdJGg6H/juc9d6wwkYAJgwGg1GxWPS/73Q6I0mjSqUyGo1Go5OTk1GlUhlJGhWLxdHOzs5oMBiMer2ef6xSqYx6vd7o5ORkVCqVRpJGg8HAz99oNPy0l+3s7IwkjU5OTkIdv66s3v1yudyo1+v5x7z7m6Y597Pw6nf5WXjPp9FohL5Wp9MZGYbhH9vZ2RmZpjlRRtM0Rzs7O/79JY0kjQzD8K/l1e/y/b3019U5zPOa9Q5Ho9HIMIyRYRiB1w86N++zifM9eekNwxj7ecvlcqNcLhe6zLN4aUul0sR9L18z7D2CfpYHg8Eol8v5v3ej0WjUarUC6zuvWe9n1s9KmOd8OW+j0Zj53rDaCOqAAKZpjn0QjEYXf2gljc7Ozkaj0cUHRtCHi2maE8GXl/bqH+A4growZS2VSoGBR5igLsz1vQ/a6+oX5lreB5gXtF3l3evydbwPuKvPxgv0Lms0GqNWqzWzzjd5XnEFdfM+mzjfk3e9q+m8+3vXC3PPWbwg6Oo9Op3Ojerl1SEo+A96N0G/o3G47mc36nP2vr/6czvtZw+ri4kSwBWO48i2bdXr9cDzx8fHKhaL/vdXJy0YhiHbtscGwhuGIUmxz3AMU1bDMNTtdiMNxp/3WUgXXUY3uZZ3je985zuB6T777LOJY+VyWe12W7Zt+89aupg52G631e/3/XJ+8skn+vTTTwOv7ZUz6vOKat5nE+d7uny9/f39sTQ7Ozva2dmJdM8gXrdot9tVqVSSdPF+BoPB3Pfw8nrlvXrfarWqVqsV63u+7md3WhlnPefLtra2Ju7H2nW4jKAOuMIby9LpdJZckuuFKas3fuhysBPn9Rd1rWkzfL0PzH6/PzHr8er3tVpN7XZbjUZDxWJRruteuySM9yEZ5XlFNe+ziftn1rverOcUxz0rlYpqtZparZZKpZJs2x4LXOa5x6zJKN49rguIgsbeXReoSrOf22VhnjNwE0yUAK7w/tDfhn8Bhymrd+5yS0yc10/6WqVSScViUfV6Xf1+X67rqtFoaGdnZyIQMwxDxWJR/X5fjuP4ExXClDPK84pq3mcT98/sTX6u5rlnLpdTqVTy388nn3wyNvEjjnsELdjrBVGXW9Ovsm3bn7TgfcU9MeE2/a3B7UBQB1zhBQbdbjfw/KJmzkURpqxeGq9LK+7rL+NanU5HxWLR37ar0WhM7UbzZkq2Wi31ej1VKpVQ5YzyvKKa99nE/TPrtXhOayFzHCe2ez558kTSxfuxbXustXWee3jXCUrjBXr5fH5m/tHFuHP/y1ssOi5hnjNwEwR1wBVe90qtVpvowklyS69pWwJdPh6mrF5XU7vdDrzmrK2H4nwWcV7LW4TZG3s0a/HZYrEowzC0t7cXqptrnud12XA4nNrad/XcvM8m7p/Zy8/galBUq9W0ubkZ2z1N0/Tfz9WWsHnuYRiGTNP0l4+57Pj4WLlc7toAf9HCPGdJ+ulPfyop2dZj3E4EdcAVuVzOH6RcKBRULpe1t7cny7J0cnLif9BM+wPrfehfPu/9/+VjQemkX7YetFotf9D+tONhyno1jdfV5bVgOY4zdc22eZ9FlGt5z2Va8OR9AHr52+322Dp+Qby6vvfeezcu56znNe0d3tS8zybO9+Rdz2v59Lodvf1V8/m8crlc6HuG4XW5Pnz4MFK9pvF2X7ncpet11+/v78c+lm3Wz27Qz0qY53zd/Qj0MGa5k2+B9Go0Gv6SC4ZhjC0n4K2dJWmUy+X8JRi8NbD09fpbg8FgbH2wXC43arVao8Fg4B/T10tMXF6ewTTNUS6XC1wuJej4rLJ6Wq2Wn8ZbO8swjNHOzs61Sztc9yy8JSIMwxj1er3R2dmZv8yIriyhMetal9f6mlYPr9zetS9/GYYRuJTG2dnZxNIZ17nueU17h5fXENPXS954693NOhfHs4nzPXn39PKYpjlW1jD3DMsrxzTX1etqHS7/DJydnflL1FQqlVGlUplYIiUOs97Pdb/vs55zp9Pxl3Dxlne5+t6mLaGC1bM2GkXcjA4AlsC2bX3yySd68uSJhsPhWGtFp9NRPp+fWA6i3++r0+mo1Woto8gAkAiWNAFwaziOo0KhoLOzM78L8DLDMAIHxrdaLX9APgBkVeqCOm+hScMw5LquLMvyF6WcN19caaSLsQzegphhFq/0xgDFPXsKWCXegPdHjx7pyZMn/gQJx3HU7/d1cnLi/z56M3+9gfKzJlMAQCYsu//3Mm8Px8vjHcKM0QiTL640o9Fo1Ov1/PERYfY49K5zeS8/ANE0Gg1/jJH3dXUckrcHr/cV93ZQAJBGqRpTZ1mWJKnX6/nH2u22qtWqZhUzTL640ly2tramSqVy7Tgdbzr+8fExLXVATLyxdNN2fqjVanIcZ6xFDwCyLDVLmriuq36/7wdWnsvr+ETNF1eaKPr9vu7du8eHChCzXC43cyuvRqOhTqfD7x6AlZGaoO74+FjS5H6L3h/ky61nN80XV5ooWq1W4MbMAAAAcUrNRAlvAPS0xRanbZcSJl9caW6qVquFmkTh+clPfqIf/ehHevPNN/XNb37zxvfzvPbaa3rttdci5wcAYJV8+eWX+vLLLyPn/+KLL/T555/ru9/9rr71rW/FWLKbSU1Qd3JyImn6BsvTVpcPky+uNDdh27bu3bs3s3voqh/96Ef6kz/5kxvdBwAApMPHH3+s733ve0u7f2qCOm8LpGlbnkwLjsLkiyvNTdTr9ambNE/z5ptvSpL+5m/+Rt/+9rdD5/ujP/oj/d3f/Z3//XUtddvb2zo8PAx9/Zumv2mely9f6p133tHTp091586dhZWLei8m/U3zUG/qvYhyUe/FpL9pntta76CWuqufrbP8y7/8i/70T//U/xxfloUFdd///ve1tbWl999/P1R6L2ia1iI2LagKky+uNGHVajVZljXWZev9v/ffoOt5Xa7f/va39Xu/93uh7/cbv/EbN0q/sbFxo8HjN01/0zwvXryQJN2/f1+vv/76wspFvReT/qZ5qDf1XkS5qPdi0t80T5bqfdPPVklzDZ2Kw0KCuufPn6vVaung4CB0UOfNMr06ds37vlAoRM4XV5qw+v3+1A3S8/m8TNPUYDAIfT0AAIDrLGT261tvveUHdWHlcjmZpjkxy9Tb8ufhw4eR88WVJqzBYKDRaDT2tbOzo1wup9FoREAHAABit7AlTR49eqQHDx7cKM/+/r76/f5Ya1mj0VCj0fBnpTqOo3w+P7a/Y5h8caXx3HTiBAAAwCItbEzd7//+76vRaOj+/fuh83jdkrVazd+zsVarqVKp+Gm8VeQvB1Vh8sWVRrqY2ertInFwcCDLslQsFqcuhwIAALBokYO69957b+o5b3eGg4ODGwV10kVgNWvWqGmagVttXZcv7jStVuva7cEu81r8AAAAFiFyUBdmuY5Op6O/+qu/inoLhPT48eNUpY+aZ9H3oN6LSR81z6LvQb0Xkz5qnkXfg3ovJn3UPIu+R1bqHbe1UdBO9SE8fPhQjUYjcLHek5MTtdtt/eAHP5i7gKvkn/7pn/z1fW46jfo2e/Hihd544w397Gc/u9EU+NuOelPvVUC9qfcqSMvnd+SJEtVqVW+99ZbeeOONiS/TNFUoFPQXf/EXcZYVAAAAU0QO6q6b2WoYxo3GnAEAACC6yGPqnj17NvWcN2sUAAAAyYgc1JmmqbW1tannR6PR1F0VMNsf//Ef69d//dcDzz1+/PhWDt4EAOA2azabajabgef+7d/+LeHSBIsc1OVyOX8nhqvu3bsn0zRvvPgwLvzt3/7tSk2UAAAg7WY1qngTJZYtclC3v7+v7e3tOMsCAACAiCJPlCCgAwAASI+FbRP2/e9/X1tbW3r//fcXdYvMee2118b+uyrW19f14Ycfan19fdlFSRT1zlC9f7w7eezt8WOZrHcI1Jt6r4K0fH5HXnx4lufPnyufz+vu3bv66U9/GvflM8u2bRUKBQ0GA5mmueziAAgrRFAHILvS8vm9kJa6t956S61WS4ZhLOLyAAAAuGJh3a8PHz7UG2+8sajLAwAA4JLIEyWu8+mnn+rJkyeLujwAAAAumaul7h//8R/V6/Xkuu7Y8eFwKNu2NRwOVa/X57kFAAAAQphrnbpqtTozTaVSiXp5AAAA3EDk7tdWq6Ver6ezszP9wz/8gxqNhn7xi1/oF7/4hYbDoSqVin7wgx/EWVYAAABMETmoKxaLevDggd544w0Vi0UdHx/753K5nAqFAmPqAAAAEhK5+/VnP/vZ2PcPHz7UX//1X+vP/uzP/GPdbpcxdRFsb29rY2Mj8NysvecAAMBiNJtNNZvNwHPn5+cJlyZY5KDOMAz96q/+qu7evavj42Ntb29ra2tLvV5PuVxO3W5XuVwuxqKujsPDQxYfBgAgRWY1qniLDy9b5KDuz//8z/WTn/xE//zP/6zNzU1J0sHBgSzL0vPnzyVJjUYjnlICAABgprmWNLkatBmGoZOTEz1//lybm5ssPgwAyI6g7eDSiC3qVtbCtgkDAAC3k23b+uSTT9Tv9yVJg8FgySVCGAvbUQIAANxOpmnqvffek23bC72P4zgTGxggOoI6AAAwIYkJe+VyWcPhcOH3WRUEdQAAIHHlcnnhLYGrZiFj6gAAQHa5rqtaraZcLucHZrVaTcViMTCN67rq9/uq1WqqVCrqdrt+vmq1qlwupydPnrCc15wI6gAAQGi2bevBgwf69NNP/SCs3W7Lsiw1Gg3t7OxIkh49eiTDMPyVMtrttj9+rlQq6bPPPtPe3p5arZYMw1hKXbKG7lcAABDao0ePtLW1NdaqVqlUZJqmarWaHMeRJH/m7OU0WCyCOgAAEIrjOLJtO7CbtFqtSpJarZaki7Vr9/b2tLe356fxWvGwGAR1AAAglFkTG7a2tiTJb6nrdDrK5XKq1WrK5/NMikgAY+pSaHt7WxsbG4HnZu09BwBAEoLWlvP2e/e2DjUMQ8+fP1e5XFa/31ehUFCr1bq13bDNZlPNZjPw3Pn5ecKlCUZQl0KHh4fMAAIApI732XR1vJz0y0Avn89LumixMwxDvV5P3W5X5XJZ1Wr11gZ1sxpVbNtWoVBIuEST6H4FAAChGIYh0zTlOI7fzeo5Pj5WLpfzg7bL+8OXSiV/rN3VfOwoER+COgAAEJo3Vs6bGCFdBGaNRkP7+/t+N+zBwcFYAOe6rgzD8Jcv8Vr0Wq2WHMdRt9tNrhIZRfcrAABhvL277BIkxrZtv2XNtm3t7e2pUqkol8v5Y+UePXoky7L8IK3T6YwNHdra2pJlWSqVSpIuWugGg4F/vlKpqNVq6eDgQNIvZ80iOoI6AAAwxjRNtVqtqYFWLpdTp9OZeY1er3ftfS4HeZgf3a8AAAAZQFAHAACQAanrfrVtW/V6XYZhyHXdsf74efPFlUa6GPBZr9cljc/wuazb7aper/urbzcajbHNjgEAAOKSqqDOcRwVCgUNBgN/sGU+n9dwOJy5rk2YfHGlkS7W52m1Wup2u1PLtbe3p16vp2q1qpOTE+3t7cmyLPV6PQI7AAAQu1R1v1arVRWLxbHZM7VabWzadNR8caWRpGKxeO0A0c8++0y9Xk+VSkWNRsMfDDqtVQ8AAGAeqQnqXNdVv9+XZVljx7295NrtduR8caUJq9/vTwRvpmn6CzYCAADELTVB3fHxsST56914vFazaVOjw+SLK01YxWJx4jqeaccBAADmkZoxdV4LlrcS9bTzUfLFlWZejuNc25UsSS9fvtSLFy8i32d9fV3r6+uR8wMAsEpevXqlV69eRc7/8uXLGEsTXWqCupOTE0nS5uZm4Plpe8OFyRdXmnl0u10ZhhFqI+N33nlnrnt9+OGH2t3dnesaABLy493JYyu0cwGQBvV6XR999NGyizG31AR13h5ww+Ew8Py0bssw+eJKM496vX7t5ArP06dPdf/+/cj3opUOAIDwnjx5og8++CBy/mfPns3dIBOH1AR1XtA0rUXsujFqs/LFlSaqWq2m/f390Ne4c+eOXn/99cj3AwAA4c07bOnOnTsxlia61EyU8GaZXh275n1fKBQi54srTRTtdluWZY0tkwIAABC31AR1uVxOpmlOzDLt9/uSpIcPH0bOF1eam+p2u5I0sdiwbds3vhYAAMAsqel+laT9/X0VCgU5juN3VTYaDTUaDX9WquM4sixLrVbLD5bC5Isrjee6iRP9fl/1el3VanVsjbvBYKBCoUDLHQDcMrdl/tltKSfil6qgzjRNDQYD1Wo1GYYhx3FUq9XGZoy6rqvhcDgWVIXJF1ca6aKlrdVqSZIODg5kWZaKxaIf+Nm27S9iHLSEydnZ2dzPCgAAXLBtW8fHx6FWmMiytdFoNFp2IXDBtu2JvWcB3ALzLEvCkia3xm1pAYu7nLZt65NPPpHjOLJtW9VqVTs7O/HeJCKv8aXb7foNM8uQls/vVLXUAQCA9LBtWw8ePPB7mGq1mr+uaxoYhqFOp6O1tbVlFyUVCOoAAECger0+tij/1X3NkS6pmf0KAADShdUabheCOgAAMKbdbqtcLvt7o5fLZZXLZX+ZL+li4mK1WlWtVpNlWbIsa+x8t9vV3bt3tba25geH/X5f5XJZa2trKpfL/nXa7bYKhYK63a76/b4KhcJYmsu8+3pfe3t7C34atwdBHQAAGFOpVNTpdPwdlzqdjjqdjr+UmG3beuutt1StVtVoNNTr9VQul2VZlh9klUqliTVei8XiRBfucDhUr9fzV5bo9Xra399XpVJRt9sdC9ocx9Fbb72lcrmsVqvlr0SBCwR1KbS9va3f+Z3fCfxqNpvLLh4AYMU9evRIW1tbYzM9K5WKTNNUrVbzd2O6usarpLExetLFZIf33ntPkmRZlhqNhkzT9AO2y5sC1Go1bW1tjS3qn9RM3GazOfWzeXt7O5EyXIeJEil0eHjIkiYAgFTyljYJCqa8LtFWqxVpUkVQEDgcDv37drvdpU3WePz4sR4/fhx4zlvSZNloqQMAAKHNmjwxbR/1OHjX9HZ8wiSCOgAAcGNB22V6LW1Xu1jj4AV1XssdJhHUAQCA0LzhQZdnunq8QC+fz8d+X6+Fblm7RtwGBHUAACDQcDicaBkzDEOmafrLnVx2fHysXC7n78F67949SePdsd7/B7X0zeJ17bbb7cC8N71eFhHUAQCAG+l0OsrlcqpWq/4x13XVaDS0v7/vd8N6rXq1Wk39fl/tdtuf1drv92VZlqRwXaq5XM6fnFEoFNTv9/29X6WLYHHV16xj9isAACHs7i67BMnx1ozzWr+q1arK5bK/lIhhGHr+/LkePXoky7L8rtFOpzO2eoO3Ll29Xle5XFalUlGr1VK/31epVNJ7773n30u62IbMMAxtbW35wZpt29rb29POzo4ajYby+bwajYYsy5Jpmup0Oup2uyqVSiqVSgk+pfRZG41Go2UXAhe8KdGDwYAlTYDb5Me7k8feDjgWd14AqZCWz2+6XwEAADKAoA4AACADCOoAAAAygKAOAAAgA5j9mkLb29va2NgIPDdr7zkAALAYzWZTzWYz8Nz5+XnCpQlGUJdCh4eHzH4FACBFZjWqeLNfl43uVwAAgAwgqAMAAMgAgjoAAIAMIKgDAADIAII6AACADCCoAwAAyACCOgAAgAwgqAMAAMgAgjoAAIAMIKgDAADIAII6AACADGDv1xTa3t7WxsZG4LlZe88BAIDFaDabajabgefOz88TLk0wgroUOjw8lGmayy4GAAD42qxGFdu2VSgUEi7RJLpfAQAAMoCgDgAAIAPofgWAm/jx7rJLAACBaKkDAADIAII6AACADCCoAwAAyIDUjamzbVv1el2GYch1XVmWpVKpFEu+uNJIkuu6qtfrkqRGoxFrXQAAAG4qVUGd4zgqFAoaDAb+Om35fF7D4VCVSmWufHGlkaR+v69Wq6Vutzu1XFHrAgAAEEWqul+r1aqKxeLYwru1Wk3VanXufHGlkaRisahOp7OQugAAAESRmqDOdV31+31ZljV2fGtrS5LUbrcj54srzaLrAgAAEFVqul+Pj48lSYZhjB33Wrp6vV5gt2WYfN65edOE7TaNWhfPy5cv9eLFi1D3CrK+vq719fXI+QEAWCWvXr3Sq1evIud/+fJljKWJLjVBneM4kqRcLjfzfJR8caUJa95rvfPOO6HvFeTDDz/U7u7uXNcAAGBV1Ot1ffTRR8suxtxSE9SdnJxIkjY3NwPPu64bOV9cacKa91pPnz7V/fv3Q9/vKlrpAAAI78mTJ/rggw8i53/27NncDTJxSE1Ql8/nJUnD4TDw/NWuzJvkiytNWPNe686dO3r99ddD3w8AAEQ377ClO3fuxFia6FIzUcILdKa1Yk0LhMLkiytNWHFeCwAAIIzUBHXezNCr48287wuFQuR8caVZdF0AAACiSk1Ql8vlZJqmer3e2PF+vy9JevjwYeR8caVZdF0AAACiSk1QJ0n7+/vq9/tjLVyNRkONRsOfSeo4jvL5vB8ghc0XVxrPdZMdbnItAACAeaVmooR0sY7bYDBQrVaTYRhyHEe1Wm1sTTfXdTUcDseCqjD54kojXezp2mq1JEkHBweyLEvFYnEsWAt7LQAAgDisjUaj0bILgQu2bU/sFwsgZX68Gy7d2yHTBV0vbF4AqZCWz+9Udb8CAAAgGoI6AACADCCoAwAAyACCOgAAgAwgqAMAAMiAVC1pggvb29va2NgIPPf48WM9fvw44RIBSBQzYoHUaTabajabgefOz88TLk0wgroUOjw8ZEkTAABSZFajirekybLR/QoAAJABBHUAAAAZQFAHAACQAYypA4Bpwm4JBgApQEsdAABABhDUAQAAZABBHQAAQAYQ1AEAAGQAQR0AAEAGENQBAABkAEEdAABABrBOXQptb29rY2Mj8NysvecAAMBiNJtNNZvNwHPn5+cJlyYYQV0KHR4eyjTNZRcDAAB8bVajim3bKhQKCZdoEt2vAAAAGUBQBwAAkAEEdQAAABlAUAcAAJABBHUAAAAZQFAHAACQAQR1AAAAGUBQBwAAkAEEdQAAABnAjhIAsAg/3p089nbAMQCICS11AAAAGUBLXQptb29rY2Mj8NysvecAAMBiNJtNNZvNwHPn5+cJlyYYQV0KHR4eyjTNZRcDAAB8bVajim3bKhQKCZdoEkEdANwGjNEDcA3G1AEAAGQAQR0AAEAGENQBAABkAEEdAABABqRuooRt26rX6zIMQ67ryrIslUqlWPIlmUaSut2uer2ecrmcHMeRYRhqNBoRngoAAMBsqQrqHMdRoVDQYDDwl/TI5/MaDoeqVCpz5UsyjXQR0NXrdQ0GA/+YZVmq1WoEdgAAIHap6n6tVqsqFotja7TVajVVq9W58yWZRpJarZa2trbGjlmWpW63O7MuAAAAUaQmqHNdV/1+X5ZljR33AqN2ux05X5JpPMPhUP1+fyzdycmJDMOY8gQAAACiS01Qd3x8LEkTQY/XItbr9SLnSzKNp1qtynEclctlSRfj8A4ODuh6BQAAC5GaMXWO40iScrnczPNR8iWZxlOpVDQYDNRut5XP52UYhp4/fz4172UvX77Uixcvrk03zfr6utbX1yPnBwBglbx69UqvXr2KnP/ly5cxlia61AR1JycnkqTNzc3A867rRs6XZJrLWq2Wjo+PZdu2HMdRv98PNZP3nXfeuTbNLB9++KF2d3fnugYAAKuiXq/ro48+WnYx5paaoC6fz0u6GIsWZNpYtDD5kkxzmWVZqlarMgxD5XJZ5XJZnU7n2sDu6dOnun///sw0s9BKBwBAeE+ePNEHH3wQOf+zZ8/mbpCJQ2qCOi8gmtYiNy2oC5MvyTQebzast8zJ8+fP9dZbb+nRo0fXBnV37tzR66+/PjMNAACIx7zDlu7cuRNjaaJLzUQJbwbp1bFz3veFQiFyviTTeA4ODsaWPcnlcmo0GnJdV7ZtB9YFAAAgqtQEdblcTqZpTsxy9ZYFefjwYeR8SabxbG5uTrToFYtFv8wAAABxSk1QJ0n7+/vq9/tjLWGNRkONRsMPhBzHUT6fH1sDLky+JNNIF92vBwcHY4Fdt9uVaZqsVQcAAGKXmjF10sV6b4PBQLVaTYZhyHEc1Wq1se23XNfVcDgcC5bC5EsyjSTt7Owol8upXC773bCu6+rTTz+N+7EBAABobTQajZZdCFywbXtiX1kAS/Tj3Xiv93bA9ea5R9D1ACQuLZ/fqep+BQAAQDQEdQAAABlAUAcAAJABBHUAAAAZQFAHAACQAala0gQXtre3tbGxEXju8ePHevz4ccIlArBsuz98d/LY28mXA1hVzWZTzWYz8Nz5+XnCpQlGUJdCh4eHLGkCAECKzGpU8ZY0WTa6XwEAADKAoA4AACADCOoAAAAygDF1AHBbBW0xxtZhwMoiqAOAlAma6Ro67264YwCyh+5XAACADCCoAwAAyAC6XwHglgrspv2txIsBICVoqQMAAMgAgjoAAIAMIKgDAADIAMbUAUBSgtaVA4CYENSl0Pb2tjY2NgLPzdpQGAAALEaz2VSz2Qw8d35+nnBpghHUpdDh4aFM01x2MQAAwNdmNarYtq1CoZBwiSYxpg4AACADCOoAAAAygKAOAAAgAwjqAAAAMoCgDgAAIAMI6gAAADKAJU0AQGJhYAC3Hi11AAAAGUBQBwAAkAEEdQAAABlAUAcAAJABTJRIoe3tbW1sbASem7X3HIDbZ/eH7y67CABCaDabajabgefOz88TLk0wgroUOjw8lGmayy4GAAD42qxGFdu2VSgUEi7RJLpfAQAAMoCgDgAAIAPofgWAGwgaA7f7/lHSxQCACbTUAQAAZABBHQAAQAakrvvVtm3V63UZhiHXdWVZlkqlUiz5kkxzleM46na7kqRKpaJcLhfiaQAAAISTqqDOcRwVCgUNBgN/SY98Pq/hcKhKpTJXviTTXC1brVaT67pqtVoyDCOORwUAADAmVd2v1WpVxWJxbI22Wq2marU6d74k03i8dWs2NzfV6/UI6ACkxu7u5BeA2y01QZ3ruur3+7Isa+z41taWJKndbkfOl2Say+V68OCBDMNQq9W6/gEAAADMITXdr8fHx5I00ZrltYj1er3A7s0w+bxzSaTxyuh1uTYajRm1BoDFoxUOWA2pCeocx5GkqRMIvPNR8iWZxuO12vV6PdVqNTmOo62trVDj6l6+fKkXL17MTDPL+vq61tfXI+cHcIF9WYHV8OrVK7169Spy/pcvX8ZYmuhSE9SdnJxIkjY3NwPPu64bOV+SaaSLsXTSRQtetVpVo9GQ4ziyLEv5fF5nZ2czZ7++8847U8+F8eGHH2qXf5oDABBKvV7XRx99tOxizC01QV0+n5ckDYfDwPPTWrfC5EsyjfTLFrtqtTrWZdtqtWRZlur1+sxu2adPn+r+/ftTz1+HVjoAAMJ78uSJPvjgg8j5nz17NneDTBxSE9R5wc+0FrlpQV2YfEmmkaZ3zxaLRUnTu5I9d+7c0euvvz4zDQAAiMe8w5bu3LkTY2miS83sV28G6dWAx/u+UChEzpdkmstl8rprr5rWfQsAABBVaoK6XC4n0zTV6/XGjvf7fUnSw4cPI+dLMo1XpmKx6B/3eC180wJUAACAqFIT1EnS/v6++v3+WEtYo9FQo9HwuzQdx1E+nx8LmMLkSzKNd8y27bFyttttmaY5c3cMAACAKFIzpk66mC06GAxUq9VkGIa/xdblIMh1XQ2Hw7FxbWHyJZnmarpOp6NcLifXdTUYDBbw5AAAwKpLVVAnXQRDnU5n5vmzs7Mb50s6jZfualctAADAIqSq+xUAAADRENQBAABkAEEdAABABhDUAQAAZABBHQAAQAakbvYrpO3tbW1sbASee/z4sR4/fpxwiQAAWG3NZlPNZjPw3Pn5ecKlCUZQl0KHh4cyTXPZxQAQ0u4P35089v5R0sUAsECzGlVs207FblEEdQCy7ce7k8feDjgGALccY+oAAAAygKAOAAAgAwjqAAAAMoAxdQCg4MkOAHCbENQBWD1Bkyf0bsKFAIB40f0KAACQAbTUAQAkSbu74Y4BSCda6gAAADKAoA4AACAD6H4FkGls4QVgVRDUpdD29rY2NjYCz83aew4AdHo0eey33k24EED2NJtNNZvNwHPn5+cJlyYYQV0KHR4eyjTNZRcDQJadHk0eCwj+mDwBXJjVqGLbtgqFQsIlmsSYOgAAgAygpQ5AtkwsLPzuEgqRbbTeAelESx0AAEAG0FIHALhwejR5jEkWwK1BSx0AAEAGENQBAABkAEEdAABABjCmDgCy7vRo2SUAkABa6gAAADKAljoAKydoP1gkgzXugMWhpQ4AACADCOoAAAAygO7XFNre3tbGxkbguVkbCgMAgMVoNptqNpuB587PzxMuTTCCuhQ6PDyUaZrLLgYAAPjarEYV27ZVKBQSLtEkul8BAAAygJY6AMDcmNUKLB9BHQBgIQjqgGTR/QoAAJABBHUAAAAZkLruV9u2Va/XZRiGXNeVZVkqlUqx5EsyzVX9fl/lcllnZ2chnwQAAEB4qQrqHMdRoVDQYDDwl/TI5/MaDoeqVCpz5UsyTZBqtTrPowEAAJgpVd2v1WpVxWJxbI22Wq12bUAUJl+Saa6q1WoyDGNmHQAAAOaRmqDOdV31+31ZljV2fGtrS5LUbrcj50syzVX9fl/37t1jMWEAALBQqel+PT4+lqSJFi0vGOr1eoHdm2HyeeeSSHO1jK1WS51OR7VaLaDWAOby491llwAAUiM1QZ3jOJKkXC4383yUfEmmuaxWq6nRaASmneXly5d68eLFjfN51tfXtb6+Hjk/sHRBwdrbAceweKdHk8d+692ECwEs1qtXr/Tq1avI+V++fBljaaJLTVB3cnIiSdrc3Aw877pu5HxJpvHYtq179+5FGkv3zjvv3DjPZR9++KF2WfUTAIBQ6vW6Pvroo2UXY26pCery+bwkaTgcBp6fFhyFyZdkGk+9Xlen0wlMd52nT5/q/v37kfJKopUOAIAbePLkiT744IPI+Z89ezZ3g0wcUhPUeQHRtBa5aUFdmHxJppEuul0tyxrrjvX+3/vvrBa8O3fu6PXXX596HgAAxGfeYUt37tyJsTTRpSao82aQXh2X5n1fKBQi50syjXQx43Vvby+wvPl8XqZpajAYBJ4HAACIIjVLmuRyOZmmqV6vN3a83+9Lkh4+fBg5X5JpJGkwGGg0Go197ezsKJfLaTQaEdABAIDYpaalTpL29/dVKBTkOI7fPdloNNRoNPwZp47jyLIstVotFYvF0PmSTANgeXZ/+O6yiwAAS5GqoM7rlvR2YHAcR7VabWztN9d1NRwOx8a1hcmXZBoAAICkrY1Go9GyC4ELtm1P7CsLrKSQ69Ttvn+04IJEF7Zst7JlMeZ16liBCbddWj6/UzOmDgAAANGlqvsVAAApuPWOFj1gNoI6AMBSEawB8aD7FQAAIAMI6gAAADKA7tcU2t7e1sbGRuC5x48f6/HjxwmXCAAuOT2KnnfBM2fpysWiNJtNNZvNwHPn5+cJlyYYQV0KHR4esqQJVlrQMh+7bydfDizA6dHksZgDPWARZjWqeEuaLBtBHQAgM5g1i1XGmDoAAIAMoKUOwK1Aawv4GQBmo6UOAAAgAwjqAAAAMoDuVwDL9ePdgIPvJlwIALj9aKkDAADIAFrqANwOp0fLLgEApBpBHYClClpoOKtWqa4Akkf3KwAAQAYQ1AEAAGQA3a8ptL29rY2NjcBzs/aeAwCEw3ZiuKlms6lmsxl47vz8POHSBCOoS6HDw0OZprnsYgAAgK/NalSxbVuFQiHhEk2i+xUAACADCOoAAAAygKAOAAAgAxhTB2BuYQedMxAdABaHoA7AQuy+fzR58LfeTbgUy8NCwwCSRlAHAMg0WoixKhhTBwAAkAEEdQAAABlA9ysAAFMw4Qe3CS11AAAAGUBLHQDgdjg9mjy2QjOqgesQ1KXQ9va2NjY2As/N2nsOSL3To2WXAGl0erTsEgDXajabajabgefOz88TLk0wgroUOjw8lGmayy4GAAD42qxGFdu2VSgUEi7RJMbUAQAAZAAtdQAAaL5ZrcySRRoQ1AGY7se7k8feDjgGAFg6ul8BAAAygJY6YBXRAgcAmUNLHQAAQAakrqXOtm3V63UZhiHXdWVZlkqlUiz5kkwjSd1uV/V6XbZtyzRNNRoNFYvFCE8FSA8GfwNAOqUqqHMcR4VCQYPBwF+nLZ/PazgcqlKpzJUvyTSStLe3p16vp2q1qpOTE+3t7cmyLPV6PQI7AFgBzIhF0tZGo9Fo2YXwWJYlSer1ev6xdrutarWqWcUMky/JNJJULpfV6XT8772FCYvF4ljey7w0lwNGYCFCjqnbff9oMl3YbZlOA/ICcYu6TdjpUeRrxR2shb0eAWF6peXzOzUtda7rqt/vq9FojB3f2tqSdBE4BbXWhcn38OHDxNJUKpXANKZpyjRNOY5z/cMAloAPDCAcfleQVqkJ6o6PjyVJhmGMHfci3l6vFxjUhcnnnUsiTaVSmdm9ejUvAGAOp0fj30dtuVuisEEirXe4TmqCOq8FK5fLzTwfJV+SaWZxHEfVanVmGkl6+fKlXrx4cW26adbX17W+vh45PwAAq+TVq1d69epV5PwvX76MsTTRpSaoOzk5kSRtbm4GnnddN3K+JNNM0+12ZRjGzAkfnnfeeefaNLN8+OGH2uWfb5hh94fvTh78rZCZT48C8gZcDwBuiXq9ro8++mjZxZhbaoK6fD4vSRoOh4Hnp3VbhsmXZJpp6vX62MSJWZ4+far79++HShuEVjok7vRo2SUAFuP0aPIY/4jJnCdPnuiDDz6InP/Zs2dzN8jEITVBnRcQTWvtmhYwhcmXZJogtVpN+/v7ocfT3blzR6+//nqotAAAYD7zDlu6c+dOjKWJLjVBnTeD9Oq4NO/7QqEQOV+Saa5qt9uyLIslSgAg7U6Pll0CYC6p2SYsl8vJNM2JNdz6/b4k6eHDh5HzJZnmsm63K0kTs2Ft2w6sC3ATu7uTXwACnB5NfqXpesu6BzInNS11krS/v69CoSDHcfyuykajoUaj4c84dRxHlmWp1Wr5wVKYfEmmkS4CvXq9rmq1qna77R8fDAYqFAq03OFmghYLVtCxgFThkgHICJY+WV2pCupM09RgMFCtVpNhGHIcR7VabWzGqOu6Gg6HY+PawuRLMo1t2/7OE0FLmJydncXyvAAAiIrgL3tSFdRJF0HTrFmipmkGBkXX5UsyjWmaM7c1AxaFP8gAsLpSM6YOAAAA0aWupQ4AAMSLVvzVQFAHJITxK0ACTo+WXYJfOj2aPMbCxVgggjogbQJmus61rReA9Dg9mjw2R6DHPwxxGUEdgAunR8suAXB7nR4tuwSxoEfhdiOoS6Ht7W1tbGwEnnv8+LEeP36ccIlwU/wRBJBlqxj8NZtNNZvNwHPn5+cJlyYYQV0KHR4esjhxSsX9hyww7+m70S8IAFiIWY0qtm1P3c40SQR1wDKdHi0+LwOzAYR1ehRw8N1ky4DICOqAec2xhRcAJOL0aPJYyH/whe2NWMUu2bQhqAPmxMxUAJgPAWE82FECAAAgA2ipw+0V1O35dsAxAEiz06Nll2Bh5mmBi7X1bkU+LwjqANH0DwC4/eh+BQAAyABa6rByaIEDAGQRQR2yZUXGTQBAYk6PJo+x/mUqEdQh82iZA4BsYjz0OII6pE4mfklPjyaP8S9bAGDB9gUiqEuh7e1tbWxsBJ6btfdc6t2yrtHYA8nTo5gvmPL7Algtp0eTxwL+MRt6wfag64XYsiywYeB/uTbb9LxfH2s2m2o2m4H5zs/Pw91gwQjqUujw8FCmaS67GACALDs9Wk7eW2pWo4pt2yoUCgmXaBJBHQAAyLSg1sHdt5Mvx6IR1OFWCOwKPX03XOarzfqnRwFpAq4VNh0ALMvp0bJLkKiFj68+PQo4+O7Ekavl+Pzz+IsSBUEdLtyy8W4AgBV0ejT+/Rz/0L51E/BCIKjDVPPszwcAAJJFUHcbzNOKlkALXNwbNgMAApweLbsEN3d6tOwSzO02fU4R1GXcqgwOndvp0bJLAADAXAjqML/To4CD704cCb02Ueh7AACwBKdH49//5L8soxQTfmXZBcAvffnll2P/TdLuD9+d+ErKV1+90tHRrr766lVi90yDr37+pY7sj/XVz5N/38tEvan3KqDeK1bvX/y7pOV8fl9GS12KeD8Mrf/9/9H//eYX/vHd9wMSB4yV2/2HyWNB0jY+4Oc/f6WnTz/S7/7uB/rGN9ZXplXu5z//dz199n/od/+nsr7xq68tuziJod7UexVQ79Wq9y9+/pUkgjqEEDgu7v2jxd/4NOAeIaePJ1K+sE6P0nktAED8To+Wky4F6H4FAADIAFrqUujv/2Ndv/aNbwae+87/+L/qP/zOHyRcIgAAFuj0aNkluNZ/+s9/r8/+9f8MPPfvX30ReDxpBHUp9Af/8xP9D29+e2aauWaSAgCQBadHid3qP/zOH0xtVPlvn/+LPv6//rfEyjINQV2WnB7Fmy7uvAAAYGEYUwcAAJABtNRhuU6PpC//v4v//3//o/TabyyzNAAA3Fq01GXAf/rPf5+q9FHzLPoe1Hsx6aPmWfQ9qPdi0kfNs+h7UO/FpI+aZ9H3yEq940ZQlwHTZuMsK33UPIu+B/VeTPqoeRZ9D+q9mPRR8yz6HtR7Memj5ln0PbJS77ilrvvVtm3V63UZhiHXdWVZlkqlUiz5kkwzT10AAABuKlVBneM4KhQKGgwGMk1TkpTP5zUcDlWpVObKl2SaeeoCAAAQRaq6X6vVqorFoh8ESVKtVlO1Wp07X5Jp5qkLAABAFKkJ6lzXVb/fl2VZY8e3trYkSe12O3K+JNPMUxcAAICoUhPUHR8fS5IMwxg77rV09Xq9yPmSTDNPXQAAAKJKzZg6x3EkSblcbub5KPmSTBO2TEG++OJi77j/PjwJPD/Nl199of/2+b/43//Kr35D3/iVX5ua/quvXunzn/yX0Ne/afqb5vny388lSf/9p/9Vr/3axsLKRb0Xk/6meag39V5Euaj3YtLfNM9trfdXv/h3/eLnX40du/rZOov3ue19ji/NKCV2dnZGkkaDwWDinKSRYRiR8yWZZp66fPzxxyNJfPHFF1988cXXLfz6+OOPAz/fk5Kalrp8Pi9JGg6HgeevdmXeJF+SacKWKch3v/tdffzxx3rzzTf1zW9+MzBNGK+99ppee+21yPkBAFglX375pb788svI+b/44gt9/vnn+u53vxtjqW4uNUGdF+i4rjvzfJR8SaYJW6Yg3/rWt/S9730v8BwAAMAsqZko4c0MvTrezPu+UChEzpdkmnnqAgAAEFVqgrpcLifTNCdmhvb7fUnSw4cPI+dLMs08dQEAAIhsqSP6rhgMBiNJo5OTE/+YYRijRqPhf39ycjIyDGPU6/VulC/JNDdJhwuXnxOyhXebTbzX1cR7T7e10Wg0WmZQedXl/VIdx5FlWWPbatm2rQcPHmh/f39sH9Xr8iWdptvt6i//8i/1r//6r/rN3/xN/fZv/7b+8A//cKIuaduvNg6u66per0uSGo1GYJq1tbWx703T1GAwuFF5b1u9s/q+r8riu53XbSrrNFl+r6v6u7uqf6uli8/oer0u27ZlmqYajYaKxeJCyp1o/ZcdVWZRo9EYFYvFUavV8pc3kTTWunhycjKSxpc9MQxj1Gq1lpImLr1eb1QqlUaSRpVKJTBNq9UaVSqVUaPR8L8uly2L9c7q+74qi+92XreprNNk+b2u6u/uqv6tHo2y/RlNULcApVJp7HuvK7ZYLPrHisXi2Pej0cUv0OU4O8k0cZv1h+JqWYLOZ63eWX/fl+993fnbXsebuk1lnWYV3uuq/u6u4t/qLH9Gp2aiRFb0+/2JZmzTNGWapj/7NY371Sal2+3q+PhY5XI58N5ZrPeqvO9VfLfXuU1lnWaV3+uq/O4Gyep7z/pnNEFdzIrF4rVr6qVxv9qk9Ho9ua6rbrerarWqu3fv+rOCpWSfTVJW5X2v4ru9zm0q6zSr/F5X5Xc3SFbfe9Y/ownqEuI4jsrlsv//Urr2q01Kq9XSaDTSYDBQpVLxB4TeZN/c21bvVXnfq/hur3ObyjrNKr/XVfndDbJq7z0rn9EEdQnodrsyDMOf+XpycrHx7+bmZmB613UTTbMMpmmq1Wqp0+lIkmq1mqRkn01SVu19r9K7vc5tKut1VvG9rtrvbpBVeO9Z+owmqEtAvV73fyGkdO5XuyylUkmlUkm2bUtK9tkkZVXf9yq82+vcprKGtUrvdVV/d4Nk+b1n6TM6NXu/po1t2/6/SK5jGIZarVbguVqtpv39/bEX4/3/tAjcWMJ+tZ646n0TlmX5YzWyWO80v++r4n4OaXi3y3SbynoTq/Jeb9PvbhKy+N5v22f0dQjqpgja5uum2u22LMvyBzx60rhfrSeOekfhlTOL9U7z+75qEc9h2e92mW5TWW9qFd7rbfrdTUqW3vtt/Iy+1o0XQUEonU4ncOFAb3FB0zSnrktzdnaWeJq4acbaR1eVSqVRp9Pxv89ivbP+vqfJ0ruN6jaVNawsvtdV/d1d1b/VWf2MJqhbgF6vNzJNc9Rqtca+KpWK/0OUxv1q43J2dhb4h2IwGIxM0xy7b6fTCUyXpXrHWd401tu7Z5bf7TxuU1mvWpX3uqq/u6v6tzrLn9Gp2/v1trNte2Zz6dnZmT91OW371cbBtm21Wi21223lcjnt7++rWCwql8vJdV2Vy2UdHx9ra2tLpmnKsqyJ/fayVu9l1Cmpenuy/G7jcJvKetkqvNdV/d1d5b/VWf6MJqgDAADIAJY0AQAAyACCOgAAgAwgqAMAAMgAgjoAAIAMIKgDAADIAII6AACADCCoAwAAyACCOgAAgAwgqAMAICP29vZ09+5dra2taW1tTZZl+V/5fN4/niWrWOdp2FECAIAMqVararfb2tnZUaPRGDvnbUF1cnKypNItxirWOQgtdQAAZMjx8bEkybKsiXOGYQTu4XrbrWKdg9BSBwBAhnhdjdM+3l3X9Tetz4pVrHMQWuoAAMiIfr8vSRMtU91u1///rAU3q1jnaQjqAADIiE6nI2m8G9J1XX3yySfLKtLCrWKdpyGoAwAgI7xWq08++USFQkH5fF53797Vd77znSWXbHFWsc7TfGPZBQAAAPNzXVeO4yiXy2kwGPjHHjx4EPtEgW63q88++0zValWGYcR67ZtIss6X73lwcKDBYKBGo5Gqrl1a6gAAyICDgwNJ42PLcrmcisWiTNOM9V65XE57e3s3Duhc1/Vb08J+2bY99Xpx1rnf7yufz1+bLpfLaXNzUwcHB6kK6CRa6gAAyIRerydpclmPJ0+exH4v27YjtYRdblGLQ5x13tramljjbprPPvtMDx8+vPE9Fo2WOgAAMsAbW3Y12LjcmuSlmVev1wtcEy5pcdY5l8upVCqFvm8a6n8VQR0AALec4zhyXVeGYUztEmy323Icx09vWZZqtZp/3rKssWVApIstuLrdrgqFglzX9Y/3+/2xljrXdf205XJ54jqLcNM6SxflLhQKarfbarfbunv3rhzHUbvdVj6fHyu34zja29tTv99XtVr1r+O6rt9S2e12lc/nVa1WF1rXsAjqAAC45bxgJGiMm+u6qlarqlarfouWYRgql8tj49XK5bKGw6Gfp1AoqFgsqlQqyXVd/5yXxxuz5jiOCoWCSqWSSqWSnjx5onK5vLjKfu2mdZYuxt55wZlhGHry5Ik2Nzf9416gatu2yuWydnZ2VCwWNRwO/Xr3+30ZhqHj42MZhqFarebvaLFsjKkDAOAW29vb81vcvJaozc1NDYdDf3aoJJVKpbEWra2trbGWOtd1tbOzI0l69OiRtra2ZJqmqtWqSqWSHzxdbaWzLCtwFuwid3GIWmfXdf0Wx2Kx6Nfj4OBgrMWvXC6r1Wr5+by18KSLrmfDMLS5uSnTNFWv17W1tbWQet4U24QBALCCXNfV3bt3NRqN5DiObNtWqVSSbdsqFAr+pIGrM0kty1K5XFalUvHHll0OJdrtthqNhk5OThKv03Xa7baq1arOzs7Ggr1yuSzDMNRoNALrdFk+n1exWPSDvrt376rT6aRif1la6gAAWEFeUOM4jrrdrt9K53Uvet9f1e/3/YDGa7W6rNFohJ5FmrRerzfReidd1MlrjbNte+pSLV4roNdK6I3rS0NAJzGmDgCAldZoNMYCuFwu5wcrkvxWPOki4PHWaev3+7p3795YgNRut/1xeGnkTXq4zKvr1taWX7/Lkysu17/f78s0zYmuaNu2xyaSLAtBHQAAK6pYLE60qlUqFRWLRRUKBdVqNTmO43e/DodDP6ArFova2dnR5uamP/NV0thYtDSZ1aqWy+V0cHAg0zRVqVRUKpVUKBS0t7c3Vv/PPvtM7733np/Pm0AyHA5TsRAxY+oAAAAygJY6AACADCCoAwAAyACCOgAAgAwgqAMAAMgAgjoAAIAMIKgDAADIAII6AACADCCoAwAAyACCOgAAgAz4/wGf7ROWJyKR1gAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# energyspektren angucken von velo und rich\n",
|
|
"diff_found = ak.to_numpy(energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality==1)][\"velo\"]) - ak.to_numpy(energy_emissions[(~energy_emissions.lost) & (energy_emissions.quality==1)][\"rich\"])\n",
|
|
"diff_lost = ak.to_numpy(energy_emissions[(energy_emissions.lost) & (energy_emissions.quality==1)][\"velo\"]) - ak.to_numpy(energy_emissions[(energy_emissions.lost) & (energy_emissions.quality==1)][\"rich\"])\n",
|
|
"\n",
|
|
"xlim = 20000\n",
|
|
"\n",
|
|
"plt.hist(diff_lost,bins=100,density=True,alpha=0.5,histtype=\"bar\",color=\"darkorange\",label=\"lost\",range=[-xlim,xlim])\n",
|
|
"plt.hist(diff_found,bins=100,density=True,alpha=0.5,histtype=\"bar\",color=\"blue\",label=\"found\", range=[-xlim,xlim])\n",
|
|
"plt.xlim(-20000,20000)\n",
|
|
"plt.title(\"emitted energy difference velo - rich\")\n",
|
|
"plt.xlabel(r\"$E_{velo} - E_{rich}$\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 83,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHJCAYAAABpOFaGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxnElEQVR4nO3dTWwj6X3v+5/SPS1P0siU1LPwrG66GBiBN2dQVHsR4KSNNOsagReB0aS8ywxgNAlDm2CAsNDZTPcmRAlZZCPApBCgT3bTpBHcRRAkpI2MA2RxR6x0NhcXB4fVAc7CAa6HKg/abqv9UnfRUzWkRFIUxZcSn+8HEKbFYlX9VcVR/fRUPc+zEcdxLAAAAAP91qoLAAAAWBWCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQh4AoJw1CNRkNRFK26lJWJokiNRkNhGK66FMxZEARqNBqrLgOGIQgBV8T+/r5yuZwqlYr6/f6qy5lKEATyPE+lUkm5XE77+/uX2l6j0dDt27dVqVSMDoOLEIahtra2VhJEwjBUqVRSPp9XvV5f+v5hNoIQcEVUq1UVi8VVlzG1IAh07949+b6vZrOpYrGoXq93qW2Wy2WVy+U5VfiFMAyND1ZRFCmKopHnaNzxmddxs21bzWbz0tsBZkEQAq6Q7e3tVZcwtVqtNlSv7/tz+Wv/1q1bl97GaaVS6cq0si2K4ziK41i+759ZNu74cNywDghCABYiCIJVlzCVUql0ZWpdhXHHh+OGdUEQAsZIHsrN5/NqtVrqdDrK5/Pa2NhQqVRK39dqtbS1taWNjY30wtDpdFQqlYbem2zPdd30YV/XdbW1tSXXddNbDMmzQFtbW/I8b2xtlUpFW1tb2traUqVSOfOeIAhUKpXkuq5yudyZbbVaLbmuq06no0ajMXY74/bteZ5c1023kWg0GiqVSgrDMH32o1QqDb1n0rFO6snn89ra2lKpVBp5+6Xf76fvO31Opq211Wql56xSqZy5uJ+3/rSfkdPbqlQqyuVyF3oeZ9L5nMdnq9VqpefqvONz3nE777M3eDySr8s+PwbMLAYwUq/Xi4vFYiwpLhQKcbVajbvdblwul2NJse/76XuT17rd7tD6kuJisZh+n7xvcHvtdjt9rVwux+12e2jfg9scXL9cLsf1ej12HCd9LdHtdoe+bzabsaS4XC6n39u2nb5WrVZjx3Fix3EmHpNutxtbljVUU71eP3M84jiObduObdue6lgnP9fgsWk2m+kxGNyO7/vp+3zfH3tOpq21Wq3GkuJer3fhn/Uin5FisRhXq9WhbZ0+ZuOcdz4v+9nq9XpDx3XQuOMz6bhNqjXZn2VZcbvdTl9L9n/eZxCYN4IQMEHyS/z0Bev0BSO5KAxeNI+Pj4eCUBy/vkicvijEcZyGmcGLSvLeUYGr2WwOrZ+EmuTC4jjOUC1xHMeWZcWS4uPj4ziOv7jwDF6cz+M4zpkL5bj6LxKEBuup1+tDrxcKhaGfedz7Tp+TaWsdd0Gfdv1pPyOWZZ051tMGoWnO52U/W6NqjuOLB6Fpai0WiyOPLUEIq8CtMWAKlmWdee0yD4me3p5t25KGH4ZOXhvVi8dxnKHvk1ta7XZbYRgqCALVarX0Vsfg7Y6jo6OhGu7cuTNVzcl2T+97cP/zeBg6+blPb7vdbg+9vrOzM/S9ZVnp2EKXrXWW9c/7jNi2rf39/aFbQNVqdWwNp2s573yOq+Oin63LmKbWMAzT27JAFlxfdQEALq9QKEj64kIkaeruyKMu4KNMejA2CSWLGOQwCSMX2fZla13Ez9psNpXP5+V5nur1uprN5sigNa6Wq9C9fJpak2esTgdeYFVoEQLWQBJmbNseahVZhFEPLif7X0T3/mSbs1w4L1vrPH9W27b1/PlzFQoFhWGofD4/1cPSiz6f8zRNrckyut0jKwhCwBpILth37txJA0Or1Rr53km9tyZJWi9GrZ/sP5fLzbTtSZILZj6fn3qdy9a6iJ81DENZlqV2u522mEzTS29R53MRpqk1eU+3211aXcAkBCFgDpJB/gb/Ek7+vYwRi5MLTLFYTG+TeZ535hbPZaZPsG1bjuOk3eIHHR0dybKsoVGf+/3+XP7qb7VaQ9v+9NNP0+3Pq1Zp+DzNsv55BgcqLBaL6TNG57X0LOp8XtS4z/Hg69PUmtxaHDdnnukjfGP5CELABNNeyJMWBM/z0nFwkgtdp9NJHwwdt73kl//g8uTfg68lt2VOB67kmZPkPclDuPl8XqVSSfv7+3JdV71eL71YJfu8yIWn2WzKsqyhlowoiuT7vg4PD6d+3miSwYeQoyhSvV7X4eHhuetFUTR0rKatNWnZqdfr6YO8F1l/2s/I06dPh85bFEWybfvcW37Tns/LfrZGvU8af3xGvT5Nraff0+l0FIZhOtZQGIaMKYTlWnW3NSCrut1u2vXYtu243W7Hx8fHQ2PeDHY/9n0/tixrqJu0bdvpmC7J+CqSYsuy0u7gydg0+ryrfbfbHRrrxbKstKv48fFxXK1W40KhkI4NUy6X027Jg3zfT7vV27Y91N18cByh08vOc3x8nHZ/TvY/2F16cBwdfd6de3C8mHEGu/M7jhMXi8W4WCwOrdtsNtOu2Ek37dPnZLCL+nm1JhzHiS3LOtP1fJqfddrPSKFQSD8P1Wo1LhaLI8/bpOMz7pxd9rPV7XbT15KaB2sbd3zGvT6p1kS9Xk/f4zhO3Ov10uNzuks+sEgbcRzHS8pcADDW/v6+PM9Tu91OWzkAYNG4NQYAAIxFEAIAAMYiCAFYuSiK0pGjr8LAgQDWB88IAVi5Ub2Eppl+AgAuiyAEAACMxa0xAABgLGMnXf3JT36if/qnf9Lv/d7v6c0331x1OQAAYAovX77Uf/7nf+ob3/iG3n777Utvz9gg9A//8A96//33V10GAACYwZMnT/Tee+9dejvGBqF33nlHknR4eJhOj7AI9+/f1/e///0ru/1l7OPFixe6e/euPv74Y928eXNh+1mHY8W5MGcfnIts7WMZ52MdjtMy9hEEgR48eJBexy9rYUHou9/9rnZ2dvSd73xnUbu4lC996UuSpK985SsLDUJvvvnmld7+Mvbx2WefSZLeffdd/e7v/u7C9rMOx4pzYc4+OBfZ2scyzsc6HKdl7OPFixeSvriOX9ZCHpZ+/vy56vU63V8BAECmLaRF6Pbt26rX6+fOqgwAALBKC7s19uDBg0VtGgAAYC4WFoS+8Y1vyPd9vfvuu4vaxVz82Z/9mX77t3975LK9vT3t7e0tuSIAAMx2cHCgg4ODkct+/vOfz3VfMwehb3/722OXRVGkTqejp0+fZj4I/d3f/Z3+6I/+aNVlAACAz01qiPjRj36ku3fvzm1fMwehaSZGbDab+qu/+qtZd7EWFt2itIwWq3VpFVuHY8W5MG8fi7Yux4lzYdY+5mnmucZ2d3fl+762t7fPLOv1emo0Gvre97536QIXJUmUH3/8MS1CK/bZZ5/prbfe0k9/+tOFdhPG+TgX2cG5yBbOR3bM+/o9c/f5SqWi27dv66233jrz5TiO8vm8/vIv//LSBQIAACzKzEHo3r17E5fbtq16vT7r5gEAABZu5meEnj17NnZZGIbyPG/WTQMAACzFzEHIcRxtbGyMXR7Hsfb392fd/FyEYcigjgAAYKyZg5BlWdrd3ZVlWWeW3bp1S47jnHv7bJQgCFSr1WTbtqIokuu6KhaLU617Opg5jqNut3vhGgAAgBlmDkKHh4e6f//+PGtRGIbK5/PqdrvphG25XE79fl/lcnniuo1GQ+VyWblcLn2tUCjMtT4AALBeZg5C8w5B0uueaIVCYWjWWs/zVKlUzg1CzWZT7XZ77jUBAID1tbApNr773e9qZ2dH3/nOd6Z6fzIate/7Q6/v7OxI+qLFZ5RWq6WjoyOVSiW5rntuaJKkGzduDP33yvq3R6uu4NI2X/1KH374oTY3N1ddivE2Nzc5FxnBucgWzkd2zPv6PXP3+UmeP3+uer2uarU69TpHR0eSdObh5qR1aFJrT7vdVhRFarVaqlQq2traUqfTmbi/tQlCa2DzxnU9evSIXzAZsLm5ybnICM5FtnA+smPe1++FtAjdvn1b9Xr9Qj22wjCUpJEPXw8uH6Ver6terysIAtXrdTUaDbmuq16vd24NL1680GeffTZ1nadtbm7yPwYAAFM6OTnRycnJzOu/ePFijtUs8NbY7u6u3nrrranf3+v1JGnklB3S61tn53EcR/V6Xa7rqlQqyfO8c+dEu+zEbR9++KEePXp0qW0AAGCKWq2mx48fr7qM1MKC0A9+8AN98sknqtVqU70/6e3V7/dHLr9I61KxWFSxWFQQBOe+9+OPP9a777479bZPozUIAIDpPXz4UB988MHM6z979iwbs89L0g9/+MP0+ZxB/X5fQRCo3+9PHYSSoDOu5eeiAyO6rnvuc0KSdPPmTSbQAwBgSS77SMnNmzfnWM0lxxGqVCoT3zNN761E0jvs9LNAyff5fP6CFX6xTQAAgFFm7jVWr9fVbrd1fHysf/7nf5bv+/rNb36j3/zmN+kAiN/73vem3p5lWXIc50zvsKRVZ3d390L1tdvtc4MaAAAw28xBqFAo6N69e3rrrbdUKBTS7u/S61CTz+f18OHDC23z8PBQnU5nqFXI9335vp/2JgvDULlcLg1IQRAon88PzWvWarW0vb099dQcAADATDMHoZ/+9KdD3+/u7uqv//qvh15rtVoX2mYyN5jnefI8L+35NTgeURRF6vf76bNEtm1re3tbtVpNruvK8zxZlqV6vT7bDwYAAIwx8zNCtm3r2rVr2tra0tHRke7fv6+dnR21221ZlqVWqzV2TKBJHMeZ2OXdcRwdHx+n31uWxdQaAABgJjMHob/4i7/QT37yE/37v/97OvbP06dP5bqunj9/LklnpssAAADIkkt1nz8ddGzbVq/X0/Pnz7W9vX2hARUBALiUqzL34h8+WnUFGLCwKTYAAEC2BUGgjz76KO2A1O12V1zR8i1k0lUAAJB9juPo29/+9lQzMawrghAAAAZzHGfVJawUQQgAABjL+CB0//59ffWrXx35dXBwsOryAAAYEgSBtra2tLGxoXw+PzQIsed52tjYGBpkOAgClUolua6rXC4nz/Om3lcURapUKvI8T67rTj2P52UdHByMvTbfv39/rvta2OzzV8X3v/9945sFAQBXh+M4Ojw8VKlUkm3bQ5OSVyoVBUGQDkQcBIE8z0vH22u1WiqVSoqi6NyBh4Mg0L179/SDH/wgvU42Gg25rivf94cGO563vb097e3tja1rlvlHxzG+RQgAgKumWCzKtu0zMzi0Wq2heTYfPHgwNNRNsViUZVlqNBrpDA3jPHjwQDs7O0ONBeVyWY7jyPO8M5OkX1UEIQAArqAk8AyGoY8++iidZzMMQwVBoFqtplKplH4lBucIPS1Zd9Qdk2S/6zKVlfG3xgAAuIrK5bI8z1O9XlexWFQQBNrZ2UmXJ13iJ01bNc6k7vTJPmgRAgAAK2NZlorFojqdjsIw1EcffTR0WywJKpcJLKNunyXziCbTa111BCEAAK6ohw8fSnp9m+r0razkIerTzxElJvX+SrYz6j1JOMrlcjPVnDUEIQAArijHcWTbtvb394ee/5GkQqEg6XWX+tO3uhqNxsTt2rYtx3EUhuGZFqWjoyNZlqVyuTyHn2D1CEIAAFxhye2w3d3dodcty0q7uOfzeZVKJe3v78t1XfV6vTQojdNsNmVZ1tDttiiK5Pu+Dg8P01tkVx0PSwMA1oOhs7qXy2X1er2RwcT3fd26dUv1el2tVisdVyhpzQmCIO39FQSB9vf3VS6XZVmWbNvW8+fP9eDBA7mum95qazabazX+3kYcx/Gqi1iFZECmbrd7tU/ovz1adQXzYegvMADAxcz7+s2tMQAAYCyCEAAAMBZBCAAAGMv4h6Xv3buv69ffHLnszp09fe1royd9y4pH/+eqKwAAYL4ODg50cHAwctnLly/nui/jg9Du7vf1zjtX+GFpAADWDLPPAwAALAFBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLOMHVAQArIdHj1ZdwXSuSp2moEUIAABIkqIoUqPRUBiGqy5laQhCAACskTAMtbW1pUajcaH1Go2Gbt++rUqloiiKFlNcBnFr7Ip79LdfX3UJc/HoD1ddAQCshyiKFEWRer3ehdYrl8vq9Xra399fUGXZZHwQevr0as8+DwDAIMdxFMfxTOveunVrztXMhtnnl4jZ5wEAyBZmnwcAAGO1Wi25rqtOp6NGo6GtrS1VKpV0WalUUqlUOrNeFEWqVCqqVCpyXVeu6yoIgjPv6/f7ajQayufz2tjYGLmtdWF8ixAAAFdJq9WS53kKw1C2bcuyLNm2raOjI4VhqDAM1Wq1VCgUhtYLw1Cu66rdbsu2bUnS1taW7t27p+Pj46H3+r4v13V1eHioer2uRqOh/f19VavVpf2cy0KLEAAAV0ixWExbfyzLku/76na76na7sm17bFgplUqqVCppCJKkhw8fpg9Xn35vtVqV4ziq1+uSpHa7vZgfaMUIQgAAXDGWZUmS7ty5M9X7wzBUEARnWomq1ariOE63l9jZ2Tmzv3UdW4ggBADAFXU6wIyTPAc07ftNQhACAGDNJa0569qqcxkEIQAA1pzjvB4mptlsjlxuckAiCAEAsOaSZ34ajYY6nc7QMs/ztL29LUn69NNPJb3uPm8KghAAAFdM0str1JxgyWuDYSbpXSZJruuqVCrJ8zzl83nlcrlznx2KomhtwxHjCAEA1sKjR6uuYDlarVbapd3zPPX7fZXLZUmvH4qu1Wrpv/f391Uul2VZlqrVqmzbVq1WU6vVkuM48n0/7UnWarXSiVo9z9Ph4aFs25bneZJehyHP89JAtS424lknJLnikiG6y+Xu1Z5i43//y6ormIt1mTwWALBYyfW72+2mzz5dBrfGAACAsYy/Ncbs8wAAZAuzzy8Rs88DAJAtzD4PAACwBAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGylwQCoIgnQOlUqmo1WpdeBudTkdbW1sLqA4AAKyTTI0jFIbhmWGzc7nc0Dwq06hUKosqEQAArJFMtQhVKhUVCoWhuUOSlqFpeZ4n27YXUR4AAFgzmQlCURSp0+nIdd2h13d2diQpnRF3kk6no1u3bs1lEjYAALD+MhOEjo6OJOlMa04Satrt9rnbqNfrqlar8y8OAACspcw8IxSGoSTJsqyJy8fxPE++7194v69evdDJyWcXXi9x7dqmrl/fnHl9AABMcnJyopOTk5nXf/HixRyryVAQ6vV6kqTt7e2Ry6MoGrtuEAS6devWTM8GPXly98LrDLp790N9/euPLrUNAABMUavV9Pjx41WXkcpMEMrlcpKkfr8/cvmkkFOr1dRsNmfa7/vvf6wvf/ndmdaVXrcIAQCA6Tx8+FAffPDBzOs/e/ZMd+9erhFjUGaCUBJ0xrX8jAtCnufJdd2hW2fJv5P/TgpRN27c1Obm785SMgAAuKDNzU1tbs7eiHDz5s05VpOhIJT0Djv9LFDyfT6fH7lep9PR/v7+yGW5XE6O46jb7c6xUgAAsC4y02vMsiw5jnOmd1in05Ek7e7ujlyv2+0qjuOhr2q1KsuyFMcxIQgAAIyVmSAkSYeHh+p0OkOtQr7vy/f9tDdZGIbK5XJpQAIAAJhVZm6NSUpvYyWjQ4dhKM/zhqbXiKJI/X5/Yi8yAACAaWQqCEmvw9CkHmCO4+j4+HjiNpJWJAAAgEkydWsMAABgmQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMlbnu88v29Ol9Xb/+5shld+7s6Wtf21tyRQAAmO3g4EAHBwcjl718+XKu+zI+CO3ufl/vvOOsugwAAPC5vb097e2NbogIgmDs/KOz4NYYAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYyftJVZp8HACBbmH1+iZh9HgCAbGH2eQAAgCUgCAEAAGMRhAAAgLEIQgAAwFjGPyyt/zqSfvXZqqsAAAArQIsQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYxo8j9PSHH+r69c2Ry+78wZ/qa1/91pIrAgDAbMw+v0S7f/xY77z9lVWXAQAAPsfs8wAAAEtAEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsYyfdJXZ5wEAyBZmn18iZp8HACBbmH0eAABgCQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMlbkgFASBSqWSPM9TpVJRq9Waar1Wq6V8Pq+NjQ3lcjl1Op0FVwoAAK66TI0jFIah8vm8ut2uHMeRJOVyOfX7fZXL5bHrNRoNdbtd+b4vSfI8T67rqtfrybbtpdQOAACunky1CFUqFRUKhTQESUpbhiaJokj1el2FQkGFQkGHh4eSXrcuAQAAjJOZIBRFkTqdjlzXHXp9Z2dH0utWn3Gq1erQ95ZlSdJQoAIAADgtM7fGjo6OJOnMrawkzLTb7Ym3xwa1Wi35vj/VbbFXv3ypk1c/u2C1X7h27Q1dv3Zj5vUBADDJycmJTk5OZl7/xYsXc6wmQ0EoDENJX7TmjFt+Hs/z1Gg00ttj53nyj38+1fvGufvue/q68/6ltgEAgClqtZoeP3686jJSmQlCvV5PkrS9vT1yeRRF525jf39fYRgqiiKVSiXV6/VzW5He/5O/0Zdv/f6F601cu/bGzOsCAGCahw8f6oMPPph5/WfPnunu3btzqyczQSiXy0mS+v3+yOXT3OZKnhXqdDoqlUryff/cIHTjjTe1eeN3LlgtAACYxebmpjY3N2de/+bNm3OsJkMPSydBZ1zLz0W6wRcKBZXL5alvpwEAADNlJgglvcNOh5fk+3w+f6Ht3blzhzGEAADARJkJQpZlyXEctdvtodeTEaJ3d3cvtL0wDFUoFOZWHwAAWD+ZCUKSdHh4qE6nM9Qq5Pu+fN9Pe5OFYTg0hUbyYPTgVBxhGKrdbqtery+1fgAAcLVk5mFp6fWYQd1uV57nybZthWEoz/OGHniOokj9fj99lsiyLEVRpAcPHqher8t1Xdm2faZlCQAA4LRMBSHpdRhqNpsTlx8fHw+9RugBAACzyNStMQAAgGUiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYKzM9Rpbtqc//FDXr4+e8+TOH/ypvvbVby25IgAAzHZwcKCDg4ORy16+fDnXfRkfhHb/+LHeefsrqy4DAAB8bm9vT3t7eyOXBUFw4Wm3JuHWGAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGMn7SVWafBwAgW5h9fomYfR4AgGxh9nkAAIAlIAgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFjGT7rK7PMAAGQLs88vEbPPAwCQLcw+DwAAsAQEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYy/hJV5l9HgCAbGH2+SVi9nkAALKF2ecBAACWgCAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGCszAWhIAhUKpXkeZ4qlYpardZU67VaLeXzeW1sbCifz6vT6Sy4UgAAcNVlakDFMAyVz+fV7XblOI4kKZfLqd/vq1wuj11vf39f7XZblUpFvV5P+/v7cl1X7XZbhUJhWeUDAIArJlMtQpVKRYVCIQ1BktKWoUk++eQTtdttlctl+b6vbrcrSfJ9f6H1AgCAqy0zQSiKInU6HbmuO/T6zs6OJKnRaIxcr9PpnAk8juPIcRyFYbiYYgEAwFrIzK2xo6MjSZJt20OvJ61DSYvPaZNufZ3e1iivfvlSJ69+dpFSh1y79oauX7sx8/oAAJjk5OREJycnM6//4sWLOVaToSCUtN5YljVx+UW2d94tNUl68o9/fqHtnnb33ff0def9S20DAABT1Go1PX78eNVlpDIThHq9niRpe3t75PIoiqbeVqvVkm3bEx+wTrz/J3+jL9/6/am3fdq1a2/MvC4AAKZ5+PChPvjgg5nXf/bsme7evTu3ejIThHK5nCSp3++PXD7Nba5ErVZTs9mc6r033nhTmzd+Z+ptAwCA2W1ubmpzc3Pm9W/evDnHajL0sHQSdMa1/EwbhDzP0+Hh4YWCEwAAMFNmglDSO+z0s0DJ9/l8/txtNBoNua471P0eAABgnMwEIcuy5DiO2u320OvJCNG7u7sT109GoD7diywIgjlWCQAA1klmgpAkHR4eqtPpDLUK+b4v3/fT3mRhGCqXyw1NodHpdFSr1SS9bhVKviqVStotHwAA4LTMPCwtvR4zqNvtyvM82batMAzled5Q768oitTv99NniYIgSAdhHNVd/vj4eCm1AwCAqydTQUh6HYYm9fhyHGco3DiOoziOl1EaAABYM5m6NQYAALBMBCEAAGAsghAAADAWQQgAABiLIAQAAIyVuV5jy/b0hx/q+vXRc57c+YM/1de++q0lVwQAgNkODg50cHAwctnLly/nui/jg9DuHz/WO29/ZdVlAACAz+3t7Wlvb2/ksiAIppp2a1rcGgMAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWMZPusrs8wAAZAuzzy8Rs88DAJAtzD4PAACwBAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABjL+ElXmX0eAIBsYfb5JWL2eQAAsoXZ5wEAAJaAIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxjJ+rjFkxL89WnUF8/GHj1ZdAQDgAowPQsw+DwBAtjD7/BIx+zwAANnC7PMAAABLQBACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADBW5sYRCoJAtVpNtm0riiK5rqtisTjVulEUqVarSZJ8319kmQAAYA1kKgiFYah8Pq9utyvHcSRJuVxO/X5f5XJ54rqdTkf1el2tVuvc9wIAAEgZuzVWqVRUKBTSECRJnuepUqmcu26hUFCz2VxkeQAAYM1kJghFUaROpyPXdYde39nZkSQ1Go1VlAUAANZYZm6NHR0dSZJs2x56PWkdarfbC7nl9eqXL3Xy6mczr3/t2hu6fu3GHCsCAGB9nZyc6OTkZOb1X7x4McdqMhSEwjCUJFmWNXH5vD35xz+/1Pp3331PX3fen0stAACsu1qtpsePH6+6jFRmglCv15MkbW9vj1weRdFC9vv+n/yNvnzr92de/9q1N+ZYDQAA6+3hw4f64IMPZl7/2bNnunv37tzqyUwQyuVykqR+vz9y+elbZvNy4403tXnjdxaybQAAMGxzc1Obm5szr3/z5s05VpOhh6WToDOu5WdRQQgAAJgrM0Eo6R12+lmg5Pt8Pr/0mgAAwHrLTBCyLEuO46jdbg+93ul0JEm7u7urKAsAAKyxzAQhSTo8PFSn0xlqFfJ9X77vp73JwjBULpdLA9KgRT1QDQAA1lNmHpaWXo8Z1O125XmebNtWGIbyPG9o/KAoitTv98+EniAIVK/XJUlPnz6V67oqFApju+MDAABkKghJr8PQpKkyHMfR8fHxyNfr9XoahgAAAM6TqVtjAAAAy0QQAgAAxiIIAQAAYxGEAACAsTL3sDTM9Ohvv77qEubi0R+uugIAwEUYH4Se/vBDXb8+es6TO3/wp/raV7+15IoAADDbwcGBDg4ORi57+fLlXPdlfBDa/ePHeuftr6y6DAAA8Lm9vT3t7e2NXBYEwVyn3eIZIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMZfykq8w+DwBAtjD7/BIx+zwAANnC7PMAAABLQBACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLGMn3SV2ecBAMgWZp9fImafBwAgW5h9HgAAYAkIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsYwNQq9evZIk/eo3v1xxJfjVr1/pX4In+tWvX626FOOdnJzo0aNHOjk5WXUpxuNcZAvnIzuS63fy38syPgj95te/WnEl+PWvf6mPn/0P/frXhNJVOzk50ePHj/llnwGci2zhfGQHQQgAAGBOjJ909e//taY3rn9p5DJmn8eF/dujVVdwOT/jr10Aqzdp9vmf//znc92X8UHoW//9of6Pd/7bqssAAACfmzT7/I9+9CPdvXt3bvvi1hgAADAWQQgAABjL+FtjwDw9+tuvr7qESzl59bNVlwAAS0WLEAAAMBZBaMH+7//n76/09pe1j2VYh2O1LudiXG8Q9rF863KcOBdm7WOeCEIL9sn/+39d6e0vax/LsA7Hal3Oxbr8Mr5qv/BHWZfjxLkwax/zlLlnhIIgUK1Wk23biqJIruuqWCwubD0AAGCuTAWhMAyVz+fV7XblOI4kKZfLqd/vq1wuz309AABgtkzdGqtUKioUCmmYkSTP81SpVBayHgAAMFtmglAURep0OnJdd+j1nZ0dSVKj0ZjregAAAJm5NXZ0dCRJsm176PWklafdbo+8zTXregDGq+39qzZv/M7Ctv///fjnevSdf1nY9gFgWpkJQmEYSpIsy5q4fF7r/eIXv5Ak/Ve/d4Eqz/qta9d1/bfeGLv8V7860Y9/8j8vtY9JFr39Zezj1S9fSpL+69P/pRtvvLmw/azDseJcTO/ly5cKguDK7uPFixeSpGfPnunmzZsL2Yd09Y/TsvaxjPOxDsdpmn28evVKr169mnn7//Ef/yHpi+v4pcUZUa1WY0lxt9s9s0xSbNv2XNd78uRJLIkvvvjiiy+++LqCX0+ePLlc8PhcZlqEcrmcJKnf749cfvrW12XX++Y3v6knT57onXfe0Ze+9KWLlpu6ceOGbty4MfP6AACY5LItQr/4xS/04x//WN/85jfnUk9mglASWKIomrh8Xuu9/fbbeu+99y5WJAAAWCuZ6TWW9PI6/UxP8n0+n5/regAAAJkJQpZlyXEctdvtodc7nY4kaXd3d67rAQAAZCYISdLh4aE6nc5Q647v+/J9P+0VFoahcrlcGnSmXQ8AAOC0zDwjJL0e+6fb7crzPNm2rTAM5Xne0DhAURSp3+8PPRM0zXoJ5iTLjlarpVqtpiAI5DiOfN9XoVBYdVnQ6xbVUqmk4+PjVZdivDAM1Wq1JEnlcpk/7pao1Wqp3W7LsiyFYSjbtuX7/qrLWntRFKlWq0nSyOM99+v4XPqeXRG9Xi+Whrva27Yd1+v1FVZlJt/340KhENfr9XQIBElxu91edWmIX/9/YVnWqsswWq/Xi4vFYlwoFOJer7fqcozTbDZjx3GGXisUCnG1Wl1RRWZot9txsViMJcXlcvnM8kVcx40KQoVCIS4UCkOv1ev12LA8mAnFYnHo+263G0s6c36wfNVqNS4UCgShFep2u7FlWSMvBFiOQqFw5vj7vj92bDrM17ggtIjreKaeEVok5iTLjk6nc6a503EcOY4zdiRwLEen09GtW7eGJjDGckVRpHv37sm2bdXr9VWXY6x+vz/0LKok9Xq9sUOyYPEWdR03JghNMycZlqNQKJw7LhRWo16vq1qtrroMo3mepyiKeBZlxSqVisIwVKlUkvT6uZSnT59yXlZoUddxY4LQrHOSYXkGf+lg+TzP45d8BiR/1bbbbeXzeW1tbcl1XX5HLVm5XFa5XFar1VIul5PneXr+/DmtpSu0qOu4MUGo13s9uer29vbI5eNGpsZytFot2bY9sqcfFi8IAt26dYsWuRVLJqp0HEeVSkXdblfdbjcdNoTfU8tVr9fTW/adTufMrTIs16Ku48YEoVnnJMNy1Go1NZvNVZdhrFqtxi2xDEj+oq1UKunvpMFnhZIuxVgO13VVqVTSLvSlUikdygDLt6jreKbGEVqkWeckw+J5nqfDw0POwYp4nnfm1kvy7+S/nJvlGNfkn4yvxe2x5alUKpKUtlI/f/5ct2/f1oMHDxh7bkUWdR03pkWIOcmyqdFoyHVd7ruvUKfTUaVSUS6XS79arZaiKFIul+O5rSVKfk8ltwBOG3dLAPP39OnTod9LlmXJ931FUZTewsRyLeo6bkwQYk6y7EmamE+PJs0vmeXqdruKX48pln5Vq1VZlqU4jtXtdlddojEsy1KhUDjzLEryFzB/sC3P9vb2mZaH5HcVo3uvxqKu48YEIYk5ybKk0+mkzzs0Go30q1KppF0kARP5vq8gCIbCUKPRkOM4dCZYokqloqdPnw6FoVarJcdxuFW8YJMeel7EdXzj8xEcjTE4R0kYhnJdl18uSxYEwcS/bI+PjwmmK+Z5nhqNBnONrUgQBOnciZZlKYoiBldcgUajoWazmd4iS8Z34vfT4gRBoHq9rkajIcuydHh4qEKhMHTM530dNy4IAQAAJIy6NQYAADCIIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEABg7YRhqEajMXGU4nUXRZEajQaT9Z6DIAQAWCv7+/vK5XKqVCrq9/urLmcqyWjipVJJuVxO+/v7l9peo9HQ7du3ValUjA6D07i+6gIAAJinarWqTz75JJ3YOeuCINC9e/fSKW08z1Ov17vUNsvlsnq93qUD1WlhGGp7e3utphkhCAEA1s729vaqS5harVYbqtf3/bls99atW3PZzqBSqaRms7lWQYhbYwAArFAQBKsuYSqlUunK1HoRBCEAwKUkD+Xm83m1Wi11Oh3l83ltbGyoVCql72u1Wtra2tLGxkZ6Qe10OiqVSkPvTbbnum76sK/rutra2pLruukzL8mzQFtbW/I8b2xtlUpFW1tb2traUqVSOfOeIAhUKpXkuq5yudyZbbVaLbmuq06no0ajMXY74/bteZ5c1023kWg0GiqVSgrDUGEYqlQqqVQqDb1n0rFO6snn89ra2lKpVBr5PFC/30/fd/qcTFtrq9VKz1mlUjkTis5bf9rPyOltVSoV5XI5NRqNc4/3zGIAAC6h1+vFxWIxlhQXCoW4Wq3G3W43LpfLsaTY9/30vclr3W53aH1JcbFYTL9P3je4vXa7nb5WLpfjdrs9tO/BbQ6uXy6X43q9HjuOk76W6Ha7Q983m81YUlwul9PvbdtOX6tWq7HjOLHjOBOPSbfbjS3LGqqpXq+fOR5xHMe2bce2bU91rJOfa/DYNJvN9BgMbsf3/fR9vu+PPSfT1lqtVmNJca/Xu/DPepHPSLFYjKvV6tC2Th+zeSIIAQAuLQkQpy9Yp4NHcjEdvGgeHx8PBaE4fn1xHQwkiSTMDF6Mk/eOClzNZnNo/STUtNvtdHuDtcRxHFuWFUuKj4+P4zj+IlAMXpzP4zjO0M89qf6LBKHBeur1+tDrhUJh6Gce977T52TaWscFoWnXn/YzYlnWmWO9yCDErTEAwNyMeoj2Ml3YT2/Ptm1Jww9DJ6+N6mnlOM7Q98ktrXa7rTAMFQSBarVaeltq8DbN0dHRUA137tyZquZku6f3Pbj/er0+1bYmSX7u09tut9tDr+/s7Ax9b1lWOrbQZWudZf3zPiO2bWt/f3+ox1u1Wh1bw2XRawwAYIxCoSDpiwu4JDWbzanWnban1KQHipNQsohBDpMwcpFtX7bWRfyszWZT+XxenuepXq+r2WyODFrzQosQAMAYSZixbXuoVWQRRj24nOx/Ed37k22ebimaxmVrnefPatu2nj9/rkKhoDAMlc/nF/qwNEEIAGCM5IJ9586dNDCMG3hxUu+tSZLWi1HrJ/vP5XIzbXuS5PZSPp+fep3L1rqInzUMQ1mWpXa7nbbWTdNLb1YEIQDA0iSD/A22wiT/XsZUEJ1OR7Ztq1gsprfJPM87c4vnMi0Qtm3LcZy0W/ygo6MjWZalcrmcvtbv9+cyFUir1Rra9qeffppuf161SsPnaZb1zzM4oGSxWEyfMVpUyx1BCABwadNeyJMWBM/z0nFwkgtdp9OR67oTt5dchAeXJ/8efC25LXM6cCXPnCTvSR7CzefzKpVK2t/fl+u66vV6aVBK9nmRoJaMvjzYkhFFkXzf1+Hh4VxGZh58CDmKItXrdR0eHp67XhRFQ8dq2lqTlp16va4wDNOWtGnXn/Yz8vTp06HzFkWRbNue6ZbfVBbWHw0AYIRut5t2lbZtO2632/Hx8fHQmDeD3Z99348tyxrqJm3bdjq2TDK2j6TYsqy0O3gyNo0+72rf7XaHxqexLCvtKn58fBxXq9W4UCikYwmVy+W0S/wg3/fTbvW2bQ91Nx8cR+j0svMcHx/HxWJxaP+DXfUHx9HR50MFJN36Jxnszu84TlwsFuNisTi0brPZTIcBSIYIOH1OBruon1drwnGc2LKsM8MaTPOzTvsZKRQK6eehWq3GxWJx5Hmbl404juPFRCwAADBv+/v78jxP7XY7bbXC7Lg1BgAAjEUQAgAAxiIIAQBwRURRlI4cPe1AkJiMZ4QAALgiBqedSCxy+gkTEIQAAICxuDUGAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABjr/wfztDJRofFMLwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# number of brem vtx with E>x*E_0\n",
|
|
"\n",
|
|
"number_velo = ak.to_numpy(energy_emissions[energy_emissions.quality==1][\"velo_length\"])\n",
|
|
"number_rich = ak.to_numpy(energy_emissions[energy_emissions.quality==1][\"rich_length\"])\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.hist(number_velo,bins=10,density=True,alpha=0.5,histtype=\"bar\",color=\"darkorange\",label=\"velo\",range=[0,10])\n",
|
|
"plt.hist(number_rich,bins=10,density=True,alpha=0.5,histtype=\"bar\",color=\"blue\",label=\"rich\",range=[0,10])\n",
|
|
"plt.xlim(0,10)\n",
|
|
"plt.title(\"number of photons emitted\")\n",
|
|
"plt.xlabel(\"number of photons\")\n",
|
|
"plt.ylabel(\"a.u.\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 84,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' \\nphoton cut = x*E_0\\neffs, all photons included: x=0\\nfound in velo/(found + lost in velo)\\nVELO energy emission, eff: 0.8446167611094543\\nRICH1+UT energy emission, eff: 0.7961586121437423\\neff von e die nicht strahlen: 0.7954674220963173\\n'"
|
|
]
|
|
},
|
|
"execution_count": 84,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\" \n",
|
|
"photon cut = x*E_0\n",
|
|
"effs, all photons included: x=0\n",
|
|
"found in velo/(found + lost in velo)\n",
|
|
"VELO energy emission, eff: 0.8446167611094543\n",
|
|
"RICH1+UT energy emission, eff: 0.7961586121437423\n",
|
|
"eff von e die nicht strahlen: 0.7954674220963173\n",
|
|
"\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "tuner",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|