Projektpraktikum/B_updown.ipynb
2023-10-09 16:32:56 +02:00

884 lines
390 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 125,
"metadata": {},
"outputs": [],
"source": [
"import uproot\t\n",
"import numpy as np\n",
"import sys\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits import mplot3d\n",
"import itertools\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10522"
]
},
"execution_count": 126,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
"allcolumns = file.arrays()\n",
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
"\n",
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
"#ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
"execution_count": 127,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"eff all = 0.8606728758791105 +/- 0.003375885792719708\n"
]
}
],
"source": [
"def t_eff(found, lost, axis = 0):\n",
" sel = ak.num(found, axis=axis)\n",
" des = ak.num(lost, axis=axis)\n",
" return sel/(sel + des)\n",
"\n",
"def eff_err(found, lost):\n",
" n_f = ak.num(found, axis=0)\n",
" n_all = ak.num(found, axis=0) + ak.num(lost,axis=0)\n",
" return 1/n_all * np.sqrt(np.abs(n_f*(1-n_f/n_all)))\n",
"\n",
"\n",
"print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))"
]
},
{
"cell_type": "code",
"execution_count": 128,
"metadata": {},
"outputs": [],
"source": [
"#try excluding all photons that originate from a vtx @ z>9500mm\n",
"#ignore all brem vertices @ z>9500mm \n",
"\n",
"#found\n",
"\n",
"brem_e_f = found[\"brem_photons_pe\"]\n",
"brem_z_f = found[\"brem_vtx_z\"]\n",
"e_f = found[\"energy\"]\n",
"length_f = found[\"brem_vtx_z_length\"]\n",
"\n",
"brem_f = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(found,axis=0)):\n",
" brem_f.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_f.field(\"energy\").append(e_f[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_f.field(\"photon_length\").integer(length_f[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n",
" brem_f.end_record()\n",
"\n",
"brem_f = ak.Array(brem_f)\n",
"\n",
"#lost\n",
"\n",
"brem_e_l = lost[\"brem_photons_pe\"]\n",
"brem_z_l = lost[\"brem_vtx_z\"]\n",
"e_l = lost[\"energy\"]\n",
"length_l = lost[\"brem_vtx_z_length\"]\n",
"\n",
"brem_l = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(lost,axis=0)):\n",
" brem_l.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_l.field(\"energy\").append(e_l[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_l.field(\"photon_length\").integer(length_l[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n",
" brem_l.end_record()\n",
"\n",
"brem_l = ak.Array(brem_l)"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [],
"source": [
"cut_brem_found = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_f, axis=0)):\n",
" cut_brem_found.begin_record()\n",
" cut_brem_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n",
" \n",
" cut_brem_found.field(\"brem_photons_pe\")\n",
" cut_brem_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" cut_brem_found.real(brem_f[itr,\"brem_photons_pe\", jentry])\n",
" \n",
" #cut_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" cut_brem_found.end_list()\n",
" \n",
" cut_brem_found.field(\"brem_vtx_z\")\n",
" cut_brem_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" cut_brem_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" cut_brem_found.end_list()\n",
" \n",
"\n",
" \n",
" cut_brem_found.end_record()\n",
"\n",
"cut_brem_found = ak.Array(cut_brem_found)\n",
"\n",
"\n",
"\n",
"cut_brem_lost = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_l, axis=0)):\n",
" cut_brem_lost.begin_record()\n",
" cut_brem_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n",
" \n",
" \n",
" cut_brem_lost.field(\"brem_photons_pe\")\n",
" cut_brem_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" cut_brem_lost.real(brem_l[itr,\"brem_photons_pe\", jentry])\n",
" \n",
" #cut_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" cut_brem_lost.end_list()\n",
" \n",
" cut_brem_lost.field(\"brem_vtx_z\")\n",
" cut_brem_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" cut_brem_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n",
" cut_brem_lost.end_list()\n",
" \n",
" cut_brem_lost.end_record()\n",
"\n",
"cut_brem_lost = ak.Array(cut_brem_lost)\n"
]
},
{
"cell_type": "code",
"execution_count": 130,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>{energy: 9.36e+03,\n",
" brem_photons_pe: [2.47e+03, 170, 224, 388, 3.23e+03, 809, 172, 224],\n",
" brem_vtx_z: [400, 501, 638, 667, 677, 709, 8.58e+03, 9.28e+03]}\n",
"---------------------------------------------------------------------\n",
"type: {\n",
" energy: float64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_z: var * float64\n",
"}</pre>"
],
"text/plain": [
"<Record {energy: 9.36e+03, ...} type='{energy: float64, brem_photons_pe: va...'>"
]
},
"execution_count": 130,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#data in cut_brem_found and cut_brem_lost\n",
"\n",
"cut_length_found = ak.num(cut_brem_found[\"brem_photons_pe\"],axis=-1)\n",
"cut_length_lost = ak.num(cut_brem_lost[\"brem_photons_pe\"], axis=-1)\n",
"\n",
"cut_brem_found[1]\n"
]
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 131,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cut_length_found[1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split in Upstream and Downstream Events and analyse separately"
]
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {},
"outputs": [],
"source": [
"#try to find a split between energy lost before and after the magnet (z~5000mm)\n",
"\n",
"upstream_found = ak.ArrayBuilder()\n",
"downstream_found = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(cut_brem_found, axis=0)):\n",
" upstream_found.begin_record()\n",
" upstream_found.field(\"energy\").real(cut_brem_found[itr,\"energy\"])\n",
" \n",
" downstream_found.begin_record()\n",
" downstream_found.field(\"energy\").real(cut_brem_found[itr,\"energy\"])\n",
" \n",
" upstream_found.field(\"brem_photons_pe\")\n",
" downstream_found.field(\"brem_photons_pe\")\n",
" upstream_found.begin_list()\n",
" downstream_found.begin_list()\n",
" for jentry in range(cut_length_found[itr]):\n",
" if (cut_brem_found[itr, \"brem_vtx_z\", jentry]>5000):\n",
" if cut_brem_found[itr, \"brem_vtx_z\", jentry]<=9500:\n",
" downstream_found.real(cut_brem_found[itr,\"brem_photons_pe\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_found.real(cut_brem_found[itr,\"brem_photons_pe\", jentry]) \n",
" upstream_found.end_list()\n",
" downstream_found.end_list()\n",
" \n",
" upstream_found.field(\"brem_vtx_z\")\n",
" downstream_found.field(\"brem_vtx_z\")\n",
" upstream_found.begin_list()\n",
" downstream_found.begin_list()\n",
" for jentry in range(cut_length_found[itr]):\n",
" if cut_brem_found[itr, \"brem_vtx_z\", jentry]>5000:\n",
" if cut_brem_found[itr,\"brem_vtx_z\",jentry]<=9500:\n",
" downstream_found.real(cut_brem_found[itr,\"brem_vtx_z\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_found.real(cut_brem_found[itr, \"brem_vtx_z\",jentry])\n",
" upstream_found.end_list()\n",
" downstream_found.end_list()\n",
" upstream_found.end_record()\n",
" downstream_found.end_record()\n",
" \n",
"\n",
"upstream_found = ak.Array(upstream_found)\n",
"downstream_found = ak.Array(downstream_found)\n",
"\n",
"\n",
"upstream_lost = ak.ArrayBuilder()\n",
"downstream_lost = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(cut_brem_lost, axis=0)):\n",
" upstream_lost.begin_record()\n",
" upstream_lost.field(\"energy\").real(cut_brem_lost[itr,\"energy\"])\n",
" \n",
" downstream_lost.begin_record()\n",
" downstream_lost.field(\"energy\").real(cut_brem_lost[itr,\"energy\"])\n",
" \n",
" upstream_lost.field(\"brem_photons_pe\")\n",
" downstream_lost.field(\"brem_photons_pe\")\n",
" upstream_lost.begin_list()\n",
" downstream_lost.begin_list()\n",
" for jentry in range(cut_length_lost[itr]):\n",
" if (cut_brem_lost[itr, \"brem_vtx_z\", jentry]>5000):\n",
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry]<=9500:\n",
" downstream_lost.real(cut_brem_lost[itr,\"brem_photons_pe\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_lost.real(cut_brem_lost[itr,\"brem_photons_pe\", jentry]) \n",
" upstream_lost.end_list()\n",
" downstream_lost.end_list()\n",
" \n",
" upstream_lost.field(\"brem_vtx_z\")\n",
" downstream_lost.field(\"brem_vtx_z\")\n",
" upstream_lost.begin_list()\n",
" downstream_lost.begin_list()\n",
" for jentry in range(cut_length_lost[itr]):\n",
" if cut_brem_lost[itr, \"brem_vtx_z\", jentry]>5000:\n",
" if cut_brem_lost[itr,\"brem_vtx_z\",jentry]<=9500:\n",
" downstream_lost.real(cut_brem_lost[itr,\"brem_vtx_z\",jentry])\n",
" else:\n",
" continue\n",
" else:\n",
" upstream_lost.real(cut_brem_lost[itr, \"brem_vtx_z\",jentry])\n",
" upstream_lost.end_list()\n",
" downstream_lost.end_list()\n",
" upstream_lost.end_record()\n",
" downstream_lost.end_record()\n",
" \n",
"\n",
"upstream_lost = ak.Array(upstream_lost)\n",
"downstream_lost = ak.Array(downstream_lost)\n"
]
},
{
"cell_type": "code",
"execution_count": 133,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>{energy: 4.62e+04,\n",
" brem_photons_pe: [3.26e+03, 4.45e+03, 178, 1.45e+04, 1.1e+03, 3.79e+03],\n",
" brem_vtx_z: [162, 187, 387, 487, 1.34e+03, 2.32e+03]}\n",
"-------------------------------------------------------------------------\n",
"type: {\n",
" energy: float64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_z: var * float64\n",
"}</pre>"
],
"text/plain": [
"<Record {energy: 4.62e+04, ...} type='{energy: float64, brem_photons_pe: va...'>"
]
},
"execution_count": 133,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"upstream_found[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"upstream: cutoff energy = 350MeV, sample size: 1562\n",
"eff = 0.9181 +/- 0.007\n"
]
}
],
"source": [
"#plot efficiency against cutoff energy \n",
"up_efficiencies = []\n",
"\n",
"\n",
"\n",
"for cutoff_energy in range(50,1050,50):\n",
"\tup_nobrem_f = upstream_found[ak.sum(upstream_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\tup_nobrem_l = upstream_lost[ak.sum(upstream_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\t\n",
"\tif ak.num(up_nobrem_f,axis=0)+ak.num(up_nobrem_l,axis=0)==0:\n",
"\t\tcontinue\n",
"\n",
"\teff = t_eff(up_nobrem_f,up_nobrem_l)\n",
"\tup_efficiencies.append(eff)\n",
"\n",
"\n",
"\t#print(\"\\ncutoff = \",str(cutoff_energy),\"MeV, sample size: \",ak.num(up_nobrem_f,axis=0)+ak.num(up_nobrem_l,axis=0))\n",
"\t#print(\"eff = \",np.round(eff,4), \"+/-\", np.round(eff_err(up_nobrem_f, up_nobrem_l),4))\n",
"\n",
"\"\"\"\n",
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
"\"\"\"\n",
"cutoff_energy = 350.0 #MeV\n",
"\n",
"\"\"\"\n",
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
"\"\"\"\n",
"up_nobrem_found = upstream_found[ak.sum(upstream_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"up_nobrem_lost = upstream_lost[ak.sum(upstream_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\n",
"print(\"\\nupstream: cutoff energy = 350MeV, sample size:\",ak.num(up_nobrem_found,axis=0)+ak.num(up_nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(up_nobrem_found, up_nobrem_lost),4), \"+/-\", np.round(eff_err(up_nobrem_found, up_nobrem_lost),3))\n"
]
},
{
"cell_type": "code",
"execution_count": 161,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"nobrem_vertices\n",
"upstream: cutoff energy = 350MeV, sample size: 1562\n",
"eff = 0.9181 +/- 0.007\n",
"\n",
"downstream: cutoff energy = 350MeV, sample size: 5131\n",
"eff = 0.8864 +/- 0.004\n"
]
}
],
"source": [
"down_efficiencies = []\n",
"for cutoff_energy in range(50,1050,50):\n",
"\tdown_nobrem_f = downstream_found[ak.sum(downstream_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\tdown_nobrem_l = downstream_lost[ak.sum(downstream_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\n",
"\tif ak.num(down_nobrem_f,axis=0)+ak.num(down_nobrem_l,axis=0)==0:\n",
"\t\tcontinue\n",
"\teff = t_eff(down_nobrem_f,down_nobrem_l)\n",
"\tdown_efficiencies.append(eff)\n",
"\n",
"\n",
"\t#print(\"\\ncutoff = \",str(cutoff_energy),\"MeV, sample size: \",ak.num(down_nobrem_f,axis=0)+ak.num(down_nobrem_l,axis=0))\n",
"\t#print(\"eff = \",np.round(eff,4), \"+/-\", np.round(eff_err(down_nobrem_f, down_nobrem_l),4))\n",
"\n",
"\"\"\"\n",
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
"\"\"\"\n",
"cutoff_energy = 350.0 #MeV\n",
"\n",
"\"\"\"\n",
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
"\"\"\"\n",
"down_nobrem_found = downstream_found[ak.sum(downstream_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"down_nobrem_lost = downstream_lost[ak.sum(downstream_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\n",
"\n",
"print(\"nobrem_vertices\\nupstream: cutoff energy = 350MeV, sample size:\",ak.num(up_nobrem_found,axis=0)+ak.num(up_nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(up_nobrem_found, up_nobrem_lost),4), \"+/-\", np.round(eff_err(up_nobrem_found, up_nobrem_lost),3))\n",
"\n",
"print(\"\\ndownstream: cutoff energy = 350MeV, sample size:\",ak.num(down_nobrem_found,axis=0)+ak.num(down_nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(down_nobrem_found, down_nobrem_lost),4), \"+/-\", np.round(eff_err(down_nobrem_found, down_nobrem_lost),3))\n"
]
},
{
"cell_type": "code",
"execution_count": 162,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcMAAAJJCAYAAABmnC9/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ10lEQVR4nOzdeVyVZf7/8fcRkUURFxJwBbUUh1ET92VKyy2XbMWaLAudDEczy2+amWKWaZPZJqlprqVTmWVDFpmVhoZrjdpoTTaUgYxo4hLIcv/+8McZj+ACcc59uHg9Hw8edW6u+77u+3zOgcs317luh2VZlgAAAAAAAAAAMFgVu08AAAAAAAAAAAB3IwwHAAAAAAAAABiPMBwAAAAAAAAAYDzCcAAAAAAAAACA8QjDAQAAAAAAAADGIwwHAAAAAAAAABiPMBwAAAAAAAAAYDzCcAAAAAAAAACA8QjDAQAAAAAAAADGIwwHAAAAAAAAABiPMBwAAAAAAAAAYDzCcAAAUKENHz5cS5Yssfs0cJm++eYbpaWl2X0aAAAAACohwnAAAAB4zIIFC/Tpp5/afRoAAAAAKiHCcAAAUKmtXr1af/jDHxQQECCHw6Hdu3fbfUoXlZSUJIfD4fJVs2ZNxcTE6O9//7vH+l+2bJnL9mPHjql///6qVq2aXn75ZZfvffHFFxo5cqQyMzOd2/bt26ebb75Zhw8fdvs5VySfffZZsfoWfW3durVY+2+++UZxcXFq1qyZAgICFBAQoCuvvFL333+/tm/fXqZzuOmmmxQQEKBff/31gm3+/Oc/y9fX1/b6TZs2TQ6HQ0eOHLH1PDxlyZIlcjgc+vHHH91y/JSUFE2bNu2itQcAAKjICMMBAECFM3DgQNWqVUu1atXSG2+8ofj4eOfjZ5555rKP89///lfDhg1Ts2bNtH79em3ZskVXXXWVG8/899u5c6ck6b333tOWLVuUkpKihQsX6tSpU7rjjjv0zTffeKT/mJgY57ZvvvlG7du3165du/Tpp5/qr3/9q8s+MTExCg0NVevWrbVhwwa9/PLL6t27t/r166crrrjCredbUT399NPasmWLy1d0dLRLm/nz5ysmJkZfffWVHnzwQX3wwQf6xz/+oXHjxmnv3r3q0KGD/v3vf5e677i4OOXk5OiNN94o8fvHjx/Xu+++q4EDByo0NLRM1wfvlJKSooSEBMJwAABgrKp2nwAAAEBpffDBB87/Hz58uK699loNHz681Mc5cOCA8vLydNddd+maa665YLvTp08rMDCwLKda7nbu3Kng4GANHjzYua1Lly7Kz8/XXXfdpV27dql169Zu7T8gIEAtW7aUJK1atUpxcXFq3bq13nnnHdWvX7/YPtWrV9f06dNVWFiomTNnqkqVKlq5cqWGDh3qtvO0w9GjR1VYWKiQkJDffawrr7xSnTt3vuD3v/zyS8XHx2vAgAF6++23Va1aNef3evXqpdGjR+utt95SQEBAqfvu37+/6tevr8WLFys+Pr7Y999880399ttviouLK/WxvY03vbcrGp47AABQETEzHAAAeIXNmzerT58+Cg4OVu3atTVgwAB99913butv+PDh6t69uyQpNjZWDodD1157rXPZhZ07d+rWW29V7dq11axZM5fzvO666xQUFKTAwEB17dpV//jHP1yOXXSMb775RrfddpuCg4NVp04djR8/Xvn5+dq/f7/69eunoKAgRUREaPbs2Zd93jt27FDbtm2Lbf/5558lSVFRUWV4NqTnn39ea9euLVX/jzzyiO644w79+c9/1ueff15iEC5J//znP9WuXTvt3LlTN9xwg+677z499dRTGjBgwCWXt7jc10V5v34GDRqk9u3ba+HChWrTpo0CAgLUqFEjTZ06VYWFhSXu88033yg8PFz9+/fXsmXLdOLEiTL3fylPP/20fHx8NH/+fJcg/Fy33XZbsZp89913uvPOO1WvXj35+fkpKipKr7zyiksbHx8f3XPPPdqxY4f++c9/Fjvu66+/7rzO0ip6b+zdu1d33HGHgoODFRoaqvvuu0/Hjx93aXs577UiP/30k26++WbVrFlTwcHBuuuuu/Tf//63xL4v9N6+nOfGne/ty+n/9+77r3/9S3fccYdCQ0Pl5+enxo0b6+6771Zubq6mTZumCRMmSJIiIyOdy/N89tln5fJz8dzn71L1/+9//6u//OUvatSokfz8/HTFFVeoW7du+uSTTy77+QQAACgJYTgAALDdtGnTdM0116hRo0Z688039dprr+mnn37Sddddp5MnT1503yVLlpRpVviUKVOcYVHRkhTz5s1zfv/mm29W8+bN9dZbb+nVV1+VJH3++efq1auXjh8/rkWLFunNN99UUFCQBg0apNWrVxfr4/bbb1ebNm30zjvvaOTIkXr++ef10EMPaciQIRowYIDeffdd9erVS48++qjWrFlzyXPOyspSWlqa2rRpo/z8fOXn5yszM1PLly/XU089pREjRqhjx46lfi4kafv27br99tsvGogX9d+4cWP16dNHL7/8shYuXKgFCxZcMJCVpNq1a2vGjBlav369IiMj1a1bN+3evVu33367goODL7jf5b4ufs/r50J27Nihf/3rX3r++ec1YcIEvf/+++revbumT5+uxYsXl7hP586dtXTpUvn6+mrkyJGqV6+ebrvtNq1Zs0a5ubml6n/06NGqWrWqatasqb59+2rz5s3O7xUUFGjjxo1q3769wsPDL/uY+/btU4cOHbRnzx4999xz+uCDDzRgwACNHTtWCQkJLm3vu+8+ORyOYte6b98+paam6p577pGPj0+prulct9xyi6666iq98847mjhxot544w099NBDzu+X9r120003qXnz5nr77bc1bdo0rV27Vn379lVeXl6xtiW9t0vz3Ejl/94ubf9l2ffrr79Whw4dtHXrVk2fPl0ffvihZs6cqdzcXJ05c0YjRozQmDFjJElr1qxxLs/Trl27iz53pa2VdOn6Dxs2TGvXrtUTTzyhjz/+WK+99pquv/56ZWVlXfK5BAAAuCgLAADARuvWrbMkWbNnz3bZfuDAAUuStWLFimL79OvXz6pevXqJX0899dRl971x40ZLkvXWW285t02dOtWSZD3xxBPF2nfu3NmqV6+edeLECee2/Px8Kzo62mrYsKFVWFjocoznnnvOZf+2bdtakqw1a9Y4t+Xl5VlXXHGFdfPNN1/yfD/++GNLUrGvqlWrWjNmzLjs6y5Jfn6+deedd1q+vr7Wu+++e8n+/f39ra1bt5a6n9GjR1uvv/76Jdtd7uuiLK+fS/n5558tSVbTpk2tX3/91bn9zJkzVlhYmDVw4MBLHuPYsWPW4sWLrT59+lhVq1a1goODreHDh1sfffSRlZ+ff8H9du7caT344IPWu+++a33xxRfW4sWLraioKMvHx8dav369ZVmWlZGRYUmyhg4dWmz//Px8Ky8vz/lV9Jq0LMvq27ev1bBhQ+v48eMu+/z1r3+1/P39raNHj7psv+aaa6yQkBDrzJkzzm0PP/ywJck6cODAJZ+DkhS9N86vV3x8vOXv7+8839K+1x566CGX461cubJY/S/23r7c58Zd7+3L7f/111+3JFkHDx4s9b69evWyatWqZWVmZl7wPJ599tlixz/3un/Pz8Vzj3Op+teoUcMaN27cBc8TAACgrJgZDgAAbPXEE0+oWbNmevDBB52znfPz8xUZGamAgAD98MMPxfb58MMPdfLkyRK/HnvssXI5r1tuucXl8alTp/TVV1/p1ltvVY0aNZzbfXx8NGzYMP3888/av3+/yz4DBw50eRwVFSWHw+GyvETVqlXVvHlz/ec//7nkOe3YsUPS2Vmb27Zt07Zt27R+/XoNGDBATzzxxAVnoB45csS55MGFvqpWrao33nhDeXl5uv3223X48OEL9j9s2DDl5OToiy++uOQ5n+/ll1++rJn8l/u6KMvr51K2bdsm6eyM83Nnrvv6+qp58+aXXNpFkmrVqqV7771XH330kdLT0/XMM8/o4MGD6tevn+rXr3/B87r66qs1d+5cDRkyRD169NC9996rlJQUhYeH6//+7/8u2W9MTIx8fX2dX88995wkKScnRxs2bNBNN92kwMBAl+fqhhtuUE5OjrZu3epyrLi4OB05ckTvv/++JCk/P18rVqxQjx49dOWVV17yXC7m3DXvJal169bKyclRZmZmmd5rf/7zn10e33777apatao2btxYrO/z39tleW7K871dlv5Lu+/p06f1+eef6/bbb/9dN60tj5+L0sXrL0kdO3bUkiVLNGPGDG3durXEGf4AAABlwQ00AQCAbTIyMrRr1y5Jkp+fX4ltatWq5cEz+p/zl584duyYLMsqcVmKonWZz/8If506dVweV6tWTYGBgfL39y+2PTs7+5LnVHTzysGDB7ssUXHNNdeoZs2aWrhwoW6++eZi+wUFBWnhwoWXPP769ev1zjvv6MYbb1TdunVL7N/f39+5dMbEiRPVokWLYsHW73W5rwt3vX62b98uX19f3XbbbcW+98svvygmJqZUx8vOztavv/6q48ePy7Is1apVS1WrXv4wvFatWho4cKBeffVV/fbbbwoJCVFAQECJIesbb7yh06dPKz093aUuWVlZys/P10svvaSXXnqpxH7OD/lvvfVWjRkzRq+//rpuueUWJSUl6fDhw5o1a9Zln/uFnP/6Kqrfb7/9pry8vFK/18LCwlweV61aVXXr1i1xWY3zj1uW56Y839tl6b+0+x47dkwFBQVq2LDhRc/lUsrj56J08fpL0urVqzVjxgy99tprmjJlimrUqKGbbrpJs2fPLlZrAACA0iAMBwAAtvnpp58knb15Y9HNLM937k3aPMnhcLg8rl27tqpUqaL09PRibX/55RdJUkhIiFvPaefOnfrjH/9YbK1mX19f+fj4OIOk8/n5+WnEiBEXPfY//vEPffDBB7r11lv15ptvlhjW7ty5U23atFHVqlW1cOFC5037Nm/eXOJNPcvqcl8X33///WW1K63t27crJCSkWLD51Vdf6YcfftCUKVMueYyffvpJb731llatWqVt27apQYMGio2N1cKFC9W+fftSn5NlWZLOvi59fHzUq1cvffzxx0pPT3cJIlu1aiVJ+vHHH132r127tnO27ujRo0vsIzIy0uVxQECA7rjjDi1cuFDp6elavHixgoKCSvwjQXkqy3stIyNDDRo0cD7Oz89XVlZWiX/UKem9Xdrnpjz9nv4vd9/AwED5+Pg4b7RbVp76uRgSEqK5c+dq7ty5SktL0/vvv6+JEycqMzNT69evL9vJAwAAiDAcAADYqGh2pcPhKFNA6EnVq1dXp06dtGbNGv3tb39TQECAJKmwsFArVqxQw4YNddVVV7mt/+PHj+uHH37QddddV+x77733nnJycvSnP/2pzMd/9tlnNWjQoAsG4UX99+nTR9LZgP3dd99Vx44dNXjwYKWmppbbjM3LfV246/Wzfft2HT9+XL/++qtzZnlBQYEeffRRRURE6M477yxxvxMnTmjJkiVavXq1UlJSVLt2bd1yyy2aNWuWrrnmGlWpUrYVCo8dO6YPPvhAbdu2dQb0kyZN0ocffqhRo0bp7bfflq+v70WPERgYqJ49e2rXrl1q3br1RW94eq64uDi9+uqrevbZZ5WUlKThw4crMDCwTNdxucryXlu5cqXLjP2///3vys/P17XXXnvJ/sr63JSX39N/afa95ppr9NZbb+mpp566YEB9/gztS/HEz8XGjRvrr3/9qzZs2KAvv/zydx0LAACAMBwAANimWbNm6tmzpx5//HGdPHlSnTp1kmVZSk9P18aNG3XPPfdcVpjlKTNnzlTv3r3Vs2dPPfLII6pWrZrmzZunPXv26M033yw2a7I87dy5U5ZlqXr16s71g48dO6aUlBQ9//zzat26tR555JEyH3/dunUKCAi44PIdRf2fGziGhYXpvffeU/fu3TV48GB9/vnnzjDs97jc10VpXz8Oh0PXXHONPvvsswv2ffDgQWVlZalx48a67bbb9PDDDysnJ0cvvviiduzYoc8+++yCgeOOHTs0ceJEDR48WGvXrlX//v0vGVKf784771Tjxo3Vvn17hYSE6LvvvtNzzz2nw4cPa8mSJc523bp10yuvvKIxY8aoXbt2+stf/qI//OEPzlm677zzjiSpZs2azn1eeOEFde/eXT169NADDzygiIgInThxQt9//73WrVunTz/9tNj5tG/fXq1bt9bcuXNlWZbi4uJKPO/LeW5Lo7TvtTVr1qhq1arq3bu39u7dqylTpqhNmza6/fbbL6u/sjw35en39H+5+86ZM0fdu3dXp06dNHHiRDVv3lyHDx/W+++/r/nz5ysoKEh//OMfnce855575OvrqxYtWlz03Mv75+Lx48fVs2dP3XnnnWrZsqWCgoKc90coaRkoAACA0iAMBwAAtlq7dq2eeeYZLVu2TDNmzFBAQIAaN26sP/3pT+W69EZ5uOaaa/Tpp59q6tSpGj58uAoLC9WmTRu9//77xW6oV9527twp6eySIM8//7yks7Myr7rqKj322GMaN27c75qxGxQUdFn9t2vXzmX71VdfraVLl+r222/XPffco9WrV5fLHwUu93Vxue1Onjwpqfiax+fbvn27JGnVqlVKTExUbGysLMtSr169lJqaqqioqAvu265dO2VmZqp69eplvu7WrVtr9erVevXVV3Xy5EnVqVNH3bt31/Lly9WhQweXtqNGjVKXLl30wgsv6Pnnn9cvv/wih8Ohhg0bqmvXrtqwYYN69erlbN+qVSvt3LlTTz75pB5//HFlZmaqVq1auvLKK3XDDTdc8Jzi4uL04IMPqlWrVurUqVOx71/uc1sapX2vrVmzRtOmTVNiYqIcDocGDRqkuXPnXvYs67I+N+Xl9/R/ufu2adNGqampmjp1qiZNmqQTJ04oLCxMvXr1cj5P1157rSZNmqSlS5dq4cKFKiwsLPEmpOcq75+L/v7+6tSpk5YvX64ff/xReXl5aty4sR599NHLuoksAADAxTisogUIAQAAAEMlJSVp4MCB+vrrr52zX0vyf//3f5o3b56OHz9ebG12lOxyn1sAAADAbmVbuBAAAACoQDZu3KihQ4deMqzdvn272rVrRxBeCpf73AIAAAB2Y2Y4AAAAIMmyLNWuXVv33Xef5syZY/fpAAAAAChnhOEAAAAAAAAAAOOxTAoAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAGC4pKUnTpk2z+zQAAACACm3atGlyOBx2n0aZPP3001q7dq3dpwEAtiMMBwDDJSUlKSEhwe7TAAAAAGATwnAAOIswHADgZFmWfvvtN7tPAwAAAIBNfvvtN1mWZfdpAIBbEIYDgAcNHz5cERERxbaf/5FLh8Ohv/71r5o/f76uuuoq+fn5qVWrVlq1apXLfqdPn9YjjzyiyMhI+fv7q06dOmrfvr3efPNNZ3+vvPKK85hFXz/++KNLP6+++qqioqLk5+enpUuXSpK+++473XnnnapXr578/PwUFRXlPFaRnJwcPfzww2rbtq2Cg4NVp04ddenSRe+9916xayzq6/XXX1eLFi0UEBCg9u3ba+vWrbIsS88++6wiIyNVo0YN9erVS99//32Zn2cAAADg9/jHP/6htm3bys/PT5GRkfrb3/5WrE1OTo4mTZqkyMhIVatWTQ0aNNDo0aP166+/OttMmDBBwcHBKigocG4bM2aMHA6Hnn32Wee2rKwsValSRS+99JIk6bPPPpPD4dCbb76pyZMnq379+qpZs6auv/567d+/3+U8du3apYEDBzrH7fXr19eAAQP0888/Szo7Dj916pSWLl3q/PfAtddeK0lasmSJHA6HPv74Y91333264oorFBgYqNzcXEnS6tWr1aVLF1WvXl01atRQ3759tWvXLpf+t2/frqFDhyoiIkIBAQGKiIjQHXfcof/85z8u7Yr6+vTTTzVy5EjVrVtXNWvW1N13361Tp04pIyNDt99+u2rVqqXw8HA98sgjysvLK2XlAODiqtp9AgCAkr3//vvauHGjpk+frurVq2vevHm64447VLVqVd16662SpPHjx2v58uWaMWOGrr76ap06dUp79uxRVlaWJGnKlCk6deqU3n77bW3ZssV57PDwcOf/r127Vps2bdITTzyhsLAw1atXT/v27VPXrl3VuHFjPffccwoLC9NHH32ksWPH6siRI5o6daokKTc3V0ePHtUjjzyiBg0a6MyZM/rkk09088036/XXX9fdd9/tck0ffPCBdu3apWeeeUYOh0OPPvqoBgwYoHvuuUc//PCDXn75ZR0/flzjx4/XLbfcot27d1fYdRkBAABQMW3YsEE33nijunTpolWrVqmgoECzZ8/W4cOHnW0sy9KQIUO0YcMGTZo0ST169NA333yjqVOnasuWLdqyZYv8/Px0/fXX629/+5tSU1PVpUsXSdInn3yigIAAJScna8KECc4+LcvS9ddf73Iujz32mLp166bXXntN2dnZevTRRzVo0CB9++238vHx0alTp9S7d29FRkbqlVdeUWhoqDIyMrRx40adOHFCkrRlyxb16tVLPXv21JQpUyRJNWvWdOnnvvvu04ABA7R8+XKdOnVKvr6+evrpp/X444/r3nvv1eOPP64zZ87o2WefVY8ePZSamqpWrVpJkn788Ue1aNFCQ4cOVZ06dZSenq7ExER16NBB+/btU0hIiEtfI0aM0M0336xVq1Zp165deuyxx5Sfn6/9+/fr5ptv1l/+8hd98sknmjVrlurXr6/x48eXY3UBVHoWAMBj7rnnHqtJkybFtk+dOtU690eyJCsgIMDKyMhwbsvPz7datmxpNW/e3LktOjraGjJkyEX7HD16tHWhH/eSrODgYOvo0aMu2/v27Ws1bNjQOn78uMv2v/71r5a/v3+x9ueeY15enhUXF2ddffXVxfoKCwuzTp486dy2du1aS5LVtm1bq7Cw0Ll97ty5liTrm2++uei1AQAAAOWtU6dOVv369a3ffvvNuS07O9uqU6eOc1y9fv16S5I1e/Zsl31Xr15tSbIWLFhgWZZlnTp1yqpWrZo1ffp0y7Is6+eff7YkWY8++qgVEBBg5eTkWJZlWSNHjrTq16/vPM7GjRstSdYNN9zgcvy///3vliRry5YtlmVZ1vbt2y1J1tq1ay96TdWrV7fuueeeYttff/11S5J19913u2xPS0uzqlatao0ZM8Zl+4kTJ6ywsDDr9ttvv2Bf+fn51smTJ63q1atbL7zwQrG+zj/mkCFDLEnWnDlzXLa3bdvWateu3UWvCwBKi2VSAMBLXXfddQoNDXU+9vHxUWxsrL7//nvnRx47duyoDz/8UBMnTtRnn31WpvW+e/Xqpdq1azsf5+TkaMOGDbrpppsUGBio/Px859cNN9ygnJwcbd261dn+rbfeUrdu3VSjRg1VrVpVvr6+WrRokb799ttiffXs2VPVq1d3Po6KipIk9e/f32UGeNH28z9aCQAAALjTqVOntG3bNt18883y9/d3bg8KCtKgQYOcjz/99FNJZ5clPNdtt92m6tWra8OGDZKkwMBAdenSRZ988okkKTk5WbVq1dKECRN05swZbd68WdLZ2eLnzwqXpMGDB7s8bt26taT/jZObN2+u2rVr69FHH9Wrr76qffv2lem6b7nlFpfHH330kfLz83X33Xe7/HvA399f11xzjT777DNn25MnT+rRRx9V8+bNVbVqVVWtWlU1atTQqVOnSvw3wcCBA10eF439BwwYUGw7/x4AUN4IwwHAS4WFhV1wW9EyKC+++KIeffRRrV27Vj179lSdOnU0ZMgQfffdd5fdz7lLphQdOz8/Xy+99JJ8fX1dvm644QZJ0pEjRyRJa9as0e23364GDRpoxYoV2rJli7Zt26b77rtPOTk5xfqqU6eOy+Nq1apddHtJxwAAAADc5dixYyosLLzoWFw6O2auWrWqrrjiCpc2DodDYWFhzvG6JF1//fXaunWrTp06pU8++US9evVS3bp1FRMTo08++UQHDx7UwYMHSwzD69at6/LYz89PkpyTYIKDg/X555+rbdu2euyxx/SHP/xB9evX19SpU0u13vb5/yYoWhKmQ4cOxf5NsHr1aue/ByTpzjvv1Msvv6wRI0boo48+UmpqqrZt26YrrriixMk6pfk3Af8eAFDeWDMcADzI39/feTOac507mCySkZFxwW1Fg+Lq1asrISFBCQkJOnz4sHOW+KBBg/Svf/3rss7p/DW5a9euLR8fHw0bNkyjR48ucZ/IyEhJ0ooVKxQZGanVq1e7HKekawQAAAC8Xe3ateVwOC46FpfOjsfz8/P13//+1yUQtyxLGRkZ6tChg3PbddddpylTpuiLL77Qhg0bnPffue666/Txxx87x9bXXXddmc75j3/8o1atWiXLsvTNN99oyZIlmj59ugICAjRx4sTLOsb5/yYoWuf77bffVpMmTS643/Hjx/XBBx9o6tSpLn0V3VsIALwNM8MBwIMiIiKUmZnpcvOdM2fO6KOPPirWdsOGDS7tCgoKtHr1ajVr1kwNGzYs1j40NFTDhw/XHXfcof379+v06dOSis8euZTAwED17NlTu3btUuvWrdW+fftiX0VhvMPhULVq1VwGzxkZGXrvvfcuqy8AAADAm1SvXl0dO3bUmjVrXGYlnzhxQuvWrXM+LgquV6xY4bL/O++8o1OnTrkE2x07dlTNmjU1d+5cZWRkqHfv3pLOzhjftWuX/v73v6tVq1aqX7/+7zp3h8OhNm3a6Pnnn1etWrW0c+dO5/f8/PxKtaRi3759VbVqVf373/8u8d8D7du3d/ZpWZbz3xxFXnvtNRUUFPyu6wEAd2BmOAB4UGxsrJ544gkNHTpUEyZMUE5Ojl588cUSB4ohISHq1auXpkyZourVq2vevHn617/+pVWrVjnbdOrUSQMHDlTr1q1Vu3Ztffvtt1q+fLm6dOmiwMBASWdnikjSrFmz1L9/f/n4+Kh169bOjyOW5IUXXlD37t3Vo0cPPfDAA4qIiNCJEyf0/fffa926dc41EgcOHKg1a9YoPj5et956q3766Sc9+eSTCg8PL9VSLQAAAIC3ePLJJ9WvXz/17t1bDz/8sAoKCjRr1ixVr17dOdu5d+/e6tu3rx599FFlZ2erW7du+uabbzR16lRdffXVGjZsmPN4Pj4+uuaaa7Ru3TpFRkaqWbNmkqRu3brJz89PGzZs0NixY8t0rh988IHmzZunIUOGqGnTprIsS2vWrNGvv/7qDN2ls/8m+Oyzz7Ru3TqFh4crKChILVq0uOBxIyIiNH36dE2ePFk//PCD+vXrp9q1a+vw4cNKTU11fkK1Zs2a+tOf/qRnn31WISEhioiI0Oeff65FixapVq1aZbomAHAnwnAA8KDIyEi99957euyxx3TrrbcqPDxc48eP13//+18lJCS4tB08eLD+8Ic/6PHHH1daWpqaNWumlStXKjY21tmmV69eev/99/X888/r9OnTatCgge6++25NnjzZ2ebOO+/Ul19+qXnz5mn69OmyLEsHDx5URETEBc+zVatW2rlzp5588kk9/vjjyszMVK1atXTllVc61w2XpHvvvVeZmZl69dVXtXjxYjVt2lQTJ07Uzz//XOx6AAAAgIqgd+/eWrt2rR5//HHFxsYqLCxM8fHx+u2335xjXIfDobVr12ratGl6/fXX9dRTTykkJETDhg3T008/XWym9PXXX69169a5rAvu5+en7t27Kzk5ucT1wi/HlVdeqVq1amn27Nn65ZdfVK1aNbVo0UJLlizRPffc42z3wgsvaPTo0Ro6dKhOnz5d7CaYJZk0aZJatWqlF154QW+++aZyc3MVFhamDh06aNSoUc52b7zxhh588EH93//9n/Lz89WtWzclJycXuyEmAHgDh2VZlt0nAQBw5XA4NHr0aL388st2nwoAAAAAAIARWDMcAAAAAAAAAGA8wnAAAAAAAAAAgPFYMxwAvBArWAEAAAAAAJQv22eGz5s3T5GRkfL391dMTIw2bdp00favvPKKoqKiFBAQoBYtWmjZsmUu31+yZIkcDkexr5ycHHdeBgAAAID/jzE+AAAAvJGtM8NXr16tcePGad68eerWrZvmz5+v/v37a9++fWrcuHGx9omJiZo0aZIWLlyoDh06KDU1VSNHjlTt2rU1aNAgZ7uaNWtq//79Lvv6+/u7/XoAAACAyo4xPgAAALyVw7Lxs/idOnVSu3btlJiY6NwWFRWlIUOGaObMmcXad+3aVd26ddOzzz7r3DZu3Dht375dmzdvlnR21si4ceP066+/uv38AQAAALhijA8AAABvZdvM8DNnzmjHjh2aOHGiy/Y+ffooJSWlxH1yc3OLzf4ICAhQamqq8vLy5OvrK0k6efKkmjRpooKCArVt21ZPPvmkrr766gueS25urnJzc52PCwsLdfToUdWtW1cOh6OslwgAAAAvY1mWTpw4ofr166tKFdtXDDQOY3wAAAB4WmnG+LaF4UeOHFFBQYFCQ0NdtoeGhiojI6PEffr27avXXntNQ4YMUbt27bRjxw4tXrxYeXl5OnLkiMLDw9WyZUstWbJEf/zjH5Wdna0XXnhB3bp109dff60rr7yyxOPOnDlTCQkJ5X6NAAAA8E4//fSTGjZsaPdpGIcxPgAAAOxyOWN8W9cMl1RsVoZlWRecqTFlyhRlZGSoc+fOsixLoaGhGj58uGbPni0fHx9JUufOndW5c2fnPt26dVO7du300ksv6cUXXyzxuJMmTdL48eOdj48fP67GjRvrwIEDqlOnzu+9RHihvLw8bdy4UT179nTONoJZqLH5qLHZqK/57KrxiRMnFBkZqaCgII/1WRkxxocd+N1hPmpsPmpsNuprvoowxrctDA8JCZGPj0+xGSKZmZnFZpIUCQgI0OLFizV//nwdPnxY4eHhWrBggYKCghQSElLiPlWqVFGHDh303XffXfBc/Pz85OfnV2x7nTp1VLdu3VJcFSqKvLw8BQYGqm7duvwANhQ1Nh81Nhv1NZ9dNS7qi2Uy3IMxPuzE7w7zUWPzUWOzUV/zVYQxvm0LJVarVk0xMTFKTk522Z6cnKyuXbtedF9fX181bNhQPj4+WrVqlQYOHHjB9WAsy9Lu3bsVHh5ebucOAAAAoDjG+AAAAPBmti6TMn78eA0bNkzt27dXly5dtGDBAqWlpWnUqFGSzn608dChQ1q2bJkk6cCBA0pNTVWnTp107NgxzZkzR3v27NHSpUudx0xISFDnzp115ZVXKjs7Wy+++KJ2796tV155xZZrBAAAACoTxvgAAADwVraG4bGxscrKytL06dOVnp6u6OhoJSUlqUmTJpKk9PR0paWlOdsXFBToueee0/79++Xr66uePXsqJSVFERERzja//vqr/vKXvygjI0PBwcG6+uqr9cUXX6hjx46evjwAAACg0mGMDwAAAG9l+w004+PjFR8fX+L3lixZ4vI4KipKu3btuujxnn/+eT3//PPldXoAAAAASokxPgAAALyRbWuGAwAAAAAAAADgKYThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxHGA4AAAAAAAAAMB5hOAAAAAAAAADAeIThAAAAAAAAAADjEYYDAAAAAAAAAIxnexg+b948RUZGyt/fXzExMdq0adNF27/yyiuKiopSQECAWrRooWXLll2w7apVq+RwODRkyJByPmsAAAAAF8IYHwAAAN6oqp2dr169WuPGjdO8efPUrVs3zZ8/X/3799e+ffvUuHHjYu0TExM1adIkLVy4UB06dFBqaqpGjhyp2rVra9CgQS5t//Of/+iRRx5Rjx49PHU5AAAAQKXHGB8AAADeytaZ4XPmzFFcXJxGjBihqKgozZ07V40aNVJiYmKJ7ZcvX677779fsbGxatq0qYYOHaq4uDjNmjXLpV1BQYH+/Oc/KyEhQU2bNvXEpQAAAAAQY3wAAAB4L9tmhp85c0Y7duzQxIkTXbb36dNHKSkpJe6Tm5srf39/l20BAQFKTU1VXl6efH19JUnTp0/XFVdcobi4uEt+JLPouLm5uc7H2dnZkqS8vDzl5eWV6rpQMRTVlfqaixqbjxqbjfqaz64a85pyL8b4sBO/O8xHjc1Hjc1Gfc1XEcb4toXhR44cUUFBgUJDQ122h4aGKiMjo8R9+vbtq9dee01DhgxRu3bttGPHDi1evFh5eXk6cuSIwsPD9eWXX2rRokXavXv3ZZ/LzJkzlZCQUGz7xo0bFRgYWKrrQsWSnJxs9ynAzaix+aix2aiv+Txd49OnT3u0v8qGMT68Ab87zEeNzUeNzUZ9zefNY3xb1wyXJIfD4fLYsqxi24pMmTJFGRkZ6ty5syzLUmhoqIYPH67Zs2fLx8dHJ06c0F133aWFCxcqJCTkss9h0qRJGj9+vPNxdna2GjVqpJ49e6pu3bpluzB4tby8PCUnJ6t3797O2UYwCzU2HzU2G/U1n101LpodDPdijA878LvDfNTYfNTYbNTXfBVhjG9bGB4SEiIfH59iM0QyMzOLzSQpEhAQoMWLF2v+/Pk6fPiwwsPDtWDBAgUFBSkkJETffPONfvzxR5cb7RQWFkqSqlatqv3796tZs2bFjuvn5yc/P79i2319fXlzGo4am48am48am436ms/TNeb15F6M8eENqLH5qLH5qLHZqK/5vHmMb9sNNKtVq6aYmJhi0+aTk5PVtWvXi+7r6+urhg0bysfHR6tWrdLAgQNVpUoVtWzZUv/85z+1e/du59fgwYPVs2dP7d69W40aNXLnJQEAAACVGmN8AAAAeDNbl0kZP368hg0bpvbt26tLly5asGCB0tLSNGrUKElnP9p46NAhLVu2TJJ04MABpaamqlOnTjp27JjmzJmjPXv2aOnSpZIkf39/RUdHu/RRq1YtSSq2HQAAAED5Y4wPAAAAb2VrGB4bG6usrCxNnz5d6enpio6OVlJSkpo0aSJJSk9PV1pamrN9QUGBnnvuOe3fv1++vr7q2bOnUlJSFBERYdMVAAAAADgXY3wAAAB4K9tvoBkfH6/4+PgSv7dkyRKXx1FRUdq1a1epjn/+MQAAAAC4F2N8AAAAeCPb1gwHAAAAAAAAAMBTCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGM/2MHzevHmKjIyUv7+/YmJitGnTpou2f+WVVxQVFaWAgAC1aNFCy5Ytc/n+mjVr1L59e9WqVUvVq1dX27ZttXz5cndeAgAAAIBzMMYHAACAN6pqZ+erV6/WuHHjNG/ePHXr1k3z589X//79tW/fPjVu3LhY+8TERE2aNEkLFy5Uhw4dlJqaqpEjR6p27doaNGiQJKlOnTqaPHmyWrZsqWrVqumDDz7Qvffeq3r16qlv376evkQAAACgUmGMDwAAAG9l68zwOXPmKC4uTiNGjFBUVJTmzp2rRo0aKTExscT2y5cv1/3336/Y2Fg1bdpUQ4cOVVxcnGbNmuVsc+211+qmm25SVFSUmjVrpgcffFCtW7fW5s2bPXVZAAAAQKXFGB8AAADeyraZ4WfOnNGOHTs0ceJEl+19+vRRSkpKifvk5ubK39/fZVtAQIBSU1OVl5cnX19fl+9ZlqVPP/1U+/fvdxlMl3Tc3Nxc5+Ps7GxJUl5envLy8kp1XagYiupKfc1Fjc1Hjc1Gfc1nV415TbkXY3zYid8d5qPG5qPGZqO+5qsIY3zbwvAjR46ooKBAoaGhLttDQ0OVkZFR4j59+/bVa6+9piFDhqhdu3basWOHFi9erLy8PB05ckTh4eGSpOPHj6tBgwbKzc2Vj4+P5s2bp969e1/wXGbOnKmEhIRi2zdu3KjAwMDfcZXwdsnJyXafAtyMGpuPGpuN+prP0zU+ffq0R/urbBjjwxvwu8N81Nh81Nhs1Nd83jzGt3XNcElyOBwujy3LKratyJQpU5SRkaHOnTvLsiyFhoZq+PDhmj17tnx8fJztgoKCtHv3bp08eVIbNmzQ+PHj1bRpU1177bUlHnfSpEkaP36883F2drYaNWqknj17qm7dur//IuF18vLylJycrN69exebbQQzUGPzUWOzUV/z2VXjotnBcC/G+LADvzvMR43NR43NRn3NVxHG+LaF4SEhIfLx8Sk2QyQzM7PYTJIiAQEBWrx4sebPn6/Dhw8rPDxcCxYsUFBQkEJCQpztqlSpoubNm0uS2rZtq2+//VYzZ8684EDZz89Pfn5+xbb7+vry5jQcNTYfNTYfNTYb9TWfp2vM68m9GOPDG1Bj81Fj81Fjs1Ff83nzGN+2G2hWq1ZNMTExxabNJycnq2vXrhfd19fXVw0bNpSPj49WrVqlgQMHqkqVC1+KZVku6wUCAAAAKH+M8QEAAODNbF0mZfz48Ro2bJjat2+vLl26aMGCBUpLS9OoUaMknf1o46FDh7Rs2TJJ0oEDB5SamqpOnTrp2LFjmjNnjvbs2aOlS5c6jzlz5ky1b99ezZo105kzZ5SUlKRly5Zd8O71AAAAAMoPY3wAAAB4K1vD8NjYWGVlZWn69OlKT09XdHS0kpKS1KRJE0lSenq60tLSnO0LCgr03HPPaf/+/fL19VXPnj2VkpKiiIgIZ5tTp04pPj5eP//8swICAtSyZUutWLFCsbGxnr48AAAAoNJhjA8AAABvZfsNNOPj4xUfH1/i95YsWeLyOCoqSrt27bro8WbMmKEZM2aU1+kBAAAAKCXG+AAAAPBGtq0ZDgAAAAAAAACApxCGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHiE4QAAAAAAAAAA4xGGAwAAAAAAAACMRxgOAAAAAAAAADAeYTgAAAAAAAAAwHhV7T4BoLIoKLSUevCoMk/kqF6QvzpG1pFPFYfdpwUAAAAAAABUCoThgAes35OuhHX7lH48x7ktPNhfUwe1Ur/ocBvPDAAAAAAAAKgcWCYFcLP1e9L1wIqdLkG4JGUcz9EDK3Zq/Z50m84MAAAAAAAAqDwIwwE3Kii0lLBun6wSvle0LWHdPhUUltQCAAAAAAAAQHkhDAfcKPXg0WIzws9lSUo/nqPUg0c9d1IAAAAAAABAJUQYDrhR5okLB+FlaQcAAAAAAACgbAjDATeqF+Rfru0AAAAAAAAAlI3tYfi8efMUGRkpf39/xcTEaNOmTRdt/8orrygqKkoBAQFq0aKFli1b5vL9hQsXqkePHqpdu7Zq166t66+/Xqmpqe68BFQwBYWWc1mS1INH3bped8fIOgoP9pfjAt93SAoP9lfHyDpuOwcAAABPY4wPAAAAb2RrGL569WqNGzdOkydP1q5du9SjRw/1799faWlpJbZPTEzUpEmTNG3aNO3du1cJCQkaPXq01q1b52zz2Wef6Y477tDGjRu1ZcsWNW7cWH369NGhQ4c8dVnwYuv3pKv7rE9139JtkqT7lm5T91mfav2edLf051PFoamDWklSsUC86PHUQa3kU+VCcTkAAEDFwhgfAAAA3srWMHzOnDmKi4vTiBEjFBUVpblz56pRo0ZKTEwssf3y5ct1//33KzY2Vk2bNtXQoUMVFxenWbNmOdusXLlS8fHxatu2rVq2bKmFCxeqsLBQGzZs8NRlwUut35OuB1bsLHZDy4zjOXpgxU63BeL9osOVeFc7hQW7LoUSFuyvxLvaqV90uFv6BQAAsANjfAAAAHirqnZ1fObMGe3YsUMTJ0502d6nTx+lpKSUuE9ubq78/V0DxYCAAKWmpiovL0++vr7F9jl9+rTy8vJUp86Fl6HIzc1Vbm6u83F2drYkKS8vT3l5eZd9TfBeBYWWZv5jr6r5nF0Sxa+K638dkmb+Y6+uvbKuW2ZpX9ciRNde2UM7/nNMR07mKqSGn2Ka1JZPFQevMTcpel49+fwWFFol1hjuYUeN4TnU13x21ZjXlHsxxoed+N1hPmpsPmpsNuprvoowxrctDD9y5IgKCgoUGhrqsj00NFQZGRkl7tO3b1+99tprGjJkiNq1a6cdO3Zo8eLFysvL05EjRxQeXnyG7cSJE9WgQQNdf/31FzyXmTNnKiEhodj2jRs3KjAwsJRXBm81vmXxbU+2Lzzn0Sl9tP5Dj5zLEUkffeuRriq95ORkW/qlxp5jV43hGdTXfJ6u8enTpz3aX2XDGB/egN8d5qPG5qPGZqO+5vPmMb5tYXgRh8N11qRlWcW2FZkyZYoyMjLUuXNnWZal0NBQDR8+XLNnz5aPj0+x9rNnz9abb76pzz77rNhsk3NNmjRJ48ePdz7Ozs5Wo0aN1LNnT9WtW7eMV4aL+eTbw3rmw38pI/t/S5aE1fTXxP4tdX1U6EX2LJukf6br/975xvnYr4qlJ9sXasr2Ksot/N/rbfYtrXXDH1m2xAR5eXlKTk5W7969S5xRVp4++fawHlq9W+ffirXolfV8bFu3vK4rO0/WGJ5Hfc1nV42LZgfDvRjjww787jAfNTYfNTYb9TVfRRjj2xaGh4SEyMfHp9gMkczMzGIzSYoEBARo8eLFmj9/vg4fPqzw8HAtWLBAQUFBCgkJcWn7t7/9TU8//bQ++eQTtW7d+qLn4ufnJz8/v2LbfX19eXO6wfo96Yp/42v9b4GSs9KO5Sr+ja/dso52veDqyi0o/g+w3EKHy/Z6wdWpuWHc/T4uKLQ0/R/7lVPC60s6+wqf/o/96hPdgCVT3ISf1WajvubzdI15PbkXY3x4A2psPmpsPmpsNuprPm8e49t2A81q1aopJiam2LT55ORkde3a9aL7+vr6qmHDhvLx8dGqVas0cOBAVanyv0t59tln9eSTT2r9+vVq3769W84fZVNQaClh3b5iM2glObclrNungsKSWpRdx8g6Cg/214WiSIek8GB/dYy88LqTFVVBoaUt/87Se7sPacu/s8r9ua3sUg8eLXZT1nNZktKP5yj14FHPnRQAADZhjA8AAABvZusyKePHj9ewYcPUvn17denSRQsWLFBaWppGjRol6exHGw8dOqRly5ZJkg4cOKDU1FR16tRJx44d05w5c7Rnzx4tXbrUeczZs2drypQpeuONNxQREeGclVKjRg3VqFHD8xcJF6UJDrs0K7+Pr/pUcWjqoFZ6YMXOYoF40eOpg1oZN3N3/Z50Jazb5/Kchwf7a+qgVuU++74kBYWWUg8eVeaJHNULOvvHBk88x0X9Smdfc52b13Nbv5knLvx6Lku7srDreQYAoCSM8QEAAOCtbA3DY2NjlZWVpenTpys9PV3R0dFKSkpSkyZNJEnp6elKS0tzti8oKNBzzz2n/fv3y9fXVz179lRKSooiIiKcbebNm6czZ87o1ltvdelr6tSpmjZtmicuCxdhZ3DYLzpciXe1U8K6fTp68jfn9jAPhsOetH5Puh5YsbPYLPyM4zl6YMVOtyxHc37/dgTxRf0ePfmbZneU7lu6TXVqBLit33pBF16rtCztSsvuP3gAAHA+xvgAAADwVrbfQDM+Pl7x8fElfm/JkiUuj6OiorRr166LHu/HH38spzODO9gdHPaLDlfvVmHa+n2mjny7VYvv6eDWWcN2udRyNA6dXY6md6swt1y7XUH8uf36nXO/LXf2W7QET8bxnBKfb4fO/sHFHUvw2P0HDwAALoQxPgAAALyRbWuGo3LyhrW7fao4nMc3dTkJO9extmtdeLv6LVqCR5JHl+Cx63oBAAAAAAAqKsJweJRdwWFlY+dyNHYF8Xb+AaBoCZ6wYNdPNIQF+7ttdjY37gQAAAAAACgd25dJQeVz7trd54Z5pq7dbQc7l6OxK4i3+0aWRUvweOpGlnZfLwAAAAAAQEVDGA5beDo4rGzsXMfariDe7vXopbOffOjSrK7bjn8ub7heAAAAAACAioRlUmCbouDwxrYN1KVZXYLwcmTncjR2rQvvDevRe5I3XG9BoaUt/87Se7sPacu/s1ifHAAAAAAAeDXCcMBQdqxjLdkXxFe29ejtvt71e9LVfdanumPhVj24arfuWLhV3Wd9qvV70t3S3/kKCi3neuipB48SxAMAAAAAgEsiDAcM1i86XJsf7aU3R3bWC0Pb6s2RnbX50V5uX5fdriDern7tYtf1rt+TrgdW7Cx2A8+M4zl6YMVOtwfiRUH8fUu3SZLuW7rNo0E8AAAAAAComFgzHDCcJ9exPpdd68IX9bv1+0wd+XarFt/TQZ2b1zNmRvj5PP08FxRaSli3r8S16C2dnZWesG6fercKc8s5FAXxliQ/n/9tLwriTfyjBwAAAAAAKB+E4QDcxq4g3qeKQx0j6yjpW1WKG7N68nlOPXi02Izwc1mS0o/nKPXg0XI/J7uDeAAAAAAAULGxTAoA4LJlnrhwEF6WdqVRmiAeAAAAAADgfIThAIDLVi/I/9KNStGuNOwM4gEAAAAAQMVHGA4AuGwdI+soPNhfF1qExCEpPPjsuuXlzc4gHgAAAAAAVHyE4QCAy+ZTxaGpg1pJUrFAvOjx1EGt3LJmt51BPAAAAAAAqPgIwwEApdIvOlyJd7VTWLDrDOywYH8l3tVO/aLD3dKvnUE8AAAAAACo+KrafQIAgIqnX3S4ercKU+rBo8o8kaN6QWdnZLs7iC4K4hPW7dPRk785t4cF+2vqoFZuC+IBAAAAAEDFRxgOACgTnyoOdWlW1+P9FgXxW7/P1JFvt2rxPR3UuXk9ZoQDAAAAAICLYpkUAECF41PF4Vwb3BMz0gEAAAAAQMVHGA4AAAAAAAAAMB7LpAAAcJkKCi2Pr5MOAAAAAADKB2E4AACXYf2edCWs26f04znObeHcuBMAAAAAgAqDZVIAALiE9XvS9cCKnS5BuCRlHM/RAyt2av2edJvODAAAAAAAXC7CcAAALqKg0FLCun2ySvhe0baEdftUUFhSCwAAAAAA4C0IwwEAuIjUg0eLzQg/lyUp/XiOUg8e9dxJAQAAAACAUmPNcC9h503ZuCEcAFxY5okLB+FlaVcW/JwGAAAAAOD3Iwz3AnbelI0bwgHAxdUL8i/XdqVl589pQngAAAAAgElYJsVmdt6UjRvCAcCldYyso/Bgf10oAnbobDjdMbJOufdt9++I7rM+1R0Lt+rBVbt1x8Kt6j7rU343AAAAAAAqLMJwG9l5UzZuCAcAl8enikNTB7WSpGKBeNHjqYNalfuMaTt/TvPHUrhb0acOpLPr8jPeAAAAAOAJhOE2svOmbNwQDgAuX7/ocCXe1U5hwa5LoYQF+yvxrnZuWa7Erp/T/LEU7lb0qYP7lm6TJN23dBufOgAAAADgEawZbiM7b8rmDTeEA4CKpF90uHq3CvPYGtp2/ZwuTQjfpVndcu27yPmzhjs3r8da5W7i6XXhiz51YEny8/nf9qJPHbjrj0sAAAAAIBGG28rOm7LZfUM4AKiIfKo43BYAn8+un9N2/7G06IahR0/+ptkdz84arlMjgBs7u4Gnb856qU8dOHT2Uwe9W4Xxxw8AAAAAbsEyKTay86ZsdvYNALg0u35O2/nHUtYq9xw7nmuWaAMAAABgN8JwG9l1Uza7+wYAXJpdP6ftCuFZq9xz7Hqu7f7UAQAAAAAQhtvMjpuyeUPfAIBLs+PntF0hfGWfNVxQaGnLv7P03u5D2vLvLLeG/nY91yzRBgAAAMBurBnuBTx9UzZv6RsAcGl2/JwuCuHPX086zI3rSVfmWcOeXrvbrue66FMHGcdzSpyV7tDZ1xhLtAEAAABwF8JwL+HJm7J5U98AgEuz4+e0p0N4b5k1XFBoefQPD0Vrd58fDhet3e2OTwDY9VwXferggRU7WaINAAAAgC1sXyZl3rx5ioyMlL+/v2JiYrRp06aLtn/llVcUFRWlgIAAtWjRQsuWLXP5/t69e3XLLbcoIiJCDodDc+fOdePZAwBgrqIQ/sa2DdSlWV23hpTecGPn9XvS1X3Wp7pj4VY9uGq37li4Vd1nfeq2G3fatXa3nc81S7RVHozxAQAA4I1sDcNXr16tcePGafLkydq1a5d69Oih/v37Ky0trcT2iYmJmjRpkqZNm6a9e/cqISFBo0eP1rp165xtTp8+raZNm+qZZ55RWFiYpy4FAAD8Dnbf2Llohvb5a2kXzdB2RyBu19rddj/X/aLDtfnRXlp8TwdJ0uJ7Omjzo70Iwg3CGB8AAADeytYwfM6cOYqLi9OIESMUFRWluXPnqlGjRkpMTCyx/fLly3X//fcrNjZWTZs21dChQxUXF6dZs2Y523To0EHPPvushg4dKj8/P09dCgAA+J3smjVs1wxtO9dJt3uGtk8Vh3PmOfcqMQ9jfAAAAHgr29YMP3PmjHbs2KGJEye6bO/Tp49SUlJK3Cc3N1f+/q7/aAsICFBqaqry8vLk6+vrtvMFAADuV7RW+dbvM3Xk261afE8HdW5ez61haWlmaJfn2u12r5POTbThDozxAQAA4M1sC8OPHDmigoIChYaGumwPDQ1VRkZGifv07dtXr732moYMGaJ27dppx44dWrx4sfLy8nTkyBGFh5dtFlNubq5yc3Odj7OzsyVJeXl5ysvLK9Mx4d2K6kp9zUWNzUeNzXZ1wyAlf3v2v4UF+SoscF9fmcdPyc/n0rO+M4+fUl5ezXLr9+qGQWpS20+Hs3NKnJXukBRa019XNwxy6+u8feOaks5el7uf63PZ9R7mZ4Z7McaHnRgbmI8am48am436mq8ijPFtC8OLOByus48syyq2rciUKVOUkZGhzp07y7IshYaGavjw4Zo9e7Z8fHzKfA4zZ85UQkJCse0bN25UYGBgmY8L75ecnGz3KcDNqLH5qLHZPFXf2R0vo9FPu5T0065y7Xd8y0u1OKWP1n9Yrn16G0+/h0+fPu3R/iorxviwE2MD81Fj81Fjs1Ff83nzGN+2MDwkJEQ+Pj7FZohkZmYWm0lSJCAgQIsXL9b8+fN1+PBhhYeHa8GCBQoKClJISEiZz2XSpEkaP36883F2drYaNWqknj17qm7d8vs4NLxHXl6ekpOT1bt3bz56ayhqbD5qbDZP1reg0FLfuV9ccob2R+P+5JYlRD759rCe+fBfysj+31ItYTX9NbF/S10fVfKYyAR2vYeLZgfDPRjjw06MDcxHjc1Hjc1Gfc1XEcb4toXh1apVU0xMjJKTk3XTTTc5tycnJ+vGG2+86L6+vr5q2LChJGnVqlUaOHCgqlQp+71A/fz8SrwRj6+vL29Ow1Fj81Fj81Fjs3mivr6SJg34gx5YsVOSXALxouh70oA/yN+vmlv679+6ofpEN6i0a3d7+j3Mzwv3YowPb0CNzUeNzUeNzUZ9zefNY3xbl0kZP368hg0bpvbt26tLly5asGCB0tLSNGrUKElnZ3McOnRIy5YtkyQdOHBAqamp6tSpk44dO6Y5c+Zoz549Wrp0qfOYZ86c0b59+5z/f+jQIe3evVs1atRQ8+bNPX+RAADA6/WLDlfiXe2UsG6fy800w4L9NXVQK/WLLtuaxZfLp4qjXG/OCdiJMT4AAAC8la1heGxsrLKysjR9+nSlp6crOjpaSUlJatKkiSQpPT1daWlpzvYFBQV67rnntH//fvn6+qpnz55KSUlRRESEs80vv/yiq6++2vn4b3/7m/72t7/pmmuu0WeffeapSwMAABVMv+hw9W4VVmlnaAPlhTE+AAAAvJXtN9CMj49XfHx8id9bsmSJy+OoqCjt2nXxG1dFRETIskpa8RMAAODimKENlA/G+AAAAPBGZV+EDwAAAAAAAACACoIwHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxbA/D582bp8jISPn7+ysmJkabNm26aPtXXnlFUVFRCggIUIsWLbRs2bJibd555x21atVKfn5+atWqld599113nT4AAACA8zDGBwAAgDeyNQxfvXq1xo0bp8mTJ2vXrl3q0aOH+vfvr7S0tBLbJyYmatKkSZo2bZr27t2rhIQEjR49WuvWrXO22bJli2JjYzVs2DB9/fXXGjZsmG6//XZ99dVXnrosAAAAoNJijA8AAABvZWsYPmfOHMXFxWnEiBGKiorS3Llz1ahRIyUmJpbYfvny5br//vsVGxurpk2baujQoYqLi9OsWbOcbebOnavevXtr0qRJatmypSZNmqTrrrtOc+fO9dBVAQAAAJUXY3wAAAB4q1KH4ddff70+/PDDYtsLCgpKdZwzZ85ox44d6tOnj8v2Pn36KCUlpcR9cnNz5e/v77ItICBAqampysvLk3R21sj5x+zbt+8FjwkAAABUdozxAQAAUBlULe0O27dvV0REhCTp4MGDioyMlCQtWrRImzZt0vLlyy/rOEeOHFFBQYFCQ0NdtoeGhiojI6PEffr27avXXntNQ4YMUbt27bRjxw4tXrxYeXl5OnLkiMLDw5WRkVGqY0pnB+C5ubnOx9nZ2ZKkvLw85wAcZimqK/U1FzU2HzU2G/U1n1015jVVMsb4MAG/O8xHjc1Hjc1Gfc1XEcb4pQ7Dz5w5o6CgIElSmzZttHv3bjVt2lRdu3bVtGnTSns4ORwOl8eWZRXbVmTKlCnKyMhQ586dZVmWQkNDNXz4cM2ePVs+Pj5lOqYkzZw5UwkJCcW2b9y4UYGBgaW5HFQwycnJdp8C3Iwam48am436ms/TNT59+rRH+6soGOPDJPzuMB81Nh81Nhv1NZ83j/FLHYY3b95cX331lYKCgnTq1Cn9+uuvkqSgoCAdPXr0so8TEhIiHx+fYrM5MjMzi836KBIQEKDFixdr/vz5Onz4sMLDw7VgwQIFBQUpJCREkhQWFlaqY0rSpEmTNH78eOfj7OxsNWrUSD179lTdunUv+5pQceTl5Sk5OVm9e/eWr6+v3acDN6DG5qPGZqO+5rOrxkWzg+GKMT5MwO8O81Fj81Fjs1Ff81WEMX6pw/D4+HiNGDFCTZo0UZs2bbRgwQK9+uqr2rRp00UHo+erVq2aYmJilJycrJtuusm5PTk5WTfeeONF9/X19VXDhg0lSatWrdLAgQNVpcrZ5c+7dOmi5ORkPfTQQ872H3/8sbp27XrB4/n5+cnPz6/Efnhzmo0am48am48am436ms/TNeb1VDLG+DAJNTYfNTYfNTYb9TWfN4/xSx2Gjxo1SldccYW+++47jRw5UkOHDlXTpk2Vnp6uv/71r6U61vjx4zVs2DC1b99eXbp00YIFC5SWlqZRo0ZJOjub49ChQ1q2bJkk6cCBA0pNTVWnTp107NgxzZkzR3v27NHSpUudx3zwwQf1pz/9SbNmzdKNN96o9957T5988ok2b95c2ksFAAAAKgXG+AAAAKgMSh2GS9Itt9zi/P8PP/xQ7777rs6cOaOhQ4eW6jixsbHKysrS9OnTlZ6erujoaCUlJalJkyaSpPT0dKWlpTnbFxQU6LnnntP+/fvl6+urnj17KiUlxXmzH0nq2rWrVq1apccff1xTpkxRs2bNtHr1anXq1KkslwoAAABUCozxAQAAYLoyheEuB6haVbfddluZ94+Pj1d8fHyJ31uyZInL46ioKO3ateuSx7z11lt16623lvmcAAAAgMqMMT4AAABMVMXuEwAAAAAAAAAAwN0IwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPGq2n0CAAAAAGCigkJLqQePKvNEjuoF+atjZB35VHEY3zcAAIC3IgwHAAAAgHK2fk+6EtbtU/rxHOe28GB/TR3USv2iw43tGwAAwJuxTAoAAAAAlKP1e9L1wIqdLmG0JGUcz9EDK3Zq/Z50I/sGAADwdoThAAAAAFBOCgotJazbJ6uE7xVtS1i3TwWFJbWouH0DAABUBIThAAAAAFBOUg8eLTYr+1yWpPTjOUo9eNSovgEAACoCwnAAAAAAKCeZJy4cRpelXUXpGwAAoCIgDAcAAACAclIvyL9c21WUvgEAACoCwnAAAAAAKCcdI+soPNhfjgt83yEpPNhfHSPrGNU3AABARUAYDgAAAADlxKeKQ1MHtZKkYqF00eOpg1rJp8qFIuuK2TcAAEBFQBgOAAAAAOWoX3S4Eu9qp7Bg1+VIwoL9lXhXO/WLDjeybwAAAG9X1e4TAAAAAADT9IsOV+9WYUo9eFSZJ3JUL+js8iSemJVtZ98AAADejDAcAAAAANzAp4pDXZrVrXR9AwAAeCuWSQEAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxbA/D582bp8jISPn7+ysmJkabNm26aPuVK1eqTZs2CgwMVHh4uO69915lZWU5v5+Xl6fp06erWbNm8vf3V5s2bbR+/Xp3XwYAAACA/48xPgAAALyRrWH46tWrNW7cOE2ePFm7du1Sjx491L9/f6WlpZXYfvPmzbr77rsVFxenvXv36q233tK2bds0YsQIZ5vHH39c8+fP10svvaR9+/Zp1KhRuummm7Rr1y5PXRYAAABQaTHGBwAAgLeyNQyfM2eO4uLiNGLECEVFRWnu3Llq1KiREhMTS2y/detWRUREaOzYsYqMjFT37t11//33a/v27c42y5cv12OPPaYbbrhBTZs21QMPPKC+ffvqueee89RlAQAAAJUWY/zKraDQ0pZ/Z+m93Ye05d9ZKii07D4lAAAAp6p2dXzmzBnt2LFDEydOdNnep08fpaSklLhP165dNXnyZCUlJal///7KzMzU22+/rQEDBjjb5Obmyt/f32W/gIAAbd68+YLnkpubq9zcXOfj7OxsSWc/jpmXl1fqa4P3K6or9TUXNTYfNTYb9TWfXTXmNeVejPErt0++PaxnPvyXMrJznNvCavprYv+Wuj4q1O3987vDfNTYfNTYbNTXfBVhjO+wLMuWP9X/8ssvatCggb788kt17drVuf3pp5/W0qVLtX///hL3e/vtt3XvvfcqJydH+fn5Gjx4sN5++235+vpKku688059/fXXWrt2rZo1a6YNGzboxhtvVEFBgctg+FzTpk1TQkJCse1vvPGGAgMDy+FqAQAA4A1Onz6tO++8U8ePH1fNmjXtPh3jMMYHAACAp5VmjG/bzPAiDofD5bFlWcW2Fdm3b5/Gjh2rJ554Qn379lV6eromTJigUaNGadGiRZKkF154QSNHjlTLli3lcDjUrFkz3XvvvXr99dcveA6TJk3S+PHjnY+zs7PVqFEj9ezZU3Xr1i2Hq4S3ycvLU3Jysnr37u38RxbMQo3NR43NRn3NZ1eNi2YHw70Y41cuBYWW+s79wmVG+LkckkJr+uujcX+ST5WSXwflgd8d5qPG5qPGZqO+5qsIY3zbwvCQkBD5+PgoIyPDZXtmZqZCQ0v+CN3MmTPVrVs3TZgwQZLUunVrVa9eXT169NCMGTMUHh6uK664QmvXrlVOTo6ysrJUv359TZw4UZGRkRc8Fz8/P/n5+RXb7uvry5vTcNTYfNTYfNTYbNTXfJ6uMa8n92KMXzlt/3eW/nMsV2dj75L951iudv18Ql2auf8PEdTYfNTYfNTYbNTXfN48xrftBprVqlVTTEyMkpOTXbYnJye7fKTyXKdPn1aVKq6n7OPjI+nsbJNz+fv7q0GDBsrPz9c777yjG2+8sRzPHgAAAMD5GONXTpknSp4RXtZ2uDRuVAoAQNnYukzK+PHjNWzYMLVv315dunTRggULlJaWplGjRkk6+9HGQ4cOadmyZZKkQYMGaeTIkUpMTHR+hHLcuHHq2LGj6tevL0n66quvdOjQIbVt21aHDh3StGnTVFhYqP/7v/+z7ToBAACAyoIxfuVTL8j/0o1K0Q4Xt35PuhLW7VP68f/9cSE82F9TB7VSv+hwG88MAADvZ2sYHhsbq6ysLE2fPl3p6emKjo5WUlKSmjRpIklKT09XWlqas/3w4cN14sQJvfzyy3r44YdVq1Yt9erVS7NmzXK2ycnJ0eOPP64ffvhBNWrU0A033KDly5erVq1anr48AAAAoNJhjF/5dIyso/Bgf2Ucz1FJ85MdksKC/dUxso7bzqGg0FLqwaOSpNSDR9W5eT23rk9ul/V70vXAip3FnueM4zl6YMVOJd7VjkAcAICLsP0GmvHx8YqPjy/xe0uWLCm2bcyYMRozZswFj3fNNddo37595XV6AAAAAEqJMX7l4lPFoamDWumBFTvlkFyC2qI4euqgVm4Lp4tmSh89+Ztmd5TuW7pNdWoEGDdTuqDQUsK6fSX+wcHS2ec6Yd0+9W4VZuQfAgAAKA+2rRkOAAAAADBDv+hwJd7VTmHBrkuhhAX7u3W2ctFM6XOXDJH+N1N6/Z50t/RbxJNrd6cePFrsOs9lSUo/nuOcIQ8AAIqzfWY4AAAAAKDi6xcdrt6twpR68KgyT+SoXtDZpVHcNUvZ7pnSnl67mxuVAgDw+zEzHAAAAABQLnyqONSlWV3d2LaBujSr69blOuycKW3HjHRuVAoAwO9HGA4AAAAAqHDsmil9qRnp0tkZ6eW9ZErRjUov9OcFh87OTHfnjUoBAKjoCMMBAAAAABWOXTOl7ZqRXnSjUknFAnFP3Ki0svLkuvAAAPdjzXAAAAAAQIVTNFM643hOibO0HTp7A8/ynilt59rdRTcqPX+t8jA3rlV+voJCy2PrwtvN0+vCAwDcjzAcAAAAAFDhFM2UfmDFTo/OlLZ77W5P36j0XJUpHC5aF/78P7QUrQufeFc7464ZACoDlkkBAAAAAFRIRTOlw4Jdg+ewYH+3hZXesHa3J29UWsSOm4baxa514QEA7kcYDgAAAACosPpFh2vzo720+J4OkqTF93TQ5kd7uW3WbmVcu9sbwuGi5Vmks+u2u7Mvu9aFBwC4H2E4AAAAAKBC86nicM7E9sSSIXbMSLeT3eHw+j3p6j7rU923dJsk6b6l29R91qdum41u57rwduOGoQBMx5rhAAAAAACUkp1rd3uaneHwuWt3+/n8b7s71+62e114u1SmNeEBVF7MDAcAAAAAoAzsWLvbDnaFw3Ytz+IN68J7eoa2N6wJ78mlcABUXswMBwAAAAAAF1QUDmcczykxmHbo7BIx5R0Ol2Z5li7N6pZbv0Xrwj+wYqcckss1e2JdeE/P0L7UHx0cOvtHh96twtx+zUdP/qbZHc8uhVOnRgCz0gGUO2aGAwAAAACAC7LrpqF2Ls9i17rwdszQ9oY14e2elQ6g8mBmOAAAAAAAuKiicPj8GcthbpyxbPfa3Z5eF96uGdp2/tHBG2alFy3PYvra/wDOIgwHAAAAAACX5Olw2K7lWc5VtC68J9i1LIydf3Sw65qLcNNQoPJhmRQAAAAAAHBZPHnTULuWZ7GLXTO07bxhqJ2z0ivr8iyevjkr4G2YGQ4AAAAAALzSucuzHD35m3O7O5dnsYtdM7TtvGGoXddcWZdnYSY8QBgOAAAAAAC8WNHyLFu/z9SRb7dq8T0d1Ll5PWNmhBexc1kYO9aEl+y75sq4PEvRTPjzn+eimfDuvDGsnVgTHucjDAcAAAAAAF7Np4pDHSPrKOlbGRtm2TlDW/L8mvBS8Ws+lzuv2RuWZ/FkKO1NM+Gls3+M8MQftJgJj5KwZjgAAAAAAIAXKJqhHRbsuixIWLC/R2buenJN+CJ2XLO3Ls8inQ2ly3sd79LMhHeH9XvS1X3Wp7pv6TZJ0n1Lt6n7rE/dui57ZV0THpfGzHAAAAAAAAAvYccMbbt5eimcyrY8i7fMhPfz+d9202fCF51HZXofVxSE4QAAAAAAAF6kaIZ2ZeLJpXDsWpLGrlDaW2fCuyuUtntNeMneJVoI4S+OMBwAAAAAAACVih03DbUrlGYm/O9rV1p23qyUddIvjTAcAAAAAAAAlY6nl6SxK5RmJvzva1cadi7RYmcIL9lzk9Sy4AaaAAAAAAAAqJQ8edPQolBa+l8IXcSdobRUuW5UWvRHhws9iw6dnS1d3n90kOy7WaldN2ctYsdNUsuKmeEAAAAAAACAB9ixPMu5fTMT/ix3/dHBrtnwdq6TbsdNUn8PwnAAAAAAAADAQzwdSp/LkzdnPT+UPpenZsJ7+o8Ods2GtyuEt3NZmLIiDAcAAAAAAAA8yJOhtJ3ODaWPnvzNud3EmfCSfbPh7Qrh7ZyRXlaE4QAAAAAAAADcoiiU3vp9po58u1WL7+ngsZsrevqPDnYt0WJXCG/XjPTfgxtoAgAAAAAAAHAbnyoOZxDrqSVh7GLHzUrtujmrXTPSfw9mhgMAAAAAAABAObFjiRY71km3a0b670EYDgAAAAAAAADlyI514T0dwtt5k9SyIgwHAAAAAAAAAAN4OoS38yapZUEYDgAAAAAAAAAoEztvklpatt9Ac968eYqMjJS/v79iYmK0adOmi7ZfuXKl2rRpo8DAQIWHh+vee+9VVlaWS5u5c+eqRYsWCggIUKNGjfTQQw8pJ8d77loKAAAAmIwxPgAAQOVSUW6SamsYvnr1ao0bN06TJ0/Wrl271KNHD/Xv319paWkltt+8ebPuvvtuxcXFae/evXrrrbe0bds2jRgxwtlm5cqVmjhxoqZOnapvv/1WixYt0urVqzVp0iRPXRYAAABQaTHGBwAAgLeyNQyfM2eO4uLiNGLECEVFRWnu3Llq1KiREhMTS2y/detWRUREaOzYsYqMjFT37t11//33a/v27c42W7ZsUbdu3XTnnXcqIiJCffr00R133OHSBgAAAIB7MMYHAACAt7JtzfAzZ85ox44dmjhxosv2Pn36KCUlpcR9unbtqsmTJyspKUn9+/dXZmam3n77bQ0YMMDZpnv37lqxYoVSU1PVsWNH/fDDD0pKStI999xzwXPJzc1Vbm6u83F2drYkKS8vT3l5eb/nMuGliupKfc1Fjc1Hjc1Gfc1nV415TbkXY3zYid8d5qPG5qPGZqO+5qsIY3zbwvAjR46ooKBAoaGhLttDQ0OVkZFR4j5du3bVypUrFRsbq5ycHOXn52vw4MF66aWXnG2GDh2q//73v+revbssy1J+fr4eeOCBYgPyc82cOVMJCQnFtm/cuFGBgYFlvEJUBMnJyXafAtyMGpuPGpuN+prP0zU+ffq0R/urbBjjwxvwu8N81Nh81Nhs1Nd83jzGty0ML+JwuC6mbllWsW1F9u3bp7Fjx+qJJ55Q3759lZ6ergkTJmjUqFFatGiRJOmzzz7TU089pXnz5qlTp076/vvv9eCDDyo8PFxTpkwp8biTJk3S+PHjnY+zs7PVqFEj9ezZU3Xr1i2nK4U3ycvLU3Jysnr37i1fX1+7TwduQI3NR43NRn3NZ1eNi2YHw70Y48MO/O4wHzU2HzU2G/U1X0UY49sWhoeEhMjHx6fYDJHMzMxiM0mKzJw5U926ddOECRMkSa1bt1b16tXVo0cPzZgxwzkYHjZsmPOGO3/84x916tQp/eUvf9HkyZNVpUrxZdL9/Pzk5+dXbLuvry9vTsNRY/NRY/NRY7NRX/N5usa8ntyLMT68ATU2HzU2HzU2G/U1nzeP8W27gWa1atUUExNTbNp8cnKyunbtWuI+p0+fLjbQ9fHxkXR2tsnF2liW5WwDAAAAoPwxxgcAAIA3s3WZlPHjx2vYsGFq3769unTpogULFigtLU2jRo2SdPajjYcOHdKyZcskSYMGDdLIkSOVmJjo/AjluHHj1LFjR9WvX9/ZZs6cObr66qudH6GcMmWKBg8e7BxUAwAAAHAPxvgAAADwVraG4bGxscrKytL06dOVnp6u6OhoJSUlqUmTJpKk9PR0paWlOdsPHz5cJ06c0Msvv6yHH35YtWrVUq9evTRr1ixnm8cff1wOh0OPP/64Dh06pCuuuEKDBg3SU0895fHrAwAAACobxvgAAADwVrbfQDM+Pl7x8fElfm/JkiXFto0ZM0Zjxoy54PGqVq2qqVOnaurUqeV1igAAAABKgTE+AAAAvJFta4YDAAAAAAAAAOAphOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjEcYDgAAAAAAAAAwHmE4AAAAAAAAAMB4hOEAAAAAAAAAAOMRhgMAAAAAAAAAjGd7GD5v3jxFRkbK399fMTEx2rRp00Xbr1y5Um3atFFgYKDCw8N17733Kisry/n9a6+9Vg6Ho9jXgAED3H0pAAAAAMQYHwAAAN7J1jB89erVGjdunCZPnqxdu3apR48e6t+/v9LS0kpsv3nzZt19992Ki4vT3r179dZbb2nbtm0aMWKEs82aNWuUnp7u/NqzZ498fHx02223eeqyAAAAgEqLMT4AAAC8la1h+Jw5cxQXF6cRI0YoKipKc+fOVaNGjZSYmFhi+61btyoiIkJjx45VZGSkunfvrvvvv1/bt293tqlTp47CwsKcX8nJyQoMDGSgDAAAAHgAY3wAAAB4q6p2dXzmzBnt2LFDEydOdNnep08fpaSklLhP165dNXnyZCUlJal///7KzMzU22+/fdGPRy5atEhDhw5V9erVL9gmNzdXubm5zsfZ2dmSpLy8POXl5ZXmslBBFNWV+pqLGpuPGpuN+prPrhrzmnIvxviwE787zEeNzUeNzUZ9zVcRxvi2heFHjhxRQUGBQkNDXbaHhoYqIyOjxH26du2qlStXKjY2Vjk5OcrPz9fgwYP10ksvldg+NTVVe/bs0aJFiy56LjNnzlRCQkKx7Rs3blRgYOBlXhEqouTkZLtPAW5Gjc1Hjc1Gfc3n6RqfPn3ao/1VNozx4Q343WE+amw+amw26ms+bx7j2xaGF3E4HC6PLcsqtq3Ivn37NHbsWD3xxBPq27ev0tPTNWHCBI0aNarEwfCiRYsUHR2tjh07XvQcJk2apPHjxzsfZ2dnq1GjRurZs6fq1q1bhquCt8vLy1NycrJ69+4tX19fu08HbkCNzUeNzUZ9zWdXjYtmB8O9GOPDDvzuMB81Nh81Nhv1NV9FGOPbFoaHhITIx8en2AyRzMzMYjNJisycOVPdunXThAkTJEmtW7dW9erV1aNHD82YMUPh4eHOtqdPn9aqVas0ffr0S56Ln5+f/Pz8im339fXlzWk4amw+amw+amw26ms+T9eY15N7McaHN6DG5qPG5qPGZqO+5vPmMb5tN9CsVq2aYmJiik2bT05OVteuXUvc5/Tp06pSxfWUfXx8JJ2dbXKuv//978rNzdVdd91VjmcNAAAA4EIY4wMAAMCb2RaGS9L48eP12muvafHixfr222/10EMPKS0tTaNGjZJ09qONd999t7P9oEGDtGbNGiUmJuqHH37Ql19+qbFjx6pjx46qX7++y7EXLVqkIUOG8BFIAAAAwIMY4wMAAMBb2bpmeGxsrLKysjR9+nSlp6crOjpaSUlJatKkiSQpPT1daWlpzvbDhw/XiRMn9PLLL+vhhx9WrVq11KtXL82aNcvluAcOHNDmzZv18ccfe/R6AAAAgMqOMT4AAAC8le030IyPj1d8fHyJ31uyZEmxbWPGjNGYMWMuesyrrrqq2EcqAQAAAHgGY3wAAAB4I1uXSQEAAAAAAAAAwBMIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYjzAcAAAAAAAAAGA8wnAAAAAAAAAAgPEIwwEAAAAAAAAAxiMMBwAAAAAAAAAYz/YwfN68eYqMjJS/v79iYmK0adOmi7ZfuXKl2rRpo8DAQIWHh+vee+9VVlaWS5tff/1Vo0ePVnh4uPz9/RUVFaWkpCR3XgYAAACA/48xPgAAALyRrWH46tWrNW7cOE2ePFm7du1Sjx491L9/f6WlpZXYfvPmzbr77rsVFxenvXv36q233tK2bds0YsQIZ5szZ86od+/e+vHHH/X2229r//79WrhwoRo0aOCpywIAAAAqLcb4AAAA8FZV7ex8zpw5iouLcw50586dq48++kiJiYmaOXNmsfZbt25VRESExo4dK0mKjIzU/fffr9mzZzvbLF68WEePHlVKSop8fX0lSU2aNPHA1QAAAABgjA8AAABvZdvM8DNnzmjHjh3q06ePy/Y+ffooJSWlxH26du2qn3/+WUlJSbIsS4cPH9bbb7+tAQMGONu8//776tKli0aPHq3Q0FBFR0fr6aefVkFBgVuvBwAAAKjsGOMDAADAm9k2M/zIkSMqKChQaGioy/bQ0FBlZGSUuE/Xrl21cuVKxcbGKicnR/n5+Ro8eLBeeuklZ5sffvhBn376qf785z8rKSlJ3333nUaPHq38/Hw98cQTJR43NzdXubm5zsfZ2dmSpLy8POXl5f3eS4UXKqor9TUXNTYfNTYb9TWfXTXmNeVejPFhJ353mI8am48am436mq8ijPFtXSZFkhwOh8tjy7KKbSuyb98+jR07Vk888YT69u2r9PR0TZgwQaNGjdKiRYskSYWFhapXr54WLFggHx8fxcTE6JdfftGzzz57wYHyzJkzlZCQUGz7xo0bFRgY+DuvEN4sOTnZ7lOAm1Fj81Fjs1Ff83m6xqdPn/Zof5UVY3zYid8d5qPG5qPGZqO+5vPmMb5tYXhISIh8fHyKzRDJzMwsNpOkyMyZM9WtWzdNmDBBktS6dWtVr15dPXr00IwZMxQeHq7w8HD5+vrKx8fHuV9UVJQyMjJ05swZVatWrdhxJ02apPHjxzsfZ2dnq1GjRurZs6fq1q1bHpcLL5OXl6fk5GT17t3bue4kzEKNzUeNzUZ9zWdXjYtmB8M9GOPDTvzuMB81Nh81Nhv1NV9FGOPbFoZXq1ZNMTExSk5O1k033eTcnpycrBtvvLHEfU6fPq2qVV1PuWhAbFmWJKlbt2564403VFhYqCpVzi6JfuDAAYWHh5c4SJYkPz8/+fn5Fdvu6+vLm9Nw1Nh81Nh81Nhs1Nd8nq4xryf3YowPb0CNzUeNzUeNzUZ9zefNY3zbbqApSePHj9drr72mxYsX69tvv9VDDz2ktLQ0jRo1StLZ2Rx33323s/2gQYO0Zs0aJSYm6ocfftCXX36psWPHqmPHjqpfv74k6YEHHlBWVpYefPBBHThwQP/4xz/09NNPa/To0bZcIwAAAFCZMMYHAACAt7J1zfDY2FhlZWVp+vTpSk9PV3R0tJKSktSkSRNJUnp6utLS0pzthw8frhMnTujll1/Www8/rFq1aqlXr16aNWuWs02jRo308ccf66GHHlLr1q3VoEEDPfjgg3r00Uc9fn0AAABAZcMYHwAAAN7K9htoxsfHKz4+vsTvLVmypNi2MWPGaMyYMRc9ZpcuXbR169byOD0AAAAApcQYHwAAAN7I1mVSAAAAAAAAAADwBMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDAcAAAAAAAAAGM/2MHzevHmKjIyUv7+/YmJitGnTpou2X7lypdq0aaPAwECFh4fr3nvvVVZWlvP7S5YskcPhKPaVk5Pj7ksBAAAAIMb4AAAA8E62huGrV6/WuHHjNHnyZO3atUs9evRQ//79lZaWVmL7zZs36+6771ZcXJz27t2rt956S9u2bdOIESNc2tWsWVPp6ekuX/7+/p64JAAAAKBSY4wPAAAAb2VrGD5nzhzFxcVpxIgRioqK0ty5c9WoUSMlJiaW2H7r1q2KiIjQ2LFjFRkZqe7du+v+++/X9u3bXdo5HA6FhYW5fAEAAABwP8b4AAAA8FZV7er4zJkz2rFjhyZOnOiyvU+fPkpJSSlxn65du2ry5MlKSkpS//79lZmZqbffflsDBgxwaXfy5Ek1adJEBQUFatu2rZ588kldffXVFzyX3Nxc5ebmOh8fP35cknT06NGyXh68XF5enk6fPq2srCz5+vrafTpwA2psPmpsNuprPrtqfOLECUmSZVke67MyYYwPO/G7w3zU2HzU2GzU13wVYYxvWxh+5MgRFRQUKDQ01GV7aGioMjIyStyna9euWrlypWJjY5WTk6P8/HwNHjxYL730krNNy5YttWTJEv3xj39Udna2XnjhBXXr1k1ff/21rrzyyhKPO3PmTCUkJBTbftVVV/2OKwQAAIC3OnHihIKDg+0+DeMwxgcAAIBdLmeM77Bsmhbzyy+/qEGDBkpJSVGXLl2c25966iktX75c//rXv4rts2/fPl1//fV66KGH1LdvX6Wnp2vChAnq0KGDFi1aVGI/hYWFateunf70pz/pxRdfLLHN+bNGfv31VzVp0kRpaWke/0dShw4dtG3bNo/2aXffdvSbnZ2tRo0a6aefflLNmjU92ndlep7t7Jsam98vNTa7XzvrK1Wu59qufu2qsWVZiomJ0YEDB1Sliu33kjcOY/ySVbZxmF39MjYwv29qbH6/1Njsfitjfe3suzLVuDRjfNtmhoeEhMjHx6fYDJHMzMxiM0mKzJw5U926ddOECRMkSa1bt1b16tXVo0cPzZgxQ+Hh4cX2qVKlijp06KDvvvvugufi5+cnPz+/YtuDg4M9/ub08fGx5R/9dvZt5zXXrFmz0tS4Mr62JGpscr9FqLG5/Ur21FeqfM91ZatxtWrVCMLdhDF+ySrjOKyy/VypjM8zNaZfd6LG5vYrVa762tl3Zavx5Y7xbftXQLVq1RQTE6Pk5GSX7cnJyeratWuJ+5w+fbrYRfn4+Ei68JowlmVp9+7dJQ6ivdHo0aMrXd92XrMdKuPzTI3p1zSV7bmmxvRrmsp2vZ7EGL9klXEcVtneZ5XxeabG9GuayvZcV7YaV8afl9S4ZLYtkyJJq1ev1rBhw/Tqq6+qS5cuWrBggRYuXKi9e/eqSZMmmjRpkg4dOqRly5ZJkpYsWaKRI0fqxRdfdH6Ecty4capSpYq++uorSVJCQoI6d+6sK6+8UtnZ2XrxxRe1fPlyffnll+rYseNlnVd2draCg4N1/PhxW/8SCvehxuajxuajxmajvuajxuZijA+7UGPzUWPzUWOzUV/zVYQa27ZMiiTFxsYqKytL06dPV3p6uqKjo5WUlKQmTZpIktLT05WWluZsP3z4cJ04cUIvv/yyHn74YdWqVUu9evXSrFmznG1+/fVX/eUvf1FGRoaCg4N19dVX64svvrjsQbJ09iOVU6dOLfFjlTADNTYfNTYfNTYb9TUfNTYXY3zYhRqbjxqbjxqbjfqaryLU2NaZ4QAAAAAAAAAAeAJ3DgIAAAAAAAAAGI8wHAAAAAAAAABgPMJwAAAAAAAAAIDxCMMBAAAAAAAAAMYjDC/BvHnzFBkZKX9/f8XExGjTpk12nxIuw8yZM9WhQwcFBQWpXr16GjJkiPbv3+/SxrIsTZs2TfXr11dAQICuvfZa7d2716VNbm6uxowZo5CQEFWvXl2DBw/Wzz//7MlLwWWYOXOmHA6Hxo0b59xGfSu+Q4cO6a677lLdunUVGBiotm3baseOHc7vU+OKLT8/X48//rgiIyMVEBCgpk2bavr06SosLHS2ocYVyxdffKFBgwapfv36cjgcWrt2rcv3y6uex44d07BhwxQcHKzg4GANGzZMv/76q5uvDqZhjF8xMcavXBjjm4kxvtkY45vH+DG+BRerVq2yfH19rYULF1r79u2zHnzwQat69erWf/7zH7tPDZfQt29f6/XXX7f27Nlj7d692xowYIDVuHFj6+TJk842zzzzjBUUFGS988471j//+U8rNjbWCg8Pt7Kzs51tRo0aZTVo0MBKTk62du7cafXs2dNq06aNlZ+fb8dloQSpqalWRESE1bp1a+vBBx90bqe+FdvRo0etJk2aWMOHD7e++uor6+DBg9Ynn3xiff/998421LhimzFjhlW3bl3rgw8+sA4ePGi99dZbVo0aNay5c+c621DjiiUpKcmaPHmy9c4771iSrHfffdfl++VVz379+lnR0dFWSkqKlZKSYkVHR1sDBw701GXCAIzxKy7G+JUHY3wzMcY3H2N885g+xicMP0/Hjh2tUaNGuWxr2bKlNXHiRJvOCGWVmZlpSbI+//xzy7Isq7Cw0AoLC7OeeeYZZ5ucnBwrODjYevXV/9fevQdFWf1/AH8vLCygsKnIRS6iYoqppDCZ4KgpiQql000McwU0tSiRFM3yMl5SnJGyyfFrltDkhbSQQWMqr4wXEuOiJoqmeBmDQEMWFAXl8/uj6fm5AolX2If3a4YZ95yzh3P4wPjmsM+z/xMRkatXr4qVlZUkJycrYy5duiQWFhby008/PdkNUL0qKiqka9eusmPHDhk0aJASlFlf8zdr1iwZMGBAg/2ssfkLCQmRyMhIk7ZXXnlFxo0bJyKssbm7Oyg/qnrm5+cLAPn111+VMZmZmQJATp48+Zh3RWrBjK8ezPjqxIyvXsz46seMr25qzPi8TcodqqurkZ2djWHDhpm0Dxs2DAcPHmyiVdGDKi8vBwC0bdsWAFBYWIji4mKT+up0OgwaNEipb3Z2NmpqakzGdOjQAT179uT3QDPx7rvvIiQkBEFBQSbtrK/5S0tLg7+/P15//XU4OTmhT58+WLt2rdLPGpu/AQMGYNeuXTh16hQA4MiRI9i/fz9GjhwJgDVWm0dVz8zMTOj1evTr108Z8/zzz0Ov17Pm1CjM+OrCjK9OzPjqxYyvfsz4LYsaMr72sc5uZi5fvozbt2/D2dnZpN3Z2RnFxcVNtCp6ECKC2NhYDBgwAD179gQApYb11ff8+fPKGGtra7Rp06bOGH4PNL3k5GTk5OTg8OHDdfpYX/N39uxZrF69GrGxsZgzZw6ysrLw/vvvQ6fTYfz48ayxCsyaNQvl5eXo3r07LC0tcfv2bSxZsgRjx44FwJ9jtXlU9SwuLoaTk1Od+Z2cnFhzahRmfPVgxlcnZnx1Y8ZXP2b8lkUNGZ+H4fXQaDQmj0WkThs1b9HR0Th69Cj2799fp+9B6svvgaZ38eJFTJs2Db/88gtsbGwaHMf6mq/a2lr4+/vjk08+AQD06dMHx48fx+rVqzF+/HhlHGtsvr777jusX78eGzduxDPPPIO8vDzExMSgQ4cOMBgMyjjWWF0eRT3rG8+a0/1ixjd/zPjqw4yvfsz46seM3zKZc8bnbVLu4OjoCEtLyzp/gSgpKanzFw9qvt577z2kpaVhz549cHd3V9pdXFwA4D/r6+LigurqapSVlTU4hppGdnY2SkpK4OfnB61WC61Wi4yMDHz++efQarVKfVhf8+Xq6ooePXqYtPn4+ODChQsA+DOsBjNnzsTs2bMRFhaGXr164a233sL06dOxdOlSAKyx2jyqerq4uOCvv/6qM39paSlrTo3CjK8OzPjqxIyvfsz46seM37KoIePzMPwO1tbW8PPzw44dO0zad+zYgYCAgCZaFTWWiCA6OhopKSnYvXs3OnXqZNLfqVMnuLi4mNS3uroaGRkZSn39/PxgZWVlMqaoqAi///47vwea2NChQ3Hs2DHk5eUpH/7+/ggPD0deXh46d+7M+pq5wMBAFBQUmLSdOnUKHTt2BMCfYTW4fv06LCxMo4elpSVqa2sBsMZq86jq2b9/f5SXlyMrK0sZc+jQIZSXl7Pm1CjM+OaNGV/dmPHVjxlf/ZjxWxZVZPzH+vacZig5OVmsrKzk66+/lvz8fImJiZFWrVrJuXPnmnppdA9Tp04VvV4ve/fulaKiIuXj+vXryphly5aJXq+XlJQUOXbsmIwdO1ZcXV3FaDQqY6ZMmSLu7u6yc+dOycnJkSFDhoivr6/cunWrKbZF/+HOd5oXYX3NXVZWlmi1WlmyZImcPn1aNmzYIHZ2drJ+/XplDGts3gwGg7i5ucn27dulsLBQUlJSxNHRUeLi4pQxrLF5qaiokNzcXMnNzRUAkpCQILm5uXL+/HkReXT1HD58uPTu3VsyMzMlMzNTevXqJaGhoU98v2S+mPHNFzN+y8OMry7M+OrHjK8+as/4PAyvx6pVq6Rjx45ibW0tffv2lYyMjKZeEjUCgHo/EhMTlTG1tbUyf/58cXFxEZ1OJwMHDpRjx46ZzFNVVSXR0dHStm1bsbW1ldDQULlw4cIT3g01xt1BmfU1f9u2bZOePXuKTqeT7t27y5dffmnSzxqbN6PRKNOmTRNPT0+xsbGRzp07y0cffSQ3b95UxrDG5mXPnj31/t9rMBhE5NHV88qVKxIeHi729vZib28v4eHhUlZW9oR2SWrBjG+emPFbHmZ89WHGVzdmfPVRe8bXiIg83teeExERERERERERERE1Ld4znIiIiIiIiIiIiIhUj4fhRERERERERERERKR6PAwnIiIiIiIiIiIiItXjYTgRERERERERERERqR4Pw4mIiIiIiIiIiIhI9XgYTkRERERERERERESqx8NwIiIiIiIiIiIiIlI9HoYTET1hqamp8Pb2hqWlJWJiYhpsU7u9e/dCo9FAo9Fg9OjRTb0cTJgwQVlPampqUy+HiIiIiMwIM/4/mPGJqLnjYTgR0QNISkrCU0899UDPnTx5Ml577TVcvHgRixYtarCtpSgoKEBSUpLy+N/AOmXKlDpj33nnHWg0GkyYMKFRc2dnZ0Oj0WD//v319gcHB+Pll18GAKxcuRJFRUX3vX4iIiIiUgdm/EeHGZ+ImisehhMRPUGVlZUoKSlBcHAwOnToAHt7+3rbmgsRwa1btx7r53BycqrzS4eHhweSk5NRVVWltN24cQObNm2Cp6dno+f28/ODr68vEhMT6/RdvHgRO3fuRFRUFABAr9fDxcXlwTZBRERERC0WM35dzPhE1FzxMJyIWqTa2lrEx8fD29sbOp0Onp6eWLJkCYD/v7Tv6tWryvi8vDxoNBqcO3cOe/fuRUREBMrLy5VL7hYsWAAAKCsrw/jx49GmTRvY2dlhxIgROH36tDLvvyF4yJAh0Gg0DbbVp7y8HG+//TacnJzg4OCAIUOG4MiRI0r/ggUL8Oyzz+Lbb7+Fl5cX9Ho9wsLCUFFRoYwRESxfvhydO3eGra0tfH198f333yv9/+79559/hr+/P3Q6Hfbt24eKigqEh4ejVatWcHV1xaefforBgwcrl3suXLgQvXr1qrNmPz8/zJs37/6KA6Bv377w9PRESkqK0paSkgIPDw/06dPHZOy99hQVFYXNmzfj2rVrJs9LSkpC+/btERISct/rIyIiIqLmhxmfGZ8Zn4juhYfhRNQiffjhh4iPj8fcuXORn5+PjRs3wtnZuVHPDQgIwGeffQYHBwcUFRWhqKgIM2bMAPDP5X+//fYb0tLSkJmZCRHByJEjUVNTg4CAABQUFAAAfvjhBxQVFTXYdjcRQUhICIqLi5Geno7s7Gz07dsXQ4cOxd9//62MO3PmDFJTU7F9+3Zs374dGRkZWLZsmdL/8ccfIzExEatXr8bx48cxffp0jBs3DhkZGSafLy4uDkuXLsWJEyfQu3dvxMbG4sCBA0hLS8OOHTuwb98+5OTkKOMjIyORn5+Pw4cPK21Hjx5Fbm5uoy93vFtERITJqz3WrVuHyMjIOuPutafw8HDU1NRgy5YtJl/PpKQkGAwGaLXaB1ofERERETUvzPjM+Mz4RHRPQkTUwhiNRtHpdLJ27dp6+/fs2SMApKysTGnLzc0VAFJYWCgiIomJiaLX602ed+rUKQEgBw4cUNouX74stra2snnzZhERKSsrEwCyZ88eZUx9bXfbtWuXODg4yI0bN0zau3TpImvWrBERkfnz54udnZ0YjUalf+bMmdKvXz8REamsrBQbGxs5ePCgyRxRUVEyduxYk72npqYq/UajUaysrGTLli1K29WrV8XOzk6mTZumtI0YMUKmTp2qPI6JiZHBgwc3uKf6vs4iIgaDQUaNGiWlpaWi0+mksLBQzp07JzY2NlJaWiqjRo0Sg8HQ6D2JiIwZM0YGDhyoPN69e7cAkJMnT9ZZFwDZunVrg+smIiIiouaHGZ8ZnxmfiBqDfyojohbnxIkTuHnzJoYOHfrI59VqtejXr5/S1q5dO3Tr1g0nTpx4qLmzs7NRWVmJdu3ambRXVVXhzJkzymMvLy+T+xG6urqipKQEAJCfn48bN27gxRdfNJmjurq6zmWJ/v7+yr/Pnj2LmpoaPPfcc0qbXq9Ht27dTJ4zadIkREZGIiEhAZaWltiwYQNWrFjxgDsGHB0dERISgm+++UZ51Yyjo6PJmMbuKSoqCsOGDcMff/wBb29vrFu3DoGBgXX2QERERETmiRmfGZ8Zn4gag4fhRNTi2Nra/me/hcU/d5ASEaWtpqbmnvPeOf7udo1Gcx8rrKu2thaurq713mvwzjemsbKyMunTaDSora1V5gCAH3/8EW5ubibjdDqdyeNWrVop//53X3fv4e79vvTSS9DpdNi6dSt0Oh1u3ryJV199tRG7a1hkZCSio6MBAKtWrarT39g9BQUFoWPHjkhKSkJcXBxSUlLwxRdfPNTaiIiIiKj5YMZnxmfGJ6LG4GE4EbU4Xbt2ha2tLXbt2oWJEyfW6W/fvj0AoKioCG3atAHwz5vr3Mna2hq3b982aevRowdu3bqFQ4cOKfcEvHLlCk6dOgUfH5+HWnPfvn1RXFwMrVYLLy+vB5qjR48e0Ol0uHDhAgYNGtTo53Xp0gVWVlbIysqCh4cHAMBoNOL06dMm82i1WhgMBiQmJkKn0yEsLAx2dnYPtNZ/DR8+HNXV1QCA4ODgB96TRqNBREQEvvrqK7i7u8PCwgJvvPHGQ62NiIiIiJoPZnxmfGZ8ImoMHoYTUYtjY2ODWbNmIS4uDtbW1ggMDERpaSmOHz+OqKgoeHt7w8PDAwsWLMDixYtx+vTpOpcCenl5obKyErt27YKvry/s7OzQtWtXjBo1CpMmTcKaNWtgb2+P2bNnw83NDaNGjXqoNQcFBaF///4YPXo04uPj0a1bN/z5559IT0/H6NGjTS55bIi9vT1mzJiB6dOno7a2FgMGDIDRaMTBgwfRunVrGAyGBp9nMBgwc+ZMtG3bFk5OTpg/fz4sLCzqvJJk4sSJyi8FBw4ceKg9A4ClpaVy+amlpeVD7SkiIgILFy7EnDlzEBYWZvLKGCIiIiIyb8z4zPjM+ETUGBZNvQAioqYwd+5cfPDBB5g3bx58fHwwZswY5b57VlZW2LRpE06ePAlfX1/Ex8dj8eLFJs8PCAjAlClTMGbMGLRv3x7Lly8HACQmJsLPzw+hoaHo378/RATp6el1Lm28XxqNBunp6Rg4cCAiIyPx9NNPIywsDOfOnYOzs3Oj51m0aBHmzZuHpUuXwsfHB8HBwdi2bRs6der0n89LSEhA//79ERoaiqCgIAQGBsLHxwc2NjYm47p27YqAgAB069bN5L6KD8PBwQEODg4PvSdPT08EBQWhrKys3nesJyIiIiLzxozPjE9EdC8aaegGWERERA24du0a3NzcsGLFCkRFRSntIoLu3btj8uTJiI2N/c859u7dixdeeAFlZWUm90RsahqNBlu3bsXo0aObeilERERERE8MMz4RtQR8ZTgREd1Tbm4uNm3ahDNnziAnJwfh4eEAYHJpaElJCRISEnDp0iVEREQ0em53d3eMHTv2ka/5fk2ZMgWtW7du6mUQERERET0RzPhE1BLxleFERHRPubm5mDhxIgoKCmBtbQ0/Pz8kJCSgV69eyhiNRgNHR0esXLkSb7755j3nrKqqwqVLlwAArVu3houLy2Nbf2OUlJTAaDQCAFxdXXm/QSIiIiJSNWZ8ImqJeBhORERERERERERERKrH26QQERERERERERERkerxMJyIiIiIiIiIiIiIVI+H4URERERERERERESkejwMJyIiIiIiIiIiIiLV42E4EREREREREREREakeD8OJiIiIiIiIiIiISPV4GE5EREREREREREREqsfDcCIiIiIiIiIiIiJSPR6GExEREREREREREZHq/R8df7/W96e6qAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot efficiencies wrt cutoff energy\n",
"fig, ax = plt.subplots(nrows=1,ncols=2,figsize=(18,6))\n",
"x_ = np.arange(50,1050,step=50)\n",
"ax[0].scatter(x_,up_efficiencies)\n",
"ax[0].set(xlabel=\"cutoff energy [MeV]\",ylabel=r\"$\\epsilon$\",title=\"upstream\", ylim=[0.85,0.95])\n",
"ax[0].set_yticks(np.arange(0.85,0.96,step=0.01),minor=False)\n",
"ax[0].set_xticks(np.arange(0,1100,step=50),minor=True)\n",
"ax[0].grid()\n",
"\n",
"ax[1].scatter(x_,down_efficiencies)\n",
"ax[1].set(xlabel=\"cutoff energy [MeV]\",ylabel=r\"$\\epsilon$\",title=\"downstream\", ylim=[0.85,0.95])\n",
"ax[1].set_yticks(np.arange(0.85,0.96,step=0.01),minor=False)\n",
"ax[1].set_xticks(np.arange(0,1100,step=50),minor=True)\n",
"ax[1].grid(True)\n",
"\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, nobrem electrons\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"brem vertices\n",
"upstream eff = 0.851 +/- 0.004\n",
"downstream eff = 0.836 +/- 0.005\n"
]
}
],
"source": [
"cutoff_energy=350\n",
"#possibly: instead of checking if any photons exceed the cutoff, use the sum of all photon energies to separate nobrem and brem\n",
"\n",
"upstream_brem_found = upstream_found[ak.sum(upstream_found[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
"up_energy_found = ak.to_numpy(upstream_brem_found[\"energy\"])\n",
"up_eph_found = ak.to_numpy(ak.sum(upstream_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"up_residual_found = up_energy_found - up_eph_found\n",
"up_energyloss_found = up_eph_found/up_energy_found\n",
"\n",
"\n",
"upstream_brem_lost = upstream_lost[ak.sum(upstream_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
"up_energy_lost = ak.to_numpy(upstream_brem_lost[\"energy\"])\n",
"up_eph_lost = ak.to_numpy(ak.sum(upstream_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"up_residual_lost = up_energy_lost - up_eph_lost\n",
"up_energyloss_lost = up_eph_lost/up_energy_lost\n",
"\n",
"\n",
"print(\"brem vertices\\nupstream eff = \", np.round(t_eff(upstream_brem_found,upstream_brem_lost),3), \"+/-\", np.round(eff_err(upstream_brem_found, upstream_brem_lost),3))\n",
"\n",
"\n",
"downstream_brem_found = downstream_found[ak.sum(downstream_found[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
"down_energy_found = ak.to_numpy(downstream_brem_found[\"energy\"])\n",
"down_eph_found = ak.to_numpy(ak.sum(downstream_brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"down_residual_found = down_energy_found - down_eph_found\n",
"down_energyloss_found = down_eph_found/down_energy_found\n",
"\n",
"\n",
"downstream_brem_lost = downstream_lost[ak.sum(downstream_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
"down_energy_lost = ak.to_numpy(downstream_brem_lost[\"energy\"])\n",
"down_eph_lost = ak.to_numpy(ak.sum(downstream_brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"down_residual_lost = down_energy_lost - down_eph_lost\n",
"down_energyloss_lost = down_eph_lost/down_energy_lost\n",
"\n",
"\n",
"print(\"downstream eff = \", np.round(t_eff(downstream_brem_found,downstream_brem_lost),3), \"+/-\", np.round(eff_err(downstream_brem_found, downstream_brem_lost),3))"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"upstream:\n",
"mean energyloss relative to initial energy (found): 0.33078325542598164\n",
"mean energyloss relative to initial energy (lost): 0.5708618852236069\n",
"downstream:\n",
"mean energyloss relative to initial energy (found): 0.19104090843883118\n",
"mean energyloss relative to initial energy (lost): 0.3051594568487781\n"
]
}
],
"source": [
"print(\"upstream:\\nmean energyloss relative to initial energy (found): \",ak.mean(up_energyloss_found))\n",
"print(\"mean energyloss relative to initial energy (lost): \", ak.mean(up_energyloss_lost))\n",
"\n",
"print(\"downstream:\\nmean energyloss relative to initial energy (found): \",ak.mean(down_energyloss_found))\n",
"print(\"mean energyloss relative to initial energy (lost): \", ak.mean(down_energyloss_lost))"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABbYAAAJNCAYAAADtbSO1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1tklEQVR4nO3deZyN9f//8eeZfcYy1jH2nezKlqWyK6GVSklI9UHSIrQw+ijbT2khJdEnkcqSykdUhpCspeITRZmyb2MQZnn//ug7J8fMMNc423XN4367za3O+1znfb3OeR0zr3nN+7wvlzHGCAAAAAAAAAAAmwgJdAAAAAAAAAAAAFhBYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2QmMbAAAAAAAAAGArNLYBAAAAAAAAALZCYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAABI2tW7dqz549gQ4DAAAAABDkaGwDAICg8eabb+qrr74KdBgAAAAAgCBHYxsAAATUqlWr1L9/fx08eNA9tm3bNt166606cOBAACMDAAAAAAQrGtsAADjIkiVL5HK5PL4KFy6sRo0a6YMPPvDLuf/zn/94jB87dkw33HCDIiIi9Nprr2V5XKNGjVSqVCnVr19fX375pV577TV16NBB119/vUqWLOnTmO0kMTExS24zv9atW5ftY7Zu3ap+/fqpatWqio6OVnR0tKpXr64HH3xQGzdutBzDLbfcoujoaB0/fjzHY+6++26Fh4f79I8SCQkJcrlcOnz4sFfmW7t2rRISEi76vOwuPT1dcXFxeumll3I8xtuvq104Of/r169Xp06dVKhQIRUsWFBt2rTRmjVrshxn9fvLyZMnNWTIEJUpU0ZRUVFq2LCh3n///TwfBwAAkBdhgQ4AAAB4z+bNmyVJH3/8seLi4mSM0Z49ezRq1CjddddduuKKK1S/fn2fnrtRo0busa1bt+qWW27RqVOn9NVXX6lVq1ZZHlegQAE999xzysjI0NixYxUSEqL33ntPd955p0/itLsXXnhBbdq08RirW7duluPeeOMNDRo0SDVr1tQjjzyiOnXqyOVyafv27Zo7d66aNGmiX375RVWrVs31ufv166dFixZpzpw5GjBgQJb7k5OTtXDhQnXp0kWlSpWy/uQCZO3atRo9erTuu+8+FSlSJNDh+MSqVat06NAh3XrrrYEOJeg4Nf8bNmzQtddeq6ZNm+rdd9+VMUYTJkxQu3bttGLFCjVv3jzLY3L7/eXWW2/Vhg0bNG7cONWoUUNz5szRXXfdpYyMDPXs2dPycQAAAHlBYxsAAAfZvHmzYmNj1a1bN/dY8+bNlZaWpnvuuUdbtmzxaWM7OjpaV1xxhSTp/fffV79+/VS/fn3Nnz9fZcqUyfZxP/zwg3r16qX4+Hh17txZZcqU0fPPP693331X77zzjkqUKOGTeP3p6NGjysjI8MpzqV69uq6++uqLHrNmzRoNGDBAN954oz766CNFRES472vbtq0GDhyoDz/8UNHR0ZbOfcMNN6hMmTJ6++23s21sz507V3/99Zf69etnaV743kcffaTGjRurYsWKPjvH6dOnFRMT47P5kdW+fftUoEABFS5cOMt9zz77rIoUKaKlS5e689K+fXtVqVJFTzzxRLYrt3Pz/WXJkiVavny5u0ktSW3atNHvv/+uoUOH6o477lBoaGiujwMAAMgrtiIBAMBBNm3apIYNG2YZ/+OPPyRJtWrVsjznSy+9pEWLFlk69xNPPKG77rpLd999t1auXJljU1uSihYtqjFjxmjp0qWqXLmyWrZsqe+++049evRQbGxsjo9bvXq1OnbsqNjYWBUtWlQ33nijdu7cmefjcqtr165q3Lixpk+frgYNGig6Olrly5fXqFGjlJGRke1jtm7dqtKlS+uGG27Qf/7zH6WkpOT5/LnxwgsvKDQ0VG+88YZHU/t83bt3z5KXnTt3qmfPnoqLi1NkZKRq1aqlKVOmuO8PDQ1V7969tWnTJv3www9Z5pw5c6b7eVqVuQ3Gli1bdOutt6pw4cKKjY3VPffco0OHDmX7mAMHDuiuu+5SbGysSpUqpb59+yo5OdnjmNWrV6tdu3YqVKiQYmJi1KJFC3322Wce5x06dKgkqXLlyu7tFxITE3M9x/nx//TTT5eM6dChQ3rggQdUvnx5RUZGqmTJkmrZsqW++OKLHF+fn376SS6XSx9++KF7bNOmTXK5XKpTp47Hsd26dfP45IQxRgsXLtRtt92W4/znS0pKumQOMp/v5s2bdfvtt6to0aIeq/8v9V46f46tW7eqe/fuio2NVbFixfTYY48pLS1NP//8s66//noVKlRIlSpV0oQJE3IVf6ZFixbJ5XLpyy+/zHLf66+/LpfLpVtvvTXH/J85c0ZXXnmlqlWr5pHD/fv3Kz4+Xq1bt1Z6enquYslpmw+Xy6XffvvN0vM6duyYZsyYofbt26tcuXLatWtXtsetWbNGrVu39vhjQ6FChXTttddq7dq12rdvn6XzZlq4cKEKFiyo7t27e4z36dNHe/fu1bfffmvpOOny3wu+fi8BAIDgRGMbAACHOHLkiPbs2aMGDRooLS1NaWlpOnjwoN599109//zzuv/++9W0aVPL827cuFE9evS4aHM789wVKlRQx44d9dprr2n69Ol68803c2ysZipXrpy6dOniMZbZQA0PD8/2MQkJCbruuutUvnx5zZ07V2+99ZaSkpLUrl07nTx50vJxVmzatEn/+9//9NJLL2no0KFavHixWrVqpeeee05vv/12to+5+uqr9c477yg8PFz9+/dXXFycunfvrgULFujs2bOWzj9w4ECFhYWpcOHC6tSpk1avXu1xf3p6ulasWKHGjRurdOnSuZ5327ZtatKkiX788UdNmjRJn376qW688UYNHjxYo0ePdh/Xt29fuVyuLM9127ZtWr9+vXr37n1ZqzBvueUWVatWTR999JESEhK0aNEiderUSampqVmOve2221SjRg3Nnz9fw4cP15w5c/Too4+671+5cqXatm2r5ORkzZgxQ3PnzlWhQoXUtWtXzZs3T5J0//336+GHH5YkLViwQN98842++eYbXXXVVbmew0pMktSrVy8tWrRII0eO1LJly/TWW2+pffv2OnLkSI6vS506dVS6dGmP5vcXX3yh6Ohobdu2TXv37pUkpaWlaeXKlWrfvr37uMwmZm4b21ZycOutt6patWr68MMPNW3aNEm5fy9l6tGjhxo0aKD58+erf//+eumll/Too4/q5ptv1o033qiFCxeqbdu2GjZsmBYsWJCr5yBJXbp0UVxcnGbOnJnlvlmzZumqq67SK6+8kmP+o6Ki9MEHH+jgwYPq27evJCkjI0N33323jDGaO3durt/rmfNmfn311VcqW7as4uPjVaxYsUs+/vTp05o3b55uuukmxcfH6+GHH1aRIkU0b9481a5dO9vHnDt3TpGRkVnGM8ey++PUpb6/SNKPP/6oWrVqKSzM88O/mZ8G+vHHHy0dd77LfS/46r0EAACClAEAAI6wbNkyIynLV1hYmBkzZkye501LSzM9e/Y04eHhZuHChZc8d1RUlFm3bl2ez3cpn3zyiZFkJkyY4DG+Y8cOI8nMnj3b0nFW/PHHH0aSqVKlijl+/Lh7/Ny5cyY+Pt506dLlknMcO3bMvP3226Zjx44mLCzMxMbGmvvuu898/vnnJi0tLcfHbd682TzyyCNm4cKFZtWqVebtt982tWrVMqGhoWbp0qXu4/bv328kmTvvvDPLHGlpaSY1NdX9lZGR4b6vU6dOply5ciY5OdnjMYMGDTJRUVHm6NGj7rHrrrvOlChRwpw7d8499vjjjxtJZseOHZd8DbIzatQoI8k8+uijHuPvvfdelnxlHnthbgcMGGCioqLcz+vqq682cXFxJiUlxeM1qFu3rilXrpz7uIkTJxpJZvfu3Vniyu0cuY3JGGMKFixohgwZYuXlMcYYc88995gqVaq4b7dv397079/fFC1a1LzzzjvGGGPWrFljJJlly5a5jxsyZIipV6/eJefPSw5GjhyZZZ7cvpcy55g0aZLHcQ0bNjSSzIIFC9xjqamppmTJkubWW2+95PM432OPPWaio6M9/r1u27bNSDKvvvqqMebi+TfGmHnz5hlJZvLkyWbkyJEmJCTE4/W1Ki0tzdx0002mYMGCZtOmTTked+7cOfPpp5+anj17mgIFCpiIiAjTpUsXM3v2bI/3Y04aNmxoatSoYdLT091jqamppkqVKkaSmTNnjns8t99fjDGmevXqplOnTlnOt3fvXiPJvPDCC5aOM+by3wv+eC8BAIDgw4ptAAAcYtOmTZL+XnW4YcMGbdiwQUuXLtWNN96okSNHZrs67fDhwxf9iLzL5VJYWJjmzJmj1NRU9ejRQwcOHMjx3L169dKZM2e0atUqnz3PkSNHqmrVqnrkkUfcK9PT0tJUuXJlRUdHuz+Wn9vjrNiwYYOkv1eCn79NSnh4uKpVq6bDhw9fco4iRYqoT58++vzzz7Vv3z6NGzdOu3fv1vXXX68yZcrkGNeVV16pyZMn6+abb9Y111yjPn36aO3atSpdurSefPLJXMXfqFEjhYeHu78mTZokSTpz5oy+/PJL3XLLLYqJifF4vTp37qwzZ85o3bp17nn69eunw4cPa/HixZL+XiU8e/ZsXXPNNapevXquYsnJ3Xff7XG7R48eCgsL04oVK7Ice/5e8tLfK0HPnDmjgwcP6tSpU/r22291++23q2DBgu5jQkND1atXL/3xxx/6+eefLxpLXua4WEyZmjZtqlmzZmnMmDFat25dtiuhs9OuXTvt2rVLu3fv1pkzZ7R69Wpdf/31atOmjZYvXy7p71XckZGRHhdqXbBgQa5Xa0vWcnDhvFbfS5KyfGKjVq1acrlcHlvahIWFqVq1avr9999z/Tykvz9h8Ndff3msrp85c6YiIyNzffHCHj166F//+peGDh2qMWPG6KmnnlKHDh0sxXG+QYMG6bPPPtOHH37o/mTAhbZu3ar4+HjddNNNOnz4sF555RUdOHBAn3zyie6++26P92NOHn74Ye3YsUODBg3Sn3/+qaSkJD300EPu1zAk5J9fBa1+f3G5XDme9/z7cntcpst9L/jyvQQAAIIPF48EAMAhMi/e2K1bN4+Px1933XUqXLiwpk+frltvvdXjMYUKFdL06dMvOffSpUs1f/583XTTTSpevHi2546KinJvTzF8+HDVrFkzS5Pvcu3fv19btmyRpGw/Yi/93TjO7XFWbdy4UeHh4Vn2jJWkvXv3euxrnBsnTpzQ8ePHlZycLGOMihQpkuVj+xdTpEgRdenSRdOmTdNff/2l6OholShRQtHR0dk2bebMmaPTp09r3759Hrk5cuSI0tLS9Oqrr+rVV1/N9lznN+1vv/12Pfzww5o5c6Zuu+02LVmyRAcOHND48eMtPPvsxcfHe9wOCwtT8eLFs92m48L3Ymau//rrL6WmpsoYk+12LJl7i19s6w/p772Mrc5xsZgyzZs3T2PGjNFbb72lZ599VgULFtQtt9yiCRMmZHn+58vcXuSLL75Q5cqVlZqaqrZt2+rAgQP697//7b6vZcuW7guDrl+/Xnv27LHU2LaSgwtfG6vvJUlZtuKIiIhQTEyMoqKisoyfOHEi189D+nsLlyZNmmjmzJl64IEHlJ6ertmzZ+umm27K1RYgmfr27avXX39dERERGjx4sKUYzjdmzBhNmzZNM2bM0PXXX5/jceHh4YqNjdXRo0eVnJys5ORknTx50tL3rb59++rQoUMaM2aMXn/9dUl/X0z4iSee0Pjx41W2bNmLPj677y+ScnwvHD16VNI/+cztcee73PeCL99LAAAg+NDYBgDAITZv3qx69epl2fM1PDxcoaGhHo21TJGRkbr//vsvOu9nn32mTz/9VLfffrvmzp2bbeN18+bNatCggcLCwjR9+nT3heNWr16d7cUs8yopKUnS3xe0PH9F6vmqVq2qX375JVfHWbVx40aVKFEiS5Pk22+/1a5du/Tss89eco6kpCR9+OGHev/997VhwwaVLVtWd9xxh6ZPn67GjRtbjskYI+mf1Y+hoaFq27atli1bpn379nk0HjP34r3wYnVFixZ1r0IeOHBgtuepXLmy+/+jo6N11113afr06dq3b5/efvttFSpUKNuGv1X79+/3aLilpaXpyJEj2f5B5WKKFi2qkJCQbC+Ql7kfdYkSJXw+R3ZKlCihyZMna/LkydqzZ48WL16s4cOH6+DBg1q6dGmOjytXrpxq1KihL774QpUqVVLjxo1VpEgRtWvXTgMGDNC3336rdevWeexjPX/+fNWoUUN169bNdXxWcnDhqlur7yV/6NOnjwYMGKDt27dr165d2rdvn/r06ZPrx586dUq9evVSjRo1dODAAd1///36+OOPLccxa9YsPfvss0pISHDv2Z2TWrVqadeuXfrmm280Z84cjRs3To8//rhatmypO+64Q7fffvtF/wiSadiwYRoyZIh27typQoUKqWLFinrwwQdVoECBXP0h7sLvL5JUr149zZ07V2lpaR4/DzL37M58r+X2OAAAgLxiKxIAABwgOTlZu3btyraJ/PHHH+vMmTO69tpr8zT3xIkT1bVr1xyb2pnnzvxIfWRkpBYuXKhixYqpW7du2r9/f57Om53M1Xgul0uNGzfO9qto0aK5Ps6qjRs36tChQzp+/Lh7LD09XcOGDVOlSpVy3NogJSVFr776qlq1aqWKFSvq+eefV8OGDfXVV19pz549mjRpUp6a2seOHdOnn36qhg0bejTbR4wYofT0dD300EO52uYiJiZGbdq00ZYtW1S/fv1sX68Lm5r9+vVTenq6Jk6cqCVLlujOO+9UTEyM5edwoffee8/j9gcffKC0tDS1bt3a0jwFChRQs2bNtGDBAo8/6mRkZGj27NnuJrGU/apqq3PkVYUKFTRo0CB16NBBmzdvvuTx7du311dffaXly5e7t8OoUaOGKlSooJEjRyo1NdXjwpHz58+3tFpburwc5OW95Gt33XWXoqKiNGvWLM2aNUtly5ZVx44d3ffnlP9MDz30kPbs2aMFCxZoxowZWrx4sV566SVLMSxdulT9+/dX3759NWrUqFw/rnnz5nr11Ve1d+9eLV26VFWrVtXTTz+tsmXLqm3btnrjjTdyjDtTZGSk6tatq4oVK2rPnj2aN2+e+vfv716BnZOcvr/ccsstOnnypObPn+9x/DvvvKMyZcqoWbNmlo4DAADIK1ZsAwDgAJs3b5YxRgUKFHDvX3vs2DGtXbtWL730kurXr68nnngiT3N/8sknio6OznGLjMxzn7/6Lz4+Xh9//LFatWqlbt26aeXKlZdsouRG1apV1aZNGz3zzDM6efKkmjVrJmOM9u3bpxUrVqh3795q3bp1ro87n8vl0nXXXafExMRsz717924dOXJEFSpUUPfu3fX444/rzJkzeuWVV7Rp0yYlJiYqIiIi28du2rRJw4cPV7du3bRo0SLdcMMNCg8Pt/Tce/bsqQoVKqhx48YqUaKEdu7cqUmTJunAgQOaNWuWx7EtW7bUlClT9PDDD+uqq67SAw88oDp16rhXH2c2mgoXLux+zMsvv6xWrVrpmmuu0b/+9S9VqlRJKSkp+uWXX/TJJ5/oq6++8jhH48aNVb9+fU2ePFnGGPXr1y/H2C/12p5vwYIFCgsLU4cOHfTTTz/p2WefVYMGDdSjR4/cv1j/Z+zYserQoYPatGmjJ554QhEREZo6dap+/PFHzZ07170KtV69eu7XoHfv3goPD1fNmjVVqFChXM+RW8nJyWrTpo169uypK664QoUKFXLvh3/hVkHZadeunaZOnarDhw9r8uTJHuMzZ85U0aJF3f8Wv/vuO/3666+WG9uXmwOr7yVfK1KkiG655RbNmjVLx48f1xNPPOGxv/TF8v/WW29p9uzZmjlzpurUqaM6depo0KBBGjZsmFq2bKmmTZte8vy7d+9W9+7dVaVKFfXp0yfLHuNXXnlljlsmZQoNDVXHjh3VsWNHTZs2TZ999pnmzJmjIUOGqFmzZtn+UfPHH3/U/Pnz1bhxY0VGRur777/XuHHjVL16dffWNZmsfH+54YYb1KFDB/3rX//SiRMnVK1aNc2dO1dLly7V7Nmz3Z8ayu1xAAAAeRaoq1YCAADv+X//7/8ZSR5fBQoUMFdeeaV5/vnnzalTp3x+7s2bN2e578MPPzQul8t0797dZGRkeOV8ycnJZsSIEaZGjRomKirKFC1a1DRo0MA8/PDD5tixY5aPM8aYlJQUI8nceeedOZ73gw8+MJLM2rVrTa9evUzhwoVNoUKFzE033WS2bdt2yZhPnjx5OU/bjB071jRs2NDExsaa0NBQU7JkSXPLLbeY9evX5/iY7777zvTp08dUrlzZREZGmqioKFOtWjVz7733mi+//DLL8bt37zZ9+/Y1ZcuWNeHh4aZkyZKmRYsWZsyYMdnO//LLLxtJpnbt2jnGkJvX1hhjRo0aZSSZTZs2ma5du5qCBQuaQoUKmbvuusscOHAg22MPHTrkMT5z5kwjyezevds99vXXX5u2bduaAgUKmOjoaHP11VebTz75JMv5R4wYYcqUKWNCQkKMJLNixQpLc+Q2pjNnzpiHHnrI1K9f3xQuXNhER0ebmjVrmlGjRuXq3+mxY8dMSEiIKVCggDl37px7/L333jOSzK233uoee+aZZ0zFihUvOeeFz+FycpApN++lnObo3bu3KVCgQJY5r7vuOlOnTp1cP5/zLVu2zP29cceOHVnuzy7/W7duNdHR0aZ3794ex545c8Y0atTIVKpUKcv3kuysWLEiy/fn87/Of79adbHvLT///LO59tprTbFixUxERISpVq2aeeaZZ7I93ur3l5SUFDN48GATHx9vIiIiTP369c3cuXPzfNzlvhf8+V4CAADBw2XM/22cBgAAkE8tWbJEXbp00ffff+9evXmhJ598UlOnTlVycjIrDS3IzWsrSQkJCRo9erQOHTqUp32rkVXt2rV1ww03aNKkSYEOBQAAAPA6tiIBAAD53ooVK3TnnXdetPG6ceNGXXXVVTS1LcrNawvf2LZtW6BDAAAAAHyGxjYAAMj3Jk6ceNH7jTHavHmz+vbt66eInONSry2QF2lpaRe9PyQkxGMf7fwSCwAAQH7CViQAAAAAbOO3335T5cqVL3rMqFGjlJCQkK9iAQAAyG9obAMAAACwjXPnzmnr1q0XPaZMmTIqU6ZMvooFAAAgv6GxDQAAAAAAAACwFTZ7AwAAAAAAAADYCo1tAAAAAAAAAICt0NgGAAAAAAAAANgKjW0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBgAAAAAAAADYCo1tAAAAAAAAAICt0NgGAAAAAAAAANgKjW0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBgAAAAAAAADYCo1tAAAAAAAAAICt0NgGAAAAAAAAANgKjW0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBgAAAAAAAADYCo1tAMiDhIQEuVwuHT58ONv769atq9atW/vk3FOnTtWsWbN8MjcAAADgFLNmzZLL5XJ/RUVFKT4+Xm3atNHYsWN18ODBQIeYZ0uWLFFCQkKgwwCAgKKxDQA2Q2MbAAAAyL2ZM2fqm2++0fLlyzVlyhQ1bNhQ48ePV61atfTFF18EOrw8WbJkiUaPHh3oMAAgoMICHQAAwHdSU1PlcrkUFsa3ewAAAORPdevWVePGjd23b7vtNj366KNq1aqVbr31Vu3cuVOlSpUKYIS+ZYzRmTNnFB0dHehQAMCrWLENAD6WmJgol8ul2bNn67HHHlN8fLyio6N13XXXacuWLR7H7tq1S3feeafKlCmjyMhIlSpVSu3atdN3330nSapUqZJ++uknrVy50v2RykqVKnmc591339Xjjz+usmXLKjIyUr/88osk6YsvvlC7du1UuHBhxcTEqGXLlvryyy89zv/LL7+oT58+ql69umJiYlS2bFl17dpVP/zwQ7bPac6cORo2bJhKly6tggULqmvXrjpw4IBSUlL0wAMPqESJEipRooT69OmjkydP+uYFBgAAACyqUKGCJk2apJSUFL3xxhvu8cWLF6t58+aKiYlRoUKF1KFDB33zzTfu+3/66Se5XC59+OGH7rFNmzbJ5XKpTp06Hufo1q2bGjVq5L5dqVIldenSRUuXLtVVV12l6OhoXXHFFXr77bc9Hnf69Gk98cQTqly5sqKiolSsWDE1btxYc+fOlSTdd999mjJliiR5bLXy22+/uccGDRqkadOmqVatWoqMjNQ777wjSdq5c6d69uypuLg4RUZGqlatWu65Mp05c0aPP/64GjZsqNjYWBUrVkzNmzfXxx9/nOV1zDzXzJkzVbNmTUVHR6tx48Zat26djDGaOHGiKleurIIFC6pt27bu300AwBtYwgcAfvLUU0/pqquu0ltvvaXk5GQlJCSodevW2rJli6pUqSJJ6ty5s9LT0zVhwgRVqFBBhw8f1tq1a3X8+HFJ0sKFC3X77bcrNjZWU6dOlSRFRkZ6nGfEiBFq3ry5pk2bppCQEMXFxWn27Nm69957ddNNN+mdd95ReHi43njjDXXq1Emff/652rVrJ0nau3evihcvrnHjxqlkyZI6evSo3nnnHTVr1kxbtmxRzZo1szynNm3aaNasWfrtt9/0xBNP6K677lJYWJgaNGiguXPnasuWLXrqqadUqFAhvfLKKz5+lQEAAIDc6dy5s0JDQ7Vq1SpJ0pw5c3T33XerY8eOmjt3rs6ePasJEyaodevW+vLLL9WqVSvVqVNHpUuX1hdffKHu3btL+nsBSXR0tLZt26a9e/eqTJkySktL08qVK/XQQw95nPP777/X448/ruHDh6tUqVJ666231K9fP1WrVk3XXnutJOmxxx7Tu+++qzFjxujKK6/UqVOn9OOPP+rIkSOSpGeffVanTp3SRx995NF0L126tPv/Fy1apK+//lojR45UfHy84uLitG3bNrVo0cLd1I+Pj9fnn3+uwYMH6/Dhwxo1apQk6ezZszp69KieeOIJlS1bVufOndMXX3yhW2+9VTNnztS9997r8Zw+/fRTbdmyRePGjZPL5dKwYcN04403qnfv3tq1a5dee+01JScn67HHHtNtt92m7777Ti6Xy8vZBJAvGQCAZaNGjTKSzKFDh7K9v06dOua6664zxhizYsUKI8lcddVVJiMjw33Mb7/9ZsLDw839999vjDHm8OHDRpKZPHnyRc99/tznyzzPtdde6zF+6tQpU6xYMdO1a1eP8fT0dNOgQQPTtGnTHM+VlpZmzp07Z6pXr24effTRLOe6cM4hQ4YYSWbw4MEe4zfffLMpVqzYRZ8XAAAA4E0zZ840ksyGDRtyPKZUqVKmVq1aJj093ZQpU8bUq1fPpKenu+9PSUkxcXFxpkWLFu6xe+65x1SpUsV9u3379qZ///6maNGi5p133jHGGLNmzRojySxbtsx9XMWKFU1UVJT5/fff3WN//fWXKVasmHnwwQfdY3Xr1jU333zzRZ/bwIEDTU4tHUkmNjbWHD161GO8U6dOply5ciY5OdljfNCgQSYqKirL8ZnS0tJMamqq6devn7nyyiuznCs+Pt6cPHnSPbZo0SIjyTRs2NDj95/JkycbSWbr1q0XfW4AkFtsRQIAftKzZ0+PlQkVK1ZUixYttGLFCklSsWLFVLVqVU2cOFEvvviitmzZooyMDMvnue222zxur127VkePHlXv3r2Vlpbm/srIyND111+vDRs26NSpU5KktLQ0vfDCC6pdu7YiIiIUFhamiIgI7dy5U9u3b89yri5dunjcrlWrliTpxhtvzDJ+9OhRtiMBAABAUDHGSJJ+/vln7d27V7169VJIyD+tkoIFC+q2227TunXrdPr0aUlSu3bttGvXLu3evVtnzpzR6tWrdf3116tNmzZavny5pL9XcUdGRqpVq1Ye52vYsKEqVKjgvh0VFaUaNWro999/d481bdpU//3vfzV8+HAlJibqr7/+svy82rZtq6JFi7pvnzlzRl9++aVuueUWxcTEePxe0LlzZ505c0br1q1zH//hhx+qZcuWKliwoMLCwhQeHq4ZM2Zk+ztBmzZtVKBAAfftzN8JbrjhBo/ffzLHz3+uAHA5aGwDQB5kXowxPT092/vT0tIUHh7uMRYfH5/luPj4ePdHCl0ul7788kt16tRJEyZM0FVXXaWSJUtq8ODBSklJyXVs538EUZIOHDggSbr99tsVHh7u8TV+/HgZY3T06FFJf3/s8dlnn9XNN9+sTz75RN9++602bNigBg0aZFtQFytWzON2RETERcfPnDmT6+cBAAAA+NKpU6d05MgRlSlTxl2TX1hLS1KZMmWUkZGhY8eOSZLat28v6e/m9erVq5Wamqq2bduqffv27mvYfPHFF2rZsmWWCzYWL148y/yRkZEetfYrr7yiYcOGadGiRWrTpo2KFSumm2++WTt37sz1c7vweRw5ckRpaWl69dVXs/xO0LlzZ0nS4cOHJUkLFixQjx49VLZsWc2ePVvffPONNmzYoL59+2Zbz/M7AYBAYY9tAMiDzKum//nnn1muoG6M0b59+zyuvC5J+/fvzzLP/v37PYrbihUrasaMGZKkHTt26IMPPlBCQoLOnTunadOm5Sq2C/erK1GihCTp1Vdf1dVXX33R55O5F/cLL7zgcf/hw4dVpEiRXJ0fAAAAsIPPPvtM6enpat26tbsm37dvX5bj9u7dq5CQEPcK6HLlyqlGjRr64osvVKlSJTVu3FhFihRRu3btNGDAAH377bdat26dRo8enae4ChQooNGjR2v06NE6cOCAe/V2165d9b///S9Xc1z4O0HRokUVGhqqXr16aeDAgdk+pnLlypL+/p2gcuXKmjdvnsc8Z8+ezdPzAQBfobENAHnQtm1buVwuzZs3T1dddZXHfUuXLtWJEyfcKzkyzZ07V4899pi7OPz999+1du3aLBdfyVSjRg0988wzmj9/vjZv3uwev3BFx6W0bNlSRYoU0bZt2zRo0KCLHutyubJcjPKzzz7Tn3/+qWrVquX6nAAAAEAw27Nnj5544gnFxsbqwQcfVPHixVW2bFnNmTNHTzzxhLtmP3XqlObPn6/mzZsrJibG/fj27dvrgw8+UPny5d3b8NWoUUMVKlTQyJEjlZqamuX3gbwoVaqU7rvvPn3//feaPHmyTp8+rZiYGHfN/tdff2VZFZ6dmJgYtWnTRlu2bFH9+vXdq6ez43K5FBER4dHU3r9/vz7++OPLfj4A4E00tgEgD6pWrapBgwZp4sSJOn78uDp37qzo6Ght2LBB48aNU+PGjdWzZ0+Pxxw8eFC33HKL+vfvr+TkZI0aNUpRUVEaMWKEJGnr1q0aNGiQunfvrurVqysiIkJfffWVtm7dquHDh7vnqVevnt5//33NmzdPVapUUVRUlOrVq5djrAULFtSrr76q3r176+jRo7r99tsVFxenQ4cO6fvvv9ehQ4f0+uuvS/p7z+xZs2bpiiuuUP369bVp0yZNnDhR5cqV88GrCAAAAPjejz/+6N5P+uDBg/r66681c+ZMhYaGauHChSpZsqQkacKECbr77rvVpUsXPfjggzp79qy73h83bpzHnO3atdPUqVN1+PBhTZ482WN85syZKlq0qBo1apSneJs1a6YuXbqofv36Klq0qLZv3653333Xo7meWf+PHz9eN9xwg0JDQy/ZsH755ZfVqlUrXXPNNfrXv/6lSpUqKSUlRb/88os++eQTffXVV5L+/p1gwYIFGjBggG6//XYlJSXp3//+t0qXLm1pOxQA8DUa2wCQRy+//LJq166tGTNmaPbs2UpLS1PFihU1cOBAPfPMM1mKyhdeeEEbNmxQnz59dOLECTVt2lTvv/++qlatKunv/barVq2qqVOnKikpSS6XS1WqVNGkSZP08MMPu+cZPXq09u3bp/79+yslJUUVK1bUb7/9dtFY77nnHlWoUEETJkzQgw8+qJSUFMXFxalhw4a67777PJ5TeHi4xo4dq5MnT+qqq67SggUL9Mwzz3jtdQMAAAD8qU+fPpL+3uO5SJEiqlWrloYNG6b777/f3dSW/r7Ye4ECBTR27FjdcccdCg0N1dVXX60VK1aoRYsWHnO2bdtWISEhio6OVvPmzd3j7du318yZM9WmTRuPi1Ba0bZtWy1evFgvvfSSTp8+rbJly+ree+/V008/7RHrmjVrNHXqVD333HMyxmj37t2qVKlSjvPWrl1bmzdv1r///W8988wzOnjwoIoUKaLq1au799nOfL0OHjyoadOm6e2331aVKlU0fPhw/fHHH3neXgUAfMFlMi8BDADwicTERLVp00Yffvihbr/99kCHAwAAAAAAYHt5+/MhAAAAAAAAAAABQmMbAAAAAAAAAGArAW1sr1q1Sl27dlWZMmXkcrm0aNEij/uNMUpISFCZMmUUHR2t1q1b66effgpMsACQR61bt5Yxhm1IAAD5AjU+AAAA/CGgje1Tp06pQYMGeu2117K9f8KECXrxxRf12muvacOGDYqPj1eHDh2UkpLi50gBAAAA5AY1PgAAAPwhaC4e6XK5tHDhQt18882S/l7JUaZMGQ0ZMkTDhg2TJJ09e1alSpXS+PHj9eCDDwYwWgAAAACXQo0PAAAAXwkLdAA52b17t/bv36+OHTu6xyIjI3Xddddp7dq1ORa9Z8+e1dmzZ923MzIydPToURUvXlwul8vncQMAAMA/jDFKSUlRmTJlFBLCpWPsgBofAAAAF2Olxg/axvb+/fslSaVKlfIYL1WqlH7//fccHzd27FiNHj3ap7EBAAAgeCQlJalcuXKBDgO5QI0PAACA3MhNjR+0je1MF67AMMZcdFXGiBEj9Nhjj7lvJycnq0KFCtq9e7cKFSrkszgzpaamasWKFWrTpo3Cw8N9fj74Fvl0FvLpLOTTecips/gjnykpKapcubJfajx4FzU+Ao2cOg85dR5y6jzk1Hl8kVMrNX7QNrbj4+Ml/b2qo3Tp0u7xgwcPZlnhcb7IyEhFRkZmGS9WrJgKFy7s/UAvkJqaqpiYGBUvXpx/pA5APp2FfDoL+XQecuos/shn5rxsRWEf1PgIFuTUecip85BT5yGnzuOLnFqp8YN2M8LKlSsrPj5ey5cvd4+dO3dOK1euVIsWLQIYGQAAAIC8oMYHAACAtwR0xfbJkyf1yy+/uG/v3r1b3333nYoVK6YKFSpoyJAheuGFF1S9enVVr15dL7zwgmJiYtSzZ88ARg0AAAAgJ9T4AAAA8IeANrY3btyoNm3auG9n7pvXu3dvzZo1S08++aT++usvDRgwQMeOHVOzZs20bNky9lEEAAAAghQ1PgAAAPwhoI3t1q1byxiT4/0ul0sJCQlKSEjwX1AAAAAWpaenKzU1NdBhBJXU1FSFhYXpzJkzSk9Pz9Mc4eHhCg0N9XJk8DVqfAAA4ATU+JeWl5rfmzV+0F48EgAAINgZY7R//34dP3480KEEHWOM4uPjlZSUdFkXdyxSpIji4+O5QCQAAAD8gho/9/Ja83urxqexDQAAkEeZBW9cXJxiYmJovp4nIyNDJ0+eVMGCBRUSYv165cYYnT59WgcPHpQklS5d2tshAgAAAFlQ4+ee1Zrf2zU+jW0AAIA8SE9Pdxe8xYsXD3Q4QScjI0Pnzp1TVFRUnhrbkhQdHS1JOnjwoOLi4tiWBAAAAD5FjW9NXmp+b9b4efstAwAAIJ/L3G8vJiYmwJE4W+bry/6GAAAA8DVqfP/wVo1PYxsAAOAy8NFE3+L1BQAAgL9Rg/qWt15fGtsAAAAAAAAAAFuhsQ0AAJDPtG7dWkOGDAl0GAAAAAC8JD/W+Fw8EgAAwNvWJvj3fC38fL7/k5iYqDZt2ujYsWMqUqRIQGIAAAAA/IIaP+iwYhsAAAAAAAAAYCs0tgEAAPKxY8eO6d5771XRokUVExOjG264QTt37nTf//vvv6tr164qWrSoChQooDp16mjJkiX67bff1KZNG0lS0aJF5XK5dN999wXoWQAAAADIlF9qfLYiAQAAyMfuu+8+7dy5U4sXL1bhwoU1bNgwde7cWdu2bVN4eLgGDhyoc+fOadWqVSpQoIC2bdumggULqnz58po/f75uu+02/fzzzypcuLCio6MD/XQAAACAfC+/1Pg0tgEAAPKpzGJ3zZo1atGihSTpvffeU/ny5bVo0SJ1795de/bs0W233aZ69epJkqpUqeJ+fLFixSRJcXFxQb//HgAAAJAf5Kcan61IAAAA8qnt27crLCxMzZo1c48VL15cNWvW1Pbt2yVJgwcP1pgxY9SyZUuNGjVKW7duDVS4AAAAAC4hP9X4NLYBAADyKWNMjuMul0uSdP/992vXrl3q1auXfvjhBzVu3FivvvqqP8MEAAAAkEv5qcansQ0AAJBP1a5dW2lpafr222/dY0eOHNGOHTtUq1Yt91j58uX10EMPacGCBXr88cc1ffp0SVJERIQkKT093b+BAwAAAMhWfqrxaWwDAADkU9WrV9dNN92k/v37a/Xq1fr+++91zz33qGzZsrrpppskSUOGDNHnn3+u3bt3a/Pmzfrqq6/cBXHFihXlcrn06aef6tChQzp58mQgnw4AAACQ7+WnGp/GNgAAQD42c+ZMNWrUSF26dFHz5s1ljNGSJUsUHh4u6e+VGgMHDlStWrV0/fXXq2bNmpo6daokqWzZsho9erSGDx+uUqVKadCgQYF8KgAAAACUf2r8sEAHAAAA4DgtEgIdwUUlJia6/79o0aL6z3/+k+Oxl9pr79lnn9Wzzz7rrdAAAACA4ESNH3RYsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAA+YwxRg888ICKFSsml8ul7777LmCxtG7dWkOGDAnY+QEAAAAnyI81fpjPzwAAAJDPJCQE9/mWLl2qWbNmKTExUVWqVFGJEiV8EhcAAADgFNT4wYfGNgAAQD7z66+/qnTp0mrRokWgQwEAAADgBfmxxmcrEgAAgHzkvvvu08MPP6w9e/bI5XKpUqVKOnv2rAYPHqy4uDhFRUWpVatW2rBhg/sxs2bNUpEiRTzmWbRokVwul/t2QkKCGjZsqHfffVeVKlVS0aJF1bdvX6WkpLiPOXXqlO69914VLFhQpUuX1qRJk3z+fAEAAACn81eNHxsbqzvvvDNLjd+7d++A1Pg0tgEAAPKRl19+Wc8995zKlSunffv2acOGDXryySc1f/58vfPOO9q8ebOqVaumTp066ejRo5bm/vXXX7Vo0SJ9+umnWrx4sdauXavx48e77x86dKhWrFihhQsXatmyZUpMTNSmTZu8/RQBAACAfMVfNf6nn36qlStXaty4ce77R44cqcTExIDU+DS2AQAA8pHY2FgVKlRIoaGhio+PV0xMjF5//XVNnDhRN9xwg2rXrq3p06crOjpaM2bMsDR3RkaGZs2apbp16+qaa65Rjx499NVXX0mSTp48qRkzZuj//b//pw4dOqhevXp65513lJ6e7ounCQAAAOQb/qzxe/XqpS+//FLS3zX+7NmzNWHChIDU+DS2AQAA8rFff/1VqampatmypXssPDxcTZs21fbt2y3NValSJRUqVMh9Oz4+XgcPHnSf59y5c2revLn7/mLFiqlmzZqX+QwAAAAAnM+XNX7p0qWDpsansQ0AAJCPGWMkyWMvvczxzLGQkBD3cZlSU1OzzBUeHu5x2+VyKSMjw+M8AAAAAHwrv9T4NLYBAADysWrVqikiIkKrV692j6Wmpmrjxo2qVauWJKlkyZJKSUnRqVOn3Md89913ls8THh6udevWuceOHTumHTt2XN4TAAAAAOAhv9T4YX45CwAAAIJSgQIF9K9//UtDhw5VsWLFVKFCBU2YMEGnT59Wv379JEnNmjVTTEyMnnrqKT388MNav369Zs2aZek8BQsWVL9+/TR06FAVL15cpUqV0tNPP62QENZZAAAAAN7kzxr/nnvu0bBhw1SyZEm/1/g0tgEAAPK5cePGKSMjQ7169VJKSooaN26szz//XEWLFpX09z55s2fP1tChQ/Xmm2+qffv2SkhI0AMPPGDpPBMnTtTJkyfVrVs3FSpUSI8//riSk5N98ZQAAACAfM1fNf5zzz2nc+fOBaTGd5lAb4biYydOnFBsbKySk5NVuHBhn58vNTVVS5YsUefOnbPsQQP7IZ/OQj6dhXw6j91yeubMGe3evVuVK1dWVFRUoMMJOhkZGTpx4oQKFy58WSs2LvY6+7vOQ/CgxsflIqfOQ06dh5w6jx1ySo1vTV5rfm/V+Hz2EwAAAAAAAABgK45tbE+ZMkW1a9dWkyZNAh0KAAAAAC+gxgcAAEAmxza2Bw4cqG3btmnDhg2BDgUAAACAF1DjAwAAIJNjG9sAAAAAAAAAAGeisQ0AAAAAAAAAsBUa2wAAAJchIyMj0CE4Gq8vAAAA/I0a1Le89fqGeWUWAACAfCYiIkIhISHau3evSpYsqYiICLlcrkCHFTQyMjJ07tw5nTlzRiEh1tdSGGN07tw5HTp0SCEhIYqIiPBBlAAAAMA/qPGtsVrze7vGp7ENAACQByEhIapcubL27dunvXv3BjqcoGOM0V9//aXo6OjL+mUgJiZGFSpUyFNzHAAAALCCGt+avNb83qrxaWwDAADkUUREhCpUqKC0tDSlp6cHOpygkpqaqlWrVunaa69VeHh4nuYIDQ1VWFgYq2QAAADgN9T4uZeXmt+bNT6NbQAAgMvgcrkUHh6e5+atU4WGhiotLU1RUVG8NgAAALAVavzcCXTNz2c6AQAAAAAAAAC2QmMbAAAAAAAAAGArNLYBAAAAAAAAALZCYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2QmMbAAAAAAAAAGArNLYBAAAAAAAAALZCYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2QmMbAAAAAAAAAGArNLYBAAAAAAAAALZCYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2QmMbAAAAAAAAAGArNLYBAAAAAAAAALZCYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2QmMbAAAAAAAAAGArNLYBAAAAAAAAALZCYxsAAAAAAAAAYCs0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2EhboAAAAAADAzhIScjcGAAAA72HFNgAAAAAAAADAVoK6sZ2WlqZnnnlGlStXVnR0tKpUqaLnnntOGRkZgQ4NAAAAQB5Q4wMAAMAbgnorkvHjx2vatGl65513VKdOHW3cuFF9+vRRbGysHnnkkUCHBwAAAMAianwAAAB4Q1A3tr/55hvddNNNuvHGGyVJlSpV0ty5c7Vx48YARwYAAAAgL6jxAQAA4A1B3dhu1aqVpk2bph07dqhGjRr6/vvvtXr1ak2ePDnHx5w9e1Znz5513z5x4oQkKTU1Vampqb4O2X0Of5wLvkc+nYV8Ogv5dB5y6iz+yCfvFXtyYo0fks0Gj7w9gxs/c5yHnDoPOXUecuo8vsiplblcxhjjtTN7mTFGTz31lMaPH6/Q0FClp6fr+eef14gRI3J8TEJCgkaPHp1lfM6cOYqJifFluAAAAPCj06dPq2fPnkpOTlbhwoUDHQ5yiRofAAAAObFS4wd1Y/v999/X0KFDNXHiRNWpU0ffffedhgwZohdffFG9e/fO9jHZreYoX768Dh8+7JdfeFJTU7V8+XJ16NBB4eHhPj8ffIt8Ogv5dBby6Tzk1Fn8kc8TJ06oRIkSNLZtxok1/tixWR9zkT49ggA/c5yHnDoPOXUecuo8vsiplRo/qLciGTp0qIYPH64777xTklSvXj39/vvvGjt2bI5Fb2RkpCIjI7OMh4eH+/Ufjb/PB98in85CPp2FfDoPOXUWX+aT94k9ObHGz8jI7lg/BITLxs8c5yGnzkNOnYecOo83c2plnmx2gwsep0+fVsgFG9aFhoYqI7vKEQAAAEDQo8YHAACANwT1iu2uXbvq+eefV4UKFVSnTh1t2bJFL774ovr27Rvo0AAAAADkATU+AAAAvCGoG9uvvvqqnn32WQ0YMEAHDx5UmTJl9OCDD2rkyJGBDg0AAABAHlDjAwAAwBuCurFdqFAhTZ48WZMnTw50KAAAAAC8gBofAAAA3hDUe2wDAAAAAAAAAHAhGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALCVsEAHAAAAAABOk5BgbRwAAADWsGIbAAAAAAAAAGArjm1sT5kyRbVr11aTJk0CHQoAAAAAL6DGBwAAQCbHNrYHDhyobdu2acOGDYEOBQAAAIAXUOMDAAAgk2Mb2wAAAAAAAAAAZ6KxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsJUwKwf//PPPmjt3rr7++mv99ttvOn36tEqWLKkrr7xSnTp10m233abIyEhfxQoAAADAy6jxAQAAYEe5WrG9ZcsWdejQQQ0aNNCqVavUpEkTDRkyRP/+9791zz33yBijp59+WmXKlNH48eN19uxZX8cNAAAA4DJQ4wMAAMDOcrVi++abb9bQoUM1b948FStWLMfjvvnmG7300kuaNGmSnnrqKa8FCQAAAMC7qPEBAABgZ7lqbO/cuVMRERGXPK558+Zq3ry5zp07d9mBAQAAAPAdanwAAADYWa62IslNwXs5x1/Mn3/+qXvuuUfFixdXTEyMGjZsqE2bNnltfgAAACA/osYHAACAneVqxfYrr7yS6wkHDx6c52AudOzYMbVs2VJt2rTRf//7X8XFxenXX39VkSJFvHYOAAAAID+ixgcAAICd5aqx/dJLL3ncPnTokE6fPu0uPo8fP66YmBjFxcV5tegdP368ypcvr5kzZ7rHKlWq5LX5AQAAgPyKGh8AAAB2lqvG9u7du93/P2fOHE2dOlUzZsxQzZo1JUk///yz+vfvrwcffNCrwS1evFidOnVS9+7dtXLlSpUtW1YDBgxQ//79c3zM2bNnPa7YfuLECUlSamqqUlNTvRpfdjLP4Y9zwffIp7OQT2chn85DTp3FH/nkvXJ5qPFz71Lv55BcbfCYOZc3IsLl4meO85BT5yGnzkNOnccXObUyl8sYY6xMXrVqVX300Ue68sorPcY3bdqk22+/3aNAvlxRUVGSpMcee0zdu3fX+vXrNWTIEL3xxhu69957s31MQkKCRo8enWV8zpw5iomJ8VpsAAAACKzTp0+rZ8+eSk5OVuHChQMdjq1R4wMAACAYWKnxLTe2Y2JilJiYqKZNm3qMr1+/Xq1bt9bp06etR5yDiIgINW7cWGvXrnWPDR48WBs2bNA333yT7WOyW81Rvnx5HT582C+/8KSmpmr58uXq0KGDwsPDfX4++Bb5dBby6Szk03nIqbP4I58nTpxQiRIlaGx7ATX+xV3q/Tx2bO7nGjHCi4Ehz/iZ4zzk1HnIqfOQU+fxRU6t1Pi52orkfO3atVP//v01Y8YMNWrUSC6XSxs3btSDDz6o9u3b5zno7JQuXVq1a9f2GKtVq5bmz5+f42MiIyMVGRmZZTw8PNyv/2j8fT74Fvl0FvLpLOTTecips/gyn7xPvIcaP3dyOl9GhpU5vBgQLhs/c5yHnDoPOXUecuo83syplXks7Ab3t7fffltly5ZV06ZNFRUVpcjISDVr1kylS5fWW2+9ZXW6i2rZsqV+/vlnj7EdO3aoYsWKXj0PAAAAkJ9R4wMAAMBuLK/YLlmypJYsWaIdO3bof//7n4wxqlWrlmrUqOH14B599FG1aNFCL7zwgnr06KH169frzTff1Jtvvun1cwEAAAD5FTU+AAAA7MZyYztTpUqVZIxR1apVFRaW52kuqkmTJlq4cKFGjBih5557TpUrV9bkyZN19913++R8AAAAQH5GjQ8AAAC7sLwVyenTp9WvXz/FxMSoTp062rNnj6S/L/gybtw4rwfYpUsX/fDDDzpz5oy2b9+u/v37e/0cAAAAQH5GjQ8AAAC7sdzYHjFihL7//nslJiYqKirKPd6+fXvNmzfPq8EBAAAA8D1qfAAAANiN5c8XLlq0SPPmzdPVV18tl8vlHq9du7Z+/fVXrwYHAAAAwPeo8QEAAGA3lhvbhw4dUlxcXJbxU6dOeRTBAAAAAOyBGt9/EhKsjQMAACB7lrciadKkiT777DP37cxCd/r06WrevLn3IgMAAADgF9T4l2FtgpSUmPULAAAAPmV5xfbYsWN1/fXXa9u2bUpLS9PLL7+sn376Sd98841WrlzpixgBAAAA+BA1PgAAAOzG8ortFi1aaM2aNTp9+rSqVq2qZcuWqVSpUvrmm2/UqFEjX8QIAAAAwIeo8QEAAGA3lldsS1K9evX0zjvveDsWAAAAAAFCjQ8AAAA7yVNjW5IOHjyogwcPKiMjw2O8fv36lx0UAAAAAP+jxgcAAIBdWG5sb9q0Sb1799b27dtljPG4z+VyKT093WvBAQAAAPA9anwAAADYjeXGdp8+fVSjRg3NmDFDpUqVcl8xHQAAAIA9UeMDAADAbiw3tnfv3q0FCxaoWrVqvogHAAAAgJ9R4wMAAMBuQqw+oF27dvr+++99EQsAAACAAKDGBwAAgN1YXrH91ltvqXfv3vrxxx9Vt25dhYeHe9zfrVs3rwUHAAAAwPeo8QEAAGA3lhvba9eu1erVq/Xf//43y31cWAYAAACwH2p8AAAA2I3lrUgGDx6sXr16ad++fcrIyPD4ouAFAAAA7IcaHwAAAHZjubF95MgRPfrooypVqpQv4gEAAADgZ9T4AAAAsBvLje1bb71VK1as8EUsAAAAAAKAGh8AAAB2Y3mP7Ro1amjEiBFavXq16tWrl+XCMoMHD/ZacAAAAAB8jxofAAAAdmO5sf3WW2+pYMGCWrlypVauXOlxn8vlougFAAAAbIYaHwAAAHZjqbFtjNGKFSsUFxenmJgYX8UEAAAAwE+o8XNv7FgpI+OCwaTWgQgFAAAg37O0x7YxRjVq1NCff/7pq3gAAAAA+BE1PgAAAOzI0ortkJAQVa9eXUeOHFH16tV9FRMAAAAAP6HGDw4JCdbGAQAA8jtLK7YlacKECRo6dKh+/PFHX8QDAAAAwM+o8QEAAGA3li8eec899+j06dNq0KCBIiIiFB0d7XH/0aNHvRYcAAAAAN+jxgcAAIDdWG5sT5482QdhAAAAAAgUanwAAADYjeXGdu/evX0RBwAAAIAAocYHAACA3VhubEtSenq6Fi1apO3bt8vlcql27drq1q2bQkNDvR0fAAAAAD+gxgcAAICdWG5s//LLL+rcubP+/PNP1axZU8YY7dixQ+XLl9dnn32mqlWr+iJOAAAAAD5CjQ8AAAC7CbH6gMGDB6tq1apKSkrS5s2btWXLFu3Zs0eVK1fW4MGDfREjAAAAAB+ixgcAAIDdWF6xvXLlSq1bt07FihVzjxUvXlzjxo1Ty5YtvRocAAAAAN+jxgcAAIDdWF6xHRkZqZSUlCzjJ0+eVEREhFeCAgAAAOA/1PgAAACwG8uN7S5duuiBBx7Qt99+K2OMjDFat26dHnroIXXr1s0XMQIAAADwIWp8AAAA2I3lxvYrr7yiqlWrqnnz5oqKilJUVJRatmypatWq6eWXX/ZFjAAAAAB8iBofAAAAdmN5j+0iRYro448/1s6dO/W///1PxhjVrl1b1apV80V8AAAAAHyMGh8AAAB2Y7mxnal69eqqXr26N2MBAAAAEEDU+MEnISF3YwAAAPmN5cZ2enq6Zs2apS+//FIHDx5URkaGx/1fffWV14IDAAAA4HvU+AAAALAby43tRx55RLNmzdKNN96ounXryuVy+SIuAAAAAH5CjQ8AAAC7sdzYfv/99/XBBx+oc+fOvogHAAAAgJ9R4wMAAMBuQqw+ICIigovIAAAAAA5CjQ8AAAC7sdzYfvzxx/Xyyy/LGOOLeLxmypQpql27tpo0aRLoUAAAAICgRo0PAAAAu7G8Fcnq1au1YsUK/fe//1WdOnUUHh7ucf+CBQu8FtzlGDhwoAYOHKgTJ04oNjY20OEAAAAAQYsaHwAAAHZjubFdpEgR3XLLLb6IBQAAAEAAUOMDAADAbiw3tmfOnOmLOAAAAAAECDU+AAAA7MbyHtsAAAAAAAAAAARSrhrb119/vdauXXvJ41JSUjR+/HhNmTLlsgMDAAAA4DvU+AAAALCzXG1F0r17d/Xo0UOFChVSt27d1LhxY5UpU0ZRUVE6duyYtm3bptWrV2vJkiXq0qWLJk6c6Ou4AQAAAFwGanwAAADYWa4a2/369VOvXr300Ucfad68eZo+fbqOHz8uSXK5XKpdu7Y6deqkTZs2qWbNmr6MFwAAAIAXUOPnwZ+rpTRXoKMAAACALFw8MiIiQj179lTPnj0lScnJyfrrr79UvHhxhYeH+yxAAAAAAL5BjQ8AAAC7ynVj+0KxsbGKjY31ZiwAAAAAAogaHwAAAHaRq4tHAgAAAAAAAAAQLGhsAwAAAAAAAABshcY2AAAAAAAAAMBWaGwDAAAAAAAAAGzFcmM7KSlJf/zxh/v2+vXrNWTIEL355pteDQwAAACAf1DjAwAAwG4sN7Z79uypFStWSJL279+vDh06aP369Xrqqaf03HPPeT1AAAAAAL5FjQ8AAAC7sdzY/vHHH9W0aVNJ0gcffKC6detq7dq1mjNnjmbNmuXt+AAAAAD4GDU+AAAA7MZyYzs1NVWRkZGSpC+++ELdunWTJF1xxRXat2+fd6MDAAAA4HPU+AAAALAby43tOnXqaNq0afr666+1fPlyXX/99ZKkvXv3qnjx4l4PEAAAAIBvUeMDAADAbiw3tsePH6833nhDrVu31l133aUGDRpIkhYvXuz++CIAAAAA+6DGBwAAgN2EWX1A69atdfjwYZ04cUJFixZ1jz/wwAMqUKCAV4MDAAAA4HvU+AAAALAbyyu227Ztq5SUFI+CV5KKFSumO+64w2uBAQAAAPAPanwAAADYjeXGdmJios6dO5dl/MyZM/r666+9EhQAAAAA/6HGBwAAgN3keiuSrVu3uv9/27Zt2r9/v/t2enq6li5dqrJly3o3OgAAAAA+Q40PAAAAu8p1Y7thw4ZyuVxyuVxq27Ztlvujo6P16quvejU4AAAAAL5DjQ8AAAC7ynVje/fu3TLGqEqVKlq/fr1Klizpvi8iIkJxcXEKDQ31SZAAAAAAvI8aHwAAAHaV68Z2xYoVJUkZGRk+CwYAAACA/1DjAwAAwK5y3dg+344dO5SYmKiDBw9mKYJHjhzplcAAAAAA+A81PgAAAOzEcmN7+vTp+te//qUSJUooPj5eLpfLfZ/L5aLoBQAAAGyGGj9IJSXmcEdr/8UAAAAQpCw3tseMGaPnn39ew4YN80U8AAAAAPyMGh8AAAB2E2L1AceOHVP37t19EQsAAACAAKDGBwAAgN1Ybmx3795dy5Yt80UsAAAAAAKAGh8AAAB2Y3krkmrVqunZZ5/VunXrVK9ePYWHh3vcP3jwYK8FBwAAAMD3qPEBAABgN5Yb22+++aYKFiyolStXauXKlR73uVwuil4AAADAZqjxAQAAYDeWG9u7d+/2RRwAAAAAAoQaHwAAAHZjeY9tAAAAAAAAAAACyfKK7b59+170/rfffjvPwQAAAADwP2p8AAAA2I3lxvaxY8c8bqempurHH3/U8ePH1bZtW68FBgAAAMA/qPEBAABgN5Yb2wsXLswylpGRoQEDBqhKlSpeCQoAAACA/1DjAwAAwG68ssd2SEiIHn30Ub300kvemA4AAABAgFHjAwAAIJh57eKRv/76q9LS0rw1HQAAAIAAo8YHAABAsLK8Fcljjz3mcdsYo3379umzzz5T7969vRYYAAAAAP+gxgcAAIDdWG5sb9myxeN2SEiISpYsqUmTJl3yauoAAAAAgg81PgAAAOzGcmN7xYoVvogjV8aOHaunnnpKjzzyiCZPnhywOAAAAAAnocYHAACA3VhubGc6dOiQfv75Z7lcLtWoUUMlS5b0ZlxZbNiwQW+++abq16/v0/MAAAAA+RU1PgAAAOzC8sUjT506pb59+6p06dK69tprdc0116hMmTLq16+fTp8+7YsYdfLkSd19992aPn26ihYt6pNzAAAAAPkVNT4AAADsJk8Xj1y5cqU++eQTtWzZUpK0evVqDR48WI8//rhef/11rwc5cOBA3XjjjWrfvr3GjBlz0WPPnj2rs2fPum+fOHFCkpSamqrU1FSvx3ahzHP441zwPfLpLOTTWcin85BTZ/FHPnmveA81/sVlniMkzOT+QSFeiCuH8/Hev3z8zHEecuo85NR5yKnz+CKnVuZyGWMsVGdSiRIl9NFHH6l169Ye4ytWrFCPHj106NAhK9Nd0vvvv6/nn39eGzZsUFRUlFq3bq2GDRvmuP9eQkKCRo8enWV8zpw5iomJ8WpsAAAACJzTp0+rZ8+eSk5OVuHChQMdjq1R4wMAACAYWKnxLa/YPn36tEqVKpVlPC4uzusfU0xKStIjjzyiZcuWKSoqKlePGTFihB577DH37RMnTqh8+fLq2LGjX37hSU1N1fLly9WhQweFh4f7/HzwLfLpLOTTWcin85BTZ/FHPjNX7eLyUeNfXOb7+YdlhZSR5srdg8q2uvwT/7k62+ERr3lh7nyOnznOQ06dh5w6Dzl1Hl/k1EqNb7mx3bx5c40aNUr/+c9/3IXoX3/9pdGjR6t58+ZWp7uoTZs26eDBg2rUqJF7LD09XatWrdJrr72ms2fPKjQ01OMxkZGRioyMzDJXeHi4X//R+Pt88C3y6Szk01nIp/OQU2fxZT55n3gPNX7uZKS5ct/YzvBCXDmci/e+9/Azx3nIqfOQU+chp87jzZxamcdyY/vll1/W9ddfr3LlyqlBgwZyuVz67rvvFBUVpc8//9zqdBfVrl07/fDDDx5jffr00RVXXKFhw4ZlKXgBAAAAWEeNDwAAALux3NiuW7eudu7cqdmzZ+t///ufjDG68847dffddys6OtqrwRUqVEh169b1GCtQoICKFy+eZRwAAABA3lDjAwAAwG4sN7YlKTo6Wv379/d2LAAAAAAChBofAAAAdmK5sT127FiVKlVKffv29Rh/++23dejQIQ0bNsxrwWUnMTHRp/MDAAAA+Q01PgAAAOwmxOoD3njjDV1xxRVZxuvUqaNp06Z5JSgAAAAA/kONDwAAALuxvGJ7//79Kl26dJbxkiVLat++fV4JCgAAAID/UOP7UVJi9uPlW/sxCAAAAPuzvGK7fPnyWrNmTZbxNWvWqEyZMl4JCgAAAID/UOMDAADAbiyv2L7//vs1ZMgQpaamqm3btpKkL7/8Uk8++aQef/xxrwcIAAAAwLeo8QEAAGA3lhvbTz75pI4ePaoBAwbo3LlzkqSoqCgNGzZMI0aM8HqAAAAAAHyLGh8AAAB2Y7mx7XK5NH78eD377LPavn27oqOjVb16dUVGRvoiPgAAAAA+Ro0PAAAAu7Hc2M5UsGBBNWnSxJuxAAAAAAgganwAAADYheWLRwIAAAAAAAAAEEg0tgEAAAAAAAAAtkJjGwAAAAAAAABgKzS2AQAAAAAAAAC2kueLRwIAAAAA/C8hwdo4AACAE9HYBgAAAABvS0oMdAQAAACOxlYkAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUuHgkAAAAAgZaU6IVjW19uFAAAALbBim0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBgAAAAAAAADYCo1tAAAAAAAAAICt0NgGAAAAAAAAANhKWKADAAAAAABcvoQEa+MAAAB2xoptAAAAAAAAAICt0NgGAAAAAAAAANgKjW0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBgAAAAAAAADYCo1tAAAAAAAAAICt0NgGAAAAAAAAANgKjW0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArYQFOgDkLCHB2jgAAAAAAAAA5Ac0tgEAAADAwVgwAwAAnIitSAAAAAAAAAAAtuLYxvaUKVNUu3ZtNWnSJNChAAAAAPACanwAAABkcmxje+DAgdq2bZs2bNgQ6FAAAAAAeAE1PgAAADI5trENAAAAAAAAAHAmGtsAAAAAAAAAAFsJC3QAsI6rmgMAAAAAAADIz1ixDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAV9tgOAuyNDQAAAAAAAAC5R2MbAAAAAPKh7BbYsOgGAADYBVuRAAAAAAAAAABshcY2AAAAAAAAAMBWaGwDAAAAAAAAAGyFxjYAAAAAAAAAwFa4eKTD5XTxFy4KAwAAAAAAAMCuWLENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW+HikQAAAPnJ2oTsx1vkMA4AAAAAQYjGtoMkJAQ6AgAAAAAAAADwPbYiAQAAAAAAAADYCiu2AQAAAACScv4UKJ8OBQAAwYYV2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbYY/tfIq98wAACGJrE7Ifb5HDOAAAAADkMzS2AQAAAAAXxcIYAAAQbGhswwMFKwAAAAAAAIBgxx7bAAAAAAAAAABbobENAAAAAAAAALAVtiLxM7b0AAAAAOAUbGUIAAAChcY2AAAAADhBUmL24+Vb+2Zub8wLAACQR2xFAgAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwlbBABwDnSUiwNg4AAAAAAAAAVrBiGwAAAAAAAABgK0Hd2B47dqyaNGmiQoUKKS4uTjfffLN+/vnnQIcFAAAAII+o8YNEUmL2XwAAADYR1I3tlStXauDAgVq3bp2WL1+utLQ0dezYUadOnQp0aAAAAADygBofAAAA3hDUe2wvXbrU4/bMmTMVFxenTZs26dprrw1QVAAAAF60NiHQEQB+RY0PAAAAbwjqxvaFkpOTJUnFihXL8ZizZ8/q7Nmz7tsnTpyQJKWmpio1NdW3Af7fec7/74VCgnqNfM6svHQ5PUc/vPxed6l8wl7Ip7OQT+fJtznNsFAceOO1yel8Xn7d/ZHPfPdecSg71fghYcbn5/KJkGxeo5yeS3bH5nR8Tscq+Gv/fPszx8HIqfOQU+chp87ji5xamctljLFFdWaM0U033aRjx47p66+/zvG4hIQEjR49Osv4nDlzFBMT48sQAQAA4EenT59Wz549lZycrMKFCwc6HOQBNT4AAADOZ6XGt01je+DAgfrss8+0evVqlStXLsfjslvNUb58eR0+fNgvv/CkpqZq+fLl6tChg8LDw7PcP3asz0PwiREjcn9sTs/RyhzB4lL5hL2QT2chnwHwbQ7f4Jt55xt8vs1pTq9rdrzxWvs4j5n8kc8TJ06oRIkSNLZtzG41/g/LCikjzeXz83ld2VZZx/5cnftjczo+p2MV/LV/vv2Z42Dk1HnIqfOQU+fxRU6t1Pi22Irk4Ycf1uLFi7Vq1aqLFrySFBkZqcjIyCzj4eHhfv1Hk9P5MjL8FoJXPf981rGEhOyPzek52vl7lr/fP/At8uks5NOPQvzzDT7f5TSn1zU73nhd/JTHf6b1XT7z1fvEgexY42ekuezZ2M7I5jXK6Xlkd2xOx+d0rHL4lpLTNQVa5DBuRR7nznc/c/IBcuo85NR5yKnzeDOnVuYJ6sa2MUYPP/ywFi5cqMTERFWuXDnQIQEAAAC4DNT4AAAA8IagbmwPHDhQc+bM0ccff6xChQpp//79kqTY2FhFR0cHODoEQk6rxHMaBwAAQHChxgcAAIA3BHVj+/XXX5cktW7d2mN85syZuu+++/wfEAAAQF7l9DF5X87hjY/3A15GjQ8AAABvCOrGtk2ua5lvsUoaAAAAVlHjAwAAwBuCurENAAAAALhMSYmBjgAAAMDraGwDAAD/yWkrDX9vmZFftvTwxvYnAAAAABCEQgIdAAAAAAAAAAAAVrBiG0GJ/bsBAACA/C2n3wn4XQEAAEis2AYAAAAAAAAA2AwrtgEA8Ldg2WfaaXhdAcC/khKzHy/f2rfnXJvDeQEAQL5CYxt+w0cJAQAAAAAAAHgDW5EAAAAAAAAAAGyFFdtwBFaDAwBwmdjKBYAXZVuHJ7VWQr9E/wYCAAAcixXbAAAAAAAAAABbobENAAAAAAAAALAVtiIBAAAAAPhFwozWWcdaXP4ckvy7zYnV7ZvY7gkAAK+jsQ0AyD+y+6WSXyiBi6MZA8DHuC4OAADICxrbyHe40CQAAAAAAABgbzS2AS+iaQ4AAAAAAAD4Ho1teE9SYtax8q0v+TCavgAAS3LaGgMAAAAAkG/Q2AYAAAAA/C0pMTjmAAAAuISQQAcAAAAAAAAAAIAVrNgG/k92W6KEhEgNGvg9FAAAAAAAAAAXQWPb7pISsx/Pxd7WyL2xY6WMDM8x9gYHYCvZ7UvdIpsxJ/L3ntzsAQ4AAAAAPkdjG8gjGtsAAAAAAABAYNDYBgAAAAAEl6RE3829NkHKCJHUQPp2rBTyfx/NzC+fZAIAwCFobPtIdltXBLWkxKxjbGcCi7Jbxc7KdiCI5bRlBr/Y5x7bjgAAAABAQNDYBgAAAADYXsKM1lnHWlicI8HaOAAACBwa24AfUCADAAAAAAAA3kNjGwAAAADgSNkuJElqraf7rPJ3KNmuKNcyFrsAAJBXNLaDUVJi9uPseW0ZRSIAwCvYSxsAAAAAggqNbQAAAAAAAiEpUVqb6DnGRZyDFxfeBoCgQmMbCCAre297a59ub6xiZyU8AAAA8pMs9W9SayX0S/R/IAAAwI3Gtp0kJQY6AuQkKTHrGFvHwMlYrQIAAGxs7LvXqEHnExr77jXKSHP9PbjM2hzsmQ0AQGCFBDoAAAAAAAAAAACsYMU2EIRY5QEAAAAAAADkjMY2AAAAAAB2ldMWcdnx5bZxbFWXP5F3AAFEY9sfkhKzH2cPZgAAAAAAAACwjD22AQAAAAAAAAC2woptALbgjX3Hn3768ucAAAAAAABA4NHYRmAkJWY/7o3tWXw5t41wAUrnyy7H5N2B8vO+hVb2DAUAwKYSZrT2HFhGTQcAQG7Q2AYAAAAAICkx+3EnLZDhD+ZZ5YfnDgAORWMbsLlgX81hNb5gfz4AAAAAAAAIPMc2tqdMmaIpU6YoPT090KEAsIDGNgAAyAk1PgAAADI5trE9cOBADRw4UCdOnFBsbGygw8m/khJ9N08gPhKYlOj/c3pDUmL24076WGVOkhL/+f9vV0lqIH07Vmo1MkABWUez/xK+HSuFZHiO2fUjpVb2lPblx2nZ2xpAkKLGBwAAQCbHNrYBAHnHhSkBAAACJ6e6i3oMAIB/0NgGAC/glw8AAABIOdR/Sa39HAUAAM5HYzu/SUoMdAQIJkmJWcdysT0JzVovOm/Lh4QZrf8Zt7JNTFLiP3P0O2/8vDlsn7PstsbICJHUwN+R5Cy7GAOxJYpdtxFZm/BPTrPbXgbBJ1je8wBwMUmJgY4AQDDy5bZ+dmWltrP6O0d+fl3hUzS2AQBBy92Qv2CVU0K/RP8GAgAAAAAAggqNbQAAAAAAbMzjk3/nj/dL9GcYAAD4FY1tAPnG2HevUYPOJzT23WuU8cU/41YulGjXLT2c9nwAAABgH9SiAABfoLGN4JKUGOgIvCcpMftxK3sn5zSP1TmCRVJi9uN53E86z3NchksW30mJnrfX/t/t8/YU85iDCwk5m133uwYAAAAAIMjR2AYAXBaPj74uO288wd+RAAAAIN/jItT2k9NikCZP+zUMSd65ODYXprw8Vl6//PJac9H2HNHYBgDkS+6G/LILxhP8HQkAAEDgsV0IAMBuaGw7VVKi7+YIlm0wkhJ9N0+wPMecJCVmPx7scQcpXxbrOTVP8zMre5pbnvtSr3d2W78kJXrezmb7GM/7/xn3vFDTP//PhZrENiwAADgEDW8AQLCisQ0AAAAAACzJ0tj+vwUE/IEfAOAvNLYBAD7BKh7f8Fwlft54v0R/hgEAAAIg2/rqIhcjt2vdwCpxAEBu0NgGgHyMXw4AAEDAJSUGOgJ7SEr02lRZGt5sm3d5LnEBu6yr2xN988eFYLqYnL+3pcsvFxEE4IHGNuBvSYnZj9t1f+ykxKxjTnouFxPszzMpMfvx7OK2cqwv45A8i9IcViAlzGitkDCjBp1PaOy71ygjzZX3+PzItqumLhU3+2kDAAAAAPyMxjYAALngXmlzkY/75nnubBrHwd7stiqn5vj5zv9jxcjeK30fFAAAAADAtkICHQAAAAAAAAAAAFawYjuQkhIDHUHeJCUGOgLfS0r8+79hRmog6c/Vkk22OrhsSYnZj1vZkiKnOZwmKTHQEfheUuI//782MYeDLp/HvoM+WBGdJxdurxEsceXArtucAAAAZ8nP+3fn5+cOAIFAYxsAkCu52UoCAAAA8KfMBRIhIVKDBnJff4U/7gOA89HYBgAAAAAgJ0mJgY7A95ISA3POCz8R2CLhog9JuPjdsHpB75xe7+zmuURu/MrK8/TGRc5zmsOXr4mVc1qNL1gu/G41jmCJOyfB/u/GoWhsAwDgYFYuTGnXVflswwIAgD3ZdesOu9ZMAOA0NLaRfyQlBjqCi0tKDHQEF5eUGOgILi4pMdAReFdSYtYxK/ucW507EJIS7Tk3AAAAAAAIOBrbAAB4mTdW8bASCAAAAACAnNHYBgAAjuTLLUrY/gQAAPgCNQYA5B6NbQCBl5QY6Ah8Lykx0BEAbt5aDW5l/24AAJBPJSX6bo6LbNXnjQZxlotVJuV8vmwl5f5cQS+PF+5zdKM+EBc/9PcFFL11vsx5MkIkNZC+HSuFeGfqi57vcgT7hR8DcVHTIERjGwAAeI0vm+a+5OhfugAAALyIxQ0AggWNbQAAzsPe1s5nJce8HwAAALwvEIsKaMgDzkNjGwAAwIdYDQ4AAAAA3kdjG0D+lJQY6AgAOJA3VoPT8AYAABeibgCArGhsAwAAAAAA+0lK/Of/w4zUwItzr02wfrFIu/H3hQiDkK//YBDQ7U/Ib/AKpgs/ZheLjS5ASWMbAAAAAADkawkJFwzYpKlt6dNi/RJ9FYZPLiAe8oXUwJt/rADgODS2AcAukhIDHQEAP+DCRgAAAABwaTS2AQAAAABAvpDlD8jLAhKG11Y4w7/Y69w3eF2RVzS2AQAAAAAAHI7mYXCw+keNYM+P095X7udzwR+9smxXhKBAYxsAACDIWf2FwWm/YAAAAORX1HVAzmhsA06SlBjoCAAAAID8Kykx0BHYW1JioCNAMPlztdRAGjtotTLSXOfd0drnp2arGORobQJzBxEa2wAAAAAAAPBAcze4WcmPN1Z32/n9wMXZnYvGNgAAgE1Z3qORoh4AAMDrgr3pG+zx5YRtWHApNLYBAN6TlBjoCABYxC8MAADkb3ZtegIX4r2c/9DYBgAAAAAAAJBvBFMTnIUmeUdjGwAAAAAA5E9JiYGOAHCk7Jq1IWFGDTqf0Nh3r7nggqCXP7fXJSV63l6bmM1B2XPHNyOnx7S2Ns/5Y/0uEYdDLxKZk5BAB5AbU6dOVeXKlRUVFaVGjRrp66+/DnRIAAAAAC4DNT4AAEBgJMxoneXLjoJ+xfa8efM0ZMgQTZ06VS1bttQbb7yhG264Qdu2bVOFChUCHR4AAAAAi6jxAQCAEwRLQ9gb25m451h2wXhCHgLyk6BvbL/44ovq16+f7r//fknS5MmT9fnnn+v111/X2LFjAxwdAAAAAKuo8QEAAKwLlkZ6sAjqxva5c+e0adMmDR8+3GO8Y8eOWrt2bbaPOXv2rM6ePeu+nZycLEk6evSoUlNTfRfs/0lNTdXp06d17twRZWSE/z2YcdLn54VvhGSYv/OZEaKMjLzv/4TgQD6dhXw6DzkNLk9Nb5zt+ON3Zl+DSZKOHHH/b2ZNdOTIEYWHh3s7PElSSkqKJMkY45P54Ru2rvH5/uQYQf0z59yR7Mf5vfKigjqnyBNy6jx2zmlOtbEU3N+b8xT3BT+HjuTwY0nyTc1vpcYP6sb24cOHlZ6erlKlSnmMlypVSvv378/2MWPHjtXo0aOzjFeuXNknMSIfeCvQAcCryKezkE/nIadBb+ysi97rpyg8paSkKDY2NiDnhnXU+Aga/MxxHnLqPOTUecip7QTqw3S5qfGDurGdyeXy/CuOMSbLWKYRI0bosccec9/OyMjQ0aNHVbx48Rwf400nTpxQ+fLllZSUpMKFC/v8fIHUpEkTbdiwIdBh+BT5dBby6Szk03nIqbP4I5/GGKWkpKhMmTI+mR++RY0fnPLD9yeJnDoROXUecuo85NR5fJFTKzV+UDe2S5QoodDQ0CwrNw4ePJhlhUemyMhIRUZGeowVKVLEVyHmqHDhwo7/RxoaGur455iJfDoL+XQW8uk85NRZfJ1PVmrbDzV+cMtP358kcupE5NR5yKnzkFPn8XZOc1vjh3jtjD4QERGhRo0aafny5R7jy5cvV4sWLQIUFTINHDgw0CHAi8ins5BPZyGfzkNOkZ9R4wc3vj85Dzl1HnLqPOTUecipf7hMkF9tZ968eerVq5emTZum5s2b680339T06dP1008/qWLFioEOL4sTJ04oNjZWycnJ+eovM05FPp2FfDoL+XQecuos5BMXQ42PQCOnzkNOnYecOg85dZ5A5zSotyKRpDvuuENHjhzRc889p3379qlu3bpasmRJUBa80t8fkxw1alSWj0rCnsins5BPZyGfzkNOnYV84mKo8RFo5NR5yKnzkFPnIafOE+icBv2KbQAAAAAAAAAAzhfUe2wDAAAAAAAAAHAhGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbFk2dOlWVK1dWVFSUGjVqpK+//vqix69cuVKNGjVSVFSUqlSpomnTpvkpUuSWlZwuWLBAHTp0UMmSJVW4cGE1b95cn3/+uR+jxaVY/Teaac2aNQoLC1PDhg19GyAssZrPs2fP6umnn1bFihUVGRmpqlWr6u233/ZTtLgUq/l877331KBBA8XExKh06dLq06ePjhw54qdocTGrVq1S165dVaZMGblcLi1atOiSj6EmQrCjznce6nznodZ3Fmp956HedxZb1PwGufb++++b8PBwM336dLNt2zbzyCOPmAIFCpjff/892+N37dplYmJizCOPPGK2bdtmpk+fbsLDw81HH33k58iRE6s5feSRR8z48ePN+vXrzY4dO8yIESNMeHi42bx5s58jR3as5jPT8ePHTZUqVUzHjh1NgwYN/BMsLikv+ezWrZtp1qyZWb58udm9e7f59ttvzZo1a/wYNXJiNZ9ff/21CQkJMS+//LLZtWuX+frrr02dOnXMzTff7OfIkZ0lS5aYp59+2syfP99IMgsXLrzo8dRECHbU+c5Dne881PrOQq3vPNT7zmOHmp/GtgVNmzY1Dz30kMfYFVdcYYYPH57t8U8++aS54oorPMYefPBBc/XVV/ssRlhjNafZqV27thk9erS3Q0Me5DWfd9xxh3nmmWfMqFGjKHaDiNV8/ve//zWxsbHmyJEj/ggPFlnN58SJE02VKlU8xl555RVTrlw5n8WIvMlNkUtNhGBHne881PnOQ63vLNT6zkO972zBWvOzFUkunTt3Tps2bVLHjh09xjt27Ki1a9dm+5hvvvkmy/GdOnXSxo0blZqa6rNYkTt5yemFMjIylJKSomLFivkiRFiQ13zOnDlTv/76q0aNGuXrEGFBXvK5ePFiNW7cWBMmTFDZsmVVo0YNPfHEE/rrr7/8ETIuIi/5bNGihf744w8tWbJExhgdOHBAH330kW688UZ/hAwvoyZCMKPOdx7qfOeh1ncWan3nod6HFJj6KMwnszrQ4cOHlZ6erlKlSnmMlypVSvv378/2Mfv378/2+LS0NB0+fFilS5f2Wby4tLzk9EKTJk3SqVOn1KNHD1+ECAvyks+dO3dq+PDh+vrrrxUWxrfDYJKXfO7atUurV69WVFSUFi5cqMOHD2vAgAE6evQoe+8FWF7y2aJFC7333nu64447dObMGaWlpalbt2569dVX/REyvIyaCMGMOt95qPOdh1rfWaj1nYd6H1Jg6iNWbFvkcrk8bhtjsoxd6vjsxhE4VnOaae7cuUpISNC8efMUFxfnq/BgUW7zmZ6erp49e2r06NGqUaOGv8KDRVb+fWZkZMjlcum9995T06ZN1blzZ7344ouaNWsWKzmChJV8btu2TYMHD9bIkSO1adMmLV26VLt379ZDDz3kj1DhA9RECHbU+c5Dne881PrOQq3vPNT78Hd9xJ8tc6lEiRIKDQ3N8pemgwcPZvlrRKb4+Phsjw8LC1Px4sV9FityJy85zTRv3jz169dPH374odq3b+/LMJFLVvOZkpKijRs3asuWLRo0aJCkv4slY4zCwsK0bNkytW3b1i+xI6u8/PssXbq0ypYtq9jYWPdYrVq1ZIzRH3/8oerVq/s0ZuQsL/kcO3asWrZsqaFDh0qS6tevrwIFCuiaa67RmDFjWA1pM9RECGbU+c5Dne881PrOQq3vPNT7kAJTH7FiO5ciIiLUqFEjLV++3GN8+fLlatGiRbaPad68eZbjly1bpsaNGys8PNxnsSJ38pJT6e8VHPfdd5/mzJnD3k9BxGo+CxcurB9++EHfffed++uhhx5SzZo19d1336lZs2b+Ch3ZyMu/z5YtW2rv3r06efKke2zHjh0KCQlRuXLlfBovLi4v+Tx9+rRCQjzLlNDQUEn//NUf9kFNhGBGne881PnOQ63vLNT6zkO9DylA9ZHPLkvpQO+//74JDw83M2bMMNu2bTNDhgwxBQoUML/99psxxpjhw4ebXr16uY/ftWuXiYmJMY8++qjZtm2bmTFjhgkPDzcfffRRoJ4CLmA1p3PmzDFhYWFmypQpZt++fe6v48ePB+op4DxW83khrpQeXKzmMyUlxZQrV87cfvvt5qeffjIrV6401atXN/fff3+gngLOYzWfM2fONGFhYWbq1Knm119/NatXrzaNGzc2TZs2DdRTwHlSUlLMli1bzJYtW4wk8+KLL5otW7aY33//3RhDTQT7oc53Hup856HWdxZqfeeh3nceO9T8NLYtmjJliqlYsaKJiIgwV111lVm5cqX7vt69e5vrrrvO4/jExERz5ZVXmoiICFOpUiXz+uuv+zliXIqVnF533XVGUpav3r17+z9wZMvqv9HzUewGH6v53L59u2nfvr2Jjo425cqVM4899pg5ffq0n6NGTqzm85VXXjG1a9c20dHRpnTp0ubuu+82f/zxh5+jRnZWrFhx0Z+H1ESwI+p856HOdx5qfWeh1nce6n1nsUPN7zKG9f0AAAAAAAAAAPtgj20AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBgAAAAAAAADYCo1tAAAAAAAAAICt0NgGAAAAAAAAANgKjW0AAAAAAAAAgK3Q2AYAAAAAAAAA2AqNbQAAAAAAAACArdDYBoAgdO2118rlcmX5uvvuuy/52Pvuu0/Dhw/3ylwAAAAAvIMaHwC8y2WMMYEOAgDwD2OMYmNjNWrUqCyFacGCBVWwYMEcH5uRkaFSpUpp8eLFat68+WXNBQAAAMA7qPEBwPvCAh0AAMDTzp07lZKSomuvvVbx8fGWHrtmzRqFhISoWbNmlz0XAAAAAO+gxgcA72MrEgAIMps2bVJYWJjq169v+bGLFy9W165dFRISctlzAQAAAPAOanwA8D4a2wAQZDZv3qz09HQVL17c/VHCggULqn///pd87OLFi3XTTTdZmuvTTz9VzZo1Vb16db311ls+eU4AAABAfkaNDwDexx7bABBk2rZtq5IlS+r555/3GC9atKiKFy+e4+O2b9+uxo0b6/Dhw4qOjs7VXGlpaapdu7ZWrFihwoUL66qrrtK3336rYsWKef+JAQAAAPkUNT4AeB8rtgEgyGzZskWtWrVStWrVPL6KFy+uH3/8UVWrVtX+/fslSYcPH1bDhg117tw5LV68WB06dHAXvJeaS5LWr1+vOnXqqGzZsipUqJA6d+6szz//PCDPGwAAAHAqanwA8D4a2wAQRHbt2qXjx4/ryiuvzPb+unXr6s4779RXX30lSRo9erSGDRumiIgIffzxx+rWrVuu55KkvXv3qmzZsu7b5cqV059//umlZwMAAACAGh8AfCMs0AEAAP6xadMmSVKpUqXcKzYyxcXFKSQkRHXq1NGOHTv0yy+/aNOmTXrllVd08OBBbdiwQYsWLbI0V3a7UblcLi8/KwAAACD/osYHAN+gsQ0AQWTz5s2SpBo1aniMh4eHKyUlRZGRkapevbo+/fRTPfXUU3r++eflcrn0ySefqFmzZoqLi7M0V9myZT1Wb/zxxx9q1qyZr54eAAAAkO9Q4wOAb3DxSACwmePHj6t69epq1qyZPv30U0lSt27d1KpVKz355JOW5kpLS1OtWrWUmJjovrDMunXrLnoBGwAAAADeRY0PANaxYhsAbKZIkSKSpHHjxrnHWrVqpbvuusvyXGFhYZo0aZLatGmjjIwMPfnkkxS8AAAAgJ9R4wOAdazYBgCbSU1NVd26dfXzzz8HOhQAAAAAXkCNDwDWhQQ6AACANf/73/9Us2bNQIcBAAAAwEuo8QHAOlZsAwAAAAAAAABshRXbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW6GxDQAAAAAAAACwFRrbAAAAAAAAAABbobENAAAAAAAAALAVGtsAAAAAAAAAAFuhsQ0AAAAAAAAAsBUa2wAAAAAAAAAAW/n/YJjqnwckXWkAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#in abhängigkeit von der energie der elektronen\n",
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
"\n",
"\n",
"ax[0].hist(up_energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"ax[0].hist(up_energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
"ax[0].set_xticks(np.arange(0,1.1,0.1), minor=True,)\n",
"ax[0].set_yticks(np.arange(0,11,1), minor=True)\n",
"ax[0].set_xlabel(r\"$E_\\gamma/E_0$\")\n",
"ax[0].set_ylabel(\"counts (normed)\")\n",
"ax[0].set_title(\"Upstream\")\n",
"ax[0].legend()\n",
"ax[0].grid()\n",
"\n",
"ax[1].hist(down_energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"ax[1].hist(down_energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
"ax[1].set_xticks(np.arange(0,1.1,0.1), minor=True,)\n",
"ax[1].set_yticks(np.arange(0,11,1), minor=True)\n",
"ax[1].set_xlabel(r\"$E_\\gamma/E_0$\")\n",
"ax[1].set_ylabel(\"counts (normed)\")\n",
"ax[1].set_title(\"Downstream\")\n",
"ax[1].legend()\n",
"ax[1].grid()\n",
"\n",
"\"\"\"\n",
"most electrons lose little energy relative to their initial energy downstream\n",
"\"\"\"\n",
"fig.suptitle(r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj8AAAJOCAYAAADoCxXRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADUBklEQVR4nOzde5zN1eL/8fc2d2NmmyEzxr1CwlCU68n9lksRippQyUnlCJ3SDZ1cInIOSemi3OuEE3UmREkuuSRH+lInhRiUMYMwZmb9/ug3+9jmsj/bfGbbM/v1fDz2o3z22uv++ezPZ9ZeazmMMUYAAAAAAAAAAAAlRKkrnQEAAAAAAAAAAAA7MfgBAAAAAAAAAABKFAY/AAAAAAAAAABAicLgBwAAAAAAAAAAKFEY/AAAAAAAAAAAACUKgx8AAAAAAAAAAKBEYfADAAAAAAAAAACUKAx+AAAAAAAAAACAEoXBDwAAAAAAAAAAUKIw+AEAAODndu3apQMHDlzpbAAAAAAAUGww+AEAAODnXn/9da1du/ZKZwMAAAAAgGKDwQ8AAAA/tH79eg0ePFjHjh1zHduzZ4969eqlo0ePXsGcAQAAAADg/xj8AAAAJd7HH38sh8Ph9oqOjlajRo303nvv+STtd9991+14amqqunTpotDQUM2cOTPX5xo1aqS4uDglJibq008/1cyZM9WhQwd17txZV111VZHmuTj57LPPcrVtzmvz5s15fmbXrl26//77dc011ygiIkIRERGqWbOmhgwZom3btnmdh549eyoiIkInT57MN8zdd9+tkJAQrweuxo4dK4fDoV9//TXP9+vVq6fWrVt7Fac3Nm7cqLFjxxZYtkDgqR28FQj1mpWVpQoVKujll1/ON4zd9VpclOT2/+qrr9SpUydFRUWpTJkyatOmjb788stc4by5dp8+fVrDhw9XQkKCwsPD1bBhQy1evDjP9L0JCwAASr7gK50BAACAorZjxw5J0r/+9S9VqFBBxhgdOHBAY8aMUb9+/XTdddcpMTGxSNNu1KiR69iuXbvUs2dPnTlzRmvXrlXLli1zfS4yMlLPP/+8srOzNXHiRJUqVUoLFizQXXfdVST5LO4mTJigNm3auB2rV69ernCvvfaaHnnkEdWuXVt/+ctfVLduXTkcDn333XdatGiRbrrpJv3www+65pprLKd9//33a/ny5Vq4cKGGDh2a6/20tDQtW7ZM3bp1U1xcnPeFu4I2btyocePGaeDAgSpbtuyVzk6JEQj1un79eh0/fly9evW60lnxOyW1/bdu3apbbrlFN998s+bNmydjjCZPnqx27dpp3bp1atasWa7PWLl29+rVS1u3btWkSZNUq1YtLVy4UP369VN2drb69+9/2WEBAEDJx+AHAAAo8Xbs2CGn06kePXq4jjVr1kyZmZm655579PXXXxfp4EdERISuu+46SdLixYt1//33KzExUR988IESEhLy/Nx//vMfJSUlKT4+XrfeeqsSEhI0fvx4zZs3T++8847Kly9fJPn1pRMnTig7O9uWstSsWVNNmzYtMMyXX36poUOHqmvXrvrnP/+p0NBQ13tt27bVww8/rPfff18RERFepd2lSxclJCTorbfeynPwY9GiRTp79qzuv/9+r+Itbn7//XeVLl36SmcDfuKf//ynGjdurGrVqhVZGvQ53zty5IgiIyMVHR2d671nn31WZcuWVXJysqtd2rdvr6uvvlqjRo3KcwaIp2v3xx9/rNWrV7sGMSSpTZs2+vnnn/X444/rzjvvVFBQkNdhAQBAYGDZKwAAUOJt375dDRs2zHX80KFDkqQ6dep4HefLL7+s5cuXe5X2qFGj1K9fP9199936/PPP8x34kKSYmBi98MILSk5OVo0aNdSiRQvt3LlTffv2ldPpzPdzGzZsUMeOHeV0OhUTE6OuXbvq+++/v+xwVnXv3l2NGzfWnDlz1KBBA0VERKhKlSoaM2aMsrOz8/zMrl27VLFiRXXp0kXvvvuuTp06ddnpWzFhwgQFBQXptddecxv4uFifPn1ytcv333+v/v37q0KFCgoLC1OdOnX0yiuvuN4PCgrSgAEDtH37dv3nP//JFefbb7/tKmdRy1lG6Ouvv1avXr0UHR0tp9Ope+65R8ePH3cLe/z4cT344IOqUqWKwsLCdNVVV6lFixZas2aNK67HH39cklSjRg3XkjSfffaZK50dO3aod+/eiomJcZst46nOJOmHH37QoEGDVLNmTZUuXVqVKlVS9+7dc9VhTlq7du1Snz595HQ6FRsbqxEjRigzM1N79+5V586dFRUVperVq2vy5Mm211WOo0ePql+/fnI6nYqLi9N9992ntLQ0tzAbNmxQu3btFBUVpdKlS6t58+b66KOP3NLNr16txnFx/r/99luPefLU1nn59ttv5XA49P7777uObd++XQ6HQ3Xr1nUL26NHD7fZbcYYLVu2THfccUe+8V/s4MGDHtvAjj5XVH1JkpYvXy6Hw6FPP/0013uvvvqqK92C2v/cuXO64YYbdO2117q1YUpKiuLj49W6dWtlZWVZyk9+S0o5HA799NNPlssl/bFM45tvvqn27durcuXK+vHHH/MM9+WXX6p169ZuA1JRUVG65ZZbtHHjRh05csSrdCVp2bJlKlOmjPr06eN2fNCgQTp8+LC2bNlyWWEL2xeKsi8BAAD7MPgBAABKtN9++00HDhxQgwYNlJmZqczMTB07dkzz5s3T+PHj9cADD+jmm2/2Ot5t27apb9++BQ6A5KRdtWpVdezYUTNnztScOXP0+uuv5/vH9xyVK1dWt27d3I7l/JE9JCQkz8+MHTtWrVq1UpUqVbRo0SK98cYbOnjwoNq1a6fTp097Hc4b27dv1//93//p5Zdf1uOPP64PP/xQLVu21PPPP6+33norz880bdpU77zzjkJCQjR48GBVqFBBffr00dKlS3X+/Hmv0n/44YcVHBys6OhoderUSRs2bHB7PysrS+vWrVPjxo1VsWJFy/Hu2bNHN910k3bv3q2pU6dq5cqV6tq1q4YNG6Zx48a5wt13331yOBy5yrpnzx599dVXGjBggE9/cdyzZ09de+21+uc//6mxY8dq+fLl6tSpky5cuOAKk5SUpOXLl+u5557TqlWr9MYbb6h9+/b67bffJEkPPPCAHn30UUnS0qVLtWnTJm3atEk33nijK45evXrp2muv1fvvv6/Zs2e7ymylzg4fPqxy5cpp0qRJSk5O1iuvvKLg4GA1adJEe/fuzVWmvn37qkGDBvrggw80ePBgvfzyy3rsscd0++23q2vXrlq2bJnatm2rJ554QkuXLrW1rnLccccdqlWrlj744AM9+eSTWrhwoR577DHX+59//rnatm2rtLQ0vfnmm1q0aJGioqLUvXt3LVmyxFK9WonDmzxJnts6L3Xr1lXFihXdBkjWrFmjiIgI7dmzR4cPH5YkZWZm6vPPP1f79u1d4XL+0G118MObNihMn8tRFH2pW7duqlChgt5+++1c782dO1c33nijEhMTC2z/8PBwvffeezp27Jjuu+8+SVJ2drbuvvtuGWO0aNEiy9eRnHhzXmvXrlWlSpUUHx+v2NhYj5///ffftWTJEt12222Kj4/Xo48+qrJly2rJkiW6/vrr8/xMRkaGwsLCch3POZbX4LCna/fu3btVp04dBQe7L1qRM1tz9+7dlxU2R2H7QlFdlwAAgE0MAABACbZq1SojKdcrODjYvPDCC5cdb2Zmpunfv78JCQkxy5Yt85h2eHi42bx582Wn58mKFSuMJDN58mS34/v27TOSzPz5870K541Dhw4ZSebqq682J0+edB3PyMgw8fHxplu3bh7jSE1NNW+99Zbp2LGjCQ4ONk6n0wwcONB88sknJjMzM9/P7dixw/zlL38xy5YtM+vXrzdvvfWWqVOnjgkKCjLJycmucCkpKUaSueuuu3LFkZmZaS5cuOB6ZWdnu97r1KmTqVy5sklLS3P7zCOPPGLCw8PNiRMnXMdatWplypcvbzIyMlzHRo4caSSZffv2eayDvIwZM8ZIMsePH8/z/bp165pWrVrlCv/YY4+5hVuwYEGu9i1TpowZPnx4gelPmTLFSDL79+/PM1/PPfdcrs94U2cXy8zMNBkZGaZmzZpu+c9Ja+rUqW7hGzZsaCSZpUuXuo5duHDBXHXVVaZXr14FluvieK3UVU7YS8+boUOHmvDwcFefadq0qalQoYI5deqUW7nq1atnKleu7AqXX716E4fVPBljra3zcs8995irr77a9e/27dubwYMHm5iYGPPOO+8YY4z58ssvjSSzatUqV7jhw4eb+vXre4z/ctqgMH2uqPpSjhEjRpiIiAi36+CePXuMJDNjxgzXsYLa3xhjlixZYiSZ6dOnm+eee86UKlXKrX69lZmZaW677TZTpkwZs3379nzDZWRkmJUrV5r+/fubyMhIExoaarp162bmz5/v1h/z07BhQ1OrVi2TlZXlOnbhwgVz9dVXG0lm4cKFruNWr901a9Y0nTp1ypXW4cOHjSQzYcKEywpb2L5Q1H0JAADYg5kfAACgRNu+fbukP35hu3XrVm3dulXJycnq2rWrnnvuuTx/ifnrr78WuGSIw+FQcHCwFi5cqAsXLqhv3746evRovmknJSXp3LlzWr9+fZGV87nnntM111yjv/zlL64ZLpmZmapRo4YiIiJcy5RYDeeNrVu3SvpjRsnFS3KFhITo2muv1a+//uoxjrJly2rQoEH65JNPdOTIEU2aNEn79+9X586dlZCQkG++brjhBk2fPl233367/vSnP2nQoEHauHGjKlasqL/+9a+W8t+oUSOFhIS4XlOnTpUknTt3Tp9++ql69uyp0qVLu9XXrbfeqnPnzmnz5s2ueO6//379+uuv+vDDDyX98Yv4+fPn609/+pNq1qxpKS92ufvuu93+3bdvXwUHB2vdunWuYzfffLPmzp2rF154QZs3b87zV/aeXPrLfm/qLDMzUxMmTND111+v0NBQBQcHKzQ0VN9//72+++67XGldOhOqTp06cjgcbsuJBQcH69prr9XPP/9suQxW6irHxfsGSX/8ovzcuXM6duyYzpw5oy1btqh3794qU6aMK0xQUJCSkpJ06NChPGe0XOxy4igoTzkut63btWunH3/8Ufv379e5c+e0YcMGde7cWW3atNHq1asl/TEbJCwsTC1btnR9bunSpZZnfUjetUFh+lyOoupL9913n86ePes2Q+ftt99WWFiYV5tt9+3bVw899JAef/xxvfDCC3rqqafUoUMHy5+/1COPPKKPPvpI77//vtvMrYvt2rVL8fHxuu222/Trr7/qH//4h44ePaoVK1bo7rvvduuP+Xn00Ue1b98+PfLII/rll1908OBB/fnPf3bVYalS//vzgzfXbofDkW+al77nTVip8H2hqPoSAACwB4MfAACgRMvZcLxHjx5q3LixGjdurE6dOmnx4sUKCgrSnDlzcn0mKipKc+bM8fjK+SPcbbfdpnLlyuWZdnh4uN566y0lJSXpySefdP1h3E4pKSn6+uuv9d///ldhYWFuf8gPCQnR2bNnVbZsWcvhvLVt2zaFhITkWmdd+mNpoypVqngVX3p6uk6ePKm0tDQZY1S2bNlcy5gUpGzZsurWrZt27dqls2fPSpLKly+viIiIPP/4tHDhQm3dujVX2/z222/KzMzUjBkzctXVrbfeKkluAzu9e/eW0+l0LXvz8ccf6+jRo4Xa6Dyn3Pmt85+ZmZnnMmjx8fG54ilXrpzbMkdLlizRgAED9MYbb6hZs2aKjY3Vvffeq5SUFMv5u3QJMW/qbMSIEXr22Wd1++23a8WKFdqyZYu2bt2qBg0auNrtYpcu1RMaGqrSpUsrPDw81/Fz585ZLoOVuspx6Xmes5zP2bNnlZqaKmNMnsuq5ewjU9AyU5IuK46C8pTjcts6ZymrNWvWaMOGDbpw4YLatm2r9u3bu/a2WLNmjVq0aKGIiAhJ0ldffaUDBw54NfjhTRsUps/lKKq+VLduXd10002ua0BWVpbmz5+v2267zdJSUxe77777dOHCBQUHB2vYsGFeffZiL7zwgmbPnq3XXntNnTt3zjdcSEiInE6nsrKylJaWprS0NK+XQbzvvvs0adIkzZs3T5UrV1bVqlW1Z88ejRo1SpJUqVKlAj+f17U7v35w4sQJSe5t6U3YHIXtC0XVlwAAgD2sP0UCAAAUQzt27FD9+vVzrZMeEhKioKCgPP/IGhYWpgceeKDAeD/66COtXLlSvXv31qJFi/L84/yOHTvUoEEDBQcHa86cOa4NeTds2JDnBuyX6+DBg5L+2IT94l9fX+yaa67RDz/8YCmct7Zt26by5cvn+mPPli1b9OOPP+rZZ5/1GMfBgwf1/vvva/Hixdq6dasqVaqkO++8U3PmzFHjxo29zpMxRtL/fukbFBSktm3batWqVTpy5IjbH1Bz1q+/dBPgmJgY1y/uH3744TzTqVGjhuv/IyIi1K9fP82ZM0dHjhzRW2+9paioqDwHhayKi4uTJP3yyy+u/7+4jEeOHMmzflJSUtz+0JiZmanffvvN7Q/l5cuX1/Tp0zV9+nQdOHBAH374oZ588kkdO3ZMycnJlvJ36S+pvamz+fPn695779WECRPc3v/1118vaxDuclmpKytiYmJUqlSpPDd1ztkfo3z58kUeR14ut60rV66sWrVqac2aNapevboaN26ssmXLql27dho6dKi2bNmizZs3u+2r8cEHH6hWrVqqV6+e5fx50waF6XO+MGjQIA0dOlTfffedfvzxRx05ckSDBg3yKo4zZ84oKSlJtWrV0tGjR/XAAw/oX//6l9d5mTt3rp599lmNHTvWtYdIfurUqaMff/xRmzZt0sKFCzVp0iSNHDlSLVq00J133qnevXvnGqTKyxNPPKHhw4fr+++/V1RUlKpVq6YhQ4YoMjJSjRo18vj5S6/d9evX16JFi5SZmen2PZuzf8jF/cybsAAAIDAw8wMAAJRYaWlp+vHHH/McaPjXv/6lc+fO6ZZbbrmsuKdMmaLu3bvnO/CRk3bOEiNhYWFatmyZYmNj1aNHD69+Xe9Jzi9PHQ6Ha3bLpa+YmBjL4by1bds2HT9+XCdPnnQdy8rK0hNPPKHq1avnu9zLqVOnNGPGDLVs2VLVqlXT+PHj1bBhQ61du1YHDhzQ1KlTL2vgIzU1VStXrlTDhg3dBmRGjx6trKws/fnPf7a07E/p0qXVpk0bff3110pMTMyzvi794+z999+vrKwsTZkyRR9//LHuuusulS5d2usy5Gjbtq0cDkeeG10nJycrPT3dbaPpHAsWLHD793vvvafMzEy1bt06z3SqVq2qRx55RB06dNCOHTtcx/OaRVAQb+rM4XDk2hz5o48+0i+//GIpLbt4W1f5iYyMVJMmTbR06VK3+srOztb8+fNdAwlS/vXqTRyXK7+2zk/79u21du1arV692rX0Uq1atVS1alU999xzunDhglsf/OCDD7ya9SEVrg0u5zwtSv369VN4eLjmzp2ruXPnqlKlSurYsaNbGE/n1Z///GcdOHBAS5cu1ZtvvqkPP/xQL7/8slf5SE5O1uDBg3XfffdpzJgxlj/XrFkzzZgxQ4cPH1ZycrKuueYaPf3006pUqZLatm2r1157zeP1ICwsTPXq1VO1atV04MABLVmyRIMHD3bNDspPXtfunj176vTp0/rggw/cwr7zzjtKSEhQkyZNXMe8CQsAAAIDMz8AAECJtWPHDhljFBkZ6VrzPTU1VRs3btTLL7+sxMRE13Ic3lqxYoUiIiLyXY4pJ+2Lf+kaHx+vf/3rX2rZsqV69Oihzz//3OMfg6y45ppr1KZNGz3zzDM6ffq0mjRp4poVsG7dOg0YMECtW7e2HO5iDodDrVq10meffZZn2vv379dvv/2mqlWrqk+fPho5cqTOnTunf/zjH9q+fbs+++wzhYaG5vnZ7du368knn1SPHj20fPlydenSJc8lnArSv39/Va1aVY0bN1b58uX1/fffa+rUqTp69Kjmzp3rFrZFixZ65ZVX9Oijj+rGG2/Ugw8+qLp167p+aZ/zB7Po6GjXZ/7+97+rZcuW+tOf/qSHHnpI1atX16lTp/TDDz9oxYoVWrt2rVsajRs3VmJioqZPny5jTIFLXnmqW+mPtn3kkUc0ZcoUnTx5UrfeeqsiIiK0detWTZo0SY0bN85zcGnp0qUKDg5Whw4d9O233+rZZ59VgwYN1LdvX0l/DM61adNG/fv313XXXaeoqCjXfji9evVyxVO/fn1XPQwYMEAhISGqXbt2vvn1ps66deumuXPn6rrrrlNiYqK2b9+uKVOmqHLlygXGbzdPdeWNiRMnqkOHDmrTpo1GjRql0NBQzZo1S7t379aiRYvcfs0u5a7XqKgoy3FYZbWt89OuXTvNmjVLv/76q6ZPn+52/O2331ZMTIzrOrdz507997//9Xrwo7Bt4O15WpTKli2rnj17au7cuTp58qRGjRrltteFVHD7v/HGG5o/f77efvtt1a1bV3Xr1tUjjzyiJ554Qi1atNDNN9/sMQ/79+9Xnz59dPXVV2vQoEG59jy54YYbcg08XiooKEgdO3ZUx44dNXv2bH300UdauHChhg8friZNmuT5o4Ldu3frgw8+UOPGjRUWFqZvvvlGkyZNUs2aNfW3v/3NLazVa3eXLl3UoUMHPfTQQ0pPT9e1116rRYsWKTk5WfPnz3eb1elNWAAAECCu0EbrAAAARe6ll14yktxekZGR5oYbbjDjx483Z86cKfK0d+zYkeu9999/3zgcDtOnTx+TnZ1tS3ppaWlm9OjRplatWiY8PNzExMSYBg0amEcffdSkpqZ6Hc4YY06dOmUkmbvuuivfdN977z0jyWzcuNEkJSWZ6OhoExUVZW677TazZ88ej3k+ffp0YYptJk6caBo2bGicTqcJCgoyV111lenZs6f56quv8v3Mzp07zaBBg0yNGjVMWFiYCQ8PN9dee6259957zaeffpor/P79+819991nKlWqZEJCQsxVV11lmjdvbl544YU84//73/9uJJnrr78+3zxYqdsc2dnZ5tVXXzWNGzc2pUuXNqGhoaZmzZrmiSeeMKdOnXILO2bMGCPJbN++3XTv3t2UKVPGREVFmX79+pmjR4+6wp07d878+c9/NomJiSY6OtpERESY2rVrmzFjxuQ6L0aPHm0SEhJMqVKljCSzbt06VzrHjx/PM89W6iw1NdXcf//9pkKFCqZ06dKmZcuW5osvvjCtWrUyrVq1ylWmS9MaMGCAiYyMzJV2q1atTN26dT3Wq9W6KigPb7/9tpFk9u/f7zr2xRdfmLZt25rIyEgTERFhmjZtalasWJEr/bzq1Zs4rObJm7bOS2pqqilVqpSJjIw0GRkZruMLFiwwkkyvXr1cx5555hlTrVo1j3FeWobCtEEOK32uqPrSpVatWuX6ztm3b1+eYfJq/127dpmIiAgzYMAAt7Dnzp0zjRo1MtWrV891nc7LunXrcn33Xfy6uL96q6Dr9t69e80tt9xiYmNjTWhoqLn22mvNM888k2d4b67dp06dMsOGDTPx8fEmNDTUJCYmmkWLFuWZB6thC9sXfNWXAABA4TiM+f+LagIAAAAX+fjjj9WtWzd98803rl8qX+qvf/2rZs2apbS0NH5V6wUrdXs5xo4dq3Hjxun48eOXtTdEIKGu7Hf99derS5cumjp16pXOCgAAAMCyVwAAAMjbunXrdNdddxX4x/lt27bpxhtvZODDS1bqFihu9uzZc6WzAAAAALgw+AEAAIA8TZkypcD3jTHasWOH7rvvPh/lqOTwVLcA/EtmZmaB75cqVSrX3h6BkBcAAAB/xrJXAAAAAADk46efflKNGjUKDDNmzBiNHTs2oPICAADg7xj8AAAAAAAgHxkZGdq1a1eBYRISEpSQkBBQeQEAAPB3DH4AAAAAAAAAAIAShYVAAQAAAAAAAABAicLgBwAAAAAAAAAAKFEY/AAAAAAAAAAAACUKgx8AAAAAAAAAAKBEYfADAAAAAAAAAACUKAx+AAAAAAAAAACAEoXBDwAAAAAAAAAAUKIw+AEAAAAAAAAAAEoUBj8AAAAAAAAAAECJwuAHAAAAAAAAAAAoURj8AAAAAAAAAAAAJQqDHwAAAAAAAAAAoERh8AMAAAAAAAAAAJQoDH4AAAAAAAAAAIAShcEPAAAAAAAAAABQojD4AQAAAAAAAAAAShQGPwAAAAAAAAAAQInC4AcAAAAAAAAAAChRGPwAAAAAAAAAAAAlCoMfAPzKkiVLVLduXUVERMjhcGjnzp1XOkt5Gjt2rBwOx5XOht8YOHCgqlevfqWzUeQ+/vhjjR071vZ4586dK4fDoZ9++sn2uCVpz549Gjt2bJHFDwAAcCUU9T3UrFmzNHfu3CKJuzirXr26Bg4ceKWzUeSKqv2L+tmpqJ5ZAKA4YvADgN84fvy4kpKSdM011yg5OVmbNm1SrVq1rnS2AJePP/5Y48aNu9LZ8NqePXs0btw4Bj8AAAC8wOBHYCuu7V9cn1kAoCgw+AHAb+zbt08XLlzQPffco1atWqlp06YqXbr0lc5WifL7779f6SwUS4FWb4FW3oudPXtWxpgrnQ0AAIBCMcbo7NmzVzobxVIg3QsHej8JpLYGAhWDHwD8wsCBA9WyZUtJ0p133imHw6HWrVu73v/www/VrFkzlS5dWlFRUerQoYM2bdqUK468pg/ntUSVw+HQI488onnz5qlOnToqXbq0GjRooJUrV+b6/EcffaSGDRsqLCxMNWrU0EsvveRV2dasWaN27dopOjpapUuXVosWLfTpp5/mmcdvv/1W/fr1k9PpVFxcnO677z6lpaW5hTXGaNasWWrYsKEiIiIUExOj3r1768cff3QL17p1a9WrV0/r169X8+bNVbp0ad13332SpEOHDql3796KiopS2bJldffdd2vr1q1yOByuXzfNmzdPDocjVz1L0vPPP6+QkBAdPnw433KfO3dOo0ePVo0aNRQaGqpKlSrp4Ycf1smTJ93CrV27Vq1bt1a5cuUUERGhqlWr6o477nC7EX311VfVoEEDlSlTRlFRUbruuuv01FNPFVjvN910k7p27ep2rH79+nI4HNq6davr2NKlS+VwOPSf//xH0v/aYseOHerdu7diYmJ0zTXXaODAgXrllVck/dF/cl6eZlNYaf/Cfvb//u//1K9fP8XFxSksLExVq1bVvffeq/Pnz2vu3Lnq06ePJKlNmzaufOe0c0H95MCBA7rnnntUoUIFhYWFqU6dOpo6daqys7Ndaf/0009yOBx66aWXNG3aNNWoUUNlypRRs2bNtHnzZkvlTElJ0ZAhQ1S5cmWFhoaqRo0aGjdunDIzMy87nW3btqlHjx6KjY1VeHi4brjhBr333ntuYXKWyli1apXuu+8+XXXVVSpdurTOnz8vY4wmTJigatWqKTw8XI0bN9bq1avVunVr17Xp9OnTKlu2rIYMGZIr/Z9++klBQUGaMmWKpToAAAD2eeutt9SgQQOFh4crNjZWPXv21HfffecW5scff9Rdd92lhIQEhYWFKS4uTu3atXMtu1u9enV9++23+vzzz133T56WKvL2Pn3r1q3605/+pNKlS+vqq6/WpEmT3O6zJCk9PV2jRo1yu6cePny4zpw54xYu5/lm9uzZqlOnjsLCwvTOO+9IkjZs2KBmzZopPDxclSpV0rPPPqs33njD7V72/vvvV2xsbJ5/DG7btq3q1q1bYNmt3DdKnu/rf//9d1d5c9qvcePGWrRoUb5pp6enKzg42O2+69dff1WpUqXkdDrd7imHDRumq666yvVjl/zuhYuy/Qv72eTkZLVr105Op1OlS5dWnTp1NHHiREny+MziqZ+0a9dOUVFRKl26tJo3b66PPvrILe2c++d169bpoYceUvny5VWuXDn16tWrwGfDi3lzn241nSVLlqhZs2aKjIxUmTJl1KlTJ3399dduYQYOHKgyZcroP//5jzp27KioqCi1a9dOknTy5EnXOVCmTBl17dpVP/74oxwOh2sJsS+++EIOhyPPvvjuu+/mes4E4CcMAPiBH374wbzyyitGkpkwYYLZtGmT+fbbb40xxixYsMBIMh07djTLly83S5YsMY0aNTKhoaHmiy++cMUxYMAAU61atVxxjxkzxlx6uZNkqlevbm6++Wbz3nvvmY8//ti0bt3aBAcHm//+97+ucGvWrDFBQUGmZcuWZunSpeb99983N910k6latWquOPMyb94843A4zO23326WLl1qVqxYYbp162aCgoLMmjVrcuWxdu3a5rnnnjOrV68206ZNM2FhYWbQoEFucQ4ePNiEhISYkSNHmuTkZLNw4UJz3XXXmbi4OJOSkuIK16pVKxMbG2uqVKliZsyYYdatW2c+//xzc/r0aXPttdea2NhY88orr5hPPvnEPPbYY6ZGjRpGknn77beNMcacP3/exMfHm7vvvtst/QsXLpiEhATTp0+ffOs+OzvbdOrUyQQHB5tnn33WrFq1yrz00ksmMjLS3HDDDebcuXPGGGP2799vwsPDTYcOHczy5cvNZ599ZhYsWGCSkpJMamqqMcaYRYsWGUnm0UcfNatWrTJr1qwxs2fPNsOGDSuw7p988klTpkwZk5GRYYwxJiUlxUgyERERZvz48a5wDz30kImLi8vVFtWqVTNPPPGEWb16tVm+fLn54YcfTO/evY0ks2nTJtcrpyx5sdr+b7/9tpFk9u/f7/Vnd+7cacqUKWOqV69uZs+ebT799FMzf/5807dvX5Oenm6OHTtmJkyYYCSZV155xZXvY8eOGWPy7yfHjh0zlSpVMldddZWZPXu2SU5ONo888oiRZB566CFX+vv373edT507dzbLly83y5cvN/Xr1zcxMTHm5MmTBbbTkSNHTJUqVUy1atXMa6+9ZtasWWP+9re/mbCwMDNw4MDLSmft2rUmNDTU/OlPfzJLliwxycnJZuDAgW79++J6r1SpknnwwQfNv//9b/PPf/7TZGZmmtGjRxtJ5sEHHzTJyclmzpw5pmrVqqZixYqmVatWrjgee+wxExkZmaucjz/+uAkPDze//vprgeUHAACXL697qJz7nn79+pmPPvrIvPvuu+bqq682TqfT7Nu3zxWudu3a5tprrzXz5s0zn3/+ufnggw/MyJEjzbp164wxxuzYscNcffXV5oYbbnDdP+3YsaPA/Hhzn16uXDlTs2ZNM3v2bLN69WozdOhQI8m88847rnBnzpwxDRs2NOXLlzfTpk0za9asMX//+9+N0+k0bdu2NdnZ2a6wOfc0iYmJZuHChWbt2rVm9+7d5ptvvjHh4eEmMTHRLF682Hz44Yfm1ltvNdWrV3eru2+++cZIMnPmzHEr07fffuu6j8xRrVo1M2DAANe/rd43WrmvHzJkiCldurSZNm2aWbdunVm5cqWZNGmSmTFjRoF137RpU9OxY0fXvxcvXmzCw8ONw+EwX375pet4nTp1TN++fd3aIq974aJs/7yeW61+9o033jAOh8O0bt3aLFy40KxZs8bMmjXLDB061BhjPD6z5NdPPvvsMxMSEmIaNWpklixZYpYvX246duxoHA6HWbx4sSv9nHPu6quvNo8++qj55JNPzBtvvGFiYmJMmzZtCqwfY7y/T7eSzvjx443D4TD33XefWblypVm6dKlp1qyZiYyMdP1NIafeQ0JCTPXq1c3EiRPNp59+aj755BOTlZVlWrZsacLDw82kSZPMqlWrzLhx40zNmjWNJDNmzBhXHDfccINp0aJFrnLddNNN5qabbvJYfgC+x+AHAL+xbt06I8m8//77rmNZWVkmISHB1K9f32RlZbmOnzp1ylSoUME0b97cdczbwY+4uDiTnp7uOpaSkmJKlSplJk6c6DrWpEkTk5CQYM6ePes6lp6ebmJjYz0Ofpw5c8bExsaa7t27ux3PysoyDRo0MDfffHOuPE6ePNkt7NChQ014eLjrwWbTpk1Gkpk6dapbuIMHD5qIiAjz17/+1XWsVatWRpL59NNP3cLmDDL9+9//djs+ZMiQXDedY8aMMaGhoebo0aOuY0uWLDGSzOeff+46dmndJycn51menM++/vrrxhhj/vnPfxpJZufOnSY/jzzyiClbtmy+7+dnzZo1RpJZv369McaY+fPnm6ioKDN06FC3G+aaNWua/v37u5VZknnuuedyxfnwww9bGvQyxrv2v/TB3ZvPtm3b1pQtW9Y1mJGX999/30hyPcxfLL9+8uSTTxpJZsuWLW7HH3roIeNwOMzevXuNMf8blKhfv77JzMx0hfvqq6+MJLNo0aJ882XMH/2uTJky5ueff3Y7/tJLLxlJrgcWb9K57rrrzA033GAuXLjgFme3bt1MxYoVXdeSnHq/99573cKdOHHChIWFmTvvvNPteM75d/Hgx3//+19TqlQp8/LLL7uOnT171pQrVy7XwCUAALDXpfdQqampJiIiwtx6661u4Q4cOGDCwsJc93y//vqrkWSmT59eYPx169Z1+94vyOXcp196n3X99debTp06uf49ceJEU6pUKbN161a3cDn30B9//LHrmCTjdDrNiRMn3ML26dPHREZGmuPHj7uOZWVlmeuvvz7XwFGrVq1Mw4YN3T7/0EMPmejoaHPq1CnXsUsHP6zeN1q5r69Xr565/fbbCwyTl2eeecZERES4/sj/wAMPmM6dO5vExEQzbtw4Y4wxv/zyi9uzSE6Z87oXNqbo2v/SZyernz116pSJjo42LVu2dBv4ulRBzyz59ZOmTZuaChUquLVzZmamqVevnqlcubIrvZxzLmewJcfkyZONJHPkyJF882WM9/fpntI5cOCACQ4ONo8++qhbuFOnTpn4+Hi3ga4BAwYYSeatt95yC/vRRx8ZSebVV191Oz5x4sRcgx85+fr6669dx3KeRy4euATgP1j2CoBf27t3rw4fPqykpCSVKvW/S1aZMmV0xx13aPPmzZe9TmebNm0UFRXl+ndcXJwqVKign3/+WZJ05swZbd26Vb169VJ4eLgrXFRUlLp37+4x/o0bN+rEiRMaMGCAMjMzXa/s7Gx17txZW7duzTVdvUePHm7/TkxM1Llz53Ts2DFJ0sqVK+VwOHTPPfe4xRkfH68GDRros88+c/t8TEyM2rZt63bs888/V1RUlDp37ux2vF+/frnK8NBDD0mS5syZ4zo2c+ZM1a9fX7fccku+ZV+7dq2kP6YWX6xPnz6KjIx0Ld3UsGFDhYaG6sEHH9Q777yT57Tum2++WSdPnlS/fv30r3/9S7/++mu+6V6sRYsWCg8P15o1ayTJtWRR586dtXHjRv3+++86ePCgvv/+e7Vv3z7X5++44w5L6eTnctrf28/+/vvv+vzzz9W3b19dddVVl53XvPrJ2rVrdf311+vmm292Oz5w4EAZY1xtnKNr164KCgpy/TsxMVGSXOdTflauXKk2bdooISHBraxdunSR9Ed/9SadH374Qf/3f/+nu+++W5Lc4rz11lt15MgR7d271y3OS9t68+bNOn/+vPr27et2vGnTprmWO7j66qvVrVs3zZo1y7V8wsKFC/Xbb7/pkUceKbDsAADAXps2bdLZs2dz3YNWqVJFbdu2dd2DxsbG6pprrtGUKVM0bdo0ff3117mWZ/KWt/fp8fHxue6zEhMT3e6dVq5cqXr16qlhw4ZucXbq1EkOhyNXnG3btlVMTIzbsc8//1xt27ZV+fLlXcdKlSqV6z5Hkv7yl79o586d+vLLLyX9sZzUvHnzNGDAAJUpUybfslu9b7RyX3/zzTfr3//+t5588kl99tlnlvejaNeunc6ePauNGzdK+mP52A4dOqh9+/ZavXq165ikXPf+ed0Le8vb9r+cz27cuFHp6ekaOnRormWdvXFpPzlz5oy2bNmi3r17u7VzUFCQkpKSdOjQoVz3z3k9t0oF3/tfzn26p3Q++eQTZWZm6t5773WLLzw8XK1atcqz3i+998953rj0nMjr+bhfv36qUKGCa2kxSZoxY4auuuoq3XnnnfmWHcCVw+AHAL/222+/SZIqVqyY672EhARlZ2crNTX1suIuV65crmNhYWGuG+zU1FRlZ2crPj4+V7i8jl3q6NGjkqTevXsrJCTE7fXiiy/KGKMTJ04UmKewsDBJcuXp6NGjMsYoLi4uV5ybN2/O9QCRV7399ttviouLy3U8v2N33nmnXnvtNWVlZWnXrl364osvPP5R97ffflNwcHCuP8g7HA7Fx8e72vWaa67RmjVrVKFCBT388MO65pprdM011+jvf/+76zNJSUl666239PPPP+uOO+5QhQoV1KRJE9dDTH7Cw8PVokUL10POp59+qg4dOqh169bKysrSF1984Yojr8GPvOrOG5fT/t5+NjU1VVlZWapcuXKh8ppfP8nvvMt5/2Ke+m5+jh49qhUrVuQqZ8660pf2aSvniCSNGjUqV5xDhw7NM85Ly5lTNqvnyV/+8hd9//33rv70yiuvqFmzZrrxxhsLLDsAALCXp2eHnPcdDoc+/fRTderUSZMnT9aNN96oq666SsOGDdOpU6cuK21v79M9PYvkxLlr165c8UVFRckYY/u9/2233abq1au7/rA7d+5cnTlzRg8//HCBZbd632jlvv4f//iHnnjiCS1fvlxt2rRRbGysbr/9dn3//fcF5iFnv441a9bohx9+0E8//eQa/NiyZYtOnz6tNWvW6Oqrr1aNGjXcPlvY+37J+/a/nM8eP35ckmy/909NTZUxpsjv/S/nPt3qvf9NN92UK84lS5bkiq906dKKjo52O5bz7BobG+t2PK9zJCwsTEOGDNHChQt18uRJHT9+XO+9954eeOABV94A+JfgK50BAChIzs3OkSNHcr13+PBhlSpVyvWrlfDwcJ0/fz5XOKszBS4VExMjh8OhlJSUXO/ldexSOb+umjFjhpo2bZpnmLxuqDzF6XA49MUXX+R5c3Xpsbx+EVSuXDl99dVXuY7nV6a//OUvmjdvnv71r38pOTnZtUF6QcqVK6fMzEwdP37cbQDEGKOUlBTddNNNrmN/+tOf9Kc//UlZWVnatm2bZsyYoeHDhysuLk533XWXJGnQoEEaNGiQzpw5o/Xr12vMmDHq1q2b9u3bp2rVquWbj3bt2um5557TV199pUOHDqlDhw6KiorSTTfdpNWrV+vw4cOqVauWqlSpkuuzhfk1lVS49rf62aysLAUFBenQoUOFymt+/SS/8+7iPBZW+fLllZiYqPHjx+f5fs4DlzfxSdLo0aPVq1evPMPUrl3b7d+Xlj/nupPzMHWxlJSUXLM/2rZtq3r16mnmzJkqU6aMduzYofnz53uVbwAAUHienh0uvn+pVq2a3nzzTUnSvn379N5772ns2LHKyMjQ7NmzvU7b2/t0q3FGRETorbfeyvf9i+V3T5ffPc2lSpUqpYcfflhPPfWUpk6dqlmzZqldu3a57p3ySsPqfaOn+/rIyEiNGzdO48aN09GjR12zQLp3767/+7//yzcPoaGhatmypdasWaPKlSsrPj5e9evX19VXXy1J+uyzz/Tpp5+qW7duuT5b2Pv+nDJebvtb/WzOc5Xd9/4xMTEqVapUkd/7X859utU4//nPfxb4XJgjv3MkMzNTJ06ccBsAye/5+KGHHtKkSZP01ltv6dy5c8rMzNSf//xnr/INwHcY/ADg12rXrq1KlSpp4cKFGjVqlOtm5cyZM/rggw/UrFkzlS5dWpJUvXp1HTt2TEePHnX9UTkjI0OffPLJZaUdGRmpm2++WUuXLtWUKVNcS1+dOnVKK1as8Pj5Fi1aqGzZstqzZ49ty99069ZNkyZN0i+//JLnVHUrWrVqpffee0///ve/XUsLSdLixYvzDN+oUSM1b95cL774onbv3q0HH3xQkZGRBabRrl07TZ48WfPnz9djjz3mOv7BBx/ozJkzateuXa7PBAUFqUmTJrruuuu0YMEC7dixwzX4kSMyMlJdunRRRkaGbr/9dn377bcF3uS2b99eTz31lJ599llVrlxZ1113nev4hx9+qJSUFK+Wt7r4l0YREREFhi1M+3vz2VatWun999/X+PHj830osToL42Lt2rXTxIkTtWPHDrcZDO+++64cDofatGljOa6CdOvWTR9//LGuueaaXMs0XI7atWurZs2a+uabbzRhwoTLiqNJkyYKCwvTkiVL3B7MNm/erJ9//jnX4IckDRs2TH/+85+VlpamuLg49enT53KLAAAALlOzZs0UERGh+fPnu30XHzp0SGvXrlXv3r3z/FytWrX0zDPP6IMPPtCOHTtcxy+diVEQO+7T84pzwoQJKleuXK7ZCla1atVKH3/8sX799VfXvWJ2drbef//9PMM/8MADGjt2rO6++27t3btXL774osc0Lue+0cp9fVxcnAYOHKhvvvlG06dP1++//+569stL+/btNXr0aEVFRblmdkdGRqpp06aaMWOGDh8+nOeM7/z4qv2tfrZ58+ZyOp2aPXu27rrrrnwHbbx5ZpH+qKMmTZpo6dKleumll1yfyc7O1vz581W5cmXVqlXLqzLlxY779Et16tRJwcHB+u9//3vZyxa3atVKkydP1pIlS1zLPkv5Px9XrFhRffr00axZs5SRkaHu3buratWql5U2gKLH4AcAv1aqVClNnjxZd999t7p166YhQ4bo/PnzmjJlik6ePKlJkya5wt5555167rnndNddd+nxxx/XuXPn9I9//ENZWVmXnf7f/vY3de7cWR06dNDIkSOVlZWlF198UZGRkfkuWZSjTJkymjFjhgYMGKATJ06od+/eqlChgo4fP65vvvlGx48f16uvvupVflq0aKEHH3xQgwYN0rZt23TLLbcoMjJSR44c0YYNG1S/fn23G7a8DBgwQC+//LLuuecevfDCC7r22mv173//2zVIdPHeKjn+8pe/6M4775TD4XBNSS5Ihw4d1KlTJz3xxBNKT09XixYttGvXLo0ZM0Y33HCDkpKSJEmzZ8/W2rVr1bVrV1WtWlXnzp1z/bIt58Fk8ODBioiIUIsWLVSxYkWlpKRo4sSJcjqdbjNI8tKoUSPFxMRo1apVGjRokOt4+/bt9be//c0tHSvq168vSXrxxRfVpUsXBQUFKTExUaGhobnCFqb9vfnstGnT1LJlSzVp0kRPPvmkrr32Wh09elQffvihXnvtNUVFRalevXqSpNdff11RUVEKDw9XjRo18lxuIcdjjz2md999V127dtXzzz+vatWq6aOPPtKsWbP00EMP2fIAJEnPP/+8Vq9erebNm2vYsGGqXbu2zp07p59++kkff/yxZs+e7fXU/tdee01dunRRp06dNHDgQFWqVEknTpzQd999px07duT7sJ8jNjZWI0aM0MSJExUTE6OePXvq0KFDGjdunCpWrJjnOXLPPfdo9OjRWr9+vZ555pk8+wQAAChaZcuW1bPPPqunnnpK9957r/r166fffvtN48aNU3h4uMaMGSNJ2rVrlx555BH16dNHNWvWVGhoqNauXatdu3bpySefdMVXv359LV68WEuWLNHVV1+t8PBw1/3gpey4T7/U8OHD9cEHH+iWW27RY489psTERGVnZ+vAgQNatWqVRo4cqSZNmhQYx9NPP60VK1aoXbt2evrppxUREaHZs2e79p679L6mbNmyuvfee/Xqq6+qWrVqlvY6tHrfaOW+vkmTJurWrZsSExMVExOj7777TvPmzXP70Vt+2rVrp6ysLH366ad65513XMfbt2+vMWPGyOFweLW3h6/a3+pny5Qpo6lTp+qBBx5Q+/btNXjwYMXFxemHH37QN998o5kzZ7ryLVl7ZskxceJEdejQQW3atNGoUaMUGhqqWbNmaffu3Vq0aJEts2Okwt+nX6p69ep6/vnn9fTTT+vHH39U586dFRMTo6NHj+qrr75yzSQqSOfOndWiRQuNHDlS6enpatSokTZt2qR3331XUv7Pxznn3ttvv+1VngH42BXZZh0A8rBu3Tojybz//vu53lu+fLlp0qSJCQ8PN5GRkaZdu3bmyy+/zBXu448/Ng0bNjQRERHm6quvNjNnzjRjxowxl17uJJmHH3441+erVatmBgwY4Hbsww8/NImJiSY0NNRUrVrVTJo0Kc848/P555+brl27mtjYWBMSEmIqVapkunbt6lbOnPiOHz/u9tm3337bSDL79+93O/7WW2+ZJk2amMjISBMREWGuueYac++995pt27a5wrRq1crUrVs3zzwdOHDA9OrVy5QpU8ZERUWZO+64w3z88cdGkvnXv/6VK/z58+dNWFiY6dy5c57xDRgwwFSrVs3t2NmzZ80TTzxhqlWrZkJCQkzFihXNQw89ZFJTU11hNm3aZHr27GmqVatmwsLCTLly5UyrVq3Mhx9+6ArzzjvvmDZt2pi4uDgTGhpqEhISTN++fc2uXbvyzMulevbsaSSZBQsWuI5lZGSYyMhIU6pUKbf8GJN/W+TUwwMPPGCuuuoq43A48mybS1lp//za2cpnjTFmz549pk+fPqZcuXKufjpw4EBz7tw5V5jp06ebGjVqmKCgICPJvP3228aYgvvJzz//bPr372/KlStnQkJCTO3atc2UKVNMVlaWK8z+/fuNJDNlypRcn5dkxowZU2D9GGPM8ePHzbBhw0yNGjVMSEiIiY2NNY0aNTJPP/20OX369GWl880335i+ffuaChUqmJCQEBMfH2/atm1rZs+e7QqTU+9bt27NFWd2drZ54YUXTOXKlU1oaKhJTEw0K1euNA0aNDA9e/bMsxwDBw40wcHB5tChQx7LDAAACi+/e6g33njDdf/udDrNbbfdZr799lvX+0ePHjUDBw401113nYmMjDRlypQxiYmJ5uWXXzaZmZmucD/99JPp2LGjiYqKMpJy3e/mpTD36XndU58+fdo888wzpnbt2q7y1K9f3zz22GMmJSXFFS6/5xtjjPniiy9MkyZNTFhYmImPjzePP/64efHFF40kc/LkyVzhP/vsMyPJTJo0Kc/48npmsnLfaOW+/sknnzSNGzc2MTExJiwszFx99dXmscceM7/++mueeblYdna2KV++vJFkfvnlF9fxL7/80kgyN954Y67PFHQvXFTtn1c7W/2sMX8887Zq1cpERkaa0qVLm+uvv968+OKLrvcLembx1E/atm3rSr9p06ZmxYoVbmHyu3/OeZZft26dxzoqzH16fuksX77ctGnTxkRHR5uwsDBTrVo107t3b7NmzRpXmAEDBpjIyMg883TixAkzaNAgU7ZsWVO6dGnToUMHs3nzZiPJ/P3vf8/zM9WrVzd16tTxWF4AV5bDGGOKfogFAODvJkyYoGeeeUYHDhzI9Uv7FStWqEePHvroo4906623XqEcAlfW/v37dd1112nMmDF66qmn3N7LyMhQ9erV1bJlS7333ntXKIcAAADWdOzYUT/99JP27duX672RI0fq1Vdf1cGDBwucKQyUZAsXLtTdd9+tL7/8Us2bN3d7b9euXWrQoIFeeeUVSysjALhyWPYKAAJQzpTo6667ThcuXNDatWv1j3/8Q/fcc4/bwMeePXv0888/a+TIkWrYsKHbHiFASfbNN99o0aJFat68uaKjo7V3715NnjxZ0dHRuv/++13hjh8/rr179+rtt9/W0aNH3ZbKAAAA8AcjRozQDTfcoCpVqujEiRNasGCBVq9e7drwPcfmzZu1b98+zZo1S0OGDGHgAwFj0aJF+uWXX1S/fn2VKlVKmzdv1pQpU3TLLbe4DXz897//1c8//6ynnnpKFStW1MCBA69cpgFYwuAHAASg0qVL6+WXX9ZPP/2k8+fPq2rVqnriiSf0zDPPuIUbOnSovvzyS91444165513bFvrFfB3kZGR2rZtm958802dPHlSTqdTrVu31vjx4xUXF+cK99FHH2nQoEGqWLGiZs2a5bbJJwAAgD/IysrSc889p5SUFDkcDl1//fWaN2+e7rnnHrdwOftqdOvWTS+88MIVyi3ge1FRUVq8eLFeeOEFnTlzxjWwcel58Le//U3z5s1TnTp19P7773vchwbAlceyVwAAAAAAAAAAoEQpdaUzAAAAAAAAAAAAYCcGPwAAAAAAAAAAQInCnh9XSHZ2tg4fPqyoqCjW0AcAAECJZ4zRqVOnlJCQoFKl+A0WPOOZCQAAFHf+dg987tw5ZWRkFEncoaGhCg8PL5K4LxeDH1fI4cOHVaVKlSudDQAAAMCnDh48qMqVK1/pbKAY4JkJAACUFP5wD3zu3DldFRGh00UUf3x8vPbv3+9XAyAMflwhUVFRkv7o+NHR0Vc4N39wVrMQ6OTEAt9OSxttT2YAwCKns+DrksS1CQDsUNjrbXp6uqpUqeK6DwY88cdnJgAAYC8r95g5iuOzvT/dA2dkZOi0pMckhdkc93lJL6ekKCMjg8EPyDVtOzo62n9u5C3NJC+48/pNWQAEEM9fqlybAMAO9lxvWb4IVvnlMxMAALCZ9T+UF+f7AX+6B46UN7Vujb8OMlz5hcYAAAAAAAAAAABs5K+DMgAAAAAAAAAAwEYh//9lpyyb47MLMz8AAAAAAAAAAECJwswPP+dwjPMYxpgxPotHKjiMw7HLQjqJFtLxHfvqxr94KldxLJMVJbU9kb+S2J704+KDtkIgoS8DAAAAxV+w7B8U8NdBBmZ+AAAAAAAAAACAEsVfB2UAAAAAAAAAAICNgmX/nh+ZNsdnFwY/AAAAAAAAAAAIAIG07JW/5gsAAAAAAAAA4IGVvQgv5k97uXmTl6IsZ3GuQ+SPwQ8AAAAAAAAAAAJAiFj2CiWMr0YjjUn0STp2sqtuvB0hzo9d+WEEGv7OyjkTqP04UMttJzv6F30UeaFfAAAAAEDxwOAHAAAAAAAAAAABIJD2/Ch1pTMAAAAAAAAAAABgJ38dlAEAAAAAAAAAADYKlv17flywOT67MPMDAAAAAAAAAACUKMz8AAAAAAAAAAAgAATSnh/+mq+A4XROlBSe7/vGjPFdZlAoVtrK4Rjng5wAxQPXNxQlO/oXfRSBxMo9CucEAAAAUPyFyP5lr+yOzy4MfgAAAAAA/JanH4xdjEE6AMClvPkhanH9Himu+fZWoJQT9mHwAwAAAAAAAACAABBIMz/Y8BwAAAAAAAAAAJQozPwAAAAAAAAAACAABNKG58z8AAAAAAAAAAAAJYq/DsoEjLS00YqOji5UHA7HLguhlnkM4U+bBlnZjMqf8mtVccxzcWNXHZfUPuhJoJbbLr6sP9oKuDKK43nF9QIAAABAjmDZv0eHvw4yMPMDAAAAAAAAAACUKP46KAMAAAAAAAAAAGzEnh9XwPr169W9e3clJCTI4XBo+fLl+YYdMmSIHA6Hpk+f7nb8/PnzevTRR1W+fHlFRkaqR48eOnTokFuY1NRUJSUlyel0yul0KikpSSdPnnQLc+DAAXXv3l2RkZEqX768hg0bpoyMDLcw//nPf9SqVStFRESoUqVKev7552WMKUwVAAAAAEC+eGYCAABAYYUU0csf+c3gx5kzZ9SgQQPNnDmzwHDLly/Xli1blJCQkOu94cOHa9myZVq8eLE2bNig06dPq1u3bsrKynKF6d+/v3bu3Knk5GQlJydr586dSkpKcr2flZWlrl276syZM9qwYYMWL16sDz74QCNHjnSFSU9PV4cOHZSQkKCtW7dqxowZeumllzRt2jQbagIAAAAAcuOZCQAAALDOb2akdOnSRV26dCkwzC+//KJHHnlEn3zyibp27er2Xlpamt58803NmzdP7du3lyTNnz9fVapU0Zo1a9SpUyd99913Sk5O1ubNm9WkSRNJ0pw5c9SsWTPt3btXtWvX1qpVq7Rnzx4dPHjQ9bAwdepUDRw4UOPHj1d0dLQWLFigc+fOae7cuQoLC1O9evW0b98+TZs2TSNGjJDD4SiCGgIAAAAQyAL1mSktbbSio6O9qSoAAFyMGXOls+B3HI5xlsMWdf35T156ehXaer7PeZ+VIuYvy16tX79eU6ZM0fbt23XkyBEtW7ZMt99+e55hhwwZotdff10vv/yyhg8fXqT5uiKys7OVlJSkxx9/XHXr1s31/vbt23XhwgV17NjRdSwhIUH16tXTxo0b1alTJ23atElOp9N1Ey9JTZs2ldPp1MaNG1W7dm1t2rRJ9erVc/uVVKdOnXT+/Hlt375dbdq00aZNm9SqVSuFhYW5hRk9erR++ukn1ahRI1f+zp8/r/Pnz7v+nZ6eLklyOidKCi9U3Vjhqwu9lRPf3750imOe7eBv5fa3/JTENreiOJbbn/oOfdQ3/KnN7eLNDX9B/K3cdrWVp3j8rdxW+LLNi2P94PKU1GcmAAAAlDw5s5oHDRqkO+64I99wBc1q9sRvlr3y5MUXX1RwcLCGDRuW5/spKSkKDQ1VTEyM2/G4uDilpKS4wlSoUCHXZytUqOAWJi4uzu39mJgYhYaGFhgm5985YS41ceJE15q5TqdTVapU8VRkAAAAALCMZyYAAAB4Eiz79/u4nBkWXbp00QsvvKBevXrlGyZnVvOCBQsUEuL9ziLFYvBj+/bt+vvf/665c+d6vaSUMcbtM3l93o4wORv35Ze/0aNHKy0tzfU6ePCgV+UAAAAAgPzwzAQAAIArLT093e118axeb3ma1WxFsRj8+OKLL3Ts2DFVrVpVwcHBCg4O1s8//6yRI0eqevXqkqT4+HhlZGQoNTXV7bPHjh1z/cIoPj5eR48ezRX/8ePH3cJc+kuk1NRUXbhwocAwx44dk6Rcv27KERYWpujoaLcXAAAAANiBZyYAAABYEVxEL0mqUqWK20zeiRMnXnY+Pc1qtqJYDH4kJSVp165d2rlzp+uVkJCgxx9/XJ988okkqVGjRgoJCdHq1atdnzty5Ih2796t5s2bS5KaNWumtLQ0ffXVV64wW7ZsUVpamluY3bt368iRI64wq1atUlhYmBo1auQKs379emVkZLiFSUhIcD1YAAAAAICv8MwEAACAK+3gwYNuM3lHjx59WfEUZlbzxfxmw/PTp0/rhx9+cP17//792rlzp2JjY1W1alWVK1fOLXxISIji4+NVu3ZtSZLT6dT999+vkSNHqly5coqNjdWoUaNUv359tW/fXpJUp04dde7cWYMHD9Zrr70mSXrwwQfVrVs3VzwdO3bU9ddfr6SkJE2ZMkUnTpzQqFGjNHjwYNcvj/r3769x48Zp4MCBeuqpp/T9999rwoQJeu655wrVGAAAAACQH56ZAAAAUFg5+3TYHack22bvXjyrOUdWVpZGjhyp6dOn66effrIUj98Mfmzbtk1t2rRx/XvEiBGSpAEDBmju3LmW4nj55ZcVHBysvn376uzZs2rXrp3mzp2roKAgV5gFCxZo2LBh6tixoySpR48emjlzpuv9oKAgffTRRxo6dKhatGihiIgI9e/fXy+99JIrjNPp1OrVq/Xwww+rcePGiomJ0YgRI1x59kZa2mifTOd2OMZ5DGPMmEKnY0ccdsZjV1q+qj+r/C0/diip9edPbeVPeZHsy09x6+sovOLW5v527vlScfyO9ZWSWCYUvUB9ZgIAAEBgSUpKcv04J0enTp2UlJSkQYMGWY7HbwY/Wrdu7doAz4q8RnfCw8M1Y8YMzZgxI9/PxcbGav78+QXGXbVqVa1cubLAMPXr19f69est5RUAAAAACotnJgAAABTWxXt02Bmntwo7q7mo8gUAAAAAAGxiZRZcDmaOASgOvLmuSVzbfM2f6tubvBRlvzIm0au4JWvh09PT5XRO8jLuohUs+5e9upxBBjtmNRdFvgAAAAAAAAAAAC6LHbOaPWHwAwAAAAAAAACAAFCUG577GwY/SoBA3SjUikDeUNnbqYBFyZd58be28qf8+FNeJP/LD4qP4va9Z1deilu5rSqOeQYAAAAA+D8GPwAAAAAAAAAACAD+suG5L5S60hkAAAAAAAAAAACwk78OygAAAAAAAAAAABsFB0khDpvjNJKy7I3TDsz8AAAAAAAAAAAAJQozPwAAAAAAAAAACADBwVJwgMz8YPDjCnNWk1RAZzMnPMdhzBjb8uOJw7GrwPeNSfRRTiSHY5zHMFbqxko8drGrrXzZ5p4EcjvYxVPZi1t+Jfvy7Mu0UHwEapsHarkBAAAAAPYJKYJlr0KMvfHZhcEPAAAAAACuoKIc4PbmR0YMtMMKb3+4Vlz7FedO4VAnKAr0K3iLwQ8AAAAAAAAAAAJAkS175YfY8BwAAAAAAAAAAJQozPwAAAAAAAAAACAAhARJITZPiQjJtjc+uzDzAwAAAAAAAAAAlCjM/LjSTk6UFF5AAM8b+VjZhMuuDYGMSbQlHjvYVyZ74vF207eiTstXm0D5WzsUR4Fcdk+oG+DK8OX3jD99p/lSoJYbAAAAwBUWJPunRNi8h4hdmPkBAAAAAAAAAABKFGZ+AAAAAAAAAAAQCIJl/5QIP93zg8EPAAAAAAAAAAACAYMfAAAAAACguPNm/yBv9zFkb6LAFCjtHijlBIoTh2OXV+G92buY78CSicEPAAAAAAAAAAACATM/UJz4cqTR0yiolbxYGUktjqOnvsyzr9Kyq638rc39LT/FTUmtGyu/IPH0q5GSes74kh3tUFL5sl+UxO80f+Nv5Q7k6w4AAACAkonBDwAAAAAAAAAAAkEpSUFXOhO+YfcEFwAAAAAAAAAAgCuKmR8AAAAAAAAAAASCYNk/88Nhc3w2YeYHAAAAAAAAAAAoUZj5AQAAAAAAAABAIAigmR8Mflxx3SWVKfJUHI5dHsMYk1jk+SiuHI5xPkvLmDE+S8sOVurGrjLRj1GU7Og7dvX14nYdsJMvz2FP1y9ftoMvr6X+JpDLbge76o86BgAAAAJEkAJmw3MGPwAAAAAAAAOhAIoFb3+gyrWt5CjKH8t520+s98Nz3mcGtmHwAwAAAAAAAACAQBBAy16x4TkAAAAAAAAAAChRmPkBAAAAAAAAAEAgCFLAjAow8wMAAAAAAAAAAJQoATLG47/S0uopOjraByktsxDG86ZBnjb/8XbTqaJmV36sbHpkJS1fbrLlKT9W8mJXue1SlBtbFRVf1U8gb+Dmb+eePympdeNw7PIYxsr1wo6y21XHxbEd7BLIZQcAAAAAnwuS/Xt+GJvjswkzPwAAAAAAAAAAQInCzA8AAAAAAAAAAAJBsAJmVCBAigkAAAAAAAAAQIALoMEPlr0CAAAAAAAAAAAlisMY46fbkZRs6enpcjqdSktLK/SG577dcLrwG57btbFpSd3ItyQqjv2C/gUAhce1FBez8/4XgYE+AwDAleft3x2L6/190f199ZykSX5xP+O6t2onRds88yM9U3J+Kr8o58WY+QEAAAAAAAAAAEqUAFndCwAAAAAAAACAAFdKUpDNcWbbHJ9NmPkBAAAAAAAAAABKFGZ+AAAAAAAAAAAQCIJl/6iAn+4qzswPAAAAAAAAAABQojDz4wpzOidKCs/3fWPGeIzDShiHY5wt8fgiDn9MqzhyOHYV+L4xiRbi8NxvrLCrrXzVj63G48v8APgffzr3/Ckv/shX1/9ArmMAAAAA8EoAzfxg8AMAAAAAAAAAgEAQJDY8BwAAAAAAAAAAKI6Y+QEAAAAAAGADb5YOZtlGAMVBUV+r7FpyPS9e5T3Gy3KmFl2+i1wALXvFzA8AAAAAAAAAAFCiMPMDAAAAAAAAAIBAECT7RwX8dM8PBj/8nMOxy0KoZTalVfjpWnZNhbOSl5I6RdiushuTWOi8+Fsdl9T8+NO5V1IVt2tKccuvZF+e/ans/pQXX/O39iyJ9RzI/QsAAAAAfMFvlr1av369unfvroSEBDkcDi1fvtz13oULF/TEE0+ofv36ioyMVEJCgu69914dPnzYLY7z58/r0UcfVfny5RUZGakePXro0KFDbmFSU1OVlJQkp9Mpp9OppKQknTx50i3MgQMH1L17d0VGRqp8+fIaNmyYMjIy3ML85z//UatWrRQREaFKlSrp+eeflzF+urgZAAAAgGKPZyYAAAAUWlARvfyQ3wx+nDlzRg0aNNDMmTNzvff7779rx44devbZZ7Vjxw4tXbpU+/btU48ePdzCDR8+XMuWLdPixYu1YcMGnT59Wt26dVNWVpYrTP/+/bVz504lJycrOTlZO3fuVFJSkuv9rKwsde3aVWfOnNGGDRu0ePFiffDBBxo5cqQrTHp6ujp06KCEhARt3bpVM2bM0EsvvaRp06YVQc0AAAAAAM9MAAAAgDf8ZtmrLl26qEuXLnm+53Q6tXr1ardjM2bM0M0336wDBw6oatWqSktL05tvvql58+apffv2kqT58+erSpUqWrNmjTp16qTvvvtOycnJ2rx5s5o0aSJJmjNnjpo1a6a9e/eqdu3aWrVqlfbs2aODBw8qISFBkjR16lQNHDhQ48ePV3R0tBYsWKBz585p7ty5CgsLU7169bRv3z5NmzZNI0aMkMPhKMKaAgAAABCIeGYCAABAoQUrYPb88JuZH95KS0uTw+FQ2bJlJUnbt2/XhQsX1LFjR1eYhIQE1atXTxs3bpQkbdq0SU6n03UTL0lNmzaV0+l0C1OvXj3XTbwkderUSefPn9f27dtdYVq1aqWwsDC3MIcPH9ZPP/2UZ37Pnz+v9PR0txcAAAAAFBWemQAAAJBLcBG9/FCxHPw4d+6cnnzySfXv31/R0dGSpJSUFIWGhiomJsYtbFxcnFJSUlxhKlSokCu+ChUquIWJi4tzez8mJkahoaEFhsn5d06YS02cONG1Zq7T6VSVKlW8LTYAAAAAWMIzEwAAAAKdn47J5O/ChQu66667lJ2drVmzZnkMb4xxm1Kd1/RqO8LkbNyX3/Tt0aNHa8SIEa5/p6enW7yZX2YhjD2MGeOztDzxp7xY5XCMsyWe4lh2T6zUjZVy2xWPvymOebaDL88ZX9WxXX3UrvwWx3PGn64FvmwHK3zZVv7WL0oi6hhFKfCemQAAAGBZAC17VawGPy5cuKC+fftq//79Wrt2resXTJIUHx+vjIwMpaamuv2S6dixY2revLkrzNGjR3PFe/z4cdevkOLj47Vlyxa391NTU3XhwgW3MJf+WunYsWOSlOvXTTnCwsLcpnwDAAAAgN14ZgKuLAa3AdjFmx9RFedrjzd5dzh2eRV30dahtfDp6elyOid5GXdgWL9+vaZMmaLt27fryJEjWrZsmW6//XZJf9zTPvPMM/r444/1448/yul0qn379po0aZLb0queFJtlr3Ju4r///nutWbNG5cqVc3u/UaNGCgkJcdvk78iRI9q9e7frRr5Zs2ZKS0vTV1995QqzZcsWpaWluYXZvXu3jhw54gqzatUqhYWFqVGjRq4w69evV0ZGhluYhIQEVa9e3fayAwAAAIAnPDMBAADAo1KSgmx+XcYow5kzZ9SgQQPNnDkz13u///67duzYoWeffVY7duzQ0qVLtW/fPvXo0cOrNPxm5sfp06f1ww8/uP69f/9+7dy5U7GxsUpISFDv3r21Y8cOrVy5UllZWa5fEcXGxio0NFROp1P333+/Ro4cqXLlyik2NlajRo1S/fr11b59e0lSnTp11LlzZw0ePFivvfaaJOnBBx9Ut27dVLt2bUlSx44ddf311yspKUlTpkzRiRMnNGrUKA0ePNj1q6n+/ftr3LhxGjhwoJ566il9//33mjBhgp577rl8p3ADAAAAQGHwzAQAAICSokuXLurSpUue7zmdTrcf7EjSjBkzdPPNN+vAgQOqWrWqpTT8ZvBj27ZtatOmjevfOWu9DhgwQGPHjtWHH34oSWrYsKHb59atW6fWrVtLkl5++WUFBwerb9++Onv2rNq1a6e5c+cqKCjIFX7BggUaNmyYOnbsKEnq0aOH2+hSUFCQPvroIw0dOlQtWrRQRESE+vfvr5deeskVJqfyH374YTVu3FgxMTEaMWKE2/q0AAAAAGAnnpkAAABQaEWx50fWH/9JT093O2znsqZpaWlyOBwqW7as5c/4zeBH69atXRvg5aWg93KEh4drxowZmjFjRr5hYmNjNX/+/ALjqVq1qlauXFlgmPr162v9+vUe8wQAAAAAduCZCQAAAP6sSpUqbv8eM2aMxo4dW+h4z507pyeffFL9+/d329POE78Z/EB+eloIs8yWlKxsAuRp8x874rCTlY2QjEm0EI+/lcu/8uOJXXkpqXXsqZ9a6aP+xt/6qK/y40/nneTb/FhJy6528FW5vNkcr2Cev8uL43mOoudv11IAAAAAJUARzvw4ePCg2+CEHbM+Lly4oLvuukvZ2dmaNWuWV59l8AMAAAAAAAAAgECQs0m53XFKio6O9mpmhicXLlxQ3759tX//fq1du9bruBn8AAAAAAAAAAAAfiNn4OP777/XunXrVK5cOa/jYPADAAAAAAAAAIBAUITLXnnj9OnT+uGHH1z/3r9/v3bu3KnY2FglJCSod+/e2rFjh1auXKmsrCylpKRI+mN/utDQUEtpMPgBAAAAAEAxYd+eVLmxjxBQ/HlzjeCc92+0T+F5U4dW9g12Z3UP5nNexhs4tm3bpjZt2rj+PWLECEnSgAEDNHbsWH344YeSpIYNG7p9bt26dWrdurWlNBj8AAAAAAAAAAAgEATJ/lGBTO8/0rp1axlj8n2/oPesYvDjiusuqUy+7xqT6DEGh8NKOp5HI+0YUfa3UWkr9WcXK7+u8Lf6CVT+1lae+mlR/rrvUnaV26547Cq7lfz4W78oiYpb/fm2H/vu+8ounDNFz7d9sKfHEL68rwIAAACAwmLwAwAAAAAAAACAQFAUe3746ShDqSudAQAAAAAAAAAAADv56ZgMAAAAAAAAAACwVdD/f9kdpx9i5gcAAAAAAAAAAChRmPkBAAAAAAAAAEAgCKA9P/w0W4EjLa2eoqOjr3Q2JEkOx7hCx2HMGAvp7LIQT2Kh82KVlXJbKZcv+VN+/K3+SmJ+/Km9rbJ2PelZ5Pnwhq/q2d/6qL8pifVj7bvRnnLb8V1uNS1flstX/C2/vmxPAAAAAAEigAY/WPYKAAAAAAAAAACUKH46JgMAAAAAAC7FbC4ABeEa4b+8ndVLW+ZWlCvFeB+3tfDp6elyOid5n6GiVEr2b1Dup1Ms/DRbAAAAAAAAAAAAl4eZHwAAAAAAAAAABIIA2vPDT7MVOJzOiZLC8w8QY2WK2zKPIeyaKudpip6Vzcz9jb9tXFrcpjUWt/z6mh31Y+W8Ksqpn5fDvmuO765vVng6h+3aJNqOvFhNy9+uS8XtmmJX/dlVbl/2LyuKWx/0t/7nb/kBAAAAgOKEwQ8AAAAAAAAAAAJBAM38YM8PAAAAAAAAAABQovjpmAwAAAAAAAAAALBV0P9/2R2nH2LwAwAAAAAAAACAQMCyVwAAAAAAAAAAAMWTn47JIIc5YSXUGI8hHI5xhc6LJBnjOS1fcTh2eQxjTKIPcmKdlfqz0lb+1A6BzK628hRPILe3v5Xdn/Jj1/XE3xS3a7tdfcKuctt1XSqp/QsA/JU311R/uh8proqyvmlL4PIEwrlTXPPt7X1/UV43i1ZPr0L703Op14Jk/6iAny57xcwPAAAAAAAAAABQojDzAwAAAAAAAACAQMCeHwAAAAAAAAAAAMWTn47JAAAAAAAAAAAAWwXJ/j062PMDAAAAAAAAAACg6DHzowRwOMZ5DGPMGJvS2uUhnUQLcXjOr9TTQphlFsJ4zo8VdtWxL9vKV/ytTMUxLTvi8WUftcK+a45/9a+SyN/qz8r3iBV29B1f9j+7yu1v10Bf1WFJvVb49h6vZNYhAAAAgEsE0J4ffpotAAAAAAAAAABgqwAa/GDZKwAAAAAAAAAAUKL46ZgMAAAAAACS0zlRUrilsMV1ebaizLc3y5oW1/rzJ9QhcHk4d/xX0beNlaXv/+DtcsHeLe1tZXn9i9mzdPEVUUr2b1Dup1Ms/DRbAAAAAAAAAAAAl4eZHwAAAAAAAAAABIIA2vPDT7MVONLSRis6Ojrf9x2xvsuLlalgnqa6ORy7bMmLtWls9kwv824KXPHhqVz2TVu0Pj3RF+zox75mRx+0q0x2xWPXeWUlP/7U5r4sty/jsYs/tZUV/tb//K3+rHzn+yo//tRvrPK39iyOdQgAAAAABWHwAwAAAAAAAACAQBBAMz/Y8wMAAAAAAAAAAJQofjomAwAAAAAAAAAAbBX0/192x+mHGPwAAAAAAAAAACAQsOwVAAAAAAAAAABA8eSnYzKBw+mcKCm8UHEYM8aWvNgTzzIfpWMfu/LjcIzzWVpW+C4tz20uJdqSkr/VsV3syLMv68ZKWr5U3NrcSn7tqmO70vKv7xn/SsuXdex/7WnPtT1Q+du1q6R+xwIAAAC4RJDsHxVg2SsAAAAAALyTljZa0dHRVzobxRYDl7lRJwAQGLy53vvbDz1hDwY/AAAAAAAAAAAIBOz5AQAAAAAAAAAAUDz56ZgMAAAAAAAAAACwVZDs36PDT/f8YOYHAAAAAAAAAAAoUZj5cYX5avM+uzbt8bRRkF0bxzkcuyzkJdGWtOxipexW2qG4bb5X3PJbHNl1/vqy//lbv7Cr7J7iKY7XAfuu2/5VLmvnTc8C37Xre8aX/cLfzj1f8bf+VxxRPwAAAECACKA9P/w0WwAAAAAAAAAAwFZBsn9UgGWvAAAAAAAAAAAAih4zPwAAAAAAAAAACAQBtOG53wx+rF+/XlOmTNH27dt15MgRLVu2TLfffrvrfWOMxo0bp9dff12pqalq0qSJXnnlFdWtW9cV5vz58xo1apQWLVqks2fPql27dpo1a5YqV67sCpOamqphw4bpww8/lCT16NFDM2bMUNmyZV1hDhw4oIcfflhr165VRESE+vfvr5deekmhoaGuMP/5z3/0yCOP6KuvvlJsbKyGDBmiZ599Vg6Ho+gqCQAAAEDA4pkJ/sabvenYWwglmbf7NHpzPhTXuAGr/G1PX6usnz/nijQfKJjfDH6cOXNGDRo00KBBg3THHXfken/y5MmaNm2a5s6dq1q1aumFF15Qhw4dtHfvXkVFRUmShg8frhUrVmjx4sUqV66cRo4cqW7dumn79u0KCvpj+Kl///46dOiQkpOTJUkPPvigkpKStGLFCklSVlaWunbtqquuukobNmzQb7/9pgEDBsgYoxkzZkiS0tPT1aFDB7Vp00Zbt27Vvn37NHDgQEVGRmrkyJFeldvpnCgpPN/3rW2SamVzcHs2W7VDSd2U1N/KZcfGzP7Gn+pP8l1+/K2t/C0//tRWVth3XfevG0Tfnp/2fO8BV5Jd167ieL3A5QvUZyYAAADYiA3Pfa9Lly7q0qVLnu8ZYzR9+nQ9/fTT6tWrlyTpnXfeUVxcnBYuXKghQ4YoLS1Nb775pubNm6f27dtLkubPn68qVapozZo16tSpk7777jslJydr8+bNatKkiSRpzpw5atasmfbu3avatWtr1apV2rNnjw4ePKiEhARJ0tSpUzVw4ECNHz9e0dHRWrBggc6dO6e5c+cqLCxM9erV0759+zRt2jSNGDEiz18ynT9/XufPn3f9Oz093db6AwAAAFCy8cwEAAAAWFcsNjzfv3+/UlJS1LFjR9exsLAwtWrVShs3bpQkbd++XRcuXHALk5CQoHr16rnCbNq0SU6n03UTL0lNmzaV0+l0C1OvXj3XTbwkderUSefPn9f27dtdYVq1aqWwsDC3MIcPH9ZPP/2UZxkmTpwop9PpelWpUqWQtQIAAAAAf+CZCQAAAJYEF9HLDxWLwY+UlBRJUlxcnNvxuLg413spKSkKDQ1VTExMgWEqVKiQK/4KFSq4hbk0nZiYGIWGhhYYJuffOWEuNXr0aKWlpbleBw8e9FxwAAAAALCAZyYAAADAnZ+OyeTt0qnRxhiPm+VdGiav8HaEMcbk+1npj19dXfyrJwAAAACwG89MAAAAKFAA7flRLGZ+xMfHS8r9C6Fjx465fj0UHx+vjIwMpaamFhjm6NGjueI/fvy4W5hL00lNTdWFCxcKDHPs2DFJuX9pBQAAAABFjWcmAAAAWGFKSSbI5pefjjL46ZiMuxo1aig+Pl6rV6/WDTfcIEnKyMjQ559/rhdffFGS1KhRI4WEhGj16tXq27evJOnIkSPavXu3Jk+eLElq1qyZ0tLS9NVXX+nmm2+WJG3ZskVpaWlq3ry5K8z48eN15MgRVaxYUZK0atUqhYWFqVGjRq4wTz31lDIyMhQaGuoKk5CQoOrVq3tXuN6jpZDoy68cSdIyC2ESC5nGHxyxHgKkjrMnHYfneIwZYyGeXRbisadufMmu+imJ7KubnoXPjOzJjy/buzj2LV/mx1dpcV3yFI9N32kW8mwHK+X2ZT8ujue5JyW1/uy7Hyp5bY7cSvQzEwAAAHAZ/GZM5vTp09q5c6d27twp6Y8N+3bu3KkDBw7I4XBo+PDhmjBhgpYtW6bdu3dr4MCBKl26tPr37y9Jcjqduv/++zVy5Eh9+umn+vrrr3XPPfeofv36at++vSSpTp066ty5swYPHqzNmzdr8+bNGjx4sLp166batWtLkjp27Kjrr79eSUlJ+vrrr/Xpp59q1KhRGjx4sKKj/xik6N+/v8LCwjRw4EDt3r1by5Yt04QJEzRixAiPU8oBAAAA4HLwzAQAAIDCygoumpc/8ptsbdu2TW3atHH9e8SIEZKkAQMGaO7cufrrX/+qs2fPaujQoUpNTVWTJk20atUqRUVFuT7z8ssvKzg4WH379tXZs2fVrl07zZ07V0FBQa4wCxYs0LBhw9SxY0dJUo8ePTRz5kzX+0FBQfroo480dOhQtWjRQhEREerfv79eeuklVxin06nVq1fr4YcfVuPGjRUTE6MRI0a48gwAAAAAduOZCQAAALDOYXJ2nYNPpaeny+l0Sr3TClz2yiz0HJcvl0RQjId4bFr2ygp/W/aqOC6DURL525JpLHuFQFEc+44/LXvlS8WxrfyJT++7LChOy17l3P+mpaW5ZgcABaHPoKTz9ruguH4/e1PO4lpG4EoryutJUV+rSvo1wp/uZ3LycuyIZHdW0tOlChXlVTnXr1+vKVOmaPv27Tpy5IiWLVum22+/3fW+MUbjxo3T66+/7vphzyuvvKK6detazpffLHsFAAAAAAAAAABKvjNnzqhBgwZuM4wvNnnyZE2bNk0zZ87U1q1bFR8frw4dOujUqVOW0/CbZa8AAAAAAAAAAEDRyQxyKDPI3j3YMoOMJO8WmOrSpYu6dOmS53vGGE2fPl1PP/20evXqJUl65513FBcXp4ULF2rIkCGW0mDw4wpLe7Pw04x8urTCCU/pWImlp+d0fLSckFW+WhrFalp2tHlxrBsr7CqXXcuh2ZEf+9rKylJe/tUviuOU1pLIX5bMsVtxy3MgLpNklb/ltzgujQUAAAAAhZWenu7277CwMIWFhXkdz/79+5WSkuLagy4nrlatWmnjxo2WBz9Y9goAAAAAAAAAgACQFRxcJC9JqlKlipxOp+s1ceLEy8pjSkqKJCkuLs7teFxcnOs9K5j5AQAAAAAAAABAAMgKClKWzcteZQUZSRd08OBBtw3PL2fWx8UclywzZIzJdawgDH4AAAAAAAAAAIBCiY6Odhv8uFzx8fGS/pgBUrFiRdfxY8eO5ZoNUhCWvQIAAAAAAAAAIABkK0hZNr+yFWRrHmvUqKH4+HitXr3adSwjI0Off/65mjdvbjkeZn4AAAAAAAAAAACfOX36tH744QfXv/fv36+dO3cqNjZWVatW1fDhwzVhwgTVrFlTNWvW1IQJE1S6dGn179/fchoOY4wpisyjYOnp6XI6nZKelBSebzhjxniMy+EYZ1/GPOrp4f1lHmOwUia7WKkbu/JjVzv4sn58xd/awa7zylo8uzyG8XTelNRzxgpftoMxiZby5AvFLb8llb+dD/7G3663vlLc8utPcu5/09LSbJkKj5KvOPcZb58NuG74L9oycHnT9v7U7sU134GgKK8ngXKtsvY3lot5/jvl/3j6m6c7q8/k/nQ/k5OXfWnRioq2d8+PU+lGtZzpXpXzs88+U5s2bXIdHzBggObOnStjjMaNG6fXXntNqampatKkiV555RXVq1fPcr6Y+QEAAAAAAAAAAHymdevWKmhehsPh0NixYzV27NjLToPBDwAAAAAAAAAAAsAf+3TYuxV4lrJtjc8ubHgOAAAAAAAAAABKFGZ+AAAAAAAAAAAQAIpm5oe9e4jYhcEPAAAAAAAAAAACAIMf8Jm0tNGKjo4u8nSMGeMxjMOxy0JMy2xIZ5yFdHoWOi92slI3VsruS9bquWB2tacv68autHxb9kQLYQqvOPZj+9rTV3VsT5+wkl87zvE/0vKvNvclT3VYHK+BvuTL662vBHJ7AgAAAEBJw+AHAAAAAAAAAAABIJBmfrDhOQAAAAAAAAAAKFGY+QEAAAAAAAAAQADIUpAyA2TmB4MfAAAAAICAY23Pw//xZg8x9gcqOWjLwFVc296bfHu7j2BxrZNA4E9tU7T9yrv9f707H7y7L0DxwOAHAAAAAAAAAAABIEvBRbDnR7at8dmFwY8rzOncLalM/gFirP+6yBc8jZhaG93taSEdz+V2WJhNZS0ez3m2awTdl2nZkY6VUW9r8fiyjq3k2b/6hR38Lb/F8bzytzq0gy/L7e2ve4o6LSvxFLf2LKms/cKq4F942dWWgXqtkEpuuQAAAAAELgY/AAAAAAAAAAAIAFkqpSwF2Rynf7J3fgsAAAAAAAAAAMAVxswPAAAAAAAAAAACQJaCAmbmB4MfAAAAAAAAAAAEgEwFKdPmwY9MW2OzD8teAQAAAAAAAACAEoWZH1fcCknh+b5rTiR6jMHh8JyKwzHOQl56FjoeY8bYkheHY5nHMHal5UtW8uyrtOyrG8991K5yW8mzXWlZ61+7LMRj5RwufFv4sm+V1PPKjjYvuX3dnjb3ZT/1lZJYJl+zcp208l3jiS/PK7v48tzzt7IDAAAAKBrZCrZ92atsWfgD9RXA4AcAAAAAoETwZtCwuA76WfkBjjvPPyzLUVzrBCgKgXA9Ka759ieB0E+KmiPWm9Cef7jtFrdX35nWvy//UPgfaKHoMfgBAAAAAAAAAEAACKQNz9nzAwAAAAAAAAAAlCjM/AAAAAAAAAAAIAAE0swPBj+usLS00YqOjs73fWsbKlvYrLa/57yYhZ7DWNmI3DMr6/PZkY41dm32628bTnvKj7/ltziytkmvHen41yba/pYfX248b0fZfXk98beN0+3CWrm4HL78vre2trDnex1fXgus4NwDAAAAUJww+AEAAAAAAAAAQADIUqkimPlhbI3PLgx+AAAAAAAAAAAQADIVpEybBz8y/XTwgw3PAQAAAAAAAABAicLMDwAAAAAAAAAAAkCWgpVl87AAG54DAAAAAFCEjBlTZHE7HOP8Ih/GJHr5CW/DW+cvdYLcvGkbifbJSyDUCf2k8AKhThyOXV6FL9o68e47zas+HlPy2zIQMfhxhTmdEyWFFxCip8c4vP2yyjeeRRYCebgQWMmLlYugw+E5K3aV24ri+GXmqX6stYPv6tiK4tgOVviqXHalY9d5bhfv/wBQdPyvbuxJy5d59rc69MTf8mvf97CVB5xltqRV3NjX5r67dpXEdgAAAABwebIVZPuG59ns+QEAAAAAAAAAAFD0mPkBAAAAAAAAAEAAyCqCmR9ZzPwAAAAAAAAAAAAoesz8AAAAAAAAAAAgAGSqlDJtnvmRqWxb47MLgx8AAAAAAAAAAASALAUry+ZhAX9d9orBDz9nTKKFUJ7DOBy7Cp8ZSeaEp3RsSca2clvhcIyzJR5jxtiSlpV4rOlZ6LxYYV9+/YtdbeWrNrerPX3JrvqzKy078uNPfcJOVr5DrF23ixd/aytfXpes8Ld+aofi2J528bf8AAAAAEBhMfgBAAAAAAAAAEAAKJoNz/1z2Ss2PAcAAAAAAAAAACUKMz8AAAAAAPDAX5Z+83b5Qn/JNwrPm7b3tt2LMm74r0DpJ8U1397wfrn7ZUWSjz94tySyd99rBS/xnkuM9fb0tNR/ScLMDwAAAAAAAAAAgGKKmR8AAAAAAAAAAASALAUpM0BmfjD4ccV1l1Qm33cdsRaiSLUwPczKNC8L8TgcRTktzjvWpvTZk9/iOO3RmIKnGVppS7vKbWUKo5W0rJwPgTRN0Vu+7MfWpq16OV01H5b6jk190A6+zK9d8Xi6nljl7TIdRc1Tforjtd8KfyuXHf3Cl99XdvG3dgAAAACAkqbYLHuVmZmpZ555RjVq1FBERISuvvpqPf/888rO/t+okjFGY8eOVUJCgiIiItS6dWt9++23bvGcP39ejz76qMqXL6/IyEj16NFDhw4dcguTmpqqpKQkOZ1OOZ1OJSUl6eTJk25hDhw4oO7duysyMlLly5fXsGHDlJGRUWTlBwAAAICC8MwEAAAAT7IUXCQvf1RsBj9efPFFzZ49WzNnztR3332nyZMna8qUKZoxY4YrzOTJkzVt2jTNnDlTW7duVXx8vDp06KBTp065wgwfPlzLli3T4sWLtWHDBp0+fVrdunVTVlaWK0z//v21c+dOJScnKzk5WTt37lRSUpLr/aysLHXt2lVnzpzRhg0btHjxYn3wwQcaOXKkbyoDAAAAAC7BMxMAAAA8yVIp16bn9r38c5jBP4dk8rBp0ybddttt6tq1qySpevXqWrRokbZt2ybpj18wTZ8+XU8//bR69eolSXrnnXcUFxenhQsXasiQIUpLS9Obb76pefPmqX379pKk+fPnq0qVKlqzZo06deqk7777TsnJydq8ebOaNGkiSZozZ46aNWumvXv3qnbt2lq1apX27NmjgwcPKiEhQZI0depUDRw4UOPHj1d0dLSvqwcAAABAgOOZCQAAAPgf/xySyUPLli316aefat++fZKkb775Rhs2bNCtt94qSdq/f79SUlLUsWNH12fCwsLUqlUrbdy4UZK0fft2XbhwwS1MQkKC6tWr5wqzadMmOZ1O1028JDVt2lROp9MtTL169Vw38ZLUqVMnnT9/Xtu3b88z/+fPn1d6errbCwAAAADswjMTAAAAPLF/1scfL39UbGZ+PPHEE0pLS9N1112noKAgZWVlafz48erXr58kKSUlRZIUFxfn9rm4uDj9/PPPrjChoaGKiYnJFSbn8ykpKapQoUKu9CtUqOAW5tJ0YmJiFBoa6gpzqYkTJ2rcOP/a6BUAAABAycEzEwAAAPA/xWbwY8mSJZo/f74WLlyounXraufOnRo+fLgSEhI0YMAAVziHw+H2OWNMrmOXujRMXuEvJ8zFRo8erREjRrj+nZ6eripVqkhl60mOAqZ8p+4qMO+SpJgxnsNYiceSnh7eX+YxBkeshWQs5NeYRAsRWQljD4fDngc1K/EY47nNPcVjRxxW47GLOeGzpCyx1uaezhnf8WV7WutfVs5ze/qpXeyoH387r6y1gz3XUt+Wy7/q2RNf5tff6sZXafnq+9XX7CqXP50PuHwl9ZnJ6ZwoKbzA/P0v/qLry96c/0WZD386X73Ji7fXT38qp78IlH6FwinKa1Vx7SfFNd9FqSiv30V5vbfy/Oom1XpePNwK5VKc+1VRzNRg5kchPf7443ryySd11113SZLq16+vn3/+WRMnTtSAAQMUHx8v6Y9fGFWsWNH1uWPHjrl+cRQfH6+MjAylpqa6/ZLp2LFjat68uSvM0aNHc6V//Phxt3i2bNni9n5qaqouXLiQ69dNOcLCwhQWFna5xQcAAACAAvHMBAAAAPxPsdnz4/fff1epUu7ZDQoKUnZ2tiSpRo0aio+P1+rVq13vZ2Rk6PPPP3fdpDdq1EghISFuYY4cOaLdu3e7wjRr1kxpaWn66quvXGG2bNmitLQ0tzC7d+/WkSNHXGFWrVqlsLAwNWrUyOaSAwAAAIBnPDMBAADAkywFKdPmFzM/Cql79+4aP368qlatqrp16+rrr7/WtGnTdN9990n6Y0r18OHDNWHCBNWsWVM1a9bUhAkTVLp0afXv31+S5HQ6df/992vkyJEqV66cYmNjNWrUKNWvX1/t27eXJNWpU0edO3fW4MGD9dprr0mSHnzwQXXr1k21a9eWJHXs2FHXX3+9kpKSNGXKFJ04cUKjRo3S4MGDFR1dwBJWAAAAAFBEeGYCAAAA/qfYDH7MmDFDzz77rIYOHapjx44pISFBQ4YM0XPPPecK89e//lVnz57V0KFDlZqaqiZNmmjVqlWKiopyhXn55ZcVHBysvn376uzZs2rXrp3mzp2roKD/jU4tWLBAw4YNU8eOHSVJPXr00MyZM13vBwUF6aOPPtLQoUPVokULRUREqH///nrppZd8UBMAAAAAkBvPTAAAAPAkS8HKsnlYIEvZtsZnl2Iz+BEVFaXp06dr+vTp+YZxOBwaO3asxo4dm2+Y8PBwzZgxQzNmzMg3TGxsrObPn19gfqpWraqVK1d6yjYAAAAA+ATPTAAAAPCEDc/hOyd3SypTQIBlFiJJ9BjCGM9hHLGewyh1nId0xniOwwKHw0qYgvMiWcuPI9ZChjyU20521aE98fS0IQ6L7WBTe9rFWp53WYjJ8znscBQcxkpefFk3drFyXbIWjz39ywpP8VhrB8/nlaX8xth1rbCnHXx5Dls59+zoF/52zbHCV3VjZzxW2FE/vr1O2nOel9TrPwAAAAD4AoMfAAAAAAAAAAAEgCyVKoKZH6Vsjc8u/pkrAAAAAAAAAACAy1SomR8nT57UJ598ol9++UUOh0MVK1ZUp06dFBMTY1f+AAAAAKBY47kJAAAA/iJTQcq0eeaH3fHZ5bIHP9588029+OKL6tq1qypVqiRJ2rx5s8aMGaO//vWvuv/++23LJAAAAAAURzw3lRzssVM41B/gG96ca97uz8Z5nJu1vUD/YNd+i76P27t2t2vfP1t4s1dmqvW2ROFlZmZq7NixWrBggVJSUlSxYkUNHDhQzzzzjEqVsm+xqsse/Jg8ebJ27NihMmXcN+v+29/+pkaNGnETb1XZepIjOv/3Uy3EYWEzbisbiNvBtgtcPwsXp0X2JOVvm5l788VZcFoFf/HZtwG0hUAxnr+E7dvs15cbp3vezNyODYF9ufGwbzddtmujbXs2ePYVK+V2ODz3LSvXLn87r6xddzxvFG1X37Gjfvzt/PSnurEzHk/suub49jpp4Ty3iW+/G3EpnpsAAADgT7IUrCybtwLPUpZX4V988UXNnj1b77zzjurWratt27Zp0KBBcjqd+stf/mJbvi67lA6HQ6dPn851E3/69Gk5fPWXdgAAAADwYzw3AQAAAO42bdqk2267TV27dpUkVa9eXYsWLdK2bdtsTeeyBz9eeukltWrVSvXq1XNN3z506JC+/fZbTZ061bYMAgAAAEBxxXMTAAAA/Em2gpRl8x4d2f8/vvT0dLfjYWFhCgsLyxW+ZcuWmj17tvbt26datWrpm2++0YYNGzR9+nRb82V58CMpKUmvvfaaSpcuLUnq1q2bunTpoq+++kqHDx+WMUaVKlXSzTffrKAg/9zgBAAAAACKEs9NAAAA8GdZRTD4kRNflSpV3I6PGTNGY8eOzRX+iSeeUFpamq677joFBQUpKytL48ePV79+/WzNl+XBj4ULF2rq1Kmum/ghQ4Zo0qRJatasmSTJGKPMzExu4AEAAAAELJ6bAAAAEKgOHjyo6Oj/7W+d16wPSVqyZInmz5+vhQsXqm7dutq5c6eGDx+uhIQEDRgwwLb8WN463Rjj9u9FixYpNfV/u3EfO3ZMUVFRtmUMAAAAAIobnpsAAADgz7JUyjX7w77XH8MM0dHRbq/8Bj8ef/xxPfnkk7rrrrtUv359JSUl6bHHHtPEiRNtLetl7/lx6U29JGVkZBQqMwHp5ERJ4YWLI2aM5zCpuzwGMSbRYxiHw1M8yzznxYpFnvNrLS3PZTLGc/05HONsiccKa+3gOT9Wyu6Rhb5lThQ+GTvZ1Q52sdZWvmFXX7crLbvYc+2yFo8dfHk9sSstfzuvrLDWl3sW+K6VPuFvdePL/uVP7LsO+O7cQ+DguQkAAABw9/vvv6tUKfd5GUFBQcrOzrY1ncse/MiLw+GwMzoAAAAAKHF4bgIAAMCVkqkgBdm850eml/F1795d48ePV9WqVVW3bl19/fXXmjZtmu677z5b8+XV4MfChQt1yy23qH79+pK4aQcAAACAS/HcBMAKb2cKFuXsTW/y4m0+ijJuFFbBM6F9qbj2E1+tIGC3opypXLTt4+WKM6nehPef8yEQzJgxQ88++6yGDh2qY8eOKSEhQUOGDNFzzz1nazqWBz9atmypMWPG6NSpUwoJCVFmZqaeeuoptWzZUjfeeKOuuuoqWzMGAAAAAMUNz00AAADwZ1kKVpa9C0J5HV9UVJSmT5+u6dOn25qPS1nO1fr16yVJ33//vbZv364dO3Zo+/btevbZZ3Xy5El+zQQAAAAg4PHcBAAAAPgHr4d4atasqZo1a+quu+5yHdu/f7+2bdumr7/+2tbMAQAAAEBxxHMTAAAA/FG2gpRl854f2TbHZxdb5rfUqFFDNWrUUJ8+feyIDhfrZ2GdvEUW1umzEI/DsctChgpeK8/Kun72rSvoeS0+R6znWMwJe9Kyi7X6sVB2O+o51XMcDofnvNi1BqaVMtnVB62tUWlP2T3lx7dl8syX66tauS5ZqWM72sEudtWftbrxXVpW1l71Zd/xVVq+vJ5YEcht7om164Bd1xzf3Q/58lqAwuO5CQAAAFdaVhEMftgdn11KXekMAAAAAAAAAAAA2MnenU0AAAAAAAAAAIBfylSQStk8UyOTmR8AAAAAAAAAAABFj5kfAAAAAAAAAAAEgD/2/LB3WIA9PwAAAAAAAAAAAHyAmR9XWFraaEVHR+f7vsMxzneZiUn0HCZ1WYFv25ffgtORJGPGeAxjJT+OWM/xGGOhbixw9LcSqqeFMJ7rx1M8VspkqT0t9Bv7+oWVuvHMSt+xi8Oxy4Y47Kk/a/HYU8dW2JUfO+rYKl/2HU9suy5Zqj97rsm+ZKV/2ZFn+8pt5bruu+uttXLZ0wd9xUpft++88k3/+yMee/qFv53DwMU8PTPBPt5+j/jLtaO45ttf8iEVbV78qZxw5+29jzfnmrftTj8pOYr2b5ne/s3CynPWH+x6FigO/pj5Ye9MDWZ+AAAAAAAAAAAA+AAzPwAAAAAAAAAACACBNPODwQ8AAAAAAAAAAAJAdhEMfmT76eAHy14BAAAAAAAAAIAShZkfAAAAAAAAAAAEgEwFyWHzTI1MP535weDHFeZ0TpQUnn+AmDGeI0kdZ09mUnfZEElPC2GWeQxhjOdyOxxWyu05P+aE51gcDit1Y1O5FtkTjx3sS8c3+ZWs9gu72NPfPcdjRxySMYkew1irP8/xWGHfeW5PWlbK5Yj1kI6l64nv+qi1cvvPNUeyVj++zI8nVr4frJx71s4HK99F9lwLfMmONrfrnsBSHfezqz1919f96ZwBAAAAAF9h8AMAAAAAAAAAgACQpSCVsnlYwF83PGfPDwAAAAAAAAAAUKIw8wMAAAAA4Lc8LhV8EW+WefN2KcpAWEKuuJaxuOY7UHhzrtGW/q0o2ycQ+on3SyBbWWo7h5Xlsn3DX/pJUcddXPuhlDPzw96ZGsz8AAAAAAAAAAAA8AFmfgAAAAAAAAAAEAACaeYHgx8lgoVpcIt2eQxiTKLHMA6HDXHEWknH81QzK9PLrMTjcFiZGmhlqqE30xHzZ1e5FOMhnlR7+oQVjlgLgSzkx65pnNbq2Jf58VTP9pwzVvq6XdM2rbW5Pee5FVbyY07YE8ZjHMV4amygsXIdsPbdaVdft+v7yjP78uwbdl3Xbfve82H92TX135/aEwAAAEDRyVSQHDYPVmT66eAHy14BAAAAAAAAAIAShZkfAAAAAAAAAAAEgGwFK8vmYYFsPx1mYOYHAAAAAAAAAAAoUfxzSAYAAAAAAAAAANgqqwj2/PDXDc+Z+QEAAAAAAAAAAEoUZn74u84WwiQn2pKUwzHOhjg8hzHGSn7HFDovVhnjOS0rdWNXPFpgU9lTC07LSn7tYk54DuNwLPMcj015tqOvW+XLevbEWh/dZVNans9zK9cL26RaKZc911JP7LueWCmT784rK3x6LbXAnng89xu76tiX10Bffjda4Skta+l4Ph/s+i7y6XesH33PALh83nwn+dN5X1zz7Q1v7xeKazmLUiDUCf2k8IqyToryWuU/10HfPM9a4Yj18gMe/n51Me/bx5u/cXh+FigpslSqCGZ++OccC//MFQAAAAAAAAAAwGVi5gcAAAAAAAAAAAEgU0GSzTM/MtnzAwAAAAAAAAAAoOgx8wMAAAAAAAAAgACQpWA5bB4WyPLTYQb/zFVA6S6pTP5vJ1uIwsqm6Ivs2cRY6lnw2zEWNjm2svGRpc2J7eHobyFQjA83LrWQH8fdhU/H2qZcHtpbki83hLJrk2O7NpO2sqm3r9i3obKVjco9141/bUht46bLHq5f5oQ9ebGr3Fb4so4DdRNoX7anFb7cgN2Xm6LbkY6V/PpTmexUUssFAAAAwF22gpRl8zJV2Sx7BQAAAAAAAAAAUPSY+QEAAAAAAAAAQADIKoINz+2eSWIXZn4AAAAAAAAAAIAShZkfAAAAAAAAAAAEgECa+VGsBj9++eUXPfHEE/r3v/+ts2fPqlatWnrzzTfVqFEjSZIxRuPGjdPrr7+u1NRUNWnSRK+88orq1q3riuP8+fMaNWqUFi1apLNnz6pdu3aaNWuWKleu7AqTmpqqYcOG6cMPP5Qk9ejRQzNmzFDZsmVdYQ4cOKCHH35Ya9euVUREhPr376+XXnpJoaGhvqkMAAAAALhESXxmSksbrejo6ELUiv8zZsyVzsJlKa759kZRltHhGOdV+OJa396Us7iWkX7i73oWWcz+1Pb+w7v69qYOHY5dXuZlmZfhUdIUm8GP1NRUtWjRQm3atNG///1vVahQQf/973/dbq4nT56sadOmae7cuapVq5ZeeOEFdejQQXv37lVUVJQkafjw4VqxYoUWL16scuXKaeTIkerWrZu2b9+uoKA/Rqj69++vQ4cOKTk5WZL04IMPKikpSStWrJAkZWVlqWvXrrrqqqu0YcMG/fbbbxowYICMMZoxY4at5W59ItljmM8cCR7DGJPoMYzDYSVHHi4anT2no0UWLt4xNn15pFq4yFnJjyU+vMGwUj+p3n4h5MVz/dn1Re+I9RzGnLAlKRtvIKycV1bSKvjGwMr5a4WVvNjVnlbisaNu/uC5n9pVdk990K6+ZVv9WbhW2HVe2cWX/dQOPm1zC9dJpXrOj789RNmTH3uuFXa1g7WHMh9+x1rIjz+dV7h8gfrMBAAAAOsyVUrG9pkf/rm7RrEZ/HjxxRdVpUoVvf32265j1atXd/2/MUbTp0/X008/rV69ekmS3nnnHcXFxWnhwoUaMmSI0tLS9Oabb2revHlq3769JGn+/PmqUqWK1qxZo06dOum7775TcnKyNm/erCZNmkiS5syZo2bNmmnv3r2qXbu2Vq1apT179ujgwYNKSPhj4GHq1KkaOHCgxo8fX+J/lQQAAADA//DMBAAAAPyPfw7J5OHDDz9U48aN1adPH1WoUEE33HCD5syZ43p///79SklJUceOHV3HwsLC1KpVK23cuFGStH37dl24cMEtTEJCgurVq+cKs2nTJjmdTtdNvCQ1bdpUTqfTLUy9evVcN/GS1KlTJ50/f17bt2/PM//nz59Xenq62wsAAAAA7MIzEwAAADzJUnCRvPxRsRn8+PHHH/Xqq6+qZs2a+uSTT/TnP/9Zw4YN07vvvitJSklJkSTFxcW5fS4uLs71XkpKikJDQxUTE1NgmAoVKuRKv0KFCm5hLk0nJiZGoaGhrjCXmjhxopxOp+tVpUoVb6sAAAAAAPLFMxMAAAA8yVJQkbz8UbEZ/MjOztaNN96oCRMm6IYbbtCQIUM0ePBgvfrqq27hHJdsXGGMyXXsUpeGySv85YS52OjRo5WWluZ6HTx4sMA8AQAAAIA3eGYCAAAA/qfYDH5UrFhR119/vduxOnXq6MCBA5Kk+Ph4Scr1K6Jjx465fnEUHx+vjIwMpaamFhjm6NGjudI/fvy4W5hL00lNTdWFCxdy/bopR1hYmKKjo91eAAAAAGAXnpkAAADgSXYRzPrI9tOZH/65GFceWrRoob1797od27dvn6pVqyZJqlGjhuLj47V69WrdcMMNkqSMjAx9/vnnevHFFyVJjRo1UkhIiFavXq2+fftKko4cOaLdu3dr8uTJkqRmzZopLS1NX331lW6++WZJ0pYtW5SWlqbmzZu7wowfP15HjhxRxYoVJUmrVq1SWFiYGjVq5F3BytaTHPnf1H+2MNFzHP08B3HEeg5jjOe0HLEW8uNRT89BUsfZEo8xYyzE45mjv4UwDit59qVlVzoDLg7HLguhPOfX4bDQdyyV20rfsXA+WClXjOc+aE7YkY7n/Fo5H6z1YyvtYA9r7WBPPHawq47tup546ltW2ZYfS9dkz/3LV/mxko4v29xaWh6D+JR91x1P6Vg5x+25Dlg7r3yXH7v6DkqGEvvMBAAAAFyGYjP48dhjj6l58+aaMGGC+vb9f+3de3wV1b3///eQkICUxCQ2XBQFC1IsYhGUAl7iEUOoiJe29pB8qfZ4qdWIiBRUagGtcMBrlepRjkU9JrGPaqmINUJbgmgqaoSfF6xW8QJVipKQoNJsEub3ByUSLlmfSWbv7J39ej4eeTx0708+s2bNmsksZtZaF+ill17SAw88oAceeEDS7iHVU6ZM0dy5czVgwAANGDBAc+fO1SGHHKLCwt3/cp2ZmamLL75Y1157rXJycpSdna1p06bpuOOO05gxYyTtfjOqoKBAl156qe6//35J0mWXXabx48dr4MCBkqT8/Hwde+yxmjRpkm699VZVV1dr2rRpuvTSS3k7CQAAAEC7oM8EAAAAlwalqFPIIzUY+dFGJ554opYsWaLrr79eN910k/r166e77rpLRUVFTTHTp0/Xjh07dMUVV6impkYjRozQ8uXL1b1796aYO++8U6mpqbrgggu0Y8cOnXHGGXrooYeUkvLVASopKdHkyZOVn58vSZowYYIWLlzY9H1KSoqefvppXXHFFRo9erS6du2qwsJC3XbbbTGoCQAAAADYH32mYBJ1VFTQEXOJup/JIFmOTZD9pH3vL5r7GM36jubsGMHrJMjMGLGZNSB8QWdoiN5sIUFnXvBKAwSXBDw+xQHiTbPQINEkzMMPSRo/frzGjx9/0O89z9Ps2bM1e/bsg8Z06dJF99xzj+65556DxmRnZ+vRRx9tsSxHHnmkli1b5iwzAAAAAMQKfSYAAAC0pFEp8kN+LBCvIz8SZsFzAAAAAAAAAAAAi4Qa+QEAAAAAAAAAAFpn98gP1vxALGx7Q9LXDv590cG/Ctvp+tgQVdDit2kL65wZIuWW+fYMMTWvOUM8zx2jLMu2wpn3L7S5Og37Hqu5T71sd4xlvkfPC6Ewsu23Ze5RW3kMc2TWuGNC2fcad4jnhTWnpyVPOPOkWo5VLOf5dV9TwqnjsPbJdA0MSVjnXlhs5Wm5fsLap3g7nmHUTbjc8xMHnTf4QGztLzZlCVO8tVMAAAAA8S2ZHn4w7RUAAAAAAAAAAOhQGPkBAAAAAAAAAEASaNyVIn9XyCM/Qs4XFkZ+AAAAAAAAAACADoWRHwAAAAAAAAAAJIHGhhTtagh3pIYfcr6wMPIDAAAAAAAAAAB0KIz8iHclQ8LJU+wOqfAMeUpa/jqS84GlNLGT5a4/v9qdxrPUjc6zBLm3VRhKGnnea21PYqg/1bi343lL2l4WSWHVse/PCiWPpV34fkjnsIPnzXHGWPbbksdyHGx5LMI55hbhlbll4R0HC3f9Wdqopa3Hqv4kax1aroGua1M456+pLJbrrbO84V3fLMK6vtnaYKzOz9hcsyXJyzYE1cTuvAI6iiDXi1heM10StdxBBL2WB9nPaOZOVIla30GPTTKcO9EUzTqJZu5Ebd/RFPQ+1vbvXK3NHcK/R7WL2P37Q3trbEiV1xDuYwG/Ffn+8Y9/aMaMGXrmmWe0Y8cOHXPMMXrwwQc1bNiw0MrFww8AAAAAAAAAABATNTU1Gj16tE4//XQ988wzys3N1XvvvadDDz001O3w8AMAAAAAAAAAgCTQ2NBJXuhrfgRbXWP+/Pnq06ePFi9e3PRZ3759Qy2TxJofAAAAAAAAAAAkhcaGlKj8SFJdXV2zn/r6+gOWYenSpRo+fLh+8IMfKDc3V0OHDtWiRYtC31cefgAAAAAAAAAAgDbp06ePMjMzm37mzZt3wLgNGzbovvvu04ABA/Tss8/q8ssv1+TJk/XII4+EWh6mvQIAAAAAAAAAIAk0NKTI2xn2tFe7823cuFEZGRlNn6enpx8wfteuXRo+fLjmzp0rSRo6dKjefPNN3XffffrRj34UWrl4+BHvig0xNa+5YyYOcceUGbZVNMcQFCNZs9wxNe7yep5lY+dZggzbil39+X7L9eNlG5IY6i+sugnveC5xxrjqZneecPbdVs+GczhWJhqOQ5mhvCEdT8l9PCXD9c2ixF1mv7Dl7y3txvPc9RdeGw2n/nzfHRPWuRdPLHUc2rGqcYeEVX9h7Vd8bct9Pba047CE9fc+0c4ZAAAAAMktIyOj2cOPg+nVq5eOPfbYZp8NGjRITzzxRKjl4eEHAAAAAAAAAABJwG9Mld8Y8mOBgPlGjx6tt99+u9ln77zzjo466qgwS8WaHwAAAAAAAAAAIDauueYavfjii5o7d67effddlZaW6oEHHtCVV14Z6nYY+QEAAAAAgEOQKe2Ytm5/0ayToLk5lm0TT3USpCxBp6WMp/2MFsuUvHsLMo1oNOs7+Dkfvammo3k9iWb7Nk153crc0Tx3Ah/LkgBT3wae6j920+qGriFl90/YOQM48cQTtWTJEl1//fW66aab1K9fP911110qKioKtVg8/AAAAAAAAAAAADEzfvx4jR8/Pqrb4OEHAAAAAAAAAADJIA5GfsQKDz/i3UJDzDLDMKsy97CwPP9jZ0yFd56hQA4TwymvjaG8hiFwfqE7TWjDKLMMwwNr3NvyXGU25AirLCamPCG0P9mGbFqGaZqOeU3QYZMHYtlvd4yXbUhjOg5LDHkMaUz7ZdiWgW2YrqEOi8IojzuH54WwGcl0DpvaseG6HctpAQIP6U4AlikEwmrHYV3fgkx70PK2DPvlasth/S2KKcM1J7S/V+HkAQAAANABNHpSQ1j/8LBXzjjEgucAAAAAAAAAAKBDYeQHAAAAAAAAAADJoOHfP2HnjEOM/AAAAAAAAAAAAB0KIz8AAAAAAAAAAEgGSTTyg4cf7e3QwZKXcfDviw05LIuil7kX2LUtZh7CYr9lbU8hSSoIaVvL3CGe5TiY6sZQx6b9MmzLse/hLa5rYVmA11KecBa0DW0x85AW43aVx7l4vSS/1B3jGWL8QssCxmEdq3DOGdO2DAt/+9WG4jj2PawFqZVlOA41loXnw1os2V3HnuG6FNqCyhMNecrafixM16Vs91bC2u94W5Datih6SItxO8/PWP5NcwvrWHme+7wK628jAAAAAHQ0PPwAAAAAAAAAACAZMPIDAAAAAIBEYxnN3jrRHIEXb6P7oiGWI/BcgtR3NMudLG0qyChFy8jb1opmnQRtJ9Fsg8H2M+hsBtE7PsFGswYrd7D6jmbu+LmeBClLNHNHm212i928oigWBO2Ghx8AAAAAAAAAACSDBkk7o5AzDvHwAwAAAAAAAACAZND475+wc8ahTu1dAAAAAAAAAAAAgDAx8qO9bXtD0tcO/v1Ew9x0xe6QPH+EM6bCMg9eefTmd2ymxj0/oF/qLotXZpirMax9mmiYA7HckKfMMs+lZS7jlvfd89wZLPM6etmGohiElccyR6xXGM62wjgOFn6pO8ayT6Y8geZZTSA17v2ynRMtty/TOWOZ/7Sm7e1mN3cbtc3H6s4T1hzKlvKYtlXa9mNhaRO2c9xSFsu5F7t2YdtW7NqXu37c5Y1lG41lnvDaBQAAAICkkEQLnjPyAwAAAAAAAAAAdCiM/AAAAAAAAAAAIBkw8gMAAAAAAAAAACAxMfIDAAAAAAAAAIBkkEQjP3j4AQAAAABAO/K8OeZY358VF+WQoluWeJEM+xhUPLWTeDl3ErWdBC13NOs7GY5lvJwLUrCyBM0tnRcwfknUcnvea+bYRD2P0TIefrS3RYOlQzIO/n2R+yRN29o3nLKMN8SU2S8abVLivuAEuYC1qMaQJ2uIO6bcsi3LHwzDhXyioTxlQf54tIGh/nzfXV7LH1PLHyJLuzCVp8wZEhovu+Xv/Wp3Dr/UsJ14q2PP0kZj1I5l3feW69CSI6wbKtvxDOc4WPJY2G6a3dfAsPK4mOqv1BDjOMfN2zKdMxaWY97288GaJxyxbKOWPJbrZOw6V2HtFwAAAIAOoFHhj9RoDDlfSHj4AQAAAAAAAABAMkiiaa9Y8BwAAAAAAAAAAHQojPwAAAAAAAAAACAZMPIDAAAAAAAAAAAgMTHyAwAAAAAAAACAZLDz3z9h54xDPPxob89K6tzC9yVDnCki5e7NVCwrcMbklboTVRS78zhZUiwzxBjqRsWGmJrXwonJcm8rbes1zphIeYZ7W8XuEGXNMgS1zPMM+x1SHt93l9fz5rg3ZthvUx6d54zwfUP7kjvGVR4v271PfrWhKAa2urHkWWKIctexJrrrzy81bMogrH13bifbHRPb4+k+DrZz2HI+WFjaTmzyhLbfhW0uipntWurer7Cu27FiaeuxLK+lXYR1zbHsVzwdKwAAAACIFR5+AAAAAAAAAACQDBr//RN2zjjEww8AAAAAQIcQ3kjE/UVzlGiQEVpBR2dHs06iKZp1graJpxGFwdpJsHM4mvsZpCyJWt/xlDuIaLaTaOYOWn/RvW4GHIU/MUDZy4KWO0hZEvPvJVrGww8AAAAAAAAAAJJBo6SGKOSMQzz8AAAAAAAAAAAgGTQo/IcfYecLSaf2LgAAAAAAAAAAAECYGPnR3v4kyTv41zeWznSmmF89wxkTKc5wxlRWj3LGqMDxfbk7hcoscxye5w4pN8zFV+OeC9AyB65X6N6UZb/qs93zGHpFlvkLA86f2GqG4xBSWbwWzoMmWYZ5IA3H3LZfbrY5Mi314yiP67yTrY2GNYdqeHODWurGcH6GdBzCqJ+wyuJ5hjZqOh/CmZvcdJ2M4jzo0eI65rZ9MtRNtiGN6Vi520V4xyF22wrj3LPksJ2f7v02nQ+GYx7ba3JsroEAAAAAEgAjP+LfvHnz5HmepkyZ0vSZ7/uaPXu2evfura5duyovL09vvvlms9+rr6/XVVddpcMOO0zdunXThAkTtGnTpmYxNTU1mjRpkjIzM5WZmalJkyZp27ZtzWI++ugjnX322erWrZsOO+wwTZ48WZFIJFq7CwAAAACB0GcCAABAMkvIhx8vv/yyHnjgAQ0Z0vzNuwULFuiOO+7QwoUL9fLLL6tnz54688wztX379qaYKVOmaMmSJXrsscf0/PPP6/PPP9f48ePV2PjVqiyFhYVat26dysvLVV5ernXr1mnSpElN3zc2Nuqss87SF198oeeff16PPfaYnnjiCV177bXR33kAAAAAcKDPBAAAgANqiNJPHEq4hx+ff/65ioqKtGjRImVlZTV97vu+7rrrLs2cOVPnn3++Bg8erIcfflhffvmlSktLJUm1tbV68MEHdfvtt2vMmDEaOnSoHn30Ub3++uv605/+JEl66623VF5erv/93//VyJEjNXLkSC1atEjLli3T22+/LUlavny51q9fr0cffVRDhw7VmDFjdPvtt2vRokWqq6uLfaUAAAAAwL/RZwIAAAAS8OHHlVdeqbPOOktjxoxp9vn777+vzZs3Kz8/v+mz9PR0nXbaaaqsrJQkVVVVaefOnc1ievfurcGDBzfF/PWvf1VmZqZGjBjRFPOd73xHmZmZzWIGDx6s3r17N8WMHTtW9fX1qqqqOmC56+vrVVdX1+wHAAAAAMJGnwkAAAAH1ajwR300Ki4l1ILnjz32mF599VW9/PLL+323efNmSVKPHj2afd6jRw99+OGHTTFpaWnN3n7aE7Pn9zdv3qzc3Nz98ufm5jaL2Xc7WVlZSktLa4rZ17x58zRnTuItBgsAAAAgcdBnAgAAAHZLmIcfGzdu1NVXX63ly5erS5cuB43zPK/Z//u+v99n+9o35kDxrYnZ2/XXX6+pU6c2/X9dXZ369OnTYrmsRmVXOmMq3x3ljImUZ7g3VvZay99nDWn5e0maOMsdM94dklbgfhMs0t9dHs9z7JMklRj2q8wdYmKpw4XuGL+w5e+9bGN5XAosdWOoYy1xhxj2W0WGPJY2aCqzxXltT1FuiKlx/0OBF1YbDYnvG46DRanhPM8O6VrgZGh/Br4fUnmzwqljz7P8Q5S7rVv2yyK92nD9z/nAGeM5rpOWfTJdSw3np+V8sB0HC8N1aaLh74zh3LOw7JerfsI5f8Nro5ZjLsXumId2vUXc66h9pszMNyR9rcXyfZXffh4HP8fs93WhXU8OKOj9hr0sQa8XQa6/0bwWBa3vIMc+muUO2gbjpSyJ+nclePuOXp3ESx1Gsw0m6jU2uteq6LXBoAIdS0N/uhnTvfBegvz7i6Gf0jx3sPCkEY01Oljzo22qqqq0ZcsWDRs2TKmpqUpNTdWqVat09913KzU1temton3fItqyZUvTdz179lQkElFNTU2LMf/85z/32/6nn37aLGbf7dTU1Gjnzp37vd20R3p6ujIyMpr9AAAAAEBY6DMBAAAAX0mYhx9nnHGGXn/9da1bt67pZ/jw4SoqKtK6det09NFHq2fPnlqxYkXT70QiEa1atUqjRu0e9TBs2DB17ty5Wcwnn3yiN954oylm5MiRqq2t1UsvvdQUs2bNGtXW1jaLeeONN/TJJ580xSxfvlzp6ekaNmxYVOsBAAAAAA6EPhMAAACcdkbpJw4lzLRX3bt31+DBg5t91q1bN+Xk5DR9PmXKFM2dO1cDBgzQgAEDNHfuXB1yyCEqLNw9r0VmZqYuvvhiXXvttcrJyVF2dramTZum4447rmkxwEGDBqmgoECXXnqp7r//fknSZZddpvHjx2vgwIGSpPz8fB177LGaNGmSbr31VlVXV2vatGm69NJLeTsJAAAAQLugzwQAAACnRoW/QDkLnkff9OnTtWPHDl1xxRWqqanRiBEjtHz5cnXv3r0p5s4771RqaqouuOAC7dixQ2eccYYeeughpaSkNMWUlJRo8uTJys/PlyRNmDBBCxcubPo+JSVFTz/9tK644gqNHj1aXbt2VWFhoW677bbY7SwAAAAABESfCQAAAMnC833fb+9CJKO6ujplZmZKh9ZK3sHffLqxeqYz17RGdwfitpRpzpibC29xxqQtdC8y62JaWL3IspCvYZEjyyJLJYZFnpa5Q1QWzoLAtv0KYWHXoItEHYxlMW4L0z6Fs5i06ZgXG/JY2pdlwWlnHsvCb4a6CaUsVuEsfm1aRDOstmw5h111aKo/+0J+LQvpfAjrWFkW/jbwq8PJY2k7rv2yLSofzjU7rEUbw1g8fHeeGP4dNghjwXPbNSd29RfdxZDj057739raWt78h0lTn0kviAXPvxJfi2QHWfA8fq578bK4d3wdy/iok3iSDHXCgufxLX4WPA+YPHAfIEAfOfCC5+3/dyqe7oGb7q2ur5W6hFyWf9VJ8+JjP/eWMGt+AAAAAAAAAAAAWHSoaa8AAAAAAAAAAMBBNEpqiELOOMTIDwAAAAAAAAAA0KEw8gMAAAAAEL8OHdziOol7CzQ/umU9tL2EtS7VgcTL2gLRnF/e84KtVxbNtQWC5Q623mKQOePjap2IgOdDtMTXsYyPOoknYa3zd2BBrhGJueZHNNtg0NxB44MJts5l2ta+5thITvT+TiVqu2qVBkkpUcgZhxj5AQAAAAAAAAAAOhRGfrS3MZI6H/zrm4bOdaZI/3OtM2ZUdqUzJm1hnTMmkvOBM8a5HcMT3YglUY37KXXa1mvc2+pv2FaBIcbyZDsrpKfIEw15xju+LwrnKb/lzSbT2zuGN4386pC2VewOsbQvy1sYtjdjHG3HcrzLLNuxcLdj2zF315/trS7DeVVuSFMT0tshCx3fFxvezDFcT/xSd4zp7UnTeeVOYxFWnrCuF7Y3x1xt2ZCjJthbrAcXzvXNdF0yveUVRv2F98aka99D229D27Jd193153nuLEHeHgYAAAAAk50Kf0jEzpDzhYSHHwAAAAAAAAAAJINGhb9AOQueAwAAAAAAAAAARB8jPwAAAAAAAAAASAaNCn+BckZ+AAAAAAAAAAAARB8jPwAAAAAAAAAASAYNCn9IRNgjSULCw4/29idJXgvf/5c7RaQ8wxlzSuFqZ0ylRrk3NnFIy9+XveZMMSq70hlTMbHAXZZyd0jEEJP2bp07T84Hzhjfd9SNpPRqw7b6u4+nyuYYYhzfT5zlzmGoPy/bHSOdZwlyb6vQEJRl2K8adzuVlhhi3MfctK0SR55iQ1Es5a2x7JOb51nyWI65ISbLUMcm7m1ZzmFne69xn5t+qaGNGvh+OHk8z3A9sVwvDNclS5ktMZ7nPq9seQz73iGFdA4b/lRb2I5Dy+XxSsMpi1/tjrGUN6x2HNa2AAAAACAZ8fADAAAAAAAAAIBksFMtv4zf2pxxiIcfAAAAAIC4VfuhlGEYHC1JXpCOvGk0cOtyW0aUNo+3j+IKPnIxnFHYbWYZob0Xywi5WAh6LKMpyLEPOjLQMvox0cXTsYwX0RxBGuh6nCSCtsF4uQ7aRo7vxTJzwF4iOQH+rpUEbLNF8VKHcJk3b55uuOEGXX311brrrrtCy8vDDwAAAAAAAAAAkkHjv3/CztlKL7/8sh544AENGRL+Q+qwlzYBAAAAAAAAAADxqCFKP63w+eefq6ioSIsWLVJWVlard+lgePgBAAAAAAAAAADapK6urtlPfX19i/FXXnmlzjrrLI0ZMyYq5WHaq/a2bZ6kLgf9uvy2PHeO0nCK8mT2Oc6YytJRLX6/uvQUZ46KwgJ3Yca7Q0wxhrn9IoY0aVv7OmO8QkOisg/cMVnuIV55/ghnTEVpy/WcV1juzLFS7mPlZTtDbCxzLpe5QyxzaHrZhmF0Cw15DHPuWuZQdeWx5bDM5WyYp9MyF7PhFPZDui6ZzivTtcCwLdN8qo46NMxtGsp2QuVuO5bj6ZW58wSfo/xgwtmW69wK6/pmmUM7vOuJpX0ZrheGv0Uqc2/LKwvpuuNS3PYUUnjzKtvaepzMwQ8AAAAguTSq1SM1WswpqU+fPs0+njVrlmbPnn3AX3nsscf06quv6uWXXw65MF/h4QcAAAAAAAAAAGiTjRs3KiMjo+n/09PTDxp39dVXa/ny5erS5eADA9qKhx8AAAAAAAAAACSDndHLmZGR0ezhx8FUVVVpy5YtGjZsWNNnjY2Neu6557Rw4ULV19crJSWlzcXi4QcAAAAAAAAAAIiJM844Q6+//nqzz3784x/rm9/8pmbMmBHKgw+Jhx8AAAAAAAAAACSHRkmdopAzgO7du2vw4MHNPuvWrZtycnL2+7wtePgBAAAAAEg6vj8kULznzQkQG72y+P6sQLk977Uo5rbXiV8dKLWkIMcnescymnWSqIK0KSm67TuIoMcmSFmC1om0JCrl2F2WaLbvIPt5XqDcyrK3E68wWGqVJep5GaQO7W0qcO6sYO3ELw1WEq8sQFmKonf9QcfEw492Vlt7fcvzoA2d7czhy31nfXrhM86Y1TrFGXOKVrf4fUV2gTOHDCFpBXXuIIutfZ0hkWL3PHSRHMPFdWJIF9SF7pCKQkMllrf8dWXBKGcKz7LfJe79Tivo64yJ5Hzg3lYM69jSBiOGG4DAN2UHymG5wbTcKNYYNlZj2Fa5e1uWG27TjXaZ5cbG0i7cN4JpW69xxkRyWv7edJNXaqi/bMvxDKldGJjaoOFaoGWGGNMxN9zYl4RwftaE045DOx9CY6i/GkvnydBJsXSUDPUcDkunKqT9NuSxdcTorAEAAAAIWYNk+Ofk4DnbqKKiou1J9sHDDwAAAAAAAAAAkkGcPvyIhrBn9wIAAAAAAAAAAGhXjPwAAAAAAAAAACAZRGOUBiM/AAAAAAAAAAAAoo+RHwAAAAAAAAAAJINGhb/mR2PI+ULCw484V742zxkzqrHSGTND80MojTRfM1r8/sbqmc4cN2ffEkpZIjkfhJLHZOIQd0zZa+6YLEMeC8u2SlreVqQ8w7ChJe6QYvc+RWrudMb4/ixnjOfNcceUu/OYvGuIWWiIWeYOSdt6TYvfR/pbjpWb77uPlVdoSGRqf4bjadmWox1LkordIab2VWooj86zBLW8Hc9Qf6ZrjuH8rDHEZLnrJry24z6HLeVRjWFbRYZtuRjKYjqehnZjub7Z2p/hmJuEtC3LsbJwHYuaEI63kel8CLsjAQAAAAAIjIcfAAAAAAAAAAAkA9b8AAAAAAAAAAAASEyM/AAAAAAAxK3MzDckfc0Ua5nqcg/blIN7s09/aZkir21liQ7PCzZ9YqD6zg5YmChOaRjNcgfJHVSQdhK0TQUpd9D2HU1B9jOaxyb4OW8/12zTrO5dlujtZ5ApVoOWI9B+WqYAjpWJAfbTMg3w3gJMne5XB2yDlmmL97BMfd0sd8BrhGW66z0CT28cP9eruJJEIz94+AEAAAAAAAAAQDJokOSHnDNOFzxn2isAAAAAAAAAANChMPIjzvX2KpwxlX6eM6ZgqDvP6WufccasXD6u5YDlzhRStTvk5sJbnDE3+r8NJU9oDMP00grqnDGR8gz3tgxDH28snNni9zeXWurGPbQ/7V3DPvV3DwM1DXHNcufJqy53xlR4vd3bUl9nhG8YJuoVu2PqX8lsOcdCw+N4w3aCDpc+GMuQbtP0ADWG8liGMxuGGZuGwxval+vcs02L4N4nv9RQx+UhDWc3HAfTsPwgw73byDatgKEOQzgnTOeDof1ZpgUIa0oU27bCuV6YhrAXG2IcU5+EVn+m64mlbtznTNCpZQ4mulNbAAAAAOhwojFKg5EfAAAAAAAAAAAA0cfIDwAAAAAAAAAAkgFrfgAAAAAAAAAAACQmRn4AAAAAAAAAAJAMkmjkBw8/4tyJW2udMfVDW14sWZLmrHNv68nGc5wx6cNbLs+M/PnOHPOrZ7gLY2DJc2Npy4t+S8aFv5cZCmRYcDqy0L2YeV6he8HuUwpXO2Nu9tIcEZYFxt2L0Eb6u9OowBBjWdh6obs8FdmWjbn3PZLzgTPmdP9j96Zq3Iure2P/v5YDStybcS0GbBXeQsju45nnj3DGVHiGTZWFtJi5oen4pS1/b6obQ1nCWiDbwrPUcYlhW0XhtEHLAuy2xcxDKI/hmmNa5N5yzC15TMfBsoC9pW7OM8QYGP422o5528V0oXeDWC5yDwAAAADJiIcfAAAAAIC4VVs7WBkZ7peIpOg+NPR990Pxr8oRu4epbkEeaBteSNpLoPq2vIyyl7Be9GgrvzpYfLwc+2jWX7zsoxRsP6N7fYhefQe59kjxc3xML/fszfDyZZOaYNeqQNfBIOWItgAvOXpewJeXJkZxP93v9KK9NUjaFXLOsPOFhIcfAAAAAAAAAAAkg0aFP+1VnD78YMFzAAAAAAAAAADQoTDyAwAAAAAAAACAZNCg8IdEMPIDAAAAAAAAAAAg+hj5EefqX8l0xsxZ585zTUOaMybjzxFnzKj8yha/v2naXGeOmz++xRljMSN7vjNmtU5xxqQV1Lk3VmApUTgqst0bq1hoKFCW4/sawyJoC90hKjbElBm2VRLOAnE3Vs90xsyvnuGMiZS7F9WcoaudMRUTVzpj0ha23AYjlsXCDAtIWhZrNC1KV2JYGK3IvQCdpa1roiEmrMXUytyLyXnljnq2LBpnKe9E9/G0LWRoWAjQsvio5Tw3lNlSx5YFBgMvnthaRYbyWq5dywzbMlwn/UJD3RjOPcux8kvdabzsWC4G2fICjuEt7Bl08cwDC2vR03hZ7BcAAABAB8LIDwAAAAAAAAAAgMTEyA8AAAAAAAAAAJLBTjHyAwAAAAAAAAAAIBEx8gMAAAAA0DEEWUfOsrbTXoKtORXOGkKxFnStIc8LUIc1wepbspclvLWfDsCwHtnefN8eH6j+AgqaO9ixD9q+W167q3k5gtV3kP2MZvsOfiztdRLNdhKkHFKwOoxuuQMKcB6nvWtYF3YvkZw7A5Qjiuu5BV2r1rI2aytFsw6jeR4n1Xp7uyT5IecMO19IEmbkx7x583TiiSeqe/fuys3N1bnnnqu33367WYzv+5o9e7Z69+6trl27Ki8vT2+++WazmPr6el111VU67LDD1K1bN02YMEGbNm1qFlNTU6NJkyYpMzNTmZmZmjRpkrZt29Ys5qOPPtLZZ5+tbt266bDDDtPkyZMVibgXDAcAAACAaKDPBAAAAKeGKP3EoYQZ+bFq1SpdeeWVOvHEE9XQ0KCZM2cqPz9f69evV7du3SRJCxYs0B133KGHHnpIxxxzjH75y1/qzDPP1Ntvv63u3btLkqZMmaKnnnpKjz32mHJycnTttddq/PjxqqqqUkpKiiSpsLBQmzZtUnl5uSTpsssu06RJk/TUU09JkhobG3XWWWfp61//up5//nlt3bpVF154oXzf1z333BPqfp+e/4wz5lcaF8q2yvPz3NvyHNv6tmFDH7pD/P/ynDF1jWnOmPm1M5wxkf4Zzphnqk93xpxT/WQo27I8IY8Uu/M4n/qXuVPkFZY7YyqWGV4vGG94y2KZO0Tu4ujm4lvcQZY3IgxvQYwr+pU7z0R3SKTccTwtbyUa3iCxvfFgePOnyJDG8kZLSMfB9BbPQsO2lhnKPN7xfVFI5TW0dZOJhn0ybCuv2nAtyA76qtFBmN4KNbRTw77fWDqzxe9v9tx/Z/xCd1FkiPHKg73l2CZl7jr2LG/bhnSsLG94Ot+2rrG8uZaYb2EDQSRrnwkAAAA4kIR5+LHnpnqPxYsXKzc3V1VVVTr11FPl+77uuusuzZw5U+eff74k6eGHH1aPHj1UWlqqn/zkJ6qtrdWDDz6o//u//9OYMWMkSY8++qj69OmjP/3pTxo7dqzeeustlZeX68UXX9SIESMkSYsWLdLIkSP19ttva+DAgVq+fLnWr1+vjRs3qnfv3pKk22+/XRdddJFuueUWZWQY/mEaAAAAAEJEnwkAAABODZLc750Hw7RX4aqtrZUkZWfvfhXw/fff1+bNm5Wfn98Uk56ertNOO02VlZWSpKqqKu3cubNZTO/evTV48OCmmL/+9a/KzMxsuomXpO985zvKzMxsFjN48OCmm3hJGjt2rOrr61VVVXXA8tbX16uurq7ZDwAAAABEC30mAAAAJLOEfPjh+76mTp2qk08+WYMHD5Ykbd68WZLUo0ePZrE9evRo+m7z5s1KS0tTVlZWizG5ubn7bTM3N7dZzL7bycrKUlpaWlPMvubNm9c0H25mZqb69OkTdLcBAAAAwIQ+EwAAAA5oZ5R+4lBCPvwoLi7Wa6+9prKy/Rct8LzmY3Z839/vs33tG3Og+NbE7O36669XbW1t08/GjRtbLBMAAAAAtBZ9JgAAACS7hHv4cdVVV2np0qVauXKljjjiiKbPe/bsKUn7vUW0ZcuWpjeOevbsqUgkopqamhZj/vnPf+633U8//bRZzL7bqamp0c6dO/d7u2mP9PR0ZWRkNPsBAAAAgLDRZwIAAMBBNUbpJw4lzILnvu/rqquu0pIlS1RRUaF+/fo1+75fv37q2bOnVqxYoaFDh0qSIpGIVq1apfnz50uShg0bps6dO2vFihW64IILJEmffPKJ3njjDS1YsECSNHLkSNXW1uqll17SSSedJElas2aNamtrNWrUqKaYW265RZ988ol69eolSVq+fLnS09M1bNiwUPd75fJxzpg5lkSpEWfICMPCNEO+3fL3v1h7gzPHMzrdGVOuPHdhDD7N/LohyB1SqVHOmEh/d+csr7rcGVNZ7d7WM6XuOnQZp5WGsvRt83asbiydGUqemwtvccbU/l+6M+ac0iedMRWlBe4CLXOHqNgQ42IoStrCa5wxkXLDPzJY9mm8O8QvdMd4+7+s2jpFrzlD8vyPnTEVhS1XdNrWvs4ckRx3WTRxiDumbIk7ptyQp8ZdHktbt1zfKrJnGcpj+qsWipu9H7Y5h5dtCDKcn6ZtlYaTRxMNx6HM0E6zLMfTnSeUOjS1dcM5o/MMMUD8StY+EwAAAHAgCfPw48orr1RpaamefPJJde/evektoszMTHXt2lWe52nKlCmaO3euBgwYoAEDBmju3Lk65JBDVFhY2BR78cUX69prr1VOTo6ys7M1bdo0HXfccRozZowkadCgQSooKNCll16q+++/X5J02WWXafz48Ro4cKAkKT8/X8cee6wmTZqkW2+9VdXV1Zo2bZouvfRS3k4CAAAA0C7oMwEAAMDE8BJ8R5AwDz/uu+8+SVJeXl6zzxcvXqyLLrpIkjR9+nTt2LFDV1xxhWpqajRixAgtX75c3bt3b4q/8847lZqaqgsuuEA7duzQGWecoYceekgpKSlNMSUlJZo8ebLy8/MlSRMmTNDChQubvk9JSdHTTz+tK664QqNHj1bXrl1VWFio2267LUp7DwAAAAAto88k02jPrwQc7RVgdKLvG0bH7cXz7OX2fcNot1bm9rzYjcB0MY0MbGIZ3feVIMcnSP3tjg9QFstozL34YY0CPYDoHnt7nTiWH2qToPsYrJ0Erb9gbTZqsgJeT6LYBoPU9+lyjzrfW0WA8ziSEyh1oPM4bWFdoNSRnA8CRAc7lkGOvWWU/94qsoOWJXrnWtC/x+h4Eubhh++7H0d5nqfZs2dr9uzZB43p0qWL7rnnHt1zzz0HjcnOztajjz7a4raOPPJILVtmmfsFAAAAAKKPPhMAAADwlYRb8BwAAAAAAAAAAKAlPPwAAAAAAAAAAAAdSsJMe5Ws0ofXOmNeVqYzxjKb5Bqvwhkz33+mxe8rq0c5c0TK3Qsc+oeFM9HnL/JvcMaMUqUzpmB5hXtjC90hlvoZle0uz7jClc6YvNKW52QMOtdkW/JYjvn86hnuPMXuPM+Unu6MySytd8aYFIeTxsUyR6VX6M5jmS80z//YGVNRtMa9sfGGMlvmiy1xzxWaVmBpy32dERWlhm052rttTlbDFbncMEeqZW7ZMst8qIb5zg1tvaK4wLAti4Dzrx/MeEtQwLloW7sdy7WixjAP8bKw2oV7W2lb+zpjIv3dmzLNJWxpOq4yG64VKnK3raDz6AMAAAAA4hcjPwAAAAAAAAAAQIfCyA8AAAAAAAAAAJLCzn//hJ0z/jDyAwAAAAAAAAAAdCiM/AAAAAAAAAAAICk0/Psn7Jzxh4cfAAAAAIAOIc//2BxbWT0qUO5I/1nmWC87UGopa4g9d2nA3FoSIPa8OMpt5/v2YyNJnjcnSiWRAu1nWbByeGUBixJEVrA6DKQmwH4GOBd25w7SBoPxvNfswROD1Z8f4DwOej3xq6OXW0XRO3cC1bd6B8od5G9DhbcmUG7J3mYjxRnBUgc4H24snRko9c2Ft5hjV6ogUG4vyDkfUNDrPcDDjzhnuTBa/tRf05DmjPkgNeKMOc8b1+ayWKRvrXXGPJl9jjNmWuNtzpiMP7v3uzw/zxmTp3JnzAzNd8ZUytAJM9woubY1rnylM0daQZ0zJlJu+ONd7A6JyJ3nxmr3H/NxhYb9Wujer1HZlc6YiiL3DVfa1r7OmEj/lvf9dEPbUpnh5q/EfeNUUWi4uSox3PgYjrmlE/SMX+GMsZwz86tnuMtjaac1dzoiDJ1dS8fI1BE25LF0YhcaNmXo5KRtvcYZY7peFFn+khjq2dIxc9WP5abd8o8QhmPul7rPPa/QsC0LQycqkmPpfIb0V7/c0oFxbMvUbtw8z52HDhcAAACAxJY8a37w8AMAAAAAAAAAgKSQPNNeseA5AAAAAAAAAADoUBj5AQAAAAAAAABAUmhQ+NNUMfIDAAAAAAAAAAAg6hj5Eed8w8LWcwyLrd5pWMx81rPuPK+NdeS41p1jzu3uGMti5gXLK5wxrvJKUl/DYvBrPPe28uSOOcewkLtpoe1C94LTK99qeXF6fehMIb3rDqn9Yboz5usFnzpjIsXuhZAtC9iPKnXXX4Hci6Kf7oyQaQHxUdnuxcorFhoWEHd4xr/aGTMu27AY/LvuxeAtIgWGha0NC3aPyw5pwW4Dy75HXAszLzNsqMywkHSJYb+LDHkmGhawD4nluj2u6FfuRKYF4d37blqAPce1oLlhYXXDdcA3LFRuWsy8zLAAu6XMoQlpWzXu48ki4wAAAAAQluRZ8JyRHwAAAAAAAAAAoENh5AcAAAAAAAAAAEmhQeGv0cGaHwAAAAAAAAAAAFHHyA8AAAAAQIdQ4fU2x+b57rXimuUOsk6bZW2uvQVZp6s4WOog0rb2DRQf6R9gTaag67QFqEMvO4rrnFnWYttboGMfcP2srAD7aVhTq3m8ZW2x1gqwn0HLbVkvbo/xwVKb1vPbw7Ku3148w9qtX1kSLLdl3cRWCrIOm5cdMHnbl8I8qIpC+7mT5wfLXVltXzfTstZpa91ceEuwXwjQZr2yYG0wKNb3aw8NCn+NjmAjP+bNm6ff//73+tvf/qauXbtq1KhRmj9/vgYOHBhqqRj5AQAAAAAAAABAUmiI0o/dqlWrdOWVV+rFF1/UihUr1NDQoPz8fH3xxRdt3729MPKjA2j0b3DGpHhznTGvjXVvy/Ws9/Hb3GW56c/uspS7i6Ly/DxnzDlbn3TGfKqvO2NmXWsoz23u8oyS++2yyupRzpgbS2c6Y36hlo+FP81z5jg9+xlnTGZhvTMmbaHhTQjDWziZk9zbqv2/dHeiFHfIk43nuMtT7C5PxTL36yt5pS23eEubqMx2x1jeoooUG96IsbwhYngrLa/afaafotXOmPnVM5wxkf7uN2wicse4ymw63v7HzpgKy9uLJe6YtAL3uRcpN7x9ZHjjcVyh5W0dwxuFlreKDOWJ9DcUx8XydqXh7VuvyL3flredTG8IGsrsV7vTeF44b3+a9su0rSi+0QsAAAAAiKny8ub/vrJ48WLl5uaqqqpKp556amjb4eEHAAAAAAAAAABJYafCn/Zqd766uuYvYaanpys93f2icm1trSQpOzvonHktY9orAAAAAAAAAADQJn369FFmZmbTz7x585y/4/u+pk6dqpNPPlmDBw8OtTyM/AAAAAAAAAAAICkEX6PDllPauHGjMjK+ml7bMuqjuLhYr732mp5//vmQy8TDDwAAAAAAAAAA0EYZGRnNHn64XHXVVVq6dKmee+45HXHEEaGXh4cfAAAAAAAAAAAkhQaFv+ZHsJEkvu/rqquu0pIlS1RRUaF+/fqFXJ7dePjRAdykW9xB357rDHltXdvLkuK5t6Nvu0MKhlY4YyzlrX820xlTnp/njBk1v9IZUzCtwhlTedsoZ8zKV8Y5Y36Rf4MzZlrjbS1+X35bnjNHRWGBM8ZiVLa7/lToDnnyh+c4YypT3HV8TnWdM2ZG9jR3gRa6Q9IKDNvS/Ba/P0dPOnOs1inuwpQMcYbkFZY7YyrKeru3VfOaO0+2u31V1KxxbyvL8EZBzRx3jEFF9izHdtz7XbnQ3UYtedIK+rrzWBS5tyUtcYdMdNSNJOk8d4ihnarYsCnTMXeUJ4wcknzfXTeeZzkOBoa24xW669hS5rDEclsAAAAAgPZ35ZVXqrS0VE8++aS6d++uzZs3S5IyMzPVtWvX0LbDww8AAAAAQIfg+4aH6P/mZdtjg7rR/22g+NX62BxbURrsBaW0gmvMsZH+9mkqJJkeun8lYH1bXojYw/JixN5ML220MrflpZHWlCOo8cHqO8iLNZHigO2kzN5O8nz7uSBJFUHO4wDlkCRNDJA7K2D7DvJyVsB2krbQ/QLeHpHyYMfSM7y02CTQ9UG6sdR+3by50PAS8N7c7/g1sbykt7e8anvyivKAL5gGqcOyANceBX0BKXp/L9Feorfmh9V9990nScrLy2v2+eLFi3XRRReFVCYefgAAAAAAAAAAkCR2Kvxpr4Ll830/5O0fWKeYbAUAAAAAAAAAACBGGPkBAAAAAAAAAEBSaP9pr2KFkR8AAAAAAAAAAKBDYeRHkvDWzXbGPONXGBIZYhzqXklrcw5J6muI+UXKNGfMTdPmOmNOv+0Z98Zuc4esXD7OHWQwv3qGOyi75a9vznYvEHZj9UxnjGWhscrqUc6YJ7PPcedJcecZV7jSGaPx7pD5Be46TiuwLyTXknGlLZfZsh3TwpdF7sXSKootC7AZFl2zLFC5zLCp8pAWgcwy5FnoDnEdi0ixe78jlkUzDfUXyTEskmhaHNGwMF5JSMfBsgjfMve++9XuNF62ocyOBQSDLQLYQlm8AAtatiCs8gAAAAAAklmDwl/zg5EfAAAAAAAAAAAAUcfIDwAAAAAAAAAAkgJrfgAAAAAAAAAAACQkRn4AAAAAAAAAAJAUdir8NT/CzhcOHn4AAAAAAJKOXx0s3vNeM8fe7P0wWPKJQ+yx5cFSR2o+CBC9JFhynWcPLZoTvdxBy10WIHdWgGMjKUi5/dJgmYO0QZUFyx0JFB2wvrNmmUNXKmB9BziPveyAuQOcazdWzwyU+mYvLSrlCMovDBbvBT6P7YJdN6NXjmDXHmmlCuzBAf/uKND5EPRaheTGww90ML5vudlwx4zLcgQsdG9l9tcNRbH87Sgz/LGb6N6nm3WLO0/Am9KDSS+odcZEcu40ZPrAGXHzRMN+uXJkG3LUuI9DxNC5GJe10lIkN0N5LB2BesM542W781g61a4byEiJ4fwtMnSELB03y7lXbshjuik23FSWWLZl2HfDPyjYbvwzWvzWM1yXbNdjg8KQ8pSGk8fSGQ9t3w1s/6DVcrvwvHCOZyz3GwAAAAAA7MbDDwAAAAAAAAAAkgILngMAAAAAAAAAACQkRn4AAAAAAAAAAJAUGhT+Gh2M/AAAAAAAAAAAAIg6Rn4AAAAAAAAAAJAUkmfNDx5+IBC/OoQkhSHkkKTSWSEliqUMd4ifaPsVb+WNXXlCOR8k+WEc88Ihbc8Rqhi2izja91COZYLy/fg5DmFJ5uMJAAAAAECi4+EHAAAAAAAAAABJYafCfywQ9hoi4eDhBwAAAAAADok7yjFIuaO5j4maO6jolSV+2mC8lCOYsEbuH9gtgaJv8qNUDEmmGSdaKX5GRidmGwTiR/JMe8WC5wAAAAAAAAAAoENh5AcAAAAAAAAAAEmhQeFPU8XIDwAAAAAAAAAAgKhj5AcAAAAAAAAAAEmBNT8AAAAAAAAAAAASEg8/2uDee+9Vv3791KVLFw0bNkyrV69u7yIBAAAAQFyh3wQAABBPdkbpJ/7w8KOVfvvb32rKlCmaOXOm1q5dq1NOOUXjxo3TRx991N5FAwAAAIC4QL8JAAAA7cXzfd9v70IkohEjRuiEE07Qfffd1/TZoEGDdO6552revHn7xdfX16u+vr7p/2tra3XkkUdq48aNysjIiEmZAQAAgPZSV1enPn36aNu2bcrMzGzv4iBGgvSb6DMBAICOJp7ugevq6v5dhmskpYecvV7SnaqtrY2r+zYWPG+FSCSiqqoqXXfddc0+z8/PV2Vl5QF/Z968eZozZ85+n/fp0ycqZQQAAADi0datW9u944fYCNpvos8EAAA6qni4B05LS1PPnj21efOdUcnfs2dPpaWlRSV3a/HwoxU+++wzNTY2qkePHs0+79GjhzZv3nzA37n++us1derUpv/ftm2bjjrqKH300Uft3vCRGPY8KebNN1jRZhAUbQZB0WYQxJ63+LOzs9u7KIiRoP0m+kwdD38nEh/HMPFxDBMbxy/xxdM9cJcuXfT+++8rEolEJX9aWpq6dOkSldytxcOPNvA8r9n/+76/32d7pKenKz19/+FEmZmZXLwQSEZGBm0GgdBmEBRtBkHRZhBEp04sO5hsrP0m+kwdF38nEh/HMPFxDBMbxy/xxcs9cJcuXeLuAUU0xUetJ5jDDjtMKSkp+72ttGXLlv3eagIAAACAZES/CQAAAO2Jhx+tkJaWpmHDhmnFihXNPl+xYoVGjRrVTqUCAAAAgPhBvwkAAADtiWmvWmnq1KmaNGmShg8frpEjR+qBBx7QRx99pMsvv9z0++np6Zo1a9YBh3UDB0KbQVC0GQRFm0FQtBkEQXtJTm3pN9FmEh/HMPFxDBMfxzCxcfwSH8ewfXm+7/vtXYhEde+992rBggX65JNPNHjwYN1555069dRT27tYAAAAABA36DcBAACgPfDwAwAAAAAAAAAAdCis+QEAAAAAAAAAADoUHn4AAAAAAAAAAIAOhYcfAAAAAAAAAACgQ+HhBwAAAAAAAAAA6FB4+BFF9957r/r166cuXbpo2LBhWr16dYvxq1at0rBhw9SlSxcdffTR+p//+Z8YlRTxIkib+f3vf68zzzxTX//615WRkaGRI0fq2WefjWFpEQ+CXmf2eOGFF5Samqpvf/vb0S0g4krQ9lJfX6+ZM2fqqKOOUnp6ur7xjW/oN7/5TYxKi3gQtM2UlJTo+OOP1yGHHKJevXrpxz/+sbZu3Rqj0qK9Pffcczr77LPVu3dveZ6nP/zhD87f4f4X9JkSH32YxEefIrFxj5/4uOdObNwDxzkfUfHYY4/5nTt39hctWuSvX7/ev/rqq/1u3br5H3744QHjN2zY4B9yyCH+1Vdf7a9fv95ftGiR37lzZ//xxx+PccnRXoK2mauvvtqfP3++/9JLL/nvvPOOf/311/udO3f2X3311RiXHO0laJvZY9u2bf7RRx/t5+fn+8cff3xsCot215r2MmHCBH/EiBH+ihUr/Pfff99fs2aN/8ILL8Sw1GhPQdvM6tWr/U6dOvm/+tWv/A0bNvirV6/2v/Wtb/nnnntujEuO9vLHP/7Rnzlzpv/EE0/4kvwlS5a0GM/9L+gzJT76MImPPkVi4x4/8XHPnfi4B45vPPyIkpNOOsm//PLLm332zW9+07/uuusOGD99+nT/m9/8ZrPPfvKTn/jf+c53olZGxJegbeZAjj32WH/OnDlhFw1xqrVt5oc//KH/85//3J81axYdlSQStL0888wzfmZmpr9169ZYFA9xKGibufXWW/2jjz662Wd33323f8QRR0StjIhflo4f97+gz5T46MMkPvoUiY17/MTHPXfHwj1w/GHaqyiIRCKqqqpSfn5+s8/z8/NVWVl5wN/561//ul/82LFj9corr2jnzp1RKyviQ2vazL527dql7du3Kzs7OxpFRJxpbZtZvHix3nvvPc2aNSvaRUQcaU17Wbp0qYYPH64FCxbo8MMP1zHHHKNp06Zpx44dsSgy2llr2syoUaO0adMm/fGPf5Tv+/rnP/+pxx9/XGeddVYsiowExP1vcqPPlPjowyQ++hSJjXv8xMc9d3Lifia2Utu7AB3RZ599psbGRvXo0aPZ5z169NDmzZsP+DubN28+YHxDQ4M+++wz9erVK2rlRftrTZvZ1+23364vvvhCF1xwQTSKiDjTmjbz97//Xdddd51Wr16t1FQu/8mkNe1lw4YNev7559WlSxctWbJEn332ma644gpVV1czJ3ASaE2bGTVqlEpKSvTDH/5Q//rXv9TQ0KAJEybonnvuiUWRkYC4/01u9JkSH32YxEefIrFxj5/4uOdOTtzPxBYjP6LI87xm/+/7/n6fueIP9Dk6rqBtZo+ysjLNnj1bv/3tb5Wbmxut4iEOWdtMY2OjCgsLNWfOHB1zzDGxKh7iTJBrzK5du+R5nkpKSnTSSSfpu9/9ru644w499NBDvBmWRIK0mfXr12vy5Mn6xS9+oaqqKpWXl+v999/X5ZdfHouiIkFx/wv6TImPPkzio0+R2LjHT3zccycf7mdih8f0UXDYYYcpJSVlv6e0W7Zs2e/J3h49e/Y8YHxqaqpycnKiVlbEh9a0mT1++9vf6uKLL9bvfvc7jRkzJprFRBwJ2ma2b9+uV155RWvXrlVxcbGk3Te+vu8rNTVVy5cv13/8x3/EpOyIvdZcY3r16qXDDz9cmZmZTZ8NGjRIvu9r06ZNGjBgQFTLjPbVmjYzb948jR49Wj/72c8kSUOGDFG3bt10yimn6Je//CVvMGE/3P8mN/pMiY8+TOKjT5HYuMdPfNxzJyfuZ2KLkR9RkJaWpmHDhmnFihXNPl+xYoVGjRp1wN8ZOXLkfvHLly/X8OHD1blz56iVFfGhNW1G2v221EUXXaTS0lLmd0wyQdtMRkaGXn/9da1bt67p5/LLL9fAgQO1bt06jRgxIlZFRztozTVm9OjR+vjjj/X55583ffbOO++oU6dOOuKII6JaXrS/1rSZL7/8Up06Nb+1TElJkfTVm0zA3rj/TW70mRIffZjER58isXGPn/i4505O3M/EWCxXV08mjz32mN+5c2f/wQcf9NevX+9PmTLF79atm//BBx/4vu/71113nT9p0qSm+A0bNviHHHKIf8011/jr16/3H3zwQb9z587+448/3l67gBgL2mZKS0v91NRU/9e//rX/ySefNP1s27atvXYBMRa0zexr1qxZ/vHHHx+j0qK9BW0v27dv94844gj/+9//vv/mm2/6q1at8gcMGOBfcskl7bULiLGgbWbx4sV+amqqf++99/rvvfee//zzz/vDhw/3TzrppPbaBcTY9u3b/bVr1/pr1671Jfl33HGHv3btWv/DDz/0fZ/7X+yPPlPiow+T+OhTJDbu8RMf99yJj3vg+MbDjyj69a9/7R911FF+Wlqaf8IJJ/irVq1q+u7CCy/0TzvttGbxFRUV/tChQ/20tDS/b9++/n333RfjEqO9BWkzp512mi9pv58LL7ww9gVHuwl6ndkbHZXkE7S9vPXWW/6YMWP8rl27+kcccYQ/depU/8svv4xxqdGegraZu+++2z/22GP9rl27+r169fKLior8TZs2xbjUaC8rV65s8d6E+18cCH2mxEcfJvHRp0hs3OMnPu65Exv3wPHN833GRAEAAAAAAAAAgI6DNT8AAAAAAAAAAECHwsMPAAAAAAAAAADQofDwAwAAAAAAAAAAdCg8/AAAAAAAAAAAAB0KDz8AAAAAAAAAAECHwsMPAAAAAAAAAADQofDwAwAAAAAAAAAAdCg8/AAAAAAAAAAAAB0KDz8AAAAAAAAAAECHwsMPAECHk5eXpylTprR3MQAAAAC0M/oGAJC8ePgBAEDITj31VHmet99PUVGR6fcvuugiXXfddaHlAwAAANA+6BsAQPtJbe8CAAAgSZFIRGlpae1djDbzfV/r1q3Tbbfdtl8H5Gtf+5rz93ft2qWnn35aS5cuDSUfAAAAkGjoG+xG3wAA2oaRHwCA/fi+rwULFujoo49W165ddfzxx+vxxx9v+j4vL0+TJ0/W9OnTlZ2drZ49e2r27NmBcxQXF2vq1Kk67LDDdOaZZ0qStm/frqKiInXr1k29evXSnXfe2Wyo+iOPPKKcnBzV19c32973vvc9/ehHPzrg/tTX12vy5MnKzc1Vly5ddPLJJ+vll19u+v7xxx/Xcccdp65duyonJ0djxozRF198Yf5+b3//+9+1fft2nXrqqerZs2ezH0uH5IUXXlCnTp00YsSIUPIBAAAAbUHfgL4BACQqHn4AAPbz85//XIsXL9Z9992nN998U9dcc43+3//7f1q1alVTzMMPP6xu3bppzZo1WrBggW666SatWLEicI7U1FS98MILuv/++yVJU6dO1QsvvKClS5dqxYoVWr16tV599dWm3/nBD36gxsbGprefJOmzzz7TsmXL9OMf//iA+zN9+nQ98cQTevjhh/Xqq6+qf//+Gjt2rKqrq/XJJ59o4sSJ+q//+i+99dZbqqio0Pnnny/f9yXJ+f2+qqqqlJqaqiFDhrSi5qWlS5fq7LPPVqdOnULJBwAAALQFfQP6BgCQsHwAAPby+eef+126dPErKyubfX7xxRf7EydO9H3f90877TT/5JNPbvb9iSee6M+YMSNQjm9/+9vNvq+rq/M7d+7s/+53v2v6bNu2bf4hhxziX3311U2f/fSnP/XHjRvX9P933XWXf/TRR/u7du1qyr0n/vPPP/c7d+7sl5SUNMVHIhG/d+/e/oIFC/yqqipfkv/BBx8csD5c3+9r2rRpvud5frdu3Zr9XHLJJabfP+aYY/ylS5cGyvfUU0/5xxxzjN+/f39/0aJFpu0AAAAALvQNmqNvAACJhTU/AADNrF+/Xv/617+ahprvEYlENHTo0Kb/3/dto169emnLli2BcgwfPrzZ9xs2bNDOnTt10kknNX2WmZmpgQMHNou79NJLdeKJJ+of//iHDj/8cC1evFgXXXSRPM/bb3/ee+897dy5U6NHj276rHPnzjrppJP01ltvaerUqTrjjDN03HHHaezYscrPz9f3v/99ZWVlSZKOP/74Fr/fV1VVlX7wgx/olltuafb5weL39tZbb2nTpk0aM2aMOV9DQ4OmTp2qlStXKiMjQyeccILOP/98ZWdnO7cHAAAAtIS+AX0DAEhkPPwAADSza9cuSdLTTz+tww8/vNl36enpTf/duXPnZt95ntf0u9Yc3bp1a/ad/+/h4vt2VPx9hpEPHTpUxx9/vB555BGNHTtWr7/+up566qkD7k9LOT3PU0pKilasWKHKykotX75c99xzj2bOnKk1a9aoX79+zu/3tXbtWt10003q37//Acvzxhtv6JxzztELL7ygnj176rPPPtOYMWP00ksvaenSpTrzzDPVtWtXc76XXnpJ3/rWt5rq+bvf/a6effZZTZw48YDxAAAAgBV9A/oGAJDIWPMDANDMscceq/T0dH300Ufq379/s58+ffpENcc3vvENde7cWS+99FLTZ3V1dfr73/++X+wll1yixYsX6ze/+Y3GjBlz0Lz9+/dXWlqann/++abPdu7cqVdeeUWDBg2StLvzM3r0aM2ZM0dr165VWlqalixZ0hTv+n6PDRs2aNu2bc3eYNvX4MGD9Z//+Z/6y1/+IkmaM2eOZsyYobS0ND355JOaMGFCoHwff/xxs07kEUccoX/84x8HjQcAAACs6BvQNwCARMbIDwBAM927d9e0adN0zTXXaNeuXTr55JNVV1enyspKfe1rX9OFF14YtRzdu3fXhRdeqJ/97GfKzs5Wbm6uZs2apU6dOu33dlZRUZGmTZumRYsW6ZFHHjloWbp166af/vSnTTmPPPJILViwQF9++aUuvvhirVmzRn/+85+Vn5+v3NxcrVmzRp9++mlT58f1/d6qqqokST169NDmzZubfZebm9u0UOG3vvUtvfPOO3r33XdVVVWlu+++W1u2bNHLL7+sP/zhD4Hy7fvmm7T/m2wAAABAa9A3oG8AAImMhx8AgP3cfPPNys3N1bx587RhwwYdeuihOuGEE3TDDTdEPccdd9yhyy+/XOPHj1dGRoamT5+ujRs3qkuXLs3iMjIy9L3vfU9PP/20zj333BZz/vd//7d27dqlSZMmafv27Ro+fLieffZZZWVlKSMjQ88995zuuusu1dXV6aijjtLtt9+ucePGNW2npe/39uqrr0qSjjnmmGafd+7cWdu3b28a1j9gwAAtW7ZMN9xwg2655RZ5nqennnpKI0aMUG5ubqB8hx9+eLO3uTZt2qQRI0a0WB8AAACAFX0D+gYAkKg8/0CPhQEAiBNffPGFDj/8cN1+++26+OKLm3135plnatCgQbr77rvbqXSts23bNg0YMEAjRozQsmXLJEkTJkzQySefrOnTpwfK1dDQoEGDBqmioqJpUcMXX3xROTk50Sg6AAAA0G7oG7SMvgEANMfIDwBAXFm7dq3+9re/6aSTTlJtba1uuukmSdI555zTFFNdXa3ly5frL3/5ixYuXNheRW21Qw89VNLut872OPnkk1u1EGFqaqpuv/12nX766dq1a5emT59O5wYAAAAdAn2DYOgbAEBzjPwAAMSVtWvX6pJLLtHbb7+ttLQ0DRs2THfccYeOO+64ppi+ffuqpqZGN954o6ZNm9aOpW2dnTt3avDgwXr77bfbuygAAABA3KJvAABoC0Z+AADiytChQ5sW8zuYDz74IDaFiZK//e1vGjhwYHsXAwAAAIhr9A0AAG3ByA8AAAAAAAAAANChdGrvAgAAAAAAAAAAAISJhx8AAAAAAAAAAKBD4eEHAAAAAAAAAADoUHj4AQAAAAAAAAAAOhQefgAAAAAAAAAAgA6Fhx8AAAAAAAAAAKBD4eEHAAAAAAAAAADoUHj4AQAAAAAAAAAAOhQefgAAAAAAAAAAgA6Fhx8AAAAAAAAAAKBD4eEHAAAAAAAAAADoUP5/b7jpNLNPSNIAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#energyloss in abh von der energie der elektronen\n",
"#upstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(up_energyloss_found, up_energy_found, bins=(np.linspace(0,1,80), np.linspace(0,1.5e5,80)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0$\")\n",
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
"\n",
"a1=ax1.hist2d(up_energyloss_lost, up_energy_lost, bins=(np.linspace(0,1,50), np.linspace(0,1.5e5,50)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0$\")\n",
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, Upstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj8AAAJOCAYAAADoCxXRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADGZ0lEQVR4nOzdeXwURf7/8feQm5AMCUdCkFO5BAIKyrlyX3IoCChoBFRkRUUEPPACXDnk3gURZRWU2wNYATcCgiByyCGyiF/QFQWEAEoIh0BIUr8//GWWIcf0QCdMMq/n4zEPSPenq6qreibdqakqhzHGCAAAAAAAAAAAoJAocr0LAAAAAAAAAAAAYCc6PwAAAAAAAAAAQKFC5wcAAAAAAAAAAChU6PwAAAAAAAAAAACFCp0fAAAAAAAAAACgUKHzAwAAAAAAAAAAFCp0fgAAAAAAAAAAgEKFzg8AAAAAAAAAAFCo0PkBAAAAAAAAAAAKFTo/AAAA8tnu3bt18ODB610MAAAAAAAKLTo/AAAA8tnbb7+ttWvXXu9iAAAAAABQaNH5AQAAkA82bNig/v376/jx465te/fuVbdu3XTs2LHrWDIAAAAAAAofOj8AAECB8+mnn8rhcLi9IiMjVa9ePX3wwQf5kvf777/vtj05OVkdOnRQcHCwpk+fnuW4evXqKSYmRvHx8fr88881ffp0tWnTRu3bt1epUqXytMwFyRdffJGlbTNfW7ZsyfaY3bt36+GHH9aNN96osLAwhYWFqUqVKhowYIC2b9/udRm6du2qsLAwnTp1KseY+++/X0FBQV53XM2ZM8ftnEJDQxUbG6sWLVpo7Nixbp1jBdGmTZs0cuTIXOvOH4wcOVIOh0O//fabbWn6Q92mp6erdOnSmjJlSo4xeVG3BUFhbv+vv/5a7dq1U0REhIoVK6YWLVroq6++covx9nfD2bNnNXjwYMXFxSk0NFR169bVokWLrjoOAAAUTIHXuwAAAADe2rlzpyTpX//6l0qXLi1jjA4ePKgRI0aoV69eql69uuLj4/M073r16rm27d69W127dtW5c+e0du1aNW3aNMtx4eHhevXVV5WRkaGxY8eqSJEimj9/vu677748KWdBN2bMGLVo0cJtW61atbLEvfXWW3riiSdUrVo1PfXUU6pZs6YcDoe+//57LVy4ULfddpt+/PFH3XjjjZbzfvjhh7Vs2TItWLBAAwcOzLI/JSVFS5cuVadOnRQTE+P9yUmaPXu2qlevrkuXLun48ePauHGjXn/9dU2cOFGLFy9W69atryrd623Tpk0aNWqU+vbtq+LFi1/v4hQq/lC3GzZs0IkTJ9StW7frXRSfU1jbf9u2bbrjjjt0++23a+7cuTLGaPz48WrVqpXWrVunRo0aucVb/d3QrVs3bdu2TePGjVPVqlW1YMEC9erVSxkZGerdu7fXcQAAoGCi8wMAABQ4O3fulNPpVJcuXVzbGjVqpLS0ND3wwAP65ptv8rTzIywsTNWrV5ckLVq0SA8//LDi4+P18ccfKy4uLtvj/vOf/yghIUGxsbG68847FRcXp9GjR2vu3Ll67733VLJkyTwpb346efKkMjIybDmXKlWqqGHDhrnGfPXVVxo4cKA6duyojz76SMHBwa59LVu21OOPP64PP/xQYWFhXuXdoUMHxcXF6d13382282PhwoU6f/68Hn74Ya/SvVytWrVUv35918/33HOPnn76aTVt2lTdunXTDz/8cNUdKwXJH3/8oaJFi17vYsBHfPTRR6pfv74qVKiQJ+lzveW/o0ePKjw8XJGRkdnuf/nll1W8eHElJia62qZ169aqXLmyhg0blmUEiJXfDZ9++qlWr17t6siQpBYtWuiXX37RM888o3vvvVcBAQGW4wAAQMHFtFcAAKDA2bFjh+rWrZtl++HDhyVJNWrU8DrNKVOmaNmyZV7lPWzYMPXq1Uv333+/1q9fn2PHhyRFRUXptddeU2JioipVqqQmTZpo165d6tmzp5xOZ47Hbdy4UW3btpXT6VRUVJQ6duyoH3744arjrOrcubPq16+vWbNmqU6dOgoLC1O5cuU0YsQIZWRkZHvM7t27VaZMGXXo0EHvv/++zpw5c9X5WzFmzBgFBATorbfecuv4uFyPHj2ytMsPP/yg3r17q3Tp0goJCVGNGjX0xhtvuPYHBASoT58+2rFjh/7zn/9kSXP27Nmu87RT+fLlNWnSJJ05c0ZvvfWW276NGzeqVatWioiIUNGiRdW4cWOtXLnStf+7776Tw+HQhx9+6Nq2Y8cOORwO1axZ0y2tLl26uI1cypxG6LvvvlOvXr3kdDoVExOjhx56SCkpKa64EydO6NFHH1W5cuUUEhKiUqVKqUmTJlqzZo0rnWeeeUaSVKlSJdeUNF988YVbPjt37lT37t0VFRXlGpHjqU0y/fjjj+rXr5+qVKmiokWLqmzZsurcuXOWdsrMa/fu3erRo4ecTqeio6M1ZMgQpaWlad++fWrfvr0iIiJUsWJFjR8/3mP7ZKb5zTffqFu3boqMjJTT6dQDDzygEydOZHvMsWPHcq3TTJ7a11Pdejr+ynO41rbOzrVcg5JkjNHSpUt1zz335JjH5Q4dOpRrO+R2vUnWrrm8uI4ut2zZMjkcDn3++edZ9r355puuvHNq/8TERN1yyy266aab3NovKSlJsbGxat68udLT0y2VJacppRwOh37++Wevzis5OVnvvPOOWrdurRtuuEE//fRTjrFfffWVmjdv7tYpFRERoTvuuEObNm3S0aNHvcpbkpYuXapixYqpR48ebtv79eunI0eOaOvWrV7FSdd+LeT1tQQAALJH5wcAAChQfv/9dx08eFB16tRRWlqa0tLSdPz4cc2dO1ejR4/WI488ottvv93rdLdv366ePXvm2gGSmXf58uXVtm1bTZ8+XbNmzdLbb7+d4x/fM91www3q1KmT27bMP7IHBQVle8zIkSPVrFkzlStXTgsXLtQ///lPHTp0SK1atdLZs2e9jvPGjh079H//93+aMmWKnnnmGX3yySdq2rSpXn31Vb377rvZHtOwYUO99957CgoKUv/+/VW6dGn16NFDS5Ys0cWLF73K//HHH1dgYKAiIyPVrl07bdy40W1/enq61q1bp/r166tMmTKW0927d69uu+027dmzR5MmTdKKFSvUsWNHDRo0SKNGjXLFPfTQQ3I4HFnOde/evfr666/Vp0+fPPlG8J133qmAgABt2LDBtW39+vVq2bKlUlJS9M4772jhwoWKiIhQ586dtXjxYklSzZo1VaZMGbc/Tq9Zs0ZhYWHau3evjhw5IklKS0vT+vXrs51W65577lHVqlX18ccf6/nnn9eCBQv09NNPu/YnJCRo2bJleuWVV7Rq1Sr985//VOvWrfX7779Lkh555BE9+eSTkqQlS5Zo8+bN2rx5s2699Va3fLp166abbrpJH374oWbOnGm5TSTpyJEjKlGihMaNG6fExES98cYbCgwMVIMGDbRv374s59SzZ0/VqVNHH3/8sfr3768pU6bo6aef1t13362OHTtq6dKlatmypZ577jktWbLEUht17dpVN910kz766CONHDlSy5YtU7t27XTp0iWv61Sy1r651a2V470tl6e2zs61XoOZf+i22vlhtR2uvN4k658DmfLiOpKkTp06qXTp0po9e3aWfXPmzNGtt96q+Pj4HNu/cePG+uCDD3T8+HE99NBDkqSMjAzdf//9MsZo4cKFlj+nMtPMfK1du1Zly5ZVbGysoqOjPR7/xx9/aPHixbrrrrsUGxurJ598UsWLF9fixYt1880353hcamqqQkJCsmzP3HZlx6an3w2StGfPHtWoUUOBge4TXWSOCN2zZ49XcZe71mshr64lAACQAwMAAFCArFq1ykjK8goMDDSvvfbaVaeblpZmevfubYKCgszSpUs95h0aGmq2bNly1fl5snz5ciPJjB8/3m37/v37jSQzb948r+K8cfjwYSPJVK5c2Zw6dcq1PTU11cTGxppOnTp5TCM5Odm8++67pm3btiYwMNA4nU7Tt29f89lnn5m0tLQcj9u5c6d56qmnzNKlS82GDRvMu+++a2rUqGECAgJMYmKiKy4pKclIMvfdd1+WNNLS0sylS5dcr4yMDNe+du3amRtuuMGkpKS4HfPEE0+Y0NBQc/LkSde2Zs2amZIlS5rU1FTXtqFDhxpJZv/+/R7rIDuzZ882ksy2bdtyjImJiTE1atRw/dywYUNTunRpc+bMGbdzrFWrlrnhhhtc5/fAAw+YypUru2Jat25t+vfvb6Kiosx7771njDHmq6++MpLMqlWrXHEjRozI9hoaOHCgCQ0NdaVfrFgxM3jw4FzPb8KECUaSOXDgQJZ9mfm88sorbtu9aZMrpaWlmdTUVFOlShXz9NNPZ8lr0qRJbvF169Y1ksySJUtc2y5dumRKlSplunXrluu5ZaZ5eT7GGDN//vws7zWrdWqM9fbNqW6tHu9Nuay0dXau9ho0xpjBgweb2rVre8zDajvkdL0ZY/2ay4vr6EpDhgwxYWFhbp+1e/fuNZLMtGnTXNtye28tXrzYSDJTp041r7zyiilSpEiW+vVGWlqaueuuu0yxYsXMjh07coxLTU01K1asML179zbh4eEmODjYdOrUycybN8/tesxN3bp1TdWqVU16erpr26VLl0zlypWNJLNgwQJjjPXfDcYYU6VKFdOuXbsseR05csRIMmPGjPEqzphrvxby41oCAABZMfIDAAAUKDt27JD057dft23bpm3btikxMVEdO3bUK6+8ku03JX/77bdcp/RwOBwKDAzUggULdOnSJfXs2VPHjh3LMe+EhARduHDB7dv5dnvllVd044036qmnnnKNcElLS1OlSpUUFhbmmkbEapw3tm3bJunPESWXT8kVFBSkm266Sb/99pvHNIoXL65+/frps88+09GjRzVu3DgdOHBA7du3V1xcXI7luuWWWzR16lTdfffd+stf/qJ+/fpp06ZNKlOmjJ599llL5a9Xr56CgoJcr0mTJkmSLly4oM8//1xdu3ZV0aJF3errzjvv1IULF7RlyxZXOg8//LB+++03ffLJJ5L+/Mb6vHnz9Je//EVVqlSxVJarYYxx/f/cuXPaunWrunfvrmLFirm2BwQEKCEhQYcPH3aNeGjVqpV++uknHThwQBcuXNDGjRvVvn17tWjRQqtXr5b05zfxQ0JC1LRp0yz5Xr6GjvTnt58vXLig48ePS5Juv/12zZkzR6+99pq2bNmS7UgHKy7/Zr+3bZKWlqYxY8bo5ptvVnBwsAIDAxUcHKwffvhB33//fZa8rhxtVaNGDTkcDrcpywIDA3XTTTfpl19+sVT++++/3+3nnj17KjAwUOvWrcsS66lOvWnf7Fzt8XnV1tdyDS5ZssTyqA/Jejtcmaa315yUN9dRpoceekjnz593G6Uze/ZshYSEWF5wu2fPnnrsscf0zDPP6LXXXtMLL7ygNm3aeFWOyz3xxBNauXKlPvzwwywjtzLt3r1bsbGxuuuuu/Tbb7/pH//4h44dO6bly5fr/vvvd7sec/Pkk09q//79euKJJ/Trr7/q0KFD+utf/+qqxyJF/vyThbe/GxwOR455Xr7Palyma70W8vJaAgAAWdH5AQAACpTMBce7dOmi+vXrq379+mrXrp0WLVqkgIAAzZo1K8sxERERmjVrlsdX5h/J7rrrLpUoUSLbvENDQ/Xuu+8qISFBzz//vOsP43ZKSkrSN998o//+978KCQlx+0N+UFCQzp8/r+LFi1uO89b27dsVFBSUZR506c9ph8qVK+dVeqdPn9apU6eUkpIiY4yKFy+eZZqR3BQvXlydOnXS7t27df78eUlSyZIlFRYWlu0fhxYsWKBt27ZlaZvff/9daWlpmjZtWpa6uvPOOyXJrWOne/fucjqdrilpPv30Ux07duyaFjr35Ny5c/r9999d65QkJyfLGJPt1F6ZMZlTEWVOI7RmzRpt3LhRly5dUsuWLdW6dWvXmgJr1qxRkyZNsl0E/sprPnPamcw6X7x4sfr06aN//vOfatSokaKjo/Xggw8qKSnJq3O8/Fy8bZMhQ4bo5Zdf1t13363ly5dr69at2rZtm+rUqeMq5+WunK4nODhYRYsWVWhoaJbtFy5csFT+2NhYt58DAwNVokSJbKeE8lSn3rRvdq72+Lxq66u9Br/++msdPHjQq84Pq+1wZd14e81JeXMdZapZs6Zuu+021+dMenq65s2bp7vuusvSdFOZHnroIV26dEmBgYEaNGiQV2W43GuvvaaZM2fqrbfeUvv27XOMCwoKktPpVHp6ulJSUpSSknJV0yw+9NBDGjdunObOnasbbrhB5cuX1969ezVs2DBJUtmyZXM8NrvfDZJyfD+ePHlS0v/a02rc5a71WsjLawkAAGRl/akTAADAB+zcuVO1a9fOMo95UFCQAgICsv0DaEhIiB555JFc0125cqVWrFih7t27a+HChdn+cX7nzp2qU6eOAgMDNWvWLNeCuRs3bsx2AfardejQIUl/LsKe3Tf0JenGG2/Ujz/+aCnOW9u3b1fJkiWz/DFm69at+umnn/Tyyy97TOPQoUP68MMPtWjRIm3btk1ly5bVvffeq1mzZql+/fpelylzNETmN3EDAgLUsmVLrVq1SkePHnX7A2fm/PJXLtIbFRXl+kb8448/nm0+lSpVcv0/LCxMvXr10qxZs3T06FG9++67ioiIyLZTyC4rV65Uenq6mjdv7ipzkSJFsl30N3MNhZIlS0r6c12ZqlWras2aNapYsaLq16+v4sWLq1WrVho4cKC2bt2qLVu2ZLumgRUlS5bU1KlTNXXqVB08eFCffPKJnn/+eR0/flyJiYmW07n829Tetsm8efP04IMPasyYMW4xv/3221V19F2NpKQktz/IpqWl6ffff8+2w9QTb9o3L47PydW29dVegx9//LGqVq2qWrVqWS6j1Xa48tv73l5z+aFfv34aOHCgvv/+e/300086evSo+vXrZ/n4c+fOKSEhQVWrVtWxY8f0yCOP6F//+pfX5ZgzZ45efvlljRw50rWGSE5q1Kihn376SZs3b9aCBQs0btw4DR06VE2aNNG9996r7t27Z+mgyslzzz2nwYMH64cfflBERIQqVKigAQMGKDw8XPXq1cv12Ct/N0hS7dq1tXDhQqWlpbn9Ls9cPyTzOrMaBwAACi5GfgAAgAIjJSVFP/30U7YdDf/617904cIF3XHHHVeV9oQJE9S5c+ccOz4y886cAiQkJERLly5VdHS0unTp4vW333OT+c1Qh8PhGt1y5SsqKspynLe2b9+uEydO6NSpU65t6enpeu6551SxYsUcp2I5c+aMpk2bpqZNm6pChQoaPXq06tatq7Vr1+rgwYOaNGnSVXV8JCcna8WKFapbt65bh8zw4cOVnp6uv/71r5am5SlatKhatGihb775RvHx8dnW15V/OH344YeVnp6uCRMm6NNPP9V9992nokWLen0OVhw8eFDDhg2T0+nUgAEDJEnh4eFq0KCBlixZ4taxl5GRoXnz5rn+2JypdevWWrt2rVavXu2a9qZq1aoqX768XnnlFV26dCnbxc69Vb58eT3xxBNq06aNdu7c6dp+5QgCT7xtE4fDkWVx5JUrV+rXX3+95nOyav78+W4/f/DBB0pLS3N1WHnDm/bNrm69vT6uRk5tnZOruQY//vhjr0Z9SFffDlfzOZDXevXqpdDQUM2ZM0dz5sxR2bJl1bZtW7eY3N5bf/3rX3Xw4EEtWbJE77zzjj755BNNmTLFqzIkJiaqf//+euihhzRixAjLxzVq1EjTpk3TkSNHlJiYqBtvvFEvvviiypYtq5YtW+qtt96y9HkQEhKiWrVqqUKFCjp48KAWL16s/v37ZztKLVNOvxu6du2qs2fP6uOPP3aLf++99xQXF6cGDRp4FQcAAAouRn4AAIACY+fOnTLGKDw83DUne3JysjZt2qQpU6YoPj7eNVWGt5YvX66wsLAcp2PKzPvyb6HGxsbqX//6l5o2baouXbpo/fr1uf6hxqobb7xRLVq00EsvvaSzZ8+qQYMGMsbo6NGjWrdunfr06aPmzZtbjrucw+FQs2bN9MUXX2Sb94EDB/T777+rfPny6tGjh4YOHaoLFy7oH//4h3bs2KEvvvhCwcHB2R67Y8cOPf/88+rSpYuWLVumDh06KCgoyKtz7927t8qXL6/69eurZMmS+uGHHzRp0iQdO3ZMc+bMcYtt0qSJ3njjDT355JO69dZb9eijj6pmzZqub8Jn/kErMjLSdczf//53NW3aVH/5y1/02GOPqWLFijpz5ox+/PFHLV++XGvXrnXLo379+oqPj9fUqVNljMl1yitPdXu5PXv2uNYZOH78uL788kvNnj1bAQEBWrp0qUqVKuWKHTt2rNq0aaMWLVpo2LBhCg4O1owZM7Rnzx4tXLjQ7RvPrVq10owZM/Tbb79p6tSpbttnz56tqKgoj9+kzk5KSopatGih3r17q3r16oqIiHCtt9OtWzdXXO3atSX9Wc99+vRRUFCQqlWrpoiIiBzT9qZNOnXqpDlz5qh69eqKj4/Xjh07NGHCBN1www1en9PVWrJkiQIDA9WmTRt99913evnll1WnTh317NnzqtKz2r451a0314cVVts6J95eg7t27dJ///tfrzs/rqUdvP0cyGvFixdX165dNWfOHJ06dUrDhg1zrXWRKaf2X7x4sebNm6fZs2erZs2aqlmzpp544gk999xzatKkiW6//XaP+R84cEA9evRQ5cqV1a9fvyxrntxyyy1ZOh2vFBAQoLZt26pt27aaOXOmVq5cqQULFmjw4MFq0KBBjqMj9+zZo48//lj169dXSEiIvv32W40bN05VqlTR3/72N1ecN78bOnTooDZt2uixxx7T6dOnddNNN2nhwoVKTEzUvHnzXCNHrcYBAIAC7Pqssw4AAOC9iRMnGklur/DwcHPLLbeY0aNHm3PnzuV53jt37syy78MPPzQOh8P06NHDZGRk2JJfSkqKGT58uKlataoJDQ01UVFRpk6dOubJJ580ycnJXscZY8yZM2eMJHPfffflmO8HH3xgJJlNmzaZhIQEExkZaSIiIsxdd91l9u7d67HMZ8+evZbTNmPHjjV169Y1TqfTBAQEmFKlSpmuXbuar7/+Osdjdu3aZfr162cqVapkQkJCTGhoqLnpppvMgw8+aD7//PMs8QcOHDAPPfSQKVu2rAkKCjKlSpUyjRs3Nq+99lq26f/97383kszNN9+cYxms1K0xxsyePdvt+g0ODjalS5c2zZo1M2PGjDHHjx/P9rgvv/zStGzZ0oSHh5uwsDDTsGFDs3z58ixxycnJpkiRIiY8PNykpqa6ts+fP99IMt26dctyzIgRI4wkc+LEiWzLeuDAAXPhwgXz17/+1cTHx5vIyEgTFhZmqlWrZkaMGJHlfTd8+HATFxdnihQpYiSZdevW5ZqPMdbbJDk52Tz88MOmdOnSpmjRoqZp06bmyy+/NM2aNTPNmjXzeE59+vQx4eHhWfJv1qyZqVmzZpbt2dXTjh07TOfOnU2xYsVMRESE6dWrlzl27JjXdXo5q+2bU91aPd7uts6Ot9fgSy+9ZCpUqOAx3SvPwVM75Ha9GWPtmsuL6ygnq1atcn0u7N+/P9uYK9v/H//4hwkLCzN9+vRxi7tw4YKpV6+eqVixYpbfA9lZt25dlt+tl7+uvF694en3wr59+8wdd9xhoqOjTXBwsLnpppvMSy+9lOUYb383nDlzxgwaNMjExsaa4OBgEx8fbxYuXHjVcdd6LeTntQQAAP7HYcz/nyQTAAAAhdqnn36qTp066dtvv3V9i/hKzz77rGbMmKGUlBS+9eoFK3WLgm3kyJEaNWqUTpw4cVXraCB7N998szp06KBJkyZd76IAAACgkGHaKwAAAD+xbt063Xfffbn+cX779u269dZb6fjwkpW6BZDV3r17r3cRAAAAUEjR+QEAAOAnJkyYkOt+Y4x27typhx56KJ9KVHh4qlsA/ictLS3X/UWKFMmytkdhLgcAAEB+Y9orAAAAAABs9PPPP6tSpUq5xowYMUIjR470i3IAAABcD3R+AAAAAABgo9TUVO3evTvXmLi4OMXFxflFOQAAAK4HOj8AAAAAAAAAAEChwsSeAAAAAAAAAACgUKHzAwAAAAAAAAAAFCp0fgAAAAAAAAAAgEKFzg8AAAAAAAAAAFCo0PkBAAAAAAAAAAAKFTo/AAAAAAAAAABAoULnBwAAAAAAAAAAKFTo/AAAAAAAAAAAAIUKnR8AAAAAAAAAAKBQofMDAAAAAAAAAAAUKnR+AAAAAAAAAACAQoXODwAAAAAAAAAAUKjQ+QEAAAAAAAAAAAoVOj8AAAAAAAAAAEChQucHAAAAAAAAAAAoVOj8AAAAAAAAAAAAhQqdHwAAAAAAAAAAoFCh8wMAAAAAAAAAABQqdH4AAAAAAAAAAIBChc4PAD5l8eLFqlmzpsLCwuRwOLRr167rXaRsjRw5Ug6H43oXw2f07dtXFStWvN7FyHOffvqpRo4caXu6c+bMkcPh0M8//2x72pK0d+9ejRw5Ms/SBwAAuB7y+h5qxowZmjNnTp6kXZBVrFhRffv2vd7FyHN51f55/eyUV88sAFAQ0fkBwGecOHFCCQkJuvHGG5WYmKjNmzeratWq17tYgMunn36qUaNGXe9ieG3v3r0aNWoUnR8AAABeoPPDvxXU9i+ozywAkBfo/ADgM/bv369Lly7pgQceULNmzdSwYUMVLVr0eherUPnjjz+udxEKJH+rN38738udP39expjrXQwAAIBrYozR+fPnr3cxCiR/uhf29+vEn9oa8Fd0fgDwCX379lXTpk0lSffee68cDoeaN2/u2v/JJ5+oUaNGKlq0qCIiItSmTRtt3rw5SxrZDR/Obooqh8OhJ554QnPnzlWNGjVUtGhR1alTRytWrMhy/MqVK1W3bl2FhISoUqVKmjhxolfntmbNGrVq1UqRkZEqWrSomjRpos8//zzbMn733Xfq1auXnE6nYmJi9NBDDyklJcUt1hijGTNmqG7dugoLC1NUVJS6d++un376yS2uefPmqlWrljZs2KDGjRuraNGieuihhyRJhw8fVvfu3RUREaHixYvr/vvv17Zt2+RwOFzfbpo7d64cDkeWepakV199VUFBQTpy5EiO533hwgUNHz5clSpVUnBwsMqWLavHH39cp06dcotbu3atmjdvrhIlSigsLEzly5fXPffc43Yj+uabb6pOnToqVqyYIiIiVL16db3wwgu51vttt92mjh07um2rXbu2HA6Htm3b5tq2ZMkSORwO/ec//5H0v7bYuXOnunfvrqioKN14443q27ev3njjDUl/Xj+ZL0+jKay0/7Ue+3//93/q1auXYmJiFBISovLly+vBBx/UxYsXNWfOHPXo0UOS1KJFC1e5M9s5t+vk4MGDeuCBB1S6dGmFhISoRo0amjRpkjIyMlx5//zzz3I4HJo4caImT56sSpUqqVixYmrUqJG2bNli6TyTkpI0YMAA3XDDDQoODlalSpU0atQopaWlXXU+27dvV5cuXRQdHa3Q0FDdcsst+uCDD9xiMqfKWLVqlR566CGVKlVKRYsW1cWLF2WM0ZgxY1ShQgWFhoaqfv36Wr16tZo3b+76bDp79qyKFy+uAQMGZMn/559/VkBAgCZMmGCpDgAAgH3effdd1alTR6GhoYqOjlbXrl31/fffu8X89NNPuu+++xQXF6eQkBDFxMSoVatWrml3K1asqO+++07r16933T95mqrI2/v0bdu26S9/+YuKFi2qypUra9y4cW73WZJ0+vRpDRs2zO2eevDgwTp37pxbXObzzcyZM1WjRg2FhITovffekyRt3LhRjRo1UmhoqMqWLauXX35Z//znP93uZR9++GFFR0dn+8fgli1bqmbNmrmeu5X7Rsnzff0ff/zhOt/M9qtfv74WLlyYY96nT59WYGCg233Xb7/9piJFisjpdLrdUw4aNEilSpVyfdklp3vhvGz/az02MTFRrVq1ktPpVNGiRVWjRg2NHTtWkjw+s3i6Tlq1aqWIiAgVLVpUjRs31sqVK93yzrx/XrdunR577DGVLFlSJUqUULdu3XJ9NrycN/fpVvNZvHixGjVqpPDwcBUrVkzt2rXTN9984xbTt29fFStWTP/5z3/Utm1bRUREqFWrVpKkU6dOud4DxYoVU8eOHfXTTz/J4XC4phD78ssv5XA4sr0W33///SzPmQB8hAEAH/Djjz+aN954w0gyY8aMMZs3bzbfffedMcaY+fPnG0mmbdu2ZtmyZWbx4sWmXr16Jjg42Hz55ZeuNPr06WMqVKiQJe0RI0aYKz/uJJmKFSua22+/3XzwwQfm008/Nc2bNzeBgYHmv//9rytuzZo1JiAgwDRt2tQsWbLEfPjhh+a2224z5cuXz5JmdubOnWscDoe5++67zZIlS8zy5ctNp06dTEBAgFmzZk2WMlarVs288sorZvXq1Wby5MkmJCTE9OvXzy3N/v37m6CgIDN06FCTmJhoFixYYKpXr25iYmJMUlKSK65Zs2YmOjralCtXzkybNs2sW7fOrF+/3pw9e9bcdNNNJjo62rzxxhvms88+M08//bSpVKmSkWRmz55tjDHm4sWLJjY21tx///1u+V+6dMnExcWZHj165Fj3GRkZpl27diYwMNC8/PLLZtWqVWbixIkmPDzc3HLLLebChQvGGGMOHDhgQkNDTZs2bcyyZcvMF198YebPn28SEhJMcnKyMcaYhQsXGknmySefNKtWrTJr1qwxM2fONIMGDcq17p9//nlTrFgxk5qaaowxJikpyUgyYWFhZvTo0a64xx57zMTExGRpiwoVKpjnnnvOrF692ixbtsz8+OOPpnv37kaS2bx5s+uVeS7Zsdr+s2fPNpLMgQMHvD52165dplixYqZixYpm5syZ5vPPPzfz5s0zPXv2NKdPnzbHjx83Y8aMMZLMG2+84Sr38ePHjTE5XyfHjx83ZcuWNaVKlTIzZ840iYmJ5oknnjCSzGOPPebK/8CBA673U/v27c2yZcvMsmXLTO3atU1UVJQ5depUru109OhRU65cOVOhQgXz1ltvmTVr1pi//e1vJiQkxPTt2/eq8lm7dq0JDg42f/nLX8zixYtNYmKi6du3r9v1fXm9ly1b1jz66KPm3//+t/noo49MWlqaGT58uJFkHn30UZOYmGhmzZplypcvb8qUKWOaNWvmSuPpp5824eHhWc7zmWeeMaGhoea3337L9fwBAMDVy+4eKvO+p1evXmblypXm/fffN5UrVzZOp9Ps37/fFVetWjVz0003mblz55r169ebjz/+2AwdOtSsW7fOGGPMzp07TeXKlc0tt9ziun/auXNnruXx5j69RIkSpkqVKmbmzJlm9erVZuDAgUaSee+991xx586dM3Xr1jUlS5Y0kydPNmvWrDF///vfjdPpNC1btjQZGRmu2Mx7mvj4eLNgwQKzdu1as2fPHvPtt9+a0NBQEx8fbxYtWmQ++eQTc+edd5qKFSu61d23335rJJlZs2a5ndN3333nuo/MVKFCBdOnTx/Xz1bvG63c1w8YMMAULVrUTJ482axbt86sWLHCjBs3zkybNi3Xum/YsKFp27at6+dFixaZ0NBQ43A4zFdffeXaXqNGDdOzZ0+3tsjuXjgv2z+751arx/7zn/80DofDNG/e3CxYsMCsWbPGzJgxwwwcONAYYzw+s+R0nXzxxRcmKCjI1KtXzyxevNgsW7bMtG3b1jgcDrNo0SJX/pnvucqVK5snn3zSfPbZZ+af//yniYqKMi1atMi1fozx/j7dSj6jR482DofDPPTQQ2bFihVmyZIlplGjRiY8PNz1N4XMeg8KCjIVK1Y0Y8eONZ9//rn57LPPTHp6umnatKkJDQ0148aNM6tWrTKjRo0yVapUMZLMiBEjXGnccsstpkmTJlnO67bbbjO33Xabx/MHkP/o/ADgM9atW2ckmQ8//NC1LT093cTFxZnatWub9PR01/YzZ86Y0qVLm8aNG7u2edv5ERMTY06fPu3alpSUZIoUKWLGjh3r2tagQQMTFxdnzp8/79p2+vRpEx0d7bHz49y5cyY6Otp07tzZbXt6erqpU6eOuf3227OUcfz48W6xAwcONKGhoa4Hm82bNxtJZtKkSW5xhw4dMmFhYebZZ591bWvWrJmRZD7//HO32MxOpn//+99u2wcMGJDlpnPEiBEmODjYHDt2zLVt8eLFRpJZv369a9uVdZ+YmJjt+WQe+/bbbxtjjPnoo4+MJLNr1y6TkyeeeMIUL148x/05WbNmjZFkNmzYYIwxZt68eSYiIsIMHDjQ7Ya5SpUqpnfv3m7nLMm88sorWdJ8/PHHLXV6GeNd+1/54O7NsS1btjTFixd3dWZk58MPPzSSXA/zl8vpOnn++eeNJLN161a37Y899phxOBxm3759xpj/dUrUrl3bpKWlueK+/vprI8ksXLgwx3IZ8+d1V6xYMfPLL7+4bZ84caKR5Hpg8Saf6tWrm1tuucVcunTJLc1OnTqZMmXKuD5LMuv9wQcfdIs7efKkCQkJMffee6/b9sz33+WdH//9739NkSJFzJQpU1zbzp8/b0qUKJGl4xIAANjrynuo5ORkExYWZu688063uIMHD5qQkBDXPd9vv/1mJJmpU6fmmn7NmjXdfu/n5mru06+8z7r55ptNu3btXD+PHTvWFClSxGzbts0tLvMe+tNPP3Vtk2ScTqc5efKkW2yPHj1MeHi4OXHihGtbenq6ufnmm7N0HDVr1szUrVvX7fjHHnvMREZGmjNnzri2Xdn5YfW+0cp9fa1atczdd9+da0x2XnrpJRMWFub6I/8jjzxi2rdvb+Lj482oUaOMMcb8+uuvbs8imeec3b2wMXnX/lc+O1k99syZMyYyMtI0bdrUrePrSrk9s+R0nTRs2NCULl3arZ3T0tJMrVq1zA033ODKL/M9l9nZkmn8+PFGkjl69GiO5TLG+/t0T/kcPHjQBAYGmieffNIt7syZMyY2Ntato6tPnz5Gknn33XfdYleuXGkkmTfffNNt+9ixY7N0fmSW65tvvnFty3weubzjEoDvYNorAD5t3759OnLkiBISElSkyP8+sooVK6Z77rlHW7Zsuep5Olu0aKGIiAjXzzExMSpdurR++eUXSdK5c+e0bds2devWTaGhoa64iIgIde7c2WP6mzZt0smTJ9WnTx+lpaW5XhkZGWrfvr22bduWZbh6ly5d3H6Oj4/XhQsXdPz4cUnSihUr5HA49MADD7ilGRsbqzp16uiLL75wOz4qKkotW7Z027Z+/XpFRESoffv2btt79eqV5Rwee+wxSdKsWbNc26ZPn67atWvrjjvuyPHc165dK+nPocWX69Gjh8LDw11TN9WtW1fBwcF69NFH9d5772U7rPv222/XqVOn1KtXL/3rX//Sb7/9lmO+l2vSpIlCQ0O1Zs0aSXJNWdS+fXtt2rRJf/zxhw4dOqQffvhBrVu3znL8PffcYymfnFxN+3t77B9//KH169erZ8+eKlWq1FWXNbvrZO3atbr55pt1++23u23v27evjDGuNs7UsWNHBQQEuH6Oj4+XJNf7KScrVqxQixYtFBcX53auHTp0kPTn9epNPj/++KP+7//+T/fff78kuaV555136ujRo9q3b59bmle29ZYtW3Tx4kX17NnTbXvDhg2zTHdQuXJlderUSTNmzHBNn7BgwQL9/vvveuKJJ3I9dwAAYK/Nmzfr/PnzWe5By5Urp5YtW7ruQaOjo3XjjTdqwoQJmjx5sr755pss0zN5y9v79NjY2Cz3WfHx8W73TitWrFCtWrVUt25dtzTbtWsnh8ORJc2WLVsqKirKbdv69evVsmVLlSxZ0rWtSJEiWe5zJOmpp57Srl279NVXX0n6czqpuXPnqk+fPipWrFiO5271vtHKff3tt9+uf//733r++ef1xRdfWF6PolWrVjp//rw2bdok6c/pY9u0aaPWrVtr9erVrm2Sstz7Z3cv7C1v2/9qjt20aZNOnz6tgQMHZpnW2RtXXifnzp3T1q1b1b17d7d2DggIUEJCgg4fPpzl/jm751Yp93v/q7lP95TPZ599prS0ND344INu6YWGhqpZs2bZ1vuV9/6ZzxtXvieyez7u1auXSpcu7ZpaTJKmTZumUqVK6d57783x3AFcP3R+APBpv//+uySpTJkyWfbFxcUpIyNDycnJV5V2iRIlsmwLCQlx3WAnJycrIyNDsbGxWeKy23alY8eOSZK6d++uoKAgt9frr78uY4xOnjyZa5lCQkIkyVWmY8eOyRijmJiYLGlu2bIlywNEdvX2+++/KyYmJsv2nLbde++9euutt5Senq7du3fryy+/9PhH3d9//12BgYFZ/iDvcDgUGxvratcbb7xRa9asUenSpfX444/rxhtv1I033qi///3vrmMSEhL07rvv6pdfftE999yj0qVLq0GDBq6HmJyEhoaqSZMmroeczz//XG3atFHz5s2Vnp6uL7/80pVGdp0f2dWdN66m/b09Njk5Wenp6brhhhuuqaw5XSc5ve8y91/O07Wbk2PHjmn58uVZzjNzXukrr2kr7xFJGjZsWJY0Bw4cmG2aV55n5rlZfZ889dRT+uGHH1zX0xtvvKFGjRrp1ltvzfXcAQCAvTw9O2Tudzgc+vzzz9WuXTuNHz9et956q0qVKqVBgwbpzJkzV5W3t/fpnp5FMtPcvXt3lvQiIiJkjLH93v+uu+5SxYoVXX/YnTNnjs6dO6fHH38813O3et9o5b7+H//4h5577jktW7ZMLVq0UHR0tO6++2798MMPuZYhc72ONWvW6Mcff9TPP//s6vzYunWrzp49qzVr1qhy5cqqVKmS27HXet8ved/+V3PsiRMnJMn2e//k5GQZY/L83v9q7tOt3vvfdtttWdJcvHhxlvSKFi2qyMhIt22Zz67R0dFu27N7j4SEhGjAgAFasGCBTp06pRMnTuiDDz7QI4884iobAN8SeL0LAAC5ybzZOXr0aJZ9R44cUZEiRVzfWgkNDdXFixezxFkdKXClqKgoORwOJSUlZdmX3bYrZX67atq0aWrYsGG2MdndUHlK0+Fw6Msvv8z25urKbdl9I6hEiRL6+uuvs2zP6ZyeeuopzZ07V//617+UmJjoWiA9NyVKlFBaWppOnDjh1gFijFFSUpJuu+0217a//OUv+stf/qL09HRt375d06ZN0+DBgxUTE6P77rtPktSvXz/169dP586d04YNGzRixAh16tRJ+/fvV4UKFXIsR6tWrfTKK6/o66+/1uHDh9WmTRtFRETotttu0+rVq3XkyBFVrVpV5cqVy3LstXybSrq29rd6bHp6ugICAnT48OFrKmtO10lO77vLy3itSpYsqfj4eI0ePTrb/ZkPXN6kJ0nDhw9Xt27dso2pVq2a289Xnn/m507mw9TlkpKSsoz+aNmypWrVqqXp06erWLFi2rlzp+bNm+dVuQEAwLXz9Oxw+f1LhQoV9M4770iS9u/frw8++EAjR45UamqqZs6c6XXe3t6nW00zLCxM7777bo77L5fTPV1O9zRXKlKkiB5//HG98MILmjRpkmbMmKFWrVpluXfKLg+r942e7uvDw8M1atQojRo1SseOHXONAuncubP+7//+L8cyBAcHq2nTplqzZo1uuOEGxcbGqnbt2qpcubIk6YsvvtDnn3+uTp06ZTn2Wu/7M8/xatvf6rGZz1V23/tHRUWpSJEieX7vfzX36VbT/Oijj3J9LsyU03skLS1NJ0+edOsAyen5+LHHHtO4ceP07rvv6sKFC0pLS9Nf//pXr8oNIP/Q+QHAp1WrVk1ly5bVggULNGzYMNfNyrlz5/Txxx+rUaNGKlq0qCSpYsWKOn78uI4dO+b6o3Jqaqo+++yzq8o7PDxct99+u5YsWaIJEya4pr46c+aMli9f7vH4Jk2aqHjx4tq7d69t09906tRJ48aN06+//prtUHUrmjVrpg8++ED//ve/XVMLSdKiRYuyja9Xr54aN26s119/XXv27NGjjz6q8PDwXPNo1aqVxo8fr3nz5unpp592bf/444917tw5tWrVKssxAQEBatCggapXr6758+dr586drs6PTOHh4erQoYNSU1N1991367vvvsv1Jrd169Z64YUX9PLLL+uGG25Q9erVXds/+eQTJSUleTW91eXfNAoLC8s19lra35tjmzVrpg8//FCjR4/O8aHE6iiMy7Vq1Upjx47Vzp073UYwvP/++3I4HGrRooXltHLTqVMnffrpp7rxxhuzTNNwNapVq6YqVaro22+/1ZgxY64qjQYNGigkJESLFy92ezDbsmWLfvnllyydH5I0aNAg/fWvf1VKSopiYmLUo0ePqz0FAABwlRo1aqSwsDDNmzfP7Xfx4cOHtXbtWnXv3j3b46pWraqXXnpJH3/8sXbu3OnafuVIjNzYcZ+eXZpjxoxRiRIlsoxWsKpZs2b69NNP9dtvv7nuFTMyMvThhx9mG//II49o5MiRuv/++7Vv3z69/vrrHvO4mvtGK/f1MTEx6tu3r7799ltNnTpVf/zxh+vZLzutW7fW8OHDFRER4RrZHR4eroYNG2ratGk6cuRItiO+c5Jf7W/12MaNG8vpdGrmzJm67777cuy08eaZRfqzjho0aKAlS5Zo4sSJrmMyMjI0b9483XDDDapatapX55QdO+7Tr9SuXTsFBgbqv//971VPW9ysWTONHz9eixcvdk37LOX8fFymTBn16NFDM2bMUGpqqjp37qzy5ctfVd4A8h6dHwB8WpEiRTR+/Hjdf//96tSpkwYMGKCLFy9qwoQJOnXqlMaNG+eKvffee/XKK6/ovvvu0zPPPKMLFy7oH//4h9LT0686/7/97W9q37692rRpo6FDhyo9PV2vv/66wsPDc5yyKFOxYsU0bdo09enTRydPnlT37t1VunRpnThxQt9++61OnDihN99806vyNGnSRI8++qj69eun7du364477lB4eLiOHj2qjRs3qnbt2m43bNnp06ePpkyZogceeECvvfaabrrpJv373/92dRJdvrZKpqeeekr33nuvHA6Ha0hybtq0aaN27drpueee0+nTp9WkSRPt3r1bI0aM0C233KKEhARJ0syZM7V27Vp17NhR5cuX14ULF1zfbMt8MOnfv7/CwsLUpEkTlSlTRklJSRo7dqycTqfbCJLs1KtXT1FRUVq1apX69evn2t66dWv97W9/c8vHitq1a0uSXn/9dXXo0EEBAQGKj49XcHBwlthraX9vjp08ebKaNm2qBg0a6Pnnn9dNN92kY8eO6ZNPPtFbb72liIgI1apVS5L09ttvKyIiQqGhoapUqVK20y1kevrpp/X++++rY8eOevXVV1WhQgWtXLlSM2bM0GOPPWbLA5Akvfrqq1q9erUaN26sQYMGqVq1arpw4YJ+/vlnffrpp5o5c6bXQ/vfeustdejQQe3atVPfvn1VtmxZnTx5Ut9//7127tyZ48N+pujoaA0ZMkRjx45VVFSUunbtqsOHD2vUqFEqU6ZMtu+RBx54QMOHD9eGDRv00ksvZXtNAACAvFW8eHG9/PLLeuGFF/Tggw+qV69e+v333zVq1CiFhoZqxIgRkqTdu3friSeeUI8ePVSlShUFBwdr7dq12r17t55//nlXerVr19aiRYu0ePFiVa5cWaGhoa77wSvZcZ9+pcGDB+vjjz/WHXfcoaefflrx8fHKyMjQwYMHtWrVKg0dOlQNGjTINY0XX3xRy5cvV6tWrfTiiy8qLCxMM2fOdK09d+V9TfHixfXggw/qzTffVIUKFSytdWj1vtHKfX2DBg3UqVMnxcfHKyoqSt9//73mzp3r9qW3nLRq1Urp6en6/PPP9d5777m2t27dWiNGjJDD4fBqbY/8an+rxxYrVkyTJk3SI488otatW6t///6KiYnRjz/+qG+//VbTp093lVuy9sySaezYsWrTpo1atGihYcOGKTg4WDNmzNCePXu0cOFCW0bHSNd+n36lihUr6tVXX9WLL76on376Se3bt1dUVJSOHTumr7/+2jWSKDft27dXkyZNNHToUJ0+fVr16tXT5s2b9f7770vK+fk48703e/Zsr8oMIJ9dl2XWASAb69atM5LMhx9+mGXfsmXLTIMGDUxoaKgJDw83rVq1Ml999VWWuE8//dTUrVvXhIWFmcqVK5vp06ebESNGmCs/7iSZxx9/PMvxFSpUMH369HHb9sknn5j4+HgTHBxsypcvb8aNG5dtmjlZv3696dixo4mOjjZBQUGmbNmypmPHjm7nmZneiRMn3I6dPXu2kWQOHDjgtv3dd981DRo0MOHh4SYsLMzceOON5sEHHzTbt293xTRr1szUrFkz2zIdPHjQdOvWzRQrVsxERESYe+65x3z66adGkvnXv/6VJf7ixYsmJCTEtG/fPtv0+vTpYypUqOC27fz58+a5554zFSpUMEFBQaZMmTLmscceM8nJya6YzZs3m65du5oKFSqYkJAQU6JECdOsWTPzySefuGLee+8906JFCxMTE2OCg4NNXFyc6dmzp9m9e3e2ZblS165djSQzf/5817bU1FQTHh5uihQp4lYeY3Jui8x6eOSRR0ypUqWMw+HItm2uZKX9c2pnK8caY8zevXtNjx49TIkSJVzXad++fc2FCxdcMVOnTjWVKlUyAQEBRpKZPXu2MSb36+SXX34xvXv3NiVKlDBBQUGmWrVqZsKECSY9Pd0Vc+DAASPJTJgwIcvxksyIESNyrR9jjDlx4oQZNGiQqVSpkgkKCjLR0dGmXr165sUXXzRnz569qny+/fZb07NnT1O6dGkTFBRkYmNjTcuWLc3MmTNdMZn1vm3btixpZmRkmNdee83ccMMNJjg42MTHx5sVK1aYOnXqmK5du2Z7Hn379jWBgYHm8OHDHs8ZAABcu5zuof75z3+67t+dTqe56667zHfffefaf+zYMdO3b19TvXp1Ex4ebooVK2bi4+PNlClTTFpamivu559/Nm3btjURERFGUpb73excy316dvfUZ8+eNS+99JKpVq2a63xq165tnn76aZOUlOSKy+n5xhhjvvzyS9OgQQMTEhJiYmNjzTPPPGNef/11I8mcOnUqS/wXX3xhJJlx48Zlm152z0xW7hut3Nc///zzpn79+iYqKsqEhISYypUrm6efftr89ttv2ZblchkZGaZkyZJGkvn1119d27/66isjydx6661ZjsntXjiv2j+7drZ6rDF/PvM2a9bMhIeHm6JFi5qbb77ZvP766679uT2zeLpOWrZs6cq/YcOGZvny5W4xOd0/Zz7Lr1u3zmMdXct9ek75LFu2zLRo0cJERkaakJAQU6FCBdO9e3ezZs0aV0yfPn1MeHh4tmU6efKk6devnylevLgpWrSoadOmjdmyZYuRZP7+979ne0zFihVNjRo1PJ4vgOvLYYwxed/FAgDwdWPGjNFLL72kgwcPZvmm/fLly9WlSxetXLlSd95553UqIXB9HThwQNWrV9eIESP0wgsvuO1LTU1VxYoV1bRpU33wwQfXqYQAAADWtG3bVj///LP279+fZd/QoUP15ptv6tChQ7mOFAYKswULFuj+++/XV199pcaNG7vt2717t+rUqaM33njD0swIAK4fpr0CAD+UOSS6evXqunTpktauXat//OMfeuCBB9w6Pvbu3atffvlFQ4cOVd26dd3WCAEKs2+//VYLFy5U48aNFRkZqX379mn8+PGKjIzUww8/7Io7ceKE9u3bp9mzZ+vYsWNuU2UAAAD4giFDhuiWW25RuXLldPLkSc2fP1+rV692LfieacuWLdq/f79mzJihAQMG0PEBv7Fw4UL9+uuvql27tooUKaItW7ZowoQJuuOOO9w6Pv773//ql19+0QsvvKAyZcqob9++16/QACyh8wMA/FDRokU1ZcoU/fzzz7p48aLKly+v5557Ti+99JJb3MCBA/XVV1/p1ltv1XvvvWfbXK+ArwsPD9f27dv1zjvv6NSpU3I6nWrevLlGjx6tmJgYV9zKlSvVr18/lSlTRjNmzHBb5BMAAMAXpKen65VXXlFSUpIcDoduvvlmzZ07Vw888IBbXOa6Gp06ddJrr712nUoL5L+IiAgtWrRIr732ms6dO+fq2LjyffC3v/1Nc+fOVY0aNfThhx96XIcGwPXHtFcAAAAAAAAAAKBQKXK9CwAAAAAAAAAAAGAnOj8AAAAAAAAAAEChwpof10lGRoaOHDmiiIgI5tAHAABAoWeM0ZkzZxQXF6ciRfgOFjzjmQkAABR0vnYPfOHCBaWmpuZJ2sHBwQoNDc2TtK8WnR/XyZEjR1SuXLnrXQwAAAAgXx06dEg33HDD9S4GCgCemQAAQGHhC/fAFy5cUKmwMJ3No/RjY2N14MABn+oAofPjOomIiJD054UfGRl5nUvje5zOsbakk5Iy3JZ0kDMrbUU74GpxfQFA4XH69GmVK1fOdR8MeJLXz0zePnNwzwEAALzlS/fAqampOivpaUkhNqd9UdKUpCSlpqbS+QG5hm1HRkbS+ZEte94k1G1+8NxWtAOuHtcXABQ2TF8Eq/L+mcm7Zw7uOQAAwNXypXvgcNn1l9f/8dVOhus/0RgAAAAAAAAAAICNfLVTBgAAAAAAAAAA2Cjo/7/slG5zenZh5AcAAAAAAAAAAChUGPnh4xyOUR5jjBnhM+lYScMKu84pP9lVxwVNYTwnO/nrdWEX6iZnXFsFB23lf2hzAAAAAL4qUPZ3CvhqJwMjPwAAAAAAAAAAQKHiq50yAAAAAAAAAADARoGyf82PNJvTswudHwAAAAAAAAAA+AF/mvbKV8sFAAAAAECeYe0dAACAwo3ODwAAAAAAAAAA/ECQmPYK+cTpHCspNMf9Vr6N5HCMsrFEubPj21FWymslH1/7ppavlQe+gesCeYVrq+CgrfwPbQ4AAAAA1x+dHwAAAAAAAAAA+AF/WvOjyPUuAAAAAAAAAAAAgJ18tVMGAAAAAAAAAADYKFD2r/lxyeb07MLIDwAAAAAAAAAAUKgw8gMAAAAAAAAAAD/gT2t++Gq58P85oj3HGDMi7wtio4JWXuBaOByjPMbk13vCl8oCAAAAAACA/Bck+6e9sjs9u9D5AQAAAADwWU7nWEmhlmL5IgcAALgaVr4wejnuOQoGOj8AAAAAAAAAAPAD/jTygwXPAQAAAAAAAABAocLIDwAAAAAAAAAA/IA/LXjOyA8AAAAAAAAAAFCo+GqnjP8oPlxyROa8P9nzYjsOR1cLGS31GMFCPTmzsugR9Yfs+NJ14UtlAYD8xu9yAAAAAPizQ8DuNTp8tZOBkR8AAAAAAAAAAKBQ8dVOGQAAAAAAAAAAYCPW/LgONmzYoM6dOysuLk4Oh0PLli3LMXbAgAFyOByaOnWq2/aLFy/qySefVMmSJRUeHq4uXbro8OHDbjHJyclKSEiQ0+mU0+lUQkKCTp065RZz8OBBde7cWeHh4SpZsqQGDRqk1NRUt5j//Oc/atasmcLCwlS2bFm9+uqrMsZcSxUAAAAAQI54ZgIAAMC1Csqjly/ymc6Pc+fOqU6dOpo+fXquccuWLdPWrVsVFxeXZd/gwYO1dOlSLVq0SBs3btTZs2fVqVMnpaenu2J69+6tXbt2KTExUYmJidq1a5cSEhJc+9PT09WxY0edO3dOGzdu1KJFi/Txxx9r6NChrpjTp0+rTZs2iouL07Zt2zRt2jRNnDhRkydPtqEmAAAAACArnpkAAAAA63xmREqHDh3UoUOHXGN+/fVXPfHEE/rss8/UsWNHt30pKSl65513NHfuXLVu3VqSNG/ePJUrV05r1qxRu3bt9P333ysxMVFbtmxRgwYNJEmzZs1So0aNtG/fPlWrVk2rVq3S3r17dejQIdfDwqRJk9S3b1+NHj1akZGRmj9/vi5cuKA5c+YoJCREtWrV0v79+zV58mQNGTJEDocjD2oIAAAAgD/z32emzpKKeRFfuDkco7yKN2ZEHpUEAIDCw59+X/rKtFcbNmzQhAkTtGPHDh09elRLly7V3XffnW3sgAED9Pbbb2vKlCkaPHhwnpbrusjIyFBCQoKeeeYZ1axZM8v+HTt26NKlS2rbtq1rW1xcnGrVqqVNmzapXbt22rx5s5xOp+smXpIaNmwop9OpTZs2qVq1atq8ebNq1arl9i2pdu3a6eLFi9qxY4datGihzZs3q1mzZgoJCXGLGT58uH7++WdVqlQpS/kuXryoixcvun4+ffr0n/9pLQ/jgiy88RI9hyjZQgxyVBA/AD09FBXEcwIA4Grxew/+oNA+MwEAAKDQyRzV3K9fP91zzz05xuU2qtkTn5n2ypPXX39dgYGBGjRoULb7k5KSFBwcrKioKLftMTExSkpKcsWULl06y7GlS5d2i4mJiXHbHxUVpeDg4FxjMn/OjLnS2LFjXXPmOp1OlStXztMpAwAAAIBlPDMBAADAk0DZv97H1Yyw6NChg1577TV169Ytx5jMUc3z589XUJD3K4sUiM6PHTt26O9//7vmzJnj9ZRSxhi3Y7I73o6YzIX7cirf8OHDlZKS4nodOnTIq/MAAAAAgJzwzAQAAIDr7fTp026vy0f1esvTqGYrCkTnx5dffqnjx4+rfPnyCgwMVGBgoH755RcNHTpUFStWlCTFxsYqNTVVycnu8zsdP37c9Q2j2NhYHTt2LEv6J06ccIu58ptIycnJunTpUq4xx48fl6Qs327KFBISosjISLcXAAAAANiBZyYAAABYEZhHL0kqV66c20jesWPHXnU5PY1qtqJAdH4kJCRo9+7d2rVrl+sVFxenZ555Rp999pkkqV69egoKCtLq1atdxx09elR79uxR48aNJUmNGjVSSkqKvv76a1fM1q1blZKS4hazZ88eHT161BWzatUqhYSEqF69eq6YDRs2KDU11S0mLi7O9WABAAAAAPmFZyYAAABcb4cOHXIbyTt8+PCrSudaRjVfzmcWPD979qx+/PFH188HDhzQrl27FB0drfLly6tEiRJu8UFBQYqNjVW1atUkSU6nUw8//LCGDh2qEiVKKDo6WsOGDVPt2rXVunVrSVKNGjXUvn179e/fX2+99ZYk6dFHH1WnTp1c6bRt21Y333yzEhISNGHCBJ08eVLDhg1T//79Xd886t27t0aNGqW+ffvqhRde0A8//KAxY8bolVdeuabGAAAAAICc8MwEAACAa5W5TofdaUqybfTu5aOaM6Wnp2vo0KGaOnWqfv75Z0vp+Eznx/bt29WiRQvXz0OGDJEk9enTR3PmzLGUxpQpUxQYGKiePXvq/PnzatWqlebMmaOAgABXzPz58zVo0CC1bdtWktSlSxdNnz7dtT8gIEArV67UwIED1aRJE4WFhal3796aOHGiK8bpdGr16tV6/PHHVb9+fUVFRWnIkCGuMnvlo7GSQnPcbcwI79PMVrzHCIdjlMcYT+WxIw2r7MrL19KxS37mhcLD165jAADwP377zAQAAAC/kpCQ4PpyTqZ27dopISFB/fr1s5yOz3R+NG/e3LUAnhXZ9e6EhoZq2rRpmjZtWo7HRUdHa968ebmmXb58ea1YsSLXmNq1a2vDhg2WygoAAAAA14pnJgAAAFyry9fosDNNb13rqOa8KhcAAAAAAPkiJaWWTyx+bmWEbKa8HCmbl2l7c44SI4IBACiIAmX/tFdX08lgx6jmvCgXAAAAAAAAAADAVbFjVLMndH4AAAAAAAAAAOAH8nLBc19D58d1lpIy/JqHcHs7NDkndgxZzs+Fwe0aYu1r6SDvORy7PcYYE58PJfE9XMe4WnZ9tqPgoM0BAAAAAL6Mzg8AAAAAAAAAAPyAryx4nh+KXO8CAAAAAAAAAAAA2MlXO2UAAAAAAAAAAICNAgOkIIfNaRpJ6famaQdGfgAAAAAAAAAAgEKFkR8AAAAAAAAAAPiBwEAp0E9GftD5cZ05nWMlhV5jKl09RhgT7zHG4dh9jeWwlo8xIyyUZZQt6QDZsXKdAvAOn8n+hzYHAAAAgIInKA+mvQoy9qZnFzo/AAAAAAA+y+ncI6mYpdi8/JKLP3T6+sM5AgWNlS+HXo73MQD8D50fAAAAAAAAAAD4gTyb9soHseA5AAAAAAAAAAAoVBj5AQAAAAAAAACAHwgKkIJsHhIRlGFvenZh5AcAAAAAAAAAAChUGPlxvRUfLjkic9xtTuZfUfJycUBvsUAXAAAAAAAAANgsQPYPibB5DRG7MPIDAAAAAAAAAAAUKoz8AAAAAAAAAADAHwTK/iERPrrmB50fAAAAAAAAAAD4Azo/AAAAAADwBcslhVqM9Z11DAHADqyJWng4HKO8iqftgWtH5wcAAAAAAAAAAP6AkR/IN60lBeV9Nt72Ll8tK73SVsqSn73bvlYeAAAAAAAAAMC1ofMDAAAAAAAAAAB/UERSwPUuRP6we4ALAAAAAAAAAADAdcXIDwAAAAAAAAAA/EGg7B/54bA5PZsw8gMAAAAAAAAAABQqjPwAAAAAAAAAAMAf+NHIDzo/rrePxkoKzXG3Y2FXj0kYE29LUYwZ4THG4djtYf8oW/Kxwq68rJ13/p0XkFe4jgEAAAAAAPxcgPxmwXM6PwAAAAAAPislZbgiIyOvdzHylJUvqWTiyyoAUDDx+Q3kPzo/AAAAAAAAAADwB3407RULngMAAAAAAAAAgEKFkR8AAAAAAAAAAPiDAPlNrwAjPwAAAAAAAAAAQKHiJ308Pqz4cMmRy+J9ybs9JmFlcTz7FlVaalM6dujqMcKuuimMi1Ll73UDX0B7AgAAAAAA+LkA2b/mh7E5PZsw8gMAAAAAAAAAABQqjPwAAAAAAAAAAMAfBMpvegX85DQBAAAAAAAAAPBzftT5wbRXAAAAAAAAAACgUPGTPh7flfKLFJnLeudSvIVUrMTYw7cWTPa8+Lpvlde3Fhm3Kx+HY7eFvPLvGrUiP9vBl9rcl8oCIG/wPgeAvGPlMzaTt5+1fDYDAIB8w8gPAAAAAAAAAACAgslP+ngAAAAAAAAAAPBzRSQF2Jxmhs3p2YSRHwAAAAAAAAAAoFBh5AcAAAAAAAAAAP4gL9b8MDanZxNGfgAAAAAAAAAAgEKFkR/XmdO5R1KxHPcbE59/hbHA4did635fK6+vMWbE9S6C7Qpim+dnO+RXXg7HKI8xhfH6A+CO9zkAAAAAIFd+NPKDzg8AAAAAAAAAAPxBgFjwHAAAAAAAAAAAoCBi5AcAAAAAwGc5nWMlhVqKzcvp/5haEEBBYGVK5Ex8rgF+yo+mvWLkBwAAAAAAAAAAKFQY+QEAAAAAAAAAgD8IkP29Aj665gedHz7OynBFu4YpOhy7LUQt9bA/3kI+9pwTwzN9Q35eo3YpaGW2q7wF7bwBuOM9nDPqBgAAAABwJZ+Z9mrDhg3q3Lmz4uLi5HA4tGzZMte+S5cu6bnnnlPt2rUVHh6uuLg4Pfjggzpy5IhbGhcvXtSTTz6pkiVLKjw8XF26dNHhw4fdYpKTk5WQkCCn0ymn06mEhASdOnXKLebgwYPq3LmzwsPDVbJkSQ0aNEipqaluMf/5z3/UrFkzhYWFqWzZsnr11VdljI9ObgYAAACgwOOZCQAAANcsII9ePshnOj/OnTunOnXqaPr06Vn2/fHHH9q5c6defvll7dy5U0uWLNH+/fvVpUsXt7jBgwdr6dKlWrRokTZu3KizZ8+qU6dOSk9Pd8X07t1bu3btUmJiohITE7Vr1y4lJCS49qenp6tjx446d+6cNm7cqEWLFunjjz/W0KFDXTGnT59WmzZtFBcXp23btmnatGmaOHGiJk+enAc1AwAAAAA8MwEAAADe8Jlprzp06KAOHTpku8/pdGr16tVu26ZNm6bbb79dBw8eVPny5ZWSkqJ33nlHc+fOVevWrSVJ8+bNU7ly5bRmzRq1a9dO33//vRITE7VlyxY1aNBAkjRr1iw1atRI+/btU7Vq1bRq1Srt3btXhw4dUlxcnCRp0qRJ6tu3r0aPHq3IyEjNnz9fFy5c0Jw5cxQSEqJatWpp//79mjx5soYMGSKHw5GHNQUAAADAH/HMBAAAgGsWKL9Z88NnRn54KyUlRQ6HQ8WLF5ck7dixQ5cuXVLbtm1dMXFxcapVq5Y2bdokSdq8ebOcTqfrJl6SGjZsKKfT6RZTq1Yt1028JLVr104XL17Ujh07XDHNmjVTSEiIW8yRI0f0888/Z1veixcv6vTp024vAAAAAMgrPDMBAAAgi8A8evmgAtn5ceHCBT3//PPq3bu3IiMjJUlJSUkKDg5WVFSUW2xMTIySkpJcMaVLl86SXunSpd1iYmJi3PZHRUUpODg415jMnzNjrjR27FjXnLlOp1PlypXz9rQBAAAAwBKemQAAAODvfLRPJmeXLl3Sfffdp4yMDM2YMcNjvDHGbUh1dsOr7YjJXLgvp+Hbw4cP15AhQ1w/nz59+v/fzC+XFJpL+UfkuO9/ZRnlMcZKOtJSm9K59jTsOyfPHI7dFvKKtyWvwsjX2tOK/MzLDnaVt6Cdt+R71w5wPXGt54y6AdwVvmcmAAAA2MaPpr0qUJ0fly5dUs+ePXXgwAGtXbvW9Q0mSYqNjVVqaqqSk5Pdvsl0/PhxNW7c2BVz7NixLOmeOHHC9S2k2NhYbd261W1/cnKyLl265BZz5beVjh8/LklZvt2UKSQkxG3INwAAAADYjWemvGPlSxmZCmqnrDfnKBXc8wQKM96XAAqKDRs2aMKECdqxY4eOHj2qpUuX6u6775b05z3tSy+9pE8//VQ//fSTnE6nWrdurXHjxrlNvepJgZn2KvMm/ocfftCaNWtUokQJt/316tVTUFCQ2yJ/R48e1Z49e1w38o0aNVJKSoq+/vprV8zWrVuVkpLiFrNnzx4dPXrUFbNq1SqFhISoXr16rpgNGzYoNTXVLSYuLk4VK1a0/dwBAAAAwBOemQAAAOBREUkBNr+uopfh3LlzqlOnjqZPn55l3x9//KGdO3fq5Zdf1s6dO7VkyRLt379fXbp08SoPnxn5cfbsWf3444+unw8cOKBdu3YpOjpacXFx6t69u3bu3KkVK1YoPT3d9S2i6OhoBQcHy+l06uGHH9bQoUNVokQJRUdHa9iwYapdu7Zat24tSapRo4bat2+v/v3766233pIkPfroo+rUqZOqVasmSWrbtq1uvvlmJSQkaMKECTp58qSGDRum/v37u7411bt3b40aNUp9+/bVCy+8oB9++EFjxozRK6+8kuMQbgAAAAC4FjwzAQAAoLDo0KGDOnTokO0+p9Pp9oUdSZo2bZpuv/12HTx4UOXLl7eUh890fmzfvl0tWrRw/Zw512ufPn00cuRIffLJJ5KkunXruh23bt06NW/eXJI0ZcoUBQYGqmfPnjp//rxatWqlOXPmKCAgwBU/f/58DRo0SG3btpUkdenSxa13KSAgQCtXrtTAgQPVpEkThYWFqXfv3po4caIrJrPyH3/8cdWvX19RUVEaMmSI2/y0AAAAAGAnnpkAAABwzfJizY/0P/85ffq022Y7pzVNSUmRw+FQ8eLFLR/jMJmrziFfnT59Wk6nU9Lz8pUFz31pYWEWPC9cfOnaQsHCtQMAhUfm/W9KSorbOhRATqw+M10uL+8LWPMjq4J6ngAA5Bdfugd2leUJKdLmZdZOX5ScWWev0ogRIzRy5EiPxzscDrc1P6504cIFNW3aVNWrV9e8efMsl8tnRn74r86SiuW4176ODc9/4Nf8wtexYUVh7djwVM/52SHGQxGuFtcO8D++9vsTAAAAAFAA5eHIj0OHDrl18tgx6uPSpUu67777lJGRoRkzZnh1LJ0fAAAAAAAAAAD4g8xFyu1OU1JkZKStI1wuXbqknj176sCBA1q7dq3XadP5AQAAAAAAAAAAfEZmx8cPP/ygdevWqUSJEl6nQecHAAAAAAAAAAD+IA+nvfLG2bNn9eOPP7p+PnDggHbt2qXo6GjFxcWpe/fu2rlzp1asWKH09HQlJSVJkqKjoxUcHGwpDzo/AAAAAAB+h8W9s/L2HP1hEfi8xDUI/A+fJ4D/2b59u1q0aOH6eciQIZKkPn36aOTIkfrkk08kSXXr1nU7bt26dWrevLmlPOj8AAAAAAAAAADAHwTI/l6BNO8Pad68uYwxOe7PbZ9VdH5cb7NqSUVzWajlfs9JWOkdt9Ir7nDs9pxZ73jPMTaUJT/ZVX++xo4yW7tuCmf9FUb+3Fb+fO4oPLhGAQAAAACwjs4PAAAAAAAAAAD8QV6s+eGjvQxFrncBAAAAAAAAAAAA7OSjfTIAAAAAAAAAAMBWAf//ZXeaPoiRHwAAAAAAAAAAoFBh5AcAAAAAAAAAAP7Aj9b88NFiwaVXvMcQs8BzjBXG2JOOL3E4RnmMMWaEhXR2W0jHnvqzUmapq8eI/GpPK/VnhbXz9sxae9pzXeQXu8rrS+eU3/z53AEAAAAAAFz8qPODaa8AAAAAAAAAAECh4qN9MgAAAAAASCkpwxUZGXm9i4FsMLr22lB/wP/wfgDyURHZv0C5jw6x8NFiAQAAAAAAAAAAXB1GfgAAAAAAAAAA4A/8aM0PHy2WH/lMUlAu+xd6XujYsdBKRp4XyLYkKvdFtM1Jz0nk52LT9qWTf4vB++tQz/w8b19b5N5zPv55TcA/5efviIKGugEAAAAAwDo6PwAAAAAAAAAA8Ad+NPKDNT8AAAAAAAAAAECh4qN9MgAAAAAAAAAAwFYB//9ld5o+iM4PAAAAAAAAAAD8AdNeAQAAAAAAAAAAFEw+2ifjRz4aKyk0x93GjPCYhMMxymOMMfH2pHPSczqey+L5nJD3rLS3FXa1p7XrOP+uHSvvGQD243dEzqgbAP7K6cz9melqefu56nDs9iLtvLuX9PY+nt8fKEi4vv2XN21Pu2fFewdeCZD9vQI+Ou0VIz8AAAAAAAAAAEChwsgPAAAAAAAAAAD8AWt+AAAAAAAAAAAAFEw+2icDAAAAAAAAAABsFSD71+hgzQ8AAAAAAAAAAIC8x8iP623WcKloZI67HY7dFhLpaktRjBlhSzp2cDhGeYzxpfJK+VtmO/LypbJYjSmsPNWhP9cN8l5B/LwFrifeMwAAAAAKND9a88NHiwUAAAAAAAAAAGzlR50fTHsFAAAAAAAAAAAKFR/tkwEAAAAAQEpJGa7IyJynCs4vxsRbjrUyRZ572tany2NqvfyVl22JrLytP2/ah7bxbQW1fXzlGiyo9YfrpIjsX6DcR4dY+GixAAAAAAAAAAAArg4jPwAAAAAAAAAA8Ad+tOaHjxbLj3wmKSiX/VGeh1abk56z8Xaobo555dMwuvwcrmelbqyUJz/LbCUvT+dlV3kL4tBKu9o8vxS0929B5UvXRX6WhesChQHvGQAAAADAlej8AAAAAAAAAADAH/jRyA/W/AAAAAAAAAAAAIWKj/bJAAAAAAAAAAAAWwX8/5fdafogOj8AAAAAAAAAAPAHTHsFAAAAAAAAAABQMPlon4wf+WispNAcdzc3DSwk0t5jhDEjrJepEHE4RnmMyc+6sas8vnZeBY2v1Y2n8tDe+cOX6tCXymIV1ymuJ64tAAAAALAoQPb3CjDtFQAAAAAA3nE690gqZinWmPi8LYxFdMoWHrSlb6N9cL1xDQK+jc4PAAAAAAAAAAD8AWt+AAAAAAAAAAAAFEw+2icDAAAAAAAAAABsFSD71+jw0TU/GPkBAAAAAAAAAAAKFUZ+XHedldvifV84lnpMwaGtFvLpaiHGc175tZCTwzHKY4yVsthVXodjt4W8PC+uaFd5WFDr2th1feUXXypLfsvPtipo1wWA/+H9CwAAAAAW+dGaHz5aLAAAAAAAAAAAYKsA2d8rwLRXAAAAAAAAAAAAeY+RHwAAAAAAAAAA+AMWPM9/GzZsUOfOnRUXFyeHw6Fly5a57TfGaOTIkYqLi1NYWJiaN2+u7777zi3m4sWLevLJJ1WyZEmFh4erS5cuOnz4sFtMcnKyEhIS5HQ65XQ6lZCQoFOnTrnFHDx4UJ07d1Z4eLhKliypQYMGKTU11S3mP//5j5o1a6awsDCVLVtWr776qowxttUHAAAAAFzOf5+ZluvP9QmtvOCrHI5RXr18hcOx26sXgIKtoH5WAciez4z8OHfunOrUqaN+/frpnnvuybJ//Pjxmjx5subMmaOqVavqtddeU5s2bbRv3z5FRERIkgYPHqzly5dr0aJFKlGihIYOHapOnTppx44dCgj4s/upd+/eOnz4sBITEyVJjz76qBISErR8+XJJUnp6ujp27KhSpUpp48aN+v3339WnTx8ZYzRt2jRJ0unTp9WmTRu1aNFC27Zt0/79+9W3b1+Fh4dr6NChttaLlcU5rd1g5c9i5nZ98PvaAsZWFjNHwVEYF70trIv95meZC2L9+BLqD3nJ02cc1x/8Bc9MAAAAuGYseJ7/OnTooA4dOmS7zxijqVOn6sUXX1S3bt0kSe+9955iYmK0YMECDRgwQCkpKXrnnXc0d+5ctW7dWpI0b948lStXTmvWrFG7du30/fffKzExUVu2bFGDBg0kSbNmzVKjRo20b98+VatWTatWrdLevXt16NAhxcXFSZImTZqkvn37avTo0YqMjNT8+fN14cIFzZkzRyEhIapVq5b279+vyZMna8iQIXI4HFnO4eLFi7p48aLr59OnT9tafwAAAAAKN56ZAAAAAOt8Ztqr3Bw4cEBJSUlq27ata1tISIiaNWumTZs2SZJ27NihS5cuucXExcWpVq1arpjNmzfL6XS6buIlqWHDhnI6nW4xtWrVct3ES1K7du108eJF7dixwxXTrFkzhYSEuMUcOXJEP//8c7bnMHbsWNewcafTqXLlyl1jrQAAAADAn3hmAgAAgCWBefTyQQWi8yMpKUmSFBMT47Y9JibGtS8pKUnBwcGKiorKNaZ06dJZ0i9durRbzJX5REVFKTg4ONeYzJ8zY640fPhwpaSkuF6HDh3yfOIAAAAAYAHPTAAAAIA7H+2Tyd6VQ6ONMdkOl84tJrt4O2IyF+7LqTwhISFu33oCAAAAALvxzAQAAIBc+dGaHwVi5EdsbKykrN8QOn78uOvbQ7GxsUpNTVVycnKuMceOHcuS/okTJ9xirswnOTlZly5dyjXm+PHjkrJ+0woAAAAA8hrPTAAAALDCFJFMgM0vH+1l8NE+GXeVKlVSbGysVq9erVtuuUWSlJqaqvXr1+v111+XJNWrV09BQUFavXq1evbsKUk6evSo9uzZo/Hjx0uSGjVqpJSUFH399de6/fbbJUlbt25VSkqKGjdu7IoZPXq0jh49qjJlykiSVq1apZCQENWrV88V88ILLyg1NVXBwcGumLi4OFWsWNG7k+teSwqKzHG3Y4F3yeXEmBH2JGRDPg7HKFvysiud/GSlzPnVVr5Ulvxm17n7Uh0WxLZyOHZ7jDEmPh9K4nt86doCfIGn6z0/3zO8P+GrCvUzEwAAAHAVfKZP5uzZs9q1a5d27dol6c8F+3bt2qWDBw/K4XBo8ODBGjNmjJYuXao9e/aob9++Klq0qHr37i1JcjqdevjhhzV06FB9/vnn+uabb/TAAw+odu3aat26tSSpRo0aat++vfr3768tW7Zoy5Yt6t+/vzp16qRq1apJktq2baubb75ZCQkJ+uabb/T5559r2LBh6t+/vyIj/+yk6N27t0JCQtS3b1/t2bNHS5cu1ZgxYzRkyBCPQ8oBAAAA4GrwzAQAAIBrlR6YNy9f5DPF2r59u1q0aOH6eciQIZKkPn36aM6cOXr22Wd1/vx5DRw4UMnJyWrQoIFWrVqliIgI1zFTpkxRYGCgevbsqfPnz6tVq1aaM2eOAgICXDHz58/XoEGD1LZtW0lSly5dNH36dNf+gIAArVy5UgMHDlSTJk0UFham3r17a+LEia4Yp9Op1atX6/HHH1f9+vUVFRWlIUOGuMoMAAAAAHbjmQkAAACwzmEyV51Dvjp9+rScTqfUPSXXaa/UyUJi9xesqWPyc8ohK/JzagpfmirDl8qS3wrjtFcFEdNe5YxrC/AO014VDJn3vykpKa7RAUBuXM9M+kpSMdvT99f7DAC4Wt78HYb7IeBPvnQPnFmW40clu4ty+rRUuoy8Os8NGzZowoQJ2rFjh44ePaqlS5fq7rvvdu03xmjUqFF6++23XV/seeONN1SzZk3L5fKZaa8AAAAAAAAAAEDhd+7cOdWpU8dthPHlxo8fr8mTJ2v69Onatm2bYmNj1aZNG505c8ZyHj4z7RUAAAAAAAAAAMg7aQEOpQXYuwZbWoCR5N0EUx06dFCHDh2y3WeM0dSpU/Xiiy+qW7dukqT33ntPMTExWrBggQYMGGApDzo/rrc1knK51oKnn/aYRKqWWsjI85DuwjiNQ0Erb37y1+m+7MyroF1fvtYOsumzqzBi2jXAOwXxdwgAAAAAFDanT7v/LTskJEQhISFep3PgwAElJSW51qDLTKtZs2batGmT5c4Ppr0CAAAAAAAAAMAPpAcG5slLksqVKyen0+l6jR079qrKmJSUJEmKiYlx2x4TE+PaZwUjPwAAAAAAAAAA8APpAQFKt3naq/QAI+mSDh065Lbg+dWM+ricw+FeTmNMlm25ofMDAAAAAAAAAABck8jISLfOj6sVGxsr6c8RIGXKlHFtP378eJbRILlh2isAAAAAAAAAAPxAhgKUbvMrQwG2lrFSpUqKjY3V6tWrXdtSU1O1fv16NW7c2HI6jPwAAAAAAAAAAAD55uzZs/rxxx9dPx84cEC7du1SdHS0ypcvr8GDB2vMmDGqUqWKqlSpojFjxqho0aLq3bu35Tzo/LjeJkgqmvPu1Cc8DxMyZoTHGEe056JYSscx6prTUJSVfHZ7TqcAslQ/hVB+nrena1SiHXKTn/Xnr+1gF+oPAOA/lksKzYN04/MgTd/jzbOVMQWzTqzcw16uoN5HeXOeBfUc4du4rq6Nv3xWwfelKUBpsnfNjzQZr4/Zvn27WrRo4fp5yJAhkqQ+ffpozpw5evbZZ3X+/HkNHDhQycnJatCggVatWqWIiAjLedD5AQAAAAAAAAAA8k3z5s1lTM6dJg6HQyNHjtTIkSOvOg86PwAAAAAAAAAA8AN/rtNh71Lg6cqwNT27sOA5AAAAAAAAAAAoVBj5AQAAAAAAAACAH8ibkR/2riFiFzo/AAAAAAAAAADwA3R+IP98Jikol/0Ld3tMwrHQczbGxHtOxzHKc0LqakManhkzwkKU53Oyi5XzslZm5DW72sGX2tyXylJQ+Wsd+ut5AwAAAAAA0PkBAAAAAAAAAIAf8KeRHyx4DgAAAAAAAAAAChVGfgAAAAAAAAAA4AfSFaA0Pxn5QecHAAAAAMBnpaQMV2RkpKVYb9Yg9Ha9woK6TpaV9R8LuoLaNt7yl/MECivew/nPm9/1tE/hROcHAAAAAAAAAAB+IF2BebDmR4at6dmFzo/r7aOxkkJz3N3cNPCYxBeOrR5jHBZGHlnp4XREe4qw8K2i5N2eY3yMv/b+Wukhz8+6yc/yWHo/OKxcy0uvOa/8rOPCeq370nn52nVsha99FgAAAAAAAHhC5wcAAAAAAAAAAH4gXUWUrgCb0/RN9o5vAQAAAAAAAAAAuM4Y+QEAAAAAAAAAgB9IV4DfjPyg8wMAAAAAAAAAAD+QpgCl2dz5kWZravZh2isAAAAAAAAAAFCoMPLjeus+XAqKzHH3F45RNmW01EJMvOeQ5N257jbGQhpW8rHAYaFujBlhS15W+Fp5PClo5ZV8sTyer2WHw8p779r5Wnv6WnnyS2E974JYZviGwvqeAAAAAICCKkOBtk97lSGHrenZhc4PAAAAAIDPclaQrD5Pe9OhaqWDFvD2OqFTH8h7vvS+9KYs3pYjL9P2F9QL6PwAAAAAAAAAAMAP+NOC56z5AQAAAAAAAAAAChVGfgAAAAAAAAAA4Af8aeQHnR++rpfnuenMAnuysmPOWyuLO1uZby8/F0h1OHJfxP3PvDwvbG1fefJn7mHmPcwf+VXPvva+KojXlx31w6LyvoP68Q3UMQAAAADgeqHzAwAAAAAAAAAAP5CuInkw8sPYmp5d6PwAAAAAAAAAAMAPpClAaTZ3fqT5aOcHC54DAAAAAAAAAIBChZEfAAAAAAAAAAD4gXQFKt3mbgEWPAcAAAAAwFun9kgqZjE43nKyxoy4quIUZg7HKK/i/aEO/eEcgYLGl96XeVkWXzpPoKCi8+N6+8jDjXwvzzfvjmjP2ZiTFmIK2IeqlRtzK+dkjIU6duy2JZ38lF/tae0BqauFmKUeI6yck13XhV3pWOEpL7vyKWjv8fxW0OqnoJU3v9lRP/n5OZCfvP3DVk4K4rkDAAAAgL/LUIDtC55nsOYHAAAAAAAAAABA3mPkBwAAAAAAAAAAfiA9D0Z+pDPyAwAAAAAAAAAAIO8x8gMAAAAAAAAAAD+QpiJKs3nkR5oybE3PLnR+AAAAAAAAAADgB9IVqHSbuwV8ddorOj+us6AD5eWIjMxxf+oTFhJpb09ZHI7dFqKW2pOZB8aMyJd8JMnhGGVTSvG2pJKf555fjLFSN75Vf/nZDoWxze1i5f1ppf7sSsdX8kH+KKxtVVjPyxPenwAAAADgX+j8AAAAAAAAAADAD+TNgue+Oe0VC54DAAAAAAAAAIBChZEfAAAAAIBCwdpUvn+yNjXr5Wlbny7X22n0Cmraeamglhuwwleub2+nAee9dm2ob9/mT+3DyA8AAAAAAAAAAIACipEfAAAAAAAAAAD4gXQFKM1PRn7Q+XGdXVoTKRWNzDlgoYUhV1Geh1lZG/691ELMtbNrWJiV4WhW8rISYyUvu8pT0NhVfwWxbrwdEpmTgnjunuTn+9MudpTZ19qysL73fIlddWzl97S307P4Al+6BrnWAQAAAMC/FJhpr9LS0vTSSy+pUqVKCgsLU+XKlfXqq68qI+N/vUrGGI0cOVJxcXEKCwtT8+bN9d1337mlc/HiRT355JMqWbKkwsPD1aVLFx0+fNgtJjk5WQkJCXI6nXI6nUpISNCpU6fcYg4ePKjOnTsrPDxcJUuW1KBBg5Samppn5w8AAAAAueGZCQAAAJ6kKzBPXr6owHR+vP7665o5c6amT5+u77//XuPHj9eECRM0bdo0V8z48eM1efJkTZ8+Xdu2bVNsbKzatGmjM2fOuGIGDx6spUuXatGiRdq4caPOnj2rTp06KT093RXTu3dv7dq1S4mJiUpMTNSuXbuUkJDg2p+enq6OHTvq3Llz2rhxoxYtWqSPP/5YQ4cOzZ/KAAAAAIAr8MwEAAAAT9JVxLXouX0v3+xm8M0umWxs3rxZd911lzp27ChJqlixohYuXKjt27dL+vMbTFOnTtWLL76obt26SZLee+89xcTEaMGCBRowYIBSUlL0zjvvaO7cuWrdurUkad68eSpXrpzWrFmjdu3a6fvvv1diYqK2bNmiBg0aSJJmzZqlRo0aad++fapWrZpWrVqlvXv36tChQ4qLi5MkTZo0SX379tXo0aMVGZnLNFYAAAAAkAd4ZgIAAAD+xze7ZLLRtGlTff7559q/f78k6dtvv9XGjRt15513SpIOHDigpKQktW3b1nVMSEiImjVrpk2bNkmSduzYoUuXLrnFxMXFqVatWq6YzZs3y+l0um7iJalhw4ZyOp1uMbVq1XLdxEtSu3btdPHiRe3YsSPb8l+8eFGnT592ewEAAACAXXhmAgAAgCf2j/r48+WLCszIj+eee04pKSmqXr26AgIClJ6ertGjR6tXr16SpKSkJElSTEyM23ExMTH65ZdfXDHBwcGKiorKEpN5fFJSkkqXLp0l/9KlS7vFXJlPVFSUgoODXTFXGjt2rEaNsmdxZAAAAAC4Es9MAAAAwP8UmM6PxYsXa968eVqwYIFq1qypXbt2afDgwYqLi1OfPn1ccQ6Hw+04Y0yWbVe6Mia7+KuJudzw4cM1ZMgQ18+nT59WuXLl9GzPVxUSGZJj2f6m0bmWXZK0wnOIFlqIsaSrXQnZwHNZHA57Hp6MGWFLOnax47ysnJOVfKyk42v1Zxe7zqugtacVvtbm+dVWhfW87VLQPpPz9z0Tb0s6vsbXrkGgsCusz0zeWWo50sMp+yVvf1fn5ec8v0NQmPnK9e0r5QCQv/JipAYjP67RM888o+eff1733XefJKl27dr65ZdfNHbsWPXp00exsbGS/vyGUZkyZVzHHT9+3PWNo9jYWKWmpio5Odntm0zHjx9X48aNXTHHjh3Lkv+JEyfc0tm6davb/uTkZF26dCnLt5syhYSEKCQk504OAAAAALgWPDMBAAAA/1Ng1vz4448/VKSIe3EDAgKUkZEhSapUqZJiY2O1evVq1/7U1FStX7/edZNer149BQUFucUcPXpUe/bsccU0atRIKSkp+vrrr10xW7duVUpKilvMnj17dPToUVfMqlWrFBISonr16tl85gAAAADgGc9MAAAA8CRdAUqz+cXIj2vUuXNnjR49WuXLl1fNmjX1zTffaPLkyXrooYck/TmkevDgwRozZoyqVKmiKlWqaMyYMSpatKh69+4tSXI6nXr44Yc1dOhQlShRQtHR0Ro2bJhq166t1q1bS5Jq1Kih9u3bq3///nrrrbckSY8++qg6deqkatWqSZLatm2rm2++WQkJCZowYYJOnjypYcOGqX///oqMjLwOtQMAAADA3/HMBAAAAPxPgen8mDZtml5++WUNHDhQx48fV1xcnAYMGKBXXnnFFfPss8/q/PnzGjhwoJKTk9WgQQOtWrVKERERrpgpU6YoMDBQPXv21Pnz59WqVSvNmTNHAQH/652aP3++Bg0apLZt20qSunTpounTp7v2BwQEaOXKlRo4cKCaNGmisLAw9e7dWxMnTsyHmgAAAACArHhmAgAAgCfpClS6zd0C6cqwNT27FJjOj4iICE2dOlVTp07NMcbhcGjkyJEaOXJkjjGhoaGaNm2apk2blmNMdHS05s2bl2t5ypcvrxUrrKw0DgAAAAB5j2cmAAAAeMKC58g34yu8IjlyHvYd/ONpj2mkrrAwbLxXvOeYhZ5DjMk9HUe05zTss9RjhDEjPMY4HKPsKIyldKyUxy525JWf5fVnnurZrmu0sMrP9x7viWtT0OqvoJXXTr72Ow0AAAAAAG/R+QEAAAAAAAAAgB9IV5E8GPlRxNb07OKbpQIAAAAAAAAAALhK1zTy49SpU/rss8/066+/yuFwqEyZMmrXrp2ioqLsKh8AAAAAFGg8NwEAAMBXpClAaTaP/LA7PbtcdefHO++8o9dff10dO3ZU2bJlJUlbtmzRiBEj9Oyzz+rhhx+2rZAAAAAAUBDx3GSD7rWkIAvrHErSQs/rAv6PN7F5vdZR1zxLmTWaAMA38Hns22if/JWWlqaRI0dq/vz5SkpKUpkyZdS3b1+99NJLKlLEvsmqrrrzY/z48dq5c6eKFSvmtv1vf/ub6tWrx028Va0lBeW8+7no1z0m8beF91rIyMKNfZR/vskL4kLI+ZVXYV3w1q7zyq/68aWyFGbU4bXxtfrztfIUNNQNYB+emwAAAOBL0hWodJuXAk9Xulfxr7/+umbOnKn33ntPNWvW1Pbt29WvXz85nU499dRTtpXrqs/S4XDo7NmzWW7iz549K4fDcc0FAwAAAICCjucmAAAAwN3mzZt11113qWPHjpKkihUrauHChdq+fbut+Vx158fEiRPVrFkz1apVyzV8+/Dhw/ruu+80adIk2woIAAAAAAUVz00AAADwJRkKULrNa3Rk/P/0Tp8+7bY9JCREISEhWeKbNm2qmTNnav/+/apataq+/fZbbdy4UVOnTrW1XJY7PxISEvTWW2+paNGikqROnTqpQ4cO+vrrr3XkyBEZY1S2bFndfvvtCgjwzQVOAAAAACAv8dwEAAAAX5aeB50fmemVK1fObfuIESM0cuTILPHPPfecUlJSVL16dQUEBCg9PV2jR49Wr169bC2X5c6PBQsWaNKkSa6b+AEDBmjcuHFq1KiRJMkYo7S0NG7gAQAAAPgtnpsAAADgrw4dOqTIyEjXz9mN+pCkxYsXa968eVqwYIFq1qypXbt2afDgwYqLi1OfPn1sK4/lpdONMW4/L1y4UMnJya6fjx8/roiICNsKBgAAAAAFDc9NAAAA8GXpKuIa/WHf689uhsjISLdXTp0fzzzzjJ5//nndd999ql27thISEvT0009r7Nixtp7rVa/5ceVNvSSlpqZeU2H80UfvdFR4ZM7N0MHxd5ty6uoxwpy89lyspOFw7LaQ0tJrLoudHI5RHmOMGeFTeVlJx458CiK76s+X6seXymInO65jq3ypDq18ThoTb1Ne9lzrvlR/ku+Vx5cUtM83oKDjuQkAAABw98cff6hIEfdxGQEBAcrIyLA1n6vu/MiOw+GwMzkAAAAAKHR4bgIAAMD1kqYABdi85keal+l17txZo0ePVvny5VWzZk198803mjx5sh566CFby+VV58eCBQt0xx13qHbt2pK4aQcAAACAK/HcZK+Ud6TLpo7O3YKCOXLNmxGd3o6MZTTftaG+s6JOUJhxfQP5Y9q0aXr55Zc1cOBAHT9+XHFxcRowYIBeeeUVW/Ox3PnRtGlTjRgxQmfOnFFQUJDS0tL0wgsvqGnTprr11ltVqlQpWwsGAAAAAAUNz00AAADwZekKVLq9E0J5nV5ERISmTp2qqVOn2lqOK1ku1YYNGyRJP/zwg3bs2KGdO3dqx44devnll3Xq1Cm+zQQAAADA7/HcBAAAAPgGr7t4qlSpoipVqui+++5zbTtw4IC2b9+ub775xtbCAQAAAEBBxHMTAAAAfFGGApRu85ofGTanZxdbxrdUqlRJlSpVUo8ePexIDpcJ/r2ix5jUEj97jLEyh6y38xpmr6stZZGsz3mbGyvnZNf8jPmZlx2slKWgnZOdCut52cGezwprdVwY28HX3lf5mZdd556f12Bh5K/nDfgCnpsAAABwvaXnQeeH3enZpcj1LgAAAAAAAAAAAICd7F3ZBAAAAAAAAAAA+KQ0BaiIzSM10hj5AQAAAAAAAAAAkPcY+QEAAAAAAAAAgB/4c80Pe7sFWPMDAAAAAAAAAAAgHzDy4zqbqsEKVHiO+1OfiPScSFS8x5CQk6ctpDPCc0zyKA8BSz0m4XB4jslPDoenc5KMsVA3NrErL0/p2HXeVtKxIj/ruKBxOHZ7jDHG8+eAtbx86/1gRX5ey/n1vrKiIL738uvzzS4F8f2AnNGeQMHldI6VFGop1pv3sSPau3KYk9Zj7fo9nW05+KzCdcY1iMKM6xv+4M+RH/aO1GDkBwAAAAAAAAAAQD5g5AcAAAAAAAAAAH7An0Z+0PkBAAAAAAAAAIAfyMiDzo8MH+38YNorAAAAAAAAAABQqDDyAwAAAAAAAAAAP5CmADlsHqmR5qMjP+j8uM62nmwgR1pkjvubL0j0mMYXvdt7jEktMcVzYaJGeI7xqKuFmKW2pGNMvIV07OFwjPIYY4zn+rOSjhVW8sqPNOxMxwq72sFaXrst5GXPNWjHdeFweH5fWamb/GxPuxTEa9kOBa28BRF1XLgU1t9XAAAAAIDs0fkBAAAAAAAAAIAfSFeAitjcLeCrC56z5gcAAAAAAAAAAChUGPkBAAAAAPBZKSnDFRmZ81TBVy3Zu6lHHQ7rsXk5tZ23U6Z6U5a8TNtb3pQlL8vBNIVZ+dJ14g+obwB2+3Pkh70jNRj5AQAAAAAAAAAAkA8Y+QEAAAAAAAAAgB/wp5EfdH74uE0nG3sOSrSQUJSFYY9eDvvOjjHxFqI8x1gZ1ulwLLWQl2+xa/iplfopaENd7Tonh2O3hXQ8X4PWrmV7eDqvwtjeUsE8L09lzs/yFsT6A66WL733rLD2+4r3MAAAAID8l6YAOWzurEjz0c4Ppr0CAAAAAAAAAACFCiM/AAAAAAAAAADwAxkKVLrN3QIZPtrNwMgPAAAAAAAAAABQqPhmlwwAAAAAAAAAALBVeh6s+eGrC54z8gMAAAAAAAAAABQqjPy4zi49EykFReYc0MlCIsmjLAR19RwSNcJjiDmZ+36Hw0pZkBsrdWiM57ZyOHZ7SCPelrJYYaW8drFyXvnJrvYsjArieftSmX2pLP6M93j+oA4B/+Z07pFUzGL0UsvpevvZ4s29cV4+F+VluX3p89ZXyuJtW/pKufNSXp4j9Z0V9Q0raEt4I11F8mDkh2+OsfDNUgEAAAAAAAAAAFwlRn4AAAAAAAAAAOAH0hQg2TzyI401PwAAAAAAAAAAAPIeIz8AAAAAAAAAAPAD6QqUw+ZugXQf7WbwzVL5kWffeVUhkSHXlMbfVoz2HJRoISELC6c7HB4CLCyabm2Bds+sLfrta3l5Xnjerrzya/GqglZeKW8XoLySHedVEOvYioJYZvgXrtHCxdfak2sHAAAAwPWQoQCl2zxNVQbTXgEAAAAAAAAAAOQ9Rn4AAAAAAAAAAOAH0vNgwXO7R5LYhZEfAAAAAAAAAACgUGHkBwAAAAAAAAAAfsCfRn4UqM6PX3/9Vc8995z+/e9/6/z586patareeecd1atXT5JkjNGoUaP09ttvKzk5WQ0aNNAbb7yhmjVrutK4ePGihg0bpoULF+r8+fNq1aqVZsyYoRtuuMEVk5ycrEGDBumTTz6RJHXp0kXTpk1T8eLFXTEHDx7U448/rrVr1yosLEy9e/fWxIkTFRwcnD+VAQAAAABXKJzPTMslhVoL7TXCcqoOx26vSmGM9bS95XCMyrO087Lc3vD2HH2l3L5SjoLMm7b3pfouqOX2RkEtN7KiLYHsFZjOj+TkZDVp0kQtWrTQv//9b5UuXVr//e9/3W6ux48fr8mTJ2vOnDmqWrWqXnvtNbVp00b79u1TRESEJGnw4MFavny5Fi1apBIlSmjo0KHq1KmTduzYoYCAP3uoevfurcOHDysxMVGS9OijjyohIUHLly+XJKWnp6tjx44qVaqUNm7cqN9//119+vSRMUbTpk3z6rw2qZECFZ7j/i96t/ecSKLnkOAfT3uMSS3hOR2PLBRXC60k1NVjhGOBlXTyj5VfNN4+YOUo6tp/qVm5kbPrl6dd6VipP2PiLcT41k2BHQ+7vnZOVth3XeTftYy850vtyXXjOzxdF1baivaEPyisz0wAAACwT5qKyNg+8sM3V9coMJ0fr7/+usqVK6fZs2e7tlWsWNH1f2OMpk6dqhdffFHdunWTJL333nuKiYnRggULNGDAAKWkpOidd97R3Llz1bp1a0nSvHnzVK5cOa1Zs0bt2rXT999/r8TERG3ZskUNGjSQJM2aNUuNGjXSvn37VK1aNa1atUp79+7VoUOHFBcXJ0maNGmS+vbtq9GjRysyMjKfagUAAAAA/sQzEwAAAPA/vtklk41PPvlE9evXV48ePVS6dGndcsstmjVrlmv/gQMHlJSUpLZt27q2hYSEqFmzZtq0aZMkaceOHbp06ZJbTFxcnGrVquWK2bx5s5xOp+smXpIaNmwop9PpFlOrVi3XTbwktWvXThcvXtSOHTuyLf/Fixd1+vRptxcAAAAA2IVnJgAAAHiSrsA8efmiAtP58dNPP+nNN99UlSpV9Nlnn+mvf/2rBg0apPfff1+SlJSUJEmKiYlxOy4mJsa1LykpScHBwYqKiso1pnTp0lnyL126tFvMlflERUUpODjYFXOlsWPHyul0ul7lypXztgoAAAAAIEc8MwEAAMCTdAXkycsXFZjOj4yMDN16660aM2aMbrnlFg0YMED9+/fXm2++6RbncDjcfjbGZNl2pStjsou/mpjLDR8+XCkpKa7XoUOHci0TAAAAAHiDZyYAAADgfwpM50eZMmV08803u22rUaOGDh48KEmKjY2VpCzfIjp+/LjrG0exsbFKTU1VcnJyrjHHjh3Lkv+JEyfcYq7MJzk5WZcuXcry7aZMISEhioyMdHsBAAAAgF14ZgIAAIAnGXkw6iPDR0d++OZkXNlo0qSJ9u3b57Zt//79qlChgiSpUqVKio2N1erVq3XLLbdIklJTU7V+/Xq9/vrrkqR69eopKChIq1evVs+ePSVJR48e1Z49ezR+/HhJUqNGjZSSkqKvv/5at99+uyRp69atSklJUePGjV0xo0eP1tGjR1WmTBlJ0qpVqxQSEqJ69ep5dV4bH24jBeV8U//yghc9pvGl/uIx5gtHnMcYqavnkKj43PcvHOUxCWNGeIxxRHsuiu7fbSHItxjjof6spnPSlmRs4XB4bge7zltaaiHGrrzyj5X3hCcOhz3vPbvyssKu8uTnedmVly/xtfMujHWM3PnaNQgUZIX1mQkAAAC4GgWm8+Ppp59W48aNNWbMGPXs2VNff/213n77bb399tuS/hxSPXjwYI0ZM0ZVqlRRlSpVNGbMGBUtWlS9e/eWJDmdTj388MMaOnSoSpQooejoaA0bNky1a9dW69atJf35zaj27durf//+euuttyRJjz76qDp16qRq1apJktq2baubb75ZCQkJmjBhgk6ePKlhw4apf//+fDsJAAAAwHXBMxMAAAA8SVOAitg8UoORH9fotttu09KlSzV8+HC9+uqrqlSpkqZOnar777/fFfPss8/q/PnzGjhwoJKTk9WgQQOtWrVKERERrpgpU6YoMDBQPXv21Pnz59WqVSvNmTNHAQH/a6D58+dr0KBBatu2rSSpS5cumj59umt/QECAVq5cqYEDB6pJkyYKCwtT7969NXHixP/X3r2HV1Hd+x//DOSGKYkJNFwEFStQLGIRhHKp4hEDVsRLW3tIDtX+1NYKAiIFlVpAC1QUtULlVI5FPRLwqZaKWBF6KghSESM8qFhsRSu0UBRCgpfmxvz+QLZuErLWhLUns7Pfr+fZzyN7f7PmO2vWnj3LNWtWCDUBAAAAAHU11z5T+rtj5FkOmFS1CTJD1WLmeyPZzI5uDoLMCGYWX+pK1mOfrHlHRdAnBlDfABIhaQY/JGnEiBEaMWLEMT/3PE/Tp0/X9OnTjxmTlZWlefPmad68eceMyc/P1+OPP95gLieffLJWrFhhzBkAAAAAwkKfCQAAAA2pVUv5jocFojrzI2kWPAcAAAAAAAAAALCRVDM/AAAAAAAAAABA4xye+cGaHwhB+t0V8hp4fO2kWotn4lq0rTX6njkor5c5pizYMxvrY/f822XGCJvnQXpFFvu0xJyPq5zD1fAzjN09T9Nmv83Hwe55oObnMod5rKL0TFKr74NFHduU42q/XeUTpW0l4z5FqR1HTZjH05VkzDlq+QAAAABAc5ZKgx889goAAAAAAAAAADQrzPwAAAAAAAAAACAF1B5qKf+Q45kfjstzhZkfAAAAAAAAAACgWWHmBwAAAAAAAAAAKaC2pqUO1bidqeE7Ls8VZn4AAAAAAAAAAIBmhZkfTax//kal5WQf8/MNGmgs407ve+YNjepljhlhDlGxaTvTLAox80ss8rWxZIZ5W745Z8/bat5Wnrkcf7+5GM8z5+yC3XYuN4dY7LfNtuyOg5tyJHP7Cus4hMmubtwIs/5svp9h7XuYdZyMXLWL5ng8XZ3faIPNi7vfPSC5VffOkbycBJS8LFC05yWubCCZRKmvlMjfwSD7GaXf40QenyD7GaU6SaRkbSdIbbU1afJq3A4L+I0o7x//+IemTJmi5557Tp9++qm6deumhx9+WH369HGWF4MfAAAAAAAAAAAgFGVlZRo0aJDOP/98PffccyooKNA777yjE0880el2GPwAAAAAAAAAACAF1Na0kOd8zY9gq2vcdddd6ty5sxYtWhR779RTT3Wak8SaHwAAAAAAAAAApITampYJeUlSRUVF3KuysrLeHJYvX66+ffvqu9/9rgoKCtS7d28tXLjQ+b4y+AEAAAAAAAAAAI5L586dlZubG3vNnj273rgdO3ZowYIF6tq1q55//nldf/31GjdunB577DGn+fDYKwAAAAAAAAAAUkBNTUt51a4fe3W4vJ07dyonJyf2fmZmZr3xhw4dUt++fTVr1ixJUu/evfXmm29qwYIF+v73v+8sLwY/mtj6ay6U0nOOHVBiUcjiXuaYFRblFG+1CDJYMsMY4vvTjDGeZy7HzuWOyllmDimziJF5323qx4abOrTZb3OIq32KVt1Ea1vu6sZ8HvB98znH7nvu4Jwju3xcMeUcZi6ujnnURGm/bL6/UTu/oXmhXQAAAABIJjk5OXGDH8fSoUMHnXHGGXHv9ejRQ0899ZTTfBj8AAAAAAAAAAAgBfi1afJrHQ8LBCxv0KBB2r59e9x7b7/9tk455RSXWbHmBwAAAAAAAAAACMdNN92kl19+WbNmzdLf/vY3lZSU6KGHHtKYMWOcboeZHwAAAACA6DowW1KWXeyoAI+Ls3hkbzybx9weliqPrQuyn0EfBxuo7PxARcvfHywe8YK27zAfO+xSsn6PkzXvZEV9IynVtDz8cl1mAOecc46WLVumW2+9VXfccYe6dOmi+++/X8XFxU7TYvADAAAAAAAAAACEZsSIERoxYkRCt8HgBwAAAAAAAAAAqSACMz/CwuBHExv88Gql5WQf8/MXel9kLOP8zc8ZY9aMHW5OZnEvc8wKQ8xKcxFekTnGis2U9iVbjSF2U3Avt4gxT4O3mo5dZs7Z983HyjT10tXUY5tcXHGXc7SmpUYpnzCPp822onbMw6yfsNjUcZTaqOQuZ1M5UdvvqEnGtgMAAAAAKa/Wk2o892VGEAueAwAAAAAAAACAZoWZHwAAAAAAAAAApIKaz16uy4wgZn4AAAAAAAAAAIBmhZkfAAAAAAAAAACkghSa+cHgRxOboPuV3dBhuMBcxpoSi8XMbRSbF9o2yrNYDHiJowWMS8wx3hLzIuR2HJXjaDFzm4XT/f02CR2/MBekjtrCuXb7fnko24la3bjiar+itHB6mLm42pYr7haej1Y5YYnauSDMbbE4/fGJWtsBAAAAgDAw+AEAAAAAAAAAQCpg5gcAAAAAAFFwiaQvWUXazA4/wlsSLIsgM6S8ooBlB8k78MzO45+JfGz2M+QTOcMskbPeg9Y3M+nqok6iK5HtO5Gz0IO2qSC50F6bF449GPwAAAAAAAAAACAV1EiqTkCZEcTgBwAAAAAAAAAAqaD2s5frMiOoRVMnAAAAAAAAAAAA4BIzP5rYhf+3XjnZDQQUmsvw5RljvPm+RTa9zNsyPLvWyzdvJWPfTcaYqjb3GWNstuXqeX2et9ViW+b6s8nZSpnNMwtN+27z7F+bZ/iay7GpGxuJfGZoorjY92R87mSYx8qmfsKqQ5v9tsnFVf1Fre24qp+obQvH5ur3M9m+wwAAAAAQWSm04DkzPwAAAAAAAAAAQLPCzA8AAAAAAAAAAFIBMz8AAAAAAAAAAACSEzM/AAAAAAAAAABIBSk084PBDwAAAABAdJ3YU/JymjoLefkBgstmBCu8ZJp1qO/bxyZer6ZOoFE8z/74RKu+cbRkPZZRyTtZyw4qkblE5VhGSZA6kVKnHaJpMPjRxHL3lUufHt+F/O1FU40xGfsrjDFVY815eMVbrXJqeDvmC2Sbk5PNydTzzPnYnQiXmbdVZHHhX2auP88zbyu0k3eeeTv+fnMxQX/4ju1yY4TvJ2cHrCE29eeqTbjalqvvsI0w6yes7STjBVqUjkPY2wqLu++5+bfI1bk02c7JzbHdSM13vwAAAAA0Qq3cz9SodVyeIwx+AAAAAAAAAACQClLosVcseA4AAAAAAAAAAJoVZn4AAAAAAAAAAJAKmPkBAAAAAAAAAACQnJj5AQAAAAAAAABAKqj+7OW6zAhi8KOJpQ+tkJdz7M9va5NrLKO26DZjTNXKBjZyxEpziEb1avjzERZljDWHePkW5Vi53Ekpvj/NGON5MxyVsyykbZm3ozKLGJn3yWa/bdjst2Roo7bl5FnkXGaTj7kN+n7DObuqP1dsvp/+fouYqO2Xt9UiquHvRPT2ydV5yVw3YZ4nbdidLxoWtePpiumc41KYxxwAAAAAgC9i8AMAAAAAAAAAgFRQ+9nLdZkRxOAHAAAAAKBZCDLzL+jMM3ez0+spO4F5oy7qEE0tSBt0MaPZRR5RErROErmfHMu6Av++8huIBGLwAwAAAAAAAACAVFArqSYBZUYQgx8AAAAAAAAAAKSCGrkf/HBdniMtmjoBAAAAAAAAAAAAl5j50cRuyr9fmTmZx/68JsNYRm7JTDfJlG01xyw5zs8l+X4vY4znWeSSZ/GcvzLzcwM9z1yMncvdFGO1Xxb1k2RsjrnNsx1tnhXp6hmRnmc+5jbtPUrCfH6mq+edusrZ7lhF53i6aut23z03++3uuxfe9zxKknG/o5YPAAAAAKQ8Zn5E3+zZs+V5niZMmBB7z/d9TZ8+XR07dlSrVq00ZMgQvfnmm3F/V1lZqRtvvFFt27ZVdna2Ro4cqV27dsXFlJWVafTo0crNzVVubq5Gjx6tAwcOxMW8//77uuSSS5Sdna22bdtq3LhxqqqqStTuAgAAAEAg9JkAAACQypJy8GPTpk166KGH1KtX/J2oc+bM0b333qv58+dr06ZNat++vS688EIdPHgwFjNhwgQtW7ZMS5cu1fr16/XRRx9pxIgRqq39fFWWoqIibdmyRStXrtTKlSu1ZcsWjR49OvZ5bW2tLr74Yn388cdav369li5dqqeeeko333xz4nceAAAAAAzoMwEAAKBeNQl6RVDSDX589NFHKi4u1sKFC5WXlxd73/d93X///Zo6daquuOIK9ezZU48++qg++eQTlZSUSJLKy8v18MMPa+7cuRo6dKh69+6txx9/XK+//rr++Mc/SpLeeustrVy5Uv/zP/+jAQMGaMCAAVq4cKFWrFih7du3S5JWrVqlbdu26fHHH1fv3r01dOhQzZ07VwsXLlRFRUX4lQIAAAAAn6HPBAAAACTh4MeYMWN08cUXa+jQoXHvv/vuu9qzZ48KCwtj72VmZuq8887Thg0bJEmlpaWqrq6Oi+nYsaN69uwZi/nzn/+s3Nxc9e/fPxbzjW98Q7m5uXExPXv2VMeOHWMxw4YNU2VlpUpLS+vNu7KyUhUVFXEvAAAAAHCNPhMAAACOqVbuZ33UKpKSasHzpUuX6rXXXtOmTZvqfLZnzx5JUrt27eLeb9eunf7+97/HYjIyMuLufjoSc+Tv9+zZo4KCgjrlFxQUxMUcvZ28vDxlZGTEYo42e/ZszZjhZnFfAAAAAKgPfSYAAADgsKQZ/Ni5c6fGjx+vVatWKSsr65hxnufF/dv3/TrvHe3omPriGxPzRbfeeqsmTpwY+3dFRYU6d+6sDRqgNGUfM7c7psxqMHdJ8gsb3j9JOr/wOWOMiswhT9de2uDnuaMrjWV4+ebtWCmz6BgtnmaOKd5qDPH9XsYYz7PpqJnLUZk5H2mZMcLQ7K34vrn+bPbbppyw9ulwOeHlbHXMDezalpndPrnheTbfKzftyxUX7cJd23LDVT5h7leUthXmsbIRtXyQPKJ2bkLiNNc+k+6WdEKD6X1ubOLasr/fPjbodWtUvoM213BfZNNPCkPQa8Yg9Z3I69GoHPdklshjGZWyg0rWdhWkDpN1HxOZd5TaYFBRyiVlJGKNDtb8OD6lpaXau3ev+vTpo7S0NKWlpWnt2rV64IEHlJaWFrur6Oi7iPbu3Rv7rH379qqqqlJZWVmDMf/617/qbP+DDz6Iizl6O2VlZaqurq5zd9MRmZmZysnJiXsBAAAAgCv0mQAAAIDPJc3gxwUXXKDXX39dW7Zsib369u2r4uJibdmyRaeddprat2+v1atXx/6mqqpKa9eu1cCBAyVJffr0UXp6elzM7t279cYbb8RiBgwYoPLycr3yyiuxmI0bN6q8vDwu5o033tDu3btjMatWrVJmZqb69OmT0HoAAAAAgPrQZwIAAIBRdYJeEZQ0j71q3bq1evbsGfdedna22rRpE3t/woQJmjVrlrp27aquXbtq1qxZOuGEE1RUdPh5Trm5ubrmmmt08803q02bNsrPz9ekSZN05plnxhYD7NGjh4YPH67rrrtOv/71ryVJP/zhDzVixAh1795dklRYWKgzzjhDo0eP1t133639+/dr0qRJuu6667g7CQAAAECToM8EAAAAo1q5X6CcBc8Tb/Lkyfr00091ww03qKysTP3799eqVavUunXrWMx9992ntLQ0XXnllfr00091wQUX6JFHHlHLli1jMYsXL9a4ceNUWFgoSRo5cqTmz58f+7xly5Z69tlndcMNN2jQoEFq1aqVioqKdM8994S3swAAAAAQEH0mAAAApArP932/qZNIRRUVFcrNzZVOLJe8Y9/55J9iXimv4tUMY8yXyz8wxkzJv8sYc2f+TGOMkc2C3qPMC+fdXjLVGHOHzPl6Fgu9+yXmGJtytNIixmYhdxt5hgWjXG3HyuXmEItjHmb9RWkR6KgtWh3mIuTOFrbOt9hWgEVMEy0ZF7lPRqZFXW0WcY3SAu2220rGnNE8HLn+LS8v585/WIn1mRaWSydYtpmx9uUn8rc/WReeZcHz4y87UXng+EWpnUSl7ChJhQXPEylV2kkyitI1cOza6tZyKctxLv+ukGZHYz+/KGnW/AAAAAAAAAAAALDRrB57BQAAAAAAAAAAjqFWUk0CyowgZn4AAAAAAAAAAIBmhZkfAAAAAIDouu4NSV+yi82zX4PCZk2wOAHWlkvks9ST9bnuQdcTkZYFiLVYY/ALorKOR/Iey+jknchjmcg1KILlHax9J6uotJOo5CEFyyV4G7Q/J0dlfScpWuefpFYjqWUCyowgZn4AAAAAAAAAAIBmhZkfTe1Aw3cxVXyQYSwiZ0qVMabqnznGmO8smWWMGehvaPDzi7xfGsvQYjcjxnd63zPHyM1dIN4SmzstLO5MyrMYcbaJsWG8M83NPtmMolvdVbfEfNeB3d0GburP1R1Ebspxc6dPmHc8RO3uCn9/ONuxuXvG1V0zVt89R+04asfTFRfHwtVxsCnH1XEI93iaz1+u6gcAAAAAYKFa7qdEVDsuzxEGPwAAAAAAAAAASAW1cr9AOQueAwAAAAAAAAAAJB4zPwAAAAAAAAAASAW1cr9AOTM/AAAAAAAAAAAAEo+ZHwAAAAAAAAAApIIauZ8S4XomiSMMfkTce2lVxphez1sU9KE55KwRvjko3/B5nkUuxVuNIbf7Txhj7iiaaYzxPIt8tMwcktfLHDPcImbJDHOMLreIsXH85fj+NGOM59nsU5jbstlv8zG3yceGTc4uthXmcXBVN2Hyiswxfsnxb8f3zeeBsNqEy3JshLlfnmf+HbHT8LnA1XkpzHKixuY7IdnEAAAAAAAQDIMfAAAAAAAAAACkgmpJVjeMBywzghj8AAAAAAA0D2UBZgfazO7+giAz8DzTjPmjy94fLD4Z2c0G/JznWczQb2TZQWYdupph7UKQXBI5YzSRZQet76jkErydBHlSg/134bDEzaqNShtMZDtJZNnJWieJFpV2haY1e/Zs3XbbbRo/frzuv/9+Z+Uy+AEAAAAAAAAAQCqo/ezlusxG2rRpkx566CH16uV+8Nb10iYAAAAAAAAAACCKahL0aoSPPvpIxcXFWrhwofLybBaTDobBDwAAAAAAAAAAcFwqKiriXpWVlQ3GjxkzRhdffLGGDh2akHx47FWTe0ZS1jE/tXmy46kXZBhjMsor7FNqQJVyGvx8yP6VxjLWeB2NMXeWzDTHGCMkqxpcbPG8wLEWm1ri6FmwNs8enm9RTnHDzzsO/lzcxLJ5xqO7Zzua993zzM+LdlWH5n0P8jzYY7OpvzCPg9WzsIebQ/wSNzFhCfMZpa6eUW2Ts7N2EeJztU05h/l9iFq7iNz5wnBOjtpvGgAAAABEVq0aPVOjwTIlde7cOe7tadOmafr06fX+ydKlS/Xaa69p06ZNjpP5HIMfAAAAAAAAAADguOzcuVM5OZ/fPJ+ZmXnMuPHjx2vVqlXKyjr2xIDjxeAHAAAAAAAAAACpoDpxZebk5MQNfhxLaWmp9u7dqz59+sTeq62t1Ysvvqj58+ersrJSLVu2PO60GPwAAAAAAAAAAAChuOCCC/T666/HvfeDH/xAX/3qVzVlyhQnAx8Sgx8AAAAAAAAAAKSGWkktElBmAK1bt1bPnj3j3svOzlabNm3qvH88GPwAAAAAAERWeXlPq8cnSJKXb1+uvz9YHp43I9gfBCm7aJp1rO/bxx4u2z7W93sFK9vbmrCyg+5nokQlj8Mut44M3l7ty5aWBSo5SB0Gbt8B9jNo2UHig9Z3sO9DsO9OVASvk8S1k0TlESWJzDuRxzLREnmOQHJg8KOpfedWKb2BC/kl041FvJdWZYx52r/UGLNBA40xd86f2eDna0qGG8uQ7C+QG7TCTTE25WT8rcIYU3W6xUmyzNG+F1ucvPMazidIR6VBo8z77ZeYi7H5QbLpzNp0Yu1+/MwX/4nsAMczdy5c/UjblONqv13lbJNPWNuK2sVSmPmEeRzC2q+oHU9XorZfbs4p0fqfAq6+D2F+rwAAAACkiBpJXgLKPE5r1qw5/kKOwuAHAAAAAAAAAACpIKKDH4ng+uleAAAAAAAAAAAATYqZHwAAAAAAAAAApIJEzNJg5gcAAAAAAAAAAEDiMfMDAAAAAAAAAIBUUCv3a37UOi7PEQY/mlj5w1JOzrE/n7HEXMYyi+1Mm7TGGHPpbU9blBSS4q1uysmbZo5ZMsMYUrXSopwyRzkPt4ixaBemcvySXjbZGHmeeb+9JTat1EKZ+VhJFsfKik3Olzspx/ePP2fPM9eNzXZsyrHhbls2dRweF8fKhs33yvfN32FX5diwOub5TjYVGpv6c/UdD/M7HOa5wFU+ycaujm2+n9Gqm1Q9ngAAAACSE4MfAAAAAAAAAACkAtb8AAAAAAAAAAAASE7M/AAAAAAARFZu7huSvmQVG+Rxjol9HGPAR3daPIr3CG9J0MeC2j+CNmjZgerb0SMVw5e4OgkqWH0He/RwsLwTt49BBXncYtA2GKTsRD72MZF5J/J7mayPwozSuSoqdZjoPBJZflTOEZGTQjM/GPwAAAAAAAAAACAV1EjyHZcZ0QXPeewVAAAAAAAAAABoVpj5kSJ+ds9txpiB2mAuqKjhj7+pdcYi7ho+xRhTtTLHGHN70VRjzJ2eMUQaZTFNbaVFOXmOpv4GmPLecDlbG/zYW2JTiMVU6cUW9VdsDrGZZm0zBdEmxmZqos1jEPz95hibKeGe1/CxsuFquqVV3VjkazVdNM/RFNEyczt11S5ccDWN2rM4vyXysQuNUhbecXBxzO3OS8EeKZEskm0Kt815ydXvjLvzbXj5uCon2doFAAAAgHokYpYGMz8AAAAAAAAAAAASj5kfAAAAAAAAAACkAtb8AAAAAAAAAAAASE7M/AAAAAAAAAAAIBWk0MwPBj+agVrfvJj5HatmmQtaZQ7xftPwN2PN/OHGMoYUmVcPn1J0lzHmopIXjDFabA6xYlg8XJI0ymJhYZuF03W5RczxL7BrtxCym8VYbRaVt1us1s2irmEujGvDxQKydoumu1mY2S5fNwu92x0HczZhLaLtasFgL9+ci7/fHOOKq2MVpcXMo7Qd23LCzCfMbblhPr+Fea5wJcz2BQAAAADNDYMfAAAAAIAIe0ZSllXk+fqnfbHDzTduxQswkLjEzU0y4Qt2s4zNwHJjRWXg1u4mo3AEufkqaP0lsuxE5ZHMbG52CkNUvmdBJbad2NyQ+kX2580ofS+j8p0PKug52e7G3yOx0dnPhKuRdMhxma7Lc4TBDwAAAAAAAAAAUkGt3D/2KqKDHyx4DgAAAAAAAAAAmhVmfgAAAAAAAAAAkApq5H5KBDM/AAAAAAAAAAAAEo+ZH81AS2+WMWalP8RcUKE55PZ7pjb4+Z35M41lfLNonTHmIu+X5mQWm0OsrDCH2CyQ5GrBMqtteRYLao1quByrxa3yHC32tMS8IJXdftssyBV0cbKm35aJTS52C3O5qWNniz7m2S881hCbfXe1IJ6LBdBc1Z/dAqM2i++Z27G776eNcL5XNuzals3xNB+HZFxcz925yQWbdmPzfXBzXgpTtI4DAAAAgMhj5gcAAAAAAAAAAEByYuYHAAAAAAAAAACpoFrM/AAAAAAAAAAAAEhGzPwAAAAAAETYJZK+ZBU5ReOtS12zZGPAPAKsS7U44Fo7Y4OFB1JmH2qzztcXBVrLzNV6gvXmEWztsSBrISWyThK5JpO79djClSrrVPn7g0QHq5PEHnv782Dw705U2qzNOnGfS2SbDVJ20LUlo/RdC5Z7sOOTjGv6heKQJN9xma7LcyRpZn7Mnj1b55xzjlq3bq2CggJddtll2r59e1yM7/uaPn26OnbsqFatWmnIkCF6880342IqKyt14403qm3btsrOztbIkSO1a9euuJiysjKNHj1aubm5ys3N1ejRo3XgwIG4mPfff1+XXHKJsrOz1bZtW40bN05VVVUJ2XcAAAAAMKHPBAAAAKOaBL0iKGlmfqxdu1ZjxozROeeco5qaGk2dOlWFhYXatm2bsrOzJUlz5szRvffeq0ceeUTdunXTz3/+c1144YXavn27WrduLUmaMGGCnnnmGS1dulRt2rTRzTffrBEjRqi0tFQtW7aUJBUVFWnXrl1auXKlJOmHP/yhRo8erWeeeUaSVFtbq4svvlhf/vKXtX79eu3bt09XXXWVfN/XvHnznO73tOfNMTOGmWM2aODxJyNpUu09DX5+5/CZxjLuLDLH+BajhV6ROcYVm1Ho2/0njDE2+565v8IqJ6MlDeecse8mYxFVKy22U2xx58co80i7l2+xLQs2d5c4u6Mkz+IOgjJz2zHnE+Auw+Nkc/eH3V0ZFndjWNyF6HlB7+qon91+hXOnUdA7oI7F5jhE6W4eyV0+rtqFG+ZcXO23q3ZsU07U2o5pv+zqxnysXNWfjagdqzD3HYmTqn0mAAAAoD5JM/hx5KL6iEWLFqmgoEClpaU699xz5fu+7r//fk2dOlVXXHGFJOnRRx9Vu3btVFJSoh/96EcqLy/Xww8/rP/93//V0KFDJUmPP/64OnfurD/+8Y8aNmyY3nrrLa1cuVIvv/yy+vfvL0lauHChBgwYoO3bt6t79+5atWqVtm3bpp07d6pjx46SpLlz5+rqq6/WzJkzlZOTE2LNAAAAAAB9JgAAAFiokeQ5LpPHXrlVXl4uScrPP3y7+Lvvvqs9e/aosLAwFpOZmanzzjtPGzZskCSVlpaquro6LqZjx47q2bNnLObPf/6zcnNzYxfxkvSNb3xDubm5cTE9e/aMXcRL0rBhw1RZWanS0tJ6862srFRFRUXcCwAAAAAShT4TAAAAUllSDn74vq+JEydq8ODB6tmzpyRpz549kqR27drFxbZr1y722Z49e5SRkaG8vLwGYwoKCupss6CgIC7m6O3k5eUpIyMjFnO02bNnx56Hm5ubq86dOwfdbQAAAACwQp8JAAAA9apO0CuCknLwY+zYsdq6dauWLFlS5zPPi5+z4/t+nfeOdnRMffGNifmiW2+9VeXl5bHXzp07G8wJAAAAABqLPhMAAABSXdINftx4441avny5XnjhBXXq1Cn2fvv27SWpzl1Ee/fujd1x1L59e1VVVamsrKzBmH/96191tvvBBx/ExRy9nbKyMlVXV9e5u+mIzMxM5eTkxL0AAAAAwDX6TAAAADim2gS9IihpFjz3fV833nijli1bpjVr1qhLly5xn3fp0kXt27fX6tWr1bt3b0lSVVWV1q5dq7vuukuS1KdPH6Wnp2v16tW68sorJUm7d+/WG2+8oTlz5kiSBgwYoPLycr3yyivq16+fJGnjxo0qLy/XwIEDYzEzZ87U7t271aFDB0nSqlWrlJmZqT59+rjd8VVuimnpzTLGTLvZXM7WuQ1/nrHPzXN5z9cGi6jh5pARx53KZ+X0MobcabNQ0ChzSNVKcycvY99Nx11OVZsZ5mTyppljbNgchyUW+Sw25+N5FuW4UmazrcvNIaZ6LttqLMJmv30/YvWnZY7KMdex55nrMPnY1J/53GXDXfuyOQ7m/bLZlg037cLiO27BVR27q5vwzilh7ZeruomaMOvY1baQOCnbZwIAAADqkTSDH2PGjFFJSYmefvpptW7dOnYXUW5urlq1aiXP8zRhwgTNmjVLXbt2VdeuXTVr1iydcMIJKioqisVec801uvnmm9WmTRvl5+dr0qRJOvPMMzV06FBJUo8ePTR8+HBdd911+vWvfy1J+uEPf6gRI0aoe/fukqTCwkKdccYZGj16tO6++27t379fkyZN0nXXXcfdSQAAAACaBH0mAAAAWPGbOoFwJM3gx4IFCyRJQ4YMiXt/0aJFuvrqqyVJkydP1qeffqobbrhBZWVl6t+/v1atWqXWrVvH4u+77z6lpaXpyiuv1KeffqoLLrhAjzzyiFq2bBmLWbx4scaNG6fCwkJJ0siRIzV//vzY5y1bttSzzz6rG264QYMGDVKrVq1UVFSke+65J0F7DwAAAAANa759pmckZVlFbtBA61L956cHysJ7JMDMpuKAs2ldzbiul/1sW8PSL3X4vv0s06AzLj3P1Szh+soOcHwCHpsgdRJUsFnabmanhi1oO0lkG3Q3U/34BJ1VGSQ+6Mz/RLbvIG02aB5B9jORs1i9/GDx/v4g0UHbayKPZTDBvscR+W0I5N8JKhc2kmbww/fNw1Ge52n69OmaPn36MWOysrI0b948zZs375gx+fn5evzxxxvc1sknn6wVK1YYcwIAAACAMNBnAgAAAD6XdAueAwAAAAAAAAAANITBDwAAAAAAAAAA0KwkzWOvUlXmbeXGmNvm5jrZ1s/uuc0YM/CeDQ1/roY/t7WmZLgx5vaSqcaYdfqmk23ZyNh3qjGm6nQnm1JV8X3moMWG51SaPpekYotnouZZPJvRohyb52raPaM1Ws+2HeL/0xizxvBsZZvnX9o899IrMYZYMtdxYp8FG8/quall5md32rXB438GqKvthJWvy23ZlWPRlh1ty3T+snnGrk0uiXwubWOE2b7cndvDqcNEPuM5UdtKxpwBAAAAIAzM/AAAAAAAAAAAAM0KMz8AAAAAAAAAAEgJ1Z+9XJcZPcz8AAAAAAAAAAAAzQozPwAAAAAAAAAASAk1n71clxk9DH4AAAAAACKrvPxW5eTkWMV6Jfbl3rliZiMzspA3LVh82YwAwZcHKzuIvF6Bwr38BOURVALr298frGjP2xrsDxJmWcB4+3bleUHaa2J5nn2s7wds3559Hfp+sDYYpA6D1nfQXIII0r6D1nei8pASXScBjk/Ac1Wwc2yw34aoHEspWB0m8lgmquyKigrl5v4iIWXDjMGPiKtq815o22rpzTLGXLqvvMHPB+ZvMJbxdO2lxpgvD//AGDOp9h5jzF3lU4wxKrY5yZp/RKosStEoix+MJRY/QKPMJ+QhRSsb/HyN19G8HRtlFvladKJsftRtfnCtfjQt6s+Gb9G5trsYb/ii2st3dKGxwhxi82NvU8dWOVu0HauLLKtyHB1zB+W46izaXQjbXACbO3U2ObtqO4m8mK3D+D8+zLlEbb/D/B8u7r5XNue4hmOi9D9hbLnKOdTvDAAAAIBmIHXW/GDwAwAAAAAAAACAlJA6j71iwXMAAAAAAAAAANCsMPMDAAAAAAAAAICUUCP3j6li5gcAAAAAAAAAAEDCMfMj4mwWAZ1htaCyG7e1yW3w85tqMoxlfLncvJj5lPy7jDGX6mljjM0C7GuMEZIWO1pweqxFjMXi4BphDlmTP7zhgMUWuVgwLax+OBc39We1kG+excKvFvVnc6ycLbBrytlmUXmbRdyXWCxUvsRmgWybGDOrBewtFvV2Vs5+c4zpmNssPOxqgWzzYt2yaxcrbRaVD28x6SgtXO1q8fBwF6Q2L2AfJrs6NOdsqkNn36sQsVA5AAAAgKaROgueM/MDAAAAAAAAAAA0K8z8AAAAAAAAAAAgJdTI/RodrPkBAAAAAAAAAACQcMz8AAAAAAA0D8X26zWV15wTqOjcJyrtg5e4WTeqXjZrBMZxtH5hPWzWTDvCC7xWZYB15gzLHdaxxD408JpRiwOs6RSgvUpRWi8qWJtytY5a/ezXO/O8oGuj2bdBryhg0YEEW3PRZr3DGJs1M78owHctUB6yW8sxVnbA72Ww808C19ALuJZikO988PZtL5HfnaCCr+Nnn0uQNpj8auR+jY5gMz9mz56t3/3ud/rLX/6iVq1aaeDAgbrrrrvUvXt3p1kx8wMAAAAAAAAAgJRQk6CXvbVr12rMmDF6+eWXtXr1atXU1KiwsFAff/zx8e/eFzDzoxmYdrM5ZsZcR9t6vuHPf9ZykrGMyldzjTGZfcuNMVUrc4wxWmEO0SjzrQu3F001xgzUBmPMXUVTjDFrSoLetnQMpmLGWpQx3xyypsgiX5u7G2zuOLG5y83qTgqLbdkcBps7xkZZbGul4XOb/ba5u9CijoPcvdcQm7u7vHyb42lzl5ibduHlR+VOOsnu7hSLu28s2oXd3S2O6sbmex7wbqhjsblLytxO3dw9ZXenmXlbru72dFM3tm0nvP2KynZcCn5nW/3sjrl5W8dfzr+Nfw8AAACg+Vu5Mv5/hi1atEgFBQUqLS3Vueee62w7DH4AAAAAAAAAAJASquX+sVeHy6uoqIh7NzMzU5mZmca/Li8/fCN8fn7AZ+YZ8NgrAAAAAAAAAABwXDp37qzc3NzYa/bs2ca/8X1fEydO1ODBg9WzZ0+n+TDzAwAAAAAAAACAlBB8jQ67MqWdO3cqJ+fzpQpsZn2MHTtWW7du1fr16x3nxOAHAAAAAAAAAAA4Tjk5OXGDHyY33nijli9frhdffFGdOnVyng+DHwAAAAAAAAAApIQauV/zI9hMEt/3deONN2rZsmVas2aNunTp4jifwxj8aA7u8Y0h0/7PCyERaaA2GGO2DjOXM8W/yxhz54qZxhj/avN+e/9prr87S8zbeq7ofGPMN7XOGLNmxXBjjBM2m1lhETPCHOKXTDPG/ExTjTF3ehkWCVmw2C+/xBzjrTTvl1U5RYaAleYypGXmkDJzjBfOqeIwi3yky51syvfNx8qG5zWcj+fNcLIdZ/J6GUM8b6sxxvfN5Vgpc1M/NsfTxbFw1W5seJ7N98HMqm5M5xzZHXO7OnbzHXbB1ffT3fnEnE+YbdDVthoqp6KiQrm5v3CyHQAAAADJa8yYMSopKdHTTz+t1q1ba8+ePZKk3NxctWrVytl2GPwAAAAAADQLQQbsV2pgoLKHFFndkSJJWjM22A1NGX871Tq2qo35xoVGGxXshgebAfXPBRzozwswKGtxQ9YX2dycdYSXH6xsFdsfn6A3mASq7yVBB/3tb1jI2HdqsKItbsiJKQvYvoO0k6CC3LizJOiNLEFuEAlYttVNZocFvfnB5sapzwXLO5E34gX5rgW+KWlUgDoM/L20F/hYWtyoGRPgvHZYsDoMknvwG5qC5OLopr+kkLg1P2wtWLBAkjRkyJC49xctWqSrr77aUU4MfgAAAAAAAAAAkCKq5f6xV8HK833zk3hcaBHKVgAAAAAAAAAAAELCzA8AAAAAAAAAAFJC0z/2KizM/AAAAAAAAAAAAM0KMz9SxWbzc9RmWKwuVVt4W4Oft/RmGcuYvticy3M63xiTMb/CGHN+/nPGGKsF1VaYFz26aOwLbra12ByisRYxhm3ZLPh1vsyLOq7xNhpjflZUZYy5M3+mMUajzCEWKVstiGi1+JfFOpZ2i3E1vNidzbFytTiczUJjwRcYOxbzIn92+27Ox9V+mcqxWxzPZnHDoAsmHoPVgpHmbdm1L0f7brEgps3Coy6OeZTalkt+kMUNGyrH2fkinIUFXeXr6hwY5jG30Vz3CwAAAMDRauR+zQ9mfgAAAAAAAAAAACQcMz8AAAAAAAAAAEgJrPkBAAAAAAAAAACQlJj5AQAAAAAAAABASqiW+zU/XJfnBoMfAAAAAICUM1wvBIq/yNtqH5wXLJeqNu8FiF4WrPBAegULXzIjQPDlwcoOYkXA+CL7UH9/wLID1KEXpE0F5PvTAsV7nv2xrMwPVrYC1KHnBWzfZYn8PthLZH0nsuwgsYGNCpa3X2Ifm9C8AwqU95Jg58Fg+xn0HBvkuxOs7KBtNiplpxYGP5CCpvm+McYzntS/Z95QsfkC76LiX5rL0XvGiDWjhhtjMvZVGGOq2ri5KPX9gJ2JY/As6tD0Q+Z5NlvaaA6xuKC5w2JLd5aZf9T9kvB+5GwuMqx+dEPL2Xwx4qr92UjVCxJ3+20+VjadZbtj7qpdODq/ufruWXBRjl2HJIH/s+coYdZfmNtyIWp1EzVROlYAAAAA4AKDHwAAAAAAAAAApAQWPAcAAAAAAAAAAEhKzPwAAAAAAAAAACAl1Mj9Gh3M/AAAAAAAAAAAAEg4Zn4AAAAAAAAAAJASUmfNDwY/EIhfZAgo6hVKHm7lmEP8aO2Xb5WPi5zD22/fnxbatmxELR8TuzbhalvRqhtX+URtv0zCPOZhSr7jEK18w8wnavtuQt0AAAAAQGph8AMAAAAAAAAAgJRQLffDAq7XEHHD833fb+okUlFFRYVyc3NVXl6unByLmQcAAABAEuP6F0HRZgAAQLKL0vXMkVykuyS1clz6p5KmRGI/v4gFzwEAAAAAAAAAQLPCY68AAAAAAAAAAEgJNXL/mKpoLnjOzA8AAAAAAAAAANCsMPMDAAAAAAAAAICUUCP3MzWY+QEAAAAAAAAAAJBwDH4chwcffFBdunRRVlaW+vTpo3Xr1jV1SgAAAAAQKfSbAAAAoqQ6Qa/oYfCjkZ544glNmDBBU6dO1ebNm/XNb35TF110kd5///2mTg0AAAAAIoF+EwAAAJqK5/u+39RJJKP+/fvr7LPP1oIFC2Lv9ejRQ5dddplmz55dJ76yslKVlZWxf5eXl+vkk0/Wzp07lZOTE0rOAAAAQFOpqKhQ586ddeDAAeXm5jZ1OghJkH4TfSYAANDcROkauKKi4rMcbpKU6bj0Skn3qby8PFLXbSx43ghVVVUqLS3VLbfcEvd+YWGhNmzYUO/fzJ49WzNmzKjzfufOnROSIwAAABBF+/bta/KOH8IRtN9EnwkAADRXUbgGzsjIUPv27bVnz30JKb99+/bKyMhISNmNxeBHI3z44Yeqra1Vu3bt4t5v166d9uzZU+/f3HrrrZo4cWLs3wcOHNApp5yi999/v8kbPpLDkZFi7nyDLdoMgqLNICjaDII4chd/fn5+U6eCkATtN9Fnan74nUh+HMPkxzFMbhy/5Bela+CsrCy9++67qqqqSkj5GRkZysrKSkjZjcXgx3HwPC/u377v13nviMzMTGVm1p1OlJuby8kLgeTk5NBmEAhtBkHRZhAUbQZBtGjBsoOpxrbfRJ+p+eJ3IvlxDJMfxzC5cfySX1SugbOysiI3QJFI0aj1JNO2bVu1bNmyzt1Ke/furXNXEwAAAACkIvpNAAAAaEoMfjRCRkaG+vTpo9WrV8e9v3r1ag0cOLCJsgIAAACA6KDfBAAAgKbEY68aaeLEiRo9erT69u2rAQMG6KGHHtL777+v66+/3urvMzMzNW3atHqndQP1oc0gKNoMgqLNICjaDIKgvaSm4+k30WaSH8cw+XEMkx/HMLlx/JIfx7Bpeb7v+02dRLJ68MEHNWfOHO3evVs9e/bUfffdp3PPPbep0wIAAACAyKDfBAAAgKbA4AcAAAAAAAAAAGhWWPMDAAAAAAAAAAA0Kwx+AAAAAAAAAACAZoXBDwAAAAAAAAAA0Kww+AEAAAAAAAAAAJoVBj8S6MEHH1SXLl2UlZWlPn36aN26dQ3Gr127Vn369FFWVpZOO+00/fd//3dImSIqgrSZ3/3ud7rwwgv15S9/WTk5ORowYICef/75ELNFFAQ9zxzx0ksvKS0tTV//+tcTmyAiJWh7qays1NSpU3XKKacoMzNTX/nKV/Sb3/wmpGwRBUHbzOLFi3XWWWfphBNOUIcOHfSDH/xA+/btCylbNLUXX3xRl1xyiTp27CjP8/T73//e+Ddc/4I+U/KjD5P86FMkN67xkx/X3MmNa+CI85EQS5cu9dPT0/2FCxf627Zt88ePH+9nZ2f7f//73+uN37Fjh3/CCSf448eP97dt2+YvXLjQT09P95988smQM0dTCdpmxo8f7991113+K6+84r/99tv+rbfe6qenp/uvvfZayJmjqQRtM0ccOHDAP+200/zCwkL/rLPOCidZNLnGtJeRI0f6/fv391evXu2/++67/saNG/2XXnopxKzRlIK2mXXr1vktWrTwf/nLX/o7duzw161b53/ta1/zL7vsspAzR1P5wx/+4E+dOtV/6qmnfEn+smXLGozn+hf0mZIffZjkR58iuXGNn/y45k5+XANHG4MfCdKvXz//+uuvj3vvq1/9qn/LLbfUGz958mT/q1/9atx7P/rRj/xvfOMbCcsR0RK0zdTnjDPO8GfMmOE6NURUY9vM9773Pf+nP/2pP23aNDoqKSRoe3nuuef83Nxcf9++fWGkhwgK2mbuvvtu/7TTTot774EHHvA7deqUsBwRXTYdP65/QZ8p+dGHSX70KZIb1/jJj2vu5oVr4OjhsVcJUFVVpdLSUhUWFsa9X1hYqA0bNtT7N3/+85/rxA8bNkyvvvqqqqurE5YroqExbeZohw4d0sGDB5Wfn5+IFBExjW0zixYt0jvvvKNp06YlOkVESGPay/Lly9W3b1/NmTNHJ510krp166ZJkybp008/DSNlNLHGtJmBAwdq165d+sMf/iDf9/Wvf/1LTz75pC6++OIwUkYS4vo3tdFnSn70YZIffYrkxjV+8uOaOzVxPROutKZOoDn68MMPVVtbq3bt2sW9365dO+3Zs6fev9mzZ0+98TU1Nfrwww/VoUOHhOWLpteYNnO0uXPn6uOPP9aVV16ZiBQRMY1pM3/96191yy23aN26dUpL4/SfShrTXnbs2KH169crKytLy5Yt04cffqgbbrhB+/fv55nAKaAxbWbgwIFavHixvve97+nf//63ampqNHLkSM2bNy+MlJGEuP5NbfSZkh99mORHnyK5cY2f/LjmTk1cz4SLmR8J5Hle3L9936/znim+vvfRfAVtM0csWbJE06dP1xNPPKGCgoJEpYcIsm0ztbW1Kioq0owZM9StW7ew0kPEBDnHHDp0SJ7nafHixerXr5++9a1v6d5779UjjzzCnWEpJEib2bZtm8aNG6ef/exnKi0t1cqVK/Xuu+/q+uuvDyNVJCmuf0GfKfnRh0l+9CmSG9f4yY9r7tTD9Ux4GKZPgLZt26ply5Z1Rmn37t1bZ2TviPbt29cbn5aWpjZt2iQsV0RDY9rMEU888YSuueYa/fa3v9XQoUMTmSYiJGibOXjwoF599VVt3rxZY8eOlXT4wtf3faWlpWnVqlX6j//4j1ByR/gac47p0KGDTjrpJOXm5sbe69Gjh3zf165du9S1a9eE5oym1Zg2M3v2bA0aNEg/+clPJEm9evVSdna2vvnNb+rnP/85dzChDq5/Uxt9puRHHyb50adIblzjJz+uuVMT1zPhYuZHAmRkZKhPnz5avXp13PurV6/WwIED6/2bAQMG1IlftWqV+vbtq/T09ITlimhoTJuRDt8tdfXVV6ukpITnO6aYoG0mJydHr7/+urZs2RJ7XX/99erevbu2bNmi/v37h5U6mkBjzjGDBg3SP//5T3300Uex995++221aNFCnTp1Smi+aHqNaTOffPKJWrSIv7Rs2bKlpM/vZAK+iOvf1EafKfnRh0l+9CmSG9f4yY9r7tTE9UzIwlxdPZUsXbrUT09P9x9++GF/27Zt/oQJE/zs7Gz/vffe833f92+55RZ/9OjRsfgdO3b4J5xwgn/TTTf527Zt8x9++GE/PT3df/LJJ5tqFxCyoG2mpKTET0tL83/1q1/5u3fvjr0OHDjQVLuAkAVtM0ebNm2af9ZZZ4WULZpa0PZy8OBBv1OnTv53vvMd/8033/TXrl3rd+3a1b/22mubahcQsqBtZtGiRX5aWpr/4IMP+u+8846/fv16v2/fvn6/fv2aahcQsoMHD/qbN2/2N2/e7Evy7733Xn/z5s3+3//+d9/3uf5FXfSZkh99mORHnyK5cY2f/LjmTn5cA0cbgx8J9Ktf/co/5ZRT/IyMDP/ss8/2165dG/vsqquu8s8777y4+DVr1vi9e/f2MzIy/FNPPdVfsGBByBmjqQVpM+edd54vqc7rqquuCj9xNJmg55kvoqOSeoK2l7feessfOnSo36pVK79Tp07+xIkT/U8++STkrNGUgraZBx54wD/jjDP8Vq1a+R06dPCLi4v9Xbt2hZw1msoLL7zQ4LUJ17+oD32m5EcfJvnRp0huXOMnP665kxvXwNHm+T5zogAAAAAAAAAAQPPBmh8AAAAAAAAAAKBZYfADAAAAAAAAAAA0Kwx+AAAAAAAAAACAZoXBDwAAAAAAAAAA0Kww+AEAAAAAAAAAAJoVBj8AAAAAAAAAAECzwuAHAAAAAAAAAABoVhj8AAAAAAAAAAAAzQqDHwAAAAAAAAAAoFlh8AMA0OwMGTJEEyZMaOo0AAAAADQx+gYAkLoY/AAAwLFzzz1XnufVeRUXF1v9/dVXX61bbrnFWXkAAAAAmgZ9AwBoOmlNnQAAAJJUVVWljIyMpk7juPm+ry1btuiee+6p0wH50pe+ZPz7Q4cO6dlnn9Xy5cudlAcAAAAkG/oGh9E3AIDjw8wPAEAdvu9rzpw5Ou2009SqVSudddZZevLJJ2OfDxkyROPGjdPkyZOVn5+v9u3ba/r06YHLGDt2rCZOnKi2bdvqwgsvlCQdPHhQxcXFys7OVocOHXTffffFTVV/7LHH1KZNG1VWVsZt79vf/ra+//3v17s/lZWVGjdunAoKCpSVlaXBgwdr06ZNsc+ffPJJnXnmmWrVqpXatGmjoUOH6uOPP7b+/Iv++te/6uDBgzr33HPVvn37uJdNh+Sll15SixYt1L9/fyflAQAAAMeDvgF9AwBIVgx+AADq+OlPf6pFixZpwYIFevPNN3XTTTfpv/7rv7R27dpYzKOPPqrs7Gxt3LhRc+bM0R133KHVq1cHLiMtLU0vvfSSfv3rX0uSJk6cqJdeeknLly/X6tWrtW7dOr322muxv/nud7+r2tra2N1PkvThhx9qxYoV+sEPflDv/kyePFlPPfWUHn30Ub322ms6/fTTNWzYMO3fv1+7d+/WqFGj9P/+3//TW2+9pTVr1uiKK66Q7/uSZPz8aKWlpUpLS1OvXr0aUfPS8uXLdckll6hFixZOygMAAACOB30D+gYAkLR8AAC+4KOPPvKzsrL8DRs2xL1/zTXX+KNGjfJ93/fPO+88f/DgwXGfn3POOf6UKVMClfH1r3897vOKigo/PT3d/+1vfxt778CBA/4JJ5zgjx8/Pvbej3/8Y/+iiy6K/fv+++/3TzvtNP/QoUOxso/Ef/TRR356erq/ePHiWHxVVZXfsWNHf86cOX5paakvyX/vvffqrQ/T50ebNGmS73men52dHfe69tprrf6+W7du/vLlywOV98wzz/jdunXzTz/9dH/hwoVW2wEAAABM6BvEo28AAMmFNT8AAHG2bdumf//737Gp5kdUVVWpd+/esX8ffbdRhw4dtHfv3kBl9O3bN+7zHTt2qLq6Wv369Yu9l5ubq+7du8fFXXfddTrnnHP0j3/8QyeddJIWLVqkq6++Wp7n1dmfd955R9XV1Ro0aFDsvfT0dPXr109vvfWWJk6cqAsuuEBnnnmmhg0bpsLCQn3nO99RXl6eJOmss85q8POjlZaW6rvf/a5mzpwZ9/6x4r/orbfe0q5duzR06FDr8mpqajRx4kS98MILysnJ0dlnn60rrrhC+fn5xu0BAAAADaFvQN8AAJIZgx8AgDiHDh2SJD377LM66aST4j7LzMyM/Xd6enrcZ57nxf7Wtozs7Oy4z/zPposf3VHxj5pG3rt3b5111ll67LHHNGzYML3++ut65pln6t2fhsr0PE8tW7bU6tWrtWHDBq1atUrz5s3T1KlTtXHjRnXp0sX4+dE2b96sO+64Q6effnq9+bzxxhu69NJL9dJLL6l9+/b68MMPNXToUL3yyitavny5LrzwQrVq1cq6vFdeeUVf+9rXYvX8rW99S88//7xGjRpVbzwAAABgi74BfQMASGas+QEAiHPGGWcoMzNT77//vk4//fS4V+fOnRNaxle+8hWlp6frlVdeib1XUVGhv/71r3Vir732Wi1atEi/+c1vNHTo0GOWe/rppysjI0Pr16+PvVddXa1XX31VPXr0kHS48zNo0CDNmDFDmzdvVkZGhpYtWxaLN31+xI4dO3TgwIG4O9iO1rNnT/3nf/6n/vSnP0mSZsyYoSlTpigjI0NPP/20Ro4cGai8f/7zn3GdyE6dOukf//jHMeMBAAAAW/QN6BsAQDJj5gcAIE7r1q01adIk3XTTTTp06JAGDx6siooKbdiwQV/60pd01VVXJayM1q1b66qrrtJPfvIT5efnq6CgQNOmTVOLFi3q3J1VXFysSZMmaeHChXrssceOmUt2drZ+/OMfx8o8+eSTNWfOHH3yySe65pprtHHjRv3f//2fCgsLVVBQoI0bN+qDDz6IdX5Mn39RaWmpJKldu3bas2dP3GcFBQWxhQq/9rWv6e2339bf/vY3lZaW6oEHHtDevXu1adMm/f73vw9U3tF3vkl172QDAAAAGoO+AX0DAEhmDH4AAOq48847VVBQoNmzZ2vHjh068cQTdfbZZ+u2225LeBn33nuvrr/+eo0YMUI5OTmaPHmydu7cqaysrLi4nJwcffvb39azzz6ryy67rMEyf/GLX+jQoUMaPXq0Dh48qL59++r5559XXl6ecnJy9OKLL+r+++9XRUWFTjnlFM2dO1cXXXRRbDsNff5Fr732miSpW7duce+np6fr4MGDsWn9Xbt21YoVK3Tbbbdp5syZ8jxPzzzzjPr376+CgoJA5Z100klxd3Pt2rVL/fv3b7A+AAAAAFv0DegbAECy8vz6hoUBAIiIjz/+WCeddJLmzp2ra665Ju6zCy+8UD169NADDzzQRNk1zoEDB9S1a1f1799fK1askCSNHDlSgwcP1uTJkwOVVVNTox49emjNmjWxRQ1ffvlltWnTJhGpAwAAAE2GvkHD6BsAQDxmfgAAImXz5s36y1/+on79+qm8vFx33HGHJOnSSy+Nxezfv1+rVq3Sn/70J82fP7+pUm20E088UdLhu86OGDx4cKMWIkxLS9PcuXN1/vnn69ChQ5o8eTKdGwAAADQL9A2CoW8AAPGY+QEAiJTNmzfr2muv1fbt25WRkaE+ffro3nvv1ZlnnhmLOfXUU1VWVqbbb79dkyZNasJsG6e6ulo9e/bU9u3bmzoVAAAAILLoGwAAjgczPwAAkdK7d+/YYn7H8t5774WTTIL85S9/Uffu3Zs6DQAAACDS6BsAAI4HMz8AAAAAAAAAAECz0qKpEwAAAAAAAAAAAHCJwQ8AAAAAAAAAANCsMPgBAAAAAAAAAACaFQY/AAAAAAAAAABAs8LgBwAAAAAAAAAAaFYY/AAAAAAAAAAAAM0Kgx8AAAAAAAAAAKBZYfADAAAAAAAAAAA0Kwx+AAAAAAAAAACAZoXBDwAAAAAAAAAA0Kww+AEAAAAAAAAAAJqV/w/L7UeDGXCSJAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#downstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(down_energyloss_found, down_energy_found, bins=(np.linspace(0,1,80), np.linspace(0,1.5e5,80)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0$\")\n",
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
"\n",
"a1=ax1.hist2d(down_energyloss_lost, down_energy_lost, bins=(np.linspace(0,1,50), np.linspace(0,1.5e5,50)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0$\")\n",
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$B\\rightarrow K^\\ast ee$, $p>5$GeV, Downstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 170,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk4AAAJOCAYAAADxgPt3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADT4UlEQVR4nOzdd3gU1f7H8c+mh5AsoSWEDiK9KB3UgHRpFoqgkSZyBUQE7NIsoIKAgu3nVUG6Si8iBBCkdxH0ClxBUAigQgJIIOX8/oDsdUnbCbumvV/Psw/szHfOnDkzmZ2zZ885NmOMEQAAAAAAAAAAAOSV3RkAAAAAAAAAAADIKWg4AQAAAAAAAAAAuI6GEwAAAAAAAAAAgOtoOAEAAAAAAAAAALiOhhMAAAAAAAAAAIDraDgBAAAAAAAAAAC4joYTAAAAAAAAAACA62g4AQAAAAAAAAAAuI6GEwAAAAAAAAAAgOtoOAEAAAAAAAAAALiOhhMAAJCj9O7dW9OnT8/ubMBF+/fv1/Hjx7M7GwAAAAAAuA0NJwAAAMiy//u//9O6deuyOxsAAAAAALgNDScAACBPmT9/vqpXr67AwEDZbDbt27cvu7OUoZUrV8pmszm9QkJCVLduXX3++ef/2P4/++wzp+Xnzp1Tu3bt5Ofnp2nTpjmt27hxo/r3768zZ844lv3www+6//77dfr0aY/nOTf55ptvUp3flNe2bdtSxe/fv1/9+vVTxYoVFRgYqMDAQFWqVEkDBgzQrl27spSH++67T4GBgTp//ny6MQ899JB8fX0tn78xY8bIZrPp999/T3N9jRo11KxZM0tpumrLli0aM2ZMhseVH2R2DrIiP5RtUlKSihcvrsmTJ6cb44myzQ3y8vnfsWOH2rRpo+DgYBUsWFDNmzfX5s2bnWKs3rcvXryooUOHKiIiQgEBAapTp47mzZuX5v6txAIAgOxFwwkAAMh2HTp0UKFChVSoUCHNmTNHAwcOdLx//fXXXU7n7NmzioqKUsWKFbVq1Spt3bpVt956qwdzfvP27NkjSVqyZIm2bt2qLVu26KOPPtKlS5fUo0cP7d+//x/Zf926dR3L9u/fr3r16mnv3r1at26dBg8e7LRN3bp1FRYWplq1amnt2rWaNm2aWrVqpbZt26pYsWIezW9uNW7cOG3dutXpVaNGDaeYDz/8UHXr1tX27dv15JNPavny5VqxYoWGDh2qgwcPqn79+vrvf/9red/9+vVTfHy85syZk+b62NhYLVq0SB06dFBYWFiWji87bNmyRWPHjs2TX+5mt/xQths3btTZs2d1//33Z3dWcpy8ev537typu+66S5cvX9bMmTM1c+ZMxcfHq0WLFtq6dWuqeFfu25J0//33a8aMGRo9erS++uor1a9fXz169EjznmslFgAAZC+f7M4AAADA8uXLHf/v3bu3mjVrpt69e1tO59ChQ0pISNDDDz+syMjIdOP++usvFShQICtZdbs9e/bIbrerU6dOjmWNGzdWYmKiHn74Ye3du1e1atXy6P4DAwNVpUoVSdK8efPUr18/1apVSwsWLFBERESqbYKCgvTyyy8rOTlZ48ePl5eXl2bPnq0HH3zQY/nMDn/++aeSk5NVtGjRm06rUqVKatSoUbrrN2/erIEDB6p9+/b68ssv5efn51h39913a9CgQfriiy8UGBhoed/t2rVTRESEPvnkEw0cODDV+rlz5+ry5cvq16+f5bRzk5z0d4/s9+WXX6pevXoqW7asR9Lnessep06dUlBQkEJCQlKtGzlypAoVKqRVq1Y5zk3Lli1VoUIFjRgxIlXPk8zu29K1Xptr1qzRnDlz1KNHD0lS8+bN9csvv+jpp59W9+7d5e3tbTkWAABkP3qcAAAAj9i0aZNat24tu92u0NBQtW/fXocPH/bY/nr37q077rhDktS9e3fZbDY1a9bMMdTKnj171KVLF4WGhqpixYpO+WzRooWCg4NVoEABNWnSRCtWrHBKOyWN/fv3q2vXrrLb7SpcuLCGDRumxMRE/fTTT2rbtq2Cg4NVrlw5vfnmmy7ne/fu3apTp06q5b/++qskqWrVqlkoDWny5MlavHixpf2PGDFCPXr00EMPPaQNGzak2WgiSd9//71uv/127dmzR/fcc4/69u2r1157Te3bt890SBtXrwt3Xz8dO3ZUvXr19NFHH6l27doKDAxU6dKlNXr0aCUnJ6e5zf79+1WiRAm1a9dOn332mS5cuJDl/Wdm3Lhx8vb21ocffujUaPJ3Xbt2TXVODh8+rJ49e6p48eLy9/dX1apV9e677zrFeHt7q1evXtq9e7e+//77VOl++umnjuP0tJS/pb179+r+++9XSEiI7Ha7Hn74YZ09e9YRd/bsWT322GMqXbq0/P39VaxYMTVt2lTR0dGOdJ5++mlJUvny5R3D6HzzzTdO+0nv796Vcjty5Ij69OmjSpUqqUCBAipZsqQ6duyYqgw9dX9wtaxSnD59Wj169JDdbldYWJj69u2r2NjYVHGZ3fMyK1tX7pl/z//BgwczzFdm5zotBw8elM1m0xdffOFYtnv3btlsNlWvXt0ptlOnTk496iTJGKNFixbpgQceSHcff3fixIkMz4E7rjdPfs5I0uLFi2Wz2bR27dpU695//33HvtM7/6tWrdJtt92mW265xen8xcTEKDw8XM2aNVNSUpLL+UlvKCybzaZjx45ZOrZz587p448/VsuWLVWqVCn9/PPPacZt3rxZzZo1c2rQCg4O1l133aUtW7bo1KlTlvYrSYsWLVLBggXVtWtXp+V9+vTRyZMntX37dsuxN3stePpaAgAg3zAAAABuNnr0aOPl5WX69u1rVqxYYb788ktTs2ZNU7p0aXPhwgWP7PPIkSPm3XffNZLMuHHjzNatW83BgwfN6NGjjSRTtmxZ8+yzz5o1a9aYxYsXG2OM+eabb4yvr6+pW7eumT9/vlm8eLFp3bq1sdlsZt68eU7HI8lUrlzZvPLKK2bNmjXmmWeeMZLM4MGDTZUqVcw777xj1qxZY/r06WMkmQULFmSa599//91IMkOGDDEJCQkmISHBnD592nz22WcmODjYPProo1kuj549expfX1+zaNGiTPffvXt3c/fddxt/f3/z0UcfZZr2iRMnzLJly4wxxgwaNMh8+umnJjEx0UyfPt1cvXo13e1cvS48cf2UKFHCBAUFmapVq5qZM2ea1atXmwcffNBISveYL1++bGbPnm06duxo/Pz8TEBAgOnSpYtZsGCBiY+Pd2m/69evN5JM8eLFjbe3twkODjatW7c23377rSMmMTHRBAYGmsaNG1s6poMHDxq73W5q1qxpPvvsM7N69WozfPhw4+XlZcaMGeMUe/jwYWOz2czQoUNTpSHJPPfcc5b2nSLlb+Ps2bNprq9evbqJjIxMFV+2bFnz9NNPm6+//tpMmjTJBAUFmdtuu81x/bRp08YUK1bM/N///Z/55ptvzOLFi82oUaMcf5cnTpwwTzzxhJFkFi5caLZu3Wq2bt1qYmNjU+3nxr97V8ttw4YNZvjw4ebLL780GzZsMIsWLTL33nuvCQwMNP/5z39SHZO77w+ultXf9z9q1CizZs0aM2nSJOPv72/69OnjlKYr97yMytbVe6aVfGV2rtNTokQJ89hjjznev/766yYwMNBIMr/99psxxpiEhAQTEhJinnnmGadtN23aZCSZQ4cOufUc3Mz15qnrKEVCQoIpXry4eeihh1Kta9Cggbn99tuNMRmf/0OHDpng4GBz//33G2OMSUpKMnfffbcpXry4OXnypMt5McY40k15rVu3zpQsWdKEh4c7/o4zcunSJTNv3jzTqVMn4+fnZwIDA80DDzxgvvjiC3PlypU0t/Hz8zOPPPJIquU9evQwkszXX39tjHHtvp2iUaNGpn79+qmWHzhwwEgyH374oeXYm70WPH0tAQCQX9BwAgAA3GrZsmVGknnzzTedlh86dMhIMrNmzUq1Tdu2bU1QUFCar9dee83lfad82fHFF184lqV8gTBq1KhU8Y0aNTLFixd3+jI+MTHR1KhRw5QqVcokJyc7pfHWW285bV+nTh3Hl0spEhISTLFixRxfLGVk9erVRlKql4+Pj3n11VddPu60JCYmZtp48vf9BwQEmG3btlneT0rDSWZcvS6ycv1k5tdffzWSTIUKFcz58+cdy69evWrCw8NNhw4dMk3j3Llz5pNPPjGtW7c2Pj4+xm63m969e5uvv/7aJCYmprvdnj17zJNPPmkWLVpkNm7caD755BNTtWpV4+3tbVatWmWMMSYmJsZIMg8++GCq7RMTEx2NagkJCY5r0phrXziXKlUq1ZeMgwcPNgEBAebPP/90Wh4ZGWmKFi3q1Lg1fPhwl75ATk9WG06eeuopp7jZs2c7nd+CBQumauS50YQJE4wkc/To0XTzldbfvdVyS5GYmGiuXr1qKlWq5JR/T90fXC2rlLgb/2YGDhxoAgICnK4ZV+956ZWtq9tbyZcr5zotDz/8sKlQoYLjfcuWLU3//v1NaGiomTFjhjHGmM2bNxtJZvXq1U7bDh061NSsWTPTfVg9BzdzvXnqOvq7YcOGmcDAQKf74A8//GAkmalTpzqWZfS3NX/+fCPJTJkyxYwaNcp4eXmlKl+rEhMTTefOnU3BggXN7t270427evWqWb58uenZs6cJCgoyfn5+pkOHDmbWrFkuNarXqVPH3HrrrSYpKcmxLCEhwVSoUMFIMnPmzDHGuHbfTlGpUiXTpk2bVPs6efKk44ccVmNv9lr4J64lAADyA4bqAgAAbjVq1ChVrFhRTz75pBITEx2v8uXLKzAwMM0hNL766itdvHgxzdcLL7zglnzdOCTLpUuXtH37dnXp0kUFCxZ0LPf29lZUVJR+/fVX/fTTT07bdOjQwel91apVZbPZnIY48vHx0S233KJffvkl0zzt3r1bkrRw4ULt3LlTO3fu1KpVq9S+fXuNGjVKCxcuTHO733//PcNhTmw2m3x8fDRnzhwlJCSoW7duOn36dLr7j4qKUnx8vDZu3Jhpnm80bdo0l+ajcfW6yMr1k5mdO3dKujZ8id1udyz39fXVLbfckunwYpJUqFAh9enTR19//bVOnTql119/XUePHlXbtm0VERGRbr5uu+02TZkyRffee6/uvPNO9enTR1u2bFGJEiX0zDPPZLrfunXrytfX1/F66623JEnx8fFau3at7rvvPhUoUMCprO655x7Fx8dr27ZtTmn169dPv//+u5YuXSpJSkxM1KxZs3TnnXeqUqVKmebFnR566CGn9926dZOPj4/Wr18vSWrQoIGmT5+uV199Vdu2bVNCQkKW9nPj372VcktMTNS4ceNUrVo1+fn5ycfHR35+fjp8+LB+/PHHVPty9/0hRWZlleLv8yRJUq1atRQfH68zZ85Iyto97++yun1m+crquW7RooV+/vlnHT16VPHx8dq0aZPatm2r5s2ba82aNZKk6Oho+fv7O4ZxTLFw4UKXh+mSXD8HN3O9pfDUdSRJffv21eXLlzV//nzHsk8//VT+/v7q2bOnS2l069ZNjz/+uJ5++mm9+uqreuGFF9SqVStL+bjR4MGDtWLFCn3xxRe6/fbb04zZv3+/wsPD1blzZ/3+++965513dPr0aS1btkwPPfSQ0zWZnieeeEKHDh3S4MGD9dtvv+nEiRP617/+5ShHL69rX49YvW/bbLZ093njOiuxN3stePJaAgAgP6DhBAAAuE1MTIz27t2r//73v/L393f6wtfX11eXL19WoUKFsiVvJUqUcHp/7tw5GWNSLZfkmEfijz/+cFpeuHBhp/d+fn4qUKCAAgICUi2Pj4/PNE8pE7N36tRJ9erVU7169dSmTRvNmzdP3t7e+uijj9LcLjg4WB999FGmr5Qv8Tp37qwiRYqkuf+AgAB98sknioqK0nPPPef4Ut2dXL0uPHX97Nq1S76+vqnGlZekkydPqnTp0pbSi4uL0/nz5xUbGytjjAoVKiQfHx+Xty9UqJA6dOig/fv36/LlyypatKgCAwPT/OJqzpw52rlzZ6rz8scffygxMVFTp05NVU733HOPJKVqEOrSpYvsdrs+/fRTSdcmKj59+vRNTQqfctzpzW2QmJgoX1/fVMvDw8NTpVOkSBHH39z8+fPVq1cv/fvf/1bjxo1VuHBhPfLII4qJibGUvxv/vq2U27BhwzRy5Ejde++9WrZsmbZv366dO3eqdu3aunz5cqp9ufv+kCKzskpx49+4v7+/JDnympV73t9ldfvM8pXVc92yZUtJ1xpHNm3apISEBN19991q2bKlYx6P6OhoNW3aVIGBgY7tduzYoePHj1tqOHH1HNzM9ZbCU9eRJFWvXl3169d33AOSkpI0a9Ysde7cOdV+M9K3b18lJCTIx8dHQ4YMsZSHG7366qv64IMP9OGHH6pt27bpxvn6+sputyspKUmxsbGKjY3VxYsXLe2rb9++ev311zVz5kyVKlVKZcqU0Q8//KARI0ZIkkqWLJnutjfet1OkdR1I0p9//inJ+XxaiU3rvdVrwZPXEgAA+YHrNTwAAIBMnDhxQtK1iclv/IVvir9PmPtPuvGXnKGhofLy8kpzMtiTJ09KkooWLerRPO3Zs0c1a9aUt7e303JfX195e3un+eWsdO2Lx0cffTTDtFesWKHly5erS5cumjt3bppf7O/Zs0e1a9eWj4+PPvroI8cExps2bUpzwvqscvW6OHLkiEtxVu3atUtFixZN9WXR9u3b9fPPP2vkyJGZpnHixAl98cUXmjdvnnbu3KmSJUuqe/fu+uijj1SvXj3LeTLGSLp2XXp7e+vuu+/W6tWrderUKacvX6tVqyZJqSZLDg0NdfzSf9CgQWnuo3z58k7vAwMD1aNHD3300Uc6deqUPvnkEwUHB6fZoOSqsLAwSdJvv/3m+P/fj/HUqVNplk9MTIzTl5SJiYn6448/HF+yFy1aVFOmTNGUKVN0/PhxLV26VM8995zOnDmjVatWuZy/tP7uXS23WbNm6ZFHHtG4ceOc1v/+++//aANwZmXlqpu953nqnpnVc12qVCndeuutio6OVrly5VSvXj0VKlRILVq00MCBA7V9+3Zt27ZNY8eOddpuwYIFuvXWW1WjRg2X8+jqObiZ6+2f0qdPHw0cOFA//vijfv75Z506dUp9+vRxeftLly4pKipKt956q06fPq1HH31US5YsyVJepk+frpEjR2rMmDHq27dvhrFVq1bVzz//rK1bt2rOnDl6/fXXNXz4cDVt2lTdu3dXly5dUjVwpeXZZ5/V0KFDdfjwYQUHB6ts2bIaMGCAgoKCVLdu3Qy3/ft9O0XNmjU1d+5cJSYmOn3Ofv/995LkdJ1ZiQUAANmPhhMAAOA2Kb9utNlsWfoy+Z8UFBSkhg0bauHChZo4caLjF8nJycmaNWuW40s5T4mNjdXPP/+sFi1apFq3ZMkSxcfH66677spy+hMmTFDHjh3TbTRJ2X/r1q0lXWuMWbRokRo0aKBOnTppx44dLn0J5QpXrwtPXT+7du1SbGyszp8/7/jCOykpSc8++6zKlSuX7hA1Fy5c0PTp0zV//nxt2bJFoaGheuCBB/TGG28oMjLSMayLVefOndPy5ctVp04dR2PO888/r6+++kr/+te/9OWXX6bZS+PvChQooObNm2vv3r2qVauW/Pz8XNp3v3799MEHH2jChAlauXKlevfurQIFCmTpOCTp7rvvls1m0/z581MNsbNq1SrFxcU5egb83ezZs52+pPz888+VmJioZs2apYotU6aMBg8erLVr12rz5s2O5Tf2XHCFlXKz2WyOfaRYsWKFfvvtN91yyy0u7/NmWSmrjFi556VVtv/EPTO9c52eli1b6vPPP1fp0qXVvn17SdKtt96qMmXKaNSoUUpISEh1/S1YsEDdunWzlK+snoOs/p16Uo8ePTRs2DBNnz5dP//8s0qWLOn4HEiR0d/Wv/71Lx0/flw7duzQf/7zH3Xp0kWTJ0/WU089ZSkfq1atUv/+/dW3b1+NHj3a5e0aN26sxo0ba8qUKVq7dq3mzJmjF198UU8++aQiIyPVvXt3PfLII069jG7k7+/vaKQ4fvy45s+fr/79+2e4TVr3bUm677779NFHH2nBggXq3r27Y/mMGTMUERGhhg0bZikWAABkPxpOAACA21SsWFHNmzfXSy+9pIsXL6phw4aOX52vX79evXr1svxlnyeNHz9erVq1UvPmzTVixAj5+fnpvffe04EDBzR37twMxyK/WXv27JExRkFBQY4x7s+dO6ctW7Zo8uTJqlWrlmP4kKxYtmyZAgMD0x1CKmX/f/8yMDw8XEuWLNEdd9yhTp06acOGDRl+keQqV68Lq9ePzWZTZGSkvvnmm3T3ffToUf3xxx8qU6aMunbtquHDhys+Pl7vvPOOdu/erW+++SbdLzN3796t5557Tp06ddLixYvVrl27TBs0btSzZ0+VKVNG9erVU9GiRXX48GG99dZbOn36tKZPn+6Ia9q0qd5991098cQTuv322/XYY4+pevXqjl/4L1iwQJIUEhLi2Obtt9/WHXfcoTvvvFOPP/64ypUrpwsXLujIkSNatmyZ1q1blyo/9erVU61atTRlyhQZY9IdpsuVspWundvBgwdrwoQJOn/+vO655x4FBgZq586dev3111WvXr00G6YWLlwoHx8ftWrVSgcPHtTIkSNVu3ZtdevWTbGxsWrevLl69uypKlWqKDg42DH/z/333+9Io2bNmo5y6NWrl3x9fVW5cmUFBwdnmGdXy61Dhw6aPn26qlSpolq1amn37t2aMGGCSpUqlWH67pZRWVnl6j0vvbJ19z3T1XOdnhYtWui9997T77//rilTpjgt//TTTxUaGup0j9u3b5/++9//WhqmS7q5c5CVv1NPKlSokO677z5Nnz5d58+f14gRI1I1Aqd3/ufPn69Zs2bp008/VfXq1VW9enUNHjxYzz77rJo2baoGDRq4lIejR4+qa9euqlChgvr06ZNqnpfbbrstVaPljby9vdW6dWu1bt1aH3zwgVasWKE5c+Zo6NChatiwYZq9Jg8cOKAFCxaoXr168vf313fffafXX39dlSpV0iuvvOKIc/W+LUnt2rVTq1at9PjjjysuLk633HKL5s6dq1WrVmnWrFlOPUqtxAIAgBwgW6akBwAAeVZsbKx5/vnnza233moCAgJMaGioqV27tnniiSfMuXPnPLrv9evXG0nmiy++cCwbPXq0kWTOnj2b5jbffvutufvuu01QUJAJDAw0jRo1MsuWLXOKSS+NXr16maCgoFRpRkZGmurVq2eY14kTJxpJTq+goCBz2223mddee81cunTJ1cPOkpT979mzJ9W6L774wthsNtO1a1eTnJzslv25el24GnfhwgUjyTz44IMZ7vfzzz83ksyWLVtMVFSUCQkJMcHBwaZz587mhx9+yDTPFy9evJnDNuPHjzd16tQxdrvdeHt7m2LFipn77rvP7NixI834ffv2mT59+pjy5csbf39/ExAQYG655RbzyCOPmLVr16aKP3r0qOnbt68pWbKk8fX1NcWKFTNNmjQxr776arp5evvtt40kU61atTTXu1q2KZKTk837779v6tWrZwoUKGD8/PxMpUqVzLPPPmsuXLjgFJvyt7R7927TsWNHU7BgQRMcHGx69OhhTp8+bYwxJj4+3vzrX/8ytWrVMiEhISYwMNBUrlzZjB49OtXfxfPPP28iIiKMl5eXkWTWr1/vtJ/0/u5dKbdz586Zfv36meLFi5sCBQqYO+64w3z77bcmMjLSREZGpjomd94fXC2rjPb/6aefGknm6NGjTstduecZk37Zurq9K/mycq7Tcu7cOePl5WWCgoLM1atXHctnz55tJJn777/fKf6ll14yZcuWzTTdG48hq+cghSvXm6euo7SsXr3a8blz6NChNGNuPP/vvPOOCQwMNL169XKKi4+PN3Xr1jXlypVz+TM+5bM6vdeN16wVGd23f/rpJ3PXXXeZwoULGz8/P3PLLbeYl156KVW81fv2hQsXzJAhQ0x4eLjx8/MztWrVMnPnzs1y7M1eC//ktQQAQF5mM+b6QJ0AAABALrFy5Up16NBB3333nePX0Wl55pln9N577yk2NpZf87rI1bLNijFjxmjs2LE6e/asx+cQyu0oK/erVq2a2rVrp7feeiu7swIAAIAcjqG6AAAAkOusX79eDz74YKZf7O/atUu33347jSYWuFq2QG7zww8/ZHcWAAAAkEvQcAIAAIBcZ8KECZnGGGO0Z88e9e3b9x/IUd7hStkCyFkSExMzXO/l5ZVqLpO8nA8AAICbxVBdAAAAAADkUseOHVP58uUzjBk9erTGjBmTL/IBAADgDjScAAAAAACQS129elX79+/PMCYiIkIRERH5Ih8AAADuQMMJAAAAAAAAAADAdQwuCgAAAAAAAAAAcB0NJwAAAAAAAAAAANfRcAIAAAAAAAAAAHAdDScAAAAAAAAAAADX0XACAAAAAAAAAABwHQ0nAAAAAAAAAAAA19FwAgAAAAAAAAAAcB0NJwAAAAAAAAAAANfRcAIAAAAAAAAAAHAdDScAAAAAAAAAAADX0XACAAAAAAAAAABwHQ0nAAAAAAAAAAAA19FwAgAAAAAAAAAAcB0NJwAAAAAAAAAAANfRcAIAAAAAAAAAAHAdDScAAAAAAAAAAADX0XACAAAAAAAAAABwHQ0nAAAAAAAAAAAA19FwAgAAAAAAAAAAcB0NJwAkSfPnz1f16tUVGBgom82mffv2ZXeW0jRmzBjZbLbszkaO0bt3b5UrVy67s+FxK1eu1JgxY7I7G06OHTsmm82m6dOnZxr7T1y3VvLjqnLlyql3795uS+9G7733nlvzCwAA/hnTp0+XzWbTsWPHPJI+zwhp8/SzWU6RE8+/lWu+WbNmatasWY7Jjys8UZf4u7/++ktjxozRN99845H0AcATaDgBoLNnzyoqKkoVK1bUqlWrtHXrVt16663ZnS3AYeXKlRo7dmx2Z8NJiRIltHXrVrVv3z67s5Jr5cRKMQAAyH48I+RvOfH8t2/fXlu3blWJEiWyOyu50l9//aWxY8fScAIgV/HJ7gwAyH6HDh1SQkKCHn74YUVGRmZ3dvKkv/76SwUKFMjubOQ67iw3d58Df39/NWrUyG3pIWMJCQmy2Wzy8cmfjy6XL19WYGBgdmcDAABkwhij+Ph4PrezwF3P6544B8WKFVOxYsXclh4ylp/rz0lJSUpMTJS/v392ZwXI9+hxAuRzvXv31h133CFJ6t69u2w2m1O34qVLl6px48YqUKCAgoOD1apVK23dujVVGmkNF5XW8EQ2m02DBw/WzJkzVbVqVRUoUEC1a9fW8uXLU22/YsUK1alTR/7+/ipfvrwmTpxo6diio6PVokULhYSEqECBAmratKnWrl2bZh4PHjyoHj16yG63KywsTH379lVsbKxTrDFG7733nurUqaPAwECFhoaqS5cu+vnnn53imjVrpho1amjjxo1q0qSJChQooL59+0qSfv31V3Xp0kXBwcEqVKiQHnroIe3cudOpW/TMmTNls9lSlbMkvfzyy/L19dXJkyfTPe74+Hg9//zzKl++vPz8/FSyZEkNGjRI58+fd4pbt26dmjVrpiJFiigwMFBlypTRAw88oL/++ssR8/7776t27doqWLCggoODVaVKFb3wwgsZlnv9+vVT9cKoWbOmbDabdu7c6Vi2cOFC2Ww2ff/995L+dy727NmjLl26KDQ0VBUrVlTv3r317rvvSrp2/aS8MuqWntE5iIuL04gRI5zKZ+jQobp06ZJTGl988YUaNmwou92uAgUKqEKFCo40pPS7s7ty3WbUFd5mszkNS3bkyBH16dNHlSpVUoECBVSyZEl17NjRUW5Z4WoZ3My2ycnJmjp1quPvpVChQmrUqJGWLl0q6dpQEwcPHtSGDRsc5zTlPvLNN9/IZrNp5syZGj58uEqWLCl/f38dOXJEkvTJJ5+odu3aCggIUOHChXXffffpxx9/dNp/7969VbBgQR05ckT33HOPChYsqNKlS2v48OG6cuWKS+U0f/58NW7cWEFBQSpYsKDatGmjvXv3Znk/V69e1auvvqoqVarI399fxYoVU58+fXT27FmnuHLlyqlDhw5auHChbrvtNgUEBDh6XB08eFCtW7dWgQIFVKxYMQ0aNEgrVqyQzWZz/ILvlVdekY+Pj06cOJHqmPr27asiRYooPj7epTIAAMAKVz6jf/75Zz344IOKiIiQv7+/wsLC1KJFC8dQwRk9I6TH6nP6zp07deeddzqe8V5//XUlJyc7xbr6zJNSv/nggw9UtWpV+fv7a8aMGZKkTZs2qXHjxgoICFDJkiU1cuRI/fvf/3Z6lu3Xr58KFy7s9Aye4u6771b16tUzPPbjx4/r4YcfVvHixeXv76+qVavqrbfeSnU8mT3X//XXX47jTTl/9erV09y5c9Pdd1xcnHx8fDRhwgTHst9//11eXl6y2+1KTEx0LB8yZIiKFSsmY4yk9J/Xs3L+MzoHhw8fVs+ePZ3KJ6VukSI5OVmvvvqqKleu7HhurVWrlt5++21HTFpDYxlj9Oabb6ps2bIKCAjQ7bffrq+++ipV/tIbVivlmffvvTDWrFmjzp07q1SpUgoICNAtt9yiAQMG6Pfff8+wDDLiShnc7Lbnz5/X8OHDVaFCBfn7+6t48eK655579J///EfHjh1zNDqNHTvWcV5Thp1Lrx4ouV63TXl+XrVqlW6//XYFBgaqSpUq+uSTT1w6TqvP6a7sJyYmRgMGDFCpUqXk5+en8uXLa+zYsU5/Fyn1wjfffFOvvvqqypcvL39/f61fv16StGTJEtWqVUv+/v6qUKGC3n777VTfs7Ro0UJVqlRx/G2lMMbolltuYYQE4GYYAPnakSNHzLvvvmskmXHjxpmtW7eagwcPGmOMmT17tpFkWrdubRYvXmzmz59v6tata/z8/My3337rSKNXr16mbNmyqdIePXq0ufE2I8mUK1fONGjQwHz++edm5cqVplmzZsbHx8f897//dcRFR0cbb29vc8cdd5iFCxeaL774wtSvX9+UKVMmVZppmTlzprHZbObee+81CxcuNMuWLTMdOnQw3t7eJjo6OlUeK1eubEaNGmXWrFljJk2aZPz9/U2fPn2c0uzfv7/x9fU1w4cPN6tWrTJz5swxVapUMWFhYSYmJsYRFxkZaQoXLmxKly5tpk6datavX282bNhgLl68aG655RZTuHBh8+6775qvv/7aPPXUU6Z8+fJGkvn000+NMcZcuXLFhIeHm4ceeshp/wkJCSYiIsJ07do13bJPTk42bdq0MT4+PmbkyJFm9erVZuLEiSYoKMjcdtttJj4+3hhjzNGjR01AQIBp1aqVWbx4sfnmm2/M7NmzTVRUlDl37pwxxpi5c+caSeaJJ54wq1evNtHR0eaDDz4wQ4YMybDsn3vuOVOwYEFz9epVY4wxMTExRpIJDAw0r732miPu8ccfN2FhYanORdmyZc2zzz5r1qxZYxYvXmyOHDliunTpYiSZrVu3Ol4px5KW9M7BpUuXTJ06dUzRokXNpEmTTHR0tHn77beN3W43d999t0lOTjbGGLNlyxZjs9nMgw8+aFauXGnWrVtnPv30UxMVFeXYx9GjR53OmzGuX7dpbZtCkhk9erTj/YYNG8zw4cPNl19+aTZs2GAWLVpk7r33XhMYGGj+85//uJTm37laBsYYU7ZsWdOrV68sbRsVFWVsNpt59NFHzZIlS8xXX31lXnvtNfP2228bY4zZs2ePqVChgrntttsc53TPnj3GGGPWr19vJJmSJUuaLl26mKVLl5rly5ebP/74w4wbN85IMj169DArVqwwn332malQoYKx2+3m0KFDjv336tXL+Pn5mapVq5qJEyea6OhoM2rUKGOz2czYsWMzLCNjjHnttdeMzWYzffv2NcuXLzcLFy40jRs3NkFBQY57pJX9JCUlmbZt25qgoCAzduxYs2bNGvPvf//blCxZ0lSrVs389ddfTuVeokQJU6FCBfPJJ5+Y9evXmx07dpiTJ0+aIkWKmDJlypjp06eblStXmqioKFOuXDkjyaxfv94YY8zp06eNv7+/efHFF52O6Y8//jCBgYHm6aefzvT4AQDIyKeffmokmaNHjzqWufoZXblyZXPLLbeYmTNnmg0bNpgFCxaY4cOHOz7HMnpGSI+V5/QiRYqYSpUqmQ8++MCsWbPGDBw40EgyM2bMcMRZeeZJeWapVauWmTNnjlm3bp05cOCA+e6770xAQICpVauWmTdvnlm6dKm55557HJ/bKWX33XffGUnmo48+cjqmgwcPGknm3XffdSy78dnszJkzpmTJkqZYsWLmgw8+MKtWrTKDBw82kszjjz/uiHPluX7AgAGmQIECZtKkSWb9+vVm+fLl5vXXXzdTp07NsOwbNWpkWrdu7Xg/b948ExAQYGw2m9m8ebNjedWqVU23bt2czkVaz+tZOf/pnYODBw8au91uatasaT777DOzevVqM3z4cOPl5WXGjBnj2H78+PHG29vbjB492qxdu9asWrXKTJkyxSkmrWs+pf7Sr18/89VXX5n/+7//MyVLljTh4eEmMjIyw22N+d8zb8q1b4wx77//vhk/frxZunSp2bBhg5kxY4apXbu2qVy5sqN+lVGaN3K1DNKqS7i6bVxcnKlevboJCgoyL7/8svn666/NggULzJNPPmnWrVtn4uPjzapVqxxllXJejxw54lSON9YDXa3bGnPtb6NUqVKmWrVq5rPPPjNff/216dq1q5FkNmzYkGEZWX1Od2U/p06dMqVLlzZly5Y1H374oYmOjjavvPKK8ff3N717905V7iVLljTNmzc3X375pVm9erU5evSo+eqrr4yXl5dp1qyZWbRokfniiy9Mw4YNHfeQFEuWLDGSzJo1a5yOa8WKFUaSWbFiRYbHDyB9NJwAcDywffHFF45lSUlJJiIiwtSsWdMkJSU5ll+4cMEUL17cNGnSxLHMasNJWFiYiYuLcyyLiYkxXl5eZvz48Y5lDRs2NBEREeby5cuOZXFxcaZw4cKZNpxcunTJFC5c2HTs2NFpeVJSkqldu7Zp0KBBqjy++eabTrEDBw40AQEBjkrR1q1bjSTz1ltvOcWdOHHCBAYGmmeeecaxLDIy0kgya9eudYpNaaD66quvnJYPGDAg1UPq6NGjjZ+fnzl9+rRj2fz581M9kN1Y9ikPpDceT8q2//d//2eMMebLL780ksy+fftMegYPHmwKFSqU7vr0REdHG0lm48aNxhhjZs2aZYKDg83AgQNN8+bNHXGVKlUyPXv2dDpmSWbUqFGp0hw0aJBLDWYp0jsH48ePN15eXmbnzp1Oy1PKY+XKlcYYYyZOnGgkmfPnz6e7j7QqF65et1YaTm6UmJhorl69aipVqmSeeuopl9L8O1fLwJjUlXNXt924caORlOqL+xtVr17dqVKZIuWedNdddzktP3funAkMDDT33HOP0/Ljx48bf39/p+upV69eRpL5/PPPnWLvueceU7ly5Qzzdfz4cePj42OeeOIJp+UXLlww4eHhTpV+V/eT8oXFggULnOJ27txpJJn33nvPsaxs2bLG29vb/PTTT06xTz/9tLHZbE4NN8YY06ZNm1SV7l69epnixYubK1euOJa98cYbxsvLK9MKNgAAmbnxS1tXP6N///13I8lMmTIlw/TTe0ZIS1ae07dv3+4UW61aNdOmTRvHeyvPS5KM3W43f/75p1Ns165dTVBQkDl79qxjWVJSkqlWrVqqL7wjIyNNnTp1nLZ//PHHTUhIiLlw4YJj2Y3PZs8991yax/P4448bm83meJZw5bm+Ro0a5t57780wJi0vvfSSCQwMdHyJ/eijj5q2bduaWrVqOX5E8ttvvznVRVKOOa3ndWOsnX9j0j8Hbdq0MaVKlTKxsbFOywcPHmwCAgIc8R06dEhV/jdK65oPCAgw9913n1Pc5s2bjaQsN5z8XXJysklISDC//PKLkWSWLFmSaZo3crUM0qpLuLrtyy+/nOYX93939uzZdOs56dUDXa3bGnPtbyMgIMD88ssvjmWXL182hQsXNgMGDEg3X8ZYf053ZT8DBgwwBQsWdIoz5n/1zJTn+ZRyr1ixolPDmDHG1K9f35QuXdrpef7ChQumSJEiTnXLpKQkU6FCBdO5c2en7du1a2cqVqzo1NALwBqG6gKQpp9++kknT55UVFSUvLz+d6soWLCgHnjgAW3bti3N7uSuaN68uYKDgx3vw8LCVLx4cf3yyy+SpEuXLmnnzp26//77FRAQ4IgLDg5Wx44dM01/y5Yt+vPPP9WrVy8lJiY6XsnJyWrbtq127tyZqot9p06dnN7XqlVL8fHxOnPmjCRp+fLlstlsevjhh53SDA8PV+3atVNNchcaGqq7777badmGDRsUHBystm3bOi3v0aNHqmN4/PHHJUkfffSRY9m0adNUs2ZN3XXXXeke+7p16yTJ0e05RdeuXRUUFOQYqqxOnTry8/PTY489phkzZqQaxkCSGjRooPPnz6tHjx5asmSJy93DmzZtqoCAAEVHR0u61t28WbNmatu2rbZs2aK//vpLJ06c0OHDh9WyZctU2z/wwAMu7SczaZ2D5cuXq0aNGqpTp47TeWzTpo1TN/n69etLkrp166bPP/9cv/32W6b7u9nrNj2JiYkaN26cqlWrJj8/P/n4+MjPz0+HDx9ONfSFK1wtg5vZNmWIgkGDBmXlkB1uvBa2bt2qy5cvp7q+S5curbvvvjvVUHw2my1V2deqVctxr0nP119/rcTERD3yyCNOxxkQEKDIyMhUZeTKfpYvX65ChQqpY8eOTmnWqVNH4eHhqdKsVauWbr31VqdlGzZsUI0aNVStWjWn5WndQ5588kmdOXNGX3zxhaRrQ1C8//77at++fabDXQAAYJWrn9GFCxdWxYoVNWHCBE2aNEl79+5NNaSUVVaf08PDw9WgQQOnZWl9blt5Xrr77rsVGhrqtGzDhg26++67VbRoUccyLy8vdevWLdUxPPnkk9q3b582b94s6doQWDNnzlSvXr1UsGDBdI993bp1qlatWqrj6d27t4wxjrqBK8/1DRo00FdffaXnnntO33zzjS5fvpzufv+uRYsWunz5srZs2SLp2nDJrVq1UsuWLbVmzRrHMkmpnv3Tel7PqhvPQXx8vNauXav77rtPBQoUcDqP99xzj+Lj47Vt2zZJ1479u+++08CBA/X1118rLi4u0/1t3bpV8fHxeuihh5yWN2nSRGXLls3ycZw5c0b/+te/VLp0afn4+MjX19eRntVnfytlcDPbfvXVV7r11lvTrNtZceOzv6t12xR16tRRmTJlHO8DAgJ06623Zvrsb/U53ZX9LF++XM2bN1dERIRTmu3atZN07f7wd506dZKvr6/j/aVLl7Rr1y7de++98vPzcywvWLBgqnqHl5eXBg8erOXLl+v48eOSpP/+979atWqVBg4cmGr4dACuo+EEQJr++OMPSVKJEiVSrYuIiFBycrLOnTuXpbSLFCmSapm/v7/j4fzcuXNKTk5WeHh4qri0lt3o9OnTkqQuXbrI19fX6fXGG2/IGKM///wzwzylTMSWkqfTp0/LGKOwsLBUaW7bti1V5SOtcvvjjz8UFhaWanl6y7p3764PP/xQSUlJ2r9/v7799lsNHjw4w2P/448/5OPjk2riQpvNpvDwcMd5rVixoqKjo1W8eHENGjRIFStWVMWKFZ3G8Y2KitInn3yiX375RQ888ICKFy+uhg0bOipA6QkICFDTpk0dFaS1a9eqVatWatasmZKSkvTtt9860kjr4TqtssuKtNI5ffq09u/fn+ocBgcHyxjjOI933XWXFi9e7PjyvFSpUqpRo0aGYzzf7HWbnmHDhmnkyJG69957tWzZMm3fvl07d+5U7dq1Xa7Q/p2rZXAz2549e1be3t43ddxS6nOY2X0pZX2KAgUKODViSdf+tjOb3yPlHlK/fv1Uxzp//vxUZeTKfk6fPq3z58/Lz88vVZoxMTFuv4fcdtttuvPOOx1jUC9fvlzHjh3L9B4CAEBWuPoZbbPZtHbtWrVp00Zvvvmmbr/9dhUrVkxDhgzRhQsXsrRvq8/pmdVFUtK08rx0s5/bnTt3Vrly5Ryf29OnT9elS5cy/RHKH3/8kW6Zp6yXXHuuf+edd/Tss89q8eLFat68uQoXLqx7771Xhw8fzjAPKfOTREdH68iRIzp27Jij4WT79u26ePGioqOjVaFCBZUvX95pW3c996eV1h9//KHExERNnTo11Xm85557JMlxHp9//nlNnDhR27ZtU7t27VSkSBG1aNFCu3btSnd/KWXrzmf/5ORktW7dWgsXLtQzzzyjtWvXaseOHY4GCqvP/lbK4Ga2PXv2rEqVKpWlY/67tM6hK3XbFK78bafF6nO6q/eQZcuWpUovZc6izO4h586dc9zXbpTWsr59+yowMFAffPCBJOndd99VYGCg0xydAKzzye4MAMiZUh4GTp06lWrdyZMn5eXl5fhFT0BAQJqTLWd1ArvQ0FDZbDbFxMSkWpfWshul/Kpr6tSpatSoUZoxaT1sZJamzWbTt99+62hU+bsbl6X1q44iRYpox44dqZand0xPPvmkZs6cqSVLlmjVqlWOyeQzUqRIESUmJurs2bNOD5jGGMXExDh6UkjSnXfeqTvvvFNJSUnatWuXpk6dqqFDhyosLEwPPvigJKlPnz7q06ePLl26pI0bN2r06NHq0KGDDh06lOEvqVq0aKFRo0Zpx44d+vXXX9WqVSsFBwerfv36WrNmjU6ePKlbb71VpUuXTrWtu34Rk1Y6RYsWVWBgYLqTBP79F4GdO3dW586ddeXKFW3btk3jx49Xz549Va5cOTVu3DjVtlau25Qv2W/8u7nx4V+SZs2apUceeUTjxo1zWv7777+rUKFCaR5HRqyUQVa3LVasmJKSkhQTE3NTFeIbz2Fm96WM8m5FSjpffvnlTf1i8MY0ixQpolWrVqW5/u+98KT07yEpjTp/l949ZMiQIeratav27NmjadOm6dZbb1WrVq2ykHsAADJm5TO6bNmy+vjjjyVJhw4d0ueff64xY8bo6tWrji/9rLD6nO5qmlael272c9vLy0uDBg3SCy+8oLfeekvvvfeeWrRoocqVK2eYzyJFiqRb5jfmM7Pn+qCgII0dO1Zjx47V6dOnHb1POnbsqP/85z/p5sHPz0933HGHoqOjVapUKYWHh6tmzZqqUKGCpGsToK9du1YdOnRIta07fwl/Y1qhoaHy9vZWVFRUug1QKQ05Pj4+GjZsmIYNG6bz588rOjpaL7zwgtq0aaMTJ06oQIECqbZNuebTe/b/ew/f9J79b6wvHzhwQN99952mT5+uXr16OZYfOXIkvcPOkJUyuJltixUrpl9//TVLefy7tJ79Xa3b3gyrz+muplmrVi299tpraa5PadxMkdb1a7PZXL6H2O129erVS//+9781YsQIffrpp+rZs2eW6osA/oeGEwBpqly5skqWLKk5c+ZoxIgRjg/yS5cuacGCBWrcuLHjAbJcuXI6c+aMTp8+7WiQuHr1qr7++uss7TsoKEgNGjTQwoULNWHCBMeD5oULF7Rs2bJMt2/atKkKFSqkH374wW2/ru7QoYNef/11/fbbb2l2r3dFZGSkPv/8c3311VeOLrqSNG/evDTj69atqyZNmuiNN97QgQMH9NhjjykoKCjDfbRo0UJvvvmmZs2apaeeesqxfMGCBbp06ZJatGiRahtvb281bNhQVapU0ezZs7Vnzx5Hw0mKoKAgtWvXTlevXtW9996rgwcPZviFcsuWLfXCCy9o5MiRKlWqlKpUqeJYvnTpUsXExFgakuvvPYACAwNd3u5GHTp00Lhx41SkSJF0Kwlp7TsyMlKFChXS119/rb1796bZcGLlug0LC1NAQID279/vtHzJkiWp0rXZbKkq/CtWrNBvv/2mW265xaVj+LuslIHVbdu1a6fx48fr/fff18svv5xunCu/APu7xo0bKzAwULNmzVLXrl0dy3/99VetW7dOXbp0cTmtjLRp00Y+Pj7673//67ah4zp06KB58+YpKSlJDRs2zFIakZGRmjhxon744Qen4brSu4fcd999KlOmjIYPH64NGzZo8uTJdNUHAHhEVj+jb731Vr300ktasGCB9uzZ41hu5RnBHc/paaWZ1eelFJGRkVq5cqV+//13RwNGcnKyYxjNGz366KMaM2aMHnroIf3000964403Mt1HixYtNH78eO3Zs0e33367Y/lnn30mm82m5s2bp9rGlef6sLAw9e7dW999952mTJmiv/76K83GgxQtW7bU888/r+DgYEeP8qCgIDVq1EhTp07VyZMnLQ3jZPUZMS0FChRQ8+bNtXfvXtWqVctpuKOMFCpUSF26dNFvv/2moUOH6tixY6mGSZWkRo0aKSAgQLNnz3Z6XtyyZYt++eUXp4aTlP/v37/fqTFs6dKlTmmmPKfd+Oz/4YcfupT3G2W1DKxu265dO40aNUrr1q1Ld+i1G0d0cEVW6rZZ4Y7n9LTSXLlypSpWrJhqGD9XBAUFqV69elq8eLEmTpzoKP+LFy9q+fLlaW4zZMgQvffee+rSpYvOnz9PT3PADWg4AZAmLy8vvfnmm3rooYfUoUMHDRgwQFeuXNGECRN0/vx5vf76647Y7t27a9SoUXrwwQf19NNPKz4+Xu+8846SkpKyvP9XXnlFbdu2VatWrTR8+HAlJSXpjTfeUFBQUKphtm5UsGBBTZ06Vb169dKff/6pLl26qHjx4jp79qy+++47nT17Vu+//76l/DRt2lSPPfaY+vTpo127dumuu+5SUFCQTp06pU2bNqlmzZqOeUnS06tXL02ePFkPP/ywXn31Vd1yyy366quvHA1Mf59LJsWTTz6p7t27y2azaeDAgZnms1WrVmrTpo2effZZxcXFqWnTptq/f79Gjx6t2267TVFRUZKkDz74QOvWrVP79u1VpkwZxcfHO35Rl1Kp6d+/vwIDA9W0aVOVKFFCMTExGj9+vOx2e6a/7qlbt65CQ0O1evVq9enTx7G8ZcuWeuWVV5z244qaNWtKkt544w21a9dO3t7elh/+JWno0KFasGCB7rrrLj311FOqVauWkpOTdfz4ca1evVrDhw9Xw4YNNWrUKP36669q0aKFSpUqpfPnz+vtt9+Wr6+vIiMj003f1es2ZRzuTz75RBUrVlTt2rW1Y8cOzZkzJ1WaHTp00PTp01WlShXVqlVLu3fv1oQJE7LcHd7VMriZbe+8805FRUXp1Vdf1enTp9WhQwf5+/tr7969KlCggJ544glJ187rvHnzNH/+fFWoUEEBAQGOc52WQoUKaeTIkXrhhRf0yCOPqEePHvrjjz80duxYBQQEaPTo0VkqkxuVK1dOL7/8sl588UX9/PPPatu2rUJDQ3X69Gnt2LHD8YtMKx588EHNnj1b99xzj5588kk1aNBAvr6++vXXX7V+/Xp17txZ9913X4ZpDB06VJ988onatWunl19+WWFhYZozZ47jV6A33kO8vb01aNAgPfvsswoKCko1PjQAAO7i6mf0/v37NXjwYHXt2lWVKlWSn5+f1q1bp/379+u5555zpGflGcEdz+k3upnnpRQvvviili1bphYtWujFF190DKOTMtfijZ/bhQoV0iOPPKL3339fZcuWdWmOvKeeekqfffaZ2rdvr5dffllly5bVihUr9N577+nxxx93zJfmynN9w4YN1aFDB9WqVUuhoaH68ccfNXPmTKcfzKWnRYsWSkpK0tq1azVjxgzH8pYtW2r06NGy2WyW5jKx+oyYnrffflt33HGH7rzzTj3++OMqV66cLly4oCNHjmjZsmWOOTQ6duyoGjVqqF69eipWrJh++eUXTZkyRWXLllWlSpXSTDs0NFQjRozQq6++qkcffVRdu3bViRMnNGbMmFRDddWvX1+VK1fWiBEjlJiYqNDQUC1atEibNm1yiqtSpYoqVqyo5557TsYYFS5cWMuWLct0qGR3lMHNbDt06FDNnz9fnTt31nPPPacGDRro8uXL2rBhgzp06OCY47Rs2bJasmSJWrRoocKFC6to0aIZzr3nat32ZrnjOf1GL7/8stasWaMmTZpoyJAhqly5suLj43Xs2DGtXLlSH3zwQab1uZdfflnt27dXmzZt9OSTTyopKUkTJkxQwYIF0/xO5NZbb1Xbtm311Vdf6Y477lDt2rUt5RlAGrJnTnoAOcn69euNJPPFF1+kWrd48WLTsGFDExAQYIKCgkyLFi3M5s2bU8WtXLnS1KlTxwQGBpoKFSqYadOmmdGjR5sbbzOSzKBBg1JtX7ZsWdOrVy+nZUuXLjW1atUyfn5+pkyZMub1119PM830bNiwwbRv394ULlzY+Pr6mpIlS5r27ds7HWdKemfPnnXa9tNPPzWSzNGjR52Wf/LJJ6Zhw4YmKCjIBAYGmooVK5pHHnnE7Nq1yxETGRlpqlevnmaejh8/bu6//35TsGBBExwcbB544AGzcuVKI8ksWbIkVfyVK1eMv7+/adu2bZrp9erVy5QtW9Zp2eXLl82zzz5rypYta3x9fU2JEiXM448/bs6dO+eI2bp1q7nvvvtM2bJljb+/vylSpIiJjIw0S5cudcTMmDHDNG/e3ISFhRk/Pz8TERFhunXrZvbv359mXm503333GUlm9uzZjmVXr141QUFBxsvLyyk/xqR/LlLK4dFHHzXFihUzNpstzXPzdxmdg4sXL5qXXnrJVK5c2fj5+Rm73W5q1qxpnnrqKRMTE2OMMWb58uWmXbt2pmTJksbPz88UL17c3HPPPebbb791pHP06FEjyXz66adO6bt63cbGxppHH33UhIWFmaCgINOxY0dz7NgxI8mMHj3aEXfu3DnTr18/U7x4cVOgQAFzxx13mG+//dZERkaayMjITPOT1TIwJu2/S1e3TUpKMpMnTzY1atRwxDVu3NgsW7bMEXPs2DHTunVrExwcbCQ5ruWM7knGGPPvf//bUcZ2u9107tzZHDx40CmmV69eJigoKNW2Vu4hixcvNs2bNzchISHG39/flC1b1nTp0sVER0dnaT8JCQlm4sSJpnbt2iYgIMAULFjQVKlSxQwYMMAcPnzYEVe2bFnTvn37NPN04MAB07JlSxMQEGAKFy5s+vXrZ2bMmGEkme+++y5VfMo19a9//culYwYAwBXpPStn9hl9+vRp07t3b1OlShUTFBRkChYsaGrVqmUmT55sEhMTHXHpPSNk5Gae09N6pnb1mSe9+o0xxnz77bemYcOGxt/f34SHh5unn37avPHGG0aSOX/+fKr4b775xkgyr7/+eprppfVs9ssvv5iePXuaIkWKGF9fX1O5cmUzYcIEk5SU5Ihx5bn+ueeeM/Xq1TOhoaHG39/fVKhQwTz11FPm999/TzMvf5ecnGyKFi1qJJnffvvNsXzz5s1Gkrn99ttTbZPR87rV85/ROTh69Kjp27evKVmypPH19TXFihUzTZo0Ma+++qoj5q233jJNmjQxRYsWdTzD9+vXzxw7dswRk9Y1n5ycbMaPH29Kly5t/Pz8TK1atcyyZctSPacbY8yhQ4dM69atTUhIiClWrJh54oknzIoVK4wks379ekfcDz/8YFq1amWCg4NNaGio6dq1qzl+/HiqOkJ6f4NZLYP06hKubGvMtTrLk08+acqUKWN8fX1N8eLFTfv27c1//vMfR0x0dLS57bbbjL+/v5HkuJYzqge6Urc1Jv3n57TORVpu9jk9rf2cPXvWDBkyxJQvX974+vqawoULm7p165oXX3zRXLx40Rjzv3KfMGFCmvlatGiRqVmzplPdcsiQISY0NDTN+OnTpxtJZt68eZkeM4DM2YwxxpMNMwCAjI0bN04vvfSSjh8/nupXJ8uWLVOnTp20YsUKxyR8APB3jz32mObOnas//vgjVS+sqVOnasiQITpw4IBjMkoAAJB9WrdurWPHjunQoUOp1g0fPlzvv/++Tpw4keYE1ADyt4SEBNWpU0clS5bU6tWrU61/4IEHtG3bNh07dky+vr7ZkEMgb2GoLgD4B02bNk3StW7YCQkJWrdund555x09/PDDTo0mP/zwg3755RcNHz5cderUcZoTBUD+9fLLLysiIkIVKlRwjHH873//Wy+99JJTo8nevXt19OhRvfzyy+rcuTONJgAAZINhw4bptttuU+nSpfXnn39q9uzZWrNmjT7++GOnuG3btunQoUN67733NGDAABpNAEiS+vXrp1atWjmG2Pvggw/0448/6u2333bEXLlyRXv27NGOHTu0aNEiTZo0iUYTwE1oOAGAf1CBAgU0efJkHTt2TFeuXFGZMmX07LPP6qWXXnKKGzhwoDZv3qzbb79dM2bMYEJnAJIkX19fTZgwQb/++qsSExNVqVIlTZo0SU8++aRT3H333aeYmBjdeeed+uCDD7IptwAA5G9JSUkaNWqUYmJiZLPZVK1aNc2cOVMPP/ywU1zKPCIdOnTQq6++mk25BZDTXLhwQSNGjNDZs2fl6+ur22+/XStXrnSaL/TUqVNq0qSJQkJCNGDAAMd8kgBuHkN1AQAAAAAAAAAAXOeV3RkAAAAAAAAAAAD5y/jx41W/fn0FBwerePHiuvfee/XTTz85xRhjNGbMGEVERCgwMFDNmjXTwYMHM017wYIFqlatmvz9/VWtWjUtWrTIUt5oOAEAAAAAAAAAAP+oDRs2aNCgQdq2bZvWrFmjxMREtW7dWpcuXXLEvPnmm5o0aZKmTZumnTt3Kjw8XK1atdKFCxfSTXfr1q3q3r27oqKi9N133ykqKkrdunXT9u3bXc4bQ3Vls+TkZJ08eVLBwcHMYQAAAIA8zxijCxcuKCIiQl5e/I4LmaPOBAAAcruc9gwcHx+vq1eveiRtY0yqZzZ/f3/5+/tnuu3Zs2dVvHhxbdiwQXfddZeMMYqIiNDQoUP17LPPSpKuXLmisLAwvfHGGxowYECa6XTv3l1xcXH66quvHMvatm2r0NBQzZ0716XjYHL4bHby5EmVLl06u7MBAAAA/KNOnDihUqVKZXc2kAtQZwIAAHlFTngGjo+PV7HAQF30UPoFCxbUxYvOqY8ePVpjxozJdNvY2FhJUuHChSVJR48eVUxMjFq3bu2I8ff3V2RkpLZs2ZJuw8nWrVv11FNPOS1r06aNpkyZ4vJx0HCSzYKDg6//b46kAi5tExvb3GP5ye3s9vGW4mNjn/dQTrImp+U/p+UHAADkfnFxcSpduvTfnoOBjKVcKydOnFBISEg25wYAAMC6nPQMfPXqVV2U9JSkzPuAWHNF0uSLF1M9t7nS28QYo2HDhumOO+5QjRo1JEkxMTGSpLCwMKfYsLAw/fLLL+mmFRMTk+Y2Kem5goaTbPa/bksFJAW5tA2VhYwEWIrOeWWZ0/Kf0/IDAADyCoZcgqtSrpWQkBCeNwEAQK6Wk56Bg2T1m7/MpTQ2ZOW5bfDgwdq/f782bdqUat2N5ZbWcGDu2Obvsn9ANQAAAAAAAAAAkC898cQTWrp0qdavX+80lFl4eLgkpeopcubMmVQ9Sv4uPDzc8jY3ouEEAAAAAAAAAIB8xNdDLyuMMRo8eLAWLlyodevWqXz58k7ry5cvr/DwcK1Zs8ax7OrVq9qwYYOaNGmSbrqNGzd22kaSVq9eneE2N2KoLgAAAAAAAAAA8I8aNGiQ5syZoyVLlig4ONjRS8RutyswMFA2m01Dhw7VuHHjVKlSJVWqVEnjxo1TgQIF1LNnT0c6jzzyiEqWLKnx46/N1/zkk0/qrrvu0htvvKHOnTtryZIlio6OTnMYsPTQcAIAAAAAAAAAQD7iI/c3DlhN7/3335ckNWvWzGn5p59+qt69e0uSnnnmGV2+fFkDBw7UuXPn1LBhQ61evVrBwcGO+OPHj8vL63+DazVp0kTz5s3TSy+9pJEjR6pixYqaP3++GjZs6LFjAQAAAAAAAAAAuCnGmExjbDabxowZozFjxqQb880336Ra1qVLF3Xp0iXLeaPhJIeIjW2ukJCQ7M5GrmfM6OzOghObbayl+JyWfwAAAAAAAAB5j4+sz0mSmUQ3p5edaDgBAAAAAAAAACAfyQlDdeVkXpmHAAAAAAAAAAAA5A95qREIAAAAAAAAAABkwlcM1ZURepwAAAAAAAAAAABcR48TAAAAAAAAAADyEeY4yRg9TgAAAAAAAAAAAK7LS41AAAAAAAAAAAAgEz5y/xwnCW5OLzvRcJIL2WxjLcUbM9pDObkmJ+UnJ+Xln0jf03J7/oEUOe3eAAAAAAAAgJyLhhMAAAAAAAAAAPIR5jjJWF46FgAAAAAAAAAAkAlfuX+oLnenl52YHB4AAAAAAAAAAOA6epwAAAAAAAAAAJCP0OMkY/Q4AQAAAAAAAAAAuI4eJwAAAAAAAAAA5CNMDp8xepwAAAAAAAAAAABcl5cagXI1u328pACPpG2zjbW4RVOP5OOfYMzo7M6CE5st2lK8MS09lJOssXrteLr8c1p+kHtwLQAAkPu5UmfiMx8AAMA1PnL/nCR5qbGBHicAAAAAAAAAAADX5aVGIAAAAAAAAAAAkAnmOMlYjupxsnHjRnXs2FERERGy2WxavHhxurEDBgyQzWbTlClTnJZfuXJFTzzxhIoWLaqgoCB16tRJv/76q1PMuXPnFBUVJbvdLrvdrqioKJ0/f94p5vjx4+rYsaOCgoJUtGhRDRkyRFevXnWK+f777xUZGanAwECVLFlSL7/8sowxN1MEAAAAAJAh6k0AAAC4Wb4eeuUVOarh5NKlS6pdu7amTZuWYdzixYu1fft2RUREpFo3dOhQLVq0SPPmzdOmTZt08eJFdejQQUlJSY6Ynj17at++fVq1apVWrVqlffv2KSoqyrE+KSlJ7du316VLl7Rp0ybNmzdPCxYs0PDhwx0xcXFxatWqlSIiIrRz505NnTpVEydO1KRJk9xQEgAAAACQNupNAAAAgGflqN4z7dq1U7t27TKM+e233zR48GB9/fXXat++vdO62NhYffzxx5o5c6Zatrw2yfasWbNUunRpRUdHq02bNvrxxx+1atUqbdu2TQ0bNpQkffTRR2rcuLF++uknVa5cWatXr9YPP/ygEydOOCoZb731lnr37q3XXntNISEhmj17tuLj4zV9+nT5+/urRo0aOnTokCZNmqRhw4bJZrN5oIQAAAAA5HfUmwAAAHCzGKorYzmqx0lmkpOTFRUVpaefflrVq1dPtX737t1KSEhQ69atHcsiIiJUo0YNbdmyRZK0detW2e12x8O/JDVq1Eh2u90ppkaNGk6/zGrTpo2uXLmi3bt3O2IiIyPl7+/vFHPy5EkdO3Ys3WO4cuWK4uLinF4AAAAA4C65vd5EnQkAAADZLVc1nLzxxhvy8fHRkCFD0lwfExMjPz8/hYaGOi0PCwtTTEyMI6Z48eKpti1evLhTTFhYmNP60NBQ+fn5ZRiT8j4lJi3jx493jBFst9tVunTpjA4ZAAAAACzJ7fUm6kwAAACe5yP3z2+Sl3qc5Jpj2b17t95++23t2bPHcnduY4zTNmlt746YlAkOM8rf888/r2HDhjnex8XFWa4IGDPaUrxVNlu0R9PPT4xpmd1ZuCmevtasymn5AQAAyGnyQr0pvTpTbOzzCgkJcfFoAAAAgKzLNT1Ovv32W505c0ZlypSRj4+PfHx89Msvv2j48OEqV66cJCk8PFxXr17VuXPnnLY9c+aM41dN4eHhOn36dKr0z5496xRz46+fzp07p4SEhAxjzpw5I0mpflH1d/7+/goJCXF6AQAAAIA75IV6E3UmAAAAz/Px0CuvyDUNJ1FRUdq/f7/27dvneEVEROjpp5/W119/LUmqW7eufH19tWbNGsd2p06d0oEDB9SkSRNJUuPGjRUbG6sdO3Y4YrZv367Y2FinmAMHDujUqVOOmNWrV8vf319169Z1xGzcuFFXr151iomIiHBUSAAAAADgn0S9CQAAALh5OaoR6OLFizpy5Ijj/dGjR7Vv3z4VLlxYZcqUUZEiRZzifX19FR4ersqVK0uS7Ha7+vXrp+HDh6tIkSIqXLiwRowYoZo1a6ply2tDJlWtWlVt27ZV//799eGHH0qSHnvsMXXo0MGRTuvWrVWtWjVFRUVpwoQJ+vPPPzVixAj179/f8Wunnj17auzYserdu7deeOEFHT58WOPGjdOoUaMsd4kHAAAAAFdRbwIAAMDNSpmXxN1p5hU5quFk165dat68ueN9yri2vXr10vTp011KY/LkyfLx8VG3bt10+fJltWjRQtOnT5e3t7cjZvbs2RoyZIhat24tSerUqZOmTZvmWO/t7a0VK1Zo4MCBatq0qQIDA9WzZ09NnDjREWO327VmzRoNGjRI9erVU2hoqIYNG+Y0Fi8AAAAAuBv1JgAAAMCzbCZlZj5ki7i4ONntdknPSQpwaZucNzn8ZkvRTPANAACQf6U8/8bGxjJ3BVzCNQMAAHK7nPQ8k5KXPZIKujnti5Jul3LEcd6sHNXjBAAAAAAAAAAAeJaP3D+0Vl5qbMg1k8MDAAAAAAAAAAB4Wl5qBMrVYmOfd7n7ks122WLqVofSamkp3mazlr7NNtZCXhjWKy+zci1IXA8AAAAAAACAOzA5fMbocQIAAAAAAAAAAHAdPU4AAAAAAAAAAMhHfOT+xoG81NhAjxMAAAAAAAAAAIDr8lIjEAAAAAAAAAAAyISPt+Rrc3OaRlKSe9PMLvQ4AQAAAAAAAAAAuI4eJwAAAAAAAAAA5CM+PpIPPU7SRcNJDmG3X5bk61KsMYEWU29pOT9WGDPaUrzNNtZDOclK2s9YirZe9tZYzb/Vss9pcnv+c7P8dq0BAAAAAADgf3w9MFSXr3FvetmJoboAAAAAAAAAAACuo8cJAAAAAAAAAAD5iMeG6soj6HECAAAAAAAAAABwHT1OAAAAAAAAAADIR3y9JV83d6vwTXZvetmJHicAAAAAAAAAAADX0eMEAAAAAAAAAID8xFvu71bh5jlTshM9TgAAAAAAAAAAAK6jx0mOsU1SkEuRNttmj+bEmNG5Nn1P591mG2sp3mp+PJ1/qzx9vJ6W2/PvSfnpWP8JXGsAAAAAACBX8ZH7u1XkoTlOaDgBAAAAAAAAACA/oeEkQwzVBQAAAAAAAAAA/nEbN25Ux44dFRERIZvNpsWLFzutt9lsab4mTJiQbprTp09Pc5v4+HiX80WPEwAAAAAAAAAA8pMc0uPk0qVLql27tvr06aMHHngg1fpTp045vf/qq6/Ur1+/NGP/LiQkRD/99JPTsoCAAJfzRcMJAAAAAAAAAAD4x7Vr107t2rVLd314eLjT+yVLlqh58+aqUKFChunabLZU21rBUF0AAAAAAAAAAOQnXpK83fy63toQFxfn9Lpy5Ypbsnz69GmtWLFC/fr1yzT24sWLKlu2rEqVKqUOHTpo7969lvZFwwkAAAAAAAAAAHCL0qVLy263O17jx493S7ozZsxQcHCw7r///gzjqlSpounTp2vp0qWaO3euAgIC1LRpUx0+fNjlfTFUFwAAAAAAAAAA+YmPrvUScSfbtX9OnDihkJAQx2J/f3+3JP/JJ5/ooYceynSukkaNGqlRo0aO902bNtXtt9+uqVOn6p133nFpXzSc5BCxsc2dLqaM2GybLaVtzOisZMljbLaxLsfmtLzndlbKXsp55W81/8A/Jaf9rQAAAAAAAGSXkJAQl7/rdtW3336rn376SfPnz7e8rZeXl+rXr0+PEwAAAAAAAAAAkA4P9jjxhI8//lh169ZV7dq1LW9rjNG+fftUs2ZNl7eh4QQAAAAAAAAAgPwkZUL3bHbx4kUdOXLE8f7o0aPat2+fChcurDJlyki6Ntn8F198obfeeivNNB555BGVLFnSMZfK2LFj1ahRI1WqVElxcXF65513tG/fPr377rsu54uGEwAAAAAAAAAA8I/btWuXmjdv7ng/bNgwSVKvXr00ffp0SdK8efNkjFGPHj3STOP48ePy8vJyvD9//rwee+wxxcTEyG6367bbbtPGjRvVoEEDl/NFwwkAAAAAAAAAAPlJDhmqq1mzZjLGZBjz2GOP6bHHHkt3/TfffOP0fvLkyZo8ebL1zPyNV+YhAAAAAAAAAAAA+QM9TgAAAAAAAAAAyE+8RetABuhxAgAAAAAAAAAAcB1tSjmE3b5eUpBLscaM9mhebLaxluKt5sdKvM0WbTHtlpbirbJ6rJ4uS6s8nb6n5fb8AwAAAAAAADmCt9w/x0nGU5XkKvQ4AQAAAAAAAAAAuI4eJwAAAAAAAAAA5Cc+onUgAxQNAAAAAAAAAAD5CQ0nGWKoLgAAAAAAAAAAgOtoUwIAAAAAAAAAID+hx0mG6HECAAAAAAAAAABwHW1KAAAAAAAAAADkJ16SvN2cZrKb08tGNJzkELGxzRUSEuKRtG22aEvxxoy2mP5Yj6VvTEtLaVvlybxnJd4qT+ffqpyWHwAAAAAAAACwioYTAAAAAAAAAADyE0/McWLcnF42Yo4TAAAAAAAAAACA6+hxAgAAAAAAAABAfkKPkwzRcAIAAAAAAAAAQH7iLSaHzwBDdQEAAAAAAAAAAFxHjxMAAAAAAAAAAPIThurKED1OAAAAAAAAAAAArqPHSQ5ht6+XFORi9GZPZkVSSw+nn3MYM9pSvM021qPp5zQcb8a4fgAAAOBOrjwv8owIAADcwlvubx1gjhMAAAAAAAAAAIC8J0c1nGzcuFEdO3ZURESEbDabFi9e7FiXkJCgZ599VjVr1lRQUJAiIiL0yCOP6OTJk05pXLlyRU888YSKFi2qoKAgderUSb/++qtTzLlz5xQVFSW73S673a6oqCidP3/eKeb48ePq2LGjgoKCVLRoUQ0ZMkRXr151ivn+++8VGRmpwMBAlSxZUi+//LKMyUMDuQEAAADIcag3AQAA4KZ5e+iVR+SohpNLly6pdu3amjZtWqp1f/31l/bs2aORI0dqz549WrhwoQ4dOqROnTo5xQ0dOlSLFi3SvHnztGnTJl28eFEdOnRQUlKSI6Znz57at2+fVq1apVWrVmnfvn2KiopyrE9KSlL79u116dIlbdq0SfPmzdOCBQs0fPhwR0xcXJxatWqliIgI7dy5U1OnTtXEiRM1adIkD5QMAAAAAFxDvQkAAADwrBw1x0m7du3Url27NNfZ7XatWbPGadnUqVPVoEEDHT9+XGXKlFFsbKw+/vhjzZw5Uy1bXpunY9asWSpdurSio6PVpk0b/fjjj1q1apW2bdumhg0bSpI++ugjNW7cWD/99JMqV66s1atX64cfftCJEycUEREhSXrrrbfUu3dvvfbaawoJCdHs2bMVHx+v6dOny9/fXzVq1NChQ4c0adIkDRs2TDabzYMlBQAAACC/ot4EAACAm+Yj5jjJQI7qcWJVbGysbDabChUqJEnavXu3EhIS1Lp1a0dMRESEatSooS1btkiStm7dKrvd7nj4l6RGjRrJbrc7xdSoUcPx8C9Jbdq00ZUrV7R7925HTGRkpPz9/Z1iTp48qWPHjqWb5ytXriguLs7pBQAAAACektvqTdSZAAAA/gE+HnrlEbm24SQ+Pl7PPfecevbsqZCQEElSTEyM/Pz8FBoa6hQbFhammJgYR0zx4sVTpVe8eHGnmLCwMKf1oaGh8vPzyzAm5X1KTFrGjx/vGCPYbrerdOnSVg4bAAAAAFyWG+tN1JkAAACQ3XJlG1BCQoIefPBBJScn67333ss03hjj1AU8re7g7ohJmeAwo+7mzz//vIYNG+Z4HxcXd70i0EhSSKbHkjWbPZRu1ths0S7HGtPSY2lfY61sjBltKd5mG+vR9K3GW2X9eK2Vv9Xz62k5rTxzM09f+wAAIHO5td6Ufp0p7+OZCAAA/GMYqitDua7HSUJCgrp166ajR49qzZo1jl9NSVJ4eLiuXr2qc+fOOW1z5swZx6+awsPDdfr06VTpnj171inmxl8/nTt3TgkJCRnGnDlzRpJS/aLq7/z9/RUSEuL0AgAAAAB3ys31JupMAAAAyG65quEk5eH/8OHDio6OVpEiRZzW161bV76+vk6TIZ46dUoHDhxQkyZNJEmNGzdWbGysduzY4YjZvn27YmNjnWIOHDigU6dOOWJWr14tf39/1a1b1xGzceNGXb161SkmIiJC5cqVc/uxAwAAAIArqDcBAAAgU16SvN38ylWtDRnLUYdy8eJF7du3T/v27ZMkHT16VPv27dPx48eVmJioLl26aNeuXZo9e7aSkpIUExOjmJgYx0O43W5Xv379NHz4cK1du1Z79+7Vww8/rJo1a6ply2tDAlWtWlVt27ZV//79tW3bNm3btk39+/dXhw4dVLlyZUlS69atVa1aNUVFRWnv3r1au3atRowYof79+zt+7dSzZ0/5+/urd+/eOnDggBYtWqRx48Zp2LBhGQ7VBQAAAAA3g3oTAAAA4Fk5ao6TXbt2qXnz5o73KePa9urVS2PGjNHSpUslSXXq1HHabv369WrWrJkkafLkyfLx8VG3bt10+fJltWjRQtOnT5e3t7cjfvbs2RoyZIhat24tSerUqZOmTZvmWO/t7a0VK1Zo4MCBatq0qQIDA9WzZ09NnDjREWO327VmzRoNGjRI9erVU2hoqIYNG+Y0Fi8AAAAAuBv1JgAAANw0T8xxkuTm9LKRzaTMzIdsERcXJ7vdLilGrk8Ob3Wy95w1AbrU1EJemBw+N8ntk8PDffLbtQ8AcF3K829sbCxzV8AlXDMAACC3y0nPM468DJZC/N2c9hXJPk054jhvVo7qcQIAAAAAAAAAADyMHicZouEEAAAAAAAAAID8JGVCd3enmUfQcJJjTJEU4KG0XR8aS/L8EDvWh9NynfWhn6wOBWZ1WLKcxdNDaXl66C2Gf8o9KHsAAAAAAADkVjScAAAAAAAAAACQnzBUV4a8sjsDAAAAAAAAAAAAOQU9TgAAAAAAAAAAyE+85f7WgUQ3p5eN6HECAAAAAAAAAABwHT1OAAAAAAAAAADITzwxx0keam2gxwkAAAAAAAAAAMB1eagNCAAAAAAAAAAAZMr7+svdaeYRNJzkGEMlhbgYu9li2lbjrbHZxnow9ZYeTNvTeZeMGe3R9K0yJmeVp9XyyWnlieyT0/52PX3tAwAAWOXK8wnPJPmLq8+sXBcAANBwAgAAAAAAAABA/sIcJxnKQ4cCAAAAAAAAAAAyRcNJhpgcHgAAAAAAAAAA4Lo81AYEAAAAAAAAAAAy5SX3T+aeh7pp5KFDAQAAAAAAAAAAuDn0OAEAAAAAAAAAID9hjpMM0eMEAAAAAAAAAADgujzUBpTbTZEU4GJsU2tJdxltKdx8YS35nMRmG2sp3hhrZWNVTsuPp+X2/MN9PH3t57RrLaflBwAAgOcT3IhrAgDgJIf0ONm4caMmTJig3bt369SpU1q0aJHuvfdex/revXtrxowZTts0bNhQ27ZtyzDdBQsWaOTIkfrvf/+rihUr6rXXXtN9993ncr7ocQIAAAAAAAAAAP5xly5dUu3atTVt2rR0Y9q2batTp045XitXrswwza1bt6p79+6KiorSd999p6ioKHXr1k3bt293OV/0OAEAAAAAAAAAID/xvv5yd5oWtWvXTu3atcswxt/fX+Hh4S6nOWXKFLVq1UrPP/+8JOn555/Xhg0bNGXKFM2dO9elNOhxAgAAAAAAAABAfuLjoZekuLg4p9eVK1duKqvffPONihcvrltvvVX9+/fXmTNnMozfunWrWrdu7bSsTZs22rJli8v7pOEEAAAAAAAAAAC4RenSpWW32x2v8ePHZzmtdu3aafbs2Vq3bp3eeust7dy5U3fffXeGjTExMTEKCwtzWhYWFqaYmBiX98tQXQAAAAAAAAAA5Cfecn/rwPWhuk6cOKGQkBDHYn9//ywn2b17d8f/a9SooXr16qls2bJasWKF7r///nS3s9lsTu+NMamWZYSGEwAAAAAAAAAA4BYhISFODSfuVKJECZUtW1aHDx9ONyY8PDxV75IzZ86k6oWSEYbqAgAAAAAAAAAgP/HgHCee9Mcff+jEiRMqUaJEujGNGzfWmjVrnJatXr1aTZo0cXk/9DjJMYZK8kwrnL4ca3GD0ZaibTZr6RvjevpW07bK0+l7mqfzb+VcZYUnr51r6Udbipc2W4r2dPnkZpQNAABA3uHKczvPfwAAICsuXryoI0eOON4fPXpU+/btU+HChVW4cGGNGTNGDzzwgEqUKKFjx47phRdeUNGiRXXfffc5tnnkkUdUsmRJx1wqTz75pO666y698cYb6ty5s5YsWaLo6Ght2rTJ5XzRcAIAAAAAAAAAQH7iLcecJG5N06Jdu3apefPmjvfDhg2TJPXq1Uvvv/++vv/+e3322Wc6f/68SpQooebNm2v+/PkKDg52bHP8+HF5ef1vcK0mTZpo3rx5eumllzRy5EhVrFhR8+fPV8OGDV3OFw0nAAAAAAAAAADgH9esWTMZY9Jd//XXX2eaxjfffJNqWZcuXdSlS5cs54uGEwAAAAAAAAAA8hNPzEmSh1ob8tChAAAAAAAAAACATNFwkiGvzEMAAAAAAAAAAADyhzzUBgQAAAAAAAAAADLlJfdPDp+HumnkoUMBAAAAAAAAAAC4OfQ4ySFiYwMVEhLokbRtNqvxYz2Sj6wwZnR2Z8GJzRZtKd6Ylh7KSYqmHk7fs6yeX8+Xv6fPF5AzWb3v57R7MwAgf7Dbx0sKyDCGzyjPoFwBAMiDmOMkQ/Q4AQAAAAAAAAAAuC4PtQEBAAAAAAAAAIBM0eMkQ/Q4AQAAAAAAAAAAuC4PtQEBAAAAAAAAAIBMeV9/uTvNPIKGEwAAAAAAAAAA8hOG6soQQ3UBAAAAAAAAAABcl4fagHI3u329pCDXgru0tJS2MaMtxdtsYz2cfrSFtK0dq6d5Oj+eL3tr6Uv5q/xzM09fO8hduB4AAHlRbOzzCgkJye5sAAAA5A3ecn/rQB4aqoseJwAAAAAAAAAAANfR4wQAAAAAAAAAgPyEOU4yRI8TAAAAAAAAAACA6/JQGxAAAAAAAAAAAMiUt9w/JwlznAAAAAAAAAAAAOQ99DgBAAAAAAAAACA/YY6TDOWhQwEAAAAAAAAAAJnylvtbB/LQUF00nOQY2yQFuBRpvmjp2ayoqaVomy3aWvLlPZd/q3kxxlpebLaxFtMf7dF4qzydvlWeLk9PXw/IPp6+dnK7nHa8nC8AANzH1c9VPk8BAACyjoYTAAAAAAAAAADyEyaHz1COmhx+48aN6tixoyIiImSz2bR48WKn9cYYjRkzRhEREQoMDFSzZs108OBBp5grV67oiSeeUNGiRRUUFKROnTrp119/dYo5d+6coqKiZLfbZbfbFRUVpfPnzzvFHD9+XB07dlRQUJCKFi2qIUOG6OrVq04x33//vSIjIxUYGKiSJUvq5ZdfljHGbeUBAAAAADei3gQAAAB4Vo5qOLl06ZJq166tadOmpbn+zTff1KRJkzRt2jTt3LlT4eHhatWqlS5cuOCIGTp0qBYtWqR58+Zp06ZNunjxojp06KCkpCRHTM+ePbVv3z6tWrVKq1at0r59+xQVFeVYn5SUpPbt2+vSpUvatGmT5s2bpwULFmj48OGOmLi4OLVq1UoRERHauXOnpk6dqokTJ2rSpEkeKBkAAAAAuIZ6EwAAAG6aj4deeUSOOpR27dqpXbt2aa4zxmjKlCl68cUXdf/990uSZsyYobCwMM2ZM0cDBgxQbGysPv74Y82cOVMtW16bq2DWrFkqXbq0oqOj1aZNG/34449atWqVtm3bpoYNG0qSPvroIzVu3Fg//fSTKleurNWrV+uHH37QiRMnFBERIUl666231Lt3b7322msKCQnR7NmzFR8fr+nTp8vf3181atTQoUOHNGnSJA0bNkw2my3N47hy5YquXLnieB8XF+e28gMAAACQ9+X1ehN1JgAAAGS3HNXjJCNHjx5VTEyMWrdu7Vjm7++vyMhIbdmyRZK0e/duJSQkOMVERESoRo0ajpitW7fKbrc7Hv4lqVGjRrLb7U4xNWrUcDz8S1KbNm105coV7d692xETGRkpf39/p5iTJ0/q2LFj6R7H+PHjHV3d7Xa7SpcufROlAgAAAAD/kxfqTdSZAAAA/gH0OMlQrmk4iYmJkSSFhYU5LQ8LC3Osi4mJkZ+fn0JDQzOMKV68eKr0ixcv7hRz435CQ0Pl5+eXYUzK+5SYtDz//POKjY11vE6cOJHxgQMAAACAi/JCvYk6EwAAALJbrmsDurErtzEm3WGx0otJK94dMSkTHGaUH39/f6dfWwEAAACAu+XmehN1JgAAgH+AJ3qI5LrWhvTlmkMJDw+XdO1XSSVKlHAsP3PmjOMXS+Hh4bp69arOnTvn9OupM2fOqEmTJo6Y06dPp0r/7NmzTuls377daf25c+eUkJDgFHPjL6TOnDkjKfWvu1xS9nnJK8SlUJttrPX0LTBmtKV4y/k5aiW4paWkjbEWbzXv1ssm2lK8tNlStMfPlcc19XD61srT6vVmlSevN6vXQm6X3443t8tJ58vT930AyG55vt4Elz+bXPnM43MOAID8y3hJxtv9aeYVueZQypcvr/DwcK1Zs8ax7OrVq9qwYYPj4b5u3bry9fV1ijl16pQOHDjgiGncuLFiY2O1Y8cOR8z27dsVGxvrFHPgwAGdOnXKEbN69Wr5+/urbt26jpiNGzfq6tWrTjEREREqV66c+wsAAAAAADJBvQkAAAC4eTmq4eTixYvat2+f9u3bJ+naxIb79u3T8ePHZbPZNHToUI0bN06LFi3SgQMH1Lt3bxUoUEA9e/aUJNntdvXr10/Dhw/X2rVrtXfvXj388MOqWbOmWra89kvyqlWrqm3bturfv7+2bdumbdu2qX///urQoYMqV64sSWrdurWqVaumqKgo7d27V2vXrtWIESPUv39/hYRc6xXSs2dP+fv7q3fv3jpw4IAWLVqkcePGadiwYZl2gQcAAACArKLeBAAAgJuV5OOZV16Row5l165dat68ueP9sGHDJEm9evXS9OnT9cwzz+jy5csaOHCgzp07p4YNG2r16tUKDg52bDN58mT5+PioW7duunz5slq0aKHp06fL2/t//Y5mz56tIUOGqHXr1pKkTp06adq0aY713t7eWrFihQYOHKimTZsqMDBQPXv21MSJEx0xdrtda9as0aBBg1SvXj2FhoZq2LBhjjwDAAAAgCdQbwIAAAA8y2ZSZuZDtoiLi5PdbpfKxro8x4mO5vI5TizMa2F1zhKrmOMku1mb4ySnzWFjVU7LD5Af8XcIZL+U59/Y2FhHrwQgI1wzWcMcJwAA5Bw56XkmJS9nTknuzkpcnFS8hHLEcd6sHDVUFwAAAAAAAAAAQHbKUUN1AQAAAAAAAAAAz0r0tinR271zziV6G0l5Y4ArepwAAAAAAAAAAABcR4+THCJ2v+tjytnc2xCYRvpW5+WwyvV5PGw2a3Ng5PY5Qjw/xrBny9M6a+lbvfY9fX6tpp+bx5DOafNC5LT8IPfgWgAA5GTunJeEzzwAAJCRJB8fJfm494vmJB8jKcGtaWYXGk4AAAAAAAAAAMhHkry9leTmobqSvPNOwwlDdQEAAAAAAAAAAFxHjxMAAAAAAAAAAPKRZHkrSe7tcZKcRyaGl+hxAgAAAAAAAAAA4ECPEwAAAAAAAAAA8pFEeSvRzT1OEulxAgAAAAAAAAAAkPfQ4wQAAAAAAAAAgHwkSd5KcnO/iiQluzW97ETDSQ5ht4+XFOBSrDGjPZoXmy3aUryn82NNS4+mnrOOVbLZxlqKt5p/m22zpXirrOfH2vFazX9OO7+e5Olrx9NyWn6ssn6f9ey9Lbezcj3n9msHAJC38TkFAACQM9BwAgAAAAAAAABAPuKZHifunTMlO9FwAgAAAAAAAABAPkLDScaYHB4AAAAAAAAAAOA6epwAAAAAAAAAAJCP0OMkY/Q4AQAAAAAAAAAAuI6GEwAAAAAAAAAA8pEkeSvRza8keVvOx8aNG9WxY0dFRETIZrNp8eLFjnUJCQl69tlnVbNmTQUFBSkiIkKPPPKITp48mWGa06dPl81mS/WKj493OV80nAAAAAAAAAAAgH/cpUuXVLt2bU2bNi3Vur/++kt79uzRyJEjtWfPHi1cuFCHDh1Sp06dMk03JCREp06dcnoFBAS4nC/mOMkxhkoKcSnSZhtrMe2mHo232aItpr/ZQqy1vBjT0lK89bK0xpjRluI9nR+rPJ1/T1/Lnr4erJZPTpKb854XWL02kTGuZwAAAAAArEmSjwfmOEm2vE27du3Url27NNfZ7XatWbPGadnUqVPVoEEDHT9+XGXKlEk3XZvNpvDwcMv5SUGPEwAAAAAAAAAA4BZxcXFOrytXrrgt7djYWNlsNhUqVCjDuIsXL6ps2bIqVaqUOnTooL1791raDw0nAAAAAAAAAADkI0nyUtL1eUnc97rW3FC6dGnZ7XbHa/z48W7Jc3x8vJ577jn17NlTISHpj95UpUoVTZ8+XUuXLtXcuXMVEBCgpk2b6vDhwy7vi6G6AAAAAAAAAACAW5w4ccKpYcPf3/+m00xISNCDDz6o5ORkvffeexnGNmrUSI0aNXK8b9q0qW6//XZNnTpV77zzjkv7o+EEAAAAAAAAAIB8JKWXiHvTvCYkJCTDHiFWJSQkqFu3bjp69KjWrVtnOW0vLy/Vr1+fHicAAAAAAAAAACBtifJWopsbThLdmto1KY0mhw8f1vr161WkSBHLaRhjtG/fPtWsWdPlbWg4AQAAAAAAAAAA/7iLFy/qyJEjjvdHjx7Vvn37VLhwYUVERKhLly7as2ePli9frqSkJMXExEiSChcuLD8/P0nSI488opIlSzrmUhk7dqwaNWqkSpUqKS4uTu+884727dund9991+V80XCSY2yTFORi7DOWUjYm0FK8zXbZUrx1ruffat6tMma0pXibbaxH462ymn9Py2n58XT5W2U1PzmpPD2dd5st2mL6LS3F5zS5+Vr4J+Tm8snNeQeA/MLVe3V+uEdTFgAA5F/J8nH7UF3JslneZteuXWrevLnj/bBhwyRJvXr10pgxY7R06VJJUp06dZy2W79+vZo1ayZJOn78uLy8vBzrzp8/r8cee0wxMTGy2+267bbbtHHjRjVo0MDlfNFwAgAAAAAAAAAA/nHNmjWTMSbd9RmtS/HNN984vZ88ebImT558U/mi4QQAAAAAAAAAgHzEk5PD5wVemYcAAAAAAAAAAADkD/Q4AQAAAAAAAAAgH6HHScbocQIAAAAAAAAAAHAdPU4AAAAAAAAAAMhHkuTlgR4nmU/knlvQcAIAAAAAAAAAQD6SKG8lurnhJJGGE7jfNkkBLsY29WRGJG3OMfE2m9VjtZYXY0ZbTN+zclp+PM1mG+vhPVi7foxp6aF8pKSfv86vFZ4ue6vXmqfPVX67FnJa+XtSbs47AMBzXP0s/Kc/R/jcAgAASBsNJwAAAAAAAAAA5CNJ8lGSm5sHmBweAAAAAAAAAAAgD6LHCQAAAAAAAAAA+UiyvN0+OXxyHprjhB4nAAAAAAAAAAAA19HjBAAAAAAAAACAfCTJAz1OkuhxAgAAAAAAAAAAkPfQ4wQAAAAAAAAAgHwkUV5KdHOPk0QluzW97ETDSY7RSFKQi7GbLaVsm9TSYl6spW9Z+dGuxx6NtpS0MRbSlmSzjfVw+tbyb5Wn82+V58vTavpWr31rrJ5fq/mxcrw57drPaXJa/q2Wv1WevldZvZZzWvkDAPIuVz5js+Nzic/C/MXVZz2uCwBAdkqSj5Lc3DzAUF0AAAAAAAAAAAB5ED1OAAAAAAAAAADIRzwzOXzeGaqLHicAAAAAAAAAAADX0eMEAAAAAAAAAIB8hB4nGbvpHieJiYnuyAcAAAAA5FnUmwAAAIDc46YbTurXr6/PP//cHXkBAAAAgDyJehMAAABykiR5K9HNL3f3YMlON91wEh0drU2bNumOO+7Qhg0b3JEnAAAAAMhTqDcBAAAAuYfNGGPckdB///tfvfDCC4qPj9frr7+uqlWruiPZVBITEzVmzBjNnj1bMTExKlGihHr37q2XXnpJXl7X2oGMMRo7dqz+7//+T+fOnVPDhg317rvvqnr16o50rly5ohEjRmju3Lm6fPmyWrRooffee0+lSpVyxJw7d05DhgzR0qVLJUmdOnXS1KlTVahQIUfM8ePHNWjQIK1bt06BgYHq2bOnJk6cKD8/P5eOJy4uTna7XSobK3mFuFYIR6Ndi8uyzR5Ov2kOSvtND6dvrSyNGW0xfc+y2cZa3MJa+RjT0mL6OYvV8slJ5zen5T2n5cfTrP9tWcP5ApCTpTz/xsbGKiTExeffPOSfqDfl1TpTfr1mcgtXnw94LgAA5Ec56XkmJS/TYrsqMMTXrWlfjkvQYPsXOeI4b9ZN9zg5c+aM5s2bp9mzZ8vHx0dbt25VZGSkqlatqnvvvdcNWXT2xhtv6IMPPtC0adP0448/6s0339SECRM0depUR8ybb76pSZMmadq0adq5c6fCw8PVqlUrXbhwwREzdOhQLVq0SPPmzdOmTZt08eJFdejQQUlJSY6Ynj17at++fVq1apVWrVqlffv2KSoqyrE+KSlJ7du316VLl7Rp0ybNmzdPCxYs0PDhw91+3AAAAAByr3+y3kSdCQAAAJlJkpdjgnj3vW66uSHH8LnZBJo0aaIePXqoWrVquueee/Tee+/JbrcrMTFR//nPf9yRRydbt25V586d1b59e0lSuXLlNHfuXO3atUvStV9OTZkyRS+++KLuv/9+SdKMGTMUFhamOXPmaMCAAYqNjdXHH3+smTNnqmXLa794nzVrlkqXLq3o6Gi1adNGP/74o1atWqVt27apYcOGkqSPPvpIjRs31k8//aTKlStr9erV+uGHH3TixAlFRERIkt566y317t1br732Wq5vVQMAAADgHv9kvYk6EwAAAHBzbroJaMmSJXrllVfUo0cP1atX79qwU5J8fHxUo0aNm87gje644w6tXbtWhw4dkiR999132rRpk+655x5J0tGjRxUTE6PWrVs7tvH391dkZKS2bNkiSdq9e7cSEhKcYiIiIlSjRg1HzNatW2W32x0VAElq1KiR7Ha7U0yNGjUcFQBJatOmja5cuaLdu3enmf8rV64oLi7O6QUAAAAgb/sn603UmQAAAJAZ9/c2yaeTw0dFRemvv/5KtfzvY+D+E5599ln16NFDVapUka+vr2677TYNHTpUPXr0kCTFxMRIksLCwpy2CwsLc6yLiYmRn5+fQkNDM4wpXrx4qv0XL17cKebG/YSGhsrPz88Rc6Px48fLbrc7XqVLl7ZaBAAAAAByqJxQb6LOBAAAANwclxtO5syZo4sXLzreDxgwQOfOnXOKSUhIcF/O0jF//nzNmjVLc+bM0Z49ezRjxgxNnDhRM2bMcIqz2WxO740xqZbd6MaYtOKzEvN3zz//vGJjYx2vEydOZJgnAAAAALlHTqg3UWcCAABAZuhxkjGXG06MMU7v586d61QBOH36tIKDg92Xs3Q8/fTTeu655/Tggw+qZs2aioqK0lNPPaXx48dLksLDwyUp1a+Xzpw54/ilU3h4uK5evZqqAnNjzOnTp1Pt/+zZs04xN+7n3LlzSkhISPWrqhT+/v4KCQlxegEAAADIG3JCvYk6EwAAAHBzsjzHyY0VAkm6evXqTWXGFX/99Ze8vJyz7e3treTkZElS+fLlFR4erjVr1jjla8OGDWrSpIkkqW7duvL19XWKOXXqlA4cOOCIady4sWJjY7Vjxw5HzPbt2xUbG+sUc+DAAZ06dcoRs3r1avn7+6tu3bpuPnIAAAAAuU121JuoMwEAACAzSfJWoptfeanHiY87E8usW7c7dOzYUa+99prKlCmj6tWra+/evZo0aZL69u3ryMPQoUM1btw4VapUSZUqVdK4ceNUoEAB9ezZU5Jkt9vVr18/DR8+XEWKFFHhwoU1YsQI1axZUy1btpQkVa1aVW3btlX//v314YcfSpIee+wxdejQQZUrV5YktW7dWtWqVVNUVJQmTJigP//8UyNGjFD//v2t/yrql8uSfF2LfaultbSnWQvXUYvx5S3m5+hYizuwYrOlaGNGW4q32aItxUtNLabvybKxznr5WM2/xWvHIuvnyxrPl4/r148x1srSat6tsnqsni9La3J7fjwtp+UHAHIbT9eb8mqdyW4fLykgwxh3fka58vmeHZ+Jrj53/NN5y+3PBzm1XHOynPo3AgCAO1hqOJkzZ47uuusu1axZU9I/01Byo6lTp2rkyJEaOHCgzpw5o4iICA0YMECjRo1yxDzzzDO6fPmyBg4cqHPnzqlhw4ZavXq1U5f4yZMny8fHR926ddPly5fVokULTZ8+Xd7e/2sVmz17toYMGaLWrVtLkjp16qRp0/7XCuHt7a0VK1Zo4MCBatq0qQIDA9WzZ09NnDjxHygJAAAAADlRdtebqDMBAAAgM0nyUZJ7+1UoScluTS872UxafcfTcNddd+m7777ThQsX5Ovrq8TERHXr1k133HGHbr/9dhUrVkyVK1dWUlKSp/Ocp8TFxclut0uKkeTiL67eCrS2E8s9Tiz+Sj9H9TixxvM9Tqyy1mPG0zz9q3vP93rwdI8Ta9d+Tupx4mn0OHEvfqkHIC9Jef6NjY3Nk3NXUG9yv//VmZ4TPU7oGeEplKt1OfVvBAByopz0DJySl5djByggxM+tacfHXdUo+4c54jhvlstNShs3bpQkHT58WLt379aePXu0e/dujRw5UufPn8+W3icAAAAAkJNQbwIAAAByP8t9cVLGwH3wwQcdy44ePapdu3Zp7969bs0cAAAAAORG1JsAAACQkyXJy+2TuSfJy63pZSe3DGJWvnx5lS9fXl27dnVHcgAAAACQ51BvAgAAAHIH987+AgAAAAAAAAAAcrREeSvRzT1O3J1edso7fWcAAAAAAAAAAABu0k31ONmzZ49q1KghPz8/d+Un/+ocKPkGuhY7zWLaR6MtbtDUYvqXLYUbM9rlWJvNat6tsZq+MS09lJMU1tK32cZairdS9lnh6fSt22wpOqeVj7Xz69lr0/rfiiePNSvpW7tPWZXzrn3kVTntvg/ANdSbcifuoUDG+BsBgNwtST5KcvOAVElKcmt62emmepzUr19fx44dc1NWAAAAACDvod4EAAAA5C431aRkjHFXPgAAAAAgT6LeBAAAgJwmWd5KcvOcJMl5aI4TJocHAAAAAAAAACAfSfJAw4m708tOTA4PAAAAAAAAAABwHT1OAAAAAAAAAADIR5Lk5YEeJ3mnn0beORIAAAAAAAAAAICbRI+TnGLJZUm+LgZvtpS0MS0txdsqWAqXjl62lr7NWrwVlo/VNtZivLWyt8qY0R5N39OslqfV47XZoi3F5zTW89/UI/nICqt/W9bTt3otePZaQ96V26+dnJYfAMjvXP1ccef9251pZUf+c6rsOEZXyj8/lD0AIHskylvebu5xksgcJwAAAAAAAAAAAHnPTfU4GT16tIoWLequvAAAAABAnkO9CQAAADlNknyU5OYBqdydXna66YYTAAAAAED6qDcBAAAAuUveaQICAAAAAAAAAACZSpa3ktw8J0kyc5wAAAAAAAAAAIDcKOl6w4m7X1Zt3LhRHTt2VEREhGw2mxYvXuy03hijMWPGKCIiQoGBgWrWrJkOHjyYaboLFixQtWrV5O/vr2rVqmnRokWW8kXDCQAAAAAAAAAA+MddunRJtWvX1rRp09Jc/+abb2rSpEmaNm2adu7cqfDwcLVq1UoXLlxIN82tW7eqe/fuioqK0nfffaeoqCh169ZN27dvdzlfDNUFAAAAAAAAAEA+kihvebl5aK3ELKTXrl07tWvXLs11xhhNmTJFL774ou6//35J0owZMxQWFqY5c+ZowIABaW43ZcoUtWrVSs8//7wk6fnnn9eGDRs0ZcoUzZ0716V83VTDyfnz5/X111/rt99+k81mU4kSJdSmTRuFhobeTLL51DZJQa6Flm9pKWVbV4tZOTrW4gae9IylaJvNat6bWozfbCnamJw1EajV8rGaf6vxNlu0xfStXfuS1XhrrF9vnmOzcW3mZZ7/W7EmN5+vnJQXAPkH9Sb3iI19XiEhIdmdDSfZ8bni6uewK3lzNf+u7JPPWOsoMwBAXhUXF+f03t/fX/7+/pbTOXr0qGJiYtS6dWuntCIjI7Vly5Z0G062bt2qp556ymlZmzZtNGXKFJf3neWhuj7++GM1aNBA27ZtU3JyspKSkrRt2zY1atRIH3/8cVaTBQAAAIA8g3oTAAAAcqJrc5L4uPl1rcdJ6dKlZbfbHa/x48dnKY8xMTGSpLCwMKflYWFhjnXpbWd1mxtlucfJm2++qT179qhgwYJOy1955RXVrVtX/fr1y2rSAAAAAJAnUG8CAABAfvP/7d1/dFTVvf//14GQELhkBDSEIGpQRBC0CAohCFICVEXaa0EtFuUWEYuIEbixlPaG+LlCSwGjUi34taBFhQVoS6tFoGIoEBQirIog9Za0gJJSK0yAxvzifP8gTA0/MucdZpKZzPOx1qxFZl6zz5599pw5mz17zoEDB2qsFK7LapOvchynxt+u6551Xyie81V1njhxHEfHjx8/awBw/PhxUwUAAAAAoLFi3AQAAIBIdGrFSWivcXK6vKSkpJD8xGpKSoqkUytI2rdvH7j/8OHDZ60oOfN5Z64uCfacM9V54mTu3LkaOHCgunfvrg4dOkiSDh48qI8++kjz5s2ra7EAAAAA0GgwbgIAAADqJi0tTSkpKVq3bp169uwpSSovL1d+fr5++tOfnvd56enpWrduXY3rnKxdu1b9+vXzvG3PEydjxozRwoUL1aJFC0nS8OHDdeutt+r999/XZ599Jtd11aFDB910001q2jS0M1UAAAAAEA0YNwEAACAahHPFicXx48f1f//3f4G/i4qKtHPnTrVp00aXXXaZsrKyNGvWLHXu3FmdO3fWrFmz1KJFC40ePTrwnPvuu08dOnQIXEvl0Ucf1YABA/TTn/5U3/zmN/Wb3/xG69ev16ZNmzzXy/PEyauvvqp58+YFBgATJkzQT37yE6Wnp0s69RthlZWVnPwDAAAAiFmMmwAAABANToZh4uRkHcrbvn27Bg0aFPh7ypQpkqT7779fS5YsUXZ2tkpLSzVx4kQdOXJEffr00dq1a9WqVavAc/bv368mTZoE/u7Xr5+WLVumH/3oR/rxj3+sK6+8UsuXL1efPn0818vzxInrujX+fu211/T444+rdevWkk79Rtjll1+uL7/80vPGAQAAAKAxYdwEAAAAeHfLLbecdQ79VY7jaObMmZo5c+Z5M+++++5Z940cOVIjR46sc73qfI2Tc72Y8vLyOlcEWyU19xbtlWkq2fdKcfDQV/iVY8prZa4tbzEy0ZZfmWHcwGZT2nVtbeM46015a33CzXFKjc+YE5Z6nOY4kdU+1v5g5Tje31v2vml734b7tYa7/Ohn7fu2zwkr9lfDibT3LoDgGDch1Bri2O5lm14/o6L9s8nL64z21wgAiA2VaionxCtOKkNcXkNqEjzineM4oSwOAAAAABodxk0AAABAZDNNnLz66qv64IMPVFFRIYkTfgAAAAA4E+MmAAAARLpTF4ePC/Gt8aw48fxTXf3791dOTo6OHTumZs2aqbKyUj/84Q/Vv39/3XDDDbrkkkvCWU8AAAAAiHiMmwAAAIDo53niZOPGjZKkTz75RIWFhfrggw9UWFioH//4xzp69CjfogIAAAAQ8xg3AQAAIBpUqamahHiFSEyuODmtc+fO6ty5s+65557AfUVFRdq+fbt27NgR0soBAAAAQDRi3AQAAABEL/PEybmkpaUpLS1No0aNCkVxAAAAANDoMG4CAABApGDFSe1CMnECAAAAAAAAAACiQ6WaygnxREclEycIvb6SWnqLrlxvKtmfnmmrirF8uwzv0cLw1eKUbFPacUqN5RteqyTXte0re302m9Kum2gsP8eUdpxcU951w1u+dX+Fn/f6hLstrextH172vmM7Dtrfu5HVPpEmnP050t4rVpFWHwCoTz7fbEnNa81wnGw4sdL2sfI6cYqXc0f6BAA0TkycAAAAAAAAAAAQQ04qTlUhnh442YimG5o0dAUAAAAAAAAAAAAiReOZAgIAAAAAAAAAAEFVheEaJ43p4vCsOAEAAAAAAAAAAKjGihMAAAAAAAAAAGJIlZqEYcVJ41mn0XheCQAAAAAAAAAAwAVixQkAAAAAAAAAADGkUk2lEK84qWxE1zhh4iRi9JWU5C06MtFW9AJrXTLCnDcoyjU+IduUdl1bWzrOemP5mcbyra/XxnVzTHnHKQ1TTerG2v52m01px7Hlre1vq08Y34cKf9+0sreltXzbe9defnjrb91fsVSfcL9WAEDk8/q5xGdGeHhpf9r+3+ivDYt2BYDYxcQJAAAAAAAAAAAxpEpxckI8PVDViKYbGs8rAQAAAAAAAAAAQZ1UU1WF+Ke1Tjain+ri4vAAAAAAAAAAAADVWHECAAAAAAAAAEAMqQrDxeFDvYKlIbHiBAAAAAAAAAAAoBorTgAAAAAAAAAAiCGsOKldVE6cfPrpp3r88cf1+9//XqWlpbr66qv14osvqlevXpIk13WVm5urRYsW6ciRI+rTp49+/vOf69prrw2UUVZWpmnTpum1115TaWmpBg8erOeee06XXnppIHPkyBFNnjxZq1evliSNGDFCzz77rC666KJAZv/+/Xr44Yf1zjvvKDExUaNHj9bcuXMVHx9vek1j/UsUn9TcU3Z5+d2msv3XpJjy0mZjPsOYD2fZc0xpp1OOsfxws77ecLa9ZG1P17W1p+NY62/rm9b6WDnO+rDmLfV3nFxjXcL7PnfdTFPecUqNedvrDX/9bfWxv1fCW360s7RPrLWNFX0NaDwa45jJ75+upKSkC2iVU7weu7wcEzkO2tFmNrQXAAANI+p+quvIkSPKyMhQs2bN9Pvf/167d+/WvHnzapyYz5kzR/Pnz9eCBQu0bds2paSkaMiQITp27Fggk5WVpTfeeEPLli3Tpk2bdPz4cQ0fPlxVVVWBzOjRo7Vz506tWbNGa9as0c6dOzVmzJjA41VVVbr99tt14sQJbdq0ScuWLdOqVas0derUemkLAAAAADgTYyYAAAAEU6kmqlTTEN+ibrrhvKJuxclPf/pTdezYUYsXLw7cd8UVVwT+7bqu8vLyNGPGDN15552SpJdeeknt2rXTq6++qgkTJsjv9+vFF1/Ur371K2VmnvpW8dKlS9WxY0etX79ew4YN0549e7RmzRpt3bpVffr0kSS98MILSk9P1969e9WlSxetXbtWu3fv1oEDB5SamipJmjdvnsaOHasnn3wyJN+GAgAAAAALxkwAAADAhYm6KaDVq1erd+/eGjVqlJKTk9WzZ0+98MILgceLiopUXFysoUOHBu5LSEjQwIEDtWXLFklSYWGhKioqamRSU1PVvXv3QKagoEA+ny8wAJCkvn37yufz1ch07949MACQpGHDhqmsrEyFhYXnrH9ZWZlKSkpq3AAAAAAgVBgzAQAAIJgqxYXl1lhE3cTJvn379Pzzz6tz5856++239dBDD2ny5Ml6+eWXJUnFxcWSpHbt2tV4Xrt27QKPFRcXKz4+Xq1bt641k5ycfNb2k5OTa2TO3E7r1q0VHx8fyJxp9uzZ8vl8gVvHjh2tTQAAAAAA58WYCQAAAMFUqWlYbo1F1E2cnDx5UjfccINmzZqlnj17asKECRo/fryef/75GjnHcWr87bruWfed6czMufJ1yXzV9OnT5ff7A7cDBw7UWicAAAAAsGDMBAAAAFyYqJs4ad++vbp161bjvq5du2r//v2SpJSUFEk669tLhw8fDnzTKSUlReXl5Tpy5Eitmb///e9nbf8f//hHjcyZ2zly5IgqKirO+lbVaQkJCUpKSqpxAwAAAIBQYcwEAACAYE6GYbXJSVacNJyMjAzt3bu3xn1//vOfdfnll0uS0tLSlJKSonXr1gUeLy8vV35+vvr16ydJ6tWrl5o1a1Yjc+jQIe3atSuQSU9Pl9/v1/vvvx/IvPfee/L7/TUyu3bt0qFDhwKZtWvXKiEhQb169QrxKwcAAACA4BgzAQAAABcm6q7W8thjj6lfv36aNWuW7rrrLr3//vtatGiRFi1aJOnUMvCsrCzNmjVLnTt3VufOnTVr1iy1aNFCo0ePliT5fD6NGzdOU6dOVdu2bdWmTRtNmzZNPXr0UGZmpqRT38j6xje+ofHjx2vhwoWSpAcffFDDhw9Xly5dJElDhw5Vt27dNGbMGP3sZz/TF198oWnTpmn8+PHmb0Ut2fx9qaXH54w1FS0Vrbfl0zKNGzAqyg1j4Rm2uLVtjByn1PiMzca87fU6jrXts415K+vrDXd9wst1be8ty/5y3Rxj2da+b9tXjmN8L5qFu3wba/vHmnC3TzS3v/W9aD2OAIhNjXXMFCpez7Ea4vPFS92oFwAACIVKNVWTEK8QaUwrTqJu4uTGG2/UG2+8oenTp+uJJ55QWlqa8vLydO+99wYy2dnZKi0t1cSJE3XkyBH16dNHa9euVatWrQKZp556SnFxcbrrrrtUWlqqwYMHa8mSJWra9N8795VXXtHkyZM1dOhQSdKIESO0YMGCwONNmzbVm2++qYkTJyojI0OJiYkaPXq05s6dWw8tAQAAAABnY8wEAAAAXBjHdV23oSsRy0pKSuTz+aS3/Kw4CYnI+ha6vT5zjHnrCozwlu+6iaZ8uFfAWOtjFe5vikfzipPIW61kE2nf6re+V/jGZ/SItBUn9DXUh9Pnv36/n2tXwJNQ9xlWnNhFar0AAIgWkXQOfLouqf4P1CSpVfAnGJwsOabPfDdExOu8UFF3jRMAAAAAAAAAAIBwibqf6gIAAAAAAAAAAHVXpaZyucbJeTFxAgAAAAAAAABADGHipHb8VBcAAAAAAAAAAEA1VpwAAAAAAAAAABBDqk42lXsyxCtOQlxeQ2LiJFIslNTMY3aSseypGbZ8Ua4tPy/Hli8w5AttRauo1PiEOca8sS2t0oxtaX692bZ4WqIp7oyyFW/lurb6WDnOelPedTON5Vv3l6Vs4/s27GzvLde19X3H2RzW8q2s7W+tT7jrH2nC3Z6RxHocCbdIa8tY6gsA6k8kHysitW6RWi8AAIBwYeIEAAAAAAAAAIAYUlXZVCcrQ7tCxA1xeQ2Ja5wAAAAAAAAAAABUY8UJAAAAAAAAAAAxpKoyTk5laKcH3BCX15BYcQIAAAAAAAAAAFCt8UwBAQAAAAAAAACAoKoqm8gJ+TVOGs86DSZOAAAAAAAAAACIIVWVTcMwccLF4QEAAAAAAAAAABodVpxEip0K3zTWvERT3Ddpginv32qKh1fRZlt+Xo4tP7XUltccW7yXsT5FxvKtiqxPsNXfdY2v18hxcsNcvrG/GYWzfaxtE/37Krpfr7U+kfZ6rSKtPmg49AUA4eD1c5JjkA3t2rBCeT7dEPvIS/3pOzgXjj1A3VVWNpVTwYqT82HFCQAAAAAAAAAAQDUmTgAAAAAAAAAAiCFuVZxOhvjmVtl+4OqKK66Q4zhn3R5++OFz5t99991z5j/++ONQNEkN/FQXAAAAAAAAAACoV9u2bVNVVVXg7127dmnIkCEaNWpUrc/bu3evkpKSAn9fcsklIa8bEycAAAAAAAAAAMSSyqanbqEu0+DMCY+f/OQnuvLKKzVw4MBan5ecnKyLLrrIWjsTfqoLAAAAAAAAAACERElJSY1bWVlZ0OeUl5dr6dKl+t73vifHcWrN9uzZU+3bt9fgwYO1YcOGUFW7BiZOAAAAAAAAAACIJadXnIT6Jqljx47y+XyB2+zZs4NW59e//rWOHj2qsWPHnjfTvn17LVq0SKtWrdLrr7+uLl26aPDgwdq4cWOoWiWAn+oCAAAAAAAAACCWVDlSZe0rO+pUpqQDBw7UuAZJQkJC0Ke++OKLuvXWW5WamnreTJcuXdSlS5fA3+np6Tpw4IDmzp2rAQMGXEDFz8bESaT4mqRmHrOP2IpOH2BbrlQwf5BtA1YFhmy6seyVtrg7xZZ3ChJt5a/IsZXvrDflpYww5zfb4kW2+gdZdXcOtvq7rq39rRynNMzl5xrS1n0bXta2se4rW9vUpXzrexHRItx9J9yivf4AEG5ejpPRfmz0+llQ368zkts1FvpFKOvfEH0s2tsfDYe+A0SmpKSkGhMnwfztb3/T+vXr9frrr5u31bdvXy1dutT8vGCYOAEAAAAAAAAAIJZUVt9CXWYdLF68WMnJybr99tvNz92xY4fat29ftw3XgokTAAAAAAAAAABQ706ePKnFixfr/vvvV1xczemK6dOn69NPP9XLL78sScrLy9MVV1yha6+9NnAx+VWrVmnVqlUhrxcTJwAAAAAAAAAAxJIIWXGyfv167d+/X9/73vfOeuzQoUPav39/4O/y8nJNmzZNn376qRITE3XttdfqzTff1G233XYhtT4nJk4AAAAAAAAAAEC9Gzp0qFzXPedjS5YsqfF3dna2srOz66FWTJwAAAAAAAAAABBbImTFSaRq0tAVAAAAAAAAAAAAiBSsOAEAAAAAAAAAIJZUSqoIQ5mNBBMnkeImSc29RX19i01FFzhVpnyeO8GUz3JSTXkpw3PSXZFpKvmiSd1NeaeTKS4V5drKd2y/uee6ttfrjDLFpUJjvmiz8QlGI3NMcXeFrXjHse0vO+tvKlrb0/t7JbxlS46z3li+rT6OY6uP69r6jrX+5veiE+72D3dfjm6OU+o5a+07VtZ9Fe76WIW7/tHePgCige0z9kJ5Pa55PZ55KY9jo12ktlmk7u9IbS/YRWofAxAhqqpvoS6zkeCnugAAAAAAAAAAAKqx4gQAAAAAAAAAgFjCxeFrxYoTAAAAAAAAAACAaqw4AQAAAAAAAAAglrDipFasOAEAAAAAAAAAAKjGihMAAAAAAAAAAGIJK05qxcRJhEh68O9ykv7lKdstfo+tcLepKZ7VaaGtfJXa4vmJnqPORmNVBvps+ZHG8ouyjU+wcZzwtaUkaeB6W1621+u6tvo4jq0+jrPZlJcyjHmjecb2n2qrj6U97W1jy7tujinvOKa4rPVxHOu+tZYf7vaxvhetbO1jr4+1v1lZ3yuZYapHXYT3uGPta7FWvpXj5JrykVZ/AGfz8png9b3v5T3PcSH2eOk/XvsF/adx8Hou3RDnrJHax0L5PgKAcGHiBAAAAAAAAACAWFKl0K8QqQpxeQ2IiRMAAAAAAAAAAGIJP9VVKy4ODwAAAAAAAAAAUI0VJwAAAAAAAAAAxBJWnNSKFScAAAAAAAAAAADVWHECAAAAAAAAAEAsqai+hbrMRoIVJwAAAAAAAAAAANVYcRIh7ox/XfHxzcNS9oe6zpT3fVxsyvsXpJjy2m7IFtiKlubY4o/kGMtPtMVX5tryI431GbjeljfbbEo7Toat+JGZtvxKY/nW/iBj+QuMxRvr44yy9Adb3V3X1vaOY+1r1n0V3n3rurb3lvX1Op1M8Tq0f7jLtx2r7O1pPBaG8djjurbjuLUvWNseDcvalwFEPi+fOZH83o/kuoUK+yjyeT13oy1OaYh2iPZ9FKn1agj13ceive8gxKqqb6Eus5FgxQkAAAAAAAAAAEA1VpwAAAAAAAAAABBLqiRVhqHMRoKJEwAAAAAAAAAAYkmlQj9xEuryGhA/1QUAAAAAAAAAAFCNFScAAAAAAAAAAMQSVpzUKqpXnMyePVuO4ygrKytwn+u6mjlzplJTU5WYmKhbbrlFH330UY3nlZWV6ZFHHtHFF1+sli1basSIETp48GCNzJEjRzRmzBj5fD75fD6NGTNGR48erZHZv3+/7rjjDrVs2VIXX3yxJk+erPLy8nC9XAAAAAAwY9wEAAAA2ETtxMm2bdu0aNEiXXfddTXunzNnjubPn68FCxZo27ZtSklJ0ZAhQ3Ts2LFAJisrS2+88YaWLVumTZs26fjx4xo+fLiqqv599ZrRo0dr586dWrNmjdasWaOdO3dqzJgxgcerqqp0++2368SJE9q0aZOWLVumVatWaerUqeF/8QAAAADgAeMmAAAAnFNlmG6NhOO6rtvQlbA6fvy4brjhBj333HP63//9X33ta19TXl6eXNdVamqqsrKy9Pjjj0s69S2pdu3a6ac//akmTJggv9+vSy65RL/61a909913S5I+++wzdezYUW+99ZaGDRumPXv2qFu3btq6dav69OkjSdq6davS09P18ccfq0uXLvr973+v4cOH68CBA0pNTZUkLVu2TGPHjtXhw4eVlJTk6bWUlJTI5/NprP8nik9q7uk5H+q64KELULBxkCmfN2CCKZ+1caEpbzJwvS2flmnLT7LFVWCL+14pNuX916TYNtDLFg97fYpKbfmRibb8SmP5ZptNadc19jcDp1PYij6lKNcUd92cMFXkFMcJ976dE+bywy3DlLb2TccJb39wHOOx3PhetAh3X7ayvtfdfcbyjfvWKtLaEw3j9Pmv3+/3fM6Mumks46aG6jNejomhPq41xDZjQTS3q9fP5kitv1fRvI8QHWKhj8XCa4xmkXQOfLoumuuXEkNcl9ISaVpkvM4LFZUrTh5++GHdfvvtysys+R89RUVFKi4u1tChQwP3JSQkaODAgdqyZYskqbCwUBUVFTUyqamp6t69eyBTUFAgn88XOPmXpL59+8rn89XIdO/ePXDyL0nDhg1TWVmZCgsLz1v3srIylZSU1LgBAAAAQKhF67iJMRMAAEA9qFLoV5tUqdGIuovDL1u2TB988IG2bdt21mPFxae+Hd+uXbsa97dr105/+9vfApn4+Hi1bt36rMzp5xcXFys5Ofms8pOTk2tkztxO69atFR8fH8icy+zZs5WbG95vcwIAAACIbdE8bmLMBAAAgIYWVStODhw4oEcffVRLly5V8+bn/1krx3Fq/O267ln3nenMzLnydcmcafr06fL7/YHbgQMHaq0XAAAAAFhE+7iJMRMAAEA94BontYqqiZPCwkIdPnxYvXr1UlxcnOLi4pSfn69nnnlGcXFxgW8ynfnNpcOHDwceS0lJUXl5uY4cOVJr5u9///tZ2//HP/5RI3Pmdo4cOaKKioqzvlH1VQkJCUpKSqpxAwAAAIBQifZxE2MmAAAANLSomjgZPHiwPvzwQ+3cuTNw6927t+69917t3LlTnTp1UkpKitatWxd4Tnl5ufLz89WvXz9JUq9evdSsWbMamUOHDmnXrl2BTHp6uvx+v95///1A5r333pPf76+R2bVrlw4dOhTIrF27VgkJCerVy3gFbgAAAAAIEcZNAAAACKoiTLdGIqqucdKqVSt17969xn0tW7ZU27ZtA/dnZWVp1qxZ6ty5szp37qxZs2apRYsWGj16tCTJ5/Np3Lhxmjp1qtq2bas2bdpo2rRp6tGjR+CiiV27dtU3vvENjR8/XgsXLpQkPfjggxo+fLi6dOkiSRo6dKi6deumMWPG6Gc/+5m++OILTZs2TePHj+cbUQAAAAAaDOMmAAAABFWl0F/MnYvDR67s7GyVlpZq4sSJOnLkiPr06aO1a9eqVatWgcxTTz2luLg43XXXXSotLdXgwYO1ZMkSNW3aNJB55ZVXNHnyZA0dOlSSNGLECC1YsCDweNOmTfXmm29q4sSJysjIUGJiokaPHq25c+fW34sFAAAAgDpg3AQAAACcn+O6rtvQlYhlJSUl8vl80jf9UjNv37j61+9rv2DjmVq8ZdvFDw542pRf5FxryksZnpPp7lZTyQXzBxnrEmYLgkcuiPXXDVaWhqUaAWmJtnzRemP5mcbyc215s2xbfJ6xfaaGr/6um2PKO06Y+85IY9usNPYdI9e19TXHsdZnsylt3V9WjmPta96P41L429NavkW42ybcfcFa/3D3NUD69/mv3+9nxQE8CYyZ9ANJ57/YvVehPNbZPydqV9/HYa/1j+Q2CxU+AxuWl37BPrIL5fstUtu/IY5jXsRC28Mmks6BA+dW0/1S8xDX5csSaXZkvM4LFVXXOAEAAAAAAAAAAAinRvdTXQAAAAAAAAAAoBZVkirDUGYjwYoTAAAAAAAAAACAaqw4AQAAAAAAAAAgllRKahqGMhsJVpwAAAAAAAAAAABUY8UJAAAAAAAAAACxpEKhX1ZREeLyGhATJwAAAAAAAAAAxJIqhf5i7o3o4vBMnESIP7/cUa2SHE/ZxKW2sv91m7dyTxt8/B3bBvIHmeIPDnjac3Z5+d22uvS2xTVwvS0/MtOWn2SL+yYVm/L+BSm2DSjRlHZX2Ep3NtryGmtsT7NsY36zLT7S1p6aWmrLW+qfZquL4xjrYn2tK43lrzS+F80yTGlz+1il5Zji9voY+7KxfcLNdW3HBsex9B9r20QW22uVXNfW1wAg+gU/f3Kc3JCV5VUoj8fe6x+c13p52abXsrzkvH/eeftc97ZNb+0azZ+tDfEaY6FdI1ko+359i/a+E6n1AuAdEycAAAAAAAAAAMSSKoX+Yu6NaMUJF4cHAAAAAAAAAACoxooTAAAAAAAAAABiSaVCv6wi1CtYGhArTgAAAAAAAAAAAKqx4gQAAAAAAAAAgFhSIckJQ5mNBCtOAAAAAAAAAAAAqrHiBAAAAAAAAACAWFJVfQt1mY0EEycRonf5djnlrTxlj25vbyp76/F0U/5JzTDlv/7sFlNeA7xH/dek2MqeZIv7yrqb8nfHP23KL3KOmvL+ghxTXoW2uIpKTXFnfqKt/Km28qXNtvi8TFt+6hxj+cb2X2CLm400tP/K9eGrhySttD4hwxZPM+7bolxbfqSxfHN72vqyu89WH8cx9uWRxr5sfr22/es4tv3lusb6m9o/21i2se2tfd/MeNyUse+HmbUvWNn7TnjF2usFws3vn66kpKQLLsdxvB2rXTf4uZgT6p+38MRr/UP3GRDK442XY6PX7TmO9XPxwrfphdfjf6S2a0NssyHqj8jG/rbjPQmzCLg4/MyZM5WbW7O/tWvXTsXFxed9Tn5+vqZMmaKPPvpIqampys7O1kMPPVSX2taKiRMAAAAAAAAAAFDvrr32Wq1f/+8vdDZt2vS82aKiIt12220aP368li5dqs2bN2vixIm65JJL9O1vfzuk9WLiBAAAAAAAAACAWFIl8woRT2UaxcXFKSXF268O/eIXv9Bll12mvLw8SVLXrl21fft2zZ07N+QTJ1wcHgAAAAAAAAAAhERJSUmNW1lZ2Xmzn3zyiVJTU5WWlqZ77rlH+/btO2+2oKBAQ4cOrXHfsGHDtH37dlVUVISs/hITJwAAAAAAAAAAxJaKMN0kdezYUT6fL3CbPXv2OavQp08fvfzyy3r77bf1wgsvqLi4WP369dM///nPc+aLi4vVrl27Gve1a9dOlZWV+vzzz+vaEufET3UBAAAAAAAAAICQOHDggJKSkgJ/JyQknDN36623Bv7do0cPpaen68orr9RLL72kKVOmnPM5juPU+Nt13XPef6GYOAEAAAAAAAAAIJZUKfS/R1V9jZOkpKQaEydetWzZUj169NAnn3xyzsdTUlJUXFxc477Dhw8rLi5Obdu2NW+vNkycRIiSS5IkeetM641ld8/bbcqn7PKb8g+ueNqUt/B9XBw89BXd4veY8k9qhin/n+Wvm/JK83ZhozqbZH1Coi3e2xb3ldn6jj9hs20DCzJt+fwcW35gqS2fZmxPzbHFV2Z7jqa7TY11sdld3tWU999rbJuVxraX97Y5VX6usXyrDFPacaxHclv51vZ0Xdt7y3Gs7WltH2t/sJRvfB9a+5q5fOO+NefDK9x9wdo3raz1d13b54o1D+DCeXlfR/9709s5tOMYz7WjkNd9Wd/9oiH6WLRv00tZXj+3o/89Hjr2czVEs2g/jgGSVFZWpj179ujmm28+5+Pp6en67W9/W+O+tWvXqnfv3mrWrFlI68I1TgAAAAAAAAAAiCWVYboZTJs2Tfn5+SoqKtJ7772nkSNHqqSkRPfff78kafr06brvvvsC+Yceekh/+9vfNGXKFO3Zs0e//OUv9eKLL2ratGl1bITzY8UJAAAAAAAAAACxpFJSaC8LYp44OXjwoL7zne/o888/1yWXXKK+fftq69atuvzyyyVJhw4d0v79+wP5tLQ0vfXWW3rsscf085//XKmpqXrmmWf07W9/O5SvQhITJwAAAAAAAAAAoJ4tW7as1seXLFly1n0DBw7UBx98EKYa/RsTJwAAAAAAAAAAxBLj6pAGK7OBcI0TAAAAAAAAAACAaqw4AQAAAAAAAAAgllQp9Nc4qQpxeQ2IFScAAAAAAAAAAADVWHESKZ5MlJoneopunmorerPjN+VzBtrKX7ggy5Tv1/0dz9nc+BxT2bvVzZT/uvMHU95XZmtL38fFpryVf2uKKe/ra6uP/xpb+X7Z8sq37V9tt8U11pjP9/YeDBhYatxAtilt6W9bNMhUtuOsN+Ulny2ebyxexrZfaa1/hi0+MtOWX2ntC1abw5p3Nhpfr5mx/c2v13v5rmt7rY6Ta6yL7X0uzTHmbW1pr7+tfNc1HscjTLTXH0D08Hru5eVzKpTHrlDWK7Rlefv88toWXnKh3maoRGq9vIrUvt8Q7Odl59cQfb8h6g8bL/vIa9uHsixEMK5xUitWnAAAAAAAAAAAAFRjxQkAAAAAAAAAALGEFSe1YuIEAAAAAAAAAIBYUinJDXGZXBweAAAAAAAAAACg8WHFCQAAAAAAAAAAsSQcq0NYcQIAAAAAAAAAAND4sOIEAAAAAAAAAIBYwjVOasXESaSYsUFSy4auxSlfs8Vze9jyr7v/6Tl7p94wlb27vKspn+5uNeUL5g8y5VVgi6ev2GDKPzngTtsGjL6+ZIvtCduNG3jWmLfqZYunD7C1f4H10yA/05aX33PSGWUsOtwG5tryI3Ns+XnGtlxgi6vQmE9LtOWLSo0bMLL2Nev+Mptji6cZ+0OR9/o7o4xlm9leq+va6uM41n2VYczbhL8+m2OqfGt/AGKNzxd8zBTK95HjrA9ZWa5rPQ+8cF6O0V7by368r60sL8fG7JBt79Q2g+9L723hpazQ7e/o/2zw+lkYvM289kMvbRbKsryK1H0ZyuNApL7GSBbKdo3Uvg9EKyZOAAAAAAAAAACIJaw4qRXXOAEAAAAAAAAAAKjGihMAAAAAAAAAAGJJpaSTIS4z1OU1ICZOAAAAAAAAAACIJVUK/U91NaKJE36qCwAAAAAAAAAAoBorTgAAAAAAAAAAiCWVCv2yClacAAAAAAAAAAAAND6sOIkQfv8gJSUlecrmOrayM4x1Kf3/bPmL3AeNW1juOdlDfzKVvCX766a8c6fth/x8k4pN+W5T9pjy1tf79U5bTHl3tbHzGFnbR5Nscf/WFNsTttviBRsH2Z6gXFM6fUBTY/neFRTa2sZX1t2U99+baMpLObZ4obH4R4z5cCuy9QWlGdtnUqYp7utrey/6rZ8Uabb6mNsnjO3prrAVbe3LjrPeugET1w1vfVzXtm+dUca+YH2vF9ni1vpL1ryN42wOa/lArPEyZnIc42fIBfJ6XPZeLy+fyV6PLcHL8lov6+dP7dv08tk0x2Np3upl/3yon7Lqm/d+mO0p5brBxwih7DuhLCuUGuJ9FAu8nseG8j3ZEPvSS1mR2se8jzW8fW5F6nvES/tHat2DYsVJrVhxAgAAAAAAAAAAUI0VJwAAAAAAAAAAxJIKseKkFqw4AQAAAAAAAAAAqMaKEwAAAAAAAAAAYslJSbbLPwcX6vIaUNStOJk9e7ZuvPFGtWrVSsnJyfrWt76lvXv31si4rquZM2cqNTVViYmJuuWWW/TRRx/VyJSVlemRRx7RxRdfrJYtW2rEiBE6ePBgjcyRI0c0ZswY+Xw++Xw+jRkzRkePHq2R2b9/v+644w61bNlSF198sSZPnqzy8vKwvHYAAAAACIYxEwAAAIKqDNOtkYi6iZP8/Hw9/PDD2rp1q9atW6fKykoNHTpUJ06cCGTmzJmj+fPna8GCBdq2bZtSUlI0ZMgQHTt2LJDJysrSG2+8oWXLlmnTpk06fvy4hg8frqqqqkBm9OjR2rlzp9asWaM1a9Zo586dGjNmTODxqqoq3X777Tpx4oQ2bdqkZcuWadWqVZo6dWr9NAYAAAAAnIExEwAAAHBhou6nutasWVPj78WLFys5OVmFhYUaMGCAXNdVXl6eZsyYoTvvvFOS9NJLL6ldu3Z69dVXNWHCBPn9fr344ov61a9+pczMTEnS0qVL1bFjR61fv17Dhg3Tnj17tGbNGm3dulV9+vSRJL3wwgtKT0/X3r171aVLF61du1a7d+/WgQMHlJqaKkmaN2+exo4dqyeffFJJSUn12DIAAAAAwJgJAAAAHlRKckJcZiP6qa6omzg5k9/vlyS1adNGklRUVKTi4mINHTo0kElISNDAgQO1ZcsWTZgwQYWFhaqoqKiRSU1NVffu3bVlyxYNGzZMBQUF8vl8gQGAJPXt21c+n09btmxRly5dVFBQoO7duwcGAJI0bNgwlZWVqbCwUIMGDTqrvmVlZSorKwv8XVJSErrGOI/N1vyJ4JkanEWm+B433XM21ckylb3BULYkHdJFpnyOck355eV3m/Kvx/+nKX/PvuWm/NN60JTXKFs8d0COKZ/l5Nk2kGaL+z4uNuWPZrc35Se4eab8ovlnHxNqtcCQLSo1Fe1P2GXK+8qCZ2qUf2+K7Qlhlr5vgylf4FQFD33VSFvfV6EtrqnG/dvb2P7zjPnetrgGZtvyIxNt+ZXrPUcd60nhyExT3HVteWe+KW47LtSB49g+56SMsNSjvthfr1V0tw8aj9gaMwX/zHFdb58zXo4RjmP7jA4u+OjNdb2ddziO98/H+uTls9JxrKPYYOV5Od57PWaHrm5e9qXXPualX3vtO5HK6+d2KF+nl22Gul29vXe99cPQ9rH6bVfvbOfftfF+fK3fY0oo2z60ZXlr+1Af0+tbtB87UXdR91NdX+W6rqZMmaL+/fure/fukqTi4lP/UdquXbsa2Xbt2gUeKy4uVnx8vFq3bl1rJjk5+axtJicn18icuZ3WrVsrPj4+kDnT7NmzA7//6/P51LFjR+vLBgAAAABPGDMBAADgnCrCdGskonriZNKkSfrTn/6k11577azHnDO+Uuq67ln3nenMzLnydcl81fTp0+X3+wO3AwcO1FonAAAAAKgrxkwAAACAXdROnDzyyCNavXq1NmzYoEsvvTRwf0rKqZ8bOfPbS4cPHw580yklJUXl5eU6cuRIrZm///3vZ233H//4R43Mmds5cuSIKioqzvpW1WkJCQlKSkqqcQMAAACAUGPMBAAAgPOqCtOtkYi6iRPXdTVp0iS9/vrreuedd5SWVvOiB2lpaUpJSdG6desC95WXlys/P1/9+vWTJPXq1UvNmjWrkTl06JB27doVyKSnp8vv9+v9998PZN577z35/f4amV27dunQoUOBzNq1a5WQkKBevXqF/sUDAAAAQBCMmQAAAIALE3UXh3/44Yf16quv6je/+Y1atWoV+PaSz+dTYmKiHMdRVlaWZs2apc6dO6tz586aNWuWWrRoodGjRwey48aN09SpU9W2bVu1adNG06ZNU48ePZSZeerCRl27dtU3vvENjR8/XgsXLpQkPfjggxo+fLi6dOkiSRo6dKi6deumMWPG6Gc/+5m++OILTZs2TePHj+dbUQAAAAAaBGMmAAAAeOI2dAUiV9RNnDz//POSpFtuuaXG/YsXL9bYsWMlSdnZ2SotLdXEiRN15MgR9enTR2vXrlWrVq0C+aeeekpxcXG66667VFpaqsGDB2vJkiVq2rRpIPPKK69o8uTJGjp0qCRpxIgRWrBgQeDxpk2b6s0339TEiROVkZGhxMREjR49WnPnzg3TqwcAAACA2jFmAgAAAC5M1E2cuG7waTDHcTRz5kzNnDnzvJnmzZvr2Wef1bPPPnveTJs2bbR06dJat3XZZZfpd7/7XdA6AQAAAEB9YMwEAAAAXJiomzhB5Mkw5rtqt+fsxjCWLUkpWX5TPjcvx5Rf+OcsU94qp/vdpvyi+Y+a8r5XioOHvmK57rGVX2Zr/7vjF5ny3Yz9YUJenilvbc93pvQz5fv+T4Hn7GD3HVPZBaMyTXn/guCZGgqN+Um2eN6ACaZ81saFtg3k2+LpAzaY8rvLu5ry/q0pprzO//9b5/TgiqdN+UXOUVPedW3HTsd68F/p/ZPoQdd2HFnk2KriGN9bWllqy+cn2vJjjfWZZMxPzbXllW1Ku67t9TqOrT7mvunY9pe1/gBCYU7QhON4OxZ5OUZYjzuh2GZDCPXrDM72eRFMKNvVcTaHrCxvvG3PS71C3b9C2S8ite83RL1c18v5mPGcrdbthe58xXHWh6wsr20f2uOTt3FFKD8f6ruPeW+v4G3hra9G7vs7UvcRIkfUXRweAAAAAAAAAAAgXJg4AQAAAAAAAAAAqMbECQAAAAAAAAAAQDWucQIAAAAAAAAAQEypqL6FuszGgRUnAAAAAAAAAAAA1VhxAgAAAAAAAABATKmsvoW6zMaBiRNcsM3WvOMPSz0kKSXLVnZxns+UX2is+1Nlh0z5j+OvMeVzlWPK5/1Plinvn2Jrnz3qZsovi7/blP9Q15ny92i5KX+3Mb9wf5Ypv0HppnzW8TxTPqwKbPG8fRNM+Ud3LTLln9aDprzG2uKH9l1kyrcfddS2AVtXkKaW2vIjE03xRZ0eNeV9ZcWmvOPY6u8rsx1r/fkpnrPW44hGDjLFfa/Y2saf7r3ukpQ+YIMpXyBb/c19TRnGvO2swXGsZxnZxvJzTXnXtX3uOs56Y/mZpjyAcxjp4X1a6K0o6zGidt6Ol16OG16PFV5yjuOpKNlHfRfGdb2dy3jfR9bPq9p4+ayZ46mkUO5vqSE+Q0LZrqET2vdu/W/Per5xobyfrwQ/Dnitu5djj/U8KiTS6v995K3/1PcxzPtxOJTqf597/WwOvo/q+32L+sHECQAAAAAAAAAAMYVrnNSGiRMAAAAAAAAAAGIKP9VVGy4ODwAAAAAAAAAAUI0VJwAAAAAAAAAAxJRKhf6ntVhxAgAAAAAAAAAA0Oiw4gQAAAAAAAAAgJjCxeFrw4oTAAAAAAAAAABQr2bPnq0bb7xRrVq1UnJysr71rW9p7969tT7n3XffleM4Z90+/vjjkNaNFSdR6DM3z5RPdbLCUo9IlPu08QlP+8NSj9MeS2hvyqd8aNzA/2fM/8IWT7zF1j573rWV3027TflRxr7ct6UpbrbheHpYy1+08dHwFf6ILX5owEWm/B51M+UvuvqQKX+3lpvyvo+LTfkc5Zry1vbUdls83d1qyhdsHGTK5w2YYMov1z2m/O6yrqa8/94UUz59xQbP2YJRxrZZYWsbq6yChaZ8wXxb/TXJFvdNsh33/QsybRtYYIurKMP4BKtsU9px1hvL32ws31i8sXzXzbFuAIg67orgGccp9VbYPA/vmQJvRXmpl+TtOOPM91aWpgYvy3W9HccdJ/jx2HUTPZbl4TV6Pt56PY7PCZrweoz03H+8SAve/o5jPC+NUo5j+0yrjZd96bVdveS8953QbTOUvNc/+D5yOnndqpf97e397fU45oX3fRS6c9RQ9lfJS728vde8vUZvZXnfR6HrF16O+xrpre+7K0LXxyJPpUJ/TRJbefn5+Xr44Yd14403qrKyUjNmzNDQoUO1e/dutWxZ+3/s7d27V0lJSYG/L7nkkjrV+HyYOAEAAAAAAAAAAPVqzZo1Nf5evHixkpOTVVhYqAEDBtT63OTkZF100UVhqxs/1QUAAAAAAAAAQEyp1L+vcxKq26kVJyUlJTVuZWVlnmrk95/6FYQ2bdoEzfbs2VPt27fX4MGDtWGD91+i8IqJEwAAAAAAAAAAYkplmG5Sx44d5fP5ArfZs2cHrY3rupoyZYr69++v7t27nzfXvn17LVq0SKtWrdLrr7+uLl26aPDgwdq4cWNdGuG8+KkuAAAAAAAAAAAQEgcOHKhx/ZGEhISgz5k0aZL+9Kc/adOmTbXmunTpoi5dugT+Tk9P14EDBzR37tygP+9lwcQJAAAAAAAAAAAx5fTPa4W6TCkpKanGxEkwjzzyiFavXq2NGzfq0ksvNW+1b9++Wrp0qfl5tWHiBAAAAAAAAAAA1CvXdfXII4/ojTfe0Lvvvqu0tLQ6lbNjxw61b98+pHVj4gQAAAAAAAAAgJjy72uShLZM7x5++GG9+uqr+s1vfqNWrVqpuLhYkuTz+ZSYmChJmj59uj799FO9/PLLkqS8vDxdccUVuvbaa1VeXq6lS5dq1apVWrVqVUhfCRMnUWihHjXlc5UVnorUg+yWtnxib1s+N9+Wt8qx7SqV9rXltx5PN+U3OgWmfM6vTHH1/Q9b+X863sOUzxxoipsVv+sz5WfoSVN+y9Kvm/IPfvdpz9lu2m0q+9Fdi0z5DbL1NWvbWKU6Wab80Q9teU2yxVPzbeW/7b5jylv7jvMb15TfPaCbKW+tz9PffdCU1wpbPGvjQs/Z9BUbTGVfpw9N+a/P32LKm9kOszK+dXU02/YNnYvmHDLl/QUppvw7+wab8tb2d4c6pny/7rb3rmT7fd2CToOM5Wea0o6z3nPWdW1lA9HEV+b3lPMnzPGQyvZUluP1cDPSw3tvaq7HwjKCJhyn1FtRIxM9lOX9GBM6XvZRqG32kAne9pKkIi9t5rEsT/Xyylu/DmlbeNqXXt9vwdvVdXM8luX1/eZFKNvVKy/HgRC+d4s8ttdIb+3vhdPJY9DD+81rv/DG27mU5+OwF2kettkrdJtTocfX6HEfpbvBz50L5gf/PJIkTfVw7Cn0VpSX40Bo+05sef755yVJt9xyS437Fy9erLFjx0qSDh06pP379wceKy8v17Rp0/Tpp58qMTFR1157rd58803ddtttIa0bEycAAAAAAAAAAMSUSoX+Gie2FSeuG/yLn0uWLKnxd3Z2trKzvU5G112TsG8BAAAAAAAAAAAgSrDiBAAAAAAAAACAmNLw1ziJZEycAAAAAAAAAAAQUyoU+p/qCnV5DYef6gIAAAAAAAAAAKjGihMAAAAAAAAAAGIKP9VVG1acAAAAAAAAAAAAVHNc13UbuhKxrKSkRD6fT36/X0lJSWHZhuOsN+XXaYgpv9mUjm45j9ryuU+Hpx6n5fzKli99yJbfejzdlO+q3bYNGO1y/GEtP6OlLZ+41ZZ/uvuDpvxRZ5FtAwYTXJ8pv1x3m/J3a7kpn7LLtm9ze5jiyhloy29419b3B2UVmPIXzTlkyh/Nbm/KT8jLM+UXLs0y5XPHmOJmT5XZ2qdb/B7P2Secr5vKzjQe94vzbO8tqxzlmvK5yjHl96ibKW/t+/3y3jHld5d3NeXvjrcdez7UdaZ8D/3JlF9ebjt2Wvm3ptieMLDUc9R1E4218a4+zn/RuDRUn/E2jsrwVliat/dU+r4NQTMFowZ522ahh0wvb0VppZfPH49tMTLT40Y98PIaJanIy/FvjreyRnr4bF3pdQzusc088HLcdjp5LKzI6/lGdtCE188Tx/H+GRWUx/dbyHh8H7krvOUcx0P7p3k8x/OyLz2W5fu4OGjGn7DQU1le+o7n/ejp/S1pZAj7xcrg2/SVeRvj+hN2BQ/N83jcXOAh47G90t3g/+FR4PT1VFYo2/7BFd7+o23RqOADOd8rwfu0JPkTvIzxvPzv6AlJ34qIc+DT51bSSkktQlz6vySNjIjXeaFYcQIAAAAAAAAAAFCNa5wAAAAAAAAAABBTuMZJbVhxAgAAAAAAAAAAUI0VJwAAAAAAAAAAxJSK6luoy2wcmDgBAAAAAAAAACCmMHFSG36qCwAAAAAAAAAAoBorTgAAAAAAAAAAiClcHL42TJzEANfNtD7DlB7ilNqKz0/0nh1oLHukoWxJeSsmmPIXleea8t3y9pjyBfMHmfJvf3eDKa/v2uI99CdTftH8R035vCm29r/bXW7KX1P+sSnv35piyr/TvZ8pf7ds9V/uPug5++iuRaayN6ibKW+1XHfbntDdFp9g7Ata6jfFBy0tsJVvdHRoe9sTvmaLpzpZtid8aItb5RjLzzG2T26+92x312erzC5b30m5xZbf8G66KW/dt76Wprg2nrD1/Y224jXs6a/b8sbyrVKN+Rzbx5xSn86ylW98r0wYkGfKL/wwy3PWGWU7H9RKyznSl7aygQZiH0edn+Os95TbouDbdFZ6K8uTIm8x180JmvH6Gr0dLzK8leVVmpd9Gfw1SpI8tf9mb2V5ynlrC2eUh9fYy1NR8n3sbZzmTwiecTz+f4GvLPg5lP8aj+O1Ig/7KN/j+3ush4zH0zlnvrec0jz0xRDuS/8Cb2X5E3YFD83z+D6aGvw44LUf5sZ72+Zy3RM086RmeCqrq3YHzbSff9RTWYfca4Jm7tQbnsoqKAj+f0qH9nkba3kZ10xw8zyVdY/H/wsZtCv4WCTX8VSU3Eezgpfl4RgmSTkDg2ecJzycO58okW7ztk1EBiZOAAAAAAAAAACIKZUK/TVJGs+KE65xAgAAAAAAAAAAUI0VJwAAAAAAAAAAxBSucVIbVpwAAAAAAAAAAABUY8UJAAAAAAAAAAAxpUKhnx4I9TVTGg4TJwAAAAAAAAAAxBR+qqs2/FQXAAAAAAAAAABANcd1XbehKxHLSkpK5PP55Pf7lZSU1NDVAYBGyXHWm/KumxmmmtSN4+SGtXzXzTHlHafUuIU5xny2Mb/ZmLfIMKVdN9GUdzqZ4lKRsS+MtO1bFdriKrK9tzTS+N5aaexr82zt75tUbMr7F6SY8ppq3F/zjPtrqrF98g3tM9BWtqXvc/4LK/oMgEjm+XzOeh5XK4/nyx7Ojdwp3oqyjqlqZT0nrI3X81cP562+su6eiuoWvydopmD+IE9lqcBbzIu8FROCZrLmL/RUlpfzZP9Wb+fGeQOC10uS7tbyoJnluttTWct1T9DMllu+7qms4nd9QTPtOx0NXtDJEulvkXE+c/rcSnpSUvMQl/6lpBkR8TovFCtOAAAAAAAAAAAAqnGNEwAAAAAAAAAAYgrXOKkNK04AAAAAAAAAAACqMXESAs8995zS0tLUvHlz9erVS3/84x8bukoAAAAAEFEYNwEAAESSijDdGgcmTi7Q8uXLlZWVpRkzZmjHjh26+eabdeutt2r//v0NXTUAAAAAiAiMmwAAABBNuMbJBZo/f77GjRunBx54QJKUl5ent99+W88//7xmz559Vr6srExlZWWBv/1+vySppKSkfioMADHphCkdecfkL8Nauv31lhrz1vpb62Pbvza2upSUGL9dc9IWN7dlhbEtzfUxtr21Pta+9qWt/d2SY8byW9jy1v31ZZjb54SlfWxlW/r+6WOO67qmbSC6WcZNjJkARBXP50+hPKf3eDz0cG7k/dAawnNu8zlhLTy3f/D6ez03rIz30BZez+tC+OX8L0vKvYQ8leWpLU54Ozf2VC9JxxT83PBLeSur0sP+LvF4KY5jJR7OWU96aNeTkXgOfEKhvyZJWfBIlHDcyNpbUaW8vFwtWrTQihUr9J//+Z+B+x999FHt3LlT+fn5Zz1n5syZys3Nrc9qAgAAABHnL3/5izp16tTQ1UA9sI6bGDMBAIDGKhLOgb/88kulpaWpuLg4LOWnpKSoqKhIzZs3D0v59YUVJxfg888/V1VVldq1a1fj/nbt2p23402fPl1TpkwJ/H306FFdfvnl2r9/v3w+X1jri8ahpKREHTt21IEDB5SUlNTQ1UEUoM/Aij4DC/oLrPx+vy677DK1adOmoauCemIdNzFmanz4rIh+7MPoxv6LfuzD6BdJ58DNmzdXUVGRysu9reCxio+Pj/pJE4mJk5BwHKfG367rnnXfaQkJCUpISDjrfp/Px4EPJklJSfQZmNBnYEWfgQX9BVZNmnC5xVjjddzEmKnx4rMi+rEPoxv7L/qxD6NfpJwDN2/evFFMboRTZOypKHXxxReradOmZ31L6vDhw2d9mwoAAAAAYhHjJgAAAEQbJk4uQHx8vHr16qV169bVuH/dunXq169fA9UKAAAAACIH4yYAAABEG36q6wJNmTJFY8aMUe/evZWenq5FixZp//79euihhzw9PyEhQTk5Oedcig6cC30GVvQZWNFnYEF/gRV9JjZdyLiJPhP92IfRj30Y3dh/0Y99GP3Yh9HHcV3XbehKRLvnnntOc+bM0aFDh9S9e3c99dRTGjBgQENXCwAAAAAiBuMmAAAARAsmTgAAAAAAAAAAAKpxjRMAAAAAAAAAAIBqTJwAAAAAAAAAAABUY+IEAAAAAAAAAACgGhMnAAAAAAAAAAAA1Zg4qQfPPfec0tLS1Lx5c/Xq1Ut//OMfa83n5+erV69eat68uTp16qRf/OIX9VRTRApLn3n99dc1ZMgQXXLJJUpKSlJ6errefvvteqwtGpr1GHPa5s2bFRcXp6997WvhrSAijrXPlJWVacaMGbr88suVkJCgK6+8Ur/85S/rqbaIBNY+88orr+j6669XixYt1L59e/3Xf/2X/vnPf9ZTbdHQNm7cqDvuuEOpqalyHEe//vWvgz6H818wZop+jGGiH+OK6MY5fvTjnDt6cf7bODFxEmbLly9XVlaWZsyYoR07dujmm2/Wrbfeqv37958zX1RUpNtuu00333yzduzYoR/+8IeaPHmyVq1aVc81R0Ox9pmNGzdqyJAheuutt1RYWKhBgwbpjjvu0I4dO+q55mgI1v5ymt/v13333afBgwfXU00RKerSZ+666y794Q9/0Isvvqi9e/fqtdde0zXXXFOPtUZDsvaZTZs26b777tO4ceP00UcfacWKFdq2bZseeOCBeq45GsqJEyd0/fXXa8GCBZ7ynP+CMVP0YwwT/RhXRDfO8aMf59zRjfPfRspFWN10003uQw89VOO+a665xv3BD35wznx2drZ7zTXX1LhvwoQJbt++fcNWR0QWa585l27durm5ubmhrhoiUF37y9133+3+6Ec/cnNyctzrr78+jDVEpLH2md///veuz+dz//nPf9ZH9RCBrH3mZz/7mdupU6ca9z3zzDPupZdeGrY6InJJct94441aM5z/gjFT9GMME/0YV0Q3zvGjH+fcjQfnv40HK07CqLy8XIWFhRo6dGiN+4cOHaotW7ac8zkFBQVn5YcNG6bt27eroqIibHVFZKhLnznTyZMndezYMbVp0yYcVUQEqWt/Wbx4sf7yl78oJycn3FVEhKlLn1m9erV69+6tOXPmqEOHDrr66qs1bdo0lZaW1keV0cDq0mf69eungwcP6q233pLruvr73/+ulStX6vbbb6+PKiMKcf4b2xgzRT/GMNGPcUV04xw/+nHOHXs4l4kOcQ1dgcbs888/V1VVldq1a1fj/nbt2qm4uPiczykuLj5nvrKyUp9//rnat28ftvqi4dWlz5xp3rx5OnHihO66665wVBERpC795ZNPPtEPfvAD/fGPf1RcHB8BsaYufWbfvn3atGmTmjdvrjfeeEOff/65Jk6cqC+++ILfQI4Bdekz/fr10yuvvKK7775bX375pSorKzVixAg9++yz9VFlRCHOf2MbY6boxxgm+jGuiG6c40c/zrljD+cy0YEVJ/XAcZwaf7uue9Z9wfLnuh+Nl7XPnPbaa69p5syZWr58uZKTk8NVPUQYr/2lqqpKo0ePVm5urq6++ur6qh4ikOUYc/LkSTmOo1deeUU33XSTbrvtNs2fP19LlizhG2kxxNJndu/ercmTJ+t//ud/VFhYqDVr1qioqEgPPfRQfVQVUYrzXzBmin6MYaIf44roxjl+9OOcO7ZwLhP5+FpAGF188cVq2rTpWbPDhw8fPmtW8bSUlJRz5uPi4tS2bduw1RWRoS595rTly5dr3LhxWrFihTIzM8NZTUQIa385duyYtm/frh07dmjSpEmSTp0wu66ruLg4rV27Vl//+tfrpe5oGHU5xrRv314dOnSQz+cL3Ne1a1e5rquDBw+qc+fOYa0zGlZd+szs2bOVkZGh//7v/5YkXXfddWrZsqVuvvlm/e///i/fnsJZOP+NbYyZoh9jmOjHuCK6cY4f/Tjnjj2cy0QHVpyEUXx8vHr16qV169bVuH/dunXq16/fOZ+Tnp5+Vn7t2rXq3bu3mjVrFra6IjLUpc9Ip76lNXbsWL366qv8nmUMsfaXpKQkffjhh9q5c2fg9tBDD6lLly7auXOn+vTpU19VRwOpyzEmIyNDn332mY4fPx64789//rOaNGmiSy+9NKz1RcOrS5/517/+pSZNap5iNm3aVNK/v0UFfBXnv7GNMVP0YwwT/RhXRDfO8aMf59yxh3OZKFGfV6KPRcuWLXObNWvmvvjii+7u3bvdrKwst2XLlu5f//pX13Vd9wc/+IE7ZsyYQH7fvn1uixYt3Mcee8zdvXu3++KLL7rNmjVzV65c2VAvAfXM2mdeffVVNy4uzv35z3/uHjp0KHA7evRoQ70E1CNrfzlTTk6Oe/3119dTbREJrH3m2LFj7qWXXuqOHDnS/eijj9z8/Hy3c+fO7gMPPNBQLwH1zNpnFi9e7MbFxbnPPfec+5e//MXdtGmT27t3b/emm25qqJeAenbs2DF3x44d7o4dO1xJ7vz5890dO3a4f/vb31zX5fwXZ2PMFP0Yw0Q/xhXRjXP86Mc5d3Tj/LdxYuKkHvz85z93L7/8cjc+Pt694YYb3Pz8/MBj999/vztw4MAa+Xfffdft2bOnGx8f715xxRXu888/X881RkOz9JmBAwe6ks663X///fVfcTQI6zHmqxjgxCZrn9mzZ4+bmZnpJiYmupdeeqk7ZcoU91//+lc91xoNydpnnnnmGbdbt25uYmKi2759e/fee+91Dx48WM+1RkPZsGFDrecmnP/iXBgzRT/GMNGPcUV04xw/+nHOHb04/22cHNdl/RYAAAAAAAAAAIDENU4AAAAAAAAAAAACmDgBAAAAAAAAAACoxsQJAAAAAAAAAABANSZOAAAAAAAAAAAAqjFxAgAAAAAAAAAAUI2JEwAAAAAAAAAAgGpMnAAAAAAAAAAAAFRj4gQAAAAAAAAAAKAaEycAAAAAAAAAAADVmDgBADRat9xyi7Kyshq6GgAAAAAaGGMDAIAFEycAAITJgAED5DjOWbd7773X0/PHjh2rH/zgByErDwAAAEDDYGwAANElrqErAADAV5WXlys+Pr6hq3HBXNfVzp07NXfu3LMGL//xH/8R9PknT57Um2++qdWrV4ekPAAAACDaMDY4hbEBANQ/VpwAAM7LdV3NmTNHnTp1UmJioq6//nqtXLky8Pgtt9yiyZMnKzs7W23atFFKSopmzpxpLmPSpEmaMmWKLr74Yg0ZMkSSdOzYMd17771q2bKl2rdvr6eeeqrG8vqXX35Zbdu2VVlZWY3tffvb39Z99913ztdTVlamyZMnKzk5Wc2bN1f//v21bdu2wOMrV65Ujx49lJiYqLZt2yozM1MnTpzw/PhXffLJJzp27JgGDBiglJSUGjcvg5nNmzerSZMm6tOnT0jKAwAAAC4EYwPGBgAQS5g4AQCc149+9CMtXrxYzz//vD766CM99thj+u53v6v8/PxA5qWXXlLLli313nvvac6cOXriiSe0bt06cxlxcXHavHmzFi5cKEmaMmWKNm/erNWrV2vdunX64x//qA8++CDwnFGjRqmqqirwrStJ+vzzz/W73/1O//Vf/3XO15Odna1Vq1bppZde0gcffKCrrrpKw4YN0xdffKFDhw7pO9/5jr73ve9pz549evfdd3XnnXfKdV1JCvr4mQoLCxUXF6frrruuDi0vrV69WnfccYeaNGkSkvIAAACAC8HYgLEBAMQUFwCAczh+/LjbvHlzd8uWLTXuHzdunPud73zHdV3XHThwoNu/f/8aj994443u448/birja1/7Wo3HS0pK3GbNmrkrVqwI3Hf06FG3RYsW7qOPPhq47/vf/7576623Bv7Oy8tzO3Xq5J48eTJQ9un88ePH3WbNmrmvvPJKIF9eXu6mpqa6c+bMcQsLC11J7l//+tdztkewx880bdo013Ect2XLljVuDzzwgKfnX3311e7q1atN5f32t791r776aveqq65yX3jhBU/bAQAAAIJhbFATYwMAaPy4xgkA4Jx2796tL7/8MrA8/rTy8nL17Nkz8PeZ33Jq3769Dh8+bCqjd+/eNR7ft2+fKioqdNNNNwXu8/l86tKlS43c+PHjdeONN+rTTz9Vhw4dtHjxYo0dO1aO45z1ev7yl7+ooqJCGRkZgfuaNWumm266SXv27NGUKVM0ePBg9ejRQ8OGDdPQoUM1cuRItW7dWpJ0/fXX1/r4mQoLCzVq1Cg9+eSTNe4/X/6r9uzZo4MHDyozM9NzeZWVlZoyZYo2bNigpKQk3XDDDbrzzjvVpk2boNsDAAAAasPYgLEBAMQaJk4AAOd08uRJSdKbb76pDh061HgsISEh8O9mzZrVeMxxnMBzvZbRsmXLGo+51UvczxzkuGcsfe/Zs6euv/56vfzyyxo2bJg+/PBD/fa3vz3n66mtTMdx1LRpU61bt05btmzR2rVr9eyzz2rGjBl67733lJaWFvTxM+3YsUNPPPGErrrqqnPWZ9euXfrmN7+pzZs3KyUlRZ9//rkyMzP1/vvva/Xq1RoyZIgSExM9l/f+++/r2muvDbTzbbfdprffflvf+c53zpkHAAAAvGJswNgAAGIN1zgBAJxTt27dlJCQoP379+uqq66qcevYsWNYy7jyyivVrFkzvf/++4H7SkpK9Mknn5yVfeCBB7R48WL98pe/VGZm5nnLveqqqxQfH69NmzYF7quoqND27dvVtWtXSacGThkZGcrNzdWOHTsUHx+vN954I5AP9vhp+/bt09GjR2t8c+5M3bt31z333KN33nlHkpSbm6vHH39c8fHx+s1vfqMRI0aYyvvss89qDEAvvfRSffrpp+fNAwAAAF4xNmBsAACxhhUnAIBzatWqlaZNm6bHHntMJ0+eVP/+/VVSUqItW7boP/7jP3T//feHrYxWrVrp/vvv13//93+rTZs2Sk5OVk5Ojpo0aXLWt8LuvfdeTZs2TS+88IJefvnl89alZcuW+v73vx8o87LLLtOcOXP0r3/9S+PGjdN7772nP/zhDxo6dKiSk5P13nvv6R//+Edg4BTs8a8qLCyUJLVr107FxcU1HktOTg5c1PHaa6/Vn//8Z/3f//2fCgsL9cwzz+jw4cPatm2bfv3rX5vKO/Mbd9LZ36ADAAAA6oKxAWMDAIg1TJwAAM7r//2//6fk5GTNnj1b+/bt00UXXaQbbrhBP/zhD8Nexvz58/XQQw9p+PDhSkpKUnZ2tg4cOKDmzZvXyCUlJenb3/623nzzTX3rW9+qtcyf/OQnOnnypMaMGaNjx46pd+/eevvtt9W6dWslJSVp48aNysvLU0lJiS6//HLNmzdPt956a2A7tT3+VR988IEk6eqrr65xf7NmzXTs2LHATxF07txZv/vd7/TDH/5QTz75pBzH0W9/+1v16dNHycnJpvI6dOhQ41tkBw8eVJ8+fWptDwAAAMArxgaMDQAgljjuuaahAQCIMCdOnFCHDh00b948jRs3rsZjQ4YMUdeuXfXMM880UO3q5ujRo+rcubP69Omj3/3ud5KkESNGqH///srOzjaVVVlZqa5du+rdd98NXABy69atatu2bTiqDgAAADQYxga1Y2wAABeOFScAgIi0Y8cOffzxx7rpppvk9/v1xBNPSJK++c1vBjJffPGF1q5dq3feeUcLFixoqKrW2UUXXSTp1LfdTuvfv3+dLtoYFxenefPmadCgQTp58qSys7MZGAEAAKBRYGxgw9gAAC4cK04AABFpx44deuCBB7R3717Fx8erV69emj9/vnr06BHIXHHFFTpy5Ih+/OMfa9q0aQ1Y27qpqKhQ9+7dtXfv3oauCgAAABCxGBsAAOobK04AABGpZ8+egQsfns9f//rX+qlMmHz88cfq0qVLQ1cDAAAAiGiMDQAA9Y0VJwAAAAAAAAAAANWaNHQFAAAAAAAAAAAAIgUTJwAAAAAAAAAAANWYOAEAAAAAAAAAAKjGxAkAAAAAAAAAAEA1Jk4AAAAAAAAAAACqMXECAAAAAAAAAABQjYkTAAAAAAAAAACAakycAAAAAAAAAAAAVGPiBAAAAAAAAAAAoBoTJwAAAAAAAAAAANWYOAEAAAAAAAAAAKj2/wPKi+oTlADZlQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n",
"#upstream\n",
"nbins=60\n",
"\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(up_energyloss_found, up_residual_found, bins=(np.linspace(0,1,nbins), np.linspace(0,1.5e5,nbins)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
"\n",
"a1=ax1.hist2d(up_energyloss_lost, up_residual_lost, bins=(np.linspace(0,1,nbins), np.linspace(0,1.5e5,nbins)), cmap=plt.cm.jet, cmin=1, vmax=20) \n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, Upstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkEAAAJOCAYAAAAAi6D6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADEXklEQVR4nOzdd3hUxf7H8c+mh5AsoYQQOkivCggIGpAuTRFU0EgTuQIiAnYlgAoqRb1gu14FpAgqTYp0BJHeRNAreAVBIYAYQpFAyvz+8Je9LGl7kl3YJO/X8+wDe/Z75syZc7I7s7MzYzPGGAEAAAAAAAAAAOQzPjc6AwAAAAAAAAAAAJ5AJwgAAAAAAAAAAMiX6AQBAAAAAAAAAAD5Ep0gAAAAAAAAAAAgX6ITBAAAAAAAAAAA5Et0ggAAAAAAAAAAgHyJThAAAAAAAAAAAJAv0QkCAAAAAAAAAADyJTpBAAAAAAAAAABAvkQnCAAAAAAAAAAAyJfoBAEAAB7Vp08fTZ8+/UZnAy7at2+fjh49eqOzAQAAAACAW9AJAgAAAId//etfWrdu3Y3OBgAAAAAAbkEnCAAA8Grz5s1TrVq1FBwcLJvNpr17997oLGVp+fLlstlsTo+wsDA1aNBAn3322XU7/ieffOK0PT4+Xh06dFBAQICmTp3q9NrGjRs1YMAAnTp1yrHthx9+ULdu3XTy5EmP5zkv+frrr9Nd37TH1q1b08Xv27dP/fv3V+XKlRUcHKzg4GBVqVJFAwcO1M6dO3OUh3vuuUfBwcE6e/ZspjEPPvig/P39LV+/6dOnO51TUFCQIiMj1bJlS40fP97pHsmLNm/erNGjR2dZdgXB6NGjZbPZ9Mcff7glvYJQrikpKYqIiNCbb76ZaYy7yzWvyM/Xf/v27WrXrp1CQ0NVuHBhtWzZUt9++226OCufDRcuXNCwYcMUFRWloKAg1a9fX3Pnzs3w+FZiAQBA5ugEAQAAbtepUycVKVJERYoU0Zw5czRo0CDH89dee83ldE6fPq2YmBhVrlxZK1as0JYtW1S1alUP5jz3du/eLUlavHixtmzZos2bN+vDDz/UxYsX1bNnT+3bt++6HL9BgwaObfv27VPDhg21Z88erVu3TkOGDHHap0GDBipZsqTq1q2rtWvXaurUqWrTpo3at2+vEiVKeDS/edW4ceO0ZcsWp0ft2rWdYj744AM1aNBA27Zt0xNPPKGlS5dq2bJlGjZsmA4cOKBGjRrpv//9r+Vj9+/fX4mJiZozZ06GryckJGjhwoXq1KmTSpYsmaPzmzZtmrZs2aLVq1frnXfeUf369fX666+rRo0aWrNmTY7S9AabN2/WmDFj8uWXtTdSQSjXjRs36vTp0+rWrduNzorXya/Xf8eOHbrjjjt06dIlzZw5UzNnzlRiYqJatWqlLVu2ZLiPK58N3bp104wZMxQbG6uvvvpKjRo1Us+ePTN8T7cSCwAAMud3ozMAAADyn6VLlzr+36dPH7Vo0UJ9+vSxnM7BgweVlJSkhx56SNHR0ZnG/fXXXypUqFBOsup2u3fvlt1uV5cuXRzbmjZtquTkZD300EPas2eP6tat69HjBwcHq3r16pKkuXPnqn///qpbt67mz5+vqKiodPuEhIRo7NixSk1N1fjx4+Xj46PZs2frgQce8Fg+b4Q///xTqampKl68eK7TqlKlipo0aZLp699++60GDRqkjh076osvvlBAQIDjtTvvvFODBw/W559/ruDgYMvH7tChg6KiovTxxx9r0KBB6V7/9NNPdenSJfXv399y2mlq166thg0bOp7fe++9evLJJ9W8eXN169ZNhw4dynEHS17hTe8ruPG++OILNWzYUOXLl/fYMbjnrr8TJ04oJCREYWFh6V576aWXVKRIEa1YscJxXVq3bq1KlSpp5MiRGY4Iye6zYfny5Vq9erXmzJmjnj17SpJatmypX3/9VU899ZTuv/9++fr6Wo4FAABZYyQIAABwyaZNm9S2bVvZ7XaFh4erY8eOOnTokMeO16dPHzVv3lySdP/998tms6lFixaO6UZ2796t7t27Kzw8XJUrV3bKZ6tWrRQaGqpChQrptttu07Jly5zSTktj37596tGjh+x2u4oWLarhw4crOTlZP/30k9q3b6/Q0FBVqFBBb7zxhsv53rVrl+rXr59u+2+//SZJqlGjRg5KQ3rzzTe1aNEiS8cfOXKkevbsqQcffFAbNmzIsANEkr7//nvdcsst2r17t+666y7169dPr776qjp27JjttC6u3hfuvn86d+6shg0b6sMPP1S9evUUHByssmXLKjY2VqmpqRnus2/fPpUqVUodOnTQJ598ovPnz+f4+NkZN26cfH199cEHHzh1gFytR48e6a7JoUOH1KtXL0VERCgwMFA1atTQO++84xTj6+ur3r17a9euXfr+++/TpTtt2jTHebpTuXLlNGnSJJ0/f14ffPCBY7srf3MHDhyQzWbT559/7ti2a9cu2Ww21apVyym2S5cujpFMaX+rBw4cUM+ePWW321WyZEn169dPCQkJTvudPn1ajz76qMqWLavAwECVKFFCzZo1c4xcGT16tJ566ilJUsWKFR1T1Xz99dfZvq+4cl1+/vln9e3bV1WqVFGhQoVUunRpde7cOd018tT7T1q6e/bsUbdu3RQWFia73a6HHnpIp0+fznCfkydPZluu2V3frMrV1TSuzr87rnVGcnoPSpIxRgsXLtS9996bafpXO3bsWLbXwB33nCc/yxYtWiSbzaa1a9eme+29995zHDer65+YmKibb75ZN910k9M1jIuLU2RkpFq0aKGUlBSX8pPZVFM2m01Hjhxx+bykv6eH/Oijj9S6dWuVKVNGv/zyS4Zx3377rVq0aOHUMRUaGqo77rhDmzdv1okTJywdV5IWLlyowoULq0ePHk7b+/btq+PHj2vbtm05is3tveDJewkAAK9gAAAAshEbG2t8fHxMv379zLJly8wXX3xh6tSpY8qWLWvOnz/vkWP+/PPP5p133jGSzLhx48yWLVvMgQMHTGxsrJFkypcvb5555hmzevVqs2jRImOMMV9//bXx9/c3DRo0MPPmzTOLFi0ybdu2NTabzcydO9fpfCSZatWqmZdfftmsXr3aPP3000aSGTJkiKlevbr55z//aVavXm369u1rJJn58+dnm+c//vjDSDJDhw41SUlJJikpyZw8edJ88sknJjQ01DzyyCM5Lo9evXoZf39/s3DhwmyPf//995s777zTBAYGmg8//DDbtI8dO2aWLFlijDFm8ODBZtq0aSY5OdlMnz7dXLlyJdP9XL0vPHH/lCpVyoSEhJgaNWqYmTNnmlWrVpkHHnjASMr0nC9dumRmz55tOnfubAICAkxQUJDp3r27mT9/vklMTHTpuOvXrzeSTEREhPH19TWhoaGmbdu25ptvvnHEJCcnm+DgYNO0aVNL53TgwAFjt9tNnTp1zCeffGJWrVplRowYYXx8fMzo0aOdYg8dOmRsNpsZNmxYujQkmWeffdbSsdNMmzbNSDI7duzI8PULFy4YX19f06pVK2OM639zxvx9zR599FHH89dee80EBwcbSeb33383xhiTlJRkwsLCzNNPP22Mcf5bHTVqlFm9erWZPHmyCQwMNH379nVKv127dqZEiRLmX//6l/n666/NokWLzKhRoxz5OHbsmHn88ceNJLNgwQKzZcsWs2XLFpOQkJDl+4qr12XDhg1mxIgR5osvvjAbNmwwCxcuNHfffbcJDg42//nPfxxxnnr/ufocnnrqKbNy5UozefJkExISYm6++Wanv2VXy9WV65tVuVq5R9x5rTOTk3vQGGM2bdpkJJmDBw+6/Rrk5p7z1L2UVg4RERHmwQcfTPfarbfeam655RZjTPbX/+DBgyY0NNR069bNGGNMSkqKufPOO01ERIQ5fvy4S3kxxjjSTXusW7fOlC5d2kRGRjqOlZWLFy+auXPnmi5dupiAgAATHBxs7r33XvP555+by5cvZ7hPQECAefjhh9Nt79mzp5FkVq5c6djmymeDMcY0adLENGrUKF2a+/fvN5LMBx98kKPY3N4LnryXAADwBnSCAACALC1ZssRIMm+88YbT9oMHDxpJZtasWen2ad++vQkJCcnw8eqrr7p87LQvFT7//HPHtrSG+qhRo9LFN2nSxERERDh9sZ6cnGxq165typQpY1JTU53SmDRpktP+9evXd3yRkyYpKcmUKFHC8QVOVlatWmUkpXv4+fmZV155xeXzzkhycnK2HSFXHz8oKMhs3brV8nHSOkGy4+p9kZP7Jzu//fabkWQqVapkzp4969h+5coVExkZaTp16pRtGvHx8ebjjz82bdu2NX5+fsZut5s+ffqYlStXmuTk5Ez32717t3niiSfMwoULzcaNG83HH39satSoYXx9fc2KFSuMMcbExcUZSeaBBx5It39ycrKjgywpKclxTxrz9xe7ZcqUSfeF3pAhQ0xQUJD5888/nbZHR0eb4sWLO32xOmLECJe+rM1Mdp0gxhhTsmRJU6NGDWOM639zxhjz0EMPmUqVKjmet27d2gwYMMCEh4ebGTNmGGOM+fbbb40ks2rVKmPM//5Wr71/Bg0aZIKCgpzSL1y4cLpOoWtNmDDBSDKHDx922p7V+4rV63J1OVy5csVUqVLFPPnkk+mO5e73n7R0rz6WMcbMnj073d+aq+Xq6vXNrFytpOHua52RnNyDxhgzbNgwU6dOnWzTz8k1yM0956l7Kc3w4cNNcHCw0/vsDz/8YCSZKVOmOLZldf2NMWbevHlGknnrrbfMqFGjjI+Pj1P5WpWcnGy6du1qChcubHbt2pVp3JUrV8zSpUtNr169TEhIiAkICDCdOnUys2bNcqkDvn79+qZq1aomJSXFsS0pKclUqlTJSDJz5sxxbHfls8EYY6pUqWLatWuX7ljHjx93/OgjJ7G5vRc8fS8BAHCjMR0WAADI0qhRo1S5cmU98cQTSk5OdjwqVqyo4ODgDKeR+Oqrr3ThwoUMH88//7xb8nXttCQXL17Utm3b1L17dxUuXNix3dfXVzExMfrtt9/0008/Oe3TqVMnp+c1atSQzWZzmkbIz89PN910k3799dds87Rr1y5J0oIFC7Rjxw7t2LFDK1asUMeOHTVq1CgtWLAgw/3++OOPLKf6sNls8vPz05w5c5SUlKT77rtPJ0+ezPT4MTExSkxM1MaNG7PN87WmTp3q0votrt4XObl/srNjxw5Jf0/fYbfbHdv9/f110003ZTuFlyQVKVJEffv21cqVK3XixAm99tprOnz4sNq3b6+oqKhM83XzzTfrrbfe0t13363bb79dffv21ebNm1WqVCk9/fTT2R63QYMG8vf3dzwmTZokSUpMTNTatWt1zz33qFChQk5ldddddykxMVFbt251Sqt///76448/9OWXX0qSkpOTNWvWLN1+++2qUqVKtnnJKWOMJOt/c61atdIvv/yiw4cPKzExUZs2bVL79u3VsmVLrV69WpK0Zs0aBQYGOqbCS3P1GjuSVLduXSUmJurUqVOObbfeequmT5+uV155RVu3blVSUpLlc7v2fcXKdUlOTta4ceNUs2ZNBQQEyM/PTwEBATp06JB+/PHHdMdy9/tPmgcffNDp+X333Sc/Pz+tX78+XWxW5ZqT99Rr5SQNT17rnN6DCxYscHkqLMnaNcjNPZfGU/dSv379dOnSJc2bN8+xbdq0aQoMDFSvXr1cTue+++7TY489pqeeekqvvPKKnn/+ebVp08bl/a81ZMgQLVu2TJ9//rluueWWDGP27dunyMhIde3aVX/88Yf++c9/6uTJk1qyZIkefPBBp/sxM48//rgOHjyoIUOG6Pfff9exY8f0j3/8w1GGPj7/+zrFymeDzWbL9JjXvmYlVsr9veCpewkAgBuNThAAAJCpuLg47dmzR//9738VGBjo9OWtv7+/Ll26pCJFityQvJUqVcrpeXx8vIwx6bZLcqy7cObMGaftRYsWdXoeEBCgQoUKKSgoKN32xMTEbPOUtih5ly5d1LBhQzVs2FDt2rXT3Llz5evrqw8//DDD/UJDQ/Xhhx9m+0j7sqxr164qVqxYhscPCgrSxx9/rJiYGD377LOOL8jdydX7wlP3z86dO+Xv759unnRJOn78uMqWLWspvXPnzuns2bNKSEiQMUZFihSRn5+fy/sXKVJEnTp10r59+3Tp0iUVL15cwcHBGX5BNGfOHO3YsSPddTlz5oySk5M1ZcqUdOV01113SVK6zp3u3bvLbrdr2rRpkv5eRPfkyZO5WhA9OxcvXtSZM2cUFRVl+W+udevWkv7+knnTpk1KSkrSnXfeqdatWzvWHVizZo2aNWuWbsH4a+/3wMBASdKlS5cc2+bNm6fevXvr3//+t5o2baqiRYvq4YcfVlxcnMvnd+25WLkuw4cP10svvaS7775bS5Ys0bZt27Rjxw7Vq1fPKZ9p3P3+kyYyMtLpuZ+fn4oVK5bu/U/Kulxz8p56rZyk4clrnZN7cPv27Tp69KilThAr1yA391waT91LtWrVUqNGjRzvMSkpKZo1a5a6du2a7pjZ6devn5KSkuTn56ehQ4da2vdqr7zyit5//3198MEHat++faZx/v7+stvtSklJUUJCghISEnThwgXLeX7ttdc0c+ZMlSlTRuXKldMPP/ygkSNHSpJKly6d5f7XfjZIyvQ++PPPPyU5X0srsWlyey946l4CAOBGc711BwAACpxjx45J+ntR7mt/mZ3m6oVcr6drfwEZHh4uHx+fDBcqPX78uCSpePHiHs3T7t27VadOHfn6+jpt9/f3l6+vb4ZfhEp/f8n3yCOPZJn2smXLtHTpUnXv3l2ffvpphl/S7969W/Xq1ZOfn58+/PBDx8K6mzZtynCx9pxy9b74+eefXYqzaufOnSpevHi6L2W2bdumX375RS+99FK2aRw7dkyff/655s6dqx07dqh06dK6//779eGHH6phw4aW85Q2OsJms8nX11d33nmnVq1apRMnTjh9yVmzZk1JSreQb3h4uOPX8YMHD87wGBUrVnR6HhwcrJ49e+rDDz/UiRMn9PHHHys0NDTDziF3WbZsmVJSUtSiRQvLf3NlypRR1apVtWbNGlWoUEENGzZUkSJF1KpVKw0aNEjbtm3T1q1bNWbMmBzlrXjx4nrrrbf01ltv6ejRo/ryyy/17LPP6tSpU1qxYoVLaWT0vuLqdZk1a5YefvhhjRs3zun1P/7447p2FsfFxTl9OZucnKwzZ85k2HGaFXe8p3rqfTmn1zon9+D8+fNVtWpV1a5d2+X8WbkGubnnroe+fftq0KBB+vHHH/XLL7/oxIkT6tu3r6U0Ll68qJiYGFWtWlUnT57UI488osWLF1vOy/Tp0/XSSy9p9OjR6tevX5axNWrU0C+//KItW7Zozpw5eu211zRixAg1a9ZM999/v7p3756usyojzzzzjIYNG6ZDhw4pNDRU5cuX18CBAxUSEqIGDRpku//Vnw2SVKdOHX366adKTk52+hz//vvvJcnpPrMSCwAAskYnCAAAyFTaLwJtNluOvhi+nkJCQtS4cWMtWLBAEydOdPyKNzU1VbNmzXJ8+eUpCQkJ+uWXX9SqVat0ry1evFiJiYm64447cpz+hAkT1Llz50w7QNKO37ZtW0l/d6wsXLhQt956q7p06aLt27e79IWPK1y9Lzx1/+zcuVMJCQk6e/as48vllJQUPfPMM6pQoUKm07ScP39e06dP17x587R582aFh4fr3nvv1euvv67o6GinqU2siI+P19KlS1W/fn1Hx8xzzz2nr776Sv/4xz/0xRdfyN/fP8s0ChUqpJYtW2rPnj2qW7euAgICXDp2//799f7772vChAlavny5+vTpo0KFCuXoPLJz9OhRjRw5Una73fEloNW/udatW+uzzz5T2bJl1bFjR0lS1apVVa5cOY0aNUpJSUmOX+vnRrly5TRkyBCtXbtW3377rWN7RqMKsmLluthsNkf6aZYtW6bff/9dN910Uw7OImdmz57t9OXsZ599puTkZLVo0cJSOlaub2blej3elzO71pmxeg/Onz9f9913n6U85eYa5PS9wFN69uyp4cOHa/r06frll19UunRpx+dMmuz+rv7xj3/o6NGj2r59u/7zn/+oe/fuevPNN/Xkk0+6nI8VK1ZowIAB6tevn2JjY13er2nTpmratKneeustrV27VnPmzNELL7ygJ554QtHR0br//vv18MMPpxt9du35pXU4HD16VPPmzdOAAQOy3EfK+LPhnnvu0Ycffqj58+fr/vvvd8TOmDFDUVFRaty4sWOblVgAAJA1OkEAAECmKleurJYtW+rFF1/UhQsX1LhxYxljdOLECa1fv169e/e2/MWaJ40fP15t2rRRy5YtNXLkSAUEBOjdd9/V/v379emnn2Y5t3Zu7d69W8YYhYSEOOZrj4+P1+bNm/Xmm2+qbt26jik0cmLJkiUKDg7OdJqmtONf/cVbZGSkFi9erObNm6tLly7asGFDtl/auMLV+8Lq/WOz2RQdHa2vv/4602MfPnxYZ86cUbly5dSjRw+NGDFCiYmJ+uc//6ldu3bp66+/zvRLw127dunZZ59Vly5dtGjRInXo0CHbzolr9erVS+XKlVPDhg1VvHhxHTp0SJMmTdLJkyc1ffp0R1yzZs30zjvv6PHHH9ctt9yiRx99VLVq1XL8Kn7+/PmSpLCwMMc+b7/9tpo3b67bb79djz32mCpUqKDz58/r559/1pIlS7Ru3bp0+WnYsKHq1q2rt956S8aYTKfCcqVsr7Z//37HOgSnTp3SN998o2nTpsnX11cLFy5UiRIlJFn/m2vVqpXeffdd/fHHH3rrrbectk+bNk3h4eEu/br6WgkJCWrZsqV69eql6tWrKzQ01LEmT7du3RxxderUkfR3Wffu3Vv+/v6qVq1almm7el06deqk6dOnq3r16qpbt6527dqlCRMmqEyZMpbPJzcWLFggPz8/tWnTRgcOHNBLL72kevXqWf4iX3L9+mZWrqGhoW5/X3b1WmfGyj24d+9e/fe//7U0FZaU+2uQk/cCTylSpIjuueceTZ8+XWfPntXIkSPTdRhndf3//e9/a9asWZo2bZpq1aqlWrVqaciQIXrmmWfUrFkz3Xrrrdnm4fDhw+rRo4cqVaqkvn37plsT5eabb07XAXktX19ftW3bVm3bttX777+vZcuWac6cORo2bJgaN26c4WjJ/fv3a/78+WrYsKECAwP13Xff6bXXXlOVKlX08ssvO8W6+tnQoUMHtWnTRo899pjOnTunm266SZ9++qlWrFihWbNmOY0ktRILAACycSNWYwcAAHlHQkKCee6550zVqlVNUFCQCQ8PN/Xq1TOPP/64iY+P9+ix169fbySZzz//3LEtNjbWSDKnT5/OcJ9vvvnG3HnnnSYkJMQEBwebJk2amCVLljjFZJZG7969TUhISLo0o6OjTa1atbLM68SJE40kp0dISIi5+eabzauvvmouXrzo6mnnSNrxd+/ene61zz//3NhsNtOjRw+TmprqluO5el+4Gnf+/HkjyTzwwANZHvezzz4zkszmzZtNTEyMCQsLM6GhoaZr167mhx9+yDbPFy5cyM1pm/Hjx5v69esbu91ufH19TYkSJcw999xjtm/fnmH83r17Td++fU3FihVNYGCgCQoKMjfddJN5+OGHzdq1a9PFHz582PTr18+ULl3a+Pv7mxIlSpjbbrvNvPLKK5nm6e233zaSTM2aNTN83dWyNcaYadOmOd3DAQEBJiIiwkRHR5tx48aZU6dOpdvHlb+5NPHx8cbHx8eEhISYK1euOLbPnj3bSDLdunVzis/sbzUtn4cPHzbGGJOYmGj+8Y9/mLp165qwsDATHBxsqlWrZmJjY9P97T333HMmKirK+Pj4GElm/fr12b6vuHJd4uPjTf/+/U1ERIQpVKiQad68ufnmm29MdHS0iY6OzvaccvP+c3W6u3btMp07dzaFCxc2oaGhpmfPnubkyZM5KldjXL++GZWrlTQ8ca0zYuUefPHFF0358uWzTfPac8jNNUjjyj3nqXvpWqtWrXK8Jxw8eDDDmIyu/759+0xwcLDp3bu3U2xiYqJp0KCBqVChgkv1iLS6QGaPq+9Xq7L6XPjpp5/MHXfcYYoWLWoCAgLMTTfdZF588cUM4618Npw/f94MHTrUREZGmoCAAFO3bl3z6aefZpgHV2Nzey9cr3sJAIAbxWbM/09SCQAAANwgy5cvV6dOnfTdd985flWckaefflrvvvuuEhIS+BWsi1wtW+Rto0eP1pgxY3T69GmPr39UUNSsWVMdOnTQpEmTbnRWAAAAkAtMhwUAAIAbbv369XrggQey/ZJ+586duuWWW+gAscDVsgXg7IcffrjRWQAAAIAb0AkCAACAG27ChAnZxhhjtHv3bvXr1+865Cj/cKVsARQsycnJWb7u4+OTbu2PgpAXAACQPzEdFgAAAAAABcSRI0dUsWLFLGNiY2M1evToApUXAACQf9EJAgAAAABAAXHlyhXt27cvy5ioqChFRUUVqLwAAID8i04QAAAAAAAAAACQLzGxJgAAAAAAAAAAyJfoBAEAAAAAAAAAAPkSnSAAAAAAAAAAACBfohMEAAAAAAAAAADkS3SCAAAAAAAAAACAfIlOEAAAAAAAAAAAkC/RCQIAAAAAAAAAAPIlOkEAAAAAAAAAAEC+RCcIAAAAAAAAAADIl+gEAQAAAAAAAAAA+RKdIAAAAAAAAAAAIF+iEwQAAAAAAAAAAORLdIIAAAAAAAAAAIB8iU4QAAAAAAAAAACQL9EJAgAAAAAAAAAA8iU6QQAAAAAAAAAAQL5EJwgAAAAAAAAAAMiX6AQBAAAAAAAAAAD5Ep0gAAAAAAAAAAAgX6ITBIAkad68eapVq5aCg4Nls9m0d+/eG52lDI0ePVo2m+1GZ8Nr9OnTRxUqVLjR2fC45cuXa/To0Tc6G06OHDkim82m6dOnZxt7Pe5bK/lxVYUKFdSnTx+3pXetd9991635BQAA18f06dNls9l05MgRj6RPHSFjnq6beQtvvP5W7vkWLVqoRYsWXpMfV3iiLXG1v/76S6NHj9bXX3/tkfQBIDt0ggDQ6dOnFRMTo8qVK2vFihXasmWLqlateqOzBTgsX75cY8aMudHZcFKqVClt2bJFHTt2vNFZybO8sYELAABuPOoIBZs3Xv+OHTtqy5YtKlWq1I3OSp70119/acyYMXSCALhh/G50BgDceAcPHlRSUpIeeughRUdH3+js5Et//fWXChUqdKOzkee4s9zcfQ0CAwPVpEkTt6WHrCUlJclms8nPr2BWXS5duqTg4OAbnQ0AAJANY4wSExP53M4Bd9XXPXENSpQooRIlSrgtPWStILefU1JSlJycrMDAwBudFSBfYSQIUMD16dNHzZs3lyTdf//9stlsTkN3v/zySzVt2lSFChVSaGio2rRpoy1btqRLI6MpmTKaAshms2nIkCGaOXOmatSooUKFCqlevXpaunRpuv2XLVum+vXrKzAwUBUrVtTEiRMtnduaNWvUqlUrhYWFqVChQmrWrJnWrl2bYR4PHDignj17ym63q2TJkurXr58SEhKcYo0xevfdd1W/fn0FBwcrPDxc3bt31y+//OIU16JFC9WuXVsbN27UbbfdpkKFCqlfv36SpN9++03du3dXaGioihQpogcffFA7duxwGno8c+ZM2Wy2dOUsSWPHjpW/v7+OHz+e6XknJibqueeeU8WKFRUQEKDSpUtr8ODBOnv2rFPcunXr1KJFCxUrVkzBwcEqV66c7r33Xv3111+OmPfee0/16tVT4cKFFRoaqurVq+v555/PstwbNWqUbnREnTp1ZLPZtGPHDse2BQsWyGaz6fvvv5f0v2uxe/dude/eXeHh4apcubL69Omjd955R9Lf90/aI6uh31ldg3PnzmnkyJFO5TNs2DBdvHjRKY3PP/9cjRs3lt1uV6FChVSpUiVHGlLmQ8ZduW+zGm5us9mcpv76+eef1bdvX1WpUkWFChVS6dKl1blzZ0e55YSrZZCbfVNTUzVlyhTH30uRIkXUpEkTffnll5L+ns7hwIED2rBhg+Oapr2PfP3117LZbJo5c6ZGjBih0qVLKzAwUD///LMk6eOPP1a9evUUFBSkokWL6p577tGPP/7odPw+ffqocOHC+vnnn3XXXXepcOHCKlu2rEaMGKHLly+7VE7z5s1T06ZNFRISosKFC6tdu3bas2dPjo9z5coVvfLKK6pevboCAwNVokQJ9e3bV6dPn3aKq1Chgjp16qQFCxbo5ptvVlBQkGMk1IEDB9S2bVsVKlRIJUqU0ODBg7Vs2TLZbDbHL+tefvll+fn56dixY+nOqV+/fipWrJgSExNdKgMAAKxw5TP6l19+0QMPPKCoqCgFBgaqZMmSatWqlWM63qzqCJmxWk/fsWOHbr/9dkcd77XXXlNqaqpTrKt1nrT2zfvvv68aNWooMDBQM2bMkCRt2rRJTZs2VVBQkEqXLq2XXnpJ//73v53qsv3791fRokWd6uBp7rzzTtWqVSvLcz969KgeeughRUREKDAwUDVq1NCkSZPSnU929fq//vrLcb5p169hw4b69NNPMz32uXPn5OfnpwkTJji2/fHHH/Lx8ZHdbldycrJj+9ChQ1WiRAkZYyRlXl/PyfXP6hocOnRIvXr1ciqftLZFmtTUVL3yyiuqVq2ao95at25dvf32246YjKafMsbojTfeUPny5RUUFKRbbrlFX331Vbr8ZTZ1VVqd9+rREatXr1bXrl1VpkwZBQUF6aabbtLAgQP1xx9/ZFkGWXGlDHK779mzZzVixAhVqlRJgYGBioiI0F133aX//Oc/OnLkiKMDacyYMY7rmja1W2btQMn1tm1a/XnFihW65ZZbFBwcrOrVq+vjjz926Tyt1tNdOU5cXJwGDhyoMmXKKCAgQBUrVtSYMWOc/i7S2oVvvPGGXnnlFVWsWFGBgYFav369JGnx4sWqW7euAgMDValSJb399tvpvmdp1aqVqlev7vjbSmOM0U033cTMBUAaA6BA+/nnn80777xjJJlx48aZLVu2mAMHDhhjjJk9e7aRZNq2bWsWLVpk5s2bZxo0aGACAgLMN99840ijd+/epnz58unSjo2NNde+zUgyFSpUMLfeeqv57LPPzPLly02LFi2Mn5+f+e9//+uIW7NmjfH19TXNmzc3CxYsMJ9//rlp1KiRKVeuXLo0MzJz5kxjs9nM3XffbRYsWGCWLFliOnXqZHx9fc2aNWvS5bFatWpm1KhRZvXq1Wby5MkmMDDQ9O3b1ynNAQMGGH9/fzNixAizYsUKM2fOHFO9enVTsmRJExcX54iLjo42RYsWNWXLljVTpkwx69evNxs2bDAXLlwwN910kylatKh55513zMqVK82TTz5pKlasaCSZadOmGWOMuXz5somMjDQPPvig0/GTkpJMVFSU6dGjR6Zln5qaatq1a2f8/PzMSy+9ZFatWmUmTpxoQkJCzM0332wSExONMcYcPnzYBAUFmTZt2phFixaZr7/+2syePdvExMSY+Ph4Y4wxn376qZFkHn/8cbNq1SqzZs0a8/7775uhQ4dmWfbPPvusKVy4sLly5Yoxxpi4uDgjyQQHB5tXX33VEffYY4+ZkiVLprsW5cuXN88884xZvXq1WbRokfn5559N9+7djSSzZcsWxyPtXDKS2TW4ePGiqV+/vilevLiZPHmyWbNmjXn77beN3W43d955p0lNTTXGGLN582Zjs9nMAw88YJYvX27WrVtnpk2bZmJiYhzHOHz4sNN1M8b1+zajfdNIMrGxsY7nGzZsMCNGjDBffPGF2bBhg1m4cKG5++67TXBwsPnPf/7jUppXc7UMjDGmfPnypnfv3jnaNyYmxthsNvPII4+YxYsXm6+++sq8+uqr5u233zbGGLN7925TqVIlc/PNNzuu6e7du40xxqxfv95IMqVLlzbdu3c3X375pVm6dKk5c+aMGTdunJFkevbsaZYtW2Y++eQTU6lSJWO3283Bgwcdx+/du7cJCAgwNWrUMBMnTjRr1qwxo0aNMjabzYwZMybLMjLGmFdffdXYbDbTr18/s3TpUrNgwQLTtGlTExIS4niPtHKclJQU0759exMSEmLGjBljVq9ebf7973+b0qVLm5o1a5q//vrLqdxLlSplKlWqZD7++GOzfv16s337dnP8+HFTrFgxU65cOTN9+nSzfPlyExMTYypUqGAkmfXr1xtjjDl58qQJDAw0L7zwgtM5nTlzxgQHB5unnnoq2/MHACAr06ZNM5LM4cOHHdtc/YyuVq2auemmm8zMmTPNhg0bzPz5882IESMcn2NZ1REyY6WeXqxYMVOlShXz/vvvm9WrV5tBgwYZSWbGjBmOOCt1nrQ6S926dc2cOXPMunXrzP79+813331ngoKCTN26dc3cuXPNl19+ae666y7H53Za2X333XdGkvnwww+dzunAgQNGknnnnXcc266tm506dcqULl3alChRwrz//vtmxYoVZsiQIUaSeeyxxxxxrtTrBw4caAoVKmQmT55s1q9fb5YuXWpee+01M2XKlCzLvkmTJqZt27aO53PnzjVBQUHGZrOZb7/91rG9Ro0a5r777nO6FhnV13Ny/TO7BgcOHDB2u93UqVPHfPLJJ2bVqlVmxIgRxsfHx4wePdqx//jx442vr6+JjY01a9euNStWrDBvvfWWU0xG93xa+6V///7mq6++Mv/6179M6dKlTWRkpImOjs5yX2P+V+dNu/eNMea9994z48ePN19++aXZsGGDmTFjhqlXr56pVq2ao32VVZrXcrUMMmpLuLrvuXPnTK1atUxISIgZO3asWblypZk/f7554oknzLp160xiYqJZsWKFo6zSruvPP//sVI7XtgNdbdsa8/ffRpkyZUzNmjXNJ598YlauXGl69OhhJJkNGzZkWUZW6+muHOfEiROmbNmypnz58uaDDz4wa9asMS+//LIJDAw0ffr0SVfupUuXNi1btjRffPGFWbVqlTl8+LD56quvjI+Pj2nRooVZuHCh+fzzz03jxo0d7yFpFi9ebCSZ1atXO53XsmXLjCSzbNmyLM8fKCjoBAHgqHx9/vnnjm0pKSkmKirK1KlTx6SkpDi2nz9/3kRERJjbbrvNsc1qJ0jJkiXNuXPnHNvi4uKMj4+PGT9+vGNb48aNTVRUlLl06ZJj27lz50zRokWz7QS5ePGiKVq0qOncubPT9pSUFFOvXj1z6623psvjG2+84RQ7aNAgExQU5GjgbNmyxUgykyZNcoo7duyYCQ4ONk8//bRjW3R0tJFk1q5d6xSb1tn01VdfOW0fOHBgugpnbGysCQgIMCdPnnRsmzdvXrrK1bVln1a5vPZ80vb917/+ZYwx5osvvjCSzN69e01mhgwZYooUKZLp65lZs2aNkWQ2btxojDFm1qxZJjQ01AwaNMi0bNnSEVelShXTq1cvp3OWZEaNGpUuzcGDB7vU+ZUms2swfvx44+PjY3bs2OG0Pa08li9fbowxZuLEiUaSOXv2bKbHyKih4Op9a6UT5FrJycnmypUrpkqVKubJJ590Kc2ruVoGxqRvaLu678aNG42kdF/CX6tWrVpODcQ0ae9Jd9xxh9P2+Ph4ExwcbO666y6n7UePHjWBgYFO91Pv3r2NJPPZZ585xd51112mWrVqWebr6NGjxs/Pzzz++ONO28+fP28iIyOdGvCuHifty4f58+c7xe3YscNIMu+++65jW/ny5Y2vr6/56aefnGKfeuopY7PZnDphjDGmXbt26RrQvXv3NhEREeby5cuOba+//rrx8fHJtrEMAEB2rv0C1tXP6D/++MNIMm+99VaW6WdWR8hITurp27Ztc4qtWbOmadeuneO5lfqSJGO3282ff/7pFNujRw8TEhJiTp8+7diWkpJiatasme7L6+joaFO/fn2n/R977DETFhZmzp8/79h2bd3s2WefzfB8HnvsMWOz2Rx1CVfq9bVr1zZ33313ljEZefHFF01wcLDjC+lHHnnEtG/f3tStW9fxg5Dff//dqS2Sds4Z1deNsXb9jcn8GrRr186UKVPGJCQkOG0fMmSICQoKcsR36tQpXflfK6N7PigoyNxzzz1Ocd9++62RlONOkKulpqaapKQk8+uvvxpJZvHixdmmeS1XyyCjtoSr+44dOzbDL+Gvdvr06UzbOZm1A11t2xrz999GUFCQ+fXXXx3bLl26ZIoWLWoGDhyYab6MsV5Pd+U4AwcONIULF3aKM+Z/7cy0+nxauVeuXNmpk8sYYxo1amTKli3rVJ8/f/68KVasmFPbMiUlxVSqVMl07drVaf8OHTqYypUrO3XaAgUZ02EByNBPP/2k48ePKyYmRj4+/3urKFy4sO69915t3bo1wyHbrmjZsqVCQ0Mdz0uWLKmIiAj9+uuvkqSLFy9qx44d6tatm4KCghxxoaGh6ty5c7bpb968WX/++ad69+6t5ORkxyM1NVXt27fXjh070g1j79Kli9PzunXrKjExUadOnZIkLV26VDabTQ899JBTmpGRkapXr166Bd7Cw8N15513Om3bsGGDQkND1b59e6ftPXv2THcOjz32mCTpww8/dGybOnWq6tSpozvuuCPTc1+3bp0kOYYWp+nRo4dCQkIc04HVr19fAQEBevTRRzVjxox0UwVI0q233qqzZ8+qZ8+eWrx4sctDsJs1a6agoCCtWbNG0t9Dulu0aKH27dtr8+bN+uuvv3Ts2DEdOnRIrVu3Trf/vffe69JxspPRNVi6dKlq166t+vXrO13Hdu3aOQ1Fb9SokSTpvvvu02effabff/892+Pl9r7NTHJyssaNG6eaNWsqICBAfn5+CggI0KFDh9JNL+EKV8sgN/umTQMwePDgnJyyw7X3wpYtW3Tp0qV093fZsmV15513ppvuzmazpSv7unXrOt5rMrNy5UolJyfr4YcfdjrPoKAgRUdHpysjV46zdOlSFSlSRJ07d3ZKs379+oqMjEyXZt26dVW1alWnbRs2bFDt2rVVs2ZNp+0ZvYc88cQTOnXqlD7//HNJf0/z8N5776ljx47ZTikBAIBVrn5GFy1aVJUrV9aECRM0efJk7dmzJ920TVZZradHRkbq1ltvddqW0ee2lfrSnXfeqfDwcKdtGzZs0J133qnixYs7tvn4+Oi+++5Ldw5PPPGE9u7dq2+//VbS39NMzZw5U71791bhwoUzPfd169apZs2a6c6nT58+MsY42gau1OtvvfVWffXVV3r22Wf19ddf69KlS5ke92qtWrXSpUuXtHnzZkl/T0ncpk0btW7dWqtXr3Zsk5Su7p9RfT2nrr0GiYmJWrt2re655x4VKlTI6TreddddSkxM1NatWyX9fe7fffedBg0apJUrV+rcuXPZHm/Lli1KTEzUgw8+6LT9tttuU/ny5XN8HqdOndI//vEPlS1bVn5+fvL393ekZ7Xub6UMcrPvV199papVq2bYtrPi2rq/q23bNPXr11e5cuUcz4OCglS1atVs6/5W6+muHGfp0qVq2bKloqKinNLs0KGDpL/fH67WpUsX+fv7O55fvHhRO3fu1N13362AgADH9sKFC6drd/j4+GjIkCFaunSpjh49Kkn673//qxUrVmjQoEHppigHCio6QQBk6MyZM5KkUqVKpXstKipKqampio+Pz1HaxYoVS7ctMDDQUdGOj49XamqqIiMj08VltO1aJ0+elCR1795d/v7+To/XX39dxhj9+eefWeYpbRGytDydPHlSxhiVLFkyXZpbt25N15DIqNzOnDmjkiVLptue2bb7779fH3zwgVJSUrRv3z598803GjJkSJbnfubMGfn5+aVbtM9msykyMtJxXStXrqw1a9YoIiJCgwcPVuXKlVW5cmWneW9jYmL08ccf69dff9W9996riIgINW7c2NGYyUxQUJCaNWvmaOysXbtWbdq0UYsWLZSSkqJvvvnGkUZGFeWMyi4nMkrn5MmT2rdvX7prGBoaKmOM4zrecccdWrRokeOL8DJlyqh27dpZzomc2/s2M8OHD9dLL72ku+++W0uWLNG2bdu0Y8cO1atXz+XG6dVcLYPc7Hv69Gn5+vrm6ryl9Ncwu/eltNfTFCpUyKlDSvr7bzu79TDS3kMaNWqU7lznzZuXroxcOc7Jkyd19uxZBQQEpEszLi7O7e8hN998s26//XbHnM1Lly7VkSNHsn0PAQAgJ1z9jLbZbFq7dq3atWunN954Q7fccotKlCihoUOH6vz58zk6ttV6enZtkbQ0rdSXcvu53bVrV1WoUMHxuT19+nRdvHgx2x+UnDlzJtMyT3tdcq1e/89//lPPPPOMFi1apJYtW6po0aK6++67dejQoSzzkLaex5o1a/Tzzz/ryJEjjk6Qbdu26cKFC1qzZo0qVaqkihUrOu3rrnp/RmmdOXNGycnJmjJlSrrreNddd0mS4zo+99xzmjhxorZu3aoOHTqoWLFiatWqlXbu3Jnp8dLK1p11/9TUVLVt21YLFizQ008/rbVr12r79u2OzgardX8rZZCbfU+fPq0yZcrk6JyvltE1dKVtm8aVv+2MWK2nu/oesmTJknTppa3xk917SHx8vON97VoZbevXr5+Cg4P1/vvvS5LeeecdBQcHO61pCRR0fjc6AwC8U9oH+4kTJ9K9dvz4cfn4+Dh+aRMUFJThQsM5XbwtPDxcNptNcXFx6V7LaNu10n5tNWXKFDVp0iTDmIwqDtmlabPZ9M033zg6SK527baMfm1RrFgxbd++Pd32zM7piSee0MyZM7V48WKtWLHCsZB6VooVK6bk5GSdPn3aqbJojFFcXJxjhIMk3X777br99tuVkpKinTt3asqUKRo2bJhKliypBx54QJLUt29f9e3bVxcvXtTGjRsVGxurTp066eDBg1n+wqlVq1YaNWqUtm/frt9++01t2rRRaGioGjVqpNWrV+v48eOqWrWqypYtm25fd/1SJaN0ihcvruDg4EwXyLv6l3pdu3ZV165ddfnyZW3dulXjx49Xr169VKFCBTVt2jTdvlbu27QvzK/9u7m2Ii9Js2bN0sMPP6xx48Y5bf/jjz9UpEiRDM8jK1bKIKf7lihRQikpKYqLi8tV4/baa5jd+1JWebciLZ0vvvgiV7/kuzbNYsWKacWKFRm+fvXoOCnz95C0DpqrZfYeMnToUPXo0UO7d+/W1KlTVbVqVbVp0yYHuQcAIGtWPqPLly+vjz76SJJ08OBBffbZZxo9erSuXLni+ALPCqv1dFfTtFJfyu3nto+PjwYPHqznn39ekyZN0rvvvqtWrVqpWrVqWeazWLFimZb5tfnMrl4fEhKiMWPGaMyYMTp58qRjVEjnzp31n//8J9M8BAQEqHnz5lqzZo3KlCmjyMhI1alTR5UqVZL09+Lfa9euVadOndLt685fqF+bVnh4uHx9fRUTE5NpZ1Jap4yfn5+GDx+u4cOH6+zZs1qzZo2ef/55tWvXTseOHVOhQoXS7Zt2z2dW97965G1mdf9r28v79+/Xd999p+nTp6t3796O7T///HNmp50lK2WQm31LlCih3377LUd5vFpGdX9X27a5YbWe7mqadevW1auvvprh62kdlWkyun9tNpvL7yF2u129e/fWv//9b40cOVLTpk1Tr169ctReBPIrOkEAZKhatWoqXbq05syZo5EjRzo+lC9evKj58+eradOmjspghQoVdOrUKZ08edLRuXDlyhWtXLkyR8cOCQnRrbfeqgULFmjChAmOSuP58+e1ZMmSbPdv1qyZihQpoh9++MFtv3ru1KmTXnvtNf3+++8ZDmF3RXR0tD777DN99dVXjmGwkjR37twM4xs0aKDbbrtNr7/+uvbv369HH31UISEhWR6jVatWeuONNzRr1iw9+eSTju3z58/XxYsX1apVq3T7+Pr6qnHjxqpevbpmz56t3bt3OzpB0oSEhKhDhw66cuWK7r77bh04cCDLL4dbt26t559/Xi+99JLKlCmj6tWrO7Z/+eWXiouLszTt1dUjc4KDg13e71qdOnXSuHHjVKxYsUwr/BkdOzo6WkWKFNHKlSu1Z8+eDDtBrNy3JUuWVFBQkPbt2+e0ffHixenStdls6Rrvy5Yt0++//66bbrrJpXO4Wk7KwOq+HTp00Pjx4/Xee+9p7Nixmca58susqzVt2lTBwcGaNWuWevTo4dj+22+/ad26derevbvLaWWlXbt28vPz03//+1+3Tc/WqVMnzZ07VykpKWrcuHGO0oiOjtbEiRP1ww8/OE2Jldl7yD333KNy5cppxIgR2rBhg958802GwwMAPCKnn9FVq1bViy++qPnz52v37t2O7VbqCO6op2eUZk7rS2mio6O1fPly/fHHH47OiNTUVMdUldd65JFHNHr0aD344IP66aef9Prrr2d7jFatWmn8+PHavXu3brnlFsf2Tz75RDabTS1btky3jyv1+pIlS6pPnz767rvv9NZbb+mvv/7KsCMgTevWrfXcc88pNDTUMdI7JCRETZo00ZQpU3T8+HFLUyVZrSNmpFChQmrZsqX27NmjunXrOk0plJUiRYqoe/fu+v333zVs2DAdOXIk3VSkktSkSRMFBQVp9uzZTvXFzZs369dff3XqBEn7/759+5w6tr788kunNNPqadfW/T/44AOX8n6tnJaB1X07dOigUaNGad26dZlOb3btTAuuyEnbNifcUU/PKM3ly5ercuXK6abKc0VISIgaNmyoRYsWaeLEiY7yv3DhgpYuXZrhPkOHDtW7776r7t276+zZs4wAB65BJwiADPn4+OiNN97Qgw8+qE6dOmngwIG6fPmyJkyYoLNnz+q1115zxN5///0aNWqUHnjgAT311FNKTEzUP//5T6WkpOT4+C+//LLat2+vNm3aaMSIEUpJSdHrr7+ukJCQdFNZXatw4cKaMmWKevfurT///FPdu3dXRESETp8+re+++06nT5/We++9Zyk/zZo106OPPqq+fftq586duuOOOxQSEqITJ05o06ZNqlOnjmMdj8z07t1bb775ph566CG98soruummm/TVV185OouuXnslzRNPPKH7779fNptNgwYNyjafbdq0Ubt27fTMM8/o3Llzatasmfbt26fY2FjdfPPNiomJkSS9//77WrdunTp27Khy5copMTHR8Uu3tAbKgAEDFBwcrGbNmqlUqVKKi4vT+PHjZbfbs/3VTYMGDRQeHq5Vq1apb9++ju2tW7fWyy+/7HQcV9SpU0eS9Prrr6tDhw7y9fW1XJGXpGHDhmn+/Pm644479OSTT6pu3bpKTU3V0aNHtWrVKo0YMUKNGzfWqFGj9Ntvv6lVq1YqU6aMzp49q7ffflv+/v6Kjo7ONH1X79u0eas//vhjVa5cWfXq1dP27ds1Z86cdGl26tRJ06dPV/Xq1VW3bl3t2rVLEyZMyPGQc1fLIDf73n777YqJidErr7yikydPqlOnTgoMDNSePXtUqFAhPf7445L+vq5z587VvHnzVKlSJQUFBTmudUaKFCmil156Sc8//7wefvhh9ezZU2fOnNGYMWMUFBSk2NjYHJXJtSpUqKCxY8fqhRde0C+//KL27dsrPDxcJ0+e1Pbt2x2/lLTigQce0OzZs3XXXXfpiSee0K233ip/f3/99ttvWr9+vbp27ap77rknyzSGDRumjz/+WB06dNDYsWNVsmRJzZkzx/HrzGvfQ3x9fTV48GA988wzCgkJSTefMgAA7uLqZ/S+ffs0ZMgQ9ejRQ1WqVFFAQIDWrVunffv26dlnn3WkZ6WO4I56+rVyU19K88ILL2jJkiVq1aqVXnjhBcdUNWlrE177uV2kSBE9/PDDeu+991S+fHmX1pR78skn9cknn6hjx44aO3asypcvr2XLlundd9/VY4895lhfzJV6fePGjdWpUyfVrVtX4eHh+vHHHzVz5kynH79lplWrVkpJSdHatWs1Y8YMx/bWrVsrNjZWNpvN0tofVuuImXn77bfVvHlz3X777XrsscdUoUIFnT9/Xj///LOWLFniWHOic+fOql27tho2bKgSJUro119/1VtvvaXy5curSpUqGaYdHh6ukSNH6pVXXtEjjzyiHj166NixYxo9enS66bAaNWqkatWqaeTIkUpOTlZ4eLgWLlyoTZs2OcVVr15dlStX1rPPPitjjIoWLaolS5ZkOx2xO8ogN/sOGzZM8+bNU9euXfXss8/q1ltv1aVLl7RhwwZ16tTJsSZo+fLltXjxYrVq1UpFixZV8eLFs1yrztW2bW65o55+rbFjx2r16tW67bbbNHToUFWrVk2JiYk6cuSIli9frvfffz/b9tzYsWPVsWNHtWvXTk888YRSUlI0YcIEFS5cOMPvRKpWrar27dvrq6++UvPmzVWvXj1LeQbyvRuzHjsAb7J+/XojyXz++efpXlu0aJFp3LixCQoKMiEhIaZVq1bm22+/TRe3fPlyU79+fRMcHGwqVapkpk6damJjY821bzOSzODBg9PtX758edO7d2+nbV9++aWpW7euCQgIMOXKlTOvvfZahmlmZsOGDaZjx46maNGixt/f35QuXdp07NjR6TzT0jt9+rTTvtOmTTOSzOHDh522f/zxx6Zx48YmJCTEBAcHm8qVK5uHH37Y7Ny50xETHR1tatWqlWGejh49arp162YKFy5sQkNDzb333muWL19uJJnFixeni798+bIJDAw07du3zzC93r17m/Llyzttu3TpknnmmWdM+fLljb+/vylVqpR57LHHTHx8vCNmy5Yt5p577jHly5c3gYGBplixYiY6Otp8+eWXjpgZM2aYli1bmpIlS5qAgAATFRVl7rvvPrNv374M83Kte+65x0gys2fPdmy7cuWKCQkJMT4+Pk75MSbza5FWDo888ogpUaKEsdlsGV6bq2V1DS5cuGBefPFFU61aNRMQEGDsdrupU6eOefLJJ01cXJwxxpilS5eaDh06mNKlS5uAgAATERFh7rrrLvPNN9840jl8+LCRZKZNm+aUvqv3bUJCgnnkkUdMyZIlTUhIiOncubM5cuSIkWRiY2MdcfHx8aZ///4mIiLCFCpUyDRv3tx88803Jjo62kRHR2ebn5yWgTEZ/126um9KSop58803Te3atR1xTZs2NUuWLHHEHDlyxLRt29aEhoYaSY57Oav3JGOM+fe//+0oY7vdbrp27WoOHDjgFNO7d28TEhKSbl8r7yGLFi0yLVu2NGFhYSYwMNCUL1/edO/e3axZsyZHx0lKSjITJ0409erVM0FBQaZw4cKmevXqZuDAgebQoUOOuPLly5uOHTtmmKf9+/eb1q1bm6CgIFO0aFHTv39/M2PGDCPJfPfdd+ni0+6pf/zjHy6dMwAArsisrpzdZ/TJkydNnz59TPXq1U1ISIgpXLiwqVu3rnnzzTdNcnKyIy6zOkJWclNPz6hO7WqdJ7P2jTHGfPPNN6Zx48YmMDDQREZGmqeeesq8/vrrRpI5e/Zsuvivv/7aSDKvvfZahullVDf79ddfTa9evUyxYsWMv7+/qVatmpkwYYJJSUlxxLhSr3/22WdNw4YNTXh4uAkMDDSVKlUyTz75pPnjjz8yzMvVUlNTTfHixY0k8/vvvzu2f/vtt0aSueWWW9Ltk1V93er1z+oaHD582PTr18+ULl3a+Pv7mxIlSpjbbrvNvPLKK46YSZMmmdtuu80UL17cUYfv37+/OXLkiCMmo3s+NTXVjB8/3pQtW9YEBASYunXrmiVLlqSrpxtjzMGDB03btm1NWFiYKVGihHn88cfNsmXLjCSzfv16R9wPP/xg2rRpY0JDQ014eLjp0aOHOXr0aLo2QmZ/gzktg8zaEq7sa8zfbZYnnnjClCtXzvj7+5uIiAjTsWNH85///McRs2bNGnPzzTebwMBAI8lxL2fVDnSlbWtM5vXnjK5FRnJbT8/oOKdPnzZDhw41FStWNP7+/qZo0aKmQYMG5oUXXjAXLlwwxvyv3CdMmJBhvhYuXGjq1Knj1LYcOnSoCQ8PzzB++vTpRpKZO3dutucMFDQ2Y4zxZCcLACBr48aN04svvqijR4+m+zXIkiVL1KVLFy1btsyxAB0AXO3RRx/Vp59+qjNnzqQbHTVlyhQNHTpU+/fvdyzECAAAbpy2bdvqyJEjOnjwYLrXRowYoffee0/Hjh3LcPFlAAVbUlKS6tevr9KlS2vVqlXpXr/33nu1detWHTlyRP7+/jcgh4D3YjosALiOpk6dKunvoc5JSUlat26d/vnPf+qhhx5y6gD54Ycf9Ouvv2rEiBGqX7++0xoiAAqusWPHKioqSpUqVXLMCfzvf/9bL774olMHyJ49e3T48GGNHTtWXbt2pQMEAIAbYPjw4br55ptVtmxZ/fnnn5o9e7ZWr17tWBg+zdatW3Xw4EG9++67GjhwIB0gACRJ/fv3V5s2bRzT2L3//vv68ccf9fbbbztiLl++rN27d2v79u1auHChJk+eTAcIkAE6QQDgOipUqJDefPNNHTlyRJcvX1a5cuX0zDPP6MUXX3SKGzRokL799lvdcsstmjFjBosZA5Ak+fv7a8KECfrtt9+UnJysKlWqaPLkyXriiSec4u655x7FxcXp9ttv1/vvv3+DcgsAQMGWkpKiUaNGKS4uTjabTTVr1tTMmTP10EMPOcWlrbvRqVMnvfLKKzcotwC8zfnz5zVy5EidPn1a/v7+uuWWW7R8+XKn9TVPnDih2267TWFhYRo4cKBj/UUAzpgOCwAAAAAAAAAA5Es+NzoDAAAAAAAAAACgYBk/frwaNWqk0NBQRURE6O6779ZPP/3kFNOnTx/ZbDanR5MmTSwdh04QAAAAAAAAAABwXW3YsEGDBw/W1q1btXr1aiUnJ6tt27a6ePGiU1z79u114sQJx2P58uWWjsOaIDdYamqqjh8/rtDQUOb8BwAAQL5njNH58+cVFRUlHx9+k4Xs0WYCAAB5nbfVgRMTE3XlyhWPpG2MSVdnCwwMVGBgYLrYFStWOD2fNm2aIiIitGvXLt1xxx1O+0dGRuY4T3SC3GDHjx9X2bJlb3Q2AAAAgOvq2LFjKlOmzI3OBvIA2kwAACC/8IY6cGJiokoEB+uCh9IvXLiwLlxwTj02NlajR4/Odt+EhARJUtGiRZ22f/3114qIiFCRIkUUHR2tV199VRERES7niYXRb7CEhAQVKVJEx44dU1hYmEv72O1fWjxGl5xkzWV2+3hL8QkJz3lF2tcjfSA3rNyf3JsAgLzi3LlzKlu2rM6ePSu73X6js4M8ICdtJgAAAG/iTXXgc+fOyW6360lJ6cdm5M5lSW9K6eptmY0EuZoxRl27dlV8fLy++eYbx/Z58+apcOHCKl++vA4fPqyXXnpJycnJ2rVrV7ZppmEkyA2WNjQoLCzMQoW+kKVjeL6hEGQp2lp+PJn29UgfyA3X70/uTQBAXsO0RnBVztpMAAAA3seb6sAhsvrNaPbSOhtyUm8bMmSI9u3bp02bNjltv//++x3/r127tho2bKjy5ctr2bJl6tatm6V8AQAAAAAAAAAAXFePP/64vvzyS23cuDHb6cJKlSql8uXL69ChQy6nTycIAAAAAAAAAAAFiP//P9wpxWK8MUaPP/64Fi5cqK+//loVK1bMdp8zZ87o2LFjKlWqlMvHufFL0QMAAAAAAAAAgAJl8ODBmjVrlubMmaPQ0FDFxcUpLi5Oly5dkiRduHBBI0eO1JYtW3TkyBF9/fXX6ty5s4oXL6577rnH5eMwEgQAAAAAAAAAgALET+7vHLCa3nvvvSdJatGihdP2adOmqU+fPvL19dX333+vTz75RGfPnlWpUqXUsmVLzZs3T6GhoR7LFwAAAAAAAAAAQK4YY7J8PTg4WCtXrsz1cegEyYOMcW3V++vFmFhL8TbbGI+lbZWn0wdyg/sTAAAAAAAAnuAn968Jkuzm9NyFThAAAAAAAAAAAAoQb5gO63phYXQAAAAAAAAAAJAveWvnDAAAAAAAAAAA8AB/FZzpsBgJAgAAAAAAAAAA8iVGggAAAAAAAAAAUICwJggAAAAAAAAAAEAe562dMwAAAAAAAAAAwAP85P41QZLcnJ670AniJez2LyUVcjH6e4up17EUbUw3i+lbY0ysR9MHAAAAAAAAAECiEwQAAAAAAAAAgAKlIK0J4q35AgAAAAAAAAAAHuAv90+H5e703IWF0QEAAAAAAAAAQL7ESBAAAAAAAAAAAAoQRoIAAAAAAAAAAADkcYwEAQAAAAAAAACgAClIC6MzEgQAAAAAAAAAAORL3to5UwB1kWxhroWaWyymPcNifDeL8QWHzTbGUrwxsR7KCQAAAFCw2O3jJQVlGePO+rcrdX931/dvxDEBAEDB5Cf3r+HhrZ0NjAQBAAAAAAAAAAD5krd2zgAAAAAAAAAAAA9gTZAbZOPGjercubOioqJks9m0aNGiTGMHDhwom82mt956y2n75cuX9fjjj6t48eIKCQlRly5d9NtvvznFxMfHKyYmRna7XXa7XTExMTp79qxTzNGjR9W5c2eFhISoePHiGjp0qK5cueIU8/333ys6OlrBwcEqXbq0xo4dK2NMbooAAAAAALJEuwkAAAC55e+hhzfyqk6Qixcvql69epo6dWqWcYsWLdK2bdsUFRWV7rVhw4Zp4cKFmjt3rjZt2qQLFy6oU6dOSklJccT06tVLe/fu1YoVK7RixQrt3btXMTExjtdTUlLUsWNHXbx4UZs2bdLcuXM1f/58jRgxwhFz7tw5tWnTRlFRUdqxY4emTJmiiRMnavLkyW4oCQAAAADIGO0mAAAAwHVeNUKlQ4cO6tChQ5Yxv//+u4YMGaKVK1eqY8eOTq8lJCToo48+0syZM9W6dWtJ0qxZs1S2bFmtWbNG7dq1048//qgVK1Zo69ataty4sSTpww8/VNOmTfXTTz+pWrVqWrVqlX744QcdO3bM0WCYNGmS+vTpo1dffVVhYWGaPXu2EhMTNX36dAUGBqp27do6ePCgJk+erOHDh8tms3mghAAAAAAUdLSbAAAAkFtMh+WlUlNTFRMTo6eeekq1atVK9/quXbuUlJSktm3bOrZFRUWpdu3a2rx5syRpy5Ytstvtjoq8JDVp0kR2u90ppnbt2k6/mGrXrp0uX76sXbt2OWKio6MVGBjoFHP8+HEdOXIk03O4fPmyzp075/QAAAAAAHfJ6+0m2kwAAABwpzzVCfL666/Lz89PQ4cOzfD1uLg4BQQEKDw83Gl7yZIlFRcX54iJiIhIt29ERIRTTMmSJZ1eDw8PV0BAQJYxac/TYjIyfvx4x5y6drtdZcuWzeqUAQAAAMCSvN5uos0EAADgeX5y/3og3joSxFvzlc6uXbv09ttva/fu3ZaHTBtjnPbJaH93xKQt7pdV/p577jkNHz7c8fzcuXN/V+qfkxSU/blIkmJ3uxiYMzbbGEvxxsR6KCfWeTrv3nSuAAAAwLXyQ7sp0zaTC1xpD7hap78RdX/aGwAAAO6XZ0aCfPPNNzp16pTKlSsnPz8/+fn56ddff9WIESNUoUIFSVJkZKSuXLmi+Ph4p31PnTrl+LVRZGSkTp48mS7906dPO8Vc+6uk+Ph4JSUlZRlz6tQpSUr3S6erBQYGKiwszOkBAAAAAO6QH9pNtJkAAAA8z89DD2+UZzpBYmJitG/fPu3du9fxiIqK0lNPPaWVK1dKkho0aCB/f3+tXr3asd+JEye0f/9+3XbbbZKkpk2bKiEhQdu3b3fEbNu2TQkJCU4x+/fv14kTJxwxq1atUmBgoBo0aOCI2bhxo65cueIUExUV5WhcAAAAAMD1RLsJAAAAcOZVnTMXLlzQzz//7Hh++PBh7d27V0WLFlW5cuVUrFgxp3h/f39FRkaqWrVqkiS73a7+/ftrxIgRKlasmIoWLaqRI0eqTp06at26tSSpRo0aat++vQYMGKAPPvhAkvToo4+qU6dOjnTatm2rmjVrKiYmRhMmTNCff/6pkSNHasCAAY5fIfXq1UtjxoxRnz599Pzzz+vQoUMaN26cRo0aZXnYOQAAAAC4inYTAAAAcittHQ93p+mNvKoTZOfOnWrZsqXjedo8sL1799b06dNdSuPNN9+Un5+f7rvvPl26dEmtWrXS9OnT5evr64iZPXu2hg4dqrZt20qSunTpoqlTpzpe9/X11bJlyzRo0CA1a9ZMwcHB6tWrlyZOnOiIsdvtWr16tQYPHqyGDRsqPDxcw4cPd5q7FgAAAADcjXYTAAAA4DqbSVuVDjfEuXPnZLfbpecSpCAX57qNXWDxKN9bzpcV3rR4X15e1B0AAKAgSKv/JiQksNYDXOJoM+lZSUG5To82AAAAuN68qQ6clpfdkgq7Oe0Lkm6RvOI8r+ZVI0EAAAAAAAAAAIBn+cn901d5a2dDnlkYHQAAAAAAAAAAwApv7ZwpeMaPl8tDu20Wh29bnPDMmG7WdvAgT09vxfRZ7mWzWZuqzZvuNQAAAHi3hITnvGpaBThztW1FmwoAAO9QkBZGZyQIAAAAAAAAAADIlxgJAgAAAAAAAABAAeIn93cOeGtnAyNBAAAAAAAAAABAvuStnTMAAAAAAAAAAMAD/Hwlf5ub0zSSUtybpjswEgQAAAAAAAAAAORLjAQBAAAAAAAAAKAA8fOT/ArISBA6QfIiM8biDnU8ko2cstms5t972GxHLMUbU8Ej+fBWxnS70VkAAAAAcAMYE3ujswAAACzw98B0WP7Gvem5C9NhAQAAAAAAAACAfImRIAAAAAAAAAAAFCAemw7LCzESBAAAAAAAAAAA5EuMBAEAAAAAAAAAoADx95X83TxEwj/Vvem5CyNBAAAAAAAAAABAvsRIEAAAAAAAAAAAChJfuX+IhJvXGHEXRoIAAAAAAAAAAIB8iZEgXqOXpFAXY2dYTPt7i/HdLMZbY0ysy7E22xhLaVuNt85q2bt+rjlh9XytlD0AAADgTez29ZJCsowxpvX1yQwAAEBe5yf3D5Hw0jVB6AQBAAAAAAAAAKAgKUCdIEyHBQAAAAAAAAAA8iVGggAAAAAAAAAAUJAwEgQAAAAAAAAAACBvYyQIAAAAAAAAAAAFiY8k3xudieuDkSAAAAAAAAAAACBfYiQIAAAAAAAAAAAFiZ/cPxLE5ub03IROEG9RtbzkG+Za7I91LCb+vaVom22MpXhjYi3Fe5I35cUb5eVrCwAAgIItIaGlwsKybjO5Ut+ljgsAAFCw0AkCAAAAAAAAAEBBwkgQAAAAAAAAAACQL/mKhdEBAAAAAAAAAADyMkaCAAAAAAAAAABQkBSg6bAYCQIAAAAAAAAAAPIlRoIAAAAAAAAAAFCQ+KrA9A4wEgQAAAAAAAAAAORLBaSvJ7/53lK0MbGW4m22BRbjx1iKt5Ifq3n3Np4sm5zEI2+xcv9wLwAAAFz/OpGr9TXqagAAwOv4yv1rghg3p+cmjAQBAAAAAAAAAAD5EiNBAAAAAAAAAAAoSPxUYHoHCshpAgAAAAAAAAAASQWqE4TpsAAAAAAAAAAAQL5UQPp6AAAAAAAAAACAJEaCAAAAAAAAAAAA5HUFpK8HAAAAAAAAAABI+nt4hK+b00x1c3puQieItzj4paRCHknaZltgcY/vPZKPgsiY2BudBeRh3D8AAADejfoaAACA96MTBAAAAAAAAACAgsQTa4IYN6fnJqwJAgAAAAAAAAAA8iVGggAAAAAAAAAAUJAUoJEgdIIAAAAAAAAAAFCQ+KrALIzOdFgAAAAAAAAAACBfYiQIAAAAAAAAAAAFSQGaDouRIAAAAAAAAAAAIF9iJIjXqCcp1KVIY7p5NCc22/eW4o2JtZj+GAvRdSzmxbNlY5W1c/V0WVpP3ypvyw8AAADyD7t9vKSgLGMKQv3S1Tp3QSgLAACQC75yf+8Aa4IAAAAAAAAAAABcP17VCbJx40Z17txZUVFRstlsWrRokeO1pKQkPfPMM6pTp45CQkIUFRWlhx9+WMePH3dK4/Lly3r88cdVvHhxhYSEqEuXLvrtt9+cYuLj4xUTEyO73S673a6YmBidPXvWKebo0aPq3LmzQkJCVLx4cQ0dOlRXrlxxivn+++8VHR2t4OBglS5dWmPHjpUxXjrxGQAAAIB8gXYTAAAAcs3XQw8v5FWdIBcvXlS9evU0derUdK/99ddf2r17t1566SXt3r1bCxYs0MGDB9WlSxenuGHDhmnhwoWaO3euNm3apAsXLqhTp05KSUlxxPTq1Ut79+7VihUrtGLFCu3du1cxMTGO11NSUtSxY0ddvHhRmzZt0ty5czV//nyNGDHCEXPu3Dm1adNGUVFR2rFjh6ZMmaKJEydq8uTJHigZAAAAAPgb7SYAAADAdV61JkiHDh3UoUOHDF+z2+1avXq107YpU6bo1ltv1dGjR1WuXDklJCToo48+0syZM9W6dWtJ0qxZs1S2bFmtWbNG7dq1048//qgVK1Zo69ataty4sSTpww8/VNOmTfXTTz+pWrVqWrVqlX744QcdO3ZMUVFRkqRJkyapT58+evXVVxUWFqbZs2crMTFR06dPV2BgoGrXrq2DBw9q8uTJGj58uGw2mwdLCgAAAEBBRbsJAAAAueYn1gTJCxISEmSz2VSkSBFJ0q5du5SUlKS2bds6YqKiolS7dm1t3rxZkrRlyxbZ7XZHRV6SmjRpIrvd7hRTu3ZtR0Vektq1a6fLly9r165djpjo6GgFBgY6xRw/flxHjhzJNM+XL1/WuXPnnB4AAAAA4Cl5rd1EmwkAAOA68PPQwwvl2U6QxMREPfvss+rVq5fCwsIkSXFxcQoICFB4eLhTbMmSJRUXF+eIiYiISJdeRESEU0zJkiWdXg8PD1dAQECWMWnP02IyMn78eMecuna7XWXLlrVy2gAAAADgsrzYbqLNBAAAUDCMHz9ejRo1UmhoqCIiInT33Xfrp59+cooxxmj06NGKiopScHCwWrRooQMHDlg6jpf2zWQtKSlJDzzwgFJTU/Xuu+9mG2+McRpmndGQa3fEpC3ul9WQ7ueee07Dhw93PD937tz/V+rnSArK9lz+Tt+lsKvyFWttB4tstjEW96jjcqQx3SymbY31vFvj6bL3dPoAAADIu/JquynzNhMk2gAAAMBNvGA6rA0bNmjw4MFq1KiRkpOT9cILL6ht27b64YcfFBISIkl64403NHnyZE2fPl1Vq1bVK6+8ojZt2uinn35SaGioS8fJcyNBkpKSdN999+nw4cNavXq149dMkhQZGakrV64oPj7eaZ9Tp045fm0UGRmpkydPpkv39OnTTjHX/iopPj5eSUlJWcacOnVKktL90ulqgYGBCgsLc3oAAAAAgDvl5XYTbSYAAICCYcWKFerTp49q1aqlevXqadq0aTp69KhjalVjjN566y298MIL6tatm2rXrq0ZM2bor7/+0pw5c1w+Tp7qBEmryB86dEhr1qxRsWLFnF5v0KCB/P39nRYCPHHihPbv36/bbrtNktS0aVMlJCRo+/btjpht27YpISHBKWb//v06ceKEI2bVqlUKDAxUgwYNHDEbN27UlStXnGKioqJUoUIFt587AAAAALiCdhMAAACy5SPJ182P/+9tuHZ9t8uXL7uUpYSEBElS0aJFJUmHDx9WXFyc01p2gYGBio6OdqxT5+qpeo0LFy5o79692rt3r6S/T3Lv3r06evSokpOT1b17d+3cuVOzZ89WSkqK4uLiFBcX56hQ2+129e/fXyNGjNDatWu1Z88ePfTQQ6pTp45at24tSapRo4bat2+vAQMGaOvWrdq6dasGDBigTp06qVq1apKktm3bqmbNmoqJidGePXu0du1ajRw5UgMGDHD8CqlXr14KDAxUnz59tH//fi1cuFDjxo3T8OHDs5wOCwAAAAByg3YTAAAAvFnZsmWd1ngbP358tvsYYzR8+HA1b95ctWvXlvS/NeQyWmMuq3W5r+VVa4Ls3LlTLVu2dDxPmwe2d+/eGj16tL788ktJUv369Z32W79+vVq0aCFJevPNN+Xn56f77rtPly5dUqtWrTR9+nT5+vo64mfPnq2hQ4c6epC6dOmiqVOnOl739fXVsmXLNGjQIDVr1kzBwcHq1auXJk6c6Iix2+1avXq1Bg8erIYNGyo8PFzDhw93mrsWAAAAANyNdhMAAAByzRNrgqT8/c+xY8ecpjQNDAzMdtchQ4Zo37592rRpU7rXMlpjzsoPamwmbVU63BDnzp2T3W6X9KxcXRjdKqsL53l6sXAWRs+/rJZnQSsfAADwv/pvQkICaz3AJVbaTNQvAQCAN/KmOrAjL0OksOz7JqylfVmyT5Xl83z88ce1aNEibdy4URUrVnRs/+WXX1S5cmXt3r1bN998s2N7165dVaRIEc2YMcOl9L1qOiwAAAAAAAAAAOBhfh56WGCM0ZAhQ7RgwQKtW7fOqQNEkipWrKjIyEinteyuXLmiDRs2ONapc/VUAQAAAAAAAABAQZG2mLm707Rg8ODBmjNnjhYvXqzQ0FDHOh92u13BwcGy2WwaNmyYxo0bpypVqqhKlSoaN26cChUqpF69erl8HDpBvEYvSaEuRRpTwaM5sT591gKL6Xt2iisrGC6fNZvtiKV4yhMAAACekpDw3A2fPsLTXJleljo3AADIL9577z1Jcqxbl2batGnq06ePJOnpp5/WpUuXNGjQIMXHx6tx48ZatWqVQkNd+y5dohMEAAAAAAAAAICCxYMLo7vKleXKbTabRo8erdGjR+csT2JNEAAAAAAAAAAAkE8xEgQAAAAAAAAAgILEV+7vHUh2c3puwkgQAAAAAAAAAACQLzESBAAAAAAAAACAgsQTa4J4aW8DI0EAAAAAAAAAAEC+5KV9MwAAAAAAAAAAwCN8///h7jS9EJ0gXqJ4go98wlwbmGOzjbGYeh1r4bZuFtP3HlbLxphYD+Xkb96WH6uMqXCjs+Akr5cnAAAAcs5uHy8pKMuY613/c7V+6mq+qL8CAAC4H50gAAAAAAAAAAAUJAVoTRAvzRYAAAAAAAAAAPCIAtQJwsLoAAAAAAAAAAAgX/LSvhkAAAAAAAAAAOARPnL/QuZeOuTCS7MFAAAAAAAAAACQO4wEAQAAAAAAAACgIGFNEAAAAAAAAAAAgLzNS/tmCp4/GpWVfMNcC+4eay3xL8ZYi6/ezVK4+cFavBU2m8W8q45H0zfGWtlbjc/rrF8vawpaeQIAAOB/EhKeU1iYi20mN7DZ1mQbU1Dqp67U8wtKWQAAkG8wEgQAAAAAAAAAACBv89K+GQAAAAAAAAAA4BG+//9wd5peiE4QAAAAAAAAAAAKEqbDAgAAAAAAAAAAyNu8tG8GAAAAAAAAAAB4hK/c3zvgpdNhMRIEAAAAAAAAAADkS4wEAQAAAAAAAACgIClAa4J4abYKoIOSbC7G/jjGUtLGxFqKt9kWWIqXunk4fSu+txRtvWw8W/ZWeVt+PJ1+QWPl+lL2AAAArnG1jkX96n8oCwAAkJfRCQIAAAAAAAAAQEHiK/ev4cGaIAAAAAAAAAAAANcPI0EAAAAAAAAAAChIWBMEAAAAAAAAAADkSwWoE4TpsAAAAAAAAAAAQL7kpX0zAAAAAAAAAADAI3zk/oXMvXTIhZdmCwAAAAAAAAAAIHcYCeItnpMU5GLs6FhLSdtsR6zmxqOM6eZyrM32vcW0rZWNVZ5O3ypvyw+yZrONsRTP9QUAAPgfu328XG80ZY46FgAAgFgTBAAAAAAAAAAAIK/z0r4ZAAAAAAAAAADgEYwEAQAAAAAAAAAAyNu8tG8GAAAAAAAAAAB4hO//P9ydpheiEwQAAAAAAAAAgIKE6bAAAAAAAAAAAADyNi/tmymAfpDk72KsOWIx8RkW4+tYirbZFliKN6abhdhYS2lbZbONsRRvNT+eTh/u5enrxfUFAADIuYSE5xQWFnbdjudK3ZD6HQAAyLN85f7eAS+dDouRIAAAAAAAAAAAIF9iJAgAAAAAAAAAAAUJa4IAAAAAAAAAAADkbV7aNwMAAAAAAAAAADzCV+5fw4M1QQAAAAAAAAAAAK4fRoIAAAAAAAAAAFCQFKA1Qbw0WwAAAAAAAAAAwCN85f7eAS+dDotOEG+x+FdJoS4G77aUtDGxlrPjSTbbGJdjvS3vVuX1/Bc0Vq+XlXs5J+l7ktW8S3UsRRvTzWL6AAAAWbPbL0nyzzLGmGC3Hc+VupurdSpvqgcCAAAUNHSCAAAAAAAAAABQkLAw+o2xceNGde7cWVFRUbLZbFq0aJHT68YYjR49WlFRUQoODlaLFi104MABp5jLly/r8ccfV/HixRUSEqIuXbrot99+c4qJj49XTEyM7Ha77Ha7YmJidPbsWaeYo0ePqnPnzgoJCVHx4sU1dOhQXblyxSnm+++/V3R0tIKDg1W6dGmNHTtWxhi3lQcAAAAAXIt2EwAAAOA6r+oEuXjxourVq6epU6dm+Pobb7yhyZMna+rUqdqxY4ciIyPVpk0bnT9/3hEzbNgwLVy4UHPnztWmTZt04cIFderUSSkpKY6YXr16ae/evVqxYoVWrFihvXv3KiYmxvF6SkqKOnbsqIsXL2rTpk2aO3eu5s+frxEjRjhizp07pzZt2igqKko7duzQlClTNHHiRE2ePNkDJQMAAAAAf6PdBAAAgFzz89DDC3lVtjp06KAOHTpk+JoxRm+99ZZeeOEFdev291zzM2bMUMmSJTVnzhwNHDhQCQkJ+uijjzRz5ky1bt1akjRr1iyVLVtWa9asUbt27fTjjz9qxYoV2rp1qxo3bixJ+vDDD9W0aVP99NNPqlatmlatWqUffvhBx44dU1RUlCRp0qRJ6tOnj1599VWFhYVp9uzZSkxM1PTp0xUYGKjatWvr4MGDmjx5soYPHy6bzZbheVy+fFmXL192PD937pzbyg8AAABA/pff2020mQAAAOBOXjUSJCuHDx9WXFyc2rZt69gWGBio6Ohobd68WZK0a9cuJSUlOcVERUWpdu3ajpgtW7bIbrc7KvKS1KRJE9ntdqeY2rVrOyryktSuXTtdvnxZu3btcsRER0crMDDQKeb48eM6cuRIpucxfvx4x3Byu92usmXL5qJUAAAAAOB/8kO7iTYTAADAdVCARoLkmU6QuLg4SVLJkiWdtpcsWdLxWlxcnAICAhQeHp5lTERERLr0IyIinGKuPU54eLgCAgKyjEl7nhaTkeeee04JCQmOx7Fjx7I+cQAAAABwUX5oN9FmAgAAgDt5ad9M5q4dLm2MyXTqqcxiMop3R0za4n5Z5ScwMNDpV1AAAAAA4G55ud1EmwkAAOA68MTIDS/tbfDSbKUXGRkp6e9fC5UqVcqx/dSpU45fEkVGRurKlSuKj493+lXTqVOndNtttzliTp48mS7906dPO6Wzbds2p9fj4+OVlJTkFHPtL5dOnTolKf2vrlxStbzkG+Za7I+7LSVtsy2wmJnvLUUbE+vReCtstjEeSzs/sFo+nrxW+UFeLp+8nHcgN3gfBJDf5ed2U0JCsMLCgi3t42mufk64+vnjSnremhYAAMhbjI9kfN2fpjfy0mylV7FiRUVGRmr16tWObVeuXNGGDRscFfUGDRrI39/fKebEiRPav3+/I6Zp06ZKSEjQ9u3bHTHbtm1TQkKCU8z+/ft14sQJR8yqVasUGBioBg0aOGI2btyoK1euOMVERUWpQoUK7i8AAAAAAMgG7SYAAADAmVd1gly4cEF79+7V3r17Jf29qN/evXt19OhR2Ww2DRs2TOPGjdPChQu1f/9+9enTR4UKFVKvXr0kSXa7Xf3799eIESO0du1a7dmzRw899JDq1Kmj1q1bS5Jq1Kih9u3ba8CAAdq6dau2bt2qAQMGqFOnTqpWrZokqW3btqpZs6ZiYmK0Z88erV27ViNHjtSAAQMUFvb3aI1evXopMDBQffr00f79+7Vw4UKNGzdOw4cPz3aYOQAAAADkFO0mAAAA5FaKn2ce3sirsrVz5061bNnS8Xz48OGSpN69e2v69Ol6+umndenSJQ0aNEjx8fFq3LixVq1apdDQUMc+b775pvz8/HTffffp0qVLatWqlaZPny5f3/+N7Zk9e7aGDh2qtm3bSpK6dOmiqVOnOl739fXVsmXLNGjQIDVr1kzBwcHq1auXJk6c6Iix2+1avXq1Bg8erIYNGyo8PFzDhw935BkAAAAAPIF2EwAAAOA6m0lblQ43xLlz52S326WqCRbWBLG6xodVnl0TxJM8vSaIN51rTjAXPoCCjvdB4MZLq/8mJCQ4RgsAWckP94y3ruPBmiAAAFwf3lSfScvLqROSu7Ny7pwUUUpecZ5X86rpsAAAAAAAAAAAANzFq6bDAgAAAAAAAAAAnpXsa1Oyr3vXaEv2NZK8b+IpRoIAAAAAAAAAAIB8iZEg3uJZSYVcjB3TzVraHl9DxHM8PXe71fTz+lzy3pYfALjeeB8EgLzLbh8vKSjX6dyIzwJ3HtNb0wIAAHlLip+fUvzcOxIkxc9ISnJrmu5AJwgAAAAAAAAAAAVIiq+vUtw8HVaKr3d2gjAdFgAAAAAAAAAAyJcYCQIAAAAAAAAAQAGSKl+lyL0jQVK9cFF0iZEgAAAAAAAAAAAgn2IkCAAAAAAAAAAABUiyfJXs5pEgyYwEAQAAAAAAAAAAuH4YCQIAAAAAAAAAQAGSIl+luHmMRIpS3Zqeu9AJ4i1qSSpsIdaKH7+3FG5MrKV4m22Mx9K3mherPJ1+QWOzLbAUb0w3D+XEO3nybwUAACD/ayIpJJuYb69HRpABV+u61HEBAMD1RicIAAAAAAAAAAAFiGdGgrh3jRF3oRMEAAAAAAAAAIACpCB1grAwOgAAAAAAAAAAyJcYCQIAAAAAAAAAQAHCSBAAAAAAAAAAAIA8jpEgAAAAAAAAAAAUICnyVTIjQQAAAAAAAAAAAPIuRoJ4i8a/Sgr1UOK9LUXbbGMsxRsT69H0vYnVc7XKetlYu7bGVLCYvlXfW4zv5pFc5JTNtsBSvDHelX/AW3n6cwUAUDAkJLRUWFhYNlGts03H1c8lPo+sobwAAMhbUuTngTVBUt2anrswEgQAAAAAAAAAAORLjAQBAAAAAAAAAKAASZGPUuTr5jS9EyNBAAAAAAAAAABAvsRIEAAAAAAAAAAACpAU+RaYkSB0ggAAAAAAAAAAUIAky1fJbu4ESXZrau7DdFgAAAAAAAAAACBfYiSIt/i4vFQozLXYL6wlbT63Fm+zWY0fY20H1XE50phuHs2LMbGW4q3ytvxYZf3a5m1W7zfr6XvX9fUmef1vBVnjegEA3MFuHy8pKMsYPnMAAABckyo/t0+HlSqLXyxfJ4wEAQAAAAAAAAAA193GjRvVuXNnRUVFyWazadGiRU6v9+nTRzabzenRpEkTS8dgJAgAAAAAAAAAAAWItyyMfvHiRdWrV099+/bVvffem2FM+/btNW3aNMfzgIAAS8egEwQAAAAAAAAAAFx3HTp0UIcOHbKMCQwMVGRkZI6PQScIAAAAAAAAAAAFiCdHgpw7d85pe2BgoAIDA3Oc7tdff62IiAgVKVJE0dHRevXVVxUREeHy/qwJAgAAAAAAAAAA3KJs2bKy2+2Ox/jx43OcVocOHTR79mytW7dOkyZN0o4dO3TnnXfq8uXLLqfBSBAAAAAAAAAAAAqQFPl4YCSIkSQdO3ZMYWFhju25GQVy//33O/5fu3ZtNWzYUOXLl9eyZcvUrVs3l9KgEwQAAAAAAAAAgAIkWb5KdnMnSPL/d4KEhYU5dYK4U6lSpVS+fHkdOnTI5X3oBPEWiyX5uxg731rSNtsRi5mxqo7F+FtcjrSad2NiLcXbbAssxUvfW4q2np8xluKtspofb8s/3MfqtfL0veBt6QMAgLzJlTqCq/UCd6YFAAAA9zhz5oyOHTumUqVKubwPnSAAAAAAAAAAABQgKfJTipu7B1KyD0nnwoUL+vnnnx3PDx8+rL1796po0aIqWrSoRo8erXvvvVelSpXSkSNH9Pzzz6t48eK65557XD4GnSAAAAAAAAAAAOC627lzp1q2bOl4Pnz4cElS79699d577+n777/XJ598orNnz6pUqVJq2bKl5s2bp9DQUJePQScIAAAAAAAAAAAFSKp83b4weur/rwliRYsWLWRM5vutXLkyN1mSJPnkOgUAAAAAAAAAAAAvxEgQAAAAAAAAAAAKkBQPjARJycFIkOuBkSAAAAAAAAAAACBfYiQIAAAAAAAAAAAFSLJ8lOzmkSDJSnVreu5CJ4i3qCkpyMXY+VYTn2Exvo618O7drMV/scBC8PeWkrbZrGXFmFhrO8jiuVpkNT82m5WylGy2MZbirbKef2v5sX69rLFansZ49n7wJE+XZV5PHwAA5F+u1kGpbwAAgPwsRX5KcXP3ANNhAQAAAAAAAAAAXEeMBAEAAAAAAAAAoADxzMLo3jkdFiNBAAAAAAAAAABAvsRIEAAAAAAAAAAAChBGgliQnJzsjnwAAAAAQL5FuwkAAAC4MXLdCdKoUSN99tln7sgLAAAAAORLtJsAAADgTVLkq2Q3P9w9ssRdct0JsmbNGm3atEnNmzfXhg0b3JEnAAAAAMhXaDcBAAAAN4bNGGPckdB///tfPf/880pMTNRrr72mGjVquCPZdJKTkzV69GjNnj1bcXFxKlWqlPr06aMXX3xRPj5/9+kYYzRmzBj961//Unx8vBo3bqx33nlHtWrVcqRz+fJljRw5Up9++qkuXbqkVq1a6d1331WZMmUcMfHx8Ro6dKi+/PJLSVKXLl00ZcoUFSlSxBFz9OhRDR48WOvWrVNwcLB69eqliRMnKiAgwKXzOXfunOx2u7QtQSoc5lohxLoWlsZ8bi3eZhtjLX1jLUM22wILaXezlLa38XRZehvP3zsFqzw9ydvK0tvyAwDwnLT6b0JCgsLCXKz/5iPXo92Ub9tMWiQpJJvob7NNr6DUI1ypX92IsvDWfAEA4EneVAdOy8vUhB4KDvN3a9qXziVpiP1zrzjPq+V6JMipU6c0d+5czZ49W35+ftqyZYuio6NVo0YN3X333W7IorPXX39d77//vqZOnaoff/xRb7zxhiZMmKApU6Y4Yt544w1NnjxZU6dO1Y4dOxQZGak2bdro/Pnzjphhw4Zp4cKFmjt3rjZt2qQLFy6oU6dOSklJccT06tVLe/fu1YoVK7RixQrt3btXMTExjtdTUlLUsWNHXbx4UZs2bdLcuXM1f/58jRgxwu3nDQAAACDvup7tJtpMAAAAyE6KfByLo7vvkevuBo/wy20Ct912m3r27KmaNWvqrrvu0rvvviu73a7k5GT95z//cUcenWzZskVdu3ZVx44dJUkVKlTQp59+qp07d0r6+xdNb731ll544QV16/b3KIIZM2aoZMmSmjNnjgYOHKiEhAR99NFHmjlzplq3bi1JmjVrlsqWLas1a9aoXbt2+vHHH7VixQpt3bpVjRs3liR9+OGHatq0qX766SdVq1ZNq1at0g8//KBjx44pKipKkjRp0iT16dNHr776qlf1dgEAAAC4ca5nu4k2EwAAAPA/ue6aWbx4sV5++WX17NlTDRs2/P9hypKfn59q166d6wxeq3nz5lq7dq0OHjwoSfruu++0adMm3XXXXZKkw4cPKy4uTm3btnXsExgYqOjoaG3evFmStGvXLiUlJTnFREVFqXbt2o6YLVu2yG63OyrzktSkSRPZ7XanmNq1azsq85LUrl07Xb58Wbt27cow/5cvX9a5c+ecHgAAAADyt+vZbqLNBAAAgOy4fxRIPlgYPSYmRn/99Ve67VfPGXs9PPPMM+rZs6eqV68uf39/3XzzzRo2bJh69uwpSYqLi5MklSxZ0mm/kiVLOl6Li4tTQECAwsPDs4yJiIhId/yIiAinmGuPEx4eroCAAEfMtcaPHy+73e54lC1b1moRAAAAAPBS3tBuos0EAAAA/I/LnSBz5szRhQsXHM8HDhyo+Ph4p5ikpCT35SwT8+bN06xZszRnzhzt3r1bM2bM0MSJEzVjxgynOJvN5vTcGJNu27WujckoPicxV3vuueeUkJDgeBw7dizLPAEAAADIO7yh3USbCQAAANlhJEgGjDFOzz/99FOnyvzJkycVGhrqvpxl4qmnntKzzz6rBx54QHXq1FFMTIyefPJJjR8/XpIUGRkpSel+VXTq1CnHL5AiIyN15cqVdI2Ra2NOnjyZ7vinT592irn2OPHx8UpKSkr3a6c0gYGBCgsLc3oAAAAAyB+8od1EmwkAAAD4nxyvCXJt5V6Srly5kqvMuOKvv/6Sj49ztn19fZWamipJqlixoiIjI7V69WqnfG3YsEG33XabJKlBgwby9/d3ijlx4oT279/viGnatKkSEhK0fft2R8y2bduUkJDgFLN//36dOHHCEbNq1SoFBgaqQYMGbj5zAAAAAHnNjWg30WYCAABAdlLkq2Q3P7x1JIifOxPLbui0O3Tu3FmvvvqqypUrp1q1amnPnj2aPHmy+vXr58jDsGHDNG7cOFWpUkVVqlTRuHHjVKhQIfXq1UuSZLfb1b9/f40YMULFihVT0aJFNXLkSNWpU0etW7eWJNWoUUPt27fXgAED9MEHH0iSHn30UXXq1EnVqlWTJLVt21Y1a9ZUTEyMJkyYoD///FMjR47UgAEDLP9aqUH1b+UbFuJS7PY6d1hK22Y7YileqmMx/QWW4o3pZiHtMZbStsqYWEvxVvPjbel7mrflx9vK05vy423XqqDxpntB8r78AEB+5+l2U35tM0lbJQXlunxc/dzj884zKFfkJa68X3BPA4D3s9QJMmfOHN1xxx2qU+fvL8mvR6fHtaZMmaKXXnpJgwYN0qlTpxQVFaWBAwdq1KhRjpinn35aly5d0qBBgxQfH6/GjRtr1apVTsPO33zzTfn5+em+++7TpUuX1KpVK02fPl2+vv/rrZo9e7aGDh2qtm3bSpK6dOmiqVOnOl739fXVsmXLNGjQIDVr1kzBwcHq1auXJk6ceB1KAgAAAIA3utHtJtpMAAAAyE6K/JTi3jESSlGqW9NzF5vJaHx2Bu644w599913On/+vPz9/ZWcnKz77rtPzZs31y233KISJUqoWrVqSklJ8XSe85Vz587JbrerQcJy10eCjLU2EkSxRyzmarfFeGsYCXLj0s/rvO1+sIrrm7mCVjbedr7elh8A+Vta/TchISFfrvVAu8n90u4Z6Vm5YySIq/L65x2/YAdyj78jAO7iTXXgtLyMTRiooLAAt6adeO6KRtk/8IrzvJrLXT0bN26UJB06dEi7du3S7t27tWvXLr300ks6e/bsDRkVAgAAAADehHYTAAAA4F0sj3dJmzP2gQcecGw7fPiwdu7cqT179rg1cwAAAACQF9FuAgAAgDdLkY/bFzJPkY9b03MXt0z6VbFiRVWsWFE9evRwR3IAAAAAkO/QbgIAAACuP/eufAIAAAAAAAAAALxasnyV7OaRIO5Oz128c3wKAAAAAAAAAABALtmMMSanO+/evVu1a9dWQIB7V5EvSM6dOye73S51TZD8w1zaZ8PnjS0dI9pnm7VMmSPW4jXDYrwVdSxFG9PNUrzNNsZi+rGW4r1NQTtfq2y2BZbird5vVlm5XlavFfdC1igfAPCctPpvQkKCwsJcq//mdbSbcsfRZlKcpKzvGWOCs03PZlvj0nGNae1CWq7VGVytK7iSHvWOG8ud14jrDQAFhzfVgdPy8mzCMAWFBbo17cRzl/Wa/S2vOM+r5WokSKNGjXTkyBE3ZQUAAAAA8h/aTQAAAMCNk6s1QXIxiAQAAAAACgTaTQAAAPA2qfJVipvX8Ej10jVBWBgdAAAAAAAAAIACJMUDnSDuTs9dWBgdAAAAAAAAAADkS4wEAQAAAAAAAACgAEmRjwdGgnjnmAvvzBUAAAAAAAAAAEAuMRLES0z95BEFh/m7FBvdY5uHc2NVb4vxuy3Efm8x7W4W462x2RZY3MNa/o2JtZi+NZ5O39vYbGMsxXtb+VjJj812xGNpF0SUDwAA3ichIVhhYcFZxthsa7JNx5jWLh3Pal3SHaiDeD93XiOuNwDgRkqWr3zdPBIkmTVBAAAAAAAAAAAArp9cjQSJjY1V8eLF3ZUXAAAAAMh3aDcBAADA26TITylunijK3em5S647QQAAAAAAmaPdBAAAANw43tk1AwAAAAAAAAAAPCJVvkpx8xoeqV66JgidIAAAAAAAAAAAFCApHugEcXd67sLC6AAAAAAAAAAAIF9iJAgAAAAAAAAAAAVIsnzl4+aRG8leOhIkV50gZ8+e1cqVK/X777/LZrOpVKlSateuncLDw92VP2RkvsV4c8TiDruthdu6WYs3rqdvjLVFJG22BdbyYtn3lqKt53+MR9P3NG/Lv7eVj1VWyjOvnyvyFm/7WwcAb0e7yT3s9vGSgrKMceUzx9XPsRvx+eVK3lzNl7em5U7uvJZW6ze5PR4AALh+cjwd1kcffaRbb71VW7duVWpqqlJSUrR161Y1adJEH330kTvzCAAAAAB5Eu0mAAAAeKO/1wTxc/Mjn40EeeONN7R7924VLlzYafvLL7+sBg0aqH///rnOHAAAAADkZbSbAAAAgBsrx50gNptNFy5cSFeZv3Dhgmw2W64zBgAAAAB5He0mAAAAeKO/R4K4d+RGvhsJMnHiREVHR6t27doqXbq0JOm3337TgQMHNGnSJLdlEAAAAADyKtpNAAAAwI3lcidITEyMPvjgAxUqVEiS1KlTJ3Xo0EHbt2/X8ePHZYxR6dKldeutt8rX1zt7fAAAAADAk2g3AQAAIC9gJEgG5syZo0mTJjkq8wMHDtRrr72mpk2bSpKMMUpOTqYiDwAAAKDAot0EAACAvCDVA50gqV7aCeLjaqAxxun5p59+qvj4eMfzU6dOKTQ01H05AwAAAIA8hnYTAAAA4F1yvCbItZV7Sbpy5UquMlOQHVU5BSrQteBPLSb+gNXcfG8t3FiMt8Bms5p2HY/kI6dstjF5On2r5WlMrIfykTOeLh+r52s1P1bS92TawLW4fwDAdbSb3Cch4TmFhYXlOh1v/hxzZ95cScvVOqS3ltn1Li8AAPKTZPnK5uaRG8l5fSSIK2w2mzuTAwAAAIB8h3YTAAAAcP1Y6gSZM2eOdu/eraSkJElU3gEAAADgWrSbAAAA4O3+Xhjdz80P7xwJ4vJ0WM2bN1dsbKzOnz8vf39/JScn6/nnn1fz5s11yy23qESJEp7MJwAAAAB4PdpNAAAAgHdxuRNk48aNkqRDhw5p165d2r17t3bt2qWXXnpJZ8+e5ddNAAAAAAo82k0AAADIC1LkKx83j9zI8yNB0lSpUkVVqlTRAw/8b7Xtw4cPa+fOndqzZ49bMwcAAAAAeRHtJgAAAMA7WO4EyUjFihVVsWJF9ejRwx3JAQAAAEC+Q7sJAAAA3oKRIAAAAAAAAAAAIF9Klq9sbu60SKYTBFk5rIryV7BrwV9YTLx7BWvx82OtxZsj1uK120Ls9xbTthpvjTHWysZmG5On0y9oPF0+1q/vAo+lDQAAUFDZbGvclpYxrd2Wlqtczb8reXO1DulKu4P6KAAA8FZ0ggAAAAAAAAAAUICkyk8pbu4eSPXS7gafG50BAAAAAAAAAAAAT/DOrhkAAAAAAAAAAOARKR5YE8RbF0ZnJAgAAAAAAAAAAMiXGAkCAAAAAAAAAEABkiIfD4wE8c4xF96ZKwAAAAAAAAAAgFxiJAgAAAAAAAAAAAVIsnwlN48ESfbSNUHoBPES69VCPgp1LXiMxcRrHbG4w26L8bdYjP/eYrzrjIm1FG+zWS1Ma6zmx7o6Hk3d0+VjPf/W7p28fj8Y083lWJttgcfS9kZWr5Xn/xY9q6CdLwAAGbHbx0sKynU67vycdPUz2tVjurc+2tptKV3vuoW7y9Vbj+kKb80XAAB5CZ0gAAAAAAAAAAAUICnyk83N3QMpXtrd4J25AgAAAAAAAAAAHpEqX6W4efqqVC+dDouF0QEAAAAAAAAAQL7ESBAAAAAAAAAAAAqQFA8sjO7ukSXuwkgQAAAAAAAAAACQLzESBAAAAAAAAACAAqQgjQT5v/buPjqq6t7/+OdAHggpmQI2CQjyoEhBUhWQCFih1xBqVepFfMLLhRYpFhUpUtTS3iS2whUFuYp6laWIFYtLxBafELgqCsiDEdYPBNEKCFQiomECiHli//5QRgeQnG+YSWYy79dasxaZ+cw+++yzZ2Zvzuw5cXkS5F//+pduu+02vfLKKzp06JDOPPNMPfbYY+rRo4ckyTmnoqIiPfrooyotLVVubq4efPBBnXXWWaEyysvLNWHCBP3tb3/ToUOHdNFFF+mhhx5SmzZtQpnS0lKNHTtWCxculCQNGjRIDzzwgH74wx+GMjt27NCNN96o1157TWlpaRo6dKjuvfdepaSkmPbpLf1UzXwuzGkzZK+pbBW1t+ULjXlXZMub5JjSnmety/Aol2/jXIExP9iUj3b97TaY0tb2sbKW73kLolST2rC1pWTrO7Em2n0h1iTa/gIATl5DnDPVNT9j50h/RvOZ/7X6aIdYbftYrRcAAPEk7n4Oq7S0VH379lVycrJeeeUVbdq0SdOmTQsbZE+dOlXTp0/XzJkztXbtWmVnZ2vAgAHav39/KDNu3Dg9//zzmjdvnpYvX64DBw7o0ksvVXV1dSgzdOhQrV+/XosWLdKiRYu0fv16DRs2LPR4dXW1LrnkEh08eFDLly/XvHnz9Nxzz+nWW2+tk7YAAAAAgKMxZwIAAEBNqtRIVWoc4Vtsnm6Iu5Ugd999t9q2bavZs2eH7mvfvn3o3845zZgxQ5MmTdLgwV9/03nOnDnKysrS008/rdGjRysYDOqxxx7TX//6V+Xl5UmSnnrqKbVt21ZLly7VwIEDtXnzZi1atEirVq1Sbm6uJGnWrFnq3bu3tmzZos6dO2vx4sXatGmTdu7cqdatW0uSpk2bphEjRuiuu+5SRkZGHbUKAAAAAHyNORMAAADwrdg8NXMCCxcuVM+ePXXllVcqMzNT5557rmbNmhV6fNu2bSopKVF+fn7ovtTUVPXr108rV66UJBUXF6uysjIs07p1a3Xr1i2UefvttxUIBEKDeUk6//zzFQgEwjLdunULDeYlaeDAgSovL1dxcfFx619eXq6ysrKwGwAAAABECnMmAAAA1KRaSVG5xaK4OwmydetWPfzww+rUqZNeffVV3XDDDRo7dqyefPJJSVJJSYkkKSsrK+x5WVlZocdKSkqUkpKi5s2bnzCTmZl5zPYzMzPDMkdvp3nz5kpJSQlljjZlyhQFAoHQrW3bttYmAAAAAIDvxZwJAAAANalW46jcYlHcnQQ5fPiwunfvrsmTJ+vcc8/V6NGjNWrUKD388MNhOc/zwv52zh1z39GOzhwvX5vMd91xxx0KBoOh286dO09YJwAAAACwYM4EAAAAfCvuToK0atVKXbt2DbuvS5cu2rFjhyQpOztbko75VtGePXtC30DKzs5WRUWFSktLT5j59NNPj9n+Z599FpY5ejulpaWqrKw85ttOR6SmpiojIyPsBgAAAACRwpwJAAAANTkchVUgh1kJEhl9+/bVli1bwu774IMP1K5dO0lShw4dlJ2drSVLloQer6io0LJly9SnTx9JUo8ePZScnByW2b17tzZu3BjK9O7dW8FgUGvWrAllVq9erWAwGJbZuHGjdu/eHcosXrxYqamp6tGjR4T3HAAAAABqxpwJAAAA+JbnnHP1XQmLtWvXqk+fPioqKtJVV12lNWvWaNSoUXr00Ud13XXXSZLuvvtuTZkyRbNnz1anTp00efJkvfHGG9qyZYuaNWsmSfrtb3+rF198UU888YRatGihCRMm6PPPP1dxcbEaN/76jNXFF1+sTz75RI888ogk6Te/+Y3atWunF154QZJUXV2tc845R1lZWbrnnnv0xRdfaMSIEbr88sv1wAMP+NqfsrIyBQIBnRLcqEYZzSLdXJKk9tpuyq/Whaa8F81TaW5BFAuXnBtsyntekbH8AmP5tv2119/anhtMaev+Rpv1eFnF2vG1iHZfjjWJtr8AEMuOjH+DwSDf8I+ShjpnkkokRaLPrIhwLnL8jEH8jmsYz6Choe8DiGexNAY+Upe2wbVqlPGDiJZ9uOyAdgbOi4n9/K7YvFz7CZx33nl6/vnndccdd+jOO+9Uhw4dNGPGjNBgXpImTpyoQ4cOacyYMSotLVVubq4WL14cGsxL0n333aekpCRdddVVOnTokC666CI98cQTocG8JM2dO1djx45Vfn6+JGnQoEGaOXNm6PHGjRvrpZde0pgxY9S3b1+lpaVp6NChuvfee+ugJQAAAADgWMyZAAAAgG/F3UqQhoaVIDVgJUgN5bMS5ERYCfL9Em1lRKLtLwDEslj6FhziAytBwvFteCQq+j6AeBZLY+AjdWkdfDfi/x99uGy/Pgl0j4n9/K64uyYIAAAAAAAAAACIf2+++aYuu+wytW7dWp7n6e9//3vY4845FRYWqnXr1kpLS1P//v313nvvmbbBSRAAAAAAAAAAABJItRpH5WZ18OBBnX322WE/qfpdU6dO1fTp0zVz5kytXbtW2dnZGjBggPbv3+97G3F3TRAAAAAAAAAAAFB71WosV4uTFidyuBblXXzxxbr44ouP+5hzTjNmzNCkSZM0ePDXPxs/Z84cZWVl6emnn9bo0aN9bYOVIAAAAAAAAAAAICLKysrCbuXl5bUqZ9u2bSopKVF+fn7ovtTUVPXr108rV670XQ4nQQAAAAAAAAAASCDVhxtH5SZJbdu2VSAQCN2mTJlSqzqWlJRIkrKyssLuz8rKCj3mBz+HFSMKVaQ0JfvKbld7U9l/9kaZ8l4XU1y6wpifv8AQ3mAs3MbzrM/IMZZfZMo7V2DK20W3PWNN9NvTxrnBUSvb8yyvK3vbWPuyVbSPVaz1BdSfaL8vx977PgA0IO3SpEZpJ85si+6Y5WiRfh/38zkSyW36/dzi8wqxwG8/rOvXUX3gtQsg1u3cuVMZGRmhv1NTU0+qPO+o/8R1zh1z34lwEgQAAAAAAAAAgARSXdVYh6sie00Q9015GRkZYSdBais7O1vS1ytCWrVqFbp/z549x6wOORF+DgsAAAAAAAAAAMSUDh06KDs7W0uWLAndV1FRoWXLlqlPnz6+y2ElCAAAAAAAAAAACaS6KkleVWRPD7halHfgwAH985//DP29bds2rV+/Xi1atNBpp52mcePGafLkyerUqZM6deqkyZMnq2nTpho6dKjvbXASBAAAAAAAAAAA1Ll33nlHP/vZz0J/jx8/XpI0fPhwPfHEE5o4caIOHTqkMWPGqLS0VLm5uVq8eLGaNWvmexucBAEAAAAAAAAAIIFUVzWSF/FrgtivvtG/f3855773cc/zVFhYqMLCwlrXi5MgAAAAAAAAAAAkkOqqxlE4CRLZ8iKFC6MDAAAAAAAAAIAGyXMnWmuCqCsrK1MgEJBWB6UfZNR3db5WYMzP3258whz/0SHGyrxni2vzdlPcufbGDdh43gLjMzZEpR5HOGdrf88rimr5sca6v1KOKe3cYGP5/tnrbmPvO9Ht+/He12JNor3WAUTWkfFvMBhURkaMjH8R00JzJt0uqUkN6b41ludcXiSqZeJ5S33l/NQtkuM4PqPt/LQ/7QoAOFosjYGP1MX78BN5zSJbF7e/TK5T65jYz+9iJQgAAAAAAAAAAGiQuCYIAAAAAAAAAAAJxFUnyVVH+PRApMuLEFaCAAAAAAAAAACABik2T80AAAAAAAAAAIDoqGr89S3SZcYgVoIAAAAAAAAAAIAGiZUgAAAAAAAAAAAkkgRaCcJJEAAAAAAAAAAAEkm1J1V5kS8zBnESJEZc+eO/KjkjzVd2bruRprK9V5ytMs/Z4tIcUzrT/cp3do9XZKtKlwJb3lh3yVa+19VWunODbeWb31c2WJ9g4pyxfYzHN9bKt7O2v//+EGv7Gv362F4rVp63wJS3vnbjXfRfKwAA1FKHvBoj1nHKifX1lXKu5npJ/urG5/C3/B5L2gyJivcUAPgaJ0EAAAAAAAAAAEgkVd/cIl1mDOLC6AAAAAAAAAAAoEFiJQgAAAAAAAAAAImElSAAAAAAAAAAAADxjZUgAAAAAAAAAAAkElaCAAAAAAAAAAAAxDdWggAAAAAAAAAAkEiqJFVGocwY5DnnXH1XIpGVlZUpEAgouEXKaObzSQts2/AeNB7i+ba4zjJWKJ55g215VxSdeoQMN6Wda2/Ke5712G4w5qPLuQJT3vNsx8tavpWlPvG+r9GWaPsLALEsNP4NBpWRkVHf1UEcONJnpL9LSj9h1rm8iG3XOn44kUiOLfzWK57HM4mwjwCAxBJLY+DQ2GpxUEqPcF0Olkn5sbGf38XPYQEAAAAAAAAAgAaJn8MCAAAAAAAAACCRcGF0AAAAAAAAAACA+MZKEAAAAAAAAAAAEgkrQQAAAAAAAAAAAOIbK0EAAAAAAAAAAEgkCbQShJMgMeLfsl9W44x0X9nVH/azFT7fWBlr3htsyxcasgVFtrLnFdjy1xjLd91teQ035ucY8zaeZ9xfI+ds7R/t+njeAuMzcqJSj9qytGe029Iq1vqaNR9rrO0Z7/sLAAC+X6x+znveUl855/J8ZGJzHyV/47JYrj+A+ON3Psh7D/D9OAkCAAAAAAAAAEAiqVbkV25UR7i8COEkCAAAAAAAAAAAiSSBfg6LC6MDAAAAAAAAAIAGiZUgAAAAAAAAAAAkElaCAAAAAAAAAAAAxDdWggAAAAAAAAAAkEgqv7lFuswYxEoQAAAAAAAAAADQILESJEb8SrOVpmR/4dtsZf+p1SRT/s+6y7aBqBpui1+zIDrVqDM5US3duQJT3vNs7el52015e31s5UtzjHkbz9sQ1fLVxX/7WNsy2mKtPp5XVN9VOEnRfW+wtk+sHV8AQKJYJanJCROetyJiW/Pzeed5S32V5XmHfG4zzVfO3zZr/nyP5Ge6c3kRKyuWMQ76Vl33MSBR8TpC1FR/c4t0mTGIlSAAAAAAAAAAAKBBYiUIAAAAAAAAAACJpFpSVRTKjEGcBAEAAAAAAAAAIJFUKfInQSJdXoTwc1gAAAAAAAAAAKBBYiUIAAAAAAAAAACJhJUg8WHKlCnyPE/jxo0L3eecU2FhoVq3bq20tDT1799f7733XtjzysvLdfPNN+uUU05Renq6Bg0apF27doVlSktLNWzYMAUCAQUCAQ0bNkz79u0Ly+zYsUOXXXaZ0tPTdcopp2js2LGqqKiI1u4CAAAAgBnzJgAAACSyuD0JsnbtWj366KP6yU9+Enb/1KlTNX36dM2cOVNr165Vdna2BgwYoP3794cy48aN0/PPP6958+Zp+fLlOnDggC699FJVV3975ZahQ4dq/fr1WrRokRYtWqT169dr2LBhocerq6t1ySWX6ODBg1q+fLnmzZun5557Trfeemv0dx4AAAAAfGDeBAAAgOOqitItBnnOOVfflbA6cOCAunfvroceekh/+ctfdM4552jGjBlyzql169YaN26cbrvtNklff3spKytLd999t0aPHq1gMKgf/ehH+utf/6qrr75akvTJJ5+obdu2evnllzVw4EBt3rxZXbt21apVq5SbmytJWrVqlXr37q33339fnTt31iuvvKJLL71UO3fuVOvWrSVJ8+bN04gRI7Rnzx5lZGT42peysjIFAgFtDjZXswx/56ROfe1zU3t52cZDfNZ2W/699ra8RTdj3i0wPmGDMT/cmLeaY8znGPPdbXGvvS3vttvy1v31Ckxxd9hWfKzxvKL6rkKdcc52bD1vu3EL1tdWdFn318rad+ztH9/lx5JE2lfgiCPj32Aw6HvMjNppKPOmI31GvwxKyTXk5y+tsTzn8mrM+OV5NW/vayt8pSL5Pl/XY0m/dffTZpE8Rl9vs+a24DPWjnYFAP9iaQwcGlvdG5TSIlyXQ2XShNjYz++Ky5UgN954oy655BLl5YUPjLZt26aSkhLl5+eH7ktNTVW/fv20cuVKSVJxcbEqKyvDMq1bt1a3bt1CmbfffluBQCA0kJek888/X4FAICzTrVu30EBekgYOHKjy8nIVFxd/b93Ly8tVVlYWdgMAAACASIvXeRNzJgAAgDpQrcivAqlWTIq7C6PPmzdP7777rtauXXvMYyUlJZKkrKyssPuzsrL08ccfhzIpKSlq3rz5MZkjzy8pKVFmZuYx5WdmZoZljt5O8+bNlZKSEsocz5QpU1RUlDjf7gYAAABQ9+J53sScCQAAAJEUVytBdu7cqVtuuUVPPfWUmjRp8r05z/PC/nbOHXPf0Y7OHC9fm8zR7rjjDgWDwdBt586dJ6wXAAAAAFjE+7yJORMAAEAdSKBrgsTVSZDi4mLt2bNHPXr0UFJSkpKSkrRs2TLdf//9SkpKCn3D6OhvFO3Zsyf0WHZ2tioqKlRaWnrCzKeffnrM9j/77LOwzNHbKS0tVWVl5THfdPqu1NRUZWRkhN0AAAAAIFLifd7EnAkAAACRFFcnQS666CJt2LBB69evD9169uyp6667TuvXr1fHjh2VnZ2tJUuWhJ5TUVGhZcuWqU+fPpKkHj16KDk5OSyze/dubdy4MZTp3bu3gsGg1qxZE8qsXr1awWAwLLNx40bt3r07lFm8eLFSU1PVo0ePqLYDAAAAAHwf5k0AAACoUWWUbjEorq4J0qxZM3Xr1i3svvT0dLVs2TJ0/7hx4zR58mR16tRJnTp10uTJk9W0aVMNHTpUkhQIBDRy5EjdeuutatmypVq0aKEJEyYoJycndMHALl266Oc//7lGjRqlRx55RJL0m9/8Rpdeeqk6d+4sScrPz1fXrl01bNgw3XPPPfriiy80YcIEjRo1im8qAQAAAKg3zJsAAABQo2pF/kLmXBi9bkycOFGHDh3SmDFjVFpaqtzcXC1evFjNmjULZe677z4lJSXpqquu0qFDh3TRRRfpiSeeUOPGjUOZuXPnauzYscrPz5ckDRo0SDNnzgw93rhxY7300ksaM2aM+vbtq7S0NA0dOlT33ntv3e0sAAAAANQC8yYAAAAkCs855+q7EomsrKxMgUBAVwZnKjkjzddz5v58pGkbjy8aasqfoX+a8v2eWW3Ku6v9Zz2vyFS2vAJbXQ4bi7f+gNyPjfnNC4xPsNpgzA83pZ1rbyzfxtwflBOVehzh3OColu95lv5gO7bO2V4rscbWNvZjZe9rNtFuf2v9E60+AOrXkfFvMBhkJQB8OdJnpBJJNfWZFT5K9JPx93nkeUt9leV3m37Ux+ekn8/yWP789nOcnMurg5oANYv311uk+J1DJEJboGGIpTFwaGx1R1BqEuG6fFUmTYmN/fyuuLomCAAAAAAAAAAAgF8N7uewAAAAAAAAAADACVRLqopCmTGIlSAAAAAAAAAAAKBBYiUIAAAAAAAAAACJpEpS4yiUGYNYCQIAAAAAAAAAABokVoIAAAAAAAAAAJBIKhX5JRKVES4vQjgJAgAAAAAAAABAIqlW5C9kHqMXRuckSIx4Xf3VSM18Zf+1qKWp7JGb5pryy7rmmvLaYot7XQ3hLgW2wo1x705bXq7Ilt+cY9yA1QZjfrgt7rW3xb3ttvI1x5i3sraPjedFt3zn/HfoaNcl2jzP9tqytE1diLX6RFu8Hy8AQHwKBtOUkZF2woznraij2hwR2e3F6mdmrNbLL+fy6rsKqIGf8WW890O/4nk//c4T4nkfAcQnToIAAAAAAAAAAJBIqhX5C5nH6EoQLowOAAAAAAAAAAAaJFaCAAAAAAAAAACQSKoU+SUSkV5ZEiGsBAEAAAAAAAAAAA0SK0EAAAAAAAAAAEgklZK8KJQZg1gJAgAAAAAAAAAAGiRWggAAAAAAAAAAkEiqv7lFuswYxEmQGPEzvaFkpfnKnvrg56ayl92Ya8pf+NoaU14bbHEV+I9mXr3DVPSerqfZ6vK+LW7WZbAtb62P6258whxj3nCwJDnX3pT3rEvuPGN9DhuL94psT9BwY97G8xb4zjpnaxvrvtrL91/32oh2/a3s+2t948wxpaO9v9EuHwCA4wkEpkhqcvIFdfD3OWYfG36/+vjsjGT9/Yj38UG8H+/64KfNEqUt4pnfvu/nWEbyeNN3gDrAhdEBAAAAAAAAAADiGytBAAAAAAAAAABIJNWK/MqNGP05LFaCAAAAAAAAAACABomVIAAAAAAAAAAAJJLKOCkzAlgJAgAAAAAAAAAAGiRWggAAAAAAAAAAkEiqFfklEjF6TRBOgsSI19VfjdTMV3b7TbayL/xwjSmfNeNj2wY+s8V1zXbf0T057W1lb15gy3uDbXnl2OJnGYu31n+Isf7zh9vyrsgU9zxb8eb2dLb2iXp9NMeUdq7AlPe8d035aPI8W1+wt6U1v8GYt7EeKzvba9fa/p4X3faJtui3f/zyPOPnhPG1QtsDiGXB4B3KyMg4YcbrWHM5bqu/7Xle35rLcnk+y1rqK+e3PH9l1fyeXh/1qg9+xlJ8BtpFso/FqkToO/Fe/1jldw5H+wN1g5MgAAAAAAAAAAAkkipJ5i8Q+ygzBnESBAAAAAAAAACARJJAJ0G4MDoAAAAAAAAAAGiQWAkCAAAAAAAAAEAiicaqDVaCAAAAAAAAAAAA1B1WggAAAAAAAAAAkEiqFflrglRHuLwIYSUIAAAAAAAAAABokFgJEiP2vt9W+kGGr+wcY9kF79vyo/WIKf/nnLtsGxjS3ne0V9c3TUWv8Qbb6nKFLa4cY/nzjOUXGcvfYCzfLMeY726Lz2tvy19ri8ttt8Vde1Pe82z763kLTHnnjP0hipwrMOU9r8i4BWtfs+Xt9Ykua3tGu/2t5VtZ6xPN+sda29jZ3vhj7dhaxV77A4h52w7VGPG8qRHcYJ7P3ApfKc/XtzH9leXnPdQ5f/X3vKV1WpbffZT6+kpF8vMkkp99ifA5579f+D3mkPz3w0ToY5Fsi0iWVR9t76f+idAnYMA1QQAAAAAAAAAAAOIbK0EAAAAAAAAAAEgkCbQShJMgAAAAAAAAAAAkkipJLsJlcmF0AAAAAAAAAACAusNJEAAAAAAAAAAAEkl1lG4GhYWF8jwv7JadnX3Su3Y0fg4LAAAAAAAAAADUubPOOktLly4N/d24ceOIb4OTIAAAAAAAAAAAJJIYuSZIUlJSVFZ/fJfnnIv0rsKgrKxMgUBA+mVQSs7w9ZzC+V5U6/SyW2bKj9YjpvwdmuI7u+fK00xla4gtriJbvNemN035NY0utG3gx7a4zjLm37PF3SZb3vMW2J6g7sb8HGM+x5iPLucGm/KeZ+ygURXttoy1vrDBmLdxrsCUt762ot3XrPW3iue+b217IBEdGf8Gg0FlZPgb/yKxWfqM5x3yUeIKn1v2m6trfX3m/NR/oq+SnEurMeP389vPOCKSZfkVyfGH33r52Wa0x10NEe1qUx+vt3hHH0NtxNIYOPT/0V2DUuMI16W6TNoU0M6dO8P2MzU1VampqcfECwsLdc899ygQCCg1NVW5ubmaPHmyOnbsGNFqcU0QAAAAAAAAAAASSVWUbpLatm2rQCAQuk2Zcvwvxefm5urJJ5/Uq6++qlmzZqmkpER9+vTR559/HtFd5eewAAAAAAAAAABARBxvJcjxXHzxxaF/5+TkqHfv3jr99NM1Z84cjR8/PmL14SQIAAAAAAAAAACJpErS4QiX+U15GRkZtfrZr/T0dOXk5OjDDz+MaLX4OSwAAAAAAAAAABJJdZRuJ6G8vFybN29Wq1atTq6go3ASBAAAAAAAAAAA1KkJEyZo2bJl2rZtm1avXq0hQ4aorKxMw4cPj+h2+DksAAAAAAAAAAASSZUiv0TC+PNau3bt0rXXXqu9e/fqRz/6kc4//3ytWrVK7dq1i2i1OAkCAAAAAAAAAADq1Lx58+pkO5wEiRX/kORFp+jrXUtTvmBcP1M+a8bHpnyelvrOTn12oqnsNpv2mvKZm3aY8mvuvNCUj7rnolu85y2wPWHIYFt+fpEt36XAlt9sLN8sx5T2vO1RLd9mQ3TznvFYOVtfc85WvufFWl+w1ieafcHenrEmlupvPbbR7sux1DYAUCc6pPkI5fkszEduW7THGMezwmeur4/MVF8leZ6fsiKnPj6//G4zkuNKP9v0u71Y/cyP9/rHOz/tT9vbJcJrFwkiBlaC1BWuCQIAAAAAAAAAABokVoIAAAAAAAAAAJBIKsVKEAAAAAAAAAAAgHjGShAAAAAAAAAAABLJYUkuwmVGurwIibuVIFOmTNF5552nZs2aKTMzU5dffrm2bNkSlnHOqbCwUK1bt1ZaWpr69++v9957LyxTXl6um2++WaeccorS09M1aNAg7dq1KyxTWlqqYcOGKRAIKBAIaNiwYdq3b19YZseOHbrsssuUnp6uU045RWPHjlVFRUVU9h0AAAAAasKcCQAAADWqitItBsXdSZBly5bpxhtv1KpVq7RkyRJVVVUpPz9fBw8eDGWmTp2q6dOna+bMmVq7dq2ys7M1YMAA7d+/P5QZN26cnn/+ec2bN0/Lly/XgQMHdOmll6q6ujqUGTp0qNavX69FixZp0aJFWr9+vYYNGxZ6vLq6WpdccokOHjyo5cuXa968eXruued066231k1jAAAAAMBRmDMBAAAA34q7n8NatGhR2N+zZ89WZmamiouLdeGFF8o5pxkzZmjSpEkaPHiwJGnOnDnKysrS008/rdGjRysYDOqxxx7TX//6V+Xl5UmSnnrqKbVt21ZLly7VwIEDtXnzZi1atEirVq1Sbm6uJGnWrFnq3bu3tmzZos6dO2vx4sXatGmTdu7cqdatW0uSpk2bphEjRuiuu+5SRkZGHbYMAAAAADBnAgAAgA9VkrwIlxmjP4cVdydBjhYMBiVJLVq0kCRt27ZNJSUlys/PD2VSU1PVr18/rVy5UqNHj1ZxcbEqKyvDMq1bt1a3bt20cuVKDRw4UG+//bYCgUBoMC9J559/vgKBgFauXKnOnTvr7bffVrdu3UKDeUkaOHCgysvLVVxcrJ/97GfH1Le8vFzl5eWhv8vKyr7ZD8nv+L/I2DlPbfe5Kf+vj1ua8qP1iCn/iEb7zrZ5Zq+pbM23xffknGZ7QqEtrr8Z89ca82678QlR9l7NkXDDbfH3bXHnCkx5z7o2zi0wPsHIG+w/64qiV49acIetzzDsqyTPs+6vsa9pjjG/wZS29k0re/vkmNLOWY/XdlM+lnie7XVuft8xHqvo9x3r/tr6QqyJdvvH2vFF4moocyY/Au+X1NweqX7nL30jlPGfcy6txoznLY3YNp3L81WSn236fQ+zj1PqZpv+34P9HvOa+WsLf9urj3at67IiyW971Uf9I9lf/eT8vqf4eb+I5Xb1I7L1j9x7RSTF+zECaivufg7ru5xzGj9+vC644AJ169ZNklRS8vWgNysrKyyblZUVeqykpEQpKSlq3rz5CTOZmZnHbDMzMzMsc/R2mjdvrpSUlFDmaFOmTAn9Xm4gEFDbtm2tuw0AAAAAvjBnAgAAwHFVRukWg+L6JMhNN92k//f//p/+9rdjv27veeHLJZxzx9x3tKMzx8vXJvNdd9xxh4LBYOi2c+fOE9YJAAAAAGqLORMAAAASXdyeBLn55pu1cOFCvf7662rTpk3o/uzsbEk65ltFe/bsCX0DKTs7WxUVFSotLT1h5tNPPz1mu5999llY5ujtlJaWqrKy8phvOx2RmpqqjIyMsBsAAAAARBpzJgAAAHyv6ijdYlDcnQRxzummm27SggUL9Nprr6lDhw5hj3fo0EHZ2dlasmRJ6L6KigotW7ZMffr0kST16NFDycnJYZndu3dr48aNoUzv3r0VDAa1Zs2aUGb16tUKBoNhmY0bN2r37t2hzOLFi5WamqoePXpEfucBAAAAoAbMmQAAAIBvxd2F0W+88UY9/fTT+sc//qFmzZqFvlUUCASUlpYmz/M0btw4TZ48WZ06dVKnTp00efJkNW3aVEOHDg1lR44cqVtvvVUtW7ZUixYtNGHCBOXk5Cgv7+sLPXXp0kU///nPNWrUKD3yyNcXzvvNb36jSy+9VJ07d5Yk5efnq2vXrho2bJjuueceffHFF5owYYJGjRrFt5UAAAAA1AvmTAAAAPDF1XcF6kbcnQR5+OGHJUn9+/cPu3/27NkaMWKEJGnixIk6dOiQxowZo9LSUuXm5mrx4sVq1qxZKH/fffcpKSlJV111lQ4dOqSLLrpITzzxhBo3bhzKzJ07V2PHjlV+fr4kadCgQZo5c2bo8caNG+ull17SmDFj1LdvX6WlpWno0KG69957o7T3AAAAAHBizJkAAACAb8XdSRDnaj495XmeCgsLVVhY+L2ZJk2a6IEHHtADDzzwvZkWLVroqaeeOuG2TjvtNL344os11gkAAAAA6gJzJgAAAOBbcXcSBHZFO2z5gtc+N+Xv1GRT/s/Zd/nO9rr6TVPZa3IuNOUzu9oaZ8+G00x5c/1lq7+uedeWf2+wLT+kvS1fYIvrmjm2vHGJntfIWqFoMx6vKC5JdM7WNp7xClKeV2R7whDrscqxxb32prg7bGwfb4Exb2yfLtFuH9t7g7n+Gm5Km/unuT4Wtra01sW6r/EuusdKsh6vaLd/oh1fIBYEr8uuOTTN52vz1kM1Zzqk+Str21JfMc/zV5wvfuvmy4oaE55Xc0aS1KHm9ndb/RXll5/3Y/+fUX1PrjJGzuX5yvluf19lRe7zOpKfhdEfRxxvm35eu/7aPrJt4eP9SZI0tcZEJOvltyw/x7I+xlGRbQu/r926fb0xPkWiirsLowMAAAAAAAAAAPjBSRAAAAAAAAAAANAgcRIEAAAAAAAAAAA0SFwTBAAAAAAAAACAhFL5zS3SZcYeVoIAAAAAAAAAAIAGiZUgAAAAAAAAAAAklKpvbpEuM/ZwEiQO5RjzG4z5BRfZ8rmupSnvHvR8Zx/vOtRU9uiuj5jyI++ca8r3evZNU97MenCLBpvif+o6yZT/81l3mfJmXQqiW/7mIlveXB9b+5uZ6m/rPJ63wFYX8zvJcFt8iLH4+ca8s+6v9dja2se56PZ9z//b7Nec7bUS/fobX7vmN0//nLP2BVvevq821mNl39/ostbf/t4WXdb6xFr7Aw3W2z5z09Jqztx66KSqElXbltYYMY8ZIsBtrTnj//Oxr79tujyf5UWmLM+rue398tsWkRyfRXt8UlvRHoPWluet8JmLXL+Q/G0zVtvMT71iue9HcpuxeoyAhoaTIAAAAAAAAAAAJJTEuSYIJ0EAAAAAAAAAAEgoifNzWFwYHQAAAAAAAAAANEisBAEAAAAAAAAAIKFUKfI/X8VKEAAAAAAAAAAAgDrDShAAAAAAAAAAABJK4lwYnZUgAAAAAAAAAACgQWIlSBy6Yogz5Qvne6b8BlNaGjzuc1P+uhmP+c7O3T3SVPZ/tfqDKa9CW3xN5wttTyiyxa2GbnrclP9Ip9s28JwtbrZ5uy1f1N6WLxhuy19ji1v7jzYa890K/GfddlPRzrU35b2ug015sy3WJ1jfqWw829umnDMcK0meZ3xz8GzlyzMeL2drT3P9lRPdvGV/ja8V+77a2PvOgijVpGFwztb3Y+34AoiA+X5e1xP9lVWc5iO0wl9ZPnORfN/w9x7nsy181d9fWZ63NGJlOefnGEWWv/pH7nj7/azyUy/n8nyV5Vdd91e/24v25/vRIv1572cuEulj6Ud99DE//B5vP8epPvpYXY8XI9le9SHe6x97qhT5a3hwTRAAAAAAAAAAAIA6w0oQAAAAAAAAAAASSpUifw2P2FwJwkkQAAAAAAAAAAASCj+HBQAAAAAAAAAAENdYCQIAAAAAAAAAQEKpVOR/DivS5UUGK0EAAAAAAAAAAECDxEoQAAAAAAAAAAASSuJcE4STIPFoflF91+CkzG030nf2uo8fi2JNJF1hi7sLPVPem+9M+T91nWTKv6qBpvyaZy405XsdftNW/p228jWkvS1/rS2e6WyL3fY8YytfzvhanF9gy//NkN3S3lS0d6cpLm3ebnyCUWF7W76LsS3ft8XlthufYDU8usWb62+tz7u2eJfBtry1v1lfixbWvrbZVhfPW2Ar38jztpvyzrU3lm+tf05Uy3fO2NeM9ZE2GPMA6ppzNb9ve95SX2X13tq4xszbvqcHfX2l/NYtYjqk+cttq7n+zvkry/PVZit8luUvpw419ws/fccvr2Oev1wEj7dzNW/T//YmnlxlosTz/I2z/L0P1P3/q/jfpr/3i0ht03/fr/n15u/17a+/+q1XJI+l39dIXfexSPb9SL7X1Yd4rz/qDydBAAAAAAAAAABIKFWK/DU8YnMlCNcEAQAAAAAAAAAADRIrQQAAAAAAAAAASChcEwQAAAAAAAAAADRIlYr8z2FFurzI4OewAAAAAAAAAABAg8RKEAAAAAAAAAAAEkri/BwWK0EAAAAAAAAAAECDxEqQOORcgSnvebbyC1Voe8JttrjFVE005T/S6ab800W/NuX/q9UfTPmhrR435a31X7PpQlNeRbb4wKtfNeXXDDHWx6rQFt9z52m2J8yzxVVkey2abTFkN0StFt941xafN9iWv2a7Md/eli8wlm/cX88zto+VM+aHtLfl5y+w5T3j8d283ZY3Gx69ot835rsY3xc2G9+Yzftq7cvG4rtY+4Kxr0Wd7c3TPgazHt8cU9o5Y/sDkCQ5l+cr10ev1xwa4q8s3272kenn872lQ83vWW6rv6K8jjXvp9fRX1nSCh8Zv/PAvv5i25bWGDF/Bp7INJ/94lY/beFvH+2fOd/P72vE82puV3/HW/J3zP2V5XmHfG7Tj5rr5bft/Y4j/LRrJLfpv+9E7hj5Eck+/XV5fvqF3z52cnUJL6vm4x3JvhPJ17f/siL7GonUNiO5vfhVpchfw4OVIAAAAAAAAAAAAHWGlSAAAAAAAAAAACQUrgkCAAAAAAAAAAAQ11gJAgAAAAAAAABAQqlU5K8JEunyIoOTIAAAAAAAAAAAJJTEOQnCz2EBAAAAAAAAAIAGiZUgAAAAAAAAAAAklMS5MLrnnHP1XYlEVlZWpkAgoGAwqIyMjPqujiTJ84psT+hSYMtvXmAId7eV3aW9LX+NLa5CY94Z29Isxxb3BkenGkcURrd4c/nW/Dxj/ixjfn4UX1ubt9vK1hxjfrgx/64t3sXYN03vI5K0wRb3jO9rbrstb32vMhq66XFT/uk7f23bQMF2W35Ie1v+OVtcztAfiox9rdAW1xXG/HvG/Gbj+8gQY1+eb31tGUX7c8ja/sa+5g7b8tYxlXO24xXt8qMlFse/iG30mdrx8x7h933B6+gjtM3ve1LfCGUiy7m0Ot+m5y31kVrhs7SJNSb87qO/ekmallfzNsf7K8pfHzvkr7A65/MYDam5vSRJ8/3sp89tdvCxzW0+j7ef+vuqu09DfL4m5/usv4/3Ff+vkTreT7/76OsY+Xuv9vP54Hcs6vuzxke7+j9G0f7/uHB+9jGWxjNH6iI9KqlphEv/UtJvYmI/v4uVIAAAAAAAAAAAJJQqRf4aHrG5EoRrggAAAAAAAAAAgAaJlSAAAAAAAAAAACSUxLkmCCtBAAAAAAAAAABAg8RKEAAAAAAAAAAAEkqlIn96INLXGIkMToIAAAAAAAAAAJBQ+DksAAAAAAAAAACAuOY551x9VyKRlZWVKRAIKBgMKiMjo76rAwCIQZ5XFNXynSsw5aNdH2l4lMu3mGPM5xjz3U1p59qb8l68f93FGfuaZ+vLKrTFVRBj9bHmLX5szG9eYAh/KWkY41/4xpwJQCLxM9b2O36P7Li9r4/MCp9lTfSRmeqzrHrQwUf7b1vqszA/7eqPc2k1Zkbrf3yV9WjHW2oObTvkqyz/fPSfIXn+irrZR6afz9eHj+PtttZcTCyNZ47URbpLUpMIl/6VpEkxsZ/fFe9TYwAAAAAAAAAAgOPimiAAAAAAAAAAACQUrgkCAAAAAAAAAAAQ1zgJEgEPPfSQOnTooCZNmqhHjx5666236rtKAAAAABBTmDcBAADEksoo3WIPJ0FO0jPPPKNx48Zp0qRJWrdunX7605/q4osv1o4dO+q7agAAAAAQE5g3AQAAoL5wTZCTNH36dI0cOVLXX3+9JGnGjBl69dVX9fDDD2vKlCnH5MvLy1VeXh76OxgMSpLKysrqpsIAgDj0VVRLt38GRbc+0v4ol29h3dcvjXnbvpqPlbPFY4+x/Z2xfcxdOcbqE83jW219gqXvH5IkORf3HRQGlnkTcyYAia3mAYH/98NIjtsPRnB7fuof7TnHSTjsp/5+2kvy1xY+Syqr+Rv4FX7b1dc+HvJXlm8+2qzSZ3v5av7ItYWfl+SR121sjYEPKvLX8CivOVIPPBdbLR9XKioq1LRpUz377LP693//99D9t9xyi9avX69ly5Yd85zCwkIVFRXVZTUBAACAmPPRRx+pY8eO9V0N1AHrvIk5EwAAaKhiYQz81VdfqUOHDiopKYlK+dnZ2dq2bZuaNGkSlfJrg5UgJ2Hv3r2qrq5WVlZW2P1ZWVnf24nuuOMOjR8/PvT3vn371K5dO+3YsUOBQCCq9UXDUFZWprZt22rnzp3KyMio7+ogDtBnYEWfgQX9BVbBYFCnnXaaWrRoUd9VQR2xzpuYMzU8fFbEP45hfOP4xT+OYfyLpTFwkyZNtG3bNlVUVESl/JSUlJg6ASJxEiQiPM8L+9s5d8x9R6Smpio1NfWY+wOBAG9iMMnIyKDPwIQ+Ayv6DCzoL7Bq1IjLEyYav/Mm5kwNF58V8Y9jGN84fvGPYxj/YmUM3KRJk5g7URFNsdHqceqUU05R48aNj/n20p49e475lhMAAAAAJCLmTQAAAKhPnAQ5CSkpKerRo4eWLFkSdv+SJUvUp0+feqoVAAAAAMQO5k0AAACoT/wc1kkaP368hg0bpp49e6p379569NFHtWPHDt1www2+np+amqqCgoLjLvcGjoc+Ayv6DKzoM7Cgv8CKPpOYTmbeRJ+JfxzD+McxjG8cv/jHMYx/HMP65TnnXH1XIt499NBDmjp1qnbv3q1u3brpvvvu04UXXljf1QIAAACAmMG8CQAAAPWBkyAAAAAAAAAAAKBB4pogAAAAAAAAAACgQeIkCAAAAAAAAAAAaJA4CQIAAAAAAAAAABokToIAAAAAAAAAAIAGiZMgdeChhx5Shw4d1KRJE/Xo0UNvvfXWCfPLli1Tjx491KRJE3Xs2FH/+7//W0c1Rayw9JkFCxZowIAB+tGPfqSMjAz17t1br776ah3WFvXN+h5zxIoVK5SUlKRzzjknuhVEzLH2mfLyck2aNEnt2rVTamqqTj/9dD3++ON1VFvEAmufmTt3rs4++2w1bdpUrVq10q9+9St9/vnndVRb1Lc333xTl112mVq3bi3P8/T3v/+9xucw/gVzpvjHHCb+Ma+Ib4zx4x9j7vjF+DcOOETVvHnzXHJysps1a5bbtGmTu+WWW1x6err7+OOPj5vfunWra9q0qbvlllvcpk2b3KxZs1xycrKbP39+Hdcc9cXaZ2655RZ39913uzVr1rgPPvjA3XHHHS45Odm9++67dVxz1Adrfzli3759rmPHji4/P9+dffbZdVNZxITa9JlBgwa53Nxct2TJErdt2za3evVqt2LFijqsNeqTtc+89dZbrlGjRu5//ud/3NatW91bb73lzjrrLHf55ZfXcc1RX15++WU3adIk99xzzzlJ7vnnnz9hnvEvmDPFP+Yw8Y95RXxjjB//GHPHN8a/sY+TIFHWq1cvd8MNN4Td9+Mf/9jdfvvtx81PnDjR/fjHPw67b/To0e7888+PWh0RW6x95ni6du3qioqKIl01xKDa9perr77a/fGPf3QFBQVMVhKMtc+88sorLhAIuM8//7wuqocYZO0z99xzj+vYsWPYfffff79r06ZN1OqI2OVnEsj4F8yZ4h9zmPjHvCK+McaPf4y5Gw7Gv7GJn8OKooqKChUXFys/Pz/s/vz8fK1cufK4z3n77bePyQ8cOFDvvPOOKisro1ZXxIba9JmjHT58WPv371eLFi2iUUXEkNr2l9mzZ+ujjz5SQUFBtKuIGFObPrNw4UL17NlTU6dO1amnnqozzzxTEyZM0KFDh+qiyqhntekzffr00a5du/Tyyy/LOadPP/1U8+fP1yWXXFIXVUYcYvyb2JgzxT/mMPGPeUV8Y4wf/xhzJx7GMnUvqb4r0JDt3btX1dXVysrKCrs/KytLJSUlx31OSUnJcfNVVVXau3evWrVqFbX6ov7Vps8cbdq0aTp48KCuuuqqaFQRMaQ2/eXDDz/U7bffrrfeektJSXwEJJra9JmtW7dq+fLlatKkiZ5//nnt3btXY8aM0RdffMFvBieA2vSZPn36aO7cubr66qv11VdfqaqqSoMGDdIDDzxQF1VGHGL8m9iYM8U/5jDxj3lFfGOMH/8YcycexjJ1j5UgdcDzvLC/nXPH3FdT/nj3o+Gy9pkj/va3v6mwsFDPPPOMMjMzo1U9xBi//aW6ulpDhw5VUVGRzjzzzLqqHmKQ5T3m8OHD8jxPc+fOVa9evfSLX/xC06dP1xNPPME3xRKIpc9s2rRJY8eO1X/913+puLhYixYt0rZt23TDDTfURVURpxj/gjlT/GMOE/+YV8Q3xvjxjzF3YmEsU7c4XR9Fp5xyiho3bnzMWds9e/Ycc7bviOzs7OPmk5KS1LJly6jVFbGhNn3miGeeeUYjR47Us88+q7y8vGhWEzHC2l/279+vd955R+vWrdNNN90k6evBr3NOSUlJWrx4sf7t3/6tTuqO+lGb95hWrVrp1FNPVSAQCN3XpUsXOee0a9cuderUKap1Rv2qTZ+ZMmWK+vbtq9///veSpJ/85CdKT0/XT3/6U/3lL3/hW004BuPfxMacKf4xh4l/zCviG2P8+MeYO/Ewlql7rASJopSUFPXo0UNLliwJu3/JkiXq06fPcZ/Tu3fvY/KLFy9Wz549lZycHLW6IjbUps9IX397asSIEXr66af5/ccEYu0vGRkZ2rBhg9avXx+63XDDDercubPWr1+v3Nzcuqo66klt3mP69u2rTz75RAcOHAjd98EHH6hRo0Zq06ZNVOuL+lebPvPll1+qUaPwIWbjxo0lffvtJuC7GP8mNuZM8Y85TPxjXhHfGOPHP8bciYexTD2oy6uwJ6J58+a55ORk99hjj7lNmza5cePGufT0dLd9+3bnnHO33367GzZsWCi/detW17RpU/e73/3Obdq0yT322GMuOTnZzZ8/v752AXXM2meefvppl5SU5B588EG3e/fu0G3fvn31tQuoQ9b+crSCggJ39tln11FtEQusfWb//v2uTZs2bsiQIe69995zy5Ytc506dXLXX399fe0C6pi1z8yePdslJSW5hx56yH300Udu+fLlrmfPnq5Xr171tQuoY/v373fr1q1z69atc5Lc9OnT3bp169zHH3/snGP8i2MxZ4p/zGHiH/OK+MYYP/4x5o5vjH9jHydB6sCDDz7o2rVr51JSUlz37t3dsmXLQo8NHz7c9evXLyz/xhtvuHPPPdelpKS49u3bu4cffriOa4z6Zukz/fr1c5KOuQ0fPrzuK456YX2P+S4mK4nJ2mc2b97s8vLyXFpammvTpo0bP368+/LLL+u41qhP1j5z//33u65du7q0tDTXqlUrd91117ldu3bVca1RX15//fUTjk0Y/+J4mDPFP+Yw8Y95RXxjjB//GHPHL8a/sc9zjjVSAAAAAAAAAACg4eGaIAAAAAAAAAAAoEHiJAgAAAAAAAAAAGiQOAkCAAAAAAAAAAAaJE6CAAAAAAAAAACABomTIAAAAAAAAAAAoEHiJAgAAAAAAAAAAGiQOAkCAAAAAAAAAAAaJE6CAAAAAAAAAACABomTIAAAAAAAAAAAoEHiJAgAoMHq37+/xo0bV9/VAAAAAFDPmBsAQOLiJAgAAFFy4YUXyvO8Y27XXXedr+ePGDFCt99+e8TKAwAAAFA/mBsAQP1Jqu8KAADwXRUVFUpJSanvapw055zWr1+ve++995iJyA9+8IMan3/48GG99NJLWrhwYUTKAwAAAOINc4OvMTcAgJPDShAAwPdyzmnq1Knq2LGj0tLSdPbZZ2v+/Pmhx/v376+xY8dq4sSJatGihbKzs1VYWGgu46abbtL48eN1yimnaMCAAZKk/fv367rrrlN6erpatWql++67L2wJ+5NPPqmWLVuqvLw8bHtXXHGF/vM///O4+1NeXq6xY8cqMzNTTZo00QUXXKC1a9eGHp8/f75ycnKUlpamli1bKi8vTwcPHvT9+Hd9+OGH2r9/vy688EJlZ2eH3fxMTFasWKFGjRopNzc3IuUBAAAAJ4O5AXMDAIhXnAQBAHyvP/7xj5o9e7Yefvhhvffee/rd736n//iP/9CyZctCmTlz5ig9PV2rV6/W1KlTdeedd2rJkiXmMpKSkrRixQo98sgjkqTx48drxYoVWrhwoZYsWaK33npL7777bug5V155paqrq0PfhpKkvXv36sUXX9SvfvWr4+7PxIkT9dxzz2nOnDl69913dcYZZ2jgwIH64osvtHv3bl177bX69a9/rc2bN+uNN97Q4MGD5ZyTpBofP1pxcbGSkpL0k5/8pBYtLy1cuFCXXXaZGjVqFJHyAAAAgJPB3IC5AQDELQcAwHEcOHDANWnSxK1cuTLs/pEjR7prr73WOedcv3793AUXXBD2+Hnnneduu+02UxnnnHNO2ONlZWUuOTnZPfvss6H79u3b55o2bepuueWW0H2//e1v3cUXXxz6e8aMGa5jx47u8OHDobKP5A8cOOCSk5Pd3LlzQ/mKigrXunVrN3XqVFdcXOwkue3btx+3PWp6/GgTJkxwnue59PT0sNv111/v6/lnnnmmW7hwoam8F154wZ155pnujDPOcLNmzfK1HQAAAKAmzA3CMTcAgPjCNUEAAMe1adMmffXVV6El6EdUVFTo3HPPDf199LePWrVqpT179pjK6NmzZ9jjW7duVWVlpXr16hW6LxAIqHPnzmG5UaNG6bzzztO//vUvnXrqqZo9e7ZGjBghz/OO2Z+PPvpIlZWV6tu3b+i+5ORk9erVS5s3b9b48eN10UUXKScnRwMHDlR+fr6GDBmi5s2bS5LOPvvsEz5+tOLiYl155ZW66667wu7/vvx3bd68Wbt27VJeXp7v8qqqqjR+/Hi9/vrrysjIUPfu3TV48GC1aNGixu0BAAAAJ8LcgLkBAMQzToIAAI7r8OHDkqSXXnpJp556athjqampoX8nJyeHPeZ5Xui5fstIT08Pe8x9s4z86AmLO2p5+bnnnquzzz5bTz75pAYOHKgNGzbohRdeOO7+nKhMz/PUuHFjLVmyRCtXrtTixYv1wAMPaNKkSVq9erU6dOhQ4+NHW7dune68806dccYZx63Pxo0b9ctf/lIrVqxQdna29u7dq7y8PK1Zs0YLFy7UgAEDlJaW5ru8NWvW6Kyzzgq18y9+8Qu9+uqruvbaa4+bBwAAAPxibsDcAADiGdcEAQAcV9euXZWamqodO3bojDPOCLu1bds2qmWcfvrpSk5O1po1a0L3lZWV6cMPPzwme/3112v27Nl6/PHHlZeX973lnnHGGUpJSdHy5ctD91VWVuqdd95Rly5dJH09Cerbt6+Kioq0bt06paSk6Pnnnw/la3r8iK1bt2rfvn1h32g7Wrdu3XTNNdfotddekyQVFRXptttuU0pKiv7xj39o0KBBpvI++eSTsMlkmzZt9K9//et78wAAAIBfzA2YGwBAPGMlCADguJo1a6YJEybod7/7nQ4fPqwLLrhAZWVlWrlypX7wgx9o+PDhUSujWbNmGj58uH7/+9+rRYsWyszMVEFBgRo1anTMt7Wuu+46TZgwQbNmzdKTTz75vXVJT0/Xb3/721CZp512mqZOnaovv/xSI0eO1OrVq/V///d/ys/PV2ZmplavXq3PPvssNAmq6fHvKi4uliRlZWWppKQk7LHMzMzQBQ3POussffDBB/rnP/+p4uJi3X///dqzZ4/Wrl2rv//976byjv4mnHTsN9sAAACA2mBuwNwAAOIZJ0EAAN/rz3/+szIzMzVlyhRt3bpVP/zhD9W9e3f94Q9/iHoZ06dP1w033KBLL71UGRkZmjhxonbu3KkmTZqE5TIyMnTFFVfopZde0uWXX37CMv/7v/9bhw8f1rBhw7R//3717NlTr776qpo3b66MjAy9+eabmjFjhsrKytSuXTtNmzZNF198cWg7J3r8u959911J0plnnhl2f3Jysvbv3x9a7t+pUye9+OKL+sMf/qC77rpLnufphRdeUG5urjIzM03lnXrqqWHf7tq1a5dyc3NP2B4AAACAX8wNmBsAQLzy3PFODwMAEGMOHjyoU089VdOmTdPIkSPDHhswYIC6dOmi+++/v55qVzv79u1Tp06dlJubqxdffFGSNGjQIF1wwQWaOHGiqayqqip16dJFb7zxRujih6tWrVLLli2jUXUAAACg3jA3ODHmBgAQjpUgAICYtG7dOr3//vvq1auXgsGg7rzzTknSL3/5y1Dmiy++0OLFi/Xaa69p5syZ9VXVWvvhD38o6etvoR1xwQUX1OqChUlJSZo2bZp+9rOf6fDhw5o4cSKTHAAAADQIzA1smBsAQDhWggAAYtK6det0/fXXa8uWLUpJSVGPHj00ffp05eTkhDLt27dXaWmp/vSnP2nChAn1WNvaqaysVLdu3bRly5b6rgoAAAAQs5gbAABOBitBAAAx6dxzzw1d9O/7bN++vW4qEyXvv/++OnfuXN/VAAAAAGIacwMAwMlgJQgAAAAAAAAAAGiQGtV3BQAAAAAAAAAAAKKBkyAAAAAAAAAAAKBB4iQIAAAAAAAAAABokDgJAgAAAAAAAAAAGiROggAAAAAAAAAAgAaJkyAAAAAAAAAAAKBB4iQIAAAAAAAAAABokDgJAgAAAAAAAAAAGiROggAAAAAAAAAAgAaJkyAAAAAAAAAAAKBB4iQIAAAAAAAAAABokP4/B03TjvegR3QAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#downstream\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(down_energyloss_found, down_residual_found, bins=(np.linspace(0,1,60), np.linspace(0,1.5e5,60)), cmap=plt.cm.jet, cmin=1, vmax=25)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
"\n",
"a1=ax1.hist2d(down_energyloss_lost, down_residual_lost, bins=(np.linspace(0,1,60), np.linspace(0,1.5e5,60)), cmap=plt.cm.jet, cmin=1, vmax=20) \n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
"\n",
"fig.colorbar(a0[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, Downstream photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env1",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}