Projektpraktikum/B_rework.ipynb
2023-10-09 16:32:56 +02:00

1045 lines
384 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"import uproot\t\n",
"import numpy as np\n",
"import sys\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from mpl_toolkits import mplot3d\n",
"import itertools\n",
"import awkward as ak\n",
"from scipy.optimize import curve_fit\n",
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10522"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n",
"\n",
"#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n",
"allcolumns = file.arrays()\n",
"found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n",
"lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n",
"\n",
"ak.num(found, axis=0) + ak.num(lost, axis=0)\n",
"#ak.count(found, axis=None)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"eff all = 0.8606728758791105 +/- 0.003375885792719708\n"
]
}
],
"source": [
"def t_eff(found, lost, axis = 0):\n",
" sel = ak.num(found, axis=axis)\n",
" des = ak.num(lost, axis=axis)\n",
" return sel/(sel + des)\n",
"\n",
"def eff_err(found, lost):\n",
" n_f = ak.num(found, axis=0)\n",
" n_all = ak.num(found, axis=0) + ak.num(lost,axis=0)\n",
" return 1/n_all * np.sqrt(np.abs(n_f*(1-n_f/n_all)))\n",
"\n",
"\n",
"print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>{energy: 4.62e+04,\n",
" photon_length: 10,\n",
" brem_photons_pe: [3.26e+03, 4.45e+03, 178, ..., 825, 8.99e+03, 3.48e+03],\n",
" brem_vtx_z: [162, 187, 387, 487, ..., 9.49e+03, 1.21e+04, 1.21e+04, 1.21e+04]}\n",
"-------------------------------------------------------------------------------\n",
"type: {\n",
" energy: float64,\n",
" photon_length: int64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_z: var * float64\n",
"}</pre>"
],
"text/plain": [
"<Record {energy: 4.62e+04, ...} type='{energy: float64, photon_length: int6...'>"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#try excluding all photons that originate from a vtx @ z>9500mm\n",
"#ignore all brem vertices @ z>9500mm \n",
"\n",
"#found\n",
"\n",
"brem_e_f = found[\"brem_photons_pe\"]\n",
"brem_z_f = found[\"brem_vtx_z\"]\n",
"e_f = found[\"energy\"]\n",
"length_f = found[\"brem_vtx_z_length\"]\n",
"\n",
"brem_f = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(found,axis=0)):\n",
" brem_f.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_f.field(\"energy\").append(e_f[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_f.field(\"photon_length\").integer(length_f[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n",
" brem_f.end_record()\n",
"\n",
"brem_f = ak.Array(brem_f)\n",
"\n",
"#lost\n",
"\n",
"brem_e_l = lost[\"brem_photons_pe\"]\n",
"brem_z_l = lost[\"brem_vtx_z\"]\n",
"e_l = lost[\"energy\"]\n",
"length_l = lost[\"brem_vtx_z_length\"]\n",
"\n",
"brem_l = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(lost,axis=0)):\n",
" brem_l.begin_record()\n",
" #[:,\"energy\"] energy\n",
" brem_l.field(\"energy\").append(e_l[itr])\n",
" #[:,\"photon_length\"] number of vertices\n",
" brem_l.field(\"photon_length\").integer(length_l[itr])\n",
" #[:,\"brem_photons_pe\",:] photon energy \n",
" brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n",
" #[:,\"brem_vtx_z\",:] brem vtx z\n",
" brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n",
" brem_l.end_record()\n",
"\n",
"brem_l = ak.Array(brem_l)\n",
"\n",
"\n",
"\n",
"\n",
"brem_f[0]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"acc_brem_found = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_f, axis=0)):\n",
" acc_brem_found.begin_record()\n",
" acc_brem_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n",
" \n",
" acc_brem_found.field(\"brem_photons_pe\")\n",
" acc_brem_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_found.real(brem_f[itr,\"brem_photons_pe\", jentry])\n",
" \n",
" #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_found.end_list()\n",
" \n",
" acc_brem_found.field(\"brem_vtx_z\")\n",
" acc_brem_found.begin_list()\n",
" for jentry in range(brem_f[itr, \"photon_length\"]):\n",
" if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_found.end_list()\n",
" \n",
"\n",
" \n",
" acc_brem_found.end_record()\n",
"\n",
"acc_brem_found = ak.Array(acc_brem_found)\n",
"\n",
"\n",
"\n",
"acc_brem_lost = ak.ArrayBuilder()\n",
"\n",
"for itr in range(ak.num(brem_l, axis=0)):\n",
" acc_brem_lost.begin_record()\n",
" acc_brem_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n",
" \n",
" acc_brem_lost.field(\"brem_photons_pe\")\n",
" acc_brem_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_lost.real(brem_l[itr,\"brem_photons_pe\", jentry])\n",
" \n",
" #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_lost.end_list()\n",
" \n",
" acc_brem_lost.field(\"brem_vtx_z\")\n",
" acc_brem_lost.begin_list()\n",
" for jentry in range(brem_l[itr, \"photon_length\"]):\n",
" if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n",
" continue\n",
" else:\n",
" acc_brem_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n",
" acc_brem_lost.end_list()\n",
" \n",
" acc_brem_lost.end_record()\n",
"\n",
"acc_brem_lost = ak.Array(acc_brem_lost)\n"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9056"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ak.num(acc_brem_found,axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nph_e = found[\"brem_photons_pe\"]\\nevent_cut = ak.all(ph_e<cutoff_energy,axis=1)\\nph_e = ph_e[event_cut]\\n'"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"\"\"\"\n",
"ph_e = found[\"brem_photons_pe\"]\n",
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
"ph_e = ph_e[event_cut]\n",
"\"\"\"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cutoff = 100 MeV, sample size: 322\n",
"eff = 0.9379 +/- 0.0135\n",
"cutoff = 200 MeV, sample size: 481\n",
"eff = 0.948 +/- 0.0101\n",
"cutoff = 300 MeV, sample size: 627\n",
"eff = 0.949 +/- 0.0088\n",
"cutoff = 400 MeV, sample size: 739\n",
"eff = 0.9513 +/- 0.0079\n",
"cutoff = 500 MeV, sample size: 860\n",
"eff = 0.9477 +/- 0.0076\n",
"cutoff = 600 MeV, sample size: 973\n",
"eff = 0.9424 +/- 0.0075\n",
"cutoff = 700 MeV, sample size: 1106\n",
"eff = 0.9412 +/- 0.0071\n",
"cutoff = 800 MeV, sample size: 1188\n",
"eff = 0.9411 +/- 0.0068\n",
"cutoff = 900 MeV, sample size: 1288\n",
"eff = 0.9387 +/- 0.0067\n",
"cutoff = 1000 MeV, sample size: 1387\n",
"eff = 0.9416 +/- 0.0063\n",
"\n",
"cutoff energy = 350MeV, sample size: 693\n",
"eff = 0.9481 +/- 0.0084\n"
]
}
],
"source": [
"#finden wir die elektronen die keine bremsstrahlung gemacht haben mit hoher effizienz?\n",
"#von energie der photonen abmachen\n",
"#scan ab welcher energie der photonen die effizienz abfällt\n",
"\n",
"#abhängigkeit vom ort der emission untersuchen <- noch nicht gemacht\n",
"\n",
"\n",
"\n",
"#idea: we make an event cut st all events that contain a photon of energy > cutoff_energy are not included\n",
"\"\"\"\n",
"ph_e = acc_brem_found[\"brem_photons_pe\"]\n",
"event_cut = ak.all(ph_e<cutoff_energy,axis=1)\n",
"ph_e = ph_e[event_cut]\n",
"\"\"\"\n",
"\n",
"efficiencies_found = ak.ArrayBuilder()\n",
"\n",
"\n",
"\n",
"for cutoff_energy in range(0,1050,100):\n",
"\tnobrem_f = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\tnobrem_l = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\n",
"\tif ak.num(nobrem_f,axis=0)+ak.num(nobrem_l,axis=0)==0:\n",
"\t\tcontinue\n",
"\n",
"\tprint(\"cutoff = \",str(cutoff_energy) ,\"MeV, sample size: \",ak.num(nobrem_f,axis=0)+ak.num(nobrem_l,axis=0))\n",
"\tprint(\"eff = \",np.round(t_eff(nobrem_f,nobrem_l),4), \"+/-\", np.round(eff_err(nobrem_f, nobrem_l),4))\n",
"\n",
"\"\"\"\n",
"we see that a cutoff energy of xxxMeV is ideal because the efficiency drops significantly for higher values\n",
"\"\"\"\n",
"cutoff_energy = 350.0 #MeV\n",
"\n",
"\"\"\"\n",
"better statistics: cutoff=xxxMeV - sample size: xxx events and efficiency=xxxx\n",
"\"\"\"\n",
"nobrem_found = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"nobrem_lost = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)<cutoff_energy]\n",
"\n",
"print(\"\\ncutoff energy = 350MeV, sample size:\",ak.num(nobrem_found,axis=0)+ak.num(nobrem_lost,axis=0))\n",
"print(\"eff = \",np.round(t_eff(nobrem_found, nobrem_lost),4), \"+/-\", np.round(eff_err(nobrem_found, nobrem_lost),4))"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"eff = 0.8545 +/- 0.0036\n"
]
},
{
"data": {
"text/html": [
"<pre>[{energy: 2.58e+04, brem_photons_pe: [9.97e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 8.03e+04, brem_photons_pe: [4.91e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 5.6e+03, brem_photons_pe: [320, ..., 392], brem_vtx_z: [...]},\n",
" {energy: 6.36e+03, brem_photons_pe: [273, ...], brem_vtx_z: [...]},\n",
" {energy: 4.67e+04, brem_photons_pe: [8.96e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 7.16e+04, brem_photons_pe: [544, ..., 142], brem_vtx_z: [...]},\n",
" {energy: 5.15e+04, brem_photons_pe: [384, ...], brem_vtx_z: [...]},\n",
" {energy: 4.07e+04, brem_photons_pe: [2.7e+04, ...], brem_vtx_z: [...]},\n",
" {energy: 2.77e+04, brem_photons_pe: [2.24e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 6.4e+04, brem_photons_pe: [686, ..., 796], brem_vtx_z: [...]},\n",
" ...,\n",
" {energy: 5.59e+03, brem_photons_pe: [901, ...], brem_vtx_z: [...]},\n",
" {energy: 2.13e+04, brem_photons_pe: [787, ...], brem_vtx_z: [...]},\n",
" {energy: 9.34e+03, brem_photons_pe: [762, ...], brem_vtx_z: [...]},\n",
" {energy: 5.08e+04, brem_photons_pe: [711, ...], brem_vtx_z: [...]},\n",
" {energy: 6.41e+04, brem_photons_pe: [4.17e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 1.01e+04, brem_photons_pe: [220, ..., 156], brem_vtx_z: [...]},\n",
" {energy: 1.96e+04, brem_photons_pe: [1.66e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 2.98e+04, brem_photons_pe: [8.32e+03, ...], brem_vtx_z: [...]},\n",
" {energy: 3.97e+04, brem_photons_pe: [9.36e+03, ...], brem_vtx_z: [...]}]\n",
"-------------------------------------------------------------------------\n",
"type: 1430 * {\n",
" energy: float64,\n",
" brem_photons_pe: var * float64,\n",
" brem_vtx_z: var * float64\n",
"}</pre>"
],
"text/plain": [
"<Array [{energy: 2.58e+04, ...}, ..., {...}] type='1430 * {energy: float64,...'>"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#wie viel energie relativ zur anfangsenergie verlieren die elektronen durch bremstrahlung und hat das einen einfluss darauf ob wir sie finden oder nicht?\n",
"#if any photon of an electron has an energy higher the cutoff then it is included\n",
"cutoff_energy=350\n",
"\n",
"brem_found = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
"energy_found = ak.to_numpy(brem_found[\"energy\"])\n",
"eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"residual_found = energy_found - eph_found\n",
"energyloss_found = eph_found/energy_found\n",
"\n",
"brem_lost = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n",
"energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n",
"eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"residual_lost = energy_lost - eph_lost\n",
"energyloss_lost = eph_lost/energy_lost\n",
"\n",
"print(\"eff = \", np.round(t_eff(brem_found,brem_lost),4), \"+/-\", np.round(eff_err(brem_found, brem_lost),4))\n",
"brem_lost"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mean energyloss relative to initial energy (found): 0.40459562244424735\n",
"mean energyloss relative to initial energy (lost): 0.7244570697471976\n"
]
}
],
"source": [
"mean_energyloss_found = ak.mean(energyloss_found)\n",
"mean_energyloss_lost = ak.mean(energyloss_lost)\n",
"print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n",
"print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHMCAYAAAD7xYOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+AUlEQVR4nO3de1yUdd7/8fcAw0kEFUVRyfMh1HTTMrSDtqFpZd3b2sEy046bv8zsTjsHlWvW3XbasrLStmKzzUNuWUolqJlpaG0eSjNLajXEA6AkDMz1+8NltmFQmGHmui7g9Xw85lFzzTXf63N9nJx33+swDsMwDAEAANhQmNUFAAAAHA9BBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBUC9LVu2TA6H47iPV155JSjbqaysVFJSkp588knTtw3AGhFWFwCg4du4caMk6d1331VSUpLP66mpqUHZzqpVq7Rv3z794Q9/MH3bAKxBUAFQbxs3blR8fLwuuugiORyOkG3nnXfe0aBBg9SpUyfTtw3AGhz6AVBveXl56t+/f0iDgmEYWrx4sS699FLTtw3AOgQVAPWyf/9+7d69W/369VNFRYXPwzCMoGxn7dq12rNnj1dQMWvbAKxDUAFQL1XniDz//PNyOp0+j61bt9Y6hmEYio+PV2Fh4XHXeeedd9SvXz/16NHD723v27dPF1xwgZo1a6aePXsqOzu7PrsMwEScowKgXvLy8iRJixYtUkpKis/rdTmZdceOHWrTpo1at2593HUWLVqkSZMmBbTtyZMnq127dtq3b58++ugjXXbZZfruu++UmJhYa20ArEVQAVAvGzduVHR0tMaMGaPw8PDjrvfiiy/qH//4h5xOpz7//HO1b99eb7/9tlJTU7Vx40YNGDBAN910kxYsWKD27dtr6dKl6t69uyRp/fr12r17t8/5KXXZ9uHDh7VkyRLt3LlTsbGxGjNmjPr37693333XJ/gAsB8O/QCol40bN6pv374nDCmStHnzZm3YsEFTp07VL7/8osGDB+u+++6TJG3atElffPGFJk6cqAMHDujUU0/V3LlzPe9duHChevbsqb59+/q97R07diguLs5rxqVfv37asmVLILsLwGQEFQABKyoq0vfff6/+/fvXuu7mzZt13333aeTIkXI6nbrqqqu0fft2SceCSmZmps444wyFhYWpW7duXifCLly40Gc2pa7bPnz4sOLj472WxcfH6/Dhw3XdTQAW4tAPgIBt3LhRhmGoWbNmWrdunc/rHTp08MxkbNmyxesusQUFBZ5zUjZt2qQ33njD89qWLVs0evRoSdKXX36pnTt31njYpy7bjouLU3FxsddrxcXFiouLC3CvAZiJGRUAAau66uaZZ55RWlqaz2PFihWSjoWSffv2ed05dvHixRo1apTy8/MVERHh9dq//vUvnXLKKZKOzaZ06tRJAwcODGjbPXr00OHDh/XTTz953rt582b16dMnBB0BEGwOgxsNAAixjz/+WCNHjtQLL7ygCRMm6G9/+5sefvhhffXVV8rNzdVzzz2n5cuXS5JKS0vVokULFRUVKSYmRqmpqRo1apSeeOKJgLc/duxYJSQk6Nlnn9XHH3+s8ePHa8eOHSe8ygiAPXDoB0DIbd68WZMmTdJbb72ladOmaeDAgcrOzlZCQoI2bdrkmT2Rjh326datm2JiYiSpTvdhqc3zzz+vCRMmKDExUR06dNCCBQsIKUADwYwKgJC74YYbNGjQIN10001WlwKggeEcFQAht3nzZvXu3dvqMgA0QMyoAAi5hIQEbd++XW3btrW6FAANjKUzKiUlJZo6dao6deqkmJgYDRkyRBs2bLCyJAAhUFRUREgBEBBLg8r111+v7Oxsvf766/r66681YsQInXfeefr555+tLAsAANiEZYd+fv31VzVv3lzvvvuuLrjgAs/yAQMG6MILL9QjjzxiRVkAAMBGLLs8uaKiQpWVlYqOjvZaHhMTozVr1tT4nrKyMpWVlXmeu91uHThwQImJiXI4HCGtFwAABIdhGCopKVH79u0VFlbLwR3DQmlpacY555xj/Pzzz0ZFRYXx+uuvGw6Hw+jZs2eN6z/44IOGJB48ePDgwYNHI3jk5+fXmhUsvepn586dmjRpklatWqXw8HCdeuqp6tmzpzZu3FjjTZ6qz6gUFRXppJNO0q5du9S8efOg1eVyubRy5UoNHz5cTqczaOPCG302D702B302D702R6j6XFJSoi5duujQoUNKSEg44bqW3pm2W7duys3N1ZEjR1RcXKzk5GRdfvnl6tKlS43rR0VFKSoqymd5q1atfH4dtT5cLpdiY2OVmJjIfwAhRJ/NQ6/NQZ/NQ6/NEao+V41Vl9M2bHHDt2bNmik5OVkHDx7U8uXLdfHFF1tdEgAAsAFLZ1SWL18uwzDUq1cvfffdd7rzzjvVq1cvTZw40cqyAACATVg6o1JUVKTJkyerd+/euuaaa3TmmWdqxYoVTOMBAABJFs+oXHbZZbrsssusLAEA0IRVVlbK5XJZXYZtuVwuRURE6OjRo6qsrKzz+5xOp8LDw4NSg6VBBQAAKxiGob179+rQoUNWl2JrhmGoXbt2ys/P9/t+ZS1atFC7du3qfZ8zggoAoMmpCilJSUmKjY3lpqHH4Xa7dfjwYcXFxdV+Y7b/MAxDpaWlKigokCQlJyfXqwaCCgCgSamsrPSElMTERKvLsTW3263y8nJFR0fXOahIx+4yL0kFBQVKSkqq12EgW1yeDACAWarOSYmNjbW4ksatqr/1PQeIoAIAaJI43BNaweovQQUAANgWQQUAgAZi2LBhmjp1qtVlmIqTaQEAqLI2w9ztDTF5e/+Rk5Oj4cOH6+DBg2rRooUlNdQVMyoAAMC2CCoAADRABw8e1DXXXKOWLVsqNjZWo0aN0o4dOzyv//jjj7rooovUsmVLNWvWTH369NGyZcv0ww8/aPjw4ZKkli1byuFw6Nprr7VoL2rHoR8AABqga6+9Vjt27NDSpUsVHx+vGTNmaPTo0dq6daucTqcmT56s8vJyrVq1Ss2aNdPWrVsVFxenlJQULVy4UJdeeqm+/fZbxcfHe+57YkcEFQAAGpiqgPLpp59qyJAhkqQ333xTKSkpWrJkicaOHavdu3fr0ksvVb9+/SRJXbt29by/VatWkqSkpCTOUQEAAMG1bds2RUREaPDgwZ5liYmJ6tWrl7Zt2yZJmjJlih555BENHTpUDz74oP71r39ZVW69EFQAAGhgDMM47vKqG61df/31+v777zV+/Hh9/fXXGjRokJ599lkzywwKggoAAA1MamqqKioq9Pnnn3uW7d+/X9u3b9fJJ5/sWZaSkqKbb75ZixYt0h133KG5c+dKkiIjIyUd+90juyOoAADQwPTo0UMXX3yxbrjhBq1Zs0ZfffWVrr76anXo0EEXX3yxJGnq1Klavny5du3apY0bN+qTTz7xhJhOnTrJ4XDovffe0759+3T48GErd+eEOJkWAIAqFt2ALRDz5s3TbbfdpgsvvFDl5eU6++yztWzZMjmdTknHZksmT56sn376SfHx8Tr//PP15JNPSpI6dOigzMxM3XXXXZo4caKuueYazZ8/38K9OT6CCgAADUROTo7n31u2bKm//e1vx123tvNR7r//ft1///3BKi1kOPQDAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAEADYRiGbrzxRrVq1UoOh0NffvmlZbUMGzZMU6dODfl2uIU+AAD/kZFh7+19+OGHmj9/vnJyctS1a1e1bt06JHXZCUEFAIAGYufOnUpOTtaQIUOsLsU0lh76qaio0H333acuXbooJiZGXbt21UMPPSS3221lWQAA2M61116rW2+9Vbt375bD4VDnzp1VVlamKVOmKCkpSdHR0TrzzDO1YcMGz3vmz5+vFi1aeI2zZMkSORwOz/OMjAwNGDBAr7/+ujp37qyEhARdccUVKikp8axz5MgRXXPNNYqLi1NycrKeeOKJkO9vFUuDyuzZs/XCCy/or3/9q7Zt26bHHntMjz/+eK2/+AgAQFPz9NNP66GHHlLHjh21Z88ebdiwQdOnT9fChQv12muvaePGjerevbtGjhypAwcO+DX2zp07tWTJEr333nt67733lJubq0cffdTz+vTp07Vy5UotXrxYK1asUE5OjvLy8oK9izWyNKh89tlnuvjii3XBBReoc+fO+uMf/6gRI0boiy++sLIsAABsJyEhQc2bN1d4eLjatWun2NhYzZkzR48//rhGjRql1NRUzZ07VzExMXrllVf8Gtvtdmv+/Pnq27evzjrrLI0fP14ff/yxJOnw4cN69dVX9X//939KT09Xv3799Nprr6mysjIUu+nD0nNUzjzzTL3wwgvavn27evbsqa+++kpr1qzRU089VeP6ZWVlKisr8zwvLi6WJLlcLrlcrqDVVTVWMMeEL/psHnptDvpsnvr02uVyyTAMud1un1MNDMNxnHeFhttt+LW+YRj/eZ9bO3bskMvlUlpammc/wsPDddppp2nr1q1e+/fb/ay+zDAMde7cWc2aNfMsa9eunQoKCmQYhnbt2qXy8nINHjzY83qLFi3Uq1cvTx9r3je3DMOQy+VSeHi412v+/LlZGlRmzJihoqIi9e7dW+Hh4aqsrNTMmTN15ZVX1rj+rFmzlJmZ6bN8xYoVio2NDXp92dnZQR8Tvuizeei1OeizeQLpdUREhNq1a6fDhw+rvLzc67WysuhglVYnxcVH/Vr/6NGjcrvdKi4u9pxDcvjwYc//uEvHQkBFRYWKi4tVXl7uWf+/2yz2+mdZWZnCwsK81ikrK1NFRYXXeSolJSVe61RWVqq8vNxr2W+Vl5fr119/1apVq1RRUeH1WmlpaZ332dKgsmDBAr3xxhvKyspSnz599OWXX2rq1Klq3769JkyY4LP+3XffrWnTpnmeFxcXKyUlRSNGjFB8fHzQ6nK5XMrOzlZ6erqcTmfQxoU3+mweem0O+mye+vT66NGjys/PV1xcnKKjvYNJVJS5Myrx8ZF+rR8dHa2wsDDFx8drwIABioyM1FdffaU+ffpIOtaXr776Srfddpvi4+OVkpKiw4cPKzw8XM2aNZMkbd++/T/bPva9GRUVpfDwcK/v0artNG/eXF26dJHT6dSWLVs82zl48KB27typ4cOHH/f79+jRo4qJidHZZ5/t0+fjhZuaWBpU7rzzTt1111264oorJEn9+vXTjz/+qFmzZtUYVKKiohQVFeWz3Ol0huQvhVCNC2/02Tz02hz02TyB9LqyslIOh0NhYWEKC/M+VdNhbk5RWJh/G6y6WqcqRPzpT3/SjBkz1Lp1a5100kl67LHHVFpaquuvv15hYWFKS0tTbGys7rvvPt16661av369XnvtNc8Y1cesvh2Hw6G4uDhNmjRJM2bMUJs2bdS2bVvde++9CgsL8/Sx5n079npNf0b+/JlZGlRKS0t9djA8PJzLkwEAljD7hm/19eijj8rtdmv8+PEqKSnRoEGDtHz5crVs2VKS1KpVK73xxhu688479dJLL+m8885TRkaGbrzxRr+289hjj+nIkSMaM2aMmjdvrjvuuENFRUWh2CUfDqPqzBwLXHvttfroo4/04osvqk+fPtq0aZNuvPFGTZo0SbNnz671/cXFxUpISFBRUVHQD/0sW7ZMo0eP5v+KQog+m4dem4M+m6c+vT569Kh27dqlLl26+BySgLeq81vi4+OPO3NyPCfqsz/f35bOqDz77LO6//77dcstt6igoEDt27fXTTfdpAceeMDKsgAAgE1YGlSaN2+up5566riXIwMAgKaNX08GAAC2RVABAAC2RVABADRJFl5L0iQEq78EFQBAk1J1lZA/d0eF/6r6W98r4Cw9mRYAALOFh4erRYsWKigokCTFxsZ6bnAGb263W+Xl5Tp69GidL082DEOlpaUqKChQixYtfH7nx18EFQBAk9OuXTtJ8oQV1MwwDP3666+KiYnxO8y1aNHC0+f6IKgAAJoch8Oh5ORkJSUl8WvXJ+ByubRq1SqdffbZfh3CcTqd9Z5JqUJQAQA0WeHh4UH7Qm2MwsPDVVFRoejoaMvutszJtAAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYsDSqdO3eWw+HweUyePNnKsgAAgE1EWLnxDRs2qLKy0vN88+bNSk9P19ixYy2sCgAA2IWlQaVNmzZezx999FF169ZN55xzjkUVAQAAO7E0qPxWeXm53njjDU2bNk0Oh6PGdcrKylRWVuZ5XlxcLElyuVxyuVxBq6VqrGCOCV/02Tz02hz02Tz02hyh6rM/4zkMwzCCuvUAvf322xo3bpx2796t9u3b17hORkaGMjMzfZZnZWUpNjY21CUCAIAgKC0t1bhx41RUVKT4+PgTrmuboDJy5EhFRkbqn//853HXqWlGJSUlRYWFhbXuqD9cLpeys7OVnp4up9MZtHHhjT6bh16bgz6bh16bI1R9Li4uVuvWresUVGxx6OfHH3/URx99pEWLFp1wvaioKEVFRfksdzqdIfmghmpceKPP5qHX5qDP5qHX5gh2n/0Zyxb3UZk3b56SkpJ0wQUXWF0KAACwEcuDitvt1rx58zRhwgRFRNhiggcAANiE5UHlo48+0u7duzVp0iSrSwEAADZj+RTGiBEjZJPzeQEAgM1YPqMCAABwPAQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgW5YHlZ9//llXX321EhMTFRsbqwEDBigvL8/qsgAAgA1EWLnxgwcPaujQoRo+fLg++OADJSUlaefOnWrRooWVZQEAAJuwNKjMnj1bKSkpmjdvnmdZ586drSsIAADYiqVBZenSpRo5cqTGjh2r3NxcdejQQbfccotuuOGGGtcvKytTWVmZ53lxcbEkyeVyyeVyBa2uqrGCOSZ80Wfz0Gtz0Gfz0GtzhKrP/oznMAzDCOrW/RAdHS1JmjZtmsaOHav169dr6tSpevHFF3XNNdf4rJ+RkaHMzEyf5VlZWYqNjQ15vQAAoP5KS0s1btw4FRUVKT4+/oTrWhpUIiMjNWjQIK1du9azbMqUKdqwYYM+++wzn/VrmlFJSUlRYWFhrTvqD5fLpezsbKWnp8vpdAZtXHijz+ah1+agz+ah1+YIVZ+Li4vVunXrOgUVSw/9JCcnKzU11WvZySefrIULF9a4flRUlKKionyWO53OkHxQQzUuvNFn89Brc9Bn89BrcwS7z/6MZenlyUOHDtW3337rtWz79u3q1KmTRRUBAAA7sTSo3H777Vq3bp3+/Oc/67vvvlNWVpZeeuklTZ482cqyAACATVgaVE477TQtXrxYf//739W3b189/PDDeuqpp3TVVVdZWRYAALAJS89RkaQLL7xQF154odVlAAAAG/I7qHz77bf6+9//rtWrV+uHH35QaWmp2rRpo9/97ncaOXKkLr300hpPeAUAAPBXnQ/9bNq0Senp6erfv79WrVql0047TVOnTtXDDz+sq6++WoZh6N5771X79u01e/Zsr8uIAQAAAlHnGZVLLrlEd955pxYsWKBWrVodd73PPvtMTz75pJ544gndc889QSkSAAA0TXUOKjt27FBkZGSt66WlpSktLU3l5eX1KgwAAKDOh37qElLqsz4AAEB1dZ5ReeaZZ+o86JQpUwIqBgAA4LfqHFSefPJJr+f79u1TaWmpWrRoIUk6dOiQYmNjlZSURFABAABBUedDP7t27fI8Zs6cqQEDBmjbtm06cOCADhw4oG3btunUU0/Vww8/HMp6AQBAExLQnWnvv/9+Pfvss+rVq5dnWa9evfTkk0/qvvvuC1pxAACgaQsoqOzZs0cul8tneWVlpX755Zd6FwUAACAFGFR+//vf64YbbtAXX3whwzAkSV988YVuuukmnXfeeUEtEAAANF0BBZVXX31VHTp00Omnn67o6GhFRUVp8ODBSk5O1ssvvxzsGgEAQBMV0I8StmnTRsuWLdP27dv1zTffyDAMnXzyyerZs2ew6wMAAE1YvX49uXPnzjIMQ926dVNEhOU/xAwAABqZgA79lJaW6rrrrlNsbKz69Omj3bt3Szp2o7dHH300qAUCAICmK6Cgcvfdd+urr75STk6OoqOjPcvPO+88LViwIGjFAQCApi2g4zVLlizRggULdMYZZ8jhcHiWp6amaufOnUErDgAANG0Bzajs27dPSUlJPsuPHDniFVwAAADqI6Cgctppp+n999/3PK8KJ3PnzlVaWlpwKgMAAE1eQId+Zs2apfPPP19bt25VRUWFnn76aW3ZskWfffaZcnNzg10jAABoogKaURkyZIg+/fRTlZaWqlu3blqxYoXatm2rzz77TAMHDgx2jQAAoIkK+OYn/fr102uvvRbMWgAAALzU6y5tBQUFKigokNvt9lp+yimn1KsoAAAAKcCgkpeXpwkTJmjbtm2eHyWs4nA4VFlZGZTiAABA0xZQUJk4caJ69uypV155RW3btuWSZAAAEBIBBZVdu3Zp0aJF6t69e7DrAQAA8Ajoqp/f//73+uqrr4JdCwAAgJeAZlRefvllTZgwQZs3b1bfvn3ldDq9Xh8zZkxQigMAAE1bQEFl7dq1WrNmjT744AOf1ziZFgAABEtAh36mTJmi8ePHa8+ePXK73V4PQgoAAAiWgILK/v37dfvtt6tt27b12nhGRoYcDofXo127dvUaEwAANB4BHfr5wx/+oJUrV6pbt271LqBPnz766KOPPM/Dw8PrPSYAAGgcAgoqPXv21N133601a9aoX79+PifTTpkype4FREQwiwIAAGoU8FU/cXFxys3N9fm1ZIfD4VdQ2bFjh9q3b6+oqCgNHjxYf/7zn9W1a9ca1y0rK1NZWZnneXFxsSTJ5XLJ5XIFsCc1qxormGPCF302D702B302D702R6j67M94DqP6PfBrYRiGfvzxRyUlJSk2Ntbv4n7rgw8+UGlpqXr27KlffvlFjzzyiL755htt2bJFiYmJPutnZGQoMzPTZ3lWVla9awEAAOYoLS3VuHHjVFRUpPj4+BOu63dQcbvdio6O1pYtW9SjR496FVrdkSNH1K1bN02fPl3Tpk3zeb2mGZWUlBQVFhbWuqP+cLlcys7OVnp6us9hLQQPfTYPvTYHfTYPvTZHqPpcXFys1q1b1ymo+H3oJywsTD169ND+/fuDHlSaNWumfv36aceOHTW+HhUVpaioKJ/lTqczJB/UUI0Lb/TZPPTaHPTZPPTaHMHusz9jBXR58mOPPaY777xTmzdvDuTtx1VWVqZt27YpOTk5qOMCAICGKaCTaa+++mqVlpaqf//+ioyMVExMjNfrBw4cqNM4//u//6uLLrpIJ510kgoKCvTII4+ouLhYEyZMCKQsAADQyAQUVJ566qmgbPynn37SlVdeqcLCQrVp00ZnnHGG1q1bp06dOgVlfAAA0LAFFFSCNePx1ltvBWUcAADQOAUUVCSpsrJSS5Ys0bZt2+RwOJSamqoxY8ZwZ1kAABA0AQWV7777TqNHj9bPP/+sXr16yTAMbd++XSkpKXr//feDcmt9AACAgH89uVu3bsrPz9fGjRu1adMm7d69W126dPHrrrQAAAAnEtCMSm5urtatW6dWrVp5liUmJurRRx/V0KFDg1YcAABo2gKaUYmKilJJSYnP8sOHDysyMrLeRQEAAEgBBpULL7xQN954oz7//HMZhiHDMLRu3TrdfPPNGjNmTLBrBAAATVRAQeWZZ55Rt27dlJaWpujoaEVHR2vo0KHq3r27nn766WDXCAAAmqiAzlFp0aKF3n33Xe3YsUPffPONDMNQamqqunfvHuz6AABAExbwfVQkqUePHkH/YUIAAIAqAQWVyspKzZ8/Xx9//LEKCgrkdru9Xv/kk0+CUhwAAGjaAgoqt912m+bPn68LLrhAffv2lcPhCHZdAAAAgQWVt956S2+//bZGjx4d7HoAAAA8ArrqJzIykhNnAQBAyAUUVO644w49/fTTMgwj2PUAAAB4BHToZ82aNVq5cqU++OAD9enTR06n0+v1RYsWBaU4AADQtAV8H5X/+Z//CXYtAAAgVNZm+C4bUsMymwkoqMybNy/YdQAAAPgI6BwVAAAAM9Q5qJx//vlau3ZtreuVlJRo9uzZeu655+pVGAAAQJ0P/YwdO1aXXXaZmjdvrjFjxmjQoEFq3769oqOjdfDgQW3dulVr1qzRsmXLdOGFF+rxxx8PZd0AAKAJqHNQue666zR+/Hi98847WrBggebOnatDhw5JkhwOh1JTUzVy5Ejl5eWpV69eoaoXAAA0IX6dTBsZGalx48Zp3LhxkqSioiL9+uuvSkxM9LlEGQAA2Fz1K4FseBVQvX49OSEhQQkJCcGqBQAAwAtX/QAAANsiqAAAANsiqAAAANsiqAAAANsK6GTa/Px8ORwOdezYUZK0fv16ZWVlKTU1VTfeeGNQCwQAAAGo6bd9GqCAZlTGjRunlStXSpL27t2r9PR0rV+/Xvfcc48eeuihoBYIAACaroCCyubNm3X66adLkt5++2317dtXa9euVVZWlubPnx/M+gAAQBMWUFBxuVyKioqSJH300UcaM2aMJKl3797as2dPQIXMmjVLDodDU6dODej9AACg8QkoqPTp00cvvPCCVq9erezsbJ1//vmSpH//+99KTEz0e7wNGzbopZde0imnnBJIOQAAoJEKKKjMnj1bL774ooYNG6Yrr7xS/fv3lyQtXbrUc0iorg4fPqyrrrpKc+fOVcuWLQMpBwAANFIBXfUzbNgwFRYWqri42Ctc3HjjjWrWrJlfY02ePFkXXHCBzjvvPD3yyCMnXLesrExlZWWe58XFxZKOHYpyuVx+bfdEqsYK5pjwRZ/NQ6/NQZ/NQ6/rwB3AXES1foaqz/6M5zAMw/B3A+eee64WLVqkFi1aeC0vLi7WJZdcok8++aRO47z11luaOXOmNmzYoOjoaA0bNkwDBgzQU089VeP6GRkZyszM9FmelZWl2NhYf3cDAABYoLS0VOPGjVNRUZHi4+NPuG5AQSUsLEx79+5VUlKS1/KCggJ16NChTkkpPz9fgwYN0ooVKzyHjmoLKjXNqKSkpKiwsLDWHfWHy+VSdna20tPT+VXoEKLP5qHX5qDP5qHXdfD5LP/fM/hur6eh6nNxcbFat25dp6Di16Gff/3rX55/37p1q/bu3et5XllZqQ8//FAdOnSo01h5eXkqKCjQwIEDvcZYtWqV/vrXv6qsrEzh4eFe74mKivJcbfRbTqczJB/UUI0Lb/TZPPTaHPTZPPT6BMLc/r/nOL0Mdp/9GcuvoDJgwAA5HA45HA6de+65Pq/HxMTo2WefrdNYv//97/X11197LZs4caJ69+6tGTNm+IQUAADQ9PgVVHbt2iXDMNS1a1etX79ebdq08bwWGRmppKSkOgeM5s2bq2/fvl7LmjVrpsTERJ/lAACgafIrqHTq1EmS5HYHMJ0EAADgp4AuT5ak7du3KycnRwUFBT7B5YEHHghozJycnEDLAQAAjVBAQWXu3Ln605/+pNatW6tdu3ZyOBye1xwOR8BBBQAA4LcCCiqPPPKIZs6cqRkzZgS7HgAAAI+AbqF/8OBBjR07Nti1AAAAeAkoqIwdO1YrVqwIdi0AAABeAjr00717d91///1at26d+vXr53PjlilTpgSlOAAA0LQFFFReeuklxcXFKTc3V7m5uV6vORwOggoAAAiKgILKrl27gl0HAACoydoM32VDaljWSAV0jgoAAIAZAppRmTRp0glff/XVVwMqBgAA4LcCCioHDx70eu5yubR582YdOnSoxh8rBAAACERAQWXx4sU+y9xut2655RZ17dq13kUBAABIQTxHJSwsTLfffruefPLJYA0JAACauIB/lLAmO3fuVEVFRTCHBAAAtanpyqBGIqCgMm3aNK/nhmFoz549ev/99zVhwoSgFAYAABBQUNm0aZPX87CwMLVp00ZPPPFErVcEAQAA1FVAQWXlypXBrgMAAMBHvc5R2bdvn7799ls5HA717NlTbdq0CVZdAAAAgV31c+TIEU2aNEnJyck6++yzddZZZ6l9+/a67rrrVFpaGuwaAQBAExXwybS5ubn65z//qaFDh0qS1qxZoylTpuiOO+7QnDlzglokAABNRl2u4GnEV/lUF1BQWbhwod555x0NGzbMs2z06NGKiYnRZZddRlABAABBEdChn9LSUrVt29ZneVJSEod+AABA0AQUVNLS0vTggw/q6NGjnmW//vqrMjMzlZaWFrTiAABA0xbQoZ+nn35a559/vjp27Kj+/fvL4XDoyy+/VHR0tJYvXx7sGgEAQBMVUFDp27evduzYoTfeeEPffPONDMPQFVdcoauuukoxMTHBrhEAADRRAd9HJSYmRjfccEMwawEAAPAS0Dkqs2bN0quvvuqz/NVXX9Xs2bPrXRQAAIAUYFB58cUX1bt3b5/lffr00QsvvFDvogAAAKQAg8revXuVnJzss7xNmzbas2dPvYsCAACQAgwqKSkp+vTTT32Wf/rpp2rfvn29iwIAAJACPJn2+uuv19SpU+VyuXTuuedKkj7++GNNnz5dd9xxR1ALBAAATVdAQWX69Ok6cOCAbrnlFpWXl0uSoqOjNWPGDN199911HmfOnDmaM2eOfvjhB0nHznF54IEHNGrUqEDKAgAAjUxAQcXhcGj27Nm6//77tW3bNsXExKhHjx6Kiorya5yOHTvq0UcfVffu3SVJr732mi6++GJt2rRJffr0CaQ0AADQiAR8HxVJiouL02mnnRbw+y+66CKv5zNnztScOXO0bt06ggoAAKhfUAmmyspK/eMf/9CRI0eO+3tBZWVlKisr8zwvLi6WJLlcLrlcrqDVUjVWMMeEL/psHnptDvpsnkbda3dA17kER7V+hqrP/oznMAzDCOrW/fT1118rLS1NR48eVVxcnLKysjR69Oga183IyFBmZqbP8qysLMXGxoa6VAAAEASlpaUaN26cioqKFB8ff8J1LQ8q5eXl2r17tw4dOqSFCxfq5ZdfVm5urlJTU33WrWlGJSUlRYWFhbXuqD9cLpeys7OVnp4up9MZtHHhjT6bh16bgz6bp8H2+vNZ3s8H13ABSvV1zFStnlD1ubi4WK1bt65TULH80E9kZKTnZNpBgwZpw4YNevrpp/Xiiy/6rBsVFVXjCbtOpzMkH9RQjQtv9Nk89Noc9Nk8Da7XYW7v5zXVXn0dMx2nl8Husz9jWXggrGaGYXjNmgAAgKbL0hmVe+65R6NGjVJKSopKSkr01ltvKScnRx9++KGVZQEAAJuwNKj88ssvGj9+vPbs2aOEhASdcsop+vDDD5Wenm5lWQAAwCYsDSqvvPKKlZsHAAA2Z7tzVAAAAKoQVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG1Z/uvJAAA0OGszfJcNqWEZ6o0ZFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFvc8A0AABxT/UZ27jBJ/a2oxIMZFQAAYFvMqAAAmjYrb4df07bhhRkVAABgWwQVAABgWxz6AQAgGKofxuHXlIOCGRUAAGBbBBUAAGBbHPoBAKA2XJ1jGWZUAACAbRFUAACAbXHoBwCA6oJxqIfDRUFh6YzKrFmzdNppp6l58+ZKSkrSJZdcom+//dbKkgAAgI1YGlRyc3M1efJkrVu3TtnZ2aqoqNCIESN05MgRK8sCAAA2Yemhnw8//NDr+bx585SUlKS8vDydffbZFlUFAADswlbnqBQVFUmSWrVqVePrZWVlKisr8zwvLi6WJLlcLrlcrqDVUTVWMMeEL/psHnptDvpsnqD22s11Jcfj+k9vgv2Z9mc8h2EYRlC3HiDDMHTxxRfr4MGDWr16dY3rZGRkKDMz02d5VlaWYmNjQ10iAAAIgtLSUo0bN05FRUWKj48/4bq2CSqTJ0/W+++/rzVr1qhjx441rlPTjEpKSooKCwtr3VF/uFwuZWdnKz09XU6nM2jjwht9Ng+9Ngd9DrHPZ3n+1eUOU/bBfsHp9W/Ghbeg9vk3iouL1bp16zoFFVsc+rn11lu1dOlSrVq16rghRZKioqIUFRXls9zpdIbkL4VgjZuRceLnTV2o/vzgi16bgz6HSJjbZ1FQel3DuPAW7M+0P2NZGlQMw9Ctt96qxYsXKycnR126dLGyHAAAYDOWBpXJkycrKytL7777rpo3b669e/dKkhISEhQTE2NlaaZj1gVAg1T9pmZDMmpay164EVuDYmlQmTNnjiRp2LBhXsvnzZuna6+91vyCbKSmoEJ4AQA0NZYf+gEAADgeW5xMCwBASHCYp8HjLjcAAMC2CCoAAMC2OPRTT4FcrcNJsQAA1A1BJcgIIQAABA+HfgAAgG0xo9LIcOM4AEBjQlBpgggzAICGgkM/AADAtphRacCYCQEANHbMqAAAANtiRqUBYQYFgO3VdMv6hvCLyrAtgkojR7gBADRkBBWEFFcYAQDqg3NUAACAbTGjghpnOZj5AADYAUEFNarLIRsO6wAAQo2ggjohhAAArMA5KgAAwLYIKgAAwLY49IOg4fAQgKCp6cZxaJIIKn7gixj1wdVVAOA/ggpshy90AEAVggoaBC6FBhqw6odx+O0f+IGgAsvNmiW53cEfl5kZAGj4CCow1W+DQliY1L9//cc50TIAQMNGUAEAmKumK3oCPRz0+Swp7DdTshxWanQIKmg0AplRaYgzMw2x5kA1pX0FUDOCCpqUunzJceIuANgHQQUIEQLOiTFbImuvhgnm4RcghCwNKqtWrdLjjz+uvLw87dmzR4sXL9Yll1xiZUmAj1B+oQYywxNKge5rIL+2DQB1YWlQOXLkiPr376+JEyfq0ksvtbIUwC8cHgIAc1gaVEaNGqVRo0ZZWQIQFAQV2EqwDutwozbYQIM6R6WsrExlZWWe58XFxZIkl8sll8sVtO1UjVV9zDB+azqowsJcXv9Ezap/tGv6HNb28a/6LM+e7fK6ud7dd9d/7JreV9N76vLfTzD21UrH+7vjuNx1aFwgqo9b09iBrFNTfTWNE4i61Pfb1f/zuqu2GoNVXxPl6XOQ/8PzZzyHYRhGULceIIfDUes5KhkZGcrMzPRZnpWVpdjY2BBWBwAAgqW0tFTjxo1TUVGR4uPjT7hugwoqNc2opKSkqLCwsNYd9YfL5VJ2drbS09PldDo9y2fNCtomoGMzKf36Zevrr9Pldjtrf0MTVX3WI5DP4fF6XZexA9l+9fcE+r661BOo6mMHY9yqvztq67PH59WKGByknas+bk1jB7JOTfXVNI4JXO4wZR/sp/SWX8sZFoLf4ICk3/S52vdhfRUXF6t169Z1CioN6tBPVFSUoqKifJY7nc6gNvB444bi92ggud1OgsoJzJwZvLGq97r6fzY1fcbrsk51gdYcSD01qcvJztXHDuZfIbX12aP6F2ywivjNuBmvDDv2Lx/9d+yMjBq2XdP261KfxSHBGeYmqJgg2N+z/ozFwTsAAGBbls6oHD58WN99953n+a5du/Tll1+qVatWOumkkyysDABCxzPDkz/sv8uuywl8wJqu8qmnjAz51heC7QC1sTSofPHFFxo+fLjn+bRp0yRJEyZM0Pz58y2qCoCdheoeNsG42V19fhE8kHqCHnj85DmsZMG20XRYGlSGDRsmm5zLC+A4uEeMffBngaaoQZ1MCyC4+OI7seP2Jz/H+3nKsJDWYZrfHtr5zSxNXVWfYalxnety/B4XTRtBBUCDRtjyVpewADQkBJWGKj/Hd1lj+b86NFm2DB35OfUeol77VX37Fv13bmYAqmlbnHvTdBFUAKCJYxYmNOoSeAhFtSOoAIANZLwyTFphdRXWICjhRAgqgF3k53g/51Be0IT8kFJ+zrF/RhhSf0k/r5GSh5/gDRbIz/H8a8Z1kjTMmjqCZNbrZ6n/6GLNev0suSsckpiNaKwIKgCARilY57pYfc5MU0dQAQCYxurDPKE6J8Tq/WrMCConMGtWAD9EmJ/j/bwxTN/n5/guM2u/rNw2Gpb8HN9ldvqs5OcEZ50mqnoQCIvgZqFNBUEFAAAT1OmGeBxm8kFQAQA0CoEcfuGQjf0RVMyWn+O7LFTT02ZuC8GXn1P7Onb77NT0vlCNUxfVx+HzjyAh4JgnzOoCAAAAjoegAgAAbItDPwid/Bzv52ZO+TdV+Tm+y+x+uCM/x+oKvOXnWF3BieXnWF0BbKgx34qfGRUAAGBbBBUAAGBbHPqpj/yc0Ixj9VR9fo6127ez/BzfZVb+eeXnWLfthig/x/t5KP/sqm8LQEAIKgAANDKN6cZxBBUAAGysqd+zhaDij/ycxrWd+sjPsc+2A72aqPr7alqnMcrPsboC+8jPsboCALXgZFoAAGBbBBUAAGBbHPoJtfwce22r+jpmXrFSfdsRhtTfvM37yM8JzTiN9cZ2+TnezwP97FQfBwBOgKACAEAT0FDvXktQAQCgCWoolzATVJq6/ByrKwiN/JymuW0z5edYXQGAIKseXu6duMqaQn6Dk2kBAIBtEVQAAIBtcegH1vt5jVThCPz9+TnBqqRxys/57xVWP6+RVI9eA4DJLJ9Ref7559WlSxdFR0dr4MCBWr16tdUlAQAAm7A0qCxYsEBTp07Vvffeq02bNumss87SqFGjtHv3bivLAgAANmFpUPnLX/6i6667Ttdff71OPvlkPfXUU0pJSdGcOXOsLAsAANiEZeeolJeXKy8vT3fddZfX8hEjRmjt2rU1vqesrExlZWWe50VFRZKkAwcOyOVyBa02l8ul0tJSlZfvl9vt/O8L7sNB2wakMLdxrM/uMLndnDcRSvTaHPTZPPTaHPtLylVaWqr9+/fL6XTW/oY6KikpkSQZhlHrupYFlcLCQlVWVqpt27Zey9u2bau9e/fW+J5Zs2YpMzPTZ3mXLl1CUiNM8LLVBTQh9Noc9Nk89DrkZs0P7fglJSVKSEg44TqWX/XjcHgnYcMwfJZVufvuuzVt2jTPc7fbrQMHDigxMfG47wlEcXGxUlJSlJ+fr/j4+KCNG2qnnXaaNmzYYHUZdUafzUOvzUGfzUOvzRGqPhuGoZKSErVv377WdS0LKq1bt1Z4eLjP7ElBQYHPLEuVqKgoRUVFeS1r0aJFqEpUfHx8g/oPIDw8vEHVW4U+m4dem4M+m4demyMUfa5tJqWKZSfTRkZGauDAgcrOzvZanp2drSFDhlhUVcM2efJkq0toEuizeei1Oeizeei1/xxGXc5kCZEFCxZo/PjxeuGFF5SWlqaXXnpJc+fO1ZYtW9SpUyerylJxcbESEhJUVFTUIJNvQ0GfzUOvzUGfzUOvzWGHPlt6jsrll1+u/fv366GHHtKePXvUt29fLVu2zNKQIh07xPTggw/6HGZCcNFn89Brc9Bn89Brc9ihz5bOqAAAAJyI5bfQBwAAOB6CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsK0mGVSef/55denSRdHR0Ro4cKBWr159wvVzc3M1cOBARUdHq2vXrnrhhRdMqrTh86fXixYtUnp6utq0aaP4+HilpaVp+fLlJlbbcPn7ma7y6aefKiIiQgMGDAhtgY2Iv70uKyvTvffeq06dOikqKkrdunXTq6++alK1DZe/fX7zzTfVv39/xcbGKjk5WRMnTtT+/ftNqrbhWrVqlS666CK1b99eDodDS5YsqfU9pn8nGk3MW2+9ZTidTmPu3LnG1q1bjdtuu81o1qyZ8eOPP9a4/vfff2/ExsYat912m7F161Zj7ty5htPpNN555x2TK294/O31bbfdZsyePdtYv369sX37duPuu+82nE6nsXHjRpMrb1j87XOVQ4cOGV27djVGjBhh9O/f35xiG7hAej1mzBhj8ODBRnZ2trFr1y7j888/Nz799FMTq254/O3z6tWrjbCwMOPpp582vv/+e2P16tVGnz59jEsuucTkyhueZcuWGffee6+xcOFCQ5KxePHiE65vxXdikwsqp59+unHzzTd7Levdu7dx11131bj+9OnTjd69e3stu+mmm4wzzjgjZDU2Fv72uiapqalGZmZmsEtrVALt8+WXX27cd999xoMPPkhQqSN/e/3BBx8YCQkJxv79+80or9Hwt8+PP/640bVrV69lzzzzjNGxY8eQ1dgY1SWoWPGd2KQO/ZSXlysvL08jRozwWj5ixAitXbu2xvd89tlnPuuPHDlSX3zxhVwuV8hqbegC6XV1brdbJSUlatWqVShKbBQC7fO8efO0c+dOPfjgg6EusdEIpNdLly7VoEGD9Nhjj6lDhw7q2bOn/vd//1e//vqrGSU3SIH0eciQIfrpp5+0bNkyGYahX375Re+8844uuOACM0puUqz4TrT0FvpmKywsVGVlpc+vM7dt29bnV5yr7N27t8b1KyoqVFhYqOTk5JDV25AF0uvqnnjiCR05ckSXXXZZKEpsFALp844dO3TXXXdp9erViohoUn8F1Esgvf7++++1Zs0aRUdHa/HixSosLNQtt9yiAwcOcJ7KcQTS5yFDhujNN9/U5ZdfrqNHj6qiokJjxozRs88+a0bJTYoV34lNakalisPh8HpuGIbPstrWr2k5fPnb6yp///vflZGRoQULFigpKSlU5TUade1zZWWlxo0bp8zMTPXs2dOs8hoVfz7TbrdbDodDb775pk4//XSNHj1af/nLXzR//nxmVWrhT5+3bt2qKVOm6IEHHlBeXp4+/PBD7dq1SzfffLMZpTY5Zn8nNqn/nWrdurXCw8N9UnlBQYFPQqzSrl27GtePiIhQYmJiyGpt6ALpdZUFCxbouuuu0z/+8Q+dd955oSyzwfO3zyUlJfriiy+0adMm/b//9/8kHfsyNQxDERERWrFihc4991xTam9oAvlMJycnq0OHDkpISPAsO/nkk2UYhn766Sf16NEjpDU3RIH0edasWRo6dKjuvPNOSdIpp5yiZs2a6ayzztIjjzzCzHcQWfGd2KRmVCIjIzVw4EBlZ2d7Lc/OztaQIUNqfE9aWprP+itWrNCgQYPkdDpDVmtDF0ivpWMzKddee62ysrI4vlwH/vY5Pj5eX3/9tb788kvP4+abb1avXr305ZdfavDgwWaV3uAE8pkeOnSo/v3vf+vw4cOeZdu3b1dYWJg6duwY0nobqkD6XFpaqrAw76+z8PBwSf/9v30EhyXfiSE7Tdemqi57e+WVV4ytW7caU6dONZo1a2b88MMPhmEYxl133WWMHz/es37VpVi33367sXXrVuOVV17h8uQ68rfXWVlZRkREhPHcc88Ze/bs8TwOHTpk1S40CP72uTqu+qk7f3tdUlJidOzY0fjjH/9obNmyxcjNzTV69OhhXH/99VbtQoPgb5/nzZtnREREGM8//7yxc+dOY82aNcagQYOM008/3apdaDBKSkqMTZs2GZs2bTIkGX/5y1+MTZs2eS4Ft8N3YpMLKoZhGM8995zRqVMnIzIy0jj11FON3Nxcz2sTJkwwzjnnHK/1c3JyjN/97ndGZGSk0blzZ2POnDkmV9xw+dPrc845x5Dk85gwYYL5hTcw/n6mf4ug4h9/e71t2zbjvPPOM2JiYoyOHTsa06ZNM0pLS02uuuHxt8/PPPOMkZqaasTExBjJycnGVVddZfz0008mV93wrFy58oR/79rhO9FhGMyLAQAAe2pS56gAAICGhaACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACIKTOPvtsORwOn8dVV11V63uvvfZa3XXXXUEZC0DDxJ1pAYSMYRhKSEjQgw8+6BMm4uLiFBcXd9z3ut1utW3bVkuXLlVaWlq9xgLQcEVYXQCAxmvHjh0qKSnR2WefrXbt2vn13k8//VRhYWGeX3Suz1gAGi4O/QAImby8PEVEROiUU07x+71Lly7VRRddpLCwsHqPBaDhIqgACJmNGzeqsrJSiYmJnsMzcXFxuuGGG2p979KlS3XxxRf7NdZ7772nXr16qUePHnr55ZdDsk8AzMU5KgBC5txzz1WbNm00c+ZMr+UtW7ZUYmLicd+3bds2DRo0SIWFhYqJianTWBUVFUpNTdXKlSsVHx+vU089VZ9//rlatWoV/B0DYBpmVACEzKZNm3TmmWeqe/fuXo/ExERt3rxZ3bp10969eyVJhYWFGjBggMrLy7V06VKlp6d7QkptY0nS+vXr1adPH3Xo0EHNmzfX6NGjtXz5ckv2G0DwEFQAhMT333+vQ4cO6Xe/+12Nr/ft21dXXHGFPvnkE0lSZmamZsyYocjISL377rsaM2ZMnceSpH//+9/q0KGD53nHjh31888/B2lvAFiFq34AhEReXp4kqW3btp5ZkypJSUkKCwtTnz59tH37dn333XfKy8vTM888o4KCAm3YsEFLlizxa6yajmI7HI4g7xUAsxFUAITExo0bJUk9e/b0Wu50OlVSUqKoqCj16NFD7733nu655x7NnDlTDodD//znPzV48GAlJSX5NVaHDh28ZlB++uknz6XNABouTqYFYJlDhw6pR48eGjx4sN577z1J0pgxY3TmmWdq+vTpfo1VUVGhk08+WTk5OZ6TadetW3fCk3YB2B8zKgAs06JFC0nSo48+6ll25pln6sorr/R7rIiICD3xxBMaPny43G63pk+fTkgBGgFmVABYxuVyqW/fvvr222+tLgWATXHVDwDLfPPNN+rVq5fVZQCwMWZUAACAbTGjAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbOv/A+q5Pk34HkgNAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#in abhängigkeit von der energie der elektronen\n",
"plt.hist(energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n",
"plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n",
"plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n",
"plt.yticks(np.arange(0,10,1), minor=True)\n",
"plt.xlabel(r\"$E_\\gamma/E_0$\")\n",
"plt.ylabel(\"counts (normed)\")\n",
"plt.title(r'$E_{ph}/E_0$')\n",
"plt.legend()\n",
"plt.grid()\n",
"\n",
"\"\"\"\n",
"\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj8AAAJOCAYAAADoCxXRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADV1UlEQVR4nOzdeXxU1f3/8fclIQshGRKQQJBVEREIKCogtuxbWSwUUFAEtEpFRQSsuwGVRRGkBRFLFZRdq1AFi4CoiICyiLh9RSsKyqqEBJBAEs7vD36ZMmQ7k9xhJsnr+XjMQ7nzmbPdc++cOyfnXscYYwQAAAAAAAAAAFBKlAt2AQAAAAAAAAAAANzE5AcAAAAAAAAAAChVmPwAAAAAAAAAAAClCpMfAAAAAAAAAACgVGHyAwAAAAAAAAAAlCpMfgAAAAAAAAAAgFKFyQ8AAAAAAAAAAFCqMPkBAAAAAAAAAABKFSY/AAAAAAAAAABAqcLkBwAAAAAAAAAAKFWY/AAAAKXekCFDNHfu3GAXA5Z27Nih3bt3B7sYAAAAAIASjMkPAAAAhJR//OMfWrt2bbCLAQAAAAAowZj8AAAAKMSSJUvUqFEjRUdHy3Ecbd++PdhFKtDbb78tx3F8XnFxcWrevLleffXV85b/K6+84rM9NTVV3bp1U0REhGbMmOHz3rp163Tbbbfp4MGD3m1fffWV+vTpowMHDgS8zCXJ+++/n2v/5rw2bdqUK37Hjh269dZbddFFFyk6OlrR0dGqX7++hg0bpi1bthSpDL1791Z0dLSOHDmSb8yNN96o8uXLB33/zZ07V47j6IcffjjveY8dO1aO4+iXX35xLc0NGzZo7NixBbZ9SZadna2qVavq2WefzTcmEO1aEpTmff/JJ5+oS5cuio2NVcWKFdWuXTt99NFHueL8Pf8dO3ZMI0eOVFJSkqKiotSsWTMtXry4yHEAAKBkYfIDAACUSj169FClSpVUqVIlLVy4UMOHD/f+e9KkSdbpHDp0SIMGDdJFF12klStXauPGjbrkkksCWPLi27ZtmyTp3//+tzZu3KgNGzZo9uzZOn78uAYMGKAdO3acl/ybN2/u3bZjxw5deeWV+vTTT7V27VrdddddPp9p3ry5EhMTlZycrHfffVczZsxQp06d1LVrV11wwQUBLW9JNWHCBG3cuNHn1bhxY5+YF154Qc2bN9fHH3+se+65R8uXL9eKFSs0cuRIffnll7rqqqv03//+1++8b731VmVkZGjhwoV5vp+WlqalS5eqR48eSkxMLFL9kLcNGzZo3LhxpfIHcOnMROihQ4fUp0+fYBcl5JTWfb9582b9/ve/14kTJzRv3jzNmzdPGRkZ6tChgzZu3JjnZ2zOf5LUp08fvfzyy0pJSdF//vMfXXXVVRowYECuc5dtHAAAKFnCg10AAACAQFi+fLn3/4cMGaK2bdtqyJAhfqezc+dOZWZm6qabblKbNm3yjfvtt99UoUKFohTVddu2bZPH41GvXr2821q1aqWsrCzddNNN+vTTT5WcnBzQ/KOjo3XppZdKkhYvXqxbb71VycnJev3115WUlJTrMzExMXr88cd1+vRpTZw4UeXKldOCBQt0ww03BKycwXD48GGdPn1aVapUKXZa9evXV8uWLfN9/6OPPtLw4cPVvXt3/etf/1JERIT3vfbt2+vOO+/Ua6+9pujoaL/z7tatm5KSkvTSSy9p+PDhud5ftGiRTpw4oVtvvdXvtFG2/etf/9KVV16p2rVrByyPUDpflxX79u1TTEyM4uLicr336KOPqlKlSlq5cqV3v3Ts2FH16tXTmDFj8lwBUtj5TzqzCnH16tVauHChBgwYIElq166dfvzxR9133326/vrrFRYWZh0HAABKHlZ+AACAEmP9+vXq3LmzPB6P4uPj1b17d3377bcBy2/IkCG69tprJUnXX3+9HMdR27Ztvbdc2bZtm/r27av4+HhddNFFPuXs0KGDYmNjVaFCBV1zzTVasWKFT9o5aezYsUP9+vWTx+NRQkKCRo0apaysLH3zzTfq2rWrYmNjVadOHT399NPW5d66dauaNWuWa/tPP/0kSWrYsGERWkN69tlntWzZMr/yHzNmjAYMGKAbb7xRH3zwQZ4TH5L0+eef64orrtC2bdv0hz/8QbfccovGjx+v7t27F3prG9t+4Xb/6dmzp6688krNnj1bTZs2VXR0tGrWrKmUlBSdPn06z8/s2LFD1atXV7du3fTKK6/o6NGjRc6/MBMmTFBYWJheeOEFn4mPs/Xr1y/XPvn22281cOBAVa1aVZGRkWrYsKGee+45n5iwsDANHjxYW7du1eeff54r3Tlz5njrWRT+HENffvmlBgwYII/Ho8TERN1yyy1KS0vLN+0PP/xQjuNo0aJFud575ZVX5DiONm/enO/nc/L99NNP1adPH8XFxcnj8eimm27SoUOH8vzMgQMHCi2jbZ3vu+8+SVLdunW9t/t5//33A9Juhw4d0u23366aNWsqMjJSF1xwgVq3bq01a9bk2z5ffvmlHMfRa6+95t22detWOY6jRo0a+cT26tXLZ4WYMUZLly7Vn/70p3zTP9uePXsK3QeFna9t+nsgz9eStGzZMjmOo3fffTfXe88//7wcx1GfPn3y3fcZGRm6/PLLdfHFF/vsw/3796tatWpq27atsrOzrcqS3y2linLruNTUVL344ovq2LGjLrzwQn3//fd5xn300Udq27atz4RUbGysfv/732vDhg3at2+fX/nmWLp0qSpWrKh+/fr5bB86dKj27t2rjz/+2K84qfh9IdB9CQAAnMMAAACUACkpKaZcuXLmlltuMStWrDD/+te/TJMmTUzNmjXN0aNHA5Lnd999Z5577jkjyUyYMMFs3LjRfPnllyYlJcVIMrVr1zb333+/Wb16tVm2bJkxxpj333/flC9f3jRv3twsWbLELFu2zHTu3Nk4jmMWL17sUx9JpkGDBuaJJ54wq1evNn/961+NJHPXXXeZSy+91Pz97383q1evNkOHDjWSzOuvv15omX/55RcjyYwYMcJkZmaazMxMc+DAAfPKK6+Y2NhY8+c//7nI7TFw4EBTvnx5s3Tp0kLzv/7660379u1NZGSkmT17dqFp79mzx7z11lvGGGPuvPNOM2fOHJOVlWXmzp1rTp06le/nbPtFIPpP9erVTUxMjGnYsKGZN2+eWbVqlbnhhhuMpHzrfOLECbNgwQLTs2dPExERYaKiokzfvn3N66+/bjIyMqzyfe+994wkU7VqVRMWFmZiY2NN586dzYcffuiNycrKMtHR0aZVq1Z+1enLL780Ho/HNGnSxLzyyitm1apVZvTo0aZcuXJm7NixPrHffvutcRzHjBw5MlcakswDDzzgV945inIMPfbYY2b16tVm6tSpJjIy0gwdOtQbN2fOHCPJ7Nq1y7vt8ssvN61bt86V91VXXWWuuuqqAst39vF/3333mXfeecdMnTrVxMTEmMsvv9ynv9qW0bbOe/bsMXfffbeRZN544w2zceNGs3HjRpOWluZ6uxljTJcuXcwFF1xg/vGPf5j333/fLFu2zDz22GM+6eWlevXq5vbbb/f+e9KkSSY6OtpIMj///LMxxpjMzEwTFxdn/vrXv3rj1q9fbySZnTt3ur4P8jpf2/b3QJ2vc2RmZpqqVauaG2+8Mdd7V199tbniiisK3PfGGLNz504TGxtr+vTpY4wxJjs727Rv395UrVrV7N2717osOenmvNauXWtq1KhhqlWr5s2rIMePHzeLFy82vXr1MhERESY6Otr86U9/Mq+99po5efJknp+JiIgwN998c67tAwYMMJLMO++8491mc/7L0bJlyzyP5y+++MJIMi+88IJfccYUvy8Eui8BAABfTH4AAICQ99ZbbxlJ5umnn/bZvnPnTiPJzJ8/P9dnunbtamJiYvJ8jR8/3jrvnB9aXnvtNe+2nB8vHnvssVzxLVu2NFWrVvX5QT0rK8s0btzYXHjhheb06dM+aUyZMsXn882aNfP+uJUjMzPTXHDBBd4ftQqyatUqIynXKzw83Dz55JPW9c5LVlZWoRMgZ+cfFRVlNm3a5Hc+OZMfhbHtF0XpP4X56aefjCRTr149c+TIEe/2U6dOmWrVqpkePXoUmkZqaqp56aWXTOfOnU14eLjxeDxmyJAh5p133jFZWVn5fm7btm3mnnvuMUuXLjXr1q0zL730kmnYsKEJCwszK1euNMYYs3//fiPJ3HDDDbk+n5WV5Z0Yy8zM9PZJY8782H3hhRfm+pHzrrvuMlFRUebw4cM+29u0aWOqVKni82Pz6NGjrX7Azo+/x9C5+3X48OEmKirKG5fX5EfOtk8//dS77ZNPPjGSzMsvv1xg+XLyvffee322L1iwIFd/si2jbZ2NMWby5Mm56hOIdjPGmIoVK+aa3LJx0003mXr16nn/3bFjR3PbbbeZ+Ph4b/t+9NFHRpJZtWqVN27kyJGmSZMmhaZflH2Q1/natr8H6nx9tlGjRpno6Gif88lXX31lJJnp06cbY/Lf9zmWLFliJJlp06aZxx57zJQrV86nff2VlZVlrrvuOlOxYkWzdevWfONOnTplli9fbgYOHGhiYmJMRESE6dGjh5k/f77V5HKzZs3MJZdcYrKzs73bMjMzTb169Ywks3DhQu92m/Nfjvr165suXbrkym/v3r3eP2rwJ86Y4veF89GXAADA/3DbKwAAEPIee+wxXXTRRbrnnnuUlZXlfdWtW1fR0dF53krjP//5j44dO5bn66GHHnKlXOfemuX48eP6+OOP1bdvX1WsWNG7PSwsTIMGDdJPP/2kb775xuczPXr08Pl3w4YN5TiOz+2CwsPDdfHFF+vHH38stExbt26VJL3xxhvavHmzNm/erJUrV6p79+567LHH9MYbb+T5uV9++aXA2504jqPw8HAtXLhQmZmZ6t+/vw4cOJBv/oMGDVJGRobWrVtXaJnPNWPGDKvns9j2i6L0n8Lk3BZp7Nix8ng83u3ly5fXxRdfXOituiSpUqVKGjp0qN555x3t27dPkyZN0q5du9S1a1clJSXlW67LL79c06ZN0x//+Ef97ne/09ChQ7VhwwZVr15df/3rXwvNt3nz5ipfvrz3NWXKFElSRkaG3n33XfXu3VsVKlTwaas//OEPysjI0KZNm3zSuvXWW/XLL7/ozTfflCRlZWVp/vz5+t3vfqf69esXWpZzFeUYOvvZNpKUnJysjIwMHTx4MN98BgwYoKpVq/rc3mj69Om64IILdP3111uV9cYbb/T5d//+/RUeHq733nsvV2xBZSxKnc8VqHa7+uqrNXfuXD355JPatGmTMjMzCyxHjg4dOuj777/Xrl27lJGRofXr16tr165q166dVq9eLUlas2aNIiMjvbcWlM6ct2xveSX5tw/OTbco/d3t8/XZbrnlFp04cUJLlizxbpszZ44iIyM1cOBAqzT69++vO+64Q/fdd5+efPJJPfTQQ+rUqZNf5TjbXXfdpRUrVui1117TFVdckWfMjh07VK1aNV133XX65Zdf9Pe//10HDhzQW2+9pRtvvNGnP+bn7rvv1s6dO3XXXXfp559/1p49e/SXv/zF24blyv3vZwt/z3+O4+Sb79nv2cblKG5fCGRfAgAA/8MDzwEAQEjbv3+/Pv30U0lSZGRknjGVKlU6jyX6n+rVq/v8OzU1VcaYXNsleZ+r8Ouvv/psT0hI8Pl3RESEKlSooKioqFzb09PTCy1TzsPGe/Xq5fOA1jZt2iguLk6zZ89Wnz59cn0uNjZWs2fPLjT9lStX6vXXX9d1112nypUr55l/VFSUXnrpJUnSAw88oAYNGuT6obW4bPtFoPrPli1bVL58+Vz3iJekvXv3+jzHwEZ6erqOHDmitLQ0GWNUqVIlhYfbD9UrVaqkHj16aNasWTpx4oSqVKmi6OjoPH80W7hwoX777Tft27fPZ7/8+uuvysrK0vTp0zV9+vQ88zl3Uqdv3766++67NWfOHP3pT3/S22+/rQMHDuipp56yLvvZinIMndsPc/bziRMn8s0nMjJSw4YN05QpUzR58mRlZmbq1Vdf1ahRo/LtJ+eqVq2az7/Dw8NVuXLlXOUrrIyZmZl+1/lcgWq3JUuW6Mknn9Q///lPPfroo6pYsaJ69+6tp59+Olf9z9axY0dJZyY46tatq8zMTLVv314HDhzQE0884X2vdevWio6OliR98skn2r17t1+TH/7sg3Pbpij93e3z9dkaNWqkq666SnPmzNHtt9+u7OxszZ8/X9ddd12ufAtyyy236Pnnn1dERIRGjBjhVxnO9uSTT2rWrFl68cUX1bVr13zjypcvL4/Ho8OHDystLU1paWk6duyYX+fVW265RYcOHdKTTz6p559/XpLUqlUrjRkzRk899ZRq1KhR4OfPPf/l9Kn8+sLhw4cl/W9/2sadrbh9IZB9CQAA/A+THwAAIKTt2bNH0pmHbZ/9F8JnO/vhtefTuX8NGh8fr3LlyuX5cNa9e/dKkqpUqRLQMm3btk1NmjTxmfiQzvxAFRYWlu8PwpGRkfrzn/9cYNorVqzQ8uXL1bdvXy1atCjPH+e3bdumpk2bKjw8XLNnz/Y+THj9+vV5PoS9qGz7xXfffWcV568tW7aoSpUquX6o+vjjj/X999/r0UcfLTSNPXv26LXXXtPixYu1efNm1ahRQ9dff71mz56tK6+80u8yGWMknemXYWFhat++vVatWqV9+/b5/PB72WWXSVKuhxfHx8d7VwrceeedeeZRt25dn39HR0drwIABmj17tvbt26eXXnpJsbGxeU4K2Tifx9Add9yhSZMm6aWXXlJGRoaysrL0l7/8xfrz+/fv9/lRNisrS7/++muek4IFcaPOgWq3KlWqaNq0aZo2bZp2796tN998Uw888IAOHjyolStX5vu5Cy+8UJdcconWrFmjOnXq6Morr1SlSpXUoUMHDR8+XB9//LE2bdqkcePGeT/z+uuv65JLLlHjxo2ty+fPPsjrfO1vfw+0oUOHavjw4fr666/1/fffa9++fRo6dKj1548fP65Bgwbpkksu0YEDB/TnP/9Z//73v/0ux9y5c/Xoo49q7NixuuWWWwqMbdiwob7//ntt3LhRCxcu1KRJkzR69Gi1bt1a119/vfr27VvgRFmO+++/XyNHjtS3336r2NhY1a5dW8OGDVNMTIzVZPLZ578cTZo00aJFi5SVleXzffX5559Lkrev2cYBAICSh9teAQCAkJbz15GO4+jKK6/M8xUfHx/kUp4RExOjFi1a6I033vCZZDh9+rTmz5/v/UEwUNLS0vT999/nOcnw73//WxkZGfr9739f5PQnT56snj175jvxkZN/zu1RIiMjtXTpUiUkJKhXr17av39/kfM+l22/CFT/2bJliw4dOqQjR454t2VnZ+v+++9XnTp18r1NzdGjRzV9+nRde+21ql27tsaPH69mzZpp7dq12r17t6ZMmVKkiY/U1FQtX75czZo1807IPPjgg8rOztZf/vIXq9sVVahQQe3atdOnn36q5OTkPNsqrx+Vb731VmVnZ2vy5Ml6++23dcMNN6hChQp+10E6v8dQ9erV1a9fP82cOVOzZs1Sz549VatWLevPL1iwwOffr776qrKystS2bVu/yuFvnfNaoXE+2q1WrVq666671KlTJ23btq3Q+I4dO2rt2rVavXq199ZLl1xyiWrVqqXHHntMmZmZ3hUi0pnJD39WfUjF2wdF7e+BNGDAAEVFRWnu3LmaO3euatSooc6dO3vfL2xV01/+8hft3r1bb7zxhl588UW9+eabevbZZ/0qw8qVK3XbbbfplltuUUpKivXnWrVqpenTp2vv3r1auXKlLrroIj388MOqUaOG2rdvrxdeeKHA1VjSmfo1btxYtWvX1u7du7VkyRLddttt3pUc+cnr/CdJvXv31rFjx/T666/7xL/88stKSkpSixYt/IoDAAAlDys/AABASLvooovUrl07PfLIIzp27JhatGghY4z27dun9957T4MHD/b7x8ZAmjhxojp16qR27dppzJgxioiI0MyZM/XFF19o0aJFBd5XvLi2bdsmY4xiYmK896pPTU3Vhg0b9Oyzzyo5OVljxowpcvpvvfWWoqOj870dU07+Z/+VbrVq1fTvf/9b1157rXr16qUPPvig0B+ybNj2C3/7j+M4atOmjd5///188961a5d+/fVX1apVS/369dPo0aOVkZGhv//979q6davef/99RURE5PnZrVu36oEHHlCvXr20bNkydevWTeXLl/er7gMHDlStWrV05ZVXqkqVKvr22281ZcoUHThwQHPnzvXGtW7dWs8995zuvvtuXXHFFbr99tvVqFEj7wqBnB/64uLivJ/529/+pmuvvVa/+93vdMcdd6hOnTo6evSovvvuO7311ltau3ZtrvJceeWVSk5O1rRp02SM0a233ppnuW3aVjq/x9A999zj/WFzzpw5fn32jTfeUHh4uDp16qQvv/xSjz76qJo2bar+/fv7XQ5/6tykSRNJZ/bV4MGDVb58eTVo0MD1dktLS1O7du00cOBAXXrppYqNjfU+QyivW+edq0OHDpo5c6Z++eUXTZs2zWf7nDlzFB8f7z1XbN++Xf/973/9nvwo7j4oSn8PpEqVKql3796aO3eujhw5ojFjxvg87yK/fR8bG6t//vOfmj9/vubMmaNGjRqpUaNGuuuuu3T//ferdevWuvrqqwvNf9euXerXr5/q1aunoUOH5nrmyeWXX17obeHCwsLUuXNnde7cWbNmzdKKFSu0cOFCjRw5Ui1atMhzcv6LL77Q66+/riuvvFKRkZH67LPPNGnSJNWvX997m7Qctuc/SerWrZs6deqkO+64Q+np6br44ou1aNEirVy5UvPnz/eukLSNAwAAJVBQHrMOAADgh7S0NPPggw+aSy65xERFRZn4+HjTtGlTc/fdd5vU1NSA5v3ee+8ZSea1117zbktJSTGSzKFDh/L8zIcffmjat29vYmJiTHR0tGnZsqV56623fGLyS2Pw4MEmJiYmV5pt2rQxjRo1KrCszzzzjJHk84qJiTGXX365GT9+vDl+/LhttYskJ/9t27bleu+1114zjuOYfv36mdOnT7uSn22/sI07evSokWRuuOGGAvN99dVXjSSzYcMGM2jQIBMXF2diY2PNddddZ7766qtCy3zs2LHiVNtMnDjRNGvWzHg8HhMWFmYuuOAC07t3b/PJJ5/kGb99+3YzdOhQU7duXRMZGWmioqLMxRdfbG6++Wbz7rvv5orftWuXueWWW0yNGjVM+fLlzQUXXGCuueYa8+STT+Zbpr/97W9GkrnsssvyfN+2bXMU5xiaM2eOkWR27dqV57/PVadOHdOwYUOrcp2d79atW03Pnj1NxYoVTWxsrBkwYIA5cOBAkcpoW+ccDz74oElKSjLlypUzksx7771nnYZtmTIyMsxf/vIXk5ycbOLi4kx0dLRp0KCBSUlJsTqXpKammnLlypmYmBhz6tQp7/YFCxYYSaZPnz7ebY888oipXbt2oWmeW4fi7IMcNv09EOfr/Kxatcp7/t65c2eu9/Pa9zt27DDR0dFm8ODBPrEZGRmmefPmpk6dOlbflTnfd/m98juGbBR07vvmm2/M73//e5OQkGAiIiLMxRdfbB555JE84/09/x09etSMGDHCVKtWzURERJjk5GSzaNGiIscVty+cz74EAACMcYz5/zfHBAAAAMqwt99+Wz169NBnn33m/QvrvPz1r3/VzJkzlZaWxl8EW7Jt2/Ntx44datq0qZ577jkNHz7c6jNjx47VuHHjdOjQoYA/w6esuOyyy9StWzdNmTIl2EUBAABAKcJtrwAAAABJ7733nm644YZCf5zfsmWLrrjiCiY+/GDbtufLf//7X/3444966KGHVL16dQ0ZMiTYRSrTvvrqq2AXAQAAAKUQkx8AAACAzjzQvTDGGG3btk233HLLeShR6WHTtufTE088oXnz5qlhw4Z67bXXivyAdqAwWVlZBb5frlw5n+d6lJWyAAAAnA/c9goAAAAAAJf98MMPqlu3boExKSkpGjt2bJkqCwAAwPnC5AcAAAAAAC47deqUduzYUWBMUlKSkpKSylRZAAAAzhcmPwAAAAAAAAAAQKnCDT0BAAAAAAAAAECpwuQHAAAAAAAAAAAoVZj8AAAAAAAAAAAApQqTHwAAAAAAAAAAoFRh8gMAAAAAAAAAAJQqTH4AAAAAAAAAAIBShckPAAAAAAAAAABQqjD5AQAAAAAAAAAAShUmPwAAAAAAAAAAQKnC5AcAAAAAAAAAAChVmPwAAAAAAAAAAAClCpMfAAAAAAAAAACgVGHyAwAAAAAAAAAAlCpMfgAAAAAAAAAAgFKFyQ8AAAAAAAAAAFCqMPkBAAAAAAAAAABKFSY/AAAAAAAAAABAqcLkBwAAAAAAAAAAKFWY/AAAAAAAAAAAAKUKkx8AQsqSJUvUqFEjRUdHy3Ecbd++PdhFytPYsWPlOE6wixEyhgwZojp16gS7GAH39ttva+zYsa6nO3fuXDmOox9++MH1tCXpq6++0tixYwOWPgAAQDAEegw1c+ZMzZ07NyBpl2R16tTRkCFDgl2MgAvU/g/0tVOgrlkAoCRi8gNAyDh06JAGDRqkiy66SCtXrtTGjRt1ySWXBLtYgNfbb7+tcePGBbsYfvvqq680btw4Jj8AAAD8wORH2VZS939JvWYBgEBg8gNAyNi5c6cyMzN10003qU2bNmrZsqUqVKgQ7GKVKr/99luwi1AilbV2K2v1PduJEydkjAl2MQAAAIrFGKMTJ04EuxglUlkaC5f1flKW9jVQVjH5ASAkDBkyRNdee60k6frrr5fjOGrbtq33/TfffFOtWrVShQoVFBsbq06dOmnjxo250shr+XBet6hyHEd33XWX5s2bp4YNG6pChQpq2rSpli9fnuvzK1asULNmzRQZGam6devqmWee8atua9asUYcOHRQXF6cKFSqodevWevfdd/Ms45dffqkBAwbI4/EoMTFRt9xyi9LS0nxijTGaOXOmmjVrpujoaMXHx6tv3776/vvvfeLatm2rxo0ba926dbrmmmtUoUIF3XLLLZKkn376SX379lVsbKwqVaqkG2+8UZs3b5bjON6/bpo3b54cx8nVzpL0+OOPq3z58tq7d2++9c7IyNCDDz6ounXrKiIiQjVq1NCdd96pI0eO+MStXbtWbdu2VeXKlRUdHa1atWrpT3/6k89A9Pnnn1fTpk1VsWJFxcbG6tJLL9VDDz1UYLtfddVV6t69u8+2Jk2ayHEcbd682bvtjTfekOM4+vzzzyX9b19s27ZNffv2VXx8vC666CINGTJEzz33nKQz/SfnVdhqCpv9X9zP/t///Z8GDBigxMRERUZGqlatWrr55pt18uRJzZ07V/369ZMktWvXzlvunP1cUD/ZvXu3brrpJlWtWlWRkZFq2LChpkyZotOnT3vz/uGHH+Q4jp555hlNnTpVdevWVcWKFdWqVStt2rTJqp779+/XsGHDdOGFFyoiIkJ169bVuHHjlJWVVeR8tmzZol69eikhIUFRUVG6/PLL9eqrr/rE5NwqY9WqVbrlllt0wQUXqEKFCjp58qSMMZowYYJq166tqKgoXXnllVq9erXatm3rPTcdO3ZMlSpV0rBhw3Ll/8MPPygsLEyTJ0+2agMAAOCel156SU2bNlVUVJQSEhLUu3dvff311z4x33//vW644QYlJSUpMjJSiYmJ6tChg/e2u3Xq1NGXX36pDz74wDt+KuxWRf6O0zdv3qzf/e53qlChgurVq6dJkyb5jLMkKT09XWPGjPEZU48cOVLHjx/3icu5vpk1a5YaNmyoyMhIvfzyy5Kk9evXq1WrVoqKilKNGjX06KOP6p///KfPWPbWW29VQkJCnj8Gt2/fXo0aNSqw7jbjRqnwcf1vv/3mrW/O/rvyyiu1aNGifPNOT09XeHi4z7jrl19+Ubly5eTxeHzGlCNGjNAFF1zg/WOX/MbCgdz/xf3sypUr1aFDB3k8HlWoUEENGzbUxIkTJanQa5bC+kmHDh0UGxurChUq6JprrtGKFSt88s4ZP7/33nu64447VKVKFVWuXFl9+vQp8NrwbP6M023zWbJkiVq1aqWYmBhVrFhRXbp00aeffuoTM2TIEFWsWFGff/65OnfurNjYWHXo0EGSdOTIEe8xULFiRXXv3l3ff/+9HMfx3kLsww8/lOM4efbFV155Jdd1JoAQYQAgBHz33XfmueeeM5LMhAkTzMaNG82XX35pjDFmwYIFRpLp3LmzWbZsmVmyZIlp3ry5iYiIMB9++KE3jcGDB5vatWvnSjslJcWce7qTZOrUqWOuvvpq8+qrr5q3337btG3b1oSHh5v//ve/3rg1a9aYsLAwc+2115o33njDvPbaa+aqq64ytWrVypVmXubNm2ccxzF//OMfzRtvvGHeeust06NHDxMWFmbWrFmTq4wNGjQwjz32mFm9erWZOnWqiYyMNEOHDvVJ87bbbjPly5c3o0ePNitXrjQLFy40l156qUlMTDT79+/3xrVp08YkJCSYmjVrmunTp5v33nvPfPDBB+bYsWPm4osvNgkJCea5554z77zzjrn33ntN3bp1jSQzZ84cY4wxJ0+eNNWqVTM33nijT/6ZmZkmKSnJ9OvXL9+2P336tOnSpYsJDw83jz76qFm1apV55plnTExMjLn88stNRkaGMcaYXbt2maioKNOpUyezbNky8/7775sFCxaYQYMGmdTUVGOMMYsWLTKSzN13321WrVpl1qxZY2bNmmVGjBhRYNs/8MADpmLFiubUqVPGGGP2799vJJno6Ggzfvx4b9wdd9xhEhMTc+2L2rVrm/vvv9+sXr3aLFu2zHz33Xemb9++RpLZuHGj95VTl7zY7v85c+YYSWbXrl1+f3b79u2mYsWKpk6dOmbWrFnm3XffNfPnzzf9+/c36enp5uDBg2bChAlGknnuuee85T548KAxJv9+cvDgQVOjRg1zwQUXmFmzZpmVK1eau+66y0gyd9xxhzf/Xbt2eY+nrl27mmXLlplly5aZJk2amPj4eHPkyJEC99O+fftMzZo1Te3atc0LL7xg1qxZY5544gkTGRlphgwZUqR81q5dayIiIszvfvc7s2TJErNy5UozZMgQn/59drvXqFHD3H777eY///mP+de//mWysrLMgw8+aCSZ22+/3axcudLMnj3b1KpVy1SvXt20adPGm8a9995rYmJictXzvvvuM1FRUeaXX34psP4AAKDo8hpD5Yx7BgwYYFasWGFeeeUVU69ePePxeMzOnTu9cQ0aNDAXX3yxmTdvnvnggw/M66+/bkaPHm3ee+89Y4wx27ZtM/Xq1TOXX365d/y0bdu2Asvjzzi9cuXKpn79+mbWrFlm9erVZvjw4UaSefnll71xx48fN82aNTNVqlQxU6dONWvWrDF/+9vfjMfjMe3btzenT5/2xuaMaZKTk83ChQvN2rVrzRdffGE+++wzExUVZZKTk83ixYvNm2++af7whz+YOnXq+LTdZ599ZiSZ2bNn+9Tpyy+/9I4jc9SuXdsMHjzY+2/bcaPNuH7YsGGmQoUKZurUqea9994zy5cvN5MmTTLTp08vsO1btmxpOnfu7P334sWLTVRUlHEcx3z00Ufe7Q0bNjT9+/f32Rd5jYUDuf/zum61/ew///lP4ziOadu2rVm4cKFZs2aNmTlzphk+fLgxxhR6zZJfP3n//fdN+fLlTfPmzc2SJUvMsmXLTOfOnY3jOGbx4sXe/HOOuXr16pm7777bvPPOO+af//yniY+PN+3atSuwfYzxf5xuk8/48eON4zjmlltuMcuXLzdvvPGGadWqlYmJifH+ppDT7uXLlzd16tQxEydONO+++6555513THZ2trn22mtNVFSUmTRpklm1apUZN26cqV+/vpFkUlJSvGlcfvnlpnXr1rnqddVVV5mrrrqq0PoDOP+Y/AAQMt577z0jybz22mvebdnZ2SYpKck0adLEZGdne7cfPXrUVK1a1VxzzTXebf5OfiQmJpr09HTvtv3795ty5cqZiRMnere1aNHCJCUlmRMnTni3paenm4SEhEInP44fP24SEhJMz549fbZnZ2ebpk2bmquvvjpXGZ9++mmf2OHDh5uoqCjvhc3GjRuNJDNlyhSfuD179pjo6Gjz17/+1butTZs2RpJ59913fWJzJpn+85//+GwfNmxYrkFnSkqKiYiIMAcOHPBuW7JkiZFkPvjgA++2c9t+5cqVedYn57P/+Mc/jDHG/Otf/zKSzPbt201+7rrrLlOpUqV838/PmjVrjCSzbt06Y4wx8+fPN7GxsWb48OE+A+b69eubgQMH+tRZknnsscdypXnnnXdaTXoZ49/+P/fC3Z/Ptm/f3lSqVMk7mZGX1157zUjyXsyfLb9+8sADDxhJ5uOPP/bZfscddxjHccw333xjjPnfpESTJk1MVlaWN+6TTz4xksyiRYvyLZcxZ/pdxYoVzY8//uiz/ZlnnjGSvBcs/uRz6aWXmssvv9xkZmb6pNmjRw9TvXp177kkp91vvvlmn7jDhw+byMhIc/311/tszzn+zp78+O9//2vKlStnnn32We+2EydOmMqVK+eauAQAAO46dwyVmppqoqOjzR/+8AefuN27d5vIyEjvmO+XX34xksy0adMKTL9Ro0Y+3/sFKco4/dxx1mWXXWa6dOni/ffEiRNNuXLlzObNm33icsbQb7/9tnebJOPxeMzhw4d9Yvv162diYmLMoUOHvNuys7PNZZddlmviqE2bNqZZs2Y+n7/jjjtMXFycOXr0qHfbuZMftuNGm3F948aNzR//+McCY/LyyCOPmOjoaO+P/H/+859N165dTXJyshk3bpwxxpiff/7Z51okp855jYWNCdz+P/fayfazR48eNXFxcebaa6/1mfg6V0HXLPn1k5YtW5qqVav67OesrCzTuHFjc+GFF3rzyznmciZbcjz99NNGktm3b1++5TLG/3F6Yfns3r3bhIeHm7vvvtsn7ujRo6ZatWo+E12DBw82ksxLL73kE7tixQojyTz//PM+2ydOnJhr8iOnXJ9++ql3W871yNkTlwBCB7e9AhDSvvnmG+3du1eDBg1SuXL/O2VVrFhRf/rTn7Rp06Yi36ezXbt2io2N9f47MTFRVatW1Y8//ihJOn78uDZv3qw+ffooKirKGxcbG6uePXsWmv6GDRt0+PBhDR48WFlZWd7X6dOn1bVrV23evDnXcvVevXr5/Ds5OVkZGRk6ePCgJGn58uVyHEc33XSTT5rVqlVT06ZN9f777/t8Pj4+Xu3bt/fZ9sEHHyg2NlZdu3b12T5gwIBcdbjjjjskSbNnz/ZumzFjhpo0aaLf//73+dZ97dq1ks4sLT5bv379FBMT4711U7NmzRQREaHbb79dL7/8cp7Luq+++modOXJEAwYM0L///W/98ssv+eZ7ttatWysqKkpr1qyRJO8ti7p27aoNGzbot99+0549e/Ttt9+qY8eOuT7/pz/9ySqf/BRl//v72d9++00ffPCB+vfvrwsuuKDIZc2rn6xdu1aXXXaZrr76ap/tQ4YMkTHGu49zdO/eXWFhYd5/JycnS5L3eMrP8uXL1a5dOyUlJfnUtVu3bpLO9Fd/8vnuu+/0f//3f7rxxhslySfNP/zhD9q3b5+++eYbnzTP3debNm3SyZMn1b9/f5/tLVu2zHW7g3r16qlHjx6aOXOm9/YJCxcu1K+//qq77rqrwLoDAAB3bdy4USdOnMg1Bq1Zs6bat2/vHYMmJCTooosu0uTJkzV16lR9+umnuW7P5C9/x+nVqlXLNc5KTk72GTstX75cjRs3VrNmzXzS7NKlixzHyZVm+/btFR8f77Ptgw8+UPv27VWlShXvtnLlyuUa50jSPffco+3bt+ujjz6SdOZ2UvPmzdPgwYNVsWLFfOtuO260GddfffXV+s9//qMHHnhA77//vvXzKDp06KATJ05ow4YNks7cPrZTp07q2LGjVq9e7d0mKdfYP6+xsL/83f9F+eyGDRuUnp6u4cOH57qtsz/O7SfHjx/Xxx9/rL59+/rs57CwMA0aNEg//fRTrvFzXtetUsFj/6KM0wvL55133lFWVpZuvvlmn/SioqLUpk2bPNv93LF/zvXGucdEXtfHAwYMUNWqVb23FpOk6dOn64ILLtD111+fb90BBA+THwBC2q+//ipJql69eq73kpKSdPr0aaWmphYp7cqVK+faFhkZ6R1gp6am6vTp06pWrVquuLy2nevAgQOSpL59+6p8+fI+r6eeekrGGB0+fLjAMkVGRkqSt0wHDhyQMUaJiYm50ty0aVOuC4i82u3XX39VYmJiru35bbv++uv1wgsvKDs7Wzt27NCHH35Y6I+6v/76q8LDw3P9IO84jqpVq+bdrxdddJHWrFmjqlWr6s4779RFF12kiy66SH/729+8nxk0aJBeeukl/fjjj/rTn/6kqlWrqkWLFt6LmPxERUWpdevW3oucd999V506dVLbtm2VnZ2tDz/80JtGXpMfebWdP4qy//39bGpqqrKzs3XhhRcWq6z59ZP8jruc989WWN/Nz4EDB/TWW2/lqmfOfaXP7dM2x4gkjRkzJleaw4cPzzPNc+uZUzfb4+See+7Rt99+6+1Pzz33nFq1aqUrrriiwLoDAAB3FXbtkPO+4zh699131aVLFz399NO64oordMEFF2jEiBE6evRokfL2d5xe2LVITpo7duzIlV5sbKyMMa6P/a+77jrVqVPH+8Pu3Llzdfz4cd15550F1t123Ggzrv/73/+u+++/X8uWLVO7du2UkJCgP/7xj/r2228LLEPO8zrWrFmj7777Tj/88IN38uPjjz/WsWPHtGbNGtWrV09169b1+Wxxx/2S//u/KJ89dOiQJLk+9k9NTZUxJuBj/6KM023H/ldddVWuNJcsWZIrvQoVKiguLs5nW861a0JCgs/2vI6RyMhIDRs2TAsXLtSRI0d06NAhvfrqq/rzn//sLRuA0BIe7AIAQEFyBjv79u3L9d7evXtVrlw571+tREVF6eTJk7nibFcKnCs+Pl6O42j//v253str27ly/rpq+vTpatmyZZ4xeQ2oCkvTcRx9+OGHeQ6uzt2W118EVa5cWZ988kmu7fnV6Z577tG8efP073//WytXrvQ+IL0glStXVlZWlg4dOuQzAWKM0f79+3XVVVd5t/3ud7/T7373O2VnZ2vLli2aPn26Ro4cqcTERN1www2SpKFDh2ro0KE6fvy41q1bp5SUFPXo0UM7d+5U7dq18y1Hhw4d9Nhjj+mTTz7RTz/9pE6dOik2NlZXXXWVVq9erb179+qSSy5RzZo1c322OH9NJRVv/9t+Njs7W2FhYfrpp5+KVdb8+kl+x93ZZSyuKlWqKDk5WePHj8/z/ZwLLn/Sk6QHH3xQffr0yTOmQYMGPv8+t/45552ci6mz7d+/P9fqj/bt26tx48aaMWOGKlasqG3btmn+/Pl+lRsAABRfYdcOZ49fateurRdffFGStHPnTr366qsaO3asTp06pVmzZvmdt7/jdNs0o6Oj9dJLL+X7/tnyG9PlN6Y5V7ly5XTnnXfqoYce0pQpUzRz5kx16NAh19gprzxsx42FjetjYmI0btw4jRs3TgcOHPCuAunZs6f+7//+L98yRERE6Nprr9WaNWt04YUXqlq1amrSpInq1asnSXr//ff17rvvqkePHrk+W9xxf04di7r/bT+bc13l9tg/Pj5e5cqVC/jYvyjjdNs0//WvfxV4XZgjv2MkKytLhw8f9pkAye/6+I477tCkSZP00ksvKSMjQ1lZWfrLX/7iV7kBnD9MfgAIaQ0aNFCNGjW0cOFCjRkzxjtYOX78uF5//XW1atVKFSpUkCTVqVNHBw8e1IEDB7w/Kp86dUrvvPNOkfKOiYnR1VdfrTfeeEOTJ0/23vrq6NGjeuuttwr9fOvWrVWpUiV99dVXrt3+pkePHpo0aZJ+/vnnPJeq22jTpo1effVV/ec///HeWkiSFi9enGd88+bNdc011+ipp57SF198odtvv10xMTEF5tGhQwc9/fTTmj9/vu69917v9tdff13Hjx9Xhw4dcn0mLCxMLVq00KWXXqoFCxZo27Zt3smPHDExMerWrZtOnTqlP/7xj/ryyy8LHOR27NhRDz30kB599FFdeOGFuvTSS73b33zzTe3fv9+v21ud/ZdG0dHRBcYWZ//789k2bdrotdde0/jx4/O9KLFdhXG2Dh06aOLEidq2bZvPCoZXXnlFjuOoXbt21mkVpEePHnr77bd10UUX5bpNQ1E0aNBA9evX12effaYJEyYUKY0WLVooMjJSS5Ys8bkw27Rpk3788cdckx+SNGLECP3lL39RWlqaEhMT1a9fv6JWAQAAFFGrVq0UHR2t+fPn+3wX//TTT1q7dq369u2b5+cuueQSPfLII3r99de1bds27/ZzV2IUxI1xel5pTpgwQZUrV861WsFWmzZt9Pbbb+uXX37xjhVPnz6t1157Lc/4P//5zxo7dqxuvPFGffPNN3rqqacKzaMo40abcX1iYqKGDBmizz77TNOmTdNvv/3mvfbLS8eOHfXggw8qNjbWu7I7JiZGLVu21PTp07V37948V3zn53ztf9vPXnPNNfJ4PJo1a5ZuuOGGfCdt/Llmkc60UYsWLfTGG2/omWee8X7m9OnTmj9/vi688EJdcsklftUpL26M08/VpUsXhYeH67///W+Rb1vcpk0bPf3001qyZIn3ts9S/tfH1atXV79+/TRz5kydOnVKPXv2VK1atYqUN4DAY/IDQEgrV66cnn76ad14443q0aOHhg0bppMnT2ry5Mk6cuSIJk2a5I29/vrr9dhjj+mGG27Qfffdp4yMDP39739XdnZ2kfN/4okn1LVrV3Xq1EmjR49Wdna2nnrqKcXExOR7y6IcFStW1PTp0zV48GAdPnxYffv2VdWqVXXo0CF99tlnOnTokJ5//nm/ytO6dWvdfvvtGjp0qLZs2aLf//73iomJ0b59+7R+/Xo1adLEZ8CWl8GDB+vZZ5/VTTfdpCeffFIXX3yx/vOf/3gnic5+tkqOe+65R9dff70cx/EuSS5Ip06d1KVLF91///1KT09X69attWPHDqWkpOjyyy/XoEGDJEmzZs3S2rVr1b17d9WqVUsZGRnev2zLuTC57bbbFB0drdatW6t69erav3+/Jk6cKI/H47OCJC/NmzdXfHy8Vq1apaFDh3q3d+zYUU888YRPPjaaNGkiSXrqqafUrVs3hYWFKTk5WREREblii7P//fns1KlTde2116pFixZ64IEHdPHFF+vAgQN688039cILLyg2NlaNGzeWJP3jH/9QbGysoqKiVLdu3Txvt5Dj3nvv1SuvvKLu3bvr8ccfV+3atbVixQrNnDlTd9xxhysXQJL0+OOPa/Xq1brmmms0YsQINWjQQBkZGfrhhx/09ttva9asWX4v7X/hhRfUrVs3denSRUOGDFGNGjV0+PBhff3119q2bVu+F/s5EhISNGrUKE2cOFHx8fHq3bu3fvrpJ40bN07Vq1fP8xi56aab9OCDD2rdunV65JFH8uwTAAAgsCpVqqRHH31UDz30kG6++WYNGDBAv/76q8aNG6eoqCilpKRIknbs2KG77rpL/fr1U/369RUREaG1a9dqx44deuCBB7zpNWnSRIsXL9aSJUtUr149RUVFeceD53JjnH6ukSNH6vXXX9fvf/973XvvvUpOTtbp06e1e/durVq1SqNHj1aLFi0KTOPhhx/WW2+9pQ4dOujhhx9WdHS0Zs2a5X323LnjmkqVKunmm2/W888/r9q1a1s969B23Ggzrm/RooV69Oih5ORkxcfH6+uvv9a8efN8/ugtPx06dFB2drbeffddvfzyy97tHTt2VEpKihzH8evZHudr/9t+tmLFipoyZYr+/Oc/q2PHjrrtttuUmJio7777Tp999plmzJjhLbdkd82SY+LEierUqZPatWunMWPGKCIiQjNnztQXX3yhRYsWubI6Rir+OP1cderU0eOPP66HH35Y33//vbp27ar4+HgdOHBAn3zyiXclUUG6du2q1q1ba/To0UpPT1fz5s21ceNGvfLKK5Lyvz7OOfbmzJnjV5kBnGdBecw6AOThvffeM5LMa6+9luu9ZcuWmRYtWpioqCgTExNjOnToYD766KNccW+//bZp1qyZiY6ONvXq1TMzZswwKSkp5tzTnSRz55135vp87dq1zeDBg322vfnmmyY5OdlERESYWrVqmUmTJuWZZn4++OAD0717d5OQkGDKly9vatSoYbp37+5Tz5z0Dh065PPZOXPmGElm165dPttfeukl06JFCxMTE2Oio6PNRRddZG6++WazZcsWb0ybNm1Mo0aN8izT7t27TZ8+fUzFihVNbGys+dOf/mTefvttI8n8+9//zhV/8uRJExkZabp27ZpneoMHDza1a9f22XbixAlz//33m9q1a5vy5cub6tWrmzvuuMOkpqZ6YzZu3Gh69+5tateubSIjI03lypVNmzZtzJtvvumNefnll027du1MYmKiiYiIMElJSaZ///5mx44deZblXL179zaSzIIFC7zbTp06ZWJiYky5cuV8ymNM/vsipx3+/Oc/mwsuuMA4jpPnvjmXzf7Pbz/bfNYYY7766ivTr18/U7lyZW8/HTJkiMnIyPDGTJs2zdStW9eEhYUZSWbOnDnGmIL7yY8//mgGDhxoKleubMqXL28aNGhgJk+ebLKzs70xu3btMpLM5MmTc31ekklJSSmwfYwx5tChQ2bEiBGmbt26pnz58iYhIcE0b97cPPzww+bYsWNFyuezzz4z/fv3N1WrVjXly5c31apVM+3btzezZs3yxuS0++bNm3Olefr0afPkk0+aCy+80ERERJjk5GSzfPly07RpU9O7d+886zFkyBATHh5ufvrpp0LrDAAAii+/MdQ///lP7/jd4/GY6667znz55Zfe9w8cOGCGDBliLr30UhMTE2MqVqxokpOTzbPPPmuysrK8cT/88IPp3LmziY2NNZJyjXfzUpxxel5j6mPHjplHHnnENGjQwFufJk2amHvvvdfs37/fG5ff9Y0xxnz44YemRYsWJjIy0lSrVs3cd9995qmnnjKSzJEjR3LFv//++0aSmTRpUp7p5XXNZDNutBnXP/DAA+bKK6808fHxJjIy0tSrV8/ce++95pdffsmzLGc7ffq0qVKlipFkfv75Z+/2jz76yEgyV1xxRa7PFDQWDtT+z2s/237WmDPXvG3atDExMTGmQoUK5rLLLjNPPfWU9/2CrlkK6yft27f35t+yZUvz1ltv+cTkN37OuZZ/7733Cm2j4ozT88tn2bJlpl27diYuLs5ERkaa2rVrm759+5o1a9Z4YwYPHmxiYmLyLNPhw4fN0KFDTaVKlUyFChVMp06dzKZNm4wk87e//S3Pz9SpU8c0bNiw0PoCCC7HGGMCP8UCAAh1EyZM0COPPKLdu3fn+kv7t956S7169dKKFSv0hz/8IUglBIJr165duvTSS5WSkqKHHnrI571Tp06pTp06uvbaa/Xqq68GqYQAAAB2OnfurB9++EE7d+7M9d7o0aP1/PPPa8+ePQWuFAZKs4ULF+rGG2/URx99pGuuucbnvR07dqhp06Z67rnnrO6MACB4uO0VAJRBOUuiL730UmVmZmrt2rX6+9//rptuusln4uOrr77Sjz/+qNGjR6tZs2Y+zwgBSrPPPvtMixYt0jXXXKO4uDh98803evrppxUXF6dbb73VG3fo0CF98803mjNnjg4cOOBzqwwAAIBQMGrUKF1++eWqWbOmDh8+rAULFmj16tXeB77n2LRpk3bu3KmZM2dq2LBhTHygzFi0aJF+/vlnNWnSROXKldOmTZs0efJk/f73v/eZ+Pjvf/+rH3/8UQ899JCqV6+uIUOGBK/QAKww+QEAZVCFChX07LPP6ocfftDJkydVq1Yt3X///XrkkUd84oYPH66PPvpIV1xxhV5++WXX7vUKhLqYmBht2bJFL774oo4cOSKPx6O2bdtq/PjxSkxM9MatWLFCQ4cOVfXq1TVz5kyfh3wCAACEguzsbD322GPav3+/HMfRZZddpnnz5ummm27yict5rkaPHj305JNPBqm0wPkXGxurxYsX68knn9Tx48e9ExvnHgdPPPGE5s2bp4YNG+q1114r9Dk0AIKP214BAAAAAAAAAIBSpVywCwAAAAAAAAAAAOAmJj8AAAAAAAAAAECpwjM/guT06dPau3evYmNjuYc+AAAASj1jjI4ePaqkpCSVK8ffYKFwXDMBAICSLtTGwBkZGTp16lRA0o6IiFBUVFRA0i4qJj+CZO/evapZs2awiwEAAACcV3v27NGFF14Y7GKgBOCaCQAAlBahMAbOyMjQBdHROhag9KtVq6Zdu3aF1AQIkx9BEhsbK+lMx4+LiwtyafLn8Uy0iktLezAo6ZUEHs8X1rFpaY1dzrvstTdwPnBsIVTQFxFobvax9PR01axZ0zsOBgpTUq6ZAABAyVbYmLc411OhNAY+deqUjkm6V1Kky2mflPTs/v06deoUkx+Qd9l2XFxciA/k7TqrfR3cTq8kqGgd6X69y2J7A+cDxxZCBX0RgeZ+H+P2RbBVcq6ZAABAyVbwmNeNcUgojYFjZDvKtxeqkwzBv9EYAAAAAAAAAACAi0J1UgYAAAAAAAAAALio/P9/uSnb5fTcwsoPAAAAAAAAAABQqrDyAwAAAAAAAACAMiBc7k8KhOokQ6iWCyHCmJSQTi8QHGecVZxtXYxJLk5xiiWY7e12OwZCSSijrdJUl5KAdiy+sthnbess+fMdU3rapyRwu986zg7L9MrmWAIAAAAoTGFjdJvxLGPe0ovJDwAAAAAAAAAAyoBwuf/MjyyX03MLkx8AAAAAAAAAAJQBZem2VzzwHAAAAAAAAAAAlCqhOikDAAAAAAAAAABcVF5l57ZXrPwAAAAAAAAAAAClCis/AAAAAAAAAAAoA8rSMz9CtVxlhsczUVKUK2kZk+JKOmWdbTs6zrig5V0SlIS6lIQy2gr1uvhzvIR6XeCOQOxn234WrD7mT76hXpeyKnhjhGSX07NHXwQAACi5ChvLlYYxnBt1KAvtVFYx+QEAAAAAAAAAQBkQLvef+ZHpcnpu4ZkfAAAAAAAAAACgVGHlBwAAAAAAAAAAZQDP/AAAAAAAAAAAAKVKebl/2yu303MLt70CAAAAAAAAAAClCis/AAAAAAAAAAAoA8rSyg8mP4IsLe1BxcXFFRjjOOPOU2mKzraMxqQEuCTnT2mqC3Aut4/pQBwvJeG843YZS0KdgylY9Q7Efimr+7CsKQn7uSSUEQAAAHljLHd+FHxNmHHeyoHcmPwAAAAAAAAAAKAMKEsPPOeZHwAAAAAAAAAAoFQJ1UkZAAAAAAAAAADgonC5/4yOUJ1kYOUHAAAAAAAAAAAoVUJ1UgYAAAAAAAAAALioLD3zI2TKtW7dOk2ePFlbt27Vvn37tHTpUv3xj3/MM3bYsGH6xz/+oWeffVYjR470bj958qTGjBmjRYsW6cSJE+rQoYNmzpypCy+80BuTmpqqESNG6M0335Qk9erVS9OnT1elSpW8Mbt379add96ptWvXKjo6WgMHDtQzzzyjiIgIb8znn3+uu+66S5988okSEhI0bNgwPfroo3Icx696ezwTJUUVEtXbrzTd5DjjrOKMSQlKev6kaSuYdQkWf9ow1OtTmuoSTCWhbdwuYyD6Tklox9IkWOflsrqfgzVGsBXM/VISzk9OgmV6h62zxnlQVq+ZAAAIhMLGWGV1nH++hcJ+KCwPx9lR5M+np6fL45lUpHIFSnm5f9srt9NzS8jc9ur48eNq2rSpZsyYUWDcsmXL9PHHHyspKSnXeyNHjtTSpUu1ePFirV+/XseOHVOPHj2UnZ3tjRk4cKC2b9+ulStXauXKldq+fbsGDRrkfT87O1vdu3fX8ePHtX79ei1evFivv/66Ro8e7Y1JT09Xp06dlJSUpM2bN2v69Ol65plnNHXqVBdaAgAAAABy45oJAAAAsBcyKz+6deumbt26FRjz888/66677tI777yj7t27+7yXlpamF198UfPmzVPHjh0lSfPnz1fNmjW1Zs0adenSRV9//bVWrlypTZs2qUWLFpKk2bNnq1WrVvrmm2/UoEEDrVq1Sl999ZX27NnjvViYMmWKhgwZovHjxysuLk4LFixQRkaG5s6dq8jISDVu3Fg7d+7U1KlTNWrUKP6SCQAAAIDruGYCAABAcYXKba/cWNVcmJBZ+VGY06dPa9CgQbrvvvvUqFGjXO9v3bpVmZmZ6ty5s3dbUlKSGjdurA0bNkiSNm7cKI/H4x3ES1LLli3l8Xh8Yho3buzzV1JdunTRyZMntXXrVm9MmzZtFBkZ6ROzd+9e/fDDD3mW/+TJk0pPT/d5AQAAAIBbuGYCAABASeHGqubClJjJj6eeekrh4eEaMWJEnu/v379fERERio+P99memJio/fv3e2OqVq2a67NVq1b1iUlMTPR5Pz4+XhEREQXG5Pw7J+ZcEydOlMfj8b5q1qxZWJUBAAAAwBrXTAAAAChMuP733A+3XkVZ+dGtWzc9+eST6tOnT74xOauaFyxYoPLl/X+ySImY/Ni6dav+9re/ae7cuX4vjzbG+Hwmr8+7EWOMyfezkvTggw8qLS3N+9qzZ49f9QAAAACA/HDNBAAAgGA7dxXvyZMni5xWYauabZSIyY8PP/xQBw8eVK1atRQeHq7w8HD9+OOPGj16tOrUqSNJqlatmk6dOqXU1FSfzx48eND7F0bVqlXTgQMHcqV/6NAhn5hz/xIpNTVVmZmZBcYcPHhQknL9dVOOyMhIxcXF+bwAAAAAwA1cMwEAAMBGeIBeklSzZk2flbwTJ04scjkLW9VsI2QeeF6QQYMGeR/Il6NLly4aNGiQhg4dKklq3ry5ypcvr9WrV6t///6SpH379umLL77Q008/LUlq1aqV0tLS9Mknn+jqq6+WJH388cdKS0vTNddc440ZP3689u3bp+rVq0uSVq1apcjISDVv3twb89BDD+nUqVOKiIjwxiQlJXkvLGylpT3o2qDeccZZxxqT4mqc2/kGM03bdgxEXYKlrNYl1Pd1II5pt/lTRlvBqktJOA4CUUaOg+IL9TYMFI7V8ycg46fDrieJICvN10wAAARCWRxXhqJQ2A+Os6PA941JPk8lKfn27Nnj81v32c9/80fOquZt27b5var5bCEz+XHs2DF999133n/v2rVL27dvV0JCgmrVqqXKlSv7xJcvX17VqlVTgwYNJEkej0e33nqrRo8ercqVKyshIUFjxoxRkyZNvBcBDRs2VNeuXXXbbbfphRdekCTdfvvt6tGjhzedzp0767LLLtOgQYM0efJkHT58WGPGjNFtt93m3XEDBw7UuHHjNGTIED300EP69ttvNWHCBD322GPF2hkAAAAAkB+umQAAAFBcOc/pcDtNSa6t3j17VXOO7OxsjR49WtOmTdMPP/xglU7ITH5s2bJF7dq18/571KhRkqTBgwdr7ty5Vmk8++yzCg8PV//+/XXixAl16NBBc+fOVVhYmDdmwYIFGjFihDp37ixJ6tWrl88T5cPCwrRixQoNHz5crVu3VnR0tAYOHKhnnnnGG+PxeLR69WrdeeeduvLKKxUfH69Ro0Z5ywwAAAAAbuOaCQAAAGWBzapmGyEz+dG2bVvvA/Bs5DW7ExUVpenTp2v69On5fi4hIUHz588vMO1atWpp+fLlBcY0adJE69atsyorAAAAABQX10wAAAAorrOf0eFmmv4q7qrmQJULAAAAAAAAAACUMOFy/7ZXRZlkcGNVcyDKBQAAAAAAAAAAUCRurGouDJMfAAAAAAAAAACUAYF84HmoYfKjFDEmJdhFKBVs29FxxrmaXjDZ1kVyv33c5k97h/q+CWb5SlP/DibasfgC0TZu75fAlHGHZd7JrucNAADyVtgYgjEdYI/jCaGkuNdVBffnjGKljeJh8gMAAAAAAAAAgDIgVB54fj6UC3YBAAAAAAAAAAAA3BSqkzIAAAAAAAAAAMBF4WFSecflNI2kbHfTdAMrPwAAAAAAAAAAQKnCyg8AAAAAAAAAAMqA8HApvIys/GDyI8g8nomSogqMMSbl/BQmD46zwzJyqVWUbV0cZ5xlvvbcbsfg7hd32yeYdZF6W0UZk+x6zrbtGKz28Wc/B6t/B6INQ32/+IMyhqaSUOdAnPNCXUnYLwBQWhU2/uIcfQbtALiH4wkInvIBuO1VeeNuem7htlcAAAAAAAAAAKBUYeUHAAAAAAAAAABlQMBuexWCWPkBAAAAAAAAAABKFVZ+AAAAAAAAAABQBpQPk8q7vCSi/Gl303MLKz8AAAAAAAAAAECpwsoPAAAAAAAAAADKgjC5vyTC5WeIuMUxxoTo40hKt/T0dHk8HkkPSIo67/kbk3Le8yyrHGecdaztfrFNk/2MUBGI48BtJaOMO6zijEkOcEkQaME6zwfzOCiL321lrc4549+0tDTFxcUFuzgoAegzAEKRzfd3afnuBkqDYB+zoTSe8ZalihTn8uRH+mnJ84tCop5nY+UHAAAAAAAAAABlQbjcX/kRos/8YPIDAAAAAAAAAICyoAxNfvDAcwAAAAAAAAAAUKqw8gMAAAAAAAAAgLKAlR8AAAAAAAAAAAAlEys/AAAAAAAAAAAoC8pJCgt2Ic4PJj+CLC3tQcXFxbmSluOMcyWdQOZtTIqr6fmX5g7L9JIt03O3zoFKM1jKYl3cFoi2CdZ+KQn7uSQcq7bnp9LE9twtuX/+ts/X/f4drGMmmMdqSThP2CqL34EloS4AALiB7zzg/Cru9ZvNMVtYHhz3JReTHwAAAAAAAAAAlAXhcn/lh+Nyei7hmR8AAAAAAAAAAKBUYeUHAAAAAAAAAABlQRla+cHkBwAAAAAAAAAAZUGYyswDz7ntFQAAAAAAAAAAKFVY+RFkHs9ESVEFxhiTYpWWbZw/HGecq3k7zg5X0/PPUsu4ZMu43lZRtnWW3K+37f7zR2D2TXC43R/dPl4CoXTtP9v+bXesGmN77Jeudgx1/uyXknAMhjq+N9wRzO9zt/Mui/sPAACgpChsnFgaxnLnow6F5VHq2rkM3faKlR8AAAAAAAAAAKBUYeUHAAAAAAAAAABlQZjKzKwAKz8AAAAAAAAAAECpUkbmeAAAAAAAAAAAKOPC5P4zP4zL6bmElR8AAAAAAAAAAKBUYeUHAAAAAAAAAABlQbjKzKyAY4wJ0UUppVt6ero8Ho/S0tIUFxcX7OIAQeM446zijEkJcElKtrLYjsGsc1ls72CxbetAYP+FJo6/ggWrfezyzZA0ifEvrHHNBAAAzofiXncWNLYOpfGMtyxtpDiXJz/SsyTPBwqJep6N214BAAAAAAAAAIBSpYwscAEAAAAAAAAAoIwrQ7e9YuUHAAAAAAAAAAAoVcrIHA8AAAAAAAAAAGVcOUlhLqd52uX0XMLKDwAAAAAAAAAAUKqw8gMAAAAAAAAAgLIgEM/8MC6n5xImP0oRxxnneprGpLieJs4f2z4RiP3sdt6Os8MyvWSruDNpul3G4LW320pCXcpi3iVhv7itJNSlLO4XhK5g9TObfNPT0+XxTDoPpQEAAEBZUdjvRf78TpR/GlzLlVRMfgAAAAAAAAAAUBaw8gMAAAAAAAAAAJQqYeKB5wAAAAAAAAAAACURKz8AAAAAAAAAACgLytBtr1j5AQAAAAAAAAAAShXHGBOi8zKlW3p6ujwej9LS0hQXF1dgrOOMs0s0PsU6f3PYLs5xdtilZ5Kt80b+bPe1Mfb7GggF1ucxud+/S8JxVRLKWBb502/d5v5xYPd9Li21TjPU+6N9ne3HMW4fq8E89oORtz/jX0CizwAAgMLH9efjN8nilCGUxjPeslwvxUW4nPYpybNEIVHPs7HyAwAAAAAAAAAAlCohM/mxbt069ezZU0lJSXIcR8uWLfO+l5mZqfvvv19NmjRRTEyMkpKSdPPNN2vv3r0+aZw8eVJ33323qlSpopiYGPXq1Us//fSTT0xqaqoGDRokj8cjj8ejQYMG6ciRIz4xu3fvVs+ePRUTE6MqVapoxIgROnXqlE/M559/rjZt2ig6Olo1atTQ448/LhbRAAAAAAgUrpkAAABQbGEBeoWgkJn8OH78uJo2baoZM2bkeu+3337Ttm3b9Oijj2rbtm164403tHPnTvXq1csnbuTIkVq6dKkWL16s9evX69ixY+rRo4eys7O9MQMHDtT27du1cuVKrVy5Utu3b9egQYO872dnZ6t79+46fvy41q9fr8WLF+v111/X6NGjvTHp6enq1KmTkpKStHnzZk2fPl3PPPOMpk6dGoCWAQAAAACumQAAAAB/uP1c9yLr1q2bunXrlud7Ho9Hq1ev9tk2ffp0XX311dq9e7dq1aqltLQ0vfjii5o3b546duwoSZo/f75q1qypNWvWqEuXLvr666+1cuVKbdq0SS1atJAkzZ49W61atdI333yjBg0aaNWqVfrqq6+0Z88eJSUlSZKmTJmiIUOGaPz48YqLi9OCBQuUkZGhuXPnKjIyUo0bN9bOnTs1depUjRo1So7jBLClAAAAAJRFXDMBAACg2MLl/qzAaZfTc0nIrPzwV1pamhzHUaVKlSRJW7duVWZmpjp37uyNSUpKUuPGjbVhwwZJ0saNG+XxeLyDeElq2bKlPB6PT0zjxo29g3hJ6tKli06ePKmtW7d6Y9q0aaPIyEifmL179+qHH37Is7wnT55Uenq6zwsAAAAAAoVrJgAAAOQSHqBXCCqRkx8ZGRl64IEHNHDgQO/T4/fv36+IiAjFx8f7xCYmJmr//v3emKpVq+ZKr2rVqj4xiYmJPu/Hx8crIiKiwJicf+fEnGvixInee+Z6PB7VrFnT32oDAAAAgBWumQAAAFDWheicTP4yMzN1ww036PTp05o5c2ah8cYYnyXVeS2vdiMm58F9+S3ffvDBBzVq1Cjvv9PT060H88akWMX5w3HGBS1vtwWrLrb5Sr2t0wxWe9vXxb6Mbu8X+mzJ5k9daJ/iC8Qx7Xbewfxuc5v9eWyHdZput6MxyZY528bZs623fRntuJ3emTTd7bfBPI+VpnMociuL10wAAKB0KmxcH6zrQN8yLC3g3YzzVg5r3PYqNGVmZqp///7atWuXVq9e7f0LJkmqVq2aTp06pdTUVJ/PHDx40PsXRtWqVdOBAwdypXvo0CGfmHP/Eik1NVWZmZkFxhw8eFCScv11U47IyEjFxcX5vAAAAADATVwzAQAAoCRYt26devbsqaSkJDmOo2XLlnnfy8zM1P33368mTZooJiZGSUlJuvnmm7V3716/8igxkx85g/hvv/1Wa9asUeXKlX3eb968ucqXL+/zkL99+/bpiy++0DXXXCNJatWqldLS0vTJJ594Yz7++GOlpaX5xHzxxRfat2+fN2bVqlWKjIxU8+bNvTHr1q3TqVOnfGKSkpJUp04d1+sOAAAAAIXhmgkAAACFKicpzOVXEWYZjh8/rqZNm2rGjBm53vvtt9+0bds2Pfroo9q2bZveeOMN7dy5U7169fIrj5C57dWxY8f03Xffef+9a9cubd++XQkJCUpKSlLfvn21bds2LV++XNnZ2d6/IkpISFBERIQ8Ho9uvfVWjR49WpUrV1ZCQoLGjBmjJk2aqGPHjpKkhg0bqmvXrrrtttv0wgsvSJJuv/129ejRQw0aNJAkde7cWZdddpkGDRqkyZMn6/DhwxozZoxuu+02718eDRw4UOPGjdOQIUP00EMP6dtvv9WECRP02GOP5buEGwAAAACKg2smAAAAlBbdunVTt27d8nzP4/H4/MGOJE2fPl1XX321du/erVq1alnlETKTH1u2bFG7du28/8651+vgwYM1duxYvfnmm5KkZs2a+XzuvffeU9u2bSVJzz77rMLDw9W/f3+dOHFCHTp00Ny5cxUWFuaNX7BggUaMGKHOnTtLknr16uUzuxQWFqYVK1Zo+PDhat26taKjozVw4EA988wz3picxr/zzjt15ZVXKj4+XqNGjfK5Py0AAAAAuIlrJgAAABRbIJ75kX3mP+np6T6bIyMjFRkZ6UoWaWlpchxHlSpVsv5MyEx+tG3b1vsAvLwU9F6OqKgoTZ8+XdOnT883JiEhQfPnzy8wnVq1amn58uUFxjRp0kTr1q0rtEwAAAAA4AaumQAAABDKatas6fPvlJQUjR07ttjpZmRk6IEHHtDAgQP9ei5cyEx+AAAAAAAAAACAAArgyo89e/b4TE64seojMzNTN9xwg06fPq2ZM2f69VkmP4LM45koKarAGGNSrNJynHHW+bqdpm16tkpCXdyus+RfvW0Esy7up9nb5fSC178Dwe26OM4Oy5yXuppvIAQz72D1sZLQ3oFom1A/Vo1J9iPaLtb6eyPe8vvgsF1y/vCv3shLSRgXAQAAAMHgxni10LFxIddTBV1Hpaeny+OZVIRSBVDOQ8rdTlNSXFycXyszCpOZman+/ftr165dWrt2rd9pM/kBAAAAAAAAAABCRs7Ex7fffqv33ntPlStX9jsNJj8AAAAAAAAAACgLAnjbK38cO3ZM3333nfffu3bt0vbt25WQkKCkpCT17dtX27Zt0/Lly5Wdna39+/dLOvN8uoiICKs8mPwAAAAAAAAAAADnzZYtW9SuXTvvv0eNGiVJGjx4sMaOHas333xTktSsWTOfz7333ntq27atVR5MfgAAAAAAAAAAUBaEyf1ZgSz/P9K2bVsZY/J9v6D3bJUrdgoAAAAAAAAAAAAhhJUfAAAAAAAAAACUBYF45keIzjKEaLFQNL2DXYBCOc44qzhjUlzPOxBp2nAS7GNty2jbjsEUvDImW0cGq0+UhP5tjG072sUFoj+4fT7xp4y2abqddyD6TrDyLk11CQS3jxlz2NXkJAXvPE/fKZj9fnF33GiXb4areQJAqCnsXFgSvkcAlC6Os6PA9+2v/UOXG3Xk/Fx6MfkBAAAAAAAAAEBZEPb/X26nGYJ45gcAAAAAAAAAAChVWPkBAAAAAAAAAEBZwDM/AAAAAAAAAABAqVKGJj+47RUAAAAAAAAAAChVQnROpuxIS3tQcXFxBcY4zg7L1JZa5+s4drHGpFimN84y596W6dnWWTIm2TJNuzK6XWfb9PwRiDTdVhLKWJr6hK2SUMaS0Hds2Z8bQ5/bdSlNx0Egjiu32ycQY4lQP1b96bOhXpdQLx8A4AzO1wBCje1vZiVZWaij68rJ/QeUh+gSixAtFgAAAAAAAAAAQNGw8gMAAAAAAAAAgLKAZ34AAAAAAAAAAACUTCE6JwMAAAAAAAAAAFzFyg8AAAAAAAAAAICSKUTnZAAAAAAAAAAAgKvC/v/L7TRDkGOMMcEuRFmUnp4uj8cj6QFJUQXGGpNyXsqUF8cZZxVnW0a30zuT5g7LNJOt0wTOZttvpd5WUfRFd3Ds58++z7rP7e+DQORdErjdv4P5/SsttU7TRmnaz2VNzvg3LS1NcXFxwS4OSgD6DAAAOB+Ke31a0DVKKI1nvGX5hxQX7XLaJyTP7QqJep6N214BAAAAAAAAAIBShdteAQAAAAAAAABQFoTJ/VmBEL3tFSs/AAAAAAAAAABAqcLKDwAAAAAAAAAAyoJwuT8rEKKzDKz8AAAAAAAAAAAApUqIzskAAAAAAAAAAABXhcn9Z3SE6DM/mPwIsrS0BxUXF1dgjOOMs0ytt3W+xiRbx9qwL6Nlegn2sW7XxW3+tI0xKQEsyfnldp8IZtvY5u04OwJckoLytmtvt+sS6sdfWVUSziWBKGOo99tAfB+4fez7w7YdHWepZXrulrE0tXdZHUsAABAIhX2v8l0KW8XtSzZjPPpj8Vn9xhhfcDubw4XkUeC+zLAoAAKFyQ8AAAAAAAAAAMqCMvTMjxAtFgAAAAAAAAAAcFUZmvzggecAAAAAAAAAAKBUCdE5GQAAAAAAAAAA4Kpycv8B5SG6xCJEiwUAAAAAAAAAAFA0rPwoEXpbRRmTHOBynD/msPtpOs44V9MzJsXVOCl4ZQyEYOXtODusY90+ZoJ5DLrf3kst4+zq7F/ftjvnlQTBOqbdzjfYebsv9L8vS0I72pbR7b4TzO9ft8+1wcrXHyWhjAAA+KMkfGcV9v1bEupQFhR3P7Af7RT2O09hv8XY/MZY+Ji3lO0rnvkBAAAAAAAAAABQMoXonAwAAAAAAAAAAHAVKz8AAAAAAAAAAABKphCdkwEAAAAAAAAAAK4K+/8vt9MMQUx+AAAAAAAAAABQFnDbKwAAAAAAAAAAgJIpROdkcDZjkoOYd4qr6TnOOFfT84fbdbHlT52DVcZgsm0f+7ZZ6kfuwTu23OY4O6zibM8nweyLtmW07TuOY9cngltnu7zt97N9XYJ1Xi5N57tAtGFJ+P51u4wl4RgsLfkCAIDQxhgB+J/CfiMo7FrH5ngq7jFX0OfT09Pl8UwqVvquC5P7swIhetsrVn4AAAAAAAAAAIBShZUfAAAAAAAAAACUBTzzAwAAAAAAAAAAoGQK0TkZAAAAAAAAAADgqjC5/4wOnvkBAAAAAAAAAAAQeKz8AAAAAAAAAACgLChDz/wI0WKhtDImxSrOcXb4kWZyUYtTzLyXuppvIDjOOKs42/0SCG7n7U96tu0TiLxt+FM++2PL3T7hz7HqtpLQ3m63o9vnuzNpBu8YDHXBPIc6CXZx5rBlXAnYL/bHYG/X8w7EsWXD7e8hf7h9HgMAAIB/bMaCjMUKb6fz0UbFG7dnuFYO14TJ/VkBbnsFAAAAAAAAAAAQeKz8AAAAAAAAAACgLOCB5+ffunXr1LNnTyUlJclxHC1btsznfWOMxo4dq6SkJEVHR6tt27b68ssvfWJOnjypu+++W1WqVFFMTIx69eqln376yScmNTVVgwYNksfjkcfj0aBBg3TkyBGfmN27d6tnz56KiYlRlSpVNGLECJ06dcon5vPPP1ebNm0UHR2tGjVq6PHHH5cxxrX2AAAAAICzcc0EAAAA2AuZyY/jx4+radOmmjFjRp7vP/3005o6dapmzJihzZs3q1q1aurUqZOOHj3qjRk5cqSWLl2qxYsXa/369Tp27Jh69Oih7Oxsb8zAgQO1fft2rVy5UitXrtT27ds1aNAg7/vZ2dnq3r27jh8/rvXr12vx4sV6/fXXNXr0aG9Menq6OnXqpKSkJG3evFnTp0/XM888o6lTpwagZQAAAACAayYAAAC4IDxArxAUMsXq1q2bunXrlud7xhhNmzZNDz/8sPr06SNJevnll5WYmKiFCxdq2LBhSktL04svvqh58+apY8eOkqT58+erZs2aWrNmjbp06aKvv/5aK1eu1KZNm9SiRQtJ0uzZs9WqVSt98803atCggVatWqWvvvpKe/bsUVJSkiRpypQpGjJkiMaPH6+4uDgtWLBAGRkZmjt3riIjI9W4cWPt3LlTU6dO1ahRo+Q4Tq46nDx5UidPnvT+Oz093dX2AwAAAFC6cc0EAAAA2AuZyY+C7Nq1S/v371fnzp292yIjI9WmTRtt2LBBw4YN09atW5WZmekTk5SUpMaNG2vDhg3q0qWLNm7cKI/H4x3ES1LLli3l8Xi0YcMGNWjQQBs3blTjxo29g3hJ6tKli06ePKmtW7eqXbt22rhxo9q0aaPIyEifmAcffFA//PCD6tatm6sOEydO1Lhx43Jt93gmSooqsP7GpFi1k+PssIo7k2aydaxd3rnrlne+dnVxu3z+sM3bcZa6nrdtO9qybe+yyv7Ycne/2PJn/7l9DNqyP15czfb/p+l2nXsXvTDFZnc+sT3vlKZj37/jz24f2n/HBK9PmMNByzpoSkK/dX+8436dbceDtnHBHJPBP6X5mgkAgNIoFMa/hY1vz0cZA10GmzF8cfMo6PPp6enyeCYVK33XBWKlRojOMoTMba8Ksn//fklSYmKiz/bExETve/v371dERITi4+MLjKlatWqu9KtWreoTc24+8fHxioiIKDAm5985Med68MEHlZaW5n3t2bOn8IoDAAAAgAWumQAAAABfITonk7dzl0YbY/JcLl1QTF7xbsTkPLgvv/JERkb6/NUTAAAAALiNayYAAAAUiJUfoaVatWqScv+F0MGDB71/PVStWjWdOnVKqampBcYcOHAgV/qHDh3yiTk3n9TUVGVmZhYYc/DgQUm5/9IKAAAAAAKNayYAAADYMOUkE+byK0RnGUK0WL7q1q2ratWqafXq1d5tp06d0gcffKBrrrlGktS8eXOVL1/eJ2bfvn364osvvDGtWrVSWlqaPvnkE2/Mxx9/rLS0NJ+YL774Qvv27fPGrFq1SpGRkWrevLk3Zt26dTp16pRPTFJSkurUqeN+AwAAAABAAbhmAgAAAHyFzOTHsWPHtH37dm3fvl3SmQf2bd++Xbt375bjOBo5cqQmTJigpUuX6osvvtCQIUNUoUIFDRw4UJLk8Xh06623avTo0Xr33Xf16aef6qabblKTJk3UsWNHSVLDhg3VtWtX3Xbbbdq0aZM2bdqk2267TT169FCDBg0kSZ07d9Zll12mQYMG6dNPP9W7776rMWPG6LbbblNcXJwkaeDAgYqMjNSQIUP0xRdfaOnSpZowYYJGjRpV6JJyAAAAACgKrpkAAABQXNnhgXmFopAp1pYtW9SuXTvvv0eNGiVJGjx4sObOnau//vWvOnHihIYPH67U1FS1aNFCq1atUmxsrPczzz77rMLDw9W/f3+dOHFCHTp00Ny5cxUWFuaNWbBggUaMGKHOnTtLknr16qUZM2Z43w8LC9OKFSs0fPhwtW7dWtHR0Ro4cKCeeeYZb4zH49Hq1at155136sorr1R8fLxGjRrlLTMAAAAAuI1rJgAAAMCeY3KeOofzKj09XR6PR9JHkioWGGtM8nkpU14cZ1zQ8rZlTIpVnOPssEzPrr1t28a2fMHk337ubRXldr8NRHuXpn0YLLbHlbTUOk37Y7r07D+3z7Uloc7B5HbfKQnnJ44Xd7jd3oFh9z3tz3nZhk3b5Ix/09LSvKsDgILQZwAACKzCxq02Yzw30ijNQmk8k1OWg/skt4uSni5VrS6/6rlu3TpNnjxZW7du1b59+7R06VL98Y9/9L5vjNG4ceP0j3/8w/uHPc8995waNWpkXa6Que0VAAAAAAAAAAAo/Y4fP66mTZv6rDA+29NPP62pU6dqxowZ2rx5s6pVq6ZOnTrp6NGj1nmEzG2vAAAAAAAAAABA4GSFOcoKc/cZbFlhRpJ/N5jq1q2bunXrlud7xhhNmzZNDz/8sPr06SNJevnll5WYmKiFCxdq2LBhVnmw8gMAAAAAAAAAABRLenq6z+vkyZNFSmfXrl3av3+/9xl0khQZGak2bdpow4YN1ukw+QEAAAAAAAAAQBmQHR4ekJck1axZUx6Px/uaOHFikcq4f/9+SVJiYqLP9sTERO97NrjtFQAAAAAAAAAAZUB2WJiyXb7tVXaYkZSpPXv2+DzwPDIysljpOo5vOY0xubYVhMkPAAAAAAAAAABQLHFxcT6TH0VVrVo1SWdWgFSvXt27/eDBg7lWgxSEyY8gS0trXGiHcJwdVmkZk2ydr5NgG9nbMm6pVZQxKVZxjjPOMl9/2JXRceziSgLbdrTdL4Hg9r62PV6k4NW7ROwXy3OE7XknEMeV2+0TiPOObRmDe250V0no38HM25bbZQxEnUN9Xwd3P9uNn/wZu7kvmHkDAFB0hY1BAj0GsBkDlYTxZnEFez/g/AiF/l7Y7zxujKmL258L/nxGEUoUWKcVpmy5u/LjtJ8POy9M3bp1Va1aNa1evVqXX365JOnUqVP64IMP9NRTT1mnw+QHAAAAAAAAAAA4b44dO6bvvvvO++9du3Zp+/btSkhIUK1atTRy5EhNmDBB9evXV/369TVhwgRVqFBBAwcOtM6DyQ8AAAAAAAAAAMqALIUpy+WVH1lFWPmxZcsWtWvXzvvvUaNGSZIGDx6suXPn6q9//atOnDih4cOHKzU1VS1atNCqVasUGxtrnQeTHwAAAAAAAAAA4Lxp27atjMl/0sRxHI0dO1Zjx44tch5MfgAAAAAAAAAAUAZkK0zZKudymqddTc8t7tYSAAAAAAAAAAAgyFj5AQAAAAAAAABAGRCYlR/uPkPELY4p6MZaCJj09HR5PB5JD0iKKjDWmBSrNB1nnHX+7qfZ2zLfZMv07PlTbxtut41teoFK0818A5G320pCXRxnh1VccI8Xu2NaWlrUouTL9fNTvF165rBdcoEQrGP/TN7B649uc7sd3W6bknB+QsHc72PBO/aDIWf8m5aWpri4uGAXByVASekzhR3LpeUYBgAgFLn9u6D7MiRNConxTM7Y6rO0RMXGuTv5cTT9tJp6DoREPc/Gba8AAAAAAAAAAECpwm2vAAAAAAAAAAAoA8rSba9Y+QEAAAAAAAAAAEoVVn4AAAAAAAAAAFAGZCtMWaz8AAAAAAAAAAAAKHlY+RFkaWkPKi4ursAYxxlnlZYxKdb52qYp9bbMO9ku34GW2S6yLZ89f9onGOkFQiD6jtvs+2LwuN2OtsdLINiW0XF2BLgkxVcyjkF32zEgx0u8bZ9wN+9A7D/301xqGWd7TNt9p5ZVwfzOCt53Uej3iZIwlgCCjf4PoDQqbAzAua9wtOEZgW4HN9qx0DFvIdfN5nD+76Wnp8vjmVSEUgVOtsID8MyP066m5xZWfgAAAAAAAAAAgFKFlR8AAAAAAAAAAJQB2SqnbIW5nGZoYuUHAAAAAAAAAAAoVVj5AQAAAAAAAABAGZCtsDKz8oPJDwAAAAAAAAAAyoAshSnL5cmPLFdTcw+3vQIAAAAAAAAAAKWKY4wxwS5EWZSeni6Px6O0tDTFxcWd9/wdZ4ddYHyyVZg5XIzCnCeOM84ysrdVlDF2bVMS2LeNPWNSXE3Ptoxu5xuIvANRl2C1j5NgF1cSzhH+cP2YibfbL7bt6E/5gnWs2p5rpaXWeQfi+EfZELRzaAC+f625fN6xEezxL0oe+gwAACVf4b9BFnbNV/C1Y6j/PhdK45mcsqxJa6KYOHdXfhxPz1ZHz+chUc+zsfIDAAAAAAAAAACUKjzzAwAAAAAAAACAMqAsPfCclR8AAAAAAAAAAKBUYeUHAAAAAAAAAABlACs/AAAAAAAAAAAASihWfgAAAAAAAAAAUAZkq1wAVn4YV9NzC5MfJYDjjLOKMybFOk1jkl3N23Gssw4a2/axrbNk14aB4Dg7LCOXWsb1ts7btu/Ysm7vAfb9u7Sw74vu92/r80lq8M4R7h/TQcw71faYtjv+/Pk+sG8fu/OEP3nbCd651lYw+5jbAnHecTvvYLWN5M/3r51AnMeC2T5AqCrsGOK4AQAUxfn4finutUYofMcV9juS4xT821Xhn3fjeqyw613b39fyklGMzwZGlsKU5fLkR1aITn5w2ysAAAAAAAAAAFCqsPIDAAAAAAAAAIAyIFvhynZ5WoAHngMAAAAAAAAAAJwHrPwAAAAAAAAAAKAMOK0w1x94fppnfgAAAAAAAAAAAAQeKz+CzOOZKCmqwBhjUs5PYYrBtoyOMy7AJQm9vINZZ3tLrSMdxz7WTm+rKLPQ5WwDwHZfB+KYdjvvYNalNHH/3Jhc9MIUkzHu5h2IPhas48BWYI79HZZ52+4/u3NyILjdPoH4/rVtR7eP6ZLRd4DQVdxjqLBjmvEQQklxv//oz8jBua9w56MNSkI7FzauLGw8Wdw6FvZ5m/NiYWV0nMJScPu3ssDKDsDKj2xWfgAAAAAAAAAAAAQeKz8AAAAAAAAAACgDslROWS6v/MjSaVfTcwuTHwAAAAAAAAAAlAHZCle2y9MC3PYKAAAAAAAAAADgPGDlBwAAAAAAAAAAZUBgHngemre9YuUHAAAAAAAAAAAoVVj5EWRpaQ8qLi6uwBjH2WGZ2tLiF+hc8SlWYY4zzv28XWaMXV1sBaLObpcRBbPfh70t4wJwDJYS9ucxe8YkW8a5f1y533fs4mzb0bZtJAXxPG9bZ/t83d7XJeGcbLuvA/M9HZy8bfeLP/vP9thyuy6BGOPZ19s2TT/OJ0ApVRK+D4Ac9Fe4hb4Ee4WNKwseTxZ7jG15TVtwGQoZlw8ouA5mYf7vp6eny+OZVJRiBQwrPwAAAAAAAAAAAEooVn4AAAAAAAAAAFAGZCtMWaz8AAAAAAAAAAAAKHlKzORHVlaWHnnkEdWtW1fR0dGqV6+eHn/8cZ0+/b9ZJWOMxo4dq6SkJEVHR6tt27b68ssvfdI5efKk7r77blWpUkUxMTHq1auXfvrpJ5+Y1NRUDRo0SB6PRx6PR4MGDdKRI0d8Ynbv3q2ePXsqJiZGVapU0YgRI3Tq1KmA1R8AAAAACsI1EwAAAAqTrfCAvEJRiZn8eOqppzRr1izNmDFDX3/9tZ5++mlNnjxZ06dP98Y8/fTTmjp1qmbMmKHNmzerWrVq6tSpk44ePeqNGTlypJYuXarFixdr/fr1OnbsmHr06KHs7GxvzMCBA7V9+3atXLlSK1eu1Pbt2zVo0CDv+9nZ2erevbuOHz+u9evXa/HixXr99dc1evTo89MYAAAAAHAOrpkAAABQmGyV8z703L1XaE4zhOaUTB42btyo6667Tt27d5ck1alTR4sWLdKWLVsknfkLpmnTpunhhx9Wnz59JEkvv/yyEhMTtXDhQg0bNkxpaWl68cUXNW/ePHXs2FGSNH/+fNWsWVNr1qxRly5d9PXXX2vlypXatGmTWrRoIUmaPXu2WrVqpW+++UYNGjTQqlWr9NVXX2nPnj1KSkqSJE2ZMkVDhgzR+PHjFRcXd76bBwAAAEAZxzUTAAAA8D8lZvLj2muv1axZs7Rz505dcskl+uyzz7R+/XpNmzZNkrRr1y7t379fnTt39n4mMjJSbdq00YYNGzRs2DBt3bpVmZmZPjFJSUlq3LixNmzYoC5dumjjxo3yeDzeQbwktWzZUh6PRxs2bFCDBg20ceNGNW7c2DuIl6QuXbro5MmT2rp1q9q1a5er/CdPntTJkye9/05PT5ckeTwTJUUVXPn4FMtWSraMk5Q6zirMHLZLzkmwK6N1egPt4iTJLLRM07Grs9TbPnMLxtjuP/sy+pNmqAtmnd1O03Es4xLs4myPF8n9utimF4j9Z5um4yy1S9DyHOpPe9syxu687Dg7LFO0q7N12wSA+8eVfV3sz/N2gnmudfs7KxB1cb+MfoxjXGaft+UxbTuOWeRun5WC971ql2+Gq3kit9J6zYTCFXYMlqbrh/zQBkBo4ZgsO4q7Lwv7fKF9qdBr+cLLV+hYdlEhn19U0HVr6I2Bc1ZruJ1mKCoxkx/333+/0tLSdOmllyosLEzZ2dkaP368BgwYIEnav3+/JCkxMdHnc4mJifrxxx+9MREREYqPj88Vk/P5/fv3q2rVqrnyr1q1qk/MufnEx8crIiLCG3OuiRMnatw49y9wAQAAAEDimgkAAAA4W2jejCsPS5Ys0fz587Vw4UJt27ZNL7/8sp555hm9/PLLPnHOOX96bYzJte1c58bkFV+UmLM9+OCDSktL87727NlTYJkAAAAAwB9cMwEAAKAw7j/vw/2VJG4pMSs/7rvvPj3wwAO64YYbJElNmjTRjz/+qIkTJ2rw4MGqVq2apDN/YVS9enXv5w4ePOj9i6Nq1arp1KlTSk1N9flLpoMHD+qaa67xxhw4cCBX/ocOHfJJ5+OPP/Z5PzU1VZmZmbn+uilHZGSkIiMji1p9AAAAACgQ10wAAADA/5SYlR+//fabypXzLW5YWJhOnz4tSapbt66qVaum1atXe98/deqUPvjgA+8gvXnz5ipfvrxPzL59+/TFF194Y1q1aqW0tDR98skn3piPP/5YaWlpPjFffPGF9u3b541ZtWqVIiMj1bx5c5drDgAAAACF45oJAAAAhclWmLJcfrHyo5h69uyp8ePHq1atWmrUqJE+/fRTTZ06VbfccoukM0uqR44cqQkTJqh+/fqqX7++JkyYoAoVKmjgwDNPnfR4PLr11ls1evRoVa5cWQkJCRozZoyaNGmijh07SpIaNmyorl276rbbbtMLL7wgSbr99tvVo0cPNWjQQJLUuXNnXXbZZRo0aJAmT56sw4cPa8yYMbrtttsUFxcXhNYBAAAAUNZxzQQAAAD8T4mZ/Jg+fboeffRRDR8+XAcPHlRSUpKGDRumxx57zBvz17/+VSdOnNDw4cOVmpqqFi1aaNWqVYqNjfXGPPvsswoPD1f//v114sQJdejQQXPnzlVY2P9mpxYsWKARI0aoc+fOkqRevXppxowZ3vfDwsK0YsUKDR8+XK1bt1Z0dLQGDhyoZ555xu96paU9WOjg33F2+J1u4XpbRTmO7QMH7dKTku3CFvnxoMOFKfaxFoyxK6Oz0DLOug2Dx58+Zts+9mz7Tkmw1DLO/b5jjLvHQWDOO3bcroutQByr7qdpebzE+3Gcptrta/ePfffZ9h3b/eIkWOZ72C4uEMe0dV0c2/OT++dk6+9Vy7oE6xwhlYzv9GC1j02+6enp8ngmnYfSlF2l9ZoJhQvmuTFU0AZAaAn0MWkzLuO8EBoK+32hsOuF87If4wvOo7BrPvvrrdCQrXBluzwtkK3TrqbnlhIz+REbG6tp06Zp2rRp+cY4jqOxY8dq7Nix+cZERUVp+vTpmj59er4xCQkJmj9/foHlqVWrlpYvX15YsQEAAADgvOCaCQAAAIUJxAPKQ/W2VyXmmR8AAAAAAAAAAAA2SszKDwAAAAAAAAAAUHTZKheAlR+hucYiNEsFAAAAAAAAAABQRMVa+XHkyBG98847+vnnn+U4jqpXr64uXbooPj7erfIBAAAAQInGdRMAAABCRZbClOXyyg+303NLkVd+vPjii7r66qu1adMmnT59WtnZ2dq0aZNatmypF1980c0yAgAAAECJxHUTAAAA4CsrK0uPPPKI6tatq+joaNWrV0+PP/64Tp8+7Wo+jjHGFOWDDRo00NatW1WxYkWf7UePHlXz5s21c+dOVwpYWqWnp8vj8Uh906TycQUHL9phl2h8sn0BUsdZhRmTYp+mBcdxP18nwS7OHLZMz7KMUm+7fI39frHPO4jiLfdNqmW/tWTbjv60oW0/c3u/BCJft49VW7bHn3/9Yald2AK7OpuBfmRtKRDnMjfz9Yfb/dE+PXfPEWfy9uN7MAgCUWfb4yVY5wh/uN/HQv94CaZg9Imc8W9aWpri4goZ/5YiXDcVnfeaSQ9Iiso3riSc4wAAJU9hY7rifv/YjBn5jiuc9e8SBSjsN8PCruUKuhYNpTFwTlkeSBupqLhIV9POSD+pSZ5p1vUcP368nn32Wb388stq1KiRtmzZoqFDh+rJJ5/UPffc41q5inzbK8dxdOzYsVyD+GPHjslxnGIXDAAAAABKOq6bAAAAAF8bN27Uddddp+7du0uS6tSpo0WLFmnLli2u5lPkyY9nnnlGbdq0UePGjVWjRg1J0k8//aQvv/xSU6ZMca2AAAAAAFBScd0EAACAUHJaYcp2+Rkdp/9/eunp6T7bIyMjFRmZe5XJtddeq1mzZmnnzp265JJL9Nlnn2n9+vWaNm2aq+WynvwYNGiQXnjhBVWoUEGS1KNHD3Xr1k2ffPKJ9u7dK2OMatSooauvvlphYaH5gBMAAAAACCSumwAAABDKsgMw+ZGTXs2aNX22p6SkaOzYsbni77//fqWlpenSSy9VWFiYsrOzNX78eA0YMMDVcllPfixcuFBTpkzxDuKHDRumSZMmqVWrVpIkY4yysrIYwAMAAAAos7huAgAAQFm1Z88en2d+5LXqQ5KWLFmi+fPna+HChWrUqJG2b9+ukSNHKikpSYMHD3atPOVsA899LvqiRYuUmprq/ffBgwcVGxvrWsEAAAAAoKThugkAAAChLFvlvKs/3HudmWaIi4vzeeU3+XHffffpgQce0A033KAmTZpo0KBBuvfeezVx4kRX62o9+XGucwf1knTq1KliFQYAAAAAShOumwAAAABfv/32m8qV852aCAsL0+nTp13Np8gPPM+L4zhuJlc2/GuipKgCQ4xJsUrKSXChPOem6eywjFxqFxYfvLrYsm3vYObtOOOCkp4kqatl3CK7PuF2ewdi/9m3o+3x4m6+Z/L2Yx9a6W0VZUyyVZzjWJ4j5H57Ozfa5mtXl0CwrUsg+rf7fcdt9n3Hn35mw/32drd8Z9gdq7YC0R9s2zGY37/uc3e/+HN+cvu7CIHBdRMAINQVNi4M9tjNZtwa7DIWJtTL55bi9qXz0RcLH0MXdi0XvN8TiiJLYQpz+ZkfWX6m17NnT40fP161atVSo0aN9Omnn2rq1Km65ZZbXC2XXys/Fi5cqG3btikzM1MSg3YAAAAAOBfXTQAAAED+pk+frr59+2r48OFq2LChxowZo2HDhumJJ55wNR/rlR/XXnutUlJSdPToUZUvX15ZWVl66KGHdO211+qKK67QBRdc4GrBAAAAAKCk4boJAAAAoSxb4cp294ZQfqcXGxuradOmadq0aa6W41zWpVq3bp0k6dtvv9XWrVu1bds2bd26VY8++qiOHDnCXzMBAAAAKPO4bgIAAABCg99TPPXr11f9+vV1ww03eLft2rVLW7Zs0aeffupq4QAAAACgJOK6CQAAAKHotMKU7fIzP067nJ5bXFnfUrduXdWtW1f9+vVzIzkAAAAAKHW4bgIAAECwZQdg8sPt9Nzi7s29UAQ9JVUsMMJJsEwqdZwf+fa2jFvqR5oWLMtoTIp1ko5jl6btHQb8ydsqX9v9J8kcto2023+2beNfe++wCxzgcjta1iUQ3O4Ttvyps20ZbfefMcmW6QWgjw20jXT5/CS7Op8RnGMwEO3tdt72/dauDQNxfnK7f9t/p/rDtn1KwrEaHIEZS7jdJ+zOY/7cJSmYfQIIlLS0BxUXFxfsYgDFVti5tyScc0tDHWAn1Pfl+ShfqLfB+WBzjVXY+LP47Vjw2Pr8/F4UiGs+nA9MfgAAAAAAAAAAUAZkKUzlXF6pkRWiKz/KBbsAAAAAAAAAAAAAbmLlBwAAAAAAAAAAZcCZZ364Oy0Qqs/8YOUHAAAAAAAAAAAoVVj5AQAAAAAAAABAGXBm5Ye7KzVY+QEAAAAAAAAAAHAesPKjJEgdZxVmTIp1ko6zw9U0nYGWGS+yq4vj2MWd0dsubEByAPIunH/7xd28A8EYu3a0ZVtnf9rROu8Eyzjr48XdPhaIOktLraIcxy7O9vgLyDFtHWdZZ8v+4E+a7rePbZ3tud0f7dNz91xyhu1+scvb/ToH4DxmeX5SvG1dLNNToPZh4dw+J5/h7ljCdrxjz7Zv25+/S0L/BlC6FHY+CfR5xOZ8FugylIZzZWmoAwB7NmPq4p7fi//9EJzrkrMVXIeM81YOW2Vp5QeTHwAAAAAAAAAAlAGnAzD5cTpEJz+47RUAAAAAAAAAAChVWPkBAAAAAAAAAEAZkKUwOS6v1Mhi5QcAAAAAAAAAAEDgsfIDAAAAAAAAAIAyIFthKufytECoPvCclR8AAAAAAAAAAKBUYeVHkKWlNVZcXFwhUclWaTkD/cl5qWWcXd5aNM6fzC30djm9QHC/jMakWMU5jrvt7XZ6ZwRnHzoJfgSn2tbbri7u75cdrqYnSYq362PmsLvZOo676UmSMZbnRsu8/auzXTvaszzXWgrEMe12f7RPz/b7SnL7vBO8Ovsh3rLvWJ7vbL+HJPv62B+rLp9DE/w5riz72SLb/mjbF+3S82u/+PM96HLeAFCQYJ9Pgp0/4KbCxk30dzsloR2LW8bij7ELH9cWt52K+3k39mNh1zaFXdMUlEd6ero8nkmFluF8OrPyw92VGqz8AAAAAAAAAAAAOA9Y+QEAAAAAAAAAQBlQllZ+MPkBAAAAAAAAAEAZkKUwOS5PVmSF6OQHt70CAAAAAAAAAAClCis/AAAAAAAAAAAoA04rXNkuTwucDtFpBlZ+AAAAAAAAAACAUiU0p2TKEI9noqQoV9IyJsU61lnU25U8/ReIfJfahS0KTr6OY1k+2e9D2zjH2WGdtz27+hiTbBXnOMUpSx75HraPdRIsj5nUcUUrTL5sjwP7vmPLHLbcLwMtE1xk2zb2x75933E/72Cxr4sdv74PLPO23S+Su/vPv7rYnfNs49yvs/052T5vW5bfGwn+pGl7jnK7Lnb8+j5w7M4T7u8Xt893/h0zQFlR2DHEcYMc9BWgbCkJx3RhZeS8JblzzV/YtU3B4/aC90OG36UJtOwAPPMjVB94zsoPAAAAAAAAAABQqrDyAwAAAAAAAACAMiBb5QKw8iM011iEZqkAAAAAAAAAAACKiJUfAAAAAAAAAACUAVkKk1xe+ZHFMz8AAAAAAAAAAAACj5UfQddTUsVCYpZapeQ4O+yzHZBsl2aCfZJW4u3yNYftk3QG2qWplbYpWqaXOs42QWuOY5emMSmWKdr1Hf/0toqyrYstx3E1uf/Ptn3s6myfXiD2i7vMQrs4Z5Fd2xhjeVz5I97yOLA8Vh3Hfr/YHoO252X7Y9qO28dfINi3oft1cbu97flz7Ft+T7vcPv60jeME5/sgEN9DweyPNvzbL8HrE0Cooh8Xfm6gjc6gHRAqOGZhK9B9wZ2xZWHj94KvkwqrY2G/N/j1e2m+aYT+NbY/shUux+VpgewQnWYIzVIBAAAAAAAAAABXnVaYsl2+TdVpbnsFAAAAAAAAAAAQeKz8AAAAAAAAAACgDMgOwAPP3V5J4hZWfgAAAAAAAAAAgFKFlR8AAAAAAAAAAJQBrPwIUT///LNuuukmVa5cWRUqVFCzZs20detW7/vGGI0dO1ZJSUmKjo5W27Zt9eWXX/qkcfLkSd19992qUqWKYmJi1KtXL/30008+MampqRo0aJA8Ho88Ho8GDRqkI0eO+MTs3r1bPXv2VExMjKpUqaIRI0bo1KlTAas7AAAAABSGayYAAADgjBKz8iM1NVWtW7dWu3bt9J///EdVq1bVf//7X1WqVMkb8/TTT2vq1KmaO3euLrnkEj355JPq1KmTvvnmG8XGxkqSRo4cqbfeekuLFy9W5cqVNXr0aPXo0UNbt25VWNiZGaqBAwfqp59+0sqVKyVJt99+uwYNGqS33npLkpSdna3u3bvrggsu0Pr16/Xrr79q8ODBMsZo+vTp7ld+QIpd3KId9mlaxy61jOttF5Y6zirMSbCssz8s83abMe7XxXFs62K3X4xJts97oG2kXZpmoWW+CZbZpvpxHNj2W9vjIN5uX5vDdslZ11myrrdt33G73zqO/X6x7o/W+zoAx4FlfWzTtG8fd/ui5Ed/dLnOtvzpi7ZldPs48Kd/27I+z9vu64B8B7rcH62PafePA/e5+/1i/70f7LwLk+FiWshLmb5mKkBx+3EgxvPnW2moA1CWcMyeH4V9PwR6P9h8P5WMvlDw+LPwa0R3ryGLpnh1cHfMHHhZKifj+sqP0FxjUWImP5566inVrFlTc+bM8W6rU6eO9/+NMZo2bZoefvhh9enTR5L08ssvKzExUQsXLtSwYcOUlpamF198UfPmzVPHjh0lSfPnz1fNmjW1Zs0adenSRV9//bVWrlypTZs2qUWLFpKk2bNnq1WrVvrmm2/UoEEDrVq1Sl999ZX27NmjpKQkSdKUKVM0ZMgQjR8/XnFxceepVQAAAADgDK6ZAAAAgP8JzSmZPLz55pu68sor1a9fP1WtWlWXX365Zs+e7X1/165d2r9/vzp37uzdFhkZqTZt2mjDhg2SpK1btyozM9MnJikpSY0bN/bGbNy4UR6PxzuIl6SWLVvK4/H4xDRu3Ng7iJekLl266OTJkz5Lys928uRJpaen+7wAAAAAwC1cMwEAAKAw2QoPyCsUlZjJj++//17PP/+86tevr3feeUd/+ctfNGLECL3yyiuSpP3790uSEhMTfT6XmJjofW///v2KiIhQfHx8gTFVq1bNlX/VqlV9Ys7NJz7+/7V3//FRVXf+x9/XhIQfJWOChh+KigtaLKIISgF/xAUDrhS1u7WbZNnatbSuUkCkoLIakBUK/sAVqqtsF9uVBB+1y0pxibBbQ0Eq0ohftLpaq1asUJSEGVRMSDjfPywj4cfcz2TuZGYyr+fjMY8HzHzm/LrnnDknd+7cQuXl5UVjjrRgwYLo7+GGQiH17ds33iYAAAAAgONizwQAAAA/LcpJyiMdZczJj4MHD+qCCy7Q/PnzNWTIEH3ve9/TpEmT9Mgjj7SK8zyv1f+dc0c9d6QjY44V35aYw91+++0Kh8PRx44dO2KWCQAAAADiwZ4JAAAA+ELGnPzo3bu3zjnnnFbPDRw4UO+9954kqVevXpJ01LeIdu/eHf3GUa9evdTU1KSGhoaYMX/605+Oyv/DDz9sFXNkPg0NDTpw4MBR3246JD8/XwUFBa0eAAAAABAU9kwAAADwczAJV30c5MqPxIwaNUpvvPFGq+fefPNNnX766ZKkfv36qVevXlq/fn309aamJm3YsEEjR46UJA0dOlSdOnVqFbNz5069+uqr0ZgRI0YoHA7rxRdfjMZs2bJF4XC4Vcyrr76qnTt3RmPWrVun/Px8DR06NOCaAwAAAIA/9kwAAADAF9LzTiTHcMstt2jkyJGaP3++rrvuOr344ot67LHH9Nhjj0n6/JLqadOmaf78+RowYIAGDBig+fPnq2vXriovL5ckhUIh3XDDDbr11lvVo0cPFRUVacaMGTr33HM1ZswYSZ9/M2rcuHGaNGmSHn30UUnSd7/7XY0fP15nn322JKm0tFTnnHOOJk6cqHvvvVf19fWaMWOGJk2aFP+3k04cJHk+7xlvTKtmsD3fhu322CCtqLTFVcRRvjJjvauN6RUay9gw1xTmebY4SXLOlrc1zisyZ21XbauPuYzW9rEeF60yxsWRZoMxTXOfuNaWXhx1ydtziymuqb/1uFjHoK2M1v7wed5B9zFbXZIxVuNJM3X5Bj22bHOyuY8VxvHZloT+aGIto3UuiYdx3rGyj31JMs5lKVpzuPokpBl03zGPl3jmJ+uYiWdsBSMSiSgU+mG755tNOuyeKUHBj10AABLXHp9PfuvIdPiM9F3rliVaxsT3YZ4XO41Y7ZiOa+Bm5eiEgK/USNcrPzLm5MeFF16oVatW6fbbb9fdd9+tfv366cEHH1RFRUU0ZubMmdq/f79uuukmNTQ0aPjw4Vq3bp26d+8ejVm8eLFyc3N13XXXaf/+/Ro9erQef/xx5eR8cYBWrFihKVOmqLS0VJI0YcIELV26NPp6Tk6OnnnmGd10000aNWqUunTpovLyct13333t0BIAAAAAcDT2TAAAAMAXMubkhySNHz9e48cf/zIIz/M0Z84czZkz57gxnTt31pIlS7RkyZLjxhQVFemJJ56IWZbTTjtNa9as8S0zAAAAALQX9kwAAACIpUU5cgGfFkjXKz8y5p4fAAAAAAAAAAAAFhl15QcAAAAAAAAAAGibz6/84J4fAAAAAAAAAACgg+DkB9rP3gWSOseOqbjWllbZ4DgyNsZWr7LFrTCmN9kWFpfq7aawEjfcFFdbZMy3sNIW1zDXmKDkeba6mNvbnLexLpJUZov1PHu9TZb6h0iSKvxDUs052/HzPHuaTT0Wt7E0x+ac9Tjb0vOs4yopbPOYtc5SHP3bOk8Ezvi5oTjmHXN6AbdNHHOotd7WMpr7RIOxDY3zpyS5Kltc4HNtYRxrCWO97XOesR2NfSe+trGOGeO6KIW8cluctY8BAAAci99aK579VbIku4yJrsWDaKNEy9Aex9G/jD5r8erkt7PfXsS6p0H64eQHAAAAAAAAAABZoOVgjtzBgK/8CDi9oHDDcwAAAAAAAAAA0KFw5QcAAAAAAAAAAFmgpTlHB5uDvVLDBZxeULjyAwAAAAAAAAAAdCic/AAAAAAAAAAAIAu0NOcm5RGvP/7xj/q7v/s79ejRQ127dtX555+vurq6QOvKz14BAAAAAAAAAIB20dDQoFGjRunyyy/X2rVrVVxcrN///vc68cQTA83Hc865QFOESSQSUSgUknSbpM4BpXqtPbRwsC1uqTG9irn2vE3iqEuZsS41xvQathsDV5minKs0pid5RcbAhqDb285aH3tdgm1vFdrb29Xb4jzPWEbruBpnC1O1/Tibj4u1LiuMdQl87Ev28W/sE4GnF0ea1vnJfKyTUReboMe+ffzF08ds7ZO35wxTXFNNgS3bpIwDI+ucZ/3cKItjDq0yhwYqvj5hE89ntYW5jEEfvySwf75YyviZpB8qHA6roMA4vpDVDu2Z6DOQ/OeZoOdypA7HGhaWtUe695VkrGuPlGgbBNHOCdfTb48Sx99O2s5vrxlrD54+a+BDa6vOO96VF3BZXCSiz/qeYa7nbbfdpueff14bN24MtBxH4mevAAAAAAAAAADIAi3NOUl5SJ+fYDn80djYeMwyrF69WsOGDdM3vvENFRcXa8iQIVq2bFngdeXkBwAAAAAAAAAASEjfvn0VCoWijwULFhwz7u2339YjjzyiAQMG6Nlnn9WNN96oKVOm6Kc//Wmg5eGeHwAAAAAAAAAAZIHm5hx5B3ICTdP9+cqPHTt2tPrZq/z8/GPGHzx4UMOGDdP8+fMlSUOGDNFvf/tbPfLII/r7v//7wMrFlR8AAAAAAAAAACAhBQUFrR7HO/nRu3dvnXPOOa2eGzhwoN57771Ay8OVHwAAAAAAAAAAZAHXkivXEvBpgTjTGzVqlN54441Wz7355ps6/fTTgywVV34AAAAAAAAAAID2ccstt+iFF17Q/Pnz9dZbb6mqqkqPPfaYbr755kDz8ZxzLtAUYRKJRBQKhSQ9L+lLsYPLBrdHkY4pb2nEFNfUv8A/SJIathtzXmWMk6RrbWGFtnZ09bbkPM9alzgEfayr5wabnqSg29vcJ8zpxVNnY12sAi9jHOVLVXsvtYXFpSLo9olnPglawH3MOkekcuwb29u5SlOc5yWhLoW2vK1j1VyXclu2kqRq21h1ztYnktGO9mMY8Gf/CuPxM88lUuDzibWPjTNmG8eYth6XVDi0/g2Hw61+Bxg4nvbqM35zZHuMq3QoA4DgMKaTz7K+TbSds+E4ekU+AaY9Uey1tHXPkixelSGoIvaeJZE6pNMaOPr36Ff3SN0DLsu+iDSoR1z1XLNmjW6//Xb97ne/U79+/TR9+nRNmjQp0GLxs1cAAAAAAAAAAKDdjB8/XuPHj09qHpz8AAAAAAAAAAAgGzTnfP4IOs00xMkPAAAAAAAAAACyQYsnNXvBp5mGuOE5AAAAAAAAAADoULjyAwAAAAAAAACAbND850fQaaYhzznnUl2IbBSJRBQKhSTdJqmzT/S1gefv3GBTnFdkTLBhuzFwlS2ssNKYnuTqbXFelTHBioDrEg9jvfPeipjimnosNmZs72PmvuPNtSVYZjzW1cbjUmgrnxRH3/GsfcLK2nfiGPtl9nqbBN3eDcb+IKWuT5jnsSSMA/OxTkLfsbbPOGN61uOSwjnUXpegj59d+vexZKSZjDIGLdgyOmfrs8F/DgXfxyx1ObT+DYfDKigoMKWL7EafQXvzm/Os8zYSw3FIPvsasu06wnHyX4Mlti5tjzZKh/GUaBn8+6vfGt1ynBJLI1Yd0mk9E/179Jaw9KWAy/JxRBqeHvU8HFd+AAAAAAAAAACQDbLoyg/u+QEAAAAAAAAAADoUrvwAAAAAAAAAACAbcOUHAAAAAAAAAABAZuLKDwAAAAAAAAAAskGzpANJSDMNcfIDAAAAAAAAAIBs0PLnR9BppiFOfqTaibdLXkHsmHHGtKq3m7PNr48YI33KdkjhYFtcwypbnLXO8VgTcHorKgNOUFKF7Rg29TCmV2gsY4O973je3GDzrjFmbO5jxvJJ8ooCPobWMo4zxlnbRopr/KeEtT9IUrX9GFq4elt7e549Ta+ojYU5nqD7Tjxt2GCMqzbO36lkncuCrksy5qdyW5rO2caWuc9a+5gU+Fg1K7PV2VXZk/Q86xwabN9JSr7G+db8eW5k6mMu0CyBKL/+bJ0rgY7QVzrCeEh2GRNtI8tnaLq3czqULxP6qnOx18aeF3uNlh518OvPfuvR5O8DE12XJnqcPucXc625PEgvnPwAAAAAAAAAACAbcMNzAAAAAAAAAACAzMSVHwAAAAAAAAAAZAOu/AAAAAAAAAAAAMhMXPkBAAAAAAAAAEA24MoPAAAAAAAAAACAzOQ551yqC5GNIpGIQqGQdGJY8gpiBy81Jlqx3Zx/ifvAFFdbNc6W4BpjxjXGuGRomGuLK6xMTb5xyNtziymuscinb/2ZVx5H5uONceb+uCqOzFOjxA03xdV6W4wpXmsLKxxsTE9SQ6ra21iXOOTtOcMU19RjsSnOOduY9rx4xqqt3s7FcQwD5Hn2zwNrGeNrHwtj3ymzt6GrssUFXpegPzekOD47Am7H6uA/s+zzhG1+Ss6Ytgp2zkvVHCHZ5wn7HGFJ72NJoxQOh1VQYFujILsd2jMl2mf85gPrvJLJaIP2QTsjm9Df26cNUt3OljVeomta/3V77DW4X/5ekaEQPn9T8c0jZjulzxo4+vfon4WlrgGX5dOI9I3E121B42evAAAAAAAAAADIBvzsFQAAAAAAAAAAQGbiyg8AAAAAAAAAALIBV34AAAAAAAAAAABkJq78AAAAAAAAAAAgGxz48yPoNNMQV34AAAAAAAAAAIAOxXPOuVQXIhtFIhGFQiHpxLDkFcSMzXsrYkpzZNFmc/615eNsgeONCa4xZx1svvGwlrHGFubqbXGeN9eYsaSySntsgPKW2vqYJDX1j91fDzG3T5Ex44btxkC7vD1nmOKaerwbcM6rjHHXJiFNo8KA+6JxypEkVQd8rFcMtsVVxDFWA+acrb3N80k8c0nQ87zx+DlnOy6eZ+8P9jRt7VjihpvinjN2cK/KFCZJcuX2WFPeyeg7AR9rK3ufsM+L1jFoFfRnWzxtaM3b+jkdpEPr33A4rIIC23oC2Y0+0378PieCnifRcXWEvtQedegI7YT0ENffnNqgPfpionXwK6Mlff80Yq/bY63X02k9E/179LKw1DXgsnwakSalRz0Px5UfAAAAAAAAAACgQ+GeHwAAAAAAAAAAZIMWSc1JSDMNcfIDAAAAAAAAAIBs0KzgT34EnV5A+NkrAAAAAAAAAADQoXDlBwAAAAAAAAAA2SCLrvzwnHMu1YVoiwULFuiOO+7Q1KlT9eCDD0qSnHOaO3euHnvsMTU0NGj48OH60Y9+pK985SvR9zU2NmrGjBmqrq7W/v37NXr0aD388MM69dRTozENDQ2aMmWKVq9eLUmaMGGClixZohNPPDEa89577+nmm2/WL3/5S3Xp0kXl5eW67777lJeXZyp/JBJRKBRSp3d2yCsoiBk7q2ihKc15VfeY4iTpzvLZwaZZsd2cd+AKB9viGuYGnG+lLW5pHGlONsY1GNu7zNg2NcZ8JWmcMc6aprUuZqsCTk/SCuOxrjD2sZT2HVsZnbOV0fMCrrOUGX0icNfawqxjujqONjTPoak6Lsa2kcx1cfX2JC08z9g21raWgv/MKjOOwXj6jpntWFvnHSuvKI5ga/+O5xgGmK9z9nzN/dHImrft8+AzST9UOBxWgc/6F8HoKHumTO8zlvko6M+mdOQ3TwT9OQDg+Cyf26kek+0xZ6R6XmqP42Desyck9p7Nbz3pv3712U/47XUC2OPEsx4/UjqtZw6VRQ+GpS4Bl2V/RJqWHvU8XEb+7NXWrVv12GOPafDg1h1v0aJFeuCBB7R06VJt3bpVvXr10hVXXKF9+/ZFY6ZNm6ZVq1Zp5cqV2rRpkz7++GONHz9eLS1f3JWlvLxcL7/8smpqalRTU6OXX35ZEydOjL7e0tKiq666Sp988ok2bdqklStX6uc//7luvfXW5FceAAAAAHywZwIAAMAxNSfpkYYy7uTHxx9/rIqKCi1btkyFhYXR551zevDBBzV79mx9/etf16BBg/STn/xEn376qaqqqiRJ4XBYP/7xj3X//fdrzJgxGjJkiJ544gm98sor+p//+R9J0uuvv66amhr927/9m0aMGKERI0Zo2bJlWrNmjd544w1J0rp16/Taa6/piSee0JAhQzRmzBjdf//9WrZsmSKRSPs3CgAAAAD8GXsmAAAAIANPftx888266qqrNGbMmFbPv/POO9q1a5dKS0ujz+Xn5+uyyy7T5s2bJUl1dXU6cOBAq5g+ffpo0KBB0Zhf//rXCoVCGj58eDTmq1/9qkKhUKuYQYMGqU+fPtGYsWPHqrGxUXV1dccsd2NjoyKRSKsHAAAAAASNPRMAAACOq0XBX/XRorSUUTc8X7lypV566SVt3br1qNd27dolSerZs2er53v27Kk//OEP0Zi8vLxW3346FHPo/bt27VJxcfFR6RcXF7eKOTKfwsJC5eXlRWOOtGDBAs2d2x6/swcAAAAgW7FnAgAAAD6XMVd+7NixQ1OnTtUTTzyhzp07HzfO87xW/3fOHfXckY6MOVZ8W2IOd/vttyscDkcfO3bsiFkmAAAAAIgHeyYAAAD44p4f6aeurk67d+/W0KFDlZubq9zcXG3YsEEPPfSQcnNzo98qOvJbRLt3746+1qtXLzU1NamhoSFmzJ/+9Kej8v/www9bxRyZT0NDgw4cOHDUt5sOyc/PV0FBQasHAAAAAASFPRMAAADwhYz52avRo0frlVdeafXct7/9bX35y1/WrFmzdOaZZ6pXr15av369hgwZIklqamrShg0btHDhQknS0KFD1alTJ61fv17XXXedJGnnzp169dVXtWjRIknSiBEjFA6H9eKLL+qiiy6SJG3ZskXhcFgjR46Mxtxzzz3auXOnevfuLenzG/rl5+dr6NChcdXrQL8fSTr+t7IkaaO7xJTW2vLLzfle6ZXYAsuMCa4YbItbY0wvHjXGuBWVprCScluCm+ttv0HcNNm+act7y5hmTbDtXVJvbUSp1uvjHxSPMltdXJUtOa/c2DaS7qyabYqb5203p2nSYEuvpPwDc5K1FVtsgYW2ceCV25JzzphekS29pDCOfU22J2keqz3eNaa4yhZWbUzOOK4+T9PYvwuNaTYE/HMl8dTFyDOO6bw9ZxhTNB4/xVGXMmO/tR4/a1w87T3eGFdhC/M8Y98xzmMaZwuTZB5brt4Wl29cIzQW2drb3Dayz8tW8eSN1OuoeyY/fv3Ub1yk+v1BpZHuOkIdkB3aYzwm+vmaaBkyYTwmOvdmgnQ4Du3Rnz3PZ7/ks7539bHXzNb9Xcw8nF8eifS3zxJ4b5IckJSThDTTUMac/OjevbsGDRrU6rlu3bqpR48e0eenTZum+fPna8CAARowYIDmz5+vrl27qrz887/ihUIh3XDDDbr11lvVo0cPFRUVacaMGTr33HOjNwMcOHCgxo0bp0mTJunRRx+VJH33u9/V+PHjdfbZZ0uSSktLdc4552jixIm69957VV9frxkzZmjSpEl8OwkAAABASrBnAgAAgK8WBX+Dcm54nnwzZ87U/v37ddNNN6mhoUHDhw/XunXr1L1792jM4sWLlZubq+uuu0779+/X6NGj9fjjjysn54vTXStWrNCUKVNUWloqSZowYYKWLl0afT0nJ0fPPPOMbrrpJo0aNUpdunRReXm57rvvvvarLAAAAADEiT0TAAAAskVGn/yora1t9X/P8zRnzhzNmTPnuO/p3LmzlixZoiVLlhw3pqioSE888UTMvE877TStWZOM33ACAAAAgGCwZwIAAEArybhBOTc8BwAAAAAAAAAASL6MvvIDAAAAAAAAAAAYtSj4KzXS9J4fXPkBAAAAAAAAAAA6FM8551JdiGwUiUQUCoWkE8OSVxA7eGnsl6Pi+DndO6tmm+Lmld9jS7DGmPE4Y1z1dmOgpBWDTWFryy83xV3plZji8vbcYopr6vGuKU6SuS6qMLZPmTG96rm2uHgUVprCwh/mm+JCuVtt+VrbUJImG+MabO3jnK3OXpEt27y3IrZASU39feaRQ6xj0DqmjW1j7Q9xSWXe1nnZytoXrfla04uDq7fFeeXGBMcb4+KpS9Bj1Yvjsyhwq0xRqa2LrYwqM47BwD+LrrWHFho/Oxqs7Whsm3jKaORcHJ+DBp4X3Lg6tP4Nh8MqKDB+biGrWfuMXz+1zpXHTz/22A963GUr2hnILNY1wvH4zc3+61f/9ZZ/Hsn+/EjC31qOkGgZ/Vj+fuG3V/Q9lj5/x3E+e0z/drasuX36k8/fFWK1QTqtgaN/j54elvIDLktjRHogPep5OK78AAAAAAAAAAAAHQr3/AAAAAAAAAAAIBscUPCXRBwIOL2AcPIDAAAAAAAAAIBs0KLgb1DODc8BAAAAAAAAAACSjys/AAAAAAAAAADIBi2SmpOQZhrynHMu1YXIRpFIRKFQSDoxLHkFMWPdSs+Upvd4Eg5l9XZTWN6eM0xxH4ZONsVdnfO0KU6Snlt3pS2w1NY+d2m2KW6e901TXIn7wBQnSbVV42yBa2xheUsjprimmth98HB3llvbJ8+WYFmlLa7GFhYXY3Ob826wjRdplTEuDoXGdrSWsWywLc44R5jTk6Tquba4FcY6W1VYj5+kQmN9UtYnrg04PdmPYcDjxTl73/G8FPXvVI5pqwbbuHLOnq/nGceqsT9aj3Xgx1mSxhvjjJ+/rsoW5xnjXLktTrIfl3iOdVAOrX/D4bAKCuxrD2SvdOkzfuOqPcZTOpQh09k/t47Pr52TfZwsn4HxrJ0AdHz+c1/stbplTvHNw29v47dXSfT9hv2IXz196xjrb1sHItJTqV/PSIf9Pfp7YSkv4LI0RaRH06Oeh+PKDwAAAAAAAAAAskGzgr8ZRtBXkgSEe34AAAAAAAAAAIAOhSs/AAAAAAAAAADIBgck2e6yEF+aaYgrPwAAAAAAAAAAQEosWLBAnudp2rRpgabLlR8AAAAAAAAAAGSDlj8/gk6zjbZu3arHHntMgwfHvvF8W3DlBwAAAAAAAAAA2aA5SY82+Pjjj1VRUaFly5apsLCwzVU6Hq78SLW9r0r6UuyYdbakSqpqzNleoo2muI1Vl5jiaqtsZ+ZCajTFabItTJJq6ktMcVeWGxOs/qYprMR9YIqr9bYYM5a0YpwpbG3V5aa4hZpliquVLV9JmufZ2idvzxmmuKb+5qxNXL091isKNm9plS1sRaUtrmJ724tyHM7ZxmrgbVMdR13KjO2zpm1FOa5C+zcMrP3MM86NqjD2HauyOL4tYf3oqJ5rzNt4/KptdfaK4qjLCmOs9TPGnJ4tLq75yfyZZRxbxnnH8+IYq+a5zNZ3rONlrZtqiru6/mlTnCQ19S+wBTYY61JjbBsra3+Ig/1Y28aqcwHXGUgj6dC/06EMfjwv9hyZ6jq0R/7JzsO6ls90ye5L/p+BsT/72qMvpft4sugIdUhUon2tfcQugxfAfSH89kFeeey+4KoSe79lz+vXX6VrY74aq4yRiBR6yr8MHUUkEmn1//z8fOXn5x83/uabb9ZVV12lMWPG6J//+Z8DLw8nPwAAAAAAAAAAyAYtavOVGjHTlNS3b99WT1dWVmrOnDnHfMvKlSv10ksvaevWrQEX5guc/AAAAAAAAAAAAAnZsWOHCgq+uLL+eFd97NixQ1OnTtW6devUuXPnpJWHkx8AAAAAAAAAAGSDA8lLs6CgoNXJj+Opq6vT7t27NXTo0OhzLS0t+tWvfqWlS5eqsbFROTk5CReLkx8AAAAAAAAAAKBdjB49Wq+88kqr57797W/ry1/+smbNmhXIiQ+Jkx8AAAAAAAAAAGSHFkknJCHNOHTv3l2DBg1q9Vy3bt3Uo0ePo55PRNDVBAAAAAAAAAAASCnPOedSXYhsFIlEFAqFpBPDkhf7d9BK6mtMadZWjTPnX1IebJp3ls82xc0ruscU9/8aPFOcJJ3RnGeKC01stCVoaxrlvRUxxTXV+P/OXdQaY95Lk5B3wMx9rMjebwNnzNpdb+uPl5euNcU9Z8zYKzKFSYqjP/Z4155okAoH22OD7hLV2wNOUJJWGeOutYWVGdtnvDHbOOSNM/adycb5pHquKazEDTfFba4factX0siizaa4Wq+PLUFrv7X2WePniySpwdaO5j5mZu3bcSirtMVZx6p1vBj74udpGstoFXBdXJU9a8+z1ds5W52t6dl8JumHCofDpt8BBg7tmTK9z1jGkXVMJqsMQeTvebHnPufiWA8CGa49xlyyJbsOfnOGP/91a/LLmNjaOZi5N7Hj5PsZVehfRlfvG+JThgTb2W8tb1ib+31GeX7r8YpY7Zg+a+Do36PHhaVOAZflQESqSb91Gz97BQAAAAAAAABANmiWZP/euT3NNMTPXgEAAAAAAAAAgA6FKz8AAAAAAAAAAMgGybhKgys/AAAAAAAAAAAAko8rPwAAAAAAAAAAyAYtCv6eHy0BpxcQTn6kWPgPUkFB7Ji7tNGU1iXltri4lAebXEl9jSnuvCJnTzPHlqZZw3Zj4Bm2sDVtLcjxNfVYbIorccNNcbVV48x5l5Tb2ru23JimNetq63GJQ81gW1hViSluc/1IU9xdRbNNcdI9xrg4FNrqHDTr2Jek2iJ7fzQps9V5bdXl5iSvLH/OFlg91xhnzNjYZ+3zmKQ9Z5jCXJUtufylt5jiast9PvzaoLa6jy1wha0d88ZFTHFNk4Ovi3StLczYv2UdguOSMEcY5+8S94EprrbcWMaySlucZB+r1jStx8Wab1UcdTHyPGPeQAbw68/OBT+G4tEe+Se7DSxzRrLz6AjtmKj2OA6J8rzYn/vOpWY/crhEPwMtbZzq4xCE9pg3EhFEGydexthrdr/+bsvfL4/Y7ZBwHQ17S89bFfN1/2MV+/1akdixdlX+847f3OVXxlh1jEQiCoV+6FsGJAcnPwAAAAAAAAAAyAbc8wMAAAAAAAAAACAzceUHAAAAAAAAAADZIIuu/ODkBwAAAAAAAAAA2aBZkv12yzZpesNzfvYKAAAAAAAAAAB0KFz5AQAAAAAAAABANkjGVRppeuWH55wL+iIXGEQiEYVCIYXDYRUUFMSObck3pbk4t8mcf61ba4q7RBtNcfPK7zHFra263BQ3smWzKS4em3NGBpreQs0KND1JerrlalPcfTkzTHHzvG/aMi4cbIuTdGf9bFPcwnpb+zT1eNeWr3vSFDevyNYXJUnjbGElVTWmuM31tj7WNDn2mD8k/B+2sS9JoYmNtkBbVaSGuba4sspg85WkpXHEWkxOQr5rbGF5SyOmuKYei40ZX2uMi0Mc49+kYXuw+RrHqSSp2pi31QpjGY39QdXGcSXZx5a1zmXGuoy3hUmyj614jqFFPO1oZW3vVImrzsZ5wjgGXX0cWfuIZ/0LSPY+43mxx4hzscd4ou8PQjqUId1lQhslu4ye5/+571zs+T3V7eiXfxAyYcz7SbSdMmHeSofjkOz+mBF18FkHu6rEkpcsZUxwn+u317H8PcL6N5A2+UzSD9NiDXxobaXBYSkn4LK0RKTt6bfW58oPAAAAAAAAAACyAff8AAAAAAAAAAAAyExc+QEAAAAAAAAAQDbgyg8AAAAAAAAAAIDMxJUfAAAAAAAAAABkg2ZJBwNOM+j0AsLJDwAAAAAAAAAAskGLgv/ZqzQ9+eE554KuKgwikYhCoZDC4bAKCgpiB8/wTGnm3xE25/9h6GRT3H05M0xxC+tnmfO2mFW00Bw7UptNcVfXP22Ka+rxri3jFYNNYe4k2/GTpMtL15riaqvGmeLyxkXMeVs1Tfbpr4dUb7fFFdraMfxhviku9GSjLV9Ja8svN8VZ+46VtQ3XVtnKJ0lXVj1nC5xsTLDBePzKbMdPNcZ8ZT/WJ4c/NMWZ+2wcZTS3j1aZovL23GKKa+qx2JZtWaUtTrLX2zbtKPwfxrF6sm2s5r1ln8ea+huPtfX4Gecnq5J6eyd7ztjgXpExQePxU/VcY2A8rrWFWeeT8cZsrfOd7P3M/hlobMdC41g1zzmSdd6xHhfnghsHca1/AWVXn/G82POGc3F8tieBX/mk1JcxG6TDcWiPvtoRxoOfjnCc/MsQz/rlaEGsQXzXynGtsY7Fuu46HsN6zGdP4upjvz3x/pp4GdXgUwa/NbHfXsbv70+GfYariv16Yu34maQfpsV65tDaSqeHpRMCLsvBiPSH9Fu3ceUHAAAAAAAAAADZoFnB3wk8Ta/84IbnAAAAAAAAAACgQ+HKDwAAAAAAAAAAsgFXfgAAAAAAAAAAAGQmrvwAAAAAAAAAACAbHFDWXPnByY8McNd9d5jiGmeEgs/8PltY429sed9VaqvLSG22ZSxps0aa4p4uutoUN+7WWlvG99rCtNAYJ+m5dVea4jw5U1xTTYE988CtMkWV1H9gigtVNZri7iyfbYqTpCuLnrMFjjMnaVJSVWOKs/ZtScobFzHFNY0z9onxg21xa2xheW/ZyidJV+c8bYprmmyrS95Se95WTTXG9pEtrsnWJXSnazLFzauypSdJMuZtbceTwx/aEjSOq5FF9s+D2nHGRK39u2K7La7Mlt7mevuYzpex3za8a4sz99lrjXGSCo1pNsy1xVnLaOyzWmqMk9TU411boLXOhZX2zE1sn6mfsx1D52x18YqM2TZYxsvHxsSA+Hhe7HnGuaDHZPtLtI6Jvr8jtGE66AjHIdG+FkQeqdYe5esI85p1rZHUMtTHft3zYq+x/Pt7Yu8Pgu9arcxnXvHZO5rG9FKfY73Gpx2qfdaR1T5rYb+19/jYL0uGdvTLw7rnQbvj5AcAAAAAAAAAANngoGT8XrVd0OkFJGPu+bFgwQJdeOGF6t69u4qLi3XNNdfojTfeaBXjnNOcOXPUp08fdenSRSUlJfrtb3/bKqaxsVHf//73ddJJJ6lbt26aMGGC3n///VYxDQ0NmjhxokKhkEKhkCZOnKi9e/e2innvvff0ta99Td26ddNJJ52kKVOmqKnJ9o1cAAAAAAgaeyYAAAD4ak7SIw1lzMmPDRs26Oabb9YLL7yg9evXq7m5WaWlpfrkk0+iMYsWLdIDDzygpUuXauvWrerVq5euuOIK7du3Lxozbdo0rVq1SitXrtSmTZv08ccfa/z48WppaYnGlJeX6+WXX1ZNTY1qamr08ssva+LEidHXW1padNVVV+mTTz7Rpk2btHLlSv385z/Xrbfe2j6NAQAAAABHYM8EAAAAfCFjfvaqpqb1DzwvX75cxcXFqqur06WXXirnnB588EHNnj1bX//61yVJP/nJT9SzZ09VVVXpe9/7nsLhsH784x/rP/7jPzRmzBhJ0hNPPKG+ffvqf/7nfzR27Fi9/vrrqqmp0QsvvKDhw4dLkpYtW6YRI0bojTfe0Nlnn61169bptdde044dO9SnTx9J0v3336/rr79e99xzjwoKUnmfBQAAAADZiD0TAAAAfDVL8gJOk5+9ClY4HJYkFRV9fkead955R7t27VJpaWk0Jj8/X5dddpk2b/78Zql1dXU6cOBAq5g+ffpo0KBB0Zhf//rXCoVC0UW8JH31q19VKBRqFTNo0KDoIl6Sxo4dq8bGRtXV1R2zvI2NjYpEIq0eAAAAAJAs7JkAAACQzTLy5IdzTtOnT9fFF1+sQYMGSZJ27dolSerZs2er2J49e0Zf27Vrl/Ly8lRYWBgzpri4+Kg8i4uLW8UcmU9hYaHy8vKiMUdasGBB9PdwQ6GQ+vbtG2+1AQAAAMCEPRMAAACO6UCSHmkoY3726nCTJ0/W9u3btWnTpqNe87zW1+w454567khHxhwrvi0xh7v99ts1ffr06P8jkUjgi/nt99tjn3J3BJr33LG2uLufnW+K8x63Xyvl+tiu08q/I2yKa1TIFOf9wFbGO0tnm+IkaZ73TVPcWne5KW6zRpriNuoSU5wkXVK+0RQ3smqzMcVaU9Ss8oWmuKvrnzbmK91Zbzs2M1ruM8UVDLPdwNOrsvWdWo0zxUlSSXmNf5Ck2uo+/kGSVDPYFJb3lu0bmU2T7T9tsXmprd9qvC2sqcaY9xpbmCStrbKNwYWaZYqbJVv/vrLoOVNcSb2tP0iSyu2hFrVVxn5rPH615fZxYJU3ztZvn3ZTTXFXltuOSzzjwNo+KrONVRm7RN6eM4wZS039jYErKm1xk21h5nmnx2JbgpK5jNa+09TfeKwb5triCo1tKEkN201hnmeLk1bZ8/b1WYBpwU827Zmciz1GPC/2WPN7v58g0k92GRJlST/ZxyHZx7E9tMdx9m/H2PO/c8a1RRtZ2iDZfSVR7VGHRNMPgv9aIdE1wrUJvTuQvlrm05eK/BJIrA6W9ZhvPf3WftWxj5NX7VMAyzrUuI4/Lr89jV8Z/VRY173H53ccfJZRSKGMu/Lj+9//vlavXq3nnntOp556avT5Xr16SdJR3yLavXt39BtHvXr1UlNTkxoaGmLG/OlPfzoq3w8//LBVzJH5NDQ06MCBA0d9u+mQ/Px8FRQUtHoAAAAAQNDYMwEAAOC4WpL0SEMZc/LDOafJkyfrP//zP/XLX/5S/fr1a/V6v3791KtXL61fvz76XFNTkzZs2KCRIz//FvHQoUPVqVOnVjE7d+7Uq6++Go0ZMWKEwuGwXnzxxWjMli1bFA6HW8W8+uqr2rlzZzRm3bp1ys/P19ChQ4OvPAAAAAD4YM8EAAAAfCFjfvbq5ptvVlVVlZ5++ml17949+i2iUCikLl26yPM8TZs2TfPnz9eAAQM0YMAAzZ8/X127dlV5eXk09oYbbtCtt96qHj16qKioSDNmzNC5556rMWPGSJIGDhyocePGadKkSXr00UclSd/97nc1fvx4nX322ZKk0tJSnXPOOZo4caLuvfde1dfXa8aMGZo0aRLfTgIAAACQEuyZAAAAYGK/40BGy5iTH4888ogkqaSkpNXzy5cv1/XXXy9Jmjlzpvbv36+bbrpJDQ0NGj58uNatW6fu3btH4xcvXqzc3Fxdd9112r9/v0aPHq3HH39cOTk50ZgVK1ZoypQpKi0tlSRNmDBBS5cujb6ek5OjZ555RjfddJNGjRqlLl26qLy8XPfdZ7svAAAAAAAEjT0TAAAA8IWMOfnhnP/pKM/zNGfOHM2ZM+e4MZ07d9aSJUu0ZMmS48YUFRXpiSeeiJnXaaedpjVr4rg7LgAAAAAkEXsmAAAA4AsZc88PAAAAAAAAAAAAi4y58iObjdRmU9yqONLM8eab4irPt6V3uVtrS2/GlaY418ezZSzp8vtseTfOCJni7rrvDlNcuCXfFHdy/YemOEn6f7KV8QOVmOLmVd1jinP3xtHe22ztbe23V1Y9Z4q7s3y2Ka7xN7Y2lCTvb20/cLix/hJT3KxtC01xefURU1zTZPvvYddW9DHFrXVTTXELNcsUd4k2muJUZQuT7P32/1XY+u15K2zHOW+p7bhI9n6rybawS+qN7Wi0uX6kOdbaz0qqakxxeeOM/bu/sX8v9Q85pKTcVsZazzZeNjtbO95ZZZuf5pXb+rYkuZds/Tt/adgU19TjXVtczWBTnCSV1Bvbu2qcOU2Lp4uuNsUtdLZ5TJJqy21xTRXvGlM0rsrKKm1x1duN+UrO2Y6hZ6yzqm11cc6/LpFIRKHQD40ZAwEqNI61NrL0/2RLdhmCSD/RNNKhnf143tyYr/vVIdH3W1g/J9qefvL7il87pTr9ICTaju1Th2t9Xo+9hvDri3518Dz/NUrenltiB1S/65OCXx2S35c8322BTzv4fQY2+KwzG/zrEG6O/TfG0JONsRPw3Tf71HGpz7xWYVjP+rSTV+SfBNITV34AAAAAAAAAAIAOhZMfAAAAAAAAAACgQ+FnrwAAAAAAAAAAyAoH/vwIOs30w5UfAAAAAAAAAACgQ+HKDwAAAAAAAAAAskLznx9Bp5l+uPIDAAAAAAAAAAB0KJ5zzqW6ENkoEokoFAopHA6roKAgZqxXZUtzToUXQMnapvJZW9zcscktRyzDXYkpbmTLZlNcwf822TKeZQuTpPz/DZviGkeHTHHbX7bl+5S7wxYYh426xBRXWzXOluBkW1j4w3xboKTNOSPNsRZX1z8daHqzihYGmp5kPy6XaKMpbl7RPaa4kvoaU5wkPd1ytTk2SAXDjGNakjcw4I/O8bawvHERU1zT5NifK4crqbIdm9py21i1pmdlzVeSVL3dFJa35wxTXFN/YzvGUcSg3Vk12xRnnpO9PvbMCwfb4pbawsz9u8diU1yJG27LWFJtUYoOYoOtzybHKlOUc5WB5RjP+heQguszXpFPgM9YdM443x0vf89/rPvl4XlzEypDomM50fyDKEN78DtWifaFRFn6kt/ns6tPtAyx+4LfcQ6iL0nX+pQh+WPWT+JjOnYdk5+/JY/EjnW79JVCn3nHbwlY7VMGv/QbYr/fsl5NdJ2a91bsNbbvnsenDjZ+/dlvXerz/jKfMW/ZovrVM6Fj/ZmkH6bFGvjQ2kraISnoskQk9U2Leh6On70CAAAAAAAAACAr8LNXAAAAAAAAAAAAGYkrPwAAAAAAAAAAyArNkg4kIc30w5UfAAAAAAAAAACgQ+HKDwAAAAAAAAAAssIBBX/lR9DpBcNzzrlUFyIbRSIRhUIhhcNhFRQUBJLmXM8LJJ3DDXclprhx62pNcXPH2vKtfNYWJ0laZ4z7X2PcaFvY3PttcXHVxeiu0jtMcRt1SeB5/4t3pSlu8Pm29O7aZqvLwvpZprhZRQttGcvePiXGOluPdWR0ninuvpwZtgRlb58PQyeb07QITWw0xd1ZNduc5ryqe0xxa8svN8UtlK1tLtFGU1w85nm2Y62ySlOYtR3nldvaUJLWVtnacbNG2vI2Hj+rkvIac6z1GM4rspUx/GG+Ke7qnKdNcbXl40xxkhT+D1veJ4c/NMU19betNe6sj2OsWvuZ9RAuNcZNNsbZm1uuyhbnFRnTq7fnbcrXm2sPLrTNJ2rYbkxwlSnKOf98k7H+RcfWXn3Gb4z59e+4xmgbJV6Ga33SHxxnieKX+naO3QaflyH57ZAISxtY5uNk8jy/zxf/z5VE65DoePAro6V8ibZDJsw7fnzXTQ2JHicL2zrmuPzWVX7rqUKfOcWy/q3waadEy7gigHmvwrqubKsEj6OFdQ19HLHW/+m0Bj5UFuk1Sd0DTn2fpHPSop6H48oPAAAAAAAAAACyQrOCv0cH9/wAAAAAAAAAAABIOk5+AAAAAAAAAACQFZr1xX0/gnrEd+XHggULdOGFF6p79+4qLi7WNddcozfeeCPxqh2Bkx8AAAAAAAAAAGSF5iQ97DZs2KCbb75ZL7zwgtavX6/m5maVlpbqk08+Sbx6h+GeHwAAAAAAAAAAoF3U1NS0+v/y5ctVXFysuro6XXrppYHlw8kPAAAAAAAAAACywqGfqgo6TSkSibR6Nj8/X/n5+b7vDofDkqSioqJAS8XJjw5kzgpnj63wTHFbvFpbnDnn4OXfEbYF3mEL29ojZIq71pZcfGbZwkaWbjbFbdQlprjnhlxpy1jSXc7WkE8Z0xspW12s7p4x3xx71322uswps42tOWO3m+LWuqmmOOvxk6Q7jP325D228TKraKEpLm9pxD9I8R3nkvIa/yBJVxY9Z0twqS1sVrmtzpI0bl2tLdA4XjbKVmdrn1hbdbkpTpIWGieeWbK1j/X4WdO7uv5pU5wk1U4eZ461COVuNcXl7TnDFmccL5IUmthoCxxvTNDYNPPK7zEmKBm7rTlvVdjmUJUNtsVZyyfJKzcGGuvieXONCSZhNdFgzTtYnmc5fh8nvRxAm5RVxnzZ1r9j8R/rzsWe2/zmFedi18GP77xVaEjfZ/7xK6N97mxb+kFItIz+fWFVgu9PXKJ9zb8v+9UxAD791dXHfrvn8+cSWz9I7Fj555FgXzKMad/1UbXP3Fjot2aLXQffvmT5+2iDz+t+ZWxIcP7324uusSTic6wTLKPf/q3WM/zFz68/+bXDZJ/X/Y6jH9++KP929NmDxF4rZNcauG/fvq3+X1lZqTlz5sR8j3NO06dP18UXX6xBgwYFWh5OfgAAAAAAAAAAkBXiv0eHLU1px44dKigoiD5ruepj8uTJ2r59uzZt2hRwmTj5AQAAAAAAAAAAElRQUNDq5Ief73//+1q9erV+9atf6dRTTw28PJz8AAAAAAAAAAAgKzQr+Ht+xHcliXNO3//+97Vq1SrV1taqX79+AZfnc5z8AAAAAAAAAAAA7eLmm29WVVWVnn76aXXv3l27du2SJIVCIXXp0iWwfDj5AQAAAAAAAABAVkjePT+sHnnkEUlSSUlJq+eXL1+u66+/PqAycfIDAAAAAAAAAIAscUDB/+xVfOk55wLO/9g81145oZVIJKJQKKRwOBzXTWCCMtfzTHGV5xvTe9kWV3mrMb37bXHxsNblrm13mOLuHjLfFLf9ZVu+kjT4WVvc9rHG9M63xdVsK7EFShrZstkUtzi3yRR3S3OeKa5gli09ldrCJCky2pZ30Kx18T6wT895SyOmuMbRIVNc5De2tgnlbjXF3emeNMXFY17VPbbAycYEl7a5KAnnnfeW7fg1TTZ+Xoy3hcXFWJc762cHmu3C+lnm2KYaW/uEv5lvirs652lTXG35OFOcdZxK9roE3b9duTE9SZ431xa4ojLQvM356lpjnOTc4GDzLrTVWQ3Wutg5Z8vb87Yb07O1jUWq17/IPOnSZ3zHvt+Yb7CNt1gSHYuJ1sHVB5CH37y8InYd/T4n/OY1SxsmXAet8ilD7Ha2zs1JVZjgvO/T3wM5DmU+Y6469vv9j0Pin8/Wz+PklSGxvioZ2qnI5/0+84bnM6Zdlc/7gxgvPvNOSXlNzNdrq2LvA3znLZ82NEn0MybRMR9EGXz59Fe/z2Hbdi02nz12rGOdLuuZw8sirZHULeDUP5E0Pi3qeTiu/AAAAAAAAAAAICuk/mev2ssJqS4AAAAAAAAAAABAkLjyAwAAAAAAAACArNCs4O/5wZUfAAAAAAAAAAAASceVHwAAAAAAAAAAZIXsueeH55xzqS5ENopEIgqFQgqHwyooKEh1cY5vnWcK2z7WltxUt9YU93TL1bYEJZ0c/tAU1zg/ZE7T4q777jDFLayfZU5zVtFCU9w875umuDvdk6a4eMpoNbJosynuuXVXmuLyh4VNcU019vGUNy5iS3OyMc0aW9id9bNNcfOq7rElKEkV201hJe4De5oGl2ijKc7aZyV7vzW3zxpz1mZ3VhmPobXeKwbb4ozHWYXG9OIxzhhnHAfm9KrnGgMl5ypNcV65Ne9g29vVG/ONg+cZy6hVpihrG6Y6bwt7+eJhq4t0rSnKOVvf8Tz7OAg+b1s7WtLLmPUv0kam9Bm/cWIZH77jvNBnjmxI9P1+Y91//vObx/3nE+scezx+858hfZ928vssD6IvJJK+SZlPGeJYe2Uu22dlQnza2VXFfrvn87omx345763Ye92m/oY51W+97ttXfNrZry/67Sss+4lE+3PCc6df+oY5IdE8fMd8AJ9hRbFfT3Tu9J+/Y/e1ROfeRKXTeuZQWaSVkroGnPqnkv42Lep5OK78AAAAAAAAAAAgKxxQ8Pf8CDq9YHDyAwAAAAAAAACArJA9Jz+44TkAAAAAAAAAAOhQuPIDAAAAAAAAAICskD03POfKDwAAAAAAAAAA0KFw5QcAAAAAAAAAAFmhWcHfoyM9r/zwnHMu1YXIRpFIRKFQSOFwWAUFBakuDgAAAJBUrH8RL/oMAADIdOm0njlUFulhSV0CTn2/pJvSop6H48oPAAAAAAAAAACyAvf8AAAAAAAAAAAAyEhc+QEAAAAAAAAAQFY4oOBPCwR9D5FgcPIDAAAAAAAAAICswM9eAQAAAAAAAAAAZCSu/AAAAAAAAAAAICs0K/ifqeLKDwAAAAAAAAAAgKTjyg8AAAAAAAAAALIC9/wAAAAAAAAAAADISJz8SMDDDz+sfv36qXPnzho6dKg2btyY6iIBAAAAQFph3wQAAJBODiTpkX44+dFGTz75pKZNm6bZs2dr27ZtuuSSS3TllVfqvffeS3XRAAAAACAtsG8CAABAqnjOOZfqQmSi4cOH64ILLtAjjzwSfW7gwIG65pprtGDBgqPiGxsb1djYGP1/OBzWaaedph07dqigoKBdygwAAACkSiQSUd++fbV3716FQqFUFwftJJ59E3smAADQ0aTTGjgSify5DLdIyg849UZJixUOh9Nq3cYNz9ugqalJdXV1uu2221o9X1paqs2bNx/zPQsWLNDcuXOPer5v375JKSMAAACQjvbs2ZPyjR/aR7z7JvZMAACgo0qHNXBeXp569eqlXbsWJyX9Xr16KS8vLylptxUnP9rgo48+UktLi3r27Nnq+Z49e2rXrl3HfM/tt9+u6dOnR/+/d+9enX766XrvvfdS3vGRGQ6dKeabb7CizyBe9BnEiz6DeBz6Fn9RUVGqi4J2Eu++iT1Tx8PnRObjGGY+jmFm4/hlvnRaA3fu3FnvvPOOmpqakpJ+Xl6eOnfunJS024qTHwnwPK/V/51zRz13SH5+vvLzj76cKBQKMXkhLgUFBfQZxIU+g3jRZxAv+gziccIJ3HYw21j3TeyZOi4+JzIfxzDzcQwzG8cv86XLGrhz585pd4IimdKj1TPMSSedpJycnKO+rbR79+6jvtUEAAAAANmIfRMAAABSiZMfbZCXl6ehQ4dq/fr1rZ5fv369Ro4cmaJSAQAAAED6YN8EAACAVOJnr9po+vTpmjhxooYNG6YRI0boscce03vvvacbb7zR9P78/HxVVlYe87Ju4FjoM4gXfQbxos8gXvQZxIP+kp0S2TfRZzIfxzDzcQwzH8cws3H8Mh/HMLU855xLdSEy1cMPP6xFixZp586dGjRokBYvXqxLL7001cUCAAAAgLTBvgkAAACpwMkPAAAAAAAAAADQoXDPDwAAAAAAAAAA0KFw8gMAAAAAAAAAAHQonPwAAAAAAAAAAAAdCic/AAAAAAAAAABAh8LJjyR6+OGH1a9fP3Xu3FlDhw7Vxo0bY8Zv2LBBQ4cOVefOnXXmmWfqX//1X9uppEgX8fSZ//zP/9QVV1yhk08+WQUFBRoxYoSeffbZdiwt0kG888whzz//vHJzc3X++ecnt4BIK/H2l8bGRs2ePVunn3668vPz9Rd/8Rf693//93YqLdJBvH1mxYoVOu+889S1a1f17t1b3/72t7Vnz552Ki1S7Ve/+pW+9rWvqU+fPvI8T//1X//l+x7Wv2DPlPnYw2Q+9hSZjTV+5mPNndlYA6c5h6RYuXKl69Spk1u2bJl77bXX3NSpU123bt3cH/7wh2PGv/32265r165u6tSp7rXXXnPLli1znTp1ck899VQ7lxypEm+fmTp1qlu4cKF78cUX3Ztvvuluv/1216lTJ/fSSy+1c8mRKvH2mUP27t3rzjzzTFdaWurOO++89iksUq4t/WXChAlu+PDhbv369e6dd95xW7Zscc8//3w7lhqpFG+f2bhxozvhhBPcv/zLv7i3337bbdy40X3lK19x11xzTTuXHKny3//932727Nnu5z//uZPkVq1aFTOe9S/YM2U+9jCZjz1FZmONn/lYc2c+1sDpjZMfSXLRRRe5G2+8sdVzX/7yl91tt912zPiZM2e6L3/5y62e+973vue++tWvJq2MSC/x9pljOeecc9zcuXODLhrSVFv7zDe/+U33T//0T66yspKNShaJt7+sXbvWhUIht2fPnvYoHtJQvH3m3nvvdWeeeWar5x566CF36qmnJq2MSF+WjR/rX7BnynzsYTIfe4rMxho/87Hm7lhYA6cffvYqCZqamlRXV6fS0tJWz5eWlmrz5s3HfM+vf/3ro+LHjh2r3/zmNzpw4EDSyor00JY+c6SDBw9q3759KioqSkYRkWba2meWL1+u3//+96qsrEx2EZFG2tJfVq9erWHDhmnRokU65ZRTdNZZZ2nGjBnav39/exQZKdaWPjNy5Ei9//77+u///m855/SnP/1JTz31lK666qr2KDIyEOvf7MaeKfOxh8l87CkyG2v8zMeaOzuxnmlfuakuQEf00UcfqaWlRT179mz1fM+ePbVr165jvmfXrl3HjG9ubtZHH32k3r17J628SL229Jkj3X///frkk0903XXXJaOISDNt6TO/+93vdNttt2njxo3KzWX6zyZt6S9vv/22Nm3apM6dO2vVqlX66KOPdNNNN6m+vp7fBM4CbekzI0eO1IoVK/TNb35Tn332mZqbmzVhwgQtWbKkPYqMDMT6N7uxZ8p87GEyH3uKzMYaP/Ox5s5OrGfaF1d+JJHnea3+75w76jm/+GM9j44r3j5zSHV1tebMmaMnn3xSxcXFySoe0pC1z7S0tKi8vFxz587VWWed1V7FQ5qJZ445ePCgPM/TihUrdNFFF+mv/uqv9MADD+jxxx/nm2FZJJ4+89prr2nKlCm66667VFdXp5qaGr3zzju68cYb26OoyFCsf8GeKfOxh8l87CkyG2v8zMeaO/uwnmk/nKZPgpNOOkk5OTlHnaXdvXv3UWf2DunVq9cx43Nzc9WjR4+klRXpoS195pAnn3xSN9xwg372s59pzJgxySwm0ki8fWbfvn36zW9+o23btmny5MmSPl/4OueUm5urdevW6S//8i/bpexof22ZY3r37q1TTjlFoVAo+tzAgQPlnNP777+vAQMGJLXMSK229JkFCxZo1KhR+sEPfiBJGjx4sLp166ZLLrlE//zP/8w3mHAU1r/ZjT1T5mMPk/nYU2Q21viZjzV3dmI907648iMJ8vLyNHToUK1fv77V8+vXr9fIkSOP+Z4RI0YcFb9u3ToNGzZMnTp1SlpZkR7a0mekz78tdf3116uqqorfd8wy8faZgoICvfLKK3r55ZejjxtvvFFnn322Xn75ZQ0fPry9io4UaMscM2rUKH3wwQf6+OOPo8+9+eabOuGEE3TqqacmtbxIvbb0mU8//VQnnNB6aZmTkyPpi28yAYdj/Zvd2DNlPvYwmY89RWZjjZ/5WHNnJ9Yz7aw9766eTVauXOk6derkfvzjH7vXXnvNTZs2zXXr1s29++67zjnnbrvtNjdx4sRo/Ntvv+26du3qbrnlFvfaa6+5H//4x65Tp07uqaeeSlUV0M7i7TNVVVUuNzfX/ehHP3I7d+6MPvbu3ZuqKqCdxdtnjlRZWenOO++8diotUi3e/rJv3z536qmnur/5m79xv/3tb92GDRvcgAED3He+851UVQHtLN4+s3z5cpebm+sefvhh9/vf/95t2rTJDRs2zF100UWpqgLa2b59+9y2bdvctm3bnCT3wAMPuG3btrk//OEPzjnWvzgae6bMxx4m87GnyGys8TMfa+7Mxxo4vXHyI4l+9KMfudNPP93l5eW5Cy64wG3YsCH62re+9S132WWXtYqvra11Q4YMcXl5ee6MM85wjzzySDuXGKkWT5+57LLLnKSjHt/61rfav+BImXjnmcOxUck+8faX119/3Y0ZM8Z16dLFnXrqqW769Onu008/bedSI5Xi7TMPPfSQO+ecc1yXLl1c7969XUVFhXv//ffbudRIleeeey7m2oT1L46FPVPmYw+T+dhTZDbW+JmPNXdmYw2c3jznuCYKAAAAAAAAAAB0HNzzAwAAAAAAAAAAdCic/AAAAAAAAAAAAB0KJz8AAAAAAAAAAECHwskPAAAAAAAAAADQoXDyAwAAAAAAAAAAdCic/AAAAAAAAAAAAB0KJz8AAAAAAAAAAECHwskPAAAAAAAAAADQoXDyAwAAAAAAAAAAdCic/AAAdDglJSWaNm1aqosBAAAAIMXYGwBA9uLkBwAAAbv00kvled5Rj4qKCtP7r7/+et12222BpQcAAAAgNdgbAEDq5Ka6AAAASFJTU5Py8vJSXYyEOef08ssv67777jtqA/KlL33J9/0HDx7UM888o9WrVweSHgAAAJBp2Bt8jr0BACSGKz8AAEdxzmnRokU688wz1aVLF5133nl66qmnoq+XlJRoypQpmjlzpoqKitSrVy/NmTMn7jQmT56s6dOn66STTtIVV1whSdq3b58qKirUrVs39e7dW4sXL251qfpPf/pT9ejRQ42Nja3y++u//mv9/d///THr09jYqClTpqi4uFidO3fWxRdfrK1bt0Zff+qpp3TuueeqS5cu6tGjh8aMGaNPPvnE/Prhfve732nfvn269NJL1atXr1YPy4bk+eef1wknnKDhw4cHkh4AAACQCPYG7A0AIFNx8gMAcJR/+qd/0vLly/XII4/ot7/9rW655Rb93d/9nTZs2BCN+clPfqJu3bppy5YtWrRoke6++26tX78+7jRyc3P1/PPP69FHH5UkTZ8+Xc8//7xWr16t9evXa+PGjXrppZei7/nGN76hlpaW6LefJOmjjz7SmjVr9O1vf/uY9Zk5c6Z+/vOf6yc/+Yleeukl9e/fX2PHjlV9fb127typsrIy/cM//INef/111dbW6utf/7qcc5Lk+/qR6urqlJubq8GDB7eh5aXVq1fra1/7mk444YRA0gMAAAASwd6AvQEAZCwHAMBhPv74Y9e5c2e3efPmVs/fcMMNrqyszDnn3GWXXeYuvvjiVq9feOGFbtasWXGlcf7557d6PRKJuE6dOrmf/exn0ef27t3runbt6qZOnRp97h//8R/dlVdeGf3/gw8+6M4880x38ODBaNqH4j/++GPXqVMnt2LFimh8U1OT69Onj1u0aJGrq6tzkty77757zPbwe/1IM2bMcJ7nuW7durV6fOc73zG9/6yzznKrV6+OK71f/OIX7qyzznL9+/d3y5YtM+UDAAAA+GFv0Bp7AwDILNzzAwDQymuvvabPPvsseqn5IU1NTRoyZEj0/0d+26h3797avXt3XGkMGzas1etvv/22Dhw4oIsuuij6XCgU0tlnn90qbtKkSbrwwgv1xz/+UaeccoqWL1+u66+/Xp7nHVWf3//+9zpw4IBGjRoVfa5Tp0666KKL9Prrr2v69OkaPXq0zj33XI0dO1alpaX6m7/5GxUWFkqSzjvvvJivH6murk7f+MY3dM8997R6/njxh3v99df1/vvva8yYMeb0mpubNX36dD333HMqKCjQBRdcoK9//esqKiryzQ8AAACIhb0BewMAyGSc/AAAtHLw4EFJ0jPPPKNTTjml1Wv5+fnRf3fq1KnVa57nRd9rTaNbt26tXnN/vlz8yI2KO+Iy8iFDhui8887TT3/6U40dO1avvPKKfvGLXxyzPrHS9DxPOTk5Wr9+vTZv3qx169ZpyZIlmj17trZs2aJ+/fr5vn6kbdu26e6771b//v2PWZ5XX31VV199tZ5//nn16tVLH330kcaMGaMXX3xRq1ev1hVXXKEuXbqY03vxxRf1la98JdrOf/VXf6Vnn31WZWVlx4wHAAAArNgbsDcAgEzGPT8AAK2cc845ys/P13vvvaf+/fu3evTt2zepafzFX/yFOnXqpBdffDH6XCQS0e9+97ujYr/zne9o+fLl+vd//3eNGTPmuOn2799feXl52rRpU/S5AwcO6De/+Y0GDhwo6fPNz6hRozR37lxt27ZNeXl5WrVqVTTe7/VD3n77be3du7fVN9iONGjQIP3t3/6tfvnLX0qS5s6dq1mzZikvL09PP/20JkyYEFd6H3zwQatN5Kmnnqo//vGPx40HAAAArNgbsDcAgEzGlR8AgFa6d++uGTNm6JZbbtHBgwd18cUXKxKJaPPmzfrSl76kb33rW0lLo3v37vrWt76lH/zgByoqKlJxcbEqKyt1wgknHPXtrIqKCs2YMUPLli3TT3/60+OWpVu3bvrHf/zHaJqnnXaaFi1apE8//VQ33HCDtmzZov/93/9VaWmpiouLtWXLFn344YfRzY/f64erq6uTJPXs2VO7du1q9VpxcXH0RoVf+cpX9Oabb+qtt95SXV2dHnroIe3evVtbt27Vf/3Xf8WV3pHffJOO/iYbAAAA0BbsDdgbAEAm4+QHAOAo8+bNU3FxsRYsWKC3335bJ554oi644ALdcccdSU/jgQce0I033qjx48eroKBAM2fO1I4dO9S5c+dWcQUFBfrrv/5rPfPMM7rmmmtipvnDH/5QBw8e1MSJE7Vv3z4NGzZMzz77rAoLC1VQUKBf/epXevDBBxWJRHT66afr/vvv15VXXhnNJ9brh3vppZckSWeddVar5zt16qR9+/ZFL+sfMGCA1qxZozvuuEP33HOPPM/TL37xCw0fPlzFxcVxpXfKKae0+jbX+++/r+HDh8dsDwAAAMCKvQF7AwDIVJ471mlhAADSxCeffKJTTjlF999/v2644YZWr11xxRUaOHCgHnrooRSVrm327t2rAQMGaPjw4VqzZo0kacKECbr44os1c+bMuNJqbm7WwIEDVVtbG72p4QsvvKAePXoko+gAAABAyrA3iI29AQC0xpUfAIC0sm3bNv3f//2fLrroIoXDYd19992SpKuvvjoaU19fr3Xr1umXv/ylli5dmqqittmJJ54o6fNvnR1y8cUXt+lGhLm5ubr//vt1+eWX6+DBg5o5cyabGwAAAHQI7A3iw94AAFrjyg8AQFrZtm2bvvOd7+iNN95QXl6ehg4dqgceeEDnnntuNOaMM85QQ0OD7rzzTs2YMSOFpW2bAwcOaNCgQXrjjTdSXRQAAAAgbbE3AAAkgis/AABpZciQIdGb+R3Pu+++2z6FSZL/+7//09lnn53qYgAAAABpjb0BACARXPkBAAAAAAAAAAA6lBNSXQAAAAAAAAAAAIAgcfIDAAAAAAAAAAB0KJz8AAAAAAAAAAAAHQonPwAAAAAAAAAAQIfCyQ8AAAAAAAAAANChcPIDAAAAAAAAAAB0KJz8AAAAAAAAAAAAHQonPwAAAAAAAAAAQIfCyQ8AAAAAAAAAANChcPIDAAAAAAAAAAB0KJz8AAAAAAAAAAAAHcr/Bz6/he6sJFTyAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#energyloss in abh von der energie der elektronen\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(energyloss_found, energy_found, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,70)), cmap=plt.cm.jet, cmin=1, vmax=15)\n",
"ax0.set_ylim(0,1.5e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0$\")\n",
"ax0.set_title(\"found energyloss wrt electron energy\")\n",
"\n",
"a1=ax1.hist2d(energyloss_lost, energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,1.5e5,70)), cmap=plt.cm.jet, cmin=1, vmax=15) \n",
"ax1.set_ylim(0,1.5e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0$\")\n",
"ax1.set_title(\"lost energyloss wrt electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"we can see that high energy electrons are often found even though they emit a lot of their energy through bremsstrahlung\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk4AAAJOCAYAAADxgPt3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADWFElEQVR4nOzdd3hUxf7H8c+mh5CEUEOQLr03aSogXZooRdBIU1FEQMCCCgFFEFBBwXa9Cog0uUgvQgBRmnS5oldQQUAJoEIoUpIwvz8g+2NJ2ZPkJGyS9+t59tE9O2fmO3POHuZkds44jDFGAAAAAAAAAAAAkNetDgAAAAAAAAAAAMBTMHACAAAAAAAAAABwHQMnAAAAAAAAAAAA1zFwAgAAAAAAAAAAcB0DJwAAAAAAAAAAANcxcAIAAAAAAAAAAHAdAycAAAAAAAAAAADXMXACAAAAAAAAAABwHQMnAAAAAAAAAAAA1zFwAgAAAAAAAAAAcB0DJwAAINfo3bu3ZsyYcavDgEX79u3TkSNHbnUYAAAAAIBchoETAAAAeKR//etfWr9+/a0OAwAAAACQyzBwAgAAYNH8+fNVpUoVBQYGyuFwaO/evbc6pFStXLlSDofD5RUSEqI6dero888/z7LyP/30U5ftp0+fVtu2beXn56dp06a5fPb111/rscce08mTJ53bfvjhB91///06ceJEpsecnXz11VdJjm/ia9u2bUnS79u3T/369VPZsmUVGBiowMBAlStXTv3799fOnTvTFUPnzp0VGBioM2fOpJjmoYcekq+v7y0/fjNmzJDD4dDhw4ezvOzRo0fL4XDozz//tC3PLVu2aPTo0am2fXaWkJCgwoULa/LkySmmyYx2zQ5y8rHfvn27WrdureDgYOXNm1fNmjXT5s2bk6RL6/Xv/PnzGjJkiCIiIhQQEKCaNWtq3rx56U4HAAByPgZOAABAjta+fXvly5dP+fLl05w5czRgwADn+9dff91yPqdOnVJkZKTKli2r1atXa+vWrSpfvnwmRp5xu3fvliQtWbJEW7du1ZYtW/TRRx/pwoUL6tGjh/bt25cl5depU8e5bd++fapbt6727Nmj9evXa+DAgS771KlTR0WKFFH16tW1bt06TZs2TS1btlSbNm1UqFChTI03uxo3bpy2bt3q8qpatapLmg8//FB16tTRt99+q8GDB2v58uVasWKFhgwZov3796tevXr65Zdf0lx2v379dOnSJc2ZMyfZz2NjY7Vo0SK1b99eRYoUSVf9kLwtW7ZozJgxOfKP59K1QdRTp07p/vvvv9WheJyceux37Nihu+++WxcvXtSsWbM0a9YsXbp0Sc2bN9fWrVuT3cfK9U+S7r//fs2cOVNRUVFatWqV6tWrpx49eiS5dllNBwAAcj6fWx0AAABAZlq+fLnz/3v37q2mTZuqd+/eac7nwIEDiouL08MPP6wmTZqkmO6ff/5Rnjx50hOq7Xbv3q3Q0FB17NjRua1hw4aKj4/Xww8/rD179qh69eqZWn5gYKAqVqwoSZo3b5769eun6tWra+HChYqIiEiyT1BQkF555RVdvXpV48ePl5eXl2bPnq0HH3ww0+K8Ff7++29dvXpVBQsWzHBe5cqVU4MGDVL8fPPmzRowYIDatWun//znP/Lz83N+ds899+ipp57SggULFBgYmOay27Ztq4iICH3yyScaMGBAks/nzp2rixcvql+/fmnOG7nbf/7zH9WtW1clS5bMtDI86XqdWxw/flxBQUEKCQlJ8tnIkSOVL18+rV692nlcWrRooTJlymj48OHJzjxxd/2Trs1+XLt2rebMmaMePXpIkpo1a6bffvtNzz77rLp37y5vb2/L6QAAQO7AjBMAAJDtbNq0Sa1atVJoaKjCwsLUrl07HTx4MNPK6927t+68805JUvfu3eVwONS0aVPnY2J2796tLl26KCwsTGXLlnWJs3nz5goODlaePHnUqFEjrVixwiXvxDz27dunrl27KjQ0VPnz59fQoUMVHx+vn376SW3atFFwcLBKlSqliRMnWo57165dqlmzZpLtx44dkyRVqlQpHa0hTZ48WYsXL05T+cOHD1ePHj300EMPaePGjckOmkjSf//7X9WuXVu7d+/Wvffeq759++q1115Tu3bt3D6Ox+p5Yff506FDB9WtW1cfffSRatSoocDAQBUvXlxRUVG6evVqsvvs27dPRYsWVdu2bfXpp5/q3Llz6S7fnXHjxsnb21sffvihy6DJjbp27ZrkmBw8eFA9e/ZU4cKF5e/vr0qVKundd991SePt7a1evXpp165d+u9//5sk3+nTpzvrmR5p+Q7t379fPXr0UGhoqIoUKaK+ffsqNjY2xby/+eYbORwOzZ07N8lnn376qRwOh3bs2JHi/onl7tmzR/fff79CQkIUGhqqhx9+WKdOnUp2nxMnTriN0Wqdn332WUlS6dKlnY8o+uqrrzKl3U6dOqXHH39cxYsXl7+/vwoVKqTGjRsrOjo6xfbZv3+/HA6HFixY4Ny2a9cuORwOValSxSVtx44dXWamGWO0aNEiPfDAAynmf6OjR4+6PQburtdWzvfMvF5L0uLFi+VwOLRu3bokn73//vtyOBy6//77Uzz2ly5dUq1atXT77be7HMOYmBiFh4eradOmSkhIsBRLSo/BSs/j7k6fPq2PP/5YLVq00G233aZff/012XSbN29W06ZNXQazgoODdffdd2vLli06fvx4mspNtGjRIuXNm1ddu3Z12d6nTx/98ccf+vbbb9OUTsr4uZDZ5xIAALCBAQAAyEaioqKMl5eX6du3r1mxYoX5z3/+Y6pVq2aKFy9uzp07lyll/vzzz+bdd981ksy4cePM1q1bzf79+01UVJSRZEqWLGmef/55s3btWrN48WJjjDFfffWV8fX1NXXq1DHz5883ixcvNq1atTIOh8PMmzfPpT6STIUKFcyrr75q1q5da5577jkjyQwcONBUrFjRvPPOO2bt2rWmT58+RpJZuHCh25j//PNPI8kMGjTIxMXFmbi4OHPixAnz6aefmuDgYPPoo4+muz169uxpfH19zaJFi9yW3717d3PPPfcYf39/89FHH7nN++jRo2bZsmXGGGOeeuopM336dBMfH29mzJhhrly5kuJ+Vs+LzDh/ihYtaoKCgkylSpXMrFmzzJo1a8yDDz5oJKVY54sXL5rZs2ebDh06GD8/PxMQEGC6dOliFi5caC5dumSp3A0bNhhJpnDhwsbb29sEBwebVq1amW+++caZJj4+3gQGBpqGDRumqU779+83oaGhplq1aubTTz81a9asMcOGDTNeXl5m9OjRLmkPHjxoHA6HGTJkSJI8JJkXXnghTWUnSs93aNSoUWbt2rXmrbfeMv7+/qZPnz7OdNOnTzeSzKFDh5zbatWqZRo3bpyk7Hr16pl69eqlGt+N3/9nn33WfPnll+att94yQUFBplatWi7nq9UYrdb56NGj5umnnzaSzBdffGG2bt1qtm7damJjY21vN2OMad26tSlUqJD517/+Zb766iuzePFiM2rUKJf8klO0aFHz+OOPO9+//vrrJjAw0Egyv//+uzHGmLi4OBMSEmKee+45Z7pNmzYZSebAgQO2H4PkrtdWz/fMul4niouLM4ULFzYPPfRQks/uuOMOU7t27VSPvTHGHDhwwAQHB5v777/fGGNMQkKCueeee0zhwoXNH3/8YTmWxHwTX+vXrzfFihUz4eHhzrJSc+HCBTNv3jzTsWNH4+fnZwIDA80DDzxgFixYYC5fvpzsPn5+fuaRRx5Jsr1Hjx5Gkvnyyy+d26xc/xI1aNAg2e/z999/bySZDz/8ME3pjMn4uZDZ5xIAAMg4Bk4AAEC2sWzZMiPJTJw40WX7gQMHjCTz2WefJdmnTZs2JigoKNnXa6+9ZrnsxD/SLFiwwLkt8Q8fo0aNSpK+QYMGpnDhwi5/jI+PjzdVq1Y1t912m7l69apLHm+++abL/jVr1nT+YSxRXFycKVSokPMPYqlZs2aNkZTk5ePjY8aOHWu53smJj493O3hyY/kBAQFm27ZtaS4nceDEHavnRXrOH3eOHTtmJJkyZcqYM2fOOLdfuXLFhIeHm/bt27vN4/Tp0+aTTz4xrVq1Mj4+PiY0NNT07t3bfPnllyY+Pj7F/Xbv3m0GDx5sFi1aZL7++mvzySefmEqVKhlvb2+zevVqY4wxMTExRpJ58MEHk+wfHx/vHFSLi4tznpPGXPtD+W233ZbkD6QDBw40AQEB5u+//3bZ3qRJE1OwYEGXP1QPGzbM0h+/U5LW79DNx3XAgAEmICDAmS65gZPEbXv27HFu2759u5FkZs6cmWp8ieU+88wzLttnz56d5HyyGqPVOhtjzKRJk5LUJzPazRhj8ubNm2RgzIqHH37YlClTxvm+RYsW5rHHHjNhYWHO9t28ebORZNasWeNMN2TIEFOtWjW3+afnGCR3vbZ6vmfW9fpGQ4cONYGBgS7Xkx9++MFIMlOnTjXGpHzsE82fP99IMlOmTDGjRo0yXl5eLu2bVvHx8aZTp04mb968ZteuXSmmu3Llilm+fLnp2bOnCQoKMn5+fqZ9+/bms88+szQwXbNmTVO+fHmTkJDg3BYXF2fKlCljJJk5c+Y4t1u5/iUqV66cad26dZLy/vjjD+cPItKSzpiMnwtZcS4BAICM4VFdAAAg2xg1apTKli2rwYMHKz4+3vkqXbq0AgMDk338x6pVq3T+/PlkXy+++KItcd38OJkLFy7o22+/VZcuXZQ3b17ndm9vb0VGRurYsWP66aefXPZp3769y/tKlSrJ4XC4POLIx8dHt99+u3777Te3Me3atUuS9MUXX2jHjh3asWOHVq9erXbt2mnUqFH64osvkt3vzz//TPURLQ6HQz4+PpozZ47i4uLUrVs3nThxIsXyIyMjdenSJX399dduY77ZtGnTLK1HY/W8SM/5407io5xGjx6t0NBQ53ZfX1/dfvvtbh8vJkn58uVTnz599OWXX+r48eN6/fXXdejQIbVp00YREREpxlWrVi1NmTJF9913n+666y716dNHW7ZsUdGiRfXcc8+5LbdOnTry9fV1vt58801J0qVLl7Ru3Tp17txZefLkcWmre++9V5cuXdK2bdtc8urXr5/+/PNPLV26VJIUHx+vzz77THfddZfKlSvnNpabpec7dONaPpJUvXp1Xbp0SSdPnkyxnB49eqhw4cIuj2SaOnWqChUqpO7du1uK9aGHHnJ5361bN/n4+GjDhg1J0qYWY3rqfLPMarc77rhDM2bM0NixY7Vt2zbFxcWlGkei5s2b69dff9WhQ4d06dIlbdq0SW3atFGzZs20du1aSVJ0dLT8/f2dj0OUrl23rD6mS0rbMbg53/Sc73Zfr2/Ut29fXbx4UfPnz3dumz59uvz9/dWzZ09LeXTr1k1PPvmknn32WY0dO1YvvviiWrZsmaY4bjRw4ECtWLFCCxYsUO3atZNNs2/fPoWHh6tTp076888/9c477+jEiRNatmyZHnroIZfzMSVPP/20Dhw4oIEDB+r333/X0aNH9cQTTzjb0Mvr//98kdbrn8PhSLHcGz+zmi5RRs+FzDyXAABAxrA4PAAAyBZiYmK0Z88eSZK/v3+yafLly5eFEf2/okWLurw/ffq0jDFJtktyriPx119/uWzPnz+/y3s/Pz/lyZNHAQEBSbafPXvWbUyJC7N37NjRZTHbJk2aKCQkRB999JHuv//+JPsFBwfro48+cpv/6tWrtXDhQnXq1EkFChRItvyAgAB98sknkqQXXnhBFSpUSPJH2oyyel5k1vmzc+dO+fr6JnkmviT98ccfLus2WHH27FmdOXNGsbGxMsYoX7588vGx3mXPly+f2rdvrw8++EAXL15UwYIFFRgYmOwf3ObMmaN//vlHx48fdzkuf/31l+Lj4zV16lRNnTo12XJuHhDq0qWLnn76aU2fPl0PPPCAVq5cqRMnTmjChAmWY79Rer5DN5+Hicf54sWLKZbj7++v/v37680339SkSZMUFxenzz//XEOHDk3xPLlZeHi4y3sfHx8VKFAgSXzuYoyLi0tznW+WWe02f/58jR07Vv/+9781cuRI5c2bV507d9bEiROT1P9GLVq0kHRtcKR06dKKi4vTPffcoxMnTujVV191fta4cWMFBgZKkrZv364jR46kaeAkLcfg5rZJz/lu9/X6RlWqVFG9evU0ffp0Pf7440pISNBnn32mTp06JSk3NX379tX7778vPz8/DRo0KE0x3Gjs2LH64IMP9PHHH6tNmzYppvP19VVoaKj+/vtvxcbGKjY2VufPn0/TdbVv3746deqUxo4dq/fff1+S1LBhQw0fPlwTJkxQsWLFUt3/5utf4jmV0rnw999/S/r/42k13Y0yei5k5rkEAAAyhoETAACQLRw9elTStYXJb/xl8o1uXOg3K938K9SwsDB5eXklu5DtH3/8IUkqWLBgpsa0e/duVatWzWXQRLr2xy1vb+8U/5js7++vRx99NNW8V6xYoeXLl6tLly6aO3dusn/Y3717t2rUqCEfHx999NFHzoWXN23alOyC9ell9bz4+eefLaVLq507d6pgwYJJ/sj17bff6tdff9XIkSPd5nH06FEtWLBA8+bN044dO1SsWDF1795dH330kerWrZvmmIwxkq6dl97e3rrnnnu0Zs0aHT9+3OWPxpUrV5akJAs9h4WFOWcoPPXUU8mWUbp0aZf3gYGB6tGjhz766CMdP35cn3zyiYKDg5MdULIiK79DTz75pF5//XV98sknunTpkuLj4/XEE09Y3j8mJsblD7rx8fH666+/kh1QTI0ddc6sditYsKCmTJmiKVOm6MiRI1q6dKleeOEFnTx5UqtXr05xv9tuu03ly5dXdHS0SpUqpbp16ypfvnxq3ry5BgwYoG+//Vbbtm3TmDFjnPssXLhQ5cuXV9WqVS3Hl5ZjkNz1Oq3ne2br06ePBgwYoB9//FG//vqrjh8/rj59+lje/8KFC4qMjFT58uV14sQJPfroo1qyZEma45gxY4ZGjhyp0aNHq2/fvqmmrVSpkn799Vdt3bpVc+bM0euvv65hw4apcePG6t69u7p06ZLqIFui559/XkOGDNHBgwcVHByskiVLqn///goKCrI0EH3j9S9RtWrVNHfuXMXHx7v8e/Xf//5XkpznmtV0AAAgd+BRXQAAIFtI/FWmw+FQ3bp1k32FhYXd4iivCQoKUv369fXFF1+4DFBcvXpVn332mfOPiZklNjZWv/76a7IDFEuWLNGlS5d09913pzv/SZMmqUOHDikOmiSWn/hIF39/fy1atEj58+dXx44dFRMTk+6yb2b1vMis82fnzp06deqUzpw549yWkJCg559/XqVKlUrx0Trnzp3T1KlTdeedd6pkyZJ67bXXVLNmTa1fv15HjhzRm2++ma5Bk9OnT2v58uWqWbOmczBnxIgRSkhI0BNPPGHpEUt58uRRs2bNtGfPHlWvXj3ZtkruD9L9+vVTQkKCJk2apJUrV+rBBx9Unjx50lwHKWu/Q0WLFlXXrl313nvv6YMPPlCHDh1UokQJy/vPnj3b5f3nn3+u+Ph4NW3aNE1xpLXOyc0MyYp2K1GihAYOHKiWLVtq9+7dbtO3aNFC69ev19q1a52PiypfvrxKlCihUaNGKS4uzjkzRbo2cJKW2SZSxo5Bes/3zNSjRw8FBARoxowZmjFjhooVK6ZWrVo5P3c3m+qJJ57QkSNH9MUXX+jjjz/W0qVLNXny5DTFsHr1aj322GPq27evoqKiLO/XsGFDTZ06VX/88YdWr16tsmXL6qWXXlKxYsV0zz336MMPP0x1Fph0rX5Vq1ZVyZIldeTIEc2fP1+PPfaYcwZJSpK7/klS586ddf78eS1cuNAl/cyZMxUREaH69eunKR0AAMgdmHECAACyhbJly6pZs2Z6+eWXdf78edWvX1/GGB0/flwbNmxQr1690vyHysw0fvx4tWzZUs2aNdPw4cPl5+en9957T99//73mzp2b6nPUM2r37t0yxigoKMj5bP7Tp09ry5Ytmjx5sqpXr67hw4enO/9ly5YpMDAwxUdIJZZ/46+Dw8PDtWTJEt15553q2LGjNm7c6PaPYFZYPS/Sev44HA41adJEX331VYplHzp0SH/99ZdKlCihrl27atiwYbp06ZLeeecd7dq1S1999ZX8/PyS3XfXrl164YUX1LFjRy1evFht27aVr69vmures2dPlShRQnXr1lXBggV18OBBvfnmmzpx4oRmzJjhTNe4cWO9++67evrpp1W7dm09/vjjqlKlinNmQuIfCUNCQpz7vP3227rzzjt111136cknn1SpUqV07tw5/fzzz1q2bJnWr1+fJJ66deuqevXqmjJliowx6tevX7JxW2lbKWu/Q4MHD3b+UXT69Olp2veLL76Qj4+PWrZsqf3792vkyJGqUaOGunXrluY40lLnatWqSbp2rHr16iVfX19VqFDB9naLjY1Vs2bN1LNnT1WsWFHBwcHONZOSe9zfzZo3b6733ntPf/75p6ZMmeKyffr06QoLC3NeK/bu3atffvklzQMnGT0G6TnfM1O+fPnUuXNnzZgxQ2fOnNHw4cNd1vdI6dgHBwfr3//+tz777DNNnz5dVapUUZUqVTRw4EA9//zzaty4se644w635R86dEhdu3ZVmTJl1KdPnyRrvNSqVcvto+y8vb3VqlUrtWrVSh988IFWrFihOXPmaMiQIapfv36yA/vff/+9Fi5cqLp168rf31/fffedXn/9dZUrV875aLdEVq9/ktS2bVu1bNlSTz75pM6ePavbb79dc+fO1erVq/XZZ585Z2ZaTQcAAHKJW7IkPQAAQDrExsaaESNGmPLly5uAgAATFhZmatSoYZ5++mlz+vTpTC17w4YNRpJZsGCBc1tUVJSRZE6dOpXsPt9884255557TFBQkAkMDDQNGjQwy5Ytc0mTUh69evUyQUFBSfJs0qSJqVKlSqqxvvHGG0aSyysoKMjUqlXLvPbaa+bChQtWq50uieXv3r07yWcLFiwwDofDdO3a1Vy9etWW8qyeF1bTnTt3zkgyDz74YKrlfv7550aS2bJli4mMjDQhISEmODjYdOrUyfzwww9uYz5//nxGqm3Gjx9vatasaUJDQ423t7cpVKiQ6dy5s9m+fXuy6ffu3Wv69OljSpcubfz9/U1AQIC5/fbbzSOPPGLWrVuXJP2hQ4dM3759TbFixYyvr68pVKiQadSokRk7dmyKMb399ttGkqlcuXKyn1tt20QZ+Q5Nnz7dSDKHDh1K9v3NSpUqZSpVqmQprhvL3bVrl+nQoYPJmzevCQ4ONj169DAnTpxIV4xW65xoxIgRJiIiwnh5eRlJZsOGDZbzsBrTpUuXzBNPPGGqV69uQkJCTGBgoKlQoYKJioqydC05ffq08fLyMkFBQebKlSvO7bNnzzaSzP333+/c9vLLL5uSJUu6zfPmOmTkGCSycr5nxvU6JWvWrHFevw8cOJDk8+SO/b59+0xgYKDp1auXS9pLly6ZOnXqmFKlSln6tzLx37uUXil9h6xI7dr3008/mbvvvtvkz5/f+Pn5mdtvv928/PLLyaZP6/Xv3LlzZtCgQSY8PNz4+fmZ6tWrm7lz56Y7XUbPhaw8lwAAQPo4jLn+EFAAAAAAWrlypdq3b6/vvvvO+cvu5Dz33HN67733FBsbyy+RLbLatllt3759qlGjht59910NGDDA0j6jR4/WmDFjdOrUqUxfsyi3qFy5stq2bas333zzVocCAACAXI5HdQEAAAA32LBhgx588EG3f9jfuXOnateuzaBJGlht26zyyy+/6LffftOLL76ookWLqnfv3rc6pFzthx9+uNUhAAAAAJIYOAEAAABcTJo0yW0aY4x2796tvn37ZkFEOYeVts1Kr776qmbNmqVKlSppwYIF6V7MHnAnPj4+1c+9vLxc1jHJLbEAAAB4Kh7VBQAAAABAJjl8+LBKly6dapqoqCiNHj06V8UCAADgyRg4AQAAAAAgk1y5ckX79u1LNU1ERIQiIiJyVSwAAACejIETAAAAAAAAAACA63hwKQAAAAAAAAAAwHUMnAAAAAAAAAAAAFzHwAkAAAAAAAAAAMB1DJwAAAAAAAAAAABcx8AJAAAAAAAAAADAdQycAAAAAAAAAAAAXMfACQAAAAAAAAAAwHUMnAAAAAAAAAAAAFzHwAkAAAAAAAAAAMB1DJwAAAAAAAAAAABcx8AJAAAAAAAAAADAdQycAAAAAAAAAAAAXMfACQAAAAAAAAAAwHUMnAAAAAAAAAAAAFzHwAkAAAAAAAAAAMB1DJwAAAAAAAAAAABcx8AJAAAAAAAAAADAdQycAAAAAAAAAAAAXMfACQAAAAAAAAAAwHUMnACQJM2fP19VqlRRYGCgHA6H9u7de6tDStbo0aPlcDhudRgeo3fv3ipVqtStDiPTrVy5UqNHj77VYbg4fPiwHA6HZsyY4TZtVpy3aYnHqlKlSql379625Xez9957z9Z4AQBA1pgxY4YcDocOHz6cKfnTR0heZvfNPIUnHv+0nPNNmzZV06ZNPSYeKzLjXuJG//zzj0aPHq2vvvoqU/IHgMzAwAkAnTp1SpGRkSpbtqxWr16trVu3qnz58rc6LMBp5cqVGjNmzK0Ow0XRokW1detWtWvX7laHkm154k0xAAC49egj5G6eePzbtWunrVu3qmjRorc6lGzpn3/+0ZgxYxg4AZCt+NzqAADcegcOHFBcXJwefvhhNWnS5FaHkyP9888/ypMnz60OI9uxs93sPgb+/v5q0KCBbfkhdXFxcXI4HPLxyZ1dl4sXLyowMPBWhwEAANwwxujSpUv8u50OdvXXM+MYFCpUSIUKFbItP6QuN98/JyQkKD4+Xv7+/rc6FCDXY8YJkMv17t1bd955pySpe/fucjgcLtOKly5dqoYNGypPnjwKDg5Wy5YttXXr1iR5JPe4qOQeT+RwODRw4EDNmjVLlSpVUp48eVSjRg0tX748yf4rVqxQzZo15e/vr9KlS+uNN95IU92io6PVvHlzhYSEKE+ePGrcuLHWrVuXbIz79+9Xjx49FBoaqiJFiqhv376KjY11SWuM0XvvvaeaNWsqMDBQYWFh6tKli3799VeXdE2bNlXVqlX19ddfq1GjRsqTJ4/69u0rSTp27Ji6dOmi4OBg5cuXTw899JB27NjhMi161qxZcjgcSdpZkl555RX5+vrqjz/+SLHely5d0ogRI1S6dGn5+fmpWLFieuqpp3TmzBmXdOvXr1fTpk1VoEABBQYGqkSJEnrggQf0zz//ONO8//77qlGjhvLmzavg4GBVrFhRL774YqrtXq9evSSzMKpVqyaHw6EdO3Y4t33xxRdyOBz673//K+n/j8Xu3bvVpUsXhYWFqWzZsurdu7feffddSdfOn8RXatPSUzsGZ8+e1fDhw13aZ8iQIbpw4YJLHgsWLFD9+vUVGhqqPHnyqEyZMs48pJSns1s5b1ObCu9wOFweS/bzzz+rT58+KleunPLkyaNixYqpQ4cOznZLD6ttkJF9r169qqlTpzq/L/ny5VODBg20dOlSSdceNbF//35t3LjReUwTryNfffWVHA6HZs2apWHDhqlYsWLy9/fXzz//LEn65JNPVKNGDQUEBCh//vzq3LmzfvzxR5fye/furbx58+rnn3/Wvffeq7x586p48eIaNmyYLl++bKmd5s+fr4YNGyooKEh58+ZV69attWfPnnSXc+XKFY0dO1YVK1aUv7+/ChUqpD59+ujUqVMu6UqVKqX27dvriy++UK1atRQQEOCccbV//361atVKefLkUaFChfTUU09pxYoVcjgczl/wvfrqq/Lx8dHRo0eT1Klv374qUKCALl26ZKkNAABICyv/Rv/666968MEHFRERIX9/fxUpUkTNmzd3Pio4tT5CStLaT9+xY4fuuusuZx/v9ddf19WrV13SWu3zJN7ffPDBB6pUqZL8/f01c+ZMSdKmTZvUsGFDBQQEqFixYho5cqT+/e9/u/Rl+/Xrp/z587v0wRPdc889qlKlSqp1P3LkiB5++GEVLlxY/v7+qlSpkt58880k9XHXr//nn3+c9U08fnXr1tXcuXNTLPvs2bPy8fHRpEmTnNv+/PNPeXl5KTQ0VPHx8c7tgwYNUqFChWSMkZRyfz09xz+1Y3Dw4EH17NnTpX0S7y0SXb16VWPHjlWFChWc/dbq1avr7bffdqZJ7tFYxhhNnDhRJUuWVEBAgGrXrq1Vq1YliS+lx2ol9nlvnIWxdu1aderUSbfddpsCAgJ0++23q3///vrzzz9TbYPUWGmDjO575swZDRs2TGXKlJG/v78KFy6se++9V//73/90+PBh56DTmDFjnMc18bFzKd0HStbvbRP7z6tXr1bt2rUVGBioihUr6pNPPrFUz7T2062UExMTo/79++u2226Tn5+fSpcurTFjxrh8LxLvCydOnKixY8eqdOnS8vf314YNGyRJS5YsUfXq1eXv768yZcro7bffTvJ3lubNm6tixYrO71YiY4xuv/12npAAZIQBkKv9/PPP5t133zWSzLhx48zWrVvN/v37jTHGzJ4920gyrVq1MosXLzbz5883derUMX5+fuabb75x5tGrVy9TsmTJJHlHRUWZmy8zkkypUqXMHXfcYT7//HOzcuVK07RpU+Pj42N++eUXZ7ro6Gjj7e1t7rzzTvPFF1+YBQsWmHr16pkSJUokyTM5s2bNMg6Hw9x3333miy++MMuWLTPt27c33t7eJjo6OkmMFSpUMKNGjTJr1641b731lvH39zd9+vRxyfOxxx4zvr6+ZtiwYWb16tVmzpw5pmLFiqZIkSImJibGma5JkyYmf/78pnjx4mbq1Klmw4YNZuPGjeb8+fPm9ttvN/nz5zfvvvuu+fLLL80zzzxjSpcubSSZ6dOnG2OMuXz5sgkPDzcPPfSQS/lxcXEmIiLCdO3aNcW2v3r1qmndurXx8fExI0eONGvWrDFvvPGGCQoKMrVq1TKXLl0yxhhz6NAhExAQYFq2bGkWL15svvrqKzN79mwTGRlpTp8+bYwxZu7cuUaSefrpp82aNWtMdHS0+eCDD8ygQYNSbfsXXnjB5M2b11y5csUYY0xMTIyRZAIDA81rr73mTPfkk0+aIkWKJDkWJUuWNM8//7xZu3atWbx4sfn5559Nly5djCSzdetW5yuxLslJ6RhcuHDB1KxZ0xQsWNC89dZbJjo62rz99tsmNDTU3HPPPebq1avGGGO2bNliHA6HefDBB83KlSvN+vXrzfTp001kZKSzjEOHDrkcN2Osn7fJ7ZtIkomKinK+37hxoxk2bJj5z3/+YzZu3GgWLVpk7rvvPhMYGGj+97//WcrzRlbbwBhjSpYsaXr16pWufSMjI43D4TCPPvqoWbJkiVm1apV57bXXzNtvv22MMWb37t2mTJkyplatWs5junv3bmOMMRs2bDCSTLFixUyXLl3M0qVLzfLly81ff/1lxo0bZySZHj16mBUrVphPP/3UlClTxoSGhpoDBw44y+/Vq5fx8/MzlSpVMm+88YaJjo42o0aNMg6Hw4wZMybVNjLGmNdee804HA7Tt29fs3z5cvPFF1+Yhg0bmqCgIOc1Mi3lJCQkmDZt2pigoCAzZswYs3btWvPvf//bFCtWzFSuXNn8888/Lu1etGhRU6ZMGfPJJ5+YDRs2mO3bt5s//vjDFChQwJQoUcLMmDHDrFy50kRGRppSpUoZSWbDhg3GGGNOnDhh/P39zUsvveRSp7/++ssEBgaaZ5991m39AQBIzfTp040kc+jQIec2q/9GV6hQwdx+++1m1qxZZuPGjWbhwoVm2LBhzn/HUusjpCQt/fQCBQqYcuXKmQ8++MCsXbvWDBgwwEgyM2fOdKZLS58nsc9SvXp1M2fOHLN+/Xrz/fffm++++84EBASY6tWrm3nz5pmlS5eae++91/nvdmLbfffdd0aS+eijj1zqtH//fiPJvPvuu85tN/fNTp48aYoVK2YKFSpkPvjgA7N69WozcOBAI8k8+eSTznRW+vX9+/c3efLkMW+99ZbZsGGDWb58uXn99dfN1KlTU237Bg0amFatWjnfz5s3zwQEBBiHw2E2b97s3F6pUiXTrVs3l2ORXH89Pcc/pWOwf/9+ExoaaqpVq2Y+/fRTs2bNGjNs2DDj5eVlRo8e7dx//Pjxxtvb20RFRZl169aZ1atXmylTprikSe6cT7x/6devn1m1apX517/+ZYoVK2bCw8NNkyZNUt3XmP/v8yae+8YY8/7775vx48ebpUuXmo0bN5qZM2eaGjVqmAoVKjjvr1LL82ZW2yC5ewmr+549e9ZUqVLFBAUFmVdeecV8+eWXZuHChWbw4MFm/fr15tKlS2b16tXOtko8rj///LNLO958H2j13taYa9+N2267zVSuXNl8+umn5ssvvzRdu3Y1kszGjRtTbaO09tOtlHP8+HFTvHhxU7JkSfPhhx+a6Oho8+qrrxp/f3/Tu3fvJO1erFgx06xZM/Of//zHrFmzxhw6dMisWrXKeHl5maZNm5pFixaZBQsWmPr16zuvIYmWLFliJJm1a9e61GvFihVGklmxYkWq9QeQMgZOADg7bAsWLHBuS0hIMBEREaZatWomISHBuf3cuXOmcOHCplGjRs5taR04KVKkiDl79qxzW0xMjPHy8jLjx493bqtfv76JiIgwFy9edG47e/asyZ8/v9uBkwsXLpj8+fObDh06uGxPSEgwNWrUMHfccUeSGCdOnOiSdsCAASYgIMB5U7R161Yjybz55psu6Y4ePWoCAwPNc88959zWpEkTI8msW7fOJW3iANWqVatctvfv3z9JJzUqKsr4+fmZEydOOLfNnz8/SYfs5rZP7JDeXJ/Eff/1r38ZY4z5z3/+YySZvXv3mpQMHDjQ5MuXL8XPUxIdHW0kma+//toYY8xnn31mgoODzYABA0yzZs2c6cqVK2d69uzpUmdJZtSoUUnyfOqppywNmCVK6RiMHz/eeHl5mR07drhsT2yPlStXGmOMeeONN4wkc+bMmRTLSO7mwup5m5aBk5vFx8ebK1eumHLlyplnnnnGUp43stoGxiS9Obe679dff20kJfnD/c2qVKniclOZKPGadPfdd7tsP336tAkMDDT33nuvy/YjR44Yf39/l/OpV69eRpL5/PPPXdLee++9pkKFCqnGdeTIEePj42Oefvppl+3nzp0z4eHhLjf9VstJ/IPFwoULXdLt2LHDSDLvvfeec1vJkiWNt7e3+emnn1zSPvvss8bhcLgM3BhjTOvWrZPcdPfq1csULlzYXL582bltwoQJxsvLy+0NNgAA7tz8R1ur/0b/+eefRpKZMmVKqvmn1EdITnr66d9++61L2sqVK5vWrVs736elvyTJhIaGmr///tslbdeuXU1QUJA5deqUc1tCQoKpXLlykj94N2nSxNSsWdNl/yeffNKEhISYc+fOObfd3Dd74YUXkq3Pk08+aRwOh7MvYaVfX7VqVXPfffelmiY5L7/8sgkMDHT+EfvRRx81bdq0MdWrV3f+iOT33393uRdJrHNy/XVj0nb8jUn5GLRu3drcdtttJjY21mX7wIEDTUBAgDN9+/btk7T/zZI75wMCAkznzp1d0m3evNlISvfAyY2uXr1q4uLizG+//WYkmSVLlrjN82ZW2yC5ewmr+77yyivJ/uH+RqdOnUrxPiel+0Cr97bGXPtuBAQEmN9++8257eLFiyZ//vymf//+KcZlTNr76VbK6d+/v8mbN69LOmP+/z4zsT+f2O5ly5Z1GRgzxph69eqZ4sWLu/Tnz507ZwoUKOByb5mQkGDKlCljOnXq5LJ/27ZtTdmyZV0GegGkDY/qApCsn376SX/88YciIyPl5fX/l4q8efPqgQce0LZt25KdTm5Fs2bNFBwc7HxfpEgRFS5cWL/99psk6cKFC9qxY4fuv/9+BQQEONMFBwerQ4cObvPfsmWL/v77b/Xq1Uvx8fHO19WrV9WmTRvt2LEjyRT7jh07uryvXr26Ll26pJMnT0qSli9fLofDoYcfftglz/DwcNWoUSPJIndhYWG65557XLZt3LhRwcHBatOmjcv2Hj16JKnDk08+KUn66KOPnNumTZumatWq6e67706x7uvXr5ck57TnRF27dlVQUJDzUWU1a9aUn5+fHn/8cc2cOTPJYwwk6Y477tCZM2fUo0cPLVmyxPL08MaNGysgIEDR0dGSrk03b9q0qdq0aaMtW7bon3/+0dGjR3Xw4EG1aNEiyf4PPPCApXLcSe4YLF++XFWrVlXNmjVdjmPr1q1dpsnXq1dPktStWzd9/vnn+v33392Wl9HzNiXx8fEaN26cKleuLD8/P/n4+MjPz08HDx5M8ugLK6y2QUb2TXxEwVNPPZWeKjvdfC5s3bpVFy9eTHJ+Fy9eXPfcc0+SR/E5HI4kbV+9enXntSYlX375peLj4/XII4+41DMgIEBNmjRJ0kZWylm+fLny5cunDh06uORZs2ZNhYeHJ8mzevXqKl++vMu2jRs3qmrVqqpcubLL9uSuIYMHD9bJkye1YMECSdceQfH++++rXbt2bh93AQBAWln9Nzp//vwqW7asJk2apLfeekt79uxJ8kiptEprPz08PFx33HGHy7bk/t1OS3/pnnvuUVhYmMu2jRs36p577lHBggWd27y8vNStW7ckdRg8eLD27t2rzZs3S7r2CKxZs2apV69eyps3b4p1X79+vSpXrpykPr1795YxxnlvYKVff8cdd2jVqlV64YUX9NVXX+nixYsplnuj5s2b6+LFi9qyZYuka49LbtmypVq0aKG1a9c6t0lK0vdPrr+eXjcfg0uXLmndunXq3Lmz8uTJ43Ic7733Xl26dEnbtm2TdK3u3333nQYMGKAvv/xSZ8+edVve1q1bdenSJT300EMu2xs1aqSSJUumux4nT57UE088oeLFi8vHx0e+vr7O/NLa909LG2Rk31WrVql8+fLJ3tulxc19f6v3tolq1qypEiVKON8HBASofPnybvv+ae2nWyln+fLlatasmSIiIlzybNu2raRr14cbdezYUb6+vs73Fy5c0M6dO3XffffJz8/PuT1v3rxJ7ju8vLw0cOBALV++XEeOHJEk/fLLL1q9erUGDBiQ5PHpAKxj4ARAsv766y9JUtGiRZN8FhERoatXr+r06dPpyrtAgQJJtvn7+zs756dPn9bVq1cVHh6eJF1y22524sQJSVKXLl3k6+vr8powYYKMMfr7779TjSlxIbbEmE6cOCFjjIoUKZIkz23btiW5+Uiu3f766y8VKVIkyfaUtnXv3l0ffvihEhIStG/fPn3zzTcaOHBgqnX/66+/5OPjk2ThQofDofDwcOdxLVu2rKKjo1W4cGE99dRTKlu2rMqWLevyHN/IyEh98skn+u233/TAAw+ocOHCql+/vvMGKCUBAQFq3Lix8wZp3bp1atmypZo2baqEhAR98803zjyS61wn13bpkVw+J06c0L59+5Icw+DgYBljnMfx7rvv1uLFi51/PL/ttttUtWrVVJ/xnNHzNiVDhw7VyJEjdd9992nZsmX69ttvtWPHDtWoUcPyDe2NrLZBRvY9deqUvL29M1RvKekxdHddSvw8UZ48eVwGsaRr321363skXkPq1auXpK7z589P0kZWyjlx4oTOnDkjPz+/JHnGxMTYfg2pVauW7rrrLuczqJcvX67Dhw+7vYYAAJAeVv+NdjgcWrdunVq3bq2JEyeqdu3aKlSokAYNGqRz586lq+y09tPd3Ysk5pmW/lJG/93u1KmTSpUq5fx3e8aMGbpw4YLbH6H89ddfKbZ54ueStX79O++8o+eff16LFy9Ws2bNlD9/ft133306ePBgqjEkrk8SHR2tn3/+WYcPH3YOnHz77bc6f/68oqOjVaZMGZUuXdplX7v6/cnl9ddffyk+Pl5Tp05NchzvvfdeSXIexxEjRuiNN97Qtm3b1LZtWxUoUEDNmzfXzp07UywvsW3t7PtfvXpVrVq10hdffKHnnntO69at0/bt250DFGnt+6elDTKy76lTp3Tbbbelq843Su4YWrm3TWTlu52ctPbTrV5Dli1bliS/xDWL3F1DTp8+7byu3Sy5bX379lVgYKA++OADSdK7776rwMBAlzU6AaSdz60OAIBnSuwMHD9+PMlnf/zxh7y8vJy/6AkICEh2seX0LmAXFhYmh8OhmJiYJJ8lt+1mib/qmjp1qho0aJBsmuQ6G+7ydDgc+uabb5yDKje6eVtyv+ooUKCAtm/fnmR7SnUaPHiwZs2apSVLlmj16tXOxeRTU6BAAcXHx+vUqVMuHUxjjGJiYpwzKSTprrvu0l133aWEhATt3LlTU6dO1ZAhQ1SkSBE9+OCDkqQ+ffqoT58+unDhgr7++mtFRUWpffv2OnDgQKq/pGrevLlGjRql7du369ixY2rZsqWCg4NVr149rV27Vn/88YfKly+v4sWLJ9nXrl/EJJdPwYIFFRgYmOIigTf+IrBTp07q1KmTLl++rG3btmn8+PHq2bOnSpUqpYYNGybZNy3nbeIf2W/+3tzc+Zekzz77TI888ojGjRvnsv3PP/9Uvnz5kq1HatLSBundt1ChQkpISFBMTEyGbohvPoburkupxZ4Wifn85z//ydAvBm/Os0CBAlq9enWyn984C09K+RqSOKhzo5SuIYMGDVLXrl21e/duTZs2TeXLl1fLli3TET0AAKlLy7/RJUuW1McffyxJOnDggD7//HONHj1aV65ccf7RLy3S2k+3mmda+ksZ/Xfby8tLTz31lF588UW9+eabeu+999S8eXNVqFAh1TgLFCiQYpvfHKe7fn1QUJDGjBmjMWPG6MSJE87ZJx06dND//ve/FGPw8/PTnXfeqejoaN12220KDw9XtWrVVKZMGUnXFkBft26d2rdvn2RfO38Jf3NeYWFh8vb2VmRkZIoDUIkDOT4+Pho6dKiGDh2qM2fOKDo6Wi+++KJat26to0ePKk+ePEn2TTznU+r73zjDN6W+/833y99//72+++47zZgxQ7169XJu//nnn1OqdqrS0gYZ2bdQoUI6duxYumK8UXJ9f6v3thmR1n661TyrV6+u1157LdnPEwc3EyV3/jocDsvXkNDQUPXq1Uv//ve/NXz4cE2fPl09e/ZM1/0igP/HwAmAZFWoUEHFihXTnDlzNHz4cOc/5BcuXNDChQvVsGFDZweyVKlSOnnypE6cOOEckLhy5Yq+/PLLdJUdFBSkO+64Q1988YUmTZrk7GieO3dOy5Ytc7t/48aNlS9fPv3www+2/bq6ffv2ev311/X7778nO73eiiZNmujzzz/XqlWrnFN0JWnevHnJpq9Tp44aNWqkCRMm6Pvvv9fjjz+uoKCgVMto3ry5Jk6cqM8++0zPPPOMc/vChQt14cIFNW/ePMk+3t7eql+/vipWrKjZs2dr9+7dzoGTREFBQWrbtq2uXLmi++67T/v370/1D8otWrTQiy++qJEjR+q2225TxYoVnduXLl2qmJiYND2S68YZQIGBgZb3u1n79u01btw4FShQIMWbhOTKbtKkifLly6cvv/xSe/bsSXbgJC3nbZEiRRQQEKB9+/a5bF+yZEmSfB0OR5Ib/hUrVuj333/X7bffbqkON0pPG6R137Zt22r8+PF6//339corr6SYzsovwG7UsGFDBQYG6rPPPlPXrl2d248dO6b169erS5culvNKTevWreXj46NffvnFtkfHtW/fXvPmzVNCQoLq16+frjyaNGmiN954Qz/88IPL47pSuoZ07txZJUqU0LBhw7Rx40ZNnjyZqfoAgEyR3n+jy5cvr5dfflkLFy7U7t27ndvT0kewo5+eXJ7p7S8latKkiVauXKk///zTOYBx9epV52M0b/boo49q9OjReuihh/TTTz9pwoQJbsto3ry5xo8fr927d6t27drO7Z9++qkcDoeaNWuWZB8r/foiRYqod+/e+u677zRlyhT9888/yQ4eJGrRooVGjBih4OBg54zyoKAgNWjQQFOnTtUff/yRpsc4pbWPmJw8efKoWbNm2rNnj6pXr+7yuKPU5MuXT126dNHvv/+uIUOG6PDhw0kekypJDRo0UEBAgGbPnu3SX9yyZYt+++03l4GTxP/ft2+fy2DY0qVLXfJM7Kfd3Pf/8MMPLcV+s/S2QVr3bdu2rUaNGqX169en+Oi1m5/oYEV67m3Tw45+enJ5rly5UmXLlk3yGD8rgoKCVLduXS1evFhvvPGGs/3Pnz+v5cuXJ7vPoEGD9N5776lLly46c+YMM80BGzBwAiBZXl5emjhxoh566CG1b99e/fv31+XLlzVp0iSdOXNGr7/+ujNt9+7dNWrUKD344IN69tlndenSJb3zzjtKSEhId/mvvvqq2rRpo5YtW2rYsGFKSEjQhAkTFBQUlOQxWzfLmzevpk6dql69eunvv/9Wly5dVLhwYZ06dUrfffedTp06pffffz9N8TRu3FiPP/64+vTpo507d+ruu+9WUFCQjh8/rk2bNqlatWrOdUlS0qtXL02ePFkPP/ywxo4dq9tvv12rVq1yDjDduJZMosGDB6t79+5yOBwaMGCA2zhbtmyp1q1b6/nnn9fZs2fVuHFj7du3T1FRUapVq5YiIyMlSR988IHWr1+vdu3aqUSJErp06ZLzF3WJNzWPPfaYAgMD1bhxYxUtWlQxMTEaP368QkND3f66p06dOgoLC9OaNWvUp08f5/YWLVro1VdfdSnHimrVqkmSJkyYoLZt28rb2zvNnX9JGjJkiBYuXKi7775bzzzzjKpXr66rV6/qyJEjWrNmjYYNG6b69etr1KhROnbsmJo3b67bbrtNZ86c0dtvvy1fX181adIkxfytnreJz+H+5JNPVLZsWdWoUUPbt2/XnDlzkuTZvn17zZgxQxUrVlT16tW1a9cuTZo0Kd3T4a22QUb2veuuuxQZGamxY8fqxIkTat++vfz9/bVnzx7lyZNHTz/9tKRrx3XevHmaP3++ypQpo4CAAOexTk6+fPk0cuRIvfjii3rkkUfUo0cP/fXXXxozZowCAgIUFRWVrja5WalSpfTKK6/opZde0q+//qo2bdooLCxMJ06c0Pbt252/yEyLBx98ULNnz9a9996rwYMH64477pCvr6+OHTumDRs2qFOnTurcuXOqeQwZMkSffPKJ2rZtq1deeUVFihTRnDlznL8Cvfka4u3traeeekrPP/+8goKCkjwfGgAAu1j9N3rfvn0aOHCgunbtqnLlysnPz0/r16/Xvn379MILLzjzS0sfwY5++s0y0l9K9NJLL2nZsmVq3ry5XnrpJedjdBLXWrz53+18+fLpkUce0fvvv6+SJUtaWiPvmWee0aeffqp27drplVdeUcmSJbVixQq99957evLJJ53rpVnp19evX1/t27dX9erVFRYWph9//FGzZs1y+cFcSpo3b66EhAStW7dOM2fOdG5v0aKFoqKi5HA40rSWSVr7iCl5++23deedd+quu+7Sk08+qVKlSuncuXP6+eeftWzZMucaGh06dFDVqlVVt25dFSpUSL/99pumTJmikiVLqly5csnmHRYWpuHDh2vs2LF69NFH1bVrVx09elSjR49O8qiuevXqqUKFCho+fLji4+MVFhamRYsWadOmTS7pKlasqLJly+qFF16QMUb58+fXsmXL3D4q2Y42yMi+Q4YM0fz589WpUye98MILuuOOO3Tx4kVt3LhR7du3d65xWrJkSS1ZskTNmzdX/vz5VbBgwVTX3rN6b5tRdvTTb/bKK69o7dq1atSokQYNGqQKFSro0qVLOnz4sFauXKkPPvjA7f3cK6+8onbt2ql169YaPHiwEhISNGnSJOXNmzfZv4mUL19ebdq00apVq3TnnXeqRo0aaYoZQDJuzZr0ADzJhg0bjCSzYMGCJJ8tXrzY1K9f3wQEBJigoCDTvHlzs3nz5iTpVq5caWrWrGkCAwNNmTJlzLRp00xUVJS5+TIjyTz11FNJ9i9ZsqTp1auXy7alS5ea6tWrGz8/P1OiRAnz+uuvJ5tnSjZu3GjatWtn8ufPb3x9fU2xYsVMu3btXOqZmN+pU6dc9p0+fbqRZA4dOuSy/ZNPPjH169c3QUFBJjAw0JQtW9Y88sgjZufOnc40TZo0MVWqVEk2piNHjpj777/f5M2b1wQHB5sHHnjArFy50kgyS5YsSZL+8uXLxt/f37Rp0ybZ/Hr16mVKlizpsu3ixYvm+eefNyVLljS+vr6maNGi5sknnzSnT592ptm6davp3LmzKVmypPH39zcFChQwTZo0MUuXLnWmmTlzpmnWrJkpUqSI8fPzMxEREaZbt25m3759ycZys86dOxtJZvbs2c5tV65cMUFBQcbLy8slHmNSPhaJ7fDoo4+aQoUKGYfDkeyxuVFqx+D8+fPm5ZdfNhUqVDB+fn4mNDTUVKtWzTzzzDMmJibGGGPM8uXLTdu2bU2xYsWMn5+fKVy4sLn33nvNN99848zn0KFDRpKZPn26S/5Wz9vY2Fjz6KOPmiJFipigoCDToUMHc/jwYSPJREVFOdOdPn3a9OvXzxQuXNjkyZPH3Hnnneabb74xTZo0MU2aNHEbT3rbwJjkv5dW901ISDCTJ082VatWdaZr2LChWbZsmTPN4cOHTatWrUxwcLCR5DyXU7smGWPMv//9b2cbh4aGmk6dOpn9+/e7pOnVq5cJCgpKsm9ariGLFy82zZo1MyEhIcbf39+ULFnSdOnSxURHR6ernLi4OPPGG2+YGjVqmICAAJM3b15TsWJF079/f3Pw4EFnupIlS5p27dolG9P3339vWrRoYQICAkz+/PlNv379zMyZM40k89133yVJn3hOPfHEE5bqDACAFSn1ld39G33ixAnTu3dvU7FiRRMUFGTy5s1rqlevbiZPnmzi4+Od6VLqI6QmI/305PrUVvs8Kd3fGGPMN998Y+rXr2/8/f1NeHi4efbZZ82ECROMJHPmzJkk6b/66isjybz++uvJ5pdc3+y3334zPXv2NAUKFDC+vr6mQoUKZtKkSSYhIcGZxkq//oUXXjB169Y1YWFhxt/f35QpU8Y888wz5s8//0w2lhtdvXrVFCxY0Egyv//+u3P75s2bjSRTu3btJPuk1l9P6/FP7RgcOnTI9O3b1xQrVsz4+vqaQoUKmUaNGpmxY8c607z55pumUaNGpmDBgs4+fL9+/czhw4edaZI7569evWrGjx9vihcvbvz8/Ez16tXNsmXLkvTTjTHmwIEDplWrViYkJMQUKlTIPP3002bFihVGktmwYYMz3Q8//GBatmxpgoODTVhYmOnatas5cuRIknuElL6D6W2DlO4lrOxrzLV7lsGDB5sSJUoYX19fU7hwYdOuXTvzv//9z5kmOjra1KpVy/j7+xtJznM5tftAK/e2xqTcf07uWCQno/305Mo5deqUGTRokCldurTx9fU1+fPnN3Xq1DEvvfSSOX/+vDHm/9t90qRJyca1aNEiU61aNZd7y0GDBpmwsLBk08+YMcNIMvPmzXNbZwDuOYwxJjMHZgAAqRs3bpxefvllHTlyJMmvTpYtW6aOHTtqxYoVzkX4AOBGjz/+uObOnau//vorySysqVOnatCgQfr++++di1ECAIBbp1WrVjp8+LAOHDiQ5LNhw4bp/fff19GjR5NdgBpA7hYXF6eaNWuqWLFiWrNmTZLPH3jgAW3btk2HDx+Wr6/vLYgQyFl4VBcAZKFp06ZJujYNOy4uTuvXr9c777yjhx9+2GXQ5IcfftBvv/2mYcOGqWbNmi5rogDIvV555RVFRESoTJkyzmcc//vf/9bLL7/sMmiyZ88eHTp0SK+88oo6derEoAkAALfA0KFDVatWLRUvXlx///23Zs+erbVr1+rjjz92Sbdt2zYdOHBA7733nvr378+gCQBJUr9+/dSyZUvnI/Y++OAD/fjjj3r77bedaS5fvqzdu3dr+/btWrRokd566y0GTQCbMHACAFkoT548mjx5sg4fPqzLly+rRIkSev755/Xyyy+7pBswYIA2b96s2rVra+bMmSzoDECS5Ovrq0mTJunYsWOKj49XuXLl9NZbb2nw4MEu6Tp37qyYmBjddddd+uCDD25RtAAA5G4JCQkaNWqUYmJi5HA4VLlyZc2aNUsPP/ywS7rEdUTat2+vsWPH3qJoAXiac+fOafjw4Tp16pR8fX1Vu3ZtrVy50mW90OPHj6tRo0YKCQlR//79netJAsg4HtUFAAAAAAAAAABwndetDuBGX3/9tTp06KCIiAg5HA4tXrzY5XNjjEaPHq2IiAgFBgaqadOm2r9/v0uay5cv6+mnn1bBggUVFBSkjh076tixYy5pTp8+rcjISIWGhio0NFSRkZE6c+aMS5ojR46oQ4cOCgoKUsGCBTVo0CBduXLFJc1///tfNWnSRIGBgSpWrJheeeUVMQ4FAAAAIDNx3wQAAICcYPz48apXr56Cg4NVuHBh3Xffffrpp59c0ljp2yZn4cKFqly5svz9/VW5cmUtWrQoTbF51MDJhQsXVKNGDecaADebOHGi3nrrLU2bNk07duxQeHi4WrZsqXPnzjnTDBkyRIsWLdK8efO0adMmnT9/Xu3bt1dCQoIzTc+ePbV3716tXr1aq1ev1t69exUZGen8PCEhQe3atdOFCxe0adMmzZs3TwsXLtSwYcOcac6ePauWLVsqIiJCO3bs0NSpU/XGG2/orbfeyoSWAQAAAIBruG8CAABATrBx40Y99dRT2rZtm9auXav4+Hi1atVKFy5ccKax0re92datW9W9e3dFRkbqu+++U2RkpLp166Zvv/3Wcmwe+6guh8OhRYsW6b777pN0bWQpIiJCQ4YM0fPPPy/p2q+kihQpogkTJqh///6KjY1VoUKFNGvWLHXv3l2S9Mcff6h48eJauXKlWrdurR9//FGVK1fWtm3bVL9+fUnXFmJr2LCh/ve//6lChQpatWqV2rdvr6NHjyoiIkKSNG/ePPXu3VsnT55USEiI3n//fY0YMUInTpyQv7+/JOn111/X1KlTdezYsRTXI7h8+bIuX77sfH/16lX9/fffKlCgAGsYAAAAIMczxujcuXOKiIiQl5dH/Y4rW8qJ903cMwEAgJzG0/rAly5dSjJL2C7GmCR9Nn9/f2dfMDWnTp1S4cKFtXHjRt19992W+rbJ6d69u86ePatVq1Y5t7Vp00ZhYWGaO3eu5Yp4JElm0aJFzve//PKLkWR2797tkq5jx47mkUceMcYYs27dOiPJ/P333y5pqlevbkaNGmWMMebjjz82oaGhScoLDQ01n3zyiTHGmJEjR5rq1au7fP73338bSWb9+vXGGGMiIyNNx44dXdLs3r3bSDK//vprivWKiooyknjx4sWLFy9evHjxytWvo0ePpnI3AKuknHffxD0TL168ePHixSunvjyhD3zx4kWTNxPrmDdv3iTboqKiLMV28OBBI8n897//NcZY69smp3jx4uatt95y2fbWW2+ZEiVKWG4nH2UTMTExkqQiRYq4bC9SpIh+++03Zxo/Pz+FhYUlSZO4f0xMjAoXLpwk/8KFC7ukubmcsLAw+fn5uaQpVapUknISPytdunSy9RgxYoSGDh3qfB8bG6sSJUro6NGjCgkJSbkBPEho6Hhb8omNHWFLWVbygWfIqcczp9bLDrQNAOBmZ8+eVfHixRUcHHyrQ8mRcsJ9U064ZwIAALiRJ/WBr1y5ovOSnpHkfg5I2lyWNPn8+ST9NiuzTYwxGjp0qO68805VrVpVkrW+bXKS66fe2Ne1ItsMnCS6eZqPSWbqz81uTpNcejvSmOtPPUstnpSmJYWEhGSjm4AAW3KxVl/3ZWWfdkPOPZ45tV52oG0AAMnjkUuZKzvfN+WMeyYAAICkPKkPHCS7/sr7/xIHG9LTbxs4cKD27dunTZs2JfksPX3b9Oxzo1v/QDWLwsPDJSnJqNDJkyedo0fh4eG6cuWKTp8+nWqaEydOJMn/1KlTLmluLuf06dOKi4tLNc3JkyclJR0BAwAAAICswH0TAAAAspunn35aS5cu1YYNG3Tbbbc5t1vp2yYnpT5oWvqf2WbgpHTp0goPD9fatWud265cuaKNGzeqUaNGkqQ6derI19fXJc3x48f1/fffO9M0bNhQsbGx2r59uzPNt99+q9jYWJc033//vY4fP+5Ms2bNGvn7+6tOnTrONF9//bXLIjpr1qxRREREkqnoAAAAAJAVuG8CAACAFb6Z9EoLY4wGDhyoL774QuvXr0/yGFcrfdvkNGzY0GUf6VofNLV9buZRAyfnz5/X3r17tXfvXknSoUOHtHfvXh05ckQOh0NDhgzRuHHjtGjRIn3//ffq3bu38uTJo549e0qSQkND1a9fPw0bNkzr1q3Tnj179PDDD6tatWpq0aKFJKlSpUpq06aNHnvsMW3btk3btm3TY489pvbt26tChQqSpFatWqly5cqKjIzUnj17tG7dOg0fPlyPPfaYc4pRz5495e/vr969e+v777/XokWLNG7cOA0dOtSjplwBAAAAyFm4bwIAAEBO8NRTT+mzzz7TnDlzFBwcrJiYGMXExOjixYuSZKlvK0mPPPKIRoz4/zV0Bw8erDVr1mjChAn63//+pwkTJig6OlpDhgyxHJtHrXGyc+dONWvWzPk+cUHAXr16acaMGXruued08eJFDRgwQKdPn1b9+vW1Zs0al0V1Jk+eLB8fH3Xr1k0XL15U8+bNNWPGDHl7ezvTzJ49W4MGDVKrVq0kSR07dtS0adOcn3t7e2vFihUaMGCAGjdurMDAQPXs2VNvvPGGM01oaKjWrl2rp556SnXr1lVYWJiGDh3qsohhTmVMlC35OBxjsqwsu9gVc1bVPTu2cVbypPbxpFjslB1jBgDA03HfBAAAgIzykf2DA2nN7/3335ckNW3a1GX79OnT1bt3b0my1Lc9cuSIvLz+f45Io0aNNG/ePL388ssaOXKkypYtq/nz56t+/fqWY3OYxJX5cEucPXtWoaGhio2NzXULHWbHPxQzcJIxOTUeO/LxtLYBACCz5Ob+L9KHcwYAAGR3ntSfSYzlNdm/OPwlSS9JHlHPjPKoGScAAAAAAAAAACBz+Sjta5K4E29zfrcSAycAAAAAAAAAAOQinvCoLk/mUYvDAwAAAAAAAAAA3Eo5aRAIAAAAAAAAAAC44Sse1ZUaBk48RGjoBklBKX5uTIusC8YGDke02zR2LbptFyvxZLeFy+2K166Fy7NqoXWrsjIfd/Vi4XcAAAAAAADAMzBwAgAAAAAAAABALsIaJ6ljjRMAAAAAAAAAAIDrctIgEAAAAAAAAAAAcMNH9q9xEmdzfrcSM04AAAAAAAAAAACuY8YJAAAAAAAAAAC5CGucpC4n1SVbi41tppCQkBQ/dzjG2FKOMVG25OO+nBY25dTYlrLsaj+7ZNVxsFJvK7FkVbxW2VUvu/KxwtPaEAAAAED6uLuPoO8PAMgOfGX/o7rszu9W4lFdAAAAAAAAAAAA1zHjBAAAAAAAAACAXIQZJ6ljxgkAAAAAAAAAAMB1zDgBAAAAAAAAACAXYXH41DHjBAAAAAAAAAAA4LqcNAiUoxkT5TaNwzEmCyKxj5V4rdTbCrvysStmRxn3ZZlfrUSU8Vjskh2PZ1a2DwAAAICcgfsIAEBO4CP71yTJSYMNzDgBAAAAAAAAAAC4LicNAgEAAAAAAAAAADdY4yR1OakuAAAAAAAAAADADV/Z/6guu/O7lXhUFwAAAAAAAAAAwHXMOAEAAAAAAAAAIBfhUV2py0l1ydEcjjFu0xgTlQWR2BdLVsVrJ7tiNr/ako1Hsa1tsvC88KTvlaexq21oYwAAAAAAAGQ3DJwAAAAAAAAAAJCL+Mj+NUly0mADa5wAAAAAAAAAAABcl5MGgQAAAAAAAAAAgBuscZI6ZpwAAAAAAAAAAABcl5MGgQAAAAAAAAAAgBu+sn+NE7vzu5UYOPEQoaHjJQWk+LkxUW7zcDjGuE1jJZ+syAP2cDiiU/3cmBYW8sia8yary7KCczlldrUNbZwyK98HK2hjAAAAAAAAezFwAgAAAAAAAABALsIaJ6nLSXUBAAAAAAAAAABu+Mj+R2vlpMEGFocHAAAAAAAAAAC4LicNAgEAAAAAAAAAADdYHD51DJx4iNjYEQoJCclQHnYtIG+H7LiYuKctXG6FlcXf3eeRe9sPOUtWnYN2lcP3AQAAAAAAwDMxcAIAAAAAAAAAQC7C4vCpY40TAAAAAAAAAACA63LSIBAAAAAAAAAAAHDDx1vyddicp5GUYG+etwozTgAAAAAAAAAAAK5jxgkAAAAAAAAAALmIj4/kw4yTFDFwgiSMicpwHg7HGFvKsZImO5aVE+XUeufWY54d651V8WRlvbPjcfAktB8AAAAAAMnzzYRHdfkae/O7lXhUFwAAAAAAAAAAwHXMOAEAAAAAAAAAIBfJtEd15RDMOAEAAAAAAAAAALiOGScAAAAAAAAAAOQivt6Sr83TKnyv2pvfrcSMEwAAAAAAAAAAgOuYcZJNOBxjbMnHmKgM52ElFjvKsSo7luVpbehJPK1tsttxsKv9slu9c6rcfBw87VrgTnaLFwAAAACQy3nL/mkVNq+Zcisx4wQAAAAAAAAAAOA6ZpwAAAAAAAAAAJCb+Mj+aRU5aI0TBk4AAAAAAAAAAMhNGDhJFY/qAgAAAAAAAAAAWe7rr79Whw4dFBERIYfDocWLF7t87nA4kn1NmjQpxTxnzJiR7D6XLl2yHBczTgAAAAAAAAAAyE08ZMbJhQsXVKNGDfXp00cPPPBAks+PHz/u8n7VqlXq169fsmlvFBISop9++sllW0BAgOW4GDjJJoyJyrKyHI4xHpGHlLX1tsJKvazE7Gn18iRW2sau45ATeVq9c+q1AJnPjmOelecN5ygAAEDukdp9Dv1CAEibtm3bqm3btil+Hh4e7vJ+yZIlatasmcqUKZNqvg6HI8m+acGjugAAAAAAAAAAyE28JHnb/Lo+2nD27FmX1+XLl20J+cSJE1qxYoX69evnNu358+dVsmRJ3XbbbWrfvr327NmTprIYOAEAAAAAAAAAALYoXry4QkNDna/x48fbku/MmTMVHBys+++/P9V0FStW1IwZM7R06VLNnTtXAQEBaty4sQ4ePGi5LB7VBQAAAAAAAABAbuKja7NE7OS49p+jR48qJCTEudnf39+W7D/55BM99NBDbtcqadCggRo0aOB837hxY9WuXVtTp07VO++8Y6ksBk4AAAAAAAAAAIAtQkJCXAZO7PDNN9/op59+0vz589O8r5eXl+rVq8eMEwAAAAAAAAAAkIJMnHGSGT7++GPVqVNHNWrUSPO+xhjt3btX1apVs7wPAye5jMMxxm0aY6I8phwr+VhhR53slFPr5U5WnX92cjii3aYxpkUWRJI9edrxzCpZeQ30tDbOjjFnFdoGAAAgZ6DPBiBHSFzQ/RY7f/68fv75Z+f7Q4cOae/evcqfP79KlCgh6dpi8wsWLNCbb76ZbB6PPPKIihUr5lxLZcyYMWrQoIHKlSuns2fP6p133tHevXv17rvvWo6LgRMAAAAAAAAAAJDldu7cqWbNmjnfDx06VJLUq1cvzZgxQ5I0b948GWPUo0ePZPM4cuSIvLy8nO/PnDmjxx9/XDExMQoNDVWtWrX09ddf64477rAcFwMnAAAAAAAAAADkJh7yqK6mTZvKGJNqmscff1yPP/54ip9/9dVXLu8nT56syZMnpz2YG3i5TwIAAAAAAAAAAJA7MOMEAAAAAAAAAIDcxFuMDqSCGScAAAAAAAAAAADXMaaEJByO6FQ/N6ZFFkUiGRNlSz7u6nStrOxXr+zGrnpnbfttdpvC4XCfxo6YHY4xWVJOTpZVbZg9z3V7ZMeYswptAwC3Rmr//mfGtTmrywMAAEgXb9m/xknqS5VkK8w4AQAAAAAAAAAAuI4ZJwAAAAAAAAAA5CY+YnQgFTQNAAAAAAAAAAC5CQMnqeJRXQAAAAAAAAAAANcxpuQhQkPHSwpI8XMriwjateixlYXU7Skn6xa6tmvhd/sWq8+di3zbd456Vvux8Hvms6t9PKkNs+Mxz8qYs2P7AAA8U1b/e8G/TwAAIFtgxkmqmHECAAAAAAAAAABwHWNKAAAAAAAAAADkJl6SvG3O86rN+d1CzDgBAAAAAAAAAAC4jhknAAAAAAAAAADkJpmxxomxOb9biBknAAAAAAAAAAAA1zHjxEPExo5QSEhIhvIwJsqmaDan+qnDkfrn1mN5zmI8qXM4xtiSj13tZyUe+45V6jwpFqtlWTuejTMejEVZeV54kux47mQ32bFOHPOM8bTvFQAAAAAgF2PGSaoYOAEAAAAAAAAAIDfxFovDp4JHdQEAAAAAAAAAAFzHjBMAAAAAAAAAAHITHtWVKmacAAAAAAAAAAAAXMeMEwAAAAAAAAAAchNv2T86kIPWOGHgJJtwOMa4TWNMVBZEYq0cT4rXzrKs1MuufOyIOSvb2C52nV9Si4wHY6Psdiw8LV6HI9ptGmM865gDN/O07xUAAAAAAEhetntUV3x8vF5++WWVLl1agYGBKlOmjF555RVdvfr/w1nGGI0ePVoREREKDAxU06ZNtX//fpd8Ll++rKeffloFCxZUUFCQOnbsqGPHjrmkOX36tCIjIxUaGqrQ0FBFRkbqzJkzLmmOHDmiDh06KCgoSAULFtSgQYN05cqVTKs/AAAAAKSGeyYAAAC45Z1Jrxwi2w2cTJgwQR988IGmTZumH3/8URMnTtSkSZM0depUZ5qJEyfqrbfe0rRp07Rjxw6Fh4erZcuWOnfunDPNkCFDtGjRIs2bN0+bNm3S+fPn1b59eyUkJDjT9OzZU3v37tXq1au1evVq7d27V5GRkc7PExIS1K5dO124cEGbNm3SvHnztHDhQg0bNixrGgMAAAAAbsI9EwAAAJAx2e5RXVu3blWnTp3Url07SVKpUqU0d+5c7dy5U9K1X05NmTJFL730ku6//35J0syZM1WkSBHNmTNH/fv3V2xsrD7++GPNmjVLLVpce7TLZ599puLFiys6OlqtW7fWjz/+qNWrV2vbtm2qX7++JOmjjz5Sw4YN9dNPP6lChQpas2aNfvjhBx09elQRERGSpDfffFO9e/fWa6+9ppCQkKxuHgAAAAC5HPdMAAAAcMtHrHGSimw34+TOO+/UunXrdODAAUnSd999p02bNunee++VJB06dEgxMTFq1aqVcx9/f381adJEW7ZskSTt2rVLcXFxLmkiIiJUtWpVZ5qtW7cqNDTUeQMgSQ0aNFBoaKhLmqpVqzpvACSpdevWunz5snbt2pVs/JcvX9bZs2ddXgAAAABgF+6ZAAAA4JZPJr1yiGxXleeff16xsbGqWLGivL29lZCQoNdee009evSQJMXExEiSihQp4rJfkSJF9NtvvznT+Pn5KSwsLEmaxP1jYmJUuHDhJOUXLlzYJc3N5YSFhcnPz8+Z5mbjx4/XmDH2LDAOAAAAADfjngkAAADImGw3cDJ//nx99tlnmjNnjqpUqaK9e/dqyJAhioiIUK9evZzpHA6Hy37GmCTbbnZzmuTSpyfNjUaMGKGhQ4c63589e1bFixdPNa5rGrtN4XC4v7kwJsqWNHbkYVe8VnhS20jW4smJPO04ZCV3dc+OdcpKxrSwJZ+svO7YIbvFCwDwDLn3ngnwDKn14ei7AQA8Bo/qSlW2Gzh59tln9cILL+jBBx+UJFWrVk2//fabxo8fr169eik8PFzStV82FS1a1LnfyZMnnb90Cg8P15UrV3T69GmXX1CdPHlSjRo1cqY5ceJEkvJPnTrlks+3337r8vnp06cVFxeX5FdVifz9/eXv75/e6gMAAABAqrhnAgAAADIm261x8s8//8jLyzVsb29vXb16bTirdOnSCg8P19q1a52fX7lyRRs3bnR28OvUqSNfX1+XNMePH9f333/vTNOwYUPFxsZq+/btzjTffvutYmNjXdJ8//33On78uDPNmjVr5O/vrzp16thccwAAAABwj3smAAAAuOUlydvmV7YbbUhZtptx0qFDB7322msqUaKEqlSpoj179uitt95S3759JV2bBj5kyBCNGzdO5cqVU7ly5TRu3DjlyZNHPXv2lCSFhoaqX79+GjZsmAoUKKD8+fNr+PDhqlatmlq0uPY4mEqVKqlNmzZ67LHH9OGHH0qSHn/8cbVv314VKlSQJLVq1UqVK1dWZGSkJk2apL///lvDhw/XY489ppCQkFvQOgAAAAByO+6ZAAAAgIzJdgMnU6dO1ciRIzVgwACdPHlSERER6t+/v0aNGuVM89xzz+nixYsaMGCATp8+rfr162vNmjUKDg52ppk8ebJ8fHzUrVs3Xbx4Uc2bN9eMGTPk7e3tTDN79mwNGjRIrVq1kiR17NhR06ZNc37u7e2tFStWaMCAAWrcuLECAwPVs2dPvfHGG1nQEgAAAACQFPdMAAAAcCsz1jhJsDm/W8hhjDG3Oojc7OzZswoNDVVsbGyqv7hyOKIt5LbZbQpPWojOrkWP7VpoPSvbJrcu+Jxb6y2xOLynyG7nYHaLFwCssNr/BRJxziC7YXF4AMDNPKk/44xloBRi87JyZy9LodPkEfXMqGw34yT3auw2hTEtbCnJ3SCNXeXY1WH0tI5nVv6h045Bo6xsP7sGwrKy/XLqeeoOx8EzZLd4AQDILfjDOFLDOQAAyBaYcZIqBk4AAAAAAAAAAMhNEhd0tzvPHCIHrXMPAAAAAAAAAACQMcw4AQAAAAAAAAAgN+FRXalixgkAAAAAAAAAAMB1zDgBAAAAAAAAACA38Zb9owPxNud3CzFwkk0YE+g2jcNx0ZZ8pM1uynGfgzEt3KZxOMZYyCfKfWEW2FVWVsZsRVaWlVVyYp08jad9HzjmAAAgu6H/AgAAkLMxcAIAAAAAAAAAQG6SGWuc5KDRBtY4AQAAAAAAAAAAuC4HjQEBAAAAAAAAAAC3vK+/7M4zh2DGCQAAAAAAAAAAwHXMOAEAAAAAAAAAIDdhjZNU5aCqZG+hoRskBWUoD2Na2BNMFpVjTJTbNA5HtIWcNttU1hhb8kH2kVuPp131zo7tZ+V77k5W1tvTrkueFg8AAAAAAEgnBk5SxaO6AAAAAAAAAAAArstBY0AAAAAAAAAAAMAtL9m/mHsOmqaRg6oCAAAAAAAAAACQMcw4AQAAAAAAAAAgN2GNk1TloKpkd9skBWQoB4fDfZqsWkDejgWYczJPWmDZk2KRiCejsjJeu8rKypg96VhZ4Wnxelo8AIDcJTR0vJK7Z+LfJwAAANiNR3UBAAAAAAAAAJCb+GTSK42+/vprdejQQREREXI4HFq8eLHL571795bD4XB5NWjQwG2+CxcuVOXKleXv76/KlStr0aJFaYqLgRMAAAAAAAAAAJDlLly4oBo1amjatGkppmnTpo2OHz/ufK1cuTLVPLdu3aru3bsrMjJS3333nSIjI9WtWzd9++23luPiUV0AAAAAAAAAAOQm3tdfdueZRm3btlXbtm1TTePv76/w8HDLeU6ZMkUtW7bUiBEjJEkjRozQxo0bNWXKFM2dO9dSHsw4AQAAAAAAAAAgN8nER3WdPXvW5XX58uUMhfrVV1+pcOHCKl++vB577DGdPHky1fRbt25Vq1atXLa1bt1aW7ZssVwmAycAAAAAAAAAAMAWxYsXV2hoqPM1fvz4dOfVtm1bzZ49W+vXr9ebb76pHTt26J577kl1MCYmJkZFihRx2VakSBHFxMRYLpdHdeUom92mcDjcp3GfxxgLqZ5zm8KYwAzHkl0ZE5Ul5Vg5VlZisSsfK+zKx9p56l7WHatot2mMaZEFkVjnaecOch935xfnFgDkLLGxIxQSEnKrwwAAAMgZvGX/6MD1R3UdPXrUpd/m7++f7iy7d+/u/P+qVauqbt26KlmypFasWKH7778/xf0cDofLe2NMkm2pYeAEAAAAAAAAAADYIiQkJNN+8FK0aFGVLFlSBw8eTDFNeHh4ktklJ0+eTDILJTU8qgsAAAAAAAAAgNwkE9c4yUx//fWXjh49qqJFi6aYpmHDhlq7dq3LtjVr1qhRo0aWy2HGCQAAAAAAAAAAyHLnz5/Xzz//7Hx/6NAh7d27V/nz51f+/Pk1evRoPfDAAypatKgOHz6sF198UQULFlTnzp2d+zzyyCMqVqyYcy2VwYMH6+6779aECRPUqVMnLVmyRNHR0dq0aZPluBg4AQAAAAAAAAAgN/GWc00SW/NMo507d6pZs2bO90OHDpUk9erVS++//77++9//6tNPP9WZM2dUtGhRNWvWTPPnz1dwcLBznyNHjsjL6/8frtWoUSPNmzdPL7/8skaOHKmyZctq/vz5ql+/vuW4GDgBAAAAAAAAAABZrmnTpjLGpPj5l19+6TaPr776Ksm2Ll26qEuXLumOi4ETj9FAUlCKnxrTwm0ODscYG+NJmTFRbtM4HNEWcsq6OlmJ2dNYqbu7emXHetvF0+ru7njaFa9d+dhx/llNY0VuvhbYwa7j6WmyY8zu5NRjBQB2CA0dLykgyXauiwAAAOmQGWuS5KDRhhxUFQAAAAAAAAAA4BYDJ6nycp8EAAAAAAAAAAAgd8hBY0AAAAAAAAAAAMAtL9m/OHwOmqaRg6oCAAAAAAAAAACQMcw4AQAAAAAAAAAgN2GNk1TloKpkd9skBaT4qcPhPgdjotymcTiiLeTTwn1hWZDHNc9ZKCvQlpKstd8YW/Kxwq583MnKOmWlrKyXle9VVrGr3p52zD0tHuQcnnYN5FwHgJTFxo5QSEjIrQ7DI6X27xn/tgDZA99jAPAsDJwAAAAAAAAAAJCbMOMkVaxxAgAAAAAAAAAAcF0OGgMCAAAAAAAAAABueV9/2Z1nDsHACQAAAAAAAAAAuQmP6koVj+oCAAAAAAAAAAC4LgeNAWVvsbEjFBISkuLnDscYt3k4HJvdpjEmKk1xpTcWK+Xk1Hw8iafVKSvjycp6GdPCbRor3087ZLdzNKfKyuuSFZwXKaNtAAA5Af+eAdkf32MAWc5b9o8O5KBHdTHjBAAAAAAAAAAA4DpmnAAAAAAAAAAAkJuwxkmqmHECAAAAAAAAAABwXQ4aAwIAAAAAAAAAAG55y/41SVjjBAAAAAAAAAAAIOdhxomHCA0dLykgQ3kYE+U2jcMxxpZ8PKUcO/Oxwkq9PEvjWx2AC7uOlV3nV049T+2QlW2TE3na+ZeVcmq9AAAAAADIUVjjJFU5qCoAAAAAAAAAAMAtb9k/OsCjugAAAAAAAAAAAHIeZpwAAAAAAAAAAJCbsDh8qphxAgAAAAAAAAAAcB0zTrIJ+xbSdb9YuB0LoFtbGDnaQj4tLORz0UI+gW7TWJHdFje31n5Zt+C9py0InVsX8M7KY54T2XVOZLfzxqrsVq+c+B0HAAAAAMAtFodPFTNOAAAAAAAAAAAArstBY0AAAAAAAAAAAMAtZpykihknAAAAAAAAAAAA1+WgMSAAAAAAAAAAAOAWM05SlYOqAgAAAAAAAAAA3DFekvG2P8+cgoETDxEbO0IhISGZXo4xLSykSj2NwzHGnmC02W0Kh8N9GmOi7AjGtnwcZbKuLHf5WDlWVmLxtHyysiypsYU02Ytd559dPO38yk6xZHVZORHHAQAAAAAA3IyBEwAAAAAAAAAAcpEEn2svu/PMKXLQ5BkAAAAAAAAAAICMyUFjQAAAAAAAAAAAwB1mnKSOGScAAAAAAAAAAADX5aAxIAAAAAAAAAAA4E68t0Px3g6b8zSSjK153ioMnGQTDke0hVSb3aYwJspCWWMslJVVGrtNYaVtjGlhRzC2HQeHTdckd8fTyvG2o5yszscuVs51T4vZHU+rk+fFk/HvsJV4s9t5g4zztGPuad89AAAAAACyEwZOAAAAAAAAAADIRRJ8fJTgY++MkwQfIynO1jxvFQZOAAAAAAAAAADIRRK8vZVg86O6ErxzzsAJi8MDAAAAAAAAAABcx4wTAAAAAAAAAABykavyVoLsnXFyNYcsDC8x4wQAAAAAAAAAAMCJGSfZhDEtLKRyn8bhuJjxYNTYQjlj3KYxJsqGWCSHI9qWfKywchwcjs0W8rGn7lnFyvG0IiuPeXZrY7vk1Hpn5TXFyrXUk9j3vcrKNraHu5g9Ld6slJvrDgAAkNlS64fSDwOQXcTLW/E2zziJZ8YJAAAAAAAAAABAzsOMEwAAAAAAAAAAcpEEeSvB5nkVCbpqa363EjNOAAAAAAAAAAAArmPGCQAAAAAAAAAAuUjmzDixd82UW4mBEwAAAAAAAAAAchEGTlLHwImHCA0dLykg08sxJspCKitp3GnhNoXDMcaGcqxyH4+nsdI+1o5nxlkpx67j6XBEW0i12UI+7tNkVfvZJWu/M43dpjDGnu+VJ53rdsmJdbIT7QMA8BSp/ZvEv0UAUsL1AQByPgZOAAAAAAAAAADIRZhxkjoWhwcAAAAAAAAAALiOgRMAAAAAAAAAAHKRBHkr3uZXgrzTHMfXX3+tDh06KCIiQg6HQ4sXL3Z+FhcXp+eff17VqlVTUFCQIiIi9Mgjj+iPP/5INc8ZM2bI4XAkeV26dMlyXAycAAAAAAAAAACALHfhwgXVqFFD06ZNS/LZP//8o927d2vkyJHavXu3vvjiCx04cEAdO3Z0m29ISIiOHz/u8goIsL7GeLYcOPn999/18MMPq0CBAsqTJ49q1qypXbt2OT83xmj06NGKiIhQYGCgmjZtqv3797vkcfnyZT399NMqWLCggoKC1LFjRx07dswlzenTpxUZGanQ0FCFhoYqMjJSZ86ccUlz5MgRdejQQUFBQSpYsKAGDRqkK1euZFrdAQAAAMAd7pkAAACQmgT5ZMorrdq2bauxY8fq/vvvT/JZaGio1q5dq27duqlChQpq0KCBpk6dql27dunIkSOp5utwOBQeHu7ySotstzj86dOn1bhxYzVr1kyrVq1S4cKF9csvvyhfvnzONBMnTtRbb72lGTNmqHz58ho7dqxatmypn376ScHBwZKkIUOGaNmyZZo3b54KFCigYcOGqX379tq1a5e8va9NKerZs6eOHTum1atXS5Ief/xxRUZGatmyZZKkhIQEtWvXToUKFdKmTZv0119/qVevXjLGaOrUqWmsWQNJQal8vjmN+SXP4Yi2kCr1soyJslDOGIsRpc6usqyksVKWFXblk93YV28r5/pzblMYE5jxUDyMp51bWfm9squsrIw5q9hVJ087VlZ40rHKiecWgOwr594z2Y9rMwAAgP3Onj3r8t7f31/+/v625B0bGyuHw+HSt03O+fPnVbJkSSUkJKhmzZp69dVXVatWLcvlZLuBkwkTJqh48eKaPn26c1upUqWc/2+M0ZQpU/TSSy85R6lmzpypIkWKaM6cOerfv79iY2P18ccfa9asWWrRooUk6bPPPlPx4sUVHR2t1q1b68cff9Tq1au1bds21a9fX5L00UcfqWHDhvrpp59UoUIFrVmzRj/88IOOHj2qiIgISdKbb76p3r1767XXXlNISEgWtQoAAAAAXMM9EwAAANxJkFe61iRJPc9rihcv7rI9KipKo0ePznD+ly5d0gsvvKCePXum2o+sWLGiZsyYoWrVquns2bN6++231bhxY3333XcqV66cpbKy3aO6li5dqrp166pr164qXLiwatWqpY8++sj5+aFDhxQTE6NWrVo5t/n7+6tJkybasmWLJGnXrl2Ki4tzSRMREaGqVas602zdulWhoaHOGwBJatCggUJDQ13SVK1a1XkDIEmtW7fW5cuXXabB3+jy5cs6e/asywsAAAAA7MI9EwAAAG6lo0ePKjY21vkaMWJEhvOMi4vTgw8+qKtXr+q9995LNW2DBg308MMPq0aNGrrrrrv0+eefq3z58mma8ZztBk5+/fVXvf/++ypXrpy+/PJLPfHEExo0aJA+/fRTSVJMTIwkqUiRIi77FSlSxPlZTEyM/Pz8FBYWlmqawoULJym/cOHCLmluLicsLEx+fn7ONDcbP3688/m/oaGhSUbfAAAAACAjuGcCAACAOwnyzpSXdG1h9htfGX1MV1xcnLp166ZDhw5p7dq1aZ617OXlpXr16ungwYPW90lrkLfa1atXVbt2bY0bN061atVS//799dhjj+n99993SedwOFzeG2OSbLvZzWmSS5+eNDcaMWKEy2jb0aNHU40JAAAAANKCeyYAAAC4Ey/vTHnZLXHQ5ODBg4qOjlaBAgXSnIcxRnv37lXRokUt75PtBk6KFi2qypUru2yrVKmSjhw5IkkKDw+XpCS/Xjp58qTzl07h4eG6cuWKTp8+nWqaEydOJCn/1KlTLmluLuf06dOKi4tL8quqRP7+/klG3AAAAADALtwzAQAAILs4f/689u7dq71790q69ljZvXv36siRI4qPj1eXLl20c+dOzZ49WwkJCYqJiVFMTIyuXLnizOORRx5xeRzYmDFj9OWXX+rXX3/V3r171a9fP+3du1dPPPGE5biy3eLwjRs31k8//eSy7cCBAypZsqQkqXTp0goPD9fatWtVq1YtSdKVK1e0ceNGTZgwQZJUp04d+fr6au3aterWrZsk6fjx4/r+++81ceJESVLDhg0VGxur7du364477pAkffvtt4qNjVWjRo2caV577TUdP37cOVq1Zs0a+fv7q06dOmms2TZJAal8/pyFPCZaSLPZQprGFtLYwX05Dke0LfkY08JCWRct5BNoIR/3MVuJx5goC2WNcZsmq8qxko8VduVjF7vq7knHyq6ysvJYedJ5kZXfh+woK+vu7ljk1nMUAHLuPROQvNT6BPwbDQBA8q7Kx/bF4a8q9dnLydm5c6eaNWvmfD906FBJUq9evTR69GgtXbpUklSzZk2X/TZs2KCmTZtKko4cOSIvr/+fI3LmzBk9/vjjiomJUWhoqGrVqqWvv/7a2We1ItsNnDzzzDNq1KiRxo0bp27dumn79u3617/+pX/961+Srk0DHzJkiMaNG6dy5cqpXLlyGjdunPLkyaOePXtKkkJDQ9WvXz8NGzZMBQoUUP78+TV8+HBVq1ZNLVpc+4N2pUqV1KZNGz322GP68MMPJUmPP/642rdvrwoVKkiSWrVqpcqVKysyMlKTJk3S33//reHDh+uxxx7jV1EAAAAAbgnumQAAAJBdNG3aVMaYFD9P7bNEX331lcv7yZMna/LkyRmKK9sNnNSrV0+LFi3SiBEj9Morr6h06dKaMmWKHnroIWea5557ThcvXtSAAQN0+vRp1a9fX2vWrFFwcLAzzeTJk+Xj46Nu3brp4sWLat68uWbMmCFv7/8fZZs9e7YGDRqkVq1aSZI6duyoadOmOT/39vbWihUrNGDAADVu3FiBgYHq2bOn3njjjSxoCQAAAABIinsmAAAAuHPjYu725ZlzOIyVIRtkmrNnzyo0NFTSC8qaR3VZkfqjr6w99srK44Ky6pFg2fNRXVZ40uOfcuoUeB7VlbPYcTw97fvgafFkJU96VBcA6xL7v7Gxscw4gCWcM3CHR3UBADydJ/VnEmP5MramgkLsHTi5cDZBrUP3ekQ9MyrbzTgBAAAAAAAAAADpx4yT1DFw4iFiY0ekOgpnbZF096z9Yj31sqzNqLDnVz32/drfnvZzODZnWT52tKGn/boqO/4yPqtm5OTUmSJZecyzqixPa2NPiycr5cS6Z8frJAB4uvT2s7jeZh8cKwAAYDcGTgAAAAAAAAAAyEUS5JUJM05yzqogDJwAAAAAAAAAAJCLxMtb8TYPnMTnoIETr1sdAAAAAAAAAAAAgKdgxgkAAAAAAAAAALlIgnyUYPPwQE5aHJ4ZJwAAAAAAAAAAANcx48RDhIZukBSUSorGtpTjcIyxJR/35WRJMdfLcl8nY6KyLJ+s5C6erDreVsvytPazIqvaMHu2TbSHlWXPddKT5NTvFQAAWYl/KwEAAJK6Km/bF4e/yhonAAAAAAAAAAAAOQ8zTgAAAAAAAAAAyEUSMmHGSQIzTgAAAAAAAAAAAHIeZpwAAAAAAAAAAJCLxMtL8TbPOInXVVvzu5UYOAEAAAAAAAAAIBdJkI8SbB4eyEmP6mLgxEPExjZTSEhIip87HGMs5PKc2xTGtEhDVJnLSp2MibKprGhbyrKSj7TZprKsHPPGWVSOFanHYr0s9/l40nks2XOeZuX3wQq74nE43H8f7GOlrIyfO1l5rOz6DmdlPlnJXcyeFq8V2TFmAAAAAAByGgZOAAAAAAAAAADIRTJncfic86guFocHAAAAAAAAAAC4jhknAAAAAAAAAADkIsw4SV2GZ5zEx8fbEQcAAAAA5FjcNwEAAADZR4YHTurVq6fPP//cjlgAAAAAIEfivgkAAACeJEHeirf5ZfcMllspw4/qio6O1pgxY/TOO+/otddeU5MmTeyIC+lgTKDbNA5HtIWcNmc8GD1nQx7WOMrYlI9jjNs0xkRZyMeOaKyV5Y6V422tTvacN9bKcn8cpBYW0mQdazFnn3Kuaew2hbXzwi52XJescdfOdnw3rbLrupRT5ea6ZxVPOgc9KRYgPbhvAjyrn5VbpNbmtDftAwBIWYZnnBQoUEDvvPOOZs6cqffee0+dOnXSjz/+aEdsAAAAAJAjcN8EAAAAT5Ign0x55RQZrsnJkye1fv16HThwQD4+Ptq6dauaNGmiAgUKqEKFClq8eLENYQIAAABA9sV9EwAAADxJgrwyYXH4BFvzu5UyPHDSqFEj9ejRQ5UrV9a9996r9957T6GhoYqPj9f//vc/O2IEAAAAgGyN+yYAAAAg+8jwwMmSJUtUpUqVpBn7+Khq1aoZzR4AAAAAsj3umwAAAOBJEjJhMfectDi85TVOIiMj9c8//yTZnlznHwAAAAByI+6bAAAAgOzPYYwxVhJ6e3vr+PHjKly4sCSpf//+ev311xUWFuZMExcXJ19f38yJNIc6e/asQkNDJb0gKSCDuTV2n6R0C/dpDo1J9WNjotxm4XBEuy/HSrzanIX5WEnjnpX2yW4cjtTPiayWE9s4O7LyPTfG/TXHrnyyGyvfK2vXW3vyQeaz7zuT/Y55dowZmSex/xsbG6uQkJBbHY7tuG+yX04/ZzJbatdgrr0AAGQNT+rPJMYyKTZSgSF+tuZ98ewVPRs6yyPqmVGWZ5zcPL4yd+5cnT592vn+xIkTCg4Oti8yAAAAAMhmuG8CAAAAsr90r3GS3ESVK1euZCgYAAAAAMhJuG8CAACAJ0qQt+JZ4yRFlmecWOFwOOzMDgAAAAByHO6bAAAAAM+WpoGTOXPmaPfu3YqLi5NEhx8AAAAAbsZ9EwAAADxdgnwy5ZVTWK7JnXfeqaioKJ07d06+vr6Kj4/Xiy++qDvvvFO1a9dWoUKFMjNOAAAAAPB43DcBAAAgO0iQt+2P1spJj+pymOQeupuKgwcPateuXdq9e7d27dqlPXv26MyZM85fUSUkJGRKoDnV2bNnFRoaKukFSQG3OhwbPWchzcQsK8uYQFtKcjgu2lKWwzHGQj5RlmLKaDlWWInFWllZeayypo2tliU1dhNLC1tisYtd5467el+z2W2KrDxWWfXds6tOORXHCsi5Evu/sbGxCgkJudXhZBrum+yTW84ZIKul1g+i/wMA9vKk/kxiLK/E9ldAiJ+teV86e0WjQj/0iHpmVJrnzpQrV07lypXTgw8+6Nx26NAh7dy5U3v27LE1OAAAAADIjrhvAgAAgCdLkFcmzDixdUn1W8qWh46VLl1apUuXVteuXe3IDgAAAAByHO6bAAAAgOwh56zWAgAAAAAAAAAA3IqXt+JtnnFid363Us6ZOwMAAAAAAAAAAJBBGZpxsnv3blWtWlV+fvYuIoPk2LPAsrVF293k08XCItb/ibZQjj2sLcZuJR4r7efe9fU+cxQr7ZeViwd62mLOVspyF7PD4f47bu1ct2dR96xdDNLCNcUCTzovrJ0TVr5X9rRNdsTC7xmTm+sOeCLumwDPlNsXR88pdcztxxEA0itBPkqw+YFUCUqwNb9bKUMzTurVq6fDhw/bFAoAAAAA5DzcNwEAAADZS4aGlIwxdsUBAAAAADkS900AAADwNFflrQSb1yS5moPWOGFxeAAAAAAAAAAAcpGETBg4sTu/W4nF4QEAAAAAAAAAAK5jxgkAAAAAAAAAALlIgrwyYcZJzpmnwcBJrjMxwzmYBS0spHKfxuHY7L4sE2Uhn2gL8TS2kMZ9PFbyMcZK+7jncIyxUFbq7WNX+2VlnaywVq+Mt59VdpRl7Ty25zjY1X7WvldW2HMtsItd56k7nlanrIwHmY/jCQCAe/x7mTNwHAEAmYGBEwAAAAAAAAAAcpF4ecvb5hkn8axxAgAAAAAAAAAAkPNkaMZJVFSUChYsaFcsAAAAAJDjcN8EAAAAT5MgHyXY/EAqu/O7lTI8cAIAAAAASBn3TQAAAED2knOGgAAAAAAAAAAAgFtX5a0Em9ckuZqD1jhh4MRjNJAUlOmlGOP+126Orm4+d1y0UNJme2JxRNtSljWNbcnF4RjjNo2Vultrn9TLspKHtfZrkeFYrnHfxsa4L8sKu84va/G4r5e19nGXhz3fKyvsysdaG2ddzHZ8P+36jluRldcTT5OV7QwAQHJS+7eIf4OQXpxXAABPkZAJAyfpye/rr7/WpEmTtGvXLh0/flyLFi3Sfffd5/zcGKMxY8boX//6l06fPq369evr3XffVZUqVVLNd+HChRo5cqR++eUXlS1bVq+99po6d+5sOS4WhwcAAAAAAAAAAFnuwoULqlGjhqZNm5bs5xMnTtRbb72ladOmaceOHQoPD1fLli117ty5FPPcunWrunfvrsjISH333XeKjIxUt27d9O2331qOixknAAAAAAAAAADkIvHylpfNM07i05Ff27Zt1bZt22Q/M8ZoypQpeumll3T//fdLkmbOnKkiRYpozpw56t+/f7L7TZkyRS1bttSIESMkSSNGjNDGjRs1ZcoUzZ0711JcGRo4OXPmjL788kv9/vvvcjgcKlq0qFq3bq2wsLCMZAsAAAAAOQb3TQAAAMhNzp496/Le399f/v7+ac7n0KFDiomJUatWrVzyatKkibZs2ZLiwMnWrVv1zDPPuGxr3bq1pkyZYrnsdD+q6+OPP9Ydd9yhbdu26erVq0pISNC2bdvUoEEDffzxx+nNFgAAAAByDO6bAAAA4ImurXHiY/Pr2oyT4sWLKzQ01PkaP358umKMiYmRJBUpUsRle5EiRZyfpbRfWve5WbpnnEycOFG7d+9W3rx5Xba/+uqrqlOnjvr165ferAEAAAAgR+C+CQAAALnN0aNHFRIS4nyfntkmN3I4HC7vjTFJttmxz43SPXDicDh0/vz5JDcA58+fT1MAuCY2tpnLyXQzhyM664L5T+plGdPCbRYOx2YLaawE4z4fqbH7JKXdx6xDdrWxhXhsYkxUqp9bOW/c5XEtnzEWonFfb2vnjpWYreRjT8z21d3dsXJfjpVjlZU8LWa7jpU7dtUpK9vP046VFXZcmzytTlZYO4/d87S6Z8dzELAL902ZL7P+PeC6lLuldl5l5NzgvAIAeIprM07sXeMkMb+QkJBU/9ZtVXh4uKRrM0iKFi3q3H7y5MkkM0pu3u/m2SXu9rlZugdO3njjDTVp0kRVq1ZVsWLFJEnHjh3T/v379eabb6Y3WwAAAADIMbhvAgAAANKndOnSCg8P19q1a1WrVi1J0pUrV7Rx40ZNmDAhxf0aNmyotWvXuqxzsmbNGjVq1Mhy2ZYHTiIjI/Xhhx8qT548kqT27durbdu22r59u/744w8ZY1SsWDHdcccd8va2d6QKAAAAALID7psAAACQHWTmjJO0OH/+vH7++Wfn+0OHDmnv3r3Knz+/SpQooSFDhmjcuHEqV66cypUrp3HjxilPnjzq2bOnc59HHnlExYoVc66lMnjwYN19992aMGGCOnXqpCVLlig6OlqbNm2yHJflgZM5c+bozTffdN4A9O/fX6+//roaNmwo6dozwuLj4+n8AwAAAMi1uG8CAABAdnA1EwZOrqYjv507d6pZs2bO90OHDpUk9erVSzNmzNBzzz2nixcvasCAATp9+rTq16+vNWvWKDg42LnPkSNH5OXl5XzfqFEjzZs3Ty+//LJGjhypsmXLav78+apfv77luCwPnBhjXN7PnTtXzz//vMLCwiRde0ZYyZIldenSJcuFAwAAAEBOwn0TAAAAYF3Tpk2T9KFv5HA4NHr0aI0ePTrFNF999VWSbV26dFGXLl3SHVe61zhJrjJXrlxJdyAAAAAAkNNw3wQAAABPFC9vOWyecRJvc363UroHTpLjcDjszC5XCQ3dICkolRSbLeTynNsUDscYC/k0zvQ8rnFfJ2Oi3KaxFM8h90mMaWFPWZa4L8sKO+Kx9rW1cjytlOVZ7WffORid4UjsOtet5GOFXcfKrpizW93ti8XKuZV157GV62RWsqud7WDXv42eVCc72fE9z8q2ycprDnIn7pvslVO+j6lde3JKHbMT2hypyerva065PuSUegDIHbzcJ/l/c+bM0e7duxUXFyeJDj8AAAAA3Iz7JgAAAHi6a4vD+9j8yoUzTu68805FRUXp3Llz8vX1VXx8vF588UXdeeedql27tgoVKpSZcQIAAACAx+O+CQAAAMj+LA+cfP3115KkgwcPateuXdq9e7d27dqlkSNH6syZM/yKCgAAAECux30TAAAAsoMEecvL5hkiuXLGSaJy5cqpXLlyevDBB53bDh06pJ07d2rPnj22BgcAAAAA2RH3TQAAAED2Zcvi8KVLl1bp0qXVtWtXO7IDAAAAgByH+yYAAAB4CmacpM5hjDG3Oojc7OzZswoNDZX0gqSAjGVWOsqOkKRDY9wkaOw2C2Na2BKKwxFtIdVmW8rKynpZ4XBczHAexgRaKMfd8bZalvvzz1qdJmY8GFmLxwq72scdu+LNSlbaxtp5YaWNPev7mVWyto3ds6usrDovsvaabU+9Pa0sIDMk9n9jY2MVEhJyq8NBNsA5AwAAsjtP6s8kxtIidpZ8Q/LYmnfc2X8UHRrpEfXMKK9bHQAAAAAAAAAAAICnsOVRXQAAAAAAAAAAIHu4Kh8l2Dw8cDUHDTcw4wQAAAAAAAAAAOC6nDMEBAAAAAAAAAAA3EqQtxwsDp8iZpwAAAAAAAAAAABcx4wTj9FAUlDGsjh00UKiiRkrQ5LU2G0KhyPaQj6bMx6KJGOi3KaxKx6Hw56YrXHfzu5idjjc52BX+zkcY2wqy20SWTsH3cdjrY2teM5Cmox/9+xqY7vKsqv97IrZiqxsQ3tYObfsYde1wK72sxbP/7V399FRVff+xz9HQkKkZBA0JPgYqiJPWgqKAQWVCNfH2ypoq5dK6+NVRAo0rfX+bkhbSy8VSoXaitdCvWh1Adqi9ipQNQjEByKuqiD1lrSAJbVWmKBiQsL5/UFIjWTO/mZyZjKTeb/WmrVkznf2/u599tlzjidntmt/loRQhi2XcPINr65Uk37HHoDOJGgOYu4B4sNxBQDpr1FHJOCJk87znEbnaQkAAAAAAAAAAEA78cQJAAAAAAAAAAAZpEFdpJCfOGlgjRMAAAAAAAAAAIDOhydOAAAAAAAAAADIII3Kkhfy7YHGTnS7ofO0JM1Fo+crLy8v5nbT4uZFue6YakMyFY6F3MYkb+H38BYBtyywnMyF31Mtn2C+b1lgOQmJNAunb8JrVxgLv1uOq2SyLPzu3g+2/kudsS5Z55RUkloLl4clWfshmW3K5IVSM7ntADoecxAQPo4rAEh/B9RFjSH/tNYBfqoLAAAAAAAAAACg8+GJEwAAAAAAAAAAMkhjAhaHD/sJlo7EEycAAAAAAAAAAABNeOIEAAAAAAAAAIAMwhMnwdL6iZPZs2fL8zxNmzat+T3f9zVr1iz17dtXubm5Ou+88/TWW2+1+FxdXZ1uv/12HX300erevbsuv/xy7dy5s0XM7t27NWnSJEUiEUUiEU2aNEl79uxpEbN9+3Zddtll6t69u44++mhNnTpV9fX1iWouAAAAALQZ100AAABA26TtEyevvvqqFi1apNNPP73F+3PmzNG8efO0ZMkSnXrqqfrBD36gCy+8UFu3blWPHj0kSdOmTdOTTz6pRx99VL1799aMGTN06aWXqqqqSl26HLwrds0112jnzp165plnJEk33XSTJk2apCeffFKS1NjYqEsuuUTHHHOM1q1bp3/84x+67rrr5Pu+FixY0Ob2RCKzJXWLHTC3zF1IpaGi6lHumMmGcpwM9SSR7+c6Y7x+hj6uLjfU5m67KR9vvbuqIkfOpnzdPM9dju+7+8/z9oWRjlGpM8Lz1hjKce8HW9tdfWjY3wZhtck2jsNod3jCG4Nz2l2PhWVf+X6JoZxwjs+w2mUR3pwSXE5Y46+z7nPERh+jM+ls103IXEFzM3MygHTgOsdMxFzG3IkgDTpCfuhPnKT1cxotpGVLPvzwQ1177bV64IEHdNRRRzW/7/u+5s+fr7vuuktXXHGFBg8erF/96lf6+OOP9cgjj0iSotGoHnzwQc2dO1clJSUaOnSoli5dqjfeeENr1hz8HxpbtmzRM888o//+7/9WcXGxiouL9cADD+ipp57S1q1bJUmrVq3S5s2btXTpUg0dOlQlJSWaO3euHnjgAdXW1ia/UwAAAADgU7huAgAAAOKTljdObrvtNl1yySUqKWn5V5nV1dWqqanRuHHjmt/LycnRmDFjtGHDBklSVVWV9u/f3yKmb9++Gjx4cHNMZWWlIpGIRowY0Rxz9tlnKxKJtIgZPHiw+vbt2xwzfvx41dXVqaqqKmbudXV1qq2tbfECAAAAgLCl63UT10wAAACJ16ishLw6i7RryaOPPqrXXntNr7766mHbampqJEl9+vRp8X6fPn30l7/8pTkmOzu7xV9cHYo59Pmamhrl5+cfVn5+fn6LmM/Wc9RRRyk7O7s5pjWzZ89WeXnyfroGAAAAQOZJ5+smrpkAAAASj8Xhg6XVEyc7duzQHXfcoaVLl6pbt9jrgXie1+Lfvu8f9t5nfTamtfh4Yj7rzjvvVDQabX7t2LEjMC8AAAAAaIt0v27imgkAAAAdLa1unFRVVem9997TsGHDlJWVpaysLFVUVOjee+9VVlZW818yffYvl957773mbQUFBaqvr9fu3bsDY/72t78dVv/f//73FjGfrWf37t3av3//YX9R9Wk5OTnKy8tr8QIAAACAsKT7dRPXTAAAAIl3QF3UGPLrQCd64iStfqpr7NixeuONN1q89/Wvf12nnXaavv3tb6tfv34qKCjQ6tWrNXToUElSfX29Kioq9F//9V+SpGHDhqlr165avXq1rrrqKknSrl279Oabb2rOnDmSpOLiYkWjUb3yyis666yzJEkvv/yyotGoRo4c2Rxz9913a9euXSosLJR0cOHDnJwcDRs2LI7WnS2pe+zNlYYiig0xVSXumGrXY/Gl7jKKcg317AulHH+bu02eZ3nU39CukHieoe2WfJx9OMqQSzg/g2Apx/fLDOW4c7a0S5pjiEnePnfl7PthjeP1hhh3u33ffeyFNXYs48LCm2ipyzA3KZx8nIos+3xNEhJJTWHMKWHNS2GxHOe2cpKXc6aij5HuOvd1EzIVczOAdNcR8xhzJxC/tLpx0qNHDw0ePLjFe927d1fv3r2b3582bZp++MMf6pRTTtEpp5yiH/7whzryyCN1zTXXSJIikYiuv/56zZgxQ71791avXr00c+ZMDRkypHnRxAEDBuhf/uVfdOONN+r++++XJN1000269NJL1b9/f0nSuHHjNHDgQE2aNEk//vGP9cEHH2jmzJm68cYb+YsoAAAAAB2G6yYAAAC4NKiLjgj5CRGeOElhpaWl2rdvn2699Vbt3r1bI0aM0KpVq9SjR4/mmJ/85CfKysrSVVddpX379mns2LFasmSJunT55459+OGHNXXqVI0bN06SdPnll2vhwoXN27t06aKnn35at956q0aNGqXc3Fxdc801uueee5LXWAAAAACIA9dNAAAAQGxpf+PkhRdeaPFvz/M0a9YszZo1K+ZnunXrpgULFmjBggUxY3r16qWlS5cG1n3CCSfoqaeeaku6AAAAAJB0XDcBAADg0xrVRX7Itwc60xMnabU4PAAAAAAAAAAAQCKl/RMnAAAAAAAAAADA7uATJ6xxEovn+77f0UlkstraWkUiEUWj0cDFEb1+hsKq1xiCRrlDJuQGb1/ursf3S5wxnlfuzsWSb5G7LlXvM9S13hCTTGHkY+g/A9v+tIw/S5ssOadaORbt35++XxZCHsmV3HHhZhnLLqHNXQZh5GtlaVdYYzC8cREsmceMbVy4WXJOZl1AIljPf4FDXGPGNS+m0nwXlGtH5Jlq+QBAqmB+RNhS6Rz4UC5HR9/UEXk93B9ogwO1e/V+ZHBKtLO9+KkuAAAAAAAAAACAJvxUFwAAAAAAAAAAGaTxQBf5B0L+qa6Qy+tIPHECAAAAAAAAAADQhCdOAAAAAAAAAADIII0NXXSgIdwnRPyQy+tIPHECAAAAAAAAAADQhCdO0kX1GnfM3BJ3zAx3Of6y4HI8z12N55W7gwx8392msOqy8P0yZ4znGfrY1K717oQmOPJZHlYu7j629Y2hTRoVUswcQ4ybrX8Mx6czZ3ffeP0M1RjmivDaZOFul23s7DPU5d7nnuceO76fa6jLxTLW3SzzbXj7s9QQEw5LzlL72xXe3BVOOeGxjOPkze0A0NE6Yq4KmkOD87GcxyZPUK7xtxEA0l96fbcA8WlsyJLXEO7tAT/k8joST5wAAAAAAAAAAAA06Ty3gAAAAAAAAAAAgFNjwxHyQl/jpPM8p8GNEwAAAAAAAAAAMkhjQ5cE3DhhcXgAAAAAAAAAAIBOhydOAAAAAAAAAADIIA0NXeTt54mTWLhxkiIikecldY+53fdLnGV4/cLJxV3OqHAqMpTjeftCKcfC1MdeeSh1Se66TJavCdxsa1NwGQfLKTOnFMyyr9aHEmPJObz9aRGcc2j5TrCUY9nnlrFjOT7d+8qSj41lfM0xxLj60F1PWMeebZ50jwvb+HLn43nJO/Ys5bj62fOcRYQmrOPKIqzvq7DGRVjtAoB4uea8eM9lg8qNt8x0mjPDuwZIT4nY/wAQJJXmFuZAgJ/qAgAAAAAAAAAgo/iNWToQ8stvbNtzGieddJI8zzvsddttt7Ua/8ILL7Qa//bbb4fRJS3wxAkAAAAAAAAAAEiqV199VY2Njc3/fvPNN3XhhRdq4sSJgZ/bunWr8vLymv99zDHHhJ4bN04AAAAAAAAAAMgkDV0OvsIusw0+e8PjRz/6kT7/+c9rzJgxgZ/Lz89Xz54925pdm/BTXQAAAAAAAAAAIBS1tbUtXnV1dc7P1NfXa+nSpfrGN74hz7Fo6dChQ1VYWKixY8fq+eefDyvtFrhxAgAAAAAAAABAJjn0xEnYL0nHH3+8IpFI82v27NnOdH7zm99oz549mjx5csyYwsJCLVq0SCtWrNDjjz+u/v37a+zYsVq7dm1YvdKMn+pKGS9J6hZzq+eNchcxIdcdU20oJwxFJe6Y6jUhVbbeHVJU5gzx+rmL8X1DOZ67XZYYqdQQ46pnnyHKPSZM+U5w73Pfd8fY+sbN1nZLOSGN0wnBY8fzysOpZ7mlHPfYsrXbcOwZWMZFWDzPnXNYY8fFdjyENC5SjGUutXD1j23OdvdxWPmGxXJ8hpVzMo9PAIhXoubpoHKD5uJ4586g76RU+y7KBPQ5Ml28cxJzWefAvsoQjZ7UEPxkR1xlStqxY0eLNUhycnKcH33wwQd10UUXqW/fvjFj+vfvr/79+zf/u7i4WDt27NA999yj0aNHtyPxw/HECQAAAAAAAAAACEVeXl6Ll+vGyV/+8hetWbNGN9xwQ5vrOvvss/XOO+/Em2pMPHECAAAAAAAAAEAmaWh6hV1mHBYvXqz8/Hxdcsklbf7spk2bVFhYGF/FAbhxAgAAAAAAAAAAku7AgQNavHixrrvuOmVltbxdceedd+rdd9/VQw89JEmaP3++TjrpJA0aNKh5MfkVK1ZoxYoVoefFjRMAAAAAAAAAADJJijxxsmbNGm3fvl3f+MY3Dtu2a9cubd++vfnf9fX1mjlzpt59913l5uZq0KBBevrpp3XxxRe3J+tWeb7v+6GXCrPa2lpFIhFJv5HUPXbgXMMCgzPcCxr7vnsBefeis+7FxG31WBZgnmOIsSyibinHYK5hcayFhnKqw1p8OoR2FYW04Ncwd4i/zB1jW5TcPQZtfWMZy+EsaO8qJ6xF6MNacDxZi3cflLz9EMb8FVabbNyL2ZtYjvNqS/+FlI9BWAu7h1GPhS0X9/eV7fsztY7hZNXVWReoTGYfp4pD57/RaLTFgpFALIyZziNT53oAAFLpfKb5/0evj0qfCzmXD2ulUanRzvbiiRMAAAAAAAAAADJJijxxkqqO6OgEAAAAAAAAAAAAUgVPnAAAAAAAAAAAkEkaJO1PQJmdBDdOAAAAAAAAAADIJI1Nr7DL7CT4qS4AAAAAAAAAAIAmPHGSIqLR85WXlxdzu9fPUMiEXGeI5+1rQ1bx87w17qAJJYaSytwhVYZihhnKWW7omxmGdmmUIWa9O8TSP8tddRlyqS53x1hUW9pt2ecWc5wRvu/e55Zx6nnh9I/nBe9zW77uXFz12OuyjPWwGI4H09hxj0Hft8yTwf1s6b/wuNttGRf+NndNnmc5ht18P5zj3DIGk7svgiUzl1SryzQGU2hfhSWsdnfGvgEyQdAcwHEdG30DpA/mOcSSWtfMaBcWhw/EEycAAAAAAAAAAABNeOIEAAAAAAAAAIBMwhMngXjiBAAAAAAAAAAAoAlPnAAAAAAAAAAAkEl44iQQT5wAAAAAAAAAAAA08Xzf9zs6iUxWW1urSCSiaDSqvLy8mHGet89ZVqQu6oyJvlTgTmqMo66iXHcZ1e58beWsccfMLXHHzDDkozmGmFJDzHpDzChDjJvvB/eh189QiGVfmVj6zyKcvrHwfffYMfXhMEPM8nJHQEhjy3Q8uHKRTPmYjmFLXZZ9bjmuLNx1ucaF57nb5Ptl5ozaW5dt7LiPz7BytvA899xuOj5N/ZM6LH2czPEFdBTr+S9wCGPG/f3Ad0NqCdpfyd5XqZQLgNTC/JBcqXQ+cygXLYtKR4acy8e10sTUaGd78VNdAAAAAAAAAABkEn6qKxA/1QUAAAAAAAAAANCEJ04AAAAAAAAAAMgkPHESiCdOAAAAAAAAAAAAmvDECQAAAAAAAAAAmWR/0yvsMjsJbpykiEhktqRusQPmljnLiJ6W666outwdU+SuKxTVawxBo9whCy2VzXGHhNXu6vXhlGPgea4IQ/8VGcaNRbWlrhJDOYYxammX3PvB8wz7aoJhXCy35OxiGTeGds+wHFel7hDLuLAcw5bjyrTP3XzfXZfn7QulLnc9yWuTTTjleJ57n/u+4Tg3HZ/uUsLrn2BhtTus8WcZX8nqG6t0zBkAUglzZHpJpf2VSrm0R9C5RGdpY2fBvkof7A8gGDdOAAAAAAAAAADIJI1Nr7DL7CRY4wQAAAAAAAAAAKAJT5wAAAAAAAAAAJBJGiU1JKDMToIbJwAAAAAAAAAAZJIGhX/jJOzyOhA/1QUAAAAAAAAAANCEJ05SRDR6p/Ly8mJu97xydyFFZeEkM8WxfYYhF5UaYkYZYua4Q4YZ2l1tyKd6nzsmLBNKwilnuSvn9e4yqg0xJu4+9re5S/E8Qzl+rqEcd12+794PnrfGXZBpLLtiDGPdwNYmwzFsOWYs42uKYazPCGufu9vl+2HMk5b9HdZx5Wban0nl3ueW/WBpl+e1v5/DGRO2ucJ2fIYzvjzP8p1m6b9wxnIY+zysfQUAHSlormOeC/4+tXyPovPi+IgtUedQ8c5X7CsgjfDESSCeOAEAAAAAAAAAAGjCEycAAAAAAAAAAGQSnjgJxBMnAAAAAAAAAAAATXjiBAAAAAAAAACATNKo8J8QaQy5vA7EEycAAAAAAAAAAABNeOIkXUwoc8cs3xdOOTNc5ZQa6sl1xxjyne//1Rkzba27Ki2fYwgKiWlflbtjigzlaL2jjBJ3EdWGakzluNvkeYa6KiztthjljPD6GYoJqe2ufeX77nZ73hpDjGEeMAnpmHHOJ5KK3POF51n62LDPDX0Yzr5yHJuSbPm6223Jx8LWx5ZyLH3sbnsq8X3DPBAaS99YxpclxsKdT3L7BwAO5/oOC+u7MgyplEsq4jsFsQQd55lwXIV1rt4WmdCv8cqE8ZgJbYRY48SBJ04AAAAAAAAAAACa8MQJAAAAAAAAAACZZL+kLgkos5PgxgkAAAAAAAAAAJmkUeEv5s7i8AAAAAAAAAAAAJ0PT5yki2JLjHuB5Zum/9QZs6jfHYbKkmOaN9EQZVl8OokLVy23LIxc6g6xLDgexkLqYwwxwwwx1e42+b5lEXD3/vQsix5PMCwsWeUOUXVYi60HL7BsWuxvgmF/Lw8rX8MYNS0gb9hX1ZZFrC35GBgWonflE9q+MvCXucdxeIuxh7MIuCUf21zgDJF7XLjHaHIX2gxnnpTc4yusdlkWfrTUZSnHFRNWPalWDgAkWrIX+A06F+iIxd/jbT8LI8cvEX2X6X2e6e1PNem0P+K9LkinNqIdWBw+EE+cAAAAAAAAAAAANOGJEwAAAAAAAAAAMkmjwn9ChDVOAAAAAAAAAAAAOh+eOAEAAAAAAAAAIJM0SOqSgDI7CZ44AQAAAAAAAAAAaMITJ+lixj53zNxcZ8iitXe4y6leE7y9osRdxhhDvkXufFW93hkSqRvsjNmT7a7L8xztNnPnLI0yxJS6QzY6ts8wtKnIsD+Xl7tjJpQ5Q0x9bMmn2h2i5Zb9adkPbr5vabujD4vcZdhysYz15JVj6mPLPjfwt4VSjDwvOGffd+drm0/cfeN5lvnEwl2OrV3uucB2PIQ1385xbLcc4+H0cXjtDmc/WIQyd4XI1T+WfC2SWU5YxwyAYIk6joKO4XQ6dpOfa9B3azjnfW0Rb/sZV/FLp3Yke39kwv5H/OIdH4wrxG2/wn+sYn/I5XUgbpwAAAAAAAAAAJBJGhX+Yu4sDg8AAAAAAAAAAND58MQJAAAAAAAAAACZpFHhL+bOEycAAAAAAAAAAACdD0+cAAAAAAAAAACQSRoU/mMVYT/B0oG4cZIuinLdMcMN5SywVDYqePOYfZZC3KoN5Uwoc4ZEr3UX4xUb8ikqccdMMZQzw1KXYX9a+mdGuSOg1JCMQZF7P2j5GndMhaGPxxjKMfB9d11eP0NB1ZZ8DO1y1mPY30vc48bzXGNCpv3pee58fN9SjiGfasM4NRwzlrosObvmQFObXPOoJGm9O8QyL1Vb8nHzPEuUpV1upuPTM/RPmrG021ZOSMdeEoWRj22MuseNbR4IR1j7Kpk5A/inZB97QfNBe3JJRLmJyjUTJKJ/2B/xY390DvGea6ba/og3n1T6vpJSr1+BeHHjBAAAAAAAAACATLJfkukP1NpYZifBGicAAAAAAAAAAABNeOIEAAAAAAAAAIBM0tj0CrvMToInTgAAAAAAAAAAyCQNCXq1waxZs+R5XotXQUFB4GcqKio0bNgwdevWTf369dMvfvGLtlVqxBMnAAAAAAAAAAAg6QYNGqQ1a9Y0/7tLly4xY6urq3XxxRfrxhtv1NKlS7V+/XrdeuutOuaYY3TllVeGmhc3TtJF9T53zORcd8wwQ11FjnIsZSxf446ZW+KOqTTUFZYlhpgxhv2gUe4QSx9Wu0N8vyxwu+cZ8l1iyGWMYX9a2j3ZUIzWW4KcPM9SjiHnIsM4DcUcd8iYkKqqDmd/el55+3OR3HOOZJoDXceDJHkTLQm59oVh3IQ0jlVtqSuJ+ZjKSdYxEw7TuDGMdUuMpa6whFWXrX8sc4qlrjDGTvLGn6XdljYlc1wASG1B84Hreybos4mYZxI1dwW1k/kS6YKxmnyp1OftmceYA5F0jWrzEyKmMtsoKyvL+ZTJIb/4xS90wgknaP78+ZKkAQMGaOPGjbrnnntCv3HCT3UBAAAAAAAAAIBQ1NbWtnjV1dXFjH3nnXfUt29fFRUV6Stf+Yq2bdsWM7ayslLjxo1r8d748eO1ceNG7d+/P7T8JW6cAAAAAAAAAACQWfYn6CXp+OOPVyQSaX7Nnj271RRGjBihhx56SM8++6weeOAB1dTUaOTIkfrHP/7RanxNTY369OnT4r0+ffqooaFB77//frw90aq0u3Eye/ZsnXnmmerRo4fy8/P1pS99SVu3bm0R4/u+Zs2apb59+yo3N1fnnXee3nrrrRYxdXV1uv3223X00Uere/fuuvzyy7Vz584WMbt379akSZOad/CkSZO0Z8+eFjHbt2/XZZddpu7du+voo4/W1KlTVV9fn5C2AwAAAIAL10wAAADoSDt27FA0Gm1+3Xnnna3GXXTRRbryyis1ZMgQlZSU6Omnn5Yk/epXv4pZtud5Lf7t+36r77dX2t04qaio0G233aaXXnpJq1evVkNDg8aNG6ePPvqoOWbOnDmaN2+eFi5cqFdffVUFBQW68MILtXfv3uaYadOm6YknntCjjz6qdevW6cMPP9Sll16qxsZ//hDbNddco9dff13PPPOMnnnmGb3++uuaNGlS8/bGxkZdcskl+uijj7Ru3To9+uijWrFihWbMmJGczgAAAACAz+CaCQAAAE6NCXpJysvLa/HKyckxpdS9e3cNGTJE77zzTqvbCwoKVFNT0+K99957T1lZWerdu7e15SZptzj8M8880+LfixcvVn5+vqqqqjR69Gj5vq/58+frrrvu0hVXXCHp4B2qPn366JFHHtHNN9+saDSqBx98UP/zP/+jkpKDi3YuXbpUxx9/vNasWaPx48dry5YteuaZZ/TSSy9pxIgRkqQHHnhAxcXF2rp1q/r3769Vq1Zp8+bN2rFjh/r27StJmjt3riZPnqy7775beXl5SewZAAAAAOCaCQAAAOmprq5OW7Zs0bnnntvq9uLiYj355JMt3lu1apWGDx+url27hppL2t04+axoNCpJ6tWrlySpurpaNTU1LRaJycnJ0ZgxY7RhwwbdfPPNqqqq0v79+1vE9O3bV4MHD9aGDRs0fvx4VVZWKhKJNF8ASNLZZ5+tSCSiDRs2qH///qqsrNTgwYObLwCkg4vR1NXVqaqqSueff/5h+dbV1bVYDKe2tja8zlhiiNloiLndsX2BoYwJJe6YGeWGgkoNdeW6YxYaqqo25DO3LJy6DCJ1UWeM18/RdkvfjFljyGaUO6TCUNdkQ1WhMeRsMcwd4k20FOTIZ677mPGnG3LpZ0il2rLPLQzHp9a7Q0LKx/ZEZhjjwt0m33fPFZ7nnnN8331ceZ6lTZYYw76aYGnXPkNdBkWG+dbFMK+H139unmcY65bvz+WWPp7jjLCMUwvfd+dsGe/uYzicYy8sYbU7vPkieW1H+uns10yuY6QzHB+doQ0WQe0M2s+J6J9k19ceqZZPZ5FOYyDZ6JvY4p3HXJ+NVyL2letzjI800iAp3F+3OlhmG8ycOVOXXXaZTjjhBL333nv6wQ9+oNraWl133XWSpDvvvFPvvvuuHnroIUnSLbfcooULF2r69Om68cYbVVlZqQcffFC//vWvQ25IGv5U16f5vq/p06frnHPO0eDBgyWp+VGd1haJObStpqZG2dnZOuqoowJj8vPzD6szPz+/Rcxn6znqqKOUnZ192CNDh8yePbvFwjjHH398W5sNAAAAACZcMwEAAKBVDQl6tcHOnTv11a9+Vf3799cVV1yh7OxsvfTSSzrxxBMlSbt27dL27dub44uKivS73/1OL7zwgr7whS/o+9//vu69915deeWVcXZCbGn9xMmUKVP0hz/8QevWrTtsW2uLxLgWiPlsTGvx8cR82p133qnp0//5Z+O1tbVcCAAAAABICK6ZAAAAkKoeffTRwO1Lliw57L0xY8botddeS1BG/5S2T5zcfvvtWrlypZ5//nkdd9xxze8XFBRIUquLxBz6S6eCggLV19dr9+7dgTF/+9vfDqv373//e4uYz9aze/du7d+//7C/qjokJyfnsMVxAAAAACBsXDMBAAAgpgZJ+0N+tfGJk1SWdjdOfN/XlClT9Pjjj+u5555TUVFRi+1FRUUqKCjQ6tWrm9+rr69XRUWFRo4cKUkaNmyYunbt2iJm165devPNN5tjiouLFY1G9corrzTHvPzyy4pGoy1i3nzzTe3atas5ZtWqVcrJydGwYYaFEQAAAAAgZFwzAQAAAO2Tdj/Vddttt+mRRx7Rb3/7W/Xo0aP5r5cikYhyc3PleZ6mTZumH/7whzrllFN0yimn6Ic//KGOPPJIXXPNNc2x119/vWbMmKHevXurV69emjlzpoYMGaKSkoMLfQ4YMED/8i//ohtvvFH333+/JOmmm27SpZdeqv79+0uSxo0bp4EDB2rSpEn68Y9/rA8++EAzZ87UjTfeyF9FAQAAAOgQXDMBAADAqVHhLw7fGHJ5Hcjzfd/v6CTaItbv4C5evFiTJ0+WdPAvrMrLy3X//fdr9+7dGjFihH72s581L4YoSZ988om+9a1v6ZFHHtG+ffs0duxY3XfffS1+O/eDDz7Q1KlTtXLlSknS5ZdfroULF6pnz57NMdu3b9ett96q5557Trm5ubrmmmt0zz33KCcnx9Se2tpaRSIRRaPRwAsHb62hsAWGmCpDTPWa4O1FJc4ints20hlzgfd7dy5zc90xw90hGlNuqKvMHbPQUJflD+eKDTFh1LU8pHbPcIwJSZrgHhdavs8dozmGugw5m+pa74x4zv9PZ8wFEze0Ox/fd491z7O0yS28utz9Z5kvVG0YpxoVTswEw5zimiddc6Q1lyJDLqa+KTXEWBj2p2k/WMpxx/i++zj3PNe+cOdrOR7CEtYxbJoniwzzpGF82fZDcspJpVwOsowvwxxoYMvHzdL2ZLCe/yJ+mXrNFEvQMRTvcZHsMl2SXWeqzCdAIiXiOE+l+lyCzrXDOsfpaGGdY31aqs2PqTauMlkqnQMfykXnRqWskHNpqJVeTI12tlfaPXFiuc/jeZ5mzZqlWbNmxYzp1q2bFixYoAULYt9t6NWrl5YuXRpY1wknnKCnnnrKmRMAAAAAJAPXTAAAAHBKxHokrHECAAAAAAAAAADQ+aTdEycAAAAAAAAAAKAdeOIkEDdOAAAAAAAAAADIJA2Swl79vBMtDs9PdQEAAAAAAAAAADThiZN0MdkdMn/bzc6YaWvvdxe0oCR4++3uIr5c/7g7qCLXHTPZHaIphpgJZe6Y4YZylhhiLDYaYqrXGGJGOQJc2yUtNORiKMdf5i7F62fY59Wl7phid4iWrzcEudt1wcQNhrrc+ypSNzhwu7fW0DeaY6jHPQ94nqEqWfrPEFNtqcuwzw1tV5Fj7pKkKkNVrmNvgqEew5iw9Y1BkeW4MuRjYZm3x1gKMsxNYZjgztfz3H3j++597nnlhoQsY91y7BnKqXbn4/vu70bP2xdKOWGw9XHy2MZFOOMrWX0MdFaJOIbSpUwpeP5kfkmMRPR5vN+D6bSPU22sJrvOVNtXQecoqbav4pVOucbb5+nURnSARDwdwhMnAAAAAAAAAAAAnQ9PnAAAAAAAAAAAkElY4yQQT5wAAAAAAAAAAAA04YkTAAAAAAAAAAAyCU+cBOLGSbowLOy7WQPd5RgWJS9e9nzg9iH6g7OMRd4gd0VFBe6YsCx3L26rKsOix5aF6C2LrVvKmWtYgNploaGMYYZyDItYWxYQti3w7V64LDKlxhkTtbTdwjJ2Ktx1RXOCF3O0LOoeneDum2iOZT9YWBbvNixibVmw3bCItWVcmMayRRiLtpvabdhXYZVj2Z9zLQu/h7MAuu+Hs2i7k+X4NfSx189Q11zDGJ1hWWg9nLnLm2hZ+N3Sx+6xY1msNoxFKW2L2btzCStfW/8Z5kmF9H0FIKbOsohxvBLRxkzvU5dMX1Q86Dsy6FynI9oRb66JYDlHaU17+i0RC47HW6ar/e35bGyxz3WTvf+lxPRdIj7XWbRnzCEzcOMEAAAAAAAAAIBM0iDpQMhlhl1eB+LGCQAAAAAAAAAAmaRR4f9UVye6ccLi8AAAAAAAAAAAAE144gQAAAAAAAAAgEzSoPAfq+CJEwAAAAAAAAAAgM7H830/7F8yQxvU1tYqEokoGo0qLy8vZpznlbsLqyhzhjw3eqQz5i7dHbi9cu357lw2ukMiU2qcMdGFBe6CFrpD5m+72RlTVu/u4+i1hnyq3CEm1fvcMRNy21+PJd9hIZVTbRjHE9zjONVEHg5hLM9Y465oQok7xrQfDHWFpciQs2V8WRQbYiz9rPXtzUQqMozj0PbDKHeIZa5YbphzQjPHEGNpl2N8LTf08VzDGJ3h7hvfd/exN89dlWmMWo4ry3xr6eOwmHJ2td1wbM51H3v+dHcxYfG8sOYc977yfUMfpwjr+S9wSHvHjOcFzeOxv5N8P/3OS9sq6DqzI9qfavkkm+m6vxXx9k2m93d70Hephf0RvqDz2HQ670wlqXQOfCgX9YlKR4Scy4Fa6W+p0c724okTAAAAAAAAAACAJqxxAgAAAAAAAABAJtkv1jgJwBMnAAAAAAAAAAAATXjiBAAAAAAAAACATHJAUtirn3ei1dS5cQIAAAAAAAAAQCZpkOSFXGYnunHi+b7fiZqTfmpraxWJRBSNRpWXlxczzvPKnWU95z/rjLlg3gZnzK7pPQO3F/bb4ywj8naNM6Y8u8wZYzFt4v3uoCpDQdX7nCGRuqgzJnptgaEyt8jD7j6MLnTUVRlKKtLthpgFIZWz0RCz0BAzzBCzfI0haL0hZpQ7ZEKJI5eQxp9rTEjSDHddJkW57hjDcWXq4yJH/1nrmuDO+aZlPw3cvsgb5K7HlK97XpdKDTFz3CFFhvm22nA8WNplEda4cB1Xprnfsh8Mx3iFoW/GhDNGTXNXWMdMWHOgZZw6+H445w2Wc6rwWPrG3cdhtT1VWM9/gUPaO2YScdzHe1wG5dLZjvVkol+TLxF93hHHarx1JnsOSKcxnk65BvG82OfKvh/7nD1R7U+lfnUdN8k/PmJfH/l+7OuiRLUjllQ6Bz6Uiz4XlbyQc/FrpQ9To53txRMnAAAAAAAAAABkEp44CcTi8AAAAAAAAAAAAE144gQAAAAAAAAAgEyyXzxxEoAnTgAAAAAAAAAAAJrwxAkAAAAAAAAAAJmkUTxxEsDzfb8TNSf91NbWKhKJKBqNKi8vr11lefPcMX6++2gY+W/PBW6v9BrdFVWUOEOKRz/vjKmceL4zZv6ym50xZfXlzhiL6LUF7qBiQ0GVhhhLOQsd25cYylhgiLndELPREOPK12j+Nvc+nzbvfndBw90hkbNrnDEDs7c4YyrXOsayZT9YLN9nCFrvDilyH8OqNtQ1N9cZ8tz0kc6YC/ptCCcfiwmOnC19XOFut8asMSQzyh3iyjdMyw05G+b/0NoeCsPxMMHQJkvfWI4ri2rLd5ql/5I4vgz94/vB/eN57nb7fpk5peC62p/vwXLC2VeWutJJmOe/yAydacwEzS9Bx7ptPolVbjhzIzpW0BgI2sfxjp32jJtE1Blv+10SVS5a157+jnf+TIT2zMnxinc8dsQYT3adwefusa/33GMu3Hak0vnMoVykqOSFnItfKyk12tlePHECAAAAAAAAAECm4ZGKmFjjBAAAAAAAAAAAoAk3TgAAAAAAAAAAAJpw4wQAAAAAAAAAAKAJN04AAAAAAAAAAACaeL7vswRMB6qtrVUkElE0GlVeXl67yvL6uWPmb7vZGTNt3v2B2yNTapxlRBcWOGPCKkeV7pDIw4a6TjPUNcwdctOynzpjHqu/OpR8Im8Ht+vt7NOcZRSu3eOM0Zg17piKEnfMZHeIqvc5Q3w/1xnTsz6kfW6xxB1y0+jgcbGo3x1JyyWs/SCtd4dMMIwLi2JDzPBwqnL2T7XheNAod8gE9zjW8pDqMij2X3LGbND5zhjLd5FlnBaPft4ZU+mtDQ6YUOauyNLHcw3j2DL+NhpiZliOPYskHp/LQ8rZcUz4y9xFeF65O6jIMC5Mx7m7j33fXZcpZxP3XOD7Ie3zdgrz/BeZoaPGTNDxGXR8J/tzrs8GscxTrdcXe55MlbmmvdqzP+ItN0h76kT4kn/MJWY8JrvOxM1zQedBsc/Zkj2Xd4REjA/PCz7/t/w/m7bXGf73Tnv2VTz9mkrnwIdykaKSws6lVlJqtLO9eOIEAAAAAAAAAACgSVZHJwAAAAAAAAAAAJJpf9Mr7DI7B544AQAAAAAAAAAAaMITJwAAAAAAAAAAZJSGplfYZXYOPHECAAAAAAAAAADQxPN93+/oJDJZbW2tIpGIotGo8vLy2lWW55U7Y4r90c6YzfUDArfvKS10ltFzzi5nzNXZjzljFq29wxljMmaNM6TY7+KMeVxfdsaUyb0f3tDpzpjKeec7Y7TQsX2KuwhVGmKKwymneNnz7mK8RndBE0qcIZGHa5wx0dMKnDG7tvV0xhR6y50xzpyr3EUk1RJDzGR3yHPbRjpjLvC+5y7IsM9N43S4IWajY7vlmLndEGOYlzTX0G4L11whSdX73DFzc90xYc0pFo665i+72VnEtHn3t7seSdJyQ/8VGfrPwrKvLHUNM9RlGsuGfLTeEDMqeLNl/IU11kPbV+5zgrD4flko5Xiee27y/fbNTWGe/yIzJHLMBI35oLFuufZqq/Ycx/HmE9bcEZZEtCO4zNKAMkP6LghJqo25IEG5xltnItrfHql07Lj6Jtm5xrv/Pc91jhb7fDLec5POM3cGnb9ZzsNbE3t+lOYEfjL+/RxUbmrN1/GM81Q6Bz6Ui7RDUti51Eo6PiXa2V78VBcAAAAAAAAAABmFn+oKwk91AQAAAAAAAAAANOGJEwAAAAAAAAAAMkqDpP0JKLNz4IkTAAAAAAAAAACAJjxx0olYFqfy1rrLKR7tWMDbsLhyebY7l9P1hjNmkQyLw7sWcpakIvdCYZWGxVBPq3vbGWNZcNwi8rZhcfNKR12WBY0Ni5JbFlovn+7e54/pK+7KLIthG9oVvdawHwwLI2/RQHeQYXy5Fqme1s+wQPUSd4hlwXZNMcQYjivLGL3A+727IMOCz/Onuxf5tswppnwq2r+wnHMelXS3/5/OmC/XD3bGRBcaxrplMewJ7nZHprj3+Z5xhc4Y73LfnY9lnC4PnrdNx5WhnuJl7v1ZufZ8d0GT3SGmBduHGcaoYW43MX3HWhaiN8ztrpwt32mWsW5hGX+WhegnGBYOvd1Qzhj3wqW2xU1HOSPau/A7kG6CF4CPb04JXhTXfc0Rdp3xCp5XguaToAWc488z3s+m2iLOnUX8C4CHvxh3exaOT/axE+/80J7v56C5LDGLaseeH+KfV1zzdXx9nuz5oT1jNV7JXqj9YLlB7Qz6bHwL0nteUDbxfV9J8Y+d2O3/JLC+jrFf4T9xEnZ5HYcnTgAAAAAAAAAAQFLNnj1bZ555pnr06KH8/Hx96Utf0tatWwM/88ILL8jzvMNeb7/t/oP3tuCJEwAAAAAAAAAAMkqDwl+TpG3lVVRU6LbbbtOZZ56phoYG3XXXXRo3bpw2b96s7t27B35269atysvLa/73McccE1fGsXDjBAAAAAAAAAAAJNUzzzzT4t+LFy9Wfn6+qqqqNHr06MDP5ufnq2fPngnLjZ/qAgAAAAAAAAAgozTon+uchPU6+MRJbW1ti1ddXZ0po2g0Kknq1auXM3bo0KEqLCzU2LFj9fzz7rVJ24obJwAAAAAAAAAAZJSGBL2k448/XpFIpPk1e/ZsZza+72v69Ok655xzNHjw4JhxhYWFWrRokVasWKHHH39c/fv319ixY7V27dp4OiEmz/d9P9QS0Sa1tbWKRCKKRqMtfpMtUTxvnzOm2H8pcPsQ/cFZxmP1VztjotcWOGN0uzvkptE/dQcZmHI+zZ3zTdvCycfClXN0oaGPK90h85fd7M5FX3FX5Z3tjInURZ0x0ZxIOOUYxqCl7dP63e+McRpmiCl2h9w03T3+BmqzM2baPEObhrtDike77/hbxoXm5rrrmu6ua3P9AGfM29mnBW4vnLfHWYYWukNUvcYdM7cklLoib9c4Y8Kaky0s48Kyr6IvOXJeYEimyhAzxRBjOB40xv0dbFLkPh5MOVtYxvISQ8xkQ4xrHlze/nMYSaqceL4hmZBYjpnJiU7iUyzzjtY7I3y/rF1pJPv8F+kv3caM58U+1nw/9ne755UHfK59x108dUqjArbFniuCcg2uL7jOVOo7dzviE2/fJWp8xCveYyC4zI44PmKfe/h+7POxoPbHe+x0hHjbkSjx9o/l/4O13ZyAbUFzZ9A2KbhfEzXvxjAhoL+XO84piwKO88Dz0aD2lwbUF3B9FHd9jjoD90fr7U+l85lDuUivSPpcyKV/KOks7dixo0U7c3JylJOTE/jJ2267TU8//bTWrVun4447rk21XnbZZfI8TytXrown6VaxxgkAAAAAAAAAABnl0M9rhV2mlJeX16YbRLfffrtWrlyptWvXtvmmiSSdffbZWrp0aZs/F4QbJwAAAAAAAAAAIKl839ftt9+uJ554Qi+88IKKioriKmfTpk0qLCwMNTdunAAAAAAAAAAAkFH+uSZJuGXa3XbbbXrkkUf029/+Vj169FBNzcGfGo9EIsrNPfgzbHfeeafeffddPfTQQ5Kk+fPn66STTtKgQYNUX1+vpUuXasWKFVqxYkWoLeHGCQAAAAAAAAAASKqf//znkqTzzjuvxfuLFy/W5MmTJUm7du3S9u3bm7fV19dr5syZevfdd5Wbm6tBgwbp6aef1sUXXxxqbtw4AQAAAAAAAAAgozQo/DVO2vbEie/7zpglS5a0+HdpaalKS0vbVE88PN+SHRKmtrZWkUhE0Wi0TQvmJJLXzxEwxV3Gc9NHOmMumLfBGROZUuOMib5U4E5osjukeNvzzpjKeec7Y26a/lNnzGP1Vztjote621W8LDhnS76hGe4OmT/6ZmfMtLX3O2MiZ7vHRXl2mTOmrL7cGRNdaBhfIdg1vaczprDfHnc52wzlrHWXY7LREFNpiCk2xBjGl2VcWOaL4tHBx9UQ/cFZxiJvkDNGE0rcuTiOcUnaXD/AGRM9zd3um7aFM3ddnf2YM2bR2jucMSaWMehg+Z4xtWmiu03PLXN/N96lu50xpn0ewneIJFVOdH+PmMpZa/g+WuAOcblpmXscL/Juchc0N9cds9CQkOGcyXLeYDpmxri/06RRhhg333fPX0FS8fwXqS3dxoznrQnYuj5gW+xj1HXceZ5lDgi3zvhyac88FNR38fH92NcM8fdpR9SZ7P0YLBFtjL/M1BpzQYLbGDSvuMqNPQbinq+KAq63q2Pvj45oY5DAsRPYxvhybd9cHs55nFlR+873YqreF7AxaMzFmU/Q+bjr/1dUxd7kb4u9LfZ+/ETSj1LifObQuZX0e0ndQy79I0ljU6Kd7cUTJwAAAAAAAAAAZJSOX+MklXHjBAAAAAAAAACAjLJf4f9UV9jldZwjOjoBAAAAAAAAAACAVMETJwAAAAAAAAAAZBR+qisIT5wAAAAAAAAAAAA04YkTHMbfFrzd8/Y5y7hAG9wVzVjjDInOGOUuR+5yVFHiDBmiPzhjKmec7YxZpDvc+Qx3h1hUeo3BAXMthbhDIg/XOGOiCwucMdN0vzPmptE/dca8odPddU1016Xb3SGmfbXAHeLqw8KJe9yFVLvHeqG3yxlT7D/vjLlajzpjpk029PESd4g2ukMiZxvGYE7EUJm7DysnBM8Xjy/7srOMRRP2uFMxjL/Ktec7Yyx9M3/bzc6YzRrojBmYvcUZYzk+LcdM8TL3ON189oDA7eXZZe4yDO3+ih5zxryxzN3uR3W1M8Zy7N1RusgZ48l3xlhY5v/Kie5xatmfQ0YHfw8P1GZnGXcsdfdNue8eF48Z9tW0SsMcaPgOsbRLk90hKnK3y6TafZ7neeWB231DHwOd2/qYW+I9PlzHXTDLNVXbBOUT1Mb2tSO24Dpjn/8F5xPUb7H3sSufxIida/D1e1A7Sh11xv5sUJ8n5hhIzL7yvODPxidoXwVdqwTlEnyMx993AarjO5bjH4+Se0y2bqQCzkPnBozHhQGFFgVcMxqu22MLamNA/wTlEyRoP06JXWZkSvA1QjTnzYCtsdsRqYt93RoN2B/F02Pv48Br6qB9LCnydux29qwP+mSs/Vgr6UfBlSZdg8Jfk4QnTgAAAAAAAAAAADodnjgBAAAAAAAAACCjsMZJEJ44AQAAAAAAAAAAaMITJwAAAAAAAAAAZJT9Cn+Nk7DL6zjcOAEAAAAAAAAAIKNw4ySI5/u+39FJZLLa2lpFIhFFo1Hl5eV1dDpAQnleuSFqlCFmfdLK8f0yZ4zXz12Tv81Rxlp3GZpsiKk29HGRu02Rt2ucMdGFBYaEDBa6Q4q3Pe+MqZx3vrugSkM+tzu2LwihDEnFo5PXpuJlIdU13B3iP+45Y7wr3Kce80ff7IzZrIGB2xdNvMNZRuRh91i3eDv7NGdM4do9zhhLu+9YusgZ0/OqXc6YPX8sdMaMHPycM+ZqPeqMce0rSRqozYHbLe3WF9whNw+e74y5f9o0d0GG46F8kjump3+TO8hg2rz7nTG7pvd0xpTJ/T2yyBsUuN33SwK3c/6LtmLMoCMEXbu4rhE8b03AZ4PnyHjYrrNaUxqwbU6cZQYL6rvgdgTlGnRd57rms1w3hslyLduagDyLHGOqel+cdQYJaEdQPoG5uPomYPuEgGNyeZzjakJuQJkB7Zgb8LkZsecGSbrJfyvmtsBrm6B8gtoRdN06OWDblIBtUvA1fsBng85VT6t/21Fp21mu4WK5Qk/E3FbpnR1jS62kgpQ4nzl0biX9UtKRIZf+saRvpEQ724snTgAAAAAAAAAAyCgsDh+ExeEBAAAAAAAAAACa8MQJAAAAAAAAAAAZpUHhr0nCEycAAAAAAAAAAACdDk+cAAAAAAAAAACQUVjjJIjn+77f0UlkstraWkUiEUWjUeXl5XV0OgDQqXneGkPU+sCtvl9mqKfcGWMrx52v75cYytnnjLEJ7htJ0gR3Plpu2A8VhnLGOMopcpcRebvGGTMwe4szpnLt+c4YLXCHFC973hmzuX6AM+bq7MecMW/odGdM5Tx3uyJT3H1o8Xb2aYHbC96Mugt5PZRUNPLfnnPGjPcucMaM9oudMWu9SmfMrIpwTtfnj77ZGTNt4v3ugpa75pQ5ju2fSPoR578w45oJQKoJPt8fFXOL5dy99fracT5flBtzk78toM6JAWUGns8HXTOUxt5UETtPSdKYgD6fG3BttTC42Fjmb4t93jRtreF8qRWRs4PPm4OuOwLPywPaeNO2n8bcVq7Y/RZ07t3z1F2xK5S0q1dhzG25L8X+XM3gSMxtZYq9//t60wLziaW0e/D23BtibyuP3a2apdUxtnwk6UspcT5z6NxKuleS49hrs32SpqZEO9uLJ04AAAAAAAAAAMgo+xX+7YGw10zpONw4AQAAAAAAAAAgo/BTXUFYHB4AAAAAAAAAAKAJT5wAAAAAAAAAAJBRGhT+T2vxxAkAAAAAAAAAAECn4/m+73d0EpmstrZWkUhE0WhUeXl5HZ0OAABAm3heuSGq1Bnh+7kh1GMwocwdU2UoZ0q7MwnVruk9nTFlcvdhX2+au5wxwdv3bQzeXutLBR+L81+Ycc0EAOgM3OezQefM6wO2jYrvc3NLYm+bsS+gzGDF/ksxt1XOOz/mtsiUmpjboi8VxNzm/6cXO5kvxN5U/tPY2xLhE0k/UmqcAx86t5LKJXULufRPJJWlRDvbiydOAAAAAAAAAAAAmnDjJAT33XefioqK1K1bNw0bNkwvvvhiR6cEAAAAACmF6yYAAIBUsj9Br86BGyft9Nhjj2natGm66667tGnTJp177rm66KKLtH379o5ODQAAAABSAtdNAAAASCdZHZ1Aups3b56uv/563XDDDZKk+fPn69lnn9XPf/5zzZ49+7D4uro61dXVNf87Go1KOvjbcgAAAOnnE0OM+zynttb1l0mWegz2G865DhjKCSmdsOytdS9bWG9I2rQ3G4K373OksrdpO0stZpa2XDdxzQQA6JxcZ1pB33Mfhf+5T4I+F/8aJw218dXp1+6N/bmPjoy5KfDctC72pmSfzh9KJbXOgT+S5Di5b7OATk8zLA7fDvX19TryyCO1bNkyffnLX25+/4477tDrr7+uioqKwz4za9YslZeHtLgpAAAAkKb+9Kc/qV+/fh2dBpKgrddNXDMBAIDOKhXOgT/55BMVFRWppqYmIeUXFBSourpa3bqFvfB8cvHESTu8//77amxsVJ8+fVq836dPn5gD784779T06dOb/71nzx6deOKJ2r59uyKRSELzRedQW1ur448/Xjt27FBeXl5Hp4M0wJhBWzFm0BaMF7RVNBrVCSecoF69enV0KkiStl43cc3U+fBdkf7Yh+mN/Zf+2IfpL5XOgbt166bq6mrV19cnpPzs7Oy0v2kiceMkFJ7ntfi37/uHvXdITk6OcnJyDns/Eokw8aFN8vLyGDNoE8YM2ooxg7ZgvKCtjjiC5RYzjfW6iWumzovvivTHPkxv7L/0xz5Mf6lyDtytW7dOcXMjkVJjT6Wpo48+Wl26dDnsr6Tee++9w/6aCgAAAAAyEddNAAAASDfcOGmH7OxsDRs2TKtXr27x/urVqzVy5MgOygoAAAAAUgfXTQAAAEg3/FRXO02fPl2TJk3S8OHDVVxcrEWLFmn79u265ZZbTJ/PyclRWVlZq4+iA61hzKCtGDNoK8YM2oLxgrZizGSm9lw3MWbSH/sw/bEP0xv7L/2xD9Mf+zD9eL7v+x2dRLq77777NGfOHO3atUuDBw/WT37yE40ePbqj0wIAAACAlMF1EwAAANIFN04AAAAAAAAAAACasMYJAAAAAAAAAABAE26cAAAAAAAAAAAANOHGCQAAAAAAAAAAQBNunAAAAAAAAAAAADThxkkS3HfffSoqKlK3bt00bNgwvfjii4HxFRUVGjZsmLp166Z+/frpF7/4RZIyRapoy5h5/PHHdeGFF+qYY45RXl6eiouL9eyzzyYxW3S0ts4xh6xfv15ZWVn6whe+kNgEkXLaOmbq6up011136cQTT1ROTo4+//nP65e//GWSskUqaOuYefjhh3XGGWfoyCOPVGFhob7+9a/rH//4R5KyRUdbu3atLrvsMvXt21ee5+k3v/mN8zOc/4JrpvTHNUz647oivXGOn/44505fnP92Ttw4SbDHHntM06ZN01133aVNmzbp3HPP1UUXXaTt27e3Gl9dXa2LL75Y5557rjZt2qTvfve7mjp1qlasWJHkzNFR2jpm1q5dqwsvvFC/+93vVFVVpfPPP1+XXXaZNm3alOTM0RHaOl4OiUaj+trXvqaxY8cmKVOkinjGzFVXXaXf//73evDBB7V161b9+te/1mmnnZbErNGR2jpm1q1bp6997Wu6/vrr9dZbb2nZsmV69dVXdcMNNyQ5c3SUjz76SGeccYYWLlxoiuf8F1wzpT+uYdIf1xXpjXP89Mc5d3rj/LeT8pFQZ511ln/LLbe0eO+0007zv/Od77QaX1pa6p922mkt3rv55pv9s88+O2E5IrW0dcy0ZuDAgX55eXnYqSEFxTterr76av8//uM//LKyMv+MM85IYIZINW0dM//7v//rRyIR/x//+Ecy0kMKauuY+fGPf+z369evxXv33nuvf9xxxyUsR6QuSf4TTzwRGMP5L7hmSn9cw6Q/rivSG+f46Y9z7s6D89/OgydOEqi+vl5VVVUaN25ci/fHjRunDRs2tPqZysrKw+LHjx+vjRs3av/+/QnLFakhnjHzWQcOHNDevXvVq1evRKSIFBLveFm8eLH+9Kc/qaysLNEpIsXEM2ZWrlyp4cOHa86cOTr22GN16qmnaubMmdq3b18yUkYHi2fMjBw5Ujt37tTvfvc7+b6vv/3tb1q+fLkuueSSZKSMNMT5b2bjmin9cQ2T/riuSG+c46c/zrkzD+cy6SGroxPozN5//301NjaqT58+Ld7v06ePampqWv1MTU1Nq/ENDQ16//33VVhYmLB80fHiGTOfNXfuXH300Ue66qqrEpEiUkg84+Wdd97Rd77zHb344ovKyuIrINPEM2a2bdumdevWqVu3bnriiSf0/vvv69Zbb9UHH3zAbyBngHjGzMiRI/Xwww/r6quv1ieffKKGhgZdfvnlWrBgQTJSRhri/Dezcc2U/riGSX9cV6Q3zvHTH+fcmYdzmfTAEydJ4Hlei3/7vn/Ye6741t5H59XWMXPIr3/9a82aNUuPPfaY8vPzE5UeUox1vDQ2Nuqaa65ReXm5Tj311GSlhxTUljnmwIED8jxPDz/8sM466yxdfPHFmjdvnpYsWcJfpGWQtoyZzZs3a+rUqfrP//xPVVVV6ZlnnlF1dbVuueWWZKSKNMX5L7hmSn9cw6Q/rivSG+f46Y9z7szCuUzq488CEujoo49Wly5dDrs7/N577x12V/GQgoKCVuOzsrLUu3fvhOWK1BDPmDnkscce0/XXX69ly5appKQkkWkiRbR1vOzdu1cbN27Upk2bNGXKFEkHT5h931dWVpZWrVqlCy64ICm5o2PEM8cUFhbq2GOPVSQSaX5vwIAB8n1fO3fu1CmnnJLQnNGx4hkzs2fP1qhRo/Stb31LknT66aere/fuOvfcc/WDH/yAv57CYTj/zWxcM6U/rmHSH9cV6Y1z/PTHOXfm4VwmPfDESQJlZ2dr2LBhWr16dYv3V69erZEjR7b6meLi4sPiV61apeHDh6tr164JyxWpIZ4xIx38K63JkyfrkUce4fcsM0hbx0teXp7eeOMNvf76682vW265Rf3799frr7+uESNGJCt1dJB45phRo0bpr3/9qz788MPm9/74xz/qiCOO0HHHHZfQfNHx4hkzH3/8sY44ouUpZpcuXST986+ogE/j/Dezcc2U/riGSX9cV6Q3zvHTH+fcmYdzmTSRzJXoM9Gjjz7qd+3a1X/wwQf9zZs3+9OmTfO7d+/u//nPf/Z93/e/853v+JMmTWqO37Ztm3/kkUf63/zmN/3Nmzf7Dz74oN+1a1d/+fLlHdUEJFlbx8wjjzziZ2Vl+T/72c/8Xbt2Nb/27NnTUU1AErV1vHxWWVmZf8YZZyQpW6SCto6ZvXv3+scdd5w/YcIE/6233vIrKir8U045xb/hhhs6qglIsraOmcWLF/tZWVn+fffd5//pT3/y161b5w8fPtw/66yzOqoJSLK9e/f6mzZt8jdt2uRL8ufNm+dv2rTJ/8tf/uL7Pue/OBzXTOmPa5j0x3VFeuMcP/1xzp3eOP/tnLhxkgQ/+9nP/BNPPNHPzs72v/jFL/oVFRXN26677jp/zJgxLeJfeOEFf+jQoX52drZ/0kkn+T//+c+TnDE6WlvGzJgxY3xJh72uu+665CeODtHWOebTuMDJTG0dM1u2bPFLSkr83Nxc/7jjjvOnT5/uf/zxx0nOGh2prWPm3nvv9QcOHOjn5ub6hYWF/rXXXuvv3LkzyVmjozz//POB5yac/6I1XDOlP65h0h/XFemNc/z0xzl3+uL8t3PyfJ/ntwAAAAAAAAAAACTWOAEAAAAAAAAAAGjGjRMAAAAAAAAAAIAm3DgBAAAAAAAAAABowo0TAAAAAAAAAACAJtw4AQAAAAAAAAAAaMKNEwAAAAAAAAAAgCbcOAEAAAAAAAAAAGjCjRMAAAAAAAAAAIAm3DgBAAAAAAAAAABowo0TAECndd5552natGkdnQYAAACADsa1AQCgLbhxAgBAgowePVqe5x32uvbaa02fnzx5sr7zne+EVh4AAACAjsG1AQCkl6yOTgAAgE+rr69XdnZ2R6fRbr7v6/XXX9c999xz2MXL5z73OefnDxw4oKefflorV64MpTwAAAAg3XBtcBDXBgCQfDxxAgCIyfd9zZkzR/369VNubq7OOOMMLV++vHn7eeedp6lTp6q0tFS9evVSQUGBZs2a1eYypkyZounTp+voo4/WhRdeKEnau3evrr32WnXv3l2FhYX6yU9+0uLx+oceeki9e/dWXV1di/quvPJKfe1rX2u1PXV1dZo6dary8/PVrVs3nXPOOXr11Vebty9fvlxDhgxRbm6uevfurZKSEn300Ufm7Z/2zjvvaO/evRo9erQKCgpavCwXM+vXr9cRRxyhESNGhFIeAAAA0B5cG3BtAACZhBsnAICY/uM//kOLFy/Wz3/+c7311lv65je/qX/7t39TRUVFc8yvfvUrde/eXS+//LLmzJmj733ve1q9enWby8jKytL69et1//33S5KmT5+u9evXa+XKlVq9erVefPFFvfbaa82fmThxohobG5v/6kqS3n//fT311FP6+te/3mp7SktLtWLFCv3qV7/Sa6+9ppNPPlnjx4/XBx98oF27dumrX/2qvvGNb2jLli164YUXdMUVV8j3fUlybv+sqqoqZWVl6fTTT4+j56WVK1fqsssu0xFHHBFKeQAAAEB7cG3AtQEAZBQfAIBWfPjhh363bt38DRs2tHj/+uuv97/61a/6vu/7Y8aM8c8555wW288880z/29/+dpvK+MIXvtBie21trd+1a1d/2bJlze/t2bPHP/LII/077rij+b1///d/9y+66KLmf8+fP9/v16+ff+DAgeayD8V/+OGHfteuXf2HH364Ob6+vt7v27evP2fOHL+qqsqX5P/5z39utT9c2z9r5syZvud5fvfu3Vu8brjhBtPnTz31VH/lypVtKu/JJ5/0Tz31VP/kk0/2H3jgAVM9AAAAgAvXBi1xbQAAnR9rnAAAWrV582Z98sknzY/HH1JfX6+hQ4c2//uzf+VUWFio9957r01lDB8+vMX2bdu2af/+/TrrrLOa34tEIurfv3+LuBtvvFFnnnmm3n33XR177LFavHixJk+eLM/zDmvPn/70J+3fv1+jRo1qfq9r164666yztGXLFk2fPl1jx47VkCFDNH78eI0bN04TJkzQUUcdJUk644wzArd/VlVVlSZOnKi77767xfux4j9ty5Yt2rlzp0pKSszlNTQ0aPr06Xr++eeVl5enL37xi7riiivUq1cvZ30AAABAEK4NuDYAgEzDjRMAQKsOHDggSXr66ad17LHHttiWk5PT/N9du3Ztsc3zvObPWsvo3r17i21+0yPun73I8T/z6PvQoUN1xhln6KGHHtL48eP1xhtv6Mknn2y1PUFlep6nLl26aPXq1dqwYYNWrVqlBQsW6K677tLLL7+soqIi5/bP2rRpk773ve/p5JNPbjWfN998U//6r/+q9evXq6CgQO+//75KSkr0yiuvaOXKlbrwwguVm5trLu+VV17RoEGDmvv54osv1rPPPquvfvWrrcYDAAAAVlwbcG0AAJmGNU4AAK0aOHCgcnJytH37dp188sktXscff3xCy/j85z+vrl276pVXXml+r7a2Vu+8885hsTfccIMWL16sX/7ylyopKYlZ7sknn6zs7GytW7eu+b39+/dr48aNGjBggKSDF06jRo1SeXm5Nm3apOzsbD3xxBPN8a7th2zbtk179uxp8ZdznzV48GB95Stf0XPPPSdJKi8v17e//W1lZ2frt7/9rS6//PI2lffXv/61xQXocccdp3fffTdmPAAAAGDFtQHXBgCQaXjiBADQqh49emjmzJn65je/qQMHDuicc85RbW2tNmzYoM997nO67rrrElZGjx49dN111+lb3/qWevXqpfz8fJWVlemII4447K/Crr32Ws2cOVMPPPCAHnrooZi5dO/eXf/+7//eXOYJJ5ygOXPm6OOPP9b111+vl19+Wb///e81btw45efn6+WXX9bf//735gsn1/ZPq6qqkiT16dNHNTU1Lbbl5+c3L+o4aNAg/fGPf9T//d//qaqqSvfee6/ee+89vfrqq/rNb37TpvI++xd30uF/QQcAAADEg2sDrg0AINNw4wQAENP3v/995efna/bs2dq2bZt69uypL37xi/rud7+b8DLmzZunW265RZdeeqny8vJUWlqqHTt2qFu3bi3i8vLydOWVV+rpp5/Wl770pcAyf/SjH+nAgQOaNGmS9u7dq+HDh+vZZ5/VUUcdpby8PK1du1bz589XbW2tTjzxRM2dO1cXXXRRcz1B2z/ttddekySdeuqpLd7v2rWr9u7d2/xTBKeccoqeeuopffe739Xdd98tz/P05JNPasSIEcrPz29Teccee2yLvyLbuXOnRowYEdgfAAAAgBXXBlwbAEAm8fzWbkMDAJBiPvroIx177LGaO3eurr/++hbbLrzwQg0YMED33ntvB2UXnz179uiUU07RiBEj9NRTT0mSLr/8cp1zzjkqLS1tU1kNDQ0aMGCAXnjhheYFIF966SX17t07EakDAAAAHYZrg2BcGwBA+/HECQAgJW3atElvv/22zjrrLEWjUX3ve9+TJP3rv/5rc8wHH3ygVatW6bnnntPChQs7KtW49ezZU9LBv3Y75Jxzzolr0casrCzNnTtX559/vg4cOKDS0lIujAAAANApcG3QNlwbAED78cQJACAlbdq0STfccIO2bt2q7OxsDRs2TPPmzdOQIUOaY0466STt3r1b/+///T/NnDmzA7ONz/79+zV48GBt3bq1o1MBAAAAUhbXBgCAZOOJEwBASho6dGjzwoex/PnPf05OMgny9ttvq3///h2dBgAAAJDSuDYAACQbT5wAAAAAAAAAAAA0OaKjEwAAAAAAAAAAAEgV3DgBAAAAAAAAAABowo0TAAAAAAAAAACAJtw4AQAAAAAAAAAAaMKNEwAAAAAAAAAAgCbcOAEAAAAAAAAAAGjCjRMAAAAAAAAAAIAm3DgBAAAAAAAAAABowo0TAAAAAAAAAACAJtw4AQAAAAAAAAAAaMKNEwAAAAAAAAAAgCb/Hzzc4E0L8LbgAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n",
"fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n",
"\n",
"a0=ax0.hist2d(energyloss_found, residual_found, bins=(np.linspace(0,1,80), np.linspace(0,1e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20)\n",
"ax0.set_ylim(0,1e5)\n",
"ax0.set_xlim(0,1)\n",
"ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax0.set_title(\"found energyloss wrt residual electron energy\")\n",
"\n",
"a1=ax1.hist2d(energyloss_lost, residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,1e5,80)), cmap=plt.cm.jet, cmin=1, vmax=20) \n",
"ax1.set_ylim(0,1e5)\n",
"ax1.set_xlim(0,1)\n",
"ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n",
"ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n",
"ax1.set_title(\"lost energyloss wrt residual electron energy\")\n",
"\n",
"fig.colorbar(a1[3],ax=ax1)\n",
"fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"#ist die shape der teilspur im scifi anders? (koenntest du zum beispiel durch vergleich der verteilungen der fit parameter studieren,\n",
"#in meiner thesis findest du das fitmodell -- ist einfach ein polynom dritten grades)\n",
"z_ref=8520 #mm\n",
"\n",
"def scifi_track(z, a, b, c, d):\n",
" return a + b*(z-z_ref) + c*(z-z_ref)**2 + d*(z-z_ref)**3\n",
"\n",
"def z_mag(xv, zv, tx, a, b):\n",
" \"\"\" optical centre of the magnet is defined as the intersection between the trajectory tangents before and after the magnet\n",
"\n",
" Args:\n",
" xv (double): velo x track\n",
" zv (double): velo z track\n",
" tx (double): velo x slope\n",
" a (double): ax parameter of track fit\n",
" b (double): bx parameter of track fit\n",
"\n",
" Returns:\n",
" double: z_mag\n",
" \"\"\"\n",
" return (xv-tx*zv-a+b*z_ref)/(b-tx)"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"scifi_found = found[found[\"scifi_hit_pos_x_length\"]>3]\n",
"scifi_lost = lost[lost[\"scifi_hit_pos_x_length\"]>3]\n",
"#should be fulfilled by all candidates\n",
"\n",
"scifi_x_found = scifi_found[\"scifi_hit_pos_x\"]\n",
"scifi_z_found = scifi_found[\"scifi_hit_pos_z\"]\n",
"\n",
"tx_found = scifi_found[\"velo_track_tx\"]\n",
"\n",
"scifi_x_lost = scifi_lost[\"scifi_hit_pos_x\"]\n",
"scifi_z_lost = scifi_lost[\"scifi_hit_pos_z\"]\n",
"\n",
"tx_lost = scifi_lost[\"velo_track_tx\"]\n",
"\n",
"xv_found = scifi_found[\"velo_track_x\"]\n",
"zv_found = scifi_found[\"velo_track_z\"]\n",
"\n",
"xv_lost = scifi_lost[\"velo_track_x\"]\n",
"zv_lost = scifi_lost[\"velo_track_z\"]\n",
"\n",
"\n",
"\n",
"sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n",
"sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n",
"\n",
"\n",
"sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n",
"sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n",
"sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n",
"\n",
"\n",
"\n",
"#ak.num(scifi_found[\"energy\"], axis=0)\n",
"#scifi_found.snapshot()"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>[101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 0]\n",
"------------------\n",
"type: 11 * float32</pre>"
],
"text/plain": [
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float32'>"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ak.num(scifi_found[\"energy\"], axis=0)\n",
"scifi_found[\"all_endvtx_types\"][1,:]"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"scifi_fitpars_found = ak.ArrayBuilder()\n",
"vtx_types_found = ak.ArrayBuilder()\n",
"\n",
"for i in range(0,ak.num(scifi_found, axis=0)):\n",
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n",
" scifi_fitpars_found.begin_list()\n",
" scifi_fitpars_found.real(popt[0])\n",
" scifi_fitpars_found.real(popt[1])\n",
" scifi_fitpars_found.real(popt[2])\n",
" scifi_fitpars_found.real(popt[3])\n",
" #[:,4] -> energy \n",
" scifi_fitpars_found.real(sf_energy_found[i])\n",
" #[:,5] -> photon energy\n",
" scifi_fitpars_found.real(sf_eph_found[i])\n",
" scifi_fitpars_found.end_list()\n",
" \n",
" vtx_types_found.begin_list()\n",
" #[:,0] -> endvtx_type\n",
" vtx_types_found.extend(sf_vtx_type_found[i,:])\n",
" vtx_types_found.end_list()\n",
" \n",
"\n",
"scifi_fitpars_lost = ak.ArrayBuilder()\n",
"vtx_types_lost = ak.ArrayBuilder()\n",
"\n",
"for i in range(0,ak.num(scifi_lost, axis=0)):\n",
" popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n",
" scifi_fitpars_lost.begin_list()\n",
" scifi_fitpars_lost.real(popt[0])\n",
" scifi_fitpars_lost.real(popt[1])\n",
" scifi_fitpars_lost.real(popt[2])\n",
" scifi_fitpars_lost.real(popt[3])\n",
" #[:,4] -> energy \n",
" scifi_fitpars_lost.real(sf_energy_lost[i])\n",
" #[:,5] -> photon energy\n",
" scifi_fitpars_lost.real(sf_eph_lost[i])\n",
" scifi_fitpars_lost.end_list()\n",
" \n",
" vtx_types_lost.begin_list()\n",
" #endvtx_type\n",
" vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n",
" vtx_types_lost.end_list()\n",
" \n",
"\n",
"\n",
"scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n",
"scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n",
"\n",
"vtx_types_lost = ak.Array(vtx_types_lost)\n",
"vtx_types_found = ak.Array(vtx_types_found)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>[101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 101,\n",
" 0]\n",
"------------------\n",
"type: 11 * float64</pre>"
],
"text/plain": [
"<Array [101, 101, 101, 101, 101, ..., 101, 101, 101, 0] type='11 * float64'>"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vtx_types_found[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABfkAAAIhCAYAAAD96rC5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACyQUlEQVR4nOzde3wU1fnH8e+SyxJisoZLEoIIUTGCBEWwXLQGBIIoYMVbG41ELVJBKAZKC1YJVoIiohYUrT8rXqDYVrFeMQEEpBAMCAqoiC0IFAIUQwI05Mb5/YEZdpNNsgmb7G74vF+vfbE7++ycM7MDnDn7zDM2Y4wRAAAAAAAAAAAIOM183QEAAAAAAAAAAFA/TPIDAAAAAAAAABCgmOQHAAAAAAAAACBAMckPAAAAAAAAAECAYpIfAAAAAAAAAIAAxSQ/AAAAAAAAAAABikl+AAAAAAAAAAACFJP8AAAAAAAAAAAEKCb5AQAAAAAAAAAIUEzyA2ehN998U5deeqnCwsJks9m0efNmX3fJrYyMDNlsNq+tb9euXbLZbJo9e7bX1rl27VplZGToyJEjXlsnfGffvn3KyMjw+O/EggULZLPZtGHDhobtWBOWmZmpd955x9fdAACgwVSMF3bt2tUg63/++ee1YMECr6+3IcY5ixYt0jPPPOO19cG36noulJaWpnPOOadhO9WE1fVcBcDZhUl+4Cxz6NAhpaam6sILL9TSpUu1bt06XXzxxb7uVsBau3atpk+fziR/E7Fv3z5Nnz6dgXMjYpIfAIAz01CT/A2BSf6mhXOhxsW5CoCaBPu6AwAa17fffqvS0lLdeeedSkpK8nV30MQYY3TixAmFhYX5uit1Ul5errKyMl93o8H873//U4sWLXzdjUZT8X3a7XZfdwUAAKBapaWlstlsCg4OrKmZoqIiNW/e3NfdaDBFRUUBdz5zJiq+T29eRQ+g8ZHJD5xF0tLSdPXVV0uSbr/9dtlsNvXr1896/91331WfPn3UokULRUREaNCgQVq3bl2VdXTs2LHKut2V1rHZbHrggQf0+uuvq3PnzmrRooUuu+wyvf/++1U+/8EHH+jyyy+X3W5XfHx8nUrq9OvXT127dtWnn36q3r17KywsTO3atdPDDz+s8vJyt5+ZM2eO4uPjdc4556hPnz7KycmpElPb/sjIyNBvfvMbSVJ8fLxsNptsNptWrlwpSTp58qRmzZqlSy65RHa7XdHR0brrrru0d+9et/3Pzc3VT3/6U7Vo0UIXXHCBHn/8cZ08ebLW7TfG6Pnnn9fll1+usLAwRUVF6ZZbbtG///3verdTWFioSZMmKT4+XqGhoWrXrp0mTJig48ePu8RVfMcvvPCCOnfuLLvdrldffVWStGbNGvXp00fNmze3vo//+7//c7lc/d5771XLli31v//9r8p2XXvttbr00kur3e7nnntOzZo108GDB61lTz31lGw2m8aOHWstO3nypKKiojRx4kRJp8s2zZo1S4899pji4+Nlt9v1ySef6Morr5Qk3X333db3mZGRUcs3IOXn5+vuu+9Wy5YtFR4ermHDhlXZ/+5U/L3ZtGmTRowYocjISDkcDt155506dOiQS+ybb76p5ORktW3bVmFhYercubN+97vfVflOKi6D3rJli5KTkxUREaEBAwZIkrKzs3XjjTfqvPPOU/PmzXXRRRdp9OjR+u9//+u2X19++aVuvfVWORwOtWzZUunp6SorK9P27dt13XXXKSIiQh07dtSsWbOqbJsnx5DNZtPx48f16quvWvvb+d+kvLw8jR49Wuedd55CQ0MVHx+v6dOnu/wgU9P3CQCAP/vzn/+syy67TM2bN1fLli1100036euvv3aJ+fe//62f//zniouLk91uV0xMjAYMGGBl8nbs2FHbtm3TqlWrrP9L3Y3VnVWM31588UVdfPHFstvt6tKlixYvXuw2/ujRo7r//vvVunVrtWrVSiNGjNC+fftcYjwZ9/br108ffPCBvv/+e6uvzucPP/zwg8aMGaN27dopNDRUF1xwgR566CEVFxe77b8n5xju1HWc60k7O3bsUEpKiqKjo2W329W5c2c999xzLjErV66UzWbT66+/rokTJ6pdu3ay2+367rvvJEkvvfSSy/exaNEil3MvY4w6deqkwYMHV2n/2LFjcjgcLmPgym699dYqY+thw4bJZrPpb3/7m7Xs888/l81m03vvvSfpdNmmrKws3XPPPWrTpo1atGihKVOm1HguVJNt27ZpwIABCg8PV5s2bfTAAw+4PR+orC7nfdOnT1evXr3UsmVLRUZG6oorrtDLL78sY4xLXMeOHTV06FC9/fbb6t69u5o3b67p06dLOnW+cc011yg6Olrh4eFKTEzUrFmzVFpa6rZf69atU9++fRUWFqaOHTvqlVdekXTqXPeKK65QixYtlJiYqKVLl1bZttqOoZUrV9Z6rrJhwwYNHz5cLVu2VPPmzdW9e3f99a9/dWmnuu+z8t8zAAHIADhrfPfdd+a5554zkkxmZqZZt26d2bZtmzHGmIULFxpJJjk52bzzzjvmzTffND169DChoaHm008/tdYxcuRI06FDhyrrnjZtmqn8T4ok07FjR/OTn/zE/PWvfzUffvih6devnwkODjb/+te/rLhly5aZoKAgc/XVV5u3337b/O1vfzNXXnmlOf/886us052kpCTTqlUrExcXZ/74xz+ajz/+2IwfP95IMmPHjrXidu7cafXpuuuuM++884555513TGJioomKijJHjhyxYj3ZH3v27DHjxo0zkszbb79t1q1bZ9atW2cKCgqMMcbcd999RpJ54IEHzNKlS80LL7xg2rRpY9q3b28OHTpUpf+dOnUyL7zwgsnOzjZjxowxksyrr75a6/aPGjXKhISEmIkTJ5qlS5eaRYsWmUsuucTExMSYvLy8Ordz/Phxc/nll5vWrVubOXPmmGXLlplnn33WOBwOc+2115qTJ0+6fMft2rUz3bp1M4sWLTIrVqwwW7duNV988YVp3ry56datm1m8eLF59913zfXXX286duxoJJmdO3caY4z54osvjCTz0ksvuWzTtm3bjCTz3HPPVbvd33zzjZFkFi1aZC277rrrTFhYmOnUqZO1bP369UaS+fDDD12Og3bt2pn+/fubv//97yYrK8t88cUX5pVXXjGSzO9//3vr+9yzZ0+1faiIb9++vbnnnnvMRx99ZP70pz+Z6Oho0759e5Ofn1/jd1fx96ZDhw7mN7/5jfn444/NnDlzTHh4uOnevbspKSmxYv/whz+Yp59+2nzwwQdm5cqV5oUXXjDx8fGmf//+LuscOXKkCQkJMR07djQzZ840y5cvNx9//LExxpj58+ebmTNnmnfffdesWrXKvPrqq+ayyy4zCQkJLm1V9CshIcH84Q9/MNnZ2Wby5MnW8XzJJZeYP/7xjyY7O9vcfffdRpJ56623rM97egytW7fOhIWFmeuvv97a3xX/Ju3fv9+0b9/edOjQwbz44otm2bJl5g9/+IOx2+0mLS3Naqu677PiGAMAwNcqxgvO/zdlZmYaSeYXv/iF+eCDD8xrr71mLrjgAuNwOMy3335rxSUkJJiLLrrIvP7662bVqlXmrbfeMhMnTjSffPKJMcaYzz//3FxwwQWme/fu1v+ln3/+eY39qRi7dOnSxfzlL38x7777rrnuuuuMJPO3v/2tSr8vuOACM27cOPPxxx+b//u//zNRUVFVxh+ejHu3bdtmrrrqKhMbG2v1dd26dcYYY4qKiky3bt1MeHi4mT17tsnKyjIPP/ywCQ4ONtdff32V/ntyjuFOXce5nrSzbds243A4TGJionnttddMVlaWmThxomnWrJnJyMiw4j755BNrzHLLLbeYd99917z//vvm8OHD5sUXXzSSzM0332zef/99s3DhQnPxxRebDh06uJx7Pfvss8Zms7kcI8YY6xyvYhzlzgsvvGAkmX379hljjCktLTUREREmLCzMjBo1yop74oknTHBwsCksLDTGnD4O2rVrZ+677z7z0Ucfmb///e9m165dNZ4LuTNy5EgTGhpqzj//fDNjxgyTlZVlMjIyTHBwsBk6dGiN350xnp/3GWNMWlqaefnll012drbJzs42f/jDH0xYWJiZPn26S1yHDh1M27ZtzQUXXGD+/Oc/m08++cR89tlnxhhjHnzwQTN//nyzdOlSs2LFCvP000+b1q1bm7vvvtttvxISEszLL79sPv74YzN06FAjyUyfPt0kJiaav/zlL+bDDz80vXv3Nna73fznP/+xPu/JMVRQUFDjucqKFStMaGio+elPf2refPNNs3TpUpOWlmYkmVdeecVqq7rvs6ysrNb9D8C/MckPnGUqBpfOA/jy8nITFxdnEhMTTXl5ubX86NGjJjo62vTt29daVtdJ/piYGGuAaIwxeXl5plmzZmbmzJnWsl69epm4uDhTVFRkLSssLDQtW7b0eJJfkvnHP/7hsnzUqFGmWbNm5vvvvzfGnJ4MTExMdBnEfPbZZ0aS+ctf/lLn/fHkk09WOWkzxpivv/7aSDJjxoxxWV4x4Tx16tQq/V+/fr1LbJcuXczgwYNr3PZ169YZSeapp55yWb5nzx4TFhZmJk+eXOd2Zs6caZo1a2Zyc3Nd4v7+97+7TJYbc+o7djgc5ocffnCJvfXWW014eLjLjxnl5eWmS5cuVfZXUlKSufzyy10+f//995vIyEhz9OjRGrf/vPPOM/fcc48xxpji4mITHh5ufvvb3xpJ1vc+Y8YMExISYo4dO2aMOX0cXHjhhS4T28YYk5ubW2UgXJOKQfJNN93ksvyf//ynkWQee+yxGj9f8ffmwQcfdFle8SPTG2+84fZzJ0+eNKWlpWbVqlVGkvniiy+s90aOHGkkmT//+c81tl2xju+//77K35+KflU+ri6//HLrRK5CaWmpadOmjRkxYoS1rC7HUHh4uBk5cmSV/o0ePdqcc8451vdYYfbs2S4nsTV9nwAA+IPKk/z5+fnWj9zOdu/ebex2u0lJSTHGGPPf//7XSDLPPPNMjeu/9NJLTVJSksf9kWTCwsJckkHKysrMJZdcYi666KIq/a48np01a5aRZPbv32+Mqdu494YbbnB7LlExAf3Xv/7VZfkTTzxhJJmsrCyX/ntyjuFOXce5nrQzePBgc95551WZ3H7ggQdM8+bNrXFyxXnYNddc4xJXXl5uYmNjTa9evVyWf//99yYkJMRlfxUWFpqIiAjz61//2iW2S5cuVX54qey7774zksxrr71mjDFmzZo1RpKZPHmyiY+Pt+IGDRrkcr5TcRzcddddVdZZ3blQdSrGqc8++6zL8hkzZhhJZs2aNTV+3tPzvsrKy8tNaWmpefTRR02rVq1cfszp0KGDCQoKMtu3b6+x7Yp1vPbaayYoKMjl/KeiXxs2bLCWHT582AQFBZmwsDCXCf3NmzcbSeaPf/yjtczTY6imc5VLLrnEdO/e3ZSWlrosHzp0qGnbtq11XlvT9wkgsFGuB4C2b9+uffv2KTU1Vc2anf5n4ZxzztHNN9+snJwcjy6fdKd///6KiIiwXsfExCg6Olrff/+9JOn48ePKzc3ViBEjXOo6RkREaNiwYR63ExERoeHDh7ssS0lJ0cmTJ7V69WqX5TfccIOCgoKs1926dZMkq0/e2B8VpULS0tJclv/kJz9R586dtXz5cpflsbGx+slPfuKyrFu3blafqvP+++/LZrPpzjvvVFlZmfWIjY3VZZddVuVyWU/aef/999W1a1ddfvnlLuscPHiw20twr732WkVFRbksW7Vqla699lq1bt3aWtasWTPddtttVbbh17/+tTZv3qx//vOfkk5dQv36669r5MiROuecc2rc/gEDBmjZsmWSTt3463//+5/S09PVunVrZWdnS5KWLVumPn36KDw83OWzw4cPV0hISI3r99Qdd9zh8rpv377q0KGDxyVjKn/+tttuU3BwsMvn//3vfyslJUWxsbEKCgpSSEiIdV+Nypf2S9LNN99cZdnBgwf1q1/9Su3bt1dwcLBCQkLUoUOHatcxdOhQl9edO3eWzWbTkCFDrGXBwcG66KKLzugYcuf9999X//79FRcX57KOirZXrVrlEu/N7xMAgIa0bt06FRUVVRkntm/fXtdee601TmzZsqUuvPBCPfnkk5ozZ442bdrkUSlHTwwYMEAxMTHW66CgIN1+++367rvvqpSWrDzGrjx2ruu4150VK1YoPDxct9xyi8vyinVWXkdt5xjVqesYpbZ2Tpw4oeXLl+umm25SixYtXNZ5/fXX68SJE1XKglYeo23fvl15eXlVxsnnn3++rrrqKpdlERERuvvuu7VgwQKrvNCKFSv01Vdf6YEHHqhx2y+88EJ17NjRGjtnZ2crMTFRd955p3bu3Kl//etfKi4u1po1azRw4MAqn3c3tqyvymPflJQUSfJo7Ozped+KFSs0cOBAORwOa+z8yCOP6PDhwy7lPqVTx/TFF19cpa1NmzZp+PDhatWqlbWOu+66S+Xl5fr2229dYtu2basePXpYr1u2bKno6GhdfvnliouLs5Z37txZks7oGKrsu+++0zfffGPt18rr2L9/v7Zv3+7yGW9+nwD8A5P8AHT48GFJpwYmlcXFxenkyZPKz8+v17pbtWpVZZndbldRUZGkU7XMT548qdjY2Cpx7pZVx/kkpfLnK7avuj5V3Jyzok/e2B+1raO2PlX0q6JP1Tlw4ICMMYqJiVFISIjLIycnp0qtdU/aOXDggL788ssq64uIiJAxpso63W3j4cOH3X4n7pbdeOON6tixo1VzsuKkpaaaohUGDhyo3bt3a8eOHVq2bJm6d++u6OhoXXvttVq2bJmKioq0du1atycq7vpdX9Udv5W/Z08/HxwcrFatWlmfP3bsmH76059q/fr1euyxx7Ry5Url5ubq7bfflqQqx0mLFi0UGRnpsuzkyZNKTk7W22+/rcmTJ2v58uX67LPPrJMGd8day5YtXV6HhoaqRYsWVW60FhoaqhMnTliv63oMuXPgwAG99957VdZRUUvWk+MQAAB/5Ok40Wazafny5Ro8eLBmzZqlK664Qm3atNH48eN19OjRM+pDTWNvb4+dPRkPHT58WLGxsVXu8RUdHa3g4GCvjp3rMkaprZ3Dhw+rrKxMc+fOrbLO66+/XlLtY5aKbfN07Dxu3DgdPXpUCxculCTNmzdP5513nm688cYat1069eNOxQ8my5Yt06BBg5SYmKiYmBgtW7ZM//znP1VUVNSgY+eKca6z6o49dzw57/vss8+UnJws6dS9Dv75z38qNzdXDz30kKSq415327Z792799Kc/1X/+8x89++yz+vTTT5Wbm2uds1ReR+Vxs3RqjOxuPC3JGjvX5xiq7MCBA5KkSZMmVVnHmDFj3K6DsTPQ9ATWLdwBNIiKQdb+/furvLdv3z41a9bMytRu3ry525vyeDJp505UVJRsNpvy8vKqvOduWXUqBjbuPu9ucF6TuuwPT9Zx3nnnVVmHc4b7mWjdurVsNps+/fRT64TLmbtlnqwzLCxMf/7zn6t931nlkzHp1PbX9J04a9asmcaOHaupU6fqqaee0vPPP68BAwYoISGh1r5W3FB22bJlys7O1qBBg6zlv//977V69WoVFxe7PVFx1+/6qu74veiiizz+fLt27azXZWVlOnz4sHUcrVixQvv27dPKlSut7H1JOnLkiNv1udu2rVu36osvvtCCBQs0cuRIa3nFzd68qa7HUHUx3bp104wZM9y+75wRJXn3+wQAoCHVNtZ0/n+yQ4cOevnllyVJ3377rf76178qIyNDJSUleuGFF+rdh5rG3mcydq7vuLdVq1Zav369jDEu/6cfPHhQZWVlXh07n+kYxVlUVJSCgoKUmppabYJKfHy8y+vKY5aK/efp2Pmiiy7SkCFD9Nxzz2nIkCF69913NX36dJcrlaszYMAAvfzyy/rss8+0fv16/f73v5d06src7Oxsff/99zrnnHPUu3fvKp/11lir8jhXqtux58l53+LFixUSEqL333/fJTnlnXfecbtOd9v2zjvv6Pjx43r77betK18lWTe99pb6HEOVVRy3U6ZM0YgRI9zGVD63YuwMND1k8gNQQkKC2rVrp0WLFskYYy0/fvy43nrrLfXp00ctWrSQJHXs2FEHDx50GVyVlJTo448/rlfb4eHh+slPfqK3337bJRP46NGjeu+99zxez9GjR/Xuu++6LFu0aJGaNWuma665pk59qsv+qJzJVOHaa6+VJL3xxhsuy3Nzc/X1119bk9NnaujQoTLG6D//+Y969uxZ5ZGYmFivdf7rX/9Sq1at3K6zY8eOta4jKSlJK1ascPnx5+TJk/rb3/7mNv6Xv/ylQkNDdccdd2j79u21Xm5coW3bturSpYveeustbdy40ZrkHzRokA4dOqQ5c+YoMjJSV155pUfrq+77rE1FJlWFtWvX6vvvv1e/fv3q9fm//vWvKisrsz5fMQiv/KPNiy++6HEfvbEOT9XlGKou627o0KHaunWrLrzwQrfrqDzJDwBAoOjTp4/CwsKqjBP37t2rFStWVDtOvPjii/X73/9eiYmJ+vzzz63lnmSwV7Z8+XKX8Xx5ebnefPNNXXjhhVUm6mtTl3FvdX0dMGCAjh07VmUS9rXXXrPe9wZvjHOdtWjRQv3799emTZvUrVs3t+usbeI6ISFBsbGx+utf/+qyfPfu3Vq7dq3bz/z617/Wl19+qZEjRyooKEijRo3yqL8DBgyQzWbTww8/7HKeNHDgQH3yySfKzs7WNddc43EJRG+NnRctWiRJHo2dPTnvs9lsCg4Odvnho6ioSK+//rrHfXQ3djbG6KWXXvJ4HZ6oyzFU3f5OSEhQp06d9MUXX7j9fM+ePV3KTgFomsjkB6BmzZpp1qxZuuOOOzR06FCNHj1axcXFevLJJ3XkyBE9/vjjVuztt9+uRx55RD//+c/1m9/8RidOnNAf//hHlZeX17v9P/zhD7ruuus0aNAgTZw4UeXl5XriiScUHh6uH374waN1tGrVSvfff792796tiy++WB9++KFeeukl3X///Tr//PPr1J+67I+KSfRnn31WI0eOVEhIiBISEpSQkKD77rtPc+fOVbNmzTRkyBDt2rVLDz/8sNq3b68HH3ywTn2qzlVXXaX77rtPd999tzZs2KBrrrlG4eHh2r9/v9asWaPExETdf//9dVrnhAkT9NZbb+maa67Rgw8+qG7duunkyZPavXu3srKyNHHiRPXq1avGdTz00EN67733NGDAAD300EMKCwvTCy+8YNUOdb7XgSSde+65uuuuuzR//nx16NChTvdjGDBggObOnauwsDCrbml8fLzi4+OVlZWl4cOHKzjYs//uLrzwQoWFhWnhwoXq3LmzzjnnHMXFxdU6obxhwwb98pe/1K233qo9e/booYceUrt27azLY2vz9ttvKzg4WIMGDdK2bdv08MMP67LLLrNqs/bt21dRUVH61a9+pWnTpikkJEQLFy7UF1984dH6JemSSy7RhRdeqN/97ncyxqhly5Z67733rHsXeFNdjqHExEStXLlS7733ntq2bauIiAglJCTo0UcfVXZ2tvr27avx48crISFBJ06c0K5du/Thhx/qhRdeqPMkBAAA/uDcc8/Vww8/rKlTp+quu+7SL37xCx0+fFjTp09X8+bNNW3aNEnSl19+qQceeEC33nqrOnXqpNDQUK1YsUJffvmlfve731nrS0xM1OLFi/Xmm2/qggsuUPPmzWtN9GjdurWuvfZaPfzwwwoPD9fzzz+vb775RosXL67z9tRl3JuYmKi3335b8+fPV48ePdSsWTP17NlTd911l5577jmNHDlSu3btUmJiotasWaPMzExdf/31bq/KrA9vjHMre/bZZ3X11Vfrpz/9qe6//3517NhRR48e1Xfffaf33ntPK1asqPHzzZo10/Tp0zV69Gjdcsstuueee3TkyBFNnz5dbdu2rTJulk4ltHTp0kWffPKJ7rzzTkVHR3vU1+joaHXt2lVZWVnq37+/lbg0cOBA/fDDD/rhhx80Z84cj7e9unOhmiaUQ0ND9dRTT+nYsWO68sortXbtWj322GMaMmSIrr766lrb9OS874YbbtCcOXOUkpKi++67T4cPH9bs2bPrdJXzoEGDFBoaql/84heaPHmyTpw4ofnz59e7jG1NPD2GajpXefHFFzVkyBANHjxYaWlpateunX744Qd9/fXX+vzzz6tNtgLQhPjqjr8AfOOTTz4xkszf/va3Ku+98847plevXqZ58+YmPDzcDBgwwPzzn/+sEvfhhx+ayy+/3ISFhZkLLrjAzJs3z0ybNs1U/idFkhk7dmyVz3fo0MGMHDnSZdm7775runXrZkJDQ835559vHn/8cbfrdCcpKclceumlZuXKlaZnz57Gbrebtm3bmqlTp5rS0lIrbufOnUaSefLJJ6usQ5KZNm1avfbHlClTTFxcnGnWrJmRZD755BNjjDHl5eXmiSeeMBdffLEJCQkxrVu3NnfeeafZs2eP2/5XNnLkSNOhQ4dat98YY/785z+bXr16mfDwcBMWFmYuvPBCc9ddd5kNGzbUq51jx46Z3//+9yYhIcGEhoYah8NhEhMTzYMPPmjy8vKsuOq+Y2OM+fTTT02vXr2M3W43sbGx5je/+Y154oknjCRz5MiRKvErV640kszjjz/u0TZX+Mc//mEkmUGDBrksHzVqlJFk/vjHP7osr+k4MMaYv/zlL+aSSy4xISEhbo8LZ6+88oqRZLKyskxqaqo599xzTVhYmLn++uvNjh07au17xTG+ceNGM2zYMHPOOeeYiIgI84tf/MIcOHDAJXbt2rWmT58+pkWLFqZNmzbml7/8pfn888+NJPPKK69YcSNHjjTh4eFu2/vqq6/MoEGDTEREhImKijK33nqr2b17d5XtrOjXoUOHXD5f3brdHVueHkObN282V111lWnRooWRZJKSkqz3Dh06ZMaPH2/i4+NNSEiIadmypenRo4d56KGHzLFjx4wxtX+fAAD4WsV4YefOnS7L/+///s8a/zocDnPjjTeabdu2We8fOHDApKWlmUsuucSEh4ebc845x3Tr1s08/fTTpqyszIrbtWuXSU5ONhEREUZSrePHivHb888/by688EITEhJiLrnkErNw4UK3/c7NzXVZXnE+UTHmNcbzce8PP/xgbrnlFnPuuecam83mMtY/fPiw+dWvfmXatm1rgoODTYcOHcyUKVPMiRMn3Pa/MnfnGO6c6TjXXTs7d+4099xzj2nXrp0JCQkxbdq0MX379jWPPfZYlf3m7jzMGGP+9Kc/mYsuusiEhoaaiy++2Pz5z382N954o+nevbvb+IyMDCPJ5OTk1LrNzh588EEjycyYMcNleadOnYwk8+WXX7osr+44qFDduZA7FWPJL7/80vTr18+EhYWZli1bmvvvv98a29XE0/M+Y06dHyUkJBi73W4uuOACM3PmTPPyyy9X+bvYoUMHc8MNN7ht77333jOXXXaZad68uWnXrp35zW9+Yz766KMq21ndeVZ163Z3bHlyDBlT87nKF198YW677TYTHR1tQkJCTGxsrLn22mvNCy+8YMXU9n0CCFw2Y5xqUQBAAOrXr5/++9//auvWrb7uCmqRnJysXbt26dtvv63y3sSJEzV//nzt2bOnzrVgA1VGRoamT5+uQ4cOea3WLAAAQE1sNpvGjh2refPm+borqMGRI0d08cUX62c/+5n+9Kc/VXm/Z8+estlsys3N9UHvfIPzPgCoHuV6AAANIj09Xd27d1f79u31ww8/aOHChcrOzrZuHlchJydH3377rZ5//nmNHj36rJngBwAAAKRTN46dMWOG+vfvr1atWun777/X008/raNHj+rXv/61FVdYWKitW7fq/fff18aNG7VkyRIf9hoA4E+Y5AcANIjy8nI98sgjysvLk81mU5cuXfT666/rzjvvdImruJHx0KFD9dhjj/motwAAAIBv2O127dq1S2PGjNEPP/ygFi1aqHfv3nrhhRd06aWXWnGff/659UPAtGnT9LOf/cx3nQYA+BXK9QAAAAAAAAAAEKCq3qYdAAAAAAAAAACckfnz56tbt26KjIxUZGSk+vTpo48++sh63xijjIwMxcXFKSwsTP369dO2bdvq3I5fTfJ37NhRNputymPs2LGSPNvo4uJijRs3Tq1bt1Z4eLiGDx+uvXv3usTk5+crNTVVDodDDodDqampOnLkiEvM7t27NWzYMIWHh6t169YaP368SkpKXGK2bNmipKQkhYWFqV27dnr00UfFhREAAAAAAAAAgPPOO0+PP/64NmzYoA0bNujaa6/VjTfeaM1pz5o1S3PmzNG8efOUm5ur2NhYDRo0SEePHq1TO341yZ+bm6v9+/dbj+zsbEnSrbfeKsmzjZ4wYYKWLFmixYsXa82aNTp27JiGDh2q8vJyKyYlJUWbN2/W0qVLtXTpUm3evFmpqanW++Xl5brhhht0/PhxrVmzRosXL9Zbb72liRMnWjGFhYUaNGiQ4uLilJubq7lz52r27NmaM2dOQ+8mAAAAAAAAAICfGzZsmK6//npdfPHFuvjiizVjxgydc845ysnJkTFGzzzzjB566CGNGDFCXbt21auvvqr//e9/WrRoUZ3a8eua/BMmTND777+vHTt2SJLi4uI0YcIE/fa3v5V0Kms/JiZGTzzxhEaPHq2CggK1adNGr7/+um6//XZJ0r59+9S+fXt9+OGHGjx4sL7++mt16dJFOTk56tWrlyQpJydHffr00TfffKOEhAR99NFHGjp0qPbs2aO4uDhJ0uLFi5WWlqaDBw8qMjJS8+fP15QpU3TgwAHZ7XZJ0uOPP665c+dq7969stlsHm3jyZMntW/fPkVERHj8GQAAAPgHY4yOHj2quLg4NWvmV/kzZyXG1gAAAIGpLuPqEydOVKm40piMMVXGmna73Zojrk55ebn+9re/aeTIkdq0aZOaN2+uCy+8UJ9//rm6d+9uxd14440699xz9eqrr3rcp+C6bULjKSkp0RtvvKH09HTZbDb9+9//Vl5enpKTk60Yu92upKQkrV27VqNHj9bGjRtVWlrqEhMXF6euXbtq7dq1Gjx4sNatWyeHw2FN8EtS79695XA4tHbtWiUkJGjdunXq2rWrNcEvSYMHD1ZxcbE2btyo/v37a926dUpKSnL58gYPHqwpU6Zo165dio+Pd7tdxcXFKi4utl7/5z//UZcuXbyyzwAAAOAbe/bs0Xnnnefrbpx1GFsDAAA0LbWNq0+cOKE2YWE61oh9quycc87RsWOuPZg2bZoyMjLcxm/ZskV9+vTRiRMndM4552jJkiXq0qWL1q5dK0mKiYlxiY+JidH3339fpz757ST/O++8oyNHjigtLU2SlJeXJ6nmjc7Ly1NoaKiioqKqxFR8Pi8vT9HR0VXai46Odomp3E5UVJRCQ0NdYjp27FilnYr3qpvknzlzpqZPn15l+Z49exQZGen2MwAAAPBPhYWFat++vSIiInzdlbMSY2sAqD+HY6bL64KCKT7qCQB4Pq4uKSnRMUkPSqo5b75hFEt6+tixKuPNmrL4ExIStHnzZh05ckRvvfWWRo4cqVWrVlnvV74qwN2VArXx20n+l19+WUOGDHHJppfqt9GVY9zFeyOmovJRTf2ZMmWK0tPTrdcVB3DFHZYBAAAQeCgN4xuMrQGg/oyZWXsQADQyT8fV4ZKaN2xX3KqYTK/LeDM0NFQXXXSRJKlnz57Kzc3Vs88+a5Wkz8vLU9u2ba34gwcPVklAr41fFg79/vvvtWzZMv3yl7+0lsXGxko6ndFfwXmjY2NjVVJSovz8/BpjDhw4UKXNQ4cOucRUbic/P1+lpaU1xhw8eFBS1asNnNntdusg4OQDAAAAqD/G1gAAAGenEB8+zpQxRsXFxYqPj1dsbKyys7Ot90pKSrRq1Sr17du3Tuv0y0n+V155RdHR0brhhhusZZ5sdI8ePRQSEuISs3//fm3dutWK6dOnjwoKCvTZZ59ZMevXr1dBQYFLzNatW7V//34rJisrS3a7XT169LBiVq9e7XKTh6ysLMXFxVUp4wMAAAAAAAAAOLtMnTpVn376qXbt2qUtW7booYce0sqVK3XHHXfIZrNpwoQJyszM1JIlS7R161alpaWpRYsWSklJqVM7fleu5+TJk3rllVc0cuRIBQef7p7zRnfq1EmdOnVSZmamy0Y7HA7de++9mjhxolq1aqWWLVtq0qRJSkxM1MCBAyVJnTt31nXXXadRo0bpxRdflCTdd999Gjp0qBISEiRJycnJ6tKli1JTU/Xkk0/qhx9+0KRJkzRq1CgrOyglJUXTp09XWlqapk6dqh07digzM1OPPPIIl2sDAAAAAAAAQAMJlm8mtuva5oEDB5Samqr9+/fL4XCoW7duWrp0qQYNGiRJmjx5soqKijRmzBjl5+erV69eysrKqvM9v/xukn/ZsmXavXu37rnnnirvebLRTz/9tIKDg3XbbbepqKhIAwYM0IIFCxQUFGTFLFy4UOPHj1dycrIkafjw4Zo3b571flBQkD744AONGTNGV111lcLCwpSSkqLZs2dbMQ6HQ9nZ2Ro7dqx69uypqKgopaenu9QEBQAAAAAAAACcnV5++eUa37fZbMrIyFBGRsYZtWMzFXeLhU8UFhbK4XCooKCAGqIAAAABhrGcf+H7AAAACEyejuMq4p6QFNZ43bMUSfqt5HfjTb+syQ8AAAAAAAAAAGrnd+V6AAAAAAAAAACoTqDU5G8sZPIDAAAAAAAAABCg/PXHBwAAAAAAAAAAqgj58dHYynzQpieY5AcAAAAAAAAABAzK9biiXA8AAAAAAAAAAAHKX398AAAAAAAAAACgimD5plxPqQ/a9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAAYOa/K7I5AcAAAAAAAAAIED5648PAIAAZrNNt54bM82HPQEAAAAAAE1NiHxTk98XbXqCTH4AAAAAAAAAAAIUmfwAAK8jex8AAAAAADQUMvldMckPAAAAAAAAAAgY3HjXFeV6AAAAAAAAAAAIUP764wMAAAAAAAAAAFUEyzelc/x1Mp1MfgAAAAAAAAAAApS//vgAAAAAAAAAAEAV1OR3RSY/AAAAAAAAAAAByl9/fAAAAAAAAAAAoIoQ+aYmvy/a9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAAYOa/K78tV8AAAAAAAAAAFQRLN+UzvHXyXTK9QAAAAAAAAAAEKD89ccHAAAAAAAAAACqoFyPKzL5AQAAAAAAAAAIUP764wMAAAAAAAAAAFWEyDc1+X3RpifI5AcAAAAAAAAAIECRyQ8AAAAAAAAACBjU5HdFJj8AAAAAAAAAAAHKX398AAAAAAAAAACgimD5pj6+v06m+2u/AAAAAAAAAACoghvvuqJcDwAAAAAAAAAAAYpMfgAAAAAAAABAwODGu67I5AcAAAAAAAAAIED5648PAAAAAAAAAABUERwkhdh80K6RVN747daGTH4AAAAAAAAAAAIUmfwAAAAAAAAAgIARHCwFk8lvIZMfAAAAAAAAAIAARSY/AAAAAAAAACBghPioJn+Iafw2PcEkPwAAAAAAAAAgYPi0XI8folwPAAAAAAAAAAABikx+AAAAAAAAAEDACAmSQnyQvh5ysvHb9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAgSNIvklf98F9ADxBJj8AAAAAAAAAAAGKTH4AAAAAAAAAQOAIlm/S16nJDwAAAAAAAAAAvIlMfgAAAAAAAABA4CCT3wWT/AAAAAAAAACAwMEkvwvK9QAAAAAAAAAAEKDI5AcAAAAAAAAABI5mkoJ83Qn/QSY/AAAAAAAAAAABikx+AAAAAAAAAEDgCJZvMvltPmjTA2TyAwAAAAAAAAAQoPxukv8///mP7rzzTrVq1UotWrTQ5Zdfro0bN1rvG2OUkZGhuLg4hYWFqV+/ftq2bZvLOoqLizVu3Di1bt1a4eHhGj58uPbu3esSk5+fr9TUVDkcDjkcDqWmpurIkSMuMbt379awYcMUHh6u1q1ba/z48SopKXGJ2bJli5KSkhQWFqZ27drp0UcflTHGuzsFAAAAAAAAAHBKsA8ffsivJvnz8/N11VVXKSQkRB999JG++uorPfXUUzr33HOtmFmzZmnOnDmaN2+ecnNzFRsbq0GDBuno0aNWzIQJE7RkyRItXrxYa9as0bFjxzR06FCVl5dbMSkpKdq8ebOWLl2qpUuXavPmzUpNTbXeLy8v1w033KDjx49rzZo1Wrx4sd566y1NnDjRiiksLNSgQYMUFxen3NxczZ07V7Nnz9acOXMadkcBAAAAAAAAACDJZvwo7fx3v/ud/vnPf+rTTz91+74xRnFxcZowYYJ++9vfSjqVtR8TE6MnnnhCo0ePVkFBgdq0aaPXX39dt99+uyRp3759at++vT788EMNHjxYX3/9tbp06aKcnBz16tVLkpSTk6M+ffrom2++UUJCgj766CMNHTpUe/bsUVxcnCRp8eLFSktL08GDBxUZGan58+drypQpOnDggOx2uyTp8ccf19y5c7V3717ZbLUXaSosLJTD4VBBQYEiIyPPeB8CAACg8TCW8y98HwAAAIHJ03GcFZcoRfqgJn9hueTYIr8bb/pVJv+7776rnj176tZbb1V0dLS6d++ul156yXp/586dysvLU3JysrXMbrcrKSlJa9eulSRt3LhRpaWlLjFxcXHq2rWrFbNu3To5HA5rgl+SevfuLYfD4RLTtWtXa4JfkgYPHqzi4mKrfNC6deuUlJRkTfBXxOzbt0+7du1yu43FxcUqLCx0eQAAAACoO8bWAAAAZynK9bjwq0n+f//735o/f746deqkjz/+WL/61a80fvx4vfbaa5KkvLw8SVJMTIzL52JiYqz38vLyFBoaqqioqBpjoqOjq7QfHR3tElO5naioKIWGhtYYU/G6IqaymTNnWvcBcDgcat++fS17BQAAAIA7jK0BAAAAP5vkP3nypK644gplZmaqe/fuGj16tEaNGqX58+e7xFUug2OMqbU0TuUYd/HeiKmoflRdf6ZMmaKCggLrsWfPnhr7DQAAAMA9xtYAAABnqSD5JovfByWCPOFXk/xt27ZVly5dXJZ17txZu3fvliTFxsZKqpolf/DgQSuDPjY2ViUlJcrPz68x5sCBA1XaP3TokEtM5Xby8/NVWlpaY8zBgwclVb3aoILdbldkZKTLAwAAAEDdMbYGAAAA/GyS/6qrrtL27dtdln377bfq0KGDJCk+Pl6xsbHKzs623i8pKdGqVavUt29fSVKPHj0UEhLiErN//35t3brViunTp48KCgr02WefWTHr169XQUGBS8zWrVu1f/9+KyYrK0t2u109evSwYlavXq2SkhKXmLi4OHXs2NEbuwQAAAAAAAAA4CzIhw8/5FeT/A8++KBycnKUmZmp7777TosWLdKf/vQnjR07VtKpEjgTJkxQZmamlixZoq1btyotLU0tWrRQSkqKJMnhcOjee+/VxIkTtXz5cm3atEl33nmnEhMTNXDgQEmnrg647rrrNGrUKOXk5CgnJ0ejRo3S0KFDlZCQIElKTk5Wly5dlJqaqk2bNmn58uWaNGmSRo0aZWUIpaSkyG63Ky0tTVu3btWSJUuUmZmp9PT0WssHAQAAAAAAAABwpvzqfsBXXnmllixZoilTpujRRx9VfHy8nnnmGd1xxx1WzOTJk1VUVKQxY8YoPz9fvXr1UlZWliIiIqyYp59+WsHBwbrttttUVFSkAQMGaMGCBQoKOv1Ty8KFCzV+/HglJydLkoYPH6558+ZZ7wcFBemDDz7QmDFjdNVVVyksLEwpKSmaPXu2FeNwOJSdna2xY8eqZ8+eioqKUnp6utLT0xtyNwEAAAAAAADA2auiRj4kSTZTcadY+ERhYaEcDocKCgqoIQoAABBgGMv5F74PAACAwOTpOM6Ku0qK9MEkf2GZ5Pin/G68ye8dAAAAAAAAAIDAQSa/C7+qyQ8AAAAAAAAAQFMwc+ZMXXnllYqIiFB0dLR+9rOfafv27S4xaWlpstlsLo/evXvXqR0m+QEAAAAAAAAAgSPYh486WLVqlcaOHaucnBxlZ2errKxMycnJOn78uEvcddddp/3791uPDz/8sM67AwAAAAAAAACAwNBMUpAP2j1Zt/ClS5e6vH7llVcUHR2tjRs36pprrrGW2+12xcbG1rtbTPIDAAAAAIAGY7NNt54bM82HPQEAwDsKCwtdXtvtdtnt9lo/V1BQIElq2bKly/KVK1cqOjpa5557rpKSkjRjxgxFR0d73B/K9QAAAAAAAAAAAoePy/W0b99eDofDesycObPWLhtjlJ6erquvvlpdu3a1lg8ZMkQLFy7UihUr9NRTTyk3N1fXXnutiouL67Q7AAAAAAAAAACAB/bs2aPIyEjrtSdZ/A888IC+/PJLrVmzxmX57bffbj3v2rWrevbsqQ4dOuiDDz7QiBEjPOoPk/wAAAAAAKDBUKIHAOB19bgJrleYU39ERka6TPLXZty4cXr33Xe1evVqnXfeeTXGtm3bVh06dNCOHTs8Xj+T/AAAAAAAAAAAeJkxRuPGjdOSJUu0cuVKxcfH1/qZw4cPa8+ePWrbtq3H7TDJDwAAAAAAAAAIHEE/PhrbybqFjx07VosWLdI//vEPRUREKC8vT5LkcDgUFhamY8eOKSMjQzfffLPatm2rXbt2aerUqWrdurVuuukmj9thkh8AAAAAAAAAAC+bP3++JKlfv34uy1955RWlpaUpKChIW7Zs0WuvvaYjR46obdu26t+/v958801FRER43A6T/AAAAAAAAACAwOHjmvweh5uaPxAWFqaPP/74DDp0CpP8AAAAAAAAAIDAESTfzGzXsVxPY2nm6w4AAAAAAAAAAID6IZMfAAAAAAAAABA4fHXjXV+06QEy+QEAAAAAAAAACFBk8gMAAAAAAAAAAoevbrxLTX4AAAAAAAAAAOBNZPIDAAAAAAAAAAIHmfwuyOQHAAAAAAAAACBAkckPAAAAAAAAAAgcZPK7YJIfAAAAAAAAABA4mkkK8lG7fshPuwUAAAAAAAAAAGpDJj8AAAAAAAAAIHD4qlxPuQ/a9ACZ/AAAAAAAAAAABCgy+QEAAAAAAAAAgYNMfhdk8gMAAAAAAAAAEKDI5AcAAAAAAAAABI6gHx++aNcPkckPAAAAAAAAAECAIpMfAAAAAAAAABA4qMnvgkl+AAAAAAAAAEDgCJJvZrbLfNCmByjXAwAAAAAAAABAgCKTHwAAAAAAAAAQOHxVrsdPZ9PJ5AcAAAAAAAAAIED56W8PAAAAAAAAAAC4EfTjwxft+iEy+QEAAAAAAAAACFBk8gMAAAAAAAAAAgc1+V2QyQ8AAAAAAAAAQIDy098eAAAAAAAAAABwg0x+F37aLQAAAAAAAAAA3Ggm39wE10/r4vhptwAAAAAAAAAAQG3I5AcAAAAAAAAABA7K9bggkx8AAAAAAAAAgADlp789AAAAAAAAAADgBpn8LsjkBwAAAAAAAAAgQPnpbw8AAAAAAAAAALgR9OPDF+36ISb5AQAAAAAA0OTZbNOt58ZM82FPAMC7mOQHAAAAAAAAAAQOavK78NNuAQAAAAAAAN5D9j7QhATJNzPbflquhxvvAgAAAAAAAAAQoMjkBwAAAAAAAAAEDsr1uCCTHwAAAAAAAACAAOWnvz0AAAAAAAAAAOBGkHxTH5+a/AAAAAAAAAAAwJvI5AcAAAAAAAAABA5q8rvwq0z+jIwM2Ww2l0dsbKz1vjFGGRkZiouLU1hYmPr166dt27a5rKO4uFjjxo1T69atFR4eruHDh2vv3r0uMfn5+UpNTZXD4ZDD4VBqaqqOHDniErN7924NGzZM4eHhat26tcaPH6+SkhKXmC1btigpKUlhYWFq166dHn30URljvLtTAAAAAAAAAACohl9N8kvSpZdeqv3791uPLVu2WO/NmjVLc+bM0bx585Sbm6vY2FgNGjRIR48etWImTJigJUuWaPHixVqzZo2OHTumoUOHqry83IpJSUnR5s2btXTpUi1dulSbN29Wamqq9X55ebluuOEGHT9+XGvWrNHixYv11ltvaeLEiVZMYWGhBg0apLi4OOXm5mru3LmaPXu25syZ08B7CAAAAAAAAADOYsE+fPghv+tWcHCwS/Z+BWOMnnnmGT300EMaMWKEJOnVV19VTEyMFi1apNGjR6ugoEAvv/yyXn/9dQ0cOFCS9MYbb6h9+/ZatmyZBg8erK+//lpLly5VTk6OevXqJUl66aWX1KdPH23fvl0JCQnKysrSV199pT179iguLk6S9NRTTyktLU0zZsxQZGSkFi5cqBMnTmjBggWy2+3q2rWrvv32W82ZM0fp6emy2WyNtMcAAAAAAAAajs023eW1MdN81BMA+FEz+eYmuH6XMn+K33Vrx44diouLU3x8vH7+85/r3//+tyRp586dysvLU3JyshVrt9uVlJSktWvXSpI2btyo0tJSl5i4uDh17drVilm3bp0cDoc1wS9JvXv3lsPhcInp2rWrNcEvSYMHD1ZxcbE2btxoxSQlJclut7vE7Nu3T7t27ap2+4qLi1VYWOjyAAAAAFB3jK0BAAAAP5vk79Wrl1577TV9/PHHeumll5SXl6e+ffvq8OHDysvLkyTFxMS4fCYmJsZ6Ly8vT6GhoYqKiqoxJjo6ukrb0dHRLjGV24mKilJoaGiNMRWvK2LcmTlzpnUvAIfDofbt29e8UwAAAAC4xdgaAADgLEW5Hhd+1a0hQ4ZYzxMTE9WnTx9deOGFevXVV9W7d29JqlIGxxhTa2mcyjHu4r0RU3HT3Zr6M2XKFKWnp1uvCwsLORkBAAAA6oGxNQA0DsrzAIB/86tM/srCw8OVmJioHTt2WHX6K2fJHzx40Mqgj42NVUlJifLz82uMOXDgQJW2Dh065BJTuZ38/HyVlpbWGHPw4EFJVa82cGa32xUZGenyAAAAAFB3jK0BAADOUmTyu/DrSf7i4mJ9/fXXatu2reLj4xUbG6vs7Gzr/ZKSEq1atUp9+/aVJPXo0UMhISEuMfv379fWrVutmD59+qigoECfffaZFbN+/XoVFBS4xGzdulX79++3YrKysmS329WjRw8rZvXq1SopKXGJiYuLU8eOHb2/MwAAAAAAAAAAqMSvJvknTZqkVatWaefOnVq/fr1uueUWFRYWauTIkbLZbJowYYIyMzO1ZMkSbd26VWlpaWrRooVSUlIkSQ6HQ/fee68mTpyo5cuXa9OmTbrzzjuVmJiogQMHSpI6d+6s6667TqNGjVJOTo5ycnI0atQoDR06VAkJCZKk5ORkdenSRampqdq0aZOWL1+uSZMmadSoUVZ2UEpKiux2u9LS0rR161YtWbJEmZmZSk9Pr7V8EAAAAAAAAACgnoJ8+PBDfnWBwd69e/WLX/xC//3vf9WmTRv17t1bOTk56tChgyRp8uTJKioq0pgxY5Sfn69evXopKytLERER1jqefvppBQcH67bbblNRUZEGDBigBQsWKCjo9DewcOFCjR8/XsnJyZKk4cOHa968edb7QUFB+uCDDzRmzBhdddVVCgsLU0pKimbPnm3FOBwOZWdna+zYserZs6eioqKUnp7uUhMUAAAAAAAAAICGZDMVd4uFTxQWFsrhcKigoIAaogAAAAGGsZx/4fsAAAAITJ6O46y45VJkeCN2sKL945JjgPxuvOlXmfwAAAAAAAAAANQoSL6Z2fbTcj1+VZMfAAAAAAAAAAB4jkx+AAAAAAAAAEDgCJZvZrb9dDadTH4AAAAAAAAAAAKUn/72AAAAAAAAAACAG0HyTX18avIDAAAAAAAAAABvIpMfAAAAAAAAABA4qMnvgkx+AAAAAAAAAAAClJ/+9gAAAAAAAAAAgBtB8s3MNjX5AQAAAAAAAACAN5HJDwAAAAAAAAAIHEHyTVa9n2byM8kPAAAAAAAAAAgc3HjXBeV6AAAAAAAAAAAIUH762wMAAAAAAAAAAG6Qye+CTH4AAAAAAAAAAAIUk/wAAAAAAAAAgMAR7MNHHcycOVNXXnmlIiIiFB0drZ/97Gfavn27S4wxRhkZGYqLi1NYWJj69eunbdu21akdJvkBAAAAAAAAAPCyVatWaezYscrJyVF2drbKysqUnJys48ePWzGzZs3SnDlzNG/ePOXm5io2NlaDBg3S0aNHPW7HT6sIAQAAAAAAAABQlWkmmSDftFsXS5cudXn9yiuvKDo6Whs3btQ111wjY4yeeeYZPfTQQxoxYoQk6dVXX1VMTIwWLVqk0aNHe9QOmfwAAAAAAAAAAHiosLDQ5VFcXOzR5woKCiRJLVu2lCTt3LlTeXl5Sk5OtmLsdruSkpK0du1aj/tDJj8AAAAAAAAChs023XpuzDQf9gSAr5QHn3r4ol1Jat++vcvyadOmKSMjo8bPGmOUnp6uq6++Wl27dpUk5eXlSZJiYmJcYmNiYvT999973C8m+QEAAAAAAAAAAcPXk/x79uxRZGSktdxut9f62QceeEBffvml1qxZU+U9m83m8toYU2VZTZjkBwAAAAAAQMAgex+Ar0VGRrpM8tdm3Lhxevfdd7V69Wqdd9551vLY2FhJpzL627Ztay0/ePBglez+mlCTHwAAAAAAAAAQMMqCbCoLauaDh+fZ9dKpjPwHHnhAb7/9tlasWKH4+HiX9+Pj4xUbG6vs7GxrWUlJiVatWqW+fft63A6Z/AAAAAAAAAAAeNnYsWO1aNEi/eMf/1BERIRVg9/hcCgsLEw2m00TJkxQZmamOnXqpE6dOikzM1MtWrRQSkqKx+0wyQ8AAAAAAAAACBjlwcEqD65bVr132jWSSj2Onz9/viSpX79+LstfeeUVpaWlSZImT56soqIijRkzRvn5+erVq5eysrIUERHhcTtM8gMAAAAAAAAA4GXGmFpjbDabMjIylJGRUe92mOQHAAAAAAAAAASM8qAgldexPr532q1bJn9j4ca7AAAAAAAAAAAEKDL5AQAAAAAAAHiVzTbdem7MNB/2BE3RSQWpXI2fyX9StZff8QUm+QEAAAAAAAAAAaNMQSrzwSR/mZ9O8lOuBwAAAAAAAACAAEUmPwAAAAAAAACvokQPGlK5glTug/z1cp1s9DY9QSY/AAAAAAAAAAABikx+AAAAAAAABCTnm7tKZI8DZwvfZfI3/n0APEEmPwAAAAAAAAAAAYpMfgAAAAAAAAQkMveBsxOZ/K7I5AcAAAAAAAAAIECRyQ8AAAAAAAAACBhk8rtikh8AAAAAAAAAEDDKFaQyJvktlOsBAAAAAAAAACBAkckPAAAAAAAAAAgY5Qr2Ubmek43epifI5AcAAAAAAAAAIECRyQ8AAAAAAAAACBjlaqZyBfmgXf9EJj8AAAAAAAAAAAGKTH4AAAAAAAAAQMAoVxCZ/E7I5AcAAAAAAAAAIECRyQ8AAAAAAAAACBhlClKZDzL5yxq9Rc8wyQ8AAAAAAAAACBgnFeyTcj0nZWv0Nj1BuR4AAAAAAAAAAAIUmfwAAAAAAAAAgIDBjXddkckPAAAAAAAAAECAIpMfAAAAAAAAABAwyOR3RSY/AAAAAAAAAAABikx+AAAAAAAAAEDAKFczH2Xym0Zv0xNM8gMAAAAAgLOSzTbdem7MNB/2BACA+vPrcj0zZ86UzWbThAkTrGXGGGVkZCguLk5hYWHq16+ftm3b5vK54uJijRs3Tq1bt1Z4eLiGDx+uvXv3usTk5+crNTVVDodDDodDqampOnLkiEvM7t27NWzYMIWHh6t169YaP368SkpKXGK2bNmipKQkhYWFqV27dnr00UdljH/+ogMAAAAAAAAAga5MQT57+CO/neTPzc3Vn/70J3Xr1s1l+axZszRnzhzNmzdPubm5io2N1aBBg3T06FErZsKECVqyZIkWL16sNWvW6NixYxo6dKjKy0/fGiElJUWbN2/W0qVLtXTpUm3evFmpqanW++Xl5brhhht0/PhxrVmzRosXL9Zbb72liRMnWjGFhYUaNGiQ4uLilJubq7lz52r27NmaM2dOA+4ZAAAAAADgDcZMsx4AgMBRrmCfPfyRX/bq2LFjuuOOO/TSSy/pscces5YbY/TMM8/ooYce0ogRIyRJr776qmJiYrRo0SKNHj1aBQUFevnll/X6669r4MCBkqQ33nhD7du317JlyzR48GB9/fXXWrp0qXJyctSrVy9J0ksvvaQ+ffpo+/btSkhIUFZWlr766ivt2bNHcXFxkqSnnnpKaWlpmjFjhiIjI7Vw4UKdOHFCCxYskN1uV9euXfXtt99qzpw5Sk9Pl81mq7JtxcXFKi4utl4XFhY22H4EAAAAmjLG1gAAAICfZvKPHTtWN9xwgzVJX2Hnzp3Ky8tTcnKytcxutyspKUlr166VJG3cuFGlpaUuMXFxceratasVs27dOjkcDmuCX5J69+4th8PhEtO1a1drgl+SBg8erOLiYm3cuNGKSUpKkt1ud4nZt2+fdu3a5XbbZs6caZUIcjgcat++fX12EQA0KpttuvUAAMBfMLYGAAA4O51UkMp98DhJuR7PLF68WJ9//rlmzpxZ5b28vDxJUkxMjMvymJgY6728vDyFhoYqKiqqxpjo6Ogq64+OjnaJqdxOVFSUQkNDa4ypeF0RU9mUKVNUUFBgPfbs2eM2DgAAAEDNGFsDAAAAflauZ8+ePfr1r3+trKwsNW/evNq4ymVwjDFuS+PUFOMu3hsxFTfdra4/drvdJfMfAAIBNUoBAP6IsTUAAMDZqSKzvvHbNY3epif8KpN/48aNOnjwoHr06KHg4GAFBwdr1apV+uMf/6jg4OBqs+QPHjxovRcbG6uSkhLl5+fXGHPgwIEq7R86dMglpnI7+fn5Ki0trTHm4MGDkqpebQAAAAAAAAAAgLf51ST/gAEDtGXLFm3evNl69OzZU3fccYc2b96sCy64QLGxscrOzrY+U1JSolWrVqlv376SpB49eigkJMQlZv/+/dq6dasV06dPHxUUFOizzz6zYtavX6+CggKXmK1bt2r//v1WTFZWlux2u3r06GHFrF69WiUlJS4xcXFx6tixo/d3EAAAAAAAAACc5crUTGUK8sHDr6bTLX5VriciIkJdu3Z1WRYeHq5WrVpZyydMmKDMzEx16tRJnTp1UmZmplq0aKGUlBRJksPh0L333quJEyeqVatWatmypSZNmqTExETrRr6dO3fWddddp1GjRunFF1+UJN13330aOnSoEhISJEnJycnq0qWLUlNT9eSTT+qHH37QpEmTNGrUKEVGRkqSUlJSNH36dKWlpWnq1KnasWOHMjMz9cgjj9RaPggAAAAAAAAAgDPlV5P8npg8ebKKioo0ZswY5efnq1evXsrKylJERIQV8/TTTys4OFi33XabioqKNGDAAC1YsEBBQafrNC1cuFDjx49XcnKyJGn48OGaN2+e9X5QUJA++OADjRkzRldddZXCwsKUkpKi2bNnWzEOh0PZ2dkaO3asevbsqaioKKWnpys9Pb0R9gQQeGy26dZzarwDAAAAAACgPsoVrHIfTG37a01+m6m4Uyx8orCwUA6HQwUFBdYVAkBTxSQ/AKCpYSznX/g+AAAAApOn47iKuJcLblCLyJBG7OEp/yss1b2OD/xuvBlwmfwAAhcT+wAAAAAAAIB3MckPAAAAAAAAAAgY5QpSuYJqD/R6uycbvU1P+OftgAEAAAAAAAAAQK3I5AcAAAAAAAAABIxyBamMTH4LmfwAAAAAAAAAAAQoMvkBAAAAAAAAAAGjXMEq98HUdrlMo7fpCTL5AQAAAAAAAAAIUGTyAwAAAAAAAAACRrmaqdwnNfnLG71NTzDJDwAAAAAAAAAIGOUK8tEkf+O36Qkm+QEAjc5mm249N2aaD3sCAAAAAAAQ2JjkBwAAAAAAAAAEDDL5XXHjXQAAAAAAAAAAAhSZ/ACARkeJHgAAAAAAUF/lClIZmfwWMvkBAAAAAAAAAAhQZPIDAAAAAAAAAAJGuYJV7oOp7XKdbPQ2PUEmPwAAAAAAAAAAAYpMfgAAAAAAAABAwChXkE/q4/trTf4znuT/5ptv9N577+ncc8/VpZdeqq5duyoyMtIbfQMAAAAAAAAAADU440n+IUOG6Je//KWOHDmiF198UVu2bNHx48e1fft2b/QPAAAAAAAATZzNNt16bsw0H/YEQCAoVzMfZfL7Z/X7M57kb9u2rR566CGXZeXl5We6WgAAAAAAAAAAqihTkMp8MMnvizY9Ue9J/okTJ+qyyy5T//799eqrr2rkyJHWe0FB/rmxAAAAAAAAcM2cl3yfPe/r9gEgkNV7kv+aa67Rl19+qW+//VZ///vfNWPGDPXs2VOJiYlKTEzU0KFDvdlPAAAAAAAAAABUrmCVn3mRmnq0658VbOq9J2688UbdeOON1uuioiJt3bpVX375pZYvX84kPwAAAAAAgJ8icx4Amo4z/rljy5YteuaZZ5Sfn6/ExET98pe/1L333uuNvgEAAAAAAAAA4OKkgnxy492TflqT/4xvB3zLLbcoKSlJU6ZMUVxcnIYPH67ly5d7o28AAAAAAAAAAKAGZ5zJ73A4dNddd0mSrrzySo0YMUIDBw7UF198ccadAwAEJuebeHnjMmBvrw8AAAAAAASuch9l8vuiTU+ccSb/BRdcoDlz5sgYI0lq2bKlmjdvfsYdAwAAAAAAAAAANTvjTP7i4mI999xzevrpp3XppZfq+++/10033aT//Oc/ateunTf6CAAIMN7Otid7HwAAAAAAVChXMx9l8p9xznyD8HiSPzU1VS+++KJatGjhsnzJkiWSpOPHj+vLL7+0Hj//+c+1b98+/etf//JujwEAAAAAAAAAZ60yBSnIB5P8ZYFermfRokU6duyY9Xr06NHKz8+3XoeHh6tnz54aPXq0nnvuOX366adM8AMAAAAAAAAAzkqrV6/WsGHDFBcXJ5vNpnfeecfl/bS0NNlsNpdH796969yOx5P8FTX3K/zlL39xmeQ/cOCAIiIi6twBAAAAAAAAAAA8Va5gnz3q4vjx47rssss0b968amOuu+467d+/33p8+OGHdd4f9a7JX3nSX5JKSkrquzoAAAAAAAAAAJqMIUOGaMiQITXG2O12xcbGnlE7Z3zjXWc2m82bqwMAAAAAAAACks023eW1MdN81BOg6TmpIJ/cePfkj20WFha6LLfb7bLb7fVa58qVKxUdHa1zzz1XSUlJmjFjhqKjo+u0jjrdDnjRokX6/PPPVVpaKolJfQAAAAAAAADA2aV9+/ZyOBzWY+bMmfVaz5AhQ7Rw4UKtWLFCTz31lHJzc3XttdequLi4TuvxOJP/6quv1rRp03T06FGFhISorKxMU6dO1dVXX60rrrhCbdq0qfNGAAAAAAAAAE0RmftAwyn3USZ/RZt79uxRZGSktby+Wfy333679bxr167q2bOnOnTooA8++EAjRozweD0eT/KvXr1akrRjxw5t3LhRn3/+uTZu3KiHH35YR44cIasfAAAAAAAAANDkRUZGukzye0vbtm3VoUMH7dixo06fq3NN/k6dOqlTp076+c9/bi3buXOnNmzYoE2bNtV1dQCAAONcV5LMFAAAAKBpqlxP3hnnAQB8rUxBauaDTP6yBm7z8OHD2rNnj9q2bVunz3nlxrvx8fGKj4/Xrbfe6o3VAQAAAAAAAADg1qlyPV6Z2q5zu3Vx7Ngxfffdd9brnTt3avPmzWrZsqVatmypjIwM3XzzzWrbtq127dqlqVOnqnXr1rrpppvq1E7j7wkAQECrLmuHDH8AAAAAAIDTNmzYoP79+1uv09PTJUkjR47U/PnztWXLFr322ms6cuSI2rZtq/79++vNN99UREREndphkh8AAAAAAAAuSNwB4M98feNdT/Xr10/GmGrf//jjj8+0S5KY5AcAeAkZ/gAAAAAAAI2PSX4AAAAAAAAAQMAIlEz+xtLM1x0AAAAAAAAAAAD1QyY/AKBBUaIHAAAAAAB400kfZfKfJJMfAAAAAAAAAAB4E5n8AIBGx814AQAAAABAfZUpSDYfZNWX+WkmP5P8AAAAAAAAAICAUa4gNfPB1La/3niXSX4AQKMjex8AAAAAAMA7mOQHAAAAAAAAAASMU5n8jZ9VTyY/AKBJo84+AAAAAABA42OSHwAAAAAAAAAQMMjkd9XM1x0AAAAAAAAAAAD1QyY/AKDeKNEDAAAAAAAaW5mCZPNBVn0ZmfwAAAAAAAAAAMCb/GqSf/78+erWrZsiIyMVGRmpPn366KOPPrLeN8YoIyNDcXFxCgsLU79+/bRt2zaXdRQXF2vcuHFq3bq1wsPDNXz4cO3du9clJj8/X6mpqXI4HHI4HEpNTdWRI0dcYnbv3q1hw4YpPDxcrVu31vjx41VSUuISs2XLFiUlJSksLEzt2rXTo48+KmOMd3cKAPgxY6ZZDwAAAAAAgMZwUsEq98HjpJ8WxvGrSf7zzjtPjz/+uDZs2KANGzbo2muv1Y033mhN5M+aNUtz5szRvHnzlJubq9jYWA0aNEhHjx611jFhwgQtWbJEixcv1po1a3Ts2DENHTpU5eXlVkxKSoo2b96spUuXaunSpdq8ebNSU1Ot98vLy3XDDTfo+PHjWrNmjRYvXqy33npLEydOtGIKCws1aNAgxcXFKTc3V3PnztXs2bM1Z86cRthTAAAAAAAAAHB2KleQzx7+yGb8PPW8ZcuWevLJJ3XPPfcoLi5OEyZM0G9/+1tJp7L2Y2Ji9MQTT2j06NEqKChQmzZt9Prrr+v222+XJO3bt0/t27fXhx9+qMGDB+vrr79Wly5dlJOTo169ekmScnJy1KdPH33zzTdKSEjQRx99pKFDh2rPnj2Ki4uTJC1evFhpaWk6ePCgIiMjNX/+fE2ZMkUHDhyQ3W6XJD3++OOaO3eu9u7dK5vN5tH2FRYWyuFwqKCgQJGRkd7efQAAAGhAjOX8C98HAABAYPJ0HFcRl1TwVwVHtmjEHp5SVvg/rXLc5nfjTb/K5HdWXl6uxYsX6/jx4+rTp4927typvLw8JScnWzF2u11JSUlau3atJGnjxo0qLS11iYmLi1PXrl2tmHXr1snhcFgT/JLUu3dvORwOl5iuXbtaE/ySNHjwYBUXF2vjxo1WTFJSkjXBXxGzb98+7dq1q9rtKi4uVmFhocsDAAAAQN0xtgYAADg7lauZjzL5/XM63e96tWXLFp1zzjmy2+361a9+pSVLlqhLly7Ky8uTJMXExLjEx8TEWO/l5eUpNDRUUVFRNcZER0dXaTc6OtolpnI7UVFRCg0NrTGm4nVFjDszZ8607gXgcDjUvn37mncIAAAAALcYWwMAAAB+OMmfkJCgzZs3KycnR/fff79Gjhypr776ynq/chkcY0ytpXEqx7iL90ZMReWjmvozZcoUFRQUWI89e/bU2HcAAAAA7jG2BgD/Y7NNtx4A0FDKFOSzhz/yu9sBh4aG6qKLLpIk9ezZU7m5uXr22WetOvx5eXlq27atFX/w4EErgz42NlYlJSXKz893yeY/ePCg+vbta8UcOHCgSruHDh1yWc/69etd3s/Pz1dpaalLTOWM/YMHD0qqerWBM7vd7lLiBwCaIucBvTHTfNgTAEBTxtgaAAAA8MNM/sqMMSouLlZ8fLxiY2OVnZ1tvVdSUqJVq1ZZE/g9evRQSEiIS8z+/fu1detWK6ZPnz4qKCjQZ599ZsWsX79eBQUFLjFbt27V/v37rZisrCzZ7Xb16NHDilm9erVKSkpcYuLi4tSxY0fv7wgAAAAAAAAAgMoV7LOHP/KrXk2dOlVDhgxR+/btdfToUS1evFgrV67U0qVLZbPZNGHCBGVmZqpTp07q1KmTMjMz1aJFC6WkpEiSHA6H7r33Xk2cOFGtWrVSy5YtNWnSJCUmJmrgwIGSpM6dO+u6667TqFGj9OKLL0qS7rvvPg0dOlQJCQmSpOTkZHXp0kWpqal68skn9cMPP2jSpEkaNWqUddfklJQUTZ8+XWlpaZo6dap27NihzMxMPfLII7WWDwIAAAAA4GwRqFd5Bkq/K5fF8XVffd0+AJyN/GqS/8CBA0pNTdX+/fvlcDjUrVs3LV26VIMGDZIkTZ48WUVFRRozZozy8/PVq1cvZWVlKSIiwlrH008/reDgYN12220qKirSgAEDtGDBAgUFna6XtHDhQo0fP17JycmSpOHDh2vevHnW+0FBQfrggw80ZswYXXXVVQoLC1NKSopmz55txTgcDmVnZ2vs2LHq2bOnoqKilJ6ervT09IbeTQDg97wxsA+UkyoAAAAAANC4TipI5T6oj3/ST2vy20zF3WLhE4WFhXI4HCooKLCuEgAAMMkPIDAwlvMvfB8A0DT429UJABqep+O4irjLCz5WUGR4I/bwlPLC49rsGOx3402/yuQHAJwdPJnAZyAPAAAAAABQOyb5AQAAAAAA4DdI+AFQm1Olehq/dI4vSgR5gkl+AIAPXGQ9oywPAAAAAABA/THJDwAAAAAAAAAIGGVqJuOTTP5mjd6mJ5jkBwA0moqsfTL2AQAAAAAAvINJfgAAAAAAAABAwChXsHwxtV3up9Pp/tkrAECTRAY/AAAAAACAdzHJDwAAAAAAAAAIGOUKknxSk7/x2/QEk/wAAAAAAAAAgIBx0keT/CeZ5AcA4JSKG/BKlPABAAAAAAA4E0zyAwAAAAAAAAACRpmC1IxMfguT/ACARlORwU/2PgAAAAAAgHcwyQ8AAAAAAAAACBjlCpLxwdQ2mfwAgCaBevoAAAAAAAD+g0l+AAAAAAAAAEDAOJXJT03+CkzyAwDqpLrsfU8y/P098597BgAAAABAw3M+f5Q4BwPOFJP8AAAAAAAAAICAQSa/Kyb5AQAAAAAAADQaMvdxpspPBsmc9MEkvw/a9AST/AAAr2gKg7SmsA0AAAAAAODswiQ/AAAAAAAAACBglJcF6WRZ42fVGx+06Qkm+QEAfs+Tm/oCAAAATQljYACAp5jkBwAAAAAAAAAEjPKyYNnKGn9q2/igTU/4Z68AAAAAAADOYmTvAwA8xSQ/AAAAAAAAACBglJc1k80nNfmbNXqbnmCSHwDQoLxRS5QsJgAAAAAAAPeY5AcAAAAAAAAABIzysiAfZfI3fpueYJIfANCgyMIHAAAAAADeVFYWJFspk/wVmOQHAAAAAAB+zbkEpBS4iSRNZTsAAP6FSX4AAAAAAAAAQMAw5cEy5T6Y2vZFmx7wz14BAAKOJzfYrYghYwkAAAB10VTGj01lOwAA/oVJfgAAAAAAAABA4CgLOvXwRbt+iEl+AIBX1Ja9X1MMAAAA4Av+PFb1574BAPwLk/wAAAAAAAAAgMBBJr8LJvkBAA2KrCMAAAAAAICGwyQ/AAAAAAA4K3makOJcOqcunzsTZ1uyjLfKE1HmCDhLlNukMptv2vVDTPIDAOqtvgNom22h0+fu8Fk/AAAAAAAAAh2T/AAAAAAAADUgkaTheWsf810BZ4myHx++aNcPMckPAAAAAAAAAAgcTPK7YJIfAFDvcjfOsXVZhzdK9FTXDwAAAACBhxKcAFB/TPIDAAAAAAAAAAIHmfwumOQHAHglU4ZsGwAAAAAAgMbHJD8AAAAAAIAPUKLmtLN9+wHUUZmkUh+164eY5AcAeF11JysVy6sbwHOSAwAAAAAAUDfNfN0BAAAAAACAs5Ex06wHAKAOyn34qIPVq1dr2LBhiouLk81m0zvvvOPyvjFGGRkZiouLU1hYmPr166dt27bVrRGRyQ8AOAPVZd5Xd5JS28mLu6z/mj5X25UBAAAAAAAAvnL8+HFddtlluvvuu3XzzTdXeX/WrFmaM2eOFixYoIsvvliPPfaYBg0apO3btysiIsLjdpjkBwAAAAAAZyXKRQJAgCqTb+rj17HNIUOGaMiQIW7fM8bomWee0UMPPaQRI0ZIkl599VXFxMRo0aJFGj16tMftMMkPAKg3b5wI2WwLnV59V6d1N9UTMU42AQAAAACogY8n+QsLC10W2+122e32Oq1q586dysvLU3Jysst6kpKStHbt2jpN8lOTHwAAAAAAAAAAD7Vv314Oh8N6zJw5s87ryMvLkyTFxMS4LI+JibHe8xSZ/AAAAAAA4KzEVZMAEKB8nMm/Z88eRUZGWovrmsXvzGazubw2xlRZVhsm+QEAPmXMHXWKPxtK2TTV7QIAAAAAoCmIjIx0meSvj9jYWEmnMvrbtm1rLT948GCV7P7aMMkPAAAAAADQBDknyEgkkwBoQsrlm0z+cu+tKj4+XrGxscrOzlb37t0lSSUlJVq1apWeeOKJOq2LSX4AgFdUl2Hv7cx7TkwAAAAAAEAgOHbsmL777jvr9c6dO7V582a1bNlS559/viZMmKDMzEx16tRJnTp1UmZmplq0aKGUlJQ6tcMkPwAAAAAAQBNEggyAJsvHNfk9tWHDBvXv3996nZ6eLkkaOXKkFixYoMmTJ6uoqEhjxoxRfn6+evXqpaysLEVERNSpHSb5AQBewQkEAAAAAADAaf369ZMxptr3bTabMjIylJGRcUbtMMkPAAAAAABQA2rbA4CfCZBM/sbSzNcdcDZz5kxdeeWVioiIUHR0tH72s59p+/btLjHGGGVkZCguLk5hYWHq16+ftm3b5hJTXFyscePGqXXr1goPD9fw4cO1d+9el5j8/HylpqbK4XDI4XAoNTVVR44ccYnZvXu3hg0bpvDwcLVu3Vrjx49XSUmJS8yWLVuUlJSksLAwtWvXTo8++miNv84AQFNis013+wAAAAAAAGgwpT58+CG/muRftWqVxo4dq5ycHGVnZ6usrEzJyck6fvy4FTNr1izNmTNH8+bNU25urmJjYzVo0CAdPXrUipkwYYKWLFmixYsXa82aNTp27JiGDh2q8vLTtz9OSUnR5s2btXTpUi1dulSbN29Wamqq9X55ebluuOEGHT9+XGvWrNHixYv11ltvaeLEiVZMYWGhBg0apLi4OOXm5mru3LmaPXu25syZ08B7CgAAAAAAAAAAyWb8OO380KFDio6O1qpVq3TNNdfIGKO4uDhNmDBBv/3tbyWdytqPiYnRE088odGjR6ugoEBt2rTR66+/rttvv12StG/fPrVv314ffvihBg8erK+//lpdunRRTk6OevXqJUnKyclRnz599M033yghIUEfffSRhg4dqj179iguLk6StHjxYqWlpengwYOKjIzU/PnzNWXKFB04cEB2u12S9Pjjj2vu3Lnau3evbDZbrdtYWFgoh8OhgoICRUZGNsRuBIAGU13WvvPly84xXNYMoKlhLOdf+D6AumOsVj/sN89Q5giApzwdx1XE6aUCqYUPxnv/K5RG+d94068y+SsrKCiQJLVs2VKStHPnTuXl5Sk5OdmKsdvtSkpK0tq1ayVJGzduVGlpqUtMXFycunbtasWsW7dODofDmuCXpN69e8vhcLjEdO3a1Zrgl6TBgweruLhYGzdutGKSkpKsCf6KmH379mnXrl1ut6m4uFiFhYUuDwAIVMZMsx71jaHMDwCgvhhbAwAAAH58411jjNLT03X11Vera9eukqS8vDxJUkxMjEtsTEyMvv/+eysmNDRUUVFRVWIqPp+Xl6fo6OgqbUZHR7vEVG4nKipKoaGhLjEdO3as0k7Fe/Hx8VXamDlzpqZPZyILAAAAOFOMrYEzR2Z1/bDfPMN+AtBgyuWbm+CW1x7iC347yf/AAw/oyy+/1Jo1a6q8V7kMjjGm1tI4lWPcxXsjpqL6UXX9mTJlitLT063XhYWFat++fY19B9D0+evlvhX98qRP1WfqL3R69V2VWH/aXgBAYGFsDQAAAPjpJP+4ceP07rvvavXq1TrvvPOs5bGxsZJOZcm3bdvWWn7w4EErgz42NlYlJSXKz893yeY/ePCg+vbta8UcOHCgSruHDh1yWc/69etd3s/Pz1dpaalLTEVWv3M7UtWrDSrY7XaX8j4AAAAA6oexNYBA0xRr1DfFbQIQAMrkm0x+X7TpAb+a5DfGaNy4cVqyZIlWrlxZpdxNfHy8YmNjlZ2dre7du0uSSkpKtGrVKj3xxBOSpB49eigkJETZ2dm67bbbJEn79+/X1q1bNWvWLElSnz59VFBQoM8++0w/+clPJEnr169XQUGB9UNAnz59NGPGDO3fv9/6QSErK0t2u109evSwYqZOnaqSkhKFhoZaMXFxcVXK+ABATXwxEPbk6gF3yz2pne+aqX/HGa8DAAAAAAAA7vnVjXfHjh2rN954Q4sWLVJERITy8vKUl5enoqIiSadK4EyYMEGZmZlasmSJtm7dqrS0NLVo0UIpKSmSJIfDoXvvvVcTJ07U8uXLtWnTJt15551KTEzUwIEDJUmdO3fWddddp1GjRiknJ0c5OTkaNWqUhg4dqoSEBElScnKyunTpotTUVG3atEnLly/XpEmTNGrUKOvOySkpKbLb7UpLS9PWrVu1ZMkSZWZmKj09vdbyQQAAAAAAAACAeijz4cMP+VUm//z58yVJ/fr1c1n+yiuvKC0tTZI0efJkFRUVacyYMcrPz1evXr2UlZWliIgIK/7pp59WcHCwbrvtNhUVFWnAgAFasGCBgoKCrJiFCxdq/PjxSk5OliQNHz5c8+bNs94PCgrSBx98oDFjxuiqq65SWFiYUlJSNHv2bCvG4XAoOztbY8eOVc+ePRUVFaX09HSXuqAA4K/qkilf13sGuKvD7+0+AQAAAPA9xvDe4a/3aQP8FuV6XNhMxZ1i4ROFhYVyOBwqKCiwrhAAAH/DJD8AuMdYzr/wfQDwd9SvR3WY5MfZztNxXEWcZhdIYT4Y7xUVSpP8b7zpV5n8AAD/VNdBprs6/NLpgavz+jypzw8AAAA0BUzeojocG0Adlcs3WfXlPmjTA35Vkx8AAAAAAAAAAHiOTH4AAAAAAAA0KkoXATgj1OR3wSQ/AMCFN2pBVleCh4E7AAAAAACAdzHJDwAAAAAAAAAIHKWSgnzUrh9ikh8A4KIu2fbV3zT3Iqf1nb4Jr7v46m7CS9Y/AAAA0HQx3q8epYwA1BWT/AAAAAAAAACAwFH+48MX7fohJvkBANWqyCCpLnOkrhkltcVXl9V/Jm3WhqsHAAAAAPgTzksAD3DjXRfNfN0BAAAAAAAAAABQP2TyAwCqVZFBYrMtdFrmXGO/uuU1Z8e7Zum7r9/fWNkrZMkAAAB/RV1unK049hEouDLch8rlm6x6Py3XQyY/AAAAAAAAAAABikx+AAAAAAAAAEDgKJMU5KN2/RCT/ACAWjmX0fFsee030D3tu/p2CwAAoEmj9MPZxdclanzdvr+0DdQFxyr8BZP8AAAAAAAAAIDAUSrfFKIv9UGbHmCSHwBQJ2dyYyH3N+Fd6CYSAAAACEz1HS/7OiPY1+0j8Pn6ahBftw/4EpP8AAAAAAAAAIDAUf7jwxft+iEm+QHAD5xJdnxjrM+Z99d3uq5/Q/bbWWO105AqtiFQ+w8AANBU+HP2cE19a4x++/O+gff5+vv1dftoZOXyzU1w/XSS3xeViwAAAAAAAAAAgBeQyQ8AfsCfsu3rkuVeXWxt66ic0VNbe3VZnyfb3hQyPJrCNgAA4E1N4Uq9s12gZn03VD/re0w73/Oqps8Fyv4FALfK5Jv0dV9cPeABMvkBAAAAAAAAAAhQZPIDQBPXWFnuzhlD1S13rr9/2jCnWPd9ra1P9b0CAAAAAAAABKBSSTYfteuHmOQHAAAAAAQ8ftBveNWVXJS8s//5Dl3Vd3+4T6zxDb5TAGgcTPIDAAAAAAAAAAJH+Y8PX7Trh5jkB4AmzpPsmfqWtXG92a77G3y5K+NTfRtXVLO++mUjkTkEAADgPYyt6s7XNxP2dfs1qUvf/Hk7AMAfMMkPAAAAAAAAAAgcZZKa+ahdP8QkPwCg1kwYzzL9O1ez7tNZ+BXraWo3yg3UfgMAANSE7Okz5+t95uv2a1LfK4gBQNKpsjm+mHD303I9vvi9AwAAAAAAAAAAeAGZ/ABwlqqcmVXBXZaMJ5n3rqqrrT/tx2WfOy27osr7Z9JXX/CXfpxtuIICAAAAAM5SpWdZu7Vgkh8AAAAAAFTBj+hNG+WYAKDpYJIfAM5QoGYTe9LX2mroOy93ztivbp9UZPA7Z+/X1rYnfa2+vcD8buAZvlMAAAAAOEuVyzeF6P20Jj+T/AAAAAAAwO+QsFE9b+wb9ikANB1M8gPAGfL3wbEnWe7OnGNqz6B3rrd/h9t1u2vHZnuvxvXWlSdXGgAAAAAAgCaiTJLNR+36ISb5AQAAAAANitrfTU9jfKeNfZz423FaU7a+p33zt23yNa4OAdBUMckPAAAAAAAAAAgcZPK7YJIfAOqhKWSAVNdvd+V1XMv8FDktdy7Rs1Du1GX/eLJfqyszVJ/2AAAAAABAAPLVZDuT/AAAAACAsxE/wiMQNMRxeiYJKt4oycPfPVfsDwBNFZP8AFAPgTQ4rGtfa4s3Jsx67snNe525jx/m9Pyieq27tpMnAAAAAADQhJTLN+V6yn3QpgeY5AcAAAAAAHUSSEkvvtQY+4nvonrceDgw8b0BdcckPwCgWqcHV6cz7J3r8Nf+OdfPVjyvfh1X1Kl/p/vEoA8AAAAAgLMGNfldMMkPAAAAAADQRDgn3JztyTBn+/YHKr43oO6Y5AdwVvP3AXB9++et7ar4rPP6qq9/73m2v8220OnVdx73o3L73vjO/P0YAAAAAAAAlZDJ76KZrzsAAAAAAAAAAADqh0x+AAAAAECTwk0bq8e+qV5T2TeB2m+usEVTwzHdwMokGR+0W+6DNj3AJD+As5q//0db3/55a7uqL81TtZ3qYt0td/1ckdM7bzs9/84ppuZ+eKK6AZa/HwMAAAAAAAA1YZIfAAAAANCk8CN+9dg31atp3/hbln9NSTD17Zuvt9HX+xRNj68z6TmmG5ivMurJ5AcABALnm+KevvGu+xvl2myfOy2/yGn5dLfL3d1k15gwp8+5vwmva+b/QrcxtWGABQAAAABAE0G5HhdM8gMAAABAE+TrDEYEPl9ndvvTMezr9ivzpGzmmawTDcOfjumzAfsYZxMm+QGgCTqzwaO7WvjO2fjOz99zej7Mqc073Pbl9DL3VwY4q+7ExR8Hav7ePwAAAAAAmhQy+V0wyQ8AAAAATVBD//Ds6yxvNDxvfaeeJkTU95jy1rFY03oC6XhviHr99W3f3/aTr/vmb/sDQNPBJD+As4KvB3ONz7k+vnON/TvcBVfLXU1+1yx9T+rjX+Tx+3Xtn79orGOqLsfx2XfMAwAAAADOGmWSTvqgXV+06YFmvu4AAAAAAAAAAACoH5sxxhfVi/CjwsJCORwOFRQUKDIy0tfdAc5qZD6f4i5r32YrcoqYVc0nhzk97+y0jjCndU//cZnzpc+fO33Ouca/8xUAtdftBwBfYCznX/g+gDMTSCVpcFpTKTME4Ozm6TiuIk4dCqRmPhjvnSyUvve/8SaZ/AAAAAAAAAAABChq8gMAAAAAUEe+vklsQ/CnvjQWb1zN21A3uvW0b5Xfq+lz/nT1sj//XaiLprIdQMApk2/S1/20Jj+T/ADwo4YcjJ3JzW/r1577wXt1JyDVbfvpUjrOZXROl+Ux5gqnWOeb8L7ntHxylXbq2g/XPk2v8pyBdMPwp5NAAAAAAAAsTPK78KtJ/tWrV+vJJ5/Uxo0btX//fi1ZskQ/+9nPrPeNMZo+fbr+9Kc/KT8/X7169dJzzz2nSy+91IopLi7WpEmT9Je//EVFRUUaMGCAnn/+eZ133nlWTH5+vsaPH693331XkjR8+HDNnTtX5557rhWze/dujR07VitWrFBYWJhSUlI0e/ZshYaGWjFbtmzRAw88oM8++0wtW7bU6NGj9fDDD8tmszXcTgIAAAAA+Fx9fwBvqB/O+XHedxpqf9e03vpePeCtvnrjeKvL5/w5W96f+gLg7OVXk/zHjx/XZZddprvvvls333xzlfdnzZqlOXPmaMGCBbr44ov12GOPadCgQdq+fbsiIiIkSRMmTNB7772nxYsXq1WrVpo4caKGDh2qjRs3KigoSJKUkpKivXv3aunSpZKk++67T6mpqXrvvVOZp+Xl5brhhhvUpk0brVmzRocPH9bIkSNljNHcuXMlnbrJw6BBg9S/f3/l5ubq22+/VVpamsLDwzVx4sTG2F0AAkhjZO+7tud+oOma1b/QbYzrTW7d3fDWOUv/9PParwaQbLav3URc5PS+c5+8e7Pdxr6aoinghAUAAAAA4JdKRSa/E7+a5B8yZIiGDBni9j1jjJ555hk99NBDGjFihCTp1VdfVUxMjBYtWqTRo0eroKBAL7/8sl5//XUNHDhQkvTGG2+offv2WrZsmQYPHqyvv/5aS5cuVU5Ojnr16iVJeumll9SnTx9t375dCQkJysrK0ldffaU9e/YoLi5OkvTUU08pLS1NM2bMUGRkpBYuXKgTJ05owYIFstvt6tq1q7799lvNmTNH6enpZPMDAAAAAAAAwFksIyND06e7Xo0UExOjvLw8r7bjV5P8Ndm5c6fy8vKUnJxsLbPb7UpKStLatWs1evRobdy4UaWlpS4xcXFx6tq1q9auXavBgwdr3bp1cjgc1gS/JPXu3VsOh0Nr165VQkKC1q1bp65du1oT/JI0ePBgFRcXa+PGjerfv7/WrVunpKQk2e12l5gpU6Zo165dio+Pd7sdxcXFKi4utl4XFhZ6Zf8AQF05Z7O7Zrk7Z/t/rqrcZeNXjnWO6VyHXlUXezqrv7ZLg6t7n+z9poeyBADOhrG1P5eogH/xxrFRl+OtqRybNd2/yp+3ydd9a+z2fb29APzQSUnGB+3Wo81LL71Uy5Yts15XVJvxJl9c1FAvFb9uxMTEuCx3/uUjLy9PoaGhioqKqjEmOjq6yvqjo6NdYiq3ExUVpdDQ0BpjKl7X9EvMzJkz5XA4rEf79u1r3nAAAAAAbjG2BgAAgL8LDg5WbGys9WjTpo332/D6GhtY5TI4xphaS+NUjnEX740YY0y1n60wZcoUpaenW68LCws5GQECXF2ziSvi65qN4o2sZdfspNO18KvL6j+dQT/MaZlztn11Gfvus/1Pc1pf9ytOP9/kviZ/dRlW7m44Vl2sJ8vPZvU9Ln0pkPoKoGGcDWNr/q1reIGUvd3Q6rLtTXE/eWeM7b2rA2oaswbKeJa/XwAaTJkkX1RL/zGTv/IVpHa73aXii7MdO3YoLi5OdrtdvXr1UmZmpi644AKvditgMvljY2MlVc2SP3jwoJVBHxsbq5KSEuXn59cYc+DAgSrrP3TokEtM5Xby8/NVWlpaY8zBgwclVb3awJndbldkZKTLAwAAAEDdMbYGAACAL7Rv397litKZM2e6jevVq5dee+01ffzxx3rppZeUl5envn376vDhw17tT8Bk8sfHxys2NlbZ2dnq3r27JKmkpESrVq3SE088IUnq0aOHQkJClJ2drdtuu02StH//fm3dulWzZs2SJPXp00cFBQX67LPP9JOf/ESStH79ehUUFKhv375WzIwZM7R//361bdtWkpSVlSW73a4ePXpYMVOnTlVJSYlCQ0OtmLi4OHXs2LFxdgoAAAAA4IyQWdz01Tcj3tNs+fq+dyYC5bgNlH6i8XGVB86YjzP59+zZ45JgUl0W/5AhQ6zniYmJ6tOnjy688EK9+uqrLleknim/muQ/duyYvvvudHmGnTt3avPmzWrZsqXOP/98TZgwQZmZmerUqZM6deqkzMxMtWjRQikpKZIkh8Ohe++9VxMnTlSrVq3UsmVLTZo0SYmJiRo4cKAkqXPnzrruuus0atQovfjii5Kk++67T0OHDlVCQoIkKTk5WV26dFFqaqqefPJJ/fDDD5o0aZJGjRplfXkpKSmaPn260tLSNHXqVO3YsUOZmZl65JFHai0fBKBpqetgpC43iz2Tdmpbt7tSN6di7qgSY8wVTsucS+qMqKbV06V7XD9bUcbHqZzPJufPfef0fHI163bu6zSXflZ+Xt99Wf2+8e7A058us/Z1+wAAAAAAeKxUPp3kr+9VpOHh4UpMTNSOHTu82i2/muTfsGGD+vfvb72u+DVj5MiRWrBggSZPnqyioiKNGTNG+fn56tWrl7KyshQREWF95umnn1ZwcLBuu+02FRUVacCAAVqwYIHLXYsXLlyo8ePHKzk5WZI0fPhwzZs3z3o/KChIH3zwgcaMGaOrrrpKYWFhSklJ0ezZs60Yh8Oh7OxsjR07Vj179lRUVJTS09O9+gsMAAAAAAAAAKBpKC4u1tdff62f/vSnXl2vzVTcLRY+UVhYKIfDoYKCAmqIAmeZhsziPpN1u81i7+60jk2fO71R3Y13q1MR87bTstNXAxgT5tQP5ysGqrsywLs3i63tRr5oeP50dQPgCcZy/oXvA/4iUMtQ+KLf3vi/vzH63VA3120ITXE85W/7uCkI1H0aqP1G7Twdx1XESQWSzQfjPVMoyfPx5qRJkzRs2DCdf/75OnjwoB577DGtWrVKW7ZsUYcOHbzWLb/K5AcAAAAAAAAAoCnYu3evfvGLX+i///2v2rRpo969eysnJ8erE/wSmfw+R7YRAE/VNyPHs5r8FznFONfkL/rx2azToRGn12EKndo5nWAvbSpyeuGc7V/RxhVVlp1qb6FTzB3VxHi+H7xRW78pZkL5CvsSTRFjOf/C9wHA37henVp1jOvpjX+dx+uV11NbG6i7syFb/GzYRgSWemXyyxfjvbpl8jeWZr7uAAAAAAAAAAAAqB/K9QBoEmqrzd4UMoi9n73vvO7qsn0qsvCdMoeOnq7Jb7M51+F3yvbX5NNPI5yy9i9y1w/nrKTvqunrRdU8r5+6ZPhXt/8C9TjypUDdZ3zvAPyZp1nA/PsFT3grszdQM4SrGyO64+k21ZZVX9N6PN9v39Ue4oGatr9u5yLOVxa49q2+9zJo7GMqUI7ZM+FP+9tbArXfgDeQyQ8AAAAAAAAAQIAikx9Ak1DbL/T+9At+bVcdeEN16/Ykq99mO52pX1E732Z7zylixOmnEWGnnx91XotTHf6jTs83VXx2mNM6nDL9jzrX8n/bbf9c+1p1Xzr336Udpz7VllFVXeajPx1HaDwN+b2TZQsAAAAAOFNM8gMAAABAA2iMH/K8U+oDOKXmG796XmrFn4+9xijnUVO5msrqW77GVfXlLM9ke+u7bzy98W9j9KUuvPVvtqfr8efSMv7Ul7oI1H4D3kC5HgAAAAAAAAAAApTNGGN83YmzWWFhoRwOhwoKChQZGenr7qAJaYySMGh4dckm8eRGYZ4cD+5veDvCXah0k1O5niVOpXZcyvg4l8+p4FTCp9ryP6fXZ8zp5e72ibsSQ9XFesKTz3kjprosL/7eAoGDsZx/4fsATvF1hnDjZMt7fpNYX5bHcx3veZ7l7s02G7v9xkDJQ//k6397ENg8HcdVxEn/leSL8V6hpNZ+N94kkx8AAAAAAAAAgABFJr+PkW0EnH3cZR1VX4vzIqeYO6qJqVlds8xdb1zb+cc/nTPvndzkdNPcJU4ZQzfd4X559x+Xb3K+wa7z+k5n7Bun++56Y3vrorr2yEQBUBljOf/SFL8PsiIDR1PILK5tzBWo21WThvjefH0seDp2rsuVwk1x35yN7fszb+wb/s8MbHXP5M+T7zL5Y/1uvEkmPwAAAAAAAAAAASrY1x0AgLpoCpkPtfXbk+3yRn356rP3v676vLtTZv53cu9Fp5jR1dQBtTL4ndL0rasFJD3gXE/feR0XOT13itd71XSmYh31O17qeu8C13250Gl5w9U89cZ9N7z996kp/P0EAAAAAASC0h8fvmjX/zDJDwAAAAB+ih9NA0dj3FzW0zbq+7nGON78rZyGr9uvSU0JFJ7eePhMbvzbEPumpnU2RsKIr79vX7fvz7yxb9i/OJsxyQ8goPCf9ik22+ma9saE/bjMeQD/ndP71dXkry573zlVf9ipP6qrob/rdA19veC0vLrM/4E//rnEORvf6fkA9/cjUMTp9ZnC04tttop+d3Za5v6Exzs1Hqu5QsFJQ2bvexvZ+wAAAACAwFT248MX7fofJvkBAAAAAF7HD8Fnrr77rSFukuqt9daUke5plre3+lJbGzW1V1O/G/umoTXHVVdr03vt10VD7DcAZ6sy+aZ0jn9O8nPjXQAAAAAAAAAAAhSZ/ACarOoycVxrVHqjhEvd1lGXG6ZWdxPXihI9de2fVX5HkutNayeffhrhtO6jbsrT3HT65rhaVk2jA52eb3Jax7IftyHiCrk10GmfLDldTsilRI/LRyvK9DiXGzqtrt9p7d+NJ2WQGufGu7VtG9mTqC+OHQDe0tD/hvi6truv228Mddmmhv7/ozGuTqhLG/W9P0JN66lv+zXX3b9InqrvVRZ14a2a/K771XUbA6l85tnMn/8NZTwcKLjxrjMy+QEAAAAAAAAACFA2Y4zxdSfOZoWFhXI4HCooKFBkZKSvuwM3+AUX7nj7Jq7eyDap7sa7rqrL5HG6+W1tmfrOWfrO7x91ujmvy9UAzjf4rWhn1ulF3Z3236ZqtqHaGOcb+FY4ndVf3X51zRo5fRXD6ZsYu88M8uR7qu0KEv5NAZoWxnL+he8DTV1dasb7E29fPVvbevx5P9lsRZWWzHIbJzV+Tfya9nHNVwvUv43q2vMFxumAb3k6jquIk76UFNFo/TvtqKRufjfeJJMfAAAAAAAAAIAARU1+oBaB9As+mQcNy5P9W5eY+taLP+V0bX1jKjLvq8ve96AOv94+/XSJ0+KKrH7njP1dTs9dsvSdvON0NcDP3NTfH+207cud3xjhvk+bnLY9wumzVvvONflP7wfXTCnnLCnn7Pwwp/j6fTfVcbeeM/nefVlrmH9TAAAAAAD+o0y+qY9f5oM2a8ckPwAAAADA4k8/8vrzjRlrcib9rmn/+1P5lrpwLftSv3XWtzxPXdqoS0mamtqv2/ZWH1uXNmtuw7P3ar5Jb3UJRXVT3xsW1+X7r//37f2bKftaoP4bCqDumOQHAoQnJ1u1/Yft6xM2X7d/pjzp8/+3d+/RUVR5HsC/DSSEQBLeJAgJKAgIyEKyA0FXFB1EB4fHKuAwGHdcMevwkgXEXR3CzKoIiI7sMIAL6nEUUCF4XBUX5SGSgJAExQERMJI4hEE5gUQlEMjdP5KuutVdVV1VXf1Kvp9zOFSqb1Xdul1dfbv7d3/XTplAudvN1ssdUo/nnQBl5Wj7u/zK+pPy3H/T8L+cb7+HlG//uBSlv0XaxVxp+SFpubfO4xpS9P546UOVJve/XrsZfSDZbLBejvb3vy6N5kuw8pyZfagz2y6YMoE4fe1F+nUa6/cMIiIiIiIiCpXLiExUPSP5iYiIiIiIKAqEO1rczvHDXZdQCKbe4T7ncLe/WxHZToMBzI7hG7lvFPjhy04bhmN0hPZ41kcn2DlH87YxHhHg1mvfjWAQqyM13DpeYxXNbWN1pFK01ZusqkVk0vVE4piB8Ut+ohjhxptOpN+4ojGfuNtv7Hb2Z6Vjbu2DhTc6X43A13Tmkwy20+TTl4bfDpYi9Xt4/5fWyVH1cv/9fWm5RM6Fr247Y+lSAMCKufPUh29TFzM391CWi+R8+uOl4+dLcwl46yofL0ktK6rU1Xai840et3IdBWL0vIfy9eH2vu3W2+lcB5Gud7j3R0REREREROQEv+QnIiIiIiKKIuH4ETHSP05G+vjkPnciq0OfVjBQZL1RWfO8+9poeaf5651GGps/Zj1a3Zf2vOyck3FZt3LyR9OIF6fCkS8/FHMZOD1GJO77Tl834ZirhNzAdD2yZpGuABEREREREREREREROcNIfooakf6FtymLZNuH8tiRSNFjp7zRZK1a8gSxxQZlvORJZqXJc+W0PEnSRLnjpeVrpOXV0m5ubfj/hLRui7Qsp+iZIf2avVpKr7NFXb9iQkOaHilFz4zNS9XHk6U0PvLkvMvkKKIJ6qKSpueIuq5anojYXnodtY3VfQSTosdOyibtvq3lfw2WndeClfM12l+03NOd5ut1Otk5ERERERERhcplRCY/fnRG8vNLfiIiIiIioijCHxGNhWISxaaQeqGxp4DyD0bwnfhVDZxxnvbGeOJZ3/Q0VtP8+HJ6LfqnC1IDfoQYAiOBgzh6GSw7n4jYqlBdT1bTM4XqeG4EwoQjzY5bYvV+2hgnhKfGj1/yU9SIxGSUboiluhqJZL2jLS+fl/5krPp5N+3uz3nE9Du6a70dbI9H7syrkfSaTn+1FOEvTYiLZdIxB0v1+6jh/x4GVZIj/LdKbynL1MUl6XOU5fnXvOC3nRLdDwDVUl1XSx8cBkvLJXojGvrpLnuS5TIToE8dAeH9EOTxqG2tHUHhToR/IKGM3tcex928t7F6D9TTmM4lFBrDex8REREREcUy5uSX8Ut+IiIiIiKiEIjmH8SiuW5mQhFdGe5o2kiMHDCbJNYsuCDSoxzcmHjWdz/ucTY6wK26WE3vaCdy3ezacFrvUEXOO72HNYYJe90axUREjQu/5KeoFEtvTOHK+x5KbtQ1WvYRimPqrbcfaX2X7jH1jmE8vPcuafkdnTLyMaTI9iSprnJ+/nwpj/146Ry/8asecI26mDlyj7Jc9P4N6gOrpPJStP18vKCu793wv5T3f1zVBmV5S9kk9YEMqa5brleXj0tDjm9tKPORNCpBzuVf4jt0uZ72A4s874Fe+SM664w/WNn5kGl3NIBeebdeN3pzRQQj0HUe7ew+T7F0bm5oaudLRERERETRphaRyckfiWMGxi/5iYiIiIiIQiCafxCLprrZiSyPJpHIg+3GD8zhaN9Q5AwPJiLcao58O485ZScnv/XH7LyGzIKPfOcykPdpfUSC1bzzbj2nZpw+37Ek3HMJuLVdNLV/NNWF7GC6Hhm/5CcKkVh6U4jkxEjRGoXsRsS0tqOgdpi928qdcaO871ryejmqXy/SXM0zj2qD3Y2XOv/50vFXq5HyadNKAQAVZd2VdUVrpOh9WckFZXGG+EhZfgvtlOWKNT3r91tVqqzbMmSyuo9bpf19JE8SJr2J3irVNamhjHauM+lx/VEMHs8FqZDOCIkk6fmVRz9ohmXLowEuSOvl+RD8rxk3ovfNytvhzgicwCMaQjNE3rce7kbVN7U5CIiIiIiIiCh28Ut+IiIiIiIiIiIiIoohlxGZ1DmM5CciIiIiIqImwvqkqbGRnieQcMzVYj5STh45qm1TtyYptTrZq51jhGICVadpYOw9b2p7m49a1KbAMXtu7DC7FvTnmfIyGh3s+5iWnbQ3bqTysUM7KhoQYoi07M7zHaoJhK0ez63UVVaFIx1ZNI2Kjaa6EDnFL/mJgtSUJ16MJk4nO7Wfdsd4nRltahe9baWJcjUfBOQ8NPoT7+rmzhwsfXiQU+Asu+BXFICa9gZA5jR1Yt3hKAAArBg3T1m3pHimsvwcHlGWK070VJa7o1xZ7opTyvLQafv8Dj28+DlleSPUiXc1aYGOS29Xq+U0Pm5raONq/VRLMo+mGkvU9R55vXFe0/qyzid3dXrNm3/os8/KFzNqiip7KYkCCSaFlhv3a97/iYiIiIiIIoU5+WX8kp+IiIiIiIhCwPzHbitiaTLEcNfNaSS7HeFpf+PrxK0f1M3bqlgqN8TnMbOIaf35meot0S0XaJ+aeaHgO3LC+sS35oJ/Xfoe315EvBxwYjSxlj/zY/jOURZ8UFAwIxfcmNzXvREn5EQ4gnmcv4YYaET6+CU/UZCa2k01XJNbmnW2gz2O3WhivYlyA0fmAxhsdMz5DfuQJ2g16uzK0ftStP9gqU1KXvN7PK1Yndi2YoIaYS9PyDtjsxph/xbuVpaLhqgR9EW5DcvLpNqveUE9zjT1OJ9szlKWbxxyQN1AGkmw94n6MPe4A0JZt+W4NPHuaOkX8WPqYtpSg/PJb/hAlaS2JaqlD1njpfX50CVfX+rzMF8qoTexMYASeViw/GFJHpXhv63RhzUrw98Dvf6MovQDTQJthfHIgOCH2Ft5bbkR7e+2pnb/JyIiIiIiih61iExO/kgcMzB+yU9ERERERESuMwuKcCOa1Uyg4zX2SMhQtZsb+/ENSnB6nbgRBetfN+vzHGgtMXksEOkYVdpHPJ7j0rJv3YxSeQKmEfJJ0nlU+waIaKP8zUYSGJXzPb7vdm7cF3y3tTOqJRSR9HZy5LuRTz8c7RYJoQjwCcfcAqFg1haRrhtFL37JT+Qip/mh3ZtwKLyTfYWSlej9wFHNgSN47UUe63fsDT8YlBjlPt/cUFbufMsdaqnDLuXK1xQpkaPVG+r1obqqYogU7S5F4WO6eg7l2KCW366WH1esrt+yRoqy95Ki7eXtlo2cqyzPKF6qLMujBOLmNUTw91Z3N26adLzt0vHuUBfvxltqvTd3l86hfrmobKha+LgUvX+rwXMgtatnjX4RPdoPJUajL+RI/glSee2EYL7r7E46qH//MP5AFaxAI12C24dRu1rfXzD5/vW2DeW9LpT36mj84BaNdSIiIiIioljHSH4Zv+QnIiIiIiIiIiIiohjCiXdlHiGECFyMQqWqqgopKSk4f/48kpOTI12dJidaoguDyXUdTPSqnXoFOobdc7CXJ1sOYTePVA5Fbm91n0bDXuX6TdAvMliKLvfuptp3gi4vgxzw8vrBUtR3D52i30D/8Wuk5RnqG1Nm+j5leW/VjcrysORPAADDUaCs645yZXkjJinLc6UhA8ugRvXLUfbe4xTNU/P+y/n2h0Kth3ycAgxXlidhI3zJ9Shao+7bMK+/p1LaWoq89+b21wxdlp9T+bnR2c5vWz36+zMavRLoNW4353yg69+t+6Kd+4fbx4j2KPzg7kfujgCj4LEvF10i8XxES38ykFiawDbcQjFpptPjuVU2mPQ1Vo9nhxupVcxS6WhHUgK+6Wusfg7xT61ifYShlvFnFt/RnfrzQ/nvR5uex3c7s36X70S71ie7NWP1dWInlY/ZpLxupaSx+pgv7Tld8HmslW9x2/X0P0bs3LNj5X3Qjmg+p2iuW7Cs9uO85YA1ABLDVj/VTwCmRV3/n5H8RERERERERERERBRDLiMyqXMYyU86GP3lTlSinV8yo+lXz2iMyLQTGRva6H2jiaR8I1G8x5nScAyj6I/AowG09dNGytQziOK2RNrWO9lVtXS8JKl95armSssPSeUHL9Qv47VVWn5efQNakj5HWZ6//QVlWXTwKMuev6hvC+uXjgegjcw/8Jka6b900AxlWc6bL7u6rEzdX/o9ALSR9/IoASu8efgBNcJfjt7/elpXZfkU1OUbJxxQd5IvRd8k6UTePCQtfyQtl/jn1a9nJarfe93pX8NaxlFb/tTXh1HUlLWc98f99iGL9L1T7/hG56jdTn7O9NvK7BhWj0NNF/ty0SXano9Q3DvDEd0Z6Xu+mVBMtmmnj2p9YkzfPoP5e5BVoZiYUhaq51t7zPk+x2xlUA4wm/hWW9Y8Wt08slzu1xuPADDjG9ltNlrTrZEEZn0S82h142h5s/q49TqxHi3v/HhWzzFUI15C8RpzYwRCMCJ9/FCIpvfoWBq5EUr2I/lXAnA2kiY4FwA8HDX9TS9G8hMRERERERERERFRDGFOfhm/5CciIiIiokYp0hHpocivbB4ha5bP2/p+3IjCDbRdKM7f6f7ttKnVa8o/evsdadmdnPxO29ROtLjzHPlmx9dGXZpH5PczKOe7T98o/ws+f5tFhcuR/Nrje6SnUfgMzjAaLei7H4/HaL6thv06fE7No9Xl4zudC818BIaW9hydjoI0nwNBWzfz/ZrP46Yez85cBvKxrUeym7WpW/cp96LQjZ+3cBxfW5dwRLYbv07cGuVhVk4+hlsjs5rqCACqxy/5yTG3PjS5cROK9huZvXRC9jpEdifd1KuH0xQ9xqlzjPatnzLH3nYyvZQ5Rml09CfE9R9aq0enY54k9fg1E+ge0S/TS1ouaXiOV0vtu0raRYm0v63Sh6C5UvneUvnRDb8iD1Bv6ZlVe5RlOWWNPIGtbPyg9cryjEFLleXJ+VsAAPdmvqms8+yTsrz9RV185IkVyvI9yer+Pkkf5ne8LWV3K8uT0tWJdO+u2qIsP5espgKS671l+2S1riPr61p0TE3Xc/X2U8rykpEz1YNKkw5nSp/S5EmAM5fu8VuHLdKv9Ful53G0tF5qe02qn2V6190SaVn+sGT+AbCeen17PyB71ExLJil6jNLQFPuVN37t6b8O5deQ0aRj6nECpxYy/lDWy6+8tcm1jxisl+sX6D4aeII6vX0Ek/ooUNqzaEmZREREREREFBm1iMxX25GYByAwfslPRERERESNUjT9IBWOuljN0R0cqznS3YlStMP5KAPjERDuRXMat5tbzIKFrAYSBXOdWN2vb3sbBSDUM57LQN6PeQQ4oA1W8A0K0pk7y6tEPobvPo3m/9Iyey7q/w4+17l/ObP5ncwCS8zmHfPdzmw/6vH9nxtrIz78aYNnrObdd35NG8/rEJi117u9kTJO6+J7TLNofWf3JqvXsFsjF5wKVdS71dEioTinaOrnUOTxS35yzO7NJFoiAIOZINZ5vQNHvKvrjCaPNHqTN+9AWGl3K+elRs6aTVplXj/9jrDREFyjyUb1O5NqXYw6tJvNKqlD6uAOHuK/69vkslL08odSpPcWqYi87dyG50mO3pcsEY8qy/PLlusX2qrevr2T6c7brUbSX67S32xOshpFvn7keGX53jI1Un9cujqBbun4NABAGsqVdY9Me05ZlifQLUeaspy//F5lec+cTGXZO4GvqIxT1mWlf6JWUJqzRp6Qd16+em5Z49WJd72T8C5ZqkbsP1Kllp0jR83P0M+b543eB4BJqB9VMHypeuy3oI46qEBPdcNx0luoPJpjmXTMuTqvLXkEh/zy6CFdO/nyByz5mlevY/WDplx2gvS4/CF5vrReP1JfHUpu8MErSY6al/d9RFovX+jqMb0pC+Th6tr7hzxCIfCHC71RB3bv7fr338D3SDfeHyIx+s2N92B+iCAiIiIioujBnPyyZpGuABEREREREREREREROcNI/iYqElH14TqO3rnZjbx0o65OI0mN6Ufsa4e+mu/bKILXaH96w1q10bcGUcNyLnp5yGu1XvSvHKUs5ydXo6G17ScVGSznufdGAhsMG9XUQ4q6HqyfQxw9/FelFZcqyxVlajS5JqL7C+kX3eNStP00NdK8YFp9fnk5t/y4kRt0qyFH1S/HHGW5Z6cKZXkP6iPlSwepkfQ9P1Mf3zBonLLsjXwHgO5SdL6cN/+G/CJleen4+rz4p2Zcra5boebKP5B/o1pZtQhmzlGfPzkiPz+/PsL/NWm07V1Q9zH5WXW95241z52AGvmvd8w9g9TRAi3UpwmTBqn5/l8oUq+v0nSprcZKbfX2OADaOQC6Qs3xr4nkvxUS6TrqIb327pCK/HfD/3LO/tXQd1I9X4yTrvNcaXluw//y9ZwkX88G80aMl+qX77+tkEaBaO4H1Ub5/uUh7tK+pde7//B2QL5/yLn8rdyn7HB6LzZ6PJg8+25sp5eTP5Tv6cHMH0AUbTg5nXVuzPlUvx9n6WPM0nBYn/hVu51/ihhr7yvWRq76cz7ZJ6B9/zNL32In7YlZ+hSzFC2+7ehsgkmrz43/tfCObjl/vvMgLdEtVc/3fKX6VPumCzIjjxo2TgHk1xZJPtdGtbNrzOq16TsJtNxH9N+H8QTCvp+ztP1B33nO5FHUvm0j/+37PMmfB7Ujsf0nbDa7buXrwXdEt9lcS8bHN29vo1HozoWyPxnsfuxMum01BZGdsv73RXmeMd9Jz91KVRf7nL4P2jtGuD8XXEZk8uNHZyQ/v+QnIiIiIiIiIiIiohjCdD0yjxBCRLoSTVlVVRVSUlJw/vx5JCcnB94gCuhFEeo9blbGzXoEcxxrEYrWJqky25/Rr/6BcuhrywZuby3vr+lyFIMafSH/wi1HXmgjauVIFm9Uh1GUghz1IUVAyJHF1XqRRwYTVg2W2kaa8EoTkS8HDJQ0nMN46Xijpce36tUZwIfS8jJp+Zi03Lv+v7Rpaoj4I1Dz0s9PfkEtu0Xa7r/VxbTN0iiA7fXR4J+MzFLWyRH29ybnK8vrq9S8+XJ0uXx8r57XqxHplz/xexgAcE/yemXZm38eAO6u2qJTGkhP/hqANpIfZeri+LfV/b3eRs3DX/yDGlmvNzJANu8zNYf+hRvU9fI+5Nz/cr297Sa3nzxyQI7C716lto/cDvKIitqs+pDzuD+ob41yvn/5OHI9ZMuUEHvt6Iur59XXZdxSddTGljI13788z4KGfJ33UjsTmen7AACn0FVZVzFPGmnQW9pOvp4/kpb1Xn5Gc8iVyPcDozkDAtwH5FEMy6T7wWDp/lZiFCUl3cu8+6vWu0dZu59r743eKDL5/uYbyea/b+N7vrdeVuoU+J5v5/3O/TllYlM4o4hisS/XmIXq+bDTHzTeh9kEi9aj60I1GaNVTu9Jbk3GaDUq09790iwi3jjq13m9ffvT+u85+mXl45tFrJpNtuob9a5GLNuZTNmXeTStb6S3Ud3M2kLLdMLeJJ/odYM+Qz2rz7+2TbWfp8xGR/hGnPtElmtGHNtpb2sTz/qfn/7nw3q+bWMc2a7lc3x5XqqPtA+hxOl1ajzRr//1ZtRvBbTn4dtuZhM0W782zUaumH9PIB9TezzrkfW+z7fZtWGH+lyZ3XucTnIeiFmUvxsT39qZBNneqDWnE8Lrf0fjX65xjFJUz6MGwOKA/Thvfw9YBCAhDDX0VQNgYdT1/5mT3wUrV65Ez549kZCQgMzMTOzevTvSVSIiIiIiIiIiIiJqpGoj+C/6MF1PkDZu3IjZs2dj5cqVuOGGG7B69WrccccdOHz4MNLT0yNdPSIiIiIiCpIbeWvNouvs7D/SUXp2jm9+zs7Ow63zd2MksJ0ISvOITTsRu69Jy2aRxcaP+ec2l/P1B5O/Ws6fbydaXo1eNouQ9Y3sNs2RXm2WP963sMFIRADanPG+56RGM5vPK2EeAS7PhwRYzzVuPK8aYDavkfkIAO3zpL1WzCKUfZ7fZVaPYWfkgM9+kkxGcmj2a3YtmkW9G9fbzgh/32No2994tIDz0U/GIwdCxeox3MoB79b7kNVygfZhdl7O3+uMo/fd2H+08Z5HfYT+4gjXJnbxS/4gLV++HA888AD+9V//FQDw/PPP44MPPsCf//xnPP300xGuXWgEvsHFzkS+VvbhxoeuUH5wC2aYtLpeTtFjddgnYGnIoqZPI6fk8HbEpM76R9Ib2ThpMzl1T67BcbbWbztj81Jl1Yp589THp6uLmSP3KMtFE6T8MKOlvGqrzG+PcvqYtKpS3TLLR6qpWuZgufrA+/X/3TPyTWXV3VAn2B1XpaZzubdMLfO1wQ+HV5fV588Z97m6jzer1NQ5zyWrKXLkyXbv3a6mBVomtYmsrKo+TY9nnvpLtTdNjO/+Eg9Lv2ZLKX3wndSWDZ9NZhSrz1PWIDW3UNG16vOxHmqqohUT1Oey+2b1mPPX1KdKGjdNbbP589T0STOWqscpT1ZT7ezDULXMyKXS+voUQXJKHfkcn8Mj6v6k1D3ysuweqM8fZtRfX3J6IO+1AEAzlHlcsZTSZ4haPq1YrYs3TY9mEmh5ol8ptQ96Sc+BURof7yTActqqudKy/CFETsPVS54AG/plvEPklxncM0qMPuzIH9ClD9nV9TcW7b3Vd1K5etZSbOjdG/X3JzO+p3q3db4Pu2WclG3M2A5ERERERI0dc/LL+CV/EC5duoSioiIsWLBAs37UqFEoKCjQ3ebixYu4ePGi8vf58+cB1P9aRRQaNcqStevsJ91tVT8EeBwApONcMRrG5N2PVPZHqaw8W8gVadkonWfDppeqpDpdlPct7a5K+qNWKlMt3aivSLfHhpdsXVW1VCV1H3VQ18t+koZwaco01Eve3yWpLWvl56C6Slqs0z2Ot0xtlbqd/FTX4JLucfCjWkjTJhJlP9X6ZY3qqnFBasuG51J+nq5onxxl8acq6XqQnqeaKvV8cMH/3OXnXT6OXFf5+ZDb5MeGCspljZ5HuYzmHIx42+dH/2urYSfqvuXzkdpEvmb89uu7b/l6ltfLryH5+ELncc2sPdIDQnpu5NenfH/QhKV51xvdM+T7zg8G62v81tu9p/G9lkLBe11xmqvIYN+aws/ovSyY6067T/P9BOqrB+a/f+v7Ma+b2X5+MnlMfe/337+8ndlj5rT7/cHnUbne1tvGrefJfD9mbSPzPYZZ/8esbto2tX5Ms+fC7Bi+j1UZlNMpq9vXNNqv0fF9Wdsu8GvdatsY19vsdWrnNcz3Q4ol9vvVFwMXCYlIHdccJ94NwqlTp3DVVVdhz549GD5cnRDzqaeewiuvvIKjR4/6bZOXl4dFi4IZAklERERE0ebEiRO4+uqrAxckV7FvTURERNS4BOpX19TUoGfPnjh9+nQYa6WVmpqK0tJSJCREYuJfffySPwjeL/kLCgqQnZ2trH/yySfx6quv4ssvv/Tbxjfa6Ny5c8jIyEBZWVnDzNBkRVVVFbp3747y8vKomsk6FrDtnGG7OcN2c45t5wzbzRm2m3Pnz59Heno6Kisr0bZt20hXp8lh39odvAc4w3Zzjm3nDNvNGbabc2w7Z9huztjpV9fU1ODSpUumZUIpPj4+qr7gB5iuJygdO3ZE8+bN/X45OnPmDLp06aK7TcuWLdGyZUu/9SkpKXzhO5CcnMx2c4ht5wzbzRm2m3NsO2fYbs6w3Zxr1qxZpKvQJLFv7S7eA5xhuznHtnOG7eYM2805tp0zbDdnrPSrExISou5L9kjjp5EgxMfHIzMzE9u2bdOs37ZtmyZ9DxERERERERERERFRKDCSP0hz5szB1KlTkZWVhezsbKxZswZlZWXIzc2NdNWIiIiIiIiIiIiIqJHjl/xBmjRpEs6ePYvf//73qKiowIABA/Dee+8hIyPD0vYtW7bEwoULdYcZkzG2m3NsO2fYbs6w3Zxj2znDdnOG7eYc2y668Plwhu3mDNvNObadM2w3Z9huzrHtnGG7OcN2Cw4n3iUiIiIiIiIiIiIiilHMyU9EREREREREREREFKP4JT8RERERERERERERUYzil/xERERERERERERERDGKX/ITEREREREREREREcUofskfYk8++SSGDx+OxMREtG3b1tI2Qgjk5eWha9euaNWqFW6++Wb89a9/1ZS5ePEiZsyYgY4dO6J169b45S9/iW+//TYEZxAZlZWVmDp1KlJSUpCSkoKpU6fi3Llzptt4PB7df0uXLlXK3HzzzX6PT548OcRnE15O2u7+++/3a5dhw4ZpyvCa06qtrcWjjz6KgQMHonXr1ujatSvuu+8+nDp1SlOuMV5zK1euRM+ePZGQkIDMzEzs3r3btPyuXbuQmZmJhIQEXH311Vi1apVfmU2bNuG6665Dy5Ytcd111yE/Pz9U1Y8YO+22efNm/PznP0enTp2QnJyM7OxsfPDBB5oyL7/8su49r6amJtSnElZ22m3nzp26bfLll19qyjWF6w2w13Z67wMejwf9+/dXyjSFa+7jjz/GXXfdha5du8Lj8WDLli0Bt+E9LrzYt3aGfWvn2Ld2hn1ra9ivdo59a2fYt3aOfWv72LcOM0Eh9bvf/U4sX75czJkzR6SkpFjaZvHixSIpKUls2rRJHDp0SEyaNEmkpaWJqqoqpUxubq646qqrxLZt20RxcbG45ZZbxKBBg8Tly5dDdCbhNXr0aDFgwABRUFAgCgoKxIABA8SYMWNMt6moqND8W7dunfB4POLEiRNKmREjRogHH3xQU+7cuXOhPp2wctJ2OTk5YvTo0Zp2OXv2rKYMrzmtc+fOidtuu01s3LhRfPnll6KwsFAMHTpUZGZmaso1tmtuw4YNIi4uTrz44ovi8OHDYtasWaJ169bi5MmTuuW//vprkZiYKGbNmiUOHz4sXnzxRREXFyfeeustpUxBQYFo3ry5eOqpp8SRI0fEU089JVq0aCH27t0brtMKObvtNmvWLPHMM8+ITz/9VHz11VfiscceE3FxcaK4uFgp89JLL4nk5GS/e19jYrfdduzYIQCIo0ePatpEvk81hetNCPttd+7cOU2blZeXi/bt24uFCxcqZZrCNffee++J//zP/xSbNm0SAER+fr5ped7jwo99a2fYt3aOfWtn2LcOjP1q59i3doZ9a+fYt3aGfevw4pf8YfLSSy9Z+iBSV1cnUlNTxeLFi5V1NTU1IiUlRaxatUoIUX+ziIuLExs2bFDK/O1vfxPNmjUTW7dudb3u4Xb48GEBQPMCLSwsFADEl19+aXk/Y8eOFSNHjtSsGzFihJg1a5ZbVY06TtsuJydHjB071vBxXnPWfPrppwKA5o2+sV1zP/vZz0Rubq5mXd++fcWCBQt0y8+fP1/07dtXs+6hhx4Sw4YNU/6eOHGiGD16tKbM7bffLiZPnuxSrSPPbrvpue6668SiRYuUv62+r8Qyu+3m/SBSWVlpuM+mcL0JEfw1l5+fLzwej/jmm2+UdU3hmpNZ+SDCe1zksG9tHfvWzrFv7Qz71tawX+0c+9bOsG/tHPvWwWPfOvSYrifKlJaW4vTp0xg1apSyrmXLlhgxYgQKCgoAAEVFRaitrdWU6dq1KwYMGKCUiWWFhYVISUnB0KFDlXXDhg1DSkqK5fP7+9//jnfffRcPPPCA32OvvfYaOnbsiP79+2Pu3Lmorq52re6RFkzb7dy5E507d8a1116LBx98EGfOnFEe4zVnzfnz5+HxePzSBzSWa+7SpUsoKirSXAcAMGrUKMN2Kiws9Ct/++2348CBA6itrTUt0xiuLcBZu/mqq6tDdXU12rdvr1n/ww8/ICMjA926dcOYMWNQUlLiWr0jLZh2Gzx4MNLS0nDrrbdix44dmsca+/UGuHPNrV27FrfddhsyMjI06xvzNecE73HRj31r9q2Dwb61M+xbB8Z+tXPsWzvDvrVz7FuHD+9zwWkR6QqQ1unTpwEAXbp00azv0qULTp48qZSJj49Hu3bt/Mp4t49lp0+fRufOnf3Wd+7c2fL5vfLKK0hKSsKECRM066dMmYKePXsiNTUVX3zxBR577DF89tln2LZtmyt1jzSnbXfHHXfgnnvuQUZGBkpLS/HEE09g5MiRKCoqQsuWLXnNWVBTU4MFCxbgV7/6FZKTk5X1jema+/7773HlyhXd+5NRO50+fVq3/OXLl/H9998jLS3NsExjuLYAZ+3m69lnn8WPP/6IiRMnKuv69u2Ll19+GQMHDkRVVRX++Mc/4oYbbsBnn32G3r17u3oOkeCk3dLS0rBmzRpkZmbi4sWLePXVV3Hrrbdi586duOmmmwAYX5ON5XoDgr/mKioq8P777+P111/XrG/s15wTvMdFP/at2bcOBvvWzrBvHRj71c6xb+0M+9bOsW8dPrzPBYdf8juQl5eHRYsWmZbZv38/srKyHB/D4/Fo/hZC+K3zZaVMJFltN8D//AF757du3TpMmTIFCQkJmvUPPvigsjxgwAD07t0bWVlZKC4uxpAhQyztOxJC3XaTJk1SlgcMGICsrCxkZGTg3Xff9fswZ2e/kRaua662thaTJ09GXV0dVq5cqXksVq85M3bvT3rlfdc7uefFGqfnuH79euTl5eHtt9/WfGAeNmyYZhK/G264AUOGDMGKFSvwwgsvuFfxCLPTbn369EGfPn2Uv7Ozs1FeXo5ly5YpH0Ts7jOWOT3Pl19+GW3btsW4ceM065vKNWcX73HBY9/aGfatnWPf2hn2rd3HfrVz7Fs7w761c+xbhwfvc87xS34Hpk+fjsmTJ5uW6dGjh6N9p6amAqj/9SotLU1Zf+bMGeWXqtTUVFy6dAmVlZWa6I8zZ85g+PDhjo4bDlbb7fPPP8ff//53v8e+++47v1/r9OzevRtHjx7Fxo0bA5YdMmQI4uLicOzYsajuFIar7bzS0tKQkZGBY8eOAeA1Z6a2thYTJ05EaWkptm/frok00hMr15yejh07onnz5n6/kMv3J1+pqam65Vu0aIEOHTqYlrFzzUYzJ+3mtXHjRjzwwAN48803cdttt5mWbdasGf7xH/9Red3GumDaTTZs2DD85S9/Uf5u7NcbEFzbCSGwbt06TJ06FfHx8aZlG9s15wTvce5g39oZ9q2dY9/aGfat3cN+tXPsWzvDvrVz7FuHD+9zwWFOfgc6duyIvn37mv7zjXKxyjv0UB5ueOnSJezatUvp8GVmZiIuLk5TpqKiAl988UVUdwqttlt2djbOnz+PTz/9VNl23759OH/+vKXzW7t2LTIzMzFo0KCAZf/617+itrZW86EvGoWr7bzOnj2L8vJypV14zenzfgg5duwYPvzwQ+VNx0ysXHN64uPjkZmZ6Tccetu2bYbtlJ2d7Vf+//7v/5CVlYW4uDjTMtF8bdnhpN2A+iij+++/H6+//jp+8YtfBDyOEAIHDx6MyWtLj9N281VSUqJpk8Z+vQHBtd2uXbtw/Phx3bzbvhrbNecE73HuYN/aGfatnWPf2hn2rd3DfrVz7Fs7w761c+xbhw/vc0EK7by+dPLkSVFSUiIWLVok2rRpI0pKSkRJSYmorq5WyvTp00ds3rxZ+Xvx4sUiJSVFbN68WRw6dEjce++9Ii0tTVRVVSllcnNzRbdu3cSHH34oiouLxciRI8WgQYPE5cuXw3p+oTJ69Ghx/fXXi8LCQlFYWCgGDhwoxowZoynj225CCHH+/HmRmJgo/vznP/vt8/jx42LRokVi//79orS0VLz77ruib9++YvDgwY2m3YSw33bV1dXi3//930VBQYEoLS0VO3bsENnZ2eKqq67iNWfSbrW1teKXv/yl6Natmzh48KCoqKhQ/l28eFEI0TivuQ0bNoi4uDixdu1acfjwYTF79mzRunVr8c033wghhFiwYIGYOnWqUv7rr78WiYmJ4pFHHhGHDx8Wa9euFXFxceKtt95SyuzZs0c0b95cLF68WBw5ckQsXrxYtGjRQuzduzfs5xcqdtvt9ddfFy1atBB/+tOfNNfWuXPnlDJ5eXli69at4sSJE6KkpET8y7/8i2jRooXYt29f2M8vVOy223PPPSfy8/PFV199Jb744guxYMECAUBs2rRJKdMUrjch7Led169//WsxdOhQ3X02hWuuurpa6asBEMuXLxclJSXi5MmTQgje46IB+9bOsG/tHPvWzrBvHRj71c6xb+0M+9bOsW/tDPvW4cUv+UMsJydHAPD7t2PHDqUMAPHSSy8pf9fV1YmFCxeK1NRU0bJlS3HTTTeJQ4cOafZ74cIFMX36dNG+fXvRqlUrMWbMGFFWVhamswq9s2fPiilTpoikpCSRlJQkpkyZIiorKzVlfNtNCCFWr14tWrVqpXmz9iorKxM33XSTaN++vYiPjxfXXHONmDlzpjh79mwIzyT87LbdTz/9JEaNGiU6deok4uLiRHp6usjJyfG7nnjNaduttLRU97Utv74b6zX3pz/9SWRkZIj4+HgxZMgQsWvXLuWxnJwcMWLECE35nTt3isGDB4v4+HjRo0cP3S8K3nzzTdGnTx8RFxcn+vbtq+k4NhZ22m3EiBG611ZOTo5SZvbs2SI9PV3Ex8eLTp06iVGjRomCgoIwnlF42Gm3Z555RlxzzTUiISFBtGvXTtx4443i3Xff9dtnU7jehLD/Wj137pxo1aqVWLNmje7+msI1t2PHDtPXHu9xkce+tTPsWzvHvrUz7Ftbw361c+xbO8O+tXPsW9vHvnV4eYRomMGAiIiIiIiIiIiIiIhiCnPyExERERERERERERHFKH7JT0REREREREREREQUo/glPxERERERERERERFRjOKX/EREREREREREREREMYpf8hMRERERERERERERxSh+yU9EREREREREREREFKP4JT8RERERERERERERUYzil/xERERERERERERERDGKX/ITEYXBzTffjNmzZ0e6Gk1CXl4ePB4PPB4Pnn/++YjUoUePHkodzp07F5E6EBERETVG7FeHD/vVRESxg1/yExFRWN1///0YN25cSI/Rv39/VFRUYNq0aSE9jpH9+/dj06ZNETk2ERERETUN7FcTEZEXv+QnImpiamtrI10FV1y6dMnwsRYtWiA1NRWJiYlhrJGqU6dOaN++fUSOTUREREThwX516LFfTURkDb/kJyIKk8uXL2P69Olo27YtOnTogMcffxxCCMPyeXl5+Id/+AesXr0a3bt3R2JiIu655x7NMNX9+/fj5z//OTp27IiUlBSMGDECxcXFmv14PB6sWrUKY8eORevWrfFf//VfuHLlCh544AH07NkTrVq1Qp8+ffDHP/5Rs503Muipp55Cly5d0LZtWyxatAiXL1/GvHnz0L59e3Tr1g3r1q3TbPe3v/0NkyZNQrt27dChQweMHTsW33zzjXJOr7zyCt5++21l2O3OnTsDbifX5+mnn0bXrl1x7bXX2mp/j8eD1atXY8yYMUhMTES/fv1QWFiI48eP4+abb0br1q2RnZ2NEydO+D0H69atQ3p6Otq0aYN/+7d/w5UrV7BkyRKkpqaic+fOePLJJ23VhYiIiIicY7+a/WoiItLil/xERGHyyiuvoEWLFti3bx9eeOEFPPfcc/if//kf022OHz+ON954A++88w62bt2KgwcP4re//a3yeHV1NXJycrB7927s3bsXvXv3xp133onq6mrNfhYuXIixY8fi0KFD+M1vfoO6ujp069YNb7zxBg4fPozf/e53+I//+A+88cYbmu22b9+OU6dO4eOPP8by5cuRl5eHMWPGoF27dti3bx9yc3ORm5uL8vJyAMBPP/2EW265BW3atMHHH3+MTz75BG3atMHo0aNx6dIlzJ07FxMnTsTo0aNRUVGBiooKDB8+POB2Xh999BGOHDmCbdu24X//939tPwd/+MMfcN999+HgwYPo27cvfvWrX+Ghhx7CY489hgMHDgAApk+frtnmxIkTeP/997F161asX78e69atwy9+8Qt8++232LVrF5555hk8/vjj2Lt3r+36EBEREZF97FezX01ERD4EERGF3IgRI0S/fv1EXV2dsu7RRx8V/fr1M9xm4cKFonnz5qK8vFxZ9/7774tmzZqJiooK3W0uX74skpKSxDvvvKOsAyBmz54dsI4PP/yw+Od//mfl75ycHJGRkSGuXLmirOvTp4/4p3/6J83xWrduLdavXy+EEGLt2rWiT58+mvO8ePGiaNWqlfjggw+U/Y4dO1ZzbKvbdenSRVy8eNH0PBYuXCgGDRrktx6AePzxx5W/CwsLBQCxdu1aZd369etFQkKCZl+JiYmiqqpKWXf77beLHj16+LXL008/rTnejh07BABRWVlpWl8iIiIiso79avariYjIHyP5iYjCZNiwYfB4PMrf2dnZOHbsGK5cuWK4TXp6Orp166bZpq6uDkePHgUAnDlzBrm5ubj22muRkpKClJQU/PDDDygrK9PsJysry2/fq1atQlZWFjp16oQ2bdrgxRdf9Nuuf//+aNZMfavo0qULBg4cqPzdvHlzdOjQAWfOnAEAFBUV4fjx40hKSkKbNm3Qpk0btG/fHjU1NZrhur6sbjdw4EDEx8cb7ieQ66+/XnMu3n3K62pqalBVVaWs69GjB5KSkjRlrrvuOr928bYBEREREYUW+9XsVxMRkVaLSFeAiIis836Y8f5///3347vvvsPzzz+PjIwMtGzZEtnZ2X6TZ7Vu3Vrz9xtvvIFHHnkEzz77LLKzs5GUlISlS5di3759mnJxcXF+x9dbV1dXBwCoq6tDZmYmXnvtNb+6d+rUyfC8rG7nex52yXX3tqHeOu/5+D7uLWPWBkREREQU/divZr+aiKgx4Zf8RERh4ptb0pvrs3nz5obblJWV4dSpU+jatSsAoLCwEM2aNVMmx9q9ezdWrlyJO++8EwBQXl6O77//PmBddu/ejeHDh+Phhx9W1plFBFk1ZMgQbNy4EZ07d0ZycrJumfj4eL8oKyvbEREREREB7Fd7sV9NREReTNdDRBQm5eXlmDNnDo4ePYr169djxYoVmDVrluk2CQkJyMnJwWeffYbdu3dj5syZmDhxIlJTUwEAvXr1wquvvoojR45g3759mDJlClq1ahWwLr169cKBAwfwwQcf4KuvvsITTzyB/fv3B32OU6ZMQceOHTF27Fjs3r0bpaWl2LVrF2bNmoVvv/0WQP0w3c8//xxHjx7F999/j9raWkvbEREREREB7FezX01ERL74JT8RUZjcd999uHDhAn72s5/ht7/9LWbMmIFp06aZbtOrVy9MmDABd955J0aNGoUBAwZg5cqVyuPr1q1DZWUlBg8ejKlTp2LmzJno3LlzwLrk5uZiwoQJmDRpEoYOHYqzZ89qoo+cSkxMxMcff4z09HRMmDAB/fr1w29+8xtcuHBBiSR68MEH0adPHyVv6Z49eyxtR0REREQEsF/NfjUREfnyCCFEpCtBRET+8vLysGXLFhw8eDDSVYkp0dJuO3fuxC233ILKykq0bds2onUhIiIiasqipX8Ya6Kl3divJiIKjJH8RETU6Bw6dAht2rTRRGeFU//+/XHHHXdE5NhERERERG5hv5qIKDZw4l0iImpUZs6ciV//+tcAgE6dOkWkDu+99x5qa2sBgMOiiYiIiCgmsV9NRBQ7mK6HiIiIiIiIiIiIiChGMV0PEREREREREREREVGM4pf8REREREREREREREQxil/yExERERERERERERHFKH7JT0REREREREREREQUo/glPxERERERERERERFRjOKX/EREREREREREREREMYpf8hMRERERERERERERxSh+yU9EREREREREREREFKP+HwD8EWK7nOh+AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1800x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#b parameter des fits [:,1] hat für lost eine breitere Verteilung. Warum?\n",
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
"\n",
"#isolate b parameters for analysis\n",
"b_found = scifi_fitpars_found[:,1]\n",
"b_lost = scifi_fitpars_lost[:,1]\n",
"\n",
"brem_energy_found = scifi_fitpars_found[:,5]\n",
"brem_energy_lost = scifi_fitpars_lost[:,5]\n",
"\n",
"\n",
"bs_found, vtx_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n",
"bs_found = ak.to_numpy(ak.ravel(bs_found))\n",
"vtx_types_found = ak.to_numpy(ak.ravel(vtx_types_found))\n",
"\n",
"bs_lost, vtx_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n",
"bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n",
"vtx_types_lost = ak.to_numpy(ak.ravel(vtx_types_lost))\n",
"\n",
"\n",
"\n",
"\n",
"#Erste Annahme ist Bremsstrahlung\n",
"\n",
"fig = plt.figure(figsize=(18,6))\n",
"axes = ImageGrid(fig, 111, # similar to subplot(111)\n",
" nrows_ncols=(1, 2), # creates 2x2 grid of axes\n",
" axes_pad=1, # pad between axes in inch.\n",
" cbar_mode=\"single\",\n",
" cbar_location=\"right\",\n",
" cbar_pad=0.1,\n",
" aspect=False\n",
" )\n",
"\n",
"\n",
"h0 = axes[0].hist2d(b_found, brem_energy_found, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n",
"axes[0].set_xlim(-1,1)\n",
"axes[0].set_xlabel(\"b parameter [mm]\")\n",
"axes[0].set_ylabel(r\"$E_{ph}$\")\n",
"axes[0].set_title(\"found photon energy wrt b parameter\")\n",
"\n",
"h1 = axes[1].hist2d(b_lost, brem_energy_lost, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n",
"axes[1].set_xlim(-1,1)\n",
"axes[1].set_xlabel(\"b parameter [mm]\")\n",
"axes[1].set_ylabel(r\"$E_{ph}$\")\n",
"axes[1].set_title(\"lost photon energy wrt b parameter\")\n",
"\n",
"fig.colorbar(h0[3], cax=axes.cbar_axes[0], orientation='vertical')\n",
"\n",
"\"\"\"\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAAIhCAYAAACrEJ+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFBUlEQVR4nOzdeXQUVdrH8V+TnSUNQUlAEEERDCgCRjbZZB9xXAfcEBAXxjiK6KiMC8R3BNEZRKVRcdS4DMsoq4qDoCwqUSObDnFjRGEwEWEgAWRL575/MGnpdCXpht5S/f2cU+fQlVu3blV19324fesphzHGCAAAAAAAAACiRK1INwAAAAAAAAAAjsWgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCVsb+7cuWrbtq1SUlLkcDi0YcOGSDfJ0sSJE+VwOCLdDC8Oh0MTJ04MeLslS5Yc13bV6d27t3r37l1tue+//14Oh0O5ublBb0N1ZsyYEdB+HQ6HbrvtttA1yOZC9V4DAIRPbm6uHA6Hvv/++5DUH2jfHC4rV66Uw+HQypUrA942VMfkb+wX6mtWmV9++UUTJ070+5yVn+M33ngjtA2zAWIqANGIQUvY2s8//6zhw4fr9NNP1z//+U/l5eXpzDPPjHSzbG/JkiXKyckJer0zZszQjBkzgl5vMEXrf4zsKlTvNQCAfdixbw7VMeXl5enGG28Mer3B8ssvvygnJ+e4BnpRNWIqANEoPtINAELpm2++0ZEjR3TdddepV69ekW4OTlBmZmakm1CpX375RbVr1450M0LiyJEjcjgcio+PnS7DztcTAIDKdOnSJdJNsGSM0cGDByPdjJCxc9xh52MDEHrMtIRtjRw5UhdccIEkadiwYXI4HF63Fi9evFhdu3ZV7dq1Va9ePfXv3195eXk+dZx22mk+dVvdyl1+m++rr76qs846S7Vr11b79u311ltv+Wz/9ttv69xzz1VSUpJatGihv/zlLwEd2/Lly9W3b1+lpqaqdu3a6t69u9577z3LNm7atElXX321nE6n0tPTdcMNN6i4uNirbElJiW666SY1bNhQdevW1aBBg/TNN994lVm4cKEcDofPfiTpmWeekcPh0Oeff66RI0fK5XJ5zkn58v3332vOnDlyOByaPn261/YTJkxQXFycli1bVuVxW90e/uOPP2ro0KGqV6+enE6nhg0bpqKioirrKT/m+Ph4Pf744551O3fuVK1ateR0OlVaWupZf/vtt+vkk0+WMcbTjnbt2mn16tXq1q2bateurRtuuEGnnXaaNm3apFWrVnmO2+r9Y+W5557TmWeeqaSkJGVmZmrOnDnVblN+G/xjjz2mRx55RKeeeqqSk5N13nnn+VynzZs3a9SoUWrVqpVq166tU045RRdffLG++OILr3Llt1G9+uqruuuuu3TKKacoKSlJmzdv1s8//6xbb71VmZmZqlu3rho1aqQLL7xQH3zwgWW7Hn/8cU2ZMkWnnXaaUlJS1Lt3b88PCffdd5+aNGkip9Opyy67TDt27PA5vrlz56pr166qU6eO6tatq4EDB2r9+vWev1f1XpOO/gdnxowZOvfcc5WSkqIGDRroyiuv1Hfffee1n8quJwAgsl588UW1b99eycnJSktL02WXXaYvv/zSq8x3332nq666Sk2aNFFSUpLS09PVt29fTzqg4+mbA+0/8vPz1aNHD9WuXVstW7bUo48+qrKyMq+yX331lQYNGqTatWvrpJNO0pgxY7R3716vMmPHjlWdOnVUUlLi06Zhw4YpPT1dR44cqfKYxowZo+TkZK1du9azbVlZmfr27av09HQVFhZWeexWt4d//PHH6t69u5KTk9WkSRONHz9eR44cqbIe6Wi863A4lJ+f71k3b948ORwOXXTRRV5lzznnHF1xxRVe7bjtttv07LPP6qyzzlJSUpJefvllnXzyyZKknJwcz7GPHDmy2rYcPHhQ48aNU0ZGhlJSUtSrVy+vmKIy5bfBL1u2TKNGjVJaWprq1Kmjiy++2Of9sGzZMl1yySVq2rSpkpOTdcYZZ+iWW27Rzp07vcqVx+jr1q3TlVdeqQYNGuj000+XJH322We66qqrPLHTaaedpquvvlo//PCDZbtWrFih3//+9zrppJPUsGFDXX755frxxx99joOYCkCNZQCb2rx5s3G5XEaSmTRpksnLyzObNm0yxhjz97//3UgyAwYMMAsXLjRz5841nTp1MomJieaDDz7w1DFixAjTvHlzn7onTJhgKn58JJnTTjvNnH/++eYf//iHWbJkiendu7eJj483//73vz3lli9fbuLi4swFF1xg5s+fb15//XWTlZVlTj31VJ86rbz66qvG4XCYSy+91MyfP9+8+eabZsiQISYuLs4sX77cp42tW7c2Dz30kFm2bJmZOnWqSUpKMqNGjfKUKysrM3369DFJSUnmkUceMe+++66ZMGGCadmypZFkJkyYYIwx5siRI6ZRo0bm2muv9WnT+eefbzp27Og571deeaWRZPLy8jzLwYMHjTHGjBkzxiQmJpr8/HxjjDHvvfeeqVWrlnnggQeqPfZevXqZXr16eV7/8ssv5qyzzjJOp9M8/fTTZunSpeb222/3nMuXXnqpyvq6dOliBgwY4Hk9Z84ck5ycbBwOh/noo48868866ywzdOhQr3akpaWZZs2amaefftqsWLHCrFq1yqxbt860bNnSdOjQwXPc69atq7INkkyzZs1MZmammT17tlm8eLEZNGiQkWRef/31KrfdsmWLZ/sLLrjAzJs3z/N+SkhIMGvWrPGUXbVqlbnrrrvMG2+8YVatWmUWLFhgLr30UpOSkmK++uorT7kVK1YYSeaUU04xV155pVm8eLF56623zK5du8xXX31lfv/735s5c+aYlStXmrfeesuMHj3a1KpVy6xYscKnXc2bNzcXX3yxeeutt8xrr71m0tPTzZlnnmmGDx9ubrjhBvPOO++YZ5991tStW9dcfPHFXsf2yCOPGIfDYW644Qbz1ltvmfnz55uuXbuaOnXqeD7H1b3XbrrpJpOQkGDuuusu889//tPMmjXLtGnTxqSnp5uioqJqrycAIDxeeuklI8ls2bLFs27SpElGkrn66qvN22+/bV555RXTsmVL43Q6zTfffOMp17p1a3PGGWeYV1991axatcrMmzfP3HXXXZ5+6Xj65kD6j4YNG5pWrVqZZ5991ixbtszceuutRpJ5+eWXPeWKiopMo0aNzCmnnGJeeukls2TJEnPttdd64pXytm7cuNFIMs8//7xXe3bv3m2SkpLMuHHjqj2mAwcOmHPPPde0bNnS7N692xhjzEMPPWRq1apl3n333WqvxbGxnzHGbNq0ydSuXdsTpyxatMgMHDjQ0/Zjr1lFe/fuNQkJCWbSpEmedWPGjDEpKSmmTp065vDhw8YYY3766SfjcDjMjBkzvNpxyimnmHPOOcfMmjXLvP/++2bDhg3mn//8p5FkRo8e7Tn2zZs3V9qG8rimWbNm5pJLLjFvvvmmee2118wZZ5xhUlNTvWJ0K+XvzWbNmnlil5kzZ5pGjRqZZs2aec6xMcY888wzZvLkyWbx4sVm1apV5uWXXzbt27c3rVu39hyrMb/G6M2bNzf33nuvWbZsmVm4cKExxpjXX3/dPPTQQ2bBggVm1apVZs6cOaZXr17m5JNPNj///LNPu1q2bGn+8Ic/mKVLl5q//e1vpkGDBqZPnz5ex0BMBaAmY9AStlYeqBw7+ON2u02TJk3M2Wefbdxut2f93r17TaNGjUy3bt086wIdtExPTzclJSWedUVFRaZWrVpm8uTJnnWdO3c2TZo0MQcOHPCsKykpMWlpadUOWu7fv9+kpaX5DPC43W7Tvn17c/755/u08bHHHvMqe+utt5rk5GRTVlZmjDHmnXfeMZLMk08+6VXukUce8Qlcx40bZ1JSUsyePXs86woKCowk8/TTT3vWZWdnV3osBw8eNB06dDAtWrQwBQUFJj093fTq1cuUlpZWeezG+A5aPvPMM0aSWbRokVe5m266ya9BywceeMCkpKR4ArIbb7zRDBo0yJxzzjkmJyfHGGPM9u3bjSQzc+ZMr3ZIMu+9955PnW3btvVqY3UkmZSUFK+Ar7S01LRp08acccYZVW5bPjhY2fupX79+lW5bWlpqDh8+bFq1amXuvPNOz/ryz0zPnj2rbXtpaak5cuSI6du3r7nssst82tW+fXuvz9i0adOMJPPb3/7Wq56xY8caSaa4uNgYY8zWrVtNfHy8+cMf/uBVbu/evSYjI8NrALmy91peXp6RZP761796rd+2bZtJSUkx99xzj2ddVdcTABB6FQctd+/ebVJSUsxvfvMbr3Jbt241SUlJ5pprrjHGGLNz504jyUybNq3K+gPpm4+n//jkk0+8ymZmZpqBAwd6Xt97773G4XCYDRs2eJXr37+/16ClMcZ07NjRKxY1xpgZM2YYSeaLL77w65i+/fZbk5qaai699FKzfPlyv38cNsZ30HLYsGGVxinVDVoaY8wFF1xgLrzwQs/rM844w/zxj380tWrV8gxmlU8mOHYwWpJxOp3mv//9r1d9P//8s08bq1Ie13Ts2NET+xpjzPfff28SEhLMjTfeWOX25e/NY+McY4z56KOPjCTz5z//2XK7srIyc+TIEfPDDz/4xKrlMfpDDz1UbftLS0vNvn37TJ06dbxi9fJ23XrrrV7lH3vsMSPJFBYWGmOIqQDUfNwejpjz9ddf68cff9Tw4cNVq9avH4G6devqiiuu0Mcff6xffvnluOru06eP6tWr53mdnp6uRo0aeW7p2L9/v/Lz83X55ZcrOTnZU65evXq6+OKLq61/zZo1+u9//6sRI0aotLTUs5SVlWnQoEHKz8/X/v37vbb57W9/6/X6nHPO0cGDBz23465YsUKSdO2113qVu+aaa3z2f8MNN+jAgQOaO3euZ91LL72kpKQky/JWkpKS9I9//EO7du1Sx44dZYzR7NmzFRcX59f2x1qxYoXq1avnc4z+tqVv3746cOCA1qxZI+nobff9+/dXv379PLeqL1++XJLUr18/r20bNGigCy+8MOA2V9aO9PR0z+u4uDgNGzZMmzdv1n/+859qt6/s/bR69Wq53W5JUmlpqSZNmqTMzEwlJiYqPj5eiYmJ+vbbb31utZPkdYvWsZ599ll17NhRycnJio+PV0JCgt577z3LOn7zm994fcbOOussSfK5Jax8/datWyVJS5cuVWlpqa6//nqv93lycrJ69erlV/L9t956Sw6HQ9ddd51XHRkZGWrfvr1PHcG8ngCAE5OXl6cDBw743PbbrFkzXXjhhZ4UKGlpaTr99NP1+OOPa+rUqVq/fr3PbdmBCrT/yMjI0Pnnn++17pxzzvG6nXfFihVq27at2rdv71XOKl4ZNWqU1qxZo6+//tqz7qWXXlJWVpbatWvn1zGcccYZev7557Vw4UINGTJEPXr0OO6nQq9YsaLSOMUfffv21UcffaQDBw7ohx9+0ObNm3XVVVfp3HPP9Yq1Tj31VLVq1cpr2wsvvFANGjQ4rnZXdM0113ildmrevLm6devmiYOrUzFO7tatm5o3b+61/Y4dOzRmzBg1a9bMEyM1b95ckvyOtfbt26d7771XZ5xxhuLj4xUfH6+6detq//79lnVYxfmSPO8/YioANR2Dlog5u3btkiQ1btzY529NmjRRWVmZdu/efVx1N2zY0GddUlKSDhw4IEnavXu3ysrKlJGR4VPOal1FP/30kyTpyiuvVEJCgtcyZcoUGWP03//+t8o2JSUlSZKnTbt27VJ8fLxPOav2tG3bVllZWXrppZckSW63W6+99pouueQSpaWlVdv+cmeccYZ69OihgwcP6tprr7W8Fv7YtWuXVxBdVdutlOfaWb58uTZv3qzvv//eM2j5ySefaN++fVq+fLlatmypFi1aeG17vG22UtX7ofz9ejzbHz58WPv27ZMkjRs3Tg8++KAuvfRSvfnmm/rkk0+Un5+v9u3be94Lx7I6vqlTp+r3v/+9OnfurHnz5unjjz9Wfn6+Bg0aZFlHxfdEYmJilevLE+yXv8+zsrJ83udz5871yQ1l5aeffpIxRunp6T51fPzxxz51BPN6AgBOTHWxWvnfy3NtDxw4UI899pg6duyok08+WbfffrtPvkh/Bdp/VBf7lR+Pv7Hftddeq6SkJM+TwQsKCpSfn69Ro0YFdBwXXXSR0tPTPbkcj+fH4UDbbqVfv346dOiQPvzwQy1btkwnnXSSOnTooH79+nl+GH7vvfd8fhyWwhNr+RNn+bN9WVmZBgwYoPnz5+uee+7Re++9p08//VQff/yxJPkda11zzTWaPn26brzxRi1dulSffvqp8vPzdfLJJ1vWUV2cT0wFoKaLnUfBAv9T3rlbJSL/8ccfVatWLc+vusnJyTp06JBPOX86eCsNGjSQw+GwfFCMPw+POemkkyRJTz/9dKVPd7QaxKtKw4YNVVpaql27dnkFPpW1Z9SoUbr11lv15Zdf6rvvvlNhYWHAgfTf/vY3vf322zr//PM1ffp0DRs2TJ07dw6ojvK2f/rppz7r/TmX0tHBsgsuuEDLly9X06ZNlZGRobPPPlstW7aUdPShNO+9956GDBnis23FBzGdiKreD1b/GfJ3+8TERNWtW1eS9Nprr+n666/XpEmTvMrt3LlT9evX99ne6vhee+019e7dW88884zX+uP9j2Flyt/nb7zxhmeGwvHU4XA49MEHH3gC+GNVXBfM6wkAODHVxWrl/YR0dMbcCy+8IEn65ptv9I9//EMTJ07U4cOH9eyzzwa870D7D380bNjQ79ivQYMGuuSSS/TKK6/oz3/+s1566SUlJyfr6quvDmif5Q/6adu2rW6//Xb16NHjuGYtBtJ2K507d1bdunW1fPlyff/99+rbt68cDof69u2rv/71r8rPz9fWrVstBy3DEWv5E2dVtf0ZZ5whSfrXv/6ljRs3Kjc3VyNGjPCU2bx5c6V1Vjy+4uJivfXWW5owYYLuu+8+z/pDhw75TErwFzEVgJqOmZaIOa1bt9Ypp5yiWbNmeZ4GLR29dXvevHmeJ4pLR584uWPHDs+vlJJ0+PBhLV269Lj2XadOHZ1//vmaP3++Z1aZdHTQ580336x2++7du6t+/foqKCjQeeedZ7mUz1rzV58+fSRJf//7373Wz5o1y7L81VdfreTkZOXm5io3N1ennHKKBgwY4FWm4q+8x/riiy90++236/rrr9cHH3ygc845R8OGDTuu2a19+vTR3r17tXjxYr/abqVfv35au3at5s2b5wmY69Spoy5duujpp5/Wjz/+aBlIV6bi7Ap/vPfee17vMbfbrblz5+r0009X06ZNq92+svdTjx49PDMrHA6HT1D59ttva/v27X6306qOzz//XHl5eX7X4Y+BAwcqPj5e//73vyt9n5er7L02ZMgQGWO0fft2y+3PPvvsoLYZABA8Xbt2VUpKil577TWv9f/5z3/0/vvvq2/fvpbbnXnmmXrggQd09tlna926dZ71gfTNoeg/+vTpo02bNmnjxo1e6yuLV0aNGqUff/xRS5Ys0WuvvabLLrvM5wfGqo7pb3/7m1577TVNnz5dixcv1p49ewL+gfnYtlcWp/gjISFBPXv21LJly/T++++rf//+kqQePXooPj5eDzzwgGcQ0x9VxZhVmT17tlfc/8MPP2jNmjXq3bu3X9tXjJPXrFmjH374wbN9+UBdxTjpueee87uNDodDxhifOv72t7950v0EipgKQE3HTEvEnFq1aumxxx7TtddeqyFDhuiWW27RoUOH9Pjjj2vPnj169NFHPWWHDRumhx56SFdddZX++Mc/6uDBg3rqqaeOO3CQpP/7v//ToEGD1L9/f911111yu92aMmWK6tSpU+2vqHXr1tXTTz+tESNG6L///a+uvPJKNWrUSD///LM2btyon3/+2WcWXHUGDBignj176p577tH+/ft13nnn6aOPPtKrr75qWb5+/fq67LLLlJubqz179ujuu+/2ylsoyRO8TJkyRYMHD1ZcXJzOOeccHTlyREOHDlWLFi00Y8YMJSYm6h//+Ic6duyoUaNGaeHChQG1/frrr9cTTzyh66+/Xo888ohatWqlJUuWBDSo3LdvX7ndbr333nt6+eWXPev79eunCRMmyOFwBJSX5+yzz9acOXM0d+5ctWzZUsnJydUGcyeddJIuvPBCPfjgg6pTp45mzJihr776SnPmzPFrn3Fxcerfv7/GjRunsrIyTZkyRSUlJcrJyfGUGTJkiHJzc9WmTRudc845Wrt2rR5//HG/BkWPreP//u//NGHCBPXq1Utff/21Hn74YbVo0UKlpaV+11Od0047TQ8//LDuv/9+fffddxo0aJAaNGign376SZ9++qnq1KnjObbK3mvdu3fXzTffrFGjRumzzz5Tz549VadOHRUWFurDDz/U2Wefrd///vdBazMAIHjq16+vBx98UH/60590/fXX6+qrr9auXbuUk5Oj5ORkTZgwQdLRH85uu+02/e53v1OrVq2UmJio999/X59//rnXTLVA+uZQ9B9jx47Viy++qIsuukh//vOflZ6err///e/66quvLMsPGDBATZs21a233qqioiLLAcfKjqn8x+ERI0Z4tnvhhRd05ZVXatq0aRo7dmxAbX/ggQe0ePFiXXjhhXrooYdUu3ZtuVwunxzqVenbt6/uuusuSb/mCE9JSVG3bt307rvv6pxzzlGjRo38qqtevXpq3ry5Fi1apL59+yotLU0nnXSSTjvttCq327Fjhy677DLddNNNKi4u1oQJE5ScnKzx48f7td/PPvtMN954o373u99p27Ztuv/++3XKKafo1ltvlSS1adNGp59+uu677z4ZY5SWlqY333zTk7fTH6mpqerZs6cef/xxzzGtWrVKL7zwguVdMf4gpgJQ40Xm+T9AeFg9PbzcwoULTefOnU1ycrKpU6eO6du3r/noo498yi1ZssSce+65JiUlxbRs2dJMnz690qeHZ2dn+2zfvHlzM2LECK91ixcvNuecc45JTEw0p556qnn00Uct66zMqlWrzEUXXWTS0tJMQkKCOeWUU8xFF13kdZzl9f38889e21Z8QqcxxuzZs8fccMMNpn79+qZ27dqmf//+5quvvqr06YzvvvuukeTzpMdyhw4dMjfeeKM5+eSTjcPh8OzvuuuuM7Vr1zabNm3yKv/6668bSeaJJ56o8rgrPj3cGGP+85//mCuuuMLUrVvX1KtXz1xxxRVmzZo1fj093JijT3c86aSTjCSzfft2z/ryp0J27NjRsh1t27a1rO/77783AwYMMPXq1TOSLJ8+f6zy982MGTPM6aefbhISEkybNm3M3//+92rbXv6U7ilTppicnBzTtGlTk5iYaDp06GCWLl3qVXb37t1m9OjRplGjRqZ27drmggsuMB988IHPOa3qM3Po0CFz9913m1NOOcUkJyebjh07moULF5oRI0Z4HWd5ux5//HGv7Suru/w9mZ+f77V+4cKFpk+fPiY1NdUkJSWZ5s2bmyuvvNIsX77cq01W77VyL774ouncubOpU6eOSUlJMaeffrq5/vrrzWeffeYpU9X1BACEnlVsYowxf/vb3zzxktPpNJdccolXDPHTTz+ZkSNHmjZt2pg6deqYunXrmnPOOcc88cQTprS01FMu0L7ZmBPrPyr2i8YYU1BQYPr372+Sk5NNWlqaGT16tFm0aJHP08PL/elPfzKSTLNmzYzb7fb5u9Ux7du3z7Rp08ZkZmaa/fv3e5XPzs42CQkJPk86r8gq9vvoo49Mly5dTFJSksnIyDB//OMfzcyZM/16ergxxmzcuNFIMq1atfJa/8gjjxhJZty4cZbtsIqrjTFm+fLlpkOHDiYpKclI8omzj1Uee7z66qvm9ttvNyeffLJJSkoyPXr08LqWlSl/b7777rtm+PDhpn79+p4n23/77bdeZcuvcb169UyDBg3M7373O7N161afc1pZjG7Mr3FtgwYNTL169cygQYPMv/71L5//T1QWO5Ufb8X3FDEVgJrKYcwx8+QBADXG999/rxYtWujxxx/X3XffHenmAAAA2Epubq5GjRql/Px8r1upAQDhQU5LAAAAAAAAAFGFQUsAAAAAAAAAUYXbwwEAAAAAAABEFWZaAgAAAAAAADFm8uTJysrKUr169dSoUSNdeuml+vrrr6vdbtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIuH0MWgIAAAAAAAAxZtWqVcrOztbHH3+sZcuWqbS0VAMGDND+/fsr3WbLli36zW9+ox49emj9+vX605/+pNtvv13z5s3zlMnLy9OwYcM0fPhwbdy4UcOHD9fQoUP1ySefBNQ+bg8HAAAAAAAAYtzPP/+sRo0aadWqVerZs6dlmXvvvVeLFy/Wl19+6Vk3ZswYbdy4UXl5eZKkYcOGqaSkRO+8846nzKBBg9SgQQPNnj3b7/bEH+dx2EpZWZl+/PFH1atXTw6HI9LNAQAAQWaM0d69e9WkSRPVqsWNJtGCGAwAAHsjBqvcwYMHdfjw4ZDUbYzxia2SkpKUlJRU5XbFxcWSpLS0tErL5OXlacCAAV7rBg4cqBdeeEFHjhxRQkKC8vLydOedd/qUmTZtWgBHwaClJOnHH39Us2bNIt0MAAAQYtu2bVPTpk0j3Qz8DzEYAACxgRjM28GDB3VySor2haj+unXrat8+79onTJigiRMnVrqNMUbjxo3TBRdcoHbt2lVarqioSOnp6V7r0tPTVVpaqp07d6px48aVlikqKgroOBi0lFSvXj1JRz9EqampEW6N/Tmdk71eFxePj1BLvFVsF4LN6usmocLrI8dRb4of+6lKqcW6inUcDLBOK9UdW8VzcSAI+4xdofhesfqOiMT3V7R+h0a7kpISNWvWzNPnIzpEQwwWLZ/t6sRCOyuLxcJ1nCcSC1q1MTSxZWVxjlU84+/2/m5bmYqxmOR/HBNI3Hai7fRlfd0eP8F9+3eOw/ee8VXZZypc3zPB/p4I5/HUhHMUbYjBrB0+fFj7JN0pqeq5j4E7JOmJfft84qvqZlnedttt+vzzz/Xhhx9Wu4+KszjLM08eu96qTKB31jBoqV9PZGpqKoOWYZHs9Sp6znly9UVwAvwZtIw7jnorXreKdVbHajAx0Dr8Ud2xVdwn6YZPRGi+V3y/IyLz/RWt36E1A7cgR5foiMGi5bNdnVhop3UsFr7jPP5Y0LqNoYgto3HQ0uo4/Y1jIjto6f91C/6gZfjeM74q/0yF63smuN8T4T2emnCOohMxmLU6Cv4nv/xbKJD46g9/+IMWL16s1atXVzsjNiMjw2fG5I4dOxQfH6+GDRtWWabi7MvqkFAAAAAAAAAACLOEEC3+Msbotttu0/z58/X++++rRYsW1W7TtWtXLVu2zGvdu+++q/POO08JCQlVlunWrVsArYvxp4e7XC65XC653W598803Ki4urvG/XgAAAF8lJSVyOp309VGCGAwAgNhADGat/LzkKPgzLQ9KmiD5dc5vvfVWzZo1S4sWLVLr1q09651Op1JSjqb/GD9+vLZv365XXnlFkrRlyxa1a9dOt9xyi2666Sbl5eVpzJgxmj17tq644gpJ0po1a9SzZ0898sgjuuSSS7Ro0SI98MAD+vDDD9W5c2e/jyWmBy3L8SECAMDe6OujE9cFAAB7o6+3Vn5eHlFoBi3vl3+DlpXdtv/SSy9p5MiRkqSRI0fq+++/18qVKz1/X7Vqle68805t2rRJTZo00b333qsxY8Z41fHGG2/ogQce0HfffafTTz9djzzyiC6//PKAjoWclgAAAAAAAECM8WceY25urs+6Xr16ad26dVVud+WVV+rKK6883qZJYtASAAAAAAAACLt4Bf8xsMF/bFnkxPSDeFwulzIzM5WVlRXppgAAAMQMYjAAAABUh5yWIscCAAB2R18fnbguAADYG329tfLz8ldJKUGu+4Cku+RfTstoF9MzLQEAAAAAAABEH3JaAgAAAAAAAGGWIHJaViWmBy1dLpdcLpfcbnekm+IXhyPH67UxEyLUEtQ0kXjvVNxnqAR6LP60i88WAIRWTYvBgOpYxReBxBMnuv2J1BmKfQMA/BOv4A/M2WmgL6ZvD8/OzlZBQYHy8/Mj3RQAAICYQQwGAACA6thpABYAAAAAAACoEeIV/NvDjwS5vkiK6ZmWAAAAAAAAAKIPMy0BAAAAAACAMCOnZdXsdCwBq2lJ4EmIjeMVifdOtL5fo7VdABBLaloMBlTnROOLUMQn/tZJbAQAiFYOY4yJdCMiraSkRE6nU8XFxUpNTY10cwAAQJDR10cnrgsAAPZGX2+t/Ly8Kql2kOv+RdJwyRbnnJyWAAAAAAAAAKJKTN8eDgAAAAAAAERCgoL/9PBg1xdJMT1oWdPyKTkcOVX+PRj5aKrbByoKxkcoFF8p1bWrun1abZ8SYBsqTkO32me9APdxisW6hlVvUq9CnXur2YUkOSq8NgcqrPi+wusjFV7/16LSinWUVtOIEot1FfdT8ZxW3KbiPipub6VinRW3qa7dVttUV6eVivup+J4M9O/Ryep7O9DvYX/qqFgmHP0JUJWKMZjTOVlSsleZQN6HJxK/BLafxyzWVvx+r+xz+YjFtpV9V1n1w1ZlrfpN3/YExt99B7K9VQwQSNut6jyR40yrZL2/bbI6H1blrOIWyb9+sLL9VIydylndXPiLxTqra2EVtwRyjn7ys5yVyq5jK4t1VufNat+VBXtWx2R12+Qui3VW8eZ/KtmP1bFbXUur97VV2/19v0j+X9/K6vS3nSfqRL7PAvmO8vf/NP78B6Hy7Y25x2ed9Xe+7/Wx2vbo9v71a8RsNR8P4qlaTN8enp2drYKCAuXn50e6KQAAADGDGAwAAADVsdMALAAAAAAAAFAjxCv4917aaaAvpmdaAgAAAAAAAIg+DmOMiXQjIuXYfErffPONLR4HDwAAfJWUlMjpdNLXRwliMAAAYgMxmLXy8/KWpDpBrnu/pCGSLc55TA9aluNDBACAvdHXRyeuCwAA9kZfb41BS//Y6VZ3AAAAAAAAoEZIUPBzWga7vkgipyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAADA0dufQ7HYBTktRY4FAADsjr4+OnFdAACwN/p6a+XnZZWkukGue5+kXrJHTsuYnmkJAAAAAAAAIPrYadYoAAAAAAAAUCOE4nZuOw302elYAuZyueRyueR2u0O+L4cjx+u1MROqKf+IxdrSE2qD1T5991PdPupVeL3XokxKhdcHKrz2522XVuH1fyu8rjjF+Ug1bbBS8VgrblOxzoptknyP/7QKr/059vQKr0uqqbNiu5pa1FmNBhWOtV2Fv1vNT+9V4XVxhdfneb90Dinyet0z8QOfKu/VFK/X3XPXeheY6v0y5wuLdkWBoRVen7XYt8yTF9/s9XqNunm9/rfO8Hq9dnV330o2V9OQaRVeV3z7fW+xTcWP9O6KBSpW8lOF1xXfr5K0o5qdVPd5ttpvxTq+rPC64jPyrL4DKtZp1fZjVfyOsPr8Vqyz4rFUPF8V21nx8+xvmWNV3zdU/P6v2Cf5sjpW7/1U148dj0D7StRcFWMwp/NxSckVSvk++9KYeyzrcziesVhrFaN0tFi3zmJdI8v9SL0t1n1isa6zn+UqfoeUa2WxruL3nqSUGy2qtDoeSfrWYl3FGESybnvF7zKp8u8mq7jke4t1Z1Wyvb8s9t/D4nmpeyw2raw/vdZiXWOLdTst1lm9BVdVsp/6Fuusvsr3+a46t+fHllUO16sWu9njs+6GT2b5rNvS2fcgW9xfaLkf3ea7Kr9xxUBS+l4tfNZ9oB4+654aav2ZPrDEd12Kxb7/+Whvn3XNtM2yzgny7fveWHudz7o7O032WbdB5/qsW7m1n+V+zj31M9/tH+riW9DqfZhhsa6y+HeXxTrfSyFtsKqzss+v1c7OsFhn0fjGFt+vhcsr2Y/Fd8pZFh/AL9+0aM7FFs35vpL9fGSx7nKLdVbfm1b/95Osv7umWqyz2k/FGFiStleyH6v9/8dindUbyTe2NuYPlezHPw7HYxZ1VtYnVzwfB09o34htMX17eHZ2tgoKCpSfnx/ppgAAAMQMYjAAAICjP9GGYrGLmB60BAAAAAAAABB9Yvr2cAAAAAAAACASyGlZNWZaAgAAAAAAAIgqDmOMidTOV69erccff1xr165VYWGhFixYoEsvvdTzd2OMcnJyNHPmTO3evVudO3eWy+VS27ZtPWUOHTqku+++W7Nnz9aBAwfUt29fzZgxQ02bVv9wkmOTwH/zzTcqLi5WaqrVAyEAnCirB38E+pCNUNTBgz6A2FBSUiKn00lf/z/EYEDkBCOeAYCaghjMWvl5+Vy+jxw9UXslnSPZ4pxHdKbl/v371b59e02fPt3y74899pimTp2q6dOnKz8/XxkZGerfv7/27v31aZBjx47VggULNGfOHH344Yfat2+fhgwZ4tcTwUkCDwAAYhExGAAAQOTxIJ6qRfRW98GDB2vw4MGWfzPGaNq0abr//vt1+eWXS5Jefvllpaena9asWbrllltUXFysF154Qa+++qr69esnSXrttdfUrFkzLV++XAMHDgzbsQAAANQUxGAAAACIdlGb03LLli0qKirSgAEDPOuSkpLUq1cvrVmzRpK0du1aHTlyxKtMkyZN1K5dO08ZK4cOHVJJSYnXAgAAAGIwAACAcIkP0WIXUXssRUVFkqT09HSv9enp6frhhx88ZRITE9WgQQOfMuXbW5k8ebJycnxzyQAInWDkaoqWOgDAzojBgNAiFgEAwD9RO9OynMPh8HptjPFZV1F1ZcaPH6/i4mLPsm3btqC0FQAAwC6IwQAAAEIrPk5KiA/uEh8X6aMKnqgdtMzIyJAkn1/rd+zY4fnlPyMjQ4cPH9bu3bsrLWMlKSlJqampXgsAAACIwQAAABAdonbQskWLFsrIyNCyZcs86w4fPqxVq1apW7dukqROnTopISHBq0xhYaH+9a9/ecoAAADAf8RgAAAA4REfH5rFLiJ6KPv27dPmzZs9r7ds2aINGzYoLS1Np556qsaOHatJkyapVatWatWqlSZNmqTatWvrmmuukSQ5nU6NHj1ad911lxo2bKi0tDTdfffdOvvssz1PsqyKy+WSy+WS2+0O2TECAABEG2IwAAAARDuHMcZEaucrV65Unz59fNaPGDFCubm5MsYoJydHzz33nHbv3q3OnTvL5XKpXbt2nrIHDx7UH//4R82aNUsHDhxQ3759NWPGDDVr1szvdpSUlMjpdKq4uJjblAAAsCH6em/EYAAAIBzo662Vn5ei2lJq1SnDA6/bSBm/yBbnPKKDltGCDxEAAPZGXx+duC4AANgbfb218vOyMzU0g5Ynldhj0DJqc1oCAAAAAAAAiE02Ss8ZOPIpAQAAhB8xGAAAgJQQJyUEeTphQllw64skbg8X05UBALA7+vroxHUBAMDe6Outec5LAyk1yIOWJWWSc7c9bg+P6ZmWAAAAAAAAQETEKfiJG4OcIzOSyGkJAAAAAAAAIKrE9KCly+VSZmamsrKyIt0UAACAmEEMBgAAoKP3P4diCcDq1at18cUXq0mTJnI4HFq4cGGV5UeOHCmHw+GztG3b1lMmNzfXsszBgwcDaltMD1pmZ2eroKBA+fn5kW4KAABAzCAGAwAAiA779+9X+/btNX36dL/KP/nkkyosLPQs27ZtU1pamn73u995lUtNTfUqV1hYqOTk5IDaRk5LAAAAAAAAINziFfzphP97enhJSYnX6qSkJCUlJfkUHzx4sAYPHux39U6nU06n0/N64cKF2r17t0aNGuVVzuFwKCMjI4CG+4rpmZYAAAAAAABARITw9vBmzZp5BhidTqcmT54ckkN44YUX1K9fPzVv3txr/b59+9S8eXM1bdpUQ4YM0fr16wOum5mWAAAAAAAAgI1s27ZNqampntdWsyxPVGFhod555x3NmjXLa32bNm2Um5urs88+WyUlJXryySfVvXt3bdy4Ua1atfK7/pgetHS5XHK5XHK73ZFuCgAAQMwgBgMAANDR+5/jQlN1amqq16BlKOTm5qp+/fq69NJLvdZ36dJFXbp08bzu3r27OnbsqKefflpPPfWU3/XH9O3hJIEHAAAIP2IwAACAms0YoxdffFHDhw9XYmJilWVr1aqlrKwsffvttwHtI6ZnWgIAAAAAAAAREa/gz7R0BLm+SqxatUqbN2/W6NGjqy1rjNGGDRt09tlnB7QPBi0BAAAAAACAGLRv3z5t3rzZ83rLli3asGGD0tLSdOqpp2r8+PHavn27XnnlFa/tXnjhBXXu3Fnt2rXzqTMnJ0ddunRRq1atVFJSoqeeekobNmyQy+UKqG0xPWhJPiUAAIDwIwYDAABQVMy0/Oyzz9SnTx/P63HjxkmSRowYodzcXBUWFmrr1q1e2xQXF2vevHl68sknLevcs2ePbr75ZhUVFcnpdKpDhw5avXq1zj///MAOxRhjAjsc+ykpKZHT6VRxcXHIk5QCAIDwo6+PTlwXAADsjb7emue8ZEqpQR60LHFLzgLZ4pzH9ExLAAAAAAAAICLiFLKnh9sBg5YAAAAAAABAuEXB7eHRrFakGxBJLpdLmZmZysrKinRTAAAAYgYxGAAAAKpDTkuRYwEAALujr49OXBcAAOyNvt6a57ycJ6UG+R7oklLJ+Zk9clrG9ExLAAAAAAAAANGHnJYAAAAAAABAuIXiQTw2up86pmdakk8JAAAg/IjBAAAAUB1yWoocCwAA2B19fXTiugAAYG/09dY856V7iHJafkROSwAAAAAAAAAIOnJaAgAAAAAAAOEWL0bmqhDTMy3JpwQAABB+xGAAAACoDjktRY4FAADsjr4+OnFdAACwN/p6a57z0jdEOS3fs0dOSyahAgAAAAAAAOFWS1JckOssC3J9ERTTt4cDAAAAAAAAiD7MtAQAAAAAAADCLRQP4rFREsiYnmlJEngAAIDwIwYDAABAdXgQj0gMCwCA3dHXRyeuCwAA9kZfb81zXi6WUhOCXPcRyfmmPR7EE9MzLQEAAAAAAABEH3JaAgAAAAAAAOEWJ54eXoWYnmlJPiUAAIDwIwYDAABAdchpKXIsAABgd/T10YnrAgCAvdHXW/OclytDlNPyDXvktOT2cAAAAAAAACDc4hT8kTluDwcAAAAAAACA0IjpQUvyKQEAAIQfMRgAAIB+fRBPsBebIKelyLEAAIDd0ddHJ64LAAD2Rl9vzXNerpFSE4Nc92HJOYuclgAAAAAAAACOR7zIaVmFmL49HAAAAAAAAED0ielBS/IpAQAAhB8xGAAAgH6daRnsxSbIaSlyLAAAYHf09dGJ6wIAgL3R11vznJcbQpTT8kVyWgIAAAAAAAA4HuS0rBKDlgAAAAAAAEC41ZIUF4I6bcJGhxI48ikBAACEHzEYAAAAqkNOS5FjAQAAu6Ovj05cFwAA7I2+3prnvNwmpSYFue5DknO6PXJaxvRMSwAAAAAAAADRh5yWAAAAAAAAQLiF4kE87iDXF0HMtAQAAAAAAAAQVWJ60JIk8AAAAOFHDAYAAKCjTw4PxWITPIhHJIYFAMDu6OujE9cFAAB7o6+35jkvd4XoQTx/tceDeMhpCQAAAAAAAIQbOS2rxKAlAAAAAAAAEG5xCv7IXGmQ64sgclqSTwkAACCsiMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jzn5SEpNTnIdR+UnA/bI6dlTM+0BAAAAAAAABB9yGkJAAAAAAAAhFvc/5Zg12kTMT3TknxKAAAA4UcMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7fmOS+PhCin5f3ktAQAAAAAAABQQ61evVoXX3yxmjRpIofDoYULF1ZZfuXKlXI4HD7LV1995VVu3rx5yszMVFJSkjIzM7VgwYKA28agJQAAAAAAABBu8SFaArB//361b99e06dPD2i7r7/+WoWFhZ6lVatWnr/l5eVp2LBhGj58uDZu3Kjhw4dr6NCh+uSTTwLaR0w/iMflcsnlcsntdke6KQAAADGDGAwAAEBHpxIG+8E5AU5PHDx4sAYPHhzwbho1aqT69etb/m3atGnq37+/xo8fL0kaP368Vq1apWnTpmn27Nl+7yOmZ1pmZ2eroKBA+fn5kW4KAABAzCAGAwAACK2SkhKv5dChQ0Gtv0OHDmrcuLH69u2rFStWeP0tLy9PAwYM8Fo3cOBArVmzJqB9xPSgJQAAAAAAABARIbw9vFmzZnI6nZ5l8uTJQWly48aNNXPmTM2bN0/z589X69at1bdvX61evdpTpqioSOnp6V7bpaenq6ioKKB9xfTt4QAAAAAAAIDdbNu2zevp4UlJSUGpt3Xr1mrdurXnddeuXbVt2zb95S9/Uc+ePT3rHQ6H13bGGJ911YnpmZYul0uZmZnKysqKdFMAAABiBjEYAACAQjrTMjU11WsJ1qCllS5duujbb7/1vM7IyPCZVbljxw6f2ZfVielBS/IpAQAAhB8xGAAAgH2sX79ejRs39rzu2rWrli1b5lXm3XffVbdu3QKql9vDAQAAAAAAgHCLU/CfHh5gffv27dPmzZs9r7ds2aINGzYoLS1Np556qsaPH6/t27frlVdekXT0yeCnnXaa2rZtq8OHD+u1117TvHnzNG/ePE8dd9xxh3r27KkpU6bokksu0aJFi7R8+XJ9+OGHAbWNQUsAAAAAAAAgBn322Wfq06eP5/W4ceMkSSNGjFBubq4KCwu1detWz98PHz6su+++W9u3b1dKSoratm2rt99+W7/5zW88Zbp166Y5c+bogQce0IMPPqjTTz9dc+fOVefOnQNqm8MYY07w+Gq8kpISOZ1OFRcXeyUpBQAA9kBfH524LgAA2Bt9vTXPeZkppaYEue4DkvNm2eKcR3VOy9LSUj3wwANq0aKFUlJS1LJlSz388MMqKyvzlDHGaOLEiWrSpIlSUlLUu3dvbdq0ya/6SQIPAADgixgMAAAgDOIU/IfwBPt28wiK6kHLKVOm6Nlnn9X06dP15Zdf6rHHHtPjjz+up59+2lPmscce09SpUzV9+nTl5+crIyND/fv31969e6utnyTwAAAAvojBAAAAEGlRndMyLy9Pl1xyiS666CJJ0mmnnabZs2frs88+k3T0F/5p06bp/vvv1+WXXy5Jevnll5Wenq5Zs2bplltuiVjbAQAAaipiMAAAgDAonx0Z7DptIqpnWl5wwQV677339M0330iSNm7cqA8//NCT3HPLli0qKirSgAEDPNskJSWpV69eWrNmTaX1Hjp0SCUlJV4LAAAAjiIGAwAAQKRF9fjrvffeq+LiYrVp00ZxcXFyu9165JFHdPXVV0uSioqKJEnp6ele26Wnp+uHH36otN7JkycrJycndA0HAACowYjBAAAAwiBOwc9BSU7L8Jg7d65ee+01zZo1S+vWrdPLL7+sv/zlL3r55Ze9yjkcDq/XxhifdccaP368iouLPcu2bdtC0n4AAICaiBgMAAAAkRbVMy3/+Mc/6r777tNVV10lSTr77LP1ww8/aPLkyRoxYoQyMjIkHf21v3Hjxp7tduzY4fPL/7GSkpKUlJQU2sYDAADUUMRgAAAAYUBOyypF9UzLX375RbVqeTcxLi5OZWVlkqQWLVooIyNDy5Yt8/z98OHDWrVqlbp16xbWtgIAANgFMRgAAAAiLarHXy+++GI98sgjOvXUU9W2bVutX79eU6dO1Q033CDp6C1JY8eO1aRJk9SqVSu1atVKkyZNUu3atXXNNddUW7/L5ZLL5ZLb7Q71oQAAANQYxGAAAABhwEzLKjmMMSbSjajM3r179eCDD2rBggXasWOHmjRpoquvvloPPfSQEhMTJR3NnZSTk6PnnntOu3fvVufOneVyudSuXTu/91NSUiKn06ni4mKlpqaG6nAAAECE0NcHhhgMAAAEA329Nc95mS+l1gly3fsl5+WyxTmP6kHLcOFDBACAvdHXRyeuCwAA9kZfb41BS//YaNIoAAAAAAAAUENwe3iVovpBPKHmcrmUmZmprKysSDcFAAAgZhCDAQAAoDrcHi6mKwMAYHf09dGJ6wIAgL3R11vznJclIbo9/Df2uD08pmdaAgAAAAAAAIg+NrrTHQAAAAAAAKgh4v63BLtOm4jpmZbkUwIAAAg/YjAAAABUh5yWIscCAAB2R18fnbguAADYG329Nc95eS9EOS372iOnJbeHAwAAAAAAAOEWp+CPzHF7OAAAAAAAAACEBjMtAQAAAAAAgHCLV/BH5mw00hfTMy1JAg8AABB+xGAAAACoDg/iEYlhAQCwO/r66MR1AQDA3ujrrXnOS56UWjfIde+TnF3t8SCemJ5pCQAAAAAAACD62OhOdwAAAAAAAKCGIKdllWJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzXNe1kmp9YJc917J2ZGclgAAAAAAAAAQdDa60x0AAAAAAACoIeL+twS7TpuI6ZmW5FMCAAAIP2IwAAAA/fognmAvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3prnvGwKUU7LtvbIaWmj8VcAAAAAAACghgjFzEgbjfTF9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAARE7LapDTUuRYAADA7ujroxPXBQAAe6Ovt+Y5L/8OUU7L08lpCQAAAAAAAOA4mFqSiQt+nXZho0MBAAAAAAAAYAcxPdPS5XLJ5XLJ7XZHuikAAAAxgxgMAABAcscfXYJdp12Q01LkWAAAwO7o66MT1wUAAHujr7dWfl52FErBPi0lJVKjxvbIacnt4QAAAAAAAACiio0mjQIAAAAAAAA1Q2mcQ6VxjiDXaSTZ46ZqZloCAAAAAAAAiCoxPdOSJPAAAADhRwwGAAAguePj5Y4P7kxLd7yRdCSodUYKD+IRiWEBALA7+vroxHUBAMDe6OutlZ+Xbf9NUGpqcActS0qMmqUdscU5j+mZlgAAAAAAAEAkuOPi5A5yTkt3nH1mWpLTEgAAAAAAAEBUiemZluRTAgAACD9iMAAAAKlMcXIruDMty2zy5HApxmdaZmdnq6CgQPn5+ZFuCgAAQMwgBgMAAJBKFReSJRCrV6/WxRdfrCZNmsjhcGjhwoVVlp8/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEBti+lBSwAAAAAAACBW7d+/X+3bt9f06dP9Kr969Wr1799fS5Ys0dq1a9WnTx9dfPHFWr9+vVe51NRUFRYWei3JyckBtS2mbw8HAAAAAAAAIsGtOLmDPJ/QrbKAyg8ePFiDBw/2u/y0adO8Xk+aNEmLFi3Sm2++qQ4dOnjWOxwOZWRkBNSWimJ6pqXL5VJmZqaysrIi3RQAAICYQQwGAAAQWiUlJV7LoUOHQrKfsrIy7d27V2lpaV7r9+3bp+bNm6tp06YaMmSIz0xMf8T0oCX5lAAAAMKPGAwAAKB8pmXwF0lq1qyZnE6nZ5k8eXJIjuGvf/2r9u/fr6FDh3rWtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21AdXN7OAAAAAAAAGAj27ZtU2pqqud1UlJS0Pcxe/ZsTZw4UYsWLVKjRo0867t06aIuXbp4Xnfv3l0dO3bU008/raeeesrv+hm0BAAAAAAAAMIsNDktHZKOPgjn2EHLYJs7d65Gjx6t119/Xf369auybK1atZSVlRXwTMuYvj2cfEoAAADhRwwGAABQc82ePVsjR47UrFmzdNFFF1Vb3hijDRs2qHHjxgHtJ6ZnWmZnZys7O1slJSVyOp2Rbg4AAEBMIAYDAAAI7UxLf+3bt0+bN2/2vN6yZYs2bNigtLQ0nXrqqRo/fry2b9+uV155RdLRAcvrr79eTz75pLp06aKioiJJUkpKiieuy8nJUZcuXdSqVSuVlJToqaee0oYNG+RyuQJqW0wPWgIAAAAAAACR4FacSiM8aPnZZ5+pT58+ntfjxo2TJI0YMUK5ubkqLCzU1q1bPX9/7rnnVFpa6vkRulx5eUnas2ePbr75ZhUVFcnpdKpDhw5avXq1zj///IDa5jDGmIC2sKHyX/mLi4tDer8/AACIDPr66MR1AQDA3ujrrZWfl/ziZqqbGtxBy30lZcpybrPFOY/pmZYul0sul0tutzvSTQEAAIgZxGAAAACSW/EhuD28LKj1RRIzLcXIPwAAdkdfH524LgAA2Bt9vbXy8/JxcYuQzLTs4txii3Me0zMtAQAAAAAAgEhwq5bcigtynfYR3OFcAAAAAAAAADhBzLQEAAAAAAAAwsytOGZaViGmZ1q6XC5lZmYqKysr0k0BAACIGcRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o662Vn5f3i89S3dTgzrTcV+LWhc4vbXHOuT0cAAAAAAAACLMyxQf99vAyOYJaXyTF9O3hAAAAAAAAAKJPTM+0dLlccrlccrvtlKYUAAAguhGDAQAA8CCe6pDTUuRYAADA7ujroxPXBQAAe6Ovt1Z+XpYWn6s6Qc5pub/ErYHODbY45zE90xIAAAAAAACIBGZaVo2clgAAAAAAAACiSkzPtCSfEgAAQPgRgwEAAEhu1QrBTEv7ZIGM6ZmW2dnZKigoUH5+fqSbAgAAEDOIwQAAAFCdmJ5pCQAAAAAAAERCqeJUGuSZlqU2mmnJoCUAAAAAAAAQZm7Fyx3koTk7Jd+J6dvDXS6XMjMzlZWVFemmAAAAxAxiMAAAAFTHYYyxz7zR41RSUiKn06ni4mKlpqZGujkAACDI6OujE9cFAAB7o6+3Vn5e/lHcS7VTgzvT8peSUg11rrLFOY/pmZYAAAAAAAAAog85LQEAAAAAAIAwcytO7iA/iMcdaw/iadCggRwOh18V/ve//z2hBoWTy+WSy+WS222nNKUAAMAuiMEAAAAQq/watJw2bZrn37t27dKf//xnDRw4UF27dpUk5eXlaenSpXrwwQdD0shQyc7OVnZ2tieXAAAAQDQhBgMAALCvUtVSaZBnWpaqLKj1RVLAD+K54oor1KdPH912221e66dPn67ly5dr4cKFwWxfWJAYFgAAe7NDX08MBgAAahr6emvl5+XV4n6qnZoQ1Lp/KTmi4c7ltjjnAT+IZ+nSpRo0aJDP+oEDB2r58uVBaRQAAAC8EYMBAADYi1vxIVnsIuBBy4YNG2rBggU+6xcuXKiGDRsGpVEAAADwRgwGAABgL+UP4gn2YhcBD1rm5OTovvvu00UXXaQ///nP+vOf/6whQ4Zo/PjxysnJCXoDt2/fruuuu04NGzZU7dq1de6552rt2rWevxtjNHHiRDVp0kQpKSnq3bu3Nm3a5FfdLpdLmZmZysrKCnq7AQAAgokYDAAAALEk4EHLkSNHas2aNapfv77mz5+vefPmyel06qOPPtLIkSOD2rjdu3ere/fuSkhI0DvvvKOCggL99a9/Vf369T1lHnvsMU2dOlXTp09Xfn6+MjIy1L9/f+3du7fa+rOzs1VQUKD8/PygthsAACDYiMEAAADshZmWVQv4QTzhdN999+mjjz7SBx98YPl3Y4yaNGmisWPH6t5775UkHTp0SOnp6ZoyZYpuueUWv/ZDYlgAAOyNvj4wxGAAACAY6OutlZ+XmcW/DcmDeG52LrbFOfdrpmVJSYnXv6tagmnx4sU677zz9Lvf/U6NGjVShw4d9Pzzz3v+vmXLFhUVFWnAgAGedUlJSerVq5fWrFlTab2HDh0KabsBAACCgRgMAADAvtyKU2mQFzvNtPRr0LJBgwbasWOHJKl+/fpq0KCBz1K+Ppi+++47PfPMM2rVqpWWLl2qMWPG6Pbbb9crr7wiSSoqKpIkpaene22Xnp7u+ZuVyZMny+l0epZmzZoFtd0AAADBQAwGAACAWOXXc9Dff/99paWlSZJWrFgR0gYdq6ysTOedd54mTZokSerQoYM2bdqkZ555Rtdff72nnMPh8NrOGOOz7ljjx4/XuHHjPK9LSkoImgEAQNQhBgMAALAvt+Ll9m9oLoA6ozYLZMD8OjO9evWy/HeoNW7cWJmZmV7rzjrrLM2bN0+SlJGRIenor/2NGzf2lNmxY4fPL//HSkpKUlJSUghaDAAAEDzEYAAAAIhVAT89PJy6d++ur7/+2mvdN998o+bNm0uSWrRooYyMDC1btszz98OHD2vVqlXq1q1bWNsKAABgF8RgAAAAoedWrRA8PTyqh/oCEtw5qEF25513qlu3bpo0aZKGDh2qTz/9VDNnztTMmTMlHb0laezYsZo0aZJatWqlVq1aadKkSapdu7auueaaaut3uVxyuVxyu92hPhQAAIAagxgMAAAg9NwheHCOnR7E4zDGRPXN7m+99ZbGjx+vb7/9Vi1atNC4ceN00003ef5ujFFOTo6ee+457d69W507d5bL5VK7du383kf5o+bt8Dh4AADgi74+cMRgAADgRNHXWys/L1OLr1FKamJQ6z5QcljjnLNscc6jftAyHPgQAQBgb/T10YnrAgCAvdHXWys/L48XDw/JoOUfna/a4pwHfKP7pk2bKv3bP//5zxNqDAAAAKwRgwEAACCWBDxoed555+npp5/2Wnfo0CHddtttuuyyy4LWsHBwuVzKzMxUVlZWpJsCAABQJWIwAAAAe3ErTqVBXuyU0zLgQcu///3vysnJ0eDBg1VUVKQNGzaoQ4cOev/99/XRRx+Foo0hk52drYKCAuXn50e6KQAAAFUiBgMAAEAsCXjQ8vLLL9fnn3+u0tJStWvXTl27dlXv3r21du1adezYMRRtBAAAiHnEYAAAAPbiVnxIFrsIeNBSktxutw4fPiy32y23262MjAwlJSUFu20AAAA4BjEYAAAAYkXAg5Zz5szROeecI6fTqW+++UZvv/22Zs6cqR49eui7774LRRtDhnxKAACgpiAGAwAAsBf3/3JQBnuxC4cxxgSyQZ06dfSXv/xFv//97z3rdu/erVtuuUX//Oc/VVJSEvRGhlr5o+bt8Dh4AADgyw59PTEYAACoaejrrZWfl4eLb1FyamJQ6z5YclgPOZ+zxTkP+Eb3devWqXXr1l7rGjRooH/84x969dVXg9YwAAAA/IoYDAAAwF7cqhX0mZHu48sEGZUCPpK5c+fql19+8Vl/4MABbdmyJSiNAgAAgDdiMAAAAHspVVxIFrsIeNAyJydH+/bt81n/yy+/KCcnJyiNAgAAgDdiMAAAAMSSgActjTFyOBw+6zdu3Ki0tLSgNCpcSAIPAABqCmIwAAAAe3ErPiRLIFavXq2LL75YTZo0kcPh0MKFC6vdZtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIqF1SAIOWDRo0UFpamhwOh84880ylpaV5FqfTqf79+2vo0KEBNyCSsrOzVVBQoPz8/Eg3BQAAwBIxGAAAAEJl//79at++vaZPn+5X+S1btug3v/mNevToofXr1+tPf/qTbr/9ds2bN89TJi8vT8OGDdPw4cO1ceNGDR8+XEOHDtUnn3wSUNv8fnr4yy+/LGOMbrjhBk2bNk1Op9Pzt8TERJ122mnq2rVrQDuPFjzNCgAAe6vJfT0xGAAAqKno662Vn5d7iu9SUmpSUOs+VHJIjzn/elzn3OFwaMGCBbr00ksrLXPvvfdq8eLF+vLLLz3rxowZo40bNyovL0+SNGzYMJWUlOidd97xlBk0aJAaNGig2bNn+90ev+eMjhgxQpLUokULde/eXfHxAT94HAAAAAEiBgMAAECgSkpKvF4nJSUpKenEB0jz8vI0YMAAr3UDBw7UCy+8oCNHjighIUF5eXm68847fcpMmzYtoH0FnNNy4sSJevnll1VcXBzoplGHfEoAAKCmIAYDAACwF7fiQrJIUrNmzeR0Oj3L5MmTg9LmoqIipaene61LT09XaWmpdu7cWWWZoqKigPYV8KDl2WefrQceeEAZGRm64oortHDhQh0+fDjQaqIC+ZQAAEBNQQwGAAAAf23btk3FxcWeZfz48UGru+LDIcszTx673qqM1UMlqxLwoOVTTz2l7du3a9GiRapXr55GjBihjIwM3XzzzVq1alWg1QEAAMAPxGAAAAD24latEMy0PDrUl5qa6rUE49ZwScrIyPCZMbljxw7Fx8erYcOGVZapOPuyOgEPWkpSrVq1NGDAAOXm5uqnn37Sc889p08//VQXXnjh8VQHAAAAPxCDAQAA2Eep4kKyhFLXrl21bNkyr3XvvvuuzjvvPCUkJFRZplu3bgHt64QyuRcVFWnOnDl67bXX9Pnnn9e4vEQul0sul0tutzvSTQEAAPAbMRgAAACCYd++fdq8ebPn9ZYtW7RhwwalpaXp1FNP1fjx47V9+3a98sorko4+KXz69OkaN26cbrrpJuXl5emFF17weir4HXfcoZ49e2rKlCm65JJLtGjRIi1fvlwffvhhQG1zmPIbz/1UUlKiefPmadasWVq5cqVatmypa665Rtdee63OOOOMgHYeLcofNX88j4MHAADRzw59PTEYAACoaejrrZWfl98XT1BSanJQ6z5UclDPOHP8PucrV65Unz59fNaPGDFCubm5GjlypL7//nutXLnS87dVq1bpzjvv1KZNm9SkSRPde++9GjNmjNf2b7zxhh544AF99913Ov300/XII4/o8ssvD+hYAh60TElJUYMGDTR06FBde+21Ne6XfSt8iAAAsDc79PXEYAAAoKahr7cWTYOW0Szg28MXLVqkfv36qVat40qHCQAAgONADAYAAGAvZf97eE6w67SLgKPeAQMG2CZYdrlcyszMtMVMBQAAYG/EYAAAAIglft0e3qFDBzkcDr8qXLdu3Qk3KtyYrgwAgL3V1L6eGAwAANRk9PXWys/LjcWPKDHIt4cfLjmovznvt8U59+v28EsvvdTz74MHD2rGjBnKzMxU165dJUkff/yxNm3apFtvvTUkjQQAAIhFxGAAAACIVX4NWk6YMMHz7xtvvFG33367/u///s+nzLZt24LbOgAAgBhGDAYAAGBfpYpTrSDnoCyN5ZyWr7/+uq6//nqf9dddd53mzZsXlEaFC/mUAABATUEMBgAAYC9uxcmt+CAvMTxomZKSog8//NBn/Ycffqjk5ODehx9q2dnZKigoUH5+fqSbAgAAUCViMAAAAMQSv24PP9bYsWP1+9//XmvXrlWXLl0kHc2n9OKLL+qhhx4KegMBAABADAYAAGA3R2daBndmpJ1mWgY8aHnfffepZcuWevLJJzVr1ixJ0llnnaXc3FwNHTo06A0EAAAAMRgAAABiS8CDlpI0dOhQgmMAAIAwIwYDAACwD2ZaVu24Bi0l6fDhw9qxY4fKysq81p966qkn3KhwcblccrlccrvdkW4KAACAX4jBAAAAEAscxhgTyAbffvutbrjhBq1Zs8ZrvTFGDoejRgafJSUlcjqdKi4uVmpqaqSbAwAAgswOfT0xGAAAqGno662Vn5ffFU9XQmpKUOs+UnJArztvs8U5D3im5ciRIxUfH6+33npLjRs3lsPhCEW7AAAAcAxiMAAAAMSSgActN2zYoLVr16pNmzahaA8AAAAsEIMBAADYS6ni5AhyDsrSWM5pmZmZqZ07d4aiLWFHPiUAAFBTEIMBAADYi1txqnX8j5uptE67qBXoBlOmTNE999yjlStXateuXSopKfFaapLs7GwVFBQoPz8/0k0BAACoEjEYAAAAYknAw7n9+vWTJPXt29drfU1OAg8AABDtiMEAAADs5ehMy+DOjLTTTMuABy1XrFgRinYAAACgCsRgAAAAiCUBD1r26tUrFO2ICPIpAQCAmoIYDAAAwF6YaVm1gHNaStIHH3yg6667Tt26ddP27dslSa+++qo+/PDDoDYu1MinBAAAahJiMAAAAMSKgAct582bp4EDByolJUXr1q3ToUOHJEl79+7VpEmTgt5AAAAAEIMBAADYTaniQrLYRcCDln/+85/17LPP6vnnn1dCQoJnfbdu3bRu3bqgNg4AAABHEYMBAAAglgSc0/Lrr79Wz549fdanpqZqz549wWhT2JBPCQAA1BTEYAAAAPZSpni5Ax+aq7ZOuwh4pmXjxo21efNmn/UffvihWrZsGZRGhQv5lAAAQE1BDAYAAGAvbsWFZLGLgActb7nlFt1xxx365JNP5HA49OOPP+rvf/+77r77bt16662haCMAAEDMIwYDAABALAl4zug999yj4uJi9enTRwcPHlTPnj2VlJSku+++W7fddlso2ggAABDziMEAAADsxa1acgR5ZqQ78PmJUcthjDHHs+Evv/yigoIClZWVKTMzU3Xr1g1220Lu2HxK33zzjYqLi5WamhrpZgEAgCArKSmR0+m0RV9PDAYAAGoKO8VgwVR+Xi4ofkPxqXWCWndpyX596LzSFuf8uAct7YQPEQAA9kZfH524LgAA2Bt9vbXy89KleEFIBi0/dl5mi3NunzmjAAAAAAAAAGzBPs9BBwAAAAAAAGoIt+LlCPLQnNtGQ33MtAQAAAAAAAAQVewz/Hocjk0CDwAAgPAgBgMAAJDKFCd3kJ8eXhbk+iKJB/GIxLAAANgdfX104roAAGBv9PXWys/LucVLFRfkB/G4S/Zrg3OgLc45t4cDAAAAAAAAiCoxfXs4AAAAAAAAEAlHbw0P7u3cwb7dPJJieqaly+VSZmamsrKyIt0UAACAmEEMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7dWfl7OKn5fcal1g1q3u2SfvnReaItzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGHmVryCPTTnttFQX0zPtCSfEgAAQPgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OutlZ+X04s/CklOy387u9vinNtnzigAAAAAAABQQ5QpTlJcCOq0h5i+PRwAAAAAAABA9InpmZYul0sul0tutzvSTQEAAIgZxGAAAABSqeJUi5mWlSKnpcixAACA3dHXRyeuCwAA9kZfb638vDQrzletIOe0LCvZp23OLFuc85ieaQkAAAAAAABEgltxMkEemrPTTEtyWgIAAAAAAACIKjE9aOlyuZSZmamsrKxINwUAACBmEIMBAAAcnWkZiiVQM2bMUIsWLZScnKxOnTrpgw8+qLTsyJEj5XA4fJa2bdt6yuTm5lqWOXjwYEDtiulBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAADRYe7cuRo7dqzuv/9+rV+/Xj169NDgwYO1detWy/JPPvmkCgsLPcu2bduUlpam3/3ud17lUlNTvcoVFhYqOTk5oLaR0xIAAAAAAAAIs6M5LSP79PCpU6dq9OjRuvHGGyVJ06ZN09KlS/XMM89o8uTJPuWdTqecTqfn9cKFC7V7926NGjXKq5zD4VBGRsZxHMGvYnqmJQAAAAAAABAJ7rK4kCzS0SeUH7scOnTIZ/+HDx/W2rVrNWDAAK/1AwYM0Jo1a/w6hhdeeEH9+vVT8+bNvdbv27dPzZs3V9OmTTVkyBCtX78+4PPDoCUAAAAAAABgI82aNfPMinQ6nZazJnfu3Cm326309HSv9enp6SoqKqp2H4WFhXrnnXc8szTLtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21Ax1CjBi0nT54sh8OhsWPHetYZYzRx4kQ1adJEKSkp6t27tzZt2uRXfSSBBwAAqB4xGAAAQPC5S+NUGuTFXXp0puW2bdtUXFzsWcaPH19pOxwOh9drY4zPOiu5ubmqX7++Lr30Uq/1Xbp00XXXXaf27durR48e+sc//qEzzzxTTz/9dEDnp8YMWubn52vmzJk655xzvNY/9thjmjp1qqZPn678/HxlZGSof//+2rt3b7V1kgQeAACgasRgAAAANU9qaqrXkpSU5FPmpJNOUlxcnM+syh07dvjMvqzIGKMXX3xRw4cPV2JiYpVla9WqpaysLHvOtNy3b5+uvfZaPf/882rQoIFnvTFG06ZN0/3336/LL79c7dq108svv6xffvlFs2bNimCLAQAAaj5iMAAAgNBxl8aHZPFXYmKiOnXqpGXLlnmtX7Zsmbp161bltqtWrdLmzZs1evToavdjjNGGDRvUuHFjv9sm1ZBBy+zsbF100UXq16+f1/otW7aoqKjIK2FoUlKSevXqVWXC0EOHDvkkJAUAAIA3YjAAAAB7GzdunP72t7/pxRdf1Jdffqk777xTW7du1ZgxYyRJ48eP1/XXX++z3QsvvKDOnTurXbt2Pn/LycnR0qVL9d1332nDhg0aPXq0NmzY4KnTX/4Pv0bInDlztG7dOsvbh8qnr1olDP3hhx8qrXPy5MnKyckJbkMBAABshBgMAAAgtNylteT4Xw7KYDGlgc1PHDZsmHbt2qWHH35YhYWFateunZYsWeJ5GnhhYaG2bt3qtU1xcbHmzZunJ5980rLOPXv26Oabb1ZRUZGcTqc6dOig1atX6/zzzw+obVE9aLlt2zbdcccdevfdd5WcnFxpuUATho4fP17jxo3zvC4pKVGzZs1OvMEAAAA2QAwGAAAQO2699Vbdeuutln/Lzc31Wed0OvXLL79UWt8TTzyhJ5544oTbFdWDlmvXrtWOHTvUqVMnzzq3263Vq1dr+vTp+vrrryUd/bX/2Pviq0sYmpSUZJmAFAAAAMRgAAAA4eAujQvBTMvg1hdJUT1o2bdvX33xxRde60aNGqU2bdro3nvvVcuWLZWRkaFly5apQ4cOkqTDhw9r1apVmjJlSiSaDAAAUOMRgwEAAIReaWmcHEcYtKxMVA9a1qtXzyehZ506ddSwYUPP+rFjx2rSpElq1aqVWrVqpUmTJql27dq65pprqq3f5XLJ5XLJ7XaHpP0AAAA1ETEYAAAAIi2qBy39cc899+jAgQO69dZbtXv3bnXu3Fnvvvuu6tWrV+222dnZys7OVklJiZxOZxhaCwAAYA/EYAAAACfGuONl3EEemgt2fRHkMMaYSDci0soD5uLiYqWmpka6OQAAIMjo66MT1wUAAHujr7fm+eH2qx1SvSCfl70lUptGtjjn9hl+BQAAAAAAAGqK0rijS7DrtIlakW5AJLlcLmVmZiorKyvSTQEAAIgZxGAAAACoDreHi+nKAADYHX19dOK6AABgb/T11jy3h2/YE5rbw8+tb4tzHtMzLQEAAAAAAABEH3JaAgAAAAAAAOHmdkiljuDXaRMxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt+bJaflJsVQ3yOdlX4nU2R7nnNvDAQAAAAAAgHAr/d8S7DptIqZvDwcAAAAAAAAQfZhpCQAAAAAAAIQbMy2rFNMzLUkCDwAAEH7EYAAAAKgOD+IRiWEBALA7+vroxHUBAMDe6OuteR7E816xVCfI52V/idTXHuc8pmdaAgAAAAAAAIg+5LQEAAAAAAAAws39vyXYddpETM+0JJ8SAABA+BGDAQAAoDrktBQ5FgAAsDv6+ujEdQEAwN7o6615clouCVFOy9/Y45xzezgAAAAAAAAQbqX/W4Jdp03E9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAA9OtMy2AvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3ponp+X8EOW0vNwe55yclgAAAAAAAEC4uRX8mZHuINcXQTF9ezgAAAAAAACA6BPTg5bkUwIAAAg/YjAAAACR07Ia5LQUORYAALA7+vroxHUBAMDe6OuteXJazi6Wagf5vPxSIl1tj3NOTksAAAAAAAAg3EIxM9JGMy0ZtAQAAAAAAADC7cj/lmDXaRPktCSfEgAAQFgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OuteXJaPh+inJY32eOcx/RMSwAAAAAAAADRh5yWAAAAAAAAQLi5FfwH57iDXF8EMdMSAAAAAAAAQFSJ6UFLksADAACEHzEYAACAjs6yDMViEzyIRySGBQDA7ujroxPXBQAAe6Ovt+Z5EM/0YiklyOflQIl0mz3OOTktAQAAAAAAgHALxcxIG820ZNASAAAAAAAACDcGLatETkvyKQEAAIQVMRgAAACqQ05LkWMBAAC7o6+PTlwXAADsjb7emien5ZRiKTnI5+VgiXSvPc55TM+0BAAAAAAAABB9yGkJAAAAAAAAhBs5LasU0zMtyacEAAAQfsRgAAAAqA45LUWOBQAA7I6+PjpxXQAAsDf6emuenJYTQ5TTcqI9znlMz7QEAAAAAAAAYtmMGTPUokULJScnq1OnTvrggw8qLbty5Uo5HA6f5auvvvIqN2/ePGVmZiopKUmZmZlasGBBwO1i0BIAAAAAAAAIN3eIlgDMnTtXY8eO1f3336/169erR48eGjx4sLZu3Vrldl9//bUKCws9S6tWrTx/y8vL07BhwzR8+HBt3LhRw4cP19ChQ/XJJ58E1LaYHrQknxIAAED4EYMBAADo1wfxBHsJwNSpUzV69GjdeOONOuusszRt2jQ1a9ZMzzzzTJXbNWrUSBkZGZ4lLi7O87dp06apf//+Gj9+vNq0aaPx48erb9++mjZtWkBti+lBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAAChVVJS4rUcOnTIp8zhw4e1du1aDRgwwGv9gAEDtGbNmirr79Chgxo3bqy+fftqxYoVXn/Ly8vzqXPgwIHV1llRTA9aAgAAAAAAABHhVvBnWf7v9vBmzZrJ6XR6lsmTJ/vsfufOnXK73UpPT/dan56erqKiIssmN27cWDNnztS8efM0f/58tW7dWn379tXq1as9ZYqKigKqszLxAZUGAAAAAAAAENW2bdvm9fTwpKSkSss6HA6v18YYn3XlWrdurdatW3ted+3aVdu2bdNf/vIX9ezZ87jqrExMz7QknxIAAED4EYMBAAAopDktU1NTvRarQcuTTjpJcXFxPjMgd+zY4TNTsipdunTRt99+63mdkZFxwnVKMT5oST4lAACA8CMGAwAAiLzExER16tRJy5Yt81q/bNkydevWze961q9fr8aNG3ted+3a1afOd999N6A6JW4PBwAAAAAAAMLviII/nfBIYMXHjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjJEkjR8/Xtu3b9crr7wi6eiTwU877TS1bdtWhw8f1muvvaZ58+Zp3rx5njrvuOMO9ezZU1OmTNEll1yiRYsWafny5frwww8DahuDlgAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+cOHD+vuu+/W9u3blZKSorZt2+rtt9/Wb37zG0+Zbt26ac6cOXrggQf04IMP6vTTT9fcuXPVuXPngNrmMMaY4BxmzVVSUiKn06ni4mKvJKUAAMAe6OujE9cFAAB7o6+3Vn5edGuxlBTk83KoRJphj3Me0zktSQIPAAAQfsRgAAAAktwK/kN43GE9gpBipqUY+QcAwO7o66MT1wUAAHujr7fmmWl5S7GUGOTzcrhEes4e55yclgAAAAAAAEC4lSr490CXBrm+CIrp28MBAAAAAAAARJ+Ynmnpcrnkcrnkdtvohn8AAIAoRwwGAAAg6YgkRwjqtAlyWoocCwAA2B19fXTiugAAYG/09dY8OS2vD1FOy1fscc5jeqYlAAAAAAAAEBFuBf9p3za6kYWclgAAAAAAAACiSkwPWrpcLmVmZiorKyvSTQEAAIgZxGAAAAA6+qTvUCw2QU5LkWMBAAC7o6+PTlwXAADsjb7emien5ZXFUkKQz8uREukNe5zzmJ5pCQAAAAAAACD68CAeAAAAAAAAINyO1JA6IySmZ1qSTwkAACD8iMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jw5LYeEKKflW/Y45zE90xIAAAAAAABA9CGnJQAAAAAAABBupZIcIajTJmJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzZPTsl+Iclout8c55/ZwAAAAAAAAINxCcSs3t4cDAAAAAAAAQGgw0xIAAAAAAAAIN7eC/yAed5Dri6Conmk5efJkZWVlqV69emrUqJEuvfRSff31115ljDGaOHGimjRpopSUFPXu3VubNm3yq36SwAMAAPgiBgMAAECkRfWg5apVq5Sdna2PP/5Yy5YtU2lpqQYMGKD9+/d7yjz22GOaOnWqpk+frvz8fGVkZKh///7au3dvtfVnZ2eroKBA+fn5oTwMAACAGoUYDAAAIAxKQ7TYRI16evjPP/+sRo0aadWqVerZs6eMMWrSpInGjh2re++9V5J06NAhpaena8qUKbrlllv8qpenWQEAYG/09SeGGAwAABwP+nprnqeHdy2W4oN8XkpLpDx7nPOonmlZUXFxsSQpLS1NkrRlyxYVFRVpwIABnjJJSUnq1auX1qxZU2k9hw4dUklJidcCAAAAa8RgAAAAIcBMyyrVmEFLY4zGjRunCy64QO3atZMkFRUVSZLS09O9yqanp3v+ZmXy5MlyOp2epVmzZqFrOAAAQA1GDAYAAIBIqDGDlrfddps+//xzzZ492+dvDof3o5aMMT7rjjV+/HgVFxd7lm3btgW9vQAAAHZADAYAABAipZKOBHmx0UzL+Eg3wB9/+MMftHjxYq1evVpNmzb1rM/IyJB09Nf+xo0be9bv2LHD55f/YyUlJSkpKSl0DQYAALABYjAAAABESlTPtDTG6LbbbtP8+fP1/vvvq0WLFl5/b9GihTIyMrRs2TLPusOHD2vVqlXq1q1buJsLAABgC8RgAAAAYeAO0WITUT3TMjs7W7NmzdKiRYtUr149T44kp9OplJQUORwOjR07VpMmTVKrVq3UqlUrTZo0SbVr19Y111xTbf0ul0sul0tut42uKAAAwAkiBgMAAAiDUkkmyHXaKLxyGGOCfXqCprKcSC+99JJGjhwp6ehMgJycHD333HPavXu3OnfuLJfL5UkU74/yR83b4XHwAADAF319YIjBAABAMNDXWys/L8osluKCfF7cJVKBPc55VA9ahgsfIgAA7I2+PjpxXQAAsDf6emueQcszQzRo+Y09znlU57QEAAAAAAAAEHuiOqdlqJFPCQAAIPyIwQAAAHQ0p2VZkOsMdn0RxO3hYroyAAB2R18fnbguAADYG329Nc/t4S2LpVpBPi9lJdJ39jjnMT3TEgAAAAAAAIgIt4L/9HAbzbQkpyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAACAjua0DMViE+S0FDkWAACwO/r66MR1AQDA3ujrrXlyWqaHKKflT/Y45zE90xIAAAAAAABA9OFBPAAAAAAAAEC4HVHwpxPyIB4AAAAAAAAACI2YHrQkCTwAAED4EYMBAADo6KxId5AXG8205EE8IjEsAAB2R18fnbguAADYG329Nc+DeOoXS44gnxdTIu2xxzknpyUAAAAAAAAQbqWSHEGu00ZTE2P69nAAAAAAAAAA0SemBy3JpwQAABB+xGAAAAA6OtMyFItNxPSgZXZ2tgoKCpSfnx/ppgAAAMQMYjAAAABJR0K0BGjGjBlq0aKFkpOT1alTJ33wwQeVlp0/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEDtiulBSwAAAAAAACBWzZ07V2PHjtX999+v9evXq0ePHho8eLC2bt1qWX716tXq37+/lixZorVr16pPnz66+OKLtX79eq9yqampKiws9FqSk5MDahsP4gEAAAAAAADCza2IP4hn6tSpGj16tG688UZJ0rRp07R06VI988wzmjx5sk/5adOmeb2eNGmSFi1apDfffFMdOnTwrHc4HMrIyAi4+ceK6ZmW5FMCAAAIP2IwAACA0CopKfFaDh065FPm8OHDWrt2rQYMGOC1fsCAAVqzZo1f+ykrK9PevXuVlpbmtX7fvn1q3ry5mjZtqiFDhvjMxPRHTA9akk8JAAAg/IjBAAAA/scEefmfZs2ayel0eharWZM7d+6U2+1Wenq61/r09HQVFRX51fy//vWv2r9/v4YOHepZ16ZNG+Xm5mrx4sWaPXu2kpOT1b17d3377bd+1VmO28MBAAAAAAAAG9m2bZtSU1M9r5OSkiot63B436NujPFZZ2X27NmaOHGiFi1apEaNGnnWd+nSRV26dPG87t69uzp27Kinn35aTz31lN/HwKAlAAAAAAAAYCOpqaleg5ZWTjrpJMXFxfnMqtyxY4fP7MuK5s6dq9GjR+v1119Xv379qixbq1YtZWVlBTzTMqZvDyefEgAAQPgRgwEAAEReYmKiOnXqpGXLlnmtX7Zsmbp161bpdrNnz9bIkSM1a9YsXXTRRdXuxxijDRs2qHHjxgG1z2GMCfC5QvZTUlIip9Op4uLiakehAQBAzUNfH524LgAA2Bt9vbXy8yIVSwr2eSmR5P85nzt3roYPH65nn31WXbt21cyZM/X8889r06ZNat68ucaPH6/t27frlVdekXR0wPL666/Xk08+qcsvv9xTT0pKyv+OScrJyVGXLl3UqlUrlZSU6KmnntKrr76qjz76SOeff77fR8Lt4QAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+eeee06lpaXKzs5Wdna2Z/2IESOUm5srSdqzZ49uvvlmFRUVyel0qkOHDlq9enVAA5YSMy0lMfIPAIDd0ddHJ64LAAD2Rl9vLZpmWkazmJ5p6XK55HK55Ha7I90UAACAmEEMBgAAIElH/rcEu057YKalGPkHAMDu6OujE9cFAAB7o6+39utMy50KzUzLk2xxzmN6piUAAAAAAAAQGaX/W4Jdpz3UinQDAAAAAAAAAOBYzLQEAAAAAAAAwo6cllWJ6ZmWLpdLmZmZysrKinRTAAAAYgYxGAAAAKrDg3hEYlgAAOyOvj46cV0AALA3+nprvz6IZ4tC8yCeFrY459weDgAAAAAAAIRdqYJ/OzcP4gEAAAAAAACAkIjpmZYul0sul0tutzvSTQEAAIgZxGAAAAASD+KpGjktRY4FAADsjr4+OnFdAACwN/p6a7/mtCyQVC/Ite+VlGmLcx7TMy0BAAAAAACAyChV8HNQktMSAAAAAAAAAEIipmdakk8JAAAg/IjBAAAAJJ4eXjVyWoocCwAA2B19fXTiugAAYG/09dZ+zWm5TlLdINe+T1JHW5zzmJ5pCQAAAAAAAEQGOS2rwqAlAAAAAAAAEHZHFPzbw4NdX+TE9IN4XC6XMjMzlZWVFemmAAAAxAxiMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NarlJoclr2ssU5j+mZlgAAAAAAAACiDzktAQAAAAAAgLArVfBzUNrnQTwxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt/ZrTsulkuoEufb9kgba4pzH9ExLAAAAAAAAANGHnJYAAAAAAABA2B1R8HNaBru+yGHQEgAAAAAAAAi7UgX/wTk8iMcWSAIPAAAQfsRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o6639+iCeNyTVDnLtv0i60hbnPKZnWgIAAAAAAACIPuS0BAAAAAAAAMKOnJZViemZluRTAgAACD9iMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NavqrQ5LQcbotzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGF35H9LsOu0h5ieaUk+JQAAgPAjBgMAAJB+fRBPsBd7IKelyLEAAIDd0ddHJ64LAAD2Rl9v7decljMVmpyWN9vinHN7OAAAAAAAABB2pQr+7dz2mWkZ07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWn5lKSUINd+QNLttjjn5LQEAAAAAAAAwu6Igj80F+wcmZET07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWk5RaHJaXmvLc45OS0BAAAAAACAsCtV8HNQ2memJYOWAAAAAAAAQNiF4nZu+wxaxnROSwAAAAAAAADRxzYzLWfMmKHHH39chYWFatu2raZNm6YePXpUuY3L5ZLL5ZLb7Q55+xyOHK/XxkwIqLzVNlZlqmK1z0DriG3+fFwSglBvxV9FqstvcTwf44rtrFdNGySpulwYFdtZ8XWaxTYV91txHxXqcFic39MqvK5fzes9Fs2oqOI2X1V4XVThtU9m4BKLSn+q8HpvhdcHqnkt+d42UPE6VdxvdeWtVHdrQrjqONF9HA/7/CJZ0Yn2H/7UGQyB9pWIDsGIwZzOyZKSq91XZe8J/9/TVn1mIJ/9YIfOle3bqu+36hes+larPqgyVnHLiZ6jE8nLVdl3u7/xlVXbrdoTyHm3qrNiHy5Zt72y2OlErlvDStZbtd3f4/mvxbrTKtmP1fvQanur82F13k+pZD/+vo+szptVGyXr69bcYt12i3VW70Gr466M1fmwaru/n/3K+PtZrez9ZrUvfz9DgXx3+Pt58fccVbYff4/Hqj2VvQet6rTav7/v4cqu74l+F3s70ZjKn/GJyssePKF9298RSXEhqNMebDHTcu7cuRo7dqzuv/9+rV+/Xj169NDgwYO1devWKrfLzs5WQUGB8vPzw9RSAAAA+yAGAwAAQKjYYtBy6tSpGj16tG688UadddZZmjZtmpo1a6Znnnkm0k0DAACwLWIwAACAE1EaosUeavzt4YcPH9batWt13333ea0fMGCA1qxZY7nNoUOHdOjQIc/r4uJiSUcfOR863lOiq9+X7xRq320Cm2ZtvU+mavvPn4/L8aQaqO728EC390fFfVScju7vLR/HKqvmdWJ1jbJQYVq7sbg1p+JuKl6CiofizyWquE3FffjcDl6R1WdtXzWvK34W/bn1pOLrXwIsbyUYt3ZXV4bbw8PtRPsP/+oMhkD7Sv+V12VMtR9g+CmYMZh0yLJ8RZW/J/x9T9eU28MdFuusjtGqrwjk823VKQb3lsTAVLYff/fv7/WprD6r7werOv1J4VJVe6xSIVTswytTWRqFisGK5P/13W+xzupWasn6/WW1vb+3h1eMh6oqa8Vq+8o+A1bttNreqpzV7eH+XjPJ+nxYvY+s3oOBfKb9PW+V1Wm13ur7KBS3h1ud4xNpTyDbW7XHqlxldVrtv7Lt/alPCvZ38YnHVP6MT1RW9mgfTwxWGf9ioMjXGRk1ftBy586dcrvdSk9P91qfnp6uoqKKieeOmjx5snJyfHMyNGvWLCRttOJ0PhqWbYK5PRCVfoh0A4DoF4rv/3D0KaHYx65du+R0OoNebywKZgwmPeHXPollAAAIXDTEgsRg3hITE5WRkaGiIv9ioEBlZGQoMfF4Jg5Flxo/aFnO4fD+JcMY47Ou3Pjx4zVu3DjP6z179qh58+baunVrzH2ISkpK1KxZM23btk2pqdU9aMV+Yvn4Y/nYpdg+fo49No9diu3jLy4u1qmnnqq0NKsHYOBEEIMdn1j+PMbysUuxffyxfOxSbB8/xx6bxy4Rg1UmOTlZW7Zs0eHDh0NSf2JiopKTq3/IYbSr8YOWJ510kuLi4nx+0d+xY4fPL//lkpKSlJSU5LPe6XTG5JeIJKWmpsbssUuxffyxfOxSbB8/xx6bxy7F9vHXqmWLdN5RgRgsOGL58xjLxy7F9vHH8rFLsX38HHtsHrtEDGYlOTnZFgOLoVTj3zWJiYnq1KmTli1b5rV+2bJl6tatW4RaBQAAYG/EYAAAAAilGj/TUpLGjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjIl00wAAAGyLGAwAAAChYotBy2HDhmnXrl16+OGHVVhYqHbt2mnJkiVq3ry5X9snJSVpwoQJlrcr2V0sH7sU28cfy8cuxfbxc+yxeexSbB9/LB97KBGDHT+OPTaPXYrt44/lY5di+/g59tg8donjx4lxGJ47DwAAAAAAACCK1PiclgAAAAAAAADshUFLAAAAAAAAAFGFQUsAAAAAAAAAUYVBSwAAAAAAAABRJSYGLR955BF169ZNtWvXVv369f3axhijiRMnqkmTJkpJSVHv3r21adMmrzKHDh3SH/7wB5100kmqU6eOfvvb3+o///lPCI7g+O3evVvDhw+X0+mU0+nU8OHDtWfPniq3cTgclsvjjz/uKdO7d2+fv1911VUhPprAHc/xjxw50ufYunTp4lXGjtf+yJEjuvfee3X22WerTp06atKkia6//nr9+OOPXuWi9drPmDFDLVq0UHJysjp16qQPPvigyvKrVq1Sp06dlJycrJYtW+rZZ5/1KTNv3jxlZmYqKSlJmZmZWrBgQaiaf0ICOfb58+erf//+Ovnkk5WamqquXbtq6dKlXmVyc3MtvwMOHjwY6kM5LoEc/8qVKy2P7auvvvIqZ8drb/Xd5nA41LZtW0+ZmnLtV69erYsvvlhNmjSRw+HQwoULq93GTp/5moQYjBiMGIwYrCI7fR/HcgwWy/GXRAxGDIawMTHgoYceMlOnTjXjxo0zTqfTr20effRRU69ePTNv3jzzxRdfmGHDhpnGjRubkpIST5kxY8aYU045xSxbtsysW7fO9OnTx7Rv396UlpaG6EgCN2jQINOuXTuzZs0as2bNGtOuXTszZMiQKrcpLCz0Wl588UXjcDjMv//9b0+ZXr16mZtuusmr3J49e0J9OAE7nuMfMWKEGTRokNex7dq1y6uMHa/9nj17TL9+/czcuXPNV199ZfLy8kznzp1Np06dvMpF47WfM2eOSUhIMM8//7wpKCgwd9xxh6lTp4754YcfLMt/9913pnbt2uaOO+4wBQUF5vnnnzcJCQnmjTfe8JRZs2aNiYuLM5MmTTJffvmlmTRpkomPjzcff/xxuA7LL4Ee+x133GGmTJliPv30U/PNN9+Y8ePHm4SEBLNu3TpPmZdeesmkpqb6fBdEo0CPf8WKFUaS+frrr72O7djPrl2v/Z49e7yOedu2bSYtLc1MmDDBU6amXPslS5aY+++/38ybN89IMgsWLKiyvJ0+8zUNMRgxGDEYMdix7PR9HMsxWCzHX8YQgxGDIZxiYtCy3EsvveRXwFxWVmYyMjLMo48+6ll38OBB43Q6zbPPPmuMOfrFk5CQYObMmeMps337dlOrVi3zz3/+M+htPx4FBQVGkteHPS8vz0gyX331ld/1XHLJJebCCy/0WterVy9zxx13BKupIXG8xz9ixAhzySWXVPr3WLr2n376qZHk1QFH47U///zzzZgxY7zWtWnTxtx3332W5e+55x7Tpk0br3W33HKL6dKli+f10KFDzaBBg7zKDBw40Fx11VVBanVwBHrsVjIzM01OTo7ntb/fldEg0OMvD5p3795daZ2xcu0XLFhgHA6H+f777z3ratK1L+dPwGynz3xNRQxGDEYMRgxmjL2+j2M5Bovl+MsYYrByxGAIh5i4PTxQW7ZsUVFRkQYMGOBZl5SUpF69emnNmjWSpLVr1+rIkSNeZZo0aaJ27dp5ykRaXl6enE6nOnfu7FnXpUsXOZ1Ov9v4008/6e2339bo0aN9/vb3v/9dJ510ktq2bau7775be/fuDVrbg+FEjn/lypVq1KiRzjzzTN10003asWOH52+xcu0lqbi4WA6Hw+eWvmi69ocPH9batWu9rockDRgwoNJjzcvL8yk/cOBAffbZZzpy5EiVZaLlGkvHd+wVlZWVae/evUpLS/Nav2/fPjVv3lxNmzbVkCFDtH79+qC1O1hO5Pg7dOigxo0bq2/fvlqxYoXX32Ll2r/wwgvq16+fmjdv7rW+Jlz7QNnlMx8LiMF+RQxGDEYM5l0mWq6xFNsxWCzHXxIxWKDs8plH5MRHugHRqKioSJKUnp7utT49PV0//PCDp0xiYqIaNGjgU6Z8+0grKipSo0aNfNY3atTI7za+/PLLqlevni6//HKv9ddee61atGihjIwM/etf/9L48eO1ceNGLVu2LChtD4bjPf7Bgwfrd7/7nZo3b64tW7bowQcf1IUXXqi1a9cqKSkpZq79wYMHdd999+maa65RamqqZ320XfudO3fK7XZbfl4rO9aioiLL8qWlpdq5c6caN25caZloucbS8R17RX/961+1f/9+DR061LOuTZs2ys3N1dlnn62SkhI9+eST6t69uzZu3KhWrVoF9RhOxPEcf+PGjTVz5kx16tRJhw4d0quvvqq+fftq5cqV6tmzp6TK3x92uvaFhYV65513NGvWLK/1NeXaB8oun/lYQAz2K2IwYjBiMP/qjIRYjsFiOf6SiMECZZfPPCKnxg5aTpw4UTk5OVWWyc/P13nnnXfc+3A4HF6vjTE+6yryp8yJ8vfYJd9jkAJr44svvqhrr71WycnJXutvuukmz7/btWunVq1a6bzzztO6devUsWNHv+o+XqE+/mHDhnn+3a5dO5133nlq3ry53n77bZ//OARSbzCE69ofOXJEV111lcrKyjRjxgyvv0Xy2lcl0M+rVfmK64/nOyASjreds2fP1sSJE7Vo0SKv/2B16dLF68EH3bt3V8eOHfX000/rqaeeCl7DgySQ42/durVat27ted21a1dt27ZNf/nLXzxBc6B1RtLxtjM3N1f169fXpZde6rW+pl37QNjpMx9pxGDEYFUhBiMGIwaLjRgsluMviRgsEHb6zCP8auyg5W233Vbt0/JOO+2046o7IyND0tFfBRo3buxZv2PHDs8vABkZGTp8+LB2797t9Wvvjh071K1bt+Par7/8PfbPP/9cP/30k8/ffv75Z59fMqx88MEH+vrrrzV37txqy3bs2FEJCQn69ttvQx40hev4yzVu3FjNmzfXt99+K8n+1/7IkSMaOnSotmzZovfff9/rF34r4bz2Vk466STFxcX5/BJ37Oe1ooyMDMvy8fHxatiwYZVlAnnvhNrxHHu5uXPnavTo0Xr99dfVr1+/KsvWqlVLWVlZns9AtDiR4z9Wly5d9Nprr3le2/3aG2P04osvavjw4UpMTKyybLRe+0DZ5TMfLYjBiMGqQgxGDEYMZu8YLJbjL4kYLFB2+cwjgkKfNjN6BJoEfsqUKZ51hw4dskwCP3fuXE+ZH3/8MSoTgX/yySeedR9//LHficBHjBjh89TCynzxxRdGklm1atVxtzfYTvT4y+3cudMkJSWZl19+2Rhj72t/+PBhc+mll5q2bduaHTt2+LWvaLj2559/vvn973/vte6ss86qMgn8WWed5bVuzJgxPgmhBw8e7FVm0KBBUZcQOtBjN8aYWbNmmeTk5GoTZ5crKysz5513nhk1atSJNDUkjuf4K7riiitMnz59PK/tfO2N+TUZ/hdffFHtPqL52peTn0ng7fKZr6mIwYjBiMGIwYyx1/dxLMdgsRx/GUMMVo4YDOEQE4OWP/zwg1m/fr3JyckxdevWNevXrzfr1683e/fu9ZRp3bq1mT9/vuf1o48+apxOp5k/f7754osvzNVXX20aN25sSkpKPGXGjBljmjZtapYvX27WrVtnLrzwQtO+fXtTWloa1uOryqBBg8w555xj8vLyTF5enjn77LPNkCFDvMpUPHZjjCkuLja1a9c2zzzzjE+dmzdvNjk5OSY/P99s2bLFvP3226ZNmzamQ4cOUXXsxgR+/Hv37jV33XWXWbNmjdmyZYtZsWKF6dq1qznllFNsf+2PHDlifvvb35qmTZuaDRs2mMLCQs9y6NAhY0z0Xvs5c+aYhIQE88ILL5iCggIzduxYU6dOHc8T+e677z4zfPhwT/nvvvvO1K5d29x5552moKDAvPDCCyYhIcG88cYbnjIfffSRiYuLM48++qj58ssvzaOPPmri4+O9ngYaDQI99lmzZpn4+Hjjcrm8rvGePXs8ZSZOnGj++c9/mn//+99m/fr1ZtSoUSY+Pt7rP2DRItDjf+KJJ8yCBQvMN998Y/71r3+Z++67z0gy8+bN85Sx67Uvd91115nOnTtb1llTrv3evXs9fbkkM3XqVLN+/XrPU3bt/JmvaYjBiMGIwYjB7Pp9HMsxWCzHX8YQgxGDIZxiYtByxIgRRpLPsmLFCk8ZSeall17yvC4rKzMTJkwwGRkZJikpyfTs2dPnF5EDBw6Y2267zaSlpZmUlBQzZMgQs3Xr1jAdlX927dplrr32WlOvXj1Tr149c+2115rdu3d7lal47MYY89xzz5mUlBSvTrTc1q1bTc+ePU1aWppJTEw0p59+urn99tvNrl27QngkxyfQ4//ll1/MgAEDzMknn2wSEhLMqaeeakaMGOFzXe147bds2WL5OTn2sxLN197lcpnmzZubxMRE07FjR69ZByNGjDC9evXyKr9y5UrToUMHk5iYaE477TTL/xy+/vrrpnXr1iYhIcG0adPGK7CKJoEce69evSyv8YgRIzxlxo4da0499VSTmJhoTj75ZDNgwACzZs2aMB5RYAI5/ilTppjTTz/dJCcnmwYNGpgLLrjAvP322z512vHaG3N0llJKSoqZOXOmZX015dqXz1So7H1s9898TUIMRgxGDEYMZufv41iOwWI5/jKGGIwYDOHiMOZ/WVABAAAAAAAAIArUinQDAAAAAAAAAOBYDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgKIGb1799bYsWMj3QwAAICYQgwGADgeDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAogppaWluu2221S/fn01bNhQDzzwgIwxkW4WAACArRGDAQACxaAlgJjy8ssvKz4+Xp988omeeuopPfHEE/rb3/4W6WYBAADYGjEYACBQDsPPWwBiRO/evbVjxw5t2rRJDodDknTfffdp8eLFKigoiHDrAAAA7IkYDABwPJhpCSCmdOnSxRMsS1LXrl317bffyu12R7BVAAAA9kYMBgAIFIOWAAAAAAAAAKIKg5YAYsrHH3/s87pVq1aKi4uLUIsAAADsjxgMABAoBi0BxJRt27Zp3Lhx+vrrrzV79mw9/fTTuuOOOyLdLAAAAFsjBgMABCo+0g0AgHC6/vrrdeDAAZ1//vmKi4vTH/7wB918882RbhYAAICtEYMBAALF08MBAAAAAAAARBVuDwcAAAAAAAAQVRi0BAAA/9+OHQsAAAAADPK3nsaOwggAAGBFWgIAAAAAK9ISAAAAAFiRlgAAAADAirQEAAAAAFakJQAAAACwIi0BAAAAgBVpCQAAAACsSEsAAAAAYEVaAgAAAAArAQDhtIsc/T1FAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1800x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n",
"\n",
"a0=ax[0].hist2d(bs_found, vtx_types_found, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n",
"ax[0].set_ylim(0,110)\n",
"ax[0].set_xlim(-1,1)\n",
"ax[0].set_xlabel(\"b\")\n",
"ax[0].set_ylabel(\"endvtx id\")\n",
"ax[0].set_title(\"found endvtx id wrt b parameter\")\n",
"ax[0].set_yticks(np.arange(0,110,1),minor=True)\n",
"\n",
"a1=ax[1].hist2d(bs_lost, vtx_types_lost, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n",
"ax[1].set_ylim(0,110)\n",
"ax[1].set_xlim(-1,1)\n",
"ax[1].set_xlabel(\"b\")\n",
"ax[1].set_ylabel(\"endvtx id\")\n",
"ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n",
"ax[1].set_yticks(np.arange(0,110,1), minor=True)\n",
"\n",
"\"\"\"\n",
"vtx_id: 101 - Bremsstrahlung\n",
"B:\n",
"wir können nicht wirklich sagen dass bei den lost teilchen jegliche endvertex types überwiegen, im gegensatz zu den found \n",
"\"\"\"\n",
"fig.colorbar(a0[3], ax=ax, orientation='vertical')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABPEAAANVCAYAAAAZd2vuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1n0lEQVR4nOzdeVyU5f7/8ffILiqubK5ouacZlkIumIm5ZabHpQ5qqWVmplQmpom22GIeslyyKCtLPeeorWZiCWrSoqJpLpVHxQwy3HBlkfv3Rz/m2zADDjgwA7yej8c8ai4+93Vd9z3D8PEz93XfJsMwDAEAAAAAAABwWVWcPQEAAAAAAAAARaOIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIB5RTq1atUps2beTj4yOTyaRdu3YpNjZWJpPJIm7RokVatmyZcybp4j788EPFxcU5exrXLDExUSaTSYmJic6eit2WLVsmk8mkI0eOWLTPmDFDjRo1kru7u2rWrClJioiIUERExFX7dIX3uslk0sSJE506BwBA+Ueed+2ckedFRESobdu2Du+3SZMmGj16tMP7LU0mk0mxsbEWbV999ZU6duwoX19fmUwmffTRR4XmhAVt27ZNsbGxOnPmTKnN+WpGjx6tatWqOW18QKKIB5RLf/75p6KiotSsWTOtX79eycnJat68ucaOHavk5GSLWJK7wlWUIl551K9fPyUnJysoKMjc9vHHH+u5557TyJEjlZSUpI0bN0r66z28aNGiq/bJex0AUBGQ5zkGeZ5zJScna+zYsebnhmFo6NCh8vDw0CeffKLk5GR1797dZk5oy7Zt2zR79mynFvEAV+Du7AkAKL6ff/5ZOTk5+uc//6nu3bub26tWraoGDRo4cWbWLl26JG9vb6tvjiuyS5cuycfHx9nTKLGLFy+qatWqpTpGvXr1VK9ePYu2vXv3SpImTZokf39/c3vr1q0dPn5OTo5MJpPc3fkzCABwLeR5rq2853lXrlxRbm6uvLy8SnWczp07Wzz//fffderUKQ0aNEg9e/a0+FnBnNARyvvrBBSGM/GAcmb06NHq0qWLJGnYsGEymUzmpYYFl1k0adJEP/30k5KSkmQymWQymdSkSRNJ/7cEc/ny5YqOjlZgYKB8fHzUvXt3paSkWIy5fft2DR8+XE2aNJGPj4+aNGmiESNG6OjRoxZx+afDb9iwQffff7/q1aunqlWrKisrS7/++qvuu+8+XX/99apatarq16+vAQMGaM+ePRZ95M/rww8/1JNPPqmgoCBVq1ZNAwYM0B9//KFz587pgQceUN26dVW3bl3dd999On/+vEUfhmFo0aJFuvHGG+Xj46NatWppyJAh+t///meOiYiI0Oeff66jR4+aj83fj112draeffZZtWzZUl5eXqpXr57uu+8+/fnnnxZjNWnSRP3799eaNWvUoUMHeXt7a/bs2YW+fgkJCRo4cKAaNGggb29vXXfddXrwwQeVkZFR6DZ/d+DAAd1xxx2qWrWq6tatq/Hjx+vcuXM2Yzdu3KiePXuqRo0aqlq1qm699VZ99dVXFjH575mdO3dqyJAhqlWrlpo1a1bo+BcvXtTjjz+ukJAQeXt7q3bt2urYsaNWrFhhEffdd99pwIABqlOnjry9vdWsWTNNnjzZ/POCSyeaNGmiGTNmSJICAgIslmDYs5zWnvf6+++/r8cee0z169eXl5eXfv31V/3555+aMGGCWrdurWrVqsnf31+33XabtmzZYjVGVlaW5syZo1atWsnb21t16tRRjx49tG3btkLnZRiGpk+fLg8PD7355ptF7gMAAOR55TvPy7dlyxZ17txZPj4+ql+/vmbOnKkrV65cdbucnBxNnTpVgYGBqlq1qrp06aLvv//eZmx6eroefPBBNWjQQJ6engoJCdHs2bOVm5trjjly5IhMJpNeeuklPfvsswoJCZGXl5c2bdpU6Bz+85//qFOnTvLz81PVqlXVtGlT3X///RYxZ86c0WOPPaamTZvKy8tL/v7+6tu3rw4cOGCO+XsuFxsbay5AP/nkkxbvVXuW08bGxuqJJ56QJIWEhJhfz/xLyRT1Oi1cuFDdunWTv7+/fH19dcMNN+ill15STk6O1Tjr169Xz549zfveqlUrzZ07t9B5SdI333yjunXrqn///rpw4UKRsYAjcAoCUM7MnDlTt9xyix5++GE9//zz6tGjh2rUqGEzdu3atRoyZIj8/PzMyxELfus2ffp03XTTTXrrrbd09uxZxcbGKiIiQikpKWratKmkvxKAFi1aaPjw4apdu7bS0tK0ePFi3Xzzzdq3b5/q1q1r0ef999+vfv366f3339eFCxfk4eGh33//XXXq1NELL7ygevXq6dSpU3r33XfVqVMnpaSkqEWLFlbz6tGjh5YtW6YjR47o8ccf14gRI+Tu7q727dtrxYoVSklJ0fTp01W9enUtWLDAvO2DDz6oZcuWadKkSXrxxRd16tQpzZkzR+Hh4dq9e7cCAgK0aNEiPfDAAzp06JDWrl1rMXZeXp4GDhyoLVu2aOrUqQoPD9fRo0c1a9YsRUREaPv27Rbf7O3cuVP79+/XjBkzFBISIl9f30Jfv0OHDiksLExjx46Vn5+fjhw5ovnz56tLly7as2ePPDw8Ct32jz/+UPfu3eXh4aFFixYpICBAH3zwgc1rsC1fvlwjR47UwIED9e6778rDw0NvvPGGevfurS+//NLqG9C7775bw4cP1/jx44tMQKKjo/X+++/r2WefVYcOHXThwgXt3btXJ0+eNMd8+eWXGjBggFq1aqX58+erUaNGOnLkiDZs2FBov2vXrtXChQsVHx+v9evXy8/Pr1hnG9jzXo+JiVFYWJiWLFmiKlWqyN/f35ysz5o1S4GBgTp//rzWrl2riIgIffXVV+Z/OOXm5qpPnz7asmWLJk+erNtuu025ubn69ttvlZqaqvDwcKs5ZWVlafTo0fr888/16aef6o477rB7fwAAlRN5XvnO86S/imvDhw/XtGnTNGfOHH3++ed69tlndfr0ab3++utFbjtu3Di99957evzxx9WrVy/t3btXd999t9UXtunp6brllltUpUoVPf3002rWrJmSk5P17LPP6siRI3rnnXcs4hcsWKDmzZtr3rx5qlGjhq6//nqb4ycnJ2vYsGEaNmyYYmNj5e3traNHj+rrr782x5w7d05dunTRkSNH9OSTT6pTp046f/68Nm/erLS0NLVs2dKq37Fjx6p9+/a6++679cgjj+iee+4p1pmAY8eO1alTp/Taa69pzZo15qW3f1+tUdjrdOjQId1zzz0KCQmRp6endu/ereeee04HDhzQ22+/bd4+Pj5e48aNU/fu3bVkyRL5+/vr559/Nq8UseXf//63Ro4cqfvvv1+vvfaa3Nzc7N4noMQMAOXOpk2bDEnGf/7zH4v2WbNmGQV/rdu0aWN079690D5uuukmIy8vz9x+5MgRw8PDwxg7dmyh4+fm5hrnz583fH19jVdffdXc/s477xiSjJEjR151H3Jzc43s7Gzj+uuvN6ZMmWI1rwEDBljET5482ZBkTJo0yaL9rrvuMmrXrm1+npycbEgyXnnlFYu4Y8eOGT4+PsbUqVPNbf369TMaN25sNbcVK1YYkozVq1dbtP/www+GJGPRokXmtsaNGxtubm7GwYMHr7rPBeXl5Rk5OTnG0aNHDUnGxx9/XGT8k08+aZhMJmPXrl0W7b169TIkGZs2bTIMwzAuXLhg1K5d2+oYXrlyxWjfvr1xyy23mNvy3zNPP/20XXNu27atcddddxUZ06xZM6NZs2bGpUuXCo3Jf68cPnzYai5//vmnRWz37t1tvocLutp7vVu3blftIzc318jJyTF69uxpDBo0yNz+3nvvGZKMN998s8jtJRkPP/ywcfLkSaNLly5G/fr1rV4vAACKQp73f8pbnte9e3ebOd24ceOMKlWqGEePHi102/379xuSLI6XYRjGBx98YEgyRo0aZW578MEHjWrVqln1N2/ePEOS8dNPPxmGYRiHDx82JBnNmjUzsrOzrzr//O3PnDlTaMycOXMMSUZCQkKRfUkyZs2aZX6eP5eXX37ZIs5WTmjLyy+/XGicva/TlStXjJycHOO9994z3NzcjFOnThmGYRjnzp0zatSoYXTp0sXi96WgUaNGGb6+voZhGMYLL7xguLm5GS+++GKRYwKOxnJaoJK75557LJYXNG7cWOHh4Ran2Z8/f15PPvmkrrvuOrm7u8vd3V3VqlXThQsXtH//fqs+Bw8ebNWWm5ur559/Xq1bt5anp6fc3d3l6empX375xWYf/fv3t3jeqlUrSX/dEKFg+6lTp8xLLT777DOZTCb985//VG5urvkRGBio9u3b23UH188++0w1a9bUgAEDLPq48cYbFRgYaNVHu3bt1Lx586v2K0knTpzQ+PHj1bBhQ7m7u8vDw0ONGzeWJJvH4e82bdqkNm3aqH379hbt99xzj8Xzbdu26dSpUxo1apTF/PPy8nTHHXfohx9+sDrbztZrZsstt9yiL774QtOmTVNiYqIuXbpk8fOff/5Zhw4d0pgxY+Tt7W1Xn2WlsH1csmSJbrrpJnl7e5tfk6+++sri9fjiiy/k7e1ttZzElsOHDyssLEyZmZn69ttvrV4vAADKCnmetdLM8ySpevXquvPOOy3a7rnnHuXl5Wnz5s2Fbpf/mtx7770W7UOHDrW6hu9nn32mHj16KDg42GIf+vTpI0lKSkqyiL/zzjuLXO2R7+abbzaP+e9//1vHjx+3ivniiy/UvHlz3X777VftrywV9jqlpKTozjvvVJ06deTm5iYPDw+NHDlSV65c0c8//yzpr9w5MzNTEyZMuOr1HQ3D0IMPPqhZs2bpww8/1NSpU0tlf4DCsJwWqOQCAwNttu3evdv8/J577tFXX32lmTNn6uabb1aNGjVkMpnUt29fqyKOJJt3l4qOjtbChQv15JNPqnv37qpVq5aqVKmisWPH2uyjdu3aFs89PT2LbL98+bKqVaumP/74Q4ZhKCAgwOb+5i8dKcoff/yhM2fOmPsuqOD16652N618eXl5ioyM1O+//66ZM2fqhhtukK+vr/Ly8tS5c2ebx+HvTp48qZCQEKv2gq/hH3/8IUkaMmRIoX2dOnXKYjmIvfuwYMECNWjQQKtWrdKLL74ob29v9e7dWy+//LKuv/568/JUV7vwtmR7H+fPn6/HHntM48eP1zPPPKO6devKzc1NM2fOtPhHx59//qng4GBVqXL1776+//57ZWRk6LnnnnPJ4wAAqDzI86yVVp6Xz9bc8l+Hv19+pKD8nxV8zdzd3VWnTh2Ltj/++EOffvppoYW5ku5Dt27d9NFHH2nBggUaOXKksrKy1KZNGz311FMaMWKEpL9yokaNGtnVX1mytY+pqanq2rWrWrRooVdffVVNmjSRt7e3vv/+ez388MPm92Zx8tfs7GytWrVKbdq0MRdNgbJEEQ+o5NLT02225ScLZ8+e1WeffaZZs2Zp2rRp5pisrCydOnXKZp+2vsHKv0bb888/b9GekZGhmjVrXsMeWKpbt65MJpO2bNli81ob9lx/o27duqpTp47Wr19v8+fVq1e3eG7vHdn27t2r3bt3a9myZRo1apS5/ddff7Vr+zp16hT6ev1d/rVrXnvtNas7g+UrmGDauw++vr6aPXu2Zs+erT/++MN8Vt6AAQN04MAB893FfvvtN7v6K0uFvS8jIiK0ePFii/aC156pV6+etm7dqry8vKsW8oYNG6bAwEA99dRTysvLM9+wAwCAskaeZ7uP0sjz8uV/mfp3+a9DwWLc3+X/LD09XfXr1ze35+bmWhX/6tatq3bt2um5556z2VdwcLDF8+Lsw8CBAzVw4EBlZWXp22+/1dy5c3XPPfeoSZMmCgsLU7169cpNnvfRRx/pwoULWrNmjXnliyTt2rXLIq44+Wv+jUF69+6t22+/XevXr1etWrWubfJAMbCcFqjgvLy8ijzDa8WKFTIMw/z86NGj2rZtm/mC/iaTSYZhWCVFb731ll132cpnMpms+vj8889tnqZ/Lfr37y/DMHT8+HF17NjR6nHDDTeYYws7Nv3799fJkyd15coVm30UvDizvfKTi4LH4Y033rBr+x49euinn36y+PZckj788EOL57feeqtq1qypffv22Zx/x44dC/32uTgCAgI0evRojRgxQgcPHtTFixfVvHlzNWvWTG+//baysrKueYziuNp73RZb78sff/xRycnJFm19+vTR5cuXtWzZMrv6nTFjhuLi4vT0008rJiamWHMCAMBe5Hmuk+flO3funD755BOLtg8//FBVqlRRt27dCt0u/zX54IMPLNr//e9/W9xxNn8f9u7dq2bNmtnch4JFvJLw8vJS9+7d9eKLL0qS+a7Gffr00c8//2xxs4uykP/+Kk6uZyv3NgxDb775pkVceHi4/Pz8tGTJEovfl8J06NBBSUlJ+u233xQREaETJ07YPSfgWnEmHlDB3XDDDVq5cqVWrVqlpk2bytvb2yLBOXHihAYNGqRx48bp7NmzmjVrlry9vc2Fhxo1aqhbt256+eWXVbduXTVp0kRJSUmKj48v1jer/fv317Jly9SyZUu1a9dOO3bs0Msvv+zw5Ya33nqrHnjgAd13333avn27unXrJl9fX6WlpWnr1q264YYb9NBDD5mPzZo1a7R48WKFhoaqSpUq6tixo4YPH64PPvhAffv21aOPPqpbbrlFHh4e+u2337Rp0yYNHDhQgwYNKvbcWrZsqWbNmmnatGkyDEO1a9fWp59+qoSEBLu2nzx5st5++23169dPzz77rPnutAcOHLCIq1atml577TWNGjVKp06d0pAhQ8x3Yt29e7f+/PNPqzPP7NWpUyf1799f7dq1U61atbR//369//77CgsLU9WqVSVJCxcu1IABA9S5c2dNmTJFjRo1Umpqqr788kurxNSRrvZet6V///565plnNGvWLHXv3l0HDx7UnDlzFBISYpEwjxgxQu+8847Gjx+vgwcPqkePHsrLy9N3332nVq1aafjw4VZ9P/roo6pWrZoeeOABnT9/XgsWLCj2t/kAABSFPM918rx8derU0UMPPaTU1FQ1b95c69at05tvvqmHHnqoyGWorVq10j//+U/FxcXJw8NDt99+u/bu3Wu+o+zfzZkzRwkJCQoPD9ekSZPUokULXb58WUeOHNG6deu0ZMmSEh37p59+Wr/99pt69uypBg0a6MyZM3r11Vfl4eGh7t27S/orH121apUGDhyoadOm6ZZbbtGlS5eUlJSk/v37q0ePHsUe1x757+tXX31Vo0aNkoeHh1q0aGF15uTf9erVS56enhoxYoSmTp2qy5cva/HixTp9+rRFXLVq1fTKK69o7Nixuv322zVu3DgFBATo119/1e7du23eVbhVq1basmWLbr/9dnXr1k0bN27kMiooG865nwaAa1Gcu5YdOXLEiIyMNKpXr25IMt+lK7+P999/35g0aZJRr149w8vLy+jatauxfft2iz5+++03Y/DgwUatWrWM6tWrG3fccYexd+9eo3HjxhZ3ysq/u9QPP/xgNefTp08bY8aMMfz9/Y2qVasaXbp0MbZs2WJ159HC9q2wvgu7o+nbb79tdOrUyfD19TV8fHyMZs2aGSNHjrTYt1OnThlDhgwxatasaZhMJotjl5OTY8ybN89o37694e3tbVSrVs1o2bKl8eCDDxq//PKLOa5x48ZGv379rPa3MPv27TN69eplVK9e3ahVq5bxj3/8w0hNTbW6g9fVtvf29jZq165tjBkzxvj4448t7k6bLykpyejXr59Ru3Ztw8PDw6hfv77Rr18/i2Nb2PErzLRp04yOHTsatWrVMry8vIymTZsaU6ZMMTIyMizikpOTjT59+hh+fn6Gl5eX0axZM4u7rZXG3Wmv9l4v+J4yDMPIysoyHn/8caN+/fqGt7e3cdNNNxkfffSRMWrUKKs72l26dMl4+umnjeuvv97w9PQ06tSpY9x2223Gtm3bzDH6/3en/bsVK1YY7u7uxn333WdcuXLlqvsBAKjcyPOs97m85Hndu3c32rRpYyQmJhodO3Y0vLy8jKCgIGP69OlGTk7OVbfPysoyHnvsMcPf39/w9vY2OnfubCQnJ1u9FoZhGH/++acxadIkIyQkxPDw8DBq165thIaGGk899ZRx/vx5wzAKvyNsYT777DOjT58+Rv369Q1PT0/D39/f6Nu3r7FlyxaLuNOnTxuPPvqo0ahRI8PDw8Pw9/c3+vXrZxw4cMAcUzC3vda70xqGYcTExBjBwcFGlSpVLHLfol6nTz/91Pw6169f33jiiSeML774wmbuvG7dOqN79+6Gr6+vUbVqVaN169YWd5/9+91p8/32229Gy5YtjSZNmhiHDh266j4A18pkGHacLwqgwklMTFSPHj30n//8p8gbIAAAAKB8Ic8DgIqJa+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAAAAuDjOxAMAAAAAAABcHEU8AAAAAAAAwMVRxAMAAAAAAABcnLuzJ2DLokWL9PLLLystLU1t2rRRXFycunbtWmh8UlKSoqOj9dNPPyk4OFhTp07V+PHjLWJWr16tmTNn6tChQ2rWrJmee+45DRo0qFjjmkwmm+O/9NJLeuKJJ+zat7y8PP3++++qXr16of0BAAD8nWEYOnfunIKDg1WlCt/BuiryPAAAUFzFyvMMF7Ny5UrDw8PDePPNN419+/YZjz76qOHr62scPXrUZvz//vc/o2rVqsajjz5q7Nu3z3jzzTcNDw8P47///a85Ztu2bYabm5vx/PPPG/v37zeef/55w93d3fj222+LNW5aWprF4+233zZMJpNx6NAhu/fv2LFjhiQePHjw4MGDB49iP44dO1aC7AplhTyPBw8ePHjw4FHShz15nsvdnbZTp0666aabtHjxYnNbq1atdNddd2nu3LlW8U8++aQ++eQT7d+/39w2fvx47d69W8nJyZKkYcOGKTMzU1988YU55o477lCtWrW0YsWKEo0rSXfddZfOnTunr776qtD9ycrKUlZWlvn52bNn1ahRIx07dkw1atS42uEAAABQZmamGjZsqDNnzsjPz8/Z00Ehzp49q5o1a5LnAQAAuxUnz3Op5bTZ2dnasWOHpk2bZtEeGRmpbdu22dwmOTlZkZGRFm29e/dWfHy8cnJy5OHhoeTkZE2ZMsUqJi4ursTj/vHHH/r888/17rvvFrlPc+fO1ezZs63aa9SoQXIHAACKhSWari3/9SHPAwAAxWVPnudSF1XJyMjQlStXFBAQYNEeEBCg9PR0m9ukp6fbjM/NzVVGRkaRMfl9lmTcd999V9WrV9fdd99d5D7FxMTo7Nmz5sexY8eKjAcAAAAAAAAKcqkz8fIVrD4ahlFkRdJWfMF2e/oszrhvv/227r33Xnl7exc6L0ny8vKSl5dXkTEAAAAAAABAUVyqiFe3bl25ublZnf124sQJq7Pk8gUGBtqMd3d3V506dYqMye+zuONu2bJFBw8e1KpVq4q3gwAAAAAAAEAJuFQRz9PTU6GhoUpISNCgQYPM7QkJCRo4cKDNbcLCwvTpp59atG3YsEEdO3aUh4eHOSYhIcHiungbNmxQeHh4icaNj49XaGio2rdvX/KdBQCglBmGodzcXF25csXZU8FVuLm5yd3dnWveAQAAu5DnlR+OzPNcqognSdHR0YqKilLHjh0VFhampUuXKjU1VePHj5f01zXmjh8/rvfee0/SX3eiff311xUdHa1x48YpOTlZ8fHx5rvOStKjjz6qbt266cUXX9TAgQP18ccfa+PGjdq6davd4+bLzMzUf/7zH73yyitlcDQAACiZ7OxspaWl6eLFi86eCuxUtWpVBQUFydPT09lTAQAALow8r/xxVJ7nckW8YcOG6eTJk5ozZ47S0tLUtm1brVu3To0bN5YkpaWlKTU11RwfEhKidevWacqUKVq4cKGCg4O1YMECDR482BwTHh6ulStXasaMGZo5c6aaNWumVatWqVOnTnaPm2/lypUyDEMjRowo5SMBAEDJ5OXl6fDhw3Jzc1NwcLA8PT05w8uFGYah7Oxs/fnnnzp8+LCuv/56VaniUvceAwAALoI8r3xxdJ5nMvLvAoEykZmZKT8/P509e1Y1atRw9nQAABXQ5cuXdfjwYTVu3FhVq1Z19nRgp4sXL+ro0aMKCQmxunEW+UP5wOsEACht5Hnlk6PyPL7mBQCgguJsrvKF18txFi9erHbt2qlGjRqqUaOGwsLC9MUXXxQan5iYKJPJZPU4cOBAGc4aAAD7kTeUL456vVxuOS0AAABwLRo0aKAXXnhB1113nSTp3Xff1cCBA5WSkqI2bdoUut3BgwctvgGvV69eqc8VAADAXhTxAAAAUKEMGDDA4vlzzz2nxYsX69tvvy2yiOfv76+aNWuW8uwAAABKhvMvAQAAUGFduXJFK1eu1IULFxQWFlZkbIcOHRQUFKSePXtq06ZNV+07KytLmZmZFg8AAIDSQhEPAABUWIZh6IEHHlDt2rVlMpm0a9cup84nIiJCkydPduocKos9e/aoWrVq8vLy0vjx47V27Vq1bt3aZmxQUJCWLl2q1atXa82aNWrRooV69uypzZs3FznG3Llz5efnZ340bNiwNHYFAIAK5cknn1SfPn2uuZ/KmOexnBYAgEokNrZij1fQ+vXrtWzZMiUmJqpp06aqW7eucyeEMtOiRQvt2rVLZ86c0erVqzVq1CglJSXZLOS1aNFCLVq0MD8PCwvTsWPHNG/ePHXr1q3QMWJiYhQdHW1+npmZSSEPAOA0ZZl3XctYu3btUocOHa55DpUxz6OIBwDXyNYfMGcXLgD85dChQwoKClJ4eLizp4Iy5unpab6xRceOHfXDDz/o1Vdf1RtvvGHX9p07d9by5cuLjPHy8pKXl9c1zxVA5VAwPyRfRGW1e/du3XfffdfcT2XM81hOCwAAXM6cOXN0ww03yNfXVwEBAXrooYeUk5NTrD5Gjx6tRx55RKmpqTKZTGrSpImysrI0adIk+fv7y9vbW126dNEPP/xgsV2TJk0UFxdn0XbjjTcq9m//2oqIiNCkSZM0depU1a5dW4GBgRY/l6QLFy5o5MiRqlatmoKCgvTKK68Ua/5wLMMwlJWVZXd8SkqKgoKCSnFGAABUPunp6frjjz+Ul5enbt26qWrVqurYsaN2795drH5s5XmSrprrlfc8jyIeAABwKYZh6MqVK3rjjTe0b98+LVu2TP/973/11ltvFaufV199VXPmzFGDBg2UlpamH374QVOnTtXq1av17rvvaufOnbruuuvUu3dvnTp1qtjzfPfdd+Xr66vvvvtOL730kubMmaOEhATzz5944glt2rRJa9eu1YYNG5SYmKgdO3YUexwU3/Tp07VlyxYdOXJEe/bs0VNPPaXExETde++9kv5aBjty5EhzfFxcnD766CP98ssv+umnnxQTE6PVq1dr4sSJztoFAAAqpJSUFEl//e19/vnntX37dlWvXl3Dhw8vVj+28jxJDsv1XDXPYzktAABwKSaTSbNnzzY/b9y4sXr16qUDBw4Uqx8/Pz9Vr15dbm5uCgwM1IULF7R48WItW7bMfDHlN998UwkJCYqPj9cTTzxRrP7btWunWbNmSZKuv/56vf766/rqq6/Uq1cvnT9/XvHx8XrvvffUq1cvSX8lgw0aNCjWGCiZP/74Q1FRUUpLS5Ofn5/atWun9evXm1+LtLQ0paammuOzs7P1+OOP6/jx4/Lx8VGbNm30+eefq2/fvs7aBQCVHEtvUVHt2rVL3t7e+uijjxQcHCxJeu6553TrrbcqPT1dgYGBdvVTMM+T5NBcz1XzPIp4AFABcF0+VCRHjx7Vyy+/rMTERB0/flw5OTm6fPmy5s6de039Hjp0SDk5Obr11lvNbR4eHrrlllu0f//+YvfXrl07i+dBQUE6ceKEeazs7GyFhYWZf167dm2Lmyeg9MTHxxf582XLllk8nzp1qqZOnVqKMwIAANJfRbyhQ4eaC3iS5OvrK0nKy8u7pr4dmeu5ap7HcloAAOAyMjIydMsttygjI0Pz58/X1q1blZycLDc3N914442SpE6dOmn79u2SpFGjRmnx4sV29W0YhqS/zvQr2P73tipVqphj89m6Hp+Hh4fFc5PJZE4+C24PAACAv4p4+Tldvp07dyowMFBBQUElzvMk+3K98p7nUcQDAAAuY926dcrNzdWKFSsUGRmpNm3aaPPmzcrOzjYnfDNnztTzzz+vV155RdWqVdNDDz1kV9/XXXedPD09tXXrVnNbTk6Otm/frlatWpnb6tWrp7S0NPPzzMxMHT58uFj7cd1118nDw0Pffvutue306dP6+eefi9UPAABARXHx4kX9+uuvunLlirktLy9Pr732mkaPHi2TyVTiPE+yL9cr73key2kBAIDLqF27tjIzM/XJJ5+odevW+vTTTzV37lzVr19f9erVkyT1799fM2bM0Pnz57Vu3Tq7+/b19dVDDz2kJ554QrVr11ajRo300ksv6eLFixozZow57rbbbtOyZcs0YMAA1apVSzNnzpSbm1ux9qNatWoaM2aMnnjiCdWpU0cBAQF66qmnVKUK358CAIDKaffu3XJzc9M777yjbt26qWbNmpo+fbouXLig6dOnSyp5nifZl+uV9zyPIh4AAHAZ/fr105gxYxQVFSUfHx/985//1NChQ3X06FFzzPfff68zZ86oefPmcncvXirzwgsvKC8vT1FRUTp37pw6duyoL7/8UrVq1TLHxMTE6H//+5/69+8vPz8/PfPMM8X+hlaSXn75ZZ0/f1533nmnqlevrscee0xnz54tdj8AAAAVwe7du9W8eXPNmjVLgwcP1qlTp3TnnXdq27Ztql69uqRry/Okq+d65T3PMxlctKVMZWZmys/PT2fPnlWNGjWcPR0ADuAKN5VwhTnAdVy+fFmHDx9WSEiIvL29nT0dhzp+/Lj69Omjjz/+WHfffbc+/PBDi6Ww5VlRrxv5Q/nA6wSgKMW54yx3p0VhyPPKJ0fleazpAAAA5cKlS5c0ZMgQvf766woJCdHUqVP17LPPOntaAAAAuEbkefZhOS0AACgXfHx8lJycbH4+YsQIjRgxwokzAgAAgCOQ59mHM/EAAAAAAAAAF8eZeAAAAAAAlLG/X+eOa94BsAdn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAAAAAAAqs9hYZ88AQHnAmXgAAAAAAACAi6OIBwAAAAAAALg4ingAAKDCioiI0OTJk509DQAAAPx/Tz75pPr06XPN/VTGPI9r4gEAUJlsiy3b8cLLeLxSFBERoRtvvFFxcXHOngoAAIC1sszzriHH27Vrlzp06OC4uThAecnzOBMPAAAAAAAAZWL37t268cYbnT2NcokiHgCgZLbFWj8AB5kzZ45uuOEG+fr6KiAgQA899JBycnKuqc+srCxNmjRJ/v7+8vb2VpcuXfTDDz9YxPz3v//VDTfcIB8fH9WpU0e33367Lly4oNGjRyspKUmvvvqqTCaTTCaTjhw5ck3zAQAAqGzS09P1xx9/KC8vT926dVPVqlXVsWNH7d69+5r7vlquVxHyPJbTAgAAl2IYhq5cuaI33nhD9evX1759+zRy5Ei1a9dODz30UIn7nTp1qlavXq13331XjRs31ksvvaTevXvr119/Ve3atZWWlqYRI0bopZde0qBBg3Tu3Dlt2bJFhmHo1Vdf1c8//6y2bdtqzpw5kqR69eo5apcBABVQbKyzZwC4npSUFElSXFyc5s+fr9q1a+vhhx/W8OHDtX///mvqu6hcLysrq0LkeRTxAACASzGZTJo9e7b5eePGjdWrVy8dOHCgxH1euHBBixcv1rJly8wXUn7zzTeVkJCg+Ph4PfHEE0pLS1Nubq7uvvtuNW7cWJJ0ww03mPvw9PRU1apVFRgYWOJ5AAAAVGa7du2St7e3PvroIwUHB0uSnnvuOd16661KT08vcZ51tVyvZ8+eFSLPYzktAABwKUePHtXEiRPVtm1b1apVS9WqVdO///1vNWjQoMR9Hjp0SDk5Obr11lvNbR4eHrrlllvM3/q2b99ePXv21A033KB//OMfevPNN3X69Olr3h8AAAD8ZdeuXRo6dKi5gCdJvr6+kqS8vLwS93u1XK+i5HkU8QAAgMvIyMjQLbfcooyMDM2fP19bt25VcnKy3NzczBdA7tSpk7Zv3y5JGjVqlBYvXnzVfg3DkPTXWX4F2/Pb3NzclJCQoC+++EKtW7fWa6+9phYtWujw4cMO3EMAAIDKa9euXVY3tdi5c6cCAwMVFBRUojxPunquV1HyPIp4AADAZaxbt065ublasWKFIiMj1aZNG23evFnZ2dnmhG/mzJl6/vnn9corr6hatWp2XSfvuuuuk6enp7Zu3Wpuy8nJ0fbt29WqVStzm8lk0q233qrZs2crJSVFnp6eWrt2raS/lllcuXLFsTsMAABQSVy8eFG//vqrRT6Vl5en1157TaNHj5bJZCpRnifZl+tVhDzPJYt4ixYtUkhIiLy9vRUaGqotW7YUGZ+UlKTQ0FB5e3uradOmWrJkiVXM6tWr1bp1a3l5eal169bmF6q44+7fv1933nmn/Pz8VL16dXXu3Fmpqakl31kAAGBWu3ZtZWZm6pNPPtEvv/yi+fPnKzY2VvXr1zdfYLh///763//+py+//FKvvvqqXf36+vrqoYce0hNPPKH169dr3759GjdunC5evKgxY8ZIkr777js9//zz2r59u1JTU7VmzRr9+eef5sSvSZMm+u6773TkyBFlZGRc05IPAACAymb37t1yc3PTO++8o++//14///yzhg4dqgsXLmj69OmSSpbnSVfP9SpKnudyRbxVq1Zp8uTJeuqpp5SSkqKuXbuqT58+hRbKDh8+rL59+6pr165KSUnR9OnTNWnSJK1evdock5ycrGHDhikqKkq7d+9WVFSUhg4dqu+++65Y4x46dEhdunRRy5YtlZiYqN27d2vmzJny9vYuvQMCAEAl0q9fP40ZM0ZRUVHq0qWLjh8/rqFDh1osu/j+++915swZ1axZU+7u9t+j64UXXtDgwYMVFRWlm266Sb/++qu+/PJL1apVS5JUo0YNbd68WX379lXz5s01Y8YMvfLKK+aLIz/++ONyc3NT69atVa9ePb7EAwAAKIbdu3erefPmio2N1eDBg9WhQwd5eHho27Ztql69uqSS53lS0bleRcnzTEb+wmEX0alTJ910000W655btWqlu+66S3PnzrWKf/LJJ/XJJ59Y3Ip4/Pjx2r17t5KTkyVJw4YNU2Zmpr744gtzzB133KFatWppxYoVdo87fPhweXh46P333y/x/mVmZsrPz09nz55VjRo1StwPANcRG2tfW4WbwzYbA4SX9qCwx+XLl3X48GHz2eUVyfHjx9WnTx99/PHHuvvuu/Xhhx9aLIctz4p63cgfygdeJwB/58hcrKxzS7gu8rzyyVF5nkudiZedna0dO3YoMjLSoj0yMlLbtm2zuU1ycrJVfO/evbV9+3bl5OQUGZPfpz3j5uXl6fPPP1fz5s3Vu3dv+fv7q1OnTvroo4+K3KesrCxlZmZaPAAAQPFdunRJQ4YM0euvv66QkBBNnTpVzz77rLOnBQAAgGtEnmcflyriZWRk6MqVKwoICLBoDwgIUHp6us1t0tPTbcbn5uYqIyOjyJj8Pu0Z98SJEzp//rxeeOEF3XHHHdqwYYMGDRqku+++W0lJSYXu09y5c+Xn52d+NGzY0I4jAQAACvLx8VFycrK6desmSRoxYoQ++OADJ88KAAAA14o8zz4uVcTLV9gtgYsTX7Ddnj6Lism/qOHAgQM1ZcoU3XjjjZo2bZr69+9v80Ya+WJiYnT27Fnz49ixY4XGAgAAAAAAALYU7yqBpaxu3bpyc3OzOuvuxIkTVmfJ5QsMDLQZ7+7urjp16hQZk9+nPePWrVtX7u7uat26tUVMq1atLG5hXJCXl5e8vLwK/TkAAAAAAABwNS51Jp6np6dCQ0OVkJBg0Z6QkKDw8HCb24SFhVnFb9iwQR07dpSHh0eRMfl92jOup6enbr75Zh08eNAi5ueff1bjxo2LuacAAAAAAACA/VzqTDxJio6OVlRUlDp27KiwsDAtXbpUqampGj9+vKS/lqceP35c7733nqS/7kT7+uuvKzo6WuPGjVNycrLi4+PNd52VpEcffVTdunXTiy++qIEDB+rjjz/Wxo0bLc6gu9q4kvTEE09o2LBh6tatm3r06KH169fr008/VWJiYtkcHAAAAAAAAFRKLlfEGzZsmE6ePKk5c+YoLS1Nbdu21bp168xnu6WlpSk1NdUcHxISonXr1mnKlClauHChgoODtWDBAg0ePNgcEx4erpUrV2rGjBmaOXOmmjVrplWrVqlTp052jytJgwYN0pIlSzR37lxNmjRJLVq00OrVq9WlS5cyODIAABRP/jViUT7wegEAAHuRN5Qvjnq9XK6IJ0kTJkzQhAkTbP5s2bJlVm3du3fXzp07i+xzyJAhGjJkSInHzXf//ffr/vvvLzIGAABnyr+cxMWLF+Xj4+Pk2cBeFy9elPR/rx9KbvHixVq8eLGOHDkiSWrTpo2efvpp9enTp9BtkpKSFB0drZ9++knBwcGaOnWqxYoMAABcAXle+eSoPM8li3gAAKDk3NzcVLNmTZ04cUKSVLVq1SLv8g7nMgxDFy9e1IkTJ1SzZk25ubk5e0rlXoMGDfTCCy/ouuuukyS9++67GjhwoFJSUtSmTRur+MOHD6tv374aN26cli9frm+++UYTJkxQvXr1LFZ3AADgbOR55Yuj8zyKeABQDLGxzp4BYJ/AwEBJMid4cH01a9Y0v264NgMGDLB4/txzz2nx4sX69ttvbRbxlixZokaNGikuLk6S1KpVK23fvl3z5s2jiAcAcDnkeeWPo/I8ingAAFRAJpNJQUFB8vf3V05OjrOng6vw8PDgDLxScuXKFf3nP//RhQsXFBYWZjMmOTlZkZGRFm29e/dWfHy8cnJyCl36kpWVpaysLPPzzMxMx00cAIBCkOeVL47M8yjiAQBQgbm5uVEcQqW0Z88ehYWF6fLly6pWrZrWrl2r1q1b24xNT09XQECARVtAQIByc3OVkZGhoKAgm9vNnTtXs2fPdvjcAQCwB3le5VPF2RMAAAAAHK1FixbatWuXvv32Wz300EMaNWqU9u3bV2h8wesJ5d9FrqjrDMXExOjs2bPmx7FjxxwzeQAAABs4Ew8AAAAVjqenp/nGFh07dtQPP/ygV199VW+88YZVbGBgoNLT0y3aTpw4IXd3d9WpU6fQMby8vOTl5eXYiQMAABSCM/EAAABQ4RmGYXH9ur8LCwtTQkKCRduGDRvUsWPHQq+HBwAAUNYo4gEAAKBCmT59urZs2aIjR45oz549euqpp5SYmKh7771X0l/LYEeOHGmOHz9+vI4eParo6Gjt379fb7/9tuLj4/X44487axcAAACssJwWAEpBbKxjYgAAxffHH38oKipKaWlp8vPzU7t27bR+/Xr16tVLkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCzR48GBn7QIAAIAVingAUJhtsTYabbUBAFxJfHx8kT9ftmyZVVv37t21c+fOUpoRAADAtaOIBwAVlK0z/Tj7DwAAAADKJ66JBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4d2dPAABcVWKis2cAAAAAAMBfOBMPAAAAAAAAcHGciQcAAAAAwDWKjXX2DABUdJyJBwAAAAAAALg4ingAAAAAAACAi2M5LQC4EFvLMFiaAQAAAADgTDwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxbk7ewIAUFnFxjp7BgAAAACA8oIz8QAAAAAAAAAXRxEPAAAAAAAAcHEspwUAJ4nwjLVqS8y2bgMAAAAAgDPxAAAAAAAAABfHmXgAINs3mYjwLPNpAAAAAABgE0U8AHBxtgqM3NkWAACg8iiY+5ELApUTy2kBAAAAAAAAF+eSRbxFixYpJCRE3t7eCg0N1ZYtW4qMT0pKUmhoqLy9vdW0aVMtWbLEKmb16tVq3bq1vLy81Lp1a61du7bY444ePVomk8ni0blz52vbWQAAAAAAAOAqXK6It2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqak24w8fPqy+ffuqa9euSklJ0fTp0zVp0iStXr3aHJOcnKxhw4YpKipKu3fvVlRUlIYOHarvvvuu2OPecccdSktLMz/WrVtXOgcCAAAAAAAA+P9crog3f/58jRkzRmPHjlWrVq0UFxenhg0bavHixTbjlyxZokaNGikuLk6tWrXS2LFjdf/992vevHnmmLi4OPXq1UsxMTFq2bKlYmJi1LNnT8XFxRV7XC8vLwUGBpoftWvXLpXjAAAAAAAAAORzqSJedna2duzYocjISIv2yMhIbdu2zeY2ycnJVvG9e/fW9u3blZOTU2RMfp/FGTcxMVH+/v5q3ry5xo0bpxMnThS5T1lZWcrMzLR4AAAAAAAAAMXhUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQUGZPfp73j9unTRx988IG+/vprvfLKK/rhhx902223KSsrq9B9mjt3rvz8/MyPhg0bXuUoAAAAAAAAAJbcnT0BW0wmk8VzwzCs2q4WX7Ddnj6vFjNs2DDz/7dt21YdO3ZU48aN9fnnn+vuu++2ObeYmBhFR0ebn2dmZlLIAwAAAAAAQLG4VBGvbt26cnNzszrr7sSJE1ZnyeULDAy0Ge/u7q46deoUGZPfZ0nGlaSgoCA1btxYv/zyS6ExXl5e8vLyKvTnAAAAAAAAwNW41HJaT09PhYaGKiEhwaI9ISFB4eHhNrcJCwuzit+wYYM6duwoDw+PImPy+yzJuJJ08uRJHTt2TEFBQfbtIAAAAAAAAFACLlXEk6To6Gi99dZbevvtt7V//35NmTJFqampGj9+vKS/lqeOHDnSHD9+/HgdPXpU0dHR2r9/v95++23Fx8fr8ccfN8c8+uij2rBhg1588UUdOHBAL774ojZu3KjJkyfbPe758+f1+OOPKzk5WUeOHFFiYqIGDBigunXratCgQWVzcAAAAHBVc+fO1c0336zq1avL399fd911lw4ePFjkNomJiTKZTFaPAwcOlNGsAQAAiuZSy2mlv647d/LkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHdXNz0549e/Tee+/pzJkzCgoKUo8ePbRq1SpVr169jI4OAAAAriYpKUkPP/ywbr75ZuXm5uqpp55SZGSk9u3bJ19f3yK3PXjwoGrUqGF+Xq9evdKeLgAAgF1crognSRMmTNCECRNs/mzZsmVWbd27d9fOnTuL7HPIkCEaMmRIicf18fHRl19+WeT2AAAAcL7169dbPH/nnXfk7++vHTt2qFu3bkVu6+/vr5o1a5bi7AAAAErG5ZbTAgAAAI509uxZSVLt2rWvGtuhQwcFBQWpZ8+e2rRpU5GxWVlZyszMtHgAAACUFop4AAAAqLAMw1B0dLS6dOmitm3bFhoXFBSkpUuXavXq1VqzZo1atGihnj17avPmzYVuM3fuXPn5+ZkfDRs2LI1dAAAAkOSiy2kBAKUjNta+NgCoKCZOnKgff/xRW7duLTKuRYsWatGihfl5WFiYjh07pnnz5hW6BDcmJkbR0dHm55mZmRTyAABAqaGIB6BSqgyFqwjPWKu2xGzrNgCoqB555BF98skn2rx5sxo0aFDs7Tt37qzly5cX+nMvLy95eXldyxQBAADsRhEPACo5zs4DUNEYhqFHHnlEa9euVWJiokJCQkrUT0pKioKCghw8OwAAgJKhiAcAAIAK5eGHH9aHH36ojz/+WNWrV1d6erokyc/PTz4+PpL+Wgp7/Phxvffee5KkuLg4NWnSRG3atFF2draWL1+u1atXa/Xq1U7bDwAAgL+jiAcAAIAKZfHixZKkiIgIi/Z33nlHo0ePliSlpaUpNTXV/LPs7Gw9/vjjOn78uHx8fNSmTRt9/vnn6tu3b1lNGwAAoEgU8QAAAFChGIZx1Zhly5ZZPJ86daqmTp1aSjMCAAC4dlWcPQEAAAAAAAAARaOIBwAAAAAAALg4ltMCqHy2xSrC07IpMTvWKVNxRRGesdK2Ao3hsU6YCQAAAAAgH0U8ACiHYmOdPQMAAAAAQFliOS0AAAAAAADg4ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OG1sAAK5uW6yzZwAAAAAAlRpn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAHAFEZ6xJYpLzLZvO0eyNVdnzAMAAAAAUHY4Ew8AAAAAAABwcZyJBwAAAABAORIbW/RzABUTZ+IBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiuLEFAAAAAADFxM0kAJQ1ingAgKtKTLRui4go61kAAAAAQOXFcloAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxXFNPACoACI8Y509BQAAAABAKaKIB6DCK3jnsAhPp0wDAAAAAIASYzktAAAAAAAA4OJcsoi3aNEihYSEyNvbW6GhodqyZUuR8UlJSQoNDZW3t7eaNm2qJUuWWMWsXr1arVu3lpeXl1q3bq21a9de07gPPvigTCaT4uLiir1/AAAAAAAAQHG4XBFv1apVmjx5sp566imlpKSoa9eu6tOnj1JTU23GHz58WH379lXXrl2VkpKi6dOna9KkSVq9erU5Jjk5WcOGDVNUVJR2796tqKgoDR06VN99912Jxv3oo4/03XffKTg42PEHAAAAAAAAACjA5Yp48+fP15gxYzR27Fi1atVKcXFxatiwoRYvXmwzfsmSJWrUqJHi4uLUqlUrjR07Vvfff7/mzZtnjomLi1OvXr0UExOjli1bKiYmRj179rQ4i87ecY8fP66JEyfqgw8+kIeHR6kcAwAAAAAAAODvXKqIl52drR07digyMtKiPTIyUtu2bbO5TXJyslV87969tX37duXk5BQZk9+nvePm5eUpKipKTzzxhNq0aWPXPmVlZSkzM9PiAQAAAAAAABSHS92dNiMjQ1euXFFAQIBFe0BAgNLT021uk56ebjM+NzdXGRkZCgoKKjQmv097x33xxRfl7u6uSZMm2b1Pc+fO1ezZs+2OB1AM22Kt28JttAEAAAAAUM5dUxHvk08+sTv2zjvvtDvWZDJZPDcMw6rtavEF2+3ps6iYHTt26NVXX9XOnTuLnEtBMTExio6ONj/PzMxUw4YN7d4eAACgIiutfBIAAKCiuaYi3l133WXx3GQymQto+c/zXbly5ar91a1bV25ublZn3Z04ccLqLLl8gYGBNuPd3d1Vp06dImPy+7Rn3C1btujEiRNq1KiRxT499thjiouL05EjR2zOz8vLS15eXlfZcwAAgMrJ0fkkAABARXVN18TLy8szPzZs2KAbb7xRX3zxhc6cOaOzZ89q3bp1uummm7R+/Xq7+vP09FRoaKgSEhIs2hMSEhQeHm5zm7CwMKv4DRs2qGPHjuYbTxQWk9+nPeNGRUXpxx9/1K5du8yP4OBgPfHEE/ryyy/t2j8AAABYcnQ+Kf11OZObb75Z1atXl7+/v+666y4dPHjwqtslJSUpNDRU3t7eatq0qZYsWXItuwYAAOBQDrsm3uTJk7VkyRJ16dLF3Na7d29VrVpVDzzwgPbv329XP9HR0YqKilLHjh0VFhampUuXKjU1VePHj5f01/LU48eP67333pMkjR8/Xq+//rqio6M1btw4JScnKz4+XitWrDD3+eijj6pbt2568cUXNXDgQH388cfauHGjtm7dave4derUMZ/Zl8/Dw0OBgYFq0aJFyQ4aAAAAzByVTyYlJenhhx/WzTffrNzcXD311FOKjIzUvn375Ovra3Obw4cPq2/fvho3bpyWL1+ub775RhMmTFC9evU0ePBgh+wfAADAtXBYEe/QoUPy8/Ozavfz8yt0qaktw4YN08mTJzVnzhylpaWpbdu2WrdunRo3bixJSktLU2pqqjk+JCRE69at05QpU7Rw4UIFBwdrwYIFFslWeHi4Vq5cqRkzZmjmzJlq1qyZVq1apU6dOtk9LgBUJomJzp4BgMrIUflkwbP23nnnHfn7+2vHjh3q1q2bzW2WLFmiRo0aKS4uTpLUqlUrbd++XfPmzaOIBwAAXILJ+PtFR65Bt27d5OHhoeXLlysoKEjSX3eOjYqKUnZ2tpKSkhwxTLmXmZkpPz8/nT17VjVq1HD2dIDyzc6708YWaIrwtLGdAyVm29e/PfOw1Vdpz99eERE2Grk7MFAqKkv+UFr55K+//qrrr79ee/bsUdu2bQsdu0OHDnr11VfNbWvXrtXQoUN18eJF82Va/i4rK0tZWVnm5/k3MKvorxOAvxTMMZ3JleYCoHiKk+c57Ey8t99+W4MGDVLjxo3NN39ITU1V8+bN9dFHHzlqGAAAAFRQpZFPGoah6OhodenSpdACnvRXsbDgjdQCAgKUm5urjIwMc1Hx7+bOnavZs2eXaF4A4EgFi3gU9YCKyWFFvOuuu04//vijEhISdODAARmGodatW+v222+3uKsYAAAAYEtp5JMTJ07Ujz/+aHEt5MIUHCN/wUphY8fExCg6Otr8PP9MPAAAgNLgsCKe9FeCExkZqW7dusnLy4viHQAAAIrFkfnkI488ok8++USbN29WgwYNiowNDAxUenq6RduJEyfk7u5udXOzfF5eXvLy8irx/AAAAIqjiqM6ysvL0zPPPKP69eurWrVqOnz4sCRp5syZio+Pd9QwAAAAqKAclU8ahqGJEydqzZo1+vrrrxUSEnLVbcLCwpSQkGDRtmHDBnXs2NHm9fAAAADKmsOKeM8++6yWLVuml156SZ6enub2G264QW+99ZajhgEAAEAF5ah88uGHH9by5cv14Ycfqnr16kpPT1d6erouXbpkjomJidHIkSPNz8ePH6+jR48qOjpa+/fv19tvv634+Hg9/vjjjtk5AACAa+SwIt57772npUuX6t5775Wbm5u5vV27djpw4ICjhgEAAEAF5ah8cvHixTp79qwiIiIUFBRkfqxatcock5aWptTUVPPzkJAQrVu3TomJibrxxhv1zDPPaMGCBRo8eLBjdg4AAOAaOeyaeMePH9d1111n1Z6Xl6ecnBxHDQMAxbMtVhGeVw8DADifo/LJ/BtSFGXZsmVWbd27d9fOnTvtHgcAAKAsOexMvDZt2mjLli1W7f/5z3/UoUMHRw0DAACACop8EgAAoHAOOxNv1qxZioqK0vHjx5WXl6c1a9bo4MGDeu+99/TZZ585ahgAAABUUOSTAAAAhXPYmXgDBgzQqlWrtG7dOplMJj399NPav3+/Pv30U/Xq1ctRwwAAAKCCIp8EAAAonMPOxJOk3r17q3fv3o7sEgAAAJUI+SQAAIBtDi3i5Tt//rzy8vIs2mrUqFEaQwEAAKACIp8EAACw5LDltIcPH1a/fv3k6+srPz8/1apVS7Vq1VLNmjVVq1YtRw0DAACACop8EgAAoHAOOxPv3nvvlSS9/fbbCggIkMlkclTXAAAAqATIJwEAAArnsCLejz/+qB07dqhFixaO6hIAAACVCPkkAABA4RxWxLv55pt17Ngxki4AAACUCPkkAFcWG+vsGQCo7BxWxHvrrbc0fvx4HT9+XG3btpWHh4fFz9u1a+eooQAAAFABkU8CAAAUzmFFvD///FOHDh3SfffdZ24zmUwyDEMmk0lXrlxx1FAAABeQmGjdFhFe5tMAUIGQTwIAABTOYUW8+++/Xx06dNCKFSu4EDEAAACKjXwSAACgcA4r4h09elSffPKJrrvuOkd1CQDFty3W2TMAAJQQ+SQAAEDhqjiqo9tuu027d+92VHcAAACoZMgnAQAACuewM/EGDBigKVOmaM+ePbrhhhusLkR85513OmooAAAAVEDkkwBcCXejBeBqHFbEGz9+vCRpzpw5Vj/jQsQAAAC4GvJJAACAwjmsiJeXl+eorgAAAFAJkU8CAAAUziHXxMvNzZW7u7v27t3riO4AAABQyZBPAgAAFM0hZ+K5u7urcePGLHEAUKYSE63bIiLKehb2ifCMLdPtnKbg3YHDY21FAYAV8kkAAICiOezutDNmzFBMTIxOnTrlqC4BAABQiZBPAgAAFM5h18RbsGCBfv31VwUHB6tx48by9fW1+PnOnTsdNRQAFMrW2XkAgPKBfBIArNlamZGYbd0GoOJzWBHvrrvuclRXAAAAqITIJwEAAArnsCLerFmzHNUVAAAAKiHySQAAgMI5rIiXb8eOHdq/f79MJpNat26tDh06OHoIAAAAVGDkkwAqq3J3UzMAZcphRbwTJ05o+PDhSkxMVM2aNWUYhs6ePasePXpo5cqVqlevnqOGAgCXVpmTr4LXJEzcIMXGOmMmAMoj8kkAcIyC+Rf5GFAxOOzutI888ogyMzP1008/6dSpUzp9+rT27t2rzMxMTZo0yVHDAAAAoIIinwQAACicw87EW79+vTZu3KhWrVqZ21q3bq2FCxcqMjLSUcMAAACggiKfBOBU22ItnkZ4chdYAK7FYWfi5eXlycPDw6rdw8NDeXl5jhoGAAAAFRT5JAAAQOEcVsS77bbb9Oijj+r33383tx0/flxTpkxRz549HTUMAAAAKijySQAAgMI5bDnt66+/roEDB6pJkyZq2LChTCaTjh49qnbt2un999931DAAKilbF+ON8CzzaQAAShH5JAAAQOEcVsRr2LChdu7cqY0bN2r//v0yDEOtW7fW7bff7qghAAAAUIGRTwIAABTOYUU8Sfrqq6/09ddf68SJE8rLy9OuXbv04YcfSpLefvttRw4FACgHIjxjpW0FGsNjnTATAOUF+SQAXF2EZ6xVGzfhACo+h10Tb/bs2YqMjNRXX32ljIwMnT592uJRHIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHHjY2NVcuWLeXr66tatWrp9ttv13fffVesfQMAAIBtjswnAQAAKhqHnYm3ZMkSLVu2TFFRUdfUz6pVqzR58mQtWrRIt956q9544w316dNH+/btU6NGjaziDx8+rL59+2rcuHFavny5vvnmG02YMEH16tXT4MGDJUnJyckaNmyYnnnmGQ0aNEhr167V0KFDtXXrVnXq1MnucZs3b67XX39dTZs21aVLl/Svf/1LkZGR+vXXX1WvXr1r2m8AqKgSEws832D7GocA4Kh8EgAAoCJy2Jl42dnZCg8Pv+Z+5s+frzFjxmjs2LFq1aqV4uLi1LBhQy1evNhm/JIlS9SoUSPFxcWpVatWGjt2rO6//37NmzfPHBMXF6devXopJiZGLVu2VExMjHr27Km4uLhijXvPPffo9ttvV9OmTdWmTRvNnz9fmZmZ+vHHH695vwEAACo7R+WTAAAAFZHDinhjx441X6+kpLKzs7Vjxw5FRkZatEdGRmrbtoIXVfpLcnKyVXzv3r21fft25eTkFBmT32dJxs3OztbSpUvl5+en9u3bF7pPWVlZyszMtHgAAADAmiPySQAAgIrKYctpL1++rKVLl2rjxo1q166dPDw8LH4+f/78q/aRkZGhK1euKCAgwKI9ICBA6enpNrdJT0+3GZ+bm6uMjAwFBQUVGpPfZ3HG/eyzzzR8+HBdvHhRQUFBSkhIUN26dQvdp7lz52r27NlF7zgAAAAckk8CAABUVA4r4v3444+68cYbJUl79+61+JnJZCpWXwXjDcMosg9b8QXb7enTnpgePXpo165dysjI0JtvvqmhQ4fqu+++k7+/v825xcTEKDo62vw8MzNTDRs2LHRfgAplW6x1W8E7k9qKscneOLg67lgLoDCOyic3b96sl19+WTt27FBaWprWrl2ru+66q9D4xMRE9ejRw6p9//79atmypd3jAgAAlCaHFfE2bdp0zX3UrVtXbm5uVme/nThxwuosuXyBgYE2493d3VWnTp0iY/L7LM64vr6+uu6663Tdddepc+fOuv766xUfH6+YmBib8/Py8pKXl9dV9hwAAACOyCcl6cKFC2rfvr3uu+8+843O7HHw4EHVqFHD/JwblwEAAFfisGviOYKnp6dCQ0OVkJBg0Z6QkFDoRY7DwsKs4jds2KCOHTual2AUFpPfZ0nGzWcYhrKysq6+cwAAACgTffr00bPPPqu77767WNv5+/srMDDQ/HBzcyulGQIAABSfw87Ec5To6GhFRUWpY8eOCgsL09KlS5Wamqrx48dL+mt56vHjx/Xee+9JksaPH6/XX39d0dHRGjdunJKTkxUfH68VK1aY+3z00UfVrVs3vfjiixo4cKA+/vhjbdy4UVu3brV73AsXLui5557TnXfeqaCgIJ08eVKLFi3Sb7/9pn/84x9leIQAAABQGjp06KDLly+rdevWmjFjhs0ltn+XlZVl8WUuNzADAAClyeWKeMOGDdPJkyc1Z84cpaWlqW3btlq3bp0aN24sSUpLS1Nqaqo5PiQkROvWrdOUKVO0cOFCBQcHa8GCBRZLJ8LDw7Vy5UrNmDFDM2fOVLNmzbRq1Sp16tTJ7nHd3Nx04MABvfvuu8rIyFCdOnV08803a8uWLWrTpk0ZHR2gYkpMtG6LiCjrWcCZYmPtawOA0hAUFKSlS5cqNDRUWVlZev/999WzZ08lJiaqW7duhW7HDcwAAEBZcrkiniRNmDBBEyZMsPmzZcuWWbV1795dO3fuLLLPIUOGaMiQISUe19vbW2vWrClyewAAAJQ/LVq0UIsWLczPw8LCdOzYMc2bN6/IIh43MAMAAGXJpa6JBwAAALiCzp0765dffikyxsvLSzVq1LB4AAAAlBaKeAAAAEABKSkpCgoKcvY0AAAAzFxyOS0AAABQUufPn9evv/5qfn748GHt2rVLtWvXVqNGjaxulBYXF6cmTZqoTZs2ys7O1vLly7V69WqtXr3aWbsAAABghSIeAKDM2bqZCQA4yvbt2y3uLJt/3bpRo0Zp2bJlVjdKy87O1uOPP67jx4/Lx8dHbdq00eeff66+ffuW+dwBlD8RnrFWbYnZ1m0AcK0o4gEAAKBCiYiIkGEYhf684I3Spk6dqqlTp5byrAAAAK4N18QDAAAAAAAAXBxn4gFwSSy3BAAAQHnlsktst8Vat4XbaAPgkijiASgXbCVCAAAAgKPwJTIAV8dyWgAAAAAAAMDFcSYeAAAAAAB2YHUIAGfiTDwAAAAAAADAxVHEAwAAAAAAAFwcy2kBAAAAALCB5bMAXAlFPACA09lKkGNjbbWV+lQAAAAAwCVRxAMAAAAAVFzbYq3bwm20lXO2vhRNzLZuA1B+cU08AAAAAAAAwMVRxAMAAAAAAABcHMtpAQAAAACowPKvKxzh+f//G+GsmQC4FpyJBwAAAAAAALg4ingAAAAAAACAi2M5LVCZOfJOXbb6siH/VP58+af0A3Yp+D6rgHeWAwAAAABbOBMPAAAAAAAAcHEU8QAAAAAAAAAXx3JaAAAAAAAqkcTE//v/iHAbAY687A4Ah+FMPAAAAAAAAMDFcSYegFLz92/4AAAAAABAyVHEAwBULCz/AAAALijCM9aqLTHbug0ACsNyWgAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFcU08AAAAAEClFBv7f/8f4em0aQCAXTgTDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBx7s6eAAAAAAAAcJJtsc6eAQA7ueSZeIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHGzcnJ0ZNPPqkbbrhBvr6+Cg4O1siRI/X7779f+w4DrmxbrPXDhsRE6wdQ6ux8f5a4PwAAAABwES53Jt6qVas0efJkLVq0SLfeeqveeOMN9enTR/v27VOjRo2s4g8fPqy+fftq3LhxWr58ub755htNmDBB9erV0+DBgyVJycnJGjZsmJ555hkNGjRIa9eu1dChQ7V161Z16tTJrnEvXryonTt3aubMmWrfvr1Onz6tyZMn684779T27dvL9BgBAAAAAHA1EZ6xjuvM1hec4Q7sH8BVuVwRb/78+RozZozGjh0rSYqLi9OXX36pxYsXa+7cuVbxS5YsUaNGjRQXFydJatWqlbZv36558+aZi3hxcXHq1auXYmJiJEkxMTFKSkpSXFycVqxYYde4fn5+SkhIsBj7tdde0y233KLU1FSbBUagoih4Vl3iBik21hkzAQAAAACgcnKp5bTZ2dnasWOHIiMjLdojIyO1bds2m9skJydbxffu3Vvbt29XTk5OkTH5fZZkXEk6e/asTCaTatasWWhMVlaWMjMzLR4AAAAoPZs3b9aAAQMUHBwsk8mkjz766Krb2HN5FgCoiLgkDlB+uNSZeBkZGbpy5YoCAgIs2gMCApSenm5zm/T0dJvxubm5ysjIUFBQUKEx+X2WZNzLly9r2rRpuueee1SjRo1C92nu3LmaPXt2oT8HANjPVmIZEXH1uIjwUpgMAJd14cIFtW/fXvfdd595ZUZR7Lk8CwAAgLO5VBEvn8lksnhuGIZV29XiC7bb06e94+bk5Gj48OHKy8vTokWLitiTv5buRkdHm59nZmaqYcOGRW4DAACAkuvTp4/69Oljd7w9l2cBAABwNpcq4tWtW1dubm5WZ7+dOHHC6iy5fIGBgTbj3d3dVadOnSJj8vsszrg5OTkaOnSoDh8+rK+//rrIs/AkycvLS15eXkXGAAAAwHkKu/RKfHy8cnJy5OHhYXO7rKwsZWVlmZ9z2RQAAFCaXKqI5+npqdDQUCUkJGjQoEHm9oSEBA0cONDmNmFhYfr0008t2jZs2KCOHTuaE66wsDAlJCRoypQpFjHh4eHFGje/gPfLL79o06ZN5iIh4HJK+c5REZ6xUuGXiwQcwqF3UwOAIthzeRZbuGwKAAAoSy5VxJOk6OhoRUVFqWPHjgoLC9PSpUuVmpqq8ePHS/preerx48f13nvvSZLGjx+v119/XdHR0Ro3bpySk5MVHx9vvuusJD366KPq1q2bXnzxRQ0cOFAff/yxNm7cqK1bt9o9bm5uroYMGaKdO3fqs88+05UrV8xn7tWuXVuenp5ldYgAAADgYPZcnqUgLpsCAADKkssV8YYNG6aTJ09qzpw5SktLU9u2bbVu3To1btxYkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCyyuXxIeHq6VK1dqxowZmjlzppo1a6ZVq1apU6dOdo/722+/6ZNPPpEk3XjjjRZz3rRpkyJsXVkdAAAALs+ey7PYwmVTAABAWXK5Ip4kTZgwQRMmTLD5s2XLllm1de/eXTt37iyyzyFDhmjIkCElHrdJkybmb2QBcPt5AEDFYc/lWQC4AEdeMub/9xXh5AVVXD4EQHFUcfYEAAAAAEc6f/68du3apV27dkmSDh8+rF27dplXc8TExGjkyJHm+PHjx+vo0aOKjo7W/v379fbbbys+Pl6PP/64M6YPAABgk0ueiQcAAACU1Pbt29WjRw/z8/zr1o0aNUrLli0r0eVZAAAAnI0iHgCgXLNraXcp37EZgGuJiIgo8jIoJb08C4Dyj0vCACjPWE4LAAAAAAAAuDiKeAAAAAAAAICLYzktAAAAAACQZL3kOCLCGbMAYAtn4gEAAAAAAAAujiIeAAAAAAAA4OJYTgvAkq27eALlnK070SVusG6LjSzQwF1tAQAAClcwVyJPAkoVZ+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAKgQEp+PtXjOnVUBVCQU8QAAAAAAgE0Fry1MYRRwHpbTAgAAAAAAAC6OM/GASiI21kZbwTtxAgAAAAAAl0QRDyhtBW+7LnHrdQAAAKAMFFwKCgDlGUU8ABZIdAAAAAAAcD0U8QAAAAAA5ZOtVS8AUEFxYwsAAAAAAADAxXEmHlBBsSwWAAAATlfwTDmuDV2xcT1woFRRxAMqMQp9AAAAAACUDxTxUPlUtG8D7bwOSISnfXGlzVXmAdhiq7AdEVGggW+YAQAAADgBRTwAAAAAgGvhhhUAYIUbWwAAAAAAAAAujiIeAAAAAAAA4OJYTgsAQBHsuk4eAAAAAJQyzsQDAAAAAAAAXBxn4gEAAAAAyoWCZ8hzdjyAyoQiHmCLrbthhdtoK+9jAnCI2Fj72uzCZwEAAKhIyG0Ah2E5LQAAAAAAAODiOBMPAIBS4NCz8wAAAABUehTxAAAAAABA2bG1xNYWlt0CFlhOCwAAAAAAALg4zsQDAMCJCi6xjfDkTnsAAAAArFHEw//hrkHFxzEDyq0Iz1hnT6H0sVQFAFDBJSY6ewYoVQVzGXIWVHIU8QAXxoXxAQAAALiSgoVTVhAAZYdr4gEAAAAAAAAujjPxAAAAAADXzt7LOAAASsQlz8RbtGiRQkJC5O3trdDQUG3ZsqXI+KSkJIWGhsrb21tNmzbVkiVLrGJWr16t1q1by8vLS61bt9batWuLPe6aNWvUu3dv1a1bVyaTSbt27bqm/QQAAAAAAADs4XJFvFWrVmny5Ml66qmnlJKSoq5du6pPnz5KTU21GX/48GH17dtXXbt2VUpKiqZPn65JkyZp9erV5pjk5GQNGzZMUVFR2r17t6KiojR06FB99913xRr3woULuvXWW/XCCy+U3gEAALi8xETLBwAAAACUNpdbTjt//nyNGTNGY8eOlSTFxcXpyy+/1OLFizV37lyr+CVLlqhRo0aKi4uTJLVq1Urbt2/XvHnzNHjwYHMfvXr1UkxMjCQpJiZGSUlJiouL04oVK+weNyoqSpJ05MiRUtt/OJgjT+l3wvIA23fPtG6jiACUE6V9hzVXWMZk7127HXl3b+4UjkIsWrRIL7/8stLS0tSmTRvFxcWpa9euNmMTExPVo0cPq/b9+/erZcuWpT1VoPLgMxsASsylzsTLzs7Wjh07FBkZadEeGRmpbdu22dwmOTnZKr53797avn27cnJyiozJ77Mk49orKytLmZmZFg8AAACUruKu7sh38OBBpaWlmR/XX399Gc0YAACgaC5VxMvIyNCVK1cUEBBg0R4QEKD09HSb26Snp9uMz83NVUZGRpEx+X2WZFx7zZ07V35+fuZHw4YNr6k/AAAAXN3fV1m0atVKcXFxatiwoRYvXlzkdv7+/goMDDQ/3NzcymjGAFAxcRkSwHFcbjmtJJlMJovnhmFYtV0tvmC7PX0Wd1x7xMTEKDo62vw8MzOTQh5s4g8aAACOkb/KYtq0aRbt9qyy6NChgy5fvqzWrVtrxowZNpfY5svKylJWVpb5OSsuUKm4wiUc4BIK/jsmIqIUB2M5Nio5lyri1a1bV25ublZnv504ccLqLLl8gYGBNuPd3d1Vp06dImPy+yzJuPby8vKSl5fXNfUBAEBJ2fqCoFSTa8AFlGSVRVBQkJYuXarQ0FBlZWXp/fffV8+ePZWYmKhu3brZ3Gbu3LmaPXu2w+cPAOUZJycApcelinienp4KDQ1VQkKCBg0aZG5PSEjQwIEDbW4TFhamTz/91KJtw4YN6tixozw8PMwxCQkJmjJlikVMeHh4iccFAACAayvOKosWLVqoRYsW5udhYWE6duyY5s2bV2gRjxUXqDRK+6w7zuoDALu4VBFPkqKjoxUVFaWOHTsqLCxMS5cuVWpqqsaPHy/pr2Tp+PHjeu+99yRJ48eP1+uvv67o6GiNGzdOycnJio+PN991VpIeffRRdevWTS+++KIGDhyojz/+WBs3btTWrVvtHleSTp06pdTUVP3++++S/rrwsSTzNVMAAADgfI5aZdG5c2ctX7680J+z4gIAAJQllyviDRs2TCdPntScOXOUlpamtm3bat26dWrcuLEkKS0tzeKuYiEhIVq3bp2mTJmihQsXKjg4WAsWLNDgwYPNMeHh4Vq5cqVmzJihmTNnqlmzZlq1apU6depk97iS9Mknn+i+++4zPx8+fLgkadasWYqNjS2tQ1J89nyTxXUDnItvG4EKL8Iz1qrNanlJYqwiPK23tbq2TLh1jK0/O7GR1m0OVfCzq7L8LeH6O+WOo1ZZpKSkKCgoqDSmCAAAUGwuV8STpAkTJmjChAk2f7Zs2TKrtu7du2vnzp1F9jlkyBANGTKkxONK0ujRozV69Ogi+wAAAIDzFXd1R1xcnJo0aaI2bdooOztby5cv1+rVq7V69Wpn7gZgjS8WAKDScskiHgAAKB8KnhEY4cmNM+Aairu6Izs7W48//riOHz8uHx8ftWnTRp9//rn69u3rrF0AAACwQBEPcDB7/0HLXZsAAChdxVndMXXqVE2dOrUMZgWgOMiZAeD/UMQDyhlbRUIAAACgPLK6DmyEM2aBssRrDpQcRTygDPANIgBXYs+NMwAAAAC4Fop4KB3XcvfVghfmtbcvF7mgr607Upan/gEUX2n/XiY+b6v/0h3TJbjyxdtdeW4AAACokCjiAeLC7AAAAADgDH9fIcC/wYCiUcQDCsG1GgAAAAAAgKugiIdyy55rOtm6Fl1Ji3GO7AsAAACorLheNACUDEU8AABgpeBlBiQpNrLMpwEAsIcjr9N5Lde2dgAKfABQuCrOngAAAAAAAACAonEmHgAAAAAAcDquSw4UjSIeKo6Snvq/LVYRng6dCQCUugjPWMd1ZvPzs7T7L2WOXFoGAGWltD+7nLxUFgBwbSjiAQBQQXAdIQAAAKDioogHAADsUrBImLjBKdMAAAAAKiWKeKgwOAMFAAAAZa7gElVXWbrvQktnydNRquxdhs6lNlABUMQDAAAuy9bZf7GxzpgJAAAA4FxVnD0BAAAAAAAAAEXjTLzKyoVOry+o4BkWEZ6OvbW4I0/nZ2kAgIrKoXe/dVUsqwEAoHJzxh2hyTVwDSjioVygWAYApYfPWADAtSj4d8SRX8ADAP4PRTwAAFCqbBUJ+QceAFRcfDkEAKWDIh6KzdYFxbnIOAAgX0n/8WbrcgoAAKDycspZnvbccZplsnASingAAAAAAMDlsXQblR1FPAAAUOZYagUA5QeFE7iqq703/36Wf4lvmGjvTSFLGnctZ/pxRmClQxEP1yzCM1aJz9sRF1HqUwEAlCFn3MHW1t8c/r4AAACgMqji7AkAAAAAAAAAKBpn4sHM5t0Dw8t8GgAAAEDpKe1latfSP4BrYv43bWKspAp2kyxHfmawXLfcooiHIjnyrrM2i4QRjusfAAAAQOnjuqYA4BwspwUAAAAAAABcHGfiAQAAFBOXoABKkSOXb7nKklVXmQeAio/PmwqNIh6cilPxAQCupuClJGIjnTINACgzBXNyLnmDior3Oso7ingoUoRnbKUYEwDgfI78/OdMOQAAAFQ0FPEAAEC5di1ndRfcNnHDtcwEgNNVxGVkTtgnVssAlVBF/PysgCjiAQCASqHgMtkIT/u24x+zAABUTEX9jWepLVwRRTwAAAAAqGT4ggIoGtfPgyuiiFeJ8YcbAAAA5ZYjl37Z2xfLzQA4Gp8rKIYqzp4AAAAAAAAAgKJxJh4AAMD/xx3SAZQXV1tVU3DpH6twgGtT3N85oDRQxAMAAADKi4LLrsJjbUW5rpLOn+VmAFxcpbmGXkk/j8vb3ysXRRGvkuCbNwAAAMC1/D1Hd/Q/+Mn/AeeqNEU9lCmXvCbeokWLFBISIm9vb4WGhmrLli1FxiclJSk0NFTe3t5q2rSplixZYhWzevVqtW7dWl5eXmrdurXWrl1b7HENw1BsbKyCg4Pl4+OjiIgI/fTTT9e2swAAACgVpZFTonJLTLR8AIC9Cn5+FPV5wmcNCuNyZ+KtWrVKkydP1qJFi3TrrbfqjTfeUJ8+fbRv3z41atTIKv7w4cPq27evxo0bp+XLl+ubb77RhAkTVK9ePQ0ePFiSlJycrGHDhumZZ57RoEGDtHbtWg0dOlRbt25Vp06d7B73pZde0vz587Vs2TI1b95czz77rHr16qWDBw+qevXqZXeQAAAAUKTSyCkrpWtZxmrP0qkKtkz2amfeFPWPcf6hDqAwlfp6fLb+Ttj6+2JvnCPHdAKXOxNv/vz5GjNmjMaOHatWrVopLi5ODRs21OLFi23GL1myRI0aNVJcXJxatWqlsWPH6v7779e8efPMMXFxcerVq5diYmLUsmVLxcTEqGfPnoqLi7N7XMMwFBcXp6eeekp333232rZtq3fffVcXL17Uhx9+WKrHpLiuVtUHAACo6EojpwQAoDygHlBxudSZeNnZ2dqxY4emTZtm0R4ZGalt27bZ3CY5OVmRkZEWbb1791Z8fLxycnLk4eGh5ORkTZkyxSomv4hnz7iHDx9Wenq6xVheXl7q3r27tm3bpgcffNDm/LKyspSVlWV+fvbsWUlSZmZmYYfhml24nHX1IAAAKpmsHMu/vRfyHPv3sjT/tuf3bRhGqY1RkZRWTlmQM/I8XSjwvi3NsWyNVxy25majv4KrnLt2LfrnruTz9df2cwDIdy2fF8X9LHLk52zBvgpVyN+ruXP/7/9jYmwE2Po7ZOfflxL/jXRkX3YoTp7nUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQoKCio0Jj8Pu0ZN/+/tmKOHj1a6D7NnTtXs2fPtmpv2LBhodsAAIDS8ELpdv9MKfcv6dy5c/Lz8yv1ccq70sopC3KNPK/033cl58pzAwCUrav/TXjB7j8b9gY68u+Qa+R5LlXEy2cymSyeG4Zh1Xa1+ILt9vTpqJi/i4mJUXR0tPl5Xl6eTp06pTp16hS5HYqWmZmphg0b6tixY6pRo4azp1OhcazLDse67HCsyw7H2jEMw9C5c+cUHBzs7KmUK6WRU/5dZc3zSuv3+uabb9YPP/zgsP4qe5+8To7vszT6reyvU2n1W5lfp9Lqtzz0WV7zzuLkeS5VxKtbt67c3NysviE9ceKE1Tej+QIDA23Gu7u7q06dOkXG5Pdpz7iBgYGS/vqW9u/fxBY1N+mvJbdeXl4WbTVr1iw0HsVTo0aNcvXLWZ5xrMsOx7rscKzLDsf62nEGnv1KK6csqLLneY7+vXZzc3P450Rl7jMfr5NjlVa/lfV1Kq1+K/PrVFr9lpc+pfKZd9qb57nUjS08PT0VGhqqhIQEi/aEhASFh4fb3CYsLMwqfsOGDerYsaP52iWFxeT3ac+4ISEhCgwMtIjJzs5WUlJSoXMDAABA2SutnBKl6+GHH6bPcqC87H9pHdPy8lpV9mNamV+n0uq3vPRZ4RkuZuXKlYaHh4cRHx9v7Nu3z5g8ebLh6+trHDlyxDAMw5g2bZoRFRVljv/f//5nVK1a1ZgyZYqxb98+Iz4+3vDw8DD++9//mmO++eYbw83NzXjhhReM/fv3Gy+88ILh7u5ufPvtt3aPaxiG8cILLxh+fn7GmjVrjD179hgjRowwgoKCjMzMzDI4Mvi7s2fPGpKMs2fPOnsqFR7HuuxwrMsOx7rscKzhLKWRU+Iv/F6XD7xO5QOvU/nA61Q+VIbXyaWW00rSsGHDdPLkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHlaSpU6fq0qVLmjBhgk6fPq1OnTppw4YNql69ehkcGfydl5eXZs2aZbWEBY7HsS47HOuyw7EuOxxrOEtp5JT4C7/X5QOvU/nA61Q+8DqVD5XhdTIZhh33sAUAAAAAAADgNC51TTwAAAAAAAAA1ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OIh5cxpEjRzRmzBiFhITIx8dHzZo106xZs5SdnW0Rl5qaqgEDBsjX11d169bVpEmTrGL27Nmj7t27y8fHR/Xr19ecOXNU8B4uSUlJCg0Nlbe3t5o2baolS5aU+j66kueee07h4eGqWrWqatasaTOGY112Fi1apJCQEHl7eys0NFRbtmxx9pRc3ubNmzVgwAAFBwfLZDLpo48+svi5YRiKjY1VcHCwfHx8FBERoZ9++skiJisrS4888ojq1q0rX19f3Xnnnfrtt98sYk6fPq2oqCj5+fnJz89PUVFROnPmTCnvneuYO3eubr75ZlWvXl3+/v666667dPDgQYsYjjVQsdmTMxRkz+cCHKskn6GjR4+WyWSyeHTu3LlsJlyJFDfPI3d2juK8TomJiVa/OyaTSQcOHCjDGVc+V8v/balov08U8eAyDhw4oLy8PL3xxhv66aef9K9//UtLlizR9OnTzTFXrlxRv379dOHCBW3dulUrV67U6tWr9dhjj5ljMjMz1atXLwUHB+uHH37Qa6+9pnnz5mn+/PnmmMOHD6tv377q2rWrUlJSNH36dE2aNEmrV68u0312puzsbP3jH//QQw89ZPPnHOuys2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqanOnppLu3Dhgtq3b6/XX3/d5s9feuklzZ8/X6+//rp++OEHBQYGqlevXjp37pw5ZvLkyVq7dq1WrlyprVu36vz58+rfv7+uXLlijrnnnnu0a9curV+/XuvXr9euXbsUFRVV6vvnKpKSkvTwww/r22+/VUJCgnJzcxUZGakLFy6YYzjWQMV2tZzBFns+F+BYJf0MveOOO5SWlmZ+rFu3rgxmW3kUN88jd3aOkubjBw8etPj9uf7668toxpXT1fL/girk75MBuLCXXnrJCAkJMT9ft26dUaVKFeP48ePmthUrVhheXl7G2bNnDcMwjEWLFhl+fn7G5cuXzTFz5841goODjby8PMMwDGPq1KlGy5YtLcZ68MEHjc6dO5fm7rikd955x/Dz87Nq51iXnVtuucUYP368RVvLli2NadOmOWlG5Y8kY+3atebneXl5RmBgoPHCCy+Y2y5fvmz4+fkZS5YsMQzDMM6cOWN4eHgYK1euNMccP37cqFKlirF+/XrDMAxj3759hiTj22+/NcckJycbkowDBw6U8l65phMnThiSjKSkJMMwONZAZVJYzlCQPZ8LcKySfoaOGjXKGDhwYBnMsPIqbp5H7uwcxX2dNm3aZEgyTp8+XQazgy0F839bKuLvE2fiwaWdPXtWtWvXNj9PTk5W27ZtFRwcbG7r3bu3srKytGPHDnNM9+7d5eXlZRHz+++/68iRI+aYyMhIi7F69+6t7du3KycnpxT3qPzgWJeN7Oxs7dixw+oYRUZGatu2bU6aVfl3+PBhpaenWxxXLy8vde/e3Xxcd+zYoZycHIuY4OBgtW3b1hyTnJwsPz8/derUyRzTuXNn+fn5VdrX5+zZs5Jk/mzmWAMoyJ7PBTjWtXyGJiYmyt/fX82bN9e4ceN04sSJ0p5upVGSPI/cuexdSz7eoUMHBQUFqWfPntq0aVNpThMlUBF/nyjiwWUdOnRIr732msaPH29uS09PV0BAgEVcrVq15OnpqfT09EJj8p9fLSY3N1cZGRkO35fyiGNdNjIyMnTlyhWbxyj/GKL48o9dUcc1PT1dnp6eqlWrVpEx/v7+Vv37+/tXytfHMAxFR0erS5cuatu2rSSONQBr9nwuwLFK+hnap08fffDBB/r666/1yiuv6IcfftBtt92mrKys0pxupVGSPI/cueyV5HUKCgrS0qVLtXr1aq1Zs0YtWrRQz549tXnz5rKYMuxUEX+fKOKh1MXGxtq86OffH9u3b7fY5vfff9cdd9yhf/zjHxo7dqzFz0wmk9UYhmFYtBeMMf7/jRaKG1PelORYF4VjXXZsHSOOz7UryXG92nvc3n4qookTJ+rHH3/UihUrrH7GsQbKF0fnDLbwt+3aFed1Ksln6LBhw9SvXz+1bdtWAwYM0BdffKGff/5Zn3/+eantU2VU3N8FcmfnKM7r1KJFC40bN0433XSTwsLCtGjRIvXr10/z5s0ri6miGCra75O7syeAim/ixIkaPnx4kTFNmjQx///vv/+uHj16KCwsTEuXLrWICwwM1HfffWfRdvr0aeXk5Jgr7IGBgVbfmOQvC7hajLu7u+rUqWP/zrmY4h7ronCsy0bdunXl5uZm8xgV/NYI9gsMDJT017dvQUFB5va/H9fAwEBlZ2fr9OnTFmeInThxQuHh4eaYP/74w6r/P//8s9K9Po888og++eQTbd68WQ0aNDC3c6yB8smROUNB9nwuwD72vk4//vijQz5Dg4KC1LhxY/3yyy/FniuslSTPI3cue47Kxzt37qzly5c7enq4BhXx94kz8VDq6tatq5YtWxb58Pb2liQdP35cERERuummm/TOO++oShXLt2hYWJj27t2rtLQ0c9uGDRvk5eWl0NBQc8zmzZuVnZ1tERMcHGxORsPCwpSQkGDR94YNG9SxY0d5eHiUxmEoE8U51lfDsS4bnp6eCg0NtTpGCQkJ5uIGii8kJESBgYEWxzU7O1tJSUnm4xoaGioPDw+LmLS0NO3du9ccExYWprNnz+r77783x3z33Xc6e/ZspXl9DMPQxIkTtWbNGn399dcKCQmx+DnHGiifHJkzFGTP5wLsY+/r5KjP0JMnT+rYsWMWxVeUXEnyPHLnsueofDwlJYXfHRdTIX+fyvQ2GkARjh8/blx33XXGbbfdZvz2229GWlqa+ZEvNzfXaNu2rdGzZ09j586dxsaNG40GDRoYEydONMecOXPGCAgIMEaMGGHs2bPHWLNmjVGjRg1j3rx55pj//e9/RtWqVY0pU6YY+/btM+Lj4w0PDw/jv//9b5nuszMdPXrUSElJMWbPnm1Uq1bNSElJMVJSUoxz584ZhsGxLksrV640PDw8jPj4eGPfvn3G5MmTDV9fX+PIkSPOnppLO3funPl9K8mYP3++kZKSYhw9etQwDMN44YUXDD8/P2PNmjXGnj17jBEjRhhBQUFGZmamuY/x48cbDRo0MDZu3Gjs3LnTuO2224z27dsbubm55pg77rjDaNeunZGcnGwkJycbN9xwg9G/f/8y319neeihhww/Pz8jMTHR4nP54sWL5hiONVCxXS1nMAzDaNGihbFmzRrzc3s+F+BY9nyG/v11OnfunPHYY48Z27ZtMw4fPmxs2rTJCAsLM+rXr8/r5EBXy/OmTZtmREVFmePJnZ2juK/Tv/71L2Pt2rXGzz//bOzdu9eYNm2aIclYvXq1s3ahUrha/l8Zfp8o4sFlvPPOO4Ykm4+/O3r0qNGvXz/Dx8fHqF27tjFx4kTj8uXLFjE//vij0bVrV8PLy8sIDAw0YmNjjby8PIuYxMREo0OHDoanp6fRpEkTY/HixaW+j65k1KhRNo/1pk2bzDEc67KzcOFCo3Hjxoanp6dx0003GUlJSc6eksvbtGmTzffwqFGjDMMwjLy8PGPWrFlGYGCg4eXlZXTr1s3Ys2ePRR+XLl0yJk6caNSuXdvw8fEx+vfvb6SmplrEnDx50rj33nuN6tWrG9WrVzfuvfde4/Tp02W0l85X2OfyO++8Y47hWAMVmz05Q0k+F+BY9nyG/v11unjxohEZGWnUq1fP8PDwMBo1amSMGjXK6rMZ166oPG/UqFFG9+7dLeLJnZ2jOK/Tiy++aDRr1szw9vY2atWqZXTp0sX4/PPPnTDryuVq+X9l+H0yGcb/v6ofAAAAAAAAAJfENfEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAACgFERERmjx5srOnAaCCoIgHAAAAAAAAuDiKeAAAAAAAAICLo4gHAE62fv16denSRTVr1lSdOnXUv39/HTp0yNnTAgAAgAPk5uZq4sSJ5lxvxowZMgzD2dMCUA5RxAMAJ7tw4YKio6P1ww8/6KuvvlKVKlU0aNAg5eXlOXtqAAAAuEbvvvuu3N3d9d1332nBggX617/+pbfeesvZ0wJQDpkMvgIAAJfy559/yt/fX3v27FHbtm2dPR0AAACUUEREhE6cOKGffvpJJpNJkjRt2jR98skn2rdvn5NnB6C84Uw8AHCyQ4cO6Z577lHTpk1Vo0YNhYSESJJSU1OdPDMAAABcq86dO5sLeJIUFhamX375RVeuXHHirACUR+7OngAAVHYDBgxQw4YN9eabbyo4OFh5eXlq27atsrOznT01AAAAAICLoIgHAE508uRJ7d+/X2+88Ya6du0qSdq6dauTZwUAAABH+fbbb62eX3/99XJzc3PSjACUVxTxAMCJatWqpTp16mjp0qUKCgpSamqqpk2b5uxpAQAAwEGOHTum6OhoPfjgg9q5c6dee+01vfLKK86eFoByiCIeADhRlSpVtHLlSk2aNElt27ZVixYttGDBAkVERDh7agAAAHCAkSNH6tKlS7rlllvk5uamRx55RA888ICzpwWgHOLutAAAAAAAAICL4+60AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4QDm1atUqtWnTRj4+PjKZTNq1a5diY2NlMpks4hYtWqRly5Y5Z5Iu7sMPP1RcXJyzp3FNli1bJpPJpCNHjjh7Knaz9T7Nzs7W+PHjFRQUJDc3N914442SpCZNmmj06NFX7fP555/XRx995PjJ2unIkSMymUyaN2+e0+YAAKg4yPOunSvleREREYqIiCjx9iaTSbGxsQ6bT2nLz4sKvjftfV/bsm7dOqcfg4iICLVt29apcwAo4gHl0J9//qmoqCg1a9ZM69evV3Jyspo3b66xY8cqOTnZIpbkrnCulNxVJrbep4sXL9Ybb7yhp556Slu3btX7778vSVq7dq1mzpx51T6dXcQDAMBRyPMcgzzPeYKCgpScnKx+/fqZ24rzvrZl3bp1mj17dmlOGygX3J09AQDF9/PPPysnJ0f//Oc/1b17d3N71apV1aBBAyfOzNqlS5fk7e1t1zdsFcWlS5fk4+Pj7GmUyMWLF1W1atVSHaNBgwZW79O9e/fKx8dHEydOtGjv0KGDw8evjO9JAED5QZ7n2spznidJOTk5MplMcncvvVKAl5eXOnfubNFWlu9rwzB0+fLlcv06AYXhTDygnBk9erS6dOkiSRo2bJhMJpP59PyCp6M3adJEP/30k5KSkmQymWQymdSkSRNJUmJiokwmk5YvX67o6GgFBgbKx8dH3bt3V0pKisWY27dv1/Dhw9WkSRP5+PioSZMmGjFihI4ePWoRl7+0c8OGDbr//vtVr149Va1aVVlZWfr1119133336frrr1fVqlVVv359DRgwQHv27LHoI39eH374oZ588kkFBQWpWrVqGjBggP744w+dO3dODzzwgOrWrau6devqvvvu0/nz5y36MAxDixYt0o033igfHx/VqlVLQ4YM0f/+9z9zTEREhD7//HMdPXrUfGz+fuyys7P17LPPqmXLlvLy8lK9evV033336c8//7QYq0mTJurfv7/WrFmjDh06yNvb+6rfEq5fv149e/aUn5+fqlatqlatWmnu3LlFbiNJ3377rW699VZ5e3srODhYMTExysnJsRm7atUqhYWFydfXV9WqVVPv3r2tXtfRo0erWrVq2rNnjyIjI1W9enX17Nmz0PH//PNPPfDAA2rYsKH5mNx6663auHFjsfav4PvUZDLprbfe0qVLl8yvQ/5ZBfYspzWZTLpw4YLeffdd8/b5vxOOeE9K0pkzZ/TYY4+padOm8vLykr+/v/r27asDBw4UOq+cnByNGjVK1apV02effVbkPgAAIJHnlfc8zzAMvfTSS2rcuLG8vb1100036Ysvvig0vqDMzEyNGzdOderUUbVq1XTHHXfo559/thn7yy+/6J577pG/v7+8vLzUqlUrLVy40Obxfv/99/XYY4+pfv368vLy0q+//lroHBYvXqz27durWrVqql69ulq2bKnp06dbxBw/ftycE3p6eio4OFhDhgzRH3/8Icl6OW1x3te2jB492rxvf3898y8nYzKZNHHiRC1ZskStWrWSl5eX3n33XUnS7Nmz1alTJ9WuXVs1atTQTTfdpPj4eBmGYTXOhx9+qLCwMFWrVk3VqlXTjTfeqPj4+CLntnbtWlWtWlVjx45Vbm5ukbGAI3AmHlDOzJw5U7fccosefvhhPf/88+rRo4dq1KhhM3bt2rUaMmSI/Pz8tGjRIkl/fTP2d9OnT9dNN92kt956S2fPnlVsbKwiIiKUkpKipk2bSvrrD3GLFi00fPhw1a5dW2lpaVq8eLFuvvlm7du3T3Xr1rXo8/7771e/fv30/vvv68KFC/Lw8NDvv/+uOnXq6IUXXlC9evV06tQpvfvuu+rUqZNSUlLUokULq3n16NFDy5Yt05EjR/T4449rxIgRcnd3V/v27bVixQqlpKRo+vTpql69uhYsWGDe9sEHH9SyZcs0adIkvfjiizp16pTmzJmj8PBw7d69WwEBAVq0aJEeeOABHTp0SGvXrrUYOy8vTwMHDtSWLVs0depUhYeH6+jRo5o1a5YiIiK0fft2i2/2du7cqf3792vGjBkKCQmRr69voa9ffHy8xo0bp+7du2vJkiXy9/fXzz//rL179xa6jSTt27dPPXv2VJMmTbRs2TJVrVpVixYt0ocffmgV+/zzz2vGjBm67777NGPGDGVnZ+vll19W165d9f3336t169bm2OzsbN1555168MEHNW3atCKTj6ioKO3cuVPPPfecmjdvrjNnzmjnzp06efLkNe1fcnKynnnmGW3atElff/21JKlZs2ZFHo+C2992223q0aOHeeltwd+Ja3lPnjt3Tl26dNGRI0f05JNPqlOnTjp//rw2b96stLQ0tWzZ0mpOZ86c0d133639+/crKSlJoaGhdu8PAKDyIs8r33ne7NmzNXv2bI0ZM0ZDhgzRsWPHNG7cOF25csXqGBRkGIbuuusubdu2TU8//bRuvvlmffPNN+rTp49V7L59+xQeHq5GjRrplVdeUWBgoL788ktNmjRJGRkZmjVrlkV8TEyMwsLCtGTJElWpUkX+/v4257By5UpNmDBBjzzyiObNm6cqVaro119/1b59+8wxx48f180336ycnBxNnz5d7dq108mTJ/Xll1/q9OnTCggIsOq3OO9rW2bOnKkLFy7ov//9r8XS26CgIPP/f/TRR9qyZYuefvppBQYGmvfxyJEjevDBB9WoUSNJf30p/sgjj+j48eN6+umnzds//fTTeuaZZ3T33Xfrsccek5+fn/bu3WtVzP67f/3rX3riiScUGxurGTNm2L0/wDUxAJQ7mzZtMiQZ//nPfyzaZ82aZRT8tW7Tpo3RvXv3Qvu46aabjLy8PHP7kSNHDA8PD2Ps2LGFjp+bm2ucP3/e8PX1NV599VVz+zvvvGNIMkaOHHnVfcjNzTWys7ON66+/3pgyZYrVvAYMGGARP3nyZEOSMWnSJIv2u+66y6hdu7b5eXJysiHJeOWVVyzijh07Zvj4+BhTp041t/Xr189o3Lix1dxWrFhhSDJWr15t0f7DDz8YkoxFixaZ2xo3bmy4ubkZBw8evOo+nzt3zqhRo4bRpUsXi2Nuj2HDhhk+/6+9O4+rouz/P/4+somIR1zYci0TF9xSU9QSU3HJrWy1UMssl/Q2RMtWMo3KJUvvtMVE09K726xMI8lEbxfKjXLLzDBMQcwQlBQU5veHP863I4uAB84BXs/HYx41M9fMfGbO0T59znXN5e5uJCcnW7ZdvnzZaNasmSHJSEhIMAzDMBITEw1nZ2djwoQJea7t6+tr3HfffZZtI0aMMCQZH374YZFiqF69ujFp0qQC9xf1/vL7no4YMcLw8PDI07Zhw4bGiBEjrhmbh4dHvu1s8Z2cPn26IcmIiYkp8NiEhARDkjFr1iwjISHBaNGihdGiRQvj2LFj17wuAAD/RJ73f8pTnpeammpUrVrVuOuuu6y2b9u2zZCU7+f0T19//bUhyeqZG4ZhzJw505BkvPTSS5Ztffr0MerVq2ekpaVZtX3yySeNqlWrGn/99ZdhGP/3vG+//fZrxp97fM2aNQtt8+ijjxouLi7GwYMHC2yTmxctWbLEsq043+v8jB8/vsB2kgyz2Wy574JkZ2cbly5dMqZPn27Url3b8mfjt99+M5ycnIyHHnqo0OO7d+9utGzZ0sjOzjaefPJJw9XV1Vi+fPk1YwdsieG0QCU3bNgwqy7sDRs2VJcuXbRp0ybLtvPnz+vpp59WkyZN5OzsLGdnZ1WvXl0ZGRk6dOhQnnMOHTo0z7bLly/r1VdfVYsWLeTq6ipnZ2e5urrqyJEj+Z5jwIABVuvNmzeXJKsX5OZu/+uvvyxDLb766iuZTCY9/PDDunz5smXx9fVVmzZtFBsbe81n8tVXX6lmzZoaOHCg1Tnatm0rX1/fPOdo3bq1mjZtes3zbt++Xenp6Ro3blyx3x2zadMm9ezZ0+rXTScnJ91///1W7b755htdvnxZw4cPt4q9atWq6t69e773n9/nlZ9bb71VUVFRmjFjhuLi4vIM5b2e+ytt1/Od/Prrr9W0aVP16tXrmtfZs2ePOnfuLB8fH23btk0NGza06X0AKB+2bNmigQMHyt/fXyaTqUQT73zzzTfq3LmzPD09VbduXQ0dOlQJCQm2DxYVGnleXqWV5+3YsUMXL17UQw89ZLW9S5cuRcoHcj+Tq48fNmyY1frFixe1ceNG3XXXXapWrZrVPfTv318XL15UXFyc1THFyfXOnj2rBx98UF988YX+/PPPPG2+/vpr9ejRw/KZOYo77rhDXl5eebZ/99136tWrl8xms5ycnOTi4qIXX3xRZ86cUUpKiiQpJiZG2dnZGj9+/DWvc/HiRQ0ZMkQrVqzQhg0b8nxeQGmjiAdUcr6+vvlu++cQyWHDhmnBggV67LHH9M033+iHH37Qzp07VbduXV24cCHP8f/s2p4rLCxML7zwgoYMGaK1a9fq+++/186dO9WmTZt8z1GrVi2rdVdX10K3X7x4UZJ06tQpGYYhHx8fubi4WC1xcXH5JiNXO3XqlM6ePStXV9c850hOTs5zjvzuNz+571kpyct7z5w5U+BndXXsktSxY8c8sa9atSpP7NWqVSvycIZVq1ZpxIgR+uCDDxQUFKRatWpp+PDhSk5Ovu77K23X8508ffp0ke8pJiZGp06d0mOPPaaaNWvaKnwA5UxGRobatGmjBQsWlOj43377TYMHD9Ydd9yh+Ph4ffPNN/rzzz9199132zhSVHTkeXmVVp6X+0yLkq8VdLyzs7Nq165d6LFnzpzR5cuXNX/+/Dzx9+/fX5JKfA+hoaH68MMP9fvvv2vo0KHy9vZWp06dFBMTY2lTnLyoLOV3jz/88INCQkIkSe+//762bdumnTt36rnnnpMky3ezODlsSkqKvvnmGwUFBalLly62Ch8oMt6JB1RyuQWYq7flJhBpaWn66quv9NJLL+mZZ56xtMnMzNRff/2V7znz64W1fPlyDR8+XK+++qrV9j///NOmxY46derIZDLpf//7X573wkh53xVT0Dlq166t6OjofPd7enparRe111ndunUlSX/88UeR2v9T7dq1C/ys/in3vTX//e9/i/Srb3F6zNWpU0fz5s3TvHnzlJiYqC+//FLPPPOMUlJSFB0dfV33V9qu5ztZt27dIt/TlClTdPToUUtPyOHDh19X3ADKp379+uX7HqtcWVlZev7557VixQqdPXtWgYGBev311y0vet+zZ4+ys7M1Y8YMValy5Tf38PBwDR48WJcuXZKLi0tZ3AYqAPK8/M9RGnle7jMt6JnnTjpS2PGXL1/WmTNnrAp5V5/Py8tLTk5OCg0NLbDnWOPGja3Wi5PvPfLII3rkkUeUkZGhLVu26KWXXtKAAQP0yy+/qGHDhsXKi8pSfve4cuVKubi46KuvvlLVqlUt26/uHf3PHLZ+/fqFXqdBgwaaO3eu7rrrLt1999369NNPrc4NlDZ64gEVnJubW76/gOb65JNPrGZn+v3337V9+3bL/0iYTCYZhpEnKfrggw+UnZ1d5DhMJlOec6xbt04nTpwo8jmKYsCAATIMQydOnFCHDh3yLK1atbK0LejZDBgwQGfOnFF2dna+57jWi4kL0qVLF5nNZi1atCjfGbEK06NHD23cuNHS006SsrOztWrVKqt2ffr0kbOzs44ePZpv7B06dChR7Fdr0KCBnnzySfXu3Vt79uyRdH33d72u9T3PT1G/k/369dMvv/ximXSjMFWqVNG7776rf/3rXxo5cqQWLlxYrJgAVA6PPPKItm3bppUrV+qnn37Svffeq759++rIkSOSpA4dOsjJyUlLlixRdna20tLS9NFHHykkJIQCHqyQ5zlOnte5c2dVrVpVK1assNq+ffv2QidHyNWjRw9JynP81ZOYVatWTT169NDevXvVunXrfO/h6t58JeHh4aF+/frpueeeU1ZWlg4cOCDpSl60adMmHT58+LqvURy536/i5Hsmk0nOzs5ycnKybLtw4YI++ugjq3YhISFycnIqct4WEhKib775Rlu2bNGAAQOUkZFR5JiA60VPPKCCa9WqlVauXKlVq1bpxhtvVNWqVa0SnJSUFN11110aPXq00tLS9NJLL6lq1aqaNm2apCuzfN5+++2aNWuW6tSpo0aNGmnz5s1avHhxsX5ZHTBggKKiotSsWTO1bt1au3fv1qxZs2zeHb9r1656/PHH9cgjj2jXrl26/fbb5eHhoaSkJG3dulWtWrXS2LFjLc/ms88+08KFC9W+fXtVqVJFHTp00AMPPKAVK1aof//++te//qVbb71VLi4u+uOPP7Rp0yYNHjxYd911V7Fjq169uubMmaPHHntMvXr10ujRo+Xj46Nff/1VP/74Y6HDrp5//nl9+eWXuuOOO/Tiiy+qWrVq+ve//50naWjUqJGmT5+u5557Tr/99pv69u0rLy8vnTp1Sj/88IM8PDz08ssvFzv2tLQ09ejRQ8OGDVOzZs3k6empnTt3Kjo62jK863ru73q1atVKsbGxWrt2rfz8/OTp6XnNJLyo38lJkyZp1apVGjx4sJ555hndeuutunDhgjZv3qwBAwZYku5/mjNnjjw9PTVu3DidP39eU6ZMsen9Aii/jh49qk8++UR//PGH/P39JV3pZRcdHa0lS5bo1VdfVaNGjbRhwwbde++9euKJJ5Sdna2goCCtX7/eztHD0ZDnOU6e5+XlpfDwcM2YMUOPPfaY7r33Xh0/flwRERFFGk4bEhKi22+/XVOnTlVGRoY6dOigbdu25Sk4SdJbb72lbt266bbbbtPYsWPVqFEjnTt3Tr/++qvWrl1bpB8e8zN69Gi5u7ura9eu8vPzU3JysiIjI2U2m9WxY0dJ0vTp0/X111/r9ttv17PPPqtWrVrp7Nmzio6OVlhYmJo1a1aia19L7vf69ddfV79+/eTk5KTWrVtbhlzn584779TcuXM1bNgwPf744zpz5oxmz56dp+DcqFEjPfvss3rllVd04cIFPfjggzKbzTp48KD+/PPPfHPnbt26aePGjerbt69CQkK0fv16mc1m2940kB97zagBoOSKM7vTsWPHjJCQEMPT09OQZJmlK/ccH330kTFx4kSjbt26hpubm3HbbbcZu3btsjrHH3/8YQwdOtTw8vIyPD09jb59+xr79+/PM3No7qxlO3fuzBNzamqqMWrUKMPb29uoVq2a0a1bN+N///uf0b17d6vZugq6t4LOnXvPp0+fttr+4YcfGp06dTI8PDwMd3d346abbjKGDx9udW9//fWXcc899xg1a9Y0TCaT1bO7dOmSMXv2bKNNmzZG1apVjerVqxvNmjUznnjiCePIkSOWdg0bNjTuvPPOPPdbmPXr1xvdu3c3PDw8jGrVqhktWrQwXn/99Wset23bNqNz586Gm5ub4evra0yZMsV47733rGanzfX5558bPXr0MGrUqGG4ubkZDRs2NO655x7j22+/tbQpaEbY/Fy8eNEYM2aM0bp1a6NGjRqGu7u7ERAQYLz00ktGRkZGse6vNGanjY+PN7p27WpUq1bNagY4W3wnc9v+61//Mho0aGC4uLgY3t7exp133mn8/PPPhmFYz077T7NmzTIkGS+++OI17wFAxSTJWLNmjWX9P//5jyHJ8PDwsFqcnZ0tM4gnJSUZN998szFlyhRjz549xubNm43u3bsbPXv2LPbs5ih/yPPy3nN5yfNycnKMyMhIo379+oarq6vRunVrY+3atfnmFvk5e/as8eijjxo1a9Y0qlWrZvTu3dv4+eef88xOaxhXco9HH33UuOGGGwwXFxejbt26RpcuXYwZM2ZY2hT0vAuydOlSo0ePHoaPj4/h6upq+Pv7G/fdd5/x008/WbU7fvy48eijjxq+vr6Gi4uLpd2pU6csscnGs9NmZmYajz32mFG3bl3L55mb/0oyxo8fn+9xH374oREQEGC4ubkZN954oxEZGWksXrw43/x52bJlRseOHS3fiXbt2lndQ+7stP+0f/9+w9fX17jlllvyfE+B0mAyjDIe8wTAIcTGxqpHjx769NNPdc8999g7HAAAKiSTyaQ1a9ZoyJAhkq5MEvTQQw/pwIEDVkO8pCs9mn19ffXCCy/o66+/1q5duyz7ct/VtGPHDnXu3LksbwHlEHkeAFRMDKcFAAAAyki7du2UnZ2tlJQU3Xbbbfm2+fvvv/MU+HLXc3JySj1GAADgmJjYAgAAALCh8+fPKz4+XvHx8ZKkhIQExcfHKzExUU2bNtVDDz2k4cOH67PPPlNCQoJ27typ119/3fLOuzvvvFM7d+7U9OnTdeTIEe3Zs0ePPPKIGjZsqHbt2tnxzgAAgD0xnBYAAACwodyhjFcbMWKEoqKidOnSJc2YMUPLli3TiRMnVLt2bQUFBenll1+2vLx95cqVeuONN/TLL7+oWrVqCgoK0uuvv15qL40HAACOjyIeAAAAAAAA4OAYTgsAAAAAAAA4OIp4AAAAAAAAgINjdtoylpOTo5MnT8rT01Mmk8ne4QAAgHLAMAydO3dO/v7+qlKF32AdFXkeAAAoruLkeRTxytjJkydVv359e4cBAADKoePHj6tevXr2DgMFIM8DAAAlVZQ8jyJeGfP09JR05cOpUaOGnaMBAADlQXp6uurXr2/JI+CYyPMAAEBxFSfPs2sRLzIyUp999pl+/vlnubu7q0uXLnr99dcVEBBgaTNy5EgtXbrU6rhOnTopLi7Osp6Zmanw8HB98sknunDhgnr27Kl33nnHqoKZmpqqiRMn6ssvv5QkDRo0SPPnz1fNmjUtbRITEzV+/Hh99913cnd317BhwzR79my5urpa2uzbt09PPvmkfvjhB9WqVUtPPPGEXnjhhSIPmchtV6NGDZI7AABQLAzRdGzkeQAAoKSKkufZ9aUqmzdv1vjx4xUXF6eYmBhdvnxZISEhysjIsGrXt29fJSUlWZb169db7Z80aZLWrFmjlStXauvWrTp//rwGDBig7OxsS5thw4YpPj5e0dHRio6OVnx8vEJDQy37s7OzdeeddyojI0Nbt27VypUrtXr1ak2ePNnSJj09Xb1795a/v7927typ+fPna/bs2Zo7d24pPSEAAAAAAABAMhmGYdg7iFynT5+Wt7e3Nm/erNtvv13SlZ54Z8+e1eeff57vMWlpaapbt64++ugj3X///ZL+730k69evV58+fXTo0CG1aNFCcXFx6tSpkyQpLi5OQUFB+vnnnxUQEKCvv/5aAwYM0PHjx+Xv7y9JWrlypUaOHKmUlBTVqFFDCxcu1LRp03Tq1Cm5ublJkl577TXNnz9ff/zxR5Gqpunp6TKbzUpLS+MXWgAAUCTkD+UDnxMAACiu4uQPDjW9WVpamiSpVq1aVttjY2Pl7e2tpk2bavTo0UpJSbHs2717ty5duqSQkBDLNn9/fwUGBmr79u2SpB07dshsNlsKeJLUuXNnmc1mqzaBgYGWAp4k9enTR5mZmdq9e7elTffu3S0FvNw2J0+e1LFjx/K9p8zMTKWnp1stAAAAAAAAQHE4zMQWhmEoLCxM3bp1U2BgoGV7v379dO+996phw4ZKSEjQCy+8oDvuuEO7d++Wm5ubkpOT5erqKi8vL6vz+fj4KDk5WZKUnJwsb2/vPNf09va2auPj42O138vLS66urlZtGjVqlOc6ufsaN26c5xqRkZF6+eWXi/k0AACwDcMwdPnyZatXTMDxODk5ydnZmXfeAQCAIiHHKz9smec5TBHvySef1E8//aStW7dabc8dIitJgYGB6tChgxo2bKh169bp7rvvLvB8hmFYPaD8HpYt2uSORi7ow5g2bZrCwsIs67mzjgAAUNqysrKUlJSkv//+296hoAiqVasmPz8/qwm1AAAArkaOV/7YKs9ziCLehAkT9OWXX2rLli1WM8rmx8/PTw0bNtSRI0ckSb6+vsrKylJqaqpVb7yUlBR16dLF0ubUqVN5znX69GlLTzpfX199//33VvtTU1N16dIlqza5vfL+eR1JeXrx5XJzc7MafgsAQFnIyclRQkKCnJyc5O/vL1dXV3p5OSjDMJSVlaXTp08rISFBN998s6pUcag3ngAAAAdBjle+2DrPs2sRzzAMTZgwQWvWrFFsbGy+w1GvdubMGR0/flx+fn6SpPbt28vFxUUxMTG67777JElJSUnav3+/3njjDUlSUFCQ0tLS9MMPP+jWW2+VJH3//fdKS0uzFPqCgoI0c+ZMJSUlWc69YcMGubm5qX379pY2zz77rLKysizV0w0bNsjf3z/PMFsAAOwpKytLOTk5ql+/vqpVq2bvcHAN7u7ucnFx0e+//66srCxVrVrV3iEBAAAHRI5X/tgyz7Prz7zjx4/X8uXL9fHHH8vT01PJyclKTk7WhQsXJEnnz59XeHi4duzYoWPHjik2NlYDBw5UnTp1dNddd0mSzGazRo0apcmTJ2vjxo3au3evHn74YbVq1Uq9evWSJDVv3lx9+/bV6NGjFRcXp7i4OI0ePVoDBgxQQECAJCkkJEQtWrRQaGio9u7dq40bNyo8PFyjR4+2zA4ybNgwubm5aeTIkdq/f7/WrFmjV199VWFhYVS+AQAOiR5d5QefFQAAKCryhvLFVp+XXT/1hQsXKi0tTcHBwfLz87Msq1atknTl5X/79u3T4MGD1bRpU40YMUJNmzbVjh075OnpaTnPm2++qSFDhui+++5T165dVa1aNa1du1ZOTk6WNitWrFCrVq0UEhKikJAQtW7dWh999JFlv5OTk9atW6eqVauqa9euuu+++zRkyBDNnj3b0sZsNismJkZ//PGHOnTooHHjxiksLMzqnXcAAAAAAACArZmM3JkZUCbS09NlNpuVlpZm6eEHAICtXbx4UQkJCWrcuDFDM8uJwj4z8ofygc8JAFDayPHKJ1vlefS/BAAAAAAAABwcRTwAAFBhGYahxx9/XLVq1ZLJZFJ8fLxd4wkODtakSZPsGgMAAICjee211xQUFFSsYypjnmfX2WkBAABKU3R0tKKiohQbG6sbb7xRderUsXdIAAAAuMqPP/6oNm3aFOuYypjnUcQDAAcWEWH9T8AWyvr7ZM/v79GjR+Xn56cuXbrYLwgAQKVX0H8LyfFgS2X5fbL1tX788UdNnDixWMdUxjyP4bQAAMAhnT59Wo8//rh8fHzk7u6uNm3aaMuWLUU+fuTIkZowYYISExNlMpnUqFEjSVJmZqYmTpwob29vVa1aVd26ddPOnTstxzVq1Ejz5s2zOlfbtm0V8Y9sNTg4WBMnTtTUqVNVq1Yt+fr6Wu2XpIyMDA0fPlzVq1eXn5+f5syZU9xHAAAAUOEcOnRIwcHBcnd3V7t27bRr1y798ssvxeqJV1nzPIp4AADA4fz+++9q3bq1UlNT9cUXX+inn37ShAkT5OnpWeRzvPXWW5o+fbrq1aunpKQkSwI3depUrV69WkuXLtWePXvUpEkT9enTR3/99VexYly6dKk8PDz0/fff64033tD06dMVExNj2T9lyhRt2rRJa9as0YYNGxQbG6vdu3cX6xoAAAAVyc8//6xOnTqpQ4cO2r9/v1588UUNHjxYhmGodevWRT5PZc3zGE4LAAAcztixY9WsWTP95z//kclkkiTdfPPNxTqH2WyWp6ennJyc5OvrK+nKr6YLFy5UVFSU+vXrJ0l6//33FRMTo8WLF2vKlClFPn/r1q310ksvWWJbsGCBNm7cqN69e+v8+fNavHixli1bpt69e0u6kgzWq1evWPcAAABQkYwfP16DBw/W7NmzJUk33XST/vOf/2jPnj3y8PAo8nkqa55HEQ8AADiUxMREff3119qzZ4+lgGcrR48e1aVLl9S1a1fLNhcXF9166606dOhQsc519a/Ffn5+SklJsVwnKyvLapa1WrVqKSAg4DqiBwAAKL9+//13fffdd9qzZ4/VdhcXl2JPapGfypDnMZwWAAA4lL1798rV1VXt2rXLd3+nTp20a9cuSdKIESO0cOHCIp/bMAxJylMcNAzDsq1KlSqWdrkuXbqU51wuLi5W6yaTSTk5OVbXAQAAwBXx8fFydnZWq1atrLbv2bNHbdu2lUSedy0U8QAAgENxcXHR5cuX9ffff+e7/4UXXtCrr76qOXPmqHr16ho7dmyRz92kSRO5urpq69atlm2XLl3Srl271Lx5c0lS3bp1lZSUZNmfnp6uhISEYt1DkyZN5OLiori4OMu21NRU/fLLL8U6DwAAQEVRpUoV5eTkKCsry7Jt/fr1OnDggKWIR55XOIbTAgAAh9KpUyeZzWaNHTtWzzzzjAzD0JYtWxQcHKxmzZppwIABev7553X+/HmtX7++WOf28PDQ2LFjNWXKFNWqVUsNGjTQG2+8ob///lujRo2SJN1xxx2KiorSwIED5eXlpRdeeEFOTk7Fuk716tU1atQoTZkyRbVr15aPj4+ee+45VanC76cAAKByat++vVxcXBQeHq7w8HDt37/fUqTLHU5Lnlc4ingAAMCh1K5dW2vXrtWUKVPUsWNHubq66tZbb9X9998vSfrhhx909uxZNW3aVM7OxU9lXnvtNeXk5Cg0NFTnzp1Thw4d9M0338jLy0uSNG3aNP32228aMGCAzGazXnnllWL/QitJs2bN0vnz5zVo0CB5enpq8uTJSktLK/Z5AAAAKgJ/f3998MEHmjZtmlauXKl27dppxIgRev/993XDDTdIIs+7FpPBS1vKVHp6usxms9LS0lSjRg17hwPAwUVEWP8TKKqLFy8qISFBjRs3VtWqVe0djs2cOHFC/fr10xdffKG7775bH3/8sWV4RHlX2GdG/lA+8DkBKEhBuRw5HoqrouZ4EnleUfIHxnQAAIBy4cKFC7rnnnu0YMECNW7cWFOnTtWMGTPsHRYAAACuE3le0TCcFgAAlAvu7u7asWOHZf3BBx/Ugw8+aMeIAAAAYAvkeUVDTzwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAABUWJGRkTKZTJo0aVKh7TZv3qz27duratWquvHGG7Vo0aKyCRAAAKCIKOIBQDkQEXFlAQAU3c6dO/Xee++pdevWhbZLSEhQ//79ddttt2nv3r169tlnNXHiRK1evbqMIgUAALg2ingAAACocM6fP6+HHnpI77//vry8vAptu2jRIjVo0EDz5s1T8+bN9dhjj+nRRx/V7NmzyyhaAACAa6OIBwAAgApn/PjxuvPOO9WrV69rtt2xY4dCQkKstvXp00e7du3SpUuXCjwuMzNT6enpVgsAAEBpoYgHAACACmXlypXas2ePIiMji9Q+OTlZPj4+Vtt8fHx0+fJl/fnnnwUeFxkZKbPZbFnq169/XXEDAAAUhiIeAACosIKDg685oQEqluPHj+tf//qXli9frqpVqxb5OJPJZLVuGEa+2/9p2rRpSktLsyzHjx8vWdAAAFRyr732moKCgop1TGXM85ztHQAAAChj2yPK9npdyvh6pSQ4OFht27bVvHnz7B0KCrF7926lpKSoffv2lm3Z2dnasmWLFixYoMzMTDk5OVkd4+vrq+TkZKttKSkpcnZ2Vu3atQu8lpubm9zc3Gx7AwAAlFRZ5ng2zu9+/PFHtWnTxqbnLI7ykudRxAMAAECF0bNnT+3bt89q2yOPPKJmzZrp6aefzlPAk6SgoCCtXbvWatuGDRvUoUMHubi4lGq8ACqeiAh7RwCUPz/++KMmTpxo7zAcHsNpAaAMRUT83wKgcKdPn9bjjz8uHx8fubu7q02bNtqyZct1nTMzM1MTJ06Ut7e3qlatqm7dumnnzp2W/f/973/VqlUrubu7q3bt2urVq5cyMjI0cuRIbd68WW+99ZZMJpNMJpOOHTt2nXeI0uDp6anAwECrxcPDQ7Vr11ZgYKCkK8Nghw8fbjlmzJgx+v333xUWFqZDhw7pww8/1OLFixUeHm6v2wAAoMI6dOiQgoOD5e7urnbt2mnXrl365ZdfrrsnXmXI8yjiAQAAh/P777+rdevWSk1N1RdffKGffvpJEyZMkKen53Wdd+rUqVq9erWWLl2qPXv2qEmTJurTp4/++usvJSUl6cEHH9Sjjz6qQ4cOKTY2VnfffbcMw9Bbb72loKAgjR49WklJSUpKSmISg3IsKSlJiYmJlvXGjRtr/fr1io2NVdu2bfXKK6/o7bff1tChQ+0YJQAAFc/PP/+sTp06qUOHDtq/f79efPFFDR48WIZhqHXr1td17sqQ5zGcFgDsJLc3Hr3ygLzGjh2rZs2a6T//+Y9lYoGbb775us6ZkZGhhQsXKioqSv369ZMkvf/++4qJidHixYvVs2dPXb58WXfffbcaNmwoSWrVqpXleFdXV1WrVk2+vr7XFQfKXmxsrNV6VFRUnjbdu3fXnj17yiYgAAAqqfHjx2vw4MGaPXu2JOmmm27Sf/7zH+3Zs0ceHh4lPm9lyfPoiQcAABxKYmKivv76a82dO7fQmUGL6+jRo7p06ZK6du1q2ebi4qJbb71Vhw4dUps2bdSzZ0+1atVK9957r95//32lpqba7PoAAACV2e+//67vvvtOYWFhVttdXFyueyhtZcnzKOIBAACHsnfvXrm6uqpdu3b57u/UqZN27dolSRoxYoQWLlxYpPMahiFJeQqDhmHIZDLJyclJMTEx+vrrr9WiRQvNnz9fAQEBSkhIuI67AQAAgCTFx8fL2dnZqgecJO3Zs0dt27aVRJ53LRTxAACAQ3FxcdHly5f1999/57v/hRde0Kuvvqo5c+aoevXqGjt2bJHO26RJE7m6umrr1q2WbZcuXdKuXbvUvHlzSVcSv65du+rll1+2FBPXrFkj6cowi+zs7Ou8OwAAgMqpSpUqysnJUVZWlmXb+vXrdeDAAUsRjzyvcLwTDwAAOJROnTrJbDZr7NixeuaZZ2QYhrZs2aLg4GA1a9ZMAwYM0PPPP6/z589r/fr1RT6vh4eHxo4dqylTpqhWrVpq0KCB3njjDf39998aNWqUvv/+e23cuFEhISHy9vbW999/r9OnT1sSv0aNGun777/XsWPHVL16ddWqVUtVqvB7KAAAQFG0b99eLi4uCg8PV3h4uPbv328p0uUOpyXPK5zjRQQAACq12rVra+3atTpy5Ig6duyobt266fPPP5ePj48k6YcfftDZs2dVs2ZNOTsX7/fI1157TUOHDlVoaKhuueUW/frrr/rmm2/k5eWlGjVqaMuWLerfv7+aNm2q559/XnPmzLG8HDk8PFxOTk5q0aKF6tatazW7KQAAAArn7++vDz74QGvXrlWHDh301ltvacSIEapTp45uuOEGSeR512IycgcOo0ykp6fLbDYrLS1NNWrUsHc4AMpYfjPRFjY77dX7mMkWRXXx4kUlJCSocePGqlq1qr3DsZkTJ06oX79++uKLL3T33Xfr448/tvyCWt4V9pmRP5QPfE4ApOLla+R2KK6KmuNJ5HlFyR/oiQcAAMqFCxcu6J577tGCBQvUuHFjTZ06VTNmzLB3WAAAALhO5HlFwzvxAABAueDu7q4dO3ZY1h988EE9+OCDdowIAAAAtkCeVzT0xAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAoAIzDMPeIaCI+KwAAEBRkTeUL7b6vCjiAQBQAbm4uEiS/v77bztHgqLK/axyPzsAAICrkeOVT7bK85xtEQwAAHAsTk5OqlmzplJSUiRJ1apVk8lksnNUyI9hGPr777+VkpKimjVrysnJyd4hAQAAB0WOV77YOs+jiAcAQAXl6+srSZYkD46tZs2als8MAACgIOR45Y+t8jyKeAAAVFAmk0l+fn7y9vbWpUuX7B0OCuHi4kIPPAAAUCTkeOWLLfM8ingAAFRwTk5OFIgAAAAqGHK8yoeJLQAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHB2LeJFRkaqY8eO8vT0lLe3t4YMGaLDhw9btTEMQxEREfL395e7u7uCg4N14MABqzaZmZmaMGGC6tSpIw8PDw0aNEh//PGHVZvU1FSFhobKbDbLbDYrNDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVl1Wbfvn3q3r273N3ddcMNN2j69OkyDMN2DwUAAAAAAAC4il2LeJs3b9b48eMVFxenmJgYXb58WSEhIcrIyLC0eeONNzR37lwtWLBAO3fulK+vr3r37q1z585Z2kyaNElr1qzRypUrtXXrVp0/f14DBgxQdna2pc2wYcMUHx+v6OhoRUdHKz4+XqGhoZb92dnZuvPOO5WRkaGtW7dq5cqVWr16tSZPnmxpk56ert69e8vf3187d+7U/PnzNXv2bM2dO7eUnxQAAAAAAAAqM2d7Xjw6OtpqfcmSJfL29tbu3bt1++23yzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGX49ABUVBER9o4AAMq3hQsXauHChTp27JgkqWXLlnrxxRfVr1+/fNvHxsaqR48eebYfOnRIzZo1K81QAQAAisyh3omXlpYmSapVq5YkKSEhQcnJyQoJCbG0cXNzU/fu3bV9+3ZJ0u7du3Xp0iWrNv7+/goMDLS02bFjh8xms6WAJ0mdO3eW2Wy2ahMYGGgp4ElSnz59lJmZqd27d1vadO/eXW5ublZtTp48aUkSr5aZman09HSrBQAAAKWnXr16eu2117Rr1y7t2rVLd9xxhwYPHpznlSxXO3z4sJKSkizLzTffXEYRAwAAXJvDFPEMw1BYWJi6deumwMBASVJycrIkycfHx6qtj4+PZV9ycrJcXV3l5eVVaBtvb+881/T29rZqc/V1vLy85OrqWmib3PXcNleLjIy0vIfPbDarfv3613gSAAAAuB4DBw5U//791bRpUzVt2lQzZ85U9erVFRcXV+hx3t7e8vX1tSxOTk5lFDEAAMC1OUwR78knn9RPP/2kTz75JM++q4epGoZxzaGrV7fJr70t2uROalFQPNOmTVNaWpplOX78eKFxAwAAwHays7O1cuVKZWRkKCgoqNC27dq1k5+fn3r27KlNmzZd89yMuAAAAGXJIYp4EyZM0JdffqlNmzapXr16lu2+vr6S8vZyS0lJsfSA8/X1VVZWllJTUwttc+rUqTzXPX36tFWbq6+TmpqqS5cuFdomJSVFUt7egrnc3NxUo0YNqwUAAACla9++fapevbrc3Nw0ZswYrVmzRi1atMi3rZ+fn9577z2tXr1an332mQICAtSzZ09t2bKl0Gsw4gIAAJQluxbxDMPQk08+qc8++0zfffedGjdubLW/cePG8vX1VUxMjGVbVlaWNm/erC5dukiS2rdvLxcXF6s2SUlJ2r9/v6VNUFCQ0tLS9MMPP1jafP/990pLS7Nqs3//fiUlJVnabNiwQW5ubmrfvr2lzZYtW5SVlWXVxt/fX40aNbLRUwFQEUVEMGEFAJSlgIAAxcfHKy4uTmPHjtWIESN08ODBAtuOHj1at9xyi4KCgvTOO+/ozjvv1OzZswu9BiMuAABAWbJrEW/8+PFavny5Pv74Y3l6eio5OVnJycm6cOGCpCtDVCdNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGW3nPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAADAwbi6uqpJkybq0KGDIiMj1aZNG7311ltFPr5z5846cuRIoW0YcQEAAMqSsz0vvnDhQklScHCw1fYlS5Zo5MiRkqSpU6fqwoULGjdunFJTU9WpUydt2LBBnp6elvZvvvmmnJ2ddd999+nChQvq2bOnoqKirF5GvGLFCk2cONEyi+2gQYO0YMECy34nJyetW7dO48aNU9euXeXu7q5hw4ZZ/QJrNpsVExOj8ePHq0OHDvLy8lJYWJjCwsJs/WgAAABgQ4ZhKDMzs8jt9+7dKz8/v1KMCAAAoHjsWsTLnRSiMCaTSREREYooZBxa1apVNX/+fM2fP7/ANrVq1dLy5csLvVaDBg301VdfFdqmVatW13w/CgAAAOzn2WefVb9+/VS/fn2dO3dOK1euVGxsrKKjoyVdGQZ74sQJLVu2TJI0b948NWrUSC1btlRWVpaWL1+u1atXa/Xq1fa8DQAAACt2LeIBAAAAtnbq1CmFhoYqKSlJZrNZrVu3VnR0tHr37i3pyvuTExMTLe2zsrIUHh6uEydOyN3dXS1bttS6devUv39/e90CAABAHhTxAAAAUKEsXry40P1RUVFW61OnTtXUqVNLMSIAAIDrZ9eJLQAAAAAAAABcG0U8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AChHIiKuLAAAAACAyoUiHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAKJbg4GBNmjTJ3mEoKipKNWvWtKxHRESobdu2xTrH1ffSqFEjzZs3r9BjTCaTPv/882JdBwCA60URDwAAAECFEB4ero0bNxbrmM8++0yvvPJKKUVkGwcOHNDQoUPVqFEjmUymaxYZiyoiIkImkynP4uHhYZPzAwBsiyIeAAAAgAqhevXqql27drGOqVWrljw9PUspopI7fvy45d///vtv3XjjjXrttdfk6+trs2uEh4crKSnJamnRooXuvfdem10DAGA7FPEAAAAAFCgjI0PDhw9X9erV5efnpzlz5lzzmNxhrR999JEaNWoks9msBx54QOfOnbO0MQxDb7zxhm688Ua5u7urTZs2+u9//2t1ni+//FI333yz3N3d1aNHDy1dulQmk0lnz54t9Lq5Ll++rIkTJ6pmzZqqXbu2nn76aY0YMUJDhgyxtMlvaPC5c+c0bNgwVa9eXf7+/po/f36h93vixAndf//98vLyUu3atTV48GAdO3bsms/pasePH9fMmTPVtGlTTZw40bK9Y8eOmjVrlh544AG5ubnle2xRnufVqlevLl9fX8ty6tQpHTx4UKNGjSp27ACA0kcRDwAAAECBpkyZok2bNmnNmjXasGGDYmNjtXv37msed/ToUX3++ef66quv9NVXX2nz5s167bXXLPuff/55LVmyRAsXLtSBAwf01FNP6eGHH9bmzZslSceOHdM999yjIUOGKD4+Xk888YSee+65YsX++uuva8WKFVqyZIm2bdum9PT0Ir3LbtasWWrdurX27NmjadOm6amnnlJMTEy+bf/++2/16NFD1atX15YtW7R161ZVr15dffv2VVZW1jWv9ffff+ujjz5Sr1691KhRI61fv15hYWH68MMPi3Wv13qeRfHBBx+oadOmuu2224p1bQBA2XC2dwAAAAAAHNP58+e1ePFiLVu2TL1795YkLV26VPXq1bvmsTk5OYqKirIMVQ0NDdXGjRs1c+ZMZWRkaO7cufruu+8UFBQkSbrxxhu1detWvfvuu+revbsWLVqkgIAAzZo1S5IUEBCg/fv3a+bMmUWOf/78+Zo2bZruuusuSdKCBQu0fv36ax7XtWtXPfPMM5Kkpk2batu2bXrzzTctz+CfVq5cqSpVquiDDz6QyWSSJC1ZskQ1a9ZUbGysQkJC8r3G5s2btXTpUn366afy9vbWww8/rHfffVc33XRTke8vV1Ge57VkZmZqxYoVlvsGADgeingAAAAA8nX06FFlZWVZCkPSlXfIBQQEXPPYRo0aWb1rzs/PTykpKZKkgwcP6uLFi3mKYllZWWrXrp0k6fDhw+rYsaPV/ltvvbXIsaelpenUqVNWxzg5Oal9+/bKyckp9Nh/3m/uekGTSezevVu//vprnvfqXbx4UUePHi3wGsHBwXJ3d9fcuXM1ZsyYa9xN4YryPFu2bKnff/9dknTbbbfp66+/tmr72Wef6dy5cxo+fPh1xQIAKD0U8QAAAFChLFy4UAsXLrS8k6xly5Z68cUX1a9fvwKP2bx5s8LCwnTgwAH5+/tr6tSp111YqQgMwyjxsS4uLlbrJpPJUjzL/ee6det0ww03WLXLfeebYRiWnm3XE48tzpHfeXLl5OSoffv2WrFiRZ59devWLfB8a9eu1dKlSzVp0iS99957Cg0N1YMPPliiiSuK8jzXr1+vS5cuSZLc3d3znOODDz7QgAEDbDpxBgDAtijiAQAAoEKpV6+eXnvtNTVp0kTSleGfgwcP1t69e9WyZcs87RMSEtS/f3+NHj1ay5cv17Zt2zRu3DjVrVtXQ4cOLevwHUqTJk3k4uKiuLg4NWjQQJKUmpqqX375pUhDNAvSokULubm5KTExscDzNGvWLM/Q1127dhX5GmazWT4+Pvrhhx8s73jLzs7W3r17rSa/yE9cXFye9WbNmuXb9pZbbtGqVavk7e2tGjVqFDm+AQMGaMCAAUpNTdUnn3yipUuXasqUKerdu7dCQ0M1ZMgQVatWrUjnKsrzbNiwYYHHJyQkaNOmTfryyy+LHD8AoOxRxAMAAECFMnDgQKv1mTNnauHChYqLi8u3iLdo0SI1aNDAMlyyefPm2rVrl2bPnl3pi3jVq1fXqFGjNGXKFNWuXVs+Pj567rnnVKXK9c2P5+npqfDwcD311FPKyclRt27dlJ6eru3bt6t69eoaMWKEnnjiCc2dO1dPP/20Ro0apfj4eEVFRUkquFfc1SZMmKDIyEg1adJEzZo10/z585WamnrN47dt26Y33nhDQ4YMUUxMjD799FOtW7cu37YPPfSQZs2apcGDB2v69OmqV6+eEhMT9dlnn2nKlCnXfH+gl5eXxo0bp3Hjxunnn39WVFSUpk6dqtWrV2v16tWSrgyLPXjwoOXfT5w4ofj4eFWvXl1NmjQp0vMszIcffig/P79Ce6sCAOyPIh4AAAAqrOzsbH366afKyMjI856zXDt27Mgz+UCfPn20ePFiXbp0Kc+w0FyZmZnKzMy0rKenp9sucAcya9YsnT9/XoMGDZKnp6cmT56stLS06z7vK6+8Im9vb0VGRuq3335TzZo1dcstt+jZZ5+VJDVu3Fj//e9/NXnyZL311lsKCgrSc889p7Fjx1qGiF7L008/reTkZA0fPlxOTk56/PHH1adPHzk5ORV63OTJk7V79269/PLL8vT01Jw5c9SnT59821arVk1btmzR008/rbvvvlvnzp3TDTfcoJ49exarZ550pffha6+9pldffVW//vqrZfvJkyct77aTpNmzZ2v27Nnq3r27YmNjJV37eRYkdwKSkSNHXvO5AADsy2Rcz4suUGzp6ekym81KS0sr9n/UAZRfERFF31dY2+K0AVBxkD8U3759+xQUFKSLFy+qevXq+vjjj9W/f/982zZt2lQjR460KnZs375dXbt21cmTJ+Xn55fvcREREXr55ZfzbOdzKj0zZ87UokWLdPz48RIdn5OTo+bNm+u+++7TK6+8YuPogCuKk6eR0wEoTp53ff3gAQAAAAcUEBCg+Ph4xcXFaezYsRoxYoRlOGJ+Cpr8oLBhl9OmTVNaWpplKWlhCQV75513tHPnTv3222/66KOPNGvWrGsODf2n33//Xe+//75++eUX7du3T2PHjlVCQoKGDRtWilEDAFA6GE4LAACACsfV1dUysUWHDh20c+dOvfXWW3r33XfztPX19VVycrLVtpSUFDk7O6t27doFXsPNza3IwzpRMkeOHNGMGTP0119/qUGDBpo8ebKmTZtW5OOrVKmiqKgohYeHyzAMBQYG6ttvv1Xz5s1LMWoAAEoHRTwAAABUeIZhWL2/7p+CgoK0du1aq20bNmxQhw4dCnwfHsrGm2++qTfffLPEx9evX1/btm2zYUQAANgPw2kBAABQoTz77LP63//+p2PHjmnfvn167rnnFBsbq4ceekjSlWGww4cPt7QfM2aMfv/9d4WFhenQoUP68MMPtXjxYoWHh9vrFgAAAPKgJx4AAAAqlFOnTik0NFRJSUkym81q3bq1oqOj1bt3b0lSUlKSEhMTLe0bN26s9evX66mnntK///1v+fv76+2339bQoUPtdQsAAAB5UMQDAABAhbJ48eJC90dFReXZ1r17d+3Zs6eUIgIAALh+DKcFAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBOds7AACoyCIi7B0BAAAAAKAioCceAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOzq5FvC1btmjgwIHy9/eXyWTS559/brV/5MiRMplMVkvnzp2t2mRmZmrChAmqU6eOPDw8NGjQIP3xxx9WbVJTUxUaGiqz2Syz2azQ0FCdPXvWqk1iYqIGDhwoDw8P1alTRxMnTlRWVpZVm3379ql79+5yd3fXDTfcoOnTp8swDJs9DwAAAAAAACA/di3iZWRkqE2bNlqwYEGBbfr27aukpCTLsn79eqv9kyZN0po1a7Ry5Upt3bpV58+f14ABA5SdnW1pM2zYMMXHxys6OlrR0dGKj49XaGioZX92drbuvPNOZWRkaOvWrVq5cqVWr16tyZMnW9qkp6erd+/e8vf3186dOzV//nzNnj1bc+fOteETAQAAAAAAAPJytufF+/Xrp379+hXaxs3NTb6+vvnuS0tL0+LFi/XRRx+pV69ekqTly5erfv36+vbbb9WnTx8dOnRI0dHRiouLU6dOnSRJ77//voKCgnT48GEFBARow4YNOnjwoI4fPy5/f39J0pw5czRy5EjNnDlTNWrU0IoVK3Tx4kVFRUXJzc1NgYGB+uWXXzR37lyFhYXJZDLlG2NmZqYyMzMt6+np6cV+TgAAAAAAAKjcHP6deLGxsfL29lbTpk01evRopaSkWPbt3r1bly5dUkhIiGWbv7+/AgMDtX37dknSjh07ZDabLQU8SercubPMZrNVm8DAQEsBT5L69OmjzMxM7d6929Kme/fucnNzs2pz8uRJHTt2rMD4IyMjLcN4zWaz6tevf30PBAAAAAAAAJWOQxfx+vXrpxUrVui7777TnDlztHPnTt1xxx2Wnm3JyclydXWVl5eX1XE+Pj5KTk62tPH29s5zbm9vb6s2Pj4+Vvu9vLzk6upaaJvc9dw2+Zk2bZrS0tIsy/Hjx4vzCAAAAAAAAAD7Dqe9lvvvv9/y74GBgerQoYMaNmyodevW6e677y7wOMMwrIa35jfU1RZtcie1KGgorXRlOPA/e+8BAAAAAAAAxeXQPfGu5ufnp4YNG+rIkSOSJF9fX2VlZSk1NdWqXUpKiqWXnK+vr06dOpXnXKdPn7Zqc3VvutTUVF26dKnQNrlDe6/uoQcAAAAAAADYUrkq4p05c0bHjx+Xn5+fJKl9+/ZycXFRTEyMpU1SUpL279+vLl26SJKCgoKUlpamH374wdLm+++/V1pamlWb/fv3KykpydJmw4YNcnNzU/v27S1ttmzZoqysLKs2/v7+atSoUandMwAAAAAAAGDXIt758+cVHx+v+Ph4SVJCQoLi4+OVmJio8+fPKzw8XDt27NCxY8cUGxurgQMHqk6dOrrrrrskSWazWaNGjdLkyZO1ceNG7d27Vw8//LBatWplma22efPm6tu3r0aPHq24uDjFxcVp9OjRGjBggAICAiRJISEhatGihUJDQ7V3715t3LhR4eHhGj16tGrUqCFJGjZsmNzc3DRy5Ejt379fa9as0auvvlrozLQAAAAAAACALdj1nXi7du1Sjx49LOthYWGSpBEjRmjhwoXat2+fli1bprNnz8rPz089evTQqlWr5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGmxaxEvODjYMjlEfr755ptrnqNq1aqaP3++5s+fX2CbWrVqafny5YWep0GDBvrqq68KbdOqVStt2bLlmjEBAAAAAAAAtlSu3okHAAAAXEtkZKQ6duwoT09PeXt7a8iQITp8+HChx8TGxspkMuVZfv755zKKGgAAoHBF7on35ZdfFvmkgwYNKlEwAAAAqFxKI8fcvHmzxo8fr44dO+ry5ct67rnnFBISooMHD8rDw6PQYw8fPmx5J7Ik1a1bt8jxAQAAlKYiF/GGDBlitW4ymayGwv5zcofs7OzrjwwAAAAVXmnkmNHR0VbrS5Yskbe3t3bv3q3bb7+90GO9vb1Vs2bNIl0HAACgLBV5OG1OTo5l2bBhg9q2bauvv/5aZ8+eVVpamtavX69bbrklT9IEAAAAFKQscsy0tDRJV96TfC3t2rWTn5+fevbsqU2bNhXaNjMzU+np6VYLAABAaSnRxBaTJk3SokWL1K1bN8u2Pn36qFq1anr88cd16NAhmwUIAACAyqE0ckzDMBQWFqZu3bopMDCwwHZ+fn5677331L59e2VmZuqjjz5Sz549FRsbW2DvvcjISL388svFjgkAAKAkSlTEO3r0qMxmc57tZrNZx44du96YAAAAUAmVRo755JNP6qefftLWrVsLbRcQEKCAgADLelBQkI4fP67Zs2cXWMSbNm2awsLCLOvp6emqX79+ieIEAAC4lhLNTtuxY0dNmjRJSUlJlm3JycmaPHmybr31VpsFBwAAgMrD1jnmhAkT9OWXX2rTpk2qV69esY/v3Lmzjhw5UuB+Nzc31ahRw2oBAAAoLSUq4n344YdKSUlRw4YN1aRJEzVp0kQNGjRQUlKSFi9ebOsYAQAAUAnYKsc0DENPPvmkPvvsM3333Xdq3LhxieLZu3ev/Pz8SnQsAACArZVoOG2TJk30008/KSYmRj///LMMw1CLFi3Uq1cvqxnEAAAAgKKyVY45fvx4ffzxx/riiy/k6emp5ORkSVeG5bq7u0u6MhT2xIkTWrZsmSRp3rx5atSokVq2bKmsrCwtX75cq1ev1urVq21/owAAACVQoiKeJJlMJoWEhOj222+Xm5sbxTsAAABcN1vkmAsXLpQkBQcHW21fsmSJRo4cKUlKSkpSYmKiZV9WVpbCw8N14sQJubu7q2XLllq3bp369+9f4nsBAACwpRIV8XJycjRz5kwtWrRIp06d0i+//KIbb7xRL7zwgho1aqRRo0bZOk4AKFciIsru/KV9LQAoK7bKMQ3DuGabqKgoq/WpU6dq6tSpJQkbAACgTJTonXgzZsxQVFSU3njjDbm6ulq2t2rVSh988IHNggMAAEDlQY4JAABQsBIV8ZYtW6b33ntPDz30kJycnCzbW7durZ9//tlmwQEAAKDyIMcEAAAoWImKeCdOnFCTJk3ybM/JydGlS5euOygAAABUPuSYAAAABStREa9ly5b63//+l2f7p59+qnbt2l13UAAAAKh8yDEBAAAKVqKJLV566SWFhobqxIkTysnJ0WeffabDhw9r2bJl+uqrr2wdIwAAACoBckwAAICClagn3sCBA7Vq1SqtX79eJpNJL774og4dOqS1a9eqd+/eto4RAAAAlQA5JgAAQMFK1BNPkvr06aM+ffrYMhYAAABUcuSYAAAA+StxES/X+fPnlZOTY7WtRo0a13taAAAAVGLkmAAAANZKNJw2ISFBd955pzw8PGQ2m+Xl5SUvLy/VrFlTXl5eto4RAAAAlQA5JgAAQMFK1BPvoYcekiR9+OGH8vHxkclksmlQAAAAqHzIMQFUdMGuEZZ/j82KKLAdAOSnREW8n376Sbt371ZAQICt4wEAAEAlRY4JAABQsBINp+3YsaOOHz9u61gAAABQiZFjAgAAFKxEPfE++OADjRkzRidOnFBgYKBcXFys9rdu3domwQEAAKDyIMcEAAAoWImKeKdPn9bRo0f1yCOPWLaZTCYZhiGTyaTs7GybBQgAAIDKgRwTAACgYCUq4j366KNq166dPvnkE146DAAAAJsgxwQAAChYiYp4v//+u7788ks1adLE1vEAAACgkiLHBAAAKFiJJra444479OOPP9o6FgAAAFRi5JgAAAAFK1FPvIEDB+qpp57Svn371KpVqzwvHR40aJBNggMAXFtEhPU/AaC8IscEAAAoWImKeGPGjJEkTZ8+Pc8+XjoMAACAkiDHBAAAKFiJing5OTm2jgMAAACVHDkmAABAwYr9TrzLly/L2dlZ+/fvL414AAAAUAmRYwIAABSu2EU8Z2dnNWzYkOEMAAAAsBlyTAAAgMKVaHba559/XtOmTdNff/1l63gAAABQSZFjAgAAFKxE78R7++239euvv8rf318NGzaUh4eH1f49e/bYJDgAqAyYXRYAriDHBAAAKFiJinhDhgyxcRgAUP5RhAOA60OOCQAAULASFfFeeuklW8cBAACASo4cEwAAoGAlKuLl2r17tw4dOiSTyaQWLVqoXbt2tooLAAAAlRQ5JgAAQF4lKuKlpKTogQceUGxsrGrWrCnDMJSWlqYePXpo5cqVqlu3rq3jBAAAQAVHjgkAAFCwEs1OO2HCBKWnp+vAgQP666+/lJqaqv379ys9PV0TJ060dYwAAACoBGyVY0ZGRqpjx47y9PSUt7e3hgwZosOHD1/zuM2bN6t9+/aqWrWqbrzxRi1atOh6bgcAAMCmSlTEi46O1sKFC9W8eXPLthYtWujf//63vv76a5sFBwAAgMrDVjnm5s2bNX78eMXFxSkmJkaXL19WSEiIMjIyCjwmISFB/fv312233aa9e/fq2Wef1cSJE7V69erruicAAABbKdFw2pycHLm4uOTZ7uLiopycnOsOCgAAAJWPrXLM6Ohoq/UlS5bI29tbu3fv1u23357vMYsWLVKDBg00b948SVLz5s21a9cuzZ49W0OHDi36TQAAAJSSEvXEu+OOO/Svf/1LJ0+etGw7ceKEnnrqKfXs2dNmwQEAAKDyKK0cMy0tTZJUq1atAtvs2LFDISEhVtv69OmjXbt26dKlS/kek5mZqfT0dKsFAACgtJSoiLdgwQKdO3dOjRo10k033aQmTZqoUaNGOnfunN5++21bxwgAAIBKoDRyTMMwFBYWpm7duikwMLDAdsnJyfLx8bHa5uPjo8uXL+vPP//M95jIyEiZzWbLUr9+/RLFCAAAUBQlGk5bv3597dmzR99++60OHTokwzDUokUL9erVy9bxAQAAoJIojRzzySef1E8//aStW7des63JZLJaNwwj3+25pk2bprCwMMt6eno6hTwAAFBqSlTEk6SNGzfqu+++U0pKinJychQfH6+PP/5YkvThhx/aLEAAAABUHrbMMSdMmKAvv/xSW7ZsUb169Qpt6+vrq+TkZKttKSkpcnZ2Vu3atfM9xs3NTW5ubsWKCQAAoKRKVMR7+eWXNX36dHXo0EF+fn4F/joJAAAAFJWtckzDMDRhwgStWbNGsbGxaty48TWPCQoK0tq1a622bdiwQR06dMh3sg0AAICyVqIi3qJFixQVFaXQ0FBbxwMAAIBKylY55vjx4/Xxxx/riy++kKenp6WHndlslru7u6QrQ2FPnDihZcuWSZLGjBmjBQsWKCwsTKNHj9aOHTu0ePFiffLJJ9d3UwAAADZSooktsrKy1KVLF1vHAgAAgErMVjnmwoULlZaWpuDgYPn5+VmWVatWWdokJSUpMTHRst64cWOtX79esbGxatu2rV555RW9/fbbGjp06HXHAwAAYAsl6on32GOP6eOPP9YLL7xg63gAAABQSdkqx8ydkKIwUVFRebZ1795de/bsua5rAwAAlJYSFfEuXryo9957T99++61at26d5z0hc+fOtUlwAAAAqDzIMQEAAApWoiLeTz/9pLZt20qS9u/fb7WPSS4AAABQEuSYAAAABStREW/Tpk22jgMAAACVHDkmAABAwUo0sQUAAAAAAACAskMRDwAAAAAAAHBwFPEAAAAAAAAAB0cRDwAAAAAAAHBwdi3ibdmyRQMHDpS/v79MJpM+//xzq/2GYSgiIkL+/v5yd3dXcHCwDhw4YNUmMzNTEyZMUJ06deTh4aFBgwbpjz/+sGqTmpqq0NBQmc1mmc1mhYaG6uzZs1ZtEhMTNXDgQHl4eKhOnTqaOHGisrKyrNrs27dP3bt3l7u7u2644QZNnz5dhmHY7HkAAAAAAAAA+bFrES8jI0Nt2rTRggUL8t3/xhtvaO7cuVqwYIF27twpX19f9e7dW+fOnbO0mTRpktasWaOVK1dq69atOn/+vAYMGKDs7GxLm2HDhik+Pl7R0dGKjo5WfHy8QkNDLfuzs7N15513KiMjQ1u3btXKlSu1evVqTZ482dImPT1dvXv3lr+/v3bu3Kn58+dr9uzZmjt3bik8GQAovoiIKwsAAAAAoOJxtufF+/Xrp379+uW7zzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGXwxAAAAAAAji7YNcLeIQCogBz2nXgJCQlKTk5WSEiIZZubm5u6d++u7du3S5J2796tS5cuWbXx9/dXYGCgpc2OHTtkNpstBTxJ6ty5s8xms1WbwMBASwFPkvr06aPMzEzt3r3b0qZ79+5yc3OzanPy5EkdO3aswPvIzMxUenq61QIAAAAAAAAUh8MW8ZKTkyVJPj4+Vtt9fHws+5KTk+Xq6iovL69C23h7e+c5v7e3t1Wbq6/j5eUlV1fXQtvkrue2yU9kZKTlXXxms1n169cv/MYBAAAAAACAqzhsES/X1cNUDcO45tDVq9vk194WbXIntSgsnmnTpiktLc2yHD9+vNDYAQAAAAAAgKs5bBHP19dXUt5ebikpKZYecL6+vsrKylJqamqhbU6dOpXn/KdPn7Zqc/V1UlNTdenSpULbpKSkSMrbW/Cf3NzcVKNGDasFAAAAAAAAKA6HLeI1btxYvr6+iomJsWzLysrS5s2b1aVLF0lS+/bt5eLiYtUmKSlJ+/fvt7QJCgpSWlqafvjhB0ub77//XmlpaVZt9u/fr6SkJEubDRs2yM3NTe3bt7e02bJli7Kysqza+Pv7q1GjRrZ/AAAAAAAAAMD/Z9ci3vnz5xUfH6/4+HhJVyaziI+PV2JiokwmkyZNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGWnnPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAAAAAAAApc7ZnhfftWuXevToYVkPCwuTJI0YMUJRUVGaOnWqLly4oHHjxik1NVWdOnXShg0b5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGkxGbmzM6BMpKeny2w2Ky0tjffjARVERIRtz3O957NVPAAcB/lD+cDnBEC6kosFu0Zcs11sVgR5G4Bi5Q8O+048AAAAAAAAAFfYdTgtAAAAAAAVwvYISVKwq33DAFBx0RMPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPPy+0fWxsrEwmU57l559/LpuAAQAAisDZ3gEAAAAAtpSRkaE2bdrokUce0dChQ4t83OHDh1WjRg3Let26dUsjPAAAgBKhiAcAAIAKpV+/furXr1+xj/P29lbNmjVtHxAAAIANMJwWAAAAkNSuXTv5+fmpZ8+e2rRp0zXbZ2ZmKj093WoBAAAoLRTxAAAAUKn5+fnpvffe0+rVq/XZZ58pICBAPXv21JYtWwo9LjIyUmaz2bLUr1+/jCIGAACVEcNpAQAAUKkFBAQoICDAsh4UFKTjx49r9uzZuv322ws8btq0aQoLC7Osp6enU8gDAAClhp54AFDBRERcWQAAJde5c2cdOXKk0DZubm6qUaOG1QIAAFBaKOIBAAAAV9m7d6/8/PzsHQYAAIAFw2kBAABQoZw/f16//vqrZT0hIUHx8fGqVauWGjRooGnTpunEiRNatmyZJGnevHlq1KiRWrZsqaysLC1fvlyrV6/W6tWr7XULAAAAeVDEA4AK6p9DahleC6Ay2bVrl3r06GFZz31v3YgRIxQVFaWkpCQlJiZa9mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///5lHjsAAEBBKOIBAACgQgkODpZhGAXuj4qKslqfOnWqpk6dWspRAQAAXB/eiQcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AFBMERFXFgAAAAAAyoqzvQMAgPKKQh4AAABKKtg1Qtr+/1e6RNgxEgDlBT3xAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAfnbO8AAKA8iIiwdwQAAAAAgMqMnngAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4JrYAAAAAAMCetkf83793iSioFYBKjp54AFAJREQwwy4AAAAAlGcU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPP7/mMZs3b1b79u1VtWpV3XjjjVq0aFHpBwoAAFAMFPEAAABQoWRkZKhNmzZasGBBkdonJCSof//+uu2227R37149++yzmjhxolavXl3KkQIAABSds70DAABcweyxAGAb/fr1U79+/YrcftGiRWrQoIHmzZsnSWrevLl27dql2bNna+jQoaUUJQAAQPHQEw8AAACV2o4dOxQSEmK1rU+fPtq1a5cuXbpU4HGZmZlKT0+3WgAAAEoLRTwAAABUasnJyfLx8bHa5uPjo8uXL+vPP/8s8LjIyEiZzWbLUr9+/dIOFQAAVGIU8QAAAFDpmUwmq3XDMPLd/k/Tpk1TWlqaZTl+/HipxggAACo33okHAACASs3X11fJyclW21JSUuTs7KzatWsXeJybm5vc3NxKOzwAjmx7hL0jAFCJ0BMPAAAAlVpQUJBiYmKstm3YsEEdOnSQi4uLnaICAACwRk88AChEcWeMDXYt5gH/X2xWyY4DAOR1/vx5/frrr5b1hIQExcfHq1atWmrQoIGmTZumEydOaNmyZZKkMWPGaMGCBQoLC9Po0aO1Y8cOLV68WJ988om9bgEAACAPh+6JFxERIZPJZLX4+vpa9huGoYiICPn7+8vd3V3BwcE6cOCA1TkyMzM1YcIE1alTRx4eHho0aJD++OMPqzapqakKDQ21vJQ4NDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVVavcOAKUpIqL4BUoAKC927dqldu3aqV27dpKksLAwtWvXTi+++KIkKSkpSYmJiZb2jRs31vr16xUbG6u2bdvqlVde0dtvv62hQ4faJX4AAID8OHxPvJYtW+rbb7+1rDs5OVn+/Y033tDcuXMVFRWlpk2basaMGerdu7cOHz4sT09PSdKkSZO0du1arVy5UrVr19bkyZM1YMAA7d6923KuYcOG6Y8//lB0dLQk6fHHH1doaKjWrl0rScrOztadd96punXrauvWrTpz5oxGjBghwzA0f/78snoUAAAAKILg4GDLxBT5iYqKyrOte/fu2rNnTylGBQAAcH0cvojn7Oxs1fsul2EYmjdvnp577jndfffdkqSlS5fKx8dHH3/8sZ544gmlpaVp8eLF+uijj9SrVy9J0vLly1W/fn19++236tOnjw4dOqTo6GjFxcWpU6dOkqT3339fQUFBOnz4sAICArRhwwYdPHhQx48fl7+/vyRpzpw5GjlypGbOnKkaNWqU0dMAgOtD7zsAAAAAKJ8cejitJB05ckT+/v5q3LixHnjgAf3222+SrrzbJDk5WSEhIZa2bm5u6t69u7Zv3y5J2r17ty5dumTVxt/fX4GBgZY2O3bskNlsthTwJKlz584ym81WbQIDAy0FPEnq06ePMjMztXv37kLjz8zMVHp6utUCAAAAAAAAFIdDF/E6deqkZcuW6ZtvvtH777+v5ORkdenSRWfOnFFycrIkycfHx+oYHx8fy77k5GS5urrKy8ur0Dbe3t55ru3t7W3V5urreHl5ydXV1dKmIJGRkZZ37ZnNZtWvX78YTwAAAAAAAABw8CJev379NHToULVq1Uq9evXSunXrJF0ZNpvLZDJZHWMYRp5tV7u6TX7tS9ImP9OmTVNaWpplOX78eKHtAQAAAAAAgKs5/Dvx/snDw0OtWrXSkSNHNGTIEElXesn5+flZ2qSkpFh6zfn6+iorK0upqalWvfFSUlLUpUsXS5tTp07ludbp06etzvP9999b7U9NTdWlS5fy9NC7mpubm9zc3Ip/swAqlWDXiGIfE5tV/GOu9s935PG+PAAAAABwXOWqiJeZmalDhw7ptttuU+PGjeXr66uYmBi1a9dOkpSVlaXNmzfr9ddflyS1b99eLi4uiomJ0X333SdJSkpK0v79+/XGG29IkoKCgpSWlqYffvhBt956qyTp+++/V1pamqXQFxQUpJkzZyopKclSMNywYYPc3NzUvn37Mn0GAMrQ9ggFu9o7CAAAAAAAHLyIFx4eroEDB6pBgwZKSUnRjBkzlJ6erhEjRshkMmnSpEl69dVXdfPNN+vmm2/Wq6++qmrVqmnYsGGSJLPZrFGjRmny5MmqXbu2atWqpfDwcMvwXElq3ry5+vbtq9GjR+vdd9+VJD3++OMaMGCAAgICJEkhISFq0aKFQkNDNWvWLP31118KDw/X6NGjmZkWQLlTYK+/7YUc1KWAYwAAAAAAZcKhi3h//PGHHnzwQf3555+qW7euOnfurLi4ODVs2FCSNHXqVF24cEHjxo1TamqqOnXqpA0bNsjT09NyjjfffFPOzs667777dOHCBfXs2VNRUVFycnKytFmxYoUmTpxomcV20KBBWrBggWW/k5OT1q1bp3Hjxqlr165yd3fXsGHDNHv27DJ6EgCQV0mG4AIAAAAAyieTYRiGvYOoTNLT02U2m5WWlkYvPsDRbY9QbKy9gyg7wcGF7KQnHmBX5A/lA58TUAltj8izqTj5Y775F3kXUKkUJ39w6NlpAQAAAAAAAFDEAwAAAAAAAByeQ78TDwAAAACASuWfQ3QZWgvgH+iJBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg3O2dwAAUCzbI4p/TJcSHAMAAAAAgAOhJx4AAAAAAADg4OiJBwD/EBHxf/8e7Gq3MAAAAAAAsEJPPAAAAAAAAMDB0RMPQMVXjPfo0fuuACV5F6HE+wgBAAAKERubd1twcFlHAaC8oCceAMBKbGz+CSUAAAAAwH4o4gEAAAAAAAAOjuG0AAAAAAAUVUlfMwIA14meeAAAAAAAAICDoycegEqP978BAAAAABwdRTwAQOkpyXATZrQFYCPvvPOOZs2apaSkJLVs2VLz5s3Tbbfdlm/b2NhY9ejRI8/2Q4cOqVmzZqUdKoByih+DAZQlingAAEkkoQAqllWrVmnSpEl655131LVrV7377rvq16+fDh48qAYNGhR43OHDh1WjRg3Let26dcsiXAAAgGvinXgAAACocObOnatRo0bpscceU/PmzTVv3jzVr19fCxcuLPQ4b29v+fr6WhYnJ6cyihgA8rE94v8WAJUeRTwAlU5sLL3OAKAiy8rK0u7duxUSEmK1PSQkRNu3by/02Hbt2snPz089e/bUpk2bCm2bmZmp9PR0qwUAAKC0UMQDAABAhfLnn38qOztbPj4+Vtt9fHyUnJyc7zF+fn567733tHr1an322WcKCAhQz549tWXLlgKvExkZKbPZbFnq169v0/sAAAD4J96JBwAAgArJZDJZrRuGkWdbroCAAAUEBFjWg4KCdPz4cc2ePVu33357vsdMmzZNYWFhlvX09HQKeQAAoNRQxANQaTGkFgAqpjp16sjJySlPr7uUlJQ8vfMK07lzZy1fvrzA/W5ubnJzcytxnAAAAMVBEQ9ApUHRrpwoyYubu5TgGAAVlqurq9q3b6+YmBjdddddlu0xMTEaPHhwkc+zd+9e+fn5lUaIAAAAxUYRDwAAABVOWFiYQkND1aFDBwUFBem9995TYmKixowZI+nKUNgTJ05o2bJlkqR58+apUaNGatmypbKysrR8+XKtXr1aq1evtudtAAAAWFDEA2AfJeltBbv4Zw/G4GB7RQEAxXP//ffrzJkzmj59upKSkhQYGKj169erYcOGkqSkpCQlJiZa2mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///72ugUAAAArFPEAAABQIY0bN07jxo3Ld19UVJTV+tSpUzV16tQyiAoAAKBkKOIBAPLFOwQBAAAAwHFQxAMAAAAAoDC8CgaAA6CIB+D6kdQAAAAAAFCqKOIBqNAYEmpbuc+TCS4AAADKWO4P510i7BkFADuqYu8AAAAAAAAAABSOIh4AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4JjYAgBQbExwAQAAKrzciSQAwEFQxANQITErLQAAAHCVfxYmmeUWKHco4gEAAAAAUF4UVIijQAdUeBTxAPwfhgygsinJd56kGAAAAIAdUMQDUKEwjLZs/fN58348AACAMsaP8EClQhEPAGATTHYBAADKPYpiABxYFXsHAABFFRtLT7vyhM8LAAAAAGyHnnhASZT0FzrepVVqKBYBAAAAACoyeuIBKHfo4QUAAAAAqGzoiQdUVLzPAw6I9+YBAIAyl19ezAgZAOUQRTwA5Ra98RyTXT4XitYAAKCkyCMAlBMU8QAAZa5c98jjnZgAAJR/FO4AlEMU8QBHR4IBVAwl+bNM4Q8AAADA/0cRDyhLFORQCTHsGQAAoOgKyp2KNYKB/+8AKiSKeAAcSn5JS7kccokiKezzLtdDbgEAgH3ZuIjFj5IAHAFFPABAufDP5LnSFPbKw6/oDPkFANjTP/9byX+TAFRwFPFQsZSH/+FFsfHLJ1DBMDkIAAAAUGwU8QCUuquHRTJkFoWhaAsAAArFD/e2V1CPRno6Ag6FIh5KHzMyoggo3KAg+X03rueFz5VyWC4AAEBR2apImnse/t8OsBmKeJUVhTXYAYU6lLbiFuiYPMMG6A0BAED5ZOtincT/MwKljCJeCbzzzjuaNWuWkpKS1LJlS82bN0+33XZb8U7yfaTk4Wa9rSR/4fE/T7AzCnNwVFd/N21VqKPwB5Qfxc3ZNm/erLCwMB04cED+/v6aOnWqxowZU4YRA5WUrYpANvp/I0fNbyv9K2koFgIU8Ypr1apVmjRpkt555x117dpV7777rvr166eDBw+qQYMG9g6vdJVlwbCcFyft/T/5thpqWNDxjprYAIUpzve2KD36Sjost7SKi3AATNjhUIqbsyUkJKh///4aPXq0li9frm3btmncuHGqW7euhg4daoc7AOykKIUSWxRTivJ3JkUbx8LnAdidyTAMw95BlCedOnXSLbfcooULF1q2NW/eXEOGDFFkZOQ1j09PT5fZbFbahmdU4+qeeKgwyvJXsvwKhkUpVlwdT3GOoYiHiqY4k66U9M93Sf5cArnSMzJlDnlNaWlpqlGjhr3DKReKm7M9/fTT+vLLL3Xo0CHLtjFjxujHH3/Ujh07inRNS57H54TyoLgTGRRUdMuvmFPccxR0vjL4Yb8y5bV2yzNKo3dlUQrMtooBKGXFyR/oiVcMWVlZ2r17t5555hmr7SEhIdq+fXu+x2RmZiozM9OynpaWJulKMl4e/e9/V/5Z3NHDVx+fK/c8/9xenHNfHc/V58/vfIW1Kez+inOtjIt5962Lvvbx1yP3/KXVvqTHAOVBYd/tonzvbfVnIz3jyj8L+rsyv31FaVOUv1fz+3u4sL/3CjpnUf4ezq99Uf4eLo6inKcsr3W9cvMGfnstmpLkbDt27FBISIjVtj59+mjx4sW6dOmSXFxc8hxTYJ6Xnl70YL//R0Gx07SiH+co5y/OdcryXvO7TkHXL424bPE8ihLvPxUl9oKOjSng2H9+lwv6/5fcNgWduyjnKEosxWDrPLuiKGq+YvP/nhXlMy3o+3ut711J2l/rz5Aj/H1WlGvlbi/un/3ixlua91qWz9GBY8jNG4qU5xkoshMnThiSjG3btlltnzlzptG0adN8j3nppZcMSSwsLCwsLCws170cPXq0LFKecq8kOdvNN99szJw502rbtm3bDEnGyZMn8z2GPI+FhYWFhYXFVsvx48evmePQE68ETCaT1bphGHm25Zo2bZrCwsIs62fPnlXDhg2VmJgos9lcqnFWRunp6apfv76OHz/OMJZSwPMtXTzf0sXzLV0839KVlpamBg0aqFatWvYOpVwpTs5WUPv8tue6Os/LycnRX3/9pdq1axd6nfKCP9flA59T+cDnVD7wOTm+ivgZGYahc+fOyd/f/5ptKeIVQ506deTk5KTk5GSr7SkpKfLx8cn3GDc3N7m55X33ndlsrjBfOEdUo0YNnm8p4vmWLp5v6eL5li6eb+mqUqWKvUMoF0qSs/n6+ubb3tnZWbVr1873mPzyvJo1a5Y8cAfFn+vygc+pfOBzKh/4nBxfRfuMitrJi0ywGFxdXdW+fXvFxMRYbY+JiVGXLl3sFBUAAAD+qSQ5W1BQUJ72GzZsUIcOHfJ9Hx4AAEBZo4hXTGFhYfrggw/04Ycf6tChQ3rqqaeUmJioMWPG2Ds0AAAA/H/XytmmTZum4cOHW9qPGTNGv//+u8LCwnTo0CF9+OGHWrx4scLDw+11CwAAAFYYTltM999/v86cOaPp06crKSlJgYGBWr9+vRo2bFik493c3PTSSy/lO8QW14/nW7p4vqWL51u6eL6li+dbuni+xXetnC0pKUmJiYmW9o0bN9b69ev11FNP6d///rf8/f319ttva+jQofa6Bbvje1c+8DmVD3xO5QOfk+Or7J+RyTCKMoctAAAAAAAAAHthOC0AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4CjiAQAAAAAAAA6OIp4dDRo0SA0aNFDVqlXl5+en0NBQnTx50t5hVQjHjh3TqFGj1LhxY7m7u+umm27SSy+9pKysLHuHVmHMnDlTXbp0UbVq1VSzZk17h1PuvfPOO2rcuLGqVq2q9u3b63//+5+9Q6owtmzZooEDB8rf318mk0mff/65vUOqMCIjI9WxY0d5enrK29tbQ4YM0eHDh+0dVoWycOFCtW7dWjVq1FCNGjUUFBSkr7/+2t5hoZLLzMxU27ZtZTKZFB8fb+9w8P+R/zou8jzHRj5T/kRGRspkMmnSpEn2DqXMUcSzox49eug///mPDh8+rNWrV+vo0aO655577B1WhfDzzz8rJydH7777rg4cOKA333xTixYt0rPPPmvv0CqMrKws3XvvvRo7dqy9Qyn3Vq1apUmTJum5557T3r17ddttt6lfv35KTEy0d2gVQkZGhtq0aaMFCxbYO5QKZ/PmzRo/frzi4uIUExOjy5cvKyQkRBkZGfYOrcKoV6+eXnvtNe3atUu7du3SHXfcocGDB+vAgQP2Dg2V2NSpU+Xv72/vMHAV8l/HRJ7n+MhnypedO3fqvffeU+vWre0dil2YDMMw7B0Ervjyyy81ZMgQZWZmysXFxd7hVDizZs3SwoUL9dtvv9k7lAolKipKkyZN0tmzZ+0dSrnVqVMn3XLLLVq4cKFlW/PmzTVkyBBFRkbaMbKKx2Qyac2aNRoyZIi9Q6mQTp8+LW9vb23evFm33367vcOpsGrVqqVZs2Zp1KhR9g4FldDXX3+tsLAwrV69Wi1bttTevXvVtm1be4eFApD/2h95XvlDPuO4zp8/r1tuuUXvvPOOZsyYobZt22revHn2DqtM0RPPQfz1119asWKFunTpQgGvlKSlpalWrVr2DgOwkpWVpd27dyskJMRqe0hIiLZv326nqICSSUtLkyT+ri0l2dnZWrlypTIyMhQUFGTvcFAJnTp1SqNHj9ZHH32katWq2TscFAH5r32R55VP5DOOa/z48brzzjvVq1cve4diNxTx7Ozpp5+Wh4eHateurcTERH3xxRf2DqlCOnr0qObPn68xY8bYOxTAyp9//qns7Gz5+PhYbffx8VFycrKdogKKzzAMhYWFqVu3bgoMDLR3OBXKvn37VL16dbm5uWnMmDFas2aNWrRoYe+wUMkYhqGRI0dqzJgx6tChg73DQRGQ/9ofeV75Qz7juFauXKk9e/ZU+h6sFPFsLCIiQiaTqdBl165dlvZTpkzR3r17tWHDBjk5OWn48OFihHPBivt8JenkyZPq27ev7r33Xj322GN2irx8KMnzhW2YTCardcMw8mwDHNmTTz6pn376SZ988om9Q6lwAgICFB8fr7i4OI0dO1YjRozQwYMH7R0WKoii/rd//vz5Sk9P17Rp0+wdcqVD/lv+keeVH+Qzjun48eP617/+peXLl6tq1ar2DseueCeejf3555/6888/C23TqFGjfL94f/zxh+rXr6/t27czTKYAxX2+J0+eVI8ePdSpUydFRUWpShXq1oUpyfeXd+Jdn6ysLFWrVk2ffvqp7rrrLsv2f/3rX4qPj9fmzZvtGF3FwzvxSseECRP0+eefa8uWLWrcuLG9w6nwevXqpZtuuknvvvuuvUNBBVDU//Y/8MADWrt2rVXhITs7W05OTnrooYe0dOnS0g610iL/Lb/I88oX8hnH9fnnn+uuu+6Sk5OTZVt2drZMJpOqVKmizMxMq30VmbO9A6ho6tSpozp16pTo2Nx6amZmpi1DqlCK83xPnDihHj16qH379lqyZAkJTBFcz/cXJePq6qr27dsrJibGKrmLiYnR4MGD7RgZcG2GYWjChAlas2aNYmNjSXjLiGEY5AqwmaL+t//tt9/WjBkzLOsnT55Unz59tGrVKnXq1Kk0Q6z0yH/LL/K88oF8xvH17NlT+/bts9r2yCOPqFmzZnr66acrTQFPoohnNz/88IN++OEHdevWTV5eXvrtt9/04osv6qabbqIXng2cPHlSwcHBatCggWbPnq3Tp09b9vn6+toxsoojMTFRf/31lxITE5Wdna34+HhJUpMmTVS9enX7BlfOhIWFKTQ0VB06dFBQUJDee+89JSYm8g4bGzl//rx+/fVXy3pCQoLi4+NVq1YtNWjQwI6RlX/jx4/Xxx9/rC+++EKenp6W9/uYzWa5u7vbObqK4dlnn1W/fv1Uv359nTt3TitXrlRsbKyio6PtHRoqmav/vsz9b/1NN92kevXq2SMkXIX81zGR5zk+8hnH5+npmecdhblzC1S2dxdSxLMTd3d3ffbZZ3rppZeUkZEhPz8/9e3bVytXrpSbm5u9wyv3NmzYoF9//VW//vprnsSSEeS28eKLL1oNnWnXrp0kadOmTQoODrZTVOXT/fffrzNnzmj69OlKSkpSYGCg1q9fr4YNG9o7tAph165d6tGjh2U9LCxMkjRixAhFRUXZKaqKYeHChZKU58/8kiVLNHLkyLIPqAI6deqUQkNDlZSUJLPZrNatWys6Olq9e/e2d2gAHAz5r2Miz3N85DMoT3gnHgAAAAAAAODgeEkCAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAORjy5YtGjhwoPz9/WUymfT555+X6vUiIiJkMpmsFl9f31K9JgAAQGVU1nne5cuX9fzzz6tx48Zyd3fXjTfeqOnTpysnJ6dY56GIBwAAkI+MjAy1adNGCxYsKLNrtmzZUklJSZZl3759ZXZtAEDZCA4O1qRJk+wdBlCplXWe9/rrr2vRokVasGCBDh06pDfeeEOzZs3S/Pnzi3Ue51KKDwAAoFzr16+f+vXrV+D+rKwsPf/881qxYoXOnj2rwMBAvf766woODi7xNZ2dnel9BwAAUMrKOs/bsWOHBg8erDvvvFOS1KhRI33yySfatWtXsc5DTzwAAIASeOSRR7Rt2zatXLlSP/30k+6991717dtXR44cKfE5jxw5In9/fzVu3FgPPPCAfvvtNxtGDAAAgKKwdZ7XrVs3bdy4Ub/88osk6ccff9TWrVvVv3//Yp2HIh4AOICcnBy9/vrratKkidzc3NSgQQPNnDnT3mEBKMDRo0f1ySef6NNPP9Vtt92mm266SeHh4erWrZuWLFlSonN26tRJy5Yt0zfffKP3339fycnJ6tKli86cOWPj6AEAZSUjI0PDhw9X9erV5efnpzlz5tg7JADXUBp53tNPP60HH3xQzZo1k4uLi9q1a6dJkybpwQcfLNZ5GE4LAA5g2rRpev/99/Xmm2+qW7duSkpK0s8//2zvsAAUYM+ePTIMQ02bNrXanpmZqdq1a0uSjh07psaNGxd6nvHjx1vexfLPIR2tWrVSUFCQbrrpJi1dulRhYWE2vgMAQFmYMmWKNm3apDVr1sjX11fPPvusdu/erbZt29o7NAAFKI08b9WqVVq+fLk+/vhjtWzZUvHx8Zo0aZL8/f01YsSIIsdGEQ8A7OzcuXN66623tGDBAstf4DfddJO6detm58gAFCQnJ0dOTk7avXu3nJycrPZVr15dknTDDTfo0KFDhZ7Hy8urwH0eHh5q1arVdQ3PBQDYz/nz57V48WItW7ZMvXv3liQtXbpU9erVs3NkAApTGnnelClT9Mwzz+iBBx6QdOUH299//12RkZEU8QCgPDl06JAyMzPVs2dPe4cCoIjatWun7OxspaSk6Lbbbsu3jYuLi5o1a1bia2RmZurQoUMFnh8A4NiOHj2qrKwsBQUFWbbVqlVLAQEBdowKwLWURp73999/q0oV6zfaOTk5KScnp1ixUcQDADtzd3e3dwgA8nH+/Hn9+uuvlvWEhATFx8erVq1aatq0qR566CENHz5cc+bMUbt27fTnn3/qu+++U6tWrYr9kmJJCg8P18CBA9WgQQOlpKRoxowZSk9PL9avswAAx2EYhr1DAFCAss7zBg4cqJkzZ6pBgwZq2bKl9u7dq7lz5+rRRx8t1nmY2AIA7Ozmm2+Wu7u7Nm7caO9QAPzDrl271K5dO7Vr106SFBYWpnbt2unFF1+UJC1ZskTDhw/X5MmTFRAQoEGDBun7779X/fr1S3S9P/74Qw8++KACAgJ09913y9XVVXFxcWrYsKHN7gkAUHaaNGkiFxcXxcXFWbalpqZaZqcEYD9lnefNnz9f99xzj8aNG6fmzZsrPDxcTzzxhF555ZVincdk8PMAANjdyy+/rLfeekvz5s1T165ddfr0aR04cECjRo2yd2gAAAAoobFjx2r9+vX68MMP5ePjo+eee07fffedRo0apXnz5tk7PADlDMNpAcABvPDCC3J2dtaLL76okydPys/PT2PGjLF3WAAAALgOs2bN0vnz5zVo0CB5enpq8uTJSktLs3dYAMopeuIBAAAAAAAADo534gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAO7v8Bn0qzJgU3+4YAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1500x1000 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(15,10))\n",
"\n",
"ax0.hist(scifi_fitpars_found[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$a_x$ found\")\n",
"ax0.hist(scifi_fitpars_lost[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$a_x$ lost\")\n",
"ax0.set_xlabel(\"a\")\n",
"ax0.set_ylabel(\"normed\")\n",
"ax0.set_title(\"fitparameter a der scifi track\")\n",
"ax0.legend()\n",
"\n",
"ax1.hist(scifi_fitpars_found[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$b_x$ found\")\n",
"ax1.hist(scifi_fitpars_lost[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$b_x$ lost\")\n",
"ax1.set_xticks(np.arange(-1,1,0.1),minor=True)\n",
"ax1.set_xlabel(\"b\")\n",
"ax1.set_ylabel(\"normed\")\n",
"ax1.set_title(\"fitparameter b der scifi track\")\n",
"ax1.legend()\n",
"#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n",
"#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n",
"\n",
"\n",
"ax2.hist(scifi_fitpars_found[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$c_x$ found\")\n",
"ax2.hist(scifi_fitpars_lost[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$c_x$ lost\")\n",
"ax2.set_xlim([-3e-5,3e-5])\n",
"ax2.set_xticks(np.arange(-3e-5,3.5e-5,1e-5),minor=False)\n",
"ax2.set_xlabel(\"c\")\n",
"ax2.set_ylabel(\"normed\")\n",
"ax2.set_title(\"fitparameter c der scifi track\")\n",
"ax2.legend()\n",
"\n",
"ax3.hist(scifi_fitpars_found[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$d_x$ found\")\n",
"ax3.hist(scifi_fitpars_lost[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$d_x$ lost\")\n",
"ax3.set(xlim=(-5e-8,5e-8))\n",
"ax3.text(-4e-8,3e8,\"d negligible <1e-7\")\n",
"ax3.set_xlabel(\"d\")\n",
"ax3.set_ylabel(\"normed\")\n",
"ax3.set_title(\"fitparameter d der scifi track\")\n",
"ax3.legend()\n",
"\n",
"\"\"\"\n",
"a_x: virtual hit on the reference plane\n",
"\"\"\"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env1",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}