{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Bad value in file '/home/lhcb/cetin/.config/matplotlib/matplotlibrc', line 267 ('font.size: large'): Key font.size: Could not convert 'large' to float\n" ] } ], "source": [ "import uproot\t\n", "import numpy as np\n", "import sys\n", "import os\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits import mplot3d\n", "import itertools\n", "import awkward as ak\n", "from scipy.optimize import curve_fit\n", "from mpl_toolkits.axes_grid1 import ImageGrid\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'/home/lhcb/cetin/.config/matplotlib/matplotlibrc'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "matplotlib.matplotlib_fname()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10522" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n", "\n", "#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n", "allcolumns = file.arrays()\n", "found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n", "lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n", "\n", "ak.num(found, axis=0) + ak.num(lost, axis=0)\n", "#ak.count(found, axis=None)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "eff all = 0.8606728758791105 +/- 0.003375885792719708\n" ] } ], "source": [ "def t_eff(found, lost, axis = 0):\n", " sel = ak.num(found, axis=axis)\n", " des = ak.num(lost, axis=axis)\n", " return sel/(sel + des)\n", "\n", "def eff_err(found, lost):\n", " n_f = ak.num(found, axis=0)\n", " n_all = ak.num(found, axis=0) + ak.num(lost,axis=0)\n", " return 1/n_all * np.sqrt(np.abs(n_f*(1-n_f/n_all)))\n", "\n", "\n", "print(\"eff all = \", t_eff(found, lost), \"+/-\", eff_err(found, lost))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
{energy: 4.62e+04,\n",
       " photon_length: 10,\n",
       " brem_photons_pe: [3.26e+03, 4.45e+03, 178, ..., 825, 8.99e+03, 3.48e+03],\n",
       " brem_vtx_z: [162, 187, 387, 487, ..., 9.49e+03, 1.21e+04, 1.21e+04, 1.21e+04]}\n",
       "-------------------------------------------------------------------------------\n",
       "type: {\n",
       "    energy: float64,\n",
       "    photon_length: int64,\n",
       "    brem_photons_pe: var * float64,\n",
       "    brem_vtx_z: var * float64\n",
       "}
" ], "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#try excluding all photons that originate from a vtx @ z>9500mm\n", "#ignore all brem vertices @ z>9500mm \n", "\n", "#found\n", "\n", "brem_e_f = found[\"brem_photons_pe\"]\n", "brem_z_f = found[\"brem_vtx_z\"]\n", "e_f = found[\"energy\"]\n", "length_f = found[\"brem_vtx_z_length\"]\n", "\n", "brem_f = ak.ArrayBuilder()\n", "\n", "for itr in range(ak.num(found,axis=0)):\n", " brem_f.begin_record()\n", " #[:,\"energy\"] energy\n", " brem_f.field(\"energy\").append(e_f[itr])\n", " #[:,\"photon_length\"] number of vertices\n", " brem_f.field(\"photon_length\").integer(length_f[itr])\n", " #[:,\"brem_photons_pe\",:] photon energy \n", " brem_f.field(\"brem_photons_pe\").append(brem_e_f[itr])\n", " #[:,\"brem_vtx_z\",:] brem vtx z\n", " brem_f.field(\"brem_vtx_z\").append(brem_z_f[itr])\n", " brem_f.end_record()\n", "\n", "brem_f = ak.Array(brem_f)\n", "\n", "#lost\n", "\n", "brem_e_l = lost[\"brem_photons_pe\"]\n", "brem_z_l = lost[\"brem_vtx_z\"]\n", "e_l = lost[\"energy\"]\n", "length_l = lost[\"brem_vtx_z_length\"]\n", "\n", "brem_l = ak.ArrayBuilder()\n", "\n", "for itr in range(ak.num(lost,axis=0)):\n", " brem_l.begin_record()\n", " #[:,\"energy\"] energy\n", " brem_l.field(\"energy\").append(e_l[itr])\n", " #[:,\"photon_length\"] number of vertices\n", " brem_l.field(\"photon_length\").integer(length_l[itr])\n", " #[:,\"brem_photons_pe\",:] photon energy \n", " brem_l.field(\"brem_photons_pe\").append(brem_e_l[itr])\n", " #[:,\"brem_vtx_z\",:] brem vtx z\n", " brem_l.field(\"brem_vtx_z\").append(brem_z_l[itr])\n", " brem_l.end_record()\n", "\n", "brem_l = ak.Array(brem_l)\n", "\n", "\n", "\n", "\n", "brem_f[0]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "acc_brem_found = ak.ArrayBuilder()\n", "\n", "for itr in range(ak.num(brem_f, axis=0)):\n", " acc_brem_found.begin_record()\n", " acc_brem_found.field(\"energy\").real(brem_f[itr,\"energy\"])\n", " \n", " acc_brem_found.field(\"brem_photons_pe\")\n", " acc_brem_found.begin_list()\n", " for jentry in range(brem_f[itr, \"photon_length\"]):\n", " if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n", " continue\n", " else:\n", " acc_brem_found.real(brem_f[itr,\"brem_photons_pe\", jentry])\n", " \n", " #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n", " acc_brem_found.end_list()\n", " \n", " acc_brem_found.field(\"brem_vtx_z\")\n", " acc_brem_found.begin_list()\n", " for jentry in range(brem_f[itr, \"photon_length\"]):\n", " if brem_f[itr, \"brem_vtx_z\", jentry]>9500:\n", " continue\n", " else:\n", " acc_brem_found.real(brem_f[itr, \"brem_vtx_z\",jentry])\n", " acc_brem_found.end_list()\n", " \n", "\n", " \n", " acc_brem_found.end_record()\n", "\n", "acc_brem_found = ak.Array(acc_brem_found)\n", "\n", "\n", "\n", "acc_brem_lost = ak.ArrayBuilder()\n", "\n", "for itr in range(ak.num(brem_l, axis=0)):\n", " acc_brem_lost.begin_record()\n", " acc_brem_lost.field(\"energy\").real(brem_l[itr,\"energy\"])\n", " \n", " acc_brem_lost.field(\"brem_photons_pe\")\n", " acc_brem_lost.begin_list()\n", " for jentry in range(brem_l[itr, \"photon_length\"]):\n", " if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n", " continue\n", " else:\n", " acc_brem_lost.real(brem_l[itr,\"brem_photons_pe\", jentry])\n", " \n", " #acc_brem_found.field(\"brem_vtx_z\").real(brem_f[itr, \"brem_vtx_z\",jentry])\n", " acc_brem_lost.end_list()\n", " \n", " acc_brem_lost.field(\"brem_vtx_z\")\n", " acc_brem_lost.begin_list()\n", " for jentry in range(brem_l[itr, \"photon_length\"]):\n", " if brem_l[itr, \"brem_vtx_z\", jentry]>9500:\n", " continue\n", " else:\n", " acc_brem_lost.real(brem_l[itr, \"brem_vtx_z\",jentry])\n", " acc_brem_lost.end_list()\n", " \n", " acc_brem_lost.end_record()\n", "\n", "acc_brem_lost = ak.Array(acc_brem_lost)\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9056" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ak.num(acc_brem_found,axis=0)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\nph_e = found[\"brem_photons_pe\"]\\nevent_cut = ak.all(ph_e cutoff_energy are not included\n", "\"\"\"\n", "ph_e = acc_brem_found[\"brem_photons_pe\"]\n", "event_cut = ak.all(ph_e" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x_ = np.arange(0,100050,step=1000)\n", "\n", "plt.errorbar(x_,efficiencies_found, yerr=deff_found, ls=\"\", fmt=\".\", label=\"$\\epsilon(E_{\\gamma,tot})$ \") #, capsize=1)\t\n", "plt.xlabel(\"cutoff energy [MeV]\")\n", "plt.ylabel(r\"$\\epsilon$\")\n", "plt.title(r'$B\\rightarrow K^\\ast ee$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm')\n", "plt.ylim([0,1.1])\n", "#plt.xlim([0,10100])\n", "\"\"\"\n", "plt.yticks(np.arange(0,1.04,step=0.02),minor=True)\n", "plt.xticks(np.arange(-200,10400,step=200),minor=True)\n", "\n", "plt.tick_params(left=True, bottom=True, top=True, right=True,\n", "\t\t\t\tlabelleft=True, labelbottom=True, labeltop=False, labelright=False,\n", "\t\t\t\twhich=\"major\",direction=\"in\", length=12, labelsize=\"large\")\n", "plt.tick_params(left=True, bottom=True, top=True, right=True,\n", "\t\t\t\tlabelleft=True, labelbottom=True, labeltop=False, labelright=False,\n", "\t\t\t\twhich=\"minor\",direction=\"in\", length=6)\n", "\"\"\"\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "eff = 0.8545 +/- 0.0036\n" ] }, { "data": { "text/html": [ "
[{energy: 2.58e+04, brem_photons_pe: [9.97e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 8.03e+04, brem_photons_pe: [4.91e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 5.6e+03, brem_photons_pe: [320, ..., 392], brem_vtx_z: [...]},\n",
       " {energy: 6.36e+03, brem_photons_pe: [273, ...], brem_vtx_z: [...]},\n",
       " {energy: 4.67e+04, brem_photons_pe: [8.96e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 7.16e+04, brem_photons_pe: [544, ..., 142], brem_vtx_z: [...]},\n",
       " {energy: 5.15e+04, brem_photons_pe: [384, ...], brem_vtx_z: [...]},\n",
       " {energy: 4.07e+04, brem_photons_pe: [2.7e+04, ...], brem_vtx_z: [...]},\n",
       " {energy: 2.77e+04, brem_photons_pe: [2.24e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 6.4e+04, brem_photons_pe: [686, ..., 796], brem_vtx_z: [...]},\n",
       " ...,\n",
       " {energy: 5.59e+03, brem_photons_pe: [901, ...], brem_vtx_z: [...]},\n",
       " {energy: 2.13e+04, brem_photons_pe: [787, ...], brem_vtx_z: [...]},\n",
       " {energy: 9.34e+03, brem_photons_pe: [762, ...], brem_vtx_z: [...]},\n",
       " {energy: 5.08e+04, brem_photons_pe: [711, ...], brem_vtx_z: [...]},\n",
       " {energy: 6.41e+04, brem_photons_pe: [4.17e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 1.01e+04, brem_photons_pe: [220, ..., 156], brem_vtx_z: [...]},\n",
       " {energy: 1.96e+04, brem_photons_pe: [1.66e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 2.98e+04, brem_photons_pe: [8.32e+03, ...], brem_vtx_z: [...]},\n",
       " {energy: 3.97e+04, brem_photons_pe: [9.36e+03, ...], brem_vtx_z: [...]}]\n",
       "-------------------------------------------------------------------------\n",
       "type: 1430 * {\n",
       "    energy: float64,\n",
       "    brem_photons_pe: var * float64,\n",
       "    brem_vtx_z: var * float64\n",
       "}
" ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#wie viel energie relativ zur anfangsenergie verlieren die elektronen durch bremstrahlung und hat das einen einfluss darauf ob wir sie finden oder nicht?\n", "#if any photon of an electron has an energy higher the cutoff then it is included\n", "cutoff_energy=350\n", "\n", "brem_found = acc_brem_found[ak.sum(acc_brem_found[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n", "energy_found = ak.to_numpy(brem_found[\"energy\"])\n", "eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "residual_found = energy_found - eph_found\n", "energyloss_found = eph_found/energy_found\n", "\n", "brem_lost = acc_brem_lost[ak.sum(acc_brem_lost[\"brem_photons_pe\"],axis=-1,keepdims=False)>=cutoff_energy]\n", "energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n", "eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "residual_lost = energy_lost - eph_lost\n", "energyloss_lost = eph_lost/energy_lost\n", "\n", "print(\"eff = \", np.round(t_eff(brem_found,brem_lost),4), \"+/-\", np.round(eff_err(brem_found, brem_lost),4))\n", "brem_lost" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean energyloss relative to initial energy (found): 0.40459562244424735\n", "mean energyloss relative to initial energy (lost): 0.7244570697471976\n" ] } ], "source": [ "mean_energyloss_found = ak.mean(energyloss_found)\n", "mean_energyloss_lost = ak.mean(energyloss_lost)\n", "print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n", "print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5H0lEQVR4nO3dX2wb9533+w9TxW7gNBopvckBzvNEw2b3YoFNPJS2aZ/zANuY3GCxV41IaXEWWAd9IjKBgXPRrcmoOBe+eNYyVSN3RkPKBRIgPQuJTBZ7sVhsSWcNHCBBj8RJcnNwtl2NXPjgZB+gkcZuitSJap4LLxnL/CNqOCRHw/cLIGLPDGe+4k+SP/nN/H6/SL1erwsAAADH3kOjLgAAAAD+INgBAACEBMEOAAAgJAh2AAAAIUGwAwAACAmCHQAAQEgQ7AAAAEKCYAcAABASBDsAGADHcUZdAoAxRLADgAFIpVJyXXfUZQAYMwQ7AKGxurqqqakpRSIRRSIRJRKJ5isajTa3D5pt2zJNU4ZhBLI+AOE1MeoCAMAv2WxW29vbKhaLymazyufzB/Y7jqNEIjHwOgqFgjKZTGDrAxBe9NgBCJWtrS1JahuQTNNUPB4feA3VarXjdYJQH4DwitTr9fqoiwAAvzRuZXb61ea6bsstUj+Vy2VVKhUVCoW2+0ddH4Bwo8cOQGhUq1VJaun1KpfLzT8POjStr6+3vQ0rBaM+AOFGsAMQGqVSSdLB25yu62p9fX0o13ddV47jyLKsQNYHIPwIdgBCo9Ejtr6+rlgspmg0qqmpKc3NzQ3l+hsbG1pcXAxsfQDCj1GxAEKh0VtmGIZqtVpz25kzZzwPSHBdVxsbG6rVasrn84feJi0UCrp27Zpv9WUyGUWjUX3yySeam5tTMpn09HUAGB8EOwChsLGxIeng82uGYSgej3e8NXoYwzA0PT2tjY2NjoMhGhzH0fT0dMfwd9T6UqmUTNNUNpuVJMVisebxANAJt2IBhEKlUpHUOo3I8vJyX+fd3NzUwsLCocd1mrvOS32O46hcLh843+LiYsu8dwDwIIIdgFBoPL/2YAi7vwetccxRz9vLpMHlcrnrrdKj1GfbtqR789o1WJalarXKMmUAuiLYATj2HMeR67ptl/FqKBaLchznwLbGEl/lclmrq6uKRqPK5XLN/a7ryrZtxeNxlctlRaPRtr1y3SYk9lLf5uZmy3HT09OSpN3d3Y7XAQCCHYBjrzEP3P09XA2u6yqTySiTybT0llmW1ewBy2azKhQKWl1dbW6rVqsyTVNbW1syTVO5XK65csT9DrsNe9T6XNdtBrkHPRhOAeB+DJ4AcKytrq42e9mq1apisZimp6e1u7vbHIkqSclksqUXrFKpyLKsjrdQK5WKTNPU9PS0LMvSysqKZmdnW46zbbvjAA0v9UWj0eZgiwe1C4cA0ECwA3CsZbPZ5sjRo6pWqwfmnbNt+8Dt0sYt1kZoq1arzUmGG4rFYtfeOi/1mabZ8ixd4xYswQ5AN8fmVmzjYWIA8Itt2wd66wqFQnNak0ZvWqO3rfGc3IPP0hUKBaXTaV/ragTJ+2+7dusVBICGQAa7VCqlSCRy4HX/A80A0K9qtSrDMJo9YKurq0omk83gVq1WZVlWc3+j98627WZv2mFz13llmqaSyeSBNWTX19eZ7gTAoQJ3K7YxCu3BZ176nYsKAO5XqVQ0PT2tarUqx3EOTAYs3RuZev9tWtd1tbu7q93d3WbP2WGDJvpRKpWUyWS0urqqTz75RJlMhsmJARwqUq/X66Mu4n65XI6lcwAMXCwWUyaT6es2aiqVannmDgBGKXDBbmpqSsvLy30tAwQAh4lEItre3mYwAoBQCdQzdo35o3K5nGKxWHPiUADwU+P2KYOyAIRNoHrsXNdVtVrV5uamyuVyc0RYOp3uuAD3r3/9a/3jP/6jnnjiCX31q1/1fO0TJ07oxIkTnt8PAADQzueff67PP//c8/t/97vf6eOPP9Zf/MVf6Otf/3r3g+sBViqV6pLqkuqVSqXtMW+99VbzGF68ePHixYsXr7C+3nrrrUOzU+BGxd4vmUyqUqkokUioUCi0HRH25JNPSpJef/11/cEf/IHna504cUIPP/xw232/+c1v9Od//uf6p3/6J33ta1/zfI0g+au/+iv99Kc/HXUZvqB9go32CbYwto9EGwXduLXPF1980VeP3S9+8Qu9/PLLzczTTaCDnaTmIIpO6yM+8sgjkqS5ubmBDbbY3d3VF198odOnT3dcv/G4efjhh/Unf/Inoy7DF7RPsNE+wRbG9pFoo6CjfY5mcnJS0peZp5vABzup/fI6AAAAOMhzsHvnnXdUqVS0tbXVDF2GYSiRSGhxcVFPP/20XzXKdV2mPgEAADjEkYPdO++8o2w2e+DWaGM5ne3tbdVqNeXzeVmWpatXr/Yd8FzX1dbWFpOAAgAAHOJI89i9/PLLymazymQyqtVqunv3ru7evdtcZqfx93/+53/Wc889p/n5eV29erWnc9u2rUgkokQi0QyNrutqaWlJpVLJ97UYAQAAwqbnHruXX35ZiURCr7/++qHHxuNxxeNx5fN5vfrqq7p69apeeumlru+5f9HrWCymhYUFGYahtbU1Qh0AAEAPegp2ly9fVi6X08zMzJEvcOnSJa2trenDDz/UM8880/E4wzC43TpE586dG3UJ6IL2CTbaJ/hoo2CjfQanp1ux8/PznkJdw9LSUnOoLoKBH6pgo32CjfYJPtoo2Gifwekp2B011F2+fFk3btzo6xwAAAA4mkNvxa6tralYLPZ8Qtd15TiOdnd3dfHixb6KAwAAQO8ODXazs7PKZDJHPnGpVCLYAQAADNGht2JPnz6tZDLZnMrk7t27yufzyufzB7bd/8pms6pUKsOoHwAAAP+hp2fs8vn8gb87jqPz5893PD6TySiVSvVXGQAAAI5kIIMnHMeRbdueCgIAAIA3R1p5oqFer+tf/uVf2u67ffu2MpmMTNPsqzAAAAAczZHXipXuTTpsmqbm5uaUSCRkmqZ2d3dVq9WaI2gLhYKvhY7SyZMndfbsWZ08eXLUpaAN2ifYaJ9go32CjzYKtqC1j6dgZxiGtra2lMvllM1mFYlEJN3ryZOkbDZ76BJix8nJkyf14osvBqbRcBDtE2y0T7DRPsFHGwVb0NrHU7CT7q3tWiqVtLOzI8dx5DiOTNPU7Owsq0wAAACMgKdn7Bpu376tnZ0dnTlzRktLS5KkWq3mS2EAAAA4Gs/B7pVXXtHU1JT+7M/+rLntzJkz2t7e1vLysi/FAQAAoHeegt2rr76qQqGgycnJltuuS0tLqtVq+slPfuJLgQAAAOiNp2BXLpdVLpe1u7urM2fOtOxPJBK6dOlS38UBAACgd56CnWmaeuGFFySpOSL2fpubm3Icp7/KAAAAcCSegp1hGM0/N6Y4afjggw9ULpeZoBgAAGDIPAW75eVlPf/88/rwww+bPXY3btzQ5cuXNTs7q0gkokwm42uhAAAA6M7TPHanT5/WysqKXnrpJdm2rXK5LOnL3rtcLqcf/OAH/lUJAACAQ3meoNiyLG1tbWlnZ0e1Wk07OzsyTVPxeJwJigEAAEbAc7BrmJmZ0czMTMv2q1evhmpZsbbeuzDqCg737QujrgAAAAyJ52D34Ycfqlqtant7u2Xf7u6uqtVq+IMdAABAgHgKdq+++qp+9KMftYyIvV+7aVBwPNm2rfX1dVWrVUksGwcAQFB5GhVbLBY1Pz+vWq2mvb29lte//du/aX5+3u9aMSKWZWlxcVG2bQ/0Oo7jyHXdgV4DAIAw89RjNz09rdXVVT355JNt909OTiqfz/dTFwLGsqyBXyOVSqlUKh2YJxEAAPTOU49dJpM5dGWJW7dueSoI4ymVSg28RxAAgLDzFOzOnz+vUqmkX/3qV7p9+3bL68aNG1pZWfG7VgSU67rKZDLK5XJKJBJKJBLN5/HaHZPJZBSNRlUsFiXdW3u4EeoymQwhDwAAjzzdir19+7a2t7dZNgyybVtnzpzRtWvXmrdri8WiEomE8vm8stmsJGlpaUmmaTZv0ReLxebzdMlkUpubm1pdXVWhUOD7CgAAjzwFu2QyqWq1Ksuy2v4jvLe3p3fffbfv4o5ifn5ejzzySNt9586d07lz54Zaz7hYWlrS7OzsgWfw0um0CoWCcrmcksmkTNNUtVpVOp0+cMzq6uooSgYAIHCuXLmiK1eutN332Wef9XweT8Fua2tL1WpVzz33XMdj1tbWvJzas7fffnsoD/jjS47jyLbtZq/c/TKZjDKZjAqFgvL5vEzT1Orqqh5//PHm8e3eBwDAOOrWCWXbtmKxWE/n8fSM3ezsrKanp7ses7S05OXUOEa6PQc3OzsrSc1BNo3RrrlcTtFolGfoAAAYAE/BrlAoaH19vesx77zzjqeCcPy0m3uuMWVJ438ATNPUzs6O4vG4HMdRLBZrDp4AAGCk3rvQ+jqmPN2KvXbtmmzb1iuvvNJxzrFisagXXnihn9oQcI1b3w+OgJW+DHvRaFTSvZ470zRVqVRULpeVSqWUyWQOPHcHAAD64ynYbWxstP3H/H4sKRZ+pmnKsizZtt0Mbg1bW1syDKMZ3PL5vAqFgqR7g28KhUJzPsT738fKEwAAeOfpVmwqlVI6nVatVmv7+tnPfqYzZ874XSsCqPHsXCaTaW5zXVf5fF5ra2vNHt2NjY0Dk1q7rivTNJuhrtGzVygU5DiOyuXy8L4IAABCwlOP3eLiohKJRMclxSTp8ccf91rT8fHtC6OuYChs2272ttm2rdXVVaXTaRmG0Xx2bmlpSYlEohnUSqXSgVHKs7OzSiQSSiaTku7dmq3Vas39jSlSNjY2JKl5PQAA0DtPwS6Xy2lra0ubm5sdjzl9+rTnohAslmWpUCh0DFuGYahUKnU9R6VSOfQ69wc9AABwdJ5uxR42IhYAAADD5ynY5fN5xePxrsdcvXrVU0EAAADwxtOtWNM0Zdu2lpeXNTc31zLlSePh+ZdeesmPGgEAANADT8Eun8/r2rVrqtfrbac16bQdAAAAg+Mp2KXTaTmOo0wm03aC4r29PVYVAAAAGDJPwS6ZTCoSiWh+fr7jMY15yQAAAI6ddsuKHYNpzjwFO0man5/XjRs3mhPKTk9P6xvf+IaWlpb02GOPdQ19AAAA8J/nYHf58mXlcjnV6/UD2y9evKirV6/qu9/9bt/FAQAAoHeegt21a9eUzWZlWZYymYxmZ2dlGIZc19Xm5qbOnz+vmZkZPfPMMz6XCwAAgE48j4otFApaWlpq2Xf69GktLCxoeXlZP/7xj/suEAAAAL3xNEGxpLahrqHdSFkAAAAMlqdgF4vFDj3GcRwvpwYAAIBHnoLd3t6ePvroo7b7bty4oeeff55eOwAAgCHz9IzdpUuXZJqm5ubmZFmWpHvLiFWrVTmOI8MwtLOz42uhQXThwqgrONxxqNFvtm1ra2tL6XR61KUAADBUnnrsDMNQtVrVr3/9a+Xz+eZgiu3tbZ0+fVpbW1t67LHH/K4VAWDbtnK5nFKplKLRqFZXV0ddUpPjOEqlUorFYioUCqMuBwCAofM8j51lWarVatrZ2ZFt281tMzMzvhWHYLFtW2fOnNHe3p4kKZfLaXt7e8RVfck0TZVKJdYpBgCMLc/BrmFmZqZtmLt8+bJ+8IMf9Ht6BMjKyoqmp6ebf8/n8yOsBgCAI2q3TFjI9LXyRKVS0e7ubtv9tm0T7EKm0TMLAACCyVOwW1xcVKlU6noMt8PCo1gsqlKpNKewSaVSkqRMJqN4PC7p3uCZXC4nwzCaATCXyzX3l8tlLS0tyXVd1Wo1WZalarWqQqGgcrmsZDKpUqkk13W1sbGhQqGg5eVlGYahXC4n27abx9zPdV2dP39e//7v/66f/vSneuqpp4b1sQAAEDieBk+USiVlMhndvXu346vbBMY4XtLptEqlkkzTbD7HViqVmqHNtm3NzMwok8kon8+rUqkolUopkUg0B1ckk0ktLCwcOG88Hm+5nbu7u6tKpSLbtlUoFFSpVLS2tqZ0Oq1yuXxgsIbjOJqZmVEymdTf/M3fsNIJAGDseQp2jTViu+H5q/GxtLSk2dnZ5tQ30r0waFmWcrlcs6ev3dyG9z+zJ90bALG4uChJSiQSyufzsiyrOcq1Uqk0j83lcpqdndWZM2ea27LZrG9fFwAAx42nYJfP57W+vt71mFqt5qkgHC+O48i27QOhrqER/r1OPdIuCDae6XQcR+VyWYlEwtO5AQAII0/P2LmuK9u2dfny5Y4rTOTzef3yl7/spzYcA90GVMzOzkoazPJyjXOapun7uQEAOK48BbuVlRXZtn3gttiD/Bo8kclktLu7e+hgDYyW67ot2xqh/8HbrX5oBLtOo7IBABhHnoJdOp1WtVptPgv1oE8++UTFYrGvwqR7IymLxaKSyWTf58JgNG7BVqvVln2NsBeNRn2/bqOnrlar6Xvf+57v5wcA4DjyPN1JIpHousrE3Nyc56Kke6HgsOf4MFztesdM05RlWbJtW47jHLg1urW1JcMwmmu2Pv7445Lu9bY1AmGj561dj183jdu8xWJRf/u3f9uy/6jnAwAgDHoaPHH79u0Df5+cnDx06bDTp093PcdhUqmU1tbWjvQejEapVJJhGAdGSruuq3w+r7W1teYt2UaYy+VyqlarKhaLzYEV1Wq1ORCil9urhmE0R8B+85vfVK1Wk+M4yuVyku4FxiCtYwsAwDD01GNXKBSUSqX05JNPerrIO++8I8Mw9Nxzz/V0fC6Xa052G2QXLoy6guFozCnX6AXLZDJKpVLNeexM09TOzo6WlpaUSCSavXalUunAaNnGvHUrKytKpVJKp9MqFAqqVqtKJpNaXFxsXku6NwDHNE3Nzs42A5tt21pdXVU2m1U+n1c0GlU+n9cPfvAD/fSnP1W5XG5OeMwtfADAuOkp2J0/f14LCwt65ZVX9J3vfOdIF1hbW9OtW7d6Xl7Mtm25rtsMDb26detWXw/Snzx5UidPnmy7b39/X/V6Xfv7+57Pf5z98R//sa5cuaIrV64c2H7/5/Hoo4/q7/7u71re++Bn9v3vf1/f//73D+z/13/91wPH/PznP285z4PXb5z3e9/7nv76r/9a77//vr71rW9pYmLiwPnGtc2CZNx/foKO9gk+2shHdU+zvH2pTRv00j537tzRnTt3PF/21q1bPR8bqdfr9V4Pnp2dVTQa1V/+5V/qzJkzeuyxx9oed+PGDZXLZRUKBWUymZ5Dneu6SqVSB0bbRiKRtktJNdi2rVgs1uuX0NHZs2f14osvdtz/6aef6tFHH+37OhgM2ifYaJ9go32CjzbyyW8/7u/9p55ou/mw9nnjjTf05ptv9ndtqbkkZzdHGjyxtbWlXC6n+fl5RSIRGYah6enp5i1Tx3Gat+tM09TGxkbLs3bdLC0teZ7M9t1339XTTz/t6b3S4T1277//vp599llNTHgab4IBon2CjfYJNton+GgjH/38Yn/v/2aqZVMv7TM3N6fXXnvN82U/+uijnh9nO/J3SD6f1w9/+MPms1FbW1va3t6WdO+B9vn5eS0uLmp+fv5I5y0WiweezzqqycnJgcyX1hCJRDQxMcEPVUDRPsFG+wQb7RN8tJFPInf7e3+Hz/+w9pmYmNCpU6c8X3ZycrLnYz19h0xOTiqbzfq6LmehUJBt223XoC2Xy4pEIrIsi6XKAAAAOghM9M/n823nHkulUrIsS8vLy4EfJQsAADBKgQl2nUbBGoYh0zSZugIAAOAQfY77BQAAQFAQ7AAAAEIiMLdiO9nb2xt1CQAAAMcCPXYAAAAh4Xuwu3Hjht+nBAAAQA88BburV6/q8uXLunz5cnPb2tqavvKVrygajeqpp57S7du3fSsSAAAAh/MU7C5duiTDMJprwH7wwQfKZDKq1+t6/fXXtbS0pKWlJV8LBQAAQHeeBk/E43G99NJLzb+nUilFIhGVSiW98MILkqRXX33VnwoBAADQE089dlNTU80//+hHP5LjOIrH481QJ91bNw0AAADD4ynY7e3taXl5WcvLy8rlcpqamlKpVGru39nZUblc9q1IAAAAHM5TsMvn89re3lahUJBlWdra2tJjjz2mnZ0dvfzyy4rFYjJN0+9aAQAA0IWnZ+wmJye1sbHRsn1mZkavv/66Xn/99b4LAwAAwNF46rH78MMPu+5/5513vJwWAAAAffAU7FZWVrruP336tF555RVPBQEAAMCbnm/F3rp1q7luq+u6+tWvfqV6vd5ynOu6KhQK2tjY0I9//GP/KgUAAEBXPQe73d1dpVIpffDBB5LUdXBEvV5XLBbrvzoAAAD0rOdgNzMzo62trWa4SyaTHY+NRqOsPAEAADBkRx4VWyqV9Pbbb2t+fn4Q9QAAAMAjT9Od9BLqLl++3FxLFgAAwBfvXWjd9u0228aUp2An3QtulUpFu7u7bffbtk2wAwAAGCJPwW5xcfHAEmLtsFYsAADAcHmax65UKimTyeju3bsdXwyeAAAAGC5Pwc6yLGUyma7H5PN5TwUBAADAG0/BLp/Pa319vesxtVrNU0EAAADwxtMzdq7ryrZtXb58WYZhtD0mn8/rl7/8ZT+1AQAA4Ag8BbuVlRXZtq1KpdLxGAZPAAAADJenYJdOp1WtVrW4uNh2/yeffKJisdhXYQAAADgaz9OdJBIJzczMdDxmbm7Oc1EAAAA4Ok/BbnJyUpOTkx33P//884yKBQAAo9NuhYox4LnHrhPXdVWtVrWxsaFnnnnGa10AAAA4Ik/B7rBVJxrHXLx40cvpAQAA4IGnYJdMJpXP5zU9Pd2yb3t7W8ViUa+//nrfxR3F/Py8Hnnkkbb7zp07p3Pnzg21HgAAgF5duXJFV65cabvvs88+6/k8noJdJpPpOHDCsizFYjH98Ic/HGqP3dtvvy3LsoZ2PQAAAL9064SybVuxWKyn83haeeLMmTNd95umqUKh4OXUAAAA8MhTj92HH37YcZ/jOMrlcl7rAQAAgEeegp1lWV1XlqjX61pdXfVcFAAAAI7OU7AzDEMLCwtt14l9/PHHZVnWobdrAQAA4C9PwW5tbU3z8/N+1wIAAIA+eAp2jVB348YNFQoFOY6j6elpfeMb39DS0pIee+wxX4sEAADA4TwFO0m6fPmycrmc6vX6ge0XL17U1atX9d3vfrfv4gAAwBjrdVmwMV0+rB1Pwe7atWvKZrOyLEuZTEazs7MyDEOu62pzc1Pnz5/XzMwMS4oBAAAMkadgl8/nVSgUtLS01LLv9OnTWlhY0PLysn784x/3XSAAAAB642mCYkltQ11Du9GyAAAAGCxPwa6XZS0cx/FyagAAAHjkKdjt7e3po48+arvvxo0bev755+m1AwAAGDJPz9hdunRJpmlqbm5OlmVJklzXVbValeM4MgxDOzs7vhYKAACA7jyvPFGtVrW0tKR8Pn9gn2VZKpVKzGUHAAAwZJ7nsbMsS7VaTTs7O7Jtu7ltZmbGt+IAAADQO8/BTpJu376tmZmZZpi7ceOGbt++TW8dAADACHgaPPHBBx/o8ccf19TU1IHtTz75ZHPlCQAAAAyXpx67xlJily5datl36dIlzc7OKhqN6jvf+U7fBQIAAKA3nm/F7u7udtwXj8eVzWa1ubnp9fQAAAA4Ik+3YqPRaNf9juM0B1QAAABgODwFu3q9rl/96ldt9127dk3lcrk5vx0AAACGw9Ot2Hw+r1gspldeeUVnzpyRYRhyHEelUknFYlGRSETLy8t+1woAAIAuPAW7yclJ/exnP9PCwoLOnz+vSCQi6V5PniStrq7qhRde8K9KAAAAHMrz4AnTNLW1tdWcoNhxHFmWpdnZWU1OTvpZIwAAAHrQ1wTFkg5MUAwAAIDR8TR4AgAAAMFDsAMAAAgJgh0AAEBIEOwAAABCgmAHAAAQEoELdo7jKJVKaWpqSlNTU0qlUnJdd9RlAQAABF6ggl0j1CUSCZVKJS0sLKhcLisWi426NAAAgMDrex47PxUKBdVqtebf4/G4dnd3VS6X5TiOTNMcYXUAAADBFqgeu0wm07Jtbm5Okgh1AAAAhwhUsGsX3jY3N5VOp0dQDQAAwPESqFuxDyoWi3JdV6VS6dBjb926pd3dXc/XOnnypE6ePNl23/7+vur1uvb39z2fH4ND+wQb7RNstE/wjXUb1QPV/yS1aYNe2ufOnTu6c+eO58veunWr52Mj9Xq97vlKA1Iul7WysiLbtiXde9auUqm0Pda2bV8GV5w9e1Yvvvhix/2ffvqpHn300b6vg8GgfYKN9gk22if4xraNfvvxqCs46NQTbTcf1j5vvPGG3nzzzb4vX6vVZFlW12MCGewkyXVdbWxsNJ+7y2azyufzLcc1gt27776rp59+2vP1Duuxe//99/Wtb31LExOB7uQcS7RPsNE+wUb7BN9Yt9HPL466goO++cOWTb20T789dh999JGee+65noJdYL9DDMNQOp1WPB5XNBpVuVxuG+waJicnNT09PbB6IpGIJiYmxu+H6pigfYKN9gk22if4QtdG711o3fbtNtsidwddydF0+PwPa5+JiQmdOnXK82UnJyd7PjZgN69bmaapZDLZ1/NzAAAA4yDwwU6SpqenNTs7O+oyAAAAAu1Y9OlWq1UVCoVRlwEAABBogeqxi8ViymQyB9aGzeVyymQyisfjoysMAADgGAhUj93s7Kyq1apmZma0sLAgwzCUyWRYdQIAAKAHgQp23G4FAADwLlC3YgEAAOAdwQ4AACAkCHYAAAAhQbADAAAICYIdAABASBDsAAAAQoJgBwAAEBIEOwAAgJAg2AEAAIQEwQ4AACAkCHYAAAAhQbADAAAICYIdAABASBDsAAAAQoJgBwAAEBIEOwAAgJAg2AEAAIQEwQ4AACAkCHYAAAAhMTHqAgAAwDHz3oXWbd9usw1DR48dAABASBDsAAAAQoJgBwAAEBIEOwAAgJAg2AEAAIQEwQ4AACAkCHYAAAAhQbADAAAIidBMUDw/P69HHnmk7b5z587p3LlzQ64IAACgN1euXNGVK1fa7vvss896Pk9ogt3bb78ty7JGXQYAAMCRdeuEsm1bsVisp/NwKxYAACAkCHYAAAAhQbADAAAICYIdAABASBDsAAAAQiI0o2IBAAAG6r0Lrdv+5H8fehnd0GMHAAAQEgQ7AACAkCDYAQAAhATBDgAAICQIdgAAACHBqFgAAMZRuxGe326zbVja1YMjo8cOAAAgJAh2AAAAIUGwAwAACAmCHQAAQEgweAIAAPQvaIMxxhQ9dgAAACFBsAMAAAgJgh0AAEBIEOwAAABCgsETAACgM1aEOFbosQMAAAgJgh0AAEBIEOwAAABCgmAHAAAQEgyeAAAA9/g9UIKBF0NHjx0AAEBIEOwAAABCgmAHAAAQEoELdo7jKJVKaWpqSlNTU0qlUnJdd9RlAQAABF6ggp1t24rFYpKkhYUFSVK5XNbMzAzhDgAA4BCBCna5XE61Wk2lUkmFQkF7e3uKx+NyXVcrKyujLg8AACDQAhPsbNtWKpWSaZoHtufz+eZ+AAAAdBaYeewsy5JlWW23S5JhGEOuCAAA4HgJTLDrxHEcSVIikeh63K1bt7S7u+v5OidPntTJkyfb7tvf31e9Xtf+/r7n82NwaJ9go32CjfYJvoG1UT0wN+2OtV7a586dO7pz547na9y6davnYyP1er3u+UpDsLq6qkKhoO3t7bb77x9w0Y+zZ8/qxRdf7Lj/008/1aOPPtr3dTAYtE+w0T7BRvsE30Da6Lcf+3u+cXXqiUPb54033tCbb77Z96VqtVrbu5v3C3yP3crKiq5du3boce+++66efvppz9c5rMfu/fff17PPPquJicB/ZGOH9gk22ifYaJ8A+vnFA3/drz+k90/9F//b6IHrwJv92HcP/Rmam5vTa6+95vkaH330kZ577rmejg30T3Emk9Ha2tqh6VSSJicnNT09PbBaIpGIJiYm+MUXULRPsNE+wUb7BEzkbuumQbRRm+vAg4mJQ9tnYmJCp06d8nyJycnJno8N7A32YrGoaDSqZDI56lIAAACOhUD+71m5XJbruspms6MuZeAuXOhtGwAAwGEC12NXrVa1ubnZNtQVi8URVAQAAHA8BKrHrjFJ8cLCgnK5XHO767ra2tpqTlY8jjr14tG7BwAD8N6F1m3fbrPtuGj39SCUAhPsHMdpTlvSrmfOMAzF4/FhlwUAAHBsBCbYmaapgE+pF0g8owcAABoC94wdAAAAvCHYAQAAhATBDgAAICQC84wdAADoE6Nfxx49dgAAACFBsAMAAAgJgh0AAEBIEOwAAABCgsETA9LPxMFMMAwAALygxw4AACAkCHYAAAAhwa3YIeIWKwAAGCR67AAAAEKCHrsx1s8ADwAAEDz02AEAAIQEPXboCb17AAAEHz12AAAAIUGwAwAACAmCHQAAQEjwjN2Y4Hk4AADCjx47AACAkCDYAQAAhATBDgAAICR4xi6EeJ4OAIDxRLADAKAX711o3fbtNtuAESLY4QB6+wAAOL4Idgg8ljMDAKA3DJ4AAAAIidD02M3Pz+uRRx5pu+/cuXM6d+7ckCsCAADozZUrV3TlypW2+z777LOezxOaYPf222/LsqxRlwEAAHBk3TqhbNtWLBbr6TyhCXYYPp59AwAgWHjGDgAAICTosYOveu3Fo7cPAAD/EewwcAQ2AACGg1uxAAAAIUGwAwAACAmCHQAAQEgQ7AAAAEKCYAcAABASjIpFYDB6FgCA/hDsAAAYlfcujLoChAzBDgihTr2f9IoCQLgR7PrEP5QAACAoGDwBAAAQEvTYIdRYkxYAME4IdgAAeNVp8MO3O2wHBoxgh7HDwAIAQFgR7BAaFy9Kd+8O/jrc3gUABBXBDvgPBDYAwHFHsMOxdH/geugh6amnRlYKAACBQbADAMBv7QZV9DOg4rcfSz+/KEXue96EARpog3nsAAAAQoIeO6ALnrH7Es8gAkDwEeyAAWFalXAj6AIIIoId4AP+QQcABAHBDhgyenoAAINCsAOOOUKhfwjdR+D3qM9+Ba0eYEQIdsAYIbh8aVy/bgDhRrADAmCUgStoYa/feoL29QDAMDGPHQAAQEgErsfOcRxlMhkVCgWZpjnqcoCRoecJAHBUgQl2juOoUChodXV11KUAgUWww1gZxIAIBlkg5AJzK3Z6elr5fF7JZHLUpQAAABxLgQl2hmFIuhfwAAAAcHSBuRULINwuXpTu3j24jVvLAOCv0AS7W7duaXd31/P7T548qZMnT7bdt7+/r3q9rv39/ZZ9DwWmz3N8PfTQvqT6f/wXfmjzrd72e73dca3H3Pv5adc+/Vzn4sX21+v1/b3+7Hb6Gr1+HkGzv7+vjz+u69Kl/Zbg/cMfdnljfQgfwFGu0eux/RzXL4/X2a8/pHr93n/9OB/81S0jNNy5c0d37tzxfI1bt271fGykXq/XPV9pADKZjIrFora3t3saFWvbtmKxWN/XPXv2rF588cWO+z/99FM9+uijLds//rjvS8MHJ09+qjt3WtsH3jzxROu2dt/r7Y5r59NPP9VvftPaPv1c5yg/e/28v9PX2M/nETS7u+1/frp+Pb9t8wGc8vkDOMo1ej22n+NG6NP9k3p0wnswwACdeqJjRmh444039Oabb/Z9qVqtJsuyuh4Tmh67d999V08//bTn9x/WY/f+++/r2Wef1cTEwY+sU68Bhuehh/YVjb6v7e1ndfduaL6lRyqVat3W7nv9l788/Fzd2qfX6/R6XCf9vL/dezu9v9Ox/Wh3na49aUe0v7+vv//73tun6edtCvumzx/AUa7R67H9HDci+/WH9L4b1bOT25qI3D38DRiq/dh3O2aEhrm5Ob322muer/HRRx/pueee6+nY0PwrODk5OdCBF5FIRBMTEy2N9uCtC4xKRHfvThDsfNLud1N/3+vt26fX6/Rbz3//770f28u1O12/07H9GM51em+fL98yhMKOco1ej+3nuBGKRKSJyF2CXRBNTHTMCF8eMqFTp055vsTk5GTv5Xi+CoDQYlDDYDH5tDcXfvKn0s8e2HZhFJUAwcVTlgAAACFBsAMAAAiJwN2KbUxZ4rruaAsBALRo3vq8+adfbvtv1/s/cbulvnx24YIO1C39R+1DuDYwLIEJdo7jqFwuq1wuS5JyuZwymQxLjAHAA/p5Ru/B4x56SHrqqT4L6lPHwAXgyAIT7EzTVDabVTabHXUpAOAJgyK+dJw/iws/+dPWbf/t+rDLADzhGTsAAICQCEyPHQB0clx6etAd7QgMHsEOwMjwD/2Q3D84oPEs2//8pyMoZMgeHBTxwHN8R8HtWRwXBDsACIGuIbmPQIPOCHsIIoIdAAwQvZIAholgBwAInHa9YQAOR7ADgC7occOgBO1WbtDqgTcEu3Fw83rrtnF4cBoYRzev+3YqX0Ltzeut2wb8++covX30DCJsCHYAAGCk6C30D8EOAAAMBIFt+Fh5AgAAICTosQMA9KXZK/OzkZYRaDzLh2Eh2AEAjq3mAA8mYQYkEeyA8XXzeus2RkuPzNCnVbl5/d5/v1KX/vNvpf/3/5T+p+8MuQgPbl4fdQVDd/HN/6qn/stvdfEf/qvu/j4iiefU0BnBDgCAkGCwAgh2AACgLYLi8UOwAwDAJ0EcJDGscBbEr30cEewAAAiIduHooa/Uh18Iji2C3RFcvCjdvevxzTevt24bhwfVb15v3TbKr/vm9dZt49AOGL2b11u3HYfvvZvXB3MsgIEg2AEAgKHp9ZZtp+N4xq87Vp4AAAAICYIdAABASHArFgCAY6bfEaiMYA0vgl3Q3Lzeum1YD1iP8toIhpvXezvuOHxPtntvO0f5Wno9Zz/n42cOQB8IdgAAoGf09gUbz9gBAACEBMEOAAAgJAh2AAAAIRGaZ+zm5+f1yCOPtN137tw5nTt3bsgVAQAA9ObKlSu6cuVK232fffZZz+cJTbB7++23ZVnWqMuAn25eb902yhGM6O7m9dZtx3mE583ro67gcDevj7oCb25eH3UFGAPtBnkEedWKbp1Qtm0rFov1dB5uxQIAAIQEwQ4AACAkCHYAAAAhQbADAAAIidAMngiUm9eHc76gPZh+8/qoKwiHm9dbt9HW4+Pm9fbbh/E90OnaAI4Ngh0AABgLx22krBfcigUAAAgJeuwAAMCxMQ69bv0g2AEAgGOtXdgbVwS7ft28Pp7X7sfN66Ou4KCb11u39fqg+lHe2+7YcXTz+qgrOJ5uXh91BQCOAZ6xAwAACAmCHQAAQEgQ7AAAAEKCYAcAABASDJ4YpZvXg3/tdseNchWEm9dbt/3n/2XYVXR38/pwztnPAI/j7Ob11m39fE+2Ox8AHFP02AEAAIQEPXYAAGBsdZoD77hOekyPHQAAQEgQ7AAAAEKCW7E9uHPnjt544w39p/80p4ce4iMLmv39OyqX39Af/RHtE0S0T7Dt//5zlf/+/9AfPX5WD+nkqMtBG7TRaPS6Jm0jI8zNzWliYvS/40ZfwTFw584dvfnmm1pefk0nTpwadTmjd/P6qCs4YH//jt5550394R8OuH1uXh/cub24eX3UFfRkKO1z8/pgzjsG9n//hd75h7/TH579X3XiK4SGIKKNgqNd2PvffnQvI7z22ms6dWr0GYFbsQAAACFBsAMAAAgJgh0AAEBIEOwAAABCgsETOP7+v/e+/O9XHvXnnDev+3OecXfzuvT7T+/92c/2AQC0RY8dAABASBDsAAAAQoJgN6b+r//770ddArqgfYKN9gk+2ijYaJ/BIdiNqc3/5x9GXQK6oH2CjfYJPtoo2GifwQnk4IlcLifHcSRJruuqUCjINM0RVwUAABBsgQt2sVhMpmmqVCpJkqrVqmKxmK5duybLskZcHQAAQHAF6lZsLpeTbdtaW1trbovH4zJNU0tLSyOsDAAAIPgCFeyKxaJM05RhGAe2Ly4uyrZt2bY9msIAAACOgcAEO9u25bpu29utjW3r6+vDLgsAAODYCMwzdltbW5Kk6enpln2NbY0BFff77LPPJEmbm5u6deuW5+ufOHFCDz/8cNt9v/nNb/Twww/rf/yPD/Tww187uHPvXz1fc6Qid/Xvx7X2B3zx+8/utc/ev+nhrzwy6nL8QfsEG+0TfLRRsIWofT744Pd6+OGH9cEHH+hrX/ta22O++OILff75556v8Ytf/ELSl5mnq3pA5PP5uqR6Nptt2be9vV2XVLcsq2XfW2+9VZfEixcvXrx48eIV6tdbb711aJ4KTI/dg8/VteO6bsu2559/Xm+88YaeeOIJffWrX/V8/RMnTujEiROe3w8AANDO559/3leP3e9+9zt9/PHHev755w89NjDBrjFPXbvw1tjWbi67r3/96zp79uwgSwMAADgWAjN4ohHadnd3W/Y1tjGPHQAAQGeBCnaGYbQdINGY5iSRSAy7LAAAgGMjMMFOktLpdHPak/tVKhWZpql4PD6awgAAcl237e9oAMERqdfr9VEXcb9oNKp4PK5CoSDp3pJiiURCtVptILdi+12XlnVtB6ufz9dxHOVyOVWrVUn3VjFZW1vraaAOeuPn938mk9Hu7m5zOUH0z6/2KZfLWllZ0ezsrFKpFP+T7RM/fr/dPx1YLpejbXziOI4ymYynn5mR5wIfZirxXTqdbr7i8Xi9VqsN5DqWZdWTyWTz75VKpW4YRs/X6/f96K6fz7dWq9UNw6gnk8l6Op2uG4ZRl1Q3DKO+t7c3wKrHh5/f/6VSqS7pwPnQHz/aZ3t7u25ZVt2yrPr29vYgyhxb/bTP9vZ2y7GNacEqlcpA6h0X29vb9Ww225xe5Kjf90HIBYEMdsPQaLgH/5Fv/BIb9PvRXb+fbzweb/mBjMfjdan9XIk4Gj+///f29urJZJJg5yM/2qcRHvh95j8//v0xTbNlezwer8fjcb/KHEuNNmn8TjpKsAtKLhjbYGcYRtsfjMZEyYel637fj+76+XxrtVq9UCi03S6JX3w+8PP7Px6P1/f29gh2PvKjfUzT9NRjgcP12z6N0PFggDBNk58hn6TT6SN//wclFwRq8MSw9LsuLevaDla/n69lWUqn0x3fyzN2/fHz+z+XyymXy9EmPvKjfVZXV+U4jpLJJM8M+8yP9mnMEJFKpQ6c13EcLS8v+1gtehWkXDCWwc7rurR+vR/dDerzbbyHaXP641f7NH4R8rC3v/xon8bgNdM0lUgkFIlEFI1GlclkfK52/PjRPul0WvF4XNVqVbFYTOVyWalUSpVKhfleRyRIuWAsg11jqH67XoLGtm4N0O/70d2gPt9yuSzTNNv25qF3frSP67rK5XLNAAH/+PH7rbE/Go2qVCppb29PyWRSxWJR0WjU75LHil+/3yqVipLJpGzbViqVYkTsiAUpF4xlsPO6Lq1f70d3g/p8V1ZWmErDB360z9LSEqFuQPptn8Y/PvF4XOl0WoZhyDAM5fN5xeNxOY6jcrnsU7Xjx6/fb67rynXd5v+oZjIZelRHKEi5YCyDndd1af16P7obxOebyWS0trbGbQof9Ns+xWJRiUSCn5EB8evnp90/VI3gUKlUPNc37vxoH9d1FYvFmvOs1Wo1GYahYrGoXC7nd8noQZBywVgHO6/r0rKu7WD5/fk2bh8lk0l/Chxz/bZPoVBQJpNRJBI58JLu3S6PRCKKxWIDqHw8+PX7rd0/UN3Ojd748futMQFu43eaZVna2dmRYRhaXV31uWL0Iki5YGIoVwmYftelZV3bwfLz8y2Xy3JdV9ls1tcax1m/7ZPP59uGhlQqJcuytLy8zCjZPvTbPo1br92eB5qbm+u/0DHlx++3ra2tlpBgGIaWl5eboY8e8eEKVC4YyqQqAdRpIsF4PN52Hhq/34/u/Ph8K5VKx8mI281zh94N4vu/sVII+tdv+xQKhbbzbnXajqPpt32SyWTdMIyW7Y32Qf+8zGMXlFww1t8BpmnW0+l08++VSqXll1Zj4tR2s0b38n5410/7NJYUS6fT9Ww223yl0+m6ZVksu+ODfn9+HkSw85cfv98e3G5ZFiu3+KTf32+S6vl8/sB22sc/jUmg2/17HvRcEKnX6/Xh9A0G0/2jiBzHUT6fb+nijkajisfjbUfx9fJ+eOelfRzH6Tolg2EY2tvbG0zBY6bfn5/7TU1NKR6PM3LZR/22Ty6Xk23bzdt6sViM6YJ81E/72LbdnNx7enpau7u7SiQStE+fGqO+G4NQ4vG4MplMyzPaQc4FYx/sAAAAwmIsR8UCAACEEcEOAAAgJAh2AAAAIUGwAwAACAmCHQAAQEgQ7AAAAEKCYAcAABASBDsAAACfdFtneRgIdgAAAD5JpVJyXXdk1yfYAQCA0FtdXdXU1JQikYgikYgSiUTzFY1Gm9v70ViCzzCMoV+7YcKXswAAAARYNpvV9va2isWistms8vn8gf2O4yiRSPR1jUKhcGCt2GFeu4EeOwAAMBa2trYkqW2IMk1T8Xi8r/NXq9WO5xj0tRsi9Xq97suZAAAAAqxxu7NT9HFdt+U2aq/K5bIqlYoKhcLQr30/euwAAEDoVatVSWrpGSuXy80/9xOs1tfX296GHca170ewAwAAoVcqlSQdvBXquq7W19f7PrfrunIcR5ZlDf3aDyLYAQCA0Gv0mq2vrysWiykajWpqakpzc3N9n3tjY0OLi4sjufaDGBULAABCrdGjZhiGarVac9uZM2d8GbRQKBR07do1366dyWQUjUb1ySefaG5uTslksudaCHYAACDUNjY2JB18xs0wDMXj8Y63T3vlOI6mp6c7PiN31GunUimZpqlsNitJisVizeN7wa1YAAAQapVKRVLrVCPLy8t9n7vT3HVeru04jsrl8oHzLS4utsx71w3BDgAAhFrjGbeFhYUD2+/vZWscI90LWNFoVLFYrLnNdV3FYrEDI1mleyNbu90qPcq1bduWdG9euwbLslStVntepoxgBwAAQstxHLmu23apr4ZisSjHcZp/z+Vyyufzcl23GbpWVlbkuu6BENdtQmIv197c3Gw5bnp6WpK0u7t72JcqiWfsAABAiDV62O7vBWtwXVe5XE7FYlF7e3vN7YuLi0omk81g5rquVldXm7dVGwqFQtfbuUe9tuu6zSD3IMdx2p7nQQQ7AAAQSqurq8rlcpLu9a7FYjFNT09rd3e3OVpVkpLJ5IGeskavnGVZchxHKysrSiaTLb1ztm13HHzh5drRaLQ52OJBvYQ6iSXFAAAA2rJtW+vr6yqXy6rVagfCX7FYlOu6zdGrfiiXy0qlUgeWHatWq0okEh2XInsQPXYAAABtGIah1dVVlUqllmffus1d51Wj9+/+267degXbYfAEAABAG67rKh6Pt4x6PWzuOq9M01QymTww8nZ9ff1I051wKxYAAKCNXC6nxx9/vOV2ay6XO/KKEEdx/8oT0WhU6XS65/cS7AAAAB7guq6mpqZUKBRaglUqlVKpVBpRZd1xKxYAAOABxWJRUvvRqEENdRLBDgAAoMX29rZM0+x5jdag4FYsAABAG67r+j5AYtAIdgAAACHBrVgAAICQINgBAACEBMEOAAAgJAh2AAAAIUGwAwAACAmCHQAAQEgQ7AAAAEKCYAcAABAS/z/FTlB3Ejq80AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#in abhängigkeit von der energie der elektronen\n", "plt.hist(energyloss_lost, bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n", "plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n", "plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n", "plt.yticks(np.arange(0,5.5,0.5), minor=True)\n", "plt.xlabel(r\"$E_\\gamma/E_0$\")\n", "plt.ylabel(\"counts (normed)\")\n", "plt.title(r'$E_{ph}/E_0$')\n", "plt.legend()\n", "plt.grid()\n", "\n", "\"\"\"\n", "\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3EAAAJRCAYAAABbdk1MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuYElEQVR4nOz9f5AbaZ7f+X2S7B0updY0yJ6L0IzD0jaoVfhI+XYO6FnFhq1trxt1cpxE6iwC1fKdR6uilwVZJSvC496CKP3BpsNrLhh9doR8dVoUI6pWNyfbTYAXJ1bsOUKFXt2cFDqfmsgdWSJX0m1hdle+ntVplsS02uL0NIvpP6qBrh8AKp9vZT5IAO9XBKKbyHzy+f1kPngqM4MoiiIBAAAAAAAAAAAAADLh1KQTAAAAAAAAAAAAAAD4HIu4AAAAAAAAAAAAAJAhLOICAAAAAAAAAAAAQIawiAsAAAAAAAAAAAAAGcIiLgAAAAAAAAAAAABkCIu4AAAAAAAAAAAAAJAhLOICAAAAAAAAAAAAQIawiAsAAAAAAAAAAAAAGcIiLgAAADCH1tfX1ev1Jp0MAAAAAAAADMEiLgAAAAAAAAAAAABkCIu4AAAAAOBRt9tVq9WadDImptfrzcVd4GEYpnbsXq+nVqs11+1omF6vp/X1dcolw+al/wMAAABJYBEXAAAAmBN37twZfJrNpm7fvj34d5xFj263qzt37qharapYLE78h/h2u60LFy4oCAItLCyoVqsN/utTt9tVpVJREAQ6d+6c1tfXJe0t4l24cEHnzp3TnTt3JEnVanVQbnfu3FG32/Wa1klotVoKgmDwee2115TL5Q7s0263ValUtLCwoEqlokqlomq1qmq1GqtttlotnTt3btAWDi+g9rdfuHAh1cVVaa/ei8WiisVianE8fPhQlUpF29vbqcWRZbVaTdVq9cj37XZb1WpVH3zwwQRSNZ+q1apqtdrgc9hx/b9/Tun/97DjtgMAAACz7KVJJwAAAACAH6urq4P/z+VyWlxcPLKYNk6xWFSn01E+n1e73XYKm4ZSqaRCoaButztYzOovoL366qsH8pumfD6vhYUFtVot3b17V+VyWZL05MkT5XI5dTqdQVnV63XVajV1u101Gg3l83kvaZykRqNxYLHxcJ4rlYra7baazaZKpdLg+1arNVjYPU65XFYul9PCwoLy+bwKhcKR7bdv39bdu3ePbEtaoVAYLECnpd/2T6J/16qvfpKkVqulZrN55PtyuTz1fWqa6qVYLKparWp5eVnS3oJupVI5UDfj+n+tVlMYhoPtd+7c0cLCwuDfx20HAAAAZh134gIAAAA4VhiG6vV6On/+vCQdWGybpHa7fWAxq///J/2Rv91uO91p3Ol0JGmwgNu/23n/Aq6kwd3ClUpF9Xo903fitlotVavVE9252m63lc/nVSqVBp/9izj9u8APL+BKe2XZaDT05MmTWHH1FzbX19eP1F2/7aa9gNvX7ydZ1ev19Oabb+p3f/d3J50UZ2EY6smTJ97q0qcs1Uv/7vhR/b/dbisMQy0uLg6+69853w8zrv/3er0jd9cuLy+r3W4Pxt9x2wEAAIB5wCIuAAAAMINardaBx1Ce9Fi3b9+WpMEjM3u9nsIwHNxxuL6+rnPnzh149G2tVhukoVKpDBYswzAcPDI3DEMtLCwMHkPc6/VUrVZ17ty5Yx/Z3O121ev19NZbbw2+6/+4H+fuzeP0H4scx71791QqldTr9VSpVJTP59VoNI7st//u21F34o6ru5PU6/r6ui5cuDB4hPaFCxd04cKFkQvJ5XJZ9Xpd77333uBuWVe1Wk3r6+uDxxzvj6vX66lWq6lQKIz8o4Dl5eUD2/rto1Kp6MKFC0fq6MaNG4O8Hs67652xo9pvf3Grv2DVf2T2uPLpl8H+xzn3ej0Vi8Wh9bg/jn697X9U9+Fj97cffvT0uDx0u1212+1Bf04q361Wa1Dv49pXu91WEASDft5ut3Xu3DmdO3duUEbdbvfAv6W9ftO/83OcWq02eIR2P43jxqxRbSup8Wp/ns+dOzcol263O+iXw+ql/3SBIAi0vr4+KJPjHhvf6/V04cKFQX32H/l+3LjRarUGjyRvNpsjF8v7dbL/j1T641m/vMf1/4cPH0o6+AdBuVxuMHYet91SL0nWJQAAAOBFBAAAAGCmrK6uRsvLy1EURVGz2YxKpVIURVFUr9cHn1KpFK2urg7+3Ww2xx5ze3s7khQ9ffp08N3Ozk6Uy+WifD4fbW9vR/V6Pdre3o6iKIpKpVLUaDQG+9br9SiXyw3Cl0qlKJfLDfav1+uRpGh1dTWKoih6+vRplMvlonq9PjJNjUYjkhQ1m82o0+lEjUYjyufzY8O4KJVKB/I7ys7OTiQpKpVKUT6fj3Z2dsxxjqq747bF8fTp00jS4BhRFEW5XC4ql8uxwjcajahUKh3bVvbb2dmJms1mtLy8HEmKJEWdTieKos/b1P70HGd/nvvh+22oL5/PR7lc7sB3hUIhdhz9eMa130KhMGj3/f3z+fxg/2azGR2ebi8vLx9J16g6PNy3nj59OijDfvkNS8P+4x+Xh3w+P+hvSeU7iqIDaWg0GoP0DlMqlY608cNldLh95nK5scfM5/ODNO7s7ESlUimSFO3s7Bw7ZvUdbltJjFf783i4bezP47B66Y8x9Xo96nQ6R7YP8/Tp0wN9Y1hd7efav/vj7+G62N+nx/X/fhkeVigUokKhcOz2fp5c6yXJugQAAADSxiIuAAAAMEOazeaRhZrDi1wWwxZxo2jvB/XDC1H9fQ/b/0P58vLygYW1TqdzZEGgVCqNXWDs/xhfr9cHiz8uC4LH6S8AHbeQ21/M6C8WjVtgGmdc3SVRr/162Z++YfUXJ52lUsl5kWNnZyfK5/ODeu8vngw7zs7OTrS6ujrYf3t7O9re3h4scPU/wxaB+/XRX4zc3t6OtejVF6f9Hl587MfZN2wRt78Q118k6+dxlEKhMHQBs5/fQqFwIO/70xAnD4cXC5PId3///QvB4/pPv5z6+xxuo81m88CiYr8NjJPP5w+US/+PF/p5GDVmjWtbSYxXh9Ozvx3s7wPDFnGj6PP+4tpfo+jzcj48Zjx9+jRaXV2NyuWy83jSz8f+PPfLZVSf3t//+wu7h/UXm4/b3j+Ga70kWZcAAABA2l5K5n5eAAAAAFlw/fp13bhxQw8fPlS9Xle9Xk/1/bXnz58/8DhNSSPfoVgoFEZuO3yM/nfjHmnZbrdVLpe1uroqae99jBcuXJCkoY8y7u8T9x2rkvTkyRO99tprQ9/Z2tdsNpXL5bS9va1z587p+vXrg3fkuhhXd0nU6/b2tgqFwoHHo3a73QOPo46jXC6rXC6r3W7rwoULYx+5ul8+n1e9XlelUhn8W9LQ93/2971z547K5bJKpZLu3LmjQqGger0+2G////ctLy+rVqupXq9reXlZ9Xp9ZHsYJk77Pdw247wDt/9u0Nu3b6tcLg/eOTzO4eO+/vrrIx9PvP9do5Y+mFS+V1dXVa1W1Ww2Rz4yvK9cLiuXy2l9fV2rq6uDttRoNNRoNLS9vX2g7prN5uC90+PsH09yudyBPIwas+K0rWHH3/9dnEfw5nK5wfue+//tPwZ8nNXVVTUajaFxH+f69euDftTXf+x13P57WC6XU6fT0fXr11UsFvX6668P0jbseIf7f3+sPuzJkyfK5/PHbh+VpmHfjauXk9QlAAAAkDYWcQEAAIAZ0W63Bz88nz9/Xtvb2xNNT6/XO/AD+bDFE6v+gsz+d9/m83nlcjndu3dv5KKdy2KepME7QMctmPYXkyXp7t27qlQqarVasRab9h9jVN0lVa/tdvvAgm0Yhur1eqZF/jt37mh7e1v1et1pAWj/vv3/H7V42NdfKPzd3/3dkQuYhy0vL+vOnTuD95qOW0gcJY32W6vVBu8b/eCDDwZ/gBCXa/yWPJw03/V6ffAu1mKxqPfff39sG1lcXNR7772n5eVl5XI53bhxQ9evX1etVjsS771790x/IHH+/PmxbcClbSWhWq0O3hF7uLxH6e/XarXUbrdj99tqtaper6e7d+8e+L5cLuvJkyeq1WqqVCqx3jN8WKFQOFAf1Wp18McKo/Y//P+H89/r9fT6668fux0AAACYB6cmnQAAAAAAyegvhq2urprurEpK/wf8drt94Ptut6uvfe1ricTx3nvvSdpbANovyR/4q9Wqbty4MXZxo5/H/mJyuVxWoVBQrVZzimtc3SVVr2EYHlhcuX37tpaXl2Mfs9frDRZ8CoWCtre3nRaqpb020E9DPp/X8vKy2u32sQu50t6de2EYHtm3v1C7X//Oxmq1euzdroel2X5LpZIKhYKuX79+4A8Q4up2u7HCWfKQRL57vZ663a6Wl5f1ne98R/l8Xrdv3x4bplqtKgzDwR9MlMtl9Xq9wb/72u32sYuxoxxXbi5tKwmlUkn5fF6VSiV2O6jVanr//fdVKpVit+kwDLW+vq56vT5YCN2/WL28vKzt7W2dP39elUpFd+7ccc7L4bjG/aHM/v7fH6cfPnx4ZJ+FhYVjtwMAAADzgEVcAAAAYEb0Fzf6izC9Xk+tViuRY496tOSwRxMXCoXBY2P7+gsH++88HHbM/cc77lHKuVzuwB1a/YWNcY9Bjasf93ELnP27YvcvjtbrdXW7XacFkXF1d1y91mq1Yxeb+mH7+Wm1Wur1erHuTO52u6pWq6rVaoPH5Ma5CzAMQ9VqtQP12H9M7v5/l8tlvfnmm0MXD/frL9i/+eabarVaCsNwcOffYblcbnBn5+GF5uPKK077Pdw2D/eDcY/svnHjhsIwPPIHCMPsL4P+ndOj/qhgf5ri5CGXyw0WLbvdbmL57tdvLpfTW2+9deyjpguFwuAu+n5d9vO4v24bjUbsxcv96QzD8EA7GFY3cdrWScarYarVqrrd7pH2ebheJA0eXZ7L5dRoNGKPL9evX1c+nz8w7g47J5TL5UG/rlQqR/rtccIw1JtvvnlgbDiu/+dyucEjovvW19dVKBQGj9ket73PUi9J1yUAAACQmkm/lBcAAABAcpaXlyNJ0fLyctRoNBI5ZqfTiUql0uC4Ozs7URRFUbPZjCRFuVwuajabR8Ktrq5G5XI5qtfr0erqavT06dMoiqJoe3s7yufzkaSo2WxGT58+jVZXVyNJUblcjnZ2dqLt7e0ol8tFuVwu2t7ePnJcSYP0rK6uRqVSaRA2CY1GI+p0OmP3aTabUS6XiyRF9Xo9iqIoevr0aVSv1wfpazQag3wfZ1zdjdvWL8tx8ayurg7qqV6vD9I7zs7OTlQulw/UnYtOpxMVCoUol8tFq6urUb1eH3mc7e3tqFwuD+pxeXk5KpfLR/LaP6akKJ/PH2kbh9O/urp65Ps45RVF49vv/ra5s7MzSFO9Xj+QxmHl/PTp06hUKo2NO4qiqFAoRIVCYdDGl5eXD6ShXwadTifa2dkZ9NH9eR6Vhyj6vP+Wy+UD31vz3S/zQqEQra6uRo1G40Caxznc3zqdzpG6lxSrfzebzahUKkXLy8tH2vq4MWtU27KOV/0xYP9nv/5xhqV/f730j90/7tOnTwfp6ZfRsLgajcbgOP1y6Pex4+zs7ETLy8vH1l+n0xm0l8N1E7f/99tZvV4fGt+o7ZZ6Oem5BwAAAPAtiKIoSml9GAAAAADgQa1W040bN0a+W7NYLKpUKjndpdztdhN9j3GWHFdeaWq1WsrlcsfezVwsFvX66687v8cZSEqv19OTJ09GPsI6DMOJProfAAAAmHU8ThkAAAAAplgYhvra1742dkEyDEPn90j2H3E7a+KUV1rx9h9hHedx1NL4xzIDadv/iOthWMAFAAAA0vXSpBMAAAAAALDL5/NjF1P678487t2k8+K48krD+vr64H2u/fcoj9Pr9Y68ExgAAAAAMF94nDIAAAAAzLAwDAf/z51zk9NqtVQoFMbe2dhXq9XU6/UG/+aRygAAAAAwf1jEBQAAAAAAAAAAAIAM4Z24AAAAAAAAAAAAAJAhLOICAAAAAAAAAAAAQIawiAsAAAAAAAAAAAAAGcIiLgAAAAAAAAAAAABkCIu4AAAAAAAAAAAAAJAhLOICAAAAAAAAAAAAQIawiAsAAAAAAAAAAAAAGcIiLgAAAAAAAAAAAABkCIu4AAAAAAAAAAAAAJAhLOICAAAAAAAAAAAAQIawiAsAAAAAAAAAAAAAGcIiLgAAAAAAAAAAAABkCIu4AAAAAAAAAAAAAJAhLOICAAAAAAAAAAAAQIawiAsAAAAAAAAAAAAAGcIiLgAg08Iw1Pr6+qSTAQAAAAAAAACANyziAsAcC8NQtVpNlUpFFy5c0J07dyadpIFut6tKpaJisahGozHp5ExUv56KxaKKxeKkkzN1KD8AAAAgeVxn+0E5nwzlBwCYZiziAsCcCsNQb775pur1uprNpsrlsnZ2diadrIF8Pq9msznpZGRCoVDQW2+9pTAMJ50Ur7rdrnq93omP46v8kkovAAAAMA24zvZjXueDUjJ1TzsFAEwzFnEBYE7dvn1b58+fH/y7Xq/P/R2vWVYoFCadBO8qlYqePHmSyLF8lF+S6QUAAACmAdfZfszjfFBKru5ppwCAacUiLgDMqXn8K15Mj0qlMlVtdNrSCwAAAEwDrrPn1zTV/TSlFQAwXVjEBYA5s76+rkqlom63O3jvbKVSUbvdHuzT6/VUrVZVq9W0sLCghYWFA9tbrZbOnTunIAgGE5V2u61KpaIgCFSpVAbHWV9fV7FYVKvVUrvdVrFYPLDPfv14+x/Xd/SGYahKpaKFhQVduHBBtVrtwLFd0jLuWP0y6JfL+vq6zp07p2q1euQ4/bxcuHDhyMSu3W4PynFhYeHAtvX1dQVBEKsMjquvw/v007O+vh57+zDtdltBEBwowzAMdeHCBQVBoGKxeCBP/fbR7XbHlmGr1RqEq1arsSbEx9XXScPub5v9Mu6naVx6j2snx9Wda7u15HESfcNHvwAAAMBknXSekvS8YFaveyc1H+znIQtzQuaD9jzO8m8lADATIgDAXMrn81E+nz/yfafTiXK5XNTpdAbfNRqNSFJUr9cH3y0vL0eSDuy3s7MTSYrK5fLg3+VyOZIUlUqlaHV1Nep0OoOw+4+3s7MT5XK5aHt7e/BdvV6PJEWFQuHY/HQ6nahUKg3+3Ww2I0nR8vKyc1qOO1az2Yzy+fzgu9XV1ahQKBxJZ6FQiFZXVw+UjaQon88PjtXP4/74+/sfPt6wsohbX+VyeZCW/j4u20dZXV2NJB2ot+3t7UjSgeP1j9n/7rgy7B93Z2fn2DQcV199o8rvuLA7OztRPp8/kJZcLhflcrkj5bB/n+PyGKfuXNqttXx8942k+wUAAAAmK815SpLzgmm/7s3ifDCKJj8nZD44Xtb6RRQxJwQAFyziAsCcGrWIWygUDlyU7/9+/6SkP0nZP+F4+vTpgUXcKPr8ov7whXd/gtBXLpeHxht3EbdQKBxISxTtTawkRU+fPnVKS5xj9ScUhyelff249h+nPwk6PAntT1b2q9frUaPROLLfsMlPnPrK5XJH0rq/HI7bPsrhhfv9xzucp3K5fCDv48rQ5ceaOPUVRaPL77iwhULhSFn0097fZ1R6x+Uxbt3FbbejZKlvpNEvAAAAMFlpzlOSnhdM83VvFueDUTT5OSHzwfGy1C/2x8WcEADi4XHKAICBbrerMAxVKBSObOs//qbRaJiOncvljnz35MmTQbz9R+5Y9NN9+/btweOh9z/25+HDh05piXOs/jG+9rWvDU3TBx98cOS7/Y+X2m95eVndbvfAY5Pee+89LS4ujsrygbTGqa98Pq87d+4ceOTQ6urq4P+P2z5KPp9XoVBQq9Uamr7+Y7J6vZ56vZ7y+fxg+3FlGIdr3buG7e9TKpUOhF1dXVUURUPb0n6j8mjpa+Pa7ShZ6xs++gUAAAAmK8l5imuc83Tdm4X5YD/spOaEzAenaz4oMScEAFcvTToBAIDsGPeOmddff12SBhOwJPWPuX8y56Kf7mazeeK0uB5r1KStP2Fpt9tHJmaH/12r1bS+vq56va5SqaRer6fz588fOyF0qa9ms6lisaharaZGo6Fms3kgHcdtH6f/LptWq6Vyuaz19XUtLi5qfX1djUZD9Xpd9+7dG/nOnuPyOc5J6j5O2P4PESdJ47Dwvvpa1vqGj34BAACAyUpynuIa5zxd92ZlPihNbk7IfHC8rPULiTkhALjiTlwAwBG9Xu/Id/2L5PPnzyceX39yctxfkR4XPolJTlLHKpfLKpVKun37ttrttnq9nur1ulZXV48sVufzeZVKJbXbbXW7Xa2vr4+c3A4Tp77y+by+853vqFQqqdvtqlgsan19/UAaxm0fZ3l5WdLnfyncn6SXSqXBMRqNxmC/JJ2kvuKETbJtDZN2X8ta3/DZLwAAADBZScxT4prn695Jzwelyc0JmQ+Ol7V+ITEnBABXLOICAAb6f/W4/1E1ff3JxYULFxKPt3+h3ul0ThR+2OObpOH58XGsZrOpUqmkMAwHfz1ar9eH7lur1STtTWy3t7djTW5d6qvb7SqXy2l7e3vwl7P9xzTF2X6ccrmsdrutVqul119/XblcTtVqVb1eT3fu3Bn8NXHSTlJfccL2y3jUXxtbJ7C++loW+0ba/QIAAACTleQ8Ja55vO7N0nxQmsyckPngeFnsFxJzQgBwwSIuAMypJ0+eHLnztf8um/3vrel7+PChcrnc4IL51VdflXRw0rL/XTcu+pO59fX1oWGPO17//TS1Wu3IY4lc/4o7yWNVKhU1m02trq5qdXV17OOoSqXS4D1EcR8N5FJf+ydE5XJ58BfS/XDHbT9Of4JfqVQGk6xyuSxprywtP8RI6dZ9nLD72+bhSWmtVjvy19Fx275L3Z1EFvtG2v0CAAAAk5XkPKVvGueE8zQflCYzJ2Q+OF4W+4XEnBAAXLCICwA4oNlsDv5itq//eJu7d+8OLpr7F9m1Wk3tdnvwrhtp7y8wFxYWJMV7RHIul9Pq6qokqVgsDh6V05/4dbtd3blzJ3b4SqWiO3fuaGFhQTs7O4PJhiUto47Vn5yNmqT1J3n98Ovr62q1WmPffdPP71tvvXVsOvvi1te9e/cOTA57vZ7y+fzgr2mP236cUqmkXC43mGD1lcvlwQT1sHFl2P+r40ajoW63O/KvfePWlzVsLpcb/KCxsLAw+EGiWCzqwoULg/Idld5xeYxbd9bHjLuUj6++4atfAAAAYLKSmqckPS+YteverMwHpcnMCZkPjpe1fiExJwQAZxEAYK50Op1oeXk5khRJipaXl6Pt7e0D+zx9+jQql8tRqVSKlpeXo+Xl5ajT6Rw5Vr1ej3K5XJTL5aLV1dUoiqIon89Hq6urUafTiTqdTlQoFCJJUT6fj7a3t6OnT58eiL9erw+O12g0onw+H0mKCoVCtLOzMzjezs7OsXmr1+uD8Pl8Pmo0Ggfy7ZKWccdqNpsjt/X1094/9v5PPp+Pnj59eiTM06dPo2Gn5sN1Vq/XD4SPU1+lUmlQlqurq1G5XD5wjOO2x1Gv14/E2+l0hpZPnDIsFApRLpeLlpeXY8U9ru7Hld+4sPvT228/hULhSJ8Zlt44eTyu7lzbrbV8fPWNJPsFAAAAJsvHPCWKkp0XTON177TMB/tlNok5IfPB8bLSL6KIOSEAuAqiKIrcl34BAMA4YRjqvffe040bN/TkyRP1er3BX7c2m01duHBh8Fesfe12W81mc3BHMzBr6BcAAACYB1z3AsPRNwDAzUuTTkBcYRiOfT4+AABZ0e12VSwW9fTpU+VyuSPvbcnn80fepyPtPXrpxo0bnlIJ+EW/AIDZwNwcAMbjuhcYjr4BAO4yuYhbqVSOvOegVCppe3v7wHe1Wm3wvoZer6dGozH0XQ2T2g8AMJ/654jr16/rxo0bgx86u92u2u22dnZ2Bu/Vabfbyufz6na76na7/CiKmUW/AIDpw9wcANxx3QsMR98AMAu63a6q1erYuUei85RJP8/5sKdPn0b5fD4ql8sHPoffp1AoFKJyuTz49/b2dpTL5TKzHwBgvvXfF6x973c5/O6c7e3tA9vjvPcXmGb0CwCYHszNAcCO615gOPoGgGm1s7MTra6uHjs2JT1Pydw7cWu1mr72ta+pXC6P3efOnTuDRy/0FYtFSVKn05nofgAA9PXf73LcX2bt/ytUYNbRLwAg+5ibA8DJcd0LDEffADBter2ecrnc4GlFOzs7R8awNOYpmVvEPXfunG7cuKFSqTRygD537pzOnz+vnZ2dA9/fuXNHtVpNnU5HhUJhYvsBAAAAADDNmJsDAAAAwEHValXr6+tDF3HTmKecOnGKE3Tnzh31ej3VajUVi0WdO3fuyPt3wjBUr9cbmtH+d++9997E9gMAAAAAYJoxNwcAAACA+NKap2RqEXd5eVnNZlOrq6vK5/Pq9XqqVCqqVquDfR4+fChJOn/+/JHw/e+63e7E9gMAAAAAYJoxNwcAAACA+NKap7x0smQd9NFHH+nJkyfqdrvK5/P6sR/7MafwuVxO5XJZ5XJZ9XpdrVZLlUpF6+vrqlQqKpVK6vV6g32HhZf2CmJS+43yve99T7/yK7+iL3/5y/rRH/3Rkfsd5wtf+IK+8IUvmMMDAAAAAPb88Ic/1A9/+ENz+B/84Af67ne/qz/xJ/6EvvSlLyWYspNhbs7cHAAAAPNhVuc04/z2b/+2vve97w3ddtLykKQvf/nL+vEf/3GnMCedp4ySyCLur/7qr+oXf/EX9f7770uSoihSEASS9m4TvnPnjn7mZ37G+bjlclnb29taWFhQo9FQqVQaWgCH9V8wPIn9RvmVX/kV/bk/9+eOPQYAAAAAYLr88i//sn72Z3920slgbr5vv1GYmwMAAABHZWVOc5zf/u3f1h/6g39Qn6YYx4/8yI/oN37jN/QH/sAfiB3mpPOUUU68iHv//n3dvn1bb731lmq12oFbhZ88eaJOp6Of//mf15//839eP/dzP+d8/FKppEKhMFih7r8oeFhm+9/l8/mJ7TfKl7/8ZUnSX/trf00/8RM/MXK/w954Y/PQN6c/+4zW6VTHbo/r6tWrun///tBtxWIjkTiSd0/SonMoS5lZyuBwPOPK2Ld4+fmhpF+W9Ock/e8MsfhpN/vLOc0yLhqe0tYZPUwMHE5zEm0tjmLRNY69/2apHfeNL7P97XgSd0+4182P/Zh7GftqN6NksV2Mc/XqVf3mb/47zuGSLLNxjtZnOu04zfycpE34uu7wdZ5Oq38mcf7woZ+Xjz/+WG+88Ya+9a1v6eWXX048njTKeVibyGo5fy7+9fHkxrT9hqc3rbSd9K+0/+E//If6S3/pLw3me5PE3DzduflhSd6Jm6XrpiylRcpOetI+Z1kkVTZxz2OWc+SkZCktWWs7WSobifSMMq7duFx7zuoc33daji9z99+j07q2TXLMSeL8kHZdufaHOOlJ6rx4/DGPthtru5ilOU0c3/ve9/SppD8tadh9w7uffax+V9LWp5/qe9/7ntMi7knnKaOceBH34cOHg2c9D/Pmm29qdXVVf/kv/2VzHP138PT/X9qbhB7W/65QKExsv1H6j2n6iZ/4Cf30T//0yP2O+jsO++rYdLg4e/bsmGN9JZE4kveSLGmzldnJ4xlfxr7Fyc8PPvvv75fkp8ws9pdpqmVsePpa4eLx+xxNs6827RrH3n+z1Y77xpXZ/nZsf4SenXtZ2cp4su0mm+1itLNnz2rSZTbe4bSl047TzM/J2oT/84eUZjtOp60lcf7woZ/Gjz76SJL01a9+VV/84hdTiCn5ch7eJrJZzp+Lf308uTFtv+Hpzfo55SSP5U0Kc/O05+bpydJ1U5bSImUnPemfs9wlVzbJnCOyUldSttKStbaTpbKRSM8o49tN/GvPWZ3j+0/LcWXu/nt0WulPdsw5+fkh/bpy6w/x0pPG3GnYMY+2m0n3sSzMaVz8fqUzG/89xnAnnaeMcsqYnoFXX3011n4neZZ2r9cbZC6fzyuXyw19dnQYhpKkhYWFie0HAAAAAIBvzM2ZmwMAAACYjLTmKSdexP2N3/gN3bhxQ7/1W781dPtv/uZv6t1339XOzo7p+L1eTw8fPtSNGzcG3y0vLysMwyO3JW9vbyufz6tUKk10PwAAAAAAfGJuztwcAAAAmBcvSfqRFD4neXxxGvOUEy/i/tIv/ZJ+4zd+Q6+99ppOnz6tV199VT/+4z+uV199VadPn9aFCxf0wQcf6K//9b8+9jhhGCoIAi0sLAxWqnu9nq5fv65ms3ngpcD1el35fF61Wm3wXbvdVrvdVrPZnPh+AAAAAAD4xNycuTkAAACAdPUfjTzs3bdpzFNO/E5cSWo2m/rOd76jTqejhw8fqtfr6cKFC8rn8yoUCnrttdeOPUY+n1e5XFar1VKxWNTi4qJyuZzu3r17YJLYt7Ozo2q1qmp172XP3W5XnU7nyDOlJ7UfAAAAAAA+MTdnbg4AAADMg9NKaIFzyHGH6Xa7arVaarVakqRaraZqtapyuXxgv6TnKbHyePr06cGtvvV6fehLsV977TW99tprRxIcVy6Xc16JbjQamd5vmDfe2JT0d2LvH0U3neMIglvOYSzxZDGOixff06//evrx7Emibv6lqb6OYynrOGE++ugjvfLKL+r737+hV17xk64siy66hwmCZPdLUhS57f95202nHfeZ2s3SmDA//Ej6m78o/Qc3pC/sO59t+hk70ywr34JrYzZ+OGJ7Zsv5X3qsT8tYeDjMR5J+UdINSUevy/a4p801P77G9Vnra1kuNx8+r5sfSJJeeeW2pB8dGyata5skZLWc+y5efE+PH6eXRss1y7gySzu90465uW0/AKNl/TwG4CCXPpvsnOhfJnis2TVLY+o05CWNNMY9pkv/GnbMYfOeuHMr199wkYx8Pq/V1VWtrq4eu2+S85RYi7hRFGl7e1s/9mM/Nna/999/X9/5znf01ltv6ff9vt+XRPowQSsrK5NOgrOVlRX9xb846VS4+MlJJ2DmTWM7lqYtzbTjtE1lO/43py3NtOO0TWM7nrY0T1t6p9E0lvG0pXna0usbc/PZlKV2n6W0SNlLT5ZkrWyylJ4spSVrslY2pGeaZGfOnL16yk7ZZE3W6ipL6clSWqZV/524aRw3S2K9Ezefzx87SZSkN998U1EUKZfL6c/8mT9z0rRhwqZxIJm+NHOST9v0tQmJRVwcNpXtmEVcHDKN7Xja0jxt6Z1G01jG05bmaUuvb8zNZ1OW2n2W0iJlLz1ZkrWyyVJ6spSWrMla2ZCeaZKdOXP26ik7ZZM1WaurLKUnS2mZVv3HKSf9GfU45UmJvYi73/3797W4uKh3331X3/72tw9su379un7u537O/JJeAAAAAABwFHNzAAAAAJgfse4MDg49jPvq1at68803df78eRWLRZVKJd24cWPwPp56va67d+8mn1oAAAAAAOYUc3MAAAAAONnjlP/OZ59hPjUeMy3mxzvncjnl83m9//77gwni4W0AAAAAACA9zM0BAAAAIL6f+ewzzG9J+j95TMtxYj1OeXt7W3/lr/wV/eqv/uqB78+dO3dkktiXy+VOnDgAAAAAALCHuTkAAAAAzM87cWPfiVuv11Wv1yVJCwsLKpVKY/d/9dVXT5ayGfWtby3pp3/6p2PvHwS3UkyNX5a8RNFNQxjnIJlmKQNbu4kfzyuvGA5v5KvdZLl9Hnpq3lSz1Y0lntHbPvpIeuVvSt//j6X9v3UGm9ltN2n36c/jcdvf1J433cNYZHkcSMJHH+2Nxd///sF2vF8QWNLmVgb+rlMsecluX3MtZ8lPW8tyH8jyNXGWy8BH2mzXNtk9f05qXHfB3BwAYBX33DgN50Mcj3pMRhrlSF/EMHHnVi7zHNrQ9Iu1iJvL5bS4uKgPPvhAv/Zrv6a//bf/tra3tyXtTQhLpZIWFha0uLg4+OvfJ0+epJdqAAAAAADmDHNzAAAAADjZO3GPO26WxHqc8o0bN/RLv/RL6nQ6evHihba3t/VzP/dzeu211/T06VM1m01Vq1WdO3dOP/7jP64//sf/uMIwTDvtAAAAAADMDebmAAAAADA/Yi0q//zP//yBf7/55pt68803JUnf//73de/ePW1vb6vdbmtnZ0c7OzsKZun5nwn4whe+cOC/wHQ6o73HRp6ZdEIAszNnzujmzZs6c4Z2jOlFO8ZseEnSG8re37kC8fme5zE3Pznm5rDg2gtWtB1Y0G5gRduBxbReH/ffYZvGcbMk1p2447zyyiu6fv267t27pydPnmhnZ0e/+Iu/mETaZsq0dgTgoDOS3hGLuJhmZ86c0TvvvMMFLaYa7Riz4SVJP6PsTZGA+LI0z2NuHk+W6gzTg2svWNF2YEG7gRVtBxbTen3cf5xy0p+s/UKReHpee+01ra6u8te+I1y9elVnz54dum1lZUUrKyueUwQAAAAAGGVtbU1ra2tDtz179sxzauJjbj4ec3MAAADMi2md0yDFReXDj3nCnt/8H9+XvlQYuu0vdqS/eO3kcUTRTecwPub1tnTdSiElR1nSFkXu8VjK2VQ3S+750Wb6ZZ3l348sbcAXX33HNR5/ZeaelyCwpM3PeGMb13yNUa5ps6Qrm+3ZyjKuWerGwhZP+uVmq88UEjKEv/rM6jknu/3T1zUhfMlqHxg1Dqx89hkmlFRMLT1JYG4+3P3791UoDJ+b97mMPVmeTwBAH2MVkA2z1BfTuF6Ke8w0yjGNuLMwnx33R4phGKpYzPacZpj+nbhpHDdLspYeAAAAAAAAAAAAAEjcr0j6L0Zs+6HPhMTAIi4AAAAAAAAAAACAqXBa9gXOP/XZZ5jfkPSXjMdNw6lJJwAAAAAAAAAAAAAA8DnuxAUAAAAAAAAAAAAwFeblnbjciQsAAAAAAAAAAAAAGZK1RWUAAAAAAAAAAAAAGOok78Q97rhZwiKuZ513pEIh/v7BZmpJOeSW4/43U0nFYVHkHk8QuObFJnjsHsZXfqINQzyObc1bXgzxWASBJZSlrbnnJ4oM0Rj46TuW/Ge3Ddj6gXs8/tpa+mVta2d+2oCv/unrPGXh2gZ8jeu+4snydYeFe34MeVnK7jWhhW2M9sNP+/QzDvoaO320mzCUisXUo8GE+Bp7APgX97zCOJCcpMvc5dqAevRvXvvYPObbJS+THAfiSqNuZqm+4R+LuAAAAAAAAAAAAACmwry8Ezdr6QEAAAAAAAAAAACAoeblccqnJp0AAAAAAAAAAAAAAMDnuBMXAAAAAAAAAAAAwFQ4yeOU7332GeYT4zHTwiIuAAAAAAAAAAAAgJm3+NlnmF+X9L/2mJbjsIgLAAAAAAAAAAAAYCq8pHQWOLO2aJq19OCIm84hgsAQzZJbPNGGexTBNfcwlngsZWYRXXQPEwS3DDH5aQNR5BaPLS/ufMVjY2lr7vkx9Wkv/PQ1W3u2hLH0Nff6tMRjGwd8pS19lvr0lX8f4+1ePL7y4xZPVtuMlO3+aWrThusoV77qM6vt2c7X2GEJk36d+irn7LbPD1NJBwAgXVm+jp1VSZc5dZht81o/85hvl+tnxoFkTLLM4R+LuAAAAAAAAAAAAACmwkneiXvccbPk1KQTAAAAAAAAAAAAAAD4XNYWlWfe1atXdfbs2aHbVlZWtLKy4jlFAAAAAIDR/sFnn2Ge+0wIEsTcHAAAAPNibW1Na2trQ7c9e/bMc2qScVrpLHCeTuGYJ8Eirmf3799XoVCYdDIAAAAAALH85GefYT6UtO4xLUgKc3MAAADMi3F/pBiGoYrFoucUnRyPUwYAAAAAAAAAAAAAeJe1RWUAAAAAAAAAAAAAGGpe7sTNWnpmnutd6VHkHkcQ3HIPtOm4/8ZNQxzu6Qpc02UUBH7isfDWBuRYp0vubSDacA7iJy+ylbONoe8Y+Cg3X2Xmqw1YRFGG6/ORn7S5spSZZYz2VTe++oGv/LiytE1LXmztxjJ2+OErbcGmY7k9MkRyyU8byPI4YJHVc6iv/mnha7wBAACYN3Gvs7i2yrZJ1aPL8eLO6/z9TnvUNPQH+uJ8YREXAAAAAAAAAAAAwFQ4LfsC54ZG39f4A+Mx08IiLgAAAAAAAAAAAICZd+2zzzD/H0n/jse0HIdFXAAAAAAAAAAAAABT4aXT0o+k8JrMlyJJu6O3d7td1et1SdKTJ090/vx51et15XK55BMjFnEBAAAAAAAAAAAAYKQwDFUsFtXpdFQoFCRJtVpNr732mjqdjvL5fOJxnkr8iAAAAAAAAAAAAACQgtOnpZdeSv5z+vToOK9fv65CoTBYwJWker2uXq+nWq2WSj65E9e7hqSvxN47eHwzvaScQDDqgeFzJIrc6yYIbnkJ4ydthra54R5ES+7xRIZ4AtOjF9zrxsJSn6Y24NivLW0THl0y1I+h3fgQRZNOQbJ8jesWPuKxjLeWNuCrzLJ8LvDC0/VQZvOvbJ8Ps1xurrI6Du79JfZ6SqkB5o/LmDpLYxwATBLjaXLinsfSKPNpqMdJ/r4zybqJ+5ur5TftY+OOle8Pk4/Yg5dOST8yZsHVfNwR33e7XYVhqOXl5SPbSqWSWq2Wut1u4nfjcicuAAAAAAAAAAAAAAwRhqEkDX33bX/htr9PkrgTFwAAAAAAAAAAAMBUeOkl6aU07sQd8QS5/uJtt9t12nZS3IkLAAAAAAAAAAAAAEO8/vrrkqRWqzVyn2F36Z4Ui7gAAAAAAAAAAAAApsJLp6Ufeeno58Vp6dkp++cHY+7E7b8Pt1KpDL5vt9taX1+XpMTfhyvxOGUAAAAAAAAAAAAAU+72M+nWs3SO3Wg0dOHCBTUaDQVBoEKhoGq1qvPnz6vX6w3u1k0Si7gAAAAAAAAAAAAApsMpSUPeiXvjZekbv9d+2G8/l97ojd6+urqq1dXVwb/DMFS321W5XE7lccos4nrW6VRVKBRi7x8Et5zjiKKbzmGuqOm0/9aIW8rHc0+X5J7/2WMpN3eu7cbSNi15iTbcYwmuuYeJIvcwvurG1zigzfTjsLUbd4FpjPI13hj6gaeydg3jK12m9gwvZe3rXOCLr/bpayzMKl992ld9Zjk/PsZ1X7LbPz90jgOzKW7byXI/ywLKZzbQHwDMK8a17IpbN2mcw+L+vh3390zb79jz40yw97F62TFsrVaTJNXrdXukY7CICwAAAAAAAAAAAGA6nFY6K5wv4u96584dtdttNZvNVN6HK7GI693Vq1d19uzZodtWVla0srLiOUUAAAAAgNH+wWefYZ77TAgSxNwcAAAA84M5TdJqtZrW19fVbDZVLpdTi4dFXM/u37/v9DhlAAAAAMAk/eRnn2E+lLTuMS1ICnNzAAAAzI8ZnNO8JO934na7XbVaLb333nsqlUr6zne+k8p7cPdjERcAAAAAAAAAAADAdEjrccq7ozd1u12Vy2Wtrq6mEPFwLOICAAAAAAAAAAAAwAilUsl7nCziAgAAAAAAAAAAAJgOp7R3N24ax80QFnE9KxYbkr4SP8DSzdTSst9WUHHaP4rc4wiCW+6BTPyUWRBYQrmnzVLWFq71E0XuebG1AUt9GuLZ8JUfd7aytsTjGod7/i158cfX2OFebsG1LJdbNmW6fRrO7b7OOT7OBb74O+fMtyz3tSy3Twsf116+6nOW2k0YhioWp/D9UUjcrI050yDuWELd+EeZJ8PlfEmZJ4NxBfMg6d8zZ60/TDI/aawDxMkPc5psYxEXAAAAAAAAAAAAwHQ4wTtx155Ia0+Hb3v2wpyiVLCICwAAAAAAAAAAAGDmrZzf+wwTPpOKv+k1OWOxiAsAAAAAAAAAAABgOrykdFY4M7ZqmrFX9AIAAAAAAAAAAADAfMvYmjIAAAAAAAAAAAAAjHBKe+/FTeO4GcIiLgAAAAAAAAAAAIDpcFrprHCmsTB8AiziZly04R4meGyIJ3KMI7DEcdM5THDNPR5tGsLoliWQJ4ZyCyz5cYvHVDcw8VGfe/G47W/q04a8ZDoeQz+wxGOykX48vvLvqz692fTTpy18lJuv+rS1NecgM8XX+SbLbGXgztcY5RrPrOUfwGxjLMGso437R5ljHsxrO096rjPJcnT57cJ13QfZwyIuAAAAAAAAAAAAgOnwktJZ4czYqmnGnu4MAAAAAAAAAAAAAPMtY2vKAAAAAAAAAAAAADDCKaXz/tqM3fqaseQAAAAAAAAAAAAAwHzjTlwAAAAAAAAAAAAA0+G0zCuca/+dtPbh8G3PXphTlAoWcTMuuOYpnk3HAEuGOAx5iTYM8Wzecg+km4Yw7vFEkSUed5Z4gsAxP65tRpKtnGeLl7oxiiK3/S3psuXfOYi3cvaVH8t444ehTxvGdV9jp4W/dpPNeLJcNyaG6xtbPNksN19tMwjc43E9R/mU5X7ges7xlRfbuT35dAAAgOyJe32Z5WswYJ64zAkn2W8nGXfS4xpzo5Nb+R/sfYYJ/5VUDP2mZxwWcb27p9HF/pOffQAAAAAAWbC2tqa1tbWh2549e+Y5NUjK1atXdfbs2aHbVlZWtLKy4jlFAAAAQDpmck5zgjtxjz1uhrCI692ipK9MOhEAAAAAgBjGLeiFYahiseg5RUjC/fv3VSgUJp0MAAAAIHUzOad5SemscGZs1fTUpBMAAAAAAAAAAAAAAPhcxtaUAQAAAAAAAAAAAGCEU0rn0ccZu/U1Y8kBAAAAAAAAAAAAgPnGnbgAAAAAAAAAAAAApsNppbPCmcbdvSfAIm7Wbd7yFNFNt90N6YoixzgkBYGfeGz8xOOrDHyUmyUvWS5nX/H4atO+ysCdn3bjq5yjyBLKVxtw29+Wl+wy9YGl7J7bfMQza2NntOEcxMZwHRVsppCOBPhqm77GwWznx0d/83Udnd02AMyyuOOVvzk1ABzFGDSey7UnZTke50X/JlnmScft+htavGPSJnEUi7gAAAAAAAAAAAAApgN34gIAAAAAAAAAAADAbFjbkda6w7c92/WbluOwiAsAAAAAAAAAAABgOpyW+a7ZlT+89xkmfCoV2+ZUJe7UpBMAAAAAAAAAAAAAAPhc5u/ErVarevLkiZrN5pFttVpN3e7ePc+9Xk+NRkP5fD4z+wEAAAAAMAuYmwMAAADIDN6JO3mtVkvr6+sql8tHthWLReXz+cEEst1uq1gs6v3331ehUJj4fgAAAAAAzALm5gAAAAAyhUXcyer1enrvvfeGbqvVagrDUO+///7gu1KppHw+r+vXr6vT6Ux0v7GaVemiw4TyUvxdvVq66RwkCG45h4ki93gsLGnLsiDwEYufMosi9zCW/Fva2qy1Gx/9zVeZBdcMgTb9jFG2MrDUTfr5mbVx3VfatGFpNymkY2g8buWW5fqcNVkdo6kbn/0g/XOB7RrKPYyFr3HdPZ4PneOYNjM7N59Lnq51ZpzLOOHt+hLA3GBcSc40lOU0nHPSiDduvqcn7uy3NWRXZt+JW6lUdPfu3aHb1tfXlc/nlcvlDnz/1ltvKQxDhWE40f0AAAAAAJgFzM0BAAAAZM7pFD8Zksk7cWu1mmq12pEJmSSFYaher6dSqXRkW/+RSf2/Ep7Efjy2CQAAAAAwC5ibAwAAAMDkZG4Rd9xEUJIePnwoSTp//vyRbf3vut3uxPYDAAAAAGDaMTcHAAAAkFm8E9e/Xq+nWq2m7e3tsftIGvqXwP3vut3uxPY71r/+WPr4o+P3G+nMZx8AAAAAwEl88skn+uSTT/Z98wPHI/wwyeRkxjzMzT/++GN99JF9bn7mzBmdOcPcHAAAAJN1dE7j5uOPP04wNUhaphZxr1+/rkajMXafYRO1w3q93sT2O9bPvnH8PmPdlPTOCY8BAAAAALh9+7Zu3bo16WRkzjzMzd9442Rz85s3b+qdd9450TEAAACAk5rbOc0J7sRd+8fS2qPh2549N6coFZlZxF1fX9fCwoLy+fzY/frbh03K+t/l8/mJ7Xesv/Et6X/01eP36/ujh7/gL30BAAAAIAk3btzQN77xjcG/X3nltuMRfkfSLyeZpImbl7n5t771LX31q189dr9RuAsXAAAAWXB4TuPq29/+9on/wHHarPyRvc8w4b+Uivf9pmeczCziNhoNhWGoarV6ZFur1VIQBCoUCmo2m5KkJ0+eHNmv/12hUBhM2nzvd6yf/ZuS/s7x+33mcnQx9r59W0HFOYxG/NXBSJf8/GVHEFjiueklTBQZojEwlcGSIaJNH3XqXs6+2kAQuMcSRZa25s5WBgaP3PJjGJ5k6p+G9hxtuIfRhp/6tLQbb23AUZbzkuW0+ZLVMpi1cracP7LLMg6616evtunvPO0exnIdaQnjmjZf17dZGp8OPxI3itwWccMwVLH4ywmnarLmZW7+8ssv64tf/OKx+80SX3181vk6vwDAPIh7jTevY+8k8z1rdZN0Ot3mWsnOZQ7n5aSv+Xj55ZdPmqTJ4J24ftXr9aF/SVupVFQoFHTjxg3lcjnl83nlcrmh77gJw1CSBn81PIn9AAAAAACYVszNAQAAAGTeaaWz4Moi7nClUmno9/3JYblcHny3vLysO3fuHHkfzvb2tvL5/OBYk9oPAAAAAIBpxNwcAAAAAI7qdruq1Wo6f/78gX+nOf84ldqRU1Sv15XP51Wr1QbftdtttdvtwSOdJrkfAAAAAACzjrk5AAAAgInoP0456c+IO3G73a6KxaJu3LihRqMx+CwsLKjdbqeVy+zcietqZ2dH1Wp18J6ebrerTqdz5N03k9oPAAAAAIBZx9wcAAAAwKxrNBo6f/78gflG/ylA9Xo9tbtxM7+I+/Tp05HbGo1GrGNMaj8AAAAAAGYBc3MAAAAAmdG/EzeN4w7R7XbV7XaPvNKl2+2m+oekmV/EnXdb1yrugZbcg0QX3fYP3KPItChyDxNcM0S0ecsQ6KafeJYM8bjaTD8KyVifhkZtCWNJm4mhPl3HAQtfdaMNSzx++qelDKLIQ/80sJSZJS+WeGz16QdlYGjPhmsbU/4tY6e3c05W69Od7fzpZxz0Vc5ZLgNXvs4FWc0/kAVx+yH9CACQNZybsmuSdTMd7SL5uWPcfCc/b/0w4ePNpoWFBbVaLVUqFW1vb0uSwjBUt9tN9ZUuLOICAAAAAAAAAAAAmA6nNfSu2U+eS5/s2g/78Yiwy8vLajabarfbg3fj1mo1bW9vcycuAAAAAAAAAAAAAIxy++9Lt/5eOsfe3t5WpVIZ3JHbaDRSexduH4u4AAAAAAAAAAAAAKbDiHfi3vhp6Rv/E/thv/070ht/Y/i2Xq+nXq+n5eVlra+vq1qtqtPpqNFo2CM8xqnUjgwAAAAAAAAAAAAAHpx5SfriGfvn5S8MP26v11OxWFS1WlWj0VCn01Eul9P6+rpqtVpq+WERFwAAAAAAAAAAAMB06N+Jm/RnyHt2JalWq6nb7apcLkuSCoWCvvOd7yiXy+nOnTupZFFiERcAAAAAAAAAAADAtPC8iPvw4UMVCoUD3+VyOd24cUOS1O12k8vbPrwT17NOp3qkopMWXDOECW457R9FN1OPQ5K05B6PNt3jCQJDPBae8iNZ4nENYEmXu8vRRecwlrbmrU1b6sYg2nAPEwSOcUSWOLJbZjZ+8mMZ121twDU/2e03lvZpYcmPpT59sYyF7gxj9IahrTmf12Q4F0qB6Tzth2t92vqnO1/905/sjlE+zqF+xg1/3PvBh6mkA3Axa/0QwHyLey5m7JsvLtdotI1kTLIvpjE3naV2kXRewjBUsbie6DFnUT6fV7vdPvJ9LpcbbE8Dd+ICAAAAAAAAAAAAmA6nU/wMcePGDfV6vSOPTm40GlpdXU00a/txJy4AAAAAAAAAAAAADFEoFNTpdFSr1fTBBx/o/PnzevLkiarVqpaXl1OLl0VcAAAAAAAAAAAAANOh/07cNI47QqFQ0Pb2dgqRjsYirmdXr17V2bNnh25bWVnRysqK5xQBAAAAAEb7B599hnnuMyFIEHNzAAAAzIu1tTWtra0N3fbs2TPPqYELFnE9u3//vgqFwqSTAQAAAACI5Sc/+wzzoaR1j2lBUpibAwAAYF6M+yPFMAxVLBY9pygBE7gTdxJYxAUAAAAAAAAAAAAw89b+7t5nmGef+k3LcVjEzbjgsZ94ouim0/7BNUMkS25xSFK04R5NsOkeRrrlHMK1zCR/5aZN9/xk1ZavTpBp7m3giprOYaKo4rR/EHhqZ0vuQbylzRPTWBgkn45kGMY0T23AMq6bzgWe0uajH/jqa1kuM391k348trw4B7FdD3m6vrNxj8dSbpb6sYyfs8RHn977q3XuxJ1VLm0obtuJe0xTn09IGvkGgLimZfyLi3EyGS7lmHQ9zmsdTjLfacQddx4a9ze4eW0XmXJa5rtmV/5ne59hwn8uFevGNKWARVwAAAAAAAAAAAAA02FOHqd8atIJAAAAAAAAAAAAAAB8jjtxAQAAAAAAAAAAAEwH7sQFAAAAAAAAAAAAAPjGnbgAAAAAAAAAAAAApsMppXPXbMZufWURN+suGcIsuQcJHjsG2HSPwyLYvOUcJopuuscTuMcTBM5BJLnHI7nnx1YGrnE4R2EqM0s8Fpa0XY4uJp+QhDxQxTmMaz/w1dd8jTezJ/3x09s46Oucc80QyHCesrCNn+mfC2znKOcgtrHDE19ps50P3evHnWGs2TC0TecQtnh88dZuNtz299ee/dSNr3gwu9JoQ3GP6dIfk04nfQfAvGL8Gy+Nc1Ma15/zWo9xy3KS5TMNaQSyhkVcAAAAAAAAAAAAANPhJaWzwpmxVdOM3RgMAAAAAAAAAAAAAPMtY2vKAAAAAAAAAAAAADDCaZlXONf+9t5nmGc/NKcoFSziAgAAAAAAAAAAAJgOJ1jEXfl39z7DhF2pWDOnKnE8ThkAAAAAAAAAAAAAMoQ7cQEAAAAAAAAAAABMh1Pauxs3jeNmCIu4nhXfkfQllxC33CPZdA8Sbdx02j+wpMvELV2SFASGtC25x2PhWs6SLT9B4B5PFDkHMbDkxT2WKLLUp3vatgzlLFM5Z7ncZomffuNrjPJRn7ZxwzIOWuJxL+dowz2WYNPPeONnjJZM1x2ObOeo2RqfLPmxjB2u8WT53GHqn5bx1hs/Y6Hr2DFrfc1Hv8Fsc2lDtB0AwLSKe76b5Lkujbgnme804uZa5BibMa/rDL/fHyf5ualLu0g4anjHIi4AAAAAAAAAAACA6fCS0lnhzNiqacaSMwf+zlXp9Nnh2/7Nlb0PAAAAACAT1tbWtLa2NnTbs2fPPKcGSbl69arOnh0+N19ZWdHKCnNzAAAAzAbmNNOLRVzffua+9KXCpFMBAAAAAIhh3IJeGIYqFoueU4Qk3L9/X4UCc3MAAADMvpmc05xWOiucabxn9wQy9opeAAAAAAAAAAAAAJhv3IkLAAAAAAAAAAAAYDqcUjp3zWbs1lcWcQEAAAAAAAAAAADMvLUH0trW8G3Pfug3LcdhEdezzjuSy2t3gs2bznFEkXMQBY/dw7iKIve8BMGtFFIyxKYhnkfu+TFZMrSBDfdogmuOATbd47Dw1W5M8biWmaQgcA8jeWprc8+93QSBZYz2U5+2tuZjzM3u2JllvsY1d5Y4LO3MT33665/ZrE/TNaSvazWDbNdnCgkZIqv146tufMWD2TXJNkT7nQ1xr8l9nRcAYJh5Pd9NQ9wu1/PzeO1g++0rqbiTn2ul0S5m+nflE7wTd+VP732GCf+ZVPzfmlOVOBZxAQAAAAAAAAAAAEyHl5TOCmfGVk0z9nRnAAAAAAAAAAAAAJhvGVtTBgAAAAAAAAAAAIARTmnvkcppHDdDMpYcAAAAAAAAAAAAAJhv3IkLAAAAAAAAAAAAYDqcVjornGnc3XsC3IkLAAAAAAAAAAAAABnCnbieFYsNSV+JH2DppnMcwTXnINKmIYwjU7oM+dfbhnjedQ8SXXQPEwS33ANZbBjKbdM1bYY4fLVnS7uxcC4zKYoMZWBoN7Z4XONwjiLT+bew9en060ay1U8QuKbNUjfOQUz5t/TPwHAutLVpS/s05MfXOceRt/5puh7yM974GKP34nGNY9bG2+wyjWsGrvVj6TfRhnsYAJgXlmtf3+KeY32d8wEAn5vk2JvGHCxuftI4N8Wdg6UTd7JlmUa+p9JLSmeFM2OrptyJCwAAAAAAAAAAAAAZkrE1ZQAAAAAAAAAAAAAYYU7eicsiLgAAAAAAAAAAAIDpcErmBde1/4e09v8cvu3ZJ+YUpYJFXAAAAAAAAAAAAAAzb+V/tfcZJnwsFd/ym55xWMQFAAAAAAAAAAAAMB14nDLS0OlUVSgUYu8fPHaPI7roHkYbbrsHgSGOTfcg96IrzmEqeuAcprnhHo8M8Vw2VM4DVZzDBNecg0hLN93237zlHsemYxySosg9miBwT1tgaJ8WlrT54lrWlrxEkaUNuIfxV86zlTYtue0ebRjiMLCMA6b8e+IrP6ZzgeNYaMuLO8t1h+n8YTgXZHlcdy03y3hr4ev8YWG6xnW9hpJM11E+yiBynBNYZbkNAFnh0k8m2T/ippM+7N8k62ayccfbz9d1LABMq0meu+PGncb1UtxjTsu1GpJVrVa1vr4+cnun03Fa/4uDRVzPrl69qrNnzw7dtrKyopWVFc8pAgAAAACMsra2prW1taHbnj175jk1SApzcwAAAMyPtc8+w0zpnOYlpbPCOeaY9+7dU6lUOrJQG4ahHj58mPgC7jHJQRru37+fSkUCAAAAAJI3bkEvDEMVi0XPKUISmJsDAABgfqx89hkmlMSc5jitVkvNZlOlUunItkqlosXFxVTiZREXAAAAAAAAAAAAwHQ4pXTeX3tq+NelUkm5XG7otlarpe3t7RQSMzI5AAAAAAAAAAAAADDfRi3gtttt5XK5oXfoJoE7cQEAAAAAAAAAAABMh9NKZ4XT8e7eRqOR2gKuxCIuAAAAAAAAAAAAgGkxYhH3k0+kT35oP+zHn7jt339XblpYxPWs6Pp+6EfucQTBLfdAuum0dxS57S/Z0rUYGF6oveQeRJsPnINEkXs0W0HFOUwgQ30+cq8fXbK0G1fucQSBIS+G/EcX3aMJAvcwNoZye2yIxkMbsIwDlvHGdUzbY8m/j35j46Osbe3MEMZTOfs6t2U5Hm24B/HBcs71N95kl7/zlJss9wFLW7MINi1l4B6Pa358xLEXZrb6GpCGaekn05LOeTTJupls3BOLGgDmkstcLfnzw3Sc6+KWUdxjJl3mYWhYt8qw2/836db/xU9c7XZbklQul1OLg0VcAAAAAAAAAAAAANPhJQ1d4bzxv5e+sWI/7Lf/sfTGn4q3b7PZTHUBV2IRFwAAAAAAAAAAAMCUO3Nm72P18u+Nv++9e/d09+5de2QxsIgLAAAAAAAAAAAAYCpEp6TodDrHjaPdbqvX66V+J27M5AAAAAAAAAAAAADAfGs2myqVSqnHw524AAAAAAAAAAAAAKbC7mlpN4UVzt2Yd/feu3dP9Xo9+QQcwp24AAAAAAAAAAAAAHCM/qOUFxcXU4+LO3E963SkQiH+/lfUdI5ja+mmcxhXwWNLKPd0RZF7LEFwyz2QIW02lrQZXMpoGTwyhDHkJbronhdLX5NMHcFZFPlpn4Hj/t7SZerT7iz5saQty+Xmq6xd2erGPR5f9ZnleFxluT37iifLZeCatuCacxSKNtzDmOLxNA6YrtUe+bnGtfDTd3xdR7vLcp8GAGDexD0vT8O52OUaYxryA//S6A9Z/U1nv/hztMmVTxp9Nu4xZ2mc9OFFSnfivohxJ26pVFLkaWLPnbgAAAAAAAAAAAAAkCHciQsAAAAAAAAAAABgKuyeDvT8tOkRXMccN5Lk6fFZMbCICwAAAAAAAAAAAGAq7J4+rd2XbA8bvvsf7+ruX98duu0Hz06SquSxiAsAAAAAAAAAAABg5l3/C6d1/S8Mf/ntt8MXeuMnn3tO0Wgs4np29epVnT17dui2lZUVrayseE4RAAAAAGCUtbU1ra2tDd327FnG/kwbsTE3BwAAwLyYxTnNi9OntXvadifu+OMGkljEnVv3799XoVCYdDIAAAAAADGMW9ALw1DFYtFzipAE5uYAAACYF8xppheLuJ6594WKIZZbhjA33XbfNERhSFdgei+1Y16MgmteopGW3PMTbbhHYytrR5fc20AU+anPB4a+Fvjoa0ZZ7TuWdPlqA1nmq9y8jAOmfuMnHluZ+RkHZqkN+Gln/urTEsY2rqVfn1HkHIWN4Toy2PTT1y5HF53DbFnGAW/jjRtf51wfeZG4hgAA4LC45+A0zqGzdF6epbwg21yum2erXWY/L05rAzHnwHHr0GWu722ePwG7OqVdDX8k8smOmy3J32sMAAAAAAAAAAAAADDjTlwAAAAAAAAAAAAAU2FXp/WcO3EBAAAAAAAAAAAAAD5xJy4AAAAAAAAAAACAqfBCp7WbwhLni8SPeDIs4gIAAAAAAAAAAACYCrs6pd1UHqecrWVcFnE963SkQiH+/lfUdI5j69pN5zDONm8ZAhnS9cg9SHTRPYypnIPHzmGiyL0MgmvOQYzc6vSyoaC3AkP+3YtZumQI45h/qyjyEo0s+XFtn0FgKLMlQxuwxGMYb3zVTRC4h7GkzTZ2+OkHfng4F8o4rpvatIWlDNzSZmnPJqaxw0882jTEY+JjXHeOwsQ23vrpa7braPd4LGO0j/HG1zkq22MngHkVd5yxjGFAVkyy/SZ9Lqcv+udSh9TPeJTPJCRc5qb1kePES6O/35eRBSziAgAAAAAAAAAAAJgKe49Ttt2J+5+s/f/0n67966HbfvAsW6vkLOICAAAAAAAAAAAAmHl/duX36s+u/N6h2/5x+KmuFL/nOUWjsYgLAAAAAAAAAAAAYCq8SOmduC+0m/gxTyJzi7jdble1Wk3tdluSVCqVdPfuXeVyuSP71mo1dbtdSVKv11Oj0VA+n8/MfgAAAAAATCPm5gAAAAAwWZlaxO12u6pUKqpWq6pWq2o2m1pfX1cYhtrZ2Tmwb7FYVD6fV7PZlCS1220Vi0W9//77KhQKE98PAAAAAIBpxNwcAAAAQJY91yk9T+FO3Oc6lfgxTyJTi7iNRkOdTmfw71KppCdPnqjVaqnb7Q7+orZWqykMQ73//vsH9s3n87p+/frgGJPaDwAAAACAacXcHAAAAAAmL1OLuNVq9ch3X/va19RqtQ48Eml9fV35fP7IY5zeeuutwWSuUChMbL8kbQUV90BLhog2XQPcNERicOmWc5BgyZC2t93LOYrcozFxrhspMIRxtXXN0DYtDG3Axk+bDgL3/ESRJW3uYYLHjgEMfS3acA5ibM+GsSNwj8VSN5Y24Ctt2vA0tnthGTv81Kel75jOBR7aTXDNPQ5LXrTp6VywaRjXDNcDlrqxMLVPR7ZzlDtTW7Oc2w1tzXYucA4iGc6hzn3aU9u08HXO9dWms465OQAgaZxjp18adRj3em1a2k/SczDKPMvil0/S6wgu7WyW6/GFXtJuCkucvBN3jGHvrvnggw+0vLw8+HcYhur1eiqVSkf27U/S3nvvPUmayH5MFAEAAAAA04y5OQAAAABMXqYWcQ9bX19Xr9cbvONGkh4+fChJOn/+/JH9+991u92J7QcAAAAAwCxhbg4AAAAgS17olHZTeCfuC96Je7xWq6Xbt28rDENJ0sLCgra3tyXt/cWtpCOPTdr/Xbfbndh+x/n444/10UcfHbvfaGc++wAAAAAATub5Z589rnO1jz/+OOH0ZAtz89HOnDmjM2eYmwMAAGDSDs5p9otzvTutc5rdlBZxd1nEPV65XFapVNK9e/dUrVbVbrdVq9VUr9eHTtQO6/V6E9vvOG+88cax+4x3U9I7JzwGAAAAAED6u5K+NfjXK6/84uSSkkHMzUe7efOm3nnnnRMdAwAAADi5g3Oa/ZjfDPfe2hPdW3s6dNsnz154Ts14mVzElfb+gnZ5eVmlUkkXLlxQq9VSvV4fvJtn2KSs/10+n5/Yfsf51re+pa9+9avH7tf3yiuHv+EvfQEAAAAgGX9M0k8N/vX9799wCv3tb387gT/UzTbm5sNxFy4AAACy4eCcZr8485tpndPs6rSeG+/Evbryb+jqyr8xdNs/CZ/pzxZ3TpK0RGV2Ebcvn8+rXC6r3W4P/i1JT548ObJv/7tCoTCx/Y7z8ssv64tf/OKx+wEAAAAA0vaS9k+LXedqL7/8csLpyS7m5gAAAEAWHZzT7Bfnenee5jTTKPOLuJJ0/vx5vf7665L2Joq5XG7oO272v6dnUvsdp1g8dpeDlhz3l6RNQxgfHrkHiS7edA/03cA5SPBXI/cwm7ecw+w9DtsDQ7uJNtzSFlwzxOFezAquGcrMVDfuTPlxb56mMJKhDC45lrVlfDKx9Bs/bWDWOPdrT33NIorc200QeMqPt3LzdM7xYcnXucA9TBD4GaMy3aY9iDYMgQxhTNcdntiuB9xYrm2yzNJvMN4szc3nUdzzwiT7jsu5K+l0MmYAs2saxr80TDLfca9d48Y9yfODy3X4NLSh5MvHZd4ZL+405iWTnOtMti/GifvDxOP14YVOazeFJc4XKbxn9ySy9YbeEfrv3elbXl5WGIZHHp+0vb2tfD6vUqk00f0AAAAAAJg1zM0BAAAAwJ9MLeIWi0VVq9UDE7FaraZqtXpgEtZ//87+yWO73Va73Vaz2Zz4fgAAAAAATCvm5gAAAACybFenU/tkSaYep/z666+r3W7rtdde0+LionK5nKrV6uCdN/vt7OyoWq2qWq1KkrrdrjqdzpF330xqPwAAAAAAphFzcwAAAACYvEwt4jYajVT2n9R+AAAAAABMG+bmAAAAALLshU6lctfsi2w9wDhbi7gAAAAAAAAAAAAAMMpuSou4uyzizruGpK/E333zpnMMUeQcRME1xwCbt9wjueSel8A9FumRoQAsltzzYyo3GdrAhnssrm3ARxySbGVmqRuDILDUp4WfeC5Hbu8P2woeu0ey4WlMe2yI56IhHsMgFUWGsdDQ1izVYxuj0uerzHyNHb7GNdM47WVc81POlnZj4WscsPARj79zoTtL/n31G9u45hzE+RzqI469ePyUmYV72j5MJR1AGnz1o5OYZBrj9v9pKEcAB81rv51kvuNeI07D2Gu53p0nLnUT/1p7tq4HLPOssRx+I4ozxw3DUMXi+gkShDSxiAsAAAAAAAAAAABgKuzqtJ4b78R9sPahHqx9d+i2Hz57cZJkJY5FXAAAAAAAAAAAAAAz78rKV3RlZfgTc//b8GOtFL/tN0FjsIgLAAAAAAAAAAAAYCq80GntprDE+SKF9+yeRLbe0AsAAAAAAAAAAAAAU6DX6ykMQ/V6vcSPzSIuAAAAAAAAAAAAgKmwq1Pa1ekUPvGXTVutlorFomq1mp48eaJcLpd4PnmcMgAAAAAAAAAAAAAco9vtqlKpSJKazaby+XxqcbGI61mnU1WhUIi9fxDcco4juHbTOUxWXY6azmG2goohJvdylnyVs6ENBOmnLdj0VGZLhjCmtPkRRe75sYwDtvbp2t/c47jiHIe0FTx2DqNHfvpnFHmJxtYPLlkicovHkv8gsIRx7wOWvubNhqdxwBCPM9MY7R4k2nAPYxs7LXyN6xbptwHbec0Sj3sYSzyzxr0MsnxN7Idrmw7DUMXiekqpAeBTpq8fUxT3umRey2eSXM7j3uamQEz+5jx2jH/jzW/5xMuP2xidbBlZfiOZRS8+u3M2jeOO0+12VSwWlc/n1el0Eo//MBZxAQAAAAAAAAAAAEyFXZ3S8xQWcY97nPLCwoJ6vZ6aTfeblSx4Jy4AAAAAAAAAAAAAjHDnzh11u12Vy+VUH6G8H3fienb16lWdPXt26LaVlRWtrKx4ThEAAAAAYJS1tTWtra0N3fbs2TPPqUFSmJsDAABgXszinGZXp7WbwhLnuEc0NxoNSVI+n9fCwoLa7bby+bxKpdJgW9JYxPXs/v37Tu/EBQAAAABMzrgFvb134hY9pwhJYG4OAACAeTFPc5pPP9nVp5+8MIf/wcfPh37f6/XU7XYlSRcuXNCNGzckSbdv39adO3fUbre1s7NjjncUFnEBAAAAAAAAAAAATIUXOj30rtn/7PY/0/1b/zTx+PoLuKVSScvLy4Pv6/W6wjBUu91Wq9VSuVxONF4WcQEAAAAAAAAAAABMtT914w/r3/3GHzKH/61vf1//xzf+3sjtuVzuyHfValXtdlvb29ss4s6dpZvOQaIN92iC4JZjCPd0WWwFj53DRJElJj/5scQTBJZ4XOvTXRQZ8uJendIlQ14y229sYSxlbRE4V5B7XrZM7dnA0G4C0zhg6WuGeJYM0XgYB0zj0yND/i/56gN+6nOmzlObfsY0U90YzgWXN5rOYbZM7cYXt7SZ6uaacxBTH/DVBixt2lf/tI0drnzlxdM4YODrugvTwaXd0XayK249plGHk4w7Ltpudvk59wPpmIaxJZ1xP27ciUeduEnW4TScP93m29nvD9NoV6eG3ol76sxpnTljP+6PvDz8HcH5fF7S3mOVR2178uSJPeIRTiV+RAAAAAAAAAAAAACYAblcTrlcbvBY5WG+9rWvJR4vi7gAAAAAAAAAAAAApsKuTut5Cp9hd/f21et1dbtdhWF44PuHDx9K2ntfbtJYxAUAAAAAAAAAAACAEZaXl5XP53X9+vUD3zcaDa2urqpQKCQeJ+/EBQAAAAAAAAAAADAVXui0dlNY4nwx5k5cSdrZ2VGtVtPCwsLgXbjValXLy8uJp0ViERcAAAAAAAAAAADAlNjVqbGPPj7JcY9Tr9cTj3cUHqcMAAAAAAAAAAAAABnCnbhZ97Z7kCtqugd6dNM9jA+X3IMEwS3nMPeijnOYxeCBcxjJPW1aMtTNpnsQLy4Z8u9JcM0SytJv3MvA0qZNLG3Nlalt+mo3lnj8tAFLuUVR+vVp6jfvWmKy9BtLPBaWtBnqZsk9iIljPNGGe1681c2me908sOTH0xhl6dOu5w9f55tg09N1p7frIV9jVPrlFkWpR2Hm47wmWfrBh6mkA9ngq93Ng7h9K40yn2Q90ob8m2Rbw3hJX2tSh/651OEs1c8k8+3Wb+LFnfQ1/7S0i+Tnu8nnJf48cTrKPG17j1NO/k7c4x6n7BuLuAAAAAAAAAAAAABm3n+59uv61to/Gbrt02e7nlMzHou4AAAAAAAAAAAAAKbCixO8E/ePrfwR/bGVPzJ02z8Pv6d68W+dJGmJ4p24AAAAAAAAAAAAAJAh3IkLAAAAAAAAAAAAYCo812k9T+H9tWkc8yS4ExcAAAAAAAAAAAAAMoQ7ceFNdNE9TLB00z3QpnuQxcfuYUws+bF4ZIjnktvuQXDLOYoock+XJR6TTU/5eWypm4yWga/2bBoHLGXmHk8UuccSBJZyc89PEBiiMcTjzpB/T+cCS31amMY1Q34CQxj3OPyMA5bx1sJ2zvHTpy1cy802brjzNXba+rSvtuYlGrm2teCaoZw3nIOYWMrM0gZc+00YhioW190jwlRwOS/4Olf5kEa+Z6l8gGmWxm8s8zgOzOv5YZby4mKS+Z7XMo/LbUyLW5Zxjxk/7qTnfy7tIl4ZfWhPzAS90GntprDE+SJjd+KyiOvZ1atXdfbs2aHbVlZWtLKy4jlFAAAAAIBR1tbWtLa2NnTbs2fPPKcGSWFuDgAAgPnxDz77DPPcZ0ISs6tT2k1hwXU3Yw8wZhHXs/v376tQKEw6GQAAAACAGMYt6O3diVv0nCIkgbk5AAAA5sdPfvYZ5kNJPF0oq1jEBQAAAAAAAAAAADAV9h6nnPyduFl7nHK27gsGAAAAAAAAAAAAgDnHnbgAAAAAAAAAAAAApsKuTum58a7Z/2bt1/TfrH176LZPn2XrHcEs4gIAAAAAAAAAAACYeX905d/WH135t4du+zD8F/rrxf/Uc4pGYxE36941hNkwhLl0yxDITbB0M/U4zCzl/MgQ5pIhjAx1s+ke5F7Ucdp/8fED5ziCwDmIjSH/MrTPIDDUjSGeKPKUNqXfR6PIPUxTV5zDLMq9fWrTV5mlP96a43Fsn5HlfGOQ1fYsWdPmzt844MbSpy3nAtv5I7t9bd7H9eBa8ulIKh7LuJbtccAxgOFcGFiuuwws+QdOal7b3bzme5LinkumpW5mLT+zhDJPBuU4G9IYq+Zz/JtcXtIpx3jHTGMeGDc/LnHHOWYYhioW12MfMyt2dVq7KSxxpvGe3ZPgnbgAAAAAAAAAAAAAkCHciQsAAAAAAAAAAABgKrzQ6VTumn2RsTtxWcQFAAAAAAAAAAAAMBVe6FRKi7jZeoBxtlIDAAAAAAAAAAAAAHOOO3EBAAAAAAAAAAAATIXdlO7E3c3Yva/ZSg0AAAAAAAAAAAAAzDnuxMVnbrrtvmSIYvOWe5glx3RJuhddcQ6zeO2Bcxi96x5Ejwxh3nUvA226B1kMHAMY2kAUuYcJXNMlGdunIYyFoR8Em4Y24NqnJef2GV10j8JUnyo6h7C0NW24l1kQGMY1byxjh1t+TG3TNHZY6sY9Hl/16Ss/Fq5ps5SZJf8WtvNH+v3GzJC2aCOFdBwSXHMPY0qXIYylfQaG6wFbnzakzTQOuKXNdP40sOU/u+MN4CJuW6b9zpdZq+9J5ifpuF3OP5PM9zSMLdOQxjRMQ77TSOM05Dtu3NMyDsQ12d+yZql8XPKSbJlPQzvzYVen9TyVO3GTP+ZJcCcuAAAAAAAAAAAAAGQId+ICAAAAAAAAAAAAmAovdFq7xiXOf7j2X+sfrv2/h257/uzTkyQrcSziAgAAAAAAAAAAAJh5P7HyU/qJlZ8auu2/D/87/d+L/5HnFI3GIi4AAAAAAAAAAACAqbCrU6m8v3Y3Y2+hzVZqAAAAAAAAAAAAAGDOcSeuZ1evXtXZs2eHbltZWdHKyornFAEAAAAARllbW9Pa2trQbc+ePfOcGiSFuTkAAADmxSzOafbeiZv8nbgvUjjmSQRRFEWTTsQ8CMNQxWJRnU5HhUIhdrjgWoqJOoFowz2MKS+bhjBLhjBvG8JcuuUcJIpuOocJAvd4tOQej3MZXHKPwsRSn5uGMvPGUDeeysC1fQaBcxSynHEs8VjY0uanrdnGDktMWe47bkxlZjhPWc6HFr7amvP5w9N46+38aWBJmy8+yiDT+fd07Wk6fzx2D+Pj2tPbWGOQ1bZmnedhcqiz47mMBVntmwCAyYp7LknjPBL/95DJXfvGzfc0nJPTSGMa7SfLc52+SdXhtF0f99P7pzv/B32p8D9M/PjfC/+5/rPif5iZ8uBxygAAAAAAAAAAAACQITxOGQAAAAAAAAAAAMBU2NVL2k1hiTONY54Ed+ICAAAAAAAAAAAAQIZka0kZAAAAAAAAAAAAAEZ4oVPa1elUjpslLOICAAAAAAAAAAAAmHm/vvZf6p+sfWvott1nn3pOzXgs4mbc5Y2mc5it4LF7RI9uOu1uiUKbt9zDLLmlyxyPDPEYBIEllHva7m1ccQ6zeO2BcxgvNiedgNGiyL1uTH3nkp82bUqbaxyBe14uRxedwzxQxTmMJW2+BNfcw1yOLOcP93iyylSflnOOQZbbmut1x9amocyW3INYzp+mMdoQj6k+Ha+7JMkwFBpYysxXe7b0zwynzdO53QdLX7OwtDVfaQNmDX0H0yzu+WKS7Xwa0jhrKHP/JluWyda3y3Vo0vl2OV7c+WwUGRMz8nguaZzc7yHTMO5P6njShwkfz4/dE9yJ+4dX3tQfXnlz6LbfDX9L/0XxF06StERl675gAAAAAAAAAAAAAJgSYRimclwWcQEAAAAAAAAAAABMhRc6rd0UPi9i3N1bqVQUBMGBT61WSyWfPE4ZAAAAAAAAAAAAwFTY1Sk9Nz5O+bjjjtPr9RSGocrl8oHvb9y4kXhaJBZxAQAAAAAAAAAAAGCs27dvq16vH1nETQuLuAAAAAAAAAAAAACmwt7jj5Nf4tw95u7e9fV1vfrqqwrDUIVCIfH4D+OduAAAAAAAAAAAAAAwwp07d9Tr9VSr1VQsFnXu3Dm1Wq1U4+RO3IzbelzxE9G7jvu/bYnkpnuQzVvuYR4Z4rnkHsQST3TRPZogcA+zGDxwDhNFbvsHlrqxtAH5icc1/5KtbvTIEMbgXnTFOYyl3Thbcq+bLUM5B0vuYbLcbqINQzzXDOcP1/ZpGTsNfTqKLGOHH0FgGKMM/cB0PjS0adf+5m3sNLQbU18ztLUgMNSn63WXJBnGAXez1T8tfcDSboJr7mFs/PQD9zhmrd0AmDVxxynGptkwDfU4yTTOUn9wuQaZpfxMtv247D25/MQ95iTL3PRbQmKyXz5xuZVjzHTG/U3R6XeaZMso6TIPw1DF4nqix/ThhU4fe9es9bijLC8vK5/P64MPPlCr1VK321WlUtHy8rIajUbiaZG4ExcAAAAAAAAAAADAlNv95FN9+tG/Nn+ef/yDkcfO5XIql8uq1+va2dlRs9mUtPeI5Xa7nUp+uBMXAAAAAAAAAAAAwFTY1amhd+L+09v39c9upfuI475yuazt7W0tLCyo0WioVColHgeLuAAAAAAAAAAAAACm2h+68b9U/ht/0hz++9/+Tf3Xb7wTe/9SqaRCoaBut2uOcxwWcT27evWqzp49O3TbysqKVlZWPKcIAAAAADDK2tqa1tbWhm579uyZ59QgKczNAQAAMC9mcU6zq9N6Puz9tWdOKzjzo+bjBi//Xucw+XxevV7PHOc4LOJ6dv/+fRUKhUknAwAAAAAQw7gFvTAMVSwWPacISWBuDgAAgHnBnCZdvV4vtbkFi7gAAAAAAAAAAAAApsILndZuCkucL4bd3TtGr9fTw4cP1Ww2E0+LxCJu9r1rCPPIEOaS4/5vG+KwWLrpHCS66B5NoFvugS65py2w1M2Se5B7G1ecwwTBA6f9o8iQ/8BQzoY2oE33ICaGutElQxnIvQwWTWXtuH+Wy9lTPEHgKZ7HhngM9RNtuO1vGjsN7dk0dpgYxhvLecqxnCUp8NXfHFn6wOXI/aL2gandOAcxiSL3MJa0+WgDlnO7L77GAdP1zTVLTJaydi8D1/xY2qalD1j4uvbMcj8A5oFLv43bX+nX2RW3vue1DukP481SXqTpyI/bdd805Cf5NE7DuGabvyQj6XynMu/fTGHuGXNNII157zSMLVa7OqVdxwXXuMcdpn/HcqlUUqPRGDxC+fr162o2m8rlcomnRWIRFwAAAAAAAAAAAACGyufzKpfLarVaKhaLWlxcVC6X0927d1NbwJVYxAUAAAAAAAAAAAAwJfYep5z8nbijHqecy+VSe2TyOMPvCwYAAAAAAAAAAAAATAR34gIAAAAAAAAAAACYCrs6pece34k7KdlKDQAAAAAAAAAAAADMOe7EBQAAAAAAAAAAADAVdnVau8Ylzt9Z+8/1O2t/a+i2F88+OUmyEscibtZt3jIEuukc4l50xWn/xWsPnOPQI/cgetc9SPDYEM8j9zK7fNH9JdZbjyvOYe5tuNWNJC0G6ddPELhHoSX3crb0gShyjycILH3NwlAGS4ZoNi1hXMvAUp/uQSQ/46AtHnfRxgy1T0ufNvHV1vwwjZ8WlrHDlWGM3jLkP/A2Driz1aef/FjOh65M45Nh7PB1bvc13try4x6Pexg/bdNSzj7as2RJ24eppAPZ4NIefLXRWUc5zhfqezyX8ok7XlHmyeD8gFGmob6jjXj7BRP8XSWNeVn8uplgHcZMo7/fCWfX71/59/T7V/69ods+Dv+Z/lHxz/tN0Bgs4gIAAAAAAAAAAACYCi90WrspvBP3RQrHPInMLeJ2u13VajW1221JUqlU0t27d5XL5Y7sW6vV1O12JUm9Xk+NRkP5fD4z+wEAAAAAMI2YmwMAAADIqhc6ldIi7qnEj3kSmVrEDcNQb775pkqlkhYXF3Xv3j21Wi2122195zvfOTBZLBaLyufzajb3HmnbbrdVLBb1/vvvq1AoTHw/AAAAAACmEXNzAAAAAJi8TC0p12o1dTodNZtNNRoNPX36VKVSSb1eT7dv3z6wXxiGunv37uC7UqmkfD6v69evT3w/AAAAAACmFXNzAAAAAFm2+9njlNP4ZElmFnHDMFSlUjny6KN6vT7Y3re+vq58Pn/kMU5vvfWWwjAc7Dup/QAAAAAAmEbMzQEAAAAgGzLzOOVCoTD0kUf97/qTszAM1ev1VCqVRu773nvvSdJE9kv8sU2PbjoHuXyx6Rxm8fEDtwCbt5zjuLxx0TnM1mbFEI97/reuucdjSZseuQdxrhtJWnIP4tputpYM+Te0G4sgcA8TRe59LbjmHo82DWE8sZSBK0vdWMZBXXJva6Y2YMhPEPjpB5ZyCx47BjC1Z0/5l6U9G9K2aYjHMEabytrTmOvFkqGcDfkPgvTHQUnG/LgHcR5vLOkyiDa8RGPkaezwxi1ttnNhlvMPC+bmn/NxfZxFafTreS1LwBf6mF9plHfcsZe6Tg5lfpzJtfPYv2kZfv9LittvgnHTOaky/zDxeH3Y1Sk9T+Gu2d3s3PsqKUN34o7S7XYlSQsLC5Kkhw8fSpLOnz9/ZN/+d91ud2L7AQAAAAAwa5ibAwAAAIBfmbkTd5RWq6V8Pq/l5WVJe39xK+nIY5P2f9ftdie233E+/vhjffTRR8fu93mAQ//+wpm9DwAAAADghJ5/9rH6YVIJyby5n5sfcubMGZ05w9wcAAAAkzafc5q999cmv8SZtXfiZn4R9/bt23r//fcH/x42UTus1+tNbL/jvPHGG8fuM9ZfuCmtvHOyYwAAAAAAJP1dSd+adCKmAnPzg27evKl33nnnRMcAAAAATo45jasna+/p6dq9odtePPvEc2rGy/QibrVa1d27dw+8yyafz0saPinrf5fP5ye233G+9a1v6atf/eqx+/W98k8OfcFduAAAAACQkD8m6adOEP53JP1yMknJMObmR3EXLgAAALJhPuc0L3TafNfsKyv/vl5Z+feHbvtB+Ov67eKfOUnSEpXZRdz19XVduHBB5XL5wPf9ydiTJ0+OhOl/VygUJrbfcV5++WV98YtfPHa/zwPE3xUAAAAA4OIlnWxa/IWkEpJZzM0BAACALJvPOc0LnUrl0ccvdCrxY55EtlLzmVarpV6vp9XV1SPb8vm8crnc0HfchGEoSVpYWJjYfgAAAAAAzALm5gAAAAAwOZm7E7fdbuuDDz5QvV4/sm19fV3Ly8taXl7WnTt3jrwPZ3t7W/l8XqVSSZImtt+kbV2ruAfavOUY4KZzFA++FDiHCRQ5h9kKHjuH0ZJ7EFOYS57iMXggt3ZzZaPpHMfWpnMQWdqapcwC9+bprW6iDfcwgaGsncvgkXscJoZ+E0WGduPLI0PaLrmO0cYwrmmz9AFP40DkfvpQEFjajaGcLWVgajeGeJwZ8m8Z152vU4xMbdpTGzBxK2vb+ca9PoPAU7sx8dPWgmuWUH7GQh8s52nTtZqBa9rCMFSxuJ5SaiaLufn0iDuuxm3faVxLJ51GwBeX65Z5bb/T0L+nIY1pmIZ8TzSNS/GOOa/jQBpzibjlk8a1f+w5WOz5+iTbRfzj2ebf0+G5Tul0CnfiPs/Yva+ZSk0YhqpUKur1eqrVaoNPtVpVsVgcPDapXq8rn8+rVqsNwrbbbbXbbTWbny8sTWo/AAAAAACmFXNzAAAAAJi8zNyJ2+12VSwWJe39Ve9huVzuwF/T7uzsqFqtqlqtDsJ3Op0j776Z1H4AAAAAAEwb5uYAAAAAsu6FXtJuCkucL7KzbCopQ4u4+XxekeM9+o1GI9P7AQAAAAAwTZibAwAAAEA2ZGYRFwAAAAAAAAAAAADGeaFT2k3hnbgvsvUW2oylBgAAAAAAAAAAAADmHHfiAgAAAAAAAAAAAJgKuzqlU8Y7cf/12t/Qs7X/ZOi26NkPTpKsxLGIm3XvugeJfiFwDhO87fbOI4srF+85h7mnK85hFoOic5jLG03nMFvBY+cwenTTOUh00T2a4JohTHDLaf8ocs9L8Mg5iKkP6G1DGAtP8bjWjSRTW3NmGZ8MQ03gPqSZwkju5WzqB5b6lKE+Df3NebzZcI8j2DTkZckQj2GIjj40nD+/YmjUhvzokiGMZcy1xOPINg74aTfaNISx9E/DeOMnHl/l7KvMLAzXaqY27Sc/tvNh+iz5t5xzbf0GsInbrm1t2f8xkzbJNE6yboCsSaM/JN13ZimNLiZ5fkjn2jRe3JMce6OYv2kEpnliMlzqJun6TqNuko7b6beCzaTzHT/upPtY0uNfGIYqFtdPkqSp83tWfla/Z+Vnh277NPxHelr8k55TNBqLuAAAAAAAAAAAAACmwosXp7X7IoV34qZwzJNgERcAAAAAAAAAAADAVNjdPSU9T37BdXf3VOLHPIlspQYAAAAAAAAAAAAA5hx34gIAAAAAAAAAAACYCrvPT0vPk1/i3E3h7t6T4E5cAAAAAAAAAAAAAMgQ7sTNus1bzkGCtyP3eN513H/TPQoZkrV47YEhIndbj71Eo3sXrziHCQI/ZeAqsJSZazuTbG3N0G/06KZ7mEvuQfTIPcjljYvOYbauucejt912v7dhaM+mPu1en5cjQ5kFzkEUBIa2ZmKIx9A+3YvA0G8seXnbEI9lvNlwP1FFhnNbYOmfntqAsyX3ugkMfc2U/01DuzGM0bpkGQcsfSd9prZpOOdGkaXdeBpvlgzR+GLob67XUaYxzdu50A/3/HyYSjowfSxjG45y6YNxyzzpukkjjXGPSTs7XtJlOckyn4b+4GKW2vk0pFGajjKfZBrTuI6NO9+1XHf7ls51/iTPi0lfDyR6OBi82D2dyjtxX+xyJy4AAAAAAAAAAAAAYATuxPXs6tWrOnv27NBtKysrWllZ8ZwiAAAAAMBo/+CzzzDPfSYECWJuDgAAgHmxtramtbW1oduePXvmOTXJ2N09pSiVO3Gzde8ri7ie3b9/X4VCYdLJAAAAAADE8pOffYb5UNK6x7QgKczNAQAAMC/G/ZFiGIYqFoueU4S4WMQFAAAAAAAAAAAAMBV2n5/Wi09td+JGGw1FmyP+GPcHPzhBqpLHIi4AAAAAAAAAAACAqRC9OK1o17jE+bMre59h/tGvSf+Ln7InLGHZergzAAAAAAAAAAAAAMw57sTNuMvRRUOopnOIB19edNo/eBQ5x7F1reIcRpvuQS5H7vm3pO1edMU5zOK1B85htOQeRJu3DIFuuu1+yRCFxSNDmEuOeZG85efyRUP7DAx9R4Y24NjfFpcM7dnUNt1tBY+dw1jG263Hhrrx1XcMbcC1DLYCD2ONZCszw9h5xXD+tLQ1LbmXQRS5hwl81I+lTxvyr01LmblHEwTuYUxt2sJ0PnTbPdowxLHhKf8Gpn5j6NI2ln6Q/jk0CPyMTxaWMc2SNtcwe++P4p24QFJ8jSknkUYapyHfk+RyDpilspxkXtIo81mqm1kTfx40uXZhm9/6j9syD82qSZZP3HmJyxw+8bpx+d0p5m+u6ZT5DI+9z09Jz22PUz72uA6q1aqePHmiZtP9d8U4uBMXAAAAAAAAAAAAAGJqtVpaX0/3j3q5ExcAAAAAAAAAAADAdNg9nc6duLvxjtnr9fTee+8lH/8h3IkLAAAAAAAAAAAAADFUKhXdvXs39Xi4ExcAAAAAAAAAAADAdNgNpOcOL0Z2Oe4xarWaarWacrlc8vEfwp24AAAAAAAAAAAAADBGGIbq9XoqlUpe4uNOXAAAAAAAAAAAAADTYVfS8yHf//CTvY/Vv/p45KZer6darabt7W378R2xiJtxW0HFOcy96IpzmOC7kdP+ly82nePYets9LxaWMtOSe5DFxw/cAxlEG+5hAt10j+eB26MHgv/Krc1Iki7dcg5y72LHOcyiis5hZCgzyT0/W9cM8RjapzYNYR5ZysCVjziM/eaaISJTORvCvGsIYyjrrRSeQHKEp/ZsawPu54/IMBQGgfvYEfjq047jdBS5xxEY2pmlnE0M7fPyhvs10QO5tzXTGLWU/phrqU9fTGkzjNGmujFcQ1i49lHT+BQYrjtNfdoy3rjnxzKuAVL89kYbA9zRb/yjzGdD8vU4uXaRRpuchnO3S9xJ58c2z0lI3Ln5Zvzr/UnOXRlTUzJqEbdxW/qldObc169fV6PRSOXYo7CICwAAAAAAAAAAAGC6/W9uSF//hj38P/22dO2NI1+vr69rYWFB+XzefmwDFnEBAAAAAAAAAAAATIfnGn4n7qkz0o+esR/3Cy8P/brRaCgMQ1Wr1SPbWq2WgiBQoVBQp+P+ZNFxWMQFAAAAAAAAAAAAgCHq9bp6vd6R7yuVigqFgm7cuKFcLpd4vCziAgAAAAAAAAAAAJgOzyV9mtJxhyiVSkO/z+VyyufzKpfLKSRGOpXKUQEAAAAAAAAAAAAAJtyJ69nVq1d19uzZodtWVla0srLiOUUAAAAAgFHW1ta0trY2dNuzZ888pwZJYW4OAACAeTGTc5oXknZTOm6GsIjr2f3791UoFFKNo/JXt5zDvLMZuO3/duQcR3TROYj0C27pkqQrG/ecw2wFj53DaPOmexgLQxlo071+giXHMO86RyHJvcwWrxmieeQe5PLFpnOYrcA9P9GGcxA1dcU5zOJm0T2iS+5BfIjcm7OC4FbyCUnKJcPYsWSIZ9O9DKIP33HaP/iKoXIM6bLx0z8DwxBtSZupDVj69JJb2iz5t/TpK7KM0RX3iAzlbLmGsDSby1H6ZRBsOkdhKrPLG5a8GK7VLCz95pGhTxvKOoo8XXs6svRpG8N5LaEyG7egF4ahikXDdRcmLvm5eTb7KDAJcedjWT23wU3S9Z1G+5mGNkm+x3NJo2X+6Ns01E3s30g2km+Tl2MuJGyl8Pt83PlNGr89BpbfwY875oF0vjVirw8lrScf+Zx4+vRpqsdnERcAAAAAAAAAAADAdNjVyPfXnvi4GcI7cQEAAAAAAAAAAAAgQ7gTFwAAAAAAAAAAAMB0eC77nbj/+Zr0t4a/I1g/zNY7glnEBQAAAAAAAAAAADAdTvI45T+5svcZ5r8Npb9YtKYqcTxOGQAAAAAAAAAAAAAyhDtxM++Wc4jgu5F7NI/cdo/OBc5RNHXZOUzlP3IOouL/edE5zNaSocw23etGj246Bwm+8o57PBau+THkRZvuQfS2IYzBVlAxhDK0AbmX22Jg+MufJR/1Y8m/u+CaIS+G9hlddI8mCNzLIDIMN5Z4LGVw5cuOheB47thjqM9LntqapZw9iTYM5bbhHiS45h7GOQ5Tv3HPfzO64hzGNN6auJfBVmBoA0uO+xvO05GhnUnu51z3K0+P462J4ZrQlDZDu/Egy+MtMMvi9j3LeRfYb5JtKP45Jl4aLdcTk5B0/3Y5Vydd32m0n6Tz7ZLGWaqbNOJOI9+TFMScuMTOt9McfTLtfJJtUpMcox1+d0u8zDfjxx3nPBaGoYrF9djHzIyT3Il73HEzhDtxAQAAAAAAAAAAACBDuBMXAAAAAAAAAAAAwHTgTlwAAAAAAAAAAAAAgG/ciQsAAAAAAAAAAABgOnAnLgAAAAAAAAAAAADAN+7EBQAAAAAAAAAAADAdnkv6NKXjZgiLuFm3dNM5yL2NK85hvqmvuwX4rnMUWgyKzmEuR47pkrT13YpzmOgXAucw+rJ7kObFjnOYxUcPnMPcu5h+G9i65hyF7kXu6VoM3PPvSxS598/A0NT0yD0evWuIZ8lx/7cN6brkHkSbtwxh3IMEhvHWUjfe2oDBVvA49TguR03nMFuGeEzlbGKoG9e+JmN+DPE4951HhjguWfqN+zgQRe7njyhyDuKtbqIN9zDOafPVNj2xpM3Xud1XW3OPx1f/9HNeA/yK1xfi9uU0+kkax4w7Bkyy309DGidp1spnGtKZRpnH3Xca6jv+NU/8a5C4+ZmG9uOSxqTre5Ll45bvFBNyrLjtMmZ+3o4fc9w5Y9zyCWL/9pt8m4zPZZyMt1/8a7XYUSuw/HY0lks5Zn9cM9tVOo8+ztjjlFnEBQAAAAAAAAAAADD7/vaatL02fNsPn/lNyzFYxAUAAAAAAAAAAAAwHXZlf/Tx/3xl7zPMb4bSTfenyqbl1KQTAAAAAAAAAAAAAAD4HHfiAgAAAAAAAAAAAJgOJ7kT97jjZgiLuJ5dvXpVZ8+eHbptZWVFKysjbuEGAAAAAHi3tramtbXh70t69ixb70tCfMzNAQAAMC+Y00wvFnE9u3//vgqFwqSTAQAAAACIYdyCXhiGKhaz874kxMfcHAAAAPNiJuc03ImLTNi85Ryk8mDLPcw/cgsTPI2c49Aj9yBb19zDWDS/fNk5TOUXHriHcQ4h3bt4xTnMN/V15zAPHFPX3HBPV6YtuQcJHlsicu/Tly9edA6zZWltbzvuf8k9L1q66R7mbUOYd92DOOffGo+hDeiSoQwsHqUfz9Zjy0joiaV9GkQb7mGubDSdw2yZBinHMrCMAxkWBJZQ7mUQbbi3NVPaXM9tm+5RRIZLwiDw1G48jGl73PNja2vuvJW1I0u6oshXfQI2cdvoJPtl3Lhd+lvS+U6jr09DGpGcpPvYJNtkGtIYq5LOT9zrS1/XUyeNexrqe5LSOTclG3ca9Z1Gvid1jeE2J5xcm5zstUi8/SbXLj6MfTz4xyIuAAAAAAAAAAAAgOnwXOnciZvGMU/g1KQTAAAAAAAAAAAAAAD4HHfiAgAAAAAAAAAAAJgOvBMXAAAAAAAAAAAAADLkJIu4f29N+vtrw7d9+syaolSwiAsAAAAAAAAAAABg9v1PV/Y+w/x/Q+n/WvSbnjFYxAUAAAAAAAAAAAAwHZ5L+jSl42YIi7gZF0U33QN96R3nIM0vX3YL8BXnKHQ5ajqH+frGN53DLF574CXM5Q33/GwFFecweuSeNr3rHuSKY362DGVmc8tLLJc3LjqHsdWne5/euuYejTYNYd522/1y5F5mkqHfXHMv52jDOYiCwNDWlgxjtCxhPLk06QQMZzl/PJB7uwksfS3LTO3TkWWsMbCMN6Y+bRij9a57GF/jjfNYaBk7H7uHsVzfBoEhHstpysB0vW5gGaMs50NXpvbsKR5fdQO4oF2O59LXky7Laagbt7EwXn6mId8uZik/9IfxJpnGKJpY1JgRcduvyzwo8WNuxhuDgs3k+2IafWwaxrU0fjOMk+8wDFUsriceN5LBIi4AAAAAAAAAAACA6bD72SeN42bIqUknAAAAAAAAAAAAAADwOe7EBQAAAAAAAAAAADAddpXO+2u5ExcAAAAAAAAAAAAAMAp34gIAAAAAAAAAAACYDnNyJy6LuDPoyvfuOYf5ur7pFuCRcxTaulZxD7ThHkSbhjCG/Fjci644h1l8/MA9orfdg2wFbvUTRe5xBNfcw1hEH77jHOaK3PvN5ajpHGYreOwcxuamc4jLF93y49pm9txyDmEpZ/eeZms3wVP3ctamexnokXs80UX3aLz0UcMYbek3gaGtRZF7OQeBcxAFlvOULGNH+mUQbBr6wJJ7kC1DOVvyb2I455quVQxh3NuapcwM/cZw3eXruiMyXHsGgZ/xxpI2Hyx58cVX3QCTFretT7J9x43b0m99c0lj0vlmjDreLJXlNKRRmo4yn2Qak447jTEoLrf573yWedwyiju/cZkHJX0OjV8+iUb72TGTbz9J1006fTHeMV3KfFrOJSYs4gIAAAAAAAAAAADAjOis7X2Gef7Mb1qOwSIuAAAAAAAAAAAAgOnwXNKnxrD/1sreZ5h/EUrfLFpTlTgWcT27evWqzp49O3TbysqKVlZGNBwAAAAAgHdra2taWxv+V9rPnmXrr7QRH3NzAAAAzAvmNNOLRVzP7t+/r0KhMOlkAAAAAABiGLegF4ahisXs/JU24mNuDgAAgHkxk3OaXaXz/tqMvRP31KQTAAAAAAAAAAAAAABZ1u12ValUdO7cOZ07d06VSkW9Xi+1+FjEBQAAAAAAAAAAADAddrX3XtykP2PuxO0v4C4sLKjZbGpxcVGtVivVO5l5nPIMevDdRecwV758zy3Au85ReHMvuuIc5pv6unOYrWsV9zBvu4eJzgXOYYKnkXMYPXLb/Yqa7nFsPnYOcjm66BymqcvOYSz1qc1b7mEsHt10D2Poo65jR/DI0M7knpcHhliCwL1uAhnys+QexOSSe5DAkra3Hfc3pMt1rNmLx73dRIbqtLQbLRn656Z7EFM8rvUpKXA/5Xjiabw1tGlTWzOMhZcj9/Pu1mPHc5uhr1kYTu22/mkoZ1MXsPTPOWcba9zbQBRRN8ieuOOZS/tNuq27jLlJxz0N/TaNNE5DvqfFLJWl7fpnvEm23/jn/+THybgmOUanEXfykj8/xG/nkzsvuog7PwyupRH35K4HJsVlXhG7blLoi0kfM7u/3cy+RqOhTqcz+HepVNKTJ0/UarXU7XaVz+cTj5M7cQEAAAAAAAAAAABMhwnciVutVo9897WvfU2SUlnAlbgTFwAAAAAAAAAAAMC0eC7p05SOO8KwhdoPPvhAy8vLKSRkD4u4AAAAAAAAAAAAAKbb7id7H6tPP4696/r6unq9nppNw6snY2IRFwAAAAAAAAAAAMB02NXwRx//2m3p2+m+07nVaun27dsKw1CStLCwoO3t7VTiYhEXAAAAAAAAAAAAwHT7t25Il75hD//k29L/642xu5TLZZVKJd27d0/ValXtdlu1Wk31et0e7winEj8iAAAAAAAAAAAAAKRhV3vvrz38ic5Ip75o/wQvx4o+l8tpeXlZOzs7kvbuzk0Dd+LOoOAr7ziHiV5ddAtQdY5CwXcj90AGi9ceuAfaTD4dw0QPAucwV753zz2iv+oe5PKG23Pbtx5X3CN55B5k67EhzLuGtL3tHkSbN93DLBniuWQIY4jHfexI97EUfcGSeznfizrOYRYNbc3EMt5Y2o2lTV9yq9Mocq+b4JpzEFt79lWfvpjq0xKRY7829E9LH/DW1jbdx7XA/dQuyT0/D+R+bgtMbcBN5OfyTpYys6TNVp+GeAxtzcK17wRBNtMl2erGT34+9BAHZoml/Sclbp9wSWMax0zaJNM4DeUzSZTPeGn0xTTEPUfHvTbzdT02TNwydynvuMdMI+7419CTaz+THHvjlk8qY1DsebFD3Wwkm87YbdJl7p34PCj+8YIg2fJJYxzAdMrn8yqXy2q326kcP3OLuN1uV9VqVY1GQ/l8fug+tVpN3W5XktTr9UbuO6n9AAAAAACYZszNAQAAAGRW/07cNI7r6Pz583r99deTT4sytIjb7XbVaDR0586dsfsVi0Xl83k1m3t3DbbbbRWLRb3//vsqFAoT3w8AAAAAgGnF3BwAAAAA4mu322o0GqkcOzPvxD1//rzq9brK5fLIfWq1msIw1N27dwfflUol5fN5Xb9+feL7AQAAAAAwzZibAwAAAMi855I+TeEz5u7eYrGoarWqXq83+K5Wq6larapUKiWZu4HMLOLmcjlJexPGUdbX15XP5wf79r311lsKw1BhGE50PwAAAAAAphlzcwAAAAA46vXXX1e73dZrr72marU6WMBdXV1NLc7MPE75OGEYqtfrDV3N7j8y6b333pOkiezHY5sAAAAAALOOuTkAAACAiXsh0/trYx13hLQemTzO1CziPnz4UNLwvwbuf9ftdie237QL/qvIaf93LgXOcUR/xT2MvuseJNh0y4vdLecQwe++4xzmsnMISZvuadvavOkYwj2OKHKNQ2rqinOYxbcfOIfRu+5BLKIN9zDB24aIPOTHUp9X1HQOs/XYOYgWH7u3geiiezyBYVjzxZQfudWppT6linOIyxuGdnPNEI+h0LYC97FQjuUsSbrkJx7XMtgy9QHD+TNwz0tkuBwINt3DaMlQn4Z4/Iw3hrq5Zsi/gak+Tf3TneV8aKvP9MvakhdffKXNV7uZZszNTyZ+/0++LabRjyY5biTdX+MezyXPWR5XXaUxPsYtn0nGPS0mmR/Lddr442W/blzSmMbYMjkTHPOvxd836bJM5/owbhqTb2uTNMlxP+61VRp9Mfn5fPzyiRf3h+aUTNRzjX308YmOmyFTs4jbf8b04ccm7f+u2+1ObL+4Pv74Y3300Uex9z/szJkzOnPmjDk8AAAAAGDPJ598ok8++WTfNz9wPMIPk0zOVGBuvoe5OQAAALLhpKuZ8zenmSZTs4g7bKJ2WK/Xm9h+cb3xxhux9x3m5s2beuedd050DAAAAACAdPv2bd26lf27FrKEufke5uYAAADIhr8r6VuTToR/u7KvXf/W2t5n6HGfWVOUiqlZxM3n85KGT8r63+Xz+YntF9e3vvUtffWrX429/2H8pS8AAAAAJOPGjRv6xje+Mfj3K6/cdjzC70j65SSTlHnMzfcwNwcAAEA2/DFJP3WC8PM3p9EfXNn7DPP9UPr7Rb/pGWPqFnGfPHlyZFv/u0KhMLH94nr55Zf1xS9+Mfb+AAAAAIB0HH0k7o86HuELSSZnKjA3BwAAALLkJZ1sqW9K5zTPJX2a0nEz5NSkExBXPp9XLpcb+o6bMAwlSQsLCxPbDwAAAACAWcfcHAAAAAD8mJpFXElaXl5WGIZHHp+0vb2tfD6vUqk00f0AAAAAAJh1zM0BAAAATNQL7b0XN+nPC5+ZOF4QRVE06UTsV6lU1Gq11Ol0hj4K6cKFCyqVSmo0GpKkdruthYWFI/tPar9RwjBUsViMvf9JBNfcw0S/EDjt3/zyZec4vqmvO4f5ur7pHMZiMXjgHmjJENHbhjAG0Tm3+pTc63TxsaHM3nUPYrJ5y0s0l6OLzmG2rlWcw9zbuOIcxtSmnRnKeemmc5Bowz2aK2o6h9kK3OvG5JEhjKe+YylrV5ZzlImnccDSpi9v+GmflyNLPI/dAjxyz7+pPW+6B/F1hRu4n3I98tQPHEWRe7uxlXM287/H0Hcymh9bfbrnxRKPDz7neb4xN09H/PEsfj+J2z/i9r2s9jeracj3NKQxDWnke5JlST2Ol/RY5WKS42Qa+YlrsuNavP3SmLdNssznksPvInF/d4pdh5OMOwWTGyc/lLQ+NXOa/vW8Xu9Ivy+F9P6rUHqYnTleZt6J2+121Wq11Gq1JEm1Wk3ValXlcvnAfjs7O6pWq6pWq4NwwwpzUvsBAAAAADCtmJsDAAAAyLxdpfP+2t0UjnkCmVnEzefzWl1d1erq6rH79v/iNqv7AQAAAAAwjZibAwAAAMi850pnETeNY57AVL0TFwAAAAAAAAAAAABmXWbuxAUAAAAAAAAAAACAsZ5L+jSl42YIi7gAAAAAAAAAAAAAZt9/v7b3GebFM79pOQaLuAAAAAAAAAAAAACmwwtJu8awr67sfYb516H0T4vWVCWORdwZFG0YAn3Jbfdvfu/rzlE8+NKic5gr37vnHs9fdY9Hj9yD3Lt4xTnMYvDAPSKDYClyD/S22+6XLzado/j6xjedw3xT7m1tSzedw0RfDpzDBNfcy/nyhnu5WcpAS+5BXF3euOgc5uty7zfBNUu/qbgH8TQOVOSen2DTOYipDQTBLaf9o8i9r2nTLQ47Q9pkSJuhbrY2H7sHMtTn1jVDP3B1Kf0oJNnas6GYdcm9DVj6gWtf22M4tzmmLbjmHIXpujOr+c++9Nuar/Y8e3UDxBfFnEIE7tOTuRN3/El6zHEb9+LFPQ3joku+4+Zn1vId/5jx9os7XqTBZQxKuh4n2S7SiDvuMdNoa3FNajxNS+JlvuSQ75i/EcS/Hphcu4jN4Xce0+9bY7jMR5Mvy+T7QxrXf3H6QxiGKhbXk48ciWARFwAAAAAAAAAAAMB02FU676+13t2bklOTTgAAAAAAAAAAAAAA4HPciQsAAAAAAAAAAABgOjxXOnfipnHME2ARFwAAAAAAAAAAAMB0eC7p05SOmyE8ThkAAAAAAAAAAAAAMoQ7cT27evWqzp49O3TbysqKVlZWPKcIAAAAADDK2tqa1tbWhm579uyZ59QgKczNAQAAMC9mck7zQtJuSsfNkCCKomjSiZgHYRiqWCyq0+moUChMOjlHNHXFaf/Kd7ec47jy5XvOYbaCinMYLbkHib4cOIcJ/gND17nkHkSP3IPcu+hWn5K0eO2B0/6XN5rOcVhY2sDlyD1tW48Nbe1d9yAmb7sHsbSBb+rrTvtvBY+d48iye1HHOYxrv5GkaMM5iExFbRlvXMfPzVuGOG66h9l0D2K5ugncTwWZjsfCOW2Gc66lPiVDW5N7WzOdPywd9JGhH1j6tKnc3ESRIS8G2e437uXsq9yQvqzP83DULNZZ3DFy1n79mVS+Xcb9pMf7NOKOe0yXvCR9zEnme7Lil/k8tvNZu56aZL7TGQfi7Re37brMBxI/psu8N+bvJJMcq5KPe3JjlYvJ9rG4e8Ysc4ff1uL8Djlt18f99OorHelMCun9JJQ+zE55cCcuAAAAAAAAAAAAgOmwK/v7a//VmvTx8DuTFWXrzmQWcQEAAAAAAAAAAADMvt+3svcZ5oeh9C+KftMzBou4AAAAAAAAAAAAAKbDSe7EPe64GXJq0gkAAAAAAAAAAAAAAHyOO3EBAAAAAAAAAAAATIc07sJN87hGLOJCkrQYPHAMccs5jujDRecwV6J7zmG2HlecwwSKnMPoXfcgeuQeJDoXOIe5Ivdy09tuu1vKWZfcg1hsBe5puxz9/9u7YxhHrjNBwD8Fr2+1cMAZK1EiwOzMSg7kKt0LzL7gDDsRqYkWuzIgMhhc5mticIHtaI6dT0AOYAm30YitZIW7pKlgY00TNg7rvaRp+BIn62kGBmRpra0LRqS61exuVrFIVnV/H1CQpqqr3l/Fx2L99areG6Uv56cZjkEWGY7bO5Gl3/6U+5OhPv/o++mP8z+mjSsiKum/NvHOT9KvE++nPxdW3v9ZhoIyeDfDOqn3J8O+ZDhmWcqpVDKU826WctIXk0WWcpIMP22pv9dZfgu3JcM56uPKb9KvlKHexJtZvgdZpI1tW3FlUeBzx5Zki23zdSBJtvO7trXzIJTSat/d1b9Hq3+v8/6epTnX5X3+WbXsNOVWVswxkl+uvMncrbo/u/xs0sj7tzzV572BOpS3TVzr5L3fZaiTmziOu6wXm5D370Oa7eWep6e6j1H8z3GX56rVP5tVj3maa5bdnQdWP6+tuME0dfKXxa+TXE8jLgAAAAAAAFAOX0bEJl6uKNiYuBpxAQAAAAAAgHLYVGNrwRpxX9l1AAAAAAAAAAB8zZu4AAAAAAAAQDl8GRE5j78dERH/voFtrsGbuAAAAAAAAAAF4k1cAAAAAAAAoBz+HBGVjOv++5OX01KfZdzoZmjEJSIikrSvnf/+56nLqJxleLf9v6df5Ue/HKVe5+OftLdSThY/jg9Tr/Nx5TfpC/rnlH//5i/Sl/Huz9Kv836Gcv45QzkZJPfS/0r8+PUMn2ek/zx/lHw/fTmVlMf6zfTH+eN303/Xsv0WZ6g372epNxnWeTdDMVm+B5n2J60McWU4Zh8mP069zjuVRup14qfpV4n3M6yzJZUMX5601wOVTPufvt4kSfp6U0l7TtuiLPuTRVGPQZa4tnXMbttnk/oaP8vvWgbbOD+9LKe4dQ3ylHe9TfPdWfX7vHqMq+9L3ufSVWNMU27en02a7a0e52rb3OX5cTP7nf/28q5Du9zvTZS9y2vT1c9VK24wzX2nN1f7s8pPVtxemhxsxXt9mzj/rXwPcOX9yb/+rL7fac5/q34fVttaWc5/q1r9mK+6vdXL3sS5N29ykS165eHLaZlkEvFlhvuKG6IRFwAAAAAAACiHLyP7m7jX2cQ4u2swJi4AAAAAAADANabTabTb7bh3717cu3cv2u12zGazjZWnERcAAAAAAAAoj2QD0zUmk0k0Gi+7Wn7nnXciIuLo6Ci+973vbawhVyMuAAAAAAAAwBV6vV6cnJzEaDSKwWAQZ2dn0Ww2YzabxePHjzdSpjFxt+ztt9+OV199demyhw8fxsOHVwymDAAAwNY9efIknjx5snTZZ599tuVoyIvcHACAu0JOs77JZBLtdjtqtdqF+f1+PxqNRkwmk42UqxF3yz766KOo1+u7DgMAAIAVXNegd747LcpFbg4AwF0hp1lfvV5fmj/M51Wr1Y2UqxGXTCpnN3QOvsTP36ykX+fd9OVsy9/GP6Re5x/ib1Ov8/FP2qnX+VEyylBO6lXS+2mWdX6Wfp0306/ycaQ/zpUs9fP9X6Rf5930x+DjyhbKybAvP/rl91Ov83El/WeTRZbvTRYf/ybD/ryffpUPkx+nXued3/xjuhXezFDPIv0671S2cyGZpK+eN46VsUwlw/czSdKfByrpf3YzrZNWln3JJks5GT6bX2YopqC299mkt63vTRbb+N5EbOc8kBT4nAZcbdXv+qrf8TTf0VXLznKuyMsuzzmr7veqMaY5r+92v1f7uyy/O1uXIk/O//Ne/XuT9+e9ibJ3eR7IW5rcsbJqjvH+qp9his/m+/l+Nul+H3L+vFN8F1fN0crw21TZwP3a3MvOcq/zRsX/7Ya56XQaERH7+/sb2b5GXAAAAAAAAKDkPv9qyuqPqf766OgoarVadDqdNcq8mkZcAAAAAAAAoOQeR5ae1jKX9vhxfPLJJxvbvkZcAAAAAAAAoCT+HBH/tmT+TyPiv66x3V9HxA9W+stutxtPnz5dOlZuXjTiAgAAAAAAACX3H76asvrOSn81HA5jb28vWq3WGmXdTCMuAAAAAAAAUBJ//mraxHavd3R0FLPZLA4ODjZQ/kWvbLwEAAAAAAAAgBIbj8fx6aefLm3AHQ6HuZdXSZIkyX2rXDKZTKLRaMTJyclG+8e+bSqV9ANQJ8nPNhDJZVlii0gf27a+oWn3J8txznbM0ityHdjWcdvWMSC92/R5VipZ1irueaDIn01RzzdFrZsRxf48gdtDnlc+PjOKaNXrlk1cq+yybCirNLnGqt+dMnwXN7Hfd5XzPkVStuvjebwR/xQR/3EDJfwqIv7T0uMxmUziBz/4QbzzzjtRrVYX82ezWTx//jz6/X40m81co9GdMgAAAAAAAFASX8ZmulP+cunc6XT6VePx8jduq9Vq7g24ERpxAQAAAAAAAJaq1Wqxi46NNeICAAAAAAAAJfHniPi3DW23OF7ZdQAAAAAAAAAAfM2buAAAAAAAAEBJrPMm7gcR8T+vWPanjNvcDI24FFqS/GzXIVypyLFlsY39ccyKXQ7bcZs+z2zDQBR3/4v82TjfpHeb9gUAuN12ed3imgnS28T3pgzfxTLEWBbO+7Brf//VtMz/iYj/srVIbqIRFwAAAAAAACiJL2Mz49d+uYFtZmdMXAAAAAAAAIAC8SYuAAAAAAAAUBLrjIl703aLQyPulr399tvx6quvLl328OHDePjw4ZYjAgAA4CpPnjyJJ0+eLF322WefbTka8iI3BwDgrridOc3d6E5ZI+6WffTRR1Gv13cdBgAAACu4rkFvMplEo9HYckTkQW4OAMBdIacpL424AAAAAAAAQEncje6UX9l1AAAAAAAAAAB8zZu4AAAAAAAAQEn8OTbz1qw3cQEAAAAAAAC4gjdxAQAAAAAAgJJYZ0zco6+mZT7PuM3N0IgLAAAAAAAA3AGtr6Zl/m9E/P32QrmBRlwAAAAAAACgJL6MzYxf++UGtpmdRlwAAAAAAACgJNbpTvmm7RbHK7sOAAAAAAAAAICveRMXAAAAAAAAKIm70Z2yN3EBAAAAAAAACsSbuAAAAAAAAEBJGBMXAAAAAAAAgC3zJi4AAAAAAABQEndjTFyNuAAAAAAAAMAd8L8i4n9fseyLbQZyI424AAAAAAAAQEmsMybuf/5qWmYaEf8t43bzpxF3y95+++149dVXly57+PBhPHz4cMsRAQAAcJUnT57EkydPli777LPPthwNeZGbAwBwV8hpyksj7pZ99NFHUa/Xdx0GAAAAK7iuQW8ymUSj0dhyRORBbg4AwF1xO3Oadd7EvWm7xfHKrgO4K7744osL/4Uy+vzzz+PnP/95fP7557sOBTJTj7kN1GNuA/WY20CeVz4+M7Lwm0VW6g5ZqDdkpe6QRXmvj/+8wak4NOJuSXm/CPC1zz//PH7xi1+4EKDU1GNuA/WY20A95jaQ55WPz4ws/GaRlbpDFuoNWak7ZOH6uNh0pwwAAAAAAACUhO6UAQAAAAAAANgyb+ICAAAAAAAAJfFlbOat2S83sM3svIkLAAAAAAAAUCDexAUAAAAAAABKYp0xcf/pq2mZTYyzm51GXAAAAAAAAOAO+E9fTcv8v4j4H1uM5XoacQEAAAAAAICSMCYud9yTJ092HUJqZYu5bPGWURmPcdliLlu8ZVTGY1y2mMsWbxmV8RiXLeayxVtGZTzGZYu5bPFCHopU74sUS0Tx4imSoh2bIsVTpFiKpmjHRjzlUaRjU6RYIooXT5EU7dgUKZ4ixVJe8+6U85420TCcnUbcNfR6vWi329Fut2N/fz+m0+muQ8pVGU8kZYu5bPGWURmPcdliLlu8ZVTGY1y2mMsWbxmV8RiXLeayxVtGZTzGZYu5bPFSDGXPzYtU74sUS0Tx4imSoh2bIsVTpFiKpmjHRjzlUaRjU6RYIooXT5EU7dgUKZ4ixUI60+l0qzmH7pQzajQaUavVYjQaRUTEeDyORqMRn3zySdTr9R1HBwAAALef3BwAAO6i7XanPJ1OYzAYxOHh4QbKvJo3cTPo9XoxmUzi6dOni3nNZjNqtVq89957O4wMAAAA7ga5OQAAsA3379+Pfr8frVZrq+VqxM1gOBxGrVaLarV6Yf6DBw9iMpnEZDLZTWAAAABwR8jNAQDgrtrumLjznOP+/fsb2ZuraMRNaTKZxGw2W9ot03zes2fPth0WAAAA3BlycwAA4LYzJm5Kz58/j4jlre3zedsa0BgAAADuIrk5AADcZX+OzYyJu4ltZqcRN6XZbBYRcam7pvPzliWKf/rTnyIi4te//vVa5X/729+Ob3/722ttY1WfffZZ6bqfKlvMZYv3j3/8Y0RE/OpXv4rvfOc7O45mNWU7xhHli7ls8arH21G2mMsWr3q8HWWLuWzxqsfbUbaYtx3vF198EV988UXm9ef53TzfY3tuU25epO9pkWKJKE48RfzNKsqxmStSPEWKpWh1p0jHJkI8VylavYkozrGJKFYsEcWKp2h1p0jHJqJY8eQZy93Naf71ivlffjVl9Yc11t2AhFQGg0ESEcnBwcGlZaenp0lEJLVa7dKyDz74IIkIk8lkMplMJpPJZDLdsumDDz7YRjrKOXJzk8lkMplMJpMpv6ksOc3vfve75K/+6q82eiz+4i/+Ivnd7363tPxOp5NERHJ6erqV/fUmbkq1Wi0ivn7q97z5vPnfnPfDH/4wPvjgg3j99dfjL//yLzOXv803cQEAAG6zdZ9a/9Of/hS///3v44c//GGOUbEKuTkAANy9nOaNN96If/mXf4l//dflb+KuezwiIl5//fV444031tpGXjTipjRPAl+8eHFp2XxevV6/tOy1116Lv/u7v9tscAAAAHAHyM0BAOBueuONNwrTyLppr+w6gLKp1WpRrVaXjq0z78N8f39/22EBAADAnSE3BwAAbjuNuBl0Op2YTCaXum06Pj6OWq0WzWZzN4EBAHzDbDZbet0CAGUnNwfgrpPvAdxuGnEz6Pf7UavVotfrRUREr9eLv/mbv4nxeByvvfba0ieBr9Pr9aLdbke73Y79/f3U60Me1qmH0+k02u123Lt3L+7duxftdtvFIzuR5/m02+1Gu93OMTpYTV71+OjoKBqNRvR6vXjx4kVUq9V8A4Vr5HFd0e12o9vtxv7+fozH4w1GC5dNp9PM52D53fbIzcmDXJis5J9kId8jC/kVWchpNmM+dMvWrvkSMut0Oslrr72WfO9730uazWZycnKSHB8fJ9VqNTk5OVlpG/V6PWm1Wot/p10f8rBOPTw5OUmq1WrSarWSTqeTVKvVJCKSarWanJ2dbTBquCjP8+loNEoi4sL2YBvyqMenp6dJvV5P6vV6cnp6uokw4Vrr1OPT09NLf3t6eppERHJ8fLyReOG809PT5ODgIImIJCJSn0fld7shNycruTBZyT/JQr5HFvIr0pLTbMbp6WnS7/cXx7XZbCaj0Wjj5WrEXcP8i/DNi/P5D+mm14c8rFsPm83mpR+CZrOZRERycHCQZ6hwpTzPp2dnZ0mr1ZJEs3V51ON5guY6gl3J4/q4Vqtdmt9sNpNms5lXmHCled2dXwukueEhv9sduTlZyIXJSv5JFvI9spBfkYWc5nbRnfIahsNh1Gq1S91VPHjwICaTSUwmk42uD3lYpx5OJpNot9tRq9UuzO/3+4vlsA15nk/b7XY8ffo05wjhZnnU4/39/ZjNZjEajTYUJVxv3Xo8nU5jOp1e6pZoOp3qIo6tmNez+/fvp15Xfrc7cnOykAuTlfyTLOR7ZCG/Igs5ze2iETej+YDx9Xr90rL5vGfPnm1sfcjDuvWwXq9Hp9O5cl0XA2xDnufTXq8XvV5P3WXr8qjHh4eHMZ1Oo9VqXbqhCNuQRz3e39+PiLgwJtxkMonpdBqPHj3KMVrIl/xud+TmZCEXJiv5J1nI98hCfsW2uS4uJo24GT1//jwilj/NMJ933WDP664PedhUPZyvM79QgE3Kqx7PL1SazWa+AcIK8qjHg8EgIiJqtVrs7+9HpVKJvb296Ha7OUcLy+VRjzudTjSbzRiPx9FoNOLo6Cja7XYcHx8vTSShKOR3uyM3Jwu5MFnJP8lCvkcW8iu2zXVxMWnEzWjeBcGyp+Xm866r0OuuD3nYVD08OjqKWq229MlkyFse9Xg2m0Wv11skRbBteVxXzJfv7e3FaDSKs7OzaLVaMRwOY29vL++Q4ZK8riuOj4+j1Wotuqrs9XpucFJ48rvdkZuThVyYrOSfZCHfIwv5FdvmuriYNOJmtEpXJ9/saz7P9SEPm6qHjx8/Nj4HW5NHPX7vvfck0OzUuvV4fhHdbDaj0+lEtVqNarUa/X4/ms1mTKfTODo6yilaWC6v64rZbBaz2WxxA7zb7XrDgMKT3+2O3Jws5MJkJf8kC/keWciv2DbXxcWkETej+dgDyyrtfN514xOsuz7kYRP1sNvtxtOnT3XJwdasW4+Hw2Hs7+8757JTeZ2Pl11wz5Oz4+PjzPHBKvKox7PZLBqNRnS73RgMBnFychLVajWGw2H0er28Q4bcyO92R25OFnJhspJ/koV8jyzkV2yb6+Ji0oib0byyvnjx4tKy+bzrLtzXXR/ykHc9nHfh0mq18gkQVrBuPR4MBtHtdqNSqVyYIl52h1apVKLRaGwgcvhaXtcVyy60r9s25CmP64perxfT6XRxLVGv1+O3v/1tVKvVODw8zDliyI/8bnfk5mQhFyYr+SdZyPfIQn7FtrkuLqZv7TqAsqrValGtVpf2AT6ZTCIiYn9/f2PrQx7yrIdHR0cxm83i4OAg1xjhJuvW436/vzQRarfbUa/X49GjRyt1JwLrWLcez7vTum5skrfeemv9QOEaeVxXPH/+/FJSWK1W49GjR4sbEJ78pYjkd7sjNycLuTBZyT/JQr5HFvIrts11cTF5E3cNnU4nJpPJpYuv4+PjqNVqNw4Qvu76kIc86uF4PI5PP/10adI6HA7zChWutE49bjab0Wq1Lk3VajVqtVq0Wi3nY7Zi3fNxv9+P6XS6uLCee/78eUSEesxWrFuPa7Xa0oRxfjPTDQaKTH63O3JzspALk5X8kyzke2Qhv2LbXBcXUMJaarVa0ul0Fv8+Pj5OIiI5OTlZzDs7O0siIqnX65nWh01bpx6fnJwk1Wo16XQ6ycHBwWLqdDpJvV5Pjo+Pt7Yf3G3rno+/qVqtJq1WayOxwlXyuK745vx6vZ4cHBxsLmj4hnWvKyIi6ff7F+arx2xbq9W6Mi+T3xWT3Jws5MJkJf8kC/keWcivyEpOcztUkiRJttFYfJvNB5CPiJhOp9Hv9y91U7C3txfNZjMGg0Gm9WHTstTj6XQae3t7V26zWq3G2dnZZgKGJdY9H5937969aDabMRqNNhIrXGXdetzr9WIymSyeqG00GtHpdDYbNHzDOvV4MplEr9eLarUa9+/fjxcvXsT+/r56zFZMp9M4OjqKXq8XES/faul2u5fGuZTfFZPcnCzkwmQl/yQL+R5ZyK9IQ05zu2jEBQAAAAAAACgQY+ICAAAAAAAAFIhGXAAAAAAAAIAC0YgLAAAAAAAAUCAacQEAAAAAAAAKRCMuAAAAAAAAQIFoxAUAAAAAAAAoEI24AAAAAAAAAAWiERcAAIBbbTqd7joEAACAzOQ0d5NGXAAAAG61drsds9ls12EAAABkIqe5mzTiAgAA3EKTySR6vV40Go1oNBq7Dmepw8PDuHfvXlQqlahUKrG/v7+Y9vb2FvPXMZlMolarRbVa3XrZAABAdnKal+Q0d9e3dh0AAAAA+avX6xHxMrGf/3/RHBwcxOnpaQyHwzg4OIh+v39h+XQ6jf39/bXKGAwG0e12d1I2AACQnZzmJTnN3eVNXAAAgFuqqDc6znv+/HlExNKbC7VaLZrN5lrbH4/HV25j02UDAADrkdPIae6ySpIkya6DAAAAYDMqlUrU6/U4OTnZdShLzbv3uio1nc1ml7oNW9XR0VEcHx/HYDDYetkAAEA+5DRymrvKm7gAAMCdN5lMot1uL8YO6vV6i2Wz2SyGw2E0Go04OjqK8XgcjUYjKpVKtNvtVNuKeJmE7+/vx3g8juFwGPfu3bvUNVa3241utxt7e3vRbrdjMpkslo3H48W4R/v7+xeWDYfDqFQqcXh4eOM+z2az6Ha70ev1FuMmjcfjK/9mHs9wOFx5+U3m5X3z6fCjo6PF/69zw+HZs2dLux3bRtkAALBNcho5Td5lUwAJAADAHXZycpI0m83Fv0ejURIRSafTSZIkSU5PT5NWq5VERNJsNpODg4Pk5OQk6XQ6SUQk/X5/5W2NRqOkVqst5h0cHCT1ej2p1+uLder1enJwcLAoOyKSiEhqtdpiO/1+/1LZ878/v60kSZKIuDTv5OQkqVarycnJyWLeYDC4tM1Wq7WIZf43aZbfZNkxPDs7S1qt1srbuMrZ2dml/d5W2QAAsE1ympfkNHKa20YjLgAAcKfV6/ULiX+SJEm1Wk0iIjk7O0uS5OsbF99M5uc3QdJsa36z4vyNgrl5Oee3MU/MT09PL5Vdq9UuzOv3+8lgMLj0d99M/Ov1+oW4z88/X1a1Wr0U5/ljcNPym8xv/sxv+sz/nWYbV7np5ssmywYAgG2S01ycL6eR09wW38r3vV4AAIDymE6nMZlM4vHjx0uXP3/+/ELXVMu6onrx4kWqbc238dZbb136m08//fTSvHa7HcPhMCaTSdRqtcX8TqcTw+EwxuPxIsZnz57FJ598snxnvzKP8+Dg4NKyeZdng8Eg+v1+1Gq1ODw8jO9+97uLvz+/3k3LrzObzWI6nUa1Wl2MbTWbzeIHP/jBpe7AshgMBlceiyxlz7tW+8Mf/hBvvfVWtFqttWMEAIB1yWkuktPIaW4TjbgAAMCdNR97aTQabX1by26ezG+CjMfjqNfrF5Z989+9Xi+Gw2H0+/1oNpsxm83i/v37N455dH68qW/667/+64h4eVMk4uW+NBqN6PV6MRgMYjQaXYjjpuXX+fDDDyMiLt1QajabK2/jKtPp9NpjkbbsdrsdtVptcTOn0Wgs/h4AAHZJTnORnEZOc5u8susAAAAAdmWe2M//u+tttVqtaDab8fjx4xiPxzGbzaLf78fBwcGFJ9YjXj4x3mw2Yzwex3Q6jeFwGO12e+WyZrPZpXnzGwT3799flPHb3/42ms1mTKfTaDQaMRwOL8Rw3fLrHB8fR0TE/v7+hfmPHj1aeR+uMhgMotvt5lL2dDqNo6OjC9t78OBB9Pv9teMEAIB1yWkuktPIaW4TjbgAAMCdNb+JcHR0tHT5eDze+rZGo1E0m82YTCaLp9KvSq57vV5EvEzwj4+Po9Pp3Lj9+VPZy+KZ3wTZ29uLiFh0z3V8fLx4Gv984n/T8uvMy3/nnXcuzD//pPn5GKfTaezt7UWj0bgQb6PRuHTMj46Oru0aLE3Z86f8z99wqtfrixtSAACwS3Kai+Q0l8uW05SXRlwAAODOmncd1ev1LnXJterT13lvq91ux2g0ioODgzg4OLi2G65ms7kYw+mmLsfmarVa1Ov1mE6nl56wf/78eVSr1cWNk/M3WlqtVgwGg4j4+sn8m5ZfZTqdxmw2i1qtdmXcw+HwwnZ6vV70+/2YzWaLmxGPHz+O2Wx24ebG+fG08ij7008/vfR386f652OHAQDArshp5DQ3lS2nKS+NuAAAwJ1VrVYvjAnUbrfj8PAw9vf34/T0dJE4r5LYrrqt+ZPOy554Hg6HMR6PF+sOh8M4Ojq6dsyn+ZPrDx48WHm/R6NRVKvVC0+Yz7s5e/r06SLB//DDDy/cdJjfKJg/wX3T8qvMnzJf9nez2Sy63W50u90LT5U/ePAgWq1WdLvdmM1mMZvN4vDwcHGTZe6mbsfSlj0fl2uZPLqsAwCAdchp5DQ3lS2nKbEEAADgjuv3+0mtVksiIqnVaslgMFgsOzk5Ser1+mLZ8fFxcnZ2lnQ6nSQikohI+v3+StsajUZXLkuSJDk9PV0s/+ZUq9WSs7OzS7GfnZ0ly1K7k5OTSzGeX//s7CxptVpJs9lMOp1O0ul0kpOTkwvbaDabSa1WSw4ODpKDg4Ok1Wpd2MZNy6861uf3q16vJ81mM6nX6xf2vdVqLV3/+Pg4GQwGi/K+qVar5Vp2v99PqtXqhe2cnJwkEZGcnp5eu68AALAtcho5jZzm9qkkSZLk3TAMAABAepPJJJ49exaPHj2KFy9exGw2WzwxPxqNYm9vb/Fk/Nx4PI7RaHTp6e3ban6Mjo6O4uTk5EK3YMPhMGaz2aVjtI6jo6Not9txPnUej8exv78f0mkAALhITnMzOQ2r+tauAwAAAOBlN1aNRiPOzs6iWq1eGrOoVqstxk06bzAYxKNHj7YU5e5Vq9U4PDxcdJ923mAwiE8++STX8ubjd02n00V3ZZPJ5NpxvQAA4C6S06xGTsOqjIkLAABQAPOxiN57770L40VNp9MYDocxGAyi0+lExMunpqfT6eK/dyn5ns1m0Ww2o9VqXZg/nU7j/v37l26CrKtWq0Wr1VqMOxUR8ezZs+j3+7mWAwAAZSenWY2chlXpThkAAKAgDg8P4/HjxzGbzRbz6vV69Pv9aDabEfF1t1dzp6eni6ep74Jerxff/e53L3Uv1uv14q233rp0IyQv3W439vb24g9/+EPs7e0tbj4BAABfk9PcTE7DqjTiAgAAFMx83KirbmT0er2YTqfx6NGjO/fE+r179y48wT/XbrdjNBrtKDIAAOA8Oc1ychrSMCYuAABAwSwbP+q8u9rt1XA4jIhYeiPIzQ4AACgOOc1ychrSMCYuAAAApTDvZm3eDRsAAECZyGlIQ3fKAAAAlMZsNrv2iX4AAIAik9OwKo24AAAAAAAAAAWiO2UAAAAAAACAAtGICwAAAAAAAFAgGnEBAAAAAAAACkQjLgAAAAAAAECBaMQFAAAAAAAAKBCNuAAAAAAAAAAFohEXAAAAAAAAoEA04gIAAAAAAAAUiEZcAAAAAAAAgAL5/y1UvEIX+hOBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#energyloss in abh von der energie der elektronen\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n", "\n", "a0=ax0.hist2d(energyloss_found, energy_found, bins=(np.linspace(0,1,70), np.linspace(0,5e4,70)), cmap=plt.cm.jet, cmin=1, vmax=10)\n", "ax0.set_ylim(0,5e4)\n", "ax0.set_xlim(0,1)\n", "ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax0.set_ylabel(r\"$E_0$\")\n", "ax0.set_title(\"found energyloss wrt electron energy\")\n", "\n", "a1=ax1.hist2d(energyloss_lost, energy_lost, bins=(np.linspace(0,1,70), np.linspace(0,5e4,70)), cmap=plt.cm.jet, cmin=1, vmax=10) \n", "ax1.set_ylim(0,5e4)\n", "ax1.set_xlim(0,1)\n", "ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax1.set_ylabel(r\"$E_0$\")\n", "ax1.set_title(\"lost energyloss wrt electron energy\")\n", "\n", "fig.colorbar(a1[3],ax=ax1)\n", "fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n", "\n", "\"\"\"\n", "we can see that high energy electrons are often found even though they emit a lot of their energy through bremsstrahlung\n", "\"\"\"\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3EAAAJRCAYAAABbdk1MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5eklEQVR4nOz9bZBbWX7fef4us0SKVrkKmaXdsfRCU3Wze2el2KVaQJUftLGqbhMZKo07ZkwRSapYs7Z2tpmQIiu0q/Z2QimFls1VyCnkasYbjs7dRvLFOHanSLEAmjGj1rrcAFtdnlmFJ4qAylyPPI7uRLUV4bHX052Jrq0xRTaTd19kA5UPeDh/4F7gXuD7icjoLuCPg/8959wDHB6ce70gCAIBAAAAAAAAAAAAAGLh1KQTAAAAAAAAAAAAAAB8jEVcAAAAAAAAAAAAAIgRFnEBAAAAAAAAAAAAIEZYxAUAAAAAAAAAAACAGGERFwAAAAAAAAAAAABihEVcAAAAAAAAAAAAAIgRFnEBAAAAAAAAAAAAIEZYxAUAAAAAAAAAAACAGGERFwAAAJhB29vbarVak04DAAAAAAAAXbCICwAAAAAAAAAAAAAxwiIuAAAAAIxRs9lUpVKZdBoT02q1ZmIXeKPRiKzsVqulSqUy0/2om1arpe3tbeolxmbl/AcAAADCwCIuAAAAMCM2Nzc7f+VyWRsbG53/dln0aDab2tzcVD6fVyaTmfg/xNdqNS0uLsrzPC0tLalQKHT+d5yazaaWl5fleZ7m5+e1vb0t6WARb3FxUfPz89rc3JQk5fP5Tr1tbm6q2WyONddJqFQq8jyv8/fSSy8plUodianValpeXtbS0pKWl5e1vLysfD6vfD7v1DcrlYrm5+c7feH4Amr7+cXFxUgXV6WDds9kMspkMpG9x/3797W8vKxqtRrZe8RZoVBQPp8/8XitVlM+n9d77703gaxmUz6fV6FQ6PwdN+j8b3+mtP/3uEHPAwAAANPsmUknAAAAAGA81tbWOv8/lUrp0qVLJxbT+slkMqrX6/J9X7VazfTaKGSzWaXTaTWbzc5iVnsB7YUXXjhyvFHyfV9LS0uqVCq6ceOGcrmcJGl3d1epVEr1er1TV8ViUYVCQc1mU6VSSb7vjyXHSSqVSkcWG48f8/Lysmq1msrlsrLZbOfxSqXSWdgdJJfLKZVKaWlpSb7vK51On3h+Y2NDN27cOPFc2NLpdGcBOirtvj+K9q7VcZ0nYapUKiqXyycez+VyiT+nktQumUxG+XxeKysrkg4WdJeXl4+0Tb/zv1AoqNFodJ7f3NzU0tJS578HPQ8AAABMO3biAgAAABio0Wio1WppYWFBko4stk1SrVY7spjV/v+j/iN/rVYz7TSu1+uS1FnAbe92PryAK6mzW3h5eVnFYjHWO3ErlYry+fxIO1drtZp831c2m+38HV7Eae8CP76AKx3UZalU0u7urtN7tRc2t7e3T7Rdu+9GvYDb1j5P4qrVaun8+fP6zne+M+lUzBqNhnZ3d8fWluMUp3Zp747vdf7XajU1Gg1dunSp81h753z7Nf3O/1ardWJ37crKimq1Wmf87fc8AAAAMAtYxAUAAACmUKVSOXIZylHL2tjYkKTOJTNbrZYajUZnx+H29rbm5+ePXPq2UCh0clheXu4sWDYajc4lcxuNhpaWljqXIW61Wsrn85qfnx94yeZms6lWq6XLly93Hmv/477L7s1B2pdFdvH2228rm82q1WppeXlZvu+rVCqdiDu8+7bXTtx+bTdKu25vb2txcbFzCe3FxUUtLi72XEjO5XIqFou6fft2Z7esVaFQ0Pb2ducyx4ffq9VqqVAoKJ1O9/xRwMrKypHn2v1jeXlZi4uLJ9pofX29c6zHj926M7ZX/20vbrUXrNqXzO5XP+06OHw551arpUwm07UdD79Hu90OX6r7eNnt549ferrfMTSbTdVqtc75HNZxVyqVTrv361+1Wk2e53XO81qtpvn5ec3Pz3fqqNlsHvlv6eC8ae/87KdQKHQuod3Osd+Y1atvhTVeHT7m+fn5Tr00m83OedmtXdpXF/A8T9vb2506GXTZ+FarpcXFxU57ti/5PmjcqFQqnUuSl8vlnovl7TY5/COV9njWru9+5//9+/clHf1BUCqV6oydg54fpl3CbEsAAABgLAIAAAAAU2VtbS1YWVkJgiAIyuVykM1mgyAIgmKx2PnLZrPB2tpa57/L5XLfMqvVaiAp2Nvb6zy2s7MTpFKpwPf9oFqtBsViMahWq0EQBEE2mw1KpVIntlgsBqlUqvP6bDYbpFKpTnyxWAwkBWtra0EQBMHe3l6QSqWCYrHYM6dSqRRICsrlclCv14NSqRT4vt/3NRbZbPbI8fays7MTSAqy2Wzg+36ws7Mz9Hv2artBz7nY29sLJHXKCIIgSKVSQS6Xc3p9qVQKstnswL5y2M7OTlAul4OVlZVAUiApqNfrQRB83KcO5zPI4WNuv77dh9p83w9SqdSRx9LptPN7tN+nX/9Np9Odft+O932/E18ul4Pj0+2VlZUTefVqw+Pn1t7eXqcO2/XXLYfD5Q86Bt/3O+dbWMcdBMGRHEqlUiffbrLZ7Ik+fryOjvfPVCrVt0zf9zs57uzsBNlsNpAU7OzsDByz2o73rTDGq8PHeLxvHD7Gbu3SHmOKxWJQr9dPPN/N3t7ekXOjW1sdZj2/2+Pv8bY4fE73O//bdXhcOp0O0un0wOfbx2RtlzDbEgAAAIgai7gAAADAFCmXyycWao4vcg2j2yJuEBz8g/rxhah27HGH/6F8ZWXlyMJavV4/sSCQzWb7LjC2/zG+WCx2Fn8sC4KDtBeABi3kthcz2otF/RaY+unXdmG0a7tdDufXrf1c8sxms+ZFjp2dncD3/U67txdPupWzs7MTrK2tdeKr1WpQrVY7C1ztv26LwO32aC9GVqtVp0WvNpf+e3zxsf2ebd0WcdsLce1FsvYx9pJOp7suYLaPN51OHzn2wzm4HMPxxcIwjrsdf3ghuN/5066ndszxPloul48sKrb7QD++7x+pl/aPF9rH0GvM6te3whivjudzuB8cPge6LeIGwcfni/V8DYKP6/n4mLG3txesra0FuVzOPJ60j+PwMbfrpdc5ffj8by/sHtdebB70fLsMa7uE2ZYAAABA1J4JZz8vAAAAgDi4evWq1tfXdf/+fRWLRRWLxUjvX7uwsHDkcpqSet5DMZ1O93zueBntx/pd0rJWqymXy2ltbU3Swf0YFxcXJanrpYzbMa73WJWk3d1dvfTSS13v2dpWLpeVSqVUrVY1Pz+vq1evdu6Ra9Gv7cJo12q1qnQ6feTyqM1m88jlqF3kcjnlcjnVajUtLi72veTqYb7vq1gsanl5ufPfkrre/7Mdu7m5qVwup2w2q83NTaXTaRWLxU7c4f/ftrKyokKhoGKxqJWVFRWLxZ79oRuX/nu8b7rcA7d9b9CNjQ3lcrnOPYf7OV7uyy+/3PPyxIfvNTrMORjWca+trSmfz6tcLve8ZHhbLpdTKpXS9va21tbWOn2pVCqpVCqpWq0eabtyudy573Q/h8eTVCp15Bh6jVkufatb+Ycfc7kEbyqV6tzvuf2/7cuA97O2tqZSqdT1vQe5evVq5zxqa1/22vX8PS6VSqler+vq1avKZDJ6+eWXO7l1K+/4+d8eq4/b3d2V7/sDn++VU7fH+rXLKG0JAAAARI1FXAAAAGBK1Gq1zj88LywsqFqtTjSfVqt15B/Iuy2eDKu9IHP43re+7yuVSuntt9/uuWhnWcyT1LkHaL8F0/ZisiTduHFDy8vLqlQqTotNh8vo1XZhtWutVjuyYNtoNNRqtYZa5N/c3FS1WlWxWDQtAB2Obf//XouHbe2Fwu985zs9FzCPW1lZ0ebmZue+pv0WEnuJov8WCoXO/Ubfe++9zg8QXFnff5hjGPW4i8Vi516smUxG9+7d69tHLl26pNu3b2tlZUWpVErr6+u6evWqCoXCifd9++23h/qBxMLCQt8+YOlbYcjn8517xB6v717acZVKRbVazfm8zefzarVaunHjxpHHc7mcdnd3VSgUtLy87HSf4ePS6fSR9sjn850fK/SKP/7/jx9/q9XSyy+/PPB5AAAAYBacmnQCAAAAAMLRXgxbW1sbamdVWNr/gF+r1Y483mw29corr4TyHrdv35Z0sAB0WJj/wJ/P57W+vt53caN9jO3F5Fwup3Q6rUKhYHqvfm0XVrs2Go0jiysbGxtaWVlxLrPVanUWfNLptKrVqmmhWjroA+0cfN/XysqKarXawIVc6WDnXqPROBHbXqg9rL2zMZ/PD9ztelyU/TebzSqdTuvq1atHfoDgqtlsOr1umGMI47hbrZaazaZWVlb0wQcfyPd9bWxs9H1NPp9Xo9Ho/GAil8up1Wp1/rutVqsNXIztZVC9WfpWGLLZrHzf1/LysnM/KBQKunfvnrLZrHOfbjQa2t7eVrFY7CyEHl6sXllZUbVa1cLCgpaXl7W5uWk+luPv1e+HMofP//Y4ff/+/RMxS0tLA58HAAAAZgGLuAAAAMCUaC9utBdhWq2WKpVKKGX3urRkt0sTp9PpzmVj29oLB4d3HnYr83B5gy6lnEqljuzQai9s9LsMqqv2ew9a4Gzvij28OFosFtVsNk0LIv3ablC7FgqFgYtN7de2j6dSqajVajntTG42m8rn8yoUCp3L5LrsAmw0GioUCkfasX2Z3MP/ncvldP78+a6Lh4e1F+zPnz+vSqWiRqPR2fl3XCqV6uzsPL7QPKi+XPrv8b55/Dzod8nu9fV1NRqNEz9A6OZwHbR3Tvf6UcHhnFyOIZVKdRYtm81maMfdbt9UKqXLly8PvNR0Op3u7KJvt2X7GA+3balUcl68PJxno9E40g+6tY1L3xplvOomn8+r2Wye6J/H20VS59LlqVRKpVLJeXy5evWqfN8/Mu52+0zI5XKd83p5efnEeTtIo9HQ+fPnj4wNg87/VCrVuUR02/b2ttLpdOcy2/2ebxumXcJuSwAAACAyk74pLwAAAIDwrKysBJKClZWVoFQqhVJmvV4Pstlsp9ydnZ0gCIKgXC4HkoJUKhWUy+UTr1tbWwtyuVxQLBaDtbW1YG9vLwiCIKhWq4Hv+4GkoFwuB3t7e8Ha2logKcjlcsHOzk5QrVaDVCoVpFKpoFqtnihXUieftbW1IJvNdl4bhlKpFNTr9b4x5XI5SKVSgaSgWCwGQRAEe3t7QbFY7ORXKpU6xz1Iv7br91y7Lvu9z9raWqedisViJ99+dnZ2glwud6TtLOr1epBOp4NUKhWsra0FxWKxZznVajXI5XKddlxZWQlyudyJY22XKSnwff9E3zie/9ra2onHXeorCPr338N9c2dnp5NTsVg8kmO3et7b2wuy2Wzf9w6CIEin00E6ne708ZWVlSM5tOugXq8HOzs7nXP08DH3OoYg+Pj8zeVyRx4f9rjbdZ5Op4O1tbWgVCodybmf4+dbvV4/0faSnM7vcrkcZLPZYGVl5URf7zdm9epbw45X7THg8N9h7XK65X+4Xdplt8vd29vr5NOuo27vVSqVOuW066F9jg2ys7MTrKysDGy/er3e6S/H28b1/G/3s2Kx2PX9ej0/TLuM+tkDAAAAjJsXBEEQ0fowAAAAAGAMCoWC1tfXe95bM5PJKJvNmnYpN5vNUO9jHCeD6itKlUpFqVRq4G7mTCajl19+2XwfZyAsrVZLu7u7PS9h3Wg0JnrpfgAAAGDacTllAAAAAEiwRqOhV155pe+CZKPRMN9Hsn2J22njUl9RvW/7EtYul6OW+l+WGYja4Utcd8MCLgAAABCtZyadAAAAAABgeL7v911Mad87c9C9SWfFoPqKwvb2dud+ru37KPfTarVO3BMYAAAAADBbuJwyAAAAAEyxRqPR+f/snJucSqWidDrdd2djW6FQUKvV6vw3l1QGAAAAgNnDIi4AAAAAAAAAAAAAxAj3xAUAAAAAAAAAAACAGGERFwAAAAAAAAAAAABihEVcAAAAAAAAAAAAAIgRFnEBAAAAAAAAAAAAIEZYxAUAAAAAAAAAAACAGGERFwAAAAAAAAAAAABihEVcAAAAAAAAAAAAAIgRFnEBAAAAAAAAAAAAIEZYxAUAAAAAAAAAAACAGGERFwAAAAAAAAAAAABihEVcAAAAAAAAAAAAAIgRFnEBAAAAAAAAAAAAIEZYxAUAAAAAAAAAAACAGGERFwAAAAAAAAAAAABihEVcAAAAAAAAAAAAAIgRFnEBACc0Gg1tb29POg3AGX0WAAAAAGYXc0IAwDRiERcAxqzRaKhQKGh5eVmLi4va3NycdEodzWZTy8vLymQyKpVKk05notrtlMlklMlkJp3OzGk2m5qfnx84CY+6z0bRD+hbAAAAGAXfJ8eDep4s5oQAALCICwBj1Wg0dP78eRWLRZXLZeVyOe3s7Ew6rQ7f91UulyedRiyk02ldvnxZjUZj0qmMVbPZVKvVmnQaarVaarVaA8+PqPtsFP1gXH0rLm0JAACAcPF9cjxmdU4oxaPtmROOLg7tCAAYDYu4ADBGGxsbWlhY6Px3sVic+R2vcZZOpyedwtgtLy9rd3d30mkonU4rCAIVi8VJpxJJPxhH34pLWwIAACB8fJ8cj1mcE0rxaHvmhKOLQzsCAEbDIi4AjNEs/oIXybG8vEwfnRK0JQAAAEbB98nZRdtPB9oRAKYDi7gAMAbb29taXl5Ws9ns3K9leXlZtVqtE9NqtZTP51UoFLS0tKSlpaUjz1cqFc3Pz8vzvM4X8VqtpuXlZXmep+Xl5U4529vbymQyqlQqqtVqymQyR2IOa79v+896j95Go6Hl5WUtLS1pcXFRhULhSNmWXPqV1a6Ddr1sb29rfn5e+Xz+RDntY1lcXDwxcanVap16XFpaOvLc9va2PM9zqoNB7XU8pp3P4fv5DHq+m1qtJs/zjtRho9HQ4uKiPM9TJpM5ckzt/tFsNvvWYaVS6bwun88PnPANaotBbTno2CuVSuc86VX3vfqs67nStrm52cklk8kMbAMXg45/1NceroN2/2sfa7+2HNRug/q19Zwe5hgnMW6MY8wAAAAYl1HnKta5gTSb3+8mNSdsH8Ok54XMCftjTjj8MU7zvyUBgFkAABgb3/cD3/dPPF6v14NUKhXU6/XOY6VSKZAUFIvFzmMrKyuBpCNxOzs7gaQgl8t1/juXywWSgmw2G6ytrQX1er3z2sPl7ezsBKlUKqhWq53HisViIClIp9MDj6derwfZbLbz3+VyOZAUrKysmHMZVFa5XA583+88tra2FqTT6RN5ptPpYG1t7UjdSAp83++U1T7Gw+/fjj9eXre6cG2vXC7XyaUdY3m+l7W1tUDSkXarVquBpCPltctsPzaoDtvl7uzs9H3/QeUMastBx76zs9Npo8PltJ9z6bMu58rhYz5ej4fLD4Lu/aAXl+PvVabLa3d2dgLf94+0UyqVClKp1InjOhzj0m6D+rXlnB62fsY9boQ9ZgAAAIxLlHMV17lB+z2n+ftdHOeEQTDZeSFzwv6YE45WP9Pwb0kAEBYWcQFgjHot4qbT6RMTk/bjh790t7+EH/5Cvbe3d2IS0v7SevyL5fEJUC6X6/q+rpOTdDp9JJcgOJg4SAr29vZMubiU1f7CfHxC2tZ+r8PltL/kH5+Atr+MH1YsFoNSqXQirtuXe5f2SqVSJ3I9XA+Dnu+l28SzXd7xY8rlckeOvV8dWv6hpl85Lm3pcuzdJuyufdb1XMlms0cmuu2Y47lZJuwux9+rTJfXptPpE3XVbo92TK+2HNRuLv3a9ZzuJU7jRhRjBgAAwLhEOVexzA2m/ftdHOeEQTD5eSFzwt6YE/YXpzHj8HsxLwQQR1xOGQAmrNlsqtFoKJ1On3iufXmXUqk0VNmpVOrEY7u7u533bV9SZhjtvDc2NjqXODp8WZv79++bcnEpq13GK6+80jWn995778Rjhy8tddjKyoqazeaRywLdvn1bly5d6nXIR3J1aS/f97W5uXnkkjpra2ud/z/o+V5831c6nValUumaX/sSWa1WS61WS77vd54fVIeuepXj2pbDHPuofbabcrmser1+Ir9WqzVUedbzwvradkw2mz3y2rW1NQVB0PU8O2xQu1nGoX7ndC9xGzfGMWYAAACMS5hzFet7ztL3uzjMCduvneS8kDlhd8wJkzUnlJgXAoi3ZyadAADMun73Fnr55ZclqTP5ClO7zMMTOYt23uVyeeRcrGX1mpS0v5DXarUTE4/j/10oFLS9va1isahsNqtWq6WFhYWBEx5Le5XLZWUyGRUKBZVKJZXL5SN5DHq+n/a9WiqVinK5nLa3t3Xp0iVtb2+rVCqpWCzq7bff7nlPmkHH6ep4Oa5tOcyxj9pnu0mlUkqlUqpUKrp9+/bIi9ujnBcur23/A82o7der3boJcxyK27gxjjEDAABgXMKcq1jfc5a+38VlTijFY17InPAo5oT9xW3MkJgXAog3duICQEx0+5Vn+0vgwsJC6O/X/vI96FeSg14fxpf4sMrK5XLKZrPa2NhQrVZTq9VSsVjU2traiUme7/vKZrOq1WpqNpva3t7uObHtxqW9fN/XBx98oGw2q2azqUwmo+3t7SM59Hu+n5WVFUkf/xK2PUHPZrOdMkqlUiduXFzbcphjH7XP9iozk8mo2WyqXC4PtfvgeHmH/zfs14Z53nUT9TgUt3FjnGMGAADAuIQxV3E1y9/vJj0nlOI5L2ROyJywn7iNGRLzQgDxxiIuAExY+1d9hy/F0tb+8ry4uBj6+7a/iB6+bNAwr+926Sap+/GMo6xyuaxsNqtGo9H5dWSxWOwaWygUJB1MaqvVqtPE1tJezWZTqVRK1Wq188vQ9mWIXJ4fJJfLqVarqVKp6OWXX1YqlVI+n1er1dLm5mbn17Lj5NqWwxz7qH22m6WlJS0sLIw8UW8bpS+7vLbd/3r90njYyeu4xqE4jhtRjxkAAADjEuZcxdUsfr+L05xQit+8kDkhc8J+4jhmSMwLAcQXi7gAMEa7u7snfjHavo/N4XvWtN2/f1+pVKrzhfCFF16QdPRL+eH73Fi0J3Lb29tdXzuovPb9VwqFwonL7lh/wR1mWcvLy51fz66trfW9HFM2m+3ch8f10jeW9jr8hT+Xy3V+Hd1+3aDnB2lPcJeXlzuTiFwuJ+mgLof5Rxhp+Hv/SO5tOcyxW/qsy7nSbsPDbd9+bthfdo/Sl11ee7gOjk9IC4XCiV9Gu7alpV+PIo7jRtRjBgAAwLiEOVdpS+K8cJbmhFL85oXMCZkT9hPHMUNiXgggvljEBYAYKJfLnV/LtrUv33Ljxo3Ol8L2l8hCoaBarda5z4108AvDpaUlSW6TjVQq1fmlaSaT6VwKpj3pazab2tzcdH798vKyNjc3tbS0pJ2dnc6X6WFy6VVWe/LRaxLSnsS0X7+9va1KpdL33i7t4718+fLAPNtc2+vtt98+MvlptVryfb/za9FBzw+SzWaVSqU6E4i2XC7XmYAd168O27+qLZVKajabPX/N2q8c17YcdOzdJs6WPutyrrQnt5VKRdvb29re3u6U1Wg0VKlUzP9w4Xr8w742lUp1/rFjaWmp8w81mUxGi4uLnb7Xqy37tb9rvx7l0mVxGzfGNWYAAACMS1hzFde5wax+v4vLnFCa3LyQOWF3zAnDqZ9p/LckABhKAACIXL1eD1ZWVgJJgaRgZWUlqFarR2L29vaCXC4XZLPZYGVlJVhZWQnq9fqJsorFYpBKpYJUKhWsra0FQRAEvu8Ha2trQb1eD+r1epBOpwNJge/7QbVaDfb29o68f7FY7JRXKpUC3/cDSUE6nQ52dnY65e3s7Aw8tmKx2Hm97/tBqVQ6ctyWXPqVVS6Xez7X1s69XfbhP9/3g729vROv2dvbC7p9HB5vs2KxeOT1Lu2VzWY7dbm2thbkcrkjZQx63kWxWDzxvvV6vWv9uNRhOp0OUqlUsLKy0vM9Xcrp15ZB0P/Y6/V6kMvleta9a58ddK60y0qlUp3HgyAIVlZWOq8Z1A96GXRe9CtzUN2126B9bqXT6RPjSRCcbEuXdhvUr63n9LD1M65xI8wxAwAAYFzGMVcJAre5Qds0fr9LypywXWfjnBcyJ/w4l16YE45WP0n9tyQACJsXBEHgstgLAEDcNRoN3b59W+vr69rd3VWr1er8erNcLmtxcfHEfW5qtZrK5XLnF7kAZgdjBgAAwHTh+x0AK8YNAHH2zKQTsGi1Wmo2m/J9n+vNAwCOaDabymQy2tvbUyqVOvE54fv+ifvFSAeXFlpfXx9TlgDigjEDAIbH3BxAHPH9DoAV4waAuEvEIm6lUtHGxoZefvllLS8vn7iXQ6FQOHJj+lKp1PXeEZOKAwBErz0eX716Vevr653PimazqVqtpp2dnc59Y2q1mnzfV7PZVLPZ7HqPIADTjTEDAOyYmwOIM77fAbBi3AAQe5O+nnM/Ozs7QTqd7tzboJt0Oh3kcrnOf1er1SCVSp24D8Sk4gAA49O+340O3b/k+L1hqtXqkedd7vsLYDoxZgCAG+bmAJKC73cArBg3AMRZbO+J276Uge/7qtfrXWMKhYI2Nzc7lztoy2QyktR53aTiAACT0b5/Sa8dGO3dGod/ZQlgdjFmAEBvzM0BJBHf7wBYMW4AiKNQF3H//t//+/r5n//5UMpaXFxUs9nUzs5Oz4Fzfn5eCwsL2tnZOfL45uamCoWC6vW60un0xOIAAAAAABg35ubMzQEAAAAk36kwC/vbf/tv65Of/KT+8A//cKRyNjc31Ww2lcvlek4SG42GWq1W1wlZ+7Hbt29PLA4AAAAAgElgbs7cHAAAAEDyhbqIe+/ePf38z/+8zp8/r8uXL+vDDz8cqpxSqSRJ8n1fS0tL8jxPi4uLyufznZj79+9LkhYWFk68vv1Ys9mcWBwAAAAAAJPA3Jy5OQAAAIDkeybMwp5//nkVi0X9+q//ujY2NpTJZLS5uakLFy44l9FqtToTrcXFRa2vr0uSNjY2tLm5qVqtpp2dHbVaLUk6ct+btvZjzWZzYnG9fPvb39Yf/MEf6Ed+5Ef0gz/4gz3jBjl9+rROnz499OsBAAAAYNY9fvxYjx8/Hvr1f/Znf6Z/9a/+lf7aX/tr+uEf/uEQMxsNc/OP43phbg4AAIBpMK1zmkH+9E//VN/+9rcjKfuHf/iH9WM/9mORlG0V6iKuJH3ta19Tq9XS4uKiLl68qIsXL2ppaUlLS0tKpVLyfV9/9a/+1Z6vb0+ystmsVlZWOo8Xi0U1Gg3VajVVKpWuE7XjWq3WxOJ6+YM/+AP94i/+4sAyAAAAAADJ8Pf+3t/T3/ybf3PSaRzB3Jy5OQAAAOAqjnOaXv70T/9Un/h3/119L6LyT58+rW984xuxWMgNdRH3lVdeUavVUj6f10/91E/p5ZdfVj6fV6vV0u3bt7W2tta5/NL9+/f13HPP9Syr24Qsn8+rVqupWq1qeXlZUvdJWfsx3/c79+0Zd1wvP/IjP/L9//eapL/QM+5jP9Pj8R/4/t/H6vVPOpT3sUym5Bj5tur1e6ayJ+3ixYu6c+eOc7x7XUj1en5wkJE130n76KOP9Oqrr+rdd9/Vq6++5fy6KOrO1Tjq2NKPpN7/YHbgb0n6Tzr/ZT2/JyFJ/fhwH3722WcnnY6zuNZx777/tqRLJx6d5FjQT1j1O67PlCT24351bBtDx9OP4nrO9ZOknJPYh6Vk1bFEvoOM+qv1f/JP/ol+5Vd+5dA8Lx6Ym38c10u7zf7u3/27+smf/MmecYOEuRM3TudrnHKR4pNPHD+74lI3UrxykeKTD/2mvzjlIsUnH/pNf3HKRYpPPvSb/uKUixRePtM6p+nn29/+tr4n6eclhb13+NuS/v7jx/r2t789fYu4e3t72tzc1M///M+feO6nfuqntL6+rlKppGaz2XOS2G8i1n5ud3f3yP8/rv1YOp2eWFwvH1+m6S9IerFn3McyDjH6/vuec4498KOOcc/0PaY4Onv2rDFn17ro377Dsuc7We17an3qU5+S9IfOr5vkMY6njt37kfTjA54/cyTGfn6PX5L68eE+3O8fLeMmvnXcq+8/0/W5eB5DmPU7ns+UJPbj/nVsGUPH04/ie871lqSck9iHpWTVsUS+4zLK5XijwNzcfW7+kz/5k/qZn+n14+nxilP/j1MuUnzyieNnV1zqRopXLlJ88qHf9BenXKT45EO/6S9OuUjxyYd+01+ccpHil0/c5jQu/oKs/5o0WOiXLx5RqPl89atf1a/92q9JUtfJ4vPPP6+1tbW+ZaRSKaVSqb73rnnllVfk+37PuEajIUlaWlqaWBwAAAAAAJPA3Jy5OQAAAIDkOxVmYb7v6+233+46SbQoFotqNpudiVfb/fv3JR3ck0eSVlZW1Gg0TvwyuFqtyvf9iccBAAAAADBuzM2ZmwMAAADT7hl9fOPRsP7ithPXaRF3bm5On/zkJ/XLv/zLnS35UVpZWZHv+7p69eqRx0ulktbW1jpbzIvFonzfV6FQ6MTUajXVajWVy+XOY5OKAwAAAAAgLMzNmZsDAAAAmB1Oi8pBEKharerFF1/sG3fv3j198MEHunTp0sjXXN/Z2VGhUOhcJkmS8vm8VlZWTsTl83nl83lJUrPZVL1eP3Et8UnFje6uc6TnucdKUhBcc4r7iZ+4Lc+7Hnq5kkzlHrjgGPfIWLZruXbegkPQdw/igpO3c+pdrvfAOTYIorufalTtbSk3LsLM+Sd+4oz+5E+ivw9ulG1iP7/Dz6N3Dn8mSXr++Q1Jw93vIYl9NCq96uInfuK2/uRPRqunJI4bcckjaag3ABiMufkk5+bA5PT/Tvw/yPOu810KAADMnDmFv3N2LuTyRuV0fL7vD5wkStL58+d148YNzc/Pa3l5Wb/3e783UnLFYtEprlQqxToOAAAAAIBRMTcfLQ4AAAAAksTpcsrtX9u23blzR5cuXdLv/u7v6v333z/y3NWrV/W5z32OSxdNkdXV1UmnMITLk07A5kwS6zhZktaPk5avlMyckyZpdUy+OC5pdZy0fKVk5pw0Satj8p0uzM2nW5z6f5xykeKXT7z8xUkn0BG3dopbPnESp7qJUy5S/PKJkzjVTZxykeKXT5zEqW7ilIsUv3ySaBbuiesFQRAMCvrZn/1Z/cN/+A+PPNZqtbSwsKBMJqNsNqv19fXOZZrazz19+jSarBPsH/2jf6RXX31V0i9KenGiucThMrjRXU5ZslyK2lKu9dLETpdTbpedkMspf/jhh3r++ef13e9+13R5tiReFnXazfbllH9H0q+JyynHG+NGb8OOxUBc0IcxDdrzu3fffVc/8zM/E/n7MTcPz7jbDtNhUp9dLt+JZ+27cJLwnQfDoN9gGPQbDCOJ34sbjYYymYx+TdKPhVz2n+rgX43jcouWoReVU6mUfN/XvXv3TgwI7ecAAAAAAEB0mJsDAAAAwHRyupxytVrVr//6r+trX/vakcfn5+d7/qIjlUqNnBwAAAAAADjA3BwAAAAADszC5ZSd8ykWiyoWi5KkpaUlZbPZvvEvvPDCaJlNuXff/d86bU23XDLXdvlg66VOLZcxdhfl5X48z70+LJcbjuoSsQfc6yPsSyQPKw6XOrW2CZeZ+liUlz+PQz33yuHg8jK/o+9+dz12l5dJYj1HmXMcjg+YhDh8vgKIJ+bmwOzhsx4AAGA2OS3iplIpXbp0Se+9957++I//WF/96ldVrVYlHUwIs9mslpaWdOnSpc4/hu/uGm7uCQAAAAAA+mJuDgAAAAAH5hT+ztm5kMsbldPllNfX1/XlL39Z9XpdT58+VbVa1ec+9zm99NJL2tvbU7lcVj6f1/z8vD75yU/qZ3/2Z9VoNKLOHQAAAACAmcHcHAAAAABmh9Mi9Re+8IUj/33+/HmdP39ekvTd735Xb7/9tqrVqmq1mnZ2drSzsyPP88LPFgAAAACAGcXcHAAAAAAOtO+JG3aZcTJyPs8//7yuXr2qq1evSpI++OADlctlra+vj5zcNPsbf+Nv6M/9uT/X9bnV1VWtrq6OOSMAAAAAwHFbW1va2trq+ty//bf/dszZ9MbcfDjMzQEAADDtkjKnwUmhLyq/9NJLWltb49e+PZw+fVqS9Hu/93v6y3/5L084G2A4Z86c0bVr13TmzJlJpwIMhT6MaUA/RtLRh5EU/Rby/vE//sf6K3/lr3TmeXHC3Lw/5uYYBp9dGAb9BsOg32AY9Bv0ktQ5zSDPaLhFzn8o6as9nns8fDqR8IIgCCadxCxpNBrKZDKq1+tKp9MD4z3vunPZQXBtlNRCy0O64BwZBOfsyTiKqu5sdZFMUfalKFjbJKr2Tlq9xQn1HD+0CQAAg1nnd4iPMNsurDki36kAAAAwbkmc07Rz/r9I8kMuuynpC1Js6uPUpBMAAAAAAAAAAAAAAHwsbvfoBQAAAAAAAAAAAICenpH0AxGUGSfsxAUAAAAAAAAAAACAGAllEff9998PoxgAAAAAADAk5uYAAAAAZsWcDnbOhvk3N9YjGCyURdzl5eUwigEAAAAAAENibg4AAAAA0yOUyzsHQRBGMejqgnOk5z0wlRwE56zJOLpriI0qBxvPu+4cGwTXYlP2NItLvdEm4zHt9Wwbny1jqK3uLOeV5fNn2tnqbfr7M8YjLp+DAJKFuflkMA4DAAAA48c9cR15nhdGMQAAAAAAYEjMzQEAAABgeoSyiAsAAAAAAAAAAAAA4zCJe+I2m00tLS2p2Ww65ZjP50e67Q2LuAAAAAAAAAAAAADQRbPZVKFQ0OLiomq1mtNrKpWKtre3R3pfFnEBAAAAAAAAAAAAJEb7nrhh/vW6J+7CwoKKxaJyuZxTbq1WS7dv3x7quA5jERcAAAAAAAAAAABAYozzcsqpVErSwWKui+XlZd24ccN8TMf1WlRGxDKZbyj86r9rivY89/gguGZNxjGHB5GUK0WXs1Vc8rDwvOvOsZbji0O5VnE4vihRd+MRBOcM0ZbY6Nhynm5J7HNIPvodAAAAAABA8hQKBRUKhc7C7yhYxJ2YvyXpTI/nLkv6hTHmAgAAAADoZmtrS1tbW12fe/jw4ZizQdguXryos2fPdn1udXVVq6urY84IAAAACNe0zmnal1MOu8xRNBoNtVotZbPZWOSDof0nkn580kkAAAAAAProt5DXaDSUyWTGnBHCdOfOHaXT6UmnAQAAAERmluY0j7//N6xRlrRbrZYKhYKq1eoIpRzFIi4AAAAAAAAAAACAxGjfx/awG5K+PIFcJOnq1asqlUqhlhnKIu7zzz8fRjEAAAAAAGBIzM0BAAAAzLL/naT/zQiv/+eS/uMhXre9va2lpSX5vj/Cu590KoxC7t27F0YxAAAAAABgSMzNAQAAAMyK9j1xD//9kKT5Ef6eGzKXUqmkfD4vz/OO/ElSpVKR53lDXbaanbgTUq9/Uun0uVDL9Ly7pvgguBbq+w8jCGx14HnXDdHh1u/HOTwwxVuO0XZ8lhxsbW2Jt9SHrVz3urAeX1T1nERxGAek+ORhEWUfjc4F58hkHl88UHfDsY7N1B0AnMTcHAAAAADGr1gsqtVqnXh8eXlZ6XRa6+vrSqVS5nK5Jy4AAAAAAAAAAACAxJhT+Iucc0O+LpvNdn08lUrJ933lcrmhymURFwAAAAAAAAAAAEBitC+nHHaZ/ezu7kpS1123UQjlnrgAAAAAAAAAAAAAMG2azaY2NzdVqVQkSYVCofP/oxTqTtwPP/xQu7u7ajab8n1fL774YpjFAwAAAACAAZibAwAAAJh249yJ6/u+1tbWtLa2Zipvb28vknxMvva1r+l3fud3dO/ePUlSEATyPE+SlE6ntbm5qc985jNhvNXM8bzrk05Bki2PILhmKPfBMOkgRoLgXETlGvrRQiQpHJQdk3MwKlGd20nNwyIuY53lHLSdr9Gc21bT3jcsLP0oqrE5SnFpPwwviedrEnMG+mFuDgAAAADTY+RF3Dt37mhjY0OXL19WoVDQwsLHqym7u7uq1+v6whe+oF/6pV/S5z73uVHfDgAAAAAAHMPcHAAAAMAsmVPIlxv+fplxMvLx3b9/X/fv3+/5/Pnz57W2tqZf+7VfG/WtAAAAAABAF8zNAQAAAGC6jLyI+8ILLzjF/fAP//CobwUAAAAAALpgbg4AAABgljwzJ/2AF3KZgaT9cMscxalRC/jmN7+p9fV1/Yt/8S+6Pv+tb31Lv/u7v6udnZ1R3woAAAAAAHTB3BwAAAAApsvIO3G//OUva3l5WS+99JI8z1MqldLCwoJ2d3fVarUkSblcTrdv3x71rQAAAAAAQBfMzQEAAADMkrk56ZmRt6oeK/OpYrUTN5R7/pbLZX3wwQeq1+u6f/++Wq2WFhcX5fu+0um0XnrppTDeZqpcvHhRZ8+e7frc6uqqVldXJUlBcC2yHDzvgXOsJQ/Puz5MOqHnYeFdseRwzla2oT7iUs9RsfU593oOdq15uMdGeQ4mTVzO7fj0/QvOkdZxIypR1Z31PIlqXIyKtd6iyjku/QjoJQ7nq1USc8b4bW1taWtrq+tzDx8+HHM2/TE3t3OdmwPHuXxH5HMmWWjT8aCeAWD8kjSnsXjmlPQDcyGXGW5xI3PKZ25uTr7vK5vNqlgs6rnnnjsR89JLL+mll15SLpcLPclpdOfOHaXT6UmnAQAAAADoo99CXqPRUCaTGVsuzM3Dx9wcAAAA0y5OcxrYOC3iBkGgarWqF198sW/cvXv39MEHH+jy5cv683/+z4eRHwAAAAAAEHNzAAAAAGh75hnpmbB34hqu4jkOTleL9n1/4CRRks6fP68gCJRKpfQLv/ALo+YGAAAAAAC+j7k5AAAAAIzm//5IOvf/6/53+X+cdHZHOS/iHnbnzh1dunRJv/u7v6v333//yHNXr17V5z73OZXL5dCSBAAAAABg1jE3BwAAAIADz8xJP/CM/e9Xfkj6Z/Pd/+6cvGPNRDldTtnzju4fvnjxos6fP6+FhQVlMhlls1mtr6937sdTLBZ148aN8LMFAAAAAGBGMTcHAAAAgNnhtIjbTSqVku/7unfvXmeCePw59JbJlCT96KTTcOZ5d51jg+Caodzrxjxs8VHwbkVYtuH4LPUcF0FwbtIpSIq2j0aRQ5TikodFEnP2vAfOsdbzJInjRhzyiLLektgmGI8ox4JpZv0s5rzCrGFujmngMtbHbXyPWz4YHW06HtQzACA0pySFfE9cPQ25vBE5XU65Wq3q13/91/W1r33tyOPz8/MnJoltqVRq5OQAAAAAAMAB5uYAAAAAMDucd+IWi0UVi0VJ0tLSkrLZbN/4F154YbTMAAAAAADAEczNAQAAAEAHu3CHvt5wDzHbiet0eKlUSpcuXdJ7772nP/7jP9ZXv/pVVatVSQcTwmw2q6WlJV26dKnz69/d3d3osgYAAAAAYMYwNwcAAACA2eF0OeX19XV9+ctfVr1e19OnT1WtVvW5z31OL730kvb29lQul5XP5zU/P69PfvKT+tmf/Vk1Go2ocwcAAAAAYGYwNwcAAACA73smor8YcUrnC1/4wpH/Pn/+vM6fPy9J+u53v6u3335b1WpVtVpNOzs72tnZked54WcLAAAAAMCMYm4OAAAAAN8XxeWU90Mub0QjH97zzz+vq1ev6urVq5KkDz74QOVyWevr6yMnN83q9bzS6XSoZXreddsL5q+5x+4Zy47MBUPs3RiUKwWBez173gNT2Ulj6aO2erP2T/f2tuSB2RJVf8bw4tImtDd6CYJzkZQbl74flSTmDEwCc3MkGWM9AAAAcFLoG4Nfeuklra2t8WtfAAAAAAAmhLk5AAAAgKl2Sge7ccMuM0YiS+f4ZZ4AAAAAAMB4MTcHAAAAgGSK2S16Z8fFixd19uzZrs+trq5qdXV1zBkBAAAAAI7b2trS1tZW1+cePnw45mwQNubmAAAAmHZTO6eJ4p64Ye/sHRGLuBNy586d0O+JCwAAAAAIV7+FvEajoUwmM+aMECbm5gAAAJh2zGmSi0VcAAAAAAAAAAAAAMnxjMJf5YzZqmnM0pkdmUxJ0o8OjAuCa9ElsXfdOdSSh+e5lytdMMRKQXDOkMddQ8nusZG2iSEPyVIXljaJ7hij6kdRtonnPTDk4d4m9jwmXx/WfmQ5v6Osu6jEpT9HOyYlC3URP3EYu+KUR1SSmDMAAAAAAAD6YxEXAAAAAAAAAAAAQHKcUvj3sD0VcnkjYhEXAAAAAAAAAAAAQHLMaahVzq1/c/DXzcOnI2UUOhZxAQAAAAAAAAAAAEy91f/pwV83jf9Ryvyz8ebTD4u4AAAAAAAAAAAAAJLjGYW/yhmzVdOYXd15sEajMekUAAAAAACYaczNAQAAACBaMVtTPmp5eVmVSuXIY9lsVtVq9chjhUJBzWZTktRqtVQqleT7/onyJhU3Cs+7Hmp5YzF/zT12z3Z8nuceGwTueXjeA1MeFpY2tOScRFHVhfU8sdXzXUPsOVMeFnHoG3HIwSrKMdRSH9GOR+59NKo2jPYcjAZj83jEpe7ikkccJPF8BTB5zM2B6eDyPYDP/v5muQ5n+dgBADF1Sgf3xQ27zBiJ7SJuq9VSo9FQLpc78vj6+vqR/85kMvJ9X+VyWZJUq9WUyWR07949pdPpiccBAAAAAJBUzM0BAAAAYDJiu4i7sbGhYrF4YqJ4WKFQUKPR0L179zqPZbNZ+b6vq1evql6vTzQOAAAAAIAkY24OAAAAIJbmFP4qZ9g7e0cUs43BH9ve3laz2ex7n53t7W35vq9UKnXk8cuXL6vRaHReO6k4AAAAAACSjLk5AAAAAExGLBdxNzc31Wq1VCgUlMlkND8/f+L+O41GQ61Wq+vlkdqP3b59e2JxAAAAAAAkGXNzAAAAALHV3okb5h87cQdbWVlRuVzW2tqafN9Xq9XS8vKy8vl8J+b+/fuSpIWFhROvbz/WbDYnFgcAAAAAQJIxNwcAAAAQW2Ev4Lb/YiRm6RxIpVLK5XLK5XIqFouqVCpaXl7W9va2lpeXlc1m1Wq1OrHdXi8dTNgmFTfIu+++oU996lMD455//p/2eOb09/8+FgTnBpZ3mOc9iCTW5oIp2nKMnnfdUO41Q7m2urCV7Z5zVDlEKQ51YRVV3VmPLy5taGE6xnn34wt23YtNYr1Zx3LJGu8mqjEUCAt9dDjUBXDUo0eP9OjRo6Ff/9FHH4WYTfzMwtz8o48+0ocffjgwrpczZ87ozJkzQ78eGCe+B4xulutwlo8dAOKMOc10i+Ui7nG5XE7ValVLS0sqlUrKZrNdJ2rHtVqticUN8uqrrw6M6e+XJP3yiGUAAAAAwOza2NjQ9evx+PFgEjA3P+natWv64he/OFIZAAAAwLBmek5zSuFf/jhm1y9OxCKuJGWzWaXT6c4vaX3fl9R9UtZ+zPf9icUN8u6774awExcAAAAAMKz19XV9/vOfH/r177//fgg/0E2WWZ2b98IuXAAAAEwSc5rplphFXEmde/C0/78k7e6evK5m+7F0Oj2xuEGeffZZPffccwPjpGcdYgAAAAAAVqNeCvfZZ2dzvjabc3MAAAAgfmZ6TjOn8Fc5w97ZO6KYbQzur9VqdSZhvu8rlUp1vcdNo9GQJC0tLU0sDgAAAACAacTcHAAAAACil5hF3Farpfv372t9fb3z2MrKihqNxonLJ1WrVfm+r2w2O9E4AAAAAACmCXNzAAAAALHQ3okb5l/MduLG7nLKjUZDmUxG2WxWpVKpc5mmq1evqlwuK5VKdWKLxaIqlYoKhYJKpZIkqVarqVarqV6vTzwuHHcNseciLNtdEFyLpFxJ8jz3G3Rb8rCUK10wxEYnifVs417PQWDt+9GIst7i0SY2tnPwgaFk9/a2ndtJHTfcx/K49I049GfqAgCA/pibAwAAAJhGWzvS1skL+kiSHu6PN5dBYreI6/u+crmcKpWKMpmMLl26pFQqpRs3bhyZJLbt7Owon88rn89LkprNpur1+ol730wqDgAAAACApGFuDgAAACDW5jTUztnV/9nBXzeNPSlTGymrUMVuETeVSqlcLpte0/7FbVzjAAAAAABIEubmAAAAADBZsVvEBQAAAAAAAAAAAICe2vfEDbvMGGERFwAAAAAAAAAAAEBysIiLqGQyJUk/GmqZnnfdFB8E1yIp2xJryWGYeHcXIirX2i7R5WERXT1bcjg36RQkRdufLeLQJlGOMdJdQ6x735j2NjkQzbkSl7qz9rsocohSXPJIIuoOADBtXL738PmHaUKfBwAA6I9FXAAAAAAAAAAAAADJMafwd87GbCfuqUknAAAAAAAAAAAAAAD4GDtxAQAAAAAAAAAAACTHDNwTl524AAAAAAAAAAAAABAj7MSdmLfVu/r/4vf/AAAAAACTtLW1pa2tra7PPXz4cMzZIGwXL17U2bNnuz63urqq1dXVMWcEAAAAhGtq5zQT2InbbDaVz+dVKpXk+37X5wuFgmq1miQpm83qxo0bSqVSQ6XDIu6E1Ov3lE6nB8Z53gNDqXeHT2iQ+WvusXvuOXvedVMaQeCeh6XsqMo9cMGQx7lI8rAcn1Uc6tl6fPY2TBb6xnDlxoVt3LeNG9Muie097eIyltM3AIyi30Jeo9FQJpMZc0YI0507d5zm5uPA5xVmDX0eAIDxYE4zumazqVKppM3NzZ4xjUZD58+fVzab1aVLl/T222+rUqmoVqvpgw8+GGohl8spAwAAAAAAAAAAAEiO9k7cMP967MRdWFhQsVhULpfrmU6hUFC9Xle5XFapVNLe3p6y2axarZY2NjaGOkQWcQEAAAAAAAAAAAAkx1xEf120d9EuLCx0fb7RaGh5efnEJZaLxWLn+WFwOWUAAAAAAAAAAAAAGEI6ne56m5b2Y9wTFwAAAAAAAAAAAMD0a19OOewyQ9RsNiVJS0tLQ72eRVwAAAAAAAAAAAAAifboifRof/jXf/Q4vFwkqVKpyPd9raysDPV6FnEnJJP5htyq/27UqbjZe+AcGgTnnGM9z3Z8nnfdFB9JufPXbIUb6s6SRxAY84iIJY+ojs/eLy4YYt37qOdFc54kVRz6Rlwk8fhs55XlnLL1/6jqI6rPEyk+bRgHUY7l1PPsoG8AADA+Lp+7fNYCAIBY6LITd+MfS9f/3xPJpquNjQ3du3dv6NeziAsAAAAAAAAAAAAg0db/svT5V4Z//fv/Rnr1Zji55PN53bhxo+u9cl2xiAsAAAAAAAAAAAAgOeZ04h62Z+akMyMU+ewPjpLQx7a3t7W4uKhcLjdSOafCSQcAAAAAAAAAAAAAZlelUlGr1dLa2trIZbGICwAAAAAAAAAAACA52vfEDfPv2M5eq1qtpvfee6/rAu729ra5PC6nDAAAAAAAAAAAAAB97O7uSpJardaJ5xqNhpaXl3Xp0iUVCoXO461WS/fv31exWDS/H4u4E1Kvf1Lp9LmBcZ5317nMILg2SkoDuOchDT6uRNu7bgq3tIvnuZfreQ8MOUx3m0Tb9+NRd55n6XcXJl6uVbRtOHlJPD7b2GUbF+NwXsWlTSx1F5ecozLtx2dlP6/cJLGek5gzgOnhMh4zTmGa0J8BAEBitHfihl1mF81mU5VKRZVKRZJUKBSUz+c797xtNpvKZDKSuu+4TaVSymaz5nRYxAUAAAAAAAAAAACQHGNcxPV9X2traz3vc+v7voIgCDkZ7okLAAAAAAAAAAAAALHCTtwJuXjxos6ePdv1udXVVa2uro45IwAAAADAcVtbW9ra2ur63MOHD8ecDcI2aG4OAAAAJN3Uzmnm1HPn7EhlxgiLuBNy584dpdPpSacBAAAAAOij349sG41G575HSKZBc/M334zmHuUAAADAuDCnSS4WcQEAAAAAAAAAAAAkxxjviTspLOJOSCbzDU26+j3P8oviC5HlEZUguOYca6uLKN2NqNxzEZVrqztLmyRRfOrCvR/ZzpMHwyQTurjUc1R5WMejqMq2lGut5zi0YZSfgUHgPuZGdQ5acsD4xKHvzwLqGUCYZnmccBlPZ7l+AAAH+LwAgOiwiAsAAAAAAAAAAAAgOWZgJ+6pSScAAAAAAAAAAAAAAPgYO3EBAAAAAAAAAAAAJMecwt85G7OduCziAgAAAAAAAAAAAEiOIS+nvPX1g79uHn5vhHwiwCIuAAAAAAAAAAAAgKm3+umDv24afypl/vY4s+mPRdyJ+Zqk/25gVBBccy7RWxghnYHuOkd6nnuslaU+oirX865HkoM1jyhZjjG6urvgHjp/zlCupL0HhuBo+rO1H8WhbwSBsZ4jEoe6kKx9373PRXl8yay7aMajKMd9y+egLed4nINRSeK4GOV3AgwvDn3DIol9H8BsYLwBEGcu36HGOY7FLZ9xmtbjApAAQ+7EHVhmjJyadAIAAAAAAAAAAAAAgI+xExcAAAAAAAAAAABAcpxS+DtnY7b1NWbpAAAAAAAAAAAAAMBsYycuAAAAAAAAAAAAgOR4RuGvcsZs1ZSduAAAAAAAAAAAAAAQIzFbU54dL774VZ09e7brc6urq1pdXZUked5190LnrxmzuOAcGQTnnGM970Ek5VqRx3h4C+6xQWDto1Ex9OcF99hgd5hcJss0xkQoPn0jGtGOMZY2jGbcj1Ic+kaUOUR1DlpztuQRhzZJqqjqjvZLNtok/ra2trS1tdX1uYcPH445G4Tt4sWLTnNzAEC8xO07VNzyAYDDpnZOM6fwVznDvsfuiFjEnZA7d+4onU5POg0AAAAAQB/9FvIajYYymcyYM0KYmJsDAABg2k3tnGYGFnG5nDIAAAAAAAAAAAAAxAg7cQEAAAAAAAAAAAAkxymFv3M2ZltfY5YOAAAAAAAAAAAAAMw2duICAAAAAAAAAAAASI5nFP4qZ8xWTWOWzuzIZEqSftQh8oJ7oXsPhk0nVEFwzjnW865HmMe1mOThXh9JFOy6x0ZVz5a2NpdtOD4Lz7Odr/E4rwzjkaLr+5bji7JvWESZc1yOcZpZzylLm0TVflHmHFUeSezL1pyjqo8k1h0ATBOX8Z2xGgAAAIAVi7gAAAAAAAAAAAAAkmNO4a9yhn2P3RFxT1wAAAAAAAAAAAAAiBF24gIAAAAAAAAAAABIjlMaaufs1n8pbf1+9+cePh4po9CxiAsAAAAAAAAAAABg6q3+Bwd/3TS+IWXeHG8+/bCIG3NBcM451vMeRFj2dfeC56+Z8rAIAveyLTlHVe4w8fFwwTkyqnq2sPZ96a5zZBz6nLVsi2j7fjT1HFU/skrmuR0Na13EpQ3duY+JVnEYQ6MU5RgTl/HZIoltGAfTP8YASDrGHQBWLt9vGFsAABhgBu6JyyIuAAAAAAAAAAAAgOR4RuGvcsZs1fTUpBMAAAAAAAAAAAAAAHwsZmvKAAAAAAAAAAAAANDHKYV/+eOYbX2NWToAAAAAAAAAAAAAMNvYiTsxb6t39f/F7/8BAAAAACZpa2tLW1tbXZ97+PDhmLNB2C5evKizZ892fW51dVWrq6tjzggAAAAI19TOaeYU/ipn2Dt7R8Qi7oTU6/eUTqcHxnnedUOpF0w5WMo+/Z1fdY59/MIDUx4WUdVHlPUcBOciySMIrhnKtbWJLee7hthojs+S70EepnBDHpY2sfS5ZOZhYeuj7n3OUhdRis/5Gs05aBWHfhflGBNVHnFpP4s4tLUUn/rAcGg/TFq/hbxGo6FMJjPmjBCmO3fuOM3NASBMfL8BAIwTc5rkYhEXAAAAAAAAAAAAQHI8o/BXOWO2aso9cQEAAAAAAAAAAAAgRmK2pgwAAAAAAAAAAAAAfXBPXAAAAAAAAAAAAACIkVMKf9E1Ztcvjlk6AAAAAAAAAAAAADDb2IkbexfcQ986Zyv6jbvOoY9f+Du2siMSBNciKtm97jzvuqlkb8G9bMvxWfOwiCrnuAiC6No7Ou5jQVQ5x6etjWOdga3uomkTaz173oNIyo425+jKjiKHKFmOLy7nYBzaD5gm1vGI8woApovL5wBjPwAAQBdcTjk+8vm8dnd3VS6XTzxXKBTUbDYlSa1WS6VSSb7vxyYOAAAAAIBpwNwcAAAAAMYjEYu4lUpF29vbyuVyJ57LZDLyfb8zgazVaspkMrp3757S6fTE4wAAAAAAmAbMzQEAAADExjMKf5UzZqumMUvnpFarpdu3b3d9rlAoqNFo6N69e53HstmsfN/X1atXVa/XJxoHAAAAAMA0YG4OAAAAYBps/ecHf908fDTeXAY5NekEBlleXtaNGze6Pre9vS3f95VKpY48fvnyZTUaDTUajYnGAQAAAAAwDZibAwAAAIiVUzq4h63xb/VvSn9S7f535/82kSPpKdY7cQuFggqFwokJmSQ1Gg21Wi1ls9kTz7UvmdT+lfAk4rhsEwAAAABgGjA3BwAAAIDxi+0ibr+JoCTdv39fkrSwsHDiufZjzWZzYnGDZDIlST86ME6vXxsc833BFedQSZL3hiF43pDHriEH77ohCcnzHpji3d11jgwC97qQbDl7nnse0gXnyCA4ZyjXxtqGriz1bM3B2oaTLleKRz1bRZWzjft5IkXX76KsZ8v5HVXO3smPxNDKjk48xtAkiqr94jFmRD0uun8niMO5jfGgTRB30z43ByaNzwEAgMucjs8LoIs5hb/KORdyeSOK5SJuq9VSoVBQtVrtGyOp6y+B2481m82JxQ32WNKfDQ773ofdHz91Rpo74/A+AAAAAIBuHj16pEePhr/p0UcffRRiNvEzC3Pzjz76SB9+2GPe7eDMmTM6c4a5OQAAACZjpuc0LOJOxtWrV1UqlfrGdJuoHddqtSYWN9jfc4iRVPmd7o//L65J/8svupUBAAAAADhhY2ND16/H40oAcTQLc/NXX311YEw/165d0xe/+MWRygAAAACGxZxmusVuEXd7e1tLS0vyfb9vXPv5bpOy9mO+708sbrBflPQXBofl1rs/fopf+gIAAADAKNbX1/X5z39+6Ne///77Iy8CxtWszM3fffddfepTnxoY1wu7cAEAADBJMz2neUbhr3LGbNU0ZulIpVJJjUZD+Xz+xHOVSkWe5ymdTqtcLkuSdndP3oC1/Vg6ne5M2sYdN9hpST84OOwHnnMoCwAAAABgNeqlcJ999tkQs4mXWZmbP/vss3ruOebdAAAASCbmNNMtdou4xWKx6y9pl5eXlU6ntb6+rlQqJd/3lUqlut7jptFoSFLnV8OTiAMAAAAAIKmYmwMAAACIs+CUFIR8D9vgVLjljSp2i7jZbLbr4+3JYS6X6zy2srKizc3NE/fDqVar8n2/U9ak4sbNu2J9xQX30D33a6p7nqFcs7uRlBoE1yIp90BUOZ9zjvU82zXxTfUxb4g19aPoruMfVdme98A51tJ+Vpb2izZn97EgqvqwtrW34J5HVONGlOdrfPpGskQ6hqJjFuotqnNlFuoOwPgxNwcAABiPuM3pXP4dJG45A+PSbDaVz+dVKpV63r6lUCh0fmzaarX6xg4SszVlm2KxKN/3VSgUOo/VajXVarXOJZ0mGQcAAAAAwLRjbg4AAABg3PbnpP1nQv7rsbO32WyqUChocXFRtVqtZ06ZTEbNZlPlclnlclmFQkGZTKZztSCr2O3EtdrZ2VE+n+/cp6fZbKper5+4982k4gAAAAAAmHbMzQEAAABMq4WFBRWLRTWbTVUqla4xhUJBjUZD9+7d6zyWzWbl+76uXr2qer1uft/ELOLu7e31fK5UKjmVMak4AAAAAACmAXNzAAAAAHHw9Ps7ccMus5v27VsWFhZ6vnZ7e1u+7x+51YskXb58ubPAa/2xaaIvpwwAAAAAAAAAAAAAk9JoNNRqtbou0rYfu337trncxOzEBQAAAAAAAAAAAID9OU9P5ryQywwkBebX3b9/X1L3nbrtx5rNprlcFnHj7tYD99jXz0WXR1Tmr9ni9wz1MR9NfXjedeMrLjhHBoF7zp5nqAtDDpLk9b4iwNgEgbFvxIClb3gLtv5pqQ9b+901xFpznvw5GJd+ZB83YiCiMXQWJLGPWkTVn611Me31DAAAAADAJDCHRlLsz81p/5mjFxx+9CjQo0fDl/nhnwWSnphf12q1JOnEpZQPP8YiLgAAAAAAAAAAAICZ85/+zr5+57eejv19uy3eHtde6LVgERcAAAAAAAAAAABAYjydm9P+3NGduP/73zilX/o/Dl/mP33/qT776mPz63zfl9R9obb9WDvGgkVcAAAAAAAAAAAAAIl25oynM2eGf/0PPTvcPXbbC7S7u7snnms/lk6nzeWyiAsAAAAAAAAAAAAgMfZ1SvuaC7nM4fi+r1Qq1fW+t41GQ5K0tLRkLvfU4BAAAAAAAAAAAAAAQDcrKytqNBonLqlcrVbl+76y2ay5THbiTsiLL35VZ8+e7frc6uqqVldXJUmed9290FvWLO66h751zTk0uGLNw+Kcc6Sl7jzvgnsK8+51IUnByd3zffIwtHeU9gx9IyKWuggCW5tEV7ahH+3Z2tob7ioODtxzjrJ/WurZ2t5xYMnZ8x5EmInBniUP97HZKqp+Z+tH0R0fPmZt6ziMBXEZF+OSBzCttra2tLW11fW5hw8fjjkbhO3ixYtOc/Np4/LZEbfPgCTmDAAAEAfTOqfZ15yejHknbvvSyN3ufVssFlWpVFQoFFQqlSRJtVpNtVpN9Xp9qHxYxJ2QO3fuDHX9awAAAADA+PRbyGs0GspkMmPOCGFibg4AAIBpx5xmdM1mU5VKRZVKRZJUKBSUz+eVy+WOxO3s7Cifzyufz3deV6/Xh55zsIgLAAAAAAAAAAAAIDGeak77IS9zPu3xuO/7Wltb09ra2sAy2rtww8AiLgAAAAAAAAAAAIDE2Ncp7Yd+OeVey7iTcWrSCQAAAAAAAAAAAAAAPsZOXAAAAAAAAAAAAACJcXA55XB34j6N2U5cFnHj7vVr7rG3HhgLv+AcGVxxL9VbcI8Ndt1jJcnzrtteEAF7ztZ2ceXeftJdU8lBYOh3BnFoPytb+7nXs7WOLXUXXfvZ4oPgnKHsaI7P2udsZSevb1g+Uyztl0SW9ouyLmx91PC5HZP2i2o8iou4HF9c8gCAaeTyWZ3EcZicAQDob1q/AwBIFhZxAQAAAAAAAAAAACTG0wjuiftU+6GWNyruiQsAAAAAAAAAAAAAMcJOXAAAAAAAAAAAAACJ8USn9CTknbhPYrb3NV7ZAAAAAAAAAAAAAMCMYycuAAAAAAAAAAAAgMR4qme0H/IyZ9zuicsibswFN91jvXfO2Qrfe2CLdy73uiH4WjQ5SAoC97I9zz1nz7s7TDpOosrZUq61bM1H04ZR1YW1bAtL3/C8iM4/Rdc3gsA2xkR1jN6Ce2xUbX1Qtnt92PpGdP3ZNNbdsmRxwRJsqrvoxkVL+8VjjImL6MZQWz1bTHubWMZb+1ge3fcNAEiCuI1tLuOyS84unx3Wz4w4CKt+AACI2+cFn3FAeG5tfVe3tr7b9blHD4MxZ9Mfi7gAAAAAAAAAAAAAEuOpTml/iHviXlpd0KXV7juF/lnjz/QLmT8dNbXQsIgLAAAAAAAAAAAAIDH2h1zEHVRmnLCIOyEXL17U2bNnuz63urqq1dXVMWcEAAAAADhua2tLW1tbXZ97+PDhmLNB2JibAwAAYNoxp0kuFnEn5M6dO0qn05NOAwAAAADQR7+FvEajoUwmM+aMECbm5gAAAJh20zqn2decnoS+Ezfc8kbFIu6EZDLfkFv13zWUemHIbCbH8x5MOoXvc6+7IDgXWRYuN6j/OI/oblRvKdvrfun4sYqyLkzmDXnsube1FI9jtJ6vtnPFPdZynniedVx0H3OjahNruZb6iI7ls0qKqr1NY5elP1vObSNbzpa2ju6zatrF5bPYwjLeWseMqPpoXOoOAAZxGdvCGtPG+V5Rzmsnic+X0Y2zHwIA3DH2ArOJRVwAAAAAAAAAAAAAifFUc9oPeZnzacx24sbrDr0AAAAAAAAAAAAAMOPYiQsAAAAAAAAAAAAgMfY1F/o9bON2T1x24gIAAAAAAAAAAABAjLATFwAAAAAAAAAAAEBiPNWp0HfOPo3Z3lcWcSekXv+k0ulzDpEuMQe8BVsOwa57rHfFUvIFQ+xdS8Gmsi31EQSGevYeuBdsLDsIrhnyuB5JudayLWzH517Pljq2iioPzxsmG9eyo+obtvPV89zjrX3U2evGvnHLOia5MoxdEZ1/OM7Q1nvWvu8eG1Xft/ajOHz+xOWzypZDdN8JohLZeAsAU2qc4yZjNOKAfggACIvLvJ3PHYxiP4JF3P2YLeLGKxsAAAAAAAAAAAAAmHHsxAUAAAAAAAAAAACQGPua05PQd+KGW96o2IkLAAAAAAAAAAAAADHCTlwAAAAAAAAAAAAAifFUc9oPeZnzacx24rKICwAAAAAAAAAAAGDq/f7Wv9Tvb/3Lrs89fvh0zNn0xyLuhGQyJUk/Gm6hr18Lt7zD3jHEzp8zBFtiJe1dN8TedQ71PEsSFyzB8rwHzrFBYKyPyNiO0ZWlLiIt19BH49Im3kJE5Xru51QQ2MYY70o0eZjcspbr3vejqjvPcx+7rGUnUzTjka1NbP0oqjaJMueo8ohSVPURl+OziMt3jSTWHQAkjcuYH5c5DABgclzmQC7f38MqB7OJvoGo7evUUPew/fdXf0z//uqPdX3um40P9X/IvDdqaqHhnrgAAAAAAAAAAAAAECPsxJ2Yt9W7+v/i9/8AAAAAAJO0tbWlra2trs89fPhwzNkgbBcvXtTZs2e7Pre6uqrV1dUxZwQAAACEa1rnNAf3xA33HrbcExffd0mhX04ZAAAAABCqfgt5jUZDmUxmzBkhTHfu3FE6nZ50GgAAAEBkpnVOs69TehLyout+zC5gHK9sAAAAAAAAAAAAAGDGsRMXAAAAAAAAAAAAQGLsa077IS9zhn155lGxiDsh9Xre6ZJN3hVDobeum3Lw3rlmincV7Bpy8Gw5SxcMsXedI4PAvS4874Ehhyi514U9Z/e6S6TXzkVSrLfgHmvpc3aW/ux+DkbZj6KtD3f2MSn8cq11YWmXIHDv+1HVhSRp3v0YLTlbRNsm0ZQd5edPVO0d5fFZ+kZcxpioRHWeAADiZ5xjvsv3g2n/jAWApAprfGacB4DJYhEXAAAAAAAAAAAAQGI81VzoO2efxmwnLvfEBQAAAAAAAAAAAIAYYScuAAAAAAAAAAAAgMTY16nQd+Lux2zva7yyAQAAAAAAAAAAAIAZx05cAAAAAAAAAAAAAImxrzk9CX0nbrzuicsi7oRkMt/QpKs/2I2mXM+77p5DcC2ysk3lLlii70aSgyR5C+fcg+cNsVZ7luCI6mPe0Df2HtjKvmWIv2mo5z33/ukt2Pq+5XyN6hy0nn+2so1t6JxDdOeJdfxyFWU9R1Wutf2i6s+mHBLZ993H26j6RZSs52uU3zeiyEGS6bMtDuO+FXkkG/UG4DjOdQAAAGCyWMQFAAAAAAAAAAAAkBhPNaf9kJc5n7ITFwAAAAAAAAAAAACGs69ToV/+eF+nQi1vVPHKBgAAAAAAAAAAAABmHDtxAQAAAAAAAAAAACTGweWU7Ttxv771z/Tu1n/X9bnvPdwfNa1QsYg7MX9L0pkez12W9AtjzAUAAAAA0M3W1pa2tra6Pvfw4cMxZ4OwXbx4UWfPnu363OrqqlZXV8ecEQAAABAu5jRHfXr1x/Xp1R/v+tyfNr6jjczvjzmj3ljEnZB6/b9UOp0eGOddsZR6zpSD5103xTt7/ZohhwfR5GC1F2UeF9xDX3MPDW66x0ZZz0FgaW9Dn4u0Te4aYt3Pq8jqQpLnmcITJwhs41dUbG3o3kctx2fJIUregiXack5JcTivLLHWNolszJ2PboyJS7+ziEPOcchBIo9ZE9X4Rfv11m8hr9FoKJPJjDkjhOnOnTtOc/O4cBkDOJ/Hg7YAEGeMUQAOm9Y5zdMI7on7NGZ3oY1XNgAAAAAAAAAAAAAw49iJCwAAAAAAAAAAACAxnmhOT0LeiRt2eaNiJy4AAAAAAAAAAAAAxAg7cQEAAAAAAAAAAAAkxlPNaT/kZc6nMduJyyIuAAAAAAAAAAAAgMTY1ynth7zouh+zCxiziBt3tx64x86fMxZ+wRB71z301nXn0CC4ZshB8m4ajvErhoIt9fy6LWdLfeiWez1777jnEQS2vuFdMcR6hroz9DlrzhaeF1W57nVh7ftR5eF5hv5pziOasSDKnC15WPqo7TwxjLdGpn63F+FYHlHfiPK8sohq/Iqy70fFNi5GN+4jfqIaB4aJT5ppPz4A/TEGxAdtASDOGKOQFIPmhvRlzDoWcQEAAAAAAAAAAAAkxsHllMPdicvllB01m00VCgXVajVJUjab1Y0bN5RKpU7EFgoFNZtNSVKr1VKpVJLv+7GJAwAAAAAgiZibAwAAAMDHc6OFhYUj/53NZiN7z1gu4jabTS0vLyufzyufz6tcLmt7e1uNRkM7OztHYjOZjHzfV7lcliTVajVlMhndu3dP6XR64nEAAAAAACQRc3MAAAAAcbWvU3oypnviNpvNE/OMZrOpxcVFVavVyBZyY7mIWyqVVK/XO/+dzWa1u7urSqWiZrPZ+UVtoVBQo9HQvXv3jsT6vq+rV692yphUHAAAAAAAScXcHAAAAAAO5kYLCwtHfijq+76y2ayKxWJki7jdl5QnLJ/Pn3jslVdekaQjl0Ta3t6W7/snLuN0+fJlNRoNNRqNicYBAAAAAJBUzM0BAAAAxNW+5rSvZ0L+676zt9lsqtlsqtVqnXi8261mwhLLnbjd7l3z3nvvaWVlpfPfjUZDrVar6+p2eyX89u3bkjSRuPAu23TXOfL0N180lfz4zXPuwbdMRTvzvAe2F7zunnNw05CH5fhuGXM2CIJrzrGWuvO8YbJxEwTubeItuJdridWetU3czyvPc4+Nqv0ORJWHe7mady9XkoJd91jPu+5eruX4LP3ImIfJ64a6u2VoE0nSBWN8+Kz1ZmnDOIisX8hWF3GpN8v4ZfmMsOcR0bgRUblWcckjKknMGZhFzM0BDMvluwzfBwAgucIa5/ksQFIsLS2pUqloeXlZ1WpV0sFcqNlsdm7tEoVYLuIet729rVardaQi7t+/L0mdGwgfdvimwpOKG+Sjjz7Shx9+ODBO+rMejz+jhDQfAAAAAMTSo0eP9OjRo6Ff/9FHH4WYTfzN9ty8uzNnzujMmTNDvx4AAAAYxSzPaZ5q7sTO2SePnmj/0f7QZf7ZR91fu7KyonK5rFqtpkwmo/X1dRUKBVWr1Uh/OBrrVcBKpaKNjY3OJZCWlpY6K9ztLcvdtim3Hzu8tXnccYO8+uqrA2MGlCDpMyOWAQAAAACza2NjQ9evR3fFhWnB3Ly3a9eu6Ytf/OJIZQAAAADDmuU5zVOdOrGI+19t/Nf6r6//o0jer1qtanl5ubMjt1QqRXYv3LZYL+Lmcjlls1m9/fbbyufzqtVqKhQKKhaLTteYbrVaE4sb5N1339WnPvWpgXHPP7/R45lYNx0AAAAAxN76+ro+//nPD/36999/P4Qf6MYfc/Pe2IULAACASWJOc9RPr/+v9Jc+/5eHfv3/9/1/rf/81f9H1+darZZarZZWVla0vb2tfD6ver2uUqk09PsNEvuVwFQqpZWVFWWzWS0uLqpSqahYLHbuzdNtUtZ+zPf9icUN8uyzz+q5554bGCf9oEMMAAAAAMBq1EvhPvvssyFmE2/MzQEAAID4meU5zX6XnbjemTk9M8LvLOee7b4m12q1lMlkVCwWlcvllM/ndf78eW1vbyuVSqlYLA7/pn3EfhG3zfd95XI51Wq1zn9L0u7u7onY9mPpdHpicaF53f3G3o8/Ed7bnnTXPXTecDPyPds2/+DmOedY7+StkXp7y71cvWHM2XBzdlPOljaJkOdZ8rhgiI3u+Ext4j2IJDYIDH1O1no2eMtwvr7hfnySMWfDuGE7TyJkGJ+Dm+7FerdsaVj6kue5j1/RjV02UeVsYS3XNm5E1CaGcq1l28bnaPqnFF19xKWeo+rPADCqmZ2boyuXz0I+02ZTEtud/gwA7hgPMWsKhYKazaZyuZykg7nGBx98oJdeekmbm5uRLeKeiqTUiCwsLOjll1+WdDBRTKVSXe9xc/g+PZOKAwAAAABgGjE3BwAAADBp+5rTk5D/ju/sbbt///6JH4mmUimtr69LUtd5SRgStYjbvu9O28rKihqNxonLJ1WrVfm+37mh8KTiAAAAAACYNszNAQAAAMwS3/e7LtSmUqnO81GI5SJuJpNRPp8/MhErFArK5/NHJmHt++8cnjzWajXVajWVy+WJxwEAAAAAkFTMzQEAAADE1VPNaV/PhPr3tMdO3PX1dbVaLW1ubh55vFQqaW1tLbJjjOU9cV9++WXVajW99NJLunTpklKplPL5fNeV7J2dHeXzeeXzeUkHW5br9fqJbc2TigMAAAAAIImYmwMAAADAwT1w6/W6CoWC3nvvPS0sLGh3d1f5fF4rKyuRvW8sF3FLpVIk8ZOKAwAAAAAgaZibAwAAAIirfZ3qeQ/bUcrsJZ1Oq1qthvp+g8RyEXcWZDIlST86OHD+mnuhew+MWdx1DzXlcd2QwwVDrOR5lmM0HN8btjwsvIVoyg0C9zbxPEubRJmHof0sfc4oqn4Ulzaxle3e94PgnDEPQ93tmoo25GAdFw1uudezd8tQboR9PypRtZ9VVOeV5dw+iLecK7bzyj2H6PpRVON+fHJ270fWnE3fCUzfp9xFWc9RsZ7bSTxGAEgqxlxMk1nuzy7ft2a5fgAAmBQWcQEAAAAAAAAAAAAkxsE9ccPdidvrnriTwiIuAAAAAAAAAAAAgMTY1yk9GePllCchXtkAAAAAAAAAAAAAwIxjJy4AAAAAAAAAAACAxNjXM9oPeZkz7PJGxU5cAAAAAAAAAAAAAIiReC0pz5B6Pa90Oj0wzvOuR5ZDEFxzjvWuGAq+dcEQfNcQK0mWsmNi70FEBZ9zD513b2tJ0mvuoZ5nOT739g523Y/PloMUBJay3XP2FkxpmFjOVwtLzvbxyP18NbXhvHv7Wdr6IA9D8OuGsm+5193pb35oSELyFp5zjo2sHxn7RlR5JFF0n/O2z0vruTLpcqNlGbui6/um8SiBLHVnHTOiLBsAAAuXzyQ+ixAH9EP0wjgGIM6e6pT2Q74n7tOY7X1lEXdCLl68qLNnz3Z9bnV1Vaurq2POCAAAAABw3NbWlra2tro+9/DhwzFng7AxNwcAAMC0Y06TXCziTsidO3ecduICAAAAACan30Jeo9FQJpMZc0YIE3NzAAAATLtpndPsD7kT959v/aH++dbXu5f58HsjZhUuFnEBAAAAAAAAAAAATL1/b/Uz+vdWP9P1ue80/oX+X5nfHnNGvbGICwAAAAAAAAAAACAxnmougnvihlveqFjEBQAAAAAAAAAAAJAY+zqlJyEvuu7rVKjljYpF3Gny+jVTuOdddw+et5R9N6JyJe0ZcrZ4/Zx77K1oUrCKrv0k3Xpgi4+A5fiCwNj3F9xjLWVHmrPn3iZB4N6fg11LDhfcgyVZxoKo6lmy1bOl7iw8w7jxaOE5W9mmcTEe/TkqcckjiXUXFdv5Gh1bPRu+x8SEaQw1fAZKkvYs3wmiGfetpv28AoAwuHxGM54CQLjGOfaG9V58FgDAZLGICwAAAAAAAAAAACAx9jWn/ZCXOcO+PPOo4rUvGAAAAAAAAAAAAABmHDtxAQAAAAAAAAAAACTGU82FvnP2KTtxAQAAAAAAAAAAAAC9sBMXAAAAAAAAAAAAQGLs61ToO3H3Y7b3lUXcuJu/5hwa3LQV7d0yBO89sBXu6jVbeHDTvT4+o3ecY79uqbtbdw3BUbrgHrp3PbqyLV53bz/dcs/Zu2LMw1Qf7jmf/s6vGhOJhrdgCDacg0FwzpaHF825EgTubeJ5trHLcoyeZz2vXMu15mw4r0zcx4Eo69nW3tG0iVVUbRKX45t20Z1TVtF8Fge7tnjPs0RH9P0BACbI5fM3Pp8d7pKYcxJRz0iKaR3rZhntNR6cOwCixiIuAAAAAAAAAAAAgMTY15yehL4Tl3viAgAAAAAAAAAAAAB6YCcuAAAAAAAAAAAAgMR4qjnth7zM+TRmO3FZxJ2Qixcv6uzZs12fW11d1erq6pgzAgAAAAAct7W1pa2tra7PPXz4cMzZIGyD5uYAAABA0k3rnGZfp0K//PF+zC5gzCLuhNy5c0fpdHrSaQAAAAAA+uj3I9tGo6FMJjPmjBCmQXPzN9+8PsZsAAAAgPAxp0kuFnGniHfTFn/6O7/qHPv4hW8ZSr7gHnrrgaFcydM5Q/Rr7qHvmNIwCYJrzrGeZ/gHgnn3ugh2LfUmeZ6lXe66h94ypWEo1/YPK5G1iaXvB7Y2sbS3RWAYN2x1IZnqw8BbsEQb+qckz3OPt/QjWw62evauGPqGYcwNDH3UnHNE9Ww6tw39KNh1j40La/+MbKwznINRnVOS7fiizMPGve4s55TmbcdnGQviIpnt7W7ajw+IG84jALOAsW50Lt/RqOfpQ5v2x3mBqB1cTjncnbhcThkAAAAAAAAAAAAAxuxfbv2+/uXW73d97unDx2POpj8WcQEAAAAAAAAAAAAkxr5O6ckQO2f/ndW/rn9n9a93fe6jxjf0fqb7pacnIV536AUAAAAAAAAAAACAGcdOXAAAAAAAAAAAAACJsa857Ye8zBn2PXZHxU5cAAAAAAAAAAAAAIgRduLG3ZcMsV8xlv2aMd7V/Lnocrj1wPiCCMxfM4V7C5boC+6he+514S0Y2kSSdNc58vR3ftU59vEnnnNPYc89B70eXZsEgXvZnmdoE0PsAUN9GHieoc8ZBYF7v/O864aSLTnbjs+Us+Xc3rMcn01w0xB8M6LjM46Llvow9Y23DHkYxlDJNoaazm/LZ2ak3M8Vy3liqTvb56VM/cg2lkdT7kHZ7n3DWnZUoqqPKOs5DnnE5fgAjM7lfOa8HF3c6tnlM9v2nSh6YdVh3NpiltEWyUJbYJrY/p2uN84LRO2p5kLfOfs0ZjtxWcQFAAAAAAAAAAAAkBhPdSqCRdx4XcA4XtkAAAAAAAAAAAAAwIxjJy4AAAAAAAAAAACAxNiP4HLKYZc3KnbiAgAAAAAAAAAAAECMsBMXAAAAAAAAAAAAQGLs65SehL4TN157X1nEjbs3HrjHvn7OVPTjN58zJuPoNffQ4KataO/WXdsLXPMIrkVSriR5nqENDYLAvb29BWvZ7vXhXTEUbOgbunXBOdTcjwz14XnXDSW75yxZ+7Kh7HnDWLDnfnzW88RUd/OGsk39yNJ+kue5x1rOQclwThnPV9MY85Z7zsGuLQ8LzzOc35axLqI+ZxsHbILdiPqRMWfTuG8o21Kuvc9NPmd737B8TriLtI/GoG9YxSGPKI/PIg51ASQd58Z4xK2ebd/14yGsOoxbW8yyaW0Ll+8n03rsQBxwDgLJwiIuAAAAAAAAAAAAgMQ4uCduuMuccbsnLou4E3Lx4kWdPXu263Orq6taXV0dc0YAAAAAgOO2tra0tbXV9bmHDx+OORuEjbk5AAAAph1zmuRiEXdC7ty5o3Q6Pek0AAAAAAB99FvIazQaymQyY84IYWJuDgAAgGk3rXOap5oLfefsU3biAgAAAAAAAAAAAMBwnupUBIu4p0Itb1Qs4sbeXffQW8ai3zpnKNuQh9zL9RYMxUrSvPtN1YNd92L/T/oN59j/s37bvWBJpjY08Dz3cq03oze1y94DQx6GvvGOIda77hx74IIxPmH2DPVhOKesLP3O1IbvGMYBY9+Pir2PGlja8A1DHlei7BuGz5+oWM6TCHleNGPoTPR9w1ge1Xhk/nw11Ufy2jsu9YyPUXdAsriMjZzX40FbjAf1PJvi1qb0QyRFWH2V/gxI3926pe9udV9QCx4+GnM2/bGICwAAAAAAAAAAACAxnuiU5obYiftDq/+Rfmj1P+r63KPGf6t/ncmNmlpo4rUvGAAAAAAAAAAAAABmHDtxAQAAAAAAAAAAACTGUz2j/ZCXOZ/GbNmUnbgAAAAAAAAAAAAAECPxWlIGAAAAAAAAAAAAgD6e6pT2h7gn7qAy44RF3Lh7/Zp77K0HtrLfMMY753HdOTQIDMcnyfPcc/Y8S8mXnSN/a95SrqR52zE623OvZ0u9SZLmzzmHBoF7rCkPQw7SBUOsJN2NsOxomOp5wdB+u8NkEwVDPX/JPdTz3M8Tcx4GlrHOnLNhLDB9pkTINia5n6+R1bNxHI/DeWUd9y1jTKT92cD2+RNdHhbW7z1RsNZFXNo7KnEYjwCgLW5jh8u4HlbO43wvF3Fri2lFPSMO6IfTJ26fKWFJYs4ARsciLgAAAAAAAAAAAIDE2NcpnQp5J+5+zHbixisbAAAAAAAAAAAAAJhx7MQFAAAAAAAAAAAAkBhPn85p/2nI98QdorxWq6Vmsynf95VKpULNh524AAAAAAAAAAAAABJjf/+UnjyZC/Vvf9992bRSqSiTyahQKGh3dzf0BVyJnbgAAAAAAAAAAAAAMFCz2dTy8rIkqVwuy/f9yN6LRdwJuXjxos6ePdv1udXVVa2urkqSgpvuZZ750oumHB6/+Zx78DvnTGW78hYiKfbAW4acv2Io9x1jHq8Z413diqhcScGue6znXTeUfME9dC+icq3xhn4UXHEv1vPcY80MdectXHOOtfQLydo3DN6Ipli7u86RnuceGwTubXJQ9gP3YMP4FVn7mbmfr5F9ppjGI8nzLGOSe9+wjXWWciUpms95a3+2sPT9KPNImijrIqqyreNRdMcYzXkSF5Z6nrVzamtrS1tbW12fe/jw4ZizQdhc5+azaJzn+jjfy2W8m7Vxbha4fHcMgun+rJ9FnO/ThzadPoPalPYMx7TOafafzElPwl3m3H/S/3LKzWZTmUxGvu+rXq+H+t7dsIg7IXfu3FE6nZ50GgAAAACAPvot5DUaDWUymTFnhDAxNwcAAMC0Y04TnqWlJbVaLZXL5bG8H4u4AAAAAAAAAAAAABLj6f6cNGDn7FBl9rC5ualms6lcLhfpJZQPc79DLwAAAAAAAAAAAADMmFKpJEnyfV9LS0vyPE+Li4vK5/ORvSc7cQEAAAAAAAAAAAAkxv7+KQXHduIGjx5Jjx4NXWbwYfd7BLdaLTWbTUnS4uKi1tfXJUkbGxva3NxUrVbTzs7O0O/bC4u4AAAAAAAAAAAAABJt///6n+rp5u+EXm57ATebzWplZaXzeLFYVKPRUK1WU6VSUS6XC/V9WcSNOW/BELz3LVvh8+cMZT9wj33dUO4tQ7nWst8wlG2piy+5h5rzMLngHmqpN9n6XRBccy/Xu+4ce/o7v+oc+/iFbznHmr3pHuq94X58lnqbBVH1I2s9e57lfHU/B4PA/Ry0HJ8k6XX3YwxuWgo2tMkVS7mSblna0DZ+ufI8Q/C8rR8Fu5Y87hpKdo+Nyxhj7s+RieYcjEs9J1FU4+0ssNSdZQylPwMYhsvnZtzGl3Hmk8T6mVZRzSsQb5xf04c2BXDY/pM5Pf3esZ24q1+Qd/VXhi4z+G8fSH/9tZ7Pp1KpE4/l83nVajVVq1UWcQEAAAAAAAAAAADMruDpnIL9Y8uczzwjPfNDwxf6g893fdj3fUkHl1Xu9dzurmFnh6NToZcIAAAAAAAAAAAAAFMglUoplUp1LqvczSuvvBL6+8Z2J26z2VShUFCtVpN0cJ3pGzdudN2qXCgUOhXXarVUKpU6K99xiAMAAAAAIImYmwMAAACIpSenpCdzg+OsZfZQLBaVz+fVaDSUTqc7j9+/f1/SwVwpbLHcidtoNJTJZCRJly5dkiRVKhW99NJLJ7YqZzIZNZtNlctllctlFQoFZTIZNRqNWMQBAAAAAJBEzM0BAAAA4MDKyop839fVq1ePPF4qlbS2tnZkYTcssVzELRQKqtfrKpfLKpVK2tvbUzabVavV0sbGxpG4RqOhGzdudB7LZrMnKnFScQAAAAAAJBVzcwAAAACxtT93sBM3zL/9/jt7d3Z2lM1mtbS0pHw+3/krFouRHGLsLqfcaDS0vLx84tJHxWLxxK9pt7e35fv+ics4Xb58uTOZS6fTE4sLxd4D99jXz9nKvmUo+y1D2W9akrhrCZZuGeLnr9nKdvWGod7MDMf3uuH4LG0t6fR3XnSO9bxvGUq+4Bz5+IW/4xwbBLa29q4Ygg11Z8nD864bkpCxP7vXs2WM8TxDCjLWx0JE5XrW89UyJrnXc1THJxn70s2IxsVbtv4c1bliKddazxa2fmc4Xw390zzGWEQ1Hlm/ExhEVR+xqWfL90VjPUd1rgSB8XsrOix1F9UYau37UY65iA5z8wMu/X2W+/gsH7uLJNYPfR5xQD8cD+p5PCKdNx6TxPZKYs5AVAu23cRuETedTnedZLUfa0/OGo2GWq1W12tMt2Nv374tSROJi2LbNAAAAAAA48DcHAAAAECs7XvSE+POI5cyYySWl1PuptlsSpKWlpYkfXyj4IWFk9ub2o81m82JxQEAAAAAMG2YmwMAAADAeMRuJ24vlUpFvu9rZWVF0sEvbiWduGzS4ceazebE4gb56KOP9OGHHw6Mkz7q8fjp7/8BAAAAAIbx6NEjPXr0aOjXf/RRr/na9Jq9ufmfDSghMf+sAgAAgCk003OafUlPIigzRhIz29jY2NC9e/c6/91tonZcq9WaWNwgr7766sCY/n5J0i+PWAYAAAAAzK6NjQ1dvz6++5RNA+bmJ0oY8fUAAADA8GZ6TsMibjzk83nduHHjyL1sfN+X1H1S1n7M9/2JxQ3y7rvv6lOf+tTAuOef/6c9nmEXLgAAAACMYn19XZ///OeHfv37778fwiJgcszi3Pz55zcGlJCIf1YBAADAlGJOM91iP9vY3t7W4uKicrnckcfbk7Hd3d0Tr2k/lk6nJxY3yLPPPqvnnntuYJxUdYhpO2eIlfSWIf5NQ7l7D9xjX79mKFjSLcMvSvYMsfOGPOaN9WzJ4y1DHm8YyjXW8+MXDG1o8bqh7m65h3onb4MVHkN7e557mwSBse8beN5d92BL3zfnYRkLjOdVwgQnPzJ6MtWbUXRlXzDmMflzJQ45HDCcr5Z6tp5Tt9z7hq0/G3KwjkeWz1dTH42oTaxlW75PGcqNtj9Hw3K+HoimvZNYd1HlnMS66OXMmTM6c+bM0K9/9tlnQ8wm3mZ1bh4EgxZxgdG4fM6Nc9ydpjEeyUU/HA/qeTySWM9x+myKUy5xNdNzmicKfydu2OWN6NSkE+inUqmo1WppbW3txHO+7yuVSnW9x02j0ZAkLS0tTSwOAAAAAIBpwNwcAAAAAMYvtou4tVpN7733XtdJ4vb2tiRpZWVFjUbjxOWTqtWqfN9XNpudaBwAAAAAAEnG3BwAAABALD2R9L2Q/9iJO1ij0dDy8rJarZYKhULnL5/PK5PJdC6bVCwW5fu+CoVC57W1Wk21Wk3lcrnz2KTiAAAAAABIKubmAAAAAKZOZUv6hZ/o/rd+cdLZHRG7e+I2m01lMhlJH/+q97BUKnXk17Q7OzvK5/PK5/Od19fr9RP3vplUHAAAAAAAScPcHAAAAECsPZW0P8TrLqwe/HXzzxvSf5wZJatQxW4R1/d9BUFgek2pVIp1HAAAAAAAScLcHAAAAAAmK3aLuDjmrWvusV8xlv3GA0PwXUPsBffQzxqKlaRbhrLnz7nHvmbJ4bohWDLVxxuWsiOsZxnqzsJUd4bj24uwTSLiLRhfYDpG9+P77v9wxjn2+f/JI0MONsFN91jPM4xdlnFAUrDrHu957m3ieYYxdN4w7kvSnmV8dhcEhrowtJ8k6Y1ocra0SRAY69kkmuMzuWX5jJcsOVv6s6WeLe1nZenPkX0GyjoWGPIwjANRfv5E1d7W8zWqsuMyxlg+B21935JDlOdrlOMzAMQP4x5wkst3jXGeO3HLx4XLd8aovitOi7C+88atbyQN9Ye+9hX+PWyH2dkboVjeExcAAAAAAAAAAAAAZhU7cQEAAAAAAAAAAAAkxxOFvxM37PJGxCIuAAAAAAAAAAAAgOTgcsoAAAAAAAAAAAAAgHFiJy4AAAAAAAAAAACA5JiBnbgs4sbdm+6hp7/5oanox++cM0QbYl9zD/0HVz5jyEH6uTc+7R78JUPOhnqWLliCpbcMeXzF0iYGbzwwhQeBex6ed91Q7jXn2DO77v358QvGNpmPqJ737rrHfslY9hvux2hqv4VHxkSi4S1Yot3rOdiNqK0l2cYCQ9/Ycz+nrGx9w1Duri0P7033scDWN9zbxLtiKPaWbQw19Q3DeGSpZ8vYbGUZy6NlHPsjYK7nefe6s51XhnPKmLOlvaP6ThAXUeUcZZtEJQ45AHHich6Hdd7E7b1cTGs+AKITt/M0bvm4cJn/j/MzJW6m9djDOq4kHjswrVjEnZCLFy/q7NmzXZ9bXV3V6urqmDMCAAAAABy3tbWlra2trs89fPhwzNkgbMzNAQAAMO2mdk7DTlxE5c6dO0qn05NOAwAAAADQR7+FvEajoUwmM+aMECbm5gAAAJh2zGmSi0VcAAAAAAAAAAAAAMkxAztxT006AQAAAAAAAAAAAADAx9iJG3d7D5xDH39i8A3rx5GH5J7Hf7j7X9jyeOs599g3Bt/IvWM+HjdrP/2lD51jH79jqIvP2vqG51na+0JE5d6NJAdJCnbdY6OqC1P/NPK8aOouCIz96Ioh/h330CBwP1+9m+7lSpLetOThfny2NrGynIPRjIveFfdiJdk+U+Yj+my75V4Xlj4nSd6Ce2xk45H1c83QJpY8bOOGbSy39I2ocrb2DYvoPjOjZGzDiETVLpYxNMq+YZHEnIEkGuf5M63v5TJeMU4lyzjb1DTP6WNa+xjnF3qZ5Xaf1mOf1uMCenoi6XsRlBkjLOICAAAAAAAAAAAASI59hX/5Yy6nDAAAAAAAAAAAAADohZ24AAAAAAAAAAAAAJJjX8Nd/ri2Jd3b6v7c44ejZBQ6FnEBAAAAAAAAAAAATL/s6sFfN99qSNcy482nDxZxAQAAAAAAAAAAACTHsDtxB5UZIyziTpFP775jiv+j3Z92jn385jnn2N+8+RvOsb/lnXaOPXDBGO/oNUPsO+51IUl644Fz6OPXDWXfci9X88ac3zLEG47P5PVr7rGWupDkededY4PAPQ9LuXrLcHyS9KYhdi+aNvGuRFKsmecZjs9yTkmmuvM892JN/WjBvVxJ0p6h380b+p1pXDTESpLuGmINbWhpb8NYbupzRp5nqAvLuGgU3DSeK4njXs+mNrF+LzF8HgeBpY/a0sDHTJ/dEbF8RkjxyBnAUS7npfVcnzXUz/SJW5vGLR8XLvMQl++McTv2JI6ZScwZ/dGmAJKCRVwAAAAAAAAAAAAAyTEDO3FPTToBAAAAAAAAAAAAAMDH2IkLAAAAAAAAAAAAIDmeKPyduGGXNyJ24gIAAAAAAAAAAABAjLATFwAAAAAAAAAAAEByzMA9cVnEnZCLFy/q7NmzXZ9bXV3V6urq9//rrnOZf7T7q6YcHn/iOefY09/80Dn2txZ+25DFdUOspNfPGYINsZ81FHvLmPP8NUPZDwzlWurC6A3DMb5lOL43DMdnqQvDeXLggnOk5xnqwtLWVnuG+rCcJ+/YU3EV3HSPPbPrPsY8ftNwfKZ+JJn6kqG9Tf3I0D8lKQgiyuOWLY84sPS5KNvEJKrPCOO46L3jnkewayjXc885CGyfa5ayIxufXzPGm9rQvT4sdectGFKQsZ4N/c7z3GMt49xB2e7nt7XsJOWA8GxtbWlra6vrcw8fPhxzNgib+9y8N87jZHEZo2nTZJnW9rJ+P0Z0XPrYOMeWJL7XOMuZVklsi2kdn8Mw7vqb2jkNi7iIyp07d5ROpyedBgAAAACgj34LeY1GQ5lMZswZIUzMzQEAADDtmNMkF4u4AAAAAAAAAAAAAJLjiaTvRVBmjJyadAIAAAAAAAAAAAAAgI+xExcAAAAAAAAAAABAcuwr/HvYxuyeuOzEBQAAAAAAAAAAAIAYYSfuFHn8iedM8f9g9zPOsT938w/dC37NksU1S7DNO9EU+5vBY1N8cfdD59jHnzjnXvDeA/fYeUO5Vm9ElMfedUMSFwyxtjyCXfdYzzPk/GaEfd/Ccr5+1la0t+AeG+y6j1+eLQ0jQ18y9VED4/nqXTEEv27od5b2fsNWF0HgnoflvPIWojqv7hrjjWNSFOajG2MsbWJq65vDZOPoS4ZYQ38Obtrq2ZPlMyUOn69SVP3ZNg4Y6sLI9NltGEMtx2cV1RhqYW2TIIjwuygQA27nxODvE1GOHdPAZUxzqUPqefqE1Tfi9l7TalrbgvcaTzlxe69xiltbTGs9jwv1F5J9hX8PW3biAgAAAAAAAAAAAAB6YScuAAAAAAAAAAAAgOQYdifue1vS/a3uzz15OEpGoWMRFwAAAAAAAAAAAEByDLuI+1OrB3/d/OuG9J9lRskqVFxOGQAAAAAAAAAAAABihJ24AAAAAAAAAAAAAJLjiaTvRVBmjLCIG3NBcM051rtpK/vnFv7QOfb0Nz90jn385nPuSXzJPVSS9BVDrKHs4Ip7rLfw24YkJO09cI+dP2crO4ocJGnevd/pNVvR7gw5vGMseu+6c6jnGcp9y5DzG8Y2ecvQN95wPz6TdwzHJ5n6hrcQTblWQeBez553N5okrMd3K6L2vhVNsZKtvU2fg5Z+FClD39iLJoNg1xbvee79yNQmnvtYZzn/JElXLOer5Ty5EFG5trJt/Sii8cjMUHcxOV+j6s+6GdF3Og3T71zLjfB8BWAab9BdEuvQZcxO4nGNU9zqcFrbK2717CJu+WA8aPdkcZljzOrcIonjLiaDRVwAAAAAAAAAAAAAybH//b+wy4wR7okLAAAAAAAAAAAAADHCTtwJuXjxos6ePdv1udXVVa2uro45IwAAAADAcVtbW9ra2ur63MOHD8ecDcLG3BwAAADTbmrnNPsK/x62MduJyyLuhNy5c0fpdHrSaQAAAAAA+ui3kNdoNJTJZMacEcLE3BwAAADTjjlNcrGICwAAAAAAAAAAACA5YrATN5/Pa3d3V+VyOeREDrCIG3Oed9059h8EXzeV/XNf+UPn2P9i4T90L/c193L1FfdQSfoHNz/jHPtH+mnnWO/Kb9sSicreA/fY+XPR5fElQ+wbMcjZkq8kfeWac+jpL33oHPv4TWMeFlGW7crSPyVJhvY2lW0o19jnLGOudCGSPIKbhhQkebcMeZjcdQ993f2ckiR91hbuzNxHoxEE7vXhLRjK3XWPtZQrSZo35BzReWLOOQ7tbe37tyw5x+DcHire0V4McjAKAvex3HaeWPOwnK/ufc5yfACOcjl/XMYFy/k9qrjlM63CqsNZbq9pPa5xtmlY7zXOclxMa/0gPugbo4vTHCNu7TmtbT52TyR9L4IyHVUqFW1vbyuXy4WcxMdORVYyAAAAAAAAAAAAAEyRVqul27dvR/4+LOICAAAAAAAAAAAASI79iP4cLC8v68aNG6EdSi8s4gIAAAAAAAAAAADAAIVCQYVCQalUKvL34p64AAAAAAAAAAAAAJJjX6Z72DqX2Uej0VCr1VI2mw35jbtjERcAAAAAAAAAAABAsu0/Ovgb1vc+6vlUq9VSoVBQtVodvnwjFnFjLgiuOcd6N91jJek3b/6Gc2xRBfeCbz1wj339nHuspJ+78oemeFenv/Shc+zjN58zlv2ic2xhoegc+1ueIYl5Wz3rK4bYtwxlW8r9rCH2TUOsJO2599HHt4xlO/p08N+b4r++YKjntwxjwRuG89Xajyxt+I6h7HcM5X7JECtJbxrqztCPLLGepa0lnf7Oi86xjz9hGb8Medy6bihXkgyfbZZxQ3edI02fr1csORjjXzOUu2Ao19I/Jdv5/brhPLF8J7AyfP4EV9xjTfVsZR1HHQW77rGe5fuDpMjOKy+6vmHJIw45eJ51DLXkEU2fA2DnMi64jAdhjXFhlTPOnGcZdTh9xtmmcRs3pvW9pvU8Deu7atw+B91cCKWUsI49LHHrq4OOPYnnaPz68hTrthP3/7Mh/dNozqmrV6+qVCpFUnYvLOICAAAAAAAAAAAASLafWJf+558f/vV770v3Xj3x8Pb2tpaWluT7/vBlD+HUWN8NAAAAAAAAAAAAAEbxRNL3jv09PSPpuRH+nu36VqVSSfl8Xp7nHfmTpEqlIs/zlMlkQj9EduICAAAAAAAAAAAAQBfFYlGtVuvE48vLy0qn01pfX1cqlQr9fVnEBQAAAAAAAAAAAJAcT3VwX9ywy+wim812fTyVSsn3feVyuZATOcAiLgAAAAAAAAAAAIDkePL9v7DLjBEWcafJm7bwn77yR86xv3Xlt51jg8A9B++Ke6wkffrmO86xX/d+1L3gL73oHvtZ91BJevyJ55xjf2vvsnPs6e+8aMjBOdTujQfusfPn3GNvXXcOPf2dX3UvV9Ljdwx5GM8rV3+0+2I0BUumnC39SPrQlMbjF75lindm6UdvuPcjex7X3GP3DOdJXFhyttSFVURjgedZ2uSuIVaSLhjjHVn6vjXn19zLDm66F+vdMuSx5x4qScEV95xt7W3I4aalTYx5GNrb8yxjnbV/usd7hr5h6s971nPQnaXugiDCsS4iUfWNILD1fQBuxjnOuHwmuZzrLjm7jEVJHGMRH2H1Mdvn5mjv5WKc+YzzPOV8T5ZZbi+Xz8G4jRthidOYEL/vEYPnTWHNl+J37JgEFnEn5OLFizp79mzX51ZXV7W6ujrmjAAAAAAAx21tbWlra6vrcw8fPhxzNggbc3MAAABMu6md0+wr/J2zxssz7+0ZdyUYsYg7IXfu3FE6nZ50GgAAAACAPvot5DUaDWUymTFnhDAxNwcAAMC0Y06TXCziAgAAAAAAAAAAAEiOJ5K+F0GZMXJq0gkAAAAAAAAAAAAAAD7GTlwAAAAAAAAAAAAAyfFU5nvYOpUZIyziTpPXbOFFFdyDbz1wDv3Mzf/evdzP2pL++k1D/Lx76OMX3I9Pb51zj5WkPUPZBo/fec459tO775jK/rr337gHv3XNOfT0ax8asvhV58jHL3zLUK7sbRiBRwvu7SdJnzG04de9H3WOffxmhHUxbyh777oh1j3008Ffcg+Wse+bzu27hnINsZIev+N+DppY2s/4+aNbhvbWBefIx59wP6+CwP34PM/WJra+796PTn/TfQx9tGDrF96CIdYz9P159zyCXfdiJcm7Yok2tOHr7jl7Ny05SHrd0DcM370s54mpLqxlf8VYdBQ5yNZHgyCaMdR0npiPz30MtRyfpVzzuGgQVZsASeByHrqcI2GVM61cxmjLd0UMz/LZ009Y/Tlu58U484nbsSdR3MbeuOUTlnGO4eOsw3GOh3HrG4PaNG79NIn9C8nGIi4AAAAAAAAAAACA5NhX+PewDXtn74hYxAUAAAAAAAAAAACQHE8U/iJu2OWNKLaLuM1mU/l8XqVSSb7vd40pFApqNpuSpFar1TN2UnEAAAAAACQZc3MAAAAAmIzYLeI2m02VSiVtbm72jctkMvJ9X+VyWZJUq9WUyWR07949pdPpiccBAAAAAJBUzM0BAAAAxNoTSd+LoMwY8YIgCCadxGGtVkupVErLy8uqVCra2dk58UvaQqGgzc1N7e3tKZVKdR7PZDKSpHq9PtG4fhqNhjKZjOr1+sQnlmd2P3SO/emFP3KO/fqV19yTuGW8afvrhpt5f9Y99Dev/IZz7G9d+W33giXpHffQT++6B//R7k87xz5+4VvuSUjSW4YbtL/pHvqbu4Z69k67F2x2IZJSLTe2d7l5/fAMx/e6oa0NfVmy9WfbuPHAkMVdQ6yktwxjzBuWNnRvk9PfedFQrvT4hb/jHjxvOL4vGZL4iiFW0ukvuX/+PFp4zjnWdF6Z2trS5yRzv3Nlab894xgTUd84/Zp7Wz/+hHtbm+0Z2nDeMC5aypVsY26UY52F5VwxjAXBTfdY82em5fui6btoNN8f7NzbOwgMdREhSxvGJWdXcZrfhY25OVzO3bDOWc8b/LlnmW9heONsd/RHW/QX1r+rjLMOp7VN43Zcs5yP23kxeF4T1mduGOepS92E9T0ibt9HxtV3kvi9uJ2zfrwu/dAQOf+brYO/bp4+lB5/Kzb1cWrSCRzXnoAtLCz0jNne3pbv+0cma5J0+fJlNRoNNRqNicYBAAAAAJBkzM0BAAAAxNpTSftD/L2wKv34n3T/e+nOJI6kp9hdTnmQRqOhVqulbDZ74rn2qvjt27claSJxcViZBwAAAAAgSszNAQAAACBaiVvEvX//vqTuvwZuP9ZsNicWBwAAAADAtGNuDgAAAGCi9hX+PWz3Qy5vRIlbxG21WpJ04rJJhx9rNpsTi3P10Ucf6cMP3e8Td9yZM2d05syZoV8PAAAAALPu0aNHevTo0dCv/+ijj0LMJlmYmx9gbg4AAIBJYk4z3RK3iNttonZcq9WaWJyrV1991Tm2m2vXrumLX/ziSGUAAAAAwCzb2NjQ9evXJ51GIjE3P8DcHAAAAJM003OaJwp/J27Y5Y0ocYu4vu9L6j4paz/m+/7E4ly9++67+tSnPuUcf1y3X/p6nu1EPf2dX3WO/fqV15xjv/v/dP8V8vOftf1C5NNX3nGO/fpN95x/yzttyMI4IL5+zTnUUs+/efM3nGP/q+B/7RwrSV9fOOccG+y6l+st/LZ78Lx7qJl7NUufdQ/1vAfuwfPu/UKSfnPXvb1/y9B+n75pOKe8/8Y59iD+giHaUHe6a8rD5A33PD4d/CXnWMs59dML7m0iSX8YuPcl74qhYENd6HX345Okxy98yznWe8tQ9luG8+oNw1huGMclSbds4c72ohtjLE6/5r5b6fEnnossj0/vRvOdQG9asjCOR7cM8aY2NJwnln4k2caCefc8TJ+ZVrcs45ehnm9ZvgNaPgONDH3DOj+ISmD4rLKw9KMg6N4/19fX9fnPf37oHN5///2RFwGTirn5AddduC79tVc/PVrO4PPa5ZwLqxwX43yvuIlbPf//27u/GLfO887jv5O64zgwJM7IuagvvAnHF91g4d2ScYrVwq2MchYSYsAwTFrRCEW7C5i8kIFFssFwVUNVtFpXpdAgKKBBl9SN0UKjKsPAMNaAhQ4NzcaAi1YaJvEu4v2Toe2LdRdINKS0RWRNrb57MSY9o+GQz0sekocz3w9A2CKfec9z3vOeP8855DmWfcg4Loth7u+G2T/DnNY4blvGcayOY87hjQ3LcVv3eskyrbDGqkVY+YRlqPsUE0tdFMZ5vu5tBIFlOgOs43pgH8v3JP2HHWNu3TrZsY2xrmk+kfQPA2gzQsb2Iu7a2vYrR833EonEyOKsHn74Ye3bN7gTmwAAAACAzvq9Fe7DDz8cYjbjhdocAAAAiIIH1OlSX7dj3b1c04yDsbyIG4vF2j7jplqtSpJmZmZGFgcAAAAAwG5HbQ4AAABgpP5RGz9EDrvNCPncqBPoRTabVbVa3Xb7pKWlJcXjcaVSqZHGAQAAAACw21GbAwAAAMDgRPYibvM2SO2ec1MoFBSPx5XP51vvVSoVVSoVLS4ujjwOAAAAAIDdgNocAAAAQCTd08YzbMN8hf3L3j5F7nbKtVpN5XJZ5XJZkpTP55XL5ZROp7fEra6uKpfLKZfLtf5uZWVl27NvRhUHAAAAAMC4ojYHAAAAgNEKnHNu1EnsJdVqVclkMhLF5YNrt82x61c7P/x6M1cNzLFBwm/4nZp92Rx7Njhqb3jyCXts/V17rKSJm18yx74+9aw59khwyJ7EsdP2WEkTFwYzNvSSVxp2h/3C31x42hz77NrrnsnYrL/k0W+SdNlj3HmM5zfX7H1xJPhTew6SdMxjvbp8xhw6cfOb5tj1xz372WP9ds4+f8GUPYWJn9nXP8lzHi94NW03qHXbl8/8veER+4xfGodmr5pjl6c8NmA++x+f9U/SoQWPnINH7Q1fsufhZu3NSn7rle9+wspnfylJ6we+5xH9nF8yVj7HPIPkM559c67b9yma9DtGsucwuPlza/bYIBhMX/jk4J2HB+cGtPw8RKm+g58oLjvLvs2y/lnWuSisP6MStf6JWj67VVj7oqgti2GOn7CmNcxlMcyco9bPYQmvDy3Hx68ZYrqL2no6TFEbq2EY7rrefZxazgeO33r8kaRSpI6Lu2key+uRFelXQ875H6rSL6JTJ0T2dsoAAAAAAAAAAAAAsBdF7nbKAAAAAAAAAAAAALCjT8akzT7wS1wAAAAAAAAAAAAAiBB+iQsAAAAAAAAAAABgfNyTFPTwdx/PS3fn23/m7vSTUei4iAsAAAAAAAAAAABgfNzr8e8eOLHxattmVfplsueUwsZF3D1s/cAH9uBLT5hDH/yDW+bYN6eetucg6dm11+3Bl/bZY9/wSOKyR6yku1P2PILZa/aGj3kkcfmMR7C0fvW0PfiwR8M+sVftoRMXbns0LB2ZsvfzxM/sbXst68vvmmMlSZP2ddDHkQWPMTfp1/atv3jQHLtfd82x6y/55eHlmMe2bs1j3F2wjw2fcSRJgcd6dWjWvmK9fu9Zc+z+49ftSUhe+xQNaHm/uWDf/xzx2TZLWj7+qEe0x7bAY3z6bhcHxmP/Ghwf4HbRY5s7cfNL5tj1x/3WVx3z2L967Acjw2s/P5j9miRp0qOffdQ9x+iABLMewT5jzieHwO/Y0jl7Hr5tA7uJW+seY1lHLOtcEHTfpjk3wG31gIS1DQmvn8NpB52NYz+HlXPUxmHUlsU4LnfpuYHnEbawtr1RW17DNMw+DG897T5WLccS3Y5JwlpvgqnurdjyjdaxhkW3dqrVqpLJUijTQvi4iAsAAAAAAAAAAABgfNyT5EJu8x9Dbq9Pnxt1AgAAAAAAAAAAAACAz/BL3BF5/vnn9dBDD7X97MSJEzpxYof7cQMAAAAAhmZ+fl7z8/NtP7tz586Qs0HYqM0BAACw2+3amuYTSUHIbYb9y94+cRF3RH7wgx8okUiMOg0AAAAAQAedLuRtPD8qOeSMECZqcwAAAOx21DTji4u4AAAAAAAAAAAAAMbHPfFLXOxik0+YQw/NXjXHPqW3zbFHgj81x274wB56zGP+Fuzzt6zD9hwkBQsewZffNYcech+ZY59aWPdIQjrrk/MbHrGXz9hjJ0+bQ9ev7vNIQjq19rI59mwwYY4Njtlzll7ziJV02D6efcbRm7P/zhx75I1r9hwk7f/iXXuw32pld8Ev/M3Zp82xR6Y8+sMjjwfXbtuDJenyB+ZQn+3XFy/83J7DJb910EvdPp513B565Pghe/Ale6gk6bJ9/T7l7Nvns7Me2wFPywseK6Fvf5h5zp991y3n7G377Lcnfua3vq4/7rGu1D32mT689lWePPY/Eze/ZI5dP/A9z0Se84y38Tn2Wp7yWKd8tnOSdNVjXfHZD77kk4RfHweB5zwC2JFz3bfjQdB9H2JpZxxFrX/CaidqyzSsfMJqZxzHc9T6J3JjbKp7jFsztBOxMTaO62lY42eYwsvHcszbvf63LfdwphW17XMw2zXEIJy+Ud3Sf4ZpWWpqQ21sOU9hq6PCGoOIKi7iAgAAAAAAAAAAABgvEfvlbNg+N+oEAAAAAAAAAAAAAACf4SIuAAAAAAAAAAAAAEQIF3EBAAAAAAAAAAAAIEK4iAsAAAAAAAAAAAAAEfLAqBPA6Lg1e2wwddgcu1x/1Bw7cfNL9iQkrV/dZ2/78G1z7PKsff4OLVw1x0rSskffafIJe7uzHrHyyEGSnrGHTlyw9/PBhd80xy5P2XM4NOu3TM4GR82xPmN0/SWPJI6d9giWTi28bI49q1fMsUemrpljfbYZkhR4LMNBOTVr7zdJOrJg7w9d8Gj4DXvo+hv27Zy3y+/a85B9G+Pr1l88aI7d/8Zde8NemwKP+Ttu7zdJXuv32eCMR7v2UJ/9pSTJZ/vluUsx89uUe3nap/Hjf2MOXddznpm8Zg/13E+YDbCffXiNUd++8JnHun0dXJ71yKPusd045rm99Zk/j/2P37rtmbPH/sdH4LENdW5A6xQwpnzWn06GuW7Zcu6+bw4r5/Dy6b5Njdo2zJKPpX+Guyy6i1o/W4TVz1Gbd9/zDzvrvg5GbawOd7tqOUbrXsOEtU0Ij2+d1jvbvIfTz1FjWqaTlvHcZd4t9eDlkMap4VymW+geExjyCaYsNdX4jQuEj1/iAgAAAAAAAAAAAECE8EtcAAAAAAAAAAAAAGPkE0n/MIA2o4OLuAAAAAAAAAAAAAD2gD/79NXOx8NMpCsu4gIAAAAAAAAAAAAYI5+ot1/Ovvjpq50fSfpXPWcUNp6JCwAAAAAAAAAAAAARwi9xR+T555/XQw891PazEydO6MSJE0POKESXnjCH5qde9mr67EuvmGPXtc/e8AV76PLUYXuwpImf3TbHrj9uz/nUgr3vCmt5c6wkrb9kz+Pg7Dvm2OVZj74b5DK56bFMPPpCz3gk8YZHrPyX4SAEC4Nre+KCxzI58IE5tnDBs9+On7HHXjptj73s0e6kR7uSNGnf5vpsj6QBrSeSvnjr5+ZYv7HxPY8snjNHnnJXPNqVzi7Yl4mueizvqx5J+MRKks9m1KNtvzHnZ/2qfdwtL9hncOLmQXsOHvttSbr18yfNsfuveG4LrDzHxqE1+x947ed99oM++1dJuvyuR7DHtsDj2Ovs5Ql7Cs94bDOkwW4LBsQ5+zwGwWDa7cf8/Lzm5+fbfnbnzp2h5IDB2dW1eQfOdd/PBIHP9rRTOx7Hwn0Ka7sQXs6vGabVPSYstuU+vOVlYcknavMVVs6WGIvo9WH34y/LuhzefIWzDoa1zRzqtCznE+rD20aFt+6EM34sbOPHMubDWQeHuX8Pb7vRpX9M9V33Pg7tuGbWsN4cM2y/LfNlOEfo1ro3s7Ec/vbTVzvRegasH56JiwH5wQ9+oEQiMeo0AAAAAAAddLqQV61WlUwmh5wRwkRtDgAAgN3va5++2vlIUmmIuYTpnsK/6Hov5Pb6w+2UAQAAAAAAAAAAACBC+CUuAAAAAAAAAAAAgDGy+2+nzC9xAQAAAAAAAAAAACBC+CUuAAAAAAAAAAAAgDGy+3+Jy0VcmLg1e2wwa4/99tE/8crjrF6xB1/waPglj9jDHrGSXp961hx7RNfMsWcXPPri+Bl7rCQdO20OXQ7+xqPhR+2hl18zh07c/KZHDtL6gQ/MsafcFa+2rQqH817x64/vM8ceWrtqjl2e8hjQb9hDJfmtgx6ce8Ic67M9kqRTbt0cW1i7bY5dv2Rfp7y2R5LXNmn9qn0c6fi79thj9mUiSesv2fO49RcPmmP3H7trT+Kyff7OBkft7UqauOkxNg4PqC8euG6OlST36D83xwaHnTnWZ1n7LBNJ0iX7uDs0a98uXvurI+bYp9feNMdK0v4F+xidOGwfRz7W5bFMJC3Peh74WHks74kLX/Jqet1jbJyafdkce1DvmGMnbr5ujl1/3By6oe65rhgdch+ZY33HRTDlETzpsZ8PfPrCfmwpSc557LuByHkulFYsx91B4Flr7siSs996vBNLzpZtQFjzPsztzTDnPWrzNcx2LOPZsm/0ORfXsZ2h7tO6z3tY25bw1lPD8gotn3C2Y5btYXjLfXjbBL9juw7t+Bx7dmI5P2opNeuWceh3XmUntj4Ma39qmJalD5/p/LEznNszreuWXCx1qiXGo6bpl++5T4wfbqcMAAAAAAAAAAAAYIzc08YvZ8N83es4xVqtpkwmo8nJSU1OTiqTyajRaIQ+Z01cxAUAAAAAAAAAAACAHVSrVSWTSUnSCy+8IEkql8v68pe/PLALuVzEBQAAAAAAAAAAADBGms/EDfO18zNx8/m8VlZWtLi4qGKxqHq9rlQqpUajoXPnzg1kDrmICwAAAAAAAAAAAGCMDO92ytVqVZlMRvF4fMv7hUKh9fkgPDCQVrGnuQWf6Lt+ba95hdt5PAA8mPJr+sjsNXtw3fLw+U8dt4dO3PymPVjS+gGPPHwc83mouz12/aXB5XE2GEy7esajXU/LU4fNsRM/u22OXT/wgWcmPstwnzk28FlPJn3GnHR29hV7sM8yPO6R8yW/nPXGgGI9+G33pSCw98ezC6/bG758xhzqs11cv2ofn5LfNunQwlVz7P5Z+z7zlHvZnoSkIPiJPfiSV9NmExe+5PkX9u2Xz3YxuODsKXgeE/hscw9OvWOOvfbtI+bYQB7zJ2nigsd+wmtdGdx+/tSCffwX1vJ+jRu9PvWsOfadtYNebZ+dsu+rfMbcU7pijl2+/Kg51t9r9tDJ0+ZQt+a5fwXGmHPDG+/O2dfDfgU+tVkHw8zZIgi6H8NacrYcYw+znbDYcrbUAc/1n4wk236qe4xlv2RbFuGs77Y+7G6Y25+w1h3btLov07D6MGrt2HRfv4a5nlqOgdevGsaGz7mcobD0j2Eb5XEM3VHdsEyv9r9NCIa5HAzndi3ncZYXDPP9UvcY01g2nVPtNnbek1QytLO3JRIJJRKJtu9LUiwWG8h0uYgLAAAAAAAAAAAAYIw0b6ccdpt2tVpNkjQzMxNyHhu4iAsAAAAAAAAAAABgzK1/+urVL72iy+Wy4vG4stlsH9PcGRdxAQAAAAAAAAAAAIyR5nNsN7uoYd4e+ty5c3rrrbcG1j4XcQEAAAAAAAAAAACMuX8j6Xgff/+/JL1oiszlcrp48WLbZ+WGhYu4I/L888/roYceavvZiRMndOLEiSFnBAAAAAC43/z8vObn59t+dufOnSFng7BRmwMAAGD3+0tJV3b47O4wEwlZu2fiBpIe7KPNXzVFlUolTU9PK51O9zGt7gLnnBvoFLBFtVpVMpnUysrKQK/OAwhHEJzxiH7OI/Y1z0wG07Zzp82xwaxHCpLcgj32aV01xy7PHrY3fNln+Uk6Zu+PUwsvm2PPzr7il4cPn3n0mD+PRSJ5LBJJ0jMescff9Wzc5pD7yBy7HDw6kBwkaeLml8yx6y/ts7d74bZXHq9PPWuOfXbtdXPs+lV7zodmfQad53I59oQ9jwV7HnkV7DlIOjJ7zRzrswx/vv+L5tj9v+tXnL258LQ51mdsDJLPuuIzfwXlzbHvrB00xx6cesccK/mNu8O/sWyODf6pvSz0WU8kaXnKvqM4tObXttU1752VDfXd+GLZAe1ZamBLHRkE3Y/jnbMfo/XLr7bvYNJQU9XDmZZPvd6Jad6HOF9hsY3DcMZzWGzj0Of8TweThvXLskxNYyOc9T2s/jFNa8owKQvDvIe2LCzndC4P5hxKW5cM8xXKOR3Dec5L3fvGcs7BUsf5nOfoZOKw33mbfqwf+KBLxHuSvjFWx8XNY3npVUm/HnLr/0PS73fsj3K5rFqtprm5uZCnvd3nBj4FAAAAAAAAAAAAAAjNPX32XNywXvc6TrFSqej69ettL+CWSuE/i5fbKQMAAAAAAAAAAAAYI+1upxxGm+1Vq1VlMhm98MILyuc/u1tXo9HQjRs3VCj43bHNgou4AAAAAAAAAAAAANBGrVb79BbO7X9xG4vFlEqlQp8uF3EBAAAAAAAAAAAAjJHm7ZTDbnO7eDwu51zI0+qOZ+ICAAAAAAAAAAAAQITwS1wA6MC50wNq+YkBtTu4tt3CQJqVJF3TYXuwTx4Lg1p+kvSKOfLs5XcHl8akxzw+49Hu1QHF+sZP2sfzxM9um2OXA48cLnmuUy/ZQ9d9+87a7oHvecW/4w56tP2BOfbWJ0+aY/fP3jXHStLETfvy9unn5Vn79mj5GY9tl6f8lP05Ku/IvvwmLtj7zbdtH69PPWuOfXbtda+231x42hx78N475thr+SPm2OAj+7dzr/2+vV1J0l/ZQ//wR39gjr1170Fz7BfXfm5PQn7b57zsY//IwjVzbOCxbZYk1c8YAz/ybBgAoi2sGti5Qda8/gZX27cTzrSCoPu+yDJfYc17YKihLNOyzJdFMGUIMtTLYeWjY4Z+tsRYahfLcUrd0I6eC2daBsFs922CafzMGqYVWM7BvNY9xHK+xXLOwlA2Tlz4ZteY/NTLXWPOWs5VGcaY5fh9/fHu7VjOp0wc7jytg1O/2bWNZcN6/NTsevd2Hu++sCx9c3Cqe5157dvd68DbhYmuMRb71a0uHOeaZrjPxB0FfokLAAAAAAAAAAAAABHCL3EBAAAAAAAAAAAAjJHhPRN3VPglLgAAAAAAAAAAAABECL/EBQAAAAAAAAAAADBGeCYuAAAAAAAAAAAAAGCI+CUuAAAD5twTo07B3+yoE+jFPnuoxzIJgjNeWTh3emBt2z3nFX121meM2nPe/8W79mbrfn2xftkee8j9pjn2ncMHvfLwsf6GfYwW1vL2dg98YI6duGkO9c/jcfv8HTl8zZ7EM/ZQSXpn1r4M3/kVe+zBP3nHHOu+HZhjn/7Xb5pjJela/og59m09ZY79j1/9I3Ps+oce21tJqr9rDi04+5jTcXu7vqzb8mq1qmSyNLA8AAB7l09dMQxh5RO1+ZLCycdW2/nVaTux9GEwZWjIswbb0aShDw3H9KY+PGaY1qSlvu0ec2rt5a4xZ6de6T4pw7xbarqzlwzTsjAt9292jbD0z0F1r6GOzHauDa89aqh//kX3kKs61DXGMk+/EnSvm04b8rl9Y6JrjKVePfwby90n1nXb856kca1p+CUuQra+vr7lv8A4unv3rr7zne/o7l2Pk/NAhDCGsTt8IumaonZwCZjduyv9t+9s/BcYU9R344tlh15QR6AXjBv0Zl3Sn336X8CIGgs92bgIOp7HxZ/0+HpT0rd2eH13qHPQDb/EHbLmivCNb3xDX/jCF9rGnDhxQidOnBhmWoCXu3fv6syZM/rWt76lBx98cNTpAN4Yw9gdPpH0XyX9S3FIh7H0j3el/35G+vVvSb/CthjRNT8/r/n5+baf/fKXv5Q0ric89jZqc/SCOgK9YNygN+uS/rOk35XU/Rd7gCRqLHTwl5Ku7PDZHUl7raaZ+fTVzvuSTg0xl8444zcif/7nf67f+q3fGnUaAAAAAIAOOl3I++EPf6jf/u3fHnJGCBO1OQAAAHa/b3z6amdF0r8dYi5h4nbKAAAAAAAAAAAAAIAh4pe4AAAAAAAAAAAAAMbIPYX/y9l7IbfXHy7iAgAAdODc6Ui2ffv2be3f/8e6deuk9u3bF2JWXSwMqj8G189epgbY9oJPsH2ZBh6trh/4wCcJOfeEPXjNHhoEZyR9vPGP8jlJn+8Q7Tc2zr70ile8Wf1de+wlj37zHHN/uPYH5tjlhcP2dn9kb3di7bY5VpLyUzs9e6k/Tzl77Nkpv3ERBNblverVLgAA2J3Crhs36j3p1q1/1lO950zH5hGpwZpmu+ezUUd0FtayCIKjhijDMePx1wztPGeIMahs+u9OheKx7v2z/nj3SX3753/SNWb/lbvdG3qm88d/ONu9TnlbT3WfjoGlfnL//o+6xrz73e7TeiLf/fmzBwvvdI058+Pu0zrkPur4eeOHv9CPeUJMZHERFwAAAAAAAAAAAMAY4Zm4AAAAAAAAAAAAAIAh4pe4AAAAAAAAAAAAAMbI7n8mLr/ERVfz8/OjTsHbuOU8bvmOo3Hr43HLVxrPnMfNuPUx+eJ+49bH45bvhr8cdQJ7wJj18V+N1zi+Pn9j1CkAIxOl/U6UcpGil0+URKlvopSLFL18oiRKfROlXKTo5RMl0eqbvx11AvcZsxphmCJUj/yf+f8y6hS2mP/RqDPYDZq3Uw7zxe2Ud518Pq9MJqNMJqOZmRnVarVRpxSqaO2gbcYt53HLdxyNWx+PW77SeOY8bsatj8kX9xu3Ph63fDdcGXUCe8CY9fHSeI3jG/Mro04BY2zca/Mo7XeilIsUvXyiJEp9E6VcpOjlEyVR6pso5SJFL58oiVbfRO0i7pjVCMMUoXokchdxfzzqDDAOuJ1yn5LJpOLxuBYXFyVJlUpFyWRSb731lhKJxIizAwAAwG7n3BOt///KVx7UT3/6RIfoaHDutG7fvq39+/9Yt26d1L59+0adksFGv1r6OJjyaLZ+xiuLs8FRe/ClAbWrDzxipbfdU+bYX/zP13R26hVTrPsngbnddP2PzLGS9Jox7gNJr3q1jEGhNgcAYPdz7rQk6StfuaKf/vT0gKdlr6s61wjDq89uPyPt3y/d+lAafIl1t2uEm5W+8p+kn872PpXAUBu4NUs7km49rOWpw70nIym44LoHGeqwnxwPdFfSu9/dOea1766b8+rkUHCk4+cfSPpxKFMaBW6njA7y+byq1aouXrzYei+VSikej+vFF18cYWYAAAAAAOwN1OYAAAAAdiMu4vahVCopHo8rFottef/o0aOqVquqVqujSQwAAAAAgD2C2hwAAADYi3gmLnZQrVbVaDTa3pap+d6VK9wLHwAAAACAQaE2BwAAALBb8UzcHt24cUOSNDW1/YFXzfdqtdpQcwIAAAAAYC+hNgcAAAD2qk8U/i9no/VLXC7i9qjRaEjStts1bX6vXaH48ccfS5J+8pOf9DX9iYkJTUxM9NWG1Z07d8bu9lPjlvO45fv3f//3kqQf//jHevjhh0ecjc249fG45SuNV87jOIal8epjiXwHbRzH8bj18bjlK41XzuM4hiVjH3vVfB95ZvCePfT9T6T1O9L7ljHxvz3zsPt/1Z/bg90d6RPbGK7+0t7sTnPXvGHW/T4wtvt/P/1vs87D8O2m2jxK2/Ao5SJFJ58o7rui0jdStHKRopMP46azKOUiRScfxk1nUcpFik4+u3LcGGorU/OfyKvW2NH7/f1503uS7qpzdWetFO99+urVeNc0vxiTNvvg0JNisegkubm5uW2fra6uOkkuHo9v++zVV191knjx4sWLFy9evHjx4sWL1y55vfrqq8MoQ9EGtTkvXrx48eLFixcvXv2/xqmm+fDDD90XvvCFgfXFxMSE+/DDD0c9m8455/glbo/i8bikz771u1nzvWbMZl//+tf16quv6td+7df0+c9/vufpD/OXuAAAAACwG62vr2t9fb3nv//444/1d3/3d/r6178eYlbwQW0OAACAvWwv1jSPPfaY3nvvPf3iF4P51ewjjzyixx57bCBt++Iibo+aReDa2tq2z5rvJRKJbZ898sgj+r3f+73BJgcAAAAAwB5AbQ4AAADsPY899lhkLrQO0udGncC4isfjisVibZ+t07zH+8zMzLDTAgAAAABgz6A2BwAAALBbcRG3D9lsVtVqddttm5aWlhSPx5VKpUaTGAAAwKcajUbb4xUAAHYLanMAwF5GzQcAu1fgnHOjTmKcTU9PK5VKqVgsKp/P66//+q/19ttv62tf+5ouX77c9tk7O8nn861vDzcaDRWLRa+/B/rVzxis1WrK5/OqVCqSpFQqpYsXLyoWiw0qXaCtMLeluVxOa2trWlxcDDNFoKOwxnC5XNa5c+f01a9+VZlMhhPYGKowjimmpqa2/JsxjGGq1WrK5XI9bYOp60aD2hz9oh5GL6g/0QtqPvSCGgu+qGl2CYe+ZbNZ98gjj7gvf/nLLpVKuZWVFbe0tORisZhbWVkxtZFIJFw6nW792/fvgX71MwZXVlZcLBZz6XTaZbNZF4vFnCQXi8VcvV4fYNbAVmFuSxcXF52kLe0BgxbGGF5dXXWJRMIlEgm3uro6iDSBjvoZx6urq9tiV1dXnSS3tLQ0kHyBzVZXV93c3JyT5CR5b0ep60aL2hy9oh5GL6g/0QtqPvSCGgs+qGl2Fy7ihqC5Qtx/cN7cmQ7674F+9TsGU6nUtp1BKpVyktzc3FyYqQI7CnNbWq/XXTqdpojGUIUxhpvFGccPGJUwjovj8fi291OplEulUmGlCeyoOXabxwE+Jzyo60aP2hy9oB5GL6g/0QtqPvSCGgu+qGl2F56JG4JSqaR4PL7tNjlHjx5VtVpVtVod6N8D/epnDFarVWUymW23UygUCq3PgWEIc1uayWR08eLFkDMEOgtjDM/MzKjRaHALNoxMv+O4VqupVqtte55XrVbjlpQYiuY4a95qzgd13ehRm6MX1MPoBfUnekHNh15QY8EXNc3uwkXcPjUfGp9IJLZ91nzvypUrA/t7oF/9jsFEIqFsNrvj33IwgGEIc1uaz+eVz+cZuxiqMMbw+fPnVavVlE6neU4JRiKMcTwzMyNp42Tm5nZrtZpOnjwZYrZAuKjrRo/aHL2gHkYvqD/RC2o+9IIaC8PE8XA0cRG3Tzdu3JDU/lsNmx8UPqi/B/o1qDHY/JvmgQIwSGGN4+bBSiqVCjdBoIswxnCxWJQkxeNxzczMKAgCTU9PK5fLhZwt0F4Y4zibzSqVSqlSqSiZTKpcLiuTyWhpaaltIQlEBXXd6FGboxfUw+gF9Sd6Qc2HXlBjYZg4Ho4mLuL2qXkbgnbfmGu+12lg9/v3QL8GNQbL5bLi8XjbbyUDYQtjHDcaDeXz+VZRBAxTGMcTzc+np6e1uLioer2udDqtUqmk6enpsFMGtgnrmGJpaUnpdLp1i8p8Ps/JTUQedd3oUZujF9TD6AX1J3pBzYdeUGNhmDgejiYu4vbJcruT++83H+bfA/0a1Bg8d+4cz+fA0IQxjl988UUKaIxMv2O4eRCdSqWUzWYVi8UUi8VUKBSUSqVUq9VULpdDyhZoL6xjikajoUaj0Trxncvl+HUBIo+6bvSozdEL6mH0gvoTvaDmQy+osTBMHA9HExdx+9R8/kC7wdt8r9MzCvr9e6BfgxiDuVxOFy9e5JYcGJp+x3GpVNLMzAzbW4xMWNvidgfczcJsaWmp5/wAizDGcaPRUDKZVC6XU7FY1MrKimKxmEqlkvL5fNgpA6Ghrhs9anP0gnoYvaD+RC+o+dALaiwME8fD0cRF3D41B+3a2tq2z5rvdTpw7/fvgX6FPQabt3BJp9PhJAgY9DuOi8WicrmcgiDY8pI2boUWBIGSyeQAMgc2hHU80e5Au1PbQJjCOKbI5/Oq1Wqt44hEIqH3339fsVhM58+fDzljIDzUdaNHbY5eUA+jF9Sf6AU1H3pBjYVh4ng4mh4YdQLjLh6PKxaLtb0XeLValSTNzMwM7O+BfoU5BsvlshqNhubm5kLNEeim33FcKBTaFkKZTEaJREInT5403VIE6FW/Y7h5K61OzyZ58skn+08U6CCMY4obN25sKwpjsZhOnjzZOvnAN38RRdR1o0dtjl5QD6MX1J/oBTUfekGNhWHieDia+CVuCLLZrKrV6rYDsKWlJcXj8a4PCe/374F+hTEGK5WKrl+/3rZgLZVKYaUK7KifcZxKpZROp7e9YrGY4vG40uk022IMXL/b4kKhoFqt1jqwbrpx44YkMYYxFP2O43g83rZgbJ7I5OQCooy6bvSozdEL6mH0gvoTvaDmQy+osTBMHA9HkEMo4vG4y2azrX8vLS05SW5lZaX1Xr1ed5JcIpHo6e+BQepnDK+srLhYLOay2aybm5trvbLZrEskEm5paWlo84G9rd9t8f1isZhLp9MDyRVoJ4zjifvfTyQSbm5ubnBJA/fp95hCkisUClveZxxj2NLp9I71GHVdtFGboxfUw+gF9Sd6Qc2HXlBjoRfUNLtD4Jxzw7hYvBc0HyIvSbVaTYVCYdutCqanp5VKpVQsFnv6e2CQehnDtVpN09PTO7YZi8VUr9cHkzDQRr/b4s0mJyeVSqW0uLg4kFyBdvodw/l8XtVqtfVt2mQyqWw2O9ikgfv0M46r1ary+bxisZimpqa0trammZkZxjGGolarqVwuK5/PS9r4RUsul9v2fEvqumijNkcvqIfRC+pP9IKaD72gxoIVNc3uwkVcAAAAAAAAAAAAAIgQnokLAAAAAAAAAAAAABHCRVwAAAAAAAAAAAAAiBAu4gIAAAAAAAAAAABAhHARFwAAAAAAAAAAAAAihIu4AAAAAAAAAAAAABAhXMQFAAAAAAAAAAAAgAjhIi4AAAAAAAAAAAAARAgXcQEAAAAAu1qtVht1CgAAAADQM2qavYmLuAAAAACAXS2TyajRaIw6DQAAAADoCTXN3sRFXAAAAADYharVqvL5vJLJpJLJ5KjTaev8+fOanJxUEAQKgkAzMzOt1/T0dOv9flSrVcXjccVisaFPGwAAAEDvqGk2UNPsXQ+MOgEAAAAAQPgSiYSkjcK++f9RMzc3p9XVVZVKJc3NzalQKGz5vFaraWZmpq9pFItF5XK5kUwbAAAAQO+oaTZQ0+xd/BIXAAAAAHapqJ7o2OzGjRuS1PbkQjweVyqV6qv9SqWyYxuDnjYAAACA/lDTUNPsZYFzzo06CQAAAADAYARBoEQioZWVlVGn0lbz9l47laaNRmPbbcOsyuWylpaWVCwWhz5tAAAAAOGgpqGm2av4JS4AAACAPa9arSqTybSeHZTP51ufNRoNlUolJZNJlctlVSoVJZNJBUGgTCbj1Za0UYTPzMyoUqmoVCppcnJy262xcrmccrmcpqenlclkVK1WW59VKpXWc49mZma2fFYqlRQEgc6fP991nhuNhnK5nPL5fOu5SZVKZceYZj6lUsn8eTfN6d3/7fByudz6/35OOFy5cqXtbceGMW0AAABgmKhpqGnCnjYiwAEAAADAHraysuJSqVTr34uLi06Sy2azzjnnVldXXTqddpJcKpVyc3NzbmVlxWWzWSfJFQoFc1uLi4suHo+33pubm3OJRMIlEonW3yQSCTc3N9eatiQnycXj8VY7hUJh27Sb8Zvbcs45SdveW1lZcbFYzK2srLTeKxaL29pMp9OtXJoxPp93064P6/W6S6fT5jZ2Uq/Xt833sKYNAAAADBM1zQZqGmqa3YaLuAAAAAD2tEQisaXwd865WCzmJLl6ve6c++zExf3FfPMkiE9bzZMVm08UNDWns7mNZmG+urq6bdrxeHzLe4VCwRWLxW1x9xf+iURiS96b3988rVgsti3PzX3Q7fNumid/mid9mv/2aWMn3U6+DHLaAAAAwDBR02x9n5qGmma3eCDc3/UCAAAAwPio1WqqVqs6d+5c289v3Lix5dZU7W5Ftba25tVWs40nn3xyW8z169e3vZfJZFQqlVStVhWPx1vvZ7NZlUolVSqVVo5XrlzRW2+91X5mP9XMc25ubttnzVueFYtFFQoFxeNxnT9/XgcOHGjFb/67bp930mg0VKvVFIvFWs+2ajQa+p3f+Z1ttwPrRbFY3LEvepl289ZqN2/e1JNPPql0Ot13jgAAAEC/qGm2oqahptlNuIgLAAAAYM9qPntpcXFx6G21O3nSPAlSqVSUSCS2fHb/v/P5vEqlkgqFglKplBqNhqampro+82jz86bu99WvflXSxkkRaWNeksmk8vm8isWiFhcXt+TR7fNOvv/970vSthNKqVTK3MZOarVax77wnXYmk1E8Hm+dzEkmk614AAAAYJSoabaipqGm2U0+N+oEAAAAAGBUmoV987+jbiudTiuVSuncuXOqVCpqNBoqFAqam5vb8o11aeMb46lUSpVKRbVaTaVSSZlMxjytRqOx7b3mCYKpqanWNN5//32lUinVajUlk0mVSqUtOXT6vJOlpSVJ0szMzJb3T548aZ6HnRSLReVyuVCmXavVVC6Xt7R39OhRFQqFvvMEAAAA+kVNsxU1DTXNbsJFXAAAAAB7VvMkQrlcbvt5pVIZeluLi4tKpVKqVqutb6XvVFzn83lJGwX+0tKSstls1/ab38pul0/zJMj09LQktW7PtbS01Po2/ubCv9vnnTSn/8ILL2x5f/M3zTfnWKvVND09rWQyuSXfZDK5rc/L5XLHW4P5TLv5Lf/NJ5wSiUTrhBQAAAAwStQ0W1HTbJ82Nc344iIuAAAAgD2reeuofD6/7ZZc1m9fh91WJpPR4uKi5ubmNDc31/E2XKlUqvUMp263HGuKx+NKJBKq1WrbvmF/48YNxWKx1omTzSda0um0isWipM++md/t853UajU1Gg3F4/Ed8y6VSlvayefzKhQKajQarZMR586dU6PR2HJyY/PztMKY9vXr17fFNb/V33x2GAAAADAq1DTUNN2mTU0zvriICwAAAGDPisViW54JlMlkdP78ec3MzGh1dbVVOFsKW2tbzW86t/vGc6lUUqVSaf1tqVRSuVzu+Myn5jfXjx49ap7vxcVFxWKxLd8wb97m7OLFi60C//vf//6Wkw7NEwXNb3B3+3wnzW+Zt4trNBrK5XLK5XJbvlV+9OhRpdNp5XI5NRoNNRoNnT9/vnWSpanbbcd8p918Llc7YdyyDgAAAOgHNQ01TbdpU9OMMQcAAAAAe1yhUHDxeNxJcvF43BWLxdZnKysrLpFItD5bWlpy9XrdZbNZJ8lJcoVCwdTW4uLijp8559zq6mrr8/tf8Xjc1ev1bbnX63XXrrRbWVnZluPmv6/X6y6dTrtUKuWy2azLZrNuZWVlSxupVMrF43E3Nzfn5ubmXDqd3tJGt8936uvN85VIJFwqlXKJRGLLvKfT6bZ/v7S05IrFYmt694vH46FOu1AouFgstqWdlZUVJ8mtrq52nFcAAABgWKhpqGmoaXafwDnnwr4wDAAAAADwV61WdeXKFZ08eVJra2tqNBqtb8wvLi5qenq69c34pkqlosXFxW3f3t6tmn1ULpe1srKy5bZgpVJJjUZjWx/1o1wuK5PJaHPpXKlUNDMzI8ppAAAAYCtqmu6oaWD1wKgTAAAAAABs3MYqmUyqXq8rFotte2ZRPB5vPTdps2KxqJMnTw4py9GLxWI6f/586/ZpmxWLRb311luhTq/5/K5arda6XVm1Wu34XC8AAABgL6KmsaGmgRXPxAUAAACACGg+i+jFF1/c8ryoWq2mUqmkYrGobDYraeNb07VarfXfvVR8NxoNpVIppdPpLe/XajVNTU1tOwnSr3g8rnQ63XrulCRduXJFhUIh1OkAAAAA446axoaaBlbcThkAAAAAIuL8+fM6d+6cGo1G671EIqFCoaBUKiXps9teNa2urra+Tb0X5PN5HThwYNvtxfL5vJ588sltJ0LCksvlND09rZs3b2p6erp18gkAAADAZ6hpuqOmgRUXcQEAAAAgYprPjdrpREY+n1etVtPJkyf33DfWJycnt3yDvymTyWhxcXFEmQEAAADYjJqmPWoa+OCZuAAAAAAQMe2eH7XZXr3tValUkqS2J4I42QEAAABEBzVNe9Q08MEzcQEAAAAAY6F5m7XmbdgAAAAAYJxQ08AHt1MGAAAAAIyNRqPR8Rv9AAAAABBl1DSw4iIuAAAAAAAAAAAAAEQIt1MGAAAAAAAAAAAAgAjhIi4AAAAAAAAAAAAARAgXcQEAAAAAAAAAAAAgQriICwAAAAAAAAAAAAARwkVcAAAAAAAAAAAAAIgQLuICAAAAAAAAAAAAQIRwERcAAAAAAAAAAAAAIoSLuAAAAAAAAAAAAAAQIVzEBQAAAAAAAAAAAIAI+f8H+IWYtiFGygAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#plot residual energy against energyloss and try to find a good split (eg energyloss before and after the magnet)\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n", "\n", "a0=ax0.hist2d(energyloss_found, residual_found, bins=(np.linspace(0,1,80), np.linspace(0,6e4,80)), cmap=plt.cm.jet, cmin=1, vmax=15)\n", "ax0.set_ylim(0,6e4)\n", "ax0.set_xlim(0,1)\n", "ax0.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax0.set_ylabel(r\"$E_0-E_\\gamma$\")\n", "ax0.set_title(\"found energyloss wrt residual electron energy\")\n", "\n", "a1=ax1.hist2d(energyloss_lost, residual_lost, bins=(np.linspace(0,1,80), np.linspace(0,6e4,80)), cmap=plt.cm.jet, cmin=1, vmax=15) \n", "ax1.set_ylim(0,6e4)\n", "ax1.set_xlim(0,1)\n", "ax1.set_xlabel(r\"energyloss $E_\\gamma/E_0$\")\n", "ax1.set_ylabel(r\"$E_0-E_\\gamma$\")\n", "ax1.set_title(\"lost energyloss wrt residual electron energy\")\n", "\n", "fig.colorbar(a1[3],ax=ax1)\n", "fig.suptitle(r\"$e^\\pm$ from $B\\rightarrow K^\\ast ee$, $p>5$GeV, only photons w/ brem_vtx_z$<9500$mm\")\n", "\n", "\"\"\"\n", "\"\"\"\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "#ist die shape der teilspur im scifi anders? (koenntest du zum beispiel durch vergleich der verteilungen der fit parameter studieren,\n", "#in meiner thesis findest du das fitmodell -- ist einfach ein polynom dritten grades)\n", "z_ref=8520 #mm\n", "\n", "def scifi_track(z, a, b, c, d):\n", " return a + b*(z-z_ref) + c*(z-z_ref)**2 + d*(z-z_ref)**3\n", "\n", "def z_mag(xv, zv, tx, a, b):\n", " \"\"\" optical centre of the magnet is defined as the intersection between the trajectory tangents before and after the magnet\n", "\n", " Args:\n", " xv (double): velo x track\n", " zv (double): velo z track\n", " tx (double): velo x slope\n", " a (double): ax parameter of track fit\n", " b (double): bx parameter of track fit\n", "\n", " Returns:\n", " double: z_mag\n", " \"\"\"\n", " return (xv-tx*zv-a+b*z_ref)/(b-tx)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "scifi_found = found[found[\"scifi_hit_pos_x_length\"]>3]\n", "scifi_lost = lost[lost[\"scifi_hit_pos_x_length\"]>3]\n", "#should be fulfilled by all candidates\n", "\n", "scifi_x_found = scifi_found[\"scifi_hit_pos_x\"]\n", "scifi_z_found = scifi_found[\"scifi_hit_pos_z\"]\n", "\n", "tx_found = scifi_found[\"velo_track_tx\"]\n", "\n", "scifi_x_lost = scifi_lost[\"scifi_hit_pos_x\"]\n", "scifi_z_lost = scifi_lost[\"scifi_hit_pos_z\"]\n", "\n", "tx_lost = scifi_lost[\"velo_track_tx\"]\n", "\n", "xv_found = scifi_found[\"velo_track_x\"]\n", "zv_found = scifi_found[\"velo_track_z\"]\n", "\n", "xv_lost = scifi_lost[\"velo_track_x\"]\n", "zv_lost = scifi_lost[\"velo_track_z\"]\n", "\n", "\n", "\n", "sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n", "sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n", "\n", "\n", "sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n", "sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n", "\n", "\n", "\n", "#ak.num(scifi_found[\"energy\"], axis=0)\n", "#scifi_found.snapshot()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 0]\n",
       "------------------\n",
       "type: 11 * float32
" ], "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ak.num(scifi_found[\"energy\"], axis=0)\n", "scifi_found[\"all_endvtx_types\"][1,:]" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "scifi_fitpars_found = ak.ArrayBuilder()\n", "vtx_types_found = ak.ArrayBuilder()\n", "\n", "for i in range(0,ak.num(scifi_found, axis=0)):\n", " popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n", " scifi_fitpars_found.begin_list()\n", " scifi_fitpars_found.real(popt[0])\n", " scifi_fitpars_found.real(popt[1])\n", " scifi_fitpars_found.real(popt[2])\n", " scifi_fitpars_found.real(popt[3])\n", " #[:,4] -> energy \n", " scifi_fitpars_found.real(sf_energy_found[i])\n", " #[:,5] -> photon energy\n", " scifi_fitpars_found.real(sf_eph_found[i])\n", " scifi_fitpars_found.end_list()\n", " \n", " vtx_types_found.begin_list()\n", " #[:,0] -> endvtx_type\n", " vtx_types_found.extend(sf_vtx_type_found[i,:])\n", " vtx_types_found.end_list()\n", " \n", "\n", "scifi_fitpars_lost = ak.ArrayBuilder()\n", "vtx_types_lost = ak.ArrayBuilder()\n", "\n", "for i in range(0,ak.num(scifi_lost, axis=0)):\n", " popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n", " scifi_fitpars_lost.begin_list()\n", " scifi_fitpars_lost.real(popt[0])\n", " scifi_fitpars_lost.real(popt[1])\n", " scifi_fitpars_lost.real(popt[2])\n", " scifi_fitpars_lost.real(popt[3])\n", " #[:,4] -> energy \n", " scifi_fitpars_lost.real(sf_energy_lost[i])\n", " #[:,5] -> photon energy\n", " scifi_fitpars_lost.real(sf_eph_lost[i])\n", " scifi_fitpars_lost.end_list()\n", " \n", " vtx_types_lost.begin_list()\n", " #endvtx_type\n", " vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n", " vtx_types_lost.end_list()\n", " \n", "\n", "\n", "scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n", "scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n", "\n", "vtx_types_lost = ak.Array(vtx_types_lost)\n", "vtx_types_found = ak.Array(vtx_types_found)\n", "\n" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 0]\n",
       "------------------\n",
       "type: 11 * float64
" ], "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vtx_types_found[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABrwAAAJOCAYAAADlOafTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACc+klEQVR4nOz9f5Bd130YeH4fwABmzAIaTXl37KnY0oO2ZuPaouVu2ZnilCJq2JDBsrIaBt1kSCWV7MwQ7Vlok40sowOpZIpmSXBjlPFkSr1xN5Mt1XhEmkLTLI3lFaxuDiErw1ovgWeaOxNtxsKT7ZnYyYjqbiLMQIDQePsH9JoA+t1z+7377vvVn0/VK4nv3PPjnvvjnYPT934rjUajEQAAAAAAADCk9vS7AQAAAAAAAFCEBS8AAAAAAACGmgUvAAAAAAAAhpoFLwAAAAAAAIaaBS8AAAAAAACGmgUvAAAAAAAAhpoFLwAAAAAAAIaaBS8AAAAAAACGmgUvgF2iVqvF0tJS18rb2NiIpaWlqNfrXSuT3aler8fS0lJsbGz0uykAAIwgcxe6xdwFYLBZ8ALoglqtFnNzczEzMxOHDx+OM2fO9LtJW+r1eszMzMTk5GQsLi52pcylpaV417veFbOzswb6FHLmzJk4fPhwzM7OxtraWr+bAwBAQnPeMzk5GZOTk/1uzo6Yu9At5i4Ag8+CF0BBtVotHnzwwZifn4+zZ8/G9PR0XLp0qd/N2lKtVuPs2bNdLfP48eNx/PjxrpYZcXNxziR0tOQd05MnT8b09HTvGjQiXCsAQD9MTEzEo48+GrVardR6ujnWMXdhJ3ZyPM1dOuNaAXrJghdAQadPn47x8fGt/56fn+/ak1SD7N577+16mTMzM/5SbsTs5Jjeev2wM64VAKBfJiYmSq+j22Mdcxfy7PR4mru0z7UC9JIFL4CCyv7rxt1iZmZGX44Yx7Qc+hUAGGXDMNYZhjayc45nefQt0GsWvAA6tLS0FDMzM1Gv17fiZM3MzMTq6urWNhsbGzE7Oxtzc3Nx5MiROHLkyG3py8vLcejQoahUKluDwNXV1ZiZmYlKpRIzMzNb5SwtLcXk5GQsLy/H6upqTE5O3rbNrZr1Nj87jSl2az2rq6tb///QoUMxMzPT8jUEa2trW9vltSfVD839n52d3TYozsvfSR9lqdVqMTMzE0eOHInDhw/H3Nxcx3Wkymrud3NflpaW4tChQzE7O7utnOZxPHz48La+WV1d3TqHjhw5clva0tJSVCqV5PFfXV2NSqVy2z7UarU4fPhwVCqVmJycvK3M5rnZDPidtQ95x7SV5nE+dOhQZl+0ytPOOXvmzJmtc2lycjKWlpZuS887Jqn8zbYcOXJkKyj6kSNH4tChQ3HkyJGttjTf/X/o0KFt50Sz/7POm7x+7dY5BwDQiZ2O25vbNMe4zTFVO2PIYZ27dGveEjF4c5fdMm9p9m87c5fdNm9pttHcBei5BgCFVKvVRrVa3fb9xYsXG2NjY42LFy9ufbe4uNiIiMb8/PzWd8ePH29ExG3bXbp0qRERjenp6a3/np6ebkREY2pqqnHy5MnGxYsXt/LeWt6lS5caY2NjjZWVla3v5ufnGxHRmJiYSO5Ls7xb6zl79uxW3bfuZ7PMqampxvz8fGZ7dtoPJ0+ebERE49KlSx31Yzt9lOXixYuNqamprf8+e/ZsIyIax48fb7uOvLLOnj3bqFarW9+dPHmyMTExse0YTUxMNE6ePLlVf/P4VKvVrbKax+LOfbx06VLuMW803u77W8+ZlZWVRkRs1d20uLi49V3ePmQd0zs1+29qaqpx/PjxxuLiYmNiYmLru53k3ck522zPnfvY3O+d7k9W/kuXLt22L83zo7ldc/9WVlZuO5duPbfzzptUv3brnAMAyNNqbrHTcfv09PRtY8zFxcUdzQvuNKxzl27MW5p1DdLcZTfMWxqNzucuu3HekupbcxegLBa8AArKWvCamJhoOeBtDoabA77mAPDWweP6+vptC16NxtsDwDsnB3cOrKenp1vWu5MFr0bj7UnI4uLibd9PTU01IqJx9uzZ5HZ3tqfdfrhzILzT/I3Gzvsoy8TExG3HodFoNMbGxhoR0VhfX2+rjp2U1ezDOydnd+7PreU0JyZ39tOdk6Rm+Xcen1buXGC9tb13ljk9PX1b3al9aPcfK5rnVlNzgnPrhLaVnZ6zU1NTjbGxsa305nV2a9tT+7OT/BcvXmw50Wt1vja3vfVc2sl5k7pWip5zAAA70WpusdNx+9jY2LaxSCcLXs18wzh3KTpvaZY5KHOX3TJvuXW/Opm77LZ5S6Nh7gL0nlcaApSgXq9HrVZrGdC5+Qj+4uJiR2WPjY1t+64ZALZer2899l9UtVq97b+b7V5ZWbnt+/e+973b2td8bUTRfug0f6qP8uo6ffr01uspb33Vx4ULF3Zcx07LapbxMz/zMy3b9Oqrr2777tbXd9zq+PHjUa/Xb3tdyvPPPx+PPPJI1i5vqVarMTExEcvLy9vSmq/sjLj56ouNjY3bzo28fWjHncc565zLknfOnj17Ni5evLiV3jwOt74+JLU/O8l/Zzl3tu3WINfN7y5duhQR7Z+Dt+rWOQcA0Il2xu3VajXOnDlz2+vrTp48Waj+YZ27dDJvubWuQZm77LZ5S0Sxuctunre0k9/cBejEXf1uAMAoSr3zuznJag7Gu6lZ5p0D6G5oDujbaXfRfuhlPzbrOnv2bM/LajUBjXh7YL+6urptQnXnf8/NzcXS0lLMz8/H1NRUbGxsxPj4eGbZd2q+b395eTmmp6djaWkpHnnkkVhaWorFxcWYn5+PL33pS5lxBXZaTzumpqYiovNjfOc5OzY2FmNjY7G8vBzPP/98cuLUan/ayd+JIudgt845AIBOtDNuP3v2bExOTsbc3FwsLi7G2bNnWy4SFWHuUl5ZrcaRu33eElFs7rKb5i2d5Dd3AdrhCS+AEqX+gurWv5jqluYAeSd/FdiuZns7WUwr2g+96Mdb/7JzUMqanp6OqampOH36dKyursbGxkbMz8/HyZMntx2HarUaU1NTsbq6GvV6PZaWltoKen38+PGIePuvTpuTxampqa0Ax4uLi1vb9ULzGHe6gHvnOVuv12NycjLq9XqcPXu27b8kLpp/J+Xf+r+9ygsA0C07GbdXq9X49re/HVNTU1vjq+Z4s1vMXXpb1m6ft0QUm7vspnlLN/IDpFjwAihB8y+0bn1NQ1NzAnT48OGu19scIN/6+oJuaS6iTU5O7jhP0X7oZT82+67V6zGy2tCLss6ePRtTU1NRq9W2/hJyfn6+5bZzc3MRcXOCt7Ky0vYkb3p6OlZXV2N5eTne+973xtjYWMzOzsbGxkacOXNm2ytgytY8xp3+ReKd5+yRI0difHy84wlf0fx5ipw33TznAADa1c64vV6vx9jYWKysrGw94dF8pVu3mLv0fu6ym+ctEcXmLrtp3tKN/AApFrwAClpbW9v2RFXz3eK3vke86cKFCzE2NrY1qL/33nsj4va/brr13ePtaA7sl5aWWuZtt7xbLS8v39bu7373uxGRfpqsnX5o1cZO8neq+QqKubm5ba8jafcvTrtZ1szMzNZf5Z08eTL5upepqamtmAidvPah+Q8NMzMzW5PQ6enpiLi5L53+Q0Sn593q6mpUq9WtNrTr1nO2eQ7d2i/Ndu00TkKR/DvR7nlza79285wDAGhXO+P2WxdBpqent57UuTOfuUu2QZy77OZ5S0Sxucuoz1tubUOn+QF2yoIXQEnOnj279ZdmTc1XOzzzzDNbA9DmRGBubi5WV1e33j0ecXPQfOTIkYjY2eB0bGxs66+4Jicnt14T0ZwE1Ov124JDp9waUHljYyMWFxfjmWeeyc23sbFxW1t32g/Nv3ZcXFyMer2+9ddeO80fUWwAf2ffzczMxJkzZ+LIkSNx6dKlrUF5J8chq6zmoD9rYrW0tBSrq6tb+ZeWlmJ5eTkZH6B5rB999NEd7fetpqamYmxsbGsC2jQ9Pb01gb9Tah+yjumdmsfwzkXfZkyHnUqds83XhCwvL8fS0lIsLS1t9VWtVovl5eWt4Nat9men+bPOj1aTzOb/b/7vTs+bVv3arXMOAKBTOx23f+lLX7pt3LexsRHVanVr/LnTMeSthm3uUnThYdDmLrtl3hLRnbnLbpm3RJi7AH3QAKAjFy9ebBw/frwREY2IaBw/fryxsrJy2zbr6+uN6enpxtTUVOP48eON48ePNy5evLitrPn5+cbY2FhjbGyscfLkyUaj0WhUq9XGyZMnGxcvXmxcvHixMTEx0YiIRrVabaysrDTW19dvq39+fn6rvMXFxUa1Wm1ERGNiYqJx6dKlrfIuXbqU3K/5+flGRDROnjzZmJiYaExPTzemp6dv27ezZ882xsbGtsq/ePHitvY096OdfpiYmGiMjY01jh8/3nY/tttHqf1v9l21Wm0sLi52XEeqrLNnz2amNTWPW7PsWz/VarWxvr6+Lc/6+nqjyM/7/Px8y75t1b6d7EPWMb2zzSdPnmxMTU3ddoxb7V9Wm/PO2Ubj5nUxNja2dS00Go3G8ePHt667vP3Jy3/x4sXG1NRUIyIaY2NjjbNnz27lax636enpxsWLFxuXLl1qTE9Pb217a12p8yavX4uecwAAKXfOgebn528bs+1k3D41NbU1njp58mRjenp627hvJ2PIRmM45y7dmrc0938Q5i67Zd7SbHenc5fdOG9J9a25C1CGSqPRaBRdNANgdJw5cybm5uZiZWXltr/MovdqtVo8//zzcerUqVhbW7vtL/HOnj0bhw8f3vZe9tXV1Th79uxtfzU46pyzAAC7k3HgYDBv2RnnK0D57up3AwCA7er1ekxOTsb6+nqMjY1te7d9tVptGcx3cXExTp061aNWAgAAu5l5CwCDZGAXvOr1eszOzsbi4uJt7+O91dzc3NY7c5vvvG21bb+2a3dbAGhq/nY88cQTcerUqa330Nfr9VhdXY1Lly5tBfxuBkhuBihOBYgGgGFiXggw2MxbABgo/X6n4p0uXbrUOHny5NY7Y7NizTTfddu0srLSGBsb2/b+3n5t1+62AINgfX19613eee8up3zN2G5xyzvwJyYmbnvH+8rKym3peTHaRo1zFmA0mRcCeYwDB4d5Sz7nK0BvDFwMr42NjRgbG4uZmZlYXl6OS5cubfvLt7m5uThz5szW49JNk5OTERFx8eLFvm7X7rYAg+LMmTPbvrvzXev0XvMd+Hl/NX7rX1TuFs5ZgNFkXgjkMQ4cPOYt2ZyvAL0xcAteTbOzs7G0tNRyYnPo0KEYHx+PS5cu3fZ9M/jjxYsXY2Jiom/btdNGAAAAWjMvBAAAdmpPvxvQrlqtFhsbGy0nBc3vnn/++b5t104bAQAAaJ95IQAAcKe7elHJ5cuX48CBA10p68KFCxERMT4+vi2t+V29Xu/bdu20MeWNN96I3/md34kf/dEfjR/6oR9Kbpuyb9++2LdvX8f5AQCAYq5duxbXrl3rOP/3vve9+PM///P4+Z//+XjHO97RxZb1lnlh9rZZzAsBAMo16mP1P/3TP4033nij1Dre8Y53xI//+I+XWsdOdX3B6z/7z/6zuHDhQrz3ve+NRx55JD7wgQ9EvV6PtbW1+A//w/+wcPkbGxsREbe9/7yp+V29Xu/bdu20MeV3fud34u/8nb+T3AYAANg9vvCFL8Tf/tt/u9/N2BHzQvNCAIDdZBDH6n/6p38a7/6Jn4jvl1zPvn374o/+6I8GYtGr6wteKysrMTc3FysrK3Hs2LF48803Y2pqKtbW1uLVV18tXH6rycKdmgGO+7FdxM7bmPKjP/qjERHxX/1X/1X81E/9VG55WZp/yXfs2LF44YUXOi7nTt0sb1DLeuutt+L9739/fP3rX4977rmncHmOQfscg/6XNcjHoJ/Hc3JyMWeLL0XEI5mpFy/OtlH+tYj4QkT8nYjYl5t/cvKPkmW/853/YCSOQS/Lch2UW1bqerp4cbbr/d9O23pdVrfL61ZZjkHxsor+1egf/uEfxt/9u393a44wDMwLB2Ne+Lf+1t+K3/iN3+j4Ca8i10PRa6nT/N24Zw3jfhfNW7TfBm2/88YX3ajbueZc61V+55pzrVf5d+u5du3atXj00UfjN37jNzqqd5DH6m+88UZ8PyL+ekSU9ezZGxHxW9euxRtvvDEaC153vpZifn4+Dh8+HE888URE3PyLtZdeeil3IL9TzUDFrcprfletVvu2XTttTGm+ruKnfuqn4q/+1b+a3HYn7r777q4GQ+5meYNa1uXLlyMi4j3veU9XXr3iGLTPMeh/WYN8DPp7PH8sJ/2u5Db59dya93s/+N9/JyJ+aAf50z/to3MMeleW66DsstLXSrf7v7229basbpfXrbIcg8EoKyIKvdKubOaFgzkv/OEf/uFC88ki53DR87/T/N24Zw3jfhfNW7TfBm+/dz4Wd671Nu/onWvl53euOdd6lX83n2tFx0wRgz1W/3ci/1+yOtWTmFltKNyekydPxtmzZ+ORRx6JI0eOxJEjR+LChQvx2muvxXve857bJgXd0CxrbW1tW1rzu4mJib5t104bAQAARoF5oXkhAAD0W+EFr8nJyThy5Ei8+uqr8dnPfjZmZma2JjPVajX+wT/4B/ETP/ET3WhrRNycNIyNjbV813mtVouIiCNHjvRtu3baCAAAMArMC80LAQAYTHdFxF8osexBUrg9jzzySBw8eDCOHTsWERFvvvlmrK6uxsrKSqysrMTi4mJMTk7Go48+Gh//+McLNzgi4vjx43HmzJlt71BfWVmJarUaU1NTfd2u3W0BGC6NxpPJ9Erlv46IhxPpT+XUcGvetyLiVyPir0XEPT/I/3oi74vJkr/5ze8k68/bN+g25xyMBvNC80IYJLt5fJE11u9Fn5hnANBve4oWcPDgwW3/fezYsfj1X//1+Na3vhXr6+sxNzcXb7zxRlvlNl/x0Op95/Pz81GtVmNubm7ru9XV1VhdXY2zZ8/2fbt2twUAABhm5oXmhQAADKa9cfPJpzI+e3u4HztRyhNnzQB3Bw4ciIMHD8b09HRMT0/vKG+9Xo/l5eVYXl6OiIi5ubmYnZ3dlv/SpUsxOzsbs7OzW/kuXry47R3o/dqu3W0BAABGiXlh+9sCAACd6/qC1z/4B/8gzpw5E5VKJarVaiwtLcUHPvCBHeevVqtx8uTJOHnyZO62i4uLOyqzX9u1u22ZTpw4MbDlDWpZ3eYY9J9j0H+DvJ/dLe/RLpbVbT/btZIG+Ri4DvpfnmPQ//Icg/6XN8jHoGzmhZ1v201Fz8Ei+ftZd1HDut/D2mdF8zvXhq/uIoZ5v4e134a5z4sY5v0e1n4b5j4fdLsphlel0Wg0ulngu9/97q3B/MWLF2NpaSlmZmbi9OnT3axm5P3e7/1evP/974+vf/3r8Vf/6l/td3N2pcuXL8fBgwfjzTffjAMHDvS7ObuSY9B/jkFn0jG2IvLibG2P4fUfRMR/H80YXsXKTvNu/e1cB/2l//vPMei/YZwbmBd2xzAe+35zz+qMfmvfoPbZoMfwGtR+G2T6rDP6rX36rDODPF6r1WoxOTkZvxQRf6mkOv7niPjPIwbmDQaFY3jdaXZ2Nh588MF48MEH4+TJk/Gtb30rxsfH47d+67e6XRUAAAADyLwQAAAGgxheBRw+fDh+67d+K/76X//rW9/90i/9UjzzzDPdrgoAhtTD6eRD9739/xuXIzYiYuz/FFHZwV9YredtkH4CLPVXmRGeAANgZ8wLobf6+VQPg6Wfx9z5BkC/dX3B6z/9T//TePPNN2NiYiIeffTRmJmZiZ/4iZ+Iw4cPd7sqAAAABpB5IQAADIbdFMOr6680PHXqVHzta1+LBx98MH7zN38z3vWud8W9994bs7Oz8U//6T+NP/7jP/YaCwAAgBFmXggAAPRa1xfgfumXfikiIh588MGt71ZXV2N1dTX+8T/+x/HEE09EpVKJzc3NblcNAADAADAvBACAwdCM4VVW2YOkJ0+cTU1NxdTU1NZ//8Iv/EIvqgUAAGBAmBcCAABl2tGC1969e6NarcbU1FTMz8/HgQMHClX667/+64XyA0CZsoJ+d8/D6eT112/5j7du/s/G/xAR99z8/4fuS2R+MVl02YGk8/pOIGuA4WVeCIPLGItB9/Y84XsREXHw4OmI+CHnLkAP7KYYXjtqT6PRiJWVlXjnO9+Z3O6ll16Kb3/72/HII48Unvzsdvv27bvtf+m9/fv3x5NPPhn79+/vd1N2Lceg/xyDQbAvIn7hB/9LP7gO+kv/959j0H+DMjcwL+y9QTn2w8Q9qzP6rX36rFN3RcT7Y/D+iXRwOdc6o9/ap886Y7w2WCqNRqORt9G73/3u+Na3vrWjAp955pn4hV/4hZiZmYnf/M3fLNzA3apWq8Xk5GRcvHgxJiYm+t0cgF2l70945Uk94bXe3yesPOEF0H2DMjcwL+y9QTn2AEVlzRPMD4BhN8jjtWbbTkfEuwqU87sR8bWMtGsR8Z2Igdn/Hf05RbVave2/X3jhhXj++efjZ3/2Z2Nqaire8573bKU98cQTceHChfgn/+SfmNgAAACMCPNCAADYfX7uB59Wvh0Rp3rYljw7WvCqVCq3/fexY8fiwQcfjPHx8ZicnIypqak4derU1usq5ufn45lnnul+awEAAOgL80IAABg+YnjtwNjYWFSr1XjppZe2vZe9mQbAaEu9vm60X52X90rCFwuWn5N/vfOSi/abVxb2h34HBpV5IQA7MWzjVa9gBBhOe3ay0crKSnziE5+I/+6/++9u+/7QoUOZQYjHxsYKNw4AAIDBYF4IAADDp/mEVxmfoX3Ca35+Pubn5yMi4siRIzE1NZXc/t577y3WMgAAAAaKeSEAADCodrTgNTY2Fo888ki8+uqr8Qd/8Afxta99LVZWViLi5gRmamoqjhw5Eo888sjWX/atra2V12oAAAB6yrwQAACGz94o70msvSWV26kd7eepU6fil37pl7b++6WXXoovfelL8dJLL0W9Xo+zZ8/G8vJyzM7ORrVajWq1GrVarbRG7ybHjh2Lu+++u2XaiRMn4sSJEz1uEQAA0G0LCwuxsLDQMu3KlSs9bk1r5oX9Y14IANA/wzBW56ZKo9FoFCngzTffjC996UuxsrISq6ursbGxcbPgSiU2Nze70cZdqVarxeTkZFy8eDEmJib63RyArssKAtzUz2DARdtWGc+pYD1dfhzK2fdk/oeTWRuN+5LplcrrhfID0H3DMDcwLyzHMBx7YPjlzX/u1M+5GsCgGeTxWrNt/4+I+D+UVMcfRcT/NWJg9n9P0QIOHjwYTzzxRHzpS1+KtbW1uHTpUvzqr/5qN9oGAADAEDAvBAAA+q3rr25817veFSdPnoxKpdLtogEAABgC5oUAADAYdlMMr8JPeGW59d3uAAAA7D7mhQAAsHvV6/U4cuRI1Ov1HW0/OzsbMzMzHddX2oIXAAAAAAAA/XNXRPyFkj5ZT47V6/WYm5uLw4cPx+rq6o7auby8HEtLSx3s4dvKepINAJLyAh3nBU4e6EDJ66+n0x/LaftzOUGjv5jI/5G8gNP3JVMbjXQ6AADQO3nzojt1Mk8a6LkVDKjUtemagojx8fGYn5+Per0ey8vLudtvbGzE888/X7heT3gBAAAAAACMoGYMrzI+WTG8xsbGIuLmwtdOzMzMxDPPPNPmnm1nwQsAAAAAAICem5ubi7m5ua1FsiK80hAAAAAAAGAENWN4lVV2EbVaLTY2NmJqamog2gMAAAAAAMCQufaDT6euFMi7sbERc3NzsbKyUqCU21nwAmAglR3ktcwAs43GfTl1v56Tv/P6Kx/pOOvOys8Jmp3X9n4G9i3adgAA6DVjVBhMrk2GSTPeVivPRMSv97Att3riiSdicXGxq2Va8AIAAAAAANhl/pOI+FsF8v+LiPiPO8i3tLQUR44ciWq1WqD27fZ0tTQAAAAAAAAGQjOGV6vPD0fEoQKfAx22aXFxMWZnZ6NSqdz2iYhYXl6OSqUSk5OTHe0rAAAAAAAAI2ZvlLcQtLfDfPPz87GxsbHt+5mZmZiYmIhTp07F2NhY2+Va8AIAAAAAAKAnpqamWn4/NjYW1Wo1pqenOyrXghcAu9IgB5itVJ5Kb3Ao1faHC5Wd1y9F+y2Vv2jbitQNAACjLDXW7sU4Oav+UR+j97vfASLefqVhWWWnrK2tRUS0fJqrDGJ4AQAAAAAA0BX1ej3OnDkTy8vLERExNze39f/L5AkvAAAAAACAEdSPJ7yq1WqcPHkyTp482VZ56+vrhdrjCS8AAAAAAACGmie8AAAAAAAARtDeKG8haG9J5XbKghcAu1KZwYMr43lbvJiT/nA6ef31zKRG475k1kolr+7+EbQZAADKkRprZ82Nujk+361j/d263wD9YsELAAAAAABgBN21N+IvVEoquxERm+WU3QkxvAAAAAAAABhqnvACAAAAAAAYQXv3RtxV0qNPe2/EQD3hZcFrwB07dizuvvvulmknTpyIEydO9LhFAABAty0sLMTCwkLLtCtXrvS4NQwa80IAgP4xVh8eFrwG3AsvvBATExP9bgbAyOlv8OCHc9JfTCcfaj/gNACDLbVoUavVYnJyssctYpCYF0J7UmPi/s4DWutFe0elTwaxrZTP+UC/DftY/a49EX9hb0lll1Nsx8TwAgAAAAAAYKgN2gIcAAAAAAAAXXDXXRF3lfWEV6WccjtlwQsAAAAAAIBt/vHViH98rXXa9xq9bUseC14AAAAAAAAj6K69EX+hwErQ370r4u/+cOu02vWIyTc7L7vbLHgB0BepoMkRQx589mhO+rn7cjbISV9P9d3DOWWnlX1cKpXXE2Xn9QsAAP2SNU4cxHF7L9qUGje3W38v2juIxyll2NpLuUblfBim+ygMKwteAAAAAAAAo2hPRJQUwytulFRuh/b0uwEAAAAAAABQhCe8AAAAAAAARtHeKG8lyBNeAAAAAAAA0D2e8AKgL4Y5KGsqQPVND6eTD92XTl9Pl5/qu0rl9Zy8OXVHXnox+fUzbPKuh2G+1gGAt/lNv53+aE/WmFE/sps43+mbu8ITXgAAAAAAADAMPOEFAAAAAAAwisqM4bVZUrkd8oQXAAAAAAAAQ80TXgAAAAAAAKNoT9x8yqussgeIBS8AdqWsoMkROwkk+3A6+dB96fT11wuVX6Ttqbw7yV+mQW4b2RwXAIDdJWvcnh4Xtp7jdFYWALRmwQsAAAAAAGAUlRnDq6wnxzo0YA+cAQAAAAAAQHs84QUAAAAAADCK7oryVoIGbIXJE14AAAAAAAAMtQFbfwOAnckKbtyUF+Q4lZ5Xdq71F4vlfywnQPNznZdfNPhz0b5J1S8wNQAADL5Oxu2Nxn0tv69UCs6dSM7RRmWOlbWPo7J/ULo9UV6srQF7pMqCFwAAAAAAANssfCdi4Y3WaVdu9LYteSx4AQAAAAAAjKK9UWgl6MSP3vy0Uvu3EZPf7LzsbhuwB84AAAAAAACgPZ7wGnDHjh2Lu+++u2XaiRMn4sSJEz1uEQAA0G0LCwuxsLDQMu3KlSs9bg2DxrwQAKB/hn6sfleUtxI0YCtMA9Yc7vTCCy/ExMREv5sB9Ekq+GzE7g7QWnTf8/o26VDBfl/PqftcOrmfxz2v7kL9ykByH4LeSC1a1Gq1mJyc7HGLGCTmhcBOZY3dOhmzVSqvZ5R1X9tlZTGWLG439OGo72M3r1vKYaw+PCx4AQAAAAAAjKI9cTOOV1llD5ABaw4AAAAAAAC0xxNeAAAAAAAAo2hvlLcSVNaTYx2y4AUAAAAAADCKLHgBMAjyApRmBTbdaf7drMy+yTsuudZbB4d+u/xE4qFiAaQba+n0wvtWoGznc3/odwDKlPX7n/r96SQP7BZZ10FqrJ2Vp9EoNrcYZt26z3TS7+w+zgXoHgteAAAAAAAAo+iuKG8laMBWmPb0uwEAAAAAAABQxICtvwEAAAAAANAVe6K8WFsD9kjVgDUHAAAAAAAA2uMJL4AhJrBpf1Qqrxcs4eF08mPp4NCNZzuvORU0+ab0OVXmOed8ptfyrgfnJED5OrnXuj/D6Mgaj43KdT4q+zFsUuN8x4RdaW+UtxJU1pNjHfKEFwAAAAAAAEPNE14AAAAAAACjyBNeAAAAAAAAMBw84QUAAAAAADCK9kahJ7EWvnXz08qVzc7LLYMFLwC4QyrAbUR+kNtK5cWcGvLS70uX/3gi8bmibe9vfugl5yMAjKbUmLTd3/+ssoZtHDGo7e1mu/LmIt2oe1TOh1HneEB3nXj3zU8rtfWIydXetifFghcAAAAAAMAoEsMLAAAAAAAAhsNQP+FVr9djbm4uxsfHb/vvqampbdvOzc1FvV6PiIiNjY1YXFyMarU6MNsBAADQPvNCAABI2EVPeA3tgle9Xo/Jycl46aWXYmJiYuu7w4cPx8rKym2Tm8nJyahWq3H27NmIiFhdXd2Wt5/bAQAA0D7zQgAAoKnSaDQa/W5EJ+bm5mJ5eTkuXbp02/dHjhyJiIiVlZWt7c6cORPr6+sxNja2td3k5GRERFy8eLGv22Wp1WoxOTkZFy9eNAkC6LH8YMcPJ1Mbjftyyn89p/wXC9RfJG/xtuflB6B95gbZzAsBisuf/9yu0XiypJYADJ9BHq9tte2vRUzcW1Id342Y/O0YmP0f2hhe9Xo96vV6bGxsbPv+1onE0tJSVKvV276LiHj00UejVqtFrVbr63YAAAB0xrwQAABoGtoFr+Zf7M3MzGx9V6vVol6vx6lTp7b+e2Njo+XKYvO7559/vm/bAQAA0DnzQgAAyNGM4VXGRwyv7jh+/HicPXt26/3np06dirm5uVhZWdmaPFy4cCEiYit48a1uDWjcr+124q233orLly/vaNtW9u/fH/v37+84PwAAUMzVq1fj6tWrHed/6623utia0WJeuDPmhQAArRmrj5ahXfCKuPk+9pmZmVheXo6ZmZlYXFy8LShx87UWd74+4tbvbn39Ra+324n3v//9O9ouy5NPPhmf/vSnC5UBAAB07vTp0/HUU+3FR2HnzAvzmRcCALS2K8bqzSe8yip7gAz1gtfGxkZsbGzE8ePHY2lpKWZnZ+PixYuxuLgYEa0nFq3K6Nd2O/H1r3893vOe9+xo21b8FR8wqPICI/czEHJe3Xltr4zfl1PDi+nkQzn7fjSR9lxO1Xl1R07bD+XtW1qq7wS/ZjcZ5Hsg3Xfq1Kn42Mc+1nH+1157rfCCxygzL8xnXshus5vHnHljjFba7ZOsOka9bwfVbj7foRuM1ctVr9djdnY2FhcXo1qttkyfm5uL1dXViIiYmpqKZ555Zkdj6VaGdsFrY2MjJicnY35+Pqanp2N2djYefPDBWFpairGxsZifn9/qwFaTiOZ31Wq1b9vtxD333BMHDhzY0bYAAMDgKfo6uXvuuaeLrRkt5oUAABSxK8bqfXjCq16vx+LiYpw5cyYza61WiwcffDCmpqbikUceiS996UuxvLwcq6ur8e1vf7ujRa89becYEHNzc1Gv12N6ejoibgb9bXZCsxObk4e1tbVt+ZvfTUxM9G07AAAAOmdeCAAAg2d8fHzrj9KyzM3NxcWLF+Ps2bOxuLgY6+vrMTU1FRsbG3H69OmO6h3aBa8LFy5smxyMjY3FqVOnIuLmCmK1Wo2xsbGW70Wv1WoREXHkyJG+bQcAAEDnzAsBACDH3pI/LTSfzhofH2+ZXqvVYmZmZtsbD+bn57fSOzG0C17VarXlxKHZkc2OOn78eNRqtW2vkVhZWYlqtboVzLhf2wEAANAZ80IAABg+ExMTcfz48ZbfR+wsDm8rlUaj0SjSsH6p1Wpb72o/efLk1veTk5MxNTW1tRIYEXH48OGYmpraClq8uroaR44ciYsXL97214D92i61fzvZFoDBUqm8nt7g0H2Fym9sfzPS23U/m5P5I+kg1nlBjfOCYAuKDNB95gbZzAv7IzUeMBaA/sq6PntxbXbz3tDJfvRz30dF3nyvFf3Lbjeo47WIW9r2NyMm/vcl1fGvIyb/m8jc/9nZ2VhaWopLly7tKH5tvV6Pw4cPx+LiYssFsTxlhSor3cTERFy8eDHm5ubi1VdfjfHx8VhbW4vZ2dltHXHp0qWYnZ2N2dnZiLjZaa0OQL+2AwAAoH3mhQAA0Lmr1yOubnae/61r3WtLRMTy8nJUq9WOFrsihnjBK+Lm5GZlZWVH2zb/mm5QtwMAAKB95oUAAJCwNzJXgk7/vyOe+u972pqk06dPx0svvdRx/qFe8AIAAAAAAKB9p/79iI/9TOf5X/tfI96fF15jh2ZnZ+OZZ54p9CYEC14AAAAAAACjaO8PPi3s3xuxv0DR9/xQgcy3WFpaisOHD8f09HShcvZ0pzkAAAAAAACwc8vLy7GxsREnT54sXJYnvACgTZXKU+kNHnsynX4undxYK1D/oXTdjUY6PW/f8vO/npP/vmR6mXKPW468fQeA3cJvIsMsa0w4qOd1u+3t5n70ou6s+UMnZQ3qMRwm+hBGVCKGV1fKLmB1dTVeffXVmJ+f35a2tLQUx48fb6s8C14AAAAAAAB01drazb/q3tjY2JZWq9ViZmYmHnnkkZibm9v6fmNjIy5cuNByESyPBS8AAAAAAIBR1IcnvOr1eiwvL8fy8nJERMzNzcXs7OxWjK56vR6Tk5MRcfNJrjuNjY3F1NRU282x4AUAAAAAAEBXVKvVOHnyZGZcrmq1Go1Go+v1WvACAAAAAAAYRQMcw6vbLHgBMJCyAiQ35QXTLZq/kOdaB17e8th9yeSswM1vezg7aT2dt1J5sfOyd6DRyNu37ONS9jEVgBkAgKwxYdZYsxdjyLxx7ijLmz+Msn6ecwCjyoIXAAAAAADAKNob5T2JNWBPeO3pdwMAAAAAAACgCE94AQAAAAAAjKJdFMPLE14AAAAAAAAMNU94ATCQigbqzctfqbyeyJsOnJxfdk7Q6edeTCbv++7fT6Zfu/ePsxMP5QR9Xk8n5+173r7l9U2R41q03wV/BgAgSz/Hisap22XN1/LmK8PEcQd6Zhc94WXBCwAAAAAAYBTtjfIWpgZswcsrDQEAAAAAABhqnvAacMeOHYu77767ZdqJEyfixIkTPW4RAADQbQsLC7GwsNAy7cqVKz1uDYPGvBAAoH+Gfqxe8JWGC+dvflq58v3Oyy2DBa8B98ILL8TExES/mwEAAJQotWhRq9VicnKyxy1ikJgXAgD0z24fq5944OanldqfRkx+tpetSbPgBQyESuWpZLpgrnRbP4Md7/vu30+mX3v3gZwSXsxOWk+kRfFraZCvxby2uc8AAAynrHHcqIzfUuPUfu7jqPQv7MSo32fY5Qo+4ZVb9gARwwsAAAAAAICh5gkvAAAAAACAUbQnynsSa8AeqRqw5gAAAAAAAEB7POEFAAAAAAAwiu6K8laCBmyFacCaA+xWgoByp1Tg5ohyz5m8uuNQsbqvvftAeoOjOQU8l0jLaVvuvuUo2u/9DMjtPgMAMJzaHcdVKq8nyrqvaHO6zjh1u24ep6w5iH7nVu3fZ/o3twWyWfACAAAAAAAYRXujvJWgsmKDdUgMLwAAAAAAAIaaJ7wAAAAAAABGkSe8AAAAAAAAYDh4wguAvkgFeO1F/pS8ALOV8bwSHk4nH83Jfi4n/YuJ9n0lnbXxbM6+ldivEem+zatb4F8AAHai0biv300oXdbYuZtj5l7U0a7UnCGrXeYRxXXS76Nut+43Q2pPlPck1oA9UjVgzQEAAAAAAID2eMILAAAAAABgFN0V5a0EDdgKkye8AAAAAAAAGGoDtv4GAAAAAABAV+yN8laCyooN1iELXgAMpbwAsamgujvJn7SeLjsO5ZT93Os5+XOCbH8klf/FZNbKc+mi+xl4t6/HdMQJMg1Av2X9FvkdGizGDMOjF8ejn8fcPWO7fvbJbu73XnC+Q/dY8AIAAAAAABhFe6LQk1gL/23Ewm+3TrtyrfNyy2DBCwAAAAAAgG1O/J9vflqp/VHE5Ed7254UC14AAAAAAACjaBfF8NrT7wYAAAAAAABAEZ7wAqAvyg6+mld+KiB3rkPpsj+19slk+tPjn+m87oiIeDE7Kadtw6zoMd3NAX93874DMBj8Fg0Hx2l3yhpHOx+262dfOR6jy7GldHdFeStBA7bC5AkvAAAAAAAAhtqArb8BAAAAAADQFXuivFhbA/ZIlQWvAXfs2LG4++67W6adOHEiTpw40eMWAQAA3bawsBALCwst065cudLj1jBozAsBAPrHWH14WPAacC+88EJMTEz0uxkAAECJUosWtVotJicne9wiBol5IQBA/wz9WH1vlLcSVNaTYx2y4AXQZ1lBbyMELi1TmX1bqTyaTN/33cvJ9Gv3/lo3m3ObxlppRVNA6j4Q4V4AAOwOWWOiQRwLjdI8rp/tHaZjHjG47QLgJgteAAAAAAAAo+iuKG8laMBWmAYspBgAAAAAAAC0Z8DW3wAAAAAAAOiKXRTDyxNeAAAAAAAADDVPeAH0maC3gycVgLobrp3LOeaH+hk0+vWcLV5MpvbzfB7ma2mY2w4A0ErWmDo17hmmMdEwtXUQZM0zsvqxk/Onn4atvcAusyfKexJrwB6pGrDmAAAAAAAAQHs84QUAAAAAADCKxPACAAAAAACA4eAJLwAAAAAAgFF0VxRaCVr4b25+WrlytfNyy2DBCwDukBdYOCvg8o59JSf98+nkxuPZaZVEWkTE/rXL6bIb96ULiHR6VrDmt8vP7tu8vHn6GRC6yH73Qqp9/W4bADCajDG4Vf48Y7g534FRduJv3vy0UvsfIyb/o542J8mCFwAAAAAAwCjaE+XF2hqwoFkWvAAAAAAAAEbR3ihvJaishbQODdj6GwAAAAAAALTHE14AAAAAAACjaBc94WXBC4ChVKk8lbPFw8nUVNDkSuX1nLJfzEnPca5YwOZKKvG5dL9cfTYdTLnovhcJ1jzMgZ4Hve2D3j4AgGGTmo9kjb2y8nRzrNaLOnph2NoLwGCw4AUAAAAAADCK7oryVoIGbIVJDC8AAAAAAACG2oCtvwEAAAAAANANjT0RjZJibTUG7JGqAWsOAAAAAAAAtMcTXgAMqYeTqY3Gfcn0ToJMv533xWR6XttyPZfdtpsS7TuU0/bx9pvTK6ljEjHYgauHue0AwHZZv+1+02nq5FzYzefPqFxTo7IfwO6yuTdis6SVoM2cJ8fq9XrMzs7G4uJiVKvVltvMzc1FvV6PiIiNjY3ktnkseAEAAAAAANAV9Xo9FhcX48yZM8ntJicno1qtxtmzZyMiYnV1NSYnJ+Oll16KiYmJtuv1SkMAAAAAAIARdOMHT3iV8bmR8YTX+Ph4zM/Px/T0dGa75ubmolarxTPPPLP13dTUVFSr1XjiiSc62ldPeA24Y8eOxd13390y7cSJE3HixIketwgAAOi2hYWFWFhYaJl25cqVHreGQWNeCADQP8bq7RsbG4uImwtfWZaWlqJarW5t2/Too49uLYa1+5SXBa8B98ILL3T06B4AADA8UosWtVotJicne9wiBol5IQBA/wz7WH1zbyWu762UVHYjIhpt56vVarGxsRFTU1Pb0prj3ueff96CF8BukhUwt2mUA+c2Gvcl0yuV13NKeLiUvBERn2o8n5M/nf505dGc/Nkaa+n0/H3LKb/Ec2qYz9e8tu/maxUAhpHf5uGWGnuN+rEd1P1rt11ZxzBVTid52jWo/QswbC5cuBARrZ8Aa35Xr9fbLteCFwAAAAAAwAja3Ls3Nu/a0zLt6tVGXL3aedmXv9eIiOtt59vY2IiI2PY6w1u/s+AFAAAAAABArv/iVzfjV5++0fN6Wy103am5KNYOC14AAAAAAAAj6MbevbG5t/UTXn/vk3viFz7eedn/w2s34kPvv9Z2vmq1GhGtF7Wa3zW3aYcFLwAAAAAAgF1m//5K7N/fef4fvqfSUb7mYtba2vZg9M3vJiYm2i7XghfAEMsLmJsK1ryT/GUqu22Nxn2F8qdUHk+nPz2eU/f66+n0Qzn5n8vOX4m8/X4xmVr2OVFmAPFKJd2vZZ4TeQS3BgDoHWOv7ToZh+fN2drR7jHp5Bg67gCtbcae2Iy9JZXdmWq1GmNjYy3jdNVqtYiIOHLkSNvltn6ODQAAAAAAAEpw/PjxqNVq215ruLKyEtVqNaamptou04IXAAAAAADACNqMvXG9pE/ek2PN1xO2itU1Pz8f1Wo15ubmtr5bXV2N1dXVOHv2bEf76pWGAAAAAAAAdEW9Xo/l5eVYXl6OiIi5ubmYnZ2N6enp27a7dOlSzM7Oxuzs7Fa+ixcvdhS/K8KCFwAAAAAAwEi6EXtjs6SloBsZ31er1Th58mScPHkyt4zFxcWutceCF8AIG+SgvYPctsp4zgbrBYM3P5az78+9nkx+oPFnmWnnn70vp+x0cqWSrrvRyCk/R5nHvWjbRlknQcoBgHJl/T77be6PUT8enezHsO17P4/hqJ8/AMPCghcAAAAAAMAI2ow9ubG2Oi876xmv/tjT7wYAAAAAAABAEZ7wAgAAAAAAGEE3Y3iV84TXDU94AQAAAAAAQPd4wgtgiGUFxm0qO0Buqv6ideftW5ny2l4ZLznw8GP3JZPPV15MpP5+uuxDOW1ffz2ZXOY51+/zeZTpO7rJtQrQHf28X2bdy3fzPbzdfS9zLlSk/mE7hpVKev5xp0Yje67Uz33Pqrvf5wlARMSNEmN43YjNUsrt1Eg+4bWxsRG1Wi02Njb63RQAAAD6wLwQAAB2l5F6wmt5eTlOnz4d733ve2NmZiYmJiZuS5+bm4t6vR4RNyc/i4uLUa1Wt5XTr+0AAAAoxrwQAADedj32xPWSnvC6PmDPVI3Egle9Xo+ZmZmIiDh79mzLScPk5GRUq9U4e/ZsRESsrq7G5ORkvPTSS7dNgPq1HQAAAJ0zLwQAgN1tsJbfOlCv12NycjIiIi5evJj5l3S1Wi2eeeaZre+mpqaiWq3GE0880fftAAAA6Jx5IQAAtHYj7orNkj43BuyZqsFqTQeOHDkSGxsbW38p18rS0lJUq9UYGxu77ftHH310a/IxMTHRt+2gSRB42tXvc6JI/YN8vue1LQ7ltO1owQY8lxO4+bFE/eeKVZ0KAn1TXnr/DPI5BaPEtcQgMi+E9riXF9fvPux3/d2SP/8YbqnjVKm0nveNep8Mm6x55qBeg8PWXobDcwtvxnMLb7ZMu3ql0ePWpA31gteZM2eiXq/H9PR05rvPm0GKp6amtqU1JxXPP/98RERftjOxAQAA6Jx5IQAAZLsRe2KzQAyvR06MxyMnxlumfbP2vfgbk3/acdndNtQLXouLixERUa1W48iRI7G6uhrVajWmpqa20i5cuBAREePj2w9I87t6vd637fK89dZbcfny5dztsuzfvz/279/fcX4AAKCYq1evxtWrVzvO/9Zbb3WxNaPHvDCfeSEAQGvG6qNlaBe8NjY2tiYGhw8fjlOnTkVExOnTp+PMmTOxuroaly5dio2NjYiIba+PuPW7er3et+3yvP/978/dJuXJJ5+MT3/604XKAAAAOnf69Ol46qmc1+XSEfPCnTEvBABobTeM1TcLPuGVV/YgGdoFr+akYGpqKo4fP771/fz8fNRqtVhdXY3l5eWWE4s7bWxs9G27PF//+tfjPe95T+52WfwVHwAA9NepU6fiYx/7WMf5X3vttcILHqPKvHBnzAsBAFozVh8tQ7vg1dRqAjE7Oxurq6uxsrISMzMzEdF6EtH8rlqtbr3rvdfb5bnnnnviwIEDudsxGgSQZNBkBTttGuRzNq/tSYdy9utoTv5zOenrrYMTb3ksJ0jxc4l9y2v7erpfKuN5+XPaniMVgHmQzyeAIoq+Tu6ee+7pYmtGk3khDI9KJXs8mRorMjgqrcO4RGOtt+24U9YccFDnGc734TCo50+WYWvvINgNY/XN2BvXS3vCq5xyOzVYz5u1ITVxaKatra3d9v/v1PxuYmKib9sBAADQGfNCAACgaWif8BobG4uxsbHk+85/5md+JqrVauZ2tVotIiKOHDnSt+0AAADojHkhAACk3Yi9sVnSUtANT3h1z/z8fNTr9a2JQtOFCxci4uZ73CMijh8/HrVabdtf/a2srES1Wu37dgAAAHTGvBAAAIgY8gWv48ePR7VajSeeeOK27xcXF+PkyZNbr4aYn5+ParUac3NzW9usrq7G6upqnD17duu7fm0HAABAZ8wLAQAg22bsLfUzSIb2lYZNly5dirm5ua3XRUTcDE58/PjxbdvNzs7G7OxsRETU6/W4ePHitvel92s7gEFUZrDTgQ6kup4dSDsiIj6UE1z4XE75hwrmT1lvHaj5bQ8XKDw/sHIqCPnN9Lz2pepOnzN56Xl1D/Q5CUCSeSEMj7zx5G7UyRi5r2PXzDlH+W1K9VVWn2TNUTo5F7tZFkCv3Ig9pS1M3RiwZ6qGfsEr4uZfzO3E4uLiQG8HAABAZ8wLAQBgdxuJBS8AAAAAAABut1niE16bA/aE12C1BgAAAAAAANrkCS8AAAAAAIARtBl743ppT3iVU26nPOEFAAAAAADAUPOEFwBDqVJ5KpneaDxZWtnxkZwCDt2XTl9Pl7/vu38/mX7t3lTqw+m686y/nkyuVNLZG42cfY/s9Nx+L6jIOQEAAEVljXeHbZya1d5KJXsukT9PKFZ3Ok/7dQ/TsUrNowaxvUDv3Yi9sVnSUtANT3gBAAAAAABA93jCCwAAAAAAYARtxp5Csba+svA/x+8s/C8t065dudFxuWWw4AUAAAAAAMA2Hzrxl+JDJ/5Sy7Rv1S7H/33y1R63KJsFLwAAAAAAgBF0M4ZXObG2Bi2GlwUvoCdSQVQjBFIdVGUet6Jl56XnlR+HUvkfzslbMOBysu6I+8fPJdPPfzGR/yPZgaJvejEnvajO+8Z9oHPusQDAoMkan3RzXJI75u9C/d2sY1DHZN06Vo1GwXnSABnUY9XKMLUVoGwWvAAAAAAAAEbQZuyJ6yU9ibUZe0opt1OD1RoAAAAAAABokye8AAAAAAAARtBm7I3NkpaCyooN1ilPeAEAAAAAADDUPOEF9IQgqsOpzONWtOxOgkffZr1A/qM5wZg/lJP/I+m6z1ceTqY/0DiXnfcjv59TebrsiBdz0tMq4+n0xlqh4vsqdc71+x7X7/oBYJBl/Yb34vdzkMcPZevF/o1KHf3Wz33s5vXZ7hxxNxxbgIiIG7G3tCexbnjCCwAAAAAAALrHE14D7tixY3H33Xe3TDtx4kScOHGixy0CAAC6bWFhIRYWFlqmXblypcetYdCYFwIA9M+wj9U3Y09pT3htDtgzVRa8BtwLL7wQExMT/W4GAABQotSiRa1Wi8nJyR63iEFiXggA0D/G6sPDghcAAAAAAMAI2oy9cb20J7wGK4aXBS8AOlYkCHdeQOGiAYSL1f9wuvDncoIhn8tp+xdz0j/yejL5/PjR7MRDibQduS+dvJ5uW2Mtnb3MwO3tBqlut/4yg1qXfT0AwG7Wz99Rv+H0Wta4spNzsZtlZRnUsnqx76NSB8AgseAFAAAAAAAwgm7E3tgsaSnoxoA94TVYEcUAAAAAAACgTZ7wAgAAAAAAGEGbsae0WFubA/ZM1WC1BgAAAAAAANrkCS9gIGQFUm0SUHUwFTkueXnLPidS+SuP52R+7sVCdcdX0skPNP4smX5+/L7sxPXX04U/lsgbEfFcut/zVCoF+6aAYb5PDHPb87i/A8BoyPpN91teXN54qZVe9Hu7daT2I6usbp5X3SyrW/3bSZ90Ula7dQzq9Tyo7YJhdzOGV+dPeJ1f+GZ8feH/1zLt+1c2Oy63DBa8AAAAAAAA2OaBE385Hjjxl1um/Wntu3F68rd73KJsFrwAAAAAAABG0I0SY3jdGLCoWYPVGgAAAAAAAGiTJ7wAAAAAAABG0PXYG9dLesKrrHI7ZcEL6Iq84Kl5AUYHOQBp0X2jM3n92knA3ts93HnWL+Yc84+8nlPAfcnU888eTaZ/au2TmWlPj38mXfVzeW3L65cXc9LTXC+7j2MOAKPBb3p5hq1vs+ZinexHVp5O6hjEfuxmmwa1LPqjm9chjBILXgAAAAAAACPoRuyNzZKWgm4M2BNeYngBAAAAAAAw1DzhBQAAAAAAMII2Y09slvQk1uaAPVM1WK0BAAAAAACANnnCC+iKUQ6KOcr7Nszyjkul8npOCS92XvlH70unfzEnPc9X0slPf+UzBQpP73d+vxbN3zqw7k0PJ/MWOmY74FoHADqVNcYxvqAs/TznsupIjfUH8VoYtvZ2YtjuTb1o1yD2SSdtGtRjyGC6GcOrnCe8Bi2GlwUvAAAAAAAAuqZer8fc3FyMj4/f9t9TU1Ol1WnBCwAAAAAAYARtxp643uMYXvV6PSYnJ+Oll16KiYmJre8OHz4cKysrpS16ieEFAAAAAABAVywuLsb4+PjWYldERLVajampqZifny+tXgteAAAAAAAAI2gz9sZm3FXSp/WTY/V6Per1emxsbGz7fmxsrLR99UpDgBGWCsIbMeJBTg/dl0xurGWnV8bTRTfW0ul5+ePzOek59n3+cmbatY8eyMmdPuZlnzNF8lcqLxaqm9Gzq+9xAAwUvzncKmuM0s3zZBDPuWHbv1QdlcrrGSmt5ySdtHe3nif9Noh9MohtYrTciL2ZC1PdKLuVI0eOxPLycszMzMTKykpERNRqtajX63H27NlS2hJhwQsAAAAAAGDXuX71emxe3ew4/7W3rrX8/vjx43H27NlYXV2NycnJOHXqVMzNzcXKysptrznsNgteA+7YsWNx9913t0w7ceJEnDhxosctAgAAum1hYSEWFhZapl25cqXHrWHQmBcCAPTPsI/Vb8SezCe8vnH6n8U/e+r3Sql3ZWUlZmZmtp70WlxcjKmpqVLqarLgNeBeeOGFUlc8AQCA/kstWtRqtZicnOxxixgk5oUAAP0zymP1+0/9B/FXPvbvd5z/X7/2r+K/ef9/3TJtY2MjNjY24vjx47G0tBSzs7Nx8eLFWFxc7Li+PBa8AAAAAAAARtBm4gmvyv69cdf+zsvee88Ptfx+Y2MjJicnY35+Pqanp2N2djYefPDBWFpairGxsZifn++80gQLXgAjbJgDn2YF8H3bw+nkQ/fllJ8VhDhf5dl02bGeV3ZO/iI+lJP+kXTb9n337yfT8/utdRDnpiLn5DCfz/2Wup6GuV+Hue0AdF/W753fC3aim+dPVp5u1pE/XypeRy/087pNzW0ajaw5W/fmcoN6TBhufgsZFHNzc1Gv12N6ejoiIiYmJuLb3/52vOtd74ozZ86UtuC1p5RSAQAAAAAA6KvN2BvXS/pkPTl24cKFba/kHhsbi1OnTkVERL1eL2VfLXgBAAAAAADQFdVqteWi1tjY2FZ6GSx4AQAAAAAAjKAbsTc2465SPjcynvA6depUbGxsxJkzZ277fnFxMU6ePFnavorhBQAAAAAAQFdMTEzExYsXY25uLl599dUYHx+PtbW1mJ2djePHj5dWrwUvADqWCpRcfkDUF9PJ6znZH0sEG34uHQD6gcf/LJl+Po6m6/5KOvlTz34ymf70s5/JTHvg8XPJvOe/km7btXcnk3PlHfd2g2v3quydlD/MiuxbXr+Ocr/t5n0H6Lase2o376XuyxTRi/PH+b5dN/ej3ftMo5GYEzIUuvnb0ovfqV7Iau+o7B+d2Yw9mbG2ulF2lomJiVhZWSml3ixeaQgAAAAAAMBQ84QXAAAAAADACLoZw6ucJ7yyYnj1iye8AAAAAAAAGGqe8AIAAAAAABhBm7Enrvchhlc/WPACGGJZQUebyg4+Wmb5eWXn7XvEiznpiQDFj6XrPj+eLnnfty4n06/FgWT6089+Jpn+qcc/mZ13PJ03Pp9OzvVcul8rlXR6kXMm/5inDXMw3n5e68Pcb3n6fQ8F2E3cU2FwZY+JHm75baORmEv1UdZ9Jmv/3JeGXzeP4aifD6O+f9BkwQsAAAAAAGAEbcZdsVnSUlBZ5XZqsJ43AwAAAAAAgDYN1vIbAAAAAAAAXXEj9sRmSTG8bgzYM1WD1RoAAAAAAABokye8GDkC0NNr/Tzn8soe7euhdQDlLYdyAik/l+6bpMfS/TY3Pp9Mf/orn+m87oiYPzqXnfj5nMwfeb1Q3UVVxrPTGmvpvGWfr5VKum/6GZy76LVeZt3DbJT3DQDYnbo5Lswa/3ZSR1/HXYf6V3eqr4ZpLJqaK/VzngTszGbBJ7z+xcLL8S8Wzrcu+8r3Oy63DBa8AAAAAAAA2ObfO/GB+PdOfKBl2ndrfxL/r8lif9jdTRa8AAAAAAAARtCN2FtiDK9yyu2UGF4AAAAAAAAMNU94AQAAAAAAjKDN2BPXS3oSa3PAnqmy4MXIGaagn4yGQT7nym5bkQC83Qym3NL6izkbPJyZsu+778zJezmZ+nTl0WT6pxqfTOcfT7/7+Nq5A9mJX0lmzZUfcDidnndcG2ttNqidsgue78McbHmQ70MAAEVljQN3wxio3X3P+r6b869u9nu7+9fRHHQ9K0/558+onKPDPFcCdhcLXgAAAAAAACNoM/bGZklLQWXFBuuUBa8Bd+zYsbj77rtbpp04cSJOnDjR4xYBAADdtrCwEAsLCy3Trly50uPWMGjMCwEA+sdYfXhY8BpwL7zwQkxMTPS7GQAAQIlSixa1Wi0mJyd73CIGiXkhAED/DPtY/UbsLe1JrBsD9oTXYEUUAwAAAAAAgDZ5wgsYCnkBdkclEGyvdTNwcbvyjln5bXsxM+Xau9Nt+9TaJ5PpT3/xM8n0+bV3Fit/PLv8N7+zP5n3wLNXk+mVx5PJ0Xg2nZ6nyHF1nQMAtJY1xhqV8dOo7EeWXszLetGHqf1ot/5K5fW2y+nn/BZgkG3GntKe8NocsGeqBqs1AAAAAAAA0CZPeAEAAAAAAIygzdgb10t7wksMLwAAAAAAAOgaT3gBAAAAAACMoBuxNzZLWgq6MWBPeFnwYtfJC2I66sFwh5Xj0h/97Pe8uotey0UCGj/97GfSG3w0nTy3Np9Mvz9eSRew3jqAc0TEwbteTed9LJ0cz6X7Zf/n/35OAQ8nUxuN+3LyZ3P/BgBGSdbYppMxjXHQcEsdv6zzpJvnT7fK6uZ52Mm8Iav+InO/QdLNY95PqeMxbPsCDB4LXgAAAAAAACNoM/aUFmtrc8CiZg1WawAAAAAAAKBNnvACAAAAAAAYQTdjeHX+hNe/XPjt+JcLv9267CvXOi63DBa8AAAAAAAA2ObfPfHX4t898ddapv2b2rfi4uT/rcctymbBi11HAEx4W971kBfct5/XU37bX+84//61y8m81+79tWR6PJZu2zfifen8OfZ9952Zadfu/eN05nM5hR9Kt/3avcUCPlcqL2am5R1T928AYJRkjW2yxuDdHAv1oo5eGJX9SOnFvvTiXOxWWak5alZZo3LttHucUnn6aRDbBKNuM/bE9V0Sw8uCFwAAAAAAwAjajL2xWdJSUJFXJZZhsJbfAAAAAAAAoE2e8AIAAAAAABhBN2JvaU9i3fCEFwAAAAAAAHSPJ7xgiKQCkUYI/En3FTmnip6vZZ/vlcrridQX05kPpet+4NlzyfTzjx9Npr/v2W+k60/Y9913JtOvvbvjom96LKffn0v1a1plPGeDdfdAGAbGK0DZsu4zo3J/6cV+dLOOfh6PUTnmvZD6fc7qx272b7fKSpXTi3NxEM+5QWwTMFhuxJ4Sn/AarGeqRm7Ba3Z2NtbW1uLs2bPb0ubm5qJer0dExMbGRiwuLka1Wh2Y7QAAACjOvBAAAHafkVrwWl5ejqWlpZient6WNjk5GdVqdWvCs7q6GpOTk/HSSy/FxMRE37cDAACgOPNCAAB422aJMbzKKrdTg/W8WQEbGxvx/PPPt0ybm5uLWq0WzzzzzNZ3U1NTUa1W44knnuj7dgAAABRnXggAALvXyCx4zczM3DaBuNXS0lJUq9UYGxu77ftHH300arVa1Gq1vm4HAABAceaFAABwu83YE9djbymfzQFbYhqJVxrOzc3F3NzctglEREStVouNjY2YmpraltZ8dUTzLwD7sZ3XV9CO3RyINBVgN2J3982wKv+Yvlgwf8LRdPL74hvJ9PMfShdwf7ySTL927kBm2r6jl5N5P7X2yWT60+OfSabHuXRyo3FfMj153NdLPGZ5dUf+OddJoO9ucQ8sh34th36jX8wLdw/3mcHiePRH1jgm63j04jh1Ml5udz96pRftGtR9BxhmQ7/glZq4RERcuHAhIiLGx8e3pTW/q9frfdsuz1tvvRWXL6f/8TJl//79sX///o7zAwAAxVy9ejWuXr3acf633nqri60ZTeaFaeaFAACt7Yax+s0YXuUsBQ1aDK+hXvDa2NiIubm5WFlZSW4TES3/yq/5Xb1e79t2ed7//vfnbpPy5JNPxqc//elCZQAAAJ07ffp0PPVU+olCOmdemM+8EACgNWP10TLUC15PPPFELC4uJrdpNbG408bGRt+2y/P1r3893vOe9+Rul8Vf8QEAQH+dOnUqPvaxj3Wc/7XXXiu84DHKzAvzmRcCALS2G8bqN2JvaU9i3fCEV3csLS3FkSNHolqtJrdrpreaRDS/q1arfdsuzz333BMHDmTHagEAAAZb0dfJ3XPPPV1szWgxLwQAoAhj9dEytAtei4uLUavVYnZ2dlva8vJyVCqVmJiYiLNnz0ZExNra2rbtmt9NTExsTTJ6vR2wM8MctDUVuDei3H3LqztPkbaVfcwqldfTGxzKqf9ogcrPFci7Aw89/nIyfd/ns2N4XPto+h/Dnj73mXTlef3yXN45NbjnTF75Ra7Vsq/zft4nhvn+m2eU9w12C/PCcmX9Rrh/Mig6me/08/zt5JoaxOuw6DzzVln7kTXfazTu66Cs9vuwF/27W++lqfNnt/YJlO1G7CnxCa89pZTbqaFd8Jqfn2/5V3IzMzMxMTERp06dirGxsahWqzE2Ntbyvei1Wi0iYusvAvuxHQAAAJ0xLwQAgHK9ufBcvLnwXMu0xpWrPW5N2tAueE1NTbX8vjmZmZ6e3vru+PHjcebMmW3vUF9ZWYlqtbpVVr+2AwAAoH3mhQAAkHY99sTeAk94/fCJvxk/fOJvtky7Wvsf419NTrdM64fBet6sJPPz81GtVmNubm7ru9XV1VhdXd16tUU/twMAAKBc5oUAADDahvYJr3ZdunQpZmdnt97tXq/X4+LFi9vel96v7QAAACiXeSEAALvNjbgrNktaCroxYEtMg9WaLlhfX89MW1xc3FEZ/doOAACA4swLAQBg9xm5BS/YzSqVp5LpjcaTPWrJcCm73/rZ7/2sO69f8xTu97V0emU8kbj+ejLvvu++M5n+dOXRZPoDjXPJ9PMfPZpMT9n3+csd592Ja+fSx6XIce/3PaxI+cN8fx3mtpet3+ckQL+5z+1c1m+GPtwu9fvabn8NW/920t528/TiXOxFvzca97X8vlJJzdVezCir/PZmtStrP3az3hyP9u8z7uOMshuxJzYLxPDKK3uQDFZrAAAAAAAAoE2e8AIAAAAAABhBm7En9pT0hNfmgD1TNVitAQAAAAAAgDZ5wgsAAAAAAGAE3bixNzZvlBTDq6RyO2XBC0aIQJqdGeV+SwVqjcjf96L50x4ukDciDqWD/+a1PemLeft1OZ38WLpt58fT6fu+lS7/2rsPdJz3Owd/JJl+8G9dTabHeipIdL7UOZMOQF2+Iud7uddKufL6fTcH2h7k4wYAw2rYfl+zxnmDuh/9bFehOdgdsvfjxQ7ytJZqb7tldXPM3G4/Duq52E+d9Mmw9eOw3ZvgVhsbG1Gv16NarcbY2FhXy/ZKQwAAAAAAgBG0ubknrl/fW8pnc3PnS0zLy8sxOTkZc3Nzsba21vXFrghPeAEAAAAAAFCCer0eMzMzERFx9uzZqFarpdVlwQsAAAAAAGAEbV7fG3G9nKWgzevpGF71ej0mJyejWq3GxYsXS2nDrbzSEAAAAAAAgK46cuRIbGxsxNmzZ3tSnye8AEZY0WClQx3w+FC67Y21VN2vJ/N+ufH3kun3/8YryfSDz19Npn/n4I+k838+nT/lc3s/nt7gQ+nkrz6b3vej8XIyvTKeSs0OQH1T9wJBt1LkfC96reSd78XLzz6nuxlgGwB2q36OmylXN49t1pivkzoGsaxu1t2JbvZJPw1be+kP5wntuLG5NyLnSaxCZWc4c+ZM1Ov1mJ6eLvU1hrfyhBcAAAAAAABds7i4GBER1Wo1jhw5EpVKJQ4fPhyzs7Ol1ekJLwAAAAAAgBG0ubknGhlPeDWuXo242vmbhBqXr7T8fmNjI+r1ekREHD58OE6dOhUREadPn44zZ87E6upqXLp0qeN6s1jwAgAAAAAA2GU2/8v/Im6c+dWul9tc7Jqamorjx49vfT8/Px+1Wi1WV1djeXk5pqenu1qvBS8AAAAAAIARtHl9b9z4fsYTXid+KSpP/N2Oy278j69H/EdHM9PHxsa2fTc7Oxurq6uxsrJiwQtgN8kL4DvMQUobjftytkin5wY3Xk+nVyoPJ1JfTOZ96PGX03Xn+OqzH0hvsNl52XPj88n0p8c/ky5g/fVk8kMfLbbvaaljElGppNuWd9wG+Xopu23519tgGuV7IACwXdZvf7u/+akxxLCNH3rRJ1nj8Hbrzp2jdaGsbh6/VFm9qJ/hNkr3GXa3yv79Efv3d17AX7wnGi2+rlarEXHz1YZZaWtra53Xm8GC14A7duxY3H333S3TTpw4ESdOnOhxiwAAgG5bWFiIhYWFlmlXrrR+Lz67h3khAED/DPtYvXFjbzQ2S1oKutH6ybGxsbEYGxvberVhKz/zMz/T9eZY8BpwL7zwQkxMTPS7GQAAQIlSixa1Wi0mJyd73CIGiXkhAED/GKt3Zn5+PmZnZ6NWq902lr1w4UJE3Izv1W17ul4iAAAAAAAA/Xd9T8T1vSV9speYjh8/HtVqNZ544onbvl9cXIyTJ0+W8gddnvACAAAAAACgqy5duhRzc3Nx5MiRrdhds7Ozcfz48VLqs+AFUFBeYN4iwUpHOdBppfJ6ofx5fdNJwOQth3L6/UM5+T+aTn7o2ZeT6Q88fi6Z/qnHP5mZ9vT4Z9KV5zl0Xzr98zn5P9L5cW000nXnnTNFr5ci13KZ94HdTL8BwO6S9dufNdbK2r4XY4jU+K+b7RrE8VC7xyOVp9C8rcSyeiFrfpM3L2qvjvaPVdk6uXYG0TC1FWLzB09jlVV2jvn5+XLqbsErDQEAAAAAABhqnvACAAAAAAAYRZuViOuV8soeIBa8AAAAAAAARtFmRFwvsewB4pWGAAAAAAAADDVPeAEUtJsDlWYF2Y0o3i/5AYfzAvk+nEx9oPFnmWnnKy8m87756GeT6Z97/OPJ9G/E+5LpX978cDL9w3u/nJnW+M30o+S//MFPJNM/vvm5ZPrB568m0/MCLKeOayXvKfhDeWVnn48R+W0rcs6O8n0g71os81rvd7+Wve8ADJ+s3wa/Cd3Ri/7NGjPmjRW3bz9cx7yz9rbXJ92sP+tcSI/PWs8B2z22vdKLdg3ieTqIbYKR5wkvAAAAAAAAGA6e8AIAAAAAABhF16O8J7zKKrdDnvACAAAAAABgqHnCCwAAAAAAYBRdj4jvl1j2ALHgBVBQOmjuYAdkzWt7niL7lhUs+m2tAw53y/nxo5lpX23MJ/N+Lj6eTH96/DPJ9E+tfTKZnucfVR7KTKt8sZHM+0CcS6Z/Y+/7kumNx5PJOziuKS+mk9cL5u9i0O125V9r6fO9n4G2y76HFbuPlHv/HeT7NwD9Meq/Danf1lHZ936Oq7L6N9W3neRpV7fq6Ob5k7V9uo7+HdtO9OLY9qLudv9dYVTuJcBgsuAFAAAAAAAwim5ExGaB/C8sRPzWQuu0q1cKFNx9FrwAAAAAAADY7tiJm59W/kUt4j+e7G17Eix4AQAAAAAAjKLNKC/WVpEnx0qwp98NAAAAAAAAgCI84QUjJC9QqMCg5ehnvxY95nnp7Qaf7VbeHZU/XjAg8dHspIcq/yiZ9auNv5dMf2DtXDL9G/G+ZHrsTSf/yi9+NjPtzUf3J/MerLyaLjzH/u9eTm/wxZzj8pEXC9WfUvRaLHLOln+tDV5w9aZ+3gP9rgHQa1m/i1m/Sanf0UH8Het3m/pdf9k62b92z63O+vDhtrbuZNzcvWunvbZ2W7vtajSyx/Gjcr6Pyn6Miu7eG/pXB112Pcp7wquscjvkCS8AAAAAAACGmie8AAAAAAAARpEYXgAAAAAAADAcPOEFAAAAAAAwinbRE14WvGCECA7ZWl5A3WHut363Pdm3X8xp20deTyangvtGRFTG08VHvJhMfeDZP8tMOx9Hk3kfevblZPqbj+5Pph+Yu5ZMr/w/G8n0b6y9LzPtlbX7k3n3fTeZHNc+eiCd/u50/pyuSzuUc86sp8+ZSqXYOVXkeur3fabM+vt5n+l3vwKwe2X9BrX72+O3anSlxim9OO7t1tHN9mZtnxqPZ43F88Z726Xmed2qo5NjmNWu7DlIVn/lzVva0e69rFv3PvpnEO8/Ec4teseC14A7duxY3H333S3TTpw4ESdOnOhxiwAAgG5bWFiIhYWFlmlXrlzpcWsYNOaFAAD9M/RjdU94MSheeOGFmJiY6HczAACAEqUWLWq1WkxOTva4RQwS80IAgP4xVh8eFrwAAAAAAABG0S56wmtPvxsAAAAAAAAARXjCCxh5/Q6AmRcgt8z2pYIG36w7HQy3SNuK7ncngYVv93Ay9fyziX3/ULrkBx4/l0x/Je5Ppt8//0oy/VOf+2Qy/elnP5NMT9l39HLHeXfkuZzjdihx3NcL5N1B/kolnT0dADt9zha/jtPna54i11PRtpd5j+v3/RuA3ctv0GDJGm9kHacyxz470W57O6uj9Vwva47XSd3t70f2eDprLN7JMcyuo/x+725Z6fl4d+por3/d+yiLc6vPrkfE90sse4B4wgsAAAAAAICh5gkvAAAAAACAUbQZ5cXaEsMLAAAAAAAAuscTXgAAAAAAAKNoM4rF2lpdiHhpoXXatSsFCu4+C14ApXu4bzWXHQS3k0DCb+dtHWT5bQX77VB63x94/Fxm2vviG8m8Tz/7mWT6+Y8eTaZ/au2Thcr/1OPp/Cn3xyvJ9IfOvZwuYD3vuOUokn+98/MtIv96qFSyg2zfTO88+Hne+V72tVokQHCR67xofoGNAYBO9GIM0UkdWeOiVFlZ48h2x4/p8WjrcXBWu7q5H93Vv7l3N3XSv+3q5zi7yLyKwebYjrCpEzc/rfxxLeLJyd62J8GCFwAAAAAAwCgq+oRXXtkDRAwvAAAAAAAAhponvAAAAAAAAEaRJ7wAAAAAAABgOHjCC+iJVODKiNEOXtluMOF25AX+LVp3keOWlzdf68DJW76YPmcaj6ezV8aPZqbNrc0n8z7w+Llk+vmvZJcdEfH0s59Jpu87ejmZ/o14X2baK2v3J/Nee/eBZPoDazn7lui3m3LOufXyglXn3UeKn5Odlz3M97iibdfvAIySrN+efv/mDGq7uqWf+9FJ33bzeLQ7p8uaI6bLaZ3W7n6kxmbt7nsndWTNISuVnLllG/Vn6e4xH43rNsuo799u5tgOsOtR3hNeZZXbIU94AQAAAAAAMNQ84QUAAAAAADCKxPACAAAAAACA4eAJLwAAAAAAgFG0i57wsuAF9ITAleXIC2CcDuibf1yKHbeHc8rOa3u69H1HLyfT96+l8z+w9kpm2tGvnU/mfeWD9yfTv/wbH06m/8ib30nnH0/n/7HK+cy0v9f4ajLv+9a+kUyfX5tLpsd66yDYW76YPq6Nx7PT8455nqwA3TuVd77nXU+0VuQ+UvQeVjQ/ANypF78dWb9fqbr9pt0uNQZot6866dtBPU+6VVZ2/2bPAdvNkz1fTM0zX8woq939aL9Phu0a7N4xH759B0abBS8AAAAAAIBRdD0ivl9i2QNEDC8AAAAAAACGmie8AAAAAAAARtFmlBdrSwwvAAAAAAAASrcZ5b160IIXMKgEIR08qWMSkX9c+nvcWgcMbqpU0unpYMQR1z56oM323O78h45mplWikcy7b+1yuvDxdPLc+Hx6gxx/1nggM+2VtfuTeb988MPJ9PvHX0mmzzfmkunnx7OCS99U+cjryfSU7MDVPyi7klP2Y+VdD7v5Hln0PlVW3n4rs1+Gof4ihrntAN3Qzftc1j111O+lnexf3u9P2fVnGcRjmFV3N/9NIXds3wX9vg76eWz7ve/tGsTroLvn++DtX8qwtZfdxYLXgDt27FjcfffdLdNOnDgRJ06c6HGLAACAbltYWIiFhYWWaVeuXOlxaxg05oUAAP0z9GP1ok94vboQcaH1/sf1wdp/C14D7oUXXoiJiYl+NwMAAChRatGiVqvF5ORkj1vEIDEvBADon10/Vv+ZEzc/rfx5LeKfDM7+W/ACAAAAAAAYRbsohteefjcAAAAAAAAAivCEF4yQokHeRzW4ZNF+KVs3A52Okn3ffWcy/dq9OUGlD+X03bnspK+ufSCdN8dDj7+cTP/D5yrJ9D9rPJAuv5Kdvu+7yaxxYO5aMv3oB8+n6/5Cet/i8+nk+Oh92Wnr6cDUuYHEc45549l0dlrLCxied5/q5z14EIO575b6ixjmtgO9kfXb4v6x3aj3STfPhX72VWq81W67sst6sWt1dFJO+8cqu72d1N9KN+finZyL3er3XvybQnePbXfr75dB3b9BPR5+u/vsekR8v8SyB4gnvAAAAAAAABhqnvACAAAAAAAYRZtRXqwtMbwAAAAAAACgezzhBQAAAAAAMIo2o7xYWwP2hJcFLxghRQM9pgKdlq3MIJVlB8DM67ci9ZdZdjfKT+d/uIMWve3avb9WKH+sZwd+joiIx+7LTPrw2peTWb9z8EeS6Y2/U0mm//Kzn0imf3zzc8n0N6+/kkj9bDJvfDCdXHmjkd7gQ+nk+EpO+ucTaR/JyZt3Tq2nz+fKeM71kpO/iLKv5TI1GtnXys7yD+6+lWnQ798Aw8w9brus34Vu9lUv6mhXVt2p38lBPH86GW9VKq3nO1llVSovdrGsrP7NHq+32++dHNt2z9FUm9rtk25q999mOjmnu3k9t3us+n0NDmq7umVQ92NQ28XoseAFAAAAAAAwinbRE15ieAEAAAAAAFCq2dnZmJmZKa18C14AAAAAAACj6HpEfL+kTxtPji0vL8fS0lIXdiibBS8AAAAAAABKsbGxEc8//3zp9YjhBWwZ5gCSwxaUeKfy2p4XzDYvf+G+OZSdf9+3LiezXrv319JlP5bTtnPp5Ph8TvpXspPuH38lmfXD8eVk+stfeyiZPv/euXR6pNOvnTuQmfbmo/uTeV//uWRyfLXxgWR6XtvOf/RouoLnWgd/vik7kHZEJM+3iIhYTyfnKXI9tBtYutvll9n2su+hg3z/LtI3Zbe9330DwGDpxe9Cu3Vk/Y4OYlu7rf2x4cOZKY3GfW1938062i0rVU6lkjUPaD0HyDqGqWOb1e+dnIvt9kk3z7luXWsRkTmH2g3XYZZBbReUajPKi7W1w3JnZmbi7Nmzsby8XFJDbvKEFwAAAAAAAF03NzcXc3NzMTY2VnpdnvACAAAAAAAYRZvRVqyttstOqNVqsbGxEVNTUyU14HYWvAAAAAAAAHabzas3P536/luZSRsbGzE3NxcrKyudl98mC14AAAAAAACjKPWE1//3dMT/UE5c8ieeeCIWFxdLKTvL0C941ev1mJubi9XV1YiImJqaimeeeabl+yDn5uaiXq9HxM3VxcXFxahWqwOzHaMvL3CtwJmd6yRw7duyg/fe1DqI7k4N8nEv3jfZrn00J8hvRvDcLedyKjiaTt539HIy/cuPfzgz7cNrX07mvXrhYLryD6aTr362WP5KNDLTfuTN7yTz3t94JZn+8tceSqY/9MbLyfS84xLPpRJzzrfP55Sdc8411nLyl6jodV7mfaLfvz1F7t9lt73ffQPsnHlhMVn3W/fB/ujn8cifH2yX1a5O2tvuvveirzqpo9360/3eeozbbrsajeyxcmW89ffZ4+esOXJqPN46T7vHthO9OB86qbtbZblXt8dvHtzhJ09F/B8/1nn+9dciXnr/tq+XlpbiyJEjPR/vDvWCV61WiwcffDCmpqbikUceiS996UuxvLwcq6ur8e1vf/u2yc3k5GRUq9U4e/ZsRESsrq7G5ORkvPTSSzExMdH37QAAAGifeSEAACRcj4jvZyXu/8GnU/e0/HZxcTFqtVrMzs5uS1teXo5KpRITExNx8eLFAnVvN9QLXnNzc3Hx4sWtVcLFxcU4cuRIrK6uxunTp2N+fn5ru1qtFi+99NJW3qmpqahWq/HEE09sdWq/tgMAAKAz5oUAADBY5ufnY2NjY9v3MzMzMTExEadOnWr5Noai9nS9xB6p1WoxMzOz7ZG45mSmVqttfbe0tBTVanVbBz766KNRq9W2tu3XdgAAALTPvBAAAHLciJtxvMr43Ghd5dTUVExPT2/7jI2NRbVajenp6Ziamur6rg7tE14TExMtX/3Q/K45majVarGxsdGy85rbPv/88xERfdnO6ysAAAA6Y14IAAA0De2CV5ZmEOAjR45ERMSFCxciImJ8fHsEzuZ39Xq9b9vleeutt+Ly5cu522XZv39/7N9f5B2cdNOgB8BMBUwd9LanFG17pZIVkLc75afr7l6g3lby2l55PKeAcwUqX0/v2wONv5JMPz9+NJl+7aMHkunzz85lpl198GAyb8ynky8/uC+Z/soH70+mH/3a+WT6px7/ZGbar/z0Z5N548F08gc+99Vk+pub6d+Ugx+9mq6giI+8nrNB+lqtVArWf2h474ODrMhvT949suz8sFNXr16Nq1c7vz++9dZbXWzN7mBeeLu8eWE/73dZ9+LdcA/u5r63O2/IqiNVd7fmJsM27+zm8cgu6+EultWB9dbj7Kzxc1bd3Ty2vaijM62PVaNxX9sltbuPg3jPGFT9P09G26j9du+Ksfr1H3zKKnuAjNyC1/LyclSr1Th+/HhExNZ7Ilu9D7L5Xb1e79t2ed7//vfnbpPy5JNPxqc//elCZQAAAJ07ffp0PPVUuX/Ewu3MC29nXggA0Jqxem+tr6+XWv7ILXidPn36tmDAOwl8trGx0bft8nz961+P97znPbnbZfF0FwAA9NepU6fiYx/7WMf5X3vttcILHruNeeHtzAsBAFrbFWP1zSjvSazNksrt0EgteM3OzsYzzzxz2/vPm8GLW00imt9Vq9W+bZfnnnvuiQMH0q/lAgAABlfR14zfc889XWzN6DMvBABgp4zVR8vILHgtLS3F4cOHY3p6+rbvm5OHtbW1bXma301MTPRtOwAAALrDvBAAAO5wPSK+X2LZA2QkFryWl5djY2MjTp48uS2tWq3G2NhYy/ei12q1iLgZyLhf2zF4dnMA+1Het5Syj3mR4M55dRcNHF15PGeD51oHL37bi4m8ebVnB2aOiDj/eE7Q34zAyk1fffbvJdM/vPblzLTKLzWSed98MP2XP6/svT+ZfvTj55Pp+z/xZjL96k8fzE6cT2aNX/7gJ5LpL3/toXQBX0snx3rOOfnFAtfTR/PqTpyPO1DkWs8K6L3z/OnzOS8I9iD/dg1y24DRYl44nHbz70Av9r2bdXSrrEFsU0rROddOpMZ6WePMdtuV6qu8sWY36shqb1aedrdP5cmee2bPH7LqabevUuP8rLK6eV53q9+HzW74benkGumW3dC/DK89/W5AUaurq/Hqq6+2nNQsLS1FRMTx48ejVqtte43EyspKVKvVmJqa6ut2AAAAdM68EAAAMtyIm7G2yvjc6OF+7MBQL3jVarWYmZmJjY2NmJub2/rMzs7G5OTk1usj5ufno1qtxtzc3Fbe1dXVWF1djbNnz25916/tAAAA6Ix5IQAAEDHErzSs1+sxOTkZEW//xd6txsbGbvtLuUuXLsXs7GzMzs5u5b948eK296X3azsAAADaY14IAAA5NqO8WFubJZXboaFd8KpWq9FopGOs3GlxcXGgtwMAAGDnzAsBAICmoV3wAgAAAAAAIOF6lPeEV1nldsiCFyOnUnkqmd5oPFkovUj9RcsmW6XyemZao3FfMm/xY55d900Pl1Z20bY3ns2p/7kXc0rofN8i0mXv+/w7k+nXzqWP60PPvpxM/+rjH8hOfDyZNQ587Voy/fd/7nwy/ejvpsu/+uDBZPov/8EnMtPuj1eSeX/la59Npu9/75vJ9C9/8MPJ9Piz9Dn5wOPnMtPOV34sXXbOOROHcu7va+nsudfyodQ5V+RayFf0t62f+tm2Ye43gEGQdR8dtvvnqOxHSrf2ZTfPZ9s9Tyrj2WVljTvzxiZt1V/JypE3h2tVVutxcNZcurNrqr3xcifnW3Zftd/v3ZL37xGtdPOe1W6ebl7n3ez3Xtx/hu23wn0fWrPgBQAAAAAAMIquR8T3C+T/Xxduflq5caVAwd1nwQsAAAAAAIDt/ncnbn5a+be1iG9O9rY9CRa8AAAAAAAARtGNiNgssewBsqffDQAAAAAAAIAiPOHFyOl3QMV+11+WvGCjRfc7K0ju29KBd4vUX3Tf8oLQpoIZR2QHNN6JyuM5GzyXFyS2vcDB27UfEHmndV+799fS2Q/lHPOvpJPnH5/LTDv/+NFk3sbfyYwQHRERT/5uuu7IrjoiIi5f2JdMvz9eyU7bzE7biWvnDiTTU/0WEfHVZz+QTH/o2ZezEw8ls8a+b70zmX7t3vR9pDLefsDo26ynyk9fC3l15wezzrnP5N5Di9SdVvQeWiSYdb9/c1P9XrRf8+su93cZGCyTk4sR8WO3fdeL6zyrjl4EuO/mPbaf+zFs+r3fWcek3WPY2X60NzdKzeO62a7sa6G9uVgn53uRcdr2Olpft+3W0UkfZu9f+2Pobp2jqTzdPN+7e420p9/3k3YNW3u7pd/73c9zdFfZjJtxvMoqe4BY8AIAAAAAABhF16O8Ba+yyu2QVxoCAAAAAAAw1DzhBQAAAAAAMIquR8T3Syx7gHjCCwAAAAAAgKHmCS/oskEOfFwkwH3Rthep+6b2AlN3s+68QLZ5QbNTwYwjIirjicT1gkGCD+X0a9nlF9L5MY+I2Pf5y51n/lChquOXP/iJZPr8e+eS6a/edTCZfv/1VzLTDrx0LZm38oVGMr3xdyrJ9HPxQDI9zwOPn8tMOx9Hk3m/PP7hZPpDh17uqE079lj2Odl4Nn2+5t2HKuluz71P5d2H0vUXa3v+PbTIfaa94PG9ltfvRRT/3eyfYW47DKqLF2djYmKi383Y0ovrOHWP7VaA+072o1t190q7v8Op/Sj2m76zOrrVj92cl/f9mB9qfS001lp/nz1/fTGziqw83eqrTsrKGgem5+dZ+9i6rE7Gcln70a0+7KTuTvJ063pO1dEL/bw++/3vf9nnXHvndSfXVL/PazpwIyI2Syx7gHjCCwAAAAAAgKHmCS8AAAAAAIBRtBnlxdoq68mxDnnCCwAAAAAAgKHmCS8AAAAAAIBRtIue8LLgNeCOHTsWd999d8u0EydOxIkTJ3rcou4Y5WDmg9z2vLYVCVqaV3Y/+6V43dnBfW9KBwRNBwAt6FDZ/do6uO+Wo4m0D6WzPvD4uWT6+cdThUd89dkPpCso4OV3PJTeYC6d/PQbn0mmv/no/mT6gd9Nl//Lez+emfYrc59N5m08WEmmV95oJNP3rV1Opt8//koy/eWvZfftLz/+iWTehx5/OZmeaz3vWkxf641ns6/1or9rRYNG9/N3Ne8eN4hBrJvK7ZdidQ/yeCLPMLe9nxYWFmJhYaFl2pUrV3rcGgbNqM4LU1L30W7dZzqpY1TucZ3sxyDuezfb1GhkjfXS872WMuZpnYz5svYxewyWMaZNzB0ba62/z2pvN6+Pbh7DStZU51DrY9jZXD3v3wfurKO97SPa75PKeKKsjGPb7nmVfX3sXv2/J2adW+0dq/SxddybjNWHhwWvAffCCy/ExMREv5sBAACUKLVoUavVYnJyssctYpCYFwIA9M/Qj9XLerqr7LI7IIYXAAAAAAAAQ80TXgAAAAAAAKNoMyLSES6KlT1ALHgBAAAAAACw3fcWIq62jmEWjcGKYWbBi77of2BHWilyXDoJvttO3Xnlp/IXybuT9LxAt8WCu6bzFu33XF/MaftHEvv+oXTe8+NHO2jQ2x4afzmZ/sDauc4L/2A6+ZUP3p9M/1R8Mpl+4KevJdPP/cED6QYkXL6wL5n+yt5ibf+Vr302mV75QiOZfu7ZBzLTnn72M8m8UeCQRkRmsOotR/Out06CWjfz5l2rDxerOxGEfEf5C0kH4s4MHr6D/EV/G/IU/X0oKy8AnY3vd/O9d1T6pN3f9n7uXyfjkKz2pspqv56MceV6qo7Wedptbzev267Odddbf52aq2fXn9VX7c/7293HXvR7sX+/6L1hu8d1027edzpQ9Cmsu07c/LQsuxbxvw1ODDMxvAAAAAAAABhqnvACAAAAAAAYRZsRkX4hT+dulFRuhzzhBQAAAAAAwFDzhBcAAAAAAMAouh4RufG1O1TWk2MdsuDF0CkzwHzZhrntRRXdtyL5i9ZdNFhuJe8H5bFEUNhz6ax5+5bb9i8WPOcOdR7Qdt+3LifT7x9/JZn+vvhGMv1XvvbZZPpTP5eddvQ9yaxxdP58Mv3yg/vSBeQ4+vF0+Uc/mJ2eV/fvV9JlT0c6/VzjgWT6Vz/4gWT6Q5V/lJn2QCN9wp//yI8l0yNeTCfnne9fySk+UX7hazGv7VnBx5uO5mR/rkjdaUX3vZMg290yyL+7u3nMAJCnW/fATn6DBvX+24t2VSqvZ9Td+Zxge1mt9yPreGS1qci4bae6O4bJHutl9W9mHRlztMZa9nHK7t+sfmzd3tR+t9/vretInW/Z9bfej+z96+RcbK+vOtHJudtunmG793VimPaxu9dU/+qAXrLgBQAAAAAAMIo2Y9c84SWGFwAAAAAAAEPNE14AAAAAAACjasCexCqLJ7wAAAAAAAAYap7wYugMc8DEvLYLUN+5IkE22w8ofKeCQWifywq0nB8AujJerOr4aE76enbbIiLii9nt+9Tjn0xmfbryaDL95d99KJleeSP9pym/8o7PJtOf/N3stHMffCCZ9+hPn0+mH4hryfT9L72ZTP/EvQeT6X9/fl9m2q/dla77rzQeSKb/WTI14ujXzifTn/q5dP5Px09lpm3GJ5J5z0f6nIlD6Wv9gcfPpcv/ytF0+Y8lApM/m86a17bcay3Pc0XvY50r+ts1yEGSK5X0ccm7RxfR730H2O36eR/O+m1MtandOU1WWd38Xe7mfrRf94tdq6OTNnXz/Gl7vrreevtKInZL99rb/tio3f1LHdtsWXP2TsoqX7eug17p1v0nXUfrcXkn4/FB7cdWetHWYeoP2AlPeAEAAAAAADDULHgBAAAAAAAw1Cx4AQAAAAAAMNQseAEAAAAAADDU7up3A4DeyQry2dRJsM+3ZQWB3Zm8IKcDHUTzULrfGmvp7Ol9zzkm6+ljmntc8vLn7Ft8JTvp6fhMMusDjXPJ9P1rbybTPzX+yWR6fC2d/NTPZadtNu5P5p3/g7l04Tmu/vTBZPovNz6RTP+1ymcz05783XTdlzdfSW+Q4/KD+5Lp5xtfTqZ/efPDmWk/spbTr188kE7Pcb7yYzlbtBkQ/FbP5W2Qd48czIDZO1Ps/j/I9/div4uDLfXbM8jHBKATeXONdvTmHtn6t7WT/Wi3vant260/q6xe/AZ18zh1sh9Zx7CzsUXWWCtr/Nh+3dn/VtC6jl70b5Zkvx/KKGs9I0/W9ol62j8fssf53erH1L/1ZB33vH8f6obunifdG5d369h2cr80zobyWfACAAAAAAAYSdcj4vsllj04LHgBAAAAAADQwj/+waeV7/WyIbkseAEAAAAAAIyk61HsSawnfvBp5Q8i4j8oUHZ37el3AwAAAAAAAKAIT3gNuGPHjsXdd9/dMu3EiRNx4sSJHreIMpUdvLKbQT7bLTsvwHHxfc8K5Fu87tzgzOvpYK+V8XTflHrcv5hzzD+ak/9o51U/8Pi5ZPr74hvp9PF0+q98/LPJ9Mvz+5LpEdeyy/7pdNl5nnotnX6u8UAy/Ve+lq4/dUY+9XPpulP7vRNP/m46/R/93EPJ9M81PpGZdu3eP04Xnnc+fyWdnJd/39F3JtOvnTuQnfiRokGfs+9hEcXv3x0F927KCvK9JTsQ98260+kpRe/PZecfZmXu227u1yIWFhZiYWGhZdqVK1d63BoGTat54Te/+Z0f/L+f/cHnJtfYdr3ok6x7X2d1t/7t7OZ+VCpZY5fs3+1+9mO7Um3t7rHKqr/12K2bdbc7xkr3bXosWqb2z8XstjbWslI66d/W9bR7DLP3L1V36zydzAnaLavI2H2nUudiu9dCJ9dUL+5lvdiPUdeLPmmnjuEfq4vhxYB44YUXYmJiot/NAAAASpT6Y7ZarRaTk5M9bhGDpNW8sFsLAwAApBmrDw8LXgAAAAAAACNpM8p7EmuzpHI7I4YXAAAAAAAAQ80TXgAAAAAAACNJDC8gQ5FA7GUHcS9afpHAoXmBWPu7b+nArpXxnMofy2n7czlBaNfTba+Md943eUFr8/Zt37cud1x3RMS1cwcy094X30jmnV+bS6Zf/ezBdOUfTCcfmLuWTD/f+Gpm2pMffyiZ96l/mK77yd9Npz9VOZ9MP/qL6fzJut+Ts8GDOek5/br/vW8m06/+Ys5xq3w2M+nj1z+XzHrw+avJ9H2fT5/P1+79tXT6F3OuxY9kX8sPNP5KMuv58aPpsj+fTu4k2PWO5dyjivx27CR/EUXLHuQg0EVj85S5b/085sDbdvO11q34ZZ30YTsB7m9un/0bnjWWzy6rk/1+uK26K5UXO6ijtXb76maerP7Kalfr/Uv3e3vHvZN+b/s8SczbGmvt1d2TY5vR3lRb2z8f0nPddurIOk+yz6tEnkPtXZ8dne+Hso5hu9dH++dcJ/fFdvN0du9tve+9uI93ck/uRZ/0QifndbeMSh30ngUvAAAAAACAkeQJLwAAAAAAAIbaZpS3MLVZUrmd2dPvBgAAAAAAADBa6vV6zMzMxKFDh+LQoUMxMzMTGxsbpdVnwQsAAAAAAGAkNV9pWMYn+8mxWq0Wk5OTERHxyCOPRETE8vJyvOtd7ypt0csrDWlJMPJsefvezaCV7SpafrH8eQFw0wFnU0GFdyKZPyPg65ajOYWfy6s9ve+550wiQHGeD+Q17mh656599EAy/avPfiBd/uPZSa/E/cmsXx7/cDL98vy+ZPqv3XUtmZ4Vlrjp5XgoM+31f5jO++Qv5hQ+l07Oa9v+T7yZTP/EPzyYU0LCB3PSc9r+idfSdeeF9P4rjQcy0965+Uo681dyCs+5lj/VSJ8zT+dci/u++/cz085Xfi2d+VBO4z6Scw/Mu4+t5/V84qzLKTvvHlXmb9soj0eK7lte/iL159U9zP0OjIbhug9lzxUqldZpnexfVp6s+3036273N6mz36DW45WseWCjkT2+yao/u+6scVT2sW33eKRnCFn70jpP0THCjuTNodvQ/vHI1n6/p2Qc3/WM7w91UnfGcc8Y22fvX3YN7V+frb/v9303dU23X1Z7x6qb+579b1d5/6a2XS+OST+Pey+OB+Wbm5uLixcvRrVajYiIxcXFOHLkSKyursbp06djfn6+63V6wgsAAAAAAGAkNWN4lfFpHcOrVqvFzMzM1mJXU3ORq1ardW/3buEJLwAAAAAAALpiYmIiJiYmWn4fETE2NlZKvRa8AAAAAAAARlIzhldZZe9cvV6PiIgjR46U0RgLXgAAAAAAALvPtR98OvW/tbX18vJyVKvVOH78eIE6s1nwoqWyAwCOchD6Im0f5n7pf9sSAT7Xc7I+lxccNBVAOH/fc4PEPpbIfy6d9Xzl99MbHEpHE973rcvJ9KNfO59Mr7zRyExrvCMROXcn5tLJ6aMS8c7r+5LpT92V/WN+vvHVZN7zj6f79dOvpff9yfckk+PVew+mN0h4/bWcDX4unXzfL6bTz/9Bum/yfHbt/sy0qw+m97sxn+7Xc+MPJNPnc06qT619MpmeLPu7OSdspK+1iHcmU6+9Oyd7RpDsHVnPCpx8077vvjOZXqn8ced1R0Qc6jwAddm/m/lBvrPvRHmBtYu2rd/5geFTqWTf7/PuWaMqdZ/Puk+2e/9MbZ//O1O8rKw87dadkl1H63Mudb61n6f1XK5SyZ7jtX8MW9ddGU/tR5vH4/Hs+ivjbbYrY9+7ev5ktCml3X7PPEdT49719vI01hL1t7mP2WV1cg/Im+3eKe/fNPqj3fPqZp703GR7WVnXQfv3uG7e37PzZN03+vc73Iu+6sSgzlda99ef9bwd7WvG22rlmYhY6llLTp8+HS+99FJp5VvwAgAAAAAA2HX+LxHxkQL5/6eIeGJHW87OzsYzzzzTMrZXt1jwAgAAAAAAGEmpGF6ViNhfoOy/sKOtlpaW4vDhwzE9PV2grnx7Si0dAAAAAACAXWl5eTk2Njbi5MmTpddlwQsAAAAAAGAkbcbbcby6/dlM1ry6uhqvvvpqy8WupaXuxw7zSkP6Ii/wYCfBg7slL1hjkfq7GRi4jPKLBQ7NC5LabtDV9vInAx8nAgBHRMS5dHDQVCDbHUkF1c1zNCf9Q8Wuh/vHX0mmX35wX7qAH8lO+uW1TySzzq/NJdOvvfbHyfTG7/5UMv2pu64l0/9K44HsxMpDybwvvyeZHHlX4lOv5WxQos1G+ri8c/NzyfQHcvrmyV9M1395PuecSkmfMvHKB+/PyT6fTH9o/OVk+r5vXc4uezxd9tPPfiaZnivvXnAuJ309dQ9P37+v3ZtTdu79Pe/3IfsenD9eSP82Ff1NLzJeyQs8XeZv9s3y032T+t0ERlOvrvus+9sgBp9Pz3/a249u7vegltWtOlK/Ue2fp63HIZ2c79m/zUXnsjvwXPvjgkql9fftnqPJPOPttqn9/cg+FzP6fb2DMVRGnqw+jIiIL7ZuVyPj3xfa7au01uPnZHsztXeNZB3D/H8TalVH+/eZdq/dTq7b9uvI2vfseU63fis6um7brKOT38Ls7bt5fx9MrfqrVqvF5GT3F25GQa1Wi5mZmXjkkUdibu7tf9TZ2NiICxcuxPx8+t9SOmHBCwAAAAAAYCSlYnh1o+zt6vV6TE5ORkTrJ7nGxsZiamqq662x4AUAAAAAAEBXVKvVaDQaPa/XghcAAAAAAMBIasbwKqvswbGn3w0AAAAAAACAIjzhNeCOHTsWd999d8u0EydOxIkTJ3rcot7oZ0DjMusue7+KBrBPl50XXDKdnhvo8lC67Y21dPZ0+cWCDFeezdn3j+T066Gc/Ofaa8+tPvXsJ5PpTz/7mWT6+fGjyfQf+dZ32m7TVt2VR5PpX218OJl+9HfPJ9MvP7gvpwXX0uV/PLv8o7+YLvn1f5hOf/J30+lP/Vw6fbPxiWT6/fFKZtrRnz6fzHt583PJ9APvTfdbnl/+XLrtv/Lxz2bn/YN03ulKdt68siMiPvC5rybTP7WWvp6+Ee/rKC0iIr6STo4P5aTnBjJP3+dS9/BKJTvYckREPJbz25V3D1vPS0/dQ3Pun3n315y6834X83/7ygtiX3TMMCpBoXeThYWFWFhYaJl25cqVHreGQTNo88LU2Lvd+1fWvbjf97F296OT+3Zv5r3d+63K/t1sXUfuHLCl1sc9u6xu/ha3V1b6HG1vP1LnQmU8I2G9dVmd9Hv7/dt6/NjNczqrf3PHrt2SMX6vfKS9Y5h5/FJ5Ms+T9vskO09750l6PpFVVvv38Xavkd7cR9s/3zu51vtVRzd/07P66mY95d83yjT8Y/Xex/DqFwteA+6FF16IiYmJfjcDAAAoUWrRolarbQV8ZncyLwQA6B9j9eFhwQsAAAAAAGAkieEFAAAAAAAAQ8ETXgAAAAAAACNJDC9gJOUFdy0vMHReEMq8gKmVSk4Fh7LLb6zl5M1ReTxvi4L9up4V/DkiHkvnffrZzyTTH3j8XLrunH17X3wjmf7x73wuM+1H3vxOMu/9m68k03/5g59Ipu+tfDaZ/uQvJpPj3OceSG+Q8Pv/8Hwy/b6vpfOfb3w1mf5A5aFk+nwi/9H588m8H9775WT6y/Ppuv/KBx9Ipt+/mX1O5Lk/0ufEciN9TvzU4+nrYd/a5WT6K3F/Mj1lbnw+mf6+Z9PXUt61HF/MCeSbEVS7KTvIfCTvnxERkXMbyfXFnHvgRxJty5F3f88Lal40QHI6WH1e3uEIzszt8sYrjiu7Repcz7pOsvIUuZfytnbvP+0ep5tp7R2r7N/hh7PzjGelZOVpXUdq/pi1H1nfZ42jUuOr7L5qvR/JsVrufHNndaTKyTruWe3q5Pcu7ze0G7p1HURExHNZaRnHMOvcXc+uI/M8zRifZ9aRN55voZtjlvb7vfPx/87ryO73dtvbSV/1YkzYrTp6NX41TqZXLHgBAAAAAACMpN3zhJcYXgAAAAAAAAw1C14D6tq1a7f9L7139erV+PSnPx1Xr17td1N2sesR8XIM2l8K7CbXr16Pr3/69+L6VcegX1wF/de4ejWuz5+Oht+DvvB73H+OQf+ZG+xejn373LM6dXPUqd/acS0i/vEP/pedM8NpW+NqxJVP3/xf2uBca5ff0M4Mx3jtesHPVyPiYxmff9jD/chnwWtADceFMtquXr0aTz31lJt8X12PiK+HwUn/bF7djN976p/F5tXNfjdl13IVDICrV+PGmV+N8HvQF36P+88x6D9zg93LsW+fe1anbo469Vs7rkXEr4cFr3aZ4bTvasT3nrr5v7TBudYuv6Gd2R3jtSMRcSbj8/f62K7txPCCXWSQA0S2atvly5fj4MFfjTffPBUHDhxI5k8HwE3vd27w3LwAsHnpR9PJ+z7/zsy0qw8moi1HxP7Pv5lMPz+ervyBtXPJ9J+N39/63x9u8yfjOwd/JJn+4b1fTqa/L76RTH/yPen6938i3TdXf/pguoCEo7+bTv/lD34imf7y1x5Kpn+g8dWt/3/98r+NODgd/+zN5bjrwA9HRMQra/dn5r384L5k2Q9U0nWfazyQTJ+PuWR67E0nvxzZ9R/9+Pl05s+lkz/17CeT6R/fTBfwub0fb/n91buuxpmIeG78sfjhA50NnR569uWO8m35Sk76czmBnx9rL8j87WUXCzDeeDznHvl4dttu3p+/FxERBw+ejogfaq/uAf7dYzg5pyCf64SmrHMhNf9qrLUeF1QqL7ZZd4GxzzZZdR/JzJG1j51cH+3ue1Z7U3VnH5OH26q5UskZk7bQzXtG7ty+xLqzVFJT+ox/S2is3f7fly9HHDwY8eafROT800hhnZy7lfHW39+5H2+Xlbo+u3PtNhpPtvVvSnSHMcAgE8MLAAAAAAAAhoInvAAAAAAAAEbSZpT3JNZghUHxhBcAAAAAAABDzRNeAAAAAAAAI2n3xPCy4AWMhGQA1cfzcucE4j2aU/ez6fSsAK5N1z6aHTz1A3/w1WTeuZhPF54RJLbp6fHPJNO//E8fioiIIy/9szjww9vT97/3zey84x9Olv3K2v3J9PeNfyOZ/tRryeTc+lNd98sf/EQy6/3xSjL9V7722WR6Xvl57h/Prv/g41fTmR9LJ38qPplMf/lrDyXTLz+4L5n+y5/L3vdf+el0v3147cvJ9Lxj/uG96fznxzMu9sbliPiHMf2l34n4i62v131HLyfL/urjH0imP/Tsy8n0fZ9Pl38tL7jzhxJpH0kH984LPJx3j8sLHp4qX7BpACjHnb+/zd/bftRdVp52ZY1ZsuquVE794P/9dkT80A7reD2jjpyxXBekxmTt9m+7fXXTzX3c6dguu73Z8/du7UdK5vmQMyZuaT2r/tZ1HDx4OnZ6ruXJ7qvW/dvN8wegTBa8AAAAAAAARpIYXoyYhYWFgS1vUMvqNsdgAPxPXW5bN8vrYlmvLlzoWlnd9tsL/7JrZf1/ulbSTQv/7WCW1XVdPNe6vZ8L3+leWd0817qtm23b/CfPdK2sm7p4ZX1vcH8PBvl3b5Db1k2DvJ+D3DZoV9FzsEj+ftZd1LDu97D2WdH8w3yuRfxmgbxFx21F8nd7NtaOIn1W9Hj3s8+LKlJ3//rcfa0/+ftV9zD3OYPDgtcusVv+IWCQb06OwQD4oy63rZvldbGsCwsXu1ZWtw30gtdvD2ZZXdfFc63b+7nwRvfK2jULXv90gBe8rg7u78Eg/+4Nctu6aZD3c5DbBu0a5n848o91va+7iGHe7/7eq58vkHe3LngV6TMLXp3pX5+7r/Unf7/qHuY+H3zNGF5lfMTw2rXm5uaiXq9HRMTGxkYsLi5GtVrtc6sAAADoBXNCAAAojwWvHpmcnIxqtRpnz56NiIjV1dWYnJyMl156KSYmJvrcOhhtjWdv/u9P/mTEP392e3rluRfTBXwoI4Dw1yPiQxH71y4ns39qbT6Z/vT4ZyLeiohz6Wa0zPv4Z7Z/+S9ffPv7D6Xzf3XtA8n0g4fejIiDcfA/fjOisj2gcCr/h9e+vO27a5s/u/X93Hi6X37la59Npj/9Y385Pv2f//PM9AdyOvTHfu78bf99NSJe/7kflP1Yi369texn02V/83/511H5G9lti88ns0d85Zb///2b59c/+0+ORPyFm8fgzd/Yn5n14LmryaL/0r/7J7H0bHvH7VZPv3FL31z/yai8cft+fnVv+py6P17JLnv/X47KX87ut8ZnK8myL8/v2/r/fzGuxf2bt9d1/m8dTeb/1NonW35/9fLVOHMw4uQjvxL7D2T3fcp8zG39/+/G8dv+eyeuncsI6P3WnptpHdw/thy6Jcj0m89HHGwv6HRjrfX3P/mTEf/8n0dU0ocNYNcwJ2RUVSpPRcR3fvC/b2s02htTDKo796vpzTdPxcGDvxpvvnkqDhzIGKvllnU5Il6MSiV7TprVj5VK1qTi4Yxybp/X/uRPPh///J93doz+8l/+kY7z3imrf7P2+2a7W8/RK5XXM8rKmNMnterH/zp78/Wsut/ejzv7PKu92/vkexERbZ1r2WWlteqrn/zJ/fHNb7Y+r3ZW9+33h1G5N8BwEcOLLpqbm4tarRbPPPP2a4empqaiWq3GE0880ceWAQAAUDZzQgAAKJ8Frx5YWlqKarUaY2Njt33/6KOPRq1Wi1qt1p+GAQAAUDpzQgAA+mf3xPCy4FWyWq0WGxsbLV9R0fzu+eeLBX8EAABgMJkTAgDQX9dL/gwOMbxKduHChYiIGB8f35bW/K4ZtPhW3/vezffz/uEf/mGh+vft2xf79u2LK1eudPWvBrtZ3qCW9dZbb0VExGuvvRb33HNP4fIcg/b17hj8WTrjtzP259qViG/X4sYfvpXM/ucH/1W6/Ou1iMaVm/97h39T+1Y671qLtm1eefv7b6ezf6v2b3La9trb/1vZfgxS+W+8+dr2L7/3vbjxhze/z+uX2h+lm9bs/yx5fffNO/776q3fterXNsrOOp5bco5L3BoT6foPzq/11yLuunkMXqvdyM6bqjcirl250f5xu9W3bzkPWhyD3HMq5dZzt4Xa3nT2t27pl+9dadFPOcf1z2utz8lrb12LiIh/9dq/jn337Gu5TZ5/E2+fMzeuXNt+DiXO5aTmMcgbX2bE2YqI2/O2OHc7vaW/fc9N32PzfjO6/Vtwe9sGq6xul9etshyD4mVdu3Ytrl271nE5zTlBc47AcOl0ThhRfF74b//tv43f+73f25oXtqvI9VD0Wuo0fzfuWcO430XzFuu3P4ubA4rbf/Pbactg9HnOvPAOr7322tb/7rzP7qxje7/dKXvfsvLeOdNplnP7gHFwzrXW+59Vfrru1pPIW/f99vypvm/Vj1e7WHd2nu3tujmG6Pz6jLjzfGn3+sw6r26WlTUZ6U7d/bmvDe/9vEj+3fobeu3ata0xUyeGY6z+xpCW3YEGpZqfn29EROPkyZPb0i5dutSIiMbExMS2tC984QuNiPDx8fHx8fHx8fHx8WlEROMLX/hCL6YwdFmnc8JGw7zQx8fHx8fHx2dYPoM4Vv+TP/mTxl/8i3+x9H3ft29f40/+5E/6vbuNRqPR8IRXye58R3srGxsb2777+Z//+fjCF74QP/qjPxo/9EM/1HH9nf4lHwAA0B1Fn/D63ve+F3/+538eP//zP9/FVtErnc4JI8wLAQDKNspj9R//8R+Pb37zm/HGG+U+hfWOd7wjfvzHf7zUOnbKglfJqtVqRLSewDS/a25zq3e84x3xt//23y6zaQAAAJSs0zlhhHkhAADF/PiP//jALEb1wp5+N2DUNScua2vbg2c0v2sVvBgAAIDhZ04IAAC9YcGrZNVqNcbGxloGIW4G0Tty5EivmwUAAEAPmBMCAEBvWPDqgePHj0etVtv2CouVlZWoVqsxNTXVn4bRN82JLd2nb4eHY8Vu4Vwvj74dHo4Vu5054ehwP3ubviiX/qWbnE9v0xfl0r/0mwWvHpifn49qtRpzc3Nb362ursbq6mq84x3vaPmXfnnm5uZiZmYmZmZm4siRI5ll7HS73ajTvpmdnY1KpZL5ufPGPjMzs22bW8+F3azo+bnTvnUdZCvSN/V6PWZmZuLQoUNx6NChmJmZyQy4vtuvg6LnoHt+cc71/nPP7z9jn/6q1+sdn5N+B4Zfak74a7/2a86NNrmftc/vcGeMIVszv+mM86l97l2d8TvZHuP0EdOgZ44fP944fvx442/8jb/R+Imf+IlGRDQionHp0qW2ypmYmGhMT09v/ffKykpj7P/f3t0dOWp0DRw/+5QDaI0zQBmg8pUvjTJA9p3vjDKA2gimpAzQRLCGDFAGXiYDkYEHMjjvxb5gfc7wIQ1C/H9VU7sr0ahpdZ8+va1Bxmiapq2OG6MubWOMUcdx1Pf9gx/HcdQYc3BsnudqWZa6rnvww3vQvX/WbVvGwWVd2iZNUzXGqOu66nmeGmNURNQYo3meHxw79nHQtQ8S87ujr/ePmN8/cp/+7HY79X2f3B+q+t+a0PM8/fXXX/XPP/+kbzREPGuOebgdcsjzWN+0Q39qjtjVDvNkfeTpj4kNrx6Uk5Hruo0HUzkIjyc027bVtu3Gx41Rl7aJokiTJDn7XJl4HL9WFEWd6vuIrtE/67Qt4+Cyrm3jOM5J7HIcR0VEfd8/ea2xjoOu7UzM746+3j9ifv/IffpF7o9L6BvNEc+aYx5uhxzyPNY37dCfmiN2tcM82Qy52GNiw6tHnuc1HkzGGLUs6+Tx1WqlIlLtDNc9boy6tM1xcNonIicTgzFGV6vVqNv7nGv0zzptyzi4rEvbpGmqYRiefVxE1HGck9ca6zjo2geJ+d3R1/tHzO8fuc99IPfHJfSN+ohnzTEPt0MOeR7rm3boT80Ru9phnmyHXOyx8B1eA1J+ybFt2yfPlY99+/at9nFj1LVtjDFnH99ut2KMOfiy6fV6LUVRSBAEMpvNZDKZSBzH3S7gAVyjf9ZpW8bBZV3bxrZt8TzvYtn9cTLmcdC1nYn53dHX+0fM7x+5z3AxD+CSsfYN4llzzMPtkEOex/qmHfpTc8SudpgnP89Y49lQsOE1IN+/fxcRkaenp5PnyseyLKt93Bjdqm3CMDwI/CIinudJFEXi+75YliVFUchisZDlctmi5o/jGu9BnbZlHFx2q7Ypy8zn8+qxMY+Dru1MzO+Ovt4/Yn7/yH2Gi3kAl4y1bxDPmmMebocc8jzWN+3Qn5ojdrXDPPl5xhrPhoINrwEpikJEzu+4l49lWVb7uDG6VdvEcSx//PHHyflc15XVaiW73U6iKBIRkc1mI9vttvFrPIprvAd12pZxcNktx4FlWQefPhvzOOjazsT87ujr/SPm94/cZ7iYB3DJWPsG8aw55uF2yCHPY33TDv2pOWJXO8yTn2es8Wwo2PAakHOD41hRFLWPG6NbtE0ZyF3Xffc413UlSRIR+fHpiLG6xXtwrm0ZB5fdqm2en5+rJOeSMY2Dru1MzO+Ovt4/Yn7/yH2Gi3kAl4y1bxDPmmMebocc8jzWN+3Qn5ojdrXDPPl5xhrPhuKnviswNEVRyG+//daoM0ZRdPZenU1ZllXV4Vy9ymPqHjdUXd6DW7RNFEUfBv6S4zhi2/bgd+/v7T0QOW1bxsGpW74Hy+VSXl5easW6RxkHH+nazsT87ujr/SPm94/cZ7iYB+4b68J27i2HHUI8u7c2ExnGPHxv7fYIOSTrm3boT82NOXZ1MdZ5sg9jjWdDwYZXQ8YYSdO0l9cuB8Db29vJc+Vj+8nZR8cNVZf34BZt8/fff8vLy0ujOjRJuu/Rvb0H++c+njAYB6eu3TabzUam02ntJKisw9DHwUe6tjMxvzv6ev+I+f0j9xku5oH7xrqwnXvKYUWGEc/urc32z33P8/A9tduj5JCsb9qhPzU35tjVxVjnyT6MNZ4NBbc0HBDLssQYc3an/PX1VUR+fFll3ePG6Npts91upSiKRolGURSjDma37J/7bcs4uOyabRPHsRRFIb7vN6rDGMZB13Ym5ndHX+8fMb9/5D7DxTyAS8baN4hnzTEPt0MOeR7rm3boT80Ru9phnvw8Y41ng6Hojed5KiK62+1ql/F9X0VE8zw/eNxxHLUsq/FxY3TNtvE8Tx3HqX18nudqjDl57bG5Rf8817aMg8uu0TZJkqjv+2efC8PwYrkxjYOu7UzM746+3j9ifv/Ife4DuT8uoW/URzxrjnm4HXLI81jftEN/ao7Y1Q7zZDvkYo+FDa8eua6rIqJpmp48l+e5iojatn3ynGVZ6nle9e8kSc6ep+5xY1Snbd57D0rGmLOJRZqmKiLqOE4VLPM8V9d1NUmSK17JcLV9D5q2LePgsi7jIE1TNcao53nq+37143me2ratSZIwDv5f13hDzO+Ovt4/Yn7/yH36R+6PS+gbzRDPmmMebocc8jzWN+3Qn5ojdrXDPNkcudhj+aKq+tFvgeG6siyTOI4lCAIR+fGlfsvl8uRXRKfTqTiOI2EYnpxjuVwenG+1Wp39ldG6x41RnbZ57z3Ybrcyn88lz3Mxxhw8VxSF/PXXXxLHsRhj5PfffxdjjHz9+vXk2DFr8x60aVvGwWVt3oMsy2Q6nV48pzFG8jxnHOzpGm+I+d3R1/tHzO8fuU8/yP1xCX2jPeJZc8zD7ZBDnsf6ph36U3PErnaYJ+shF3tMbHgBAAAAAAAAAABg0P7XdwUAAAAAAAAAAACALtjwAgAAAAAAAAAAwKCx4QUAAAAAAAAAAIBBY8MLAAAAAAAAAAAAg8aGFwAAAAAAAAAAAAaNDS8AAAAAAAAAAAAMGhteAAAAAAAAAAAAGDQ2vAAAAIAry7JMNpuNFEXRd1UAAAAA7CFXBx4XG14AAADAFa3Xa5lOp7JcLuXt7a3v6uBIlmXy5csXmU6nEgSBBEFwF//ZkWWZBEEgy+VSJpOJfPny5S7qBQAA8EjI1e8buTq6+qnvCgAAAACPxPd9+eeffySO476rMhhZlsnT05MYYz7tNYMgEM/zPu31PmJZlqxWKxERMcbIer3uuUYAAACPh1y9OXJ1cvUh4Te8AAAAgCt7enrquwqDslgs+ITtnp9//rnvKgAAADwscvVmyNUPkavfNza8AAAAAPRmsVjI6+tr39UAAAAAcIRcHUPDhhcAAABwI0VRVPd5n0wmslwuPzx+s9nIbDaT7XZb/X0ymchisTi5T/x6vZblcilBEMhsNpPNZnPwfBzHMp/Pq3Md1+G98mVd5vO5bDYbybJM5vO5TCYTmc/nVV3K70GYTCYSBMHJNb2+vspisZD5fF7di3+/fuUCerlcniyo3ytb5/qa6Hq912ovAAAAfA5ydXJ1cvUHpAAAAACuyvM8FRF1HEc9z9MwDNW27eqxj8qVx/m+r1EUqeu6KiJqWVZ1rO/7up/OJ0miIqJJkqiqahRFalmWioh6nqe+76tt22rbdq3yu93u4Dp839c0TavjymtLkkR3u11VxzRNq3OmaXpwvVEUVfU5vo7dbnfQFh+V/ej6LtntdioiGobhyeNdrvca7VVarVYqIprn+bvXAgAAgObI1X8gVydXf0RseAEAAABXVi6moig6eLxc9JUL1XPKBdTxIs9xnINzOo6jxpjq+TzPVUTU9/2Tc+0/tn++j8qnaXqy6FXV6j8E9he+5bGr1erguONFojHmYIF4aRFdp+x713fJpUX0Na63a/kSi2gAAIDbIVf/7zhydXL1R8MtDQEAAIAbsW374N/lLTySJPmwrGVZ75aNokjSNK2e//79u4jIwa1UjDEiIvLLL7+cnL9O+ePzHNdt/wu/y8d2u52IiGRZJq+vr/L8/CyLxaL6OX69c+qWfe/6umhzvdcsDwAAgNsjVydXb1Me9+2nvisAAAAAjIXjOCLyY5HYVLkgL8saY8QYI3Ecy7dv395dSB4v6pqWb6O8v38URTcve+76AAAAgCbI1W9Tllwdn4nf8AIAAAA+SbnYO/5EaB3lJw7LslmWyWw2kyzLJIoi8X2/0fm6lq9z/v0/P6ssAAAA0Aa5+u3LArfGhhcAAADwScpbkLT5hObb25uIiMxmMxERmc/n8vT01Hrx27X8R8rFfhzHZ5/fbrc3KQsAAAC0Qa7+H3J1DBUbXgAAAMAn2W63YlmWuK7buGwcx2KMEc/zJMsyybLs4PYg5QK9XGy/p2v5OspbwgRBUN32pLTZbE6O3/8+gqZlAQAAgK7I1X8gV8eQseEFAAAAXFm5ON2/zUeWZRKGYe173YdhWP29KAoJw1BeXl5E5L9bpsRxLJvNRjabjQRBICI/7qkfx7EURVEtTI+/3Lpu+UsL6nML7vLv5Z/GmOoTqbPZTBaLhazXa5nP57Lb7aqF8nQ6ra43y7LqPwvqlL10fW11ud5rlAcAAMDtkauTq7cpj4FQAAAAAFeV57n6vq+O46jjOOp5nnqep3mef1h2tVqpiKjv+2rbtrquq67rapIkB8eFYajGGLUsS33fV1VVz/PUGKO+72sURWpZloqIWpalYRg2Kp+mqTqOoyKixhiNoqgqJyIqIuq6rqZpqrvdTl3XrY7df63VavVuPVRVbdtWY4x6nnfSFpfKfnR9l+x2OxWRk+O7Xu+12qu8bhGp1V8AAADQDLk6uTq5+uP6oqp6yw01AAAAAPWt12sJgkCSJKk+HYnrybJMptOphGEonuf1XZ2zyj6Q5/nBrWwAAADQL3L12yJXR1fc0hAAAADA6Fzr1iq38O+///ZdBQAAAKA35Opo66e+KwAAAAAAn+35+blarH79+rX3T2eW3xshwpd9AwAAYNzI1dEWtzQEAAAA7kRRFLJYLGS73YrneQdfhg0AAACgP+TqwP1jwwsAAAC4E+v1+uQx3/d7qAkAAACAfeTqwP1jwwsAAAAAAAAAAACD9r++KwAAAAAAAAAAAAB0wYYXAAAAAAAAAAAABo0NLwAAAAAAAAAAAAwaG14AAAAAAAAAAAAYNDa8AAAAAAAAAAAAMGhseAEAAAAAAAAAAGDQ2PACAAAAAAAAAADAoLHhBQAAAAAAAAAAgEFjwwsAAAAAAAAAAACD9n9kt2xhw3JtkgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#b parameter des fits [:,1] hat für lost eine breitere Verteilung. Warum?\n", "#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n", "#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n", "\n", "#isolate b parameters for analysis\n", "b_found = scifi_fitpars_found[:,1]\n", "b_lost = scifi_fitpars_lost[:,1]\n", "\n", "brem_energy_found = scifi_fitpars_found[:,5]\n", "brem_energy_lost = scifi_fitpars_lost[:,5]\n", "\n", "\n", "bs_found, vtxs_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n", "bs_found = ak.to_numpy(ak.ravel(bs_found))\n", "vtxs_types_found = ak.to_numpy(ak.ravel(vtxs_types_found))\n", "\n", "bs_lost, vtxs_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n", "bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n", "vtxs_types_lost = ak.to_numpy(ak.ravel(vtxs_types_lost))\n", "\n", "\n", "\n", "\n", "#Erste Annahme ist Bremsstrahlung\n", "\n", "fig, axes = plt.subplots(nrows=1,ncols=2,figsize=(18,6))\n", "\n", "\n", "n_bins = (np.linspace(-1,1,100), np.linspace(0,1e5,100))\n", "\n", "h0 = axes[0].hist2d(b_found, brem_energy_found, bins=n_bins, cmap=plt.cm.jet, cmin=1,vmax=15)\n", "axes[0].set_xlim(-1,1)\n", "axes[0].set_ylim(0,1e5)\n", "axes[0].set_xlabel(\"b parameter [mm]\")\n", "axes[0].set_ylabel(r\"$E_{ph}$\")\n", "axes[0].set_title(\"found photon energy wrt b parameter\")\n", "\n", "h1 = axes[1].hist2d(b_lost, brem_energy_lost, bins=n_bins, cmap=plt.cm.jet, cmin=1,vmax=15)\n", "axes[1].set_xlim(-1,1)\n", "axes[1].set_ylim(0,1e5)\n", "axes[1].set_xlabel(\"b parameter [mm]\")\n", "axes[1].set_ylabel(r\"$E_{ph}$\")\n", "axes[1].set_title(\"lost photon energy wrt b parameter\")\n", "\n", "fig.colorbar(h1[3], ax=axes[1])\n", "\n", "\"\"\"\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "cannot convert to RegularArray because subarray lengths are not regular (in compiled code: https://github.com/scikit-hep/awkward/blob/awkward-cpp-24/awkward-cpp/src/cpu-kernels/awkward_ListOffsetArray_toRegularArray.cpp#L22)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m/work/cetin/Projektpraktikum/B_rework.ipynb Cell 26\u001b[0m line \u001b[0;36m3\n\u001b[1;32m 1\u001b[0m fig, ax \u001b[39m=\u001b[39m plt\u001b[39m.\u001b[39msubplots(nrows\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m, ncols\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m, figsize\u001b[39m=\u001b[39m(\u001b[39m18\u001b[39m,\u001b[39m6\u001b[39m))\n\u001b[0;32m----> 3\u001b[0m a0\u001b[39m=\u001b[39max[\u001b[39m0\u001b[39;49m]\u001b[39m.\u001b[39;49mhist2d(bs_found, vtx_types_found, bins\u001b[39m=\u001b[39;49m\u001b[39m110\u001b[39;49m, density\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m, cmap\u001b[39m=\u001b[39;49mplt\u001b[39m.\u001b[39;49mcm\u001b[39m.\u001b[39;49mjet, cmin\u001b[39m=\u001b[39;49m\u001b[39m1e-20\u001b[39;49m,vmax\u001b[39m=\u001b[39;49m\u001b[39m2\u001b[39;49m)\n\u001b[1;32m 4\u001b[0m ax[\u001b[39m0\u001b[39m]\u001b[39m.\u001b[39mset_ylim(\u001b[39m0\u001b[39m,\u001b[39m110\u001b[39m)\n\u001b[1;32m 5\u001b[0m ax[\u001b[39m0\u001b[39m]\u001b[39m.\u001b[39mset_xlim(\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m,\u001b[39m1\u001b[39m)\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/__init__.py:1465\u001b[0m, in \u001b[0;36m_preprocess_data..inner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1462\u001b[0m \u001b[39m@functools\u001b[39m\u001b[39m.\u001b[39mwraps(func)\n\u001b[1;32m 1463\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minner\u001b[39m(ax, \u001b[39m*\u001b[39margs, data\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 1464\u001b[0m \u001b[39mif\u001b[39;00m data \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m-> 1465\u001b[0m \u001b[39mreturn\u001b[39;00m func(ax, \u001b[39m*\u001b[39;49m\u001b[39mmap\u001b[39;49m(sanitize_sequence, args), \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1467\u001b[0m bound \u001b[39m=\u001b[39m new_sig\u001b[39m.\u001b[39mbind(ax, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m 1468\u001b[0m auto_label \u001b[39m=\u001b[39m (bound\u001b[39m.\u001b[39marguments\u001b[39m.\u001b[39mget(label_namer)\n\u001b[1;32m 1469\u001b[0m \u001b[39mor\u001b[39;00m bound\u001b[39m.\u001b[39mkwargs\u001b[39m.\u001b[39mget(label_namer))\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/matplotlib/axes/_axes.py:7191\u001b[0m, in \u001b[0;36mAxes.hist2d\u001b[0;34m(self, x, y, bins, range, density, weights, cmin, cmax, **kwargs)\u001b[0m\n\u001b[1;32m 7098\u001b[0m \u001b[39m@_preprocess_data\u001b[39m(replace_names\u001b[39m=\u001b[39m[\u001b[39m\"\u001b[39m\u001b[39mx\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39my\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mweights\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 7099\u001b[0m \u001b[39m@_docstring\u001b[39m\u001b[39m.\u001b[39mdedent_interpd\n\u001b[1;32m 7100\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mhist2d\u001b[39m(\u001b[39mself\u001b[39m, x, y, bins\u001b[39m=\u001b[39m\u001b[39m10\u001b[39m, \u001b[39mrange\u001b[39m\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, density\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m, weights\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 7101\u001b[0m cmin\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, cmax\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 7102\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 7103\u001b[0m \u001b[39m Make a 2D histogram plot.\u001b[39;00m\n\u001b[1;32m 7104\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 7188\u001b[0m \u001b[39m `.colors.PowerNorm`.\u001b[39;00m\n\u001b[1;32m 7189\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 7191\u001b[0m h, xedges, yedges \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39;49mhistogram2d(x, y, bins\u001b[39m=\u001b[39;49mbins, \u001b[39mrange\u001b[39;49m\u001b[39m=\u001b[39;49m\u001b[39mrange\u001b[39;49m,\n\u001b[1;32m 7192\u001b[0m density\u001b[39m=\u001b[39;49mdensity, weights\u001b[39m=\u001b[39;49mweights)\n\u001b[1;32m 7194\u001b[0m \u001b[39mif\u001b[39;00m cmin \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 7195\u001b[0m h[h \u001b[39m<\u001b[39m cmin] \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n", "File \u001b[0;32m<__array_function__ internals>:200\u001b[0m, in \u001b[0;36mhistogram2d\u001b[0;34m(*args, **kwargs)\u001b[0m\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/highlevel.py:1445\u001b[0m, in \u001b[0;36mArray.__array_function__\u001b[0;34m(self, func, types, args, kwargs)\u001b[0m\n\u001b[1;32m 1431\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__array_function__\u001b[39m(\u001b[39mself\u001b[39m, func, types, args, kwargs):\n\u001b[1;32m 1432\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 1433\u001b[0m \u001b[39m Intercepts attempts to pass this Array to those NumPy functions other\u001b[39;00m\n\u001b[1;32m 1434\u001b[0m \u001b[39m than universal functions that have an Awkward equivalent.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1443\u001b[0m \u001b[39m See also #__array_ufunc__.\u001b[39;00m\n\u001b[1;32m 1444\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1445\u001b[0m \u001b[39mreturn\u001b[39;00m ak\u001b[39m.\u001b[39;49m_connect\u001b[39m.\u001b[39;49mnumpy\u001b[39m.\u001b[39;49marray_function(\n\u001b[1;32m 1446\u001b[0m func, types, args, kwargs, behavior\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_behavior\n\u001b[1;32m 1447\u001b[0m )\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/_connect/numpy.py:94\u001b[0m, in \u001b[0;36marray_function\u001b[0;34m(func, types, args, kwargs, behavior)\u001b[0m\n\u001b[1;32m 91\u001b[0m unique_backends \u001b[39m=\u001b[39m \u001b[39mfrozenset\u001b[39m(_find_backends(all_arguments))\n\u001b[1;32m 92\u001b[0m backend \u001b[39m=\u001b[39m common_backend(unique_backends)\n\u001b[0;32m---> 94\u001b[0m rectilinear_args \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39;49m(_to_rectilinear(x, backend) \u001b[39mfor\u001b[39;49;00m x \u001b[39min\u001b[39;49;00m args)\n\u001b[1;32m 95\u001b[0m rectilinear_kwargs \u001b[39m=\u001b[39m {k: _to_rectilinear(v, backend) \u001b[39mfor\u001b[39;00m k, v \u001b[39min\u001b[39;00m kwargs\u001b[39m.\u001b[39mitems()}\n\u001b[1;32m 96\u001b[0m result \u001b[39m=\u001b[39m func(\u001b[39m*\u001b[39mrectilinear_args, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mrectilinear_kwargs)\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/_connect/numpy.py:94\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 91\u001b[0m unique_backends \u001b[39m=\u001b[39m \u001b[39mfrozenset\u001b[39m(_find_backends(all_arguments))\n\u001b[1;32m 92\u001b[0m backend \u001b[39m=\u001b[39m common_backend(unique_backends)\n\u001b[0;32m---> 94\u001b[0m rectilinear_args \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(_to_rectilinear(x, backend) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m args)\n\u001b[1;32m 95\u001b[0m rectilinear_kwargs \u001b[39m=\u001b[39m {k: _to_rectilinear(v, backend) \u001b[39mfor\u001b[39;00m k, v \u001b[39min\u001b[39;00m kwargs\u001b[39m.\u001b[39mitems()}\n\u001b[1;32m 96\u001b[0m result \u001b[39m=\u001b[39m func(\u001b[39m*\u001b[39mrectilinear_args, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mrectilinear_kwargs)\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/_connect/numpy.py:70\u001b[0m, in \u001b[0;36m_to_rectilinear\u001b[0;34m(arg, backend)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[39m# Otherwise, cast to layout and convert\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 69\u001b[0m layout \u001b[39m=\u001b[39m ak\u001b[39m.\u001b[39mto_layout(arg, allow_record\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m, allow_other\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m---> 70\u001b[0m \u001b[39mreturn\u001b[39;00m layout\u001b[39m.\u001b[39;49mto_backend(backend)\u001b[39m.\u001b[39;49mto_backend_array(allow_missing\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n\u001b[1;32m 71\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(arg, \u001b[39mtuple\u001b[39m):\n\u001b[1;32m 72\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(_to_rectilinear(x, backend) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m arg)\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/contents/content.py:1077\u001b[0m, in \u001b[0;36mContent.to_backend_array\u001b[0;34m(self, allow_missing, backend)\u001b[0m\n\u001b[1;32m 1075\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 1076\u001b[0m backend \u001b[39m=\u001b[39m regularize_backend(backend)\n\u001b[0;32m-> 1077\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_to_backend_array(allow_missing, backend)\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/contents/listoffsetarray.py:2060\u001b[0m, in \u001b[0;36mListOffsetArray._to_backend_array\u001b[0;34m(self, allow_missing, backend)\u001b[0m\n\u001b[1;32m 2058\u001b[0m \u001b[39mreturn\u001b[39;00m buffer\u001b[39m.\u001b[39mview(np\u001b[39m.\u001b[39mdtype((\u001b[39m\"\u001b[39m\u001b[39mS\u001b[39m\u001b[39m\"\u001b[39m, max_count)))\n\u001b[1;32m 2059\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 2060\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mto_RegularArray()\u001b[39m.\u001b[39m_to_backend_array(allow_missing, backend)\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/contents/listoffsetarray.py:277\u001b[0m, in \u001b[0;36mListOffsetArray.to_RegularArray\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 272\u001b[0m _size \u001b[39m=\u001b[39m Index64\u001b[39m.\u001b[39mempty(\u001b[39m1\u001b[39m, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backend\u001b[39m.\u001b[39mindex_nplike)\n\u001b[1;32m 273\u001b[0m \u001b[39massert\u001b[39;00m (\n\u001b[1;32m 274\u001b[0m _size\u001b[39m.\u001b[39mnplike \u001b[39mis\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backend\u001b[39m.\u001b[39mindex_nplike\n\u001b[1;32m 275\u001b[0m \u001b[39mand\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_offsets\u001b[39m.\u001b[39mnplike \u001b[39mis\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backend\u001b[39m.\u001b[39mindex_nplike\n\u001b[1;32m 276\u001b[0m )\n\u001b[0;32m--> 277\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_backend\u001b[39m.\u001b[39;49mmaybe_kernel_error(\n\u001b[1;32m 278\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_backend[\n\u001b[1;32m 279\u001b[0m \u001b[39m\"\u001b[39;49m\u001b[39mawkward_ListOffsetArray_toRegularArray\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 280\u001b[0m _size\u001b[39m.\u001b[39;49mdtype\u001b[39m.\u001b[39;49mtype,\n\u001b[1;32m 281\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_offsets\u001b[39m.\u001b[39;49mdtype\u001b[39m.\u001b[39;49mtype,\n\u001b[1;32m 282\u001b[0m ](\n\u001b[1;32m 283\u001b[0m _size\u001b[39m.\u001b[39;49mdata,\n\u001b[1;32m 284\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_offsets\u001b[39m.\u001b[39;49mdata,\n\u001b[1;32m 285\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_offsets\u001b[39m.\u001b[39;49mlength,\n\u001b[1;32m 286\u001b[0m )\n\u001b[1;32m 287\u001b[0m )\n\u001b[1;32m 288\u001b[0m size \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backend\u001b[39m.\u001b[39mindex_nplike\u001b[39m.\u001b[39mindex_as_shape_item(_size[\u001b[39m0\u001b[39m])\n\u001b[1;32m 289\u001b[0m length \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_offsets\u001b[39m.\u001b[39mlength \u001b[39m-\u001b[39m \u001b[39m1\u001b[39m\n", "File \u001b[0;32m/work/cetin/LHCb/reco_tuner/env/tuner_env/envs/tuner/lib/python3.10/site-packages/awkward/_backends/backend.py:72\u001b[0m, in \u001b[0;36mBackend.maybe_kernel_error\u001b[0;34m(self, error)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[39mreturn\u001b[39;00m\n\u001b[1;32m 71\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m---> 72\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mformat_kernel_error(error))\n", "\u001b[0;31mValueError\u001b[0m: cannot convert to RegularArray because subarray lengths are not regular (in compiled code: https://github.com/scikit-hep/awkward/blob/awkward-cpp-24/awkward-cpp/src/cpu-kernels/awkward_ListOffsetArray_toRegularArray.cpp#L22)" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJNCAYAAAD54gLgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1lUlEQVR4nO3dP28bd54/8I8WRrwCDB9jBAek3PED2ID0XrkulqpSSjqXe43JgsAVKUyoSlIZcnkAC8lNuoNPunIrKYXviivWHGQfgLjlNgeZZxhQnGZ+xYL6xRFl86848+XrBRALz/BLfsibE/XOm5rZKIqiCAAAAAAAAKDSfrXqAQAAAAAAAID5Kf4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAETF38DQaD2NraisFgMPWTdbvd2N3djd3d3ZkfAwAAgOWQ9wAAAKrt1qR3HAwGcXBwEM+ePZvpiRqNRmRZFkdHRxERcXp6Go1GI77//vuo1+szPSYAAADzk/cAAADSsFEURTHJHYfDYdRqtdjd3Y3j4+M4OzuLLMsmepJutxvPnj2L169fR61Wu9zeaDQiIqLf708/OQAAAAsh7wEAAKRh4lN9jgLcvXv3pn6Sw8PDyLLsvRAYEfHo0aPI8zzyPJ/6MQEAAFgMeQ8AACANU1/jb1p5nsdwOBx7epfRthcvXix7DAAAABZM3gMAACiXia/xN6tXr15FxPhvjo62feii7//7v/8bf/rTn+Lzzz+PX//61zPP8cknn8Qnn3wy83oAAIBJ/PTTT/HTTz/NvP7HH3+Mv/3tb/Hll1/GZ599tsDJFm/evBch8wEAANVS9sy39OJvOBxGRFw57cvPt30oCP7pT3+Kf/mXf1n8YAAAACX23XffxR//+MdVj/FB8+a9CJkPAABYT8vKfEsv/sYFwF8ahcVxPv/884iI+Ld/+7f47W9/O/McN/Htz+3t7fjP//zPpT7HIlRhzirM+Pbt23j48GG8fPky7ty5s+pxPqgK72cVZoyoxpxVOTar8F5GVGPOKsxYleMyohrvZxVmjKjGnFU5NqvwXkaYc2Teb3/+5S9/iX/913+9zEJlNm/ei5D5Fq0KM0aUf86qfD5ElP+9HKnCnFWY0bG5WFWYMaIac1bl2KzCexlhzkWpynEZUf73MqIaM0bczJxlz3xLL/6yLIuI8WFvtG10n3FGp3r57W9/G7///e8XPt8ibW5ujr22RdlUYc4qzPjmzZuIiPjiiy/i7t27K57mw6rwflZhxohqzFmVY7MK72VENeaswoxVOS4jqvF+VmHGiGrMWZVjswrvZYQ5F22e017elHnzXoTMt2hVmDGi/HNW5fMhovzv5UgV5qzCjI7NxarCjBHVmLMqx2YV3ssIcy5KVY7LiPK/lxHVmDGiOnNGLC/z/Wopj/ozo5B3fn5+Zd9oW1X+jwAAAMD/J+8BAACUy40Uf7Vabex1HfI8j4iIra2tZY8BAADAgsl7AAAA5bL04i8iotVqRZ7nV07/cnJyElmWRbPZvIkxAAAAWDB5DwAAoDymLv5Gp2u57hoOGxsb0Wg03tu+v78fWZZFt9u93HZ6ehqnp6dxdHQ07QgAAAAsgbwHAABQbbcmveNgMIjj4+M4Pj6OiIhutxvtdjt2dnYu71Or1SLLsnjw4MGV9WdnZ9Fut6Pdbl8+Xr/fd70HAACAFZP3AAAA0jBx8ZdlWTx58iSePHnywfudnZ1du+/g4GDyySqo0+mseoSJVGHOKsxYJVV4P6swY0R15qyCqryXVZizCjNWSRXezyrMGFGdOaugKu+lOatL3ptMFY6dKswYUZ05q6Aq72UV5qzCjFVShfezCjNGVGfOKqjKe2nO9VOF97IKM0ZUZ85l2iiKolj1EB/yX//1X/Hw4cN4+fJl/P73v1/1OHDpzZs38Q//8A/xf//3f3H37t1VjwOXHJuUkeOSsnJsUkbrloHW7fVSDT4fKCvHJmXl2KSMHJeU1bIz0NTX+AMAAAAAAADKR/EHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAJKX/x98skn7/0vlMXt27fj66+/jtu3b696FHiPY5MyclxSVo5NymjdMtC6vV6qwecDZeXYpKwcm5SR45KyWnYG2iiKoljKIy9InufRaDSi3+9HvV5f9TgAAABLtW4ZaN1eLwAAsN6WnYFK/xd/AAAAAAAAwMcp/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEnBr1QNMant7OzY3N8fu63Q60el0bngiAACA2fR6vej1emP3XVxc3PA05SDzAQAAqVhl5tsoiqJY6jPMKc/zaDQa0e/3o16vr3ocAACApVq3DLRurxcAAFhvy85ATvUJAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACbi16gEmtb29HZubm2P3dTqd6HQ6NzwRAADAbHq9XvR6vbH7Li4ubniacpD5AACAVKwy820URVEs9RnmlOd5NBqN6Pf7Ua/XVz0OAADAUq1bBlq31wsAAKy3ZWcgp/oEAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABNxa9QCT2t7ejs3NzbH7Op1OdDqdG54IAABgNr1eL3q93th9FxcXNzxNOch8AABAKlaZ+TaKoiiW+gxzyvM8Go1G9Pv9qNfrqx4HAABgqdYtA63b6wUAANbbsjOQU30CAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACTg1iyLut1uDAaDiIgYDodxcHAQWZZNtHYwGES324179+699+9msznLKAAAACyQvAcAAFBdUxd/jUYjsiyLo6OjiIg4PT2NRqMR33//fdTr9Q+uHQwGV+47GAzi/v37cXJyIgwCAACskLwHAABQbVOd6rPb7Uae5/H8+fPLbc1mM7Isi8ePH390/cHBQdy7d++9wJhlWTSbzdjf359mFAAAABZI3gMAAKi+qYq/w8PDyLIsarXae9sfPXoUeZ5HnucfXD8YDGIwGMRwOLyy/ZePCQAAwM2R9wAAAKpv4uIvz/MYDodjT+8y2vbixYsPPsbW1lZEROzu7r73uIPBIPb29iYdBQAAgAWS9wAAANIw8TX+Xr16FRFxeZH2n/v5hds/pNVqxdHR0eV1Ivb29qLb7cbJyclHrxfx9u3bePPmzaTjXnH79u24ffv2zOsBAAAm8e7du3j37t3M69++fbvAaSaz6rwXIfMBAADVUPbMN3HxNzpdy7hTtIy2fSwIRkScnJzE7u5uHB8fx+7ubhwcHEx0kfeHDx9OOupYX3/9dXzzzTdzPQYAAMDHPH36NL799ttVjzGVVee9CJkPAACohrJnvomLv0muyfDLazlcd5/hcBitVisODw+j3W5Hv9+Pg4ODD657+fJlfPHFF5MNO4ZvfgIAADdhb28vvvrqq5nX//DDD3OXYNNadd6LkPkAAIBqKHvmm7j4y7IsIsaHvdG20X2uMxwOo9FoxP7+fuzs7ES73Y4//OEPcXh4GLVaLfb3969de+fOnbh79+6k4wIAAKzEvKecvHPnzgKnmcyq816EzAcAAFRD2TPfrya94yjknZ+fX9k32vax6zZ0u90YDAaxs7Nzef+//vWvUavV4tmzZxMPDQAAwOLIewAAAGmYqvir1Wpjr+uQ53lERGxtbX3wMV69enUlLNZqtdjb24uIya4ZAQAAwGLJewAAAGmYuPiLiGi1WpHn+ZXTv5ycnESWZR+9aHuWZWPD3uh6Eh87dQwAAADLIe8BAABU31TF3/7+fmRZFt1u93Lb6elpnJ6extHR0eW24XAYGxsb0Wg03lu/t7cXw+HwymleDg4O4smTJ7PMDwAAwALIewAAANV3a9oFZ2dn0W63o91uR8TfT9fS7/ffO6VLrVaLLMviwYMH762t1+vR7/ej2+3Gn//857h3716cn59Hu92OVqs150sBAABgHvIeAABAtU1d/EX8/RubH3N2djZ2e71ej5OTk1meFgAAgCWT9wAAAKprqlN9AgAAAAAAAOWk+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAE3Fr1AJPa3t6Ozc3Nsfs6nU50Op0bnggAAGA2vV4ver3e2H0XFxc3PE05yHwAAEAqVpn5NoqiKJb6DHPK8zwajUb0+/2o1+urHgcAAGCp1i0DrdvrBQAA1tuyM5BTfQIAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACbq16gEltb2/H5ubm2H2dTic6nc4NTwQAADCbXq8XvV5v7L6Li4sbnqYcZD4AACAVq8x8G0VRFEt9hjnleR6NRiP6/X7U6/VVjwMAALBU65aB1u31AgAA623ZGcipPgEAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABt1Y9wKS2t7djc3Nz7L5OpxOdTueGJwIAAJhNr9eLXq83dt/FxcUNT1MOMh8AAJCKVWa+jaIoiqU+w5zyPI9GoxH9fj/q9fqqxwEAAFiqdctA6/Z6AQCA9bbsDORUnwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkoBTF33A4jDzPYzgcrnoUAAAAFkjeAwAAuDkzFX/dbjd2d3djd3c3tra2YjAYzPTkx8fH0Wg0otvtxvn5edRqtZkeBwAAgMWQ9wAAAKrr1rQLGo1GZFkWR0dHERFxenoajUYjvv/++6jX6xM9xmAwiN3d3YiIODo6iizLph0DAACABZP3AAAAqm2qv/jrdruR53k8f/78cluz2Ywsy+Lx48cTPcZgMIhGoxEREf1+XwgEAAAoAXkPAACg+qYq/g4PDyPLsiunaHn06FHkeR55nn/0Mba2tmI4HF5+gxQAAIDVk/cAAACqb+Lib3Qx9nGndxlte/HixQcf49mzZzEYDGJnZ8c3PwEAAEpC3gMAAEjDxNf4e/XqVURE3Lt378q+0baPXfT94OAgIiKyLIutra04PT2NLMui2Wxe7rvO27dv482bN5OOe8Xt27fj9u3bM68HAACYxLt37+Ldu3czr3/79u0Cp5nMqvNehMwHAABUQ9kz38TF33A4jIi4ctqXn2/7UBAcDoeX++/fvx97e3sREfH06dN49uxZnJ6extnZ2bXrHz58OOmoY3399dfxzTffzPUYAAAAH/P06dP49ttvVz3GVFad9yJkPgAAoBrKnvkmLv7GBcBfGoXFcUYhsNlsRqvVuty+v78feZ7H6elpHB8fx87Oztj1L1++jC+++GLSca/wzU8AAOAm7O3txVdffTXz+h9++GHuEmxaq857ETIfAABQDWXPfBMXf6NrNIwLe6Ntk1zHYVygbLfbcXp6GicnJ9cGwTt37sTdu3cnHRcAAGAl5j3l5J07dxY4zWRWnfciZD4AAKAayp75fjXpHUch7/z8/Mq+0bZxF4L/5fpxQfJDjw0AAMByyXsAAABpmKr4q9VqY6/rkOd5RERsbW1du75Wq127fuR3v/vdpOMAAACwIPIeAABAGiYu/iIiWq1W5Hl+5VucJycnkWVZNJvND67f39+PwWBwGRxHXr16FRHx0fUAAAAsh7wHAABQfVMVf/v7+5FlWXS73cttp6encXp6GkdHR5fbhsNhbGxsRKPReG99q9WKLMvi8ePH720/ODiIJ0+efPDUMQAAACyPvAcAAFB9t6ZdcHZ2Fu12O9rtdkREDAaD6Pf774W4Wq0WWZbFgwcPxq7vdruxtbV1ea2HdrsdrVZr1tcAAADAAsh7AAAA1TZ18Rfx929sfszZ2dm1+/b392d5WgAAAJZM3gMAAKiuqU71CQAAAAAAAJST4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAAScGvVA0xqe3s7Njc3x+7rdDrR6XRueCIAAIDZ9Hq96PV6Y/ddXFzc8DTlIPMBAACpWGXm2yiKoljqM8wpz/NoNBrR7/ejXq+vehwAAIClWrcMtG6vFwAAWG/LzkBO9QkAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJuLXqASa1vb0dm5ubY/d1Op3odDo3PBEAAMBser1e9Hq9sfsuLi5ueJpykPkAAIBUrDLzbRRFUSz1GeaU53k0Go3o9/tRr9dXPQ4AAMBSrVsGWrfXCwAArLdlZyCn+gQAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAE3Fr1AJPa3t6Ozc3Nsfs6nU50Op0bnggAAGA2vV4ver3e2H0XFxc3PE05yHwAAEAqVpn5NoqiKJb6DHPK8zwajUb0+/2o1+urHgcAAGCp1i0DrdvrBQAA1tuyM5BTfQIAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJEDxBwAAAAAAAAlQ/AEAAAAAAEACFH8AAAAAAACQAMUfAAAAAAAAJODWLIu63W4MBoOIiBgOh3FwcBBZls00QLvdjvPz8zg6OpppPQAAAIsj7wEAAFTX1H/x12g0YjAYxNHRURwdHUW3241GoxF5nk/95MfHx3F4eDj1OgAAABZP3gMAAKi2qYq/brcbeZ7H8+fPL7c1m83IsiweP3481RMPh8N48eLFVGsAAABYDnkPAACg+qYq/g4PDyPLsqjVau9tf/ToUeR5PtW3QHd3d98LlAAAAKyOvAcAAFB9Exd/eZ7HcDiMer1+Zd9o26Tf6Ox2u9Htdq8ESgAAAG6evAcAAJCGW5Pe8dWrVxERce/evSv7RttGF4D/kFGgbDabkz51RES8ffs23rx5M9Wan7t9+3bcvn175vUAAACTePfuXbx7927m9W/fvl3gNJNZdd6LkPkAAIBqKHvmm7j4Gw6HERFjv7U52vaxIDgcDqPb7cbJycnEA448fPhw6jU/9/XXX8c333wz12MAAAB8zNOnT+Pbb79d9RhTWXXei5D5AACAaih75pu4+JvkNC2jsHidx48fx8HBwaRP+Z6XL1/GF198MdPaiPDNTwAA4Ebs7e3FV199NfP6H374Ye4SbFqrznsRMh8AAFANZc98Exd/WZZFxPiwN9o2us84h4eHsbW19cH7fMidO3fi7t27M60FAAC4KfOecvLOnTsLnGYyq857ETIfAABQDWXPfL+a9I6jAHd+fn5l32jbuAvBjxwcHES73Y6NjY33bhERx8fHsbGxEY1GY6rhAQAAmJ+8BwAAkIap/uKvVquNva5DnucREbG1tXXt+v39/bHfHt3d3Y16vR57e3sTnV4GAACAxZL3AAAA0jBx8RcR0Wq14tmzZzEcDt8LbScnJ5FlWTSbzWvXXrevVqtFlmWxs7MzzSgAAAAskLwHAABQfROf6jPi79/izLIsut3u5bbT09M4PT2No6Ojy23D4dCpXAAAACpE3gMAAKi+qf7iLyLi7Ows2u12tNvtiIgYDAbR7/ffu97D6FudDx48WNykAAAALJW8BwAAUG1TF38Rf79w+8ecnZ1N9FivX7+eZQQAAACWQN4DAACorqlO9QkAAAAAAACUk+IPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEqD4AwAAAAAAgAQo/gAAAAAAACABij8AAAAAAABIgOIPAAAAAAAAEnBr1QNMant7OzY3N8fu63Q60el0bngiAACA2fR6vej1emP3XVxc3PA05SDzAQAAqVhl5tsoiqJY6jPMKc/zaDQa0e/3o16vr3ocAACApVq3DLRurxcAAFhvy85ATvUJAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACbi16gEmtb29HZubm2P3dTqd6HQ6NzwRAADAbHq9XvR6vbH7Li4ubniacpD5AACAVKwy820URVEs9RnmlOd5NBqN6Pf7Ua/XVz0OAADAUq1bBlq31wsAAKy3ZWcgp/oEAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABNxa9QCT2t7ejs3NzbH7Op1OdDqdG54IAABgNr1eL3q93th9FxcXNzxNOch8AABAKlaZ+TaKoiiW+gxzyvM8Go1G9Pv9qNfrqx4HAABgqdYtA63b6wUAANbbsjOQU30CAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRgpuKv2+3G7u5u7O7uxtbWVgwGg4nXDgaD2N3djU8//TQ+/fTT2N3djeFwOMsYAAAALJi8BwAAUF1TF3+NRiMGg0EcHR3F0dFRdLvdaDQakef5R9fmeR6NRiMiIv75n/85IiKOj4/jN7/5jTAIAACwYvIeAABAtU1V/HW73cjzPJ4/f365rdlsRpZl8fjx44nW9/v9ODo6ioODg3j9+nU0m80YDofx9OnT6acHAABgIeQ9AACA6puq+Ds8PIwsy6JWq723/dGjR5Hn+Qe/BZrneezu7kaWZe9t39/fv9wPAADAash7AAAA1Tdx8ZfneQyHw6jX61f2jba9ePHi2vX1ej1arda1a38ZLgEAALgZ8h4AAEAabk16x1evXkVExL17967sG22b5qLvI6M1W1tbH7zf27dv482bN1M//sjt27fj9u3bM68HAACYxLt37+Ldu3czr3/79u0Cp5nMqvNehMwHAABUQ9kz38TF3+hi7OO+qTnaNksQPD4+jizLxn479OcePnw49WP/3Ndffx3ffPPNXI8BAADwMU+fPo1vv/121WNMZdV5L0LmAwAAqqHsmW/i4m+SU7OMwuI0nj59Gt9///1H7/fy5cv44osvpn78Ed/8BAAAbsLe3l589dVXM6//4Ycf5i7BprXqvBch8wEAANVQ9sw3cfE3ukj7uLA32vbLC7l/TLvdjufPn4+9jsQv3blzJ+7evTvV4wMAANy0eU85eefOnQVOM5lV570ImQ8AAKiGsme+X016x1HIOz8/v7JvtG3SQBcRcXh4GPfv34+dnZ2J1wAAALB48h4AAEAapir+arXa2Os65HkeEZNdsD3i79d5GA6H8eTJk0mfHgAAgCWR9wAAANIwcfEXEdFqtSLP8yunfzk5OYksy6LZbH70MU5PT+PPf/7z2BB4eHg4zTgAAAAsiLwHAABQfVMVf/v7+5FlWXS73cttp6encXp6GkdHR5fbhsNhbGxsRKPReG99nuexu7sbw+Ewut3u5a3dbkej0Zj6mhEAAAAshrwHAABQfbemXXB2dhbtdjva7XZERAwGg+j3++9d76FWq0WWZfHgwYPLbYPB4DIYjvumZ61Wm+gbpAAAACyHvAcAAFBtUxd/EREHBwcfvc/Z2dl7/86yLIqimOXpAAAAuCHyHgAAQHVNdapPAAAAAAAAoJwUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJAAxR8AAAAAAAAkQPEHAAAAAAAACVD8AQAAAAAAQAIUfwAAAAAAAJCAW6seYFLb29uxubk5dl+n04lOp3PDEwEAAMym1+tFr9cbu+/i4uKGpykHmQ8AAEjFKjPfRlEUxVKfYU55nkej0Yh+vx/1en3V4wAAACzVumWgdXu9AADAelt2BnKqTwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEiA4g8AAAAAAAASoPgDAAAAAACABCj+AAAAAAAAIAGKPwAAAAAAAEjArVUPMKnt7e3Y3Nwcu6/T6USn07nhiQAAAGbT6/Wi1+uN3XdxcXHD05SDzAcAAKRilZlvoyiKYqnPMKc8z6PRaES/3496vb7qcQAAAJZq3TLQur1eAABgvS07AznVJwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACTg1qoHmNT29nZsbm6O3dfpdKLT6dzwRAAAALPp9XrR6/XG7ru4uLjhacpB5gMAAFKxysy3URRFsdRnmFOe59FoNKLf70e9Xl/1OAAAAEu1bhlo3V4vAACw3padgZzqEwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASEDpi7+ffvrpvf+Fsnj37l1888038e7du1WPAu9xbFJGjkvKyrFJGa1bBlq310s1+HygrByblJVjkzJyXFJWy85Aij+Y0bt37+Lbb7/1wUHpODYpI8clZeXYpIzWLQOt2+ulGnw+UFaOTcrKsUkZOS4pq7Uv/gAAAAAAAICPU/wBAAAAAABAAhR/AAAAAAAAkADFHwAAAAAAACRA8QcAAAAAAAAJUPwBAAAAAABAAhR/AAAAAAAAkADF3wL1er1VjzCRKsxZhRmrpArvZxVmjKjOnFVQlfeyCnNWYcYqqcL7WYUZI6ozZxVU5b00J6mrwrFThRkjqjNnFVTlvazCnFWYsUqq8H5WYcaI6sxZBVV5L825fqrwXlZhxojqzLlMir8FqsoBVYU5qzBjlVTh/azCjBHVmbMKqvJeVmHOKsxYJVV4P6swY0R15qyCqryX5iR1VTh2qjBjRHXmrIKqvJdVmLMKM1ZJFd7PKswYUZ05q6Aq76U5108V3ssqzBhRnTmX6dYsi7rdbgwGg4iIGA6HcXBwEFmW3dh6AAAAlkPeAwAAqK6pi79GoxFZlsXR0VFERJyenkaj0Yjvv/8+6vX60tcDAACwHPIeAABAtU11qs9utxt5nsfz588vtzWbzciyLB4/frz09QAAACyHvAcAAFB9UxV/h4eHkWVZ1Gq197Y/evQo8jyPPM+Xuh4AAIDlkPcAAACqb+LiL8/zGA6HY0/PMtr24sWLpa0HAABgOeQ9AACANEx8jb9Xr15FRMS9e/eu7BttG13AfZHrf/zxx4iI+Mtf/jLpqGN98skn8cknn8z1GB9zcXFRiW+xVmHOKsz49u3biIj44Ycf4s6dOyue5sOq8H5WYcaIasxZlWOzCu9lRDXmrMKMVTkuI6rxflZhxohqzFmVY7MK72WEOUd++umn+Omnn2ZeP8o+oyx0E1aV9yJkvkWrwowR5Z+zKp8PEeV/L0eqMGcVZnRsLlYVZoyoxpxVOTar8F5GmHNRqnJcRpT/vYyoxowRNzNn6TNfMaH9/f0iIoonT55c2Xd2dlZERFGv1xe+/rvvvisiws3Nzc3Nzc3Nzc3Nba1u33333aRxbW6ryntFIfO5ubm5ubm5ubm5ua3nbVmZb+K/+PvldRrGGQ6HC1//5ZdfxnfffReff/55/PrXv/7oY1znJr79CQAAMO+3P3/88cf429/+Fl9++eUCp/qwVeW9CJkPAAColrJnvomLvyzLImJ8WBttG91nkes/++yz+OMf/zjpmAAAAExpVXkvQuYDAABYpF9NesdRSDs/P7+yb7Rt3IXcF7UeAACA5ZD3AAAA0jBV8Ver1cZekH10ocStra2lrQcAAGA55D0AAIA0TFz8RUS0Wq3I8/zK6VtOTk4iy7JoNptLXQ8ApG84HI79fQGA5ZL3AIBlk/cAlm+jKIpimgX379+PZrMZBwcHERFxenoaW1tb0e/3L0/dMhwO49NPP416vR79fv/a9d1uN/7nf/4n/vu//zv+6Z/+Kf793//9g9eN+KVut3v5jdLhcBgHBwdTrYfrzHNsDQaD6Ha7cXp6GhERzWYznj9/HrVabVnjsiYW+TOv3W7H+fl5HB0dLXJE1tSijs3j4+N4+vRpPHjwIHZ3d/0HYuayiM/ye/fuvfdvxyTzGgwG0W63Z/o5eVPZZ5F5LyLi0aNH8R//8R/xhz/8ITY2NqaeW+ZjGeQ9ykrmo4zkPcpK5qNsSpX3ihm0Wq3LW7PZLPr9/pX7ZFlWtFqta9d/9tlnxW9+85vL9ScnJ0WtVhv7WOPU6/ViZ2fn8t/TrofrzHNs9fv9olarFTs7O0Wr1SpqtVoREUWtVitev369xKlJ3SJ/5h0dHRUR8d7jwawWcWyenZ0V9Xq9qNfrxdnZ2TLGZM3Mc1yenZ1due/Z2VkREcXJyclS5iV9Z2dnxZMnT4qIKCJi6p91N519FpH3RpnvH//xHy/Xy3yUgbxHWcl8lJG8R1nJfJRJGfPeTMXfvEZvwi9/MR59CCx7PVxn3mOr2Wxe+X/sZrNZRETx5MmTRY7KGlnkz7zXr18XOzs7QiALsYhjc/QLt89vFmURv2dmWXZle7PZLJrN5qLGZM2MjsfRZ/A0QbCq2Ufmo4zkPcpK5qOM5D3KSuajbMqY96a6xt+iHB4eXl78/ecePXoUeZ5fXvx9WevhOvMcW3mex+7u7pU/wd3f37/cD7NY5M+83d3deP78+YInZF0t4tjc2tqK4XDoFEQszLzH5WAwiMFgcOWaI4PBwGncmNno2BmdSmgaVc0+Mh9lJO9RVjIfZSTvUVYyH2VTxrx348Xf6OKto+tD/Nxo24sXL5a2Hq4z77FVr9ej1Wpdu9YHB7NY5M+8brcb3W7XschCLOLYfPbsWQwGg9jZ2XG9JhZiEcfl1tZWRPz9P5r9/HEHg0Hs7e0tcFr4uKpmH5mPMpL3KCuZjzKS9ygrmY+ULDP33Hjx9+rVq4gY337+/GKay1oP11nWsTVaM/pQgWks6rgcfZC4SDGLsohj8+DgICIisiyLra2t2NjYiPv370e73V7wtKyLRRyXrVYrms1mnJ6eRqPRiOPj49jd3Y2Tk5Oxv4zDMlU1+8h8lJG8R1nJfJSRvEdZyXykZJm558aLv9Gf0I779tFo24dezLzr4TrLOraOj48jy7Kx3w6Fj1nEcTkcDqPb7V7+0g2LsIjP89H++/fvx9HRUbx+/Tp2dnbi8PAw7t+/v+iRWQOL+iw/OTmJnZ2dy9O6dbtd/xGNlahq9pH5KCN5j7KS+SgjeY+ykvlIyTJzz40Xf5OcbuCX59dd5Hq4zrKOradPnzqXOTNbxHH5+PFjAZCFm/fYHP3i0mw2o9VqRa1Wi1qtFvv7+9FsNmMwGMTx8fGCpmVdLOqzfDgcxnA4vPyPuO122zeTWYmqZh+ZjzKS9ygrmY8ykvcoK5mPlCwz99x48Tc6p/O4gUfbPnTe53nXw3WWcWy12+14/vy5PxNnZvMel4eHh7G1teXnIgu3qJ+Z437JGf2yfXJyMvN8rKdFHJfD4TAajUa02+04ODiIfr8ftVotDg8Po9vtLnpk+KCqZh+ZjzKS9ygrmY8ykvcoK5mPlCwz96ys+Ds/P7+yb7TtQ780z7serrPoY2t06oKdnZ3FDMhamve4PDg4iHa7HRsbG+/dIv5+WqKNjY1oNBpLmJzULerzfNwvNx96bPiQRXyWd7vdGAwGl5/f9Xo9/vrXv0atVotnz54teGL4sKpmH5mPMpL3KCuZjzKS9ygrmY+ULDP33Jp9rNlkWRa1Wm3suUnzPI+ID18Ue971cJ1FHlvHx8cxHA7jyZMnC52R9TPvcbm/vz/2F+3d3d2o1+uxt7c30Z+Vwy/Ne2yOTvXyoXOV/+53v5t/UNbKIj7LX716deUX61qtFnt7e5cB0TfquSlVzT4yH2Uk71FWMh9lJO9RVjIfKVlq7ilW4MmTJ0VEFK9fv35ve7PZLLIsW/p6uM4ijq2Tk5PiyZMnY/cdHBzMOyJraBk/82q1WrGzs7OA6Vhn8x6bBwcHRUQU/X5/ou0wiXmPy52dnaJWq13ZPjouYR6tVquIiOLs7GziNVXNPjIfZSTvUVYyH2Uk71FWMh9lVaa8t7IjOcuyotVqXf775OTkyg/9169fFxFR1Ov1mdbDLOY5Nvv9flGr1YpWq1U8efLk8tZqtYp6vV6cnJzc2OsgLfP+zPwlIZBFWcTn+S+31+v1a/+DGkxi3s/yiCj29/ff2+64ZBF2dnauzSwpZh+ZjzKS9ygrmY8ykvcoK5mPMipT3tsoiqKY7W8F5ze6mGtExGAwiP39/St/Znv//v1oNptxcHAw03qYxSzH5mAwiPv371/7mLVaLV6/fr2cgVkL8/7M/LlPP/00ms1mHB0dLWVW1su8x2a32408zy9PpdFoNKLVai13aJI3z3GZ53l0u92o1Wpx7969OD8/j62tLcclMxsMBnF8fBzdbjciIprNZrTb7SvXBksx+8h8lJG8R1nJfJSRvEdZyXyURRnz3kqLPwAAAAAAAGAxfrXqAQAAAAAAAID5Kf4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABKg+AMAAAAAAIAEKP4AAAAAAAAgAYo/AAAAAAAASIDiDwAAAAAAABLw/wDPTfD2ztKCPQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n", "\n", "a0=ax[0].hist2d(bs_found, vtx_types_found, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n", "ax[0].set_ylim(0,110)\n", "ax[0].set_xlim(-1,1)\n", "ax[0].set_xlabel(\"b\")\n", "ax[0].set_ylabel(\"endvtx id\")\n", "ax[0].set_title(\"found endvtx id wrt b parameter\")\n", "ax[0].set_yticks(np.arange(0,110,1),minor=True)\n", "\n", "a1=ax[1].hist2d(bs_lost, vtx_types_lost, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n", "ax[1].set_ylim(0,110)\n", "ax[1].set_xlim(-1,1)\n", "ax[1].set_xlabel(\"b\")\n", "ax[1].set_ylabel(\"endvtx id\")\n", "ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n", "ax[1].set_yticks(np.arange(0,110,1), minor=True)\n", "\n", "\"\"\"\n", "vtx_id: 101 - Bremsstrahlung\n", "B:\n", "wir können nicht wirklich sagen dass bei den lost teilchen jegliche endvertex types überwiegen, im gegensatz zu den found \n", "\"\"\"\n", "fig.colorbar(a0[3], ax=ax, orientation='vertical')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(15,10))\n", "\n", "ax0.hist(scifi_fitpars_found[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$a_x$ found\")\n", "ax0.hist(scifi_fitpars_lost[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$a_x$ lost\")\n", "ax0.set_xlabel(\"a\")\n", "ax0.set_ylabel(\"normed\")\n", "ax0.set_title(\"fitparameter a der scifi track\")\n", "ax0.legend()\n", "\n", "ax1.hist(scifi_fitpars_found[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$b_x$ found\")\n", "ax1.hist(scifi_fitpars_lost[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$b_x$ lost\")\n", "ax1.set_xticks(np.arange(-1,1,0.1),minor=True)\n", "ax1.set_xlabel(\"b\")\n", "ax1.set_ylabel(\"normed\")\n", "ax1.set_title(\"fitparameter b der scifi track\")\n", "ax1.legend()\n", "#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n", "#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n", "\n", "\n", "ax2.hist(scifi_fitpars_found[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$c_x$ found\")\n", "ax2.hist(scifi_fitpars_lost[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$c_x$ lost\")\n", "ax2.set_xlim([-3e-5,3e-5])\n", "ax2.set_xticks(np.arange(-3e-5,3.5e-5,1e-5),minor=False)\n", "ax2.set_xlabel(\"c\")\n", "ax2.set_ylabel(\"normed\")\n", "ax2.set_title(\"fitparameter c der scifi track\")\n", "ax2.legend()\n", "\n", "ax3.hist(scifi_fitpars_found[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$d_x$ found\")\n", "ax3.hist(scifi_fitpars_lost[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$d_x$ lost\")\n", "ax3.set(xlim=(-5e-8,5e-8))\n", "ax3.text(-4e-8,3e8,\"d negligible <1e-7\")\n", "ax3.set_xlabel(\"d\")\n", "ax3.set_ylabel(\"normed\")\n", "ax3.set_title(\"fitparameter d der scifi track\")\n", "ax3.legend()\n", "\n", "\"\"\"\n", "a_x: virtual hit on the reference plane\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "env1", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }