{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import uproot\n", "import numpy as np\n", "import sys\n", "import os\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import mplhep\n", "from mpl_toolkits import mplot3d\n", "import itertools\n", "import awkward as ak\n", "from scipy.optimize import curve_fit\n", "from utils.components import unique_name_ext_re\n", "mplhep.style.use([\"LHCbTex2\"])\n", "plt.rcParams[\"savefig.dpi\"] = 600\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "50501" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = uproot.open(\n", " \"/work/cetin/Projektpraktikum/tracking_losses_ntuple_B_rad_length_endVelo2endUT.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n", ")\n", "\n", "# selektiere nur elektronen von B->K*ee\n", "allcolumns = file.arrays()\n", "electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n", "\n", "ak.num(electrons, axis=0)\n", "# ak.count(found, axis=None)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "50501 * {\n", " all_endvtx_types_length: int32,\n", " all_endvtx_types: var * float32,\n", " all_endvtx_x_length: int32,\n", " all_endvtx_x: var * float32,\n", " all_endvtx_y_length: int32,\n", " all_endvtx_y: var * float32,\n", " all_endvtx_z_length: int32,\n", " all_endvtx_z: var * float32,\n", " brem_photons_pe_length: int32,\n", " brem_photons_pe: var * float32,\n", " brem_photons_px_length: int32,\n", " brem_photons_px: var * float32,\n", " brem_photons_py_length: int32,\n", " brem_photons_py: var * float32,\n", " brem_photons_pz_length: int32,\n", " brem_photons_pz: var * float32,\n", " brem_vtx_x_length: int32,\n", " brem_vtx_x: var * float32,\n", " brem_vtx_y_length: int32,\n", " brem_vtx_y: var * float32,\n", " brem_vtx_z_length: int32,\n", " brem_vtx_z: var * float32,\n", " endvtx_type: int32,\n", " endvtx_x: float64,\n", " endvtx_y: float64,\n", " endvtx_z: float64,\n", " energy: float64,\n", " eta: float64,\n", " event_count: int32,\n", " fromB: bool,\n", " fromD: bool,\n", " fromDecay: bool,\n", " fromHadInt: bool,\n", " fromPV: bool,\n", " fromPairProd: bool,\n", " fromSignal: bool,\n", " fromStrange: bool,\n", " ideal_state_770_qop: float64,\n", " ideal_state_770_tx: float64,\n", " ideal_state_770_ty: float64,\n", " ideal_state_770_x: float64,\n", " ideal_state_770_y: float64,\n", " ideal_state_770_z: float64,\n", " ideal_state_9410_qop: float64,\n", " ideal_state_9410_tx: float64,\n", " ideal_state_9410_ty: float64,\n", " ideal_state_9410_x: float64,\n", " ideal_state_9410_y: float64,\n", " ideal_state_9410_z: float64,\n", " isElectron: bool,\n", " isKaon: bool,\n", " isMuon: bool,\n", " isPion: bool,\n", " isProton: bool,\n", " lost: bool,\n", " lost_in_track_fit: bool,\n", " match_fraction: float32,\n", " mc_chi2: float32,\n", " mc_dSlope: float32,\n", " mc_dSlopeY: float32,\n", " mc_distX: float32,\n", " mc_distY: float32,\n", " mc_teta2: float32,\n", " mc_zMag: float32,\n", " mcp_idx: int32,\n", " mother_id: int32,\n", " mother_key: int32,\n", " originvtx_type: int32,\n", " originvtx_x: float64,\n", " originvtx_y: float64,\n", " originvtx_z: float64,\n", " p: float64,\n", " p_end_scifi: float64,\n", " p_end_ut: float64,\n", " p_end_velo: float64,\n", " phi: float64,\n", " pid: int32,\n", " pt: float64,\n", " px: float64,\n", " py: float64,\n", " pz: float64,\n", " quality: int32,\n", " rad_length_frac: float64,\n", " scifi_hit_pos_x_length: int32,\n", " scifi_hit_pos_x: var * float32,\n", " scifi_hit_pos_y_length: int32,\n", " scifi_hit_pos_y: var * float32,\n", " scifi_hit_pos_z_length: int32,\n", " scifi_hit_pos_z: var * float32,\n", " track_p: float64,\n", " track_pt: float64,\n", " tx: float64,\n", " ty: float64,\n", " ut_hit_pos_x_length: int32,\n", " ut_hit_pos_x: var * float32,\n", " ut_hit_pos_y_length: int32,\n", " ut_hit_pos_y: var * float32,\n", " ut_hit_pos_z_length: int32,\n", " ut_hit_pos_z: var * float32,\n", " velo_hit_pos_x_length: int32,\n", " velo_hit_pos_x: var * float32,\n", " velo_hit_pos_y_length: int32,\n", " velo_hit_pos_y: var * float32,\n", " velo_hit_pos_z_length: int32,\n", " velo_hit_pos_z: var * float32,\n", " velo_track_idx: int32,\n", " velo_track_tx: float64,\n", " velo_track_ty: float64,\n", " velo_track_x: float64,\n", " velo_track_y: float64,\n", " velo_track_z: float64\n", "}\n" ] } ], "source": [ "electrons.type.show()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "cut_prop: bool = electrons.p_end_velo > 3e3\n", "found = electrons[~electrons.lost & cut_prop]\n", "lost = electrons[electrons.lost & cut_prop]\n", "\n", "eloss_found = (found[\"p\"] - found[\"p_end_scifi\"]) / found[\"p\"]\n", "eloss_lost = (lost[\"p\"] - lost[\"p_end_scifi\"]) / lost[\"p\"]\n", "\n", "eloss = (electrons[\"p\"] - electrons[\"p_end_scifi\"]) / electrons[\"p\"]\n", "eloss_magnet_found = ak.to_numpy(\n", " (found[\"p_end_velo\"] - found[\"p_end_scifi\"]) / found[\"p_end_velo\"]\n", ")\n", "eloss_magnet_lost = ak.to_numpy(\n", " (lost[\"p_end_velo\"] - lost[\"p_end_scifi\"]) / lost[\"p_end_velo\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# eloss_upstream_found = (found[\"p\"] - found[\"p_end_ut\"]) / found[\"p\"]\n", "# eloss_upstream_lost = (lost[\"p\"] - lost[\"p_end_ut\"]) / lost[\"p\"]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpjklEQVR4nO39z29jaZof+D6KSnsKsK2iooACBGnRQbV3BtxNRfZmNlMZlP8BixHLXoXYy4HQFjP9B3QW2d0C7l0YJqM3tXMkZXs1gG+TkTmzmAHGGaK7AQN3YetULUKXQAMZYsluuMZ2i3eRJovUT0qieEidzwcQIEqH73kOySOJXz3ve5b6/X4/AAAAAOCRe5J2AQAAAAAwC4IwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiET9IugNv7O3/n78Svf/3r+MEPfhA/+clP0i4HAAAAYGJ/9Vd/FX/zN38TP/zhD+Ov//qvZ7rvpX6/35/pHrm3H/zgB3F2dpZ2GQAAAAB39uTJk/ibv/mbme5TR9gCGgRhT548idXV1bTLubVut7vQ9Uc4hnnhGOaDY5gPjmE+OIb54Bjmx2M4DscwHxzDfHAM8+ExHcMPfvCDme9bELaAfvKTn8Tx8XGsrq7Ghw8f0i7n1tbX1xe6/gjHMC8cw3xwDPPBMcwHxzAfHMP8eAzH4Rjmg2OYD45hPjymY0hjuSeL5QMAAACQCY86CPvVr34Vr169ih/84Afxe7/3e3F6epp2SQAAAACk5FEHYZVKJZrNZvT7/Tg8PIyXL1+mXRIAAAAAKXnUa4S12+1YWlqKiIh+vx+tVivligAAAABIy6PuCHvx4kX0+/3h7WKxmGI1AAAAAKTpUXeE1ev1iIh49+5dFAqFePPmTcoVAQAAAJCWRx2ERfwmDAMAAAAg2x59EAYPYXd3N05PT2N5eTntUu7MMTAtj+F5cAxMy2N4HhwD0/QYngvHwLQ8hufBMfAYLPVHF9FiIayvr8fx8XGsra3Fhw8f0i7n1ha9fpgm5wP8hvMBfsP5AOOcE/Abj+F8SPMYHvVi+QO//OUv0y4BAAAAgJQ9+iDsX/7LfxkbGxvxF3/xF2mXAgAAAECKHn0Q9u2330a/34+vvvoq7VIAAAAASNFcL5b/Z3/2Z3e+b6/Xi6Ojo2g0GrG0tBStViv+6I/+aIrVAQAAALBI5joI29nZiaWlpXuNMbgWQKfTiV/+8pfxW7/1W1OoDAAAAIBFsxBTI+9yYct+vx/9fj+WlpaGYVqj0Zh2aQAAAAAsiIUIwiJ+E2xN+hERsbS0NPa1ZrOZ8lEAAAAAkJa5nhoZEfHs2bOoVCqRz+dvdb+jo6Oo1WqxubkZb968ieXl5QeqkNva3d2N09NTzwmE8wFGOR/gN5wPMM45Ab/hfLifpf5d5h3OyJMnTyJJknut6/Xbv/3b8fz58/gX/+JfTK+wlK2vr8fx8XGsra3Fhw8f0i4HAAAAYGJp5hpzPTUyl8vde3H7f/7P/3l89dVX8ad/+qfTKQoAAACAhTTXQVi1Wr33GMViMfL5fOzt7cUvf/nL+xcFAAAAwEKa6yDs9evXUxmnUChEv9+PWq02lfEAAAAAWDxzHYRN27fffpt2CQAAAACk5NEHYb/61a+i3W5HRESn00m5GgAAAADS8knaBTykv/iLv4hSqRS/+tWvIiIin8+nXNF0dbvdWF9fv3ab3d3d2N3dnVFFAAAAQJbt7+/H/v7+tdt0u90ZVXPRXAdhf//v//073zdJkoiI6Pf7ERGxtLQUxWJxKnXNi7Ozszg+Pr52m9PT0xlVAwAAAGTd6enpjVlFmuY6CDs6OoqlpaVhmHUXo/efxlUo58mTJ09idXX12m2Wl5dnVA0AAACQdcvLy7G2tnbtNt1uN87OzmZU0bil/n1Spgf25MmTWFpauvP9B4eWy+Wi2WzGixcvplVaqtbX1+P4+DjW1tbiw4cPaZcDAAAAMLE0c4257giLGA+znj59OvH9crlc5PP5+PTTT+Of/JN/8lDlAQAAALAg5j4Iq9Vq8Yd/+IdplwEAAADAgnuSdgHXyefzQjAAAAAApmKug7BKpZJ2CQAAAAA8EnMdhL1+/TrtEgAAAAB4JOY6CAMAAACAaZn7xfJ5vH72zddTG+vzn342tbEAAACAx+lRd4T96le/ilevXsUPfvCD+L3f+704PT1NuyQAAAAAUvKog7BKpRLNZjP6/X4cHh7Gy5cv0y4JAAAAgJQ86qmR7XY7lpaWIiKi3+9Hq9VKuSIAAAAA0vKoO8JevHgR/X5/eLtYLKZYDQAAAABpetQdYfV6PSIi3r17F4VCId68eZNyRQAAAACk5VEHYRG/CcMAAAAAyLZHPTUSAAAAAAYEYQAAAABkwqMPwn71q1/FF198kXYZAAAAAKTs0QdhP/rRj6LVasXv/d7vpV0KAAAAACl69EFYRMTz58/j8PAw/uk//adplwIAAABAShbqqpG//OUvo9frxcePHye+T6fTiWazGf1+P+r1evzRH/3RA1YIAAAAwLya+yDsX/2rfxX1ej3a7fa9x+r1evcvCAAAAICFNNdB2B//8R/H559/HhER/X7/zuMsLS3F0tJSFAqFaZUGAAAAwIKZ2zXC/t2/+3dRqVQi4vIQbGlpaaJxlpaWot/vx7Nnz+LNmzdTrREAAACAxTG3HWH1ej0ivr/q487OTmxsbEQ+n4+IiJOTk3j58mWsrKzEV199den9e71e/Pmf/3n82Z/9WXQ6nfid3/mdWZUOAAAAwBya2yCs3W7HxsZG/If/8B8u/f7r16/jz/7sz2JjYyN+67d+69Jt/vE//scREfH555/Hv/k3/+ahSgUAAABgAczt1MgkSYZdYZf5/PPPo9/vR61Wu3acSqUSf/7nfx5/+qd/Ou0SAQAAyKiDg4NIkiTtMubWNC54Bw9hboOwiIjnz59f+b1nz57Fixcvol6vx+np6ZXb5fP5+N3f/d3Y29u7djsAAIBpaDQasbKyMrxo11UfGxsbdwoLOp1ObGxs3Dj+yspKNBqNC/ev1WoT19fr9SaqKUmSqNVqsbW1NVbbxsZGbG5uRrlcjoODg7HxarValEqla4/zpsaHh9DpdKJcLg+PY2VlZXgcpVIpDg4O4uDgIF6/fn3j89dut4f3f+zBUJIk0Wg0YmtrK5aWlmJrayvtksZk6bngekv9+1yO8QE9f/48Dg4Orpz2GPH9C/kf/aN/FH/wB38Q/+yf/bMrt/uDP/iDaDQa8fnnn8cf/dEfPUC1s7W+vh7Hx8extrYWHz58SLucO/vZN19PbazPf/rZ1MYCAIBp6HQ6USqVLnQN7ezsXDv7ZVK9Xi9ev34dBwcHY18vFArRbDaHayzftr69vb2oVqsT1dBut6NarY4FC/l8fvjx8ePHSJIkOp3O2Pcjvg9OisVitFqtsfGazWZ89dVX0ev1IpfLxcnJyUS13Nf5xzOfz0ehUBjWOnoMA9VqNfb29q4cc2VlZRj+5fP5ODo6mn7hKUuSZPg6Oh+czlPckIXnYpGkmWvMbUdYPp+/9L8Xo4rFYvzu7/5u1Ov1+Mu//Msrt3v//n1ERDSbzanWmLZutxvr6+vXfuzv76ddJgAAZFKhUIhKpXLh69MIwSIicrlcvHnz5sLXq9XqjSHYVfXlcrmJQ7ByuRxbW1vDEGx7ezuOjo7i6OgoWq1W1Ov1aDabcXh4GP1+P6rVauRyuUiS5NIpheVyOarVajQajYk70aZp0O0V8f1zdHR0FM1mc3gMR0dHUSwWx+5zU5jy9OnTB6t3XuTz+Tg8PIyTk5NrQ8G0ZeG5mBf7+/s3ZhXdbje1+uY2CHv58mVUq9X40z/90/jlL38ZX3/9dXz99cUOoi+++CL6/X4UCoX41//6X1/4/h//8R8Pk/vHNn/77Owsjo+Pr/0wHRQAANJzfrmXSQKq28jlcpHL5e68j7vU1+v1YmNjY6xxodVq3diFtre3F7/4xS+GXVYRER8/fhx+Xq/Xo9VqpRKm1Gq1YaC3t7cXOzs7F7bJ5/PRarXGgsKb3mPW6/Vhd9xja8y4zLxNhxyVteciTaenpzdmFWdnZ6nVN7dXjdze3o7l5eXY29sb+0G4ubkZ//bf/tux7V68eBHv3r2L7e3tKBQKwx/m7XZ77AfTtH/ppO3Jkyexurp67TbLy8szqgYAADjvfEh1/vZDeOjOlxcvXoy9zzo8PBwLt66Ty+Xi3bt3sbm5eelUuoiITz/9dFqlTuzLL78cfl4ul6/ddm9vL7777ruo1WpjQd5lisVipqbgpdV1VS6Xb+y0zNpzkabl5eVYW1u7dptut5taGDa3QVhExJs3b+Lly5extLQ0nFt8eHgYf/EXfxG/8zu/M9yuXq/Hb//2b0fE9/PcBx1go/ORl5aWJv7hvChWV1cXeo0wAADg/p4+fXrnqYTng7mbgoxSqTS2Vla1Wr31+6xcLhfNZjM2Nzdvdb+HclUgd53BumiPbdbRImo0GtFoNKY25Zj7293djd3d3Wu3GawRloa5nRoZ8X2311dffTUWaOVyubEQLOL7Tq8///M/v7AQ3+BKJYP7XTZ/HgAAgJt1Op2xhfnz+fydpzEWCoXY3t6+saNqFs6HYJNeUfCLL75IZS0zfiNJkhs7+OC8uQ7CIr4Pw05OTqJer0e1Wr0ycS8Wi/Ef/+N/jM8++yz6/f7YR6FQiPfv35smCAAAcEevX78eu33fAKJcLs9FkHR+CZ1KpTJRXdvb2xFxMUhjNnq93lyvScb8muupkQM/+tGPLvzQvcxg8cJf/epXwytF5vP5ePbs2UOXCAAA8GglSTI2JTLiN0HQXRWLxbm4yuDgggODQKvX68Xm5ma0Wq0b15k+PyuJ2ej1ehfWqoNJzX1H2F386Ec/ihcvXsSLFy+EYAAAAPd0frpgLpebysXIRq/AOEkNW1tbsbKyEktLS7GxsTFx99Zt60iS5MKVMe+q0+lEuVyOjY2Na7fr9XrRaDRic3NzbL+D6X+jx12r1S7cP0mSqFQqsbGxMdzuqq67wX4GywmNLis0amtrazje6Mc0u+AajcbYflZWVmJzc/PSY4z4/vF89uzZhWB2tL6rHutJn4uBXq8XtVpt7HU3qK9SqUwUxCVJErVaLTY2NsZqHn0ONjY2olQq6S6ckUcZhAEAADA9rVZr7Pbz589nuv9SqRRbW1vRbreHYcEgYLgsFLmtnZ2dKBaLF75eLpdjc3Pz1uMPApdBaNJoNC5dD20QtGxubsbKykqUy+WxfQ2CrUajMXbclUplbGrqYLtarTYMZ5IkGYYt5wOWnZ2dODw8jJ2dnWuPo9VqxdHR0a0Cy0kdHBzE0tLS8FiOjo6i3+/Hu3fvotfrDY/pfO35fD7evXt3oabDw8PhR7PZHH590ufivEajESsrK1GpVGJrayvevXsXR0dHw7XHB+FWqVS6cN/R+geB7eB5GXQcjj7XSZLEwcFBPHv2TJfbDAjCAAAAuNb5N+fnrzb5kMrlchwcHMT29nbs7e3F9vb22P4HwcJ9w7BWq3XpdM9OpxObm5sTd+wkSRJv376duOuoUChcWG/t8PBweEzNZjOOjo7i5ORkbCppo9GITqczDAhbrVacnJzEyclJtFqt4WOUJEl8+eWXl+77shDnMvedBnteu90e7vuLL74YG79QKAyDrCRJLiyTlMvlolAoXLha6eBro9+77XMxMAjncrlcHB0dxd7eXhQKhcjn87G9vR2Hh4fDmg8ODi4Edh8/foytra0L4er79+/j2bNnw2Wdjo6Ool6vD5+rXq9n8f8ZWIg1wgAAAJjMysrK1Mc8HwA9ffp06vu4ar/v37+Pk5OTC+FbuVwem0L4+vXrODw8vNf+ms1m1Gq1qFQqF753cHAQBwcHUa/Xr+2kyufzY91Kl401kMvlhmFJvV4fhnmNRiNardaFIKVarUan0xlOVd3c3IydnZ0LHXvFYjHevHkzDJsajca9urqm/XzX6/Vrvz8aco1eqfS2bvNcDDQajeG0zGq1euUU4GazGRsbG5EkSSRJEqVSafg85PP5yOfzUSwWx16jlUolms3m2PO6s7MTT58+HT5Xg67HWYbNWaMjDAAA4BEpFosTf5zvqrnKJFPJHsq7d+8uDQXq9fpYJ1Gn05nKml57e3txcnJyZRdUuVyOra2tibrDbrOO2mjYdNVUzYi4cKXEq0Kl0fp7vd7crj91VeAz+vVpTBec9LkYhGW5XO7GqaOjwVq73b6wlt5gnIE3b95c+ryef60NLv7Hw9ARBgAA8Ig0m82Ju0kGi8Lf5OnTp2NByqzWMRpc0fEq1Wp1rGPopm6t2+y32WxGp9OJ169fX5h22W6348WLF1eGdHfd5yRGA53b7DtJkomDz4f25s2b+PTTT4dTDW8yqxBvdC22SYKznZ2dsQs2VKvVKwPMm+Tz+bH13Xg4OsIAAAC41vlQIM0OsVGD6WcD910n7LxCoRCHh4eXdl0NQrJZu2vwNi/PWcT3xzBY7+28Tqcz9edxUqNTTCftIBt9/V3WEcb8EYQBAABwrfOdRGkFFZc5X9tDdA/t7OzE0dHRhRDq4OBgrsOPRVlnanCFy3a7felC+LOs47bOB2bzOgWV3xCEAQAAcK3z61JFzE8Ydn5q50OFP/l8Pg4PDy+Mf9PC71xtcNXLwZTWu04rnJa7TP89//qbp847LicIAwAA4FrFYvFCAPT27dt0ijnnPlc0bLfbsbm5OfH2+Xw+3rx5M/a1eQkEF025XI7Nzc0LV3ZM010W6D//+rvNBRJIhyAMAABgAVzWlTVLX3zxxdjtWq02F9PARjtwbttRlM/no9Pp3Gp64/l1rSxsfnvlcnl4hc95CcEixkOsSa+0Ofr6E4ItBkEYAADAnKvVaqlPudrZ2bnQFfbll1/ea8xpdFMdHR0NPy+Xy7e67yC4uO39Rs3LlRgf0jRfe51OZxiC5fP5uVrH7NWrV2O3B3VeZ/T1N8kVMEmfIAwAAGCOJUkSlUrlym6n+4QU5zterhsrl8vFu3fvxr5Wq9Xi4ODgTvtuNBrx4sWLe4dhg26ufD5/pyAin88PH+NJnO8AOx+eLJLz0/qu6oCaZtfbaPfddeOm0W24vb09FsxNsv7b6PGc75pkPgnCAAAAHsh938z3er3hlMirApfbhFnn3TZEKxQK0Ww2x75WKpWiVqtNPEaSJFEqlaJcLse7d+/u1VHVbreHQdr5uiY16Aqr1WoTdQCNhiP5fD729vbutN/zJn2tjG53031u+v75x/6y478sJJxmh9hlQeok+zs/DfF8qHbXc290DbgkSa6dNtvpdIavv2q1OlfdbVxNEAYAAPBA3r9/P3b7Nm/OG41GPHv2bPgG/7LA6LLxbtO9c37bSe67vb194eqJlUolNjc3r+0O63Q6US6XY2NjI5IkicPDwxtDsF6vd2VNnU4nSqVSRHwfgt01UBsNVMrlcpTL5Sufp0ajMRb6tVqta8ceDXDSXk/tqv2PdhpWKpUol8vRbrfj4OBg+HydD3muek7OB1aX7fP88zQIUtvtdtRqteHrY/R5qdfr0W63o1KpDMc8H4QNnrckScbWILustuuei+3t7bF1y0ql0qXb93q9eP36dUR8P234qkB00ud99DFN+7Xy2C31+/1+2kVwO+vr63F8fBxra2vx4cOHtMu5s5998/XUxvr8p59NbSwAAJiGJElia2vrQmhQKBTi+fPnkcvl4sc//nFERHz33XcR8f0b4Pfv31+YLlgsFi8NXS57wz/o2rpp4e6r6tvb25t4AfNGozEWTgzk8/nh/j9+/BhJkkSv14tcLhfVajV2dnauHff8ce3s7MTW1lbkcrlhiNZoNCKfz98rBBscw2VrhG1vb0c+n4+NjY04PDyMdrs9fKyKxWLU6/UbH+PNzc2x57LZbF46fbPX68XKysrwdqFQiMPDw0vHLJVKY4FjvV6/9PFst9tjF1jY2dm5dKpfr9eLZ8+eXRq+5HK5aDabUSwWY2VlZbjN4DX29OnTsYBs0trObzeqWq3G3t7epa/t7e3tsc6/SqVyaTfiZcc66XMxcHBwEK9fvx573Q5Cw3a7HdVqNZIkGdZ7mUmfg/PbXXW+Pyap5hp9Fs7a2lo/Ivpra2tpl3IvX379bmofAAAwL+r1ej+Xy/UjYmof9Xp9OP7h4WE/n8/feJ98Pt9vNpsX6qtWqxPf/+TkZKJjbrVa/b29vX6hUBgbO5/P94vFYn9vb69/eHh4q8fx6OioX61W+8Vi8cKY29vblx7bXbRarX4ul+s3m81+s9ns7+zs9IvFYr9QKIw9j7lcrr+9vd1vtVrXjnd4eNjf3t6+8jVQKBT61Wr1xm0Hxzl4DnZ2dq583orF4nDMVqvVLxaLVz6nOzs7F2o+OTkZG79QKPT39vbGthl87ejo6MJ9bzrey/Y5+jrM5/P9vb29sdfbycnJ8DhGH7Pz9vb2xuoefV3c5rm4Sr1e7xeLxeEYuVxueL+rzo/Dw8OJnoOjo6Nrt7uptkWWZq6hI2wB6Qi7SEcYAAAALIY0cw1rhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZMInaRfA3XW73VhfX792m93d3djd3Z1RRQAAAECW7e/vx/7+/rXbdLvdGVVzkSBsgZ2dncXx8fG125yens6oGgAAACDrTk9Pb8wq0iQIW2BPnjyJ1dXVa7dZXl6eUTUAAABA1i0vL8fa2tq123S73Tg7O5tRReMEYQtsdXU1Pnz4kHYZAAAAABEx2RJN6+vrqXWNWSwfAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJlgsHwAAIEN+/fbnaZewcH746vfTLmFMu92OYrGYdhmwkARhAAAAMMeSJIl2ux3NZjPa7XZERPT7/ZSrgsUkCAMAAIA5lCRJlEqlSJIker1e2uXAo2CNMAAAAJhD+Xw+Dg8P4+TkJPb29tIuBx4FQRgAAADMua2trbRLgEdBEAYAAABz7unTp2mXcGflcjntEmBIEAYAAAA8iEajEY1GI+0yYEgQBgAAAExdkiS6wZg7gjAAAABgqnq9nnXNmEuCMAAAAGBqer1evHjxIpIkSbsUuEAQBgAAAI9Qr9eLWq0WW1tbsbKyEktLS7GyshKbm5tRqVQmDqra7XZsbW3FxsZGrKysDD8GXxvV6XTi2bNn0el0xr6+tLQ0/Dh/H5glQdgD29jYiKWlpTg4OEi7FAAAADKi0WjEyspKVCqV2Nrainfv3sXR0VG8efMmIiJqtVpsbGxEqVS6dpxSqRRbW1tRKpXi6OgoTk5O4uTkJF6+fBntdjuSJIlerzfcPp/Px7t376JarY6Nc3h4OPxoNptTP16Y1CdpF/CY3SZhBwAAgGmoVCpRq9Uil8vF4eFh5PP54ffy+Xxsb29HqVSKg4ODODg4iI2NjTg8PIxcLjc2Tq1Wi4ODg9jb24udnZ2x79Xr9YiIC1eEzOVyUSgU4uPHj2NfLxQKUzxCuDsdYQ+k3W5HrVZLuwwAAAAypNFoDN+LVqvVsRBsVLPZHH4vSZJLO8MGYdePf/zjS8cYdH2dD71gngnCHkCv17uxvRQAAACmrVKpRMT3nVnnu7iu2jbi+2aOdrs99v3BDKe3b99eev9cLhfb29v3KRdmThD2AF6/fh1Pnz690FYKAAAAD6XRaAzX67qqE2zUzs7O2PvW8+t6DcbodDqxtbU1thbY6H0m2RfMC0HYlDUajTg4OLD4HwAAADPVarWGn08aThWLxeHn5zvCzneMPXv27MKaYEIwFo3F8qcoSZIol8uxt7dnIcAZ+9k3X091vM9/+tlUxwMAAHhod7lY2/kgq9frDbvEdnZ2otVqxcHBwfB75XI5qtVqVKtV0yJZSDrCpqhUKkWhULjQTgoAAAAPbXTq4qSh2MbGxtjt8wvfN5vNC+9xB4vrb21t3Sl8gzQJwqakUqlEp9MxJRIAAIBUjK73NWlA9fTp07Hbl0113Nvbi5OTkwsdYO12OzY2NqLT6dy+WEiJIGwKOp1O1Gq1qNfr5kcDAACQitH3o71e79LF7c8b7QC77v1sLpeLZrMZh4eHY+uKRUS8ePHi9sVCSgRhU/DixYvY3t6+8dK0AAAA8FBevXo1dvv8wvaXOTo6Gn5+vuOrVCpd2L5QKESr1Yp6vT78Wq/XG64jBvNOEHZPgx8Mb968SbkSAAAAsmx7e3tseuRoWHWV0StFfvHFF2Pfuy7c2tnZib29veHt82uLwbwShN3DwcFBHBwcRLPZHPthAwAAAGkYbdJIkmQs6Dqv0+kM1/eqVquXvq+9rqtsa2tr+Pn56ZLnp1meX7Nskmmb8BA+SbuARdXr9aJUKsXOzs6FE35Wut1urK+v33uc3d3d2N3dnUJFAAAAPITzHVe9Xu/S4Gp7ezuq1WpUKpWI+H4W0y9+8YsL2/Z6vXj9+nVEXOzuGlWpVOLly5eX7msQohWLxQvB1/nb5XI5ms1mfPz4MarVamxsbFy5T+bX/v5+7O/v33ucbrc7hWruRhB2Ry9evIh8Pj9Rq+lDOTs7i+Pj43uPc3p6OoVqAAAAeCjn33t+9dVXV65Tvbe3F/l8Pl6/fh29Xi+ePXsW1Wp12MTRbrejWq1GkiRRrVavDaQG93/z5s3YGmIHBwdRqVSiUChEs9m8so5arTbc58rKSkRcH7wx305PT6eSQ6RJEHYHtVotOp1OHB4eplrHkydPYnV19d7jLC8vT6EaAAAApmnQtdVuty9MJSyXy1Gv1+P58+eXNmhsb2/H9vZ2NBqNaDabUalUhl1k+Xw+yuVy7OzsXLvMz/b2dmxtbUW1Wh2uj53P5+Pjx4/D/V530bhqtRoR34dmSZJEoVCIL7744sKi/CyO5eXlWFtbu/c43W43zs7OplDR7S31+/1+KnteUJ1OJzY3N29MzSMiVlZWhj+sms3m1E729fX1OD4+jrW1tfjw4cNUxkzDz775Ou0SrvT5Tz9LuwQAAAB4lNLMNSyWf0ulUikKhYI2TgAAAIAFY2rkLdRqtUiSJIrF4rAt9DqjratffvllvH37dnj71atX2kEBAAAAZkgQdgvfffddRMS1l5+9yuhlaSO+n1ctCAMAAACYHVMjAQAAAMgEQdgtVKvV6Pf7E3/k8/nhfZvN5tj3BlfPAAAAAGA2BGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIhE/SLuAxOzo6SrsEAAAAAP4HHWEAAAAAZIIgDAAAAIBMEIQBAAAAkAnWCAMAAMiQn33zddolLJzPf/pZ2iUAU6IjDAAAAIBMEIQBAADAgul0OlEul2NjYyOWlpZiZWUlNjc34+DgIO3S5lav14tGoxGdTiftUkiRIAwAAAAWSKVSic3Nzdja2opWqxU7OzvR6/Wi0+lEqVSKWq2WdolzI0mSqNVqsbW1FSsrK1Eul+P9+/dpl0WKrBEGAAAAC6LRaEStVou9vb3Y3t6OiIh6vR4fP34cdoO1Wq3Y29tLs8y5cHBwEG/fvo1OpxNJkqRdDnNCEAYAAAALolKpRETE1tbW2NebzWZsbW1FkiTDbbJue3t7GBYuLS2lXA3zQhAGAAAAC+Dg4CB6vV5ERDx9+vTC91ut1owrWhz5fF5XGBFhjTAAAABYCPV6ffh5LpdLrxBYYIIwAAAAWAA6muD+BGEAAACwAARhcH+CMAAAAAAyQRAGAAAAcyhJklhaWhp+jNrY2Bj73nVXRez1elGr1WJraytWVlZiaWkpVlZWYnNzMyqVypWdZo1GIzY3N2/cz9bW1qX1DBb2v+y4arVabGxsRKfTuXR/GxsbUSqVrhzjqmPc3NyMlZWVWFlZia2trajVahPdn+wQhAEAAMAcyufzcXh4GIeHhxeuCFmv14ffG3xcptFoxMrKSlQqldja2op3797F0dFRvHnzJiJiGEiVSqUL993Z2YnDw8PY2dm5ts5WqxVHR0dRrVav3KbX60WlUomNjY3Y2NgYC+B6vV5sbm5GuVweBmNJksTBwUE8e/bsximhg+0qlUoUi8VoNptxeHgY5XI56vV6bGxsxMePH68dg+z4JO0CuLtutxvr6+vXbrO7uxu7u7szqggAAIBpKhQKl379+fPnV35voFKpRK1Wi1wuF4eHh5HP54ffy+fzsb29HaVSKQ4ODuLg4CA2Njbi8PDwwhUpS6VSNBqNG2vd3t6OSqVy6fc+fvwYW1tb0ev1xsZ6//59vHjxIorFYlSr1cjn89Fut6NSqUSv14terxflcvlCEDjQaDSiXC4Pj3H0MRkc4+bmpvXVZmh/fz/29/ev3abb7c6omosEYQvs7Owsjo+Pr93m9PR0RtUAAAAwLxqNxnBa4CBgukyz2YyNjY1IkiSSJIlSqXRl6HSTp0+fXvm9fD4f+Xw+isXiWBBWqVSi2WxGsVgcfm1nZyeePn067FJrt9vR6/UuBHSdTifK5fLwGK8KBgfHyGycnp7emFWkSRC2wJ48eRKrq6vXbrO8vDyjagAAAJgXg86sXC5349TGSqUyDJTa7Xa02+2xYGracrnccO2vN2/eXLqv7e3tsdvv37+/sN3r16+H4113jPl8fmyfPKzl5eVYW1u7dptutxtnZ2czqmicIGyBra6uxocPH9IuAwAAgDnSaDSGoc9VnWCjdnZ2hlMRI77vrnrIIGxS+Xx+OKXx/NTGdrs9XE9sklqfPn0qCJuRSZZoWl9fT61rzGL5AAAA8IiMTm2cJAiLGA+T2u321GuatmazOfx80mOECEEYAAAAPCp3WRj+fJg0791To2Gd9b+4DUEYAAAAPCKjIdakodj5MOnjx4/TLGnqRuub99CO+SIIAwAAgEdk9OqKkwZh56/4OO/TDUfDr6Ojo/QKYeEIwgAAAOARGQ2xer3eRB1Tox1W8x6CRYzXeJepoGSXIAwAAAAekVevXo3dbjQaN95ntKtqe3v7Tvud5XTKQqEw/LzdbpseycQEYQAAAPCIbG9vj02PrNfrN95ndPH5L774Yux756dNXhU6zbIz63zYV6lUZrZvFpsgDAAAABbMTd1Xb968GX6eJMlY0HVep9OJTqcTERHVanUsRIsY776KuLzDLEmSC2HUQ3aIbW9vj9XVaDSu7HzrdDpjIZ01xbJNEAYAAABz7ny31U1TAbe3t6NarQ5vl0qlS+/T6/Xi9evXERGxs7MTe3t7l45XLBaHn1cqlSiXy9Fut+Pg4CDK5XJsbGxcCNGu6hCbdBrj6P0vu0+z2Ry7XS6Xo1wuD++XJEnUarV48eLFWF21Wi3K5bIusowShAEAAMCcOz+9cZLpjnt7e9FsNiOXy0Wv14tnz55Fo9GIJEkiSZJoNBqxubkZnU4nqtXqtWMOxhloNBqxtbUVpVIpvvrqq2i1WmNhWcT3gVmSJGMh1vnOtFarden+Jtkun8/H0dHR2ML5jUYjNjY2YmlpKTY2NuLLL7+Md+/ejU3vzOfzkcvlolwuX3m8PF5L/X6/n3YR3M76+nocHx/H2tpafPjwIe1y7uxn33yddglX+vynn6VdAgAAkHGD6Ybnp/YN5HK5eP78eRQKhbHur8s0Go1oNpvx/v376PV6kcvlIp/Px6tXr2JnZ+fCdMjL9Hq9qFQq0W63I0mSKBQKUSwWx/a9ubkZxWIxyuXyWEDV6XSG9z0vn89HsViMer0eSZIMu80u265cLl/atVar1eLt27fD4G0w5qBLbWtra3j/81M9mb00cw1B2AIShD08QRgAAAA8jDRzDVMjAQAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmfJJ2Adxdt9uN9fX1a7fZ3d2N3d3dGVUEAAAAZNn+/n7s7+9fu023251RNRcJwhbY2dlZHB8fX7vN6enpjKoBAAAAsu709PTGrCJNgrAF9uTJk1hdXb12m+Xl5RlVAwAAAGTd8vJyrK2tXbtNt9uNs7OzGVU0ThC2wFZXV+PDhw9plwEAAAAQEZMt0bS+vp5a15jF8gEAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEz5JuwDurtvtxvr6+rXb7O7uxu7u7owqAgAAALJsf38/9vf3r92m2+3OqJqLBGEL7OzsLI6Pj6/d5vT0dEbVAAAAAFl3enp6Y1aRJkHYAnvy5Emsrq5eu83y8vKMqgEAAACybnl5OdbW1q7dptvtxtnZ2YwqGicIW2Crq6vx4cOHtMsAAAAAiIjJlmhaX19PrWvMYvkAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZO0C+Duut1urK+vX7vN7u5u7O7uzqiix+Nn33w9tbE+/+lnUxsLAAAA5tn+/n7s7+9fu023251RNRcJwhbY2dlZHB8fX7vN6enpjKoBAAAAsu709PTGrCJNgrAF9uTJk1hdXb12m+Xl5RlVAwAAAGTd8vJyrK2tXbtNt9uNs7OzGVU0ThC2wFZXV+PDhw9plwEAAAAQEZMt0bS+vp5a15jF8gEAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEHZPSZJEuVyOjY2NWFpaipWVldjc3IxyuRxJkqRdHgAAAAD/gyDsHmq1WmxsbESj0RiGXr1eLzqdTjQajdjY2IharZZylQAAAABERHySdgGLamtrK9rtduRyuSgWi5HP5yNJkuh0OmOdYJVKJfL5fGxvb6dYLQAAAACCsDuoVCrRbrejWq3G3t7ehe/XarWoVCrD26VSKfr9/ixLBAAAAOAcUyNvKUmSqNVq0Wq1Lg3BIiL29vZiZ2dn7GudTmcW5QEAAABwBUHYLVUqlahWq1EsFq/drlqtjt1ut9sPWRYAAAAANxCE3VKv17uyE2xULpeLfD4/dhsAAACA9AjCbqnVak287cePH4efP3/+/CHKAQAAAGBCgrAH0uv1otfrRUREsViMQqGQbkEAAAAAGScIeyBfffVVRETk8/loNpspVwMAAACAIOwB9Hq9KJfLUSgUotVqWR8MAAAAYA4IwqYsSZLY3NyMXC4X7969G1swHwAAAID0CMKm6ODgIDY2NiJJkuj1erGyshK1Wi3tsgAAAACIiE/SLmDR9Xq9aDQaUa/XI0mSC9+vVCrx7bffPsg6Yd1uN9bX1+89zu7ubuzu7k6hIgAAAOCx2t/fj/39/XuP0+12p1DN3QjC7qndbsfR0VEUi8VIkiTa7faFbQ4ODqJWq8Xe3t5U9312dhbHx8f3Huf09HQK1QAAAACP2enp6VRyiDQJwu5pe3s7tre3x77WaDSiUqlEr9cbfq1SqcTOzs5UF85/8uRJrK6u3nuc5eXlKVQDAAAAPGbLy8uxtrZ273G63W6cnZ1NoaLbW+r3+/1U9vzIDRbNHw3DqtXqVLrC1tfX4/j4ONbW1uLDhw/3Hi8tP/vm67RLmInPf/pZ2iUAAADA3Egz17BY/gPJ5/Px7t27sa99++23KVUDAAAAgCDsARUKhbFpk5ctpg8AAADAbAjCHtirV6+Gn49OkwQAAABgtgRhD6xQKAw/n+ZC+QAAAADcjiBshp4/f552CQAAAACZJQh7YKPrgm1tbaVYCQAAAEC2CcIeWKfTiYjvp0WOLpwPAAAAwGwJwh7Yl19+GRERb968SbkSAAAAgGwThN1SrVaLzc3NqFQqN14FcrDN3t6ebjAAAACAlAnCbqHX60WlUolOpxO1Wi1WVlaiUqlcum2pVIparRbVajWq1eqMKwUAAADgPEHYLeRyucjn82NfGwRipVIpKpVKbG1txcrKSkREHB0dxd7eXhqlAgAAAHDOJ2kXsGgODw/jyy+/jHa7HUmSDKdHDhbFL5VK0Ww2I5fLpVckAAAAABcIwm4pl8uZ6ggAAACwgEyNBAAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyIRP0i6Au+t2u7G+vn7tNru7u7G7uzujigAAAIAs29/fj/39/Wu36Xa7M6rmIkHYAjs7O4vj4+Nrtzk9PZ1RNQAAAEDWnZ6e3phVpEkQtsCePHkSq6ur126zvLw8o2oAAACArFteXo61tbVrt+l2u3F2djajisYJwhbY6upqfPjwIe0yAAAAACJisiWa1tfXU+sas1g+AAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATPgk7QK4u263G+vr69dus7u7G7u7uzOqCAAAAMiy/f392N/fv3abbrc7o2ouEoQtsLOzszg+Pr52m9PT0xlVAwAAAGTd6enpjVlFmgRhC+zJkyexurp67TbLy8szqgYAAADIuuXl5VhbW7t2m263G2dnZzOqaNxSv9/vp7Jn7mx9fT2Oj49jbW0tPnz4kHY5d/azb75Ou4SF9PlPP0u7BAAAALizNHMNi+UDAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIhE/SLoC763a7sb6+fu02u7u7sbu7O6OKAAAAgCzb39+P/f39a7fpdrszquYiQdgCOzs7i+Pj42u3OT09nVE1AAAAQNadnp7emFWkSRC2wJ48eRKrq6vXbrO8vDyjagAAAICsW15ejrW1tWu36Xa7cXZ2NqOKxgnCFtjq6mp8+PAh7TIAAAAAImKyJZrW19dT6xqzWD4AAAAAmSAIAwAAACATBGEAAAAAZII1wmDB/Oybr6c63uc//Wyq4wEAAMC80hEGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADLhk7QLAAAAAJg3v37786mN9cNXvz+1sbgfHWEAAAAAZIKOMAAAAGDhTbODi8dLRxgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMsFj+Aut2u7G+vn7tNru7u7G7uzujigAAAIAs29/fj/39/Wu36Xa7M6rmIkHYAjs7O4vj4+Nrtzk9PZ1RNQAAAEDWnZ6e3phVpEkQtsCePHkSq6ur126zvLw8o2oAAACArFteXo61tbVrt+l2u3F2djajisYJwhbY6upqfPjwIe0yAAAAACJisiWa1tfXU+sas1g+AAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmfJJ2AQAAAEA2/frtz9MugYzREQYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCsHvqdDpRLpdjY2MjlpaWYmlpKTY2NqJSqUSv10u7PAAAAAD+B0HYHfV6vSiVSrG5uRmNRiOSJBl+L0mSqNVqsbKyEo1GI8UqAQAAABgQhN1Br9eLzc3NODg4uHHbcrkc5XJ5BlUBAAAAcB1B2B2USqVIkiQKhUI0m804OjqKo6OjaDabsbe3d2H7RqMxUWgGAAAAwMMRhN1So9GIdrsde3t7cXh4GNvb25HP5yOfz8f29nZUq9U4OjqKQqEwdr/Xr1+nVDEAAAAAEYKwW6tWq1EsFqNarV65TT6fj2azOfa1Xq8X7Xb7ocsDAAAA4AqCsFvodDqRJMmFkOsy+Xz+QljW6XQeqjQAAAAAbiAIu4W3b9/Gzs5O5HK5ibYvFotjt7/77rsHqAoAAACASXySdgGL5NWrV5HP5yfe/vw6YRsbG9MuCQAAAIAJCcJu4XywdZNerzd2+zYhGgAAAADTZWrkA0qSZOz2+amSAAAAAMyOIOwBvX//fvj5zs5OipUAAAAAIAh7QPV6ffh5pVJJsRIAAAAArBH2QJIkiU6nExER1Wr1QdYH63a7sb6+fu9xdnd3Y3d3dwoVAQAAAI/V/v5+7O/v33ucbrc7hWruRhD2QKrVakR8v0D+3t7eg+zj7Owsjo+P7z3O6enpFKoBAAAAHrPT09Op5BBpEoQ9gE6nE41GI3K5XLRarQfbz5MnT2J1dfXe4ywvL0+hGgAAAOAxW15ejrW1tXuP0+124+zsbAoV3Z4g7AG8fv06IiLevXv3IFMiB1ZXV+PDhw8PNj4AAADAwLSWVlpfX0+ts8xi+VNWLpej0+lEs9mMQqGQdjkAAAAA/A+CsClqNBrRaDSiXq/H9vZ22uUAAAAAMEIQNiXtdjvK5XLU6/XY2dlJuxwAAAAAzhGETUGn04mtra2oVqtCMAAAAIA5JQi7pyRJ4sWLF7G3txd7e3tplwMAAADAFQRh95AkSWxubsbOzk5Uq9WJ71Or1R64MgAAAADOE4TdUa/Xi62trXj58uXEIVhERKlUimKx+ICVAQAAAHCZT9IuYBH1er3Y3NyMfD4flUolkiS58T5JkkSlUomIiEKh8NAlAgAAAHCOIOwOXrx4EUmSRJIksbGxcav71uv1B6oKAAAAgOuYGnlLm5ub0el07nx/V5UEAAAASIeOsFsolUpCMB6dn33z9dTG+vynn01tLAAAYP78+u3P0y4B7kUQdgvNZjPtEgAAAAC4I1MjAQAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmfJJ2Adxdt9uN9fX1a7fZ3d2N3d3dGVUEAAAAZNn+/n7s7+9fu023251RNRcJwhbY2dlZHB8fX7vN6enpjKoBAAAAsu709PTGrCJNgrAF9uTJk1hdXb12m+Xl5RlVAwAAAGTd8vJyrK2tXbtNt9uNs7OzGVU0ThC2wFZXV+PDhw9plwEAAAAQEZMt0bS+vp5a15jF8gEAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCxfKBqfnZN19PdbzPf/rZVMcDAAAg23SEAQAAAJAJgjAAAAAAMsHUSAAAAHikfv3252mXAHNFRxgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZO0CwC4ys+++Xqq433+08+mOh4AAACLRUcYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMuGTtAsAAACARfbrtz+f6ng/fPX7Ux0P+A0dYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiET9IugLvrdruxvr5+7Ta7u7uxu7s7o4oAAACA83799udTHe+Hr35/quNN0/7+fuzv71+7TbfbnVE1FwnCFtjZ2VkcHx9fu83p6emMqgEAAACy7vT09MasIk2CsAX25MmTWF1dvXab5eXlGVUDAAAAZN3y8nKsra1du023242zs7MZVTROELbAVldX48OHD2mXAQAAABARky3RtL6+nlrXmMXyAQAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZO0CwAAAICb/Prtz6c63g9f/f5UxwMWgyAMyIyfffP11Mb6/KefTW0sAAAAZsPUSAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATPgk7QIAFtHPvvl6quN9/tPPpjoeAAAAF+kIAwAAACATBGEAAAAAZIIgDAAAAIBMsEYYAAAAzJFfv/152iXAo6UjDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEz5JuwDurtvtxvr6+rXb7O7uxu7u7owqAgAAALJsf38/9vf3r92m2+3OqJqLBGEL7OzsLI6Pj6/d5vT0dEbVAAAAAFl3enp6Y1aRJkHYAnvy5Emsrq5eu83y8vKMqgEAAACybnl5OdbW1q7dptvtxtnZ2YwqGicIW2Crq6vx4cOHtMsAAAAAiIjJlmhaX19PrWvMYvkAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJnwSdoFAAAAwKz9+u3P0y4BSIGOMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATPgk7QIAiPjZN19PbazPf/rZ1MYCALLl129/PrWxfvjq96c2FsC0CMIAAACYummGagDTYmokAAAAAJmgIwzgkZnmNMuHYOomAACQFh1hAAAAAGSCjjAAZsqFAQAAgLToCAMAAAAgE3SE8Sj893//l1Md75N/8A+nOh4AAACQPh1hAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmuGrkAut2u7G+vn7tNru7u7G7uzujigAAAIAs29/fj/39/Wu36Xa7M6rmIkHYAjs7O4vj4+Nrtzk9PZ1RNQAAAEDWnZ6e3phVpEkQtsCePHkSq6ur126zvLw8o2oAAACArFteXo61tbVrt+l2u3F2djajisYJwhbY6upqfPjwIe0yAACACf367c+nOt4PX/3+VMcDuK9JlmhaX19PrWvMYvkAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAywWL5AAAAC2rai+8DPHY6wgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATHDVSAAW1s+++Xqq433+08+mOh4AADBfdIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwqYgSZLY2tqKg4ODtEsBAAAA4AqCsHvo9XpRKpViY2Mj2u12fPz4Me2SAAAAALiCIOwOer1eVCqVWFlZ0QUGAAAAsCAEYbdUq9Vic3MzOp1O2qUAAAAAcAuCsFvodDpRLBbj6OgoWq1W1Ov1tEsCAAAAYEKfpF3AIikUCmO3nz9/nlIlPLT//u//cmpjffIP/uHUxgIAAADuTkfYPeRyubRLAAAAAGBCgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBM+SbsAAJgXP/vm66mN9flPP5vaWAAAwHQIwhZYt9uN9fX1e4+zu7sbu7u7U6gIAAAAeKz29/djf3//3uN0u90pVHM3grAFdnZ2FsfHx/ce5/T0dArVAAAAAI/Z6enpVHKINAnCFtiTJ09idXX13uMsLy9PoRoAAADgMVteXo61tbV7j9PtduPs7GwKFd2eIGyBra6uxocPH9IuAwAAAMiAaS2ttL6+nlpnmatGAgAAAJAJOsIA4AFM8wqUEa5CCQAA0yAIAwAAbu3Xb38+1fF++Or3pzoeAFzG1EgAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZYLH8e+j1emmXAAAAPLBpXxgAgPToCLuHJEnGbgvGAAAAAOaXjrA76vV6UalUxr729u3b2NvbS6kiAB6zn33z9VTH+/ynn011PAAAWAQ6wm6h1+tFqVSKra2tWFlZudAR1ul0YmlpKba2tqJUKkWn00mpUgAAAADO0xF2C7lcLprNZtplAAAAAHAHgjAAAOBRsbg9AFcxNRIAAACATBCEAQAAAJAJpkYCAPCgpj1N7Yevfn+q4zEfTGcEYBZ0hAEAAACQCTrCAAAgA3RcAYAgjBT993//l2mXAAAAAGSIIAwAuJefffP1VMf7/KefTXU8mCXroQHAfLNGGAAAAACZIAgDAAAAIBMEYQAAAABkgjXCYMFM+yIDn/yDfzjV8QDmifXLAAAYJQgDgAyadkDE4zPtRd+5G88DAEyXIAwe2LQ7uAAAAIC7EYQBAHNFtxoAAA/FYvkAAAAAZIKOsAXW7XZjfX392m12d3djd3d3RhUBAAAAWba/vx/7+/vXbtPtdmdUzUWCsAV2dnYWx8fH125zeno6o2oAAACArDs9Pb0xq0iTIGyBPXnyJFZXV6/dZnl5eUbVAAAAAFm3vLwca2tr127T7Xbj7OxsRhWNE4QtsNXV1fjw4UPaZQCQcdO+Ou4n/+AfTnU8AABmZ5IlmtbX11PrGrNYPgAAAACZIAgDAAAAIBMEYQAAAABkgjXCAAAm9LNvvk67hCt9/tPP0i4BAGDuCcIg46a5yLUFrpk1i7QDAAC3YWokAAAAAJmgIwwAgEz79dufp10CADAjgjAAABaK4AoAuCtBGAAzNe11vQAAACZljTAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBNcNRIA4BH42TdfT3W8/3WqowEAzAdBGDA1//3f/+VUx/vkH/zDqY4HcF/T/jk3TX5mAgDczNRIAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATXDUSAB6Aq6gya1O/ouVPnk53PACAOSAIAwDggj/5q49TG+sPhWoAwJwwNRIAAACATNARBgDMlWlO8TOlFACAUYIwYG7N8xpLU1+LZ4q88QfmzTSnWUaYagkA3J2pkQAAAABkgo4wgEdmnjvpmB/z3NUIAAAPRRC2wLrdbqyvr1+7ze7ubuzu7s6oIgAAACDL9vf3Y39//9ptut3ujKq5SBC2wM7OzuL4+PjabU5PT2dUDcDi0yUFAAD3c3p6emNWkSZB2AJ78uRJrK6uXrvN8vLyjKoBAJgNi+8DwPxaXl6OtbW1a7fpdrtxdnY2o4rGCcIW2Orqanz48CHtMoBHTpcUAAAwqUmWaFpfX0+ta0wQBgAAUzLP3WrzXBsAzIogDACATJt2QAQAzC9BGAAAzCkhHQBM15O0CwAAAACAWRCEAQAAAJAJpkYCwAJw9U4AALg/HWEAAAAAZIKOMCAzdNQAAABkm44wAAAAADJBEAYAAABAJgjCAAAAAMgEa4QBAI+WtQFhcfzJX32c2lh/+JOnUxsLgMdFRxgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZO0CwAAABbPn/zVx7RLAIBbE4QBAACPyrRDuj/8ydOpjgdAekyNBAAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAywVUjAQAArjHNq1BO+wqU075C5jS52iYwj3SEAQAAAJAJOsIAAABmZJ47uACyQBC2wLrdbqyvr1+7ze7ubuzu7s6oIgAAACDL9vf3Y39//9ptut3ujKq5SBC2wM7OzuL4+PjabU5PT2dUDQAAAJB1p6enN2YVaRKELbAnT57E6urqtdssLy/PqBoAAIDFMc8XQYBFtry8HGtra9du0+124+zsbEYVjROELbDV1dX48OFD2mUAAAAARMRkSzStr6+n1jXmqpEAAAAAZIIgDAAAAIBMMDUSAACAuTfNNb2A7NIRBgAAAEAm6AgDAABg6nRwAfNIRxgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4ZO0CwAAAIBF9id/9XGq4/3hT55OdTzgN3SEAQAAAJAJOsIAAABgjkyzw0x3GYzTEQYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBM+CTtAgAAAICH8Sd/9THtEq71hz95mnYJZIyOMAAAAAAyQUcYAAAAkIppdqzpLmMSOsIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgExw1cgF1u12Y319/dptdnd3Y3d3d0YVAQAAAFm2v78f+/v7127T7XZnVM1FgrAFdnZ2FsfHx9duc3p6OqNqAAAAID1/8lcfpzreH/7k6VTHy4rT09Mbs4o0CcIW2JMnT2J1dfXabZaXl2dUDQAAAJB1y8vLsba2du023W43zs7OZlTROEHYAltdXY0PHz6kXQYAAABAREy2RNP6+npqXWMWywcAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJFssHAAAAOOdP/urj1Mb6w588ndpY3I+OMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgE1w1kpnb39+P09PT+L//8t/F//zZ/5J2OZCq//Pr/z3+n1//Ov6nH/7Q+UDmOR/gN5wPMM45Ab/x//rf/k38l//vL2J5eTl2d3fTLmfhCMKYuf39/Tg+Po7lH/3ILzEy7//65v+I01/9yvkA4XyAUc4HGOecgN/4f/9v/5/4/338F7G2tiYIuwNTIwEAAADIBEEYAAAAAJkgCJuSWq0WW1tbsbKyEktLS7GxsRGlUina7XbapQEAAAAQ1gi7t3a7HaVSKXq9XhSLxWg2m5HP56PT6USlUomtra3h13O5XNrlAgAAADP2J3/1cWpj/ee/OZvaWFkkCLuHdrsdW1tbERGxs7MT9Xp9+L18Ph/b29uxubkZ7XY7Njc34/DwUBgGAAAAkBJTI++o1+tFqVSKiO9Dr9EQbFSz2YyIiCRJhtsDAAAAMHuCsDsaTIeMiKhUKlduN+gMi/i+g6zRaMyiPAAAAADOMTXyDpIkGVsE/+XLl9du/+rVqzg4OIiI70OznZ2dB62Ph/d/fv2/x//z61/H//TDH8b//Nn/knY5d+IYmJbH8Dw4BqblMTwPjoFpegzPhWNgWh7D8+AYeAwEYXdQrVaHnxeLxRvX/Rp0hEV8P6Xy4OBg7Gssnv/rm/8jTn/1q1j+0Y8W9oenY2BaHsPz4BiYlsfwPDgGpukxPBeOgWl5DM+DY+AxMDXyDkanNxYKhYnuk8/nh5+/fft26jUBAAAAcD1B2C11Op2x259++ulE9xsNzAbTJAEAAACYHUHYLY2uDRYx3ul1nfPbnQ/UAAAAAHhYgrBb+vbbb8du37Q+2MCPf/zjsdvv37+fVkkAAAAATEAQdktJkozdvmtH2NHR0dRqAgAAAOBmgrBbOh+E3VWv15vKOAAAAABMRhB2S3cNsM5Pofz48eP9iwEAAABgYkv9fr+fdhGLZGlpaez2pA9fu92Ora2t4e1isRitVutONfztv/2347/9t/8WERFPntw/y/x7f+/vxd/9u3/33uNMqtvtxtnZWSwtLcXfW16e2X6n6T+dnka/33cMKXMM88ExzAfHMB8cw3xwDPPjMRyHY5gPjmE+OIb5MDiGJ0+exOrq6kz3/Z//83+O//Sf/tO9xzk7O4uIiL/1t/5W/Nf/+l/vPd5tCMJuaWVlZawr7K5B2Pb2djSbzTvV8IMf/GD4ogEAAABYRE+ePIm/+Zu/mek+P5np3h6Bp0+fTmV9r6dPn975vj/84Q/jv/yX/zJMgO9r1h1hAAAAwOKZZkfY0tJS/PCHP5xCVbcjCLul82t9Tep8eHbXcSIi/vqv//rO9wUAAADIKovl39Lz58/Hbk/aHXZ+cfyNjY1plQQAAADABARht7S5uTl2O0mSie53dHQ0drtYLE6tJgAAAABuJgi7pfMdYZMGYaOdY7lcLvL5/DTLAgAAAOAGgrBbKhQKY+t7ffvttxPd7/3798PPz4dpAAAAADw8QdgdvHz5cvh5p9OZ6D6j21UqlanXBAAAAMD1lvr9fj/tIhZNp9MZWyvspoew3W7H1tZWRETk8/kL64UBAAAA8PB0hN1BoVAYW+z+4ODg2u2bzebwc91gAAAAAOnQEXZHSZLExsZGRHwfjB0eHl66Xa/Xi5WVlYj4/kqRrVZrZjUCAAAA8Bs6wu4on88PO706nU7UarVLt3vx4kVEfH+lyNHOMAAAAABmSxB2D9vb29FqtSKXy0WlUolSqRSdTid6vV602+3Y3NyMTqcThUIhfvGLX4xdbRIAAACA2RKE3VOxWIyTk5OoVquRJEm8ePEiVlZWolQqxdOnT6PZbMbh4eGjCMFqtVpsbW3FyspKLC0txcbGRpRKpWi3249633CZtF6TnU4nyuVybGxsxNLS0nDflUoler3eg+4brjKPP6MH58hN63jCQ5jHc2Kg0+nEwcFB1Gq1uaiHxy+t86HX60WlUomtra3h74TBvhuNxoPuGy6TJElsbW3N7G+Tef5dlLo+3KDVavVzuVw/IvrFYrHfarX6R0dH/Waz2c/n88Ovn5ycPKp9w2XSek2enJz0t7e3+xFx7Ue9Xp/qfuE68/ozem9vb3hONJvNme6bbJvHc+Lk5KRfrVb7hUKhHxH9XC7X39vb67daLX8/8aDSPB+q1erw9V6tVvutVqt/eHjYr9frw3Mhn8/3W63W1PcN553/O/6h/16fx99F80YQxrVardbwhN3Z2bl0m9FfJtM8mdLcN1wmrdfkycnJ8JfWJB9X1QbTNK8/o0frEoQxS/N2TpycnPR3dnaGNRUKBW/6mZk0z4dB4FAoFK7cZvTcODw8nNq+YdTJycnYP+dmEYTN2++ieSUI40onJyfDJDmfz1+53dHR0fBkKxaLC79vuEyar8lisTj8g67ZbPaPjo6G/9W57JerN/88tHn9GT1al3OBWZq3c6Jer4+dC7qFmaU0z4dBJ1hE3PgGf/BPxlwuN5V9w6hqtdrP5/PDv+NnEYTN2++ieSYI40qjJ+1NJ+u0Wz3T3DdcJq3XZL1e70dEf29v78ptjo6Ohv/ZGXz4o46HNK8/o7e3t/v5fH4sABCEMQvzdE6M/oMkn8/3j46Opr4PuE6a58NoB+RNTKPnoRweHo51Gg7+nn/ov4fm6XfRvBOEcanRlHiS/6g0m82pvQFPc99wmTRfk4P/JN22xogwBYYHMa8/owd/ZB4eHgrCmKl5OidG39jkcrnMTnkhPWmeD6NTwra3t2/cfnTf1/3DEe7r8PDwwYOwefpdtAhcNZJLVavV4efFYvHGq15ub28PP+/1eve6Ekaa+4bLpPWa7HQ6kSRJNJvNG7fN5/NjdQ7uD9M2jz+jkySJcrkce3t7USgUpj4+XGdezonzVyJ7LFctZ7GkeT4kSTL8/LZ/A/34xz++837hJrP4WTwvv4sWhSCMS41eUnjSNxX5fH74+du3bxdy33CZtF6Tb9++jZ2dnYl/eRaLxbHb33333Z32C9eZx5/RpVIpCoXChTAYZmEezolGoxHtdnt4u16vj+0DZiXN8+Hp06fDz5MkGQvGLvPtt99eWgMsonn4XbRIBGFccP4/KJ9++ulE9xs94e7TAZPWvuEyab4mX716das39ud/6W1sbNxpv3CVefwZXalUotPpTNQ5CdM2D+fEoCNydOydnZ17jQl3kfb5cD7MGj0vLjPYVy6XG+uOgUWT9rm3iARhXDD6H8WIyf9Dcn67u0zLSnPfcJk0X5OFQuFWrdS9Xu/aGuC+5u1ndKfTiVqtpvuF1MzDOVEqlcZuf/HFF3ceC+4j7fOhUCiMvbFvt9sXzo+BRqMx7BjTTcyiS/vcW0SCMC4YbROOmHxO8/m59e/fv1+ofcNlFuk1eX4KwPmpknBf83Y+vHjxIra3t3W/kJq0z4kkScbeuOhsIU1pnw8REW/evBm7fXBwcCEMa7fbw26xer3udwgLbx7OvUUjCOOC82+m75ooHx0dLdS+4TKL9Joc/eXljzoewjydD4M3Nuff9MAspX1O1Ov1sduDf4AM3vxvbGzE0tJSrKysxObmZtRqtQvdwzAtaZ8PEd93hZ2fKn9wcBAbGxvDLuKtra3I5/PRarX8vcSjMA/n3qL5JO0CmD83LSw5qbv8oZXmvuEyi/SaHH1DVKlUHnx/ZM+8nA8HBwdxcHAQrVbLVfFIVdrnxOjiyBHfLxa+ubl5YXpLr9eLTqcTnU4nKpVKNJtNnWNMXdrnw8D29nbU6/WxNcKSJInNzc2IiNjb2zMdkkdlXs69RaIjjAvuegKcfzPy8ePHhdo3XGZRXpOj02Oq1ar1kngQ83A+9Hq9KJVKsbOzY/ovqUvznEiS5ML+v/rqqyiXy3FychL9fj/6/X4cHR1d6HoplUqZWxiZhzcPvyMGdnZ2LnRMDrTb7Uy94efxm6dzb1EIwngwaf6C8cuNefPQr8nBfzbz+Xzs7e096L7gvu5zPrx48SLy+fyVb3BgEU2jiz6Xy8UvfvGL2NnZGXtzMzhfzp8zr1+/9vcSc2lar8udnZ1Lpz52Op149uxZphYGh0lk6XeCIIwLpjXN5C7jpLlvuMwivCY7nU40Go3I5XLRarUebD+Q9vlQq9Wi0+lcWP8F0pLmOXE+CDsfgJ13PhTo9Xrx5Zdf3nq/cJW0f0ecVy6Xo9FoxM7OzoVO+V6vF5ubmxeutgeLaN7OvUUgCOOCp0+fpjZOmvuGyyzCa/L169cREfHu3TtTInlQaZ4Pg7WNqtVqFAqFqdQB95XmOXF+UeNPP/30xvucXz+yVqvder9wlXn6m2lraysajUbs7e1FvV6/dIrwYDthGItuns69RSEI44K7JsHnWyln2RE2jX3DZeb9NVkul4cdMsIBHlqa50OpVIpCoWDqL3MlzXPiLmPk8/kLvytMD2Na5uVvpkGnV7FYHFsUv16vX9pRXCqVMjUljMdnXs69RSII44Lnz5+P3Z70F8P5xfU2NjYWat9wmXl+TTYajWg0GlGv1139i5lI63yo1WqRJEk8ffo0SqXSjR+jdX355Zdj37NAONOU5u+Iu/5eOV/ztK42BvPwN1OpVBqGu5etJbm9vR2Hh4djb/h7vZ6rbbPQ5uHcWzSfpF0A82dwaeGBJEkm6jQ536J/l6t5pblvuMy8vibb7XaUy+Wo1+uXtvrDQ0jrfPjuu+8iIu40faXT6Yx1vOTzecExU5Pm74jz/7mf9I3P+Tc6WbpKGA8r7b+ZkiQZ/rOjUChcuVxEoVCIw8PDsXOh0WhEtVrNVEcMj0fa594i0hHGBXf9T+HoH2C5XO5OaxWluW+4zDy+JjudTmxtbUW1WhWCMVPzeD5Amhbxb6bzb/SztCYMDyvt3xGjHWDnaznvsqsPv3///k77hbSlfe4tIkEYFxQKhbE/kr799tuJ7jf6y+OmXz7zuG+4zLy9JpMkiRcvXsTe3p61kpi5tM6HarUa/X5/4o/RP+SazebY90bXi4H7SvtvplHn/7M/qSy98eFhpf030+ib+kmmeJ3/Z6JpwiyqtM+9RSQI41IvX74cfj7pIqqj291nnn2a+4bLzMtrMkmS2NzcjJ2dnYnfzCdJ4qpgTNW8nA8wL9I8J0ansUw6dfj8FEoXWmGa0jwfRqf5ThoMe/3zWPj77HYEYVyqXC4PP5/kD6vRbfL5/L3mF6e5b7jMPLwme71ebG1txcuXL2/V0VIqlZwTTNU8nA8wT9I8J0bfuCRJMtE6YaMBgfORaUvzfBjtbrxLd5fuSBaZv89uRxDGpQqFwtjJcNNVtkYvRXxTmtxoNKJSqVz5C+oh9w13keb5EPF9CLa5uRn5fH647U0f7XZ7uHCm/3YyTWmfDzBv0jwnisXi2Jv3L7/88sZ6R9/8mCrMtKV5Prx69Wr4+fv37ycKhkfHyloQwOxMejGT63gPPWV9uMLR0VE/IvoR0S8UCldud3JyMtyuWCxeO2axWBxuGxH9k5OTme0b7iPN86FQKIxtd5uPer1+n8OGS6V5Pkwin88Px2k2m3ceByaV5jlxeHg4tt3R0dGVY7ZareF2Ozs7Ex0b3Faa58Podnt7e9eOOXo+VKvVG48L7qrZbI69fm/7evMeevoEYVxr9KS96oQdvEnP5XI3vnG5zZv0ae8b7iuN8+E+IZj/dfCQ0vz9cBNBGGlI85yo1+vD7fL5/KVjn5ycDM+N694gwTSkdT6cnJz0c7ncjdsdHR0Nt8tqEMBsjP7snSSkuoz30NPnXRI3arVaw18U29vb/cPDw/7JyUm/1WoNT6JCoTDRSTT6iyki+q1Wa2b7hmmY5fmwvb19rxDMf/t5aGn+friOIIy0zMvfTLlcrl+tVvuHh4f9w8PDfrVaHX7P7wZmJa3z4eTkpL+zszPW8VKv1/uHh4f9VqvV39vbu3NnDkzi5OSkv729faGT6/xHsVgcnhvX8R56+gRhTKxarfYLhcLYH1nFYvFWbzJarVY/n8/3c7ncje3K0943TFOa5wPMG+cDjEvznKjX6/1isTi270Kh0N/b27t22iQ8lLTOh8PDw/7Ozs7YP0fy+Xx/e3u7v7e3l+kQgMXiPfT0LfX7/X4AAAAAwCPnqpEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAMy1ra2tWFpainK5nHYpLDhBGAAAADwiW1tbsbKyEktLS1P7WFlZSfWY2u12RESUSqWJ7/MYHwfu75O0CwAAAACmp9VqRUREp9OJFy9eRK/XG/t+LpeLly9fxsbGxvBr3333XURE9Hq9SJIk3r9/P3a/58+fP3jdVzk4OBh+XiwWJ77fY3scmA5BGAAAADxChUIhXr58GY1GY+zrh4eHkc/nb7x/u92OUqkUvV4vCoXCQ5V5o7dv30ZExPb29p3u/1geB6bD1EgAAAB4pD5+/Dh2O5/PTxT+RHzffVWtViMi4tNPP516bZMadIS9evXqzmM8hseB6RCEAQAAwCPV6XTGbt9mamHEb6YCptUJNVgbLOLuHWERi/84MD2CMAAAAHiEButcjbrNYvMDuVxu4u6paWs2mxFx++Bq1GN4HJgeQRgAAAA8QqPdVAO3DZQGC8qn5auvvoqIuwVXA4/hcWB6BGEAAADwCA2umjhwl66qfD4f9Xp9WiXdSqfTGV6x8T4h1KI/DkyXIAwAAAAeoUE31cDW1ta12182hTBNg6tFFgqFyOVydx5n0R8HpksQBgAAAI9MkiTDbqqBmxabr1Qql04jTMvgapHlcvnOYzyGx4Hp+iTtAgAAAIDpGoRIAzct9J4kSTQajTg5OXno0iaSJMmwK+s+0yIX/XFg+nSEAQAAwCNzfl2sm8KkUql07ymI0zQIsO5b06I/DkyfjjAAAAB4ZM5P7RusizWYJvjx48fo9XrRbrejXq9HkiSxt7c36zKvNFgf7NWrV/caZ9EfB6Zvqd/v99MuAgAAAJiOdrt944Lwlzk8PIxCofAAFd1Or9eLlZWViIg4Ojq6dirjdRb9ceBh6AgDAACAR+T8dMB8Ph/lcjm+++67sU6oJEmi0+lExPdrZ81L+NNoNCLi+7rvGoJFLP7jwMMQhAEAAMAjcn6B+HK5fOV0v06nE5ubm1EsFmdR2kQG0yJvurrjTRb9ceBhWCwfAAAAHolerze82uLAdeHOoPvpvmtxTUuv1xt2Z92nplk8DgcHB7GxsRFLS0tjH5ubm1Gr1S69T6fTia2trQvbn6814vvOuPPbTvpRqVQu3X+lUonNzc1L71MqlS6sqXZbvV5vWPfgsVlZWYmtra1hp1/aBGEAAADwSHz11Vdjt2+a6jeYIjgvnVCD+u87RXEWj8P29nYcHR2NXWFyb28vDg8Pr+w8KxQK0Wq1ht1uxWIxDg8PL50CurOzE61WK6rV6tjXW61W9Pv94cfJyUkcHR1Fs9kcjvPpp59euv9qtRqHh4djx5nL5Yb3v8/roFarxcrKStTr9SiXy9FqteLk5CTevXsXuVwuyuXylaHfLAnCAAAA4JE4vy7WTcFGkiRRKBTGwpw0NZvNiIh4+fLlvcaZ5eMwWuuPf/zjie4z6HobHO+ktre3LxxLLpeLfD4f29vbcXh4GBE3H+/ocX7xxRf3WostSZLY2NiISqUyDNq2t7cjn88PA8hmsxl7e3vDKaiD4DENgjAAAAB4JM5PbbvpqomFQmEYnsyDQf2lUmkq4ww85OOwubk5/Pzo6Gii2pIkiXq9PlHw9u233w4/v+k4BqHYTeOOPj73WYttMD10cDxXdcJFfN+NlsvlotfrxevXr++8z/sShAEAAMAj0Ol0LnTa3LezapZGF7e/zxS9WT8Oz58/H37+/v37G7cvl8tRKBRiZ2dnovFHQ6tJjqNcLl/7/SRJho/Pfa7M2W63h4Hl3t7eRMcz2NfBwcGwK27WBGEAAADwCJzvgpqkM+g656+6+NCmdbXIWT8Oo2uP3bT+VaPRiCRJJp4SORrqTXoc13VlRUwncGy328PutHw+f2Eds6uMhm73XZj/rgRhAAAA8AgMgqSB+3RVNRqNK6882Ov1olwux8rKSmxsbFx5hcSBwZUKb+oAGgQ0972C5aweh1GDgKfX6125/lWv14tKpRJ7e3sTd2GNHstVAeFtp5GOrp921ymoo/er1+sT32/0sZlkGulDEIQBAADAguv1eheCpruGHJ1OJ8rl8qVT7DqdTjx79iwajUb0er1IkiQqlcqVYVG73Y5arRa9Xu/aqzZOa82qWT0O540GW1d1hVUqlXj69OnE3VMR44/LZQFhu92+9cLzo2PeJSQsl8tjXWq3GSPtK0ZGCMIAAABg4V02zWx07apJdTqdePHiRUTEhTWfer1elEql+OKLL6LVakWz2RxO1RuEXecNQp+bwp/BVMH7dG9FzOZxuMxoyHfZOmGdTicajcatu6dGQ718Pj8MHzudTtRqtSiVSrcK+u4bgvV6vWg0GsPbk3TLjRoNwkYvMjBLn6SyVwAAAGBqzk8HvMu6WAcHB8NQpVgsXrj/l19+GdVqdaxjq1AoxMbGRkREfPXVV2OhUafTiXa7Hfl8/sYur6+++ioi7n+1yFk8Dpf59NNPh59fNuXv9evXsb29favw6Xyot7Kycul2t7kQwOjaZDddgfIyoyFYxGQh4cBla7elQUcYAAAALLBer3dhQfePHz9OfN9GoxGbm5tjIdRl0wF//OMfXwi0RkOuw8PDse99+eWXEXHzGlKjC8Lf5+qOs3ocLjMa6pyfmjlYIP/NmzcTjTUwGurV6/Xo9/vR7/fj5OQkDg8Po1gsRqFQuFXQd98pqKM13bajbHRtslwud+/uv7vSEQYAAAALajBd8bKvr6ysxMuXL4cdWxER33333XB63fv37y+dzpjL5S4NSa66GuGrV6/i4OBgbNpbkiRxcHAQxWLxxsBjEK7cNtQZNcvH4TJXXTlysED+mzdvbn1sV01jzOVyUSgUolQq3WrB+SRJhrXlcrk7dWSNhny37Sgb7Sa7T+B5X4IwAAAAWEAbGxvXLj5+fj2nSd02pBiEQKO1DDqpRqfiXWXQxTVp99V58/I45PP5sbAp4vs1tJ4/f37r7qvRLrl8Pn9paHV0dHSrK2yOBmt3CaLOh4XXXfzgvIODg7H73+aCAdMmCAMAAIAFdJtuoIc0CGkG0xDb7Xa02+2o1+s3dkGNBkd37RKal8ehUCgMjyVJkmEAd5f6JpnC+MUXX9yqy+y+64Odd5uOstFF9avV6p07/6bBGmEAAADAvQyuaBjxfWdXsVicaCH1QTfYfaZFzovz64S9fv06qtXqnaYgjq7FdVVodZ+plpN2qI1Oec3lcnd6jgZrpEV8/zxfNcV2VgRhAAAAwL0MQpJarRZJkty4QP7AIPC5zRS/eTV65chKpRK9Xu/Ooc/oWlyTLipfq9WunAI6GoLdZkpjpVIZC/KeP38+/Py66agDvV5vOOU1n8/Hu3fvJt73QxGEAQAAAPfy9OnT4cLw9Xp9oi6oXq83DHzucgXDeXN+wfxJ1ke7zOiVLycNwQ4ODqJSqVzZhTd6xcZJQ8dyuXwhNBtd22t0zMv0er3Y3NyMiO8fm8PDw7no+hOEAQAAAFMx6ZTIiN9cRfCqxeAXzegx7Ozs3KrzatTotMhJxqhUKlEqla4NE0fDtUnGLJVK0Wg0LoRmhUJh+PzWarVLr7YZ8X0QuLm5GUmSxPb29tyEYBEWywcAAADuabBQ/m26oAaBz2PoBhvI5/Px8ePHiaeGntfr9cZCq06nE0mSDEO2Xq8XSZLEx48fo9Vqja3hddVVN9vt9tg0xnq9Hk+fPo1cLhdPnz4dPndJkkSr1YpGozEMuC57bgYXQajVavHs2bN48+ZNFAqFePr06XBabKPRiHw+H61Wa+KutllZ6vf7/bSLAAAAABbX5uZmvHr1auI1sXq9XqysrERExOHh4Z27p+ZNqVSKV69e3SncK5fL8dVXX13ZZXWdfD5/4eqUSZJEpVIZC9ZuY3t7+9pgs9PpxJdffhntdjt6vV7kcrnI5/NRLBbj1atXc/ucCsIAAACAOzs4OIhSqRQnJye3mv42CHzmZcoc2SAIAwAAAO4kSZLY2NgYLoYO885i+QAAAMCdDNalmrd1oOAqgjAAAADg1g4ODqLdbkdEXLi6IMwrUyMBAACAW9vY2Bhe0fD8Qu0wr3SEAQAAALeSJEkkSRIREZVKJeVqYHKfpF0AAAAAsFh6vV7kcrl4+fJl7OzspF0OTMzUSAAAAAAywdRIAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACAT/v8VYXk2acJVigAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nbins = 50\n", "plt.hist(\n", " ak.to_numpy(eloss_magnet_lost),\n", " bins=nbins,\n", " density=True,\n", " alpha=0.5,\n", " histtype=\"bar\",\n", " color=\"#F05342\",\n", " label=\"lost\",\n", " range=[0.001, 1],\n", ")\n", "# #2A9D8F another teal color\n", "plt.hist(\n", " ak.to_numpy(eloss_magnet_found),\n", " bins=nbins,\n", " density=True,\n", " alpha=0.5,\n", " histtype=\"bar\",\n", " color=\"#107E7D\",\n", " label=\"found\",\n", " range=[0.001, 1],\n", ")\n", "\n", "plt.xlabel(r\"$E_\\gamma/E_{VELO}$\")\n", "plt.ylabel(\"a.u.\")\n", "# plt.title(r'$B\\rightarrow K^\\ast ee$, $p>5$GeV, photons w/ brem_vtx_z$<9500$mm')\n", "plt.legend(title=\"LHCb Simulation\")\n", "plt.show()\n", "# plt.savefig(\n", "# \"/work/cetin/Projektpraktikum/thesis/emitted_energy_endVelo2endT.pdf\",\n", "# format=\"PDF\")" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# magnet kick position\n", "input_tree = uproot.open(\n", " {\n", " \"/work/cetin/Projektpraktikum/param_data_B_default.root\": \"PrParameterisationData_2ece6184.PrDebugTrackingTool/Tuple;1\"\n", " }\n", ")\n", "array = input_tree.arrays()\n", "array = array[array.isElectron & (array.fromB)]\n", "array[\"dSlope_fringe\"] = array[\"tx_ref\"] - array[\"tx\"]\n", "array[\"z_mag_x_fringe\"] = (\n", " array[\"x\"]\n", " - array[\"x_ref\"]\n", " - array[\"tx\"] * array[\"z\"]\n", " + array[\"tx_ref\"] * array[\"z_ref\"]\n", ") / array[\"dSlope_fringe\"]" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(exptext: Custom Text(0.05, 0.95, 'LHCb'),\n", " expsuffix: Custom Text(0.05, 0.955, 'Simulation'))" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAOWCAYAAAANzz7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfvElEQVR4nOz9T3Ab6b3mez4p143omY5DgNS5J0JBxriYKPXietFigvL+iEDZi9mcEkDW2i4CklcO2iJEbe9ESUC5OF6dEkCVY2ZWRwSl2roFULWbxSkiqVr4LqYKSdaMGIzoHoEQHN2nYzqKOQtewAT/gkASmRC+nwiEAfLN9/2BoBzBp37vm4bruq4AAAAAAACAd9wVvwsAAAAAAAAA+oEgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ4EgDAAAAAAAAEOBIAwAAAAAAABDgSAMAAAAAAAAQ+E9vwsA/v2///f67//9v+snP/mJ/uEf/sHvcgAAAAAAwCX6z//5P+vHH3/Uv/t3/07/9b/+176ubbiu6/Z1ReCIn/zkJ9rf3/e7DAAAAAAA0EdXrlzRjz/+2Nc16QiD75pB2JUrV3Tt2rULXbu7u9v1tb1i7f6v7ff6rM3arM3a7+L6rM3arP3uru33+qzN2qzN2udd/5Of/OQSqjvbwAVh29vbsm1btVpN9Xpdb968kSRdvXpV4XBYpmlqenpaIyMjPleKTv3DP/yDdnZ2dO3aNb1+/fpC105MTHR9ba9Yu/9r+70+a7M2a7P2u7g+a7M2a7+7a/u9PmuzNmuz9nnX+3E80kAEYc+fP1epVNLq6qrq9XpH15imqVgspmQyqVu3bl1ugQAAAAAAAAi8QAdhT548UTableM4kqTDx5kZhnHiNc0x1WpVjuOoUCjINE3dv39fv/71ry+/aAAAAAAAAATSFb8LOMnLly91/fp1pdPpE0Ow5uuTHieNcRxHqVRK/+E//Ad9++23fXsfAAAAAAAACI7AdYQtLS0pl8sdC7VisZgsy9LVq1dlmqbC4bAkaWxsTJJUq9UkSfV6XY7j6M2bN3IcR+VyubWd8vvvv5dlWcpkMvr000/79p4AAAAAAADgv8AEYY1GQzMzM6pUKpIOgq94PK5YLKapqame5n779q2ePn2qQqEg27aVzWZVLpdVLpc5VD9Adnd3NTExceaYhYUFLSws9KkiAAAAAABwEcvLy1peXj5zzO7ubp+qOS4QQdirV680MzOjvb09pVIpZTIZTU5OejZ/KBRSKpVSKpWS4zhKp9NaX1/X9PS0KpWK/u7v/s6ztdC9/f197ezsnDmm0Wj0qRoAAAAAAHBRjUbj3L/t/eR7ELa5ualoNCrLsrSxseFpAHYS0zRVKpVULpeVTCYVjUa1sbFBZ1gAXLlyRdeuXTtzDJ8TAAAAAADBNTIyovHx8TPH7O7uan9/v08VtfM1CNva2tLMzIwSiYRWV1f7unYsFtPW1pai0ahmZ2f15z//ua/r47hr167p9evXF7pmYWFBjUZj6AIyP9+33z/zYX7vfhnWn/mwru2nYf6ZD/N798uw/syHdW0/+f2+h/Uz9/vn7pdh/ZkP69p+Out9d3Kk0cTEhG9dY4Z79FT6Pvrggw8Ui8X0+PFjv0pQvV7X9PS07t69q9/97ne+1THMmv8AxsfHLxyE+WlQ68Zg4vcN/cLvGvqJ3zf0C79r6Cd+39Avg/y75mftvnWE3b9/X6Zp+hqCSVI4HNbGxoZM09TMzIxu3Ljhaz0AAAAAAAC4HFf8Wvjq1asqFot+Ld8mHA5rfX1djuP4XQoAAAAAAAAuiW8dYffu3fNr6RNNTU1pamrK7zIAAAAAAABwSXzrCOu3u3fv+l0CAAAAAAAAfDQ0QVihUND29rbfZQAAAAAAAMAnQxGEra+vy3VdPXv2zO9SAAAAAAAA4BNfzgi7c+eOtra2Ln2dWq2mer3eOgT/8ePH+t3vfnfp6wIAAAAAACB4fAnCwuGwSqWSDMO41HVc12177TiOXr16pRs3blzquhgOCwsLajQaGhkZ8bsUDAF+39Av/K6hn/h9Q7/wu4Z+4vcN/cLvWncM92ha1Aebm5uKRqMdB2Gu6/YcmjXnyGQy+vTTT3uaC96amJjQzs6OxsfH9fr1a7/LAQAAAAAAl8jPHMCXM8KmpqZkmqakg4DqvIdhGB2NO+3R5LquisWiH28ZAAAAAAAAPvPtsPyZmRlJUrlc1v7+/qmPbDYr13VlWZZKpZL29vbOHH/0sbGxocnJSaXTae3v7+u7777z6y0DAAAAAADAR76cESZJs7Ozsm1bt27dOnXM1taW7t+/r3Q6rS+++KKrdSzL0osXL/TBBx/IMAz98z//c7clAwAAAAAAYID52hE2Ojp65phsNivTNLsOwZpM09T8/Lzy+by+/vrrnuYCAAAAAADAYPItCJOkFy9enPn9jY0NpdNpT9aanp6W67rK5/OezAcAAAAAAIDB4msQdh7btmVZlidzjY2NSZJKpZIn8wEAAAAAAGCwBDoIC4fD2tra8mSuZgBWr9c9mQ8AAAAAAACDJdBB2PT0tB4/ftzzPG/fvlWhUJB0EK4BAAAAAABg+AQ6CEulUqpUKvr888+7nqPRaCgWi0mSDMOQaZpelQcAAAAAAIABEuggLJFIaHJyUouLi/r444+1vb19oeufP3+uyclJ2bbd+trc3JzHVQIAAAAAAGAQGK7run4XcRbHcfTBBx/IMAxJkmVZSqfTMk1Tpmnq/ffflyRtb2+rXq/LcRyVSiWtrq6qXq/LdV0ZhiHXdTU6Oqo3b974+G5wkomJCe3s7Gh8fFyvX7/2uxwAAAAAAHCJ/MwB3uvral0wTVMbGxuanp6WdHAnyXQ6fe51zXyvGaAZhqFisXh5hQIAAAAAACDQAr01ssmyLH3//feampqS67odPQzDaHWCua6r1dVV3bp1y++3AgAAAAAAAJ8MRBAmHXSGVSoVra6uyrKsY99vBl9NzQAskUhob29Pt2/f7me5AAAAAAAACJjAb408KpFIKJFIaGtrS+VyWZVKRY7jqFarSZLGxsZkmqbi8bhisZhCoZDPFQMAAAAAACAIAn9YPt59HJYPP9XrdYXDYb/LAC7Vz/70R0/m+cuvfuvJPAAAABhufuYAA7M1EgC8Ytu2MpmMRkdHNT8/73c5AAAAAIA+GbitkZ1YWlrSnTt39NOf/tTvUgBckG3bevr0qWzbbm17bnZtmaapsbExWZbV2v58VDKZlOM4qlQqra/V63WVy2U9ffpU5XJZ9Xq9j+8IAAAAABAUA9cR9vz5c929e1c3b97U8+fPTxwTjUY1NTWljz/+WD/88EOfK8SwKxQKrZs3XOQRjUY9Wb+btUdHR0+dL5lMdjVnuVzuuOZ6va5MJtP6OeRyOZXLZTmO0wqt6vW6bNtWuVxWLpdTPB5vjc9kMioUCkomk1pbWzs2//z8vB4+fKi1tTVCMAAAAAAYYgMThP3hD3/Q1atXlUwmVSgUZNt264D8oxKJhBzH0XfffSfTNPXVV1/1uVoMs1Qqpb29PVUqFSUSiTPHxmIxlUql1ngvuK6rarWqfD5/5tlXpmkqn8+rWq1qb2/v1HHFYlF7e3sqlUondmAdtri4qEqlor29vXPHNjW3KOZyubavJxIJFYvF1nzN91UqlZRKpVrvzbZt5XI5pdPpVgh2NOxqzuO6rkzT7KguAAAAAMC7J/BB2Nu3b3X9+nVlMpnWH8OdnO8fDodVqVR048YNJRIJffnll32oFjgQDodlWZaKxaJSqdSJYxKJRCtc8vqwdtM0lUqlzgzXKpWKUqlUR8FQOBxuhXaWZZ04Jp/PK5vNyrKsjt6P4ziKRCLHArBUKiXXdVUsFpVIJNrmM01TsVhM+Xxee3t7ymaz565zVKcBHQAAAADg3RP4ICyZTKparUr625avi1hfX5frukqlUvr6668vo0TgTOl0+kJf95JpmicGV4lEouvw7bS6Twv8TlIulxWJROQ4TutrzfA6n893PM/i4qKq1eqx93Jat2hzHQAAAADAcAp0ELa+vq5yuSzDMFqdYKFQ6EIdHeFwWPfu3ZPrun0JHoCjTuu46tcWvZPW6WXtk669SLhk27bi8fix69fX10/tNjuvnq2trbYaOAcMAAAAAHCSQAdhzc6QZkdXtVpVrVbTixcvOtoe2fTxxx9LkqrVKlsk0XenhURjY2P9LSQAHMfRzMzMsa8Xi8WuQrCmZjfZu2Ztba2taw7tLnJDBgAAAACQAh6ENbvBCoWCHj9+rMnJya7mOdzB8uLFC6/KAwbCSYHb1atXPZ2v01AvmUwe69ZKpVKenNtlmqYWFxd7nqcfbNtWOp1WJBJp3bUzEokoGo227ny5tram+fn5c8Oecrncuv5dD4Ycx1GhUGjdMfRoZ6HfhumzAAAAAAbVe34XcJZ6va5IJKJPPvmkp3kOnxdk23avZQHoQrlcPvHfXzcH3p9maWmpdfh+vV4P3Hlg9Xpd8/PzrbtbmqbZurOo4ziybVu2bbe+37zmLM1wsV6vK51Ot85UfJc4jqNkMinHcQK97XUYPgsAAABg0AW6I6x5571eNf/4dl2XbUaAT046o6+XQ/tPEg6HL3Rof781u72kg63f1WpVxWJRxWJRlUpF1Wr1WHfceWHKMGyxNU1TlUpFe3t7ge76G4bPAgAAABh0gQ7CTNP05L/+P3z4sPU8aB0i+Jvd3V1NTEyc+VheXva7THShXC6fGEIvLS15vlYymZR09p0jz1Iul5VMJtu2LcbjcRUKhZ7qyuVyre1yi4uLJwZ2pmmqVCq1dcmdF97n83mZpinTNFUsFnuqcRAEbTvkYcP2WQAAAAAnWV5ePvdv+93dXd/qC/TWyJmZGT158qSnOT777DPZtt2682S/7tSHi9vf39fOzs6ZYxqNRp+qgZdOCwW86Pg8KhaLKZvNXrg7p16va2Zm5tj2zXq9rnK5rHK5rGw22/XB/ocD+fPuYLu4uKg3b94ol8udG+jFYrGh2oLnV9dVOp1u3cDlNMP2WQAAAAAnaTQa5/5t76dAd4QtLS1pb29Pn3/+edfX379/vxWCGYahubk5j6uEV65cuaLx8fEzHyMjI36XiS6cdHC4Fwfkn2ZxcfFC3Z+O42hycvLcMwQdx1E0Gr3wQejdnG2VzWZlWRbbuQOgUCj03BEIAAAADIuRkZFz/7a/csW/OCrQHWHhcFj37t1rdUfcv3//3CCk0WhodXVV2WxWjuO0ArCmIJ8fNOyuXbum169f+10GPOY4zolhzmV0g3WjXq+3DjlPJBKKx+Oanp5WrVZTqVRqHb5/WDweV7Va7bjD9GgIVi6XO/r/oqWlpdZWT/jDcZxzO/gAAAAA/M3CwoIWFhbOHDMxMeFb11iggzDpoCvCtm09evRI2WxW8Xi81UlSqVQ0NjamWq2marXadlc613UlqS0Ee/z4MR1FQJ+d1tEUiUT6XMnJmt1dpVLpWJdaLBZTOp1WPB4/9j6SyaQqlUpHaxwNzDKZjGZnZ8/tWmveUTKId8AcBvV6PdBnkgEAAAC4uMAHYdLBH6jpdForKysqlUoqlUoyDOPE7SpHA7Dm63w+r/n5+f4WDuDUICxId9g7KQRrah5gfzS4s21b5XK5oy2e4XBY4XC41RlWr9cVjUZVKpXO7Spr/n8Y+qt5ZhxbUwEAAIB3S6DPCDssn89rY2NDt27dkuu6xx5NhwMw13VbhxcTggF/k8lkZBhGV49oNHqhtU47GysoHU7hcPjcMMs0zbY7OTad9LXTHB3rOI4ikYgnZ0/Ztq10On1ul129XlehUFA0Gm1bt7n9b3R0VIZhKBKJnLgl1HEcZTKZ1h01I5GI0un0iZ9xc52jvz9HxePx1nyHH17cMfhwLYfXGR0dVTQaPfE9Sgc/z5POjDtc32k/604/i6Z6va5cLqd4PN76+Tfry2QyHQVxjuMol8spEom01Xz4M/ju/v9F/59//r/px//2bx3VBQAAALyrBiYIkw7OFCqVSqpWq8rn80okErIsS6ZpKhQKaXJyUlNTU0okEsrn89rb29OLFy80OTnpd+nA0Ar6XfSmp6c7GnfSAfwXOTQ/lUqdGLil02lFo9FzD+o/qhm4NEOTQqFw4h0mm0FLNBrV6Oio0ul021rNYKtQKLTCp2bgdfhsrOa4XC7XCmccx2mFLUeDq1QqpUqlcu5ZaM3/T79IqNiptbU1GYbRei/ValWu62p9fV31er31no7Wbpqm1tfXj9VUqVRaj8N3Qu30sziqUChodHRUmUxG8Xhc6+vrqlarWllZkaRWuHXSOXGH649EIm2hWbPj8PBn/T/+yxv9tfKtvsv8r/r//Zf/74V+jgAAAMC7ZKCCsKbJyUnNz89rdXVVGxsb+v7771Wr1fT9999rY2NDq6urmp+fVygU8rtUIJCaIUU3j3w+f6G1Tuv88rLjpxcX6Uw7Kci6SIBVKpVa534dnSMajbYO7T+P4zh6+vRpx11HlmUdO/C9Uqm0Arhisahqtaq9vT0tLi62xhQKBdm2rXg8rnK5rFKppL29Pe3t7alUKrV+do7j6OHDhyeu3elh/yf9XHpRLpdbay8tLbXNb1lWK8hyHOdYx3A4HJZlWcdu6ND82uHvXfSzaGqGc+FwWNVqVYuLi63/sJNIJFSpVFo1r62tHQvsarVa25mZTRsbG5qcnGxt6W3+h6Mr/8f/gyRp/7/9m3b/H0UBAAAAw2ogzggD4K1IJNK3uzZevXr1xK930jETNHNzc1pbW2v72sbGxoV+lsViUblcTplM5tj31tbWtLa2pnw+f2Yn1dGtmifN1XR462c+n28Fd4VC4cSz0Zo3KGl2u0WjUaVSKZVKpbZxsVhMKysrrbCpUCj01NXl9Zlx5wW2hz+zo5/pRVzks2gqFAqtbZnZbPbUc+KKxaIikUjrzqvJZLL1OZimKdM0FYvF2ra5ZjIZFYvFts81lUrpf331/9TrL/7vkqT/+r/9v/Tjf/s3/eR/D8cAAACAYTKQHWHn2d7e1vPnz/Xy5Us1Gg2/ywGGWtA7wi7ipMCim/exuLiovb29U7ugmneq7GTu8w7bP+xw2HTaVk1Jx+6UeFqodLj+er0e2M/0tN/Bw1/34lD8Tj+LZlgWDofP3Tp6OFgrl8snbsc9/D5WVlZO/FxHpm+0vf637f93R7UCAAAA75p3Kgjb3t7WzZs3W2eqNA8f/vnPf64ffvjB7/KAoXRaOBD0s8NOclKg8ubNm67nKhaLqlQqJ3aUlctlzczMeBoudboN9PBndpGto0G6w+LKyoqy2ayKxeK5YZPUv2D28FlsnQRnqVSq7TPopevuf/qf/9ad+T/+S3e/twAAAMCgC3wQ9uGHH+rmzZu6fv26rl+/rqtXr2pubu7YuM3NzdZ5N0fvKLmxsaFIJKKvv/7ah3cADLfTuo4uctB8UJwUXJy29bNTlmWdevaabdu+3PG22zt6Bmm7azgc1uLi4qlnsl305gReObzFtNMOssP/hgbx3w0AAAAQJIEPwsLhsCqVit68eaNUKqWNjQ09ffq0bczbt281MzOjvb09SQe3uG9eG4vFZJqm9vf3Oz60GYC3Tup4chwnsFvpLuIiWxPPkkqlVK1Wj4VQa2trgQ4/ug3N+q15h8tyuXziQfj9rOOijv6OvQv/bgAAAAC/BD4Is21bmUxGtVpN9+7d0+Tk5LEx8/PzqtfrMgyj1QWWzWZVq9X04sULff/993rx4oX29/f14MEDH94FMNxO6uKUBrO75Wjw41UQ1pyrUqkcW+Oid+rE3zTvetm8AcFpHYr9cjjE6jQUO3pHyiB13gEAAACDJtBB2GeffSbLsvTw4cNTxzx79kxra2utEMwwDGWzWd27d69tXCwW06NHj1SpVC67bKCvbNsOfLfjaWc0DWLAc7Qb57zOonK5rGg02vH8pmlqZWWl7Wt+beMbdOl0WtFo9NidHf3UzQH9R++o6WX4CgAAAAybQAdhhULh3A6u+fn51lZIwzBkWdaxEKxpbm5OGxsbntcJ+KnZERlk4XD4xLOayuXyQIU8R3/OnXQXmaYp27Yv1P129GcVpEPoB0U6nVahUJDU2wHzXjscYnV6p83DHWCEYAAAAEBvAh2EVatV3bhx49Tv3717t/VHhOu6knSsk+KwUCjUGge8C5pBUjweP3WM19uoup3vtDAik8n0Us6JLisYPBqkp9Ppc69pBhedjD2NX+dZ9ZOXv6e2bbdCMNM0A3WO2dFtws06z3L4DqsnBcoAAAAAOhfoIMw0TW1vb5/4vc3NTeXz+bYtkalU6szgbHNzU9PT05dTLNBn9Xq9tSXyon8cv3nzxtNaOgkxTtueVi6XlcvlPKvFcRxFo9GegqfTHL3jX6c/d9M05ThOx6Hf0Q6w085YGwRHt/WdFlJ62fV2uPvurHn96KRMJBJtwVwn24MPv5+lpaXLKAsAAAAYGoEPwk76r+Vv375tOxPJMAyZpqkvvvjizPnW19cvpfsEOMtl/LFdr9c1MzOjer2ucDh84e1SXtfU6XyLi4snbifMZDKeHJxfLpdbB4tfxna4tbW11vOLnG/W/HxyuVxHHUCH5zZNU4uLixeo8nSdfk6Hx513zXnfP9rNdtL7Pykk9LJD7PDn1tTJekf/XR0N1br9d3S4c9lxnDN/923bbm0fzmazgepuAwAAAAZRoIOwVCqlR48e6cGDB2o0Gmo0Gnr+/Lmmp6flOE6rG0ySisXimXNtbm7q4cOHmpmZ6UfpQMtpHSnd/qHfPHy9+cfx7OzshdfvJWTotXOnVCqd2EkVj8e77gyr1+tKp9OKx+On3nnxrGs7USgUWu/9oncfPByopNNppdPpU9ctFAptP4fDXWgnOfxZ+n1W3GnrH/5ZZTIZpdNplctlra2tKZ1OKxKJHAt5Ov13c9KaR8O3ZDKpXC7X6j6MRCJyHKftc8nn8yqXy8pkMq05jwZhzc/NcZy2M8hOqu2szyKRSLQFtclk8sTx9Xpd8/Pzkg5+504LRDv93P/Hf/lbJ+iP/+3fOroGAAAAeOe4AReLxdwrV660PQzDaP2vYRhuoVA4c46VlRV3bGzMHRsb61PVuIjx8XFXkjs+Pu53KZcilUq5ko49YrGYW61Wz71+b2/PLZVK7uLiomua5rF5isXiqddWq9UT15bk7u3tdfV+LMs6cb58Pn+heRYXF0+cx7Ist1QqdTTH3t6em81m3XA43PqZnve+jq4bDofPXefwzzEWi3VU22H5fP7E95pIJNzFxUU3n8+7qVSq7fPt9Pfj6Odx2u/D3t7esZ/zaRKJREefbalUahuXSqVOXbv5GR19hMPh1ud9eIxlWW61Wj32eXZa29Fxhx/ZbNZ13ZP/bSYSibZ5Tvs9Pem9dvpZNBWLxdZ7DofDbj6fd6vVqlutVt18Pt/6fWjWe5JOP4P/0+/utI379//Lf3D/ly//rxd+AAAAAF7wMwcIfBBWr9fdRCLRCr0OP0ZHR921tbUTr9vc3HTv37/vfvDBB23h2fPnz/v8DnCedzUIq1QqZ/4x7tXjpOBnb2/Pzefzp4YPklzTNN18Pt9xIFapVNxYLHZmLYuLix2FN02lUunUYC0cDruJRMLN5/NuqVRyK5WKWyqV3Hw+72az2bbrwuHwuaFD00nhoGmap4Zvh8OKoyHJRd5ns8ZiseimUik3Fou5lmW1fUbN93xeENj83Trt87UsqxWenDXWNE03kUi0fgeOhnGHH7FYrDVnqVQ69XfBNM0Tw5i9vb22+S3LchcXF9vGNL929Hdob2/v3Pd70prZbLa1nmma7uLiYtvv+97eXut9HP6ZHXU4hLYsq+137SKfxWny+bwbi8XaQrHmdaf9+zzr3+Phz6BarZ467n/6n6+6/5D4PxOEAQAAoO/8zAEM1x2M2yiur6+rVCrJtm2Fw2HdvHlTqVRKoVDo2NiVlZVTt0pGo1E9fPjwssvFBUxMTGhnZ0fj4+N6/fq13+X0rFAoXMpB7SexLEuVSqXta4ZhXHiecDisvb29E7+XTCZPPGPpPKVSqePtg2tra3r48GFru2enTNNUOp1WKpW60NlJzTOpjr6vcDis6elphcNh1et1bWxstM5hKxaLF9oOCQTJz/70R0/m+cuvfuvJPAAAABhufuYAAxOE4d31rgVh6F69Xle5XNbTp0/lOE7rPCbpIPRq3hjg5s2bSiQSF75JwHnrNddsrjM9Pa1kMkkAhoFHEAYAAIAg8TMHeK+vqwHAGcLhsBKJxImH6b8L6wEAAAAA/BXou0Z6bXt72+8SAAAAAAAA4JOhCsKSyaTfJQAAAAAAAMAnQxWENc8aAgAAAAAAwPAZiiCs0Wjozp07qtfrl7ZGLpdTPB7X6OioDMNQJBJRMplUuVy+tDUva+16va5MJqN4PK5IJNI2Z6FQ8Lh6AAAAAACA/vAtCNva2tLNmzd19epVPXjw4MQx09PTunr1ak+Pn/zkJxodHb20AKdcLmt0dFSZTEaSVCwWVa1Wlc1mZdu24vG44vH4pYRwl7F2Lpdr/bzi8bjy+bwqlYoymYwcx1E6nVYkEulLwAcAAAAAAOAlw3Vd14+Fp6enZdv2QRGGoWKxqI8++qhtTDqd1srKimdrGoahH3/80bP5yuWy4vG4JCmVSimfzx8bE41GZdu2TNNUpVJROBwO7NrJZFJra2uyLEuVSuXEMel0uhUqVioVWZbV2xuRv7dNBYBh8LM//dGTef7yq996Mg8AAACGm585gG8dYbZtyzCM1uuTzu+6c+eOpIMA6/CjU91c06l6vd46fN80zRODKOmgS0s6eH9eHdZ/GWvncjmtra1JktbX108dl8/nZZqmJGlmZubCtQMAAAAAAPjFtyBsfn5eh5vREonEsTFTU1OtLibXdRUKhTQ5OSnLsjp6TE5OKhQK6TKa3pLJZGvLYXNr4klM02y9t3K57MkWzctYuzmPZVnndo4156zX663wDAAAAAAAIOh8C8Ly+bxWV1e1uLio77//Xu+///6J4+bn5yUddJDVajV9//332tjY6Ojx/fffq1araX9/X/fu3fOsdsdx2s7Imp2dPXP83Nxc6/lZwZVfax+er9ntdZabN2+2nn/zzTfnjgcAAAAAAAgCX+8amUgk9OjRI01OTp465uOPP5Zpmrpx40ZPa2WzWYVCoZ7mODxXUywW67iDSuq9i+oy1j68LbV5blunrl69eqHxAAAAAAAAfvE1COvE1NSUZwFWJ91OnTi8xbDTw+IPr/306dNArT02NtZ67jjOiee1HXa4C8yrnykAAAAAAMBlC3wQJp19ePtFeHEHyqMdU4e3CZ7lcGjVbUfYZa19NMxKp9NnztecIxwOn3i2GwAAAAAAQBANRBDmVUeYF3ePPHyeltR5R9TRcRfdgniZazdvLnB4ndPuMlkoFFodY4e3aQIAAAAAAATdQARhXmkevN+Lo4fDn3dGV9PRs7Q2NjYCtfbRbrm1tbVjYVi5XG51i+XzeaVSqY7WBwAAAAAACIKhCsLOO/uqmzm67cqqVquBWtuyLBWLxbavra2tKRKJyLZt5XI5xeNxmaapUqlECAYAAAAAAAbOOx+ENRoNbW9va3Z2VvV6vef5vAjTJHVVy2WvnUgklM/nj60ZjUaVyWS0uLioarWqWCzmSR0AAAAAAAD99J4fi759+7btToX94LquJ2eEdRumHd3GWKvVArl2s9PrpAPzy+Wy6vV6x1syL2p3d1cTExM9z7OwsKCFhQUPKgIAAAAAAE3Ly8taXl7ueZ7d3V0PqumOL0FYKBTSjRs3tLm56cfygeBFd9plrZ1KpVSpVFQoFNq+btu2Jicntb6+3na4vlf29/e1s7PT8zyNRsODagAAAAAAwGGNRsOTv9v95EsQJkkff/yxNjc3W11arute2lqGYXg2fzgc9iTE6qarql9rp9NpFQoFpVIplcvlti2Z9Xpd0WhUpVLJ8y2SV65c0bVr13qeZ2RkxINqAAAAAADAYSMjIxofH+95nt3dXe3v73tQ0cX5FoQ1QxTXdWWapkzTvJQtd/V6XY7jeHa+1tjYmCdhVDdbQ/uxdjweV7lc1uLiorLZrKS/BWNHx3kdhl27dk2vX7/2bD4AAAAAAOAdr44impiY8K2zzLcgbGpqSuFwWPF4XE+fPr309QqFgu7evdvzPN2GdUcDrG47wi5z7Wg0Ktu2FYvFWiGYJOXzecXjcSWTybbxyWRSW1tbl3ZmGAAAAAAAgJd8vWtkLBZTPB7vy1qpVEqhUKjneaanp9ted9qhdfSA+kgkEqi1k8mkbNuWpGN3jpQO7ihZqVTaQq96va5MJtNRDQAAAAAAAH7zNQjrVwjWdDRI6kY0Gm173emWy2q12va6my2Fl7W24zhaW1uTJFmWJdM0T5zHsixVKpW2rxUKBV8P/gcAAAAAAOiUr0HY/Pz8se12l+nFixc9z3E0TOs0jDocFoXD4VPDJj/WPtwBdl5YaJrmsY6xjY2NjuoAAAAAAADwk69BmCRPtiue5+3bt1paWvJkLsuy2rYHfvPNNx1ddzgs6rYz7bLWPhyUdbJlM5VKtb326kYEAAAAAAAAl8n3IKwfQqGQSqWSfv7zn3sy3+zsbOt581yt8xwe18u5Wpex9uEzxI5uozyNZVkdjQMAAAAAAAiKoQjCpINOqEqlogcPHvQ8Vzqdbj0vl8vnjj88xjTNrs4Hu8y1D2+V7Ka7q5ttngAAAAAAAP32nt8FXNT29rbq9fqxOyGexbZtFYtFua6rfD6vTz/9tKcaLMtSLBZrhUxra2tKJBKnji8Wi63n53WDFQoFVatVpdPpEwOmy1h7bm5OuVxO0sE2ynq93rYF8ySHA7Negj0AAAAAAIB+MVzXdf0u4jzPnz9XPp/vqAPqLK7ryjAM/fjjjz3X5DhO6zytk+6m2FSv1zU6OirpIDAqlUqnzhmPx9ve497e3omB1GWvvbi4qGw2e+rYcrncuuNnNpvV4uLiqWM7MTExoZ2dHY2Pj+v169c9zQUAOO5nf/qjJ/P85Ve/9WQeAAAADDc/c4DAb4387LPPlEwmVS6X5bpu1w9JMgzDs7OtTNNsdVvZtt3qqDpqZmZG0sHdGg93Z53kaNC3urrat7WLxWIrdMvlcioUCieOcxyndafPWCzWcwgGAAAAAADQL4EOwjY3N1vb+U5qXDMMo6N5DMOQ67qanJzUysqKZ/UlEgmVSiWFw2FlMhklk0nZtq16va5yuaxoNCrbtmVZlra2ts7dbnj0+2edvXUZa29tbbXuCJlOpxWPx1UoFGTbtsrlsjKZjCKRiOr1urLZ7JkdZgAAAAAAAEET6DPC8vm8pIO7PqZSKUUikVY4tLe3p9nZWY2Ojp7aOVWv1/XixQs9efJEtm3rxo0bntcYi8W0t7enXC6np0+famZmpnXG1vT0tIrF4plneB1WLBaVTqdVq9WUSqXOPXvLy7WlgzAsn88rnU63tqI2D+c3TVOWZWlxcVFLS0vnBmsAAAAAAABBE+gzwj744AMZhqHvvvvuxO+n02k9efJE1WpV77///qnzpNNp/fDDD/rzn/98SZWiF5wRBgCXizPCAAAAECScEXYKx3FaXWEnuX//vlzXPfWMrKZMJqMXL17o888/97pEAAAAAAAADIhAB2GSND09fer3JicnNTMzo3w+r0ajceo40zQ1NTWlxcXFM8cBAAAAAADg3RXoIMyyLNVqtTPHZDIZua6r+/fvnznu5s2bcl1Xjx498rJEAAAAAAAADIhAB2GmaapQKJw5JhaLaWpqSvl8Xt9+++2p4zY2NiQdHEgPAAAAAACA4RPoIGx2dlbZbFaff/65tre39fLlS718+fLYuKWlJbmuK8uy9NVXXx37/meffSbbtiUdnDsGAAAAAACA4RPou0ZK0ujo6LFzvaLRqP71X/+17WvxeFzr6+syDEOWZbXOFiuXy3IcR823GYlETr0LJfzBXSMB4HJx10gAAAAEiZ85wHt9Xa0LKysrmp2dlWEYrTCrUqno1atXunHjRmtcPp/XBx98IEmybbvVAXY452uGZAAAAAAAABg+gd4aKUmJREKrq6ttgVY4HG4LwaSD88RevHihow1uhmHIMIzWdSsrK5deMwAAAAAAAIIn8EGYdBCG7e3tKZ/PK5vNnnrOVywW0/fff69bt27Jdd22h2VZ2tjY0MjISJ+rBwAAAAAAQBAEfmtkUygU0vz8/LnjTNNUqVTS27dvW3eKNE1Tk5OTl10iAAAAAAAAAmxggrCLCoVCmpmZafva9va23n//fX8KAgAAAAAAgK8GYmukV9LptN8lAAAAAAAAwCdDFYQ1t0oCAAAAAABg+Azk1sjt7W3V6/WOxzuOo3w+f6FrAAAAAAAA8G4ZiCBse3tb2WxW5XL51DtGnsd1XRmG4XFlAAAAAAAAGBSBD8KWlpaUy+UkHYRZAAAAAAAAQDcCfUbYs2fPlM1mWwEYHV0AAAAAAADoVqA7wh4+fCjpIABzXVemacqyLJmmKUm6evXquXO8efNG9Xpdq6urevv27aXWCwAAAAAAgOAKdBBm23arC6xUKmlmZqbruRYXF3X9+nWvSgMAAAAAAMCACfTWyHA4LOkgxOolBJMk0zQ1OTnpQVUAAAAAAAAYRIEOwppbIG/evOnJfPl83pN5AAAAAAAAMHgCHYQ1u8BqtZqn8wEAAAAAAGD4BDoIe/DggVzXlW3bnsz35MkTT+YBAAAAAADA4Al0EBYKhfTo0SM9ffpUf/3rX3uej62RAAAAAAAAwyvQQZh0cFC+ZVlKJpM9zbO1teVZZxkAAAAAAAAGz3t+F9CJUqmk6elpXb9+XZlMRmNjYx1dV6vVVK/XVa1Wtbq6eslVole7u7uamJg4c8zCwoIWFhb6VBEAAAAAALiI5eVlLS8vnzlmd3e3T9UcNxBB2MuXLyVJ1WpV6XS6qzlc15VhGF6WBY/t7+9rZ2fnzDGNRqNP1QAAAAAAgItqNBrn/m3vp8AHYXfv3lWhUJAkGYYh13UvPAcB2GC4cuWKrl27duaYkZGRPlUDAAAAAAAuamRkROPj42eO2d3d1f7+fp8qahfoIGxlZaV1wH23IZikrq9Df127dk2vX7/2uwwAAAAAANClTo40mpiY8K1rLNBB2NEQLBaLKR6PKxwOX/icsMePH2t7e/sSqwUAAAAAAECQBToIs21bhmEoHA5rY2NDk5OTXc81Pz+vq1evelgdAAAAAAAABskVvws4SzgcliQtLS31FII155qamvKgKgAAAAAAAAyiQAdh0WhUkmSapifzrayseDIPAAAAAAAABk+gg7B0Oi3XdeU4jifz0REGAAAAAAAwvAIdhCUSCU1NTenp06eezPf8+XNP5gEAAAAAAMDgCXQQJknFYlGVSkVfffVVz3M9fPjQg4oAAAAAAAAwiAIfhJmmqcePH+uTTz7paZ63b9/Ktm2PqgIAAAAAAMCgec/vAs7S3Mr493//9xodHdX169eVSCQuPE+9Xtfq6qrX5QEAAAAAAGCABDoI+/TTT7W5udl67bqucrlcV3O5rivDMLwqDQAAAAAAAAMm0FsjZ2dn5bquXNeVJIIsAAAAAAAAdC3QQVg6nZZ0EIA1A7FuHwAAAAAAABhugd4aGQqFZFmWNjc3lc1mZVmWxsbGLjyP4zj69NNP9erVK++LBAAAAAAAwEAIdBAmSXNzc4pEIrp3717Xc0xNTen27dtdhWgAAAAAAAB4NwR6a6QkxWIxz7Y2Tk9PezIPAAAAAAAABk/gg7CpqSlls1lP5vJqHgAAAAAAAAyeQAdhjUZDd+/e1Z07d/T555/3PN/U1JQHVQEAAAAAAGAQBfqMsEQiofX1dbmuq3K5rMnJSX300Ud+lwUAAAAAAIABFOiOsHK53PY6HA77UwgAAAAAAAAGXqCDMNM0JUmGYSiRSOjWrVs+VwQAAAAAAIBBFeggLJVKte4Y+fTp057nu3v3bs9zAAAAAAAAYDAFOghbXFzUzMyMJOmHH37oeb6jWy0BAAAAAAAwPAIdhElSqVTSRx99pEQiob/+9a9dz7O1tSXHcTysDAAAAAAAAIMk8EGYJH355ZdKpVKyLEtffvmlGo1GR9c1Gg01Gg29fPlSyWTykqsEAAAAAABAkL3ndwFn+eCDD7S1tdV67bquUqmUUqnUhedyXVeGYXhZHgAAAAAAAAZIoDvCmoflNx+GYbS9vsgDAAAAAAAAwy3QQVg6nZYkGYbRCsG6QScYAAAAAAAAAr01MhQK6fbt23r27JkkKRaLKRwOX3gex3Fk27bH1QEAAAAAAGCQBDoIkw66wp4/f65KpaIbN250PU+hUNDdu3e9KwwAAAAAAAADJdBbI6WDLrBQKNRTCCb97bwxAAAAAAAADKfAB2GStLS0pEaj0fM83dxtEgAAAAAAAO+GwG+NlKR79+55Ms/jx489mQcAAAAAAACDZyCCsKMajYbK5bJKpZJqtZocx9HY2JhM01QkElEikdD777/vd5kAAAAAAAAIkIEKwra3t5XJZLS2ttb2ddd1ZRhG63Umk5Fpmrp//75+/etf97tMAAAAAAAABNBAnBEmSSsrK4pEIlpbW5Pruq2HpLYQTDoIxqrVqlKplH7+85/rhx9+8KNkAAAAAAAABMhABGGfffaZ7ty50xZ8NcOvw6HY4XCs+b2NjQ1FIhF9++23vtQOAAAAAACAYAj81shnz54pk8m0wq9m0GVZlqanpxWJRBQOh2WapsbGxuQ4jmq1mqrVqtbW1uQ4jvb39zUzM6ONjQ3ODgMAAAAAABhSgQ/CmiGY67oKh8PKZrOanZ1VKBQ6cfzU1FTr+aNHj7S5ualPP/1Uz5490507d/TnP/+5X6UDAAAAAAAgQAIdhD179kyO40iS0um0vvjiiwvPMTU1pWKxqFwup6WlJX399df6x3/8R69LhQd2d3c1MTFx5piFhQUtLCz0qSIAAAAAAHARy8vLWl5ePnPM7u5un6o5LtBB2NOnT2UYhrLZrH7/+9/3NNfi4qLK5bJWV1cJwgJqf39fOzs7Z45pNBp9qgYAAAAAAFxUo9E49297PwU6CLNtW5Zl9RyCNaXTad2/f9+TueC9K1eu6Nq1a2eOGRkZ6VM1AAAAAADgokZGRjQ+Pn7mmN3dXe3v7/eponaBDsIcx1GhUPBsvnA43NpqieC5du2aXr9+7XcZAAAAAACgS50caTQxMeFb19gVX1a9ANM0PZuLEAwAAAAAAGB4BToIM03T0/Aqn897GqwBAAAAAABgcAQ6CLMsS8Vi0ZO57t+/3zpzDAAAAAAAAMMn0EHY7OysSqWSHjx40PUcjUZDc3NzyuVyMgxD6XTawwoBAAAAAAAwKAIdhCUSCU1OTiqbzeo3v/mNtre3O7725cuXmpub0+joqNbW1mQYhizL0q1bty6vYAAAAAAAAARWoO8aKR2c6/Xhhx8qn88rn88rFovJsixFIpHWeV/1el21Wk2VSkUbGxuybbt1veu6kiTDMLSysuLLewAAAAAAAID/Ah+ExWIxPX78WHfu3JFhGCqXyyqXy6eObwZf0kH4ZRiGXNfV6uqqbty40YeKAQAAAAAAEESB3hrZlEqltLq6qlAo1BZ0ua577NEMv5oBWCgUUqVS0e3bt318BwAAAAAAAPDbQARh0sF5YVtbW7p3714r9DpJ83uhUEjZbFa1Wk1TU1N9rhYAAAAAAABBE/itkYc1w61sNqv19XXZtq1qtaparSZJGhsbUyQSUSwWI/wCAAAAAABAm4EKwg6bmZnRzMyM32UAAAAAAABgQAzM1kgvPH/+3O8SAAAAAAAA4JOhCsIymYzfJQAAAAAAAMAnQxOEPXv2TI7j+F0GAAAAAAAAfDIwZ4S9evVK5XJZ1Wr1QoFWrVZTvV4nBAMAAAAAABhygQ/Ctre3lU6nVS6Xu7redd3Wc8MwvCoLAAAAAAAAAybwQVgsFtPW1pZc1+0qyGpeczgQAwAAAAAAwPAJdBB2584dOY4jwzBkGAZhFgAAAAAAALoW6MPyNzY2Ws8nJydVLBa1t7en/f39Cz0qlYpu377t4zsBAAAAAACA3wLdEWbbtgzDUDgclm3bGhkZ6WqeqakpFYtFjY2NeVwhAAAAAAAABkWgO8LC4bAkaXZ2tusQ7LBUKtXzHAAAAAAAABhMgQ7CksmkJCkSiXgy36NHjzyZBwAAAAAAAIMn0EHY/fv35bpu21lhvWg0Gp7MAwAAAAAAgMET6CBscnJSjx8/VrFY1LffftvzfDMzMx5UBQAAAAAAgEEU6CBMOjjX65NPPlEikdBf//rXnuaybdujqgAAAAAAADBoAn3XyOZWxvv376tSqejWrVvKZrMXuvtjrVZTvV5XPp+/rDIBAAAAAAAwAAIdhL3//vt6+/Zt29fi8XhXc7muK8MwvCgLAAAAAAAAAyjQWyPn5+flum7rIant9UUeAAAAAAAAGG6BDsI+/vhjSWp1chFoAQAAAAAAoFuB3ho5NTUl0zS1tbWlWCwmy7J09erVC83x5s0b1et1FQqFS6oSAAAAAAAAgyDQQZgkJRIJbW5u6j/9p//U0zyLi4u6fv26R1UBAAAAAABg0AR6a6Qkzc3NKRQK9TyPaZqampryoCIAAAAAAAAMosAHYVNTU1paWvJkrmKx6Mk8AAAAAAAAGDyBD8IkedbJNTk56ck8AAAAAAAAGDy+BWGvXr3ya+kTNRoNbW9v+10GAAAAAAAALolvQdinn36qBw8e+LX8MclkUmtra36XAQAAAAAAgEvi210jC4WCTNNUJBLRr3/9a7/KkCTdvXtXtVpNv//9732tAwAAAAAAAJfHtyAsHA5rdXVVH374oST5FobdvXtXq6urqlQqvqyPv9nd3dXExMSZYxYWFrSwsNCnigAAAAAAwEUsLy9reXn5zDG7u7t9quY434IwSYrFYnr06JHm5+dVrVb16aef9m3tRqOh+fl5ra2tqVKp6P333+/b2jjZ/v6+dnZ2zhzTaDT6VA0AAAAAALioRqNx7t/2fvI1CJOkxcVFSdL9+/dVLpeVzWb1j//4j5e65pMnT5TJZFSv17WxsaEbN25c6nrozJUrV3Tt2rUzx4yMjPSpGgAAAAAAcFEjIyMaHx8/c8zu7q729/f7VFE7w3Vd15eVjygUCrpz544Mw1A0GtXS0pL+6Z/+ybP5X758qVKppEKhoHq9rsnJSZVKJU1OTnq2BrozMTGhnZ0djY+P6/Xr136XAwDvnJ/96Y+ezPOXX/3Wk3kAAAAw3PzMAXzvCGtKpVIaGxvT/Py8NjY2lEgkJEmWZSkWi+nmzZsyTVOmaZ7ZFdRoNFSr1eQ4jkqlksrlsmzbbn3fdV0lEgmtrq5e+nsCAAAAAABAcAQmCJOkRCKheDyuRCKh9fV1SZJt221B1lHhcFj1ev3MeQ83vRUKBX3yySee1AsAAAAAAIDBccXvAo4KhUIqlUpaXV2VZVlyXbcVZDWfH37s7e2d+PXDD+ngLLK9vT1CMAAAAAAAgCEVuCCsKZFIaGNjQ6VSSbdv39ZJR5kZhtH2OMo0zVYA9ujRI4VCoX6UDgAAAAAAgAAK1NbIk8zMzGhmZkaStLm5qXK5rG+++Ub1el21Wq21LTIcDss0TY2NjSkejysWixF8AQAAAAAAoCXwQdhhU1NTmpqa8rsMAAAAAAAADKDAbo0EAAAAAAAAvEQQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAofCe3wVchu3tbdm2rXA4rOnpaY2MjPhdEgAAAAAAAHz2TgVh29vbSiaTsm277evRaFTFYlE//elPfaoMAAAAAAAAfgv81sgPP/xQN2/e1PXr13X9+nVdvXpVc3Nzx8Ztbm4qGo3Ktm25rtv22NjYUCQS0ddff+3DOwAAAAAAAEAQBD4IC4fDqlQqevPmjVKplDY2NvT06dO2MW/fvtXMzIz29vYkSYZhtK6NxWIyTVP7+/tKJpN9rx8AAAAAAADBEPggzLZtZTIZ1Wo13bt3T5OTk8fGzM/Pq16vyzCMVhdYNptVrVbTixcv9P333+vFixfa39/XgwcPfHgXAAAAAAAA8Fugg7DPPvtMlmXp4cOHp4559uyZ1tbWWiGYYRjKZrO6d+9e27hYLKZHjx6pUqlcdtkAAAAAAAAIoEAHYYVC4dwOrvn5+dZWSMMwZFnWsRCsaW5uThsbG57XKUm5XE7xeFyjo6MyDEORSETJZFLlcvlS1vN7bdu2tba2plwu15f3CAAAAAAA0KtAB2HValU3btw49ft3795VvV6XJLmuK0laWVk5dXwoFGqN80q5XNbo6KgymYwkqVgsqlqtKpvNyrZtxeNxxePxVp2Duna9Xlcul1M0GpVhGJqZmdE333wjy7I0PT3d8/wAAAAAAACX7T2/CziLaZra3t7W+++/f+x7m5ubyufzbVsiU6nUmcHZ5uamp6FNuVxWPB6XJKVSKeXz+bbaE4mEotGoyuWyotGoKpWKwuHwQK1dr9eVyWRUKBQkSZZlqVQqKRaLefI+AAAAAAAA+iXQHWGmabYCmMPevn3bdgdIwzBkmqa++OKLM+dbX19vdU/1ql6vt2owTbMtiDqsWCxKkhzH8eyulf1au1AoaHJysvUZ5PN5VSoVQjAAAAAAADCQAh2EpVIpPXr0SA8ePFCj0VCj0dDz5881PT0tx3Fa3WDS30Kf02xuburhw4eamZnxpLZkMtnacnhWuNbszpIOurhOCvaCuHYmk1E6nVa9XpdpmqpWq0qlUj3VDQAAAAAA4CfD9frQLI/F43G9fPmy7WvNrZDN0vP5vObn50+d48mTJ63A6M2bNz3X5DiOIpFI6/Xe3t6Z2w7X1tZaHVnhcFh7e3uBXjuZTGptba11zdbWlmdbOk8yMTGhnZ0djY+P6/Xr15e2DgAMq5/96Y+ezPOXX/3Wk3kAAAAw3PzMAQLdESYdBDkfffSRXNdtPaSDMCwcDqtYLJ4Ygr169UpLS0u6fv260um09vb2VK/X9dVXX/VcUzabbT2PxWLnhkTNrizpYFtjM2QK4trxeLxtjJfnmgEAAAAAAPgp0IflSwd3eiwWi1pfX1epVJJt2wqHw7p586ZSqZRCodCxa1ZWVlpbJScnJzU5Odn63r/+67/qn/7pn3qq6fAWQ8uyOrrGNE05jiNJevr0aVtAFZS1C4WCyuVy63U+n5dpml3VCQAAAAAAEDSBD8KaZmZmOj7fa35+/sytkr2wbbvt9c2bNzu6zrKsVhjVbUfYZa7tOI7S6XTbNZwJBgAAAAAA3iWB3xrppVevXvU8x+GOKUkdd0wdHXc01PJ77aN3lVxaWrpgdQAAAAAAAMEW+CBse3vbs7m86BL75ptv2l53en7W1atX215vbGwEZm3HcdrCsXA43PXWTQAAAAAAgKAKfBB2eLteL7a2trrqwjqqucWwqduurGq1Gpi18/l82+tYLCbpb3ecjEQiMgxDo6OjikajyuVyqtfrF6weAAAAAADAX4E/I+xo+NOtTCbjyTxe1dNNkHRZax8+gF+SxsbGFI1GjwWH9Xpdtm3Ltm1lMhkVi0U6xwAAAAAAwMAYiCDsr3/9q/7u7/6u6zn+8Ic/aG1tTYZh9FxPt51QR7cx1mq1QKztOM6xeVdXV5XNZjU7O9u61nEcZbPZttAsmUx6Gobt7u5qYmKi53kWFha0sLDgQUUAAAAAAKBpeXlZy8vLPc+zu7vrQTXdCXwQ5rquMpmM/vmf/7mr65eWlpTL5Tyuqnd+bi08vPbRLrNwOKytra1j4Zlpmsrn84pGo23bVefn5xWLxTo+r+ws+/v72tnZ6XmeRqPR8xwAAAAAAKBdo9Hw5O92PwU+CJMOzrBKJpP6x3/8xwtdNzc3p7W1Nbmu61kt4XDYkxCrm+DoMtY+GoSlUqkza0ulUqpUKq3OsHq9rocPHyqbzfZc15UrV3Tt2rWe5xkZGel5DgAAAAAA0G5kZETj4+M9z7O7u6v9/X0PKrq4gQjCXNdVMpnU1tZWR1skt7e3FY/H5TiOXNeVYRiehWFjY2OehFFjY2OBWPvowfk3b9489/pMJtO2RTKXy3kShF27dk2vX7/ueR4AAAAAAOA9r44impiY8K2zLPB3jZSkRCKhWq2mmZmZc8c+e/ZMkUik1enUDMG8Oseq2y2ARwOsbjvCvF67m7pM05RlWW1f8+KOnAAAAAAAAJcp8EFYLBbT6uqqNjY2tLGxoY8//vjUsUtLS5qdnW11f7muq1AoJNu2tbq6qtu3b/dcz/T0dNvrTju0jh6OH4lEArF2N3WcVItXd7QEAAAAAAC4LIEPwpqdR5ZlaWNjQ6urq3rw4EHbmEajoZs3byqXy7VthYzFYtra2tKNGzckHQRlvYpGo22vOw2Ajm5BjMVigVj7aAdYp+Ha0QCtm7tgAgAAAAAA9FPgg7BHjx61nluWpdXVVT169EhffvmlJGlzc1OTk5OybbstBMtms3rx4oVCoVDr+qmpqZ7r6bYT6nDAFA6HZZpmINbuds6jAVo3Z54BAAAAAAD0U+CDsKMSiYQeP36sVCqlu3fvanp6Wnt7e63vh0IhVSoV3bt379i1f/jDH3pe37KsthDom2++6ei6jY2N1vOj4ZOfax896+to91inugn2AAAAAAAA+mnggjBJSqVS+v3vf698Pn/iVsjTOr9KpZIn68/Ozraed3pI/OFxmUwmUGsf3ipZLpc7mvPoFsqjgRoAAAAAAEDQDGQQJknZbLZ1+L3rusrlcse2Qh51uDOqF+l0uvW8k+Do8BjTNLs6H+wy1z4cjjmO09E5YYc7x3p5PwAAAAAAAP3ynh+Lvn37Vuvr6z3P8/HHH2t9fV3pdFqmaer58+cnjqvVasrn8x0fBH8ey7IUi8VaIdPa2poSicSp44vFYuv5ed1ghUJB1Wq19Z76sXYsFpNpmq3zwR4+fKhsNntmnYcDtvPGAgAAAAAABIHhuq7b70Xfvn2r0dFRGYbRtzWbWyh//PFHT+ZzHKd150TLslSpVE4cV6/XNTo6KukgcDpre2Y8Hm8LmPb29o4dSn9Za9u23XZXymq1euq5X+VyWfF4XNLBNtV8Pn/qvJ2YmJjQzs6OxsfH9fr1657mAgAc97M//dGTef7yq996Mg8AAACGm585gC9bI0OhkCzLkuu6PT8kdTTGa6ZptrqtbNtWLpc7cdzMzIykg7ssHu7OOsnRrY6rq6t9W9uyrLZAKx6Pn9hBV6/XW9szj14DAAAAAAAQZL6dEdY8V6rXrrBOgq7LCsMSiYRKpZLC4bAymYySyaRs21a9Xle5XFY0GpVt27IsS1tbWyd2dx129Ptn3YnR67Wlg+6u5pyO42hyclK5XE62bbcCt8nJSTmOo1QqdWonGgAAAAAAQBD5sjVSkjY3NxWNRmUYhu7du6dIJKKxsTHP16nVaqrX63r8+LG2t7c92xp5VC6X09OnT1uHzYfDYU1PTyudTp95htdh5XJZ6XRatVpNqVSq47O3vFj7qEKhoGKxqI2NjdaczcP2Tzu/rFtsjQSAy8XWSAAAAASJnzmAb0GYJI2NjSmXy+mTTz659LUcx9H169cvLQhD9wjCAOByEYQBAAAgSIbujLCm5t0K+8E0TU1OTvZlLQAAAAAAAASPr0HY3NzcpWyHPE232wQBAAAAAAAw+N7zc/Hbt2/3db1Hjx71dT0AAAAAAAAEh68dYQAAAAAAAEC/DEwQ9vLlSy0tLenJkyfnjn327JmuX7+ur776qg+VAQAAAAAAYBD4ujWyU3Nzc1pbW2u9fvv2rX73u9+dOv727duanJxULBbTw4cPVSwW9dOf/rQfpQIAAAAAACCgAt8RdvfuXRWLRbmuK9d1JUkvXrw49zrLsuQ4jr777jtFo1F9++23l10qAAAAAAAAAizQQdjbt2+Vz+dlGIYMw5Akua6rZDLZ0fXhcFiVSkW1Wo0wDAAAAAAAYMgFOgh7+PChpIPwKxQKKZVKqVqt6pNPPul4DtM0NT8/r/39/Y4DNAAAAAAAALx7Ah2ElctljY6OqlQqqVar6fHjx5qcnLzwPB9++KEkqVqt6ssvv/S6TAAAAAAAAAyAQAdhjuNoaWlJMzMzPc1jmmbr+erqaq9lAQAAAAAAYAAFOgir1+ttIVa3arWapIMtlhsbGz3PBwAAAAAAgMET6CDMNM1WiNWLUqnUel6v13ueDwAAAAAAAIMn0EGYZVkqFos9z1MoFFp3nQyHwz3PBwAAAAAAgMET6CAslUqpXC7r66+/7nqOubm5VheYYRianp72qDoAAAAAAAAMkkAHYbFYTDdu3FAsFrtwGNZoNDQ3N6disSjDMOS6riQpmUxeRqkAAAAAAAAIuEAHYZK0srIi13UVi8X0y1/+8txArNFo6O7duxodHdXa2lrr64ZhyDRNffLJJ5ddMgAAAAAAAALoPb8LOI9lWVpdXdXs7KxKpZJKpZLC4bBM02w9JMlxHNm2LcdxJKnVAdbsBjMMw5PzxgAAAAAAADCYAh+ESVIikdDGxoZmZmb09u1b1et12bYt27bbxjXDL0mtw/Fd11U4HNb6+rpu3LjRz7IBAAAAAAAQIIHfGtlkWZa2t7d17949ua577CEdhF+HAzDXdZVKpbS1taWpqSk/ywcAAAAAAIDPBqIjrCkUCimbzSqbzWp9fV2lUkm2batWq8lxHI2NjSkcDmt6elrxeFyxWEyhUMjvsgEAAAAAABAAAxWEHTYzM6OZmRm/ywAAAAAAAMCAGJitkb14+/atlpaW/C4DAAAAAAAAPhqKICwUCqlUKunnP/+536UAAAAAAADAJ0MRhEnS9PS0KpWKHjx44HcpAAAAAAAA8MHAnRG2vb2ter2uWq3W8TW2batYLMp1XeXzeX366aeXWCG6tbu7q4mJiTPHLCwsaGFhoU8VAQAAAACAi1heXtby8vKZY3Z3d/tUzXEDEYQ9f/5c+Xxe5XK557nq9XrvBeFS7O/va2dn58wxjUajT9UAAAAAAICLajQa5/5t76fAB2GfffaZ7t+/L0lyXbfreQzDkGEYsizLq9LgsStXrujatWtnjhkZGelTNQAAAAAA4KJGRkY0Pj5+5pjd3V3t7+/3qaJ2gQ7CNjc3lclkZBjGiSHYaV8/bZxpmlpZWbmMUuGBa9eu6fXr136XAQAAAAAAutTJkUYTExO+dY0FOgjL5/OSDu76mEqlFIlEZJqmJGlvb0+zs7MaHR3V6urqidfX63W9ePFCT548kW3bunHjRr9KBwAAAAAAQMAEOggrl8uKRCL67rvvTvz+/Py8njx5okgkovfff//EMbdv35Yk3b9/X3/+858vq1QAAAAAAAAE3BW/CziL4zitrrCT3L9/X67rKpfLnTlPJpPRixcv9Pnnn3tdIgAAAAAAAAZEoIMwSZqenj71e5OTk5qZmVE+nz/zboKmaWpqakqLi4vcdRAAAAAAAGBIBToIsyxLtVrtzDGZTEau67buLHmamzdvynVdPXr0yMsSAQAAAAAAMCACHYSZpqlCoXDmmFgspqmpKeXzeX377benjtvY2JAkFYtFT2sEAAAAAADAYAh0EDY7O6tsNqvPP/9c29vbevnypV6+fHls3NLSklzXlWVZ+uqrr459/7PPPpNt25IOzh0DAAAAAADA8DFc13X9LuIso6Ojx871ikaj+td//de2r8Xjca2vr8swDFmW1TpbrFwuy3EcNd/mWXehhD8mJia0s7Oj8fFxvX792u9yAOCd87M//dGTef7yq996Mg8AAACGm585wHt9Xa0LKysrmp2dlWEYrTCrUqno1atXunHjRmtcPp/XBx98IEmybbvVAXY452uGZAAAAAAAABg+gd4aKUmJREKrq6ttgVY4HG4LwaSD88RevHihow1uhmHIMIzWdSsrK5deMwAAAAAAAIIn8EGYdBCG7e3tKZ/PK5vNnnrOVywW0/fff69bt27Jdd22h2VZ2tjY0MjISJ+rBwAAAAAAQBAEfmtkUygU0vz8/LnjTNNUqVTS27dvW3eKNE1Tk5OTl10iAADvNK/OGpM4bwwAAAD+GJgg7KJCoZBmZmb8LgMAAAAAAAABEeitkY1GQ3fv3tUvfvELff75536XAwAAAAAAgAEW6I6wRCKh9fV1ua6rcrmsyclJffTRR36XBQAAAAAAgAEU6I6wcrnc9jocDvtTCAAAAAAAAAZeoIMw0zQlSYZhKJFI6NatWz5XBAAAAAAAgEEV6CAslUrJdV1J0tOnT3ue7+7duz3PAQAAAAAAgMEU6CBscXGxdefHH374oef5jm61BAAAAAAAwPAIdBAmSaVSSR999JESiYT++te/dj3P1taWHMfxsDIAAAAAAAAMksAHYZL05ZdfKpVKybIsffnll2o0Gh1d12g01Gg09PLlSyWTyUuuEgAAAAAAAEH2nt8FnOWDDz7Q1tZW67XrukqlUkqlUheey3VdGYbhZXkAAAAAAAAYIIHuCGselt98GIbR9voiDwAAAAAAAAy3QAdh6XRakmQYRisE6wadYAAAAAAAAAj01shQKKTbt2/r2bNnkqRYLKZwOHzheRzHkW3bHlcHAAAAAACAQRLoIEw66Ap7/vy5KpWKbty40fU8hUJBd+/e9a4wAAAAAAAADJTAbI1s3uFxe3tb29vbrTtDxmIxhUKhnkIw6W/njQEAAAAAAGA4+RqE/eQnP2k9RkdHNTo6qkgkokgkotXV1da4paWlVjDWi27uNgkAAAAAAIB3g69bI492aMViMaXT6VYXWNO9e/c8We/x48eezAMAAAAAAIDB4/sZYc07OpZKJd26dcvnagAAAAAAAPCuCsQZYdlslhAMAAAAAAAAlyoQQVgikfC7BAAAAAAAALzjAhGEvf/++36XAAAAAAAAgHec70FYOBzu21rXr1/v21oAAAAAAAAIFt+DsLGxsb6tVa1W+7YWAAAAAAAAgsX3IKxfNjc3W3eoBAAAAAAAwPAZiiCs0Wgok8n4XQYAAAAAAAB89J7fBTiOo1/84heXMnetVlO9XpfjOHJdl46wgNvd3dXExMSZYxYWFrSwsNCnigAAAAAAwEUsLy9reXn5zDG7u7t9quY434MwSSqXy5cyr+u6lzIvLsf+/r52dnbOHNNoNPpUDQAAAAAAuKhGo3Hu3/Z+CkQQdlkOd4ARigXflStXdO3atTPHjIyM9KkaAAAAAABwUSMjIxofHz9zzO7urvb39/tUUbtABGGXGVKxHXJwXLt2Ta9fv/a7DAAAAAAA0KVOjjSamJjwrWssEEGYZVmXNnfzjDAAAAAAAAAMN9+DMNM0tbGxcalrOI6jZDKpV69eXeo6AAAAAAAACK4rfhfQD6ZpamVlxe8yAAAAAAAA4KOhCMKky91+CQAAAAAAgODzPQir1Wp9W2tqaqpvawEAAAAAACBYfA/C6vV639a67LPIAAAAAAAAEFy+B2GSOMQeAAAAAAAAly4QQVihUPC7BAAAAAAAALzjAhGE5fN5ffXVV36XAQAAAAAAgHdYIIIwSUokEvrlL3+pr776So1Gw+9yAAAAAAAA8I7xPQhzXbf1ePHihW7fvq3R0VE9efLE79IAAAAAAADwDnnPz8X39/clSW/fvpUk1Wo1SQd3kjRN07e6AAAAAAAA8O7xNQhrCoVCbf8LAAAAAAAAeM33rZEAAAAAAABAPxCEAQAAAAAAYCgQhAEAAAAAAGAoEIQBAAAAAABgKBCEAQAAAAAAYCgQhAEAAAAAAGAoEIQBAAAAAABgKBCEAQAAAAAAYCj4GoQ9efJE169f18cff+xnGQAAAAAAABgCvgVhm5ubSqVSqlarKhaLev78uV+lAAAAAAAAYAj4FoQ9fPhQkmQYhiQpHA77VQoAAAAAAACGgG9BmG3bkiTXdZXP53Xr1q0Tx83Nzenly5f9LA0AAAAAAADvIN+CMMdxNDo6qkqlok8++eTUccViUY7jeLLmq1evPJkHAAAAAAAAg8e3ICwcDmtpaUlTU1N9WzOTyfRtLQAAAAAAAASLb0GYaZoyTbOva3rVWQYAAAAAAIDB41sQNjc3p6dPn/Ztvc3NTYIwAAAAAACAIfaeXwunUillMhltbW0plUrJNE2NjY2dOLZSqXTdPVav1+U4jj799NNeygUAAAAAAMCA8y0IC4VCWl1d1ezsrCqVypljC4WCCoVCT+u5rivDMHqaAwAAAAAAAIPLt62RkpRIJLS6uirXdU99SDrz+50+AAAAAAAAMNx8DcKkgzBsb29P8/PzCofDfpcDAAAAAACAd5RvWyMPC4VCyufzyufz2trakm3bqtVqcl1Xd+7cUTKZ1PT0dFdzv3nzRo7jaG1tzeOqAQAAAAAAMEgCEYQdNjk5qcnJydbrO3fuKB6P65NPPulp3nK5rF/84he9lgcAAAAAAIAB5fvWyH6JxWJtARsAAAAAAACGy9AEYZJkmqbfJQAAAAAAAMAngdsaedTe3p5CoZAncxWLRU/mAQAAAAAAwOAJfBDmVQjm9Vzw3u7uriYmJs4cs7CwoIWFhT5VBAAAAAAALmJ5eVnLy8tnjtnd3e1TNccFPgg7SaPRULlcVqlUUq1Wk+M4Ghsbk2maikQiSiQSev/99/0uExe0v7+vnZ2dM8c0Go0+VQMAAAAAAC6q0Wic+7e9nwYqCNve3lYmk9Ha2lrb113XlWEYrdeZTEamaer+/fv69a9/3e8y0aUrV67o2rVrZ44ZGRnpUzUAAAAAAOCiRkZGND4+fuaY3d1d7e/v96midobruq4vK1/QysqK7ty5I+kg+Go6HIA1Nb9vGIai0aiKxaJ++tOf9qdQXNjExIR2dnY0Pj6u169f+10OALxzfvanP/pdwjF/+dVv/S4BAAAAPvEzBxiIu0Z+9tlnunPnTlvA1QzAXNc99mhyXVcbGxuKRCL69ttvfakdAAAAAAAAwRD4rZHPnj1TJpNphV/NoMuyLE1PTysSiSgcDss0TY2NjclxHNVqNVWrVa2trclxHO3v72tmZkYbGxucHQYAAAAAADCkAh+ENUMw13UVDoeVzWY1Ozt76h0gp6amWs8fPXqkzc1Nffrpp3r27Jnu3LmjP//5z/0qHQAAAAAAAAES6K2Rz549k+M4cl1X6XRatVpN8/Pzp4ZgJ5mamlKxWNSjR49UKpX09ddfX2LFAAAAAAAACKpAB2FPnz6VYRjK5XL64osvepprcXFRMzMzWl1d9ag6AAAAAAAADJJAB2G2bcuyLP3+97/3ZL50Oq1yuezJXAAAAAAAABgsgT4jzHEcFQoFz+YLh8NyHMez+QAAAAAAADA4At0RJkmmaXo2FyEYAAAAAADA8Ap0EGaapqfhVT6f9zRYAwAAAAAAwOAIdBBmWZaKxaInc92/f7915hgAAAAAAACGT6CDsNnZWZVKJT148KDrORqNhubm5pTL5WQYhtLptIcVAgAAAAAAYFAEOghLJBKanJxUNpvVb37zG21vb3d87cuXLzU3N6fR0VGtra3JMAxZlqVbt25dXsEAAAAAAAAIrEDfNVI6ONfrww8/VD6fVz6fVywWk2VZikQirfO+6vW6arWaKpWKNjY2ZNt263rXdSVJhmFoZWXFl/cAAAAAAAAA/wU+CIvFYnr8+LHu3LkjwzBULpdVLpdPHd8MvqSD8MswDLmuq9XVVd24caMPFQMAAAAAACCIAr01simVSml1dVWhUKgt6HJd99ijGX41A7BQKKRKpaLbt2/7+A4AAAAAAADgt4EIwqSD88K2trZ07969Vuh1kub3QqGQstmsarWapqam+lwtAAAAAAAAgibwWyMPa4Zb2WxW6+vrsm1b1WpVtVpNkjQ2NqZIJKJYLEb4BQAAAAAAgDYDFYQdNjMzo5mZGb/LAAAAAAAAwIAYmK2RAAAAAAAAQC8IwgAAAAAAADAUCMIAAAAAAAAwFAjCAAAAAAAAMBQIwgAAAAAAADAUCMIAAAAAAAAwFAjCPJLL5RSPxzU6OirDMBSJRJRMJlUul9+ptSORiAzD0NramudzAwAAAAAAXCaCsB6Vy2WNjo4qk8lIkorFoqrVqrLZrGzbVjweVzweV71eH/i1M5mMHMfxZC4AAAAAAIB+e8/vAgZZuVxWPB6XJKVSKeXz+db3TNNUIpFQNBpVuVxWNBpVpVJROBweyLXL5bJyuVyvZQMAAAAAAPiGjrAu1et1JZNJSQfB0+Eg6rBisShJchynNX7Q1j68HgAAAAAAwKAiCOtSMplsbTlsbk08SbM7SzroqioUCgO39vz8vMbGxjzrZgMAAAAAAPBDoIOwRqOhu3fv6he/+IU+//xzv8tpcRyn7SD62dnZM8fPzc21np8VXAVx7UKhoLW1tVZ3GQAAAAAAwKAKdBCWSCRUKBRUKpW0uLio58+f+12SJCmbzbaex2Kxczulml1Z0sE2w17uuNjPtR3HUTqd1uLioizLunCtAAAAAAAAQRLoIOxw55OkwGzNO7zFsNOAyDTN1vOnT58OxNrJZFKWZbWFbwAAAAAAAIMq0EFYM8AxDEOJREK3bt3yuSLJtu221zdv3uzousOhVbcdYf1cO5PJyLZttkQCAAAAAIB3RqCDsFQqJdd1JfXWRdV09+7dnuc42qV2uNvqLEfHHQ21grS2bdvK5XLK5/MdrwEAAAAAABB0gQ7CFhcXNTMzI0n64Ycfep7vaJDUjW+++abtdafbNa9evdr2emNjI7Brz8zMKJFIKJVKXag+AAAAAACAIAt0ECZJpVJJH330kRKJhP761792Pc/W1pYcx+m5nqNzdNuVVa1WA7l2MpmUJK2srFywOgAAAAAAgGALfBAmSV9++aVSqZQsy9KXX36pRqPR0XWNRkONRkMvX75sBTy98iJMkw7u4Bi0tdfW1rS2tqZisRiYGxMAAAAAAAB45T2/CzjLBx98oK2trdZr13WVSqW62rLnuq4Mw+i5pm4CLOn4NsZarRaotev1upLJpFKplGKxWFfrAAAAAAAABFmgg7BUKqX79++3XhuG0To8f9B1G2pd1tozMzMyTVP5fL7/Bf3vdnd3NTEx0fM8CwsLWlhY8KAiAAAAAADQtLy8rOXl5Z7n2d3d9aCa7gQ6CEun07p//36rk6vbEMzLAC0cDnsSYnWz9fCy1s7lcrJtW5VKpee5e7G/v6+dnZ2e5+l06ywAAAAAAOhco9Hw5O92PwU6CAuFQrp9+7aePXsmSYrFYl0FSI7jyLZtT2oaGxvzJIwaGxsLxNq2bSuTySibzcqyrJ7n7sWVK1d07dq1nucZGRnxoBoAAAAAAHDYyMiIxsfHe55nd3dX+/v7HlR0cYEOwqSDrrDnz5+rUqnoxo0bXc9TKBR09+7dnuvp9hD5owFWtx1hXq+dTCZlWZYWFxe7mttL165d0+vXr/0uAwAAAAAAnMCro4gmJiZ86ywLfBAWi8UUCoV6CsGkg/PG7ty503M909PTbd1l9Xq9o4Dq6AH1kUjE97VzuZwcx1EsFuvorpqHA7WHDx/q6dOnrddzc3NKJBLnzgEAAAAAAOCXwAdhkrS0tKRGo9Hzlrdu7jZ5VDQabXvtOE5HWwqr1Wrb627uzOj12m/evJEklcvlC9di23ZbKGeaJkEYAAAAAAAItCt+F9CJe/fueXLu0+PHj3ueY3p6uu214zgdXXe4myocDss0zYFaGwAAAAAAYNANRBB2UUtLS/rhhx8uZW7Lstq2I37zzTcdXbexsdF6fjTQ8mvtbDYr13U7fhwO0IrFYtv3stlsV+8JAAAAAACgXwYuCHv+/Lnu3r2rmzdv6vnz5yeOiUajmpqa0scff3wpgdjs7Gzread3ozw8LpPJDOTaAAAAAAAAg2xggrA//OEPunr1qpLJpAqFgmzbPnYIfFMikZDjOPruu+9kmqa++uorT2tJp9Ot552cr3V4jGmaXZ0PFoS1AQAAAAAABlngg7C3b9/q+vXrymQy2tvba23FO084HFalUtGNGzeUSCT05ZdfelaTZVltgdLa2tqZ44vFYuv5eR1ZhUJBmUzm1PO/LnNtAAAAAACAd1ngg7BkMtm666FhGDIM40LXr6+vy3VdpVIpff31157Vlc/nW88fPnx46rh6va5CoSDp4G6NZ925Mh6PK51OK5fLKRKJtB1yf9lrAwAAAAAAvOsCHYStr6+rXC7LMIxWJ1goFLrQ9r5wOKx79+7Jdd22bYW9Mk2z1W1l27ZyudyJ42ZmZlp1HO7OOsnRrY6rq6t9WxsAAAAAAOBdF+ggrNn51OzoqlarqtVqevHiRUfbI5s+/vhjSVK1WvV0i2QikVCpVFI4HFYmk1EymZRt26rX6yqXy4pGo7JtW5ZlaWtrq+2Ojyc5+v3Dd2m87LUBAAAAAADedYEOwprdYIVCQY8fP9bk5GRX8xwOlF68eOFVeZIOthzu7e0pm83KcRzNzMxodHRUyWRSY2NjKhaLqlQqHQVRxWJRpmkqHA5rcXHx3M43L9fuRLVabXXmJRIJT+YEAAAAAADol/f8LuAs9XpdkUhEn3zySU/zHL67pG3bvZZ1osXFRS0uLvY0RywWa52H1u+1AQAAAAAA3nWB7ggLh8OyLKvneZrhl+u6p96NEQAAAAAAAO+2QAdhpmmeeufEizh8Z0XOygIAAAAAABhOgQ7CZmZmtLGx0dMcn332mWzblmEYks4+gB4AAAAAAADvrkAHYUtLS9rb29Pnn3/e9fX379+XYRhyXVeGYWhubs7jKgEAAAAAADAIAh2EhcNh3bt3T4uLi3rw4IEajca51zQaDT158kTXr19XLpeT67pt30+lUpdVLgAAAAAAAAIs0HeNlKRsNivbtvXo0SNls1nF43HFYjFJUqVS0djYmGq1mqrVqsrlctvB+JJaWyIl6fHjxxoZGen/mwAAAAAAAIDvDPdoy1RApdNpraystAVbJzkagDVf5/N5zc/PX26R6MrExIR2dnY0Pj6u169f+10OALxzfvanP/pdwjF/+dVv/S4BAAAAPvEzBwj01sjD8vm8NjY2dOvWLbmue+zRdDgAc11XsVhM1WqVEAwAAAAAAGDIBX5r5GGWZalUKmlra0vlclmlUkmO46her6tWq2lsbEzhcFimaSoej2t2dlahUMjvsgEAAAAAABAAAxWENU1OTmp+fp4uLwAAAAAAAHRsYLZGAgAAAAAAAL0YyI6w7e1tlctlVSoV1Wo1SdLY2JgikYhisZhu3Ljhb4EAAAAAAAAInIEKwp48eaJsNivHcc4dm06ntbi4qPfff//yCwMAAAAAAEDgDcTWyO3tbV2/fl3pdFrVavXEu0U2Nb+ez+cViUT0+eef+1AxAAAAAAAAgibwQdjm5qai0WgrADMMo/WQ1BaKHQ7Gmq8XFxf1y1/+0q/yAQAAAAAAEBCB3xqZTCa1t7fXFnxJkmmaisViikQiCofDMk1TY2NjchxHjuOoWq1qdXVV9XpdpVJJv/zlL/XnP//Zz7cCAAAAAAAAHwU6CFtZWZHjOG0hWCwWUzab1dTU1InXHP7648ePtba2pocPH6pUKunzzz/X7373u77UDgAAAAAAgGAJ9NbIfD4v6W9dYPl8Xi9evDg1BDtJIpFQpVLRrVu3tLi4qEajcSm1AgAAAAAAINgCHYQ1u8EMw9Di4qLm5+e7nqtYLMp1XRWLRQ8rBAAAAAAAwKAIdBBWr9db3WBLS0s9zRUOh5VKpbS6uupFaQAAAAAAABgwgQ7CLMuSdHAw/sjISM/zRSIROY7T8zwAAAAAAAAYPIEOwmZmZiRJtVrNszkJwgAAAAAAAIZToIOwBw8eSDrYIrm9vd3zfNVqVeFwuOd5AAAAAAAAMHgCHYSFQiGtrq7KdV3dv3+/5/lWV1c1NjbmQWUAAAAAAAAYNIEOwiQpkUgon8/rxYsX+s1vftP1PPfv31e9Xm+dOwYAAAAAAIDh8p4fi965c0eVSuVC14yNjSmfzyufz184zKrX63IcR4ZhKB6PX+haAAAAAAAAvBt8CcLC4bAqlYoMw5DruueONwxDklpjLxqiHZ5ndna2q2tx+XZ3dzUxMXHmmIWFBS0sLPSpIgAAAAAAcBHLy8taXl4+c8zu7m6fqjnOlyAsnU4rl8tJ+lvI1YmLjD1JKpXSyMhIT3Pg8uzv72tnZ+fMMY1Go0/VAAAAAACAi2o0Guf+be8nX4KwyclJmaapra2tjjrCvGBZlrLZbF/WQneuXLmia9eunTmGIBMAAAAAgOAaGRnR+Pj4mWN2d3e1v7/fp4ra+RKESdLMzIyePHmicrmsW7du+VUGAuTatWt6/fq132UAAAAAAIAudXKk0cTEhG9dY77dNXJ2dlaWZRGCAQAAAAAAoC98C8JmZmY0OTnZ1zW3t7f7uh4AAAAAAACCw7cgTJJWV1f7ul46ne7regAAAAAAAAgOX4OwftvY2PC7BAAAAAAAAPjEt8Pye7G9va16vd7xeMdxlM/nL3QNAAAAAAAA3i0DEYRtb28rm82qXC7LcZyu5nBdV4ZheFwZAAAAAAAABkXgg7ClpSXlcjlJB2EWAAAAAAAA0I1AnxH27NkzZbPZVgBGRxcAAAAAAAC6FeiOsIcPH0o6CMBc15VpmrIsS6ZpSpKuXr167hxv3rxRvV7X6uqq3r59e6n1AgAAAAAAILgCHYTZtt3qAiuVSpqZmel6rsXFRV2/ft2r0gAAAAAAADBgAr01MhwOSzoIsXoJwSTJNE1NTk56UBUAAAAAAAAGUaCDsOYWyJs3b3oyXz6f92QeAAAAAAAADJ5AB2HNLrBarebpfAAAAAAAABg+gQ7CHjx4INd1Zdu2J/M9efLEk3kAAAAAAAAweAJ9WH4oFNKjR4+UzWaVzWb1d3/3dz3Nl8/n9cknn3hUHQAA6NbP/vRHz+b6y69+69lcAAAAeLcFuiNMOjgo37IsJZPJnubZ2tryrLMMAAAAAAAAgyfQHWFNpVJJ09PTun79ujKZjMbGxjq6rlarqV6vq1qtanV19ZKrBAAAAAAAQJANRBD28uVLSVK1WlU6ne5qDtd1ZRiGl2UBAAAAAABggAQ+CLt7964KhYIkyTAMua574TkIwAAAAAAAABDoM8JWVlaUz+db4Vc3IVgv1wEAAAAAAODdEeiOsHw+L+lvnWCxWEzxeFzhcPjC54Q9fvxY29vbl1gtAAAAAAAAgizQQZht2zIMQ+FwWBsbG5qcnOx6rvn5eV29etXD6gAAAAAAADBIAr01MhwOS5KWlpZ6CsGac01NTXlQFQAAAAAAAAZRoIOwaDQqSTJN05P5VlZWPJkHAAAAAAAAgyfQQVg6nZbrunIcx5P56AgDAAAAAAAYXoEOwhKJhKampvT06VNP5nv+/Lkn8wAAAAAAAGDwBDoIk6RisahKpaKvvvqq57kePnzoQUUAAAAAAAAYRIEPwkzT1OPHj/XJJ5/0NM/bt29l27ZHVQEAAAAAAGDQvOd3AWdpbmX8+7//e42Ojur69etKJBIXnqder2t1ddXr8gAAAAAAADBAAh2Effrpp9rc3Gy9dl1XuVyuq7lc15VhGF6VBgAAAAAAgAET6K2Rs7Ozcl1XrutKEkEWAAAAAAAAuhboICydTks6CMCagVi3DwAAAAAAAAy3QG+NDIVCsixLm5ubymazsixLY2NjF57HcRx9+umnevXqlfdFAgAAAAAAYCAEOgiTpLm5OUUiEd27d6/rOaampnT79u2uQjQAAAAAAAC8GwK9NVKSYrGYZ1sbp6enPZkHAAAAAAAAgyfwQdjU1JSy2awnc3k1DwAAAAAAAAZP4IMwSZqcnOx5ju3tbU1NTXlQDQAAAAAAAAZR4M8I88KzZ880Ozsr27b1H//jf/S7HJxid3dXExMTZ45ZWFjQwsJCnyoCAAAAAAAXsby8rOXl5TPH7O7u9qma44YiCPvmm2/kuq7+5V/+hSAswPb397Wzs3PmmEaj0adqAAAAAADARTUajXP/tvdT4IOwJ0+edH1tvV5XtVpVoVCQYRgql8t6+PChh9XBS1euXNG1a9fOHDMyMtKnagAAAAAAwEWNjIxofHz8zDG7u7va39/vU0XtDNerWzJekitXrsgwjJ7maL5FwzBUrVb1/vvve1AZvDIxMaGdnR2Nj4/r9evXfpcDAO+cn/3pj36XcKn+8qvf+l0CAAAALsDPHGAgDsuX/hZmXfQa13VlGEYrTCsUCl6XBgAAAAAAgAEwMEGY9Ldgq9OHdNAFdvhrxWLR53cBAAAAAAAAPwT+jDBJmpycVCaTkWmaF7quWq0ql8spGo1qZWWF86UAAAAAAACG2EAEYeVyuatzvWZmZpRKpfTBBx8olUrpX/7lX7wvDgAAAAAAAAMh8Fsjw+Fwz4fbP378WKurq/r888+9KQoAAAAAAAADJ/BBWDab7XmOWCwm0zS1uLio7e3t3osCAAAAAADAwAl8EDY/P+/JPJZlyXVd5XI5T+YDAAAAAADAYAl8EOa1b775xu8SAAAAAAAA4IOhCMLevn2rcrksSbJt2+dqAAAAAAAA4Id3Pgh79eqVpqen9fbtW0mSaZo+VwQAAAAAAAA/vOd3Aee5fv1619c6jiNJcl1XkmQYhmKxmCd1AQAAAAAAYLAEPgirVqsyDKMVZnXj8PVe3IUSAAAAAAAAg2dgtkYahtHVQzroCAuHw3rx4oVGRkZ8ficAAAAAAADwQ+A7wqS/bW0Mh8MaGxvr+LpwOCzTNHXz5k3du3fvssoDAAAAAADAABiIICyXy+n3v/+932UAAAAAAABggAV+a6RpmoRgAAAAAAAA6Fngg7BMJuN3CQAAAAAAAHgH+BqEvXr16twx8/Pzl18IAAAAAAAA3nm+BmHRaNTP5QEAAAAAADBEfA3CXNfVDz/84GcJAAAAAAAAGBK+nxGWzWb9LgEAAAAAAABDwPcgLJ/P65e//KWeP3+u7e1tNRoNNRoNv8sCAAAAAADAO+Y9vwuQpFKppFKp1Lf1fvzxx76tBQAAAAAAgGAIRBDmum7reTgcliSNjY11NVetVlO9Xj/xe6Zp9jVwAwAAAAAAQHAEIgjLZrNKJBKanJzsaZ719XUlk0kZhtH2ddd1lUwm9fTp057mBwAAAAAAwOAKxBlh9+7d6zkE+8Mf/qAPP/xQb9++bXWYua4r13WVzWYJwQAAAAAAAIacrx1hhmFodna253k+/PBDra+vtwIwwzDkuq7C4bDW19c1NTXV8xoAAAAAAAAYbL4GYaFQSCMjI11fv729rXg8Lsdx5Lpua0uk67qyLEvr6+sKhUJelQsAAAAAAIAB5uvWyK2tra6vffbsmSKRyIkhWDqd1sbGBiEYAAAAAAAAWnwNwroNqpaWljQ7O3tsK6Trusrn8/riiy+8LBMAAAAAAADvgEDcNbJTjUZDyWRS5XL5WBcY54EBAAAAAADgLL7fNbJTr1690uTk5IkhWCwW09bWFiEYAAAAAAAATjUQQdjKyoqi0aj29vaOhWCZTEYvXrzgPDAAAAAAAACcKfBbI+/evatCoXAsAJOkYrGo27dv+1keAAAAAAAABkRgg7BGo6GZmRnZtn0sBDNNU6VSSZOTkz5XCQAAAAAAgEERyK2RzfPATgrBksmkvv/+e0IwAAAAAAAAXEjggrCTzgNzXVeu6yqbzerp06d+lwgAAAAAAIABFKitkXNzc1pbWzvWBRYOh1UsFjUzM+NzhQAAAAAAABhUgQjCtre3FY/H5TjOsRDMsiytr697clfI69ev67vvvut5HlyO3d1dTUxMnDlmYWFBCwsLfaoIAAAAAABcxPLyspaXl88cs7u726dqjvM9CHv58qWSyaT29vYkqS0ES6fT+uKLLzxbq1qtejYXvLe/v6+dnZ0zxzQajT5VAwAAAAAALqrRaJz7t72ffA3CPvvsM92/f/9YF5gk5fN5zc/Pe7bWyspKaw0E05UrV3Tt2rUzx4yMjPSpGgAAAAAAcFEjIyMaHx8/c8zu7q729/f7VFE7w20mTz64cuVKWzjluq5GR0e1vr6uGzdueLbOkydPlEqlZBiGfvzxR8/mhTcmJia0s7Oj8fFxvX792u9yAOCd87M//dHvEi7VX371W79LAAAAwAX4mQP4vjXyMMMwNDY25lknWL1el+M4nswFAAAAAACAwRaYIKzZmMY5XgAAAAAAALgMgQjCJicnVSwWFQ6HPZmvXq+3nm9sbCifz8u2bU/mBgAAAAAAwGDyPQgzTVMbGxsKhUKXMv/U1JTm5+eVTCb1/PnzS1kDAAAAAAAAwXfF7wKKxeKlhWCHZbPZS18DAAAAAAAAweVrEBYOhz29O+RZTNPsS+AGAAAAAACAYPJ1a2S/u7ToCgMA4N3zsz/90ZN5/vKr33oyDwAAAILL146w+fn5d3o9AAAAAAAABIfvZ4QBAAAAAAAA/UAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQBgAAAAAAgKFAEAYAAAAAAIChQBAGAAAAAACAoUAQ5pFcLqd4PK7R0VEZhqFIJKJkMqlyuTxwa9u2rXQ6rUgkIsMwWnNmMhnV63VviwcAAAAAAOgTgrAelctljY6OKpPJSJKKxaKq1aqy2axs21Y8Hlc8Hr+UAMnrtev1upLJpKLRqAqFghzHaX3PcRzlcjmNjo6qUCh4/l4AAAAAAAAu23t+FzDIyuWy4vG4JCmVSimfz7e+Z5qmEomEotGoyuWyotGoKpWKwuFwINeu1+uKRqNt4ddp0um0KpVK25oAAAAAAABBR0dYl5rdU9JB8HRaKFQsFiUddFQ1xwdx7WQyKcdxZFlWq7OsWq2qWCxqcXHx2PhCoaC1tbUe3wkAAAAAAED/EIR1KZlMtrYcNrcmnqTZnSUddHF5sa3Q67ULhYLK5bIWFxdVqVSUSCRkmmbr+mw2q2q1Ksuy2q6bn5/v+b0AAAAAAAD0C0FYFxzHaTuIfnZ29szxc3NzrednBVd+rZ3NZhWLxZTNZk+dxzTNVodZU71e78vNAAAAAAAAALxAENaFw4FRLBY799yvZleWdBAe9bKl0Ou1bduW4zjHQq6TmKZ5LCyzbbuDqgEAAAAAAPxHENaFw1sMj24XPI1pmq3nT58+DczaT58+VSqV6vgQ/1gs1vb6zZs3HV0HAAAAAADgN+4aeUFHO6Bu3rzZ0XWWZbXuyNhtR9hlrD03N9cWlHUy12GRSKTjawEAAAAAAPxER9gFHT0Tq9MQ6ei4brYUXsbalmV13A0mqXVI/0VrAAAAAAAA8BtB2AV98803ba87DZGuXr3a9npjY2Og1m5qdpY1Hd0qCQAAAAAAEFQEYRd0NAjqtiurWq0O1NpNh0O0VCrV9TwAAAAAAAD9RhB2QUfDqG4d3WIY9LWb8vl863kmk/GgGgAAAAAAgP4gCLugbkOko9sYa7XaQK0tHQRxzfPFstks54MBAAAAAICBwl0jfdJLV5Zfa2ezWUkHWy0XFxc9rOjA7u6uJiYmep5nYWFBCwsLHlQEAAAAAACalpeXtby83PM8u7u7HlTTHYKwCwqHw56EWBe5U2MQ1rZtW4VCQeFwWKVSqecaTrK/v6+dnZ2e52k0Gh5UAwAAAAAADms0Gp783e4ngrALGhsb8ySMGhsbG6i15+fnJUnr6+uXtiXyypUrunbtWs/zjIyMeFANAAAAAAA4bGRkROPj4z3Ps7u7q/39fQ8qujiCsAvqpptKOr4dsduOMD/WTqfTsm1bxWJRlmV1VUMnrl27ptevX1/a/AAAAAAAoHteHUU0MTHhW2cZh+Vf0PT0dNvrTju0jh5QH4lEBmLtQqGgQqGgfD6vRCLR8XUAAAAAAABBQxB2QdFotO214zgdXVetVttex2KxwK9dLpeVTqeVz+eVSqU6KxIAAAAAACCgCMIu6GhXVqdh1OHurXA43NU5W/1c27ZtxeNxZbNZQjAAAAAAAPBOIAi7IMuy2s7Y+uabbzq6bmNjo/X8aKAVtLUdx9HMzIwWFxe1uLh44ToBAAAAAACCiCCsC7Ozs63ntm13dM3hcZlMJrBrO46jaDSqVCqlbDbb0fyO4yiXy3U0FgAAAAAAwC8EYV1Ip9Ot5+Vy+dzxh8eYptnV+WD9WLterysej2t2drbjEEySkslkT+8JAAAAAACgHwjCumBZVlvws7a2dub4YrHYen5eR1ahUFAmkzn1/K/LWrterysajco0zdb65z3K5XLrAH/Lss6sAwAAAAAAwG+G67qu30UMIsdxFIlEJB2EQJVK5cRx9Xpdo6Ojkg7u1lgqlU6dMx6Pt3Vw7e3ttZ0JdplrR6PRjrdaHtXrXSUnJia0s7Oj8fFxvX79uut5AAAn+9mf/uh3CQPhL7/6rd8lAADw/2/v/mHbSvI8gf/k6110sOulNLjAaEcUcMlklCc/wCQu24h05wM0lQ6Mg4jONmuQOAiTigYml6lks9sjG9iL22Q2yQFiJ20YB1xLHO/u7WJ3x7zARw4pUfwjkXyPep8PQDQpPVbVey5Xl7+sV4RMSDIHsCLsnvL5/Hi1Va/Xu3OPrJcvX0bE529rnFydNcvNWx3fvn27lbofEoJFhG+VBAAAAHaCIOwByuVytNvtyOVyUavVolKpRK/Xi8FgML5tsNfrRaFQiB9//HHm6q5JN3+fz+c3XvfoffclBAMAAAB2hSDsgYrFYlxfX0e9Xo9+vx8vX76M/f39qFQqcXBwEK1WK7rd7sIQLOLzfl75fD5yuVycnJws3IB+HXW3Wq0YDof3fpydna14xQAAAACSYY8wEmePMIDNskfYcuwRBgCwHfYIAwAAAIANE4QBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATPgi6QYAALf98ne/TboJmbPOa/77X/9mbWUBALA+VoQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkwhdJNwBGPnz4EM+fP597zOvXr+P169dbahEAAACwitPT0zg9PZ17zIcPH7bUmtsEYaTGp0+f4v3793OP+fjx45ZaAwAAAKzq48ePC/9tnyRBGKnx5MmTePbs2dxjnj59uqXWAAAAAKt6+vRpfPXVV3OP+fDhQ3z69GlLLZomCCM1nj17Fj/99FPSzQAAAADuaZktjZ4/f57YqjGb5QMAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMiEL5JuAADAY/PL3/12bWX9/te/WVtZAABZZ0UYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZ8EXSDYCRDx8+xPPnz+ce8/r163j9+vWWWgQAAACs4vT0NE5PT+ce8+HDhy215jZBGKnx6dOneP/+/dxjPn78uKXWAAAAAKv6+PHjwn/bJ0kQRmo8efIknj17NveYp0+fbqk1AAAAwKqePn0aX3311dxjPnz4EJ8+fdpSi6YJwkiNZ8+exU8//ZR0MwAAAIB7WmZLo+fPnye2asxm+QAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZMIXSTcAAIC7/fJ3v11LOb//9W/WUg4AwC6zIgwAAACATLAiDADWZF0rdwAAgM2wIgwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZMIXSTcAAIDN++Xvfru2sn7/69+srSwAgG2yIgwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyATfGglA5q3z2/QAAID0siIMAAAAgEwQhAEAAACQCW6NBABgJeu8nfj3v/7N2soCAFhEEEZqfPjwIZ4/fz73mNevX8fr16+31CIAAABgFaenp3F6ejr3mA8fPmypNbcJwkiNT58+xfv37+ce8/Hjxy21BgAAAFjVx48fF/7bPkmCMFLjyZMn8ezZs7nHPH36dEutAQAAAFb19OnT+Oqrr+Ye8+HDh/j06dOWWjRNEEZqPHv2LH766aekmwEAAADc0zJbGj1//jyxVWO+NRIAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAm2CwfgJ30y9/9NukmAAAAO0YQBgBAYtYVav/+179ZSzkAwOPm1kgAAAAAMkEQBgAAAEAmCMIAAAAAyAR7hAEAsPPW+QUa9hsDgMfLijAAAAAAMkEQBgAAAEAmCMIAAAAAyAR7hAGwNevcwwdgU+w3BgCPlxVhAAAAAGSCIAwAAACATHBrJAALuaURAAB4DARhAACwIev6IMFeYwCwHm6NBAAAACATBGEAAAAAZIJbI+GeTk9P4+PHj/H06dN4/fp10s3hkdPf2Jaf/+7v44//8i/xH778Mn7xX/5z0s3hkdPflrfOvRqzeJul/4+yTfob26Kv3c/ecDgcJt0Isu358+fx/v37+Oqrr+Knn35KujlL29V2s5vu099scM99/K//+jfx79d/iC/2/yr+03/7m6SbwyOnv+2+XQnVzNvYJv2NbdnlvpZk290aCQAAAEAmuDUSIGVmreT63//3H8f/tdILAADgfgRha9JoNKLdbse7d+9iMBhEPp+PQqEQx8fHUSwWd67uJM8HAIDdsK4PZ3blFksAdp8g7IE6nU5UKpUYDAZRLBaj1WpFPp+PXq8XtVotSqXS+Oe5XC71dSd5PgAA8FDrXFktoAN4fARhD9DpdKJUKkVERLVajbOzs/Hv8vl8lMvlODo6ik6nE0dHR9HtdtcWHm2i7iTPBwCA7HLbPwDbIgi7p8FgEJVKJSI+h0STodGkVqsVh4eH0e/3o1KpRLvdTmXdSZ4PJMWkGwCYx62fAI+PIOyeRrcPRkTUarU7jxutpLq4uIhOpxPNZjOq1Wrq6k7yfAAAgOWs84M8AR2QRYKwe+j3+9HpdMavX716Nff4r7/+Oi4uLiLic8j0kOBoE3UneT4PdXp6Gh8/foynT5/G69evE2vHtiV53klf89PT0/juf/6P+A9ffhm/+C//eat1//x3fx9//Jd/SaTuJCV53urW17JQd9L1J33uScnqNc9q3Un6+e/+Pv7j3/73TI4vWZ6zJiWr1zyrdSdpl89bEHYP9Xp9/LxYLC7cJ6tcLo+fDwaDuLi4mPpZ0nUneT4PdXp6Gu/fv4+vvvpq5/7yPUSS5530NT89PY3/8/59fLH/V9ufwLf/Pv79+g+J1J2kJM9b3fpaFupOuv6kzz0pWb3mWa07SUmf97z6N33rZ5bnrEnJ6jXPat1J2uXzFoTdQ7PZHD8vFApLvSefz0e/34+IiPPz83sHR5uoO8nzId3W+a1L6zKqHwCAdLhrTnifeaPbNYFNE4StqNfrTb3+1a9+tdT7CoXCODga3VaYhrqTPB82xybwAADsonXNY9f54emqbUryg2PhIywmCFvR5F5aEZ9XRi3j5nG9Xm/p1VebrDvJ8wEAANikpO5iANJLELaiH374Yer1ov20Rn7xi19MvX737t3KwdEm6k7yfB6LXfmkBwAA4KZ1r8LL2r+P7lu3lXjJEYStaHQ74Mh9V1BdXl6mou4kzwcAAACyaB2Bnf2T7+dJ0g3YNTeDo/saDAapqDvJ8wEAAADYJkHYiu4b+Ny85fDq6ioVdSd5PgAAAADbtDccDodJN2KX7O3tTb1e9vJ1Op0olUrj18ViMdrtduJ1J3k+I3/+538e//Zv/xYREU+erJbNfvr0afx89N6//Mu/jL/4i7+4V1tW8eHDh8/17+3FF7mnG69v0r8PPkYMh5mrO+n61a1udav7MdavbnWr+/HWnXT96la3urdT95MnT+LZs2dbqfMf//Ef4x/+4R9m/lt8FaP3/9mf/Vn867/+69ratwx7hK0ol8ut5TbAZTel33TdSZ7PyB//+Mfx88m/TKsavfcPf/hD/OEPf7h3OSsbDuPfr7dYn7qTr1/d6la3uh9j/epWt7ofb91J169udat7oz59+hTv379PpO5R/fc1mQdsiyBsRQcHB2sJjg4ODlJRd5LnM/Lll1/GP//zP8fw/yfZD7WtFWEAAACQJaMVYQ/16dOn2Nvbiy+//HINrVqNIGxF9135dDNsuu+KsHXXneT5jPzTP/3Tvd8LAAAAsCyb5a/oxYsXU6+XXU11czP5w8PDVNSd5PkAAAAAbJMgbEVHR0dTr/v9/lLvu7y8nHpdLBZTUXeS5wMAAACwTYKwFd1cQbVscDS50iqXy0U+n09F3UmeDwAAAMA2CcJWVCgUpvbD+uGHH5Z637t378bPb4ZPSdad5PkAAAAAbJMg7B5evXo1ft7r9ZZ6z+RxtVotVXUneT4AAAAA27I3HA6HSTdi1/R6vam9tRZdwk6nE6VSKSIi8vn8rf21kq47yfMBAAAA2BYrwu6hUChMbQ5/cXEx9/hWqzV+vmj1VLPZjFqtdudeXZuoe5PnAwAAAJAWVoTdU7/fj8PDw4j4HCR1u92Zxw0Gg9jf34+Iz9+s2G637yyzVCpFp9MZv76+vp7av2uTdW+iTAAAAIA0sSLsnvL5/HhlVK/Xi0ajMfO4ly9fRsTnb1acXEk1y2QIFhHx9u3brdW9iTIBAAAA0kQQ9gDlcjna7Xbkcrmo1WpRqVSi1+vFYDCITqcTR0dH0ev1olAoxI8//jhzddekm7/P5/Nbq3tTZQIAAACkhSDsgYrFYlxfX0e9Xo9+vx8vX76M/f39qFQqcXBwEK1WK7rd7lKhUavVinw+H7lcLk5OTqb27dp03ZssMwn9fn+8of9937tor7R1WLWdjUYjSqVS7O/vx97eXhweHkalUrm1mpDt2ZW+tgkPOXfuZ5Vr3uv14vj4OA4PD2Nvb288ZtRqtRgMBvduwybGIWNb+iTd1zbVf5dhbNu+pPvbJtoZYWxLo13pa5tgbNu+Va55v9+f6m/7+/txdHQUx8fHd+4fvgzztjsMYYdcX18PI2KpR7VaXbnscrk8fv/Z2Vlq2tlut4e5XG4YEcNisThst9vDy8vLYavVGubz+fHPr6+v791mpqW5r436wn0ey7R1k+fObOu85jf7112PVfvdJsYhY9v2pb2vbar/rvvcWU7a+9sm2jkcGtuSkOa+Zt72+Kz7mtfr9YXl1Ov1ldpo3jafIIydsswgMXpcXl4uVeb19fXw5ORkLROpTbSz3W4vHEgLhcIwIob5fH4nBp5dkNa+1mq17j2Ziohhq9VK5NyZb13X/Pr6ejwRWeeEeBPjkLEtGWnua5vqv+s+d5aX5v62iXYOh8a2pKS1r5m3PU7rvObFYnEYEcNcLjcsl8vDk5OTYblcntkPl+kPw6F52zIEYeyUZT9RKRaLS5VXr9eH+Xx+PABNPh4ShK2rndfX1+Oy8vn8ncddXl6ufO7Ml9a+Nuv9qzySOHcWW9c1H/WPQqEwbLVaw8vLy/EndbNC2GUmVZsYh4xtyUlzX9tEmZs4d5aX5v62iXYa25KT1r5m3vY4reuaj/rUXau9ZgVui5i3LWdvOBwOA3ZAs9mM4+PjODk5WXiv9YsXLxbuY9br9SIiolAoTJU/cnZ2FtVqNdF2lkql8b3Wi9pTqVTGe03dt+18lta+1u/34/DwMPL5fNRqtSgWi3FwcLDwfUdHR9Hv96NYLEa73Z577LrPncXWdc0ny6nX6zOP6ff74y9CGcnlcnF9fX1nnZsYh4xtyUhzX9tU/51VvrFtO9Lc3zbRzghjW1LS2tfM2x6ndV3zUf9ot9tz9wY/Pj6OZrM5ft3tdsf/ppjFvG1JSSdxsKx8Pj83gX6obrc7lbbfd0XYuto5mahHxMLlpZNLr3O53IPrz7K09rWTk5OVlxpP9qNl6tn0uXPbuq75aMXhIjfHlogYttvtpY5dxzhkbEtOmvvaJsq8Wb6xbbvS3N820U5jW3LS2tfM2x6ndV3zcrm81L5fN/cjm/ce87blCcLYCaO/UA+5XXGRm3/J71PXOttZrVZXXlo62f5VbgngT9Lc13K53LDb7a5U1+SS6mX/x7XJc2fauq75KFxddrJ9c6n9XZOqTYxDxrZkpLmvbar/jhjbti/N/W0T7RwOjW1JSXNfM297fNZ5zVe5dXByv7B5dZu3Le9JwA747rvvIpfLxatXr5JuylzrbOfkEth5y18n5fP58fPz8/MHtyGL0tzXWq3W0n1hZNQPisXiwuXwaT73x2pd1/z8/Dyq1erStzzcXIL/888/zzxuE+OQsS0Zae5rm+q/I8a27Utzf5tk3rb70tzXzNsen3Ve80W3vU66uroaP3/x4sWdx5m3rSDpJA4WuXkbWT6fH1ar1bWnyw9dEbbOdt4sa9kybn7VM6vZlb62rMml1Ivq2Na58yfrHjNW/XaeRX1wE+OQsS0Zu9DX1l3mZNnGtu1Ke3/bVDuNbdu3K31tWeZt6ZbUNZ/sF/NWZJm3rSadrYIJi75tpVwur7zseJaHhhPrbOfN5dbLvu/mt9ms47pkya70tWWtsrx+W+fOnyR5zW/uNzFrb5NNjEPGtmSkva9tskxj2/btSn8zb9t9u9LXlmXelm5JXfOzs7NhRCzcb868bTWCMFJt1maUdz2q1epa61olnFh3O2+m6JeXl0u14+ZgZc+A5e1KX1tFoVAYRnz+CvBV2rPJc+ezpK/5zU/4ZtnEOGRs275d6GubKjPpc8+ipK95Un3D2LZ9u9LXVmHell5JXfNR4FooFBaOK+Ztq/kiIMXy+XycnZ3FYDCIy8vL6HQ60e/3Zx7bbDbj3bt30e12t9zK9bfz5nsn77Ne1I5Jl5eXS72P3elryxoMBuOv9v7666/nHvvYzn0XJH3N3717N35+19dab2IcMrZt3y70tU2VmfS5Z1HS1zypvmFs275d6WvLMm9LtySueb/fj1KpFLlcLr7//vuFe8aZt60o6SQOVnV9fT2s1+vDXC43M4Vf5Rs4Jq17lc5D2nnzPcua/Lra8CnQg+1KX5tltIw6Vvj0ZtKmzp27bfOajz51ntc/NjEOGdvSIW19bZtlGtu2b1f6m3nb7tuVvjaLedvu2eQ1vzk2RCz+FlzzttUIwthprVZr5uCzaKCYZZPhxKrtvHncstrt9tT7yuXyuk4h83alr40su7x+Ges8d5azyWs+2f/mlbeJccjYlj5p6GtJlWls275d6W/mbbtvV/raiHnbblvHNR8Fa/l8fmawtmiMMG9bjSCMnXd9fT31qUxEDHO53MrlbDqcWKWd6xp0fPqzXrvU19Y96VnXubO8TV3zarU6jPi86eo8mxiHjG3plHRfS7JMY9v27Up/M2/bfbvU18zbdt9Dr3mr1RpWq9VhtVqduzH/pgP5rMzbngTsuFwuF91uNwqFwvhng8EgOp1Ogq26bZV2LroHfJU6WZ9d6Wtv374dPy+Xy2spc1fO/THZxDXv9XrRbDYjl8tFu91eWP86TJZjbEunpPtakmUa27ZvV/qbedvu25W+Zt72ODz0mpfL5Tg7O4uzs7Not9sxHA7j7Ozs1rhQq9ViMBjMrH8dsjJvE4TxaLx582bq9br+57Ruy7Tz4OBgLXWtqxympb2vnZ2dRcTnjSqX3dRyWWk/98dondf8m2++iYiI77//fmHf2MQ4ZGxLt6T6WpJljhjbti/t/W3EvG33pb2vmbc9Luu85tVqNbrd7q0gqdls3jrWvG01gjAejUKhEMVicfz6rm/ySNoy7bxvan7z04E0pu+PQZr72uS3Dq3rU8VJaT73x2pd1/z4+Dh6vV60Wq2pTyvvsolxyNiWbkn1taTKnGRs274097dJ5m27L819zbzt8Vn3Nc/n8/H9999P/eyHH364dZx522oEYTwqpVIp6SYsZVE7X7x4MfV61vLXWa6urqZeHx4ertQulpfWvja5vH7R12/fV1rP/TF76DVvNpvRbDbj7Oxs6Yn2JsYhY1v6JdHXkihzFmPb9qWxv81i3rb70trXzNsep3Vf80KhMNXvZoVr5m2rEYTxqEwuJ07jEsyRRe08Ojqaer3sJwmXl5dTryc/jWC90trXWq1WRHz+5GUTn4xHpPfcH7OHXPNOpxPHx8dxdnYW1Wp16fdtYhwytqVfEn1t22Xexdi2fWnrb3cxb9t9ae1r5m2P0yau+WRQOiuQMm9bjSCMR2Vy0EnjEsyRRe28mb4vO+hMDoq5XG7t+wzwJ2nsa5Mbcm7yHwVpPPfH7r7XvNfrRalUinq9vnKf2MQ4ZGxLvyT62jbLnMfYtn1p6m/zmLftvjT2NfO2x2sT13wyKN3WOPSYxzZBGI/Ku3fvxs/TvAx4UTsLhcLUADfrPvBF5d4cuFivNPa1bSyvj0jnuT9297nm/X4/Xr58GScnJ3FycrJynZsYh4xt6ZdEX9tWmYsY27YvLf1tEfO23ZfGvmbe9nht+prPGi/M21YjCONRmVyGmcYlmCPLtPPVq1fj56NNNBeZPK5Wq92zdSwjjX1tG8vrI9J57o/dqte83+/H0dFRVKvVqNfrS9XR7/ej0WhM/WwT45CxLd2S6mubLnMZxrbtS0N/W4Z52+5LY18zb3u8NnHNJ1dj3RWumbetYAiPSD6fH0bE8OTkZOX3Xl5eDiNi/Dg7O9tACz9bpp3dbneqPYu02+3xsfl8fp3NZYa09bXr6+txedVq9cHlzfOQc+d+Vrnm19fXw3w+v3I/KBQKw263O/WzTYxDxrZ0S6qvbbLMZRnbti/p/rYs87bdl7a+Zt72uG3imtfr9WFEDHO53J3HmLctTxDGo9FqtcaDw/X19crvv/mXfFNB2CrtLBaL4/a0Wq25x1ar1a2EeKSzr52dnY3La7fbDy7vLg89d1a3yjUfTd6LxeLw8vJyqUe73R4WCoVhoVCYWeYmxiFjWzol3dc2UeYmzp31SLq/baKdxrZ0SmNfM297vDZ1zXO53FJji3nbcgRhpFa73R7/hS8Wi3M/Ybm8vBwfe99P/UaD1uhRr9cTb+fkyqF5/3Od/FSpWCwu1W7+ZFf62jyj/0HN+5Rolm2fO5u95oVCYapvrfK4a7KyiXHI2LYdu9bX1lmmsW37dqW/mbftvl3pa/OYt+2OTV3zer0+LBQKw5OTk4WB2cnJyTBiuRVm5m3LEYSRWpNp8ugxa+nwaHDK5/PDy8vLe9U1+vRnsq5lP9XZdDsnQ5O7ApPR/7R92nM/u9LX5pU5KqtcLq/03m2eO59t6po/ZPIeMX86sIlxyNi2ebvU19ZdprFt+3alv5m37b5d6Wt3MW/bLZu45pN9YPS4K+Qql8tzx5NZzNsWE4SRWpP3F08+crncsFwuD6vV6vgv2zJJ+k3X19fDcrk8tdRz1qNYLA7L5fKdqf6m2zmqY/Tpwqgt19fX46XYEZ/DlLQPOGm1K33tLg9ZXr+N/su0TVzz0STpvo9l9ifZxDhkbNusXelrmyjT2LZ9u9LfzNt23670tbuYt+2WTV3zmx+MT5Z5cnIyLBaL49f3CTPN2+YThJFql5eXw2q1Oszn8+O/dKOkvVwuD1utVir+om2rnaMltJN1FIvFhfdqs9iu9LVZJgO2+9jlc99Vu3zNNzEOGds2Z5f72kNl+dyTsivX3Lxt9+1KX5vFvG33bOKaX19fD09OTm6NEaMyz87OUjsOPYaxbW84HA4DAAAAAB65J0k3AAAAAAC2QRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAyJzBYBB7e3sLH71eL+mmplaj0Vh4/Q4PD5Nu5pS94XA4TLoRAAAAANs0GAxif39//LpQKMSbN28in89PHZfL5bbcst0yGAzGz6+urqLT6cTx8fH4Z/l8Pi4vLxNo2WyCMAAAACBzbgZhrVYryuVygi16PCqVSlxcXERE+oIwt0YCAAAAmWfl1/rcXFWXJoIwAAAAIPMODg6SbgJbIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACsaDAYRKPRiKOjo/E3JI5cXFxEqVSK/f392Nvbi6Ojo2g2m3eWU6vV4ujoaOr4m2WmvR274oukGwAAAABE1Gq1aDQa93pvoVCIbre75hZxU6/Xi06nE+fn59Hr9W79vt/vR6VSufW7Xq8Xx8fH0e124+zsbPzzRqMRtVptZj2VSiVOTk6iXq+nth27SBAGAAAAKTAYDCIiIp/Px/HxceTz+ZnH/fDDD7cCs8cSUqRZv9+P7777LiJiZvjUbDbj+Pg4CoVC1Ov1yOfz4/eM/mybzWZUKpUoFotRKpXi3bt3Ua1W4+joKA4ODm792TYajVt9IS3t2FV7w+FwmHQjAAAAIOuOj4/j7du3cX19Pfe4o6OjqQCkWq1Ore5hOYPBIPb398evu91uFAqFpd57cwVVPp+Pq6urePPmTZTL5alj+/1+HB4ejl+P6jg4OIhWqxW5XG7q+E6nE6VSafx63p9vWtpx0+Tqxnw+H5eXl0u9bxvsEQYAAAAp8e233879faPRmArBcrmcECwBswKz6+vrW+FTxOcgqFgsjl/3er0YDAbRbrdvhU8REcVicWrlVafTSX07dokgDAAAAFLg6upq7oqkfr9/ax+nVqu16WYxw8HBwdTrWcHTpMmVVRExcz+uSZP9oN/vp74du0QQBgAAAClQr9enVuzcVKlUpl5Xq9W5x5MeN1dc3Qywbrq5F9e6Qqi0tCNJgjAAAABIgXkbkTebzVu3RK6yQX6j0YhSqRR7e3vjx9HR0UrtazQaU+/f39+P4+PjlcrIqkWB0yKjTe4fSzuSJAgDAACAFOv3+7cCp1mbm89zcnIS7XZ76ta5VVb39Hq9qdvocrlc/Pjjj/Yn25Bf/OIXSTchItLTjnUShAEAAECK3QzByuXyvW+JnAy/Vlndc/O2zFevXq0UxEFaCMIAAAAgpZrN5tS39eVyuXjz5s29yhoMBtHr9aYCrGVWhdVqtbi6upq6dfNmMAa7QhAGAAAAKTQYDG59q9+bN2/uvRJrFKi9evVq/LNFQViv14tGoxFv3ryZOtYm/ewqQRgAAACkUKVSmbp9sVwuT+3xtarz8/Mol8txeHg4/tmi2yMrlUpUq9WpnwnB2GWCMAAAAEiZi4uLtd0SOdLpdKJUKk3d4jhvRdhob7Kzs7M4Pz8f/7xUKi1V32iT/1KpFJVKZRzslUql2N/fnzq/u9p6dHQ0fsw7HpYlCAMAAIAUGQwG8c0330z97CG3REZ8vsVxMBhEsVicCsIuLy9nHt/pdKLZbEar1Rq/HllmVVqj0YjDw8M4PDyMdrsdrVYr6vV6VCqV6HQ647bMMgrPSqVSdLvd6Ha7kc/no1QqRaPRGJ8L3IcgDAAAAFLkm2++WfmWyEajEc1m887fn5+fRz6fHz9GZq0IGwwGUalU4uTkJAqFQvT7/XF7crnc1PtnqVQqUavVotVqxcnJyfjn+Xw+rq6uIuLu2ysrlUo0m82oVqtT7/36668j4vPG/UdHR7f2ToNlCcIAAAAgJTqdTlxcXIxfL3tLZLvdjoODg7nljsKnRd8a+c0338TBwUHU6/WIiKn2TG60P8vx8XFcXFxEtVqdGd6NArVZt1c2m81xXaO6RwqFwvj55eVlnJ2dzW1H2o0CwaSlpR3bJAgDAACAlKhUKlOvl7klcjAYRKfTuXOl1mAwiF6vN1X2qMybQcjFxUVcXFyMb4mM+ByyjczbH+zi4iKazWbkcrk7g6pR8DZrRdioznK5fOucJwO7Rd90mUY3r/OiWzt//vnnR92OJAnCAAAAIAWOj4+ngolisbjUflyj/cTuCsJG+3tNhk+jYyfrG90SWa/Xp1ZgLbs/2Kgd33777dx25HK5qfJv/v5Xv/rVrd9NhnEvXry4sw3bcjOMWxQo3fz9XXuz3XX8XeFfWtqxSwRhAAAAkLDR5vSTRhvL33yMVl7VarU4PDwc305418qx8/PzW8HTrH3CKpVKFAqFqb25JkOwWeHVSKPRGIcm1Wp15jGjFV93BVl3tX8wGESj0YiIiJOTkwd9acC6fPfdd1Ov3759e2cINRgMbq2Qe/v27dxw6+3bt1M/u2uFXVrasVOGAAAAQKIKhcIwIu79yOVyd5ady+WG9Xp96mcnJyfj97bb7WG9Xh9GxPDy8nLquGq1Oj7uZhk364iIYblcnvn76+vrheW0Wq1hRAwLhcLU+/L5/DAihicnJ3fWfx+TbYqIYbfbnXt8t9sdFovF8bnOehQKhWGr1Rofv+jPtVAoDM/OzobD4XDYbrfH53rXn3GxWBz+7d/+bSracbOvTJrsX/l8fh1/XGvzxcNiNAAAAOChut3uRsrt9XoxGAxu7cl1eHg4ft5ut6PRaES9Xr91e+XkirC7vulxVEfE3XuITa5cuquccrkc3W43Xr58GUdHR3FwcBBXV1dRKBSi3W4v/LbKTRu1Y5XjV/lzLRaLC29VHPnrv/7rVLRjFwnCAAAA4JE6Pz+fuSfX5DdMNhqNW7dERny+lW5029xd+3pFTO8bNeu2x36/v/Qtlt999128ePFipcAJVmGPMAAAAHikLi4uZq7Aurm6avJbIkcm94e6axVXxOIN1Gu1Wnz99ddT5QwGg/HeZiOVSiUuLi7mBmXwUIIwAAAAeIR6vV70+/2Z38I4GYSdnZ3NvO1wMhy765bHm2Wdn5+Pnw8GgyiVSlGv1+OHH36IiM+rwQaDQXzzzTe3wrXRqrFGoxFHR0e3vjxg066urrZaH8kQhAEAAMAjVKvV7vzd6JsXi8XizG95HH1D5TKKxeK4vEajEcfHx1GpVOLo6Ggcso1WjV1cXMTLly+jXq/f+vbHer0+ft7r9eL4+Dj29vbi+Ph4qXY81KKVbSzvrm+uTANBGAAAADwinU4njo6OxkFWrVaLSqVyK9gqFAq3bolsNptRKpVurQAbhVuzVmnlcrn4/vvvx7c0vn37Ng4ODqLb7Y5Xi41ujczn89FqtW6tQLu4uIhWqxWXl5fRarWmVos1m82pzf03pVarRafTicFgMPVgvpvXq9PpbH013yr2hsPhMOlGAAAAANnUaDTi/Pz81jcb9vv9qNVq473EqtVqnJ2dra3ewWAQ+/v7C4/rdrv2LbtDo9GYu/Iw4nP4maZvoRSEAQAAAIm4uLiISqUyN2yq1WrRaDRSF6iwmwRhAAAAQCJKpVJ0Op1YFE3s7e1FoVC4tWoMVmWPMAAAACARow3z5+3FNfrdzW+ZhPsQhAEAAACJGG2i/9133915TK1Wi3w+H99+++22msUjJggDAAAAElEul6Ner0ej0Yjj4+Po9XoREeNvHyyVSnF1dRXdbne8egwewh5hAAAAQKIGg0E0m824vLyMq6uryOfzcXh4GMViMfL5fNLN4xERhAEAAACQCW6NBAAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAyQRAGAAAAQCYIwgAAAADIBEEYAAAAAJkgCAMAAAAgEwRhAAAAAGSCIAwAAACATBCEAQAAAJAJgjAAAAAAMkEQBgAAAEAmCMIAAAAAyARBGAAAAACZIAgDAAAAIBMEYQAAAABkgiAMAAAAgEwQhAEAAACQCYIwAAAAADJBEAYAAABAJgjCAAAAAMgEQRgAAAAAmSAIAwAAACATBGEAAAAAZIIgDAAAAIBMEIQBAAAAkAmCMAAAAAAy4f8BCcThZJ1wLkIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "plt.hist(array[\"z_mag_x_fringe\"],\n", " bins=50,\n", " range=[5150, 5300],\n", " color=\"#2A9D8F\",\n", " density=True)\n", "plt.xlabel(r\"z$_{Mag}$ [mm]\")\n", "plt.ylabel(\"Number of Tracks (normalised)\")\n", "mplhep.lhcb.text(\"Simulation\")\n", "mplhep." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "50501" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ak.num(array, axis=0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "tuner", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }