{ "cells": [ { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "import uproot\t\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits import mplot3d\n", "import awkward as ak\n", "from scipy.optimize import curve_fit\n", "from methods.fit_linear_regression_model import fit_linear_regression_model\n", "import sklearn\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "40402 10099\n", "50501\n" ] } ], "source": [ "file = uproot.open(\n", " \"tracking_losses_ntuple_B_default_radlength_endVelo.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\"\n", ")\n", "\n", "# selektiere nur elektronen von B->K*ee\n", "allcolumns = file.arrays()\n", "found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) &\n", " (allcolumns.fromB)] # B: 9056\n", "lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) &\n", " (allcolumns.fromB)] # B: 1466\n", "\n", "electrons = allcolumns[(allcolumns.isElectron) & (allcolumns.fromB)]\n", "\n", "print(ak.num(found, axis=0), ak.num(lost, axis=0))\n", "print(ak.num(electrons, axis=0))\n", "# ak.count(found, axis=None)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "stretch factor: 0.24996287312509283\n" ] } ], "source": [ "rad_length_found = ak.to_numpy(found[\"rad_length_frac\"])\n", "eta_found = ak.to_numpy(found[\"eta\"])\n", "rad_length_lost = ak.to_numpy(lost[\"rad_length_frac\"])\n", "eta_lost = ak.to_numpy(lost[\"eta\"])\n", "\n", "stretch_factor = ak.num(eta_lost, axis=0) / ak.num(eta_found, axis=0)\n", "print(\"stretch factor: \", stretch_factor)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHLCAYAAAAnR/mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyUUlEQVR4nO3dUYgb+4Hv+Z8nuafjTONT3c4+ZOFCXIJ5GC5cU+pc2HCJD1gisHnZpSUb9iGZ5dAqQr95GQnPi+2XEdXMa0NKZpizeVg4rTK7CzsPM6ozHIdlYNdWjQPLstzdLgfykAub010xfeP0mUx0H5wqt1rqbnVJJam6vh9oznGVqv5/ValVv/7//1X/a4PBYCAAAICC+KNFVwAAAGCeCD8AAKBQCD8AAKBQCD8AAKBQCD8AAKBQCD8AAKBQCD8AAKBQCD8AAKBQCD8otCAI1Ol0Fl2NwouiSJ1OR2EYLroquCR+h5BHhB8UUhiGqtfrKpfLcl13aPna2tpMv8yz2OekgiBQq9VSuVxWuVyee/mT6HQ6unXrlmzbVhRFU+0rfr/1el2lUkk7OzuzqWRKizz3WRv3O+T7vkqlkq5du6Zr166pXC7L87yRbT3PU7lcTl4TBMG5ZeXhc4x8IfygkEzTVLfbHVkeRZGiKNL+/n6q/YZhOHIBn3af07AsS/fv37/w4jJPp49Ro9FQo9GYer9BEOju3btyHEfdble1Wm2ux3zZzn3Wxv0OVSoV9fv95N+2batWq41sW6vVZNu2DMNQv9+XZVnnlrWMn2PkG+EHOMGyLA0GAzmOk2r7er2ug4ODme5zWhddWOZt3DG6efPm1Pttt9taX19P/u04zlCrXtaW8dwvgmEYajabkjT2D4xYv9/Xw4cPJ97vsn2OkW+EH2BG6vU6f5leIMtjtMhjz7kfFoca3/fPPC57e3szafED0iD8IBc8z1O1WpXv++p0OlpbW5Nt28n6nZ0d2badjAsYN8YiiiLZtp38jBsP4nme6vW66vX6yLrzyvA8L/mSt2176GJ43j7jOrVaLVWr1eQ9nlzf6XSSsRO+7ydjJcbt77KCIFC9Xle1WlWpVFKr1Zqq7PjYlkqlkUBw3jGKHRwcJGVO+h47nY7q9brCMEzGodTr9eQ4zvqzE5+nk+d3mc/9LM/xJL9D0rvWn7i7q91uj6z3PE+VSkWGYUxUz4tcdCyBEQNgyXW73YFpmgNJg0ajMWg2mwPLsgaWZQ0Gg8Gg2WwOTn6Ue73eQNKg1+sly/b39weGYQwtcxxnICnZz/7+frKsUqkM1WGSMuLX7O/vD5V71j77/f7AMIxBv99PlrmuO5A0cBwn2b5WqyXbN5vNQb/fHzQajaHXXeTk+zxZ/sk6dbvd5BinKduyrEGz2Uy2lTSQNDBNM9nnuGM0GAyGjpHjOKneo2maA9M0h5bN6rNjmuZQnQ3DGBiGkfx7Wc/9LM/xJL9DJ538DBweHg6tsyxraD8X1TN21uf4omMJnEb4QS7EX7LxxfWkSqUydCE6PDwceW2tVhu5AA0G479Mx12sJinjrAv7Wfu0LGtsnSzLGtpPfCE4/UU+bp9nGfc+LcsaumAMBu8u6icvVpOWHb/u5P7iC+jJ43FR+HFdN/V7HBd+Tu477WfHsqyR9x/vMz5Oy3ruZ3mOL/M7FKtUKiPHMw5Rl63nWWVNeiyBk+j2Qi7EzePf/va3R9Z1u92hO0xevnwpScmdN2EYJl0faV1UxmWFYaggCMYO4oy7ZE4P1j3ZRRA7PcD2suW32+2kW+ZkN0f8/iYt+8WLFyPr4/1dZizMxsbGSLnTPvtn2s9OEASqVCpD2zWbTQ0Gg7HH5SLzOvezPMdpf4firquTXYmO4wwNdL5sPce9x8scS0CSvrroCgCXMe4L2jAMGYYhz/P06aefjlzk4ounaZpTlXteGZd1XiCIA0CWD/yLyz/vbpzLiI+H7/sjF6JluUsnzWcnPk5pQs5Z5nXuZ3mO0/4OVSoVmaapMAzV6XTUaDS0t7en169fz6Sei/49Qn7R8oPcC8NQ5XJZYRiq2+0mt9meXC+lbyWZpIy0xrUcxRfak7dtz1p8TGZ1YajVaqpUKmq32/J9X1EUyXEcNZvNqUJn1ib97GRxAc363M+y7tP8DsWtP47jyPM8bWxsDIXJWdRzUb9HyC/CD3KvWq1qfX39zEASX3xPdm/MuozLiltDxt2REn+Rl0qlmZQ1TnxMxj1996x6XaTb7apSqSTTHTiOs/TPt7novMbn6axWiTQX7Hmd+1me42l+hxqNRtJ9ubW1NXSn3bT1XPTvEfKL8INci29vPvmXZPylF/+VGjd/dzqdsX8hXjRuZ5IyLrM/6d0XvmVZyb5PevnypQzDyPQZKPEYllarNdJ1kHYqhnq9nrSeNJvNc7u7Th+jL774QtJ0rXMHBweX2v6yn53TF9hWqzXSqrBM536W53ja36GTY3xOP/F5mnou+vcI+UX4QS7EX66nv2Tji4/neep0Oup0OkkzexAEyV+T8V/25XJZvu8rDMPkdWEYJs8rGRdqJikjiqLkL0zXdZMBomftU3rXmmAYxtBfwnF30dOnT5OL8jSB4Cwnn8JbLpdVr9e1s7OjarWq/f395II0adlxOIj30+l0hp5/EzvrGJ0liqKp3/+0n5249aparaperyfPAyqVSsk5WsZzP8tzfHpf5/0OjRMHkHFBZNJ6nmXSYwkMWfTtZsBFTj6rxTTNkduhXdcdGIYxME0zuaW20WgMDMMYusXWdd1kP5ZlJc9vaTabg/39/UG/30+eeaI/3Pob32Y7aRmWZQ0Mw0ieT3LePgeDd7dWx7cQNxqNQaPRGLrlt9/vJ7fsmqY56PV6g8PDw+Q2co25Rfmkk89sGVe+4zhnHtvLlB0fy3j5yR/TNIfKPH2Mut1ucltzfMvz6XLG3aZ+1ntsNBrJM2Rm9dnpdrvJsTj9jJqz3teiz31sVuc4Pl7n/Q6dp9FonPuai+p53uf4omMJnHZtMBgMsotWAIogCAJ9+umnevjwoQ4ODoZabLrdrkql0szGSwHAtLjVHcBU4jumDg8Pk1vHTzJNk6kGACwVxvwAmEo80HRra2tojE/8bBfXdRl0CmCp0O0FYGo7Oztqt9tDg4oty5LjOBcOWAWAeSP8AJiZeKzPMj/YEAAIPwAAoFAY8wMAAAqlEHd7/epXv9Lf/d3f6Vvf+pauX7++6OoAAIAJvH37Vj//+c/1ve99T9/4xjdmtt9ChJ+//du/1Z/92Z8tuhoAACCFTz75RD/84Q9ntr9ChJ9vfvObkqSnT5+eO9/QNDY3N/Xs2bNM9n2Vyjg6OtKdO3f0/Plzra6uZlZO1u+DczG5q3CsOBfFKYNzsVxlBEGgra2t5Do+K5mFnx/96Efa2NjQxx9/nFURE/va174mSfqTP/mTzMLP9evXM9v3VSrjzZs3kqTbt2/rxo0bmZWT9fvgXEzuKhwrzkVxyuBcLFcZR0dHkt5fx2clkwHPr1+/luu6PM4eAAAsnUxafm7duiXXdXnWBwAAWDqZdXttbW1ltWsAAIDUMgs/3/ve9+Q4jm7fvp1VEZf2gx/8QF//+tfHrtve3tb29vacawQAQLHt7u5qd3d37Lrf/OY3mZSZOvzcv3//zHVRFMn3fe3t7S1V+PnJT36i7373u4uuBgAA+IPzGh9++tOf6s6dOzMvM3X46Xa7E73mL//yL9MWkSvzaDW6KmXMQ9bvg3MxuatwrDgXxSsja1flOOX1XKSe2+vevXtyHEfr6+sj6/b399XpdPTjH/946grOQpwcnz9/TsvPgr1580Yffvihfv3rX2d6GykuxrlYHpyL5cG5WC5ZXb9T3+pu27Zu3bqlDz/8cOTHsiyVy2X9xV/8xcwqCgAAMAupw8/du3fPXW+aplzXTbt7AACATKQe8/Pq1asz14VhqFarlXbXAAAAmUkdfizL0rVr185cPxgMtLOzk3b3AAAAmUgdfgzD0L1792QYxsi6mzdvyrKsC7vGAAAA5i11+Hn69Kk2NzdnWRcAAIDMpR7wTPABAAB5lNn0Fj/60Y+0sbGhjz/+OKsiJvbBBx8M/ReX8/jxZMsmsbKyokePHmllZWWaKmEGOBfLg3OxPDgXyyWr63fqhxye5/Xr1yqVSlpbW9MXX3wx691fWhAEKpfL+ta3vqXr16+PfQ1ze51tluEHAICTzpvb6+3bt/r5z3+ufr8vy7JmVmYmLT+3bt2S67oyTTOL3af27NmzmR48AAAwnfMaH+LGi1nLrNvr3r17+vDDD7PaPQAAQCqpBzxf5LPPPtPDhw+z2j0AAEAqU7X8/MM//IN6vZ6iKBpafnBwoCAIdHBwoHa7PU0RAAAAMzXVc35s2z73NY1GI+3uAQAAMpG628t1XfV6PR0eHurv//7v5TiOfv/73+v3v/+9Dg4O1Gg09OMf//hS+4yiSK1Wa6J5wXzf19raWtrqAwCAgkodfiqViu7evasPP/xQlUpFL1++TNYZhqFyuXypMT++72tra0s7Ozsj3WjjXNTqBAAAME7q8PPrX/966N/37t3TX/3VXw0t8zxv4v1VKhV1u92JXttqtZbuNnoAAJAPqcf8mKapr3zlK1pbW9PLly+1ubmpjY0N9Xo9GYYhz/PGTno6Ld/3k4lTT7Y2AQAATCJ1+PnzP/9z/epXv9I//dM/aX19XZK0t7enarWq169fS5Icx5lNLU9wXVfdbneicUEAAACnTXWr++lwY5qm9vf39fr1a62vr8/8IYetVmuqQHV0dKQ3b96k3n5lZYX5XgBg1v7x8aJrcLHvPF50DXLp+PhYx8fHqbc/OjqaYW3ey2x6i1kLgkA3b96caqzPnTt3pqrDo0eP9JhJrQAAKQRBoE8//VS+70uS+v3+gmuUvXa7rSdPniy6GiMym95i1trt9sQDos/y/Plz3b59O/X2tPoAANKK55bc2dnJdJ7JMAy1vr6eybjby3r48KEePHiQevtXr15N3XAxTi7CT6vVUrVaVRiGybL4/+P/TtIitLq6qhs3bmRTSQAALjCPybXr9bq63e5ShJ9ph4usrq7OsDbv5SL8+L6vnZ2dsetKpZIsyypE8yEAAOep1+sKgmDR1Vh6mU1sOkv9fl+DwWDop9lsyjAMDQYDgg8AIPeiKJJt20lvR7VaTcYHjXuNbdsqlUrqdDqS3j1bLw4+tm0ThM6xVC0/kzzZGQCAqyYIAt29e1efffZZ0jXW6XRUrVblOI6azaYkaWtrS6ZpJnc+dzqd5NpZq9X04sUL7ezsyHVdHgZ8jqVp+QmCIHl2z97enjzPIwwBAApha2tLGxsbQ2OCGo2GLMtSq9VKxreebgliAvF0lib8WJYl13U1GAx0eHioWq127mAtx3F0eHg4vwoCAJCBMAwVBMHYwdDxPJau60p6d3PPzs7O0DjYuFUIk1ua8AMAQBGdNy5nY2ND0vs7m+O7uFqtlkqlEmN6UiL8AACwBMYN9Yh7QOJppEzT1OvXr1WpVBSGocrlcjLgGZMj/AAAsEBxd9fp8TzS+0BUKpUkvWsBMgxDvV4vefBv3DWGyRF+AABYINM0ZVmWwjAcepivJL18+VKGYSQDm0/Ob1mr1ZKxQKe344ah8xUq/GxubupP//RPx/7s7u4uunoAgIKKx/KcbMWJokiO4+jp06dJ99fe3t5Q0ImiSKZpJre1xy1ErusqDEN5nje/N5HS7u7umdfmzc3NTMq8NhgMBpnseYkEQaByuax+vz+XR4tfNePmcmV+VwC4nCAI5LpuMkbHcRw1Go0k2ERRpK2trSTQSO+6tE5et+Kpnmq1mqR3LT4nw5EklctlhWGoe/fuJS1DeZXV9XupHnIIAMBVFT/S5axAYhjGhRN493q9C8th1oOLFarbCwAAgJYfDKE7CwBw1dHyAwAACoXwAwAACoXwAwAACoXwAwAACoXwAwAACoXwAwAACoXwAwAACqVQz/nZ3NzU9evXx67b3t7W9vb2nGsEAECx7e7unjm/5tu3bzMps1Dh59mzZ8ztBQDAEjmv8SGe22vW6PYCAACFQvgBAACFUqhuLwDA8snDnIJ5qCMmR8sPAAAYEQSBOp3OoquRCcIPAABzFgSBWq2W6vW6SqWSdnZ2Fl2lRBiGqtfrKpfLcl130dXJBN1eAADMURAEunv3rg4PDyVJrVZL+/v7C67Ve6Zpqtvt6tq1a4uuSmYIPwAAzFG73db6+nryb8dxFlibYqLbCwCAOQqCYNFVKDzCDwAAc9DpdFSv1xWGYTKupl6vy/f95DVRFMm2bbVaLVWrVVWr1aH1nudpbW1N165dS0KU7/uq1+u6du2a6vV6sp9Op6NyuSzP8+T7vsrl8tBrTorLjX+WaQxSFgg/AADMQaPRULfblWmaybiabrerSqUi6V2L0K1bt2TbthzHUa/XU71eV7VaTcJIrVbTvXv3hvZbqVRGus4ODg7U6/UUBIFc11Wv19PTp0/VaDTked5QuAnDULdu3VK9Xpfruld2kPNJhRrzU+S5vcY9o4LnVgDA8tja2tLGxsbQNEyNRkOu66rVaqlWq8k0TRmGMbLtyTFE0rtBy/fv35fneapWq2o2m5Ik13XV6XTU6/WSZa1WSxsbG0kIk6Rms6lWq5XBuxzF3F4ZY24vAMAyCsNQQRAkgeSkuCvKdd1Ug6PHhaWDg4OkXM/zFjromrm9AAAooPMGQW9sbEh6F1RmLd6naZoz3/cyI/wAALAkoigaWRa33Jzu2pqFOPzELUFFQfgBAGDB4iEZJ+/sisWBqFQqzbzcuMWn3+/PfN/LjPADAMAcHRwcjLS0mKYpy7KS2+BPevnypQzDUKPRkCTdvHlT0nA3WPz/41qOzhN3qXU6nbHbXnZ/eUH4AQBgCXS7XRmGIdu2k2VRFMlxHD19+jTp/opbiVqtlnzfV6fTSW5P931f1WpV0mRdWYZhJIOsy+WyfN9XGIbJnV5hGF7JZ/4s1d1eURSp3W5LGv+4b8/z1G63FQSBLMuS4zhDt+bhcrjVHcAyKMp3UfzMnbg1xbZt1ev15DpmmqZev36tra0tVavVpEuq2+0O3akcP9en3W6rXq8nt8P7vq9arab79+8nZUnvrqemaWpjYyMJNUEQaGdnR81mU47jqFQqyXEcVatVWZalbrcrz/NUq9VUq9XmeJTm49pgMBgsuhLSu7Tquq48z0tO5Ek7OzvJA5/29/eTJNrr9S4MQPGtcv1+v7C3us/6y6UoX1YAgMXJ6vq9NC0/lUpFlUrlzFlkX7x4oV6vl/z7/v37KpfLtP4AAIBLycWYH9/3R7rBLMtKBocBAABMamlafs5zXsvOZR7MdHR0pDdv3qSux8rKilZWVlJvDwBAkRwfH+v4+Dj19kdHRzOszXu5CD9nCcNwaFT8Re7cuTNVeY8ePdJjBrsAADCRdrutJ0+eLLoaI3IbfjzPk2mayXMPJvH8+XPdvn07dZm0+gAAMLmHDx/qwYMHqbd/9erV1A0X4+Q2/LTbbXW73Utts7q6qhs3bmRUIwAAcNK0w0VWV1dnWJv3cjHg+bRWq6WnT58WbiI2AAAwvdyFn06nkzyECQAA4LJyFX48z5M0evdXEASLqA4AAMihpRrzc94Ear7vq91uy7ZtdTqdZHm/31e5XKYlCAAATGRpws/JeUj29vZUrVZVqVRkGIaCIEgmaht3a/vh4eFc6woAAPJracKPZVlyXXdkTq943ZJMQQYAAHIuV2N+AAAApkX4AQAAhUL4AQAAhbI0Y37mYXNzU9evXx+7bnt7W9vb23OuEQAAxba7u6vd3d2x696+fZtJmYUKP8+ePeOWeAAAlsh5jQ9BEKhcLs+8TLq9AABAoRB+AABAoRB+AABAoRB+AABAoRRqwDNm5/HjyZYBALBsaPkBAACFQvgBAACFQvgBAACFQvgBAACFQvgBAACFQvgBAACFUqhb3ZnYFACA5cLEphljYlMAAJYLE5sCAABkjPADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKpVDTWzC3FwAAy4W5vTLG3F4AACwX5vYCAADIWKFafpDSLz4fXfavP5pzJQAAmA1afgAAQKEQfgAAQKEsVbdXFEVqt9uSJMdxRtYHQaB2uy3TNBVFkarVqmq12ryrCQAAcmxpwo/v+3JdV57nqdFojKwPw1Dlcln9fj+5Y6tUKung4GDs6wEAAMZZmm6vSqWibrd75nrbtlWpVIZuVW+1WrJtex7VAwAAV8TShJ/zRFEk3/dVrVaHlm9sbEiSOp3OIqoFAAByKBfh5+XLl5Ik0zSHlsetQL1eb+51AgAA+bQ0Y37OE4ahJMkwjHPXX+To6Ehv3rxJXY+VlRWtrKyk3h4AgCI5Pj7W8fFx6u2Pjo5mWJv3chF+9vf3JUnr6+tj10dRNNF+7ty5M1U9Hj16pMePH0+1DwAAiqLdbuvJkyeLrsaIXISfUqkkSTo4OBi7/nR32FmeP3+u27dvp64HrT4AAEzu4cOHevDgQertX716NXXDxTi5CD9xuDmrhWfS8LO6uqobN27MqloAAOAc0w4XWV1dnWFt3svFgOf4rq7TY3vif2cx4ysAALiachF+DMOQZVkjd3X5vi9Junfv3iKqBQAAcmipws95A5efPn0q3/eHWn8cx5HjOGfeBQYAAHDa0oz5CYJArutKkvb29lStVlWpVJJgY1mW+v2+Wq2WTNNUGIZqtVpMbQEAAC5lacKPZVlyXTcJQGe95rwpMAAAAC6yVN1eAAAAWSP8AACAQiH8AACAQiH8AACAQlmaAc/zsLm5qevXr49dt729re3t7TnXCACAYtvd3dXu7u7YdW/fvs2kzEKFn2fPnsmyrEVXAwAA/MF5jQ9BEGQyiwPdXgAAoFAK1fKDU37x+eiyf/3RnCsBAMB80fIDAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKhfADAAAKpVAPOWRurwn84vNF1wAAUCDM7ZUx5vYCAGC5MLcXAABAxgg/AACgUAg/AACgUAg/AACgUAo14Bkz9IvPxyz8aL51AAAgBVp+AABAoRB+AABAoRB+AABAoRB+AABAoTDguSh+8fmiawAAwFIoVPhhbi8AAJYLc3tljLm9AABYLsztBQAAkDHCDwAAKBTCDwAAKBTCDwAAKBTCDwAAKJTc3e3leZ56vZ4Mw1AYhjJNU47jLLpaAAAgJ3IVfjzPU7vdVr/fT5ZVq1W1Wi0CEAAAmEiuur1c19XGxsbQsmq1Ks/zFlQjAACQN7lq+Tk4OFAYhkPL9vf3ZZrmgmoEAADyJlfhx7Zt2bater2ubrerIAi0t7enzz77bKLtj46O9ObNm9Tlr6ysaGVlJfX2AAAUyfHxsY6Pj1Nvf3R0NMPavJer8NNoNNTv99XpdFQqlWSapl6/fi3DMCba/s6dO1OV/+jRIz1+/HiqfQAAUBTtdltPnjxZdDVG5Cr8SO/G/bx8+VJBECgMQ/m+r1qtNtG2z58/1+3bt1OXTasPAACTe/jwoR48eJB6+1evXk3dcDFO7sJPtVqVbdsyTVP1ej3pApskAK2ururGjRtzqCUAAJh2uMjq6uoMa/Neru72sm1b0rvur0qlknR5bW1tLbhmAAAgL3IVfvb29mRZVvJvwzDkOI6iKFIQBAusGQAAyItchZ/19XVFUTS0rFKpSNLEg54BAECx5Sr82Latvb29oQDkeZ4sy+JZPwAAYCK5GvDcbDZlGIbq9XrS/RVF0cTP+QEAAMhV+JHeDXZuNBqLrgYAAMipXHV7AQAATIvwAwAACoXwAwAACiV3Y36msbm5qevXr49dt729re3t7TnXCACAYtvd3dXu7u7YdW/fvs2kzEKFn2fPng09JBEAACzWeY0PQRCoXC7PvEy6vQAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEQfgAAQKEUam4vJjYFAGC5MLFpxpjYFACA5cLEpgAAABkj/AAAgEIh/AAAgEIh/AAAgEIh/AAAgEIh/AAAgEIh/AAAgEIh/AAAgEIh/AAAgEIh/AAAgEIp1PQWzO0FAMByYW6vjDG3FwAAy4W5vQAAADJG+AEAAIVC+AEAAIVC+AEAAIWS+wHPYRjK8zxJUqPRkGEYi60QAABYarkNP2EYqtVqKYoiua4r0zQXXSUAAJADuez2im99W19fV6/XI/gAAICJ5S78RFGku3fvyjRNua676OoAAICcyV34ibu6HMdZdFUAAEAO5W7MT6fTkST1ej21Wi2FYaiNjY2Jxv0cHR3pzZs3qcteWVnRyspK6u0BACiS4+NjHR8fp97+6OhohrV5L1fhJwgCSZJlWbJtW47jKAxDVatVlUolHR4ennu31507d6Yq/9GjR3r8+PFU+wAAoCja7baePHmy6GqMyFX4CcNQkmTbdtLKE4/9qVararfb53aHPX/+XLdv305dPq0+AABM7uHDh3rw4EHq7V+9ejV1w8U4uQo/Z7XqVCoVSe/D0VlWV1d148aNWVcLAACMMe1wkdXV1RnW5r1cDXje2NiQJO3v749dv76+Ps/qAACAHMpV+DEMQ5VKRb7vDy2PokiSMpn2HgAAXC25Cj+S5DiOgiAYCkCdTkeWZanRaCywZgAAIA9yNeZHenenV7/fV6vVUrfblWEYiqJI/X5/0VUDAAA5kLvwI70LQL1eb9HVAAAAOZS7bi8AAIBpEH4AAEChEH4AAEChEH4AAECh5HLAc1qbm5u6fv362HXb29va3t6ec40AACi23d1d7e7ujl339u3bTMosVPh59uyZLMtadDUAAMAfnNf4EARBJg8wptsLAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUSqGmt2BuLwAAlgtze2WMub0AAFgui5jbq1DhJ1f+8fHosu+MWQYAAC6F8IOZefx4smUAACwSA54BAEChEH4AAECh0O11BS2sq+kXn49Z+NF86wAAwAVo+QEAAIVC+AEAAIVC+AEAAIVC+AEAAIVC+AEAAIVSqLu9mNsLAIDlwtxeGWNuLwAAlssi5vai2wsAABQK4QcAABRKobq9cAUw2z0AYEqEn6voF58vugYAACyt3Hd7+b6vtbW1RVcDAADkRO7Dj23bi64CAADIkVyHn1arJdM0F10NAACQI7kNP77v6+bNmzy3BwAAXEpuw4/rumo2m4uuBgAAyJlc3u3VarXkOM6ltzs6OtKbN29Sl7uysqKVlZXU2wMAUCTHx8c6Pj5Ovf3R0dEMa/Ne7sJPEAS6efNmqrE+d+7cmarsR48e6fHjx1PtAwCAomi323ry5MmiqzEid+Gn3W6r2+2m2vb58+e6fft26rJp9QEAYHIPHz7UgwcPUm//6tWrqRsuxslV+Gm1WqpWqwrDMFkW/3/83/NahFZXV3Xjxo1sKwkAACRNP1xkdXV1hrV5L1fhx/d97ezsjF1XKpVkWZb6/f6cawUAAPIkV3d79ft9DQaDoZ9msynDMDQYDAg+AADgQrkKPwAAANMi/AAAgELJffhxHEeHh4eLrgYAAMiJ3IcfAACAyyD8AACAQiH8AACAQiH8AACAQsnVQw6ntbm5qevXr49dt729re3t7TnXCACAYtvd3dXu7u7YdW/fvs2kzEKFn2fPnsmyrEVXA1N4/NcfjS77zvzrAQCYjfMaH4IgULlcnnmZdHsBAIBCIfwAAIBCIfwAAIBCKdSYn9z7x8ejy74zZhkAADgTLT8AAKBQCD8AAKBQCD8AAKBQCD8AAKBQGPCM5TVugLc+mnMlAABXDS0/AACgUArV8sPcXgAALBfm9soYc3sBALBcmNsLAAAgY4QfAABQKIQfAABQKIQfAABQKIQfAABQKIQfAABQKIQfAABQKIQfAABQKIQfAABQKIQfAABQKIWa3gLz9/jxZMvGz+AOAMDsFSr8LO3Eplz4AQAFxcSmGWNiUwAAlssiJjYtVPjBAvzi8zELP5ptGeNazr4zZhkAAGLAMwAAKBhafrC0Hv/1R4uuAgDgCqLlBwAAFEouw4/neSqXy7p27ZrK5bJ83190lQAAQE7kLvzs7OzIdV3Ztq1ms6kgCFStVglAAABgIrkb8/PixQv1er3k3/fv31e5XJbjOKpUKgus2WyNG+/y+OPP510NAACunFyFH9/35TjO0DLLsmRZlsIwXFCtMAsMbgYAzEuuws95LTumac6xJgAAIK9yFX7OEoahbNu+8HVHR0d68+ZN6nJWVla0srKSensAAIrk+PhYx8fHqbc/OjqaYW3ey3348TxPpmmq0Whc+No7d+5MVdajR4/0eOysnAAA4LR2u60nT54suhojch9+2u22ut3uRK99/vy5bt++nbosWn0AAJjcw4cP9eDBg9Tbv3r1auqGi3FyHX5arZaePn068Xif1dVV3bhxI+NaAQAAafrhIqurqzOszXu5DT+dTkfVapVZ2jH+sQDfmX89AAD5kMvw43mepNG7v4IguNJhiIs8AADTy1348X1f7XZbtm2r0+kky/v9vsrl8pUOPwAAYHq5Cj/xVBaSxt7afnh4OO8qAQCAnMlV+LEsS4PBYNHVAAAAOZa7iU0BAACmkauWH2Bp/OPj0WXfGbMMALB0CD95N+4irI/mXIlLymOdAQBXBt1eAACgUArV8rO5uanr16+PXbe9va3t7e051wgAgGLb3d3V7u7u2HVv377NpMxChZ9nz57xHCAAAJbIeY0PQRCoXC7PvEy6vQAAQKEUquUHy2HcNB0AAMwLLT8AAKBQCD8AAKBQCD8AAKBQGPMDTGLsgxkBAHlE+Mk5Bg8DAHA5dHsBAIBCoeUHVxMTjwIAzkDLDwAAKJRCtfwwtxcAAMuFub0yxtxeAAAsF+b2AgAAyBjhBwAAFArhBwAAFEqhxvwAI3hyMwAUDuFnCfCUZlwZPF8JQA4UIvx8+eWXQ/9dqLEtDR/NuRKL87t/+VL/+8/+J/37f/vf6atf+SCzcsYFysffyay4XDo+Pla73dbDhw+1srKy6OoUGudieXAulktW12/CD+bqX/7ln/X81f+o/+rf1DMNP2PRxTXk+PhYT5480YMHD7L9kqc16EJzOxe4EOdiuWR1/WbAMwAAKJRCtPwAszZxtxqtHgCwdAg/wKwUrVutaO8XwJVRqPDzgx/8QF//+tfHrmNuLwAA5u+8ub1+85vfZFJmocLPT37yE333u99ddDWQQzyOYMboDgTwB+c1Pvz0pz/VnTt3Zl5mocIPcNrYsTsffz7vaszH6cDxn47TbwsAOUb4QWFM2nqTeSvPFW71KFSYBJBbhJ8Z2d3dzXzM0P/5f//P+nd/+t/mvox5yPp9jNv/xOHq489HF44JRLv/9F/MZxza/9GW/ji755n81//D4eix+vjzmZaR9e/fPH6/52Ee7+OqlJG1q3Kc8noueM7PjJw1WGuWXvw//+uVKGMesn4f0+z/8V9/NPIzzu5fPX4Xik7+TOr0dgvstprHZyrr37+p9r9E52Ie31NXpYysXZXjlNdzkcuWnyAI1G63ZZqmoihStVpVrVZbdLWA7C3R2JuZdw9ehe7AJTo/AM6Wu/AThqHK5bL6/b4sy5IklUolHRwcqNFoLLh2ACbB2CAAi5S78GPbtiqVShJ8JKnVasm27ezCT9q/SMdsxy3TGGf85yKfzckAsOxyFX6iKJLv+3IcZ2j5xsaGJKnT6dD6gyvj/4/+ONOwfPzlf5r4tfMI7RNPGXIVTPPYAQBTy1X4efnypSTJNM2h5XErUK/Xm1/4oW8fV0T7J/9eKx/88aKrMd4yjwPiOwDIrVyFnzAMJUmGYZy7/rTf/va3kqSf/exnFxfyf/3NyKK/+d9uS5L+6Ctf1Vf/6F9Jkuz/pj/0mrfRLxX8jT20zP1fymMK+A8X1+EMv/vdsX75q/TbL0MZX/7zW0nSf/zi/9MH/+p6ZuVk/T44F5Ob5n3Yzn85uuxRMLJs3O+f/q098rq0xu5/ho7efilJevXqlVZXV9+v+Jmbfqdj3v/bt28VBKeO36RljDueY7YdW8Y05lHGCUdHR5LGnItxxh27SY/TrD+zkx6nSes8oYvK+PKff6cvf/d76d/895Pt8NQ1+Gf/73+U9P46PjODHGk2mwNJg36/P7JO0sA0zbHbffLJJwNJ/PDDDz/88MNPDn8++eSTmeaJXLX8lEolSdLBwcHY9ae7w2Lf//739cknn+ib3/ymvva1r6Uu/4MPPtAHH3yQensAAIrkyy+/1Jdffpl6+9/+9rf65S9/qe9///szrFXOur3icBNF0bnrT/vGN76hH/7wh1lVCwAA5EiunvAc39V1emxP/O9yedwYGwAAgPdyFX4Mw5BlWer1ekPLfd+XJN27d28R1QIAADly7Q+DhXMjCAKVy2Xt7+8n3VylUkm2bavZbC64dgAAYNnlLvxIw3N79ft9HR4eqlKpXGqeL+YHm720x9TzPLXbbQVBIMuy5DiOKpXKHGp8dc3i8+37vur1ug4PDzOqZTHM4lyEYSjP8yRJjUbjzMd94GLTfE/1ej0ZhqEwDGWa5sgDdzG5KIrUbrclaeLjONPr9kzvHZuz/f39gTR867tpmgPXdTPZDmdLe0wdxxlUKpWB67rJowwkDXq9XtZVvrJm9fk2TXNgGMasq1co056L/f39Qa1WG1QqlcH+/n5W1SyMtOej2+0OLMsaWlapVAbNZjOTel51vV5vUKvVBpIGjUZjom1mfd3OdfipVCqDSqUytMx13cFFmS7tdjhb2mNaq9WG/t3v9weSRvaFyc3i891sNgeVSoXwM6VpzkW/3x8YhjHxxQEXm+aacfo8OI5z5rPlMJnLhJ9ZX7dzNeD5pHier2q1OrT85Dxfs9wOZ0t7TMfN02ZZlizLOvNp3TjfLD7fvu/r5s2bQ5MH4/KmORdRFOnu3bsyTVOuO8VTnpGY5nwcHBwkN9bETo47RbayuG7nNvxMMs/XLLfD2dIe00qlcuaXB18q6czi8+26LjcPzMA056LVaimKIsaUzNA058O2bYVhqHq9Lund2JO9vT3Oz5xkcd3ObfhJO89X2u1wtlkf05NfMricac9Fq9XiC31GpjkX8V+yvV5P5XJZa2trqlarfD9NYZrz0Wg01Gg05HmeSqWSWq2WXr9+TevonGRx3c5t+Nnf35ckra+vj11/1lOg026Hs83ymHqeJ9M01Wg0ZlG1wpnmXARBoJs3b9LqNiNpz0U8SaRlWbJtW/1+X/1+X2EYqlQq8R2V0rTfU67rJl3yvu+PdIMhO1lct3MbftLO85V2O5xtlse03W6r2+3OpF5FNM25aLfbdHfNUNpzEf8Va9t28pqTY3/i24NxOdN+T1WrVdm2ndzuXq/Xk8cPIFtZXLdzNbfXSWnn+Uq7Hc42q2PaarX09OlTzsEU0p6LVqs10q0S/3/8X87L5aQ9F2c17cfPvqLrK51pvqds25akpEX69evXunXrlra2tng+3Bxkcd3ObctP2nm+mB9s9mZxTDudjqrVKn3oU0p7Lnzfl23bKpVKyY/neYqiSKVSiTFYKUz7HRU39Z92VtM/zjfN99Te3t7Qd5NhGHIcR1EUJd2UyE4W1+3chp+083wxP9jsTXtM46bj00915kvl8tKei36/r8G7534lP81mU4ZhaDAYqN/vZ173q2aa76hKpTIypiT+q5c/0NKZ5ntqfX19pNUh/r7iadvZy+S6nerpQEsifiDeySefmqY5cBwn+ff+/v7ANM2hJwZPsh0uJ+256PV6A8uyBq7rDv00Gg2euJ1S2nNxWrPZ5CGHU5r2O+rkMsdxRp4yjMtJez4cxxkYhjE4PDwcWsb5SO/w8PDMhxzO47qd2zE/0ru7Ifr9vlqtlkzTVBiGarVaQ3cKRVGkg4ODodQ+yXa4nDTnIgiC5KFVcZ/6ScwplU7a3wvM3iy+o7rdrgzDUBRFtMBNKe35iFtB6/V60v0VRZE+++yzeb+FKyEIgmQA/97enqrVqiqVStKKNo/rdi4nNgUAAEgrt2N+AAAA0iD8AACAQiH8AACAQiH8AACAQiH8AACAQiH8AACAQiH8AACAQiH8AACAQiH8AACAqZ2eeHSZEX4AAMDU6vV6bqbMIfwAAICpBEEg0zST+bniubeuXbuma9euaW1tTTs7O8nrfd9XqVRK1sUztM8Lc3sBAICp2Later2uSqUytLxer8vzPNVqNXW73ZF1YRguZMJewg8AAJhKqVTS/v7+yPIgCFQul2UYhg4PD5Plnuep1WqN3WYe6PYCAACpeZ430uITsyxLlmUpiqKkaysIArVaLfV6vXlWcwjhBwAApPbpp5/Ktu0z18frXNdVFEWq1+vqdrsyTXNeVRxB+AEAAEmLzNra2lCYqdfrWltbG3srexRFCsNQlmWdud979+5JetdCdPfuXTmOc+7r54ExPwAAIFGtVuX7vgaDQTKQOQxDNRqNkdd2Oh1FUaRms3nuPs8b+LwIX110BQAAwPKo1+vyfV+2bavVap3bPeW6rj777LML9xnvIwiCM19j27ZKpZK++OILffvb31atVrt85SdE+AEAAIl48LJhGOcGnzAMtb6+njzb5yye58n3fZmmqTAMFQTBSLdXvV6XaZpJC1J8h9hZA6mnxZgfAACQiAPPRdNVuK577kBn6f04os8++2xo4PNJYRjK87yhfd2/f1+O46Sp/kQY8wMAABKtVku+7yuKonOfw3PWs31iURSpXC6r2+0mt7uvra1Jkk5GD8/zVK/Xh5b5vq9qtarDw8MLW5bSoOUHAABIehdEqtWqbNtWGIZJ68/pViDf9y/skrp7965c1026uAzDSMbxeJ6XvO7FixcjAWd9fV2SdHBwMNX7OQvhBwCAAgvDUDs7O/I8TwcHB6pUKkmwcV1XOzs7SRiJXdTlVa1WZZrmSECqVquSpHa7nSyLomhk/yfrlgXCDwAABRYEgdrttl68eJHczm6apmq1mjqdjiqVykjLzLhBy9L7CUt931cQBEMtPJ7nJeN9giBI7iorlUpntvBk9SBExvwAAICJTfpsn0mdN+Ynq4jCre4AAGBikz7bZ1JxC1IYhkPPA8ryKdB0ewEAgIlM+myfy4i72E52kX366afc6g4AABav1Wpl9vTlk094LpVKY6fTmBXCDwAAmEg8I3veEX4AAEChMOYHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUCuEHAAAUyn8GDX2tM0X1414AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(\n", " rad_length_lost,\n", " bins=100,\n", " density=True,\n", " alpha=0.5,\n", " color=\"darkorange\",\n", " histtype=\"bar\",\n", " label=\"lost\",\n", " range=[0, 1],\n", ")\n", "plt.hist(\n", " rad_length_found,\n", " bins=100,\n", " density=True,\n", " alpha=0.5,\n", " color=\"blue\",\n", " histtype=\"bar\",\n", " label=\"found\",\n", " range=[0, 1],\n", ")\n", "plt.xlim(0, 1)\n", "# plt.yscale(\"log\")\n", "plt.title(\"radiation length fraction endVelo\")\n", "plt.xlabel(f\"$x/X_0$\")\n", "plt.ylabel(\"a.u.\")\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABiMAAAL7CAYAAACfnvZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5AUlEQVR4nOz9f5hb1X3o+3+2h+BOsI08pN9CnPZgTXsvpvnBlUwI+BxcQLopTdIfsWRyn5O0+Z6ClHbSQk0zKt+ee4bp87QTTYoLaaeNZN+Wc5KeE1tye9vclOZIQMx5jEsyUmlIMKftyGmLA+2lM/KPMDFhvL9/TCRmZq+1RtqjvbUlvV/Powe8PuvX/qVZey/tvS3btm0BAAAAAAAAAADwyKZudwAAAAAAAAAAAPQ3JiMAAAAAAAAAAICnmIwAAAAAAAAAAACeYjICAAAAAAAAAAB4iskIAAAAAAAAAADgKSYjAAAAAAAAAACAp5iMAAAAAAAAAAAAnmIyAgAAAAAAAAAAeIrJCAAAAAAAAAAA4CkmIwAAAAKmWq3K9PS0RKNRicfj3e5Oz6jVapLP5/tynZXLZUmn07J9+3YpFovd7g56FN8t3gjieu3n70MAANC7mIwAAAAIkGq1KkeOHJFMJiPValWZp1gsyvbt22V6etqXPvndXruq1arE43EZHR2VdDot5XK5213qqGKxKLlcTvL5vNTrdU/amJ6elmQyKdu3b5ft27dLOp32rK1OC/r+GRStfLegfab1WiwWJRqNimVZqz7xeFy7v1arVUkmk6vyJ5NJqdVqLfenn78PAQBAb7Ns27a73QkAAACslkwmpVgsSiwWk1KptCoWjUalWq1KOByWubm5jrTXuPAcCoUcMS/a80I+n5d0Oi0iIr06xDVtB8uyRESkUChIIpHoWHt33HGHxGIxyWazUq/XJRqNSq1Wk2w2K+Pj4x1pZ6P6Yf8MCtN3S6eZtlu/Ma3XeDzenBSIRCJSqVTWrW96eloymYzr47Afvg8BAED/4c4IAACAABoZGdHGstls8+Jxp5h+eetFe14Ih8Pd7sKGtfML6E5o/Jq7cdEyFArJ3NyclEqlwExEiPTH/hkUpu+WTvN7f+4m03otFArN/2/1rpR//dd/lVAo5Po47IfvQwAA0H8u63YHAAAA0J5YLCaxWKxj9WUyGeOjPDrdHtTW2w5eyOfzIuK8kBqk7c3+2Zu6sT8HVSgUklQq1Tzepqen151kyOfzkkql/OgeAACAb7gzAgAAYIAVi0WetR8A3dgOvfCLdfbP3sR2c1p5587U1JQxb7lclnq9Lg888IDX3QIAAPAVkxEAAAAtKJfLkkwmm79sTafTzReRrlQsFiUej0symZR4PC7RaLRZRieTycjo6KhEo9GW8tdqNclkMhKNRrV5WulHsViUe+65p/nvO+64o/kC43bbE1n+tW+jrdHRUYnH49plqdfrks/nV+XJ5/MyOjoqlmU13wPQafV6XdLp9Kp2VBdNO9G/xvpobNt0Oi3FYtHxYuhWt8NamUxGtm/f3vb6yufzsn379lXbc+fOnc02V64PL/f7letn+/btEo/HVy1Dv+6fra6rTvSh3e+W9bRy/LSzP7vZbzbSt0a+bqzXUCjUfNdLvV6XYrGozZvNZiWRSDjetdHqMrajneMCAABgw2wAAABoZbNZOxwO2yJii4idy+XsWCxmh0KhZtrc3Jxt27Ydi8VsEbEXFhaa5cfHx20RsbPZrKPuhYUFOxKJ2LFYbFWZRCLRrDsWizXTK5VKsw0RsUOhkLLP7fRjYWGhWV+lUlkVa7W9SqVih8NhO5FIrKq3sRxrl69UKtmRSKRZbzabtROJhB2JROxUKrVqfa8st55SqdQsp4tHIhG7VCrZtm3bc3NzzeWLRCId7V8kEllVZ6FQaJZZ+Vm5vnTboWHlPtjYb8bHx12vr7m5Occ+3ODlfj83N2eHw2E7lUo1y6zsS6FQaGm99Nr+2c662mgf2v1uaUWrx0+j/fX253b3m070rdvrdeV+Hg6HjXkay9LuMq7Mb/o+bPe4AAAA6AQmIwAAANax8sJaOBxuXgzKZrN2KpWybfuNCz9rL4g2LiypLpRGIhHtBdTGRV/Vha1UKqWts91+tHLR0NReo6/rTYyolqOxjKFQaNWFt4WFhWasnYuSpotvjeVfu4wrl398fLwj/WtcUF15Ud2237hgGQ6H7YWFhVUX+tqZjAiHw448jf6sXQYT02TE2j51er9feQG0obGvrLxI24/7Zzvrym0f3H636LR7/Ky33dysi071zba7u15XTqCtnXCwbbs5wbjRZVxvMsLtcQEAALARPKYJAABgHaFQqPm4jJUvyx0fH5dcLrcqbzgcXvXvxouB6/X6qsfz5PN5qVar2meCm17Iu97jaNrpRytM7WUyGanX69oXrTaek14ulx2PJWn0MZVKrVreUCgku3fvFhGRubm5tvpq6mcoFJJIJLIqfWXa2keTuO1fYznXboN0Oi0ib7yrYe0jWFqVzWYdy9HoXyffA+HFfp/JZLT7fTablVAo1PbLqHtt/2zn2HTTh418t+i4OX5a0YnvKb+O7U6t10wm0/z/le+RWNlO47tiZZlOrv+NHBcAAAAbcVm3OwAAANBLdBc+Y7GYzM3NOS6urbw4PD8/37y427jYs/biUkPjoly7sXb70QpTe40LVTfeeKMyHolEJBwOS61WkyNHjjSfmb6eRv87dXG90c/R0VFHrNFG4wJoK+vG1L9G2vz8/Kr0lRcr290GG+lPJ3Rqv29cMFXt95FIRBYWFtruW6/sn50+NnV92Mh3i06nj59Orgu/ju1OrddYLCaRSESq1aqUy2WpVqvNOhvvlFk7SdDpZfTquAAAAFgPkxEAAAAdsvLCWrFYlCNHjjgutjU0LiDp4n71Y6NauRjbuKjlxQupW9FoNxaLSalU8rVd3a+lvdoe3dDq/lar1aRer/u67EHbP/04Njv93eLV8dOJdeHnsd3J9frAAw9IMpkUEZGpqSkpFArN/1/74movljFoxwUAABgcPKYJAACgg/L5vIyOjsr8/LwUCgXlIz28+vV6u/3YqLW/YtZpXLwz5fFSo10/1ruINH/VvPZRRo3HzvTjr4zb2e/92g+Cun96eWx6sY97efxsdF34dWx3uv5EItHc74rFYvOiv+oxUJ1exqAeFwAAYDBwZwQAAECHxONxKZfLysePrLTyWei1Wq3jv4xutR8btbJu07PzG7/y7dbdAI3Hp/g1GZHL5aRWq0m5XJZkMinZbFZGRkYkmUxKJBJp/gq6X7S6v619H0AnH1OlEsT90+tj04vvFq+On06sC7+ObS/WayaTab4bovEIqHA47HgMVKeXMYjHBQAAGBzcGQEAANABmUxGyuWypFKpdS/erLzY1OlHYLTTj05otFEul7V5GhfRGi+G9dvax8Ho1Ot1Vy/hVSmVShKJRGRkZEQymUzzwmOlUulI/UHhdr83redardbxC69B2D/9ODa9+G7x4vjp1Lrw69j2Yr2mUqlV71LJ5/OrXm7d4MUyBum4AAAAg4XJCAAAgA4wvWBUpXExaGpqqqv9WMnN4zgav+ytVqvaC8iNi3eqC21+CIVCzfV9zz33rPqV80rJZFL7jod2JZNJKRQKksvlmv9t9fFMvfRYlHb3t8ZF3ampKe3+kk6nlReoe33/3Mix2Y5Of7ds9PhRbbdOrQs/j20vvrPXPpJp7YurRbxZxiAdFwAAYLAwGQEAANABjQtuR44cWZW+8sLVyotIjcdy1Ov15otMV+Y7evSoiKgfzdFoS3VRqt1+qF6UurZdU3vj4+PNC2WNZVqpcbFrZb5WdPqC/Mr1HY1GVy1rtVqVaDQqkUik5T6a+pdOp9t+lEsr26HTdBc127GR/T4ajUo+n2/Gy+WyjI6Orrr42U/7Z7vrym0fNvLdotPu8bPeduvkuvDr2PZivY6Pjzf/XzURoWq7E8vo1XEBAACwLhsAAADrEhFbROxUKqWMp1KpZp5wOGwnEgk7HA7bhULBkT43N6csMz4+bo+Pj9vhcNiORCLNWCgUskulUrOt8fHxZmxhYWHD/YjFYs12stmsHYvFWm7Ptm17bm7ODofDtojY2WzWka5bZ6FQyBYRO5FIOGKN5Y9EIuoNopDL5Yz9TCQSzfjaj6qPbvvXKNdYp43tGYvF7EQiYWezWWX/TNthYWGhWefKdawq26qV+0ShUFDm8WK/X7k/rf2st2y9vH+6WVdu++D2u8Wk3ePHtN3crItO9i1I67Wx/1YqlY4u43rfh26PCwAAgI1gMgIAAMAgm802L9isvPCjunibSqXsUChkh0IhO5VKNS8AZbPZ5sWrtReoCoWCHYvFmhetGxffxsfH7UQisSp/pVJZdTGsccFs7QXcdvsxNze36gJcI9ZqeyvXVSwWW3XxXXVBrlKpNC9Urlync3Nz9tzcnOOi23oXJOfm5lruZy6Xa67vUCik7ONG+1coFFZNSKg+oVDIcYFQtx0KhcKqC50iYo+Pj9sLCwvK/sRiMeOFzUqlYo+PjzsmTcbHx5v7tdf7falUcmwHXZ97ff90s6460Yd2vlta1crx06Dbbu2ui072LYjrdWFhoeVJrVaWsZ3vQ9tu/bgAAADoBMu2bVsAAAAAdES5XJZCoSDZbFZqtZrMz883HzkzPz8vc3NzUiwWJRaLSS6X625nAQAAAMAnTEYAAAAAHVIsFuWee+6RhYUFY75arSaZTEYKhYJPPQMAAACA7uIF1gAAAEAHNF5s28oLX6vVqsTjcR96BQAAAADBwGQEAAAA0AHz8/MisjzRUCwWtfmKxaIcOXJEUqmUX10DAAAAgK7jMU0AAABAhySTyeZERCgUklgsJiMjI833RszOzkoqlZJsNtvlngIAAACAv5iMAAAAADqoWCxKLpeT2dlZqdfrEg6HJRKJyI033iipVEpCoVC3uwgAAAAAvmMyAgAAAAAAAAAAeIp3RgAAAAAAAAAAAE8xGQEAAAAAAAAAADzFZAQAAAAAAAAAAPAUkxEAAAAAAAAAAMBTTEYAAAAAAAAAAABPMRkBAAAAAAAAAAA8xWQEAAAAAAAAAADwFJMRAAAAAAAAAADAU0xGAAAAAAAAAAAATzEZAQAAAAAAAAAAPMVkBAAAAAAAAAAA8BSTEQAAAAAAAAAAwFNMRgAAAAAAAAAAAE8xGQEAAAAAAAAAADzFZAQAAAAAAAAAAPAUkxEAAAAAAAAAAMBTTEYAAAAAAAAAAABPMRkBAAAAAAAAAAA8xWQEAAAAAAAAAADwFJMRAAAAAAAAAADAU0xGAAAAAAAAAAAATzEZAQAAAAAAAAAAPMVkBAAAAAAAAAAA8BSTEQAAAAAAAAAAwFNMRgAAAAAAAAAAAE8xGQEAAAAAAAAAADzFZAQAAAAAAAAAAPAUkxEAAAAAAAAAAMBTTEYAAAAAAAAAAABPMRkBAAAAAAAAAAA8xWQEAARUtVqVfD7f7W50TL8tj4hIvV6XfD4vtVqt210BAAAAuo4xPwDAhMkIAAOpWq1KJpORZDIpo6OjMj093e0uNdVqNUkmkxKNRiWXy3W7OxvmZnka2ycajUo0GvW4h+7k83nZuXOnpNNpqdfrHakzyPslAADAoOmFMWlQMOZvD+N+AIPqsm53AAD8Vq1W5Y477pCFhQUREclkMjI3N9flXr0hHA5LoVAQy7K63ZWOcLM8kUhERESmp6eb/99ttVpNRkZGJBQKiYhIKpWSubm5jp04BH2/BAAAGDR+jUnXjjN7EWP+1jHuBzDImIwAMHCmpqZkZGSk+e9sNtvF3kAnKCckDclkUgqFwqqTxKuuuqpj9bNfAgAABI8fY1LVOHNQDNqYX4RxP4DBxmQEgIFTrVa73QXfFItFmZ+fl1gsJuFwuNvd6VnJZNLz/WaQ9ksAAAAs69Q4k3H/xvkx5hdh3A9gsPHOCAADI5/PSzKZlFqt1nymaTKZlHK53MxTr9clnU5LJpOReDwu8Xh8VbxYLMr27dvFsqzmILJcLksymRTLsiSZTDbryefzEo1GpVgsSrlclmg0uirPSo12G592bwPOZDJiWZZYliX5fF6q1aps375dksmkpNNpGR0dbXnQWywWm8udz+dl+/btkk6nm/Hp6enmOopGo8oX1G10edZTrVYlmUxKPB6X0dFRyWQyq9puZ92LSLOfo6OjjpOQYrHY/Hc6nVaepMzPzzfbNLWjst5+2ent0divOQkCAADYmPXOHdbmaYw3G+O1VsaZa3Vq3M+Y398xvwjjfgAQEREbAAZMOBy2w+GwI71SqdihUMiuVCrNtFwuZ4uInc1mm2mpVMoWkVX55ubmbBGxE4lE89+JRMIWETsWi9nj4+N2pVJpll1Z39zcnB0KhexSqdRMy2aztojYkUhk3eUpFAp2oVCwx8fHbRGxw+GwnUgk7EqlYi8sLDT70ejbenWFw2FbROxUKmWPj4/bkUik2Y9GGw2lUskWkVV93+jyrKQqU6lU7FgstqrPjf422m913du2bUciEXt8fLxZVkSa67FRZ2O55+bmVpVtLFcsFrOz2ayxnfWo9stObY9wOLyq76FQyA6FQm31DwAAYFDpxqStnDskEonmWLORZ2VcN85U6dS4nzF/98b8ts24H8BgYzICwMDRTUZEIpFVA96V6SsHpY2B4MoTj4WFBcfAvzFgXjtAbQxkGxKJhLLdVgfyjfob7a09+WgMVFVt6OoTkVUnTQ2xWGzVYLax3CvzbnR51isTiURWrXvbXh5ki4i9sLBg23br676Rb2V9jROLlYP49U5McrmcsZ1W6PbLjW6PSCTiWA+NOhvrCwAAAHq6MWkr5w6hUMgxjnM7GdHJcT9j/u6M+W2bcT+AwcZjmgBARGq1mlSrVeUL1Bq3xuZyOVd1q15ENz8/32y3cTuuW+Pj4826RETuuuuuVfF6vS4irb8crtHfG2+80RErFApSqVSa/56dnV3VRieWx6Sxnaamppq3Na+8PbrRnwbTuhcR+epXv+qIN+pr53bm3bt3O9ptbI+N2uj2qFarEovFVpUbHx8X27YH8iWJAAAAG9XOuUM4HJbp6elVjzBqjN/b1clxP2P+YI35G/WJMO4H0N94gTUAiHkQ2hh0dnKg2dCosxMvmZubm1PW1Rh8j46OtlWfasAaCoUkFApJsViUI0eOOAbKnVwelcZ2KhQKHamv0f9yuew4aWt18sYvbrZHY31x8gEAANA57Zw7FAoFiUajkslkJJfLSaFQ2PA4s5Pjfsb8wRrzizDuB9DfuDMCAFZo/LJkpcaAbmRkpOPtNQbyK3+541bj1zFrB9SNNtb+kseNWq0m0WhUarWaFAoFx6+6Ork8uvZX/nejEomExGIxmZqaknK5LPV6XbLZrIyPj3t2ctVJrW4PLybSAAAABl0r5w7hcFhOnz4tsVisOXZTvXi4HV6P+xnzBw/jfgD9gskIAJA3BvLlctkRa5xktHtnQSsag9+Vt9y6Va1WlYPpxq9kOvGrn3g8LiMjI9pbyzu5PKb6i8WiMq7afuspFAoSi8WkWq1KPp+XbDYr2Wx2Q/30y3rbo7HNdb8q42QFAACgfe2cO9RqNQmFQlIqlZpjssajnNzyetzPmD94GPcD6BdMRgAYOPPz845f8YTDYYlEIlKr1RwDtdnZWQmFQpJKpURE5KqrrhKR1QO6xv+rfh1l0vjVUj6fV5Zttb5GPtVJSeMEaKMa62ZlXY12G+uzU8uj03gGaiaTcdwe7/YXZslksvnrovHxcePJ29r+/+u//quIdOZXYar90qTd7bH2pC2TyXhytw8AAEC/a+fcYeUF70Qi0XyXxNpyQRn3M+b3dszfqIdxP4BBxWQEAHxPoVCQUCi06pdKjVt4Dx061Bz8NQaumUxGyuWy5PP55klFuVxuvsitlQFmKBRq/rolGo1KuVyWWq0mmUxGRJYHnitfdqfTyVu1GwPbtYPwxgC2WCxKPp+XfD7f7Ge1Wm3+cqkTy6Ozdn0lk0mZnp6WeDwuc3NzzROXVgf3jcF6o558Pi/FYtFx0tP4ZVsul2u+sM+kXq937GRlo9ujcQIcj8clmUxKJpORaDQqo6OjPFMWAADApVbPHY4ePbpq4qFer0s4HG5OJrQ7zuzUuJ8xf7DG/I36Vv63gXE/gL5iA8CAqFQqdiqVskXEFhE7lUrZpVJpVZ6FhQU7kUjYsVjMTqVSdiqVsiuViqOubDZrh0IhOxQK2ePj47Zt23Y4HLbHx8ftSqViVyoVOxKJ2CJih8Nhu1Qq2QsLC6vaz2azzfpyuZwdDodtEbEjkYg9NzfXrG9ubm7dZcvlcnYoFLILhcKq9EKhYItIs4/rKRQKzX6Ew2E7l8sp22n0zbZtO5VKrVoP7SxPY12oPmvX1cLCwqr1r+tnO+u+0S9V++FweFWbkUjEDoVCdiqVaq6rUCjUXMZKpeJoZ+U6aXVZV+6XndoehUKhuU4ikYhjvwcAAIDT2vOHtWPSVs4dYrFYc6w2Pj5uJxKJVXXYtnOcadKJcT9jfu/G/O0sL+N+AIPIsm3bdjOJAQAIvkwmI9PT05LL5Zq3iuMN1WpVjhw5Ig888IDMz8+v+nVToVCQ0dFR7XNZAQAAgKBg3K/HmB8AguOybnegFbVaTfk8RACAmZvHNA2KWq0m0WhUFhYWJBQKOW5dDofDrl6OBwBAt3DeBAwuxv1qjPkBIFgCORlhWdaqf0ciEalUKsYy1WpVpqamJBwOS71el3g8LolEwstuAkDgNU5KuDDh1Fg399xzjzzwwAPN5+7WajUpl8syNze36oWDAAAEDedNABoY96sx5geA9RWLRSmVShIKhZo/bln73dipMWTgJiPy+bykUqnmi4NEpPlyIp3GTHelUmn+YRkdHZX5+XluTwQAKMViMclmszI1NbXq5XSRSESy2Sx/PwAAgcZ5EwCsjzE/AJgVi0WZmppa9YOWeDwumUymOSHRyTFk4N4ZEY/HpVQqtV1GRFaVy+fzkk6nJWCLBwC+KhaLMj8/L/v373fckow3NJ4byy/JAAC9gvMmACsx7l8fY34AcIrH4xIOhyWXyzXTGu8gmpuba+YR6cwYclMH+twxxWJRZmdnJZlMSj6fb6lMvV6XcrncXCkNjecktloPAPSjRCIhqVSKE5J1hEIhTkoAAD2D8yYAazHuXx9jfgBwmp+fd7w7Z25urvl92ekxZKAmI0qlktTrdSkWi5JOp2X79u3rvkhodnZWRJzPRWzcMtLur4UAAAAAIMg4bwIAAEAnpNNpqdVqkkwmRWT53RBHjx5tPqKp02PIQL0zIpfLSS6Xk2q1KrlcTvL5vMTj8VWzMWs1Xkakm/1vxNd65ZVX5Itf/KJcc8018n3f932u+3z55ZfL5Zdf7ro8AAAA0IrXXntNXnvtNdflv/Od78hLL70k73vf++Qtb3lLB3sGv/l13sQ5EwAA6LZ+GwP/4z/+o7zyyittl9voehARueaaa+RHfuRHVqWlUimpVCqSz+dldHRUwuGwnD59ujlmdHvtXcsOsEKhYIuInUgktHnGx8dtEbErlYojJiJ2OBxWlnv00UdtEeHDhw8fPnz48OHDZ6A+jz76aMfG6wgGr86bOGfiw4cPHz58+PTLJwhj4H/4h3+w39TFdfCmN73J/od/+Adl3yKRSDNfoVBopru99q4TqDsj1kokEpJIJKRarWrzjI6Oisjy861UdL8Muuaaa0RE5NOf/rS8613vct1H3a989u3bJ8eOHXNd73q8rN9t3dHoc4boO1a2ICIr68+Je/+fFf9/UUQ+JSKfEJHNUqn8jLZUNGpq8wpt5Npr/9TlujG111iGz4jIx9bEvq0tVal8uM32jorIfqlU0oa+uBON3iEi+5WxjbZ34cIF2bt3rxw/fly2bNmyobpUBvFY7Xb9Xm9TEdZ7N+rmWO2/utmm3anbVP9Gfw31N3/zN/LLv/zLzXEw+odX502dPmfq5LFjqks39taNS9vp197vqn/JeLz0Xtn3iMixe99I+68/8UFl3oc+8OvOxF0r/v/1CyLH94rsPS5y/I9b6pfZ8nmAw1sV6+Nbz2jqeNZc1yo/p0n/mzX//g2Rt35RnfVbrZ8jXnvtf1duv2h0vWV5Q6WS7vjfPb/2927V5aYe9bH5mog8KiIPicjwqkilcpMv/fK6riD2aRD29yD2ifXurq5+GgO/8sor8l0R+aCItHuPxtL3Pm79q4h84bvflVdeeUV+6Id+aFUsHo9LOp2WcDgsyWRSksmkFAoFSSQSrq+96wR6MkJkeWWYnn+68mUapvhajduM3/Wud8mtt966sU4qDA8PN5+d5QUv63df93f1IWtFffbwmn+/1UVbDTtW/P/i9/77gyKy3jKY2tyqjbhfN6b2GsvwJhH5N2ti57Sl2l++y0TkrR7tN5dp2lyvn+s7d255Hdxwww2ybdu2DdWlMpjHanfr93qbirDeu1E3x2r/1c027U7dftS/kcftILi8OG/q9DlTJ/dtc13tjUvb6dfQay+r6/47keHLRSLXvpH2PyKaywybFW1tX/H/3/3eOUDoBhF5sqV+mWnG6qp+iPpCg8i/mOta5X/TpL+65t+Xa/ogLbTxBv32W29Z3hCJRDr+d8+//b07dbmrR7Vdv/O9/47K2h8Guuln/6wrb+sahP09iH1ivXevLpFgjYHfIu38pesM3QMz0+nlHyekUikRETl9+rTs3LlT7rnnHkkkEq6vveu4mox49tlnZWpqSur1ukQiERkdHZXdu3fLDTfc4Ka6dTXezm2KrX0+VePf0WjUkz4BAAAAgAnnTQAAAFjrMvH/DgFde0ePHm1ORIgsvxsim81KOp2WarXa8TFk28t9+vRpiUQiYlmW2LYtpVJJLMta1eHdu3evGmyvnCFpd+avVCo1Z2hUQqGQRCIRKZVKMj4+3kxv/Cpo//71biEFAAAAgM7ivAkAAABBNzIy4rjrIRaLicjy+LHTY8hN7Xaw0dC+ffukVCpJoVCQT3ziE7Jv3z7ZuXOnLCwsSKlUas6gRKNR2b59u2zfvl2OHj2qrbdarUo0GpXp6elmWrFYlJGREUkkEs20Wq0mo6Ojq25BPnTokJTL5VUzNNlsVrLZrPZN3wAAAADgFc6bAAAAoHKZLD+s3c+P7o6EdDotR48eXTUhUSwWJRKJNH8o08kxZNt3Rmzfvl0sy5LDhw83f62zb9++VXlOnz4t1WpVvvrVr0qtVmt2dGRkRFtvOByWkZERmZqaklKpJJFIROLxuORyq19wVK/XZX5+ftUKikQiUqlUJJPJSDgcllqtJplMZtUtJljNsia1sV27tCH37MdW/OPC6n9/ZMJc9rOHO98de502NSxrWizroKbOAxtq7/rrD8rzz9/tql+ttHf99Ufk+efdLfd6du36fs/qBgAA6EWcN63PdE6yvv9XLGuyrXG9rr1OnP88+eGb5dXfelae/PANzbT7DqpfwnzlC873Tpy97uo3/nHpe/99VkRk3JFXx7aHlemW9YcisseZv+bMKxLT1L6cvvacQr1OpxVpznOU66+/Qp5/XtOctL5dr7/+iKY987LAf6rj9dy5c3LllZ+Us2dv8+x9cgAAvfHxcQmFQpJMJpvv6KjX6/L4448383RyDNn2ZEQikZArr7xSTp8+Le9617uUeXbu3Ck7d+50DLZNQqGQlEqldfNFIhFZWFhQphcKhZbbAwAAAACvcN4EAAAAlSHx/50RQ4ZYKpVad2KhU2PIth/TJCLy+OOPy2/91m9tuPF+NjY21rP1e913kfd7XL+XbvGsZvaZ7mC9d69+L7He/a/ba6x3/+v2Gtu0e/XDP5w3rdbZffvdHaupU/36qbGr18/UFT/ZsZo6uQ07VVdQvzODuK46WRfr3f96Ol1XJwVxGYPYp04L4jIGsU8IFsu2bbvdQocPH5ZsNivRaFT2798v4XBYbrjhBg+6552nnnpK9u7dK8ePH5dbb721293xnemWaPePMHrGEJ3Xhz5yp7nilh/TtCgivywinxaRYbHtzjzyaCXdI5pEzI9pgnvLt+1eKWfPnuW23T7BNu1PbNf+wzbtP4M+/u2GXj9v8nqf2dhjmpapzl3arbed85/Qa85HLImI/OnlH3Sk3X7waWXeKz++3mOazon8w5Ui/+asyD+8qeW+6R/TVFam6x9j1Lp21rXb80y/8HevO1jv3cF67w7We3cEaQzcePfXr4jI23xu+0UR+R0RqVQqzccxdYOrO0Iat23Mzc2tuj0jHA5LOByWSCQiN954o3zwg84BGQAAAAAMAs6bAAAAsFbjBdZ+txkErvuRyWRk9+7dUqvVZG5uTr761a/KX//1X8vc3JyUSiXZvn07g2oAAAAAA43zJgAAAGCZq8mI8fFx7S94zp49K7Ozs1Kr1TbcOXjHm1tknzPEduhDH1un2hcNj1t6cuWjob79vf/+qIhc4cmjqEyPYvKiPQAAAPQuzpvMvBoj6+rVjddV6bo6zv57zXshFO9zfPB+S5n1SweecKQ9/8KKts+dl3PfL7Jt9p/l3Pf/V2Ud7ay7TjyOSV835zkAALQraC+w9pOrF1h/8pOfFNu25bd/+7cdsSuvvFLuuOMOueeeezbcOQAAAADoVZw3AQAAAG9wPQmzb9++TvYDAAAAAPoO500AAADAsqC8uwIAAAAAAAAAgL7GC6wBAAAAAAAAAEBPevJ7H5Xv+tkRg4GdjLj88stX/Rf94E0i8vPi/9wivLR582aZmJiQzZs3d7sr6BC2aX9iu/Yftmn/YfyLdrHPdMnmy2Xzf7xfZDPr3U/83esO1nt3sN67g/XeHUEcz3j1Auv49z4q3xSRSQ/abBeTEQHaEbFRl4sILwDsN5s3b5YHH3yw291AB7FN+xPbtf+wTfsP41+0i32mO6zNm+X7/s9f7XY3Bg5/97qD9d4drPfuYL13B+OZYBnYyYh+YVn6OS3bnjCUO+iyxfMuy53Th/bcaS5qmrZ7cpcheMJcrwtu1zcAAACAzlONz9sel+905jeN+1VuDz/tSHtQLGXepz93u7O9H7Lbaq+d/nGeAgBAsAzyOyM2dbsDAAAAAAAAAACgvwVlUqRr9u3bJ8PDw8rY2NiYjI2N+dwjAAAAwJ2ZmRmZmZlRxhYXF33uDfoF50wAACDIGAP3joGfjDh27JhEIpFudwMAAADYMNOF4Wq1KtFo1OceoR9wzgQAAIKs18bAl4n/F+WDMgnAY5oAAAAAAAAAAICngjIpAgAAAAAAAABAXxvkF1gHpR9wybYntDHLOmgoed4Q22qIvdvQlzvd9eU2Q3MiIm8zxD6yTR/7rD5mXjf6cqb1DQAAAMBf7YzPdXkta1KROq6p5UTL7X3LfliZXrbuc6RdefFlZd6zCc3yFcuOJNuOtdo1AACAruAxTQAAAAAAAAAAwFPcGQEAAAAAAAAAgA8G+TFN3BkBAAAAAAAAAAA8FZRJEQAAAAAAAAAA+tqQ+H9Rfsjn9nS4MwIAAAAAAAAAAHiKOyP62nltxLYntDHLmjTUecpQTh8z9UWePGcoJ/L2J/6nNvb1UzcaSprq3eaqnGUdNpQ7o424Xd+mcgAAAAA2rr0xd0yZqhrTPye3KvO+VZH2p5d/UJn39uJvtNwzyyprIieUqZxrAADQHV69M+LPROTPNbHXPGjPDSYjAAAAAAAAAADoYT/1vY/K34nIL/rYFx0e0wQAAAAAAAAAADzFnREAAAAAAAAAAPiAF1gDAAAAAAAAAAB4hDsjAAAAAAAAAADwgVcvsF6vzSAISj/gAdue8KDW8y7LbTXEzhhL7pRv6oOf0oe+/sUD+uCpx4xt6tj23a7Kmev0YjsBAAAAcMuyFjWRE5r0PY6U51/bpcz5XkXaU9ZJdbXHY+r0var+6foG9CbLmnSkcf4MAL2NxzQBAAAAAAAAAABPcWcEAAAAAAAAAAA+4AXWAAAAAAAAAAAAHhn4OyP27dsnw8PDytjY2JiMjY353CMAAADAnZmZGZmZmVHGFhd1z8AHzDhnAgAAQdZrY2BeYD3Ajh07JpFIpNvdAAAAADbMdGG4Wq1KNBr1uUfoB5wzAQCAIGMM3DsGfjIC7drR+XIf2WUs+e/kD1y1+PVT/6shesoQ26aNWNZhQ7kz2ohtTxjKAQAAAHDDsiYdaZ0Ze09vuIbrL9/405ntf7SU6ZaUnHntmDqvtafl9lTrc7nu3juf6adlGVRsKwD96jLx/6J8UCYBeGcEAAAAAAAAAADwFJMRAAAAAAAAAADAU0G5QwMAAAAAAAAAgL7GC6wBAAAAAAAAAEBP+q/f+6hc9LMjBkxGAAAAAAAAAADggyHx5qL8z37vo/INEfkZD9psF5MRcLDtCW3Msg4aSm4zxK7Vh37M3J/xpz+tjR2/5SZt7Au7k/pKZ/eYG9U6YYhdp41Y1qQ2ZlrfAAAAAPRUY2nd2Lu9cfe4Jt10PrDayeRtyvTHr3CmDd+truOWDz+hDnzkPY4k0zmHimW5PSfqDZxnAQAQPLzAGgAAAAAAAAAAeIo7IwAAAAAAAAAA8MEgv8CaOyMAAAAAAAAAAICngjIpAgAAAAAAAABAX+POCAAAAAAAAAAAAI8EZVIEAAAAAAAAAIC+NiT+X5Qf8rk9HSYj4GBZk9qYbU8Yyh021Po1beSa//B9xv68WV7Vxq6X5/UFrzHVus0QO2fsj94L2ohpvQEAAADonHbH3qrzH30dsZbreKmQUOadthSJj6hbO/nB29SBhxRp9+9RZrVtdZ/V2smrpjuf5JwIAADwmCYAAAAAAAAAAOAp7owAAAAAAAAAAMAHlw2JvEl1p6SXbdoisuRvmyrcGQEAAAAAAAAAADzFnREAAAAAAAAAAPhgaEjkMp9vERi6JNwZAQAAAAAAAAAA+t/A3xmxb98+GR4eVsbGxsZkbGzM5x51n21PuCx3tzZmWYe1sZd+dqe54o/pQ6dvuVYb+8CfF7SxL/xkUl/pF14090drhzZiWn6RM9qI220BAAAG08zMjMzMzChji4uLPvcG/aLfz5lUY27Lmmw5ry79ZfkdZd5v2Q870h7ecp8y75dufVKZ/vx7djnSzt5/QpnX0j6T2pm/E+cfnMMAAPzGGHjZoddFDmnufviO7W9fdAZ+MuLYsWMSiUS63Q0AAABgw0wXhqvVqkSjUZ97hH7AORMAAAiyXhsDX7ZJ5E1Dna/3F4dEflET++slkT3f6Xyb7eIxTQAAAAAAAAAAwFMDf2cEAAAAAAAAAAB+uOwykcs8uDPC2Kb2sY3+4s4IAAAAAAAAAADgKe6MAAAAAAAAAADAB5cNibzJ56vyQZkECEo/0Acsa9IQ3aoPza5T8RZ96D3//FfaWOIHivoqP/+KNnbh/W/TN/jkfn3M6ITLcgAAAAD8ZtsTynTLWtSUmHakpGz1+VH+qXsdaW/99n3KvL8pv65M//zldznr3anus5zW9dlJd06nWx8AAADt4DFNAAAAAAAAAADAU9wZAQAAAAAAAACAHzaJiM8vsJZLPrenwZ0RAAAAAAAAAADAU0xGAAAAAAAAAADghyFZfl6Rnx/DnRjxeFwsy1J+yuVyM1+1WpVkMimZTEbS6bQUi/r39erwmCYAAAAAAAAAAAZMrVaTWq0m2WxWQqFQM31ubk6mp6clFos180WjUalUKhKJREREZHR0VObn5yWVSrXcHpMR6BjbntDGLOuwvuCpU+aKP7NLH9M3KX/x6vu0sU+9+RPa2C+c/yN9pR95mz722Wf0MXnBELtOG7Gsg4Zy27QR277bUOekoZxhhQIAAAADzraHNRHnONpKqnOmCo+03N5t951Upv/6w7/pTHxUU8msps/3n2i5H7pzCM4fAADobeVyWSqVyqqJCBFZNREhIpJOpyUWizUnIkSkeYdEO5MRPKYJAAAAAAAAAAA/+P2IpsZHIZVKOSYiRESOHDkiyeTyLyvq9bqUy2WJx+Or8uzevVtERPL5fMuLzmQEAAAAAAAAAACQer0u1WpV9u/fLyIis7OzIiISDodX5WvcJVEqlVqum8c0AQAAAAAAAADgh8YLrNtw0V7+uHXBaj3v0aNHJRKJNO+YqNVqIiLKOyhWxlvBZAQAAAAAAAAAAAE1tSAyWfenrUKhIHfddVfz33NzcyIiMjIyosxfr9dbrpvJCAAAAAAAAAAAAuqB7SIHQu7LP3tRZO9L6+drvB8il8s100ZHR0VEZH5+Xllm7eObTJiMQMdY1qQhutUQ+6a54hd2aUOXKldoY5//iZ/Sxj706uf17X1AH9ryq69oYxc+e5O+oOiXQeSMIfaCIaZnWY+5KgcAAACgQ25WJ0/KhCPt65oqJh9Rp//mw7/uSLv9o0+rM39cU7nsUaSdUOa0bWef26U6X+xEvQAA9JxNsvyopjZs/t7HrS1LreUrl8sSDodXTTA0/l93B0Q7kxG8wBoAAAAAAAAAgAF35MgRSSQSq9J2794tIs53QzT+HY1GW65/4O+M2LdvnwwPDytjY2NjMjY25nOPAAAAAHdmZmZkZmZGGVtcXPS5N+gXnDMBAIAg67kxsIsXWHekzRYUi0WpVCqr0kKhkEQiESmVSjI+Pt5ML5fLIiKyf//+lrsx8JMRx44dk0gk0u1uAAAAABtmujBcrVbb+tUS0MA5EwAACDLGwJ1RLBabEw9rHTp0SKLRqNRqteZjmbLZrGSzWQmFQi23MfCTEQAAAAAAAAAA+OIy8f+qfAvtHTlyRHuXQyQSkUqlIplMRsLhsNRqNclkMpJKpTrdDQAAAAAAAAAA0K8KhYIxHolE1s2zHiYj0DG2PaGNWdZBQ8l3mCu+Th+65idOa2P/JD+ojV14+SptbFP62/pyf/8WfWcsfUjso4agF84YYj/uWy8AAACAgXX/pDL56v/9rDPtXnUV/+nhJ5TpX1IlPqrpx6wmPRFzphVPKLNalnpZAAAA2sFkBAAAAAAAAAAAftgkLb9QuqNtBkBAugEAAAAAAAAAAPoVd0YAAAAAAAAAAOCHIfH/qrzfd2JocGcEAAAAAAAAAADwFJMRAAAAAAAAAADAUzymCQAAAAAAAAAAP1wm/l+VD8gsQEC6gf63zRA7Yy56xdu0oV+R39HGnpQf09f5oKUNXXrxCn25qD4k1xliL96tj51/xlBQv25s+4ChnJ5lTRpiJzrentu+2PZEx9vrF6w3AACAYFGNz262b1Xnfcp2pD34iPr85DceuV2Z/nb7Skfade95Qd2596iTz97/dWfiTs1Y8vSiOl3BtoeV6ap1ZBrXqutufayrq5vxMgAA3cNkBAAAAAAAAAAAftgknrxQeual5Y/K4qXOt+cGkxEAAAAAAAAAAPSwsWuWPyrVCyLRv/G3Pyp9/QLrWq3W7S4AAAAAQKBx3gQAAOCjIXnjvRF+fTy4E8ONQE9GlMtl2b59e8v5Lcta9Ukmkx72DgAAAAC6j/MmAAAA9IJAP6YpnU63nDefz0sqlZLR0dFmWiwW86JbAAAAABAYnDcBAACgFwR2MiKTyUg4HJb5+fmW8hcKBSmVSh73Cu6d0Ye23m0s+e5PPaWN/Y78ija2W2b1lW4xNHidIfZlQ+xqQ+zUOX3smpv0sZe+qQ1Z1qShwa2G2A5DzNBPA1NfbHvCVWzQuV2ngF/YRwEgGDhvCoiE82/fyYPqrDcfeNKRdqt9szLvbZ87qUy3wnVH2sM19aTUfeGcuiNypSPF1jyxywoPqwOnF515NWOEdsYH5nOd1jAe6X2q/YDtCvinE9/n0Gg8psnvNgMgkI9pKpfLctVVV0kkEmkpf7FYlNnZWUkmk5LP5z3uHQAAAAB0H+dNAAAA6CWBnIzI5XIyPj7ecv5SqST1el2KxaKk02nZvn27lMtlD3sIAAAAAN3FeRMAAEAP8vvl1Y1PAASkG2/IZDKSzWbbKpPL5SSXy0m1WpVcLif5fF7i8bjMzc1JOBw2lr1w4YKcO+fu0TQiIps3b5bNmze7Lg8AAAC04uLFi3Lx4kXX5S9cuNDB3qDb/Dxv4pwJAAB0C2Pg/hKoyYhqtSpXXXXVuhMIOpFIRHK5nMTjcUkmk5LJZKRQKBjL7N2711VbDRMTE/Lggw9uqA4AAABgPVNTUzI5ufHnqKP3+X3exDkTAADoFsbA/SVQkxFTU1PrTh60IpFISCKRkGq1um7e48ePyw033OC6LX7hAwAAAD888MADcuDAAdfln3322Q1fVEYw+H3exDkTAADolr4cA28S/18oHZCXNQRmMiKTyUg8HpdardZMa/x/47/t/PInHo+39PzTLVu2yLZt29rsLdpl2xPamGWdMpb9yi/eqo3t//3/rI0dPfJz+kp3Gxq82mVs4kV97P96mz42a6jzD84Ygj9uiH3TEDPVqT8WLItZaD+ZjhkEg+mYGITtNwjLiGAY9GNtpY0+6mbLli0d7A26pRvnTZwzvUH/neR8d8eVf3xWmfPkU7c50r526zuUeX/9w7+pTH/4w2lH2n0Hc+qufVydLPefcCRZB2PqvKd1+4izDpE9ypyWpapDVV7//a5a/4P2t6Af6Y6rdrZtJ+roBPbRzgrKdh1UQVnPjIH7S2AmI8rlskxPTytjo6OjEolEpFKptFXn7t2mK84AAAAA0Fs4bwIAAOhxQ+L/VXm/78TQCMgNGiKVSkVs2171GR8fl1AoJLZttz2gLpVKkk47fy0CAAAAAL2K8yYAAAD0qsBMRrSqVqvJ6Oho81biarUq0Wh01a+DisWijIyMSCKR6FY3AQAAAKBrOG8CAAAIqMadEX5+AnJnRGAe09Sqer0u8/PzUq/XRWT5eagjIyMyNTUlpVJJIpGIxONxyeU0z8sEAAAAgD7HeRMAAMBgmZkTmampY4tL/vZFJ9CTEdlsVrLZ7Kq0SCQiCwsLzX+HQiEplUp+dw0AAAAAAoHzJgAAAIyNLn9Uqgsi0Sf97Y9KoCcjMCjOmcMv6kNHj/ycPvhtQ52md/R9yBD7VUPsA2/Txy4Yyn3ZEJMdhtg3DbEzhtidhphpW+wxxB4zxNyxrIOG6HltxLYnOt4XuGPahrZ9wMeeeMO0r1nWpCdlvShn4kWd6A3r7cM67GsA+oXue0n3nWRZZUfa2X8fU1f+S86k+6ykOu/O25TJJ6PqdKWbNek7nf278uMvK7OevV99LmDbmmVUUK0jkXFNXnd/h/yi6l8v/r1qdz/vtfa6oZ+WxW/9clwFXTvHYS8es+o+f8v3fqxrSPx/bFJAHtPUc++MAAAAAAAAAAAAvYU7IwAAAAAAAAAA8EPjBdZ+txkA3BkBAAAAAAAAAAA8xWQEAAAAAAAAAADwFI9pAgAAAAAAAADADwP8mCYmI+AL9dvsG/abC+82xP7YEPuyIfbThtgPG2J/YIidMcQuGGIvGmKyzRB7hyF21BD7piE24rJOd8z7hZ5tT3S4JzAxb6cdvvWjGyzroDZm2wcMJbd2vjPr8OK44FgbXH5v+37Y10zflX4vn74v3/K1H0Ava/u43RlzphXVx+LNhVsdae+wv6HMmw8r6hURqSjSopq+ndSkf9yZdHbz19V5E+p+WFZZkXpCXcdOxTo9rSqvX/+q7zfdd56X371B+LvVieXuxHK0049221PVHYR1D2+wbf3h93eETjvXg9r5m4DgYzICAAAAAAAAAAA/DIn/dyoE5M4I3hkBAAAAAAAAAAA8xZ0RAAAAAAAAAAD4YYDfGcGdEQAAAAAAAAAAwFNMRgAAAAAAAAAAAE8N/GOa9u3bJ8PDw8rY2NiYjI2N+dyj/qR7872IiGWdMhf+vCF2tSF2/kV97LPb9DHLEDOxz+ljLxvqfNhQ5713GoKHDbEdhti1htg3DbGthth5bcSyJg3l9Ez7zKAzrVO3683tdhLZb4idMLR3xFBOvz+Z7XHVFxHDseu6L+ZyXmxDt/zuS5CWHZ3H9u2+mZkZ2bVL/R27uLgo3/ymv/1Bf+CcqQWnVd9/48qsJw861+XJ+9+jqVj3vaoY95zWjXc0Y6RKzJn2kCJNROT+sqbuNto7rapD3WfLUlfB35I3eLkuLEu9vW1bs3+o6ggrytd07S1qanEeQ7q+6Y43dXu6OtT7YxD2u3bP1zrRZ1WbQVgX6A+d2JdW1jEzMyMzMzPKfIEcAw/wY5oGfjLi2LFjEolEut0NAAAAYMNMF4ar1apEo1Gfe4R+wDkTAAAIMsbAvWPgJyMAAAAAAAAAAPCFR3dGzHxNZOY5dWzx9c635waTEQAAAAAAAAAA9LCxdy5/VKr/IhI96m9/VHiBNQAAAAAAAAAA8BR3RgAAAAAAAAAA4Ich8f+F0rzAGmh4zBw+tcMQO2Eq6Ko3Yu8xBHe5a8/WPLBNROReU2fOGWLnDbGt+q7YdxnKmZbvTm3EsiYN5fRse8JVORNTX7xorxtMy+F2W4gYjjPjfmg6fvX7jHxgmz72hWcMdZr6+TZDTH9MyC5DuVMvakPmdW3qp4jIGUO9Bw3l9Me9eb847KqciftjzbAtPGkvOPphGUTcL4cXy+/3Og3Sspvo2/tWx9sCYKI5V7lfkZaIqfMWW69b931iWWV1FacV6aq+adrT0fej9XGqbWvWRxv19tLf1m5p99zBshT7wU7Nej692Fp5EZHjmu09q0i7X1OH5hiyLGc/9Mdb6/u5+/OuN7RzrHTiuGqX38dQe98R/XN8t7O9+8mgLjeYjAAAAAAAAAAAwB8evcB63TYDgHdGAAAAAAAAAAAAT3FnBAAAAAAAAAAAfuDOCAAAAAAAAAAAAG8wGQEAAAAAAAAAADzFY5oAAAAAAAAAAPDDkPj/2KSAPKaJyQgEwPl14r/jqlbbnnBVzrImDdEThtgeQ2yrq77Y9t3amGUdNJQ7YCinXz6368zEizqD1J5X3G5f876m359Ejhpipn3bYPc2feyCodzWm/Sx86fc9WXX2/QxY5XPGWLvNsTW6+eOdeI6+u9L83eXvj3TviZi2IYumfff4PDiu7Jfvp9MzN9dvf83xq2g/C2sVqsSjeZ97QswKDZ6nJv/jntFdW6jHvfplk/Vb8sqt1VHq/Xq63A5Vu2w9vocDPrtuth6HTV1uhUeVqTGWq5XRETuV/TjuGZ97lXvd/KQos3f0zWo3pfU23ZcU8e0I6Wd40fHy/2rE98/neiHd98Rweb3NvR7HfXTtkJnMBkBAAAAAAAAAIAfeIE1AAAAAAAAAACAN5iMAAAAAAAAAAAAnuIxTQAAAAAAAAAA+MGjxzTNPCMy8xV1bPG7nW/PDSYjAAAAAAAAAADoYWM3LX9Uqt8SiX7G3/6oMBmBrrPtiW53YRW3/bGsZwx13mUoN+mqPZH9hjoPu6xTz9zP61z1xbbv3kCPdO3p+7netnW7LUz1WtYRQ8kXDLEdhjpN6/SAvpzpwXz2Vn3sI5q/ZCIipwx13miImWwxxL68y12ddUNstyE2e60heEIbMW0HkfWO0TOGmGE7yTZXdbr/ztMfL14cS1700217G/me8bNOr7hdN/3A723RS/sFAG904li37Zgmokt3sqyyJrKn5fZUdejytrXcO3Xtqb9D26m7nTp09arqaHe7qte/c92LiMjOYWWyXWu1XhFJaPaNonNZLGtcnVflIXXfZFaT/7gi/15Nnx9qfX/W06xT1foo6o6J1nXi+O7Efu7lvgt/BHm7sH9p8AJrAAAAAAAAAAAAbwz8nRH79u2T4WH17PzY2JiMjY353CMAAADAnZmZGZmZmVHGFhcXfe4N+gXnTAAAIMh6bgw8JP7fqRCQOyMGfjLi2LFjEolEut0NAAAAYMNMF4ar1apEo1Gfe4R+wDkTAAAIMsbAvYPHNAEAAAAAAAAAAE8N/J0RAAAAAAAAAAD4YoBfYM1kBHqaZU1qY7Y90fFyZt80tPecodxWQ7mDhnL7DbG7DbHDLtvT91O23qWPndeva9N2ENlhiJ0xxPTMy+d+21uWfp267au53LsNfXlGX2z3TfrY7B597HOGrpjMntLHtu7Shra8/Io2duHwW/R13ntOHzv/mD72kmHZDce1yI9rI+Z9W8R4PMl1htgL69Trpj09876t3w9t+05Dneutm85y/50enDo38jfLm793el7UOcj8H8sA6BbdcdvO3812j33LUj1D+4Qmty7dOY66RZ5UZ03EnH3QDc/vb2e8MN5G3vb4vV2ssC7iXM+2rX6Pi3q7ioio8qu365V//HZ1FX+cdiSdvU7djytfeNmRNnn5fcq89x3MKdOfuPUWR9rtx59W921vWZ3ejp3OfVRERIqqdao7h3CuU93+ot+/VMui3lZe7qNBHk/43bd2tyHWp1p3rOfBwGQEAAAAAAAAAAB+4M4IAAAAAAAAAAAwyGq1mhSLRRERSaVSEgqFRGT5ZeBTU1MSDoelXq9LPB6XRCLRVt1MRgAAAAAAAAAAMMBqtZpkMhmp1+uSy+UkHA6vikWjUalUKhKJREREZHR0VObn5yWVSrXcxqaO9xoAAAAAAAAAADgNdeljUK1WJRqNysjIiJRKpVUTESIi6XRaYrFYcyJCRCSTyUg67XyfkAmTEQAAAAAAAAAADKB6vS533HGHhMNhyeVyyni5XJZ4PL4qfffu3SIiks/nW26LxzShp9n2hDZmWY91vD3LOmiIbtOH/q+79bGfN/XzlD50zdv0sZ82VPllQ19OHTEUNCzfedMyXGeIvWCInTPEdhhiZ7QR2z5gKGdmWYddl3Xn3YaYad0Y6FeNiGXYn6KGchVDbOsubWj03De0sbmf/FF9nV9wuexypyFm2n8N+71xha7nvMuY3kb2b72ththXDDH9+jZ9b5tY1mTH6/Sb22Uw/60z/V3qnXXT77zYf9m2wGDryHdAYtiZVolpMmvST5c31oeTusCeNio5sbE+iPl7WmWj69+yFjWR6Tbq0EXG1fnDqlT1ej77769WV60Y+1/5wsvqOjZ/3ZF2X8J5gUtE5ObCk8r025962pm4t71tpVoftq3Y98W0H7S+P6r2DctSHye69tT7l+7Y1FHtBxs/VvpJO+ufcZc/Bmo9B+wF1o1HM2WzWWV8dnZWRMRxt0TjLolSqdTyo5q4MwIAAAAAAAAAgIC6+F2Rc4vuPxe+o6+7cWdDqVSSaDQq27dvl3g8LrVaTUSk+d/Gi6zXasRbwZ0RAAAAAAAAAAAE1NRfikx+sfP1VqtVEVm+yyGdTks2m5VarSbxeFxGR0dlYWFB5ubmRERkZGREWUe9Xm+5PSYjAAAAAAAAAADwg4vHND3wfpEDP+6+yWf/SWSv4mmAjbsa0ul08zFMjXdHxONxmZqaktHRURERmZ+fV9a99vFNJkxGAAAAAAAAAAAQUJvftPxxa8tmdbru0Uux2PK7ahp3SYjo74BgMgIAAAAAAAAAgKDZJMYXSnvWpsLu3btFRJqPYlprZGSkmWftuyEa/45Goy13g8kI9LFrDbFTrmq07QPamPUX+nJ3/IT+oW6P//y7DC2qn8UmIiK/Yyh2o62P/cELhoJ7DLGjhtguQ+y8IbbDZeycIbZVG7Gsg4Zy5u1rqlfkjCGmXw7bvlsbsyzTPmpafvUtcyIi8pKhmLyoD82eMJR7pz50/mva0Nwv3qUv9wVDX4xM/TTth4Ztu/VOQ5WHDXW+2xATMe8zpu2rvyfTtH8bv7usSUO5CUNf/BWkvrjlxTKYv7fMvNj2vbI/+W2Qlx1A92m/m487v5ueuPUWZdbbw08r02075ki7RZ5U5n24kHakHZEPKfOetHTnJYrnS2i09d27U53X1ryPU7VOde21l1fTP+N52ho7h9XppxX7wUOadbRbnXzle152pJ3dfGWLHRORonpfPBnW9ENxbaud9axjWeWW8y4znWesrbudetvYrm1zHiv9NB7Rbe92lrGf1gewEaFQSGKxmJTLq78bG3dBRKNRCYVCEolEpFQqyfj4eDNPo8z+/ftbbk8zJwIAAAAAAAAAADrqsi59NLLZrFSr1VUTEvl8XiKRiKRSKREROXTokJTL5VV3R2SzWclms9pHPekWHQAAAAAAAAAADJhIJCKVSkUymYwUCgUJhUJSr9elUqko84TDYanVapLJZJqTFa1iMgIAAAAAAAAAgAHVeAzTenkKhcKG2hn4yYh9+/bJ8LD6mYpjY2MyNjbmc48AAAAAd2ZmZmRmZkYZW1xc9Lk36BecMwEAgCDruTHwkPh/Vd7vF2ZrDPxkxLFjxyQSiXS7GwAAAMCGmS4MV6tViUYVbwMF1sE5EwAACDLGwL1j4Ccj0M++Zoid10Ys66Crclu+rf9F2L+T/6GNPS5v0Tf3gZu0oUfvuksbu16e18be/QvP6dv7g1P6mOwwxPTlbPuANmZZpvYeM8S2GWL6bWTbE4Zy69HXa47p+2pZzxjKza/XIRdedFlujyH2l4bYj+tDxn3thCH2DkPsBUNsqyFm2LfPHzGUM/mKy3Ii5mNNv25Mx5rJxo4L9DIvtj37EwB0mnocZlmTjjTdd7Au/RZ50pH2lHVSmTdlP6LuR/heR9qr/3K7Mu/ZC1c60u79XF5dr7yqTFczjVUVdSvWnexUryNl3nbq1eYtayK6ZXGOAXXbVXs6e78qTfdrYfWY82wipkhtpw7N8p1W12HX1HdkKfPq1odiXdu2ajlERHTpG2OF1el2TZ3eCf0+Juv35Qu6dv4GedWe1216boDvjNjU7Q4AAAAAAAAAAID+xmQEAAAAAAAAAADwFI9pAgAAAAAAAADAD5vE/8cmBeSWhIB0AwAAAAAAAAAA9CvujAAAAAAAAAAAwA+Xif9X5QMyCxCQbgAAAAAAAAAAADdmvigy8xfq2OJr/vZFh8kIDCTbntDGLGvSVZ2/+ubf1sbeLK8aCt6kj23Vh35u9Kg29o25UX3B6/QhkR2G2AlTQS3LeswQHXHZlzMu+7LetjWscGN/TEzl/tIQ+3FD7JuGmGndnDLE7jbE9PuayB5DzLTPmPq5TRuxbf3xYlmm9WnyFZfl9NvW9B0jst5xoe/PevV2mumYcdsXt3UGqS9uuf37YuL3PgEA8JdtxzQRXbqT7u/PlRfTjrT3aurIP3WvOvCoM2l6rzrrxNfPOhNv0DTYFvWY07I0Y9GHFH8771evI93fWctaVKROq9tT1qvefrptpeqHZZVbbk9P12fNGL+iSNs5rM572nSesJptq+tQrY/2xz6q/aD140fXDz3ncuuP4/7RzjpqZxu2c0zAP51Y/+0c3325vYfEk6vyYz+1/FGp/r1I9Jc732a7eGcEAAAAAAAAAADwFJMRAAAAAAAAAADAUzymCQAAAAAAAAAAP2yS5Uc1+d1mAASkGwAAAAAAAAAAoF9xZwQAAAAAAAAAAH7w6AXW67YZAExGoI+d96DOrdpITn5WG/sz+Ul9lV/Whx786q/pg+/Vh97z6l/pg/+3PiRywhA7Z4iZ1vUZQ+wrps54YIcxatt3a2OWNemyTdMy6vcnkedclbPtA9qYZR001GnaTvqYbe8ytKffn0z9dMu2Jwx9OexrX8zrer027+xsZ9Zh6qtpnbpl3k7648xtObd9MTGvM9O2NR3zJvrv2PWW3YttCADoLbq/BY9I2pH2TvtmZd6UPKJM/5AccaS954rW+3bL25/QRKaVqaplsayyJm+s9Y4cUK8j3d9Z9Tptrw61PS3nbGv5RMSyVKm68bouXdHm6dbXkX5dqJelE+OYzuwzzu3S7vpvh2o9dWNM104/vOqfrt52jivGw8HEdhlcPKYJAAAAAAAAAAB4ijsjAAAAAAAAAADww2Xi/1X5gMwCcGcEAAAAAAAAAADwVEDmRAAAAAAAAAAA6HObxP8XSgfkloSAdAMAAAAAAAAAAPSrgb8zYt++fTI8PKyMjY2NydjYmM89Quecc1XKtidcldv66iva2ANv/qS+4BFbG0pIUV/uPkNnHjfEjN5hiJ0yxLa6as20ri3roKHkeUNsh8uYiGUd0cbMfZ001KpfN7Z9wFCnafnd7dvm9XbCVY1ut5N5nem53Q5u9zX328i0rt2X9WL5vVhGt9+jJubtZFovhw2xxwwtmr4P9czrbJs2Ytt3u2zP3bGE/jUzMyMzMzPK2OLios+9Qb/gnKk36P4m6P5O3vdUzpH20q0hZd7r5Xll+m33nXQmfkbdv/TbH3aknbTeo86cuE2drmDbsZbztm+PJ7W2u628+nvfdnunnentjPv07ZU1+b3atrpzH3V73u5jqvZaX6ft7BtejNFNLEsz7kio/54oFdV1tLPv+r9/oRt6bgw8JP5flff7TgyNgZ+MOHbsmEQikW53AwAAANgw04XharUq0WjU5x6hH3DOBAAAgowxcO8Y+MkIAAAAAAAAAAB62Uxx+aOyeNHfvugwGQEAAAAAAAAAgB8uE0+uyo99aPmjUn1BJPrhzrfZLl5gDQAAAAAAAAAAPMWdEQAAAAAAAAAA+IEXWAP9x7YP+NrehR9+izb25F//mKGgpQ1de/G0vtz/z1Dll/V9kSf1IbHepo/Z2wwFzxliZ/TNWQcN5c7ru2JPGOqcNNT5DkNMROSUod5nDOXebYh9xVCnqa9bDbEdhjqPGMqZmNozxfTM2+mwoaRpf3LXnrmc2+8Kd/uoyHr7vjvm9W1qT78/mZbRtF9Y1mPamG3f6apOkV2GmInpuDctu+k7b78h9peGmH7fNm0j0z66/r6m/55xe8wAAPrER51J10hdmfXmmvokov5IvuXm8h/5UWdiYliduaj++2UpTp10f8/MY+1W7Wk5p2WVNZHxNurYeJ/bWR+6PrdXh7991ufVrf8TLdeh004/Wi1vqqOdddqJbdWJMaG6bs3xo3mevTL/Q+rvCMtabL0OxT6wXIe6BtuOaepW1bGxfQMYRDymCQAAAAAAAAAAeIo7IwAAAAAAAAAA8MMm8f+xSQG5JSEg3QAAAAAAAAAAAP2KOyMAAAAAAAAAAPDDAL/AmjsjAAAAAAAAAACAp7gzAn3Lsia1Mdue6Hg5eelFbWjmB/5PbeyZH7hJG3tertfGFj/wZn1fvqYPyVZD7PxBU9AQ03O7rk0dtSxTP3es3ymdXQf0Mf3mFTl/yhA8Y4idW6dDOi8YYtcZYqZ1Y+rnLkNMv+zm7WSi39fMdZr2UbfLbipn2kcPG8qJ2LZ+XzMdF+7XqYkX6820X5jKmfqiL2dZR/TFtt6lj73N0Nwp03FtOiZMX7Lu1qfrv0vr9gcA0E/W/5uwRtSZ9FIhpMx63Wvq8efJ47YjLXXrI8q8KfmGIy1vndD3r0WWVVam69aHZS0q8g5r8qr/BluWKlWzLDtjzrTTpvOgjdH1WbU+rHB7dbezj6n6od8mbfS5jbzL+Vvfx9qtu9U62j021cvt3G917enraG+/a6+OPS2m6d1s/5Uj7aT1HnXmhPqYlZsVx9v9bXWjrfXU9vcu0HCZ+H9VPiCzANwZAQAAAAAAAAAAPMVkBAAAAAAAAAAA8FSgJyPK5bJs3769pbzValWSyaRkMhlJp9NSLBY97h0AAAAAdB/nTQAAAD1kkyy/UNrPT0BmAQLytCi1dDrdUr5arSbRaFQqlYpEIhERERkdHZX5+XlJpVJedhEAAAAAuorzJgAAAPSCgMyJOGUyGQmHW3ubUjqdllgs1hxQN8q3OigHAAAAgF7EeRMAAECPGZI3XmLt12fIlyVbVyDvjCiXy3LVVVdJJBKR2dlZY956vS7lclmy2eyq9N27d4uISD6f51c+A8q2J3wtJ/KX2sgvfPqPtLG3//JXtbHbX31SG/v/vllfp/y8PiTnDxuCem7Xi2VNuionct4Q22po8G6X7YmIaRGPG2J/sMMQ3GOIPWaI6ZfftC0sy7R9zxnqPGCo07QNDdvCuA3168zUFxPTstu2fr+wrIOGWs+46ovINmPU1KZ5+5r6amrTi+Vwu+13aSPm7XTEUOe1hq48o4/Vb9LHTuj7Kf/W0BW5Sx+yTeXcfTev9x3r/m8agF7AeRM2pOj8G3JNuK7MeuULL6vT3+NM/5Co/2bfJk870vKi/jvm5d8v2x5uI6+6H5ZVVqSaxv0byesmf2vsWnv5VeMO/bZqp8/jLbenY2nmZL3al/R9cy63ZS0qc7a3L+rytrN87e1Hqv28nfWp2yZyWr3uTlqK/h3XLPde3fpX9U+33NPKVNUyqo95IHhm/vPyR2XxO/72RSeQkxG5XE4KhYJkMpl18zYG3Wt/DdT4tU+pVDIOqi9cuCDnzukv0K1n8+bNsnnzZtflAQAAgFZcvHhRLl686Lr8hQsXOtgbBIFf502cMwEAgG5hDNy6sZ9b/qhUnxOJvs/f/qgEbjIik8k4fq1jUqstT+WHQiFjXGfv3r0tt6UyMTEhDz744IbqAAAAANYzNTUlk5Nu7zhEv/HzvIlzJgAA0C19OQZuPKbJ7zYDIFCTEdVqVa666qqWn3kqIjI3NyciIiMjI8p4vV43lj9+/LjccMMNLbe3Fr/wAQAAgB8eeOABOXDA3aPsRESeffbZDV9URjD4fd7EORMAAOgWxsD9JVCTEVNTU1IoFNoqMzo6KiIi8/Pzyvh6A/QtW7bItm3mZ3sDAAAA3bbRR91s2bKlg71BN/l93sQ5EwAA6Ja+HAM3Xirtd5sBEJBuLN9mHI/HV90e3Pj/xn9VA+RGmu6XPO38WggAAAAAgozzJgAAAPSqwExGlMtlmZ5Wv8l+dHRUIpGIVCoVR2z37t0i4nzGaePf0Wi0wz0FAAAAgO7gvAkAAKC32ZtEbJ/f4WBv8rc9ncBMRqgGzJlMRvL5vCwsLGjLhUIhiUQiUiqVZHx8vJleLpdFRGT//v2d7yygYNt3a2OW4a725++6Xhu79P4rtLHf/cgn9JU6D6cVzhli57URyzpsKHfG1KArtj1h6MtBQ8Fn9LFrbnLfofcbYlcbNvDLhtjuXfrYz+u3k2UdMXTGtC3034fm7Wui32dEthpipuUzbF9jezsMderXmW3rnz1pWaaXZOnbMx9n5rLul9/EtC3cMuy/xuU/pY1Ylj5mdq0h5vK4/7eG2McMsT94UR/b+jZ9zOWmNX1XAuhPnDehG87++6vVgV9yJt2+9zc0tTjHVUH5O2Ye8zmp+m1ZZXXm04uOpCsvvl2Z9U8v/6Ay/fbw085E3fxhUb0sluVMa3f9t5PftmOKPmx8PXtJ1157/T6hqNe5LkxU+1L7daj6vKetOlTLIqLuh3b/V0m0sV1/V5P+kKaO+53HmxwfVufd2/r6aHf9A9ALyJxI62q1moyOjjYHzSIihw4dknK5vOpXPtlsVrLZrIRCoS70EgAAAAC6h/MmAAAABE1g7oxoVb1el/n5+VXPOm3cipzJZCQcDkutVpNMJiOpVKp7HQUAAACALuG8CQAAIJiWhkSWfL4qv+TzY6F0Aj0Z0fiVzkqRSER5+3EkEpFCoeBX1wAAAAAgEDhvAgAAQC8I9GQEAAAAAAAAAAD94lIX7oy4FJA7I3runREAAAAAAAAAAKC3cGcE4Ifzz2hDl66+yVDwnD40u81QTt+eiL6cbR/Qxixr0lDnVkPsvKG9CUN7Bw11mpZBvz4t64ihThH57bu0oaNf/UltbP91f6aNXRP+pjb2efmQNrb3Pxq24Utn9DHjtjhhiOm53U7m/Um/LWxbvx3M+4XheDGwrMOGvuiX3Vyn6XgREXnBEDNtQ33MtL5NzH3dYWjvTpd1mpZP356Iab9/zhCb14cu6JdBPmao8mpDbOvb9LHzpu8g07Lr9+319jW3+zAAoPfo/ibo/hao0i2rrMgpIhJTJ+9dbKVr3zPecs71x1Jv0C1fO3Xo+mbbw63XvVPdjytfeNmR9qeXf1CZ9/aDTyvTH66lHWn3fj2v7lvxVWW6yLQzb1vrSLfPtFdHq/XqtLufq/J3Zny0R9MP57HS/rGpOd7aoNxWYXVe/TZ0LqNltXPMa84/i+p1p8x/XLMuPtpGN/aqv9d067kT3z8A9JiMAAAAAAAAAADAB0tDlrw+ZPncpi0itq9tqjAZAQAAAAAAAABAD8t9xpb8Z9QTDt/5js+d0WAyAgAAAAAAAAAAHywNDcnSZZ1/lfPdH1/+qDxbvSR73/16x9tsFy+wBgAAAAAAAAAAnuLOCAAAAAAAAAAAfHBpaEiWhvy9R+DSkCUi3b8zgskIwBfPGWLfdFnntYbYCUPsvDZiWZPamG1PdLycmb6ftn3A0JfD+ip/9W5zk7fpQ8l3fkHfnzH9H5BC+gPa2G/If9I3+NI5fUx2GGL69SZiqtO0Xxw0lNMzl9tmKGfYhsb9ovP7qKmcyFZXdS7Xa1pGPdteZx/WtmfaFtcZYmc8qNO0j+rbMx/3pu2rX2eW9Yy+K//3TfrYS6f0MRPrLn3MftFdnfIVc5PG7WTaFnruv9cBAF7qxPezbcfaLDHsSLE07+O0bWdefT86sSw+/706vahMvuvyI460p6yTyrz2Xs3K+0dn0iMPpzQdUZ8LtrM+dGMrVbrf61nXnq7PXvVPd6x4tY7M5yWt0fdj4/uG2rgmfbr1Kvbqrm1o6n5I8T1zvzqrldQ1useR0v53IwAdHtMEAAAAAAAAAAA8xZ0RAAAAAAAAAAD4YEk2yZIM+dxmMHBnBAAAAAAAAAAA8NTA3xmxb98+GR5WP7tybGxMxsbGfO4RAAAA4M7MzIzMzMwoY4uL6ueZA+vhnAkAAARZr42Bl2RIXh/QOyMGfjLi2LFjEolEut0NAAAAYMNMF4ar1apEo1Gfe4R+wDkTAAAIMsbA3qjVahIOhzta58BPRgD+OOey3BlXpWz7gDZmWZOGchMu29OXc9ue276Y1lnmU/q+iIh88scf1MYmnzMU/Jg+VEl/RBt7/Dfepy9oGdqzTfvFeUPMZKvLOncYYqZ+btNGbPtuQzk9075mXj4Td+vF3Bf3x4yJF8e2FyzrsCFqWqemcm63r8FLBw3BPe7qtI8Ygvpjwu3fAhHz3wMAANbSjSfaGUvYdqxT3fFNu+Mv1fq4RZ5U5n2rdV/L9U4eV6eHvpxypE28puvz15WpqmXUbddOjB3baa8TdHV71Y929hnLKivT2zlW2lk+U36vqNrzsm+Wpfml+/2qdX1CnbeoTu7F7zCgUyxr9cWoSCQilUql+e9qtSpTU1MSDoelXq9LPB6XRCLRVhtMRgAAAAAAAAAA4INLMiRLPl+Wv7ROPJ/PSyqVktHR0WZaLPbG5FytVpNoNCqVSqV5x+zo6KjMz89LKuWcNNdhMgIAAAAAAAAAgAFVKBSkVCpp4+l0WmKx2KpHd2YyGUmn021NRmzaUC8BAAAAAAAAAEBLlmSTLMmQzx/9NECxWJTZ2VlJJpOSz+cd8Xq9LuVyWeLx+Kr03bt3i4goy+gwGQEAAAAAAAAAwAAqlUpSr9elWCxKOp2W7du3S7n8xjtYZmdnRUQcL7Nu3CVhuqNiLSYjAAAAAAAAAAAIqIsXbTl/7pLrz6sXbG3duVxObNuWSqUiqVSq+XLqWq0mItL8bygUUpZvxFvBOyMAH9j2AW3MsiZd1nrGUOdBQ7mtrsq5XQbbnvCgnGH5PqIv96p8Sl9OROTvzGE3Tsu12tjb/9NXtbGvT2wx1HqnIfaYNuL3fui2nNv9whQzcbvsbtvbCPMx6u6YMe0X3tBve7/XqW3fpI1Z1glDSVNslyF23hAzHUv6ct3YDwEA/cvvvyu6cZj/YwJ1e7r+KYdWu29T5n36Xmfa5COt9kzvrsuPKNPzOxUNioicdiZ5uf47UYeqf+3Wq8pvWWVFThHbjmnSW29TvU51Y0d1e+3w8lhxf464rN3jSm2Ppm7dunOm68b1+joA71363qOT2vF7U+fl05MXPOrRskgkIrlcTuLxuCSTSclkMlIoFGRubk5EREZGRpTl6vV6y20wGQEAAAAAAAAAQED9wgNb5OcPXOG6/Klnvysf2jvfUt5EIiGJREKq1aqIiIyOjoqIyPy8uvzaxzeZMBkBAAAAAAAAAIAPLn3vBdbtuGzz8set79uif0yTSjweb743ojHZoLsDop3JCN4ZAQAAAAAAAAAAmnbv3r3qv2vfDdH4dzQabblOJiMAAAAAAAAAAPDB67JJXpchnz/tTQOUSiVJp9Misvzi6kgkIqVSaVWexp0T+/fvb7leJiMAAAAAAAAAABgw1WpVotGoTE9PN9OKxaKMjIxIIpFoph06dEjK5fKquyOy2axks1kJhUItt8c7I4AAs+0JbcyyjhhKnjHEzhtiW9frUtss66A2Zl4+fTmRHdrIR//LZ7SxTx8cN9QpIv+7PvRufbXyFUOVz33+3dqY9e5LhpKmbaiP2fYBfXvWY4Y69f00LaH7bahnWgYvmJbBLcuadF3WbX9MbXpRp5n+u8SL9e2WF8tn/kZwJ0jrDACATurE3zjd33Nd3ar8ury69Jcl5Ej7oPypuoN/ok5ux72fyzvSrD/TPPv7dFlTy54W09obI3ViPfvNtmMe1h2MZewEv5dF1Z5+X2x9G/bTNgG8EA6HZWRkRKampqRUKkkkEpF4PC65XG5VvkgkIpVKRTKZjITDYanVapLJZCSVSrXVHpMRAAAAAAAAAAD44JJcJks+X5a/JEvK9FAo5Hj8kk4kEpFCobChfvCYJgAAAAAAAAAA4CnujAAAAAAAAAAAwAeXZJMsyZDvbQZBMHoBAAAAAAAAAAD6FpMRAAAAAAAAAADAUzymCQAAAAAAAAAAHyx14TFNSwG5J2HgJyP27dsnw8PDytjY2JiMjY353CMMGtuecFnyhY7XaVmTLvuyw9CXu13Wuc1VqT/6p1/Qxr5xYNRY9vr5OW3sK5/Rl/sJ++364K99XR/7W8vQG9Pyn9dGLOsxbcy27zSU0297t/uTbR9wVc7Ei3560d5G+uL+OOw8L9apF7qxnYCgmpmZkZmZGWVscXHR596gX3DOhCBr9+95O/ktS/29aX/2rCPt6RtuV+Z9+eErnYmPOMuLiEzsVfdj8iOKxIfUeaUSU6efbn2M2YkxUlDqUI0Tgz4G9KrPujGz3+sj6OsfvYkxcO8Y+MmIY8eOSSQS6XY3AAAAgA0zXRiuVqsSjUZ97hH6AedMAAAgyHptDLwkQ/K673dG+NueTjDuzwAAAAAAAAAAAH1r4O+MAAAAAAAAAADAD5dkSJY8uCxfnPl/5djMK8rYxcVLHW/PDSYjAAAAAAAAAADoYYmx75fE2PcrY/+z+qp8NPq3PvfIicc0AQAAAAAAAAAAT3FnBBBglnVQG7PtCUO5SVfl3NYp8iuGcs8Yyp0wxHYZYndqI+f+lw9pYz+1+GeGOkVeHXmzNvarEtbGatbXtbEb32Fo8L2m3mzTh3YZYqd2aEOm/cktt/uaeX/SM9XpBb/b61abfnK7z5j0yjrzYtkBAOgVqr+Dnfj7Z1mLmojuXEOVvqe9Rg8r+vGTtjLrzW9/0pH2XrldmXfyeBt9OKlJ172j9fS4I8m2h9to0Ltt6CW/+9eJdeRVn4O+rVR6sc9AK5ZkyPcXSvMCawAAAAAAAAAAMBC4MwIAAAAAAAAAAB9ckk2+36lwKSD3JASjFwAAAAAAAAAAoG8xGQEAAAAAAAAAADzFY5oAAAAAAAAAAPDBUhce07QUkHsSmIzAQLKsSW3MtidclRPZYajz7la6pSh3wFVfzMtw2FDOXT9lcps+NmGIyS596CN36mOfPaUN/c539MWul+cNfTHHD/w3Q8FH9aFv/5nhy96wiLLVENMvvog8ZoiZ9tG7TJUayun3Nbe8qBPBEaTt6/Z7FAAAeEv3N1r593nnsDpvLaapW5W6R92RhLruyaIi8TfUVZw8eJsj7U/sK5V5c9ZZZfrEvc60Bx9ZVDf4kLrPouizZZXVeeWEMpXx0fpYRwBgxmQEAAAAAAAAAAA+WJIhed33OyP8bU8nGPdnAAAAAAAAAACAvsWdEQAAAAAAAAAA+OCSDMmSz5flL3FnBAAAAAAAAAAAGARMRgAAAAAAAAAAAE/xmCagLVsNsR3aiGUdNpQ7Z4idd9neQUO5bS7LvVsbueM/fVEbe/y336ev8sIubejt/+Wr2tjXP3SjNrbf0NyDTyf1QRF5/pZvaGPRD1W0sWThC9rYlseX9A1uMXTGFPtfDbHZa7Uh277JUNBftj3R7S4Avu+H7PcAgF5lWWVlum3HWq5D9XdQV6++H5OOtJQd0uRNqSs5rujzrDrrwwfSyvQftRSJH1XXIR93Jl1931ll1pCt7nPoNedyy5lhdXsnNf3Yqch/eo8yazvbFQDQviXZ5MkLpf+fmX+SL868qIy9tnip4+25wWQEAAAAAAAAAAA97P1jPyjvH/tBZezvq+fkvqj+h79+GfjJiH379snwsPoXBWNjYzI2NuZzjwAAAAB3ZmZmZGZmRhlbXFz0uTfoF5wzAQCAIOu1MfDyC6z9faF0UF5gPfCTEceOHZNIJNLtbgAAAAAbZrowXK1WJRqN+twj9APOmQAAQJAxBu4dvMAaAAAAAAAAAAB4auDvjAAAAAAAAAAAwA9Lskle9/mxSUsBuSeByQgMJNue0MYs66C7Sm+7Ux978jFDwa2G2B5D7G2G2BFD7AVD7DpDTK+ce782Zv20rY1t+tS3tbE/lP+gjd34T1/Xxr5o36GNyY36kIjI3DU/qo3l/jytjf3Ef/2ivtKsocH/xxAz3UE4a9qfTmkjlvWcNmbbdxvqBAAAQK+yrEl1YKfinOi0Jq+Mt1G37hzmRBt5PfS7zqSHC+qx/l2a86ojdsqZqDuNPOlMuqXwhDrrU7ep69iret657hnoqvWsS1evf8tS12E6jwYAoBVMRgAAAAAAAAAA4IMlGZIlny/L+/3CbJ1g3J8BAAAAAAAAAAD6FndGAAAAAAAAAADgg0sy5PudCpe4MwIAAAAAAAAAAAwCJiMAAAAAAAAAAICneEwTBpJlTRqiOwyxc/rQTxuKzd5p7pAb5w19EVN72wyxd5ga1If+u6HYgj70yR94QBv7C3mfNvbN9E5t7D+8+of6Bmf1IRER+Yg+9Phf6Puz5fySvuCEaTud0YdmTfuhoZxpOxm3PdAe0/eobU90vBwAAHiD6u9p239Ho4q00+PKrFdePKtMP7tZlf+Eur2HFP27f1GdV2uPI+Wt1ps17d2rTH74QNqRdkQ+pMx77+fyyvT7/iznTKyou+EV2x5WpltWJ+pmTAYAXlqSTb4/pmkpIPckBKMXAAAAAAAAAACgb3FnBAAAAAAAAAAAPliSIXnd9zsjeIE1AAAAAAAAAAAYANwZAQAAAAAAAABADyvP/J08MTOnjL22aHjfqY+YjAAAAAAAAAAAwAeXZEiWPLgsf9vYLrltbJcy9g/VefmN6F92vM12MRmBAbXVEDtjiF2njdg3WdqYtdvWVxk1NPeDhti92/Sx2wzlnrxTH7vGUO6lc9rQ5J8Yyv2qPvSJL/yuNmY9pl9nd/z+F7WxCy9fpW/QtNlFRH7YEHuffvnNHjPETPuaiWHbG9j23a7KWdaky/YmXJVDb3C7fdkvAADwhn7MtkeZeuUfv+xIO3vz1cq8Z39vWF31TkVaNKbOe39ZUV6T97S6z7bt7McjklLXYS0qk58/cL06v6qKf1GfkyjX3eacupKdzrHPSespTYvv0aRPO/tmqdeRyAllqmoMpt9nNNsFAIANYjICAAAAAAAAAAAfLMkm318ovRSQV0cHoxcAAAAAAAAAAKBvcWcEAAAAAAAAAAA+WH5nhL93RlzyuT0d7owAAAAAAAAAAACeGvg7I/bt2yfDw+qXcY2NjcnY2JjPPQIAAADcmZmZkZmZGWVscVH9MldgPZwzAQCAIGMM3DsGfjLi2LFjEolEut0NAAAAYMNMF4ar1apEo1Gfe4R+wDkTAAAIsl4bA1/qwgusLwXkAUkDPxmBQbXNENtjiO3QRibfoy91h/1Fbex5uV4be+npnfpKP68Pyaw+tOm/fVsbu3T1gqHS84aYwR/rQ6c/dY0++G/0occ//T53fVlvESZMwXOG2AmXjZpiW132pfNs27hiAAAA4LN2xmeWNalM/5XNcUfagwlbXUlFU7nq2k5R/QvUm23nRZeTBzX13q9Otixn3Q9ruqwbox957S5H2tnNV6qr0JyOXX/glCPt5EOabXJ/WZE4rs6r6XN74/GYMtWynP1gnA8A8BuTEQAAAAAAAAAA+OB1GZLXfb4zwu/2dIJxfwYAAAAAAAAAAOhbTEYAAAAAAAAAAABP8ZgmAAAAAAAAAAB8cEmGZMnny/KXeEwTAAAAAAAAAAAYBNwZgQF1zhCbN8R2uWqt/MT7tbGfvP2oNvaF2Z36Sn9MH9r0Y9/Wxi7dc4W+4C5D7NSL2tDEx/TFHrT0sXe++jV98EP6kLxgiNnP6GO7bjIUFJFTpwzBE4bYDkPsjDZi2xPm/mhY1mTH6wQAAEDvsKyyI822Yxuu9+FCWpl+n/WwusBpRdrxYWXWk8nbnInFxdY61jTtSHlerldn3aleH2f/SpWq6cdp9bj7pDXeeh2K8wjdtrIs3TnHxrdtJ/YPAEBnLMkmWfLgToWnZ74mT8+or7V9d/H1jrfnBpMRAAAAAAAAAAD0sFvG3im3jL1TGXux+i/y6egRn3vkxGQEAAAAAAAAAAA+WH5nhL/vcOCdEQAAAAAAAAAAYCAwGQEAAAAAAAAAADzV15MRtVqt210AAAAAgEDjvAkAAMA/S7JJXpchXz9LAZkGCNw7I4rFokxNTUm1WpVwOCy5XE5isVhLZS3LWvXvSCQilUrFi26i520zxPYYYmdctXb4Dn3sKvtftTH7W5Y29tZ36k8a3ytf0sYe/fuP6Tvj0k1/cFwf/LQ+dOFX36IPnjK1aAo+pw+9cJOpUhE5YYjpt71t362NWdZXDLFJQ50TrmIAAGAwcN402Gzbua1NY8tW/aiVV6bfbH9Imf4n8jOOtOtee0GZ9+zs1YqKh9Ud+T11spx2Jn1I1C/jzMu96jo+qkjbqenHadO5YWvaGbszzgcA9LtATUbk83mpVCqSzWZFRCSTyUg8Hpe5uTkJh8Prlk2lUjI6OtpMa3UwDgAAAAC9gvMmAACA3rUkQ7Lk82V5v1+YrROoyYh6vS65XK7570OHDkk0Gm3+2sekUChIqVTyuosAAAAA0FWcNwEAAKAXBeNhUd8zPj6+6t+hUEhElm8bNikWizI7OyvJZFLyefVtpQAAAADQDzhvAgAAQC8K1GTEWsViUbLZ7Lq/7imVSlKv16VYLEo6nZbt27dLuVz2qZcAAAAA0D2cNwEAAPSOSzL0vUc1+fe51MZjmsrlsmzfvt2RXq1WJZlMSiaTkXQ6LcVise1lD9RjmlbKZDKSz+fl0KFD6+bN5XKSy+WkWq1KLpeTfD7f8jNTL1y4IOfOnXPdz82bN8vmzZtdlwcAAABacfHiRbl48aLr8hcuXOhgbxAUfpw3cc4EAAC6hTGw/9LptCOtVqtJNBqVSqXSvBt3dHRU5ufnJZVKtVx3ICcjpqenpVarSb1el2QyKblcrqWFikQiksvlJB6PN2dpCoWCsczevXs31NeJiQl58MEHN1QHusF0MnXUENvjqrUzhthPyF9oY1/95Nu1sZe+tlMbe/Wdw/oGXzR05rwp+Jw28pU/vFNf7DOGKk8ZYnLYEHO3HcSeNIftCW3MsvRlTTG37QEAsNbU1JRMTrr7m4P+5Nd5E+dMPWKnZmx5uvW7X95uX9lWk9e99oIj7frL1YP8kyevdiZW1PXaNXW6ZTnTbg8/rc58uvXvS924XNXecn7n+Zb+nMBZty6vvh/O/JxLABgU/TgGviSbfH+h9KUWH5CUyWQkHA7L/Pz8qvR0Oi2xWGzVY0Ebd0j0/GRE4xmo5XJZksmkZLPZthYqkUhIIpGQarW6bt7jx4/LDTfc4Lar/MIHAAAAvnjggQfkwIEDrss/++yzG76ojGDx67yJcyYAANAtjIH9Uy6X5aqrrpJIJCKzs7PN9Hq9LuVyWbLZ7Kr8u3fvFhGRfD7f8hg0kJMRDbFYTFKplExPT7ddNh6Pt/T80y1btsi2bdvcdA8AAADwzUYfdbNly5YO9gZB4vV5E+dMAACgWxgD+yeXy0mhUJBMJrMqvTExsfaxno27JEqlUn9MRoiI3Hjjjeu+90GnMTsDAAAAAP2M8yYAAIDesOTiMU2vX3xdli6+7rrN71wwl81kMo47HxpqteXnJ4ZCIWO8FYGfjKjVahKLxdouVyqVlC/bAAAAAIB+w3kTAABA//qrqf8hJyaPe1J3tVqVq666SvvDlrm5ORERGRkZUcbr9XrLbQVmMqJer8s999wjd911lyQSCRFZHlCXSiUplUrNfLVaTeLxuORyOYnFYlKtVpvlGs9MLRaLMjIy0qwHAAAAAPoB500AAAC9bUmG5PU274zY/cCPyf924N+6bvNfnn1Jju79Q2VsampKCoWCtuzo6KiIiOOl1g3t3J0bmMmIUCjUHFjncjmJx+MSDodXDahFlgff8/PzzRmXcDgsIyMjMjU1JaVSSSKRSHPQDXTeYx2v8XnrC9rY/7D1z/09/s6btLGiGE4oTY/Ku/A2fcx+Th/7+VP62NZdhgZN6/OMIXbUEDPZ6rKcmW1PeFIvAADAWpw3Qev05IaryFlnlenvsL+mTr/cmZ4P36uu/OOKtKL6fSWWdUJdh8rp9d8VudqeNvLq+uG8C6mdc4J2zx843wAAXLb5Mrlss/tL+ZdvUb93I5PJSDweX/Wopcb/N/7bmGzQ3QHRk5MRIuIYQKtEIhFZWFho/jsUCrVUDgAAAAD6AedNAAAAveuSDMmSz5flL2nuxCiXyzI9rf4x9OjoqEQiEXn88cdFxPluiMa/o9Foy/3Y1HJOAAAAAAAAAADQFyqViti2veozPj4uoVBIbNuWSqUioVBIIpGI44ct5fLy3Yn79+9vuT0mIwAAAAAAAAAAgNKhQ4ekXC6vujsim81KNpuVUCjUcj2BekwTAAAAAAAAAAD9akk2yVKbL7DuRJsbEYlEpFKpSCaTkXA4LLVaTTKZjKRSqbbqYTICAAAAAAAAAAA073hYKxKJSKFQ2FDdTEZgINn2AW3MsiZ97InZedmqjd36C1/Rxm578Al9pdcZGnzpiCH4giE2og+dP2wod84Q0y+7yHltxLYnDOXMTNt+I/UCAAAAXtONV62wpsDpBx1J41eos05b9ynTH0zYjrQnarco896efFrTEafOjL1jylT1mF+dtxNU7XFu0V268z62CwC/LL/A2t87I3QvsPYb74wAAAAAAAAAAACeYjICAAAAAAAAAAB4isc0AQAAAAAAAADggyXZJK/32AusOyUYvQAAAAAAAAAAAH2LOyMAAAAAAAAAAPDBklwmSz5flve7PR3ujAAAAAAAAAAAAJ4KxpQI4DPLmtTGbHvCUO6gq/Ym3qOPTf6VPvYp+YQ2dvgz+nKXrCv0wSdP6WNyxhDbqo3Y9k3amGWdMNR53hADAAAA0CrdOY7u/GbScqbdceEJZd73Wrcr01OFRxxpX5N3qDv4S4q0ou5cIaZJb12762Ojeb2sox2dWO5+x7oA0G2XZJMs+fzOiEsBuSeByQgAAAAAAAAAAHrYqZkvywszx5WxpcXv+twbtYGfjNi3b58MDw8rY2NjYzI2NuZzjwAAAAB3ZmZmZGZmRhlbXFz0uTfoF5wzAQCAIGMMvGzX2I/JrrEfU8b+tfqP8oXolL8dUhj4yYhjx45JJBLpdjcAAACADTNdGK5WqxKNRn3uEfoB50wAACDIem0MvNSFxzQtBeQxTcHoBQAAAAAAAAAA6FsDf2cEAAAAAAAAAAB+uCRDXXiBtb/t6TAZAbTlvKtS3zg5qg9ac9rQW378gjZ2xtTg1ev3ScW2D2hjlnWw43UGjW1PdLsLAAAAgCudGMs+/9ouZfp7NfmPvHaXI+3s72lORn5PlbinpX650c76sKyypo5Yp7rjG85pAABBxmOaAAAAAAAAAACAp7gzAgAAAAAAAAAAHyzJJnmdF1gDAAAAAAAAAAB0HndGAAAAAAAAAADggyUZkiWfL8v7/cJsHe6MAAAAAAAAAAAAnuLOCAwk257Qxixr0lW5SetBbexHD85pY0VtRET+2hQ0+GlDbGKXNmRZhw0FtxnK6deZiWl9mrjdRgAAAEA/UI2H2x0H71GkhS5X11HX1HHX5UeciQfUefO773Um7lXn1Y33VcvYTl4d245tuB8AALTqkgz5fqfCJe6MAAAAAAAAAAAAg4DJCAAAAAAAAAAA4Cke0wQAAAAAAAAAgA+WZJPvj2laCsg9CUxGAAAAAAAAAADQw07P/KV8c+ZLytjS4ms+90aNyQgAAAAAAAAAAHywJEPyugd3Rvzg2PvkB8fep4ydrdbk6egnOt5mu5iMANaw7YnOV/qsu2KT/+Ku3Nvf+VVt7Oufv1Ff8ENbtSHbvksbs6zDht6cMcTc8WQbAQAAAD2iE+PhIftmR9o75Tll3qc0deS+fp8jbfIdmsyJe1vrmARnvB+UfgAA0C+C8bAoAAAAAAAAAADQt7gzAgAAAAAAAAAAH1ySIVny+bL8JZ9fmK3DnREAAAAAAAAAAMBTA39nxL59+2R4eFgZGxsbk7GxMZ97BAAAALgzMzMjMzMzytji4qLPvUG/4JwJAAAEWa+NgZdkkyz5fKfCUkDuSRj4yYhjx45JJBLpdjcAAACADTNdGK5WqxKNRn3uEfoB50wAACDIGAP3joGfjAA6ZeJj+tjkZ/zrh4jImPy+NvYLW//IUPKd2ohlPWMod84Q22GIAQAAAOiGp6yTjrTfufiSMm9RrlFX8nFn0sS96qxfevhJR9rJcEzbPxXLmtxwXtueaKtNAAA6bfmdEf7eGcE7IwAAAAAAAAAAwEBgMgIAAAAAAAAAAHiKxzQBAAAAAAAAAOCDJdkkrw/oC6yD0QsAAAAAAAAAANC3uDMCAAAAAAAAAAAfLMmQLPl8Wd7vF2brMBkBdMhTf/BuffAzX3FV55i9RRubsS5oYx+wHtXG3mt/SRsL7/qWvjOnjuhjss0QO6ONWNakNmbbE4Y6AQAAAGzEgw/ZzrTNljLvnitar/eRh1Mt57259qQmclvrDcoeZaptx9qoAwAA+IHHNAEAAAAAAAAAAE9xZwQAAAAAAAAAAD64JEOePDbpn2f+VP555k/VbS5e7Hh7bjAZAQAAAAAAAABAD/uBsZ+RHxj7GWXs29W/lW9E7/G5R05MRgAAAAAAAAAA4INLssn3F0pfCsjbGoLRCwAAAAAAAAAA0Le4MwIAAAAAAAAAAB8sefTOiPXaDAImI4AO+Q35T9rYv5P3u6rzLf90wVW5Ofvd2titv/YVfcEJQ6W5u/SxJ029mTTEdmgjlnXYUO6MNmLbpoUAAAAAICIiu51JE59VZ538iDp94m5n2hH5kDLve63bHWm/c/ElZV5r86K6QdnjSLHtmCYvAAAIGh7TBAAAAAAAAAAAPMWdEQAAAAAAAAAA+GBJNsnrvj+mKRj3JASjFwAAAAAAAAAAoG9xZwQAAAAAAAAAAD5YfoG1v5flg/ICa+6MAAAAAAAAAAAAnhr4OyP27dsnw8PDytjY2JiMjY353CP0qqvklY7XaV+hj038lT72ijyvD/6dPvTuTz6ljd101zPa2O9e/wl9paf262PyTUPsK4bYDkNMz7ImXZUTEbHtCddlAQDwy8zMjMzMzChji4uLPvcG/YJzpj71u86kWwpPKLO+9yO3K9OtP7MdaakPP6LM+2DCmfeJy29R5r39oaeV6SIxZx+ssibvCU26E2N9AOhtjIF7x8BPRhw7dkwikUi3uwEAAABsmOnCcLValWg06nOP0A84ZwIAAEHWa2PgSzLk+2OTLvGYJgAAAAAAAAAAMAgG/s4IAAAAAAAAAAD8cEk2deHOiGDck8BkBAAAAAAAAAAAPezszH+TszP/TRmzFy/63Bs1JiMAAAAAAAAAAPDB67JJhjy4M+KKsQ/LFWMfVsYuVr8hL0cTHW+zXUxGAB1y9BM/p409KB91VedfjNyhjb3/mbK+vZt+TRv72WP/RRt74uJt2tgVpy9pY7/7w5/QxuTU1/Qxo18xxE5oI5Y1aSi31diibR8wdwkAAADoF0Xn+cTT98WVWRevUFfxpcKTjrR88l515pudSbd97qQy68MH0sr05+V6Z3v315V5bXtCmW4+XwAAAF4KxsOiAAAAAAAAAABA3+LOCAAAAAAAAAAAfHBJLpMlny/LXwrINAB3RgAAAAAAAAAAAE8FY0oEAAAAAAAAAIA+d0k2yZIHL7Ber80gCEYvAAAAAAAAAABA3+LOCKBTfvtUx6v8krxXG7NvsrSxz8hHtbGdB1/Sxibv1/fleftRffBt+pDIeUPsHYbYYUNsmzZi2xPamGVNGuoEAAAABtzd6uThZ9XpJ8O3OdKeqN2izHv7U0870m659Qll3qfvu12Z/uTDNzvS8vK4unMaqvMFyypr8sbaqhsAAJgxGQEAAAAAAAAAgA+WZJNs8vkxTUsBeUBSMHoBAAAAAAAAAAB8VywWJRqNimVZMjo6KuWy867BarUqyWRSMpmMpNNpKRaLbbfDnREAAAAAAAAAAPjg0qUhWbrk8wusDe3l83mpVCqSzWZFRCSTyUg8Hpe5uTkJh8MiIlKr1SQajUqlUpFIJCIiIqOjozI/Py+pVKrlfnBnBAAAAAAAAAAAA6her0sul5NYLCaxWEwOHTokIst3QjSk02mJxWLNiQgRad4h0Q4mIwAAAAAAAAAAGEDj4+Or/h0KhUREmhMP9XpdyuWyxOPxVfl2794tIst3VrSKxzQBHbO14zV++uZxbezXTj6ojUWloo19e8wwB3n/JW2oIrv15V7Uh0T2mIJatn3AVTlznRMdrxMAAADoTSecSYfVOZ/88s3K9JQ84kj7dflNdSUfdSb9Se1n1HnvViff/tTTilTnM62XxZSpljXpSOM8AQDgp6WlTSKv+/wC66XW70koFouSzWabj2ianZ0VEWn+u6ExWVEqlVp+VBOTEQAAAAAAAAAABJR98aLIxdfcl7/wakv5MpmM5PP55qOaRJbfFyHyxh0TazXirRj4yYh9+/bJ8PCwMjY2NiZjY2M+9wgAAABwZ2ZmRmZmZpSxxcVFn3uDfsE5EwAACLJeGwMvvT4k8np7l+UvfvKgfPe3PuVRj5ZNT09LrVaTer0uyWRScrmcpFIpmZubExGRkZERZbl6vd5yGwM/GXHs2LFVL94AAAAAepXpwnC1WpVoNOpzj9APOGcCAABBNghj4Mt/9V65/Jd+wXX5pa99Xb7z3p805mm8O6JcLksymZRsNiupVEpGR0dFRGR+fl5Zbu3jm0wGfjICAAAAAAAAAAA/XFoaav+dEUNvFnnzm123aX9f6++6jcVikkqlZHp6WkTemGzQ3QHRzmRE62+uAAAAAAAAAAAAfe3GG29sTjLs3r1bRJzvhmj8u507T7gzAuiY865KXWvv1wefOKoNnZZrtbFPfv5BfZ2PrN8nlWvlm9rY3Bd+VF/Q2qWP2af0xayD+mL2AX2dAAAAANZl2xOOtEnrQWXeCTmpTL/9h552Jv6eur2Ha2lH2tX3nVXmffnhK9WVKH94eUKZ1bLU6QAAYH21Wk1isZiILL+4OhKJSKlUaj7KSWT5cU4iIvv3G65trsFkBAAAAAAAAAAAPlha2iR2u49p2qBLS+oHJNXrdbnnnnvkrrvukkQiISLLExGlUklKpVIz36FDhyQajUqtVmveMZHNZiWbzUooFGq5H0xGAAAAAAAAAAAwYEKhUHNCIpfLSTwel3A4vGoiQkQkEolIpVKRTCYj4XBYarWaZDIZSaVSbbXHZAQAAAAAAAAAAD5Yen1ILn3X3zsjTHdirJ140IlEIlIoFDbUD15gDQAAAAAAAAAAPMVkBAAAAAAAAAAA8BSPaQIAAAAAAAAAwAf2pSGxl3y+LH/J38dC6TAZAXTMY65K/ez8UX3wX/ShMfl9bWzy/9CX29FCn1Qe/8P3GaIv6kP2NkM50zo7v06PAAAAAHTSxF51uvXntjI9VXvEkZbffa8y7/NyvSPtloefUOb9E/kZTQ9V9ihTbTumTLesyTbqBgAAncRkBAAAAAAAAAAAfnh9k4jhhdKetRkAwegFAAAAAAAAAADoW9wZAQAAAAAAAACAH5aG/L8zYikY74wI3J0RxWJRotGoWJYlo6OjUi6XWypXrVYlmUxKJpORdDotxWLR454CAAAAQHdw3gQAAIBeE6g7I/L5vFQqFclmsyIikslkJB6Py9zcnITDYW25Wq0m0WhUKpWKRCIREREZHR2V+fl5SaVSvvQdAAAAAPzAeRMAAAAcPjsj8rnfV8e+s+hvXzQCNRlRr9cll8s1/33o0CGJRqNSrVaNg+p0Oi2xWKw5oBaR5i99GFTDP7tclbK+rY/98oemtbFP58a1sScN7d2tP5TkP8/t1wefNlR6zdv0sZcOGwqeN8QAAACgwnkTOsGyJh1pD+oyP6ROzifvdSb+kjrv9fK8I+05eacy7zXJurqS084LKbYdU+fVsO2JtvIDANBxS5bI61bn6/0/Pr78UflGVeSD0c632aZAPaZpfHz1xdVQKCQismqwvFa9XpdyuSzxeHxV+u7du0Vk+VdDAAAAANAvOG8CAABALwrUZMRaxWJRstms8dc9s7OzIiKOPI2BeKlU8q6DAAAAANBlnDcBAAD0kCURed3nz5IvS7auQD2maaVMJiP5fF4OHTpkzFer1UTkjV8D6eI6Fy5ckHPnzrnqo4jI5s2bZfPmza7LAwAAAK24ePGiXLx40XX5CxcudLA3CAo/zps4ZwIAAN3CGLi/BHIyYnp6Wmq1mtTrdUkmk5LL5bTPMJ2bmxMRkZGREWW8Xq8b29q7d++G+joxMSEPPvjghuoAAAAA1jM1NSWTk85nvGNw+XXexDkTAADoFsbA/SWQkxGNZ6CWy2VJJpOSzWa1g+rR0VEREZmfn1fGTbcqi4gcP35cbrjhBtd95Rc+AAAA8MMDDzwgBw4ccF3+2Wef3fBFZQSLX+dNnDMBAIBu6csxcOMxTX63GQCBnIxoiMVikkqlZHp6WpunMWjW/ZJnvcmILVu2yLZt21z3EXiD+ldm6/o7fei9P/glbex0+hp9wY+9pI9doQ/93D8d1cY+Wj+iL/jSKX1M3N3Sb9sTrsoBQC+yLP0vffg+RMNGH3WzZcuWDvYGQeL1eRPnTP1J9fdlccuDyrzqVBEplhWJMWXW+l7nS9Kfv6j++5cqPKJMz1vqyTYV3d9W/q4CQG9hDNxfAj0ZISJy4403GgfGu3fvFhHnM04b/45Go951DgAAAAACgPMmAACAHtF4qbTfbQbApm53YD21Wk1iMfUvK0SWX8AWiUSkVCqtSi+Xl3+hsX//fk/7BwAAAADdxnkTAAAAgi4wkxGNl64Vi8VmWq1Wk1KpJLlcblXa6Ohoc9AsInLo0CEpl8urfuWTzWYlm81KKBTypf8AAAAA4DXOmwAAAHrc6yLyXZ8/AbkzIjCPaQqFQlKv1+Wee+6RXC4n8XhcwuGw45c79Xpd5ufnVz3rNBKJSKVSkUwmI+FwWGq1mmQyGe3L2wAAAACgF3HeBAAAgF4VmMkIEXEMoFUikYgsLCwo0wuFghfdAgAAAIDA4LwJAAAAvShQkxFAb3vOVanC7R/QxpLPfEEbs3/EVXMi/6wPfeYHP6oPvtdU6Q6XnQEAiIjY9kS3uwAAgAx/RhP4IV2JPc6kSuvt1f/2GmW6NWlrSkwq0tR/Q/nbCgAIrEsistSFNgMgMO+MAAAAAAAAAAAA/Yk7IwAAAAAAAAAA8MOSePNC6T+dWf6oXFz0oMH2MRkBAAAAAAAAAEAv+5mx5Y/K31ZF7on62x8FHtMEAAAAAAAAAAA8xZ0RAAAAAAAAAAD44XXx5jFN67UZAExGAF2W/Nkv6INv1Ycsl+1N/os+NnHwUW3sF374j/QF69v0sZf2GHpzwhDTs6xJbcy2J1zVCQAAAAwS1Zj6CftmdeanNJUkhp1pFfd9avolTXrReW5hWWVlVtuOdaAjAACgk5iMAAAAAAAAAADAD169wHq9NgOAd0YAAAAAAAAAAABPcWcEAAAAAAAAAAB+4M4IAAAAAAAAAAAAbzAZAQAAAAAAAAAAPDXwj2nat2+fDA8PK2NjY2MyNjbmc4/Qq2z7bn3w4D362Iw+9J/n9mtjP/ezR1voVZv+zhD7e7eVPmeI7dJGLGvSVWumcrY94apOAAB6xczMjMzMqAcXi4uLPvcG/YJzpv6kGhunJaTO+yeWMt0qvupIS9l5Zd6JzznT0m9/WN3e1zXtibM9kWl1XnUVYtsxRV71OQTnDwDQG3puDDzAj2ka+MmIY8eOSSQS6XY3AAAAgA0zXRiuVqsSjUZ97hH6AedMAAAgyBgD946Bn4wAAAAAAAAAAMAXA3xnBO+MAAAAAAAAAAAAnmIyAgAAAAAAAAAAeIrHNAEAAAAAAAAA4IfXReS7XWgzAJiMADrEsia1MfvP9eU+M/dRbexjBx/VF/yR9fvUthP60JbZV7SxCx97i77gZ3cYGvyKIaYvZ9t3G8rpmbbRcr0TruoFAAAA+sGR1+5Spuc/eK8y/YmHb3Gk/cxrf6LMm5P7nGn3OdNERELTL6k7KNPOpJ2aMfzpRU0dTpwHAAD6wpdmRP77jDr2Wut/F73EZAQAAAAAAAAAAH5YEm9eKB0bW/6onK6K/MeoB422h3dGAAAAAAAAAAAAT3FnBAAAAAAAAAAAflgS/9/h4MWdGC5wZwQAAAAAAAAAAPAUkxEAAAAAAAAAAMBTPKYJAAAAAAAAAAA/DPBjmpiMADrEtif0wR94UBv62OFH9eWShgbv0Yd+3FDsLw2xyecMQZPPGWLX3KmPvXStoeBj2ohlTWpjpu1g3EYA0EVuv9cAAOiks9ddrQ58XJ18+0efdiY+2np7Tz58szL9LjmiTM+rEk8vamo/oUy1LGeabcc0dQAAgE5iMgIAAAAAAAAAAD8M8J0RvDMCAAAAAAAAAAB4iskIAAAAAAAAAADgKR7TBAAAAAAAAACAH14X/x/T5Hd7GtwZAQAAAAAAAAAAPMWdEYAPCv/8AW1st8xqY1vlvDb2lj0XtLH5L+n7crc+JDveo4/97JvfqY2Fo9/SF/yfhgZlq6k3poLocZY1qY3Z9oSPPQHbIhhY1wCAILjyhZfbyn/25NXOOt6jruOWW59wpP2m/Loy7/XyvLrB4zln2t6yOu/OmDr9tHPs8/9v7/6DJLnuAsF/y8FZHlmWWmPdhY2Nz6om7mxjLrjqEeDVhbVeVV0E52BjI9QtbQTmx3LQ5b0+zjppdxriYnc0e3fR1xMg4KCNq0WAMHCB1DVxG3B73FIljAEh1pquE+C14aBrcOBfsKin9AOPRtIo749RtzWqzJz+UZVZ3f35RGRI874v33ud2V39Xr98+SqVx1Oz+v0MR0/a+MhnASNnA2sAAAAAAIDxOPIrI+666644duxYamxhYSEWFhYKbhEAAOzNyspKrKyspMYuXrxYcGs4LIyZAIBJduD6wONaGfH7KxF/kH4d4qXJuA5HfjLi7NmzUavVym4GAADsW94fhnu9XszMzBTcIg4DYyYAYJLpA7/qv1q4cqT5Yi/iJ8u/Dl7TBAAAAAAAjNWRXxkBAAAAAACFeDkiXiqhzglgMgIKMPcbv5EZ+4ff/Whm7HPxvszYX3z5/Zmx29+U3ZaffCE7Fn+YHfq+nNPiSzmx5/NOLFalcnrP5ybJqRG2hINyPfO+Zw7K13Ath+XrAAD275k/fFt64I6MPtGtw/2IzDI++PmhpA999on0vFlDnZ9JS7w9Pe/59Dan9X0qlfT3aGf1BSeh/zTJbYODzM8QjJfJCAAAAAAAKMLlV4+i65wA9owAAAAAAADGymQEAAAAAAAwVl7TBAAAAAAARbgcxW8o7TVNAAAAAADAUWBlBBThy9mhT33tQ5mxf3L9L2bGfvTnHsiMHftEdmyvfjL+x+zgV3NO/Ps5sU99aU9tSZJ7MmOVyumc807tqT6OLt8zR5fPEgCOopu+M71j/8xPZPzuO5GSdsfF1KxP/MTwuGfqv/9Kat7BvW9Pr299OClJjqVmrVR38/v6TGrqJP/On+S2AXANE7gyot1ux9LSUvR6vajVarG8vBz1ev2qPL1eL5aWlqJarcZgMIhGoxGzs7O7aobJCAAAAAAAOILOnDkTnU4nms1mbGxsxJkzZ6LRaESn09mekOj3+zEzMxPr6+tRq9UiImJ6ejo2Nzdjfn5+x3V5TRMAAAAAABxBTz75ZHQ6nZifn4/l5eVYX7+yFHF5eXk7T7PZjHq9vj0RERGxuLgYzWZzV3WZjAAAAAAAgCJsvaapyCPjNU3dbveqSYeIiFqtFrVaLfr9fkREDAaD6Ha70Wg0rsp34sSV9zWurq7u+Es3GQEAAAAAAEdMvV6ParWaGttKP3fu3FX/3rK1SqLT6ey4PntGAAAAAABAEV6OiJd2e86liMuX9l7n157fVfZ+v7/9CqatFRJTU1OZeXfKZAQU4Xx26Pk7bsmMLf3+j2bG3vz4K5mx0zlN+fac2GdyYj/zx/88O3h/zolvyYn9zndkx5IbM0OVSt5XmFchwM4kyamymwAAhXvmD9+WHri/m3HG7cNJs8dSc87f99NDaavVj6Xm/el+xkaY7xpOyh4bpLQtIiqVx4fS/N4HYOL9u6WIJ/L+HjY67XY7qtXq9sbUGxsbERFx/Pjx1PyDwWDHZZuMAAAAAACAIlyOzD0cMp34sYj/8r691/kfnopYu2NHWZeWlmJtbW3739PT0xERsbm5mZo/6zVPaUxGAAAAAADApPqG664ce/Uf3bCjbIuLi/HQQw9dNcGw9f9ZKyB2MxlhA2sAAAAAADjCVldXo9FobG9MveXEiRMRMbw3xNa/Z2ZmdlzHkV8Zcdddd8WxY+nvtFxYWIiFhYWCWwQAAHuzsrISKysrqbGLFy8W3BoOC2MmAGCSHbg+8OW4sol10XXmaLfbERFRr9evSu/1elGr1aJWq0Wn04mTJ09ux7rdK3tK3X333TtuxpGfjDh79uzQbA8AABxEeX8Y7vV6u3pqCbYYMwEAk0wfeH+63W4sLS1Fs9mM1dXV7fT19fWYmZmJWq0WDz30UMzMzES/399+LdPy8nIsLy/H1NTUjus68pMRUIhfzIktZYe+87o/zIz9yZ9/+56acvubsmOfeSE7dvd/8UuZsUdb35994kd20KhUv5kZSZJTeyqxUjmdG99ruQAAcBj81Aebqen3xjemnzBbH0q66Ve/mpp19Xc/NlxfP72++RtWU9Pv/a5WSurt6W3LTH98KCVrnGB8AMBYTNDKiF6vF41GIyIims3h38sXLlyIiIharRbr6+uxuLgY1Wo1+v1+LC4uxvz8/K6aYTICAAAAAACOmFqtFkmS7Djv2travuqzgTUAAAAAADBWVkYAAAAAAEARXo6Il0qocwJYGQEAAAAAAIyVlREAAAAAAFCEy5G5ofRY65wAVkYAAAAAAABjZWUEFKGaE/v72TvWf7Z/IjN2vvn27DI/+pXM0I035rTlhezQrfGX2cFfyynzwzmxt+TEnstuaKXyYGYsSe7LiZ3KqRAAAI62e+daGZFuevIHhpOeue6m9KzJp4brezC9vlObp9Pre096cqpbj2UEhscESX8X5QLAfl2O4vdwsDICAAAAAAA4CkxGAAAAAAAAY+U1TQAAAAAAUIRxvabp/1uJ+POVjDovjqHC3TMZAQAAAAAAB9l/tnDlSLPZi/i3M8W2J4XJCAAAAAAAKMLLEfFSCXVOAJMRUIB//8R0ZuxH4sf3VOYn4/syY6e+dzkzdvqX91RdnI93Zwc/tbcy9+65oisEAIDD70ey0uvp6edS0m49lpr1iQc/NJQ2f99Pp+Ztffbe1PS/1//t4XIr6U3LdP50SuKpXRYCAOyFDawBAAAAAICxsjICAAAAAACK8Epc2cS66DongJURAAAAAADAWFkZAQAAAAAARXg5it9QekI2sLYyAgAAAAAAGKsjvzLirrvuimPHjqXGFhYWYmFhoeAWcRh9y/dtZMZ+Jv55ZuzbP/m7mbF3x/nM2LNr2W359uxQfCYndn1czA5+KOfEX82JvSMndu5LmaEkOZUZq1QezDnvvpwKAeDgW1lZiZWVldTYxYs5v8shhzHT0XHTd341Nf2Z73lbev5fHc7/zP03peb9qfvuHUq798FWat5vvH84b0TEE2kv2P6JemreuL+bng7AoXPg+sCXo/iVCkXvUZHhyE9GnD17Nmq1WtnNAACAfcv7w3Cv14uZmZmCW8RhYMwEAEwyfeCDw2uaAAAAAACAsTryKyMAAAAAAKAQL0fESyXUOQGsjAAAAAAAAMbKyggAAAAAACjCK1H8htKvFFxfBpMRUIQ358S+Ozv07jifGfu9+GBm7MZHs8v8zD/MaUuOh3/ho9nBz+ec+J6c2Kce2VtjciTJfZmxSuX0Nc49NermAADAgfHM97wtPdBO70c/0z6Zkvp4at57f7c1lPbb9/291Ly/e396M2669P7hNnxPet6Yraenf2A4PWucYHwAwIHyxZWIL62kx165WGxbMpiMAAAAAACAg+ydC1eONM/1Is7NFNueFCYjAAAAAACgCJej+A2li34tVAYbWAMAAAAAAGNlZQQAAAAAABTh5Sh+ZUTR9WWwMgIAAAAAABgrKyOgAJ/4uR/IjE3Hv8+MzcbZzNij//f3Z1f41A4atUsP/OCPZsd+4X/LPvHP8kq9fU9tqVRO50TfkRlJklN7qg8AAI6ED2QFMvrRafnvfzyjjPru2/M6z/zs24YT1zMyn++mJidrw+2o3L+PRgHAbr0cES+VUOcEsDICAAAAAAAYq0M9GdHv98tuAgAAwEQzbgIAoAgTNxnRbrdjZmYmKpVKzMzMRLebvrQyTaVSueqYm5sbY0sBAADKYdwEAHBAvRIRlws+XinkK7umidoz4syZM9HpdKLZbMbGxkacOXMmGo1GdDqdqNfz3y+5uroa8/PzMT09vZ12rXMAAAAOGuMmAAAOoomajHjyySej0+ls//uee+6JmZmZWF5evmYHeW1t7apzAQAADiPjJgCAA+xyFL+h9OWC68swMZMR3W43lpeXr0qr1WpRq9Wu+Q7Tdrsd586di7m5uWg0GjE/Pz/OpsKuffSvHs6M/dMLv5gZ+8Fv/oXsQr+aU+FT12zSrl0fX8sOPp9z4v+VV+qf5MT+NL9BmZ7NjFQqp3PPTJJTe6wTAKAYxk2M1f0XMwKPpyf/SMrk160ZfeofGE56b/9zqVk/9MvpRTzwN+npu1GpDL/SzDgAAIoxMZMReU/wVKvV3HM7nU4MBoNot9vRbrdjcXEx1tbWdrTc+Pnnn49nn83+4+W1XHfddXHdddft+XwAANiJS5cuxaVLl/Z8/vPP5z09wEFRxrjJmAkAKIs+8OEyMZMRWfr9fjSbzdw8rVYrWq1W9Hq9aLVasbq6Go1GIzY2Nq7ZIb/jjjv21b5Tp07FAw88sK8yAADgWpaWluL06fxVfhxd4xw3GTMBAGU5lH3gl6P41zQVXV+GiZ6MaLfbUa1Wd7x8uFarRavVikajEXNzc9tP+uT59Kc/Hd/2bd+25zZ6wgcAgCL82I/9WNx33317Pv+pp57a9x+VmUzjHjcZMwEAZdEHPlwmejJiaWnpmpMJaWZnZ2N2djZ6vd41895www1x44037qV5AABQmP2+6uaGG24YYWuYJOMeNxkzAQBlOZR94Jcj4qUxlDtYiXhmJT2WZO0LVaw3lN2ALIuLi/HQQw9d8zVLWRqNRmxubo64VQAAAJPDuAkAgIiImFqI+E8/l3687WzZrYuICV0ZsfXu0lqttq9yTpw4MaIWAQAATBbjJgCAA+iViLhcQp0TYOImI9rtdkRE1Ov1q9J7vd6uOtmdTueaG7hBUf7JN/1cdnApO/SWjz+XGXv+d27JjP3t2ZwlaJXns2M5/iq+KTv4zTknPpATO/WlnOBbcmLvyIwkyT2ZsUrlwZwyAQAODuMmxuLTx9LTf6Cenn7Hzl/5MJ+sDqU9Eul994/9/HDeiIj4j1PSznfT8/5ERpvvT9sENSMvADBSE/Wapm63G0tLV/4yu7q6un00m804d+5cRET0+/2Ynp6ObvdKh6PX68XMzEycOXNmu5x2ux3Hjx+P2dnZ4r8IAACAMTJuAgDgIJqYlRG9Xi8ajUZEROqTORcuXIiIiMFgEJubmzEYDCIiolqtxvHjx2NpaSk6nU7UarVoNBrRarUKazsAAEARjJsAAA64y3FlE+ui65wAEzMZUavVIkmSHeXb6mBHRExNTUWn0xln0wAAACaCcRMAAAfVxExGAAAAAADAoXaEV0ZM1J4RAAAAAADA4WNlBBTgZy8tZMYefvKjmbHnvvaWzNj7P/lkZuzfxH+T05pHc2LZro+vZQd/POfE/yUndupbc4L/T07sucxIpXI6M5Ykp3LKBAAAUp3v7jzvrfXU5NUHPzaUlvx6JTXv6U9nlJ261/rj6Xnvvz01eTdjgqyxhXEFAOyNyQgAAAAAAChC0a9oKqvOFF7TBAAAAAAAjJWVEQAAAAAAUITLEZH+psLx1jkBrIwAAAAAAADGysoIAAAAAAAoQhmrFCZkZYTJCCjA/3zdv8wO3pYdev6pWzJjnz2XHYv/ITv0luxQPJcTy9XMiXXzTrwxJ/aOzEiS/NA1GgQAAOzaHVmd99t3Xsb5jDJ+tj6c9usZZXxrevIH1j41lPZE5eTO2pWjUjmdmp4kp/ZdNgAU5sWViJdW0mPJxWLbksFkBAAAAAAAHGRvXLhypLnci/jaTLHtSWEyAgAAAAAAinA5IpKC63yl4Poy2MAaAAAAAAAYqyO/MuKuu+6KY8eOpcYWFhZiYSFjaQsAAEyYlZWVWFlJf0/sxYuT8Z5YDh5jJgBgkh24PvDLEVEpuM6iV2JkOPKTEWfPno1arVZ2MwAAYN/y/jDc6/ViZqb898Ry8BgzAQCTTB/44DjykxFQhHbMZgffnHNiNzv0/n/5ZGbslng6M/aXOdXleXfemW/JDt3wz/42M/b8j783+8TnsuurVE5nn7cPSXJqLOUCAMDBcHt68q3pK2NSnc9If3g4qfJb6Y9pfiWZSk3/cvzxUNoTt35oZ+3aqrM6nGYcAADFMBkBAAAAAABFuBxH9jVNNrAGAAAAAADGysoIAAAAAAAoyoSsVCiayQgAAAAAADiCBoNBLC0tRUTE8vLyULzX68XS0lJUq9UYDAbRaDRidjZnf9wcJiMAAAAAAOCI6Xa70Wq1ot1ux/z8/FC83+/HzMxMrK+vR61Wi4iI6enp2NzcTM1/LSYjoADn//rd2cFWzonN7NBn/7vbMmPtj2fPTr47HsupMNux+Fp28BPZoec/cUt28D/PqfDcZ67ZpjRJcmpP5wEAAGfSk89n5T85nHRrPTXnBz74qaG0b/3gH6fmfdtnn0lNX/2tjw0nzmQ0bT0j/Xx3KKlSeTw1q7EFAIddvV6Per0elUr6jtrNZjPq9fr2RERExOLiYjSbzT1NRtjAGgAAAAAA2DYYDKLb7Uaj0bgq/cSJExERsbq6uusyTUYAAAAAAADbzp07FxER1Wr1qvStVRKdTmfXZXpNEwAAAAAATKxLrx579fyuz+j3+xERMTU1lRvfDZMRAAAAAAAwsZYi4nShNW5sbERExPHjx1Pjg8Fg12WajAAAAAAAgIn1YxFx3z7Ofyoi7tjVGdPT0xERsbm5mRp//eubdsJkBIxIpfJgdvDxnA+LG3IK/d6c2LflxD6eHXpLzmnP5cR+Jz6UHaznnNjNiZ37fGYoSU5lxiqVn88pNFulkj+DnFcnAAAcfidTU5PkWGp6ZS4lcT295CfmhscT96z9Wmre7remlxGzO68vzmf1/W/PSAeASXbdq8de5f0BMt3WZEPWCgiTEQAAAAAAMLFejoiXSqhzd06cOBERw3tDbP17ZmZm12W+YddnAAAAAAAAh9bU1FTUarXodDpXpXe7V16Dcvfdd++6TCsjAAAAAACgEC/HXlYq7L/OdHkbUT/00EMxMzMT/X5/+7VMy8vLsby8HFNTU7tuhckIAAAAAAA4Ynq9XrRarYiIePTRR6PRaES9Xt+eaKjVarG+vh6Li4tRrVaj3+/H4uJizM/P76k+kxEAAAAAAHDE1Gq1aLVa2xMSWXnW1tZGUp/JCAAAAAAAKMTB2MB6HI78ZMRdd90Vx44dS40tLCzEwsJCwS3i4HouM/KG6b/LjL1y4s3ZRX4ip7r3ZIf+fnwqM/aXOUXm+cVf+6eZsYcHH91boR96b2aoUjmdc+Jb9nRekpzaSasA4MBaWVmJlZWV1NjFixcLbg2HhTETlcpuPj8ez0ivD6V87FdWU3Nm9uh/JCXtjoy23ZrR9z/fHUoyTgA42PSBD44jPxlx9uzZqNVqZTcDAAD2Le8Pw71eL2ZmZgpuEYeBMRMAMMkOXh/4chS/UuFywfWle0PZDQAAAAAAAA63I78yAgAAAAAAinF094ywMgIAAAAAABgrkxEAAAAAAMBYeU0TjEiSnMqMVR7JOfHEHmO/kh06G7OZsV//Tx7NjJ3+m5z6vpwTe2dO7FxO7FM5sT3Kuw8AAMBePL6L9Nt3Xuy3pSef+uX09OYHp4bS3n7rID3z+YsZlaa1uZ6RFwDG4ei+pslkBAAAAAAAHGgPR8QnM2IvFNiObCYjAAAAAACgEJdjPCsVPvLqkeazEfHdY6hzd+wZAQAAAAAAjJXJCAAAAAAAYKy8pgkAAAAAAAphA2tgnE7nxN6cE/tIkhOrZIZ+4w/mMmO/+9ffnl1m5TPZsbXs0A888YnM2MP/+qPZJ8azObH35MT+NDNSqWRf7CQ5lVMmAAAcdWcy0m9PT741pX99vpue9/zFoaSffv98atZ73v9Iavqp3IHVTmV8LQDA2JmMAAAAAACAQoxrA+tr1Vk+e0YAAAAAAABjZWUEAAAAAAAU4ujuGWFlBAAAAAAAMFYmIwAAAAAAgLHymiYowiAn9o9zYt9cyY4lX8yOffSd12jQHvxNduiTf/29eyvzLTdmx57LieVIklN7awsAALA75y/uIvPjQyn3zrVSc35LezU1/Rvj3uHEWz+WXt2tx9LTz9+eng4AhXk5in9tktc0AQAAAAAAR8CRXxlx1113xbFj6U9MLCwsxMLCQsEtAgCAvVlZWYmVlZXU2MWLu3mCGb7OmAkAmGQHrw98dDewPvKTEWfPno1arVZ2MwAAYN/y/jDc6/ViZmam4BZxGBgzAQCTTB/44DjykxEAAAAAAHCwtV890lwqsiGZTEYAAAAAAEAhLsd4Xpv0j1490vxZRPy3Y6hzd0xGQBGyJiUjImZzYg/kxH78ndmxT2SH3vrxp3MKzfFfZ4de+fE3Zwe/J6fM33g2M5Qk35UZq1Q+kxM7nVPmqZzGAADAEXdrRn/5fFYf+/aUtMcz8p4cTvpAes7HM8ZPzeSmobQHHsyo7mcz0gGA0piMAAAAAACAQhzdDazfUHYDAAAAAACAw83KCAAAAAAAKMS49oy4Vp3lszICAAAAAAAYK5MRAAAAAADAWHlNExTh/8yJfTUn9hc5sed+Mzv25Hdlhv4y3p1T6EZm5MFP5Jz2z3Jip3NicWNmpFL5+bwTMyXJqT2dd6XOvMa+J6fOe/ZcJwAATL7b05Nnjw2ntTPyxpmhlK/c95OpOVv3p5dw0w3PDCf+3cX0zJ9OaVtExB2PpyTW0/PuQtZYYj/jEwAOKxtYAwAAAAAAjIWVEQAAAAAAUAgbWAMAAAAAAIyFyQgAAAAAAGCsvKYJAAAAAAAKcXQ3sDYZAUX4iZxYkhM7l1fod2WHbssOffi3H8uM/VlObfd9NDt2/4dyTvw3ObH4fF5wTyqV05mxJDl1jbPfkxP7UgntAQCAAp3v7i5/O62ve3LHpz8SX86IrKamHvvEcNpvf+TO1Lz/oPKvMsp+fCilUhlOi9hdfz0rb+XBlMT708cImWWkjiluzyijnpoOAJPAZAQAAAAAABTCyggAAAAAAOBA+rcR8VsZsReLbEgmkxEAAAAAAFCIl2M8KxXufPVIcz4i/sUY6tydN5TdAAAAAAAA4HA78isj7rrrrjh27FhqbGFhIRYWFgpuEQAA7M3KykqsrKykxi5evFhwazgsjJkAgEmmD3xwHPnJiLNnz0atViu7GQAAsG95fxju9XoxMzNTcIs4DIyZAIBJdvD6wDawBsYp7zPv3BezY9/8zuzY5/9dduxff0dm6Jc+fndm7L5/9Wh2mX+eHYq/yIl9/tmc4B/nxN6RE8srM1ulcvoaOd6TE3vvnspNklPXqBMAACbF4+nJt6b3aZN+fSitUulmlH37UMrHPttIzdlMfio1/eIN9w6l/U8f+V8z6vvO1NQkGW5z4T6dfj2zxhVpY4rs6wwAk+vI7hnx4osvXvVfDr5Lly7FAw88EJcuXSq7KYzUSxHxK1H8jDHj4mf1cHJfDx/39PDR/2W3fM+Uw+dvOVz3crju5XDdy+G6l2My+zOX4+ubWBd1XC7kK7sWkxET9Y3Ifly6dClOnz7tQ/3QeSki/o8wGXF4+Fk9nNzXw8c9PXz0f9kt3zPl8PlbDte9HK57OVz3crju5dCfmSxHdjICAAAAAAAohj0jAAAAAACgEEd3A2srIwAAAAAAgLGyMgKK8KWcWOWd2bHf+GLOed+RHTuRHfrBv/6FzNgH/8XvZcb+Kr4pu9D/PTsUcWNO7PbMSJJcuS7PPvts3HRTxDPPNOLGG6+UValkX9Ak+aHMWKVyOq+h1/CZfZybbq/tSZJTI24JAABEZPbPz6f3WyuVk0NpSVJPz/vgcFrz/T+VmvcfxyOp6Wf+bjjtD37lH6TXF1/bcTvi/tMR8UJERNx001JEvCkisvvdlepw2k1/+tXUvD9133AZ9861UvNmSRs3GBMcfFnjQfcWjoKtDayLrrN8VkYAAAAAAABjZWUEAAAAAAAUwp4RAAAAAAAAY2EyYkxWVlYObPkHue3jNta2J2O+LufHWP7vHdx7Oo69IF7Lz2o5XPfiyx431734ssfNPS2vfCjLKL+3J7GsSf3ZHW27Rth3/v0RXffOSIoZuUs/94sjLG101933e/FlTWKbRm0Sv8ZJbNOoTeLXOIltOlp+PyLOZBy/VGK7vs5kxJgc5EHqQW77uI237WO+Ln9pMiKdyYiyyh8n1734ssfNdS++7HFzT8srH8oyqX+gmMQ/wIzSxE5G/MGIrnt3JMWM3IufMBlRhsP+2eC6F1/OqMsapUn8GiexTZNpawPrUR/fGRH3ZRwfKeQru5aJ2zOi3W7H0tJS9Hq9qNVqsby8HPV6/Zrn9Xq9WFpaimq1GoPBIBqNRszOzhbQYtiBf5QT+7nffPV/no9IfvPqWOW7ss9LvpgdO/fO4bQXIuJcxCun35x52ic//n2ZsdloZ9f3yhsjBlnBZ7PPiz/JjFQqW7GvRUTETTd1IuL6iIhIkh/KOe90ZixJTg2lve99j8TnPnfq1XMfyWnrO3LKzW7P+96XXWZaewAAdsK4if3K6ze/3la/9bV95ytlpM0EZHwf/uzr/r0Z8b74XGrW92akf+hjw2mP/HJEnEuvMtUTO8+a/vVFRNw+lPLMda3XpVyIZ65rxb2zr0+PiPWMYm9NHx+8901XX3cOh1GMB/fycwxFyvoe9f14dE3UZMSZM2ei0+lEs9mMjY2NOHPmTDQajeh0Orkd636/HzMzM7G+vh61Wi0iIqanp2NzczPm5+eLaj4AAMDYGTcBABxkNrCeCE8++WR0Op2Yn5+P5eXlWF+/8rjA8vJy7nnNZjPq9fp2hzoiYnFxMZrN5ljbCwAAUDTjJgAADqKJmYzodrtDnedarRa1Wi36/X7meYPBILrdbjQajavST5w4ERERq6uro28sAABACYybAAA4qCZmMqJer0e1Wk2NZaVHRJw7dy41z9bTPp1OZ0QtBAAAKJdxEwDAQTeOzat3cpRvovaMSNPv93OXDW89/TM1NZUbf70XXnghIiL+6I/+aF/te+Mb3xhvfOMbh9IvXrwYvV5vX2XnGWf5B7Xtzz//fEREPPXUU3HDDTeMvPyIfbT9P+QF/+LV/774mv9/VZJX119nh176m+G05GLES73ctny599XM2OfiUk59lyO+nNXW57PPe/3Xm+qFV//bj4g3RURc4x58OTOSdt7V9/R8Trl/t6ty08sfLT+r2Vz34sse93113Ysv2z0tp+y88l988cV48cUX91zuVr93qx/M4TKOcdOox0yj/NmZxLJGVc6oP3+z25Xdb369rfOHy/rzlLzH0wt5/XAiuRh/1fvb1Kx/HJdT07+cMsy5+HJELyU94v9Nb8eFN6WVHFfGYxERX42IrTH+8Nd3xfUZZbzWy1fSLqRc+5yhVZqLie/3nTrMnw3pZe3+5zjCdS+rrKN53dO/R3dS11ZZh7MPnP777/DVmSKZYGtra0mtVsvNc/LkySQikvX19aFYRCTVajX1vIcffjiJCIfD4XA4HA6H40gdDz/88Ej66kyOcY2bjJkcDofD4XAclmMS+sBf+MIXkuuvv760a3D99dcnX/jCF0q9BhO9MmJpaSnW1tZy80xPT0dExObmZmo8a6nyhz/84Xj44Yfj7W9/e7zpTWlPRuxM1soIAAAYpf0+FfbCCy/EV77ylfjwhz88wlYxCcY1bjJmAgDKdpj6wO9617vi85//fPzt35azSuGWW26Jd73rXaXUvWViJyMWFxfjoYceyn3vacTXO82DwSA3/nq33HJLfP/3f/++2ggAAFCmcY6bjJkAAEbrXe96V+kTAmWamA2sX2t1dTUajcb2Zmp5Tpw4ERHD7zjd+vfMzMzoGwgAAFAy4yYAAA6SiZuMaLfbERFRr9evSs/a2GRqaipqtVp0Op2r0rvdbkRE3H333WNoJQAAQHmMmwAAOGgqSZIkZTdiS7fbjcXFxWg2m1elr6+vx8zMTMzPz0e/349GoxGtVmu7493r9WJmZiY2Nja2lxdPT09Hs9mMkydPFv51AAAcFf1+/5qvhwFGy7gJAA4v/WsOs4nZM6LX60Wj0YiIGOpUR0RcuHAhIq6843Rzc/Oqd53WarVYX1+PxcXFqFarsb6+HlNTU/H0009Hs9mMRqMRs7OzO2rD0tJSVKvVGAwGOz6P8dvPvRkMBrG0tBQREcvLy+NsJru01/vabrdjaWkper1e1Gq1WF5eHnoqkHKM4p5Wq9Wr/nBC+Ubx+7Hb7cbc3Nz273PKtZ97WqlUrvr3Vj+Mco3i57Tf728/bT8/Px9TU1NjaCn7Napx05vf/ObodrvxLd/yLbGxsRHtdtuYqQDGNeUw7iiHsUE59N3LoX9dDn3gAyg5ZDY2NpKISNbX17fTqtVq0mq1xnIe47efe9PpdJLZ2dkkIpL5+flxNpNd2ut9XV5eTur1etJqtZKTJ08mEZFERNLpdMbdZK5hr/e01Wol8/PzSafTSTqdTlKr1ZKISDY2NsbdZHZgVL8fq9VqMjU1NermsQf7uadbP6/Ly8vbx2vLoRz7/Tnd2NhIZmdnk3q97rP3iDBmKodxTTmMO8phbFAOffdy6F+XQx/4YDp0kxH1ej2p1+tXpbVareRa8y57PY/xG8W90WmfPHu9r7Ozs1f9e319PYmIobIo3l7v6fLy8lX/3rqna2trI28juzeKz+CTJ08m9XrdgGZC7Oee+qydTPu5p+vr68nU1JR+0hFjzFQO45pyGHeUw9igHPru5dC/Loc+8ME0cRtY78dgMIhut7u9bHnLiRMnIiJidXV1pOcxfu7N4bTX+9rtdoeWpNdqtajVatHv98fTWHZkPz+rr39H9daSyFqtNtpGsmuj+Azudrvx1re+1f2cEPu5p+12O86dOxdzc3N+/06Q/dzTwWAQd9555/YrMDgajJnK4fqVw7ijHMYG5dB3L4f+dTn0gQ+uQzUZce7cuYiIoU1etj5EO53OSM9j/Nybw2mv97Ver2du4mRzp3KN8me13W7H8vKyezoBRnFfW62WTVEnyH7uaafTicFgEO12O5rNZtx8883R7XbH11h2ZD/3dHFxMQaDgXfPHzHGTOVw/cph3FEOY4Ny6LuXQ/+6HPrAB9ehmozYekIha6ORrCcY9noe4+feHE6jvq/9fj/m5ub22yz2YVT3dHFxcXvzKcq33/u6uLiogzdh9nNPW61WJEkS6+vrMT8/v71BnN/F5drPPd16YqzT6cTMzEzcfPPN7ukRYMxUDtevHMYd5TA2KIe+ezn0r8uhD3xwHarJiI2NjYiIOH78eGp8MBiM9DzGz705nEZ5X9vtdlSr1Zifnx9F09ijUdzTM2fORL/fj8FgYJnqhNjPfe31evHWt77V4HHCjOJntVarRavVirW1tYi4MnClPHu9p71eLyKu3M9msxnr6+uxvr4e/X4/pqen9bEOMWOmcrh+5TDuKIexQTn03cuhf10OfeCD61BNRkxPT0dExObmZmo860N1r+cxfu7N4TTK+7q0tLT9C5vyjOKenjx5MtbW1qLT6cTU1JSncibAfu7r0tKSJd4TaJSfv7OzszE7O7vdoacce72nW09+NZvN7TyvfW/u0tLSqJvKhDBmKofrVw7jjnIYG5RD370c+tfl0Ac+uA7VZMTWN1HWLNa13vm42/MYP/fmcBrVfV1cXIyHHnrI98EEGOXPar1ej/n5eUskJ8Be7+vi4uL2MtfXHhFx1f9TvFH/Xm00GpkDAIqx13uataS9Xq9HhFfGHGbGTOVw/cph3FEOY4Ny6LuXQ/+6HPrAB9c3lN2AUdraMf313zhb/56ZmRnpeYyfe3M4jeK+rq6uRqPR2N6ciHKN+mf1tttuM9ibAHu9r91uN86cOZMam56ejlqtFuvr6yNsKTs1jt+rW2VSjv32f7eWuL9e1pJ3Dj5jpnK4fuUw7iiHsUE59N3LoX9dDn3gg+tQrYyYmpqKWq02tGP61k70d99990jPY/zcm8Npv/e13W5HxNdnrrdYylieUf+s9vv9oftL8fZ6X9fX1yNJkquOkydPxtTU1PYGbZRj1D+rnU4nms3myNrH7u2n/1uv17fzbdl6uswfRg8vY6ZyuH7lMO4oh7FBOfTdy6F/XQ594AMsOWTW19eTiEg2Nja206rVarK8vLz9742NjaRarSadTmdX51GOvd7TLRcuXEgiIpmfny+kvezMXu9rp9NJarVa0mq1rjrm5+eTVqtV6NfA1fZyTy9cuJDMzs4ma2trV+Wp1+vFNZxc+/0M3nLy5MlkampqrG1lZ/ZyT9fX15NarXZVnrW1Nb9bJ8R++7+vTVteXk5qtVoxDac0xkzlMK4ph3FHOYwNyqHvXg7963LoAx9Mh+o1TRGxvXxscXExqtVq9Pv9WFxcjPn5+e08g8EgNjc3r3qv2E7Ooxx7vacRV55Y2dqE5tFHH41GoxH1ej3zHXEUZy/3tdfrRaPRiIhIfVLgwoULhbSddHu5p1NTUzEYDOKHf/iHo9VqRaPRiGq1OvR0A+XZz2cwk2kv97Rarcbx48djaWkpOp1O1Gq1aDQa279jKdco+r9ra2vbn8megDz8jJnKYVxTDuOOchgblEPfvRz61+XQBz6YKkmSJGU3AgAAAAAAOLwO1Z4RAAAAAADA5DEZAQAAAAAAjJXJCAAAAAAAYKxMRgAAAAAAAGNlMgIAAAAAABgrkxEAAAAAAMBYmYwAAAAAAADGymQEAAAAAAAwViYjAABgAvX7/bKbAAAAhdH/PfxMRgAAwASam5uLwWBQdjMAAKAQ+r+Hn8kIAACYML1eL6rVakxNTUXElafEFhcXo1KpRKVSiZtvvjnOnDmznb/b7cb09PR2rNvtltRyAADYPf3fo6GSJElSdiMAAICvazabMTc3F/V6/ar0ubm5aLfbMTs7G2tra0Oxfr8f6+vrRTYVAAD2Tf/3aDAZAQAAE2Z6ejo2NjaG0nu9XszMzMTU1FRcuHBhO73dbsfi4mLqOQAAMOn0f48Gr2kCAIAJ0m63h54I21Kr1aJWq8VgMNheit7r9WJxcTE6nU6RzQQAgJHQ/z06TEYAAMAEeeSRR6LZbGbGt2KtVisGg0HMzc3F2tpaVKvVopoIAAAjo/97dJiMAACAMdh6Yuvmm2++anA1NzcXN998c/T7/aFzBoNB9Pv9qNVqmeXefffdEXHlCbI777wzlpeXc/MDAEAR9H+5FntGAADAGDUajeh2u5EkyfbGfP1+P+bn54fyrq6uxmAwiJMnT+aWmbeRHwAAlEn/lyzfUHYDAADgMJubm4tutxvNZjMWFxdzl5O3Wq147LHHrlnmVhm9Xi8zT7PZjOnp6Xj66afjtttui9nZ2d03HgAAdkn/lywmIwAAYIy2NuObmprKHYj1+/04fvx4TE1N5ZbXbrej2+1GtVqNfr8fvV5vaJn63NxcVKvV7SfMZmZmYmpqKnNjQAAAGBX9X7LYMwIAAMZoawCW9o7c12q1Wrkb90V8/T28jz322FUb+b1Wv9+Pdrt9VVn33HNPLC8v76X5AACwK/q/ZLFnBAAAjNHi4mJ0u90YDAaxsbGRmW96ejo3PhgMYmZmJtbW1qJWq8VgMIibb745IiJe26Vvt9sxNzd3VVq3241GoxEXLly45pNnAACwH/q/ZLEyAgAAxqTdbkej0Yhmsxn9fn/76bDXPyXW7XavuYT8zjvvjFartb0kfWpqavs9uO12ezvfk08+OTTgOn78eEREbG5u7uvrAQCAPPq/5DEZAQAAI9Tv9+PMmTPRbrdjc3Mz6vX69kCr1WrFmTNntgdHW661RL3RaES1Wh0asDUajYiIWFpa2k4bDAZD5b+2bQAAMEr6v+yUyQgAABihXq8XS0tL8eSTT8b8/HxEXHlv7uzsbKyurka9Xh96cittE76IK0+MTU9PR7fbjV6vd9UTYO12e/t9ub1eL+bm5rbzZz0BlreBIAAA7IX+LztlzwgAACjR6upqDAaDOHny5EjKy3tnrq4/AABl0/89ur6h7AYAAMBR1mq14rHHHhtZeVtPmPX7/e0nwbKePAMAgKLp/x5dXtMEAAAl6ff7cfz48aFl6/uxtST+tUvaH3nkkVheXh5ZHQAAsBf6v0eb1zQBAEBJFhcX47bbbovZ2dmRl91sNmN6ejqefvrpmJ6e3n5/LwAAlEX/92gzGQEAACWZm5uLtbW1spsBAACF0P892kxGAAAAAAAAY2XPCAAAAAAAYKxMRgAAAAAAAGNlMgIAAAAAABgrkxEAAAAAAMBYmYwAAAAAAADGymQEAAAAAAAwViYjAAAAAACAsTIZAQAAAAAAjNX/D88I19j1r7eLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nbins = 100\n", "vmax = 80\n", "\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n", "\n", "a0 = ax0.hist2d(\n", " rad_length_found,\n", " eta_found,\n", " density=False,\n", " bins=nbins,\n", " cmap=plt.cm.jet,\n", " cmin=1,\n", " vmax=vmax,\n", " range=[[0, 0.6], [2, 5]],\n", ")\n", "ax0.set_xlabel(f\"$x/X_0$\")\n", "ax0.set_ylabel(f\"$\\eta$\")\n", "ax0.set_title(f\"found $\\eta$ rad_length_frac\")\n", "\n", "a1 = ax1.hist2d(\n", " rad_length_lost,\n", " eta_lost,\n", " density=False,\n", " bins=nbins,\n", " cmap=plt.cm.jet,\n", " cmin=1,\n", " vmax=vmax * stretch_factor,\n", " range=[[0, 0.6], [2, 5]],\n", ")\n", "ax1.set_xlabel(f\"$x/X_0$\")\n", "ax1.set_ylabel(f\"$\\eta$\")\n", "ax1.set_title(f\"lost $\\eta$ rad_length_frac\")\n", "# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n", "\n", "plt.suptitle(\"radiation length fraction and eta endVelo\")\n", "plt.colorbar(a0[3], ax=ax1)\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "rad_length_frac = found[\"rad_length_frac\"]\n", "# @ z = 9400.mm or 770.mm\n", "state = 1\n", "\n", "if state == 1:\n", " slopex = found[\"ideal_state_770_tx\"]\n", " slopey = found[\"ideal_state_770_ty\"]\n", " x = found[\"ideal_state_770_x\"]\n", " y = found[\"ideal_state_770_y\"]\n", " qop = found[\"ideal_state_770_qop\"]\n", "elif state == 2:\n", " slopex = found[\"ideal_state_9410_tx\"]\n", " slopey = found[\"ideal_state_9410_ty\"]\n", " x = found[\"ideal_state_9410_x\"]\n", " y = found[\"ideal_state_9410_y\"]\n", " qop = found[\"ideal_state_9410_qop\"]\n", "\n", "data = ak.zip({\n", " \"rad_length_frac\": rad_length_frac,\n", " \"x\": x,\n", " \"y\": y,\n", " \"tx\": slopex,\n", " \"ty\": slopey,\n", " \"qop\": qop,\n", "})" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Parameterisation for rad_length_frac:\n", "intercept= 0.0\n", "coef= {'1': 0.19432666451166924, 'x': -0.00010136532791187516, 'y': -0.00022209404990607013, 'tx': 0.058480207541052064, 'ty': 0.18599542917589618, 'qop': -17.657405901936546, 'x^2': 1.2271024867047469e-05, 'x y': 5.376824972059055e-08, 'x tx': -0.025941371835257743, 'x ty': 0.014328015524776564, 'x qop': -0.38410998543244235, 'y^2': -1.8261507968709735e-05, 'y tx': -0.014951077113227147, 'y ty': 0.02154311538810164, 'y qop': -0.008987663050567057, 'tx^2': 9.180854607357592, 'tx ty': 0.1873064867954838, 'tx qop': -0.47120712928737807, 'ty^2': -6.787398610853974, 'ty qop': -0.05031041352613623, 'qop^2': 0.24778641944197533, 'x^3': -5.992321693190818e-09, 'x^2 y': -2.649404482539432e-07, 'x^2 tx': 5.42176741002125e-06, 'x^2 ty': 0.0020253771536145383, 'x^2 qop': 0.003955288970107154, 'x y^2': 2.8906882704270233e-09, 'x y tx': -0.0016493773782229844, 'x y ty': 0.0005067592007986898, 'x y qop': -0.0031813438496783404, 'x tx^2': 0.0022653308811514867, 'x tx ty': -1.5366360302916284, 'x tx qop': -0.47946313010450653, 'x ty^2': -0.16776305178984158, 'x ty qop': 2.1889500302073115, 'x qop^2': 0.008745243979922932, 'y^3': 1.4363120470761714e-08, 'y^2 tx': -0.0005062978553841023, 'y^2 ty': 1.4165440283044409e-05, 'y^2 qop': -0.005787147937546765, 'y tx^2': 1.404047645962725, 'y tx ty': 0.1643910546131908, 'y tx qop': 2.0452379823825813, 'y ty^2': -0.02140660574730952, 'y ty qop': 4.596387657867597, 'y qop^2': -0.00994088354226498, 'tx^3': -0.1303976515212055, 'tx^2 ty': -0.01339610187978276, 'tx^2 qop': -0.0009383144690666937, 'tx ty^2': 0.010330807276347866, 'tx ty qop': 0.00564141621903312, 'tx qop^2': 1.1663926820802422e-05, 'ty^3': 0.00629773549670367, 'ty^2 qop': 0.012052455601588194, 'ty qop^2': -1.60166284721317e-05, 'qop^3': -1.5639205966369518e-06, 'x^4': 1.4244960766518489e-09, 'x^3 y': -3.1096076824610464e-09, 'x^3 tx': -3.587531603760352e-06, 'x^3 ty': 2.4713133050052738e-05, 'x^3 qop': 2.5845963699160437e-05, 'x^2 y^2': -2.0323240867980985e-09, 'x^2 y tx': -1.781414931473213e-05, 'x^2 y ty': -1.0125741814137612e-05, 'x^2 y qop': 0.00010504795400130865, 'x^2 tx^2': 0.00318540624554603, 'x^2 tx ty': -0.019979832566411563, 'x^2 tx qop': 0.006687084675785277, 'x^2 ty^2': 0.01525871952521068, 'x^2 ty qop': 0.5999059816243137, 'x^2 qop^2': 8.117293800523118, 'x y^3': 7.45386197209541e-10, 'x y^2 tx': 1.539536253053475e-05, 'x y^2 ty': -1.089334137566178e-05, 'x y^2 qop': -1.95550966909791e-05, 'x y tx^2': 0.015033712066153922, 'x y tx ty': -0.02448056876178019, 'x y tx qop': -0.6716914089728931, 'x y ty^2': 0.007182752502229531, 'x y ty qop': -0.18936713869537714, 'x y qop^2': 3.611377836849899, 'x tx^3': -0.9115227647899486, 'x tx^2 ty': 0.8829467327098821, 'x tx^2 qop': 0.2695607767961495, 'x tx ty^2': 0.6012451073716732, 'x tx ty qop': -0.00930712726835479, 'x tx qop^2': 0.009680202136377838, 'x ty^3': -0.06079594416933904, 'x ty^2 qop': 0.04029084967629493, 'x ty qop^2': 0.004774793771381167, 'x qop^3': -4.554461348017879e-05, 'y^4': 4.04032363121587e-12, 'y^3 tx': 8.925743423537913e-06, 'y^3 ty': -1.0182095510069544e-06, 'y^3 qop': -2.928516988854517e-05, 'y^2 tx^2': 0.004743417924369025, 'y^2 tx ty': -0.0055290127765494496, 'y^2 tx qop': 0.2133121554871387, 'y^2 ty^2': 0.0017685009285896116, 'y^2 ty qop': 0.020383665461783013, 'y^2 qop^2': -0.90657292007639, 'y tx^3': 0.27175992018246475, 'y tx^2 ty': 0.6761073293647273, 'y tx^2 qop': -0.01248506771745212, 'y tx ty^2': -0.39076013367696105, 'y tx ty qop': 0.04349449144257623, 'y tx qop^2': 0.004752914013263597, 'y ty^3': -0.729116504589348, 'y ty^2 qop': -0.015043560943011547, 'y ty qop^2': -0.001547809754472937, 'y qop^3': -1.316621299355546e-05, 'tx^4': -0.003228436324482351, 'tx^3 ty': 0.0044775047770867545, 'tx^3 qop': 0.001098230908109032, 'tx^2 ty^2': 0.0029303145639830285, 'tx^2 ty qop': -4.337425914757845e-05, 'tx^2 qop^2': 1.134299372765626e-05, 'tx ty^3': -0.0014086661449565522, 'tx ty^2 qop': 0.0001660768862220596, 'tx ty qop^2': 6.3521706353330705e-06, 'tx qop^3': -5.1281203369915226e-08, 'ty^4': -0.0071021220988862245, 'ty^3 qop': -6.713410801676869e-05, 'ty^2 qop^2': -2.7595247487299285e-06, 'ty qop^3': -1.972159538523153e-08, 'qop^4': 3.222747801976328e-10, 'x^5': -3.2453151277422876e-11, 'x^4 y': -7.538414337204813e-13, 'x^4 tx': 9.439335535432747e-08, 'x^4 ty': 1.5053041968471348e-07, 'x^4 qop': 2.0621745686622006e-06, 'x^3 y^2': -6.107114813858061e-12, 'x^3 y tx': -1.4186378294311908e-07, 'x^3 y ty': 9.335861888004615e-07, 'x^3 y qop': 4.389303884896889e-06, 'x^3 tx^2': -0.00010056331721829473, 'x^3 tx ty': -0.000368816675172811, 'x^3 tx qop': -0.0031371932512015794, 'x^3 ty^2': -0.0006215843383633401, 'x^3 ty qop': -0.0040682949745989485, 'x^3 qop^2': -0.01783210821802376, 'x^2 y^3': -2.1280754936015e-12, 'x^2 y^2 tx': -9.287590581052996e-07, 'x^2 y^2 ty': -4.159245552415314e-07, 'x^2 y^2 qop': -3.762232883230965e-06, 'x^2 y tx^2': 0.0003560931930516667, 'x^2 y tx ty': -0.00014974182212146823, 'x^2 y tx qop': -0.002168783048351754, 'x^2 y ty^2': 0.0005557263565684947, 'x^2 y ty qop': -0.0027368181509398255, 'x^2 y qop^2': -0.021251765155328187, 'x^2 tx^3': 0.04636097936049924, 'x^2 tx^2 ty': 0.19264721978393362, 'x^2 tx^2 qop': 1.1201214250508411, 'x^2 tx ty^2': 0.2717131602944406, 'x^2 tx ty qop': 1.0069243735131281, 'x^2 tx qop^2': 0.0017781753799746996, 'x^2 ty^3': -0.17716467804753896, 'x^2 ty^2 qop': -0.7967627886628681, 'x^2 ty qop^2': -0.020752836202331357, 'x^2 qop^3': -0.0003102149541338055, 'x y^4': -3.716849050761084e-11, 'x y^3 tx': 4.2096182362172385e-07, 'x y^3 ty': 9.343710843934261e-08, 'x y^3 qop': -4.85417695898771e-06, 'x y^2 tx^2': 0.0007723490259714336, 'x y^2 tx ty': -0.000465174042059667, 'x y^2 tx qop': 0.0083072051829175, 'x y^2 ty^2': -0.0001514875700367028, 'x y^2 ty qop': 0.0033210944559410355, 'x y^2 qop^2': -0.0016097785846472324, 'x y tx^3': -0.18644890104309755, 'x y tx^2 ty': -0.04212197105444866, 'x y tx^2 qop': 1.0626013948995083, 'x y tx ty^2': 0.09950829907042329, 'x y tx ty qop': -0.7011822284857461, 'x y tx qop^2': -0.02153879411999937, 'x y ty^3': 0.07920758108734982, 'x y ty^2 qop': -1.3677505196768507, 'x y ty qop^2': 0.005572049947548557, 'x y qop^3': 0.0003625259165958029, 'x tx^4': -7.806580145878633, 'x tx^3 ty': -0.48543671938056426, 'x tx^3 qop': 0.01223464815691587, 'x tx^2 ty^2': -0.7759844557140754, 'x tx^2 ty qop': 0.004830189695310542, 'x tx^2 qop^2': 6.943806457826217e-06, 'x tx ty^3': -0.2626842333297885, 'x tx ty^2 qop': -0.002218311914437031, 'x tx ty qop^2': -5.935445430100284e-05, 'x tx qop^3': -4.652385512477656e-07, 'x ty^4': -0.13391527053501218, 'x ty^3 qop': -0.004907072655857102, 'x ty^2 qop^2': 1.6619362532345914e-05, 'x ty qop^3': 8.142368541762968e-07, 'x qop^4': 4.653376619669799e-09, 'y^5': 3.825384453648439e-12, 'y^4 tx': -4.679158727149968e-10, 'y^4 ty': -5.908476596871992e-09, 'y^4 qop': 2.1690478767266708e-08, 'y^3 tx^2': -9.496214334184586e-05, 'y^3 tx ty': 7.42067773199526e-05, 'y^3 tx qop': 0.004042069781436391, 'y^3 ty^2': 1.3648094370263125e-06, 'y^3 ty qop': -9.095584346929984e-05, 'y^3 qop^2': 0.0026650743754950902, 'y^2 tx^3': -0.22830126100028328, 'y^2 tx^2 ty': 0.07976968562385643, 'y^2 tx^2 qop': -0.569375473311322, 'y^2 tx ty^2': -0.05752462027849215, 'y^2 tx ty qop': -1.3821142344540522, 'y^2 tx qop^2': 0.0030041051075548795, 'y^2 ty^3': 0.0007092199317686958, 'y^2 ty^2 qop': 0.08213843039582976, 'y^2 ty qop^2': -0.009533342523832138, 'y^2 qop^3': -4.410702217968634e-05, 'y tx^4': -0.4617640318570093, 'y tx^3 ty': -0.7726015660797079, 'y tx^3 qop': 0.004989400779050441, 'y tx^2 ty^2': -0.2543425991684884, 'y tx^2 ty qop': -0.001971807200332014, 'y tx^2 qop^2': -6.047144105356334e-05, 'y tx ty^3': -0.14996432803062354, 'y tx ty^2 qop': -0.00494485016520198, 'y tx ty qop^2': 1.250565568496303e-05, 'y tx qop^3': 7.906173456988411e-07, 'y ty^4': 0.023264047526106668, 'y ty^3 qop': 0.0014038996016424031, 'y ty^2 qop^2': -2.8280611787753928e-05, 'y ty qop^3': 3.0725068466100624e-07, 'y qop^4': -4.09432863754477e-09, 'tx^5': -0.052446331725343374, 'tx^4 ty': -0.0031642363210890884, 'tx^4 qop': 5.831594421042545e-05, 'tx^3 ty^2': -0.005193740457310502, 'tx^3 ty qop': 1.5211405438268112e-05, 'tx^3 qop^2': 7.987434860389955e-09, 'tx^2 ty^3': -0.0017266713029734364, 'tx^2 ty^2 qop': -3.2665518364513855e-06, 'tx^2 ty qop^2': -1.2886641260179494e-07, 'tx^2 qop^3': -7.431322766916425e-10, 'tx ty^4': -0.0009711418007784676, 'tx ty^3 qop': -1.1566774851255521e-05, 'tx ty^2 qop^2': 3.07405227672554e-08, 'tx ty qop^3': 1.5258831556369568e-09, 'tx qop^4': 6.567772758657935e-12, 'ty^5': 0.00011456709116180268, 'ty^4 qop': 6.736678103390532e-06, 'ty^3 qop^2': -6.391677860197088e-08, 'ty^2 qop^3': 8.915568061124554e-10, 'ty qop^4': -6.626331897050053e-12, 'qop^5': -2.2660425734485018e-13}\n", "r2 score= 0.04993524171391073\n", "RMSE = 0.12351226258714283\n", "Type \n" ] } ], "source": [ "lin_reg, features, xx0_test, xx0_predicted = fit_linear_regression_model(\n", " data,\n", " \"rad_length_frac\",\n", " [\"x\", \"y\", \"tx\", \"ty\", \"qop\"],\n", " 5,\n", " include_bias=True,\n", ")" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAHLCAYAAAAN9wgKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABq00lEQVR4nO3de3xTdZ4//ldpoVwKhIIiXrgk3G9CUhznJmoTxztKG5jd2ZnZ2dVmmO7O7jra2P2KgM4Q0nFmd2eno2mdXXdmdn8jCQ54G8cEFR1nHGkiKjeBnoKCiEAaSqEX2pzfH3hikyZtknOSc5K+no9HHnpybu/ThJ53z+fzeX8KRFEUQURERKQxw9QOgIiIiCgeJilERESkSUxSiIiISJOYpBAREZEmMUkhIiIiTWKSQkRERJrEJIWIiIg0iUkKERERaRKTFCINCwQCaGhoGLLnz4RQKISGhgYIgqB2KEQ0CCYpNGQFAgHY7XZYrVYYDAbU1dWpHVKEIAiwWq0wmUxwuVw5cX7p52kymWAymTIcYXoaGhowY8YM2Gw2hEIhxY6r5e8SUS4rUjsAIjUEAgGUl5ejtbUVAGC329Hc3KxyVJ/T6/Vwu90oKCjImfMbjUYAQF1dXeT/1SYIAkpLS6HT6QAAVVVVaG5uVjSJ0Pp3iSiXMUmhIcnhcKC0tDSy7HQ6VYwmf2glOZFYrVa43e5IkgIAEydOVPQc/C4RZQ6be2hICgQCaodAGWa1WrPyOfO7RJQ5TFJoSGloaIDVaoUgCJF+F1arFT6fL7JNKBSCzWaD3W6HxWKBxWKJWu/xeDBhwgQUFBREblA+nw9WqxUFBQWwWq2R4zQ0NMBkMsHj8cDn88FkMkVt05d0XumVSpOEx+OJxNnQ0IAJEybAZrNF1tfV1UWuyWQyxe0MK+f8yQgEArBarbBYLDAYDLDb7VHnTuVnBSASp8Fg6JeQeDyeyLLNZoubsASDwcg5BzpPIoN9l5T+TKTvIpMiGlJEoiFIr9eLer2+3/t+v1/U6XSi3++PvOdyuUQAotPpjLxXVVUlAojarrm5WQQgVlZWRpYrKytFAKLZbBZrampEv98f2bfv8Zqbm0WdTid6vd7Ie06nUwQgGo3GAa/F7XaLer1eBCBWVVWJNTU1otFojOxXU1Mj9v2n7vV6RQBR55Jz/ljx9vH7/aLZbI6KWYpXOn+yPytRFEWj0SjW1NRE9gUgAhD1en3kmNJ1Nzc3R+0rXZfZbBadTueA50lGvO+SUp+JXq+Pil+n04k6nS7lGIlyFZMUGpISJSlGozHqZtr3/b43POkm0zdJaW1tjUpSRPHzm3HszU+6SUoqKyvjnjfZJEG68Uo37r7MZnPUjU2Ks++2cs8/2D5GozHqZyWKF2+4AMTW1lZRFJP/WUnb9T2elGT0vaEPlqS4XK4Bz5OsRN8luZ+J0Wjs97OQjin9zIjyHZt7iD4jCAICgUDczp/SY/p0hwP37bgpCQaDkfNKTQPpko6/bNmyfuvcbjf8fn9kuampCQAiQ3CVOP9ApJ+rw+GINIn0bVqR4pEM9LMCgJ07d/ZbLx0vlaaQsrKyfudVsnaK3M8kEAjAbDZH7VdTUwNRFOP+jIjyEUf3EH1moBucdEPLRAEw6Zh6vV72seLdvHQ6HXQ6HTweD55++ul+N00lzx+P9HN1u92KHE+K3+fz9UsotTa6CEjvM5F+ZkxGaKjjkxSiGPGKfEk3i75DTZUiJQl9nxYofXyTyQRBEOB2u1FTU5P18/f9r1yVlZUwm81wOBzw+XwIhUJwOp2oqanJWKKltGQ/E1bFpaGOSQrRZ6S/wvuO5JFIiYvBYFD8vNKNte/jfyVZLBaUlpb2uxFm6/zS8T0eT9z18X7eg3G73TCbzZGy/U6nM6fqkwz2mUjfxURPn5i80FDBJIWGpGAw2O/JgV6vh9FojAwp7aupqQk6nQ5VVVUAPi8I1nc76f9TLbcuNSU1NDTE3VdO+XbpWvo2G0jHk64/k+cHEOlXYbfb+zWppTsvkFSkraamBjU1NQM288TGf/r0aQDKPTmK910aSKqfSWwSZ7fbM/JEj0iLmKQQ9SFVJ+1bz0JqTmhsbIzcWKSbot1uj9TBkDrV+ny+SCfUZG5eOp0u8he1yWSCz+eDIAiROiKCIAxas0S6ycXekKWbmcfjQUNDAxoaGiLHDQQCkacbcs+fyvVZrVbU1dXBYrGgubk5ksQke6OXbtzScRoaGqLqokikp14ulyvSOXggoVBI0SYvuZ+J9GTIYrHAarVG6qkYDAb2VaGhQ+3hRUTZ1LcmBj6rYdG3NoUoXhwOKg3JraqqEquqqvoNnxXFi8NBpboV0tBRvV4fqfHh9/sjQ5f1er3o9XrF1tbWqPP3HWLqcrkitTWMRmOkTkZNTU2/YbR99a3Jodfr+w2tdblcok6nixxLFC8O2e0bdyrnl2KP94q9tr5DZZ1OZ8I4U/lZSXHFO79er486p9FoFHU6XaR2itvtjgx9loZFx56n789koGsd6Luk1GfidrsjPxej0djvu0qU7wpEURQzlwIRESkrEAjg6aefRm1tLYLBYNQTELfbDYPBkLCvBxHlFg5BJqKcIY2KaW1tjQzj7Uuv16fVEZeI5BEEISOj6/IySZEKR+n1eoRCIVgsFlRWVqZ0jL5t2FVVVWwDJtIAqXPyvffei9ra2kjfIEEQ4PP50NzcnFOjfIhyVUFBQdSy0WiMGiGoxH0YAPKuuUcQBBgMBvj9/sgvMGkyM2lkxmD72+12hEIhuFyunKm7QDRU1NXVweFwRHVINRqNcDqd/Sq0EpHyGhoa4Pf7o0oymM3mqD8a5NyH+8q7JEUaVeH1eiPvNTQ0wGazYbBLDQQCKC8vx6pVq9Iuf05E2SH1ReEfEkTZZbFYou6x8dYD6d2HY+XVEORQKBQ1/FPSt+bAQPuWl5dDr9czQSHKATqdjgkKUZZ5PB40NTXBarXGvafKuQ/Hk1dJijRJV+wvLulx00CZn9TEw/ZsIiKi+LxeL0KhEDweD2w2GyZMmBDVWV3OfTievOo4K3WqS9TJdaBS0lJ25/V6YbfbIQgCysrKBuyXcurUKbzwwguYMmUKRo4cmXbcI0aMwIgRI9Len4iIMqu7uxvd3d1p79/Z2Ynjx4/jtttuw6RJkxSMLNqHH36IU6dOyY4XAKZMmYJZs2ZFvedyueByuRAIBOByudDQ0BApzKjX62Xdh+PKVAGWM2fOiC0tLeL27dvFlpaWTJ0mSk1NTaTIUix8VlQpHr/fH1XAShSjC0b1LQ7V11NPPTVgsSe++OKLL7746vt66qmnFLvnxTpy5Ig4XMFYhw8fLh45cmTAc7rdbhGAWFlZKYpi+vfhRBR/kvLKK69g06ZN2L59OwBAFMXIUCWj0Yi6ujrccMMNSp8WwOdlsBOVtk70RETK7Gw2W2QbqW+KxWKBw+GI2ww0ZcoUAMDPfvYzXH311YPG981vfhO//vWv+70f70lKRUUFtmzZMugx09k+2W3b29uxfPly7NixAyUlJarFkeq2qWyf6jVq4XNJddtMXqMWfh78nmYvjkxuq/XvaaInE4l+rwNA54UwfvX2MRwLdeCakhDqHn4gct/IhFOnTuECgEoApQB65RwLwLYLF3Dq1ClMnTo14XaVlZWorKyMTEuR7n04EUWTlC1btsDhcGD16tX9JsEKBoPw+/144IEH8N3vfhf33HOPkqcG8PnFJ5oQLdEPJ9FjKWk4Y6LHU1ITz9VXX43rrrtu0PjGjBmT1HYAMGrUqAEnTZOzfbLbtrW1AQCWLFmCcePGqRZHqtumsn2q16iFzyXVbTN5jVr4efB7mr04Mrltrn5PE/1eP3P+AtY9uxs9E4vxi79dgJMHd6EOkNU1IFmXA7hC5jHGpLCtxWKJ9EtJ9z6ciKJJSlNTU6TTTDzl5eWoqanBgw8+qORpI6Tew7FJhbRsMpkG3K+5uTnues44SkREyfr0bCce3roH57p74Fi5GDMmjcHJg2pHlVnSfTTd+3Aiio7ukaavH0ymOg3pdDoYjcZ+vYelDG/VqlUJ9zObzf3KaUuZYKo/VCIiGpqOtp6H3fMeesJhOCsuJijZVoiLTyDkvApTOJ/X643MHJ/ufTgRRZOUQ4cOoba2FkeOHIm7/vDhw3jssccSPrFQQmNjY2SqeYnT6YTT6Yw060jV8PomJU6nE4FAIOq9hoYGGI3GlCvkERHR0HPo03Y8uOV9jB5RhE0Vi3G5bpQqcRQBGC7zFa+ZJRAIwGQyoa6uLvKex+NBaWlpVMn7ZO7DqVxLSl555RXceOONcdc98cQTsFqtmDFjBgoKCqDT6VBaWhqZqRS42Mnm6aefTvW0SZPmD7Db7ZHhULGleKVKlbFltaX93G43dDodQqFQ1FwERERE8ew+dgaPPL8XV+pGYf2KBRg3crjaISlOr9ejtLQUDocDXq8XRqMRFoulXwHUZO7DyUo5SbFarTh9+nTC9W63Gy0tLfD7/WhqakIoFILBYIBer4fRaMSMGTNSDjJVRqMRbrd7wPWtra1x30+10AwREQ1tTYeD2PjiPsydMg5rb5uPUSNSaSxRntTcI/cYsXQ6XdL3yMHuw8lK+TpaW1txzTXX4O233064zYwZMzBjxozI45+Bnr4MJdXV1RnZNtPH1kIcmfx5ZPK4Wvl5pEIrn0suXiO/p/LiSIVWPpdb/+4HePSFfVg2bQJqbp6LEUXqF3KXmnvkHkMLUp5gcObMmTAajXjnnXfg8/kwbdq0QfdZvXp1Rpt41PL6669HxvUnO7Q4l7S1tWH8+PE4c+ZM0kM7cw2vMffl+/UBvEatevH943hiRzOun3Mp/ql8FgqHFSTcNhv3C6nPyEMABr8zD+wIgB8CUTMZqyHlZMnlcqG8vBwejwdmsxkejydhIbNnnnkGDocjUuQlX33rW9/C6NGj466rrq7O6F8TRESUXaIowt10FL9+6wjuuHoK7vmKHsOGFaC+vh719fVx9zl//nzW4stUc48aUr6O8vJyABc7wOr1elRUVODHP/4x7r77bgDArl27IvX8geiKs/nqV7/6VV4+SSEiomiiKOK/3zyM371zDH/9han4+rKrIve4gf4olZ6kZEM+NffIikPqwWs2m/Hb3/4WgUAAgiBAakGqrKyM2/OXiIgo14TDIn7+6iF4957AvdfpcefVl6sdUt5LOUl57LHHcP/99wO42CFWmg0xEAhAFEUYDAZUVVWhqqoK48ePB8CKrURElNu6e8L4ifcDvNV8Gv9imYUb505WO6SEpIJsco+hBSnHsXHjRuzcuRM+nw+hUCjqqYler8f27dths9miOj5VVFQoFzEREVEWdV7oxcYX92H3sTOovXUertUnV11dLUO6uScUCsHj8UAURRiNRthsNqxatSry1MTj8cBkMg3YoZaIiCgXnO28gEee24sjp89j/Z0LsPhKndohDSrZJOUFAC8mWNd/vmd1pJUsVVRUoLa2FkuXLu23rm+H2sbGRtxwww145plnsHLlStnBEhERZUvwXDce3rYbwXPd+NHdCzFr8li1Q1LUbZ+94mkG8C9ZjCWRlJOUmpoabNq0acBtjEYjmpqaYDabYTAYEAgE8jJJGTFiRNR/801xcTHWrVuH4uJitUPJGF5j7sv36wN4jWo40daJh7buxoXeMDatXIypE+OXmUhWNu8X+TQEOeVibi0tLSmVtrdYLHjllVfQ29ubcnBaJxXOUbvYDRERKefD0+fx0LbdGFk0DI/etRCTx42Ufcxs3C+kc/wCwCyZxzoI4HtQv5hbyvV7U517x+v1ZmW+HiIiIrkOnDgL+5b3MH7UcDgrFiuSoFD6Unoi1NbWlla5YtZJISIirXv3oxB+9MI+TJs4Gg/fMR9jc3Qm43xq7kn6OlpaWmC1WmEwGGCz2VKaMFCqUpuvKioqMGrUqLjrWBafiEj7/tx8GnV/2I/FV4xH7a3zMHJ46rfpgcrid3R0yA0xaUNyCPKMGTPQ1NSEd955By6XCzabDWazGTabDUuWLMlgiNq3ZcsW9kkhIspR2/edwM+2H8QXDZPwg5tmY3hhejMZD/RHqdRfhFKTcrK0dOlSPPHEEwAu3pw3btyIlpYWrF69GlVVVTkzeyUREdG2Xcfw5Bst+NqCyfje9TMxbICZjHNFPjX3pJcufqaiogKbN2+Gz+fD+PHjceONN+JrX/sannnmGaXiIyIiUpwoivjfvxzBk2+0YKXxClTfkB8JCvB5c4+cl1aae2QlKZLx48fj3nvvRVNTE5544gm8/fbbmDlzJtasWYNdu3YpcQoiIiJFhMMiGl4X8Nu3P8K3vzQd3/nyjMhMxqQtiiQpfc2YMQObNm3CoUOHUFlZiY0bN2LWrFl47LHH0NbWpvTpiIiIktbTG8a/+w7ghfePo/oGAypNV6odkuKKFHppgeJJSl/l5eXYvHkzDh48yOYgIiJSVXdPGI7f78eOg6dw/01zcPPCKWqHlBFs7klDbHPQ6tWrs3VqIiIa4s5392Dds3uw66MQHr59Hq6bfYnaIWWM1HFWzksrHWeznixJzUFERETZcKbjAjY8uwfHQh14ZMUCLLh8vNohUZIUSVIOHz6M6dOnK3EoIiIixZxq78LarbvR3tUDx8pF0F9SonZIGZdsMbdfAfh1gnWdyoUjiyJJislkgtPpxD333BP1fktLCyZOnJj3tVNYcZaISHuOhTrw8NbdEAFsqliMK3Txf08rJdcqzv79Z6943gdwi2IRpU+RJKW8vBx6vb7f+zNmzMBjjz0Gs9mc11VpWXGWiEhbhJPtWPfsHpQUF+HRuxZiUklxxs/JirPKU6Tj7ObNm7F582YcPnw46v3Dhw/j1KlTeT93DxERacfej9tQ+8z7mFRSjE0rF2clQdESdpyN44knnsCaNWug0+kgCAICgQAEQYAoiqisrFTqNERERAn5jwSx8cX9mD25BGtvn4/RI7QymDZ7igqB4TJr0xWJAHoVCUcWRT697373u2hsbIQoipH3TCYTnnjiCZjNZsyYMUOJ0xARESX0+oGT+Kn3AEzTJqDm5jkoLtLK8wBKl2LNPeXl5XC5XGhubkY4HEZ5eTkMBgMTFCIiyriXdh/HYy9/gOtmTULtLXOHdIJSWAgUFcl7FWrkx6dIklJVVYWXX34Z9957byQp2bRpE1pbW/Hkk08qcQoiIqK4PP6jqH+1GbcumoJ/Ns9GUWHW6pRqUtEwYHihvFeRRn6EioSRqHpsRUUFJkyYgNraWiVOQ0REFCGKIp56swX/86fDWL3sKtiu0+fNTMZ0kSJJytKlSxOuEwQBDQ0NSpyGiIgIwMWZjH/xWjO2BI7hnq/OwN9cO40zGX9GblOP9NKCjIdRWVkZt4YKERFROi70hvFT7wH86dApfL98FizzJ6sdkqYUFQLDZd7dNZKjZD6OGTNmsPMsEREpovNCLzb9fj/ePRqC/Za5+JJhktohac8wyC90ElYiEPm0kizlNJbFJyLKvPauHjzy3B60nDqHdXcswJKrdGqHFEUrZfHzCZMUBbAsPhFRZoXOd+PhbXtw8mwXfnjXIsy5bKzaIfWjmbL4UslZOfgkhYiIaHCftnXioa270dkTxqaKRZg2cYzaIWmbVNtejqGSpDz22GOorKzE9OnTM30qIiLKMx8Fz2Pttt0oGjYMdRWLcdn4kWqHlDfqz158xdMhxn8/21JKUhobG1MaThwKhSAIAoLBIDZu3JhycFogCAJHJxERqeDgibNY9+weTBgzAo+uWIjSMSPUDik3JNncUz3h4iueQBdgOqZoVGlJKUkpKyuDzWZL+SRutzurSUogEIDD4YBer0coFILFYkl6ksPYcfZGoxF+vz8TYRIRUQLvHz2DR5/fi6kTR2PdHfMxduRwtUPKHUqM7tFIxdmUkpSlS5eisrISmzdvjrz34x//GADwwAMPxN3nwQcfxHe/+10ZIaZGEASYTCb4/f5IZ1aDwYBgMIiqqqoB921oaEBVVRUMBkPkPbPZnNF4iYgo2l+E03C+tB8LLh+Pf711HkaN0MhEMpR1KfdJcTqdUcuCIODxxx9PuL3NZoPVasXOnTtTjy4NNpsNZrM5arSN3W6HzWYbNElxu93wer2ZDpGIiBJ4df+n+HffAVyrn4gf3DQHI7QyiUwuUWJ0j0bywpQ//VQLswmCgEAgkOpp0hIKheDz+WCxWKLeLysrA4AB+9N4PB40NTXBarWyjD8RkQqef+9j/NR7ADfOnYyam+cyQUlXkUIvDZAdhiiKePXVV3HDDTf0W9fW1gabzZa1jqdNTU0A0O980lMVr9eb8GmK1+tFKBSCx+OBx+OB3W6H2+1Oqrmnvb0dbW1tacddXFyM4uLitPcnIsploiji6Z0f4X//8iHuWnoF/u7L0zU3D09XVxe6urrS3r+9vV3BaAYxVPukxLNp0ybo9XosW7YMFosFer0ewWAQfr8/8kTC5XLJDjQZgiAAAHQ63YDr43G5XHC5XAgEAnC5XGhoaIDFYkFzc/OgSdby5cvTjhkA1q1bh/Xr18s6BhFRLgqHRfzXmy3YtutjfPPaabCWXam5BAUAHA4HNmzYoHYYQ47sJEWn06GpqQl2ux01NTWRL5coXhxkXVNTg3vuuUfuaZLS3NwMACgtLY27PhQKDXoMo9EIl8sFi8UCq9UaeaIykB07dmDJkiWphhvBpyhENBT1hkX85ysH8cr+T/Hd5QbctniK2iElVFtbi/vuuy/t/Xft2iX7D9qk5VGfFEVanfR6PdxuN1paWiAIQqS2SFlZGcaPH6/EKZIijcoJBoMJ40xWZWUlKisrk+pPU1JSgnHjxiV9bCKioa67J4wf/2E/3j7civsss3H9nEvVDmlAcpvlS0pKFIxmEEr0KdFInxTFWp3a2trQ0tKC8vJy3HvvvQCQ9foiUhKS6IlJqn1jLBZLwoSHiCgdBQUbol5DUUd3LzY8twf+I6146LZ5mk9QSD2KJClr1qzBhAkTcNNNN0XeKy8vR3NzM2pra5U4RVKkUTyxfU+k5XQmd5KOSURE8rV1XsD/2/o+Dn7ajkdWLMSy6fGb50kGqeOsnJdGOs7KDuPBBx+Ey+XC+PHj+zXt3HvvvfD7/fjlL38p9zRJ0el0MBqN/Wqd+Hw+AMCqVatSOp7X602rwi4REfV3ur0LtVvex4m2Tmy8exEWXpG97gBDitQnRc5LI31SZCcp0pDdYDCI8vLyfustFgs2bdok9zRJa2xshM/ni3qa4nQ64XQ6I6N+BEGAwWCIJC/SFNp1dXWRfTweD0pLS5Mup09ERIkdP9MB+5b3cL67B5tWLsbMS7PYR4NyluyuMXq9HitXrgTQf94bANi5c+eAQ3+VJs21Y7fbodfrIQgC7HZ7VH2UUCiEYDAY6bui1+tRWloKh8MBr9cLo9EIi8WStaHTlJv69icQxXUqRkK5ZCh+V1pOncPD23Zj9IhCbFy5CJeO5UzGGcXRPZ/rW5NEGnYseeedd+DxeKLmwskGo9E44LBho9GI1tbWyLJOp2M5fCKiDNh3vA0bntuDyeNGYsOdC6AbzZmMMy7J0T31H158xdPRq2hEaZOdpNTW1uJrX/sanE5n5EnK4cOHI1VbCwoK2K+DiGgICnzYio0v7MPMS0uw9vb5GFOskXGtBAConnrxFU+gDTD9ObvxxCP7G7N06VI4HA7cc889CAQC8Hg8AKKLud1///1yT0OkOUPxsT1Rst48dAo//sMHWHKVDg/eMhcjh2uk/WAoYFn8aEajEU1NTWhpaYHf70dLSwv0ej3MZnNWi7mppaKiAqNGjYq7rrq6GtXV1VmOiIhIPd69J/DzVw7iK7Mm4V/Ms1FUqJE7XobV19ejvr4+7rqOjo7sBcI+KZ/btWtXpCT8jBkz+s2S/Mwzz0Q61uarLVu2RCYxJCIayn73zlH81x8P4+aFl2HNcgOGDdPePDyZMtAfpdIo0qzIoyRFdnrrcDgGXL906VKsWbNG7mmIiEjDRFHEr/98GP/1x8NYVXYlvnf90EpQKDPSyrXOnDkTGR0TCoVw5MiRfiN7pHUulwubN2/G448/Li9SIqI8FFsaPxf7OoXDIp54vRm/f/8TfOfL07HSeKXaIQ1tUtVYucfQgLSSlGAwCKvVinfeeQfAwHPiiKKYvUdcRESUVT29Yfyb7wD+ePAU/vHGmbhpwWVqh0R51NyT1mXMmDEDTU1NkURloKqsBoMhMuEgERHlj84Lvdj0+/3Y9VEINTfPxZdnTlI7JMozsnItt9uNLVu2oKKiQql4iIgoB5zr6sGjz+/FoU/b8fAd82GcOkHtkEiSxScpPp8PVqs1qkAqcLGjsMPhgF6vRygUgsViSWuaGdmje6QEpa2tDePGjYu8f/jwYZSWlka9R0REuS90vhvrnt2DE22dePSuhZg3hb/nNSWLfVLiFWsVBAEmkwl+vz8y8tVgMCAYDEZNUZMM2aN73nnnHUycOBETJkRn0dOnT8fGjRvx5JNPyj0FERFpxKdnO2Hf8h6C57rhWLmYCcoQJs2RF8tms8FsNkeV5rDb7WlVn5edpNjtdoiiGHem402bNuGJJ57Aq6++Kvc0RESksqOt52H3vIfesAhnxWLMmDRG7ZAoHqm5R85rkCcpPp8PEydO7FcjLBQKwefzwWKxRL1fVlYGAGhoaEjpUhSpOBsMBhOuM5vNqKmpwc6dO5U4lSax4iwRpStXhhwf+rQd657dDd2oEdiwYgEmlRSrHZLmDKWKsy6XC263G3a7Per9pqYmAP1H/UrJjNfrTanJR3aSMtgMx4IgIBAIyD2NprHiLBHls93HzuCR5/fiygmjsP7OBRg3crjaIWmSZirOAujqvfhKV/uFxOvsdjucTmfcdYIgAAB0Ot2A65MlO0kRRRFHjhzBtGnT+q3bvn07PB4P66QQEeWonYeDcLy4D/OmjMNDt83HqBEaKaBBiRUCjl3Ahgw0YAQCAUycODFhfbTm5mYAQGlpadz1oVAopfPJTlKcTidMJhPWrFmD8vJy6HQ6CIIAt9uNhoYGFBQUoLa2Vu5piIgoy3YcOImfeg/gmukT8MDX5mJE0dCYKDDnFQK11wD3yXg+sOsksHxL//cdDgfcbnfC/aTWlUTdQAYq/hqP7CRl/PjxePnll7Fq1So88MADKCi4OFeDVCa/rq4u7ycYJCLKNy++fxxP7GjGDXMuxffLZ6GQ8/DkjkKgeCQgp9dQSXv/9+x2OywWS1STjfT/0n+lJCTRE5OsJynSSZuamtDS0oJAIABBEGA0GlFWVobx48crcQoiIsoCURThbjqKX791BHdefTn+/iszOFEgAbg4oqeuri7uOoPBAKPRiO3btwPo3/dEWk61+4ciSYpkxowZmDFjRr/3Ywu9ERGR9oiiiP968zC2vnMM3/jCVKxedlXk6TjlkAyN7vH7/f3es9vtaGhoiKo4azQa4fV6UVNTE3nP5/MBAFatWpVSGFlpYEx1XDQREWVXOCziZ9sPYes7x1B1nR5fv2YqE5RcVajQK02NjY3w+XxRT1OcTiecTmfCUT+JpJxrPfnkkxAEARs3bgQArF69esDeusFgEIFAAPfff3+qpyIioizo7gnjJy9/gLeE07jPMhs3zL1U7ZAohxmNRvj9/khFWkEQYLfbUy6JD6SRpNTU1ODMmTORJEUURXi93gH3YTZORKRNHd292PjiPuz5+Az+9dZ5+IJ+otohkVxZnGBQekISy2g0DjgKKFkpX4bf7496crJ69WosW7YMDzzwQNztQ6FQWtkTERFl1tnOC9jw3F58ePo81t+5AIuv1KkdEikhi0lKpqV8GbEdYysqKtDS0pJwe51Ol/d1UlgWn4hyTfBcN9Zu243Wc9340d0LMWvyWLVDynmaKYufRxQZ3RNvRI/kscceQ2VlpRKn0SyWxSe1FRRsiFrOlflgSB2fnOnEQ1t3oycchrNiMa4qHa12SHlBM2Xxh+qTlMbGxpRG6oRCIQiCgGAwGOnDQkRE6jly+hzWbtuDkUXDUFexGJeOG6l2SKQ0maNzIsfQgJSSlLKyMthstpRP4na7maQQEansg0/OYv2ze3DJ2GI8smIBdKNHqB0S0YBSqpOydOlSVFZWIhwOR15Sz96+7/V91dTUDDr6h4iIMmvXRyE8tPV9XFU6ChtXLmKCks+k5h45L408SUm5mFvsUCNBEBKO7AEAm80Gq9WaemRERKSIPzWfwobn9mDB5ePxyIqFKClWtNg4aU0eJSmyR/cMRhAEBAKBVE9DREQK8O09gf985SC+NHMS7rPMxvBCzmSc95Lsk1K/A6h/I/66jguKRpQ22em0KIp49dVXccMNN/Rb19bWBpvNlvKsh0REJN+2Xcfw5BstuHnhZViz3MCJAilK9fKLr3gCHwGm/jXask52krJp0ybo9XosW7YMFosFer0ewWAQfr8/MhLI5XLJDpSIEuOQY+pLFEX8718+xNM7P0KF8Qp8+0vTWfl7KBmqQ5Dj0el0aGpqgt1uR01NTeQfgiiKAC6W0b/nnnvknoaIiJIQDotoeEPAC+8dx7e/NB2VpivVDomyjUlKNL1eD7fbjZaWFgiCAEEQoNfrUVZWhvHjxytxCiIiGkRPbxg/234Qrx04ieobDLh54RS1QyKSRbEu3m1tbWhpaUF5eTnKy8uxfft2+P1+3HjjjUqdQrNYFp+I1NbV04u6lz6A/0gr7r9pDq6bfYnaIQ05mimLPwzyn4RopH+1IknKmjVr0NDQgIKCAvT09AAAysvL0djYCK/XC4fDocRpNItl8YlILQUFG1AwfBgm3HgVhk8ahRd+ZIFpWqnaYQ1JmimLLw0jlnsMDZCdKz344INwuVwYP358v6ade++9F36/H7/85S/lnoaIiOIYVlyI0pumYXjpSARfPsIEhfKK7CTF4/HA4/EgGAyivLy833qLxYJNmzbJPQ0REcU4ebYLpbdMQ+GYIpx+6TAunORMu4ShXcwtll6vx8qVKwEg7hC3nTt3QhAEuadJSSAQgMPhgF6vRygUgsViSXkmZp/PB6vVitbW1gxFSbmu78zDHAJM2XYs1IG1W3fjzhVz8chdC3GFLn6/OM6QPQRxdM/ndDpd5P+lYceSd955Bx6PBwaDQe5pkiYIAkwmE/x+f6SfiMFgQDAYRFVVVdLHSWciRSKibBBOtmPds3swdmQRHlmxEJNKitUOiSgjZDf31NbW4mtf+xp27doVeZJy+PBhPPbYYygrK0NBQUFWb/g2mw1mszmqI6vdbk8pBrvdziq5RKRJez4+g9pn3sekkmI4Vi5mgkL9SaN75Lw0MrpHdhhLly6Fw+HAPffcA7fbjcLCQhgMBtTU1EAURdTU1OD+++9XItZBhUIh+Hw+WCyWqPfLysoAIFIBdyA+nw8TJ07kaB0i0hz/kSAe3rYH+kvG4Ed3L8T4UcPVDom0SG5/FCVGBylEkTCMRiOamprQ0tICv9+PlpYW6PV6mM3mrBZza2pqAoB+T0GkhMPr9Q7a5ONyueB2u2G32zMTJOUNJdv2U+03wH4GQ8/rB07iJ94DKJs2ATU3z0FxUXKdBvjdGILYJ+Vza9asgd/vx9tvv40ZM2akPEuykqQOun37ycRbn4jdbofTmfqMSu3t7Whra0t5P0lxcTGKi/nIlojie2n3cfzitWZcP/sSfL98Foo4k3HWdXV1oaurK+3929vbFYxm6JCdpDz99NNZ7Rg7kObmZgBAaWn8OgGhUCjhvoFAABMnTkyrL8ry5QmmkUzSunXrsH79elnHIKL85G76CL/68xHcvngK7v2qnjMZq8ThcGDDhg2Db6gFSVacrX8WqH8u/rqObkUjSpvsJMXpdA76hOLJJ5/MyiSDUrIUDAbjrh8oAXE4HHC73Wmdd8eOHViyZEla+wLgUxQi6kcURTz1p8N4JnAMf3XNVPzVNVdxJmMV1dbW4r777kt7/127dsn+gzZpSTb3VK+8+IoncAAwrVE0qrQoUiclEAigtrYWy5Yt69fUEgqF4HQ6s5KkSElIoicmiZIUu90Oi8USlWxJ/y/9d6AEp6SkBOPGjUsnZCIAqfcbYD+D/BYOi/jFa4fwhz0ncM9XZ2DFkivUDmnIk9ssX1JSomA0Q4ciT1K2b98OURTjZvmJ3s8EaRRP7JMdaTnRvAk+nw91dXVx1xkMBhiNRvj9fgUjJSKK70JvGD95+QD+3HwK/1Q+C+b5k9UOiXJNHs3dIzuMqqoqCIIAm80Wt8Nqa2trUkN/laDT6WA0GuH1elFTUxN53+fzAQBWrVoVd794CYjdbkdDQwMrzhJR1nRe6IXjxX1479gZPHjLPHzRMFHtkCgXcRbkz1VWVqKgoAAVFRUJt8lmx9rGxkaYTCYIghBponE6nXA6nZEkShAEWCwWuFwumM3mrMVGlAiHFNPZzgt45Lm9OHz6HNbdsQBLrtKpHRKR6mQlKYcPHwaAAROUZNYrSWqakarGCoIAu90eVR8lFAohGAwOONqHiChbQue7sXbbHpw624Uf3b0IsyePVTskymVDvU7KK6+8AqvVGrnJm0wm+Hw+zXQeNRqNA47UMRqNgzbjSE9fiIgy6URbJ9Zu3Y2unjCcFYsxdeJotUOiXJdHfVJSbnVqaWmB2WxGa2srRFGEKIpoampiswkRUYo+PH0e9i3vISwCdZVMUIhipZwruVwu6HQ6NDY2wmw2IxgMwu1248EHH8Qvf/lL/P3f/30m4iTKa+yDMnRI/Y+GTxyJCeapsN45B4+sWIjSMSNUjozyxlBu7gkEAmhsbIz0Mxk/fnxkJM3LL7/MJIWIaBAjLhuNCTdehZ5QFxwrF2HsSE4USAoayqN7Wlpa4naEtVqtaVdszXUVFRUYNWpU3HXV1dWorq7OckREpFXFV5VAt/xKXDhxHq2vfsQEJY/U19ejvr4+7rqOjo7sBTKUn6QkMmPGjISjZR577DHcf//9Sp1Kc7Zs2RKZaZmIKJFX9p/AhOuvQueHbQi98TEQFtUOiRQ00B+lgUAgYUFRSizlJOX06dN49913MX78+Kj3pQTlyJEjEEUx8l4wGITL5crrJIWIaDDPvfsxGl4XUPvtpfiHG2ZyosAEWDNIAXk0uiflMEKh0IBPDdKZRZiIKF+Joojf7vwI//eXD3H30ivwnS9P50SBlFlDuU8KgMiTknhl8PuSnq7wHyQRDUXhsIhf/rEFz777Mb557TRYy67k70PSjPpfAfW/ib+uozO7sSSScpJiNpvx8ssvp7TPTTfdlOppiIhyWm9YxM+2H8SrH3yKNdcbcOuiKWqHlBPYvKOAJDvOVv/dxVc8gfcB022KRpWWlJMUu92e8knS2YeIKFd194RR99J+7DzSih/cNAfLZ1+idkg0lAzl0T3l5eUpnySdfYiIclFHdy8efWEv9h9vw0O3zcOy6aVqh0SUszTSf5eIKPe1dV7A+m17cDTUgUdWLMTCK8YPvhOR0oby6B4iIurvVHsX1m3bgzMdF7Dx7kWYeWmJ2iHRECUOA0SZzTViLo/uoWisOEs0tH0c6sDD23ajNyxiU8UiXDmBEwUORZqpOJtHmKQogBVniYaullPn8PC23Rg9ohAbVy7CpWNHqh0SqUQrFWd7C4FemXf33lztOEtERBftO96GDc/tweRxI7HhzgXQjeZMxqS+sAJJSphJChFR7vIfaYXjxX2YNbkED902H2OK+euUtKG3sAA9hfKKBvYWigDUn1uK/6qIiFL05qFT+PEfPsDSqTo8eMtcFBdp5M9OojzDJIWIKAUv7/kE9a8ewldnXYJ/Ns9CUaFGhkEQfaa3sBC9RfK+l72FYQA9ygQkA5MUIqIkPRM4iv9+8zBuXTQFtuv0nMmYNClcWIhemclzuLAATFKIKK7Y6eoHw/lOMksURfz6rSNwNx3FqrIr8TfXTuNEgURZwCSFiGgA4bCIx3c046Xdn+DvvjIddy+9Uu2QiAbUi2HolTn5Tq9CscjFJIWIKIELvWH8m/cA3jx0Ct8vnwXL/Mlqh0Q0qF4UoieJJOW/67vw3/Xdcdd1dqg/sgdgkkKkSbHNN7HNP6muj5Xq9kNR54VebPr9frx7NAT7zXPxpZmT1A6JSFHfqS7Gd6qL4657L9CLr5nasxxRf0xSFMCy+ET55VxXDx59fi+aT7bj4dvnY+nUCWqHRDlAK2XxwyhEr8zbe1ihWORikqIAlsUnyh+h8914eNsefHq2E4/etRBzLxundkiUIzRTFl+RPinaSFOYpBARfebTs51Yu3U3znf3YtPKxZg+aYzaIRENaUxSiPJAqn1K2Aelv4+C57F2224UDStAXeViTBkfvwmXhpa+/bdy5d/NxeYeeU9SwnySQkSkDYc+PYt1z+6BbtQIPLJiASaWxO9MSJQLwgo094Q1MgiZSQoRDWm7j53BI8/txZWlo7D+zgUYN3K42iERydKDYUkNQR7sGFrAJIWIhqy3W4LY9Pt9mH/5OPy/W+dj1AhOFEikJUxSiDSIdUwy77UPPsW/+Q7iCzNKcf9NczBC5oRsyeJnm1ty8fMJo0iBIcjaaO7RxvMcIqIseuG94/ip9wBumHMJ7DfPzVqCQpQNUp8UOa/wAOmBx+OByWRCQUEBDAYDfD5fv20CgQCsVivsdjtsNhs8Hk9a18InKUQ0ZIiiiM1NH+E3b32IFUsux999eQZnMiZKQUNDA/x+P5xOJwDAbrfDYrGgubkZer0eACAIAkwmE/x+f6SGmMFgQDAYRFVVVUrnY5KiAFacJaXl4iNmrRNFEb/8Ywu27foYf3PtVKwquyonZzJmc5F2aaXirDLF3OI/SQmFQnC5XJHlxsZGmEwmBAKBSJJis9lgNpujipxKT1SYpKiAFWeJtK03LOLnrxyCb98J2Jbrcfviy9UOifKQdirOJjfB4GDHiKempiZqWafTAUDkHhgKheDz+SJPWiRlZWUALj6JSSVRYZJCRHmtuyeMn7z8Ad4STuO+m2bjhjmXqh0SUcZ1d4XR3ZX+TMbn25PrOOvxeOB0OiNPUZqamgAgsiyRkhiv18skhYgIADq6e/GjF/di78dt+Ndb5+EL+olqh0SUcWEU4r8dp/HLDScyeh673Y6GhgY0NjZG3hMEAcDnT1hiSeuTxSSFKAuU7kfAfgmDO9t5Aeuf3YuPguex4c6FWHTleLVDAtD/s0r1s+RnTYPpRSG+UXs5Vt03Je1jHNx1Hv+w/EDC9XV1dRAEAaFQCFarFS6XC1VVVWhubgYAlJaWxt0vFAqlFEdejrtLd+hTMsOqiEj7gue68eAz7+P4mQ786G7tJChE2TKieBjGjCtM+zWqZOA+LTU1NXC73fB6vdDpdJE+KAaDAQAQDAbj7hfbDDSYvHuSku7Qp2SGVRGR9n1yphMPbd2NnnAYzorFuKp0tNohEWWVMnP3JPcMw2w2o6qqCnV1dQA+T0ISPTFJ9X6ad09SBhr6NBBpWJXZbIbZbI60sQUCgYzGS0TKOXL6HGq2vIfCYUAdExQaonoVKOaWaAhyPMuWLYskH9Ionti+J9JyqiOc8upJipyhT4MNqyKSo38/hMdj1q8ZcH/2QRncB5+cxfpn9+CSscV4ZMUC6EaPUDukpPCzJKVlcghyPIIgwGw2A7h47zQajfB6vVH3Van7xKpVq1KKI6+epCQz9ClZscOqiEi7dn0UwkNb38fU0tHYuHJRziQoRLlE6iTbt5+nIAjwer39Crz5fL6opylOpxNOpzPhqJ9E8upJilJDn+INqxpIe3s72trakto2nuLiYhQXF6e9P9FQ9qdDp/Djlz/A1Vfq8OAtczFyOGcyJuV1dXWhq6sr7f3b29sVjGZgYRQqMMFg/39HOp0OoVAI9957L1wuFywWC/R6fb8HAEajEX6/H3a7HXq9HoIgwG63p1xtFsizJEWJoU+JhlUNZPny5SnH2te6deuwfv16WccgbRmseWaw5p1YcpuL8pV37wn8/JWD+PLMSfgXy2wML8yrh8OkIQ6HAxs2bBh8Qw3IZFn8ZFskjEYj3G63rBiAPEtSlBj6JLWh+Xw+WK1WOJ3OQZOUHTt2YMmSJakF2wefohClbtuuY3jyjRbcvPAyrFlu4ESBlFG1tbW477770t5/165dsv+gHYryKklRcuhT7LCqgZSUlGDcuHFJH5uI0ieKIn7zlw+xeedHqDRdiW99cVpOThRIuUVus3xJSYmC0Qws/NkIHbnH0IK8SlKUHvrUd1gVEakvHBbR8IaAF947jr/90nRUmK5UOyQizenFMAVG92ij6TSvkhSlhz71HVZFpKVhwKn2QdFS7Onq6Q3jP7YfxI4DJ1F9w0zcvPAytUMiogzTRqqkoGSGPgmCEFX2PtlhVUSkjq6eXmx8cT/eOHgKNV+bywSFaAC9n43ukfdic09GJDP0KRQKIRgMRvquJDusioiy73x3Dx59fi8OnGjH2tvnwTQt/ug9IrqIfVI0brChT0ajEa2trVHvMSEh0p4z5y9g3bO7cfxMJx5dsRDzL2cHdSKlvFwv4OX6lrjrujt6sxxNfHmZpBBlQir9OAbbdrA+Ikr3IcnFPignz3Zh7dbdONfdA8fKRdBfkr3REUS5LNk6KeXVs1BePSvuupZAK9aaXlE6tJQxSSEizTkW6sDarbtRAGBTxWJcoRuldkhEOSPbc/dkEpMUBVRUVGDUqPi/RKurq1FdXZ3liIhyl3CyHeue3YOxI4vwyIqFmFTCYoeUG+rr61FfXx93XUdHR9biyFRZfDUwSVHAli1bOFsykQL2fHwGG57biyt1o7DuzgUYP2q42iERJW2gP0oDgUDKtbqISQpRRgw+d4+8PiiDzd2Ti3VRmg4H4fj9fsyePBZrb5+H0SP464koHZmcuyfb+FuAiFT3+oGT+In3AMqmTYD95rkYUaSNX5BEuYhDkImIFPL794/j8R3NuH72Jfgn82wUcqJAIvoMkxSiDEi1OSfV5pjByuLnQvOOKIpw+4/i138+gtsXT8G9X9VzJmMiBYQVaO4Js7mHiIYqURTx1J8O45nAMfzVNVPxV9dcxZmMiRTSo8AQZLn7K4VJChFlVTgsov7VQ3h57wnc89UZWLHkCrVDIiKNYpJCRFnT3RPGT70H8OfmU/hn8yyUz5usdkhEeYd1UogoitJ9TvJR54VebHxxH94/dgYP3jIPXzRMVDskorzEIchERCk423kBjzy3F0dOn8f6Oxbg6qt0aodERDmASYoCWBafKLHWc91Yu203Trd344d3L8TsyWPVDokoI7RVFp91UugzLItPFN+Jtk48tHU3unvCcFYsxtSJo9UOiShjtFIWvxfDFJhgkM09RHlrsD4qctfLPX82fHj6PNZu240RRcNQV7kYk8eNzHoMRENRb5IdZ9+uD+Dt+kDcdT0dPUqHlRYmKUSkuIMnzuLhbXswsWQEHl2xEBPGjFA7JCKKcU21EddUx28F+DjwCRpM/5PliPpjkkJEinrvaAg/fH4fpk0cjYfvmI+xIzmTMVE2sU8KEUWR25wS2zzTf/0zMedbmdF4BpNoFua3hNOoe2k/Fl4xHv966zyMHK6NX3REQwnL4hMRxXhl/wn8h+8gvmiYhPssszmTMRHJxiSFiGR79t2P0fi6gJvmT0b1DTM5USCRiljMjYjoMyVXj0Hj6wJWGq/A335pOicKJFJZrwITDMpNcpTCJIVIBUoPOU6V3POJ4hqEwyKe/KOA5949jm99cRqsZVcpGSIREZMUIkpdb1jEf2w/iNc++BTfu96AWxZNUTskIvoMJxikKCyLT0NJd08Yzpf2o+lIK+6/aQ6um32J2iERaYJWyuKzTwpFYVl8Gio6unvx6At7sf94G9beNg9l00vVDolIM7RSFj+fMEkhUsBgdU6AS6OWpLoiny9nt49KOsc703EBG57dg6OhDjy/4U38rtqX8HhaKMtPNFTlUzE3bTzPISJNO9XehX995n18erYLjpWLcOHT7D26JqLUSBMMynmxuYeIcsLHoQ6s3bobYVGEs3IxrtDF739FRNrQiyLZHWfl7q8UbURBlOMyXxZ/sOakaEo1rwgn27Hu2T0YM6IIj961EJeMLU7q+GzeISIlMEkhorj2HW/Dhuf24LJxI7HhzoUYP5oTBRLlgmTn7tlX/xr21++Iu66344LSYaWFSQoR9eM/0oqNL+7D7MklWHv7fIwewV8VRLki2SHIs6vLMbu6PO6604EjeNH0I6VDSxl/8xBRlDcOnsRPXj4A49QJsN8yB8VF2ujlT0RDD5MUoiwoKHg8ajl2CHLsEOX+Jg+y/v1UQ4oi9XkZNUuH8V+cgvu/cTX+qXwWigqT6+HPIcdE2pFPQ5CZpCiAFWcpH4xZMBFjTZfi/P5W/It5NmcyJkqRlirOyp9gkEOQ8wYrzlIuE0URY42XYMzCSWh/7xTad51kgkKUBlacVR6TFKIhLBwW8fiOZoxZOAlnm07g3N6g2iERkUy9CkwwKLe5SClMUohU0L/uyaKY5RODrP80akkUV6Ycw4XeMP7NewBvHjqFX9mXwzL/834vQ72PyVC/fspt7JNCRDmt80IvNv1+P949GoL95rn40sxJaodERNSPNnrGKCwQCMBqtcJut8Nms8Hj8SS1n8fjgclkQkFBAUwmE3w+3+A7EeWY9q4ePLxtN/Z8fAbr7ljABIUoz0h1UuS9tJEe5N2TFEEQYDKZ4Pf7I51ZDQYDgsEgqqqqEu5XV1cHr9cLm82G5uZm1NXVwWKxwOv1wmw2Zyt8yqLBHumn8si/f/PNwLMeD17m/m9jlmNHj0UPOU72/KHz3Xh42x6cPNuFR+9aiLmXjRskjvjHz/fmj1y6vqH22dDgej+bJFDuMbQg75IUm80Gs9kcNdpGeqIyUJKyc+dOeL3eyPLq1athMpngdDqZpFBe+LStE2u37cb57l44Vi7C9Elj1A6JiDIgrEDHWa30SdHG8xyFhEIh+Hw+WCyWqPfLysoAAA0NDXH38/l8cDqdUe8ZjUYYjUYIgpCZYImy6KPgedRseQ+9YRE/rryaCQoR5YS8SlKampoAAHq9Pup96alK3yclfZnN5n77SBK9T5QriiYW4cFn3sOY4iI4KxbjsvEj1Q6JiDKIfVI0SnrqodPpBlyfyvFsNtug27W3t6OtrS2lY/dVXFyM4uLitPfXCrlt46n2Eenvr6MXZ86KWjx+UBe9LEZv/gn+LWr5evG3Ucu67k+ils+YL4v8/6Pi2ZhYopenY3/06j/E/Gzm9kQvL4n+p/nz4D1Ry/+w8sno7X93S/TyVy/2YRkx5gwmTN+LP/yuDUHfaPyiu+mzDWLL8Md2Eq+JXqyN7hNT8K8xm9fGflaPx2zwacxy7PkHW784akkUvxxzvthqnoFBtn8zZvvYId+xEk87kGpfpsGnSIg22PHknn9wscPdU/t3mS99ZLq6utDV1ZX2/u3t7QpGMzAOQdao5uZmAEBpaWnc9aFQKOljeTwe6PX6AfuxSJYvX570ceNZt24d1q9fL+sYRLGKx52Gbup+XDg/Dq0v90LsYRVZonQ5HA5s2DDYH0q55Vj9czhW/1zcdeGO7ixHE19eJSkGgwEAEAzGr5qZStONw+GA2+1OatsdO3ZgyZIlSR87Vj48RSFtGan7FLqrDqCzbSJCH84Bev6sdkhEOa22thb33Xdf2vvv2rVL9h+0yUp27p7J1XdhcvVdcde1Bw5il0n9eefyKkmRkpBET0ySTVLsdjsaGxuT3r6kpATjxiU3lJMo00bPPYFxU4+iIzgZZ47OBMAnKERyyW2WLykpUTCagbEsvkZJo3hi+55Iy8lM7tTQ0ACLxcIJA9Mgt6069bbr2H4LV0Yt7Ts4PWrZVXAmpaP/I6L7eaxcEr1+w67P/793kDzgO/hJSueOdSrm+Ovxy6jldf8AiAA2F1nwm6JbMXLHDizYuQ0FuNjxJqa3Dv5v0DN+L3rRkVq86/4qerlg04XoNzzRv3qm3RfdZ+cJRPfTqMXSqOUb8FLU8nHx61HLD+FH0ed/ObpPyvguQ/TxRnwUtbz1uujjAX2mHXjjYPSx+332NTHrY/vLLI5Z/0zM+pj+RTHf84KCgxhY7PljVn81pg/Mv0cvPmq8P2p5beCx6OPF9kfq9+2KNngfmIH7vKRK6b5xco5F8mmj+65CdDodjEZjv1E8UuXYVatWDbi/VJk2ti5KIBCItzmRZoRRgF8W3YXfFN2Kb/a8iAU7t0YSFCIaWsKyR/YUaqbjbF4lKQDQ2NgIn88X9TTF6XTC6XRGRv0IggCDwRBV9t7n88HhuPjnYkNDQ+Rls9kiQ5uJtChcMAw/G/51bCtaDtuFLVjV42UDD9EQFlZgCHJYI+lBXjX3ABdrovj9ftjtduj1egiCALvdHjVKJxQKIRgMRvquBAKBSAG4eEOOW1tbsxI7Uap6hxUhcN03UVi4CPdd+A1u6PWrHRIRkWIKRFHkM+E0BQKBfvMEUe7q33Y+8HQI6zE7c8EkoaeoGDtv+DucnqxH/ZqncM2UPZF1Bd+O+Wd9V8zifdE1YA5jetRyS3f08pmvXxa1jN8NXJcEeC9meXLMcmzdkYHnOlJb334KcuZ4SmZ7rc3Fk2pdF+XPr62fR7qycb+QzjHb/xRGG+fIOtb5wAc4YPpb1e9vefckhWgo6B4xCn8x23BWdxmu9T6Bax5pVjskItKIZIcgD3YMLdBGFESUtM5R4/DmLd/HubGT8KU//ByTTjBBIaLPSUOQ5b0SJzkejwcmkwkFBQUwmUxR/TslgUAAVqs1MsGvNDAlVXySooCKigqMGjUq7rrq6mpUV6tfEIeSEVuaffCButl2buxE/NnyPVy4fS6WrjiKwlIbzgIo+PDB6A13x+z4RvQw160/iO1n9UHM8sDNLwUFdTHrYx/BfxkDWznIem0ZqIkh1eaHwbbXWnOG3LL98s+vrZ/HQOrr61FfXx93XUdHbBNpbqqrq4PX64XNZkNzczPq6upgsVjg9XojI2MFQejXtGUwGBAMBpOq4t4XkxQFbNmyhX1SKOPadFPw55vWoKi7E6aKDzFqXM/gOxFR1gz0R6nUXyQbMjl3z86dO6PKfKxevRomkwlOpzOSpNhsNpjN5qj7ovREJdUkhc09RDkgOGka3rz5HzCyow1feelnTFCIKKFMDUH2+XxwOp1R7xmNRhiNxkjZj1AoBJ/PFxkxK5GKrTY0NKR0LUxSiDTu5JTZeOum72Fs6BN86aWfo7gze7OpEhFJzGZzwulipPelumKx20lPVWKLrQ6GzT1En0m5fPasz7dff2jg8mnr/iF6ecPPkzvHx1MXI3DdtzDp+AGUvfbfKOq9WF6+GTOjN/ybmH/KrW/GHCl2yG+0wYbB5sswUFIevwva04NhGNbVC7Er/ZmML7R3Jb2tIAiRGmPSExWpeGq8bVPBJIVIoz6ceQ3e/eLXcfmRXVj6x//FsHCv2iERUQ4IowitjidxdsN/ZvxcHo8Her0+0tekufniaMPS0tK42yeaADgRJilEGtQ8/3rsKVuB6Qf+hEVveTgPDxGlZFytDWPv+07a+3fv2odTy78x6HYOhwNutzuybDBcnLwzGAzG3T5Rc1EiTFKINEQEsH/prTi4yIJZ7/sw950XOA8PEaUkjGEIF48Gikenf5CSsYNuYrfb0djYGJV4SP+f6IkJkxSiLBEPfv7/GwbLJJ5N4ngowPtfWInDc76C+f7nMHPPK5F1XxCvj9p2/U+/Hr1zbF0UnIg+9iB9TvrFwn4GRDmrF8MwLMMVZxsaGmCxWPqV35BG8cT2PZGWUx2GzdE9RBoQLhiGwFe/gSOzv4yr//x0VIJCRKQlUvVYqS6KJBAIQKfTwWg09hvFI1WlXbVqVUrn4pMUIpX1Fhah6frv4OTlc2B6/X9w+ZF31Q6JiHJYOFyI3rDMYm4J9vf5fHA4HLDZbFE1T/x+P0wmE4xGIxobG2EymSAIQqR5x+l0wul0Jhz1kwiTFAWwLD7FmiPeFf2Gf2vU4rrPqsKfKxqJHy69B6dGXoVrtj+JSz/eH/d4N697LfqN8TEbfDdm2bEoapFDiIkyTytl8Xt7hwE9Mpt7evs3tAQCgUiRNmnIcV+trRen2zAajfD7/bDb7dDr9RAEAXa7PeVqswCTFEWwLD6l48zwMVhX9l18MmoivvjC4yg9eVjtkIhIBq2Uxe/tKQR65N3ee+MkOUajEaKY3EhDo9EYNeonXeyTQqSCT0fqYP/C93G6eDwcb/+cCQoRURx8kkKUZUfPXYK113wPhWIYzrd/hsvPn1I7JCLKI+HeQtnNPeFeefsrhUkKUQZ8vWVr1HLBJRfL2Re1nkPpe/tQuXQrNsx+ApO+dQYA8Ndfi97//wY7wdaY5Tdi27s/jVoarA8K+6wQ5Y/e3mEQZScp2mhoYZJClCXDT7ah9M396CkZBYf+PzGu6LzaIRERaRqTFKIsKD7eCt2fDuDCxBK0fnkuxjUzQSGizOjtKUT4grwnKXKfxCiFSQpRhu34yIgJTR+ga4oOrdfOBgq18RiViPKTGC6E2Cvz9i6zzopSmKQQKWBdefTyb2fcBQB4//3p2PHe1Xjg/OP4p09/i8Lnwhc3iJkgdNaSmAPuilmeGLN8V8zyG7F1et6LWioo8MWJ+nPsg0JEWsQkhSgDRBFoapqNt96ah6uvFvDP7/x/GFbAmYyJKAt6kizm9j+/AH71RPx1ndkrPjcQJikKYMVZ6ksE8OabC/DOOzPxhS/sx7JlH2DYLiYoRPlOKxVnkewQ5G/848VXPLsDwIoyZeNKA5MUBbDiLG3YfvG/Igrw7pdW4+N35mLZdQdhuPoUgpiIG77/+6jtX113S9Ty/nemRS2v+82RqOXpf7Mv+oSzYiN4M3pxwpqoRTE46CUQkUxaqTibT5ikECmkd1gRAl/9G3wydTGus+yDYe4JtUMioqGotwDoKZB/DA3gMAMiBfQUjcDbN96DE1ctwLLX/osJChGppxdAj8xXb9ajjotPUohkOtt5AW9Z1qBtwhRc63Nh0ieHAHxB7bCIaKiSkhS5x9AAJilEMgTPdePhbbvx3mVfR+uuBXi7xA7MBLBy4P0K/v1C1PI0HIpaPjJ/bvQOscc7HXvEmCc3rRti1nOIMRHlHiYpRGk60daJh7buxoXeMIKBxeg5N1rtkIiIPm+ykXsMDWCfFKI0fHj6PGo876EAgLOCCQoRaUgPgAsyX0xSiHLTgRNnYd/yHsaNGg5nxWJMHjdS7ZCIiPISm3uIUvDuRyH86IV9mDZxNB6+Yz7Gjhx+ccWhZ6I3PBS7Z3RdFPzuqajFI/jbmO0PRi9+NaYwSuvjMdtPjlm+NDYAIhoqwpDf8TWsRCDyMUkhStKfm0+j7g/7sfiK8ai9dR5GDtfGBFxERFE4uof6Yln8/Ld93wn8bPtBfNEwCT+4aTaGcyZjIoqhmbL4eYRJigJYFj+/bdt1DE++0YKvLZiM710/E8OGaaMSIxFpi2bK4ufR6B4mKUQJiKKI/3v7Q/z27Y+w0ngF/vZL01FQED9BEcVBCqP0Ez23TkFBTJ8WvB+9+MaimPPF7v/4gOuJaAhhcw9RfguHRTS+IeD5947jW1+cBmvZVWqHRESkrGfrgefiN0+hWxvNU0xSiGL09Ibxs+0H8dqBk6i+wYCbF05ROyQiouQl+yTl1uqLr3gOBYB/Un/W5rxMUgKBABwOB/R6PUKhECwWCyorK5PaNxQKweFwAACcTmcmwyQN6u4Jw/nSfjQdacX9N83BdbMvydKZYyckjB5CPFhzEpt3iCiCzT3aJQgCTCYT/H5/pDOrwWBAMBhEVVXVgPv6fD64XC54PJ5Bt6X8c767B48+vw8HTpzFw7fPg2laqdohERGlLo+SlLwbR2mz2WA2m6NG29jtdthstkH3NZvNcLvdmQyPNOpMxwU89LvdEE6245EVC5igEBFpQF4lKaFQCD6fDxaLJer9srIyAEBDQ4MaYZHGnWrvQu0z7+FkexccKxdhweXj1Q6JiCh9eTR3T1419zQ1NQEA9Hp91PvSUxWv18tmHIpyLNSBh7fuhghgU8ViXKGLX5Qv8z6NWhLFdQNuzSHHRJRQL+Q312ikuSevkhRBEAAAOp1uwPVKa29vR1tbW9r7FxcXo7i4WMGIKBnCyXase3YPSoqL8OhdCzGphJ8BEcXX1dWFrq6utPdvb29XMJqhI6+SlObmZgBAaWn8/gShUCgj512+fLms/detW4f169crEwwlZe/Hbdjw3B5crhuF9XcswPjRw9UOiYg0zOFwYMOGDWqHkZw86jibV0mKwWAAAASDwbjrY5uBlLJjxw4sWbIk7f35FCW7/EeC2PjifsyeXIK1t8/H6BF59c+AiDKgtrYW9913X9r779q1S/YftEljkqJNUhKS6IlJppKUkpISjBs3LiPHJmW9fuAkfuo9ANO0Cai5eQ6Ki7Qxk/HgfVCi/4IbbHsiUpbcZvmSkhIFoxk68ipJkUbxxPY9kZazNrkTadJLuz/BL147hOtnX4Lvl89CEWcyJqJ8lEdPUvLqt7ROp4PRaITX64163+fzAQBWrVqlRlikAVv8R1H/6iHcumgK/tk8mwkKEeWvHoVeGpBXT1IAoLGxESaTCYIgRJp3nE4nnE5nZNSPIAiwWCxwuVwwm81R+2eqcy2pQxRF/M+fDmNL4BhWL7sK3/jC1IQzGWdTqs03bN4hoqEo75IUo9EIv98Pu90OvV4PQRBgt9uj6qOEQiEEg8F+CUkgEIDL5QIAbN68GRaLBWazOeGQZtK2cFjE4zua8dLuT3DPV2dgxZIr1A6JiCjz8qi5J++SFOBiojJQeXuj0YjW1ta477tcrkiiQrnrQm8YP/UewJ8OncL3y2fBMn+y2iEREWVHsknKH+uBP9XHX3ehQ8mI0paXSQoNbZ0XerHp9/vx7tEQ7LfMxZcMk9QOiYgoe6Sy+IP5QvXFVzzHAsB/qj/YhEkK5ZX2rh488twetJw6h3V3LMCSq3RZOS/7mBARKY9JigIqKiowalT8OV+qq6tRXZ0gUyVFhc534+Fte3DybBd+eNcizLlsrNohEdEQUl9fj/r6+M0nHR1ZbD7h3D3U15YtWyKTGJI6Pm3rxENbd6OzJ4xNFYswbeIYtUMioiFmoD9KA4FA9mp1seMskXZ8FDyPtdt2o2jYMNRVLMZl40eqHRIRESmASQrltIMnzmLds3swYcwIPLpiIUrHjFAlDvYxISLN4JMUIvW9f/QMHn1+L6ZOHI11d8zH2JGcyZiIiEkKkcr+IpyG86X9WHD5ePzrrfMwaoQ2JgokIiLlMEmhnPPq/k/x774DuFY/ET+4aQ5GFHEeHiKiiGTrpAx2DA1gkkI55fn3PoZrhwDzvMn4hxtnonCY+vPwEBFpCocgE2WXKIp4eudH+N+/fIgVSy7H339lhiYmCiQi0hz2SSHKnnBYxH+92YJtuz7GN6+dBmvZlUxQiIiGACYppGm9YRH/+cpBvLL/U3x3uQG3LZ6idkhERNrGJynUF8viZ0Z3Txg//sN+vH24FfdZZuP6OZeqHRIRUUKaKYvPjrPUF8viK6+juxc/fGEv9h1vw0O3zcOy6aVqh0RENCDNlMVP1t76i694erKYVA2ASQppTlvnBax/dg+OBjvwyIqFWHjFeLVDIiLKHcmO7plTffEVz6kA8Jz6SRWTFNKU0+1deHjbHoQ6urFx5SLMvLRE7ZBUUVCwIWqZZfeJKGnsk0KkvONnOrB26270hkVsWrkYV5WOVjskIiJSEZMU0oSWU+fw8LbdGD2iEBtXLsKlYzmTMRFRWvgkhUg5+463YcNzezB53EhsuHMBdKPVmcmYiCgvcHQPkTLe+bAVP3phH2ZeWoK1t8/HmGJ+JQH2QSEiApikkIr+dOgU6v7wAZZcpcODt8zFyOGcyZiISLYw5DfXhJUIRD4mKaQK794T+PkrB/GVWZPwL+bZKCrkTMZERIrogfzmGjb35A9WnE3N7945iv/642HcvPAyrFluwDDOZExEeUAzFWfZcZb6YsXZ5IiiiN+8dQSbm45iVdmV+Jtrp3GiQCLKGzlXcTYNoVAIDocDAOB0OvutDwQCcDgc0Ov1CIVCsFgsqKysTPt8TFIoK8JhEU+83ozfv/8JvvPl6VhpvFLtkIiI8lOGRvf4fD64XC54PB5UVVX1Wy8IAkwmE/x+f+QPd4PBgGAwGHf7ZLAjAGVcT28YP/F+gD/s/gT/eONMJihERJkkdZyV84rTcdZsNsPtdic8rc1mg9lsjmpZsNvtsNlsaV8KkxTKqM4LvfjRi/vw5qHTqLl5Lm5acJnaIRERkcJCoRB8Ph8sFkvU+2VlZQCAhoaGtI7L5h7KmHNdPXj0+b049Gk7Hr5jPoxTJ6gdEhFR/usF0N0FhLvSP0ZXe0qbNzU1AQD0en3U+9JTFa/Xm1aTD5MUyojQ+W6se3YPTrR14tG7FmLelHFqh0RENDT0ADjiAI5uGHRTpQiCAADQ6XQDrk8VkxRS3KdnO7F2626c7+6FY+VizJg0Ru2QiIiGlitqgSn3pb//uV3A3uVJb97c3AwAKC0tjbs+FAqlFQaTFFLU0dbzWLt1NwqHFcBZsRiX6+LXjyEiogzpAdBbDKA4/WOIJSltbjAYAADBYDDu+thmoGQxSSHFHPq0Heue3Q3dqBHYsGIBJpXI+AdCRETpUaEsvpSEJHpiwiSFVLX72Bk88vxeXDlhFNbfuQDjRg5XOyQiIsoSaRRPbN8TaTndQnZMUhQw1Mvi7zwchOPFfZg3ZRweum0+Ro3gRIFENPQM5bL4Op0ORqMRXq8XNTU1kfd9Ph8AYNWqVWmFwSRFAUO5LP6OAyfxU+8BXDN9Ah742lyMKGLpHSIamjRTFj+DEwwO1AG2sbERJpMJgiBEmnecTiecTmfCUT+DYZJCaXvx/eN4YkczbphzKb5fPguFnCiQiEh9GSqLHwgE4HK5AACbN2+GxWKB2WyOJCBGoxF+vx92ux16vR6CIMBut6ddEh9gkkJpEEUR7qaj+PVbR3Dn1Zfj778ygzMZExHlOaPRCJfLFUlUEm0zUOn8VDFJoZSIooj/evMwtr5zDN/4wlSsXnYVZzImItISFUb3ZEpeJinpThWt9BTT+SYcFvGfrxyCb98JVF2nxx1XX652SEREFEuFjrOZkndJSrpTRWdiiul80t0Txk9e/gBvCadxn2U2bph7qdohERFRnsu7oRjpThWdiSmm80VHdy8efX4vdh4O4l9vnccEhYhIy6QnKXJeGnmSkldJSrpTRWdqiul8cLbzAtZu240PPjmL9XcuwBf0E9UOiYiIBiKN7pHzkttcpJC8au5Jd6pouVNMt7e3o62tLe24i4uLUVysvRLywXPdWLttN1rPdeNHdy/ErMlj1Q6JiEgVXV1d6OrqSnv/9vZ2BaMZOvIqSUl3qmi5U0wvX578TJHxrFu3DuvXr5d1DKV9cqYTD23djZ5wGM6KxbiqdLTaIRERqcbhcGDDhg1qh5GcXgDJDLrsrAe64lfIhZjFCrkDyKskJd2pouVOMb1jxw4sWbIkqRjj0dpTlA9Pn8dD23ZjZNEw1FUsxqXjRqodEhGRqmpra3Hfffelvf+uXbtk/0GbtGT7kxRVX3zFPUYAOJ+lCrkDyKskJd2pouVOMV1SUoJx48YlG6amffDJWax/dg8uGVuMR1YsgG70CLVDIiJSndxm+ZKSEgWjGTryKklJd6roTE0xnWt2fRTCj17YixmTxuDhOxagpDivvh5ERENDLwBR5jFYzE156U4VnakppnPJn5pP4cd/+ABXX6nDg7fMxcjhnMmYiCgn9SC5PikDkZvkKCSvhiD3nSq6r8Gmik53v3zh23sCzt/vx7X6ifh/t81jgkJElMt6FXppQF4lKcDFqaJ9Pl/UU5HYqaIFQYDBYIgkIcnul4+27TqG/9h+EDctuAwP3DQHwwvz7itBREQ5Kq+ae4DkpooOhUIIBoNRfVAyMcW0lomiiP/9y4d4eudHqDBegW9/aTonCiQiyhcaaa6RK++SFGDwqaKNRiNaW1tT3i9fhMMiGt8Q8Px7x/HtL01HpelKtUMiIiLqJy+TFEqspzeMn20/iNcOnET1DQbcvHCK2iERERHFxSRlCOnq6UXdSx/Af6QV9980B9fNvkTtkIiIiBJikqKAiooKjBo1Ku666upqVFcnqOiXRee7e/Do83tx4EQ71t4+D6Zp8avrEhFReurr61FfH7/MfEeHNsrM5xomKQrYsmVLZDJCLTpz/gLWP7cHH4c68OiKhZh/eX5UxyUi0pKB/igNBAJDouaW0pik5LlT7V1Yu3U32rt64Fi5CPpLWJqZiCi/9QC4oMAx1MckJY8dC3Vg7dbdKACwqWIxrtDFb5IiIqJ80gP5SQaTFMog4WQ71j27ByXFRXj0roWYVKKtmZaJiEhtTwBoSLCuM5uBJMQkJQ/t+fgMHnluLy7XjcL6Oxdg/KjhaodERERZk2xzz99/9opnF4DlSgWUNiYpecZ/JIiNL+7H7MklWHv7fIwewY+YiGho6YX85hptTN7DO1geef3ASfzEewBl0yag5uY5KC7iRIFEREMPO86Sxry0+zh+8Vozrp99Cb5fPgtFnCiQiIhyHJOUPODxH8X//Okwbl88Bfd+VY9hwzhRIBHR0MUnKdSHWhVnRVHEU386jGcCx/D1a67CX18zlTMZExGpRDsVZ9knhfpQo+JsOCziF68dwh/2nMA9X52BFUuuyOr5iYgoGivOKo9JSg660BvGT14+gD83n8I/lc+Cef5ktUMiIiLNYHMPqaTzQi8cL+7De8fO4MFb5uGLholqh0RERJrC5h5SwdnOC3jkub04fPoc1t2xAEuu0qkdEhERUcYwSckRofPdWLttD06d7cKP7l6E2ZPHqh0SERFpEpt7KItOtHVi7dbd6OoJw1mxGFMnjlY7JCIi0ixOMEhZ8uHp83j42d0oGjYMdZWLMXncSLVDIiIiygomKRp28MRZrHt2D0rHjMAjKxaidMwItUMiIiLNY3MPZdh7R0P44fP7MHXiaKy7Yz7GjuRMxkRElIxkR/dsAfC7BOu6lAtHBiYpGvSWcBp1L+3HgsvH4//dNg8jh3OiQCIiSlayT1Lu/OwVzwEANsUiSheTFAUoWRb/1f2f4t99B3CtYSJ+YJmDEUWcKJCIKBdopyx+/mCSogClyuI/9+7HaHhdgGX+ZPzDDTM5USARUQ7RTll8FnMjBYmiiN/u/Aj/95cPcffSK/CdL0/nRIFERJQmdpwlhYTDIn75xxY8++7H+Oa102Atu5IJChEREQB2eJChu7s76r+p6g2L+I/tB/Hcex9jzfUGrFp2laYSlK6uLqxfvx5dXdro5Z0JvMbcl+/XB/Aa84Hc+0VqpOYeOS9tNPcwSZFBzpeuuycMx4v78NqBk/jBTXNw66IpSocnW1dXFzZs2JC3vzQAXmM+yPfrA3iN+SC7SYrU3CPnxeaeIaujuxc/fGEv9h1vw0O3zcOy6aVqh0RERKQ5TFKyrK3zAtZv24OjoQ48smIhFl4xXu2QiIgor7DjLKXhVHsX1m3bgzMdF7Dx7kWYeWmJ2iEREVHe4QSDlKKPQx14eNtu9IZFbKpYhCsncCZjIiKigTBJyYKWU+fw8LbdGD2iEBtXLsKlYzmTMRERZQqbe6iPb33rWxg9Ov6TEeu9/4wPxizC5HEjseHOBdCN5kzGRET5aKCy+OfPn89iJKw4S3386le/wnXXXdfv/cCHrdj4wj7MmjQGD902H2OK+eMmIspXA5XFf/3117F8+fIsRZI/T1JYJyVD3jx0Co88txeLrhyP9XcuwJjiooQZdjypbJvq9qkeWwtxZPLnkcnjauXnkQqtfC65eI38nsqLIxVa+VwyeY0EQKS07dixQwQg7tixI+r9P+w+Lt75n2+IP35pv3ihpzfy/rx585I+dirbZurYZ86cEQGIZ86cUTWOVLdNZftUr1ELn0uq22byGrXw8+D3NHtxZHLbfP+eJrpfKMnv94sAROABEfhZEq9KEZic4FUqAhD9fn/G4k1G3rU/BAIBOBwO6PV6hEIhWCwWVFZWJrVvKBSCw+EAADidzrTO/0zgKP77zcO4ZdFl+O51Bs5kTEREWZZsc88XP3vFcxTAvykWUbryKkkRBAEmkwl+vx9GoxEAYDAYEAwGUVVVNeC+Pp8PLpcLHo9n0G3jEUURv37rCNxNR7Gq7Er8zbXTNDUPDxERUa7Jqz4pNpsNZrM5kqAAgN1uh81mG3Rfs9kMt9ud1nlFUcQvXmuGu+ko/u4r0/HNL05ngkJERCrhBIOaEwqF4PP5YLFYot4vKysDADQ0NGTs3L8NfIKX93yC75fPwt1Lr8zYeYiIiAaXPxMM5k2S0tTUBADQ6/VR70tPVbxeb8bOvef4WdhvngvL/MkZOwcREdFQkzd9UgRBAADodLoB1yups7MTAPDFcSH0fLwXr3888Pbnzp3D66+/3u/9ESNGYMSI6CJvHR0dCAQCSceSyvbJbtve3g4A2LVrF0pKkptnKBNxpLptKtuneo1a+FxS3TaT16iFnwe/p9mLI5Pbav172t3dje7u7n7bJvq9Huvdd98F8Pl9I7M+gfwnIaeUCEQ+VccWKaimpibhcCkAol6vT+o4AMSqqqqktn3qqac+G+7FF1988cUXX4O/nnrqqZTubak4cuSIOHr0aMViHT16tHjkyJGMxZuMvHmSYjAYAADBYDDu+thmICXcdttteOqppzBlyhSMHJn+fDzxnqQQEZF2JHqSkqzOzk4cP34ct912m4JRRZs6dSr27duHU6eUeQoyadIkTJ06VZFjpUtzSUogEIDdbk9qW71eD5fLFfl/4GIH2kTbKm3SpEn49re/rfhxiYiI0jF16lTVEwslaS5JMRqNaXVylUbxxPY9kZZNJpP84IiIiChr8mZ0j06ni5vg+Hw+AMCqVavUCIuIiIjSlDdJCgA0NjbC5/NFPU1xOp1wOp2RUT+CIMBgMESSl74SNRUREZE2ZGKkJmmX5pp75DAajfD7/bDb7dDr9RAEAXa7ParMfSgUQjAY7JeQBAKBSP+WzZs3w2KxwGw29xvSrPbcQEpJ9zrkXH+25ctnNZB0r9Hj8cDhcCAQCMBoNMLpdMJsNmch4tQocX1S3zUtXh+gzL8pn88Hq9WK1tbWDEUpj5xrjK3eLf2e1xIlPkNBEODxeAAAVVVVCctpDDmqji3KMc3NzSIQPcxZr9eLLpdr0H29Xq9YWVkpAskPcc6UdK9DzvVnW758VgNJ9xqdTqdoNptFl8sVGboPQPR6vZkOOSXpXp/L5RKrqqpEr9crer1e0Wg0igDE5ubmTIecMqX+Ten1elGn0ykdniLkXKP0WTqdzshL7Vl5Y8n9DJubm8XKykrRbDZr8juqNiYpKTCbzaLZbI56z+Vyiankelq48aV7HUpcf7bky2c1kHSvsbKyMmpZmt499lhqS/f6nE5n1LJ0fW63W/EY5VLie1pTUyOazWbNJilyrlFr38l45Fyf3+8XdTqdpn/PqC2v+qRkkppzAykp3evIpevPpVjTle41+ny+fs1XRqMRRqNRU239cj7DmpqaqGXpsXnfiUe1QInvqc/nw8SJEzV3bRI51+jxeNDU1ASr1arZf7Nyri8UCqG8vDyqlAb1xyQlSWrODaSkdK8jl64/l2JNV7rXaDabE9YMykQtoXQp+Rl6PB44nU5NXR+gzDW6XK5+SZmWyLlGr9eLUCgEj8cDm82GCRMmxB3woCY512e32xEKhTTd500LmKQkSY25gTIh3evIpevPpVjTpfQ1CoIAq9UqNyzFKHV9drs90qFRa+Reo91u1/wNTs41ulwuiKIIv9+PqqqqSIdULf37lXN90lMWr9cLk8mECRMmaO76tIBJSpKam5sBAKWlpXHX58rw5XSvI5euP5diTZeS1+jxeKDX66NGwalNieurq6uDIAgIhUKabDKQc42BQAATJ07UZPLVlxKfo9FohMvlgtvtBoCkK5JnQ7rXJ01eaDQaYbPZ4Pf74ff7IyUy8uF3lFKYpCRJjbmBMiHd68il68+lWNOl5DU6HI7IDUArlLi+mpoauN1ueL1e6HQ6zT11kHONDodD0808EiW/p5WVlaisrExpNuNMS/f6pKclNpstsk3fvilS+QPKszopyciluYEyId3ryKXrz6VY06XUNdrtdjQ2NmruZ6LkZ2g2m1FVVYW6ujolQlNMutdot9v7NQtI/y/9Vyufp9L/Fi0Wi6b6paR7fYmah6RaPmzy+dyQS1KG+txA6V5HLl1/LsWaLiWusaGhARaLRZMjQ5T+DJctW6aZG7ck3Wv0+XwJEy6DwaCpYmeZ+LcoHVML5P4+lZqLYiVqPhqK2NyTpHyZGyjd68il68+lWNMl9xqlypaxVVi18ihd6c9QEATNVZxN9xr9fj/EizWuIq+amhrodLpIR1OtUPpz9Hq9sNlsisUnl5zfp2azud9TIemJTD78IaUYNYu05BqpKFTfqoB6vT6qeFRzc7Oo1+vjVu9sbW3VRIGwdK8jmf20Il8+q4Gke41SFVaXyxX1qqqq0lT14HSur7W1VaysrIwq3Nbc3KzZomByv6eSmpoazRZzS+ca/X6/aDQao7Zxu92a/Pco9/dp3/ecTqdoNBqzE3iOGHLNPXJkY26gbEj3OpLZTyvy5bMaSDrXGAgEIoWn4v1FqqW5X9K5Pp1Oh1AohHvvvRculwsWiwV6vV6ztXHkfE9zRTrXqNfrUVpaCofDAa/XC6PRCIvFosmiZ0r8PnW73ZHvrpaehGlBgSiKotpBEBEREcVinxQiIiLSJCYpREREpElMUoiIiEiTmKQQERGRJjFJISIiIk1ikkJERESaxCSFiIiINIlJChEREWkSkxQiIqI+OAuxdjBJISIi6sNqtebsNAT5hkkKERElZLfbUVBQgIKCAkyYMAETJkxIuFxQUJDzTyECgQD0en1kri5pLp6+11xXVxfZ3ufzwWAwRNbFzmxM8jBJISKihEKhEMxmM1pbWyMvs9kMAGhsbERraytEUYxMjJfrTyBcLlfU5Jt6vR5OpxOVlZUAALPZjJqamsh6s9kMo9EIo9EY9bMhZTBJISKiAblcrkFnATcajVE371zl8/niJhq1tbWR9X15PB4EAgHOXpwhTFKIiCghi8UCvV6f1LY2m23QZEbLPB5Pwich0tOSUCgUSVQCgQDsdju8Xm82wxxSmKQQEVFCUjNHMvR6PfR6PTweDywWC3w+HxoaGjBhwgTYbDZ4PJ5IH5ZAIADg4pMJq9WKgoICWK3WqOMFAgFYrVZYLBYYDAbY7XZFry3W008/HdXUE0ta53K5EAqFYLVa4Xa7k07iKHVMUoiISDEejwd2ux0+nw9utxvNzc3Q6/VoampCZWUlVq1aFbW92WyG0+nsdxzpKYXb7YbX64XT6URdXd2ASUTf/aTESGK1WjFhwoSEHXtDoRAEQYDRaEx4bCl2j8eD8vJyOJ3OAbcn+ZikEBGRYiorKyPJgU6ng9PphN/vj/TZiNccVFpa2u+9e++9Nyp5qayshE6nQ0NDw4Cdc41GI5xOJ8rKytDQ0ADg4hMQm80Gp9OZ8KnH5s2bsXr16gGvTafTRZ4s6fX6lJ4yUXqK1A6AiIjyi5SILFu2LK39BUFAIBCAw+GIu76pqWnQUTRWqxU+nw82mw12u33QJhmXy4Xt27cPGpt0HKm5Kh6bzQaDwYDTp09j2bJlTGZkYJJCREQZkW4nWikBcLvdaZ9bSmJ0Ot2gCYogCCgtLR00Xo/HA5/PB71eH0mkYpt7rFYr9Hp9ZKSTyWSCTqfj0OQ0sbmHiIg0Reo3IqcwnJSYJHOM2Noo8Uh9XbZv3x7VgbYvQRDg8XiijrV69eq4fW4oOUxSiIhIU6QEw+PxxF2fTFVXu90Oo9E4YLOMxOPxDNgk03ckj06nQ1VVFQBE+rxIpHP1fXJjNBrh8/lyvsidWpikEBFRWoLBYMr7TJw4EUD0Ew7p/6UbudQ0Yrfb+yUZsYlBPNIQaJvNBkEQBnwyk6h4W1/l5eVwuVyRpp2+HWj7JlI7d+7s12QkdQpO52dFTFKIiChFsUlFLOn9eOulG700TLmhoSHSbOLz+WCxWKDT6aL6dFitVtTV1cFisaC5uTluUiEIAurq6uDxeBAMBmE2myPbuVwu1NXVxR1FNFhTj1TMLvacFosFAKI694ZCobjnkOKjNIhERERJ8Hq9YlVVlQhABCDqdDqxpqZGbG5ujmzjdrtFvV4vAhD1er3ocrn6HcfpdIo6nS6yvyiKol6vF2tqakS/3x+13WDH6nvevseTVFZWijqdLuq4fen1+oTX2vfcbrc76lxGozHyc6isrBS9Xm/kuvry+/0igKifESWvQBRFUb0UiYiISB1SzRWl5hzyeDywWq3oe1uVng7xVpseDkEmIqIhKdnaKMmSmrIEQYiqp8KqtOljnxQiIhpykq2NkgqpCm3fzrRPP/00hyDLwOYeIiIacux2e8aqwfatOGswGCJDlil1TFKIiGjIkeqekLYxSSEiIiJNYp8UIiIi0iQmKURERKRJTFKIiIhIk5ikEBERkSYxSSEiIiJNYpJCREREmsQkhYiIiDSJSQoRERFp0v8PALwPecuUgNkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nbins = 100\n", "vmax = 50\n", "\n", "a0 = plt.hist2d(\n", " xx0_test,\n", " xx0_predicted,\n", " density=False,\n", " bins=nbins,\n", " cmap=plt.cm.jet,\n", " cmin=1,\n", " vmax=vmax,\n", " range=[[-0.1, 0.6], [-0.1, 0.6]],\n", ")\n", "plt.plot([-0.1, 0.6], [-0.1, 0.6], marker=\"\", alpha=0.8)\n", "plt.xlabel(f\"True $x/X_0$\")\n", "plt.ylabel(f\"Predicted $x/X_0$\")\n", "plt.title(f\"found rad_length_frac\")\n", "# ax1.set(xlim=(0,4000), ylim=(-1000,1000))\n", "\n", "plt.colorbar(a0[3])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "tuner", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }