{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import uproot\n", "import numpy as np\n", "import sys\n", "import os\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits import mplot3d\n", "import itertools\n", "import awkward as ak\n", "from scipy.optimize import curve_fit\n", "from mpl_toolkits.axes_grid1 import ImageGrid\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9056" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n", "\n", "#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n", "allcolumns = file.arrays()\n", "found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n", "lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n", "\n", "ak.num(found, axis=0)\n", "#ak.count(found, axis=None)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.8606728758791105" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def t_eff(found, lost, axis = 0):\n", " sel = ak.num(found, axis=axis)\n", " des = ak.num(lost, axis=axis)\n", " return sel/(sel + des)\n", "\n", "t_eff(found, lost)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sample size: 32\n", "eff (cutoff = 0 ) = 0.96875\n", "sample size: 32\n", "eff (cutoff = 100 ) = 0.96875\n", "sample size: 65\n", "eff (cutoff = 200 ) = 0.9692307692307692\n", "sample size: 129\n", "eff (cutoff = 300 ) = 0.9457364341085271\n", "sample size: 169\n", "eff (cutoff = 400 ) = 0.9408284023668639\n", "sample size: 227\n", "eff (cutoff = 500 ) = 0.920704845814978\n", "cutoff energy = 350MeV\n", "sample size: 150\n", "eff = 0.9533333333333334\n" ] } ], "source": [ "#finden wir die elektronen die keine bremsstrahlung gemacht haben mit hoher effizienz?\n", "#von energie der photonen abmachen\n", "#scan ab welcher energie der photonen die effizienz abfällt\n", "\n", "#abhängigkeit vom ort der emission untersuchen <- noch nicht gemacht\n", "\n", "\n", "\n", "#idea: we make an event cut st all events that contain a photon of energy > cutoff_energy are not included\n", "\"\"\"\n", "ph_e = found[\"brem_photons_pe\"]\n", "event_cut = ak.all(ph_e=cutoff_energy,axis=1)]\n", "energy_found = ak.to_numpy(brem_found[\"energy\"])\n", "eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "energyloss_found = eph_found/energy_found\n", "\n", "brem_lost = lost[ak.any(lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n", "energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n", "eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "energyloss_lost = eph_lost/energy_lost\n", "\n", "t_eff(brem_found,brem_lost)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean energyloss relative to initial energy (found): 0.6551043170507098\n", "mean energyloss relative to initial energy (lost): 0.8273131179948844\n" ] } ], "source": [ "mean_energyloss_found = ak.mean(energyloss_found)\n", "mean_energyloss_lost = ak.mean(energyloss_lost)\n", "print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n", "print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHMCAYAAAAgfimTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA51klEQVR4nO3deXhU9d3+8XuSTDZCAgTCmrIGNAFBASngglZQUbFPfVyKIiJuNT8hxbK5JlYakaooD0JBlC5SaRWQKgqpkgAiWwhWDAIClaDQsCaBSBgy5/cHZkrINnMy20ner+vKFebMWT7zadq5+z3fc47NMAxDAAAAFhUS6AIAAADqgzADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADwC9WrFghm81W48+CBQu8cpzy8nIlJCTolVde8fuxAQRGWKALANA4bN26VZL0/vvvKyEhocr7ycnJXjnOmjVrdPjwYf3iF7/w+7EBBAZhBoBfbN26VbGxsbrllltks9l8dpx3331X/fr1U8eOHf1+bACBwWkmAH6Rm5ur3r17+zRMGIahpUuX6rbbbvP7sQEEDmEGgM8dPXpU+/fvV69evXT27NkqP4ZheOU469ev18GDByuFGX8dG0DgEGYA+FzFnJXXX39ddru9yk9+fn6d+zAMQ7GxsTpy5EiN67z77rvq1auXkpKSPD724cOHddNNN6lJkybq3r27srKy6vORAfgRc2YA+Fxubq4kacmSJUpMTKzyvjsTcHfv3q1WrVqpZcuWNa6zZMkS3X///aaOnZqaqjZt2ujw4cP65z//qTvuuEPffPON4uPj66wNQGARZgD43NatWxUZGakRI0YoNDS0xvX+8Ic/6O9//7vsdrs2btyodu3a6W9/+5uSk5O1detW9enTRw8//LAWL16sdu3aafny5erWrZskadOmTdq/f3+V+TLuHPvkyZNatmyZ9uzZo+joaI0YMUK9e/fW+++/XyUcAQg+nGYC4HNbt25Vz549aw0ykrR9+3Zt3rxZaWlp+s9//qMBAwboqaeekiTl5eVpy5YtGjNmjI4dO6bLLrtM8+fPd2373nvvqXv37urZs6fHx969e7diYmIqjdz06tVLX331lZmPC8DPCDMAfKqoqEh79+5V796961x3+/bteuqpp3T99dfLbrfr7rvv1q5duySdCzMZGRn66U9/qpCQEHXt2rXS5N333nuvyqiMu8c+efKkYmNjKy2LjY3VyZMn3f2YAAKI00wAfGrr1q0yDENNmjTRhg0bqrzfvn1714jIV199VeluvIWFha45Mnl5efrLX/7ieu+rr77S8OHDJUnbtm3Tnj17qj3F5M6xY2JiVFxcXOm94uJixcTEmPzUAPyJkRkAPlVxNdFrr72mgQMHVvlZtWqVpHPB5fDhw5Xu0Lt06VLdeOONKigoUFhYWKX3/vWvf+mSSy6RdG5UpmPHjurbt6+pYyclJenkyZM6cOCAa9vt27crJSXFBx0B4G02g5ssAAgCn3zyia6//nrNnTtXo0eP1p/+9Cf99re/1RdffKGcnBzNnj1bK1eulCSVlpaqWbNmKioqUlRUlJKTk3XjjTfqpZdeMn3822+/XXFxcZo1a5Y++eQTjRo1Srt376716ikAwYHTTACCwvbt23X//ffrnXfe0YQJE9S3b19lZWUpLi5OeXl5rlEY6dwppq5duyoqKkqS3LpPTV1ef/11jR49WvHx8Wrfvr0WL15MkAEsgpEZAEHhwQcfVL9+/fTwww8HuhQAFsOcGQBBYfv27brooosCXQYAC2JkBkBQiIuL065du9S6detAlwLAYggzAADA0jjNBAAALI0wAwAALC2gl2avWbNGM2bMUG5urg4ePKilS5fq5z//uet9wzCUkZGhefPm6fjx4xowYIBmz57t0Y2snE6nvv/+ezVt2lQ2m80HnwIAAHibYRgqKSlRu3btFBJS+9hLQMPMqVOn1Lt3b40ZM6bKbcgl6cUXX9TLL7+shQsXqnv37nr++ec1dOhQ7dy5U02bNnXrGN9//32lh8cBAADrKCgoUIcOHWpdJ2gmANtstkojM4ZhqF27dkpLS9PkyZMlSWVlZWrdurWmT5/u9r0oioqK1KxZMxUUFFR5kJy7HA6HVq1apWHDhslut5vaB9xDr/2HXvsX/fYfeu1fvup3cXGxEhMTdeLECcXFxdW6btDeAXjfvn06dOiQhg0b5loWERGhq6++WuvXr68xzJSVlamsrMz1uqSkRJIUFRXluluop8LCwhQdHa2oqCj+i+Fj9Np/6LV/0W//odf+5at+OxwOSXJrikjQhplDhw5JUpV7TrRu3VrffvttjdtlZmYqIyOjyvJVq1YpOjq6XjVlZWXVa3u4j177D732L/rtP/Tav7zd79LSUrfXDdowU+HCRGYYRq0pberUqZowYYLrdcUw1bBhw+p1mikrK0tDhw4l5fsYvfYfeu1f9Nt/6LV/+arfxcXFbq8btGGmTZs2ks6N0LRt29a1vLCwsNY7hEZERCgiIqLKcrvdXu8me2MfcA+99h967V/023/otX95u9+e7Ctow0znzp3Vpk0bZWVl6dJLL5UknTlzRjk5OZo+fbrXj1deXu46P3chh8OhsLAwnT59WuXl5V4/dkNmt9sVGhoa6DIAAA1YQMPMyZMn9c0337he79u3T9u2bVOLFi30k5/8RGlpafrd736npKQkJSUl6Xe/+52io6M1cuRIr9VgGIYOHTqkEydO1LpOmzZtVFBQwL1qTGjWrJnatGlD7wAAPhHQMLNlyxZdc801rtcVc11Gjx6thQsXatKkSfrhhx/06KOPum6at2rVKrfvMeOOiiCTkJCg6Ojoar9wnU6nTp48qZiYmDpv3IP/MgxDpaWlKiwslKRKpwsBAPCWgIaZIUOGqLbb3NhsNqWnpys9Pd0nxy8vL3cFmfj4+BrXczqdOnPmjCIjIwkzHqq4HL6wsFAJCQmccgIAeF2j/maumCNT30u2UbuK/tY0JwkAgPpo1GGmAnM5fIv+AgB8iTADAAAsjTBjUUOGDFFaWlqgywAAIOCC9j4zAbc+3fVPm2EosqxMtogIyRenTAal17mKr2RnZ+uaa67R8ePH1axZs4DVAQCAWYzMAAAASyPMNADHjx/Xvffeq+bNmys6Olo33nijdu/e7Xr/22+/1S233KLmzZurSZMmSklJ0YoVK/Tvf//bdZ+f5s2by2az6b777gvQpwAAwBxOMzUA9913n3bv3q3ly5crNjZWkydP1vDhw5Wfny+73a7U1FSdOXNGa9asUZMmTZSfn6+YmBglJibqvffe02233aadO3cqNjbWdV8YAEAjVDHFIoDTH8wgzFhcRYj57LPPNGjQIEnS22+/rcTERC1btky333679u/fr9tuu029evWSJHXp0sW1fYsWLSRJCQkJzJkBAFgSp5ksbseOHQoLC9OAAQNcy+Lj49WjRw/t2LFDkjRu3Dg9//zzGjx4sJ599ln961//ClS5AAB4HWHG4mp6HIRhGK6b1T3wwAPau3evRo0apS+//FL9+vXTrFmz/FkmAAA+Q5ixuOTkZJ09e1YbN250LTt69Kh27dqliy++2LUsMTFRjzzyiJYsWaLHH39c8+fPlySFh4dLOvecKgAArIgwY3FJSUm69dZb9eCDD2rdunX64osvdM8996h9+/a69dZbJUlpaWlauXKl9u3bp61bt+rTTz91BZ2OHTvKZrPpgw8+0OHDh3Xy5MlAfhwAADzGBOCanDeT23A6dbq4WOGxsbIF4VOz33rrLY0fP14333yzzpw5o6uuukorVqyQ3W6XdG7UJTU1VQcOHFBsbKxuuOEGvfLKK5Kk9u3bKyMjQ1OmTNGYMWN07733auHChQH8NAAAeIYwY1HZ2dmufzdv3lx/+tOfaly3rvkxTz/9tJ5++mlvlQYAgF8F3zADAACABwgzAADA0ggzAADA0pgzAwAAalbxiIMKQfioA0ZmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmLMowDD300ENq0aKFbDabtm3bFrBahgwZorS0tIAdHwDQuHFpdg3S0//7b8OwqawsUhERNtlsvj2Wuz7++GMtXLhQ2dnZ6tKli1q2bOn1ugAAsALCjEXt2bNHbdu21aBBgwJdCgAAAcVpJgu677779Nhjj2n//v2y2Wzq1KmTysrKNG7cOCUkJCgyMlJXXHGFNm/e7Npm4cKFatasWaX9LFu2TLbzhprS09PVp08f/fnPf1anTp0UFxenu+66SyUlJa51Tp06pXvvvVcxMTFq27atXnrpJZ9/XgAAakOYsaBXX31Vzz33nDp06KCDBw9q8+bNmjRpkt577z398Y9/1NatW9WtWzddf/31OnbsmEf73rNnj5YtW6YPPvhAH3zwgXJycvTCCy+43p84caJWr16tpUuXatWqVcrOzlZubq63PyIAAG4jzFhQXFycmjZtqtDQULVp00bR0dGaM2eOZsyYoRtvvFHJycmaP3++oqKitGDBAo/27XQ6tXDhQvXs2VNXXnmlRo0apU8++USSdPLkSS1YsEC///3vNXToUPXq1Ut//OMfVV5e7ouPCQCAWxpsmJk9e7aSk5PVv3//QJfic3v27JHD4dDgwYNdy+x2uy6//HLt2LHDo3116tRJTZs2db1u27atCgsLXcc5c+aMBg4c6Hq/RYsW6tGjRz0/AQAA5jXYMJOamqr8/PxK80YaKsMwJKnS/JeK5RXLQkJCXOtVcDgcVfZlt9srvbbZbHI6nZWOAwBAMGmwYaYx6datm8LDw7Vu3TrXMofDoS1btujiiy+WJLVq1UolJSU6deqUax1P703TrVs32e12bdiwwbXs+PHj2rVrV/0+AAAA9cCl2Q1AkyZN9Ktf/UoTJ05UixYt9JOf/EQvvviiSktLNXbsWEnSgAEDFB0drSeeeEKPPfaYNm3apIULF3p0nJiYGI0dO1YTJ05UfHy8WrdurSeffFIhIWRiAEDgEGZqcP6N7JxOQ8XFpxUbG66QEB/cNc8LXnjhBTmdTo0aNUolJSXq16+fVq5cqebNm0s6N7flL3/5iyZOnKh58+bpuuuuU3p6uh566CGPjjNjxgydPHlSI0aMUNOmTfX444+rqKjIFx8JAAC32IwGPhGiuLhYcXFxKioqUmxsbKX3Tp8+rX379qlz586KjIyscR9Op1PFxcWKjY1lFMIEd/ssnTs9tmLFCg0fPrzK/B14F732L/rtP/S6Htann/s9KL3qsgqDKr/2Vb9r+/6+EN/MAADA0ggzAADA0ggzAADA0ggzAADA0ggz4mZwvkZ/AQC+1KjDTMWs69LS0gBX0rBV9JerCgAAvtCo7zMTGhqqZs2auZ49FB0dXeWRANK5S7PPnDmj06dPc2m2BwzDUGlpqQoLC9WsWTOFhoYGuiQAQAPUqMOMJLVp00aSXIGmOoZh6IcfflBUVFS1YQe1a9asmavPAAB4W6MPMzabTW3btlVCQkK1D16Uzt0QaM2aNbrqqqs4VeIhu93OiAwAwKcafZipEBoaWuOXbmhoqM6ePavIyEjCDAAAQYYJIAAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNKCOsycPXtWTz31lDp37qyoqCh16dJFzz33nJxOZ6BLAwAAQSIs0AXUZvr06Zo7d67++Mc/KiUlRVu2bNGYMWMUFxen8ePHB7o8AAAQBII6zHz++ee69dZbddNNN0mSOnXqpL/+9a/asmVLgCsDAKABW59e93uDalnHz4I6zFxxxRWaO3eudu3ape7du+uLL77QunXrNHPmzBq3KSsrU1lZmet1cXGxJMnhcMjhcJiqo2I7s9vDffTaf+i1f9Fv/6HX9eD0YPbJBX32dr892Z/NMAzDq0f3IsMw9MQTT2j69OkKDQ1VeXm5pk2bpqlTp9a4TXp6ujIyMqosX7RokaKjo31ZLgAA8JLS0lKNHDlSRUVFio2NrXXdoA4z77zzjiZOnKgZM2YoJSVF27ZtU1paml5++WWNHj262m2qG5lJTEzUkSNH6mxGTRwOh7KysjR06FDZ7XZT+4B76LX/0Gv/ot/+Q6/rYWOm++sOODew4Kt+FxcXq2XLlm6FmaA+zTRx4kRNmTJFd911lySpV69e+vbbb5WZmVljmImIiFBERESV5Xa7vd5N9sY+4B567T/02r/ot//QaxNCPLha+ILeervfnuwrqC/NLi0tVUhI5RJDQ0O5NBsAALgE9cjMLbfcomnTpuknP/mJUlJSlJeXp5dffln3339/oEsDAABBIqjDzKxZs/T000/r0UcfVWFhodq1a6eHH35YzzzzTKBLAwAAQSKow0zTpk01c+bMWi/FBgAAjVtQz5kBAACoC2EGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYWoMNM7Nnz1ZycrL69+8f6FIAAIAPNdgwk5qaqvz8fG3evDnQpQAAAB9qsGEGAAA0DoQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAAAasvXp534aMMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwtDBPN9i5c6f++te/au3atfr3v/+t0tJStWrVSpdeeqmuv/563XbbbYqIiPBFrQAAAFW4PTKTl5enoUOHqnfv3lqzZo369++vtLQ0/fa3v9U999wjwzD05JNPql27dpo+fbrKysp8WTcAAIAkD0Zmfv7zn2vixIlavHixWrRoUeN6n3/+uV555RW99NJLeuKJJ7xSJAAAQE3cDjO7d+9WeHh4nesNHDhQAwcO1JkzZ+pVGAAAgDvcPs3kTpCpz/oAAABmuD0y89prr7m903HjxpkqBgAAwFNuh5lXXnml0uvDhw+rtLRUzZo1kySdOHFC0dHRSkhIIMwAAAC/cfs00759+1w/06ZNU58+fbRjxw4dO3ZMx44d044dO3TZZZfpt7/9rS/rBQAAqMTUTfOefvppzZo1Sz169HAt69Gjh1555RU99dRTXisOAACgLqbCzMGDB+VwOKosLy8v13/+8596FwUAAOAuU2HmZz/7mR588EFt2bJFhmFIkrZs2aKHH35Y1113nVcLBAAAqI2pMPPmm2+qffv2uvzyyxUZGamIiAgNGDBAbdu21RtvvOHtGgEAAGrk8bOZJKlVq1ZasWKFdu3apa+//lqGYejiiy9W9+7dvV0fAABArUyFmQqdOnWSYRjq2rWrwsLqtSsAAABTTJ1mKi0t1dixYxUdHa2UlBTt379f0rmb5b3wwgteLRAAAKA2psLM1KlT9cUXXyg7O1uRkZGu5dddd50WL17steIk6bvvvtM999yj+Ph4RUdHq0+fPsrNzfXqMQAAgHWZOje0bNkyLV68WD/96U9ls9lcy5OTk7Vnzx6vFXf8+HENHjxY11xzjT766CMlJCRoz549rrsOAwAAmAozhw8fVkJCQpXlp06dqhRu6mv69OlKTEzUW2+95VrWqVMnr+0fAACYtD793O/+Twa0DMnkaab+/fvrww8/dL2uCDDz58/XwIEDvVOZpOXLl6tfv366/fbblZCQoEsvvVTz58/32v4BAID1mRqZyczM1A033KD8/HydPXtWr776qr766it9/vnnysnJ8Vpxe/fu1Zw5czRhwgQ98cQT2rRpk8aNG6eIiAjde++91W5TVlamsrIy1+vi4mJJksPhqPauxe6o2M7s9nAfvfYfeu1f9Nt/6PUFnD+OW7jTD6fnYxy+6rcn+7MZFbfw9dCXX36p3//+98rNzZXT6dRll12myZMnq1evXmZ2V63w8HD169dP69evdy0bN26cNm/erM8//7zabdLT05WRkVFl+aJFixQdHe212gAAgO+UlpZq5MiRKioqUmxsbK3rmg4z/tCxY0cNHTq00l2F58yZo+eff17fffddtdtUNzKTmJioI0eO1NmMmjgcDmVlZWno0KGy2+2m9gH30Gv/odf+Rb/9h15fYGPmud8Dprq/rgccl/3GJ/0uLi5Wy5Yt3Qoz9brTXWFhoQoLC+V0Oistv+SSS+qzW5fBgwdr586dlZbt2rVLHTt2rHGbiIgIRUREVFlut9vr3WRv7APuodf+Q6/9i377D73+UciP39Hu9CLEWfc6F/pxv97utyf7MhVmcnNzNXr0aO3YsUMXDuzYbDaVl5eb2W0Vv/71rzVo0CD97ne/0x133KFNmzZp3rx5mjdvnlf2DwAArM9UmBkzZoy6d++uBQsWqHXr1l69HPt8/fv319KlSzV16lQ999xz6ty5s2bOnKm7777bJ8cDAADWYyrM7Nu3T0uWLFG3bt28XU8VN998s26++WafHwcAAFiTqfvM/OxnP9MXX3zh7VoAAAA8Zmpk5o033tDo0aO1fft29ezZs8oknREjRnilOAAA4AcVd/O1KFNhZv369Vq3bp0++uijKu95cwIwAABAXUydZho3bpxGjRqlgwcPyul0VvohyAAAAH8yFWaOHj2qX//612rdurW36wEAAPCIqTDzi1/8QqtXr/Z2LQAAAB4zNWeme/fumjp1qtatW6devXpVmQA8btw4rxQHAABQF9NXM8XExCgnJ6fKU7JtNhthBgAA+I3HYcYwDK1evVoJCQk8hRoAAAScx3NmDMNQ9+7da3xqNQAAgD95HGZCQkKUlJSko0eP+qIeAAAAj5i6munFF1/UxIkTtX37dm/XAwAA4BFTE4DvuecelZaWqnfv3goPD1dUVFSl948dO+aV4gAAgJed/+iCQek1rWUppsLMzJkzvVwGAACAOabCzOjRo71dBwAAgCmmwowklZeXa9myZdqxY4dsNpuSk5M1YsQIhYaGerM+AACAWpkKM998842GDx+u7777Tj169JBhGNq1a5cSExP14YcfqmvXrt6uEwAAoFqmn5rdtWtXFRQUaOvWrcrLy9P+/fvVuXNn7v4LAAD8ytTITE5OjjZs2KAWLVq4lsXHx+uFF17Q4MGDvVYcAABAXUyNzERERKikpKTK8pMnTyo8PLzeRQEAALjLVJi5+eab9dBDD2njxo0yDEOGYWjDhg165JFHNGLECG/XCAAAUCNTYea1115T165dNXDgQEVGRioyMlKDBw9Wt27d9Oqrr3q7RgAAgBqZmjPTrFkzvf/++9q9e7e+/vprGYah5ORkdevWzdv1AQAAXzn/bsAWZvo+M5KUlJSkpKQkb9UCAADgMVNhpry8XAsXLtQnn3yiwsJCOZ3OSu9/+umnXikOAACgLqbCzPjx47Vw4ULddNNN6tmzp2w2m7frAgAAcIupMPPOO+/ob3/7m4YPH+7tegAAADxi6mqm8PBwJvsCAICgYCrMPP7443r11VdlGIa36wEAAPCIqdNM69at0+rVq/XRRx8pJSVFdru90vtLlizxSnEAAAB1MX2fmf/5n//xdi1eNXv2bM2ePVvl5eWBLgUAAPiQqTDz1ltvebsOr0tNTVVqaqqKi4sVFxcX6HIAAICPmJozAwAAgsD69AZzF9/6cDvM3HDDDVq/fn2d65WUlGj69OmaPXt2vQoDAABwh9unmW6//Xbdcccdatq0qUaMGKF+/fqpXbt2ioyM1PHjx5Wfn69169ZpxYoVuvnmmzVjxgxf1g0AACDJgzAzduxYjRo1Su+++64WL16s+fPn68SJE5Ikm82m5ORkXX/99crNzVWPHj18VS8AAEAlHk0ADg8P18iRIzVy5EhJUlFRkX744QfFx8dXuTwbAADAH+r11Oy4uDiuFAIAwAoa8ERhrmYCAACWRpgBAACWRpgBAACWRpgBAACWZirMFBQU6MCBA67XmzZtUlpamubNm+e1wgAAANxhKsyMHDlSq1evliQdOnRIQ4cO1aZNm/TEE0/oueee82qBAAAAtTEVZrZv367LL79ckvS3v/1NPXv21Pr167Vo0SItXLjQm/UBAADUylSYcTgcioiIkCT985//1IgRIyRJF110kQ4ePOi96gAAAOpgKsykpKRo7ty5Wrt2rbKysnTDDTdIkr7//nvFx8d7tUAAAIDamAoz06dP1x/+8AcNGTJEv/zlL9W7d29J0vLly12nnwAAAPzB1OMMhgwZoiNHjqi4uFjNmzd3LX/ooYfUpEkTrxUHAADccP6jCgal17RWg2VqZObaa69VSUlJpSAjSS1atNCdd97plcIAAADcYSrMZGdn68yZM1WWnz59WmvXrq13UQAAAO7y6DTTv/71L9e/8/PzdejQIdfr8vJyffzxx2rfvr33qgMAAKiDR2GmT58+stlsstlsuvbaa6u8HxUVpVmzZnmtOAAAgLp4FGb27dsnwzDUpUsXbdq0Sa1atXK9Fx4eroSEBIWGhnq9SAAA4KbzJwM3Eh6FmY4dO0qSnE6nT4oBAADwlKlLsyVp165dys7OVmFhYZVw88wzz9S7MAAAAHeYCjPz58/Xr371K7Vs2VJt2rSRzWZzvWez2QgzAADAb0yFmeeff17Tpk3T5MmTvV0PAACAR0zdZ+b48eO6/fbbvV0LAACAx0yFmdtvv12rVq3ydi0AAAAeM3WaqVu3bnr66ae1YcMG9erVS3a7vdL748aN80pxAAAAdTEVZubNm6eYmBjl5OQoJyen0ns2m40wAwAA/MZUmNm3b5+36wAAADDF1JyZQMnMzJTNZlNaWlqgSwEAAEHC1MjM/fffX+v7b775pqliarN582bNmzdPl1xyidf3DQAArMv0pdnn/xQWFurTTz/VkiVLdOLECS+XKJ08eVJ333235s+fr+bNm3t9/wAAwLpMjcwsXbq0yjKn06lHH31UXbp0qXdRF0pNTdVNN92k6667Ts8//3yt65aVlamsrMz1uri4WJLkcDjkcDhMHb9iO7Pbw3302n/otX/Rb/9pVL12Bn62iK/67cn+bIZhGN468M6dOzVkyBAdPHjQW7vUO++8o2nTpmnz5s2KjIzUkCFD1KdPH82cObPa9dPT05WRkVFl+aJFixQdHe21ugAAgO+UlpZq5MiRKioqUmxsbK3rmn7QZHX27Nmjs2fPem1/BQUFGj9+vFatWqXIyEi3tpk6daomTJjgel1cXKzExEQNGzaszmbUxOFwKCsrS0OHDq1yTx14F732H3rtX/TbfxpVrzdmBroCOS77jU/6XXFmxR2mwsz5YUGSDMPQwYMH9eGHH2r06NFmdlmt3NxcFRYWqm/fvq5l5eXlWrNmjf7v//5PZWVlCg0NrbRNRESEIiIiquzLbrfXu8ne2AfcQ6/9h177F/32n0bR6xBnoCuQfuyxt/vtyb5MhZm8vLxKr0NCQtSqVSu99NJLdV7p5Imf/exn+vLLLystGzNmjC666CJNnjy5SpABAACNj6kws3r1am/XUa2mTZuqZ8+elZY1adJE8fHxVZYDAIDGqV5zZg4fPqydO3fKZrOpe/fuatWqlbfqAgAAcIupMHPq1Ck99thj+tOf/iSn89z5utDQUN17772aNWuWT68ays7O9tm+AQCA9Zi6QH3ChAnKycnRP/7xD504cUInTpzQ+++/r5ycHD3++OPerhEAAKBGpkZm3nvvPb377rsaMmSIa9nw4cMVFRWlO+64Q3PmzPFWfQAAALUyNTJTWlqq1q1bV1mekJCg0tLSehcFAADgLlNhZuDAgXr22Wd1+vRp17IffvhBGRkZGjhwoNeKAwAAqIup00yvvvqqbrjhBnXo0EG9e/eWzWbTtm3bFBkZqZUrV3q7RgAAgBqZCjM9e/bU7t279Ze//EVff/21DMPQXXfdpbvvvltRUVHerhEAgMZjffq534PSA1mFpZi+z0xUVJQefPBBb9YCAADgMVNzZjIzM/Xmm29WWf7mm29q+vTp9S4KAADAXabCzB/+8AdddNFFVZanpKRo7ty59S4KAADAXabCzKFDh9S2bdsqy1u1aqWDBw/WuygAAAB3mQoziYmJ+uyzz6os/+yzz9SuXbt6FwUAAOAuUxOAH3jgAaWlpcnhcOjaa6+VJH3yySeaNGkSjzMAAAB+ZSrMTJo0SceOHdOjjz6qM2fOSJIiIyM1efJkTZ061asFAgAA1MZUmLHZbJo+fbqefvpp7dixQ1FRUUpKSlJERIS36wMAAKiV6fvMSFJMTIz69+/vrVoAAAA8ZmoCMAAAQLAgzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAEIzWp5/7QZ0IMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIabJiZPXu2kpOT1b9//0CXAgAAfCgs0AX4SmpqqlJTU1VcXKy4uLhAlwMAgOWkLxhSddnYbH+XUacGOzIDAAAahwY7MgMAADxT3UiMFTAyAwAALI0wAwAALI0wAwAALI05MwAAWM369EBXEFQYmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGBGAAADxRMfl2ULpv9guPMTIDAAAsjTADAAAsjTADAAAsjTADAAAsjQnAAABcyFeTfM04f2JwMNQThAgzAAA0QukLhgS6BK8hzAAA0MBUF1TSx2b7uwy/Yc4MAACwNMIMAACwNE4zAQAQSNz5t94YmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGBGAAACzOnRvgNaSb5F2IMAMA8L9gelyAPzWAK5cuDEVP9g9MHefjNBMAALA0wgwAALA0wgwAALA05swAABAkGtsDIr0lqMNMZmamlixZoq+//lpRUVEaNGiQpk+frh49egS6NAAAAiI9XVLBkABXEVyC+jRTTk6OUlNTtWHDBmVlZens2bMaNmyYTp06FejSAABAkAjqkZmPP/640uu33npLCQkJys3N1VVXXRWgqgAAQDAJ6jBzoaKiIklSixYtalynrKxMZWVlrtfFxcWSJIfDIYfDYeq4FduZ3R7uo9f+Q6/9i35fwPnjiQEf9MMrva6tvvrU7qz9hEhImFFlmeP8bRwOhYRIqma9QPHV37Yn+7MZhhE8HamFYRi69dZbdfz4ca1du7bG9dLT05WRkVFl+aJFixQdHe3LEgEAgJeUlpZq5MiRKioqUmxsbK3rWibMpKam6sMPP9S6devUoUOHGterbmQmMTFRR44cqbMZNXE4HMrKytLQoUNlt9tN7QPuodf+Q6/9i35fYGPmud8Dpnp9117pdW311VV7xfvVrXP+e9XI/POVVZZNHbW2znUC6TevDPDJ33ZxcbFatmzpVpixxGmmxx57TMuXL9eaNWtqDTKSFBERoYiIiCrL7XZ7vZvsjX3APfTaf+i1f9HvH4U4z/32YS/q1eva6qur9or3q1vn/Peq4Txrq7LMfsE21a0TSBU99vbftif7CuowYxiGHnvsMS1dulTZ2dnq3LlzoEsCAMCvGvIDIr0lqMNMamqqFi1apPfff19NmzbVoUOHJElxcXGKiooKcHUAACAYBPV9ZubMmaOioiINGTJEbdu2df0sXrw40KUBAIAgEdQjMxaZmwwAsKL16f/996D0mtZyfz+17WN9Le+h3oJ6ZAYAAKAuQT0yAwCAFaQvGCKt+vHFj89N4gGR/kOYAQDAQ9WFFwQOp5kAAIClMTIDALAGb03Y9ZMLR2847eQ7jMwAAABLI8wAAABLI8wAAABLI8wAAABLYwIwAKBh2ph57inVtUwWdj3EcdV5y2peHUGKMAMAgB9U9/RrrnDyDsIMAAABUl3AgecIMwCABinzz1fKedbGKaRGgDADAMB50tP130cUrCIAWQFhBgAQVKoLDwQK1IYwAwDwvYpHEXjrMQTnP9rAm/styHbveNWtW922Ne0PXkWYAQB4RaBHVCqOFRIi9e7tv+Mi8LhpHgAAsDRGZgAAllPlkuZV1a6GRoIwAwBoNCqd9qq4YgmWR5gBAFTl7Qm7/lKQLYUZkqdzZgqyvV4K/IcwAwAwhculESwIMwDgRYG+osdbLnwAo9nP4Nrux1M66YPM1wTUhDADAEGooYSihqDSHYERlAgzAAC/uXCkhscFwBsIMwDQWNQwqbdBhImC7MCvi4AhzABAEHAnUFy4TiDurhuofXOqB7UhzABAA1bdfVWYhIuGhjADADXw1khIevp/nxeUmSk980w9CwNQCWEGABqZBjFHBjhPgw0zs2fP1uzZs1VeXh7oUgA0EA3ucumC7HO/E4fUbx0zx/SnimN66zMg6DTYp2anpqYqPz9fmzdvDnQpAADAhxrsyAwA62twIyFeRn+AcwgzACzFzKTcYPuCD/RlzkBDQ5gB0ODwhQ40LoQZoDY13DG1MQvkjduCkVufvyBbCjOk3pK+WyedtQV2MmpBtvlt3Knbk/1Xt98Lt2fiLupAmAECqLEEA3c/l5nP31B7BsB9hBmgDukLhkirLliWHohK/K+xfE4A1kaYAXwk2J6jc+GyzMz/3pHW6fT98QHAVwgzQJAL9lNRwVYPgMaHMAOYEOyjLlbVUD4HAP8izKBRCbYQYmadeh+/IFuSFNJxcN0b/bhug72apCD73G8zn68+2wb62L5SkG2t/aLBaLCPMwAAAI0DIzPwq4Z8iiSQ6CGAxoyRGQAAYGmMzMBrzI66nL9OSEj1lwv7auTBWyNFjIwAQOAQZlAtdybKevwFvj5dKhhy7t/1nLjoy9NVlfZTUa+3FWSf+x1sEzitqiD73O/a+unOOmaOUbH8fIGc1HvhfipeB7uC7IZxDAQEYQYNRrDfjwUA4BuEmQamoX6hN5TPAQDwPsJMI+TPwOOXUzbuHBsA0GBxNRMAALA0RmYaOI+uJirIPve7mgmINe6nYpsatqtTLcf0Cl/v351jB+r4waAg+9xvf33+iuPVdszz1/E1d47lyTq+7mPFcdxZ5/xa3NkO8CFGZgAAgKUxMhOkmO8BAIB7GJkBAACWRpgBAACWxmkmX1qfXvn1oPTq1qq8bm3rmFGQXfl1sExELciu/f3v1klnbef+7c5ETnfuylrT9t6+42p9Xbg/d/ZfsU4Fd2r5bp3U28Oazt93xTJ3jnX+9hduc+F+6rNubcesTU3HrG4f7uzXk2PXZ9vz163P358nx6zPNoCPEGYCoNr5MBX3YFnlx0IAAGgAOM0EAAAsjTADAAAsjTADAAAsjTkzfpC+YMi5fyzIPvfbncmF9Z3sWd2+a1teVw3ubFfb9u5uE2ZUnZR64bHrc6dhd9+rz4RiT9apbRt31vX2XW7NbFexjZn/vM2u68n2DUlBtvvv1bYu0MBYIsy8/vrrmjFjhg4ePKiUlBTNnDlTV155ZaDLqlYgH6wIAEBjFPSnmRYvXqy0tDQ9+eSTysvL05VXXqkbb7xR+/fvD3RpAAAgCAT9yMzLL7+ssWPH6oEHHpAkzZw5UytXrtScOXOUmZkZ4Op47AAAAIEW1GHmzJkzys3N1ZQpUyotHzZsmNavX1/tNmVlZSorK3O9LioqkiQdO3ZMDofDVB0Oh0OlpaU6evSo7Hb7BTXWsqHzZPXLzxyt/f3z13Fnv9WtW9u+3XX+ft3Z34Wf68K63NhHiNNQaWmpzjhD5HTa3DuOyWPVyp3/jAK5Py/s19XrM0fldNrd309Nx6zv36GvemSGD2px628bXkGv/evo0aM1fkfWR0lJiSTJMIw61w3qMHPkyBGVl5erdevWlZa3bt1ahw4dqnabzMxMZWRkVFneuXNnn9QIH3gj0AU0IvTav+i3/9Brv8lc6Nv9l5SUKC4urtZ1gjrMVLDZKidrwzCqLKswdepUTZgwwfXa6XTq2LFjio+Pr3GbuhQXFysxMVEFBQWKjY01tY9A6N+/vzZv3hzoMjxi1V5L1us3vfYv+u0/9Nq/fNVvwzBUUlKidu3a1bluUIeZli1bKjQ0tMooTGFhYZXRmgoRERGKiIiotKxZs2ZeqSc2NtZS/8UIDQ21VL3ns1qvJev2m177F/32H3rtX77od10jMhWC+mqm8PBw9e3bV1lZWZWWZ2VladCgQQGqyjpSU1MDXUKjQr/9h177F/32H3ptjs1wZ2ZNAC1evFijRo3S3LlzNXDgQM2bN0/z58/XV199pY4dO/qlhuLiYsXFxamoqMiyidkq6LX/0Gv/ot/+Q6/9Kxj6HdSnmSTpzjvv1NGjR/Xcc8/p4MGD6tmzp1asWOG3ICOdO3X17LPPVjl9Be+j1/5Dr/2LfvsPvfavYOh30I/MAAAA1Cao58wAAADUhTADAAAsjTADAAAsjTADAAAsjTADAAAsjTAj6fXXX1fnzp0VGRmpvn37au3atbWun5OTo759+yoyMlJdunTR3Llz/VRpw+BJv5csWaKhQ4eqVatWio2N1cCBA7Vy5Uo/Vmttnv5tV/jss88UFhamPn36+LbABsbTfpeVlenJJ59Ux44dFRERoa5du+rNN9/0U7XW5mmv3377bfXu3VvR0dFq27atxowZo6NHa3mgLyRJa9as0S233KJ27drJZrNp2bJldW4TkO9Io5F75513DLvdbsyfP9/Iz883xo8fbzRp0sT49ttvq11/7969RnR0tDF+/HgjPz/fmD9/vmG32413333Xz5Vbk6f9Hj9+vDF9+nRj06ZNxq5du4ypU6cadrvd2Lp1q58rtx5Pe13hxIkTRpcuXYxhw4YZvXv39k+xDYCZfo8YMcIYMGCAkZWVZezbt8/YuHGj8dlnn/mxamvytNdr1641QkJCjFdffdXYu3evsXbtWiMlJcX4+c9/7ufKrWfFihXGk08+abz33nuGJGPp0qW1rh+o78hGH2Yuv/xy45FHHqm07KKLLjKmTJlS7fqTJk0yLrrookrLHn74YeOnP/2pz2psSDztd3WSk5ONjIwMb5fW4Jjt9Z133mk89dRTxrPPPkuY8YCn/f7oo4+MuLg44+jRo/4or0HxtNczZswwunTpUmnZa6+9ZnTo0MFnNTZE7oSZQH1HNurTTGfOnFFubq6GDRtWafmwYcO0fv36arf5/PPPq6x//fXXa8uWLXI4HD6rtSEw0+8LOZ1OlZSUqEWLFr4oscEw2+u33npLe/bs0bPPPuvrEhsUM/1evny5+vXrpxdffFHt27dX9+7d9Zvf/EY//PCDP0q2LDO9HjRokA4cOKAVK1bIMAz95z//0bvvvqubbrrJHyU3KoH6jgz6xxn40pEjR1ReXl7lCdytW7eu8qTuCocOHap2/bNnz+rIkSNq27atz+q1OjP9vtBLL72kU6dO6Y477vBFiQ2GmV7v3r1bU6ZM0dq1axUW1qj/p8FjZvq9d+9erVu3TpGRkVq6dKmOHDmiRx99VMeOHWPeTC3M9HrQoEF6++23deedd+r06dM6e/asRowYoVmzZvmj5EYlUN+RjXpkpoLNZqv02jCMKsvqWr+65aiep/2u8Ne//lXp6elavHixEhISfFVeg+Jur8vLyzVy5EhlZGSoe/fu/iqvwfHkb9vpdMpms+ntt9/W5ZdfruHDh+vll1/WwoULGZ1xgye9zs/P17hx4/TMM88oNzdXH3/8sfbt26dHHnnEH6U2OoH4jmzU//erZcuWCg0NrZLmCwsLqyTLCm3atKl2/bCwMMXHx/us1obATL8rLF68WGPHjtXf//53XXfddb4ss0HwtNclJSXasmWL8vLy9P/+3/+TdO7L1jAMhYWFadWqVbr22mv9UrsVmfnbbtu2rdq3b6+4uDjXsosvvliGYejAgQNKSkryac1WZabXmZmZGjx4sCZOnChJuuSSS9SkSRNdeeWVev755xlR96JAfUc26pGZ8PBw9e3bV1lZWZWWZ2VladCgQdVuM3DgwCrrr1q1Sv369ZPdbvdZrQ2BmX5L50Zk7rvvPi1atIhz3G7ytNexsbH68ssvtW3bNtfPI488oh49emjbtm0aMGCAv0q3JDN/24MHD9b333+vkydPupbt2rVLISEh6tChg0/rtTIzvS4tLVVISOWvu9DQUEn/HTWAdwTsO9Kn04stoOISvwULFhj5+flGWlqa0aRJE+Pf//63YRiGMWXKFGPUqFGu9SsuO/v1r39t5OfnGwsWLODSbA942u9FixYZYWFhxuzZs42DBw+6fk6cOBGoj2AZnvb6QlzN5BlP+11SUmJ06NDB+N///V/jq6++MnJycoykpCTjgQceCNRHsAxPe/3WW28ZYWFhxuuvv27s2bPHWLdundGvXz/j8ssvD9RHsIySkhIjLy/PyMvLMyQZL7/8spGXl+e6DD5YviMbfZgxDMOYPXu20bFjRyM8PNy47LLLjJycHNd7o0ePNq6++upK62dnZxuXXnqpER4ebnTq1MmYM2eOnyu2Nk/6ffXVVxuSqvyMHj3a/4VbkKd/2+cjzHjO037v2LHDuO6664yoqCijQ4cOxoQJE4zS0lI/V21Nnvb6tddeM5KTk42oqCijbdu2xt13320cOHDAz1Vbz+rVq2v93+Bg+Y60GQZjbAAAwLoa9ZwZAABgfYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAAF31VVXyWazVfm5++6769z2vvvu05QpU7yyLwDWxB2AAQSUYRiKi4vTs88+WyVwxMTEKCYmpsZtnU6nWrdureXLl2vgwIH12hcA6woLdAEAGrfdu3erpKREV111ldq0aePRtp999plCQkJcT/Wuz74AWBenmQAEVG5ursLCwnTJJZd4vO3y5ct1yy23KCQkpN77AmBdhBkAAbV161aVl5crPj7edSooJiZGDz74YJ3bLl++XLfeeqtH+/rggw/Uo0cPJSUl6Y033vDJZwLgX8yZARBQ1157rVq1aqVp06ZVWt68eXPFx8fXuN2OHTvUr18/HTlyRFFRUW7t6+zZs0pOTtbq1asVGxuryy67TBs3blSLFi28/8EA+A0jMwACKi8vT1dccYW6detW6Sc+Pl7bt29X165ddejQIUnSkSNH1KdPH505c0bLly/X0KFDXUGmrn1J0qZNm5SSkqL27duradOmGj58uFauXBmQzw3AewgzAAJm7969OnHihC699NJq3+/Zs6fuuusuffrpp5KkjIwMTZ48WeHh4Xr//fc1YsQIt/clSd9//73at2/vet2hQwd99913Xvo0AAKFq5kABExubq4kqXXr1q7RlwoJCQkKCQlRSkqKdu3apW+++Ua5ubl67bXXVFhYqM2bN2vZsmUe7au6s+o2m83LnwqAvxFmAATM1q1bJUndu3evtNxut6ukpEQRERFKSkrSBx98oCeeeELTpk2TzWbTP/7xDw0YMEAJCQke7at9+/aVRmIOHDjguqwbgHUxARhAUDtx4oSSkpI0YMAAffDBB5KkESNG6IorrtCkSZM82tfZs2d18cUXKzs72zUBeMOGDbVONAYQ/BiZARDUmjVrJkl64YUXXMuuuOIK/fKXv/R4X2FhYXrppZd0zTXXyOl0atKkSQQZoAFgZAZAUHM4HOrZs6d27twZ6FIABCmuZgIQ1L7++mv16NEj0GUACGKMzAAAAEtjZAYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFja/wdRS8SJa7x3ewAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#in abhängigkeit von der energie der elektronen\n", "plt.hist(energyloss_lost, bins=200, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n", "plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n", "plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n", "plt.yticks(np.arange(0,10,1), minor=True)\n", "plt.xlabel(r\"$E_\\gamma/E_0$\")\n", "plt.ylabel(\"counts (normed)\")\n", "plt.title(r'$E_{ph}/E_0$')\n", "plt.legend()\n", "plt.grid()\n", "\n", "\"\"\"\n", "\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAIhCAYAAADtvIOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADbq0lEQVR4nOzde1xVVf7/8fcR5IgIJ7wAHsNLjZEKVqOFaDNoCuiIzkxTViRJF3PCyQydym5eJsFMyflqWTlOmpds+jb6rSwCrTRHUfLSiDlak9cUsUJQU1BYvz/6sesIKthBDsfX8/HYjzx7f87aa+9zoPVh7bWWzRhjBAAAAAAAAAAA0AA0qu8KAAAAAAAAAAAA1BQdGwAAAAAAAAAAoMGgYwMAAAAAAAAAADQYdGwAAAAAAAAAAIAGg44NAAAAAAAAAADQYNCxAQAAAAAAAAAAGgw6NgAAAAAAAAAAQINBxwYAAAAAAAAAAGgw6NgAAAAAAAAAAAANBh0bQD1544031KVLF/n7+8tms2nLli31XaVqTZgwQTabrb6r4TFSUlLUvn37+q5GnXvvvfc0YcIEt5c7b9482Ww27d692+1lS9Lnn3+uCRMm1Fn5AAAA8Bx13bZ88cUXNW/evDopuyFr3769UlJS6rsada6uPv+6zinrKpcDAE9DxwZQDw4fPqzk5GRdeeWVysrK0rp163TVVVfVd7UAy3vvvaeJEyfWdzVq7fPPP9fEiRPp2AAAAMDPRsfGpa2hfv4NNZcDgNqiYwOoBzt37tSpU6c0dOhQxcbGqkePHmratGl9V8urfP/99/VdhQbpUrtvl9r1/tSJEydkjKnvagAAAKAOGGN04sSJ+q5Gg3Qp5QiX+vfkUvqsAW9ExwZwkaWkpOjGG2+UJN12222y2Wzq3bu3dfztt99WTEyMmjZtqsDAQMXFxWndunVVyqhu6Gp100bZbDb96U9/0oIFC9SpUyc1bdpU11xzjd59990q71++fLmuvfZa2e12dejQQdOmTavVta1YsUJ9+/ZVUFCQmjZtql69emnlypXV1nHbtm2644475HA4FBoaqnvuuUfFxcUuscYYvfjii7r22mvl7++v4OBg3XLLLfrqq69c4nr37q3IyEitXr1aPXv2VNOmTXXPPfdIkvbv369bbrlFgYGBuuyyy3TnnXcqLy9PNpvNevpmwYIFstlsVe6zJE2aNEmNGzfWgQMHznrdJ0+e1Lhx49ShQwf5+fmpTZs2GjlypI4cOeIS9+GHH6p3795q0aKF/P391bZtW/3hD39waUzNnj1b11xzjZo1a6bAwEBdffXVevzxx89536+//noNHDjQZV9UVJRsNpvy8vKsff/85z9ls9m0detWST9+Fps2bdItt9yi4OBgXXnllUpJSdELL7wg6YfvT+V2vlEQNfn8f+57//Of/+iOO+5QaGio7Ha72rZtq7vuukulpaWaN2+ebr31VklSnz59rHpXfs7n+p7s3btXQ4cOVUhIiOx2uzp16qTp06eroqLCOvfu3btls9k0bdo0ZWZmqkOHDmrWrJliYmKUm5tbo+ssKCjQiBEjdPnll8vPz08dOnTQxIkTdfr06Qs+z6effqrBgwerefPmatKkia677jr94x//cImpnKYhOztb99xzj1q1aqWmTZuqtLRUxhilp6erXbt2atKkibp3766cnBz17t3b+t107NgxXXbZZRoxYkSV8+/evVs+Pj567rnnanQPAAAA6trf//53XXPNNWrSpImaN2+u3//+99q+fbtLzFdffaXbb79dTqdTdrtdoaGh6tu3rzVFcPv27bVt2zatWrXKaleeb/qg2uYveXl5+tWvfqWmTZvqiiuu0JQpU1zan5JUUlKisWPHuuQao0eP1vHjx13iKvO+l156SZ06dZLdbtf8+fMlSWvWrFFMTIyaNGmiNm3a6KmnntLf/vY3lzb+vffeq+bNm1f7h96bbrpJXbp0Oee116Q9LZ0/3/n++++t6638/Lp3767XX3/9rOcuKSmRr6+vS3v0m2++UaNGjeRwOFza2qNGjVKrVq2sB3zOliPU5ef/c9+blZWlvn37yuFwqGnTpurUqZMyMjIk6by53Pm+J3379lVgYKCaNm2qnj17avny5S7nrswrPvroIz3wwANq2bKlWrRooZtvvvmcOfNP1SZ/qel53njjDcXExCggIEDNmjVTQkKCNm/e7BKTkpKiZs2aaevWrYqPj1dgYKD69u0rSTpy5Ij1M9CsWTMNHDhQX331lWw2mzWt1yeffCKbzVbtd/G1116rkn8DuAgMgIvqyy+/NC+88IKRZNLT0826devMtm3bjDHGLFq0yEgy8fHxZtmyZeaNN94w3bp1M35+fuaTTz6xyhg2bJhp165dlbLHjx9vzvyxlmTat29vbrjhBvOPf/zDvPfee6Z3797G19fX/Pe//7XiVqxYYXx8fMyNN95o/vnPf5o333zTXH/99aZt27ZVyqzOggULjM1mM7/73e/MP//5T/POO++YxMRE4+PjY1asWFGljhEREebpp582OTk5JjMz09jtdnP33Xe7lDl8+HDTuHFjM2bMGJOVlWUWL15srr76ahMaGmoKCgqsuNjYWNO8eXMTHh5uZs6caT766COzatUqc+zYMfOLX/zCNG/e3Lzwwgvmgw8+MA8//LDp0KGDkWReffVVY4wxpaWlJiwszNx5550u5z916pRxOp3m1ltvPeu9r6ioMAkJCcbX19c89dRTJjs720ybNs0EBASY6667zpw8edIYY8yuXbtMkyZNTFxcnFm2bJn5+OOPzaJFi0xycrIpKioyxhjz+uuvG0nmwQcfNNnZ2WbFihXmpZdeMqNGjTrnvX/sscdMs2bNTFlZmTHGmIKCAiPJ+Pv7m8mTJ1txDzzwgAkNDa3yWbRr1848+uijJicnxyxbtsx8+eWX5pZbbjGSzLp166yt8lqqU9PP/9VXXzWSzK5du2r93i1btphmzZqZ9u3bm5deesmsXLnSLFy40AwZMsSUlJSYwsJCk56ebiSZF154wap3YWGhMebs35PCwkLTpk0b06pVK/PSSy+ZrKws86c//clIMg888IB1/l27dlk/T/379zfLli0zy5YtM1FRUSY4ONgcOXLknJ/TwYMHTXh4uGnXrp15+eWXzYoVK8xf/vIXY7fbTUpKygWd58MPPzR+fn7mV7/6lXnjjTdMVlaWSUlJcfl+//S+t2nTxtx///3m/fffN//7v/9rTp8+bcaNG2ckmfvvv99kZWWZOXPmmLZt25rWrVub2NhYq4yHH37YBAQEVLnOP//5z6ZJkybmm2++Oef1AwAAuFt1bcvK9uAdd9xhli9fbl577TVzxRVXGIfDYXbu3GnFRUREmF/84hdmwYIFZtWqVeatt94yY8aMMR999JExxphNmzaZK664wlx33XVWu3LTpk3nrE9t8pcWLVqYjh07mpdeesnk5OSY1NRUI8nMnz/fijt+/Li59tprTcuWLU1mZqZZsWKF+etf/2ocDoe56aabTEVFhRVb2dbr2rWrWbx4sfnwww9Nfn6++eyzz0yTJk1M165dzZIlS8zbb79tfvOb35j27du73LvPPvvMSDJz5sxxuaZt27ZZ7etK7dq1M8OGDbNe17Q9XZN8Z8SIEaZp06YmMzPTfPTRR+bdd981U6ZMMTNnzjznve/Ro4eJj4+3Xi9ZssQ0adLE2Gw2869//cva36lTJzNkyBCXz6K6HKEuP//q8vmavvdvf/ubsdlspnfv3mbx4sVmxYoV5sUXXzSpqanGGHPeXO5s35OPP/7YNG7c2HTr1s288cYbZtmyZSY+Pt7YbDazZMkS6/yVP3NXXHGFefDBB80HH3xg/va3v5ng4GDTp0+fc94fY2qfv9TkPJMnTzY2m83cc8895t133zX//Oc/TUxMjAkICLD+1lJ53xs3bmzat29vMjIyzMqVK80HH3xgysvLzY033miaNGlipkyZYrKzs83EiRNNx44djSQzfvx4q4zrrrvO9OrVq8p1XX/99eb6668/7/UDcC86NoB68NFHHxlJ5s0337T2lZeXG6fTaaKiokx5ebm1/+jRoyYkJMT07NnT2lfbjo3Q0FBTUlJi7SsoKDCNGjUyGRkZ1r7o6GjjdDrNiRMnrH0lJSWmefPm5+3YOH78uGnevLkZNGiQy/7y8nJzzTXXmBtuuKFKHadOneoSm5qaapo0aWI1ztetW2ckmenTp7vE7du3z/j7+5tHHnnE2hcbG2skmZUrV7rEVnYgvf/++y77R4wYUaXhNH78eOPn52cOHTpk7XvjjTeMJLNq1Spr35n3Pisrq9rrqXzvK6+8Yowx5n//93+NJLNlyxZzNn/605/MZZdddtbjZ7NixQojyaxevdoYY8zChQtNYGCgSU1NdWn0dezY0SQlJblcsyTz9NNPVylz5MiRNerQMqZ2n/+ZyWdt3nvTTTeZyy67zOqoqM6bb75pJFkJ6U+d7Xvy2GOPGUlm/fr1LvsfeOABY7PZzI4dO4wxP3Y4REVFmdOnT1txGzZsMJLM66+/ftZ6GfPD965Zs2Zmz549LvunTZtmJFmN7tqc5+qrrzbXXXedOXXqlEuZiYmJpnXr1tbvksr7ftddd7nEfffdd8Zut5vbbrvNZX/lz99POzb++9//mkaNGpnnn3/e2nfixAnTokWLKp2SAAAAF8OZbcuioiLj7+9vfvOb37jE7d2719jtdqst/M033xhJZsaMGecsv0uXLi7toXO5kPzlzPZn586dTUJCgvU6IyPDNGrUyOTl5bnEVeYW7733nrVPknE4HOa7775zib311ltNQECAOXz4sLWvvLzcdO7cuUqnUGxsrLn22mtd3v/AAw+YoKAgc/ToUWvfmR0bNW1P1yTfiYyMNL/73e/OGVOdJ5980vj7+1t/wL/vvvtM//79TdeuXc3EiRONMcZ8/fXXLjla5TVXlyMYU3ef/5k5ZU3fe/ToURMUFGRuvPFGl06tM50rlzvb96RHjx4mJCTE5XM+ffq0iYyMNJdffrl1vsqfucqOlEpTp041kszBgwfPWi9jap+/nO88e/fuNb6+vubBBx90iTt69KgJCwtz6cQaNmyYkWT+/ve/u8QuX77cSDKzZ8922Z+RkVGlY6OyXps3b7b2VeZpP+2UBHBxMBUV4CF27NihAwcOKDk5WY0a/fij2axZM/3hD39Qbm7uBc//2KdPHwUGBlqvQ0NDFRISoj179kiSjh8/rry8PN18881q0qSJFRcYGKhBgwadt/y1a9fqu+++07Bhw3T69Glrq6ioUP/+/ZWXl1dlqPTgwYNdXnft2lUnT55UYWGhJOndd9+VzWbT0KFDXcoMCwvTNddco48//tjl/cHBwbrppptc9q1atUqBgYHq37+/y/477rijyjU88MADkqQ5c+ZY+2bNmqWoqCj9+te/Puu1f/jhh5J+GNb6U7feeqsCAgKs6ZSuvfZa+fn56f7779f8+fOrHVJ8ww036MiRI7rjjjv0f//3f/rmm2/Oet6f6tWrl5o0aaIVK1ZIkjWNUP/+/bV27Vp9//332rdvn7744gv169evyvv/8Ic/1Og8Z3Mhn39t3/v9999r1apVGjJkiFq1anXBda3ue/Lhhx+qc+fOuuGGG1z2p6SkyBhjfcaVBg4cKB8fH+t1165dJcn6eTqbd999V3369JHT6XS51gEDBkj64ftam/N8+eWX+s9//qM777xTklzK/M1vfqODBw9qx44dLmWe+Vnn5uaqtLRUQ4YMcdnfo0ePKkPtr7jiCiUmJurFF1+0hu4vXrxY3377rf70pz+d89oBAAAuhnXr1unEiRNV2ubh4eG66aabrLZ58+bNdeWVV+q5555TZmamNm/eXGXKpNqqbf4SFhZWpf3ZtWtXlzblu+++q8jISF177bUuZSYkJMhms1Up86abblJwcLDLvlWrVummm25Sy5YtrX2NGjWq0v6TpIceekhbtmzRv/71L0k/TPG0YMECDRs2TM2aNTvrtde0PV2TfOeGG27Q+++/r8cee0wff/xxjdd/6Nu3r06cOKG1a9dK+mGq27i4OPXr1085OTnWPklVcqLqcoTaqu3nfyHvXbt2rUpKSpSamlplCuraOPN7cvz4ca1fv1633HKLy+fs4+Oj5ORk7d+/v0peUV0+L507J7qQ/OV85/nggw90+vRp3XXXXS7lNWnSRLGxsdXe9zNzoso87Myfier+bnDHHXcoJCTEmu5LkmbOnKlWrVrptttuO+u1A6gbdGwAHuLbb7+VJLVu3brKMafTqYqKChUVFV1Q2S1atKiyz263W43EoqIiVVRUKCwsrEpcdfvOdOjQIUnSLbfcosaNG7tszz77rIwx+u67785ZJ7vdLklWnQ4dOiRjjEJDQ6uUmZubW6URXN19+/bbbxUaGlpl/9n23XbbbXr55ZdVXl6uf//73/rkk0/O+wfbb7/9Vr6+vlX+2G6z2RQWFmZ9rldeeaVWrFihkJAQjRw5UldeeaWuvPJK/fWvf7Xek5ycrL///e/as2eP/vCHPygkJETR0dFWQ/xsmjRpol69elkN9ZUrVyouLk69e/dWeXm5PvnkE6uM6jo2qrt3tXEhn39t31tUVKTy8nJdfvnlP6uuZ/uenO3nrvL4T53vu3s2hw4d0jvvvFPlOivnKz7zO12TnxFJGjt2bJUyU1NTqy3zzOusvLaa/pw89NBD+uKLL6zv0wsvvKCYmBj98pe/POe1AwAAXAzny6kqj9tsNq1cuVIJCQmaOnWqfvnLX6pVq1YaNWqUjh49ekHnrm3+cr4crbLMf//731XKCwwMlDHG7TnRb3/7W7Vv3976o+28efN0/PhxjRw58pzXXtP2dE3ynf/5n//Ro48+qmXLlqlPnz5q3ry5fve73+mLL744Zx0q18dYsWKFvvzyS+3evdvq2Fi/fr2OHTumFStW6IorrlCHDh1c3vtz8yGp9p//hbz38OHDkuT2nKioqEjGmDrPiS4kf6lpTnT99ddXKfONN96oUl7Tpk0VFBTksq8yp2/evLnL/up+Rux2u0aMGKHFixfryJEjOnz4sP7xj3/ovvvus+oG4OLxre8KAPhB5f+wDx48WOXYgQMH1KhRI+upiiZNmqi0tLRKXE2f8D9TcHCwbDabCgoKqhyrbt+ZKp/+mTlzpnr06FFtTHWNgvOVabPZ9Mknn1TbQDhzX3VPrLRo0UIbNmyosv9s1/TQQw9pwYIF+r//+z9lZWVZi42fS4sWLXT69GkdPnzYpXPDGKOCggJdf/311r5f/epX+tWvfqXy8nJ9+umnmjlzpkaPHq3Q0FDdfvvtkqS7775bd999t44fP67Vq1dr/PjxSkxM1M6dO9WuXbuz1qNv3756+umntWHDBu3fv19xcXEKDAzU9ddfr5ycHB04cEBXXXWVwsPDq7z35zztI/28z7+m7y0vL5ePj4/279//s+p6tu/J2X7uflrHn6tly5bq2rWrJk+eXO3xyqShNuVJ0rhx43TzzTdXGxMREeHy+szrr/y9U5kQ/FRBQUGVURs33XSTIiMjNWvWLDVr1kybNm3SwoULa1VvAACAunK+nOqn7bp27dpp7ty5kqSdO3fqH//4hyZMmKCysjK99NJLtT53bfOXmpbp7++vv//972c9/lNna+uera13pkaNGmnkyJF6/PHHNX36dL344ovq27dvlTZldeeoaXv6fPlOQECAJk6cqIkTJ+rQoUPW6I1BgwbpP//5z1nr4OfnpxtvvFErVqzQ5ZdfrrCwMEVFRemKK66QJH388cdauXKlEhMTq7z35+ZDldd4oZ9/Td9bmW+6OycKDg5Wo0aN6jwnupD8paZl/u///u858+VKZ/sZOX36tL777juXzo2z/d3ggQce0JQpU/T3v/9dJ0+e1OnTp/XHP/6xVvUG4B50bAAeIiIiQm3atNHixYs1duxY63+4x48f11tvvaWYmBg1bdpUktS+fXsVFhbq0KFD1h+My8rK9MEHH1zQuQMCAnTDDTfon//8p5577jlrOqqjR4/qnXfeOe/7e/Xqpcsuu0yff/6526akSUxM1JQpU/T1119XO0y6JmJjY/WPf/xD77//vjXdjyQtWbKk2vhu3bqpZ8+eevbZZ5Wfn6/7779fAQEB5zxH3759NXXqVC1cuFAPP/ywtf+tt97S8ePH1bdv3yrv8fHxUXR0tK6++motWrRImzZtsjo2KgUEBGjAgAEqKyvT7373O23btu2cDbV+/frp8ccf11NPPaXLL79cV199tbX/7bffVkFBQa2mnPrpkzD+/v7njP05n39t3hsbG6s333xTkydPPmvDuqajJ36qb9++ysjI0KZNm1xGHrz22muy2Wzq06dPjcs6l8TERL333nu68sorq0wRcCEiIiLUsWNHffbZZ0pPT7+gMqKjo2W32/XGG2+4JBe5ubnas2dPlY4NSRo1apT++Mc/qri4WKGhobr11lsv9BIAAADcKiYmRv7+/lq4cKFLG2X//v368MMPdcstt1T7vquuukpPPvmk3nrrLW3atMnaf+YIinNxR/5SXZnp6elq0aJFlVEGNRUbG6v33ntP33zzjdWGrqio0Jtvvllt/H333acJEybozjvv1I4dO/Tss8+e9xwX0p6uSb4TGhqqlJQUffbZZ5oxY4a+//57KyeuTr9+/TRu3DgFBgZaI9UDAgLUo0cPzZw5UwcOHKh2BPvZXKzPv6bv7dmzpxwOh1566SXdfvvtZ+2QqU0uJ/1wj6Kjo/XPf/5T06ZNs95TUVGhhQsX6vLLL9dVV11Vq2uqjjvylzMlJCTI19dX//3vfy94iuXY2FhNnTpVb7zxhjVFtXT2vxu0bt1at956q1588UWVlZVp0KBBatu27QWdG8DPQ8cG4CEaNWqkqVOn6s4771RiYqJGjBih0tJSPffcczpy5IimTJlixd522216+umndfvtt+vPf/6zTp48qf/5n/9ReXn5BZ//L3/5i/r376+4uDiNGTNG5eXlevbZZxUQEHDWaYQqNWvWTDNnztSwYcP03Xff6ZZbblFISIgOHz6szz77TIcPH9bs2bNrVZ9evXrp/vvv1913361PP/1Uv/71rxUQEKCDBw9qzZo1ioqKcml0VGfYsGF6/vnnNXToUD3zzDP6xS9+offff9/qAPrpWiaVHnroId12222y2WzWcNhziYuLU0JCgh599FGVlJSoV69e+ve//63x48fruuuuU3JysiTppZde0ocffqiBAweqbdu2OnnypPXkVWXjevjw4fL391evXr3UunVrFRQUKCMjQw6Hw2XkR3W6deum4OBgZWdn6+6777b29+vXT3/5y19czlMTUVFRkqRnn31WAwYMkI+Pj7p27So/P78qsT/n86/NezMzM3XjjTcqOjpajz32mH7xi1/o0KFDevvtt/Xyyy8rMDBQkZGRkqRXXnlFgYGBatKkiTp06FDtUP9KDz/8sF577TUNHDhQkyZNUrt27bR8+XK9+OKLeuCBB9zSiJekSZMmKScnRz179tSoUaMUERGhkydPavfu3Xrvvff00ksv1XpY+csvv6wBAwYoISFBKSkpatOmjb777jtt375dmzZtOmvCWql58+ZKS0tTRkaGgoOD9fvf/1779+/XxIkT1bp162p/RoYOHapx48Zp9erVevLJJ6v9TgAAANSHyy67TE899ZQef/xx3XXXXbrjjjv07bffauLEiWrSpInGjx8vSfr3v/+tP/3pT7r11lvVsWNH+fn56cMPP9S///1vPfbYY1Z5UVFRWrJkid544w1dccUVatKkidVOPpM78pczjR49Wm+99ZZ+/etf6+GHH1bXrl1VUVGhvXv3Kjs7W2PGjFF0dPQ5y3jiiSf0zjvvqG/fvnriiSfk7++vl156yVoD78z23mWXXaa77rpLs2fPVrt27Wq05mJN29M1yXeio6OVmJiorl27Kjg4WNu3b9eCBQtcHvQ7m759+6q8vFwrV67U/Pnzrf39+vXT+PHjZbPZarWWxsX6/Gv63mbNmmn69Om677771K9fPw0fPlyhoaH68ssv9dlnn2nWrFlWvaWa5XKVMjIyFBcXpz59+mjs2LHy8/PTiy++qPz8fL3++utuGdUi/fz85Uzt27fXpEmT9MQTT+irr75S//79FRwcrEOHDmnDhg3WCKBz6d+/v3r16qUxY8aopKRE3bp107p16/Taa69JOvvfDSp/9l599dVa1RmAG9XLkuXAJe6jjz4yksybb75Z5diyZctMdHS0adKkiQkICDB9+/Y1//rXv6rEvffee+baa681/v7+5oorrjCzZs0y48ePN2f+WEsyI0eOrPL+du3amWHDhrnse/vtt03Xrl2Nn5+fadu2rZkyZUq1ZZ7NqlWrzMCBA03z5s1N48aNTZs2bczAgQNdrrOyvMOHD7u899VXXzWSzK5du1z2//3vfzfR0dEmICDA+Pv7myuvvNLcdddd5tNPP7ViYmNjTZcuXaqt0969e83NN99smjVrZgIDA80f/vAH89577xlJ5v/+7/+qxJeWlhq73W769+9fbXnDhg0z7dq1c9l34sQJ8+ijj5p27dqZxo0bm9atW5sHHnjAFBUVWTHr1q0zv//97027du2M3W43LVq0MLGxsebtt9+2YubPn2/69OljQkNDjZ+fn3E6nWbIkCHm3//+d7V1OdPvf/97I8ksWrTI2ldWVmYCAgJMo0aNXOpjzNk/i8r7cN9995lWrVoZm81W7Wdzppp8/mf7nGvyXmOM+fzzz82tt95qWrRoYX1PU1JSzMmTJ62YGTNmmA4dOhgfHx8jybz66qvGmHN/T/bs2WOSkpJMixYtTOPGjU1ERIR57rnnTHl5uRWza9cuI8k899xzVd4vyYwfP/6c98cYYw4fPmxGjRplOnToYBo3bmyaN29uunXrZp544glz7NixCzrPZ599ZoYMGWJCQkJM48aNTVhYmLnpppvMSy+9ZMVU3ve8vLwqZVZUVJhnnnnGXH755cbPz8907drVvPvuu+aaa64xv//976u9jpSUFOPr62v2799/3msGAACoK2drW/7tb3+z8hqHw2F++9vfmm3btlnHDx06ZFJSUszVV19tAgICTLNmzUzXrl3N888/b06fPm3F7d6928THx5vAwEAjqUoeUJ2fk79Ul2scO3bMPPnkkyYiIsK6nqioKPPwww+bgoICK+5seZ8xxnzyyScmOjra2O12ExYWZv785z+bZ5991kgyR44cqRL/8ccfG0lmypQp1ZZXXS5Zk/Z0TfKdxx57zHTv3t0EBwcbu91urrjiCvPwww+bb775ptq6/FRFRYVp2bKlkWS+/vpra/+//vUvI8n88pe/rPKec+UIdfX5V/c51/S9xvzwt4DY2FgTEBBgmjZtajp37myeffZZ6/i5crnzfU9uuukm6/w9evQw77zzjkvM2fKKyr9xfPTRR+e9Rz8nfznbeZYtW2b69OljgoKCjN1uN+3atTO33HKLWbFihRUzbNgwExAQUG2dvvvuO3P33Xebyy67zDRt2tTExcWZ3NxcI8n89a9/rfY97du3N506dTrv9QKoOzZjjKn77hMA8Bzp6el68skntXfv3ipPyL/zzjsaPHiwli9frt/85jf1VEOgfu3atUtXX321xo8fr8cff9zlWFlZmdq3b68bb7xR//jHP+qphgAAAPg54uPjtXv3bu3cubPKsTFjxmj27Nnat2/fOUc+A95s8eLFuvPOO/Wvf/1LPXv2dDn273//W9dcc41eeOGFGs30AKBuMBUVAK9WORz36quv1qlTp/Thhx/qf/7nfzR06FCXTo3PP/9ce/bs0ZgxY3Tttde6rMkBeLPPPvtMr7/+unr27KmgoCDt2LFDU6dOVVBQkO69914r7vDhw9qxY4deffVVHTp0yGWaBgAAAHiutLQ0XXfddQoPD9d3332nRYsWKScnx1o8vVJubq527typF198USNGjKBTA5eM119/XV9//bWioqLUqFEj5ebm6rnnntOvf/1rl06N//73v9qzZ48ef/xxtW7dWikpKfVXaQB0bADwbk2bNtXzzz+v3bt3q7S0VG3bttWjjz6qJ5980iUuNTVV//rXv/TLX/5S8+fPd9scooCnCwgI0Keffqq5c+fqyJEjcjgc6t27tyZPnqzQ0FArbvny5br77rvVunVrvfjiiy4LQwIAAMBzlZeX6+mnn1ZBQYFsNps6d+6sBQsWaOjQoS5xletYJCYm6plnnqmn2gIXX2BgoJYsWaJnnnlGx48ftzotzvw5+Mtf/qIFCxaoU6dOevPNN8+77guAusVUVAAAAAAAAAAAoMFoVN8VAAAAAAAAAAAAl4bTp0/rySefVIcOHeTv768rrrhCkyZNUkVFRY3LYCoqAAAAAAAAAABwUTz77LN66aWXNH/+fHXp0kWffvqp7r77bjkcDj300EM1KoOODQAAAAAAAAAAcFGsW7dOv/3tbzVw4EBJUvv27fX666/r008/rXEZdGzUk4qKCh04cECBgYEsUgwAABokY4yOHj0qp9OpRo3qf4bTkydPqqysrE7K9vPzU5MmTeqkbADVI2cCAAAN3aWUMxljqrTZ7Ha77HZ7ldgbb7xRL730knbu3KmrrrpKn332mdasWaMZM2bU+Hx0bNSTAwcOKDw8vL6rAQAA8LPt27dPl19+eb3W4eTJk2rl769jdVR+WFiYdu3aRecGcBGRMwEAAG9xKeRMzZo107FjrqWPHz9eEyZMqBL76KOPqri4WFdffbV8fHxUXl6uyZMn64477qjx+ejYqCeBgYGSfvhSBwUF1XNtALiDw5Fh/bu4eFw91gQALo6SkhKFh4db7Zr6VFZWpmOSHpZU9Xmgn6dU0vMFBSorK6NjA7iIyJkAAEBDUPn3oOr+FnRJ5UzHjlVpt1U3WkOS3njjDS1cuFCLFy9Wly5dtGXLFo0ePVpOp1PDhg2r0Tnp2KgnlcNygoKCaKQDXsKYjPMHAYAX8qQpYgIkubvrgQYzPEX79u21Z8+eKvtTU1P1wgsvyBijiRMn6pVXXlFRUZGio6P1wgsvqEuXLlZsaWmpxo4dq9dff10nTpxQ37599eKLL7o8QVhUVKRRo0bp7bffliQNHjxYM2fO1GWXXWbF7N27VyNHjtSHH34of39/JSUladq0afLz87Nitm7dqj/96U/asGGDmjdvrhEjRuipp56q8e8MciYAANAQ1OTvQZdKzlTTdtuf//xnPfbYY7r99tslSVFRUdqzZ48yMjJq3LFR/xN7AQAAAG7SuI42wBPk5eXp4MGD1paTkyNJuvXWWyVJU6dOVWZmpmbNmqW8vDyFhYUpLi5OR48etcoYPXq0li5dqiVLlmjNmjU6duyYEhMTVV5ebsUkJSVpy5YtysrKUlZWlrZs2aLk5GTreHl5uQYOHKjjx49rzZo1WrJkid566y2NGTPGiikpKVFcXJycTqfy8vI0c+ZMTZs2TZmZmXV9mwAAAHAOnpAzff/991XWHPHx8VFFRUWNy+ABNAAAAABoAFq1auXyesqUKbryyisVGxsrY4xmzJihJ554QjfffLMkaf78+QoNDdXixYs1YsQIFRcXa+7cuVqwYIH69esnSVq4cKHCw8O1YsUKJSQkaPv27crKylJubq6io6MlSXPmzFFMTIx27NihiIgIZWdn6/PPP9e+ffvkdDolSdOnT1dKSoomT56soKAgLVq0SCdPntS8efNkt9sVGRmpnTt3KjMzU2lpaR711CIAAAAurkGDBmny5Mlq27atunTpos2bNyszM1P33HNPjctgxAYAAAC8hm8dbYCnKSsr08KFC3XPPffIZrNp165dKigoUHx8vBVjt9sVGxurtWvXSpI2btyoU6dOucQ4nU5FRkZaMevWrZPD4bA6NSSpR48ecjgcLjGRkZFWp4YkJSQkqLS0VBs3brRiYmNjXeZVTkhI0IEDB7R79+5qr6m0tFQlJSUuGwAAANzLE3KmmTNn6pZbblFqaqo6deqksWPHasSIEfrLX/5S4zLo2AAAAACABmbZsmU6cuSIUlJSJEkFBQWSpNDQUJe40NBQ61hBQYH8/PwUHBx8zpiQkJAq5wsJCXGJOfM8wcHB8vPzO2dM5evKmDNlZGTI4XBYW3h4+LlvAgAAABqkwMBAzZgxQ3v27NGJEyf03//+V88884zLem3nQ8cGAAAAvIav3D9XLCM24Inmzp2rAQMGuIyakKouTGmMOe+0T2fGVBfvjhhjzFnfK0njxo1TcXGxte3bt++c9QYAAEDteUvORMcGAAAAADQge/bs0YoVK3TfffdZ+8LCwiRVHQ1RWFhojZQICwtTWVmZioqKzhlz6NChKuc8fPiwS8yZ5ykqKtKpU6fOGVNYWCip6qiSSna7XUFBQS4bAAAAUB06NgAAAOA1PGG+WKCuvfrqqwoJCdHAgQOtfR06dFBYWJhycnKsfWVlZVq1apV69uwpSerWrZsaN27sEnPw4EHl5+dbMTExMSouLtaGDRusmPXr16u4uNglJj8/XwcPHrRisrOzZbfb1a1bNytm9erVKisrc4lxOp1q3769G+8GAAAAasNbciY6NgAAAACggaioqNCrr76qYcOGydf3xxTSZrNp9OjRSk9P19KlS5Wfn6+UlBQ1bdpUSUlJkiSHw6F7771XY8aM0cqVK7V582YNHTpUUVFR6tevnySpU6dO6t+/v4YPH67c3Fzl5uZq+PDhSkxMVEREhCQpPj5enTt3VnJysjZv3qyVK1dq7NixGj58uDXKIikpSXa7XSkpKcrPz9fSpUuVnp6utLS0806NBQAAAJwPD6ABAADAa1TO8epOp91cHvBzrFixQnv37tU999xT5dgjjzyiEydOKDU1VUVFRYqOjlZ2drYCAwOtmOeff16+vr4aMmSITpw4ob59+2revHny8fGxYhYtWqRRo0YpPj5ekjR48GDNmjXLOu7j46Ply5crNTVVvXr1kr+/v5KSkjRt2jQrxuFwKCcnRyNHjlT37t0VHBystLQ0paWl1cVtAQAAQA15S85kM5UruOGiKikpkcPhUHFxMXPHAgCABsmT2jOVdXlRkr+byz4hKVXyiOsELiWe9DsGAADgQnhSe8bbciamogIAAAAAAAAAAA0GU1EBAADAa/jK/cOqT7m5PAAAAACoL96SMzFiAwAAAAAAAAAANBiM2AAAAIDX8JX7G7g0mAEAAAB4C2/JmRixAQAAAAAAAAAAGgyP6Nho3769bDZblW3kyJGSJGOMJkyYIKfTKX9/f/Xu3Vvbtm1zKaO0tFQPPvigWrZsqYCAAA0ePFj79+93iSkqKlJycrIcDoccDoeSk5N15MgRl5i9e/dq0KBBCggIUMuWLTVq1CiVlZW5xGzdulWxsbHy9/dXmzZtNGnSJBlj3H9jAAAAUCuN62gDAAAAAG/gLTmTR3Rs5OXl6eDBg9aWk5MjSbr11lslSVOnTlVmZqZmzZqlvLw8hYWFKS4uTkePHrXKGD16tJYuXaolS5ZozZo1OnbsmBITE1VeXm7FJCUlacuWLcrKylJWVpa2bNmi5ORk63h5ebkGDhyo48ePa82aNVqyZIneeustjRkzxoopKSlRXFycnE6n8vLyNHPmTE2bNk2ZmZl1fZsAAAAAAAAAALjkecSUwa1atXJ5PWXKFF155ZWKjY2VMUYzZszQE088oZtvvlmSNH/+fIWGhmrx4sUaMWKEiouLNXfuXC1YsED9+vWTJC1cuFDh4eFasWKFEhIStH37dmVlZSk3N1fR0dGSpDlz5igmJkY7duxQRESEsrOz9fnnn2vfvn1yOp2SpOnTpyslJUWTJ09WUFCQFi1apJMnT2revHmy2+2KjIzUzp07lZmZqbS0NNlstot45wAAAPBTdfG0ECM2AAAAAHgLb8mZPGLExk+VlZVp4cKFuueee2Sz2bRr1y4VFBQoPj7eirHb7YqNjdXatWslSRs3btSpU6dcYpxOpyIjI62YdevWyeFwWJ0aktSjRw85HA6XmMjISKtTQ5ISEhJUWlqqjRs3WjGxsbGy2+0uMQcOHNDu3bvPel2lpaUqKSlx2QAAAC4Gm22itXk73zraAAAAAMAbeEvO5HEdG8uWLdORI0eUkpIiSSooKJAkhYaGusSFhoZaxwoKCuTn56fg4OBzxoSEhFQ5X0hIiEvMmecJDg6Wn5/fOWMqX1fGVCcjI8Na28PhcCg8PPzsNwEAAAAAAAAAAFTL4x5Amzt3rgYMGOAyakJSlSmejDHnnfbpzJjq4t0RU7lw+LnqM27cOKWlpVmvS0pK6NwAAAAXhTHj67sKF42v3D8M2uMazAAAAABwgbwlZ/KoERt79uzRihUrdN9991n7wsLCJFUdDVFYWGiNlAgLC1NZWZmKiorOGXPo0KEq5zx8+LBLzJnnKSoq0qlTp84ZU1hYKKnqqJKfstvtCgoKctkAAAAAAAAAAEDteFTHxquvvqqQkBANHDjQ2tehQweFhYUpJyfH2ldWVqZVq1apZ8+ekqRu3bqpcePGLjEHDx5Ufn6+FRMTE6Pi4mJt2LDBilm/fr2Ki4tdYvLz83Xw4EErJjs7W3a7Xd26dbNiVq9erbKyMpcYp9Op9u3bu/FuAAAAoLa8Zb5YAAAAAKgL3pIzeUzHRkVFhV599VUNGzZMvr4/3gqbzabRo0crPT1dS5cuVX5+vlJSUtS0aVMlJSVJkhwOh+69916NGTNGK1eu1ObNmzV06FBFRUWpX79+kqROnTqpf//+Gj58uHJzc5Wbm6vhw4crMTFRERERkqT4+Hh17txZycnJ2rx5s1auXKmxY8dq+PDh1giLpKQk2e12paSkKD8/X0uXLlV6errS0tLOOzUWAAAAAAAAAAD4eTzmAbQVK1Zo7969uueee6oce+SRR3TixAmlpqaqqKhI0dHRys7OVmBgoBXz/PPPy9fXV0OGDNGJEyfUt29fzZs3Tz4+PlbMokWLNGrUKMXHx0uSBg8erFmzZlnHfXx8tHz5cqWmpqpXr17y9/dXUlKSpk2bZsU4HA7l5ORo5MiR6t69u4KDg5WWluayfgYAAADqR2O5f75Yd5cHAAAAAPXFW3Imm6lc+RoXVUlJiRwOh4qLi1lvAwAANEie1J6prMsHkgLcXPZxSQmSR1wncCnxpN8xAAAAF8KT2jPeljN5zFRUAAAAwM/lCfPFrl69WoMGDZLT6ZTNZtOyZcvOGjtixAjZbDbNmDGjlmcBAAAAgNrzhJzJHejYAAAAgNfw1Y9Dq9211baRfvz4cV1zzTUuU55WZ9myZVq/fr2cTmctzwAAAAAAF8YTciZ38Jg1NgAAAABvMGDAAA0YMOCcMV9//bX+9Kc/6YMPPtDAgQMvUs0AAAAAwDvQsQEAAACvURfDoCvLKykpcdlvt9tlt9trXV5FRYWSk5P15z//WV26dHFDDQEAAACgZuoyZ7qYmIoKAAAAqIHw8HA5HA5ry8jIuKBynn32Wfn6+mrUqFFuriEAAAAAXBoYsQEAAACvUTnHq7vLlKR9+/YpKCjI2n8hozU2btyov/71r9q0aZNsNpubaggAAAAANVOXOdPFxIgNAAAAoAaCgoJctgvp2Pjkk09UWFiotm3bytfXV76+vtqzZ4/GjBmj9u3bu7/SAAAAAOCFGLEBAAAAr+Hp88UmJyerX79+LvsSEhKUnJysu+++241nAgAAAICqPD1n8uRzAgAAAF7r2LFj+vLLL63Xu3bt0pYtW9S8eXO1bdtWLVq0cIlv3LixwsLCFBERcbGrCgAAAAANEh0bAAAA8Bq+cv/8rrVtMH/66afq06eP9TotLU2SNGzYMM2bN899FQMAAACAWvKEnKmhnhMAAACoE56wEF7v3r1ljKlx/O7du2t5BgAAAAC4MJ6QM7kDi4cDAAAAAAAAAIAGgxEbAAAA8BreshAeAAAAANQFb8mZGLEBAAAAAAAAAAAaDB5AAwAAgNfw9ZEa29xcppFU7t4yAQAAAKA+eEvOxIgNAAAAAAAAAADQYDBiAwAAAF7D11fy9YKnjwAAAACgLnhLzsSIDQAAAAAAAAAA0GAwYgMAAABeo3EdzBfb2Li3PAAAAACoL96SM9GxAQAAAK9RZ8OqAQAAAMALeEvOxFRUAAAAAAAAAACgwWDEBgAAALxGYx+psZsf3Wlc4d7yAAAAAKC+eEvOxIgNAAAAAAAAAADQYDBiAwAAAN7DR+5/dMfN888CAAAAQL3xkpyJERsAAAAAAAAAAKDBYMQGAAAAvIev3P/oDmtsAAAAAPAWXpIzMWIDAAAAAAAAAAA0GIzYAAAAgPfwkqePAAAAAKBOeEnORMcGAAAAvIeXNNIBAAAAoE54Sc7EVFQAAAAAAAAAAKDBYMQGAAAAvEcjST71XQkAAAAA8FBekjMxYgMAAAAAAAAAADQYjNgAAACA9/CV+58+srm5PAAAAACoL16SMzFiAwAAAAAAAAAAXBTt27eXzWarso0cObLGZTBiAwAAAN7DS54+AgAAAIA64QE5U15ensrLy63X+fn5iouL06233lrjMujYAAAAAAAAAAAAF0WrVq1cXk+ZMkVXXnmlYmNja1wGHRsAAADwHj5y/9NHAAAAAOAt6jBnKikpcXltt9tlt9vP+Z6ysjItXLhQaWlpstlqPvSDNTYAAADgPXzraAMAAAAAb1CHOVN4eLgcDoe1ZWRknLc6y5Yt05EjR5SSklLrywAAAAAAAAAAALhg+/btU1BQkPX6fKM1JGnu3LkaMGCAnE5nrc7FiA0AAAB4Dx+5/8kjpraCh/j66681dOhQtWjRQk2bNtW1116rjRs3WseNMZowYYKcTqf8/f3Vu3dvbdu2zaWM0tJSPfjgg2rZsqUCAgI0ePBg7d+/3yWmqKhIycnJ1pN2ycnJOnLkiEvM3r17NWjQIAUEBKhly5YaNWqUysrKXGK2bt2q2NhY+fv7q02bNpo0aZKMMe69KQAAAKidOsyZgoKCXLbzdWzs2bNHK1as0H333Vfry6BjAwAAAAA8XFFRkXr16qXGjRvr/fff1+eff67p06frsssus2KmTp2qzMxMzZo1S3l5eQoLC1NcXJyOHj1qxYwePVpLly7VkiVLtGbNGh07dkyJiYkqLy+3YpKSkrRlyxZlZWUpKytLW7ZsUXJysnW8vLxcAwcO1PHjx7VmzRotWbJEb731lsaMGWPFlJSUKC4uTk6nU3l5eZo5c6amTZumzMzMur1RAAAAaDBeffVVhYSEaODAgbV+L1NRAQAAwHvUxUJ4PGAOD/Dss88qPDxcr776qrWvffv21r+NMZoxY4aeeOIJ3XzzzZKk+fPnKzQ0VIsXL9aIESNUXFysuXPnasGCBerXr58kaeHChQoPD9eKFSuUkJCg7du3KysrS7m5uYqOjpYkzZkzRzExMdqxY4ciIiKUnZ2tzz//XPv27bOmDJg+fbpSUlI0efJkBQUFadGiRTp58qTmzZsnu92uyMhI7dy5U5mZmbVeGBIAAABu5CE5U0VFhV599VUNGzZMvr6176ZgxAYAAAAAeLi3335b3bt316233qqQkBBdd911mjNnjnV8165dKigoUHx8vLXPbrcrNjZWa9eulSRt3LhRp06dcolxOp2KjIy0YtatWyeHw2F1akhSjx495HA4XGIiIyNd5kFOSEhQaWmpNTXWunXrFBsb6zL9QEJCgg4cOKDdu3dXe42lpaUqKSlx2QAAAOCdVqxYob179+qee+65oPfTsQEAAADv4e65Yis3oJ599dVXmj17tjp27KgPPvhAf/zjHzVq1Ci99tprkqSCggJJUmhoqMv7QkNDrWMFBQXy8/NTcHDwOWNCQkKqnD8kJMQl5szzBAcHy8/P75wxla8rY86UkZFhrevhcDgUHh5+nrsCAACAWvOQnCk+Pl7GGF111VUXdBl0bAAAAACAh6uoqNAvf/lLpaen67rrrtOIESM0fPhwzZ492yXuzCmejDHnnfbpzJjq4t0RU7lw+NnqM27cOBUXF1vbvn37zllvAAAAXLro2AAAAID38JCnjwB3a926tTp37uyyr1OnTtq7d68kKSwsTFLV0RCFhYXWSImwsDCVlZWpqKjonDGHDh2qcv7Dhw+7xJx5nqKiIp06deqcMYWFhZKqjiqpZLfbFRQU5LIBAADAzbwkZ6JjAwAAAAA8XK9evbRjxw6XfTt37lS7du0kSR06dFBYWJhycnKs42VlZVq1apV69uwpSerWrZsaN27sEnPw4EHl5+dbMTExMSouLtaGDRusmPXr16u4uNglJj8/XwcPHrRisrOzZbfb1a1bNytm9erVKisrc4lxOp0ui54DAAAAF4KODQAAAHgPL3n6CDjTww8/rNzcXKWnp+vLL7/U4sWL9corr2jkyJGSfpjeafTo0UpPT9fSpUuVn5+vlJQUNW3aVElJSZIkh8Ohe++9V2PGjNHKlSu1efNmDR06VFFRUerXr5+kH0aB9O/fX8OHD1dubq5yc3M1fPhwJSYmKiIiQtIP8yF37txZycnJ2rx5s1auXKmxY8dq+PDh1iiLpKQk2e12paSkKD8/X0uXLlV6errS0tLOOzUWAAAA6pCX5EykaQAAAPAejST5uLnMCjeXB1yA66+/XkuXLtW4ceM0adIkdejQQTNmzNCdd95pxTzyyCM6ceKEUlNTVVRUpOjoaGVnZyswMNCKef755+Xr66shQ4boxIkT6tu3r+bNmycfnx9/cBYtWqRRo0YpPj5ekjR48GDNmjXLOu7j46Ply5crNTVVvXr1kr+/v5KSkjRt2jQrxuFwKCcnRyNHjlT37t0VHBystLQ0paWl1eVtAgAAwPl4Sc5kM5UruOGiKikpkcPhUHFxMXPHAgCABsmT2jNWXeKkoMZuLvuU5MiRR1wncCnxpN8xAAAAF8KT2jPeljMxYgMAAADeoy6GQfMYEAAAAABv4SU5E2tsAAAAAAAAAACABsNjOja+/vprDR06VC1atFDTpk117bXXauPGjdZxY4wmTJggp9Mpf39/9e7dW9u2bXMpo7S0VA8++KBatmypgIAADR48WPv373eJKSoqUnJyshwOhxwOh5KTk3XkyBGXmL1792rQoEEKCAhQy5YtNWrUKJWVlbnEbN26VbGxsfL391ebNm00adIkMasXAABAPfOShfAAAAAANFw220TZbBPlcGTUd1Wq8pKcySM6NoqKitSrVy81btxY77//vj7//HNNnz5dl112mRUzdepUZWZmatasWcrLy1NYWJji4uJ09OhRK2b06NFaunSplixZojVr1ujYsWNKTExUeXm5FZOUlKQtW7YoKytLWVlZ2rJli5KTk63j5eXlGjhwoI4fP641a9ZoyZIleuuttzRmzBgrpqSkRHFxcXI6ncrLy9PMmTM1bdo0ZWZm1u2NAgAAAAAAAADgEucRi4c/9thj+te//qVPPvmk2uPGGDmdTo0ePVqPPvqopB9GZ4SGhurZZ5/ViBEjVFxcrFatWmnBggW67bbbJEkHDhxQeHi43nvvPSUkJGj79u3q3LmzcnNzFR0dLUnKzc1VTEyM/vOf/ygiIkLvv/++EhMTtW/fPjmdTknSkiVLlJKSosLCQgUFBWn27NkaN26cDh06JLvdLkmaMmWKZs6cqf3798tms533mj1p4RgAAIAL4UntGasuv6ujhfCWsXg4cLF50u8YAACAC+FJ7Rlvy5k8YsTG22+/re7du+vWW29VSEiIrrvuOs2ZM8c6vmvXLhUUFCg+Pt7aZ7fbFRsbq7Vr10qSNm7cqFOnTrnEOJ1ORUZGWjHr1q2Tw+GwOjUkqUePHnI4HC4xkZGRVqeGJCUkJKi0tNSaGmvdunWKjY21OjUqYw4cOKDdu3dXe42lpaUqKSlx2QAAAAAAAAAAQO14RMfGV199pdmzZ6tjx4764IMP9Mc//lGjRo3Sa6+9JkkqKCiQJIWGhrq8LzQ01DpWUFAgPz8/BQcHnzMmJCSkyvlDQkJcYs48T3BwsPz8/M4ZU/m6MuZMGRkZ1roeDodD4eHh57krAAAAqDUvmS8WAAAAAOqEl+RMHpGmVVRUqHv37kpPT5ckXXfdddq2bZtmz56tu+66y4o7c4onY8x5p306M6a6eHfEVM7odbb6jBs3TmlpadbrkpISOjcAAADczUfub+FWuLk8AAAAAKgvXpIzecSIjdatW6tz584u+zp16qS9e/dKksLCwiRVHQ1RWFhojZQICwtTWVmZioqKzhlz6NChKuc/fPiwS8yZ5ykqKtKpU6fOGVNYWCip6qiSSna7XUFBQS4bAAAAAAAAAACoHY/o2OjVq5d27Njhsm/nzp1q166dJKlDhw4KCwtTTk6OdbysrEyrVq1Sz549JUndunVT48aNXWIOHjyo/Px8KyYmJkbFxcXasGGDFbN+/XoVFxe7xOTn5+vgwYNWTHZ2tux2u7p162bFrF69WmVlZS4xTqdT7du3d8ctAQAAwIXwqaMNAAAAALyBl+RMHtGx8fDDDys3N1fp6en68ssvtXjxYr3yyisaOXKkpB+mdxo9erTS09O1dOlS5efnKyUlRU2bNlVSUpIkyeFw6N5779WYMWO0cuVKbd68WUOHDlVUVJT69esn6YdRIP3799fw4cOVm5ur3NxcDR8+XImJiYqIiJAkxcfHq3PnzkpOTtbmzZu1cuVKjR07VsOHD7dGWSQlJclutyslJUX5+flaunSp0tPTlZaWdt6psQAAAAAAAAAAwIXziDU2rr/+ei1dulTjxo3TpEmT1KFDB82YMUN33nmnFfPII4/oxIkTSk1NVVFRkaKjo5Wdna3AwEAr5vnnn5evr6+GDBmiEydOqG/fvpo3b558fH7sMlq0aJFGjRql+Ph4SdLgwYM1a9Ys67iPj4+WL1+u1NRU9erVS/7+/kpKStK0adOsGIfDoZycHI0cOVLdu3dXcHCw0tLSXNbQAAAAQD2oi4XrWGMDAAAAgLfwkpzJZipXvcZFVVJSIofDoeLiYtbbAAAADZIntWesutwlBfm5uewyyfGaPOI6gUuJJ/2OAQAAuBCe1J7xtpzJI0ZsAAAAAG7hJU8fAQAAAECd8JKcySPW2AAAAAAAAAAAAKgJRmwAAADAe3jJ00cAAAAAUCe8JGdixAYAAAC8RyNJPm7eatliXr16tQYNGiSn0ymbzaZly5ZZx06dOqVHH31UUVFRCggIkNPp1F133aUDBw5c8CUDAAAAQI15QM7kDnRsAAAAAG50/PhxXXPNNZo1a1aVY99//702bdqkp556Sps2bdI///lP7dy5U4MHD66HmgIAAABAw8RUVAAAAPAedTGsurx24QMGDNCAAQOqPeZwOJSTk+Oyb+bMmbrhhhu0d+9etW3b9kJrCQAAAADn5wE5kzvQsQEAAADUQElJictru90uu93+s8stLi6WzWbTZZdd9rPLAgAAAIBLAVNRAQAAwHv41tEmKTw8XA6Hw9oyMjJ+dnVPnjypxx57TElJSQoKCvrZ5QEAAADAOdVhznQxMWIDAAAAqIF9+/a5dD783NEap06d0u23366Kigq9+OKLP7d6AAAAAHDJoGMDAAAA3sPn/2/uLlNSUFCQ20ZVnDp1SkOGDNGuXbv04YcfMloDAAAAwMVRhznTxUTHBgAAAHARVXZqfPHFF/roo4/UokWL+q4SAAAAADQodGwAAADAe9TF/K7ltQs/duyYvvzyS+v1rl27tGXLFjVv3lxOp1O33HKLNm3apHfffVfl5eUqKCiQJDVv3lx+fn7urDkAAAAAuPKAnMkd6NgAAACA9/CR+1u4p2sX/umnn6pPnz7W67S0NEnSsGHDNGHCBL399tuSpGuvvdblfR999JF69+79c2oKAAAAAOfmATmTO9CxAQAAALhR7969ZYw56/FzHQMAAAAAnB8dGwAAAPAedTGsmhYzAAAAAG/hJTlTo4t/SgAAAAAAAAAAgAvD82cAAADwHj7/f3N3mQAAAADgDbwkZ2LEBgAAAAAAAAAAaDAYsQEAAADv4SXzxQIAAABAnfCSnIkRGwAAAAAAAAAAoMHg+TMAAAB4Dy95+ggAAAAA6oSX5EykaQAAAPAejeT+hesY4wwAAADAW3hJzkSaBgAAAAAAAAAAGgxGbAAAAMB7eMmwagAAAACoE16SMzFiAwAAAAAAAAAANBg8fwYAAADv4SVPHwEAAABAnfCSnIkRGwAAAAAAAAAAoMHg+TMAAAB4D5//v7m7TAAAAADwBl6SMzFiAwAAAAAAAKhDNttE2WwT67saAOA1GLEBAAAA7+El88UCAAAAQJ3wkpyJNA0AgHry0ye2jBlfjzUBvIiP3N/CZSoqAADwM9HeB7xfg8nxvSRnYioqAAAAAAAAAADQYDBiAwCAeuLRT3AADZWXDKsGAAAA0LA0mBzfS3ImRmwAAAAAAAAAAIAGg+fPAAAA4D185P75XVljAwAAAIC38JKciREbAAAAAAAAAACgwaBjAwAAAN7Dt442AAAAAPAGHpIzff311xo6dKhatGihpk2b6tprr9XGjRtrdRkAAAAAAAAAAAB1rqioSL169VKfPn30/vvvKyQkRP/973912WWX1bgMOjYAAADgPepihAUtZgAAAADewgNypmeffVbh4eF69dVXrX3t27evVRlMRQUAAADv0Ug/Lobnro0WMwAAAABvUYc5U0lJictWWlpabRXefvttde/eXbfeeqtCQkJ03XXXac6cObW+DAAAAAAAAAAAgAsWHh4uh8NhbRkZGdXGffXVV5o9e7Y6duyoDz74QH/84x81atQovfbaazU+Fx0bAAAA8B4eshAe4G4TJkyQzWZz2cLCwqzjxhhNmDBBTqdT/v7+6t27t7Zt2+ZSRmlpqR588EG1bNlSAQEBGjx4sPbv3+8SU1RUpOTkZCsZTU5O1pEjR1xi9u7dq0GDBikgIEAtW7bUqFGjVFZW5hKzdetWxcbGyt/fX23atNGkSZNkjHHvTQEAAEDt1WHOtG/fPhUXF1vbuHHjqq1CRUWFfvnLXyo9PV3XXXedRowYoeHDh2v27Nk1vgw6NgAAAACgAejSpYsOHjxobVu3brWOTZ06VZmZmZo1a5by8vIUFhamuLg4HT161IoZPXq0li5dqiVLlmjNmjU6duyYEhMTVV5ebsUkJSVpy5YtysrKUlZWlrZs2aLk5GTreHl5uQYOHKjjx49rzZo1WrJkid566y2NGTPGiikpKVFcXJycTqfy8vI0c+ZMTZs2TZmZmXV8hwAAAFCfgoKCXDa73V5tXOvWrdW5c2eXfZ06ddLevXtrfC6ePwMAAID38ICF8IC64uvr6zJKo5IxRjNmzNATTzyhm2++WZI0f/58hYaGavHixRoxYoSKi4s1d+5cLViwQP369ZMkLVy4UOHh4VqxYoUSEhK0fft2ZWVlKTc3V9HR0ZKkOXPmKCYmRjt27FBERISys7P1+eefa9++fXI6nZKk6dOnKyUlRZMnT1ZQUJAWLVqkkydPat68ebLb7YqMjNTOnTuVmZmptLQ02Wy2i3THAAAAUIUH5Ey9evXSjh07XPbt3LlT7dq1q3EZjNgAAAAAgAbgiy++kNPpVIcOHXT77bfrq6++kiTt2rVLBQUFio+Pt2LtdrtiY2O1du1aSdLGjRt16tQplxin06nIyEgrZt26dXI4HFanhiT16NFDDofDJSYyMtLq1JCkhIQElZaWauPGjVZMbGysyxN6CQkJOnDggHbv3n3W6ystLa2y4CQAAEBDZLNNlM02UQ5H9WtMXOoefvhh5ebmKj09XV9++aUWL16sV155RSNHjqxxGXRsAAAAwHv41NEG1LPo6Gi99tpr+uCDDzRnzhwVFBSoZ8+e+vbbb1VQUCBJCg0NdXlPaGiodaygoEB+fn4KDg4+Z0xISEiVc4eEhLjEnHme4OBg+fn5nTOm8nVlTHUyMjJcFpsMDw8/900BAABA7XlAznT99ddr6dKlev311xUZGam//OUvmjFjhu68884al8HAegAAAADwcAMGDLD+HRUVpZiYGF155ZWaP3++evToIUlVpngyxpx32qczY6qLd0dM5cLh56rPuHHjlJaWZr0uKSmhcwMAADRIxoyX9EN7xuGYUs+18UyJiYlKTEy84PczYgMAAADew7eONsDDBAQEKCoqSl988YW17saZoyEKCwutkRJhYWEqKytTUVHROWMOHTpU5VyHDx92iTnzPEVFRTp16tQ5YwoLCyVVHVXyU3a7vcqCkwAAAHAzL8mZ6NgAAACA9/CR+xvoTEUFD1RaWqrt27erdevW6tChg8LCwpSTk2MdLysr06pVq9SzZ09JUrdu3dS4cWOXmIMHDyo/P9+KiYmJUXFxsTZs2GDFrF+/XsXFxS4x+fn5OnjwoBWTnZ0tu92ubt26WTGrV69WWVmZS4zT6VT79u3dfzMAAABQc16SM9GxAQAAAAAebuzYsVq1apV27dql9evX65ZbblFJSYmGDRsmm82m0aNHKz09XUuXLlV+fr5SUlLUtGlTJSUlSZIcDofuvfdejRkzRitXrtTmzZs1dOhQRUVFqV+/fpKkTp06qX///ho+fLhyc3OVm5ur4cOHKzExUREREZKk+Ph4de7cWcnJydq8ebNWrlypsWPHavjw4dYIi6SkJNntdqWkpCg/P19Lly5Venq60tLSzjs1FgAAAFATDKwHAACA96iLYdC0mOEB9u/frzvuuEPffPONWrVqpR49eig3N1ft2rWTJD3yyCM6ceKEUlNTVVRUpOjoaGVnZyswMNAq4/nnn5evr6+GDBmiEydOqG/fvpo3b558fH58xG7RokUaNWqU4uPjJUmDBw/WrFmzrOM+Pj5avny5UlNT1atXL/n7+yspKUnTpk2zYhwOh3JycjRy5Eh1795dwcHBSktLc1k/AwAAAPXES3Imm6lcxQ0X1Q8LxzhUXFzM3LEAAKBB8qT2jFWXNVJQMzeXfUxy3CiPuE7gUuJJv2MAAAAuhCe1Z7wtZ/KIqagmTJggm83mslUugCdJxhhNmDBBTqdT/v7+6t27t7Zt2+ZSRmlpqR588EG1bNlSAQEBGjx4sPbv3+8SU1RUpOTkZDkcDjkcDiUnJ+vIkSMuMXv37tWgQYMUEBCgli1batSoUS5zw0rS1q1bFRsbK39/f7Vp00aTJk0S/UMAAAAewKeONgAAAADwBl6SM3lEx4YkdenSRQcPHrS2rVu3WsemTp2qzMxMzZo1S3l5eQoLC1NcXJyOHj1qxYwePVpLly7VkiVLtGbNGh07dkyJiYkqLy+3YpKSkrRlyxZlZWUpKytLW7ZsUXJysnW8vLxcAwcO1PHjx7VmzRotWbJEb731lsaMGWPFlJSUKC4uTk6nU3l5eZo5c6amTZumzMzMOr5DAAAAAAAAAADAY2YM9vX1dRmlUckYoxkzZuiJJ57QzTffLEmaP3++QkNDtXjxYo0YMULFxcWaO3euFixYYC18t3DhQoWHh2vFihVKSEjQ9u3blZWVpdzcXEVHR0uS5syZo5iYGO3YsUMRERHKzs7W559/rn379snpdEqSpk+frpSUFE2ePFlBQUFatGiRTp48qXnz5slutysyMlI7d+5UZmYmi+EBAADUNy+ZLxYAAAAA6oSX5EweM2Ljiy++kNPpVIcOHXT77bfrq6++kiTt2rVLBQUF1uJ1kmS32xUbG6u1a9dKkjZu3KhTp065xDidTkVGRlox69atk8PhsDo1JKlHjx5yOBwuMZGRkVanhiQlJCSotLRUGzdutGJiY2Nlt9tdYg4cOKDdu3ef9fpKS0tVUlLisgEAAAAAAAAAgNrxiI6N6Ohovfbaa/rggw80Z84cFRQUqGfPnvr2229VUFAgSQoNDXV5T2hoqHWsoKBAfn5+Cg4OPmdMSEhIlXOHhIS4xJx5nuDgYPn5+Z0zpvJ1ZUx1MjIyrLU9HA6HwsPDz31TAAAAUHs++vEJJHdtrLEBAAAAwFt4Sc7kER0bAwYM0B/+8AdFRUWpX79+Wr58uaQfppyqdOYUT8aY8077dGZMdfHuiKlcOPxc9Rk3bpyKi4utbd++feesOwAAAAAAAAAAqMojOjbOFBAQoKioKH3xxRfWuhtnjoYoLCy0RkqEhYWprKxMRUVF54w5dOhQlXMdPnzYJebM8xQVFenUqVPnjCksLJRUdVTJT9ntdgUFBblsAAAAcDOfOtoAAAAAwBt4Sc7kkR0bpaWl2r59u1q3bq0OHTooLCxMOTk51vGysjKtWrVKPXv2lCR169ZNjRs3dok5ePCg8vPzrZiYmBgVFxdrw4YNVsz69etVXFzsEpOfn6+DBw9aMdnZ2bLb7erWrZsVs3r1apWVlbnEOJ1OtW/f3v03AwAAADXn7iHVdbGwHgAAAADUFy/JmTyiY2Ps2LFatWqVdu3apfXr1+uWW25RSUmJhg0bJpvNptGjRys9PV1Lly5Vfn6+UlJS1LRpUyUlJUmSHA6H7r33Xo0ZM0YrV67U5s2bNXToUGtqK0nq1KmT+vfvr+HDhys3N1e5ubkaPny4EhMTFRERIUmKj49X586dlZycrM2bN2vlypUaO3ashg8fbo2wSEpKkt1uV0pKivLz87V06VKlp6crLS3tvFNjAQAAAAAAAACAn8cjnj/bv3+/7rjjDn3zzTdq1aqVevToodzcXLVr106S9Mgjj+jEiRNKTU1VUVGRoqOjlZ2drcDAQKuM559/Xr6+vhoyZIhOnDihvn37at68efLx+XEczKJFizRq1CjFx8dLkgYPHqxZs2ZZx318fLR8+XKlpqaqV69e8vf3V1JSkqZNm2bFOBwO5eTkaOTIkerevbuCg4OVlpamtLS0ur5NAAAAOJ+6eFrII1rMAAAAAOAGXpIz2Uzlyte4qEpKSuRwOFRcXMx6GwAAoEHypPaMVZcdUlDg+eNrVfZRyREhj7hO4FLiSb9jAAAALoQntWe8LWfi+TMAAAB4Dy95+ggAAAAA6oSX5EwescYGAAAAAAAAAABATfD8GQAAALyGaSQZn/PH1bZMAAAAAPAG3pIzkaYBAAAAAAAAAIAGgxEbAAAA8Brlvj9s7i4TAAAAALyBt+RMpGkAAADwGt7SSAcAAACAuuAtORNTUQHAJcxmm2htAAD3WL16tQYNGiSn0ymbzaZly5a5HDfGaMKECXI6nfL391fv3r21bdu2+qksAAAAALfgbywXFx0bAAAA8BqnfWw67dPIzZutVnU4fvy4rrnmGs2aNava41OnTlVmZqZmzZqlvLw8hYWFKS4uTkePHnXHLQAAAACAs/KEnMkdGFgPAAAAuNGAAQM0YMCAao8ZYzRjxgw98cQTuvnmmyVJ8+fPV2hoqBYvXqwRI0ZczKoCAAAAQINExwYAXMKMGV/fVQAAtyr39VW5r3ufFir3NZJOqaSkxGW/3W6X3W6vVVm7du1SQUGB4uPjXcqJjY3V2rVr6dgAAAAAGqiG8jeWusyZLiamogIAAABqIDw8XA6Hw9oyMjJqXUZBQYEkKTQ01GV/aGiodQwAAAAAcG6M2AAAAIDXKPfxUbmb53ct9/nh6aN9+/YpKCjI2l/b0Ro/ZbO51tEYU2UfAAAAALhbXeZMFxMdGwAAAEANBAUFuXRsXIiwsDBJP4zcaN26tbW/sLCwyigOAAAAAED1mIoKAAAAXqNCPip381YhH7fVr0OHDgoLC1NOTo61r6ysTKtWrVLPnj3ddh4AAAAAqI6n50w1xYgNAAAAeI3T8tFpuXdY9WmZWsUfO3ZMX375pfV6165d2rJli5o3b662bdtq9OjRSk9PV8eOHdWxY0elp6eradOmSkpKcmu9AQAAAOBMnpAzuQMdGwAAAIAbffrpp+rTp4/1Oi0tTZI0bNgwzZs3T4888ohOnDih1NRUFRUVKTo6WtnZ2QoMDKyvKgMAAABAg0LHBgAAALzGD0Oh3TvbarkqahXfu3dvGXP2J5ZsNpsmTJigCRMm/MyaAQAAAPAUNttE69/GjK/HmpybJ+RM7sAaGwAAAAAAAAAAoMFgxAYAAAC8Rt08feTe+WcBAAAAoL54S87EiA0AAAAAAAAAANBgMGIDAAAAXsNbnj4CAAAA0LB48roaP+UtORMjNgAAAAAAAAAAQIPBiA0AAAB4DW95+ggAAAAA6oK35Ex0bAAAAMBrlMtHp72gkQ4AAAAAdcFbciamogIAAAAAAAAAAA0GIzYAAADgNcrlWwfDqivcWh4AAAAA1BdvyZkYsQEAAAAAAAAAABoMRmwAAADAa5Srkcrl4+YyAQANkc020fq3MePrsSYAAHgOb8mZGLEBAAAAAAAAAAAaDEZsAAAAwGuUy8crnj4CAAAAgLrgLTkTHRsAAEkM1QcAAIB3oU0LAID3omMDAAAAXuO0fHTazU8fnXZraQAAAABQf7wlZ6JjA9CPT6rzRA8uZXz/AXiDCvm6fVh1hWxuLQ8AAAAA6ou35EwsHg4AAAAAAAAAABoMRmwA4kl1AD8P65MAnsNbFsIDAAAAgLrgLTkTIzYAAAAAAAAAAECDwYgNAAB+JkZpAJ7DW54+AgAAAIC64C05EyM2AAAAAAAAAABAg8GIDQAAAHiNcjWqg6ePjFvLAwAAAID64i05EyM2AAAAAAAAAADARTFhwgTZbDaXLSwsrFZlMGIDAAAAXuO0fHTazU8fnWbEBgAAAAAv4Sk5U5cuXbRixQrrtY9P7epExwYAAAC8Rrl8Ve7mJi6LhwMAAAA4H5ttovVvY8bXY03OzVNyJl9f31qP0vgppqICAAAAAAAAAAA/S0lJictWWlp61tgvvvhCTqdTHTp00O23366vvvqqVudixAYAAAC8RoV83L4QXgVTUQEAAAA4D08epfFTdZkzhYeHu+wfP368JkyYUCU+Ojpar732mq666iodOnRIzzzzjHr27Klt27apRYsWNTonIzYAAAAAoIHJyMiQzWbT6NGjrX3GGE2YMEFOp1P+/v7q3bu3tm3b5vK+0tJSPfjgg2rZsqUCAgI0ePBg7d+/3yWmqKhIycnJcjgccjgcSk5O1pEjR1xi9u7dq0GDBikgIEAtW7bUqFGjVFZW5hKzdetWxcbGyt/fX23atNGkSZNkDB2FAAAA3mrfvn0qLi62tnHjxlUbN2DAAP3hD39QVFSU+vXrp+XLl0uS5s+fX+Nz0bEBAAAAr1H+/58+cvcGeJK8vDy98sor6tq1q8v+qVOnKjMzU7NmzVJeXp7CwsIUFxeno0ePWjGjR4/W0qVLtWTJEq1Zs0bHjh1TYmKiyst/nBk5KSlJW7ZsUVZWlrKysrRlyxYlJydbx8vLyzVw4EAdP35ca9as0ZIlS/TWW29pzJgxVkxJSYni4uLkdDqVl5enmTNnatq0acrMzKzDOwMAAIDzqcucKSgoyGWz2+01qlNAQICioqL0xRdf1Pg66NgAAAAAgAbi2LFjuvPOOzVnzhwFBwdb+40xmjFjhp544gndfPPNioyM1Pz58/X9999r8eLFkqTi4mLNnTtX06dPV79+/XTddddp4cKF2rp1q1asWCFJ2r59u7KysvS3v/1NMTExiomJ0Zw5c/Tuu+9qx44dkqTs7Gx9/vnnWrhwoa677jr169dP06dP15w5c1RSUiJJWrRokU6ePKl58+YpMjJSN998sx5//HFlZmYyagMAAAAuSktLtX37drVu3brG76FjAwAAAF7jtBrptHzcvNFkhucYOXKkBg4cqH79+rns37VrlwoKChQfH2/ts9vtio2N1dq1ayVJGzdu1KlTp1xinE6nIiMjrZh169bJ4XAoOjraiunRo4ccDodLTGRkpJxOpxWTkJCg0tJSbdy40YqJjY11eUovISFBBw4c0O7du6u9ttLS0ioLTgIAAMC9PCFnGjt2rFatWqVdu3Zp/fr1uuWWW1RSUqJhw4bVuAyyNAAAAABoAJYsWaJNmzYpIyOjyrGCggJJUmhoqMv+0NBQ61hBQYH8/PxcRnpUFxMSElKl/JCQEJeYM88THBwsPz+/c8ZUvq6MOVNGRoa1rofD4aiy+CQAAAC8w/79+3XHHXcoIiJCN998s/z8/JSbm6t27drVuAzfOqwfAAAAcFGVy1flbm7ilotpc1D/9u3bp4ceekjZ2dlq0qTJWeNsNpvLa2NMlX1nOjOmunh3xFROQXW2+owbN05paWnW65KSEjo3AAAA3MwTcqYlS5b87HPSsQEAAACvUReLfZerwq3lARdi48aNKiwsVLdu3ax95eXlWr16tWbNmmWtf1FQUOAyN3FhYaE1UiIsLExlZWUqKipyGbVRWFionj17WjGHDh2qcv7Dhw+7lLN+/XqX40VFRTp16pRLzJkjMwoLCyVVHVVSyW6313iBSQAAAFwYb8mZmIoKAAAAADxc3759tXXrVm3ZssXaunfvrjvvvFNbtmzRFVdcobCwMOXk5FjvKSsr06pVq6xOi27duqlx48YuMQcPHlR+fr4VExMTo+LiYm3YsMGKWb9+vYqLi11i8vPzdfDgQSsmOztbdrvd6niJiYnR6tWrVVZW5hLjdDrVvn17998gAAAAXFIYsQEAAACv4S1PHwFnCgwMVGRkpMu+gIAAtWjRwto/evRopaenq2PHjurYsaPS09PVtGlTJSUlSZIcDofuvfdejRkzRi1atFDz5s01duxYRUVFWYuRd+rUSf3799fw4cP18ssvS5Luv/9+JSYmKiIiQpIUHx+vzp07Kzk5Wc8995y+++47jR07VsOHD1dQUJAkKSkpSRMnTlRKSooef/xxffHFF0pPT9fTTz993qmxAAAAUHe8JWfyyBEbGRkZstlsGj16tLXPGKMJEybI6XTK399fvXv31rZt21zeV1paqgcffFAtW7ZUQECABg8erP3797vEFBUVKTk52VqQLjk5WUeOHHGJ2bt3rwYNGqSAgAC1bNlSo0aNcnnSSJK2bt2q2NhY+fv7q02bNpo0aZI1ZywAAAAAXGyPPPKIRo8erdTUVHXv3l1ff/21srOzFRgYaMU8//zz+t3vfqchQ4aoV69eatq0qd555x35+PyY3C5atEhRUVGKj49XfHy8unbtqgULFljHfXx8tHz5cjVp0kS9evXSkCFD9Lvf/U7Tpk2zYhwOh3JycrR//351795dqampSktLc1lDAwAAALhQHjdiIy8vT6+88oq6du3qsn/q1KnKzMzUvHnzdNVVV+mZZ55RXFycduzYYTXUR48erXfeeUdLlixRixYtNGbMGCUmJmrjxo1WQz0pKUn79+9XVlaWpB+ePkpOTtY777wj6Yd5agcOHKhWrVppzZo1+vbbbzVs2DAZYzRz5kxJPyxiFxcXpz59+igvL087d+5USkqKAgICNGbMmIt1qwAAAHCGcvnotBc8fQTUxMcff+zy2mazacKECZowYcJZ39OkSRPNnDnTym2q07x5cy1cuPCc527btq3efffdc8ZERUVp9erV54wBAADAxeUtOZNHdWwcO3ZMd955p+bMmaNnnnnG2m+M0YwZM/TEE0/o5ptvliTNnz9foaGhWrx4sUaMGKHi4mLNnTtXCxYssIZRL1y4UOHh4VqxYoUSEhK0fft2ZWVlKTc3V9HR0ZKkOXPmKCYmRjt27FBERISys7P1+eefa9++fXI6nZKk6dOnKyUlRZMnT1ZQUJAWLVqkkydPat68ebLb7YqMjNTOnTuVmZmptLQ0hlYDAACvY7NNtP5tzPh6rAkAAAAA4FLnUVNRjRw5UgMHDrQ6Jirt2rVLBQUFio+Pt/bZ7XbFxsZq7dq1kqSNGzfq1KlTLjFOp1ORkZFWzLp16+RwOKxODUnq0aOHHA6HS0xkZKTVqSFJCQkJKi0t1caNG62Y2NhY2e12l5gDBw5o9+7d1V5baWmpSkpKXDYAAAC4V7l862QDAAAAAG/gLTmTx2RpS5Ys0aZNm5SXl1flWEFBgSQpNDTUZX9oaKj27Nljxfj5+Sk4OLhKTOX7CwoKFBISUqX8kJAQl5gzzxMcHCw/Pz+XmPbt21c5T+WxDh06VDlHRkaGJk6cWGU/AABAQ8AoDQAAAACAp/CIjo19+/bpoYceUnZ2tpo0aXLWuDOneDLGnHfapzNjqot3R0zlwuFnq8+4ceNcFsorKSlReHj4OesOAACA2ilXI5W7fb7YcreWBwAAAAD1xVtyJo/o2Ni4caMKCwvVrVs3a195eblWr16tWbNmaceOHZJ+GA3RunVrK6awsNAaKREWFqaysjIVFRW5jNooLCxUz549rZhDhw5VOf/hw4ddylm/fr3L8aKiIp06dcolpnL0xk/PI1UdVVLJbre7TF0FAAAA9yuXTx000t1bHgAAAADUF2/JmTxijY2+fftq69at2rJli7V1795dd955p7Zs2aIrrrhCYWFhysnJsd5TVlamVatWWZ0W3bp1U+PGjV1iDh48qPz8fCsmJiZGxcXF2rBhgxWzfv16FRcXu8Tk5+fr4MGDVkx2drbsdrvV8RITE6PVq1errKzMJcbpdFaZogoAAAAAAAAAALiPR4zYCAwMVGRkpMu+gIAAtWjRwto/evRopaenq2PHjurYsaPS09PVtGlTJSUlSZIcDofuvfdejRkzRi1atFDz5s01duxYRUVFWYuRd+rUSf3799fw4cP18ssvS5Luv/9+JSYmKiIiQpIUHx+vzp07Kzk5Wc8995y+++47jR07VsOHD1dQUJAkKSkpSRMnTlRKSooef/xxffHFF0pPT9fTTz993qmxAAAAUHe85ekjAAAAAKgL3pIzeUTHRk088sgjOnHihFJTU1VUVKTo6GhlZ2crMDDQinn++efl6+urIUOG6MSJE+rbt6/mzZsnH58fb+yiRYs0atQoxcfHS5IGDx6sWbNmWcd9fHy0fPlypaamqlevXvL391dSUpKmTZtmxTgcDuXk5GjkyJHq3r27goODlZaW5rKGBgAAgLey2Sb+/3+drNd6AAAAAAAuTTZTueo1LqqSkhI5HA4VFxdbI0EAAAAaAteOjSke0Z6pbFtNKU5RkyA/t5Z9sqRMjznmecR1ApcSciYAANDQeVJ7xttypgYzYgMAAACewZjxkiobxlPquTYAAAAAgEsNHRsAAADwGuXyVbmbm7jlqnBreQAAAABQX7wlZ2p00c8IAAAAAAAAAABwgRixAQAAAK9RLh+Vy8ftZQIAAACAN/CWnIkRGwAAAAAAAAAAoMFgxAYAAAC8Rrka1cHTRzwLBAAAAMA7eEvO9LM6No4cOaIPPvhAX3/9tWw2m1q3bq2EhAQFBwe7q34AAABAjZ2Wj067uZHu7vJw6SFvAgAAgKfwlpzpgrtS5s6dqxtuuEG5ubmqqKhQeXm5cnNz1aNHD82dO9eddQQAAACABom8CQAAwLvZbBOrbKh7FzxiY+rUqdq0aZOaNWvmsv8vf/mLunXrpnvvvfdnVw4AAACojXL5qtzNs62Wq7xW8adPn9aECRO0aNEiFRQUqHXr1kpJSdGTTz6pRo2Y1upSQ94EAAAAT+IJOZM7XPAV2Gw2HTt2rEoD/dixY7LZbD+7YgBwIX7aK27M+HqsCQDgUvXss8/qpZde0vz589WlSxd9+umnuvvuu+VwOPTQQw/Vd/VwkZE3AQAAeDf+/lQ/LrhjY9q0aYqNjVVkZKTatGkjSdq/f7+2bdum6dOnu62CAAAAQE1VyMftC+FV1LK8devW6be//a0GDhwoSWrfvr1ef/11ffrpp26tFxoG8iYAAAB4Ek/Imdyhxh0bycnJevnll9W0aVNJUmJiogYMGKANGzbowIEDMsaoTZs2uuGGG+TjwwKLAAAA8C4lJSUur+12u+x2e5W4G2+8US+99JJ27typq666Sp999pnWrFmjGTNmXKSaoj6RNwEAAAB1r8YdG4sXL9b06dOtBvqIESM0ZcoUxcTESJKMMTp9+jSNcwD1iuF/AHBpK6+Dp48qywsPD3fZP378eE2YMKFK/KOPPqri4mJdffXV8vHxUXl5uSZPnqw77rjDrfWCZyJvAgAAgCery5zpYqrx6oXGGJfXr7/+uoqKiqzXhYWFCgwMdF/NAAAAAA+yb98+FRcXW9u4ceOqjXvjjTe0cOFCLV68WJs2bdL8+fM1bdo0zZ8//yLXGPWBvAkAAACoexe8xsaZDXZJKisr+1mVAQDUHAulAzgTvxekcjWqg6ePfngWKCgoSEFBQeeN//Of/6zHHntMt99+uyQpKipKe/bsUUZGhoYNG+bWusHzkTcBAADAk9RlznQxXXDHRnVsNps7iwMAAABq5bR85OPmRvrpWpb3/fffq1Ej14a9j4+PKioq3FktNGDkTQAAAKgvnpAzuUOtOjYWL16sX//614qKipJEgxwA6tOl+jQ2gLPj94JnGDRokCZPnqy2bduqS5cu2rx5szIzM3XPPffUd9VwkZA3AQAAAHWrxh0bN954o8aPH6+jR4+qcePGOn36tB5//HHdeOON+uUvf6lWrVrVZT0BAACA8yqXr8rdOyi51uXNnDlTTz31lFJTU1VYWCin06kRI0bo6aefdmu94JnImwAAAODJPCFncocan3H16tWSpC+++EIbN27Upk2btHHjRj311FM6cuQITyEBAAAAkgIDAzVjxgzNmDGjvquCekDeBAAAANS9WneldOzYUR07drQWQ5SkXbt26dNPP9XmzZvdWjkAAACgNirk4/aF8CrqYb5YNHzkTQAAAPBE3pIzuWWMSIcOHdShQwfdeuut7igOAAAAALwOeRMAAADgHhd/8isAAAD8bDbbROvfLBr+o/I6ePrI3eUBAAAA8D4NJUfzlpyp0UU/IwAAAAAAAAAAwAVixAYAAEADVJ9PAP34JNLJeqvD2ZyWjxq5+Wmh04zYAAAAAHAenjxK46e8JWeiYwMAAABe44dh1e5t4jIVFQAAAABv4S05E1NRAQAAAAAAAACABoMRGwAAAKiVyiHWJSUlcjim1HNtXHnLQngAAAAAUBe8JWdixAYAAAAAAAAAAGgwGLEBAAAAr+EtTx8BAAAAaLhszf//P0y9VqNa3pIzMWIDAAAAAAAAAAA0GIzYAAAAgNeoqIOnjyoYsQEAAAA3stkmWv+uXL8O3sV898N/S0okh6N+63Imb8mZGLEBAAAAAAAAAAAaDEZsAAAAwGuclo9sbn5a6DQjNgAAAAB4CW/JmejYAAAAXoeh3TVTeZ+86R6Vy0eN3NzEZfFwAAAAuJM3tb/R8HhLzsRUVAAAAAAAAAAAoMFgxAYAAPA6PAFVM954n354+si9TwsxYgMAAACAt/CWnIkRGwAAAAAAAAAAoMFgxAYAAPAa3rhmBGrHW54+AgAAAIC64C05EyM2AAAAAAAAAABAg8GIDQDAJafyqX6JJ/u9DZ+nezXEn5XT8pHNzU8LnWbEBgAAAAAv4S05EyM2AAAAAAAAAABAg0HHBgAAALxGhXxV7uatgkHOAAAAALyEJ+ZMGRkZstlsGj16dI3fQ5YGAPA655s+p6FMqQPP1xCnaqqNhnhN5XUwrJrFwwEAAAB4C0/LmfLy8vTKK6+oa9eutXofIzYAAAAAAAAAAMBFdezYMd15552aM2eOgoODa/VeRmwAALxOQ3zK/KcqRwE09Ou4FFxKn1FDGZ1SrkZ18PQRzwIBAAAA8A51mTOVlJS47Lfb7bLb7Wd938iRIzVw4ED169dPzzzzTK3OSZYGAAAAAB5u9uzZ6tq1q4KCghQUFKSYmBi9//771nFjjCZMmCCn0yl/f3/17t1b27ZtcymjtLRUDz74oFq2bKmAgAANHjxY+/fvd4kpKipScnKyHA6HHA6HkpOTdeTIEZeYvXv3atCgQQoICFDLli01atQolZWVucRs3bpVsbGx8vf3V5s2bTRp0iQZY9x7UwAAAOBRwsPDrXakw+FQRkbGWWOXLFmiTZs2nTPmXBixAQCAh/Hkp+Hh/c42MqOhfC9Py0dy89NHp1ljAx7g8ssv15QpU/SLX/xCkjR//nz99re/1ebNm9WlSxdNnTpVmZmZmjdvnq666io988wziouL044dOxQYGChJGj16tN555x0tWbJELVq00JgxY5SYmKiNGzfKx+eH73lSUpL279+vrKwsSdL999+v5ORkvfPOO5Kk8vJyDRw4UK1atdKaNWv07bffatiwYTLGaObMmZJ+eFIvLi5Offr0UV5ennbu3KmUlBQFBARozJgxF/vWAQAA4CfqMmfat2+fgoKCrP1nG62xb98+PfTQQ8rOzlaTJk0u6Jw2w2Mz9aKkpEQOh0PFxcUuHzYAAEB9qs2UU57UnqmsS4/ipfINCnBr2adLjivX8XuPuE7gp5o3b67nnntO99xzj5xOp0aPHq1HH31U0g+jM0JDQ/Xss89qxIgRKi4uVqtWrbRgwQLddtttkqQDBw4oPDxc7733nhISErR9+3Z17txZubm5io6OliTl5uYqJiZG//nPfxQREaH3339fiYmJ2rdvn5xOp6QfnrZLSUlRYWGhgoKCNHv2bI0bN06HDh2yktkpU6Zo5syZ2r9/v2w2W42uz5N+xwAAAFwIT2rPeFLOtGzZMv3+97+3Hq6RfniAxmazqVGjRiotLXU5Vh2mogIAAIDXKJdvnWyAJykvL9eSJUt0/PhxxcTEaNeuXSooKFB8fLwVY7fbFRsbq7Vr10qSNm7cqFOnTrnEOJ1ORUZGWjHr1q2Tw+GwOjUkqUePHnI4HC4xkZGRVqeGJCUkJKi0tFQbN260YmJjY12e0EtISNCBAwe0e/fus15XaWmpSkpKXDYAAAC4lyfkTH379tXWrVu1ZcsWa+vevbvuvPNObdmy5bydGhJTUQEAAHiEmoyUuBgLeDeUKaeAS9HWrVsVExOjkydPqlmzZlq6dKk6d+5sdTqEhoa6xIeGhmrPnj2SpIKCAvn5+Sk4OLhKTEFBgRUTEhJS5bwhISEuMWeeJzg4WH5+fi4x7du3r3KeymMdOnSo9voyMjI0ceLEao8BAAB4KlvzH/5rvqvfejQkgYGBioyMdNkXEBCgFi1aVNl/NnRsAAAAwGtUyEflbp4vtoI1NuAhIiIitGXLFh05ckRvvfWWhg0bplWrVlnHz5ziyRhz3mmfzoypLt4dMZUzIJ+rPuPGjVNaWpr1uqSkROHh4eesPwAAAGrHW3ImOjYAAADcoHI0xYWOeKjJ+xhNcX7ldbAQnrsb/cCF8vPzsxYP7969u/Ly8vTXv/7VWlejoKBArVu3tuILCwutkRJhYWEqKytTUVGRy6iNwsJC9ezZ04o5dOhQlfMePnzYpZz169e7HC8qKtKpU6dcYipHb/z0PFLVUSU/Zbfbz7rAJAAAgMcqqhxx2jDyNU/NmT7++ONaxXvEGhuzZ89W165dFRQUpKCgIMXExOj999+3jhtjNGHCBDmdTvn7+6t3797atm2bSxmlpaV68MEH1bJlSwUEBGjw4MHav3+/S0xRUZGSk5PlcDjkcDiUnJysI0eOuMTs3btXgwYNUkBAgFq2bKlRo0aprKzMJWbr1q2KjY2Vv7+/2rRpo0mTJok12AEAAABcTMYYlZaWqkOHDgoLC1NOTo51rKysTKtWrbI6Lbp166bGjRu7xBw8eFD5+flWTExMjIqLi7VhwwYrZv369SouLnaJyc/P18GDB62Y7Oxs2e12devWzYpZvXq1Sx6VnZ0tp9NZZYoqAAAA4EJ4xIiNyy+/XFOmTLGePpo/f75++9vfavPmzerSpYumTp2qzMxMzZs3T1dddZWeeeYZxcXFaceOHQoMDJQkjR49Wu+8846WLFmiFi1aaMyYMUpMTNTGjRutxUaSkpK0f/9+ZWVlSZLuv/9+JScn65133pH0wyJ8AwcOVKtWrbRmzRp9++23GjZsmIwxmjlzpqQfhkPHxcWpT58+ysvL086dO5WSkqKAgACNGTPmYt86AADqzcVY76Ehacj3wJs+S099+gj4uR5//HENGDBA4eHhOnr0qJYsWaKPP/5YWVlZstlsGj16tNLT09WxY0d17NhR6enpatq0qZKSkiRJDodD9957r8aMGaMWLVqoefPmGjt2rKKiotSvXz9JUqdOndS/f38NHz5cL7/8sqQfcqbExERFRERIkuLj49W5c2clJyfrueee03fffaexY8dq+PDhCgoKkvRD3jVx4kSlpKTo8ccf1xdffKH09HQ9/fTT550aCwAAAHXLW3Imj+jYGDRokMvryZMna/bs2crNzVXnzp01Y8YMPfHEE7r55psl/dDxERoaqsWLF2vEiBEqLi7W3LlztWDBAqtRvnDhQoWHh2vFihVKSEjQ9u3blZWVpdzcXEVHR0uS5syZo5iYGO3YsUMRERHKzs7W559/rn379snpdEqSpk+frpSUFE2ePFlBQUFatGiRTp48qXnz5slutysyMlI7d+5UZmam0tLSaKgDAAAAcLtDhw4pOTlZBw8elMPhUNeuXZWVlaW4uDhJ0iOPPKITJ04oNTVVRUVFio6OVnZ2tvUgmCQ9//zz8vX11ZAhQ3TixAn17dtX8+bNsx4Ek6RFixZp1KhRio+PlyQNHjxYs2bNso77+Pho+fLlSk1NVa9eveTv76+kpCRNmzbNinE4HMrJydHIkSPVvXt3BQcHKy0tzWX9DAAAAODn8IiOjZ8qLy/Xm2++qePHjysmJka7du1SQUGB1bCWfph7NTY2VmvXrtWIESO0ceNGnTp1yiXG6XQqMjJSa9euVUJCgtatWyeHw2F1akhSjx495HA4tHbtWkVERGjdunWKjIy0OjUkKSEhQaWlpdq4caP69OmjdevWKTY21mXu14SEBI0bN067d+9Whw4dqr2u0tJSlZaWWq9LSkrccr8AAADwo9NqJOP2p488YvZWXOLmzp17zuM2m00TJkzQhAkTzhrTpEkTzZw50xqNXp3mzZtr4cKF5zxX27Zt9e67754zJioqSqtXrz5nDAAAAC4+b8mZPKZjY+vWrYqJidHJkyfVrFkzLV26VJ07d9batWslVV1kLjQ0VHv27JH0wyJ5fn5+LovgVcZULlpXUFCgkJCQKucNCQlxiTnzPMHBwfLz83OJOXNe2Mr3FBQUnLVjIyMjQxMnTqz2GAAADVFDn7IIP+KzBAAAAIALQz5VPzymYyMiIkJbtmzRkSNH9NZbb2nYsGFatWqVdfzMKZ6MMeed9unMmOri3RFTuXD4ueozbtw4l6HXJSUlCg8PP2f9AQAAUDvl8pW7m7jlntNkBgAAAICfxVtyJo/J0vz8/KzFw7t37668vDz99a9/1aOPPirph9EQrVu3tuILCwutkRJhYWEqKytTUVGRy6iNwsJC9ezZ04o5dOhQlfMePnzYpZz169e7HC8qKtKpU6dcYipHb/z0PFLVUSU/ZbfbXaavAgAAly5vWqwbAAAAAICLzWMnDDbGqLS0VB06dFBYWJhycnKsY2VlZVq1apXVadGtWzc1btzYJebgwYPKz8+3YmJiYlRcXKwNGzZYMevXr1dxcbFLTH5+vg4ePGjFZGdny263q1u3blbM6tWrVVZW5hLjdDqrTFEFAACAi6tcPnWyAQAAAIA38JacySNGbDz++OMaMGCAwsPDdfToUS1ZskQff/yxsrKyZLPZNHr0aKWnp6tjx47q2LGj0tPT1bRpUyUlJUmSHA6H7r33Xo0ZM0YtWrRQ8+bNNXbsWEVFRalfv36SpE6dOql///4aPny4Xn75ZUnS/fffr8TEREVEREiS4uPj1blzZyUnJ+u5557Td999p7Fjx2r48OEKCgqSJCUlJWnixIlKSUnR448/ri+++ELp6el6+umnzzs1FgDAO/H0PWqL70ndqZCP5OZGdQUdGwAAAAC8hLfkTB7RsXHo0CElJyfr4MGDcjgc6tq1q7KyshQXFydJeuSRR3TixAmlpqaqqKhI0dHRys7OVmBgoFXG888/L19fXw0ZMkQnTpxQ3759NW/ePPn4/HhTFy1apFGjRik+Pl6SNHjwYM2aNcs67uPjo+XLlys1NVW9evWSv7+/kpKSNG3aNCvG4XAoJydHI0eOVPfu3RUcHKy0tDSX9TMAAAAAAAAAAEDdsJnKla9xUZWUlMjhcKi4uNgaDQIAaJgYsYFLlSe1ZyrrEl6cp0ZBzdxadkXJMe1zXO8R1wlcSjzpdwwAAMCF8KT2jLflTB4xYgMAgIbsp50ZF9rJQecIAAAAAABAzdCxAQAAAK9RLh8ZNzdxWWMDAAAAgLfwlpyJjg0AANzoQkdbMErj/BjV4qqu7gf3GQAAAADg6ejYAAAAgNf44ekj9z4txIgNAAAAAN7CW3ImOjYAAKgnPBlfOxfjHjWkz6Su6ufp1w0AAAAAAB0bAAAA8Bre8vQRAAAAANQFb8mZ6NgAPFxDenoYQPXO9nPMz7Tn4TNp+MorfGQq3NxId3N5AAAAALxPQ/kbnrfkTI0u+hkBAAAAAAAAAAAuECM2AAAA4DXKT/uo4rR7nxYybi4PAAAAAOqLt+RMdGwAHs6Th64BqBl+juFJqhse3VCGTAMAAACApyKXurjo2AAAAIDXKD/tK9tp9zZxjZvLAwAAAID64i05E1kagIuGJ4I9A5/D2XFvcCmo7rvN9939vv76az366KN6//33deLECV111VWaO3euunXrVt9VAwAAAIAGj44NAAAAeI3y041kc/t8sY1qFV9UVKRevXqpT58+ev/99xUSEqL//ve/uuyyy9xaLwAAAACoLU/ImdyBjg0AFw1PBHsGd38O3jTKoaHXHz/ypu8lGp5nn31W4eHhevXVV6197du3r78KAQAA4P+1d//hUpX1/v9fW5ANInsEFRDFX4mEIWZiBKSCCsgJf+QpTPiQu8uoDqiHwDL1CtEI1NQ6B09kHoOOAnpVomJKoAnIQRRJv/4qLJPEo6gJ7i0ov7br+wd7Zu7F3Pdea81eM7Nm7efjuvblMLPmXvf6Nc49636/3wBShhsbAAAASI2mPe1KMPtob3uNjY2+52tra1VbW1uw/EMPPaRRo0bpq1/9qlauXKnDDz9ckyZN0sSJE2PtFwAAAABEVcoxUzmVP0YEAAAAKJE9e9ppz+6Y/5q/pPfu3VuZTCb3N3v2bGsf/v73v2vu3Lnq06eP/vCHP+g73/mOrrjiCv3P//xPOXcFAAAAABQo5ZipnIjYAAC0SinT/GTTCSUxlRCpjpKtGo8J51Tybdq0SXV1dbl/26I1JOmTTz7RwIEDNWvWLEnSySefrJdffllz587V17/+9bL0FQAAAADSjBsbAAAASA2vqb28ppi/4ja3V1dX57ux4XLYYYfphBNO8D3Xr18//e53v4u3XwAAAAAQUSnHTOXEjQ0AQGLZZq0nZVY7M+oRt2o6p/LX4Y6K9iOphg4dqg0bNviee/XVV3XUUUdVqEcAAAAASs38vSKPMVOpcGMDAAAA6bGn3d6/uNuM4Lvf/a6GDBmiWbNmaezYsXrmmWf0y1/+Ur/85S/j7RcAAAAARJWAMVMcuLEBAKgqrlntSYnkAOIQx/nMNVE5p556qhYvXqyrr75aN9xwg4455hj97Gc/0/jx4yvdNQAAAAAlYht3NTY2KpO5sQK9ST9ubAAAACA9EjL7aMyYMRozZky8/QAAAACA1krImKm19iv7GgEAAAAAAAAAAIpExAaA1CINS9vCMS6/JF5j2T4lpT/FiqP/pdwH2bYTGVbdVCPtqYm/TQAAAABtmmsMXHXj0JSMmYjYAAAAAAAAAAAAVYOIDQCpVTV3yoEqlZRrLImRI1lx9y3J25oYe5r/4m4TAAAAQJvmGoNlnzfHa+ravKxX6l4VISVjJm5sAAAAID1S8iUdAAAAAEoiJWMmbmwASAxmIgPxqbocn62Q5G109a3Yz7ugZfkcBQAAAIDKsI3BGhulTKYCnWkDuLEBAACA9EjJ7CMAAAAAKImUjJkoHg4AAAAAAAAAAKoGERsAEoO0KSiFtpSSydTWtrfalOr4cNy1d6bQ7hK0CQAAAAAWVfe7Q0rGTERsAAAAAAAAAACAqkHEBgAg1apmxgRy0lQAO03bUjWamv/ibhMAAAAA0iAlYyYiNgAAAAAAAAAAQNUgYgMAEAozz1EuaTq/it2WMNcb16TDHsWf35UaGwAAAAAMVT0eS8mYiRsbAAAASI+UfEkHAAAAgJJIyZiJVFQAAAAAAAAAAKBqELEBAAilEqGV2dDOqgvrBCyihCqHOefjTHNV1WHU+0rJ7CMAAAAAlRFmfFTV46aUjJmI2AAAAAAAAAAAAFWDiA0AKCMiEKJJwn5K1Uz2hEvC9VHK452U88fWj6T0LRZNin+2UFPM7QEAAABIrFSNj2xSMmYiYgMAAAAAAAAAAFQNIjYAoIxSf9c/hThm5RNnzYhy9yFNqj5KKSX5YgEAAACgJFIyZiJiAwAAAAAAAAAAVA0iNgAAQFWrlqiCaomECNO3/LbsKG1nipGS2UcAAAAAkqtaxndWKRkzEbEBAACA9Nhdoj8AAAAASIMEjJnmzp2rAQMGqK6uTnV1dRo8eLAeffTRSG1wYwMAAAAAAAAAAJTFEUccoRtvvFHPPvusnn32WZ155pk6//zz9fLLL4dug1RUAFABVR2yCKAoabrWs9vS2NioTObGCvdmH03Nf3G3CQAAAKBNS81vOQkYM5177rm+f//4xz/W3LlztXbtWn3mM58J1QY3NgAAAAAAAAAAQKs0Njb6/l1bW6va2toW39PU1KTf/OY32r59uwYPHhx6XaSiAoAK8Lzrcn/Vrqbm+twf0q8cxzvudVTyHK2peSH3V/51t9Frs0n5Ynhx/RGxgQSYPXu2Tj31VHXp0kXdu3fXBRdcoA0bNviW8TxPM2bMUK9evdSpUycNGzasIJx/586duvzyy3XIIYeoc+fOOu+88/Tmm2/6ltm6dasmTJigTCajTCajCRMm6IMPPvAt88Ybb+jcc89V586ddcghh+iKK67Qrl27fMu8+OKLOuOMM9SpUycdfvjhuuGGG+R5Xnw7BQAAoIxcv+XUdNv7VzVKOGbq3bt37jtkJpPR7Nmznd148cUXdeCBB6q2tlbf+c53tHjxYp1wwgmhN4MbGwAAAACQcCtXrtTkyZO1du1aLV++XHv27NHIkSO1ffv23DI333yzbrvtNt1+++1at26devbsqREjRujDDz/MLTNlyhQtXrxY9957r1avXq1t27ZpzJgxamrK38EbN26cnn/+eS1dulRLly7V888/rwkTJuReb2pq0pe+9CVt375dq1ev1r333qvf/e53mjZtWm6ZxsZGjRgxQr169dK6des0Z84c3XLLLbrttttKvKcAAABQKZs2bVJDQ0Pu7+qrr3Yu27dvXz3//PNau3at/u3f/k2XXHKJXnnlldDrqvGYMlMRe3NSZ9TQ0KC6urpKdwdotdTkGQRQFeL+zMm2x+eXmz3yY4ekGxPxfSb73Uq3N0idYu7Lx43SZXxvQ7K899576t69u1auXKnTTz9dnuepV69emjJliq666ipJe6MzevTooZtuuknf/va31dDQoEMPPVR33323LrroIknSW2+9pd69e+uRRx7RqFGj9Oc//1knnHCC1q5dq0GDBkmS1q5dq8GDB+svf/mL+vbtq0cffVRjxozRpk2b1KtXL0nSvffeq/r6er377ruqq6vT3LlzdfXVV+udd97JpR+48cYbNWfOHL355puqqakJ3EbGTAAAIElc0fAtjSOT9H0m6WOms88+W5/61Kd0xx13hFqeiA0AAAAAqDINDQ2SpG7d9uY9eP3117V582aNHDkyt0xtba3OOOMMrVmzRpK0fv167d6927dMr1691L9//9wyTz31lDKZTO6mhiR94QtfUCaT8S3Tv3//3E0NSRo1apR27typ9evX55Y544wzfDmVR40apbfeeksbN260btPOnTvV2Njo+wMAAEDb4Hmedu7cGXr5RNzYIF8sAAAAYhF3rtjsH5Agnudp6tSp+uIXv6j+/ftLkjZv3ixJ6tGjh2/ZHj165F7bvHmzOnTooK5du7a4TPfu3QvW2b17d98y+66na9eu6tChQ4vLZP+dXWZfs2fP9uVk7t27d8CeAAAAQGQJGDNdc801evLJJ7Vx40a9+OKLuvbaa7VixQqNHz8+dBvto62yNLL5Yk899VTt2bNH1157rUaOHKlXXnlFnTt3lpTPFzt//nwdf/zxmjlzpkaMGKENGzaoS5cukvbmi12yZInuvfdeHXzwwZo2bZrGjBmj9evXq127dpL25ot98803tXTpUknSt771LU2YMEFLliyRlM8Xe+ihh2r16tV6//33dckll8jzPM2ZM0dSPl/s8OHDtW7dOr366quqr69X586dfXllgbYkzlQwcbWH8uMYolziPr/a0vlqC58Os/22ZfaGMt8YS79iU4obEdzYQMJcdtlleuGFF7R69eqC1/ZN8eR5XmDap32XsS0fxzLZiWCu/lx99dWaOnVq7t+NjY3c3AAAAImRmnFjAsZM77zzjiZMmKC3335bmUxGAwYM0NKlSzVixIjQbSTixkb2JkPWvHnz1L17d61fvz6XL/ZnP/uZrr32Wl144YWSpF//+tfq0aOHFi5cmMsXe9ddd+nuu+/W2WefLUm655571Lt3bz322GO5fLFLly715Yu98847NXjwYG3YsEF9+/bVsmXL9Morr/jyxd56662qr6/Xj3/8Y9XV1WnBggXasWOH5s+fr9raWvXv31+vvvqqbrvtNk2dOjVUvlgAAAAAiOryyy/XQw89pFWrVumII47IPd+zZ09Je6MhDjvssNzz7777bi5SomfPntq1a5e2bt3qi9p49913NWTIkNwy77zzTsF633vvPV87Tz/9tO/1rVu3avfu3b5l9o3MePfddyUVRpVk1dbW+lJXAQAAIJ3uuuuuVreRiFRU+yJfLNA2ed51uT8Eq6m5PveXFBxDoDJsnwXmZ4T5Z16nqbxemxR/SHVTWbcAsPI8T5dddpnuv/9+/fGPf9Qxxxzje/2YY45Rz549tXz58txzu3bt0sqVK3M3LU455RTtv//+vmXefvttvfTSS7llBg8erIaGBj3zzDO5ZZ5++mk1NDT4lnnppZf09ttv55ZZtmyZamtrdcopp+SWWbVqlS+l77Jly9SrVy8dffTRMe0VAACAykvabzOBUjJmStyNDfLFAgAAAIDf5MmTdc8992jhwoXq0qWLNm/erM2bN+vjjz+WtDe905QpUzRr1iwtXrxYL730kurr63XAAQdo3LhxkqRMJqNLL71U06ZN0+OPP67nnntO/+///T+deOKJuaj3fv366ZxzztHEiRO1du1arV27VhMnTtSYMWPUt29fSdLIkSN1wgknaMKECXruuef0+OOP68orr9TEiRNVV1cnaW8K4NraWtXX1+ull17S4sWLNWvWLCLcAQAAEItEpKIykS8WSL7sXehSzvINqtVALYfkbDfHwr0PynGtID1acy3Zlne1EWUmUVWeuwnIFwuUwty5cyVJw4YN8z0/b9481dfXS5K+//3v6+OPP9akSZO0detWDRo0SMuWLcvVJJSkn/70p2rfvr3Gjh2rjz/+WGeddZbmz5+fq0koSQsWLNAVV1yRi4Y/77zzdPvtt+deb9eunX7/+99r0qRJGjp0qDp16qRx48bplltuyS2TyWS0fPlyTZ48WQMHDlTXrl01depU35gIAAAg6cKM01r+3WpHKbrVOikZMyXqxgb5YgEAAACgUHYiVUtqamo0Y8YMzZgxw7lMx44dNWfOHM2ZM8e5TLdu3XTPPfe0uK4jjzxSDz/8cIvLnHjiiVq1alWLywAAAADFSEQqKvLFAgAAIBa7S/QHAAAAAGmQkjFTIiI2Jk+erIULF+rBBx/M5YuV9oYvd+rUyZcvtk+fPurTp49mzZrlzBd78MEHq1u3brryyiud+WLvuOMOSdK3vvUtZ77Yn/zkJ9qyZYs1X+z111+v+vp6XXPNNfrrX/+qWbNmafr06eSLRZtQjtQkVZn+JAZxp3UiTVR5RAlHRTTlPodral4w1jegrP2wpTErxfo4LwEAANKDMR9QWsVeV9n3NTY2KpO5Mc4uoVkibmyQLxYAAACxaGr+i7tNAAAAAEiDlIyZarwwyVoRu7136zJqaGjIRYIAKA8KOpdHkmcOJblv1cpWkLqU+7baj2Ec/Y/SRqn2V5K+z2T7oqsbpI4x92VHozQ7GdsJtCVJ+owBAAAIYht3Jen7TNrGTImosQEAAAAAAAAAABBGIlJRAXGr9pm8xWqr2x1VNe+bajrGSe5flL5V0z6vpPLUvyjdsbBFnJiSWOciShtxR3Tka5FsC92HsmmStKcEbQIAAABAC6rmN4OUjJmI2AAAAAAAAAAAAFWDiA0AAACkxx5J7UrQJgAAAACkQUrGTNzYQCpVTehXzNrqdrcl5TrGpF/Ka+vb3xpxn0elTD+VhOMcPR1UfAXIXe93rcPzBkjKFp8ratUAAABAm5K08UcaJGWf2lIbc4xLjxsbAAAASI/dij/Z6u6Y2wMAAACASknJmIkbGwAiC5rhi+rHsY1XUmaRxMFVZNu2XUnf1qT1L2p/WhulYbaRpnMUAAAASCK+Z/vFMQZJyj61javyj3dUoEdtAzc2AAAAkB5NzX9xtwkAAAAAaZCSMRM3NoAqV4lZtkm5Ix6EGchojTgjk6K2Uey6y3HOcy0h8ZoUf+E6bmwAAAAAsaqWsaVrnO3LZrDguoLXs/bWJbyxdB0sRkrGTHFn0wIAAAAAAAAAACgZIjaAKlctd7grIe59U+21Raq9/+VWyf1U7flFi1WOc9RVIySrWvdhlH0XpR5KVe6PPYp/6k7cs5kAAAAAJIorMiPUGGtcy20kTkrGTERsAAAAAAAAAACAqkHEBgAAANJjt6SaErQJAAAAAGmQkjETNzYAoMTiDEVsTVuJDoOENUVSJY9Za861YlNK2ZaPO5S3Wq6DMNttWybq+4pZtqXlAQAAgHKompQ/SIygc8Y5JupmLLOl5XXYi4vvCN1HREMqKgAAAKRHU4n+ijR79mzV1NRoypQpxTcCAAAAAHFJ2JipWERsACnF7IX4RdmPcex/Wxscy+Il/ZpIWp9a0584tyVp+yWqYs+7qEXAg6Jk3EXTvxxhHS9Y2mP2UUvWrVunX/7ylxowYECluwIAAJAq1T5OQPkVe864ojQCx2Ndmx97jdIHNxa1brSMiA0AAACkx54S/UW0bds2jR8/Xnfeeae6du3aqk0CAAAAgNgkZMzUWkRsABVQjpnjzF6orGqpBZD0KIYgUfofZvuK3R9xv6/YGhVRlHtb41COdSfxmgjTpzjO/yjrrqlZXFR7ZdGk+L9UN4dVNzY2+p6ura1VbW2t9S2TJ0/Wl770JZ199tmaOXNmzB0CAAAAUElhax42NkqZTHn7FqiEY6ZyImIDAAAACKF3797KZDK5v9mzZ1uXu/fee/WnP/3J+ToAAAAAoHWI2AAAAEB67C5dm5s2bVJdXV3uaVu0xqZNm/Tv//7vWrZsmTp27FiCzgAAAABAK5RwzFRONZ7neeVfLRobG5XJZNTQ0OAbIANhlSNVDdqusCGVLT1fSUnsU7Vo658tlTh3bIW9o15jtuMW7n3ZguCLQyxr9jNbdHybpKGJ+D6T/W6l8xuk/WPuy+5G6cFw39seeOABffnLX1a7du1yzzU1Nammpkb77befdu7c6XsNgBtjJgAAkFQ13fKPXQXGpWR9n0nKmCkuRGwAAAAgPZoUf7LVCPlizzrrLL344ou+577xjW/o05/+tK666ipuagAAAACorAqPmeLCjQ2gSqVxNnUpZ0ozgz8a2z4qtmixKe7jUO7jWk3nUXYmvucNiPS+chTldq0vSrRI0LGIGmFU7kiVuPsfFFnlkj0/whQDt7W3d8ZP4FvblC5duqh///6+5zp37qyDDz644HkAAAAAlVXsWLClKA2UBzc2AAAAkB57JNWUoE0AAAAASIOUjJmosVEhScqvhvKrplnfKE6xx9g1qz2oLSIX0JZV8vy3idqHYmcIxd2PXLshc8VKyfo+k8sXe06J8sUuTcZ2Am1Jkj5jAABIC8bz8Qgfhb9D0o2J+D6TtjETERsAAABIj5TMPgIAAACAkkjJmIkbGwAAAEiPUnyh5sYGAAAAgLRIyZiJGxtABRDqB5diz41SnlO2NDnlWF9r1lPJ0Nq2lBasHOsOs44oxbfj5irsXWwbQYpPc/eC8b6AgvJbze0ISn+3I3QfAAAAAFReW/1NKnzqKPc4r63uu6TixgYAAADSo0nxh1U3xdweAAAAAFRKSsZMFA+vEArhoa1I+53tpG+fbQZ5EvtZjSLNgPe9L9nnTLmxP1pTPLzwHIw6y8hsI29xYBvSl5v/u03S0ER8n8kVwjutQWofc1/2NEpP8r0NKDfGTAAARFfs+KKta83Y1LbPa7plG2uUPkjG95m0jZmI2AAAAEB6pCRfLAAAAACURErGTNzYAFBSpcpLmJQ6DEmfAVGNNSqqhRmlUWyuziSrRI2KOIXpfxzHrVSfI+HaXWw8HtDiskGfxfbIjeB+7J3x4+geAACqzu9BANqeNH1WVXv/K6U1+8363lztQuoSlgo3NgAAAJAeKZl9BAAAAAAlkZIx037lXyUAAAAAAAAAAEBxKB5eIRTCS75iwxDDFBSuZIijPQVJMkIuk9KPYkVJW1ON21dKUY59WzhPqr0frT3PbUXv9xVU1DpKQfcw/ShlWjfb9roKfMexXUGiFCBP0veZXCG8kxukdjH3palRei4Z2wm0JUn6jAEAAMlWqt9bckXAJSO9VPj1JOn7TNrGTERsAAAAAAAAAACAqkHERoUk6W5dsZIy6xhIunJcK2m9HoNmsse9jiREUMXdRtzbV64ohmLXl4SoKFfESZRIrrgLl/uLg+eLjgdF7gU/v0PSjYn4PpObfTSgRLOPXqju721ANUrDmAkAgGqRhLFUNQmOvGfMVGoUDwcAAEB67JEU97SdppjbAwAAAIBKScmYiYiNCqn07KNyz7gFWiPu8zXOtqLOsG6t1qwjaPZFUF2DKLPlwy5fKW3hMzD4eLc8gz/udZeyTkTxNZFarjlkqmS0S7mjblzHylbLRNomaWiyZh+dUKLZR68waxwot0qPmQAAQHWLoxZq68dxCYzYSMmYiYgNAAAApEdKZh8BAAAAQEmkZMxExEaFMPsIlZL0WeZJUO59FPcM8aTMCk+atG9fElUiuinOvLBh+m+K83qL+zq2R1sUHz2Tj+pIYMTG8SWaffQq39uAcmPMBAAAWqPocVW3/GNvS/DzLb2epO8zaRszEbEBAACA9Ngj6ZOY24y7PQAAAAColJSMmfYr/yoBAAAAAAAAAACKQ8QG0MakMQVP3EWJy72P4l5fsQWxin2fbdmwy1dKKQtZR+tHyymNggq6m8tWK9s2Flvg3nxv1DRStmWjXitBgtZdruvHVxA8Gyq9NVoKq3zB+R2x96/VmhR/vlgiNgAAAGJTLeNGVL+iz6+t5jjoOuvzNd0Kn7ePpRgzlQoRGwAAAAAAAAAAoGpQPLxCWiocE2fhU1u7pWg7yZK43UnsU5yqffui9L/atzWJqmX/V8uxL0eh7n1FOW7FvD8Md8RGcdE6zvYCisdFaS9qge9i121rw1cQL8S25hdolD5IWCG8wxuk/WLuyyeN0v8lYzuBtiRJxTYBAEDplWucHcdYKqwkfZ9J25iJVFQAAABIjz2KPyaZVFQAAAAA0iIlYyZubCRQkmf+VqMk7s+k9SnuO+Ku/Oxx5KWPs41i2/XP+C7hDIKA/sV93IrfH/FGWETZ1jjOtaBaDHHXWYjapyjrtm1LKc+NoNoVYSI67NfmC8bSiwteD8O97GLjcfiIjbjPtWD2fsb+uZDLERuirsnFlmV2S/pt8GoAAAAAhFctGQLiVrZtNWtl1BSuO9RY1hL14Xtf1+ZlyZVkNXv2bN1///36y1/+ok6dOmnIkCG66aab1Ldv39BtUGMDAAAA6bG7RH8AAAAAkAYJGDOtXLlSkydP1tq1a7V8+XLt2bNHI0eO1Pbt20O3QcQGAAAAAAAAAAAoi6VLl/r+PW/ePHXv3l3r16/X6aefHqoNbmxUWCYzW1LHsoRaVUvoWtkKBbXRsD6bUm5/UvZtPClssq+HT1/TGsH9iHfflir9VLHriON9LsWmxIpbUIqnoDRZrvdJRljs1mhpnWwpuOI4bmHSMOVTUNn7GcfndtQ+2d4XnHItuEB5lOu7sv+/yhcx1yLb/tpRtp6E9oniD/cmfBwAAKAqpOW3nqh9T8t2l0vQuDBK+mdXG/l0V21rzNTY2Oh7ura2VrW1tYFvb2hokCR169YtYMk8UlEBAAAAQBVYtWqVzj33XPXq1Us1NTV64IEHfK97nqcZM2aoV69e6tSpk4YNG6aXX37Zt8zOnTt1+eWX65BDDlHnzp113nnn6c033/Qts3XrVk2YMEGZTEaZTEYTJkzQBx984FvmjTfe0LnnnqvOnTvrkEMO0RVXXKFdu3b5lnnxxRd1xhlnqFOnTjr88MN1ww03yPO4UwgAAJBWvXv3zn2HzGQymj17duB7PM/T1KlT9cUvflH9+/cPvS4iNiqsoeFq1dXVRXpP2u/Clmub0rjvTHEX3DaVe9+Van1JiQhKyn6OImmF4FtqL8rsC//7Xmhe1j7jPko0RbHFz8PM2ne2nSteFhz9YLIV8Db3QbHna5h9nl9PcVEOLsX2OVqxb3u0S804+/ps+zdM9FDwtnzZ+noQf3/sBfG01ShovqB5mY8apYk3FrXOktkjqSbmNvkdFgmxfft2nXTSSfrGN76hf/3Xfy14/eabb9Ztt92m+fPn6/jjj9fMmTM1YsQIbdiwQV26dJEkTZkyRUuWLNG9996rgw8+WNOmTdOYMWO0fv16tWvXTpI0btw4vfnmm7kUAd/61rc0YcIELVmyRJLU1NSkL33pSzr00EO1evVqvf/++7rkkkvkeZ7mzJkjae9svREjRmj48OFat26dXn31VdXX16tz586aNm1aOXYXAKANSvI4upQqOUZPCtt4LIw4t7vYDAFlV8Ix06ZNm3y/dYeJ1rjsssv0wgsvaPXq1ZFWmZiIDWYfAQAAAIDb6NGjNXPmTF144YUFr3mep5/97Ge69tprdeGFF6p///769a9/rY8++kgLFy6UtDfE/6677tKtt96qs88+WyeffLLuuecevfjii3rsscckSX/+85+1dOlS/fd//7cGDx6swYMH684779TDDz+sDRs2SJKWLVumV155Rffcc49OPvlknX322br11lt155135tIPLFiwQDt27ND8+fPVv39/XXjhhbrmmmt02223OcdNO3fuVGNjo+8PAAAA1aOurs73F3Rj4/LLL9dDDz2kJ554QkcccUSkdSUmYoPZR+FV+x1UlEcc9RI410pXS6KSsyIqGSESLlKi5QiLUtZW8K9nQMGyYfphez5ctEJxEQ9xvM++P4zZ+UYERSVnoIS5bqLUCIlyrkWNmMk9t9BcX3DtjSCB29LVHhXiP56mLxe8bkb5mBEg9u1OYL5YIjbQRr3++uvavHmzRo4cmXuutrZWZ5xxhtasWaNvf/vbWr9+vXbv3u1bplevXurfv7/WrFmjUaNG6amnnlImk9GgQYNyy3zhC19QJpPRmjVr1LdvXz311FPq37+/evXqlVtm1KhR2rlzp9avX6/hw4frqaee0hlnnOEbzI4aNUpXX321Nm7cqGOOOaZgG2bPnq3rr0/w7EYAAFKmGn/3ifKbRimzmQTJrq+xsVGZDFHuBYt7ni6//HItXrxYK1assH43DJKYGxujR4/W6NGjra/tO/tIkn7961+rR48eWrhwob797W/nZh/dfffdOvvssyVJ99xzj3r37q3HHntMo0aNys0+Wrt2be6L+p133qnBgwdrw4YN6tu3b2720aZNm3Jf1G+99VbV19frxz/+serq6nyzj2pra9W/f3+9+uqruu222zR16lTV1MR9ZgAAACCU3ar4l3SgEjZv3ixJ6tGjh+/5Hj166B//+EdumQ4dOqhr164Fy2Tfv3nzZnXv3r2g/e7du/uW2Xc9Xbt2VYcOHXzLHH300QXryb5mG7xeffXVmjp1au7fjY2N6t27d8sbDgAAgGgSMGaaPHmyFi5cqAcffFBdunTJfYfMZDLq1KlTqDYSk4qqJUGzjyQFzj6SFDj7KLtMS7OPssvYZh+99dZb2rhxo3UbCKsGAAAAUGr7TrLyPC9w4tW+y9iWj2OZbAoqV39qa2sL0hcAAAAgfebOnauGhgYNGzZMhx12WO7vvvvuC91GYiI2WpKG2UdtPay62ELKSQ+JK7YwUdKESdMSxzZW07HNihLKGGX7om5/HOdanOdrEo+lK81PsamhgpYtR0qv1pxrQYWstSgghVKYAuUVCuWNq09B13fQsmHWF8fnRbGF6l399BUEP6f5v4vs6af8Kapa7GZyNKnis4+ASujZs6ekveORww47LPf8u+++mxur9OzZU7t27dLWrVt946Z3331XQ4YMyS3zzjvvFLT/3nvv+dp5+umnfa9v3bpVu3fv9i2THT+Z65EKx3UAgPRKy+8mSZTMcXnLxzuOcVAltzVKaubcuCuJY4kEjJniqFVdFREbWdU8++jqq69WQ0ND7m/Tpk0t9hsAAAAAwjrmmGPUs2dPLV++PPfcrl27tHLlytxNi1NOOUX777+/b5m3335bL730Um6ZwYMHq6GhQc8880xumaeffloNDQ2+ZV566SW9/fbbuWWWLVum2tpanXLKKbllVq1apV27dvmW6dWrV8EkMQAAACCqqojYSMPso9ra2sAq8GkWZ9HlJImjQHeSBd89j1YIt1TRD+VW7Mxtl2K31VUYOO7+lbqtMG27zxNXceTiCjPHEXUT57nbmkLdgYWsF9nfV2zx7SjHzbVd2eNZ7OeJ2V6xkTZRt9V/DmbZr8egNpzb3TV8Gy7O13ORGvYojaqVxFlRQAy2bdumv/3tb7l/v/7663r++efVrVs3HXnkkZoyZYpmzZqlPn36qE+fPpo1a5YOOOAAjRu3N2Qvk8no0ksv1bRp03TwwQerW7duuvLKK3XiiSfm6hT269dP55xzjiZOnKg77rhDkvStb31LY8aMUd++fSVJI0eO1AknnKAJEyboJz/5ibZs2aIrr7xSEydOzKWPGjdunK6//nrV19frmmuu0V//+lfNmjVL06dPpyYhALQhSRvPJ1FQJHa1/FYitT57RdzbF6aNwKiirsX1w9uy97+NjVImU1QTpZWCMVNVRGww+wgAAABAW/fss8/q5JNP1sknnyxJmjp1qk4++WRNnz5dkvT9739fU6ZM0aRJkzRw4ED93//9n5YtW6YuXbrk2vjpT3+qCy64QGPHjtXQoUN1wAEHaMmSJWrXrl1umQULFujEE0/UyJEjNXLkSA0YMEB333137vV27drp97//vTp27KihQ4dq7NixuuCCC3TLLbfklslkMlq+fLnefPNNDRw4UJMmTdLUqVN9xcEBAACAYtV4cSS0ioE5++jkk0/WbbfdpuHDh+dmH910002aPXu25s2bl5t9tGLFCm3YsCH3Rf3f/u3f9PDDD2v+/Pm52Ufvv/++1q9fn/uiPnr0aL311lu+2UdHHXWUlixZIklqamrSZz/7WfXo0SM3+6i+vl4XXHCB5syZI0lqaGhQ3759deaZZ+ZmH9XX12v69OmaNm1aqO1tbGxUJpNRQ0NDSYviRb3TSe7DeCX9TrpNKWcFVMv+qGRtkWJnwIdpr9j3lftYVfJcS9o5Gq6WRrTIqdK1Udx5HqSUdSls64lSv8TVdtRjlW8vOGoiaiRK6PddbETULLS8LkkLjDbGZ5/fIenGkn+fCSP73UpqkBR3Xxollf57GwC/co2ZAADVIWnjNUQX++8tRv3AbIREqLqDMYxfnXUMCxZslD5IxveZtI2ZEpOK6tlnn9Xw4cNz/87O5Lnkkks0f/58ff/739fHH3+sSZMmaevWrRo0aJB19lH79u01duxYffzxxzrrrLM0f/78gtlHV1xxhUaOHClJOu+883T77bfnXs/OPpo0aZKGDh2qTp06ady4cdbZR5MnT9bAgQPVtWtXZh8BAAAAAAAAAFAGibmxMWzYsBarodfU1GjGjBmaMWOGc5mOHTtqzpw5ucgKm27duumee+5psS9HHnmkHn744RaXOfHEE7Vq1aoWlwEAAAAAAAAAAPFKTCqqtibpYdVtKe0QiletxzhKceGkpDGKkiYuSlohW9hmUB/27Ucc6cuipA0q1b6N2naYcNQ43+dqI5aw2YBzpvhtbX2Kq6j9iHatBKV+C0odZe+Hq6h9cEqsLxvLmuuzt2dbt8m/ji8XvC5Jurh5PYtc22qsu6txDLeSigpA6SV9zITkq9bxClAszvnKYv8Xr9hxnKm1+9zXrlEw3PVbSdDvFbnfW0hFVTJVUTwcAAAAAAAAAABAImKjYqLOPirXXd84i4cnpXB5nIWby9UPuMU7G7v4IsHlECVaIe4oqzDrLKbtuAuel6PQe2sKtpc74ieWNppnlZizUlwz/11RGMVGRWWjA4LaLXxf6yN7AmfbOItzF+4P10wfbS0ugiVMxEa+3RDRVAEF9lzRPLnoDklaml04ibOP/qnSzD46JBHbCbQlRGwAQPXgN494sT/d4s9g0LzMAiNKY5yjDWOZYeOW5h4/oXOcfUvS95m0jZmI2AAAAAAAAAAAAFWDiI0KCXO3jruz0bSF/dUWtjFOpYxAKJX4axK0PNO7lJFJ/pz+iwvWF3dkQ5QIHVOxMzyKbyM44iGKKNtVrqg02zr856K5jFHPwRYtYsyU0aLWb2uUa8K9bMu1MNz1OBx1LrK1K7a6zjXjfWbUxCJL20YdDGcuWCNiI79OR99cESIXN++n3Y3Sb5M2+2izSjP7qGcithNoS5I0wxEIg/EaAJRecM3DaGN4W8YB35jJtDXg9whfxH6S6xKmY8xExAYAAAAAAAAAAKga7SvdAQAAACA+u5v/4m4TAAAAANIgHWMmbmwkWLGFT5MY8lqOkNw4UtyEUe3hxXGnOsq3W/oizlHFXYA5WgHs8Ps5ShHz6EW0Wy40HPdxi3IdhipyHMPnWlAYavA+iDd1lP+YhD83zJBWV4ohW+isMx1RUOouS4Hpgj651m1bxkiRZIbv1owL2KeLijtH3f35suNxdtngQt3FXtPOc3Frdj0tp7gqYCtMbhQor6lp+fr3s6fachU/zx+XHRHWAQBAulXj+BBA+VT770lJ4RpjRfndJPD3ihBjYGu6Kkuqqr3pn260toHW4cYGAAAAUmRP81/cbQIAAABAGqRjzETx8AqpdCG8Ut0lLuWsfVPxs+jD9y+OAsXx74PWzxwPKvAbpY3o7yuMYihlge9SRQG05hjbigvHLf5zML4+h7umWx9VZNsH4Wbi2671wiLo+y5brCjXd5hlbdvoKoDmjuTItmHf1iifjcV/jtrPgXD7IPwsHX9kgqWAt7Xwm1/w/0uCi6bb+2ZYYETrGMXUo3ym+rbF7MeWgHU7+qHxSS6E91dJXWJu/UNJfRKxnUBbUukxE4DKYFY7EM91kJRrKdw4NL5sDeHGgobmsZKrb842LONF6/jba5Q+SMb3mbSNmSgeDgAAAAAAAAAAqgYRGxUS1+yjpNx9taHORWnZ7kSHq9XQ8ozucOsunMFf7MzsqJJQSybUzOYgjnoJUSJYio12iXvmh1/L0Q3Frru0fc4rtk9BbUSuuZDbj9EiRKJEZLn7ZLm+nfU27FEwUaJkbJEXxUfXRDv/be358qRudfTDEclhbcNch7nvbOtx1CEJEzmii5uXWWq2Gxy9kYvYMCJBQrWRO27bJA1N2OyjV1Sa2UcnJGI7gbaEiA20FYxvAZRC7L/HhBjnVFLQmD+O3yCKqVWZpO8zaRszEbEBAAAAAAAAAACqBhEbFZKku3WVVC0zU6oxt2EcM+NNUSIGgt7naqNc50DQrPZSHu/c846IjaA2wtSfKP7Yl6a2RZhlXZEeQW256he4owMK24u79k7Q+qK0HW595r4zLba8Hj4CJEo9CzfH+wIjQFofqeLaL0H9d9UkcUZvWAUdkxBRMua5HSaSw9pPw8VGG0str2+1X//DjYVX1PQy3pDdliTW2HhBpZl9NCAR2wm0JZUeM1XLWAUAqhmftfFLQqaLcgmq3xGqzme2DUs0/r5tBP4OYI22Z8xUKkRsAAAAAAAAAACAqtG+0h0AAAAA4rNH0u4StAkAAAAAaZCOMROpqCokalh1uQozxylq32ypOKKtx57yJEyfShWmV46UQGVJm+RoOyjkL8x6QoUFVjCNV5jzqvi2s+2GT7VjS1+zV3DqnijnuX0fREsPZG3Xl9onhiLshuAi2S2nuwrbXhB7eqzg9dkFp5FypUvKF+Iu7hpzpfkKk4qq+JRe4VNRRfk8j5LCLVzas5ZTSvlc7PjcWORINZUVWLR7H9k2QoRP+/t3Xcv9OcdYdpHtcyGJxcP/JOnAmFvfJulzobdz9uzZuv/++/WXv/xFnTp10pAhQ3TTTTepb9++MfcLSLdKp6ICgGIk+XeaOKR9+0yVTJ1dbDrjalfKbQoavzp/r7Cmlwoebw3zBkmS9jRu1+rMVxLxfSZJY6Y4kIoKAAAAKbKnRH/hrVy5UpMnT9batWu1fPly7dmzRyNHjtT27dtbv3kAAAAA0CqVHzPFgYiNCinF7KMkFAeKOvM/nmiDliM94igMHNyH4PfFUZjZts7WHO/WtuGawRxHlEMlCzoHzSYPc6651hM8KzwgSibUuRalALz9vCy+kLV9fbZiXKEKUjfPjPAXmI4WJZDbRmMWuru94s7daPumuGLe/vVFKWRtuNhYh1lA2jHrJL++aFEfuRktAe3ufV9hlIOr0HioAt6WCAR3lImryHeEfiwwzqtxtnWYWj6/gouqS0GftTULjZcfNh67IjKyx8hWiFzyR2yMsbz+UaM0MRmzqfOzj/5XpZl9VHxkynvvvafu3btr5cqVOv3002PuG5BeRGwAAKpVEn6ji6pUvzPFnWnEyTKmMcdVw41B8BO+gU7r1uGSXXeSvs8kecxUDGpsAAAAACE0Njb6/l1bW6va2trA9zU0NEiSunXrFrAkAAAAACAMbmykSLlrD9jW5+pD1Odt6wua5eyedR3hbmrEKJMo7/PPsrXM1A1zZ9ixzmLZcukHzdoP1274Ntz1AaLUS3D1o7ioG9fzQZELYdZtr18QPOM+jhob9v6Ej0oIs63mvrHvO/t1XFPT8rqt0QCSLyIg6PPC22KffR+lJkn0fV5Yn6T4eht5/uNmXm+F/XP236z9sEjGMuE/45z925Jd1mg3TOTFxZb9uLUwoqPF/jVHTZhRCa56If59ULiM85wyIx4uMxbJrdvYjttlXdb6uXu7+bqxbt9+sfc5HxXl2NYF9mt92Li9eV+v0vDcc6PHPWFdh5aakR7Z57fZ11dRpQiD3tte7969fc9ed911mjFjRovv9DxPU6dO1Re/+EX1798/5n4BAOKSxlz1APYq1/Wd5M+RYn/HCFNbNcpvhXHsoyi/Jbp+a6jR0/l/ZMdvC/LtZqPxJXftDWuWCnP8l2ilGzOVEzc2AAAAgBA2bdrkC6sOE61x2WWX6YUXXtDq1atL2TUAAAAAaFO4sQEAAIAU2SNpdwnalOrq6iLli7388sv10EMPadWqVTriiCNi7hMAAAAAFKN0Y6Zy4sZGFYqjuHCc6yvl+0z+9EYtp3IpZcFqd1qa8O+zrTNqIejg94VPmePaX0Hhgu50OOGLxftDGYML/NpTOUVjKwIeJtVOfp3BabDs7zPXaT8mQWl+oqZcKz6dWOk/W5x97lZY5NsXPrq15X20l/EZEVBAzBVWmn2fO1Wb0YYjVVZ+eUfBeUe6fVtaIf+67c8HpbkKkybOdm35nusa/nyNmjIuu56aRa7tsLdn2x9hjpuvgHo2LdUi+7b6UjyZdeYWmfvAck6Pd6RRM1NlZcOcfcW5jW11FHrv8P53c493Hbf3vz/07ss996NuPy7sj+RLibXi4b0bs2JRr/yTC4xlx+T7+cNx1xa27TVKH9hX05Z5nqfLL79cixcv1ooVK3TMMcdUuksAgABJSxtTTZKcfgfRJe14hulPsWnTi1236/ly/GZWrFCp15vHoeZ42ZV+ytV20Dpc8mPgaMfb1g/fNi00FnCNzbLrHG+s47IIfZb524WRBivX3o7AtlAcbmwAAAAgRSqfL3by5MlauHChHnzwQXXp0kWbN2+WJGUyGXXq1CnmvgEAAABAFJUfM8WhxvM8r+xrhRobG5XJZNTQ0BAppYGUvLvncbFHP0QoQu2cwWwu0/Ls4qgFjeJuL2gdtvbimKnv3A6zYO0i24zoiHfgA46xs0+OYtE24QrAZ/thnxUeqVCyOTvfjAIIcT7aBBbADtE3awEr2WdahCti3twPs2Cy6zi4Zrjn2rbPuHdFI9gFF+22Fy4P3taga8x9PkSI4ulaGJHi6p9z+4xCZv6IgZb74d7Phfs0VOFss23ntljW7ex/dh3hr/mC5W3vM183oi063N6Ye7zruOb/FzuKb3d4/+j8spfl/7/tGTOActtlKUQuyV+s3JSNyHBFYxz80/z6AorZD/MG5Z5ZUWMUxPOxHE+zyN3Dlr5J+uGWfMTGkzpNkrSncbtWZ75S1PeZuGW/W0l/kNQ55ta3SxoVejtrHFUK582bp/r6+ni7BqTYvmOmYr/fpmnMhNLhnAknaBwKxK3ar804+p+UNqKsJ/LvaF1tWT1av+5Qvy1FWLcv64I5hhrf0rh1h6QbGTOVABEbAAAASJHdij9fbLT2mDcEAAAAILkqP2aKAzc2Esh29zJKzr5iZ4qH6U+UOhHu/OYtzzL35aOrKZxF7OqTbx2OvPW29bnlZ7SGmRlvE1QfI0wb0dYRnH/eP1P9ywXr8PXNnIls5LzPTkSNEhmw77qDo26Ky+MfvGxesfkaXREFUfJvhqmBYq91ELwOX59ttSS22s+ZwPac73N9ztjq4gRHW1ijB3x1MFquI7Fv2/nogOIidFozs8W6z7cWXkt7FV6/5rrNGfxatDH/2BUlY6kZYUZKuOoW5WvQOPbLOUbEifkZERBp44zSCIjOsB/LfZi1KcY398MXcWa0uzT/vBkJEWTXwY4+WY7RrkUynjs638ZxRoO2iBJjX/iWNT/jzGvBF0W19xiuGGcWADEjNozza0H+fcPG7Q3JWNHNeJ8x88iMavnRQqNmR25GUhLzxaYjrBpAodbWCwNawjkTTtL2U7lrgqL6lTv6r5T1KU1xRnW0Zn3x/sYV/L6gMXwY1uwWjt8V/ZkKLL/1WH4b2xslcWOkPpVeOsZM+5V9jQAAAAAAAAAAAEUiYgMAAAApskfxh0ETsQEAAAAgLdIxZqJ4eIW0VDw8SsHaYsPmoqSziRLuFUeIXbiQsZaLKschXEHt7DLBaXmiFRpvOXWUuZ5wx7Jwf/meD1MU2tHX4D5HYe+nfX1RC5fb9keY1ETFFbKOUuzexZbCLUy6N5egounBBbDDpJFqed3RioTLmk7JmdrOUew+8H0+rmvF9rqL8b6LLfvJVizb1bar0Lgr3Z5ZvOyygPdtDdp3xnbYinPvy5aqzPfZEv6c950brs8nV6qpXIo9R7Fyoxi2WUg8u93OtIZbHZ+1RjqunIctz7Ugm+4pV8Bc8u8vcx+YfbZti/mcYdiW/Atm2qkOf2te98Eb888Z6bN2PpvJPa75p/GV0ZeKKmmF8H4r6YCYW/9IUjKKpANtSUtjJqQLBamRdOU4R9tSeqxq2dZwKbdLtO6Iv+cV216xiu6HY59af/MIMx6ztGeO0TxjLDjcGCw94RtY+fuwL2efzGW2uNeRpO8zaRszEbEBAACAFElHvlgAAAAAKI10jJmI2KiQfe/W2YsLF3d3tjXFw20zuuOOHHHNeLZFIIQrUFy4jlAz+F0zl619sxevzRbODTP7OyiSwxkZE9DPqAWwg6JdIkV6BESTtNyn8NEi0QqJu97X+oiSoOLh/mVd+yAokqDl67f4SAPlZ90bExM822xzOWY9uKIEtobYt9l1u641c/a9OeM823aYyAXXDHfb+yzX8b5yszzGu6JFQkScBEV9XOz4XMvuA1uB6X2fDxD1M9y6jKtAuWU/+5ZxRRpYImqcHPvIX7jcUsDbLAzuiuYx2rZGTRiykQ2StOsyYxlHhIT1fUsds1aao2vMiJtsUW9JWlHTy1i45YigYQvtkRm+guDnGH3Kbq/5ufDnfFX7mn75r4m+tnN92iZpaMJmH92r0sw++loithNoS5I0wzGtKjkbOSmSHC1SLbPaqx372S8pEQGlWl/ckRDFrq+UAn9nCtgHzgj18a3fd87fNJrHnGH+X+SM+sg+HyK6I3BMbYyBH90yPPd49MIn8stcln+YjZBfsdAYWCU6yj0dYyYiNgAAAJAiuxV/vti42wMAAACASknHmImIjQoJU2PDFK2GgH3mvGvGetDd2eD12aNMTHHfPbdrORKkpfXkZr06ZhE7c643z4A1c/aFiSgI3q6gSAlHLnrHsr4Zz4ts211sJE6IPPgB7YWbQR4wu9u3fcHRA9bIC1dEQIRIjzARIq29VlwRHc5oChtXFEDg+0LUuTDZZsmHqufSckSDM8KixrFdWwNydUaKJHDMlrfUePAvHyKixlzGFgkRJjImiCvywmSpa+KMLHFeb4VRXa7rY5j3Vu5xNsLAVQ/Cf6wc9TYsfYt0rVjqlBSuu+WoFTNKw8UWGeKL7nDV21hgRJkYkRfvZQ6VJGXu25lf1uy/uV1GDZBsFMZpejKwzz8a9+P8P3L7P4mzj+5WaWYfTUjEdgJtCREblRFm5i0z3IHiVfL64fouv3LVyoijvWLeX9CGJVtDqAwl2WXD1Ig0lw9R/8LaRkBGBF+flxkR7V8zfkYP+m1lK2OmUiNiAwAAACmSjtlHAAAAAFAa6RgzcWMDAAAAKZKOQngAAAAAUBrpGDORiqpC8qE/P5DUsaLhh3bhi3bvbS8ozYwrPVZ8oXJ+9rRUgSlgikyn5OIMETRSV7nSQFnfF5j+KzjdjT0djCOFlfl8UGofZxogezqbXOH1iAULs312p0JyHHtXOi6LwFRhRtobfwHj4lIFuUIn/SmxCvuRLZIsSbsO3uho3dIPV8jlAuP58RG2xWzPTNczxnicK5plTzPl3o+Fy/rbdaRLMpd52LaOCGmwbMXMFS69kbXw+jnWRe1FqI31dXj/6NxjZ5oiVzHvLDMd0XjHdRPUhmt9tlRNjhRW2ULdkrSzW35bbMXezOvthwuvzT32p0Uq3E/OAt+O/mfTQD3Y7fzcc6PH5QvD2Qtn72vvtTLMG5Rf1igeZ6aOuqrbTfltWbh3W344zrF9xvnsWqbh7lpJUqb9uvzCRtoqXzHyccbByn4eGvs525YkrWk3JP9Y+cc/qrmo+VESi4f/UqUJq/5WIrYTaEtIRYWwkpg6J2qK4iRL4v5t66KmI4qSdrxUSpm6PA7FFsCOc1kpPyYK8/tI0Hri2F/Fpi9z/Ubk2i7rWNAQJp1VroC3mc7YaM83Tqt5Or9M828hzjTz5m8lrnS/lxU+l20vSd9n0jZmImIDAAAAKbJH8YdBE7EBAAAAIC3SMWYiYqNCWi4eXjgj3fZ6ocXN74tW+DsoOiNofZKsRahdhWKdBc2txXKDZ7m4ozMs/SxaUDFvxzocd6UDi2GHUliU2DWD3D3zP3z/7YWGHe8LNfM/6Li51rP3fc7zyMUXjVMYqeKeeRAQueDYR7aCyL5lnBEkjv2S7b+jALB/RnpQNIIrEifEtV7QlvzbYos6MNs2ZpD7+u8qxpzddUGFovddt7XQs+P8c0Uo2Pajs8CY47hlt3e847PRjN6yRRW4inYbzEiU2i1G8enmiAV3pIq9z9aIBxfXedd8jHwRFguNCATz2Fuia3zH2/F54r7GWo4OcslGkexaamx30GycfZ/P9s8VyWJsqxlBYWNGekSJ5Lhpy1W553zb4tjn2SiSdQdncs/9u/do7vETV47OPa75la1QXhIL4f1cUqeYW/9Y0qREbCfQluw7ZirlDFlUpyTMQo9DWztf4zxuce+7pByLpPQjCeIoeB5HtIhLlCiZuAuGh1m+pb619Hwx/QzVH8eYOhfpYWY7cGYcMNiiKVyZKcxxnCGXacEVaWe0YY7jrtJNBYuO7paP+mfMVHpEbAAAACBF0pEvFgAAAABKIx1jJiI2KqQ1s49MtruersgA3wz3CDUe3ILqOQTMPJesM55dM/HdM/QDIhci7YPgKAJrVIRrhrw5szzUjPqW27DVIXDWmujqOI/C3PG2rNtnkWVWcmCUgOSMFAjom30GgdHuAsdsbPNuvG8Gf3MbCxzbZ7wvm3dfkoZ0WyNpn9nh1siAFtiiA8w2nOeJpQ6Mow3fLPlcHnwpt//NfW+bbe7imvXuqF/gqwmRnf3vjKpwRGQEXpsB55TRJ2t/pBaO2+LC/rgm2bvOg+bjlc31KfnPH/P8MuukZK9r32yVrY7r2ziGZg2HXB0OxzExWetRuM6pbkbEgBnl44rGya7bVVfD/Cw2ozea+WpDGFEMtnWYfTXPfVd9Et/+t52jUaI0pNw14vusNrfPZGzro+OGS5JGLzRm9xjre3TL8NzjIU1rco8PbXgv93jns3sjLmq+ZnytM3aXuf/fyxyae3x+uwcl+SMzTMNvyUdv+PLQ5iRx9tF/qjSzj65IxHYCbUmSclKHUews9KTNzE5af1qjXPnl06JatrWUx7Uc+6CU0QNJFrW+Zu59FYzKCXOsim4vIHLB9b4wtSZsEQhhol2irMO3vOV4OseyAb/D+MbOljoY5rL7tp3t93DZ23jUW5F7fI7yY6+lah6P1QzLt2tmYLm3Jr/syPwyvugMi+x+SdL3mbSNmYjYAAAAQIrsVvxfcePOPwsAAAAAlZKOMRMRGxVSELFR5J1rU5QcevYZ0VJQxEJQDQf/HdmIdTWc+f0trJECLdcK2Zf9bnbhzFtJ/lnE1lntlnojskdY7Lu8NY+gIye7L8Iie/d4q31/+mYiGzOUbbPkfeeJ4xha89mbbZkWOfajbWa/Kxd9mPZs7bqiH2zPu9ZnvM8asVHTy94f1/pM2eM5PsR1YGvbVWPD5KpXkX2vq+6JszbKXr5Z7yFy9wcaH/zZkz3vfDP1HRE1ZsSDKVczwtFncya771rJ7i9jff7ZI8Z5YEQr+KImmvvk3HeOmhHZXJ03KV8vwVyfuaxpxThjP9nONeOc8m230ads/83nfFET3Rwnd4jIkNz6zP1s+wxzrOLRhfnIhTUaknts1p3w6vfOphk+0ow0yO+7R71/zz327d/svnOcw77j6qg/MmzhUn9b+7SXjcyQpNHjjNk9zbu34b3a3FOZQ3fm2zXOuyeWGTUv/ln4Fc5cxznLVuQe1w5syD3OfpZJ0rCave0N8oblnutVk3/fqe/n32fKRt0kc/bRrSrN7KNpidhOoC3JXdcHNUg1dUWPk1A9qiVioC2oxmNRyj7HWS+h2HWbKtGP1oqjTkQYxdbYsPUv6vsC+xGmFqolE4Hr/3+RIiiM36c8R1S5tb0wGUd8vyWEv1bMPlnrY5hcGRoM2XGTPdJ8H5bIEe+QaJEZZmT9OSevkCTVPD8j317ztjJmKh0iNgAAAJAi6cgXCwAAAAClkY4x035lXyMAAAAAAAAAAECRiNhICGuYWOQiP4WpXPzpj4zXFzmez6ZTMQvxGMwCPLo9n2ojGz7mC6XrNqDg9QK2tDtmGhAzxY3ZZ186peb/Gqlg/NttMIvbGm04i7tmmalcbAVylxrPGam9am//bv55X9Hn/OPaLdn0JmYxY+O4jjGOvSX0zpciqiafVmjXcWYhKqP/i/IPs2mznOnBjLQ1K8ZZ0iUZbflS7YxxFBEOON5mOKT/mOS3a9jC5tRERqoXXzoiM81PQKFnMxWPmZrFbHvXwT/NP28r4G2er+b6zOfN68lWeD2MbJ/NdDjjN+ZfN9OQ+YpkW/pxsf1c9PXTWCafXseexsi8lswUPeYyV3Xbm1rJV3g6RAHsFc2fI2aI5+iH82Gg/pRARlot43Mtd064ismbbMWijed8aZgWONow5fZjfpvM7ZNxrMz9+0T93vRAo+cbIa8Xmw0b1/04x8Y09/+H3n25p27akl+fq4h2IGN/+FJUGf24qltzAe+FxvE2PwuMNhouOjX3OFsM27zuhnmDco/N9E1mQXPzXKs5rjk9k7lbfPsuz+xzw921vj5I/s8T87G57id1WmF7xv+vHl2YT311/pYH8ys3PiOy/TfX/cMt+XVc2XRL7rGZYsu7Mh8qPf2WayT5C5B7f8q/vlOZ/LIjr8n32dvbXpOezG+Tl0/RtWuhPXWaQqR8rJw9ij+/KxEbQCU1/EPaN6NBscVaS5WephRtl1s2BUncKb+SUvi33Osuh1L2J+g3iDC/URTbRhDXOlrTp7Dva80+L3q7m8dNUa/NYotJB7Ybc0qpoONZyhRWvn1kS9HtKPBtCjrvzPGMtj5tvG4sHLAec1nf+sxlu1r6b7zu64cKf8+TjFROvlTQIfaB8fvN8HGDmvvs6JsrJVbzY99+MTnWbW5Xrt9dXQP+PF+a4JphkqSlRnpe37Lm7xFGWioz9W/N95rHoePDn3+VlY4xEzc2AAAAkCLpCKsGAAAAgNJIx5iJ4uEVErVwjDMyI6j4tjkz25hB6pvRfZxl/UGFjyX/7FtLMWZf4WwzYsNWAFtyFDY25Wdjd3j/uwWvWrdD8u8XI9rCWgzXFwkSobizY1l/YeP8DGRrlIwrKsQxyzw7i37NlnwBXV+0govtuBl3vh/1VuQeZ+9a79vnXDFmx4xv3yx6RyHuXF8dhY1d55q1OK8ZKWHOuHe1nT1etugb83W1UPQ5t44Qha0sRZV954NRcN5X0NlYJnvO+/Zt0PUo+0z8bPSEJN20xZiZ7TqetmPlupaMmR0/HJefcf6jmouat+Noaz+ss96VP96nGbPJfVEfjuvbeeybeb2MomC3DMs9NotJZ68tsyi5L0LK2FZzH1ivScd17DvetmNrvs84t/37tkPusXn9+qIDmr2XObTgOUnKTMgXqrZ9nocqCm8rIm/031UY25Q973yF4B3/H/P+cFLusbVQ+ILC475vP/+/Rfnz4N+9RwsWNSN0whT2tv6/xOSIIstuty9yzDi/Gi6qLXiPJNU9viv3uPGsvedB5r5833yzkIxIDrO9Ne2GFLzuu6aNwuvmscj+Pz6ZhfCul9Qx5tZ3SLouEdsJtCVJ+oyJQ5QCs2HasM0uLleB9VJFQsQ94z5ursK/udfLXEw6TAFjH2OMEuVcCdruODjP7RijLfZ93ibwHHTsw0gFpIssZO0Sqb2Yz4FI67YUmHYuazzvPGYhtiWw8LoZrWD5jchXHFr2AtLO9WX7Z8sKsK+tLW935Gs9u69dv78ZfOMZW9Ft87gZ/beOg6Tctvh+WzKLbwdEXoQq/G3wrWeh5RgZfTaPpylb+Hv4c4VjQkl64uTRucdLnxuWX5+5Xc3H2VaYPUnfZ9I2ZqLGBgAAAFJkd4n+AAAAACANkjFmWrVqlc4991z16tVLNTU1euCBByK9n1RUVSJcHsHsso5ZqgsdNSh80QjNd06XOmYhuGpRZN9n1IPwLeuLaDBmp9tmhZv9MWe9GnUsdh1n60N+HeasapOZw37NOflZ1bZZwubMcjM//q7jjP7lblCbuf3Nfhp3KJ3bnX3dcdwcd/ezs9p9tQ6M18387L5Z+bLMCle+b6PHGf183z6bfJdrlkH2fa7aFcad9x96e2ca33ROvm++/Wysz4z+qTVmw1vXbdagMF+wRGH4tsOMcnBFaVi224weckaqGO1l98cKc7aEMRv+wW7n5x6PXmDUksi2Z874Nh6bsyV8EQO+SKG9fnTxjwuek+SvlWFsd26f+iK98suuuMycnZHfzz+SsZ4Fhe/70TnG6+ZnhFEPITtrfcX4/LnjOy/N+jbm8TFm62dnra9Rfr/UbmnIL2t8xvn2/3FPFLS1wsz3afbT3Ae2yK+LbZ8b+1wfYyzT/B21R0zmOTh6oeX/FcZ+ydyen83vai9fQ8eIkjPqBfmuCVuUhvm8sUmZ9uvy/zBrXtiiGBzRVOa1lKulsc96sm37PgvMCBDDSQuMNppnoZnXkvn40C35+hfevfkToaZbvo1sVMct7a7MPef7/DXrdBhRN9kaGrco/76rxuUjmjIL7cftwZH58zUbbeT9xOibjO0zzoM14/LXgm+WUTPzevMxzgnZzjUASIDW5u5vTRu2GdG2WbgF7zNmQmeXDzNz2z5rN9qM76Ac/C5B/Yi674JmZhc9k92yb1tqO2gdQVEarhnRzuUt6yhlDRFzdnqcUT5F10AIsb8qyXqsjP013BGOG+X8N5f1tdc14Fo3952jdqGt1qm/LqqjT7aIjAX2bXKdu9Z9Z9bUNOo2LJU5i35Yy/1zRH2Yn31B/fQx2lhxWeF+tM3Il+SMrLdFkYSJOLHWoHDVpbDVAtlHdl/XGPvFF81tbNcTZr2NBZYxqSNLxYpuQbU+VuSeMsdVT5jHapmRSaH52A8z3rfCMyPz82MUs67GTTJrh+xlbutN464yls0/9tUR+Ufzf439afY5Vz9D0qO+8zXPFqmBYNu3b9dJJ52kb3zjG/rXf/3XyO/nxgYAAABSJB35YgEAAACgNJIxZho9erRGjx4dvKADNzYqJFvapLHRMWO2KNsitLnN6Iy5/I6C53zNOaOKmt/3kbGwb1n7+jyz8Y+yTzrWF1gNJr+OPY3b7Yvsdqzb0ob9dVc/dhivB+//wO3+SHaWfeNry3h9Z2N+hq91fS7GPve9z3bsjfW59tee9uaxyO+nnY27W3yfuT7fJmb/4Tg3/O0Z550sy4Rp4yP7MtZlQ7SX2x+efR3bG43/EXxk2TeO68A85/37YEfhwrtDfEYYfbIeI+f1aOzzoP67PiN22/ZNfjtCHR/LPt0pxzVh2N7e2P/ZY+S7Zhz9DNoux7K+zyrb/jKYfd7ZPsL17dgv7us7u40h9rn5PtfzBe3KuT9y63G05fq8s60vzGeBb583t+f6/4fZnm8R3/8v9zays13w8TE/oxubCt+3XfbPArM983zdo+3NbRl9s2yftM/njPX/WZbPjX1kv2tk/5uskm32Gi7JaxNAkOLGTDuKeE9cbRSOpczPVGd7vo9Q27pdbRR+Xod7n33d+UXC/38gXD+isK878nZlWfZty20XsQ7HWND9thiOW7H73PLdOdShsp4n9v6EO/ZRrpWobYdvzybKuZ39/tXy+sL3zdeeY9/YXzc4x/uWzxbH1zd/9wt/64lybvvbDfHd1Ho9Gc99VNy1Eupaso3RXb/ThHg+8DM16Bg61uHblKBj6PqtwfVZZT1/wvS/cD+a6zPP7UYjU4d5ymeXN9fmH5vtcDxv+KjldduW3dvnwpddY/VQ+3EfbW3MtO/1Vltbq9pae93I1qJ4eIW8+eab6t27d6W7AQAA0GqbNm3SEUccUdE+7NixQ8ccc4w2b95ckvZ79uyp119/XR07xl1kD4ALYyYAAJAWbWHMdOCBB2rbNv/Ewuuuu04zZswIfG9NTY0WL16sCy64IPT6iNiokF69emnTpk3q0qWLampqgt+AimlsbFTv3r21adMm1dXVBb8BicRxTAeOY3pwLNPB8zx9+OGH6tWrV6W7oo4dO+r111/Xrl27ghcuQocOHbipAZQZY6Zk4f/d6cLxTBeOZ7pwPNOlLY2ZPM8r+M5WqmgNiRsbFbPffvtV/C4doqmrq+N/KCnAcUwHjmN6cCyrXyaTqXQXcjp27MjNByBFGDMlE//vTheOZ7pwPNOF45kejJlKY79KdwAAAAAAAAAAACAsIjYAAAAAAAAAAEDZbNu2TX/7299y/3799df1/PPPq1u3bjryyCMD38+NDSBAbW2trrvuupLmhEPpcRzTgeOYHhxLAACqC//vTheOZ7pwPNOF44m24tlnn9Xw4cNz/546daok6ZJLLtH8+fMD31/jeZ5Xqs4BAAAAAAAAAADEiRobAAAAAAAAAACganBjAwAAAAAAAAAAVA1ubAAAAAAAAAAAgKrBjQ0AAAAAAAAAAFA1uLGBNu/nP/+5jjnmGHXs2FGnnHKKnnzySeey999/v0aMGKFDDz1UdXV1Gjx4sP7whz+UsbdoSZRjafrf//1ftW/fXp/97GdL20GEEvU47ty5U9dee62OOuoo1dbW6lOf+pR+9atflam3cIl6HBcsWKCTTjpJBxxwgA477DB94xvf0Pvvv1+m3gIAAImxUdowPkoXxknpwngJaD1ubKBNu++++zRlyhRde+21eu6553Taaadp9OjReuONN6zLr1q1SiNGjNAjjzyi9evXa/jw4Tr33HP13HPPlbnn2FfUY5nV0NCgr3/96zrrrLPK1FO0pJjjOHbsWD3++OO66667tGHDBi1atEif/vSny9hr7CvqcVy9erW+/vWv69JLL9XLL7+s3/zmN1q3bp2++c1vlrnnAAC0XYyN0oXxUbowTkoXxktAPGo8z/Mq3QmgUgYNGqTPfe5zmjt3bu65fv366YILLtDs2bNDtfGZz3xGF110kaZPn16qbiKEYo/l1772NfXp00ft2rXTAw88oOeff74MvYVL1OO4dOlSfe1rX9Pf//53devWrZxdRQuiHsdbbrlFc+fO1WuvvZZ7bs6cObr55pu1adOmsvQZAIC2jrFRujA+ShfGSenCeAmIBxEbaLN27dql9evXa+TIkb7nR44cqTVr1oRq45NPPtGHH37IF4UKK/ZYzps3T6+99pquu+66UncRIRRzHB966CENHDhQN998sw4//HAdf/zxuvLKK/Xxxx+Xo8uwKOY4DhkyRG+++aYeeeQReZ6nd955R7/97W/1pS99qRxdBgCgzWNslC6Mj9KFcVK6MF4C4tO+0h0AKuWf//ynmpqa1KNHD9/zPXr00ObNm0O1ceutt2r79u0aO3ZsKbqIkIo5ln/961/1gx/8QE8++aTat+ejMAmKOY5///vftXr1anXs2FGLFy/WP//5T02aNElbtmwhf2yFFHMchwwZogULFuiiiy7Sjh07tGfPHp133nmaM2dOOboMAECbx9goXRgfpQvjpHRhvATEh4gNtHk1NTW+f3ueV/CczaJFizRjxgzdd9996t69e6m6hwjCHsumpiaNGzdO119/vY4//vhydQ8hRbkmP/nkE9XU1GjBggX6/Oc/r3/5l3/Rbbfdpvnz5zMbqcKiHMdXXnlFV1xxhaZPn67169dr6dKlev311/Wd73ynHF0FAADNGBulC+OjdGGclC6Ml4DW4zY82qxDDjlE7dq1K7gj/u677xbcOd/Xfffdp0svvVS/+c1vdPbZZ5eymwgh6rH88MMP9eyzz+q5557TZZddJmnvFz/P89S+fXstW7ZMZ555Zln6jrxirsnDDjtMhx9+uDKZTO65fv36yfM8vfnmm+rTp09J+4xCxRzH2bNna+jQofre974nSRowYIA6d+6s0047TTNnztRhhx1W8n4DANCWMTZKF8ZH6cI4KV0YLwHxIWIDbVaHDh10yimnaPny5b7nly9friFDhjjft2jRItXX12vhwoXkM0yIqMeyrq5OL774op5//vnc33e+8x317dtXzz//vAYNGlSursNQzDU5dOhQvfXWW9q2bVvuuVdffVX77befjjjiiJL2F3bFHMePPvpI++3n/0rSrl07SXtnLgEAgNJibJQujI/ShXFSujBeAmLkAW3Yvffe6+2///7eXXfd5b3yyivelClTvM6dO3sbN270PM/zfvCDH3gTJkzILb9w4UKvffv23n/91395b7/9du7vgw8+qNQmoFnUY7mv6667zjvppJPK1Fu4RD2OH374oXfEEUd4X/nKV7yXX37ZW7lypdenTx/vm9/8ZqU2AV704zhv3jyvffv23s9//nPvtdde81avXu0NHDjQ+/znP1+pTQAAoM1hbJQujI/ShXFSujBeAuJBKiq0aRdddJHef/993XDDDXr77bfVv39/PfLIIzrqqKMkSW+//bbeeOON3PJ33HGH9uzZo8mTJ2vy5Mm55y+55BLNnz+/3N2HIeqxRDJFPY4HHnigli9frssvv1wDBw7UwQcfrLFjx2rmzJmV2gQo+nGsr6/Xhx9+qNtvv13Tpk3TQQcdpDPPPFM33XRTpTYBAIA2h7FRujA+ShfGSenCeAmIR43nEbMEAAAAAAAAAACqAzU2AAAAAAAAAABA1eDGBgAAAAAAAAAAqBrc2AAAAAAAAAAAAFWDGxsAAAAAAAAAAKBqcGMDAAAAAAAAAABUDW5sAAAAAAAAAACAqsGNDQAAAAAAAAAAUDW4sQEAAAAAAAAAAKoGNzYAAJKk+fPn66CDDqp0NwAAAAAgkRgzAUBycGMDAAAAAAAAAABUDW5sAECV2717d6W7AAAAAACJxZgJANKHGxsAECPP83TzzTfr2GOPVadOnXTSSSfpt7/9rSRpxYoVqqmp0eOPP66BAwfqgAMO0JAhQ7RhwwZfG0uWLNEpp5yijh076thjj9X111+vPXv25F6vqanRL37xC51//vnq3LmzZs6cKUmaOXOmunfvri5duuib3/ymfvCDH+izn/2sJGnVqlXaf//9tXnzZt+6pk2bptNPP925PXPnztWnPvUpdejQQX379tXdd9/te33GjBk68sgjVVtbq169eumKK67Ivfbzn/9cffr0UceOHdWjRw995Stfib5DAQAAAKQKYybGTAAQCw8AEJtrrrnG+/SnP+0tXbrUe+2117x58+Z5tbW13ooVK7wnnnjCk+QNGjTIW7Fihffyyy97p512mjdkyJDc+5cuXerV1dV58+fP91577TVv2bJl3tFHH+3NmDEjt4wkr3v37t5dd93lvfbaa97GjRu9e+65x+vYsaP3q1/9ytuwYYN3/fXXe3V1dd5JJ52Ue9/xxx/v3Xzzzbl/79692+vevbv3q1/9yvM8z5s3b56XyWRyr99///3e/vvv7/3Xf/2Xt2HDBu/WW2/12rVr5/3xj3/0PM/zfvOb33h1dXXeI4884v3jH//wnn76ae+Xv/yl53met27dOq9du3bewoULvY0bN3p/+tOfvP/4j/8oxS4HAAAAUEUYMzFmAoA4cGMDAGKybds2r2PHjt6aNWt8z1966aXexRdfnPuS/thjj+Ve+/3vf+9J8j7++GPP8zzvtNNO82bNmuV7/9133+0ddthhuX9L8qZMmeJbZtCgQd7kyZN9zw0dOtT3Jf2mm27y+vXrl/v3Aw884B144IHetm3bPM8r/JI+ZMgQb+LEib42v/rVr3r/8i//4nme5916663e8ccf7+3atatgX/zud7/z6urqvMbGxoLXAAAAALRNjJnyGDMBQOuQigoAYvLKK69ox44dGjFihA488MDc3//8z//otddeyy03YMCA3OPDDjtMkvTuu+9KktavX68bbrjB9/6JEyfq7bff1kcffZR738CBA33r3rBhgz7/+c/7ntv33/X19frb3/6mtWvXSpJ+9atfaezYsercubN1e/785z9r6NChvueGDh2qP//5z5Kkr371q/r444917LHHauLEiVq8eHEu/HvEiBE66qijdOyxx2rChAlasGCBr/8AAAAA2h7GTIyZACAu7SvdAQBIi08++USS9Pvf/16HH36477Xa2trcF/X9998/93xNTY3vvZ988omuv/56XXjhhQXtd+zYMffY9sU621aW53m+f3fv3l3nnnuu5s2bp2OPPVaPPPKIVqxY0eI22drMPte7d29t2LBBy5cv12OPPaZJkybpJz/5iVauXKkuXbroT3/6k1asWKFly5Zp+vTpmjFjhtatW6eDDjqoxXUCAAAASCfGTIyZACAuRGwAQExOOOEE1dbW6o033tBxxx3n++vdu3eoNj73uc9pw4YNBe8/7rjjtN9+7o/svn376plnnvE99+yzzxYs981vflP33nuv7rjjDn3qU58qmF1k6tevn1avXu17bs2aNerXr1/u3506ddJ5552n//zP/9SKFSv01FNP6cUXX5QktW/fXmeffbZuvvlmvfDCC9q4caP++Mc/htoPAAAAANKHMRNjJgCICxEbABCTLl266Morr9R3v/tdffLJJ/riF7+oxsZGrVmzRgceeKCOOuqowDamT5+uMWPGqHfv3vrqV7+q/fbbTy+88IJefPFFzZw50/m+yy+/XBMnTtTAgQM1ZMgQ3XfffXrhhRd07LHH+pYbNWqUMpmMZs6cqRtuuKHFvnzve9/T2LFj9bnPfU5nnXWWlixZovvvv1+PPfaYJGn+/PlqamrSoEGDdMABB+juu+9Wp06ddNRRR+nhhx/W3//+d51++unq2rWrHnnkEX3yySfq27dviD0JAAAAII0YMzFmAoC4ELEBADH60Y9+pOnTp2v27Nnq16+fRo0apSVLluiYY44J9f5Ro0bp4Ycf1vLly3XqqafqC1/4gm677bbAL/jjx4/X1VdfrSuvvFKf+9zn9Prrr6u+vt4Xii1J++23n+rr69XU1KSvf/3rLbZ5wQUX6D/+4z/0k5/8RJ/5zGd0xx13aN68eRo2bJgk6aCDDtKdd96poUOHasCAAXr88ce1ZMkSHXzwwTrooIN0//3368wzz1S/fv30i1/8QosWLdJnPvOZUPsBAAAAQDoxZmLMBABxqPH2TSgIAEiFESNGqGfPnrr77rt9z0+cOFHvvPOOHnrooQr1DAAAAAAqjzETAFQvUlEBQAp89NFH+sUvfqFRo0apXbt2WrRokR577DEtX748t0xDQ4PWrVunBQsW6MEHH6xgbwEAAACgvBgzAUC6cGMDAFKgpqZGjzzyiGbOnKmdO3eqb9+++t3vfqezzz47t8z555+vZ555Rt/+9rc1YsSICvYWAAAAAMqLMRMApAupqAAAAAAAAAAAQNWgeDgAAAAAAAAAAKga3NgAAAAAAAAAAABVgxsbAAAAAAAAAACganBjAwAAAAAAAAAAVA1ubAAAAAAAAAAAgKrBjQ0AAAAAAAAAAFA1uLEBAAAAAAAAAACqBjc2AAAAAAAAAABA1fj/AfV1DLS5s/9uAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#energyloss in abh von der energie der elektronen\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n", "\n", "a0=ax0.hist2d(energyloss_found, energy_found, bins=200, cmap=plt.cm.jet, cmin=1)\n", "ax0.set_xlabel(\"energyloss\")\n", "ax0.set_ylabel(r\"$E_0$\")\n", "ax0.set_title(\"found energyloss wrt electron energy\")\n", "plt.colorbar(a0[3],ax=ax0)\n", "\n", "a1=ax1.hist2d(energyloss_lost, energy_lost, bins=200, cmap=plt.cm.jet, cmin=1) \n", "ax1.set_xlabel(\"energyloss\")\n", "ax1.set_ylabel(r\"$E_0$\")\n", "ax1.set_title(\"lost energyloss wrt electron energy\")\n", "plt.colorbar(a1[3],ax=ax1)\n", "\n", "\"\"\"\n", "\"\"\"\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "#ist die shape der teilspur im scifi anders? (koenntest du zum beispiel durch vergleich der verteilungen der fit parameter studieren,\n", "#in meiner thesis findest du das fitmodell -- ist einfach ein polynom dritten grades)\n", "z_ref=8520 #mm\n", "\n", "def scifi_track(z, a, b, c, d):\n", " return a + b*(z-z_ref) + c*(z-z_ref)**2 + d*(z-z_ref)**3\n", "\n", "def z_mag(xv, zv, tx, a, b):\n", " \"\"\" optical centre of the magnet is defined as the intersection between the trajectory tangents before and after the magnet\n", "\n", " Args:\n", " xv (double): velo x track\n", " zv (double): velo z track\n", " tx (double): velo x slope\n", " a (double): ax parameter of track fit\n", " b (double): bx parameter of track fit\n", "\n", " Returns:\n", " double: z_mag\n", " \"\"\"\n", " return (xv-tx*zv-a+b*z_ref)/(b-tx)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "scifi_found = found[found[\"scifi_hit_pos_x_length\"]>3]\n", "scifi_lost = lost[lost[\"scifi_hit_pos_x_length\"]>3]\n", "#should be fulfilled by all candidates\n", "\n", "scifi_x_found = scifi_found[\"scifi_hit_pos_x\"]\n", "scifi_z_found = scifi_found[\"scifi_hit_pos_z\"]\n", "\n", "tx_found = scifi_found[\"velo_track_tx\"]\n", "\n", "scifi_x_lost = scifi_lost[\"scifi_hit_pos_x\"]\n", "scifi_z_lost = scifi_lost[\"scifi_hit_pos_z\"]\n", "\n", "tx_lost = scifi_lost[\"velo_track_tx\"]\n", "\n", "xv_found = scifi_found[\"velo_track_x\"]\n", "zv_found = scifi_found[\"velo_track_z\"]\n", "\n", "xv_lost = scifi_lost[\"velo_track_x\"]\n", "zv_lost = scifi_lost[\"velo_track_z\"]\n", "\n", "\n", "\n", "sf_energy_found = ak.to_numpy(scifi_found[\"energy\"])\n", "sf_eph_found = ak.to_numpy(ak.sum(scifi_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "sf_vtx_type_found = scifi_found[\"all_endvtx_types\"]\n", "\n", "\n", "brem_vtx_type_found = scifi_found[scifi_found[\"endvtx_type\"]==101]\n", "\n", "sf_energy_lost = ak.to_numpy(scifi_lost[\"energy\"])\n", "sf_eph_lost = ak.to_numpy(ak.sum(scifi_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "sf_vtx_type_lost = scifi_lost[\"all_endvtx_types\"]\n", "brem_vtx_type_lost = scifi_lost[scifi_lost[\"endvtx_type\"]==101]\n", "\n", "\n", "\n", "#ak.num(scifi_found[\"energy\"], axis=0)\n", "#scifi_found.snapshot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 0]\n",
       "------------------\n",
       "type: 11 * float32
" ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ak.num(scifi_found[\"energy\"], axis=0)\n", "scifi_found[\"all_endvtx_types\"][1,:]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "scifi_fitpars_found = ak.ArrayBuilder()\n", "vtx_types_found = ak.ArrayBuilder()\n", "\n", "for i in range(0,ak.num(scifi_found, axis=0)):\n", " popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_found[i,:]),ak.to_numpy(scifi_x_found[i,:]))\n", " scifi_fitpars_found.begin_list()\n", " scifi_fitpars_found.real(popt[0])\n", " scifi_fitpars_found.real(popt[1])\n", " scifi_fitpars_found.real(popt[2])\n", " scifi_fitpars_found.real(popt[3])\n", " #[:,4] -> energy \n", " scifi_fitpars_found.real(sf_energy_found[i])\n", " #[:,5] -> photon energy\n", " scifi_fitpars_found.real(sf_eph_found[i])\n", " scifi_fitpars_found.end_list()\n", " \n", " vtx_types_found.begin_list()\n", " #[:,0] -> endvtx_type\n", " vtx_types_found.extend(sf_vtx_type_found[i,:])\n", " vtx_types_found.end_list()\n", " \n", "\n", "scifi_fitpars_lost = ak.ArrayBuilder()\n", "vtx_types_lost = ak.ArrayBuilder()\n", "\n", "for i in range(0,ak.num(scifi_lost, axis=0)):\n", " popt, pcov = curve_fit(scifi_track,ak.to_numpy(scifi_z_lost[i,:]),ak.to_numpy(scifi_x_lost[i,:]))\n", " scifi_fitpars_lost.begin_list()\n", " scifi_fitpars_lost.real(popt[0])\n", " scifi_fitpars_lost.real(popt[1])\n", " scifi_fitpars_lost.real(popt[2])\n", " scifi_fitpars_lost.real(popt[3])\n", " #[:,4] -> energy \n", " scifi_fitpars_lost.real(sf_energy_lost[i])\n", " #[:,5] -> photon energy\n", " scifi_fitpars_lost.real(sf_eph_lost[i])\n", " scifi_fitpars_lost.end_list()\n", " \n", " vtx_types_lost.begin_list()\n", " #[:,6] -> endvtx_type\n", " vtx_types_lost.extend(sf_vtx_type_lost[i,:])\n", " vtx_types_lost.end_list()\n", " \n", "\n", "\n", "scifi_fitpars_lost = ak.to_numpy(scifi_fitpars_lost)\n", "scifi_fitpars_found = ak.to_numpy(scifi_fitpars_found)\n", "\n", "vtx_types_lost = ak.Array(vtx_types_lost)\n", "vtx_types_found = ak.Array(vtx_types_found)\n", "\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 101,\n",
       " 0]\n",
       "------------------\n",
       "type: 11 * float64
" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vtx_types_found[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABfkAAAIhCAYAAAD96rC5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACyQUlEQVR4nOzde3wU1fnH8e+SyxJisoZLEoIIUTGCBEWwXLQGBIIoYMVbG41ELVJBKAZKC1YJVoIiohYUrT8rXqDYVrFeMQEEpBAMCAqoiC0IFAIUQwI05Mb5/YEZdpNNsgmb7G74vF+vfbE7++ycM7MDnDn7zDM2Y4wRAAAAAAAAAAAIOM183QEAAAAAAAAAAFA/TPIDAAAAAAAAABCgmOQHAAAAAAAAACBAMckPAAAAAAAAAECAYpIfAAAAAAAAAIAAxSQ/AAAAAAAAAAABikl+AAAAAAAAAAACFJP8AAAAAAAAAAAEKCb5AQAAAAAAAAAIUEzyA2ehN998U5deeqnCwsJks9m0efNmX3fJrYyMDNlsNq+tb9euXbLZbJo9e7bX1rl27VplZGToyJEjXlsnfGffvn3KyMjw+O/EggULZLPZtGHDhobtWBOWmZmpd955x9fdAACgwVSMF3bt2tUg63/++ee1YMECr6+3IcY5ixYt0jPPPOO19cG36noulJaWpnPOOadhO9WE1fVcBcDZhUl+4Cxz6NAhpaam6sILL9TSpUu1bt06XXzxxb7uVsBau3atpk+fziR/E7Fv3z5Nnz6dgXMjYpIfAIAz01CT/A2BSf6mhXOhxsW5CoCaBPu6AwAa17fffqvS0lLdeeedSkpK8nV30MQYY3TixAmFhYX5uit1Ul5errKyMl93o8H873//U4sWLXzdjUZT8X3a7XZfdwUAAKBapaWlstlsCg4OrKmZoqIiNW/e3NfdaDBFRUUBdz5zJiq+T29eRQ+g8ZHJD5xF0tLSdPXVV0uSbr/9dtlsNvXr1896/91331WfPn3UokULRUREaNCgQVq3bl2VdXTs2LHKut2V1rHZbHrggQf0+uuvq3PnzmrRooUuu+wyvf/++1U+/8EHH+jyyy+X3W5XfHx8nUrq9OvXT127dtWnn36q3r17KywsTO3atdPDDz+s8vJyt5+ZM2eO4uPjdc4556hPnz7KycmpElPb/sjIyNBvfvMbSVJ8fLxsNptsNptWrlwpSTp58qRmzZqlSy65RHa7XdHR0brrrru0d+9et/3Pzc3VT3/6U7Vo0UIXXHCBHn/8cZ08ebLW7TfG6Pnnn9fll1+usLAwRUVF6ZZbbtG///3verdTWFioSZMmKT4+XqGhoWrXrp0mTJig48ePu8RVfMcvvPCCOnfuLLvdrldffVWStGbNGvXp00fNmze3vo//+7//c7lc/d5771XLli31v//9r8p2XXvttbr00kur3e7nnntOzZo108GDB61lTz31lGw2m8aOHWstO3nypKKiojRx4kRJp8s2zZo1S4899pji4+Nlt9v1ySef6Morr5Qk3X333db3mZGRUcs3IOXn5+vuu+9Wy5YtFR4ermHDhlXZ/+5U/L3ZtGmTRowYocjISDkcDt155506dOiQS+ybb76p5ORktW3bVmFhYercubN+97vfVflOKi6D3rJli5KTkxUREaEBAwZIkrKzs3XjjTfqvPPOU/PmzXXRRRdp9OjR+u9//+u2X19++aVuvfVWORwOtWzZUunp6SorK9P27dt13XXXKSIiQh07dtSsWbOqbJsnx5DNZtPx48f16quvWvvb+d+kvLw8jR49Wuedd55CQ0MVHx+v6dOnu/wgU9P3CQCAP/vzn/+syy67TM2bN1fLli1100036euvv3aJ+fe//62f//zniouLk91uV0xMjAYMGGBl8nbs2FHbtm3TqlWrrP9L3Y3VnVWM31588UVdfPHFstvt6tKlixYvXuw2/ujRo7r//vvVunVrtWrVSiNGjNC+fftcYjwZ9/br108ffPCBvv/+e6uvzucPP/zwg8aMGaN27dopNDRUF1xwgR566CEVFxe77b8n5xju1HWc60k7O3bsUEpKiqKjo2W329W5c2c999xzLjErV66UzWbT66+/rokTJ6pdu3ay2+367rvvJEkvvfSSy/exaNEil3MvY4w6deqkwYMHV2n/2LFjcjgcLmPgym699dYqY+thw4bJZrPpb3/7m7Xs888/l81m03vvvSfpdNmmrKws3XPPPWrTpo1atGihKVOm1HguVJNt27ZpwIABCg8PV5s2bfTAAw+4PR+orC7nfdOnT1evXr3UsmVLRUZG6oorrtDLL78sY4xLXMeOHTV06FC9/fbb6t69u5o3b67p06dLOnW+cc011yg6Olrh4eFKTEzUrFmzVFpa6rZf69atU9++fRUWFqaOHTvqlVdekXTqXPeKK65QixYtlJiYqKVLl1bZttqOoZUrV9Z6rrJhwwYNHz5cLVu2VPPmzdW9e3f99a9/dWmnuu+z8t8zAAHIADhrfPfdd+a5554zkkxmZqZZt26d2bZtmzHGmIULFxpJJjk52bzzzjvmzTffND169DChoaHm008/tdYxcuRI06FDhyrrnjZtmqn8T4ok07FjR/OTn/zE/PWvfzUffvih6devnwkODjb/+te/rLhly5aZoKAgc/XVV5u3337b/O1vfzNXXnmlOf/886us052kpCTTqlUrExcXZ/74xz+ajz/+2IwfP95IMmPHjrXidu7cafXpuuuuM++884555513TGJioomKijJHjhyxYj3ZH3v27DHjxo0zkszbb79t1q1bZ9atW2cKCgqMMcbcd999RpJ54IEHzNKlS80LL7xg2rRpY9q3b28OHTpUpf+dOnUyL7zwgsnOzjZjxowxksyrr75a6/aPGjXKhISEmIkTJ5qlS5eaRYsWmUsuucTExMSYvLy8Ordz/Phxc/nll5vWrVubOXPmmGXLlplnn33WOBwOc+2115qTJ0+6fMft2rUz3bp1M4sWLTIrVqwwW7duNV988YVp3ry56datm1m8eLF59913zfXXX286duxoJJmdO3caY4z54osvjCTz0ksvuWzTtm3bjCTz3HPPVbvd33zzjZFkFi1aZC277rrrTFhYmOnUqZO1bP369UaS+fDDD12Og3bt2pn+/fubv//97yYrK8t88cUX5pVXXjGSzO9//3vr+9yzZ0+1faiIb9++vbnnnnvMRx99ZP70pz+Z6Oho0759e5Ofn1/jd1fx96ZDhw7mN7/5jfn444/NnDlzTHh4uOnevbspKSmxYv/whz+Yp59+2nzwwQdm5cqV5oUXXjDx8fGmf//+LuscOXKkCQkJMR07djQzZ840y5cvNx9//LExxpj58+ebmTNnmnfffdesWrXKvPrqq+ayyy4zCQkJLm1V9CshIcH84Q9/MNnZ2Wby5MnW8XzJJZeYP/7xjyY7O9vcfffdRpJ56623rM97egytW7fOhIWFmeuvv97a3xX/Ju3fv9+0b9/edOjQwbz44otm2bJl5g9/+IOx2+0mLS3Naqu677PiGAMAwNcqxgvO/zdlZmYaSeYXv/iF+eCDD8xrr71mLrjgAuNwOMy3335rxSUkJJiLLrrIvP7662bVqlXmrbfeMhMnTjSffPKJMcaYzz//3FxwwQWme/fu1v+ln3/+eY39qRi7dOnSxfzlL38x7777rrnuuuuMJPO3v/2tSr8vuOACM27cOPPxxx+b//u//zNRUVFVxh+ejHu3bdtmrrrqKhMbG2v1dd26dcYYY4qKiky3bt1MeHi4mT17tsnKyjIPP/ywCQ4ONtdff32V/ntyjuFOXce5nrSzbds243A4TGJionnttddMVlaWmThxomnWrJnJyMiw4j755BNrzHLLLbeYd99917z//vvm8OHD5sUXXzSSzM0332zef/99s3DhQnPxxRebDh06uJx7Pfvss8Zms7kcI8YY6xyvYhzlzgsvvGAkmX379hljjCktLTUREREmLCzMjBo1yop74oknTHBwsCksLDTGnD4O2rVrZ+677z7z0Ucfmb///e9m165dNZ4LuTNy5EgTGhpqzj//fDNjxgyTlZVlMjIyTHBwsBk6dGiN350xnp/3GWNMWlqaefnll012drbJzs42f/jDH0xYWJiZPn26S1yHDh1M27ZtzQUXXGD+/Oc/m08++cR89tlnxhhjHnzwQTN//nyzdOlSs2LFCvP000+b1q1bm7vvvtttvxISEszLL79sPv74YzN06FAjyUyfPt0kJiaav/zlL+bDDz80vXv3Nna73fznP/+xPu/JMVRQUFDjucqKFStMaGio+elPf2refPNNs3TpUpOWlmYkmVdeecVqq7rvs6ysrNb9D8C/MckPnGUqBpfOA/jy8nITFxdnEhMTTXl5ubX86NGjJjo62vTt29daVtdJ/piYGGuAaIwxeXl5plmzZmbmzJnWsl69epm4uDhTVFRkLSssLDQtW7b0eJJfkvnHP/7hsnzUqFGmWbNm5vvvvzfGnJ4MTExMdBnEfPbZZ0aS+ctf/lLn/fHkk09WOWkzxpivv/7aSDJjxoxxWV4x4Tx16tQq/V+/fr1LbJcuXczgwYNr3PZ169YZSeapp55yWb5nzx4TFhZmJk+eXOd2Zs6caZo1a2Zyc3Nd4v7+97+7TJYbc+o7djgc5ocffnCJvfXWW014eLjLjxnl5eWmS5cuVfZXUlKSufzyy10+f//995vIyEhz9OjRGrf/vPPOM/fcc48xxpji4mITHh5ufvvb3xpJ1vc+Y8YMExISYo4dO2aMOX0cXHjhhS4T28YYk5ubW2UgXJOKQfJNN93ksvyf//ynkWQee+yxGj9f8ffmwQcfdFle8SPTG2+84fZzJ0+eNKWlpWbVqlVGkvniiy+s90aOHGkkmT//+c81tl2xju+//77K35+KflU+ri6//HLrRK5CaWmpadOmjRkxYoS1rC7HUHh4uBk5cmSV/o0ePdqcc8451vdYYfbs2S4nsTV9nwAA+IPKk/z5+fnWj9zOdu/ebex2u0lJSTHGGPPf//7XSDLPPPNMjeu/9NJLTVJSksf9kWTCwsJckkHKysrMJZdcYi666KIq/a48np01a5aRZPbv32+Mqdu494YbbnB7LlExAf3Xv/7VZfkTTzxhJJmsrCyX/ntyjuFOXce5nrQzePBgc95551WZ3H7ggQdM8+bNrXFyxXnYNddc4xJXXl5uYmNjTa9evVyWf//99yYkJMRlfxUWFpqIiAjz61//2iW2S5cuVX54qey7774zksxrr71mjDFmzZo1RpKZPHmyiY+Pt+IGDRrkcr5TcRzcddddVdZZ3blQdSrGqc8++6zL8hkzZhhJZs2aNTV+3tPzvsrKy8tNaWmpefTRR02rVq1cfszp0KGDCQoKMtu3b6+x7Yp1vPbaayYoKMjl/KeiXxs2bLCWHT582AQFBZmwsDCXCf3NmzcbSeaPf/yjtczTY6imc5VLLrnEdO/e3ZSWlrosHzp0qGnbtq11XlvT9wkgsFGuB4C2b9+uffv2KTU1Vc2anf5n4ZxzztHNN9+snJwcjy6fdKd///6KiIiwXsfExCg6Olrff/+9JOn48ePKzc3ViBEjXOo6RkREaNiwYR63ExERoeHDh7ssS0lJ0cmTJ7V69WqX5TfccIOCgoKs1926dZMkq0/e2B8VpULS0tJclv/kJz9R586dtXz5cpflsbGx+slPfuKyrFu3blafqvP+++/LZrPpzjvvVFlZmfWIjY3VZZddVuVyWU/aef/999W1a1ddfvnlLuscPHiw20twr732WkVFRbksW7Vqla699lq1bt3aWtasWTPddtttVbbh17/+tTZv3qx//vOfkk5dQv36669r5MiROuecc2rc/gEDBmjZsmWSTt3463//+5/S09PVunVrZWdnS5KWLVumPn36KDw83OWzw4cPV0hISI3r99Qdd9zh8rpv377q0KGDxyVjKn/+tttuU3BwsMvn//3vfyslJUWxsbEKCgpSSEiIdV+Nypf2S9LNN99cZdnBgwf1q1/9Su3bt1dwcLBCQkLUoUOHatcxdOhQl9edO3eWzWbTkCFDrGXBwcG66KKLzugYcuf9999X//79FRcX57KOirZXrVrlEu/N7xMAgIa0bt06FRUVVRkntm/fXtdee601TmzZsqUuvPBCPfnkk5ozZ442bdrkUSlHTwwYMEAxMTHW66CgIN1+++367rvvqpSWrDzGrjx2ruu4150VK1YoPDxct9xyi8vyinVWXkdt5xjVqesYpbZ2Tpw4oeXLl+umm25SixYtXNZ5/fXX68SJE1XKglYeo23fvl15eXlVxsnnn3++rrrqKpdlERERuvvuu7VgwQKrvNCKFSv01Vdf6YEHHqhx2y+88EJ17NjRGjtnZ2crMTFRd955p3bu3Kl//etfKi4u1po1azRw4MAqn3c3tqyvymPflJQUSfJo7Ozped+KFSs0cOBAORwOa+z8yCOP6PDhwy7lPqVTx/TFF19cpa1NmzZp+PDhatWqlbWOu+66S+Xl5fr2229dYtu2basePXpYr1u2bKno6GhdfvnliouLs5Z37txZks7oGKrsu+++0zfffGPt18rr2L9/v7Zv3+7yGW9+nwD8A5P8AHT48GFJpwYmlcXFxenkyZPKz8+v17pbtWpVZZndbldRUZGkU7XMT548qdjY2Cpx7pZVx/kkpfLnK7avuj5V3Jyzok/e2B+1raO2PlX0q6JP1Tlw4ICMMYqJiVFISIjLIycnp0qtdU/aOXDggL788ssq64uIiJAxpso63W3j4cOH3X4n7pbdeOON6tixo1VzsuKkpaaaohUGDhyo3bt3a8eOHVq2bJm6d++u6OhoXXvttVq2bJmKioq0du1atycq7vpdX9Udv5W/Z08/HxwcrFatWlmfP3bsmH76059q/fr1euyxx7Ry5Url5ubq7bfflqQqx0mLFi0UGRnpsuzkyZNKTk7W22+/rcmTJ2v58uX67LPPrJMGd8day5YtXV6HhoaqRYsWVW60FhoaqhMnTliv63oMuXPgwAG99957VdZRUUvWk+MQAAB/5Ok40Wazafny5Ro8eLBmzZqlK664Qm3atNH48eN19OjRM+pDTWNvb4+dPRkPHT58WLGxsVXu8RUdHa3g4GCvjp3rMkaprZ3Dhw+rrKxMc+fOrbLO66+/XlLtY5aKbfN07Dxu3DgdPXpUCxculCTNmzdP5513nm688cYat1069eNOxQ8my5Yt06BBg5SYmKiYmBgtW7ZM//znP1VUVNSgY+eKca6z6o49dzw57/vss8+UnJws6dS9Dv75z38qNzdXDz30kKSq415327Z792799Kc/1X/+8x89++yz+vTTT5Wbm2uds1ReR+Vxs3RqjOxuPC3JGjvX5xiq7MCBA5KkSZMmVVnHmDFj3K6DsTPQ9ATWLdwBNIiKQdb+/furvLdv3z41a9bMytRu3ry525vyeDJp505UVJRsNpvy8vKqvOduWXUqBjbuPu9ucF6TuuwPT9Zx3nnnVVmHc4b7mWjdurVsNps+/fRT64TLmbtlnqwzLCxMf/7zn6t931nlkzHp1PbX9J04a9asmcaOHaupU6fqqaee0vPPP68BAwYoISGh1r5W3FB22bJlys7O1qBBg6zlv//977V69WoVFxe7PVFx1+/6qu74veiiizz+fLt27azXZWVlOnz4sHUcrVixQvv27dPKlSut7H1JOnLkiNv1udu2rVu36osvvtCCBQs0cuRIa3nFzd68qa7HUHUx3bp104wZM9y+75wRJXn3+wQAoCHVNtZ0/n+yQ4cOevnllyVJ3377rf76178qIyNDJSUleuGFF+rdh5rG3mcydq7vuLdVq1Zav369jDEu/6cfPHhQZWVlXh07n+kYxVlUVJSCgoKUmppabYJKfHy8y+vKY5aK/efp2Pmiiy7SkCFD9Nxzz2nIkCF69913NX36dJcrlaszYMAAvfzyy/rss8+0fv16/f73v5d06src7Oxsff/99zrnnHPUu3fvKp/11lir8jhXqtux58l53+LFixUSEqL333/fJTnlnXfecbtOd9v2zjvv6Pjx43r77betK18lWTe99pb6HEOVVRy3U6ZM0YgRI9zGVD63YuwMND1k8gNQQkKC2rVrp0WLFskYYy0/fvy43nrrLfXp00ctWrSQJHXs2FEHDx50GVyVlJTo448/rlfb4eHh+slPfqK3337bJRP46NGjeu+99zxez9GjR/Xuu++6LFu0aJGaNWuma665pk59qsv+qJzJVOHaa6+VJL3xxhsuy3Nzc/X1119bk9NnaujQoTLG6D//+Y969uxZ5ZGYmFivdf7rX/9Sq1at3K6zY8eOta4jKSlJK1ascPnx5+TJk/rb3/7mNv6Xv/ylQkNDdccdd2j79u21Xm5coW3bturSpYveeustbdy40ZrkHzRokA4dOqQ5c+YoMjJSV155pUfrq+77rE1FJlWFtWvX6vvvv1e/fv3q9fm//vWvKisrsz5fMQiv/KPNiy++6HEfvbEOT9XlGKou627o0KHaunWrLrzwQrfrqDzJDwBAoOjTp4/CwsKqjBP37t2rFStWVDtOvPjii/X73/9eiYmJ+vzzz63lnmSwV7Z8+XKX8Xx5ebnefPNNXXjhhVUm6mtTl3FvdX0dMGCAjh07VmUS9rXXXrPe9wZvjHOdtWjRQv3799emTZvUrVs3t+usbeI6ISFBsbGx+utf/+qyfPfu3Vq7dq3bz/z617/Wl19+qZEjRyooKEijRo3yqL8DBgyQzWbTww8/7HKeNHDgQH3yySfKzs7WNddc43EJRG+NnRctWiRJHo2dPTnvs9lsCg4Odvnho6ioSK+//rrHfXQ3djbG6KWXXvJ4HZ6oyzFU3f5OSEhQp06d9MUXX7j9fM+ePV3KTgFomsjkB6BmzZpp1qxZuuOOOzR06FCNHj1axcXFevLJJ3XkyBE9/vjjVuztt9+uRx55RD//+c/1m9/8RidOnNAf//hHlZeX17v9P/zhD7ruuus0aNAgTZw4UeXl5XriiScUHh6uH374waN1tGrVSvfff792796tiy++WB9++KFeeukl3X///Tr//PPr1J+67I+KSfRnn31WI0eOVEhIiBISEpSQkKD77rtPc+fOVbNmzTRkyBDt2rVLDz/8sNq3b68HH3ywTn2qzlVXXaX77rtPd999tzZs2KBrrrlG4eHh2r9/v9asWaPExETdf//9dVrnhAkT9NZbb+maa67Rgw8+qG7duunkyZPavXu3srKyNHHiRPXq1avGdTz00EN67733NGDAAD300EMKCwvTCy+8YNUOdb7XgSSde+65uuuuuzR//nx16NChTvdjGDBggObOnauwsDCrbml8fLzi4+OVlZWl4cOHKzjYs//uLrzwQoWFhWnhwoXq3LmzzjnnHMXFxdU6obxhwwb98pe/1K233qo9e/booYceUrt27azLY2vz9ttvKzg4WIMGDdK2bdv08MMP67LLLrNqs/bt21dRUVH61a9+pWnTpikkJEQLFy7UF1984dH6JemSSy7RhRdeqN/97ncyxqhly5Z67733rHsXeFNdjqHExEStXLlS7733ntq2bauIiAglJCTo0UcfVXZ2tvr27avx48crISFBJ06c0K5du/Thhx/qhRdeqPMkBAAA/uDcc8/Vww8/rKlTp+quu+7SL37xCx0+fFjTp09X8+bNNW3aNEnSl19+qQceeEC33nqrOnXqpNDQUK1YsUJffvmlfve731nrS0xM1OLFi/Xmm2/qggsuUPPmzWtN9GjdurWuvfZaPfzwwwoPD9fzzz+vb775RosXL67z9tRl3JuYmKi3335b8+fPV48ePdSsWTP17NlTd911l5577jmNHDlSu3btUmJiotasWaPMzExdf/31bq/KrA9vjHMre/bZZ3X11Vfrpz/9qe6//3517NhRR48e1Xfffaf33ntPK1asqPHzzZo10/Tp0zV69Gjdcsstuueee3TkyBFNnz5dbdu2rTJulk4ltHTp0kWffPKJ7rzzTkVHR3vU1+joaHXt2lVZWVnq37+/lbg0cOBA/fDDD/rhhx80Z84cj7e9unOhmiaUQ0ND9dRTT+nYsWO68sortXbtWj322GMaMmSIrr766lrb9OS874YbbtCcOXOUkpKi++67T4cPH9bs2bPrdJXzoEGDFBoaql/84heaPHmyTpw4ofnz59e7jG1NPD2GajpXefHFFzVkyBANHjxYaWlpateunX744Qd9/fXX+vzzz6tNtgLQhPjqjr8AfOOTTz4xkszf/va3Ku+98847plevXqZ58+YmPDzcDBgwwPzzn/+sEvfhhx+ayy+/3ISFhZkLLrjAzJs3z0ybNs1U/idFkhk7dmyVz3fo0MGMHDnSZdm7775runXrZkJDQ835559vHn/8cbfrdCcpKclceumlZuXKlaZnz57Gbrebtm3bmqlTp5rS0lIrbufOnUaSefLJJ6usQ5KZNm1avfbHlClTTFxcnGnWrJmRZD755BNjjDHl5eXmiSeeMBdffLEJCQkxrVu3NnfeeafZs2eP2/5XNnLkSNOhQ4dat98YY/785z+bXr16mfDwcBMWFmYuvPBCc9ddd5kNGzbUq51jx46Z3//+9yYhIcGEhoYah8NhEhMTzYMPPmjy8vKsuOq+Y2OM+fTTT02vXr2M3W43sbGx5je/+Y154oknjCRz5MiRKvErV640kszjjz/u0TZX+Mc//mEkmUGDBrksHzVqlJFk/vjHP7osr+k4MMaYv/zlL+aSSy4xISEhbo8LZ6+88oqRZLKyskxqaqo599xzTVhYmLn++uvNjh07au17xTG+ceNGM2zYMHPOOeeYiIgI84tf/MIcOHDAJXbt2rWmT58+pkWLFqZNmzbml7/8pfn888+NJPPKK69YcSNHjjTh4eFu2/vqq6/MoEGDTEREhImKijK33nqr2b17d5XtrOjXoUOHXD5f3brdHVueHkObN282V111lWnRooWRZJKSkqz3Dh06ZMaPH2/i4+NNSEiIadmypenRo4d56KGHzLFjx4wxtX+fAAD4WsV4YefOnS7L/+///s8a/zocDnPjjTeabdu2We8fOHDApKWlmUsuucSEh4ebc845x3Tr1s08/fTTpqyszIrbtWuXSU5ONhEREUZSrePHivHb888/by688EITEhJiLrnkErNw4UK3/c7NzXVZXnE+UTHmNcbzce8PP/xgbrnlFnPuuecam83mMtY/fPiw+dWvfmXatm1rgoODTYcOHcyUKVPMiRMn3Pa/MnfnGO6c6TjXXTs7d+4099xzj2nXrp0JCQkxbdq0MX379jWPPfZYlf3m7jzMGGP+9Kc/mYsuusiEhoaaiy++2Pz5z382N954o+nevbvb+IyMDCPJ5OTk1LrNzh588EEjycyYMcNleadOnYwk8+WXX7osr+44qFDduZA7FWPJL7/80vTr18+EhYWZli1bmvvvv98a29XE0/M+Y06dHyUkJBi73W4uuOACM3PmTPPyyy9X+bvYoUMHc8MNN7ht77333jOXXXaZad68uWnXrp35zW9+Yz766KMq21ndeVZ163Z3bHlyDBlT87nKF198YW677TYTHR1tQkJCTGxsrLn22mvNCy+8YMXU9n0CCFw2Y5xqUQBAAOrXr5/++9//auvWrb7uCmqRnJysXbt26dtvv63y3sSJEzV//nzt2bOnzrVgA1VGRoamT5+uQ4cOea3WLAAAQE1sNpvGjh2refPm+borqMGRI0d08cUX62c/+5n+9Kc/VXm/Z8+estlsys3N9UHvfIPzPgCoHuV6AAANIj09Xd27d1f79u31ww8/aOHChcrOzrZuHlchJydH3377rZ5//nmNHj36rJngBwAAAKRTN46dMWOG+vfvr1atWun777/X008/raNHj+rXv/61FVdYWKitW7fq/fff18aNG7VkyRIf9hoA4E+Y5AcANIjy8nI98sgjysvLk81mU5cuXfT666/rzjvvdImruJHx0KFD9dhjj/motwAAAIBv2O127dq1S2PGjNEPP/ygFi1aqHfv3nrhhRd06aWXWnGff/659UPAtGnT9LOf/cx3nQYA+BXK9QAAAAAAAAAAEKCq3qYdAAAAAAAAAACckfnz56tbt26KjIxUZGSk+vTpo48++sh63xijjIwMxcXFKSwsTP369dO2bdvq3I5fTfJ37NhRNputymPs2LGSPNvo4uJijRs3Tq1bt1Z4eLiGDx+uvXv3usTk5+crNTVVDodDDodDqampOnLkiEvM7t27NWzYMIWHh6t169YaP368SkpKXGK2bNmipKQkhYWFqV27dnr00UfFhREAAAAAAAAAgPPOO0+PP/64NmzYoA0bNujaa6/VjTfeaM1pz5o1S3PmzNG8efOUm5ur2NhYDRo0SEePHq1TO341yZ+bm6v9+/dbj+zsbEnSrbfeKsmzjZ4wYYKWLFmixYsXa82aNTp27JiGDh2q8vJyKyYlJUWbN2/W0qVLtXTpUm3evFmpqanW++Xl5brhhht0/PhxrVmzRosXL9Zbb72liRMnWjGFhYUaNGiQ4uLilJubq7lz52r27NmaM2dOQ+8mAAAAAAAAAICfGzZsmK6//npdfPHFuvjiizVjxgydc845ysnJkTFGzzzzjB566CGNGDFCXbt21auvvqr//e9/WrRoUZ3a8eua/BMmTND777+vHTt2SJLi4uI0YcIE/fa3v5V0Kms/JiZGTzzxhEaPHq2CggK1adNGr7/+um6//XZJ0r59+9S+fXt9+OGHGjx4sL7++mt16dJFOTk56tWrlyQpJydHffr00TfffKOEhAR99NFHGjp0qPbs2aO4uDhJ0uLFi5WWlqaDBw8qMjJS8+fP15QpU3TgwAHZ7XZJ0uOPP665c+dq7969stlsHm3jyZMntW/fPkVERHj8GQAAAPgHY4yOHj2quLg4NWvmV/kzZyXG1gAAAIGpLuPqEydOVKm40piMMVXGmna73Zojrk55ebn+9re/aeTIkdq0aZOaN2+uCy+8UJ9//rm6d+9uxd14440699xz9eqrr3rcp+C6bULjKSkp0RtvvKH09HTZbDb9+9//Vl5enpKTk60Yu92upKQkrV27VqNHj9bGjRtVWlrqEhMXF6euXbtq7dq1Gjx4sNatWyeHw2FN8EtS79695XA4tHbtWiUkJGjdunXq2rWrNcEvSYMHD1ZxcbE2btyo/v37a926dUpKSnL58gYPHqwpU6Zo165dio+Pd7tdxcXFKi4utl7/5z//UZcuXbyyzwAAAOAbe/bs0Xnnnefrbpx1GFsDAAA0LbWNq0+cOKE2YWE61oh9quycc87RsWOuPZg2bZoyMjLcxm/ZskV9+vTRiRMndM4552jJkiXq0qWL1q5dK0mKiYlxiY+JidH3339fpz757ST/O++8oyNHjigtLU2SlJeXJ6nmjc7Ly1NoaKiioqKqxFR8Pi8vT9HR0VXai46Odomp3E5UVJRCQ0NdYjp27FilnYr3qpvknzlzpqZPn15l+Z49exQZGen2MwAAAPBPhYWFat++vSIiInzdlbMSY2sAqD+HY6bL64KCKT7qCQB4Pq4uKSnRMUkPSqo5b75hFEt6+tixKuPNmrL4ExIStHnzZh05ckRvvfWWRo4cqVWrVlnvV74qwN2VArXx20n+l19+WUOGDHHJppfqt9GVY9zFeyOmovJRTf2ZMmWK0tPTrdcVB3DFHZYBAAAQeCgN4xuMrQGg/oyZWXsQADQyT8fV4ZKaN2xX3KqYTK/LeDM0NFQXXXSRJKlnz57Kzc3Vs88+a5Wkz8vLU9u2ba34gwcPVklAr41fFg79/vvvtWzZMv3yl7+0lsXGxko6ndFfwXmjY2NjVVJSovz8/BpjDhw4UKXNQ4cOucRUbic/P1+lpaU1xhw8eFBS1asNnNntdusg4OQDAAAAqD/G1gAAAGenEB8+zpQxRsXFxYqPj1dsbKyys7Ot90pKSrRq1Sr17du3Tuv0y0n+V155RdHR0brhhhusZZ5sdI8ePRQSEuISs3//fm3dutWK6dOnjwoKCvTZZ59ZMevXr1dBQYFLzNatW7V//34rJisrS3a7XT169LBiVq9e7XKTh6ysLMXFxVUp4wMAAAAAAAAAOLtMnTpVn376qXbt2qUtW7booYce0sqVK3XHHXfIZrNpwoQJyszM1JIlS7R161alpaWpRYsWSklJqVM7fleu5+TJk3rllVc0cuRIBQef7p7zRnfq1EmdOnVSZmamy0Y7HA7de++9mjhxolq1aqWWLVtq0qRJSkxM1MCBAyVJnTt31nXXXadRo0bpxRdflCTdd999Gjp0qBISEiRJycnJ6tKli1JTU/Xkk0/qhx9+0KRJkzRq1CgrOyglJUXTp09XWlqapk6dqh07digzM1OPPPIIl2sDAAAAAAAAQAMJlm8mtuva5oEDB5Samqr9+/fL4XCoW7duWrp0qQYNGiRJmjx5soqKijRmzBjl5+erV69eysrKqvM9v/xukn/ZsmXavXu37rnnnirvebLRTz/9tIKDg3XbbbepqKhIAwYM0IIFCxQUFGTFLFy4UOPHj1dycrIkafjw4Zo3b571flBQkD744AONGTNGV111lcLCwpSSkqLZs2dbMQ6HQ9nZ2Ro7dqx69uypqKgopaenu9QEBQAAAAAAAACcnV5++eUa37fZbMrIyFBGRsYZtWMzFXeLhU8UFhbK4XCooKCAGqIAAAABhrGcf+H7AAAACEyejuMq4p6QFNZ43bMUSfqt5HfjTb+syQ8AAAAAAAAAAGrnd+V6AAAAAAAAAACoTqDU5G8sZPIDAAAAAAAAABCg/PXHBwAAAAAAAAAAqgj58dHYynzQpieY5AcAAAAAAAAABAzK9biiXA8AAAAAAAAAAAHKX398AAAAAAAAAACgimD5plxPqQ/a9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAAYOa/K7I5AcAAAAAAAAAIED5648PAIAAZrNNt54bM82HPQEAAAAAAE1NiHxTk98XbXqCTH4AAAAAAAAAAAIUmfwAAK8jex8AAAAAADQUMvldMckPAAAAAAAAAAgY3HjXFeV6AAAAAAAAAAAIUP764wMAAAAAAAAAAFUEyzelc/x1Mp1MfgAAAAAAAAAAApS//vgAAAAAAAAAAEAV1OR3RSY/AAAAAAAAAAAByl9/fAAAAAAAAAAAoIoQ+aYmvy/a9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAAYOa/K78tV8AAAAAAAAAAFQRLN+UzvHXyXTK9QAAAAAAAAAAEKD89ccHAAAAAAAAAACqoFyPKzL5AQAAAAAAAAAIUP764wMAAAAAAAAAAFWEyDc1+X3RpifI5AcAAAAAAAAAIECRyQ8AAAAAAAAACBjU5HdFJj8AAAAAAAAAAAHKX398AAAAAAAAAACgimD5pj6+v06m+2u/AAAAAAAAAACoghvvuqJcDwAAAAAAAAAAAYpMfgAAAAAAAABAwODGu67I5AcAAAAAAAAAIED5648PAAAAAAAAAABUERwkhdh80K6RVN747daGTH4AAAAAAAAAAAIUmfwAAAAAAAAAgIARHCwFk8lvIZMfAAAAAAAAAIAARSY/AAAAAAAAACBghPioJn+Iafw2PcEkPwAAAAAAAAAgYPi0XI8folwPAAAAAAAAAAABikx+AAAAAAAAAEDACAmSQnyQvh5ysvHb9ASZ/AAAAAAAAAAABCgy+QEAAAAAAAAAgSNIvklf98F9ADxBJj8AAAAAAAAAAAGKTH4AAAAAAAAAQOAIlm/S16nJDwAAAAAAAAAAvIlMfgAAAAAAAABA4CCT3wWT/AAAAAAAAACAwMEkvwvK9QAAAAAAAAAAEKDI5AcAAAAAAAAABI5mkoJ83Qn/QSY/AAAAAAAAAAABikx+AAAAAAAAAEDgCJZvMvltPmjTA2TyAwAAAAAAAAAQoPxukv8///mP7rzzTrVq1UotWrTQ5Zdfro0bN1rvG2OUkZGhuLg4hYWFqV+/ftq2bZvLOoqLizVu3Di1bt1a4eHhGj58uPbu3esSk5+fr9TUVDkcDjkcDqWmpurIkSMuMbt379awYcMUHh6u1q1ba/z48SopKXGJ2bJli5KSkhQWFqZ27drp0UcflTHGuzsFAAAAAAAAAHBKsA8ffsivJvnz8/N11VVXKSQkRB999JG++uorPfXUUzr33HOtmFmzZmnOnDmaN2+ecnNzFRsbq0GDBuno0aNWzIQJE7RkyRItXrxYa9as0bFjxzR06FCVl5dbMSkpKdq8ebOWLl2qpUuXavPmzUpNTbXeLy8v1w033KDjx49rzZo1Wrx4sd566y1NnDjRiiksLNSgQYMUFxen3NxczZ07V7Nnz9acOXMadkcBAAAAAAAAACDJZvwo7fx3v/ud/vnPf+rTTz91+74xRnFxcZowYYJ++9vfSjqVtR8TE6MnnnhCo0ePVkFBgdq0aaPXX39dt99+uyRp3759at++vT788EMNHjxYX3/9tbp06aKcnBz16tVLkpSTk6M+ffrom2++UUJCgj766CMNHTpUe/bsUVxcnCRp8eLFSktL08GDBxUZGan58+drypQpOnDggOx2uyTp8ccf19y5c7V3717ZbLUXaSosLJTD4VBBQYEiIyPPeB8CAACg8TCW8y98HwAAAIHJ03GcFZcoRfqgJn9hueTYIr8bb/pVJv+7776rnj176tZbb1V0dLS6d++ul156yXp/586dysvLU3JysrXMbrcrKSlJa9eulSRt3LhRpaWlLjFxcXHq2rWrFbNu3To5HA5rgl+SevfuLYfD4RLTtWtXa4JfkgYPHqzi4mKrfNC6deuUlJRkTfBXxOzbt0+7du1yu43FxcUqLCx0eQAAAACoO8bWAAAAZynK9bjwq0n+f//735o/f746deqkjz/+WL/61a80fvx4vfbaa5KkvLw8SVJMTIzL52JiYqz38vLyFBoaqqioqBpjoqOjq7QfHR3tElO5naioKIWGhtYYU/G6IqaymTNnWvcBcDgcat++fS17BQAAAIA7jK0BAAAAP5vkP3nypK644gplZmaqe/fuGj16tEaNGqX58+e7xFUug2OMqbU0TuUYd/HeiKmoflRdf6ZMmaKCggLrsWfPnhr7DQAAAMA9xtYAAABnqSD5JovfByWCPOFXk/xt27ZVly5dXJZ17txZu3fvliTFxsZKqpolf/DgQSuDPjY2ViUlJcrPz68x5sCBA1XaP3TokEtM5Xby8/NVWlpaY8zBgwclVb3aoILdbldkZKTLAwAAAEDdMbYGAAAA/GyS/6qrrtL27dtdln377bfq0KGDJCk+Pl6xsbHKzs623i8pKdGqVavUt29fSVKPHj0UEhLiErN//35t3brViunTp48KCgr02WefWTHr169XQUGBS8zWrVu1f/9+KyYrK0t2u109evSwYlavXq2SkhKXmLi4OHXs2NEbuwQAAAAAAAAA4CzIhw8/5FeT/A8++KBycnKUmZmp7777TosWLdKf/vQnjR07VtKpEjgTJkxQZmamlixZoq1btyotLU0tWrRQSkqKJMnhcOjee+/VxIkTtXz5cm3atEl33nmnEhMTNXDgQEmnrg647rrrNGrUKOXk5CgnJ0ejRo3S0KFDlZCQIElKTk5Wly5dlJqaqk2bNmn58uWaNGmSRo0aZWUIpaSkyG63Ky0tTVu3btWSJUuUmZmp9PT0WssHAQAAAAAAAABwpvzqfsBXXnmllixZoilTpujRRx9VfHy8nnnmGd1xxx1WzOTJk1VUVKQxY8YoPz9fvXr1UlZWliIiIqyYp59+WsHBwbrttttUVFSkAQMGaMGCBQoKOv1Ty8KFCzV+/HglJydLkoYPH6558+ZZ7wcFBemDDz7QmDFjdNVVVyksLEwpKSmaPXu2FeNwOJSdna2xY8eqZ8+eioqKUnp6utLT0xtyNwEAAAAAAADA2auiRj4kSTZTcadY+ERhYaEcDocKCgqoIQoAABBgGMv5F74PAACAwOTpOM6Ku0qK9MEkf2GZ5Pin/G68ye8dAAAAAAAAAIDAQSa/C7+qyQ8AAAAAAAAAQFMwc+ZMXXnllYqIiFB0dLR+9rOfafv27S4xaWlpstlsLo/evXvXqR0m+QEAAAAAAAAAgSPYh486WLVqlcaOHaucnBxlZ2errKxMycnJOn78uEvcddddp/3791uPDz/8sM67AwAAAAAAAACAwNBMUpAP2j1Zt/ClS5e6vH7llVcUHR2tjRs36pprrrGW2+12xcbG1rtbTPIDAAAAAIAGY7NNt54bM82HPQEAwDsKCwtdXtvtdtnt9lo/V1BQIElq2bKly/KVK1cqOjpa5557rpKSkjRjxgxFR0d73B/K9QAAAAAAAAAAAoePy/W0b99eDofDesycObPWLhtjlJ6erquvvlpdu3a1lg8ZMkQLFy7UihUr9NRTTyk3N1fXXnutiouL67Q7AAAAAAAAAACAB/bs2aPIyEjrtSdZ/A888IC+/PJLrVmzxmX57bffbj3v2rWrevbsqQ4dOuiDDz7QiBEjPOoPk/wAAAAAAKDBUKIHAOB19bgJrleYU39ERka6TPLXZty4cXr33Xe1evVqnXfeeTXGtm3bVh06dNCOHTs8Xj+T/AAAAAAAAAAAeJkxRuPGjdOSJUu0cuVKxcfH1/qZw4cPa8+ePWrbtq3H7TDJDwAAAAAAAAAIHEE/PhrbybqFjx07VosWLdI//vEPRUREKC8vT5LkcDgUFhamY8eOKSMjQzfffLPatm2rXbt2aerUqWrdurVuuukmj9thkh8AAAAAAAAAAC+bP3++JKlfv34uy1955RWlpaUpKChIW7Zs0WuvvaYjR46obdu26t+/v958801FRER43A6T/AAAAAAAAACAwOHjmvweh5uaPxAWFqaPP/74DDp0CpP8AAAAAAAAAIDAESTfzGzXsVxPY2nm6w4AAAAAAAAAAID6IZMfAAAAAAAAABA4fHXjXV+06QEy+QEAAAAAAAAACFBk8gMAAAAAAAAAAoevbrxLTX4AAAAAAAAAAOBNZPIDAAAAAAAAAAIHmfwuyOQHAAAAAAAAACBAkckPAAAAAAAAAAgcZPK7YJIfAAAAAAAAABA4mkkK8lG7fshPuwUAAAAAAAAAAGpDJj8AAAAAAAAAIHD4qlxPuQ/a9ACZ/AAAAAAAAAAABCgy+QEAAAAAAAAAgYNMfhdk8gMAAAAAAAAAEKDI5AcAAAAAAAAABI6gHx++aNcPkckPAAAAAAAAAECAIpMfAAAAAAAAABA4qMnvgkl+AAAAAAAAAEDgCJJvZrbLfNCmByjXAwAAAAAAAABAgCKTHwAAAAAAAAAQOHxVrsdPZ9PJ5AcAAAAAAAAAIED56W8PAAAAAAAAAAC4EfTjwxft+iEy+QEAAAAAAAAACFBk8gMAAAAAAAAAAgc1+V2QyQ8AAAAAAAAAQIDy098eAAAAAAAAAABwg0x+F37aLQAAAAAAAAAA3Ggm39wE10/r4vhptwAAAAAAAAAAQG3I5AcAAAAAAAAABA7K9bggkx8AAAAAAAAAgADlp789AAAAAAAAAADgBpn8LsjkBwAAAAAAAAAgQPnpbw8AAAAAAAAAALgR9OPDF+36ISb5AQAAAAAA0OTZbNOt58ZM82FPAMC7mOQHAAAAAAAAAAQOavK78NNuAQAAAAAAAN5D9j7QhATJNzPbflquhxvvAgAAAAAAAAAQoMjkBwAAAAAAAAAEDsr1uCCTHwAAAAAAAACAAOWnvz0AAAAAAAAAAOBGkHxTH5+a/AAAAAAAAAAAwJvI5AcAAAAAAAAABA5q8rvwq0z+jIwM2Ww2l0dsbKz1vjFGGRkZiouLU1hYmPr166dt27a5rKO4uFjjxo1T69atFR4eruHDh2vv3r0uMfn5+UpNTZXD4ZDD4VBqaqqOHDniErN7924NGzZM4eHhat26tcaPH6+SkhKXmC1btigpKUlhYWFq166dHn30URljvLtTAAAAAAAAAACohl9N8kvSpZdeqv3791uPLVu2WO/NmjVLc+bM0bx585Sbm6vY2FgNGjRIR48etWImTJigJUuWaPHixVqzZo2OHTumoUOHqry83IpJSUnR5s2btXTpUi1dulSbN29Wamqq9X55ebluuOEGHT9+XGvWrNHixYv11ltvaeLEiVZMYWGhBg0apLi4OOXm5mru3LmaPXu25syZ08B7CAAAAAAAAADOYsE+fPghv+tWcHCwS/Z+BWOMnnnmGT300EMaMWKEJOnVV19VTEyMFi1apNGjR6ugoEAvv/yyXn/9dQ0cOFCS9MYbb6h9+/ZatmyZBg8erK+//lpLly5VTk6OevXqJUl66aWX1KdPH23fvl0JCQnKysrSV199pT179iguLk6S9NRTTyktLU0zZsxQZGSkFi5cqBMnTmjBggWy2+3q2rWrvv32W82ZM0fp6emy2WyNtMcAAAAAAAAajs023eW1MdN81BMA+FEz+eYmuH6XMn+K33Vrx44diouLU3x8vH7+85/r3//+tyRp586dysvLU3JyshVrt9uVlJSktWvXSpI2btyo0tJSl5i4uDh17drVilm3bp0cDoc1wS9JvXv3lsPhcInp2rWrNcEvSYMHD1ZxcbE2btxoxSQlJclut7vE7Nu3T7t27ap2+4qLi1VYWOjyAAAAAFB3jK0BAAAAP5vk79Wrl1577TV9/PHHeumll5SXl6e+ffvq8OHDysvLkyTFxMS4fCYmJsZ6Ly8vT6GhoYqKiqoxJjo6ukrb0dHRLjGV24mKilJoaGiNMRWvK2LcmTlzpnUvAIfDofbt29e8UwAAAAC4xdgaAADgLEW5Hhd+1a0hQ4ZYzxMTE9WnTx9deOGFevXVV9W7d29JqlIGxxhTa2mcyjHu4r0RU3HT3Zr6M2XKFKWnp1uvCwsLORkBAAAA6oGxNQA0DsrzAIB/86tM/srCw8OVmJioHTt2WHX6K2fJHzx40Mqgj42NVUlJifLz82uMOXDgQJW2Dh065BJTuZ38/HyVlpbWGHPw4EFJVa82cGa32xUZGenyAAAAAFB3jK0BAADOUmTyu/DrSf7i4mJ9/fXXatu2reLj4xUbG6vs7Gzr/ZKSEq1atUp9+/aVJPXo0UMhISEuMfv379fWrVutmD59+qigoECfffaZFbN+/XoVFBS4xGzdulX79++3YrKysmS329WjRw8rZvXq1SopKXGJiYuLU8eOHb2/MwAAAAAAAAAAqMSvJvknTZqkVatWaefOnVq/fr1uueUWFRYWauTIkbLZbJowYYIyMzO1ZMkSbd26VWlpaWrRooVSUlIkSQ6HQ/fee68mTpyo5cuXa9OmTbrzzjuVmJiogQMHSpI6d+6s6667TqNGjVJOTo5ycnI0atQoDR06VAkJCZKk5ORkdenSRampqdq0aZOWL1+uSZMmadSoUVZ2UEpKiux2u9LS0rR161YtWbJEmZmZSk9Pr7V8EAAAAAAAAACgnoJ8+PBDfnWBwd69e/WLX/xC//3vf9WmTRv17t1bOTk56tChgyRp8uTJKioq0pgxY5Sfn69evXopKytLERER1jqefvppBQcH67bbblNRUZEGDBigBQsWKCjo9DewcOFCjR8/XsnJyZKk4cOHa968edb7QUFB+uCDDzRmzBhdddVVCgsLU0pKimbPnm3FOBwOZWdna+zYserZs6eioqKUnp7uUhMUAAAAAAAAAICGZDMVd4uFTxQWFsrhcKigoIAaogAAAAGGsZx/4fsAAAAITJ6O46y45VJkeCN2sKL945JjgPxuvOlXmfwAAAAAAAAAANQoSL6Z2fbTcj1+VZMfAAAAAAAAAAB4jkx+AAAAAAAAAEDgCJZvZrb9dDadTH4AAAAAAAAAAAKUn/72AAAAAAAAAACAG0HyTX18avIDAAAAAAAAAABvIpMfAAAAAAAAABA4qMnvgkx+AAAAAAAAAAAClJ/+9gAAAAAAAAAAgBtB8s3MNjX5AQAAAAAAAACAN5HJDwAAAAAAAAAIHEHyTVa9n2byM8kPAAAAAAAAAAgc3HjXBeV6AAAAAAAAAAAIUH762wMAAAAAAAAAAG6Qye+CTH4AAAAAAAAAAAIUk/wAAAAAAAAAgMAR7MNHHcycOVNXXnmlIiIiFB0drZ/97Gfavn27S4wxRhkZGYqLi1NYWJj69eunbdu21akdJvkBAAAAAAAAAPCyVatWaezYscrJyVF2drbKysqUnJys48ePWzGzZs3SnDlzNG/ePOXm5io2NlaDBg3S0aNHPW7HT6sIAQAAAAAAAABQlWkmmSDftFsXS5cudXn9yiuvKDo6Whs3btQ111wjY4yeeeYZPfTQQxoxYoQk6dVXX1VMTIwWLVqk0aNHe9QOmfwAAAAAAAAAAHiosLDQ5VFcXOzR5woKCiRJLVu2lCTt3LlTeXl5Sk5OtmLsdruSkpK0du1aj/tDJj8AAAAAAAAChs023XpuzDQf9gSAr5QHn3r4ol1Jat++vcvyadOmKSMjo8bPGmOUnp6uq6++Wl27dpUk5eXlSZJiYmJcYmNiYvT999973C8m+QEAAAAAAAAAAcPXk/x79uxRZGSktdxut9f62QceeEBffvml1qxZU+U9m83m8toYU2VZTZjkBwAAAAAAQMAgex+Ar0VGRrpM8tdm3Lhxevfdd7V69Wqdd9551vLY2FhJpzL627Ztay0/ePBglez+mlCTHwAAAAAAAAAQMMqCbCoLauaDh+fZ9dKpjPwHHnhAb7/9tlasWKH4+HiX9+Pj4xUbG6vs7GxrWUlJiVatWqW+fft63A6Z/AAAAAAAAAAAeNnYsWO1aNEi/eMf/1BERIRVg9/hcCgsLEw2m00TJkxQZmamOnXqpE6dOikzM1MtWrRQSkqKx+0wyQ8AAAAAAAAACBjlwcEqD65bVr132jWSSj2Onz9/viSpX79+LstfeeUVpaWlSZImT56soqIijRkzRvn5+erVq5eysrIUERHhcTtM8gMAAAAAAAAA4GXGmFpjbDabMjIylJGRUe92mOQHAAAAAAAAAASM8qAgldexPr532q1bJn9j4ca7AAAAAAAAAAAEKDL5AQAAAAAAAHiVzTbdem7MNB/2BE3RSQWpXI2fyX9StZff8QUm+QEAAAAAAAAAAaNMQSrzwSR/mZ9O8lOuBwAAAAAAAACAAEUmPwAAAAAAAACvokQPGlK5glTug/z1cp1s9DY9QSY/AAAAAAAAAAABikx+AAAAAAAABCTnm7tKZI8DZwvfZfI3/n0APEEmPwAAAAAAAAAAAYpMfgAAAAAAAAQkMveBsxOZ/K7I5AcAAAAAAAAAIECRyQ8AAAAAAAAACBhk8rtikh8AAAAAAAAAEDDKFaQyJvktlOsBAAAAAAAAACBAkckPAAAAAAAAAAgY5Qr2Ubmek43epifI5AcAAAAAAAAAIECRyQ8AAAAAAAAACBjlaqZyBfmgXf9EJj8AAAAAAAAAAAGKTH4AAAAAAAAAQMAoVxCZ/E7I5AcAAAAAAAAAIECRyQ8AAAAAAAAACBhlClKZDzL5yxq9Rc8wyQ8AAAAAAAAACBgnFeyTcj0nZWv0Nj1BuR4AAAAAAAAAAAIUmfwAAAAAAAAAgIDBjXddkckPAAAAAAAAAECAIpMfAAAAAAAAABAwyOR3RSY/AAAAAAAAAAABikx+AAAAAAAAAEDAKFczH2Xym0Zv0xNM8gMAAAAAgLOSzTbdem7MNB/2BACA+vPrcj0zZ86UzWbThAkTrGXGGGVkZCguLk5hYWHq16+ftm3b5vK54uJijRs3Tq1bt1Z4eLiGDx+uvXv3usTk5+crNTVVDodDDodDqampOnLkiEvM7t27NWzYMIWHh6t169YaP368SkpKXGK2bNmipKQkhYWFqV27dnr00UdljH/+ogMAAAAAAAAAga5MQT57+CO/neTPzc3Vn/70J3Xr1s1l+axZszRnzhzNmzdPubm5io2N1aBBg3T06FErZsKECVqyZIkWL16sNWvW6NixYxo6dKjKy0/fGiElJUWbN2/W0qVLtXTpUm3evFmpqanW++Xl5brhhht0/PhxrVmzRosXL9Zbb72liRMnWjGFhYUaNGiQ4uLilJubq7lz52r27NmaM2dOA+4ZAAAAAADgDcZMsx4AgMBRrmCfPfyRX/bq2LFjuuOOO/TSSy/pscces5YbY/TMM8/ooYce0ogRIyRJr776qmJiYrRo0SKNHj1aBQUFevnll/X6669r4MCBkqQ33nhD7du317JlyzR48GB9/fXXWrp0qXJyctSrVy9J0ksvvaQ+ffpo+/btSkhIUFZWlr766ivt2bNHcXFxkqSnnnpKaWlpmjFjhiIjI7Vw4UKdOHFCCxYskN1uV9euXfXtt99qzpw5Sk9Pl81mq7JtxcXFKi4utl4XFhY22H4EAAAAmjLG1gAAAICfZvKPHTtWN9xwgzVJX2Hnzp3Ky8tTcnKytcxutyspKUlr166VJG3cuFGlpaUuMXFxceratasVs27dOjkcDmuCX5J69+4th8PhEtO1a1drgl+SBg8erOLiYm3cuNGKSUpKkt1ud4nZt2+fdu3a5XbbZs6caZUIcjgcat++fX12EQA0KpttuvUAAMBfMLYGAAA4O51UkMp98DhJuR7PLF68WJ9//rlmzpxZ5b28vDxJUkxMjMvymJgY6728vDyFhoYqKiqqxpjo6Ogq64+OjnaJqdxOVFSUQkNDa4ypeF0RU9mUKVNUUFBgPfbs2eM2DgAAAEDNGFsDAAAAflauZ8+ePfr1r3+trKwsNW/evNq4ymVwjDFuS+PUFOMu3hsxFTfdra4/drvdJfMfAAIBNUoBAP6IsTUAAMDZqSKzvvHbNY3epif8KpN/48aNOnjwoHr06KHg4GAFBwdr1apV+uMf/6jg4OBqs+QPHjxovRcbG6uSkhLl5+fXGHPgwIEq7R86dMglpnI7+fn5Ki0trTHm4MGDkqpebQAAAAAAAAAAgLf51ST/gAEDtGXLFm3evNl69OzZU3fccYc2b96sCy64QLGxscrOzrY+U1JSolWrVqlv376SpB49eigkJMQlZv/+/dq6dasV06dPHxUUFOizzz6zYtavX6+CggKXmK1bt2r//v1WTFZWlux2u3r06GHFrF69WiUlJS4xcXFx6tixo/d3EAAAAAAAAACc5crUTGUK8sHDr6bTLX5VriciIkJdu3Z1WRYeHq5WrVpZyydMmKDMzEx16tRJnTp1UmZmplq0aKGUlBRJksPh0L333quJEyeqVatWatmypSZNmqTExETrRr6dO3fWddddp1GjRunFF1+UJN13330aOnSoEhISJEnJycnq0qWLUlNT9eSTT+qHH37QpEmTNGrUKEVGRkqSUlJSNH36dKWlpWnq1KnasWOHMjMz9cgjj9RaPggAAAAAAAAAgDPlV5P8npg8ebKKioo0ZswY5efnq1evXsrKylJERIQV8/TTTys4OFi33XabioqKNGDAAC1YsEBBQafrNC1cuFDjx49XcnKyJGn48OGaN2+e9X5QUJA++OADjRkzRldddZXCwsKUkpKi2bNnWzEOh0PZ2dkaO3asevbsqaioKKWnpys9Pb0R9gQQeGy26dZzarwDAAAAAACgPsoVrHIfTG37a01+m6m4Uyx8orCwUA6HQwUFBdYVAkBTxSQ/AKCpYSznX/g+AAAAApOn47iKuJcLblCLyJBG7OEp/yss1b2OD/xuvBlwmfwAAhcT+wAAAAAAAIB3MckPAAAAAAAAAAgY5QpSuYJqD/R6uycbvU1P+OftgAEAAAAAAAAAQK3I5AcAAAAAAAAABIxyBamMTH4LmfwAAAAAAAAAAAQoMvkBAAAAAAAAAAGjXMEq98HUdrlMo7fpCTL5AQAAAAAAAAAIUGTyAwAAAAAAAAACRrmaqdwnNfnLG71NTzDJDwAAAAAAAAAIGOUK8tEkf+O36Qkm+QEAjc5mm249N2aaD3sCAAAAAAAQ2JjkBwAAAAAAAAAEDDL5XXHjXQAAAAAAAAAAAhSZ/ACARkeJHgAAAAAAUF/lClIZmfwWMvkBAAAAAAAAAAhQZPIDAAAAAAAAAAJGuYJV7oOp7XKdbPQ2PUEmPwAAAAAAAAAAAYpMfgAAAAAAAABAwChXkE/q4/trTf4znuT/5ptv9N577+ncc8/VpZdeqq5duyoyMtIbfQMAAAAAAAAAADU440n+IUOG6Je//KWOHDmiF198UVu2bNHx48e1fft2b/QPAAAAAAAATZzNNt16bsw0H/YEQCAoVzMfZfL7Z/X7M57kb9u2rR566CGXZeXl5We6WgAAAAAAAAAAqihTkMp8MMnvizY9Ue9J/okTJ+qyyy5T//799eqrr2rkyJHWe0FB/rmxAAAAAAAAcM2cl3yfPe/r9gEgkNV7kv+aa67Rl19+qW+//VZ///vfNWPGDPXs2VOJiYlKTEzU0KFDvdlPAAAAAAAAAABUrmCVn3mRmnq0658VbOq9J2688UbdeOON1uuioiJt3bpVX375pZYvX84kPwAAAAAAgJ8icx4Amo4z/rljy5YteuaZZ5Sfn6/ExET98pe/1L333uuNvgEAAAAAAAAA4OKkgnxy492TflqT/4xvB3zLLbcoKSlJU6ZMUVxcnIYPH67ly5d7o28AAAAAAAAAAKAGZ5zJ73A4dNddd0mSrrzySo0YMUIDBw7UF198ccadAwAEJuebeHnjMmBvrw8AAAAAAASuch9l8vuiTU+ccSb/BRdcoDlz5sgYI0lq2bKlmjdvfsYdAwAAAAAAAAAANTvjTP7i4mI999xzevrpp3XppZfq+++/10033aT//Oc/ateunTf6CAAIMN7Otid7HwAAAAAAVChXMx9l8p9xznyD8HiSPzU1VS+++KJatGjhsnzJkiWSpOPHj+vLL7+0Hj//+c+1b98+/etf//JujwEAAAAAAAAAZ60yBSnIB5P8ZYFermfRokU6duyY9Xr06NHKz8+3XoeHh6tnz54aPXq0nnvuOX366adM8AMAAAAAAAAAzkqrV6/WsGHDFBcXJ5vNpnfeecfl/bS0NNlsNpdH796969yOx5P8FTX3K/zlL39xmeQ/cOCAIiIi6twBAAAAAAAAAAA8Va5gnz3q4vjx47rssss0b968amOuu+467d+/33p8+OGHdd4f9a7JX3nSX5JKSkrquzoAAAAAAAAAAJqMIUOGaMiQITXG2O12xcbGnlE7Z3zjXWc2m82bqwMAAAAAAAACks023eW1MdN81BOg6TmpIJ/cePfkj20WFha6LLfb7bLb7fVa58qVKxUdHa1zzz1XSUlJmjFjhqKjo+u0jjrdDnjRokX6/PPPVVpaKolJfQAAAAAAAADA2aV9+/ZyOBzWY+bMmfVaz5AhQ7Rw4UKtWLFCTz31lHJzc3XttdequLi4TuvxOJP/6quv1rRp03T06FGFhISorKxMU6dO1dVXX60rrrhCbdq0qfNGAAAAAAAAAE0RmftAwyn3USZ/RZt79uxRZGSktby+Wfy333679bxr167q2bOnOnTooA8++EAjRozweD0eT/KvXr1akrRjxw5t3LhRn3/+uTZu3KiHH35YR44cIasfAAAAAAAAANDkRUZGukzye0vbtm3VoUMH7dixo06fq3NN/k6dOqlTp076+c9/bi3buXOnNmzYoE2bNtV1dQCAAONcV5LMFAAAAKBpqlxP3hnnAQB8rUxBauaDTP6yBm7z8OHD2rNnj9q2bVunz3nlxrvx8fGKj4/Xrbfe6o3VAQAAAAAAAADg1qlyPV6Z2q5zu3Vx7Ngxfffdd9brnTt3avPmzWrZsqVatmypjIwM3XzzzWrbtq127dqlqVOnqnXr1rrpppvq1E7j7wkAQECrLmuHDH8AAAAAAIDTNmzYoP79+1uv09PTJUkjR47U/PnztWXLFr322ms6cuSI2rZtq/79++vNN99UREREndphkh8AAAAAAAAuSNwB4M98feNdT/Xr10/GmGrf//jjj8+0S5KY5AcAeAkZ/gAAAAAAAI2PSX4AAAAAAAAAQMAIlEz+xtLM1x0AAAAAAAAAAAD1QyY/AKBBUaIHAAAAAAB400kfZfKfJJMfAAAAAAAAAAB4E5n8AIBGx814AQAAAABAfZUpSDYfZNWX+WkmP5P8AAAAAAAAAICAUa4gNfPB1La/3niXSX4AQKMjex8AAAAAAMA7mOQHAAAAAAAAAASMU5n8jZ9VTyY/AKBJo84+AAAAAABA42OSHwAAAAAAAAAQMMjkd9XM1x0AAAAAAAAAAAD1QyY/AKDeKNEDAAAAAAAaW5mCZPNBVn0ZmfwAAAAAAAAAAMCb/GqSf/78+erWrZsiIyMVGRmpPn366KOPPrLeN8YoIyNDcXFxCgsLU79+/bRt2zaXdRQXF2vcuHFq3bq1wsPDNXz4cO3du9clJj8/X6mpqXI4HHI4HEpNTdWRI0dcYnbv3q1hw4YpPDxcrVu31vjx41VSUuISs2XLFiUlJSksLEzt2rXTo48+KmOMd3cKAPgxY6ZZDwAAAAAAgMZwUsEq98HjpJ8WxvGrSf7zzjtPjz/+uDZs2KANGzbo2muv1Y033mhN5M+aNUtz5szRvHnzlJubq9jYWA0aNEhHjx611jFhwgQtWbJEixcv1po1a3Ts2DENHTpU5eXlVkxKSoo2b96spUuXaunSpdq8ebNSU1Ot98vLy3XDDTfo+PHjWrNmjRYvXqy33npLEydOtGIKCws1aNAgxcXFKTc3V3PnztXs2bM1Z86cRthTAAAAAAAAAHB2KleQzx7+yGb8PPW8ZcuWevLJJ3XPPfcoLi5OEyZM0G9/+1tJp7L2Y2Ji9MQTT2j06NEqKChQmzZt9Prrr+v222+XJO3bt0/t27fXhx9+qMGDB+vrr79Wly5dlJOTo169ekmScnJy1KdPH33zzTdKSEjQRx99pKFDh2rPnj2Ki4uTJC1evFhpaWk6ePCgIiMjNX/+fE2ZMkUHDhyQ3W6XJD3++OOaO3eu9u7dK5vN5tH2FRYWyuFwqKCgQJGRkd7efQAAAGhAjOX8C98HAABAYPJ0HFcRl1TwVwVHtmjEHp5SVvg/rXLc5nfjTb/K5HdWXl6uxYsX6/jx4+rTp4927typvLw8JScnWzF2u11JSUlau3atJGnjxo0qLS11iYmLi1PXrl2tmHXr1snhcFgT/JLUu3dvORwOl5iuXbtaE/ySNHjwYBUXF2vjxo1WTFJSkjXBXxGzb98+7dq1q9rtKi4uVmFhocsDAAAAQN0xtgYAADg7lauZjzL5/XM63e96tWXLFp1zzjmy2+361a9+pSVLlqhLly7Ky8uTJMXExLjEx8TEWO/l5eUpNDRUUVFRNcZER0dXaTc6OtolpnI7UVFRCg0NrTGm4nVFjDszZ8607gXgcDjUvn37mncIAAAAALcYWwMAAAB+OMmfkJCgzZs3KycnR/fff79Gjhypr776ynq/chkcY0ytpXEqx7iL90ZMReWjmvozZcoUFRQUWI89e/bU2HcAAAAA7jG2BgD/Y7NNtx4A0FDKFOSzhz/yu9sBh4aG6qKLLpIk9ezZU7m5uXr22WetOvx5eXlq27atFX/w4EErgz42NlYlJSXKz893yeY/ePCg+vbta8UcOHCgSruHDh1yWc/69etd3s/Pz1dpaalLTOWM/YMHD0qqerWBM7vd7lLiBwCaIucBvTHTfNgTAEBTxtgaAAAA8MNM/sqMMSouLlZ8fLxiY2OVnZ1tvVdSUqJVq1ZZE/g9evRQSEiIS8z+/fu1detWK6ZPnz4qKCjQZ599ZsWsX79eBQUFLjFbt27V/v37rZisrCzZ7Xb16NHDilm9erVKSkpcYuLi4tSxY0fv7wgAAAAAAAAAgMoV7LOHP/KrXk2dOlVDhgxR+/btdfToUS1evFgrV67U0qVLZbPZNGHCBGVmZqpTp07q1KmTMjMz1aJFC6WkpEiSHA6H7r33Xk2cOFGtWrVSy5YtNWnSJCUmJmrgwIGSpM6dO+u6667TqFGj9OKLL0qS7rvvPg0dOlQJCQmSpOTkZHXp0kWpqal68skn9cMPP2jSpEkaNWqUddfklJQUTZ8+XWlpaZo6dap27NihzMxMPfLII7WWDwIAAAAA4GwRqFd5Bkq/K5fF8XVffd0+AJyN/GqS/8CBA0pNTdX+/fvlcDjUrVs3LV26VIMGDZIkTZ48WUVFRRozZozy8/PVq1cvZWVlKSIiwlrH008/reDgYN12220qKirSgAEDtGDBAgUFna6XtHDhQo0fP17JycmSpOHDh2vevHnW+0FBQfrggw80ZswYXXXVVQoLC1NKSopmz55txTgcDmVnZ2vs2LHq2bOnoqKilJ6ervT09IbeTQDg97wxsA+UkyoAAAAAANC4TipI5T6oj3/ST2vy20zF3WLhE4WFhXI4HCooKLCuEgAAMMkPIDAwlvMvfB8A0DT429UJABqep+O4irjLCz5WUGR4I/bwlPLC49rsGOx3402/yuQHAJwdPJnAZyAPAAAAAABQOyb5AQAAAAAA4DdI+AFQm1Olehq/dI4vSgR5gkl+AIAPXGQ9oywPAAAAAABA/THJDwAAAAAAAAAIGGVqJuOTTP5mjd6mJ5jkBwA0moqsfTL2AQAAAAAAvINJfgAAAAAAAABAwChXsHwxtV3up9Pp/tkrAECTRAY/AAAAAACAdzHJDwAAAAAAAAAIGOUKknxSk7/x2/QEk/wAAAAAAAAAgIBx0keT/CeZ5AcA4JSKG/BKlPABAAAAAAA4E0zyAwAAAAAAAAACRpmC1IxMfguT/ACARlORwU/2PgAAAAAAgHcwyQ8AAAAAAAAACBjlCpLxwdQ2mfwAgCaBevoAAAAAAAD+g0l+AAAAAAAAAEDAOJXJT03+CkzyAwDqpLrsfU8y/P098597BgAAAABAw3M+f5Q4BwPOFJP8AAAAAAAAAICAQSa/Kyb5AQAAAAAAADQaMvdxpspPBsmc9MEkvw/a9AST/AAAr2gKg7SmsA0AAAAAAODswiQ/AAAAAAAAACBglJcF6WRZ42fVGx+06Qkm+QEAfs+Tm/oCAAAATQljYACAp5jkBwAAAAAAAAAEjPKyYNnKGn9q2/igTU/4Z68AAAAAAADOYmTvAwA8xSQ/AAAAAAAAACBglJc1k80nNfmbNXqbnmCSHwDQoLxRS5QsJgAAAAAAAPeY5AcAAAAAAAAABIzysiAfZfI3fpueYJIfANCgyMIHAAAAAADeVFYWJFspk/wVmOQHAAAAAAB+zbkEpBS4iSRNZTsAAP6FSX4AAAAAAAAAQMAw5cEy5T6Y2vZFmx7wz14BAAKOJzfYrYghYwkAAAB10VTGj01lOwAA/oVJfgAAAAAAAABA4CgLOvXwRbt+iEl+AIBX1Ja9X1MMAAAA4Av+PFb1574BAPwLk/wAAAAAAAAAgMBBJr8LJvkBAA2KrCMAAAAAAICGwyQ/AAAAAAA4K3makOJcOqcunzsTZ1uyjLfKE1HmCDhLlNukMptv2vVDTPIDAOqtvgNom22h0+fu8Fk/AAAAAAAAAh2T/AAAAAAAADUgkaTheWsf810BZ4myHx++aNcPMckPAAAAAAAAAAgcTPK7YJIfAFDvcjfOsXVZhzdK9FTXDwAAAACBhxKcAFB/TPIDAAAAAAAAAAIHmfwumOQHAHglU4ZsGwAAAAAAgMbHJD8AAAAAAIAPUKLmtLN9+wHUUZmkUh+164eY5AcAeF11JysVy6sbwHOSAwAAAAAAUDfNfN0BAAAAAACAs5Ex06wHAKAOyn34qIPVq1dr2LBhiouLk81m0zvvvOPyvjFGGRkZiouLU1hYmPr166dt27bVrRGRyQ8AOAPVZd5Xd5JS28mLu6z/mj5X25UBAAAAAAAAvnL8+HFddtlluvvuu3XzzTdXeX/WrFmaM2eOFixYoIsvvliPPfaYBg0apO3btysiIsLjdpjkBwAAAAAAZyXKRQJAgCqTb+rj17HNIUOGaMiQIW7fM8bomWee0UMPPaQRI0ZIkl599VXFxMRo0aJFGj16tMftMMkPAKg3b5wI2WwLnV59V6d1N9UTMU42AQAAAACogY8n+QsLC10W2+122e32Oq1q586dysvLU3Jysst6kpKStHbt2jpN8lOTHwAAAAAAAAAAD7Vv314Oh8N6zJw5s87ryMvLkyTFxMS4LI+JibHe8xSZ/AAAAAAA4KzEVZMAEKB8nMm/Z88eRUZGWovrmsXvzGazubw2xlRZVhsm+QEAPmXMHXWKPxtK2TTV7QIAAAAAoCmIjIx0meSvj9jYWEmnMvrbtm1rLT948GCV7P7aMMkPAAAAAADQBDknyEgkkwBoQsrlm0z+cu+tKj4+XrGxscrOzlb37t0lSSUlJVq1apWeeOKJOq2LSX4AgFdUl2Hv7cx7TkwAAAAAAEAgOHbsmL777jvr9c6dO7V582a1bNlS559/viZMmKDMzEx16tRJnTp1UmZmplq0aKGUlJQ6tcMkPwAAAAAAQBNEggyAJsvHNfk9tWHDBvXv3996nZ6eLkkaOXKkFixYoMmTJ6uoqEhjxoxRfn6+evXqpaysLEVERNSpHSb5AQBewQkEAAAAAADAaf369ZMxptr3bTabMjIylJGRcUbtMMkPAAAAAABQA2rbA4CfCZBM/sbSzNcdcDZz5kxdeeWVioiIUHR0tH72s59p+/btLjHGGGVkZCguLk5hYWHq16+ftm3b5hJTXFyscePGqXXr1goPD9fw4cO1d+9el5j8/HylpqbK4XDI4XAoNTVVR44ccYnZvXu3hg0bpvDwcLVu3Vrjx49XSUmJS8yWLVuUlJSksLAwtWvXTo8++miNv84AQFNis013+wAAAAAAAGgwpT58+CG/muRftWqVxo4dq5ycHGVnZ6usrEzJyck6fvy4FTNr1izNmTNH8+bNU25urmJjYzVo0CAdPXrUipkwYYKWLFmixYsXa82aNTp27JiGDh2q8vLTtz9OSUnR5s2btXTpUi1dulSbN29Wamqq9X55ebluuOEGHT9+XGvWrNHixYv11ltvaeLEiVZMYWGhBg0apLi4OOXm5mru3LmaPXu25syZ08B7CgAAAAAAAAAAyWb8OO380KFDio6O1qpVq3TNNdfIGKO4uDhNmDBBv/3tbyWdytqPiYnRE088odGjR6ugoEBt2rTR66+/rttvv12StG/fPrVv314ffvihBg8erK+//lpdunRRTk6OevXqJUnKyclRnz599M033yghIUEfffSRhg4dqj179iguLk6StHjxYqWlpengwYOKjIzU/PnzNWXKFB04cEB2u12S9Pjjj2vu3Lnau3evbDZbrdtYWFgoh8OhgoICRUZGNsRuBIAGU13WvvPly84xXNYMoKlhLOdf+D6AumOsVj/sN89Q5giApzwdx1XE6aUCqYUPxnv/K5RG+d94068y+SsrKCiQJLVs2VKStHPnTuXl5Sk5OdmKsdvtSkpK0tq1ayVJGzduVGlpqUtMXFycunbtasWsW7dODofDmuCXpN69e8vhcLjEdO3a1Zrgl6TBgweruLhYGzdutGKSkpKsCf6KmH379mnXrl1ut6m4uFiFhYUuDwAIVMZMsx71jaHMDwCgvhhbAwAAAH58411jjNLT03X11Vera9eukqS8vDxJUkxMjEtsTEyMvv/+eysmNDRUUVFRVWIqPp+Xl6fo6OgqbUZHR7vEVG4nKipKoaGhLjEdO3as0k7Fe/Hx8VXamDlzpqZPZyILAAAAOFOMrYEzR2Z1/bDfPMN+AtBgyuWbm+CW1x7iC347yf/AAw/oyy+/1Jo1a6q8V7kMjjGm1tI4lWPcxXsjpqL6UXX9mTJlitLT063XhYWFat++fY19B9D0+evlvhX98qRP1WfqL3R69V2VWH/aXgBAYGFsDQAAAPjpJP+4ceP07rvvavXq1TrvvPOs5bGxsZJOZcm3bdvWWn7w4EErgz42NlYlJSXKz893yeY/ePCg+vbta8UcOHCgSruHDh1yWc/69etd3s/Pz1dpaalLTEVWv3M7UtWrDSrY7XaX8j4AAAAA6oexNYBA0xRr1DfFbQIQAMrkm0x+X7TpAb+a5DfGaNy4cVqyZIlWrlxZpdxNfHy8YmNjlZ2dre7du0uSSkpKtGrVKj3xxBOSpB49eigkJETZ2dm67bbbJEn79+/X1q1bNWvWLElSnz59VFBQoM8++0w/+clPJEnr169XQUGB9UNAnz59NGPGDO3fv9/6QSErK0t2u109evSwYqZOnaqSkhKFhoZaMXFxcVXK+ABATXwxEPbk6gF3yz2pne+aqX/HGa8DAAAAAAAA7vnVjXfHjh2rN954Q4sWLVJERITy8vKUl5enoqIiSadK4EyYMEGZmZlasmSJtm7dqrS0NLVo0UIpKSmSJIfDoXvvvVcTJ07U8uXLtWnTJt15551KTEzUwIEDJUmdO3fWddddp1GjRiknJ0c5OTkaNWqUhg4dqoSEBElScnKyunTpotTUVG3atEnLly/XpEmTNGrUKOvOySkpKbLb7UpLS9PWrVu1ZMkSZWZmKj09vdbyQQAAAAAAAACAeijz4cMP+VUm//z58yVJ/fr1c1n+yiuvKC0tTZI0efJkFRUVacyYMcrPz1evXr2UlZWliIgIK/7pp59WcHCwbrvtNhUVFWnAgAFasGCBgoKCrJiFCxdq/PjxSk5OliQNHz5c8+bNs94PCgrSBx98oDFjxuiqq65SWFiYUlJSNHv2bCvG4XAoOztbY8eOVc+ePRUVFaX09HSXuqAA4K/qkilf13sGuKvD7+0+AQAAAPA9xvDe4a/3aQP8FuV6XNhMxZ1i4ROFhYVyOBwqKCiwrhAAAH/DJD8AuMdYzr/wfQDwd9SvR3WY5MfZztNxXEWcZhdIYT4Y7xUVSpP8b7zpV5n8AAD/VNdBprs6/NLpgavz+jypzw8AAAA0BUzeojocG0Adlcs3WfXlPmjTA35Vkx8AAAAAAAAAAHiOTH4AAAAAAAA0KkoXATgj1OR3wSQ/AMCFN2pBVleCh4E7AAAAAACAdzHJDwAAAAAAAAAIHKWSgnzUrh9ikh8A4KIu2fbV3zT3Iqf1nb4Jr7v46m7CS9Y/AAAA0HQx3q8epYwA1BWT/AAAAAAAAACAwFH+48MX7fohJvkBANWqyCCpLnOkrhkltcVXl9V/Jm3WhqsHAAAAAPgTzksAD3DjXRfNfN0BAAAAAAAAAABQP2TyAwCqVZFBYrMtdFrmXGO/uuU1Z8e7Zum7r9/fWNkrZMkAAAB/RV1unK049hEouDLch8rlm6x6Py3XQyY/AAAAAAAAAAABikx+AAAAAAAAAEDgKJMU5KN2/RCT/ACAWjmX0fFsee030D3tu/p2CwAAoEmj9MPZxdclanzdvr+0DdQFxyr8BZP8AAAAAAAAAIDAUSrfFKIv9UGbHmCSHwBQJ2dyYyH3N+Fd6CYSAAAACEz1HS/7OiPY1+0j8Pn6ahBftw/4EpP8AAAAAAAAAIDAUf7jwxft+iEm+QHAD5xJdnxjrM+Z99d3uq5/Q/bbWWO105AqtiFQ+w8AANBU+HP2cE19a4x++/O+gff5+vv1dftoZOXyzU1w/XSS3xeViwAAAAAAAAAAgBeQyQ8AfsCfsu3rkuVeXWxt66ic0VNbe3VZnyfb3hQyPJrCNgAA4E1N4Uq9s12gZn03VD/re0w73/Oqps8Fyv4FALfK5Jv0dV9cPeABMvkBAAAAAAAAAAhQZPIDQBPXWFnuzhlD1S13rr9/2jCnWPd9ra1P9b0CAAAAAAAABKBSSTYfteuHmOQHAAAAAAQ8ftBveNWVXJS8s//5Dl3Vd3+4T6zxDb5TAGgcTPIDAAAAAAAAAAJH+Y8PX7Trh5jkB4AmzpPsmfqWtXG92a77G3y5K+NTfRtXVLO++mUjkTkEAADgPYyt6s7XNxP2dfs1qUvf/Hk7AMAfMMkPAAAAAAAAAAgcZZKa+ahdP8QkPwCg1kwYzzL9O1ez7tNZ+BXraWo3yg3UfgMAANSE7Okz5+t95uv2a1LfK4gBQNKpsjm+mHD303I9vvi9AwAAAAAAAAAAeAGZ/ABwlqqcmVXBXZaMJ5n3rqqrrT/tx2WfOy27osr7Z9JXX/CXfpxtuIICAAAAAM5SpWdZu7Vgkh8AAAAAAFTBj+hNG+WYAKDpYJIfAM5QoGYTe9LX2mroOy93ztivbp9UZPA7Z+/X1rYnfa2+vcD8buAZvlMAAAAAOEuVyzeF6P20Jj+T/AAAAAAAwO+QsFE9b+wb9ikANB1M8gPAGfL3wbEnWe7OnGNqz6B3rrd/h9t1u2vHZnuvxvXWlSdXGgAAAAAAgCaiTJLNR+36ISb5AQAAAAANitrfTU9jfKeNfZz423FaU7a+p33zt23yNa4OAdBUMckPAAAAAAAAAAgcZPK7YJIfAOqhKWSAVNdvd+V1XMv8FDktdy7Rs1Du1GX/eLJfqyszVJ/2AAAAAABAAPLVZDuT/AAAAACAsxE/wiMQNMRxeiYJKt4oycPfPVfsDwBNFZP8AFAPgTQ4rGtfa4s3Jsx67snNe525jx/m9Pyieq27tpMnAAAAAADQhJTLN+V6yn3QpgeY5AcAAAAAAHUSSEkvvtQY+4nvonrceDgw8b0BdcckPwCgWqcHV6cz7J3r8Nf+OdfPVjyvfh1X1Kl/p/vEoA8AAAAAgLMGNfldMMkPAAAAAADQRDgn3JztyTBn+/YHKr43oO6Y5AdwVvP3AXB9++et7ar4rPP6qq9/73m2v8220OnVdx73o3L73vjO/P0YAAAAAAAAlZDJ76KZrzsAAAAAAAAAAADqh0x+AAAAAECTwk0bq8e+qV5T2TeB2m+usEVTwzHdwMokGR+0W+6DNj3AJD+As5q//0db3/55a7uqL81TtZ3qYt0td/1ckdM7bzs9/84ppuZ+eKK6AZa/HwMAAAAAAAA1YZIfAAAAANCk8CN+9dg31atp3/hbln9NSTD17Zuvt9HX+xRNj68z6TmmG5ivMurJ5AcABALnm+KevvGu+xvl2myfOy2/yGn5dLfL3d1k15gwp8+5vwmva+b/QrcxtWGABQAAAABAE0G5HhdM8gMAAABAE+TrDEYEPl9ndvvTMezr9ivzpGzmmawTDcOfjumzAfsYZxMm+QGgCTqzwaO7WvjO2fjOz99zej7Mqc073Pbl9DL3VwY4q+7ExR8Hav7ePwAAAAAAmhQy+V0wyQ8AAAAATVBD//Ds6yxvNDxvfaeeJkTU95jy1rFY03oC6XhviHr99W3f3/aTr/vmb/sDQNPBJD+As4KvB3ONz7k+vnON/TvcBVfLXU1+1yx9T+rjX+Tx+3Xtn79orGOqLsfx2XfMAwAAAADOGmWSTvqgXV+06YFmvu4AAAAAAAAAAACoH5sxxhfVi/CjwsJCORwOFRQUKDIy0tfdAc5qZD6f4i5r32YrcoqYVc0nhzk97+y0jjCndU//cZnzpc+fO33Ouca/8xUAtdftBwBfYCznX/g+gDMTSCVpcFpTKTME4Ozm6TiuIk4dCqRmPhjvnSyUvve/8SaZ/AAAAAAAAAAABChq8gMAAAAAUEe+vklsQ/CnvjQWb1zN21A3uvW0b5Xfq+lz/nT1sj//XaiLprIdQMApk2/S1/20Jj+T/ADwo4YcjJ3JzW/r1577wXt1JyDVbfvpUjrOZXROl+Ux5gqnWOeb8L7ntHxylXbq2g/XPk2v8pyBdMPwp5NAAAAAAAAsTPK78KtJ/tWrV+vJJ5/Uxo0btX//fi1ZskQ/+9nPrPeNMZo+fbr+9Kc/KT8/X7169dJzzz2nSy+91IopLi7WpEmT9Je//EVFRUUaMGCAnn/+eZ133nlWTH5+vsaPH693331XkjR8+HDNnTtX5557rhWze/dujR07VitWrFBYWJhSUlI0e/ZshYaGWjFbtmzRAw88oM8++0wtW7bU6NGj9fDDD8tmszXcTgIAAAAA+Fx9fwBvqB/O+XHedxpqf9e03vpePeCtvnrjeKvL5/w5W96f+gLg7OVXk/zHjx/XZZddprvvvls333xzlfdnzZqlOXPmaMGCBbr44ov12GOPadCgQdq+fbsiIiIkSRMmTNB7772nxYsXq1WrVpo4caKGDh2qjRs3KigoSJKUkpKivXv3aunSpZKk++67T6mpqXrvvVOZp+Xl5brhhhvUpk0brVmzRocPH9bIkSNljNHcuXMlnbrJw6BBg9S/f3/l5ubq22+/VVpamsLDwzVx4sTG2F0AAkhjZO+7tud+oOma1b/QbYzrTW7d3fDWOUv/9PParwaQbLav3URc5PS+c5+8e7Pdxr6aoinghAUAAAAA4JdKRSa/E7+a5B8yZIiGDBni9j1jjJ555hk99NBDGjFihCTp1VdfVUxMjBYtWqTRo0eroKBAL7/8sl5//XUNHDhQkvTGG2+offv2WrZsmQYPHqyvv/5aS5cuVU5Ojnr16iVJeumll9SnTx9t375dCQkJysrK0ldffaU9e/YoLi5OkvTUU08pLS1NM2bMUGRkpBYuXKgTJ05owYIFstvt6tq1q7799lvNmTNH6enpZPMDAAAAAAAAwFksIyND06e7Xo0UExOjvLw8r7bjV5P8Ndm5c6fy8vKUnJxsLbPb7UpKStLatWs1evRobdy4UaWlpS4xcXFx6tq1q9auXavBgwdr3bp1cjgc1gS/JPXu3VsOh0Nr165VQkKC1q1bp65du1oT/JI0ePBgFRcXa+PGjerfv7/WrVunpKQk2e12l5gpU6Zo165dio+Pd7sdxcXFKi4utl4XFhZ6Zf8AQF05Z7O7Zrk7Z/t/rqrcZeNXjnWO6VyHXlUXezqrv7ZLg6t7n+z9poeyBADOhrG1P5eogH/xxrFRl+OtqRybNd2/yp+3ydd9a+z2fb29APzQSUnGB+3Wo81LL71Uy5Yts15XVJvxJl9c1FAvFb9uxMTEuCx3/uUjLy9PoaGhioqKqjEmOjq6yvqjo6NdYiq3ExUVpdDQ0BpjKl7X9EvMzJkz5XA4rEf79u1r3nAAAAAAbjG2BgAAgL8LDg5WbGys9WjTpo332/D6GhtY5TI4xphaS+NUjnEX740YY0y1n60wZcoUpaenW68LCws5GQECXF2ziSvi65qN4o2sZdfspNO18KvL6j+dQT/MaZlztn11Gfvus/1Pc1pf9ytOP9/kviZ/dRlW7m44Vl2sJ8vPZvU9Ln0pkPoKoGGcDWNr/q1reIGUvd3Q6rLtTXE/eWeM7b2rA2oaswbKeJa/XwAaTJkkX1RL/zGTv/IVpHa73aXii7MdO3YoLi5OdrtdvXr1UmZmpi644AKvditgMvljY2MlVc2SP3jwoJVBHxsbq5KSEuXn59cYc+DAgSrrP3TokEtM5Xby8/NVWlpaY8zBgwclVb3awJndbldkZKTLAwAAAEDdMbYGAACAL7Rv397litKZM2e6jevVq5dee+01ffzxx3rppZeUl5envn376vDhw17tT8Bk8sfHxys2NlbZ2dnq3r27JKmkpESrVq3SE088IUnq0aOHQkJClJ2drdtuu02StH//fm3dulWzZs2SJPXp00cFBQX67LPP9JOf/ESStH79ehUUFKhv375WzIwZM7R//361bdtWkpSVlSW73a4ePXpYMVOnTlVJSYlCQ0OtmLi4OHXs2LFxdgoAAAAA4IyQWdz01Tcj3tNs+fq+dyYC5bgNlH6i8XGVB86YjzP59+zZ45JgUl0W/5AhQ6zniYmJ6tOnjy688EK9+uqrLleknim/muQ/duyYvvvudHmGnTt3avPmzWrZsqXOP/98TZgwQZmZmerUqZM6deqkzMxMtWjRQikpKZIkh8Ohe++9VxMnTlSrVq3UsmVLTZo0SYmJiRo4cKAkqXPnzrruuus0atQovfjii5Kk++67T0OHDlVCQoIkKTk5WV26dFFqaqqefPJJ/fDDD5o0aZJGjRplfXkpKSmaPn260tLSNHXqVO3YsUOZmZl65JFHai0fBKBpqetgpC43iz2Tdmpbt7tSN6di7qgSY8wVTsucS+qMqKbV06V7XD9bUcbHqZzPJufPfef0fHI163bu6zSXflZ+Xt99Wf2+8e7A058us/Z1+wAAAAAAeKxUPp3kr+9VpOHh4UpMTNSOHTu82i2/muTfsGGD+vfvb72u+DVj5MiRWrBggSZPnqyioiKNGTNG+fn56tWrl7KyshQREWF95umnn1ZwcLBuu+02FRUVacCAAVqwYIHLXYsXLlyo8ePHKzk5WZI0fPhwzZs3z3o/KChIH3zwgcaMGaOrrrpKYWFhSklJ0ezZs60Yh8Oh7OxsjR07Vj179lRUVJTS09O9+gsMAAAAAAAAAKBpKC4u1tdff62f/vSnXl2vzVTcLRY+UVhYKIfDoYKCAmqIAmeZhsziPpN1u81i7+60jk2fO71R3Y13q1MR87bTstNXAxgT5tQP5ysGqrsywLs3i63tRr5oeP50dQPgCcZy/oXvA/4iUMtQ+KLf3vi/vzH63VA3120ITXE85W/7uCkI1H0aqP1G7Twdx1XESQWSzQfjPVMoyfPx5qRJkzRs2DCdf/75OnjwoB577DGtWrVKW7ZsUYcOHbzWLb/K5AcAAAAAAAAAoCnYu3evfvGLX+i///2v2rRpo969eysnJ8erE/wSmfw+R7YRAE/VNyPHs5r8FznFONfkL/rx2azToRGn12EKndo5nWAvbSpyeuGc7V/RxhVVlp1qb6FTzB3VxHi+H7xRW78pZkL5CvsSTRFjOf/C9wHA37henVp1jOvpjX+dx+uV11NbG6i7syFb/GzYRgSWemXyyxfjvbpl8jeWZr7uAAAAAAAAAAAAqB/K9QBoEmqrzd4UMoi9n73vvO7qsn0qsvCdMoeOnq7Jb7M51+F3yvbX5NNPI5yy9i9y1w/nrKTvqunrRdU8r5+6ZPhXt/8C9TjypUDdZ3zvAPyZp1nA/PsFT3grszdQM4SrGyO64+k21ZZVX9N6PN9v39Ue4oGatr9u5yLOVxa49q2+9zJo7GMqUI7ZM+FP+9tbArXfgDeQyQ8AAAAAAAAAQIAikx9Ak1DbL/T+9At+bVcdeEN16/Ykq99mO52pX1E732Z7zylixOmnEWGnnx91XotTHf6jTs83VXx2mNM6nDL9jzrX8n/bbf9c+1p1Xzr336Udpz7VllFVXeajPx1HaDwN+b2TZQsAAAAAOFNM8gMAAABAA2iMH/K8U+oDOKXmG796XmrFn4+9xijnUVO5msrqW77GVfXlLM9ke+u7bzy98W9j9KUuvPVvtqfr8efSMv7Ul7oI1H4D3kC5HgAAAAAAAAAAApTNGGN83YmzWWFhoRwOhwoKChQZGenr7qAJaYySMGh4dckm8eRGYZ4cD+5veDvCXah0k1O5niVOpXZcyvg4l8+p4FTCp9ryP6fXZ8zp5e72ibsSQ9XFesKTz3kjprosL/7eAoGDsZx/4fsATvF1hnDjZMt7fpNYX5bHcx3veZ7l7s02G7v9xkDJQ//k6397ENg8HcdVxEn/leSL8V6hpNZ+N94kkx8AAAAAAAAAgABFJr+PkW0EnH3cZR1VX4vzIqeYO6qJqVlds8xdb1zb+cc/nTPvndzkdNPcJU4ZQzfd4X559x+Xb3K+wa7z+k5n7Bun++56Y3vrorr2yEQBUBljOf/SFL8PsiIDR1PILK5tzBWo21WThvjefH0seDp2rsuVwk1x35yN7fszb+wb/s8MbHXP5M+T7zL5Y/1uvEkmPwAAAAAAAAAAASrY1x0AgLpoCpkPtfXbk+3yRn356rP3v676vLtTZv53cu9Fp5jR1dQBtTL4ndL0rasFJD3gXE/feR0XOT13itd71XSmYh31O17qeu8C13250Gl5w9U89cZ9N7z996kp/P0EAAAAAASC0h8fvmjX/zDJDwAAAAB+ih9NA0dj3FzW0zbq+7nGON78rZyGr9uvSU0JFJ7eePhMbvzbEPumpnU2RsKIr79vX7fvz7yxb9i/OJsxyQ8goPCf9ik22+ma9saE/bjMeQD/ndP71dXkry573zlVf9ipP6qrob/rdA19veC0vLrM/4E//rnEORvf6fkA9/cjUMTp9ZnC04tttop+d3Za5v6Exzs1Hqu5QsFJQ2bvexvZ+wAAAACAwFT248MX7fofJvkBAAAAAF7HD8Fnrr77rSFukuqt9daUke5plre3+lJbGzW1V1O/G/umoTXHVVdr03vt10VD7DcAZ6sy+aZ0jn9O8nPjXQAAAAAAAAAAAhSZ/ACarOoycVxrVHqjhEvd1lGXG6ZWdxPXihI9de2fVX5HkutNayeffhrhtO6jbsrT3HT65rhaVk2jA52eb3Jax7IftyHiCrk10GmfLDldTsilRI/LRyvK9DiXGzqtrt9p7d+NJ2WQGufGu7VtG9mTqC+OHQDe0tD/hvi6truv228Mddmmhv7/ozGuTqhLG/W9P0JN66lv+zXX3b9InqrvVRZ14a2a/K771XUbA6l85tnMn/8NZTwcKLjxrjMy+QEAAAAAAAAACFA2Y4zxdSfOZoWFhXI4HCooKFBkZKSvuwM3+AUX7nj7Jq7eyDap7sa7rqrL5HG6+W1tmfrOWfrO7x91ujmvy9UAzjf4rWhn1ulF3Z3236ZqtqHaGOcb+FY4ndVf3X51zRo5fRXD6ZsYu88M8uR7qu0KEv5NAZoWxnL+he8DTV1dasb7E29fPVvbevx5P9lsRZWWzHIbJzV+Tfya9nHNVwvUv43q2vMFxumAb3k6jquIk76UFNFo/TvtqKRufjfeJJMfAAAAAAAAAIAARU1+oBaB9As+mQcNy5P9W5eY+taLP+V0bX1jKjLvq8ve96AOv94+/XSJ0+KKrH7njP1dTs9dsvSdvON0NcDP3NTfH+207cud3xjhvk+bnLY9wumzVvvONflP7wfXTCnnLCnn7Pwwp/j6fTfVcbeeM/nefVlrmH9TAAAAAAD+o0y+qY9f5oM2a8ckPwAAAADA4k8/8vrzjRlrcib9rmn/+1P5lrpwLftSv3XWtzxPXdqoS0mamtqv2/ZWH1uXNmtuw7P3ar5Jb3UJRXVT3xsW1+X7r//37f2bKftaoP4bCqDumOQHAoQnJ1u1/Yft6xM2X7d/pjzp8/+3d+/RUVR5HsC/DSSEQBLeJAgJKAgIyEKyA0FXFB1EB4fHKuAwGHdcMevwkgXEXR3CzKoIiI7sMIAL6nEUUCF4XBUX5SGSgJAExQERMJI4hEE5gUQlEMjdP5KuutVdVV1VXf1Kvp9zOFSqb1Xdul1dfbv7d3/XTplAudvN1ssdUo/nnQBl5Wj7u/zK+pPy3H/T8L+cb7+HlG//uBSlv0XaxVxp+SFpubfO4xpS9P546UOVJve/XrsZfSDZbLBejvb3vy6N5kuw8pyZfagz2y6YMoE4fe1F+nUa6/cMIiIiIiIiCpXLiExUPSP5iYiIiIiIKAqEO1rczvHDXZdQCKbe4T7ncLe/WxHZToMBzI7hG7lvFPjhy04bhmN0hPZ41kcn2DlH87YxHhHg1mvfjWAQqyM13DpeYxXNbWN1pFK01ZusqkVk0vVE4piB8Ut+ohjhxptOpN+4ojGfuNtv7Hb2Z6Vjbu2DhTc6X43A13Tmkwy20+TTl4bfDpYi9Xt4/5fWyVH1cv/9fWm5RM6Fr247Y+lSAMCKufPUh29TFzM391CWi+R8+uOl4+dLcwl46yofL0ktK6rU1Xai840et3IdBWL0vIfy9eH2vu3W2+lcB5Gud7j3R0REREREROQEv+QnIiIiIiKKIuH4ETHSP05G+vjkPnciq0OfVjBQZL1RWfO8+9poeaf5651GGps/Zj1a3Zf2vOyck3FZt3LyR9OIF6fCkS8/FHMZOD1GJO77Tl834ZirhNzAdD2yZpGuABEREREREREREREROcNIfooakf6FtymLZNuH8tiRSNFjp7zRZK1a8gSxxQZlvORJZqXJc+W0PEnSRLnjpeVrpOXV0m5ubfj/hLRui7Qsp+iZIf2avVpKr7NFXb9iQkOaHilFz4zNS9XHk6U0PvLkvMvkKKIJ6qKSpueIuq5anojYXnodtY3VfQSTosdOyibtvq3lfw2WndeClfM12l+03NOd5ut1Otk5ERERERERhcplRCY/fnRG8vNLfiIiIiIioijCHxGNhWISxaaQeqGxp4DyD0bwnfhVDZxxnvbGeOJZ3/Q0VtP8+HJ6LfqnC1IDfoQYAiOBgzh6GSw7n4jYqlBdT1bTM4XqeG4EwoQjzY5bYvV+2hgnhKfGj1/yU9SIxGSUboiluhqJZL2jLS+fl/5krPp5N+3uz3nE9Du6a70dbI9H7syrkfSaTn+1FOEvTYiLZdIxB0v1+6jh/x4GVZIj/LdKbynL1MUl6XOU5fnXvOC3nRLdDwDVUl1XSx8cBkvLJXojGvrpLnuS5TIToE8dAeH9EOTxqG2tHUHhToR/IKGM3tcex928t7F6D9TTmM4lFBrDex8REREREcUy5uSX8Ut+IiIiIiKiEIjmH8SiuW5mQhFdGe5o2kiMHDCbJNYsuCDSoxzcmHjWdz/ucTY6wK26WE3vaCdy3ezacFrvUEXOO72HNYYJe90axUREjQu/5KeoFEtvTOHK+x5KbtQ1WvYRimPqrbcfaX2X7jH1jmE8vPcuafkdnTLyMaTI9iSprnJ+/nwpj/146Ry/8asecI26mDlyj7Jc9P4N6gOrpPJStP18vKCu793wv5T3f1zVBmV5S9kk9YEMqa5brleXj0tDjm9tKPORNCpBzuVf4jt0uZ72A4s874Fe+SM664w/WNn5kGl3NIBeebdeN3pzRQQj0HUe7ew+T7F0bm5oaudLRERERETRphaRyckfiWMGxi/5iYiIiIiIQiCafxCLprrZiSyPJpHIg+3GD8zhaN9Q5AwPJiLcao58O485ZScnv/XH7LyGzIKPfOcykPdpfUSC1bzzbj2nZpw+37Ek3HMJuLVdNLV/NNWF7GC6Hhm/5CcKkVh6U4jkxEjRGoXsRsS0tqOgdpi928qdcaO871ryejmqXy/SXM0zj2qD3Y2XOv/50vFXq5HyadNKAQAVZd2VdUVrpOh9WckFZXGG+EhZfgvtlOWKNT3r91tVqqzbMmSyuo9bpf19JE8SJr2J3irVNamhjHauM+lx/VEMHs8FqZDOCIkk6fmVRz9ohmXLowEuSOvl+RD8rxk3ovfNytvhzgicwCMaQjNE3rce7kbVN7U5CIiIiIiIiCh28Ut+IiIiIiIiIiIiIoohlxGZ1DmM5CciIiIiIqImwvqkqbGRnieQcMzVYj5STh45qm1TtyYptTrZq51jhGICVadpYOw9b2p7m49a1KbAMXtu7DC7FvTnmfIyGh3s+5iWnbQ3bqTysUM7KhoQYoi07M7zHaoJhK0ez63UVVaFIx1ZNI2Kjaa6EDnFL/mJgtSUJ16MJk4nO7Wfdsd4nRltahe9baWJcjUfBOQ8NPoT7+rmzhwsfXiQU+Asu+BXFICa9gZA5jR1Yt3hKAAArBg3T1m3pHimsvwcHlGWK070VJa7o1xZ7opTyvLQafv8Dj28+DlleSPUiXc1aYGOS29Xq+U0Pm5raONq/VRLMo+mGkvU9R55vXFe0/qyzid3dXrNm3/os8/KFzNqiip7KYkCCSaFlhv3a97/iYiIiIiIIoU5+WX8kp+IiIiIiIhCwPzHbitiaTLEcNfNaSS7HeFpf+PrxK0f1M3bqlgqN8TnMbOIaf35meot0S0XaJ+aeaHgO3LC+sS35oJ/Xfoe315EvBxwYjSxlj/zY/jOURZ8UFAwIxfcmNzXvREn5EQ4gnmcv4YYaET6+CU/UZCa2k01XJNbmnW2gz2O3WhivYlyA0fmAxhsdMz5DfuQJ2g16uzK0ftStP9gqU1KXvN7PK1Yndi2YoIaYS9PyDtjsxph/xbuVpaLhqgR9EW5DcvLpNqveUE9zjT1OJ9szlKWbxxyQN1AGkmw94n6MPe4A0JZt+W4NPHuaOkX8WPqYtpSg/PJb/hAlaS2JaqlD1njpfX50CVfX+rzMF8qoTexMYASeViw/GFJHpXhv63RhzUrw98Dvf6MovQDTQJthfHIgOCH2Ft5bbkR7e+2pnb/JyIiIiIiih61iExO/kgcMzB+yU9ERERERESuMwuKcCOa1Uyg4zX2SMhQtZsb+/ENSnB6nbgRBetfN+vzHGgtMXksEOkYVdpHPJ7j0rJv3YxSeQKmEfJJ0nlU+waIaKP8zUYSGJXzPb7vdm7cF3y3tTOqJRSR9HZy5LuRTz8c7RYJoQjwCcfcAqFg1haRrhtFL37JT+Qip/mh3ZtwKLyTfYWSlej9wFHNgSN47UUe63fsDT8YlBjlPt/cUFbufMsdaqnDLuXK1xQpkaPVG+r1obqqYogU7S5F4WO6eg7l2KCW366WH1esrt+yRoqy95Ki7eXtlo2cqyzPKF6qLMujBOLmNUTw91Z3N26adLzt0vHuUBfvxltqvTd3l86hfrmobKha+LgUvX+rwXMgtatnjX4RPdoPJUajL+RI/glSee2EYL7r7E46qH//MP5AFaxAI12C24dRu1rfXzD5/vW2DeW9LpT36mj84BaNdSIiIiIioljHSH4Zv+QnIiIiIiIiIiIiohjCiXdlHiGECFyMQqWqqgopKSk4f/48kpOTI12dJidaoguDyXUdTPSqnXoFOobdc7CXJ1sOYTePVA5Fbm91n0bDXuX6TdAvMliKLvfuptp3gi4vgxzw8vrBUtR3D52i30D/8Wuk5RnqG1Nm+j5leW/VjcrysORPAADDUaCs645yZXkjJinLc6UhA8ugRvXLUfbe4xTNU/P+y/n2h0Kth3ycAgxXlidhI3zJ9Shao+7bMK+/p1LaWoq89+b21wxdlp9T+bnR2c5vWz36+zMavRLoNW4353yg69+t+6Kd+4fbx4j2KPzg7kfujgCj4LEvF10i8XxES38ykFiawDbcQjFpptPjuVU2mPQ1Vo9nhxupVcxS6WhHUgK+6Wusfg7xT61ifYShlvFnFt/RnfrzQ/nvR5uex3c7s36X70S71ie7NWP1dWInlY/ZpLxupaSx+pgv7Tld8HmslW9x2/X0P0bs3LNj5X3Qjmg+p2iuW7Cs9uO85YA1ABLDVj/VTwCmRV3/n5H8RERERERERERERBRDLiMyqXMYyU86GP3lTlSinV8yo+lXz2iMyLQTGRva6H2jiaR8I1G8x5nScAyj6I/AowG09dNGytQziOK2RNrWO9lVtXS8JKl95armSssPSeUHL9Qv47VVWn5efQNakj5HWZ6//QVlWXTwKMuev6hvC+uXjgegjcw/8Jka6b900AxlWc6bL7u6rEzdX/o9ALSR9/IoASu8efgBNcJfjt7/elpXZfkU1OUbJxxQd5IvRd8k6UTePCQtfyQtl/jn1a9nJarfe93pX8NaxlFb/tTXh1HUlLWc98f99iGL9L1T7/hG56jdTn7O9NvK7BhWj0NNF/ty0SXano9Q3DvDEd0Z6Xu+mVBMtmmnj2p9YkzfPoP5e5BVoZiYUhaq51t7zPk+x2xlUA4wm/hWW9Y8Wt08slzu1xuPADDjG9ltNlrTrZEEZn0S82h142h5s/q49TqxHi3v/HhWzzFUI15C8RpzYwRCMCJ9/FCIpvfoWBq5EUr2I/lXAnA2kiY4FwA8HDX9TS9G8hMRERERERERERFRDGFOfhm/5CciIiIiokYp0hHpocivbB4ha5bP2/p+3IjCDbRdKM7f6f7ttKnVa8o/evsdadmdnPxO29ROtLjzHPlmx9dGXZpH5PczKOe7T98o/ws+f5tFhcuR/Nrje6SnUfgMzjAaLei7H4/HaL6thv06fE7No9Xl4zudC818BIaW9hydjoI0nwNBWzfz/ZrP46Yez85cBvKxrUeym7WpW/cp96LQjZ+3cBxfW5dwRLYbv07cGuVhVk4+hlsjs5rqCACqxy/5yTG3PjS5cROK9huZvXRC9jpEdifd1KuH0xQ9xqlzjPatnzLH3nYyvZQ5Rml09CfE9R9aq0enY54k9fg1E+ge0S/TS1ouaXiOV0vtu0raRYm0v63Sh6C5UvneUvnRDb8iD1Bv6ZlVe5RlOWWNPIGtbPyg9cryjEFLleXJ+VsAAPdmvqms8+yTsrz9RV185IkVyvI9yer+Pkkf5ne8LWV3K8uT0tWJdO+u2qIsP5espgKS671l+2S1riPr61p0TE3Xc/X2U8rykpEz1YNKkw5nSp/S5EmAM5fu8VuHLdKv9Ful53G0tF5qe02qn2V6190SaVn+sGT+AbCeen17PyB71ExLJil6jNLQFPuVN37t6b8O5deQ0aRj6nECpxYy/lDWy6+8tcm1jxisl+sX6D4aeII6vX0Ek/ooUNqzaEmZREREREREFBm1iMxX25GYByAwfslPRERERESNUjT9IBWOuljN0R0cqznS3YlStMP5KAPjERDuRXMat5tbzIKFrAYSBXOdWN2vb3sbBSDUM57LQN6PeQQ4oA1W8A0K0pk7y6tEPobvPo3m/9Iyey7q/w4+17l/ObP5ncwCS8zmHfPdzmw/6vH9nxtrIz78aYNnrObdd35NG8/rEJi117u9kTJO6+J7TLNofWf3JqvXsFsjF5wKVdS71dEioTinaOrnUOTxS35yzO7NJFoiAIOZINZ5vQNHvKvrjCaPNHqTN+9AWGl3K+elRs6aTVplXj/9jrDREFyjyUb1O5NqXYw6tJvNKqlD6uAOHuK/69vkslL08odSpPcWqYi87dyG50mO3pcsEY8qy/PLlusX2qrevr2T6c7brUbSX67S32xOshpFvn7keGX53jI1Un9cujqBbun4NABAGsqVdY9Me05ZlifQLUeaspy//F5lec+cTGXZO4GvqIxT1mWlf6JWUJqzRp6Qd16+em5Z49WJd72T8C5ZqkbsP1Kllp0jR83P0M+b543eB4BJqB9VMHypeuy3oI46qEBPdcNx0luoPJpjmXTMuTqvLXkEh/zy6CFdO/nyByz5mlevY/WDplx2gvS4/CF5vrReP1JfHUpu8MErSY6al/d9RFovX+jqMb0pC+Th6tr7hzxCIfCHC71RB3bv7fr338D3SDfeHyIx+s2N92B+iCAiIiIioujBnPyyZpGuABEREREREREREREROcNI/iYqElH14TqO3rnZjbx0o65OI0mN6Ufsa4e+mu/bKILXaH96w1q10bcGUcNyLnp5yGu1XvSvHKUs5ydXo6G17ScVGSznufdGAhsMG9XUQ4q6HqyfQxw9/FelFZcqyxVlajS5JqL7C+kX3eNStP00NdK8YFp9fnk5t/y4kRt0qyFH1S/HHGW5Z6cKZXkP6iPlSwepkfQ9P1Mf3zBonLLsjXwHgO5SdL6cN/+G/CJleen4+rz4p2Zcra5boebKP5B/o1pZtQhmzlGfPzkiPz+/PsL/NWm07V1Q9zH5WXW95241z52AGvmvd8w9g9TRAi3UpwmTBqn5/l8oUq+v0nSprcZKbfX2OADaOQC6Qs3xr4nkvxUS6TrqIb327pCK/HfD/3LO/tXQd1I9X4yTrvNcaXluw//y9ZwkX88G80aMl+qX77+tkEaBaO4H1Ub5/uUh7tK+pde7//B2QL5/yLn8rdyn7HB6LzZ6PJg8+25sp5eTP5Tv6cHMH0AUbTg5nXVuzPlUvx9n6WPM0nBYn/hVu51/ihhr7yvWRq76cz7ZJ6B9/zNL32In7YlZ+hSzFC2+7ehsgkmrz43/tfCObjl/vvMgLdEtVc/3fKX6VPumCzIjjxo2TgHk1xZJPtdGtbNrzOq16TsJtNxH9N+H8QTCvp+ztP1B33nO5FHUvm0j/+37PMmfB7Ujsf0nbDa7buXrwXdEt9lcS8bHN29vo1HozoWyPxnsfuxMum01BZGdsv73RXmeMd9Jz91KVRf7nL4P2jtGuD8XXEZk8uNHZyQ/v+QnIiIiIiIiIiIiohjCdD0yjxBCRLoSTVlVVRVSUlJw/vx5JCcnB94gCuhFEeo9blbGzXoEcxxrEYrWJqky25/Rr/6BcuhrywZuby3vr+lyFIMafSH/wi1HXmgjauVIFm9Uh1GUghz1IUVAyJHF1XqRRwYTVg2W2kaa8EoTkS8HDJQ0nMN46Xijpce36tUZwIfS8jJp+Zi03Lv+v7Rpaoj4I1Dz0s9PfkEtu0Xa7r/VxbTN0iiA7fXR4J+MzFLWyRH29ybnK8vrq9S8+XJ0uXx8r57XqxHplz/xexgAcE/yemXZm38eAO6u2qJTGkhP/hqANpIfZeri+LfV/b3eRs3DX/yDGlmvNzJANu8zNYf+hRvU9fI+5Nz/cr297Sa3nzxyQI7C716lto/cDvKIitqs+pDzuD+ob41yvn/5OHI9ZMuUEHvt6Iur59XXZdxSddTGljI13788z4KGfJ33UjsTmen7AACn0FVZVzFPGmnQW9pOvp4/kpb1Xn5Gc8iVyPcDozkDAtwH5FEMy6T7wWDp/lZiFCUl3cu8+6vWu0dZu59r743eKDL5/uYbyea/b+N7vrdeVuoU+J5v5/3O/TllYlM4o4hisS/XmIXq+bDTHzTeh9kEi9aj60I1GaNVTu9Jbk3GaDUq09790iwi3jjq13m9ffvT+u85+mXl45tFrJpNtuob9a5GLNuZTNmXeTStb6S3Ud3M2kLLdMLeJJ/odYM+Qz2rz7+2TbWfp8xGR/hGnPtElmtGHNtpb2sTz/qfn/7nw3q+bWMc2a7lc3x5XqqPtA+hxOl1ajzRr//1ZtRvBbTn4dtuZhM0W782zUaumH9PIB9TezzrkfW+z7fZtWGH+lyZ3XucTnIeiFmUvxsT39qZBNneqDWnE8Lrf0fjX65xjFJUz6MGwOKA/Thvfw9YBCAhDDX0VQNgYdT1/5mT3wUrV65Ez549kZCQgMzMTOzevTvSVSIiIiIiIiIiIiJqpGoj+C/6MF1PkDZu3IjZs2dj5cqVuOGGG7B69WrccccdOHz4MNLT0yNdPSIiIiIiCpIbeWvNouvs7D/SUXp2jm9+zs7Ow63zd2MksJ0ISvOITTsRu69Jy2aRxcaP+ec2l/P1B5O/Ws6fbydaXo1eNouQ9Y3sNs2RXm2WP963sMFIRADanPG+56RGM5vPK2EeAS7PhwRYzzVuPK8aYDavkfkIAO3zpL1WzCKUfZ7fZVaPYWfkgM9+kkxGcmj2a3YtmkW9G9fbzgh/32No2994tIDz0U/GIwdCxeox3MoB79b7kNVygfZhdl7O3+uMo/fd2H+08Z5HfYT+4gjXJnbxS/4gLV++HA888AD+9V//FQDw/PPP44MPPsCf//xnPP300xGuXWgEvsHFzkS+VvbhxoeuUH5wC2aYtLpeTtFjddgnYGnIoqZPI6fk8HbEpM76R9Ib2ThpMzl1T67BcbbWbztj81Jl1Yp589THp6uLmSP3KMtFE6T8MKOlvGqrzG+PcvqYtKpS3TLLR6qpWuZgufrA+/X/3TPyTWXV3VAn2B1XpaZzubdMLfO1wQ+HV5fV588Z97m6jzer1NQ5zyWrKXLkyXbv3a6mBVomtYmsrKo+TY9nnvpLtTdNjO/+Eg9Lv2ZLKX3wndSWDZ9NZhSrz1PWIDW3UNG16vOxHmqqohUT1Oey+2b1mPPX1KdKGjdNbbP589T0STOWqscpT1ZT7ezDULXMyKXS+voUQXJKHfkcn8Mj6v6k1D3ysuweqM8fZtRfX3J6IO+1AEAzlHlcsZTSZ4haPq1YrYs3TY9mEmh5ol8ptQ96Sc+BURof7yTActqqudKy/CFETsPVS54AG/plvEPklxncM0qMPuzIH9ClD9nV9TcW7b3Vd1K5etZSbOjdG/X3JzO+p3q3db4Pu2WclG3M2A5ERERERI0dc/LL+CV/EC5duoSioiIsWLBAs37UqFEoKCjQ3ebixYu4ePGi8vf58+cB1P9aRRQaNcqStevsJ91tVT8EeBwApONcMRrG5N2PVPZHqaw8W8gVadkonWfDppeqpDpdlPct7a5K+qNWKlMt3aivSLfHhpdsXVW1VCV1H3VQ18t+koZwaco01Eve3yWpLWvl56C6Slqs0z2Ot0xtlbqd/FTX4JLucfCjWkjTJhJlP9X6ZY3qqnFBasuG51J+nq5onxxl8acq6XqQnqeaKvV8cMH/3OXnXT6OXFf5+ZDb5MeGCspljZ5HuYzmHIx42+dH/2urYSfqvuXzkdpEvmb89uu7b/l6ltfLryH5+ELncc2sPdIDQnpu5NenfH/QhKV51xvdM+T7zg8G62v81tu9p/G9lkLBe11xmqvIYN+aws/ovSyY6067T/P9BOqrB+a/f+v7Ma+b2X5+MnlMfe/337+8ndlj5rT7/cHnUbne1tvGrefJfD9mbSPzPYZZ/8esbto2tX5Ms+fC7Bi+j1UZlNMpq9vXNNqv0fF9Wdsu8GvdatsY19vsdWrnNcz3Q4ol9vvVFwMXCYlIHdccJ94NwqlTp3DVVVdhz549GD5cnRDzqaeewiuvvIKjR4/6bZOXl4dFi4IZAklERERE0ebEiRO4+uqrAxckV7FvTURERNS4BOpX19TUoGfPnjh9+nQYa6WVmpqK0tJSJCREYuJfffySPwjeL/kLCgqQnZ2trH/yySfx6quv4ssvv/Tbxjfa6Ny5c8jIyEBZWVnDzNBkRVVVFbp3747y8vKomsk6FrDtnGG7OcN2c45t5wzbzRm2m3Pnz59Heno6Kisr0bZt20hXp8lh39odvAc4w3Zzjm3nDNvNGbabc2w7Z9huztjpV9fU1ODSpUumZUIpPj4+qr7gB5iuJygdO3ZE8+bN/X45OnPmDLp06aK7TcuWLdGyZUu/9SkpKXzhO5CcnMx2c4ht5wzbzRm2m3NsO2fYbs6w3Zxr1qxZpKvQJLFv7S7eA5xhuznHtnOG7eYM2805tp0zbDdnrPSrExISou5L9kjjp5EgxMfHIzMzE9u2bdOs37ZtmyZ9DxERERERERERERFRKDCSP0hz5szB1KlTkZWVhezsbKxZswZlZWXIzc2NdNWIiIiIiIiIiIiIqJHjl/xBmjRpEs6ePYvf//73qKiowIABA/Dee+8hIyPD0vYtW7bEwoULdYcZkzG2m3NsO2fYbs6w3Zxj2znDdnOG7eYc2y668Plwhu3mDNvNObadM2w3Z9huzrHtnGG7OcN2Cw4n3iUiIiIiIiIiIiIiilHMyU9EREREREREREREFKP4JT8RERERERERERERUYzil/xERERERERERERERDGKX/ITEREREREREREREcUofskfYk8++SSGDx+OxMREtG3b1tI2Qgjk5eWha9euaNWqFW6++Wb89a9/1ZS5ePEiZsyYgY4dO6J169b45S9/iW+//TYEZxAZlZWVmDp1KlJSUpCSkoKpU6fi3Llzptt4PB7df0uXLlXK3HzzzX6PT548OcRnE15O2u7+++/3a5dhw4ZpyvCa06qtrcWjjz6KgQMHonXr1ujatSvuu+8+nDp1SlOuMV5zK1euRM+ePZGQkIDMzEzs3r3btPyuXbuQmZmJhIQEXH311Vi1apVfmU2bNuG6665Dy5Ytcd111yE/Pz9U1Y8YO+22efNm/PznP0enTp2QnJyM7OxsfPDBB5oyL7/8su49r6amJtSnElZ22m3nzp26bfLll19qyjWF6w2w13Z67wMejwf9+/dXyjSFa+7jjz/GXXfdha5du8Lj8WDLli0Bt+E9LrzYt3aGfWvn2Ld2hn1ra9ivdo59a2fYt3aOfWv72LcOM0Eh9bvf/U4sX75czJkzR6SkpFjaZvHixSIpKUls2rRJHDp0SEyaNEmkpaWJqqoqpUxubq646qqrxLZt20RxcbG45ZZbxKBBg8Tly5dDdCbhNXr0aDFgwABRUFAgCgoKxIABA8SYMWNMt6moqND8W7dunfB4POLEiRNKmREjRogHH3xQU+7cuXOhPp2wctJ2OTk5YvTo0Zp2OXv2rKYMrzmtc+fOidtuu01s3LhRfPnll6KwsFAMHTpUZGZmaso1tmtuw4YNIi4uTrz44ovi8OHDYtasWaJ169bi5MmTuuW//vprkZiYKGbNmiUOHz4sXnzxRREXFyfeeustpUxBQYFo3ry5eOqpp8SRI0fEU089JVq0aCH27t0brtMKObvtNmvWLPHMM8+ITz/9VHz11VfiscceE3FxcaK4uFgp89JLL4nk5GS/e19jYrfdduzYIQCIo0ePatpEvk81hetNCPttd+7cOU2blZeXi/bt24uFCxcqZZrCNffee++J//zP/xSbNm0SAER+fr5ped7jwo99a2fYt3aOfWtn2LcOjP1q59i3doZ9a+fYt3aGfevw4pf8YfLSSy9Z+iBSV1cnUlNTxeLFi5V1NTU1IiUlRaxatUoIUX+ziIuLExs2bFDK/O1vfxPNmjUTW7dudb3u4Xb48GEBQPMCLSwsFADEl19+aXk/Y8eOFSNHjtSsGzFihJg1a5ZbVY06TtsuJydHjB071vBxXnPWfPrppwKA5o2+sV1zP/vZz0Rubq5mXd++fcWCBQt0y8+fP1/07dtXs+6hhx4Sw4YNU/6eOHGiGD16tKbM7bffLiZPnuxSrSPPbrvpue6668SiRYuUv62+r8Qyu+3m/SBSWVlpuM+mcL0JEfw1l5+fLzwej/jmm2+UdU3hmpNZ+SDCe1zksG9tHfvWzrFv7Qz71tawX+0c+9bOsG/tHPvWwWPfOvSYrifKlJaW4vTp0xg1apSyrmXLlhgxYgQKCgoAAEVFRaitrdWU6dq1KwYMGKCUiWWFhYVISUnB0KFDlXXDhg1DSkqK5fP7+9//jnfffRcPPPCA32OvvfYaOnbsiP79+2Pu3Lmorq52re6RFkzb7dy5E507d8a1116LBx98EGfOnFEe4zVnzfnz5+HxePzSBzSWa+7SpUsoKirSXAcAMGrUKMN2Kiws9Ct/++2348CBA6itrTUt0xiuLcBZu/mqq6tDdXU12rdvr1n/ww8/ICMjA926dcOYMWNQUlLiWr0jLZh2Gzx4MNLS0nDrrbdix44dmsca+/UGuHPNrV27FrfddhsyMjI06xvzNecE73HRj31r9q2Dwb61M+xbB8Z+tXPsWzvDvrVz7FuHD+9zwWkR6QqQ1unTpwEAXbp00azv0qULTp48qZSJj49Hu3bt/Mp4t49lp0+fRufOnf3Wd+7c2fL5vfLKK0hKSsKECRM066dMmYKePXsiNTUVX3zxBR577DF89tln2LZtmyt1jzSnbXfHHXfgnnvuQUZGBkpLS/HEE09g5MiRKCoqQsuWLXnNWVBTU4MFCxbgV7/6FZKTk5X1jema+/7773HlyhXd+5NRO50+fVq3/OXLl/H9998jLS3NsExjuLYAZ+3m69lnn8WPP/6IiRMnKuv69u2Ll19+GQMHDkRVVRX++Mc/4oYbbsBnn32G3r17u3oOkeCk3dLS0rBmzRpkZmbi4sWLePXVV3Hrrbdi586duOmmmwAYX5ON5XoDgr/mKioq8P777+P111/XrG/s15wTvMdFP/at2bcOBvvWzrBvHRj71c6xb+0M+9bOsW8dPrzPBYdf8juQl5eHRYsWmZbZv38/srKyHB/D4/Fo/hZC+K3zZaVMJFltN8D//AF757du3TpMmTIFCQkJmvUPPvigsjxgwAD07t0bWVlZKC4uxpAhQyztOxJC3XaTJk1SlgcMGICsrCxkZGTg3Xff9fswZ2e/kRaua662thaTJ09GXV0dVq5cqXksVq85M3bvT3rlfdc7uefFGqfnuH79euTl5eHtt9/WfGAeNmyYZhK/G264AUOGDMGKFSvwwgsvuFfxCLPTbn369EGfPn2Uv7Ozs1FeXo5ly5YpH0Ts7jOWOT3Pl19+GW3btsW4ceM065vKNWcX73HBY9/aGfatnWPf2hn2rd3HfrVz7Fs7w761c+xbhwfvc87xS34Hpk+fjsmTJ5uW6dGjh6N9p6amAqj/9SotLU1Zf+bMGeWXqtTUVFy6dAmVlZWa6I8zZ85g+PDhjo4bDlbb7fPPP8ff//53v8e+++47v1/r9OzevRtHjx7Fxo0bA5YdMmQI4uLicOzYsajuFIar7bzS0tKQkZGBY8eOAeA1Z6a2thYTJ05EaWkptm/frok00hMr15yejh07onnz5n6/kMv3J1+pqam65Vu0aIEOHTqYlrFzzUYzJ+3mtXHjRjzwwAN48803cdttt5mWbdasGf7xH/9Red3GumDaTTZs2DD85S9/Uf5u7NcbEFzbCSGwbt06TJ06FfHx8aZlG9s15wTvce5g39oZ9q2dY9/aGfat3cN+tXPsWzvDvrVz7FuHD+9zwWFOfgc6duyIvn37mv7zjXKxyjv0UB5ueOnSJezatUvp8GVmZiIuLk5TpqKiAl988UVUdwqttlt2djbOnz+PTz/9VNl23759OH/+vKXzW7t2LTIzMzFo0KCAZf/617+itrZW86EvGoWr7bzOnj2L8vJypV14zenzfgg5duwYPvzwQ+VNx0ysXHN64uPjkZmZ6Tccetu2bYbtlJ2d7Vf+//7v/5CVlYW4uDjTMtF8bdnhpN2A+iij+++/H6+//jp+8YtfBDyOEAIHDx6MyWtLj9N281VSUqJpk8Z+vQHBtd2uXbtw/Phx3bzbvhrbNecE73HuYN/aGfatnWPf2hn2rd3DfrVz7Fs7w761c+xbhw/vc0EK7by+dPLkSVFSUiIWLVok2rRpI0pKSkRJSYmorq5WyvTp00ds3rxZ+Xvx4sUiJSVFbN68WRw6dEjce++9Ii0tTVRVVSllcnNzRbdu3cSHH34oiouLxciRI8WgQYPE5cuXw3p+oTJ69Ghx/fXXi8LCQlFYWCgGDhwoxowZoynj225CCHH+/HmRmJgo/vznP/vt8/jx42LRokVi//79orS0VLz77ruib9++YvDgwY2m3YSw33bV1dXi3//930VBQYEoLS0VO3bsENnZ2eKqq67iNWfSbrW1teKXv/yl6Natmzh48KCoqKhQ/l28eFEI0TivuQ0bNoi4uDixdu1acfjwYTF79mzRunVr8c033wghhFiwYIGYOnWqUv7rr78WiYmJ4pFHHhGHDx8Wa9euFXFxceKtt95SyuzZs0c0b95cLF68WBw5ckQsXrxYtGjRQuzduzfs5xcqdtvt9ddfFy1atBB/+tOfNNfWuXPnlDJ5eXli69at4sSJE6KkpET8y7/8i2jRooXYt29f2M8vVOy223PPPSfy8/PFV199Jb744guxYMECAUBs2rRJKdMUrjch7Led169//WsxdOhQ3X02hWuuurpa6asBEMuXLxclJSXi5MmTQgje46IB+9bOsG/tHPvWzrBvHRj71c6xb+0M+9bOsW/tDPvW4cUv+UMsJydHAPD7t2PHDqUMAPHSSy8pf9fV1YmFCxeK1NRU0bJlS3HTTTeJQ4cOafZ74cIFMX36dNG+fXvRqlUrMWbMGFFWVhamswq9s2fPiilTpoikpCSRlJQkpkyZIiorKzVlfNtNCCFWr14tWrVqpXmz9iorKxM33XSTaN++vYiPjxfXXHONmDlzpjh79mwIzyT87LbdTz/9JEaNGiU6deok4uLiRHp6usjJyfG7nnjNaduttLRU97Utv74b6zX3pz/9SWRkZIj4+HgxZMgQsWvXLuWxnJwcMWLECE35nTt3isGDB4v4+HjRo0cP3S8K3nzzTdGnTx8RFxcn+vbtq+k4NhZ22m3EiBG611ZOTo5SZvbs2SI9PV3Ex8eLTp06iVGjRomCgoIwnlF42Gm3Z555RlxzzTUiISFBtGvXTtx4443i3Xff9dtnU7jehLD/Wj137pxo1aqVWLNmje7+msI1t2PHDtPXHu9xkce+tTPsWzvHvrUz7Ftbw361c+xbO8O+tXPsW9vHvnV4eYRomMGAiIiIiIiIiIiIiIhiCnPyExERERERERERERHFKH7JT0REREREREREREQUo/glPxERERERERERERFRjOKX/EREREREREREREREMYpf8hMRERERERERERERxSh+yU9EREREREREREREFKP4JT8RERERERERERERUYzil/xERERERERERERERDGKX/ITEYXBzTffjNmzZ0e6Gk1CXl4ePB4PPB4Pnn/++YjUoUePHkodzp07F5E6EBERETVG7FeHD/vVRESxg1/yExFRWN1///0YN25cSI/Rv39/VFRUYNq0aSE9jpH9+/dj06ZNETk2ERERETUN7FcTEZEXv+QnImpiamtrI10FV1y6dMnwsRYtWiA1NRWJiYlhrJGqU6dOaN++fUSOTUREREThwX516LFfTURkDb/kJyIKk8uXL2P69Olo27YtOnTogMcffxxCCMPyeXl5+Id/+AesXr0a3bt3R2JiIu655x7NMNX9+/fj5z//OTp27IiUlBSMGDECxcXFmv14PB6sWrUKY8eORevWrfFf//VfuHLlCh544AH07NkTrVq1Qp8+ffDHP/5Rs503Muipp55Cly5d0LZtWyxatAiXL1/GvHnz0L59e3Tr1g3r1q3TbPe3v/0NkyZNQrt27dChQweMHTsW33zzjXJOr7zyCt5++21l2O3OnTsDbifX5+mnn0bXrl1x7bXX2mp/j8eD1atXY8yYMUhMTES/fv1QWFiI48eP4+abb0br1q2RnZ2NEydO+D0H69atQ3p6Otq0aYN/+7d/w5UrV7BkyRKkpqaic+fOePLJJ23VhYiIiIicY7+a/WoiItLil/xERGHyyiuvoEWLFti3bx9eeOEFPPfcc/if//kf022OHz+ON954A++88w62bt2KgwcP4re//a3yeHV1NXJycrB7927s3bsXvXv3xp133onq6mrNfhYuXIixY8fi0KFD+M1vfoO6ujp069YNb7zxBg4fPozf/e53+I//+A+88cYbmu22b9+OU6dO4eOPP8by5cuRl5eHMWPGoF27dti3bx9yc3ORm5uL8vJyAMBPP/2EW265BW3atMHHH3+MTz75BG3atMHo0aNx6dIlzJ07FxMnTsTo0aNRUVGBiooKDB8+POB2Xh999BGOHDmCbdu24X//939tPwd/+MMfcN999+HgwYPo27cvfvWrX+Ghhx7CY489hgMHDgAApk+frtnmxIkTeP/997F161asX78e69atwy9+8Qt8++232LVrF5555hk8/vjj2Lt3r+36EBEREZF97FezX01ERD4EERGF3IgRI0S/fv1EXV2dsu7RRx8V/fr1M9xm4cKFonnz5qK8vFxZ9/7774tmzZqJiooK3W0uX74skpKSxDvvvKOsAyBmz54dsI4PP/yw+Od//mfl75ycHJGRkSGuXLmirOvTp4/4p3/6J83xWrduLdavXy+EEGLt2rWiT58+mvO8ePGiaNWqlfjggw+U/Y4dO1ZzbKvbdenSRVy8eNH0PBYuXCgGDRrktx6AePzxx5W/CwsLBQCxdu1aZd369etFQkKCZl+JiYmiqqpKWXf77beLHj16+LXL008/rTnejh07BABRWVlpWl8iIiIiso79avariYjIHyP5iYjCZNiwYfB4PMrf2dnZOHbsGK5cuWK4TXp6Orp166bZpq6uDkePHgUAnDlzBrm5ubj22muRkpKClJQU/PDDDygrK9PsJysry2/fq1atQlZWFjp16oQ2bdrgxRdf9Nuuf//+aNZMfavo0qULBg4cqPzdvHlzdOjQAWfOnAEAFBUV4fjx40hKSkKbNm3Qpk0btG/fHjU1NZrhur6sbjdw4EDEx8cb7ieQ66+/XnMu3n3K62pqalBVVaWs69GjB5KSkjRlrrvuOr928bYBEREREYUW+9XsVxMRkVaLSFeAiIis836Y8f5///3347vvvsPzzz+PjIwMtGzZEtnZ2X6TZ7Vu3Vrz9xtvvIFHHnkEzz77LLKzs5GUlISlS5di3759mnJxcXF+x9dbV1dXBwCoq6tDZmYmXnvtNb+6d+rUyfC8rG7nex52yXX3tqHeOu/5+D7uLWPWBkREREQU/divZr+aiKgx4Zf8RERh4ptb0pvrs3nz5obblJWV4dSpU+jatSsAoLCwEM2aNVMmx9q9ezdWrlyJO++8EwBQXl6O77//PmBddu/ejeHDh+Phhx9W1plFBFk1ZMgQbNy4EZ07d0ZycrJumfj4eL8oKyvbEREREREB7Fd7sV9NREReTNdDRBQm5eXlmDNnDo4ePYr169djxYoVmDVrluk2CQkJyMnJwWeffYbdu3dj5syZmDhxIlJTUwEAvXr1wquvvoojR45g3759mDJlClq1ahWwLr169cKBAwfwwQcf4KuvvsITTzyB/fv3B32OU6ZMQceOHTF27Fjs3r0bpaWl2LVrF2bNmoVvv/0WQP0w3c8//xxHjx7F999/j9raWkvbEREREREB7FezX01ERL74JT8RUZjcd999uHDhAn72s5/ht7/9LWbMmIFp06aZbtOrVy9MmDABd955J0aNGoUBAwZg5cqVyuPr1q1DZWUlBg8ejKlTp2LmzJno3LlzwLrk5uZiwoQJmDRpEoYOHYqzZ89qoo+cSkxMxMcff4z09HRMmDAB/fr1w29+8xtcuHBBiSR68MEH0adPHyVv6Z49eyxtR0REREQEsF/NfjUREfnyCCFEpCtBRET+8vLysGXLFhw8eDDSVYkp0dJuO3fuxC233ILKykq0bds2onUhIiIiasqipX8Ya6Kl3divJiIKjJH8RETU6Bw6dAht2rTRRGeFU//+/XHHHXdE5NhERERERG5hv5qIKDZw4l0iImpUZs6ciV//+tcAgE6dOkWkDu+99x5qa2sBgMOiiYiIiCgmsV9NRBQ7mK6HiIiIiIiIiIiIiChGMV0PEREREREREREREVGM4pf8REREREREREREREQxil/yExERERERERERERHFKH7JT0REREREREREREQUo/glPxERERERERERERFRjOKX/EREREREREREREREMYpf8hMRERERERERERERxSh+yU9EREREREREREREFKP+HwD8EWK7nOh+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#b parameter des fits [:,1] hat für lost eine breitere Verteilung. Warum?\n", "#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n", "#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n", "\n", "#isolate b parameters for analysis\n", "b_found = scifi_fitpars_found[:,1]\n", "b_lost = scifi_fitpars_lost[:,1]\n", "\n", "brem_energy_found = scifi_fitpars_found[:,5]\n", "brem_energy_lost = scifi_fitpars_lost[:,5]\n", "\n", "\n", "bs_found, vtx_types_found = ak.broadcast_arrays(b_found, vtx_types_found)\n", "bs_found = ak.to_numpy(ak.ravel(bs_found))\n", "vtx_types_found = ak.to_numpy(ak.ravel(vtx_types_found))\n", "\n", "bs_lost, vtx_types_lost = ak.broadcast_arrays(b_lost, vtx_types_lost)\n", "bs_lost = ak.to_numpy(ak.ravel(bs_lost))\n", "vtx_types_lost = ak.to_numpy(ak.ravel(vtx_types_lost))\n", "\n", "\n", "\n", "\n", "#Erste Annahme ist Bremsstrahlung\n", "\n", "fig = plt.figure(figsize=(18,6))\n", "axes = ImageGrid(fig, 111, # similar to subplot(111)\n", " nrows_ncols=(1, 2), # creates 2x2 grid of axes\n", " axes_pad=1, # pad between axes in inch.\n", " cbar_mode=\"single\",\n", " cbar_location=\"right\",\n", " cbar_pad=0.1,\n", " aspect=False\n", " )\n", "\n", "\n", "h0 = axes[0].hist2d(b_found, brem_energy_found, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n", "axes[0].set_xlim(-1,1)\n", "axes[0].set_xlabel(\"b parameter [mm]\")\n", "axes[0].set_ylabel(r\"$E_{ph}$\")\n", "axes[0].set_title(\"found photon energy wrt b parameter\")\n", "\n", "h1 = axes[1].hist2d(b_lost, brem_energy_lost, bins=200, cmap=plt.cm.jet, cmin=1,vmax=30)\n", "axes[1].set_xlim(-1,1)\n", "axes[1].set_xlabel(\"b parameter [mm]\")\n", "axes[1].set_ylabel(r\"$E_{ph}$\")\n", "axes[1].set_title(\"lost photon energy wrt b parameter\")\n", "\n", "fig.colorbar(h0[3], cax=axes.cbar_axes[0], orientation='vertical')\n", "\n", "\"\"\"\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAAIhCAYAAACrEJ+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFBUlEQVR4nOzdeXQUVdrH8V+TnSUNQUlAEEERDCgCRjbZZB9xXAfcEBAXxjiK6KiMC8R3BNEZRKVRcdS4DMsoq4qDoCwqUSObDnFjRGEwEWEgAWRL575/MGnpdCXpht5S/f2cU+fQlVu3blV19324fesphzHGCAAAAAAAAACiRK1INwAAAAAAAAAAjsWgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCUAAAAAAACAqMKgJQAAAAAAAICowqAlAAAAAAAAgKjCoCVsb+7cuWrbtq1SUlLkcDi0YcOGSDfJ0sSJE+VwOCLdDC8Oh0MTJ04MeLslS5Yc13bV6d27t3r37l1tue+//14Oh0O5ublBb0N1ZsyYEdB+HQ6HbrvtttA1yOZC9V4DAIRPbm6uHA6Hvv/++5DUH2jfHC4rV66Uw+HQypUrA942VMfkb+wX6mtWmV9++UUTJ070+5yVn+M33ngjtA2zAWIqANGIQUvY2s8//6zhw4fr9NNP1z//+U/l5eXpzDPPjHSzbG/JkiXKyckJer0zZszQjBkzgl5vMEXrf4zsKlTvNQCAfdixbw7VMeXl5enGG28Mer3B8ssvvygnJ+e4BnpRNWIqANEoPtINAELpm2++0ZEjR3TdddepV69ekW4OTlBmZmakm1CpX375RbVr1450M0LiyJEjcjgcio+PnS7DztcTAIDKdOnSJdJNsGSM0cGDByPdjJCxc9xh52MDEHrMtIRtjRw5UhdccIEkadiwYXI4HF63Fi9evFhdu3ZV7dq1Va9ePfXv3195eXk+dZx22mk+dVvdyl1+m++rr76qs846S7Vr11b79u311ltv+Wz/9ttv69xzz1VSUpJatGihv/zlLwEd2/Lly9W3b1+lpqaqdu3a6t69u9577z3LNm7atElXX321nE6n0tPTdcMNN6i4uNirbElJiW666SY1bNhQdevW1aBBg/TNN994lVm4cKEcDofPfiTpmWeekcPh0Oeff66RI0fK5XJ5zkn58v3332vOnDlyOByaPn261/YTJkxQXFycli1bVuVxW90e/uOPP2ro0KGqV6+enE6nhg0bpqKioirrKT/m+Ph4Pf744551O3fuVK1ateR0OlVaWupZf/vtt+vkk0+WMcbTjnbt2mn16tXq1q2bateurRtuuEGnnXaaNm3apFWrVnmO2+r9Y+W5557TmWeeqaSkJGVmZmrOnDnVblN+G/xjjz2mRx55RKeeeqqSk5N13nnn+VynzZs3a9SoUWrVqpVq166tU045RRdffLG++OILr3Llt1G9+uqruuuuu3TKKacoKSlJmzdv1s8//6xbb71VmZmZqlu3rho1aqQLL7xQH3zwgWW7Hn/8cU2ZMkWnnXaaUlJS1Lt3b88PCffdd5+aNGkip9Opyy67TDt27PA5vrlz56pr166qU6eO6tatq4EDB2r9+vWev1f1XpOO/gdnxowZOvfcc5WSkqIGDRroyiuv1Hfffee1n8quJwAgsl588UW1b99eycnJSktL02WXXaYvv/zSq8x3332nq666Sk2aNFFSUpLS09PVt29fTzqg4+mbA+0/8vPz1aNHD9WuXVstW7bUo48+qrKyMq+yX331lQYNGqTatWvrpJNO0pgxY7R3716vMmPHjlWdOnVUUlLi06Zhw4YpPT1dR44cqfKYxowZo+TkZK1du9azbVlZmfr27av09HQVFhZWeexWt4d//PHH6t69u5KTk9WkSRONHz9eR44cqbIe6Wi863A4lJ+f71k3b948ORwOXXTRRV5lzznnHF1xxRVe7bjtttv07LPP6qyzzlJSUpJefvllnXzyyZKknJwcz7GPHDmy2rYcPHhQ48aNU0ZGhlJSUtSrVy+vmKIy5bfBL1u2TKNGjVJaWprq1Kmjiy++2Of9sGzZMl1yySVq2rSpkpOTdcYZZ+iWW27Rzp07vcqVx+jr1q3TlVdeqQYNGuj000+XJH322We66qqrPLHTaaedpquvvlo//PCDZbtWrFih3//+9zrppJPUsGFDXX755frxxx99joOYCkCNZQCb2rx5s3G5XEaSmTRpksnLyzObNm0yxhjz97//3UgyAwYMMAsXLjRz5841nTp1MomJieaDDz7w1DFixAjTvHlzn7onTJhgKn58JJnTTjvNnH/++eYf//iHWbJkiendu7eJj483//73vz3lli9fbuLi4swFF1xg5s+fb15//XWTlZVlTj31VJ86rbz66qvG4XCYSy+91MyfP9+8+eabZsiQISYuLs4sX77cp42tW7c2Dz30kFm2bJmZOnWqSUpKMqNGjfKUKysrM3369DFJSUnmkUceMe+++66ZMGGCadmypZFkJkyYYIwx5siRI6ZRo0bm2muv9WnT+eefbzp27Og571deeaWRZPLy8jzLwYMHjTHGjBkzxiQmJpr8/HxjjDHvvfeeqVWrlnnggQeqPfZevXqZXr16eV7/8ssv5qyzzjJOp9M8/fTTZunSpeb222/3nMuXXnqpyvq6dOliBgwY4Hk9Z84ck5ycbBwOh/noo48868866ywzdOhQr3akpaWZZs2amaefftqsWLHCrFq1yqxbt860bNnSdOjQwXPc69atq7INkkyzZs1MZmammT17tlm8eLEZNGiQkWRef/31KrfdsmWLZ/sLLrjAzJs3z/N+SkhIMGvWrPGUXbVqlbnrrrvMG2+8YVatWmUWLFhgLr30UpOSkmK++uorT7kVK1YYSeaUU04xV155pVm8eLF56623zK5du8xXX31lfv/735s5c+aYlStXmrfeesuMHj3a1KpVy6xYscKnXc2bNzcXX3yxeeutt8xrr71m0tPTzZlnnmmGDx9ubrjhBvPOO++YZ5991tStW9dcfPHFXsf2yCOPGIfDYW644Qbz1ltvmfnz55uuXbuaOnXqeD7H1b3XbrrpJpOQkGDuuusu889//tPMmjXLtGnTxqSnp5uioqJqrycAIDxeeuklI8ls2bLFs27SpElGkrn66qvN22+/bV555RXTsmVL43Q6zTfffOMp17p1a3PGGWeYV1991axatcrMmzfP3HXXXZ5+6Xj65kD6j4YNG5pWrVqZZ5991ixbtszceuutRpJ5+eWXPeWKiopMo0aNzCmnnGJeeukls2TJEnPttdd64pXytm7cuNFIMs8//7xXe3bv3m2SkpLMuHHjqj2mAwcOmHPPPde0bNnS7N692xhjzEMPPWRq1apl3n333WqvxbGxnzHGbNq0ydSuXdsTpyxatMgMHDjQ0/Zjr1lFe/fuNQkJCWbSpEmedWPGjDEpKSmmTp065vDhw8YYY3766SfjcDjMjBkzvNpxyimnmHPOOcfMmjXLvP/++2bDhg3mn//8p5FkRo8e7Tn2zZs3V9qG8rimWbNm5pJLLjFvvvmmee2118wZZ5xhUlNTvWJ0K+XvzWbNmnlil5kzZ5pGjRqZZs2aec6xMcY888wzZvLkyWbx4sVm1apV5uWXXzbt27c3rVu39hyrMb/G6M2bNzf33nuvWbZsmVm4cKExxpjXX3/dPPTQQ2bBggVm1apVZs6cOaZXr17m5JNPNj///LNPu1q2bGn+8Ic/mKVLl5q//e1vpkGDBqZPnz5ex0BMBaAmY9AStlYeqBw7+ON2u02TJk3M2Wefbdxut2f93r17TaNGjUy3bt086wIdtExPTzclJSWedUVFRaZWrVpm8uTJnnWdO3c2TZo0MQcOHPCsKykpMWlpadUOWu7fv9+kpaX5DPC43W7Tvn17c/755/u08bHHHvMqe+utt5rk5GRTVlZmjDHmnXfeMZLMk08+6VXukUce8Qlcx40bZ1JSUsyePXs86woKCowk8/TTT3vWZWdnV3osBw8eNB06dDAtWrQwBQUFJj093fTq1cuUlpZWeezG+A5aPvPMM0aSWbRokVe5m266ya9BywceeMCkpKR4ArIbb7zRDBo0yJxzzjkmJyfHGGPM9u3bjSQzc+ZMr3ZIMu+9955PnW3btvVqY3UkmZSUFK+Ar7S01LRp08acccYZVW5bPjhY2fupX79+lW5bWlpqDh8+bFq1amXuvPNOz/ryz0zPnj2rbXtpaak5cuSI6du3r7nssst82tW+fXuvz9i0adOMJPPb3/7Wq56xY8caSaa4uNgYY8zWrVtNfHy8+cMf/uBVbu/evSYjI8NrALmy91peXp6RZP761796rd+2bZtJSUkx99xzj2ddVdcTABB6FQctd+/ebVJSUsxvfvMbr3Jbt241SUlJ5pprrjHGGLNz504jyUybNq3K+gPpm4+n//jkk0+8ymZmZpqBAwd6Xt97773G4XCYDRs2eJXr37+/16ClMcZ07NjRKxY1xpgZM2YYSeaLL77w65i+/fZbk5qaai699FKzfPlyv38cNsZ30HLYsGGVxinVDVoaY8wFF1xgLrzwQs/rM844w/zxj380tWrV8gxmlU8mOHYwWpJxOp3mv//9r1d9P//8s08bq1Ie13Ts2NET+xpjzPfff28SEhLMjTfeWOX25e/NY+McY4z56KOPjCTz5z//2XK7srIyc+TIEfPDDz/4xKrlMfpDDz1UbftLS0vNvn37TJ06dbxi9fJ23XrrrV7lH3vsMSPJFBYWGmOIqQDUfNwejpjz9ddf68cff9Tw4cNVq9avH4G6devqiiuu0Mcff6xffvnluOru06eP6tWr53mdnp6uRo0aeW7p2L9/v/Lz83X55ZcrOTnZU65evXq6+OKLq61/zZo1+u9//6sRI0aotLTUs5SVlWnQoEHKz8/X/v37vbb57W9/6/X6nHPO0cGDBz23465YsUKSdO2113qVu+aaa3z2f8MNN+jAgQOaO3euZ91LL72kpKQky/JWkpKS9I9//EO7du1Sx44dZYzR7NmzFRcX59f2x1qxYoXq1avnc4z+tqVv3746cOCA1qxZI+nobff9+/dXv379PLeqL1++XJLUr18/r20bNGigCy+8MOA2V9aO9PR0z+u4uDgNGzZMmzdv1n/+859qt6/s/bR69Wq53W5JUmlpqSZNmqTMzEwlJiYqPj5eiYmJ+vbbb31utZPkdYvWsZ599ll17NhRycnJio+PV0JCgt577z3LOn7zm994fcbOOussSfK5Jax8/datWyVJS5cuVWlpqa6//nqv93lycrJ69erlV/L9t956Sw6HQ9ddd51XHRkZGWrfvr1PHcG8ngCAE5OXl6cDBw743PbbrFkzXXjhhZ4UKGlpaTr99NP1+OOPa+rUqVq/fr3PbdmBCrT/yMjI0Pnnn++17pxzzvG6nXfFihVq27at2rdv71XOKl4ZNWqU1qxZo6+//tqz7qWXXlJWVpbatWvn1zGcccYZev7557Vw4UINGTJEPXr0OO6nQq9YsaLSOMUfffv21UcffaQDBw7ohx9+0ObNm3XVVVfp3HPP9Yq1Tj31VLVq1cpr2wsvvFANGjQ4rnZXdM0113ildmrevLm6devmiYOrUzFO7tatm5o3b+61/Y4dOzRmzBg1a9bMEyM1b95ckvyOtfbt26d7771XZ5xxhuLj4xUfH6+6detq//79lnVYxfmSPO8/YioANR2Dlog5u3btkiQ1btzY529NmjRRWVmZdu/efVx1N2zY0GddUlKSDhw4IEnavXu3ysrKlJGR4VPOal1FP/30kyTpyiuvVEJCgtcyZcoUGWP03//+t8o2JSUlSZKnTbt27VJ8fLxPOav2tG3bVllZWXrppZckSW63W6+99pouueQSpaWlVdv+cmeccYZ69OihgwcP6tprr7W8Fv7YtWuXVxBdVdutlOfaWb58uTZv3qzvv//eM2j5ySefaN++fVq+fLlatmypFi1aeG17vG22UtX7ofz9ejzbHz58WPv27ZMkjRs3Tg8++KAuvfRSvfnmm/rkk0+Un5+v9u3be94Lx7I6vqlTp+r3v/+9OnfurHnz5unjjz9Wfn6+Bg0aZFlHxfdEYmJilevLE+yXv8+zsrJ83udz5871yQ1l5aeffpIxRunp6T51fPzxxz51BPN6AgBOTHWxWvnfy3NtDxw4UI899pg6duyok08+WbfffrtPvkh/Bdp/VBf7lR+Pv7Hftddeq6SkJM+TwQsKCpSfn69Ro0YFdBwXXXSR0tPTPbkcj+fH4UDbbqVfv346dOiQPvzwQy1btkwnnXSSOnTooH79+nl+GH7vvfd8fhyWwhNr+RNn+bN9WVmZBgwYoPnz5+uee+7Re++9p08//VQff/yxJPkda11zzTWaPn26brzxRi1dulSffvqp8vPzdfLJJ1vWUV2cT0wFoKaLnUfBAv9T3rlbJSL/8ccfVatWLc+vusnJyTp06JBPOX86eCsNGjSQw+GwfFCMPw+POemkkyRJTz/9dKVPd7QaxKtKw4YNVVpaql27dnkFPpW1Z9SoUbr11lv15Zdf6rvvvlNhYWHAgfTf/vY3vf322zr//PM1ffp0DRs2TJ07dw6ojvK2f/rppz7r/TmX0tHBsgsuuEDLly9X06ZNlZGRobPPPlstW7aUdPShNO+9956GDBnis23FBzGdiKreD1b/GfJ3+8TERNWtW1eS9Nprr+n666/XpEmTvMrt3LlT9evX99ne6vhee+019e7dW88884zX+uP9j2Flyt/nb7zxhmeGwvHU4XA49MEHH3gC+GNVXBfM6wkAODHVxWrl/YR0dMbcCy+8IEn65ptv9I9//EMTJ07U4cOH9eyzzwa870D7D380bNjQ79ivQYMGuuSSS/TKK6/oz3/+s1566SUlJyfr6quvDmif5Q/6adu2rW6//Xb16NHjuGYtBtJ2K507d1bdunW1fPlyff/99+rbt68cDof69u2rv/71r8rPz9fWrVstBy3DEWv5E2dVtf0ZZ5whSfrXv/6ljRs3Kjc3VyNGjPCU2bx5c6V1Vjy+4uJivfXWW5owYYLuu+8+z/pDhw75TErwFzEVgJqOmZaIOa1bt9Ypp5yiWbNmeZ4GLR29dXvevHmeJ4pLR584uWPHDs+vlJJ0+PBhLV269Lj2XadOHZ1//vmaP3++Z1aZdHTQ580336x2++7du6t+/foqKCjQeeedZ7mUz1rzV58+fSRJf//7373Wz5o1y7L81VdfreTkZOXm5io3N1ennHKKBgwY4FWm4q+8x/riiy90++236/rrr9cHH3ygc845R8OGDTuu2a19+vTR3r17tXjxYr/abqVfv35au3at5s2b5wmY69Spoy5duujpp5/Wjz/+aBlIV6bi7Ap/vPfee17vMbfbrblz5+r0009X06ZNq92+svdTjx49PDMrHA6HT1D59ttva/v27X6306qOzz//XHl5eX7X4Y+BAwcqPj5e//73vyt9n5er7L02ZMgQGWO0fft2y+3PPvvsoLYZABA8Xbt2VUpKil577TWv9f/5z3/0/vvvq2/fvpbbnXnmmXrggQd09tlna926dZ71gfTNoeg/+vTpo02bNmnjxo1e6yuLV0aNGqUff/xRS5Ys0WuvvabLLrvM5wfGqo7pb3/7m1577TVNnz5dixcv1p49ewL+gfnYtlcWp/gjISFBPXv21LJly/T++++rf//+kqQePXooPj5eDzzwgGcQ0x9VxZhVmT17tlfc/8MPP2jNmjXq3bu3X9tXjJPXrFmjH374wbN9+UBdxTjpueee87uNDodDxhifOv72t7950v0EipgKQE3HTEvEnFq1aumxxx7TtddeqyFDhuiWW27RoUOH9Pjjj2vPnj169NFHPWWHDRumhx56SFdddZX++Mc/6uDBg3rqqaeOO3CQpP/7v//ToEGD1L9/f911111yu92aMmWK6tSpU+2vqHXr1tXTTz+tESNG6L///a+uvPJKNWrUSD///LM2btyon3/+2WcWXHUGDBignj176p577tH+/ft13nnn6aOPPtKrr75qWb5+/fq67LLLlJubqz179ujuu+/2ylsoyRO8TJkyRYMHD1ZcXJzOOeccHTlyREOHDlWLFi00Y8YMJSYm6h//+Ic6duyoUaNGaeHChQG1/frrr9cTTzyh66+/Xo888ohatWqlJUuWBDSo3LdvX7ndbr333nt6+eWXPev79eunCRMmyOFwBJSX5+yzz9acOXM0d+5ctWzZUsnJydUGcyeddJIuvPBCPfjgg6pTp45mzJihr776SnPmzPFrn3Fxcerfv7/GjRunsrIyTZkyRSUlJcrJyfGUGTJkiHJzc9WmTRudc845Wrt2rR5//HG/BkWPreP//u//NGHCBPXq1Utff/21Hn74YbVo0UKlpaV+11Od0047TQ8//LDuv/9+fffddxo0aJAaNGign376SZ9++qnq1KnjObbK3mvdu3fXzTffrFGjRumzzz5Tz549VadOHRUWFurDDz/U2Wefrd///vdBazMAIHjq16+vBx98UH/60590/fXX6+qrr9auXbuUk5Oj5ORkTZgwQdLRH85uu+02/e53v1OrVq2UmJio999/X59//rnXTLVA+uZQ9B9jx47Viy++qIsuukh//vOflZ6err///e/66quvLMsPGDBATZs21a233qqioiLLAcfKjqn8x+ERI0Z4tnvhhRd05ZVXatq0aRo7dmxAbX/ggQe0ePFiXXjhhXrooYdUu3ZtuVwunxzqVenbt6/uuusuSb/mCE9JSVG3bt307rvv6pxzzlGjRo38qqtevXpq3ry5Fi1apL59+yotLU0nnXSSTjvttCq327Fjhy677DLddNNNKi4u1oQJE5ScnKzx48f7td/PPvtMN954o373u99p27Ztuv/++3XKKafo1ltvlSS1adNGp59+uu677z4ZY5SWlqY333zTk7fTH6mpqerZs6cef/xxzzGtWrVKL7zwguVdMf4gpgJQ40Xm+T9AeFg9PbzcwoULTefOnU1ycrKpU6eO6du3r/noo498yi1ZssSce+65JiUlxbRs2dJMnz690qeHZ2dn+2zfvHlzM2LECK91ixcvNuecc45JTEw0p556qnn00Uct66zMqlWrzEUXXWTS0tJMQkKCOeWUU8xFF13kdZzl9f38889e21Z8QqcxxuzZs8fccMMNpn79+qZ27dqmf//+5quvvqr06YzvvvuukeTzpMdyhw4dMjfeeKM5+eSTjcPh8OzvuuuuM7Vr1zabNm3yKv/6668bSeaJJ56o8rgrPj3cGGP+85//mCuuuMLUrVvX1KtXz1xxxRVmzZo1fj093JijT3c86aSTjCSzfft2z/ryp0J27NjRsh1t27a1rO/77783AwYMMPXq1TOSLJ8+f6zy982MGTPM6aefbhISEkybNm3M3//+92rbXv6U7ilTppicnBzTtGlTk5iYaDp06GCWLl3qVXb37t1m9OjRplGjRqZ27drmggsuMB988IHPOa3qM3Po0CFz9913m1NOOcUkJyebjh07moULF5oRI0Z4HWd5ux5//HGv7Suru/w9mZ+f77V+4cKFpk+fPiY1NdUkJSWZ5s2bmyuvvNIsX77cq01W77VyL774ouncubOpU6eOSUlJMaeffrq5/vrrzWeffeYpU9X1BACEnlVsYowxf/vb3zzxktPpNJdccolXDPHTTz+ZkSNHmjZt2pg6deqYunXrmnPOOcc88cQTprS01FMu0L7ZmBPrPyr2i8YYU1BQYPr372+Sk5NNWlqaGT16tFm0aJHP08PL/elPfzKSTLNmzYzb7fb5u9Ux7du3z7Rp08ZkZmaa/fv3e5XPzs42CQkJPk86r8gq9vvoo49Mly5dTFJSksnIyDB//OMfzcyZM/16ergxxmzcuNFIMq1atfJa/8gjjxhJZty4cZbtsIqrjTFm+fLlpkOHDiYpKclI8omzj1Uee7z66qvm9ttvNyeffLJJSkoyPXr08LqWlSl/b7777rtm+PDhpn79+p4n23/77bdeZcuvcb169UyDBg3M7373O7N161afc1pZjG7Mr3FtgwYNTL169cygQYPMv/71L5//T1QWO5Ufb8X3FDEVgJrKYcwx8+QBADXG999/rxYtWujxxx/X3XffHenmAAAA2Epubq5GjRql/Px8r1upAQDhQU5LAAAAAAAAAFGFQUsAAAAAAAAAUYXbwwEAAAAAAABEFWZaAgAAAAAAADFm8uTJysrKUr169dSoUSNdeuml+vrrr6vdbtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIuH0MWgIAAAAAAAAxZtWqVcrOztbHH3+sZcuWqbS0VAMGDND+/fsr3WbLli36zW9+ox49emj9+vX605/+pNtvv13z5s3zlMnLy9OwYcM0fPhwbdy4UcOHD9fQoUP1ySefBNQ+bg8HAAAAAAAAYtzPP/+sRo0aadWqVerZs6dlmXvvvVeLFy/Wl19+6Vk3ZswYbdy4UXl5eZKkYcOGqaSkRO+8846nzKBBg9SgQQPNnj3b7/bEH+dx2EpZWZl+/PFH1atXTw6HI9LNAQAAQWaM0d69e9WkSRPVqsWNJtGCGAwAAHsjBqvcwYMHdfjw4ZDUbYzxia2SkpKUlJRU5XbFxcWSpLS0tErL5OXlacCAAV7rBg4cqBdeeEFHjhxRQkKC8vLydOedd/qUmTZtWgBHwaClJOnHH39Us2bNIt0MAAAQYtu2bVPTpk0j3Qz8DzEYAACxgRjM28GDB3VySor2haj+unXrat8+79onTJigiRMnVrqNMUbjxo3TBRdcoHbt2lVarqioSOnp6V7r0tPTVVpaqp07d6px48aVlikqKgroOBi0lFSvXj1JRz9EqampEW6N/Tmdk71eFxePj1BLvFVsF4LN6usmocLrI8dRb4of+6lKqcW6inUcDLBOK9UdW8VzcSAI+4xdofhesfqOiMT3V7R+h0a7kpISNWvWzNPnIzpEQwwWLZ/t6sRCOyuLxcJ1nCcSC1q1MTSxZWVxjlU84+/2/m5bmYqxmOR/HBNI3Hai7fRlfd0eP8F9+3eOw/ee8VXZZypc3zPB/p4I5/HUhHMUbYjBrB0+fFj7JN0pqeq5j4E7JOmJfft84qvqZlnedttt+vzzz/Xhhx9Wu4+KszjLM08eu96qTKB31jBoqV9PZGpqKoOWYZHs9Sp6znly9UVwAvwZtIw7jnorXreKdVbHajAx0Dr8Ud2xVdwn6YZPRGi+V3y/IyLz/RWt36E1A7cgR5foiMGi5bNdnVhop3UsFr7jPP5Y0LqNoYgto3HQ0uo4/Y1jIjto6f91C/6gZfjeM74q/0yF63smuN8T4T2emnCOohMxmLU6Cv4nv/xbKJD46g9/+IMWL16s1atXVzsjNiMjw2fG5I4dOxQfH6+GDRtWWabi7MvqkFAAAAAAAAAACLOEEC3+Msbotttu0/z58/X++++rRYsW1W7TtWtXLVu2zGvdu+++q/POO08JCQlVlunWrVsArYvxp4e7XC65XC653W598803Ki4urvG/XgAAAF8lJSVyOp309VGCGAwAgNhADGat/LzkKPgzLQ9KmiD5dc5vvfVWzZo1S4sWLVLr1q09651Op1JSjqb/GD9+vLZv365XXnlFkrRlyxa1a9dOt9xyi2666Sbl5eVpzJgxmj17tq644gpJ0po1a9SzZ0898sgjuuSSS7Ro0SI98MAD+vDDD9W5c2e/jyWmBy3L8SECAMDe6OujE9cFAAB7o6+3Vn5eHlFoBi3vl3+DlpXdtv/SSy9p5MiRkqSRI0fq+++/18qVKz1/X7Vqle68805t2rRJTZo00b333qsxY8Z41fHGG2/ogQce0HfffafTTz9djzzyiC6//PKAjoWclgAAAAAAAECM8WceY25urs+6Xr16ad26dVVud+WVV+rKK6883qZJYtASAAAAAAAACLt4Bf8xsMF/bFnkxPSDeFwulzIzM5WVlRXppgAAAMQMYjAAAABUh5yWIscCAAB2R18fnbguAADYG329tfLz8ldJKUGu+4Cku+RfTstoF9MzLQEAAAAAAABEH3JaAgAAAAAAAGGWIHJaViWmBy1dLpdcLpfcbnekm+IXhyPH67UxEyLUEtQ0kXjvVNxnqAR6LP60i88WAIRWTYvBgOpYxReBxBMnuv2J1BmKfQMA/BOv4A/M2WmgL6ZvD8/OzlZBQYHy8/Mj3RQAAICYQQwGAACA6thpABYAAAAAAACoEeIV/NvDjwS5vkiK6ZmWAAAAAAAAAKIPMy0BAAAAAACAMCOnZdXsdCwBq2lJ4EmIjeMVifdOtL5fo7VdABBLaloMBlTnROOLUMQn/tZJbAQAiFYOY4yJdCMiraSkRE6nU8XFxUpNTY10cwAAQJDR10cnrgsAAPZGX2+t/Ly8Kql2kOv+RdJwyRbnnJyWAAAAAAAAAKJKTN8eDgAAAAAAAERCgoL/9PBg1xdJMT1oWdPyKTkcOVX+PRj5aKrbByoKxkcoFF8p1bWrun1abZ8SYBsqTkO32me9APdxisW6hlVvUq9CnXur2YUkOSq8NgcqrPi+wusjFV7/16LSinWUVtOIEot1FfdT8ZxW3KbiPipub6VinRW3qa7dVttUV6eVivup+J4M9O/Ryep7O9DvYX/qqFgmHP0JUJWKMZjTOVlSsleZQN6HJxK/BLafxyzWVvx+r+xz+YjFtpV9V1n1w1ZlrfpN3/YExt99B7K9VQwQSNut6jyR40yrZL2/bbI6H1blrOIWyb9+sLL9VIydylndXPiLxTqra2EVtwRyjn7ys5yVyq5jK4t1VufNat+VBXtWx2R12+Qui3VW8eZ/KtmP1bFbXUur97VV2/19v0j+X9/K6vS3nSfqRL7PAvmO8vf/NP78B6Hy7Y25x2ed9Xe+7/Wx2vbo9v71a8RsNR8P4qlaTN8enp2drYKCAuXn50e6KQAAADGDGAwAAADVsdMALAAAAAAAAFAjxCv4917aaaAvpmdaAgAAAAAAAIg+DmOMiXQjIuXYfErffPONLR4HDwAAfJWUlMjpdNLXRwliMAAAYgMxmLXy8/KWpDpBrnu/pCGSLc55TA9aluNDBACAvdHXRyeuCwAA9kZfb41BS//Y6VZ3AAAAAAAAoEZIUPBzWga7vkgipyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAADA0dufQ7HYBTktRY4FAADsjr4+OnFdAACwN/p6a+XnZZWkukGue5+kXrJHTsuYnmkJAAAAAAAAIPrYadYoAAAAAAAAUCOE4nZuOw302elYAuZyueRyueR2u0O+L4cjx+u1MROqKf+IxdrSE2qD1T5991PdPupVeL3XokxKhdcHKrz2522XVuH1fyu8rjjF+Ug1bbBS8VgrblOxzoptknyP/7QKr/059vQKr0uqqbNiu5pa1FmNBhWOtV2Fv1vNT+9V4XVxhdfneb90Dinyet0z8QOfKu/VFK/X3XPXeheY6v0y5wuLdkWBoRVen7XYt8yTF9/s9XqNunm9/rfO8Hq9dnV330o2V9OQaRVeV3z7fW+xTcWP9O6KBSpW8lOF1xXfr5K0o5qdVPd5ttpvxTq+rPC64jPyrL4DKtZp1fZjVfyOsPr8Vqyz4rFUPF8V21nx8+xvmWNV3zdU/P6v2Cf5sjpW7/1U148dj0D7StRcFWMwp/NxSckVSvk++9KYeyzrcziesVhrFaN0tFi3zmJdI8v9SL0t1n1isa6zn+UqfoeUa2WxruL3nqSUGy2qtDoeSfrWYl3FGESybnvF7zKp8u8mq7jke4t1Z1Wyvb8s9t/D4nmpeyw2raw/vdZiXWOLdTst1lm9BVdVsp/6Fuusvsr3+a46t+fHllUO16sWu9njs+6GT2b5rNvS2fcgW9xfaLkf3ea7Kr9xxUBS+l4tfNZ9oB4+654aav2ZPrDEd12Kxb7/+Whvn3XNtM2yzgny7fveWHudz7o7O032WbdB5/qsW7m1n+V+zj31M9/tH+riW9DqfZhhsa6y+HeXxTrfSyFtsKqzss+v1c7OsFhn0fjGFt+vhcsr2Y/Fd8pZFh/AL9+0aM7FFs35vpL9fGSx7nKLdVbfm1b/95Osv7umWqyz2k/FGFiStleyH6v9/8dindUbyTe2NuYPlezHPw7HYxZ1VtYnVzwfB09o34htMX17eHZ2tgoKCpSfnx/ppgAAAMQMYjAAAICjP9GGYrGLmB60BAAAAAAAABB9Yvr2cAAAAAAAACASyGlZNWZaAgAAAAAAAIgqDmOMidTOV69erccff1xr165VYWGhFixYoEsvvdTzd2OMcnJyNHPmTO3evVudO3eWy+VS27ZtPWUOHTqku+++W7Nnz9aBAwfUt29fzZgxQ02bVv9wkmOTwH/zzTcqLi5WaqrVAyEAnCirB38E+pCNUNTBgz6A2FBSUiKn00lf/z/EYEDkBCOeAYCaghjMWvl5+Vy+jxw9UXslnSPZ4pxHdKbl/v371b59e02fPt3y74899pimTp2q6dOnKz8/XxkZGerfv7/27v31aZBjx47VggULNGfOHH344Yfat2+fhgwZ4tcTwUkCDwAAYhExGAAAQOTxIJ6qRfRW98GDB2vw4MGWfzPGaNq0abr//vt1+eWXS5Jefvllpaena9asWbrllltUXFysF154Qa+++qr69esnSXrttdfUrFkzLV++XAMHDgzbsQAAANQUxGAAAACIdlGb03LLli0qKirSgAEDPOuSkpLUq1cvrVmzRpK0du1aHTlyxKtMkyZN1K5dO08ZK4cOHVJJSYnXAgAAAGIwAACAcIkP0WIXUXssRUVFkqT09HSv9enp6frhhx88ZRITE9WgQQOfMuXbW5k8ebJycnxzyQAInWDkaoqWOgDAzojBgNAiFgEAwD9RO9OynMPh8HptjPFZV1F1ZcaPH6/i4mLPsm3btqC0FQAAwC6IwQAAAEIrPk5KiA/uEh8X6aMKnqgdtMzIyJAkn1/rd+zY4fnlPyMjQ4cPH9bu3bsrLWMlKSlJqampXgsAAACIwQAAABAdonbQskWLFsrIyNCyZcs86w4fPqxVq1apW7dukqROnTopISHBq0xhYaH+9a9/ecoAAADAf8RgAAAA4REfH5rFLiJ6KPv27dPmzZs9r7ds2aINGzYoLS1Np556qsaOHatJkyapVatWatWqlSZNmqTatWvrmmuukSQ5nU6NHj1ad911lxo2bKi0tDTdfffdOvvssz1PsqyKy+WSy+WS2+0O2TECAABEG2IwAAAARDuHMcZEaucrV65Unz59fNaPGDFCubm5MsYoJydHzz33nHbv3q3OnTvL5XKpXbt2nrIHDx7UH//4R82aNUsHDhxQ3759NWPGDDVr1szvdpSUlMjpdKq4uJjblAAAsCH6em/EYAAAIBzo662Vn5ei2lJq1SnDA6/bSBm/yBbnPKKDltGCDxEAAPZGXx+duC4AANgbfb218vOyMzU0g5Ynldhj0DJqc1oCAAAAAAAAiE02Ss8ZOPIpAQAAhB8xGAAAgJQQJyUEeTphQllw64skbg8X05UBALA7+vroxHUBAMDe6Outec5LAyk1yIOWJWWSc7c9bg+P6ZmWAAAAAAAAQETEKfiJG4OcIzOSyGkJAAAAAAAAIKrE9KCly+VSZmamsrKyIt0UAACAmEEMBgAAoKP3P4diCcDq1at18cUXq0mTJnI4HFq4cGGV5UeOHCmHw+GztG3b1lMmNzfXsszBgwcDaltMD1pmZ2eroKBA+fn5kW4KAABAzCAGAwAAiA779+9X+/btNX36dL/KP/nkkyosLPQs27ZtU1pamn73u995lUtNTfUqV1hYqOTk5IDaRk5LAAAAAAAAINziFfzphP97enhJSYnX6qSkJCUlJfkUHzx4sAYPHux39U6nU06n0/N64cKF2r17t0aNGuVVzuFwKCMjI4CG+4rpmZYAAAAAAABARITw9vBmzZp5BhidTqcmT54ckkN44YUX1K9fPzVv3txr/b59+9S8eXM1bdpUQ4YM0fr16wOum5mWAAAAAAAAgI1s27ZNqampntdWsyxPVGFhod555x3NmjXLa32bNm2Um5urs88+WyUlJXryySfVvXt3bdy4Ua1atfK7/pgetHS5XHK5XHK73ZFuCgAAQMwgBgMAANDR+5/jQlN1amqq16BlKOTm5qp+/fq69NJLvdZ36dJFXbp08bzu3r27OnbsqKefflpPPfWU3/XH9O3hJIEHAAAIP2IwAACAms0YoxdffFHDhw9XYmJilWVr1aqlrKwsffvttwHtI6ZnWgIAAAAAAAAREa/gz7R0BLm+SqxatUqbN2/W6NGjqy1rjNGGDRt09tlnB7QPBi0BAAAAAACAGLRv3z5t3rzZ83rLli3asGGD0tLSdOqpp2r8+PHavn27XnnlFa/tXnjhBXXu3Fnt2rXzqTMnJ0ddunRRq1atVFJSoqeeekobNmyQy+UKqG0xPWhJPiUAAIDwIwYDAABQVMy0/Oyzz9SnTx/P63HjxkmSRowYodzcXBUWFmrr1q1e2xQXF2vevHl68sknLevcs2ePbr75ZhUVFcnpdKpDhw5avXq1zj///MAOxRhjAjsc+ykpKZHT6VRxcXHIk5QCAIDwo6+PTlwXAADsjb7emue8ZEqpQR60LHFLzgLZ4pzH9ExLAAAAAAAAICLiFLKnh9sBg5YAAAAAAABAuEXB7eHRrFakGxBJLpdLmZmZysrKinRTAAAAYgYxGAAAAKpDTkuRYwEAALujr49OXBcAAOyNvt6a57ycJ6UG+R7oklLJ+Zk9clrG9ExLAAAAAAAAANGHnJYAAAAAAABAuIXiQTw2up86pmdakk8JAAAg/IjBAAAAUB1yWoocCwAA2B19fXTiugAAYG/09dY856V7iHJafkROSwAAAAAAAAAIOnJaAgAAAAAAAOEWL0bmqhDTMy3JpwQAABB+xGAAAACoDjktRY4FAADsjr4+OnFdAACwN/p6a57z0jdEOS3fs0dOSyahAgAAAAAAAOFWS1JckOssC3J9ERTTt4cDAAAAAAAAiD7MtAQAAAAAAADCLRQP4rFREsiYnmlJEngAAIDwIwYDAABAdXgQj0gMCwCA3dHXRyeuCwAA9kZfb81zXi6WUhOCXPcRyfmmPR7EE9MzLQEAAAAAAABEH3JaAgAAAAAAAOEWJ54eXoWYnmlJPiUAAIDwIwYDAABAdchpKXIsAABgd/T10YnrAgCAvdHXW/OclytDlNPyDXvktOT2cAAAAAAAACDc4hT8kTluDwcAAAAAAACA0IjpQUvyKQEAAIQfMRgAAIB+fRBPsBebIKelyLEAAIDd0ddHJ64LAAD2Rl9vzXNerpFSE4Nc92HJOYuclgAAAAAAAACOR7zIaVmFmL49HAAAAAAAAED0ielBS/IpAQAAhB8xGAAAgH6daRnsxSbIaSlyLAAAYHf09dGJ6wIAgL3R11vznJcbQpTT8kVyWgIAAAAAAAA4HuS0rBKDlgAAAAAAAEC41ZIUF4I6bcJGhxI48ikBAACEHzEYAAAAqkNOS5FjAQAAu6Ovj05cFwAA7I2+3prnvNwmpSYFue5DknO6PXJaxvRMSwAAAAAAAADRh5yWAAAAAAAAQLiF4kE87iDXF0HMtAQAAAAAAAAQVWJ60JIk8AAAAOFHDAYAAKCjTw4PxWITPIhHJIYFAMDu6OujE9cFAAB7o6+35jkvd4XoQTx/tceDeMhpCQAAAAAAAIQbOS2rxKAlAAAAAAAAEG5xCv7IXGmQ64sgclqSTwkAACCsiMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jzn5SEpNTnIdR+UnA/bI6dlTM+0BAAAAAAAABB9yGkJAAAAAAAAhFvc/5Zg12kTMT3TknxKAAAA4UcMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7fmOS+PhCin5f3ktAQAAAAAAABQQ61evVoXX3yxmjRpIofDoYULF1ZZfuXKlXI4HD7LV1995VVu3rx5yszMVFJSkjIzM7VgwYKA28agJQAAAAAAABBu8SFaArB//361b99e06dPD2i7r7/+WoWFhZ6lVatWnr/l5eVp2LBhGj58uDZu3Kjhw4dr6NCh+uSTTwLaR0w/iMflcsnlcsntdke6KQAAADGDGAwAAEBHpxIG+8E5AU5PHDx4sAYPHhzwbho1aqT69etb/m3atGnq37+/xo8fL0kaP368Vq1apWnTpmn27Nl+7yOmZ1pmZ2eroKBA+fn5kW4KAABAzCAGAwAACK2SkhKv5dChQ0Gtv0OHDmrcuLH69u2rFStWeP0tLy9PAwYM8Fo3cOBArVmzJqB9xPSgJQAAAAAAABARIbw9vFmzZnI6nZ5l8uTJQWly48aNNXPmTM2bN0/z589X69at1bdvX61evdpTpqioSOnp6V7bpaenq6ioKKB9xfTt4QAAAAAAAIDdbNu2zevp4UlJSUGpt3Xr1mrdurXnddeuXbVt2zb95S9/Uc+ePT3rHQ6H13bGGJ911YnpmZYul0uZmZnKysqKdFMAAABiBjEYAACAQjrTMjU11WsJ1qCllS5duujbb7/1vM7IyPCZVbljxw6f2ZfVielBS/IpAQAAhB8xGAAAgH2sX79ejRs39rzu2rWrli1b5lXm3XffVbdu3QKql9vDAQAAAAAAgHCLU/CfHh5gffv27dPmzZs9r7ds2aINGzYoLS1Np556qsaPH6/t27frlVdekXT0yeCnnXaa2rZtq8OHD+u1117TvHnzNG/ePE8dd9xxh3r27KkpU6bokksu0aJFi7R8+XJ9+OGHAbWNQUsAAAAAAAAgBn322Wfq06eP5/W4ceMkSSNGjFBubq4KCwu1detWz98PHz6su+++W9u3b1dKSoratm2rt99+W7/5zW88Zbp166Y5c+bogQce0IMPPqjTTz9dc+fOVefOnQNqm8MYY07w+Gq8kpISOZ1OFRcXeyUpBQAA9kBfH524LgAA2Bt9vTXPeZkppaYEue4DkvNm2eKcR3VOy9LSUj3wwANq0aKFUlJS1LJlSz388MMqKyvzlDHGaOLEiWrSpIlSUlLUu3dvbdq0ya/6SQIPAADgixgMAAAgDOIU/IfwBPt28wiK6kHLKVOm6Nlnn9X06dP15Zdf6rHHHtPjjz+up59+2lPmscce09SpUzV9+nTl5+crIyND/fv31969e6utnyTwAAAAvojBAAAAEGlRndMyLy9Pl1xyiS666CJJ0mmnnabZs2frs88+k3T0F/5p06bp/vvv1+WXXy5Jevnll5Wenq5Zs2bplltuiVjbAQAAaipiMAAAgDAonx0Z7DptIqpnWl5wwQV677339M0330iSNm7cqA8//NCT3HPLli0qKirSgAEDPNskJSWpV69eWrNmTaX1Hjp0SCUlJV4LAAAAjiIGAwAAQKRF9fjrvffeq+LiYrVp00ZxcXFyu9165JFHdPXVV0uSioqKJEnp6ele26Wnp+uHH36otN7JkycrJycndA0HAACowYjBAAAAwiBOwc9BSU7L8Jg7d65ee+01zZo1S+vWrdPLL7+sv/zlL3r55Ze9yjkcDq/XxhifdccaP368iouLPcu2bdtC0n4AAICaiBgMAAAAkRbVMy3/+Mc/6r777tNVV10lSTr77LP1ww8/aPLkyRoxYoQyMjIkHf21v3Hjxp7tduzY4fPL/7GSkpKUlJQU2sYDAADUUMRgAAAAYUBOyypF9UzLX375RbVqeTcxLi5OZWVlkqQWLVooIyNDy5Yt8/z98OHDWrVqlbp16xbWtgIAANgFMRgAAAAiLarHXy+++GI98sgjOvXUU9W2bVutX79eU6dO1Q033CDp6C1JY8eO1aRJk9SqVSu1atVKkyZNUu3atXXNNddUW7/L5ZLL5ZLb7Q71oQAAANQYxGAAAABhwEzLKjmMMSbSjajM3r179eCDD2rBggXasWOHmjRpoquvvloPPfSQEhMTJR3NnZSTk6PnnntOu3fvVufOneVyudSuXTu/91NSUiKn06ni4mKlpqaG6nAAAECE0NcHhhgMAAAEA329Nc95mS+l1gly3fsl5+WyxTmP6kHLcOFDBACAvdHXRyeuCwAA9kZfb41BS//YaNIoAAAAAAAAUENwe3iVovpBPKHmcrmUmZmprKysSDcFAAAgZhCDAQAAoDrcHi6mKwMAYHf09dGJ6wIAgL3R11vznJclIbo9/Df2uD08pmdaAgAAAAAAAIg+NrrTHQAAAAAAAKgh4v63BLtOm4jpmZbkUwIAAAg/YjAAAABUh5yWIscCAAB2R18fnbguAADYG329Nc95eS9EOS372iOnJbeHAwAAAAAAAOEWp+CPzHF7OAAAAAAAAACEBjMtAQAAAAAAgHCLV/BH5mw00hfTMy1JAg8AABB+xGAAAACoDg/iEYlhAQCwO/r66MR1AQDA3ujrrXnOS56UWjfIde+TnF3t8SCemJ5pCQAAAAAAACD62OhOdwAAAAAAAKCGIKdllWJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzXNe1kmp9YJc917J2ZGclgAAAAAAAAAQdDa60x0AAAAAAACoIeL+twS7TpuI6ZmW5FMCAAAIP2IwAAAA/fognmAvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3prnvGwKUU7LtvbIaWmj8VcAAAAAAACghgjFzEgbjfTF9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAARE7LapDTUuRYAADA7ujroxPXBQAAe6Ovt+Y5L/8OUU7L08lpCQAAAAAAAOA4mFqSiQt+nXZho0MBAAAAAAAAYAcxPdPS5XLJ5XLJ7XZHuikAAAAxgxgMAABAcscfXYJdp12Q01LkWAAAwO7o66MT1wUAAHujr7dWfl52FErBPi0lJVKjxvbIacnt4QAAAAAAAACiio0mjQIAAAAAAAA1Q2mcQ6VxjiDXaSTZ46ZqZloCAAAAAAAAiCoxPdOSJPAAAADhRwwGAAAguePj5Y4P7kxLd7yRdCSodUYKD+IRiWEBALA7+vroxHUBAMDe6OutlZ+Xbf9NUGpqcActS0qMmqUdscU5j+mZlgAAAAAAAEAkuOPi5A5yTkt3nH1mWpLTEgAAAAAAAEBUiemZluRTAgAACD9iMAAAAKlMcXIruDMty2zy5HApxmdaZmdnq6CgQPn5+ZFuCgAAQMwgBgMAAJBKFReSJRCrV6/WxRdfrCZNmsjhcGjhwoVVlp8/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEBti+lBSwAAAAAAACBW7d+/X+3bt9f06dP9Kr969Wr1799fS5Ys0dq1a9WnTx9dfPHFWr9+vVe51NRUFRYWei3JyckBtS2mbw8HAAAAAAAAIsGtOLmDPJ/QrbKAyg8ePFiDBw/2u/y0adO8Xk+aNEmLFi3Sm2++qQ4dOnjWOxwOZWRkBNSWimJ6pqXL5VJmZqaysrIi3RQAAICYQQwGAAAQWiUlJV7LoUOHQrKfsrIy7d27V2lpaV7r9+3bp+bNm6tp06YaMmSIz0xMf8T0oCX5lAAAAMKPGAwAAKB8pmXwF0lq1qyZnE6nZ5k8eXJIjuGvf/2r9u/fr6FDh3rWtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21AdXN7OAAAAAAAAGAj27ZtU2pqqud1UlJS0Pcxe/ZsTZw4UYsWLVKjRo0867t06aIuXbp4Xnfv3l0dO3bU008/raeeesrv+hm0BAAAAAAAAMIsNDktHZKOPgjn2EHLYJs7d65Gjx6t119/Xf369auybK1atZSVlRXwTMuYvj2cfEoAAADhRwwGAABQc82ePVsjR47UrFmzdNFFF1Vb3hijDRs2qHHjxgHtJ6ZnWmZnZys7O1slJSVyOp2Rbg4AAEBMIAYDAAAI7UxLf+3bt0+bN2/2vN6yZYs2bNigtLQ0nXrqqRo/fry2b9+uV155RdLRAcvrr79eTz75pLp06aKioiJJUkpKiieuy8nJUZcuXdSqVSuVlJToqaee0oYNG+RyuQJqW0wPWgIAAAAAAACR4FacSiM8aPnZZ5+pT58+ntfjxo2TJI0YMUK5ubkqLCzU1q1bPX9/7rnnVFpa6vkRulx5eUnas2ePbr75ZhUVFcnpdKpDhw5avXq1zj///IDa5jDGmIC2sKHyX/mLi4tDer8/AACIDPr66MR1AQDA3ujrrZWfl/ziZqqbGtxBy30lZcpybrPFOY/pmZYul0sul0tutzvSTQEAAIgZxGAAAACSW/EhuD28LKj1RRIzLcXIPwAAdkdfH524LgAA2Bt9vbXy8/JxcYuQzLTs4txii3Me0zMtAQAAAAAAgEhwq5bcigtynfYR3OFcAAAAAAAAADhBzLQEAAAAAAAAwsytOGZaViGmZ1q6XC5lZmYqKysr0k0BAACIGcRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o662Vn5f3i89S3dTgzrTcV+LWhc4vbXHOuT0cAAAAAAAACLMyxQf99vAyOYJaXyTF9O3hAAAAAAAAAKJPTM+0dLlccrlccrvtlKYUAAAguhGDAQAA8CCe6pDTUuRYAADA7ujroxPXBQAAe6Ovt1Z+XpYWn6s6Qc5pub/ErYHODbY45zE90xIAAAAAAACIBGZaVo2clgAAAAAAAACiSkzPtCSfEgAAQPgRgwEAAEhu1QrBTEv7ZIGM6ZmW2dnZKigoUH5+fqSbAgAAEDOIwQAAAFCdmJ5pCQAAAAAAAERCqeJUGuSZlqU2mmnJoCUAAAAAAAAQZm7Fyx3koTk7Jd+J6dvDXS6XMjMzlZWVFemmAAAAxAxiMAAAAFTHYYyxz7zR41RSUiKn06ni4mKlpqZGujkAACDI6OujE9cFAAB7o6+3Vn5e/lHcS7VTgzvT8peSUg11rrLFOY/pmZYAAAAAAAAAog85LQEAAAAAAIAwcytO7iA/iMcdaw/iadCggRwOh18V/ve//z2hBoWTy+WSy+WS222nNKUAAMAuiMEAAAAQq/watJw2bZrn37t27dKf//xnDRw4UF27dpUk5eXlaenSpXrwwQdD0shQyc7OVnZ2tieXAAAAQDQhBgMAALCvUtVSaZBnWpaqLKj1RVLAD+K54oor1KdPH912221e66dPn67ly5dr4cKFwWxfWJAYFgAAe7NDX08MBgAAahr6emvl5+XV4n6qnZoQ1Lp/KTmi4c7ltjjnAT+IZ+nSpRo0aJDP+oEDB2r58uVBaRQAAAC8EYMBAADYi1vxIVnsIuBBy4YNG2rBggU+6xcuXKiGDRsGpVEAAADwRgwGAABgL+UP4gn2YhcBD1rm5OTovvvu00UXXaQ///nP+vOf/6whQ4Zo/PjxysnJCXoDt2/fruuuu04NGzZU7dq1de6552rt2rWevxtjNHHiRDVp0kQpKSnq3bu3Nm3a5FfdLpdLmZmZysrKCnq7AQAAgokYDAAAALEk4EHLkSNHas2aNapfv77mz5+vefPmyel06qOPPtLIkSOD2rjdu3ere/fuSkhI0DvvvKOCggL99a9/Vf369T1lHnvsMU2dOlXTp09Xfn6+MjIy1L9/f+3du7fa+rOzs1VQUKD8/PygthsAACDYiMEAAADshZmWVQv4QTzhdN999+mjjz7SBx98YPl3Y4yaNGmisWPH6t5775UkHTp0SOnp6ZoyZYpuueUWv/ZDYlgAAOyNvj4wxGAAACAY6OutlZ+XmcW/DcmDeG52LrbFOfdrpmVJSYnXv6tagmnx4sU677zz9Lvf/U6NGjVShw4d9Pzzz3v+vmXLFhUVFWnAgAGedUlJSerVq5fWrFlTab2HDh0KabsBAACCgRgMAADAvtyKU2mQFzvNtPRr0LJBgwbasWOHJKl+/fpq0KCBz1K+Ppi+++47PfPMM2rVqpWWLl2qMWPG6Pbbb9crr7wiSSoqKpIkpaene22Xnp7u+ZuVyZMny+l0epZmzZoFtd0AAADBQAwGAACAWOXXc9Dff/99paWlSZJWrFgR0gYdq6ysTOedd54mTZokSerQoYM2bdqkZ555Rtdff72nnMPh8NrOGOOz7ljjx4/XuHHjPK9LSkoImgEAQNQhBgMAALAvt+Ll9m9oLoA6ozYLZMD8OjO9evWy/HeoNW7cWJmZmV7rzjrrLM2bN0+SlJGRIenor/2NGzf2lNmxY4fPL//HSkpKUlJSUghaDAAAEDzEYAAAAIhVAT89PJy6d++ur7/+2mvdN998o+bNm0uSWrRooYyMDC1btszz98OHD2vVqlXq1q1bWNsKAABgF8RgAAAAoedWrRA8PTyqh/oCEtw5qEF25513qlu3bpo0aZKGDh2qTz/9VDNnztTMmTMlHb0laezYsZo0aZJatWqlVq1aadKkSapdu7auueaaaut3uVxyuVxyu92hPhQAAIAagxgMAAAg9NwheHCOnR7E4zDGRPXN7m+99ZbGjx+vb7/9Vi1atNC4ceN00003ef5ujFFOTo6ee+457d69W507d5bL5VK7du383kf5o+bt8Dh4AADgi74+cMRgAADgRNHXWys/L1OLr1FKamJQ6z5QcljjnLNscc6jftAyHPgQAQBgb/T10YnrAgCAvdHXWys/L48XDw/JoOUfna/a4pwHfKP7pk2bKv3bP//5zxNqDAAAAKwRgwEAACCWBDxoed555+npp5/2Wnfo0CHddtttuuyyy4LWsHBwuVzKzMxUVlZWpJsCAABQJWIwAAAAe3ErTqVBXuyU0zLgQcu///3vysnJ0eDBg1VUVKQNGzaoQ4cOev/99/XRRx+Foo0hk52drYKCAuXn50e6KQAAAFUiBgMAAEAsCXjQ8vLLL9fnn3+u0tJStWvXTl27dlXv3r21du1adezYMRRtBAAAiHnEYAAAAPbiVnxIFrsIeNBSktxutw4fPiy32y23262MjAwlJSUFu20AAAA4BjEYAAAAYkXAg5Zz5szROeecI6fTqW+++UZvv/22Zs6cqR49eui7774LRRtDhnxKAACgpiAGAwAAsBf3/3JQBnuxC4cxxgSyQZ06dfSXv/xFv//97z3rdu/erVtuuUX//Oc/VVJSEvRGhlr5o+bt8Dh4AADgyw59PTEYAACoaejrrZWfl4eLb1FyamJQ6z5YclgPOZ+zxTkP+Eb3devWqXXr1l7rGjRooH/84x969dVXg9YwAAAA/IoYDAAAwF7cqhX0mZHu48sEGZUCPpK5c+fql19+8Vl/4MABbdmyJSiNAgAAgDdiMAAAAHspVVxIFrsIeNAyJydH+/bt81n/yy+/KCcnJyiNAgAAgDdiMAAAAMSSgActjTFyOBw+6zdu3Ki0tLSgNCpcSAIPAABqCmIwAAAAe3ErPiRLIFavXq2LL75YTZo0kcPh0MKFC6vdZtWqVerUqZOSk5PVsmVLPfvssz5l5s2bp8zMTCUlJSkzM1MLFiwIqF1SAIOWDRo0UFpamhwOh84880ylpaV5FqfTqf79+2vo0KEBNyCSsrOzVVBQoPz8/Eg3BQAAwBIxGAAAAEJl//79at++vaZPn+5X+S1btug3v/mNevToofXr1+tPf/qTbr/9ds2bN89TJi8vT8OGDdPw4cO1ceNGDR8+XEOHDtUnn3wSUNv8fnr4yy+/LGOMbrjhBk2bNk1Op9Pzt8TERJ122mnq2rVrQDuPFjzNCgAAe6vJfT0xGAAAqKno662Vn5d7iu9SUmpSUOs+VHJIjzn/elzn3OFwaMGCBbr00ksrLXPvvfdq8eLF+vLLLz3rxowZo40bNyovL0+SNGzYMJWUlOidd97xlBk0aJAaNGig2bNn+90ev+eMjhgxQpLUokULde/eXfHxAT94HAAAAAEiBgMAAECgSkpKvF4nJSUpKenEB0jz8vI0YMAAr3UDBw7UCy+8oCNHjighIUF5eXm68847fcpMmzYtoH0FnNNy4sSJevnll1VcXBzoplGHfEoAAKCmIAYDAACwF7fiQrJIUrNmzeR0Oj3L5MmTg9LmoqIipaene61LT09XaWmpdu7cWWWZoqKigPYV8KDl2WefrQceeEAZGRm64oortHDhQh0+fDjQaqIC+ZQAAEBNQQwGAAAAf23btk3FxcWeZfz48UGru+LDIcszTx673qqM1UMlqxLwoOVTTz2l7du3a9GiRapXr55GjBihjIwM3XzzzVq1alWg1QEAAMAPxGAAAAD24latEMy0PDrUl5qa6rUE49ZwScrIyPCZMbljxw7Fx8erYcOGVZapOPuyOgEPWkpSrVq1NGDAAOXm5uqnn37Sc889p08//VQXXnjh8VQHAAAAPxCDAQAA2Eep4kKyhFLXrl21bNkyr3XvvvuuzjvvPCUkJFRZplu3bgHt64QyuRcVFWnOnDl67bXX9Pnnn9e4vEQul0sul0tutzvSTQEAAPAbMRgAAACCYd++fdq8ebPn9ZYtW7RhwwalpaXp1FNP1fjx47V9+3a98sorko4+KXz69OkaN26cbrrpJuXl5emFF17weir4HXfcoZ49e2rKlCm65JJLtGjRIi1fvlwffvhhQG1zmPIbz/1UUlKiefPmadasWVq5cqVatmypa665Rtdee63OOOOMgHYeLcofNX88j4MHAADRzw59PTEYAACoaejrrZWfl98XT1BSanJQ6z5UclDPOHP8PucrV65Unz59fNaPGDFCubm5GjlypL7//nutXLnS87dVq1bpzjvv1KZNm9SkSRPde++9GjNmjNf2b7zxhh544AF99913Ov300/XII4/o8ssvD+hYAh60TElJUYMGDTR06FBde+21Ne6XfSt8iAAAsDc79PXEYAAAoKahr7cWTYOW0Szg28MXLVqkfv36qVat40qHCQAAgONADAYAAGAvZf97eE6w67SLgKPeAQMG2CZYdrlcyszMtMVMBQAAYG/EYAAAAIglft0e3qFDBzkcDr8qXLdu3Qk3KtyYrgwAgL3V1L6eGAwAANRk9PXWys/LjcWPKDHIt4cfLjmovznvt8U59+v28EsvvdTz74MHD2rGjBnKzMxU165dJUkff/yxNm3apFtvvTUkjQQAAIhFxGAAAACIVX4NWk6YMMHz7xtvvFG33367/u///s+nzLZt24LbOgAAgBhGDAYAAGBfpYpTrSDnoCyN5ZyWr7/+uq6//nqf9dddd53mzZsXlEaFC/mUAABATUEMBgAAYC9uxcmt+CAvMTxomZKSog8//NBn/Ycffqjk5ODehx9q2dnZKigoUH5+fqSbAgAAUCViMAAAAMQSv24PP9bYsWP1+9//XmvXrlWXLl0kHc2n9OKLL+qhhx4KegMBAABADAYAAGA3R2daBndmpJ1mWgY8aHnfffepZcuWevLJJzVr1ixJ0llnnaXc3FwNHTo06A0EAAAAMRgAAABiS8CDlpI0dOhQgmMAAIAwIwYDAACwD2ZaVu24Bi0l6fDhw9qxY4fKysq81p966qkn3KhwcblccrlccrvdkW4KAACAX4jBAAAAEAscxhgTyAbffvutbrjhBq1Zs8ZrvTFGDoejRgafJSUlcjqdKi4uVmpqaqSbAwAAgswOfT0xGAAAqGno662Vn5ffFU9XQmpKUOs+UnJArztvs8U5D3im5ciRIxUfH6+33npLjRs3lsPhCEW7AAAAcAxiMAAAAMSSgActN2zYoLVr16pNmzahaA8AAAAsEIMBAADYS6ni5AhyDsrSWM5pmZmZqZ07d4aiLWFHPiUAAFBTEIMBAADYi1txqnX8j5uptE67qBXoBlOmTNE999yjlStXateuXSopKfFaapLs7GwVFBQoPz8/0k0BAACoEjEYAAAAYknAw7n9+vWTJPXt29drfU1OAg8AABDtiMEAAADs5ehMy+DOjLTTTMuABy1XrFgRinYAAACgCsRgAAAAiCUBD1r26tUrFO2ICPIpAQCAmoIYDAAAwF6YaVm1gHNaStIHH3yg6667Tt26ddP27dslSa+++qo+/PDDoDYu1MinBAAAahJiMAAAAMSKgAct582bp4EDByolJUXr1q3ToUOHJEl79+7VpEmTgt5AAAAAEIMBAADYTaniQrLYRcCDln/+85/17LPP6vnnn1dCQoJnfbdu3bRu3bqgNg4AAABHEYMBAAAglgSc0/Lrr79Wz549fdanpqZqz549wWhT2JBPCQAA1BTEYAAAAPZSpni5Ax+aq7ZOuwh4pmXjxo21efNmn/UffvihWrZsGZRGhQv5lAAAQE1BDAYAAGAvbsWFZLGLgActb7nlFt1xxx365JNP5HA49OOPP+rvf/+77r77bt16662haCMAAEDMIwYDAABALAl4zug999yj4uJi9enTRwcPHlTPnj2VlJSku+++W7fddlso2ggAABDziMEAAADsxa1acgR5ZqQ78PmJUcthjDHHs+Evv/yigoIClZWVKTMzU3Xr1g1220Lu2HxK33zzjYqLi5WamhrpZgEAgCArKSmR0+m0RV9PDAYAAGoKO8VgwVR+Xi4ofkPxqXWCWndpyX596LzSFuf8uAct7YQPEQAA9kZfH524LgAA2Bt9vbXy89KleEFIBi0/dl5mi3NunzmjAAAAAAAAAGzBPs9BBwAAAAAAAGoIt+LlCPLQnNtGQ33MtAQAAAAAAAAQVewz/Hocjk0CDwAAgPAgBgMAAJDKFCd3kJ8eXhbk+iKJB/GIxLAAANgdfX104roAAGBv9PXWys/LucVLFRfkB/G4S/Zrg3OgLc45t4cDAAAAAAAAiCoxfXs4AAAAAAAAEAlHbw0P7u3cwb7dPJJieqaly+VSZmamsrKyIt0UAACAmEEMBgAAgOqQ01LkWAAAwO7o66MT1wUAAHujr7dWfl7OKn5fcal1g1q3u2SfvnReaItzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGHmVryCPTTnttFQX0zPtCSfEgAAQPgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OutlZ+X04s/CklOy387u9vinNtnzigAAAAAAABQQ5QpTlJcCOq0h5i+PRwAAAAAAABA9InpmZYul0sul0tutzvSTQEAAIgZxGAAAABSqeJUi5mWlSKnpcixAACA3dHXRyeuCwAA9kZfb638vDQrzletIOe0LCvZp23OLFuc85ieaQkAAAAAAABEgltxMkEemrPTTEtyWgIAAAAAAACIKjE9aOlyuZSZmamsrKxINwUAACBmEIMBAAAcnWkZiiVQM2bMUIsWLZScnKxOnTrpgw8+qLTsyJEj5XA4fJa2bdt6yuTm5lqWOXjwYEDtiulBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAADRYe7cuRo7dqzuv/9+rV+/Xj169NDgwYO1detWy/JPPvmkCgsLPcu2bduUlpam3/3ud17lUlNTvcoVFhYqOTk5oLaR0xIAAAAAAAAIs6M5LSP79PCpU6dq9OjRuvHGGyVJ06ZN09KlS/XMM89o8uTJPuWdTqecTqfn9cKFC7V7926NGjXKq5zD4VBGRsZxHMGvYnqmJQAAAAAAABAJ7rK4kCzS0SeUH7scOnTIZ/+HDx/W2rVrNWDAAK/1AwYM0Jo1a/w6hhdeeEH9+vVT8+bNvdbv27dPzZs3V9OmTTVkyBCtX78+4PPDoCUAAAAAAABgI82aNfPMinQ6nZazJnfu3Cm326309HSv9enp6SoqKqp2H4WFhXrnnXc8szTLtWnTRrm5uVq8eLFmz56t5ORkde/eXd9++21Ax1CjBi0nT54sh8OhsWPHetYZYzRx4kQ1adJEKSkp6t27tzZt2uRXfSSBBwAAqB4xGAAAQPC5S+NUGuTFXXp0puW2bdtUXFzsWcaPH19pOxwOh9drY4zPOiu5ubmqX7++Lr30Uq/1Xbp00XXXXaf27durR48e+sc//qEzzzxTTz/9dEDnp8YMWubn52vmzJk655xzvNY/9thjmjp1qqZPn678/HxlZGSof//+2rt3b7V1kgQeAACgasRgAAAANU9qaqrXkpSU5FPmpJNOUlxcnM+syh07dvjMvqzIGKMXX3xRw4cPV2JiYpVla9WqpaysLHvOtNy3b5+uvfZaPf/882rQoIFnvTFG06ZN0/3336/LL79c7dq108svv6xffvlFs2bNimCLAQAAaj5iMAAAgNBxl8aHZPFXYmKiOnXqpGXLlnmtX7Zsmbp161bltqtWrdLmzZs1evToavdjjNGGDRvUuHFjv9sm1ZBBy+zsbF100UXq16+f1/otW7aoqKjIK2FoUlKSevXqVWXC0EOHDvkkJAUAAIA3YjAAAAB7GzdunP72t7/pxRdf1Jdffqk777xTW7du1ZgxYyRJ48eP1/XXX++z3QsvvKDOnTurXbt2Pn/LycnR0qVL9d1332nDhg0aPXq0NmzY4KnTX/4Pv0bInDlztG7dOsvbh8qnr1olDP3hhx8qrXPy5MnKyckJbkMBAABshBgMAAAgtNylteT4Xw7KYDGlgc1PHDZsmHbt2qWHH35YhYWFateunZYsWeJ5GnhhYaG2bt3qtU1xcbHmzZunJ5980rLOPXv26Oabb1ZRUZGcTqc6dOig1atX6/zzzw+obVE9aLlt2zbdcccdevfdd5WcnFxpuUATho4fP17jxo3zvC4pKVGzZs1OvMEAAAA2QAwGAAAQO2699Vbdeuutln/Lzc31Wed0OvXLL79UWt8TTzyhJ5544oTbFdWDlmvXrtWOHTvUqVMnzzq3263Vq1dr+vTp+vrrryUd/bX/2Pviq0sYmpSUZJmAFAAAAMRgAAAA4eAujQvBTMvg1hdJUT1o2bdvX33xxRde60aNGqU2bdro3nvvVcuWLZWRkaFly5apQ4cOkqTDhw9r1apVmjJlSiSaDAAAUOMRgwEAAIReaWmcHEcYtKxMVA9a1qtXzyehZ506ddSwYUPP+rFjx2rSpElq1aqVWrVqpUmTJql27dq65pprqq3f5XLJ5XLJ7XaHpP0AAAA1ETEYAAAAIi2qBy39cc899+jAgQO69dZbtXv3bnXu3Fnvvvuu6tWrV+222dnZys7OVklJiZxOZxhaCwAAYA/EYAAAACfGuONl3EEemgt2fRHkMMaYSDci0soD5uLiYqWmpka6OQAAIMjo66MT1wUAAHujr7fm+eH2qx1SvSCfl70lUptGtjjn9hl+BQAAAAAAAGqK0rijS7DrtIlakW5AJLlcLmVmZiorKyvSTQEAAIgZxGAAAACoDreHi+nKAADYHX19dOK6AABgb/T11jy3h2/YE5rbw8+tb4tzHtMzLQEAAAAAAABEH3JaAgAAAAAAAOHmdkiljuDXaRMxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt+bJaflJsVQ3yOdlX4nU2R7nnNvDAQAAAAAAgHAr/d8S7DptIqZvDwcAAAAAAAAQfZhpCQAAAAAAAIQbMy2rFNMzLUkCDwAAEH7EYAAAAKgOD+IRiWEBALA7+vroxHUBAMDe6OuteR7E816xVCfI52V/idTXHuc8pmdaAgAAAAAAAIg+5LQEAAAAAAAAws39vyXYddpETM+0JJ8SAABA+BGDAQAAoDrktBQ5FgAAsDv6+ujEdQEAwN7o6615clouCVFOy9/Y45xzezgAAAAAAAAQbqX/W4Jdp03E9O3hAAAAAAAAAKJPTA9akk8JAAAg/IjBAAAA9OtMy2AvNkFOS5FjAQAAu6Ovj05cFwAA7I2+3ponp+X8EOW0vNwe55yclgAAAAAAAEC4uRX8mZHuINcXQTF9ezgAAAAAAACA6BPTg5bkUwIAAAg/YjAAAACR07Ia5LQUORYAALA7+vroxHUBAMDe6OuteXJazi6Wagf5vPxSIl1tj3NOTksAAAAAAAAg3EIxM9JGMy0ZtAQAAAAAAADC7cj/lmDXaRPktCSfEgAAQFgRgwEAAKA65LQUORYAALA7+vroxHUBAMDe6OuteXJaPh+inJY32eOcx/RMSwAAAAAAAADRh5yWAAAAAAAAQLi5FfwH57iDXF8EMdMSAAAAAAAAQFSJ6UFLksADAACEHzEYAACAjs6yDMViEzyIRySGBQDA7ujroxPXBQAAe6Ovt+Z5EM/0YiklyOflQIl0mz3OOTktAQAAAAAAgHALxcxIG820ZNASAAAAAAAACDcGLatETkvyKQEAAIQVMRgAAACqQ05LkWMBAAC7o6+PTlwXAADsjb7emien5ZRiKTnI5+VgiXSvPc55TM+0BAAAAAAAABB9yGkJAAAAAAAAhBs5LasU0zMtyacEAAAQfsRgAAAAqA45LUWOBQAA7I6+PjpxXQAAsDf6emuenJYTQ5TTcqI9znlMz7QEAAAAAAAAYtmMGTPUokULJScnq1OnTvrggw8qLbty5Uo5HA6f5auvvvIqN2/ePGVmZiopKUmZmZlasGBBwO1i0BIAAAAAAAAIN3eIlgDMnTtXY8eO1f3336/169erR48eGjx4sLZu3Vrldl9//bUKCws9S6tWrTx/y8vL07BhwzR8+HBt3LhRw4cP19ChQ/XJJ58E1LaYHrQknxIAAED4EYMBAADo1wfxBHsJwNSpUzV69GjdeOONOuusszRt2jQ1a9ZMzzzzTJXbNWrUSBkZGZ4lLi7O87dp06apf//+Gj9+vNq0aaPx48erb9++mjZtWkBti+lBy+zsbBUUFCg/Pz/STQEAAIgZxGAAAAChVVJS4rUcOnTIp8zhw4e1du1aDRgwwGv9gAEDtGbNmirr79Chgxo3bqy+fftqxYoVXn/Ly8vzqXPgwIHV1llRTA9aAgAAAAAAABHhVvBnWf7v9vBmzZrJ6XR6lsmTJ/vsfufOnXK73UpPT/dan56erqKiIssmN27cWDNnztS8efM0f/58tW7dWn379tXq1as9ZYqKigKqszLxAZUGAAAAAAAAENW2bdvm9fTwpKSkSss6HA6v18YYn3XlWrdurdatW3ted+3aVdu2bdNf/vIX9ezZ87jqrExMz7QknxIAAED4EYMBAAAopDktU1NTvRarQcuTTjpJcXFxPjMgd+zY4TNTsipdunTRt99+63mdkZFxwnVKMT5oST4lAACA8CMGAwAAiLzExER16tRJy5Yt81q/bNkydevWze961q9fr8aNG3ted+3a1afOd999N6A6JW4PBwAAAAAAAMLviII/nfBIYMXHjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjJEkjR8/Xtu3b9crr7wi6eiTwU877TS1bdtWhw8f1muvvaZ58+Zp3rx5njrvuOMO9ezZU1OmTNEll1yiRYsWafny5frwww8DahuDlgAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+cOHD+vuu+/W9u3blZKSorZt2+rtt9/Wb37zG0+Zbt26ac6cOXrggQf04IMP6vTTT9fcuXPVuXPngNrmMMaY4BxmzVVSUiKn06ni4mKvJKUAAMAe6OujE9cFAAB7o6+3Vn5edGuxlBTk83KoRJphj3Me0zktSQIPAAAQfsRgAAAAktwK/kN43GE9gpBipqUY+QcAwO7o66MT1wUAAHujr7fmmWl5S7GUGOTzcrhEes4e55yclgAAAAAAAEC4lSr490CXBrm+CIrp28MBAAAAAAAARJ+Ynmnpcrnkcrnkdtvohn8AAIAoRwwGAAAg6YgkRwjqtAlyWoocCwAA2B19fXTiugAAYG/09dY8OS2vD1FOy1fscc5jeqYlAAAAAAAAEBFuBf9p3za6kYWclgAAAAAAAACiSkwPWrpcLmVmZiorKyvSTQEAAIgZxGAAAAA6+qTvUCw2QU5LkWMBAAC7o6+PTlwXAADsjb7emien5ZXFUkKQz8uREukNe5zzmJ5pCQAAAAAAACD68CAeAAAAAAAAINyO1JA6IySmZ1qSTwkAACD8iMEAAABQHXJaihwLAADYHX19dOK6AABgb/T11jw5LYeEKKflW/Y45zE90xIAAAAAAABA9CGnJQAAAAAAABBupZIcIajTJmJ6piX5lAAAAMKPGAwAAADVIaelyLEAAIDd0ddHJ64LAAD2Rl9vzZPTsl+Iclout8c55/ZwAAAAAAAAINxCcSs3t4cDAAAAAAAAQGgw0xIAAAAAAAAIN7eC/yAed5Dri6Conmk5efJkZWVlqV69emrUqJEuvfRSff31115ljDGaOHGimjRpopSUFPXu3VubNm3yq36SwAMAAPgiBgMAAECkRfWg5apVq5Sdna2PP/5Yy5YtU2lpqQYMGKD9+/d7yjz22GOaOnWqpk+frvz8fGVkZKh///7au3dvtfVnZ2eroKBA+fn5oTwMAACAGoUYDAAAIAxKQ7TYRI16evjPP/+sRo0aadWqVerZs6eMMWrSpInGjh2re++9V5J06NAhpaena8qUKbrlllv8qpenWQEAYG/09SeGGAwAABwP+nprnqeHdy2W4oN8XkpLpDx7nPOonmlZUXFxsSQpLS1NkrRlyxYVFRVpwIABnjJJSUnq1auX1qxZU2k9hw4dUklJidcCAAAAa8RgAAAAIcBMyyrVmEFLY4zGjRunCy64QO3atZMkFRUVSZLS09O9yqanp3v+ZmXy5MlyOp2epVmzZqFrOAAAQA1GDAYAAIBIqDGDlrfddps+//xzzZ492+dvDof3o5aMMT7rjjV+/HgVFxd7lm3btgW9vQAAAHZADAYAABAipZKOBHmx0UzL+Eg3wB9/+MMftHjxYq1evVpNmzb1rM/IyJB09Nf+xo0be9bv2LHD55f/YyUlJSkpKSl0DQYAALABYjAAAABESlTPtDTG6LbbbtP8+fP1/vvvq0WLFl5/b9GihTIyMrRs2TLPusOHD2vVqlXq1q1buJsLAABgC8RgAAAAYeAO0WITUT3TMjs7W7NmzdKiRYtUr149T44kp9OplJQUORwOjR07VpMmTVKrVq3UqlUrTZo0SbVr19Y111xTbf0ul0sul0tut42uKAAAwAkiBgMAAAiDUkkmyHXaKLxyGGOCfXqCprKcSC+99JJGjhwp6ehMgJycHD333HPavXu3OnfuLJfL5UkU74/yR83b4XHwAADAF319YIjBAABAMNDXWys/L8osluKCfF7cJVKBPc55VA9ahgsfIgAA7I2+PjpxXQAAsDf6emueQcszQzRo+Y09znlU57QEAAAAAAAAEHuiOqdlqJFPCQAAIPyIwQAAAHQ0p2VZkOsMdn0RxO3hYroyAAB2R18fnbguAADYG329Nc/t4S2LpVpBPi9lJdJ39jjnMT3TEgAAAAAAAIgIt4L/9HAbzbQkpyUAAAAAAACAqBLTg5Yul0uZmZnKysqKdFMAAABiBjEYAACAjua0DMViE+S0FDkWAACwO/r66MR1AQDA3ujrrXlyWqaHKKflT/Y45zE90xIAAAAAAABA9OFBPAAAAAAAAEC4HVHwpxPyIB4AAAAAAAAACI2YHrQkCTwAAED4EYMBAADo6KxId5AXG8205EE8IjEsAAB2R18fnbguAADYG329Nc+DeOoXS44gnxdTIu2xxzknpyUAAAAAAAAQbqWSHEGu00ZTE2P69nAAAAAAAAAA0SemBy3JpwQAABB+xGAAAAA6OtMyFItNxPSgZXZ2tgoKCpSfnx/ppgAAAMQMYjAAAABJR0K0BGjGjBlq0aKFkpOT1alTJ33wwQeVlp0/f7769++vk08+WampqeratauWLl3qVSY3N1cOh8NnOXjwYEDtiulBSwAAAAAAACBWzZ07V2PHjtX999+v9evXq0ePHho8eLC2bt1qWX716tXq37+/lixZorVr16pPnz66+OKLtX79eq9yqampKiws9FqSk5MDahsP4gEAAAAAAADCza2IP4hn6tSpGj16tG688UZJ0rRp07R06VI988wzmjx5sk/5adOmeb2eNGmSFi1apDfffFMdOnTwrHc4HMrIyAi4+ceK6ZmW5FMCAAAIP2IwAACA0CopKfFaDh065FPm8OHDWrt2rQYMGOC1fsCAAVqzZo1f+ykrK9PevXuVlpbmtX7fvn1q3ry5mjZtqiFDhvjMxPRHTA9akk8JAAAg/IjBAAAA/scEefmfZs2ayel0eharWZM7d+6U2+1Wenq61/r09HQVFRX51fy//vWv2r9/v4YOHepZ16ZNG+Xm5mrx4sWaPXu2kpOT1b17d3377bd+1VmO28MBAAAAAAAAG9m2bZtSU1M9r5OSkiot63B436NujPFZZ2X27NmaOHGiFi1apEaNGnnWd+nSRV26dPG87t69uzp27Kinn35aTz31lN/HwKAlAAAAAAAAYCOpqaleg5ZWTjrpJMXFxfnMqtyxY4fP7MuK5s6dq9GjR+v1119Xv379qixbq1YtZWVlBTzTMqZvDyefEgAAQPgRgwEAAEReYmKiOnXqpGXLlnmtX7Zsmbp161bpdrNnz9bIkSM1a9YsXXTRRdXuxxijDRs2qHHjxgG1z2GMCfC5QvZTUlIip9Op4uLiakehAQBAzUNfH524LgAA2Bt9vbXy8yIVSwr2eSmR5P85nzt3roYPH65nn31WXbt21cyZM/X8889r06ZNat68ucaPH6/t27frlVdekXR0wPL666/Xk08+qcsvv9xTT0pKyv+OScrJyVGXLl3UqlUrlZSU6KmnntKrr76qjz76SOeff77fR8Lt4QAAAAAAAEAMGjZsmHbt2qWHH35YhYWFateunZYsWaLmzZtLkgoLC7V161ZP+eeee06lpaXKzs5Wdna2Z/2IESOUm5srSdqzZ49uvvlmFRUVyel0qkOHDlq9enVAA5YSMy0lMfIPAIDd0ddHJ64LAAD2Rl9vLZpmWkazmJ5p6XK55HK55Ha7I90UAACAmEEMBgAAIElH/rcEu057YKalGPkHAMDu6OujE9cFAAB7o6+39utMy50KzUzLk2xxzmN6piUAAAAAAAAQGaX/W4Jdpz3UinQDAAAAAAAAAOBYzLQEAAAAAAAAwo6cllWJ6ZmWLpdLmZmZysrKinRTAAAAYgYxGAAAAKrDg3hEYlgAAOyOvj46cV0AALA3+nprvz6IZ4tC8yCeFrY459weDgAAAAAAAIRdqYJ/OzcP4gEAAAAAAACAkIjpmZYul0sul0tutzvSTQEAAIgZxGAAAAASD+KpGjktRY4FAADsjr4+OnFdAACwN/p6a7/mtCyQVC/Ite+VlGmLcx7TMy0BAAAAAACAyChV8HNQktMSAAAAAAAAAEIipmdakk8JAAAg/IjBAAAAJJ4eXjVyWoocCwAA2B19fXTiugAAYG/09dZ+zWm5TlLdINe+T1JHW5zzmJ5pCQAAAAAAAEQGOS2rwqAlAAAAAAAAEHZHFPzbw4NdX+TE9IN4XC6XMjMzlZWVFemmAAAAxAxiMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NarlJoclr2ssU5j+mZlgAAAAAAAACiDzktAQAAAAAAgLArVfBzUNrnQTwxPdOSfEoAAADhRwwGAACA6pDTUuRYAADA7ujroxPXBQAAe6Ovt/ZrTsulkuoEufb9kgba4pzH9ExLAAAAAAAAANGHnJYAAAAAAABA2B1R8HNaBru+yGHQEgAAAAAAAAi7UgX/wTk8iMcWSAIPAAAQfsRgAAAAqA4P4hGJYQEAsDv6+ujEdQEAwN7o6639+iCeNyTVDnLtv0i60hbnPKZnWgIAAAAAAACIPuS0BAAAAAAAAMKOnJZViemZluRTAgAACD9iMAAAAFSHnJYixwIAAHZHXx+duC4AANgbfb21X3NavqrQ5LQcbotzHtMzLQEAAAAAAABEH3JaAgAAAAAAAGF35H9LsOu0h5ieaUk+JQAAgPAjBgMAAJB+fRBPsBd7IKelyLEAAIDd0ddHJ64LAAD2Rl9v7decljMVmpyWN9vinHN7OAAAAAAAABB2pQr+7dz2mWkZ07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWn5lKSUINd+QNLttjjn5LQEAAAAAAAAwu6Igj80F+wcmZET07eHAwAAAAAAAIg+MT1oST4lAACA8CMGAwAAkMhpWTVyWoocCwAA2B19fXTiugAAYG/09dZ+zWk5RaHJaXmvLc45OS0BAAAAAACAsCtV8HNQ2memJYOWAAAAAAAAQNiF4nZu+wxaxnROSwAAAAAAAADRxzYzLWfMmKHHH39chYWFatu2raZNm6YePXpUuY3L5ZLL5ZLb7Q55+xyOHK/XxkwIqLzVNlZlqmK1z0DriG3+fFwSglBvxV9FqstvcTwf44rtrFdNGySpulwYFdtZ8XWaxTYV91txHxXqcFic39MqvK5fzes9Fs2oqOI2X1V4XVThtU9m4BKLSn+q8HpvhdcHqnkt+d42UPE6VdxvdeWtVHdrQrjqONF9HA/7/CJZ0Yn2H/7UGQyB9pWIDsGIwZzOyZKSq91XZe8J/9/TVn1mIJ/9YIfOle3bqu+36hes+larPqgyVnHLiZ6jE8nLVdl3u7/xlVXbrdoTyHm3qrNiHy5Zt72y2OlErlvDStZbtd3f4/mvxbrTKtmP1fvQanur82F13k+pZD/+vo+szptVGyXr69bcYt12i3VW70Gr466M1fmwaru/n/3K+PtZrez9ZrUvfz9DgXx3+Pt58fccVbYff4/Hqj2VvQet6rTav7/v4cqu74l+F3s70ZjKn/GJyssePKF9298RSXEhqNMebDHTcu7cuRo7dqzuv/9+rV+/Xj169NDgwYO1devWKrfLzs5WQUGB8vPzw9RSAAAA+yAGAwAAQKjYYtBy6tSpGj16tG688UadddZZmjZtmpo1a6Znnnkm0k0DAACwLWIwAACAE1EaosUeavzt4YcPH9batWt13333ea0fMGCA1qxZY7nNoUOHdOjQIc/r4uJiSUcfOR863lOiq9+X7xRq320Cm2ZtvU+mavvPn4/L8aQaqO728EC390fFfVScju7vLR/HKqvmdWJ1jbJQYVq7sbg1p+JuKl6CiofizyWquE3FffjcDl6R1WdtXzWvK34W/bn1pOLrXwIsbyUYt3ZXV4bbw8PtRPsP/+oMhkD7Sv+V12VMtR9g+CmYMZh0yLJ8RZW/J/x9T9eU28MdFuusjtGqrwjk823VKQb3lsTAVLYff/fv7/WprD6r7werOv1J4VJVe6xSIVTswytTWRqFisGK5P/13W+xzupWasn6/WW1vb+3h1eMh6oqa8Vq+8o+A1bttNreqpzV7eH+XjPJ+nxYvY+s3oOBfKb9PW+V1Wm13ur7KBS3h1ud4xNpTyDbW7XHqlxldVrtv7Lt/alPCvZ38YnHVP6MT1RW9mgfTwxWGf9ioMjXGRk1ftBy586dcrvdSk9P91qfnp6uoqKKieeOmjx5snJyfHMyNGvWLCRttOJ0PhqWbYK5PRCVfoh0A4DoF4rv/3D0KaHYx65du+R0OoNebywKZgwmPeHXPollAAAIXDTEgsRg3hITE5WRkaGiIv9ioEBlZGQoMfF4Jg5Flxo/aFnO4fD+JcMY47Ou3Pjx4zVu3DjP6z179qh58+baunVrzH2ISkpK1KxZM23btk2pqdU9aMV+Yvn4Y/nYpdg+fo49No9diu3jLy4u1qmnnqq0NKsHYOBEEIMdn1j+PMbysUuxffyxfOxSbB8/xx6bxy4Rg1UmOTlZW7Zs0eHDh0NSf2JiopKTq3/IYbSr8YOWJ510kuLi4nx+0d+xY4fPL//lkpKSlJSU5LPe6XTG5JeIJKWmpsbssUuxffyxfOxSbB8/xx6bxy7F9vHXqmWLdN5RgRgsOGL58xjLxy7F9vHH8rFLsX38HHtsHrtEDGYlOTnZFgOLoVTj3zWJiYnq1KmTli1b5rV+2bJl6tatW4RaBQAAYG/EYAAAAAilGj/TUpLGjRun4cOH67zzzlPXrl01c+ZMbd26VWPGjIl00wAAAGyLGAwAAAChYotBy2HDhmnXrl16+OGHVVhYqHbt2mnJkiVq3ry5X9snJSVpwoQJlrcr2V0sH7sU28cfy8cuxfbxc+yxeexSbB9/LB97KBGDHT+OPTaPXYrt44/lY5di+/g59tg8donjx4lxGJ47DwAAAAAAACCK1PiclgAAAAAAAADshUFLAAAAAAAAAFGFQUsAAAAAAAAAUYVBSwAAAAAAAABRJSYGLR955BF169ZNtWvXVv369f3axhijiRMnqkmTJkpJSVHv3r21adMmrzKHDh3SH/7wB5100kmqU6eOfvvb3+o///lPCI7g+O3evVvDhw+X0+mU0+nU8OHDtWfPniq3cTgclsvjjz/uKdO7d2+fv1911VUhPprAHc/xjxw50ufYunTp4lXGjtf+yJEjuvfee3X22WerTp06atKkia6//nr9+OOPXuWi9drPmDFDLVq0UHJysjp16qQPPvigyvKrVq1Sp06dlJycrJYtW+rZZ5/1KTNv3jxlZmYqKSlJmZmZWrBgQaiaf0ICOfb58+erf//+Ovnkk5WamqquXbtq6dKlXmVyc3MtvwMOHjwY6kM5LoEc/8qVKy2P7auvvvIqZ8drb/Xd5nA41LZtW0+ZmnLtV69erYsvvlhNmjSRw+HQwoULq93GTp/5moQYjBiMGIwYrCI7fR/HcgwWy/GXRAxGDIawMTHgoYceMlOnTjXjxo0zTqfTr20effRRU69ePTNv3jzzxRdfmGHDhpnGjRubkpIST5kxY8aYU045xSxbtsysW7fO9OnTx7Rv396UlpaG6EgCN2jQINOuXTuzZs0as2bNGtOuXTszZMiQKrcpLCz0Wl588UXjcDjMv//9b0+ZXr16mZtuusmr3J49e0J9OAE7nuMfMWKEGTRokNex7dq1y6uMHa/9nj17TL9+/czcuXPNV199ZfLy8kznzp1Np06dvMpF47WfM2eOSUhIMM8//7wpKCgwd9xxh6lTp4754YcfLMt/9913pnbt2uaOO+4wBQUF5vnnnzcJCQnmjTfe8JRZs2aNiYuLM5MmTTJffvmlmTRpkomPjzcff/xxuA7LL4Ee+x133GGmTJliPv30U/PNN9+Y8ePHm4SEBLNu3TpPmZdeesmkpqb6fBdEo0CPf8WKFUaS+frrr72O7djPrl2v/Z49e7yOedu2bSYtLc1MmDDBU6amXPslS5aY+++/38ybN89IMgsWLKiyvJ0+8zUNMRgxGDEYMdix7PR9HMsxWCzHX8YQgxGDIZxiYtCy3EsvveRXwFxWVmYyMjLMo48+6ll38OBB43Q6zbPPPmuMOfrFk5CQYObMmeMps337dlOrVi3zz3/+M+htPx4FBQVGkteHPS8vz0gyX331ld/1XHLJJebCCy/0WterVy9zxx13BKupIXG8xz9ixAhzySWXVPr3WLr2n376qZHk1QFH47U///zzzZgxY7zWtWnTxtx3332W5e+55x7Tpk0br3W33HKL6dKli+f10KFDzaBBg7zKDBw40Fx11VVBanVwBHrsVjIzM01OTo7ntb/fldEg0OMvD5p3795daZ2xcu0XLFhgHA6H+f777z3ratK1L+dPwGynz3xNRQxGDEYMRgxmjL2+j2M5Bovl+MsYYrByxGAIh5i4PTxQW7ZsUVFRkQYMGOBZl5SUpF69emnNmjWSpLVr1+rIkSNeZZo0aaJ27dp5ykRaXl6enE6nOnfu7FnXpUsXOZ1Ov9v4008/6e2339bo0aN9/vb3v/9dJ510ktq2bau7775be/fuDVrbg+FEjn/lypVq1KiRzjzzTN10003asWOH52+xcu0lqbi4WA6Hw+eWvmi69ocPH9batWu9rockDRgwoNJjzcvL8yk/cOBAffbZZzpy5EiVZaLlGkvHd+wVlZWVae/evUpLS/Nav2/fPjVv3lxNmzbVkCFDtH79+qC1O1hO5Pg7dOigxo0bq2/fvlqxYoXX32Ll2r/wwgvq16+fmjdv7rW+Jlz7QNnlMx8LiMF+RQxGDEYM5l0mWq6xFNsxWCzHXxIxWKDs8plH5MRHugHRqKioSJKUnp7utT49PV0//PCDp0xiYqIaNGjgU6Z8+0grKipSo0aNfNY3atTI7za+/PLLqlevni6//HKv9ddee61atGihjIwM/etf/9L48eO1ceNGLVu2LChtD4bjPf7Bgwfrd7/7nZo3b64tW7bowQcf1IUXXqi1a9cqKSkpZq79wYMHdd999+maa65RamqqZ320XfudO3fK7XZbfl4rO9aioiLL8qWlpdq5c6caN25caZloucbS8R17RX/961+1f/9+DR061LOuTZs2ys3N1dlnn62SkhI9+eST6t69uzZu3KhWrVoF9RhOxPEcf+PGjTVz5kx16tRJhw4d0quvvqq+fftq5cqV6tmzp6TK3x92uvaFhYV65513NGvWLK/1NeXaB8oun/lYQAz2K2IwYjBiMP/qjIRYjsFiOf6SiMECZZfPPCKnxg5aTpw4UTk5OVWWyc/P13nnnXfc+3A4HF6vjTE+6yryp8yJ8vfYJd9jkAJr44svvqhrr71WycnJXutvuukmz7/btWunVq1a6bzzztO6devUsWNHv+o+XqE+/mHDhnn+3a5dO5133nlq3ry53n77bZ//OARSbzCE69ofOXJEV111lcrKyjRjxgyvv0Xy2lcl0M+rVfmK64/nOyASjreds2fP1sSJE7Vo0SKv/2B16dLF68EH3bt3V8eOHfX000/rqaeeCl7DgySQ42/durVat27ted21a1dt27ZNf/nLXzxBc6B1RtLxtjM3N1f169fXpZde6rW+pl37QNjpMx9pxGDEYFUhBiMGIwaLjRgsluMviRgsEHb6zCP8auyg5W233Vbt0/JOO+2046o7IyND0tFfBRo3buxZv2PHDs8vABkZGTp8+LB2797t9Wvvjh071K1bt+Par7/8PfbPP/9cP/30k8/ffv75Z59fMqx88MEH+vrrrzV37txqy3bs2FEJCQn69ttvQx40hev4yzVu3FjNmzfXt99+K8n+1/7IkSMaOnSotmzZovfff9/rF34r4bz2Vk466STFxcX5/BJ37Oe1ooyMDMvy8fHxatiwYZVlAnnvhNrxHHu5uXPnavTo0Xr99dfVr1+/KsvWqlVLWVlZns9AtDiR4z9Wly5d9Nprr3le2/3aG2P04osvavjw4UpMTKyybLRe+0DZ5TMfLYjBiMGqQgxGDEYMZu8YLJbjL4kYLFB2+cwjgkKfNjN6BJoEfsqUKZ51hw4dskwCP3fuXE+ZH3/8MSoTgX/yySeedR9//LHficBHjBjh89TCynzxxRdGklm1atVxtzfYTvT4y+3cudMkJSWZl19+2Rhj72t/+PBhc+mll5q2bduaHTt2+LWvaLj2559/vvn973/vte6ss86qMgn8WWed5bVuzJgxPgmhBw8e7FVm0KBBUZcQOtBjN8aYWbNmmeTk5GoTZ5crKysz5513nhk1atSJNDUkjuf4K7riiitMnz59PK/tfO2N+TUZ/hdffFHtPqL52peTn0ng7fKZr6mIwYjBiMGIwYyx1/dxLMdgsRx/GUMMVo4YDOEQE4OWP/zwg1m/fr3JyckxdevWNevXrzfr1683e/fu9ZRp3bq1mT9/vuf1o48+apxOp5k/f7754osvzNVXX20aN25sSkpKPGXGjBljmjZtapYvX27WrVtnLrzwQtO+fXtTWloa1uOryqBBg8w555xj8vLyTF5enjn77LPNkCFDvMpUPHZjjCkuLja1a9c2zzzzjE+dmzdvNjk5OSY/P99s2bLFvP3226ZNmzamQ4cOUXXsxgR+/Hv37jV33XWXWbNmjdmyZYtZsWKF6dq1qznllFNsf+2PHDlifvvb35qmTZuaDRs2mMLCQs9y6NAhY0z0Xvs5c+aYhIQE88ILL5iCggIzduxYU6dOHc8T+e677z4zfPhwT/nvvvvO1K5d29x5552moKDAvPDCCyYhIcG88cYbnjIfffSRiYuLM48++qj58ssvzaOPPmri4+O9ngYaDQI99lmzZpn4+Hjjcrm8rvGePXs8ZSZOnGj++c9/mn//+99m/fr1ZtSoUSY+Pt7rP2DRItDjf+KJJ8yCBQvMN998Y/71r3+Z++67z0gy8+bN85Sx67Uvd91115nOnTtb1llTrv3evXs9fbkkM3XqVLN+/XrPU3bt/JmvaYjBiMGIwYjB7Pp9HMsxWCzHX8YQgxGDIZxiYtByxIgRRpLPsmLFCk8ZSeall17yvC4rKzMTJkwwGRkZJikpyfTs2dPnF5EDBw6Y2267zaSlpZmUlBQzZMgQs3Xr1jAdlX927dplrr32WlOvXj1Tr149c+2115rdu3d7lal47MYY89xzz5mUlBSvTrTc1q1bTc+ePU1aWppJTEw0p59+urn99tvNrl27QngkxyfQ4//ll1/MgAEDzMknn2wSEhLMqaeeakaMGOFzXe147bds2WL5OTn2sxLN197lcpnmzZubxMRE07FjR69ZByNGjDC9evXyKr9y5UrToUMHk5iYaE477TTL/xy+/vrrpnXr1iYhIcG0adPGK7CKJoEce69evSyv8YgRIzxlxo4da0499VSTmJhoTj75ZDNgwACzZs2aMB5RYAI5/ilTppjTTz/dJCcnmwYNGpgLLrjAvP322z512vHaG3N0llJKSoqZOXOmZX015dqXz1So7H1s9898TUIMRgxGDEYMZufv41iOwWI5/jKGGIwYDOHiMOZ/WVABAAAAAAAAIArUinQDAAAAAAAAAOBYDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAgAAAAAAAIgqDFoCAAAAAAAAiCoMWgKIGb1799bYsWMj3QwAAICYQgwGADgeDFoCAAAAAAAAiCoMWgIAAAAAAACIKgxaAogppaWluu2221S/fn01bNhQDzzwgIwxkW4WAACArRGDAQACxaAlgJjy8ssvKz4+Xp988omeeuopPfHEE/rb3/4W6WYBAADYGjEYACBQDsPPWwBiRO/evbVjxw5t2rRJDodDknTfffdp8eLFKigoiHDrAAAA7IkYDABwPJhpCSCmdOnSxRMsS1LXrl317bffyu12R7BVAAAA9kYMBgAIFIOWAAAAAAAAAKIKg5YAYsrHH3/s87pVq1aKi4uLUIsAAADsjxgMABAoBi0BxJRt27Zp3Lhx+vrrrzV79mw9/fTTuuOOOyLdLAAAAFsjBgMABCo+0g0AgHC6/vrrdeDAAZ1//vmKi4vTH/7wB918882RbhYAAICtEYMBAALF08MBAAAAAAAARBVuDwcAAAAAAAAQVRi0BAAA/9+OHQsAAAAADPK3nsaOwggAAGBFWgIAAAAAK9ISAAAAAFiRlgAAAADAirQEAAAAAFakJQAAAACwIi0BAAAAgBVpCQAAAACsSEsAAAAAYEVaAgAAAAArAQDhtIsc/T1FAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n", "\n", "a0=ax[0].hist2d(bs_found, vtx_types_found, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n", "ax[0].set_ylim(0,110)\n", "ax[0].set_xlim(-1,1)\n", "ax[0].set_xlabel(\"b\")\n", "ax[0].set_ylabel(\"endvtx id\")\n", "ax[0].set_title(\"found endvtx id wrt b parameter\")\n", "ax[0].set_yticks(np.arange(0,110,1),minor=True)\n", "\n", "a1=ax[1].hist2d(bs_lost, vtx_types_lost, bins=110, density=True, cmap=plt.cm.jet, cmin=1e-20,vmax=2)\n", "ax[1].set_ylim(0,110)\n", "ax[1].set_xlim(-1,1)\n", "ax[1].set_xlabel(\"b\")\n", "ax[1].set_ylabel(\"endvtx id\")\n", "ax[1].set_title(\"lost endvtx id wrt b paraneter\")\n", "ax[1].set_yticks(np.arange(0,110,1), minor=True)\n", "\n", "\"\"\"\n", "vtx_id: 101 - Bremsstrahlung\n", "B:\n", "wir können nicht wirklich sagen dass bei den lost teilchen jegliche endvertex types überwiegen, im gegensatz zu den found \n", "\"\"\"\n", "fig.colorbar(a0[3], ax=ax, orientation='vertical')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABPEAAANVCAYAAAAZd2vuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1n0lEQVR4nOzdeVyU5f7/8ffILiqubK5ouacZlkIumIm5ZabHpQ5qqWVmplQmpom22GIeslyyKCtLPeeorWZiCWrSoqJpLpVHxQwy3HBlkfv3Rz/m2zADDjgwA7yej8c8ai4+93Vd9z3D8PEz93XfJsMwDAEAAAAAAABwWVWcPQEAAAAAAAAARaOIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIB5RTq1atUps2beTj4yOTyaRdu3YpNjZWJpPJIm7RokVatmyZcybp4j788EPFxcU5exrXLDExUSaTSYmJic6eit2WLVsmk8mkI0eOWLTPmDFDjRo1kru7u2rWrClJioiIUERExFX7dIX3uslk0sSJE506BwBA+Ueed+2ckedFRESobdu2Du+3SZMmGj16tMP7LU0mk0mxsbEWbV999ZU6duwoX19fmUwmffTRR4XmhAVt27ZNsbGxOnPmTKnN+WpGjx6tatWqOW18QKKIB5RLf/75p6KiotSsWTOtX79eycnJat68ucaOHavk5GSLWJK7wlWUIl551K9fPyUnJysoKMjc9vHHH+u5557TyJEjlZSUpI0bN0r66z28aNGiq/bJex0AUBGQ5zkGeZ5zJScna+zYsebnhmFo6NCh8vDw0CeffKLk5GR1797dZk5oy7Zt2zR79mynFvEAV+Du7AkAKL6ff/5ZOTk5+uc//6nu3bub26tWraoGDRo4cWbWLl26JG9vb6tvjiuyS5cuycfHx9nTKLGLFy+qatWqpTpGvXr1VK9ePYu2vXv3SpImTZokf39/c3vr1q0dPn5OTo5MJpPc3fkzCABwLeR5rq2853lXrlxRbm6uvLy8SnWczp07Wzz//fffderUKQ0aNEg9e/a0+FnBnNARyvvrBBSGM/GAcmb06NHq0qWLJGnYsGEymUzmpYYFl1k0adJEP/30k5KSkmQymWQymdSkSRNJ/7cEc/ny5YqOjlZgYKB8fHzUvXt3paSkWIy5fft2DR8+XE2aNJGPj4+aNGmiESNG6OjRoxZx+afDb9iwQffff7/q1aunqlWrKisrS7/++qvuu+8+XX/99apatarq16+vAQMGaM+ePRZ95M/rww8/1JNPPqmgoCBVq1ZNAwYM0B9//KFz587pgQceUN26dVW3bl3dd999On/+vEUfhmFo0aJFuvHGG+Xj46NatWppyJAh+t///meOiYiI0Oeff66jR4+aj83fj112draeffZZtWzZUl5eXqpXr57uu+8+/fnnnxZjNWnSRP3799eaNWvUoUMHeXt7a/bs2YW+fgkJCRo4cKAaNGggb29vXXfddXrwwQeVkZFR6DZ/d+DAAd1xxx2qWrWq6tatq/Hjx+vcuXM2Yzdu3KiePXuqRo0aqlq1qm699VZ99dVXFjH575mdO3dqyJAhqlWrlpo1a1bo+BcvXtTjjz+ukJAQeXt7q3bt2urYsaNWrFhhEffdd99pwIABqlOnjry9vdWsWTNNnjzZ/POCSyeaNGmiGTNmSJICAgIslmDYs5zWnvf6+++/r8cee0z169eXl5eXfv31V/3555+aMGGCWrdurWrVqsnf31+33XabtmzZYjVGVlaW5syZo1atWsnb21t16tRRjx49tG3btkLnZRiGpk+fLg8PD7355ptF7gMAAOR55TvPy7dlyxZ17txZPj4+ql+/vmbOnKkrV65cdbucnBxNnTpVgYGBqlq1qrp06aLvv//eZmx6eroefPBBNWjQQJ6engoJCdHs2bOVm5trjjly5IhMJpNeeuklPfvsswoJCZGXl5c2bdpU6Bz+85//qFOnTvLz81PVqlXVtGlT3X///RYxZ86c0WOPPaamTZvKy8tL/v7+6tu3rw4cOGCO+XsuFxsbay5AP/nkkxbvVXuW08bGxuqJJ56QJIWEhJhfz/xLyRT1Oi1cuFDdunWTv7+/fH19dcMNN+ill15STk6O1Tjr169Xz549zfveqlUrzZ07t9B5SdI333yjunXrqn///rpw4UKRsYAjcAoCUM7MnDlTt9xyix5++GE9//zz6tGjh2rUqGEzdu3atRoyZIj8/PzMyxELfus2ffp03XTTTXrrrbd09uxZxcbGKiIiQikpKWratKmkvxKAFi1aaPjw4apdu7bS0tK0ePFi3Xzzzdq3b5/q1q1r0ef999+vfv366f3339eFCxfk4eGh33//XXXq1NELL7ygevXq6dSpU3r33XfVqVMnpaSkqEWLFlbz6tGjh5YtW6YjR47o8ccf14gRI+Tu7q727dtrxYoVSklJ0fTp01W9enUtWLDAvO2DDz6oZcuWadKkSXrxxRd16tQpzZkzR+Hh4dq9e7cCAgK0aNEiPfDAAzp06JDWrl1rMXZeXp4GDhyoLVu2aOrUqQoPD9fRo0c1a9YsRUREaPv27Rbf7O3cuVP79+/XjBkzFBISIl9f30Jfv0OHDiksLExjx46Vn5+fjhw5ovnz56tLly7as2ePPDw8Ct32jz/+UPfu3eXh4aFFixYpICBAH3zwgc1rsC1fvlwjR47UwIED9e6778rDw0NvvPGGevfurS+//NLqG9C7775bw4cP1/jx44tMQKKjo/X+++/r2WefVYcOHXThwgXt3btXJ0+eNMd8+eWXGjBggFq1aqX58+erUaNGOnLkiDZs2FBov2vXrtXChQsVHx+v9evXy8/Pr1hnG9jzXo+JiVFYWJiWLFmiKlWqyN/f35ysz5o1S4GBgTp//rzWrl2riIgIffXVV+Z/OOXm5qpPnz7asmWLJk+erNtuu025ubn69ttvlZqaqvDwcKs5ZWVlafTo0fr888/16aef6o477rB7fwAAlRN5XvnO86S/imvDhw/XtGnTNGfOHH3++ed69tlndfr0ab3++utFbjtu3Di99957evzxx9WrVy/t3btXd999t9UXtunp6brllltUpUoVPf3002rWrJmSk5P17LPP6siRI3rnnXcs4hcsWKDmzZtr3rx5qlGjhq6//nqb4ycnJ2vYsGEaNmyYYmNj5e3traNHj+rrr782x5w7d05dunTRkSNH9OSTT6pTp046f/68Nm/erLS0NLVs2dKq37Fjx6p9+/a6++679cgjj+iee+4p1pmAY8eO1alTp/Taa69pzZo15qW3f1+tUdjrdOjQId1zzz0KCQmRp6endu/ereeee04HDhzQ22+/bd4+Pj5e48aNU/fu3bVkyRL5+/vr559/Nq8UseXf//63Ro4cqfvvv1+vvfaa3Nzc7N4noMQMAOXOpk2bDEnGf/7zH4v2WbNmGQV/rdu0aWN079690D5uuukmIy8vz9x+5MgRw8PDwxg7dmyh4+fm5hrnz583fH19jVdffdXc/s477xiSjJEjR151H3Jzc43s7Gzj+uuvN6ZMmWI1rwEDBljET5482ZBkTJo0yaL9rrvuMmrXrm1+npycbEgyXnnlFYu4Y8eOGT4+PsbUqVPNbf369TMaN25sNbcVK1YYkozVq1dbtP/www+GJGPRokXmtsaNGxtubm7GwYMHr7rPBeXl5Rk5OTnG0aNHDUnGxx9/XGT8k08+aZhMJmPXrl0W7b169TIkGZs2bTIMwzAuXLhg1K5d2+oYXrlyxWjfvr1xyy23mNvy3zNPP/20XXNu27atcddddxUZ06xZM6NZs2bGpUuXCo3Jf68cPnzYai5//vmnRWz37t1tvocLutp7vVu3blftIzc318jJyTF69uxpDBo0yNz+3nvvGZKMN998s8jtJRkPP/ywcfLkSaNLly5G/fr1rV4vAACKQp73f8pbnte9e3ebOd24ceOMKlWqGEePHi102/379xuSLI6XYRjGBx98YEgyRo0aZW578MEHjWrVqln1N2/ePEOS8dNPPxmGYRiHDx82JBnNmjUzsrOzrzr//O3PnDlTaMycOXMMSUZCQkKRfUkyZs2aZX6eP5eXX37ZIs5WTmjLyy+/XGicva/TlStXjJycHOO9994z3NzcjFOnThmGYRjnzp0zatSoYXTp0sXi96WgUaNGGb6+voZhGMYLL7xguLm5GS+++GKRYwKOxnJaoJK75557LJYXNG7cWOHh4Ran2Z8/f15PPvmkrrvuOrm7u8vd3V3VqlXThQsXtH//fqs+Bw8ebNWWm5ur559/Xq1bt5anp6fc3d3l6empX375xWYf/fv3t3jeqlUrSX/dEKFg+6lTp8xLLT777DOZTCb985//VG5urvkRGBio9u3b23UH188++0w1a9bUgAEDLPq48cYbFRgYaNVHu3bt1Lx586v2K0knTpzQ+PHj1bBhQ7m7u8vDw0ONGzeWJJvH4e82bdqkNm3aqH379hbt99xzj8Xzbdu26dSpUxo1apTF/PPy8nTHHXfohx9+sDrbztZrZsstt9yiL774QtOmTVNiYqIuXbpk8fOff/5Zhw4d0pgxY+Tt7W1Xn2WlsH1csmSJbrrpJnl7e5tfk6+++sri9fjiiy/k7e1ttZzElsOHDyssLEyZmZn69ttvrV4vAADKCnmetdLM8ySpevXquvPOOy3a7rnnHuXl5Wnz5s2Fbpf/mtx7770W7UOHDrW6hu9nn32mHj16KDg42GIf+vTpI0lKSkqyiL/zzjuLXO2R7+abbzaP+e9//1vHjx+3ivniiy/UvHlz3X777VftrywV9jqlpKTozjvvVJ06deTm5iYPDw+NHDlSV65c0c8//yzpr9w5MzNTEyZMuOr1HQ3D0IMPPqhZs2bpww8/1NSpU0tlf4DCsJwWqOQCAwNttu3evdv8/J577tFXX32lmTNn6uabb1aNGjVkMpnUt29fqyKOJJt3l4qOjtbChQv15JNPqnv37qpVq5aqVKmisWPH2uyjdu3aFs89PT2LbL98+bKqVaumP/74Q4ZhKCAgwOb+5i8dKcoff/yhM2fOmPsuqOD16652N618eXl5ioyM1O+//66ZM2fqhhtukK+vr/Ly8tS5c2ebx+HvTp48qZCQEKv2gq/hH3/8IUkaMmRIoX2dOnXKYjmIvfuwYMECNWjQQKtWrdKLL74ob29v9e7dWy+//LKuv/568/JUV7vwtmR7H+fPn6/HHntM48eP1zPPPKO6devKzc1NM2fOtPhHx59//qng4GBVqXL1776+//57ZWRk6LnnnnPJ4wAAqDzI86yVVp6Xz9bc8l+Hv19+pKD8nxV8zdzd3VWnTh2Ltj/++EOffvppoYW5ku5Dt27d9NFHH2nBggUaOXKksrKy1KZNGz311FMaMWKEpL9yokaNGtnVX1mytY+pqanq2rWrWrRooVdffVVNmjSRt7e3vv/+ez388MPm92Zx8tfs7GytWrVKbdq0MRdNgbJEEQ+o5NLT02225ScLZ8+e1WeffaZZs2Zp2rRp5pisrCydOnXKZp+2vsHKv0bb888/b9GekZGhmjVrXsMeWKpbt65MJpO2bNli81ob9lx/o27duqpTp47Wr19v8+fVq1e3eG7vHdn27t2r3bt3a9myZRo1apS5/ddff7Vr+zp16hT6ev1d/rVrXnvtNas7g+UrmGDauw++vr6aPXu2Zs+erT/++MN8Vt6AAQN04MAB893FfvvtN7v6K0uFvS8jIiK0ePFii/aC156pV6+etm7dqry8vKsW8oYNG6bAwEA99dRTysvLM9+wAwCAskaeZ7uP0sjz8uV/mfp3+a9DwWLc3+X/LD09XfXr1ze35+bmWhX/6tatq3bt2um5556z2VdwcLDF8+Lsw8CBAzVw4EBlZWXp22+/1dy5c3XPPfeoSZMmCgsLU7169cpNnvfRRx/pwoULWrNmjXnliyTt2rXLIq44+Wv+jUF69+6t22+/XevXr1etWrWubfJAMbCcFqjgvLy8ijzDa8WKFTIMw/z86NGj2rZtm/mC/iaTSYZhWCVFb731ll132cpnMpms+vj8889tnqZ/Lfr37y/DMHT8+HF17NjR6nHDDTeYYws7Nv3799fJkyd15coVm30UvDizvfKTi4LH4Y033rBr+x49euinn36y+PZckj788EOL57feeqtq1qypffv22Zx/x44dC/32uTgCAgI0evRojRgxQgcPHtTFixfVvHlzNWvWTG+//baysrKueYziuNp73RZb78sff/xRycnJFm19+vTR5cuXtWzZMrv6nTFjhuLi4vT0008rJiamWHMCAMBe5Hmuk+flO3funD755BOLtg8//FBVqlRRt27dCt0u/zX54IMPLNr//e9/W9xxNn8f9u7dq2bNmtnch4JFvJLw8vJS9+7d9eKLL0qS+a7Gffr00c8//2xxs4uykP/+Kk6uZyv3NgxDb775pkVceHi4/Pz8tGTJEovfl8J06NBBSUlJ+u233xQREaETJ07YPSfgWnEmHlDB3XDDDVq5cqVWrVqlpk2bytvb2yLBOXHihAYNGqRx48bp7NmzmjVrlry9vc2Fhxo1aqhbt256+eWXVbduXTVp0kRJSUmKj48v1jer/fv317Jly9SyZUu1a9dOO3bs0Msvv+zw5Ya33nqrHnjgAd13333avn27unXrJl9fX6WlpWnr1q264YYb9NBDD5mPzZo1a7R48WKFhoaqSpUq6tixo4YPH64PPvhAffv21aOPPqpbbrlFHh4e+u2337Rp0yYNHDhQgwYNKvbcWrZsqWbNmmnatGkyDEO1a9fWp59+qoSEBLu2nzx5st5++23169dPzz77rPnutAcOHLCIq1atml577TWNGjVKp06d0pAhQ8x3Yt29e7f+/PNPqzPP7NWpUyf1799f7dq1U61atbR//369//77CgsLU9WqVSVJCxcu1IABA9S5c2dNmTJFjRo1Umpqqr788kurxNSRrvZet6V///565plnNGvWLHXv3l0HDx7UnDlzFBISYpEwjxgxQu+8847Gjx+vgwcPqkePHsrLy9N3332nVq1aafjw4VZ9P/roo6pWrZoeeOABnT9/XgsWLCj2t/kAABSFPM918rx8derU0UMPPaTU1FQ1b95c69at05tvvqmHHnqoyGWorVq10j//+U/FxcXJw8NDt99+u/bu3Wu+o+zfzZkzRwkJCQoPD9ekSZPUokULXb58WUeOHNG6deu0ZMmSEh37p59+Wr/99pt69uypBg0a6MyZM3r11Vfl4eGh7t27S/orH121apUGDhyoadOm6ZZbbtGlS5eUlJSk/v37q0ePHsUe1x757+tXX31Vo0aNkoeHh1q0aGF15uTf9erVS56enhoxYoSmTp2qy5cva/HixTp9+rRFXLVq1fTKK69o7Nixuv322zVu3DgFBATo119/1e7du23eVbhVq1basmWLbr/9dnXr1k0bN27kMiooG865nwaAa1Gcu5YdOXLEiIyMNKpXr25IMt+lK7+P999/35g0aZJRr149w8vLy+jatauxfft2iz5+++03Y/DgwUatWrWM6tWrG3fccYexd+9eo3HjxhZ3ysq/u9QPP/xgNefTp08bY8aMMfz9/Y2qVasaXbp0MbZs2WJ159HC9q2wvgu7o+nbb79tdOrUyfD19TV8fHyMZs2aGSNHjrTYt1OnThlDhgwxatasaZhMJotjl5OTY8ybN89o37694e3tbVSrVs1o2bKl8eCDDxq//PKLOa5x48ZGv379rPa3MPv27TN69eplVK9e3ahVq5bxj3/8w0hNTbW6g9fVtvf29jZq165tjBkzxvj4448t7k6bLykpyejXr59Ru3Ztw8PDw6hfv77Rr18/i2Nb2PErzLRp04yOHTsatWrVMry8vIymTZsaU6ZMMTIyMizikpOTjT59+hh+fn6Gl5eX0axZM4u7rZXG3Wmv9l4v+J4yDMPIysoyHn/8caN+/fqGt7e3cdNNNxkfffSRMWrUKKs72l26dMl4+umnjeuvv97w9PQ06tSpY9x2223Gtm3bzDH6/3en/bsVK1YY7u7uxn333WdcuXLlqvsBAKjcyPOs97m85Hndu3c32rRpYyQmJhodO3Y0vLy8jKCgIGP69OlGTk7OVbfPysoyHnvsMcPf39/w9vY2OnfubCQnJ1u9FoZhGH/++acxadIkIyQkxPDw8DBq165thIaGGk899ZRx/vx5wzAKvyNsYT777DOjT58+Rv369Q1PT0/D39/f6Nu3r7FlyxaLuNOnTxuPPvqo0ahRI8PDw8Pw9/c3+vXrZxw4cMAcUzC3vda70xqGYcTExBjBwcFGlSpVLHLfol6nTz/91Pw6169f33jiiSeML774wmbuvG7dOqN79+6Gr6+vUbVqVaN169YWd5/9+91p8/32229Gy5YtjSZNmhiHDh266j4A18pkGHacLwqgwklMTFSPHj30n//8p8gbIAAAAKB8Ic8DgIqJa+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAAAAuDjOxAMAAAAAAABcHEU8AAAAAAAAwMVRxAMAAAAAAABcnLuzJ2DLokWL9PLLLystLU1t2rRRXFycunbtWmh8UlKSoqOj9dNPPyk4OFhTp07V+PHjLWJWr16tmTNn6tChQ2rWrJmee+45DRo0qFjjmkwmm+O/9NJLeuKJJ+zat7y8PP3++++qXr16of0BAAD8nWEYOnfunIKDg1WlCt/BuiryPAAAUFzFyvMMF7Ny5UrDw8PDePPNN419+/YZjz76qOHr62scPXrUZvz//vc/o2rVqsajjz5q7Nu3z3jzzTcNDw8P47///a85Ztu2bYabm5vx/PPPG/v37zeef/55w93d3fj222+LNW5aWprF4+233zZMJpNx6NAhu/fv2LFjhiQePHjw4MGDB49iP44dO1aC7AplhTyPBw8ePHjw4FHShz15nsvdnbZTp0666aabtHjxYnNbq1atdNddd2nu3LlW8U8++aQ++eQT7d+/39w2fvx47d69W8nJyZKkYcOGKTMzU1988YU55o477lCtWrW0YsWKEo0rSXfddZfOnTunr776qtD9ycrKUlZWlvn52bNn1ahRIx07dkw1atS42uEAAABQZmamGjZsqDNnzsjPz8/Z00Ehzp49q5o1a5LnAQAAuxUnz3Op5bTZ2dnasWOHpk2bZtEeGRmpbdu22dwmOTlZkZGRFm29e/dWfHy8cnJy5OHhoeTkZE2ZMsUqJi4ursTj/vHHH/r888/17rvvFrlPc+fO1ezZs63aa9SoQXIHAACKhSWari3/9SHPAwAAxWVPnudSF1XJyMjQlStXFBAQYNEeEBCg9PR0m9ukp6fbjM/NzVVGRkaRMfl9lmTcd999V9WrV9fdd99d5D7FxMTo7Nmz5sexY8eKjAcAAAAAAAAKcqkz8fIVrD4ahlFkRdJWfMF2e/oszrhvv/227r33Xnl7exc6L0ny8vKSl5dXkTEAAAAAAABAUVyqiFe3bl25ublZnf124sQJq7Pk8gUGBtqMd3d3V506dYqMye+zuONu2bJFBw8e1KpVq4q3gwAAAAAAAEAJuFQRz9PTU6GhoUpISNCgQYPM7QkJCRo4cKDNbcLCwvTpp59atG3YsEEdO3aUh4eHOSYhIcHiungbNmxQeHh4icaNj49XaGio2rdvX/KdBQCglBmGodzcXF25csXZU8FVuLm5yd3dnWveAQAAu5DnlR+OzPNcqognSdHR0YqKilLHjh0VFhampUuXKjU1VePHj5f01zXmjh8/rvfee0/SX3eiff311xUdHa1x48YpOTlZ8fHx5rvOStKjjz6qbt266cUXX9TAgQP18ccfa+PGjdq6davd4+bLzMzUf/7zH73yyitlcDQAACiZ7OxspaWl6eLFi86eCuxUtWpVBQUFydPT09lTAQAALow8r/xxVJ7nckW8YcOG6eTJk5ozZ47S0tLUtm1brVu3To0bN5YkpaWlKTU11RwfEhKidevWacqUKVq4cKGCg4O1YMECDR482BwTHh6ulStXasaMGZo5c6aaNWumVatWqVOnTnaPm2/lypUyDEMjRowo5SMBAEDJ5OXl6fDhw3Jzc1NwcLA8PT05w8uFGYah7Oxs/fnnnzp8+LCuv/56VaniUvceAwAALoI8r3xxdJ5nMvLvAoEykZmZKT8/P509e1Y1atRw9nQAABXQ5cuXdfjwYTVu3FhVq1Z19nRgp4sXL+ro0aMKCQmxunEW+UP5wOsEACht5Hnlk6PyPL7mBQCgguJsrvKF18txFi9erHbt2qlGjRqqUaOGwsLC9MUXXxQan5iYKJPJZPU4cOBAGc4aAAD7kTeUL456vVxuOS0AAABwLRo0aKAXXnhB1113nSTp3Xff1cCBA5WSkqI2bdoUut3BgwctvgGvV69eqc8VAADAXhTxAAAAUKEMGDDA4vlzzz2nxYsX69tvvy2yiOfv76+aNWuW8uwAAABKhvMvAQAAUGFduXJFK1eu1IULFxQWFlZkbIcOHRQUFKSePXtq06ZNV+07KytLmZmZFg8AAIDSQhEPAABUWIZh6IEHHlDt2rVlMpm0a9cup84nIiJCkydPduocKos9e/aoWrVq8vLy0vjx47V27Vq1bt3aZmxQUJCWLl2q1atXa82aNWrRooV69uypzZs3FznG3Llz5efnZ340bNiwNHYFAIAK5cknn1SfPn2uuZ/KmOexnBYAgEokNrZij1fQ+vXrtWzZMiUmJqpp06aqW7eucyeEMtOiRQvt2rVLZ86c0erVqzVq1CglJSXZLOS1aNFCLVq0MD8PCwvTsWPHNG/ePHXr1q3QMWJiYhQdHW1+npmZSSEPAOA0ZZl3XctYu3btUocOHa55DpUxz6OIBwDXyNYfMGcXLgD85dChQwoKClJ4eLizp4Iy5unpab6xRceOHfXDDz/o1Vdf1RtvvGHX9p07d9by5cuLjPHy8pKXl9c1zxVA5VAwPyRfRGW1e/du3XfffdfcT2XM81hOCwAAXM6cOXN0ww03yNfXVwEBAXrooYeUk5NTrD5Gjx6tRx55RKmpqTKZTGrSpImysrI0adIk+fv7y9vbW126dNEPP/xgsV2TJk0UFxdn0XbjjTcq9m//2oqIiNCkSZM0depU1a5dW4GBgRY/l6QLFy5o5MiRqlatmoKCgvTKK68Ua/5wLMMwlJWVZXd8SkqKgoKCSnFGAABUPunp6frjjz+Ul5enbt26qWrVqurYsaN2795drH5s5XmSrprrlfc8jyIeAABwKYZh6MqVK3rjjTe0b98+LVu2TP/973/11ltvFaufV199VXPmzFGDBg2UlpamH374QVOnTtXq1av17rvvaufOnbruuuvUu3dvnTp1qtjzfPfdd+Xr66vvvvtOL730kubMmaOEhATzz5944glt2rRJa9eu1YYNG5SYmKgdO3YUexwU3/Tp07VlyxYdOXJEe/bs0VNPPaXExETde++9kv5aBjty5EhzfFxcnD766CP98ssv+umnnxQTE6PVq1dr4sSJztoFAAAqpJSUFEl//e19/vnntX37dlWvXl3Dhw8vVj+28jxJDsv1XDXPYzktAABwKSaTSbNnzzY/b9y4sXr16qUDBw4Uqx8/Pz9Vr15dbm5uCgwM1IULF7R48WItW7bMfDHlN998UwkJCYqPj9cTTzxRrP7btWunWbNmSZKuv/56vf766/rqq6/Uq1cvnT9/XvHx8XrvvffUq1cvSX8lgw0aNCjWGCiZP/74Q1FRUUpLS5Ofn5/atWun9evXm1+LtLQ0paammuOzs7P1+OOP6/jx4/Lx8VGbNm30+eefq2/fvs7aBQCVHEtvUVHt2rVL3t7e+uijjxQcHCxJeu6553TrrbcqPT1dgYGBdvVTMM+T5NBcz1XzPIp4AFABcF0+VCRHjx7Vyy+/rMTERB0/flw5OTm6fPmy5s6de039Hjp0SDk5Obr11lvNbR4eHrrlllu0f//+YvfXrl07i+dBQUE6ceKEeazs7GyFhYWZf167dm2Lmyeg9MTHxxf582XLllk8nzp1qqZOnVqKMwIAANJfRbyhQ4eaC3iS5OvrK0nKy8u7pr4dmeu5ap7HcloAAOAyMjIydMsttygjI0Pz58/X1q1blZycLDc3N914442SpE6dOmn79u2SpFGjRmnx4sV29W0YhqS/zvQr2P73tipVqphj89m6Hp+Hh4fFc5PJZE4+C24PAACAv4p4+Tldvp07dyowMFBBQUElzvMk+3K98p7nUcQDAAAuY926dcrNzdWKFSsUGRmpNm3aaPPmzcrOzjYnfDNnztTzzz+vV155RdWqVdNDDz1kV9/XXXedPD09tXXrVnNbTk6Otm/frlatWpnb6tWrp7S0NPPzzMxMHT58uFj7cd1118nDw0Pffvutue306dP6+eefi9UPAABARXHx4kX9+uuvunLlirktLy9Pr732mkaPHi2TyVTiPE+yL9cr73key2kBAIDLqF27tjIzM/XJJ5+odevW+vTTTzV37lzVr19f9erVkyT1799fM2bM0Pnz57Vu3Tq7+/b19dVDDz2kJ554QrVr11ajRo300ksv6eLFixozZow57rbbbtOyZcs0YMAA1apVSzNnzpSbm1ux9qNatWoaM2aMnnjiCdWpU0cBAQF66qmnVKUK358CAIDKaffu3XJzc9M777yjbt26qWbNmpo+fbouXLig6dOnSyp5nifZl+uV9zyPIh4AAHAZ/fr105gxYxQVFSUfHx/985//1NChQ3X06FFzzPfff68zZ86oefPmcncvXirzwgsvKC8vT1FRUTp37pw6duyoL7/8UrVq1TLHxMTE6H//+5/69+8vPz8/PfPMM8X+hlaSXn75ZZ0/f1533nmnqlevrscee0xnz54tdj8AAAAVwe7du9W8eXPNmjVLgwcP1qlTp3TnnXdq27Ztql69uqRry/Okq+d65T3PMxlctKVMZWZmys/PT2fPnlWNGjWcPR0ADuAKN5VwhTnAdVy+fFmHDx9WSEiIvL29nT0dhzp+/Lj69Omjjz/+WHfffbc+/PBDi6Ww5VlRrxv5Q/nA6wSgKMW54yx3p0VhyPPKJ0fleazpAAAA5cKlS5c0ZMgQvf766woJCdHUqVP17LPPOntaAAAAuEbkefZhOS0AACgXfHx8lJycbH4+YsQIjRgxwokzAgAAgCOQ59mHM/EAAAAAAAAAF8eZeAAAAAAAlLG/X+eOa94BsAdn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAAAAAAAqs9hYZ88AQHnAmXgAAAAAAACAi6OIBwAAAAAAALg4ingAAKDCioiI0OTJk509DQAAAPx/Tz75pPr06XPN/VTGPI9r4gEAUJlsiy3b8cLLeLxSFBERoRtvvFFxcXHOngoAAIC1sszzriHH27Vrlzp06OC4uThAecnzOBMPAAAAAAAAZWL37t268cYbnT2NcokiHgCgZLbFWj8AB5kzZ45uuOEG+fr6KiAgQA899JBycnKuqc+srCxNmjRJ/v7+8vb2VpcuXfTDDz9YxPz3v//VDTfcIB8fH9WpU0e33367Lly4oNGjRyspKUmvvvqqTCaTTCaTjhw5ck3zAQAAqGzS09P1xx9/KC8vT926dVPVqlXVsWNH7d69+5r7vlquVxHyPJbTAgAAl2IYhq5cuaI33nhD9evX1759+zRy5Ei1a9dODz30UIn7nTp1qlavXq13331XjRs31ksvvaTevXvr119/Ve3atZWWlqYRI0bopZde0qBBg3Tu3Dlt2bJFhmHo1Vdf1c8//6y2bdtqzpw5kqR69eo5apcBABVQbKyzZwC4npSUFElSXFyc5s+fr9q1a+vhhx/W8OHDtX///mvqu6hcLysrq0LkeRTxAACASzGZTJo9e7b5eePGjdWrVy8dOHCgxH1euHBBixcv1rJly8wXUn7zzTeVkJCg+Ph4PfHEE0pLS1Nubq7uvvtuNW7cWJJ0ww03mPvw9PRU1apVFRgYWOJ5AAAAVGa7du2St7e3PvroIwUHB0uSnnvuOd16661KT08vcZ51tVyvZ8+eFSLPYzktAABwKUePHtXEiRPVtm1b1apVS9WqVdO///1vNWjQoMR9Hjp0SDk5Obr11lvNbR4eHrrlllvM3/q2b99ePXv21A033KB//OMfevPNN3X69Olr3h8AAAD8ZdeuXRo6dKi5gCdJvr6+kqS8vLwS93u1XK+i5HkU8QAAgMvIyMjQLbfcooyMDM2fP19bt25VcnKy3NzczBdA7tSpk7Zv3y5JGjVqlBYvXnzVfg3DkPTXWX4F2/Pb3NzclJCQoC+++EKtW7fWa6+9phYtWujw4cMO3EMAAIDKa9euXVY3tdi5c6cCAwMVFBRUojxPunquV1HyPIp4AADAZaxbt065ublasWKFIiMj1aZNG23evFnZ2dnmhG/mzJl6/vnn9corr6hatWp2XSfvuuuuk6enp7Zu3Wpuy8nJ0fbt29WqVStzm8lk0q233qrZs2crJSVFnp6eWrt2raS/lllcuXLFsTsMAABQSVy8eFG//vqrRT6Vl5en1157TaNHj5bJZCpRnifZl+tVhDzPJYt4ixYtUkhIiLy9vRUaGqotW7YUGZ+UlKTQ0FB5e3uradOmWrJkiVXM6tWr1bp1a3l5eal169bmF6q44+7fv1933nmn/Pz8VL16dXXu3Fmpqakl31kAAGBWu3ZtZWZm6pNPPtEvv/yi+fPnKzY2VvXr1zdfYLh///763//+py+//FKvvvqqXf36+vrqoYce0hNPPKH169dr3759GjdunC5evKgxY8ZIkr777js9//zz2r59u1JTU7VmzRr9+eef5sSvSZMm+u6773TkyBFlZGRc05IPAACAymb37t1yc3PTO++8o++//14///yzhg4dqgsXLmj69OmSSpbnSVfP9SpKnudyRbxVq1Zp8uTJeuqpp5SSkqKuXbuqT58+hRbKDh8+rL59+6pr165KSUnR9OnTNWnSJK1evdock5ycrGHDhikqKkq7d+9WVFSUhg4dqu+++65Y4x46dEhdunRRy5YtlZiYqN27d2vmzJny9vYuvQMCAEAl0q9fP40ZM0ZRUVHq0qWLjh8/rqFDh1osu/j+++915swZ1axZU+7u9t+j64UXXtDgwYMVFRWlm266Sb/++qu+/PJL1apVS5JUo0YNbd68WX379lXz5s01Y8YMvfLKK+aLIz/++ONyc3NT69atVa9ePb7EAwAAKIbdu3erefPmio2N1eDBg9WhQwd5eHho27Ztql69uqSS53lS0bleRcnzTEb+wmEX0alTJ910000W655btWqlu+66S3PnzrWKf/LJJ/XJJ59Y3Ip4/Pjx2r17t5KTkyVJw4YNU2Zmpr744gtzzB133KFatWppxYoVdo87fPhweXh46P333y/x/mVmZsrPz09nz55VjRo1StwPANcRG2tfW4WbwzYbA4SX9qCwx+XLl3X48GHz2eUVyfHjx9WnTx99/PHHuvvuu/Xhhx9aLIctz4p63cgfygdeJwB/58hcrKxzS7gu8rzyyVF5nkudiZedna0dO3YoMjLSoj0yMlLbtm2zuU1ycrJVfO/evbV9+3bl5OQUGZPfpz3j5uXl6fPPP1fz5s3Vu3dv+fv7q1OnTvroo4+K3KesrCxlZmZaPAAAQPFdunRJQ4YM0euvv66QkBBNnTpVzz77rLOnBQAAgGtEnmcflyriZWRk6MqVKwoICLBoDwgIUHp6us1t0tPTbcbn5uYqIyOjyJj8Pu0Z98SJEzp//rxeeOEF3XHHHdqwYYMGDRqku+++W0lJSYXu09y5c+Xn52d+NGzY0I4jAQAACvLx8VFycrK6desmSRoxYoQ++OADJ88KAAAA14o8zz4uVcTLV9gtgYsTX7Ddnj6Lism/qOHAgQM1ZcoU3XjjjZo2bZr69+9v80Ya+WJiYnT27Fnz49ixY4XGAgAAAAAAALYU7yqBpaxu3bpyc3OzOuvuxIkTVmfJ5QsMDLQZ7+7urjp16hQZk9+nPePWrVtX7u7uat26tUVMq1atLG5hXJCXl5e8vLwK/TkAAAAAAABwNS51Jp6np6dCQ0OVkJBg0Z6QkKDw8HCb24SFhVnFb9iwQR07dpSHh0eRMfl92jOup6enbr75Zh08eNAi5ueff1bjxo2LuacAAAAAAACA/VzqTDxJio6OVlRUlDp27KiwsDAtXbpUqampGj9+vKS/lqceP35c7733nqS/7kT7+uuvKzo6WuPGjVNycrLi4+PNd52VpEcffVTdunXTiy++qIEDB+rjjz/Wxo0bLc6gu9q4kvTEE09o2LBh6tatm3r06KH169fr008/VWJiYtkcHAAAAAAAAFRKLlfEGzZsmE6ePKk5c+YoLS1Nbdu21bp168xnu6WlpSk1NdUcHxISonXr1mnKlClauHChgoODtWDBAg0ePNgcEx4erpUrV2rGjBmaOXOmmjVrplWrVqlTp052jytJgwYN0pIlSzR37lxNmjRJLVq00OrVq9WlS5cyODIAABRP/jViUT7wegEAAHuRN5Qvjnq9XK6IJ0kTJkzQhAkTbP5s2bJlVm3du3fXzp07i+xzyJAhGjJkSInHzXf//ffr/vvvLzIGAABnyr+cxMWLF+Xj4+Pk2cBeFy9elPR/rx9KbvHixVq8eLGOHDkiSWrTpo2efvpp9enTp9BtkpKSFB0drZ9++knBwcGaOnWqxYoMAABcAXle+eSoPM8li3gAAKDk3NzcVLNmTZ04cUKSVLVq1SLv8g7nMgxDFy9e1IkTJ1SzZk25ubk5e0rlXoMGDfTCCy/ouuuukyS9++67GjhwoFJSUtSmTRur+MOHD6tv374aN26cli9frm+++UYTJkxQvXr1LFZ3AADgbOR55Yuj8zyKeABQDLGxzp4BYJ/AwEBJMid4cH01a9Y0v264NgMGDLB4/txzz2nx4sX69ttvbRbxlixZokaNGikuLk6S1KpVK23fvl3z5s2jiAcAcDnkeeWPo/I8ingAAFRAJpNJQUFB8vf3V05OjrOng6vw8PDgDLxScuXKFf3nP//RhQsXFBYWZjMmOTlZkZGRFm29e/dWfHy8cnJyCl36kpWVpaysLPPzzMxMx00cAIBCkOeVL47M8yjiAQBQgbm5uVEcQqW0Z88ehYWF6fLly6pWrZrWrl2r1q1b24xNT09XQECARVtAQIByc3OVkZGhoKAgm9vNnTtXs2fPdvjcAQCwB3le5VPF2RMAAAAAHK1FixbatWuXvv32Wz300EMaNWqU9u3bV2h8wesJ5d9FrqjrDMXExOjs2bPmx7FjxxwzeQAAABs4Ew8AAAAVjqenp/nGFh07dtQPP/ygV199VW+88YZVbGBgoNLT0y3aTpw4IXd3d9WpU6fQMby8vOTl5eXYiQMAABSCM/EAAABQ4RmGYXH9ur8LCwtTQkKCRduGDRvUsWPHQq+HBwAAUNYo4gEAAKBCmT59urZs2aIjR45oz549euqpp5SYmKh7771X0l/LYEeOHGmOHz9+vI4eParo6Gjt379fb7/9tuLj4/X44487axcAAACssJwWAEpBbKxjYgAAxffHH38oKipKaWlp8vPzU7t27bR+/Xr16tVLkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCzR48GBn7QIAAIAVingAUJhtsTYabbUBAFxJfHx8kT9ftmyZVVv37t21c+fOUpoRAADAtaOIBwAVlK0z/Tj7DwAAAADKJ66JBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4ingAAAAAAACAi6OIBwAAAAAAALg4d2dPAABcVWKis2cAAAAAAMBfOBMPAAAAAAAAcHGciQcAAAAAwDWKjXX2DABUdJyJBwAAAAAAALg4ingAAAAAAACAi2M5LQC4EFvLMFiaAQAAAADgTDwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxbk7ewIAUFnFxjp7BgAAAACA8oIz8QAAAAAAAAAXRxEPAAAAAAAAcHEspwUAJ4nwjLVqS8y2bgMAAAAAgDPxAAAAAAAAABfHmXgAINs3mYjwLPNpAAAAAABgE0U8AHBxtgqM3NkWAACg8iiY+5ELApUTy2kBAAAAAAAAF+eSRbxFixYpJCRE3t7eCg0N1ZYtW4qMT0pKUmhoqLy9vdW0aVMtWbLEKmb16tVq3bq1vLy81Lp1a61du7bY444ePVomk8ni0blz52vbWQAAAAAAAOAqXK6It2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqak24w8fPqy+ffuqa9euSklJ0fTp0zVp0iStXr3aHJOcnKxhw4YpKipKu3fvVlRUlIYOHarvvvuu2OPecccdSktLMz/WrVtXOgcCAAAAAAAA+P9crog3f/58jRkzRmPHjlWrVq0UFxenhg0bavHixTbjlyxZokaNGikuLk6tWrXS2LFjdf/992vevHnmmLi4OPXq1UsxMTFq2bKlYmJi1LNnT8XFxRV7XC8vLwUGBpoftWvXLpXjAAAAAAAAAORzqSJedna2duzYocjISIv2yMhIbdu2zeY2ycnJVvG9e/fW9u3blZOTU2RMfp/FGTcxMVH+/v5q3ry5xo0bpxMnThS5T1lZWcrMzLR4AAAAAAAAAMXhUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQUGZPfp73j9unTRx988IG+/vprvfLKK/rhhx902223KSsrq9B9mjt3rvz8/MyPhg0bXuUoAAAAAAAAAJbcnT0BW0wmk8VzwzCs2q4WX7Ddnj6vFjNs2DDz/7dt21YdO3ZU48aN9fnnn+vuu++2ObeYmBhFR0ebn2dmZlLIAwAAAAAAQLG4VBGvbt26cnNzszrr7sSJE1ZnyeULDAy0Ge/u7q46deoUGZPfZ0nGlaSgoCA1btxYv/zyS6ExXl5e8vLyKvTnAAAAAAAAwNW41HJaT09PhYaGKiEhwaI9ISFB4eHhNrcJCwuzit+wYYM6duwoDw+PImPy+yzJuJJ08uRJHTt2TEFBQfbtIAAAAAAAAFACLlXEk6To6Gi99dZbevvtt7V//35NmTJFqampGj9+vKS/lqeOHDnSHD9+/HgdPXpU0dHR2r9/v95++23Fx8fr8ccfN8c8+uij2rBhg1588UUdOHBAL774ojZu3KjJkyfbPe758+f1+OOPKzk5WUeOHFFiYqIGDBigunXratCgQWVzcAAAAHBVc+fO1c0336zq1avL399fd911lw4ePFjkNomJiTKZTFaPAwcOlNGsAQAAiuZSy2mlv647d/LkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHdXNz0549e/Tee+/pzJkzCgoKUo8ePbRq1SpVr169jI4OAAAAriYpKUkPP/ywbr75ZuXm5uqpp55SZGSk9u3bJ19f3yK3PXjwoGrUqGF+Xq9evdKeLgAAgF1crognSRMmTNCECRNs/mzZsmVWbd27d9fOnTuL7HPIkCEaMmRIicf18fHRl19+WeT2AAAAcL7169dbPH/nnXfk7++vHTt2qFu3bkVu6+/vr5o1a5bi7AAAAErG5ZbTAgAAAI509uxZSVLt2rWvGtuhQwcFBQWpZ8+e2rRpU5GxWVlZyszMtHgAAACUFop4AAAAqLAMw1B0dLS6dOmitm3bFhoXFBSkpUuXavXq1VqzZo1atGihnj17avPmzYVuM3fuXPn5+ZkfDRs2LI1dAAAAkOSiy2kBAKUjNta+NgCoKCZOnKgff/xRW7duLTKuRYsWatGihfl5WFiYjh07pnnz5hW6BDcmJkbR0dHm55mZmRTyAABAqaGIB6BSqgyFqwjPWKu2xGzrNgCoqB555BF98skn2rx5sxo0aFDs7Tt37qzly5cX+nMvLy95eXldyxQBAADsRhEPACo5zs4DUNEYhqFHHnlEa9euVWJiokJCQkrUT0pKioKCghw8OwAAgJKhiAcAAIAK5eGHH9aHH36ojz/+WNWrV1d6erokyc/PTz4+PpL+Wgp7/Phxvffee5KkuLg4NWnSRG3atFF2draWL1+u1atXa/Xq1U7bDwAAgL+jiAcAAIAKZfHixZKkiIgIi/Z33nlHo0ePliSlpaUpNTXV/LPs7Gw9/vjjOn78uHx8fNSmTRt9/vnn6tu3b1lNGwAAoEgU8QAAAFChGIZx1Zhly5ZZPJ86daqmTp1aSjMCAAC4dlWcPQEAAAAAAAAARaOIBwAAAAAAALg4ltMCqHy2xSrC07IpMTvWKVNxRRGesdK2Ao3hsU6YCQAAAAAgH0U8ACiHYmOdPQMAAAAAQFliOS0AAAAAAADg4ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OG1sAAK5uW6yzZwAAAAAAlRpn4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OIo4gEAAAAAAAAujiIeAAAAAAAA4OLcnT0BAHAFEZ6xJYpLzLZvO0eyNVdnzAMAAAAAUHY4Ew8AAAAAAABwcZyJBwAAAABAORIbW/RzABUTZ+IBAAAAAAAALo4iHgAAAAAAAODiKOIBAAAAAAAALo4iHgAAAAAAAODiuLEFAAAAAADFxM0kAJQ1ingAgKtKTLRui4go61kAAAAAQOXFcloAAAAAAADAxVHEAwAAAAAAAFwcRTwAAAAAAADAxXFNPACoACI8Y509BQAAAABAKaKIB6DCK3jnsAhPp0wDAAAAAIASYzktAAAAAAAA4OJcsoi3aNEihYSEyNvbW6GhodqyZUuR8UlJSQoNDZW3t7eaNm2qJUuWWMWsXr1arVu3lpeXl1q3bq21a9de07gPPvigTCaT4uLiir1/AAAAAAAAQHG4XBFv1apVmjx5sp566imlpKSoa9eu6tOnj1JTU23GHz58WH379lXXrl2VkpKi6dOna9KkSVq9erU5Jjk5WcOGDVNUVJR2796tqKgoDR06VN99912Jxv3oo4/03XffKTg42PEHAAAAAAAAACjA5Yp48+fP15gxYzR27Fi1atVKcXFxatiwoRYvXmwzfsmSJWrUqJHi4uLUqlUrjR07Vvfff7/mzZtnjomLi1OvXr0UExOjli1bKiYmRj179rQ4i87ecY8fP66JEyfqgw8+kIeHR6kcAwAAAAAAAODvXKqIl52drR07digyMtKiPTIyUtu2bbO5TXJyslV87969tX37duXk5BQZk9+nvePm5eUpKipKTzzxhNq0aWPXPmVlZSkzM9PiAQAAAAAAABSHS92dNiMjQ1euXFFAQIBFe0BAgNLT021uk56ebjM+NzdXGRkZCgoKKjQmv097x33xxRfl7u6uSZMm2b1Pc+fO1ezZs+2OB1AM22Kt28JttAEAAAAAUM5dUxHvk08+sTv2zjvvtDvWZDJZPDcMw6rtavEF2+3ps6iYHTt26NVXX9XOnTuLnEtBMTExio6ONj/PzMxUw4YN7d4eAACgIiutfBIAAKCiuaYi3l133WXx3GQymQto+c/zXbly5ar91a1bV25ublZn3Z04ccLqLLl8gYGBNuPd3d1Vp06dImPy+7Rn3C1btujEiRNq1KiRxT499thjiouL05EjR2zOz8vLS15eXlfZcwAAgMrJ0fkkAABARXVN18TLy8szPzZs2KAbb7xRX3zxhc6cOaOzZ89q3bp1uummm7R+/Xq7+vP09FRoaKgSEhIs2hMSEhQeHm5zm7CwMKv4DRs2qGPHjuYbTxQWk9+nPeNGRUXpxx9/1K5du8yP4OBgPfHEE/ryyy/t2j8AAABYcnQ+Kf11OZObb75Z1atXl7+/v+666y4dPHjwqtslJSUpNDRU3t7eatq0qZYsWXItuwYAAOBQDrsm3uTJk7VkyRJ16dLF3Na7d29VrVpVDzzwgPbv329XP9HR0YqKilLHjh0VFhampUuXKjU1VePHj5f01/LU48eP67333pMkjR8/Xq+//rqio6M1btw4JScnKz4+XitWrDD3+eijj6pbt2568cUXNXDgQH388cfauHGjtm7dave4derUMZ/Zl8/Dw0OBgYFq0aJFyQ4aAAAAzByVTyYlJenhhx/WzTffrNzcXD311FOKjIzUvn375Ovra3Obw4cPq2/fvho3bpyWL1+ub775RhMmTFC9evU0ePBgh+wfAADAtXBYEe/QoUPy8/Ozavfz8yt0qaktw4YN08mTJzVnzhylpaWpbdu2WrdunRo3bixJSktLU2pqqjk+JCRE69at05QpU7Rw4UIFBwdrwYIFFslWeHi4Vq5cqRkzZmjmzJlq1qyZVq1apU6dOtk9LgBUJomJzp4BgMrIUflkwbP23nnnHfn7+2vHjh3q1q2bzW2WLFmiRo0aKS4uTpLUqlUrbd++XfPmzaOIBwAAXILJ+PtFR65Bt27d5OHhoeXLlysoKEjSX3eOjYqKUnZ2tpKSkhwxTLmXmZkpPz8/nT17VjVq1HD2dIDyzc6708YWaIrwtLGdAyVm29e/PfOw1Vdpz99eERE2Grk7MFAqKkv+UFr55K+//qrrr79ee/bsUdu2bQsdu0OHDnr11VfNbWvXrtXQoUN18eJF82Va/i4rK0tZWVnm5/k3MKvorxOAvxTMMZ3JleYCoHiKk+c57Ey8t99+W4MGDVLjxo3NN39ITU1V8+bN9dFHHzlqGAAAAFRQpZFPGoah6OhodenSpdACnvRXsbDgjdQCAgKUm5urjIwMc1Hx7+bOnavZs2eXaF4A4EgFi3gU9YCKyWFFvOuuu04//vijEhISdODAARmGodatW+v222+3uKsYAAAAYEtp5JMTJ07Ujz/+aHEt5MIUHCN/wUphY8fExCg6Otr8PP9MPAAAgNLgsCKe9FeCExkZqW7dusnLy4viHQAAAIrFkfnkI488ok8++USbN29WgwYNiowNDAxUenq6RduJEyfk7u5udXOzfF5eXvLy8irx/AAAAIqjiqM6ysvL0zPPPKP69eurWrVqOnz4sCRp5syZio+Pd9QwAAAAqKAclU8ahqGJEydqzZo1+vrrrxUSEnLVbcLCwpSQkGDRtmHDBnXs2NHm9fAAAADKmsOKeM8++6yWLVuml156SZ6enub2G264QW+99ZajhgEAAEAF5ah88uGHH9by5cv14Ycfqnr16kpPT1d6erouXbpkjomJidHIkSPNz8ePH6+jR48qOjpa+/fv19tvv634+Hg9/vjjjtk5AACAa+SwIt57772npUuX6t5775Wbm5u5vV27djpw4ICjhgEAAEAF5ah8cvHixTp79qwiIiIUFBRkfqxatcock5aWptTUVPPzkJAQrVu3TomJibrxxhv1zDPPaMGCBRo8eLBjdg4AAOAaOeyaeMePH9d1111n1Z6Xl6ecnBxHDQMAxbMtVhGeVw8DADifo/LJ/BtSFGXZsmVWbd27d9fOnTvtHgcAAKAsOexMvDZt2mjLli1W7f/5z3/UoUMHRw0DAACACop8EgAAoHAOOxNv1qxZioqK0vHjx5WXl6c1a9bo4MGDeu+99/TZZ585ahgAAABUUOSTAAAAhXPYmXgDBgzQqlWrtG7dOplMJj399NPav3+/Pv30U/Xq1ctRwwAAAKCCIp8EAAAonMPOxJOk3r17q3fv3o7sEgAAAJUI+SQAAIBtDi3i5Tt//rzy8vIs2mrUqFEaQwEAAKACIp8EAACw5LDltIcPH1a/fv3k6+srPz8/1apVS7Vq1VLNmjVVq1YtRw0DAACACop8EgAAoHAOOxPv3nvvlSS9/fbbCggIkMlkclTXAAAAqATIJwEAAArnsCLejz/+qB07dqhFixaO6hIAAACVCPkkAABA4RxWxLv55pt17Ngxki4AAACUCPkkAFcWG+vsGQCo7BxWxHvrrbc0fvx4HT9+XG3btpWHh4fFz9u1a+eooQAAAFABkU8CAAAUzmFFvD///FOHDh3SfffdZ24zmUwyDEMmk0lXrlxx1FAAABeQmGjdFhFe5tMAUIGQTwIAABTOYUW8+++/Xx06dNCKFSu4EDEAAACKjXwSAACgcA4r4h09elSffPKJrrvuOkd1CQDFty3W2TMAAJQQ+SQAAEDhqjiqo9tuu027d+92VHcAAACoZMgnAQAACuewM/EGDBigKVOmaM+ePbrhhhusLkR85513OmooAAAAVEDkkwBcCXejBeBqHFbEGz9+vCRpzpw5Vj/jQsQAAAC4GvJJAACAwjmsiJeXl+eorgAAAFAJkU8CAAAUziHXxMvNzZW7u7v27t3riO4AAABQyZBPAgAAFM0hZ+K5u7urcePGLHEAUKYSE63bIiLKehb2ifCMLdPtnKbg3YHDY21FAYAV8kkAAICiOezutDNmzFBMTIxOnTrlqC4BAABQiZBPAgAAFM5h18RbsGCBfv31VwUHB6tx48by9fW1+PnOnTsdNRQAFMrW2XkAgPKBfBIArNlamZGYbd0GoOJzWBHvrrvuclRXAAAAqITIJwEAAArnsCLerFmzHNUVAAAAKiHySQAAgMI5rIiXb8eOHdq/f79MJpNat26tDh06OHoIAAAAVGDkkwAqq3J3UzMAZcphRbwTJ05o+PDhSkxMVM2aNWUYhs6ePasePXpo5cqVqlevnqOGAgCXVpmTr4LXJEzcIMXGOmMmAMoj8kkAcIyC+Rf5GFAxOOzutI888ogyMzP1008/6dSpUzp9+rT27t2rzMxMTZo0yVHDAAAAoIIinwQAACicw87EW79+vTZu3KhWrVqZ21q3bq2FCxcqMjLSUcMAAACggiKfBOBU22ItnkZ4chdYAK7FYWfi5eXlycPDw6rdw8NDeXl5jhoGAAAAFRT5JAAAQOEcVsS77bbb9Oijj+r33383tx0/flxTpkxRz549HTUMAAAAKijySQAAgMI5bDnt66+/roEDB6pJkyZq2LChTCaTjh49qnbt2un999931DAAKilbF+ON8CzzaQAAShH5JAAAQOEcVsRr2LChdu7cqY0bN2r//v0yDEOtW7fW7bff7qghAAAAUIGRTwIAABTOYUU8Sfrqq6/09ddf68SJE8rLy9OuXbv04YcfSpLefvttRw4FACgHIjxjpW0FGsNjnTATAOUF+SQAXF2EZ6xVGzfhACo+h10Tb/bs2YqMjNRXX32ljIwMnT592uJRHIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHHjY2NVcuWLeXr66tatWrp9ttv13fffVesfQMAAIBtjswnAQAAKhqHnYm3ZMkSLVu2TFFRUdfUz6pVqzR58mQtWrRIt956q9544w316dNH+/btU6NGjaziDx8+rL59+2rcuHFavny5vvnmG02YMEH16tXT4MGDJUnJyckaNmyYnnnmGQ0aNEhr167V0KFDtXXrVnXq1MnucZs3b67XX39dTZs21aVLl/Svf/1LkZGR+vXXX1WvXr1r2m8AqKgSEws832D7GocA4Kh8EgAAoCJy2Jl42dnZCg8Pv+Z+5s+frzFjxmjs2LFq1aqV4uLi1LBhQy1evNhm/JIlS9SoUSPFxcWpVatWGjt2rO6//37NmzfPHBMXF6devXopJiZGLVu2VExMjHr27Km4uLhijXvPPffo9ttvV9OmTdWmTRvNnz9fmZmZ+vHHH695vwEAACo7R+WTAAAAFZHDinhjx441X6+kpLKzs7Vjxw5FRkZatEdGRmrbtoIXVfpLcnKyVXzv3r21fft25eTkFBmT32dJxs3OztbSpUvl5+en9u3bF7pPWVlZyszMtHgAAADAmiPySQAAgIrKYctpL1++rKVLl2rjxo1q166dPDw8LH4+f/78q/aRkZGhK1euKCAgwKI9ICBA6enpNrdJT0+3GZ+bm6uMjAwFBQUVGpPfZ3HG/eyzzzR8+HBdvHhRQUFBSkhIUN26dQvdp7lz52r27NlF7zgAAAAckk8CAABUVA4r4v3444+68cYbJUl79+61+JnJZCpWXwXjDcMosg9b8QXb7enTnpgePXpo165dysjI0JtvvqmhQ4fqu+++k7+/v825xcTEKDo62vw8MzNTDRs2LHRfgAplW6x1W8E7k9qKscneOLg67lgLoDCOyic3b96sl19+WTt27FBaWprWrl2ru+66q9D4xMRE9ejRw6p9//79atmypd3jAgAAlCaHFfE2bdp0zX3UrVtXbm5uVme/nThxwuosuXyBgYE2493d3VWnTp0iY/L7LM64vr6+uu6663Tdddepc+fOuv766xUfH6+YmBib8/Py8pKXl9dV9hwAAACOyCcl6cKFC2rfvr3uu+8+843O7HHw4EHVqFHD/JwblwEAAFfisGviOYKnp6dCQ0OVkJBg0Z6QkFDoRY7DwsKs4jds2KCOHTual2AUFpPfZ0nGzWcYhrKysq6+cwAAACgTffr00bPPPqu77767WNv5+/srMDDQ/HBzcyulGQIAABSfw87Ec5To6GhFRUWpY8eOCgsL09KlS5Wamqrx48dL+mt56vHjx/Xee+9JksaPH6/XX39d0dHRGjdunJKTkxUfH68VK1aY+3z00UfVrVs3vfjiixo4cKA+/vhjbdy4UVu3brV73AsXLui5557TnXfeqaCgIJ08eVKLFi3Sb7/9pn/84x9leIQAAABQGjp06KDLly+rdevWmjFjhs0ltn+XlZVl8WUuNzADAAClyeWKeMOGDdPJkyc1Z84cpaWlqW3btlq3bp0aN24sSUpLS1Nqaqo5PiQkROvWrdOUKVO0cOFCBQcHa8GCBRZLJ8LDw7Vy5UrNmDFDM2fOVLNmzbRq1Sp16tTJ7nHd3Nx04MABvfvuu8rIyFCdOnV08803a8uWLWrTpk0ZHR2gYkpMtG6LiCjrWcCZYmPtawOA0hAUFKSlS5cqNDRUWVlZev/999WzZ08lJiaqW7duhW7HDcwAAEBZcrkiniRNmDBBEyZMsPmzZcuWWbV1795dO3fuLLLPIUOGaMiQISUe19vbW2vWrClyewAAAJQ/LVq0UIsWLczPw8LCdOzYMc2bN6/IIh43MAMAAGXJpa6JBwAAALiCzp0765dffikyxsvLSzVq1LB4AAAAlBaKeAAAAEABKSkpCgoKcvY0AAAAzFxyOS0AAABQUufPn9evv/5qfn748GHt2rVLtWvXVqNGjaxulBYXF6cmTZqoTZs2ys7O1vLly7V69WqtXr3aWbsAAABghSIeAKDM2bqZCQA4yvbt2y3uLJt/3bpRo0Zp2bJlVjdKy87O1uOPP67jx4/Lx8dHbdq00eeff66+ffuW+dwBlD8RnrFWbYnZ1m0AcK0o4gEAAKBCiYiIkGEYhf684I3Spk6dqqlTp5byrAAAAK4N18QDAAAAAAAAXBxn4gFwSSy3BAAAQHnlsktst8Vat4XbaAPgkijiASgXbCVCAAAAgKPwJTIAV8dyWgAAAAAAAMDFcSYeAAAAAAB2YHUIAGfiTDwAAAAAAADAxVHEAwAAAAAAAFwcy2kBAAAAALCB5bMAXAlFPACA09lKkGNjbbWV+lQAAAAAwCVRxAMAAAAAVFzbYq3bwm20lXO2vhRNzLZuA1B+cU08AAAAAAAAwMVRxAMAAAAAAABcHMtpAQAAAACowPKvKxzh+f//G+GsmQC4FpyJBwAAAAAAALg4ingAAAAAAACAi2M5LVCZOfJOXbb6siH/VP58+af0A3Yp+D6rgHeWAwAAAABbOBMPAAAAAAAAcHEU8QAAAAAAAAAXx3JaAAAAAAAqkcTE//v/iHAbAY687A4Ah+FMPAAAAAAAAMDFcSYegFLz92/4AAAAAABAyVHEAwBULCz/AAAALijCM9aqLTHbug0ACsNyWgAAAAAAAMDFUcQDAAAAAAAAXBxFPAAAAAAAAMDFcU08AAAAAEClFBv7f/8f4em0aQCAXTgTDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBx7s6eAAAAAAAAcJJtsc6eAQA7ueSZeIsWLVJISIi8vb0VGhqqLVu2FBmflJSk0NBQeXt7q2nTplqyZIlVzOrVq9W6dWt5eXmpdevWWrt2bbHGzcnJ0ZNPPqkbbrhBvr6+Cg4O1siRI/X7779f+w4DrmxbrPXDhsRE6wdQ6ux8f5a4PwAAAABwES53Jt6qVas0efJkLVq0SLfeeqveeOMN9enTR/v27VOjRo2s4g8fPqy+fftq3LhxWr58ub755htNmDBB9erV0+DBgyVJycnJGjZsmJ555hkNGjRIa9eu1dChQ7V161Z16tTJrnEvXryonTt3aubMmWrfvr1Onz6tyZMn684779T27dvL9BgBAAAAAHA1EZ6xjuvM1hec4Q7sH8BVuVwRb/78+RozZozGjh0rSYqLi9OXX36pxYsXa+7cuVbxS5YsUaNGjRQXFydJatWqlbZv36558+aZi3hxcXHq1auXYmJiJEkxMTFKSkpSXFycVqxYYde4fn5+SkhIsBj7tdde0y233KLU1FSbBUagoih4Vl3iBik21hkzAQAAAACgcnKp5bTZ2dnasWOHIiMjLdojIyO1bds2m9skJydbxffu3Vvbt29XTk5OkTH5fZZkXEk6e/asTCaTatasWWhMVlaWMjMzLR4AAAAoPZs3b9aAAQMUHBwsk8mkjz766Krb2HN5FgCoiLgkDlB+uNSZeBkZGbpy5YoCAgIs2gMCApSenm5zm/T0dJvxubm5ysjIUFBQUKEx+X2WZNzLly9r2rRpuueee1SjRo1C92nu3LmaPXt2oT8HANjPVmIZEXH1uIjwUpgMAJd14cIFtW/fXvfdd595ZUZR7Lk8CwAAgLO5VBEvn8lksnhuGIZV29XiC7bb06e94+bk5Gj48OHKy8vTokWLitiTv5buRkdHm59nZmaqYcOGRW4DAACAkuvTp4/69Oljd7w9l2cBAABwNpcq4tWtW1dubm5WZ7+dOHHC6iy5fIGBgTbj3d3dVadOnSJj8vsszrg5OTkaOnSoDh8+rK+//rrIs/AkycvLS15eXkXGAAAAwHkKu/RKfHy8cnJy5OHhYXO7rKwsZWVlmZ9z2RQAAFCaXKqI5+npqdDQUCUkJGjQoEHm9oSEBA0cONDmNmFhYfr0008t2jZs2KCOHTuaE66wsDAlJCRoypQpFjHh4eHFGje/gPfLL79o06ZN5iIh4HJK+c5REZ6xUuGXiwQcwqF3UwOAIthzeRZbuGwKAAAoSy5VxJOk6OhoRUVFqWPHjgoLC9PSpUuVmpqq8ePHS/preerx48f13nvvSZLGjx+v119/XdHR0Ro3bpySk5MVHx9vvuusJD366KPq1q2bXnzxRQ0cOFAff/yxNm7cqK1bt9o9bm5uroYMGaKdO3fqs88+05UrV8xn7tWuXVuenp5ldYgAAADgYPZcnqUgLpsCAADKkssV8YYNG6aTJ09qzpw5SktLU9u2bbVu3To1btxYkpSWlqbU1FRzfEhIiNatW6cpU6Zo4cKFCg4O1oIFCyyuXxIeHq6VK1dqxowZmjlzppo1a6ZVq1apU6dOdo/722+/6ZNPPpEk3XjjjRZz3rRpkyJsXVkdAAAALs+ey7PYwmVTAABAWXK5Ip4kTZgwQRMmTLD5s2XLllm1de/eXTt37iyyzyFDhmjIkCElHrdJkybmb2QBcPt5AEDFYc/lWQC4AEdeMub/9xXh5AVVXD4EQHFUcfYEAAAAAEc6f/68du3apV27dkmSDh8+rF27dplXc8TExGjkyJHm+PHjx+vo0aOKjo7W/v379fbbbys+Pl6PP/64M6YPAABgk0ueiQcAAACU1Pbt29WjRw/z8/zr1o0aNUrLli0r0eVZAAAAnI0iHgCgXLNraXcp37EZgGuJiIgo8jIoJb08C4Dyj0vCACjPWE4LAAAAAAAAuDiKeAAAAAAAAICLYzktAAAAAACQZL3kOCLCGbMAYAtn4gEAAAAAAAAujiIeAAAAAAAA4OJYTgvAkq27eALlnK070SVusG6LjSzQwF1tAQAAClcwVyJPAkoVZ+IBAAAAAAAALo4iHgAAAAAAAODiWE4LAAAAAKgQEp+PtXjOnVUBVCQU8QAAAAAAgE0Fry1MYRRwHpbTAgAAAAAAAC6OM/GASiI21kZbwTtxAgAAAAAAl0QRDyhtBW+7LnHrdQAAAKAMFFwKCgDlGUU8ABZIdAAAAAAAcD0U8QAAAAAA5ZOtVS8AUEFxYwsAAAAAAADAxXEmHlBBsSwWAAAATlfwTDmuDV2xcT1woFRRxAMqMQp9AAAAAACUDxTxUPlUtG8D7bwOSISnfXGlzVXmAdhiq7AdEVGggW+YAQAAADgBRTwAAAAAgGvhhhUAYIUbWwAAAAAAAAAujiIeAAAAAAAA4OJYTgsAQBHsuk4eAAAAAJQyzsQDAAAAAAAAXBxn4gEAAAAAyoWCZ8hzdjyAyoQiHmCLrbthhdtoK+9jAnCI2Fj72uzCZwEAAKhIyG0Ah2E5LQAAAAAAAODiOBMPAIBS4NCz8wAAAABUehTxAAAAAABA2bG1xNYWlt0CFlhOCwAAAAAAALg4zsQDAMCJCi6xjfDkTnsAAAAArFHEw//hrkHFxzEDyq0Iz1hnT6H0sVQFAFDBJSY6ewYoVQVzGXIWVHIU8QAXxoXxAQAAALiSgoVTVhAAZYdr4gEAAAAAAAAujjPxAAAAAADXzt7LOAAASsQlz8RbtGiRQkJC5O3trdDQUG3ZsqXI+KSkJIWGhsrb21tNmzbVkiVLrGJWr16t1q1by8vLS61bt9batWuLPe6aNWvUu3dv1a1bVyaTSbt27bqm/QQAAAAAAADs4XJFvFWrVmny5Ml66qmnlJKSoq5du6pPnz5KTU21GX/48GH17dtXXbt2VUpKiqZPn65JkyZp9erV5pjk5GQNGzZMUVFR2r17t6KiojR06FB99913xRr3woULuvXWW/XCCy+U3gEAALi8xETLBwAAAACUNpdbTjt//nyNGTNGY8eOlSTFxcXpyy+/1OLFizV37lyr+CVLlqhRo0aKi4uTJLVq1Urbt2/XvHnzNHjwYHMfvXr1UkxMjCQpJiZGSUlJiouL04oVK+weNyoqSpJ05MiRUtt/OJgjT+l3wvIA23fPtG6jiACUE6V9hzVXWMZk7127HXl3b+4UjkIsWrRIL7/8stLS0tSmTRvFxcWpa9euNmMTExPVo0cPq/b9+/erZcuWpT1VoPLgMxsASsylzsTLzs7Wjh07FBkZadEeGRmpbdu22dwmOTnZKr53797avn27cnJyiozJ77Mk49orKytLmZmZFg8AAACUruKu7sh38OBBpaWlmR/XX399Gc0YAACgaC5VxMvIyNCVK1cUEBBg0R4QEKD09HSb26Snp9uMz83NVUZGRpEx+X2WZFx7zZ07V35+fuZHw4YNr6k/AAAAXN3fV1m0atVKcXFxatiwoRYvXlzkdv7+/goMDDQ/3NzcymjGAFAxcRkSwHFcbjmtJJlMJovnhmFYtV0tvmC7PX0Wd1x7xMTEKDo62vw8MzOTQh5s4g8aAACOkb/KYtq0aRbt9qyy6NChgy5fvqzWrVtrxowZNpfY5svKylJWVpb5OSsuUKm4wiUc4BIK/jsmIqIUB2M5Nio5lyri1a1bV25ublZnv504ccLqLLl8gYGBNuPd3d1Vp06dImPy+yzJuPby8vKSl5fXNfUBAEBJ2fqCoFSTa8AFlGSVRVBQkJYuXarQ0FBlZWXp/fffV8+ePZWYmKhu3brZ3Gbu3LmaPXu2w+cPAOUZJycApcelinienp4KDQ1VQkKCBg0aZG5PSEjQwIEDbW4TFhamTz/91KJtw4YN6tixozw8PMwxCQkJmjJlikVMeHh4iccFAACAayvOKosWLVqoRYsW5udhYWE6duyY5s2bV2gRjxUXqDRK+6w7zuoDALu4VBFPkqKjoxUVFaWOHTsqLCxMS5cuVWpqqsaPHy/pr2Tp+PHjeu+99yRJ48eP1+uvv67o6GiNGzdOycnJio+PN991VpIeffRRdevWTS+++KIGDhyojz/+WBs3btTWrVvtHleSTp06pdTUVP3++++S/rrwsSTzNVMAAADgfI5aZdG5c2ctX7680J+z4gIAAJQllyviDRs2TCdPntScOXOUlpamtm3bat26dWrcuLEkKS0tzeKuYiEhIVq3bp2mTJmihQsXKjg4WAsWLNDgwYPNMeHh4Vq5cqVmzJihmTNnqlmzZlq1apU6depk97iS9Mknn+i+++4zPx8+fLgkadasWYqNjS2tQ1J89nyTxXUDnItvG4EKL8Iz1qrNanlJYqwiPK23tbq2TLh1jK0/O7GR1m0OVfCzq7L8LeH6O+WOo1ZZpKSkKCgoqDSmCAAAUGwuV8STpAkTJmjChAk2f7Zs2TKrtu7du2vnzp1F9jlkyBANGTKkxONK0ujRozV69Ogi+wAAAIDzFXd1R1xcnJo0aaI2bdooOztby5cv1+rVq7V69Wpn7gZgjS8WAKDScskiHgAAKB8KnhEY4cmNM+Aairu6Izs7W48//riOHz8uHx8ftWnTRp9//rn69u3rrF0AAACwQBEPcDB7/0HLXZsAAChdxVndMXXqVE2dOrUMZgWgOMiZAeD/UMQDyhlbRUIAAACgPLK6DmyEM2aBssRrDpQcRTygDPANIgBXYs+NMwAAAAC4Fop4KB3XcvfVghfmtbcvF7mgr607Upan/gEUX2n/XiY+b6v/0h3TJbjyxdtdeW4AAACokCjiAeLC7AAAAADgDH9fIcC/wYCiUcQDCsG1GgAAAAAAgKugiIdyy55rOtm6Fl1Ji3GO7AsAAACorLheNACUDEU8AABgpeBlBiQpNrLMpwEAsIcjr9N5Lde2dgAKfABQuCrOngAAAAAAAACAonEmHgAAAAAAcDquSw4UjSIeKo6Snvq/LVYRng6dCQCUugjPWMd1ZvPzs7T7L2WOXFoGAGWltD+7nLxUFgBwbSjiAQBQQXAdIQAAAKDioogHAADsUrBImLjBKdMAAAAAKiWKeKgwOAMFAAAAZa7gElVXWbrvQktnydNRquxdhs6lNlABUMQDAAAuy9bZf7GxzpgJAAAA4FxVnD0BAAAAAAAAAEXjTLzKyoVOry+o4BkWEZ6OvbW4I0/nZ2kAgIrKoXe/dVUsqwEAoHJzxh2hyTVwDSjioVygWAYApYfPWADAtSj4d8SRX8ADAP4PRTwAAFCqbBUJ+QceAFRcfDkEAKWDIh6KzdYFxbnIOAAgX0n/8WbrcgoAAKDycspZnvbccZplsnASingAAAAAAMDlsXQblR1FPAAAUOZYagUA5QeFE7iqq703/36Wf4lvmGjvTSFLGnctZ/pxRmClQxEP1yzCM1aJz9sRF1HqUwEAlCFn3MHW1t8c/r4AAACgMqji7AkAAAAAAAAAKBpn4sHM5t0Dw8t8GgAAAEDpKe1latfSP4BrYv43bWKspAp2kyxHfmawXLfcooiHIjnyrrM2i4QRjusfAAAAQOnjuqYA4BwspwUAAAAAAABcHGfiAQAAFBOXoABKkSOXb7nKklVXmQeAio/PmwqNIh6cilPxAQCupuClJGIjnTINACgzBXNyLnmDior3Oso7ingoUoRnbKUYEwDgfI78/OdMOQAAAFQ0FPEAAEC5di1ndRfcNnHDtcwEgNNVxGVkTtgnVssAlVBF/PysgCjiAQCASqHgMtkIT/u24x+zAABUTEX9jWepLVwRRTwAAAAAqGT4ggIoGtfPgyuiiFeJ8YcbAAAA5ZYjl37Z2xfLzQA4Gp8rKIYqzp4AAAAAAAAAgKJxJh4AAMD/xx3SAZQXV1tVU3DpH6twgGtT3N85oDRQxAMAAADKi4LLrsJjbUW5rpLOn+VmAFxcpbmGXkk/j8vb3ysXRRGvkuCbNwAAAMC1/D1Hd/Q/+Mn/AeeqNEU9lCmXvCbeokWLFBISIm9vb4WGhmrLli1FxiclJSk0NFTe3t5q2rSplixZYhWzevVqtW7dWl5eXmrdurXWrl1b7HENw1BsbKyCg4Pl4+OjiIgI/fTTT9e2swAAACgVpZFTonJLTLR8AIC9Cn5+FPV5wmcNCuNyZ+KtWrVKkydP1qJFi3TrrbfqjTfeUJ8+fbRv3z41atTIKv7w4cPq27evxo0bp+XLl+ubb77RhAkTVK9ePQ0ePFiSlJycrGHDhumZZ57RoEGDtHbtWg0dOlRbt25Vp06d7B73pZde0vz587Vs2TI1b95czz77rHr16qWDBw+qevXqZXeQAAAAUKTSyCkrpWtZxmrP0qkKtkz2amfeFPWPcf6hDqAwlfp6fLb+Ttj6+2JvnCPHdAKXOxNv/vz5GjNmjMaOHatWrVopLi5ODRs21OLFi23GL1myRI0aNVJcXJxatWqlsWPH6v7779e8efPMMXFxcerVq5diYmLUsmVLxcTEqGfPnoqLi7N7XMMwFBcXp6eeekp333232rZtq3fffVcXL17Uhx9+WKrHpLiuVtUHAACo6EojpwQAoDygHlBxudSZeNnZ2dqxY4emTZtm0R4ZGalt27bZ3CY5OVmRkZEWbb1791Z8fLxycnLk4eGh5ORkTZkyxSomv4hnz7iHDx9Wenq6xVheXl7q3r27tm3bpgcffNDm/LKyspSVlWV+fvbsWUlSZmZmYYfhml24nHX1IAAAKpmsHMu/vRfyHPv3sjT/tuf3bRhGqY1RkZRWTlmQM/I8XSjwvi3NsWyNVxy25majv4KrnLt2LfrnruTz9df2cwDIdy2fF8X9LHLk52zBvgpVyN+ruXP/7/9jYmwE2Po7ZOfflxL/jXRkX3YoTp7nUkW8jIwMXblyRQEBARbtAQEBSk9Pt7lNenq6zfjc3FxlZGQoKCio0Jj8Pu0ZN/+/tmKOHj1a6D7NnTtXs2fPtmpv2LBhodsAAIDS8ELpdv9MKfcv6dy5c/Lz8yv1ccq70sopC3KNPK/033cl58pzAwCUrav/TXjB7j8b9gY68u+Qa+R5LlXEy2cymSyeG4Zh1Xa1+ILt9vTpqJi/i4mJUXR0tPl5Xl6eTp06pTp16hS5HYqWmZmphg0b6tixY6pRo4azp1OhcazLDse67HCsyw7H2jEMw9C5c+cUHBzs7KmUK6WRU/5dZc3zSuv3+uabb9YPP/zgsP4qe5+8To7vszT6reyvU2n1W5lfp9Lqtzz0WV7zzuLkeS5VxKtbt67c3NysviE9ceKE1Tej+QIDA23Gu7u7q06dOkXG5Pdpz7iBgYGS/vqW9u/fxBY1N+mvJbdeXl4WbTVr1iw0HsVTo0aNcvXLWZ5xrMsOx7rscKzLDsf62nEGnv1KK6csqLLneY7+vXZzc3P450Rl7jMfr5NjlVa/lfV1Kq1+K/PrVFr9lpc+pfKZd9qb57nUjS08PT0VGhqqhIQEi/aEhASFh4fb3CYsLMwqfsOGDerYsaP52iWFxeT3ac+4ISEhCgwMtIjJzs5WUlJSoXMDAABA2SutnBKl6+GHH6bPcqC87H9pHdPy8lpV9mNamV+n0uq3vPRZ4RkuZuXKlYaHh4cRHx9v7Nu3z5g8ebLh6+trHDlyxDAMw5g2bZoRFRVljv/f//5nVK1a1ZgyZYqxb98+Iz4+3vDw8DD++9//mmO++eYbw83NzXjhhReM/fv3Gy+88ILh7u5ufPvtt3aPaxiG8cILLxh+fn7GmjVrjD179hgjRowwgoKCjMzMzDI4Mvi7s2fPGpKMs2fPOnsqFR7HuuxwrMsOx7rscKzhLKWRU+Iv/F6XD7xO5QOvU/nA61Q+VIbXyaWW00rSsGHDdPLkSc2ZM0dpaWlq27at1q1bp8aNG0uS0tLSlJqaao4PCQnRunXrNGXKFC1cuFDBwcFasGCBBg8ebI4JDw/XypUrNWPGDM2cOVPNmjXTqlWr1KlTJ7vHlaSpU6fq0qVLmjBhgk6fPq1OnTppw4YNql69ehkcGfydl5eXZs2aZbWEBY7HsS47HOuyw7EuOxxrOEtp5JT4C7/X5QOvU/nA61Q+8DqVD5XhdTIZhh33sAUAAAAAAADgNC51TTwAAAAAAAAA1ijiAQAAAAAAAC6OIh4AAAAAAADg4ijiAQAAAAAAAC6OIh5cxpEjRzRmzBiFhITIx8dHzZo106xZs5SdnW0Rl5qaqgEDBsjX11d169bVpEmTrGL27Nmj7t27y8fHR/Xr19ecOXNU8B4uSUlJCg0Nlbe3t5o2baolS5aU+j66kueee07h4eGqWrWqatasaTOGY112Fi1apJCQEHl7eys0NFRbtmxx9pRc3ubNmzVgwAAFBwfLZDLpo48+svi5YRiKjY1VcHCwfHx8FBERoZ9++skiJisrS4888ojq1q0rX19f3Xnnnfrtt98sYk6fPq2oqCj5+fnJz89PUVFROnPmTCnvneuYO3eubr75ZlWvXl3+/v666667dPDgQYsYjjVQsdmTMxRkz+cCHKskn6GjR4+WyWSyeHTu3LlsJlyJFDfPI3d2juK8TomJiVa/OyaTSQcOHCjDGVc+V8v/balov08U8eAyDhw4oLy8PL3xxhv66aef9K9//UtLlizR9OnTzTFXrlxRv379dOHCBW3dulUrV67U6tWr9dhjj5ljMjMz1atXLwUHB+uHH37Qa6+9pnnz5mn+/PnmmMOHD6tv377q2rWrUlJSNH36dE2aNEmrV68u0312puzsbP3jH//QQw89ZPPnHOuys2rVKk2ePFlPPfWUUlJS1LVrV/Xp00epqanOnppLu3Dhgtq3b6/XX3/d5s9feuklzZ8/X6+//rp++OEHBQYGqlevXjp37pw5ZvLkyVq7dq1WrlyprVu36vz58+rfv7+uXLlijrnnnnu0a9curV+/XuvXr9euXbsUFRVV6vvnKpKSkvTwww/r22+/VUJCgnJzcxUZGakLFy6YYzjWQMV2tZzBFns+F+BYJf0MveOOO5SWlmZ+rFu3rgxmW3kUN88jd3aOkubjBw8etPj9uf7668toxpXT1fL/girk75MBuLCXXnrJCAkJMT9ft26dUaVKFeP48ePmthUrVhheXl7G2bNnDcMwjEWLFhl+fn7G5cuXzTFz5841goODjby8PMMwDGPq1KlGy5YtLcZ68MEHjc6dO5fm7rikd955x/Dz87Nq51iXnVtuucUYP368RVvLli2NadOmOWlG5Y8kY+3atebneXl5RmBgoPHCCy+Y2y5fvmz4+fkZS5YsMQzDMM6cOWN4eHgYK1euNMccP37cqFKlirF+/XrDMAxj3759hiTj22+/NcckJycbkowDBw6U8l65phMnThiSjKSkJMMwONZAZVJYzlCQPZ8LcKySfoaOGjXKGDhwYBnMsPIqbp5H7uwcxX2dNm3aZEgyTp8+XQazgy0F839bKuLvE2fiwaWdPXtWtWvXNj9PTk5W27ZtFRwcbG7r3bu3srKytGPHDnNM9+7d5eXlZRHz+++/68iRI+aYyMhIi7F69+6t7du3KycnpxT3qPzgWJeN7Oxs7dixw+oYRUZGatu2bU6aVfl3+PBhpaenWxxXLy8vde/e3Xxcd+zYoZycHIuY4OBgtW3b1hyTnJwsPz8/derUyRzTuXNn+fn5VdrX5+zZs5Jk/mzmWAMoyJ7PBTjWtXyGJiYmyt/fX82bN9e4ceN04sSJ0p5upVGSPI/cuexdSz7eoUMHBQUFqWfPntq0aVNpThMlUBF/nyjiwWUdOnRIr732msaPH29uS09PV0BAgEVcrVq15OnpqfT09EJj8p9fLSY3N1cZGRkO35fyiGNdNjIyMnTlyhWbxyj/GKL48o9dUcc1PT1dnp6eqlWrVpEx/v7+Vv37+/tXytfHMAxFR0erS5cuatu2rSSONQBr9nwuwLFK+hnap08fffDBB/r666/1yiuv6IcfftBtt92mrKys0pxupVGSPI/cueyV5HUKCgrS0qVLtXr1aq1Zs0YtWrRQz549tXnz5rKYMuxUEX+fKOKh1MXGxtq86OffH9u3b7fY5vfff9cdd9yhf/zjHxo7dqzFz0wmk9UYhmFYtBeMMf7/jRaKG1PelORYF4VjXXZsHSOOz7UryXG92nvc3n4qookTJ+rHH3/UihUrrH7GsQbKF0fnDLbwt+3aFed1Ksln6LBhw9SvXz+1bdtWAwYM0BdffKGff/5Zn3/+eantU2VU3N8FcmfnKM7r1KJFC40bN0433XSTwsLCtGjRIvXr10/z5s0ri6miGCra75O7syeAim/ixIkaPnx4kTFNmjQx///vv/+uHj16KCwsTEuXLrWICwwM1HfffWfRdvr0aeXk5Jgr7IGBgVbfmOQvC7hajLu7u+rUqWP/zrmY4h7ronCsy0bdunXl5uZm8xgV/NYI9gsMDJT017dvQUFB5va/H9fAwEBlZ2fr9OnTFmeInThxQuHh4eaYP/74w6r/P//8s9K9Po888og++eQTbd68WQ0aNDC3c6yB8smROUNB9nwuwD72vk4//vijQz5Dg4KC1LhxY/3yyy/FniuslSTPI3cue47Kxzt37qzly5c7enq4BhXx94kz8VDq6tatq5YtWxb58Pb2liQdP35cERERuummm/TOO++oShXLt2hYWJj27t2rtLQ0c9uGDRvk5eWl0NBQc8zmzZuVnZ1tERMcHGxORsPCwpSQkGDR94YNG9SxY0d5eHiUxmEoE8U51lfDsS4bnp6eCg0NtTpGCQkJ5uIGii8kJESBgYEWxzU7O1tJSUnm4xoaGioPDw+LmLS0NO3du9ccExYWprNnz+r77783x3z33Xc6e/ZspXl9DMPQxIkTtWbNGn399dcKCQmx+DnHGiifHJkzFGTP5wLsY+/r5KjP0JMnT+rYsWMWxVeUXEnyPHLnsueofDwlJYXfHRdTIX+fyvQ2GkARjh8/blx33XXGbbfdZvz2229GWlqa+ZEvNzfXaNu2rdGzZ09j586dxsaNG40GDRoYEydONMecOXPGCAgIMEaMGGHs2bPHWLNmjVGjRg1j3rx55pj//e9/RtWqVY0pU6YY+/btM+Lj4w0PDw/jv//9b5nuszMdPXrUSElJMWbPnm1Uq1bNSElJMVJSUoxz584ZhsGxLksrV640PDw8jPj4eGPfvn3G5MmTDV9fX+PIkSPOnppLO3funPl9K8mYP3++kZKSYhw9etQwDMN44YUXDD8/P2PNmjXGnj17jBEjRhhBQUFGZmamuY/x48cbDRo0MDZu3Gjs3LnTuO2224z27dsbubm55pg77rjDaNeunZGcnGwkJycbN9xwg9G/f/8y319neeihhww/Pz8jMTHR4nP54sWL5hiONVCxXS1nMAzDaNGihbFmzRrzc3s+F+BY9nyG/v11OnfunPHYY48Z27ZtMw4fPmxs2rTJCAsLM+rXr8/r5EBXy/OmTZtmREVFmePJnZ2juK/Tv/71L2Pt2rXGzz//bOzdu9eYNm2aIclYvXq1s3ahUrha/l8Zfp8o4sFlvPPOO4Ykm4+/O3r0qNGvXz/Dx8fHqF27tjFx4kTj8uXLFjE//vij0bVrV8PLy8sIDAw0YmNjjby8PIuYxMREo0OHDoanp6fRpEkTY/HixaW+j65k1KhRNo/1pk2bzDEc67KzcOFCo3Hjxoanp6dx0003GUlJSc6eksvbtGmTzffwqFGjDMMwjLy8PGPWrFlGYGCg4eXlZXTr1s3Ys2ePRR+XLl0yJk6caNSuXdvw8fEx+vfvb6SmplrEnDx50rj33nuN6tWrG9WrVzfuvfde4/Tp02W0l85X2OfyO++8Y47hWAMVmz05Q0k+F+BY9nyG/v11unjxohEZGWnUq1fP8PDwMBo1amSMGjXK6rMZ166oPG/UqFFG9+7dLeLJnZ2jOK/Tiy++aDRr1szw9vY2atWqZXTp0sX4/PPPnTDryuVq+X9l+H0yGcb/v6ofAAAAAAAAAJfENfEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAAAAAF0cRDwAAAAAAAHBxFPEAAAAAACgFERERmjx5srOnAaCCoIgHAAAAAAAAuDiKeAAAAAAAAICLo4gHAE62fv16denSRTVr1lSdOnXUv39/HTp0yNnTAgAAgAPk5uZq4sSJ5lxvxowZMgzD2dMCUA5RxAMAJ7tw4YKio6P1ww8/6KuvvlKVKlU0aNAg5eXlOXtqAAAAuEbvvvuu3N3d9d1332nBggX617/+pbfeesvZ0wJQDpkMvgIAAJfy559/yt/fX3v27FHbtm2dPR0AAACUUEREhE6cOKGffvpJJpNJkjRt2jR98skn2rdvn5NnB6C84Uw8AHCyQ4cO6Z577lHTpk1Vo0YNhYSESJJSU1OdPDMAAABcq86dO5sLeJIUFhamX375RVeuXHHirACUR+7OngAAVHYDBgxQw4YN9eabbyo4OFh5eXlq27atsrOznT01AAAAAICLoIgHAE508uRJ7d+/X2+88Ya6du0qSdq6dauTZwUAAABH+fbbb62eX3/99XJzc3PSjACUVxTxAMCJatWqpTp16mjp0qUKCgpSamqqpk2b5uxpAQAAwEGOHTum6OhoPfjgg9q5c6dee+01vfLKK86eFoByiCIeADhRlSpVtHLlSk2aNElt27ZVixYttGDBAkVERDh7agAAAHCAkSNH6tKlS7rlllvk5uamRx55RA888ICzpwWgHOLutAAAAAAAAICL4+60AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4AAAAAAAAgIujiAcAAAAAAAC4OIp4QDm1atUqtWnTRj4+PjKZTNq1a5diY2NlMpks4hYtWqRly5Y5Z5Iu7sMPP1RcXJyzp3FNli1bJpPJpCNHjjh7Knaz9T7Nzs7W+PHjFRQUJDc3N914442SpCZNmmj06NFX7fP555/XRx995PjJ2unIkSMymUyaN2+e0+YAAKg4yPOunSvleREREYqIiCjx9iaTSbGxsQ6bT2nLz4sKvjftfV/bsm7dOqcfg4iICLVt29apcwAo4gHl0J9//qmoqCg1a9ZM69evV3Jyspo3b66xY8cqOTnZIpbkrnCulNxVJrbep4sXL9Ybb7yhp556Slu3btX7778vSVq7dq1mzpx51T6dXcQDAMBRyPMcgzzPeYKCgpScnKx+/fqZ24rzvrZl3bp1mj17dmlOGygX3J09AQDF9/PPPysnJ0f//Oc/1b17d3N71apV1aBBAyfOzNqlS5fk7e1t1zdsFcWlS5fk4+Pj7GmUyMWLF1W1atVSHaNBgwZW79O9e/fKx8dHEydOtGjv0KGDw8evjO9JAED5QZ7n2spznidJOTk5MplMcncvvVKAl5eXOnfubNFWlu9rwzB0+fLlcv06AYXhTDygnBk9erS6dOkiSRo2bJhMJpP59PyCp6M3adJEP/30k5KSkmQymWQymdSkSRNJUmJiokwmk5YvX67o6GgFBgbKx8dH3bt3V0pKisWY27dv1/Dhw9WkSRP5+PioSZMmGjFihI4ePWoRl7+0c8OGDbr//vtVr149Va1aVVlZWfr1119133336frrr1fVqlVVv359DRgwQHv27LHoI39eH374oZ588kkFBQWpWrVqGjBggP744w+dO3dODzzwgOrWrau6devqvvvu0/nz5y36MAxDixYt0o033igfHx/VqlVLQ4YM0f/+9z9zTEREhD7//HMdPXrUfGz+fuyys7P17LPPqmXLlvLy8lK9evV033336c8//7QYq0mTJurfv7/WrFmjDh06yNvb+6rfEq5fv149e/aUn5+fqlatqlatWmnu3LlFbiNJ3377rW699VZ5e3srODhYMTExysnJsRm7atUqhYWFydfXV9WqVVPv3r2tXtfRo0erWrVq2rNnjyIjI1W9enX17Nmz0PH//PNPPfDAA2rYsKH5mNx6663auHFjsfav4PvUZDLprbfe0qVLl8yvQ/5ZBfYspzWZTLpw4YLeffdd8/b5vxOOeE9K0pkzZ/TYY4+padOm8vLykr+/v/r27asDBw4UOq+cnByNGjVK1apV02effVbkPgAAIJHnlfc8zzAMvfTSS2rcuLG8vb1100036Ysvvig0vqDMzEyNGzdOderUUbVq1XTHHXfo559/thn7yy+/6J577pG/v7+8vLzUqlUrLVy40Obxfv/99/XYY4+pfv368vLy0q+//lroHBYvXqz27durWrVqql69ulq2bKnp06dbxBw/ftycE3p6eio4OFhDhgzRH3/8Icl6OW1x3te2jB492rxvf3898y8nYzKZNHHiRC1ZskStWrWSl5eX3n33XUnS7Nmz1alTJ9WuXVs1atTQTTfdpPj4eBmGYTXOhx9+qLCwMFWrVk3VqlXTjTfeqPj4+CLntnbtWlWtWlVjx45Vbm5ukbGAI3AmHlDOzJw5U7fccosefvhhPf/88+rRo4dq1KhhM3bt2rUaMmSI/Pz8tGjRIkl/fTP2d9OnT9dNN92kt956S2fPnlVsbKwiIiKUkpKipk2bSvrrD3GLFi00fPhw1a5dW2lpaVq8eLFuvvlm7du3T3Xr1rXo8/7771e/fv30/vvv68KFC/Lw8NDvv/+uOnXq6IUXXlC9evV06tQpvfvuu+rUqZNSUlLUokULq3n16NFDy5Yt05EjR/T4449rxIgRcnd3V/v27bVixQqlpKRo+vTpql69uhYsWGDe9sEHH9SyZcs0adIkvfjiizp16pTmzJmj8PBw7d69WwEBAVq0aJEeeOABHTp0SGvXrrUYOy8vTwMHDtSWLVs0depUhYeH6+jRo5o1a5YiIiK0fft2i2/2du7cqf3792vGjBkKCQmRr69voa9ffHy8xo0bp+7du2vJkiXy9/fXzz//rL179xa6jSTt27dPPXv2VJMmTbRs2TJVrVpVixYt0ocffmgV+/zzz2vGjBm67777NGPGDGVnZ+vll19W165d9f3336t169bm2OzsbN1555168MEHNW3atCKTj6ioKO3cuVPPPfecmjdvrjNnzmjnzp06efLkNe1fcnKynnnmGW3atElff/21JKlZs2ZFHo+C2992223q0aOHeeltwd+Ja3lPnjt3Tl26dNGRI0f05JNPqlOnTjp//rw2b96stLQ0tWzZ0mpOZ86c0d133639+/crKSlJoaGhdu8PAKDyIs8r33ne7NmzNXv2bI0ZM0ZDhgzRsWPHNG7cOF25csXqGBRkGIbuuusubdu2TU8//bRuvvlmffPNN+rTp49V7L59+xQeHq5GjRrplVdeUWBgoL788ktNmjRJGRkZmjVrlkV8TEyMwsLCtGTJElWpUkX+/v4257By5UpNmDBBjzzyiObNm6cqVaro119/1b59+8wxx48f180336ycnBxNnz5d7dq108mTJ/Xll1/q9OnTCggIsOq3OO9rW2bOnKkLFy7ov//9r8XS26CgIPP/f/TRR9qyZYuefvppBQYGmvfxyJEjevDBB9WoUSNJf30p/sgjj+j48eN6+umnzds//fTTeuaZZ3T33Xfrsccek5+fn/bu3WtVzP67f/3rX3riiScUGxurGTNm2L0/wDUxAJQ7mzZtMiQZ//nPfyzaZ82aZRT8tW7Tpo3RvXv3Qvu46aabjLy8PHP7kSNHDA8PD2Ps2LGFjp+bm2ucP3/e8PX1NV599VVz+zvvvGNIMkaOHHnVfcjNzTWys7ON66+/3pgyZYrVvAYMGGARP3nyZEOSMWnSJIv2u+66y6hdu7b5eXJysiHJeOWVVyzijh07Zvj4+BhTp041t/Xr189o3Lix1dxWrFhhSDJWr15t0f7DDz8YkoxFixaZ2xo3bmy4ubkZBw8evOo+nzt3zqhRo4bRpUsXi2Nuj2HDhhk+/6+9O4+rouz/P/4+somIR1zYci0TF9xSU9QSU3HJrWy1UMssl/Q2RMtWMo3KJUvvtMVE09K726xMI8lEbxfKjXLLzDBMQcwQlBQU5veHP863I4uAB84BXs/HYx41M9fMfGbO0T59znXN5e5uJCcnW7ZdvnzZaNasmSHJSEhIMAzDMBITEw1nZ2djwoQJea7t6+tr3HfffZZtI0aMMCQZH374YZFiqF69ujFp0qQC9xf1/vL7no4YMcLw8PDI07Zhw4bGiBEjrhmbh4dHvu1s8Z2cPn26IcmIiYkp8NiEhARDkjFr1iwjISHBaNGihdGiRQvj2LFj17wuAAD/RJ73f8pTnpeammpUrVrVuOuuu6y2b9u2zZCU7+f0T19//bUhyeqZG4ZhzJw505BkvPTSS5Ztffr0MerVq2ekpaVZtX3yySeNqlWrGn/99ZdhGP/3vG+//fZrxp97fM2aNQtt8+ijjxouLi7GwYMHC2yTmxctWbLEsq043+v8jB8/vsB2kgyz2Wy574JkZ2cbly5dMqZPn27Url3b8mfjt99+M5ycnIyHHnqo0OO7d+9utGzZ0sjOzjaefPJJw9XV1Vi+fPk1YwdsieG0QCU3bNgwqy7sDRs2VJcuXbRp0ybLtvPnz+vpp59WkyZN5OzsLGdnZ1WvXl0ZGRk6dOhQnnMOHTo0z7bLly/r1VdfVYsWLeTq6ipnZ2e5urrqyJEj+Z5jwIABVuvNmzeXJKsX5OZu/+uvvyxDLb766iuZTCY9/PDDunz5smXx9fVVmzZtFBsbe81n8tVXX6lmzZoaOHCg1Tnatm0rX1/fPOdo3bq1mjZtes3zbt++Xenp6Ro3blyx3x2zadMm9ezZ0+rXTScnJ91///1W7b755htdvnxZw4cPt4q9atWq6t69e773n9/nlZ9bb71VUVFRmjFjhuLi4vIM5b2e+ytt1/Od/Prrr9W0aVP16tXrmtfZs2ePOnfuLB8fH23btk0NGza06X0AKB+2bNmigQMHyt/fXyaTqUQT73zzzTfq3LmzPD09VbduXQ0dOlQJCQm2DxYVGnleXqWV5+3YsUMXL17UQw89ZLW9S5cuRcoHcj+Tq48fNmyY1frFixe1ceNG3XXXXapWrZrVPfTv318XL15UXFyc1THFyfXOnj2rBx98UF988YX+/PPPPG2+/vpr9ejRw/KZOYo77rhDXl5eebZ/99136tWrl8xms5ycnOTi4qIXX3xRZ86cUUpKiiQpJiZG2dnZGj9+/DWvc/HiRQ0ZMkQrVqzQhg0b8nxeQGmjiAdUcr6+vvlu++cQyWHDhmnBggV67LHH9M033+iHH37Qzp07VbduXV24cCHP8f/s2p4rLCxML7zwgoYMGaK1a9fq+++/186dO9WmTZt8z1GrVi2rdVdX10K3X7x4UZJ06tQpGYYhHx8fubi4WC1xcXH5JiNXO3XqlM6ePStXV9c850hOTs5zjvzuNz+571kpyct7z5w5U+BndXXsktSxY8c8sa9atSpP7NWqVSvycIZVq1ZpxIgR+uCDDxQUFKRatWpp+PDhSk5Ovu77K23X8508ffp0ke8pJiZGp06d0mOPPaaaNWvaKnwA5UxGRobatGmjBQsWlOj43377TYMHD9Ydd9yh+Ph4ffPNN/rzzz9199132zhSVHTkeXmVVp6X+0yLkq8VdLyzs7Nq165d6LFnzpzR5cuXNX/+/Dzx9+/fX5JKfA+hoaH68MMP9fvvv2vo0KHy9vZWp06dFBMTY2lTnLyoLOV3jz/88INCQkIkSe+//762bdumnTt36rnnnpMky3ezODlsSkqKvvnmGwUFBalLly62Ch8oMt6JB1RyuQWYq7flJhBpaWn66quv9NJLL+mZZ56xtMnMzNRff/2V7znz64W1fPlyDR8+XK+++qrV9j///NOmxY46derIZDLpf//7X573wkh53xVT0Dlq166t6OjofPd7enparRe111ndunUlSX/88UeR2v9T7dq1C/ys/in3vTX//e9/i/Srb3F6zNWpU0fz5s3TvHnzlJiYqC+//FLPPPOMUlJSFB0dfV33V9qu5ztZt27dIt/TlClTdPToUUtPyOHDh19X3ADKp379+uX7HqtcWVlZev7557VixQqdPXtWgYGBev311y0vet+zZ4+ys7M1Y8YMValy5Tf38PBwDR48WJcuXZKLi0tZ3AYqAPK8/M9RGnle7jMt6JnnTjpS2PGXL1/WmTNnrAp5V5/Py8tLTk5OCg0NLbDnWOPGja3Wi5PvPfLII3rkkUeUkZGhLVu26KWXXtKAAQP0yy+/qGHDhsXKi8pSfve4cuVKubi46KuvvlLVqlUt26/uHf3PHLZ+/fqFXqdBgwaaO3eu7rrrLt1999369NNPrc4NlDZ64gEVnJubW76/gOb65JNPrGZn+v3337V9+3bL/0iYTCYZhpEnKfrggw+UnZ1d5DhMJlOec6xbt04nTpwo8jmKYsCAATIMQydOnFCHDh3yLK1atbK0LejZDBgwQGfOnFF2dna+57jWi4kL0qVLF5nNZi1atCjfGbEK06NHD23cuNHS006SsrOztWrVKqt2ffr0kbOzs44ePZpv7B06dChR7Fdr0KCBnnzySfXu3Vt79uyRdH33d72u9T3PT1G/k/369dMvv/ximXSjMFWqVNG7776rf/3rXxo5cqQWLlxYrJgAVA6PPPKItm3bppUrV+qnn37Svffeq759++rIkSOSpA4dOsjJyUlLlixRdna20tLS9NFHHykkJIQCHqyQ5zlOnte5c2dVrVpVK1assNq+ffv2QidHyNWjRw9JynP81ZOYVatWTT169NDevXvVunXrfO/h6t58JeHh4aF+/frpueeeU1ZWlg4cOCDpSl60adMmHT58+LqvURy536/i5Hsmk0nOzs5ycnKybLtw4YI++ugjq3YhISFycnIqct4WEhKib775Rlu2bNGAAQOUkZFR5JiA60VPPKCCa9WqlVauXKlVq1bpxhtvVNWqVa0SnJSUFN11110aPXq00tLS9NJLL6lq1aqaNm2apCuzfN5+++2aNWuW6tSpo0aNGmnz5s1avHhxsX5ZHTBggKKiotSsWTO1bt1au3fv1qxZs2zeHb9r1656/PHH9cgjj2jXrl26/fbb5eHhoaSkJG3dulWtWrXS2LFjLc/ms88+08KFC9W+fXtVqVJFHTp00AMPPKAVK1aof//++te//qVbb71VLi4u+uOPP7Rp0yYNHjxYd911V7Fjq169uubMmaPHHntMvXr10ujRo+Xj46Nff/1VP/74Y6HDrp5//nl9+eWXuuOOO/Tiiy+qWrVq+ve//50naWjUqJGmT5+u5557Tr/99pv69u0rLy8vnTp1Sj/88IM8PDz08ssvFzv2tLQ09ejRQ8OGDVOzZs3k6empnTt3Kjo62jK863ru73q1atVKsbGxWrt2rfz8/OTp6XnNJLyo38lJkyZp1apVGjx4sJ555hndeuutunDhgjZv3qwBAwZYku5/mjNnjjw9PTVu3DidP39eU6ZMsen9Aii/jh49qk8++UR//PGH/P39JV3pZRcdHa0lS5bo1VdfVaNGjbRhwwbde++9euKJJ5Sdna2goCCtX7/eztHD0ZDnOU6e5+XlpfDwcM2YMUOPPfaY7r33Xh0/flwRERFFGk4bEhKi22+/XVOnTlVGRoY6dOigbdu25Sk4SdJbb72lbt266bbbbtPYsWPVqFEjnTt3Tr/++qvWrl1bpB8e8zN69Gi5u7ura9eu8vPzU3JysiIjI2U2m9WxY0dJ0vTp0/X111/r9ttv17PPPqtWrVrp7Nmzio6OVlhYmJo1a1aia19L7vf69ddfV79+/eTk5KTWrVtbhlzn584779TcuXM1bNgwPf744zpz5oxmz56dp+DcqFEjPfvss3rllVd04cIFPfjggzKbzTp48KD+/PPPfHPnbt26aePGjerbt69CQkK0fv16mc1m2940kB97zagBoOSKM7vTsWPHjJCQEMPT09OQZJmlK/ccH330kTFx4kSjbt26hpubm3HbbbcZu3btsjrHH3/8YQwdOtTw8vIyPD09jb59+xr79+/PM3No7qxlO3fuzBNzamqqMWrUKMPb29uoVq2a0a1bN+N///uf0b17d6vZugq6t4LOnXvPp0+fttr+4YcfGp06dTI8PDwMd3d346abbjKGDx9udW9//fWXcc899xg1a9Y0TCaT1bO7dOmSMXv2bKNNmzZG1apVjerVqxvNmjUznnjiCePIkSOWdg0bNjTuvPPOPPdbmPXr1xvdu3c3PDw8jGrVqhktWrQwXn/99Wset23bNqNz586Gm5ub4evra0yZMsV47733rGanzfX5558bPXr0MGrUqGG4ubkZDRs2NO655x7j22+/tbQpaEbY/Fy8eNEYM2aM0bp1a6NGjRqGu7u7ERAQYLz00ktGRkZGse6vNGanjY+PN7p27WpUq1bNagY4W3wnc9v+61//Mho0aGC4uLgY3t7exp133mn8/PPPhmFYz077T7NmzTIkGS+++OI17wFAxSTJWLNmjWX9P//5jyHJ8PDwsFqcnZ0tM4gnJSUZN998szFlyhRjz549xubNm43u3bsbPXv2LPbs5ih/yPPy3nN5yfNycnKMyMhIo379+oarq6vRunVrY+3atfnmFvk5e/as8eijjxo1a9Y0qlWrZvTu3dv4+eef88xOaxhXco9HH33UuOGGGwwXFxejbt26RpcuXYwZM2ZY2hT0vAuydOlSo0ePHoaPj4/h6upq+Pv7G/fdd5/x008/WbU7fvy48eijjxq+vr6Gi4uLpd2pU6csscnGs9NmZmYajz32mFG3bl3L55mb/0oyxo8fn+9xH374oREQEGC4ubkZN954oxEZGWksXrw43/x52bJlRseOHS3fiXbt2lndQ+7stP+0f/9+w9fX17jlllvyfE+B0mAyjDIe8wTAIcTGxqpHjx769NNPdc8999g7HAAAKiSTyaQ1a9ZoyJAhkq5MEvTQQw/pwIEDVkO8pCs9mn19ffXCCy/o66+/1q5duyz7ct/VtGPHDnXu3LksbwHlEHkeAFRMDKcFAAAAyki7du2UnZ2tlJQU3Xbbbfm2+fvvv/MU+HLXc3JySj1GAADgmJjYAgAAALCh8+fPKz4+XvHx8ZKkhIQExcfHKzExUU2bNtVDDz2k4cOH67PPPlNCQoJ27typ119/3fLOuzvvvFM7d+7U9OnTdeTIEe3Zs0ePPPKIGjZsqHbt2tnxzgAAgD0xnBYAAACwodyhjFcbMWKEoqKidOnSJc2YMUPLli3TiRMnVLt2bQUFBenll1+2vLx95cqVeuONN/TLL7+oWrVqCgoK0uuvv15qL40HAACOjyIeAAAAAAAA4OAYTgsAAAAAAAA4OIp4AAAAAAAAgINjdtoylpOTo5MnT8rT01Mmk8ne4QAAgHLAMAydO3dO/v7+qlKF32AdFXkeAAAoruLkeRTxytjJkydVv359e4cBAADKoePHj6tevXr2DgMFIM8DAAAlVZQ8jyJeGfP09JR05cOpUaOGnaMBAADlQXp6uurXr2/JI+CYyPMAAEBxFSfPs2sRLzIyUp999pl+/vlnubu7q0uXLnr99dcVEBBgaTNy5EgtXbrU6rhOnTopLi7Osp6Zmanw8HB98sknunDhgnr27Kl33nnHqoKZmpqqiRMn6ssvv5QkDRo0SPPnz1fNmjUtbRITEzV+/Hh99913cnd317BhwzR79my5urpa2uzbt09PPvmkfvjhB9WqVUtPPPGEXnjhhSIPmchtV6NGDZI7AABQLAzRdGzkeQAAoKSKkufZ9aUqmzdv1vjx4xUXF6eYmBhdvnxZISEhysjIsGrXt29fJSUlWZb169db7Z80aZLWrFmjlStXauvWrTp//rwGDBig7OxsS5thw4YpPj5e0dHRio6OVnx8vEJDQy37s7OzdeeddyojI0Nbt27VypUrtXr1ak2ePNnSJj09Xb1795a/v7927typ+fPna/bs2Zo7d24pPSEAAAAAAABAMhmGYdg7iFynT5+Wt7e3Nm/erNtvv13SlZ54Z8+e1eeff57vMWlpaapbt64++ugj3X///ZL+730k69evV58+fXTo0CG1aNFCcXFx6tSpkyQpLi5OQUFB+vnnnxUQEKCvv/5aAwYM0PHjx+Xv7y9JWrlypUaOHKmUlBTVqFFDCxcu1LRp03Tq1Cm5ublJkl577TXNnz9ff/zxR5Gqpunp6TKbzUpLS+MXWgAAUCTkD+UDnxMAACiu4uQPDjW9WVpamiSpVq1aVttjY2Pl7e2tpk2bavTo0UpJSbHs2717ty5duqSQkBDLNn9/fwUGBmr79u2SpB07dshsNlsKeJLUuXNnmc1mqzaBgYGWAp4k9enTR5mZmdq9e7elTffu3S0FvNw2J0+e1LFjx/K9p8zMTKWnp1stAAAAAAAAQHE4zMQWhmEoLCxM3bp1U2BgoGV7v379dO+996phw4ZKSEjQCy+8oDvuuEO7d++Wm5ubkpOT5erqKi8vL6vz+fj4KDk5WZKUnJwsb2/vPNf09va2auPj42O138vLS66urlZtGjVqlOc6ufsaN26c5xqRkZF6+eWXi/k0AACwDcMwdPnyZatXTMDxODk5ydnZmXfeAQCAIiHHKz9smec5TBHvySef1E8//aStW7dabc8dIitJgYGB6tChgxo2bKh169bp7rvvLvB8hmFYPaD8HpYt2uSORi7ow5g2bZrCwsIs67mzjgAAUNqysrKUlJSkv//+296hoAiqVasmPz8/qwm1AAAArkaOV/7YKs9ziCLehAkT9OWXX2rLli1WM8rmx8/PTw0bNtSRI0ckSb6+vsrKylJqaqpVb7yUlBR16dLF0ubUqVN5znX69GlLTzpfX199//33VvtTU1N16dIlqza5vfL+eR1JeXrx5XJzc7MafgsAQFnIyclRQkKCnJyc5O/vL1dXV3p5OSjDMJSVlaXTp08rISFBN998s6pUcag3ngAAAAdBjle+2DrPs2sRzzAMTZgwQWvWrFFsbGy+w1GvdubMGR0/flx+fn6SpPbt28vFxUUxMTG67777JElJSUnav3+/3njjDUlSUFCQ0tLS9MMPP+jWW2+VJH3//fdKS0uzFPqCgoI0c+ZMJSUlWc69YcMGubm5qX379pY2zz77rLKysizV0w0bNsjf3z/PMFsAAOwpKytLOTk5ql+/vqpVq2bvcHAN7u7ucnFx0e+//66srCxVrVrV3iEBAAAHRI5X/tgyz7Prz7zjx4/X8uXL9fHHH8vT01PJyclKTk7WhQsXJEnnz59XeHi4duzYoWPHjik2NlYDBw5UnTp1dNddd0mSzGazRo0apcmTJ2vjxo3au3evHn74YbVq1Uq9evWSJDVv3lx9+/bV6NGjFRcXp7i4OI0ePVoDBgxQQECAJCkkJEQtWrRQaGio9u7dq40bNyo8PFyjR4+2zA4ybNgwubm5aeTIkdq/f7/WrFmjV199VWFhYVS+AQAOiR5d5QefFQAAKCryhvLFVp+XXT/1hQsXKi0tTcHBwfLz87Msq1atknTl5X/79u3T4MGD1bRpU40YMUJNmzbVjh075OnpaTnPm2++qSFDhui+++5T165dVa1aNa1du1ZOTk6WNitWrFCrVq0UEhKikJAQtW7dWh999JFlv5OTk9atW6eqVauqa9euuu+++zRkyBDNnj3b0sZsNismJkZ//PGHOnTooHHjxiksLMzqnXcAAAAAAACArZmM3JkZUCbS09NlNpuVlpZm6eEHAICtXbx4UQkJCWrcuDFDM8uJwj4z8ofygc8JAFDayPHKJ1vlefS/BAAAAAAAABwcRTwAAFBhGYahxx9/XLVq1ZLJZFJ8fLxd4wkODtakSZPsGgMAAICjee211xQUFFSsYypjnmfX2WkBAABKU3R0tKKiohQbG6sbb7xRderUsXdIAAAAuMqPP/6oNm3aFOuYypjnUcQDAAcWEWH9T8AWyvr7ZM/v79GjR+Xn56cuXbrYLwgAQKVX0H8LyfFgS2X5fbL1tX788UdNnDixWMdUxjyP4bQAAMAhnT59Wo8//rh8fHzk7u6uNm3aaMuWLUU+fuTIkZowYYISExNlMpnUqFEjSVJmZqYmTpwob29vVa1aVd26ddPOnTstxzVq1Ejz5s2zOlfbtm0V8Y9sNTg4WBMnTtTUqVNVq1Yt+fr6Wu2XpIyMDA0fPlzVq1eXn5+f5syZU9xHAAAAUOEcOnRIwcHBcnd3V7t27bRr1y798ssvxeqJV1nzPIp4AADA4fz+++9q3bq1UlNT9cUXX+inn37ShAkT5OnpWeRzvPXWW5o+fbrq1aunpKQkSwI3depUrV69WkuXLtWePXvUpEkT9enTR3/99VexYly6dKk8PDz0/fff64033tD06dMVExNj2T9lyhRt2rRJa9as0YYNGxQbG6vdu3cX6xoAAAAVyc8//6xOnTqpQ4cO2r9/v1588UUNHjxYhmGodevWRT5PZc3zGE4LAAAcztixY9WsWTP95z//kclkkiTdfPPNxTqH2WyWp6ennJyc5OvrK+nKr6YLFy5UVFSU+vXrJ0l6//33FRMTo8WLF2vKlClFPn/r1q310ksvWWJbsGCBNm7cqN69e+v8+fNavHixli1bpt69e0u6kgzWq1evWPcAAABQkYwfP16DBw/W7NmzJUk33XST/vOf/2jPnj3y8PAo8nkqa55HEQ8AADiUxMREff3119qzZ4+lgGcrR48e1aVLl9S1a1fLNhcXF9166606dOhQsc519a/Ffn5+SklJsVwnKyvLapa1WrVqKSAg4DqiBwAAKL9+//13fffdd9qzZ4/VdhcXl2JPapGfypDnMZwWAAA4lL1798rV1VXt2rXLd3+nTp20a9cuSdKIESO0cOHCIp/bMAxJylMcNAzDsq1KlSqWdrkuXbqU51wuLi5W6yaTSTk5OVbXAQAAwBXx8fFydnZWq1atrLbv2bNHbdu2lUSedy0U8QAAgENxcXHR5cuX9ffff+e7/4UXXtCrr76qOXPmqHr16ho7dmyRz92kSRO5urpq69atlm2XLl3Srl271Lx5c0lS3bp1lZSUZNmfnp6uhISEYt1DkyZN5OLiori4OMu21NRU/fLLL8U6DwAAQEVRpUoV5eTkKCsry7Jt/fr1OnDggKWIR55XOIbTAgAAh9KpUyeZzWaNHTtWzzzzjAzD0JYtWxQcHKxmzZppwIABev7553X+/HmtX7++WOf28PDQ2LFjNWXKFNWqVUsNGjTQG2+8ob///lujRo2SJN1xxx2KiorSwIED5eXlpRdeeEFOTk7Fuk716tU1atQoTZkyRbVr15aPj4+ee+45VanC76cAAKByat++vVxcXBQeHq7w8HDt37/fUqTLHU5Lnlc4ingAAMCh1K5dW2vXrtWUKVPUsWNHubq66tZbb9X9998vSfrhhx909uxZNW3aVM7OxU9lXnvtNeXk5Cg0NFTnzp1Thw4d9M0338jLy0uSNG3aNP32228aMGCAzGazXnnllWL/QitJs2bN0vnz5zVo0CB5enpq8uTJSktLK/Z5AAAAKgJ/f3998MEHmjZtmlauXKl27dppxIgRev/993XDDTdIIs+7FpPBS1vKVHp6usxms9LS0lSjRg17hwPAwUVEWP8TKKqLFy8qISFBjRs3VtWqVe0djs2cOHFC/fr10xdffKG7775bH3/8sWV4RHlX2GdG/lA+8DkBKEhBuRw5HoqrouZ4EnleUfIHxnQAAIBy4cKFC7rnnnu0YMECNW7cWFOnTtWMGTPsHRYAAACuE3le0TCcFgAAlAvu7u7asWOHZf3BBx/Ugw8+aMeIAAAAYAvkeUVDTzwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAAAAAADAwVHEAwAAAAAAABwcRTwAAABUWJGRkTKZTJo0aVKh7TZv3qz27duratWquvHGG7Vo0aKyCRAAAKCIKOIBQDkQEXFlAQAU3c6dO/Xee++pdevWhbZLSEhQ//79ddttt2nv3r169tlnNXHiRK1evbqMIgUAALg2ingAAACocM6fP6+HHnpI77//vry8vAptu2jRIjVo0EDz5s1T8+bN9dhjj+nRRx/V7NmzyyhaAACAa6OIBwAAgApn/PjxuvPOO9WrV69rtt2xY4dCQkKstvXp00e7du3SpUuXCjwuMzNT6enpVgsAAEBpoYgHAACACmXlypXas2ePIiMji9Q+OTlZPj4+Vtt8fHx0+fJl/fnnnwUeFxkZKbPZbFnq169/XXEDAAAUhiIeAACosIKDg685oQEqluPHj+tf//qXli9frqpVqxb5OJPJZLVuGEa+2/9p2rRpSktLsyzHjx8vWdAAAFRyr732moKCgop1TGXM85ztHQAAAChj2yPK9npdyvh6pSQ4OFht27bVvHnz7B0KCrF7926lpKSoffv2lm3Z2dnasmWLFixYoMzMTDk5OVkd4+vrq+TkZKttKSkpcnZ2Vu3atQu8lpubm9zc3Gx7AwAAlFRZ5ng2zu9+/PFHtWnTxqbnLI7ykudRxAMAAECF0bNnT+3bt89q2yOPPKJmzZrp6aefzlPAk6SgoCCtXbvWatuGDRvUoUMHubi4lGq8ACqeiAh7RwCUPz/++KMmTpxo7zAcHsNpAaAMRUT83wKgcKdPn9bjjz8uHx8fubu7q02bNtqyZct1nTMzM1MTJ06Ut7e3qlatqm7dumnnzp2W/f/973/VqlUrubu7q3bt2urVq5cyMjI0cuRIbd68WW+99ZZMJpNMJpOOHTt2nXeI0uDp6anAwECrxcPDQ7Vr11ZgYKCkK8Nghw8fbjlmzJgx+v333xUWFqZDhw7pww8/1OLFixUeHm6v2wAAoMI6dOiQgoOD5e7urnbt2mnXrl365ZdfrrsnXmXI8yjiAQAAh/P777+rdevWSk1N1RdffKGffvpJEyZMkKen53Wdd+rUqVq9erWWLl2qPXv2qEmTJurTp4/++usvJSUl6cEHH9Sjjz6qQ4cOKTY2VnfffbcMw9Bbb72loKAgjR49WklJSUpKSmISg3IsKSlJiYmJlvXGjRtr/fr1io2NVdu2bfXKK6/o7bff1tChQ+0YJQAAFc/PP/+sTp06qUOHDtq/f79efPFFDR48WIZhqHXr1td17sqQ5zGcFgDsJLc3Hr3ygLzGjh2rZs2a6T//+Y9lYoGbb775us6ZkZGhhQsXKioqSv369ZMkvf/++4qJidHixYvVs2dPXb58WXfffbcaNmwoSWrVqpXleFdXV1WrVk2+vr7XFQfKXmxsrNV6VFRUnjbdu3fXnj17yiYgAAAqqfHjx2vw4MGaPXu2JOmmm27Sf/7zH+3Zs0ceHh4lPm9lyfPoiQcAABxKYmKivv76a82dO7fQmUGL6+jRo7p06ZK6du1q2ebi4qJbb71Vhw4dUps2bdSzZ0+1atVK9957r95//32lpqba7PoAAACV2e+//67vvvtOYWFhVttdXFyueyhtZcnzKOIBAACHsnfvXrm6uqpdu3b57u/UqZN27dolSRoxYoQWLlxYpPMahiFJeQqDhmHIZDLJyclJMTEx+vrrr9WiRQvNnz9fAQEBSkhIuI67AQAAgCTFx8fL2dnZqgecJO3Zs0dt27aVRJ53LRTxAACAQ3FxcdHly5f1999/57v/hRde0Kuvvqo5c+aoevXqGjt2bJHO26RJE7m6umrr1q2WbZcuXdKuXbvUvHlzSVcSv65du+rll1+2FBPXrFkj6cowi+zs7Ou8OwAAgMqpSpUqysnJUVZWlmXb+vXrdeDAAUsRjzyvcLwTDwAAOJROnTrJbDZr7NixeuaZZ2QYhrZs2aLg4GA1a9ZMAwYM0PPPP6/z589r/fr1RT6vh4eHxo4dqylTpqhWrVpq0KCB3njjDf39998aNWqUvv/+e23cuFEhISHy9vbW999/r9OnT1sSv0aNGun777/XsWPHVL16ddWqVUtVqvB7KAAAQFG0b99eLi4uCg8PV3h4uPbv328p0uUOpyXPK5zjRQQAACq12rVra+3atTpy5Ig6duyobt266fPPP5ePj48k6YcfftDZs2dVs2ZNOTsX7/fI1157TUOHDlVoaKhuueUW/frrr/rmm2/k5eWlGjVqaMuWLerfv7+aNm2q559/XnPmzLG8HDk8PFxOTk5q0aKF6tatazW7KQAAAArn7++vDz74QGvXrlWHDh301ltvacSIEapTp45uuOEGSeR512IycgcOo0ykp6fLbDYrLS1NNWrUsHc4AMpYfjPRFjY77dX7mMkWRXXx4kUlJCSocePGqlq1qr3DsZkTJ06oX79++uKLL3T33Xfr448/tvyCWt4V9pmRP5QPfE4ApOLla+R2KK6KmuNJ5HlFyR/oiQcAAMqFCxcu6J577tGCBQvUuHFjTZ06VTNmzLB3WAAAALhO5HlFwzvxAABAueDu7q4dO3ZY1h988EE9+OCDdowIAAAAtkCeVzT0xAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAoAIzDMPeIaCI+KwAAEBRkTeUL7b6vCjiAQBQAbm4uEiS/v77bztHgqLK/axyPzsAAICrkeOVT7bK85xtEQwAAHAsTk5OqlmzplJSUiRJ1apVk8lksnNUyI9hGPr777+VkpKimjVrysnJyd4hAQAAB0WOV77YOs+jiAcAQAXl6+srSZYkD46tZs2als8MAACgIOR45Y+t8jyKeAAAVFAmk0l+fn7y9vbWpUuX7B0OCuHi4kIPPAAAUCTkeOWLLfM8ingAAFRwTk5OFIgAAAAqGHK8yoeJLQAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHB2LeJFRkaqY8eO8vT0lLe3t4YMGaLDhw9btTEMQxEREfL395e7u7uCg4N14MABqzaZmZmaMGGC6tSpIw8PDw0aNEh//PGHVZvU1FSFhobKbDbLbDYrNDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVl1Wbfvn3q3r273N3ddcMNN2j69OkyDMN2DwUAAAAAAAC4il2LeJs3b9b48eMVFxenmJgYXb58WSEhIcrIyLC0eeONNzR37lwtWLBAO3fulK+vr3r37q1z585Z2kyaNElr1qzRypUrtXXrVp0/f14DBgxQdna2pc2wYcMUHx+v6OhoRUdHKz4+XqGhoZb92dnZuvPOO5WRkaGtW7dq5cqVWr16tSZPnmxpk56ert69e8vf3187d+7U/PnzNXv2bM2dO7eUnxQAAAAAAAAqM2d7Xjw6OtpqfcmSJfL29tbu3bt1++23yzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGX49ABUVBER9o4AAMq3hQsXauHChTp27JgkqWXLlnrxxRfVr1+/fNvHxsaqR48eebYfOnRIzZo1K81QAQAAisyh3omXlpYmSapVq5YkKSEhQcnJyQoJCbG0cXNzU/fu3bV9+3ZJ0u7du3Xp0iWrNv7+/goMDLS02bFjh8xms6WAJ0mdO3eW2Wy2ahMYGGgp4ElSnz59lJmZqd27d1vadO/eXW5ublZtTp48aUkSr5aZman09HSrBQAAAKWnXr16eu2117Rr1y7t2rVLd9xxhwYPHpznlSxXO3z4sJKSkizLzTffXEYRAwAAXJvDFPEMw1BYWJi6deumwMBASVJycrIkycfHx6qtj4+PZV9ycrJcXV3l5eVVaBtvb+881/T29rZqc/V1vLy85OrqWmib3PXcNleLjIy0vIfPbDarfv3613gSAAAAuB4DBw5U//791bRpUzVt2lQzZ85U9erVFRcXV+hx3t7e8vX1tSxOTk5lFDEAAMC1OUwR78knn9RPP/2kTz75JM++q4epGoZxzaGrV7fJr70t2uROalFQPNOmTVNaWpplOX78eKFxAwAAwHays7O1cuVKZWRkKCgoqNC27dq1k5+fn3r27KlNmzZd89yMuAAAAGXJIYp4EyZM0JdffqlNmzapXr16lu2+vr6S8vZyS0lJsfSA8/X1VVZWllJTUwttc+rUqTzXPX36tFWbq6+TmpqqS5cuFdomJSVFUt7egrnc3NxUo0YNqwUAAACla9++fapevbrc3Nw0ZswYrVmzRi1atMi3rZ+fn9577z2tXr1an332mQICAtSzZ09t2bKl0Gsw4gIAAJQluxbxDMPQk08+qc8++0zfffedGjdubLW/cePG8vX1VUxMjGVbVlaWNm/erC5dukiS2rdvLxcXF6s2SUlJ2r9/v6VNUFCQ0tLS9MMPP1jafP/990pLS7Nqs3//fiUlJVnabNiwQW5ubmrfvr2lzZYtW5SVlWXVxt/fX40aNbLRUwFQEUVEMGEFAJSlgIAAxcfHKy4uTmPHjtWIESN08ODBAtuOHj1at9xyi4KCgvTOO+/ozjvv1OzZswu9BiMuAABAWbJrEW/8+PFavny5Pv74Y3l6eio5OVnJycm6cOGCpCtDVCdNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGW3nPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAADAwbi6uqpJkybq0KGDIiMj1aZNG7311ltFPr5z5846cuRIoW0YcQEAAMqSsz0vvnDhQklScHCw1fYlS5Zo5MiRkqSpU6fqwoULGjdunFJTU9WpUydt2LBBnp6elvZvvvmmnJ2ddd999+nChQvq2bOnoqKirF5GvGLFCk2cONEyi+2gQYO0YMECy34nJyetW7dO48aNU9euXeXu7q5hw4ZZ/QJrNpsVExOj8ePHq0OHDvLy8lJYWJjCwsJs/WgAAABgQ4ZhKDMzs8jt9+7dKz8/v1KMCAAAoHjsWsTLnRSiMCaTSREREYooZBxa1apVNX/+fM2fP7/ANrVq1dLy5csLvVaDBg301VdfFdqmVatW13w/CgAAAOzn2WefVb9+/VS/fn2dO3dOK1euVGxsrKKjoyVdGQZ74sQJLVu2TJI0b948NWrUSC1btlRWVpaWL1+u1atXa/Xq1fa8DQAAACt2LeIBAAAAtnbq1CmFhoYqKSlJZrNZrVu3VnR0tHr37i3pyvuTExMTLe2zsrIUHh6uEydOyN3dXS1bttS6devUv39/e90CAABAHhTxAAAAUKEsXry40P1RUVFW61OnTtXUqVNLMSIAAIDrZ9eJLQAAAAAAAABcG0U8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AAAAAAAAwMFRxAMAAAAAAAAcHEU8AChHIiKuLAAAAACAyoUiHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAAAAADo4iHgAAAAAAAODgKOIBAAAAKJbg4GBNmjTJ3mEoKipKNWvWtKxHRESobdu2xTrH1ffSqFEjzZs3r9BjTCaTPv/882JdBwCA60URDwAAAECFEB4ero0bNxbrmM8++0yvvPJKKUVkGwcOHNDQoUPVqFEjmUymaxYZiyoiIkImkynP4uHhYZPzAwBsiyIeAAAAgAqhevXqql27drGOqVWrljw9PUspopI7fvy45d///vtv3XjjjXrttdfk6+trs2uEh4crKSnJamnRooXuvfdem10DAGA7FPEAAAAAFCgjI0PDhw9X9erV5efnpzlz5lzzmNxhrR999JEaNWoks9msBx54QOfOnbO0MQxDb7zxhm688Ua5u7urTZs2+u9//2t1ni+//FI333yz3N3d1aNHDy1dulQmk0lnz54t9Lq5Ll++rIkTJ6pmzZqqXbu2nn76aY0YMUJDhgyxtMlvaPC5c+c0bNgwVa9eXf7+/po/f36h93vixAndf//98vLyUu3atTV48GAdO3bsms/pasePH9fMmTPVtGlTTZw40bK9Y8eOmjVrlh544AG5ubnle2xRnufVqlevLl9fX8ty6tQpHTx4UKNGjSp27ACA0kcRDwAAAECBpkyZok2bNmnNmjXasGGDYmNjtXv37msed/ToUX3++ef66quv9NVXX2nz5s167bXXLPuff/55LVmyRAsXLtSBAwf01FNP6eGHH9bmzZslSceOHdM999yjIUOGKD4+Xk888YSee+65YsX++uuva8WKFVqyZIm2bdum9PT0Ir3LbtasWWrdurX27NmjadOm6amnnlJMTEy+bf/++2/16NFD1atX15YtW7R161ZVr15dffv2VVZW1jWv9ffff+ujjz5Sr1691KhRI61fv15hYWH68MMPi3Wv13qeRfHBBx+oadOmuu2224p1bQBA2XC2dwAAAAAAHNP58+e1ePFiLVu2TL1795YkLV26VPXq1bvmsTk5OYqKirIMVQ0NDdXGjRs1c+ZMZWRkaO7cufruu+8UFBQkSbrxxhu1detWvfvuu+revbsWLVqkgIAAzZo1S5IUEBCg/fv3a+bMmUWOf/78+Zo2bZruuusuSdKCBQu0fv36ax7XtWtXPfPMM5Kkpk2batu2bXrzzTctz+CfVq5cqSpVquiDDz6QyWSSJC1ZskQ1a9ZUbGysQkJC8r3G5s2btXTpUn366afy9vbWww8/rHfffVc33XRTke8vV1Ge57VkZmZqxYoVlvsGADgeingAAAAA8nX06FFlZWVZCkPSlXfIBQQEXPPYRo0aWb1rzs/PTykpKZKkgwcP6uLFi3mKYllZWWrXrp0k6fDhw+rYsaPV/ltvvbXIsaelpenUqVNWxzg5Oal9+/bKyckp9Nh/3m/uekGTSezevVu//vprnvfqXbx4UUePHi3wGsHBwXJ3d9fcuXM1ZsyYa9xN4YryPFu2bKnff/9dknTbbbfp66+/tmr72Wef6dy5cxo+fPh1xQIAKD0U8QAAAFChLFy4UAsXLrS8k6xly5Z68cUX1a9fvwKP2bx5s8LCwnTgwAH5+/tr6tSp111YqQgMwyjxsS4uLlbrJpPJUjzL/ee6det0ww03WLXLfeebYRiWnm3XE48tzpHfeXLl5OSoffv2WrFiRZ59devWLfB8a9eu1dKlSzVp0iS99957Cg0N1YMPPliiiSuK8jzXr1+vS5cuSZLc3d3znOODDz7QgAEDbDpxBgDAtijiAQAAoEKpV6+eXnvtNTVp0kTSleGfgwcP1t69e9WyZcs87RMSEtS/f3+NHj1ay5cv17Zt2zRu3DjVrVtXQ4cOLevwHUqTJk3k4uKiuLg4NWjQQJKUmpqqX375pUhDNAvSokULubm5KTExscDzNGvWLM/Q1127dhX5GmazWT4+Pvrhhx8s73jLzs7W3r17rSa/yE9cXFye9WbNmuXb9pZbbtGqVavk7e2tGjVqFDm+AQMGaMCAAUpNTdUnn3yipUuXasqUKerdu7dCQ0M1ZMgQVatWrUjnKsrzbNiwYYHHJyQkaNOmTfryyy+LHD8AoOxRxAMAAECFMnDgQKv1mTNnauHChYqLi8u3iLdo0SI1aNDAMlyyefPm2rVrl2bPnl3pi3jVq1fXqFGjNGXKFNWuXVs+Pj567rnnVKXK9c2P5+npqfDwcD311FPKyclRt27dlJ6eru3bt6t69eoaMWKEnnjiCc2dO1dPP/20Ro0apfj4eEVFRUkquFfc1SZMmKDIyEg1adJEzZo10/z585WamnrN47dt26Y33nhDQ4YMUUxMjD799FOtW7cu37YPPfSQZs2apcGDB2v69OmqV6+eEhMT9dlnn2nKlCnXfH+gl5eXxo0bp3Hjxunnn39WVFSUpk6dqtWrV2v16tWSrgyLPXjwoOXfT5w4ofj4eFWvXl1NmjQp0vMszIcffig/P79Ce6sCAOyPIh4AAAAqrOzsbH366afKyMjI856zXDt27Mgz+UCfPn20ePFiXbp0Kc+w0FyZmZnKzMy0rKenp9sucAcya9YsnT9/XoMGDZKnp6cmT56stLS06z7vK6+8Im9vb0VGRuq3335TzZo1dcstt+jZZ5+VJDVu3Fj//e9/NXnyZL311lsKCgrSc889p7Fjx1qGiF7L008/reTkZA0fPlxOTk56/PHH1adPHzk5ORV63OTJk7V79269/PLL8vT01Jw5c9SnT59821arVk1btmzR008/rbvvvlvnzp3TDTfcoJ49exarZ550pffha6+9pldffVW//vqrZfvJkyct77aTpNmzZ2v27Nnq3r27YmNjJV37eRYkdwKSkSNHXvO5AADsy2Rcz4suUGzp6ekym81KS0sr9n/UAZRfERFF31dY2+K0AVBxkD8U3759+xQUFKSLFy+qevXq+vjjj9W/f/982zZt2lQjR460KnZs375dXbt21cmTJ+Xn55fvcREREXr55ZfzbOdzKj0zZ87UokWLdPz48RIdn5OTo+bNm+u+++7TK6+8YuPogCuKk6eR0wEoTp53ff3gAQAAAAcUEBCg+Ph4xcXFaezYsRoxYoRlOGJ+Cpr8oLBhl9OmTVNaWpplKWlhCQV75513tHPnTv3222/66KOPNGvWrGsODf2n33//Xe+//75++eUX7du3T2PHjlVCQoKGDRtWilEDAFA6GE4LAACACsfV1dUysUWHDh20c+dOvfXWW3r33XfztPX19VVycrLVtpSUFDk7O6t27doFXsPNza3IwzpRMkeOHNGMGTP0119/qUGDBpo8ebKmTZtW5OOrVKmiqKgohYeHyzAMBQYG6ttvv1Xz5s1LMWoAAEoHRTwAAABUeIZhWL2/7p+CgoK0du1aq20bNmxQhw4dCnwfHsrGm2++qTfffLPEx9evX1/btm2zYUQAANgPw2kBAABQoTz77LP63//+p2PHjmnfvn167rnnFBsbq4ceekjSlWGww4cPt7QfM2aMfv/9d4WFhenQoUP68MMPtXjxYoWHh9vrFgAAAPKgJx4AAAAqlFOnTik0NFRJSUkym81q3bq1oqOj1bt3b0lSUlKSEhMTLe0bN26s9evX66mnntK///1v+fv76+2339bQoUPtdQsAAAB5UMQDAABAhbJ48eJC90dFReXZ1r17d+3Zs6eUIgIAALh+DKcFAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBUcQDAAAAAAAAHBxFPAAAAAAAAMDBOds7AACoyCIi7B0BAAAAAKAioCceAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOzq5FvC1btmjgwIHy9/eXyWTS559/brV/5MiRMplMVkvnzp2t2mRmZmrChAmqU6eOPDw8NGjQIP3xxx9WbVJTUxUaGiqz2Syz2azQ0FCdPXvWqk1iYqIGDhwoDw8P1alTRxMnTlRWVpZVm3379ql79+5yd3fXDTfcoOnTp8swDJs9DwAAAAAAACA/di3iZWRkqE2bNlqwYEGBbfr27aukpCTLsn79eqv9kyZN0po1a7Ry5Upt3bpV58+f14ABA5SdnW1pM2zYMMXHxys6OlrR0dGKj49XaGioZX92drbuvPNOZWRkaOvWrVq5cqVWr16tyZMnW9qkp6erd+/e8vf3186dOzV//nzNnj1bc+fOteETAQAAAAAAAPJytufF+/Xrp379+hXaxs3NTb6+vvnuS0tL0+LFi/XRRx+pV69ekqTly5erfv36+vbbb9WnTx8dOnRI0dHRiouLU6dOnSRJ77//voKCgnT48GEFBARow4YNOnjwoI4fPy5/f39J0pw5czRy5EjNnDlTNWrU0IoVK3Tx4kVFRUXJzc1NgYGB+uWXXzR37lyFhYXJZDLlG2NmZqYyMzMt6+np6cV+TgAAAAAAAKjcHP6deLGxsfL29lbTpk01evRopaSkWPbt3r1bly5dUkhIiGWbv7+/AgMDtX37dknSjh07ZDabLQU8SercubPMZrNVm8DAQEsBT5L69OmjzMxM7d6929Kme/fucnNzs2pz8uRJHTt2rMD4IyMjLcN4zWaz6tevf30PBAAAAAAAAJWOQxfx+vXrpxUrVui7777TnDlztHPnTt1xxx2Wnm3JyclydXWVl5eX1XE+Pj5KTk62tPH29s5zbm9vb6s2Pj4+Vvu9vLzk6upaaJvc9dw2+Zk2bZrS0tIsy/Hjx4vzCAAAAAAAAAD7Dqe9lvvvv9/y74GBgerQoYMaNmyodevW6e677y7wOMMwrIa35jfU1RZtcie1KGgorXRlOPA/e+8BAAAAAAAAxeXQPfGu5ufnp4YNG+rIkSOSJF9fX2VlZSk1NdWqXUpKiqWXnK+vr06dOpXnXKdPn7Zqc3VvutTUVF26dKnQNrlDe6/uoQcAAAAAAADYUrkq4p05c0bHjx+Xn5+fJKl9+/ZycXFRTEyMpU1SUpL279+vLl26SJKCgoKUlpamH374wdLm+++/V1pamlWb/fv3KykpydJmw4YNcnNzU/v27S1ttmzZoqysLKs2/v7+atSoUandMwAAAAAAAGDXIt758+cVHx+v+Ph4SVJCQoLi4+OVmJio8+fPKzw8XDt27NCxY8cUGxurgQMHqk6dOrrrrrskSWazWaNGjdLkyZO1ceNG7d27Vw8//LBatWplma22efPm6tu3r0aPHq24uDjFxcVp9OjRGjBggAICAiRJISEhatGihUJDQ7V3715t3LhR4eHhGj16tGrUqCFJGjZsmNzc3DRy5Ejt379fa9as0auvvlrozLQAAAAAAACALdj1nXi7du1Sjx49LOthYWGSpBEjRmjhwoXat2+fli1bprNnz8rPz089evTQqlWr5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGmxaxEvODjYMjlEfr755ptrnqNq1aqaP3++5s+fX2CbWrVqafny5YWep0GDBvrqq68KbdOqVStt2bLlmjEBAAAAAAAAtlSu3okHAAAAXEtkZKQ6duwoT09PeXt7a8iQITp8+HChx8TGxspkMuVZfv755zKKGgAAoHBF7on35ZdfFvmkgwYNKlEwAAAAqFxKI8fcvHmzxo8fr44dO+ry5ct67rnnFBISooMHD8rDw6PQYw8fPmx5J7Ik1a1bt8jxAQAAlKYiF/GGDBlitW4ymayGwv5zcofs7OzrjwwAAAAVXmnkmNHR0VbrS5Yskbe3t3bv3q3bb7+90GO9vb1Vs2bNIl0HAACgLBV5OG1OTo5l2bBhg9q2bauvv/5aZ8+eVVpamtavX69bbrklT9IEAAAAFKQscsy0tDRJV96TfC3t2rWTn5+fevbsqU2bNhXaNjMzU+np6VYLAABAaSnRxBaTJk3SokWL1K1bN8u2Pn36qFq1anr88cd16NAhmwUIAACAyqE0ckzDMBQWFqZu3bopMDCwwHZ+fn5677331L59e2VmZuqjjz5Sz549FRsbW2DvvcjISL388svFjgkAAKAkSlTEO3r0qMxmc57tZrNZx44du96YAAAAUAmVRo755JNP6qefftLWrVsLbRcQEKCAgADLelBQkI4fP67Zs2cXWMSbNm2awsLCLOvp6emqX79+ieIEAAC4lhLNTtuxY0dNmjRJSUlJlm3JycmaPHmybr31VpsFBwAAgMrD1jnmhAkT9OWXX2rTpk2qV69esY/v3Lmzjhw5UuB+Nzc31ahRw2oBAAAoLSUq4n344YdKSUlRw4YN1aRJEzVp0kQNGjRQUlKSFi9ebOsYAQAAUAnYKsc0DENPPvmkPvvsM3333Xdq3LhxieLZu3ev/Pz8SnQsAACArZVoOG2TJk30008/KSYmRj///LMMw1CLFi3Uq1cvqxnEAAAAgKKyVY45fvx4ffzxx/riiy/k6emp5ORkSVeG5bq7u0u6MhT2xIkTWrZsmSRp3rx5atSokVq2bKmsrCwtX75cq1ev1urVq21/owAAACVQoiKeJJlMJoWEhOj222+Xm5sbxTsAAABcN1vkmAsXLpQkBQcHW21fsmSJRo4cKUlKSkpSYmKiZV9WVpbCw8N14sQJubu7q2XLllq3bp369+9f4nsBAACwpRIV8XJycjRz5kwtWrRIp06d0i+//KIbb7xRL7zwgho1aqRRo0bZOk4AKFciIsru/KV9LQAoK7bKMQ3DuGabqKgoq/WpU6dq6tSpJQkbAACgTJTonXgzZsxQVFSU3njjDbm6ulq2t2rVSh988IHNggMAAEDlQY4JAABQsBIV8ZYtW6b33ntPDz30kJycnCzbW7durZ9//tlmwQEAAKDyIMcEAAAoWImKeCdOnFCTJk3ybM/JydGlS5euOygAAABUPuSYAAAABStREa9ly5b63//+l2f7p59+qnbt2l13UAAAAKh8yDEBAAAKVqKJLV566SWFhobqxIkTysnJ0WeffabDhw9r2bJl+uqrr2wdIwAAACoBckwAAICClagn3sCBA7Vq1SqtX79eJpNJL774og4dOqS1a9eqd+/eto4RAAAAlQA5JgAAQMFK1BNPkvr06aM+ffrYMhYAAABUcuSYAAAA+StxES/X+fPnlZOTY7WtRo0a13taAAAAVGLkmAAAANZKNJw2ISFBd955pzw8PGQ2m+Xl5SUvLy/VrFlTXl5eto4RAAAAlQA5JgAAQMFK1BPvoYcekiR9+OGH8vHxkclksmlQAAAAqHzIMQFUdMGuEZZ/j82KKLAdAOSnREW8n376Sbt371ZAQICt4wEAAEAlRY4JAABQsBINp+3YsaOOHz9u61gAAABQiZFjAgAAFKxEPfE++OADjRkzRidOnFBgYKBcXFys9rdu3domwQEAAKDyIMcEAAAoWImKeKdPn9bRo0f1yCOPWLaZTCYZhiGTyaTs7GybBQgAAIDKgRwTAACgYCUq4j366KNq166dPvnkE146DAAAAJsgxwQAAChYiYp4v//+u7788ks1adLE1vEAAACgkiLHBAAAKFiJJra444479OOPP9o6FgAAAFRi5JgAAAAFK1FPvIEDB+qpp57Svn371KpVqzwvHR40aJBNggMAXFtEhPU/AaC8IscEAAAoWImKeGPGjJEkTZ8+Pc8+XjoMAACAkiDHBAAAKFiJing5OTm2jgMAAACVHDkmAABAwYr9TrzLly/L2dlZ+/fvL414AAAAUAmRYwIAABSu2EU8Z2dnNWzYkOEMAAAAsBlyTAAAgMKVaHba559/XtOmTdNff/1l63gAAABQSZFjAgAAFKxE78R7++239euvv8rf318NGzaUh4eH1f49e/bYJDgAqAyYXRYAriDHBAAAKFiJinhDhgyxcRgAUP5RhAOA60OOCQAAULASFfFeeuklW8cBAACASo4cEwAAoGAlKuLl2r17tw4dOiSTyaQWLVqoXbt2tooLAAAAlRQ5JgAAQF4lKuKlpKTogQceUGxsrGrWrCnDMJSWlqYePXpo5cqVqlu3rq3jBAAAQAVHjgkAAFCwEs1OO2HCBKWnp+vAgQP666+/lJqaqv379ys9PV0TJ060dYwAAACoBGyVY0ZGRqpjx47y9PSUt7e3hgwZosOHD1/zuM2bN6t9+/aqWrWqbrzxRi1atOh6bgcAAMCmSlTEi46O1sKFC9W8eXPLthYtWujf//63vv76a5sFBwAAgMrDVjnm5s2bNX78eMXFxSkmJkaXL19WSEiIMjIyCjwmISFB/fv312233aa9e/fq2Wef1cSJE7V69erruicAAABbKdFw2pycHLm4uOTZ7uLiopycnOsOCgAAAJWPrXLM6Ohoq/UlS5bI29tbu3fv1u23357vMYsWLVKDBg00b948SVLz5s21a9cuzZ49W0OHDi36TQAAAJSSEvXEu+OOO/Svf/1LJ0+etGw7ceKEnnrqKfXs2dNmwQEAAKDyKK0cMy0tTZJUq1atAtvs2LFDISEhVtv69OmjXbt26dKlS/kek5mZqfT0dKsFAACgtJSoiLdgwQKdO3dOjRo10k033aQmTZqoUaNGOnfunN5++21bxwgAAIBKoDRyTMMwFBYWpm7duikwMLDAdsnJyfLx8bHa5uPjo8uXL+vPP//M95jIyEiZzWbLUr9+/RLFCAAAUBQlGk5bv3597dmzR99++60OHTokwzDUokUL9erVy9bxAQAAoJIojRzzySef1E8//aStW7des63JZLJaNwwj3+25pk2bprCwMMt6eno6hTwAAFBqSlTEk6SNGzfqu+++U0pKinJychQfH6+PP/5YkvThhx/aLEAAAABUHrbMMSdMmKAvv/xSW7ZsUb169Qpt6+vrq+TkZKttKSkpcnZ2Vu3atfM9xs3NTW5ubsWKCQAAoKRKVMR7+eWXNX36dHXo0EF+fn4F/joJAAAAFJWtckzDMDRhwgStWbNGsbGxaty48TWPCQoK0tq1a622bdiwQR06dMh3sg0AAICyVqIi3qJFixQVFaXQ0FBbxwMAAIBKylY55vjx4/Xxxx/riy++kKenp6WHndlslru7u6QrQ2FPnDihZcuWSZLGjBmjBQsWKCwsTKNHj9aOHTu0ePFiffLJJ9d3UwAAADZSooktsrKy1KVLF1vHAgAAgErMVjnmwoULlZaWpuDgYPn5+VmWVatWWdokJSUpMTHRst64cWOtX79esbGxatu2rV555RW9/fbbGjp06HXHAwAAYAsl6on32GOP6eOPP9YLL7xg63gAAABQSdkqx8ydkKIwUVFRebZ1795de/bsua5rAwAAlJYSFfEuXryo9957T99++61at26d5z0hc+fOtUlwAAAAqDzIMQEAAApWoiLeTz/9pLZt20qS9u/fb7WPSS4AAABQEuSYAAAABStREW/Tpk22jgMAAACVHDkmAABAwUo0sQUAAAAAAACAskMRDwAAAAAAAHBwFPEAAAAAAAAAB0cRDwAAAAAAAHBwdi3ibdmyRQMHDpS/v79MJpM+//xzq/2GYSgiIkL+/v5yd3dXcHCwDhw4YNUmMzNTEyZMUJ06deTh4aFBgwbpjz/+sGqTmpqq0NBQmc1mmc1mhYaG6uzZs1ZtEhMTNXDgQHl4eKhOnTqaOHGisrKyrNrs27dP3bt3l7u7u2644QZNnz5dhmHY7HkAAAAAAAAA+bFrES8jI0Nt2rTRggUL8t3/xhtvaO7cuVqwYIF27twpX19f9e7dW+fOnbO0mTRpktasWaOVK1dq69atOn/+vAYMGKDs7GxLm2HDhik+Pl7R0dGKjo5WfHy8QkNDLfuzs7N15513KiMjQ1u3btXKlSu1evVqTZ482dImPT1dvXv3lr+/v3bu3Kn58+dr9uzZmjt3bik8GQAovoiIKwsAAAAAoOJxtufF+/Xrp379+uW7zzAMzZs3T88995zuvvtuSdLSpUvl4+Ojjz/+WE888YTS0tK0ePFiffTRR+rVq5ckafny5apfv76+/fZb9enTR4cOHVJ0dLTi4uLUqVMnSdL777+voKAgHT58WAEBAdqwYYMOHjyo48ePy9/fX5I0Z84cjRw5UjNnzlSNGjW0YsUKXbx4UVFRUXJzc1NgYKB++eUXzZ07V2FhYTKZTGXwxAAAAAAAji7YNcLeIQCogBz2nXgJCQlKTk5WSEiIZZubm5u6d++u7du3S5J2796tS5cuWbXx9/dXYGCgpc2OHTtkNpstBTxJ6ty5s8xms1WbwMBASwFPkvr06aPMzEzt3r3b0qZ79+5yc3OzanPy5EkdO3aswPvIzMxUenq61QIAAAAAAAAUh8MW8ZKTkyVJPj4+Vtt9fHws+5KTk+Xq6iovL69C23h7e+c5v7e3t1Wbq6/j5eUlV1fXQtvkrue2yU9kZKTlXXxms1n169cv/MYBAAAAAACAqzhsES/X1cNUDcO45tDVq9vk194WbXIntSgsnmnTpiktLc2yHD9+vNDYAQAAAAAAgKs5bBHP19dXUt5ebikpKZYecL6+vsrKylJqamqhbU6dOpXn/KdPn7Zqc/V1UlNTdenSpULbpKSkSMrbW/Cf3NzcVKNGDasFAAAAAAAAKA6HLeI1btxYvr6+iomJsWzLysrS5s2b1aVLF0lS+/bt5eLiYtUmKSlJ+/fvt7QJCgpSWlqafvjhB0ub77//XmlpaVZt9u/fr6SkJEubDRs2yM3NTe3bt7e02bJli7Kysqza+Pv7q1GjRrZ/AAAAAAAAAMD/Z9ci3vnz5xUfH6/4+HhJVyaziI+PV2JiokwmkyZNmqRXX31Va9as0f79+zVy5EhVq1ZNw4YNkySZzWaNGjVKkydP1saNG7V37149/PDDatWqlWW22ubNm6tv374aPXq04uLiFBcXp9GjR2vAgAEKCAiQJIWEhKhFixYKDQ3V3r17tXHjRoWHh2v06NGWnnPDhg2Tm5ubRo4cqf3792vNmjV69dVXmZkWAAAAAAAApc7ZnhfftWuXevToYVkPCwuTJI0YMUJRUVGaOnWqLly4oHHjxik1NVWdOnXShg0b5OnpaTnmzTfflLOzs+677z5duHBBPXv2VFRUlJycnCxtVqxYoYkTJ1pmsR00aJAWLFhg2e/k5KR169Zp3Lhx6tq1q9zd3TVs2DDNnj3b0sZsNismJkbjx49Xhw4d5OXlpbCwMEvMAAAAAAAAQGkxGbmzM6BMpKeny2w2Ky0tjffjARVERIRtz3O957NVPAAcB/lD+cDnBEC6kosFu0Zcs11sVgR5G4Bi5Q8O+048AAAAAAAAAFfYdTgtAAAAAAAVwvYISVKwq33DAFBx0RMPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPPy+0fWxsrEwmU57l559/LpuAAQAAisDZ3gEAAAAAtpSRkaE2bdrokUce0dChQ4t83OHDh1WjRg3Let26dUsjPAAAgBKhiAcAAIAKpV+/furXr1+xj/P29lbNmjVtHxAAAIANMJwWAAAAkNSuXTv5+fmpZ8+e2rRp0zXbZ2ZmKj093WoBAAAoLRTxAAAAUKn5+fnpvffe0+rVq/XZZ58pICBAPXv21JYtWwo9LjIyUmaz2bLUr1+/jCIGAACVEcNpAQAAUKkFBAQoICDAsh4UFKTjx49r9uzZuv322ws8btq0aQoLC7Osp6enU8gDAAClhp54AFDBRERcWQAAJde5c2cdOXKk0DZubm6qUaOG1QIAAFBaKOIBAAAAV9m7d6/8/PzsHQYAAIAFw2kBAABQoZw/f16//vqrZT0hIUHx8fGqVauWGjRooGnTpunEiRNatmyZJGnevHlq1KiRWrZsqaysLC1fvlyrV6/W6tWr7XULAAAAeVDEA4AK6p9DahleC6Ay2bVrl3r06GFZz31v3YgRIxQVFaWkpCQlJiZa9mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///5lHjsAAEBBKOIBAACgQgkODpZhGAXuj4qKslqfOnWqpk6dWspRAQAAXB/eiQcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AAAAAAAAgIOjiAcAAAAAAAA4OIp4AFBMERFXFgAAAAAAyoqzvQMAgPKKQh4AAABKKtg1Qtr+/1e6RNgxEgDlBT3xAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAdHEQ8AAAAAAABwcBTxAAAAAAAAAAfnbO8AAKA8iIiwdwQAAAAAgMqMnngAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4JrYAAAAAAMCetkf83793iSioFYBKjp54AFAJREQwwy4AAAAAlGcU8QAAAAAAAAAHRxEPAAAAAAAAcHAU8QAAAAAAAAAHRxEPAAAAFcqWLVs0cOBA+fv7y2Qy6fPPP7/mMZs3b1b79u1VtWpV3XjjjVq0aFHpBwoAAFAMFPEAAABQoWRkZKhNmzZasGBBkdonJCSof//+uu2227R37149++yzmjhxolavXl3KkQIAABSds70DAABcweyxAGAb/fr1U79+/YrcftGiRWrQoIHmzZsnSWrevLl27dql2bNna+jQoaUUJQAAQPHQEw8AAACV2o4dOxQSEmK1rU+fPtq1a5cuXbpU4HGZmZlKT0+3WgAAAEoLRTwAAABUasnJyfLx8bHa5uPjo8uXL+vPP/8s8LjIyEiZzWbLUr9+/dIOFQAAVGIU8QAAAFDpmUwmq3XDMPLd/k/Tpk1TWlqaZTl+/HipxggAACo33okHAACASs3X11fJyclW21JSUuTs7KzatWsXeJybm5vc3NxKOzwAjmx7hL0jAFCJ0BMPAAAAlVpQUJBiYmKstm3YsEEdOnSQi4uLnaICAACwRk88AChEcWeMDXYt5gH/X2xWyY4DAOR1/vx5/frrr5b1hIQExcfHq1atWmrQoIGmTZumEydOaNmyZZKkMWPGaMGCBQoLC9Po0aO1Y8cOLV68WJ988om9bgEAACAPh+6JFxERIZPJZLX4+vpa9huGoYiICPn7+8vd3V3BwcE6cOCA1TkyMzM1YcIE1alTRx4eHho0aJD++OMPqzapqakKDQ21vJQ4NDRUZ8+etWqTmJiogQMHysPDQ3Xq1NHEiROVlZVVavcOAKUpIqL4BUoAKC927dqldu3aqV27dpKksLAwtWvXTi+++KIkKSkpSYmJiZb2jRs31vr16xUbG6u2bdvqlVde0dtvv62hQ4faJX4AAID8OHxPvJYtW+rbb7+1rDs5OVn+/Y033tDcuXMVFRWlpk2basaMGerdu7cOHz4sT09PSdKkSZO0du1arVy5UrVr19bkyZM1YMAA7d6923KuYcOG6Y8//lB0dLQk6fHHH1doaKjWrl0rScrOztadd96punXrauvWrTpz5oxGjBghwzA0f/78snoUAAAAKILg4GDLxBT5iYqKyrOte/fu2rNnTylGBQAAcH0cvojn7Oxs1fsul2EYmjdvnp577jndfffdkqSlS5fKx8dHH3/8sZ544gmlpaVp8eLF+uijj9SrVy9J0vLly1W/fn19++236tOnjw4dOqTo6GjFxcWpU6dOkqT3339fQUFBOnz4sAICArRhwwYdPHhQx48fl7+/vyRpzpw5GjlypGbOnKkaNWqU0dMAgOtD7zsAAAAAKJ8cejitJB05ckT+/v5q3LixHnjgAf3222+SrrzbJDk5WSEhIZa2bm5u6t69u7Zv3y5J2r17ty5dumTVxt/fX4GBgZY2O3bskNlsthTwJKlz584ym81WbQIDAy0FPEnq06ePMjMztXv37kLjz8zMVHp6utUCAAAAAAAAFIdDF/E6deqkZcuW6ZtvvtH777+v5ORkdenSRWfOnFFycrIkycfHx+oYHx8fy77k5GS5urrKy8ur0Dbe3t55ru3t7W3V5urreHl5ydXV1dKmIJGRkZZ37ZnNZtWvX78YTwAAAAAAAABw8CJev379NHToULVq1Uq9evXSunXrJF0ZNpvLZDJZHWMYRp5tV7u6TX7tS9ImP9OmTVNaWpplOX78eKHtAQAAAAAAgKs5/Dvx/snDw0OtWrXSkSNHNGTIEElXesn5+flZ2qSkpFh6zfn6+iorK0upqalWvfFSUlLUpUsXS5tTp07ludbp06etzvP9999b7U9NTdWlS5fy9NC7mpubm9zc3Ip/swAqlWDXiGIfE5tV/GOu9s935PG+PAAAAABwXOWqiJeZmalDhw7ptttuU+PGjeXr66uYmBi1a9dOkpSVlaXNmzfr9ddflyS1b99eLi4uiomJ0X333SdJSkpK0v79+/XGG29IkoKCgpSWlqYffvhBt956qyTp+++/V1pamqXQFxQUpJkzZyopKclSMNywYYPc3NzUvn37Mn0GAMrQ9ggFu9o7CAAAAAAAHLyIFx4eroEDB6pBgwZKSUnRjBkzlJ6erhEjRshkMmnSpEl69dVXdfPNN+vmm2/Wq6++qmrVqmnYsGGSJLPZrFGjRmny5MmqXbu2atWqpfDwcMvwXElq3ry5+vbtq9GjR+vdd9+VJD3++OMaMGCAAgICJEkhISFq0aKFQkNDNWvWLP31118KDw/X6NGjmZkWQLlTYK+/7YUc1KWAYwAAAAAAZcKhi3h//PGHHnzwQf3555+qW7euOnfurLi4ODVs2FCSNHXqVF24cEHjxo1TamqqOnXqpA0bNsjT09NyjjfffFPOzs667777dOHCBfXs2VNRUVFycnKytFmxYoUmTpxomcV20KBBWrBggWW/k5OT1q1bp3Hjxqlr165yd3fXsGHDNHv27DJ6EgCQV0mG4AIAAAAAyieTYRiGvYOoTNLT02U2m5WWlkYvPsDRbY9QbKy9gyg7wcGF7KQnHmBX5A/lA58TUAltj8izqTj5Y775F3kXUKkUJ39w6NlpAQAAAAAAAFDEAwAAAAAAAByeQ78TDwAAAACASuWfQ3QZWgvgH+iJBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg6OIBwAAAAAAADg4ingAAAAAAACAg3O2dwAAUCzbI4p/TJcSHAMAAAAAgAOhJx4AAAAAAADg4OiJBwD/EBHxf/8e7Gq3MAAAAAAAsEJPPAAAAAAAAMDB0RMPQMVXjPfo0fuuACV5F6HE+wgBAAAKERubd1twcFlHAaC8oCceAMBKbGz+CSUAAAAAwH4o4gEAAAAAAAAOjuG0AAAAAAAUVUlfMwIA14meeAAAAAAAAICDoycegEqP978BAAAAABwdRTwAQOkpyXATZrQFYCPvvPOOZs2apaSkJLVs2VLz5s3Tbbfdlm/b2NhY9ejRI8/2Q4cOqVmzZqUdKoByih+DAZQlingAAEkkoQAqllWrVmnSpEl655131LVrV7377rvq16+fDh48qAYNGhR43OHDh1WjRg3Let26dcsiXAAAgGvinXgAAACocObOnatRo0bpscceU/PmzTVv3jzVr19fCxcuLPQ4b29v+fr6WhYnJ6cyihgA8rE94v8WAJUeRTwAlU5sLL3OAKAiy8rK0u7duxUSEmK1PSQkRNu3by/02Hbt2snPz089e/bUpk2bCm2bmZmp9PR0qwUAAKC0UMQDAABAhfLnn38qOztbPj4+Vtt9fHyUnJyc7zF+fn567733tHr1an322WcKCAhQz549tWXLlgKvExkZKbPZbFnq169v0/sAAAD4J96JBwAAgArJZDJZrRuGkWdbroCAAAUEBFjWg4KCdPz4cc2ePVu33357vsdMmzZNYWFhlvX09HQKeQAAoNRQxANQaTGkFgAqpjp16sjJySlPr7uUlJQ8vfMK07lzZy1fvrzA/W5ubnJzcytxnAAAAMVBEQ9ApUHRrpwoyYubu5TgGAAVlqurq9q3b6+YmBjdddddlu0xMTEaPHhwkc+zd+9e+fn5lUaIAAAAxUYRDwAAABVOWFiYQkND1aFDBwUFBem9995TYmKixowZI+nKUNgTJ05o2bJlkqR58+apUaNGatmypbKysrR8+XKtXr1aq1evtudtAAAAWFDEA2AfJeltBbv4Zw/G4GB7RQEAxXP//ffrzJkzmj59upKSkhQYGKj169erYcOGkqSkpCQlJiZa2mdlZSk8PFwnTpyQu7u7WrZsqXXr1ql///72ugUAAAArFPEAAABQIY0bN07jxo3Ld19UVJTV+tSpUzV16tQyiAoAAKBkKOIBAPLFOwQBAAAAwHFQxAMAAAAAoDC8CgaAA6CIB+D6kdQAAAAAAFCqKOIBqNAYEmpbuc+TCS4AAADKWO4P510i7BkFADuqYu8AAAAAAAAAABSOIh4AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4JjYAgBQbExwAQAAKrzciSQAwEFQxANQITErLQAAAHCVfxYmmeUWKHco4gEAAAAAUF4UVIijQAdUeBTxAPwfhgygsinJd56kGAAAAIAdUMQDUKEwjLZs/fN58348AACAMsaP8EClQhEPAGATTHYBAADKPYpiABxYFXsHAABFFRtLT7vyhM8LAAAAAGyHnnhASZT0FzrepVVqKBYBAAAAACoyeuIBKHfo4QUAAAAAqGzoiQdUVLzPAw6I9+YBAIAyl19ezAgZAOUQRTwA5Ra98RyTXT4XitYAAKCkyCMAlBMU8QAAZa5c98jjnZgAAJR/FO4AlEMU8QBHR4IBVAwl+bNM4Q8AAADA/0cRDyhLFORQCTHsGQAAoOgKyp2KNYKB/+8AKiSKeAAcSn5JS7kccokiKezzLtdDbgEAgH3ZuIjFj5IAHAFFPABAufDP5LnSFPbKw6/oDPkFANjTP/9byX+TAFRwFPFQsZSH/+FFsfHLJ1DBMDkIAAAAUGwU8QCUuquHRTJkFoWhaAsAAArFD/e2V1CPRno6Ag6FIh5KHzMyoggo3KAg+X03rueFz5VyWC4AAEBR2apImnse/t8OsBmKeJUVhTXYAYU6lLbiFuiYPMMG6A0BAED5ZOtincT/MwKljCJeCbzzzjuaNWuWkpKS1LJlS82bN0+33XZb8U7yfaTk4Wa9rSR/4fE/T7AzCnNwVFd/N21VqKPwB5Qfxc3ZNm/erLCwMB04cED+/v6aOnWqxowZU4YRA5WUrYpANvp/I0fNbyv9K2koFgIU8Ypr1apVmjRpkt555x117dpV7777rvr166eDBw+qQYMG9g6vdJVlwbCcFyft/T/5thpqWNDxjprYAIUpzve2KD36Sjost7SKi3AATNjhUIqbsyUkJKh///4aPXq0li9frm3btmncuHGqW7euhg4daoc7AOykKIUSWxRTivJ3JkUbx8LnAdidyTAMw95BlCedOnXSLbfcooULF1q2NW/eXEOGDFFkZOQ1j09PT5fZbFbahmdU4+qeeKgwyvJXsvwKhkUpVlwdT3GOoYiHiqY4k66U9M93Sf5cArnSMzJlDnlNaWlpqlGjhr3DKReKm7M9/fTT+vLLL3Xo0CHLtjFjxujHH3/Ujh07inRNS57H54TyoLgTGRRUdMuvmFPccxR0vjL4Yb8y5bV2yzNKo3dlUQrMtooBKGXFyR/oiVcMWVlZ2r17t5555hmr7SEhIdq+fXu+x2RmZiozM9OynpaWJulKMl4e/e9/V/5Z3NHDVx+fK/c8/9xenHNfHc/V58/vfIW1Kez+inOtjIt5962Lvvbx1yP3/KXVvqTHAOVBYd/tonzvbfVnIz3jyj8L+rsyv31FaVOUv1fz+3u4sL/3CjpnUf4ezq99Uf4eLo6inKcsr3W9cvMGfnstmpLkbDt27FBISIjVtj59+mjx4sW6dOmSXFxc8hxTYJ6Xnl70YL//R0Gx07SiH+co5y/OdcryXvO7TkHXL424bPE8ihLvPxUl9oKOjSng2H9+lwv6/5fcNgWduyjnKEosxWDrPLuiKGq+YvP/nhXlMy3o+3ut711J2l/rz5Aj/H1WlGvlbi/un/3ixlua91qWz9GBY8jNG4qU5xkoshMnThiSjG3btlltnzlzptG0adN8j3nppZcMSSwsLCwsLCws170cPXq0LFKecq8kOdvNN99szJw502rbtm3bDEnGyZMn8z2GPI+FhYWFhYXFVsvx48evmePQE68ETCaT1bphGHm25Zo2bZrCwsIs62fPnlXDhg2VmJgos9lcqnFWRunp6apfv76OHz/OMJZSwPMtXTzf0sXzLV0839KVlpamBg0aqFatWvYOpVwpTs5WUPv8tue6Os/LycnRX3/9pdq1axd6nfKCP9flA59T+cDnVD7wOTm+ivgZGYahc+fOyd/f/5ptKeIVQ506deTk5KTk5GSr7SkpKfLx8cn3GDc3N7m55X33ndlsrjBfOEdUo0YNnm8p4vmWLp5v6eL5li6eb+mqUqWKvUMoF0qSs/n6+ubb3tnZWbVr1873mPzyvJo1a5Y8cAfFn+vygc+pfOBzKh/4nBxfRfuMitrJi0ywGFxdXdW+fXvFxMRYbY+JiVGXLl3sFBUAAAD+qSQ5W1BQUJ72GzZsUIcOHfJ9Hx4AAEBZo4hXTGFhYfrggw/04Ycf6tChQ3rqqaeUmJioMWPG2Ds0AAAA/H/XytmmTZum4cOHW9qPGTNGv//+u8LCwnTo0CF9+OGHWrx4scLDw+11CwAAAFYYTltM999/v86cOaPp06crKSlJgYGBWr9+vRo2bFik493c3PTSSy/lO8QW14/nW7p4vqWL51u6eL6li+dbuni+xXetnC0pKUmJiYmW9o0bN9b69ev11FNP6d///rf8/f319ttva+jQofa6Bbvje1c+8DmVD3xO5QOfk+Or7J+RyTCKMoctAAAAAAAAAHthOC0AAAAAAADg4CjiAQAAAAAAAA6OIh4AAAAAAADg4CjiAQAAAAAAAA6OIp4dDRo0SA0aNFDVqlXl5+en0NBQnTx50t5hVQjHjh3TqFGj1LhxY7m7u+umm27SSy+9pKysLHuHVmHMnDlTXbp0UbVq1VSzZk17h1PuvfPOO2rcuLGqVq2q9u3b63//+5+9Q6owtmzZooEDB8rf318mk0mff/65vUOqMCIjI9WxY0d5enrK29tbQ4YM0eHDh+0dVoWycOFCtW7dWjVq1FCNGjUUFBSkr7/+2t5hoZLLzMxU27ZtZTKZFB8fb+9w8P+R/zou8jzHRj5T/kRGRspkMmnSpEn2DqXMUcSzox49eug///mPDh8+rNWrV+vo0aO655577B1WhfDzzz8rJydH7777rg4cOKA333xTixYt0rPPPmvv0CqMrKws3XvvvRo7dqy9Qyn3Vq1apUmTJum5557T3r17ddttt6lfv35KTEy0d2gVQkZGhtq0aaMFCxbYO5QKZ/PmzRo/frzi4uIUExOjy5cvKyQkRBkZGfYOrcKoV6+eXnvtNe3atUu7du3SHXfcocGDB+vAgQP2Dg2V2NSpU+Xv72/vMHAV8l/HRJ7n+MhnypedO3fqvffeU+vWre0dil2YDMMw7B0Ervjyyy81ZMgQZWZmysXFxd7hVDizZs3SwoUL9dtvv9k7lAolKipKkyZN0tmzZ+0dSrnVqVMn3XLLLVq4cKFlW/PmzTVkyBBFRkbaMbKKx2Qyac2aNRoyZIi9Q6mQTp8+LW9vb23evFm33367vcOpsGrVqqVZs2Zp1KhR9g4FldDXX3+tsLAwrV69Wi1bttTevXvVtm1be4eFApD/2h95XvlDPuO4zp8/r1tuuUXvvPOOZsyYobZt22revHn2DqtM0RPPQfz1119asWKFunTpQgGvlKSlpalWrVr2DgOwkpWVpd27dyskJMRqe0hIiLZv326nqICSSUtLkyT+ri0l2dnZWrlypTIyMhQUFGTvcFAJnTp1SqNHj9ZHH32katWq2TscFAH5r32R55VP5DOOa/z48brzzjvVq1cve4diNxTx7Ozpp5+Wh4eHateurcTERH3xxRf2DqlCOnr0qObPn68xY8bYOxTAyp9//qns7Gz5+PhYbffx8VFycrKdogKKzzAMhYWFqVu3bgoMDLR3OBXKvn37VL16dbm5uWnMmDFas2aNWrRoYe+wUMkYhqGRI0dqzJgx6tChg73DQRGQ/9ofeV75Qz7juFauXKk9e/ZU+h6sFPFsLCIiQiaTqdBl165dlvZTpkzR3r17tWHDBjk5OWn48OFihHPBivt8JenkyZPq27ev7r33Xj322GN2irx8KMnzhW2YTCardcMw8mwDHNmTTz6pn376SZ988om9Q6lwAgICFB8fr7i4OI0dO1YjRozQwYMH7R0WKoii/rd//vz5Sk9P17Rp0+wdcqVD/lv+keeVH+Qzjun48eP617/+peXLl6tq1ar2DseueCeejf3555/6888/C23TqFGjfL94f/zxh+rXr6/t27czTKYAxX2+J0+eVI8ePdSpUydFRUWpShXq1oUpyfeXd+Jdn6ysLFWrVk2ffvqp7rrrLsv2f/3rX4qPj9fmzZvtGF3FwzvxSseECRP0+eefa8uWLWrcuLG9w6nwevXqpZtuuknvvvuuvUNBBVDU//Y/8MADWrt2rVXhITs7W05OTnrooYe0dOnS0g610iL/Lb/I88oX8hnH9fnnn+uuu+6Sk5OTZVt2drZMJpOqVKmizMxMq30VmbO9A6ho6tSpozp16pTo2Nx6amZmpi1DqlCK83xPnDihHj16qH379lqyZAkJTBFcz/cXJePq6qr27dsrJibGKrmLiYnR4MGD7RgZcG2GYWjChAlas2aNYmNjSXjLiGEY5AqwmaL+t//tt9/WjBkzLOsnT55Unz59tGrVKnXq1Kk0Q6z0yH/LL/K88oF8xvH17NlT+/bts9r2yCOPqFmzZnr66acrTQFPoohnNz/88IN++OEHdevWTV5eXvrtt9/04osv6qabbqIXng2cPHlSwcHBatCggWbPnq3Tp09b9vn6+toxsoojMTFRf/31lxITE5Wdna34+HhJUpMmTVS9enX7BlfOhIWFKTQ0VB06dFBQUJDee+89JSYm8g4bGzl//rx+/fVXy3pCQoLi4+NVq1YtNWjQwI6RlX/jx4/Xxx9/rC+++EKenp6W9/uYzWa5u7vbObqK4dlnn1W/fv1Uv359nTt3TitXrlRsbKyio6PtHRoqmav/vsz9b/1NN92kevXq2SMkXIX81zGR5zk+8hnH5+npmecdhblzC1S2dxdSxLMTd3d3ffbZZ3rppZeUkZEhPz8/9e3bVytXrpSbm5u9wyv3NmzYoF9//VW//vprnsSSEeS28eKLL1oNnWnXrp0kadOmTQoODrZTVOXT/fffrzNnzmj69OlKSkpSYGCg1q9fr4YNG9o7tAph165d6tGjh2U9LCxMkjRixAhFRUXZKaqKYeHChZKU58/8kiVLNHLkyLIPqAI6deqUQkNDlZSUJLPZrNatWys6Olq9e/e2d2gAHAz5r2Miz3N85DMoT3gnHgAAAAAAAODgeEkCAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAORjy5YtGjhwoPz9/WUymfT555+X6vUiIiJkMpmsFl9f31K9JgAAQGVU1nne5cuX9fzzz6tx48Zyd3fXjTfeqOnTpysnJ6dY56GIBwAAkI+MjAy1adNGCxYsKLNrtmzZUklJSZZl3759ZXZtAEDZCA4O1qRJk+wdBlCplXWe9/rrr2vRokVasGCBDh06pDfeeEOzZs3S/Pnzi3Ue51KKDwAAoFzr16+f+vXrV+D+rKwsPf/881qxYoXOnj2rwMBAvf766woODi7xNZ2dnel9BwAAUMrKOs/bsWOHBg8erDvvvFOS1KhRI33yySfatWtXsc5DTzwAAIASeOSRR7Rt2zatXLlSP/30k+6991717dtXR44cKfE5jxw5In9/fzVu3FgPPPCAfvvtNxtGDAAAgKKwdZ7XrVs3bdy4Ub/88osk6ccff9TWrVvVv3//Yp2HIh4AOICcnBy9/vrratKkidzc3NSgQQPNnDnT3mEBKMDRo0f1ySef6NNPP9Vtt92mm266SeHh4erWrZuWLFlSonN26tRJy5Yt0zfffKP3339fycnJ6tKli86cOWPj6AEAZSUjI0PDhw9X9erV5efnpzlz5tg7JADXUBp53tNPP60HH3xQzZo1k4uLi9q1a6dJkybpwQcfLNZ5GE4LAA5g2rRpev/99/Xmm2+qW7duSkpK0s8//2zvsAAUYM+ePTIMQ02bNrXanpmZqdq1a0uSjh07psaNGxd6nvHjx1vexfLPIR2tWrVSUFCQbrrpJi1dulRhYWE2vgMAQFmYMmWKNm3apDVr1sjX11fPPvusdu/erbZt29o7NAAFKI08b9WqVVq+fLk+/vhjtWzZUvHx8Zo0aZL8/f01YsSIIsdGEQ8A7OzcuXN66623tGDBAstf4DfddJO6detm58gAFCQnJ0dOTk7avXu3nJycrPZVr15dknTDDTfo0KFDhZ7Hy8urwH0eHh5q1arVdQ3PBQDYz/nz57V48WItW7ZMvXv3liQtXbpU9erVs3NkAApTGnnelClT9Mwzz+iBBx6QdOUH299//12RkZEU8QCgPDl06JAyMzPVs2dPe4cCoIjatWun7OxspaSk6Lbbbsu3jYuLi5o1a1bia2RmZurQoUMFnh8A4NiOHj2qrKwsBQUFWbbVqlVLAQEBdowKwLWURp73999/q0oV6zfaOTk5KScnp1ixUcQDADtzd3e3dwgA8nH+/Hn9+uuvlvWEhATFx8erVq1aatq0qR566CENHz5cc+bMUbt27fTnn3/qu+++U6tWrYr9kmJJCg8P18CBA9WgQQOlpKRoxowZSk9PL9avswAAx2EYhr1DAFCAss7zBg4cqJkzZ6pBgwZq2bKl9u7dq7lz5+rRRx8t1nmY2AIA7Ozmm2+Wu7u7Nm7caO9QAPzDrl271K5dO7Vr106SFBYWpnbt2unFF1+UJC1ZskTDhw/X5MmTFRAQoEGDBun7779X/fr1S3S9P/74Qw8++KACAgJ09913y9XVVXFxcWrYsKHN7gkAUHaaNGkiFxcXxcXFWbalpqZaZqcEYD9lnefNnz9f99xzj8aNG6fmzZsrPDxcTzzxhF555ZVincdk8PMAANjdyy+/rLfeekvz5s1T165ddfr0aR04cECjRo2yd2gAAAAoobFjx2r9+vX68MMP5ePjo+eee07fffedRo0apXnz5tk7PADlDMNpAcABvPDCC3J2dtaLL76okydPys/PT2PGjLF3WAAAALgOs2bN0vnz5zVo0CB5enpq8uTJSktLs3dYAMopeuIBAAAAAAAADo534gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAOjiIeAAAAAAAA4OAo4gEAAAAAAAAO7v8Bn0qzJgU3+4YAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(15,10))\n", "\n", "ax0.hist(scifi_fitpars_found[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$a_x$ found\")\n", "ax0.hist(scifi_fitpars_lost[:,0], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$a_x$ lost\")\n", "ax0.set_xlabel(\"a\")\n", "ax0.set_ylabel(\"normed\")\n", "ax0.set_title(\"fitparameter a der scifi track\")\n", "ax0.legend()\n", "\n", "ax1.hist(scifi_fitpars_found[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$b_x$ found\")\n", "ax1.hist(scifi_fitpars_lost[:,1], bins=100, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$b_x$ lost\")\n", "ax1.set_xticks(np.arange(-1,1,0.1),minor=True)\n", "ax1.set_xlabel(\"b\")\n", "ax1.set_ylabel(\"normed\")\n", "ax1.set_title(\"fitparameter b der scifi track\")\n", "ax1.legend()\n", "#evtl multiple scattering candidates (lost); findet man einen gewissen endvtx_type (mult scattering)\n", "#steiler velo winkel (eta)? vertex type? evtl bremsstrahlung?\n", "\n", "\n", "ax2.hist(scifi_fitpars_found[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$c_x$ found\")\n", "ax2.hist(scifi_fitpars_lost[:,2], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$c_x$ lost\")\n", "ax2.set_xlim([-3e-5,3e-5])\n", "ax2.set_xticks(np.arange(-3e-5,3.5e-5,1e-5),minor=False)\n", "ax2.set_xlabel(\"c\")\n", "ax2.set_ylabel(\"normed\")\n", "ax2.set_title(\"fitparameter c der scifi track\")\n", "ax2.legend()\n", "\n", "ax3.hist(scifi_fitpars_found[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=r\"$d_x$ found\")\n", "ax3.hist(scifi_fitpars_lost[:,3], bins=500, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=r\"$d_x$ lost\")\n", "ax3.set(xlim=(-5e-8,5e-8))\n", "ax3.text(-4e-8,3e8,\"d negligible <1e-7\")\n", "ax3.set_xlabel(\"d\")\n", "ax3.set_ylabel(\"normed\")\n", "ax3.set_title(\"fitparameter d der scifi track\")\n", "ax3.legend()\n", "\n", "\"\"\"\n", "a_x: virtual hit on the reference plane\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "env1", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }