{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import uproot\n", "import numpy as np\n", "import sys\n", "import os\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits import mplot3d\n", "import itertools\n", "import awkward as ak\n", "from scipy.optimize import curve_fit\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9056" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n", "\n", "#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n", "allcolumns = file.arrays()\n", "found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n", "lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n", "\n", "ak.num(found, axis=0)\n", "#ak.count(found, axis=None)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.8606728758791105" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def t_eff(found, lost, axis = 0):\n", " sel = ak.num(found, axis=axis)\n", " des = ak.num(lost, axis=axis)\n", " return sel/(sel + des)\n", "\n", "t_eff(found, lost)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sample size: 32\n", "eff (cutoff = 0 ) = 0.96875\n", "sample size: 32\n", "eff (cutoff = 50 ) = 0.96875\n", "sample size: 32\n", "eff (cutoff = 100 ) = 0.96875\n", "sample size: 43\n", "eff (cutoff = 150 ) = 0.9767441860465116\n", "sample size: 65\n", "eff (cutoff = 200 ) = 0.9692307692307692\n", "sample size: 97\n", "eff (cutoff = 250 ) = 0.9587628865979382\n", "sample size: 129\n", "eff (cutoff = 300 ) = 0.9457364341085271\n", "sample size: 150\n", "eff (cutoff = 350 ) = 0.9533333333333334\n", "sample size: 169\n", "eff (cutoff = 400 ) = 0.9408284023668639\n", "sample size: 197\n", "eff (cutoff = 450 ) = 0.9390862944162437\n", "sample size: 227\n", "eff (cutoff = 500 ) = 0.920704845814978\n", "sample size: 257\n", "eff (cutoff = 550 ) = 0.9260700389105059\n", "sample size: 297\n", "eff (cutoff = 600 ) = 0.9326599326599326\n", "sample size: 334\n", "eff (cutoff = 650 ) = 0.9281437125748503\n", "sample size: 366\n", "eff (cutoff = 700 ) = 0.9289617486338798\n", "sample size: 400\n", "eff (cutoff = 750 ) = 0.925\n", "sample size: 436\n", "eff (cutoff = 800 ) = 0.9151376146788991\n", "sample size: 468\n", "eff (cutoff = 850 ) = 0.9102564102564102\n", "sample size: 500\n", "eff (cutoff = 900 ) = 0.912\n", "sample size: 533\n", "eff (cutoff = 950 ) = 0.9136960600375235\n", "sample size: 562\n", "eff (cutoff = 1000 ) = 0.9163701067615658\n", "\n", "sample size: 150\n" ] }, { "data": { "text/plain": [ "0.9533333333333334" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#finden wir die elektronen die keine bremsstrahlung gemacht haben mit hoher effizienz?\n", "#von energie der photonen abmachen\n", "#scan ab welcher energie der photonen die effizienz abfällt\n", "\n", "#abhängigkeit vom ort der emission untersuchen <- noch nicht gemacht\n", "\n", "\n", "\n", "#idea: we make an event cut st all events that contain a photon of energy > cutoff_energy are not included\n", "\"\"\"\n", "ph_e = found[\"brem_photons_pe\"]\n", "event_cut = ak.all(ph_e=cutoff_energy,axis=1)]\n", "energy_found = ak.to_numpy(brem_found[\"energy\"])\n", "eph_found = ak.to_numpy(ak.sum(brem_found[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "energyloss_found = eph_found/energy_found\n", "\n", "brem_lost = lost[ak.any(lost[\"brem_photons_pe\"]>=cutoff_energy,axis=1)]\n", "energy_lost = ak.to_numpy(brem_lost[\"energy\"])\n", "eph_lost = ak.to_numpy(ak.sum(brem_lost[\"brem_photons_pe\"], axis=-1, keepdims=False))\n", "energyloss_lost = eph_lost/energy_lost\n", "\n", "t_eff(brem_found,brem_lost)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean energyloss relative to initial energy (found): 0.6551043170507098\n", "mean energyloss relative to initial energy (lost): 0.8273131179948844\n" ] } ], "source": [ "mean_energyloss_found = ak.mean(energyloss_found)\n", "mean_energyloss_lost = ak.mean(energyloss_lost)\n", "print(\"mean energyloss relative to initial energy (found): \", mean_energyloss_found)\n", "print(\"mean energyloss relative to initial energy (lost): \", mean_energyloss_lost)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHMCAYAAAAgfimTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA51klEQVR4nO3deXhU9d3+8XuSTDZCAgTCmrIGNAFBASngglZQUbFPfVyKIiJuNT8hxbK5JlYakaooD0JBlC5SaRWQKgqpkgAiWwhWDAIClaDQsCaBSBgy5/cHZkrINnMy20ner+vKFebMWT7zadq5+z3fc47NMAxDAAAAFhUS6AIAAADqgzADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADwC9WrFghm81W48+CBQu8cpzy8nIlJCTolVde8fuxAQRGWKALANA4bN26VZL0/vvvKyEhocr7ycnJXjnOmjVrdPjwYf3iF7/w+7EBBAZhBoBfbN26VbGxsbrllltks9l8dpx3331X/fr1U8eOHf1+bACBwWkmAH6Rm5ur3r17+zRMGIahpUuX6rbbbvP7sQEEDmEGgM8dPXpU+/fvV69evXT27NkqP4ZheOU469ev18GDByuFGX8dG0DgEGYA+FzFnJXXX39ddru9yk9+fn6d+zAMQ7GxsTpy5EiN67z77rvq1auXkpKSPD724cOHddNNN6lJkybq3r27srKy6vORAfgRc2YA+Fxubq4kacmSJUpMTKzyvjsTcHfv3q1WrVqpZcuWNa6zZMkS3X///aaOnZqaqjZt2ujw4cP65z//qTvuuEPffPON4uPj66wNQGARZgD43NatWxUZGakRI0YoNDS0xvX+8Ic/6O9//7vsdrs2btyodu3a6W9/+5uSk5O1detW9enTRw8//LAWL16sdu3aafny5erWrZskadOmTdq/f3+V+TLuHPvkyZNatmyZ9uzZo+joaI0YMUK9e/fW+++/XyUcAQg+nGYC4HNbt25Vz549aw0ykrR9+3Zt3rxZaWlp+s9//qMBAwboqaeekiTl5eVpy5YtGjNmjI4dO6bLLrtM8+fPd2373nvvqXv37urZs6fHx969e7diYmIqjdz06tVLX331lZmPC8DPCDMAfKqoqEh79+5V796961x3+/bteuqpp3T99dfLbrfr7rvv1q5duySdCzMZGRn66U9/qpCQEHXt2rXS5N333nuvyqiMu8c+efKkYmNjKy2LjY3VyZMn3f2YAAKI00wAfGrr1q0yDENNmjTRhg0bqrzfvn1714jIV199VeluvIWFha45Mnl5efrLX/7ieu+rr77S8OHDJUnbtm3Tnj17qj3F5M6xY2JiVFxcXOm94uJixcTEmPzUAPyJkRkAPlVxNdFrr72mgQMHVvlZtWqVpHPB5fDhw5Xu0Lt06VLdeOONKigoUFhYWKX3/vWvf+mSSy6RdG5UpmPHjurbt6+pYyclJenkyZM6cOCAa9vt27crJSXFBx0B4G02g5ssAAgCn3zyia6//nrNnTtXo0eP1p/+9Cf99re/1RdffKGcnBzNnj1bK1eulCSVlpaqWbNmKioqUlRUlJKTk3XjjTfqpZdeMn3822+/XXFxcZo1a5Y++eQTjRo1Srt376716ikAwYHTTACCwvbt23X//ffrnXfe0YQJE9S3b19lZWUpLi5OeXl5rlEY6dwppq5duyoqKkqS3LpPTV1ef/11jR49WvHx8Wrfvr0WL15MkAEsgpEZAEHhwQcfVL9+/fTwww8HuhQAFsOcGQBBYfv27brooosCXQYAC2JkBkBQiIuL065du9S6detAlwLAYggzAADA0jjNBAAALI0wAwAALC2gl2avWbNGM2bMUG5urg4ePKilS5fq5z//uet9wzCUkZGhefPm6fjx4xowYIBmz57t0Y2snE6nvv/+ezVt2lQ2m80HnwIAAHibYRgqKSlRu3btFBJS+9hLQMPMqVOn1Lt3b40ZM6bKbcgl6cUXX9TLL7+shQsXqnv37nr++ec1dOhQ7dy5U02bNnXrGN9//32lh8cBAADrKCgoUIcOHWpdJ2gmANtstkojM4ZhqF27dkpLS9PkyZMlSWVlZWrdurWmT5/u9r0oioqK1KxZMxUUFFR5kJy7HA6HVq1apWHDhslut5vaB9xDr/2HXvsX/fYfeu1fvup3cXGxEhMTdeLECcXFxdW6btDeAXjfvn06dOiQhg0b5loWERGhq6++WuvXr68xzJSVlamsrMz1uqSkRJIUFRXluluop8LCwhQdHa2oqCj+i+Fj9Np/6LV/0W//odf+5at+OxwOSXJrikjQhplDhw5JUpV7TrRu3VrffvttjdtlZmYqIyOjyvJVq1YpOjq6XjVlZWXVa3u4j177D732L/rtP/Tav7zd79LSUrfXDdowU+HCRGYYRq0pberUqZowYYLrdcUw1bBhw+p1mikrK0tDhw4l5fsYvfYfeu1f9Nt/6LV/+arfxcXFbq8btGGmTZs2ks6N0LRt29a1vLCwsNY7hEZERCgiIqLKcrvdXu8me2MfcA+99h967V/023/otX95u9+e7Ctow0znzp3Vpk0bZWVl6dJLL5UknTlzRjk5OZo+fbrXj1deXu46P3chh8OhsLAwnT59WuXl5V4/dkNmt9sVGhoa6DIAAA1YQMPMyZMn9c0337he79u3T9u2bVOLFi30k5/8RGlpafrd736npKQkJSUl6Xe/+52io6M1cuRIr9VgGIYOHTqkEydO1LpOmzZtVFBQwL1qTGjWrJnatGlD7wAAPhHQMLNlyxZdc801rtcVc11Gjx6thQsXatKkSfrhhx/06KOPum6at2rVKrfvMeOOiiCTkJCg6Ojoar9wnU6nTp48qZiYmDpv3IP/MgxDpaWlKiwslKRKpwsBAPCWgIaZIUOGqLbb3NhsNqWnpys9Pd0nxy8vL3cFmfj4+BrXczqdOnPmjCIjIwkzHqq4HL6wsFAJCQmccgIAeF2j/maumCNT30u2UbuK/tY0JwkAgPpo1GGmAnM5fIv+AgB8iTADAAAsjTBjUUOGDFFaWlqgywAAIOCC9j4zAbc+3fVPm2EosqxMtogIyRenTAal17mKr2RnZ+uaa67R8ePH1axZs4DVAQCAWYzMAAAASyPMNADHjx/Xvffeq+bNmys6Olo33nijdu/e7Xr/22+/1S233KLmzZurSZMmSklJ0YoVK/Tvf//bdZ+f5s2by2az6b777gvQpwAAwBxOMzUA9913n3bv3q3ly5crNjZWkydP1vDhw5Wfny+73a7U1FSdOXNGa9asUZMmTZSfn6+YmBglJibqvffe02233aadO3cqNjbWdV8YAEAjVDHFIoDTH8wgzFhcRYj57LPPNGjQIEnS22+/rcTERC1btky333679u/fr9tuu029evWSJHXp0sW1fYsWLSRJCQkJzJkBAFgSp5ksbseOHQoLC9OAAQNcy+Lj49WjRw/t2LFDkjRu3Dg9//zzGjx4sJ599ln961//ClS5AAB4HWHG4mp6HIRhGK6b1T3wwAPau3evRo0apS+//FL9+vXTrFmz/FkmAAA+Q5ixuOTkZJ09e1YbN250LTt69Kh27dqliy++2LUsMTFRjzzyiJYsWaLHH39c8+fPlySFh4dLOvecKgAArIgwY3FJSUm69dZb9eCDD2rdunX64osvdM8996h9+/a69dZbJUlpaWlauXKl9u3bp61bt+rTTz91BZ2OHTvKZrPpgw8+0OHDh3Xy5MlAfhwAADzGBOCanDeT23A6dbq4WOGxsbIF4VOz33rrLY0fP14333yzzpw5o6uuukorVqyQ3W6XdG7UJTU1VQcOHFBsbKxuuOEGvfLKK5Kk9u3bKyMjQ1OmTNGYMWN07733auHChQH8NAAAeIYwY1HZ2dmufzdv3lx/+tOfaly3rvkxTz/9tJ5++mlvlQYAgF8F3zADAACABwgzAADA0ggzAADA0pgzAwAAalbxiIMKQfioA0ZmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmLMowDD300ENq0aKFbDabtm3bFrBahgwZorS0tIAdHwDQuHFpdg3S0//7b8OwqawsUhERNtlsvj2Wuz7++GMtXLhQ2dnZ6tKli1q2bOn1ugAAsALCjEXt2bNHbdu21aBBgwJdCgAAAcVpJgu677779Nhjj2n//v2y2Wzq1KmTysrKNG7cOCUkJCgyMlJXXHGFNm/e7Npm4cKFatasWaX9LFu2TLbzhprS09PVp08f/fnPf1anTp0UFxenu+66SyUlJa51Tp06pXvvvVcxMTFq27atXnrpJZ9/XgAAakOYsaBXX31Vzz33nDp06KCDBw9q8+bNmjRpkt577z398Y9/1NatW9WtWzddf/31OnbsmEf73rNnj5YtW6YPPvhAH3zwgXJycvTCCy+43p84caJWr16tpUuXatWqVcrOzlZubq63PyIAAG4jzFhQXFycmjZtqtDQULVp00bR0dGaM2eOZsyYoRtvvFHJycmaP3++oqKitGDBAo/27XQ6tXDhQvXs2VNXXnmlRo0apU8++USSdPLkSS1YsEC///3vNXToUPXq1Ut//OMfVV5e7ouPCQCAWxpsmJk9e7aSk5PVv3//QJfic3v27JHD4dDgwYNdy+x2uy6//HLt2LHDo3116tRJTZs2db1u27atCgsLXcc5c+aMBg4c6Hq/RYsW6tGjRz0/AQAA5jXYMJOamqr8/PxK80YaKsMwJKnS/JeK5RXLQkJCXOtVcDgcVfZlt9srvbbZbHI6nZWOAwBAMGmwYaYx6datm8LDw7Vu3TrXMofDoS1btujiiy+WJLVq1UolJSU6deqUax1P703TrVs32e12bdiwwbXs+PHj2rVrV/0+AAAA9cCl2Q1AkyZN9Ktf/UoTJ05UixYt9JOf/EQvvviiSktLNXbsWEnSgAEDFB0drSeeeEKPPfaYNm3apIULF3p0nJiYGI0dO1YTJ05UfHy8WrdurSeffFIhIWRiAEDgEGZqcP6N7JxOQ8XFpxUbG66QEB/cNc8LXnjhBTmdTo0aNUolJSXq16+fVq5cqebNm0s6N7flL3/5iyZOnKh58+bpuuuuU3p6uh566CGPjjNjxgydPHlSI0aMUNOmTfX444+rqKjIFx8JAAC32IwGPhGiuLhYcXFxKioqUmxsbKX3Tp8+rX379qlz586KjIyscR9Op1PFxcWKjY1lFMIEd/ssnTs9tmLFCg0fPrzK/B14F732L/rtP/S6Htann/s9KL3qsgqDKr/2Vb9r+/6+EN/MAADA0ggzAADA0ggzAADA0ggzAADA0ggz4mZwvkZ/AQC+1KjDTMWs69LS0gBX0rBV9JerCgAAvtCo7zMTGhqqZs2auZ49FB0dXeWRANK5S7PPnDmj06dPc2m2BwzDUGlpqQoLC9WsWTOFhoYGuiQAQAPUqMOMJLVp00aSXIGmOoZh6IcfflBUVFS1YQe1a9asmavPAAB4W6MPMzabTW3btlVCQkK1D16Uzt0QaM2aNbrqqqs4VeIhu93OiAwAwKcafZipEBoaWuOXbmhoqM6ePavIyEjCDAAAQYYJIAAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNKCOsycPXtWTz31lDp37qyoqCh16dJFzz33nJxOZ6BLAwAAQSIs0AXUZvr06Zo7d67++Mc/KiUlRVu2bNGYMWMUFxen8ePHB7o8AAAQBII6zHz++ee69dZbddNNN0mSOnXqpL/+9a/asmVLgCsDAKABW59e93uDalnHz4I6zFxxxRWaO3eudu3ape7du+uLL77QunXrNHPmzBq3KSsrU1lZmet1cXGxJMnhcMjhcJiqo2I7s9vDffTaf+i1f9Fv/6HX9eD0YPbJBX32dr892Z/NMAzDq0f3IsMw9MQTT2j69OkKDQ1VeXm5pk2bpqlTp9a4TXp6ujIyMqosX7RokaKjo31ZLgAA8JLS0lKNHDlSRUVFio2NrXXdoA4z77zzjiZOnKgZM2YoJSVF27ZtU1paml5++WWNHj262m2qG5lJTEzUkSNH6mxGTRwOh7KysjR06FDZ7XZT+4B76LX/0Gv/ot/+Q6/rYWOm++sOODew4Kt+FxcXq2XLlm6FmaA+zTRx4kRNmTJFd911lySpV69e+vbbb5WZmVljmImIiFBERESV5Xa7vd5N9sY+4B567T/02r/ot//QaxNCPLha+ILeervfnuwrqC/NLi0tVUhI5RJDQ0O5NBsAALgE9cjMLbfcomnTpuknP/mJUlJSlJeXp5dffln3339/oEsDAABBIqjDzKxZs/T000/r0UcfVWFhodq1a6eHH35YzzzzTKBLAwAAQSKow0zTpk01c+bMWi/FBgAAjVtQz5kBAACoC2EGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYWoMNM7Nnz1ZycrL69+8f6FIAAIAPNdgwk5qaqvz8fG3evDnQpQAAAB9qsGEGAAA0DoQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAAAasvXp534aMMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwtDBPN9i5c6f++te/au3atfr3v/+t0tJStWrVSpdeeqmuv/563XbbbYqIiPBFrQAAAFW4PTKTl5enoUOHqnfv3lqzZo369++vtLQ0/fa3v9U999wjwzD05JNPql27dpo+fbrKysp8WTcAAIAkD0Zmfv7zn2vixIlavHixWrRoUeN6n3/+uV555RW99NJLeuKJJ7xSJAAAQE3cDjO7d+9WeHh4nesNHDhQAwcO1JkzZ+pVGAAAgDvcPs3kTpCpz/oAAABmuD0y89prr7m903HjxpkqBgAAwFNuh5lXXnml0uvDhw+rtLRUzZo1kySdOHFC0dHRSkhIIMwAAAC/cfs00759+1w/06ZNU58+fbRjxw4dO3ZMx44d044dO3TZZZfpt7/9rS/rBQAAqMTUTfOefvppzZo1Sz169HAt69Gjh1555RU99dRTXisOAACgLqbCzMGDB+VwOKosLy8v13/+8596FwUAAOAuU2HmZz/7mR588EFt2bJFhmFIkrZs2aKHH35Y1113nVcLBAAAqI2pMPPmm2+qffv2uvzyyxUZGamIiAgNGDBAbdu21RtvvOHtGgEAAGrk8bOZJKlVq1ZasWKFdu3apa+//lqGYejiiy9W9+7dvV0fAABArUyFmQqdOnWSYRjq2rWrwsLqtSsAAABTTJ1mKi0t1dixYxUdHa2UlBTt379f0rmb5b3wwgteLRAAAKA2psLM1KlT9cUXXyg7O1uRkZGu5dddd50WL17steIk6bvvvtM999yj+Ph4RUdHq0+fPsrNzfXqMQAAgHWZOje0bNkyLV68WD/96U9ls9lcy5OTk7Vnzx6vFXf8+HENHjxY11xzjT766CMlJCRoz549rrsOAwAAmAozhw8fVkJCQpXlp06dqhRu6mv69OlKTEzUW2+95VrWqVMnr+0fAACYtD793O/+Twa0DMnkaab+/fvrww8/dL2uCDDz58/XwIEDvVOZpOXLl6tfv366/fbblZCQoEsvvVTz58/32v4BAID1mRqZyczM1A033KD8/HydPXtWr776qr766it9/vnnysnJ8Vpxe/fu1Zw5czRhwgQ98cQT2rRpk8aNG6eIiAjde++91W5TVlamsrIy1+vi4mJJksPhqPauxe6o2M7s9nAfvfYfeu1f9Nt/6PUFnD+OW7jTD6fnYxy+6rcn+7MZFbfw9dCXX36p3//+98rNzZXT6dRll12myZMnq1evXmZ2V63w8HD169dP69evdy0bN26cNm/erM8//7zabdLT05WRkVFl+aJFixQdHe212gAAgO+UlpZq5MiRKioqUmxsbK3rmg4z/tCxY0cNHTq00l2F58yZo+eff17fffddtdtUNzKTmJioI0eO1NmMmjgcDmVlZWno0KGy2+2m9gH30Gv/odf+Rb/9h15fYGPmud8Dprq/rgccl/3GJ/0uLi5Wy5Yt3Qoz9brTXWFhoQoLC+V0Oistv+SSS+qzW5fBgwdr586dlZbt2rVLHTt2rHGbiIgIRUREVFlut9vr3WRv7APuodf+Q6/9i377D73+UciP39Hu9CLEWfc6F/pxv97utyf7MhVmcnNzNXr0aO3YsUMXDuzYbDaVl5eb2W0Vv/71rzVo0CD97ne/0x133KFNmzZp3rx5mjdvnlf2DwAArM9UmBkzZoy6d++uBQsWqHXr1l69HPt8/fv319KlSzV16lQ999xz6ty5s2bOnKm7777bJ8cDAADWYyrM7Nu3T0uWLFG3bt28XU8VN998s26++WafHwcAAFiTqfvM/OxnP9MXX3zh7VoAAAA8Zmpk5o033tDo0aO1fft29ezZs8oknREjRnilOAAA4AcVd/O1KFNhZv369Vq3bp0++uijKu95cwIwAABAXUydZho3bpxGjRqlgwcPyul0VvohyAAAAH8yFWaOHj2qX//612rdurW36wEAAPCIqTDzi1/8QqtXr/Z2LQAAAB4zNWeme/fumjp1qtatW6devXpVmQA8btw4rxQHAABQF9NXM8XExCgnJ6fKU7JtNhthBgAA+I3HYcYwDK1evVoJCQk8hRoAAAScx3NmDMNQ9+7da3xqNQAAgD95HGZCQkKUlJSko0eP+qIeAAAAj5i6munFF1/UxIkTtX37dm/XAwAA4BFTE4DvuecelZaWqnfv3goPD1dUVFSl948dO+aV4gAAgJed/+iCQek1rWUppsLMzJkzvVwGAACAOabCzOjRo71dBwAAgCmmwowklZeXa9myZdqxY4dsNpuSk5M1YsQIhYaGerM+AACAWpkKM998842GDx+u7777Tj169JBhGNq1a5cSExP14YcfqmvXrt6uEwAAoFqmn5rdtWtXFRQUaOvWrcrLy9P+/fvVuXNn7v4LAAD8ytTITE5OjjZs2KAWLVq4lsXHx+uFF17Q4MGDvVYcAABAXUyNzERERKikpKTK8pMnTyo8PLzeRQEAALjLVJi5+eab9dBDD2njxo0yDEOGYWjDhg165JFHNGLECG/XCAAAUCNTYea1115T165dNXDgQEVGRioyMlKDBw9Wt27d9Oqrr3q7RgAAgBqZmjPTrFkzvf/++9q9e7e+/vprGYah5ORkdevWzdv1AQAAXzn/bsAWZvo+M5KUlJSkpKQkb9UCAADgMVNhpry8XAsXLtQnn3yiwsJCOZ3OSu9/+umnXikOAACgLqbCzPjx47Vw4ULddNNN6tmzp2w2m7frAgAAcIupMPPOO+/ob3/7m4YPH+7tegAAADxi6mqm8PBwJvsCAICgYCrMPP7443r11VdlGIa36wEAAPCIqdNM69at0+rVq/XRRx8pJSVFdru90vtLlizxSnEAAAB1MX2fmf/5n//xdi1eNXv2bM2ePVvl5eWBLgUAAPiQqTDz1ltvebsOr0tNTVVqaqqKi4sVFxcX6HIAAICPmJozAwAAgsD69AZzF9/6cDvM3HDDDVq/fn2d65WUlGj69OmaPXt2vQoDAABwh9unmW6//Xbdcccdatq0qUaMGKF+/fqpXbt2ioyM1PHjx5Wfn69169ZpxYoVuvnmmzVjxgxf1g0AACDJgzAzduxYjRo1Su+++64WL16s+fPn68SJE5Ikm82m5ORkXX/99crNzVWPHj18VS8AAEAlHk0ADg8P18iRIzVy5EhJUlFRkX744QfFx8dXuTwbAADAH+r11Oy4uDiuFAIAwAoa8ERhrmYCAACWRpgBAACWRpgBAACWRpgBAACWZirMFBQU6MCBA67XmzZtUlpamubNm+e1wgAAANxhKsyMHDlSq1evliQdOnRIQ4cO1aZNm/TEE0/oueee82qBAAAAtTEVZrZv367LL79ckvS3v/1NPXv21Pr167Vo0SItXLjQm/UBAADUylSYcTgcioiIkCT985//1IgRIyRJF110kQ4ePOi96gAAAOpgKsykpKRo7ty5Wrt2rbKysnTDDTdIkr7//nvFx8d7tUAAAIDamAoz06dP1x/+8AcNGTJEv/zlL9W7d29J0vLly12nnwAAAPzB1OMMhgwZoiNHjqi4uFjNmzd3LX/ooYfUpEkTrxUHAADccP6jCgal17RWg2VqZObaa69VSUlJpSAjSS1atNCdd97plcIAAADcYSrMZGdn68yZM1WWnz59WmvXrq13UQAAAO7y6DTTv/71L9e/8/PzdejQIdfr8vJyffzxx2rfvr33qgMAAKiDR2GmT58+stlsstlsuvbaa6u8HxUVpVmzZnmtOAAAgLp4FGb27dsnwzDUpUsXbdq0Sa1atXK9Fx4eroSEBIWGhnq9SAAA4KbzJwM3Eh6FmY4dO0qSnE6nT4oBAADwlKlLsyVp165dys7OVmFhYZVw88wzz9S7MAAAAHeYCjPz58/Xr371K7Vs2VJt2rSRzWZzvWez2QgzAADAb0yFmeeff17Tpk3T5MmTvV0PAACAR0zdZ+b48eO6/fbbvV0LAACAx0yFmdtvv12rVq3ydi0AAAAeM3WaqVu3bnr66ae1YcMG9erVS3a7vdL748aN80pxAAAAdTEVZubNm6eYmBjl5OQoJyen0ns2m40wAwAA/MZUmNm3b5+36wAAADDF1JyZQMnMzJTNZlNaWlqgSwEAAEHC1MjM/fffX+v7b775pqliarN582bNmzdPl1xyidf3DQAArMv0pdnn/xQWFurTTz/VkiVLdOLECS+XKJ08eVJ333235s+fr+bNm3t9/wAAwLpMjcwsXbq0yjKn06lHH31UXbp0qXdRF0pNTdVNN92k6667Ts8//3yt65aVlamsrMz1uri4WJLkcDjkcDhMHb9iO7Pbw3302n/otX/Rb/9pVL12Bn62iK/67cn+bIZhGN468M6dOzVkyBAdPHjQW7vUO++8o2nTpmnz5s2KjIzUkCFD1KdPH82cObPa9dPT05WRkVFl+aJFixQdHe21ugAAgO+UlpZq5MiRKioqUmxsbK3rmn7QZHX27Nmjs2fPem1/BQUFGj9+vFatWqXIyEi3tpk6daomTJjgel1cXKzExEQNGzaszmbUxOFwKCsrS0OHDq1yTx14F732H3rtX/TbfxpVrzdmBroCOS77jU/6XXFmxR2mwsz5YUGSDMPQwYMH9eGHH2r06NFmdlmt3NxcFRYWqm/fvq5l5eXlWrNmjf7v//5PZWVlCg0NrbRNRESEIiIiquzLbrfXu8ne2AfcQ6/9h177F/32n0bR6xBnoCuQfuyxt/vtyb5MhZm8vLxKr0NCQtSqVSu99NJLdV7p5Imf/exn+vLLLystGzNmjC666CJNnjy5SpABAACNj6kws3r1am/XUa2mTZuqZ8+elZY1adJE8fHxVZYDAIDGqV5zZg4fPqydO3fKZrOpe/fuatWqlbfqAgAAcIupMHPq1Ck99thj+tOf/iSn89z5utDQUN17772aNWuWT68ays7O9tm+AQCA9Zi6QH3ChAnKycnRP/7xD504cUInTpzQ+++/r5ycHD3++OPerhEAAKBGpkZm3nvvPb377rsaMmSIa9nw4cMVFRWlO+64Q3PmzPFWfQAAALUyNTJTWlqq1q1bV1mekJCg0tLSehcFAADgLlNhZuDAgXr22Wd1+vRp17IffvhBGRkZGjhwoNeKAwAAqIup00yvvvqqbrjhBnXo0EG9e/eWzWbTtm3bFBkZqZUrV3q7RgAAgBqZCjM9e/bU7t279Ze//EVff/21DMPQXXfdpbvvvltRUVHerhEAgMZjffq534PSA1mFpZi+z0xUVJQefPBBb9YCAADgMVNzZjIzM/Xmm29WWf7mm29q+vTp9S4KAADAXabCzB/+8AdddNFFVZanpKRo7ty59S4KAADAXabCzKFDh9S2bdsqy1u1aqWDBw/WuygAAAB3mQoziYmJ+uyzz6os/+yzz9SuXbt6FwUAAOAuUxOAH3jgAaWlpcnhcOjaa6+VJH3yySeaNGkSjzMAAAB+ZSrMTJo0SceOHdOjjz6qM2fOSJIiIyM1efJkTZ061asFAgAA1MZUmLHZbJo+fbqefvpp7dixQ1FRUUpKSlJERIS36wMAAKiV6fvMSFJMTIz69+/vrVoAAAA8ZmoCMAAAQLAgzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAEIzWp5/7QZ0IMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIabJiZPXu2kpOT1b9//0CXAgAAfCgs0AX4SmpqqlJTU1VcXKy4uLhAlwMAgOWkLxhSddnYbH+XUacGOzIDAAAahwY7MgMAADxT3UiMFTAyAwAALI0wAwAALI0wAwAALI05MwAAWM369EBXEFQYmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGBGAAADxRMfl2ULpv9guPMTIDAAAsjTADAAAsjTADAAAsjTADAAAsjQnAAABcyFeTfM04f2JwMNQThAgzAAA0QukLhgS6BK8hzAAA0MBUF1TSx2b7uwy/Yc4MAACwNMIMAACwNE4zAQAQSNz5t94YmQEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGBGAAACzOnRvgNaSb5F2IMAMA8L9gelyAPzWAK5cuDEVP9g9MHefjNBMAALA0wgwAALA0wgwAALA05swAABAkGtsDIr0lqMNMZmamlixZoq+//lpRUVEaNGiQpk+frh49egS6NAAAAiI9XVLBkABXEVyC+jRTTk6OUlNTtWHDBmVlZens2bMaNmyYTp06FejSAABAkAjqkZmPP/640uu33npLCQkJys3N1VVXXRWgqgAAQDAJ6jBzoaKiIklSixYtalynrKxMZWVlrtfFxcWSJIfDIYfDYeq4FduZ3R7uo9f+Q6/9i35fwPnjiQEf9MMrva6tvvrU7qz9hEhImFFlmeP8bRwOhYRIqma9QPHV37Yn+7MZhhE8HamFYRi69dZbdfz4ca1du7bG9dLT05WRkVFl+aJFixQdHe3LEgEAgJeUlpZq5MiRKioqUmxsbK3rWibMpKam6sMPP9S6devUoUOHGterbmQmMTFRR44cqbMZNXE4HMrKytLQoUNlt9tN7QPuodf+Q6/9i35fYGPmud8Dpnp9117pdW311VV7xfvVrXP+e9XI/POVVZZNHbW2znUC6TevDPDJ33ZxcbFatmzpVpixxGmmxx57TMuXL9eaNWtqDTKSFBERoYiIiCrL7XZ7vZvsjX3APfTaf+i1f9HvH4U4z/32YS/q1eva6qur9or3q1vn/Peq4Txrq7LMfsE21a0TSBU99vbftif7CuowYxiGHnvsMS1dulTZ2dnq3LlzoEsCAMCvGvIDIr0lqMNMamqqFi1apPfff19NmzbVoUOHJElxcXGKiooKcHUAACAYBPV9ZubMmaOioiINGTJEbdu2df0sXrw40KUBAIAgEdQjMxaZmwwAsKL16f/996D0mtZyfz+17WN9Le+h3oJ6ZAYAAKAuQT0yAwCAFaQvGCKt+vHFj89N4gGR/kOYAQDAQ9WFFwQOp5kAAIClMTIDALAGb03Y9ZMLR2847eQ7jMwAAABLI8wAAABLI8wAAABLI8wAAABLYwIwAKBh2ph57inVtUwWdj3EcdV5y2peHUGKMAMAgB9U9/RrrnDyDsIMAAABUl3AgecIMwCABinzz1fKedbGKaRGgDADAMB50tP130cUrCIAWQFhBgAQVKoLDwQK1IYwAwDwvYpHEXjrMQTnP9rAm/styHbveNWtW922Ne0PXkWYAQB4RaBHVCqOFRIi9e7tv+Mi8LhpHgAAsDRGZgAAllPlkuZV1a6GRoIwAwBoNCqd9qq4YgmWR5gBAFTl7Qm7/lKQLYUZkqdzZgqyvV4K/IcwAwAwhculESwIMwDgRYG+osdbLnwAo9nP4Nrux1M66YPM1wTUhDADAEGooYSihqDSHYERlAgzAAC/uXCkhscFwBsIMwDQWNQwqbdBhImC7MCvi4AhzABAEHAnUFy4TiDurhuofXOqB7UhzABAA1bdfVWYhIuGhjADADXw1khIevp/nxeUmSk980w9CwNQCWEGABqZBjFHBjhPgw0zs2fP1uzZs1VeXh7oUgA0EA3ucumC7HO/E4fUbx0zx/SnimN66zMg6DTYp2anpqYqPz9fmzdvDnQpAADAhxrsyAwA62twIyFeRn+AcwgzACzFzKTcYPuCD/RlzkBDQ5gB0ODwhQ40LoQZoDY13DG1MQvkjduCkVufvyBbCjOk3pK+WyedtQV2MmpBtvlt3Knbk/1Xt98Lt2fiLupAmAECqLEEA3c/l5nP31B7BsB9hBmgDukLhkirLliWHohK/K+xfE4A1kaYAXwk2J6jc+GyzMz/3pHW6fT98QHAVwgzQJAL9lNRwVYPgMaHMAOYEOyjLlbVUD4HAP8izKBRCbYQYmadeh+/IFuSFNJxcN0b/bhug72apCD73G8zn68+2wb62L5SkG2t/aLBaLCPMwAAAI0DIzPwq4Z8iiSQ6CGAxoyRGQAAYGmMzMBrzI66nL9OSEj1lwv7auTBWyNFjIwAQOAQZlAtdybKevwFvj5dKhhy7t/1nLjoy9NVlfZTUa+3FWSf+x1sEzitqiD73O/a+unOOmaOUbH8fIGc1HvhfipeB7uC7IZxDAQEYQYNRrDfjwUA4BuEmQamoX6hN5TPAQDwPsJMI+TPwOOXUzbuHBsA0GBxNRMAALA0RmYaOI+uJirIPve7mgmINe6nYpsatqtTLcf0Cl/v351jB+r4waAg+9xvf33+iuPVdszz1/E1d47lyTq+7mPFcdxZ5/xa3NkO8CFGZgAAgKUxMhOkmO8BAIB7GJkBAACWRpgBAACWxmkmX1qfXvn1oPTq1qq8bm3rmFGQXfl1sExELciu/f3v1klnbef+7c5ETnfuylrT9t6+42p9Xbg/d/ZfsU4Fd2r5bp3U28Oazt93xTJ3jnX+9hduc+F+6rNubcesTU3HrG4f7uzXk2PXZ9vz163P358nx6zPNoCPEGYCoNr5MBX3YFnlx0IAAGgAOM0EAAAsjTADAAAsjTADAAAsjTkzfpC+YMi5fyzIPvfbncmF9Z3sWd2+a1teVw3ubFfb9u5uE2ZUnZR64bHrc6dhd9+rz4RiT9apbRt31vX2XW7NbFexjZn/vM2u68n2DUlBtvvv1bYu0MBYIsy8/vrrmjFjhg4ePKiUlBTNnDlTV155ZaDLqlYgH6wIAEBjFPSnmRYvXqy0tDQ9+eSTysvL05VXXqkbb7xR+/fvD3RpAAAgCAT9yMzLL7+ssWPH6oEHHpAkzZw5UytXrtScOXOUmZkZ4Op47AAAAIEW1GHmzJkzys3N1ZQpUyotHzZsmNavX1/tNmVlZSorK3O9LioqkiQdO3ZMDofDVB0Oh0OlpaU6evSo7Hb7BTXWsqHzZPXLzxyt/f3z13Fnv9WtW9u+3XX+ft3Z34Wf68K63NhHiNNQaWmpzjhD5HTa3DuOyWPVyp3/jAK5Py/s19XrM0fldNrd309Nx6zv36GvemSGD2px628bXkGv/evo0aM1fkfWR0lJiSTJMIw61w3qMHPkyBGVl5erdevWlZa3bt1ahw4dqnabzMxMZWRkVFneuXNnn9QIH3gj0AU0IvTav+i3/9Brv8lc6Nv9l5SUKC4urtZ1gjrMVLDZKidrwzCqLKswdepUTZgwwfXa6XTq2LFjio+Pr3GbuhQXFysxMVEFBQWKjY01tY9A6N+/vzZv3hzoMjxi1V5L1us3vfYv+u0/9Nq/fNVvwzBUUlKidu3a1bluUIeZli1bKjQ0tMooTGFhYZXRmgoRERGKiIiotKxZs2ZeqSc2NtZS/8UIDQ21VL3ns1qvJev2m177F/32H3rtX77od10jMhWC+mqm8PBw9e3bV1lZWZWWZ2VladCgQQGqyjpSU1MDXUKjQr/9h177F/32H3ptjs1wZ2ZNAC1evFijRo3S3LlzNXDgQM2bN0/z58/XV199pY4dO/qlhuLiYsXFxamoqMiyidkq6LX/0Gv/ot/+Q6/9Kxj6HdSnmSTpzjvv1NGjR/Xcc8/p4MGD6tmzp1asWOG3ICOdO3X17LPPVjl9Be+j1/5Dr/2LfvsPvfavYOh30I/MAAAA1Cao58wAAADUhTADAAAsjTADAAAsjTADAAAsjTADAAAsjTAj6fXXX1fnzp0VGRmpvn37au3atbWun5OTo759+yoyMlJdunTR3Llz/VRpw+BJv5csWaKhQ4eqVatWio2N1cCBA7Vy5Uo/Vmttnv5tV/jss88UFhamPn36+LbABsbTfpeVlenJJ59Ux44dFRERoa5du+rNN9/0U7XW5mmv3377bfXu3VvR0dFq27atxowZo6NHa3mgLyRJa9as0S233KJ27drJZrNp2bJldW4TkO9Io5F75513DLvdbsyfP9/Iz883xo8fbzRp0sT49ttvq11/7969RnR0tDF+/HgjPz/fmD9/vmG32413333Xz5Vbk6f9Hj9+vDF9+nRj06ZNxq5du4ypU6cadrvd2Lp1q58rtx5Pe13hxIkTRpcuXYxhw4YZvXv39k+xDYCZfo8YMcIYMGCAkZWVZezbt8/YuHGj8dlnn/mxamvytNdr1641QkJCjFdffdXYu3evsXbtWiMlJcX4+c9/7ufKrWfFihXGk08+abz33nuGJGPp0qW1rh+o78hGH2Yuv/xy45FHHqm07KKLLjKmTJlS7fqTJk0yLrrookrLHn74YeOnP/2pz2psSDztd3WSk5ONjIwMb5fW4Jjt9Z133mk89dRTxrPPPkuY8YCn/f7oo4+MuLg44+jRo/4or0HxtNczZswwunTpUmnZa6+9ZnTo0MFnNTZE7oSZQH1HNurTTGfOnFFubq6GDRtWafmwYcO0fv36arf5/PPPq6x//fXXa8uWLXI4HD6rtSEw0+8LOZ1OlZSUqEWLFr4oscEw2+u33npLe/bs0bPPPuvrEhsUM/1evny5+vXrpxdffFHt27dX9+7d9Zvf/EY//PCDP0q2LDO9HjRokA4cOKAVK1bIMAz95z//0bvvvqubbrrJHyU3KoH6jgz6xxn40pEjR1ReXl7lCdytW7eu8qTuCocOHap2/bNnz+rIkSNq27atz+q1OjP9vtBLL72kU6dO6Y477vBFiQ2GmV7v3r1bU6ZM0dq1axUW1qj/p8FjZvq9d+9erVu3TpGRkVq6dKmOHDmiRx99VMeOHWPeTC3M9HrQoEF6++23deedd+r06dM6e/asRowYoVmzZvmj5EYlUN+RjXpkpoLNZqv02jCMKsvqWr+65aiep/2u8Ne//lXp6elavHixEhISfFVeg+Jur8vLyzVy5EhlZGSoe/fu/iqvwfHkb9vpdMpms+ntt9/W5ZdfruHDh+vll1/WwoULGZ1xgye9zs/P17hx4/TMM88oNzdXH3/8sfbt26dHHnnEH6U2OoH4jmzU//erZcuWCg0NrZLmCwsLqyTLCm3atKl2/bCwMMXHx/us1obATL8rLF68WGPHjtXf//53XXfddb4ss0HwtNclJSXasmWL8vLy9P/+3/+TdO7L1jAMhYWFadWqVbr22mv9UrsVmfnbbtu2rdq3b6+4uDjXsosvvliGYejAgQNKSkryac1WZabXmZmZGjx4sCZOnChJuuSSS9SkSRNdeeWVev755xlR96JAfUc26pGZ8PBw9e3bV1lZWZWWZ2VladCgQdVuM3DgwCrrr1q1Sv369ZPdbvdZrQ2BmX5L50Zk7rvvPi1atIhz3G7ytNexsbH68ssvtW3bNtfPI488oh49emjbtm0aMGCAv0q3JDN/24MHD9b333+vkydPupbt2rVLISEh6tChg0/rtTIzvS4tLVVISOWvu9DQUEn/HTWAdwTsO9Kn04stoOISvwULFhj5+flGWlqa0aRJE+Pf//63YRiGMWXKFGPUqFGu9SsuO/v1r39t5OfnGwsWLODSbA942u9FixYZYWFhxuzZs42DBw+6fk6cOBGoj2AZnvb6QlzN5BlP+11SUmJ06NDB+N///V/jq6++MnJycoykpCTjgQceCNRHsAxPe/3WW28ZYWFhxuuvv27s2bPHWLdundGvXz/j8ssvD9RHsIySkhIjLy/PyMvLMyQZL7/8spGXl+e6DD5YviMbfZgxDMOYPXu20bFjRyM8PNy47LLLjJycHNd7o0ePNq6++upK62dnZxuXXnqpER4ebnTq1MmYM2eOnyu2Nk/6ffXVVxuSqvyMHj3a/4VbkKd/2+cjzHjO037v2LHDuO6664yoqCijQ4cOxoQJE4zS0lI/V21Nnvb6tddeM5KTk42oqCijbdu2xt13320cOHDAz1Vbz+rVq2v93+Bg+Y60GQZjbAAAwLoa9ZwZAABgfYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAAF31VVXyWazVfm5++6769z2vvvu05QpU7yyLwDWxB2AAQSUYRiKi4vTs88+WyVwxMTEKCYmpsZtnU6nWrdureXLl2vgwIH12hcA6woLdAEAGrfdu3erpKREV111ldq0aePRtp999plCQkJcT/Wuz74AWBenmQAEVG5ursLCwnTJJZd4vO3y5ct1yy23KCQkpN77AmBdhBkAAbV161aVl5crPj7edSooJiZGDz74YJ3bLl++XLfeeqtH+/rggw/Uo0cPJSUl6Y033vDJZwLgX8yZARBQ1157rVq1aqVp06ZVWt68eXPFx8fXuN2OHTvUr18/HTlyRFFRUW7t6+zZs0pOTtbq1asVGxuryy67TBs3blSLFi28/8EA+A0jMwACKi8vT1dccYW6detW6Sc+Pl7bt29X165ddejQIUnSkSNH1KdPH505c0bLly/X0KFDXUGmrn1J0qZNm5SSkqL27duradOmGj58uFauXBmQzw3AewgzAAJm7969OnHihC699NJq3+/Zs6fuuusuffrpp5KkjIwMTZ48WeHh4Xr//fc1YsQIt/clSd9//73at2/vet2hQwd99913Xvo0AAKFq5kABExubq4kqXXr1q7RlwoJCQkKCQlRSkqKdu3apW+++Ua5ubl67bXXVFhYqM2bN2vZsmUe7au6s+o2m83LnwqAvxFmAATM1q1bJUndu3evtNxut6ukpEQRERFKSkrSBx98oCeeeELTpk2TzWbTP/7xDw0YMEAJCQke7at9+/aVRmIOHDjguqwbgHUxARhAUDtx4oSSkpI0YMAAffDBB5KkESNG6IorrtCkSZM82tfZs2d18cUXKzs72zUBeMOGDbVONAYQ/BiZARDUmjVrJkl64YUXXMuuuOIK/fKXv/R4X2FhYXrppZd0zTXXyOl0atKkSQQZoAFgZAZAUHM4HOrZs6d27twZ6FIABCmuZgIQ1L7++mv16NEj0GUACGKMzAAAAEtjZAYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFja/wdRS8SJa7x3ewAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#in abhängigkeit von der energie der elektronen\n", "plt.hist(energyloss_lost, bins=200, density=True, alpha=0.5, histtype='bar', color=\"darkorange\", label=\"lost\")\n", "plt.hist(energyloss_found, bins=100, density=True, alpha=0.5, histtype='bar', color=\"blue\", label=\"found\")\n", "plt.xticks(np.arange(0,1.1,0.1), minor=True,)\n", "plt.yticks(np.arange(0,10,1), minor=True)\n", "plt.xlabel(r\"$E_\\gamma/E_0$\")\n", "plt.ylabel(\"counts (normed)\")\n", "plt.title(r'$E_{ph}/E_0$')\n", "plt.legend()\n", "plt.grid()\n", "\n", "\"\"\"\n", "\n", "\"\"\"\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAIhCAYAAADtvIOUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADbq0lEQVR4nOzde1xVVf7/8fcR5IgIJ7wAHsNLjZEKVqOFaDNoCuiIzkxTViRJF3PCyQydym5eJsFMyflqWTlOmpds+jb6rSwCrTRHUfLSiDlak9cUsUJQU1BYvz/6sesIKthBDsfX8/HYjzx7f87aa+9zoPVh7bWWzRhjBAAAAAAAAAAA0AA0qu8KAAAAAAAAAAAA1BQdGwAAAAAAAAAAoMGgYwMAAAAAAAAAADQYdGwAAAAAAAAAAIAGg44NAAAAAAAAAADQYNCxAQAAAAAAAAAAGgw6NgAAAAAAAAAAQINBxwYAAAAAAAAAAGgw6NgAAAAAAAAAAAANBh0bQD1544031KVLF/n7+8tms2nLli31XaVqTZgwQTabrb6r4TFSUlLUvn37+q5GnXvvvfc0YcIEt5c7b9482Ww27d692+1lS9Lnn3+uCRMm1Fn5AAAA8Bx13bZ88cUXNW/evDopuyFr3769UlJS6rsada6uPv+6zinrKpcDAE9DxwZQDw4fPqzk5GRdeeWVysrK0rp163TVVVfVd7UAy3vvvaeJEyfWdzVq7fPPP9fEiRPp2AAAAMDPRsfGpa2hfv4NNZcDgNqiYwOoBzt37tSpU6c0dOhQxcbGqkePHmratGl9V8urfP/99/VdhQbpUrtvl9r1/tSJEydkjKnvagAAAKAOGGN04sSJ+q5Gg3Qp5QiX+vfkUvqsAW9ExwZwkaWkpOjGG2+UJN12222y2Wzq3bu3dfztt99WTEyMmjZtqsDAQMXFxWndunVVyqhu6Gp100bZbDb96U9/0oIFC9SpUyc1bdpU11xzjd59990q71++fLmuvfZa2e12dejQQdOmTavVta1YsUJ9+/ZVUFCQmjZtql69emnlypXV1nHbtm2644475HA4FBoaqnvuuUfFxcUuscYYvfjii7r22mvl7++v4OBg3XLLLfrqq69c4nr37q3IyEitXr1aPXv2VNOmTXXPPfdIkvbv369bbrlFgYGBuuyyy3TnnXcqLy9PNpvNevpmwYIFstlsVe6zJE2aNEmNGzfWgQMHznrdJ0+e1Lhx49ShQwf5+fmpTZs2GjlypI4cOeIS9+GHH6p3795q0aKF/P391bZtW/3hD39waUzNnj1b11xzjZo1a6bAwEBdffXVevzxx89536+//noNHDjQZV9UVJRsNpvy8vKsff/85z9ls9m0detWST9+Fps2bdItt9yi4OBgXXnllUpJSdELL7wg6YfvT+V2vlEQNfn8f+57//Of/+iOO+5QaGio7Ha72rZtq7vuukulpaWaN2+ebr31VklSnz59rHpXfs7n+p7s3btXQ4cOVUhIiOx2uzp16qTp06eroqLCOvfu3btls9k0bdo0ZWZmqkOHDmrWrJliYmKUm5tbo+ssKCjQiBEjdPnll8vPz08dOnTQxIkTdfr06Qs+z6effqrBgwerefPmatKkia677jr94x//cImpnKYhOztb99xzj1q1aqWmTZuqtLRUxhilp6erXbt2atKkibp3766cnBz17t3b+t107NgxXXbZZRoxYkSV8+/evVs+Pj567rnnanQPAAAA6trf//53XXPNNWrSpImaN2+u3//+99q+fbtLzFdffaXbb79dTqdTdrtdoaGh6tu3rzVFcPv27bVt2zatWrXKaleeb/qg2uYveXl5+tWvfqWmTZvqiiuu0JQpU1zan5JUUlKisWPHuuQao0eP1vHjx13iKvO+l156SZ06dZLdbtf8+fMlSWvWrFFMTIyaNGmiNm3a6KmnntLf/vY3lzb+vffeq+bNm1f7h96bbrpJXbp0Oee116Q9LZ0/3/n++++t6638/Lp3767XX3/9rOcuKSmRr6+vS3v0m2++UaNGjeRwOFza2qNGjVKrVq2sB3zOliPU5ef/c9+blZWlvn37yuFwqGnTpurUqZMyMjIk6by53Pm+J3379lVgYKCaNm2qnj17avny5S7nrswrPvroIz3wwANq2bKlWrRooZtvvvmcOfNP1SZ/qel53njjDcXExCggIEDNmjVTQkKCNm/e7BKTkpKiZs2aaevWrYqPj1dgYKD69u0rSTpy5Ij1M9CsWTMNHDhQX331lWw2mzWt1yeffCKbzVbtd/G1116rkn8DuAgMgIvqyy+/NC+88IKRZNLT0826devMtm3bjDHGLFq0yEgy8fHxZtmyZeaNN94w3bp1M35+fuaTTz6xyhg2bJhp165dlbLHjx9vzvyxlmTat29vbrjhBvOPf/zDvPfee6Z3797G19fX/Pe//7XiVqxYYXx8fMyNN95o/vnPf5o333zTXH/99aZt27ZVyqzOggULjM1mM7/73e/MP//5T/POO++YxMRE4+PjY1asWFGljhEREebpp582OTk5JjMz09jtdnP33Xe7lDl8+HDTuHFjM2bMGJOVlWUWL15srr76ahMaGmoKCgqsuNjYWNO8eXMTHh5uZs6caT766COzatUqc+zYMfOLX/zCNG/e3Lzwwgvmgw8+MA8//LDp0KGDkWReffVVY4wxpaWlJiwszNx5550u5z916pRxOp3m1ltvPeu9r6ioMAkJCcbX19c89dRTJjs720ybNs0EBASY6667zpw8edIYY8yuXbtMkyZNTFxcnFm2bJn5+OOPzaJFi0xycrIpKioyxhjz+uuvG0nmwQcfNNnZ2WbFihXmpZdeMqNGjTrnvX/sscdMs2bNTFlZmTHGmIKCAiPJ+Pv7m8mTJ1txDzzwgAkNDa3yWbRr1848+uijJicnxyxbtsx8+eWX5pZbbjGSzLp166yt8lqqU9PP/9VXXzWSzK5du2r93i1btphmzZqZ9u3bm5deesmsXLnSLFy40AwZMsSUlJSYwsJCk56ebiSZF154wap3YWGhMebs35PCwkLTpk0b06pVK/PSSy+ZrKws86c//clIMg888IB1/l27dlk/T/379zfLli0zy5YtM1FRUSY4ONgcOXLknJ/TwYMHTXh4uGnXrp15+eWXzYoVK8xf/vIXY7fbTUpKygWd58MPPzR+fn7mV7/6lXnjjTdMVlaWSUlJcfl+//S+t2nTxtx///3m/fffN//7v/9rTp8+bcaNG2ckmfvvv99kZWWZOXPmmLZt25rWrVub2NhYq4yHH37YBAQEVLnOP//5z6ZJkybmm2++Oef1AwAAuFt1bcvK9uAdd9xhli9fbl577TVzxRVXGIfDYXbu3GnFRUREmF/84hdmwYIFZtWqVeatt94yY8aMMR999JExxphNmzaZK664wlx33XVWu3LTpk3nrE9t8pcWLVqYjh07mpdeesnk5OSY1NRUI8nMnz/fijt+/Li59tprTcuWLU1mZqZZsWKF+etf/2ocDoe56aabTEVFhRVb2dbr2rWrWbx4sfnwww9Nfn6++eyzz0yTJk1M165dzZIlS8zbb79tfvOb35j27du73LvPPvvMSDJz5sxxuaZt27ZZ7etK7dq1M8OGDbNe17Q9XZN8Z8SIEaZp06YmMzPTfPTRR+bdd981U6ZMMTNnzjznve/Ro4eJj4+3Xi9ZssQ0adLE2Gw2869//cva36lTJzNkyBCXz6K6HKEuP//q8vmavvdvf/ubsdlspnfv3mbx4sVmxYoV5sUXXzSpqanGGHPeXO5s35OPP/7YNG7c2HTr1s288cYbZtmyZSY+Pt7YbDazZMkS6/yVP3NXXHGFefDBB80HH3xg/va3v5ng4GDTp0+fc94fY2qfv9TkPJMnTzY2m83cc8895t133zX//Oc/TUxMjAkICLD+1lJ53xs3bmzat29vMjIyzMqVK80HH3xgysvLzY033miaNGlipkyZYrKzs83EiRNNx44djSQzfvx4q4zrrrvO9OrVq8p1XX/99eb6668/7/UDcC86NoB68NFHHxlJ5s0337T2lZeXG6fTaaKiokx5ebm1/+jRoyYkJMT07NnT2lfbjo3Q0FBTUlJi7SsoKDCNGjUyGRkZ1r7o6GjjdDrNiRMnrH0lJSWmefPm5+3YOH78uGnevLkZNGiQy/7y8nJzzTXXmBtuuKFKHadOneoSm5qaapo0aWI1ztetW2ckmenTp7vE7du3z/j7+5tHHnnE2hcbG2skmZUrV7rEVnYgvf/++y77R4wYUaXhNH78eOPn52cOHTpk7XvjjTeMJLNq1Spr35n3Pisrq9rrqXzvK6+8Yowx5n//93+NJLNlyxZzNn/605/MZZdddtbjZ7NixQojyaxevdoYY8zChQtNYGCgSU1NdWn0dezY0SQlJblcsyTz9NNPVylz5MiRNerQMqZ2n/+ZyWdt3nvTTTeZyy67zOqoqM6bb75pJFkJ6U+d7Xvy2GOPGUlm/fr1LvsfeOABY7PZzI4dO4wxP3Y4REVFmdOnT1txGzZsMJLM66+/ftZ6GfPD965Zs2Zmz549LvunTZtmJFmN7tqc5+qrrzbXXXedOXXqlEuZiYmJpnXr1tbvksr7ftddd7nEfffdd8Zut5vbbrvNZX/lz99POzb++9//mkaNGpnnn3/e2nfixAnTokWLKp2SAAAAF8OZbcuioiLj7+9vfvOb37jE7d2719jtdqst/M033xhJZsaMGecsv0uXLi7toXO5kPzlzPZn586dTUJCgvU6IyPDNGrUyOTl5bnEVeYW7733nrVPknE4HOa7775zib311ltNQECAOXz4sLWvvLzcdO7cuUqnUGxsrLn22mtd3v/AAw+YoKAgc/ToUWvfmR0bNW1P1yTfiYyMNL/73e/OGVOdJ5980vj7+1t/wL/vvvtM//79TdeuXc3EiRONMcZ8/fXXLjla5TVXlyMYU3ef/5k5ZU3fe/ToURMUFGRuvPFGl06tM50rlzvb96RHjx4mJCTE5XM+ffq0iYyMNJdffrl1vsqfucqOlEpTp041kszBgwfPWi9jap+/nO88e/fuNb6+vubBBx90iTt69KgJCwtz6cQaNmyYkWT+/ve/u8QuX77cSDKzZ8922Z+RkVGlY6OyXps3b7b2VeZpP+2UBHBxMBUV4CF27NihAwcOKDk5WY0a/fij2axZM/3hD39Qbm7uBc//2KdPHwUGBlqvQ0NDFRISoj179kiSjh8/rry8PN18881q0qSJFRcYGKhBgwadt/y1a9fqu+++07Bhw3T69Glrq6ioUP/+/ZWXl1dlqPTgwYNdXnft2lUnT55UYWGhJOndd9+VzWbT0KFDXcoMCwvTNddco48//tjl/cHBwbrppptc9q1atUqBgYHq37+/y/477rijyjU88MADkqQ5c+ZY+2bNmqWoqCj9+te/Puu1f/jhh5J+GNb6U7feeqsCAgKs6ZSuvfZa+fn56f7779f8+fOrHVJ8ww036MiRI7rjjjv0f//3f/rmm2/Oet6f6tWrl5o0aaIVK1ZIkjWNUP/+/bV27Vp9//332rdvn7744gv169evyvv/8Ic/1Og8Z3Mhn39t3/v9999r1apVGjJkiFq1anXBda3ue/Lhhx+qc+fOuuGGG1z2p6SkyBhjfcaVBg4cKB8fH+t1165dJcn6eTqbd999V3369JHT6XS51gEDBkj64ftam/N8+eWX+s9//qM777xTklzK/M1vfqODBw9qx44dLmWe+Vnn5uaqtLRUQ4YMcdnfo0ePKkPtr7jiCiUmJurFF1+0hu4vXrxY3377rf70pz+d89oBAAAuhnXr1unEiRNV2ubh4eG66aabrLZ58+bNdeWVV+q5555TZmamNm/eXGXKpNqqbf4SFhZWpf3ZtWtXlzblu+++q8jISF177bUuZSYkJMhms1Up86abblJwcLDLvlWrVummm25Sy5YtrX2NGjWq0v6TpIceekhbtmzRv/71L0k/TPG0YMECDRs2TM2aNTvrtde0PV2TfOeGG27Q+++/r8cee0wff/xxjdd/6Nu3r06cOKG1a9dK+mGq27i4OPXr1085OTnWPklVcqLqcoTaqu3nfyHvXbt2rUpKSpSamlplCuraOPN7cvz4ca1fv1633HKLy+fs4+Oj5ORk7d+/v0peUV0+L507J7qQ/OV85/nggw90+vRp3XXXXS7lNWnSRLGxsdXe9zNzoso87Myfier+bnDHHXcoJCTEmu5LkmbOnKlWrVrptttuO+u1A6gbdGwAHuLbb7+VJLVu3brKMafTqYqKChUVFV1Q2S1atKiyz263W43EoqIiVVRUKCwsrEpcdfvOdOjQIUnSLbfcosaNG7tszz77rIwx+u67785ZJ7vdLklWnQ4dOiRjjEJDQ6uUmZubW6URXN19+/bbbxUaGlpl/9n23XbbbXr55ZdVXl6uf//73/rkk0/O+wfbb7/9Vr6+vlX+2G6z2RQWFmZ9rldeeaVWrFihkJAQjRw5UldeeaWuvPJK/fWvf7Xek5ycrL///e/as2eP/vCHPygkJETR0dFWQ/xsmjRpol69elkN9ZUrVyouLk69e/dWeXm5PvnkE6uM6jo2qrt3tXEhn39t31tUVKTy8nJdfvnlP6uuZ/uenO3nrvL4T53vu3s2hw4d0jvvvFPlOivnKz7zO12TnxFJGjt2bJUyU1NTqy3zzOusvLaa/pw89NBD+uKLL6zv0wsvvKCYmBj98pe/POe1AwAAXAzny6kqj9tsNq1cuVIJCQmaOnWqfvnLX6pVq1YaNWqUjh49ekHnrm3+cr4crbLMf//731XKCwwMlDHG7TnRb3/7W7Vv3976o+28efN0/PhxjRw58pzXXtP2dE3ynf/5n//Ro48+qmXLlqlPnz5q3ry5fve73+mLL744Zx0q18dYsWKFvvzyS+3evdvq2Fi/fr2OHTumFStW6IorrlCHDh1c3vtz8yGp9p//hbz38OHDkuT2nKioqEjGmDrPiS4kf6lpTnT99ddXKfONN96oUl7Tpk0VFBTksq8yp2/evLnL/up+Rux2u0aMGKHFixfryJEjOnz4sP7xj3/ovvvus+oG4OLxre8KAPhB5f+wDx48WOXYgQMH1KhRI+upiiZNmqi0tLRKXE2f8D9TcHCwbDabCgoKqhyrbt+ZKp/+mTlzpnr06FFtTHWNgvOVabPZ9Mknn1TbQDhzX3VPrLRo0UIbNmyosv9s1/TQQw9pwYIF+r//+z9lZWVZi42fS4sWLXT69GkdPnzYpXPDGKOCggJdf/311r5f/epX+tWvfqXy8nJ9+umnmjlzpkaPHq3Q0FDdfvvtkqS7775bd999t44fP67Vq1dr/PjxSkxM1M6dO9WuXbuz1qNv3756+umntWHDBu3fv19xcXEKDAzU9ddfr5ycHB04cEBXXXWVwsPDq7z35zztI/28z7+m7y0vL5ePj4/279//s+p6tu/J2X7uflrHn6tly5bq2rWrJk+eXO3xyqShNuVJ0rhx43TzzTdXGxMREeHy+szrr/y9U5kQ/FRBQUGVURs33XSTIiMjNWvWLDVr1kybNm3SwoULa1VvAACAunK+nOqn7bp27dpp7ty5kqSdO3fqH//4hyZMmKCysjK99NJLtT53bfOXmpbp7++vv//972c9/lNna+uera13pkaNGmnkyJF6/PHHNX36dL344ovq27dvlTZldeeoaXv6fPlOQECAJk6cqIkTJ+rQoUPW6I1BgwbpP//5z1nr4OfnpxtvvFErVqzQ5ZdfrrCwMEVFRemKK66QJH388cdauXKlEhMTq7z35+ZDldd4oZ9/Td9bmW+6OycKDg5Wo0aN6jwnupD8paZl/u///u858+VKZ/sZOX36tL777juXzo2z/d3ggQce0JQpU/T3v/9dJ0+e1OnTp/XHP/6xVvUG4B50bAAeIiIiQm3atNHixYs1duxY63+4x48f11tvvaWYmBg1bdpUktS+fXsVFhbq0KFD1h+My8rK9MEHH1zQuQMCAnTDDTfon//8p5577jlrOqqjR4/qnXfeOe/7e/Xqpcsuu0yff/6526akSUxM1JQpU/T1119XO0y6JmJjY/WPf/xD77//vjXdjyQtWbKk2vhu3bqpZ8+eevbZZ5Wfn6/7779fAQEB5zxH3759NXXqVC1cuFAPP/ywtf+tt97S8ePH1bdv3yrv8fHxUXR0tK6++motWrRImzZtsjo2KgUEBGjAgAEqKyvT7373O23btu2cDbV+/frp8ccf11NPPaXLL79cV199tbX/7bffVkFBQa2mnPrpkzD+/v7njP05n39t3hsbG6s333xTkydPPmvDuqajJ36qb9++ysjI0KZNm1xGHrz22muy2Wzq06dPjcs6l8TERL333nu68sorq0wRcCEiIiLUsWNHffbZZ0pPT7+gMqKjo2W32/XGG2+4JBe5ubnas2dPlY4NSRo1apT++Mc/qri4WKGhobr11lsv9BIAAADcKiYmRv7+/lq4cKFLG2X//v368MMPdcstt1T7vquuukpPPvmk3nrrLW3atMnaf+YIinNxR/5SXZnp6elq0aJFlVEGNRUbG6v33ntP33zzjdWGrqio0Jtvvllt/H333acJEybozjvv1I4dO/Tss8+e9xwX0p6uSb4TGhqqlJQUffbZZ5oxY4a+//57KyeuTr9+/TRu3DgFBgZaI9UDAgLUo0cPzZw5UwcOHKh2BPvZXKzPv6bv7dmzpxwOh1566SXdfvvtZ+2QqU0uJ/1wj6Kjo/XPf/5T06ZNs95TUVGhhQsX6vLLL9dVV11Vq2uqjjvylzMlJCTI19dX//3vfy94iuXY2FhNnTpVb7zxhjVFtXT2vxu0bt1at956q1588UWVlZVp0KBBatu27QWdG8DPQ8cG4CEaNWqkqVOn6s4771RiYqJGjBih0tJSPffcczpy5IimTJlixd522216+umndfvtt+vPf/6zTp48qf/5n/9ReXn5BZ//L3/5i/r376+4uDiNGTNG5eXlevbZZxUQEHDWaYQqNWvWTDNnztSwYcP03Xff6ZZbblFISIgOHz6szz77TIcPH9bs2bNrVZ9evXrp/vvv1913361PP/1Uv/71rxUQEKCDBw9qzZo1ioqKcml0VGfYsGF6/vnnNXToUD3zzDP6xS9+offff9/qAPrpWiaVHnroId12222y2WzWcNhziYuLU0JCgh599FGVlJSoV69e+ve//63x48fruuuuU3JysiTppZde0ocffqiBAweqbdu2OnnypPXkVWXjevjw4fL391evXr3UunVrFRQUKCMjQw6Hw2XkR3W6deum4OBgZWdn6+6777b29+vXT3/5y19czlMTUVFRkqRnn31WAwYMkI+Pj7p27So/P78qsT/n86/NezMzM3XjjTcqOjpajz32mH7xi1/o0KFDevvtt/Xyyy8rMDBQkZGRkqRXXnlFgYGBatKkiTp06FDtUP9KDz/8sF577TUNHDhQkyZNUrt27bR8+XK9+OKLeuCBB9zSiJekSZMmKScnRz179tSoUaMUERGhkydPavfu3Xrvvff00ksv1XpY+csvv6wBAwYoISFBKSkpatOmjb777jtt375dmzZtOmvCWql58+ZKS0tTRkaGgoOD9fvf/1779+/XxIkT1bp162p/RoYOHapx48Zp9erVevLJJ6v9TgAAANSHyy67TE899ZQef/xx3XXXXbrjjjv07bffauLEiWrSpInGjx8vSfr3v/+tP/3pT7r11lvVsWNH+fn56cMPP9S///1vPfbYY1Z5UVFRWrJkid544w1dccUVatKkidVOPpM78pczjR49Wm+99ZZ+/etf6+GHH1bXrl1VUVGhvXv3Kjs7W2PGjFF0dPQ5y3jiiSf0zjvvqG/fvnriiSfk7++vl156yVoD78z23mWXXaa77rpLs2fPVrt27Wq05mJN29M1yXeio6OVmJiorl27Kjg4WNu3b9eCBQtcHvQ7m759+6q8vFwrV67U/Pnzrf39+vXT+PHjZbPZarWWxsX6/Gv63mbNmmn69Om677771K9fPw0fPlyhoaH68ssv9dlnn2nWrFlWvaWa5XKVMjIyFBcXpz59+mjs2LHy8/PTiy++qPz8fL3++utuGdUi/fz85Uzt27fXpEmT9MQTT+irr75S//79FRwcrEOHDmnDhg3WCKBz6d+/v3r16qUxY8aopKRE3bp107p16/Taa69JOvvfDSp/9l599dVa1RmAG9XLkuXAJe6jjz4yksybb75Z5diyZctMdHS0adKkiQkICDB9+/Y1//rXv6rEvffee+baa681/v7+5oorrjCzZs0y48ePN2f+WEsyI0eOrPL+du3amWHDhrnse/vtt03Xrl2Nn5+fadu2rZkyZUq1ZZ7NqlWrzMCBA03z5s1N48aNTZs2bczAgQNdrrOyvMOHD7u899VXXzWSzK5du1z2//3vfzfR0dEmICDA+Pv7myuvvNLcdddd5tNPP7ViYmNjTZcuXaqt0969e83NN99smjVrZgIDA80f/vAH89577xlJ5v/+7/+qxJeWlhq73W769+9fbXnDhg0z7dq1c9l34sQJ8+ijj5p27dqZxo0bm9atW5sHHnjAFBUVWTHr1q0zv//97027du2M3W43LVq0MLGxsebtt9+2YubPn2/69OljQkNDjZ+fn3E6nWbIkCHm3//+d7V1OdPvf/97I8ksWrTI2ldWVmYCAgJMo0aNXOpjzNk/i8r7cN9995lWrVoZm81W7Wdzppp8/mf7nGvyXmOM+fzzz82tt95qWrRoYX1PU1JSzMmTJ62YGTNmmA4dOhgfHx8jybz66qvGmHN/T/bs2WOSkpJMixYtTOPGjU1ERIR57rnnTHl5uRWza9cuI8k899xzVd4vyYwfP/6c98cYYw4fPmxGjRplOnToYBo3bmyaN29uunXrZp544glz7NixCzrPZ599ZoYMGWJCQkJM48aNTVhYmLnpppvMSy+9ZMVU3ve8vLwqZVZUVJhnnnnGXH755cbPz8907drVvPvuu+aaa64xv//976u9jpSUFOPr62v2799/3msGAACoK2drW/7tb3+z8hqHw2F++9vfmm3btlnHDx06ZFJSUszVV19tAgICTLNmzUzXrl3N888/b06fPm3F7d6928THx5vAwEAjqUoeUJ2fk79Ul2scO3bMPPnkkyYiIsK6nqioKPPwww+bgoICK+5seZ8xxnzyyScmOjra2O12ExYWZv785z+bZ5991kgyR44cqRL/8ccfG0lmypQp1ZZXXS5Zk/Z0TfKdxx57zHTv3t0EBwcbu91urrjiCvPwww+bb775ptq6/FRFRYVp2bKlkWS+/vpra/+//vUvI8n88pe/rPKec+UIdfX5V/c51/S9xvzwt4DY2FgTEBBgmjZtajp37myeffZZ6/i5crnzfU9uuukm6/w9evQw77zzjkvM2fKKyr9xfPTRR+e9Rz8nfznbeZYtW2b69OljgoKCjN1uN+3atTO33HKLWbFihRUzbNgwExAQUG2dvvvuO3P33Xebyy67zDRt2tTExcWZ3NxcI8n89a9/rfY97du3N506dTrv9QKoOzZjjKn77hMA8Bzp6el68skntXfv3ipPyL/zzjsaPHiwli9frt/85jf1VEOgfu3atUtXX321xo8fr8cff9zlWFlZmdq3b68bb7xR//jHP+qphgAAAPg54uPjtXv3bu3cubPKsTFjxmj27Nnat2/fOUc+A95s8eLFuvPOO/Wvf/1LPXv2dDn273//W9dcc41eeOGFGs30AKBuMBUVAK9WORz36quv1qlTp/Thhx/qf/7nfzR06FCXTo3PP/9ce/bs0ZgxY3Tttde6rMkBeLPPPvtMr7/+unr27KmgoCDt2LFDU6dOVVBQkO69914r7vDhw9qxY4deffVVHTp0yGWaBgAAAHiutLQ0XXfddQoPD9d3332nRYsWKScnx1o8vVJubq527typF198USNGjKBTA5eM119/XV9//bWioqLUqFEj5ebm6rnnntOvf/1rl06N//73v9qzZ48ef/xxtW7dWikpKfVXaQB0bADwbk2bNtXzzz+v3bt3q7S0VG3bttWjjz6qJ5980iUuNTVV//rXv/TLX/5S8+fPd9scooCnCwgI0Keffqq5c+fqyJEjcjgc6t27tyZPnqzQ0FArbvny5br77rvVunVrvfjiiy4LQwIAAMBzlZeX6+mnn1ZBQYFsNps6d+6sBQsWaOjQoS5xletYJCYm6plnnqmn2gIXX2BgoJYsWaJnnnlGx48ftzotzvw5+Mtf/qIFCxaoU6dOevPNN8+77guAusVUVAAAAAAAAAAAoMFoVN8VAAAAAAAAAAAAl4bTp0/rySefVIcOHeTv768rrrhCkyZNUkVFRY3LYCoqAAAAAAAAAABwUTz77LN66aWXNH/+fHXp0kWffvqp7r77bjkcDj300EM1KoOODQAAAAAAAAAAcFGsW7dOv/3tbzVw4EBJUvv27fX666/r008/rXEZdGzUk4qKCh04cECBgYEsUgwAABokY4yOHj0qp9OpRo3qf4bTkydPqqysrE7K9vPzU5MmTeqkbADVI2cCAAAN3aWUMxljqrTZ7Ha77HZ7ldgbb7xRL730knbu3KmrrrpKn332mdasWaMZM2bU+Hx0bNSTAwcOKDw8vL6rAQAA8LPt27dPl19+eb3W4eTJk2rl769jdVR+WFiYdu3aRecGcBGRMwEAAG9xKeRMzZo107FjrqWPHz9eEyZMqBL76KOPqri4WFdffbV8fHxUXl6uyZMn64477qjx+ejYqCeBgYGSfvhSBwUF1XNtALiDw5Fh/bu4eFw91gQALo6SkhKFh4db7Zr6VFZWpmOSHpZU9Xmgn6dU0vMFBSorK6NjA7iIyJkAAEBDUPn3oOr+FnRJ5UzHjlVpt1U3WkOS3njjDS1cuFCLFy9Wly5dtGXLFo0ePVpOp1PDhg2r0Tnp2KgnlcNygoKCaKQDXsKYjPMHAYAX8qQpYgIkubvrgQYzPEX79u21Z8+eKvtTU1P1wgsvyBijiRMn6pVXXlFRUZGio6P1wgsvqEuXLlZsaWmpxo4dq9dff10nTpxQ37599eKLL7o8QVhUVKRRo0bp7bffliQNHjxYM2fO1GWXXWbF7N27VyNHjtSHH34of39/JSUladq0afLz87Nitm7dqj/96U/asGGDmjdvrhEjRuipp56q8e8MciYAANAQ1OTvQZdKzlTTdtuf//xnPfbYY7r99tslSVFRUdqzZ48yMjJq3LFR/xN7AQAAAG7SuI42wBPk5eXp4MGD1paTkyNJuvXWWyVJU6dOVWZmpmbNmqW8vDyFhYUpLi5OR48etcoYPXq0li5dqiVLlmjNmjU6duyYEhMTVV5ebsUkJSVpy5YtysrKUlZWlrZs2aLk5GTreHl5uQYOHKjjx49rzZo1WrJkid566y2NGTPGiikpKVFcXJycTqfy8vI0c+ZMTZs2TZmZmXV9mwAAAHAOnpAzff/991XWHPHx8VFFRUWNy+ABNAAAAABoAFq1auXyesqUKbryyisVGxsrY4xmzJihJ554QjfffLMkaf78+QoNDdXixYs1YsQIFRcXa+7cuVqwYIH69esnSVq4cKHCw8O1YsUKJSQkaPv27crKylJubq6io6MlSXPmzFFMTIx27NihiIgIZWdn6/PPP9e+ffvkdDolSdOnT1dKSoomT56soKAgLVq0SCdPntS8efNkt9sVGRmpnTt3KjMzU2lpaR711CIAAAAurkGDBmny5Mlq27atunTpos2bNyszM1P33HNPjctgxAYAAAC8hm8dbYCnKSsr08KFC3XPPffIZrNp165dKigoUHx8vBVjt9sVGxurtWvXSpI2btyoU6dOucQ4nU5FRkZaMevWrZPD4bA6NSSpR48ecjgcLjGRkZFWp4YkJSQkqLS0VBs3brRiYmNjXeZVTkhI0IEDB7R79+5qr6m0tFQlJSUuGwAAANzLE3KmmTNn6pZbblFqaqo6deqksWPHasSIEfrLX/5S4zLo2AAAAACABmbZsmU6cuSIUlJSJEkFBQWSpNDQUJe40NBQ61hBQYH8/PwUHBx8zpiQkJAq5wsJCXGJOfM8wcHB8vPzO2dM5evKmDNlZGTI4XBYW3h4+LlvAgAAABqkwMBAzZgxQ3v27NGJEyf03//+V88884zLem3nQ8cGAAAAvIav3D9XLCM24Inmzp2rAQMGuIyakKouTGmMOe+0T2fGVBfvjhhjzFnfK0njxo1TcXGxte3bt++c9QYAAEDteUvORMcGAAAAADQge/bs0YoVK3TfffdZ+8LCwiRVHQ1RWFhojZQICwtTWVmZioqKzhlz6NChKuc8fPiwS8yZ5ykqKtKpU6fOGVNYWCip6qiSSna7XUFBQS4bAAAAUB06NgAAAOA1PGG+WKCuvfrqqwoJCdHAgQOtfR06dFBYWJhycnKsfWVlZVq1apV69uwpSerWrZsaN27sEnPw4EHl5+dbMTExMSouLtaGDRusmPXr16u4uNglJj8/XwcPHrRisrOzZbfb1a1bNytm9erVKisrc4lxOp1q3769G+8GAAAAasNbciY6NgAAAACggaioqNCrr76qYcOGydf3xxTSZrNp9OjRSk9P19KlS5Wfn6+UlBQ1bdpUSUlJkiSHw6F7771XY8aM0cqVK7V582YNHTpUUVFR6tevnySpU6dO6t+/v4YPH67c3Fzl5uZq+PDhSkxMVEREhCQpPj5enTt3VnJysjZv3qyVK1dq7NixGj58uDXKIikpSXa7XSkpKcrPz9fSpUuVnp6utLS0806NBQAAAJwPD6ABAADAa1TO8epOp91cHvBzrFixQnv37tU999xT5dgjjzyiEydOKDU1VUVFRYqOjlZ2drYCAwOtmOeff16+vr4aMmSITpw4ob59+2revHny8fGxYhYtWqRRo0YpPj5ekjR48GDNmjXLOu7j46Ply5crNTVVvXr1kr+/v5KSkjRt2jQrxuFwKCcnRyNHjlT37t0VHBystLQ0paWl1cVtAQAAQA15S85kM5UruOGiKikpkcPhUHFxMXPHAgCABsmT2jOVdXlRkr+byz4hKVXyiOsELiWe9DsGAADgQnhSe8bbciamogIAAAAAAAAAAA0GU1EBAADAa/jK/cOqT7m5PAAAAACoL96SMzFiAwAAAAAAAAAANBiM2AAAAIDX8JX7G7g0mAEAAAB4C2/JmRixAQAAAAAAAAAAGgyP6Nho3769bDZblW3kyJGSJGOMJkyYIKfTKX9/f/Xu3Vvbtm1zKaO0tFQPPvigWrZsqYCAAA0ePFj79+93iSkqKlJycrIcDoccDoeSk5N15MgRl5i9e/dq0KBBCggIUMuWLTVq1CiVlZW5xGzdulWxsbHy9/dXmzZtNGnSJBlj3H9jAAAAUCuN62gDAAAAAG/gLTmTR3Rs5OXl6eDBg9aWk5MjSbr11lslSVOnTlVmZqZmzZqlvLw8hYWFKS4uTkePHrXKGD16tJYuXaolS5ZozZo1OnbsmBITE1VeXm7FJCUlacuWLcrKylJWVpa2bNmi5ORk63h5ebkGDhyo48ePa82aNVqyZIneeustjRkzxoopKSlRXFycnE6n8vLyNHPmTE2bNk2ZmZl1fZsAAAAAAAAAALjkecSUwa1atXJ5PWXKFF155ZWKjY2VMUYzZszQE088oZtvvlmSNH/+fIWGhmrx4sUaMWKEiouLNXfuXC1YsED9+vWTJC1cuFDh4eFasWKFEhIStH37dmVlZSk3N1fR0dGSpDlz5igmJkY7duxQRESEsrOz9fnnn2vfvn1yOp2SpOnTpyslJUWTJ09WUFCQFi1apJMnT2revHmy2+2KjIzUzp07lZmZqbS0NNlstot45wAAAPBTdfG0ECM2AAAAAHgLb8mZPGLExk+VlZVp4cKFuueee2Sz2bRr1y4VFBQoPj7eirHb7YqNjdXatWslSRs3btSpU6dcYpxOpyIjI62YdevWyeFwWJ0aktSjRw85HA6XmMjISKtTQ5ISEhJUWlqqjRs3WjGxsbGy2+0uMQcOHNDu3bvPel2lpaUqKSlx2QAAAC4Gm22itXk73zraAAAAAMAbeEvO5HEdG8uWLdORI0eUkpIiSSooKJAkhYaGusSFhoZaxwoKCuTn56fg4OBzxoSEhFQ5X0hIiEvMmecJDg6Wn5/fOWMqX1fGVCcjI8Na28PhcCg8PPzsNwEAAAAAAAAAAFTL4x5Amzt3rgYMGOAyakJSlSmejDHnnfbpzJjq4t0RU7lw+LnqM27cOKWlpVmvS0pK6NwAAAAXhTHj67sKF42v3D8M2uMazAAAAABwgbwlZ/KoERt79uzRihUrdN9991n7wsLCJFUdDVFYWGiNlAgLC1NZWZmKiorOGXPo0KEq5zx8+LBLzJnnKSoq0qlTp84ZU1hYKKnqqJKfstvtCgoKctkAAAAAAAAAAEDteFTHxquvvqqQkBANHDjQ2tehQweFhYUpJyfH2ldWVqZVq1apZ8+ekqRu3bqpcePGLjEHDx5Ufn6+FRMTE6Pi4mJt2LDBilm/fr2Ki4tdYvLz83Xw4EErJjs7W3a7Xd26dbNiVq9erbKyMpcYp9Op9u3bu/FuAAAAoLa8Zb5YAAAAAKgL3pIzeUzHRkVFhV599VUNGzZMvr4/3gqbzabRo0crPT1dS5cuVX5+vlJSUtS0aVMlJSVJkhwOh+69916NGTNGK1eu1ObNmzV06FBFRUWpX79+kqROnTqpf//+Gj58uHJzc5Wbm6vhw4crMTFRERERkqT4+Hh17txZycnJ2rx5s1auXKmxY8dq+PDh1giLpKQk2e12paSkKD8/X0uXLlV6errS0tLOOzUWAAAAAAAAAAD4eTzmAbQVK1Zo7969uueee6oce+SRR3TixAmlpqaqqKhI0dHRys7OVmBgoBXz/PPPy9fXV0OGDNGJEyfUt29fzZs3Tz4+PlbMokWLNGrUKMXHx0uSBg8erFmzZlnHfXx8tHz5cqWmpqpXr17y9/dXUlKSpk2bZsU4HA7l5ORo5MiR6t69u4KDg5WWluayfgYAAADqR2O5f75Yd5cHAAAAAPXFW3Imm6lc+RoXVUlJiRwOh4qLi1lvAwAANEie1J6prMsHkgLcXPZxSQmSR1wncCnxpN8xAAAAF8KT2jPeljN5zFRUAAAAwM/lCfPFrl69WoMGDZLT6ZTNZtOyZcvOGjtixAjZbDbNmDGjlmcBAAAAgNrzhJzJHejYAAAAgNfw1Y9Dq9211baRfvz4cV1zzTUuU55WZ9myZVq/fr2cTmctzwAAAAAAF8YTciZ38Jg1NgAAAABvMGDAAA0YMOCcMV9//bX+9Kc/6YMPPtDAgQMvUs0AAAAAwDvQsQEAAACvURfDoCvLKykpcdlvt9tlt9trXV5FRYWSk5P15z//WV26dHFDDQEAAACgZuoyZ7qYmIoKAAAAqIHw8HA5HA5ry8jIuKBynn32Wfn6+mrUqFFuriEAAAAAXBoYsQEAAACvUTnHq7vLlKR9+/YpKCjI2n8hozU2btyov/71r9q0aZNsNpubaggAAAAANVOXOdPFxIgNAAAAoAaCgoJctgvp2Pjkk09UWFiotm3bytfXV76+vtqzZ4/GjBmj9u3bu7/SAAAAAOCFGLEBAAAAr+Hp88UmJyerX79+LvsSEhKUnJysu+++241nAgAAAICqPD1n8uRzAgAAAF7r2LFj+vLLL63Xu3bt0pYtW9S8eXO1bdtWLVq0cIlv3LixwsLCFBERcbGrCgAAAAANEh0bAAAA8Bq+cv/8rrVtMH/66afq06eP9TotLU2SNGzYMM2bN899FQMAAACAWvKEnKmhnhMAAACoE56wEF7v3r1ljKlx/O7du2t5BgAAAAC4MJ6QM7kDi4cDAAAAAAAAAIAGgxEbAAAA8BreshAeAAAAANQFb8mZGLEBAAAAAAAAAAAaDB5AAwAAgNfw9ZEa29xcppFU7t4yAQAAAKA+eEvOxIgNAAAAAAAAAADQYDBiAwAAAF7D11fy9YKnjwAAAACgLnhLzsSIDQAAAAAAAAAA0GAwYgMAAABeo3EdzBfb2Li3PAAAAACoL96SM9GxAQAAAK9RZ8OqAQAAAMALeEvOxFRUAAAAAAAAAACgwWDEBgAAALxGYx+psZsf3Wlc4d7yAAAAAKC+eEvOxIgNAAAAAAAAAADQYDBiAwAAAN7DR+5/dMfN888CAAAAQL3xkpyJERsAAAAAAAAAAKDBYMQGAAAAvIev3P/oDmtsAAAAAPAWXpIzMWIDAAAAAAAAAAA0GIzYAAAAgPfwkqePAAAAAKBOeEnORMcGAAAAvIeXNNIBAAAAoE54Sc7EVFQAAAAAAAAAAKDBYMQGAAAAvEcjST71XQkAAAAA8FBekjMxYgMAAAAAAAAAADQYjNgAAACA9/CV+58+srm5PAAAAACoL16SMzFiAwAAAAAAAAAAXBTt27eXzWarso0cObLGZTBiAwAAAN7DS54+AgAAAIA64QE5U15ensrLy63X+fn5iouL06233lrjMujYAAAAAAAAAAAAF0WrVq1cXk+ZMkVXXnmlYmNja1wGHRsAAADwHj5y/9NHAAAAAOAt6jBnKikpcXltt9tlt9vP+Z6ysjItXLhQaWlpstlqPvSDNTYAAADgPXzraAMAAAAAb1CHOVN4eLgcDoe1ZWRknLc6y5Yt05EjR5SSklLrywAAAAAAAAAAALhg+/btU1BQkPX6fKM1JGnu3LkaMGCAnE5nrc7FiA0AAAB4Dx+5/8kjpraCh/j66681dOhQtWjRQk2bNtW1116rjRs3WseNMZowYYKcTqf8/f3Vu3dvbdu2zaWM0tJSPfjgg2rZsqUCAgI0ePBg7d+/3yWmqKhIycnJ1pN2ycnJOnLkiEvM3r17NWjQIAUEBKhly5YaNWqUysrKXGK2bt2q2NhY+fv7q02bNpo0aZKMMe69KQAAAKidOsyZgoKCXLbzdWzs2bNHK1as0H333Vfry6BjAwAAAAA8XFFRkXr16qXGjRvr/fff1+eff67p06frsssus2KmTp2qzMxMzZo1S3l5eQoLC1NcXJyOHj1qxYwePVpLly7VkiVLtGbNGh07dkyJiYkqLy+3YpKSkrRlyxZlZWUpKytLW7ZsUXJysnW8vLxcAwcO1PHjx7VmzRotWbJEb731lsaMGWPFlJSUKC4uTk6nU3l5eZo5c6amTZumzMzMur1RAAAAaDBeffVVhYSEaODAgbV+L1NRAQAAwHvUxUJ4PGAOD/Dss88qPDxcr776qrWvffv21r+NMZoxY4aeeOIJ3XzzzZKk+fPnKzQ0VIsXL9aIESNUXFysuXPnasGCBerXr58kaeHChQoPD9eKFSuUkJCg7du3KysrS7m5uYqOjpYkzZkzRzExMdqxY4ciIiKUnZ2tzz//XPv27bOmDJg+fbpSUlI0efJkBQUFadGiRTp58qTmzZsnu92uyMhI7dy5U5mZmbVeGBIAAABu5CE5U0VFhV599VUNGzZMvr6176ZgxAYAAAAAeLi3335b3bt316233qqQkBBdd911mjNnjnV8165dKigoUHx8vLXPbrcrNjZWa9eulSRt3LhRp06dcolxOp2KjIy0YtatWyeHw2F1akhSjx495HA4XGIiIyNd5kFOSEhQaWmpNTXWunXrFBsb6zL9QEJCgg4cOKDdu3dXe42lpaUqKSlx2QAAAOCdVqxYob179+qee+65oPfTsQEAAADv4e65Yis3oJ599dVXmj17tjp27KgPPvhAf/zjHzVq1Ci99tprkqSCggJJUmhoqMv7QkNDrWMFBQXy8/NTcHDwOWNCQkKqnD8kJMQl5szzBAcHy8/P75wxla8rY86UkZFhrevhcDgUHh5+nrsCAACAWvOQnCk+Pl7GGF111VUXdBl0bAAAAACAh6uoqNAvf/lLpaen67rrrtOIESM0fPhwzZ492yXuzCmejDHnnfbpzJjq4t0RU7lw+NnqM27cOBUXF1vbvn37zllvAAAAXLro2AAAAID38JCnjwB3a926tTp37uyyr1OnTtq7d68kKSwsTFLV0RCFhYXWSImwsDCVlZWpqKjonDGHDh2qcv7Dhw+7xJx5nqKiIp06deqcMYWFhZKqjiqpZLfbFRQU5LIBAADAzbwkZ6JjAwAAAAA8XK9evbRjxw6XfTt37lS7du0kSR06dFBYWJhycnKs42VlZVq1apV69uwpSerWrZsaN27sEnPw4EHl5+dbMTExMSouLtaGDRusmPXr16u4uNglJj8/XwcPHrRisrOzZbfb1a1bNytm9erVKisrc4lxOp0ui54DAAAAF4KODQAAAHgPL3n6CDjTww8/rNzcXKWnp+vLL7/U4sWL9corr2jkyJGSfpjeafTo0UpPT9fSpUuVn5+vlJQUNW3aVElJSZIkh8Ohe++9V2PGjNHKlSu1efNmDR06VFFRUerXr5+kH0aB9O/fX8OHD1dubq5yc3M1fPhwJSYmKiIiQtIP8yF37txZycnJ2rx5s1auXKmxY8dq+PDh1iiLpKQk2e12paSkKD8/X0uXLlV6errS0tLOOzUWAAAA6pCX5EykaQAAAPAejST5uLnMCjeXB1yA66+/XkuXLtW4ceM0adIkdejQQTNmzNCdd95pxTzyyCM6ceKEUlNTVVRUpOjoaGVnZyswMNCKef755+Xr66shQ4boxIkT6tu3r+bNmycfnx9/cBYtWqRRo0YpPj5ekjR48GDNmjXLOu7j46Ply5crNTVVvXr1kr+/v5KSkjRt2jQrxuFwKCcnRyNHjlT37t0VHBystLQ0paWl1eVtAgAAwPl4Sc5kM5UruOGiKikpkcPhUHFxMXPHAgCABsmT2jNWXeKkoMZuLvuU5MiRR1wncCnxpN8xAAAAF8KT2jPeljMxYgMAAADeoy6GQfMYEAAAAABv4SU5E2tsAAAAAAAAAACABsNjOja+/vprDR06VC1atFDTpk117bXXauPGjdZxY4wmTJggp9Mpf39/9e7dW9u2bXMpo7S0VA8++KBatmypgIAADR48WPv373eJKSoqUnJyshwOhxwOh5KTk3XkyBGXmL1792rQoEEKCAhQy5YtNWrUKJWVlbnEbN26VbGxsfL391ebNm00adIkMasXAABAPfOShfAAAAAANFw220TZbBPlcGTUd1Wq8pKcySM6NoqKitSrVy81btxY77//vj7//HNNnz5dl112mRUzdepUZWZmatasWcrLy1NYWJji4uJ09OhRK2b06NFaunSplixZojVr1ujYsWNKTExUeXm5FZOUlKQtW7YoKytLWVlZ2rJli5KTk63j5eXlGjhwoI4fP641a9ZoyZIleuuttzRmzBgrpqSkRHFxcXI6ncrLy9PMmTM1bdo0ZWZm1u2NAgAAAAAAAADgEucRi4c/9thj+te//qVPPvmk2uPGGDmdTo0ePVqPPvqopB9GZ4SGhurZZ5/ViBEjVFxcrFatWmnBggW67bbbJEkHDhxQeHi43nvvPSUkJGj79u3q3LmzcnNzFR0dLUnKzc1VTEyM/vOf/ygiIkLvv/++EhMTtW/fPjmdTknSkiVLlJKSosLCQgUFBWn27NkaN26cDh06JLvdLkmaMmWKZs6cqf3798tms533mj1p4RgAAIAL4UntGasuv6ujhfCWsXg4cLF50u8YAACAC+FJ7Rlvy5k8YsTG22+/re7du+vWW29VSEiIrrvuOs2ZM8c6vmvXLhUUFCg+Pt7aZ7fbFRsbq7Vr10qSNm7cqFOnTrnEOJ1ORUZGWjHr1q2Tw+GwOjUkqUePHnI4HC4xkZGRVqeGJCUkJKi0tNSaGmvdunWKjY21OjUqYw4cOKDdu3dXe42lpaUqKSlx2QAAAAAAAAAAQO14RMfGV199pdmzZ6tjx4764IMP9Mc//lGjRo3Sa6+9JkkqKCiQJIWGhrq8LzQ01DpWUFAgPz8/BQcHnzMmJCSkyvlDQkJcYs48T3BwsPz8/M4ZU/m6MuZMGRkZ1roeDodD4eHh57krAAAAqDUvmS8WAAAAAOqEl+RMHpGmVVRUqHv37kpPT5ckXXfdddq2bZtmz56tu+66y4o7c4onY8x5p306M6a6eHfEVM7odbb6jBs3TmlpadbrkpISOjcAAADczUfub+FWuLk8AAAAAKgvXpIzecSIjdatW6tz584u+zp16qS9e/dKksLCwiRVHQ1RWFhojZQICwtTWVmZioqKzhlz6NChKuc/fPiwS8yZ5ykqKtKpU6fOGVNYWCip6qiSSna7XUFBQS4bAAAAAAAAAACoHY/o2OjVq5d27Njhsm/nzp1q166dJKlDhw4KCwtTTk6OdbysrEyrVq1Sz549JUndunVT48aNXWIOHjyo/Px8KyYmJkbFxcXasGGDFbN+/XoVFxe7xOTn5+vgwYNWTHZ2tux2u7p162bFrF69WmVlZS4xTqdT7du3d8ctAQAAwIXwqaMNAAAAALyBl+RMHtGx8fDDDys3N1fp6en68ssvtXjxYr3yyisaOXKkpB+mdxo9erTS09O1dOlS5efnKyUlRU2bNlVSUpIkyeFw6N5779WYMWO0cuVKbd68WUOHDlVUVJT69esn6YdRIP3799fw4cOVm5ur3NxcDR8+XImJiYqIiJAkxcfHq3PnzkpOTtbmzZu1cuVKjR07VsOHD7dGWSQlJclutyslJUX5+flaunSp0tPTlZaWdt6psQAAAAAAAAAAwIXziDU2rr/+ei1dulTjxo3TpEmT1KFDB82YMUN33nmnFfPII4/oxIkTSk1NVVFRkaKjo5Wdna3AwEAr5vnnn5evr6+GDBmiEydOqG/fvpo3b558fH7sMlq0aJFGjRql+Ph4SdLgwYM1a9Ys67iPj4+WL1+u1NRU9erVS/7+/kpKStK0adOsGIfDoZycHI0cOVLdu3dXcHCw0tLSXNbQAAAAQD2oi4XrWGMDAAAAgLfwkpzJZipXvcZFVVJSIofDoeLiYtbbAAAADZIntWesutwlBfm5uewyyfGaPOI6gUuJJ/2OAQAAuBCe1J7xtpzJI0ZsAAAAAG7hJU8fAQAAAECd8JKcySPW2AAAAAAAAAAAAKgJRmwAAADAe3jJ00cAAAAAUCe8JGdixAYAAAC8RyNJPm7eatliXr16tQYNGiSn0ymbzaZly5ZZx06dOqVHH31UUVFRCggIkNPp1F133aUDBw5c8CUDAAAAQI15QM7kDnRsAAAAAG50/PhxXXPNNZo1a1aVY99//702bdqkp556Sps2bdI///lP7dy5U4MHD66HmgIAAABAw8RUVAAAAPAedTGsurx24QMGDNCAAQOqPeZwOJSTk+Oyb+bMmbrhhhu0d+9etW3b9kJrCQAAAADn5wE5kzvQsQEAAADUQElJictru90uu93+s8stLi6WzWbTZZdd9rPLAgAAAIBLAVNRAQAAwHv41tEmKTw8XA6Hw9oyMjJ+dnVPnjypxx57TElJSQoKCvrZ5QEAAADAOdVhznQxMWIDAAAAqIF9+/a5dD783NEap06d0u23366Kigq9+OKLP7d6AAAAAHDJoGMDAAAA3sPn/2/uLlNSUFCQ20ZVnDp1SkOGDNGuXbv04YcfMloDAAAAwMVRhznTxUTHBgAAAHARVXZqfPHFF/roo4/UokWL+q4SAAAAADQodGwAAADAe9TF/K7ltQs/duyYvvzyS+v1rl27tGXLFjVv3lxOp1O33HKLNm3apHfffVfl5eUqKCiQJDVv3lx+fn7urDkAAAAAuPKAnMkd6NgAAACA9/CR+1u4p2sX/umnn6pPnz7W67S0NEnSsGHDNGHCBL399tuSpGuvvdblfR999JF69+79c2oKAAAAAOfmATmTO9CxAQAAALhR7969ZYw56/FzHQMAAAAAnB8dGwAAAPAedTGsmhYzAAAAAG/hJTlTo4t/SgAAAAAAAAAAgAvD82cAAADwHj7/f3N3mQAAAADgDbwkZ2LEBgAAAAAAAAAAaDAYsQEAAADv4SXzxQIAAABAnfCSnIkRGwAAAAAAAAAAoMHg+TMAAAB4Dy95+ggAAAAA6oSX5EykaQAAAPAejeT+hesY4wwAAADAW3hJzkSaBgAAAAAAAAAAGgxGbAAAAMB7eMmwagAAAACoE16SMzFiAwAAAAAAAAAANBg8fwYAAADv4SVPHwEAAABAnfCSnIkRGwAAAAAAAAAAoMHg+TMAAAB4D5//v7m7TAAAAADwBl6SMzFiAwAAAAAAAKhDNttE2WwT67saAOA1GLEBAAAA7+El88UCAAAAQJ3wkpyJNA0AgHry0ye2jBlfjzUBvIiP3N/CZSoqAADwM9HeB7xfg8nxvSRnYioqAAAAAAAAAADQYDBiAwCAeuLRT3AADZWXDKsGAAAA0LA0mBzfS3ImRmwAAAAAAAAAAIAGg+fPAAAA4D185P75XVljAwAAAIC38JKciREbAAAAAAAAAACgwaBjAwAAAN7Dt442AAAAAPAGHpIzff311xo6dKhatGihpk2b6tprr9XGjRtrdRkAAAAAAAAAAAB1rqioSL169VKfPn30/vvvKyQkRP/973912WWX1bgMOjYAAADgPepihAUtZgAAAADewgNypmeffVbh4eF69dVXrX3t27evVRlMRQUAAADv0Ug/Lobnro0WMwAAAABvUYc5U0lJictWWlpabRXefvttde/eXbfeeqtCQkJ03XXXac6cObW+DAAAAAAAAAAAgAsWHh4uh8NhbRkZGdXGffXVV5o9e7Y6duyoDz74QH/84x81atQovfbaazU+Fx0bAAAA8B4eshAe4G4TJkyQzWZz2cLCwqzjxhhNmDBBTqdT/v7+6t27t7Zt2+ZSRmlpqR588EG1bNlSAQEBGjx4sPbv3+8SU1RUpOTkZCsZTU5O1pEjR1xi9u7dq0GDBikgIEAtW7bUqFGjVFZW5hKzdetWxcbGyt/fX23atNGkSZNkjHHvTQEAAEDt1WHOtG/fPhUXF1vbuHHjqq1CRUWFfvnLXyo9PV3XXXedRowYoeHDh2v27Nk1vgw6NgAAAACgAejSpYsOHjxobVu3brWOTZ06VZmZmZo1a5by8vIUFhamuLg4HT161IoZPXq0li5dqiVLlmjNmjU6duyYEhMTVV5ebsUkJSVpy5YtysrKUlZWlrZs2aLk5GTreHl5uQYOHKjjx49rzZo1WrJkid566y2NGTPGiikpKVFcXJycTqfy8vI0c+ZMTZs2TZmZmXV8hwAAAFCfgoKCXDa73V5tXOvWrdW5c2eXfZ06ddLevXtrfC6ePwMAAID38ICF8IC64uvr6zJKo5IxRjNmzNATTzyhm2++WZI0f/58hYaGavHixRoxYoSKi4s1d+5cLViwQP369ZMkLVy4UOHh4VqxYoUSEhK0fft2ZWVlKTc3V9HR0ZKkOXPmKCYmRjt27FBERISys7P1+eefa9++fXI6nZKk6dOnKyUlRZMnT1ZQUJAWLVqkkydPat68ebLb7YqMjNTOnTuVmZmptLQ02Wy2i3THAAAAUIUH5Ey9evXSjh07XPbt3LlT7dq1q3EZjNgAAAAAgAbgiy++kNPpVIcOHXT77bfrq6++kiTt2rVLBQUFio+Pt2LtdrtiY2O1du1aSdLGjRt16tQplxin06nIyEgrZt26dXI4HFanhiT16NFDDofDJSYyMtLq1JCkhIQElZaWauPGjVZMbGysyxN6CQkJOnDggHbv3n3W6ystLa2y4CQAAEBDZLNNlM02UQ5H9WtMXOoefvhh5ebmKj09XV9++aUWL16sV155RSNHjqxxGXRsAAAAwHv41NEG1LPo6Gi99tpr+uCDDzRnzhwVFBSoZ8+e+vbbb1VQUCBJCg0NdXlPaGiodaygoEB+fn4KDg4+Z0xISEiVc4eEhLjEnHme4OBg+fn5nTOm8nVlTHUyMjJcFpsMDw8/900BAABA7XlAznT99ddr6dKlev311xUZGam//OUvmjFjhu68884al8HAegAAAADwcAMGDLD+HRUVpZiYGF155ZWaP3++evToIUlVpngyxpx32qczY6qLd0dM5cLh56rPuHHjlJaWZr0uKSmhcwMAADRIxoyX9EN7xuGYUs+18UyJiYlKTEy84PczYgMAAADew7eONsDDBAQEKCoqSl988YW17saZoyEKCwutkRJhYWEqKytTUVHROWMOHTpU5VyHDx92iTnzPEVFRTp16tQ5YwoLCyVVHVXyU3a7vcqCkwAAAHAzL8mZ6NgAAACA9/CR+xvoTEUFD1RaWqrt27erdevW6tChg8LCwpSTk2MdLysr06pVq9SzZ09JUrdu3dS4cWOXmIMHDyo/P9+KiYmJUXFxsTZs2GDFrF+/XsXFxS4x+fn5OnjwoBWTnZ0tu92ubt26WTGrV69WWVmZS4zT6VT79u3dfzMAAABQc16SM9GxAQAAAAAebuzYsVq1apV27dql9evX65ZbblFJSYmGDRsmm82m0aNHKz09XUuXLlV+fr5SUlLUtGlTJSUlSZIcDofuvfdejRkzRitXrtTmzZs1dOhQRUVFqV+/fpKkTp06qX///ho+fLhyc3OVm5ur4cOHKzExUREREZKk+Ph4de7cWcnJydq8ebNWrlypsWPHavjw4dYIi6SkJNntdqWkpCg/P19Lly5Venq60tLSzjs1FgAAAFATDKwHAACA96iLYdC0mOEB9u/frzvuuEPffPONWrVqpR49eig3N1ft2rWTJD3yyCM6ceKEUlNTVVRUpOjoaGVnZyswMNAq4/nnn5evr6+GDBmiEydOqG/fvpo3b558fH58xG7RokUaNWqU4uPjJUmDBw/WrFmzrOM+Pj5avny5UlNT1atXL/n7+yspKUnTpk2zYhwOh3JycjRy5Eh1795dwcHBSktLc1k/AwAAAPXES3Imm6lcxQ0X1Q8LxzhUXFzM3LEAAKBB8qT2jFWXNVJQMzeXfUxy3CiPuE7gUuJJv2MAAAAuhCe1Z7wtZ/KIqagmTJggm83mslUugCdJxhhNmDBBTqdT/v7+6t27t7Zt2+ZSRmlpqR588EG1bNlSAQEBGjx4sPbv3+8SU1RUpOTkZDkcDjkcDiUnJ+vIkSMuMXv37tWgQYMUEBCgli1batSoUS5zw0rS1q1bFRsbK39/f7Vp00aTJk0S/UMAAAAewKeONgAAAADwBl6SM3lEx4YkdenSRQcPHrS2rVu3WsemTp2qzMxMzZo1S3l5eQoLC1NcXJyOHj1qxYwePVpLly7VkiVLtGbNGh07dkyJiYkqLy+3YpKSkrRlyxZlZWUpKytLW7ZsUXJysnW8vLxcAwcO1PHjx7VmzRotWbJEb731lsaMGWPFlJSUKC4uTk6nU3l5eZo5c6amTZumzMzMOr5DAAAAAAAAAADAY2YM9vX1dRmlUckYoxkzZuiJJ57QzTffLEmaP3++QkNDtXjxYo0YMULFxcWaO3euFixYYC18t3DhQoWHh2vFihVKSEjQ9u3blZWVpdzcXEVHR0uS5syZo5iYGO3YsUMRERHKzs7W559/rn379snpdEqSpk+frpSUFE2ePFlBQUFatGiRTp48qXnz5slutysyMlI7d+5UZmYmi+EBAADUNy+ZLxYAAAAA6oSX5EweM2Ljiy++kNPpVIcOHXT77bfrq6++kiTt2rVLBQUF1uJ1kmS32xUbG6u1a9dKkjZu3KhTp065xDidTkVGRlox69atk8PhsDo1JKlHjx5yOBwuMZGRkVanhiQlJCSotLRUGzdutGJiY2Nlt9tdYg4cOKDdu3ef9fpKS0tVUlLisgEAAAAAAAAAgNrxiI6N6Ohovfbaa/rggw80Z84cFRQUqGfPnvr2229VUFAgSQoNDXV5T2hoqHWsoKBAfn5+Cg4OPmdMSEhIlXOHhIS4xJx5nuDgYPn5+Z0zpvJ1ZUx1MjIyrLU9HA6HwsPDz31TAAAAUHs++vEJJHdtrLEBAAAAwFt4Sc7kER0bAwYM0B/+8AdFRUWpX79+Wr58uaQfppyqdOYUT8aY8077dGZMdfHuiKlcOPxc9Rk3bpyKi4utbd++feesOwAAAAAAAAAAqMojOjbOFBAQoKioKH3xxRfWuhtnjoYoLCy0RkqEhYWprKxMRUVF54w5dOhQlXMdPnzYJebM8xQVFenUqVPnjCksLJRUdVTJT9ntdgUFBblsAAAAcDOfOtoAAAAAwBt4Sc7kkR0bpaWl2r59u1q3bq0OHTooLCxMOTk51vGysjKtWrVKPXv2lCR169ZNjRs3dok5ePCg8vPzrZiYmBgVFxdrw4YNVsz69etVXFzsEpOfn6+DBw9aMdnZ2bLb7erWrZsVs3r1apWVlbnEOJ1OtW/f3v03AwAAADXn7iHVdbGwHgAAAADUFy/JmTyiY2Ps2LFatWqVdu3apfXr1+uWW25RSUmJhg0bJpvNptGjRys9PV1Lly5Vfn6+UlJS1LRpUyUlJUmSHA6H7r33Xo0ZM0YrV67U5s2bNXToUGtqK0nq1KmT+vfvr+HDhys3N1e5ubkaPny4EhMTFRERIUmKj49X586dlZycrM2bN2vlypUaO3ashg8fbo2wSEpKkt1uV0pKivLz87V06VKlp6crLS3tvFNjAQAAAAAAAACAn8cjnj/bv3+/7rjjDn3zzTdq1aqVevToodzcXLVr106S9Mgjj+jEiRNKTU1VUVGRoqOjlZ2drcDAQKuM559/Xr6+vhoyZIhOnDihvn37at68efLx+XEczKJFizRq1CjFx8dLkgYPHqxZs2ZZx318fLR8+XKlpqaqV69e8vf3V1JSkqZNm2bFOBwO5eTkaOTIkerevbuCg4OVlpamtLS0ur5NAAAAOJ+6eFrII1rMAAAAAOAGXpIz2Uzlyte4qEpKSuRwOFRcXMx6GwAAoEHypPaMVZcdUlDg+eNrVfZRyREhj7hO4FLiSb9jAAAALoQntWe8LWfi+TMAAAB4Dy95+ggAAAAA6oSX5EwescYGAAAAAAAAAABATfD8GQAAALyGaSQZn/PH1bZMAAAAAPAG3pIzkaYBAAAAAAAAAIAGgxEbAAAA8Brlvj9s7i4TAAAAALyBt+RMpGkAAADwGt7SSAcAAACAuuAtORNTUQHAJcxmm2htAAD3WL16tQYNGiSn0ymbzaZly5a5HDfGaMKECXI6nfL391fv3r21bdu2+qksAAAAALfgbywXFx0bAAAA8BqnfWw67dPIzZutVnU4fvy4rrnmGs2aNava41OnTlVmZqZmzZqlvLw8hYWFKS4uTkePHnXHLQAAAACAs/KEnMkdGFgPAAAAuNGAAQM0YMCAao8ZYzRjxgw98cQTuvnmmyVJ8+fPV2hoqBYvXqwRI0ZczKoCAAAAQINExwYAXMKMGV/fVQAAtyr39VW5r3ufFir3NZJOqaSkxGW/3W6X3W6vVVm7du1SQUGB4uPjXcqJjY3V2rVr6dgAAAAAGqiG8jeWusyZLiamogIAAABqIDw8XA6Hw9oyMjJqXUZBQYEkKTQ01GV/aGiodQwAAAAAcG6M2AAAAIDXKPfxUbmb53ct9/nh6aN9+/YpKCjI2l/b0Ro/ZbO51tEYU2UfAAAAALhbXeZMFxMdGwAAAEANBAUFuXRsXIiwsDBJP4zcaN26tbW/sLCwyigOAAAAAED1mIoKAAAAXqNCPip381YhH7fVr0OHDgoLC1NOTo61r6ysTKtWrVLPnj3ddh4AAAAAqI6n50w1xYgNAAAAeI3T8tFpuXdY9WmZWsUfO3ZMX375pfV6165d2rJli5o3b662bdtq9OjRSk9PV8eOHdWxY0elp6eradOmSkpKcmu9AQAAAOBMnpAzuQMdGwAAAIAbffrpp+rTp4/1Oi0tTZI0bNgwzZs3T4888ohOnDih1NRUFRUVKTo6WtnZ2QoMDKyvKgMAAABAg0LHBgAAALzGD0Oh3TvbarkqahXfu3dvGXP2J5ZsNpsmTJigCRMm/MyaAQAAAPAUNttE69/GjK/HmpybJ+RM7sAaGwAAAAAAAAAAoMFgxAYAAAC8Rt08feTe+WcBAAAAoL54S87EiA0AAAAAAAAAANBgMGIDAAAAXsNbnj4CAAAA0LB48roaP+UtORMjNgAAAAAAAAAAQIPBiA0AAAB4DW95+ggAAAAA6oK35Ex0bAAAAMBrlMtHp72gkQ4AAAAAdcFbciamogIAAAAAAAAAAA0GIzYAAADgNcrlWwfDqivcWh4AAAAA1BdvyZkYsQEAAAAAAAAAABoMRmwAAADAa5Srkcrl4+YyAQANkc020fq3MePrsSYAAHgOb8mZGLEBAAAAAAAAAAAaDEZsAAAAwGuUy8crnj4CAAAAgLrgLTkTHRsAAEkM1QcAAIB3oU0LAID3omMDAAAAXuO0fHTazU8fnXZraQAAAABQf7wlZ6JjA9CPT6rzRA8uZXz/AXiDCvm6fVh1hWxuLQ8AAAAA6ou35EwsHg4AAAAAAAAAABoMRmwA4kl1AD8P65MAnsNbFsIDAAAAgLrgLTkTIzYAAAAAAAAAAECDwYgNAAB+JkZpAJ7DW54+AgAAAIC64C05EyM2AAAAAAAAAABAg8GIDQAAAHiNcjWqg6ePjFvLAwAAAID64i05EyM2AAAAAAAAAADARTFhwgTZbDaXLSwsrFZlMGIDAAAAXuO0fHTazU8fnWbEBgAAAAAv4Sk5U5cuXbRixQrrtY9P7epExwYAAAC8Rrl8Ve7mJi6LhwMAAAA4H5ttovVvY8bXY03OzVNyJl9f31qP0vgppqICAAAAAAAAAAA/S0lJictWWlp61tgvvvhCTqdTHTp00O23366vvvqqVudixAYAAAC8RoV83L4QXgVTUQEAAAA4D08epfFTdZkzhYeHu+wfP368JkyYUCU+Ojpar732mq666iodOnRIzzzzjHr27Klt27apRYsWNTonIzYAAAAAoIHJyMiQzWbT6NGjrX3GGE2YMEFOp1P+/v7q3bu3tm3b5vK+0tJSPfjgg2rZsqUCAgI0ePBg7d+/3yWmqKhIycnJcjgccjgcSk5O1pEjR1xi9u7dq0GDBikgIEAtW7bUqFGjVFZW5hKzdetWxcbGyt/fX23atNGkSZNkDB2FAAAA3mrfvn0qLi62tnHjxlUbN2DAAP3hD39QVFSU+vXrp+XLl0uS5s+fX+Nz0bEBAAAAr1H+/58+cvcGeJK8vDy98sor6tq1q8v+qVOnKjMzU7NmzVJeXp7CwsIUFxeno0ePWjGjR4/W0qVLtWTJEq1Zs0bHjh1TYmKiyst/nBk5KSlJW7ZsUVZWlrKysrRlyxYlJydbx8vLyzVw4EAdP35ca9as0ZIlS/TWW29pzJgxVkxJSYni4uLkdDqVl5enmTNnatq0acrMzKzDOwMAAIDzqcucKSgoyGWz2+01qlNAQICioqL0xRdf1Pg66NgAAAAAgAbi2LFjuvPOOzVnzhwFBwdb+40xmjFjhp544gndfPPNioyM1Pz58/X9999r8eLFkqTi4mLNnTtX06dPV79+/XTddddp4cKF2rp1q1asWCFJ2r59u7KysvS3v/1NMTExiomJ0Zw5c/Tuu+9qx44dkqTs7Gx9/vnnWrhwoa677jr169dP06dP15w5c1RSUiJJWrRokU6ePKl58+YpMjJSN998sx5//HFlZmYyagMAAAAuSktLtX37drVu3brG76FjAwAAAF7jtBrptHzcvNFkhucYOXKkBg4cqH79+rns37VrlwoKChQfH2/ts9vtio2N1dq1ayVJGzdu1KlTp1xinE6nIiMjrZh169bJ4XAoOjraiunRo4ccDodLTGRkpJxOpxWTkJCg0tJSbdy40YqJjY11eUovISFBBw4c0O7du6u9ttLS0ioLTgIAAMC9PCFnGjt2rFatWqVdu3Zp/fr1uuWWW1RSUqJhw4bVuAyyNAAAAABoAJYsWaJNmzYpIyOjyrGCggJJUmhoqMv+0NBQ61hBQYH8/PxcRnpUFxMSElKl/JCQEJeYM88THBwsPz+/c8ZUvq6MOVNGRoa1rofD4aiy+CQAAAC8w/79+3XHHXcoIiJCN998s/z8/JSbm6t27drVuAzfOqwfAAAAcFGVy1flbm7ilotpc1D/9u3bp4ceekjZ2dlq0qTJWeNsNpvLa2NMlX1nOjOmunh3xFROQXW2+owbN05paWnW65KSEjo3AAAA3MwTcqYlS5b87HPSsQEAAACvUReLfZerwq3lARdi48aNKiwsVLdu3ax95eXlWr16tWbNmmWtf1FQUOAyN3FhYaE1UiIsLExlZWUqKipyGbVRWFionj17WjGHDh2qcv7Dhw+7lLN+/XqX40VFRTp16pRLzJkjMwoLCyVVHVVSyW6313iBSQAAAFwYb8mZmIoKAAAAADxc3759tXXrVm3ZssXaunfvrjvvvFNbtmzRFVdcobCwMOXk5FjvKSsr06pVq6xOi27duqlx48YuMQcPHlR+fr4VExMTo+LiYm3YsMGKWb9+vYqLi11i8vPzdfDgQSsmOztbdrvd6niJiYnR6tWrVVZW5hLjdDrVvn17998gAAAAXFIYsQEAAACv4S1PHwFnCgwMVGRkpMu+gIAAtWjRwto/evRopaenq2PHjurYsaPS09PVtGlTJSUlSZIcDofuvfdejRkzRi1atFDz5s01duxYRUVFWYuRd+rUSf3799fw4cP18ssvS5Luv/9+JSYmKiIiQpIUHx+vzp07Kzk5Wc8995y+++47jR07VsOHD1dQUJAkKSkpSRMnTlRKSooef/xxffHFF0pPT9fTTz993qmxAAAAUHe8JWfyyBEbGRkZstlsGj16tLXPGKMJEybI6XTK399fvXv31rZt21zeV1paqgcffFAtW7ZUQECABg8erP3797vEFBUVKTk52VqQLjk5WUeOHHGJ2bt3rwYNGqSAgAC1bNlSo0aNcnnSSJK2bt2q2NhY+fv7q02bNpo0aZI1ZywAAAAAXGyPPPKIRo8erdTUVHXv3l1ff/21srOzFRgYaMU8//zz+t3vfqchQ4aoV69eatq0qd555x35+PyY3C5atEhRUVGKj49XfHy8unbtqgULFljHfXx8tHz5cjVp0kS9evXSkCFD9Lvf/U7Tpk2zYhwOh3JycrR//351795dqampSktLc1lDAwAAALhQHjdiIy8vT6+88oq6du3qsn/q1KnKzMzUvHnzdNVVV+mZZ55RXFycduzYYTXUR48erXfeeUdLlixRixYtNGbMGCUmJmrjxo1WQz0pKUn79+9XVlaWpB+ePkpOTtY777wj6Yd5agcOHKhWrVppzZo1+vbbbzVs2DAZYzRz5kxJPyxiFxcXpz59+igvL087d+5USkqKAgICNGbMmIt1qwAAAHCGcvnotBc8fQTUxMcff+zy2mazacKECZowYcJZ39OkSRPNnDnTym2q07x5cy1cuPCc527btq3efffdc8ZERUVp9erV54wBAADAxeUtOZNHdWwcO3ZMd955p+bMmaNnnnnG2m+M0YwZM/TEE0/o5ptvliTNnz9foaGhWrx4sUaMGKHi4mLNnTtXCxYssIZRL1y4UOHh4VqxYoUSEhK0fft2ZWVlKTc3V9HR0ZKkOXPmKCYmRjt27FBERISys7P1+eefa9++fXI6nZKk6dOnKyUlRZMnT1ZQUJAWLVqkkydPat68ebLb7YqMjNTOnTuVmZmptLQ0hlYDAACvY7NNtP5tzPh6rAkAAAAA4FLnUVNRjRw5UgMHDrQ6Jirt2rVLBQUFio+Pt/bZ7XbFxsZq7dq1kqSNGzfq1KlTLjFOp1ORkZFWzLp16+RwOKxODUnq0aOHHA6HS0xkZKTVqSFJCQkJKi0t1caNG62Y2NhY2e12l5gDBw5o9+7d1V5baWmpSkpKXDYAAAC4V7l862QDAAAAAG/gLTmTx2RpS5Ys0aZNm5SXl1flWEFBgSQpNDTUZX9oaKj27Nljxfj5+Sk4OLhKTOX7CwoKFBISUqX8kJAQl5gzzxMcHCw/Pz+XmPbt21c5T+WxDh06VDlHRkaGJk6cWGU/AABAQ8AoDQAAAACAp/CIjo19+/bpoYceUnZ2tpo0aXLWuDOneDLGnHfapzNjqot3R0zlwuFnq8+4ceNcFsorKSlReHj4OesOAACA2ilXI5W7fb7YcreWBwAAAAD1xVtyJo/o2Ni4caMKCwvVrVs3a195eblWr16tWbNmaceOHZJ+GA3RunVrK6awsNAaKREWFqaysjIVFRW5jNooLCxUz549rZhDhw5VOf/hw4ddylm/fr3L8aKiIp06dcolpnL0xk/PI1UdVVLJbre7TF0FAAAA9yuXTx000t1bHgAAAADUF2/JmTxijY2+fftq69at2rJli7V1795dd955p7Zs2aIrrrhCYWFhysnJsd5TVlamVatWWZ0W3bp1U+PGjV1iDh48qPz8fCsmJiZGxcXF2rBhgxWzfv16FRcXu8Tk5+fr4MGDVkx2drbsdrvV8RITE6PVq1errKzMJcbpdFaZogoAAAAAAAAAALiPR4zYCAwMVGRkpMu+gIAAtWjRwto/evRopaenq2PHjurYsaPS09PVtGlTJSUlSZIcDofuvfdejRkzRi1atFDz5s01duxYRUVFWYuRd+rUSf3799fw4cP18ssvS5Luv/9+JSYmKiIiQpIUHx+vzp07Kzk5Wc8995y+++47jR07VsOHD1dQUJAkKSkpSRMnTlRKSooef/xxffHFF0pPT9fTTz993qmxAAAAUHe85ekjAAAAAKgL3pIzeUTHRk088sgjOnHihFJTU1VUVKTo6GhlZ2crMDDQinn++efl6+urIUOG6MSJE+rbt6/mzZsnH58fb+yiRYs0atQoxcfHS5IGDx6sWbNmWcd9fHy0fPlypaamqlevXvL391dSUpKmTZtmxTgcDuXk5GjkyJHq3r27goODlZaW5rKGBgAAgLey2Sb+/3+drNd6AAAAAAAuTTZTueo1LqqSkhI5HA4VFxdbI0EAAAAaAteOjSke0Z6pbFtNKU5RkyA/t5Z9sqRMjznmecR1ApcSciYAANDQeVJ7xttypgYzYgMAAACewZjxkiobxlPquTYAAAAAgEsNHRsAAADwGuXyVbmbm7jlqnBreQAAAABQX7wlZ2p00c8IAAAAAAAAAABwgRixAQAAAK9RLh+Vy8ftZQIAAACAN/CWnIkRGwAAAAAAAAAAoMFgxAYAAAC8Rrka1cHTRzwLBAAAAMA7eEvO9LM6No4cOaIPPvhAX3/9tWw2m1q3bq2EhAQFBwe7q34AAABAjZ2Wj067uZHu7vJw6SFvAgAAgKfwlpzpgrtS5s6dqxtuuEG5ubmqqKhQeXm5cnNz1aNHD82dO9eddQQAAACABom8CQAAwLvZbBOrbKh7FzxiY+rUqdq0aZOaNWvmsv8vf/mLunXrpnvvvfdnVw4AAACojXL5qtzNs62Wq7xW8adPn9aECRO0aNEiFRQUqHXr1kpJSdGTTz6pRo2Y1upSQ94EAAAAT+IJOZM7XPAV2Gw2HTt2rEoD/dixY7LZbD+7YgBwIX7aK27M+HqsCQDgUvXss8/qpZde0vz589WlSxd9+umnuvvuu+VwOPTQQw/Vd/VwkZE3AQAAeDf+/lQ/LrhjY9q0aYqNjVVkZKTatGkjSdq/f7+2bdum6dOnu62CAAAAQE1VyMftC+FV1LK8devW6be//a0GDhwoSWrfvr1ef/11ffrpp26tFxoG8iYAAAB4Ek/Imdyhxh0bycnJevnll9W0aVNJUmJiogYMGKANGzbowIEDMsaoTZs2uuGGG+TjwwKLAAAA8C4lJSUur+12u+x2e5W4G2+8US+99JJ27typq666Sp999pnWrFmjGTNmXKSaoj6RNwEAAAB1r8YdG4sXL9b06dOtBvqIESM0ZcoUxcTESJKMMTp9+jSNcwD1iuF/AHBpK6+Dp48qywsPD3fZP378eE2YMKFK/KOPPqri4mJdffXV8vHxUXl5uSZPnqw77rjDrfWCZyJvAgAAgCery5zpYqrx6oXGGJfXr7/+uoqKiqzXhYWFCgwMdF/NAAAAAA+yb98+FRcXW9u4ceOqjXvjjTe0cOFCLV68WJs2bdL8+fM1bdo0zZ8//yLXGPWBvAkAAACoexe8xsaZDXZJKisr+1mVAQDUHAulAzgTvxekcjWqg6ePfngWKCgoSEFBQeeN//Of/6zHHntMt99+uyQpKipKe/bsUUZGhoYNG+bWusHzkTcBAADAk9RlznQxXXDHRnVsNps7iwMAAABq5bR85OPmRvrpWpb3/fffq1Ej14a9j4+PKioq3FktNGDkTQAAAKgvnpAzuUOtOjYWL16sX//614qKipJEgxwA6tOl+jQ2gLPj94JnGDRokCZPnqy2bduqS5cu2rx5szIzM3XPPffUd9VwkZA3AQAAAHWrxh0bN954o8aPH6+jR4+qcePGOn36tB5//HHdeOON+uUvf6lWrVrVZT0BAACA8yqXr8rdOyi51uXNnDlTTz31lFJTU1VYWCin06kRI0bo6aefdmu94JnImwAAAODJPCFncocan3H16tWSpC+++EIbN27Upk2btHHjRj311FM6cuQITyEBAAAAkgIDAzVjxgzNmDGjvquCekDeBAAAANS9WneldOzYUR07drQWQ5SkXbt26dNPP9XmzZvdWjkAAACgNirk4/aF8CrqYb5YNHzkTQAAAPBE3pIzuWWMSIcOHdShQwfdeuut7igOAAAAALwOeRMAAADgHhd/8isAAAD8bDbbROvfLBr+o/I6ePrI3eUBAAAA8D4NJUfzlpyp0UU/IwAAAAAAAAAAwAVixAYAAEADVJ9PAP34JNLJeqvD2ZyWjxq5+Wmh04zYAAAAAHAenjxK46e8JWeiYwMAAABe44dh1e5t4jIVFQAAAABv4S05E1NRAQAAAAAAAACABoMRGwAAAKiVyiHWJSUlcjim1HNtXHnLQngAAAAAUBe8JWdixAYAAAAAAAAAAGgwGLEBAAAAr+EtTx8BAAAAaLhszf//P0y9VqNa3pIzMWIDAAAAAAAAAAA0GIzYAAAAgNeoqIOnjyoYsQEAAAA3stkmWv+uXL8O3sV898N/S0okh6N+63Imb8mZGLEBAAAAAAAAAAAaDEZsAAAAwGuclo9sbn5a6DQjNgAAAAB4CW/JmejYAAAAXoeh3TVTeZ+86R6Vy0eN3NzEZfFwAAAAuJM3tb/R8HhLzsRUVAAAAAAAAAAAoMFgxAYAAPA6PAFVM954n354+si9TwsxYgMAAACAt/CWnIkRGwAAAAAAAAAAoMFgxAYAAPAa3rhmBGrHW54+AgAAAIC64C05EyM2AAAAAAAAAABAg8GIDQDAJafyqX6JJ/u9DZ+nezXEn5XT8pHNzU8LnWbEBgAAAAAv4S05EyM2AAAAAAAAAABAg0HHBgAAALxGhXxV7uatgkHOAAAAALyEJ+ZMGRkZstlsGj16dI3fQ5YGAPA655s+p6FMqQPP1xCnaqqNhnhN5XUwrJrFwwEAAAB4C0/LmfLy8vTKK6+oa9eutXofIzYAAAAAAAAAAMBFdezYMd15552aM2eOgoODa/VeRmwAALxOQ3zK/KcqRwE09Ou4FFxKn1FDGZ1SrkZ18PQRzwIBAAAA8A51mTOVlJS47Lfb7bLb7Wd938iRIzVw4ED169dPzzzzTK3OSZYGAAAAAB5u9uzZ6tq1q4KCghQUFKSYmBi9//771nFjjCZMmCCn0yl/f3/17t1b27ZtcymjtLRUDz74oFq2bKmAgAANHjxY+/fvd4kpKipScnKyHA6HHA6HkpOTdeTIEZeYvXv3atCgQQoICFDLli01atQolZWVucRs3bpVsbGx8vf3V5s2bTRp0iQZY9x7UwAAAOBRwsPDrXakw+FQRkbGWWOXLFmiTZs2nTPmXBixAQCAh/Hkp+Hh/c42MqOhfC9Py0dy89NHp1ljAx7g8ssv15QpU/SLX/xCkjR//nz99re/1ebNm9WlSxdNnTpVmZmZmjdvnq666io988wziouL044dOxQYGChJGj16tN555x0tWbJELVq00JgxY5SYmKiNGzfKx+eH73lSUpL279+vrKwsSdL999+v5ORkvfPOO5Kk8vJyDRw4UK1atdKaNWv07bffatiwYTLGaObMmZJ+eFIvLi5Offr0UV5ennbu3KmUlBQFBARozJgxF/vWAQAA4CfqMmfat2+fgoKCrP1nG62xb98+PfTQQ8rOzlaTJk0u6Jw2w2Mz9aKkpEQOh0PFxcUuHzYAAEB9qs2UU57UnqmsS4/ipfINCnBr2adLjivX8XuPuE7gp5o3b67nnntO99xzj5xOp0aPHq1HH31U0g+jM0JDQ/Xss89qxIgRKi4uVqtWrbRgwQLddtttkqQDBw4oPDxc7733nhISErR9+3Z17txZubm5io6OliTl5uYqJiZG//nPfxQREaH3339fiYmJ2rdvn5xOp6QfnrZLSUlRYWGhgoKCNHv2bI0bN06HDh2yktkpU6Zo5syZ2r9/v2w2W42uz5N+xwAAAFwIT2rPeFLOtGzZMv3+97+3Hq6RfniAxmazqVGjRiotLXU5Vh2mogIAAIDXKJdvnWyAJykvL9eSJUt0/PhxxcTEaNeuXSooKFB8fLwVY7fbFRsbq7Vr10qSNm7cqFOnTrnEOJ1ORUZGWjHr1q2Tw+GwOjUkqUePHnI4HC4xkZGRVqeGJCUkJKi0tFQbN260YmJjY12e0EtISNCBAwe0e/fus15XaWmpSkpKXDYAAAC4lyfkTH379tXWrVu1ZcsWa+vevbvuvPNObdmy5bydGhJTUQEAAHiEmoyUuBgLeDeUKaeAS9HWrVsVExOjkydPqlmzZlq6dKk6d+5sdTqEhoa6xIeGhmrPnj2SpIKCAvn5+Sk4OLhKTEFBgRUTEhJS5bwhISEuMWeeJzg4WH5+fi4x7du3r3KeymMdOnSo9voyMjI0ceLEao8BAAB4KlvzH/5rvqvfejQkgYGBioyMdNkXEBCgFi1aVNl/NnRsAAAAwGtUyEflbp4vtoI1NuAhIiIitGXLFh05ckRvvfWWhg0bplWrVlnHz5ziyRhz3mmfzoypLt4dMZUzIJ+rPuPGjVNaWpr1uqSkROHh4eesPwAAAGrHW3ImOjYAAADcoHI0xYWOeKjJ+xhNcX7ldbAQnrsb/cCF8vPzsxYP7969u/Ly8vTXv/7VWlejoKBArVu3tuILCwutkRJhYWEqKytTUVGRy6iNwsJC9ezZ04o5dOhQlfMePnzYpZz169e7HC8qKtKpU6dcYipHb/z0PFLVUSU/Zbfbz7rAJAAAgMcqqhxx2jDyNU/NmT7++ONaxXvEGhuzZ89W165dFRQUpKCgIMXExOj999+3jhtjNGHCBDmdTvn7+6t3797atm2bSxmlpaV68MEH1bJlSwUEBGjw4MHav3+/S0xRUZGSk5PlcDjkcDiUnJysI0eOuMTs3btXgwYNUkBAgFq2bKlRo0aprKzMJWbr1q2KjY2Vv7+/2rRpo0mTJok12AEAAABcTMYYlZaWqkOHDgoLC1NOTo51rKysTKtWrbI6Lbp166bGjRu7xBw8eFD5+flWTExMjIqLi7VhwwYrZv369SouLnaJyc/P18GDB62Y7Oxs2e12devWzYpZvXq1Sx6VnZ0tp9NZZYoqAAAA4EJ4xIiNyy+/XFOmTLGePpo/f75++9vfavPmzerSpYumTp2qzMxMzZs3T1dddZWeeeYZxcXFaceOHQoMDJQkjR49Wu+8846WLFmiFi1aaMyYMUpMTNTGjRutxUaSkpK0f/9+ZWVlSZLuv/9+JScn65133pH0wyJ8AwcOVKtWrbRmzRp9++23GjZsmIwxmjlzpqQfhkPHxcWpT58+ysvL086dO5WSkqKAgACNGTPmYt86AADqzcVY76Ehacj3wJs+S099+gj4uR5//HENGDBA4eHhOnr0qJYsWaKPP/5YWVlZstlsGj16tNLT09WxY0d17NhR6enpatq0qZKSkiRJDodD9957r8aMGaMWLVqoefPmGjt2rKKiotSvXz9JUqdOndS/f38NHz5cL7/8sqQfcqbExERFRERIkuLj49W5c2clJyfrueee03fffaexY8dq+PDhCgoKkvRD3jVx4kSlpKTo8ccf1xdffKH09HQ9/fTT550aCwAAAHXLW3Imj+jYGDRokMvryZMna/bs2crNzVXnzp01Y8YMPfHEE7r55psl/dDxERoaqsWLF2vEiBEqLi7W3LlztWDBAqtRvnDhQoWHh2vFihVKSEjQ9u3blZWVpdzcXEVHR0uS5syZo5iYGO3YsUMRERHKzs7W559/rn379snpdEqSpk+frpSUFE2ePFlBQUFatGiRTp48qXnz5slutysyMlI7d+5UZmam0tLSaKgDAAAAcLtDhw4pOTlZBw8elMPhUNeuXZWVlaW4uDhJ0iOPPKITJ04oNTVVRUVFio6OVnZ2tvUgmCQ9//zz8vX11ZAhQ3TixAn17dtX8+bNsx4Ek6RFixZp1KhRio+PlyQNHjxYs2bNso77+Pho+fLlSk1NVa9eveTv76+kpCRNmzbNinE4HMrJydHIkSPVvXt3BQcHKy0tzWX9DAAAAODn8IiOjZ8qLy/Xm2++qePHjysmJka7du1SQUGB1bCWfph7NTY2VmvXrtWIESO0ceNGnTp1yiXG6XQqMjJSa9euVUJCgtatWyeHw2F1akhSjx495HA4tHbtWkVERGjdunWKjIy0OjUkKSEhQaWlpdq4caP69OmjdevWKTY21mXu14SEBI0bN067d+9Whw4dqr2u0tJSlZaWWq9LSkrccr8AAADwo9NqJOP2p488YvZWXOLmzp17zuM2m00TJkzQhAkTzhrTpEkTzZw50xqNXp3mzZtr4cKF5zxX27Zt9e67754zJioqSqtXrz5nDAAAAC4+b8mZPKZjY+vWrYqJidHJkyfVrFkzLV26VJ07d9batWslVV1kLjQ0VHv27JH0wyJ5fn5+LovgVcZULlpXUFCgkJCQKucNCQlxiTnzPMHBwfLz83OJOXNe2Mr3FBQUnLVjIyMjQxMnTqz2GAAADVFDn7IIP+KzBAAAAIALQz5VPzymYyMiIkJbtmzRkSNH9NZbb2nYsGFatWqVdfzMKZ6MMeed9unMmOri3RFTuXD4ueozbtw4l6HXJSUlCg8PP2f9AQAAUDvl8pW7m7jlntNkBgAAAICfxVtyJo/J0vz8/KzFw7t37668vDz99a9/1aOPPirph9EQrVu3tuILCwutkRJhYWEqKytTUVGRy6iNwsJC9ezZ04o5dOhQlfMePnzYpZz169e7HC8qKtKpU6dcYipHb/z0PFLVUSU/ZbfbXaavAgAAly5vWqwbAAAAAICLzWMnDDbGqLS0VB06dFBYWJhycnKsY2VlZVq1apXVadGtWzc1btzYJebgwYPKz8+3YmJiYlRcXKwNGzZYMevXr1dxcbFLTH5+vg4ePGjFZGdny263q1u3blbM6tWrVVZW5hLjdDqrTFEFAACAi6tcPnWyAQAAAIA38JacySNGbDz++OMaMGCAwsPDdfToUS1ZskQff/yxsrKyZLPZNHr0aKWnp6tjx47q2LGj0tPT1bRpUyUlJUmSHA6H7r33Xo0ZM0YtWrRQ8+bNNXbsWEVFRalfv36SpE6dOql///4aPny4Xn75ZUnS/fffr8TEREVEREiS4uPj1blzZyUnJ+u5557Td999p7Fjx2r48OEKCgqSJCUlJWnixIlKSUnR448/ri+++ELp6el6+umnzzs1FgDAO/H0PWqL70ndqZCP5OZGdQUdGwAAAAC8hLfkTB7RsXHo0CElJyfr4MGDcjgc6tq1q7KyshQXFydJeuSRR3TixAmlpqaqqKhI0dHRys7OVmBgoFXG888/L19fXw0ZMkQnTpxQ3759NW/ePPn4/HhTFy1apFGjRik+Pl6SNHjwYM2aNcs67uPjo+XLlys1NVW9evWSv7+/kpKSNG3aNCvG4XAoJydHI0eOVPfu3RUcHKy0tDSX9TMAAAAAAAAAAEDdsJnKla9xUZWUlMjhcKi4uNgaDQIAaJgYsYFLlSe1ZyrrEl6cp0ZBzdxadkXJMe1zXO8R1wlcSjzpdwwAAMCF8KT2jLflTB4xYgMAgIbsp50ZF9rJQecIAAAAAABAzdCxAQAAAK9RLh8ZNzdxWWMDAAAAgLfwlpyJjg0AANzoQkdbMErj/BjV4qqu7gf3GQAAAADg6ejYAAAAgNf44ekj9z4txIgNAAAAAN7CW3ImOjYAAKgnPBlfOxfjHjWkz6Su6ufp1w0AAAAAAB0bAAAA8Bre8vQRAAAAANQFb8mZ6NgAPFxDenoYQPXO9nPMz7Tn4TNp+MorfGQq3NxId3N5AAAAALxPQ/kbnrfkTI0u+hkBAAAAAAAAAAAuECM2AAAA4DXKT/uo4rR7nxYybi4PAAAAAOqLt+RMdGwAHs6Th64BqBl+juFJqhse3VCGTAMAAACApyKXurjo2AAAAIDXKD/tK9tp9zZxjZvLAwAAAID64i05E1kagIuGJ4I9A5/D2XFvcCmo7rvN9939vv76az366KN6//33deLECV111VWaO3euunXrVt9VAwAAAIAGj44NAAAAeI3y041kc/t8sY1qFV9UVKRevXqpT58+ev/99xUSEqL//ve/uuyyy9xaLwAAAACoLU/ImdyBjg0AFw1PBHsGd38O3jTKoaHXHz/ypu8lGp5nn31W4eHhevXVV6197du3r78KAQAA4P+1d//hUpX1/v9fW5ANInsEFRDFX4mEIWZiBKSCCsgJf+QpTPiQu8uoDqiHwDL1CtEI1NQ6B09kHoOOAnpVomJKoAnIQRRJv/4qLJPEo6gJ7i0ov7br+wd7Zu7F3Pdea81eM7Nm7efjuvblMLPmXvf6Nc49636/3wBShhsbAAAASI2mPe1KMPtob3uNjY2+52tra1VbW1uw/EMPPaRRo0bpq1/9qlauXKnDDz9ckyZN0sSJE2PtFwAAAABEVcoxUzmVP0YEAAAAKJE9e9ppz+6Y/5q/pPfu3VuZTCb3N3v2bGsf/v73v2vu3Lnq06eP/vCHP+g73/mOrrjiCv3P//xPOXcFAAAAABQo5ZipnIjYAAC0SinT/GTTCSUxlRCpjpKtGo8J51Tybdq0SXV1dbl/26I1JOmTTz7RwIEDNWvWLEnSySefrJdffllz587V17/+9bL0FQAAAADSjBsbAAAASA2vqb28ppi/4ja3V1dX57ux4XLYYYfphBNO8D3Xr18//e53v4u3XwAAAAAQUSnHTOXEjQ0AQGLZZq0nZVY7M+oRt2o6p/LX4Y6K9iOphg4dqg0bNviee/XVV3XUUUdVqEcAAAAASs38vSKPMVOpcGMDAAAA6bGn3d6/uNuM4Lvf/a6GDBmiWbNmaezYsXrmmWf0y1/+Ur/85S/j7RcAAAAARJWAMVMcuLEBAKgqrlntSYnkAOIQx/nMNVE5p556qhYvXqyrr75aN9xwg4455hj97Gc/0/jx4yvdNQAAAAAlYht3NTY2KpO5sQK9ST9ubAAAACA9EjL7aMyYMRozZky8/QAAAACA1krImKm19iv7GgEAAAAAAAAAAIpExAaA1CINS9vCMS6/JF5j2T4lpT/FiqP/pdwH2bYTGVbdVCPtqYm/TQAAAABtmmsMXHXj0JSMmYjYAAAAAAAAAAAAVYOIDQCpVTV3yoEqlZRrLImRI1lx9y3J25oYe5r/4m4TAAAAQJvmGoNlnzfHa+ravKxX6l4VISVjJm5sAAAAID1S8iUdAAAAAEoiJWMmbmwASAxmIgPxqbocn62Q5G109a3Yz7ugZfkcBQAAAIDKsI3BGhulTKYCnWkDuLEBAACA9EjJ7CMAAAAAKImUjJkoHg4AAAAAAAAAAKoGERsAEoO0KSiFtpSSydTWtrfalOr4cNy1d6bQ7hK0CQAAAAAWVfe7Q0rGTERsAAAAAAAAAACAqkHEBgAg1apmxgRy0lQAO03bUjWamv/ibhMAAAAA0iAlYyYiNgAAAAAAAAAAQNUgYgMAEAozz1EuaTq/it2WMNcb16TDHsWf35UaGwAAAAAMVT0eS8mYiRsbAAAASI+UfEkHAAAAgJJIyZiJVFQAAAAAAAAAAKBqELEBAAilEqGV2dDOqgvrBCyihCqHOefjTHNV1WHU+0rJ7CMAAAAAlRFmfFTV46aUjJmI2AAAAAAAAAAAAFWDiA0AKCMiEKJJwn5K1Uz2hEvC9VHK452U88fWj6T0LRZNin+2UFPM7QEAAABIrFSNj2xSMmYiYgMAAAAAAAAAAFQNIjYAoIxSf9c/hThm5RNnzYhy9yFNqj5KKSX5YgEAAACgJFIyZiJiAwAAAAAAAAAAVA0iNgAAQFWrlqiCaomECNO3/LbsKG1nipGS2UcAAAAAkqtaxndWKRkzEbEBAACA9Nhdoj8AAAAASIMEjJnmzp2rAQMGqK6uTnV1dRo8eLAeffTRSG1wYwMAAAAAAAAAAJTFEUccoRtvvFHPPvusnn32WZ155pk6//zz9fLLL4dug1RUAFABVR2yCKAoabrWs9vS2NioTObGCvdmH03Nf3G3CQAAAKBNS81vOQkYM5177rm+f//4xz/W3LlztXbtWn3mM58J1QY3NgAAAAAAAAAAQKs0Njb6/l1bW6va2toW39PU1KTf/OY32r59uwYPHhx6XaSiAoAK8Lzrcn/Vrqbm+twf0q8cxzvudVTyHK2peSH3V/51t9Frs0n5Ynhx/RGxgQSYPXu2Tj31VHXp0kXdu3fXBRdcoA0bNviW8TxPM2bMUK9evdSpUycNGzasIJx/586duvzyy3XIIYeoc+fOOu+88/Tmm2/6ltm6dasmTJigTCajTCajCRMm6IMPPvAt88Ybb+jcc89V586ddcghh+iKK67Qrl27fMu8+OKLOuOMM9SpUycdfvjhuuGGG+R5Xnw7BQAAoIxcv+XUdNv7VzVKOGbq3bt37jtkJpPR7Nmznd148cUXdeCBB6q2tlbf+c53tHjxYp1wwgmhN4MbGwAAAACQcCtXrtTkyZO1du1aLV++XHv27NHIkSO1ffv23DI333yzbrvtNt1+++1at26devbsqREjRujDDz/MLTNlyhQtXrxY9957r1avXq1t27ZpzJgxamrK38EbN26cnn/+eS1dulRLly7V888/rwkTJuReb2pq0pe+9CVt375dq1ev1r333qvf/e53mjZtWm6ZxsZGjRgxQr169dK6des0Z84c3XLLLbrttttKvKcAAABQKZs2bVJDQ0Pu7+qrr3Yu27dvXz3//PNau3at/u3f/k2XXHKJXnnlldDrqvGYMlMRe3NSZ9TQ0KC6urpKdwdotdTkGQRQFeL+zMm2x+eXmz3yY4ekGxPxfSb73Uq3N0idYu7Lx43SZXxvQ7K899576t69u1auXKnTTz9dnuepV69emjJliq666ipJe6MzevTooZtuuknf/va31dDQoEMPPVR33323LrroIknSW2+9pd69e+uRRx7RqFGj9Oc//1knnHCC1q5dq0GDBkmS1q5dq8GDB+svf/mL+vbtq0cffVRjxozRpk2b1KtXL0nSvffeq/r6er377ruqq6vT3LlzdfXVV+udd97JpR+48cYbNWfOHL355puqqakJ3EbGTAAAIElc0fAtjSOT9H0m6WOms88+W5/61Kd0xx13hFqeiA0AAAAAqDINDQ2SpG7d9uY9eP3117V582aNHDkyt0xtba3OOOMMrVmzRpK0fv167d6927dMr1691L9//9wyTz31lDKZTO6mhiR94QtfUCaT8S3Tv3//3E0NSRo1apR27typ9evX55Y544wzfDmVR40apbfeeksbN260btPOnTvV2Njo+wMAAEDb4Hmedu7cGXr5RNzYIF8sAAAAYhF3rtjsH5Agnudp6tSp+uIXv6j+/ftLkjZv3ixJ6tGjh2/ZHj165F7bvHmzOnTooK5du7a4TPfu3QvW2b17d98y+66na9eu6tChQ4vLZP+dXWZfs2fP9uVk7t27d8CeAAAAQGQJGDNdc801evLJJ7Vx40a9+OKLuvbaa7VixQqNHz8+dBvto62yNLL5Yk899VTt2bNH1157rUaOHKlXXnlFnTt3lpTPFzt//nwdf/zxmjlzpkaMGKENGzaoS5cukvbmi12yZInuvfdeHXzwwZo2bZrGjBmj9evXq127dpL25ot98803tXTpUknSt771LU2YMEFLliyRlM8Xe+ihh2r16tV6//33dckll8jzPM2ZM0dSPl/s8OHDtW7dOr366quqr69X586dfXllgbYkzlQwcbWH8uMYolziPr/a0vlqC58Os/22ZfaGMt8YS79iU4obEdzYQMJcdtlleuGFF7R69eqC1/ZN8eR5XmDap32XsS0fxzLZiWCu/lx99dWaOnVq7t+NjY3c3AAAAImRmnFjAsZM77zzjiZMmKC3335bmUxGAwYM0NKlSzVixIjQbSTixkb2JkPWvHnz1L17d61fvz6XL/ZnP/uZrr32Wl144YWSpF//+tfq0aOHFi5cmMsXe9ddd+nuu+/W2WefLUm655571Lt3bz322GO5fLFLly715Yu98847NXjwYG3YsEF9+/bVsmXL9Morr/jyxd56662qr6/Xj3/8Y9XV1WnBggXasWOH5s+fr9raWvXv31+vvvqqbrvtNk2dOjVUvlgAAAAAiOryyy/XQw89pFWrVumII47IPd+zZ09Je6MhDjvssNzz7777bi5SomfPntq1a5e2bt3qi9p49913NWTIkNwy77zzTsF633vvPV87Tz/9tO/1rVu3avfu3b5l9o3MePfddyUVRpVk1dbW+lJXAQAAIJ3uuuuuVreRiFRU+yJfLNA2ed51uT8Eq6m5PveXFBxDoDJsnwXmZ4T5Z16nqbxemxR/SHVTWbcAsPI8T5dddpnuv/9+/fGPf9Qxxxzje/2YY45Rz549tXz58txzu3bt0sqVK3M3LU455RTtv//+vmXefvttvfTSS7llBg8erIaGBj3zzDO5ZZ5++mk1NDT4lnnppZf09ttv55ZZtmyZamtrdcopp+SWWbVqlS+l77Jly9SrVy8dffTRMe0VAACAykvabzOBUjJmStyNDfLFAgAAAIDf5MmTdc8992jhwoXq0qWLNm/erM2bN+vjjz+WtDe905QpUzRr1iwtXrxYL730kurr63XAAQdo3LhxkqRMJqNLL71U06ZN0+OPP67nnntO/+///T+deOKJuaj3fv366ZxzztHEiRO1du1arV27VhMnTtSYMWPUt29fSdLIkSN1wgknaMKECXruuef0+OOP68orr9TEiRNVV1cnaW8K4NraWtXX1+ull17S4sWLNWvWLCLcAQAAEItEpKIykS8WSL7sXehSzvINqtVALYfkbDfHwr0PynGtID1acy3Zlne1EWUmUVWeuwnIFwuUwty5cyVJw4YN8z0/b9481dfXS5K+//3v6+OPP9akSZO0detWDRo0SMuWLcvVJJSkn/70p2rfvr3Gjh2rjz/+WGeddZbmz5+fq0koSQsWLNAVV1yRi4Y/77zzdPvtt+deb9eunX7/+99r0qRJGjp0qDp16qRx48bplltuyS2TyWS0fPlyTZ48WQMHDlTXrl01depU35gIAAAg6cKM01r+3WpHKbrVOikZMyXqxgb5YgEAAACgUHYiVUtqamo0Y8YMzZgxw7lMx44dNWfOHM2ZM8e5TLdu3XTPPfe0uK4jjzxSDz/8cIvLnHjiiVq1alWLywAAAADFSEQqKvLFAgAAIBa7S/QHAAAAAGmQkjFTIiI2Jk+erIULF+rBBx/M5YuV9oYvd+rUyZcvtk+fPurTp49mzZrlzBd78MEHq1u3brryyiud+WLvuOMOSdK3vvUtZ77Yn/zkJ9qyZYs1X+z111+v+vp6XXPNNfrrX/+qWbNmafr06eSLRZtQjtQkVZn+JAZxp3UiTVR5RAlHRTTlPodral4w1jegrP2wpTErxfo4LwEAANKDMR9QWsVeV9n3NTY2KpO5Mc4uoVkibmyQLxYAAACxaGr+i7tNAAAAAEiDlIyZarwwyVoRu7136zJqaGjIRYIAKA8KOpdHkmcOJblv1cpWkLqU+7baj2Ec/Y/SRqn2V5K+z2T7oqsbpI4x92VHozQ7GdsJtCVJ+owBAAAIYht3Jen7TNrGTImosQEAAAAAAAAAABBGIlJRAXGr9pm8xWqr2x1VNe+bajrGSe5flL5V0z6vpPLUvyjdsbBFnJiSWOciShtxR3Tka5FsC92HsmmStKcEbQIAAABAC6rmN4OUjJmI2AAAAAAAAAAAAFWDiA0AAACkxx5J7UrQJgAAAACkQUrGTNzYQCpVTehXzNrqdrcl5TrGpF/Ka+vb3xpxn0elTD+VhOMcPR1UfAXIXe93rcPzBkjKFp8ratUAAABAm5K08UcaJGWf2lIbc4xLjxsbAAAASI/dij/Z6u6Y2wMAAACASknJmIkbGwAiC5rhi+rHsY1XUmaRxMFVZNu2XUnf1qT1L2p/WhulYbaRpnMUAAAASCK+Z/vFMQZJyj61javyj3dUoEdtAzc2AAAAkB5NzX9xtwkAAAAAaZCSMRM3NoAqV4lZtkm5Ix6EGchojTgjk6K2Uey6y3HOcy0h8ZoUf+E6bmwAAAAAsaqWsaVrnO3LZrDguoLXs/bWJbyxdB0sRkrGTHFn0wIAAAAAAAAAACgZIjaAKlctd7grIe59U+21Raq9/+VWyf1U7flFi1WOc9RVIySrWvdhlH0XpR5KVe6PPYp/6k7cs5kAAAAAJIorMiPUGGtcy20kTkrGTERsAAAAAAAAAACAqkHEBgAAANJjt6SaErQJAAAAAGmQkjETNzYAoMTiDEVsTVuJDoOENUVSJY9Za861YlNK2ZaPO5S3Wq6DMNttWybq+4pZtqXlAQAAgHKompQ/SIygc8Y5JupmLLOl5XXYi4vvCN1HREMqKgAAAKRHU4n+ijR79mzV1NRoypQpxTcCAAAAAHFJ2JipWERsACnF7IX4RdmPcex/Wxscy+Il/ZpIWp9a0584tyVp+yWqYs+7qEXAg6Jk3EXTvxxhHS9Y2mP2UUvWrVunX/7ylxowYECluwIAAJAq1T5OQPkVe864ojQCx2Ndmx97jdIHNxa1brSMiA0AAACkx54S/UW0bds2jR8/Xnfeeae6du3aqk0CAAAAgNgkZMzUWkRsABVQjpnjzF6orGqpBZD0KIYgUfofZvuK3R9xv6/YGhVRlHtb41COdSfxmgjTpzjO/yjrrqlZXFR7ZdGk+L9UN4dVNzY2+p6ura1VbW2t9S2TJ0/Wl770JZ199tmaOXNmzB0CAAAAUElhax42NkqZTHn7FqiEY6ZyImIDAAAACKF3797KZDK5v9mzZ1uXu/fee/WnP/3J+ToAAAAAoHWI2AAAAEB67C5dm5s2bVJdXV3uaVu0xqZNm/Tv//7vWrZsmTp27FiCzgAAAABAK5RwzFRONZ7neeVfLRobG5XJZNTQ0OAbIANhlSNVDdqusCGVLT1fSUnsU7Vo658tlTh3bIW9o15jtuMW7n3ZguCLQyxr9jNbdHybpKGJ+D6T/W6l8xuk/WPuy+5G6cFw39seeOABffnLX1a7du1yzzU1Nammpkb77befdu7c6XsNgBtjJgAAkFQ13fKPXQXGpWR9n0nKmCkuRGwAAAAgPZoUf7LVCPlizzrrLL344ou+577xjW/o05/+tK666ipuagAAAACorAqPmeLCjQ2gSqVxNnUpZ0ozgz8a2z4qtmixKe7jUO7jWk3nUXYmvucNiPS+chTldq0vSrRI0LGIGmFU7kiVuPsfFFnlkj0/whQDt7W3d8ZP4FvblC5duqh///6+5zp37qyDDz644HkAAAAAlVXsWLClKA2UBzc2AAAAkB57JNWUoE0AAAAASIOUjJmosVEhScqvhvKrplnfKE6xx9g1qz2oLSIX0JZV8vy3idqHYmcIxd2PXLshc8VKyfo+k8sXe06J8sUuTcZ2Am1Jkj5jAABIC8bz8Qgfhb9D0o2J+D6TtjETERsAAABIj5TMPgIAAACAkkjJmIkbGwAAAEiPUnyh5sYGAAAAgLRIyZiJGxtABRDqB5diz41SnlO2NDnlWF9r1lPJ0Nq2lBasHOsOs44oxbfj5irsXWwbQYpPc/eC8b6AgvJbze0ISn+3I3QfAAAAAFReW/1NKnzqKPc4r63uu6TixgYAAADSo0nxh1U3xdweAAAAAFRKSsZMFA+vEArhoa1I+53tpG+fbQZ5EvtZjSLNgPe9L9nnTLmxP1pTPLzwHIw6y8hsI29xYBvSl5v/u03S0ER8n8kVwjutQWofc1/2NEpP8r0NKDfGTAAARFfs+KKta83Y1LbPa7plG2uUPkjG95m0jZmI2AAAAEB6pCRfLAAAAACURErGTNzYAFBSpcpLmJQ6DEmfAVGNNSqqhRmlUWyuziSrRI2KOIXpfxzHrVSfI+HaXWw8HtDiskGfxfbIjeB+7J3x4+geAACqzu9BANqeNH1WVXv/K6U1+8363lztQuoSlgo3NgAAAJAeKZl9BAAAAAAlkZIx037lXyUAAAAAAAAAAEBxKB5eIRTCS75iwxDDFBSuZIijPQVJMkIuk9KPYkVJW1ON21dKUY59WzhPqr0frT3PbUXv9xVU1DpKQfcw/ShlWjfb9roKfMexXUGiFCBP0veZXCG8kxukdjH3palRei4Z2wm0JUn6jAEAAMlWqt9bckXAJSO9VPj1JOn7TNrGTERsAAAAAAAAAACAqkHERoUk6W5dsZIy6xhIunJcK2m9HoNmsse9jiREUMXdRtzbV64ohmLXl4SoKFfESZRIrrgLl/uLg+eLjgdF7gU/v0PSjYn4PpObfTSgRLOPXqju721ANUrDmAkAgGqRhLFUNQmOvGfMVGoUDwcAAEB67JEU97SdppjbAwAAAIBKScmYiYiNCqn07KNyz7gFWiPu8zXOtqLOsG6t1qwjaPZFUF2DKLPlwy5fKW3hMzD4eLc8gz/udZeyTkTxNZFarjlkqmS0S7mjblzHylbLRNomaWiyZh+dUKLZR68waxwot0qPmQAAQHWLoxZq68dxCYzYSMmYiYgNAAAApEdKZh8BAAAAQEmkZMxExEaFMPsIlZL0WeZJUO59FPcM8aTMCk+atG9fElUiuinOvLBh+m+K83qL+zq2R1sUHz2Tj+pIYMTG8SWaffQq39uAcmPMBAAAWqPocVW3/GNvS/DzLb2epO8zaRszEbEBAACA9Ngj6ZOY24y7PQAAAAColJSMmfYr/yoBAAAAAAAAAACKQ8QG0MakMQVP3EWJy72P4l5fsQWxin2fbdmwy1dKKQtZR+tHyymNggq6m8tWK9s2Flvg3nxv1DRStmWjXitBgtZdruvHVxA8Gyq9NVoKq3zB+R2x96/VmhR/vlgiNgAAAGJTLeNGVL+iz6+t5jjoOuvzNd0Kn7ePpRgzlQoRGwAAAAAAAAAAoGpQPLxCWiocE2fhU1u7pWg7yZK43UnsU5yqffui9L/atzWJqmX/V8uxL0eh7n1FOW7FvD8Md8RGcdE6zvYCisdFaS9qge9i121rw1cQL8S25hdolD5IWCG8wxuk/WLuyyeN0v8lYzuBtiRJxTYBAEDplWucHcdYKqwkfZ9J25iJVFQAAABIjz2KPyaZVFQAAAAA0iIlYyZubCRQkmf+VqMk7s+k9SnuO+Ku/Oxx5KWPs41i2/XP+C7hDIKA/sV93IrfH/FGWETZ1jjOtaBaDHHXWYjapyjrtm1LKc+NoNoVYSI67NfmC8bSiwteD8O97GLjcfiIjbjPtWD2fsb+uZDLERuirsnFlmV2S/pt8GoAAAAAhFctGQLiVrZtNWtl1BSuO9RY1hL14Xtf1+ZlyZVkNXv2bN1///36y1/+ok6dOmnIkCG66aab1Ldv39BtUGMDAAAA6bG7RH8AAAAAkAYJGDOtXLlSkydP1tq1a7V8+XLt2bNHI0eO1Pbt20O3QcQGAAAAAAAAAAAoi6VLl/r+PW/ePHXv3l3r16/X6aefHqoNbmxUWCYzW1LHsoRaVUvoWtkKBbXRsD6bUm5/UvZtPClssq+HT1/TGsH9iHfflir9VLHriON9LsWmxIpbUIqnoDRZrvdJRljs1mhpnWwpuOI4bmHSMOVTUNn7GcfndtQ+2d4XnHItuEB5lOu7sv+/yhcx1yLb/tpRtp6E9oniD/cmfBwAAKAqpOW3nqh9T8t2l0vQuDBK+mdXG/l0V21rzNTY2Oh7ura2VrW1tYFvb2hokCR169YtYMk8UlEBAAAAQBVYtWqVzj33XPXq1Us1NTV64IEHfK97nqcZM2aoV69e6tSpk4YNG6aXX37Zt8zOnTt1+eWX65BDDlHnzp113nnn6c033/Qts3XrVk2YMEGZTEaZTEYTJkzQBx984FvmjTfe0LnnnqvOnTvrkEMO0RVXXKFdu3b5lnnxxRd1xhlnqFOnTjr88MN1ww03yPO4UwgAAJBWvXv3zn2HzGQymj17duB7PM/T1KlT9cUvflH9+/cPvS4iNiqsoeFq1dXVRXpP2u/Clmub0rjvTHEX3DaVe9+Van1JiQhKyn6OImmF4FtqL8rsC//7Xmhe1j7jPko0RbHFz8PM2ne2nSteFhz9YLIV8Db3QbHna5h9nl9PcVEOLsX2OVqxb3u0S804+/ps+zdM9FDwtnzZ+noQf3/sBfG01ShovqB5mY8apYk3FrXOktkjqSbmNvkdFgmxfft2nXTSSfrGN76hf/3Xfy14/eabb9Ztt92m+fPn6/jjj9fMmTM1YsQIbdiwQV26dJEkTZkyRUuWLNG9996rgw8+WNOmTdOYMWO0fv16tWvXTpI0btw4vfnmm7kUAd/61rc0YcIELVmyRJLU1NSkL33pSzr00EO1evVqvf/++7rkkkvkeZ7mzJkjae9svREjRmj48OFat26dXn31VdXX16tz586aNm1aOXYXAKANSvI4upQqOUZPCtt4LIw4t7vYDAFlV8Ix06ZNm3y/dYeJ1rjsssv0wgsvaPXq1ZFWmZiIDWYfAQAAAIDb6NGjNXPmTF144YUFr3mep5/97Ge69tprdeGFF6p///769a9/rY8++kgLFy6UtDfE/6677tKtt96qs88+WyeffLLuuecevfjii3rsscckSX/+85+1dOlS/fd//7cGDx6swYMH684779TDDz+sDRs2SJKWLVumV155Rffcc49OPvlknX322br11lt155135tIPLFiwQDt27ND8+fPVv39/XXjhhbrmmmt02223OcdNO3fuVGNjo+8PAAAA1aOurs73F3Rj4/LLL9dDDz2kJ554QkcccUSkdSUmYoPZR+FV+x1UlEcc9RI410pXS6KSsyIqGSESLlKi5QiLUtZW8K9nQMGyYfphez5ctEJxEQ9xvM++P4zZ+UYERSVnoIS5bqLUCIlyrkWNmMk9t9BcX3DtjSCB29LVHhXiP56mLxe8bkb5mBEg9u1OYL5YIjbQRr3++uvavHmzRo4cmXuutrZWZ5xxhtasWaNvf/vbWr9+vXbv3u1bplevXurfv7/WrFmjUaNG6amnnlImk9GgQYNyy3zhC19QJpPRmjVr1LdvXz311FPq37+/evXqlVtm1KhR2rlzp9avX6/hw4frqaee0hlnnOEbzI4aNUpXX321Nm7cqGOOOaZgG2bPnq3rr0/w7EYAAFKmGn/3ifKbRimzmQTJrq+xsVGZDFHuBYt7ni6//HItXrxYK1assH43DJKYGxujR4/W6NGjra/tO/tIkn7961+rR48eWrhwob797W/nZh/dfffdOvvssyVJ99xzj3r37q3HHntMo0aNys0+Wrt2be6L+p133qnBgwdrw4YN6tu3b2720aZNm3Jf1G+99VbV19frxz/+serq6nyzj2pra9W/f3+9+uqruu222zR16lTV1MR9ZgAAACCU3ar4l3SgEjZv3ixJ6tGjh+/5Hj166B//+EdumQ4dOqhr164Fy2Tfv3nzZnXv3r2g/e7du/uW2Xc9Xbt2VYcOHXzLHH300QXryb5mG7xeffXVmjp1au7fjY2N6t27d8sbDgAAgGgSMGaaPHmyFi5cqAcffFBdunTJfYfMZDLq1KlTqDYSk4qqJUGzjyQFzj6SFDj7KLtMS7OPssvYZh+99dZb2rhxo3UbCKsGAAAAUGr7TrLyPC9w4tW+y9iWj2OZbAoqV39qa2sL0hcAAAAgfebOnauGhgYNGzZMhx12WO7vvvvuC91GYiI2WpKG2UdtPay62ELKSQ+JK7YwUdKESdMSxzZW07HNihLKGGX7om5/HOdanOdrEo+lK81PsamhgpYtR0qv1pxrQYWstSgghVKYAuUVCuWNq09B13fQsmHWF8fnRbGF6l399BUEP6f5v4vs6af8Kapa7GZyNKnis4+ASujZs6ekveORww47LPf8u+++mxur9OzZU7t27dLWrVt946Z3331XQ4YMyS3zzjvvFLT/3nvv+dp5+umnfa9v3bpVu3fv9i2THT+Z65EKx3UAgPRKy+8mSZTMcXnLxzuOcVAltzVKaubcuCuJY4kEjJniqFVdFREbWdU8++jqq69WQ0ND7m/Tpk0t9hsAAAAAwjrmmGPUs2dPLV++PPfcrl27tHLlytxNi1NOOUX777+/b5m3335bL730Um6ZwYMHq6GhQc8880xumaeffloNDQ2+ZV566SW9/fbbuWWWLVum2tpanXLKKbllVq1apV27dvmW6dWrV8EkMQAAACCqqojYSMPso9ra2sAq8GkWZ9HlJImjQHeSBd89j1YIt1TRD+VW7Mxtl2K31VUYOO7+lbqtMG27zxNXceTiCjPHEXUT57nbmkLdgYWsF9nfV2zx7SjHzbVd2eNZ7OeJ2V6xkTZRt9V/DmbZr8egNpzb3TV8Gy7O13ORGvYojaqVxFlRQAy2bdumv/3tb7l/v/7663r++efVrVs3HXnkkZoyZYpmzZqlPn36qE+fPpo1a5YOOOAAjRu3N2Qvk8no0ksv1bRp03TwwQerW7duuvLKK3XiiSfm6hT269dP55xzjiZOnKg77rhDkvStb31LY8aMUd++fSVJI0eO1AknnKAJEyboJz/5ibZs2aIrr7xSEydOzKWPGjdunK6//nrV19frmmuu0V//+lfNmjVL06dPpyYhALQhSRvPJ1FQJHa1/FYitT57RdzbF6aNwKiirsX1w9uy97+NjVImU1QTpZWCMVNVRGww+wgAAABAW/fss8/q5JNP1sknnyxJmjp1qk4++WRNnz5dkvT9739fU6ZM0aRJkzRw4ED93//9n5YtW6YuXbrk2vjpT3+qCy64QGPHjtXQoUN1wAEHaMmSJWrXrl1umQULFujEE0/UyJEjNXLkSA0YMEB333137vV27drp97//vTp27KihQ4dq7NixuuCCC3TLLbfklslkMlq+fLnefPNNDRw4UJMmTdLUqVN9xcEBAACAYtV4cSS0ioE5++jkk0/WbbfdpuHDh+dmH910002aPXu25s2bl5t9tGLFCm3YsCH3Rf3f/u3f9PDDD2v+/Pm52Ufvv/++1q9fn/uiPnr0aL311lu+2UdHHXWUlixZIklqamrSZz/7WfXo0SM3+6i+vl4XXHCB5syZI0lqaGhQ3759deaZZ+ZmH9XX12v69OmaNm1aqO1tbGxUJpNRQ0NDSYviRb3TSe7DeCX9TrpNKWcFVMv+qGRtkWJnwIdpr9j3lftYVfJcS9o5Gq6WRrTIqdK1Udx5HqSUdSls64lSv8TVdtRjlW8vOGoiaiRK6PddbETULLS8LkkLjDbGZ5/fIenGkn+fCSP73UpqkBR3Xxollf57GwC/co2ZAADVIWnjNUQX++8tRv3AbIREqLqDMYxfnXUMCxZslD5IxveZtI2ZEpOK6tlnn9Xw4cNz/87O5Lnkkks0f/58ff/739fHH3+sSZMmaevWrRo0aJB19lH79u01duxYffzxxzrrrLM0f/78gtlHV1xxhUaOHClJOu+883T77bfnXs/OPpo0aZKGDh2qTp06ady4cdbZR5MnT9bAgQPVtWtXZh8BAAAAAAAAAFAGibmxMWzYsBarodfU1GjGjBmaMWOGc5mOHTtqzpw5ucgKm27duumee+5psS9HHnmkHn744RaXOfHEE7Vq1aoWlwEAAAAAAAAAAPFKTCqqtibpYdVtKe0QiletxzhKceGkpDGKkiYuSlohW9hmUB/27Ucc6cuipA0q1b6N2naYcNQ43+dqI5aw2YBzpvhtbX2Kq6j9iHatBKV+C0odZe+Hq6h9cEqsLxvLmuuzt2dbt8m/ji8XvC5Jurh5PYtc22qsu6txDLeSigpA6SV9zITkq9bxClAszvnKYv8Xr9hxnKm1+9zXrlEw3PVbSdDvFbnfW0hFVTJVUTwcAAAAAAAAAABAImKjYqLOPirXXd84i4cnpXB5nIWby9UPuMU7G7v4IsHlECVaIe4oqzDrLKbtuAuel6PQe2sKtpc74ieWNppnlZizUlwz/11RGMVGRWWjA4LaLXxf6yN7AmfbOItzF+4P10wfbS0ugiVMxEa+3RDRVAEF9lzRPLnoDklaml04ibOP/qnSzD46JBHbCbQlRGwAQPXgN494sT/d4s9g0LzMAiNKY5yjDWOZYeOW5h4/oXOcfUvS95m0jZmI2AAAAAAAAAAAAFWDiI0KCXO3jruz0bSF/dUWtjFOpYxAKJX4axK0PNO7lJFJ/pz+iwvWF3dkQ5QIHVOxMzyKbyM44iGKKNtVrqg02zr856K5jFHPwRYtYsyU0aLWb2uUa8K9bMu1MNz1OBx1LrK1K7a6zjXjfWbUxCJL20YdDGcuWCNiI79OR99cESIXN++n3Y3Sb5M2+2izSjP7qGcithNoS5I0wxEIg/EaAJRecM3DaGN4W8YB35jJtDXg9whfxH6S6xKmY8xExAYAAAAAAAAAAKga7SvdAQAAACA+u5v/4m4TAAAAANIgHWMmbmwkWLGFT5MY8lqOkNw4UtyEUe3hxXGnOsq3W/oizlHFXYA5WgHs8Ps5ShHz6EW0Wy40HPdxi3IdhipyHMPnWlAYavA+iDd1lP+YhD83zJBWV4ohW+isMx1RUOouS4Hpgj651m1bxkiRZIbv1owL2KeLijtH3f35suNxdtngQt3FXtPOc3Frdj0tp7gqYCtMbhQor6lp+fr3s6fachU/zx+XHRHWAQBAulXj+BBA+VT770lJ4RpjRfndJPD3ihBjYGu6Kkuqqr3pn260toHW4cYGAAAAUmRP81/cbQIAAABAGqRjzETx8AqpdCG8Ut0lLuWsfVPxs+jD9y+OAsXx74PWzxwPKvAbpY3o7yuMYihlge9SRQG05hjbigvHLf5zML4+h7umWx9VZNsH4Wbi2671wiLo+y5brCjXd5hlbdvoKoDmjuTItmHf1iifjcV/jtrPgXD7IPwsHX9kgqWAt7Xwm1/w/0uCi6bb+2ZYYETrGMXUo3ym+rbF7MeWgHU7+qHxSS6E91dJXWJu/UNJfRKxnUBbUukxE4DKYFY7EM91kJRrKdw4NL5sDeHGgobmsZKrb842LONF6/jba5Q+SMb3mbSNmSgeDgAAAAAAAAAAqgYRGxUS1+yjpNx9taHORWnZ7kSHq9XQ8ozucOsunMFf7MzsqJJQSybUzOYgjnoJUSJYio12iXvmh1/L0Q3Frru0fc4rtk9BbUSuuZDbj9EiRKJEZLn7ZLm+nfU27FEwUaJkbJEXxUfXRDv/be358qRudfTDEclhbcNch7nvbOtx1CEJEzmii5uXWWq2Gxy9kYvYMCJBQrWRO27bJA1N2OyjV1Sa2UcnJGI7gbaEiA20FYxvAZRC7L/HhBjnVFLQmD+O3yCKqVWZpO8zaRszEbEBAAAAAAAAAACqBhEbFZKku3WVVC0zU6oxt2EcM+NNUSIGgt7naqNc50DQrPZSHu/c846IjaA2wtSfKP7Yl6a2RZhlXZEeQW256he4owMK24u79k7Q+qK0HW595r4zLba8Hj4CJEo9CzfH+wIjQFofqeLaL0H9d9UkcUZvWAUdkxBRMua5HSaSw9pPw8VGG0str2+1X//DjYVX1PQy3pDdliTW2HhBpZl9NCAR2wm0JZUeM1XLWAUAqhmftfFLQqaLcgmq3xGqzme2DUs0/r5tBP4OYI22Z8xUKkRsAAAAAAAAAACAqtG+0h0AAAAA4rNH0u4StAkAAAAAaZCOMROpqCokalh1uQozxylq32ypOKKtx57yJEyfShWmV46UQGVJm+RoOyjkL8x6QoUFVjCNV5jzqvi2s+2GT7VjS1+zV3DqnijnuX0fREsPZG3Xl9onhiLshuAi2S2nuwrbXhB7eqzg9dkFp5FypUvKF+Iu7hpzpfkKk4qq+JRe4VNRRfk8j5LCLVzas5ZTSvlc7PjcWORINZUVWLR7H9k2QoRP+/t3Xcv9OcdYdpHtcyGJxcP/JOnAmFvfJulzobdz9uzZuv/++/WXv/xFnTp10pAhQ3TTTTepb9++MfcLSLdKp6ICgGIk+XeaOKR9+0yVTJ1dbDrjalfKbQoavzp/r7Cmlwoebw3zBkmS9jRu1+rMVxLxfSZJY6Y4kIoKAAAAKbKnRH/hrVy5UpMnT9batWu1fPly7dmzRyNHjtT27dtbv3kAAAAA0CqVHzPFgYiNCinF7KMkFAeKOvM/nmiDliM94igMHNyH4PfFUZjZts7WHO/WtuGawRxHlEMlCzoHzSYPc6651hM8KzwgSibUuRalALz9vCy+kLV9fbZiXKEKUjfPjPAXmI4WJZDbRmMWuru94s7daPumuGLe/vVFKWRtuNhYh1lA2jHrJL++aFEfuRktAe3ufV9hlIOr0HioAt6WCAR3lImryHeEfiwwzqtxtnWYWj6/gouqS0GftTULjZcfNh67IjKyx8hWiFzyR2yMsbz+UaM0MRmzqfOzj/5XpZl9VHxkynvvvafu3btr5cqVOv3002PuG5BeRGwAAKpVEn6ji6pUvzPFnWnEyTKmMcdVw41B8BO+gU7r1uGSXXeSvs8kecxUDGpsAAAAACE0Njb6/l1bW6va2trA9zU0NEiSunXrFrAkAAAAACAMbmykSLlrD9jW5+pD1Odt6wua5eyedR3hbmrEKJMo7/PPsrXM1A1zZ9ixzmLZcukHzdoP1274Ntz1AaLUS3D1o7ioG9fzQZELYdZtr18QPOM+jhob9v6Ej0oIs63mvrHvO/t1XFPT8rqt0QCSLyIg6PPC22KffR+lJkn0fV5Yn6T4eht5/uNmXm+F/XP236z9sEjGMuE/45z925Jd1mg3TOTFxZb9uLUwoqPF/jVHTZhRCa56If59ULiM85wyIx4uMxbJrdvYjttlXdb6uXu7+bqxbt9+sfc5HxXl2NYF9mt92Li9eV+v0vDcc6PHPWFdh5aakR7Z57fZ11dRpQiD3tte7969fc9ed911mjFjRovv9DxPU6dO1Re/+EX1798/5n4BAOKSxlz1APYq1/Wd5M+RYn/HCFNbNcpvhXHsoyi/Jbp+a6jR0/l/ZMdvC/LtZqPxJXftDWuWCnP8l2ilGzOVEzc2AAAAgBA2bdrkC6sOE61x2WWX6YUXXtDq1atL2TUAAAAAaFO4sQEAAIAU2SNpdwnalOrq6iLli7388sv10EMPadWqVTriiCNi7hMAAAAAFKN0Y6Zy4sZGFYqjuHCc6yvl+0z+9EYtp3IpZcFqd1qa8O+zrTNqIejg94VPmePaX0Hhgu50OOGLxftDGYML/NpTOUVjKwIeJtVOfp3BabDs7zPXaT8mQWl+oqZcKz6dWOk/W5x97lZY5NsXPrq15X20l/EZEVBAzBVWmn2fO1Wb0YYjVVZ+eUfBeUe6fVtaIf+67c8HpbkKkybOdm35nusa/nyNmjIuu56aRa7tsLdn2x9hjpuvgHo2LdUi+7b6UjyZdeYWmfvAck6Pd6RRM1NlZcOcfcW5jW11FHrv8P53c493Hbf3vz/07ss996NuPy7sj+RLibXi4b0bs2JRr/yTC4xlx+T7+cNx1xa27TVKH9hX05Z5nqfLL79cixcv1ooVK3TMMcdUuksAgABJSxtTTZKcfgfRJe14hulPsWnTi1236/ly/GZWrFCp15vHoeZ42ZV+ytV20Dpc8mPgaMfb1g/fNi00FnCNzbLrHG+s47IIfZb524WRBivX3o7AtlAcbmwAAAAgRSqfL3by5MlauHChHnzwQXXp0kWbN2+WJGUyGXXq1CnmvgEAAABAFJUfM8WhxvM8r+xrhRobG5XJZNTQ0BAppYGUvLvncbFHP0QoQu2cwWwu0/Ls4qgFjeJuL2gdtvbimKnv3A6zYO0i24zoiHfgA46xs0+OYtE24QrAZ/thnxUeqVCyOTvfjAIIcT7aBBbADtE3awEr2WdahCti3twPs2Cy6zi4Zrjn2rbPuHdFI9gFF+22Fy4P3taga8x9PkSI4ulaGJHi6p9z+4xCZv6IgZb74d7Phfs0VOFss23ntljW7ex/dh3hr/mC5W3vM183oi063N6Ye7zruOb/FzuKb3d4/+j8spfl/7/tGTOActtlKUQuyV+s3JSNyHBFYxz80/z6AorZD/MG5Z5ZUWMUxPOxHE+zyN3Dlr5J+uGWfMTGkzpNkrSncbtWZ75S1PeZuGW/W0l/kNQ55ta3SxoVejtrHFUK582bp/r6+ni7BqTYvmOmYr/fpmnMhNLhnAknaBwKxK3ar804+p+UNqKsJ/LvaF1tWT1av+5Qvy1FWLcv64I5hhrf0rh1h6QbGTOVABEbAAAASJHdij9fbLT2mDcEAAAAILkqP2aKAzc2Esh29zJKzr5iZ4qH6U+UOhHu/OYtzzL35aOrKZxF7OqTbx2OvPW29bnlZ7SGmRlvE1QfI0wb0dYRnH/eP1P9ywXr8PXNnIls5LzPTkSNEhmw77qDo26Ky+MfvGxesfkaXREFUfJvhqmBYq91ELwOX59ttSS22s+ZwPac73N9ztjq4gRHW1ijB3x1MFquI7Fv2/nogOIidFozs8W6z7cWXkt7FV6/5rrNGfxatDH/2BUlY6kZYUZKuOoW5WvQOPbLOUbEifkZERBp44zSCIjOsB/LfZi1KcY398MXcWa0uzT/vBkJEWTXwY4+WY7RrkUynjs638ZxRoO2iBJjX/iWNT/jzGvBF0W19xiuGGcWADEjNozza0H+fcPG7Q3JWNHNeJ8x88iMavnRQqNmR25GUhLzxaYjrBpAodbWCwNawjkTTtL2U7lrgqL6lTv6r5T1KU1xRnW0Zn3x/sYV/L6gMXwY1uwWjt8V/ZkKLL/1WH4b2xslcWOkPpVeOsZM+5V9jQAAAAAAAAAAAEUiYgMAAAApskfxh0ETsQEAAAAgLdIxZqJ4eIW0VDw8SsHaYsPmoqSziRLuFUeIXbiQsZaLKschXEHt7DLBaXmiFRpvOXWUuZ5wx7Jwf/meD1MU2tHX4D5HYe+nfX1RC5fb9keY1ETFFbKOUuzexZbCLUy6N5egounBBbDDpJFqed3RioTLmk7JmdrOUew+8H0+rmvF9rqL8b6LLfvJVizb1bar0Lgr3Z5ZvOyygPdtDdp3xnbYinPvy5aqzPfZEv6c950brs8nV6qpXIo9R7Fyoxi2WUg8u93OtIZbHZ+1RjqunIctz7Ugm+4pV8Bc8u8vcx+YfbZti/mcYdiW/Atm2qkOf2te98Eb888Z6bN2PpvJPa75p/GV0ZeKKmmF8H4r6YCYW/9IUjKKpANtSUtjJqQLBamRdOU4R9tSeqxq2dZwKbdLtO6Iv+cV216xiu6HY59af/MIMx6ztGeO0TxjLDjcGCw94RtY+fuwL2efzGW2uNeRpO8zaRszEbEBAACAFElHvlgAAAAAKI10jJmI2KiQfe/W2YsLF3d3tjXFw20zuuOOHHHNeLZFIIQrUFy4jlAz+F0zl619sxevzRbODTP7OyiSwxkZE9DPqAWwg6JdIkV6BESTtNyn8NEi0QqJu97X+oiSoOLh/mVd+yAokqDl67f4SAPlZ90bExM822xzOWY9uKIEtobYt9l1u641c/a9OeM823aYyAXXDHfb+yzX8b5yszzGu6JFQkScBEV9XOz4XMvuA1uB6X2fDxD1M9y6jKtAuWU/+5ZxRRpYImqcHPvIX7jcUsDbLAzuiuYx2rZGTRiykQ2StOsyYxlHhIT1fUsds1aao2vMiJtsUW9JWlHTy1i45YigYQvtkRm+guDnGH3Kbq/5ufDnfFX7mn75r4m+tnN92iZpaMJmH92r0sw++loithNoS5I0wzGtKjkbOSmSHC1SLbPaqx372S8pEQGlWl/ckRDFrq+UAn9nCtgHzgj18a3fd87fNJrHnGH+X+SM+sg+HyK6I3BMbYyBH90yPPd49MIn8stcln+YjZBfsdAYWCU6yj0dYyYiNgAAAJAiuxV/vti42wMAAACASknHmImIjQoJU2PDFK2GgH3mvGvGetDd2eD12aNMTHHfPbdrORKkpfXkZr06ZhE7c643z4A1c/aFiSgI3q6gSAlHLnrHsr4Zz4ts211sJE6IPPgB7YWbQR4wu9u3fcHRA9bIC1dEQIRIjzARIq29VlwRHc5oChtXFEDg+0LUuTDZZsmHqufSckSDM8KixrFdWwNydUaKJHDMlrfUePAvHyKixlzGFgkRJjImiCvywmSpa+KMLHFeb4VRXa7rY5j3Vu5xNsLAVQ/Cf6wc9TYsfYt0rVjqlBSuu+WoFTNKw8UWGeKL7nDV21hgRJkYkRfvZQ6VJGXu25lf1uy/uV1GDZBsFMZpejKwzz8a9+P8P3L7P4mzj+5WaWYfTUjEdgJtCREblRFm5i0z3IHiVfL64fouv3LVyoijvWLeX9CGJVtDqAwl2WXD1Ig0lw9R/8LaRkBGBF+flxkR7V8zfkYP+m1lK2OmUiNiAwAAACmSjtlHAAAAAFAa6RgzcWMDAAAAKZKOQngAAAAAUBrpGDORiqpC8qE/P5DUsaLhh3bhi3bvbS8ozYwrPVZ8oXJ+9rRUgSlgikyn5OIMETRSV7nSQFnfF5j+KzjdjT0djCOFlfl8UGofZxogezqbXOH1iAULs312p0JyHHtXOi6LwFRhRtobfwHj4lIFuUIn/SmxCvuRLZIsSbsO3uho3dIPV8jlAuP58RG2xWzPTNczxnicK5plTzPl3o+Fy/rbdaRLMpd52LaOCGmwbMXMFS69kbXw+jnWRe1FqI31dXj/6NxjZ5oiVzHvLDMd0XjHdRPUhmt9tlRNjhRW2ULdkrSzW35bbMXezOvthwuvzT32p0Uq3E/OAt+O/mfTQD3Y7fzcc6PH5QvD2Qtn72vvtTLMG5Rf1igeZ6aOuqrbTfltWbh3W344zrF9xvnsWqbh7lpJUqb9uvzCRtoqXzHyccbByn4eGvs525YkrWk3JP9Y+cc/qrmo+VESi4f/UqUJq/5WIrYTaEtIRYWwkpg6J2qK4iRL4v5t66KmI4qSdrxUSpm6PA7FFsCOc1kpPyYK8/tI0Hri2F/Fpi9z/Ubk2i7rWNAQJp1VroC3mc7YaM83Tqt5Or9M828hzjTz5m8lrnS/lxU+l20vSd9n0jZmImIDAAAAKbJH8YdBE7EBAAAAIC3SMWYiYqNCWi4eXjgj3fZ6ocXN74tW+DsoOiNofZKsRahdhWKdBc2txXKDZ7m4ozMs/SxaUDFvxzocd6UDi2GHUliU2DWD3D3zP3z/7YWGHe8LNfM/6Li51rP3fc7zyMUXjVMYqeKeeRAQueDYR7aCyL5lnBEkjv2S7b+jALB/RnpQNIIrEifEtV7QlvzbYos6MNs2ZpD7+u8qxpzddUGFovddt7XQs+P8c0Uo2Pajs8CY47hlt3e847PRjN6yRRW4inYbzEiU2i1G8enmiAV3pIq9z9aIBxfXedd8jHwRFguNCATz2Fuia3zH2/F54r7GWo4OcslGkexaamx30GycfZ/P9s8VyWJsqxlBYWNGekSJ5Lhpy1W553zb4tjn2SiSdQdncs/9u/do7vETV47OPa75la1QXhIL4f1cUqeYW/9Y0qREbCfQluw7ZirlDFlUpyTMQo9DWztf4zxuce+7pByLpPQjCeIoeB5HtIhLlCiZuAuGh1m+pb619Hwx/QzVH8eYOhfpYWY7cGYcMNiiKVyZKcxxnCGXacEVaWe0YY7jrtJNBYuO7paP+mfMVHpEbAAAACBF0pEvFgAAAABKIx1jJiI2KqQ1s49MtruersgA3wz3CDUe3ILqOQTMPJesM55dM/HdM/QDIhci7YPgKAJrVIRrhrw5szzUjPqW27DVIXDWmujqOI/C3PG2rNtnkWVWcmCUgOSMFAjom30GgdHuAsdsbPNuvG8Gf3MbCxzbZ7wvm3dfkoZ0WyNpn9nh1siAFtiiA8w2nOeJpQ6Mow3fLPlcHnwpt//NfW+bbe7imvXuqF/gqwmRnf3vjKpwRGQEXpsB55TRJ2t/pBaO2+LC/rgm2bvOg+bjlc31KfnPH/P8MuukZK9r32yVrY7r2ziGZg2HXB0OxzExWetRuM6pbkbEgBnl44rGya7bVVfD/Cw2ozea+WpDGFEMtnWYfTXPfVd9Et/+t52jUaI0pNw14vusNrfPZGzro+OGS5JGLzRm9xjre3TL8NzjIU1rco8PbXgv93jns3sjLmq+ZnytM3aXuf/fyxyae3x+uwcl+SMzTMNvyUdv+PLQ5iRx9tF/qjSzj65IxHYCbUmSclKHUews9KTNzE5af1qjXPnl06JatrWUx7Uc+6CU0QNJFrW+Zu59FYzKCXOsim4vIHLB9b4wtSZsEQhhol2irMO3vOV4OseyAb/D+MbOljoY5rL7tp3t93DZ23jUW5F7fI7yY6+lah6P1QzLt2tmYLm3Jr/syPwyvugMi+x+SdL3mbSNmYjYAAAAQIrsVvxfcePOPwsAAAAAlZKOMRMRGxVSELFR5J1rU5QcevYZ0VJQxEJQDQf/HdmIdTWc+f0trJECLdcK2Zf9bnbhzFtJ/lnE1lntlnojskdY7Lu8NY+gIye7L8Iie/d4q31/+mYiGzOUbbPkfeeJ4xha89mbbZkWOfajbWa/Kxd9mPZs7bqiH2zPu9ZnvM8asVHTy94f1/pM2eM5PsR1YGvbVWPD5KpXkX2vq+6JszbKXr5Z7yFy9wcaH/zZkz3vfDP1HRE1ZsSDKVczwtFncya771rJ7i9jff7ZI8Z5YEQr+KImmvvk3HeOmhHZXJ03KV8vwVyfuaxpxThjP9nONeOc8m230ads/83nfFET3Rwnd4jIkNz6zP1s+wxzrOLRhfnIhTUaknts1p3w6vfOphk+0ow0yO+7R71/zz327d/svnOcw77j6qg/MmzhUn9b+7SXjcyQpNHjjNk9zbu34b3a3FOZQ3fm2zXOuyeWGTUv/ln4Fc5cxznLVuQe1w5syD3OfpZJ0rCave0N8oblnutVk3/fqe/n32fKRt0kc/bRrSrN7KNpidhOoC3JXdcHNUg1dUWPk1A9qiVioC2oxmNRyj7HWS+h2HWbKtGP1oqjTkQYxdbYsPUv6vsC+xGmFqolE4Hr/3+RIiiM36c8R1S5tb0wGUd8vyWEv1bMPlnrY5hcGRoM2XGTPdJ8H5bIEe+QaJEZZmT9OSevkCTVPD8j317ztjJmKh0iNgAAAJAi6cgXCwAAAAClkY4x035lXyMAAAAAAAAAAECRiNhICGuYWOQiP4WpXPzpj4zXFzmez6ZTMQvxGMwCPLo9n2ojGz7mC6XrNqDg9QK2tDtmGhAzxY3ZZ186peb/Gqlg/NttMIvbGm04i7tmmalcbAVylxrPGam9am//bv55X9Hn/OPaLdn0JmYxY+O4jjGOvSX0zpciqiafVmjXcWYhKqP/i/IPs2mznOnBjLQ1K8ZZ0iUZbflS7YxxFBEOON5mOKT/mOS3a9jC5tRERqoXXzoiM81PQKFnMxWPmZrFbHvXwT/NP28r4G2er+b6zOfN68lWeD2MbJ/NdDjjN+ZfN9OQ+YpkW/pxsf1c9PXTWCafXseexsi8lswUPeYyV3Xbm1rJV3g6RAHsFc2fI2aI5+iH82Gg/pRARlot43Mtd064ismbbMWijed8aZgWONow5fZjfpvM7ZNxrMz9+0T93vRAo+cbIa8Xmw0b1/04x8Y09/+H3n25p27akl+fq4h2IGN/+FJUGf24qltzAe+FxvE2PwuMNhouOjX3OFsM27zuhnmDco/N9E1mQXPzXKs5rjk9k7lbfPsuz+xzw921vj5I/s8T87G57id1WmF7xv+vHl2YT311/pYH8ys3PiOy/TfX/cMt+XVc2XRL7rGZYsu7Mh8qPf2WayT5C5B7f8q/vlOZ/LIjr8n32dvbXpOezG+Tl0/RtWuhPXWaQqR8rJw9ij+/KxEbQCU1/EPaN6NBscVaS5WephRtl1s2BUncKb+SUvi33Osuh1L2J+g3iDC/URTbRhDXOlrTp7Dva80+L3q7m8dNUa/NYotJB7Ybc0qpoONZyhRWvn1kS9HtKPBtCjrvzPGMtj5tvG4sHLAec1nf+sxlu1r6b7zu64cKf8+TjFROvlTQIfaB8fvN8HGDmvvs6JsrJVbzY99+MTnWbW5Xrt9dXQP+PF+a4JphkqSlRnpe37Lm7xFGWioz9W/N95rHoePDn3+VlY4xEzc2AAAAkCLpCKsGAAAAgNJIx5iJ4uEVErVwjDMyI6j4tjkz25hB6pvRfZxl/UGFjyX/7FtLMWZf4WwzYsNWAFtyFDY25Wdjd3j/uwWvWrdD8u8XI9rCWgzXFwkSobizY1l/YeP8DGRrlIwrKsQxyzw7i37NlnwBXV+0govtuBl3vh/1VuQeZ+9a79vnXDFmx4xv3yx6RyHuXF8dhY1d55q1OK8ZKWHOuHe1nT1etugb83W1UPQ5t44Qha0sRZV954NRcN5X0NlYJnvO+/Zt0PUo+0z8bPSEJN20xZiZ7TqetmPlupaMmR0/HJefcf6jmouat+Noaz+ss96VP96nGbPJfVEfjuvbeeybeb2MomC3DMs9NotJZ68tsyi5L0LK2FZzH1ivScd17DvetmNrvs84t/37tkPusXn9+qIDmr2XObTgOUnKTMgXqrZ9nocqCm8rIm/031UY25Q973yF4B3/H/P+cFLusbVQ+ILC475vP/+/Rfnz4N+9RwsWNSN0whT2tv6/xOSIIstuty9yzDi/Gi6qLXiPJNU9viv3uPGsvedB5r5833yzkIxIDrO9Ne2GFLzuu6aNwuvmscj+Pz6ZhfCul9Qx5tZ3SLouEdsJtCVJ+oyJQ5QCs2HasM0uLleB9VJFQsQ94z5ursK/udfLXEw6TAFjH2OMEuVcCdruODjP7RijLfZ93ibwHHTsw0gFpIssZO0Sqb2Yz4FI67YUmHYuazzvPGYhtiWw8LoZrWD5jchXHFr2AtLO9WX7Z8sKsK+tLW935Gs9u69dv78ZfOMZW9Ft87gZ/beOg6Tctvh+WzKLbwdEXoQq/G3wrWeh5RgZfTaPpylb+Hv4c4VjQkl64uTRucdLnxuWX5+5Xc3H2VaYPUnfZ9I2ZqLGBgAAAFJkd4n+AAAAACANkjFmWrVqlc4991z16tVLNTU1euCBByK9n1RUVSJcHsHsso5ZqgsdNSh80QjNd06XOmYhuGpRZN9n1IPwLeuLaDBmp9tmhZv9MWe9GnUsdh1n60N+HeasapOZw37NOflZ1bZZwubMcjM//q7jjP7lblCbuf3Nfhp3KJ3bnX3dcdwcd/ezs9p9tQ6M18387L5Z+bLMCle+b6PHGf183z6bfJdrlkH2fa7aFcad9x96e2ca33ROvm++/Wysz4z+qTVmw1vXbdagMF+wRGH4tsOMcnBFaVi224weckaqGO1l98cKc7aEMRv+wW7n5x6PXmDUksi2Z874Nh6bsyV8EQO+SKG9fnTxjwuek+SvlWFsd26f+iK98suuuMycnZHfzz+SsZ4Fhe/70TnG6+ZnhFEPITtrfcX4/LnjOy/N+jbm8TFm62dnra9Rfr/UbmnIL2t8xvn2/3FPFLS1wsz3afbT3Ae2yK+LbZ8b+1wfYyzT/B21R0zmOTh6oeX/FcZ+ydyen83vai9fQ8eIkjPqBfmuCVuUhvm8sUmZ9uvy/zBrXtiiGBzRVOa1lKulsc96sm37PgvMCBDDSQuMNppnoZnXkvn40C35+hfevfkToaZbvo1sVMct7a7MPef7/DXrdBhRN9kaGrco/76rxuUjmjIL7cftwZH58zUbbeT9xOibjO0zzoM14/LXgm+WUTPzevMxzgnZzjUASIDW5u5vTRu2GdG2WbgF7zNmQmeXDzNz2z5rN9qM76Ac/C5B/Yi674JmZhc9k92yb1tqO2gdQVEarhnRzuUt6yhlDRFzdnqcUT5F10AIsb8qyXqsjP013BGOG+X8N5f1tdc14Fo3952jdqGt1qm/LqqjT7aIjAX2bXKdu9Z9Z9bUNOo2LJU5i35Yy/1zRH2Yn31B/fQx2lhxWeF+tM3Il+SMrLdFkYSJOLHWoHDVpbDVAtlHdl/XGPvFF81tbNcTZr2NBZYxqSNLxYpuQbU+VuSeMsdVT5jHapmRSaH52A8z3rfCMyPz82MUs67GTTJrh+xlbutN464yls0/9tUR+Ufzf439afY5Vz9D0qO+8zXPFqmBYNu3b9dJJ52kb3zjG/rXf/3XyO/nxgYAAABSJB35YgEAAACgNJIxZho9erRGjx4dvKADNzYqJFvapLHRMWO2KNsitLnN6Iy5/I6C53zNOaOKmt/3kbGwb1n7+jyz8Y+yTzrWF1gNJr+OPY3b7Yvsdqzb0ob9dVc/dhivB+//wO3+SHaWfeNry3h9Z2N+hq91fS7GPve9z3bsjfW59tee9uaxyO+nnY27W3yfuT7fJmb/4Tg3/O0Z550sy4Rp4yP7MtZlQ7SX2x+efR3bG43/EXxk2TeO68A85/37YEfhwrtDfEYYfbIeI+f1aOzzoP67PiN22/ZNfjtCHR/LPt0pxzVh2N7e2P/ZY+S7Zhz9DNoux7K+zyrb/jKYfd7ZPsL17dgv7us7u40h9rn5PtfzBe3KuT9y63G05fq8s60vzGeBb583t+f6/4fZnm8R3/8v9zays13w8TE/oxubCt+3XfbPArM983zdo+3NbRl9s2yftM/njPX/WZbPjX1kv2tk/5uskm32Gi7JaxNAkOLGTDuKeE9cbRSOpczPVGd7vo9Q27pdbRR+Xod7n33d+UXC/38gXD+isK878nZlWfZty20XsQ7HWND9thiOW7H73PLdOdShsp4n9v6EO/ZRrpWobYdvzybKuZ39/tXy+sL3zdeeY9/YXzc4x/uWzxbH1zd/9wt/64lybvvbDfHd1Ho9Gc99VNy1Eupaso3RXb/ThHg+8DM16Bg61uHblKBj6PqtwfVZZT1/wvS/cD+a6zPP7UYjU4d5ymeXN9fmH5vtcDxv+KjldduW3dvnwpddY/VQ+3EfbW3MtO/1Vltbq9pae93I1qJ4eIW8+eab6t27d6W7AQAA0GqbNm3SEUccUdE+7NixQ8ccc4w2b95ckvZ79uyp119/XR07xl1kD4ALYyYAAJAWbWHMdOCBB2rbNv/Ewuuuu04zZswIfG9NTY0WL16sCy64IPT6iNiokF69emnTpk3q0qWLampqgt+AimlsbFTv3r21adMm1dXVBb8BicRxTAeOY3pwLNPB8zx9+OGH6tWrV6W7oo4dO+r111/Xrl27ghcuQocOHbipAZQZY6Zk4f/d6cLxTBeOZ7pwPNOlLY2ZPM8r+M5WqmgNiRsbFbPffvtV/C4doqmrq+N/KCnAcUwHjmN6cCyrXyaTqXQXcjp27MjNByBFGDMlE//vTheOZ7pwPNOF45kejJlKY79KdwAAAAAAAAAAACAsIjYAAAAAAAAAAEDZbNu2TX/7299y/3799df1/PPPq1u3bjryyCMD38+NDSBAbW2trrvuupLmhEPpcRzTgeOYHhxLAACqC//vTheOZ7pwPNOF44m24tlnn9Xw4cNz/546daok6ZJLLtH8+fMD31/jeZ5Xqs4BAAAAAAAAAADEiRobAAAAAAAAAACganBjAwAAAAAAAAAAVA1ubAAAAAAAAAAAgKrBjQ0AAAAAAAAAAFA1uLGBNu/nP/+5jjnmGHXs2FGnnHKKnnzySeey999/v0aMGKFDDz1UdXV1Gjx4sP7whz+UsbdoSZRjafrf//1ftW/fXp/97GdL20GEEvU47ty5U9dee62OOuoo1dbW6lOf+pR+9atflam3cIl6HBcsWKCTTjpJBxxwgA477DB94xvf0Pvvv1+m3gIAAImxUdowPkoXxknpwngJaD1ubKBNu++++zRlyhRde+21eu6553Taaadp9OjReuONN6zLr1q1SiNGjNAjjzyi9evXa/jw4Tr33HP13HPPlbnn2FfUY5nV0NCgr3/96zrrrLPK1FO0pJjjOHbsWD3++OO66667tGHDBi1atEif/vSny9hr7CvqcVy9erW+/vWv69JLL9XLL7+s3/zmN1q3bp2++c1vlrnnAAC0XYyN0oXxUbowTkoXxktAPGo8z/Mq3QmgUgYNGqTPfe5zmjt3bu65fv366YILLtDs2bNDtfGZz3xGF110kaZPn16qbiKEYo/l1772NfXp00ft2rXTAw88oOeff74MvYVL1OO4dOlSfe1rX9Pf//53devWrZxdRQuiHsdbbrlFc+fO1WuvvZZ7bs6cObr55pu1adOmsvQZAIC2jrFRujA+ShfGSenCeAmIBxEbaLN27dql9evXa+TIkb7nR44cqTVr1oRq45NPPtGHH37IF4UKK/ZYzps3T6+99pquu+66UncRIRRzHB966CENHDhQN998sw4//HAdf/zxuvLKK/Xxxx+Xo8uwKOY4DhkyRG+++aYeeeQReZ6nd955R7/97W/1pS99qRxdBgCgzWNslC6Mj9KFcVK6MF4C4tO+0h0AKuWf//ynmpqa1KNHD9/zPXr00ObNm0O1ceutt2r79u0aO3ZsKbqIkIo5ln/961/1gx/8QE8++aTat+ejMAmKOY5///vftXr1anXs2FGLFy/WP//5T02aNElbtmwhf2yFFHMchwwZogULFuiiiy7Sjh07tGfPHp133nmaM2dOOboMAECbx9goXRgfpQvjpHRhvATEh4gNtHk1NTW+f3ueV/CczaJFizRjxgzdd9996t69e6m6hwjCHsumpiaNGzdO119/vY4//vhydQ8hRbkmP/nkE9XU1GjBggX6/Oc/r3/5l3/Rbbfdpvnz5zMbqcKiHMdXXnlFV1xxhaZPn67169dr6dKlev311/Wd73ynHF0FAADNGBulC+OjdGGclC6Ml4DW4zY82qxDDjlE7dq1K7gj/u677xbcOd/Xfffdp0svvVS/+c1vdPbZZ5eymwgh6rH88MMP9eyzz+q5557TZZddJmnvFz/P89S+fXstW7ZMZ555Zln6jrxirsnDDjtMhx9+uDKZTO65fv36yfM8vfnmm+rTp09J+4xCxRzH2bNna+jQofre974nSRowYIA6d+6s0047TTNnztRhhx1W8n4DANCWMTZKF8ZH6cI4KV0YLwHxIWIDbVaHDh10yimnaPny5b7nly9friFDhjjft2jRItXX12vhwoXkM0yIqMeyrq5OL774op5//vnc33e+8x317dtXzz//vAYNGlSursNQzDU5dOhQvfXWW9q2bVvuuVdffVX77befjjjiiJL2F3bFHMePPvpI++3n/0rSrl07SXtnLgEAgNJibJQujI/ShXFSujBeAmLkAW3Yvffe6+2///7eXXfd5b3yyivelClTvM6dO3sbN270PM/zfvCDH3gTJkzILb9w4UKvffv23n/91395b7/9du7vgw8+qNQmoFnUY7mv6667zjvppJPK1Fu4RD2OH374oXfEEUd4X/nKV7yXX37ZW7lypdenTx/vm9/8ZqU2AV704zhv3jyvffv23s9//nPvtdde81avXu0NHDjQ+/znP1+pTQAAoM1hbJQujI/ShXFSujBeAuJBKiq0aRdddJHef/993XDDDXr77bfVv39/PfLIIzrqqKMkSW+//bbeeOON3PJ33HGH9uzZo8mTJ2vy5Mm55y+55BLNnz+/3N2HIeqxRDJFPY4HHnigli9frssvv1wDBw7UwQcfrLFjx2rmzJmV2gQo+nGsr6/Xhx9+qNtvv13Tpk3TQQcdpDPPPFM33XRTpTYBAIA2h7FRujA+ShfGSenCeAmIR43nEbMEAAAAAAAAAACqAzU2AAAAAAAAAABA1eDGBgAAAAAAAAAAqBrc2AAAAAAAAAAAAFWDGxsAAAAAAAAAAKBqcGMDAAAAAAAAAABUDW5sAAAAAAAAAACAqsGNDQAAAAAAAAAAUDW4sQEAAAAAAAAAAKoGNzYAAJKk+fPn66CDDqp0NwAAAAAgkRgzAUBycGMDAAAAAAAAAABUDW5sAECV2717d6W7AAAAAACJxZgJANKHGxsAECPP83TzzTfr2GOPVadOnXTSSSfpt7/9rSRpxYoVqqmp0eOPP66BAwfqgAMO0JAhQ7RhwwZfG0uWLNEpp5yijh076thjj9X111+vPXv25F6vqanRL37xC51//vnq3LmzZs6cKUmaOXOmunfvri5duuib3/ymfvCDH+izn/2sJGnVqlXaf//9tXnzZt+6pk2bptNPP925PXPnztWnPvUpdejQQX379tXdd9/te33GjBk68sgjVVtbq169eumKK67Ivfbzn/9cffr0UceOHdWjRw995Stfib5DAQAAAKQKYybGTAAQCw8AEJtrrrnG+/SnP+0tXbrUe+2117x58+Z5tbW13ooVK7wnnnjCk+QNGjTIW7Fihffyyy97p512mjdkyJDc+5cuXerV1dV58+fP91577TVv2bJl3tFHH+3NmDEjt4wkr3v37t5dd93lvfbaa97GjRu9e+65x+vYsaP3q1/9ytuwYYN3/fXXe3V1dd5JJ52Ue9/xxx/v3Xzzzbl/79692+vevbv3q1/9yvM8z5s3b56XyWRyr99///3e/vvv7/3Xf/2Xt2HDBu/WW2/12rVr5/3xj3/0PM/zfvOb33h1dXXeI4884v3jH//wnn76ae+Xv/yl53met27dOq9du3bewoULvY0bN3p/+tOfvP/4j/8oxS4HAAAAUEUYMzFmAoA4cGMDAGKybds2r2PHjt6aNWt8z1966aXexRdfnPuS/thjj+Ve+/3vf+9J8j7++GPP8zzvtNNO82bNmuV7/9133+0ddthhuX9L8qZMmeJbZtCgQd7kyZN9zw0dOtT3Jf2mm27y+vXrl/v3Aw884B144IHetm3bPM8r/JI+ZMgQb+LEib42v/rVr3r/8i//4nme5916663e8ccf7+3atatgX/zud7/z6urqvMbGxoLXAAAAALRNjJnyGDMBQOuQigoAYvLKK69ox44dGjFihA488MDc3//8z//otddeyy03YMCA3OPDDjtMkvTuu+9KktavX68bbrjB9/6JEyfq7bff1kcffZR738CBA33r3rBhgz7/+c/7ntv33/X19frb3/6mtWvXSpJ+9atfaezYsercubN1e/785z9r6NChvueGDh2qP//5z5Kkr371q/r444917LHHauLEiVq8eHEu/HvEiBE66qijdOyxx2rChAlasGCBr/8AAAAA2h7GTIyZACAu7SvdAQBIi08++USS9Pvf/16HH36477Xa2trcF/X9998/93xNTY3vvZ988omuv/56XXjhhQXtd+zYMffY9sU621aW53m+f3fv3l3nnnuu5s2bp2OPPVaPPPKIVqxY0eI22drMPte7d29t2LBBy5cv12OPPaZJkybpJz/5iVauXKkuXbroT3/6k1asWKFly5Zp+vTpmjFjhtatW6eDDjqoxXUCAAAASCfGTIyZACAuRGwAQExOOOEE1dbW6o033tBxxx3n++vdu3eoNj73uc9pw4YNBe8/7rjjtN9+7o/svn376plnnvE99+yzzxYs981vflP33nuv7rjjDn3qU58qmF1k6tevn1avXu17bs2aNerXr1/u3506ddJ5552n//zP/9SKFSv01FNP6cUXX5QktW/fXmeffbZuvvlmvfDCC9q4caP++Mc/htoPAAAAANKHMRNjJgCICxEbABCTLl266Morr9R3v/tdffLJJ/riF7+oxsZGrVmzRgceeKCOOuqowDamT5+uMWPGqHfv3vrqV7+q/fbbTy+88IJefPFFzZw50/m+yy+/XBMnTtTAgQM1ZMgQ3XfffXrhhRd07LHH+pYbNWqUMpmMZs6cqRtuuKHFvnzve9/T2LFj9bnPfU5nnXWWlixZovvvv1+PPfaYJGn+/PlqamrSoEGDdMABB+juu+9Wp06ddNRRR+nhhx/W3//+d51++unq2rWrHnnkEX3yySfq27dviD0JAAAAII0YMzFmAoC4ELEBADH60Y9+pOnTp2v27Nnq16+fRo0apSVLluiYY44J9f5Ro0bp4Ycf1vLly3XqqafqC1/4gm677bbAL/jjx4/X1VdfrSuvvFKf+9zn9Prrr6u+vt4Xii1J++23n+rr69XU1KSvf/3rLbZ5wQUX6D/+4z/0k5/8RJ/5zGd0xx13aN68eRo2bJgk6aCDDtKdd96poUOHasCAAXr88ce1ZMkSHXzwwTrooIN0//3368wzz1S/fv30i1/8QosWLdJnPvOZUPsBAAAAQDoxZmLMBABxqPH2TSgIAEiFESNGqGfPnrr77rt9z0+cOFHvvPOOHnrooQr1DAAAAAAqjzETAFQvUlEBQAp89NFH+sUvfqFRo0apXbt2WrRokR577DEtX748t0xDQ4PWrVunBQsW6MEHH6xgbwEAAACgvBgzAUC6cGMDAFKgpqZGjzzyiGbOnKmdO3eqb9+++t3vfqezzz47t8z555+vZ555Rt/+9rc1YsSICvYWAAAAAMqLMRMApAupqAAAAAAAAAAAQNWgeDgAAAAAAAAAAKga3NgAAAAAAAAAAABVgxsbAAAAAAAAAACganBjAwAAAAAAAAAAVA1ubAAAAAAAAAAAgKrBjQ0AAAAAAAAAAFA1uLEBAAAAAAAAAACqBjc2AAAAAAAAAABA1fj/AfV1DLS5s/9uAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#energyloss in abh von der energie der elektronen\n", "fig, ((ax0, ax1)) = plt.subplots(nrows=1, ncols=2, figsize=(20,6))\n", "\n", "a0=ax0.hist2d(energyloss_found, energy_found, bins=200, cmap=plt.cm.jet, cmin=1)\n", "ax0.set_xlabel(\"energyloss\")\n", "ax0.set_ylabel(r\"$E_0$\")\n", "ax0.set_title(\"found energyloss wrt electron energy\")\n", "plt.colorbar(a0[3],ax=ax0)\n", "\n", "a1=ax1.hist2d(energyloss_lost, energy_lost, bins=200, cmap=plt.cm.jet, cmin=1) \n", "ax1.set_xlabel(\"energyloss\")\n", "ax1.set_ylabel(r\"$E_0$\")\n", "ax1.set_title(\"lost energyloss wrt electron energy\")\n", "plt.colorbar(a1[3],ax=ax1)\n", "\n", "\"\"\"\n", "\"\"\"\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "env1", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }