{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import uproot\n", "import numpy as np\n", "import sys\n", "import os\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits import mplot3d\n", "import itertools\n", "import awkward as ak\n", "from scipy.optimize import curve_fit\n", "from mpl_toolkits.axes_grid1 import ImageGrid\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10522" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = uproot.open(\"tracking_losses_ntuple_Bd2KstEE.root:PrDebugTrackingLosses.PrDebugTrackingTool/Tuple;1\")\n", "\n", "#selektiere nur elektronen von B->K*ee und nur solche mit einem momentum von ueber 5 GeV \n", "allcolumns = file.arrays()\n", "found = allcolumns[(allcolumns.isElectron) & (~allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 9056\n", "lost = allcolumns[(allcolumns.isElectron) & (allcolumns.lost) & (allcolumns.fromSignal) & (allcolumns.p > 5e3)] #B: 1466\n", "\n", "ak.num(found, axis=0) + ak.num(lost, axis=0)\n", "#ak.count(found, axis=None)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "#plot minimal energy of photon abhängigkeit von eta und phi\n", "#materialpeak (beampipe)\n", "\n", "#minimal photon energy\n", "energy_found = ak.to_numpy(ak.min(found[\"brem_photons_pe\"],axis=-1))\n", "energy_lost = ak.to_numpy(ak.min(lost[\"brem_photons_pe\"],axis=-1))\n", "\n", "eta_found = ak.to_numpy(found[\"eta\"])\n", "eta_lost = ak.to_numpy(lost[\"eta\"])\n", "\n", "phi_found = ak.to_numpy(found[\"phi\"])\n", "phi_lost = ak.to_numpy(lost[\"phi\"])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZIAAAIhCAYAAADU7U8+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjf0lEQVR4nOzdeZgU1dn38V/NAMOATCsqDCDg4ILKpnFhMyCCKC5xg7hExSwucYkIeUiIGiCLKEaDUaOSxV0xgjuJjyBbhDEPgvsWfRmFKKNGZUYRB2Y47x8w3VXdVdXV09XT2/dzXX1RVV116lT1MjfVd93HMsYYAQAAAAAAAADgoSTbHQAAAAAAAAAA5DYuJAMAAAAAAAAAfHEhGQAAAAAAAADgiwvJAAAAAAAAAABfXEgGAAAAAAAAAPjiQjIAAAAAAAAAwBcXkgEAAAAAAAAAvriQDAAAAAAAAADwxYVkAAAAAAAAAIAvLiQDReThhx9Wv379VF5eLsuy9PLLL2e7S65mzJghy7JCa2/VqlWaMWOGNm3aFFqbmfLHP/5Rd999d+jt3n333bIsSy+++GJobT744IOaM2dOaO0BAABkQnMc9P7772ek/UzFb/kSa3399deaMWOGli1bFnrb559/vnbZZZdQ27z22mv1+OOPh9omABQLLiQDReLTTz/Vueeeq3322UfPPPOMqqurtf/++2e7W61i1apVmjlzZlFfSM6EfPnPDQAAQCZxIflrzZw5MyMXkjOBC8kA0HJtst0BAK3j3//+t7Zt26ZzzjlHI0eOzHZ3EOfrr79Whw4dst0NpGHbtm2yLEtt2vCnFQAAFD5jjL755ptsdwNp4v8hAFJBRjJQBM4//3wdeeSRkqQzzjhDlmXpqKOOij7/5JNPaujQoerQoYM6deqkY445RtXV1Qlt7L333gltu5WhsCxLl112me677z4deOCB6tChgwYNGqSnn346YfuFCxfq4IMPVllZmaqqqvS73/0upWNbvHixRo8erYqKCnXo0EHDhw/Xc8895+jf//zP/0iSqqqqZFmWLMuKZkw8/PDDGjt2rLp166by8nIdeOCB+vnPf67Nmzf77re+vl5t2rTRDTfcEF323//+VyUlJYpEImpsbIwu/8lPfqI999xTxhhJ0lFHHaX+/ftrxYoVGjZsmDp06KAf/OAH2nvvvfXGG29o+fLl0X66nXO75nN95513av/991dZWZkOOuggzZs3z3X9L7/8Uj/+8Y+1xx57aPfdd9dpp52mjz76yLHO9u3bNXv2bB1wwAEqKytTly5ddN555+k///lPdJ2jjjpKCxcu1AcffBDtq/198Pnnn+uSSy5Rjx491K5dO/Xp00dXXXWVGhoaXPsf5L3ipr6+Xj/96U9VVVWldu3aqUePHpo0aVLC65fKft59912dffbZ6tKli8rKynTggQfqtttuc6yzbNkyWZal++67T1OmTFGPHj1UVlam9957T5L0pz/9yfF6PPjgg47PkDFG++23n4499tiE/X/11VeKRCK69NJLA50DAADQMn/96181aNAgtW/fXp07d9app56qt956y7HOunXrdOaZZ6p79+4qKytT165dNXr06GiJuJbEb8YY/fGPf9TBBx+s8vJy7bbbbho/frzWrVsXXSdZrDVz5kwNHjxYnTt3VkVFhb71rW/pL3/5SzTe9LJw4UJZlqXVq1dHly1YsECWZemEE05wrDtw4ECdfvrp0fnmeOqOO+7QgQceqLKyMt1zzz3ac889o31q7uf555/v2YfmOOr+++/X5MmTVVlZqfLyco0cOVIvvfSS6zbvvfeejj/+eO2yyy7q2bOnpkyZkhBXBok/LcvS5s2bdc8990T7av9/0euvv66TTz5Zu+22m9q3b6+DDz5Y99xzj2v/H3roIV111VXq3r27KioqNGbMGL3zzjuex22XSrwZdD/J/l8kxf7vtnbtWo0fP1677bab9tlnH0lSQ0ODpkyZosrKSnXo0EEjRozQmjVrtPfee0dfz/fff19t2rTRrFmzEva/YsUKWZalRx55JNA5AJCnDICC995775nbbrvNSDLXXnutqa6uNm+88YYxxpgHHnjASDJjx441jz/+uHn44YfNoYceatq1a2f++c9/RtuYOHGi6d27d0Lb06dPN/FfJZLM3nvvbY444gjzt7/9zfz97383Rx11lGnTpo35f//v/0XXW7x4sSktLTVHHnmkefTRR80jjzxiDj/8cNOrV6+ENt3cd999xrIsc8opp5hHH33UPPXUU+bEE080paWlZvHixcYYYzZs2GAuv/xyI8k8+uijprq62lRXV5u6ujpjjDG//vWvze9//3uzcOFCs2zZMnPHHXeYqqoqM2rUqKT7HzJkiBk7dmx0ft68eaZ9+/bGsiyzcuXK6PIDDzzQfPe7343Ojxw50nTu3Nn07NnT3HLLLWbp0qVm+fLlZu3ataZPnz7mkEMOifZz7dq1vn2QZHr27GkOOugg89BDD5knn3zSHHfccUaSeeSRR6Lr3XXXXUaS6dOnj7n88svN//7v/5o///nPZrfddks41gsvvNBIMpdddpl55plnzB133GH23HNP07NnT/Ppp58aY4x54403zPDhw01lZWW0r9XV1cYYY7Zs2WIGDhxoOnbsaH73u9+ZZ5991lxzzTWmTZs25vjjj0/of5D3ipvNmzebgw8+2Oyxxx7mpptuMosXLzY333yziUQi5uijjzbbt29PeT9vvPGGiUQiZsCAAebee+81zz77rJkyZYopKSkxM2bMiK63dOlSI8n06NHDjB8/3jz55JPm6aefNp999pm58847jSRz+umnm6effto88MADZv/99ze9e/d2fIZuvvlmY1mW+fe//+04rubPavNnFAAApKc5DqqpqYkuu/baa40kc9ZZZ5mFCxeae++91/Tp08dEIhHH3+a+ffuafffd19x3331m+fLlZsGCBWbKlClm6dKlxhjTovjtggsuMG3btjVTpkwxzzzzjHnwwQfNAQccYLp27Wpqa2uNMf6xljHGnH/++eYvf/mLWbRokVm0aJH59a9/bcrLy83MmTN99/3ll1+atm3bmmuvvTa67OKLLzbl5eWmY8eOZuvWrcYYYz7++GNjWZb54x//GF2vOfYZOHCgefDBB82SJUvMyy+/bJ555hkjyfzwhz+M9vO9997z7ENzHNWzZ09z8sknm6eeesrcf//9Zt999zUVFRWO2GzixImmXbt25sADDzS/+93vzOLFi80vf/lLY1mW41iDxp/V1dWmvLzcHH/88dG+Nsdcb7/9tunUqZPZZ599zL333msWLlxozjrrLCPJXH/99Qn933vvvc33vvc9s3DhQvPQQw+ZXr16mf322880Njb6vgapxptB9hPk/0XGxP7v1rt3b/Ozn/3MLFq0yDz++OPGGGPOOussU1JSYn7+85+bZ5991syZM8f07NnTRCIRM3HixGgbp556qunVq1fCcU6YMMF0797dbNu2zff4AeQ3LiQDRaI5ELFfXGxqajLdu3c3AwYMME1NTdHlX375penSpYsZNmxYdFmqF5K7du1q6uvro8tqa2tNSUmJmTVrVnTZ4MGDTffu3c2WLVuiy+rr603nzp2TXkjevHmz6dy5sznppJMcy5uamsygQYPMEUccEV12ww03JPznwc327dvNtm3bzPLly40k88orr/iuf/XVV5vy8nLzzTffGGOM+dGPfmSOO+44M3DgwGhg++GHHxpJZu7cudHtRo4caSSZ5557LqHNfv36mZEjR/ru106SKS8vj/6nwxhjGhsbzQEHHGD23Xff6LLm/0Bdcsklju1nz55tJJmNGzcaY4x56623XNf717/+ZSSZX/ziF9FlJ5xwgut74o477jCSzN/+9jfH8uuvv95IMs8++6yj/0HeK25mzZplSkpKzOrVqx3L58+fbySZv//97ynv59hjjzV77bVX9IeGZpdddplp3769+fzzz40xsc/TiBEjHOs1NTWZyspKM3jwYMfyDz74wLRt29Zxvurr602nTp3MFVdc4Vj3oIMOCvRDBgAACCb+QvIXX3wRvZhot379elNWVmbOPvtsY4wx//3vf40kM2fOHN/2U4nfqqurjSRz4403OpZv2LDBlJeXm6lTp0aXecVa8Zqamsy2bdvMr371K7P77rs7fkx3c+SRR5qjjz46Or/vvvua//mf/zElJSVm+fLlxphYson9orokE4lEovFQs08//dRIMtOnT0/aV2NicdS3vvUtR1/ff/9907ZtW/OjH/0oumzixImuceXxxx9v+vbtG51PJf7s2LGj48JoszPPPNOUlZWZ9evXO5aPGzfOdOjQwWzatMnR//j3z9/+9jcjyXHB302q8Way/aTy/6Lm/7v98pe/dKz7xhtvGEnmZz/7mWP5Qw89ZCQ5zldzvx577LHosg8//NC0adMm6Q8ZAPIfpS2AIvbOO+/oo48+0rnnnquSktjXwS677KLTTz9dL7zwgr7++usWtT1q1Ch16tQpOt+1a1d16dJFH3zwgSRp8+bNWr16tU477TS1b98+ul6nTp100kknJW1/1apV+vzzzzVx4kQ1NjZGH9u3b9dxxx2n1atXJy1PIe24XfHss89WZWWlSktL1bZt22gN6fhbG+ONHj1aW7Zs0apVqyTtuJ3smGOO0ZgxY7Ro0aLoMkkaM2aMY9vddttNRx99dNL+BTF69Gh17do1Ol9aWqozzjhD7733nqMchSR95zvfccwPHDhQkqKvy9KlSyUp4XbEI444QgceeGDC7XFulixZoo4dO2r8+PGO5c1txreR7L3i5emnn1b//v118MEHO94Dxx57rKN8SdD9fPPNN3ruued06qmnqkOHDo42jz/+eH3zzTd64YUXHG3ab/eUdnymamtr9d3vftexvFevXho+fLhjWadOnfT9739fd999d/S9umTJEr355pu67LLLfI8dAAC0XHV1tbZs2ZIQ7/Ts2VNHH310NFbp3Lmz9tlnH91www266aab9NJLL2n79u1p7fvpp5+WZVk655xzHLFGZWWlBg0aFHjAuiVLlmjMmDGKRCLRGPaXv/ylPvvsM33yySe+244ePVorV67Uli1b9MEHH+i9997TmWeeqYMPPtgRw/bq1Uv77befY9ujjz5au+22W4uOPd7ZZ5/tKNfRu3dvDRs2LBqPNrMsK+H/BwMHDnTEiqnGn26WLFmi0aNHq2fPngltfP311wml/5LF1W5aEm8m209L/l8UH8MuX75ckhJi2PHjxyeM/3HUUUdp0KBBjlIcd9xxhyzL0oUXXuh57AAKAxeSgSL22WefSZK6deuW8Fz37t21fft2ffHFFy1qe/fdd09YVlZWpi1btkiSvvjiC23fvl2VlZUJ67kti/fxxx9L2hHctG3b1vG4/vrrZYzR559/7tvGV199pW9/+9v617/+pd/85jdatmyZVq9erUcffVSSon310lzfePHixXrvvff0/vvvRy8k/+tf/9JXX32lxYsXq0+fPqqqqnJs63bOW8rvHDa/xs3iX5eysjJJsWNN9p6Ib8/NZ599psrKyoTa2V26dFGbNm2S9qm5X8nO/8cff6xXX3014fXv1KmTjDH673//m9J+PvvsMzU2NuqWW25JaPP444+XpIQ2489T87HZL+w3c1t2+eWX68svv9QDDzwgSbr11lu111576eSTT/Y9dgAA0HJB4x3LsvTcc8/p2GOP1ezZs/Wtb31Le+65p37yk5/oyy+/bNG+P/74Yxlj1LVr14R444UXXkiINdz83//9n8aOHStpx7gMK1eu1OrVq3XVVVdJSh7DjhkzRg0NDXr++ee1aNEi7bHHHjrkkEM0ZsyYaBLEc889l5AIIbVODBsfK3bo0MGReCLtiOHsA/2lGn+6+eyzzzzfE83P2yWLq732kWq8mWw/Lfl/UdAYtk2bNq4x9E9+8hM999xzeuedd7Rt2zb96U9/0vjx4wP9Pw5AfmNoeaCINQcFGzduTHjuo48+UklJSTTjoH379gkDWkiJgU5Qu+22myzLUm1tbcJzbsvi7bHHHpKkW265RUOGDHFdx+3Cnd2SJUv00UcfadmyZdEsZEnatGlT0v1LUrt27XTkkUdq8eLF2muvvVRZWakBAwaoT58+knYMkPHcc8/pxBNPTNg2PshNh985dAv8/NjfE3vttZfjuY8++ih63pO18a9//UvGGMdxfvLJJ2psbAzURhB77LGHysvL9de//tXz+VTstttuKi0t1bnnnus50F38DwLxr2Pz+WsO6O3cXqd9991X48aN02233aZx48bpySef1MyZM1VaWppS3wEAQHDJYmB7DNG7d2/95S9/kST9+9//1t/+9jfNmDFDW7du1R133JHyvvfYYw9ZlqV//vOf0QuCdm7L4s2bN09t27bV008/7bjA+vjjjwfqw+DBg7XLLrto8eLFev/99zV69GhZlqXRo0frxhtv1OrVq7V+/XrXC8mtEcOmGr9K4cSfu+++u+d7Qko9tnTTkngzmZb8v8gvhu3Ro0d0eWNjo+tF+LPPPls/+9nPdNttt2nIkCGqra1loGigSHAhGShiffv2VY8ePfTggw/qpz/9aTSg2Lx5sxYsWKChQ4eqQ4cOknaMSP3JJ5/o448/jgYiW7du1f/+7/+2aN8dO3bUEUccoUcffVQ33HBDNAj+8ssv9dRTTyXdfvjw4dp1110DlQHwyg5oPt74gP3OO+8MfBxjxozRtGnT1KlTp2iw3bFjRw0ZMkS33HKLPvroI9cg3K+vybJI4j333HOO16WpqUkPP/yw9tlnn4SLwck0l9u4//77dfjhh0eXr169Wm+99VY008Wvr6NHj9bf/vY3Pf744zr11FOjy++9997o82E48cQTde2112r33XdPOeB206FDB40aNUovvfSSBg4cqHbt2qXcRt++fVVZWam//e1vmjx5cnT5+vXrtWrVqmhGi90VV1yhsWPHauLEiSotLdUFF1yQ1nEAAAB/Q4cOVXl5ue6//35NmDAhuvw///mPlixZklAeodn++++vq6++WgsWLNDatWujy1OJ30488URdd911+vDDDxPKCMTzateyLLVp08bxw/OWLVt03333BepD27ZtNWLECC1atEgbNmzQddddJ0n69re/rTZt2ujqq6+OXlgOIkgmrpuHHnpIkydPjsbkH3zwgVatWqXzzjsvpXak1OJPvxj2scce00cffeSI2e6991516NDB8yJtKsKIN+Ol8v8iLyNGjJAkPfzww/rWt74VXT5//nw1NjYmrN++fXtdeOGFuvXWW7Vq1SodfPDBCWXcABQmLiQDRaykpESzZ8/W9773PZ144om66KKL1NDQoBtuuEGbNm2KBpWSdMYZZ+iXv/ylzjzzTP3P//yPvvnmG/3hD39QU1NTi/f/61//Wscdd5yOOeYYTZkyRU1NTbr++uvVsWPHpGUpdtllF91yyy2aOHGiPv/8c40fP15dunTRp59+qldeeUWffvqpbr/9dknSgAEDJEk333yzJk6cqLZt26pv374aNmyYdtttN1188cWaPn262rZtqwceeECvvPJK4GMYPXq0mpqa9Nxzz+mee+6JLh8zZoymT58uy7JSqoU8YMAAzZs3Tw8//LD69Omj9u3bR/vvZY899tDRRx+ta665Rh07dtQf//hHvf3225o3b17g/Tbr27evLrzwQt1yyy0qKSnRuHHj9P777+uaa65Rz549deWVVzr6+uijj+r222/XoYceqpKSEh122GE677zzdNttt2nixIl6//33NWDAAD3//PO69tprdfzxx6d0Yd3PpEmTtGDBAo0YMUJXXnmlBg4cqO3bt2v9+vV69tlnNWXKFA0ePDilNm+++WYdeeSR+va3v60f//jH2nvvvfXll1/qvffe01NPPaUlS5b4bl9SUqKZM2fqoosu0vjx4/WDH/xAmzZt0syZM9WtWzdHLfJmxxxzjA466CAtXbpU55xzjrp06ZJSnwEAQGp23XVXXXPNNfrFL36h8847T2eddZY+++wzzZw5U+3bt9f06dMlSa+++qouu+wyTZgwQfvtt5/atWunJUuW6NVXX9XPf/7zaHupxG/Dhw/XhRdeqO9///t68cUXNWLECHXs2FEbN27U888/rwEDBujHP/5xtF23WOuEE07QTTfdpLPPPlsXXnihPvvsM/3ud78LlM3cbPTo0ZoyZYqk2Fge5eXlGjZsmJ599lkNHDgwcEzSqVMn9e7dW0888YRGjx6tzp07a4899tDee+/tu90nn3yiU089VRdccIHq6uo0ffp0tW/fXtOmTQt8HM1SiT8HDBigZcuW6amnnlK3bt3UqVMn9e3bV9OnT9fTTz+tUaNG6Ze//KU6d+6sBx54QAsXLtTs2bMViURS7pebdOPNeKn8v8hLv379dNZZZ+nGG29UaWmpjj76aL3xxhu68cYbFYlEXGPYSy65RLNnz9aaNWv05z//OaU+A8hj2RzpD0DraR5d95FHHkl47vHHHzeDBw827du3Nx07djSjR482K1euTFjv73//uzn44INNeXm56dOnj7n11lujI//aSTKXXnppwva9e/dOGCH5ySefNAMHDjTt2rUzvXr1Mtddd51rm16WL19uTjjhBNO5c2fTtm1b06NHD3PCCSckHOe0adNM9+7dTUlJiZFkli5daowxZtWqVWbo0KGmQ4cOZs899zQ/+tGPzNq1a40kc9dddyXd//bt280ee+xhJJkPP/wwunzlypXR0ajjjRw50vTr18+1vffff9+MHTvWdOrUyUhKOlJ387n+4x//aPbZZx/Ttm1bc8ABB5gHHnjAsV7zaOWrV692LG9+XzSfD2N2jPB8/fXXm/3339+0bdvW7LHHHuacc84xGzZscGz7+eefm/Hjx5tdd93VWJbleM0+++wzc/HFF5tu3bqZNm3amN69e5tp06aZb775xrX/8dzeK26++uorc/XVV5u+ffuadu3amUgkYgYMGGCuvPJKU1tb26L91NTUmB/84AemR48epm3btmbPPfc0w4YNM7/5zW8Szpvb58kYY+bOnWv23Xdf065dO7P//vubv/71r+bkk082hxxyiOv6M2bMMJLMCy+8kPSYAQBAaprjoJqaGsfyP//5z9E4NBKJmJNPPtm88cYb0ec//vhjc/7555sDDjjAdOzY0eyyyy5m4MCB5ve//71pbGyMrpdq/GaMMX/961/N4MGDTceOHU15ebnZZ599zHnnnWdefPHF6Dp+sdZf//pX07dvX1NWVmb69OljZs2aZf7yl7+4HqebV155xUgy++23n2P5b3/7WyPJTJ48OWEbr3jKGGMWL15sDjnkEFNWVmYk+cZxzXHUfffdZ37yk5+YPffc05SVlZlvf/vbjuM3xpiJEyeajh07JrTh9v+FoPHnyy+/bIYPH246dOhgJJmRI0dGn3vttdfMSSedZCKRiGnXrp0ZNGhQwv8JvOLAmpqawP+HSCfe9NpPkP8XNZ+3Tz/9NKFP33zzjZk8ebLp0qWLad++vRkyZIiprq42kUjEXHnlla7HcdRRR5nOnTubr7/+OukxAygMljHGZPxqNQAgIyzL0qWXXqpbb701212Bj02bNmn//ffXKaecorlz5yY8f9hhh8myLK1evToLvQMAAGg9y5Yt06hRo/TII494lhFBbli1apWGDx+uBx54QGeffbbjuU8++US9e/fW5ZdfrtmzZ2ephwBaG6UtAAAIUW1trX77299q1KhR2n333fXBBx/o97//vb788ktdccUV0fXq6+v1+uuv6+mnn9aaNWv02GOPZbHXAAAAKGaLFi1SdXW1Dj30UJWXl+uVV17Rddddp/3220+nnXZadL3//Oc/WrdunW644QaVlJQ44lsAhY8LyQAAhKisrEzvv/++LrnkEn3++efRwVnuuOMO9evXL7re2rVroxebp0+frlNOOSV7nQYAAEBRq6io0LPPPqs5c+boyy+/1B577KFx48Zp1qxZ0YHRJenPf/6zfvWrX2nvvffWAw88oB49emSx1wBaG6UtAAAAAAAAAAC+EofezLIPP/xQ55xzjnbffXd16NBBBx98sNasWZPtbgEAAABoIWJ8AACA5GbNmqXDDz9cnTp1UpcuXXTKKafonXfecaxjjNGMGTPUvXt3lZeX66ijjtIbb7yRtO0FCxbooIMOUllZmQ466KAWlVfMqQvJX3zxhYYPH662bdvqH//4h958803deOON2nXXXbPdNQAAAAAtQIwPAAAQzPLly3XppZfqhRde0KJFi9TY2KixY8dq8+bN0XVmz56tm266SbfeeqtWr16tyspKHXPMMfryyy89262urtYZZ5yhc889V6+88orOPfdcffe739W//vWvlPqXU6Utfv7zn2vlypX65z//me2uAAAAAAgBMT4AAEDLfPrpp+rSpYuWL1+uESNGyBij7t27a9KkSfrZz34mSWpoaFDXrl11/fXX66KLLnJt54wzzlB9fb3+8Y9/RJcdd9xx2m233fTQQw8F7k9ODbb35JNP6thjj9WECRO0fPly9ejRQ5dccokuuOAC1/UbGhrU0NAQnd++fbs+//xz7b777rIsq7W6DQAAgFZgjNGXX36p7t27q6Qkp26sgw9ifAAAkEy247xvvvlGW7duzUjbxpiEGKasrExlZWVJt62rq5Mkde7cWZJUU1Oj2tpajR071tHWyJEjtWrVKs8LydXV1bryyisdy4499ljNmTMnlUORTA4pKyszZWVlZtq0aWbt2rXmjjvuMO3btzf33HOP6/rTp083knjw4MGDBw8ePHgU0WPDhg2tHKUiHcT4PHjw4MGDB4+gj2zEeVu2bDG7ZPCYdtlll4Rl06dPT9qv7du3m5NOOskceeSR0WUrV640ksyHH37oWPeCCy4wY8eO9Wyrbdu25oEHHnAse+CBB0y7du1SOlc5lZG8fft2HXbYYbr22mslSYcccojeeOMN3X777TrvvPMS1p82bZomT54cna+rq1OvXr20YcMGVVRUtFq/AQAAkHn19fXq2bOnOnXqlO2uIAXE+AAAIJlsxnlbt27VV5KulJQ8Rzg1DZJ+/9VXCXFMkGzkyy67TK+++qqef/75hOfiM5yNS9ZzGNvEy6kLyd26ddNBBx3kWHbggQdqwYIFrut7pYFXVFQQZAIAABQoyhvkF2J8AAAQVDbjvI6S2ofcZvOF11TjmMsvv1xPPvmkVqxYob322iu6vLKyUpJUW1urbt26RZd/8skn6tq1q2d7lZWVqq2tdSxLto2bnCouN3z4cL3zzjuOZf/+97/Vu3fvLPUIAAAAQDqI8QEAQD5om6FHKowxuuyyy/Too49qyZIlqqqqcjxfVVWlyspKLVq0KLps69atWr58uYYNG+bZ7tChQx3bSNKzzz7ru42bnMpIvvLKKzVs2DBde+21+u53v6v/+7//09y5czV37txsdw0AAABACxDjAwAABHPppZfqwQcf1BNPPKFOnTpFs4gjkYjKy8tlWZYmTZqka6+9Vvvtt5/2228/XXvtterQoYPOPvvsaDvnnXeeevTooVmzZkmSrrjiCo0YMULXX3+9Tj75ZD3xxBNavHixa9kMPzl1Ifnwww/XY489pmnTpulXv/qVqqqqNGfOHH3ve9/LdtcAAAAAtAAxPgAAyAdtFP6F0lTbu/322yVJRx11lGP5XXfdpfPPP1+SNHXqVG3ZskWXXHKJvvjiCw0ePFjPPvuso770+vXrVVISK0QxbNgwzZs3T1dffbWuueYa7bPPPnr44Yc1ePDglPpnGWNMiseUs+rr6xWJRFRXV0f9NAAAgAJDrFeceN0BACh82fx737zv3yr8GsnfSLpKKpg4JqcykgEAAAAAAACgtbVR6jWNk2kMub1sy6nB9gAAAAAAAAAAuYeMZAAAAAAAAABFLRdqJOc6MpIBAAAAAAAAAL4K7cI4AAAAAAAAAKSkraiRnAwXkgEAAAAAAAAUNUpbJEdpCwAAAAAAAACAr0K7MA4AAAAAAAAAKWmj8EtbbAu5vWwjIxkAAAAAAAAA4IuMZAAAAAAAAABFjRrJyZGRDAAAAAAAAADwVWgXxgEAAAAAAAAgJW0Vfo3ksNvLNjKSAQAAAAAAAAC+yEgGAAAAAAAAUNTISE6OC8kAAAAAAAAAihqD7SVHaQsAAAAAAAAAgK9CuzAOAAAAAAAAAClpo/BLURTahVcykgEAAAAAAAAAvgrtwjgAAAAAAAAApIQaycmRkQwAAAAAAAAA8FVoF8YBAAAAAAAAICVtFX6N5LDbyzYykgEAAAAAAAAAvshIBgAAAAAAAFDUqJGcXKEdDwAAAAAAAACkpI3CL0VRaBdeKW0BAAAAAAAAAPBVaBfGAQAAAAAAACAllLZIjoxkAAAAAAAAAICvQrswDgAAAAAAAAApaavwaySH3V62kZEMAAAAAAAAAPBFRjIAAAAAAACAokaN5OTISAYAAAAAAAAA+Cq0C+MAAAAAAAAAkJI2Cr+mcaFdeC204wEAAAAAAACAlDDYXnKUtgAAAAAAAAAA+CIjGQAAAAAAAEBRY7C95MhIBgAAAAAAAAD4KrQL4wAAAAAAAACQkjalUlsr5DaNpKZw28wmMpIBAAAAAAAAAL7ISAYAAAAAAABQ1Nq0kdqQkeyLjGQAAAAAAAAAgC8ykgEAAAAAAAAUtbYZqJHc1oTbXrZxIRkAAAAAAABAUctYaYsCQmkLAAAAAAAAAIAvMpIBAAAAAAAAFLW2pVLbkFNu224Pt71sIyMZAAAAAAAAAOCLjGQAAAAAAAAAxa1U4afchlxzOdvISAYAAAAAAAAA+CIjGQAAAAAAAEBxa6PwU26pkQwAAAAAAAAAKCZkJAMAAAAAAAAobmQkJ0VGMgAAAAAAAIDi1iZDjxStWLFCJ510krp37y7LsvT44487nrcsy/Vxww03eLZ59913u27zzTffpNQ3LiQDAAAAAAAAQA7YvHmzBg0apFtvvdX1+Y0bNzoef/3rX2VZlk4//XTfdisqKhK2bd++fUp9o7QFAAAAAAAAgOJWIqk0252Qxo0bp3Hjxnk+X1lZ6Zh/4oknNGrUKPXp08e3XcuyErZNFRnJAAAAAAAAAJAh9fX1jkdDQ0Mo7X788cdauHChfvjDHyZd96uvvlLv3r2111576cQTT9RLL72U8v64kAwAAAAAAACguGWwRnLPnj0ViUSij1mzZoXS5XvuuUedOnXSaaed5rveAQccoLvvvltPPvmkHnroIbVv317Dhw/Xu+++m9L+KG0BAAAAAAAAABmyYcMGVVRUROfLyspCafevf/2rvve97yWtdTxkyBANGTIkOj98+HB961vf0i233KI//OEPgffHhWQAAAAAAAAAxa2Nwq+RbO34p6KiwnEhOQz//Oc/9c477+jhhx9OeduSkhIdfvjhZCQDAAAAgBvLWmybWylJMma6y/Mro8vszwMAAOSKv/zlLzr00EM1aNCglLc1xujll1/WgAEDUtqOC8kAAAAAAAAAilupws9IboGvvvpK7733XnS+pqZGL7/8sjp37qxevXpJ2jF43yOPPKIbb7zRtY3zzjtPPXr0iNZinjlzpoYMGaL99ttP9fX1+sMf/qCXX35Zt912W0p940IyAAAAAAAAgOKWwdIWqXjxxRc1atSo6PzkyZMlSRMnTtTdd98tSZo3b56MMTrrrLNc21i/fr1KSkqi85s2bdKFF16o2tpaRSIRHXLIIVqxYoWOOOKIlPpmGWNMiseTs+rr6xWJRFRXVxd63RFJsqyZ0WlucQMAAGhdmY71kJvCfN3Tief5vwAAAJmTzTgvuu9DpIqQLyTXN0mRl1Qw8SsZyQAAAAAAAACKW6m4UpoEpycELclOIKMBAAAAaB2x2Ht4i9sgZgcAAMWOC8kAAAAAAAAAilsmBtsrmILCO3AhOQVeWQhkJwAAAAD5xeqzc6Jmpu966cT63IUIAAAKCReSAQAAAAAAABS3NuJKaRIl2e4AAAAAAAAAACC3cZ09BWHemsatbQAAAEArWz4mNj3Sv6SFH8taLEkyZozvesT8AADkETKSkyIjGQAAAAAAAADgi+vsKfDKKLBnKgdZH6ljoBIAAAC03NQd/7yY+Iw9tnSL65uXOWPQlTv/TcxITha3Bo1riX8BAGhlZCQnxekBAAAAAAAAUNxKJJWG3Ob2kNvLMi4k+/DKNI5HhkDmcY4BAACQtilbYtNVifFl0Jgzndi0NfYBAACQCVxIBgAAAAAAAFDcMlHawoTcXpYx2B4AAAAAAAAAwBcZyT6CDn4BAAAAIJfN3vnv8OgSsy5xoLxm6Qx0R0kKAADyFBnJSZGRDAAAAAAAAADwRUZyCtLJTAAAAACQLVN3/FNVHl3idodhc4xvj/Wb1yP+BwCgwJXufIRpe8jtZRkZyQAAAAAAAAAAX2QkpyRWU82yttiWz45OkakAAAAA5BZjdmQiW9Zi29KdWcq2WN5928T4vrkdY7zrLAMAgDxDjeSkuJAMAAAAAAAAoLiVKvwrpZS2AAAAAAAAAAAUk5zKSJ4xY4ZmznQOetG1a1fV1tZmqUfxVkannLexJQ7GsWMd9+Xxz9kxoB8AAAAKSS7E+NGydDfaYvhbd/5bY18v2MB6lLQAAKAAZWKwvbDby7KcupAsSf369dPixbHaZaWlBXbGAQAAgCJDjA8AAJD/cu5Ccps2bVRZWZntbrirSp4h7JWFHDS7mCxkAAAAFJqcifGrbdM1ixOebo7F7YPy+WUfpxLvu2U7B82ABgAArSATg+1RIzmz3n33XXXv3l1VVVU688wztW7dOs91GxoaVF9f73gAAAAAyC3E+AAAAPkvpzKSBw8erHvvvVf777+/Pv74Y/3mN7/RsGHD9MYbb2j33XdPWH/WrFkJ9dZai7Pm8XDb9Mr4VV3WJ+sAAAAAxSE3YvzmGN2eXTw87rnEmD1xG6dUYnq3dWMZ0In75f8LAAC0MjKSk8qpjORx48bp9NNP14ABAzRmzBgtXLhQknTPPfe4rj9t2jTV1dVFHxs2bGjN7gIAAABIghgfAACgMORURnK8jh07asCAAXr33Xddny8rK1NZWVnG9m+vjbZDLFvBWdvMvt5U2/Rs1/V3bJN6/WQAAAAg32Ujxm+uc+x+V2Hi3YUtic/TqXfM/wcAAMgBZCQnlVMZyfEaGhr01ltvqVu3btnuCgAAAIAQEOMDAICcVCKpNORHTl95TV1OHc5Pf/pTLV++XDU1NfrXv/6l8ePHq76+XhMnTsx21wAAAAC0ADE+AABAYcip0hb/+c9/dNZZZ+m///2v9txzTw0ZMkQvvPCCevfunaUexQ+cF7vtzbK2RKebb5VLZC9/Ee5ge/lQGiMf+ggAAIDMyq0Yf3jyVeI0x/3GlPuul8l4N52yGQAAIKBMlLZoCrm9LMupC8nz5s3LdhcAAAAAhIgYHwAAoDDk1IXk3BOXsVBlyzyuiWXbWpZ9gL2VrtN+2QNembt+Gb1B18um1u5Lrp4HAAAAZFcsTkwcWM/OLYZMlokcv4+w7jy0t0NsCwBAKyAjOamcqpEMAAAAAAAAAMg9ZCT7is9ScK+F7MxSiK1jWYlZDrHngmTPetdwI/s2EecBAAAA7prjant8PjVhraBZxZnMGm5uh3gfAIBWVrrzEXabBYSMZAAAAAAAAACALzKSAQAAAAAAABQ3aiQnxYVkH/G3kFnWFtvcVNflzjIX3qUpgtyeZox7KY2g24eJW+sAAACQv5pLWgQbbC9Z7JtOPBw0ribmDiasQQ4BAFCpwr9S2hhye1lGaQsAAAAAAAAAgC8ykn1Y1mLngvG2DOH57lnI9m3sGcX2zIN4Yf56nqnMYX7hBwAAQP5KHGwvln282GX9YFoSexNXh4vzCQAITSZKWxTYlVcykgEAAAAAAAAAvgrsunhrstdUi2Uee9c1dtZL9spWTvcX9Xz+RT4+azufjwUAAAC5KBaT+9XWJbt4B8ZJAQAUldKdj7DbLCBkJAMAAAAAAAAAfJGRDAAAAAAAAKC4USM5qQI7nLCtdM7Ot5WnGB9kIL3Y+t4lL5y3iXndPlYMZR8K8ZgAAACQfW6xuGU1/5sYf3sNoJ2qfC8NkY99BgAAmcOFZAAAAAAAAADFjYzkpArscMI21fup+YttM/b1ZkenvAbU2/Gc+6/7qS6Pb9uZxRxOJgUAFIN8zxoDAHhrjoudMfHOuw+r3L7z3QfWTpXfHYbxz8evx98iAABaWYnCHxyvwEanK7DDAQAAAAAAAACEjYxkP1XlPk/aMhNqttiWx+oiW1ZseXxGgVe2cJgZcWFmIRdSpl4hHQuA8PB9AACFL2gcGPRvQipxZUvuMER+nZt86isAwAWlLZIiIxkAAAAAAAAA4IsLyQAAAAAAAACKW5sMPVK0YsUKnXTSSerevbssy9Ljjz/ueP7888+XZVmOx5AhQ5K2u2DBAh100EEqKyvTQQcdpMceeyzlvhVYgnW4zDrnvLUiNh0ZUhudriu7M/aE62AdzjIXkv9AfEHYS2O0hkK6NSubxxJ00EUAAACEaWXCkqAxeHO8lsmyBcSE3vwGJPR6PltyqS8AgPy1efNmDRo0SN///vd1+umnu65z3HHH6a677orOt2vXzrfN6upqnXHGGfr1r3+tU089VY899pi++93v6vnnn9fgwYMD940LyQAAAAAAAACKW+nOR9htpmjcuHEaN26c7zplZWWqrKwM3OacOXN0zDHHaNq0aZKkadOmafny5ZozZ44eeuihwO1wIdlHQtZvVSyLuK4mYnsiNsCeajwG0evjPXCf/Zfr4NnJsawKr1++g/5Snyu/6BdDtm4hHhMAAECuc8sqTnU9tzgun7JlCwnnFQCQb+rr6x3zZWVlKisra3F7y5YtU5cuXbTrrrtq5MiR+u1vf6suXbp4rl9dXa0rr7zSsezYY4/VnDlzUtovNZIBAAAAAAAAFLcM1kju2bOnIpFI9DFr1qwWd3PcuHF64IEHtGTJEt14441avXq1jj76aDU0NHhuU1tbq65duzqWde3aVbW1tR5buCMj2VdcLbVDYxnGqkmssxa/jWV5Zw07aybP9lwvtn58VsRw1+fs2wf9pT5XftFPPEdkcyA9xZDlDgAAknMbXyTV7OOgUtm2ed9kNgMAkANKFf6V0p2lLTZs2KCKioro4nSykc8444zodP/+/XXYYYepd+/eWrhwoU477TTP7SzLcswbYxKWJcOFZAAAAAAAAADIkIqKCseF5DB169ZNvXv31rvvvuu5TmVlZUL28SeffJKQpZwMF5L9VMX98j/UPmPLTl5jW1xjq5dsyzT2y4y0X/z3ylROlLxGsp1fPbhUMxxaq/ZyqscVZqZGa7QbdttIxPkFAAA77Iid3ccmGe6yfuvwi1WCxjFkLgMAEBJbKYpQ28ywzz77TBs2bFC3bt081xk6dKgWLVrkqJP87LPPatiwYSntiwvJAAAAAAAAAJADvvrqK7333nvR+ZqaGr388svq3LmzOnfurBkzZuj0009Xt27d9P777+sXv/iF9thjD5166qnRbc477zz16NEjWov5iiuu0IgRI3T99dfr5JNP1hNPPKHFixfr+eefT6lvXEgGAAAAAAAAUNxKFa1pHGqbKXrxxRc1atSo6PzkyZMlSRMnTtTtt9+u1157Tffee682bdqkbt26adSoUXr44YfVqVOn6Dbr169XSUlJdH7YsGGaN2+err76al1zzTXaZ5999PDDD2vw4MEp9c0yxpjUDyk31dfXKxKJqK6uLpS6I84yE5Kqyt1XrLGXK2jJrXHuZSqcg4I4B/dzvy3PWyZLULR2uwCQCkrKAIUj7FgP+SGM1z3sQe382gNSwf+ZAGCHbMZ50X3fL1V0CLntr6XIOSqY+JWMZAAAAAAAAADFLU9rJLemAjuccBnjzEC2+nisON72y/H8YNnJxsQG67OslbZp91+k7esktuX+y7Uzo9lbsEHt3LOjwxggJCz8mg/ADd8HAIBmbvFiOoNCt1b8WYgZ0MTuOxTzsQMA8g8XkgEAAAAAAAAUNzKSkyqwwwmXdVPcgsts09W26TVeLdiyiKucvzQ7anban6tJXu84KHvWc1Be9Zadv5R7t5vNzAJ+zQcAAEBQzXfcucXMQWPa1oo//Wo752sMnK/9BgAUsBKFP9heSfJV8kmBHQ4AAAAAAAAAIGxkJAMAAAAAAAAobpS2SKrADidkU5yD1UUa+ken66or3bexlakw62KLE0tG2Abiq0l+65zfrV/Otu0D/LkP0Bfm7Xnxx9Uat6gxMEdh4HUEAACtJTY43mLbsjE7l22xrTnbsf6O51teQiKT8U6ux0/EegAAFB4uJAMAAAAAAAAobmQkJ1VghxO24Y65uhfKYzPzbZkLy23LR8ayHCzLtn3cYHuOgfumuGcOew18l6yfMVOjU8aUe6wTv8/ELI34vtgzCrKRXZBLGQ1kWrQc5wsAALQW97h6R6zrjJMT45N0Ypag2xZiTFkox1EICvH9BQDIDi4kAwAAAAAAAChupTsfYbdZQLiQnIoXbdNVscyFOSMuik5P0hzbSrNjkzVT5WDLQnbWYFvsujwo5/blHsvHxG3jlfkcWy9Xf7kO+ut6pn6Fz9XzAgAAALvEO/hi8WHiGCOtHeMRUyKTeH8BAMLChWQAAAAAAAAAxY0ayUkV2OEAAAAAAAAAQIpKFf6VUkpbFJPZztnq2C1BQ9ctjU5PuunO2DpVtvUd5Szi2rKxLPucfeA998HupPhyGO5lG4KUrIjfJh+0pExFaxwjg1gUHl5TAAAKQ3NpN2uCbeH85rjbveRcPmqOXfL9OAAArYP/8yJVXEgGAAAAAAAAUNwobZFUgR1O2JyDcsx5xDao3gRbFvL8LbHpG2MD3GmKPQs5brA9G/ugeM4s5KAD7yUOHhK/jXd2spPXeun+MlUMv3IV6nEVM15TAAAKQyyuXpn4ZJU9Zt4R1zvj86D7SMwGbu0YuHkfrb3fYoj1AaAQ8Z2NVHEhGQAAAAAAAEBxK1X4NY2pkVy8Jq2IZSEPfSRWI7naGhJbacoWuXPJftjJsrzqsrnXS96xjXvmsFdbftnJXusF4ddWkOUtwS9m2UO2CQAAyE87Y+Txtvil+a7CGns8u+NOP7cxTNziabc4OhfipdbeL3EhAADFgQvJAAAAAAAAAIobNZKTKsl2BwAAAAAAAAAAua3ArouHbLyznERkSG102lHOYrxtMI75i21buA+CJ0nG2AfVW2mbXuy2um8JiSC3z7VksL0gt6jl6m1s6Z4vuON8AanjOwcAss+t7IT7emNclo5J2Nbv+7wlcSd/KwAAyAGlCv9KaYHVSCYjGQAAAAAAAADgi4xkP/Od2cEzH3kkOj1p/J229WwD7NmzmNfYNq5xtuWVdWDPSE43a8Er4yJoBkUuKZRMaQDFh+8jAMg+r7v+EtfzzlhO9n3uNwBfMvytAAAgB5Qq/AziAstI5kIyAAAAAAAAgOLGYHtJFdjhhG2lY276Vo8MhRvL3ZfbM5V96iU7Mx+817Pzqr3mtY6ffKjJFma/cvUYAQAAkGHjbdnCO282dGYr74j/g8TaiYLF8WFxy4DOJWH9H6O1/6+SD/83AgAgW7iQDAAAAAAAAKC4kZGcVIEdTtimOubqvmfLPB5qe6Ja7surPDKVJakmlu0c5Jfu+EyIltRe8xJWhkAYfQHCxPsTuYYsJwDIDmN2jGPijA38xiMJNm5Jsn2E/V2fT39Hwupfax9nrp9XAACyiQvJAAAAAAAAAIobGclJlWS7AwAAAAAAAACA3FZg18Uza+gjS6PT1StGxZ6YYhugY759kI3ZscnxzlukzDr3W6bSvV0tyPZh3u7PrV/IZbw/syufbr9tLZwHAMiO6N+kG92+h+3xe/Nge2MStnUbgM/tez2T3/X8HQEAIHNMiWRKw2+zkBTY4QAAAAAAAAAAwkZGsp/xzsHy3tx6YHQ6MqQ2Ol2n2MB5kYb+seVlto3XOJu2rC3RaWN8BuULwD4YiHO5ezagXyZDpjKiyUwEig+fdQBArjGTY9NuMXTQDGO3ZX5Zyvbnk7UTBmJvAABS19RmxyPsNgtJgR0OAAAAAAAAAKSGC8nJWcYYk+1OhKW+vl6RSER1dXWqqKhIuz171rAkmdc6RKd33X9jdLrue5WxlYbaNjjMNj0yPuMhsRZb/HJ7pnJL6hq3Rr1lAACA1hJ2rIf8EObr7nZXoDPmbx7jZKrLeomxcSbj5daKxZNlUgMA0BqyGec17/uTjVLYu66vl7p0U8HErwV2XRwAAAAAAAAAUtNYaqmx1Aq5TSOpYHJ4GWwPAAAAAAAAAOCPjGQfkYY6x/zSdrG6FTMVu/Vr0tA7YytNsZWguNF2e1jVGGfjNe4D5MVup5Msnx9B3AbrkLwH1Qt6a1yuDpaX7f0DAAAgf7mVb4jFl8MT1ncbDDvooHthaa2YN5MDcQMAkE+a2rRRU5twM5Kb2hhJ20JtM5vISAYAAAAAAAAA+CIj2YdjED1JVz3yW/cV7YPquWQ0SJJqtrgvj+OVBZzYbmyAvmCZw1Nt6zizoY2Jy5Z2WS9oBkJrZy04++h+HDvWI5sibJxTAACQL/xjlcSBr5PFOfk6QF2q/c634wMAIB1NpaVqCrlGclMpGckAAAAAAAAAgCJCRrKfy52zq446Ojpt/So24mJkSG1spYb+0cm6W20bV8XVWbvblj07MpbxYK+L7Mw09qqpHM+eeexeRzlRrC/pZx14ZGTbhJnJ6peF7FyvuLIpWiNbmFrZAAAgX8RiiKm2pc3TKxXP7Y4/t7FI3OLtZDGKWzyT7ngmQRE/AQDgbbtK1aRwM5K3yyRfKY9wIRkAAAAAAABAUWtUqRpDvpDcWGAXkiltAQAAAAAAAADwRUayn1ucs/ZyFnZ1ZZHYzHhbCYuhPm2PtJWqqLLdYlbjXubCj7PsReKtefFaMnBe0LaClppIVaZuwyvUUgnBBmDMnEzts5Beo0JRqJ8hAEBh8f8bFYtfY3/XUo9pWzKAHYPfAQCQO5pUqqaQc26btD3U9rKNjGQAAAAAAAAAgC8yklNg1sdShHf97sbodJ0ibqtLU2yZwuPjshpqbNOH2pdPlbvZzr54DsQ33LZOetnB6WY8eGUqZqrdlmjJ9vmWgZmNPubDeUE4eK3d5dv3BAAUOreBq5tjZftzqX5np5Nd3JL9paslfSw0/I0GAHjJTEZyuDWXs42MZAAAAAAAAACAL8sYUzDDB9bX1ysSiaiurk4VFRVpt2etcM5HhtRGpx9rd1p0+lUNiE5P6nNnbIMa90zhHbxqGduXT/VY7pz3+iXdK1M5aHZzkIzm+DrKQfqSqTrKfsg8AAoTn22guIQd6yE/hPG6W9aWnVP2GDozMSl/mwAASF0247zmfb9S11WdKsLNuf2yfrsGRT4umPiVjGQAAAAAAAAAgC9qJAMAAAAAAAAoatRITo4LyX5ucc5uerRbdNo6LVYRZOiIpdHpyNux8hd1ZfHlLLwM95j2vvXOslbaphMHD/Hb3rL8+mUvoWHfxr00hd/terl0W1+295+OXDqPdrnaLxQX3nsAgGB2lnarSvy74RbnOuPrlTufSywH51YeI5W/TekMfhfWwHkMwAcAwA5NKlVjDlxIXrFihW644QatWbNGGzdu1GOPPaZTTjlFkrRt2zZdffXV+vvf/65169YpEolozJgxuu6669S9e3fPNu+++259//vfT1i+ZcsWtW/fPnDfKG0BAAAAAAAAADlg8+bNGjRokG699daE577++mutXbtW11xzjdauXatHH31U//73v/Wd73wnabsVFRXauHGj45HKRWSJjGR/Q52zSycPtT0Vy0KuXjEqtpI9i3m8bXp+XNbweFv2wnz7gHXuGcn27GApaMaAe0Zx4sB97gONtCTj1GsbsldbLlPnK+hAiV7b8DpmBucYAIDwuf1NdcsqdsvOtd8JGGsvMX5233Zmwnr259P5Wx9WnEC8AQDADk1qk4HSFttT3mbcuHEaN26c63ORSESLFi1yLLvlllt0xBFHaP369erVq5dnu5ZlqbKyMuX+2OV0RvKsWbNkWZYmTZqU7a4AAAAASBPxPQAAKEb19fWOR0NDQ2ht19XVybIs7brrrr7rffXVV+rdu7f22msvnXjiiXrppZdS3lfOZiSvXr1ac+fO1cCBA7PXiSlbHLNXTf5tdHrV/UdHp61PYvWSIw/YaiQfYLvKXxWXtWDPQh5vywJYY1unxl4HOTGboZlbvbZEiZkUydry0pKMyTAzHcjYbLl0zx3nO/PCqnMYRltAIeOzArS+bMb3sRjZ7e4///E/3LOZE7OPg27r3z97neZwvqf4vgMAIJgmlahJpSG3uUPPnj0dy6dPn64ZM2ak3f4333yjn//85zr77LNVUVHhud4BBxygu+++WwMGDFB9fb1uvvlmDR8+XK+88or222+/wPvLyYzkr776St/73vf0pz/9Sbvttlu2uwMAAAAgDcT3AACgmG3YsEF1dXXRx7Rp09Juc9u2bTrzzDO1fft2/fGPf/Rdd8iQITrnnHM0aNAgffvb39bf/vY37b///rrlllt8t4uXkxeSL730Up1wwgkaM8a9dm+zhoaGhNRwAAAAALklaHwvEeMDAIDsaFJpRh7SjoHu7I+ysrK0+rpt2zZ997vfVU1NjRYtWuSbjeympKREhx9+uN59992Utsu50hbz5s3T2rVrtXr16qTrzpo1SzNnepd8SFtVuWP2DM2LTt98zoWxJybEJusOs5WzqLGVxohrS5oam5zvNRBe7Na7+AE97LeoBbldzTlIyHDXdeLbsstGCYsg+8ilW/XSPXetIZf6gszgNQaC4bMCtJ5U4nspMzF+tFzEBPvSHd8DbvFk0GVh98+5jMH0AABAouaLyO+++66WLl2q3XffPeU2jDF6+eWXNWDAgJS2y6kLyRs2bNAVV1yhZ599Vu3bt0+6/rRp0zR58uTofH19fULNEQAAAADZkWp8LxHjAwCA7GhUqRpDrpHc2IJtvvrqK7333nvR+ZqaGr388svq3LmzunfvrvHjx2vt2rV6+umn1dTUpNraHeO1de7cWe3atZMknXfeeerRo4dmzZolSZo5c6aGDBmi/fbbT/X19frDH/6gl19+WbfddltKfcupC8lr1qzRJ598okMPPTS6rKmpSStWrNCtt96qhoYGlZbGXtCysrK0U8H9DF231DHfz5obnT7mxtgAe44B8uwSspBtltueG+k26Idz2rK8s4i9BM2acA7u4Z7t2xLpZm20drYxA9Eh1+RSxj0AAC2RanwvZSbGDxrXuq3XHCsn+1vsNgBf2IgNAADInO1qE/pge9tlpbzNiy++qFGjRkXnm39gnzhxombMmKEnn3xSknTwwQc7tlu6dKmOOuooSdL69etVUhKraLxp0yZdeOGFqq2tVSQS0SGHHKIVK1boiCOOSKlvOXUhefTo0Xrttdccy77//e/rgAMO0M9+9rOEIBMAAABA7iK+BwAASM1RRx0lY4zn837PNVu2bJlj/ve//71+//vfp9u13LqQ3KlTJ/Xv39+xrGPHjtp9990TlreG6gmjHPMrPdZzGOlRF/lQ52pmRGza0uykzRrjzG52ZijbM5dTzy72ymZIdXlL10tn+zAzMbKR1UFWCfzwngCQDH9HkOtyJ75vHp8kFncHrX3cHF/nwueNz3mi1sgEBwAUB/vgeOG1WVhKkq8CAAAAAAAAAChmOZWR7CY+Fbs1DX3EWSN56i6x6Y8m3xybiY0Fooe3nhGdriuzZRrXTJWd5VkiJZZp7DZ6c3L2vGn37YPXS27J/pPzyuZoSdZ0NqSTjRJ/jLl0XACA/MPfEeSjbMb3qrLHnlsSno7VQ47FwbFp/9jYPZs5nCzmYsy6DXrMQc9JMZ5DAEBqyEhOjoxkAAAAAAAAAICvnM9IBgAAAAAAAIBMalJJBjKSkw+Ml0+4kOyj2hrimJ9rLoxNr7gi9sTIWDmISINtg/G226aGxjU+ZbH7evNjy+2328UPtmcvYRFmeQX7bXxepSZSvX0scZvhiSu3uK3wtg+6j3Ruh+NWOgAAgGzYGTvXJD7jVmrNXobOrdxbc5yeGKN7t52OYowhwz7mYjyHAACEjQvJAAAAAAAAAIpao0rVGHJGciMZyUVkvDPD4MJd5kanJ/39zui0ee2Y6LR1gO0NUmPLcH3E+Qu4NcU2Y8tC9srWtQ+Ct8NU1+ecGcXx27gLkokb5i/4XoP4+Q8C6D0QX5D1g/SfLIXUhDV4DIoP7x0AQOtb6bJsRzzt9nfJGUsmxq5umcgM5gYAQH5rUhs1hXyplMH2AAAAAAAAAABFhYxkHxc+crNjfqWtVppejE1at8aykC9cF9tmbh9bvbUJzrYdmcN9bMvX2dp1ZELEZyrP9nku2mPb/lqSGREkO9qZ3eGst5x8n36ZielkLbZWJohXNniuCjMT1K2eYFht25G9Wnh4HQEA2ROLb2NZxfaYZnHCerFYJHZHYHMMbI//3LKZ3eKl9McbSQ2xFNC6uDsByF/bVRr6YHvbC6y0BRnJAAAAAAAAAABfZCQDAAAAAAAAKGpNGchIbiqwjGTLGFMwR1RfX69IJKK6ujpVVFSk3V6tdnXM32nVRadHmKHR6Xk6Izo9d8IVsQ3W2DauiR/4zqschd1s76eqbLfJ1HgNtuc+QF1r304XhlRLSGSy1EI+yKXXDgCAsIQd6yE/hPG6x2IjewzePG0vBzcmbn17yYpwSpoRpwEAkCibcV7zvh+qO1odKsLNuf26vlFnRZYUTPxKRjIAAAAAAACAotaoEjWGnJHcqO2htpdtXEj20W3CJsf8DMVG23tVA6LTc2+6Qq4OtU3XxD03vjw6aR6JLbasLbEZj6zjHfPu2cZS6tm6dqkOltdaUs36CJ51nTyzpCXZzelmg6crl147AACA3JE42J5l2QePTowHm+NFt1gxlexiBuACAAD5jgvJAAAAAAAAAIpak9qoKeRLpYVWI5kLyX7mb3HMTh8Zm7ZW3BmdjlxWG52uU2VspWr71nE1kefHMmEty/6cLSOixp4d4VNTeXwsq8Ev29iLPSsiU3WVg2RrBO17mFkcQTKdW7I/Mk0AAAByydSd/8bia8tKXMt+t1pM8zZjkqznrxDjQ7KsAQCFJDOD7RVWaYuSbHcAAAAAAAAAAJDbyEgGAAAAAAAAUNTISE6OC8l+qsqd8z+KTS4ZMSw6PU9nRKfnVscG3os8YCt5scZW8kKSajzKWdg4S0PE3T5nK2dhH6xP8iob4T2onNeteemWdEhl8JGW7q8lUu0XgNbBZxMAkDk74+0bbXHwlOYYeGp0kdsAfM1/k4KWYSukv2dux5yrg3MDAIDM40IyAAAAAAAAgKLWpFI1kpHsiwvJfg6Nmz84Nnmg3oxOP7w1lpFsz0I+o93D0em5h8YylSVJd9uynUfas5NnR6ecA4DEZS3Pt88HyfZNPqhcvJYMvOc92J53RnQ6WpLxke4ggLmaeZGp7JdMDcCY7wr1uLKJ8wgAyJTm+NMZ1zTH4Pa4eszO9RP/JrktS5axm+8K6ViQ3xjYEQByAxeSAQAAAAAAABS1JrVRU8iXSptkQm0v27iQ7MOeXSxJM8ti09OvqItOb1K36PRFc+ZEp+f2sWUh18TVIZ5vy0K212KumSpXVXFZvLb2gtRr8//lNrEG3I52U88i9tpPmFnIQQTNIm7JL9qpZqKGmbnqd1yZ+nW+Nc5RPsrmcRXD+QUAIEyxv51u9ZC3BGwjMTZOlqWcq3+n86GPYSiW4ywGvH4AkBu4kAwAAAAAAACgqDWpRE2h10huCrW9bONCMgAAAAAAAICi1qTSDFxIDre9bONCcgqmdoxN186JRKe7rdgUnZ6ji2Ir1djKENwYdyvOFFupixr7E7GSF82320n+JQ0syz5ASOLtejvWsd+yN1vBxNq17yPoYHv2Y7FLt8xFkFvUwrz1Kd22wixnkS+3dOVLP/MV5xcAgPS5l4fz/htrj2HdBv5qjrfz4e90PvQxDMVynAAAtBYuJAMAAAAAAAAoamQkJ8eFZB91L1Q65mdvjk3vqjOi03NGxLKQJ024M7ZSlW3jW+Nbt2URV9l+Ka+JZQ47B/Rw/ppuzzB2ZkLYMyvsA7HZs5OdPQmS1RtkQD+/tuy8s5ZXOtZrjWxjL0GzgDM1kF6hZk8UwzECAIDc0xx3WBNsyx7ZucwWn7hlGvu151zWPHhf5uKdZG0H7X9rIO4DAKDwcCEZAAAAAAAAQFFrUqkayUj2xYVkH0tGDHPMr7BN97PmRqePudG4N3CZbTohI9mWiVuTvH6xsw5y/HOeT9nWSS8jwCs7OTFT2v25YPtPt3ayPYM7vbaCnqPWqMWcjxkcXq936u+J3BXm+w3J5fv7BQCQXbG/I1Nty3bE127xidvf+aB/izL5dypopnQu/N3k7zUAAIWHC8kAAAAAAAAAilqT2qgp5EulTdoeanvZxoVkH0dbzznmzX0dotMXnTMntvz1WErwsMlLotPVN40KuKdYtrHbyM/x6+xgry0cy2JuSV3jVAXdR3rZyS3pV+pZobmQrVGIgpzLfD/f+ZCFXEjv73zvPwAgu4Jm6rqt55a5HJTb/lrj73Mq7eZSXWUAAJDbuJAMAAAAAAAAoKg1qTT0msbUSI7z9ttv66mnntKuu+6qfv36qX///qqoqAijbwAAAACygBgfAAAA8SxjjMdIccFUVVXpRz/6kdq1a6fXX39dr732mjZv3qx33nknrD4GVl9fr0gkorq6ulACXesm5/yMKbESFiPMUNdt5umM6PTcPlfEnnAMqCfpxvLYtH0gvprUB/CyDwbiVSYjqFQHEIsvbZHOLXF+bXmV0GiNkhlBS4Sku89CKkOQjqDvg9YeuC/M93pL9plL74lc7VemFNvxArks7FgP3gotxncbbM+Y8p3PLXbZIlhMne7fCLc4M5P7AwAgV2Uzzmve9/S6H6t9RVmobX9T36CZkdsLJn5NOyO5W7duuuqqqxzLmpqa0m0WAAAAQJYQ4wMAgGLTqFI1hlyKIuz2sq3FGclTpkzRoEGD9M4772j//ffXxIkTw+5bykLPSJ7gnDefxjKSHVnEL9u26WU7nSNjWcjNGQ/R9ezZB+Nt2QTz4zKXo2Y7Z6ts23hkMQfNLg6S2WA/F+YR+7bxGRzpZUR7yUS2h19bflnIrZHtTIYJAACJyEjOvEKN8d0ykhPia7kPiNc8yHXwuwX976AizgMAIFEuZCRfVXdZRjKSfxu5tWDi1xZnJI8YMUKvvvqq/v3vf2v+/Pn67W9/q8MOO0wDBgzQgAEDdOKJJ4bZTwAAAAAZRowPAACKVZPaqCn94g1xbRbWHV0tPjsnn3yyTj755Oj8li1b9Prrr+vVV1/Vc889VxhB5hrn7NJ1sbrIoyZVR6cvmjMnOh3ZWhudrlMkOh2f3ey9n5W26eHRqfjMhSC1Yu0ZF34ZvUGyIuxZyM5t4zMzgmVqpKMl2clB1stGzTkyUgAAQC4p/BjfnoXcHCuvTFjLLb62rKB33g13XUrcBwAA8l3al9lfe+01zZkzR1988YUGDBigH/3oR/rhD38YRt8AAAAAZAExPgAAKDbbVaqmkGsaby+wGskl6TYwfvx4jRw5UtOmTVP37t31ne98R88991wYfQMAAACQBcT4AAAAiJd2RnIkEtF5550nSTr88MN12mmnacyYMXrllVfS7ly2XbjuZsd8kxUrZ6ErYpNzV8RmIkNipS1U5Rxgz8n9ljeNt5WGmB8rtWBZLuumwLv8RXxfvEprZL5kRVBBBshrrVsHg5QYCdqXbPQ/iFztV7oK9bgAAAhD4cX4zXGtPdZNHGzPvUxbcwmM2Pp+A+flUtyM/JQsTmXgRgDIjKYMZCSH3V62pZ2R3KdPH910000yxkiSOnfurPbt26fdMQAAAADZQYwPAACAeJZpjg5b6NRTT9Wrr76qrVu3ql+/fvrggw906qmn6tJLL1WPHj3C6mcg9fX1ikQiqqurU0VFRdrt7WobOE+SNo3t5rpe7bLYoHqn6bHo9JtbD4xOH9TuLcc21X1GxWYOtT1hH3ivZkt00hhndnNiVnGzqbZptywLKTEb2isjWa7L0/3l26vv2c4izlW51N9c6gsAoPiEHevBW6HG+Faf2LRZt3OZy2DV8bF3/HrNcVDQzFGv5zMlE/vN9SxY4lQAyG/ZjPOa9z2p7ucqqwj3h/OG+m80J3JdwcSvgUtbnHvuubrzzjvVoUMHx/LHHttx4XTz5s169dVXo48zzzxTH330kf7f//t/4fYYAAAAQCiI8QEAAHZoVKlKQy5F0VhgpS0CZySXlpZq48aN6tKliyTpoosu0nXXXafddtstus62bdvUtm3bzPQ0gLB/vbhIzhrJ3a1J0enfN2yMTtfdWhlbyVZGWfNjGcVaHpfVMNL2nFcW8HJbfTXH+nHbVNnW88hiDvoLfaq/5MdnFzvrBC927W+h1hJuiUI6FhQG3pPFye+7HMglZCSHr9hifLf4NJ3vPP5upobzBaQu1+8GAMKSCxnJl9VdlZGM5Fsjvy2Y+DVwjeT4680PPfSQvvjii+j8xx9/rE6dOoXXMwAAAAAZRYwPAACwQ5PaZORRSFo82J5bIvPWrVvT6gwAAACA7CHGBwAAgJdQL4tblhVmc1k317rQMW9emxSdnv7v2MB7wyYviU7bB9irm/96dDoypL+jrYNMbPC9VYqVprAm2FYa6TWgnuQYIK/Ga73YrS9e5STin/O6XSboAHmpDqTXkttz0i25kUsy1S9uG0RL8X5pPbn0PcXrXpha+28Bf3sKVyHE+M0lLYyxlYTbGYO3pNxFtm41Dzq4X65+BsMatDtXjw/IBN7vQOvZrlI1hVzTeHuB1UhOKSP5wQcf1Nq1a7Vt2zZJhRFUAgAAAMWMGB8AACB3rFixQieddJK6d+8uy7L0+OOPO543xmjGjBnq3r27ysvLddRRR+mNN95I2u6CBQt00EEHqaysTAcddFB0cOVUBM5IPvLIIzV9+nR9+eWXatu2rRobG/WLX/xCRx55pL71rW9pzz33THnnuW6OmeSYn2mLqT8yc6LTqyYdHZ3edXZsED77IHh1tzrbrlZsgD5rSiwLwp4lYVlTYxuMdw7WZx6RbT33wfqCZxF77X+x6zZe7frxyp7I1GB7LfnVtjUyqfwHJwxv//xq3brIwis8rfGa8l5BprX2e4z3dH4qlhi/OcZ1i3vdspTt3LKZw84GDvp3J1nbhT54dT71FQCQf5oykJHckvY2b96sQYMG6fvf/75OP/30hOdnz56tm266SXfffbf2339//eY3v9Exxxyjd955x3Nsi+rqap1xxhn69a9/rVNPPVWPPfaYvvvd7+r555/X4MGDA/ct8IXkFStWSJLeffddrVmzRmvXrtWaNWt0zTXXaNOmTWQuAAAAAHmGGB8AACC3jBs3TuPGjXN9zhijOXPm6KqrrtJpp50mSbrnnnvUtWtXPfjgg7roootct5szZ46OOeYYTZs2TZI0bdo0LV++XHPmzNFDDz0UuG8p10jeb7/9tN9+++nMM8+MLqupqdGLL76ol156KdXmctqkCXc65s0Vc6PTi61J0emlZmh0etPrttrJ62K1k6v7jPLZUyyj2LJstY+rYlnI9gzkHestlhtnhmtivTf3be3P2bObh9uWJ88oDqol29iFmYmQbl9SzeZIJ8MEuYvXrvDwmgIoNoUe47tlC7vHgcN3rmfPPh6TsH5zO2Fl9nIHQWryNaOaGs/eODcAckGjSlUSckZy48726uvrHcvLyspUVlaWcns1NTWqra3V2LFjHW2NHDlSq1at8ryQXF1drSuvvNKx7Nhjj9WcOXNS2n8og+1VVVWpqqpKEyZMSL4yAAAAgJxHjA8AAIrJjtIWoVwqdbQpST179nQsnz59umbMmJFye7W1tZKkrl27OpZ37dpVH3zwge92bts0txdUuGcHAAAAAAAAABC1YcMGVVRUROdbko1sF19+zBiTtCRZS7aJx4VkP2ucs1v+EZvubyK2Z96MTlmfm9jim2KTkbedV/jrbo0Ntmcme9xiVyPb8kA9lmVtibXrGDhvpevyHRIHFUnoi8fydG89Sre0RLr7bI1B7YLuL19v0ZP8BxHMJa09oGKmyrDk6vkFACBXxUpRbLEtHR73ryTN3rmePXae7vjXSy7cmp8LfWiJVPudb8fXLF/73Ro4NwByQSYH26uoqHBcSG6pysod1xNra2vVrVusvO4nn3ySkHEcv1189nGybdyUpLQ2AAAAAAAAAKDVVVVVqbKyUosWLYou27p1q5YvX65hw4Z5bjd06FDHNpL07LPP+m7jhoxkH3PWOQtU1yniut5bOig6vXHErtHpbi9uim17QKW8OJON7YPtuWcKS5JqYgPmOTOP7Zmh9l917ZkW3oINquc+CJ8fr7aCZugGaTeoXBrMpFCyV/Mlg6C1z0W6rwNZyIUtXzL5gXh8tyEfxd53U12enR2dchtEryXxrl8f0nnf2wfNTrzLMLc+U6l81nOp3wCA4pXJjORUfPXVV3rvvfei8zU1NXr55ZfVuXNn9erVS5MmTdK1114bHSz52muvVYcOHXT22WdHtznvvPPUo0cPzZo1S5J0xRVXaMSIEbr++ut18skn64knntDixYv1/PPPp9Q3LiQDAAAAAAAAQA548cUXNWrUqOj85MmTJUkTJ07U3XffralTp2rLli265JJL9MUXX2jw4MF69tln1alTp+g269evV0lJrBDFsGHDNG/ePF199dW65pprtM8+++jhhx/W4MGDU+qbZYwxyVfLD/X19YpEIqqrqwul7shFutkx392aFJ3+yMyJTt85Kbb8ojmx5XOtC21br5TDclsGwUh7XePy6LRfxoF35nCQTGU/sWzjINvHZw8ky5KIl+r6iduHlxVlz1Bxvg7eWYNkVRUeXtPkOEcAsiXsWA/5IYzXPVYb2R6T75h2j6UTayQ720t9nI98G58h33AeEBbeS0B2ZDPOa973hLpb1baiPPkGKdhWv0WPRC4rmPiVGskAAAAAAAAAAF+UtgAAAAAAAABQ1BpVKivkGsmNIbeXbVxITsH0+2wz90+KTg6bsyQ6Xb0iVsNEVbb1D40r2zBysdy5l3ew+jjnHbfg9bEvT72chfegeva+BCt5kUsD2aXelvvtC4nlO3LzVqdc7RcKD++vGD53AJAfmuM8y/IfgLo5zrWsWGmLaKxdk5vf+bnUl2wIYxBDwI73ElC8mlSqkpAvlYY9eF+2UdoCAAAAAAAAAOCLjGQfr2mg53O150Si0wP0auyJEbaV1sUm39x6oGP7Onu27/xYdrI1wWOHNVscs5Y12zY33LY8ttQ703iq7JwZzV7b2LlnKsdv4/VLrvdAgd4Z1N5teWV2Owc3DHOAvFS3cR6X83y1ZIBBL+n+ck5m5Q6Feuy8vpnBuQSAfLMyYUmyv5EmGtMnxpPuA/H5D37dGn87cqEPraWQjgUAkF07MpLDzSAmIxkAAAAAAAAAUFTISPZxhuY55meeG5ue0WtTbOaW2OSSR4ZFp6/Sb6PTdd+rdDY+1DY935alOt+WeTzePWs5kT3LNZapbK/t5rWOJJl1yX/FD5rRa8+IDtKW33KvbONgmZXemb5hZicH4Z91HV5GcmtnWmdbusfrlQHf2u+P1pLv/QcAIB2WtcXzOeff/sUJy/y2ccv89RpPpDX/Fnvd9daafUjl2Fs3W7tw4jsAQLjISE6OjGQAAAAAAAAAgC/LGGOy3Ymw1NfXKxKJqK6uThUVFWm3t1TDHPOj7q92XW/X7250XV5X9npspson89RR/ziWLeyWHRF7Lnmmg1dd5OZRq1PhV7/YS5g1ku0Z1WHWFc438eeILAoAQDEJO9ZDfsjU6+4fe6YeO7u1V0ixWiHWVwYA5I5sxnnN+x5Td5/aVnQIte1t9V9rceTcgolfyUgGAAAAAAAAAPiiRjIAAAAAAACAorZdbdQU8qXS7QV26bWwjiZkp2591DF/5bndotO7mguj0wfprej0AL0anX644YzodN334hpfY5+ZLTeOchZxpTG8y0NscV++wnUXgXmV2WhJmYmgg+2lKtsDZ7T2wH1oXZQVAQAgf/mVnXA+N3znc6mXs3Bvr3AQ+wAACl2TSmUx2J4vSlsAAAAAAAAAAHyRkexjZjvnr+6bPNarXjEqNjMiNllXFolOzzEXObaZNOFO25xtPzX2QfVW2pYPl1Ns3pmFHMuesPrYVq+JZUZY8hYs0yDWL8ta6blWkIH0gg62F6RffusE2X+6sp2lEWQQw2z3MZ9x7tIT5vuQ9zRQ+PicI2yxbOFY3Bybnmpbc+XO54K9B92ea8l7Nllms1ubmRz8LmjbDMAHACgkTSrJQEZyYeXwFtbRAAAAAAAAAABCZxljTLY7EZb6+npFIhHV1dWpoqIi7fasm5zzM6bEcnn/1yyJTtvrIs+dcIVrW0MfWeqYr55gy2K210s+1DY9356d7ORVm9ieZeFVe9mPVzaBd7ars4/2fgXJ5GhJFnK6WUpkOWVPS849r5c/ajcDKCZhx3rID2G+7m538jnj2cS77WIZwumNE4LUkO28A+cBQLHIZpzXvO8hdY+pTUXHUNturN+sFyKnFkz8SkYyAAAAAAAAAMAXNZIBAAAAAAAAFLUmtZEV8qXSpgK79FpYRxO2aufs9Ndi0xfp1Oj0aXos9sRQ2wa32prqYytlEc82EJ59UD2vMhE75r2bi23vXoIi/lY8r/ISfmUnvAQpgWHff9DB9sIU5LawdAf+a4lMlXDIpXISLWkr1der2G77K7bjBQCgJWKxgn0A6+aYNFbOwq2MRew5e2y+OGFZMctELNbaMY5b/J8LcVYu9AEAgGZcSAYAAAAAAABQ1LarVE0qDb3NQsKFZB/xA+QttmUBH3PjptjMYXKftmcaa6qz8ary2PR426/MtoH3/DN0EwcCid9P8AHygmQF29v1G2jEPSvDe3DA1LMXvAfhy8wAKH79CjP7IlPZBpnKAm4tQc5xLvUXyEcM2gig8A2P+9c96zi2zB5rj9n5nP270p7ZnJpksU0Yg6u19t1ahfB3oxCOAQCQnh0XkcO98Bv2helsY7A9AAAAAAAAAIAvMpJ9+NU1vnDyza7L5950RWxmeexX7QtHONefa/WLzdR47cWexTzbsy9O9vXcs4gTs5m9snft+7fXjvOu3RxW5kTL2krMHGmpdLOj81Ex1xn2EvSccO6S4xzlNl6T1sV3C5BNibGye+3jxM9ca9X+TXVMi2R95bsEAIBgyEhOLqcykm+//XYNHDhQFRUVqqio0NChQ/WPf/wj290CAAAA0ELE+AAAAIUhpzKS99prL1133XXad999JUn33HOPTj75ZL300kvq169fkq0BAAAA5BpifAAAkA8aVSITekZyTuXwps0yxphsd8JP586ddcMNN+iHP/xh0nXr6+sViURUV1enioqKtPdtTXDOL3lkWHR6ns6ITh+kN6PTD+vM6HS11eTTuq0Mg32wvflbbOv4lbNIrexFsAH1gg1k5z3Qn99+7AOSrHRdHj9AXtB9uu87fkDB8Abf85LubYNh3nYYpK1snCPn/sO7tZtbNltXpga2BIBkwo71kD2tHePHYoVYDG1Medxz9udn29abnrBequUnUtkmW9xi71zvc6FqjfdNrr03wxhkEkB+y2ac17zvA+uWqLRil1Dbbqr/Sm9Fji6Y+DWnMpLtmpqa9Mgjj2jz5s0aOnSo6zoNDQ1qaGiIztfX17dW9wAAAACkiBgfAADkqia1UdiXSpty99Jri+RcRvJrr72moUOH6ptvvtEuu+yiBx98UMcff7zrujNmzNDMmYnZtaFlJN8Ut78pVnT6f82S6HT1hNigfEMfWRpbbg2Jbby83NnYSK9sXfu0LdO4Ku6X2Rr3bN2gmcd2zm222JaX25a7ZWrE9dGnXbtM/frtlyWZa7+4NyvGbINUeb2P8/FYAKQmzAFdsy3fv4tzBRnJ+SvbMX78nViS+101bnFH0Dun3OTC553vH2+cGwDIHbmQkbx/3YqMZCT/OzKiYOLXnCvU0bdvX7388st64YUX9OMf/1gTJ07Um2++6brutGnTVFdXF31s2LChlXsLAAAAIBlifAAAkOuaVJqRRyHJuYzkeGPGjNE+++yjO++8M+m6Yf96cbMu8nzuitfnRqetAYui03PMI9HpSX18+lyzxX35eFvm8nzvX8i9sm9TrSebwJb5bNa5b9OSrIwgmdLBa821/NgT23LfhuwEZAvvPeQy3p/INjKSC0e2Ynz3MTwS7+4LmpmcagZzLqI2LQAgF+RCRnJV3QsqCTkjeXv9V6qJDCmY+DXnMpLjGWMcNdIAAAAA5DdifAAAgPyTUxWff/GLX2jcuHHq2bOnvvzyS82bN0/Lli3TM888k+2uAQAAAGgBYnwAAJAPGlWqkpBLUWwvsNIWOXUh+eOPP9a5556rjRs3KhKJaODAgXrmmWd0zDHHZKU/A/WaY36ezohOL+0fG2XaXs7CXvJi+tuxW93qyiJxrcduoYs09LetZx+8LjbwXuIAIfbn3MtkeN+CPDVuTds+bYP4WVbqg/gFuyXOPqBgbB/xx2Ef7M/Jvo17H/0EuTU73EEA0ztf3EpeXBh0EbmM9w6AlsiFGD8WZ7rHobH1Ess8pBrLhVlurTXw3Q5kB2VlAOSjnLqQ/Je//CXbXQAAAAAQImJ8AACQD5pUKhPypVIykovI0StWOeZnjLSi06NsycpX9f9tdPrN/gdFp+tWVNq29hhcT1LdAZUez9izJIbHPTdbyTgyKfrYl8dn+noNymfP/PUalG5x3DY+A/kl6WPi/t0H1Uv3F9vW+MU3yCB+QeVSJku6AyUie3iNihfZ6ABgF4upm+PLxDv/nNwG4GtJfOa3bTqZzan0qxAzIHPhmHKhD8g/vF8A5CMuJAMAAAAAAAAoajsykqmR7IcLyT4uHHGzY/4iY6tzfFRddHLVrUdHp61nTWydKbYs5OVxWcAjbdM19mxlW+ZxlS0Ld51zc3u2sBev7FHLcs6nXtfYvu2YuCXx86n0y7k81frBQaX6y29L+uWVhRz2r87U02s9LXkfALmA9yoASLG7+ewxbXPcmjjmRjoxVljfu5n4/g7j+NwUe0yaC30AAKA1cCEZAAAAAAAAQFEjIzk5LiT7mNvnCsf8nU9Oik5bv7JlHg+w1VVbbtvAnoV8S1zj422Zu/O96ydH9+ebeeueLew2ErXb+s62p7quZ888dtaRc+4jU5m4Xm21xq//8ftI9bha0seg+8iHjI98rs+az30PG+cCAJDP3GsQ+8Xgw23rpVb/1mucj0zV0W1Je24xezr9KvTYgDgIAIpD0/ZSme0hX0gOub1sK8l2BwAAAAAAAAAAuY2MZAAAAAAAAABFramxVNsbw80gNiG3l22WMcYkXy0/1NfXKxKJqK6uThUVFWm3Z93knDdjbaPUXWZ74lbbNp/bTudIW8mIKp9boByD7c32WGlq3HxsvdQHj1vsmPcqW+F2K178/vxKbqRb5iLIQHph3lrmtT+/fRTSbW6FdCzp4DwAxYfPff4IO9ZDfgjjdXcr3xAfE++QWBoune8Ft/iykL5nMlWuI+h+s7HvdGTrfAFAPshmnNe874pP/y2rolOobZv6L1W/5/4FE7+SkQwAAAAAAACgqDU1tpHVGO6lUhNye9lWWEeTYTMHxKZn3GjLPH42Nnnh5Juj03PtWcj2DOZ4U2zT423bzLdlSdxoG7hPkqa4D7BnHzTEmHLX5fGZFpblNSjfGI/lMUF/TfdaL3hGs3umdJiC9rG1B/vzk042ht9xFTPOA1B8+NwDha/5c+4+wJ4tFm6OxecnxqhBs4vDuhMvH76bstXHfDg3bvK13wAANONCMgAAAAAAAICi1tRYIiv0GsklobaXbVxI9jPFrW7aDvbM4ztfnxSdtibEMpUvXBdb5+GtZzi2r3uhMjYzPi7bOMqWHTEl7qmq1LJyndnJw+Oec6+RnG42RZBayn7rBNl/0D46247Vm3aeF/e24tsNcoytlW2Qzn7CrP1cqNnN+Vp/L5lsH1e294/cw3sCQOtxuxPPFhs+0jyVmRhLcv/OCzoGSVB8rwIAgEzgQjIAAAAAAACAotbUWJqBjORw28s2LiQDAAAAAAAAKGqNjaWytnEh2Q8Xkv2MjysfMT82aS9VMffzK1w3n7sitnzjiF0dz1WO2BSdtm4J0hn3wfUkr0FDJGtCbDp2m17iYHVByk5479v71rtU201nMJIdy4MNyGcvZ+G1/5aUzEh3QMFU222J4OcotX0W6i2T6ZZ0ySW51Mds7z9XtKQkTC69jmEqpGMBkONs8X1zfGz/brWsnc+5xIXJS1Zs2bmeV9m6YML4TuR7NT8Ffa8hfZxrAGgZLiQDAAAAAAAAKGqmqY1MU8iXSsNuL8sK62hCduEjNzvmL1IkOv2RHo5OnzkiNj1vRCxT2Z613G3CJu8drbFN19gz1OxZyLOd29TEJp0ZE7YBAucPty23DyziHGQkyOAeQbOLvTJeHf0KKOjgd0GkOvCf3z5aI1s3U7+M+2Uho+XyIZMhH/pYbHLpuwEACp1b/NecfWyX3kDG6WUit5TbsfH3IreF+f8ctAznGkCu2nvvvfXBBx8kLL/kkkt02223JSxftmyZRo0albD8rbfe0gEHHBB6/7iQDAAAAAAAAKC4NZbueITdZgpWr16tpqam6Pzrr7+uY445RhMmTPDZSnrnnXdUUVERnd9zzz1T62dAXEj2MfcmZ+3jO5+cFJtZ5rHNBNs2l9ueGBq34hR7XWNbtnGVxy+jh8bXa45t712D157RvNJjeeo1N4Nk9+5g7/NK1+UtqR8cRGK7sWNOt/Zzqv0Ks6ZpS2qq5qpCrfWaq8Ks+50NudovtK58ex/kW3+BwjZ1578rXZ6LLWu+i85+F1d6Man/+BRh1Gnl+yX/8JoBALzEXwC+7rrrtM8++2jkyJG+23Xp0kW77rprBnu2Q0nG9wAAAAAAAAAAuaw5Iznsh6T6+nrHo6GhIWl3tm7dqvvvv18/+MEPZLnV5LI55JBD1K1bN40ePVpLly4N5XS44UIyAAAAAAAAAGRIz549FYlEoo9Zs2Yl3ebxxx/Xpk2bdP7553uu061bN82dO1cLFizQo48+qr59+2r06NFasWJFiL2PsYwxJiMtZ0F9fb0ikYjq6uocdUFa6iI5B9ubs8uk6HTdV7GB997SQdHpo29aFdug2raxfUA9STrUNn253J1vm66JH6zOq1SF2+16qZSjSL6N/23x/rfvtZTX/rltuPDx2vsrpHInYcr3Uh5APN6rO4Qd6yE/hPG6pzognXOg6JVJ1w+y3+bt0/k8810AAPkvjLJGhSibcV7zvrWmTtol5H1/VS8dGtGGDRscx1VWVqaysjLfTY899li1a9dOTz31VEq7POmkk2RZlp588skWddkPGckAAAAAAAAAkCEVFRWOR7KLyB988IEWL16sH/3oRynva8iQIXr33Xdb2lVfDLbnwzFwnqSZX8V+LXpYZ0SnrzhqbnR66LJYHZI3tx4Yna57odLZ+EhbVsQaj1+hamzrJAzCZxsAZF1sqb1kildGcPyvXkEyG7yW+2VDppsxETRzOhP8+p7NDNmggwAWUrZKqu9Ju2LI1i3EYwpD0PPC+XNXSN8hhYLXAQife1y1404/exxtWe53/Hm1Yf+8un12i3lgPf6+AADffzmtcecj7DZb4K677lKXLl10wgknpLztSy+9pG7durVsx0lwIRkAAAAAAABAccuRC8nbt2/XXXfdpYkTJ6pNG+el22nTpunDDz/UvffeK0maM2eO9t57b/Xr1y86ON+CBQu0YMGCMHqfgAvJfuJqF79u1UWnzzAPR6et9bYy0/Za1iNjtdWGmrccbdnLJzsziu312Gy1j2u8M1G9Bm70y55IlTPbYmp0KugvaV61k53t2ms9t86vdF4ZvsGPK7WsinQzZP2yo9Npt1BxHoCWyYfPDlltAFIRrU88wbZw/uKdz9lj0/hxScK/y6WYv78K9Q46oDXwmQGKx+LFi7V+/Xr94Ac/SHhu48aNWr9+fXR+69at+ulPf6oPP/xQ5eXl6tevnxYuXKjjjz8+I33jQjIAAAAAAACA4pYjGcljx46VMcb1ubvvvtsxP3XqVE2dOtV13UxgsD0AAAAAAAAAgC8ykv2c75wdc19seqkOik5H3q6NTtfdah9UL1aqodpvkI6bPJ640Tag3mT3gfMkybK22Obc9+M18J6fIIPKeZXV8Nt/mLfkZGP7XBogJcjtgdwClZowB4nkfBeeYhjAMV9w7gG0yPzEv9Nupda8yrL5aW4n2feT2/Nu8UPQZely63fQY0lHOm0TbwXTGq8jWg+vY+r4DCBljZK2ZaDNAkJGMgAAAAAAAADAl2W8im7kofr6ekUiEdXV1amioiLt9nbdWuuY3/TvbtHpi/rPiU7PvemK2Eq32jaosWcK+6gqt20T+3U90nBRdLquLBK3kVeGs335cI/l8WLreQ024j1AnpMzkyH59l6Zs/HPeSmk7NFc6otdkH4VapZmrr4m2cC5AIpLrn6vhx3rIT+E+bq73ckXNM61a+1sWrLqAACFLptxXvO+9Wyd1DHkfW+ul8YWTvxKRjIAAAAAAAAAwBcZyT6sCc75jY/sGp0+TY9Fp9/cemB02l4jOXKZrXbyAfbayZIOtU2viU2adbb99/FYX5Lmu2c7GxPLbm5J5q9bjbjEffjVa85enV6/faTar0LKdEZu4D2Rm/LhdfHKjsvV/hajVO/c4LVrOTKSi1OmMpKb4+agn0/372P3O/uCbp9P3wdkRQMAMiknMpL/nqGM5OMLJ35lsD0AAAAAAAAAxa1R4Q+Ox2B7AAAAAAAAAIBiQkayj6GPLHXM32nVRacHmFej02e0mxedfnPyQdHpudaFtq0Xy+FQ261vjkH5bAPv2cpZmEecm1vW7NhzKQ5Kl/Cco4RH8gH6LCu2PH7fqZaHCD5wX/Jbu1tym53XNpkqZ5FLgxcFPfetLZfOUZgK5TgKTT68Lq3Rx0L93LWWIOeLcwrkilgc2xzTug8W7TWAtRK2CSrfvwfc+k+5CwBAQSEjOSkykgEAAAAAAAAAvshI9lG9YpRjfoCZ47repJvujE5fOPlm2zO2TIYb4wbfmGLPQo5lF1tWbKkjO8I+8J6CZbx6r+McqM+e7WzPNvbKTg6acZBqdrJfu6kebyybJHnbYcmHAZaCDkiYTdk+R2HKpde+NZDVmr94rQAUj2SZxjtiducdeM1xfCyeDysTt7Uzeltjf2QpAwDyVpPCzyBuCrm9LCMjGQAAAAAAAADgyzLGmGx3Iiz19fWKRCKqq6tTRUVF2u1ZNznnh06O1Uxe9frR0elh/ZdEpwcoVjt57oorYhuPjM/2nGqbtmVGVMVlLjerWey+XJI9m8KYWI1lzwzTqri6xut8mg5JSzIz7ZnT9uNqbUEzdcm6AFDoii3LPlPsd83EMh1h5/VeCzvWQ34I83V3i+uCjMsRv15Y+wOQPuIToDBkM85r3rceqpM6hLzvr+ulswonfiUjGQAAAAAAAADgixrJfqqds29uPdB1Nfvy6gNsdZUdWcT2DOR4tvpsNTNdl8dnLDlrACeOPu0rIbs5sd5bvCD1f/22adnI1pnJQk71GFu6XmtI9df3oDWSc+kY4Y+6xGhNvL/CUexZyN7jG/B3CK3NrUZyau89t/dtrr2Xc60/QNh4XwMITaPCr5EcdntZxoVkAAAAAAAAAMVt285H2G0WEEpbAAAAAAAAAAB8kZHsZ433Uzf3vzA6/bYOiE53q5kfW2m87dbV+X4Dtg33mI5JLMdgXy9AOQuf9e3lMLxuMQ064JyzXffyG0EHNPGSagmH+G1SvfUpzFulgpYhCHoLYqrbt6QtL+neJtmyARgzc2tmNo4lLNnuL+VSWhfnFIXA673Lexqtrzk+DVZuJlnc2vx8a7+X+duQHZx3AChATTsfYbdZQMhIBgAAAAAAAAD4IiM5BfPLukWnx9wXWz7snCW2tYbEJu0ZzePjfqWev8V9J+M9BpibH5+pPNujl7FB/eyD1dmzgxOzBhe7TnsJnlHsnoXs1ZafVDOX/dp1tuU9oGFYgmYrtCQ720u6mc6tIdv7t0u3L7l0LEGE2d8ws9yzLZc+H15ytV8AkD/87+oLmlWcS9/Hrd3XXP172dr9yqVjRziydVcBgBzSpPAHxyMjGQAAAAAAAABQTMhI9lPjkTUsyeplYjMTbE/caJu+1a9xe0axLTNivn0dv9rHyTNpHRmuVX5Zg17bJ69rnMn6qt7b2LOr08sitm/fsr7E3iPODPDU20q3dnSq+2ittsJ8vwQ5R/mYQZCrmT25KlPni3Pfunjfhy9oHX6gGAWNrVK90ybMuNRPOpmSYX3f5nq2Zq72C/mD91DL5fr3AxBYo8LPSA67vSwjIxkAAAAAAAAA4IuMZAAAAAAAAADFjYzkpCxjjEm+Wn6or69XJBJRXV2dKioq0m7Pusk5v3HyrtHpbis2uW800j5Yna00hU9pCdUE2KYmfhA8e9mL4R7Tdl6D8/mZapuObR90wDjvAd/cy0EkrhferYKZuoU62PG2zi2PQXgNNCil3rd0z2nLSolkpqyKXZCBCsPYfz6jJEF+4fVCLkv1/Rl2rIf8EObrbvWxzdR434rt9t5M9n4Nemu3ezyWfJBq5AZu4QeAzMhmnNe8b/2uTioPed9b6qWfFk78SmkLAAAAAAAAAIAvMpJ9ODIWJC1ZNyw6/aoGRKenb41lFdSVRWIbVNmybRMG7rNlCHtlK9d4Z7Las3q9s42DZRR7tZWpAfYQw3kFkE/4zkK2kZFcnDL9utvvHvMb7Dqs77107spyi89Ty4BObb/pyNZ+ixWZ0gDyXU5kJF9fJ7UPed/f1Es/K5z4lYxkAAAAAAAAAIAvBtvzc5lz9kC96To96Xt3xlaqsm1gz0IeH1cLeL6tPq2j/rF7vePEX/Q9aiE76iq714D1r/Vqz3KIz6JOra1crQ0c5Fd6v/XDzMgLM+ubTEFIvA9yRaG+DoV0LJlSqK89UCjcPqPOOHXMzvWCZSln4jPvllnq1nbQ/aUTV6ZzTHwHtq50stsBADsx2F5SZCQDAAAAAAAAAHyRkQwAAAAAAACguG2TVJqBNgsIF5L9HOb91HTZSjoMtT0x31YO4sZYOQszOb6F2C10jkH9HIPyxW6jSyyvsFhuzDpnL2Pru5e58Oc+iF/wW/hi/bcs92MJWkLCWcrD+7wE4XUukt0+mM4+vfbttc+W3CaZar/8S5y4r1dst8Dl47HnSz8LHa9D8eK1B3JTqrGwW7kLt/Za8plPtk3z89mMQ/guK1y8tgCAdHAhGQAAAAAAAEBxa9r5CLvNAsKF5BS8pYPcn7jVNl1lG1RvSiy72JoSbB/GxLa3LNtge33i10w+KF/QDFu7lmUuu0s3w9X7udQH7ks127clGSBBtslkBkCqfQ4z0zlodnO+ycZx5GMWNHJPkDsvWmvfvI8B5BKvgaFjViasly250AcAAIoKg+0lxWB7AAAAAAAAAABfZCT7GenMUhh1X3V0+sBz3oxOv7ZuYHS6us8o2xaxWr6qisuirVnsup5l2VeaalvfXjtZstcvdmZWDJcbZ4bYVMdz9izoVDN0g9fZXZx0HT9hZmmGma0bZJvWyjDN5v7JmAkP5xJhyOb7iPcwgFzkVnc4xj1+DtJeMmHFYenUZEZ+47UHgFbUpPAziAustAUZyQAAAAAAAAAAX2QkAwAAAAAAAChujZJKM9BmAeFCsi/nbW6150Si06fpseh0tWXLU19u22Ckbfua+Nvo7G3HSk04BtubYFtlvncJCWfZiDG25Vtc148XZFCmdAePs/erJfL5Vq6WlAIJ83hb+9bLlkh33+mWXkH+ytR7J0wMoAgAucmt3IXb93RzrO0WzybbNqzv/dYeLDUX/l5R0gEAgNzDhWQAAAAAAAAAxW2bwi8CvC3k9rLMMsaYbHciLPX19YpEIqqrq1NFRUXa7cVnM84xH0WnJ624M/bE+baV7JnHVdPdl8s7o9gxQJ8ta9kvo9dr+2D7cO7H2cf0sohbO9PPT6r79+t7rmTu+u2fLMvcE+b54tyjkBXS+7uQjiVXhB3rIT+E8brHPo9uca97/OzdBp/pILzumgQAwE0247zmfevyOqks5H031Eu3FE78SkYyAAAAAAAAgOLWtPMRdpsFhAvJfqqcmQZnaNfo9JsjDopOz9UVsZXG27ZZY9/amf1g9bHPxWcIJy63LK91vPlnIcc46yrbM169lts5j8vellet2iDL/WRqG+cxumdpZ1vwmtSZz5IhEyc1Yb5XOffIV8X2/i6kYwHy384xSapi45GYdc1TwWofu8Ww7jWV/ccfSV6TObHtfKwXnM0s5Hw8X62NDHsAcNGk8AfHK7ALyWFX/gAAAAAAAAAAFBgykv3ULHbMdluxKTbzou2Jyzy2n78lNj3e+Yu8eSQ2bVkB+hKXHR3LoPDL9nX2322dxPWmJu1KSzIr020r3f0FyYLORrZvqpkAQWsk5xsyImKK/fhR2HLp/c33DlBsZkuSzLpw4j2/55Pd/daythPvlmtJ1m2uZ+qG9d2cq8eXSzhHAOCiUeGn3Iad4ZxlZCQDAAAAAAAAAHyRkQwAAAAAAACguG2TFKRqQKptFhDLGGOy3Ymw1NfXKxKJqK6uThUVFWm35xwQT4q8XRudrnuhMvaEvczFrbbpGltpi52308W4D+bmHPgu6GB5XrfPbbGtU+66zo71Wvf23qD7S3WAvHy4PaslpSmycYz5dl4Rw2uXWYVaXgbIF2HHesgPYbzubiXQYoPfLbYt8x4gzr2MWiymD2twuVwvPwEAQCZkM85r3rfOq5PahbzvrfXSvYUTv5KRDAAAAAAAAKC4Ne18hN1mAeFCcgocWci3eKxUY8tUcAyQF5dR4JGtbFm2zOPxtm3mOzOSvTN03QfYk7wyneMHonPPYs5GlmMhZmG05JiycR4K8dwXi1RfOzJsU8P5AYD8FMs+jv3di8XE9jg7WFax298Dt/ZyNfYLmoWdvB2ypwEAKCYMtgcAAAAAAACguDVm6JGCGTNmyLIsx6OystJ3m+XLl+vQQw9V+/bt1adPH91xxx2p7TQFZCT7ucw5u2TEsOj00eevij1hz0LWVPflVfG/0rtnKjiyA+cHrSWcWkaB3zrOLGR7u+FlGXgdb2tlbORSTeiwskFyGTV7cxuvSWHicwcAXhLHKXGLTZMtc9McyznuMExDJr/Lw8hC3tEOf2MAAAWkSSlf+A3UZor69eunxYtj14tKS0s9162pqdHxxx+vCy64QPfff79WrlypSy65RHvuuadOP/30lvTYFxeSAQAAAAAAACBD6uvrHfNlZWUqKytzXbdNmzZJs5Cb3XHHHerVq5fmzJkjSTrwwAP14osv6ne/+11GLiRT2gIAAAAAAABAcduWoYeknj17KhKJRB+zZs3y7Ma7776r7t27q6qqSmeeeabWrVvnuW51dbXGjh3rWHbsscfqxRdf1LZt21I9A0nlVEbyrFmz9Oijj+rtt99WeXm5hg0bpuuvv159+/bNToemOAelO7p6lceKdrGB8+zlLEzca25Zw23TXgPkTfVYHs99gBDnIFqJt/FF+2bct/Ee0M+vVENq27dEtm+nS3X/fusUajkLO255zG35Pthetr8PchXnAhKfD+SOXIjxo5+HG23x+WS3NYfvXL/lJd7C+ry5D+iX/c91vn+f5MI5BAAUnw0bNqiioiI675WNPHjwYN17773af//99fHHH+s3v/mNhg0bpjfeeEO77757wvq1tbXq2rWrY1nXrl3V2Nio//73v+rWrVuox5FTGcnLly/XpZdeqhdeeEGLFi1SY2Ojxo4dq82bN2e7awAAAABagBgfAADkhaYMPSRVVFQ4Hl4XkseNG6fTTz9dAwYM0JgxY7Rw4UJJ0j333OPZbcuyHPPGGNflYcipjORnnnnGMX/XXXepS5cuWrNmjUaMGJGFHjmzeCMP1Ean68pejz3hkXnszDR2Zp46B7Xz2r97pvGObdx/SffKbvbKOo5vO91f5dPN0A1rH7m8PZBL8v39nO/9BzKJzwdyRS7E+M2fB8vaEl1mTZntsmZz/O8dhycTVsarWzvpfq6DDhxYyIr52AEA+adjx44aMGCA3n33XdfnKysrVVtb61j2ySefqE2bNq4ZzOnKqQvJ8erq6iRJnTt3dn2+oaFBDQ0N0fn4wtUAAAAAcgsxPgAAyEmNksJO4m1Mb/OGhga99dZb+va3v+36/NChQ/XUU085lj377LM67LDD1LZt2/R27sIyzfnOOcYYo5NPPllffPGF/vnPf7quM2PGDM2cmVhvt66uzlF3pKWsPj5PHmqbnm/vg1dd45WOOf8M4eZ1pvusY9/PStfpltQoDvMX+lyqP5ZLfQEAtA6++wtPfX29IpFIaLEeWl+2Yny3TNzmO/mKYcwKAAByXTbjvOZ967g6qW3I+95WLz0T/Lh++tOf6qSTTlKvXr30ySef6De/+Y2WL1+u1157Tb1799a0adP04Ycf6t5775Uk1dTUqH///rrooot0wQUXqLq6WhdffLEeeughnX766eEei3KsRrLdZZddpldffVUPPfSQ5zrTpk1TXV1d9LFhw4ZW7CEAAACAVBDjAwCAnNWYoUcK/vOf/+iss85S3759ddppp6ldu3Z64YUX1Lt3b0nSxo0btX79+uj6VVVV+vvf/65ly5bp4IMP1q9//Wv94Q9/yMhFZClHS1tcfvnlevLJJ7VixQrttddenuuVlZV5FqcGAAAAkDuI8QEAQE5LswxFGG3OmzfP9/m77747YdnIkSO1du3a1HbUQjl1IdkYo8svv1yPPfaYli1bpqqqqux2qGaLc355bIA8jfQqZ2EftCM2WF/8LXP2QfG8Slh4rRPPspKXs7ALenuvc/+p3/LnNQigV1mPTN52HKRtboEufOm8xvElYTL1ngpS6gZAMHxugNyQSzG+8+/scM/1WtbeDnz3ACg0DNQJoFlOXUi+9NJL9eCDD+qJJ55Qp06doqMORiIRlZeXJ9kaAAAAQK4hxgcAAHmhSeEPttcUcntZllOD7VmW+6t111136fzzz0+6fdiFue1ZtDvYM4xjQa81wbbKGtt0jfegdnaZ+lUvaDZkPmRAFlu2cLaPN9v7BwDADYPt5adciPFjcX1qd/JlAnEWAACJcmKwvW/XSW1C3ndjvfTPwolfcyojOYeuaQMAAAAIATE+AADICzlQIznX5dSF5JxXZctCtrZ4rJRelkPQusRBMhmC7j8fMiHyoY9hyvbxZnv/AAAAYWqOq+1jizTH3UHHAgkrk5g4awcyswEAyD9cSAYAAAAAAABQ3MhITqok2x0AAAAAAAAAAOQ2MpJ9rXTO1gy3zcy2TU913dprELsd7AP32W+ns+/T+za71r79K99uPYs/99nsc76dOwDh4jsAAHJVc9wdi7mbv7Pdvq/z9Ts8rL9Dbv+3ocRH7vB77wIAAmqUFPbQDk0ht5dlZCQDAAAAAAAAAHyRkZyK8bHB9jTf/kQsO9n+C7B9MI9MDnznn/nc8nbD3N6uNbLzMvlLfKr9JysAKG58BwBA9vll0zqfG56wnlsb+fTdHlZfWyO+zqfzmkktea9x7gAgBJnIHi6wjGQuJAMAAAAAAAAobpS2SIoLyT7if9W1+rg/Z1lbkrYVtGav16/PQbKOW7pNkP2HKWi7Xv3P9q/tqe4/X7NXAAAACoVb9rFlLXY8F7QNhI9z68T5AADkKi4kAwAAAAAAAChuZCQnxYXkVNTEMo8tK1YXWVXuvxj7/ZLcnAGxQ/Jayv5tzXSdbskv2elk26bbVtjbpypoNniQfoXZVkv2UwyK+dgBAEBLxWogGzNGkjMujy0rnjiD+sQA4K2Y/h4AQXAhGQAAAAAAAEBxa5S0PeQ2w24vy0qy3QEAAAAAAAAAQG4jIzkFxpRHpy3LtnydbMuD3fbQfNvcjm1Weq4XrF/Zu72ikG7tCFpWJMhr3JISJUGEXRojnxXzsQMAgJaxx+Ax9lh8zM71iifOKKZjBaVMgFTxWSkyTQq/RjIZyQAAAAAAAACAYkJGcgosKzbYXpi/SjkHY0sc7GPH8sLPRM3kwH1hIgMcAAAgP7ndWeY2MHJYMReDNOUOMnF3KPbjBwBfjQo/5bbAMpK5kAwAAAAAAACguHEhOSkuJPvwy5C1rOG2uVhdNa9feO2ZxjvWc6vP5rc82C/HXlkPftkQuZop4X0uc7O/AAAAyG9hx5bEqrmD1wIAgPRxIRkAAAAAAABAcdsmMpKTYLA9AAAAAAAAAIAvMpJ9+N3+5BwUL/ltUvElK7zKZqR7y1XQchZh7TPMQQCDbptvt6XlSymOfOlnruB8AQCQPxhoDQAAJLVdkgm5zbDbyzIykgEAAAAAAAAAvshITkGYGYitkQ2RjX2QpZkoX85DvvQzV3C+AADIH25/t1s7S5msaAAAclyjJCvkNslIBgAAAAAAAAAUEzKSU+CsP2yvkTzGbXUHr5rI8e3mu0I6FgAAABQWv5g804iTAQDIcWQkJ8WFZAAAAAAAAADFbZu4kJwEpS0AAAAAAAAAAL7ISE5BOgPJcSsbAAAAkF1+g+55PY/8w8CGAIAWaRIZyUmQkQwAAAAAAAAA8EVGckqGZ7sDSZFRAQAAAATXWjEzWbKth3MMAGixAssgDhsZyQAAAAAAAAAAX2Qkp8CYMdnuQlL8+g4AAADkHuJ0AACQ78hIBgAAAAAAAAD44kIyAAAAAAAAAMAXF5IBAAAAAAAAAL64kAwAAAAAAAAA8MVgewAAAAAAAACK3Ladj7DbLBxkJAMAAAAAAAAAfJGRDAAAAAAAAKDINe58hN1m4SAjGQAAAAAAAADgi4xkAAAAAAAAAEWOGsnJkJEMAAAAAAAAAPBFRjIAAAAAAACAIkeN5GS4kAwAAAAAAACgyDUq/FIUhXUhmdIWAAAAAAAAAABfZCQDAAAAAAAAKHIMtpcMGckAAAAAAAAAkGWzZs3S4Ycfrk6dOqlLly465ZRT9M477/hus2zZMlmWlfB4++23Q+8fGckAAAAAAAAAilz2B9tbvny5Lr30Uh1++OFqbGzUVVddpbFjx+rNN99Ux44dfbd95513VFFREZ3fc889W9RjP1xIBgAAAAAAAIAse+aZZxzzd911l7p06aI1a9ZoxIgRvtt26dJFu+66awZ7R2kLAAAAAAAAAEWvUbE6yWE9dmQk19fXOx4NDQ2BelRXVydJ6ty5c9J1DznkEHXr1k2jR4/W0qVLA7WfKi4kAwAAAAAAAECG9OzZU5FIJPqYNWtW0m2MMZo8ebKOPPJI9e/f33O9bt26ae7cuVqwYIEeffRR9e3bV6NHj9aKFSvCPARJlLYAAAAAAAAAUPQyVyN5w4YNjvrFZWVlSbe87LLL9Oqrr+r555/3Xa9v377q27dvdH7o0KHasGGDfve73yUth5EqLiQDAAAAAAAAKHLN5SjCblOqqKhwXEhO5vLLL9eTTz6pFStWaK+99kp5r0OGDNH999+f8nbJcCEZAAAAAAAAALLMGKPLL79cjz32mJYtW6aqqqoWtfPSSy+pW7duIfeOC8kAAAAAAAAAil7mSlsEdemll+rBBx/UE088oU6dOqm2tlaSFIlEVF5eLkmaNm2aPvzwQ917772SpDlz5mjvvfdWv379tHXrVt1///1asGCBFixYEO6hiAvJAAAAAAAAAJB1t99+uyTpqKOOciy/6667dP7550uSNm7cqPXr10ef27p1q37605/qww8/VHl5ufr166eFCxfq+OOPD71/XEgGAAAAAAAAUOQaFX6N5NQyko0xSde5++67HfNTp07V1KlTU9pPS5W0yl4AAAAAAAAAAHmLjGQAAAAAAAAARS77NZJzHRnJAAAAAAAAAABfZCQDAAAAAAAAKHLbFH6N5LDbyy4uJAMAAAAAAAAocpS2SIbSFgAAAAAAAAAAX2QkAwAAAAAAAChyjQq/FAUZyQAAAAAAAACAIkJGMgAAAAAAAIAiR43kZMhIBgAAAAAAAAD4IiMZAAAAAAAAQJHbpvBrJIfdXnaRkQwAAAAAAAAA8EVGMgAAAAAAAIAiR0ZyMlxIBgAAAAAAAFDkGGwvGUpbAAAAAAAAAAB8kZEMAAAAAAAAoMg1KvxSFGQkAwAAAAAAAACKCBnJAAAAAAAAAIocNZKTISMZAAAAAAAAAOCLjGQAAAAAAAAARW6bwr9UGnbN5ewiIxkAAAAAAAAA4IuMZAAAAAAAAABFjhrJyZCRDAAAAAAAAADwRUYyAAAAAAAAgCLXqPBrGhdWRjIXkgEAAAAAAAAUOUpbJENpCwAAAAAAAACAr5y6kLxixQqddNJJ6t69uyzL0uOPP57tLgEAAABIAzE+AADID9sy9CgcOXUhefPmzRo0aJBuvfXWbHcFAAAAQAiI8QEAAApDTtVIHjdunMaNG5ftbgAAAAAICTE+AADID9RITianLiSnqqGhQQ0NDdH5uro6SVJ9fX22ugQAAIAMaY7xjDFZ7gkyiRgfAIDikxtxXkPyVXKizezJ6wvJs2bN0syZMxOW9+zZMwu9AQAAQGv47LPPFIlEst0NZAgxPgAAxSsbcV67du1UWVmp2trfZ6T9yspKtWvXLiNttzbL5GhKh2VZeuyxx3TKKad4rhOfrbBp0yb17t1b69ev5z8XOay+vl49e/bUhg0bVFFRke3uwAOvU+7jNcoPvE75gdcpP9TV1alXr1764osvtOuuu2a7O2gBYvzcwHdeuDif4eOcho9zGi7OZ/iyHed988032rp1a0babteundq3b5+RtltbXmckl5WVqaysLGF5JBLhg5wHKioqeJ3yAK9T7uM1yg+8TvmB1yk/lJTk1HjRCBkxfuvhOy9cnM/wcU7DxzkNF+czfNmK89q3b18wF3sziSgcAAAAAAAAAOArpzKSv/rqK7333nvR+ZqaGr388svq3LmzevXqlcWeAQAAAGgJYnwAAIDCkFMXkl988UWNGjUqOj958mRJ0sSJE3X33Xcn3b6srEzTp093vRUOuYPXKT/wOuU+XqP8wOuUH3id8gOvU34ixs89nNNwcT7DxzkNH+c0XJzP8HFO80PODrYHAAAAAAAAAMgN1EgGAAAAAAAAAPjiQjIAAAAAAAAAwBcXkgEAAAAAAAAAvriQDAAAAAAAAADwVVAXkv/4xz+qqqpK7du316GHHqp//vOf2e5S0ZgxY4Ysy3I8Kisro88bYzRjxgx1795d5eXlOuqoo/TGG2842mhoaNDll1+uPfbYQx07dtR3vvMd/ec//2ntQykoK1as0EknnaTu3bvLsiw9/vjjjufDel2++OILnXvuuYpEIopEIjr33HO1adOmDB9dYUj2Gp1//vkJn60hQ4Y41uE1yqxZs2bp8MMPV6dOndSlSxedcsopeueddxzr8FnKviCvE5+n7Lv99ts1cOBAVVRUqKKiQkOHDtU//vGP6PN8luCGGD8Y4vH0EDeHjzg3XMSk4SJ2DB9xXpEwBWLevHmmbdu25k9/+pN58803zRVXXGE6duxoPvjgg2x3rShMnz7d9OvXz2zcuDH6+OSTT6LPX3fddaZTp05mwYIF5rXXXjNnnHGG6datm6mvr4+uc/HFF5sePXqYRYsWmbVr15pRo0aZQYMGmcbGxmwcUkH4+9//bq666iqzYMECI8k89thjjufDel2OO+44079/f7Nq1SqzatUq079/f3PiiSe21mHmtWSv0cSJE81xxx3n+Gx99tlnjnV4jTLr2GOPNXfddZd5/fXXzcsvv2xOOOEE06tXL/PVV19F1+GzlH1BXic+T9n35JNPmoULF5p33nnHvPPOO+YXv/iFadu2rXn99deNMXyWkIgYPzji8fQQN4ePODdcxKThInYMH3FecSiYC8lHHHGEufjiix3LDjjgAPPzn/88Sz0qLtOnTzeDBg1yfW779u2msrLSXHfdddFl33zzjYlEIuaOO+4wxhizadMm07ZtWzNv3rzoOh9++KEpKSkxzzzzTEb7Xizig7ewXpc333zTSDIvvPBCdJ3q6mojybz99tsZPqrC4hVgn3zyyZ7b8Bq1vk8++cRIMsuXLzfG8FnKVfGvkzF8nnLVbrvtZv785z/zWYIrYvzgiMfDQ9wcPuLc8BGThovYMTOI8wpPQZS22Lp1q9asWaOxY8c6lo8dO1arVq3KUq+Kz7vvvqvu3burqqpKZ555ptatWydJqqmpUW1treP1KSsr08iRI6Ovz5o1a7Rt2zbHOt27d1f//v15DTMkrNelurpakUhEgwcPjq4zZMgQRSIRXruQLFu2TF26dNH++++vCy64QJ988kn0OV6j1ldXVydJ6ty5syQ+S7kq/nVqxucpdzQ1NWnevHnavHmzhg4dymcJCYjxU0c8nhl8P2UOf5dbjpg0XMSO4SLOK1wFcSH5v//9r5qamtS1a1fH8q5du6q2tjZLvSougwcP1r333qv//d//1Z/+9CfV1tZq2LBh+uyzz6Kvgd/rU1tbq3bt2mm33XbzXAfhCut1qa2tVZcuXRLa79KlC69dCMaNG6cHHnhAS5Ys0Y033qjVq1fr6KOPVkNDgyReo9ZmjNHkyZN15JFHqn///pL4LOUit9dJ4vOUK1577TXtsssuKisr08UXX6zHHntMBx10EJ8lJCDGTw3xeObw/ZQZ/F1uOWLScBE7hoc4r/C1yXYHwmRZlmPeGJOwDJkxbty46PSAAQM0dOhQ7bPPPrrnnnuixehb8vrwGmZeGK+L2/q8duE444wzotP9+/fXYYcdpt69e2vhwoU67bTTPLfjNcqMyy67TK+++qqef/75hOf4LOUOr9eJz1Nu6Nu3r15++WVt2rRJCxYs0MSJE7V8+fLo83yWEI8YPxji8czj+ylc/F1uOWLScBE7hoc4r/AVREbyHnvsodLS0oRfHz755JOEXzvQOjp27KgBAwbo3XffjY4W7ff6VFZWauvWrfriiy8810G4wnpdKisr9fHHHye0/+mnn/LaZUC3bt3Uu3dvvfvuu5J4jVrT5ZdfrieffFJLly7VXnvtFV3OZym3eL1Obvg8ZUe7du2077776rDDDtOsWbM0aNAg3XzzzXyWkIAYPz3E4+Hh+6l18Hc5GGLScBE7hos4r/AVxIXkdu3a6dBDD9WiRYscyxctWqRhw4ZlqVfFraGhQW+99Za6deumqqoqVVZWOl6frVu3avny5dHX59BDD1Xbtm0d62zcuFGvv/46r2GGhPW6DB06VHV1dfq///u/6Dr/+te/VFdXx2uXAZ999pk2bNigbt26SeI1ag3GGF122WV69NFHtWTJElVVVTme57OUG5K9Tm74POUGY4waGhr4LCEBMX56iMfDw/dT6+Dvsj9i0nARO7YO4rwClKlR/FrbvHnzTNu2bc1f/vIX8+abb5pJkyaZjh07mvfffz/bXSsKU6ZMMcuWLTPr1q0zL7zwgjnxxBNNp06douf/uuuuM5FIxDz66KPmtddeM2eddZbp1q2bqa+vj7Zx8cUXm7322sssXrzYrF271hx99NFm0KBBprGxMVuHlfe+/PJL89JLL5mXXnrJSDI33XSTeemll8wHH3xgjAnvdTnuuOPMwIEDTXV1tamurjYDBgwwJ554Yqsfbz7ye42+/PJLM2XKFLNq1SpTU1Njli5daoYOHWp69OjBa9SKfvzjH5tIJGKWLVtmNm7cGH18/fXX0XX4LGVfsteJz1NumDZtmlmxYoWpqakxr/7/9u4/pqrygeP45yoXBe9NEBFBEZgM0WZLYppkFMPSLSeEI1wMEPyxNC1bSUYr64+Wlqz8w61ZCeRojo3mH2jSLMAfMwSx2dSRkEYazWY4I0h+Pd8/nKeu4PVC+EXp/drYOM85z3Oe55xd/NzHc+9z8qTJy8szI0aMMF999ZUxhtcSeiPje448/u+QmwcfOXdwkUkHF9lx8JHz/huGzUSyMcZs377dhIWFGW9vbxMTE2OqqqqGukv/GWlpaSY4ONjY7XYTEhJiUlJSzKlTp6z9PT09ZtOmTWbixIlm1KhRJj4+3nz//fcubbS3t5u1a9eacePGGR8fH7No0SLT1NT0/x7KsFJRUWEk9frJysoyxgzefbl8+bJJT083TqfTOJ1Ok56eblpaWv5Po7y3ubtHbW1t5sknnzSBgYHGbrebKVOmmKysrF7Xn3t0Z/V1fySZgoIC6xheS0PvdveJ19PdIScnx8pqgYGBJjEx0XpzYQyvJfSNjO8Z8vi/Q24efOTcwUUmHVxkx8FHzvtvsBljzOA/5wwAAAAAAAAAGC6GxXckAwAAAAAAAADuHCaSAQAAAAAAAABuMZEMAAAAAAAAAHCLiWQAAAAAAAAAgFtMJAMAAAAAAAAA3GIiGQAAAAAAAADgFhPJAAAAAAAAAAC3mEgGAAAAAAAAALjFRDKAe05lZaVsNpuuXLnicZ1ly5YpOTn5jvVpMM/z1ltv6cEHHxyU/gAAAODeQc4FANzNvIa6AwDQX3FxcWpubtbYsWM9rrNt2zYZY+5gr+4ulZWVSkhIUEtLi/z8/Ia6OwAAAPAAOff2yLkAMHSYSAZwz/H29tbEiRP7Vac/YRz3hu7ubtlsNo0YwYdrAADA8EDOhUTOBXD34q8SgCH1+OOPa926dVq/fr38/f0VFBSkHTt26M8//1R2dracTqemTp2qL7/80qpz80f+CgsL5efnp/Lyck2fPl0Oh0MLFy5Uc3OzVefmj+IN5Lzd3d1avny5IiIi5OPjo2nTpmnbtm39Gu+Nvu7Zs0dRUVEaPXq0nnjiCf3888+9jt21a5fCw8M1duxYLV26VH/88Ye179q1a3rhhRc0YcIEjR49WvPmzVNNTY0k6fz580pISJAk+fv7y2azadmyZbet989r+/XXXys2Nla+vr6Ki4tTfX2923FdvHhRaWlp8vf3V0BAgJKSknT+/Hlr/43rv3XrVgUHBysgIEDPP/+8Ojs7rWM6OjqUm5urSZMmacyYMZozZ44qKyt7XbuysjLNmDFDo0aN0k8//aTm5mY99dRT8vHxUUREhD7//HOFh4frww8/lCTl5ORo0aJFLv3t6urSxIkTtXPnTrfjAgAAGChyLjn3BnIugOGCiWQAQ66oqEjjx4/XsWPHtG7dOq1evVqpqamKi4tTXV2dFixYoIyMDLW1td2yjba2Nm3dulW7du3SwYMH1dTUpFdeeWVQz9vT06PJkyerpKREp0+f1ptvvqm8vDyVlJT0a7xtbW165513VFRUpCNHjujq1ataunSpyzGNjY3as2ePysrKVFZWpqqqKm3evNnan5ubq9LSUhUVFamurk6RkZFasGCBfv/9d4WGhqq0tFSSVF9fr+bmZuuNgLt6//T6668rPz9ftbW18vLyUk5OjtvxJCQkyOFw6ODBgzp8+LD1Jqejo8M6rqKiQo2NjaqoqFBRUZEKCwtVWFho7c/OztaRI0e0e/dunTx5UqmpqVq4cKHOnj3rcq53331Xn3zyiU6dOqUJEyYoMzNTv/zyiyorK1VaWqodO3bo0qVLVp0VK1Zo//79Lm+49u3bp9bWVj3zzDOe3DIAAIABIeeScyVyLoBhxADAEHrsscfMvHnzrO2uri4zZswYk5GRYZU1NzcbSebo0aPGGGMqKiqMJNPS0mKMMaagoMBIMg0NDVad7du3m6CgIGs7KyvLJCUl/avz9mXNmjVmyZIltzzPzW709dtvv7XKzpw5YySZ6upqY4wxmzZtMr6+vubq1avWMRs2bDBz5swxxhjT2tpq7Ha7KS4utvZ3dHSYkJAQ89577/V5jfpb78CBA9Yxe/fuNZJMe3t7n2P69NNPzbRp00xPT49Vdu3aNePj42PKy8ut6xIWFma6urqsY1JTU01aWpoxxpiGhgZjs9nMxYsXXdpOTEw0r732msu1++6773pdu5qaGqvs7NmzRpL54IMPrLIZM2aYLVu2WNvJyclm2bJlfY4HAABgMJBzybnGkHMBDC88kQxgyD3wwAPW7yNHjlRAQIBmzpxplQUFBUmSy/++38zX11dTp061toODg90eP9DzfvTRR4qNjVVgYKAcDoc+/vhjNTU13W6ILry8vBQbG2ttR0dHy8/PT2fOnLHKwsPD5XQ6+xxPY2OjOjs79cgjj1j77Xa7Zs+e7dLGzfpT75/XJjg4WNKtr//x48fV0NAgp9Mph8Mhh8OhcePG6a+//lJjY6N13P3336+RI0f2Oaa6ujoZYxQVFWW14XA4VFVV5dKGt7e3S9/q6+vl5eWlmJgYqywyMlL+/v4ufVyxYoUKCgqscezdu9ft0ycAAACDgZxLziXnAhhOWGwPwJCz2+0u2zabzaXMZrNJuv6Ru/60YW6zenV/z1tSUqKXXnpJ+fn5mjt3rpxOp95//31VV1e7PU9fbrR9q7K++najHzfGdXMbxpg+2/3nfk/r9ef69/T06KGHHlJxcXGvfYGBgR6NqaenRyNHjtTx48ddQrgkORwO63cfHx+Xvt7qHt9cnpmZqY0bN+ro0aM6evSowsPD9eijj/ZZFwAAYLCQc3uXkXP/Rs4FcK/hiWQA8NChQ4cUFxenNWvWaNasWYqMjHR5isBTXV1dqq2ttbbr6+t15coVRUdHe1Q/MjJS3t7eOnz4sFXW2dmp2tpaTZ8+XdL1Jxqk6wun9KfeQMTExOjs2bOaMGGCIiMjXX48XUV81qxZ6u7u1qVLl3q14W7l8ujoaHV1denEiRNWWUNDg7VAzQ0BAQFKTk5WQUGBCgoKlJ2dPaCxAgAADEfk3L6RcwHAFRPJAOChyMhI1dbWqry8XD/88IPeeOMNl5WgPWW327Vu3TpVV1errq5O2dnZevjhhzV79myP6o8ZM0arV6/Whg0btH//fp0+fVorV65UW1ubli9fLkkKCwuTzWZTWVmZfvvtN7W2tnpUbyDS09M1fvx4JSUl6dChQzp37pyqqqr04osv6sKFCx61ERUVpfT0dGVmZuqLL77QuXPnVFNToy1btmjfvn23rBcdHa358+dr1apVOnbsmE6cOKFVq1b1eqJDuv6xv6KiIp05c0ZZWVkDHi8AAMBwQ87tGzkXAFwxkQwAHnruueeUkpKitLQ0zZkzR5cvX9aaNWv63Y6vr69effVVPfvss5o7d658fHy0e/fufrWxefNmLVmyRBkZGYqJiVFDQ4PKy8ut70ybNGmS3n77bW3cuFFBQUFau3atR/UGwtfXVwcPHtSUKVOUkpKi6dOnKycnR+3t7brvvvs8bqegoECZmZl6+eWXNW3aNC1evFjV1dUKDQ11W++zzz5TUFCQ4uPj9fTTT2vlypVyOp0aPXq0y3Hz589XcHCwFixYoJCQkAGNFQAAYDgi5956PORcAPibzdzuy5UAAIOmsLBQ69ev7/WRNAyeCxcuKDQ0VAcOHFBiYqJV3tbWppCQEO3cuVMpKSlD2EMAAIDhh5x755FzAQw1FtsDANzTvvnmG7W2tmrmzJlqbm5Wbm6uwsPDFR8fL+n6Aie//vqr8vPzNXbsWC1evHiIewwAAADcHjkXwN2GiWQAwD2ts7NTeXl5+vHHH+V0OhUXF6fi4mJr9eympiZFRERo8uTJKiwslJcX//QBAADg7kfOBXC34astAAAAAAAAAABusdgeAAAAAAAAAMAtJpIBAAAAAAAAAG4xkQwAAAAAAAAAcIuJZAAAAAAAAACAW0wkAwAAAAAAAADcYiIZAAAAAAAAAOAWE8kAAAAAAAAAALeYSAYAAAAAAAAAuPU/PBeIYzE7SCIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18,6))\n", "\n", "a0=ax[0].hist2d(energy_found, eta_found, bins=200, cmap=plt.cm.jet, cmin=1, range=[[0,0.3e4],[1,6]], vmax=20)\n", "ax[0].set_xlabel(\"minimal photon energy\")\n", "ax[0].set_ylabel(r\"$E_{ph}$\")\n", "ax[0].set_title(\"found eta wrt photon energy\")\n", "\n", "a1=ax[1].hist2d(energy_lost, eta_lost, bins=200, cmap=plt.cm.jet, cmin=1, range=[[0,0.3e4],[1,6]], vmax=20)\n", "ax[1].set_xlabel(\"minimal photon energy\")\n", "ax[1].set_ylabel(r\"$E_{ph}$\")\n", "ax[1].set_title(\"lost eta wrt photon energy\")\n", "\n", "\"\"\"\n", "\"\"\"\n", "fig.colorbar(a0[3],ax=ax[1])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "env1", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 2 }