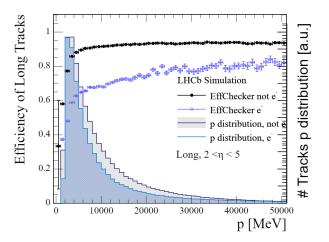
Status Report: Run 3 Electron Reconstruction Studies

Furkan Cetin


Heidelberg University

cetin@physi.uni-heidelberg.de

October 30, 2023

Motivation

- looked at track finding efficiencies
- electrons underperform against other particles

Track Types

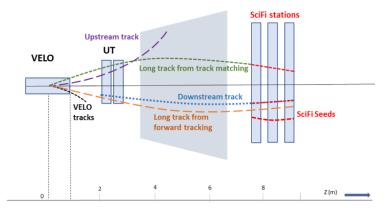
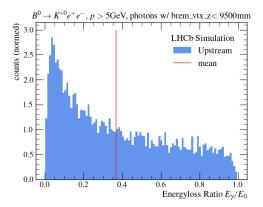


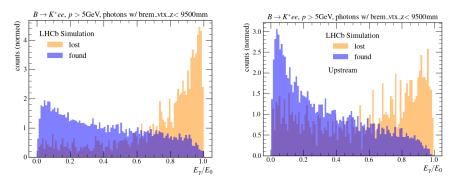
Figure: LHCb Track Types

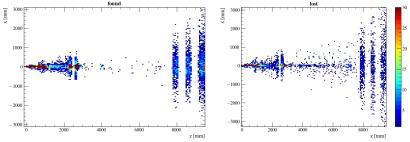

Problem: electron has many possibilities to emit Bremsstrahlung

Introduction

Tracking Electrons in LHCb

Difficulties for reconstructing electrons:


- $\bullet~$ typically lose 30% 40% of their energy before they reach the magnet
- all parametrisations for pattern recognition explicitly exclude electrons no measures to recover electron tracks


Here are a few of my findings.

Bremsstrahlung

- most lose energy upstream

Bremsstrahlung Vertices

 $B^0 \rightarrow K^{*0} e^+ e^-$, p > 5 GeV, Bremsstrahlung Vertices

- found: no emissions in magnet
- lost: material interaction and emissions in magnet

Simplified Track Model

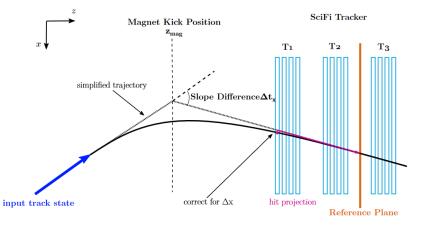
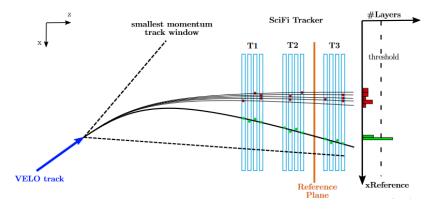
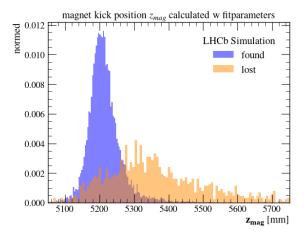
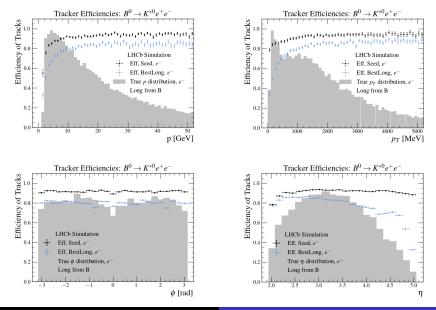



Figure: Illustration of the Optical Model method to describe a trajectory through the magnet

Forward Tracking

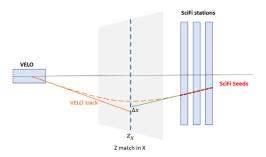

- forwards Velo tracks and searches for possible Scifi hits


Magnet Kick Position

 z_{mag} generally closer to the Scifi for lost electrons.

- \rightarrow in general lost electrons are bent more by the magnet
- \rightarrow lower energy than found electrons

Efficiency, from B


The Matching Algorithm

Idea:

- baseline track finding already creates Velo and Scifi tracks independently
- implement Matching algorithm, for electrons, over residual Velo tracks

Basic Idea of Matching:

- quantify the level of agreement, i.e. a match, between Velo and Scifi track segments

Variable	Preselection
$\chi^2_{ m match}$	< 15
D_x	$<250\mathrm{mm}$
D_y	$<250\mathrm{mm}$
$ \Delta t_x^{ m match} $	< 1.5
$ \Delta t_y^{ m match} $	< 0.15
$t_x^2 + t_y^2$	

Figure: Input Variables of the Matching MLP